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Chapter VII: Conclusions

CHAPTER VII

CONCLUSIONS

The goal of this chapter is twofold. Its first section is devoted to the
presentation of a summary of the developments carried out in this work. In
this way, the different parts of the work are briefly summed up and
commented. On its turn, the second section deals with the possible extensions
of this work. Extensions deal with the segmentation technique as well as with
its coding application. In this way, a method for segmenting image sequence is
outlined. Furthermore, some possible improvements on the coding scheme
presented in the previous chapter are pointed out. Some of these extensions are
currently under development while the study of some others have not started
yet.
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VIL1.- Summary of develobments

The problem of segmenting gray level, still images has been addressed in
this work. Segmentation has been defined as a process that divides completely
an image into a set of homogeneous, connected regions, related to the objects in
the scene. The definition of a general purpose segmentation technique has been
revealed as being a rather complicated task. This complication is owing to the
huge amount of different kinds of data that a segmentation technique may have
to handle. Nevertheless, the study of classical techniques has shown that the
use of some specific tools results in a big step towards this goal. Among these
tools, elaborated image models and multiresolution image analysis lead to a
clear improvement on the performance of segmentation algorithms. Therefore,
the proposed segmentation method relies on both techniques.

Stochastic image models have been analysed, as well as their application
to the problem of image segmentation. For this purpose, Compound Random
Fields (CRFs) are particularly suitable. CRFs allow the description of images
in terms of both boundary and texture information. Furthermore, assuming
that images are modelled by CRF's, the segmentation task can be formulated as
a MAP estimation. This kind of algorithms achieves high quality segmentation
results. However, these segmentation approaches usually require stochastic
maximisation techniques.

When using stochastic relaxation approaches, the optimum solution is
ensured to be reached. Nevertheless, this kind of methods are computationally
very demanding. On the other hand, although deterministic relaxation
approaches may get trapped in local maxima or minima, they may achieve
good quality results in a feasible amount of time. The quality of the obtained
results mainly depends on the initial conditions of the algorithm. Therefore, in
this work, a deterministic approach has been chosen, having in mind the
importance of setting the correct initial conditions. This approach performs the
maximisation by carrying out local, iterative boundary refinements.

A second problem related to the use of CRF models in segmentation is
the estimation of the model parameters. The estimation of elaborated image
model parameters is a difficult task which requires time consuming
techniques and may result in estimationsof low reliability. The image model
used in this work is a CRF formed by a set of white Gaussian random fields in
its upper level and by a Strauss process in its lower level. The reason for
choosing white GRFs for the upper level is that this kind of model, when used
in a CRF, leads to a good trade-off between capacity of characterising regions
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and computational load when estimating its parameters. On its turn, the lower
level is modelled by a Strauss process, given its good performance when
modelling labelled images. Furthermore, Strauss processes can also be
utilised for modelling the behaviour of contour images.

A monoresolution segmentation technique has been proposed relying on
the joint use of the deterministic maximisation approach and the image model
above commented. This segmentation technique leads to good results which
always improve the quality of the initial segmentations. The influence of the
low level parameters in the final result has been studied. This study has shown
that similar results are achieved for a large range of parameter values.
Moreover, in all cases, segmentations are carried out in a feasible amount of
time. Although the method yields good results, it presents some drawbacks.
These drawbacks are mainly produced by the fact that, in order to reduce its
computational load, the algorithm carries out a maximisation procedure in a
local, deterministic way. Therefore, the quality of the initial segmentation is
critical to the quality of the final result.

A novel segmentation algorithm relying on the joint use of an image
model based on CRFs and a multiresolution decomposition has been presented,
in order to overcome the above problems. A Gaussian pyramid has been chosen
as multiple resolution decomposition. The reasons for choosing this kind of
decomposition are mainly related to the data simplification that it performs.
That is, textures present at low levels are gathered, at high levels, into a few
pixels whose statistics are more Gaussian-like than those of original ones.

This multiple resolution segmentation technique relies on the previous
monoresolution method. That is, the image is first decomposed into a set of
images at different resolutions. At each level of the decomposition and starting
by the coarsest resolution, images are segmented using the monoresolution
algorithm. The final segmentation at each level is utilised as initial
segmentation for the next finer level of the decomposition. This procedure is
performed through the whole decomposition down to the finest resolution level,
which is the original image itself.

With such an approach, the negative effects of the deterministic
maximisation procedure are reduced. This improvement is owing to the fact
that the algorithm combines the information of the different resolutions in
order to segment the image. In addition, since every segmentation is
performed assuming the same kind of image model, initial segmentations at
each level are more consistent with the expected final segmentation. Finally,
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local maxima are easier to avoid when using a multiresolution approach.
Solutions achieved at coarse resolution lead finer resolution steps to initial
points which are closer to the actual optimum. Therefore, the performance of
the method increases with respect to the monoresolution algorithm, specially
when dealing with textured areas.

In spite of this improvement, the basic multiresolution algorithm still
presents some drawbacks. These drawbacks are mainly related to the use of a
constant image model at every decomposition level and to the inability of the
algorithm for detecting interior regions. The first problem has been solved by
adapting the model parameters to the data present at each level of the
decomposition. To this goal, an unsupervised estimation of the model
parameters relying on the information contained in the Laplacian pyramid
has been performed. This unsupervised segmentation method yields good
performance both in computational load and segmentation quality. Regarding
the computational load, the multiresolution approach require less computation
than the monoresolution one, for same quality results.

The problem of detecting interior region has been faced from the point of
view of discriminating between flat, contrasted areas and dense, contrasted
fluctuation. Morphological tools have been applied, given that they are known
to efficiently perform such kind of discrimination. In this way, the residue
with the morphological centre has been used as basic transform. The centre is
computed from the open_close, the close_open and the identity operator. This
transform has been applied, at each level, on the difference between the
original image and the mosaic representation of the segmentation. After a
cleaning step, the elements resulting of performing this transform have been
used as seeds for the possible creation of new regions. This segmentation
scheme leads to high performance results both in quality and computational
load. This method yields final segmentations nearly containing all the details
in the original image, while does not spoil the segmentation on textured areas.
In addition, the average computational load for segmenting images of 256x256
pixels is of 27 seconds in a Sun Sparc II workstation.

Finally, this segmentation technique has been applied to the task of
image coding. Segmentations yield two different kinds of information to be
coded: texture and boundary information. Boundary information coding
requires much more effort than texture coding. Hence, the problem of coding
contour images produced by a previous segmentation of the scene has been
addressed. Contour images are defined on an hexagonal lattice for allowing
one-to-one relationship between contour representations and segmentations.
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When coding contour images, two different information have to be coded:
shape and location information. The proposed coding scheme relies on
derivative chain code techniques for coding region shapes. The information
regarding region locations is introduced in the chain code itself. This is done by
making use of the concept of triple point. Symbols within chains are coded by
using Huffman techniques. Texture information is coded by using one byte per
region (texture characterisation by its mean value). This coding scheme leads
to compression ratios of 25 in average.

VIL.2.- Current and future research lines

Three different lines of research are proposed in this section. The first
one deals with the extension of the proposed still image segmentation method
to an image sequence segmentation technique. This extension involves the
definition of a stochastic image sequence model. Assuming the image model
proposed in this work as basis, CRFs have to be defined in a three dimensional
domain. This new definition leads to the extension of the concept of clique to a
three dimensional space. Note that the assumption of isotropy made when
defining potentials on the two dimensional space cannot be directly made in
this case. A clique involving sites belonging to two different frames may not
represent the same information as a clique totally contained in a single image.

Nevertheless, first experiments obtained by making the assumption of
isotropy yield good segmentation results. An example of this technique can be
seen in Figure VII.1, where the segmentation of a sequence of four frames is
shown. However, in some cases, this assumption leads to segmentations
presenting volumes (three dimensional segments) with long, thin elongations.
Currently, the correct relation between the different clique potentials is being
analysed in order to improve the segmentation performance. This analysis is
being performed as in the two dimension case; that is, by isolating the
influence of each parameter in the whole model. In the image sequence case,
the potential function characterising the Gibbs distribution can be expressed
as:

1
U(X) = T [ klsVls + k2SVZS + kltVlt + k2tV2t] ’ (VII 1)

where the notation follows the definition in Chapter III and the subindices s
and t denote the space and time domains, respectively. The set of parameters
characterising the model can be reduced to four:
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where T* controls the relative importance between the lower level and upper
level models, V: characterises the spatial boundary model, R:t sets the relation
between the spatial and temporal parts of the lower level model and Vt

characterises the temporal boundary model.
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Fig. VIL1.- Example of image sequence segmentation
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The second research line copes with the improvement of the contour
coding scheme. The shape coding technique presented in this work takes
advantage of some global constraints in the contour shape. A way for further
improving this method is by exploiting local contour constraints and not only
general ones. These local constraints are mainly introduced by the algorithm
that selects each initial point of the chains as well as the contour tracking
algorithm. Initial points are selected by a normal scanning (from top to bottom
and from left to right). Therefore, after a initial point, only s and r movements
are allowed. Due to this constraint, first movements in a chain can be coded
with just one bit until the first r movement is made.

On its turn, the contour tracking procedure follows a clockwise direction.
Therefore, when being in a lattice site, if a left turn (/) is selected, neither a
right turn (r) nor a straight ahead (s) movement were possible. The two sites
related with the withdrawn movements (r and s) can be marked in the lattice
as forbidden sites. When choosing an s movement, an analogous situation
appears; that is, the site at the right can be marked as forbidden. Due to these
marks, future chains are constrained and codes may not have three
possibilities. In these cases, when the number of possible codes is two, one bit
can be used for coding movements. Moreover, zero bits can be used when the
contour only has a possible path to follow. Note that, in order to marked
forbidden sites, just past and actual information is used. Therefore, this task
can be performed in the coder as well as in the decoder. By using this new
scheme, figures of 1.12 bits per pixel of contour (in average) are achieved for
shape coding. Current work deals with introducing Huffman techniques, as
well as triple points location coding, in this new scheme.

The third research line copes with the coding of the texture information.
As pointed out in Chapter VI, textured regions cannot be represented by their
mean value when aiming at coding purposes. Therefore, more elaborated
coding schemes have to be used in such cases. In this way, a classification of
regions yielded by the segmentation should be performed in order to
discriminate between textured and non-textured regions. On the first class, a
textured coding scheme involving transform coding will be applied, whereas,
for the second class the current scheme is sufficient.
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