

La extracción de sílice de las cenizas volantes es uno de los objetivos principales de la presente tesis. Para ello, este capítulo se ha centrado principalmente en los sub-objetivos que se describen a continuación:

- □ Identificar las características que controlan la extracción de SiO₂ de las diferentes cenizas volantes y optimizar los parámetros que influyen en los rendimientos de extracción de SiO₂.
- □ Obtener un rendimiento de extracción de sílice > 165 g SiO₂ /kg de ceniza (equivalente a un mínimo de 500 g de zeolita pura por kg de ceniza volante).
- □ Elaborar un modelo, que conjuntamente con los datos de caracterización (capítulo 2) permita predecir la aplicabilidad de las cenizas volantes para procesos de extracción de sílice o zeolitización por conversión directa.

Para ello, a partir de algunos ensayos preliminares para todas las cenizas estudiadas y variando las condiciones de extracción, se han podido optimizar algunos parámetros y seleccionar las cenizas volantes más susceptibles de ser aplicadas en dicho proceso. Ello ha permitido fijar las condiciones óptimas de extracción de sílice: tiempo, temperatura, relación solución extractante / ceniza, tipo de ceniza, complejantes de Al y Si y pretratamiento de las muestras.

A fin de aumentar las aplicaciones industriales de este proceso, se ha intentado aprovechar el residuo remanente de la extracción, obteniendo un material zeolítico de menor calidad que el que se puede obtener mediante la síntesis de zeolita pura, pero muy similar al producido por el método de conversión directa.

3.1. METODOLOGÍA

3.1.1. Extracción de sílice

Los experimentos de extracción de sílice se han realizado utilizando los siguientes procedimientos:

□ En sistema cerrado mediante reactores SAVILLEX PFA de 60 mL con y sin agitación magnética. Tal y como muestra la Figura 3.1, el reactor se introducía en un baño de agua que se mantenía a 90 °C. Mediante una bomba peristáltica se introducía el flujo de agua necesario para compensar las pérdidas de agua por evaporación. Con este sistema se realizaron los experimentos de extracción para todas las cenizas fijando la temperatura a 90 °C (propuesta por Hollman et al., 1998), y variando el tiempo de extracción a 3, 6, 9, 12 y 24 h, utilizando soluciones de NaOH en concentraciones de

0.5, 1 y 2 M y relaciones de solución extractante / ceniza volante (l/s) entre 3 y 12 L/kg, dependiendo de la molaridad de la solución. Estos experimentos se repitieron hasta tres veces con el residuo sólido resultante de los experimentos de extracción para determinar la extracción de sílice teóricamente máxima. Para los experimentos realizados a 50 y 70 °C, también se utilizó esta metodología.

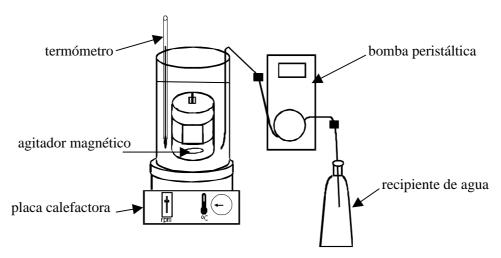


Figura 3.1. Esquema del dispositivo experimental para los ensayos de extracción de sílice realizados en el reactor Savillex PFA de 60 mL.

- □ En sistema cerrado con reactores de 125 mL PARR 4744 utilizando parámetros de síntesis apropiados para conversión directa en zeolita (Figura 3.2). Esta metodología consiste en la conversión directa de la ceniza volante en zeolita, mediante un ataque hidrotermal alcalino, y la posterior determinación del exceso de sílice extraído de la ceniza volante. Las condiciones utilizadas en este caso, fueron las optimizadas en estudios preliminares (Querol et al., 1999), con temperaturas entre 125 y 200 °C, tiempos entre 3 y 24 h, concentración de NaOH entre 1.0 y 5 M NaOH, y relación solución/ceniza volante entre 2 y 18 L/kg. Así pues, con este método se pretende obtener en una sola etapa, un material altamente rico en zeolita asociado a un elevado contenido en sílice en la solución remanente.
- Como se deduce del apartado de caracterización (capítulo 2) y se mostrará más adelante en los resultados, la presencia de fases opalinas aumenta considerablemente la extracción de sílice en la ceniza volante de Meirama. Igualmente, como se ha mostrado en el capítulo 2, la formación de fases silíceas solubles puede inducirse a partir del exceso de sílice en la matriz vítrea mediante tratamientos térmicos (Querol et al., 1994 y Mollah et al., 1999). Además, mediante el tratamiento térmico se induce la precipitación de la alúmina en fases más estables y difíciles de disolver, tales como mullita o feldespatos. Por tanto, en esta sección se muestran los resultados de los

experimentos de extracción de sílice a partir de cenizas volantes, que presentan cristobalita/tridimita o cristalización de mullita tras someterse a procesos de devitrificación (1100, 750, 550 y 200 °C). Estos experimentos de extracción se realizaron en reactores de PFA (90 °C) y PARR (120, 150 y 175 °C) con agitación durante 6 h, 2M NaOH y relación l/s de 3 L/kg.

Figura 3.2. Reactor PARR 4744 de 125 mL.

□ Posteriormente, se desarrolló otra tanda de experimentos enfocada a la optimización de los parámetros de extracción sobre las cenizas volantes seleccionadas. Esta optimización, se basó en la variación del tiempo (de 0.5 a 24 h), temperatura (a 50, 70, 90 y 120), relación solución extractante (NaOH y KOH)/ceniza volante (2, 3 y 4 L/kg), y concentración (2 y 3 M). Para realizar éstos experimentos, se utilizó un reactor PARR AUTOCLAVE 4843 de 2 L de capacidad con agitación mecánica, y control de temperatura y presión (Figura 3.3). Este sistema tiene la ventaja de que permite muestrear "on line" sin necesidad de detener el experimento. Así pues, se tomaron muestras de la solución extraíble y del residuo sólido cada hora durante las 10 primeras horas y al final del experimento, a las 24 h de reacción. Los experimentos de autoclave a temperaturas > 125 °C (150 y 175 °C) se realizaron en unas estufas con agitación rotatoria (Figura 3.4) en el laboratorio Oto de la Facultad de Química de TU-Deflt. El resto, se realizaron en los laboratorios del "Institut de Ciències de la Terra- Jaume Almera" del CSIC.

Figura 3.3. Reactor autoclave PARR 4843 de 2 L con agitación mecánica para muestreo "on line".

Figura 3.4. Estufa con agitación rotatoria utilizada en los experimentos de extracción a 150 y 175 $^{\circ}$ C.

□ Finalmente, con el objetivo de minimizar el tiempo de reacción, se realizaron experimentos de extracción mediante microondas (Milestone MLS-1200 MEGA, Figura 3.5), en el "Instituto de Carboquímica" del CSIC de Zaragoza. Este sistema controla la temperatura mediante un termopar inmerso en uno de los reactores. Aunque este modelo de microondas permite utilizar hasta 8 reactores cilíndricos con cuerpo interior de PTFE y capacidad de 90 mL, los experimentos se realizaron de manera independiente, para evitar los problemas de distribución de calor observados en la conversión directa de cenizas volantes. En todos los experimentos se utilizaron condiciones fijas de potencia (1000 W) y de volumen de reactivo (50mL). El resto de variables se fueron determinando utilizando un diseño secuencial de tipo simplex modificado para la optimización de los resultados de extracción, lo que hizo que variar la temperatura entre 75 y 190 °C, el tiempo de 1 a 9 min, relaciones l/s de 3 a 9 L/kg y concentraciones de 0.6 ± 0.3 (g NaOH/g ceniza), 0.9 ± 0.45 (g Na₂CO₃/g ceniza). El Na₂CO₃ se añadió sólido y se utilizó junto con el NaOH para aportar iones sodio sin aumentar el pH.

Figura 3.5. Reactor microondas Milestone MLS-1200 MEGA.

3.1.2. Análisis

Las concentraciones de Si, Al y Na, así como, otros elementos mayoritarios y traza presentes en los lixiviados obtenidos de los experimentos de extracción de sílice, se determinaron mediante ICP-AES e ICP-MS.

A partir de las concentraciones de Si, Al y Na, se realizarón unos cálculos de balance de masa, para cada experimento, encaminados a determinar los siguientes parámetros:

SiO ₂ extraíble (en g de sílice por kilogramo de ceniza volante)
Síntesis potencial de zeolita pura (en g de zeolita A, por kilogramo de ceniza volante)
Consumo de Na (% respecto al Na originalmente añadido)
Al ₂ O ₃ extraíble (g de alúmina por kilogramo de ceniza volante)

La síntesis potencial de zeolita pura se determinó estequiométricamente utilizando la relación de concentración entre zeolita / SiO_2 de 3.0, para la zeolita A, dado que la fórmula de dicha zeolita es $Na_{12} \left[(AlO_2)_{12} \cdot (SiO_2)_{12} \right] \cdot 27H_2O$.

La composición mineral del residuo sólido resultante de cada experimento se analizó mediante DRX. Tras la identificación de las fases cristalinas, incluyendo las fases de zeolita neomórficas, se determinaron los valores de intensidad normalizada de DRX para cada fase (proporcional al contenido en la muestra), con el fin de comparar las eficiencias de disolución de las fases originales y las de precipitación de fases zeolíticas sintetizadas en los diferentes experimentos.

3.2. RESULTADOS

Los resultados concernientes a la extracción de sílice demuestran que, el consumo de Na varia ampliamente en función de la extracción de sílice obtenida, las cenizas volantes utilizadas y los parámetros de síntesis. Así, para las mismas condiciones de síntesis, se obtiene un ligero consumo de Na (entre el 1 y el 15 %) sin agitación, mientras que si se aplica una agitación continua se alcanzan consumos de Na mucho más elevados (entre el 26 y el 50 %). Este consumo de Na, concretamente de NaOH, no va siempre acoplado a una elevada extracción de sílice, sino que el análisis del residuo sólido demuestra que el consumo de Na se debe a la síntesis de zeolita que tiene lugar en el proceso de extracción. Este hecho implica que la sílice y la alúmina se disuelven de la ceniza volante y seguidamente precipitan cristalizando en forma de zeolita. Consecuentemente, la disolución de alúmina es un factor limitante en la extracción de sílice.

Pero el consumo de Na no siempre tiene un impacto negativo en estos procesos. Si este consumo es debido a la síntesis de zeolitas con elevada capacidad de intercambio catiónico (CIC) en el residuo sólido, éste puede tener importantes aplicaciones potenciales. Los productos zeolíticos que se obtienen con este proceso son normalmente zeolitas del tipo NaP1, zeolita A, X o herschelita. Por tanto, se ha intentado optimizar un proceso de una

sola etapa, que permita obtener un alto rendimiento en la extracción de sílice acoplado a la formación de zeolita con elevada CIC en el residuo sólido.

3.2.1. Experimentos preliminares de extracción de sílice

3.2.1.1. Condiciones de extracción iniciales

A partir de unos experimentos realizados sobre algunas cenizas españolas (Tabla 3.1), los experimentos preliminares con las 23 cenizas volantes se realizaron siguiendo las condiciones de extracción óptimas propuestas por Hollman et al. (1998) (Tabla 3.2). Además se estudió la extracción de sílice realizando tres extracciones sucesivas con el residuo sólido resultante de estos experimentos (Tabla 3.3).

Los resultados de los ensayos de extracción de sílice realizados en reactores SAVILLEX PFA con agitación a 90 °C, 6, y 9 h, 1 y 2 M de NaOH y relaciones de 3 L/kg, para todas las cenizas volantes mostraron que:

- □ La agitación tiene una gran influencia en los procesos de extracción de sílice. De manera que, utilizando las mismas condiciones de extracción, los extractos de sílice que se obtienen mediante una agitación continua aumentan en un factor de 5 a 60 respecto a los experimentos sin agitación (Tablas 3.1 y 3.2).
- □ Los rendimientos de extracción más altos se obtuvieron con el método en múltiples etapas en sistema cerrado con agitación continua (Tabla 3.3).

Los resultados que muestra la Tabla 3.2 permiten clasificar las cenizas volantes en tres grupos en función a los rendimientos de extracción de sílice:

- □ Rendimientos bajos: < 50 g de SiO₂ por kg de ceniza volante, (equivalente a <152 g de zeolita A por kg de ceniza volante) se obtuvieron para las cenizas volantes de Narcea, Teruel, Robla, As Pontes, Soto, Compostilla, Alkaline, Nijmegen, Acid, Lignite y Sardegna.
- □ *Rendimientos intermedios*: de 56 a 76 g de SiO₂ por kg de ceniza volante (equivalente a 155 230 g de zeolita A por kg de ceniza volante) en las cenizas volantes de Hemweg, Fusina, Amer-8, Escucha y Amer-9.
- □ Rendimientos elevados: 83, 98, 99, 124 y 126 de SiO₂ por kg de ceniza volante (equivalente a 251, 297, 300, 376 y 382 g de zeolita A por kg de ceniza volante respectivamente) se se obtuvieron para las cenizas de Neutral, Meirama, Montfalcone, Puertollano y CCB, respectivamente.

Tabla 3.1. Resultados de los primeros ensayos de extracción de sílice sin agitación. En la tabla se muestra el porcentaje de sodio consumido (Na con.) en forma de zeolita en el residuo sólido, rendimientos de extracción de sílice y alúmina, así como el equivalente potencial de zeolita A pura (zeo A). Los resultados de los análisis del residuo sólido están expresados en intensidades normalizadas de DRX (cuentas/s) de las reflexiones de DRX de las fases cristalinas y el fondo entre 22 y 29 ° de 2θ (representando la fase amorfa ó vidrio).

Ceniza	Condici	ones extra	cción	RENDIMI	ENTO 1	EXTRA	CCIÓN	Fichero	RESIDU	O SÓLI	DO inter	nsidad
volante				DRX	SiO_2	Al_2O_3	zeo A	DRX	I	ORX (cu	entas/s)	
			L/kg	Na	g/kg	g/kg	g/kg		vidrio	cuarzo	mullita	NaP1
Barrios	NaOH 2M	I/90°C/6h	3	15.0	6.7	6.3	20	J43-0029	609	21	89	<1
Escucha	"	"	"	8.2	36.5	2.3	110	J43-0032	485	96	33	<1
Espiel	"	"	"	6.7	7.5	3.6	22	J43-0041	711	14	13	<1
Meirama	"	"	"	< 0.1	36.6	2.4	111	J43-0035	387	34	4	3
Narcea	"	"	"	5.4	8.0	4.0	24	J43-0021	657	39	3	3
Teruel	"	"	"	16.2	14.9	2.8	45	J43-0038	391	50	10	<1
Barrios	NaOH 1M	I/90°C/6h	6	1.3	3.8	5.7	11	J43-0030	639	19	92	<1
Escucha	"	"	"	4.2	15.8	2.7	48	J43-0033	467	65	22	<1
Espiel	"	"	"	4.1	7.9	4.3	24	J43-0042	720	12	12	<1
Meirama	"	"	"	3.4	24.3	2.8	74	J43-0036	415	37	3	<1
Narcea	"	"	"	2.4	5.6	4.5	16	J43-0022	595	38	3	<1
Teruel	"	"	"	7.4	10.6	3.0	32	J43-0039	439	53	15	<1
Barrios	NaOH0.5N	M/90°C/6h	12	0.1	8.0	5.5	24	J43-0031	578	23	84	<1
Escucha	"	"	"	1.5	8.4	3.7	25	J43-0034	474	43	16	<1
Espiel	"	"	"	7.1	7.5	5.0	22	J43-0043	650	11	16	<1
Meirama	"	"	"	7.5	25.7	1.4	78	J43-0037	384	47	3	<1
Narcea	"	"	"	0.9	5.9	5.5	18	J43-0028	666	47	4	<1
Teruel	"	"	"	2.7	6.7	4.4	20	J43-0040	441	50	11	<1

Tabla 3.2. Primera etapa de extracción de sílice con agitación continua. La relación entre la solución extractante/ceniza volante se fijo en 3 L/kg.

Ceniza	RENDIN	1IENT	O EXTR	RACCIÓN	Fichero		R	ESIDUO	SÓLID	0	
volante	Na con.	SiO_2	Al_2O_3	zeo A	DRX		inter	nsidad DI	RX (cuer	ıtas/s)	
	%	g/kg	g/kg	g/kg		vidrio	cuarzo	mullita	zeo A	NaP1	herchelita
				No	aOH 2M/90°	C/6h					
Acid	42	47	< 0.1	142	J43-0237	375	42	36	6	122	<1
Alkaline	31	48	-	145	J43-0048	363	59	25	<1	118	<1
Ameer-8	31	61	< 0.1	185	J43-0239	294	42	18	<1	91	<1
Amer-9	32	76	< 0.1	230	J43-0240	336	88	29	6	131	<1
As Pontes	40	40	-	120	J43-0055	313	30	22	<1	92	<1
Barrios	33	42		128	J43-0049	404	17	74	<1	103	<1
ССВ	15	126	2	382	J43-0233	583	76	42	<1	<1	<1
Compostilla	30	38		116	J43-0047	458	35	15	27	<1	<1
Escucha	26	62		188	J43-0050	354	70	42	<1	91	<1
Espiel	30	27		82	J43-0046	446	8	<1	39	<1	12

Tabla 3.2. (Continuación).

Ceniza	RENDIM	1IENT	O EXTR	ACCIÓN	Fichero		R	ESIDUO	SÓLID	0	
volante	Na con.	SiO ₂	Al_2O_3	zeo A	DRX		inter	ısidad DI	RX (cue	ntas/s)	
	%	g/kg	g/kg	g/kg		vidrio	cuarzo	mullita	zeo A	NaP1	herchelita
				Na	OH 2M/90°C	'/6h					
Fusina	32	61	< 0.1	185	J43-0273	428	53	52	<1	116	<1
Hemweg	26	56	1	170	J43-0241	464	62	30	<1	98	<1
Lignite	24	1	6	3	J43-0242	252	49	<1	<1	<1	<1
Meirama	27	98		297	J43-0023	365	56	4	<1	79	<1
Montfalcone	29	99	< 0.1	300	J43-0274	373	38	100	<1	114	<1
Narcea	50	34		103	J43-0044	349	39	11	37	82	<1
Neutral	42	83	< 0.1	251	J43-0232	395	62	50	15	115	<1
Nijmegen	44	38	< 0.1	115	J43-0231	465	64	41	9	158	<1
Puertollano	30	124	-	376	J43-0057	610	74	31	<1	<1	<1
Robla	49	13	-	39	J43-0054	340	10	10	<1	82	<1
Sardegna	40	21	< 0.1	64	J43-0275	417	46	52	<1	103	<1
Soto Ribera	34	42	-	128	J43-0056	520	36	39	<1	100	<1
Teruel	37	40		122	J43-0045	279	52	15	<1	94	<1
				Na	OH 1M/90°C	1/6h					
Alkaline	28	14	0.5	42	J43-0092	463	57	20	<1	7	<1
As Pontes	29	17	0.5	51	J43-0089	410	19	26	<1	7	<1
Barrios	33	19	0.6	56	J43-0065	557	14	85	<1	<1	<1
Compostilla	31	12	0.7	37	J43-0087	578	35	6	<1	7	<1
Escucha	25	20	0.3	59	J43-0066	384	50	10	<1	18	<1
Espiel	27	6	2.3	17	J43-0069	635	13	10	<1	16	<1
La Robla	53	4	0.5	11	J43-0088	351	10	5	<1	52	<1
Meirama	45	51	0.1	154	J43-0067	390	39	5	<1	60	<1
Narcea	29	4	2.7	12	J43-0064	652	44	3	6	<1	<1
Puertollano	16	24	1.1	73	J43-0091	710	72	29	<1	<1	<1
Soto Ribera	21	10	1.5	29	J43-0090	550	28	24	<1	2	<1
Teruel	29	9	0.7	26	J43-0068	319	40	16	<1	16	<1
					OH 2M/90°C						
Alkaline	32	34	0.1	104	J43-0128	311	56	25	<1	142	<1
As Pontes	65	9	0.1	26	J43-0125	302	25	29	<1	140	<1
Barrios	49	29	0.1	88	J43-0118	395	15	79	<1	140	<1
Compostilla	51	38	0.1	114	J43-0123	414	33	14	19	140	<1
Escucha	47	67	0.1	204	J43-0119	382	99	47	<1	166	<1
Espiel	51	43	0.1	131	J43-0122	449	9	22	28	79	<1
La Robla	55	31	0.1	95	J43-0124	340	15	3	<1	145	<1
Meirama	41	84	0.1	257	J43-0120	339	41	5	<1	104	<1
Narcea	54	31	0.1	92	J43-0117	520	41	15	42	62	<1
Puertollano	36	140	0.3	425	J43-0127	426	85	30	<1	155	<1
Soto Ribera	50	48	0.1	145	J43-0126	392	47	39	<1	136	<1
Teruel	54	43	0.1	131	J43-0121	310	67	23	<1	160	<1

Estos resultados fueron obtenidos a partir de los ensayos realizados en una sola etapa extractiva, pero si al residuo sólido de la primera extracción, se aplica un segundo ataque, aumenta substancialmente la extracción de sílice. Durante esta segunda etapa de

extracción, las cenizas volantes de Neutral, Montfalcone, Espiel, Puertollano, Hemweg y CCB alcanzaron extracciones 36, 37, 40, 49, 54 y 81 g de SiO₂ por kg de ceniza volante (equivalente a 110, 112, 120, 148, 164 y 245 g de zeolita A por kg de ceniza volante respectivamente). Por tanto, si se suman los extractos obtenidos en las dos etapas, se obtienen valores de 110, 119, 136, 157, 178 y 207 g de SiO₂/kg para las cenizas de Hemweg, Neutral, Montfalcone, Meirama, Puertollano y CCB (equivalente a 333, 361, 412, 476, 540 y 627 g de zeolita A por kg de ceniza volante, respectivamente). En la Tabla 3.3 se exponen detalladamente estos resultados.

Tabla 3.3. Resultados de extracción de sílice en múltiples etapas con agitación continua. Condiciones fijadas en NaOH 2M, 90°C, 6h y 3 L/kg.

Ceniza	Etapa	RENDIM	IENTO E	EXTRAC	CIÓN	Fichero			RESIDU	O SÓLI	DO	
volante		Na con.	SiO_2	Al_2O_3	zeo A	DRX		inten	sidad DR	X (cuent	as/s)	
		%	g/kg	g/kg	g/kg		vidrio	cuarzo	mullita	zeo A	NaP1	herchelit
Acid	I	42	47	< 0.1	142	J43-0237	375	42	36	6	122	<1
	II	19	31	-	94	J43-0250	360	51	48	5	218	<1
Alkaline	I	31	48	-	145	J43-0048	363	59	25	<1	118	<1
	II	28	11	0.4	32	J43-0086	349	68	32	<1	154	<1
	III	20	11	0.7	33	J43-0115	341	94	26	<1	161	<1
Amer-8	I	31	61	< 0.1	185	J43-0239	294	42	18	<1	91	<1
	II	7	17	-	52	J43-0252	382	79	55	<1	153	<1
Amer-9	I	32	76	< 0.1	230	J43-0240	336	88	29	6	131	<1
	II	23	22	-	67	J43-0253	356	87	48	4	180	<1
As Pontes	I	40	40	-	120	J43-0055	313	30	22	<1	92	<1
	II	4	13	0.5	40	J43-0084	273	36	30	<1	128	<1
	III	12	6	1	19	J43-0112	300	37	38	<1	145	<1
Barrios	I	33	42		128	J43-0049	404	17	74	<1	103	<1
	II	24	9	0.5	27	J43-0059	420	25	84	<1	137	<1
	III	2	5	1.1	15	J43-0105	402	20	95	<1	133	<1
CCB	I	15	126	2	382	J43-0233	583	76	42	<1	<1	<1
	II	23	81	-	245	J43-0249	420	119	69	<1	201	<1
Compostill	I	30	38		116	J43-0047	458	35	15	27	<1	<1
	II	35	31	0.3	95	J43-0082	362	35	< 0.3	35	131	<1
	III	15	15	0.5	46	J43-0110	369	40	17	48	177	<1
Escucha	I	26	62		188	J43-0050	354	70	42	<1	91	<1
	II	19	33	0.4	99	J43-0060	374	93	50	<1	168	<1
	III	7	14	0.6	42	J43-0106	347	79	46	<1	180	<1
Espiel	I	30	27		82	J43-0046	446	8	< 0.3	39	<1	12
	II	35	40	0.4	120	J43-0063	534	14	19	49	127	<1
	III	15	29	0.4	88	J43-0109	332	12	32	52	185	<1
Fusina	I	32	61	< 0.1	185	J43-0273	428	53	52	<1	116	<1
	II	8	14	< 0.1	42	J43-0284	404	64	65	<1	157	<1

Tabla 3.3. (Continuación).

Ceniza	Etapa	RENDIM	IIENTO I	EXTRAC	CIÓN	Fichero			RESIDU	O SÓLI	DO	
volante		Na con.	SiO_2	Al_2O_3	zeo A	DRX		inten	sidad DR	X (cuen	tas/s)	
		%	g/kg	g/kg	g/kg		vidrio	cuarzo	mullita	zeo A	NaP1	herchelit
Hemweg	I	26	56	1	170	J43-0241	464	62	30	<1	98	<1
	II	25	54	-	164	J43-0254	313	71	37	<1	211	<1
Lignite	I	24	1	6	3	J43-0242	252	49	< 0.3	<1	<1	<1
	II	6	2	-	6	J43-0272	319	57	< 0.3	<1	<1	<1
Meirama	I	27	98		297	J43-0023	365	56	4	<1	79	<1
	II	20	50		152	J43-0061	371	44	2	<1	114	<1
	III	4	9	0.7	27	J43-0107	369	35	3	<1	113	<1
Montfalcon	I	29	99	< 0.1	300	J43-0274	373	38	100	<1	114	<1
	II	12	37	< 0.1	112	J43-0285	328	31	121	<1	175	<1
Narcea	I	50	34		103	J43-0044	349	39	11	37	82	<1
	II	33	22	0.4	66	J43-0058	394	46	19	23	160	<1
	III	14	13	0.6	38	J43-0104	375	42	5	40	177	<1
Neutral	I	42	83	< 0.1	251	J43-0232	395	62	50	15	115	<1
	II	12	36	-	109	J43-0248	255	22	23	6	129	<1
Nijmegen	I	44	38	< 0.1	115	J43-0231	465	64	41	9	158	<1
	II	7	20	-	61	J43-0247	404	52	48	<1	209	<1
Puertollano	I	30	124	-	376	J43-0057	610	74	31	<1	<1	<1
	II	64	49	0.1	148	J43-0116	450	82	34	<1	156	<1
	III	25	5	0.3	16	J43-0114	370	85	45	<1	247	<1
Robla	Ι	49	13	-	39	J43-0054	340	10	10	<1	82	<1
	II	14	12	0.7	35	J43-0083	298	13	8	<1	123	<1
	III	15	6	1.5	18	J43-0111	359	10	6	<1	142	<1
Sardegna	I	40	21	< 0.1	64	J43-0275	417	46	52	<1	103	<1
	II	7	20	-	61	J43-0286	404	32	58	<1	140	<1
Soto Rib.	I	34	42	-	128	J43-0056	520	36	39	<1	100	<1
	II	18	36	0.3	109	J43-0085	321	28	28	<1	160	<1
	III	18	12	0.6	37	J43-0113	371	37	40	<1	230	<1
Teruel	I	37	40		122	J43-0045	279	52	15	<1	94	<1
	II	26	24	0.5	73	J43-0062	304	66	23	<1	166	<1
	III	10	13	0.6	38	J43-0108	264	45	20	<1	171	<1

Contrariamente, con las cenizas de Lignite, Los Barrios, Alkaline, Robla, As Pontes, Fusina y Amer-8 se obtuvieron extracciones extremadamente bajas (< 20 g SiO₂ /kg ceniza volante) en el segundo ataque. Pero los análisis del residuo sólido demuestran que, exceptuando la ceniza de Lignite, los bajos rendimientos de extracción de sílice se deben a la extracción simultanea de sílice y alúmina y su co-precipitación en la síntesis de zeolitas tipo A y/o herschelita y/o NaP1. Consecuentemente, en estos casos, la extracción de sílice esta limitada por la extracción simultánea de alúmina.

El resto de cenizas volantes (Sardegna, Nijmegen, Narcea, Amer-9, Teruel, Meirama, Acid, Compostilla Escucha y S. de Ribera) presentan extracciones de sílice relativamente

bajas en la segunda etapa (de 20 a 36 g SiO₂ /kg ceniza, equivalente a 60 - 109 g de zeolita A / kg). En estos casos, también tiene lugar la síntesis de NaP1 en el residuo sólido.

Como muestra la Tabla 3.3, en la segunda etapa de extracción, la mayoría de las cenizas volantes presentaron una elevada extracción de sílice. En cambio, en las cenizas volantes que se les aplicó un tercer ataque, no mostraron una importante contribución en la extracción de sílice. Por tanto, la tercera etapa ya no se realizó en el resto de cenizas volantes. Así pues, esta tercera etapa solamente contribuía en el aumento del contenido en zeolita del residuo sólido.

En algunas cenizas volantes, tiene lugar la síntesis de zeolitas (A/NaP1/herschelita) durante la primera etapa de extracción. En tal caso, el contenido de NaP1 en el residuo sólido es aproximadamente entre 1 y 40 % en la primera etapa, pero aumenta considerablemente en la segunda y la tercera etapa de extracción (entre 40 y 63 %). Las únicas cenizas volantes que no muestran cristalización de zeolita NaP1 durante la primera etapa son, Lignite, Espiel, Puertollano, Compostilla y CCB .

Las cenizas volantes de Espiel y Compostilla mostraron una ligera extracción de sílice en la primera etapa con precipitación de zeolita A (< 20 % en el residuo sólido). Durante la segunda etapa se obtuvo una elevada extracción de sílice acompañada con altas concentraciones de zeolita NaP1 en el residuo sólido (43%). Esto implica que en la segunda etapa se disuelve una gran proporción de sílice, pero ésta precipita parcialmente debido a la presencia de alúmina en el lixiviado. En cambio, el mismo experimento para 9 h en una sola etapa, no dio lugar a altos rendimientos de extracción de sílice.

La ceniza volante de CCB presentó la extracción de sílice más alta en la primera etapa a 6h (126 g SiO_2 / kg de ceniza) sin precipitación de zeolita NaP1 en el residuo (Tabla 3.3). Pero en la segunda etapa, apareció un alto contenido de NaP1 en el residuo (48 %) y una concentración de sílice menor en el lixiviado (81g SiO_2 / kg de ceniza) debido a la gran disolución de sílice y alúmina y co-precipitation en forma de NaP1.

La ceniza de Puertollano presentó una elevada extracción de sílice en la primera etapa (124 g SiO₂/kg de ceniza volante) sin precipitación de NaP1, debido a una elevada disolución de sílice sin extracción de alúmina (Tabla 3.3). Pero en la segunda etapa de extracción se alcanzaron contenidos de NaP1 relativamente altos (45%) en el residuo y una baja extracción de sílice (49 g SiO₂ / kg de ceniza volante). En el mismo experimento para 9 h en una sola etapa se alcanzó 140 g SiO₂ / kg de ceniza volante conjuntamente con una elevada precipitación de NaP1 (49 % en peso en el residuo, Tabla 3.2).

Tal y como se ha constatado anteriormente, el resto de cenizas volantes presentaron contenidos de NaP1 relativamente altos desde la primera etapa. Por tanto, parece ser que aunque tenga lugar una disolución simultánea de sílice y alúmina, existe un exceso de sílice respecto a la alúmina, que permite la extracción de sílice. El contenido en zeolita del residuo sólido durante la primera etapa estuvo alrededor entre 1 y 40 % para todas las cenizas volantes. En cambio, en la segunda etapa, el contenido en NaP1 en el residuo sólido aumento considerablemente, alrededor del 60 % para Nijmegen, Acid y Hemweg, un 50 % en Narcea, Escucha, Teruel, Soto Ribera, Alkaline, Amer-8 y Amer 9, y un 40 % en las cenizas volantes de Barrios, Meirama, La Robla, As Pontes y Neutral. Consecuentemente, estos resultados indican que en la segunda etapa de extracción, todavía se produce disolución de sílice, pero ésta es simultánea a la disolución de alúmina que limita la extracción de sílice y la precipitación de zeolita. Finalmente en la tercera etapa, la mayoría de cenizas volantes presentaron un contenido en zeolita entre el 60 y 75 % en el residuo sólido, pero los rendimientos de extracción de sílice disminuyeron considerablemente con respecto a las primeras etapas (Tabla 3.3).

A partir de todos estos resultados se puede concluir que:

- □ En una sola etapa, a 90°C, 9 h, 2 M NaOH, relación 1/s = 3L/kg, la ceniza de Puertollano alcanzó un rendimiento de extracción de sílice de 140 g SiO₂ / kg de ceniza volante (equivalente a 425 g zeolita A/kg ceniza) conjuntamente con una elevada precipitación de NaP1 en el residuo de extracción (50 %, Tabla 3.2).
- □ Con dos etapas de extracción de sílice, a 90°C, 6 h, 2 M NaOH, pueden extraerse entre 110 a 207 g SiO₂ / kg ceniza (equivalente a 333-627 g zeolita A / kg ceniza volante) para las cenizas de volantes de CCB, Hemweg, Meirama, Montfalcone, Neutral y Puertollano. Además, los residuos sólidos de estos experimentos muestran unos contenidos del 60-75 % de zeolita NaP1, mezclada con restos de ceniza volante no convertida (principalmente mullita, cuarzo, magnetita y óxidos de calcio).
- □ Cabe mencionar la limitación que presenta la ceniza volante de Puertollano, para la extracción de sílice y síntesis de zeolita en un solo proceso, debido a los elevados contenidos que presentan en Pb, Zn, Ba, Sr, V y otros metales pesados. Estos metales se encuentran en el residuo de extracción y limitarán cualquier tipo de utilización del mismo.

3.2.1.2. Extracción de SiO₂ con condiciones óptimas para la conversión directa

Tal y como se ha descrito anteriormente, la optimización de la extracción de sílice y la conversión directa para obtener materiales zeolíticos, puede tener lugar en un mismo proceso. Así pues, utilizando condiciones de extracción óptimas para de conversión

directa, se ha intentado disolver completamente todas las fases de Si y Al, tanto las vítreas como cristalinas. Esto da lugar a un alto contenido de zeolita en el residuo y, a su vez, el extracto de sílice se puede convertir en zeolita pura mediante la combinación con aluminato sódico. Los resultados preliminares sobre la optimización del proceso de conversión directa encaminados a obtener la máxima extracción de sílice se esquematizan en la Tabla 3.4.

Tabla 3.4. Resultados de los ensayos de extracción de SiO_2 mediante el método de conversión directa en zeolita, en sistema cerrado y sin agitación.

Ceniza	RENDIM	IENTO E	XTRAC	CIÓN	Fichero	RESID	UO SÓL	IDO Inter	nsidad D	RX (cu	entas/s)
volante	Na con.	SiO ₂	Al ₂ O ₃	zeo A	DRX	vidrio	cuarzo	mullita	zeo A	NaP1	herchelita
voianie	%	g/kg	g/kg	g/kg							
			A) Na	aOH 1M	I 150 °C 24	h y r (l/s) =	18 L/kg				
Barrios	31	3	47.4	10	J43-0071	381	<1	<1	<1	221	<1
Compostilla	20	60	3.2	181	J43-0075	295	<1	13	<1	209	4
Espiel	18	71	2.7	216	J43-0072	403	<1	10	<1	154	150
Meirama	25	69	2.9	208	J43-0073	330	<1	<1	<1	172	<1
Narcea	23	65	2.7	197	J43-0070	398	<1	9	<1	270	<1
Teruel	11	80	2.2	241	J43-0074	280	<1	28	<1	174	<1
			B) N	NaOH 3	M 200 °C 3	h y r (l/s) =	2 L/kg				
Barrios	64	1	1.2	4	J43-0078	383	8	91	<1	138	<1
Narcea	41	6	0.8	19	J43-0076	564	40	7	<1	1	27
'			C) N	NaOH 2	M 200 °C 3	$\mathbf{h} \mathbf{y} \mathbf{r} (\mathbf{l/s}) =$	2 L/kg				
Barrios	66	1	1.1	4	J43-0079	420	8	66	<1	143	<1
Narcea	44	2	0.7	6	J43-0077	407	36	7	<1	<1	28
'			D) N	aOH 2N	A 200 °C 24	h y r (l/s)=	2 L/kg				
Barrios	86	0	2.1	1	J43-0130	400	9	37	<1	202	<1
Escucha	86	5	0.1	16	J43-0131	318	27	<1	<1	34	15
Espiel	73	5	0.3	14	J43-0134	460	9	8	<1	<1	62
Meirama	88	3	0.0	10	J43-0132	236	0	<1	<1	72	<1
Narcea	81	6	0.2	18	J43-0129	422	22	<1	<1	<1	144
Teruel	87	4	0.1	12	J43-0133	333	26	<1	<1	89	<1
'			E) N	aOH 3	M 125 °C 8	h y r (l/s)=	2 L/kg				
Acid	36	17	0.5	52	J43-0345	255	25	22	<1	16	45
Alkaline	33	16	0.5	49	J43-0341	178	30	18	<1	17	33
Ameer-8	30	31	0.4	94	J43-0346	227	18	39	<1	3	62
Amer-9	29	33	0.5	99	J43-0347	247	44	28	<1	3	60
As Pontes	47	10	24.5	29	J43-0339	175	16	13	<1	61	5
Barrios	28	7	1.3	22	J43-0332	192	9	46	<1	77	<1
ССВ	22	37	1.6	111	J43-0344	346	52	35	<1	<1	<1
Compostilla	31	14	0.7	42	J43-0337	268	18	3	<1	25	14
Escucha	26	20	0.9	61	J43-0333	231	42	25	<1	3	3
Espiel	26	10	1.2	32	J43-0336	274	7	6	<1	<1	19
Fusina	29	22	0.7	67	J43-0350	251	34	30	<1	7	18
Hemweg	30	34	0.3	102	J43-0348	223	27	18	<1	48	28

Tabla 3.4. (Continuación).

Ceniza	RENDIMI	ENTO E	XTRAC	CIÓN		RESID	UO SÓL	IDO Inter			
volante	Na con.	SiO ₂	Al ₂ O ₃	zeo A	DRX	vidrio	cuarzo	mullita	zeo A	NaP1	herchelita
Volante	%	g/kg	g/kg	g/kg	fichero						
Lignite	22	1	4.8	2	J43-0349	122	24	0	<1	<1	<1
Meirama	33	18	0.4	56	J43-0334	203	18	4	<1	40	<1
Montfalcone	26	8	1.0	25	J43-0351	276	19	53	<1	<1	<1
Narcea	25	11	0.9	32	J43-0331	263	22	3	<1	<1	39
Neutral	35	23	0.5	70	J43-0343	247	33	29	<1	15	11
Nijmegen	39	16	0.3	48	J43-0342	225	21	27	<1	10	73
Puertollano	20	44	2.0	133	J43-0340	272	39	21	<1	<1	<1
Robla	28	5	1.0	14	J43-0338	248	6	3	<1	0	4
Sardegna	21	31	2.1	93	J43-0352	221	17	30	<1	74	<1
Teruel	30	13	0.7	39	J43-0335	212	26	13	<1	15	23
			G) Na	aOH 1.3	M 175 °C	6h y r (l/s)	=2 L/kg				
CCB	27	27	0.3	81	J43-0301	331	45	34	<1	9	<1
Compostilla	48	6	0.4	19	J43-0300	262	19	3	<1	9	<1
Meirama	43	18	0.0	54	J43-0304	209	22	2	<1	18	<1
Montfalcone	28	26	0.3	78	J43-0303	277	24	53	<1	3	<1
Narcea	38	9	0.4	28	J43-0299	305	27	3	<1	18	<1
Neutral	34	14	0.3	42	J43-0302	285	37	35	<1	4	<1
'			H) Na	OH 1.3	M 125 °C 1	0h y r (l/s)	=2 L/kg				
CCB	19	22	0.8	66	J43-0307	278	47	38	<1	<1	<1
Compostilla	35	9	0.8	27	J43-0306	281	24	8	<1	44	18
Meirama	32	18	0.2	54	J43-0310	209	19	2	<1	8	<1
Montfalcone	21	28	0.7	84	J43-0309	254	20	48	<1	2	2
Narcea	32	8	1.0	25	J43-0305	287	29	7	<1	10	8
Neutral	30	19	0.7	59	J43-0308	241	36	32	<1	13	<1
·			I) Na	OH 2.8	M 125 °C (6h y r (l/s)=	=2 L/kg				
CCB	26	25	1.7	77	J43-0313	315	56	38	<1	<1	<1
Compostilla	28	13	0.8	39	J43-0312	286	20	6	<1	2	31
Meirama	33	26	0.6	78	J43-0316	233	18	4	<1	11	<1
Montfalcone	22	28	1.5	85	J43-0315	254	22	51	<1	<1	<1
Narcea	31	12	0.9	36	J43-0311	150	12	<1	<1	<1	25
Neutral	30	24	0.9	72	J43-0314	248	33	47	<1	<1	3
			J) Na	OH 2.8	M 175 °C 1	0h y r (l/s)	=2 L/kg				
CCB	47	43	0.4	129	J43-0319	264	32	32	<1	2	63
Compostilla	42	14	0.4	43	J43-0318	239	22	7	<1	17	52
Meirama	48	28	0.2	85	J43-0322	195	4	<1	<1	57	<1
Montfalcone	42	26	0.5	79	J43-0321	221	8	50	<1	55	<1
Narcea	35	16	0.5	47	J43-0317	284	27	3	<1	<1	37
Neutral	48	24	0.3	72	J43-0320	269	6	18	<1	16	<1

Estos resultados demostraron que, aunque en el residuo se han obtenido altos contenidos de zeolita, los rendimientos de extracción de sílice son muy bajos (<25 g SiO₂/kg) para la mayoría de condiciones experimentales, con la excepción de los ensayos realizados a 150° C, 1 M, 24 h, 18 L/kg. Utilizando estas condiciones experimentales, en el residuo se obtuvieron altos contenidos en NaP1 (hasta 75 % para Narcea) conjuntamente con una extracción de sílice de alrededor 65 g SiO₂/kg. Por tanto, como se mostrará más adelante, el estudio sobre conversión directa se centró en la optimización de este método, reduciendo el consumo de agua y tiempo de activación.

3.2.2. Optimización de los parámetros de extracción

A partir de los resultados obtenidos en las pruebas preliminares sobre extracción de sílice para todas las muestras, y la comparación de éstas con los resultados de caracterización, se seleccionaron cinco cenizas volantes para el estudio de la optimización de extracción de sílice. Las cenizas volantes seleccionadas fueron: Alkaline, Meirama, Montfalcone, Puertollano y Neutral. Los criterios de selección se expusieron ya en las conclusiones del capítulo de caracterización.

La optimización de extracción de sílice de las cenizas volantes seleccionadas se centró en la determinación de las mejores condiciones (tiempo, temperatura, concentración, solución extractante, relación l/s y tratamientos previos) a las que deben someterse las muestras para lograr la máxima extracción. Por consiguiente, los siguientes apartados la optimización de los rendimientos de extracción de sílice se expondrán en función de estos parámetros.

3.2.2.1. <u>Tiempo de extracción</u>

Los resultados mostraron que los valores absolutos de los rendimientos de extracción de sílice y los tiempos idóneos variaban ampliamente en función de la ceniza volante estudiada. Tal y como cabía esperar de los resultados anteriores, las extracciones más bajas se obtuvieron para la ceniza volante de Alkaline (<60 g SiO₂/kg para todos los tiempos de reacción), mientras que la ceniza de Puertollano alcanzó los valores más altos (150 g SiO₂/kg, potencialmente equivalente a 457 g de zeolita A/kg, Tabla 3.5 y Figura 3.6). La extracción de alúmina alcanzó valores muy bajos (<2.0 g Al₂O₃/kg), probablemente debido a la rápida precipitación en forma de material zeolítico. El consumo de Na y los datos de DRX (Tabla 3.5 y Figura 3.7 y 3.8) muestran que el residuo de extracción presentaba un contenido de zeolita entre 20 % (Meirama) y 40 % (Puertollano y Neutral).

Tabla 3.5. Extracción de SiO_2 en reactor 4843 Parr, con agitación mecánica en continuo y relación solución de 2M NaOH / ceniza volante = 3 L/kg a 90 °C.

		RENDI	MIENTO	EXTRA	CCIÓN	R	ESIDUO S	ÓLIDO	semici	ıantitati	vo (%)
	Tiempo (h)	Na con.	SiO_2	Al_2O_3	Zeo A	DRX	vidrio	cuarzo	mullita		ópalo
		%	g/kg	g/kg	g/kg	fichero					
Alkaline						J43-0044	63	11	20	<1	<1
17.4.1	0.5	1	13	3.3	40	J43-0445	63	11	20	<1	<1
17.4.2	1	3	18	2.3	53	J43-0446	62	11	20	<1	<1
17.4.3	2	4	24	1.5	72	J43-0447	58	14	18	13	<1
17.4.4	3	11	38	0.4	114	J43-0448	52	13	18	19	<1
17.4.5	4	22	49	0.2	148	J43-0449	49	12	18	19	<1
17.4.6	5	25	51	0.2	154	J43-0450	50	10	18	23	<1
17.4.7	6	26	48	0.1	146	J43-0451	48	12	17	26	<1
17.4.8	7	31	42	0.1	128	J43-0452	46	10	16	26	<1
17.4.9 17.4.10	8 9	30 32	38 34	0.1 0.1	116	J43-0453 J43-0454	44 42	9 9	16 16	29 29	<1 <1
17.4.10	24	36 36	13	0.1	104 39	J43-0454 J43-0455	42	6	16	30	
Meirama		30	13	0.1	39	J43-0433	63	7	20	<1	<1 5
17.1.1	0.5	17	66	_	202	J43-0432 J43-0433	63	7	20	<1	3
17.1.2	1	16	74	1.0	224	J43-0434	62	7	20	<1	2
17.1.3	2	23	83	0.4	251	J43-0435	56	7	20	11	2
17.1.4	3	30	99	0.2	300	J43-0436	56	7	20	12	2
17.1.5	4	34	111	0.2	335	J43-0437	53	7	20	15	1
17.1.6	5	38	104	0.1	315	J43-0438	50	7	16	17	1
17.1.7	6	39	98	0.1	299	J43-0439	48	7	16	20	1
17.1.8	7	40	94	0.1	286	J43-0440	48	6	16	21	1
17.1.9	8	40	91	0.1	277	J43-0441	48	6	12	21	1
17.1.10	9	41	84	0.1	257	J43-0442	48	6	12	21	1
17.1.11	24	51	41	0.1	125	J43-0443	45	6	12	21	1
Montfalco						J43-0409	73	3	26		1
17.2.1	0.5	20	16	-	47	J43-0410	68	3	25		0.5
17.2.2	1	16	47	-	142	J43-0411	68	3	23		<1
17.2.3	2	20	75	1.5	229	J43-0412	62	3	25		<1
17.2.4	3	21	91	1.3	277	J43-0413	52	3	23		<1
17.2.5	4	23	98	0.9	298	J43-0414	61	3	27		<1
17.2.6 17.2.7	5	27	97	0.5	295 306	J43-0415	52	3	25		<1 <1
	24	45	101	0.1	300	J43-0416 J43-0476	43 80	7	22 11		
Neutral 17.5.1	0.5	2	9	_	27	J43-0470 J43-0477		7	10		<1 <1
17.5.1	1	10	11	-	33	J43-0477		7	8		<1
17.5.3	2	12	16	_	48	J43-0479		7	8		<1
17.5.4	3	23	34	_	103	J43-0480		7	8		<1
17.5.5	4	29	56	-	170	J43-0481	64	6	8		<1
17.5.6	5	33	73	-	221	J43-0482		6	8		<1
17.5.7	6	35	83	-	251	J43-0483		6	8		<1
17.5.8	7	40	87	-	264	J43-0484	54	6	8		<1
17.5.9	8	39	92	-	279	J43-0485	49	6	8	38	<1
17.5.10	9	41	99	-	300	J43-0486	51	6	9	38	<1
17.5.11	24	45	101	-	306	J43-0487	54	4	7	38	<1

Tabla 3.5. (Continuación).

		RENDI	MIENT	O EXTRA	CCIÓN	RE	SIDUO S	ÓLIDO	semicu	antitati	vo (%)
	Tiempo (h)	Na con.	SiO_2	Al_2O_3	Zeo A	DRX	vidrio	cuarzo	mullita	NaP1	ópalo
		%	g/kg	g/kg	g/kg	fichero					
Puertolle	ano					J43-0417	65	10	21	<1	<1
17.3.1	0.5	11	24	2.2	73	J43-0418	63	10	20	<1	<1
17.3.2	1	15	51	1.4	156	J43-0419	63	10	19	<1	<1
17.3.3	2	18	78	1.4	238	J43-0420	63	10	19	<1	<1
17.3.4	3	22	98	1.6	297	J43-0421	52	10	19	<1	<1
17.3.5	4	23	112	1.6	339	J43-0422	58	10	19	<1	<1
17.3.6	5	24	122	1.5	372	J43-0423	57	9	19	<1	<1
17.3.7	6	26	124	1.5	376	J43-0426	57	9	19	<1	<1
17.3.8	7	29	133	1.0	405	J43-0427	55	9	19	<1	<1
17.3.9	8	32	133	0.4	404	J43-0428	43	8	10	30	<1
17.3.10	9	36	140	0.3	427	J43-0429	44	7	14	32	<1
17.3.11	10	39	143	-	435	J43-0430	40	7	14	43	<1
17.3.12	24	45	150	0.1	457	J43-0431	37	5	14	47	<1

Los resultados más sorprendentes fueron las diferencias temporales para alcanzar la máxima extracción de SiO_2 y la síntesis de zeolita obtenida a partir de las diferentes cenizas volantes. El análisis de las muestras que se recogieron cada hora, durante las 10 primeras horas y a las 24 h de reacción (Tabla 3.5 y Figuras 3.6, 3.7 y 3.8), nos permiten concluir los siguientes resultados:

- ☐ Los tiempos óptimos de extracción variaron en función del tipo de ceniza, como se muestra a continuación:
 - Para las cenizas volantes de Meirama y Montfalcone 4 h. La ceniza de Meirama alcanzó el máximo rendimiento de extracción (111 g SiO₂/kg) en 4 h, seguido de un progresivo decrecimiento, paralelo a un incremento en la formación de zeolita NaP1 en el residuo sólido. En cambio, los rendimientos de extracción para la ceniza volante de Montfalcone aumentaban con el tiempo hasta las 24 h de reacción. Sin embargo, en las 19 últimas horas de reacción el incremento fue muy lento y el rendimiento de extracción incrementó solamente en 10 g SiO₂/kg. Por tanto, se consideró que el tiempo óptimo para Montfalcone eran 4 h, en las cuales se alcanzaron 98 g SiO₂/kg (Tabla 3.5 y Figura 3.6).
 - La ceniza de Alkaline alcanzó el máximo rendimiento de extracción (51 g SiO₂/kg) en 5 h. A partir de la 5ª hora la cristalización de zeolita NaP1 en el residuo sólido provocaba una disminución considerable de los rendimientos de extracción. De manera que, la extracción de sílice a las 24 h, solamente alcanzaba el 25% del obtenido en la 5ª hora. (Tabla 3.5 y Figura 3.6)

Las cenizas volantes de Neutral y Puertollano mostraron una evolución temporal similar a la ceniza de Montfalcone, pero para estas cenizas el tiempo de reacción óptimo para obtener un buen rendimiento de extracción (99 y 140 SiO₂/kg para las cenizas de Neutral y Puertollano, respectivamente) era 9 h (Tabla 3.5 y Figura 3.6).

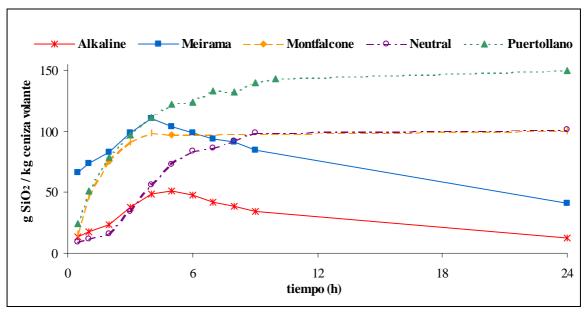


Figura 3.6. Rendimientos de extracción de SiO_2 obtenidos para las diferentes cenizas en función del tiempo. Experimentos realizados con una relación l/s = 3L/kg, 2M NaOH a 90 °C.

- □ Los rendimientos de extracción de alúmina eran extremadamente bajos (<3.5 g Al₂O₃/kg). En todos los casos, los niveles más altos de Al₂O₃ aparecían en la primera extracción, y disminuían rápidamente durante el transcurso de la reacción (Tabla 3.5).
- □ Los resultados evidenciaron que la mayor fase disuelta en los experimentos de extracción era la matriz vítrea (Tabla 3.5). Además, la fase de sílice opalina se disolvía progresivamente a lo largo de la reacción en la ceniza volante de Meirama. En menor proporción, se disolvían también, proporciones de cuarzo y mullita en todas las cenizas, principalmente en las últimas estapas de la reacción.
- □ A partir de las primeras horas de reacción ya se consume el 15% de la dosis original de Na, probablemente debido a la formación de un gel de Na-Si-Al, precursor a la cristalización de zeolita NaP1. Este consumo de Na aumenta progresivamente hasta la cristalización, y a partir de aquí, incrementa, consumiendo alrededor de un 50% de la dosificación inicial (Tabla 3.5 y Figura 3.7 y 3.8).

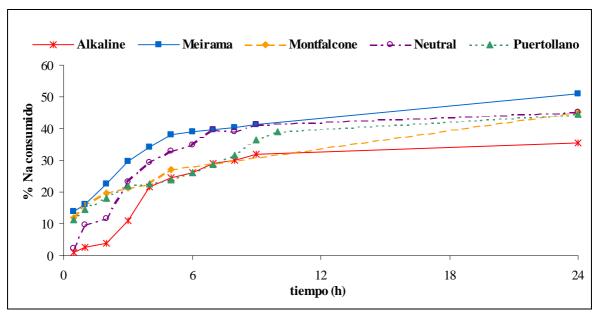


Figura 3.7. Consumo de Na (% con respecto al original, e indicativo de la precipitación de zeolitas en el residuo sólido) para las diferentes cenizas en función del tiempo.

Experimentos realizados con una relación l/s = 3 L/kg, 2 M NaOH a 90 °C.

- □ La extracción continuada de SiO₂ y Al₂O₃ induce la formación de un gel sódico que posteriormente cristaliza en forma de zeolita (Figura 3.8). El contenido de zeolita incrementa en el residuo de extracción con el tiempo dependiendo del tipo de ceniza:
 - En la ceniza volante de Meirama, a partir de la 1^a 2^a hora ya se observan trazas de zeolita NaP1, permaneciendo prácticamente constante a partir de la 4^a hora.
 - En el residuo sólido de la ceniza de Montfalcone, la síntesis de NaP1 comienza a la 5ª hora de reacción.
 - En la ceniza de Puertollano, la zeolita NaP1 no aparece hasta la 8ª hora de extracción.
 - Finalmente, la formación de NaP1 en las cenizas de Alkaline y Neutral, aparece en la 2ª y 3ª hora de reacción, respectivamente.

En base a estos resultados, parece adecuado fijar los tiempos óptimos siguientes para cada ceniza volante en:

□ Las cenizas volantes de Montfalcone y Meirama, obtienen valores relativamente elevados de extracción de sílice en tan solo 4 h (98-111 g SiO₂/kg ceniza, potencialmente equivalente a 298-335 g zeolita A/kg ceniza) y con un residuo sólido con un contenido del 20% en zeolita NaP1.

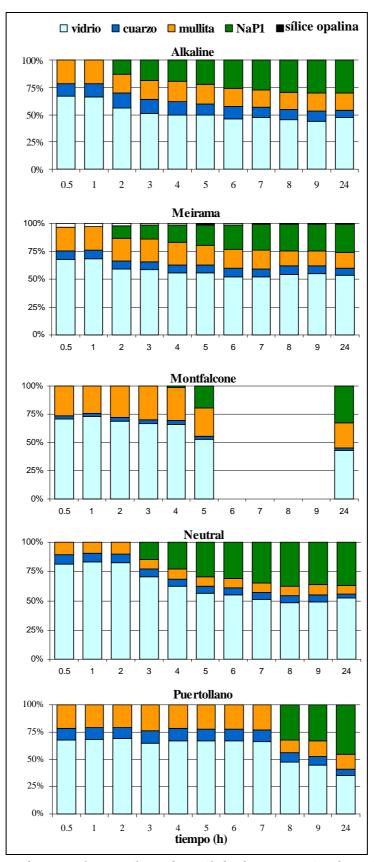


Figura 3.8. Contenido en zeolita en el residuo sólido de extracción obtenido a partir de los análisis semi-cuantitativos de DRX para las diferentes cenizas en función del tiempo.

- □ La ceniza volante de Alkaline es la que presentó los niveles más bajos de extracción de sílice, alcanzando su máximo a las 5 h (51 g SiO₂/kg ceniza, potencialmente equivalente a 158 g zeolita A/kg ceniza), con un contenido en zeolita en el residuo sólido alrededor del 23 % de NaP1.
- □ Contrariamente, en la 9ª h de reacción de la ceniza volante de Puertollano se puede obtener una elevada extracción de sílice (140 g SiO₂/kg ceniza, potencialmente equivalente a 425 g zeolita A/kg ceniza) acoplado a un elevado contenido en la zeolita NaP1 en el residuo sólido (32%).
- □ A partir de la ceniza volante de Neutral se puede alcanzar una extracción de 99 g SiO₂/kg (potencialmente equivalente a 300 g zeolita A/kg ceniza) y un elevado contenido en zeolita NaP1 en el residuo sólido (40 %) en 9 h.

3.2.2.2. <u>Temperatura</u>

Los experimentos encaminados a optimizar la temperatura en los procesos de extracción de sílice se realizaron a 50, 70, 90, 120 y 150 °C. Estas experimentaciones se efectuaron aplicando una solución de NaOH a una concentración 2M, una relación l/s = 3 L/kg, y el tiempo óptimo de reacción determinado para cada ceniza volante (4 h para Meirama y Montfalcone, 5 h para Alkaline y 9 h para Puertollano y Neutral). La Tabla 3.6 y la Figura 3.9 resumen los rendimientos de extracción de sílice obtenidos en función de la temperatura.

Todas las cenizas volantes mostraron que los contenidos de sílice en los lixiviados aumentaban con la temperatura, hasta los 120 °C. Si se aplicaban temperaturas > 120 °C, la extracción de sílice disminuía en la mayoría de los casos. Únicamente, la ceniza volante de Alkaline mostraba resultados similares a 120 y 150 °C (Tabla 3.6 y la Figura 3.9).

Así pues, los rendimientos de extracción de sílice a 120 °C alcanzaron valores de 105, 125, 156 y 194 g SiO₂/kg para las cenizas volantes de Neutral, Meirama, Montfalcone y Puertollano, respectivamente. Contrariamente, la ceniza volante de Alkaline mostró resultados mucho más bajos y similares a 120 y 150 °C. Sin embargo, el resto de cenizas, presentaban una disminución considerable de los rendimientos de sílice a 150 °C con respecto a 120 °C.

Asimismo, los análisis del residuo sólido de la extracción mostraron que al aumentar la temperatura, se veía favorecida la formación de zeolita (20 - 50 % NaP1, ver Figura 3.10). De manera que, por debajo de los 90 °C, no se producía formación de zeolita en ningún caso, exceptuando la ceniza de Neutral, que contenía trazas de NaP1 a 70 °C. Del mismo modo, a partir de 120 °C, en algunos casos, disminuían los contenidos en NaP1 en el

residuo sólido, debido a la cristalización de otras fases zeolíticas, tales como, herschelita o cancrinita (Tabla 3.6 y Figura 3.10).

Tabla 3.6. Resultados de la extracción de SiO₂ en función de la temperatura. Condiciones de extracción: 2M NaOH, relación l/s = 3 L/kg, y tiempos optimizados para cada ceniza volante. Zeo A, zeolita A; hersch, herschelita; canc, cancrinita.

T	R	ENDIN	IIENTO		RESID	UO SÓL	IDO	I	ntensidad	DRX (cı	ientas/s)	
(°C)	Na con.	SiO ₂	Al ₂ O ₃	zeo A	DRX	vidrio	cuarzo	mullita	zeo A	NaP1	hersch	canc
	%	g/kg	g/kg	g/kg	fichero							
	I.				A	lkaline 5	h					
50	7	12	6.0	37	J43-0511	236	40	21	<1	<1	<1	<1
70	24	25	1.2	76	J43-0516	226	39	20	3	<1	<1	<1
90	25	51	0.2	154	J43-0450	220	38	18	<1	23	<1	<1
120	30	55	0.5	165	J43-0597	214	40	30	<1	37	<1	<1
150	34	52	0.1	156	J43-0589	200	26	13	<1	44	12	<1
	•				M	eirama 4	h					
50	13	39	2.1	118	J43-0508	194	27	4	<1	<1	<1	<1
70	17	59	1.9	177	J43-0513	180	27	3	<1	<1	<1	<1
90	34	111	0.2	333	J43-0437	185	27	3	<1	15	<1	<1
120	26	125	0.2	374	J43-0523	193	13	5	<1	61	<1	<1
150	36	117	< 0.1	351	J43-0590	192	17	3	<1	45	<1	6
	•				Mor	ntfalcone	4h					
50	7	15	5.9	46	J43-0509	298	22	66	<1	<1	<1	<1
70	8	52	2.7	156	J43-0514	298	22	66	<1	<1	<1	<1
90	23	98	0.0	294	J43-0414	278	23	65	<1	1	<1	<1
120	30	156	0.3	468	J43-0524	190	20	70	<1	82	<1	<1
150	39	114	0.1	342	J43-0591	190	13	54	<1	84	<1	<1
	•			•	N	eutral 91	1					
50	13	11	7.7	32	J43-0512	304	45	35	<1	<1	<1	<1
70	40	31	0.6	92	J43-0517	281	50	44	20	12	<1	<1
90	41	99	0.3	300	J43-0486	231	36	39	<1	38	<1	<1
120	50	105	0.1	315	J43-0526	186	27	40	10	84	<1	<1
150	54	59	0.2	176	J43-0602	191	17	27	<1	98	17	<1
					Pue	ertollano	9h					
50	3	27	3.9	82	J43-0510	342	55	31	<1	<1	<1	<1
70	6	95	2.9	284	J43-0515	360	68	41	<1	<1	<1	<1
90	36	140	0.3	424	J43-0429	244	47	34	<1	32	<1	<1
120	40	194	0.1	581	J43-0525	212	24	32	<1	100	<1	<1
150	47	131	0.2	393	J43-0605	247	14	26	<1	110	<1	<1

El balance de masa de estos experimentos, calculado a partir de la combinación de los resultados de los lixiviados y de los residuos sólidos, manifestó que la temperatura óptima para el proceso de extracción de sílice era 120 °C. A esta temperatura se movilizaba entre el 57 y 76 % del contenido total de sílice en todas las cenizas volantes estudiadas. Y dado

que, la disminución de la extracción de sílice con el aumento de temperatura, de 120 a 150 °C, se debía a la mayor formación de material zeolítico, no se realizaron experimentos a temperaturas más elevadas.

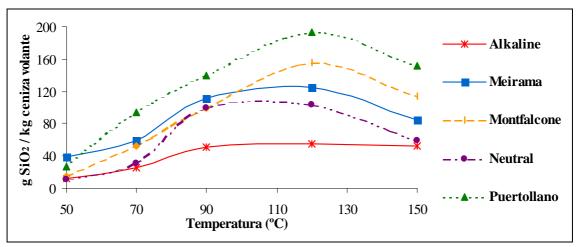


Figura 3.9. Rendimiento de extracción de SiO_2 en función de la temperatura. Condiciones de extracción: 2M NaOH, relación l/s = 3 L/kg, y tiempos optimizados para cada ceniza volante.

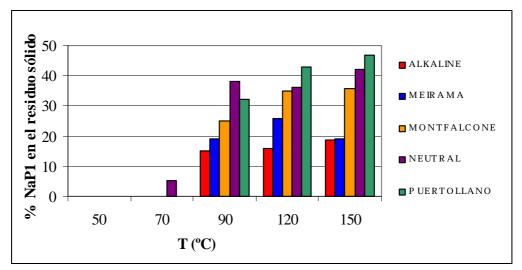


Figura 3.10. Contenido en zeolita NaP1 en los residuos sólidos obtenidos de los experimentos de extracción de SiO₂ en función de la temperatura.

3.2.2.3. Relación extractante / ceniza volante

Simultáneamente con los estudios sobre la optimización de la temperatura, se investigó la influencia de la relación solución extractante/ceniza volante (l/s) sobre los rendimientos de

extracción de sílice. Las experimentaciones concernientes a la relación l/s óptima, se realizaron con los ratios de 2, 3 y 4 L de solución/kg de ceniza volante, y bajo las siguientes las condiciones: 2M NaOH, 150 °C y el tiempo óptimo para cada ceniza volante (5 h para Alkaline, 4 h para Meirama y Montfalcone, y 9 h para el Neutral y Puertollano).

La Tabla 3.7 y la Figura 3.11 muestran cómo se lograron la extracciones de sílice más altas con la relación l/s de 2 L/kg para todas las cenizas volantes estudiadas exceptuando la ceniza de Neutral, para la cuál se obtuvo la máxima extracción con la relación l/s de 3 L/kg. Los rendimientos más elevados eran: 70, 127, 171, 59 y 136 g SiO₂/kg de ceniza de Alkaline, Meirama, Montfalcone, Neutral y Puertollano, respectivamente. Una vez más, el rendimiento más alto de extracción se obtuvo para la ceniza volante de Puertollano (136 g SiO₂/kg) conjuntamente con una significativa zeolitización de NaP1 en el residuo sólido.

Tabla 3.7. Extracción de sílice en función de la relación entre la solución alcalina y ceniza volante a 150 °C y 2M NaOH.

Relación	RENDIMI	ENTO I	EXTRAC	CCIÓN	RESI	DUO SÓLIDO	Intensid	lad DRX (c	uentas/s)
solución / ceniza	Na con	SiO_2	Al_2O_3	zeo A	DRX	vidrio	cuarzo	mullita	NaP1
solucion / cemza	%	g/kg	g/kg	g/kg	fichero				
Alkaline 5h									
2	42	70	1.8	209	J43-0620	225	40	21	<1
3	34	52	1.0	156	J43-0589	200	26	13	44
4	27	38	1.4	114	J43-0619	220	38	21	<1
Meirama 4h									
2	50	127	0.4	380	J43-0622	253	18	3	11
3	36	117	< 0.1	351	J43-0590	192	17	3	45
4	42	54	0.2	161	J43-0621	183	13	4	38
Montfalcone 4h									
2	38	171	1.4	514	J43-0624	240	22	60	25
3	39	114	0.1	342	J43-0591	190	13	54	84
4	39	64	0.6	193	J43-0623	203	12	59	72
Neutral 9h									
2	77	49	< 0.1	147	J43-0626	165	45	35	104
3	54	59	0.2	176	J43-0602	191	17	27	98
4	44	47	0.1	141	J43-0625	150	13	28	106
Puertollano 9h									
2	69	136	0.1	407	J43-0628	200	55	31	103
3	47	131	0.2	393	J43-0605	247	14	26	110
4	46	96	0.1	287	J43-0627	182	12	33	119

La Figura 3.12 muestra la formación de NaP1 en el residuo sólido en función a la relación l/s. Los resultados muestran que el contenido de zeolita NaP1 aumenta proporcionalmente con la relación la l/s en las condiciones probadas, debido a que el exceso Na contribuye a una rápida incorporación de la SiO₂ en zeolitas.

Pero además de atender a estos resultados, se consideró el hecho de que, un cambio en la relación de 2 L/kg a 3 L/kg contribuye a un cambio crítico en la consistencia de la muestra, mejorando la manipulación y el filtrado. Por esta razón, finalmente la relación entre solución extractante / ceniza se fijó en 3 L/kg.

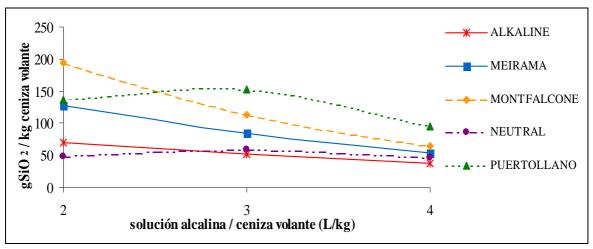


Figura 3.11. Rendimientos de extracción de sílice en función de la relación l/s.

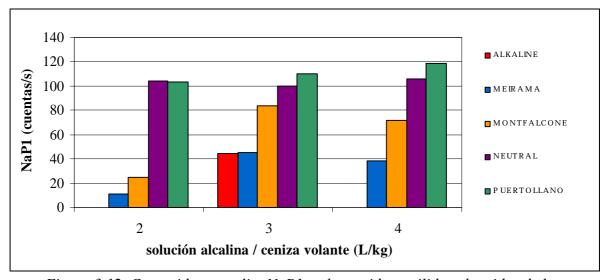


Figura 3.12. Contenido en zeolita NaP1 en los residuos sólidos obtenidos de los experimentos de extracción de Si O_2 en función de la relación extractante / ceniza volante.

3.2.2.4. <u>NaOH ó KOH</u>

Otro parámetro que se debía estudiar en los procesos de extracción de sílice era la influencia, del reactivo alcalino utilizado. Por tanto, se compararon algunos rendimientos

de extracción usando KOH y NaOH. Las pruebas se realizaron con una concentración fijada en 2M, relación l/s = 3 L/kg, 6 y 9h, y 90 120 y 150 °C. Los resultados de dichos experimentos, que se resumen en la Figura 3.13, demostraron que para la mayoría de las cenizas volantes los rendimientos más altos se obtenían utilizando NaOH como reactante alcalino. Únicamente en el caso de la ceniza volante de Neutral a 150 °C, se obtuvo una extracción de sílice ligeramente más alta con la solución de KOH. Consiguientemente, puede concluirse que el agente alcalino elegido para las experimentaciones de extracción de sílice y síntesis de zeolita es NaOH (Figura 3.13).

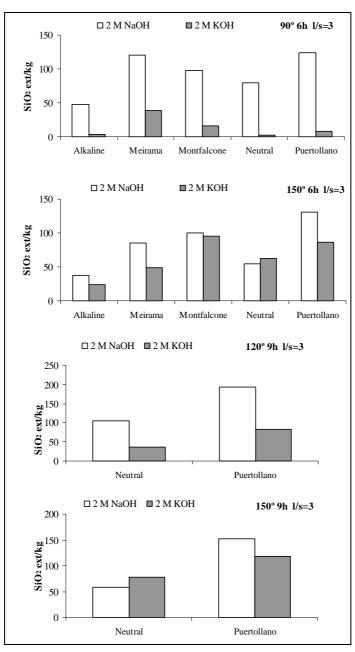


Figura 3.13. Rendimientos de extracción de sílice para las soluciones de 2M NaOH y KOH.

3.2.2.5. Concentración de extractante alcalino

Los resultados obtenidos en las pruebas preliminares muestran que los rendimientos de extracción de sílice a concentraciones de 1 M NaOH son aproximadamente la mitad que a 2 M (Tabla 3.2). Por ello, las pruebas sucesivas se centraron en la extracción de sílice a concentraciones más elevadas. Hay que tener en cuenta que el principal problema del uso de soluciones de altas concentraciones de NaOH, en la extracción de sílice, es el posible exceso de la relación Na/Si en los lixiviados. De modo que, si existiera un exceso de Na en el lixiviado, no sería posible obtener zeolitas puras con interés industrial, y únicamente podrían sintetizarse zeolitas tales como sodalita o analcima (con baja CIC). Por tanto, únicamente se aumentó la concentración hasta 3 M, ya que a concentraciones mayores, se produciría una relación de Na/Si excesivamente alta.

La Tabla 3.8 y la Figura 3.14 muestran los excelentes rendimientos obtenidos a partir del ataque con una solución de NaOH a una concentración de 3 M y en función de tiempo. Probablemente el aumento de la concentración induce a la variación del tiempo óptimo. El resto de las condiciones se fijaron en 120 °C (temperatura óptima) y la relación solución alcalina/ceniza = 3 L/kg. La Figura 3.14 muestra también la comparación entre los rendimientos de la extracción de sílice con NaOH a una concentración de 3 y 2 M, a 90 y 120 °C.

Los resultados demostraron que se alcanzan mayores rendimientos con soluciones extractantes de NaOH 3 M que con 2 M para todas las cenizas. Una vez más, el tiempo óptimo de extracción varió dependiendo del tipo de ceniza volante investigada (Tabla 3.8 y Figura 3.14), y los valores más altos se alcanzaron a las 2, 5, 7, 9 y 10 h de reacción para las cenizas volantes de Meirama, Montfalcone, Alkaline, Puertollano y Neutral, respectivamente. Además en estos experimentos, realizados en las condiciones optimizadas (120 °C y la relación de l/s = 3 L/kg), todas las cenizas obtuvieron las concentraciones de sílice más elevadas de este estudio. Los valores obtenidos fueron: 87, 166, 179, 186 y 405 g SiO₂/kg de ceniza volante (equivalente a 262, 538, 558, 500 y 1216 g zeolita A/kg) para las cenizas volantes de Alkaline, Neutral, Meirama, Montfalcone y Puertollano, respectivamente. El elevado rendimiento de extracción obtenido con la ceniza volante de Puertollano se debe probablemente a los siguientes factores:

- ☐ Presenta la concentración de SiO₂ más alta de todas las cenizas seleccionadas (58.6 %).
- □ El 65.5 % de la matriz vítrea está constituida por SiO₂. Este porcentaje es mucho mayor que para el resto de cenizas (que presentan < 55 % de SiO₂ en la fase vítrea).
- ☐ Muestra una alta relación entre SiO_2/Al_2O_3 tanto en el contenido total (2.1) como en la en la matriz vítrea (3.4).

En estos casos, los lixiviados obtenidos, tenían una relación de Na₂O/SiO₂ de 2.9 para Alkaline, 1.4 para Meirama, 1.2 para Montfalcone y Neutral y 0.6 para la ceniza volante de Puertollano. Como se verá en la sección de síntesis de zeolitas puras (capítulo 4), la relación de Na₂O/SiO₂ adecuada para sintetizar zeolitas con interés económico (elevada CIC), deber ser < 1.3. Consiguientemente, los extractos de las soluciones obtenidas a partir de las cenizas de Alkaline y Meirama con 3 M NaOH no podrán ser utilizadas para la posterior síntesis de zeolitas puras con elevada CIC tales como zeolita A y X.

Tabla 3.8. Rendimientos de los experimentos de extracción de sílice en función del tiempo a 120 °C, concentraciones de 3M NaOH y 3 L/kg.

	RENDIMIENTO EXTRACCIÓN]	O Inte	Intensidad DRX (cuentas/s)				
tiempo (h)	Na con	SiO ₂	Al ₂ O ₃	zeo A	DRX	vidrio	cuarzo	mullita	zeo A	NaP1	sodalita
	%	g/kg	g/kg	g/kg	fichero						
Alkaline											
3	4	50	0.7	151	J43-0657	150	8	14	<1	<1	14
4	4	79	0.7	238	J43-0643	222	12	19	<1	<1	27
5	7	81	0.6	243	J43-0644	200	13	19	<1	<1	30
6	8	82	0.7	247	J43-0645	200	11	24	<1	<1	37
7	7	87	0.8	262	J43-0646	200	10	17	<1	<1	33
Meirama											
2	4	179	2.4	538	J43-0647	175	25	2	<1	63	<1
3	11	149	1.1	446	-	-	-	-	-	-	-
4	20	127	0.9	382	-	-	-	-	-	-	-
5	23	113	0.8	340	-	-	-	-	-	-	-
6	31	109	0.9	327	-	-	-	-	-	-	-
Montfalcone											
2	9	151	5.1	454	J43-0648	257	33	78	<1	20	<1
3	12	163	1.6	490	J43-0649	190	18	73	<1	58	<1
4	15	179	1.4	536	J43-0650	186	17	69	<1	74	<1
5	15	186	1.4	558	J43-0651	200	13	55	<1	75	<1
6	16	186	1.4	558	J43-0652	195	13	60	<1	77	<1
Neutral											
4	14	141	1.1	424	J43-0653	210	18	27	<1	34	9
6	17	146	1.1	439	J43-0654	222	16	37	<1	50	13
8	24	148	0.8	445	J43-0655	208	10	27	<1	55	13
9	25	162	1.0	485	J43-0656	222	11	35	<1	60	9
10	27	166	1.1	499	J43-0606	222	11	35	<1	60	9
Puertollano											
2	7	200	5.7	600	J43-0668	220	35	27	<1	56	<1
4	9	250	1.5	750	J43-0669	220	26	30	<1	106	<1
6	2	301	1.6	902	J43-0670	200	18	29	<1	110	<1
8	12	341	1.8	1024	J43-0671	200	14	29	<1	115	<1
9	12	405	2.0	1216	J43-0674	190	10	25	<1	112	<1
10	20	307	1.5	921	J43-0675	211	8	26	<1	115	<1

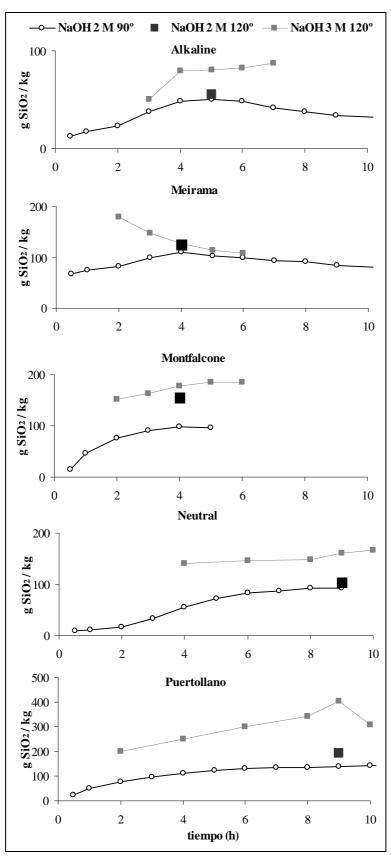


Figura 3.14. Comparación de los rendimientos de extracción de sílice obtenidas utilizando soluciones extractantes entre 2 y 3M NaOH.

Coincidentemente con los excelentes rendimientos alcanzados en la extracción de sílice bajo estas condiciones, la formación de zeolitas en el residuo sólido es considerable (Tabla 3.8 y Figura 3.15). Pero en el caso de la ceniza volante de Alkaline, estas condiciones tan drásticas, inducen a un exceso en la relación Na/Si y consiguientemente, únicamente se obtiene precipitación de sodalita en el residuo sólido (zeolita sin interés comercial dado su baja CIC y reducido tamaño de canales). Contrariamente, el resto de las cenizas estudiadas, presentan elevadas proporciones de NaP1 en el residuo sólido, con trazas de sodalita en el caso de la ceniza volante de Neutral.

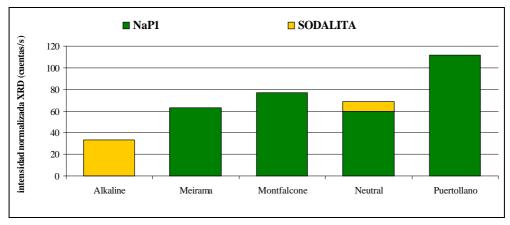


Figura 3.15. Contenido en zeolita NaP1 y sodalita en los residuos sólidos obtenidos durante la extracción de sílice a 3M NaOH, 120 °C, relación l/s=3 L/kg y tiempos óptimos para cada ceniza.

3.2.2.6. <u>Influencia de los tratamientos térmicos</u>

A partir de los resultados preliminares de extracción de sílice y de la caracterización de cenizas volantes se puede suponer que los altos contenidos de SiO_2 obtenidos en los lixiviados de la ceniza volante de Meirama pueden atribuirse a la presencia de fases opalinas y los elevados valores de S_{BET} que presenta esta ceniza.

La formación de fases opalinas en la ceniza volante puede inducirse mediante devitrificación (Querol et al., 1994 y Mollah et al., 1999). En el capítulo 2 (Tabla 2.10) ya se ha descrito cómo los procesos de devitrificación a 1100 °C inducen a:

□ La cristalización de formas de sílice altamente solubles, tales como tridimita y cristobalita en aquellas cenizas con elevada relación SiO₂/Al₂O₃ en la fase vítrea.

□ La cristalización de mullita en aquellas cenizas con una baja relación SiO₂/Al₂O₃ en la fase vítrea. De manera que con este proceso se consigue que la alúmina presente en el vidrio se incorpore en una fase más estable y difícil de disolver.

Consecuentemente, cabe esperar que si se aplican procesos de extracción de sílice a las cenizas pre-tratadas térmicamente que muestran fases de sílice de alta temperatura y/o mullita, los rendimientos de extracción mejoren considerablemente respecto a las cenizas originales.

Con esta finalidad, se trataron todas las muestras a 1100 °C en un horno convencional (Tabla 2.10). En el caso de la ceniza volante de Meirama, el contenido en cristobalitatridimita aumentó considerablemente respecto a la ceniza original. El resto de cenizas, también presentaron trazas de cristobalita-tridimita, pero únicamente exhibían un contenido relativamente alto las cenizas de Barrios, Meirama, Teruel, Puertollano, Neutral, Fusina y Montfalcone. Respecto a las cenizas que dieron lugar a la formación de mullita cabe resaltar la ceniza de Montfalcone y Neutral. Por tanto, se seleccionaron algunas de estas cenizas para los experimentos de extracción de sílice y para comparar los resultados con los de las cenizas originales, sin tratamiento térmico.

Los experimentos realizados con las condiciones de partida (sin optimizar) demostraron que los extractos de sílice obtenidos a partir de las cenizas tratadas a 1100 °C duplicaban aproximadamente los rendimientos obtenidos por las cenizas originales (Tabla 3.9). Las extracciones se realizaron en reactores de PFA cerrados, con agitación magnética a 90 °C, 6 h, con una concentración de NaOH 2M y una relación l/s = 3 L/kg. Los valores alcanzados con este método fueron 132, 163, 200 y 207 g SiO₂/kg de ceniza (de 270 a 630 g de zeolita A/kg ceniza volante) para las cenizas volantes de Meirama, Montfalcone, Puertollano y Neutral, respectivamente. Los rendimientos de extracción obtenidos utilizando las cenizas originales con las condiciones sin optimizar alcanzaron únicamente 98, 99, 124 y 83 g SiO₂/kg, respectivamente (Tabla 3.2).

Tabla 3.9. Extracción de sílice a partir de cenizas volantes tratadas a 1100 °C. Condiciones de extracción: con agitación magnética a 90 °C, 6 h, NaOH 2M y l/s = 3 L/kg.

Ceniza volante	RENDIMI	ENTO EXT	RACCIÓN	RESIDUO SÓLIDO			intensidad DRX (cuentas/s)			
	Na con.	SiO_2	A zeo	DRX	vidrio	cuarzo	ópalo	mullita	NaP1	herchelita
	%	g/kg	g/kg	fichero						
Meirama	9	132	401	J43-0288	180	35	72	5	<1	<1
Montfalcone	18	163	495	J43-0291	233	30	42	120	80	<1
Neutral	11	207	630	J43-0290	260	35	30	100	80	<1
Puertollano	22	200	607	J43-0289	324	65	20	45	47	<1

Estos rendimientos de SiO₂ tan altos, se deben a la cristalización de fases de Si más solubles, como cristobalita, y a la inclusión de Al de la fase vítrea en fases más insolubles, tales como, mullita y feldespatos. Además, con este método, se alcanzó un contenido del 20 al 35 % en zeolita en el residuo.

Debido a que la posible limitación de estos tratamientos es el elevado consumo de energía que se requiere, la investigación en este campo se centró en estudiar si con tratamientos a temperaturas inferiores (200, 550 y 750 °C) se lograban los mismos rendimientos que a 1100 °C. Los resultados que muestra la Figura 3.16 mostraron que los rendimientos de extracción obtenidos a partir de las cenizas volantes pre-tratadas a 750, 550 y 200 °C eran inferiores que a 1100 °C, pero más altos que utilizando las cenizas volantes originales.

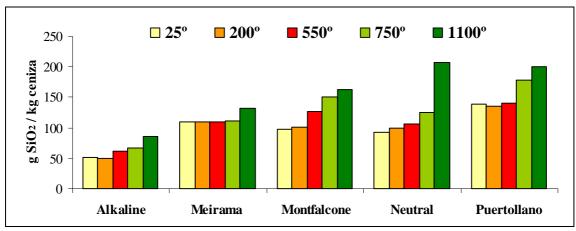


Figura 3.16. Rendimientos de extracción de sílice obtenidos a 90 °C, 6 h, 2M NaOH y relación l/s = 3 L/kg, de las cenizas volantes originales y tratadas a 200, 550, 750 y 1100 °C.

Además, dado que los resultados de optimización de temperatura mostraron que, para las cenizas volantes no tratadas térmicamente, la extracción de sílice más alta se alcanzaba a temperaturas > 90 °C, se realizaron una serie de experimentos de extracción a 90, 120, 150 y 175 °C con las cenizas tratadas a 1100 °C. Los resultados, que se muestran en la Figura 3.17, mostraron que los rendimientos más altos se obtenían a 150 °C en todas las cenizas investigadas. Así, los rendimientos de extracción de sílice a 150 °C, 6 h, 2M NaOH y 3 L/kg, alcanzaron los valores siguientes: 92, 200, 220, 246 y 250 g SiO₂/kg de ceniza volante (equivalente a 276, 600, 660, 738 y 750 g de zeolita A/kg), para las cenizas volantes de Alkaline, Meirama, Puertollano, Neutral y Montfalcone, respectivamente (Figura 3.17).

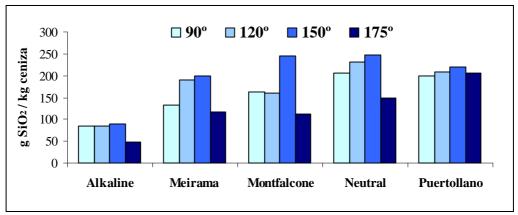


Figura 3.17. Rendimientos de extracción de sílice obtenidos a 90, 120, 150 y 175 °C, 6 h, 2M NaOH y relación l/s = 3 L/kg, para las cenizas volantes pre-tratadas 1100 °C.

3.2.2.7. Condiciones óptimas de extracción en función del tipo de ceniza volante

La selección de las cenizas volantes para la optimización de los procesos de extracción de sílice se basó en escoger un tipo de cenizas que representen todo el rango del porcentaje en matriz vítrea constituida por SiO₂, además de seleccionar entre ellas aquellas cenizas que presenten sílice soluble en fases opalinas, tal como se indicó en el capítulo 2 (apartado 2.3).

A partir de todos los experimentos de optimización realizados a las cenizas volantes seleccionadas, que se resumen en las Tablas 3.10 - 3.14, la primera conclusión que se extrae es que, no se pueden fijar unas condiciones genéricas de extracción para todas las cenizas. Por tanto, las condiciones de extracción óptimas varían en función de la ceniza volante estudiada.

Tal y como cabía esperar a partir de los datos de caracterización, la ceniza que presentó mayores rendimientos de extracción de sílice fue la ceniza volante de Puertollano. Contrariamente, la que presentó un los rendimientos de extracción más bajos era la ceniza volante de Alkaline. El resto de cenizas seleccionadas alcanzaron unas extracciones relativamente altas con valores intermedios entre las obtenidas por Puertollano y Alkaline.

Así pues, los mejores resultados de extracción obtenidos para cada ceniza volante son los siguientes:

Alkaline:

Esta ceniza presentó el rendimiento de extracción superior (92 g SiO₂/kg ceniza volante) cuando la muestra tratada térmicamente a 1100 °C se sometió a un ataque alcalino a 150 °C, 6 h, 2M NaOH, 3 L/kg. Una posible limitación de este pre-tratamiento es el alto consumo de energía necesario. Seguidamente, el segundo rendimiento más alto (87 g SiO₂/kg ceniza volante) se obtuvo sin pre-tratamiento térmico a 120 °C, 7 h, 3M NaOH y 3 L/kg, pero en este caso, el lixiviado obtenido, tenía una relación de Na₂O/SiO₂ demasiado alta. Por lo tanto, esta solución no es adecuada para una posterior síntesis de zeolitas con interés industrial. Así, a partir de la ceniza original, el lixiviado que presentó mayores contenidos de sílice, acompañado de una buena relación Na₂O/SiO₂, fue el obtenido a 150 °C, 5 h, 2M NaOH, 2 L/kg (70 g SiO₂/kg ceniza volante). En lo que se refiere a la sílice fijada en forma de zeolita en el residuo sólido, el valor más alto (299 g SiO₂/kg ceniza volante) se estableció a 150 °C, 5 h, 2M NaOH, 3 L/kg. Bajo estas condiciones, la concentración de sílice extraída era 52 g SiO₂/kg ceniza volante, por lo tanto, la sílice total movilizada fue 351 g SiO₂/kg ceniza volante equivalente al **75%** de la sílice total de la ceniza volante (Tabla 3.10).

Meirama:

Con esta ceniza volante las extracciones de SiO₂ más altas se obtuvieron bajo las siguientes condiciones experimentales: a) con la ceniza tratada térmicamente a 1100°C y un ataque a 150 °C, 6h, 2M NaOH, 3 L/kg (193 g SiO₂/kg ceniza volante) y b) sin pre-tratamiento térmico a 120 °C, 3M NaOH, 3 L/kg y en tan sólo 2 h (179 g SiO₂/kg ceniza volante), en una sola etapa. Por otro lado, la sílice fijada en el residuo sólido como zeolita alcanzó el valor máximo bajo las siguientes condiciones: 150 °C, 24 h, 1M NaOH, 18 L/kg (405 g SiO₂/kg ceniza volante) que, si se le suma la sílice extraída a estas condiciones (69 g SiO₂/kg ceniza volante), muestra una movilidad del 96 % del contenido total (Tabla 3.11).

Montfalcone:

La extracción más alta de sílice (**251 g SiO₂/kg ceniza volante**) se obtuvo en la muestra tratada a 1100°C, seguida de una extracción a 150 °C, 6 h 2M NaOH, 3 L/kg. El siguiente valor más alto (186 g SiO₂/kg ceniza volante, equivalente a 588 g zeolita A/ kg ceniza volante) se obtuvo sin pre-tratamiento térmico a 120 °C, 5 h, 3M NaOH y 3 L/kg. En este último caso, los lixiviados resultantes presentaron una relación entre Na₂O/SiO₂ < 1.3, consecuentemente, esta es una solución idónea para la síntesis de zeolitas puras. La SiO₂ precipitada en el **residuo sólido** en forma de zeolita, alcanzó su máximo (**311 g SiO₂/kg** ceniza volante) a 150 °C, 4 h, 2M NaOH, 4 L/kg. Finalmente, muchas pruebas realizadas a

esta ceniza volante consiguen **movilizar alrededor del 70-77% del contenido total** de SiO₂. (Tabla 3.12).

Neutral:

Los rendimientos de extracción de SiO₂ alcanzaron valores entre **200-250** g SiO₂/kg ceniza volante con la ceniza tratada térmicamente a 1100 °C y valores de 162 g SiO₂/kg ceniza volante sin pre-tratamiento térmico a 120 °C, 9 h, 3M NaOH, 3 L/kg. Además, en las reacciones realizadas a 9 h se alcanzaron entre **300 y 375 g SiO₂/kg ceniza volante fijada como zeolita**. Y alrededor **80% del contenido total** de SiO₂ se movilizó en varias ocasiones (Tabla 3.13).

Puertollano:

Con esta ceniza volante se obtuvieron los rendimientos de extracción de sílice más altos: **405 g SiO₂/kg ceniza volante** (**el equivalente a 1215 g zeolita A/kg ceniza volante**). Este valor se alcanzó a partir de la ceniza original a 120 °C, 9 h, 3M NaOH y 3 L/kg. Asimismo, a 150 °C, 9 h, 2M NaOH y 4 L/kg se incorporaron 371 g SiO₂/kg ceniza volante en forma de zeolita en el residuo sólido. Finalmente, en varioss experimentos se movilizó entre **80-90% del contenido total de sílice** (Tabla 3.14).

Tabla 3.10. Balance de masa de la SiO_2 obtenida a partir de los experimentos de optimización de extracción de sílice a diferentes condiciones, con la ceniza volante de **ALKALINE**, la cuál presenta 46.8 g SiO_2 /100g y 24.8 g Al_2O_3 /100g disponible. La última columna muestra el % de SiO_2 y Al_2O_3 movilizado respecto el contenido total en la ceniza.

	EXTRAÍDO		FIJA	DO CO	MO	TOT	AL MO	VILIZADO	
CONDICIONES EXPERIMENTALES	(g/kg	cv)	ZEOL	ITA (g/l	kg cv)	(g/kg	cv)	% cont	enido
	SiO_2	Al_2O_3	SiO_2	Al_2O_3	Na ₂ O	SiO_2	Al_2O_3	SiO_2	Al_2O_3
2 etapas, 90°C, 6h, 2M NaOH, 3L/kg	70	1.1	175	89	54	245	90	52	36
90°C, 6h, 1M NaOH, 3L/kg	14	0.5	84	43	26	98	43	21	18
125°C, 8h, 3M NaOH, 2L/kg	16	0.5	196	100	61	212	100	45	40
pre-1100°C+90°C, 6h, 2M NaOH, 3L/kg	85	0.2	271	138	84	356	138	76	56
pre-750°C+90°C, 6h, 2M NaOH, 3L/kg	67	< 0.1	115	59	36	183	59	39	24
pre-550°C+90°C, 6h, 2M NaOH, 3L/kg	62	0.4	168	86	52	230	86	49	35
pre-200°C+90°C, 6h, 2M NaOH, 3L/kg	50	0.2	180	90	50	230	90	49	36
90°C, 0.5h, 2M NaOH, 3L/kg	13	3.3	6	3	2	19	6	4	3
90°C, 1h, 2M NaOH, 3L/kg	18	2.3	18	9	6	36	11	8	5
90°C, 2h, 2M NaOH, 3L/kg	24	1.5	24	12	7	48	14	10	6
90°C, 3h, 2M NaOH, 3L/kg	38	0.4	66	34	20	104	34	22	14
90°C, 4h, 2M NaOH, 3L/kg	49	0.2	132	67	41	181	67	39	27
90°C, 5h, 2M NaOH, 3L/kg	51	0.2	150	76	46	201	77	43	31
90°C, 6h, 2M NaOH, 3L/kg	48	0.1	156	80	48	204	80	44	32
90°C, 7h, 2M NaOH, 3L/kg	42	0.1	186	95	58	228	95	49	38
90°C, 8h, 2M NaOH, 3L/kg	38	0.1	180	92	56	218	92	47	37
90°C, 9h, 2M NaOH, 3L/kg	34	0.1	192	98	59	226	98	48	40
90°C, 24h, 2M NaOH, 3L/kg	13	0.1	216	110	67	229	110	49	44
50°C, 5h, 2M NaOH, 3L/kg	12	6.0	44	22	14	57	28	12	11
70°C, 5h, 2M NaOH, 3L/kg	25	1.2	145	74	45	171	75	36	30
90°C, 5h, 2M NaOH, 3L/kg	51	0.2	150	76	46	201	77	43	31
150°C, 5h, 2M NaOH, 3L/kg	52	0.1	170	86	52	222	86	47	35
120°C, 5h, 2M NaOH, 3L/kg	55	0.5	143	73	44	198	73	42	30
120°C, 4h, 2M NaOH, 3L/kg	52	2.2	177	90	55	229	92	49	37
150°C, 5h, 2M NaOH, 4L/kg	38	1.4	212	108	66	250	109	53	44
150°C, 5h, 2M NaOH, 2L/kg	70	1.8	168	86	52	238	88	51	35
150°C, 5h, 2M NaOH, 3L/kg	52	< 0.1	299	152	92	351	152	75	61
pre-1100°C+175°C, 6h, 2M NaOH, 3L/kg	48	0.4	224	114	69	272	114	58	46
pre-1100°C+150°C, 6h, 2M NaOH, 3L/kg	92	< 0.1	175	89	54	267	89	57	36
pre-1100°C+120°C, 6h, 2M NaOH, 3L/kg	88	1.8	163	83	50	251	85	54	34
120°C, 3h, 3M NaOH, 3L/kg	50	0.7	34	17	10	84	18	18	7
120°C, 4h, 3M NaOH, 3L/kg	79	0.7	40	20	12	119	21	26	9
120°C, 5h, 3M NaOH, 3L/kg	81	0.6	66	34	21	147	34	31	14
120°C, 6h, 3M NaOH, 3L/kg	82	0.7	75	38	23	158	39	34	16
120°C, 7h, 3M NaOH, 3L/kg	87	0.8	63	32	19	150	33	32	13

Tabla 3.11. Balance de masa de la SiO_2 obtenida a partir de los experimentos de optimización de extracción de sílice a diferentes condiciones, con la ceniza volante de **MEIRAMA**, la cuál presenta 49.2 g SiO_2 /100g y 17.6 g Al_2O_3 /100g disponible. La última columna muestra el % de SiO_2 y Al_2O_3 movilizado respecto el contenido total en la ceniza.

	EXTRA	ÁDO	FIJA	ADO CO	МО	TOT	AL MO	VILIZA	DO
CONDICIONES EXPERIMENTALES	(g/kg	cv)	ZEOI	LITA (g/l	kg cv)	(g/kg	cv)	% contenido	
	SiO ₂	Al_2O_3	SiO_2	Al_2O_3	Na ₂ O	SiO_2	Al_2O_3	SiO_2	Al_2O_3
2 etapas, 90°C, 6h, 2M NaOH, 3L/kg	157	2.0	253	134	820	410	136	83	77
90°C, 6h, 1M NaOH, 3L/kg	51	0.1	136	69	42	187	69	38	39
150°C, 24h, 1M NaOH, 18L/kg	69	1.9	405	170	128	474	172	96	98
200°C, 24h, 2M NaOH, 2L/kg	3	< 0.1	341	159	109	344	159	70	90
125°C, 8h, 3M NaOH, 2L/kg	18	0.4	200	102	62	218	102	44	58
175°C, 6h, 1.3M NaOH, 2L/kg	18	< 0.1	112	57	35	130	57	26	32
125°C, 10h, 1.3M NaOH, 2L/kg	18	0.2	84	43	26	102	43	21	25
125°C, 6h, 2.8M NaOH, 2L/kg	26	0.6	185	94	57	211	95	43	54
175°C, 10h, 2.8M NaOH, 2L/kg	28	0.2	266	136	82	294	136	60	77
pre-1100°C+90°C, 6h, 2M NaOH, 3L/kg	132	< 0.1	54	28	17	186	28	38	16
pre-750°C+90°C, 6h, 2M NaOH, 3L/kg	112	< 0.1	167	85	52	279	85	57	48
pre-550°C+90°C, 6h, 2M NaOH, 3L/kg	110	0.2	185	94	57	295	94	60	54
pre-200°C+90°C, 6h, 2M NaOH, 3L/kg	109	0.1	170	90	60	279	90	57	51
90°C, 0.5h, 2M NaOH, 3L/kg	66	1.5	102	52	32	168	54	34	30
90°C, 1h, 2M NaOH, 3L/kg	74	1.0	96	49	30	170	50	35	28
90°C, 2h, 2M NaOH, 3L/kg	83	0.4	138	70	43	221	70	45	40
90°C, 3h, 2M NaOH, 3L/kg	99	0.2	180	92	56	279	92	57	52
90°C, 4h, 2M NaOH, 3L/kg	111	0.2	204	104	63	315	104	64	59
90°C, 5h, 2M NaOH, 3L/kg	104	0.1	228	116	71	332	116	67	66
90°C, 6h, 2M NaOH, 3L/kg	98	0.1	234	119	73	332	119	67	68
90°C, 7h, 2M NaOH, 3L/kg	94	0.1	240	122	74	334	122	68	69
90°C, 8h, 2M NaOH, 3L/kg	91	0.1	240	122	74	331	122	67	69
90°C, 9h, 2M NaOH, 3L/kg	84	0.1	246	125	76	330	125	67	71
90°C, 24h, 2M NaOH, 3L/kg	41	0.1	306	156	95	347	156	71	89
50°C, 4h, 2 M NaOH, 3L/kg	39	2.1	81	41	25	120	43	24	24
70°C, 4h, 2 M NaOH, 3L/kg	59	1.9	101	52	31	160	54	33	31
90°C, 4h, 2 M NaOH, 3L/kg	111	0.2	204	104	63	315	104	64	59
120°C, 4h, 2 M NaOH, 3L/kg	125	0.2	156	79	48	281	79	57	45
150°C, 6h, 2M NaOH, 3L/kg	116	0.1	309	157	95	425	157	86	89
150°C, 4h, 2M NaOH, 3L/kg	117	0.4	214	109	66	331	109	67	62
150°C, 4h, 2M NaOH, 4L/kg	54	0.2	337	171	104	391	171	79	97
150°C, 4h, 2M NaOH, 2L/kg	127	0.4	199	101	61	326	101	66	58
pre-1100°C+175°C, 6h, 2M NaOH, 3L/kg	110	0.2	270	137	83	380	137	77	78
pre-1100°C+175°C, 4h, 2M NaOH, 3L/kg	116	0.7	200	102	62	316	103	64	58
pre-1100°C+150°C, 6h, 2M NaOH, 3L/kg	193	< 0.1	158	80	49	351	80	71	45
pre-1100°C+120°C, 6h, 2M NaOH, 3L/kg	189	0.8	160	82	50	349	83	71	47
120°C, 2h, 3M NaOH, 3L/kg	179	2.4	36	18	11	215	20	44	12
120°C, 3h, 3M NaOH, 3L/kg	149	1.1	99	51	31	248	52	50	30
120°C, 4h, 3M NaOH, 3L/kg	127	0.9	179	91	55	306	92	62	52
120°C, 5h, 3M NaOH, 3L/kg	113	0.8	208	106	64	321	107	65	61
120°C, 6h, 3M NaOH, 3L/kg	109	0.9	278	141	86	387	142	79	81

Tabla 3.12. Balance de masa de la SiO_2 obtenida a partir de los experimentos de optimización de extracción de sílice a diferentes condiciones, con la ceniza volante de **MONTFALCONE**, la cuál presenta 50.8 g SiO_2 /100g y 33.4 g Al_2O_3 /100g disponible. La última columna muestra el % de SiO_2 y Al_2O_3 movilizado respecto el contenido total en la ceniza.

	EXTRA	ÍDO	FIJA	DO CO	OMO	TOT	TAL MO	VILIZAD	00
CONDICIONES EXPERIMENTALES	(g/kg o	ev)	ZEOI	JTA (g	/kg cv)	(g/kg	cv)	% cont	enido
	SiO ₂ Al ₂ O ₃		SiO ₂	Al_2O_3	Na ₂ O	SiO_2	Al_2O_3	SiO_2	Al_2O_3
2 etapas, 90°C, 6h, 2M NaOH, 3L/kg	136	< 0.1	123	63	38	259	63	51	19
90°C, 6h, 2M NaOH, 3L/kg	99	< 0.1	174	89	54	273	89	54	27
125°C, 8h, 3M NaOH, 2L/kg	8	1.0	154	78	48	162	79	32	24
175°C, 6h, 1.3M NaOH, 2L/kg	26	0.3	73	37	23	99	37	19	11
125°C, 10h, 1.3M NaOH, 2L/kg	28	0.7	55	28	17	83	29	16	9
125°C, 6h, 2.8M NaOH, 2L/kg	28	1.5	123	63	38	151	64	30	19
175°C, 10h, 2.8M NaOH, 2L/kg	26	0.5	236	120	73	262	121	52	36
pre-1100°C+90°C, 6h, 2M NaOH, 3L/kg	163	< 0.1	108	55	33	271	55	53	16
pre-750°C+90°C, 6h, 2M NaOH, 3L/kg	151	< 0.1	91	46	28	242	46	48	14
pre-550°C+90°C, 6h, 2M NaOH, 3L/kg	126	0.6	153	78	47	279	78	55	24
pre-200°C+90°C, 6h, 2M NaOH, 3L/kg	101	0.3	170	90	60	271	90	53	27
90°C, 0.5h, 2M NaOH, 3L/kg	16	2.2	120	61	37	136	63	27	19
90°C, 1h, 2M NaOH, 3L/kg	47	1.8	96	49	30	143	51	28	15
90°C, 2h, 2M NaOH, 3L/kg	75	1.5	120	61	37	195	63	38	19
90°C, 3h, 2M NaOH, 3L/kg	91	1.3	126	64	39	217	66	43	20
90°C, 4h, 2M NaOH, 3L/kg	98	0.9	138	70	43	236	71	46	21
90°C, 5h, 2M NaOH, 3L/kg	97	0.5	162	83	50	259	83	51	25
90°C, 24h, 2M NaOH, 3L/kg	101	0.1	270	138	84	371	138	73	41
50°C, 4h, 2 M NaOH, 3L/kg	15	5.9	42	22	13	57	27	11	8
70°C, 4h, 2 M NaOH, 3L/kg	52	2.7	51	26	16	103	28	20	9
90°C, 4h, 2 M NaOH, 3L/kg	98	0.9	138	70	43	236	71	46	21
120°C, 4h, 2 M NaOH, 3L/kg	156	0.3	180	91	56	336	92	66	27
150°C, 6h, 2M NaOH, 3L/kg	101	0.2	287	146	89	388	146	76	44
150°C, 4h, 2M NaOH, 3L/kg	114	0.8	235	120	73	349	121	69	36
150°C, 4h, 2M NaOH, 4L/kg	64	0.6	311	158	96	375	159	74	47
150°C, 4h, 2M NaOH, 2L/kg	171	1.4	154	78	48	325	80	64	24
pre-1100°C+175°C, 6h, 2M NaOH, 3L/kg	195	0.4	162	82	50	357	83	70	25
pre-1100°C+175°C, 4h, 2M NaOH, 3L/kg	113	0.9	224	114	69	337	115	66	34
pre-1100°C+150°C, 6h, 2M NaOH, 3L/kg	251	< 0.1	119	60	37	370	60	73	18
pre-1100°C+120°C, 6h, 2M NaOH, 3L/kg	161	3.1	166	84	51	327	87	64	26
120°C, 2h, 3M NaOH, 3L/kg	151	5.1	81	41	25	232	47	46	14
120°C, 3h, 3M NaOH, 3L/kg	163	1.6	104	53	32	267	55	53	16
120°C, 4h, 3M NaOH, 3L/kg	179	1.4	139	71	43	318	72	63	22
120°C, 5h, 3M NaOH, 3L/kg	186	1.4	135	69	42	321	70	63	21
120°C, 6h, 3M NaOH, 3L/kg	186	1.4	143	73	44	329	74	65	22

Tabla 3.13. Balance de masa de la SiO_2 obtenida a partir de los experimentos de optimización de extracción de sílice a diferentes condiciones, con la ceniza volante de **NEUTRAL**, la cuál presenta 53.3 g SiO_2 /100g y 26.1 g Al_2O_3 /100g disponible. La última columna muestra el % de SiO_2 y Al_2O_3 movilizado respecto el contenido total en la ceniza.

	EXTRA	ÁDO	FIJA	ADO CO	МО	TOT	AL MO	VILIZA	DO
CONDICIONES EXPERIMENTALES	(g/kg	cv)	ZEOL	ITA (g/l	(g cv)	(g/kg	cv)	% cont	enido
	SiO ₂	Al_2O_3	SiO_2	Al_2O_3	Na ₂ O	SiO ₂	Al_2O_3	SiO_2	Al_2O_3
2 etapas, 90°C, 6h, 2M NaOH, 3L/kg	119	< 0.1	162	83	50	281	83	53	32
90°C, 6h, 2M NaOH, 3L/kg	83	< 0.1	252	128	78	335	128	63	49
125°C, 8h, 3M NaOH, 2L/kg	23	0.5	210	107	65	233	107	44	41
175°C, 6h, 1.3M NaOH, 2L/kg	14	0.3	90	46	28	104	46	19	18
125°C, 10h, 1.3M NaOH, 2L/kg	19	0.7	78	40	24	97	41	18	16
125°C, 6h, 2.8M NaOH, 2L/kg	24	0.9	166	85	51	190	85	36	33
175°C, 10h, 2.8M NaOH, 2L/kg	24	0.3	270	138	84	294	138	55	53
pre-1100°C+90°C, 6h, 2M NaOH, 3L/kg	207	< 0.1	66	34	20	273	34	51	13
pre-750°C+90°C, 6h, 2M NaOH, 3L/kg	125	< 0.1	180	92	56	305	92	57	35
pre-550°C+90°C, 6h, 2M NaOH, 3L/kg	106	0.3	230	117	71	336	118	63	45
pre-200°C+90°C, 6h, 2M NaOH, 3L/kg	100	0.2	250	124	76	350	124	66	48
90°C, 0.5h, 2M NaOH, 3L/kg	9	1.2	12	6	4	21	7	4	3
90°C, 1h, 2M NaOH, 3L/kg	11	0.8	60	31	19	71	31	13	12
90°C, 2h, 2M NaOH, 3L/kg	16	0.5	72	37	22	88	37	17	14
90°C, 3h, 2M NaOH, 3L/kg	34	< 0.1	138	70	43	172	70	32	27
90°C, 4h, 2M NaOH, 3L/kg	56	< 0.1	174	89	54	230	89	43	34
90°C, 5h, 2M NaOH, 3L/kg	73	< 0.1	198	101	61	271	101	51	39
90°C, 6h, 2M NaOH, 3L/kg	83	< 0.1	210	107	65	293	107	55	41
90°C, 7h, 2M NaOH, 3L/kg	87	< 0.1	240	122	74	327	122	61	47
90°C, 8h, 2M NaOH, 3L/kg	92	< 0.1	234	119	73	326	119	61	46
90°C, 9h, 2M NaOH, 3L/kg	99	< 0.1	246	125	76	345	125	65	48
90°C, 24h, 2M NaOH, 3L/kg	91	< 0.1	270	138	84	361	138	68	53
50°C, 9h, 2 M NaOH, 3L/kg	11	7.7	75	38	23	86	46	16	18
70°C, 9h, 2 M NaOH, 3L/kg	31	0.6	303	154	94	334	155	63	59
90°C, 9h, 2 M NaOH, 3L/kg	99	< 0.1	246	125	76	345	125	65	48
120°C, 9h, 2 M NaOH, 3L/kg	105	0.1	302	154	93	407	154	76	59
150°C, 6h, 2M NaOH, 3L/kg	55	0.2	373	190	115	428	190	80	73
150°C, 9h, 2M NaOH, 3L/kg	59	0.2	304	155	94	363	155	68	59
150°C, 9h, 2M NaOH, 4L/kg	47	0.1	354	180	109	401	180	75	69
150°C, 9h, 2M NaOH, 2L/kg	49	< 0.1	309	157	96	358	157	67	60
pre-1100°C+175°C, 6h, 2MNaOH, 3L/kg	175	0.2	230	117	71	405	117	76	45
pre-1100°C+175°C, 9h,2M NaOH, 3L/kg	148	0.2	173	88	54	321	88	60	34
pre-1100°C+150°C, 6h, 2MNaOH, 3L/kg	246	0.4	189	96	59	435	97	82	37
pre-1100°C+120°C, 6h, 2MNaOH, 3L/kg	231	0.4	175	89	54	406	90	76	34
120°C, 4h, 3M NaOH, 3L/kg	141	1.1	127	65	39	268	66	50	25
120°C, 6h, 3M NaOH, 3L/kg	146	1.1	156	79	48	302	80	57	31
120°C, 8h, 3M NaOH, 3L/kg	148	0.8	217	111	67	365	112	69	43
120°C, 9h, 3M NaOH, 3L/kg	162	1.0	227	116	70	389	117	73	45
120°C, 10h, 3M NaOH, 3L/kg	166	1.1	245	125	76	411	126	77	48

Tabla 3.14. Balance de masa de la SiO_2 obtenida a partir de los experimentos de optimización de extracción de sílice a diferentes condiciones, con la ceniza volante de **PUERTOLLANO**, la cuál presenta 58.6 g SiO_2 /100g y 27.4 g Al_2O_3 /100g disponible. La última columna muestra el % de SiO_2 y Al_2O_3 movilizado respecto el contenido total en la ceniza.

	EXTRA	ÁDO	FIJA	DO CO	MO	TOT	AL MO	VILIZADO	
CONDICIONES EXPERIMENTALES	(g/kg	cv)	ZEOL	ITA (g/l	kg cv)	(g/kg	cv)	% cont	tenido
	SiO_2	Al_2O_3	SiO_2	Al_2O_3	Na ₂ O	SiO_2	Al_2O_3	SiO_2	Al_2O_3
2 etapas, 90°C, 6h, 2M NaOH, 3L/kg	178	3.1	282	143	87	460	147	78	53
90°C, 6h, 1M NaOH, 3L/kg	24	1.0	96	49	30	120	50	21	18
125°C, 8h, 3M NaOH, 2L/kg	44	2.0	118	60	37	162	62	28	23
pre-1100°C+90°C, 6h, 2M NaOH, 3L/kg	200	< 0.1	132	67	41	332	67	57	25
pre-750°C+90°C, 6h, 2M NaOH, 3L/kg	178	< 0.1	123	62	38	301	62	51	23
pre-550°C+90°C, 6h, 2M NaOH, 3L/kg	140	2.7	132	67	41	272	70	46	25
pre-200°C+90°C, 6h, 2M NaOH, 3L/kg	135	0.2	180	91	54	315	91	54	33
90°C, 0.5h, 2M NaOH, 3L/kg	24	2.2	66	34	20	90	36	15	13
90°C, 1h, 2M NaOH, 3L/kg	51	1.4	90	46	28	141	47	24	17
90°C, 2h, 2M NaOH, 3L/kg	78	1.4	108	55	33	186	56	32	21
90°C, 3h, 2M NaOH, 3L/kg	98	1.6	132	67	41	230	69	39	25
90°C, 4h, 2M NaOH, 3L/kg	112	1.6	138	70	43	250	72	43	26
90°C, 5h, 2M NaOH, 3L/kg	122	1.5	144	73	45	266	75	45	27
90°C, 6h, 2M NaOH, 3L/kg	124	1.5	156	80	48	280	81	48	30
90°C, 7h, 2M NaOH, 3L/kg	133	1.0	174	89	54	307	90	52	33
90°C, 8h, 2M NaOH, 3L/kg	133	0.4	192	98	59	325	98	56	36
90°C, 9h, 2M NaOH, 3L/kg	140	0.3	216	110	67	356	110	61	40
90°C, 10h, 2M NaOH, 3L/kg	143	< 0.1	234	119	73	377	119	64	44
90°C, 24h, 2M NaOH, 3L/kg	150	0.1	270	138	84	420	138	72	50
50°C, 9h, 2 M NaOH, 3L/kg	27	3.9	19	10	6	46	14	8	5
70°C, 9h, 2 M NaOH, 3L/kg	95	2.9	35	18	11	130	20	22	7
90°C, 9h, 2M NaOH, 3L/kg	140	0.3	216	110	67	356	110	61	40
120°C, 9h, 2 M NaOH, 3L/kg	194	0.1	243	124	75	437	124	75	45
150°C, 9h, 2M NaOH, 3L/kg	131	0.2	340	173	105	471	173	80	63
150°C, 6h, 2M NaOH, 3L/kg	152	0.4	254	129	79	406	130	69	47
150°C, 9h, 2M NaOH, 4L/kg	96	0.1	371	189	115	467	189	80	69
150°C, 9h, 2M NaOH, 2L/kg	136	0.1	277	141	86	413	141	71	52
pre-1100°C+175°C, 6h, 2MNaOH, 3L/kg	181	0.4	219	111	68	400	112	68	41
pre-1100°C+175°C, 9h,2MNaOH, 3L/kg	206	0.3	199	101	61	405	101	69	37
pre-1100°C+150°C, 6h, 2MNaOH, 3L/kg	220	0.5	220	112	68	440	112	75	41
pre-1100°C+120°C, 6h, 2MNaOH, 3L/kg	209	0.6	241	122	74	450	123	77	45
120°C, 2h, 3M NaOH, 3L/kg	200	5.7	60	31	19	260	36	44	13
120°C, 4h, 3M NaOH, 3L/kg	250	1.5	77	39	24	327	41	56	15
120°C, 6h, 3M NaOH, 3L/kg	301	1.6	18	9	6	319	11	54	4
120°C, 8h, 3M NaOH, 3L/kg	341	1.8	107	55	33	448	56	76	21
120°C, 9h, 3M NaOH, 3L/kg	405	2.0	111	56	34	516	58	88	21
120°C, 10h, 3M NaOH, 3L/kg	307	1.5	177	90	55	484	92	83	33

La inter-comparación de los resultados optimizados para los procesos de extracción de sílice con los datos de caracterización de las cenizas, ha permitido fijar las características de las cenizas volantes más influyentes en los procesos de extracción de sílice a 90 y 120 °C:

□ El contenido total de sílice: Las condiciones óptimas de extracción de sílice para las cenizas seleccionadas (que se resumen en la Tabla 3.15) demuestran que las cenizas volantes que presentan mayores concentraciones de SiO₂, pueden alcanzar mayores rendimientos de extracción de sílice (Figura 3.18), según la siguiente relación:

Rendimiento de extracción a 90 °C (g/kg) =
$$6.0* SiO_{2 total}$$
 (%) - $212 (R^{2}=0.71)$ (1)
Rendimiento de extracción a 120 °C (g/kg) = $24.4*SiO_{2 total}$ (%) - $1055 (R^{2}=0.85)$ (2)

Tabla 3.15. Parámetros de extracción de SiO_2 optimizados para las cenizas seleccionadas.

Ceniza volante	Temperatura	Tiempo	extractante/ceniza	NaOH	SiO ₂ extr.
	°C	h	L/kg	M	g/kg
Alkaline	90	5	3	2	51
Meirama	90	4	3	2	111
Montfalcone	90	4	3	2	98
Neutral	90	9	3	2	99
Puertollano	90	9	3	2	140
Alkaline	120	7	3	3	87
Meirama	120	2	3	3	179
Montfalcone	120	5	3	3	186
Neutral	120	9	3	3	166
Puertollano	120	9	3	3	405

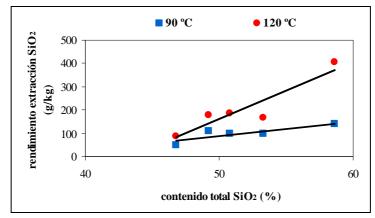


Figura 3.18. Relación entre los rendimientos de extracción de sílice obtenido bajo condiciones óptimas y los contenidos totales de SiO_2 en las cenizas seleccionadas.

Por otro lado, si se consideran las 23 cenizas volantes bajo unas condiciones de extracción fijadas a 90 °C, 2M, 3 L/kg, 6 h, y en múltiples etapas consecutivas realizadas sobre el residuo de extracción (Tabla 3.3), la relación es la siguiente: (Figura 3.19a):

Rendimiento de extracción (g/kg) =
$$6.9* SiO_{2 total}$$
 (%) - 245 (R²=0.61) (3)

Si se consideran 21 cenizas (excluyendo las cenizas volantes de Meirama y Narcea), la última correlación mejora considerablemente (Figura 3.19b):

Rendimiento de extracción (g/kg) =
$$7.6* \text{ SiO}_{2 \text{ total}} (\%) - 284 (R^2 = 0.80)$$
 (4)

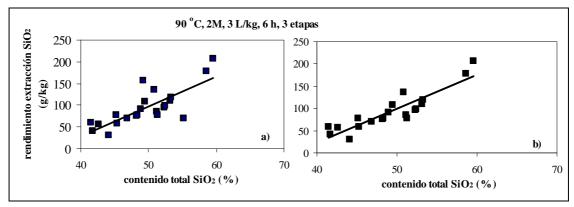


Figura 3.19. Relación entre el rendimiento de extracción de sílice, para las 23 cenizas (a) y excluyendo las cenizas de Meirama y Narcea (b), obtenidas a 90°C, 2M, 3 L/kg, 6 h, con 3 extracciones consecutivas sobre el residuo sólido y el contenido de SiO₂ en las cenizas volantes.

A partir de las citadas ecuaciones se puede concluir que, para obtener un mínimo rendimiento de extracción de 100 g SiO₂/kg, el contenido total de SiO₂ en la ceniza original ha de ser como mínimo:

(1)> 47% SiO₂ bajo condiciones optimizadas a 90°C.
(2)> 52% SiO₂ bajo condiciones optimizadas a 120°C.
(3)> 50% SiO₂ en múltiples etapas con las 23 cenizas volantes
(4)> 51% SiO₂ en múltiples etapas con 21 cenizas volantes

Por tanto, el contenido total de SiO₂ necesario para alcanzar una extracción > 100 g SiO₂/kg varía en función de la eficiencia de las condiciones de extracción.

□ El porcentaje de matriz vítrea compuesta de sílice + el contenido en sílice opalina. Además del contenido total de SiO₂, existe un parámetro que todavía tiene una mejor correlación con la extracción potencial de SiO₂. Así pues, si se utilizan los parámetros óptimos de extracción para cada una de las cinco cenizas, existe una excelente correlación entre SiO₂ extraíble y las especies de sílice más solubles presentes en las cenizas volantes, que son la sílice de la matriz vítrea y la sílice opalina (Tabla 3.15). Las ecuaciones y los coeficientes de correlación son los siguientes (Figura 3.20):

Rendimiento extracción a 90°C (g/kg)=
$$4.7*SiO_{2en\ vidrio\ +\ ópalo}$$
(%)- $162\ (R^2=0.91)$ (5)
Rendimiento extracción a $120°C\ (g/kg)=18.0*SiO_{2en\ vidrio\ +\ ópalo}$ (%)- $791\ (R^2=0.97)$ (6)

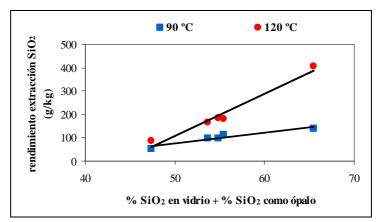


Figura 3.20. Relación entre el contenido de SiO_2 presente en la matriz vítrea + el contenido de SiO_2 en fases opalinas.

Donde SiO₂ en vidrio + ópalo es el porcentaje de la matriz vítrea compuesta por SiO₂, calculada a partir de los análisis químicos y mineralógicos de las cenizas volantes (capítulo 2, Tabla 2.9), sumada al porcentaje de SiO₂ presente como ópalo. Este último valor se determinó a partir del contenido de SiO₂ presente como cristobalita-tridimita (sílice opalina) obtenido de los análisis cuantitativos de DRX (utilizando el método del estándar de referencia de intensidades, propuesto por Klug y Alexander, 1974). Una vez determinado el contenido en vidrio (excluyendo la contribución de las fases cristalinas de la composición total de las cenizas), el contenido de SiO₂ en la fase vítrea puede determinarse a partir de la diferencia del balance de masa entre el contenido total de SiO₂ de la ceniza, contenido teórico de SiO₂ en cada fase cristalina presente en la cenizas (cuarzo, mullita, ópalo, feldespatos determinado por DRX) y el contenido de cada una de estas fases en la ceniza volante.

Por tanto, a partir de estas ecuaciones se puede concluir que, para obtener rendimiento de extracción de sílice > 100 g SiO₂/kg, además de precisar un elevado contenido en

SiO₂ en las cenizas originales, es necesario considerar también los siguientes factores limitantes:

- $|(5)\rangle > 56 \% SiO_{2 \text{ en vidrio} + 6palo}$, bajo condiciones optimizadas a 90°C.
- $| (6) \rangle > 50 \% \text{ SiO}_{2 \text{ en vidrio + ópalo}}, \text{ bajo condiciones optimizadas a } 120^{\circ}\text{C}.$

Como en el caso del contenido total de SiO₂, el porcentaje de SiO_{2 en vidrio + ópalo} necesario para alcanzar una extracción > 100 g SiO₂/kg, varía en función de a la temperatura. Además, tal y como cabía esperar la presencia de fases opalinas en las cenizas (como en el caso de la ceniza de Meirama) favorece la extracción de sílice.

□ Relación entre SiO₂/Al₂O₃. Las bajas relaciones de SiO₂/Al₂O₃ en los extractos pueden inducir a la rápida precipitación de zeolitas en el residuo y consecuentemente disminuyen los rendimientos de extracción de sílice. Por tanto, la relación SiO₂/Al₂O₃ de las cenizas volantes es el tercer parámetro a considerar en los procesos de extracción de SiO₂ (Figura 3.21). El rendimiento de extracción de SiO₂ se puede relacionar con el coeficiente entre SiO₂/Al₂O₃ del contenido total de las cenizas volantes mediante la siguiente ecuación:

Rendimiento de extracción a 90°C (g/kg)=
$$82.6*SiO_2/Al_2O_3 - 62.6$$
 (R²=0.70) (7)

A partir de esta correlación (7)se concluye que con ratios de SiO₂/Al₂O₃ >2.0 (en peso) se obtienen rendimientos de extracción >100 g SiO₂/kg, para 19 de las 23 cenizas volantes estudiadas.

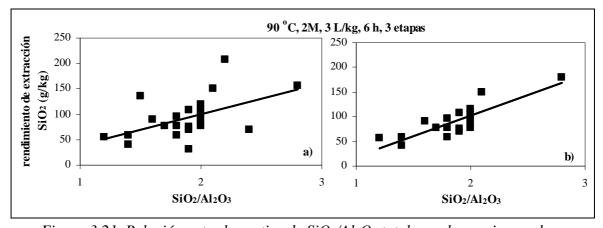


Figura 3.21. Relación entre los ratios de SiO₂/Al₂O₃ totales en las cenizas y el rendimiento de extracción de sílice obtenidos a 90 °C, 2M, 3 L/kg, 6 h, en 3 etapas para las 23 cenizas (a) y para 19 de las cenizas (excluyendo las cenizas de Narcea, Montfalcone, Lignite y Robla) (b).

3.2.2.8. Extracción de sílice mediante microondas

El objetivo principal del uso de esta técnica era averiguar si se podían obtener resultados de extracción de sílice similares a los del método convencional, con un tiempo de extracción mucho más reducido. Al no haber experiencia previa, se utilizaron parámetros de reacción similares a los convencionales con la excepción del tiempo, que se redujo a minutos en vista de los resultados previamente obtenidos en la conversión directa de cenizas volantes. A partir de estos parámetros iniciales, se utilizó el método simplex modificado para hacer evolucionar el sistema tomando como objetivo maximizar el rendimiento de extracción minimizando la relación líquido-sólido requerida (factor de ponderación 1/3 respecto a la extracción).

Los resultados obtenidos en la extracción de sílice aplicando la técnica de microondas fueron muy interesantes. Las Tablas 3.16-3.20 resumen las condiciones de extracción de sílice y los resultados correspondientes obtenidos para las cenizas volantes de Alkaline, Compostilla, Meirama, Montfalcone y Puertollano, respectivamente.

Inicialmente, se seleccionaron diferentes tipos de extractantes para los experimentos preliminares pero, únicamente con la mezcla de hidróxido sódico/carbonato sódico se alcanzaron buenos rendimientos de extracción. Ni el carbonato sódico aislado, ni el hidróxido de tetrametilamonio fueron efectivos para la disolución de sílice. El principal problema del uso de NaOH es que disuelve simultáneamente sílice y alúmina, originando la precipitación de zeolitas en el residuo sólido. Aunque esto también ocurre en el calentamiento convencional, la gran velocidad de disolución afecta mucho más intensamente al rendimiento cuando se utilizan microondas.

Después de realizar unos 80 experimentos para cada ceniza (Tablas 3.16-3.20), la primera conclusión que se extrae es que, al igual que en los experimentos realizados por el método convencional, no se pueden fijar unas condiciones genéricas de extracción para todas las cenizas. Por tanto las las condiciones de extracción óptimas varían en función de la ceniza volante estudiada. De manera que, los mejores resultados de extracción obtenidos para cada ceniza volante son los siguientes:

- □ Alkaline: **138 g SiO₂/kg ceniza** a 143 °C, 2.9 min, 4.35 L/kg, 1.25g NaOH/g ceniza, 0.97 g Na₂CO₃/g ceniza.
- □ Compostilla: **183 g SiO₂/kg ceniza** a 185 °C, 4.9 min, 6.53 L/kg, 1.90 g NaOH/g ceniza, 1.15 g Na₂CO₃/g ceniza.
- □ *Meirama*: **239 g SiO₂/kg ceniza** a 148 °C, 5.2 min, 8.64 L/kg, 1.20 g NaOH/g ceniza, 0.81 g Na₂CO₃/g ceniza.

- □ *Montfalcone*: **226 g SiO₂/kg ceniza** a 159 °C, 4.9 min, 6.68 L/kg, 1.31 g NaOH/g ceniza, 1.37 g Na₂CO₃/g ceniza.
- □ Puertollano: **358 g SiO₂/kg ceniza** a 174 °C, 8.1 min, 5.76 L/kg, 1.18 g NaOH/g ceniza, 0.96 g Na₂CO₃/g ceniza.

Puede observarse que los parámetros de reacción utilizan temperaturas y concentraciones de NaOH más elevadas que los tratamientos convencionales, lo que ocasiona ataques más profundos con disolución casi total de mullita y cuarzo, resistentes en las condiciones utilizadas en el tratamiento anterior. Otra característica importante es que la cantidad de agua a utilizar es mayor que la utilizada en el calentamiento convencional, lo cual es debido a que el agua es el vehículo de transmisión de energía a la reacción y no puede reducirse. La mayoría de los experimentos realizados con las cenizas de Meirama, Montfalcone y Puertollano alcanzaron extracciones muy altas (>200 g SiO₂/kg de ceniza volantes) en tan sólo 1-9 minutos. Por tanto, se ha comprobado que mediante esta técnica se pueden extraer unas concentraciones de sílice similares a las obtenidas por el método convencional, reduciendo el tiempo de reacción considerablemente. Pero las limitaciones de la extracción de sílice mediante microondas son las siguientes:

- ☐ Un consumo de agua elevado (de 4 a 9 L/kg ceniza).
- □ Las altas concentraciones de NaOH y Na₂CO₃ necesarias, se traducen en altas relaciones de Na/Si en los lixiviados resultantes de la extracción. Consecuentemente, a partir de estas soluciones únicamente se pueden sintetizar zeolitas con CIC baja, tales como sodalita ó analcima. En las condiciones óptimas de extracción el análisis DRX del residuo permite determinar que hidroxisodalita (zeolita con muy baja CIC) es la única fase cristalina presente, habiendo desaparecido cuarzo y mullita.
- ☐ Los costes tan elevados que representarían escalar de este tipo de reactores a nivel industrial, pues se requieren reactores microondas capaces de soportar la presión autógena, algo que todavía no está desarrollado comercialmente

Tabla 3.16. Experimentos de extracción de sílice realizados con microondas a la ceniza volante de Alkaline.

		CONDICIONES DE EXTRACCIÓN								
Experimento	Temperatura	Tiempo	l/s	NaOH/ceniza	Na ₂ CO ₃ /ceniza	SiO_2	Al_2O_3			
nº	°C	min	L/kg	g/g	\mathbf{g}/\mathbf{g}	g/kg	g/kg			
1	90	9.0	3.00	0.90	1.35	45.8	8.3			
2	120	9.0	9.00	0.90	0.45	74.4	6.3			
3	90	1.0	9.00	0.30	1.35	13.3	5.3			
4	120	1.0	3.00	0.90	0.45	94.0	1.7			

Tabla 3.16. (Continuación).

			RENDIMIENTO				
Experimento	Temperatura	Tiempo	l/s	NaOH/ceniza	Na ₂ CO ₃ /ceniza	SiO_2	Al_2O_3
nº	°C	min	L/kg	g/g	\mathbf{g}/\mathbf{g}	g/kg	g/kg
5	120	9.0	3.00	0.30	1.35	81.4	4.9
6	90	9.0	3.00	0.30	0.45	19.2	9.1
7	99	4.2	6.60	0.48	1.08	26.8	8.7
8	130	3.9	6.84	1.09	1.42	97.2	7.2
9	133	8.6	3.34	1.16	0.93	107.9	0.9
10	159	3.6	7.07	0.84	0.49	95.3	2.7
11	126	7.1	6.83	0.88	0.69	95.0	3.2
12	147	0.7	7.83	1.65	0.24	93.1	8.6
13	127	6.9	4.21	0.64	1.07	86.5	0.5
14	142	2.5	2.95	0.97	1.05	84.1	0.2
15	145	4.1	5.57	0.90	0.74	124.7	0.2
16	141	1.1	4.47	1.37	0.77	124.3	2.0
17	126	5.0	6.34	1.20	0.67	90.7	4.0
18	138	3.1	3.80	1.03	0.96	126.0	1.2
19	133	3.7	5.44	1.08	1.09	121.5	4.8
20	156	7.2	6.05	1.32	1.35	103.7	1.7
21	147	5.7	5.29	1.21	1.12	130.4	0.3
22	137	6.1	4.13	1.14	0.93	118.7	2.6
23	150	4.3	3.86	1.18	0.72	97.6	0.5
24	137	3.9	5.05	1.10	1.00	112.2	3.3
25	146	1.1	5.54	1.10	0.91	95.9	2.5
26	139	4.8	4.48	1.13	0.92	108.1	3.4
27	147	3.6	4.39	1.16	0.80	101.3	1.9
28	140	3.8	4.89	1.11	0.95	124.1	0.5
29	145	2.3	5.13	1.12	0.90	118.4	2.0
30	144	2.9	4.97	1.12	0.90	93.2	2.0
31	140	4.2	4.64	1.13	0.92	102.0	2.9
32	141	3.9	4.72	1.13	0.91	119.0	1.4
33	138	2.9	3.70	1.44	1.14	86.2	6.5
34	143	3.8	5.10	1.04	0.84	123.7	4.8
35	143	3.1	4.70	1.17	0.95	124.5	5.5
36	141	2.9	4.16	1.32	1.06	117.3	9.8
37	142	3.6	4.87	1.11	0.90	108.5	4.0
38	138	3.1	3.80	1.03	0.96	119.6	3.7
39	144	2.8	4.36	1.25	0.93	122.7	4.6
40	143	2.7	4.18	1.30	0.99	112.3	6.7
41	143	2.9	4.35	1.25	0.97	138.2	4.6
42	147	5.7	5.29	1.21	1.12	108.5	5.1
43	141	1.1	4.47	1.37	0.77	137.3	4.1
44	144	4.2	4.87	1.20	1.01	120.9	4.9
45	142	2.1	4.01	1.30	0.95	98.4	6.8
46	142	3.2	4.65	1.16	0.91	102.5	5.4
47	139	1.1	3.92	1.19	0.80	87.9	7.1
48	143	3.4	4.63	1.20	0.96	83.6	5.1
49	142	2.2	4.13	1.25	0.92	125.4	7.1

Tabla 3.16. (Continuación).

		CONDIC	CIONES DE	EXTRACCIÓN		RENDIMIE	ENTO
Experimento	Temperatura	Tiempo	l/s	NaOH/ceniza	Na ₂ CO ₃ /ceniza	SiO_2	Al_2O_3
nº	°C	min	L/kg	\mathbf{g}/\mathbf{g}	g/g	g/kg	g/kg
50	140	1.5	3.95	1.23	0.85	116.9	5.7
51	141	2.0	4.12	1.22	0.88	103.0	7.1
52	138	1.8	4.13	1.17	0.86	83.4	5.7
53	143	2.5	4.30	1.23	0.91	78.6	6.1
54	143	3.1	4.70	1.17	0.95	101.8	3.6
55	142	2.8	4.44	1.20	0.92	112.3	5.8
56	138	3.1	3.80	1.03	0.96	112.2	1.6
57	139	2.4	4.32	1.18	0.90	81.3	3.9
58	138	1.5	3.76	1.25	0.84	103.0	5.1
59	140	1.9	3.93	1.25	0.86	128.7	6.0
60	143	2.9	4.55	1.19	0.93	90.7	3.4
61	139	1.9	3.96	1.24	0.86	92.5	3.4
62	138	1.3	3.68	1.26	0.83	72.2	4.7
63	142	2.2	4.13	1.25	0.92	108.1	2.5
64	141	2.4	4.25	1.21	0.90	122.1	5.5
65	142	2.4	4.27	1.20	0.90	102.8	4.9
66	141	2.3	4.19	1.21	0.89	109.5	4.3
67	138	2.1	4.13	1.18	0.83	81.6	4.6
68	141	2.2	4.13	1.23	0.90	110.9	3.5
69	139	2.0	4.04	1.23	0.87	131.2	4.0
70	139	2.0	4.07	1.21	0.84	98.5	3.7
71	140	2.2	4.11	1.22	0.89	118.5	3.9
72	139	2.5	3.98	1.14	0.91	107.1	4.0
73	140	1.8	4.16	1.26	0.83	113.8	5.2
74	141	1.2	4.36	1.39	0.78	134.7	6.1
75	141	1.6	4.26	1.32	0.84	109.3	5.6

Tabla 3.17. Experimentos de extracción de sílice realizados con microondas a la ceniza volante de Compostilla.

		CONDICI	ONES DE 1	EXTRACCIÓN		RENDIM	IENTO
Experimento	Temperatura	Tiempo	l/s	NaOH/ceniza	Na ₂ CO ₃ /ceniza	SiO_2	Al_2O_3
nº	°C	min	L/kg	g/g	g/g	g/kg	g/kg
1	90	9.0	3.00	0.90	1.35	37.6	6.4
2	120	9.0	9.00	0.90	0.45	47.7	8.6
3	90	1.0	9.00	0.30	1.35	10.6	4.9
4	120	1.0	3.00	0.90	0.45	72.8	3.7
5	120	9.0	3.00	0.30	1.35	73.6	2.3
6	90	9.0	3.00	0.30	0.45	43.5	8.6
7	99	4.2	6.60	0.48	1.08	19.3	8.6
8	130	3.9	6.84	0.25	0.16	15.7	4.8
9	100	7.7	3.96	0.74	1.05	33.3	5.9
10	121	10.1	2.18	0.78	0.42	71.0	1.4

Tabla 3.17. (Continuación).

	CONDICIONES DE EXTRACCIÓN									
Experimento	Temperatura	Tiempo	l/s	NaOH/ceniza	Na ₂ CO ₃ /ceniza	SiO_2	Al_2O_3			
n°	°C	min	L/kg	g/g	g/g	g/kg	g/kg			
11	128	7.5	4.11	0.53	0.20	48.9	3.9			
12	118	8.2	6.03	0.73	0.51	56.9	11.0			
13	153	5.3	4.33	1.00	0.72	117.2	0.8			
14	184	3.5	4.99	1.34	0.86	122.5	1.0			
15	137	5.2	3.57	1.09	1.24	96.1	0.4			
16	127	7.0	4.69	0.81	0.69	109.7	1.2			
17	129	7.6	3.02	0.83	0.67	95.1	1.8			
18	159	11.9	4.71	0.85	1.47	102.1	0.3			
19	174	5.1	5.39	1.67	0.62	192.7	1.9			
20	202	3.1	6.59	2.35	0.26	151.5	6.6			
21	172	8.8	5.55	1.11	0.48	159.5	0.2			
22	197	6.9	7.11	1.48	0.98	142.5	1.6			
23	165	9.1	5.13	1.07	1.10	136.3	0.3			
24	230	6.4	6.58	1.86	0.93	138.1	1.0			
25	191	11.0	6.91	1.54	0.78	166.9	0.8			
26	130	10.0	5.46	0.89	0.65	104.7	1.3			
27	205	7.3	6.30	1.62	0.86	152.4	0.7			
28	166	9.6	4.60	1.32	0.56	128.6	0.5			
29	189	7.6	6.48	1.44	0.87	167.1	1.1			
30	207	6.8	7.12	1.88	0.34	106.2	7.7			
31	176	8.5	5.63	1.27	0.91	172.2	0.6			
32	156	9.1	5.68	1.19	0.60	157.2	0.8			
33	168	8.6	5.84	1.30	0.67	148.5	3.4			
34	161	4.4	4.65	1.18	0.64	162.7	3.9			
35	181	5.2	5.24	1.37	0.74	142.6	4.1			
36	171	7.7	5.69	1.32	0.69	175.8	3.5			
37	176	4.5	5.59	1.64	1.01	163.9	5.0			
38	174	5.1	5.39	1.67	0.62	155.8	4.9			
39	179	2.4	5.60	1.91	1.28	145.8	8.9			
40	154	4.5	4.30	1.39	0.68	139.4	5.3			
41	180	6.8	5.94	1.43	0.82	156.3	6.1			
42	172	7.7	5.61	1.07	1.01	139.4	3.7			
43	173	5.7	5.45	1.52	0.72	139.9	6.8			
44	163	5.5	4.86	1.34	0.77	136.9	3.4			
45	176	6.5	5.67	1.41	0.81	95.9	7.3			
46	171	6.9	5.44	1.21	0.9	128.9	4.2			
47	171	8.5	5.63	1.27	0.91	121.5	5.8			
48	166	6.3	5.13	1.24	0.85	114.5	3.7			
49	169	6.4	5.27	1.24	0.84	152.1	4.8			
50	163	3.5	5.03	1.28	0.34	160.0	3.6			
51	165	3.7	5.05	1.51	0.72	100.5	5.9			
52	170	6.1	5.34	1.28	0.84	122.1	4.0			
53	170	7.7	5.69	1.28	0.69	104.0	6.8			
54	167	4.1	5.25	1.32	0.69					
						102.4	3.8			
55	161	4.4	4.65	1.18	0.64	98.3	2.3			

Tabla 3.17. (Continuación).

		CONDIC	CIONES DE	EXTRACCIÓN		RENDIM	ENTO
Experimento	Temperatura	Tiempo	l/s	NaOH/ceniza	Na ₂ CO ₃ /ceniza	SiO_2	Al_2O_3
nº	°C	min	L/kg	g/g	g/g	g/kg	g/kg
56	167	2.9	5.24	1.52	0.66	93.1	1.4
57	164	1.3	4.65	1.45	0.88	125.9	8.7
58	175	3.4	5.69	1.70	1.03	148.8	2.8
59	176	4.5	5.59	1.64	1.01	132.7	1.7
60	182	2.9	6.22	1.95	1.22	158.4	2.2
61	175	3.2	5.48	1.64	1.15	128.5	4.0
62	171	4.6	5.37	1.45	0.92	147.2	2.2
63	167	3.5	5.26	1.51	0.75	143.3	1.1
64	180	6.3	6.34	1.72	0.97	169.5	2.1
65	163	3.5	5.03	1.38	0.72	137.3	1.5
66	187	8.8	7.18	1.86	1.01	156.5	2.1
67	169	3.8	5.70	1.56	0.82	149.3	1.8
68	185	4.9	6.53	1.90	1.15	183.2	1.3
69	195	5.7	7.27	2.15	1.37	179.6	1.7
70	188	5.5	6.80	1.92	1.28	136.9	4.5
71	172	4.0	5.65	1.61	0.88	155.1	2.7
72	184	4.2	6.81	2.05	1.1	178.7	2.7
73	182	2.9	6.22	1.95	1.22	142.9	7.2
74	192	5.1	6.92	2.13	1.31	145.2	4.1
75	175	4.1	6.00	1.7	0.94	136.8	3.1
76	176	6.5	6.31	1.64	0.8	114.5	4.8
77	181	3.8	6.24	1.87	1.11	137.6	4.2
78	186	5.2	6.63	1.96	1.14	121.3	8.4
79	178	4.4	6.16	1.77	0.99	156.0	1.9
80	179	5.7	6.36	1.75	0.93	142.2	4.9

Tabla 3.18. Experimentos de extracción de sílice realizados con microondas a la ceniza volante de Meirama.

		CONDIC	IONES DE I	EXTRACCIÓN		RENDIMI	ENTO
Experimento	Temperatura	Tiempo	l/s	NaOH/ceniza	Na ₂ CO ₃ /ceniza	SiO_2	Al_2O_3
nº	°C	min	L/kg	\mathbf{g}/\mathbf{g}	g/g	g/kg	g/kg
1	90	9.0	3.00	0.90	1.35	122.5	10.5
2	120	9.0	9.00	0.90	0.45	172.3	13.4
3	90	1.0	9.00	0.30	1.35	79.9	3.2
4	120	1.0	3.00	0.90	0.45	152.5	2.6
5	120	9.0	3.00	0.30	1.35	153.7	6.4
6	90	9.0	3.00	0.30	0.45	95.5	5.4
7	99	4.2	6.60	0.48	1.08	98.4	6.0
8	130	3.9	6.84	1.09	1.42	203.6	6.3
9	149	1.3	8.76	1.49	1.91	215.1	1.7
10	133	8.6	3.34	1.16	0.93	125.0	2.9
11	159	3.6	7.07	0.84	0.49	222.7	6.0

Tabla 3.18. (Continuación).

		CONDICI	ONES DE 1	EXTRACCIÓN		RENDIMI	ENTO
Experimento	Temperatura	Tiempo	l/s	NaOH/ceniza	Na ₂ CO ₃ /ceniza	SiO_2	Al_2O_3
nº	°C	min	L/kg	\mathbf{g}/\mathbf{g}	g/g	g/kg	g/kg
12	194	0.9	9.11	0.81	0.06	148.3	6.4
13	127	2.0	8.22	0.45	0.73	129.8	2.4
14	131	6.9	4.56	0.98	0.88	199.9	0.8
15	126	6.9	6.95	0.86	0.68	220.1	13.7
16	146	11.1	8.37	0.73	1.48	195.3	1.2
17	157	4.0	10.52	1.50	0.63	217.1	5.2
18	148	5.2	8.64	1.20	0.81	238.6	4.8
19	142	8.2	7.59	0.86	1.17	218.6	2.4
20	152	8.4	7.08	0.81	0.19	203.0	7.6
21	136	5.0	6.90	1.02	1.11	218.2	6.9
22	138	2.8	6.06	1.10	0.42	228.4	11.2
23	152	2.5	9.69	1.03	0.52	177.2	7.2
24	136	5.8	5.84	0.99	0.79	221.7	2.1
25	147	4.7	6.92	0.98	0.17	190.4	7.9
26	139	4.9	6.91	1.01	0.87	231.6	5.1
27	162	2.0	6.86	1.20	0.67	204.6	0.9
28	135	5.7	6.93	0.94	0.68	205.0	8.6
29	135	3.9	4.48	0.75	0.49	228.8	5.4
30	128	3.3	2.41	0.53	0.33	190.3	5.3
31	148	2.7	5.21	0.94	0.54	210.6	5.6
32	119	4.4	4.33	1.08	0.75	215.4	16.7
33	119	6.0	5.84	1.03	0.79	171.3	11.0
34	141	3.5	5.37	0.96	0.60	213.5	6.6
35	133	2.0	5.02	0.97	0.46	192.6	10.3
36	135	4.8	5.63	0.99	0.71	218.0	9.1
37	125	4.8	5.59	1.01	0.70	233.7	12.0
38	138	2.8	6.06	1.10	0.42	240.4	15.0
39	127	3.5	5.32	0.99	0.58	210.7	14.9
40	133	4.5	5.55	0.99	0.68	216.5	11.5
41	139	4.9	6.91	1.01	0.87	212.4	9.1
42	119	2.9	3.40	0.96	0.31	183.4	8.3
43	134	4.4	6.03	1.00	0.73	217.3	11.6
44	133	4.6	5.28	0.99	0.66	212.6	6.2
45	135	3.9	4.48	0.75	0.49	214.1	8.8
46	126	3.8	4.27	0.97	0.48	214.2	11.8
47	124	3.3	4.61	0.97	0.48	196.6	14.4
48	131	4.3	5.11	0.99	0.61	231.9	9.7
49	119	4.4	4.33	1.08	0.75	174.9	11.5
50	133	4.3	5.96	1.00	0.71	211.4	8.5
51	146	3.6	6.55	0.86	0.42	220.8	15.4
52	137	3.5	5.16	0.88	0.35	214.0	10.2
53	125	4.8	5.59	1.01	0.70	225.2	12.7
54	120	4.1	4.01	1.03	0.61	230.3	11.8
55	108	4.4	2.74	1.12	0.70	189.8	10.4
56	123	4.5	4.94	1.07	0.78	121.2	4.5

Tabla 3.18. (Continuación).

		CONDIC	CIONES DE 1	EXTRACCIÓN		RENDIM	ENTO
Experimento	Temperatura	Tiempo	l/s	NaOH/ceniza	Na ₂ CO ₃ /ceniza	SiO_2	Al_2O_3
nº	°C	min	L/kg	\mathbf{g}/\mathbf{g}	g/g	g/kg	g/kg
57	133	3.7	5.11	0.93	0.46	203.4	9.0
58	138	2.7	4.32	0.91	0.34	235.3	8.4
59	144	1.7	3.68	0.86	0.15	214.8	9.0
60	132	3.4	4.48	0.98	0.53	205.7	6.2
61	132	3.5	4.64	0.97	0.51	219.0	9.1
62	129	3.1	5.18	1.25	0.51	213.9	10.0
63	131	4.3	5.11	0.99	0.61	222.5	10.8
64	133	3.7	4.65	0.87	0.49	222.1	10.6
65	132	3.5	5.02	0.99	0.48	222.1	10.9
66	131	3.3	5.12	1.13	0.50	214.8	9.6

Tabla 3.19. Experimentos de extracción de sílice realizados con microondas a la ceniza volante de Montfalcone.

		CONDIC	CIONES DE	EXTRACCIÓN		RENDIM	IENTO
Experimento	Temperatura	Tiempo	l/s	NaOH/ceniza	Na ₂ CO ₃ /ceniza	SiO_2	Al_2O_3
nº	°C	min	L/kg	\mathbf{g}/\mathbf{g}	g/g	g/kg	g/kg
1	90	9.0	3.00	0.90	1.35	51.0	5.8
2	120	9.0	9.00	0.90	0.45	76.5	7.7
3	90	1.0	9.00	0.30	1.35	53.0	3.4
4	120	1.0	3.00	0.90	0.45	114.9	3.1
5	120	9.0	3.00	0.30	1.35	93.7	7.5
6	90	9.0	3.00	0.30	0.45	45.7	8.6
7	99	4.2	6.60	0.48	1.08	44.8	7.4
8	130	3.9	6.84	1.09	1.42	155.6	5.9
9	149	1.3	8.76	1.49	1.91	201.4	5.4
10	141	7.5	4.10	1.32	1.12	137.0	2.1
11	170	2.1	8.14	1.06	0.76	198.2	3.0
12	130	6.6	7.20	0.96	0.78	146.7	8.6
13	131	6.3	4.62	0.72	1.18	165.2	7.0
14	168	8.5	10.13	1.32	1.85	199.9	0.7
15	174	3.7	7.10	1.40	1.95	194.5	1.0
16	195	2.2	7.05	1.63	2.53	206.5	3.7
17	152	5.8	5.92	1.28	1.38	202.0	1.0
18	164	6.0	8.51	1.28	1.70	214.3	0.9
19	149	4.9	6.15	1.03	1.42	183.8	1.2
20	183	7.1	5.55	1.02	1.21	187.8	0.9
21	167	8.3	5.13	1.44	2.54	119.3	0.2
22	169	3.7	7.39	1.15	1.20	223.9	1.7
23	196	5.0	7.62	1.51	1.79	214.0	4.0
24	167	2.0	9.05	1.72	2.23	206.9	4.1
25	179	5.8	6.42	1.19	1.46	183.1	0.8
26	192	3.0	5.25	1.42	1.64	131.2	4.6

Tabla 3.19. (Continuación).

		CONDIC	CIONES DE 1	EXTRACCIÓN		RENDIN	MENTO
Experimento	Temperatura	Tiempo	l/s	NaOH/ceniza	Na ₂ CO ₃ /ceniza	SiO_2	Al_2O_3
nº	°C	min	L/kg	\mathbf{g}/\mathbf{g}	g/g	g/kg	g/kg
27	171	5.3	7.70	1.32	1.69	191.5	1.2
28	174	3.0	7.85	1.57	1.98	233.8	1.5
29	172	1.6	8.57	1.75	2.23	204.9	3.9
30	183	2.6	6.63	1.54	1.86	202.2	2.6
31	180	3.3	6.90	1.48	1.82	185.8	5.3
32	153	6.1	7.22	1.17	0.74	236.2	3.8
33	133	8.1	7.31	0.93	0.00	126.8	18.9
34	158	6.1	7.50	1.19	1.02	210.6	7.6
35	163	5.4	7.35	1.26	1.22	213.2	6.0
36	128	4.6	6.67	1.06	0.82	127.8	12.3
37	179	4.9	7.38	1.40	1.55	186.4	13.8
38	169	3.7	7.39	1.15	1.20	226.7	6.5
39	168	4.0	6.95	1.37	1.52	203.5	6.5
40	147	4.1	6.75	1.22	1.18	187.9	7.9
41	155	4.3	6.91	1.26	1.27	232.5	6.4
42	152	5.8	5.92	1.28	1.38	202.6	5.7
43	153	5.2	7.17	1.20	1.11	202.2	6.1
44	164	4.3	7.00	1.33	1.42	194.2	8.7
45	174	2.8	8.63	1.31	1.26	195.8	10.9
46	158	5.0	6.60	1.29	1.35	215.2	4.4
47	174	3.0	7.85	1.57	1.98	201.4	5.4
48	160	4.5	7.39	1.25	1.20	189.5	6.2
49	163	4.4	7.10	1.31	1.36	191.0	6.2
50	145	6.4	6.24	0.90	0.39	171.2	10.1
51	167	3.9	7.45	1.40	1.58	193.6	9.0
52	153	6.1	7.22	1.17	0.74	202.9	6.7
53	158	4.8	7.13	1.20	1.10	198.2	6.8
54	150	5.7	6.65	1.03	0.68	202.0	6.4
55	156	5.1	6.78	1.16	1.00	201.8	3.3
56	162	3.4	6.51	1.19	1.46	209.1	1.3
57	155	4.3	6.91	1.26	1.27	225.4	2.0
58	162	3.7	6.84	1.21	1.38	192.9	3.3
59	157	4.8	6.80	1.17	1.10		2.5
60	170	2.8	7.03	1.39	1.87	202.0	5.1
61	158	5.0	6.60	1.29	1.35	186.2	3.6
62	155	5.0	6.75	1.12	0.98	187.9	4.5
63	156	5.7	7.27	1.21	0.90	231.1	3.5
64	159	4.4	7.45	1.07	0.83	200.1	3.4
65	163	4.2	7.58	1.22	1.14	191.3	5.0
66	157	4.8	6.96	1.15	1.02	196.9	1.8
67	159	4.9	6.68	1.31	1.37	225.9	2.1
68	161	4.6	7.06	1.29	1.32	204.3	2.8
69	160	4.6	7.04	1.25	1.24	204.1	2.5
70	163	4.5	7.32	1.30	1.29	181.9	5.7
71	158	4.7	6.93	1.20	1.15	228.4	1.9

Tabla 3.19. (Continuación).

		CONDIC	CIONES DE 1	EXTRACCIÓN		RENDIM	IIENTO
Experimento	Temperatura	Tiempo	l/s	NaOH/ceniza	Na ₂ CO ₃ /ceniza	SiO_2	Al_2O_3
nº	°C	min	L/kg	\mathbf{g}/\mathbf{g}	g/g	g/kg	g/kg
72	159	4.7	7.03	1.20	1.12	205.2	3.8
73	146	6.0	6.54	1.33	1.14	214.8	1.6
74	151	5.5	6.70	1.31	1.18	210.9	1.1
75	156	5.7	7.27	1.21	0.90	222.1	1.9
76	153	5.3	6.78	1.29	1.17	175.4	3.3
77	166	4.0	7.29	1.18	1.20	189.8	1.4
78	165	4.1	7.25	1.17	1.19	188.1	1.6
79	162	4.4	7.13	1.20	1.18	172.8	4.8

Tabla 3.20. Experimentos de extracción de sílice realizados con microondas a la ceniza volante de Puertollano.

		RENDI	MIENTO				
Experimento	Temperatura	Tiempo	l/s	NaOH/ceniza	Na ₂ CO ₃ /ceniza	SiO_2	Al_2O_3
nº	°C	min	L/kg	g/g	g/g	g/kg	g/kg
1	90	9.0	3.00	0.90	1.35	96.6	5.7
2	120	9.0	9.00	0.90	0.45	102.3	13.5
3	90	1.0	9.00	0.30	1.35	25.8	3.6
4	120	1.0	3.00	0.90	0.45	107.2	9.5
5	120	9.0	3.00	0.30	1.35	116.9	7.0
6	90	9.0	3.00	0.30	0.45	45.7	8.6
7	99	4.2	6.60	0.48	1.08	27.5	5.7
8	130	3.9	6.84	1.09	1.42	198.0	7.8
9	149	1.3	8.76	1.49	1.91	273.2	5.5
10	141	7.5	4.10	1.32	1.12	256.8	2.7
11	161	9.2	2.86	1.73	1.15	183.2	2.2
12	122	7.3	6.69	0.94	0.84	217.1	12.4
13	171	1.4	7.22	1.08	0.92	312.4	4.9
14	161	9.6	8.91	1.15	2.01	311.9	2.1
15	178	1.8	11.27	2.09	1.37	358.9	5.3
16	198	1.3	9.41	1.91	2.09	365.2	3.5
17	191	7.3	7.60	1.53	1.09	295.2	1.8
18	167	9.0	3.63	0.71	1.52	262.6	3.1
19	214	3.9	10.61	1.23	1.93	338.9	4.0
20	159	6.6	5.73	1.30	1.32	296.6	2.6
21	169	7.4	7.81	1.23	1.70	355.3	1.2
22	155	3.0	5.92	0.96	1.93	241.6	3.2
23	182	6.2	7.18	1.39	1.30	358.9	3.7
24	171	6.8	5.55	1.05	1.49	321.3	2.6
25	181	9.9	7.05	1.67	2.24	325.6	1.7
26	201	6.0	9.07	1.60	2.21	286.5	2.5
27	170	6.5	6.57	1.38	1.54	334.1	1.5
28	151	13.4	4.25	0.78	1.22	328.0	1.2

Tabla 3.20. (Continuación).

		CONDIC	CIONES DE I		RENDIMIENTO				
Experimento	Temperatura	Tiempo	l/s	NaOH/ceniza	Na ₂ CO ₃ /ceniza	SiO_2	Al_2O_3		
nº	°C	min	L/kg	\mathbf{g}/\mathbf{g}	g/g	g/kg	g/kg		
29	128	19.5	1.68	0.21	0.78	120.1	2.9		
30	156	6.2	5.49	0.66	0.66	179.0	5.9		
31	175	9.0	6.66	1.42	1.85	311.0	0.8		
32	168	10.2	7.44	1.43	1.55	319.5	1.4		
33	170	7.7	6.02	1.15	1.51	241.8	5.5		
34	162	7.5	6.07	0.95	1.06	283.6	6.3		
35	164	8.7	6.73	1.14	1.22	320.2	5.8		
36	172	9.4	6.95	1.42	1.73	329.1	4.0		
37	174	8.5	6.37	1.34	1.78	270.4	5.2		
38	182	6.2	7.18	1.39	1.30	334.4	6.1		
39	166	8.6	6.64	1.19	1.36	340.1	5.9		
40	163	7.4	6.03	0.97	1.12	305.3	5.6		
41	170	8.9	6.72	1.31	1.58	369.7	5.8		
42	169	7.4	7.81	1.23	1.70	258.1	9.3		
43	165	11.3	6.47	0.98	1.32	284.0	4.9		
44	151	13.4	4.25	0.78	1.22	225.7	4.7		
45	165	12.0	4.69	1.03	1.01	311.5	2.8		
46	188	5.4	8.43	1.58	1.41	303.9	4.9		
47	179	7.4	7.38	1.38	1.36	299.7	5.7		
48	180	5.9	6.57	1.54	1.32	271.9	4.5		
49	169	10.0	6.50	1.12	1.32	311.7	5.6		
50	162	10.9	5.31	1.04	1.27	229.1	6.3		
51	175	8.3	6.86	1.29	1.34	287.5	5.4		
52	174	7.6	6.34	1.36	1.32	264.9	5.0		
53	170	9.4	6.46	1.18	1.32	267.9	6.3		
54	166	9.7	5.82	1.15	1.29	304.8	3.1		
55	166	8.6	6.64	1.19	1.36	245.1	2.3		
56	170	8.8	5.96	1.25	1.30	336.0	1.5		
57	170	8.9	6.72	1.31	1.58	268.7	13.9		
58	169	8.4	5.71	1.28	1.28	260.8	3.7		
59	175	9.6	5.51	1.26	1.23	280.9	1.2		
60	173	9.6	4.94	1.12	0.87	335.4	1.9		
61	165	12.0	4.69	1.03	1.01	269.8	1.8		
62	175	10.0	4.06	1.03	0.52	340.2	2.3		
63	182	5.7	6.72	1.40	1.25	287.9	2.5		
64	169	10.4	5.20	1.12	1.07	281.2	1.1		
65	170	8.4	5.78	1.12	0.96	307.0	3.5		
66	176	6.8	6.32	1.26	1.08	279.7	2.3		
67	171	9.5	5.48	1.15	1.07	283.1	1.4		
68	181	7.5	5.56	1.23	0.77	335.7	2.1		
69	180	6.9	5.94	1.26	0.87	313.8	1.5		
70	185	7.4	5.70	1.34	0.94	301.2	2.1		
71	170	8.8	5.96	1.25	1.30	308.6	1.1		
72	174	8.1	5.76	1.18	0.96	357.7	2.2		
73	173	9.3	5.47	1.17	1.07	317.7	2.6		
74	184	7.6	5.25	1.15	0.55	308.5	1.1		

Tabla 3.20. (Continuación).

		CONDICIO	NES DE E	XTRACCIÓN		RENDIMIENTO				
Experimento	Temperatura	Tiempo	l/s	NaOH/ceniza	Na ₂ CO ₃ /ceniza	SiO_2	Al_2O_3			
nº	°C	min	L/kg	\mathbf{g}/\mathbf{g}	g/g	g/kg	g/kg			
75	175	10.0	4.06	1.03	0.52	284.7	1.3			
76	191	7.1	4.90	1.10	0.17	332.6	2.3			
77	188	6.3	5.51	1.20	0.42	284.6	1.8			
78	177	8.5	5.48	1.18	0.91	268.1	1.3			
79	187	5.0	7.49	1.40	1.12	286.2	1.1			
80	178	8.7	4.92	1.12	0.67	308.4	1.4			

Utilizando las condiciones óptimas de extracción de Si con microondas (Tabla 3. 21), al igual que en la extracción convencional, se evidencia que las cenizas con mayores contenidos totales de SiO₂ son las que alcanzan mayores rendimientos de extracción (Figura 3.22), según la siguiente relación:

Rendimiento de extracción (g/kg) = $17.1*SiO_{2 \text{ total}}$ (%) - $650 \text{ (R}^2=0.84)$

Por tanto, basándose en ésta ecuación, se puede concluir que para obtener un mínimo rendimiento de extracción de100 g SiO₂/kg, el contenido total de SiO₂ en la ceniza original ha de ser como mínimo:

$$>$$
 44% SiO₂ mediante extracción de microondas (140-185°C).

Por tanto, el contenido total de SiO_2 necesario para alcanzar una extracción > 100 g SiO_2/kg disminuye utilizando la técnica de microondas respecto a la convencional (> 47 y > 52 bajo condiciones optimizadas a 90 y 120 °C, respectivamente).

Tabla 3.21. Parámetros de extracción de SiO_2 optimizados para las cenizas seleccionadas mediante la técnica de microondas. (T expresa la temperatura, t el tiempo, y l/s la relación de líquido respecto al sólido).

Microondas	T	t	l/s	NaOH	Na ₂ CO ₃	SiO ₂ extr
	°C	min	L/kg	M	M	g/kg
Puertollano	174	8	5.8	5.0	1.5	358
Meirama	148	5	8.6	3.5	1.0	239
Montfalcone	159	5	6.7	5.0	2.0	226
Compostilla	185	5	6.5	7.0	2.0	183
Alkaline	143	3	4.4	7.0	2.0	138

Si se utiliza la extracción de SiO₂ optimizada (Tabla 3.21) frente a las especies de sílice más solubles presentes en las cenizas volantes, que son la sílice de la matriz vítrea que es la más fácilmente degradable y la sílice opalina, se encuentra una excelente correlación La ecuación de la recta que describe la correlación es la siguiente (Figura 3.22):

Rendimiento de extracción (g/kg) = $12.5*SiO_{2 \text{ en vidrio} + \text{ópalo}}(\%) - 461 (R^2=0.98)$

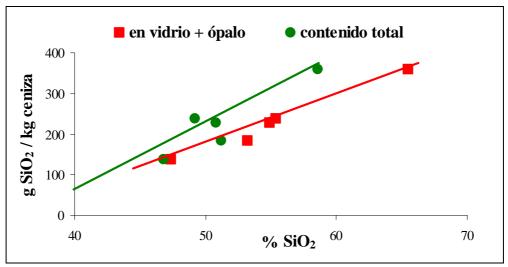


Figura 3.22. Influencia del contenido total en SiO_2 y la proporción de matriz vítrea compuesta por $SiO_2 + SiO_2$ como ópalo.

Por tanto, a partir de esta ecuación se puede concluir que, para obtener rendimiento de extracción de sílice > 100 g SiO₂/kg, además de precisar un elevado contenido en SiO₂ en las cenizas originales, ha de considerarse necesario que las cenizas presenten un contenido:

> 45 % SiO_{2 en vidrio + ópalo} utilizando los parámetros optimizados (140-185 °C).

Como en el caso del contenido total de SiO₂, la solubilidad de SiO_{2 en vidrio + ópalo} necesaria para alcanzar una extracción > 100 g SiO₂/kg, varía en función de la eficiencia del proceso de extracción, disminuyendo considerablemente al utilizar la técnica de microondas respecto a la convencional.

3.2.3. Lixiviación de elementos traza durante procesos de extracción de sílice

Además de determinar los rendimientos de extracción de SiO₂, Al₂O₃ y el consumo de Na, también se analizaron las concentraciones de elementos mayoritarios y traza, en los lixiviados resultantes de algunos experimentos de extracción de sílice. Así se seleccionaron los extractos de sílice obtenidos con agitación mecánica, relación solución de 2M NaOH/ceniza volante = 3 L/kg a 90 °C y diferentes tiempos de extracción. Los resultados que se muestran en la Tabla 3.22 evidencian elevadas proporciones lixiviables de muchos elementos de importancia ambiental, tales como As, V y Mo. Pero se ha de resaltar, que estos elementos no se incorporan en la estructura de la zeolita que se sintetiza a partir de este tipo de soluciones, sino que se mantienen en la solución remanente de la cristalización, tal y como se mostrará en los próximos capítulos.

El ataque alcalino movilizó gran proporción de los contenidos de Mo y V para todas las cenizas volantes (alrededor del 46-75% de Mo y el 50-57% de V). También, dependiendo del tipo de ceniza volante, se extraía entre 12 y 62 % de As y de 20 a 90% de B.

Por el contrario, las cantidades extraídas de Ba, Cd, Co, Cr, Cu, Sr y Th son relativamente bajos, normalmente < 1% del contenido total (Tabla 3.22). Finalmente, elementos como Li, Pb, Sb, Sn y Zn muestran una fracción extraíble intermedia (< 10% del contenido total).

Así, se pueden alcanzar fácilmente concentraciones de 2.5 mg/L de Mo, 10 mg/L de As, 30 mg/L de V y B en las soluciones resultantes de las extracciones de sílice utilizando un tipo de ceniza volante convencional. Por tanto, debido a los elevados niveles lixiviables obtenidos para este grupo de elementos, se pone de manifiesto que, en el caso de una potencial extracción de sílice a partir de cenizas volantes a escala industrial, las soluciones resultantes deberían ser tratadas con el fin de extraer el As, B, Mo y V, para la mayoría de las cenizas volantes. Para algunos elementos se podría considerar la posible recuperación a partir de estas soluciones, teniendo en cuenta que algunos de éstos tienen una solubilidad altamente dependiente del pH.

Además, los resultados muestran que para elementos como el Pb, Zn y Sb pueden extraerse alrededor del 10% del contenido total en todas las cenizas. Lo que significa que en las soluciones extraídas de la ceniza de Puertollano (que posee un contenido total de 1100 mg Pb /kg y 200 mg Zn /kg) se pueden encontrar elevadas concentraciones de estos elementos (Tabla 3.22).

Tabla 3.22. Contenido en elementos traza del lixiviado de las cenizas en (µg/g) durante los experimentos de extracción de sílice (reactor PARR 4843, 2M NaOH, 90 °C y 3 L solución extractante/kg ceniza volante).

Tiempo (h)	As	В	Ba	Ca	Cd	Со	Cr	Cu	Fe	Li	Mg	Mn	Mo	P	Pb	S	Sb	Sn	Sr	Th	Ti	V	Zn
Alkaline																							
3	4	73	< 0.01	<1	< 0.01	< 0.01	2.1	< 0.05	1	18	< 0.1	< 0.1	4	476	2	2596	1.1	0.2	0.3	< 0.02	1	88	2
6	6	99	0.04	<1	0.04	< 0.01	0.4	< 0.05	3	18	< 0.1	< 0.1	6	778	2	3461	1.4	0.2	0.2	< 0.02	1	151	< 0.5
9	6	109	0.05	<1	0.07	< 0.01	0.4	< 0.05	4	7	< 0.1	0.1	6	898	2	3491	1.7	0.2	0.2	< 0.02	1	171	< 0.5
12		108								5	<0.			776		2890						148	< 0.5
Meirama																							
3	25	77	0.09	<1	< 0.01	< 0.01	0.2	< 0.05	8	1	1.4	0.2	2	163	0.1	7640	0.3	0.1	0.1	< 0.02	1	43	< 0.5
6	27	79	0.09	<1	< 0.01	< 0.01	0.4	< 0.05	12	1	0.1	0.1	2	227	0.1	8177	0.2	0.1	0.2	< 0.02	0	64	< 0.5
9	30	82	0.09	<1	0.06	< 0.01	0.3	< 0.05	8	1	< 0.1	0.1	3	251	0.1	8400	0.2	0.1	0.2	< 0.02	0	72	< 0.5
12		76		<1						1	3			237		7278						70	1
Montfalcone																							
3	14	207	0.03	<1	< 0.01	< 0.01	0.8	< 0.05	25	35	0.4	0.2	9	377	1	900	0.6	1.1	0.1	< 0.02	10	99	2
6	15	285	< 0.01	<1	< 0.01	< 0.01	0.3	< 0.05	8	34	< 0.1	< 0.1	9	736	0.5	894	0.7	0.2	0.1	< 0.02	6	211	< 0.5
9	15	306	0.04	<1	0.06	< 0.01	0.1	< 0.05	5	31	< 0.1	< 0.1	9	806	0.3	895	0.6	0.1	0.1	< 0.02	5	238	1
12		289								26	32			776		890						234	2
Neutral																							
3	30	142	0.10	8	< 0.01	< 0.01	0.2	1.0	6	10	0.5	< 0.1	5	2069	2	1749	0.4	1.2	0.5	< 0.02	1	90	3
6	32	157	0.32	10	0.07	< 0.01	0.2	0.4	5	14	4.4	0.1	5	2650	0.4	1687	0.4	0.1	0.7	< 0.02	3	127	< 0.5
9	30	154	0.15	6	0.10	< 0.01	0.1	0.6	4	10	1.8	0.1	5	2643	0.4	1601	0.4	0.1	0.5	< 0.02	1	128	< 0.5
12		145								10	5.4			2788		1674						137	< 0.5
Puertollano																							
3	50	60	< 0.01	<1	< 0.01	< 0.01	0.1	< 0.05	20	13	< 0.1	< 0.1	5	67	60	517	26	1.1	< 0.1	< 0.02	6	25	56
6	67	103	0.29	<1	0.01	< 0.01	0.3	0.1	53	20	5.5	0.4	8	156	118	644	51	0.8	0.2	< 0.02	8	64	31
9	67	127	0.05	<1	0.04	< 0.01	0.2	< 0.05	14	14	1.6	0.2	8	252	51	612	56	0.2	0.2	< 0.02	4	116	4
12		105								10	12			219		533						100	3

Algunos elementos mayoritarios como el S y el P muestran una elevada fracción extraíble (alrededor del 80% de S y entre el 25 y 60% de P), mientras que otros elementos como el Ca, Mg, Mn, Fe y Ti muestran bajos niveles de extracción, normalmente < 0.1% del contenido total (Tabla 3.22).

3.3. CONCLUSIONES

A partir de los resultados obtenidos en los experimentos de extracción de sílice mediante el método convencional en una sola etapa, se puede afirmar que las condiciones óptimas de extracción para las cenizas volantes seleccionadas son las siguientes: 120 °C, 3M NaOH, 3 L/kg y 7 h para la ceniza volante de Alkaline, 2 h para Meirama, 5 h para Montfalcone, 10 h para Neutral y 9 h para Puertollano.

Los rendimientos de extracción de sílice alcanzados bajo estas condiciones fueron: 87, 166, 180, 186 y 405 g SiO₂/kg ceniza volante (equivalente a 264, 503, 545, 567 y 1227 g zeolita A/kg ceniza volante) para las cenizas de Alkaline, Neutral, Meirama, Montfalcone y Puertollano, respectivamente (Tabla 3.8 y Figura 3.14). La extracción más rápida se obtuvo en tan sólo 2 h, a partir de la ceniza volante de Meirama (180 g SiO₂/kg, equivalente a 540 g zeolita A/kg, en un reactor Parr) debido a la presencia de fases opalinas muy solubles. En este caso, los niveles de extracción no mejoraban con el tiempo debido a la precipitación y cristalización simultánea en zeolitas en el residuo sólido. El resto de cenizas volantes mostraron un progresivo aumento de extracción de sílice paralelamente a la cristalización en material zeolítico en el residuo sólido.

Sin embargo, bajo estas condiciones de extracción con las cenizas volantes de Alkaline y Meirama se obtuvieron unos lixiviados con una relación $Na_2O/SiO_2 > 1.3$. Consiguientemente, a partir de dichos lixiviados, con elevado valor entre la relación Na/Si, no es posible sintetizar zeolitas puras con elevadas CIC tales como 4A, NaP1 o X. Tal y como se mostrará en el próximo capítulo, con relaciones de Na/Si > 1.3, solamente pueden sintetizarse zeolitas con bajas CIC (tales como sodalita).

Estas condiciones de extracción óptimas también favorecen la cristalización en zeolitas neomórficas en el residuo sólido (Tabla 3.8 y Figura 3.15). Este es un resultado clave desde el punto de vista del rendimiento máximo del proceso, de manera que, pueden obtenerse unos lixiviados con altas concentraciones en Si y material zeolítico en el residuo, en tiempos relativamente cortos y en una única etapa.

En base a la combinación de los mejores resultados obtenidos en extracción de sílice acoplados a una buena relación Na/Si en los lixiviados (<1.3), se han determinado las condiciones de extracción óptimas dependiendo de la técnica de extracción empleada como se describe a continuación:

- □ En dos etapas a 90 °C, 6h, 2M NaOH y una relación de 3 L/kg. Bajo estas condiciones, con las cenizas de CCB, Hemweg, Meirama, Montfalcone, Neutral y Puertollano se alcanzaron unos rendimientos de extracción de 110, 119, 136, 157, 178 y 207 g de SiO₂/kg para las cenizas de Hemweg, Neutral, Montfalcone, Meirama, Puertollano y CCB (equivalente a 333, 361, 412, 476, 540 y 627 g de zeolita A por kg de ceniza volante, respectivamente). Además, el residuo sólido obtenido de estos experimentos muestra un contenido de zeolita NaP1 alrededor del 60-75 %, mezclado con otras fases tales como vidrio, mullita, cuarzo, óxido de calcio y magnetita. Las cenizas volantes de Puertollano, Montfalcone y Hemweg tienen potenciales limitaciones respecto a las cenizas de CCB, Meirama y Neutral en los procesos de extracción de sílice y síntesis de zeolitas, debido a los altos contenidos en Pb, Zn, Ba, Sr, V y otros metales pesados. Por tanto, estas cenizas (Puertollano, Montfalcone y Hemweg) únicamente podrán zeolitizarse a partir de los extractos de sílice y no podrán ser utilizadas para la síntesis por conversión directa.
- □ La utilización de condiciones óptimas para conversión directa inducen a que los rendimientos de extracción de sílice sean extremadamente bajos (<25 g SiO₂/kg), con la excepción de los experimentos realizados a 150 °C, 1 M NaOH, 24 h, 18 L/kg, debido a la incorporación de la sílice en el material zeolítico producido en el residuo sólido.
- □ Los tratamientos térmicos (1100 °C) inducen a la inmovilización de Al debido a la formación de fases más insolubles, como mullita, a partir de la matriz vítrea, al mismo tiempo que forman fases de Si altamente solubles, tales como cristobalita-tridimita. Aunque mediante estos procesos aumente la solubilidad de la SiO₂, la inmovilización del Al comporta una importante disminución en la precipitación de fases zeolíticas en el residuo, si se compara con los mismos experimentos realizados para las cenizas originales. Así pues, los rendimientos de extracción de sílice pueden aumentar como consecuencia de la inmovilización de Al y de la formación de sílice de alta temperatura, para cenizas con elevado ratio Si/Al. Con el uso de cenizas pre-tratadas a 1100 °C previamente a la extracción a 150 °C, 6 h, 2M NaOH y 3 L/kg, se alcanzaron rendimientos de extracción de 92, 200, 250, 246 y 220 g SiO₂/kg de ceniza, equivalente a 276, 600, 750, 738 y 660 g zeolita A/kg para las cenizas de Alkaline, Meirama, Montfalcone, Neutral y Puertollano, respectivamente. Pero una posible limitación de este pre-tratamiento es el elevado consumo energético.

- ☐ *Mediante el uso de microondas*, se alcanzaron unos rendimientos de extracción muy altos en tan sólo unos minutos (138-358 g SiO₂/kg ceniza entre 3 y 8 minutos). Sin embargo, este proceso tiene las siguientes limitaciones:
 - Un consumo de agua elevado (de 4 a 9 L/kg ceniza).
 - Las altas concentraciones de NaOH y Na₂CO₃ necesarias, se traducen en altas relaciones de Na / Si en los lixiviados resultantes de la extracción. Consecuentemente, a partir de estas soluciones únicamente se pueden sintetizar zeolitas con CIC baja, tales como sodalita ó analcima.
 - Los costes tan elevados que representarían escalar de este tipo de reactores a nivel industrial.

Los resultados muestran que con cualquiera de estos procedimientos se han podido alcanzar rendimientos de extracción de sílice que equivalen a cantidades superiores de 500 g de zeolita pura por kg de ceniza volante

Partiendo de estas consideraciones, cabe citar que los mejores rendimientos de extracción de Si obtenidos para cada metodología fueron los siguientes:

- □ 405 g SiO₂/kg en una única etapa (equivalente a 1216 g de zeolita A pura /kg) para la ceniza de Puertollano.
- □ 210 g SiO₂/kg en dos etapas de extracción (equivalente a 630 g de zeolita A pura /kg) para la ceniza de CCB.
- □ 250 g SiO₂/kg en una única etapa con cenizas pre-tratadas térmicamente (equivalente a 750 g de zeolita A pura /kg) para la ceniza de Montfalcone.
- □ 368 g SiO₂/kg mediante la técnica de microondas (equivalente a 1104 g de zeolita A pura /kg) para la ceniza de Puertollano.

Finalmente, a partir de la combinación de todos estos resultados con los de caracterización (capítulo 2) se han podido establecer las siguientes conclusiones:

□ El primer parámetro que se consideró fundamental para la extracción de sílice fue el contenido total de sílice de las cenizas volantes. Utilizando las condiciones óptimas de extracción de sílice para las cenizas seleccionadas (Tablas 3.15 y 3.21), se demuestra que para mayores concentraciones de SiO₂ en las cenizas, se pueden alcanzar mayores rendimientos de extracción de Si (Figura 3.23a), según la siguiente relación:

Rendimiento de extracción con microondas (g/kg)= $17.1*SiO_{2total}(\%)$ - $650 (R^2=0.84)$ Rendimiento de extracción convencional a 120 °C (g/kg)= $24.4*SiO_{2total}(\%)$ - $1055 (R^2=0.85)$ Rendimiento de extracción convencional a 90 °C (g/kg)= $6.0*SiO_{2total}(\%)-212$ ($R^2=0.71$)

Si se consideran las 23 cenizas volantes bajo las condiciones de extracción fijadas a 90 °C, 2M, 3 L/kg, 6 h, con 3 etapas consecutivas realizadas sobre el residuo de extracción, la relación es la siguiente (Figura 3.20a):

Rendimiento de extracción (g/kg) =
$$6.9* SiO_{2 total}$$
 (%) - 245 (R^2 =0.61)

Si se consideran 21 cenizas (con la exclusión de las cenizas volantes de Meirama y Narcea), la última correlación mejora considerablemente (Figura 3.20b):

Rendimiento de extracción (g/kg) =
$$7.6* SiO_{2 total}$$
 (%) - $284 (R^2=0.80)$

A partir de las citadas ecuaciones se puede concluir que, para obtener un mínimo rendimiento de extracción de100 g SiO₂/kg, el contenido total de SiO₂ en la ceniza original ha de ser como mínimo:

- > 52% SiO₂ mediante extracción convencional, bajo condiciones optimizadas a 90°C.
- > 47% SiO₂ mediante extracción convencional, bajo condiciones optimizadas a 120°C.
- > 44% SiO₂ mediante la extracción optimizada con microondas (140-185°C).

Por tanto, el contenido total de SiO₂ necesario para alcanzar una extracción > 100 g SiO₂/kg disminuye en función de la eficiencia del proceso de extracción.

□ La Figura 3.23b muestra que además del contenido total de SiO₂, existe un parámetro que todavía tiene una mejor correlación con la extracción potencial de SiO₂, existe una excelente correlación entre SiO₂ extraíble y las especies de sílice más solubles presentes en las cenizas volantes, como es la suma de sílice de la matriz vítrea, que es la más fácilmente degradable, y la sílice opalina, utilizando los parámetros optimizados para cada ceniza volante (Tablas 3.15 y 3.21). Las ecuaciones y los coeficientes de correlación son los siguientes (Figura 3.23b):

Rendimiento extracción con microondas (g/kg) = 12.5* Si $O_{2en\ vidrio+\acute{o}palo}$ (%)-461 (R²=0.98)

Rendimiento extracción convencional a 120° C (g/kg)=18.0*SiO_{2en vidrio+ópalo}(%)-791 (R²=0.97)

Rendimiento de extracción convencional a 90° C (g/kg)= $4.7*SiO_{2en\ vidrio+\acute{o}palo}(\%)-162$ (R²=0.91)

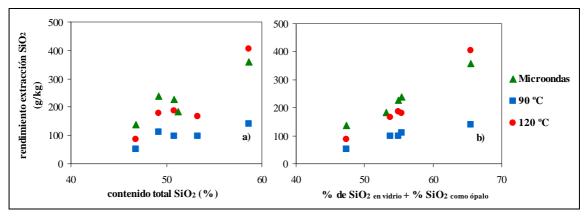


Figura 3.23. Relación entre los rendimientos de extracción de sílice obtenido bajo condiciones óptimas y los contenidos totales de SiO_2 en las cenizas seleccionada (a), y el contenido de SiO_2 en la fase vítrea + el contenido de SiO_2 de fases opalinas (b).

Por tanto, a partir de estas ecuaciones se puede concluir que, para obtener un rendimiento de extracción de sílice > 100 g SiO₂/kg, además de precisar un elevado contenido en SiO₂ en las cenizas originales, también se considera necesario que las cenizas presenten los siguientes factores limitantes:

> **56** % **SiO_{2 en vidrio + ópalo** mediante extracción convencional, bajo los parámetros optimizados a 90 °C.}

> 50 % SiO_{2 en vidrio + ópalo} mediante extracción convencional, bajo los parámetros optimizados a 120 °C.

> **45 % SiO_{2 en vidrio + ópalo** utilizando los parámetros optimizados con microondas, (140-185 °C).}

□ Tal y como se ha citado anteriormente, las bajas relaciones de SiO₂/Al₂O₃ en los extractos pueden inducir a la rápida precipitación de zeolitas en el residuo y consecuentemente disminuyen los rendimientos de extracción de sílice. Por tanto, la relación SiO₂/Al₂O₃ de las cenizas volantes es el tercer parámetro a considerar en los procesos de extracción de SiO₂ (Figura 3.21). El rendimiento de extracción de SiO₂ puede deducirse a partir de la relación entre SiO₂/Al₂O₃ del contenido total de las cenizas volates a partir de la siguiente ecuación:

Rendimiento de extracción convencional a 90° C (g/kg)= $82.6*SiO_2/Al_2O_3 - 62.6$ (R^2 =0.70)

A partir de esta correlación se concluye que con ratios de $SiO_2/Al_2O_3 > 2.02$ (en peso) en el contenido total de las cenizas volantes, se obtienen rendimientos de extracción > 100 g SiO_2/kg , para 19 de las 23 cenizas volantes estudiadas.