Chapter 1

Introduction to Graph Theory
and Graph Labelings

1.1 Basic Notation and Terminology

The notation and terminology used through this thesis is taken for the most
part from Chartrand and Lesniak [6].

In this first section we will introduce some basic definitions and notation
about graph theory. We begin this task by introducing what we mean by a
graph. A graph G is a finite non empty set of objects, called vertices, together
with a set, of unordered pairs of distinct vertices of G called edges. The vertex
and edge sets of G are usually denoted by V (G) and E (G) respectively.

If an edge e = {u, v}, then se say that e joins the vertices v and v, and u
and v are said to be adjacent edges in G. From now on, and for simplicity,
we will denote the edge {u, v} by uv, whenever no ambiguity arises (the same
convention will apply to loop graphs, which we define below). We say that a
graph G of order p and size ¢ is a (p, ¢)-graph.

It has become a tradition to describe graphs by means of diagrams in
which each element of the vertex set of the graph is represented by a dot and
each edge e = ww is represented by a curve joining the dots that represent
the vertices v and v.

For example, if we consider the graph G with

V (G) = {v1,v2,v3,v4, Vs, }

and
E (G) = {UIU‘Zs U3, Upls3, v,;vs} .

Then a possible diagram for this graphs is shown in Figure 1.1. However,
although the diagram is the most common way of representing graphs, there
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Figure 1.1

are many other ways of representing them. Another very common way
is by means of the adjacency matrix. Let G be a graph with V (G) =
{v1,va,...v,}. Then define its p x p adjacency matrix A = (ai;) to be

|1 ifuw; € B(G);
5T 0 ifvw ¢ E(G).

For example the adjacency matrix A for the graph of Figure 1.1 is shown
below.

01100
10100
A=11 10 0 0
00001
00010

If some other way for representing a graph is needed, then it will be
defined in situ.

Next, we will define a concept that allows to tell when two graphs are
basically “equal.” This is the concept of isomorphism. Two graphs are said to
be isomorphic if they have the same structure, and at the most, they differ in
the way their vertices and edges are labeled, or in the way they are drawn. In
order to make this idea more precise, we will define two graphs ¢y and G to
be isomorphic if there exists a bijective function ¢ : V (G) — V (G) such that
w € (Gy) & ¢ (u) ¢ (v) € E(G3). The function ¢ is called an isomorphism.
If two graphs G; and G5 are isomorphic, then we write G; = Gs.

A parameter that appears often when studying graphs is the degree of
vertex. The degree of a vertex u of a graph G, denoted by deg. u, or simply
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by degu if the graph G is clear from the context, is defined as
degou=|{v|uv e E(G)}

A vertex v of a graph G is called even if its degree is even and odd if its degree
is odd. Also, if deg, v = 0, v is called an isolated vertex, and if deg, v =1,
it is called an end-vertex. Also, if e = uv is an edge of a graph G such that
either deg, u = 1 or deg, v = 1, then e is called a pendant edge of G. Let G
be a graph, then a graph H is said to be a subgraph of G if V (H) C V (G)
and E(H) C E(G). If H is a subgraph of G then we will write H C G.
Some types of subgraphs that appear often when studying graph theory are
those obtained by the deletion of a vertex or an edge. If G is any graph with
[V (G)| = 2, and v € V (G), then the subgraph G — v of G is defined to be

V(G —v)=V(G)\{v}

and

E(G—-v)=E(G)\{ee E(G)|vee}.
Also if e € E (G) then the subgraph G — e is defined to be
V(G—e)=V(G)
and
F(G—-e)=E(G)\{e}.

If u and v are non adjacent vertices in a graph G and e = wwv, then the
graph G + e is defined to be

V(G+e)=V(G)

E(G+e)=E(G)U{e}.

Another important type of subgraphs are the induced subgraphs. Let G
be a graph, and suppose that U C V (@) is nonempty. Then the subgraph
(U) of G induced by U is the graph such that

V({U)=U
and

E((U)) ={zy € E(G) | z,y € U}.
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Also, if F' C E'(G) is nonempty, then the subgraph (F) of G induced by
F is the graph such that

V{F)={u eV (G) |uv € F for some v € V (G)}

E((F)=F

Another important concept is the one of connectedness. Informally, we
say that a graph is connected if it is possible to “travel” from any vertex of
a graph to any other vertex of it, using the vertices and edges of the graph.
We can make this concept more formal in the following way. A graph G is
connected if given any pair of distinct vertices of GG, namely u and v, there
exists a sequence of vertices and edges of G of the form

U =T1,T1T2, T2, ToL3 T3, L3T4, Ta,y .., Tp-2Tp_1,Tp-1,Tpn-1Tn,Typ — UV

and is called disconnected otherwise.

If G is a disconnected graph then we define a component of G to be a
subgraph induced by a set U C V (G) such that (U) is connected, but if
v € V(G)\U, then (U U {v}) is disconnected. The number of components
of a graph G is usually denoted by k(G). A bridge e of a graph G is any
element of F (G) such that k(G) < k(G — e).

Similarly a cut vertex v of a graph G is any element of V (G) with the
property that &k (G) < k(G —v).

In order to conclude this first section, we will introduce the very important
concept of decomposition. A decomposition of a graph G is a collection { H;}
of subgraphs of G such that H; = (E;) for some subset E; of F (G) and where
{E;} is a partition of F (G). If {H;} is a decomposition of G then we can
write

{H;}
Gng@HQ@"'@HHHiH = @ H;.

1=1

1.2 Directed Graphs and Loop-Graphs

Graphs where first introduced as ways of modeling situations that may take
place in real life. However, although graphs work very well as models, some-
times variations to the concept of graph are needed. The goal in this section
is to introduce some of these modifications. We first introduce the concept
of directed graphs, also called digraphs.
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A directed graph or digraph D is a finite non empty set of objects called
vertices together with a (possibly empty) set of ordered pairs of distinct
vertices of D called arcs or directed edges. As in graphs the vertex and edge
sets are denoted by V' (D) and E (D) respectively. Note that it is possible
to represent a digraph, topologically with a drawing in which each vertex is
denoted by a dot, and each ordered pair (u,v) is denoted by a curve joining
vertices u and v, with an arrow pointing from vertex u to vertex v. Figure
1.2 shows a possible representation of the digraph D, defined below

Lf (‘D) - {2‘)150211"’332’?‘11@5}

E (D) = {(v1,vs), (v1,v3), (v, v3), (v4,5) } -

Q
i
) ®)
Figure 1.2

Another way of representing digraphs is using the adjacency matrix. Let
D be a digraph with V (D) = {v1,vs,...,v,}. The p x p adjacency matrix
A = (ay;) of the digraph D is defined by the rule

. 1, if (’Ut'.,'vj) S E(D),
ij = { 0, if (v,v;) ¢ E(D).

It is worthwhile to mention that in general, the terminology used for
digraphs is similar to the terminology used for graphs. However, there are
some exceptions to this rule. For instance, the concept of degree of a vertex
for graphs is substituted by the concepts of indegree and outdegree of a vertex
in the case of digraphs. The indegree of a vertex u of a graph G, denoted by
in (u) is defined to be

in(u) = |{v | (v,u) € E(D)}.
The outdegree of a vertex u denoted by out (u), is defined to be

out (u) = [{v | (u,v) € E(D)}.
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Next, we will introduce the concept of loop-graphs.

A loop-graph L is a finite non empty set of objects called vertices, together
with a set of edges consisting of subsets of the set of vertices such that each
subset consists of either one vertex or two vertices. The subsets consisting of
only one vertex are called loops and the subsets consisting of two elements
are called edges. The set of vertices of a loop-graph L is denoted by V (L)
and the set of edges is denoted by E (L). Also, the topological representation
of a loop graph is obtained as follows. The vertices of the loop graph are
represented by dots, while if uv is an edge of the loop graph, then uv is
represented by a curve joining the dots that represent vertices u and v. A
loop u of the loop graph is represented by a curve beginning and ending at w.
Figure 1.3 shows the topological representation of the loop-graph L defined
below,

V(L) = {v1,v2,v3, Vg, Vs }

E (L) = {U1U21 UlU3:~ VoUsg, Uglyq, Vg1, UqUs, Uy, Vg, US}

Figure 1.3

It is also worthwhile to mention that in general the terminology used for
loop-graphs is similar to the terminology used for graphs. However, as in the
case of digraphs, we need to pay special attention to the concept of degree.

If L is a loop-graph and v € V (L), then the degree of v in L, denoted by
deg; (v) or simply by deg (v) if the loop graph is clear, is defined as

Vv HuluweE(@)}Y if v ¢ B(L)
deg (v) _.{ H{u|wve E(L)}+2 ifve E(L) and u # v.

Finally we will introduce the concept of directed loop graph. A directed
loop graph Lp is defined to be a set of objects called vertices together with
a set of ordered pairs that are not necessarily distinct vertices of Lp. The
topological representation and the adjacency matrix of a directed digraph
Lp are obtained in the obvious way, and the terminology is similar to the
terminology used for digraphs.
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1.3 Important Types of Graphs

Throughout this thesis, we will encounter several families of graphs very
often. This is why we devote this section to define these families of graphs.
The first type of graph that we will discuss is the complete graph. A graph
is said to be the complete graph on p vertices, and is denoted by K, if its
order is p and its size is ¢ = (p(p — 1))/2. Figure 1.4 shows the graphs K5,
Kﬁ, and I(;l

W

Figure 1.4

Next, we introduce the concept of bipartiteness. A graph G is said to be
bipartite if it is possible to partition the set V (G) into two sets Vi and V,
such that if uv € F (G) then {u,v} € V; for i = 1,2 and is called a complete
bipartite graph, denoted by Ky, vs), if every vertex in V; is adjacent to every
vertex in V5 and vice versa. Figure 1.5 shows the graphs K33 and Kjs.

K3.3:

Figure 1.5

A graph G is called r-regular if degv = r, for all v € V (G) and a cycle
is any connected 2-regular graph. Usually the cycle on n vertices is denoted
by C,. Figure 1.6 shows a 3-regular graph P and the cycle Cs.
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3-Regular Graph
Figure 1.6

It is interesting to mention that the graph P of Figure 1.6 is a famous
graph called the Petersen Graph.

An acyclic graph is a graph that does not contain any subgraph isomor-
phic to a cycle and a tree is a connected acyclic graph. Acyclic graphs with
more than one component are called forests. A unicyclic graph is a graph
that is not acyclic and there is at least an edge such that the deletion of this
edge results in an acyclic graph. See Figure 1.7 for clarification.

A path is a graph obtained from the deletion of any edge of a cycle and
a linear forest is a graph for which each component is a path. Usually a
path with n vertices is denoted by F,. A caterpillar is any tree for which the
deletion of its end-vertices produces a path, while a lobster is any tree for
which the deletion of its vertices produces a caterpillar. A star is any graph
isomorphic K ,, while a galaxy is a graph for which each component is a
star. See Figure 1.8 for examples.

To close this section, we define the complement of a graph G, denoted
by G, to be the graph with V (G) =V (@) and E (G) = {w | wv ¢ E(G)}.
For an example see Figure 1.9.

1.4 Operations on Graphs

It is a natural question to ask when two graphs are given, how is it possible
to combine them in order to obtain a new graph. In fact, there exist many
different ways of combining graphs, and in this section we will describe only
the most common types of binary operations defined on the set of graphs. We
begin by considering two graphs GG; and G, with the property that V (G1) N
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Tree Forest Unicyclic Graph
Figure 1.7

V (Gy) = 0. The union G = G, UG, is the graph that has V (G) = V (G;) U
V(Gy), and E(G) = E(G1) U E(G3). In general if Gi,Gs,...,G, are n
graphs such that V (G;) NV (G;) = 0 for i # j, we can define the union G' =
Gh1UGyU. . .UG, = UL,G; to be the graph G such that V (G) = U,V (G})
and E(G) =U", F (G)).

If a graph G consists of n (> 2) disjoint copies of a given graph H, then
it is possible to write G as G = nH.

For instance, Figures 1.10 and 1.11 show the graphs G = 2K, U2K,3U
3C, U Cs and H = 4K respectively.

Next, we define the join operation of G; and G, to be the graph G =
Gy + Gy such that V (G) =V (G,) UV (Gy) and E(G) = E(G1) U E (Gq) U
{zy |z € V(G1),y € V(Gy)}. Soif we let G; = K3 and Gy = P,, then we
obtain the graph in Figure 1.12.

The Cartesian product of graphs G; and G is the graph G = G; x Gy
obtained in the following way.

V(G)=V(G,) xV(Gy)
and

(1, 72) (Y1, y2) € B(G) & x1 =y and zys € E(Gy) or
zy =y and 21y € E (G)).

See Figure 1.13 for an example.
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The last operation that we will discuss is the crown product of two graphs.
The crown product of the graphs G and G5 is the graph G = G; © G5
obtained by placing a copy of G and |V (G1)| copies of Gy and then joining
each vertex of (G; with all the vertices in one copy of G5 in such a way that
all vertices in the same copy of GG, are joined with exactly one vertex of G;.
See Figure 1.14 for an example.

1.5 Introduction to Graph Labelings

The area of graph theory has experienced fast development during the last 60
years, and among the huge diversity of concepts that appear while studying
this subject, one that has gained a lot of popularity is the concept of labelings
of graphs. With more than 250 papers in the literature and a very complete
dynamic survey by Joseph Gallian [18], this new branch of mathematics has
caught the attention of many authors, and many new labeling results appear
every year. This popularity is not only due to the mathematical challenges of
graph labelings, but also, to the wide range of applications that graph label-
ings offer to other branches of science, as for instance x-ray crystallography,
coding theory, radar, astronomy, circuit design and communication design.
In fact G. S. Blomm, and S. W. Golomb studied applications of graph label-
ings to other branches of science, and it is possible to find part of this work
in (3] and [4].
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G1 @ Gz:

Figure 1.14

It is important to distinguish between two major classes of labelings,
vertex labelings and total labelings [18]. A vertex labeling of a graph G is
an assignment f of labels to the vertices of G that induces a label for each
edge uv of G, depending on the labels f (u) and f (v). The oldest and better
studied vertex labeling is the one introduced by Rosa [35] in 1967, called
graceful labeling. Graceful labelings were introduced in order to provide an
alternative way to attack the conjecture of Ringel [36] which states that the
complete graph Ky, 1 is decomposable into 2n + 1 subgraphs that are all
isomorphic to a given tree of size n.

A function f is called a graceful labeling of a graph G with size ¢ if f is
an injective function from V' (G) to the set {0,1,2,...,q} with the property
that the function f with domain E (G) and range in the integers, defined by
the rule f (uv) = |f (u) — f (v)|, assigns different labels to the edges of G. If
a graph GG admits a graceful labeling, then we say that G is a graceful graph.

Although Erdés proved in an unpublished paper that almost all graphs
are not graceful, many particular families of graphs have been proven to
admit graceful labelings, (for more information see [18]). In particular, the
most important conjecture in this direction (and probably in the whole area
of graph labelings) is the one known as the Ringel-Kotzig conjecture that
all trees are graceful. This conjecture has been the focus of many papers,
but in spite of all efforts, no major progress has been made towards the
final solution. It is worthwhile to mention that one of the main reasons
this conjecture has become so popular, is because a positive answer to it
implies the truth of Ringel’s conjecture, mentioned before. Another well-
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known conjecture concerning graceful labelings is the one that states that
all unicyclic graphs except C, where m = 1 or 2 (mod 4) are graceful.
This one is known as Truszczynski’s conjecture [39]. Truszczynski proved
some particular families of unicyclic graphs of order less than or equal to
q to be graceful. However, in spite of all this work, general results about
Truszczynski’s conjecture are non-existing.

Another important vertex labeling, that has also been the main subject of
study of many papers, is the harmonious labeling. The harmonious labeling
was introduced in 1980 by Graham and Sloane [22] as a possible way to study
additive bases. A labeling f of the vertices of a graph G of size ¢ is called
harmonious if f is an injective function from V (G) to the additive group
Z, such that the function f from the set E (G) to Z, defined by the rule
F(uv) = f(u) + f(v) (mod q) assigns different labels to the edges of G.
If G is a tree, then the condition that f is injective is relaxed and exactly
two vertex labels are allowed to be equal. If a graph G admits a harmonious
labeling, then it is said to be a harmonious graph. As in the case of graceful
labelings, in the original paper, Graham and Sloane proved that almost no
graphs are harmonious and also conjectured that all trees admit harmonious
labelings. Since then, many different families of graphs have been proved to
be harmonious, see [18], however, general results are rare, and it seems that
at least in the near future the conjecture that all trees are harmonious is out
of reach.

Motivated by these two types of vertex labelings, many authors have
defined a large amount of different vertex labelings that Gallian [18] divides
into two main groups. The first group is called variations of graceful labelings
and the second one is called variations of harmonious labelings.

Among the most important labelings in the first group, are a-labelings,
odd graceful labelings, graceful like labelings, cordial labelings, k-equitable
labelings and hamming-graceful labelings. Among the most important la-
belings in the second group we find sequential and strongly C-harmonious
labelings, elegant labelings and feliticious labelings. For more information
on these labelings the reader is referred to [18].

The other important major class of labelings, as we said before, is the
class of total labelings. A total labelings is a function from the set of ver-
tices union the set of edges of a given graph G to a set of labels. The most
important labelings of this type are k-sequential labelings, sequentially ad-
ditive labelings, magic labelings and super magic labelings. Although, as we
will see, super magic labeling can be thought of, as vertex labelings. In fact
viewing super magic labelings as vertex labelings seem to be more useful that
viewing them as total labelings. The main focus of our work will be on magic
and super magic labelings to which we will pay special attention in the next
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chapters. If the reader is interested about other types of total labelings he is
referred to [18].
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