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Chapter 1

Introduction

Quantum simulation refers to the process of using quantum systems, to simulate
and study the behavior of other quantum systems, usually more complex. It
involves creating a controllable and understood model of a quantum system of
interest and then realizing this model by running it in an experimental set-up
or quantum computer (a.k.a. digital quantum simulator). Going one step down
one should reflect on what the quantum systems actually are. All the matter
is built from quantum particles, but what makes one system quantum and other
classical? One of the measures to distinguish these two regimes might be a
temperature. Quantum phenomena can be observed when the system is in, or
close to, its ground state, i.e close to absolute zero. Increasing the temperature
excites the constituents of the system resulting with the state being an incoherent
statistical mixture of configurations that is described by Fermi-Dirac, Maxwell,
or Bose-Einstein statistics, depending on the species of the constituents. The
other issue that should be clear already at this point is, what systems are we
talking about. Depending on the internal degrees of freedom (let’s call them X)
of the constituents, the system of N constituents will have XN possible states.
For the simplest non-trivial constituents of two internal degrees of freedom (like
spins), the system with N = 20 will already be on the edge of being classically
computable. Therefore, the systems that are usually considered in the quantum
simulation are the systems that exceed the computational power of the classical
computers and, therefore, offer a unique way of analysing the many particle (or
many-body) quantum systems. Needless to say, basically all condensed matter
systems will fall into this category.

This thesis focuses on quantum simulation of complex many-body systems in
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8 CHAPTER 1. INTRODUCTION

three different scenarios. The first one is simulation of 2D electronic materials 1.3
i.e simulation of fermionic systems. The second scenario is quantum simulation
of dynamics of spin systems in context of quantum batteries. The last one is the
quantum simulation of bosonic systems with dipolar excitons. All these systems
reveal the behaviour at which, due to interactions between particles, the constituents
(electrons, bosons, spins) are not independent of each other, but rather form a
correlated phase. The details of correlated phases are explained in the next section.

1.1 Correlated phases of matter
In general, correlated phases of matter refer to states of matter where the behavior
of particles or constituents is strongly influenced by interactions and exhibits
collective behavior that extends over a large number of particles. In these phases,
the properties of individual particles are intertwined and interconnected, leading
to emergent phenomena that cannot be understood by considering the behavior
of each constituent in isolation. Correlations can arise due to various interactions,
such as electromagnetic, gravitational, or quantum mechanical interactions, among
others. These interactions can lead to the emergence of novel phenomena and
properties that are not present in the individual constituents.

Traditionally, the condensed matter physics orbited around the Fermi Liquid Theory
(FLT), which expands the description of non-interacting Fermi gas into the system
of interacting electrons [1]. According to FLT the interactions between particles
lead to the new, ”dressed”, quasi-particle states altering its effective mass, specific
heat etc. but with retained independent behaviour legitimizing the validity of
the band theory. This however, works only if the dispersion (bandwidth) is big
enough comparing to electronic interactions, i.e in the FLT regime. Remarkably,
some materials, generally these with d and f atomic orbitals, have vastly reduced
dispersion of electrons due to smaller orbital overlap between the sites, and therefore,
smaller hopping amplitude (smaller possibility of an electron jumping from one
atom to the other and, therefore, moving within the material). This leads to regime
out of the scope of FLT, where Coulomb interactions are the leading mechanism
responsible for collective behaviour of the whole system, while kinetic movement
of constituents is reduced.

The band theory defines the allowed energies for non-interacting electrons, as well
as the forbidden energy regions, known as gaps. The energy gaps in materials are a
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consequence of the discrete energy spectrum of the individual atoms (constituents)
of the material. The transport properties of the material depend on the filling
of the highest bands. If the highest band is fully filled with electrons, then the
material is considered to be an insulator. However, when the highest band is only
partially filled, then the excited electrons can access it. In such case the material is
a metal. In the presence of strong, repulsive Coulomb interactionsm the material
can be an insulator even with only partially filled highest bands. Such material,
which should conduct, but due to interactions does not, is called a correlated
(Mott) insulator and is one of the most prominent correlated phases, which we
will discuss in detail in 6.

Another well-known example of a correlated phase of matter is a ferromagnet.
In a ferromagnetic material, the magnetic moments of individual atoms align in
the same direction, resulting in a macroscopic magnetization. The alignment of
the magnetic moments is a collective behavior that arises due to the exchange
interaction between the atoms.

1.2 Quantum Simulators

1.2.1 Idea and main concepts
A simulator is a device that imitates desired properties of a given system such as
an airplane, train or a physical system of quantum particles. Airplane simulator
cannot fly, nor take passengers on board but provides realistic reproduction of
all navigational, mechanical and electronic apparatus necessary for the efficient
and safe training of the crew. Similarly, simulators of the quantum systems do
not reproduce all properties of the original, simulated systems, but imitate only
their specific features that are required to understand the phenomena of interest
occurring in the original system. The general idea and concept of such quantum
simulators (QSs) can be summarized as follows:

• There exist many interesting quantum phenomena with highly important
applications (such as, for instance, superconductivity).

• These phenomena are often complex to describe and understand with the
help of standard or even supercomputers.

• The proposal by Yu. I. Manin and R. P. Feynman [2, 3] suggests the possibility
of designing another, simpler, and more controllable quantum system to
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simulate, understand, and control these phenomena. Such a system would
function as a quantum computer with a specific purpose, i.e., a quantum
simulator.

Designing such a simulator, however, is not an easy task at all. The research
line on QS goes back to the beginning of this century, and there are numerous
valuable reviews covering the various platforms and types of QSs [4]. The practical
concept of QS dates back to the proposal for simulating strongly correlated systems
in optical lattices [5] and the first experiments [6]. Nowadays, QSs are commonly
used for the following tasks and goals:

• Fundamental problems of physics: This is the most developed application,
in which many achieved results are believed to reach quantum advantage;
this is particularly true for the studies of quantum dynamics [7] or quantum
disordered systems, such as the ones that exhibit many-body localization
(MBL).

• Quantum chemistry. Applications of QS to quantum chemistry has only
started [8, 9, 10, 11] and, although promising, it is still far from achieving
the precision and accuracy of contemporary theoretical quantum chemistry.
There is a growing evidence that the expect of exponential quantum advantage
in quantum simulations for quantum chemistry is not such (see recent works
by G.K. Chan [12], and his talks at the APS meeting in 2022).

• Classical/quantum optimization problems for technology. Applications
of quantum NISQ devices and QS to optimization problems are also in an
initial phase [13] and cannot yet compete with the classical supercomputer
methods (cf. [14]).

1.2.2 Platforms and architectures
Now is the time to mention how the quantum simulators can be actually built.
There are several very well developed platforms where QSs are being realized
and ”practical” quantum advantage has been achieved. We should stress that QSs
can be analog or digital.

In the latter case, any platform that offers tools for universal quantum computing
can also be used for quantum simulation. Here comes a definitely incomplete list
of already developed QS architectures:
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• Superconducting qubits: These are the same systems as the ones used
by Google [15] or D-Wave [16]. Even though in principle they allow for
”noisy” but universal quantum computing, they can be and very often are
used as digital QSs (cf. [17]). They can be coupled to microwave cavities,
resulting into circuit QED systems [18].

• Ultra-cold atoms: They mostly offer the possibility for analog quantum
simulation. This can be realized in the continuum or in optical lattices [19].
They are very flexible and they allow to simulate complex Hubbard models,
as well as spin systems.

• Trapped ions: Similarly to superconducting qubits, trapped ions allow for
universal quantum computing, but they can also be used as perfect analog or
digital QSs [20, 21]. Similarly to superconducting qubits, they can be used
to simulate spin 1/2 systems, rather than Hubbard models. Very recently a
qudit (or spin 1 and 2) quantum computer/simulator was realized with ions
[22].

• Rydberg atoms: These are atoms where the electron has been excited to a
high principal quantum number, and which are trapped in optical tweezers.
They mimic spin systems with long range interactions [23, 24, 25].

• Photonic systems: These are typically linear optics systems which, combined
with photon counting, may mimic a universal quantum computer, according
to the famous paper from Knill, Laflamme, and Milburn [26]. Achieving
strong non-linearity with photons is very challenging, but there are ongoing
attempts and proposals [27].

• Light and Cavity materials: Quantum Simulators based on Cavity Quantum
Electrodynamics take advantage of the coupling between quantum system
and the coherent light field of the cavity, in which such system has been
placed. This branch of quantum simulation is commonly named as ”cavity
quantum materials”, since one in principle could place a many-body quantum
system into a cavity and control its properties via light-matter interactions.
Currently, however, the experimental studies are mainly conducted in the
scope of Jaynes–Cummings and Dicke models [28]. Another research path
was taken by engineering materials entirely from light with resulting photon-
photon interactions[29, 30, 31, 32]. Such systems, however, require a mediator
(for example Rydberg-dressed atoms) facilitating the light-light interactions.
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• Twistronics systems: Twistronics deals with twisted bi-layer graphene or
other two-dimensional materials [33, 34]. For small ”magic” angle, such
systems lead to periodic Moiré patterns at a length scale much larger than
the typical scale of condensed matter systems: in this sense, they can themselves
be considered as condensed matter quantum simulators of condensed matter
[35]. Such approach has been explained in detail in Chapter 1 of this book.
Twisted bi-layer materials can, however, also be mimicked by ultra-cold
atoms in a two-dimensional lattice with synthetic dimensions [36].

• Polaritons: Especially useful for non-equilibrium systems and quantum
hydrodynamics simulation, as well as relativistic effects thanks to dual (half
light half particle) nature of the polaritonic quasi-particles [37, 38, 39].

1.3 2D materials

2D materials refer to materials that are extremely thin, consisting of a single layer
or a few layers of atoms arranged in a two-dimensional plane. These materials
have unique properties that arise due to their reduced dimensionality, which can
differ significantly from their bulk counterparts. Graphene, a single layer of
carbon atoms arranged in a hexagonal lattice, is the most well-known and extensively
studied 2D material.

The term ”2D material” is not limited to graphene; it encompasses a broader class
of materials with different chemical compositions and structures. Below basic
categories of 2D materials are listed together with their properties.

Graphene is a single layer of carbon atoms arranged in a two-dimensional hexagonal
lattice. It is incredibly strong, flexible, and exhibits exceptional electrical and
thermal conductivity. Due to its unique electronic properties, graphene holds
promise for applications in electronics, transparent conductive coatings, energy
storage devices, and sensors. It also has remarkable mechanical strength, with
tensile strength about 200 times greater than steel.

Transition Metal Dichalcogenides (TMDs) are a class of 2D materials that consist
of a transition metal atom (such as molybdenum or tungsten) sandwiched between
two layers of chalcogen atoms (such as sulfur, selenium, or tellurium). Unlike
graphene, TMDs have a bandgap, which enables them to exhibit semiconducting
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properties. This property makes TMDs suitable for applications in electronics
and optoelectronics, such as transistors, photodetectors, and light-emitting diodes
(LEDs).

Boron Nitride (BN) is a 2D material composed of alternating boron and nitrogen
atoms arranged in a hexagonal lattice, similar to graphene. It has excellent thermal
and chemical stability, high electrical insulation properties, and acts as a good
thermal conductor. BN is often used as a substrate for graphene and other 2D
materials because it provides a clean and stable surface for their growth and
preserves their unique properties.

Black phosphorus is another notable 2D material. It is composed of phosphorus
atoms arranged in a layered structure. Black phosphorus exhibits a tunable bandgap,
ranging from a semiconductor to a semi-metal, depending on the number of layers.
This property makes it suitable for applications in electronics, optoelectronics, and
photovoltaics.

Other 2D Materials: Apart from the aforementioned materials, there are various
other 2D materials with distinct properties and potential applications. These include
hexagonal boron nitride (hBN), which is an insulating material with a structure
similar to graphene, and molybdenum diselenide (MoSe2) and tungsten disulfide
(WS2), which are TMDs with unique electronic and optical properties.

The characteristics of 2D materials give rise to several unique macroscopic phenomena,
such as high carrier mobility, extraordinary mechanical strength, optical transparency,
and exceptional thermal conductivity.The field of 2D materials has gained significant
attention in recent years due to their potential applications in various fields, including
electronics, optoelectronics, energy storage, sensing, and catalysis. Researchers
are actively exploring the synthesis methods, characterization techniques, and
manipulation strategies to harness the properties of 2D materials and integrate
them into practical devices. It’s also worth noting that while graphene is a truly
2D material, many other materials considered 2D may have a small but finite
thickness, consisting of a few atomic layers. Nonetheless, they still exhibit properties
that are distinct from their bulk counterparts, making them valuable for technological
advancements.
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1.4 Supervision and authorship

The thesis is organized as follows: Chapter 2 presents the original idea of quantum
simulator of twisted bi-layer materials, specifically but not limited to magic angle
twisted bi-layer graphene. It proposes the experimental set-up based on ultra-cold
atoms of 87Sr being confined in square optical lattice. Internal magnetic degrees
of freedom of ground state manifold of the atoms are used to synthetically encode
two layers. Spatially varying coupling between the layers - necessary for imitating
the effect of physical rotation in real systems - is performed by spatially modulated
light beam imprinted onto the lattice in the perpendicular direction. Such approach
eliminates the necessity of generating bi-layer lattice and, moreover, the necessity
of physical rotation of one of them. Hence, twistronics without a twist. Chapter 3
expands this idea and focuses on topological properties of such quantum simulators.
By implementing specific terms and adjusting experimental scheme, we energetically
separate system’s quasi-flat bands. Such separation allows for broad exploration
of edge states, Quantum Anomalous Hall Phases etc.

Chapter 4 is the attempt to grasp the effects of band flattening in interacting
systems. We have undertaken an ambitious approach of exploring all possible
interaction processes happening within each synthetic rung. We focused on attractive
interactions and applied Hartree-Fock-Bogoliubov mean-field approximation. As
a result, we have observed strong increase of the critical temperature due to band
flattening. Chapter 5 is moving away from the idea of simulating 2D materials
with ultra-cold atoms. It discusses a possibility of designing systems, that can be
used as quantum batteries, i.e batteries, which can be charged faster than classical
batteries. In this chapter we have dug deep into evolution of quantum state, both
in it’s Hilbert space and it’s energy eigen-space. We have defined the observables
and quantities allowing for precise description of the performance of any quantum
system working as a quantum battery. The proper description of the problem
allowed us to formulate fundamental bound on capacity and power of the batteries,
which are tighter than those resulting from Quantum Speed Limit. We have tested
out approach on multiple spin systems and analyzed their potential usefulness as
quantum batteries.

Chapter 6 focuses on quantum simulation of bosonic systems, which naturally
have different properties, than the fermionic ones. It describes the theoretical
work, which we have done to support the first realisation of the Extended Bose-
Hubbard in the solid state platform, that has been proven by the detection of the
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theoretically anticipated correlated phases at specific fillings.

This thesis is a result of four and a half years of my stay at ICFO, as a PhD student.
Within this time I had a privilege to work with many fantastic collaborators,
who were also supervising my research. Each chapter here is based on the peer-
reviewed research article that the author of this thesis coauthored. The first two
chapters(2-3), based on [40, 41] were supervised by Dr. Debraj Rakshit. Results
presented in Chapters 4 [42] and 6 [43] were supervised by Dr. Tobias Grass
and research described in Chapter 5 [44] was supervised jointly by Dr. Arnau
Riera and Dr. Manabendra Bera. Dr. Ravindra Chajjlany, who appears in all
publications that form this thesis, had a tremendous impact on training and can be
equally considered as one of my supervisors. All of my scientific activities were
financed, supervised, but most of all supported by prof. Maciej Lewenstein. I am,
once again, eternally grateful to all of them.

I tried to highlight the extent of my contribution in each chapter. Theory presented
in Chapter 4. was developed by all the authors with equal commitment. Regarding
the exemplary models, Dickie model was calculated by Dr. Julia Farre, LMG
model by me, and analytically solvable model by both of us. I present all the
results together since each of them is a crucial for the discussion on potential
speed-up of quantum batteries. My contribution to results presented in Chapter V
is mentioned in detail in the introduction of this chapter. Shortly, I have developed
the exact diagonalization code that allowed us to calculate exact values of Structure
Factor, as well as exact photo luminescence spectrum. Mean Field calculations,
that provided the approximated phase diagram, have been done by Dr. Utso
Bhattacharya.
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Chapter 2

Generation of quasi-flat band
systems

Design of new crystalline materials often begins with band predicting - a process,
that allows one to tailor material’s energy structure in the simplest, non-interacting,
scenario. This free-electron assumption provides, although incomplete, information
on energy dispersion and energy gaps, which then can be used to describe the
electrical and optical properties of the designed solid, such as resistivity or optical
absorption. Surely, when it comes to natural materials one has very limited portfolio
of tools to modify band-structure, usually limited to creating new alloys, introducing
defects, applying strains or changing the temperature of the materials. Band
engineering in quantum materials has slightly different meaning - novel quantum
simulation platforms offer a whole palette of possibilities, such as tuning of lattice
constant, modifications of hopping amplitudes and lattice geometries, spin selective
processes, just to name a few only in the non-interacting approximation. Therefore
with quantum simulators, one has a chance to custom design a lattice system with
a desired band structure. In this context, quantum simulators do not simulate real
materials, but they are rather a type of synthetic material (system), where some
desired physical phenomena can occur.

New class of systems, which reveal strongly correlated phenomena are flat-band
materials. They form a special sub-group of quantum materials and owe many
of their collective properties to strong suppression of the kinetic energy at Fermi
level, and therefore reduction of the effective mass of the electrons [45, 46, 47, 48,
49]. Besides many flat-band materials naturally existing in nature [50], twisted bi-
layer graphene (TwBLG) has emerged as a prime experimental platform hosting
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flat band physics. Twistronics, a term coined from twist and electronics, is commonly
used nowadays to describe the physics resulting from the twist between layers
of two-dimensional materials. This terminology was introduced in Ref. [51],
which conducted theoretical studies on how a twist between the layers can change
electronic properties of bi-layer graphene. But the history of this new area of
research goes back to Ref. [52], whose authors suggested that twisted bi-layer
graphene could provide a new material with unprecedented properties. Flat bands
at the magic angle were discovered in 2011 [53], whereas Bistritzer and MacDonald
showed that for a twisted material with a “magic angle” the free electron properties
radically change [46]. More recently, two seminal experimental papers [54, 55]
demonstrated that such twisted bi-layer graphene at the magic angle can host both
strongly insulating Mott states and superconductivity. These impressive results
triggered an avalanche of experimental and theoretical works [56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73] (See Ref. [74] for a recent review
article).

However, preparation of the TwBLG sample is a task of the highest complexity
- in order to access interesting flat-band correlated phenomenology one has to
generate moiré patterns by rotating one of the layers of graphene by one of the
very accurate angles - so called a ”magic angles” (See Fig. 2.1) [58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]. Selecting ”magic angles” to
obtain desired properties is not applicable only to graphene. Different schemes
of stacking 2-dimensional layers have emerged as a fruitful way of modifying
material properties through the design of supercell structures and opened the field
of so-called Van der Waals materials [75]. The geometrical moiré patterns effectively
induce spatially varying inter-layer couplings that are behind the strong modification
of the band structure. As in artificial graphene systems [76], emulating the physics
of twisted bi-layer graphene beyond materials research- via analog quantum simulators
for example- could allow identifying key minimal ingredients that give rise to the
phenomenology of TwBLG.

Quantum simulators constitute one of the four major pillars of contemporary
quantum technologies [77], and can be realized with various platforms such as
ultra-cold atoms, trapped ions, superconducting qubits, circuit QED, Nitrogen
vacancies in diamond, or nanostructure in condensed matter (for a review see [78,
79, 80, 81, 82, 83]) Ultra-cold atoms in optical lattices [84] is one of the the most
promising platforms to explore experimentally also the corresponding emerging
many-body phenomena. The experimental realization of artificial graphene geometries
[85, 86], lattice geometries displaying flat bands like Kagome [87] and Lieb [88,
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Figure 2.1: Moiré patterns of two hexagonal lattices and one rotated by approx
6 deg, with respect to the other. Size of the unit cell increases by two orders of
magnitude comparing to untwisted double-layer graphene.

89], or quasi-crystal structures [90, 91, 92], provides the building blocks for such
exploration.

One obvious approach to study twisted bi-layer graphene physics with ultra-cold
atoms is to directly implement twisted bi-layers using two intertwined optical
lattices, as recently proposed in Ref. [93]. Schemes for simulating other bi-
layer heterostructures have also been put forward [94]. This direct strategy poses
significant experimental challenges, as it is difficult to stabilize the two layers
at relative small angles and simultaneously achieve a sufficiently large lattice
containing several supercells. In this thesis, we have proposed an alternative and
highly flexible experimental approach, corresponding to effectively twisting the
system without a twist. Our scheme builds on the concept of synthetic dimensions
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– reinterpreting the coherent coupling between spin states of an atom as tunneling
along an artificial extra dimension [95, 96, 97]. As summarized in Fig. 3.2, we
propose to realize a synthetic bi-layer structure formed by two Raman-coupled
atomic states with a spatially dependent synthetic tunneling Ω in analogy to the
effects of Moiré patterns of twisted bi-layer graphene. This leads to the creation
of supercells with controllable sizes. By adjusting the strength, phase and spatial
periodicity of Ω, this system allows engineering a broad range of band structures.
In particular, magic values of the periodicity result in a band structure analogous
to that of magic angle twisted bi-layer graphene, including Dirac cones touching a
set of quasi-flat bands. Our proposal could be realized with fermionic two valence
electron atoms, such as strontium or ytterbium, using available experimental techniques.

Following sections of this chapter are based on [98], where the discussed
results appeared primarily.

2.1 The model
As a playground we have chosen a two-dimensional Fermi gas of neutral atoms.
The gas is then loaded into a spin-independent square optical lattice of lattice
spacing d, which lies in the x − y plane and is characterized by a real tunneling
amplitude t. In principle, as mentioned earlier, other optical lattice geometries
are possible to implement, including a hexagonal lattice. Square lattice has been,
however, chosen for simplicity and easiness of control. This choice will become
clearer in the next section, when the twisting procedure is explained.

The concept of synthetic dimension - an additional degree of freedom acquired
by control of internal states of each atom - allows one to define necessary spin
states within a hyper-fine manifold of the ground states of the atoms, which plays
the role of the synthetic dimension in this system. In case of presented model:
two different spin states, σ± 1

2 in two different layers m = 0, 1. four internal states
will be associated as {m, σ} = ±1/2 spin states. More specifically, two states can
be chosen to mimic the electron spin σ = ↑ - regardless the actual spin of the
atom that is mimicking this electron spin. Similarly, other two sub-states work as
electron spin σ = ↓.
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In order to effectively construct a bi-layer lattice structure, spin states corresponding
to the same σ are coupled in pairs. We label them by the index m, and make them
play the role of a synthetic layer dimension. Since m = 0, 1, we obtain a bi-layer
structure of synthetic layer tunneling given by the coherent coupling. In order
to obtain a lattice geometry with a large supercell analogous to a Moiré pattern in
twisted bi-layer graphene, the amplitude of the synthetic layer tunneling amplitude
is spatially modulated according to

Ω(x, y) = Ω0

[
1 − α(1 + cos (2πx/lx) cos (2πy/ly))

]
. (2.1)

Here lx (ly) is its periodicity along the x and y axis. Of course, the presented
form of inter-layer hopping Ω(x, y) (Eq. (2.1)) does not correspond to rotation -
as it is in the real Twisted Bi-layer Graphene. This is because in our synthetic
system we are not limited to transformations of the whole sheets of graphene.
Rotation is one of the transformations one can perform with bi-layer graphene in
order to modulate the inter-layer coupling, since the shape of each sheet is given.
Using Spatial Light Modulator - a device allowing one to imprint desired spatial
light pattern onto the lattice - we can generate any spatial pattern, not limiting
ourselves to rotations.

The synthetic tunneling also induces a Peierls phase γ · r, where γ = γx̂ + γŷ
and r = xx̂+ yŷ. This mimics the effect of a magnetic flux that pierces the system
perpendicularly to the synthetic layer dimension [96]. As depicted in Fig. 2.2,
the complete scheme represents a synthetic spinfull bi-layer structure subjected
to a spatially modulated light field, that induces desired commensuration of the
inter-layer hopping, denoted as Θ(lx, ly).

The Hamiltonian of the system is given by

H = Hin + Hinter

= −t
∑
r,σ

[
a†0,σ(r + d x̂) + a†0,σ(r + d ŷ) (2.2)

+Ω(r) exp(−iγ · r) a†1,σ(r)
]

a0,σ(r) + H.c.,

where we distinguish the in-layer and the inter-layer tunnelings. To diagonalize
the Hamiltonian 2.2, we combine a gauge transformation and a Fourier transform
such that

am,σ(r) =
∑

q

exp (i(q · r + mγ · r)) am,σ(q). (2.3)
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Figure 2.2: Synthetic bi-layer structure with a supercell. Real-space potential of
the synthetic bi-layer. Each plane corresponds to one spin state m = 0, 1 (orange,
green), which experiences a square lattice potential (tunneling t) and is connected
to the other layer by a spatially-dependent and complex coupling Ω(x, y) (vertical
red lines of variable width). A top view of the lattice indicating the unit cell of the
system containing 2 × 8 sites for lx = ly = 4d = Θ(4, 4) is shown (black line).

Here, q is the momentum conjugated to r. The Hamiltonian can then be rewritten
as

H =
∑

q

Hq, (2.4)

where the dimension of Hq is set by the spatial periodicity of the synthetic tunneling.
Fig. 2.2 sketches the Brillouin zone of the bi-layer system and a three-dimensional
view of its energy spectrum for lx = ly = 4d, corresponding to Θ(4, 4), for γ = 0.
In the vicinity of E = ±Ω0(1−α), it features two quasi-flat bands and a Dirac point
touching them (only one of them is represented in Fig. 2.2). This band structure
is reminiscent of that of magic angle twisted bi-layer graphene.

2.2 Experimental proposal
In our studies we have focused on the cold atom based platform that realizes the
quasi-flat band engineering by employing a subset of four states out of the large
nuclear spin manifold I = 9/2 of 87Sr. The choice of this specific atomic species
has been made due to its wide use in experimental set-ups. The proposal could,
however, be directly implemented with 173Yb (I = 5/2) as well.
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Figure 2.3: Sketch of the first Brillouin zone, indicating the position of the
high-symmetry points, and three dimensional view of the energy spectrum in
the vicinity of E = −Ω0(1 − α) for Ω0α/h = 20t with α = 0.2 and γ = 0. It
has two quasi-flat bands intersecting a Dirac point. Note that a simple square
lattice supports neither flat-bands nor Dirac cones. (c) Proposed experimental
realization. Top: Two retro-reflected optical lattice beams (green) create the
square lattice. Two Raman beams of opening angle θ (red) produce complex
synthetic tunneling between the two layers. One “modulation laser” with a
spatially varying intensity distribution (blue) modulates the amplitude of the
Raman coupling. Bottom: laser beams involved in the synthetic bi-layer coupling
scheme. The single-photon detuning of the Raman beams (red arrows) is spatially
modulated with respect to its initial value ∆0/2π ∼ 75 MHz using a laser beam
blue detuned with respect to the 3P1 →

3S 1 transition (blue arrow). It produces a
light shift of maximal amplitude 2δ/2π ∼ 30 MHz.

Thanks to the S U(N) invariant interactions characteristic of elements with
two electrons in the outer shell, collisional redistribution of the atoms among
the different states is inhibited. Further implications of such symmetry will be
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discussed in the following sections. Two sub-levels from a ground state manifold
have been arbitrarily chosen to play the role of the electron spin σ = ↑ in 2
accessible layers, and the other two for the spin σ = ↓. All the atoms are subjected
to a two-dimensional spin-independent optical lattice potential, created by two
counter-propagating lattice beams. We choose λL = 813 nm, which is commonly
used because it corresponds to the magic wavelength of the clock transition 1S 0 →
3P0.

We set a lattice depth 8 EL, which yields t/h = 107 Hz. Here, EL = ℏ
2k2

L/2m
is the lattice recoil energy, kL = 2π/λL, and d = λL/2.To create the synthetic layer
tunneling, we exploit two-photon Raman transitions between spins m = ±1/2 (To
suppress optical transitions to other spin states, an additional laser beam of smaller
detuning and producing a large differential light shift can be used). We employ
a pair of Raman beams of wavelength λR = 689 nm near-resonant to the inter-
combination transition 1S 0 →

3P1, which produce a coupling of amplitude Ω0 =

Ω1Ω2/∆0. Here Ω1 and Ω2 are the individual coupling amplitudes of the Raman
lasers and ∆0 the single-photon detuning. The Raman beams propagate in a plane
perpendicular to the lattice potential, are aligned along its diagonal, and form an
angle θ with the lattice plane (see Fig. 2.3). This yields an in-plane momentum
transfer per beam kR = ±2π cos θ/λR, with projections kR/

√
2 along the lattice

axes. Therefore, the phase of the synthetic tunneling is γ · r = γ(xx̂ + yŷ), with
γ = ±2πλL/(

√
2λR) cos θ. The sign is determined by the relative detuning of the

Raman lasers. Experimentally, the simplest choice is to use counter propagating
Raman beams (θ = 0◦), which yields γ = 0.8 (mod 2π). However, other magnetic
fluxes can be easily realized by adjusting the value of θ.

2.3 Twisting Analogy

To implement a periodic modulation of the Raman coupling amplitude on the scale
of several lattice sites, which is the key ingredient of our scheme, we propose to
exploit a periodic potential created by a laser close-detuned from the excited state
to excited state transition 3P1 →

3S 1 (corresponding to 688 nm [99]). This results
in a large light shift of the 3P1 excited state of amplitude δ, leading to a space-
dependent detuning of the Raman beams

∆(x, y) = ∆0 + δ(1 + cos (2πx/lx) cos (2πy/ly)). (2.5)
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Figure 2.4: Magic configuration band structure and DOS. Band structures around
energy −Ω0(1−α) and DOS (in arbitrary units) corresponding to Θ(4, 4) supercell
along the paths passing through the high-symmetry points Γ,X,M,Γ,X′,M.
Panels (a) and (b) corresponds to Ω0α/h = 2t and 20t, respectively, with α = 0.2
and γ = 0.8. In the evolution from panel (a) to (b) the six central bands in panel
(a), denoted with colors from orange to maroon, remain close in energy (as part
of one single band, see perturbative analysis in Sec. 2.4) while the remaining two
bands in panel (a) (in cyan and brown) separate in energy and do not appear in
panel (b).

Its effect is to modulate the Raman coupling amplitude

Ω(x, y) ≃ Ω0[(1 − α) − α cos (2πx/lx) cos (2πy/ly)], (2.6)

with α = δ/∆0 ∼ 0.2 for realistic experimental parameters, see Fig. (2.4) [99,
100]. We therefore name the Raman lasers “modulation laser”. Band structures
analogous to the one depicted in Fig. (2.4) are obtained for large values of αΩ0/h ≳
20t = 10.7 kHz and spatial periodicities of the Raman coupling of several lattice
sites (In this regime, the inter-layer tunneling remains smaller than the band gap
between the first and second band of the real-space lattice ∆E/h = 13.5 kHz).
The necessary patterns could therefore be projected by combining a spatial light
modulator and an optical system of moderate optical resolution, ensuring a large
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flexibility.

The emerging band structures are sensitive to the spatial modulation and the
strength of the laser coupling. Proper manipulations of the involved parameters
can yield flat bands. Typically, a system with weak Raman coupling (Ω0α/h ≲ t)
hosts a large number of extended hybridized bands. Enhanced coupling strength
(Ω0α/h ≈ 10t) tends to foster band narrowing. Magic-angle TwBLG is characterized
by flat-bands leading to a strong suppression of the Fermi velocity around the
Dirac points. Analogous band structures can be realized for judicious adjustment
of the Raman coupling periodicity, and as we discuss below, Θ(4, 4) turns out
to be the configuration with smallest moiré supercell (2 × 8) sites supporting
a TBLG-like band structure. Fig. 1(b) illustrates spin degenerate bands around
E/t = −Ω0(1 − α) for an exemplary case with Ω0α/h = 20t, α = 0.2 and γ = 0.
The spectrum of the system is symmetric around E = 0, so that we only discuss
the band structure at E < 0. The proposed experiment considers the effect of an
additional magnetic flux, set by the parameter γ = 0.8. Narrow bands are formed
for sufficiently large Ω0α at the energies −Ω0, −Ω0(1 − α) and −Ω0(1 − 2α). The
bands close to the energy −Ω0(1−α) along the high-symmetry points are shown in
Fig. 2 for (a) Ω0α/h = 2t and (b) Ω0α/h = 20t. In this case, two near-degenerate
quasi-flat bands at energy −Ω0(1−α) and two Dirac cones appear. Such values of
Ω0 and α are reachable in our setup, leading to tunable bandwidth for the quasi-
flat bands. Figs. 2 also shows the associated density of states (DOS), which is
given by

D(E) = L−d/2
∑

i

(E − E (ki)) . (2.7)

The central peak at the energy −Ω0(1 − α) corresponds to a van-Hove singularity
associated with the almost flat bands at sufficiently large Raman coupling.

Interestingly, band structures similar to the Θ(4, 4) case appear when lx = ly =

4νd, with ν integer. This can be explained by treating the intra-layer tunneling as
a perturbation to the inter-layer tunneling. As explained in the next section, the
nodal lines of the periodic modulation determine a bi-layer Lieb lattice of sites.
The two layers are energetically well separated with on-site energies ±Ω0(1 − α),
respectively. The perturbation then induces tunnelings within the Lieb lattice
topology, which at first order are composed of nearest neighbor tunneling matrix
elements within a single layer. The Lieb lattice in its simplest form [101] is known
to host a pair of Dirac cones intersecting at a single k point on a completely
flat band, the Dirac point. The dispersion of the flat bands in the full model
described by Eq. (2.2) originates from higher-order contributions in perturbation
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Figure 2.5: Gap opening and Dirac cone widening due to the artificial flux γ.
Four bands (Dirac cones (purple and red) and quasi-flat bands (green and blue))
are shown in the vicinity of E/t = −Ω0(1 − α) = −80, for the Θ(4, 4) system.
The parameters and color scale of the bands are identical to those of Fig. 2.4(b),
except for the magnetic flux that corresponds to (a) γ = 0 and (b) γ = 0.8. The
energy surfaces are rotated for visibility, and only a small region centered at the
Γ = (0, 0) point in the Brillouin zone (yellow area in (c), corresponding to ∼ 4%
of the complete Brillouin zone) is depicted.

theory. More generally, for lx(y) = 4νx(y), where νx(y) are positive integers, a similar
argument shows that the system can be effectively described by super-Lieb lattices
with a supercell of 2(νx + νy) − 1 sites. Moving away from these configurations
leads generically to absence of Dirac-like physics similarly to moving away from
magic angles in TwBLG.

This proposal offers a powerful setup for engineering a wide range of band structures.
By manipulating the periodicity and strength of the Raman coupling, and controlling
the value of the chemical potential, it is possible to drive the system from insulating
to semi-metallic and then metallic-type phases, as we will show in the following
sections. An additional control parameter in our system is the artificial magnetic
flux γ. It affects the band structure in a number of ways. As earlier, we focus on the
caseΘM = Θ(4, 4) and the 6 bands closest to E/t = −Ω0(1−α). Increasing γ leads
to strong band narrowing. More interestingly, a non-zero γ opens a gap between
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the two quasi-flat bands at the Γ = (0, 0) point in the Brillouin zone. Moreover, the
lower Dirac cone detaches from the lower quasi-flat band. This is reminiscent of
the effect of a staggered chemical potential in the Lieb lattice [102]. However, in
our model the upper quasi-flat band remains pinned exactly at the central energy
(E/t = −Ω0 (1 − α)) around the Γ point, and the upper Dirac cone remains gap-
less. Typical band configurations for two values of γ are shown in Fig. 2.5. The
flux γ also controls the Dirac velocity of the cone which tends to zero as γ → π.

As already mentioned, the exact features of the spectrum can be traced via second
order perturbation theory for large Ω0(1 − α). The narrowing bandwidth and
flattening of the Dirac cone are primarily driven by the same factor: the generically
dominant (first order) nearest neighbour effective tunneling on the effective Lieb
lattice decreases as −t cos (γ/2) when γ increases. On the other hand, the gap
opening is driven by the tunneling modulation pattern breaking the C4 (π/2 rotation)
symmetry of the effective lattice for γ , 0.

2.4 Effective model
The origin of the almost flat (weakly dispersive) bands centered around energies
±(1 − α)Ω0 for certain magic periodicities (multiples of 4 lattice spacings) of
strong Raman coupling can be understood via a perturbative treatment of the
Hamiltonian Eq. (2.2). For this regime Ω(r) ≫ 1, it is fruitful to diagonalize
the Raman coupling term using the operators

c±1/2,σ(r) = exp
[
∓ i

2γ · r
]
(a1/2,σ(r) ± a1/2,σ(r))/

√
2. (2.8)

Setting the energy scale t = 1, the Raman inter-layer coupling then takes the form
of a chemical potential

Hinter = ∓
∑

r,σ± 1
2

Ω(r)c†
±1/2,σ(r)c±1/2,σ(r), (2.9)

while the intra-layer perturbative coupling becomes

Hin = −
∑

r,µ̂=x̂,ŷ

∑
m,m′,σ± 1

2

c†m′,σ(r + µ̂)
(
cos

γ

2
1 + i sin

γ

2
σx

)
m′m

cm,σ(r)

+ H.c. (2.10)
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This describes a coupled bi-layer system with intra-layer tunneling − cos (γ/2)
and inter-layer tunneling−i sin (γ/2). Recall that the two layers actually correspond
to different internal states on a single physical layer, so the mixing term is an
effective spin-orbit coupling. The two layers have different on-site chemical potentials.
We choose the lower layer to host the c+1/2,σ fermions and have potential −Ω(r).

The perturbation is highly effective if the potential Ω(r) displays equipotential
connected regions, i.e. if the nodes of the periodic modulation (cosines) lie on the
lattice. This certainly occurs when lx and ly are multiples of four. For concreteness,
we discuss here the case lx = ly = 4 and 0 < α < 1. In this case the nodal lines
of the periodic modulation determine a Lieb lattice (see Fig. 2.6) of sites with
the same on-site energy. Furthermore, we focus on the layer with m = 1 and
determine the spectrum centered around −(1 − α)Ω0. Here, please note, that the
m = 0, 1 layers are energetically well separated. At first order, the perturbation
Eq. (2.10) partially lifts the degeneracy by inducing tunneling between sites on
the Lieb lattice (black lines in Fig. 2.6).

Nearest neighbor tunneling on a Lieb lattice leads to a three band energy spectrum
consisting of a completely flat band containing a Dirac point at which a pair of
dispersive bands (with energy respectively higher and lower than the flat band)
intersect. The Dirac point is located at the corner of the Brillouin zone (±π/2,±π/2).
This explains the origin of the band structure around energy −Ω0(1 − α) (and by
analogy around Ω0(1 − α)) as shown in the main text). However, although the
Lieb lattice has a unit cell of 3 sites (1 corner and two bridge sites), our full
Hamiltonian has a unit cell containing six Lieb lattice sites (one choice is shown
in Fig. 2.6). This full unit cell is recovered already in second order perturbation
theory. The doubling of the Lieb lattice unit cell leads to folding of the Brillouin
zone. Therefore, the two Dirac cones in our system are at wave vector k = (0, 0).
Moreover, the spectrum around −Ω0(1 − α) consists of six bands. To avoid
any confusion, note that in our nomenclature, the Lieb lattice spectrum (and
the spectrum of our model system) has two Dirac cones – one with ”positive”
excitation energy and the other with ”negative” excitation energy with respect
to the quasi-flat band. In contrast, in literature, a shorthand notation is often
used whereby the Lieb lattice is said to have a single Dirac cone. This is to
distinguish it from lattices where there are two or more inequivalent Dirac points.
The latter notation is also motivated by the fact that one is often interested in the
(particle) excitations above the flat band. The detailed band structures, with quasi-
flat bands, shown in the main text in Fig. 2.3 can be well recovered in second order
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Figure 2.6: Top view of the lattice for a modulation Ω(x, y) ≃ Ω0[(1 − α) −
α cos (2πx/lx) cos (2πy/ly)], with lx, ly = 4. Black sites correspond to Ω(r) =
Ω0(1−α), grey sites marked with ± correspond to sites with Ω(r) = Ω0(1−α±α).
The latter are energy forbidden sites. Green boundary: unit cell of the lattice.
Black lines denote the tunneling between the Lieb lattice sites generated. They
are responsible for the main features of the band structures centered at ±Ω0(1−α)
described in the main text: a flat band intersected by the Dirac cones. The effects
of the grey sites are only taken into account in second order perturbation theory
(see Fig. 2.7).
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Figure 2.7: Modified effective Lieb lattice for the energy band centered at −Ω0(1−
α) emerging up to second order of perturbation in the tunneling of Eq. (2.10).
Black full lines are the first order effect. The second order contributions stem
from virtual tunneling to forbidden energy states both within the single layer with
m = 1/2 (grey sites in Fig. 2.6) as well as from spin-orbit coupling interaction
coupling to the other m = −1/2 lattice (grey sites in Fig. 2.6 as well as Lieb lattice
sites. As a result for γ , 0, π, the chemical potential within a layer takes two
different values µc on corner (black) and µb on bridge sites (pink). Additionally
a periodic pattern of next nearest and third neighbor tunneling is generated as
shown by the colored lines (both full and dotted). The unit cell is that of the
original lattice shown in Fig. 2.6. The values of the appropriate tunnelings are
written in the text: t1(solid black lines, first order tunneling on the Lieb lattice),
t(2)
Lieb (black and pink dotted lines), horizontal and vertical tunnelings t(2)

± between
bridge sites over forbidden sites with Ω(r) = Ω0(1 − α ± α) (dotted orange (t(2)

+ )
and blue (t(2)

− ) lines). Finally, tunnelings between next neighboring bridge sites are
given by t(2)

++ (thick orange) and t(2)
+− (orange) and t(2)

−+ (thick blue) and t(2)
−− (blue).

[t!]
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perturbation theory for large Ω0(1 − α), as seen in Fig. 2.8. The modification of
the band structure is due to an additional periodic pattern of tunnelings in the
Lieb lattice of the same periodicity of the supercell Θ(4, 4) generated by virtual
tunneling to energy forbidden sites as shown in Fig. 2.7. The various terms
described in Fig. 2.7 are gathered below.

t1 = − cos
γ

2
, t(2)

Lieb =
sin2

(
γ

2

)
2(1 − α)Ω0

(2.11)

t(2)
+ =

sin2
(
γ

2

)
2(1 − α)Ω0 + αΩ0

+
t2
1

αΩ0
(2.12)

t(2)
++ =

sin2
(
γ

2

)
2(1 − α)Ω0 + αΩ0

+
t2
1

αΩ0
+ t(2)

Lieb (2.13)

t(2)
+− = −

sin2
(
γ

2

)
2(1 − α)Ω0 + αΩ0

+
t2
1

αΩ0
− t(2)

Lieb (2.14)

t(2)
− =

sin2
(
γ

2

)
2(1 − α)Ω0 − αΩ0

−
t2
1

αΩ0
(2.15)

t(2)
−+ =

sin2
(
γ

2

)
2(1 − α)Ω0 − αΩ0

−
t2
1

αΩ0
+ t(2)

Lieb (2.16)

t(2)
−− = −

sin2
(
γ

2

)
2(1 − α)Ω0 − αΩ0

−
t2
1

αΩ0
− t(2)

Lieb (2.17)

µc = −
2 sin2

(
γ

2

)
(1 − α)Ω0

(2.18)

µb = −

(
1

2(1 − α)Ω0 − αΩ0
+

1
2(1 − α)Ω0 + αΩ0

+
1

(1 − α)Ω0

)
sin2

(
γ

2

)
. (2.19)

Now, we comment on the evolution of the bands with the change of the flux γ.
From Eqs. (2.11)-(2.19) we see that for γ = π the effective lattice consists of two
inequivalent square lattices composed of the bridge and corner sites, respectively,
that are completely decoupled from each other. The corner sites form a simple
square lattice structure with lattice spacing 2d, while the bridge sites form a more
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Figure 2.8: (a) Full band structure of Θ(4, 4) for Ω0α/h = 20t, with α = 0.2 and
γ = 0.8. (b) Zoom of the energy window around E/t = −Ω0(1−α) = −80 showing
the comparison of exact (solid line) and perturbative (dashed line) results.

complicated square lattice. However, neither of these support Dirac cones. These
lattices have dispersive yet very narrow bands since the tunnel coupling is of the
order of 0.01t. This is distinct from the opposite limit γ = 0, which is a Lieb
lattice with additional tunnelings between bridge sites. Increasing γ decreases
the total bandwidth of the 6-band system due to the dependence of the dominant
coupling t1 Eq. (2.11). The flat band and Dirac cone subsystem is modified as γ
is increased. In particular, the upper Dirac cone angle widens as a consequence of
the decreasing bandwidth and therefore the Dirac velocity decreases. The upper
flat band however exists pinned to the bare chemical potential −Ω0(1 − α) at the
Brillouin zone center for all γ. We have found that the behaviour of the lower
Dirac cone and the opening of a gap to the upper flat band is due to the C4

symmetry breaking modulation in tunnelling between bridge sites. Indeed, on
one hand this symmetry is explicitly unbroken where there is no gap. Moreover,
we have also checked that setting the other possible factor, i.e. chemical potential
staggering to zero does not influence the magnitude of the gap. The unimportance
of the staggered chemical potential comes from the fact that the staggering in
chemical potential is two orders of magnitude smaller than the staggering in tunneling.

Finally, in the context of twistronics, it is amusing to note that the two disentangled
lattices at γ = π are rotated with respect to each other by π/4. By tuning γ towards
0, their coupling becomes stronger. This leads to a change in the band structure
with the formation of Dirac cones that are attracted to each other at the center of
the Brillouin zone towards the quasi-flat band.
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Figure 2.9: Effect of a phase shift in the spatially-dependent periodic Raman
coupling. Panels (a-c) corresponds to Ω0α/h = 20t, with α = 0.2 and γ = 0.8.
Single particle band calculations are shown in the vicinity of E/t = −(1 − α)Ω0

for ϕx = ϕy = 0.005 (a) and 0.01 (b). The DOS (in arbitrary units) for different
phases are depicted in (c). The solid, dashed, dashed-dotted and dotted lines are
represent the cases for ϕx = ϕy = 0, 0.005, 0.01 and 0.02, respectively. Note the
logarithmic scale in (c).

2.4.1 Effect of phase shifts in the interlayer coupling
We briefly discuss the effect of allowing a phase in the spatial modulation of the
synthetic layer tunneling amplitude, such that

Ω(x, y) ≃ Ω0[(1 − α) − α cos (2πx/lx + ϕx) cos (2πy/ly + ϕy)]. (2.20)

Small phases ϕx and ϕy displace the near-degenerate quasi-flat bands at energies
±(1 − α)Ω0 away from each other. As a result the central peak of the DOS splits
into a double peak structure for small values of these phases. Interestingly, a
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Figure 2.10: Band structures around the energy −Ω0(1 − α) are depicted for (a)
Θ(4, 7) and (b) Θ(4, 8) configuration for Ω0α/h = 20t, with α = 0.2 and γ = 0.8.
The dotted line in (b) serves as a guide to the eye.

double peak structure in magic angle TwBLG has been reported in previous works
[103, 104]. Associated band calculations and DOS are shown in Fig. 2.9.

2.4.2 Non-magic configurations

As already mentioned before, the proposed scheme can be exploited to engineer
a broad range of band structures by simply manipulating the periodicity of the
spatial modulation of the Raman lasers in the square lattice under consideration,
or by modifying the lattice structure in itself, along with other parameters, such as
Raman coupling strength and magnetic flux. In order to demonstrate that the band
structures obtained for Θ(4, 4) are not generic, we illustrate exemplary results for
the configurations Θ(4, 7) and Θ(4, 8) in Fig. 2.10(a-b). The chosen parameters
have been selected for experimental convenience. We again focus in the vicinity
of E/t = −Ω0(1 − α). While Θ(4, 7) supports a branch of isolated or hybridised
flat bands, Θ(4, 8) supports semi-metallic-type bands at E/t = −Ω0(1− α) = −80.

2.5 Conclusions and outlook
The basic element in the physics of TwBLG is the creation of large unit cells by
rotating two layers with respect to each other. Around the magic angles, small
rotations have a dramatic effect on the band structure of these systems. In this
chapter, we have discussed a versatile method to create a new class of systems with
controllable supercell structures for cold Fermi gases trapped in optical lattices.
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The size of the supercells is easily tunable and should allow addressing whether
the physics of TwBLG is uniquely related to their macroscopic periodicity or
indeed can be accessed for small unit cells. An inherent advantage of our optical-
lattice-based construction is the possibility to modify over a wide range the inter-
layer coupling, which is controlled by a combination of optical Raman transitions
and excited-state light shifts. We have shown that a square lattice synthetic bi-
layer displays a band structure that can be easily engineered by modifying the
spatial periodicity, strength and Peierls phase imparted by the Raman lasers. It
bears analogies to TwBLG in that it supports Dirac cones and quasi-flat bands in
particular energy ranges and at certain magic periodicities.

The existence of identical scattering lengths parameterizing interactions between
the atoms in the four internal states allows simulating the effect of both intra-
and inter-layer interactions in the synthetic bi-layer structure. The interacting
Hamiltonian can be written as

HI = U/2
∑

r

n(r)(n(r) − 1), (2.21)

where
n(r) =

∑
m,σ

a†mσ(r)amσ(r), (2.22)

is the occupation of site (r) of the square optical lattice. The magnitude of U could
be tuned by varying the transverse confinement. In particular, choosing a value
of U smaller than Ω0α but much larger than the bandwidth of the quasi-flat band
should allow achieving the strongly interacting regime in the latter. Projection of
interactions onto the quasi-flat and hybridizing bands leads to extended Hubbard
models with large on-site interactions as well as other terms, such as correlated
tunneling. Probing such interacting systems at partial filling could potentially shed
new light into theoretical debates on unconventional superconductivity [69, 70,
72, 105], and topological order [106, 73, 107] in TwBLG. Finally, extending our
approach to other lattice structures represents an exciting perspective for future
studies.



Chapter 3

Topological properties of synthetic
bi-layers

3.1 Quantum Hall effects

In 1879, Edwin Hall has observed and explained electric potential difference in the
conductor (let’s assume x direction), that is perpendicular to the electric current
(y direction) and at the same time perpendicular to the external magnetic field
(z direction). The (Hall) effect stated, that the transverse (x-y) component of
resistivity ρxy, is given by ρxy =

1
ne B, where n is the carrier density and -e denotes

the electron charge. Only few months later he observed a strong (one order of
magnitude) amplification of this effect in the ferromagnetic iron - later named as
Anomalous Hall Effect (AHE). This amplification was independent of the applied
magnetic field and is usually proportional to the magnetization M of the sample.

While the mechanism behind the original Hall effect has readily been well understood
- a Lorentz force, AHE remained a puzzle for decades. One of the soon observed
properties - spontaneous Hall conductivity in ferromagnets - was indicating the
independence of the terms coming from the field B and from internal magnetization
M. Spontaneous Hall conductivity is an effect resulting from generation of the
additional current due to intrinsic electron deflection from the direction of the
original driving current. This effect was not observed in the non-magnetic materials.
Although up to this day there is no full consensus over the origin of the deflection
mechanism in the magnetic materials - there is an agreement that the primary
mechanism is the spin-orbit interaction.

37
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Figure 3.1: Quantum Hall Effect: Resistivity Rxy as a function of applied magnetic
field B. The center of each plateu occures at B = n

µ
Φ0, where Φ0 =

2πℏ
e is a flux

quantum and n is electron density. Original plot taken from David Tong’s Lectures
on the Quantum Hall Effect.

The development of the Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)
opened up a new era of research into two-dimensional electron gases (2DEG),
which exhibit unique electronic properties due to their confinement in a two-
dimensional plane. In these systems, electrons are confined to move in two dimensions
while their motion is quantized in the third dimension, leading to the formation of
quantized energy levels.

When a strong magnetic field is applied to a cooled 2DEG, an intriguing phenomenon
known as the Quantum Hall Effect (QHE) can be observed. Discovered by Klaus
von Klitzing in 1980, the QHE is a remarkable manifestation of quantum mechanics
that distinguishes it from its classical counterpart, the Hall effect. In the QHE,
the Hall resistance, denoted as Rxy =

VH
I , becomes quantized, depending on the

strength of the applied magnetic field, as shown in Fig. 3.1. The quantization is
expressed as Rxy =

h
e2ν

, where h is the Planck constant, e is the electron charge,
and ν is an integer number known as the filling factor. The filling factor represents
the number of occupied cyclotron orbits or Landau levels in the 2DEG system.
Two years after von Klitzing’s discovery, Tsui and Stoermer found that electronic
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liquids with quantized Hall resistance can also occur at certain non-integer filling
factors ν. While the existence of a gapped electron liquid at integer ν and the IQHE
is understood from single-particle physics, the phenomenon at fractional filling,
known as FQHE, is a consequence of a much more complex many-body effect.
In general, the filling factor ν does not have to be an integer value. However,
when there is an exact number of fully filled Landau levels, ν takes integer values,
leading to the observation of the Integer Quantum Hall Effect (IQHE). In contrast,
when the Landau levels are not completely filled, a related but distinct phenomenon
known as the Fractional Quantum Hall Effect (FQHE) can be observed, where
the Hall resistance becomes quantized at fractional values of the filling factor.
The FQHE has led to the discovery of new forms of quantum matter and exotic
quasiparticles with fractional charges, further expanding our understanding of the
rich and complex behavior of 2DEG systems.

3.2 Topological properties of matter
Quantum Hall systems are insulating in longitudinal direction, and this insulating
behavior arises as a consequence stemming from the topology of the magnetic
field. Some materials, known as TIs, exhibit similar behavior even in the absence
of a magnetic field. This unique class of materials has garnered significant interest
in condensed matter physics due to their exotic electronic properties. These materials
exhibit insulating behavior in their bulk while conducting electrical current on
their surfaces or edges. The key to understanding the physics of topological
insulators lies in the concept of topology, which is a branch of mathematics that
deals with the properties of objects that remain unchanged under continuous deformations.

In the context of TIs, the term ”topological” refers to the global properties of
the electronic wave functions in the material’s band structure. The band structure
is a representation of the energy levels of electrons in a solid as a function of their
quasi-momentum. In topological insulators, the bulk band structure is characterized
by a non-trivial topological invariant, which is a mathematical quantity that captures
the essential topological features of the electronic wave functions. This non-trivial
topological invariant leads to the emergence of conducting states on the surfaces
or edges of the material.

Often, the surface states of topological insulators are protected by time-reversal
symmetry, which means that the surface states cannot be removed or destroyed
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by any local perturbation or impurity that preserves this symmetry. As a result,
the surface states exhibit robustness against disorder and defects, allowing for
the conduction of electrical current with minimal scattering or dissipation. This
property has significant implications for potential applications in low-power electronics
and quantum computing.

One of the remarkable features of the surface states in topological insulators is
that they exhibit a unique linear dispersion relation, often resembling massless
Dirac fermions. The electrons in these surface states have their spin locked to their
momentum, meaning that the direction of the electron’s spin is always perpendicular
to its momentum. This spin-momentum locking leads to a helical arrangement of
the surface states, which can give rise to a variety of interesting phenomena, such
as the spin Hall effect and the potential realization of Majorana fermions.

Topological insulators can be classified into precisely ten main classes for each
spatial dimension d [108]. In 2D TIs, also known as quantum spin Hall insulators,
the topologically protected conducting states are found along the edges of the
material, whereas in 3D TIs, the conducting states are present on the material’s
surfaces. Some well-known examples of topological insulators include HgTe/CdTe
quantum wells (2D TIs) and Bi2Se3, Bi2Te3, and Sb2Te3 (3D TIs).

Topological order has now become a central research topic in physics, exemplified
by the 2016 Nobel Prize for D. J. Thouless, F.D.M. Haldane, and J.M. Kosterlitz [109,
110]. The intimate relation between topology and condensed matter goes back to
the discovery of the Integer Quantum Hall Effect (IQHE) [111]: a 2D electron
gas at low temperature and under a strong magnetic field presents a quantized
transverse conductivity very robust against local perturbations. It was soon realized [112]
that this robustness was coming from a new paradigm: a global topological order
which cannot be described by the usual Ginzburg Landau theory of phase transitions.
In the particular case of the IQHE, the presence of a strong magnetic field results in
the appearance of flat bands (Landau levels), each of them being characterized by
a distinct topological invariant, called Chern number, and the transverse conductivity
is equal to the sum of the Chern numbers of the occupied Landau levels. Soon
after, F.D.M. Haldane proposed the quantum anomalous Hall effect, which presents
a quantized transverse conductivity but no Landau levels [113]. Such a toy model
turned out to be the crucial ingredient for the original proposal of topological
insulators in graphene [114, 115] and stimulated very rapid progress of the area of
topological/Chern insulators, topological superconductors, topological flat bands,
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and even systems with higher-order topology [116, 117, 118, 119, 120, 121, 122,
123]. Many of recent twistronics activities discuss topological insulators in magic-
angle twisted bi-layer graphene and the possibility of creating and controlling
topological bands in these systems [106, 73, 107]. Recently, quantum anomalous
Hall effect has been reported in Moiré heterostructures [124, 125]. One of the most
challenging and still persisting questions are related to the role of interactions, in
particular strong interaction and correlations [126]. Interestingly, the interactions
do not always destroy the topological phases. Strong interactions in flat band
topological materials can lead to the fractional quantum Hall effect [127, 128,
129] or to fractional Chern insulators [130, 131, 132, 133]. Furthermore, strong
interactions can induce topology through a spontaneous symmetry breaking mechanism
as it is the case in the celebrated topological Mott insulator [134, 135, 136, 137,
138, 139, 140].

Novel insights into the physics of topological order can be provided by quantum
simulators. These highly flexible experimental systems are used to mimic complex
quantum systems in a clean and controllable environment. Such platforms allow
one to simulate diverse geometries leading to, among others, graphene-like physics
in synthetic hexagonal and brickwall lattices [85, 86, 87] or flat band physics in
the Lieb lattice [88, 89]. There are indeed other platform for realizing hexagonal
lattices [?], but atoms combine additional advantages, as explained herafter. Cold
atoms provide a unique playground for synthetic gauge fields [141, 142, 143],
combined with time dependent lattice modulations/Floquet engineering [144, 145].
In particular, such techniques led to the experimental realization of the Hofstadter
model [146, 147], the Haldane model [148, 149, 150]. Furthermore, artificial
gauge fields can also be engineered with the help of synthetic dimensions which
allows to engineer topological insulators on ladders with both non-trivial Chern
numbers and topological edge states [95, 96, 151, 152, 153, 154, 97]. Finally,
optical lattices offer possibilities to study bi-layer systems and proximity effects [94].

The rapid development of twistronics in condensed matter physics of 2D material
stimulated extensive quest for quantum simulators of twistronics with ultra-cold
atoms [93], and of Moiré patterns in photonic systems [155]. Our contribution
to this field has been explained in the previous chapter, as well as in the original
work [98]. In this chapter we again consider a single 2D optical lattice with
a desired geometry ( brick, or Π-flux square), and create a multi-layer system
employing internal state of the atoms inserted in the lattice. These could be in the
simplest case fermions with spin 1/2 or 3/2, but previously described experimental
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proposal is the most realistic implementation scenario. The Moiré patterns were
generated by spatial modulations of the Raman transitions coupling the internal
states. Since the strength of the Raman coupling can be efficiently controlled in
this system, the appearance of flat bands is expected to occur for much larger
“magic” angles, or better to say for elementary cells of much more modest sizes,
like unit cell consisting of only 2 × 4 lattice sites. In the previous chapter, we
analyzed the properties of the band structure in such systems, and showed that
these expectations were indeed correct.

In the present chapter we develop further the idea shown in chapter 2 and demonstrate,
that such system is very flexible and can be tweaked to exhibit topological band
structure in various situations. In particular, to achieve non-trivial topology we
engineer artificial complex next-to-nearest neighbor tunneling analogous to the
ones appearing in the Haldane model [113]. Typically, the energy bands of our
interest in this system form three groups and the Chern number changes from
trivial (0,0,0), to a topological phase with a trivial flat band (-1,0,1) and a topological
phase with a non-tivial flat band (-1,1,0). We identify the regimes of parameters
where these three situations occur, and study properties of the system with periodic
and open boundary conditions. The chapter is organized as follows. In Section 3.3
we present the details of the model [98], together with modifications required for
achievement of topological bands. In Section 3.4 we discuss magic configurations
and quasi-flat bands. Section 3.5 is devoted to the investigations of the effects
of onset of staggered hoping and appearance of topological insulators. Similar
effects and topological properties are discussed for dimerized lattices in Section 3.6.
Section 3.7 contains a short discussion of feasibility of experimental realization
of the discussed physical effects. The conclusions and outlook are presented in
Section 3.8.

3.3 Modification of the Hamiltonian
To remind the reader, we consider a system of synthetic spinfull fermions in a
bi-layer material. The fermions are subjected to a synthetic magnetic field which
leads to a supercell structure. Additionally to the known terms in the original
Hamiltonian (2.2), here we also include next-to-nearest neighbour (NNN) hopping
with staggered phase as well as on-site energy term. The importance of each
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Figure 3.2: The supercell structure and effects of complex hopping. (a) The left
panel illustrates a sketch of a single plane of the bi-layer structure corresponding
to one of the spin states m = ±1/2. We consider square lattice potential. The
maroon and dark-blue sites are Raman coupled with the second plane under the
chosen spatial modulation of the synthetic tunneling. The pink sites (in both the
layers) experience a onsite energies, µ. The real-space nearest-neighbor tunneling
t is shown by the solid lines. The next-nearest-neighbor complex tunneling
depending on directions of hopping and the position of the lattice sites is shown by
staggered dotted lines. The red line shows a top view of the elementary unit cell of
the system containing 2×4×2(synthetic) sites for Raman periodicities lx = ly = 4,
where the factor of 2 accounts for the two layers. The right top panel depicts the
arrangement of elementary unit cells and the two translation vectors as arrows.
This leads to the first Brillouin zone shown in the right bottom panel, indicating
also the position of the high-symmetry points. (b) The three dimensional view of
the six band manifold in the vicinity of E = −Ω0(1 − α) for Ω0α/h = 40t with
α = 0.2, γ = π/2 and µ = 0. The left panel shows the case, when next-nearest-
neighbor complex hopping is absent, i.e., λ = 0. It has two quasi-flat bands at
the Dirac points of two dispersive bands in form of Dirac cones. The right panel
shows the same set of bands, but in presence of the complex tunneling, λ = 0.2t.
This causes opening of a hard gap between the quasi-flat bands and the nearby
dispersive bands.
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term and their potential experimental realization will be explained throughout the
chapter. The complete Hamiltonian reads:

H = Ht + Hλ + HΩ + Hµ, (3.1)

where

Ht = −
∑
r,m,σ

t(r)
[
a†m,σ(r + 1x) + a†m,σ(r + 1y)

]
am,σ(r)

+ h.c.
(3.2)

is the nearest neighbor hopping Hamiltonian with a real and space dependent
tunneling amplitude t(r),

Hλ =
∑
r,m,σ

λ
[
exp(iϕR(r))a†m,σ(r + 1x + 1y)+

exp (iϕL(r)) a†m,σ(r − 1x + 1y)
]

am,σ(r) + h.c.
(3.3)

is the the next-to-nearest hopping Hamiltonian with a tunneling amplitude λ and
a staggered phase Φ(r) = [ϕL(r), ϕR(r)],

HΩ =
∑
r,m,σ

Ω(r) exp(−iγ · r) a†m+1,σ(r)am,σ(r) + h.c. (3.4)

denotes the synthetic hopping Hamiltonian with a space dependent Raman coupling
Ω and a phase γ = γ(1x + 1y), and

Hµ =
∑
r,m,σ

µ(r) a†m,σ(r)am,σ(r), (3.5)

is the onsite onsite energy Hamiltonian with an amplitude µ(r). Figure 3.2 provides
a schematic depiction of the system under study. Moreover, we present the matrix
form of the Fourier transformed Hamiltonian (3.2) in the Appendix.

The spatial modulation of the Raman coupling is chosen to be Ω(x, y) =
Ω0

[
1 − α(1 + cos (2πx/lx) cos (2πy/ly))

]
, where lx (ly) is its periodicity along the

x (y) axis. In the following, we consider two distinct cases:
(i) Staggered complex hopping (SCH). we set t(r) = t and fix the phases associated
with the next-nearest neighbor tunneling amplitude by setting ϕL(r) − ϕR(r) = π,
where ϕR(r) = (2 r · 1y + 1)π/2 and ϕL(r) = (2 r · 1y + 3)π/2.
(ii) Dimerized lattice (DL). We consider dimerized real tunneling amplitude,
such that t(r) takes the form of t1 and t2 in alternative sites in the x and y directions,
along with the next-nearest neighbor complex hopping, where we set ϕR(r) =
ϕL(r) = π/2.
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3.4 Magic configurations and quasi-flat bands

In the following, we study the Hamiltonian (3.1) under various boundary conditions:
(i) periodic boundary conditions in both spatial (x and y) direction, (ii) periodic
boundary condition in one of the spatial direction (here along x), and (iii) open
boundary conditions in all spatial directions. We first consider the case (i), for
which the quasimomentum k = (kx, ky) is a good quantum number. In this case,
we can apply the Bloch theorem, along with a gauge transformation, such that
am,σ(r) =

∑
k exp (i(k · r + mγ · r)) am,σ(k). The Hamiltonian can then be rewritten

as H =
∑

k Hk and can be diagonalized. The spatial periodicity of the synthetic
tunneling fixes the supercell dimension, and hence the dimension of Hk. The
notation Θ(lx, ly) is introduced to represent corresponding supercell configuration.

The band structure corresponding to the case with λ = 0 and µ = 0 has been
studied in detail in the previous chapter. Remarkably, Θ(4ν, 4ν) configurations,
i.e., when lx = ly = 4νd, with ν integer, were identified as magic configurations.
Θ(4ν, 4ν) configurations host quasi-flat bands surrounded by dispersive Dirac cone
spectra with controllable Dirac velocities, and hence share certain characteristics
associated with magic angle twisted bi-layer graphene. In this work we focus
on the the smallest possible configuration Θ(4, 4) consisting of only 16 lattice
sites. The corresponding Brillouin zone of the bi-layer system showing the high-
symmetry points is depicted in Fig. 3.2(a). In the following we briefly review few
consequences for the case with λ = 0 and µ = 0.

In the strong Raman coupling limit (Ω0α) ≫ t, isolated sets of narrow spin
degenerate bands appears at the energies ±Ω0, ±Ω0(1 − α) and ±Ω0(1 − 2α). The
energy spectrum of the system is symmetric around zero energy, i.e. E(q⃗) =
−E(q⃗), and therefore we restrict our discussion to the negative energy bands. A
non-isolated set of six bands around the energy E/t = −Ω0(1−α) are of particular
interest in this chapter. Figure 1(b) shows the energy sptectrum for a representative
case with Ω0α/h = 40t, α = 0.2, λ = 0, µ = 0 and the flux γ = π/2 (also see
Fig. 3.3(a), which depicts the energy spectrum along the paths passing through
the high-symmetry points). Within this six band manifold, the top and bottom
three bands are symmetric around the energy −Ω0(1 − 2α). Noticeably, two
middle bands, which are quasi-flat, are formed closest to −Ω0(1 − α) and they are
sandwiched between dispersive bands in form of Dirac cones. These well isolated
six band manifold with a total dispersion of ∆6 = 4

√
2t cos(γ/2)+O(t2/(Ω0α)) are
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Figure 3.3: Magic configuration band structures in presence of staggered complex
hopping. Band structures corresponding to Θ(4, 4) supercell along the paths
passing through the high-symmetry points Γ,X,M,Γ,X′,M for Ω0α/h = 40t,
α = 0.2, and γ = π/2. Panel (a) shows the the set of six-bands around energy
−Ω0(1 − α) with λ = 0.0, while other bands, which are well separated (by atleast
the energy of Ω0α) are not shown. There is no hard gap between the two middle
quasi-flat bands and adjacent dispersive Dirac cones. Panels (b-c) reveal evolution
of the spectrum with respect to the onsite energy, µ. Panels (a), (b) and (c)
corresponds to µ = 0, 0.4t and 1.2t, respectively. Finite λ induces a hard gap
between the quasi-flat bands and dispersive bands. The onsite energy leads the
system through a non-trivial gapped-gapless transition, given the Fermi energy is
adjusted accordingly.
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separated from remaining nearby bands by an energy gap of Ω0α. The flatness
of the quasi-flat bands (two middle bands) can be tuned precisely by adjusting
the Raman coupling strength. Their approximate width can be derived within the
second order perturbation theory as

∆F =
t2 cos2 (γ/2)
Ω0α

(
24α3 − 88α2 + 106α − 32

3α3 − 11α2 + 12α − 4

)
. (3.6)

The relative flatness of the bands is defined as F = ∆F/∆6. As a result, the
relatively flatter middle bands can be obtained by increasing Ω0α. The parameters
here are chosen from experimentally accessible regime. It is worth mentioning
that the Dirac velocity is proportional to cos(γ/2), and hence the span of the
dispersive Dirac bands can be controlled separately by tuning γ.

Within these six bands, the system has no gaps. The upper dispersive Dirac
cone touches the middle quasi-flat bands at the high symmetry point Γ, i.e., kx =

ky = 0. A non-zero flux, however, opens a tiny local gap between the lower
dispersive bands and the middle quasi-flat bands at Γ. Finite flux breaks four-fold
rotational symmetry (C4) as well as time reversal symmetry(TRS) of the system.
In the following we discuss strategies for opening a gap around the Dirac band
touching and the resulting topological phases of matter.

3.5 Staggered complex hopping

3.5.1 Bulk properties of the system
We investigate the staggered complex hopping case [see Eq. (3.2) and Fig. 3.2(a)].
We first set µ = 0 and consider periodic boundary conditions in both x and y
directions. A non-zero value of λ induces a mass term at the Dirac point in the six-
band subset discussed earlier. As a result, three isolated sets of bands are formed
- each of them consists of two hybridized bands. The resulting band structure
along the high-symmetry points is shown in Fig. 3.3(b) for Ω0/h = 200t, α = 0.2,
γ = π/2, and λ = 0.2t. While the quasi-flat bands remain closest to the energy
Ω0(1 − α), the top (bottom) dispersive bands shifts upwards (downwards). The
band gaps can be controlled by tuning the value of λ. As we will see, such hopping
amplitude λ drives the system into a quantum anomalous Hall phase [113].

We further investigate the influence of a non-zero staggered onsite energy µ
on the system. A Finite value of µ breaks the inversion symmetry of the system
and the energy spectrum is no longer exactly symmetric around the zero energy.
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Figure 3.4: (a) Chern number of the five lowest bands as a function of system’
parameters λ/t and µ/t. As seen on (b) the system is gapless for µ = 2λ, which
makes C5 undefined in this region. The gapless region visible on (b) is marked
by the red line on (a). Topological transition presented on the Fig.3.3 can be seen
by looking at the vertical cross-section at λ/t = 0.2. Blue region of chern number
-1 indicates the configurations at which system has standard non-trivial topology
since C3 = −1 and the order is (−1, 0, 1), while yellow area depicts parameters’
values for which non-standard topological order (−1, 1, 0) can be obtained. Red
and blue points mark the values of the parameters for which edge states have
been plotted on Fig.3.6 (a) and (b),respectively. (b) Second band gap (energy gap
between the hybridized quasi-flat middle bands and the dispersive upper band)
as a function of λ/t and µ/t. Vanishing energy gaps mark a topological phase
transition in the system. Meaning of red and blue points remains the same as on
the panel (a).
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Nevertheless, the overall qualitative features of the negative and positive energy
bands remain closely similar for a value of µ smaller than the central bandgap.
Moreover, this staggered onsite energy results in a significant asymmetry between
the two top and two bottom bands within the six band manifold under study. As
we discuss below, this staggering potential has a prominent impact on topological
phases of the system. Figures 3.3 (b-d) shows the evolution of the band structure
for increasing values of µ: the band gap between the top dispersive bands and the
middle quasi-flat bands shrinks, and the gap closes at µc ≃ 2λ. For µ > µc, the
gap then reopens. Figure 3.4 shows the energy gap between the set of quasi-flat
bands and the upper set of bands. We also observe a gap closing and reopening
of the lower gap for increasing staggering potential with opposite sign. The latter
is reminiscent of the interplay between the staggering potential and the imaginary
next-to-nearest neighbor hopping in the Lieb lattice [156]. In fact, the system
undergoes a topological phase transition. We characterize the topology of the
system with the help of the Chern number C, a topological invariant for the class
of Chern insulators. The Chern number of the n-th band is defined as

Cn = i
∫

BZ
Fxy

n (k)dS

= i
NxNy∑
l=1

∫
Pl

Fxy
n,l(k)dS

(3.7)

the integral of the Berry curvature Fxy
n,l(k) = ∇k×An(k) written in terms of the Berry

connection An(k) = ⟨un(k)|∂k|un(k)⟩. In the second equality, we have rewritten
this integral as a sum of integrals over the plaquettes of the discretization grid
of the Brillouin Zone. For a such a discretized grid, the Berry curvature can
be be computed numerically with the help of the Fukui-Hatsugai-Suzuki (FHS)
algorithm [119]

Cn ≈
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2πi
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o⟩u

n
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p⟩u

n
k

)
, (3.8)

where Pl denotes a plaquette in the Brillouin Zone with four vertices (k,m, o, p)
labeled in the anti-clockwise order with k being top left vertex and |un

k⟩ is a
Bloch function corresponding to the n-th eigenvalue at point k. The summation
is performed over all plaquettes in the Brillouin Zone. We emphasize that for
degenerate bands one has to use the algorithm proposed in Ref. [157] to compute
the non-abelian Berry curvature. In this chapter, we use the total Chern number
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defined as the sum of the Chern numbers of the i first occupied bands:

Ci =

i∑
j=1

C j (3.9)

As can be seen in Fig. 3.4(a), for µ < µc, The hybridized middle set of bands
are topologically trivial with zero Chern number, while the bottom (top) set of
dispersive band is topologically non-trivial with C =-1(1). The gap closing leads
to a topological phase transition with a transfer of Chern number from the upper
set of bands to the middle set of bands [158], and for µ > µc, the middle set of
bands becomes non-trivial with C = 1 and the upper set of bands becomes trivial
with C = 0. The bottom dispersive bands remain non-trivial with C = −1. In the
following subsections, we discuss in detail the topological edge states appearing
in a system with boundaries.

3.5.2 Cylindrical geometry and edge states

In order to study the topological edge states of the system, we consider a cylindrical
or strip geometry. Calculations are conveniently performed using an enlarged unit
cell consisting of plaquettes of size 4 × 4 site per layer. More specifically, we
consider a bi-layer strip of finite length along the x direction and infinite length
in the y direction through periodic boundary conditions. As a result ky remains
a good quantum number. The enlarged unit cell is repeated nx times in the x
direction.

Figure 3.5(a) depicts the energy spectrum for µ = 0 [red dot in Fig. 3.4(b)]:
The system presents three energy bands that were already present in the previous
section, which we call bulk energy bands. Interestingly, the bulk energy gaps host
topological edge states in accordance to the celebrated bulk-edge correspondence [157].
These topological edge modes are responsible for edge currents and their number
at each edge is equal to the sum of Chern numbers of the occupied bands. Hence,
setting the Fermi energy EF at one of the two energy gaps, one finds one edge
state at each edge, which is, as expected.

In the following, we fix the set of parameters as in the previous section, i.e.
Ω0/h = 200t, α = 0.2, γ = π/2, and λ = 0.2t, and we concentrate on the same
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Figure 3.5: Edge and bulk dispersions for cylindrical geometry. Energy spectrum
is shown to demonstrate two distinct cases with (a) µ = 0 and (b) µ = 1.2 for the
parameters Ω0α/h = 40t, α = 0.2, γ = π/2, λ = 0.2t. The mid-gap states due
to open boundaries along the x-axis are shown by red lines. These mid-gap states
are edge states connecting the energetically separated bulk bands.
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energy window close to the energy −Ω0(1 − α). Figure 3.5 shows the energy
spectrum as a function of the quasi momentum ky for nx = 30. Figure 3.5 (b)
shows the energy spectrum for µ = 1.2t > µc [blue dot in Fig. 3.4(b)]. In this case
the first (bottom) energy gap supports topological edge states, while the second
energy gap does not. This is again consistent with the fact that for this case the
bottom band has C = −1, and hence there is one edge state at each edge in the
first gap, while the sum of Chern numbers of bottom and middle bands is zero.
Hence depending on the choice of EF , we can have a Chern insulator insulator
or a trivial insulator. In order to achieve a closer understanding of the edge states
and the bulk-boundary correspondence, we further analyze a finite square lattice
in the following discussion.

3.5.3 Finite square lattice and edge states
We finally consider a bi-layer finite square lattice with 2 × L × L sites. We do not
impose periodic boundary condition, i.e., both the layers are open in both x and y
directions. Unlike previous cases, the system can not be associated with a good
quantum number due to the absence of any periodicity. We solve the Hamiltonian
in Eq. (3.2) by diagonalizing the matrix with 2L2×2L2 entries. We again focus on
the energy bands close to −Ω0(1−α) (see Figs. 3.3 and 3.5). Figure 3.6 shows the
sorted eigenvalues of the Hamiltonian for a system of length L = 40 and for the
same set of parameters of the previous subsections. We again show two different
topological phases for µ = 0 [Fig. 3.6(a)] and µ = 1.2t [Fig. 3.6(b)].

The appearance of the new states due to the absence of periodicity are shown
by red crosses. These states are detached from the bulk states and clearly are a
manifestation of the open boundaries of the layers. These are edge states and,
as we demonstrate below, live on the boundaries of the layers. For µ < µc, the
edge states appear in both energy gaps. This is consistent with the discussions
for the cylindrical geometry and the computation of the bulk Chern numbers.
This is illustrated in Fig. 3.6(a) as an exemplary case with µ = 0. For µ > µc,
as expected, the first energy gap hosts new states, while the second energy gap
does not. Figure 3.6(b) demonstrates this via an example with µ = 1.2t. The
corresponding density of states (DOS) are shown in Fig. 3.8. For µ < µc, two
regions with low density of states appear adjacent to −Ω0(1 − α) under open open
boundary condition. These correspond to the energies of the mid-gap states in
the energy gaps of the bulk spectrum. For µ > µc, one of these two regions has
vanishing DOS due to absence of the mid-gap states between the middle band and
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Figure 3.6: Energy spectrum of the synthetic bi-layer square lattice with 2×40×40
sites and open boundary condition for (a) µ = 0 and (b) µ = 1.2t for the parameters
Ω0 = 200, α = 0.2, γ = π/2 and λ = 0.2t. The bulk states are shown by black
plus symbols. The new mid-gap states appearing due to open boundary condition
is shown by red crosses. These are the edge states. For (a)µ = 0, the edge states
appear in both the energy gaps. However, for µ > µc (shown here (b)µ = 1.2t, the
edge states appear only within the first energy gap.

the upper dispersive band.
In order to characterize the edge states in real space, we define probability

density of the edge state corresponding to m = ±1 , p±(r) =
∣∣∣⟨ψEF
± (r)⟩ψEF

± (r)
∣∣∣2,
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(a)

(b)

Figure 3.7: Probability density plots for an edge mode corresponding to energy
E ≈ −160.28t for (a) and E ≈ −160.13t for (b). (a) The wave function is fully
localized on the edges of the lattice, which in this case has a length of 39 sites.
(b) The wave function is localized on two edges of the lattice which contain
raman coupled sites. In this case has a length of 40 sites, commensurate with
the periodicity of the unit cell.
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Figure 3.8: DOS (in arbitrary units) of the synthetic bi-layer square lattice with
2 × 40 × 40 sites and open boundary condition for (a) µ = 0 and (b) µ = 1.2t for
the parameters Ω0 = 200, α = 0.2, γ = π/2 and λ = 0.2t.

where ψEF
± (r) denotes the eigenvector whose energy is the closest to EF the and

m = ±1 denotes the projection on one of the synthetic dimensions. Interestingly,
the edge states have a different real space profile depending on the commensurability
of the number of sites with the supercell: lattices with the length commensurate
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with the periodicity of the unit cell have two edges with Raman coupled sites and
two edges that do not contain such sites [see Fig. 3.2(a)], while lattices with the
length mod ( L

Θ
) = ±1 have all 4 edges of the same kind. Therefore to maintain

the symmetry of the edges, where we expect the wave function to localize, system
depicted on Fig. 3.7(a) was decreased by one site in each direction to Lx,y=39
resulting in symmetric probability distribution over all 4 edges of the lattice.
On the other hand, for the lattice lengths being a integer multiple of unit cell’s
periodicity the edge states are also localized on the borders of the lattice, but the
probability density is not equally distributed, favouring two edges, which are not
Raman coupled. Such behaviour can be observed on Fig. 3.7(b), which shows
the spatial density distribution, p(r), of a typical edge states in the topologically
insulating phases of the system with L=40. We have verified that p−(r) exhibits
similar features. The chosen edge state is a mid-gap state in the first band gap for
µ = 0. The spatial distribution has an asymmetric nature, which comes from the
finite size synthetic bi-layer geometry governed by the interlayer coupling pattern.
The edge states are more localized at two adjacent edges of lattice corners, which
host alternative sites with Raman coupled internal states, and are rather weakly
localized in rest of the boundaries, where internal states in any of the sites are not
subjected to such Raman coupling by construction.

3.6 Dimerized lattice
We now focus on the DL case, which is based on the alternating NN tunneling
both in x and y direction and a complex NNN hopping. In particular we consider
both dimerized NNN hopping, as in the SCH case as well as unstaggered NNN
tunneling with ϕR = ϕL that provides a zero net flux per palquette. First, we
analyze the possibility of using dimerization as a substitute for space dependent
onsite energy for obtaining the non-trivial gap between dispersive and quasi-flat
sets of bands. Second, we simplify the NNN hopping leaving the dimerization
untouched, since realizing constant diagonal hopping experimentally is less complicated.

The effect of the lattice dimerization has been primarily studied in Ref. [159]. The
asymmetry of the hopping leads to the shift of the bands in the energy spectrum
together with energy gap openings. It allows for the isolation of the set of quasi-
flat bands, which originally are not separated by the global gap from the rest of
the spectrum (see Fig. 3.10(a)). However, this gap opening is trivial and leads to
the triplet of Chern numbers (0, 0, 0).
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Staggered NNN hopping The interplay of the NN dimerization and the staggered
NNN hopping results in a topological phase diagram depicted Fig. 3.9. Such order
was also obtained in the SCH case in absence of onsite energy. Hence, one can
conclude that dimerization does not affect order-changing processes but allows
one to observe the edge states of the well separated bands.

Uniform hopping We now turn our attention to a dimerized lattice with uniform
next-nearest-neighbor (NNN) hopping within a single layer. As discussed in the
previous paragraph, the opening of a global gap is ensured by the dimerization
of nearest-neighbor (NN) hopping in this model. The role of complex NNN
tunneling is somewhat more intricate to explain, since, unlike staggered NNN,
it cannot be associated with a Hall phase or result in a global gap between quasi-
flat and dispersive bands, as demonstrated in Fig.3.10(b).

However, similarly to the model described in Ref. [114], the net flux per plaquette
in this case is zero. These observations suggest that introducing diagonal (NNN)
hopping with a complex value does not necessarily confer topological non-triviality.
Indeed, uniform NNN hopping does not open a global gap under any parameter
configuration. Yet, in a manner akin to the effects induced by dimerization in
the absence of NNN hopping, previously quasi-flat bands become dispersive with
increasing λ, coinciding with a shift in the xy-plane.

All effects of the uniform complex NNN tunneling can be observed in Fig. 3.10(c).
The impact of dimerized NN hopping is similar to band separation noted in staggered
NNN hopping; however, the topological order of the system with uniform NNN
tunneling fluctuates between trivial and standard non-trivial, eliminating the possibility
of reaching non-standard topology, as presented in Fig. 3.11.
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Figure 3.9: Chern number of the lower dispersive set of bands (Chern number
of the set of quasi-flat bands is always 0). In the absence of the staggered NNN
hopping the topology is trivial, regardless the strength of dimerization( this case
is depicted by the first column of the plot). Increasing the NNN hopping causes
the change of the topological order into the standard non-trivial one after reaching
gapless phase, which is visible on (b) and marked by the red line on (a). The order
of the signs of the Chern numbers depends on the dimerization sign. Moreover
for t2/t1 = 0 discussed set of bands consists of 3 separate subsets of bands with
trivial topology( this case is depicted by the lowest row of the plot). Dispersion
of each of these subsets depends on the value of λ and for λ = 0 all 3 subsets are
almost perfectly flat.
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Figure 3.10: Magic configuration band structure in presence of uniform complex
NNN hopping. (a) t2/t1 = 0.7 and λ = 0 shows the effect of pure dimerization
of the lattice in the absence of NNN hopping resulting in vanishing Dirac cones.
In comparison with Fig.3.3(b), which represents staggered NNN hopping without
onsite energy one can see that dispersion of the quasi-flat bands is much bigger.
(b) t2/t1 = 1 and λ = 0.2 represents the spectrum of the system with uniform NNN
complex hopping generating the the increased dispersion of the quasi-flat bands
and the lack of the global gap and. (c) In this case λ = 0.2 t2/t1 = 0.7. Dispersion
of the quasi-flat bands is further increased but lattice dimerization provides the
global gap. However, these two effects compete and the system can be gapless for
different values of λ (see Fig 3.11(b)).
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Figure 3.11: Chern number of the lower dispersive set of bands (Chern number
of the set of quasi-flat bands is always 0). In the absence of the uniform NNN
hopping the topology is trivial, regardless the strength of dimerization( this case
is depicted by the first column of the plot). Increasing the NNN hopping causes
the change of the topological order into the standard non-trivial one. However
the order of the signs of the Chern numbers depends on the dimerization sign.
Moreover for t2/t1 = 0 discussed set of bands consists of 3 separate subsets of
bands with trivial topology( this case is depicted by the middle row of the plot).
Dispersion of each of these subsets depends on the value of λ and for λ = 0 all 3
subsets are almost perfectly flat.
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3.7 Potential experimental scheme
Here, a quantum simulation scheme of the system is discussee. As we will see
below, all elements of the proposed scheme have been sucessfully implemented in
state-of-the-art experiments. The challenge consists in combining all the necessary
ingredients. We proceed in this section in steps, with the message directed mostly
to the experimentalists. First, we review the basic scheme for twistronics without
a twist, proposed already in Ref. [98]. Then, we discuss the necessary additional
ingredients of both proposed schemes: I) Staggered complex hopping, and II)
dimerized real tunnelling. We discuss possible methods that can be used to realize
our schemes: i) Laser induced tunneling; ii) Floquet engineering; and iii) Super-
lattice and holographic potential imprinting methods. Finally, we discuss possible
detection schemes of the topological properties of the model.

3.7.1 Basic experimental scheme
We proposed in Ref. [98] to use a subset of four states out of the large nuclear
spin manifold I = 9/2 of 87Sr, or 173Yb (I = 5/2). The S U(N) invariance
inhibits collisional redistribution of the atoms among the different states. We
select two of them to be σ = ↑, and the other two to be σ = ↓. All are subjected
to a two-dimensional spin-independent optical lattice potential, created by two
counter-propagating lattice beams. We choose the laser wavelength λL = 813 nm
(corresponding to the magic wavelength of the clock transition 1S 0 →

3P0). We
set a lattice depth to about 8 recoil energies, 8 EL, which yields tunneling of order
of 100 Hz. Lattice constant as usual is d = λL/2.

To create the synthetic layer tunneling, we exploit two-photon Raman transitions
between spins m = ±1/2. A pair of Raman beams with λR = 689 nm near-resonant
to the inter-combination transition 1S 0 →

3P1, produce a coupling of amplitude
Ω0 = Ω1Ω2/∆0. Here, Ω1 and Ω2 are the individual coupling amplitudes of the
Raman lasers and ∆0 the single-photon detuning. The Raman beams propagate
in a plane perpendicular to the lattice potential, are aligned along its diagonal,
and form an angle θ with the lattice plane (see Fig. 1 in Ref. [98]). This yields
an in-plane momentum transfer per beam kR = ±2π cos θ/λR, with projections
kR/
√

2 along the lattice axes. Therefore, the phase of the synthetic tunneling is
γ · r = γ(xx̂ + yŷ), with γ = ±2π cos θλL/(

√
2λR). The sign is determined by the

relative detuning of the Raman lasers. Experimentally, the simplest choice is to
use counter-propagating Raman beams (θ = 0◦), which yields γ = 0.8 (mod 2π).
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However, other values of the synthetic flux can be easily realized by adjusting the
value of θ.

To implement a periodic modulation of the Raman coupling amplitude on the
scale of several lattice sites, we propose to exploit a periodic potential created by
a laser close-detuned from the excited state to excited state transition 3P1 →

3S 1

(corresponding to 688 nm [99]). This results in a large light shift of the 3P1 excited
state of amplitude δ, leading to a detuning of the Raman beams ∆(x, y) = ∆0+δ(1+
cos (2πx/lx) cos (2πy/ly)). Its effect is to modulate the Raman coupling amplitude
Ω(x, y) ≃ Ω0[(1 − α) − α cos (2πx/lx) cos (2πy/ly)], with α = δ/∆0 ∼ 0.2 for
realistic experimental parameters [99, 100]. We therefore named it “modulation
laser”.

Note that [160] also proposed to use spatially modulated Raman couplings to
generate Moiré patterns in 2D 87Rb systems, originally designed by J.-W. Pan’s
group [161] to study robust spin-orbit coupling with bosonic atoms. In a related
development, twistronic-like physics has been demonstrated in Ref. [162] in monolayer
graphene undergoing a strain induced buckling transition. The buckling is associated
with a periodically modulated pseudo-magnetic field that has the effect of creating
a material with flat electronic bands.

3.7.2 Extensions of the basic scheme
SCH case. Here the NN tunnelling is standard and constant, t(r) = t. The
staggered onsite energy can be realized relatively easily using super-lattice or
holographic potential imprinting methods. The challenging part here is relate to
the phases associated with the next-nearest neighbor complex tunnelings, set to
ϕL(r) − ϕR(r) = π, where ϕR(r) = (2r · 1y + 1)π/2. We suggest to use here laser
induced tunneling or lattice shaking. For laser induced tunneling one possibility
would be to to employ the clock transition from 1S 0 →

3 P0, using appropriate
polarization of the assisting laser to couple to different excited states (for instance,
coupling +3/2 → +1/2 via σ− polarized light, coupling +3/2 → +3/2 via π-
polarized light, and +3/2 → +5/2 via σ+ polarized light). The main problem is
that the clock transitions will interfere immensely with the light-shifting scheme
of the 3P0 state that we proposed to use to get the Moiré pattern. In fact, we
should expect that the staggered complex hoppings will not only be staggered (if
we design and realize the staggering well), but they will be spatially modulated as
well. The period of the latter modulation should follow the period of our “Moiré”
pattern i.e.

λ(r) = λ0 + ∆λ cos (2πx/lx) cos (2πy/ly). (3.10)
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Upon conducting a meticulous study, one can discern that as long as ∆λ ∼ t,
the effects of the spatial modulation of the next-nearest-neighbor (NNN) complex
hopping remain minimal. In fact, they are confined to minor bandwidth corrections,
which neither influence the topological order nor introduce new gaps, or close
existing ones, in the system.

DL case. In Eq. (3.2), we considered dimerized real tunneling, such that t(r)
takes the form of t1 and t2 in alternative sites in the x and the y directions, along
with the next-nearest neighbor complex hopping. Here the situation seems to
be easier from the experimental point of view. The alternating tunnelling can
be achieved using the super-lattice techniques (dimerization). The next-nearest
neighbor complex hopping with the homogeneous phase set to ϕR(r) = ϕL(r) =
π/2 shall be accessible via lattice shaking and Floquet engineering techniques.

3.7.3 State-of-the-art experimental techniques
Laser assisted tunneling: The idea of employing laser assisted tunneling for
generation of synthetic gauge fields goes back to the seminal paper of Jaksch and
Zoller [141]. It was generalized to non-Abelian fields in Ref. [163]. These ideas
all seemed very “baroque” at that time, but finally were realized in experiments
with amazing effort, but equally amazing results [164, 143, 146, 165, 147, 165].

Floquet engineering: In the context of cold atoms this technique goes back
to the pioneering theory works of A. Eckardt and M. Holthaus [166], followed by
experiments of E. Arimondo and O. Morsch [167]. In condensed matter the works
concerned creation of topological phases in graphene [168, 169]). The possibility
of generating artificial gauge field was first discussed in Ref. [144] and realized
in experiments of Hamburg group [170]. This culminated with the experimental
realization of arbitrary complex phases [171], and theoretical proposals combining
shaking and on-site excitations [172]. In the recent years many fascinating results
were obtain using shaking (cf. [173, 174], for a review see [144]). In a sense,
from the perspective of the present chapter a culmination of these effort consisted
in realization of the Haldane model with next nearest neighbor complex tunnelings
in a brick lattice [86, 148]. Recently, the Hamburg group combined the studies of
the Haldane model with the use of machine learning methods [175, 176, 149].

Super-lattice and holographic potential imprinting methods These are nowadays
standard methods, developed already many years ago and described in textbooks
such as [84]. They have a plethora applications ranging from designing traps
of special shape, through creation of dimerized lattices, to imprinting random
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potentials. All of these methods an be useful for our purposes, for instance for
designing a lattice with dimerized tunneling.

3.7.4 Detection of the topological order
In cold-atom quantum simulators, the standard transport experiment techniques
used to characterize the transverse conductivity in 2D materials are feasible but
very demanding [177, 178], and there is, therefore, the need for other detection
schemes to characterize the topology of the system. In the last decade, many
detection schemes have developed for quantum simulators [142, 179], and we
present here the a non-exhaustive list of techniques that could be applied to the
synthetic twisted bi-layer material. The total Chern number and the Berry curvature
could be measured through the anomalous velocity of the center of mass of the
atomic cloud [180, 181]. This technique, already applied in recent experiments [182,
183], would require an additional optical gradient. Alternatively, the Chern number
could measured through the depletion rate of the bands in the presence of heating [184].
This effect, called quantized circular dichroism, has been implemented in state-
of-the-art experiment [150] and would require an additional shaking of the lattice.
Finally, the topology could be characterized through the observation of the chiral
edge states. The latter could be done by a suitable quench protocol [185, 186].

3.8 Conclusions - Outlook
In the present chapter we developed further the idea of “twistronics without a
twist” and demonstrated that it can be used to engineer interesting topological
band structures under various conditions. Focussing on a square lattice system
with synthetic dimensions, we showed the appearance of an anomalous Hall phase
in presence of artificial complex next-to-nearest neighbor interlayer tunneling.
Moreover, we discussed the emergence of topological bands via another mechanism
– lattice dimerization. In general, the bands of interest can be categorized into
three groups - trivial, and two categories of topologically non-trivial bands differing
by their Chern number combinations: standard non-trivial, and non-standard not-
trivial.

In the next chapter we will discuss possible ways of incorporation of interaction
effects. On the technical side, in the first stage, incorporation of the interaction
effects can be carried out via a mean field theory at the Hartree-Fock as well
as “slave boson/fractionalization” level. Moreover, as our scheme provides the
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possibility of observing physics similar to magic angle twisted bi-layer graphene
with an effectively large rotation angle, implying a much smaller supercell, performing
ab-initio calculation could be possible via advanced tensor network algorithms.
The pressing questions in these realm are: (i) the origins of strongly correlated
phenomena in twisted materials, such as unconventional superconductivity phenomena,
(ii) the coexistence of superconducting and correlated insulating states in magic-
angle twisted bi-layer graphene, and their relationship, (iii) the role of topology
in the interacting systems, which can be probed by altering the quasi-flat band
topology. Recently, flat Chern bands have been reported from twisted bi-layer
MnBi2Te4 [187].
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Chapter 4

Interactions in the synthetic bi-layer

4.1 Overview of interactions in 2D materials

Electron interactions in two-dimensional (2D) materials play a crucial role in
determining their electronic, magnetic, and optical properties. Unlike their three-
dimensional counterparts, 2D materials, such as graphene, 2D transition metal
dichalcogenides (TMDCs), and 2D topological insulators, exhibit enhanced electron
correlations and quantum confinement effects due to their reduced dimensionality
[188, 189]. These interactions can lead to the emergence of exotic phenomena,
such as fractional Chern insulator, Mott insulators, unconventional superconductors,
etc. [116, 54]. Furthermore, electron interactions in 2D materials can be influenced
by external factors, such as strain, electric and magnetic fields, or proximity
to other materials in heterostructures, enabling unprecedented control over their
properties and potential applications in nanoscale devices [75]. Understanding
the role of electron interactions in 2D materials is essential for developing new
functional materials and exploiting their unique properties in next-generation electronic,
spintronic, and photonic applications.

In bi-layer materials, such as twisted bi-layer graphene (TBG), various types of
interactions (electron-electron, electron-carbon, carbon-carbon, etc) play a significant
role in determining their electronic properties and emerging phenomena. The
interplay of these interactions can lead to unique features, including flat bands,
correlated insulating states, and superconductivity. The stacking of two graphene
layers with a twist angle introduces a moiré superlattice, which results in a spatially
periodic modulation of the interlayer tunneling energy. This modulation can be

67



68 CHAPTER 4. INTERACTIONS IN THE SYNTHETIC BI-LAYER

understood in terms of the moiré potential, which governs the interlayer hopping
of electrons between the layers [46].

In bi-layer materials, both intralayer and interlayer Coulomb interactions are essential.
These interactions are generally repulsive, as they involve the electrostatic repulsion
between electrons in the same layer or across layers. The strength of these interactions
can be influenced by the dielectric environment, twist angle, and screening from
other electrons, which can significantly affect the electronic properties of the
system [190]. However other mechanism plays an important role in overall transport
properties, namely exchange interactions, which are short-range interactions arising
from the quantum mechanical requirement that the wave function of two identical
fermions must be antisymmetric under particle exchange. In the context of TBG,
these interactions can lead to spin-dependent effects and influence the magnetic
properties of the system [191].

4.1.1 Hubbard model
In this chapter we enter the regime of interacting atoms in optical lattices. A
tight-binding picture, that we have considered up to that point is now enriched by
two-body contact (on-site) interactions between the fermionic atoms in the lattice.
Such system can be successfully described by the (Fermi-) Hubbard model, which
plays a central role in describing various aspects of the many-body physics of
condensed matter systems [192, 193, 78, 194, 195, 196]. In particular, along with
its variants, it is widely believed to encompass the basic ingredients required to
understand high-temperature superconductivity, e.g. in cuprates [197, 198, 199,
200, 201]. However, it is important to note that the Hubbard model is a simplified
description of the system, and more sophisticated models or numerical methods
might be necessary to fully capture the rich physics emerging from the interplay of
various interactions in bi-layer materials, such as twisted bi-layer graphene [202].

The Hubbard model, introduced by John Hubbard in the early 1960s, is a theoretical
framework that investigates the electronic behavior of interacting particles in a
lattice structure [203]. The single-band approximation is a key simplification in
the Hubbard model. In real materials, there are often multiple orbitals per lattice
site, and electrons can hop between different orbitals. However, the Hubbard
model only considers a single orbital per site and neglects inter-orbital hopping
processes. This approximation is valid when the energy scales of the other orbitals
are significantly larger than the energy scales of the single orbital considered, and
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when the physics of interest is primarily governed by the single orbital [204]. The
Hamiltonian for the Hubbard model can be written as:

HHubbard = −t(
∑
⟨i, j⟩,σ

c†i,σc j,σ + H.c) + U
∑

i

ni↑ni↓ (4.1)

Here, the first term represents the kinetic energy of electrons, where t is the
hopping amplitude, c†i,σ, (ci,σ) are the creation (annihilation) operators for an electron
with spin σ at site i, and ⟨i, j⟩ denotes a summation over nearest neighbors. The
second term accounts for the electron-electron interaction, with U being the on-
site Coulomb repulsion, and ni↑ is the electron number operator for spin σ at site
i [203].

4.1.2 Hubbard model for Condensed Matter Physics

Despite its simplicity, the Hubbard model has been instrumental in understanding
the behavior of interacting electrons in condensed matter systems. In this short
section, we discuss the critical insights it has revealed into various phenomena.

Mott Insulators: The Hubbard model helps explain Mott insulators, materials
that should be metallic according to the conventional band theory but instead
exhibit insulating behavior [205]. In conventional band theory, the electrical
conductivity of a material is determined by the filling of its electronic bands.
However, Mott insulators demonstrate that strong electron-electron interactions
can lead to insulating behavior even when the band structure suggests that the
material should be a metal.

By incorporating the on-site Coulomb repulsion (U) in the Hubbard model, it
becomes possible to understand the insulating state in these materials. When
U is large enough compared to the hopping term (t), electrons become strongly
localized due to the energy cost associated with double occupancy of lattice sites.
Consequently, the system exhibits an insulating state despite having a partially
filled band [206]. This result highlights the importance of electron-electron interactions
in determining the electronic properties of materials and demonstrates the limitations
of conventional band theory in describing strongly correlated systems.

The Mott-Hubbard transition, a metal-insulator transition driven by strong correlations,
has been observed in various materials. Transition metal oxides, such as V2O3
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and NiO, are prototypical examples where the Mott-Hubbard transition is observed
[207, 208]. In these materials, the interplay between the crystal field splitting,
on-site Coulomb repulsion, and electron hopping leads to the formation of Mott
insulating states. The Hubbard model has also been successful in explaining the
metal-insulator transition in organic materials, such as χ-(BEDT-TTF)2Cu[N(CN)2]Br
[209]. These materials offer unique opportunities to study the Mott-Hubbard
transition and its associated phenomena due to their structural tunability and the
possibility to control the electronic properties via chemical doping, pressure, or
external fields.

The Hubbard model has been instrumental in elucidating the origin of Mott insulating
behavior in various materials, providing a deeper understanding of the role of
electron-electron interactions in determining their electronic properties. This insight
has led to the development of new theoretical frameworks and experimental techniques
to probe and control the properties of strongly correlated electron systems.

High-Temperature Superconductivity: The Hubbard model has been widely
used to study the emergence of high-temperature superconductivity in copper-
oxide materials (cuprates) [210]. High-Tc superconductors are a class of materials
that exhibit superconductivity at temperatures much higher than conventional superconductors,
with transition temperatures reaching up to 138K in HgBa2Ca2Cu3O8+δ [211].
Although the exact mechanism of High-Tcsuperconductivity remains an open question,
the Hubbard model has provided valuable insights into the unconventional pairing
symmetry and the role of strong electron correlations in these systems [212].

The parent compounds of High-Tc superconductors are antiferromagnetic Mott
insulators. Upon chemical doping, the antiferromagnetic order is suppressed, and
the superconducting phase emerges. The Hubbard model captures this behavior
by incorporating the on-site Coulomb repulsion (U) and the electron hopping (t),
allowing researchers to investigate the evolution of the electronic properties as a
function of doping [213, 214]. Some of the key features of High-Tc superconductors,
such as the pseudogap phase, the d-wave pairing symmetry, and the formation of
charge and spin stripes, can be qualitatively understood within the framework
of the Hubbard model [215, 216]. Moreover, the Hubbard model has helped
unveil the relationship between doping and the superconducting phase, providing
a roadmap for the search for new High-Tc superconductors [217]. By investigating
the interplay between the kinetic energy and electron-electron interactions
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Quantum Phase Transitions: The Hubbard model has proved instrumental in
understanding quantum phase transitions (QPTs), which are continuous transitions
between different ground states at zero temperature driven by quantum fluctuations
[218]. QPTs are characterized by a change in a non-thermal control parameter,
such as pressure, doping, or magnetic field, and are fundamentally different from
classical phase transitions driven by thermal fluctuations. They often result in
the emergence of new quantum phases with exotic properties, providing crucial
information on the role of electron correlations in these phenomena [218].

By varying the parameters t and U in the Hubbard model, researchers can
study the onset of various types of QPTs, such as magnetic ordering, superconductivity,
or metal-insulator transitions. In particular, the Hubbard model has been employed
to investigate the interplay between antiferromagnetism and superconductivity in
heavy fermion systems, such as CeCu2Si2 and CeIrIn5 [219, 220]. These materials
exhibit complex phase diagrams with multiple competing phases, and the Hubbard
model has provided valuable insights into the mechanisms governing the QPTs
between these phases.

One prominent example of a QPT studied within the Hubbard model framework
is the transition from a Mott insulator to a band insulator. This transition can be
induced by applying pressure or changing the carrier concentration in the material
[221]. As the system undergoes the transition, the charge gap closes at a critical
value of the control parameter, giving rise to a quantum critical point. Near
this point, the system exhibits unconventional behavior, such as non-Fermi liquid
properties and the emergence of novel phases [222]. The Hubbard model has been
a valuable tool in understanding the role of electron correlations in driving these
QPTs and the associated emergent phenomena.

Another area where the Hubbard model has been applied is the study of QPTs
in low-dimensional systems, such as quasi-one-dimensional organic conductors
and two-dimensional electron gases at the interface of oxide heterostructures [223,
224]. In these systems, the reduced dimensionality and the enhanced role of
quantum fluctuations lead to a rich variety of quantum phases and transitions. The
Hubbard model provides a simple yet powerful framework for investigating the
effects of electron correlations and fluctuations in these low-dimensional systems.

4.1.3 Quantum optical simulations of 2D materials
Although Hubbard models are effective simplified models of complex condensed
matter systems, they can be realized with high fidelity and control in various
engineered systems such as ultracold atoms in optical lattices. This, in turn, has
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lead to an exciting branch of physics - quantum simulation of condensed matter
phenomena [84, 225, 226, 227]. In recent years, one-, two- and three-dimensional
optical lattices have been generated paving the way to studies of different quantum
phases under various types of interactions [228, 229]. A distinguishing feature
within the cold atom set-up is the freedom of precise tuning of microscopic system
parameters, i.e. interactions and particle tunneling over wide ranges [230].

The control of material properties via band structure engineering has been
a long standing goal in condensed matter physics. A new frontier is twistronics,
where the relative rotational misalignment between layers in quasi two dimensional
(2D) systems leads to Moiré patterns in real space. The Moiré patterns strongly
influence the band structure and lead to enhanced collective effects induced by
interactions and topology [231]. In graphene bi-layers, tuning the twist angle to
so-called magic values was predicted to strongly quench the electronic kinetic
energy leading to the formation of quasi-flat bands [52, ?, 232], where small
interactions can dominate the phenomenology [233]. With the successful development
of fabrication methods for such devices, a series of experiments spectacularly
unveiled superconductivity and correlated insulators in these materials around the
magic angles [234, 235, 236].

The appearance of superconductivity originating from completely isolated or
non-isolated quasi-flat bands, in particular, has turned out to be an exciting development
in the search for High-Tcsuperconductivity driven by quantum geometry [237,
238, 239, 240]. These results have driven the new field of twistronics involving
the study of various kinds of Van der Waals stacked heterostructures beyond bi-
layer graphene [241]. The unavoidable effect of twisting 2D materials is the
enlargement of the unit cell, usually by a few orders of magnitude compared to the
original unit cell of a single sheet of the material [231, 242], into a so-called Moiré
supercell. This emergent approximate crystal symmetry strongly complicates
direct microscopic modelling and non-approximating studies of correlations in
these systems. As a result direct quantum simulations of twistronics, in particular
based on the promising platform of ultra cold atoms trapped in optical lattices,
that allow for exquisite control of system parameters, offer an additional window
to gain fundamental understanding of Moiré materials. Importantly, this approach
allows to study systems without certain practical difficulties associated with materials
such as the lack of control over the homogeneity of the twist angle in samples
and strain effects which lead to disorder. Moreover, apart from the control of
interactions, ultra cold atom systems allow for tuning of inter-layer coupling to
strong values that can lead to enhanced correlation effects even for comparatively
small Moiré supercells.
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The interest in general 2D bi-layer systems has led to the design of multiple
architectures and control schemes for bi-layer optical lattices [94, 243, 244]. Moiré
systems can be generated, on one hand, by effectively performing the direct analog
of material twisting in overlapping samples [245], or spin dependent optical lattices
[246, 247]. A different versatile approach stems from the fact that physically
the main effect of twisting is the induction of incommensurate quasi-periodic
potentials and quasi-periodic inter-layer tunnelings in layered systems [248, 249,
250, 251, 40, 252, 253]. Such spatially modulated patterns can be directly imprinted
on synthetic bi-layer systems [40, 41], i.e. a single physical optical lattice layer
of atomic species with Raman coupled internal states playing the role of the
additional layer degree of freedom [254, 255]. This remarkably realizes Moiré-
type physics without physical twisting.

In the present chapter, we build on the idea originally presented in [40] and
described in chapter 2 which uses the concept of synthetic dimensions to engineer
twisted bi-layers. For such scenario, we consider attractive on-site s-wave interactions
with full SU(4) symmetry and explore superconducting properties in such synthetic
bi-layers with a chosen size and shape of the supercell. Near-flat bands with very
small dispersion compared to its immediately neighboring bands can be accessed
with rather small unit cells in our synthetic-dimension-based proposal, which
allows us to adopt an multi-band Hartree-Fock-Bogoliubov theory [256, 257]
for probing superconductivity. The analysis is performed extensively for a wide
range of experimentally controllable parameters, such as inter-layer coupling and
interaction strength. Our study seeks to understand and to characterize the role
played by a finite dispersion of the quasi-flat band on superconductivity. In fact,
the proposed setup allows to accurately control the widths of the quasi-flat bands
over a broad range [40, 41].

This chapter is arranged as follows: In Sec. 4.2 we present the lattice Hamiltonian
and discuss the band structure and interaction types appearing in the model. In
Sec. 4.3 the detailed description of Hartree-Fock-Bogoliubov mean field decoupling
is shown together with resulting Bogoliubov - de Gennes Hamiltonian and self-
consistent procedure. Sec. 4.4 presents original results of our study. First, we take
into account the impact of band flattening, caused by modulation of the inter-layer
hopping, on the superconducting gap. Then, we consider breaking the symmetry
into SU(2) × SU(2) via selectively tuning the interaction channels. We also tune
one of interaction types to be of negligible amplitude to facilitate the comparison
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of the obtained results with standard bi-layer Fermi-Hubbard system. Finally,
conclusions are presented in Sec. 4.5.

4.2 The system
The considered cold-atom system is the same as in the first chapter 2, the Moiré
lattice has a graphene-like brick-wall geometry. Its unit cell contains 8 physical
sites of the original lattice, as shown in Fig. 4.1(a). Among these eight sites, we
distinguish four sets of sites {AA, AB, B,C}: AA and AB denote the six black sites
in Fig. 4.1(a) with two or four ”black” nearest neighbours, respectively , and B
and C denote the red and green sites, respectively. According to Eq. (??), these
three sets of sites exhibit the following property:

Ω(r) =


Ω0(1 − α) if r ∈ AA ∨ AB,
Ω0 if r ∈ B,
Ω0(1 − 2α) if r ∈ C,

(4.2)

that is, the coupling strength at sites B and C is shifted by |α| with respect to the
coupling strength at sites of type A, that is, type AA or AB.

For our choice of lx and ly, the spectrum of Hkin consists of 16 energy bands. A
symmetrical arrangement of the bands with respect to E = 0 reflects the particle-
hole symmetry in the system. At sufficiently large inter-layer tunneling, e.g.,Ω0 =

100t,the spectrum is gapped, as shown on Fig. 4.1(d) for α = 0.2 and (f) for
α = 0.7. Among these 16 bands, we focus on the subset of six bands at E ≈
±80t, i.e. we assume a Fermi energy in the vicinity of this manifold. These two
manifolds are plotted in black in Fig. 4.1(d), and further analyzed in Fig. 4.1(e),
where we zoom into one of the six-fold manifold. Importantly, we observe that the
two central bands of this manifold are almost flat. Moreover, there are different
degenercies, e.g. at the Γ-point. In addition to these quasi-flat bands, the system
also exhibits isolated flat bands shown in blue and red in Fig. 4.1(d).

The impact of the twist parameter α on the structure of the whole energy
spectrum is shown in Fig. 4.1(b). For α < 0.67, the isolated bands are located
above and below the six-fold manifolds, whereas for α > 0.67 both isolated bands
are above the sixfold manifold on the positive side of the spectrum, and below the
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Figure 4.1: (a) Square lattice with unit cell of 8 physical sites due to synthetic
coupling which is different on the black (AA and AB - depending on the amount
of A-type neighbours), green (B), and red (C) sites. The lattice is covered by
unit cells in a brick wall arrangement, as indicated in the inset. (b) Schematic
representation of the three interaction types appearing in the system. (c) Evolution
of the average energy of the bands as a function of the modulation parameter α
at Ω0 = 100 (in units of t). The panel shows the outer bands (two blue lines and
two read ones) of each, positive and negative manifold being shifted with respect
to two the inner subsets of bands marked with black lines. At the critical value
of αc ≈ 0.67 the blue band from the upper manifold reaches lower energy than
black, negative manifold. This results with change of the position of the Fermi
surface. (d) Full spectrum of the system under periodic modulation Ω0 = 100 and
α = 0.2. (e) Zoomed plot of (d) highlighting the negative six-fold subset of bands
including the central quasi-flat bands. (f) Spectrum of the system at Ω0 = 100 and
α = 0.7, after the flipping of the bands occurred (dashed line in panel (c)).
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sixfold manifold on the negative side of the spectrum.
Within the sixfold manifold, the modulation of the inter-layer tunneling flattens

the two central bands, as it mimics Moiré patterning. This implies that, for
α < 0.67, this quasi-flat band structure appears at the Fermi surface, when the
filling ν of the system is 1/4 or 3/4, i.e., the lowest four or the lowest twelve bands
are filled, see Fig. 4.1(d) and (e). For α > 0.67, the quasi-flat bands are at the
Fermi surface for ν = 5/16 or ν = 11/16, i.e., the lowest five or eleven bands
are filled, see Fig. 4.1(f). In this way, the parameter α can be used to control the
density of states at the Fermi surface, which will later be shown to have a strong
impact on the superconducting behavior. We have defined the filling ν such that
ν = 1 corresponds to a lattice which is filled by 4 fermions per site. We consider
only the uniform value of filling (not distinguishing the filling at each synthetic
level). In the limiting case of α = 1, twelve bands become fully degenerated at
E = 0, as can be seen from Fig. 4.1(b).

In order to investigate the superconductivity, we consider attractive collisional
Hubbard-type interactions between the atoms, i.e., local interactions in the physical
lattice. We assume that the internal state of the atoms is not changed during the
collision. In the most general form the interaction Hamiltonian then reads

Hint = −
∑

r,m,m′,σ,σ′
Um,m′
σ,σ′ nm,σ(r)nm′,σ′(r), (4.3)

where nm,σ(r) = a†m,σ(r)am,σ(r) is the density operator of a fermion in the {m, σ}
state. Um,m′

σ,σ′ denotes the (non-negative) interaction strength between atoms in
levels {m, σ} and {m′, σ′} and the negative sign indicates that we consider these
interactions to be attractive. In general, Um,m′

σ,σ′ describes 16 different kinds of
interactions. Out of these, the Pauli principle excludes all diagonal interactions,
i.e., Um,m

σ,σ = 0. We are left with possibly twelve different non-zero interaction
processes. Because of symmetry arguments, these can be further grouped into
three interaction types, as illustrated in Fig. 4.1(c): The first type are the intra-
layer interactions within a synthetic layer

U1 ≡ U+,+
↑,↓
= U−,−

↑,↓
= U+,+

↓,↑
= U−,−

↓,↑
. (4.4)

The second type groups the inter-layer interactions between particles of opposite
spin,

U2 ≡ U+,−
↑,↓
= U−,+

↑,↓
= U+,−

↓,↑
= U−,+

↓,↑
. (4.5)
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The third groups contains the interlayer interactions of particles with equal spin

U3 ≡ U+,−
↑,↑
= U−,+

↑,↑
= U+,−

↓,↓
= U−,+

↓,↓
. (4.6)

From the point of view of a realization with alkali-earth atoms, the case of U1 =

U2 = U3 is the most natural/realistic one. Interactions with nearly SU(N) symmetry
are exhibited, for instance, between the internal states obtained from the nuclear
spin manifolds (I = 5/2 and I = 9/2, respectively) for the fermionic isotopes 87Sr
and 173Yb, see Ref. [258]. We also discuss the cases in which U1 (or U2) become
the dominant interactions, which is particularly relevant from the point of view of
bi-layer interpretation.

4.3 Mean-field decoupling

We apply a Hartree-Fock-Bogoliubov-de Gennes mean-field approach [259, 260]
to tackle the many-body Hamiltonian Hkin + Hint (see Eqs. (2.2) and (4.3)). As
we consider attractive interactions, we focus only on pairing fields in the mean-
field decomposition. Each on-site quadratic attractive term in Eq. (4.3) is thus
decoupled as:

a†m,σam,σa†m′,σ′am′,σ′ ≈ ⟨a†m,σa†m′,σ′⟩am′,σ′am,σ

+ a†m,σa†m′,σ′⟨am′,σ′am,σ⟩

− ⟨a†m,σa†m′,σ′⟩⟨am′,σ′am,σ⟩,

(4.7)

where ⟨·⟩ denotes the expectation value. The last term is a constant shift affecting
the grand thermodynamic potential and is important for obtaining the self consistent
equations for the order parameters via minimization of the thermodynamic potential
or for assessing thermodynamic stability of different solutions. We do not display
this term in the following. Combining Eqs. (4.3)-(4.7) and assuming symmetry
between the layers and spins, let us explicitly write down the pairing Hamiltonian:

HP = ∆1(a†
+,↑

a†
+,↓
+ a†

−,↑
a†
−,↓

)

+ ∆2(a†
+,↑

a†
−,↓
+ a†

+,↓
a†
−,↑

)

+ ∆3(a†
+,↑

a†
−,↑
+ a†

+,↓
a†
−,↓

) + h.c.

(4.8)
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Here, we have defined the following superconducting order parameters

∆1 ≡ U1⟨a+,↑a+,↓⟩ = U1⟨a−,↑a−,↓⟩, (4.9)
∆2 ≡ U2⟨a+,↑a−,↓⟩ = U2⟨a−,↑a+,↓⟩, (4.10)
∆3 ≡ U3⟨a+,↑a−,↑⟩ = U3⟨a+,↓a−,↓⟩. (4.11)

The value of the order parameters can, in principle, vary within each unit
cell due to in-equivalence of the lattice sites and their surroundings caused by
spatial modulation of the synthetic coupling, described in Eq. (??). As has been
shown in Fig. 4.1(a) and defined in Eq. (4.2), one can differentiate the sites in the
unit cell into four types. While types B and C are taken into account separately
due to their different value of synthetic coupling Ω(r), the sites of A-type (black
sites in Fig.4.1) are distinguished based on geometric reasons and divided into
”bridge” (AA) and ”node” (AB) sites, depending on the amount of nearest A-type
neighbours (two for AA, and four for AB). A visual representation of this scheme
is also shown in Fig. 4.2, where yellow sites represent ”bridge” (AA) sites on
panel (a) and ”node” (AB) on panel (b). Therefore, distinguishing between the
four different types of sites, we write the order parameter in the interaction channel
i = 1, 2, 3 for site of type I ∈ {AA, AB, B,C}. For the eight sites of a unit cell, we
thus have three sets of order parameters defined below:

∆⃗i = (∆AB
i ,∆AA

i ,∆AB
i ,∆AA

i ,∆AA
i ,∆B

i ,∆
AA
i ,∆C

i ). (4.12)

It is also convenient to view the real-space fermionic operators am,σ(r j) as eight-
component vectors, with each component representing one site in the unit cell,
and the j representing the index of unit cell within the Moiré lattice. Then, we
Fourier transform the operators to quasi-momentum space, via

am,σ(r j) =
1
√

Ns

∑
k

e−ikr jam,σ(k), (4.13)

where Ns is the number of unit cells in the lattice and cm,σ(k) is the eight-dimensional
field operator of a fermion with quasi-momentum k = (kx, ky). The real-space
hopping Ht is diagonalized as Ht = −t

∑
m,σ a†m,σ(k)Hm

t (k)am,σ(k), with Hm
t (k)

being a diagonal matrix representing the eight bands per layer index m ∈ {+,−}.
Due to the symmetry between the synthetic layers, we have H+t (k) = H−t (k). The
interlayer tunneling is also diagonal in k, but of the form a†+,σ(k)HΩ(k)a−,σ(k).

In order to present the full Hamiltonian, H = Hkin + HP, containing all order
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parameters of interest in the quadratic form, we define the following 8×8-dimensional
Nambu spinor:

Ψ
†

k =



a†
−,↑

(k)
a−,↓(−k)
a†
+,↑

(k)
a+,↓(−k)
a−,↑(k)

a†
−,↓

(−k)
a+,↑(k)

a†
+,↓

(−k)


(4.14)

The mean field Hamiltonian in momentum space is of the Bogoliubov-de-Gennes
(BdG) form and is given by

H(k) = Ψ†kHBdG(k)Ψk − ϵ(k), (4.15)

where ϵ(k) is a diagonal matrix which includes all constant values coming from
the decoupling. Note that HBdG(k) is a 64 × 64 matrix as each component of the
Nambu spinor is an 8-vector yielding eight bands. The structure of this matrix is
constructed as follows:

HBdG(k) =
 HF(k) J2 ⊗ 1 ⊗ diag(∆⃗3)
J2 ⊗ 1 ⊗ diag(∆⃗3) H∗F(k)

 , (4.16)

where 1 is the two-dimensional unity matrix, J2 = [[0, 1], [1, 0]] is the first Pauli
matrix, and ⊗ denotes the tensor product.

The matrix on the diagonal block has the following structure

HF(k) =
(
Hm(k) HR(k)
HR(k) Hm(k)

)
, (4.17)

where the four 16 × 16 blocks are defined as

Hm(k) =

Hm
t↑(k) − µ − n

3 (U1
2 +

U2
2 +

U3
2 ) diag(∆⃗1)

diag(∆⃗1) −Hm
t↓(−k) + µ + n

3 (U1
2 +

U2
2 +

U3
2 )

 ,
(4.18)

and

HR(k) =
 HΩ(k) diag(∆⃗2)
diag(∆⃗2) −HΩ(−k)

 . (4.19)
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The quadratic matrix H(k) depends on the unknown superconducting order parameters
∆⃗i, which we determine self-consistently by diagonalizing H(k) using random
initial guesses of ∆⃗i, and subsequently updating the order parameters by the ones
obtained from the diagonalization until convergence is attained. We check that
this procedure leads to the same order parameters for different initial guesses, or,
if this is not the case, we choose the solution with the lowest grand thermodynamic
potential energy.

4.4 Results
In this section we present the original results of the pairing correlations in the
system within the framework described above. While we first focus on the case of
fully symmetric interactions that naturally arise in the context of the experimental
proposal presented in [40], namely U1=U2=U3 (see Fig. 4.1(c)), where all internal
degrees of freedom of each atom are coupled to the each others with the same
strength, we also study the effects of SU(4) symmetry breaking by considering
the relative alteration between interaction channels U1 and U2 in the subsequent
subsection. In this context, we set U3 = 0 in all the subsequent calculations,
which is justified because any pairing in the U3 channel is strongly suppressed by
the strong Raman coupling, Ω. This coupling (inter-layer hopping) energetically
penalizes the state with two particles of equal pseudo-spin per site, as compared to
the single-particle states formed by the antisymmetric superposition of the states
with equal pseudo-spin and opposite pseudo-layer degree of freedom.

A very interesting phase diagram is found in the regime of weak interactions:
superconductivity is exponentially suppressed in the symmetric case, i.e. near
U1 = U2, but a significant non-zero SC gap can be again amplified if the interactions
are tuned to a sufficiently non-symmetric choice. We observe the narrowing
of the weakly-superconducting wedge shaped region in the phase diagram with
increasing interaction strength, as well as the coexistence of both the inter and
intra-layer superconducting order parameters. Techniques to tune interactions,
such as Feshbach resonance or magnetic/optical field gradients [261, 262], allow
in experiments for such a selective choice of a dominant interaction channel.
Increase of band flattening via the tunable parameter α leads to the development
of strong superconducting order for lower values of attractive interactions, in
particular, as compared to the standard (α = 0) bi-layer Fermi-Hubbard model.

Numerical calculations were performed for a system of 2 × 256 sites forming
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a 2 × L × L bi-layer square lattice with L = 16. The low temperature properties
were studied by choosing the temperature to kBT = 0.02t.

4.4.1 Superconductivity in S U(N) symmetric system

We set a strong interlayer (Raman) coupling Ω0/t = 100 in order to focus on
effects in the quasi-flat band regime of our system. We investigate the influence of
two main parameters, namely the modulation amplitude α and interaction strength
U on the SC characteristics.

The parameter α controls the relative strength of the spatially dependent part of
the synthetic hopping Ω(r) in eq. (??). The increase of α primarily results in
flattening in the dispersion of the set of quasi-flat bands of our interest. Up to a
value of α ≈ 0.67, the flattened bands lie exactly at Fermi energy of the system for
a filling ν = 1/4 (that is, one fermion per physical site). As shown in Fig. 4.1(b),
the critical value of α ≈ 0.67 causes band flipping, which lifts the Fermi energy
of the quarter-filled system away from quasi-flat band (see Fig. 4.1(d) and (f)).
We focus on the case with ν = 1/4 and 0 ≤ α ≤ 0.67. A large superconducting
gap opens in the SU(4) symmetric system, for interaction strengths, higher than
a certain, α-dependent cut-off interaction amplitude, U > UC(α). We note that
UC(α) decreases if one considers lower temperatures.

Enhancing the density of states at the Fermi energy by increasing the band flattening
through α is expected to lead to larger stability of the superconducting phase and,
therefore, lower threshold values UC(α). Indeed, such behaviour is markedly
seen in Fig. 4.2(a,b). For an example value of α = 0.6, the superconducting
state appears above U ∼ 6.2t. Similar effect has been observed for the critical
temperature of the system with respect to modulation α. Fig. 4.2(c) depicts the
growth of the critical temperature with band-flattening. We have limited the range
of α in the figure such that it covers only the scenario with Fermi energy matching
the energy of quasi-flat bands. Therefore, by tuning the modulation parameter α
one can reach superconducting state at lower interaction values as compared to
the uniform inter-layer hopping scheme. Moreover, resulting difference in critical
temperature between highly modulated system at α = 0.6 and un-modulated one
is of one order of magnitude. In other words, the superconductivity near UC is
truly induced by the synthetic twist.
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Figure 4.2: (a,b) Expansion of superconducting gaps ∆AA
1 and ∆AB

1 as a function of
the U = U1 = U2 ≤ 16t under different modulation values α resulting in specific
cutoff value Uc (∆2 has an identical behavior). (c) Critical temperature dependence
on the modulation strength α at U1,2,3 = 16t. Inset plot represents the energetic
width δF of the quasi-flat bands as a function of the modulation parameter α.
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4.4.2 S U(4) to S U(2) × S U(2) symmetry breaking

The S U(N = 4) symmetry (spin and magnetic levels) of the system resulting
from the internal structure of the atoms forbid the free tuning of the strength of
each interaction type individually without an external fields applied. As shown in
[263, 261], one can tune the strength of interaction types by applying an external
state-dependent force that effectively separates the mF manifold of the ground
state. For atoms with two valence electrons, such as 87Sr, this technique, also
termed as, optical Stern-Gerlach (OSG). has already been successfully applied
experimentally [263, 261]. Following the scheme of the system proposed in
[40, 41], we propose to use OSG to modify the energy gaps between specific mF

states, thereby tuning the interaction strength of desired type. In this paragraph,
we study the effects on the superconducting properties due to a modification of the
interaction strength in such fashion. We note that the extreme scenario of U1 ≫

U2 corresponds to standard spin-spin onsite only interactions widely explored in
the Fermi-Hubbard model. Whereas the S U(N)-symmetric scenario requires a
threshold value of the coupling U for the system to exhibit superconductivity, the
symmetry-broken scenario allows us to observe superconducting pairing even for
U1,U2 < UC (with one of them possibly even being zero). Interestingly, a phase
where superconductivity is dominated by U1 is separated from a U2 dominated
superconducting phase through an intermediate phase in which superconductivity
g is absent, leading to the interesting re-entrance phenomena, when one of the
interaction parameters is tuned.

The different phases are seen in Fig. 4.3 where the superconducting gaps
∆AA,AB

1 are plotted as a function of the interaction strengths U1 and U2, in the
interval [1, 6] in panels (a) and (b), and in the interval [0, 2] in panels (c) and
(d). Here we have chosen α = 0., and the corresponding UC from the S U(4)
symmetric system is UC ≈ 6. Hence, the shown regime is below UC everywhere,
and accordingly, the system does not exhibit superconductivity along the line
U1 = U2. It is seen that this non-superconducting regime, plotted in black, has a
finite width, which narrows as U1 and U2 approach towards UC. The width and the
rate of the narrowing depends on the modulation parameter α, as indicated in the
Fig. 4.4. Nevertheless, relatively small deviations from the symmetric interaction
are already sufficient to open a superconducting gap. This can be understood in the
following way: the superconducting pairing of each interaction type compete with
each other, but breaking the symmetry favors one interaction type with respect to
the other, and therefore facilitates the pairing in this channel. Although one of
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Figure 4.3: Superconducting order parameter ∆AA
1 (panel a and c) and ∆AA

2 (panel
b and d) as functions of relative amplitude of U1 and U2 interactions at α = 0.67.
Existence of superconducting phase in this S U(4) symmetric system is not present
until U = U1 = U2 reaches a cut-off value Uc, at which the non-superconducting
valley narrows to zero. The width of the valley as well as the critical interaction
strength depends on the modulation parameter α (as shown on the Fig. 4.2).
Panels (c) and (d) represent the regime of small interaction strengths that are not
covered on the panels (a) and (b) due to limited colormap resolution. Sites of (AB)
type reveal qualitatively identical behavior, however, with much smaller pairing
amplitude (See Fig.4.4(b))
.
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Δ1
Δ2

Figure 4.4: ∆AA,AB (dashed) and ∆2 (solid) as functions of U2 (in units of U1)
for four different values of U1 at modulation strength α = 0.67. One can observe
the shift of the superconducting gap decay towards U2/U1 = 1 with the increase
of interaction strength. For U1 = 6t, the decay of superconducting gap occurs at
U2/U1 = 1 marking the UC for this particular value of α.

the two different pairing channels becomes dominant, there is still coexistence of
the superconducting gaps corresponding to the two channels, U1 and U2, for most
parameter choices (unless we are in the non-superconducting regime, or one of the
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Figure 4.5: Superconducting gap in the system of U1 = 2t and U1 ≫ U2. (a) The
order parameter ∆1 associated with interaction type U1 as a function of the inter-
layer hopping strength Ω0 at α = 0.2. We have set U2 = 0 as its presence weakens
the order parameter ∆1, as shown on Fig. 4.4(b). The green line represents the
situation where the Ω(r) is homogeneous, i.e. α = 0. The separate plot for ∆C has
been omitted since it’s behaviour is identical to ∆B, which has been plotted. (b)
Dependence of the order parameter ∆AA

1 on the modulation strength α for Ω0 =

100t. We have omitted the plot of ∆AB
1 due to its negligible amplitude. Sudden

drop of pairing (marked by dashed grey line) occurs around critical value of α ≈
2/3 at which the Fermi level does not reside at quasi-flat bands any more. Such
situation has been shown on Fig. 4.1(f).
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interaction parameters is zero). However, monotonicity of the size of the gap with
respect to the interaction strength is not obvious. We present a closer insight to this
phenomenon through the details presented in Fig. 4.4. It depicts the dependence
of the superconducting order parameters on U2 for four different values of U1

at α = 0.67. The decay of ∆AA
1 and ∆AA

2 as U2 approaches U1 = U2 is the
beginning of the zero-gap valley. With increasing value of U2 the corresponding
gap ∆AA

2 opens and keeps increasing until reaching its maximum value. In parallel,
superconducting order parameter corresponding to U1 constantly decreases.

We now consider the cases of U1 ≫ U2 which can be obtained experimentally
with help of OSG techniques. We would like to note that the same results have
been obtained for the opposite case, i.e. U2 ≫ U1. This scenario qualitatively
agrees with the standard bi-layer Fermi-Hubbard model with only in-plane interactions
typically considered as good approximations to describe various phenomena in
condensed matter physics. Note, that in this chapter we are not aiming at direct
comparison with real solid state systems. In contrast, our focus here is on a non-
standard choice of parameters (Ω ≫ t) as it gives us access to study the effect
of a flat band structure even in relatively small Moiré supercells. Such regime
of parameters is accessible in cold atomic systems. We choose this regime in
order to obtain a maximum possible value of the gap for a given amplitude of U.
As it has been shown on the Fig. 4.4, the widest gap appears for highly unequal
interaction values, i.e. U1 ≫ U2. We begin by investigating the dependence on
the synthetic hopping amplitude, Ω0. In its absence the system consists of two
uncoupled layers of square lattices. At finite Ω0, we can flatten the bands through
the spatial modulation provided by α, or realize the standard bi-layer model, i.e.
α = 0. Panel (a) of Fig. 4.5 depicts both of these scenarios. In particular, we
have plotted separately the gap for A-type and (B,C) sites in α-modulated case,
as well as the mean value of the gap averaged over all sites of the unit cell. The
green line represents the size of the gap for a standard bi-layer model, that is, with
α = 0. Interestingly, with a small separation of the spectrum caused by inter-layer
hopping, superconducting gaps drop. However, after a full separation of the bands
into positive and negative branches, the system the size of the gap of the quasi-flat
band system starts to grow, in contrast to the superconducting order parameter
of the standard FH system. Panel (b) of Fig. 4.5 represent the dependence of
the order parameter ∆1 on the modulation parameter α. The plot depicts the
situation where Ω0/t = 100 and therefore ∆B,C

1 can be neglected due to their
vanishing values. The amplitudes of ∆1 in panel (b) have been obtained for the
fixed filling n = 1/4. Summarizing, modulation of the inter-layer hopping leads
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to enhanced superconducting order parameter with respect to a non-modulated
one at sufficiently high Ω0. This effect is a result of band flattening and therefore
disappears once the modulation α crosses the critical value or the Fermi energy
does not match the energy of quasi-flat bands.

4.5 Conclusions
In this chapter, we have used Bogoliubov-deGennes theory to study attractive
interactions of the synthetic bi-layer square lattice system. The studied model goes
beyond the thoroughly explored bi-layer Hubbard models and tackles correlated
phases in quasi-flat band systems emerging from the periodic modulation of inter-
layer hopping. We have taken into account all possible density-density on-site
interaction channels and considered properties across a wide range of experimentally
accessible interaction strengths. Our system has a small Moiré unit cell for which
flat band induced effects occur for large inter-layer hopping strengths. We note
that similar small Moire unit cells generated at large twist angles in physical bi-
layers would also require rather large inter-layer hopping to isolate the flat band
regime. This could in principle be achieved by applying strong strain or pressure
in the direction perpendicular to the plane of the layers in materials. However,
it might be rather more easily achieved in our synthetic system where the inter-
layer hopping is controlled simply by the intensity of a Raman laser coupling the
internal levels that play the role of the layer degrees of freedom.

First, we have focused on the natural case of equal interaction amplitudes and
observed strong dependence between the inter-layer modulation parameter α and
minimal interaction strength UC required to reach superconducting pairing at a
fixed low temperature. Observed results confirm the following:

(1) Flattening of the bands in the vicinity of Fermi energy leads to opening of
the superconducting gap at much lower interaction amplitudes, when compared to
more dispersive systems.

(2) Band flattening causes the critical temperature scale to significantly increase
in these novel synthetic-twist-induced lattices with magic configurations and thus
superconductivity (paired neutral fermion superfluidity) may be potentially observable
in state-of-the-art cold gas experiments.
Further results are obtained by altering relative interaction amplitudes in the system:
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(3) The resulting phase diagram revealed a valley around U1 = U2 with strongly
suppressed superconducting correlations. The width of this valley narrows with
the growing amplitude of interactions to finally completely vanish at Uc specific
for each value of α. Similar behaviour has been observed in bi-layer Hubbard
square lattices with only one correlated layer [264]. There, the apparent re-
entrance of the superconducting gap was a result of increasing inter-layer hopping.
Here, however, we observe similar effects as a function of inter-layer interactions
for large inter-layer hopping.

While the results discussed in this chapter help to form a general understanding
of the effects of band flattening on superconductivity in the synthetically twisted
materials, further studies can be be pursued in future, particularly, in context
of topologically nontrivial bands with relatively weak dispersion, which can be
obtained via more involved, but experimentally viable, means e.g., via imaginary
next-to-nearest neighbor tunnelings driving the system into a quantum anomalous
Hall phase [41]. In such cases, Wannier functions with algebraically decaying
tails may originate from nonzero Chern number [265]. Novel understandings
of the correlated phenomenon could then be obtained via incorporation of new
mechanisms, such as correlated tunnelings in extended Hubbard bi-layer systems.
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Chapter 5

Quantum batteries as quantum
simulators

So far we have only considered the potential ability of quantum simulators to serve
as a platform for analysis and generation of many-body quantum systems with
high precision and control. We have argued their possible application in design
of new 2D materials. Quantum simulation has, however, the second name: Special
purpose quantum computer, that distinguish this approach from the universal quantum
computer. Special purpose means that such a machine can perform only pre-
programmed set of unitaries realizing only one algorithm. Such a scheme vastly
simplifies the complexity of the hardware as well as error correction with a cost
of generality.

One of the ”perfect” examples of quantum simulators as special purpose quantum
computers are quantum batteries. They are a result of growing interest in the
study of the advantages that quantum effects could bring into the problem of
energy storage [266, 267, 268, 269, 270, 271, 272, 273, 274]. This interest has
been stimulated not only by scientific curiosity, but mainly as a result of the
rapid growth of renewable energies, which in turn has boosted the urgency for
better energy storage devices. The reasons for storing energy are two-fold. First,
while energy disposal is aimed to be at will, renewable sources produce energy
discontinuously, e. g. solar panels do not generate energy at night. Second, in
many cases, the power provided by such sources is not enough to perform some
highly consuming tasks, like running a car.

Every battery, be it classical or quantum, can be characterized by two main quantities.

91
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The first one is the maximal amount of energy E the battery can store, called
capacity. The second one is the rate(units of energy per unit of time) at which
the battery can be charged and discharged, called the power of the battery, P.
Charging and discharging are the two main processes of a battery. While discharging
process is dependent on the external device using the energy stored in the battery,
power of charging remains one of the biggest bottlenecks in their industrial development.

The field of quantum batteries is more that 10 years old, but it gained more
attention in 2018, when [267] has shown the potential exponential speed-up in
charging power due to global unitaries. Since then the research in this area has
intensified with many seminal publications[271] and the first experimental realizations.
The concept of quantum battery, principles of operations, relevant quantities,
definitions and figures of merit will be explained in the following chapter. It is
only slightly modified version of the original article [44], which the author of
this thesis has coauthored. The chapter presents the fundamental bounds on both
capacity and power of quantum batteries, that are tighter than the ones resulting
from quantum speed limits. The article was written in a very didactic manner
therefore is presented in this thesis in rather unchanged form.

E(ρ0) E(ρ(t))

CHARGING DISCHARGING

HC

Figure 5.1: batteries are often made-up of classical ingredients, be it chemical
or cell-based, and are primary devices, where energy E can be remotely stored
and accessed via charging HC or discharging operations. Quantum battery has the
same properties as classical battery. However, its charging protocols (processes)
provide high-control evolution of the initial state ρ0. The potential gains and
effects of such evolutions, as well as different types and classes of charging
processes are the essence of this chapter.



5.1. WHAT ARE QUANTUM BATTERIES? 93

5.1 What are quantum batteries?
Quantum batteries are intrinsically quantum devices made of quantum-cells that
can interact, and thus exploit collective quantum properties, in order to perform
the task of energy storage. The study in [266], for the first time, suggested that
quantum entanglement can boost the extractable stored energy from an ensemble
of quantum batteries. Later, it was shown that quantum entanglement is not
absolutely necessary to increase the extractable energy, and classical correlations
are enough [275]. Also, the presence of correlations, in the initial and final state
of a quantum battery, is detrimental to its storage capacity.

On the contrary, when looking at the power of a quantum battery, i.e., the rate
at which energy can be stored or extracted, quantum correlations in the intermediate
states can lead to an enhancement, usually denoted as a quantum speed up. In
this line, the correspondence between quantum entanglement and the power of
a quantum battery has led to many interesting studies, see for example [267,
268, 269, 270, 271, 272, 273, 274]. The role of non-local charging process
has been studied theoretically in [267, 268], and for experimentally realizable
quantum batteries in [269, 270]. More precisely, one of the features that has
been explored is the achievement of a super-linear rate of charging by means of
collective quantum effects. In these cases, for a battery with N quantum-cells,
the total power would scale as N

√
N, instead of (linear) N. One trivially gets the

linear scaling in the case of independent charging of the quantum-cells. A review
on the recent progress can be found in [276].

In this chapter, we deem to consider all these important aspects to characterize
a quantum battery, adhering to the traditional definitions of the stored energy and
the power. We study the capacity of a quantum battery, i.e., a bound on the storable
(extractable) energy, under entropy-preserving processes. Notice that the scenario
of an entropy-constrained capacity was introduced in [277] for the study of work
extraction in finite quantum systems. Here, we extend these results for the study
of quantum batteries. In particular, we introduce the energy-entropy diagram for
quantum states, and we show its usefulness to visualize both the limitations on
extractable and storable work. We also emphasize that many of the previous
works about quantum batteries assume only the expectation value of the battery
Hamiltonian, i.e., the first moment. However, we know that this expectation value
does not always imply accessible energy, as a non-vanishing variance implies
lower usability of that energy [278]. Therefore, it is important to study higher
moments of the energy, in order to properly characterize a quantum battery.

In the case of power, one of the main results is a bound on the rate at which
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energy can be deposited (extracted) in a quantum battery in a charging (discharging)
process, obtained by means of a quantum geometrical approach. It is valid for
arbitrary charging (discharging) processes. The bound is derived in terms of the
energy variance of the battery and the Fisher information (or speed of evolution)
in the eigenspace of the battery Hamiltonian (denoted as IE). On the one hand,
the energy variance of the battery can be related to non-local properties of its
quantum state, hence connecting entanglement and power. In the case of qubit-
based batteries, this connection leads to another central result of this chapter, that
is, a mathematical inequality bounding the power by the amount of entanglement
generated between the cells. On the other hand, IE signifies the rate of change
of the battery state in the energy eigenspace. This gives a better bound on power
compared to the case in which one considers the traditional speed of evolution
of the battery state in Hilbert space (i.e., the quantum Fisher Information, IQ).
The reason is related to the fact that there can exist initial and final time-evolved
states that are infinitesimal close (or identical) in energy, but orthogonal (and thus
perfectly distinguishable) in Hilbert space. The speed of evolution in Hilbert
space would then be non-zero, while power would be zero. Therefore, when
studying power, it is necessary to consider a speed of evolution based on a notion
of distinguishability between states that is directly connected to the difference in
their energetic distributions.

Furthermore, we use the derived bounds for the storable energy and the power
to systematically analyze the paradigmatic cases that are often studied the literature,
and also more realistic models of quantum batteries, that include integrable spins
chains, and two models based on the LMG and the Dicke Hamiltonian. For
such a study, we restrict to charging processes in which the battery is initially
in a pure quantum state. This leads to an entropy-free capacity given simply by
the difference between the ground state and the highest-excited energies of the
battery Hamiltonian. We then analyse which portion of this capacity is stored in
the battery due to the charging dynamics, and its scaling with the number of cells
N. In the case of power, we also analyze the saturation of the bound in terms of
the quantities appearing in it and their scaling with N.

The main results for this part are the saturation of our bounds in the paradigmatic
cases, the unveil of the role of entanglement in the power of all these models, and
the challenging of the appearance of a quantum speed up in the realistic models
that we consider.

The article is organized as follows. In section 5.2, we outline the important
properties of a quantum battery. Section 5.3 gives the expression for capacity
exploiting the energy-entropy diagram. In section 5.4, a bound on the power
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of a generic battery is derived, in terms of the energy variance and the Fisher
information in energy eigenspace. In the case of qubit-based quantum batteries,
we introduce a bound on power in terms of the k-qubit entanglement of the battery
state. Section 5.5 outlines paradigmatic spin-1

2 (qubit) models that saturate the
derived bounds. We study various realistic models in light of these bounds in
section 5.6. Finally, we dedicate section 5.9 for conclusions.

5.2 Quantum Batteries and their properties
In this section, we make a brief outline of the properties that one needs to consider
to make an assessment of a good battery. A quantum battery is a physical system,
where energy can be stored for a relatively long time and extracted whenever it is
convenient. It is modeled by a Hamiltonian HB, so that its internal energy, which
depends on its state ρ, is given by

E(ρ) B Tr(ρHB) . (5.1)

In order to give a further insight into the problem, in this chapterwe assume that
a battery is composed of independent non-interacting quantum-cells, with the
Hamiltonian

HB =

N−1∑
j=0

h j, (5.2)

where h j is the Hamiltonian of the j-th quantum-cell, and N is the total number
of them. Notice that the form of the battery Hamiltonian in Eq. (5.2) implies that
we are considering an additive nature of the battery stored energy, i.e., the total
energy is obtained as the sum of individual energies stored in each battery cell.

The process of charging (or discharging) a battery is a physical process Γt

that leads to the battery state ρ(t) B Γt(ρ(t0)) at each instant of time t. The main
features that we study in this chapter are the following.
Stored and extracted energy – For a given dynamical charging (discharging)
process Γt of a quantum battery, that is initally in the state ρ(t0) B ρ0, the stored
(extracted) energy E s

ρ0
(Ee

ρ0
) is the maximum amount of energy that the battery

absorbs (delivers). They are defined by

E s
ρ0

[Γt] B max
t

E (ρ(t)) − E (ρ0) ,

Ee
ρ0

[Γt] B E (ρ0) −min
t

E (ρ(t)) .
(5.3)
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Notice that, in the above definitions, the energies are a functional of the process,
and the initial battery state (i.e., we do not assume that the battery is initially fully
empty nor charged). Instead, we are interested in the energy change of the battery
given an arbitrary initial state and a dynamical process Γt, belonging to a certain
set S of control operations. Within this set, we also define the capacity CS of the
battery as its energetic amplitude, that is

CS B max
Γt∈S

E s
ρ0

[Γt] +max
Γt∈S

Ee
ρ0

[Γt]. (5.4)

In the present chapter, we will mainly focus in entropy-preserving operations,
which can be connected to unitary operations for linear maps or in the many-copy
limit, as discussed in Sec. 5.3. Notice then, that the capacity CS will depend on
the initial state ρ0 trough the initial entropy S (ρ0). Physically, this means that,
while given a battery hamiltonian HB the ideal capacity is trivially the difference
between the groundstate and maximally excited state, one may not be able to
bring the battery in an exact pure state, thus reducing the effective capacity under
entropy-preserving/unitary operations [277].

The choice of this set of control operations is motivated by the fact that batteries
are not engines that convert heat into work. Instead, they are supposed to operate
in isolation from the environment and store or supply energy when demand arises.
Also notice that within entropy-preserving operartions the stored energy, as defined
in Eq. (5.3), coincides with the (thermodynamical) work [279]. If we go beyond
this assumption, we have to consider work injection instead of internal energy, as
they migh not coincide. In this context, notice that recent works directly addressed
the issue of non-unitary processes by considering dissipative charging protocols
[273, 274] or the impact of correlations in the extractable work from the battery
[271]. It is also important the fact that even when restricting to entropy-preserving
or unitary operations, we only consider the first moment of the Hamiltonian.
However, a non-zero variance in the stored energy worsens its deterministic extraction,
as in a discharging process it might not be possible to exactly reverse the time
evolution generated during the charging.

In this chapter, we will not take this variance into account to derive our bound
for storage. The reason is that for a large number of cells N the energy variance
(second moment) typically scales as 1/

√
N, and thus vanishes in the thermodynamic

limit. On the contrary, we will analyze the impact of this variance when studying
the charging processes of different particular models of a quantum battery. An
enhanced energy variance in the battery may appear during the time evolution. In
these cases, it is important to see what percentage of it remains in the final state,
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and how does it decay in the large N limit.

Power – How quickly a battery can be charged (or discharged) depends on its
power. It is quantified by the rate of energy flow in the battery during charging (or
discharging), that is

P(t) B
d
dt

E (ρ(t)) . (5.5)

Notice that as in the capacity definiton, the above definition of Power coincides
with the rate of Work injection only in the case of entropy-preserving transformations
of the battery state, that is when we considered an input of energy in an isolated
system, without heat exchange. This is also equivalent to an adiabatic process
where the system undergoes a transformation without an interaction with the
environment. For a given charging process of a duration ∆t = t f − t0, the average
power will be

⟨P⟩∆t =
E(ρ(t f )) − E(ρ(t0))

∆t
. (5.6)

From a geometric point of view, there are two relevant properties when studying
how fast a charging process can evolve a battery state from ρ(t0) to ρ(t f ). Within a
notion of distance (distinguishability) between quantum states, the amount of time
spent in the process is affected by both the rate at which the battery state ρ changes
during the time interval ∆t (speed of state evolution), and how smart is the path
taken, in terms of the total length (trajectory of evolution). These two aspects are
illustrated in Fig. 5.2. Notice that the concepts of speed and trajectory of evolution
are highly dependent on the definition of distinguishability between battery states.
For instance, if one considers distinguishability of states in Hilbert space, an initial
state could evolve to a perfectly distinguishable final state, but with the same
energy distribution as the initial one. In this case, the speed of evolution would be
non-zero, without a change in the energetic properties of the state. Instead, in this
chapter we use the concept of distinguishability in the eigenspace of the battery
Hamiltonian and define the speed of evolution accordingly.

In the following, we aim to understand the limits that quantum mechanics
imposes on the storage, the power, and energy variance of any energy storage
device. More specifically, we are interested in understanding how these quantities
scale with the number of cells N. In doing so, we restrict ourselves to entropy-
preserving evolutions to perform charging and discharging processes on the batteries.
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Figure 5.2: Schematic of a charging (discharging) process in the quantum state
space. The trajectories represent two different charging processes A (blue) and
B (red) in which the initial and final states (|Ψi⟩ and |Ψ f ⟩ respectively) coincide.
The process A undergoes a path with path length LA at a speed I(A)

E . Similarly,
the process B traverses the path length LB and the speed I(B)

E . The time required
(tA and tB for the two processes) to reach to the final state, from the initial one,
depends both on the path length and the speed. For instance, the charging process
requires shorter time, i.e. tA < tB, although the speed of the process B is larger,
I(A)

E < I(B)
E . This is because path length of B is also larger, LA < LB.

5.3 Bounds on the stored and extracted energies

Here we study the capacity of a battery, given by the maximum amount of energy
that it can store or that can be extracted from it. We restrict our analysis to entropy-
preserving processes, which reduce to unitary operations in the case of linear maps
acting on a single copy of a state [280]. In the many-copy scenario, entropy-
preserving operations are understood as effective local operations generated by a
global unitary acting on asymptotically many copies of the system [281, 279] and
a small ancilla η. That is, for any two states ρ and σ with equal entropies, S (ρ) =
S (σ), (here we consider the von Neumann entropy S (ρ) = − tr ρ log ρ) there exists
an additional ancilla system of O(

√
N log N) qubits and a global unitary U such
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that
lim

N→∞
∥ tranc

(
Uρ⊗N ⊗ ηU†

)
− σ⊗N∥1 = 0 , (5.7)

where the partial trace is performed over the ancillary qubits and ∥·∥1 is one-norm.
In the finite case, where one cannot apply the limit appearing in Eq. (5.7), we will
also discuss how the operational interpretation of our analysis changes.

5.3.1 Energy-entropy diagram

In order to understand the limitations on the energy that a system can store,
it is useful to introduce the energy-entropy diagram, as depicted in Fig. 5.3.
Given a system described by a time-independent Hamiltonian H, a state ρ is
represented in the energy-entropy diagram by a point with coordinates xρ B
(E(ρ), S (ρ)) (see Fig. 5.3). All physical states reside in a region that is lower
bounded by the horizontal axis (i.e., S = 0) corresponding to the pure states, and
upper bounded by the convex curve (E(β), S (β)) which represents the thermal
states of both positive and negative temperatures. Let us denote such a curve as
the thermal boundary. The inverse temperature associated with one point of the
thermal boundary is given by the slope of the tangent line in such a point, since

dS (β)
dE(β)

= β . (5.8)

Notice that here a thermal state with negative β corresponds to the case of population
inversion, that is, the probability of finding the system in a given energy eigenstate
increases with increasing energy.

Note also that a point xρ B (E(ρ), S (ρ)) of the energy-entropy diagram
corresponds in general to several quantum states since, given a Hamilonian, there
are several states with equal energies and entropies.

5.3.2 Capacity under entropy-preserving operations

Now, with the energy-entropy diagram, we derive the capacity C(S ) of a quantum
battery. A dynamical process that changes either the energy or the entropy of
a system is represented as a trajectory in the energy-entropy diagram. As we
are restricted to charging (discharging) processes that are entropy-preserving, the
trajectories of such a processes will be horizontal lines in the diagram, see Fig. 5.3.
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Figure 5.3: Energy-entropy diagram. Any quantum state ρ is represented in the
diagram as a point with coordinates xρ B (E(ρ), S (ρ)). The point in the thermal
boundary with slope β corresponds to the thermal state with inverse temprature
β. The trajectory of a charging (discharging) process is represented with a dotted
(dashed) line. They connect, respectively, the initial state ρ0, with entropy S 0, and
the final state ρs (ρe). The capacity C corresponds to the energetic amplitude at a
given entropy.
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Observation 1 (Capacity). Consider an initial battery state ρ0 and a dynamical
process Γt, within the set of entropy-preserving maps. The stored and extracted
energies are upper bounded by

E s
ρ0

[Γt] ⩽ Emax(S (ρ0)) − E(ρ0),

Ee
ρ0

[Γt] ⩽ E(ρ0) − Emin(S (ρ0)).
(5.9)

If we only fix the initial entropy S 0, there is a unique bound given by addition of
the two above:

E s
ρ0

[Γt] + Ee
ρ0

[Γt] ⩽ C(S 0) (5.10)

where C(S ) is the entropy-dependent capacity of the battery

C(S ) = Emax(S ) − Emin(S ), (5.11)

with
Emin /max(S ) B min

σ : S (σ)=S
/ max
σ : S (σ)=S

E(σ) . (5.12)

Here the minimization/maximization is made over all states with entropy S . Note
that the minimum/maximum in (5.12) is achieved by thermal states with positive/negative
β also called completely-passive/completely-active states [282].

Proof. The proof is straightforward from the energy-entropy diagram and the fact
that the processes are entropy-preserving. □

A first insight from the energy-entropy diagram is that inter-system correlations
are not needed in order to saturate the optimal capacity of a battery. The two
states that respectively minimize and maximize the energy given an entropy lie
in the thermal boundary and are therefore thermal states. As thermal states of
non-interacting Hamiltonians between different cells are product states, classical
or quantum correlations do not provide an advantage in saturating the capacity
bound.

Let us finally discuss the operational interpretation of the bounds (5.9). In
the many-copy limit, for a fixed Hamiltonian and a given initial entropy, the
completely-passive and completely-active states, corresponding to Emin and Emax,
are always reachable with the help of a small ancilla and a global unitary operation.
However, this statement is not always true in the few-copy case, where unitary
operations represent only a subset of entropy-preserving ones. In this latter case,
even though the bounds (5.9) are still respected, it will not always be possible to
saturate them when the set of control operations is limited to unitary operations
[283].



102 CHAPTER 5. QUANTUM BATTERIES AS QUANTUM SIMULATORS

5.4 Bound on power
In this section, we derive the bound on power, following geometric approaches
towards quantum speed and trajectories. Although our discussion is focused on
the problem of energy storage, our bound can also be applied to any other observable
O, when the main goal is to increase its expectation value ⟨O(t)⟩ as fast as possible.

5.4.1 Speed of evolution in state space and energy eigenspace
We start by introducing a notion of distance between states in Hilbert space. At
this point we deem appropriate to mention that many of the concepts that will
appear in this section appear naturally in the framework of Quantum Speed Limits
(QSL) (for a review, see [284]). However, here we will use them in the form
crafted for the study of energy storage. Let us consider the Bures angular distance
[285], between two quantum states ρ and σ, defined as

DQ(ρ, σ) = arccos
[
F(ρ, σ)

]
, (5.13)

where F(ρ, σ) = tr
(√
√
ρσ
√
ρ
)

is the Uhlmann’s fidelity [286]. Now, for an
evolution of a system ρ(t) → ρ(t + dt), the instantaneous speed in state space is
defined as

v(t) B lim
δt→0

D(ρ(t + δt), ρ(t))
δt

. (5.14)

After a straightforward calculation (see, for example, [284]), it can be rewritten as

v(t) =
1
2

√
IQ(ρ(t)), (5.15)

where IQ(ρ(t)) is the quantum Fisher information (QFI). For any quantum state
ρ(t) =

∑
i pi|i⟩⟨i|, which is undergoing a unitary evolution driven by a Hamiltonian

H(t), the QFI is given by

IQ(ρ(t)) =
∑
i, j

(pi − p j)2

pi + p j
|⟨i|H(t)| j⟩|2. (5.16)

The QFI, in information theory, has the interpretation of an information measure
[287]. In fact, the IQ(ρ(t))dt2 quantifies the distance between states ρ(t) and ρ(t +
dt) that are separated by an infinitesimal time dt and driven by the Hamiltonian
H(t). In the context of quantum metrology, a higher value of QFI indicates a
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potential to result in a higher precision estimation of a parameter. For instance,
IQ(ρ(θ)) = 0 implies that any information about the parameter θ cannot be extracted,
whereas divergent IQ(ρ(θ)) → ∞ means estimation of the parameter θ with
infinite precision. We refer to the Ref. [288] for a review in the context of
Quantum Information and Quantum Optics, respectively.

For the case of pure states, the Bures distance reduces to the Fubini-Study
distance, which is given by

D(ψ, ϕ) B arccos |⟨ϕ|ψ⟩| . (5.17)

Then, the corresponding speed, for the case of a unitary time evolution driven by
a Hamiltonian HC(t), becomes

v(t) =
√
⟨ψ(t)|HC(t)2|ψ(t)⟩ − ⟨ψ(t)|HC(t)|ψ(t)⟩2 C ∆HC(t) . (5.18)

Hence, for pure states, the speed of the system in the Hilbert space is given
by the instantaneous energy variance measured by the charging Hamiltonian HC(t)
that drives the evolution of the system. Note that, in the case of a time-independent
charging Hamiltonian, the energy variance does not change during the entire
evolution. Once we have a notion of speed, the length of the trajectory followed
for a time tF is given by

L[ρ(t), tF] =
∫ tF

0
dt v(t) . (5.19)

When considering the Bures angle as a measure of distance, we are looking at
the physical distinguishability of the system. However, when looking at systems
as quantum batteries, i.e., energy storage devices, we are not interested in how fast
the state changes, but in how fast its energy distribution evolves. In other words,
there are orthogonal states (perfectly distinguishable) that have identical energy
distributions. Thereby, although the system can be moving very fast in the state
space, its change in the energy content can be negligible. From this perspective,
it is useful to introduce a measure of distance between quantum states not based
on their statistical distinguishability, but in their energetic distinguishability (see
Fig. 5.4). To do so, let us write the battery Hamiltonian in its spectral representation

HB =
∑

k

EkPk , (5.20)

where Pk is the projector onto the eigenspace associated to the eigenvalue Ek. The
energy distribution of a state ρ is given by the populations

pk B Tr (Pk ρ) . (5.21)
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H

IE

IQ

Energy eigenspace

H

Figure 5.4: A schematic representation of speed of quantum evolution in Hilbert
space (IQ) and the speed of evolution in the energy eigenspace of the battery
Hamiltonian (IE). Notice that, in general, IQ ⩾ IE.
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The speed in the energy space can then be defined as the relative entropy distance
between the energy distributions in two consecutive moments of time

vE(t) B lim
δt→0

DKL( p⃗(t + δt)∥p⃗(t))1/2

δt
, (5.22)

where DKL( p⃗, q⃗) is the relative entropy or Kullback-Leibler divergence [285] between
two discrete probability distributions p⃗ and q⃗. It is defined by

DKL( p⃗∥q⃗) B
∑

k

pk log
pk

qk
. (5.23)

After a straightforward calculation, one gets

DKL
(
p⃗(t + δt)∥p⃗(t)

)
=

∑
k

ṗ2
k

pk
δt2 + O(δt3) , (5.24)

where the first order contribution vanishes due to
∑

k ṗk = 0. This means that the
right distance to define a speed is the square root of the relative entropy, which
can be written in terms of the Fisher information in the energy eigenspace as

IE(t) := 2vE(t)2 =
∑

k

(
d
dt

log pk(t)
)2

pk(t) . (5.25)

It is interesting to point out that the same conclusion is reached when, instead of
using the Kullback-Leibler distance, one employs the angular distance D(p, q) B
arccos Fcl(p, q), with Fcl(p, q) =

∑
k
√

pkqk being the classical fidelity. As the
quantum fidelity reduces to the classical one in the case where the states are
diagonal in the same eigenbasis, the speed in energy space can be understood
as the speed in the state space of the dephased states in the energy basis

vE(t) = lim
δt→0

D
(
ρ(t + δt), ρ(t)

)
δt

⩽ v(t) , (5.26)

where ρ̄ B
∑

k PkρPk represents the dephased state in the energy eigenbasis.
We refer to the Fig. 5.4 for a schematic representation. The last inequality is a
consequence of the Bures distance being monotonically decreasing under quantum
operations.

Note that both the IQ and the IE of uncorrelated and independent systems
are additive. Thus, for a system composed on N identical subsystems in which
each subsystem goes through the same independent evolution, the speed at which
the system runs along a trajectory scales as

√
N. This scaling for independent

subsystems will be relevant in the later discussion.
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5.4.2 The bound on power
Equipped with this geometric framework, let us introduce the following result.
That is an upper bound on the rate at which any dynamical process can change the
mean value of a given moment of an observable.

Theorem 2. Given an observable O, that is time-independent in the Schrödinger
picture, the following inequality is satisfied(

d
dt
⟨Om⟩

)2

≤ ∆(Om)2IO(t), (5.27)

where ∆(Om)2 is the variance of the m-th moment of the observable that captures
how non-local the evolution process is, and IO(t) is the Fisher information, which
corresponds to the speed of the process in the observable (O) eigenspace.

Proof. We first write the m-th power of the operator O in its spectral decomposition:

Om =
∑

k

Om
k Πk, (5.28)

where Ok are the eigenvalues of O and Πk the projectors onto the corresponding
subspaces. Using this decomposition, we can write the expected value of Om as

⟨Om⟩ =
∑

k

Om
k πk(t), (5.29)

where πk(t) B tr{(ρ(t)Πk)}. Taking the time-derivative of the last equation we get

d
dt
⟨Om⟩ =

∑
k

Om
k π̇k(t) =

∑
k

√
πk(t)

(
Om

k −C(t)
) π̇k(t)
√
πk(t)

, (5.30)

where in the last step we have used
∑

k π̇k(t) = 0. Finally, using the Cauchy-
Schwarz inequality, we get(

d
dt
⟨Om⟩

)2

≤

∑
k

πk(t)
(
Om

k −C(t)
)2

 ∑
l

π̇l(t)2

πl(t)

 . (5.31)

We can now identify the second factor on the right-hand side as the Fisher information
IO, representing the speed of evolution in the observable (O) eigenspace. Furthermore,
as Eq. (5.31) is valid for any C(t), a minimization over C leads to

C = ⟨Om⟩, (5.32)

which leads us to identify the first factor on the right-hand side as ∆(Om)2, and
completes the proof. □
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Corollary 3 (Power). Given a process for charging (or discharging) a battery,
with Hamiltonian HB, its instantaneous power fulfills

P(t)2 ⩽ ∆HB(t)2IE(t), (5.33)

where ∆HB(t)2 is the variance of the battery Hamiltonian that captures how non-
local in energy the charging process is, and IE(t) is the Fisher information, which
corresponds to the speed of the charging process in the energy eigenspace.

The corollary above can be seen as a special case of the Theorem 2, where the
observable is the battery Hamiltonian, O = HB, and m = 1. We can parametrize
the tightness of the bound for power via an angle θP that satisfies

cos θP B
P√
∆H2

BI2
E

. (5.34)

This angle may be used to quantify how efficient a charging process is in terms of
power, if one considers ∆H2

B and IE as resources that can give maximum power
when cos(θP) = 1. Furthermore, in some cases, it could be useful to consider a
time-averaged version of the bound (5.33) to eliminate the time-dependence. One
possibility would be to consider the bound

∆E
∆t
≤

√〈
∆H2

B

〉
∆t
⟨IE⟩∆t , (5.35)

where ∆E is the change in the battery energy during the interval ∆t, and

⟨X⟩∆t B 1/∆t
∫ t0+∆t

t0
X dt. (5.36)

To show that the speed of evolution in energy eigenspace IE is more informative
than the one in Hilbert space when studying power, let us consider that the charging
process is driven by a Hamiltonian evolution given by HC(t). We can derive the
following inequality from Heisenberg’s uncertainty principle:(

d
dt
⟨HB⟩

)2

= | ⟨[HB,HC(t)]⟩ |2 ≤ 4∆H2
B∆HC(t)2, (5.37)

showing that our bound (5.33) is lower than the one obtained using Heisenberg’s
principle, as IE ≤ 4∆H2

C. Note that this improvement is due to the fact that we
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are lowering the factor 4∆H2
C, which is the speed of evolution in Hilbert space by

replacing it with IE that specifically quantifies the speed in energy space.
We also remark that, by using IE instead of ∆H2

C, the quantities appearing
in the bound (5.33) only depend on the battery Hamiltonian HB and the battery
state ρ(t). Thus, the bound is not restricted to the case of Hamiltonian evolution,
but it can be used for any dynamical map. However, one should be careful
with the connection between stored energy and stored work in the presence of
an environment.

5.4.3 Quantum advantage in power
Once again, let us consider a battery that is made up of N identical quantum-
cells, each with a Hamiltonian h j, such that the total battery Hamiltonian reads
HB =

∑N−1
j=0 h j. Now, given two charging processes, how can we meaningfully

state that one of the two has a better performance in terms of power than the other?
In the literature, this comparison is made in reference to the parallel charging
case [267, 268, 269, 270]. For a battery composed of N identical quantum-cells, a
parallel charging process is a unitary evolution driven by a charging Hamiltonian
of the form

H ||C =
N−1∑
j=0

h j
c , (5.38)

where the Hamiltonian h j
c locally drives the charging process of the j-th quantum-

cell in the battery.
Now, to compare with any other unitary charging process, driven by a general

charging Hamiltonian HC, different quantities are chosen and normalized such
that they give rise to the same scaling with the number of cells as in the parallel
case. These normalization procedures impose an extensive scaling (linear in N)
of the norm of the Hamiltonian ∥HC∥, its variance ∆H2

C, or their time-averages in
the case of time-dependent Hamiltonians, equal to the case with H ||C. Under this
constraint, unnormalized and normalized Hamiltonians are related by a rescaling
HC → x(N)HC. The rescaling ensures that the total energy available to drive
the charging process is always the same at order N. In the context of these
normalization criteria, speed-ups in power compared to parallel charging have
been theoretically explored in [267, 268]. In these works, entangled states or
entangling operations are considered to be closely related with such speed ups.

There are two main issues with the aforementioned approach to compare among
batteries. First, the presented normalization criteria may not correspond with the
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real experimental limitations. It could very well be that the experimentalist is
limited by the strength of the local interactions but not by its amount. Hence, a
fair comparison will mainly depend on the experimental capabilities. A solution
to this limitation can be given by our approach, in terms of the bound in (5.33), as
it is derived irrespective of any normalization. There, the bound is given in terms
of IE, which may scale faster than N.

Once the speed of evolution in energy eigenspace has been properly taken
into account, we focus on the second term in the bound (5.33), i.e., the energy
variance ∆(HB)2

ρ, and we analyze it from the geometrical point view. In particular,
this terms encodes the information about how quantumness, such as quantum
entanglement, plays an important role in enhancing the power of the battery.
Below, we study its relation with quantum entanglement, and relate it with the
charging power.

5.4.4 Relation of power with entanglement

Consider a battery that is made up of N identical quantum-cells, with the battery
Hamiltonian HB =

∑N
i=0 hi. The variance of HB for an arbitrary state ρ reads

∆(HB)2
ρ =

∑
i

(
tr
(
h2

i ρ
)
− tr(hiρ)2

)
+

∑
i, j

(
tr
(
hih jρ

)
− tr(hiρ) tr

(
h jρ

))
.

(5.39)

Let us discuss the relation of entanglement with (5.39) for the case of pure
states of the battery. The first sum corresponds to the single-cell energy variance,
which we denote as ∆Loc(HB)2

ρ =
∑

i

(
tr
(
h2

i ρ
)
− tr(hiρ)2

)
. This quantity scales

linearly with the number of cells N and coincides with ∆(HB)2
ρ in the case of

separable states (ρ =
⊗

ρi). As a consequence, the only way for the variance to
scale faster than N is that the battery state is non-separable, and thus entangled.

Indeed, in some cases one can even bound the energy variance ∆(HB)2
ρ with the

multipartite entanglement properties of the battery state [288, 289]. For example,
let us consider linear qubit Hamiltonians, typically used as models of a quantum
battery [267, 269, 270], and that will be studied in Secs. 5.5-5.6, which have the
form

HB =
1
2

N−1∑
j=0

σ j
z , (5.40)
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where σ j
z is the z Pauli matrix corresponding to the j-th site of the qubit chain,

and we have defined the single-cell energy spacing as the unit of energy. To
characterize the multipartite entanglement of this system consisting on N qubits,
one introduces the notion of a k-producible state [290, 291]: a pure state is k-
producible if it is a tensor product of at most k-qubit states, that is

|Ψk−prod⟩ = ⊗
M
l=1|Ψl⟩ , |Ψl⟩ = ⊗ j|ϕ j⟩ , # j ⩽ k , (5.41)

where |ϕ j⟩ is a single qubit state on the site j of the chain. A mixed state is k-
producible if it is a mixture of pure k-producible states

ρk−prod =
∑
α

pα|Ψαk−prod⟩⟨Ψ
α
k−prod| ,

∑
α

pα = 1

 . (5.42)

Based on this classification of states, a state is k-qubit entangled if it is k-producible
but not (k − 1)-producible. For our purposes, a useful inequality for N-qubit k-
producible states is [288, 289]

4∆(HB)2
ρ ⩽ rk2 + (N − rk)2, (5.43)

where r is the integer part of N/k. Any state (pure or mixed) that violates the
bound of Eq. (5.43) thus contains (k + 1)-qubit entanglement. Using the above
inequality, we recast the bound on power and arrive to the Corollary (4).

Corollary 4 (Power and entanglement). Given a process for charging (or discharging)
a quantum battery composed of N-qubits, with a battery Hamiltonian of the form
of Eq. (5.40), if at time t the battery is at most k-qubit entangled, its instantaneous
power fulfills

P(t)2 ⩽ ∆HB(t)2IE(t) ⩽
1
4

[
rk2 + (N − rk)2

]
︸                  ︷︷                  ︸

k-producibility

IE(t)︸︷︷︸
disting. in
energy eig.

, (5.44)

where r is the integer part of N/k. In the cases where r is an exact integer, the
inequality reduces to

P(t)2 ⩽
kN
4

IE(t). (5.45)

Notice that the bound of Eq. (5.44) sets the limitations imposed in Power by
the multipartite entanglement properties of the battery state and its distinguishability
in the energy eigenspace, both for pure and mixed states. Thus, this bound leads to
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a deeper understanding of the relation between entanglement and power in qubit-
based quantum batteries. For instance, the inequality (5.43) is saturated only by a
battery state which is a product of r Greenberger-Horne-Zeilinger (GHZ) states of
k qubits |GHZk⟩, and another set of GHZ states of N − rk qubits |GHZN−rk⟩[289],
with

|GHZk⟩ =
1
√

2

(
|0⟩⊗k + |1⟩⊗k

)
. (5.46)

An example of such a GHZ state was indeed introduced (with k = N) in the
seminal paper [267], introducing the potential entanglement boost in quantum
batteries.

Another important insight is that many-body charging Hamiltonians with a
large participation number and low order of interactions will generically lead to
battery states that strongly differ from the optimal GHZ ones. In that sense, we
would also like to note that it is interesting to compare our bound of Eq. (5.44)
with the ones derived in the work [268], where the relation of the quantum advantage
in Power with the interaction order and participation number has been considered.

5.5 Paradigmatic examples

One example that has become paradigmatic in the field [267, 268, 269] is the
charging of a battery composed of non-interacting cells by a time-independent
Hamiltonian evolution. Once again, let us consider the battery Hamiltonian of
N two-level systems with the Hamiltonian HB =

1
2

∑N−1
j=0 σ

j
z, which has the same

form as Eq. (5.40). Initially, at t = 0, the battery is in its ground state |ψ0⟩ = |0⟩⊗N .
Notice that the ground state has a negative energy and, as we are interested in the
energy difference, hereafter we will define the stored energy at a given time as

E(t) := Tr(|ψ(t)⟩⟨ψ(t)|HB) − Tr(|ψ0⟩⟨ψ0|HB). (5.47)

As the initial state is a pure state, which has zero entropy, one trivially gets that
the capacity is given by CS=0 = N. In order to charge the battery, one can use
different charging Hamiltonians HC. In particular, illustrative examples are the
cases of a parallel, global and hybrid Hamiltonians, represented by H ||C, H#

C, and
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Hh
C, respectively. These Hamiltonians are given by

H ||C = λ
N−1∑
j=0

σ j
x,

H#
C = λ ⊗

N−1
j=0 σ j

x,

Hh
C = λ

q−1∑
j=0

⊗r
i=1σ

q j+i
x ,

(5.48)

where σ j
x is the x Pauli matrix acting on the jth cell, and in the hybrid case N = qr.

Regarding time-units, here λ represents a charging frequency, where we use the
convention ℏ = 1. The main features of these three charging processes are outlined
in the Table 5.1 below.
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Parallel Global Hybrid

HC λ
∑

j σ
j
x λ ⊗ j σ

j
x λ

∑q−1
j=0 ⊗

r
i=1σ

q j+i
x

∥HC∥ Nλ λ qλ

λtF π/2 π/2 π/2

∆H2
C Nλ2 λ2 qλ2

IE 4Nλ2 4λ2 4qλ2

E(t) N p N p N p

∆HB(t)2 N p(1 − p) N2 p(1 − p) Nrp(1 − p)

k-qubit ent. 1 N r

∆EntHB(t)2 0 N p(N − 1)(1 − p) N p(r − 1)(1 − p)

P(t)
√
∆2HBIE

√
∆2HBIE

√
∆2HBIE

*p = sin2(λt).
**Note, at t0 and t f the state of the system is always a product state regardless of the form of HC .

Table 5.1: Comparison between three different charging Hamiltonians of a battery
composed of N qubit cells: the parallel charging, the fully interactive global
Hamiltonian (optimal) and an hybrid construction where m blocks of q qubits
are in parallel charged in a fully interactive way.

It is easy to see that all these Hamiltonians evolve the initial ground-state state
to the highest energy state |1⟩⊗N . Therefore, the stored energy coincides with the
capacity at time λt f = π/2, as per Observation 1. Power is the same for all the
cases, and the bound (5.33) is always saturated. Furthermore, for these cases, the
evolution speed in state space and energy eigenspace coincide, as IE = 4∆H2

C (see
Table 5.1). Without any normalization constraints, IE scales linearly with N in
the parallel case, as there are many energy levels involved in the evolution. The
situation is drastically different in the global case, where only the groundstate and
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maximally excited energy levels participate, leading to an N-independent scaling
of IE. The hybrid case presents an intermediate behaviour.

The quantum enhancement in power in these paradigmatic examples was understood
[267, 268] with the help of certain normalization criteria, as explained in Sec. 5.4.3.
The approach in [268], for instance, imposes a linear scaling of ∆H2

C with N, and
one should perform the normalization H#

C →
√

NH#
C. With this criterion, the

global charging is
√

N times faster than the parallel one. On the other hand,
under the constraint of ∥HC∥ scaling as N, imposed in [267], one should perform
the normalization H#

C → NH#
C. Within such norm rescaling, the global charging

performs N times faster than the parallel one.
Instead, the approach presented in the previous sections allows us to discuss

the role of the entanglement between the cells in the power of these models,
without the need of relying to a normalization constrain, and in a quantitative
manner. It is easy to see that the global (r-hyrbid) Hamiltonians leads to a battery
state that will have N(r)-qubit entanglement:

|Ψ⟩global =
√

1 − p|0⟩⊗N +
√

p|1⟩⊗N ,

|Ψ⟩hybrid = ⊗
q−1
j=0 |Ψ(t)⟩ j,

|Ψ⟩ j =
√

1 − p ⊗r
i=1 |0⟩q j+i +

√
p ⊗r

i=1 |1⟩q j+i.

(5.49)

Notice (compare rows 7 ad 8 of Table 5.1) that this amount of k-qubit entanglement
impacts the super-linear scaling factor of ∆2HB, and thus also the one of power.
In the middle of the evolution, for t = π/4 the states are exactly in the GHZ form,
and the bound of Eq. (5.44) is saturated.

5.6 Specific spin models
In this section, we study our previously derived bounds in specific spin- 1

2 models,
effectively described in terms of qubits. The models, that can in principle be
realized experimentally (see, for instance, [?]), are i) integrable spin models in
1D with ultracold fermionic atoms, ii) the Lipkin-Meshkov-Glick (LMG) model
with ultracold atoms or atoms near nanostructures, iii) Dicke model with ultracold
ions, BEC in an optical cavity, or cavity circuit QED. While it is true that some
of these spin models have already been presented in the literature [267, 269,
270] as candidates for an experimentally realizable quantum battery, we use our
formalism to systematically analyze them. More specifically, for each model we
discuss the impact of both the evolution speed, quantified by IE, and the smartness
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Figure 5.5: Dynamics of energy levels pk, according to their definition (5.21),
during a parallel (a) and a global (b) charging process. Here one can see the
contribution of each energy level (y-axis) to the total energy, as a function of time.
One can see absolute non-locality in energy space for the global case, where there
is a coexistence in time of the highest and lowest energy level, and locality of the
parallel one, where at a given time only levels that are close contribute to the total
energy.

of the path undergone in the power of the battery, related to ∆H2
B and k-qubit(spin)

entanglement, hence clarifying the origin of possible speed-ups. Furthermore, we
also study the amount and quality of stored energy in the final battery state.

In all the cases we consider that the quantum battery is a chain of N spin- 1
2

cells. We work in the local basis of Pauli matrices for each spin, i.e., any local
operator acting on j-th spin can be expressed in terms of {σ j

x, σ
j
y, σ

j
z, I}, and define

our battery Hamiltonian as

HB =
1
2

N−1∑
j=0

σ j
z. (5.50)

We consider that the spin system is initially in the ground state of the battery
Hamiltonian HB. We now look at different charging models.



116 CHAPTER 5. QUANTUM BATTERIES AS QUANTUM SIMULATORS

5.6.1 Integrable spin models
Here we consider a general class of charging Hamiltonians in 1D of the form

HJW = HB +
1
2

N−1∑
j=0

m=1

[
(λm + γm)σ j

x(⊗
j+m−1
l= j+1 σ

l
z)σ

j+m
x +

+ (λm − γm)σ j
y(⊗

j+m−1
l= j+1 σ

l
z)σ

j+m
y

]
,

(5.51)

that can be diagonalized exploiting the Jordan-Wigner (JW) transformation. Above,
we have implicitly assumed translational invariance and periodic boundary conditions.
The above family of Hamiltonians includes the 1D transverse field Ising model
and XY model with a transverse field if we limit the interaction range to nearest-
neighbors only. The dynamics of these spin systems, parametrized by (λm, γm),
can be easily solved (for a detailed explanation, see Supplemental Information) by
a mapping through the aforementioned JW transformation to a fermionic chain,
followed by a Fourier transformation of the fermionic operators exploiting the
translational invariance, and a final Bogoliubov transformation of the Fourier
transformed fermionic operators.

What is important in our discussion of these systems, acting as quantum batteries,
is that in the fermionic picture they present a local structure in momentum space
due to their translational invariance. This means that the Hilbert space structure
of the problem can be expressed as

H =
⊗
Hk,−k, (5.52)

where k labels the quasi-momentum, and thus these models are very similar to an
hybrid model with r = 2 (see Table 5.1), which is close to the parallel case, as
there is only 2-particle entanglement between (k,−k) modes. We see this fact in
that we are able to write all the relevant dynamical quantities (see App. 5.7) as a
sum of independent contributions from each (k,−k) subspace. For instance,

E(t) =
∑

k∈#BZ

εk(t),

P(t) =
∑

k∈#BZ

ε̇k(t),

∆HB(t)2 =
∑

k∈#BZ

εk(t)(2 − εk(t)),

∆H2
JW =

∑
k∈#BZ

sin2(θk)ω2
k ,

(5.53)
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Figure 5.6: Dynamics of the stored energy for different spin integrable models
described by the Hamiltonian Eq. (5.60). The legend indicates to which model
corresponds each line. We have studied the XY (XX) model that correspond to
λm = 0 (λm = γm). For each of these models we have studied the nearest-neighbors
(NN) case, where γ1 = 1 and γm,1 = 0, and also the power law (pow) case, where
γm = m−2. We have fixed the system size to N = 20 spins and normalized the
stored energy (Y-axis) accordingly, such that it is bounded to 1. We observe that
for all the models the maximum stored energy is about 50% of the total due to the
desynchronization between the different modes that contribute to this quantity.

where εk, θk, and ωk depend on the parameters of the model and #BZ refers to the
reduced Brillouin zone of the fermionic chain (see the Supplemental Information).
Notice that, as the size of the reduced Brillouin zone is proportional to N, the
quantities appearing in Eqs. (5.70) have a natural linear scaling with N.

Comparing the parallel and hybrid rows of Table 5.1, we observe that these
integrables models can present a quantum advantage by at most a factor of 2,
under the criteria that the speed factor IE is kept at a constant value. This result is
in agreement with the result of [268], where it was shown that, for a fixed ∆H2

JW ,
the maximum quantum advantage is given by the order of interaction of HJW .

The only collective effect we are left with is the synchronization between
independent modes (2-producible states of (k,−k) particles). This phenomenon
has a direct consequence: it limits the capacity and quality of stored energy,
as in general the set of energies εk(t) will not be maximized simultaneously.
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Figure 5.7: Over the grey dashed line, we plot the value of cos θP B

P/
√
⟨∆H2

B⟩∆t⟨IE⟩∆t as a function of the number of spins N for the models presented
in Fig. 5.6. We observe a fast saturation to an approximate 0.8 value. Below the
grey dashed line, we plot the same quantity but substituting ⟨IE⟩∆t → 4∆2HJW ,
and it saturates to an approximate 0.6 value. This shows how lower is our bound
obtained using the Fisher information in energy eigenspace instead of the speed
in Hilbert space for these particular models.
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This feature is discussed in Fig. 5.6 for particular choices of (λm, γm). It is also
important to notice that, in general, the system will not be in an energy eigenstate
when it reaches maximum capacity. However, the energy uncertainty associated
with the final state will be negligible in the thermodynamical limit, as∆HB(t f )/E(t f ) ∼
1/
√

N.
Moreover, one can compute the Fisher information in energy eigenspace for

these models (see App. 5.8) to see how tight our bound is for different choices of
parameters and as a function of N, a result which is shown in Fig. 5.7.

5.6.2 Lipkin-Meshkov-Glick model
Another class of charging Hamiltonians that we consider is based on the LMG
model [292], which allows for two-body spin interactions with an infinite range.
Namely, the charging Hamiltonian is given by

HLMG =
λ

N

∑
i< j

(σi
xσ

j
x + γσ

i
yσ

j
y) +

1
2

N−1∑
j=0

σ j
z, (5.54)

where λ is the coupling strength, γ the anisotropy parameter, and the factor 1
N is

included in the model in order to have a finite interaction energy per spin in the
thermodynamic limit. For the infinite range Ising model (γ = 0), HLMG is analog
to the so-called twist-and-turn Hamiltonian [293]. There λ mimics the twisting
parameter, and the linear term coming from HB is a rotation around the z-axis.
Using the components of the total spin operator J B (Jx, Jy, Jz), with

Jα =
N−1∑
j=0

σ
j
α

2
, (α = x, y, z), (5.55)

the LMG Hamiltonian of Eq. (5.54) can be rewritten as

HLMG =
λ

2N

[
(1 + γ)

(
J+J− + J−J+ − N

)
+ (1 − γ)

(
J2
+ + J2

−

)]
+ Jz, (5.56)

where we have introduced the ladder operators J+ and J−, that are related to
the total spin operators by Jx=

1
2 (J++J−), and Jy=

1
2i (J+-J−). Notice that, in the

total spin notation, the battery Hamiltonian reads HB = Jz. Note also that J
is a constant of motion, i.e., [J,HLMG] = 0, and that the initial state lies in the
maximum spin sector. These properties effectively reduce the size of the Hilbert
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Figure 5.8: Dynamics of the energy levels during the charging process based on
the LMG model for λ = 5. Due to the structure of HLMG, only every second energy
level starting from the initial state is occupied during the evolution.

space of the problem, that scales only linearly with N, instead of the exponential
2N scaling of the total Hilbert space described by local Pauli matrices.

Let us first discuss some general properties of the Hamiltonian (5.56) that
mainly affect the capacity properties of the LMG model. First, note that deposition
of energy into the battery only occurs if γ , 1, and the maximum capacity is
achieved for γ = −1 (see Fig. 5.10c-d). This comes from the fact that the mixed
terms in the Hamiltonian (i.e. J+J− and J−J+) are diagonal operators in the energy
eigenbasis, and hence they only contribute to the free evolution and not to the
charging process.

Second, there are two regimes depending on the value of the parameter λ. The
strong coupling regime is defined by λ ≥ 1, whereas in the weak coupling regime
λ < 1. In the latter, the LMG model leads to very poor charging properties, as the
maximum stored energy tends to zero in the thermodynamic limit. This is due to
the fact that the ground state of the battery Hamiltonian HB (i.e., the initial state)
is also an eigenstate of HLMG, when N → ∞ [294]. Therefore, for our discussion,
we will focus on the strong coupling regime.
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In studying power for LMG model, a first quantity of interest is the variance
of the charging Hamiltonian

∆H2
LMG =

λ2

2
(1 − γ)2 + O

( 1
N

)
. (5.57)

We see that these variance does not scale with N, implying that IE cannot scale
with N either, as IE ≤ 4∆H2

LMG. Hence, our bound (5.33) tells us that any scaling
of the power with N can only be associated with ∆H2

B. Note, the correlations
are expected to be enhanced in this model due to the long-range nature of the
interactions between spins, and also because it does not have any “hidden” local
structure in energy, unlike the previous case of integrable spin models. Nevertheless,
they are bounded to scale as N2 at most (see Sec. 5.4.4). As a consequence, power
can scale at maximum linearly with N for the LMG charging Hamiltonian, and no
N-dependent speed-up is possible.

To make a quantitative analysis of the scaling of such correlations with the
number of spins N, and also study the tightness of our bound on power, we have
solved its dynamics for two values of the coupling strength in the strong coupling
regime (λ = 5, 20), and a fixed value of γ = −1.

First, we would like to draw attention to Fig. 5.8, where one can visualize
the evolution of the LMG battery in the eigenspace of HB. If one compares this
evolution with the ones of the paradigmatic cases (see Fig. 5.5), one observes that
the LMG battery has some common properties with the global charging case, as
there appears entanglement between the states that are far away in energy during
evolution. This enhances the battery variance ∆H2

B, as explained below. However,
in the LMG battery, there are many energy levels involved in the charging process,
contrary to what happened in the global charging case, where only the lowest and
highest energy states participate.

In Fig. 5.9b, one can see the enhancement of the time-averaged energy variance
∆H2

B in the LMG battery. Even though this variance does not saturate the bound
of N2-scaling, it definitely scales super-extensively, as ∼ N1.8. As per Eq. (5.43),
this scaling means that the battery is in a highly k-qubit entangled state during the
charging process. In Fig. 5.9c one observes that the Fisher information IE does not
vary with the system size, a result that is in agreement with the analytical formula
of Eq. (5.57). Finally, we note that, for the LMG battery in the strong coupling
regime, the bound (5.33) is tight at order N (see Fig. 5.9d), and power scales
approximately linearly with N (see Fig. 5.9a), inheriting the scaling of ∆HB. We
also remark that increasing the driving parameter λ decreases the tightness of the
bound.
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Figure 5.9: The figures consider time-averaged quantities of the LMG model,
which are relevant in the study of power, as a function of the number of spins N.
The final time has been chosen as the one for which the capacity is maximized.
Blue color is used for λ = 20, whereas red color is used for λ = 5. Quantities that
carry units of time (i.e., power and Fisher information) have been renormalized
with the coupling strength λ. The legends indicate the scaling with N of the
different curves.
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Figure 5.10: Capacity properties of the LMG battery. In figure (a) and (b) one
can see the expected scaling of the capacity and the final relative energy variance
as a function of the system size. The blue color is used for λ = 20, whereas red
color is used for λ = 5, and the legends indicate the scaling law. In (c) we plot the
dependence with the anisotropy parameter γ of both the capacity and power. For
this plot, we used a system of 50 spins and set λ = 5.

At this point, it is interesting to compare the conclusions obtained for the LMG
model within the scope of the bound (5.33) and the analysis on speed-ups under
certain normalization criteria. In [268], it was predicted that, under a fixed linear
scaling with N of ∆H2

C, power could scale super-extensively in batteries with a
large participation number, e.g. the present LMG model. In Sec. 5.4.3, we showed
that if one imposes a linear scaling with N of the Fisher information IE (and thus
of ∆H2

C), speed ups in power are directly related to the enhancement of the battery
variance ∆H2

B. We have seen that, in the LMG battery, such variance is indeed
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highly enhanced and it translates into power, as the bound (5.33) is tight for this
model. However, this enhancement in power does not come from the speed of
evolution, as the Fisher information IE remain invariant with the system size. Thus
the normalization criterion under which such enhancement in power was predicted
does not apply.

Hence, the example of the LMG model shows the importance of both ∆H2
B and

IE, and it stresses the two-fold origin of quantum advantage in power.
To conclude with the LMG model, let us now briefly discuss the energy capacity

and its variance, quantitatively. In Fig. 5.10a, we see that in the strong coupling
regime the energy stored scales linearly with the number of cells N, as expected.
However, in Fig. 5.10b we see that there is no decay of the relative variance of the
final stored energy in the large N limit. This presents an important problem for a
deterministic extraction of the stored energy, and it means that the super extensive
energy variance ∆H2

B that build-up during the charging process to enhance power,
does not disappear in the final state.

5.6.3 Dicke model
A quantum battery can also be constructed by placing an array of spins inside
an optical cavity [295]. This particular model has been studied in [269], where
a collection of N spins interact with a cavity field mode. In this section, we
reconsider this battery model and study it in the light of our bounds presented
before. The paradigm assumed here is qualitatively different from the previous
ones, as the system that provides the energy to the battery (i.e., the charging agent)
is explicitly considered. The battery Hamiltonian is still given by HB = Jz. The
charging Hamiltonian includes the free evolution of both the spins and the cavity
and a linear interaction between them. It reads

HDK = Jz + â†â +
2λ
√

N
Jx(â† + â), (5.58)

where â†(â) are the usual creation (annihilation) operators of cavity photons, satisfying
[â, â†] = I, and the macro-spin notation is adopted as previously. In contrast to the
convention used in [269], here we include the factor 1

√
N

in the coupling in order
to have a well defined thermodynamical limit 1, for N → ∞. We consider that in

1The thermodynamical limit is considered on the cavity-spin system as a whole. This implies
that if one adds spins the cavity length L should also increase to allocate them, keeping the density
N/L constant, or in other words N ∝ L. On the other hand, the coupling term in the Hamiltonian
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Figure 5.11: Dynamics of the energy levels pk during the charging process based
on Dicke model for λ=0.01 (a) and λ=0.5 (b). In (a) we see that for the weak
coupling regime the behavior is similar to the parallel charging case. On the other
hand, (b) shows an intermediate behavior between parallel and global charging.

the initial state the spins (i.e., the battery) are in the ground state of HB, and the
cavity is in the eigenstate of the photon number that contains N photons.

(5.58) has its origin in the electric-dipole interaction
∑

E j · d j, where d j is the dipole of each
spin, and E j the electric field at the spin position. Of course, the individual dipole operators d j

do not carry any scaling with N, and they are simply proportional to σ
j
x, but the electric field

quantized inside a cavity of length L carries a normalization factor 1/
√

L. Thus, L and N need to
be proportional.
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Figure 5.12: The figures consider time-averaged quantities of the Dicke model,
which are relevant in the study of power, as a function of the number of spins N
inside the cavity. The final time has been chosen as the one for which the capacity
is maximized. The blue color (circles) is used for the weak coupling regime (λ =
0.01), whereas the red color (squares) is used for the strong coupling regime (λ =
0.5). Quantities that carry units of time (i.e., power and Fisher information) have
been renormalized with the coupling strength λ. The legends indicate the scaling
with N of the different curves.

A first observation is that one can analytically compute

∆H2
DK = 2λ2(2N + 1) , (5.59)

and therefore one sees that IE is bounded to scale linearly with N (parallel case
scaling) at most. One is then left with ∆H2

B as the only quantity appearing in
our bound (5.33) that could scale super-extensively in order to enhance the power
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scaling. Notice that this is only possible if a normalized coupling λ/
√

N is introduced.
The non-normalized case, considered in [269], can be experimentally engineered
[296] if one considers that N ranges from 1 to some large but finite value. In
such scenario, we have ∆H̃2

DK = 2Nλ2(2N + 1). Then, the power can scale super-
extensively without the need of a super-extensive scaling in of ∆H2

B, i.e., the spins
do not need to explore highly correlated subspaces. In order to be able to make
stronger statements about this system, we have numerically solved the dynamics
for λ = 0.01 (λ = 0.5), which are representative examples of the weak (strong)
coupling regime of the Dicke model. The qualitative difference between these two
regimes can be pictorially seen in Fig. 5.11, where we see that the dynamics of
energy levels are very local (and thus similar to the parallel charging case) in the
weak coupling regime, whereas in the strong coupling regime they exhibit highly
non-local properties, with levels well separated in energy get entangled during
evolution.

Let us now turn to the quantitative discussion of these two regimes. A first
result (see Fig. 5.12c) is that, when including the normalization 1

√
N

in the coupling,
the super-extensive behavior of power presented in [269] disappears, and linear
scaling in N (as in the parallel case) is approximately recovered, both in the
weak and the strong coupling regime. In contrast, when analyzed in terms of
the quantities appearing in our bound, the strong coupling regime shows relevant
differences with respect to a parallel charging scenario.

In Fig. 5.12b, we see that both in the weak and strong coupling regime the
time-averaged Fisher information IE scales approximately linearly with N, in
agreement with the linear bound set by ∆H2

DK . The differences appear when
looking at the time averaged ∆H2

B (see Fig. 5.12a). While in the weak coupling
regime it scales linearly with N, in the strong coupling regime this quantity is
enhanced and close to the N2 scaling. This super-linear scaling is clearly associated
to the large value of the coupling λ, that allows for cavity-mediated interactions
between the spins, that explore highly-correlated subspaces. In fact, as Eq. 5.43 is
also valid for mixed states, this super-linear scaling means that the spins (i.e., the
battery) are in a mixture of k-qubit entangled pure states, with k ≫ 1.

Nevertheless, the enhancement of ∆H2
B in the strong coupling regime is not

reflected in the scaling of power, as one can see in Fig. 5.12d that the bound

(5.33) is far from being saturated in this regime, i.e., ⟨P⟩∆t ≪

√
⟨∆H2

B⟩∆t⟨IE⟩∆t,
leading to power scaling only linearly with N. Remarkably, our bound is tight at
order N in the weak coupling regime.

Let us finally discuss the Dicke model in terms of storage. We observe in
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Figure 5.13: The figures show the relevant quantities for the capacity of the Dicke
model evaluated at the final time t f , as a function of the number of spins N inside
the cavity. Blue color (circles) is used for the weak coupling regime (λ = 0.01),
whereas red color (squares) is used for the strong coupling regime (λ = 0.5). In
(c) we plot the entanglement entropy S B B −Tr

(
ρB log ρB

)
of the battery reduced

density matrix, defined as ρB = Trc(ρ), where the trace is performed over the
cavity degree of freedom. We normalize this quantity by its maximum value
S B

max = log2(N + 1).

Fig. 5.13 that, while in the weak coupling regime the capacity properties are
similar than those of a parallel charging, in the strong coupling regime there is
a worsening in the quality of the stored energy. This is because the super-extensive
energy variance generated during the charging process does not disappear completely
in the final state (see Fig. 5.13b), as they decay much slower than 1/

√
N. In

Fig. 5.13c we also show the significant presence of entanglement between the
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final state of the battery and the source (i.e., the cavity) in this strong coupling
regime.

5.7 Solution to the dynamics of the integrable spin
models

Here we recast the Hamiltonian

HJW = HB +
1
2

N−1∑
j=0

m=1

[
(λm + γm)σ j

x(⊗
j+m−1
l= j+1 σ

l
z)σ

j+m
x +

+ (λm − γm)σ j
y(⊗

j+m−1
l= j+1 σ

l
z)σ

j+m
y

]
,

(5.60)

To diagonalize it we start by mapping it, trough the JW transformation, to a
fermionic chain with the battery and charging Hamiltonians in quadratic forms,
i.e.,

HB =
∑

j

f †j f j,

HJW = HB +

N−1∑
j=0

m=1

[
λm( f j f †j+m − f †j f j+m)+

+ γm( f j f j+m − f †j f †j+m)
]
,

(5.61)

where f j ( f †j ) are the annihilation (creation) fermionic operation at the j-th site
of the chain, and we have dropped an irrelevant constant from HB. Notice that
in the fermionic picture the battery Hamiltonian is the particle number operator,
and therefore a charging process occurs trough the creation of particles driven by
HJW , from the initial vacuum state. It is useful to perform a Fourier transformation
of the fermionic operators to bring the battery and charging Hamiltonian into the
following form:

HB =
∑

k∈#BZ

( f †k fk + f †
−k f−k),

HJW =
∑

k∈#BZ

Ψ
†

k MkΨk,
(5.62)
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with the definitions

Ψk = ( fk, f †
−k)

T ,

fk =
1
√

N

∑
j

e−ik j f j,
(5.63)

Notice that #BZ stands for the reduced Brillouin zone, that is, the subset of
positive k’s from the set k = −π + 2π

n m, with m ∈ [0,N − 1]. Mk is a 2 × 2 matrix,
which form depends on the parameters of the model and reads

Mk = ωk

(
cos θk sin θke−iπ/2

sin θkeiπ/2 − cos θk

)
(5.64)

where θk and ωk are defined as

ωk = 2

√√√1
2
−

∑
m

λm cos (km)

2

+

∑
m

γm sin (km)

2

,

sin θk =
2
∑

m γm sin (km)
ωk

.

(5.65)

The dynamics can now be solved by performing a simple Bogoliubov transformation.
To do so, we define the Bogoliubov fermionic modes as Φk = UkΨk, where Uk is
a 2 × 2 unitary matrix. The matrix Uk is chosen such that the Hamiltonian HJW

in Eqs. (5.62) becomes diagonal, when rewritten in terms of the newly defined
Φk operators (i.e., the matrix UkMkU

†

k is a diagonal matrix for all k). This matrix
reads

Uk =

(
e−iπ/4 cos(θk/2) e−iπ/4 sin(θk/2)
−e+iπ/4 sin(θk/2) e+iπ/4 cos(θk/2)

)
, (5.66)

and the charging hamiltonian takes the form

HJW =
∑

k∈#BZ

ωkΦ
†

k

(
1 0
0 −1

)
Φk. (5.67)

From the last expression, it is easy to see that, in the Heisenberg picture, the
dynamics generated by HJW will lead to
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Φk(t) =
(
e−iωk 0

0 e+iωk

)
Φk(0). (5.68)

Finally, one can then transform back to the Fourier transformed fermionic
modes,

Ψk(t) = U†kΦk(t), (5.69)

and compute all the relevant dynamical quantities of the problem.

E(t) =
∑

k∈#BZ

εk(t),

P(t) =
∑

k∈#BZ

ε̇k(t),

∆HB(t)2 =
∑

k∈#BZ

εk(t)(2 − εk(t)),

∆H2
JW =

∑
k∈#BZ

sin2(θk)ω2
k ,

(5.70)

where εk(t) = 2 sin2 θk sin2 ωkt.

5.8 Fisher information of integrable spin models
We want to compute the Fisher information for the Hamiltonians of integrable spin
models, considered in Eq. (5.60). To do so, we first notice that in the fermionic
picture the coefficient pl(t) that appears in the definition of the Fisher information
is the probability of having l particles at a time t. We also notice that pl(t) will only
have a non-zero value for even l, as particles need to be created in pairs (k,−k) to
conserve momentum. Finally, the local structure of the problem in k-space allows
us to compute separately for every (k,−k) subspace the probability of being in the
vacuum state or in the pair state at a given instant of time. It is easy to see that

pk,−k(t) =
εk(t)

2
. (5.71)

To compute the Fisher information we use these local probabilities to determine
the probability that the hole state contains l particles:

pl(t) =
∑
{σ}l

p(σ1) . . . p(σN) (5.72)
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where the sum runs over the configurations {σ}l, which are binary strings, each bit
representing the state of a (k,−k) subspace, with 0’s (1’s) representing the vacuum
(pair) state. These configurations are constrained to contain l/2 pairs (1’s) and

p(σk) =

εk/2 if σk = 1,
1 − εk/2 if σk = 0.

(5.73)

And the time derivative of the above probability reads

ṗl(t) =
∑
{σ}l

∑
σk

ε̇k

2
(−1)1+σk

∏
σ j,k

p(σ j). (5.74)

5.9 Conclusions
For a quantum battery, in which the cells are quantum in nature and the process
of charging and discharging could introduce quantum correlation among them, a
natural question is how to harness the quantum advantages such that it outperforms
a classical battery. The aim of this chapter is to find physically meaningful quantities,
in relation to the quantum nature of cells and processes, and bounds to characterize
a quantum battery. The important properties of a battery are: capacity, i.e., the
amount of energy it can store and deliver; power, that signifies how fast a battery
can be charged or discharged; and variance in the stored energy, which determines
the quality of the stored energy and to which extent it can be deterministically
accessed. For a battery composed of many non-interacting identical quantum-
cells, the capacity is additive and it is independent of the correlations present in
the battery state. While in the case of power, which may not be additive, we expect
to see roles of inter-cell correlations leading to certain quantum advantages.

We have derived the capacity, that is, a fundamental bound for the storage of a
quantum battery, with the help of the energy-entropy diagram. For a battery with
a finite number of quantum-cells and a general unitary charging and discharging
process, the capacity often does not saturate. However, in the thermodynamic
limit (i.e., with a considerably large number of quantum-cells) the capacity is
saturated.

While studying the power of a quantum battery, we have considered the evolution
of quantum states when it is projected in the eigenspace of the battery Hamiltonian.
Such an approach led us to derive a lower bound on power in terms of two
battery dependent quantities. One of these quantities is the Fisher information
calculated after the battery state is projected in the eigenspace of the battery
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Hamiltonian, and the other one is the energy variance of the battery. While both
these quantities are influenced by the appearance of entanglement like correlations
during charging (discharging) processes, the former signifies how fast the process
takes place in the energy eigenspace and latter encodes how smart (in terms of path
length) the trajectory of evolution is. This approach enables us to characterize
quantum advantages arising from two different sources. Moreover, for the case
of qubit-based quantum batteries, we have presented an inequality that shows
the maximum charging power that a battery can exhibit when it has at most k-
qubit entanglement, thus establishing a novel interrelation between entanglement
and power. The fact that the k-producibility is related with the violation of Bell
inequalities [297, 298] could also lead to further studies, in which the relation of
power with non-locality [299] is explored.

In the light of the newly introduced bounds, we have considered several spin
models of quantum batteries. A first set of paradigmatic models has served us
to illustrate how the saturation of the presented bounds can be achieved, and
the typical scalings with the number of cells (that is, the spins) of the relevant
quantities. We have also studied a few physically realizable models. While
exhibiting a reasonably good behaviour in terms of capacity, they are not able
to show a super-linear scaling in power. In the case of integrable spin models,
despite their interacting nature, the hidden local structure in momentum space
makes them very similar to a battery in which the cells are charged independently.
For the LMG model, we have shown that quantum entanglement enhances the
charging power, but the reduced speed of evolution IE leads to the same overall
scaling as in the case where the cells are charged independently. Finally, we have
also studied the Dicke model in two regimes. In the weak coupling regime, the
model is similar to the parallel case, while in the strong coupling regime there is a
large generation of entanglement between the spins. However, our bound is poorly
staurated in this latter regime, and entanglement does not contribute in enhancing
the power. That is why it exhibits the same scaling as in the parallel case.

As a final remark, we believe that our approach and results towards characterizing
quantum batteries, in terms of bounds on storage and power, and correct identification
of the origins of quantum advantages, will find important applications in its theoretical
and technological aspects.



134 CHAPTER 5. QUANTUM BATTERIES AS QUANTUM SIMULATORS



Chapter 6

Correlated phases in solid state
quantum simulators

Until now we have discussed systems of fermions (Chapters 1-3) and spins (Chapter
4). The author of this thesis would like to present as well his little contribution
to the field of bosonic correlated systems. Thanks to collaboration with world-
leading experimental group of C. Lagoin and F. Dubin it was possible for the
author of this thesis to build a theoretical model with clear experimental realization
and parameters. In this chapter we briefly discuss the Extended Hubbard model,
dipolar excitons as quantum simulation platform and finally experimental and
theoretical techniques that, merged, allowed us to detect the strongly correlated
phases in solid state 2D lattice. Theoretical framework was created depending
on the provided set of experimental parameters, which we provide below. Next,
two types of calculations were conducted: Exact diagonalization - which was
calculated by the author of this thesis and mean-field calculations calculated by
Utso Bhattacharya. In this chapter we provide both approaches to provide a
complete picture, but we would like to emphasize that the contribution of Tymoteusz
Salamon in this multidisciplinary and international collaboration was only ED
calculations and manuscript coauthoring.

6.1 Extended Bose-Hubbard model

The Bose-Hubbard model represents a significant achievement in quantum mechanics
and has paved the way for numerous advancements in the study of ultra-cold
quantum gases. It’s a theoretical model used to describe interacting systems of

135
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Figure 6.1: Phase diagram of Bose Hubbard model taken from [300]. It comprises
two primary phases - the Mott insulator (MI) phase and the superfluid (SF) phase.
In the MI phase, characterized by integer particle occupancy and a gap to particle
excitations, particles are localized due to strong repulsive interactions. As the
tunneling rate increases or the interaction strength decreases, a quantum phase
transition occurs leading to the SF phase, where atoms can move freely across the
lattice due to dominant tunneling effects.
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bosonic atoms in optical lattices, and it has demonstrated profound influence in
condensed matter physics, quantum optics, and quantum information science.

The model is named after Satyendra Nath Bose and John Hubbard enabling
one to immediately distinguish it from original (Fermi-)Hubbard model studied
in 1960s by Gersch and Knollman. BH model was studied first by Fisher Fisher
Weichman in 1989 in the context of 4He, and 1998 Jaksch et al. proposed the cold
atom BH simulator which made it possible to realize and probe the theoretical
predictions. In 2002, researchers from the Max Planck Institute of Quantum
Optics used an optical lattice to achieve a controlled transition from a superfluid
to a Mott insulator, thereby confirming the Bose-Hubbard model’s predictions
[301]. Mathematically, the Bose-Hubbard model in its simplest scenario has a
form analogical to its fermionic version presented in eq. (4.1), naturally, now with
bosonic operators obeying bosonic commutation relations and is given by:

HB−H = −t(
∑
⟨i, j⟩,

b†i b j + H.c) + U
∑

i

ni(ni − 1) (6.1)

The significance of the Bose-Hubbard model extends beyond just proving a theoretical
concept. It is a cornerstone of many-body physics and quantum simulations,
where researchers use controlled quantum systems to gain insights into the behavior
of more complex, uncontrolled systems. The Bose-Hubbard model provides a
simplified but non-trivial framework that allows us to understand the behavior of
many-particle quantum systems. The primary achievement of the Bose-Hubbard
model is its ability to capture the physics of a phase transition between a superfluid
and a Mott insulator in a system of interacting bosonic particles in a periodic
potential, as shown in Fig. 6.1. Superfluidity is a phase of matter where matter
has
√

N particle number fluctuations and long-range phase coherence. A Mott
insulator, on the other hand, is a material that should conduct electricity according
to conventional band theory but behaves as an insulator due to strong interactions
among its particles, Moreover, MI has no/little particle number fluctuations.

Better understanding of the phase diagram of the Bose-Hubbard model has redirected
much of scientific effort towards longer-range interacting model, known as Extended
Bose-Hubbard (EBH) model. EBH Hamiltonian is governed by three core physical
parameters. Two of them are standard BH terms: the intensity of on-site interactions
denoted as U and the tunneling strength indicated as t. The third one is the
interaction strength between the closest neighboring lattice sites referred to as
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V:
HV = V

∑
⟨i, j⟩

b†i b†jb jbi (6.2)

Investigating the scenario where V predominates the many-body ground-state
remains a considerable hurdle in experimental research within condensed-matter
physics [302]. In this domain, theoretical research suggests that long-range interactions
facilitate quantum phases that spontaneously break the lattice symmetry (see Fig.
6.2) [303, 304, 305, 306, 307, 308, 309], akin to charge density waves (CDW)
exhibiting checkerboard (CB) or stripe solids. The CDW is a quantum mechanical
phenomenon and it results from the interaction between the conducting electrons
and the periodic potential of the lattice ions in the crystal. In a normal conductor,
the electrons move freely and their density is roughly uniform, but in materials
with a CDW, the electrons organize themselves into a periodic pattern, increasing
in density at some points and decreasing at others These phases have been theoretically
predicted and then experimentally identified in fermionic systems [310, 311, 67],
while their realization for bosonic systems continues to be an enduring objective,
however, with some fantastic achievements in cold atom systems [312].

6.2 Dipolar Excitons as bosons
Dipolar excitons are an intriguing field of study within condensed matter physics.
They are composite particles formed from an electron and a hole that are bound
together by electrostatic forces. Unlike traditional excitons, which exist within a
single atomic layer or molecule, dipolar excitons possess a built-in electric dipole
moment due to the spatial separation of their charge components in different layers
or at different quantum well levels. This charge separation results in a number of
fascinating properties. The first is their extended lifetime. In a typical exciton, the
electron and hole are close together and can readily recombine to emit a photon,
thus ending the exciton’s life. However, in dipolar excitons, the spatial separation
between the electron and the hole means they take much longer to recombine, thus
leading to significantly extended lifetimes.Another significant characteristic of
dipolar excitons is their strong interaction with each other. Because they possess
an electric dipole moment, dipolar excitons can interact strongly with each other
via the dipole-dipole interaction. This interaction can lead to novel collective
phenomena that are not seen in conventional excitonic systems.
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Figure 6.2: Phase diagram of 1D Bose-Hubbard with NN interactions, originally
presented in [313]. Here, V=0.4t and U=1t. It shows the Mott-insulator(MI) with
density ρ = 1, the charge density wave (CDW) phases at densities ρ = 1/2 and
ρ = 3/2, and the surrounding superfluid phase(SF).
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Figure 6.3: Original figure taken from [43]. Panel a represents the visual
representation of the device with an array of polarized surface electrodes (gold)
imprint a 250nm period 2D lattice for dipolar excitons, made by electrons (gray)
and holes (white) spatially separated in a double quantum well (DQW – white
layers). b In the lattice, dipolar excitons are confined in two Wannier states (WS)
(1 and 2). U1,1 and U2,2 denote on-site interaction strengths for excitons in WS 1
and 2 respectively, U1,2 for excitons in distinct WS, while V1,1 marks the strength
of dipolar repulsions between NN sites for the 1st WS

Theoretical works have established that dipolar bosons in a lattice provide an ideal
platform to implement the EBH model [84, 306, 307]. The article that the author
of this thesis coauthored followed this path by confining dipolar excitons in a two-
dimensional square lattice potential in order to observe theoretically predicted
phases at half (checkerboard CDW phase) and unit filling (Mott insulator).

The natural basis for investigating the interacting dipolar excitons is Wannier
basis. The backwards Fourier transformation from Bloch functions involves a
unitary transformation that maps the periodic Bloch functions onto a localized
basis set in a real space, called Wannier states. This transformation is not unique,
and multiple sets of Wannier states can be constructed for a given system. The
resulting Wannier states are orthogonal and form a complete basis that spans the
same Hilbert space as the original Bloch states. Wannier states are a fundamental
concept in the field of solid-state physics, serving as a powerful tool for describing
the behavior of electrons in crystalline lattices. Introduced by Gregory Wannier in
1937, these states provide a localized representation of electronic wavefunctions
within a solid. By localizing the electronic wavefunctions, Wannier states allow
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for a more intuitive understanding of how electrons (or excitons) interact and move
within the lattice.Furthermore, Wannier states enable the study of correlations
and many-body effects. Their localized nature facilitates the investigation of
interactions between electrons or excitons.

6.2.1 Physical parameters of the extended Bose-Hubbard Hamiltonian
The experimental set-up is based on an array of local potentials with the depth
of approx. 250µeV and energy gap between two states ∆ = 150µeV . The lattice
is then deep enough two confine only the first two states, while all the higher
states are not confined (quantized) and, therefore, create a continuum. At low
filling (n̄ ⪅ 1), the delocalized states of the continuum are barely occupied, and,
therefore, the system can be described theoretically by a two-band extended BH
model. In such case, EBH Hamiltonian, described by eqs. (6.1) and (6.2) have to
be expanded in order to accommodate two Wannier states at each site. Following
[307]:

H =
∑

i

hi +
∑
⟨i, j⟩

hi j, (6.3)

where the on-site term has the form

hi =
∑
α,β,δ,γ

Uαβδγb
†

iαb†iβbiγbiδ −
∑
α

µαniα, (6.4)

while the terms between nearest neighbour sites have the following form:

h⟨i j⟩ =
∑

m=1,2

−tm(b†i,mb j,m + h.c.) +
∑

m,m′,m′′,m′′′
Vmm′m′′m′′′b

†

i,mb†j,m′b j,m′′bi,m′′′ (6.5)

Here, m denotes the Wannier state and i, j the site, biα (b†iα) are bosonic annihilation
(creation) operators, and niα = b†iαbiα is a number operator.

The most influential interaction terms have been determined to be the density-
density interactions, specifically, the on-site interactions labelled as U ≡ U1111,
U2,2 ≡ U2222, and U1,2 ≡ U1221 + U1212 + U2121 + U2112, as well as the nearest
neighbor interactions denoted as V ≡ V1111, V2,2 ≡ V2222, and V1,2 = V1221 + V2112.
Some additional interaction terms that incorporate a mix of bands have been
included into the calculations using exact diagonalization (see the subsequent
section), but were omitted in the mean-field description. To quantify the influence



142CHAPTER 6. CORRELATED PHASES IN SOLID STATE QUANTUM SIMULATORS

of the various on-site and inter-site interactions, denoted as U and V respectively,
following the reference work [314], the dipolar potential was broken down into
near-range and far-range components, introducing a boundary distance rc = 20 nm,
which approximates twice the excitons’ Bohr radius. Given the projected electric
dipole moment of the excitons (d ∼12-14 e.nm where e denotes the electron
charge), and using the spatial distributions of the Wannier wave-functions expected
for our lattice potential with a depth of 300 µeV, the sizes of on-site interactions
have been projected as U ∼ 1 meV and U2,2 ∼ 370 µeV for the WS 1 and 2, and
U1,2 ∼ 175 µeV. The intra-band values exceed the excitons confinement depth
in the lattice and thus are not measurable. Due to the intense on-site repulsion,
double occupancy of sites is significantly limited at fillings less than 1, while
occupation of continuum states grows noticeably when the filling exceeds 1. For
the inter-site interactions, our computations yield V ∼ 15µeV, V2,2 ∼ 90µeV,
and V1,2 ∼ 20µeV. Regarding the tunneling strength between adjacent lattice
sites, we have derived t1 ∼ 0.4 µeV and t2 ∼ 5 µeV for the first and second WS
correspondingly. Lastly, the band gap, expressed as ∆ ≡ µ2 − µ1, is roughly
150 µeV.

6.2.2 Experimental read-out of the phases
Photoluminescence spectroscopy is a widely used experimental technique for measuring
dipolar excitons in various materials. The measurement process involves exciting
the material with photons of sufficient energy to promote electrons from the valence
band to the conduction band, creating electron-hole pairs (excitons). To measure
dipolar excitons using photoluminescence, the material of interest is typically
subjected to optical excitation using a laser or other light source. The energy of
the excitation photons is chosen to match or exceed the band gap of the material,
ensuring the creation of electron-hole pairs and the formation of excitons.

Upon absorption of photons, excitons are generated, and they subsequently
undergo relaxation processes within the material. One of the relaxation mechanisms
involves the recombination of the excitons, where the electron and hole recombine,
releasing energy in the form of photons. These emitted photons can be detected
and analyzed to obtain information about the dipolar excitons.

The emitted photons are collected and directed towards a spectrometer, which
disperses the light according to its wavelength or energy. By measuring the energy
(or wavelength) of the emitted photons, the photoluminescence spectrum can be
obtained. The photoluminescence spectrum provides valuable information about
the energy levels, distribution, and properties of the dipolar excitons within the
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material.
The intensity and shape of the photoluminescence spectrum can reveal important

characteristics of the dipolar excitons. For instance, the peak position of the
spectrum corresponds to the energy of the emitted photons, providing information
about the energy levels of the excitons. The spectral width can indicate the distribution
of exciton energies, reflecting the degree of disorder or inhomogeneity in the
material.

Moreover, the photoluminescence intensity can be used to study the exciton
dynamics and interactions. By varying the excitation conditions, such as excitation
power or temperature, the photoluminescence intensity can be measured as a
function of these parameters. This allows for the investigation of exciton formation,
diffusion, quenching processes, and interactions with other excitons or defects
within the material.

Photo-luminescence measurement has been used to gather experimental evidence
of CB and Mott phases in our system. Technical details about used parameters
and lasers are beyond the scope of this thesis, however full explanation of the
experimental set-up can be found in the original paper [43]. As mentioned before
periodic potential generated by electrodes accommodates only two confined states,
called WS1 and WS2 with the energy gap δ = 150µeV . PL spectrum represents
the the emission of the Boltzmann distribution of states at given temperature.
This means that, besides the ground state, excited states will also contribute to
the spectra. Naturally, the more excited the state is, the lower its probability of
occurrence. Panel (a) of Fig. 6.5 represents the PL spectrum of the half filled
lattice (⟨n⟩ = 0.5 exciton per site). In such scenario, the CB in 1WS represents the
ground state with no nearest neighbour interactions. The quick look at energies of
each interaction channels allows us to identify the the set of first excited states as
the ones with single excitation, i.e with one of the excitons previously in the CB
configuration moved to the empty site. This configuration involves interaction V1,1

with 3 nearest neighbours, leading to the total energy cost of such configuration
of 3 × 22µeV = 66µeV . The next set of excited states is the one with two defects,
like the one explained above, and therefore with 132µeV . As one can see, all the
other excited states will have the energy higher than δ ≈ 150µeV , and therefore
populating 2WS has to be taken into account. Panel (a) of Fig. 6.5 represents this
fact with a small peak appearing shift ∆ from the WS1. Naturally the amplitude
of the second peak will grow with increasing temperature and therefore increasing
probability of the excited states.

Panel (b) of Fig. 6.5 represents the PL spectrum at the same temperature (330mK)
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Figure 6.4: Fluctuations of the maximum of the PL spectrum proportional to
compressibility κ. Two valleys can be observed at powers corresponding to half
and unit fillings. Originally the figure appeared in [43].

for ⟨n⟩ = 1.0 and therefore corresponding to the Mott insulating phase with fully
filled WS1. In this case, single excitation will result with expelling the exciton
to 2WS since double occupancy has energy cost of U1,1 ≈ 1meV , and therefore
the excited excitons prefer to cross the energy gap between the confined states.
Moreover, the ground state has additional energy cost of 4×V1,1 resulting in shifted
PL spectrum to more or less half of ∆.

One of the primary properties of the bosonic Mott phase, resulting from inter-
particle interactions and low mobility within the lattice, is the incompressibility
and suppression of local density fluctuations. Locally, compressibility quantifies
the response in the on-site density ni to a local change of the chemical potential
and is given by:

κi =
∂ni

∂µi
= β[⟨n2

i ⟩ − ⟨ni⟩
2]. (6.6)

This relations comes from the fluctuation-dissipation theorem [315] and can be
explained in the following manner. In Grand canonical ensemble the average
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particle number of the system in the temperature T is given as

⟨N⟩ =
1
β

[
∂ln(Z)
∂µ

]
T,V

, (6.7)

where Z denotes grand canonical partition function defined as:

Z =
∑

i

∑
N

exp{−β(Ei − µN)}. (6.8)

Here, the sum over the index i corresponds to sum over energies of all possible
state configurations, each with energy Ei. Now, by calculating the system’s response
to the change of average particle number one gets:

∂⟨N⟩
∂µ
=

∂

∂µ

( 1
Z

∑
i

∑
N

βN exp{−β(Ei − µN)}
)

(6.9)

Making use of the Quotient rule for differentiating, one calculates the second
derivative with respect to µ and gets

∂⟨N⟩
∂µ
= β[⟨N2⟩ − ⟨N⟩2], (6.10)

which is a global (in terms of the whole ensemble) form of th compressiblity given
in eq. Eq. (6.6). Density fluctuations can be read out from the PL spectrum by
measuring its maximum Amax and immediately obtaining the variance, σ2(Amax).
In such description, according to fluctuation-dissipation theorem [316], the compressibility
takes the form κkBT = σ2(Amax)/Āmax, where the bar denotes the average. Taking
into account that the excitons are loaded into the system by laser fields, observation
of the PL signal depending on the loading laser power automatically provides one
with the compressibilty profile as a function of exciton density. This measurement
has been shown in the Fig. 6.4, which represents compressibility profile for T =
330K. Around 17nW, which corresponds to unit filling, one observes the vast
drop of compressibility, which is widely used to identify a Mott insulating phase in
bosonic systems in optical lattices [317, 318, 316]. Interestingly, similar drop has
been observed around 8nW corresponding to the filling n̄ = 1/2. This observations
signals the existence of the other insulating phase at half filling, which, together
with theoretical calculation have given strong evidence of CB and Mott phases
in the discussed system. Below we present the theoretical analysis supporting
observed experimental results.



146CHAPTER 6. CORRELATED PHASES IN SOLID STATE QUANTUM SIMULATORS

(a) (b)

Figure 6.5: Experimental PL spectrum at T = 330mK of ⟨n⟩ = 0.5 (a) and ⟨n⟩ =
1.0 (b) filled lattices together with theoretical simulations (ED, black solid line).
The simulation assigned a 90% fraction for excitons in the 1WS (orange, violet in
panel (b)) and 10% in the 2WS (green, orange in panel (b))

.

6.2.3 Exact diagonalisation calculations
For the theoretical description we have considered the extended two-band Bose-
Hubbard Hamiltonian, relying on the theoretically expected parameters for t, U,
and V , but with increased amplitude of density-density inter-site interactions to
match the experimentally measured value of V in the first WS. Specifically, we
have taken V = 35µeV, V2,2 = 250µeV, and V1,2 = 40µeV.

In order to detect CB phases we applying exact diagonalization on a supercell,
spanned by L1 = (2, 2)a and L2 = (2,−2)a, a denoting the lattice period, which
contains 8 sites of the square lattice. Such unit cell is two times smaller then 4x4
unit cell and, unlike 2x2 cell, allows to observe CB phase. In the ED calculation,
we fix the particle number to 4 excitons (half filling). From the full eigenspectrum,
we calculate thermal expectation values of the observables of interest. One of
such observables in a structure factor (SF), i.e Fourier transformed density-density
correlation function. The peak of SF at kCB ≡ (πa ,

π
a ) is a hallmark of CB order in

the system. Since we are expecting the CB phase within the first Wannier State,
we define the SF as:

S 1(k) ∼
∑

i j

(⟨ni1n j,1⟩ − ⟨ni1⟩⟨n j1⟩)e−ik·Ri j , (6.11)
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Figure 6.6: Figure originally presented in [43]Lowest band structure factor S 1(k)
at T = 100mK obtained by exact diagonalization of a 8 site square lattice (Betts
cluster) with periodic boundary conditions. It exhibits a dominant peak at quasi-
momentum k = (π/a, π/a), which is a characteristic signature of CB order.
A second strongly suppressed quasi-peak lies at k = (0, 0) (due to finite size
effects), corresponding to a homogeneous liquid without any density order. b,
|S 1(π/a, π/a)| (black) and |S 1(0, 0)| (blue) are plotted versus temperature T . Up
to T ≤ Tc = 420mK, the structure factor signalling CB order remains at least
twice as large as the structure factor for a homogeneous liquid.

with Ri j the lattice vector connecting sites i and j, is found to exhibit a pronounced
peak at kCB (see Fig. 6.6(a)), with a value |S 1(kCB)|which remains more than twice
as large as any other value of |S 1(k)| up to temperatures as large as T ∼ 400mK
(see Fig. 6.6(b)).

6.2.4 Mean-field calculations

Larger system sizes are studied in the mean-field approximation which reduces
the Hamiltonian to a sum of single-site terms, HMF =

∑
i(hi + hNN

i ), with

hNN
i =

∑
j

[−
∑
α

tα(b†iα⟨b jα⟩ − ⟨b
†

iα⟩⟨b jα⟩ + h.c.) +
∑
α,β

Vαββα(niα⟨n jβ⟩ − ⟨niα⟩⟨n jβ⟩].

(6.12)
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The sum in j includes all nearest neighbouring sites of i, and for simplicity we
restrict ourselves to density-density interactions. On every site, the 4 mean-field
values ⟨bi1⟩, ⟨bi2⟩, ⟨ni1⟩, and ⟨ni2⟩ have to be chosen such that they self-consistently
match the corresponding thermal expectation values obtained from the solution of
the mean-field Hamiltonian. In our numerical calculation, the self-consistency
loop sweeps through a 4x4 lattice. From the solution of the self-consistent mean-
field Hamiltonian, we calculate the phase diagram, shown in Fig. 6.7(b). On panel
(a) of the same Figure, we provide a direct order parameter for the CB phase,
namely the population mismatch |⟨nA − nB⟩| between the two sub-lattices A and B
corresponding to two possible CB phase configurations. CB order is associated
with a non-zero value of this order parameter. It is found within a finite interval of
the chemical potential around the one corresponding to half filling which shrinks
as the temperature is increased, and entirely vanishes at the critical temperature
(≈ 420 mK), in good agreement with the experimental observation and with the
estimate from ED. Decay of the order parameter can be observed on Fig. 6.7(b)
by looking at plots for 4 distinct temperatures: T = 4, 125, 247, 389, 450 mK.

6.3 Conclusions
In this (experimentally) groundbreaking study, we realized Extended Bose-Hubbard
model with a square array. The sites of an array are filled by the dipolar excitons,
that are created by a flash of light, and the intensity of the light controls their
density. Therefore, measuring the light emitted from this array (photo-luminescense)
provides a unique fingerprint of the quantum state of the system. Through such
measurements, we found that the system is characterized by two special states.
First, when each site had only one quasiparticle in it, we detected a Mott insulating
state, which occurs when strong interactions between electrons prevent a material
from conducting electric charge. Second, when exactly half the sites in the system
were occupied, the authors found that neighbouring lattice sites were alternately
filled and empty, giving rise to a state resembling a chequerboard pattern. Such a
pattern emerges from an exciton’s ability to influence the occupancy of neighbouring
sites over some distance. The resulting wave in the density of the particles is
also observed in real materials, which is why this simulator might prove to be a
useful tool for understanding strongly correlated behaviour in bosonic systems.
ED and mean-field techniques allowed us to confront the observed phenomena
with predictions of the EBH model. While mean field calculations provided,
otherwise unachievable, full phase diagram, exact diagonalization gave an insight
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(a) (b)

Figure 6.7: Panel (a) illustrates a graph depicting the CB (checkerboard)
order parameter, deduced from mean-field calculations, as a function of the
chemical potential (µ) and temperature (T ). The temperatures indicated are
4, 125, 247, 389, 450 mK in different color codes. The CB order parameter is
given by the absolute difference in population |nA − nB| between two sub-lattices,
A and B, of the square lattice. The graph indicates that below around 410
mK, this population difference is significant, which manifests the presence of
checkerboard (CB) order. Panel (b) presents a phase diagram, computed using
a two-band mean-field model. This diagram highlights the existence of three
possible phases: Checkerboard (CB), Mott insulator (MI), and Normal fluid (NF).
Sketches illustrating the configurations of the CB and MI phases can be found on
the left side of the diagram. A vertical line is drawn at the point of lowest bath
temperature accessible in the experimental set-up.

.
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into microscopic structure of the ground and excited states making it possible
to calculate correlators, and therefore, extract the structure factor of the system.
Appearance of the peak at the corner of the Brillouin zone for the set of experimentally
obtained values of parameters was a final theoretical evidence of CB phase int the
lattice.
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induced gauge fields for ultracold atoms. Reports on Progress in Physics,
77:126401, 2014.



166 BIBLIOGRAPHY

[143] Monika Aidelsburger, Sylvain Nascimbene, and Nathan Goldman.
Artificial gauge fields in materials and engineered systems. Comptes
Rendus Physique, 19(6):394 – 432, 2018.

[144] A. Eckardt, P. Hauke, P. Soltan-Panahi, C. Becker, K. Sengstock, and
M. Lewenstein. Frustrated quantum antiferromagnetism with ultracold
bosons in a triangular lattice. Europhysics Letters, 89(1):10010, Jan 2010.
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Oberthaler. Twist-and-turn spin squeezing in bose-einstein condensates.
Phys. Rev. A, 92:023603, Aug 2015.

[294] Julien Vidal, Guillaume Palacios, and Rémy Mosseri. Entanglement in a
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