Chapter 2

Magic and Super Magic
Labelings;

Definitions, Examples and
Basic Results

2.1 Introduction

Recently, new life has been injected into the subject of magic labelings of
graphs, mainly because of a paper by Ringel and Lladé [34]. However this
concept was first introduced by Kotzig and Rosa [27] in 1970. It is worthwhile
to mention that Kotzig and Rosa introduced this concept, under the name
of magic valuations, and in [34] Ringel and Lladé redefined the same concept
but this time under the name of edge-magic labelings. However, through this
thesis we will use the names magic labeling and magic graphs for the sake of
simplicity.

A magic labeling of a (p,q)-graph G is a bijective function f : V(G) U
FE(G) — {1,2,...,p + q} such that for any edge zy of £(G), the sum f(z)+
f(zy) + f(y) = k is a constant, called the valence of the labeling f. If G
admits a magic labeling, then such a graph is called a magic graph. Next,
we will conduct a little survey about what was already known about magic
graph until the point when we began our research. In 1970, Kotzig and Rosa
[27] proved that the cycle C, is magic for every n € N. They also proved
that the graph nK, is magic if and only if n is odd and that the complete
bipartite graph K, , is always magic. Later, in 1974, Kotzig and Rosa [28]
completely characterized the complete graphs that are magic as follows. The
complete graph K, is magic if and only if p = 1,2,3,5,6. At this point the
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18 CHAPTER 2. MAGIC AND SUPER MAGIC LABELINGS

research in this field stopped and it was not until 1996 when G. Ringel and
A. Lladé [34], unaware of the work done by Kotzig and Rosa introduced once
again the same concept, and proved several of the results already known by
Kotzig and Rosa. In spite of this, some new results in the field were proved,
as for instance the result that states that all caterpillars are magic. Also a
very interesting result that appears in this paper by Ringel and Lladé is the
one we now state.

Lemma 2.1. Let G be a (p, q)-graph such that the degree of every vertex is
odd, q is even, and p+q=2 (mod 4). Then, G is not a magic graph.

This lemma shows that graphs that are not magic are not hard to find
and allows to construct infinite many graphs that are not magic.

Not only results were presented in these papers, but also problems and
conjectures that are still open up to now can be found therein. For instance,
Kotzig and Rosa asked if it is possible to characterize the set of magic 2-
regular graphs, and they asked whether all trees admit magic labelings [27],
[28]. Later on, Ringel and Lladé conjectured that all trees admit magic
labelings [34]. This last conjecture has become very popular and it seems
to be an extremely challenging problem. Motivated by the concept of magic
labelings, Enomoto et al. [7], defined in 1992 the concept of super magic
labelings as follows.

A super magic labeling of a (p,q)-graph G is a bijective function f :
V(G)U E(G) — {1,2,...,p+ q} such that in addition of being a magic
labeling of G, it satisfies the extra property that

fV(@) ={L,2,....p}.

If a graph admits a super magic labeling, then is called a super magic graph.
In this same paper they proved that the cycle C, is super magic if and only
if n is odd. They also gave an interesting necessary condition for a graph to
admit a super magic labeling, that we now state.

Lemma 2.2. If a (p,q)-graph G is super magic, then g < 2p — 3.

It is interesting to mention that the previous lemma implies that the
minimum degree of any super magic graph is at most three. This fact was
first observed by Figueroa et al. in [17].

Although, the way the labeling was defined looks like a total labeling,
thanks to a result by Figueroa et al. [17], we can redefine the concept of
super magic labeling in such a way that only the vertices of the graphs are
involved (and hence transform super magic labelings into vertex labelings).
We do this in the next lemma.
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Lemma 2.3. 4 (p, q)-graph G is super magic if and only if there exists a
bijective function f: V(G) —{1,2,...,p} such that the set

S={f(x)+ fly) |zy € E(G)}

consist of g consecutive integers. In such a case, f extends to a super magic
labeling of G with valence k = p+ g +min S.

Proof.
Let G be a super magic (p, ¢)-graph and f any super magic labeling of G
with valence k. Then,

S = {k—flay)|zy € E(G)},
= {k—(+1),k—(@+2),....k—(p+q}.

ThllS? let T e f Jv((;).
Let G be any (p, q)-graph that admits a function f with the properties de-
scribed in the statement of this lemma. Next, let zy € F(G) such that
f(z) + f(y) = minS. Then f extends to a super magic labeling f of G in
the following manner. Let f(z'y') = p+ ¢+ minS — f(z') — f(¢/) for any
edge z'y' € E(G). Thus f(E(G)) ={p+Lp+2,...,p+q}, and therefore
f is a super magic labeling of G. a

JFrom now on, if f is any super magic labeling of any graph, we will call
the function f described in the proof of Lemma 2.3, the canonical form of f.

E. Tesar and D. Craft informed us through personal communication they
had proved that for any magic labeling f of a given (p,q)-graph G, the
labeling f': V(G)U E(G) — {1,...,q} defined by the rule

flw)=p+aq+1- f(w)forallwe V(G)UEG)

is also a magic labeling of G. A similar result can be obtained for super
magic labelings using the canonical form.

Theorem 2.4. If f is any super magic labeling of any (p, q)-graph G, then
the function f': V(G)U E(G) = {1,...,p+ q} defined by the rule

’ . 2?”*‘(1‘1‘1_]0(1”): ?;waE(G);
flw) = { pHi-fw),  fweV(Q)

is also a super magic labeling of G.

The canonical form of a super magic labeling has proven to be a very
useful tool in order to study super magic labelings and super magic graphs,
and many new results have been obtained using this form. Good examples are
the following results obtained by Figueroa et al. in [13], and [17] respectively.
The first of these results is basically a continuation of Lemma 2.2,
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Lemma 2.5. If G is a super magic bipartite (p, q)-graph, then ¢ < 2p — 5.

The validity of this lemma will be clear, after we state and prove the
following two results, also found in Figueroa et al. [17].

Theorem 2.6. Let G be a super magic (p,q)-graph with p > 4 and q¢ >
2p — 4. Then G contains triangles.

Proof.

Assume to the contrary that G contains no triangles. Let f : V(G)U
E(G) — {1,2,...,p+ q} be a super magic labeling of G, and let V(G) =
{vi,v9,...,v,} be such that f(v;) =i for every 1 <i <p.

Observe first that since ¢ > 2p—4 we have that either v; and v, or v, and
vp_1 are adjacent, as the numbers 3 and 2p — 1 can be expressed uniquely as
the sums of distinct integers in the range 1 through p. So suppose, without
loss of generality, that v; and v, are adjacent. Then v, and v are adjacent
also, as the sum 4 can also be expressed uniquely as 1 + 3 distinct with
integers in the permitted range. This in turn implies that v, and v; cannot
be adjacent since G' contains no triangles, and thus v; and vy are adjacent.
Continuing to avoid triangles in this manner we conclude that v, is adjacent
to the vertices v; and vy, where d = deg(v,), and none of this vertices are
adjacent to one another. We have thus accounted for the sums 3 through
d+2. Now, if d = p—1 we are done since there is no way for us to obtain the
sum d+ 3 avoiding triangles. Otherwise, if d < p—1 then with the remaining
options the smallest sum possible is d+4 (joining v, with vg.5) and we would
have no way of obtaining the sum d + 3. Therefore, in either case we have
arrived to a contradiction. O

The converse of the previous theorem provides the desired improved
bound, since bipartite graphs contain no odd cycles.

Corollary 2.7. Let G be a triangle free super magic (p, q)-graph with p > 4.
Then q < 2p — 5.

This bound is sharp as it is not hard to find bipartite super magic (p, q)-
graphs with p > 8 and ¢ = 2p — 5.
The second result is stated next.

Lemma 2.8. Let G be a super magic graph of size q and f a super magic
labeling of G. Then, there are exactly |q/2| or [q/2] edges between V. and
V,, where

Vo={veV(G)| £ (v) is even}

and

V,={veV(Q)| f(v) is odd}
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Proof.
Since f is a super magic labeling of G, it follows that the set

S={f(u)+ f(v)|uw e BE(G)}

consists of ¢ consecutive integers. Then |q/2| or [¢/2] of the elements in
S are odd and each of these has to be the result of adding the label of an
element in V, to the label of an element in V, O

As a corollary to Lemma 2.5, we obtain the following less powerful, al-
though easier to use result also observed by Figueroa et al. in [17].

Corollary 2.9. If G is any (p, q)-graph such that deg(v) is even for all v €
V(G) and g =2 (mod 4) then G is not super magic.

Proof. Since the degree of any vertex of G is even, it follows that all
components of GG are eulerian. Thus, we can decompose G into a union
of edge disjoint cycles. Any partition of V' (G) into sets V; and V;, induces
partitions on each of the vertex sets of each cycle in our decomposition. If C
is any cycle then any partition of V (C) into two sets V{ and V; will produce
an even number of edges joining the vertices of V| with the vertices of Vj.
Thus, there is an even number of edges joining the vertices of V; and V,. But
q/2 is odd. Therefore, G' cannot be super magic.
O
Finally, before concluding this section, we will introduce a result by Fi-
gueroa et al. [17], which is particularly useful when we need to show that a
regular graph is not super magic.

Theorem 2.10. If G is an r-reqular super magic (p, q)-graph, where r > 0,
then q is odd and the valence of any super magic labeling of G is

(dp+q+3) /2.
Proof.
The valence of any super magic labeling of G is
1 p p+q 1
E{TZH- > 3} =5 (p+a+3)
i=1 i=p1

which implies that ¢ is odd O
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2.2 Theorems and Examples About Magic
and Super Magic Graphs

In this section, we will provide some theorems that allow us to construct new
magic and super magic graphs from known magic and super magic graphs.
We also will provide several examples of graphs that admit magic and super
magic labelings, in order to familiarize the reader a little bit more with these
concepts. The next two theorems are due to Figueroa et al. [14].

Theorem 2.11. Let G be a magic graph, f a magic labeling of G, and u,v €
V(G) such that f(u)+ f(v) = k, where k 1s the valence of f, then G + uv is

magic.

Proof.

Notice that if f(u)+ f(v) = k, then uv ¢ E(G); for otherwise f(uv) = 0.
Therefore, we immediately obtain a magic labeling g of G + uv by letting
g(z) = f(z) + 1 for every z € (V(G) U E(G)) — {uv} and g(uv) = 1. 0

The previous result cannot be used if G is connected and f is a super
magic labeling. To see why, let G' be a super magic graph with a super magic
labeling f. By Lemma 2.3, the valence of f is

k=p+qg+min{f(u)+ f(v) |uw € E(G)}.

Thus, E > p+qg+1+2 > 2p+ 2 since G is connected so that ¢ > p — 1.

Now,
max {f(u) + f(v) [w € B(G)} <p+(p—-1)=2p—1

since f is a super magic labeling. Therefore,
flw)+ flv)<2p—1<2p+2<k.

Whereas the previous theorem concerns the addition of an edge, our next
theorem involves the deletion of an edge.

Theorem 2.12. If G is a magic graph and f is a magic labeling of G for
which there exits e € E(G) such that f(e) =1, then G — e is magic.

Proof.
We immediately obtain a magic labeling g of G — e by letting g(z) =
f(z) =1 for every z € (V(G) U E(G)) — {e}. |

It is obvious that, the previous theorem cannot be used for super magic
graphs. However, using the canonical labeling we can find similar results
that involve the addition and deletion of edges of super magic graphs.
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Theorem 2.13. Let G be a super magic graph of order p and let f : V(G) —
{1,2,...,p} be the canonical form of some super magic labeling of G. Let
w,v,u v € V(G) such that

fu) + f(v) = max {f(z) + f(y) | zy € E(G)} +1

and
f) + f(v') = min {f(z) + f(y) | 7y € E(G)} — 1

then, G + uv and G + u'v' are super magic.

Theorem 2.14. Let G be a super magic graph of order p and let f : V(G) —
{1,2,...,p} be the canonical form of some super magic labeling of G. Let
e =uv and ¢ = uv be two edges of G such that

flu)+ f(v) =max {f(z) + f(y) | zy € E(G)}

and
f() + f(v') =min {f(z) + f(y) | zy € BE(G)}

then, G + e and G — €' are super magic.

Next, we will provide some examples of magic and super magic graphs.

In [7], it was shown that the complete bipartite graph K,,, is super
magic if and only if m = 1 or n = 1. The next theorem by Figueroa et al.
[14] partially extends their result by determining all magic and super magic
labelings of the star K ,,.

Theorem 2.15. Fvery star K1, is super magic. Moreover, there are ezactly
3-2" distinct magic labeling of K1 ,, of which only two are super magic labelings
up to isomorphisms.

Proof.

First, notice that the order of K, is n + 1 and its size is n. Next,
define the star G =2 K, as follows, V(G) = {u} U {v; |1 <i<n} and
E(G) = {e; =uv; | 1 <i<n}. Assume that there is a magic labeling f of
G and let k be its valence. Then

(Z (f (vi) + f ((a))) +nf (u) = nk.

Thus, n divides >, (f (v;) + f (&:)).
Now,
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=1

(i(f(wwrf(ei))) tfw)=1+4-+@2n+1)=2n%+3n+1

hence,
"

(@) + fe) =2+ 3n+ (1= £ (w).

i=1
Therefore, n divides f(u) — 1, but 1 < f(u) < 2n + 1, which implies that
f(u)is 1,n+ 1 or 2n + 1. Since

nk=2n*+3n+1+(n—1)f(u),

it, follows that k = 2n + 4, 3n + 3 or 4n + 2, which correspond to f(u) =
1,n 4+ 1,2n + 1 respectively.

It suffices now to exhibit labelings with each of the three possible valences,
and then describe how to obtain all of the other labelings from them. Let
fi, Jo, and f3 be magic labeling of G defined as follows,

fi(u) =1, fitv)=1+1, fi(uy)=2n+2—1i
fg(u)=ﬂ+1, fg (’Ug):?:, fg (uvl-):2n+2—?}
fau)=2n+1, f3(v) =1, fa(uv;)) =2n+1—1

where 1 < i < n. Then the valences of f;, fo, and f3 are 2n + 4, 3n + 3, and
4An+ 2, respectively. Note that all other magic labelings of G' can be obtained
by permuting the labels of uv; and v; for any ¢« with 1 <7 < n, and that of
these 3 - 2" possible permutations, only f; and f, are super magic labelings
of G. O

The following corollary is an immediate consequence of the proof of the
preceding theorem. It is interesting since Godbold and Slater [20] have con-
jectured that, for sufficiently large cycles, there are no gaps between the set
of possible valences.

Corollary 2.16. For every integer n > 2, there exists a super magic graph G
such that |k1 — ky| > n—1 where ky and ky are two possible distinct valences
of G.

The next corollary discovered by Figueroa et al. [14], describes how new
super magic graphs can be found from known super magic graphs.

Corollary 2.17. For every positive integer n, the graph K, + nK; is super
magic.
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Proof.

Let G =2 K, be defined as in the proof of the previous theorem and
consider the following magic labeling g of G defined by g (u) = n+1,¢9 (v;) =
2(n+1)—iand g (uv;) =i for 1 <i < n. Notice that the valence k is 3n+3
and g(vy) + g(v;) = 4n+ 3 — i for 2 < i < n. Then define the graph H =
Ky +nK; as follows, V(H) =V(G) and E(H) = E(G) U {vv; |2 <i<n};
and consider the magic labeling of H with valence 6n such that f(v) =
g (v) +n —1 for any vertex v of H, f(uv;) = g(uv;) +n—1for1 <i<n
and f(vyv;) =i—1for 2 <i<n.

Finally, observe that f is a super magic labeling of this graph since f (v) >
f (e) for any vertex v and edge e of H.

O

Notice that the above corollary establishes the sharpness of Lemma 2.2.

We remark that, from the preceding proof, we can obtain a sequence of
super magic graphs as follows. Take the labeling f employed for K54+ nK; in
the proof and then remove the edge labeled 1 from it and decrease all labels
by 1. Continue in this fashion until arriving to K, ,. Every such labeling of
each graph is magic by Lemma 2.12 and its complementary labeling is super
magic.

The above corollary also allows to characterize all the super magic com-
plete m-partite graphs [14].

Theorem 2.18. The only super magic complete m-partite graphs are K, ,,
and Ky1,, forn > 1.

Proof.

Enomoto et al. [7] proved that the star K, ,, n > 1, is the only super
magic complete bipartite graph. Furthermore, the complete tripartite graph
Ki1n = Ky +nkK; is super magic by Corollary 2.17.

In order to see that K, and Kj,, are the unique complete partite
graphs, note that m has to be less than or equal to 4 ; for otherwise, the min-
imum degree would be greater than 3, which is impossible. Thus, it remains
to be shown that K, is the unique super magic tripartite graph and that
there are no complete 4-partite super magic graphs.

For the uniqueness of K., let G = K, ,n, ns be a complete tripartite
graph with n; > ny > ng > 1. Then, assume, to the contrary, that ny > 2
and G is super magic. The order of G is n; + ny + ny and its size is
ning + ning + nons. By Lemma 2.2,

MMy + Nyng -+ Nang < 2 (Tll + ng + 713) — 3,

which implies that nyng < 2ny — 3 since ny > 2 and ng > 2.
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Hence, nong < 2ny—3, so 2—ns3 > 0 from which we conclude that ns = 1.
Therefore, if we apply Lemma 2.2 again, we get that n; < 1, producing a
contradiction.

To show that there are no super magic complete 4-partite graphs, observe
that K 1, is not super magic by Lemma 2.2 and all remaining graphs have
minimum degrees greater than 3, completing the proof. O

Next, we will study the magic and super magic properties of some impor-
tant families of graphs; for instance, the fans, ladders, generalized prisms,
books, and the Petersen graph.

The following theorem by Figueroa et al. [17] is also interesting since it
analyzes an infinite family of (p, g)-graphs for which ¢ = 2p — 3.

Theorem 2.19. The fan f, = P, + K, is magic for every positive integer
n, and is super magic if and only if n € {1,2,3,4,5,6}.

Proof.
First, we prove that f, is magic for every positive integer n. Let f, be
the fan with

V(fn)={u}U{v;|1<i<n}
and

E(f)={uv; |1 <i<n}U{vwy |[1<i<n—1}.
Now, construct the function f : V (f,)UE (f.) = {1,2,...,3n} as follows,

1 . if £ =u;

) = :5(_41 —+61 o ifr=wvand 1 <7 <m;
—“ﬂ%ﬂ if 2 =wuv;, and 1 <7 < n;
n—3i+1 ifr=vvyandl <i<n-1

Notice that f(z) + f (y) + f (zy) = 3n + 3 for any edge zy of f,. Also,
observe that

jf(vzi—l—}) |0 <
f (uvy) | |1 <1
1

f@@[lgig[**u {3i+2]0<i< |
(mmﬂﬂogigL&ﬂ}_{m+2|p2J+1g@gn—1y

ﬂ._w}} = {si|1<i<[21]},

and f (u) = 1, so all the integers 1 through 3n are used exactly once. There-
fore, f is a magic labeling of f,, with valence 3n + 3.

Next, we prove that f, is super magic if n € {1,2,3,4,5,6}. The graphs
f1 &2 K, and fy = Kj are obviously super magic. For n = 3,4,5, 6, label K;
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with 4 and the vertices of P, with3—1-2,5-3—-1-2,6—-5—-3—-1—-2
and 6 —7—5—3—1—2, respectively. Then, these labelings are the canonical
form for super magic labelings of the graphs we are considering.

Finally, we will show that if n ¢ {1,2,3,4,5,6} then f, is not super
magic. Assume to the contrary that f, is super magic with super magic
labeling ¢ for some integer n > 7. Define p = n+ 1, ¢ = 2n — 1, and
V(f.) = {vi|g(v;)=1}. Now, since f, is super magic, it follows from
Lemma 2.3 that S = {g(u) +g(v)|uv e E(f,)} is a set of ¢ = 2p — 3
consecutive integers, implying that S = {3,4,...,2p — 1}. Since n > 7, the
vertices vy, vy, Us, Vg, Up—3, Up—1 and v, are all distinct.

Observe next that each of 3, 4, 2p — 2 and 2p — 1 can be expressed
uniquely as sums of two distinct elements in the set L = {1,2,...,p}, namely,
3=1+42,4=1+3,2p—2=p+(p—2) and 2p—1 = p+(p — 1). Therefore,
{v1v2, V13, Vp_2Up, Up—10p} € E (f,,). Also, notice that the integers 5 and 2p—
3 can be expressed each in exactly two ways as sums of distinct elements of
L. Thus, {viv4, vpvp—3}, {v104,Vp-1Up—2}, {v203, Upvp—s} and {vavs, vp_1vp_2}
are four mutually exclusive possibilities for subsets of E'(f,). Finally, by
adding any of these four pairs of edges to the four edges that are necessarily
in the edge set of the fan, we obtain a forbidden subgraph of the fan, namely,
either 2[‘{1,3, K’1‘3 U Kg or 2K3

(N

The next two results about ladders and generalized prisms have been
found independently by Enomoto and Yokomura (personal comunication)
and by Figueroa et al. [17].

Theorem 2.20. The ladder L,, = P, x Ps is super magic , if n is odd.

Proof.
Let L,, be the ladder with

V(Ly) = {us,v; | 1 < i< n}
and
E (L) = {witti11, viVi41,u;v; | 1 <i<n—1,1<j <n}.
Now, consider the following function
f:V (L) —A{1,2,...,2n},

defined by the rule
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il z=1wu; 1oddand 1 <i < n;

2 7
f (az) _ n+;+_11 r=u; 1evenand 1 <7< n;
It g =1 ,i0dd and 1 <i < n;

2
21qz—+m r=uw;,tevenand 1 <i < n.

k]

We conclude that f is the canonical form of some super magic labeling

of the ladder [,,, with valence (11n + 1)/2.
o

The converse of the previous theorem is not true. Although the graph
L, = C} is not super magic, we have found super magic labelings for n = 4
and n = 6. See Figure 2.1.

Figure 2.1

Theorem 2.21. The generalized prisms C,, X F,, is super magic if m is odd
and n > 2.

Proof.
Define the generalized prism G = C,, x P,, as follows,

V(G)={v;|1<i<m,1<j<n}
and

E(G) = {vijvis;|1<i<m,1<j<n}
U{wijvijp | 1<i<m,1<j<n-—1}

where i is taken modulo m (replacing 0 by m).
Consider the following function f: V (G) — {1,2,...,mn}, where
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el if 1 <i<misoddand j=1;

F (o) doel if 1 <i<misevenandj=1;

K — i & . . . .
R M, ifl<i<misevenand 2 <j <mn;

i—’@ ifl<i<misodd2<j<n.

We conclude that f is the canonical form of some magic labeling of G
whose valence is (6mn — m + 3)/2. O

It is important to notice that the converse of the previous result is an
immediate consequence of Theorem 2.10 when n = 2. The case where n = 2
and m is odd is interesting since it presents examples of 3-regular super magic
graphs, which is best possible because r = 0,1,2, or 3 for r-regular super
magic graphs.

The next three results about the book B,, = K, x Ky where first intro-
duced by Figueroa et al. [17].

Theorem 2.22. If the book B,, is super magic with a super magic labeling
f such that
s=min{f (z) + f (y) | zy € E(G)},
then the following conditions are satisfied:
(1) if n is odd, then n =5 (mod 8) and

c n+27 3n+25 n+23 Tm+21 9n+419
0 8§ '8 8 ' 8 ' 8
unless n = 5, in which case, s can also be 3;
(2) if n is even, then s = (n/2) + 3 unless n = 2, in which case, s can be

3.

Proof. The book B, has order p = 2n + 2 and size 3n + 1. Now, if z and y
represent the labels of the two vertices of degree n + 1 of B,,, then

2n+2
3n(3n+1)
2 L+ (: -1)=0CBn+1)s+ —————=
;jw('zw)(u )= @nt+1)s+ ——
thus,
n? + 6sn — 17n + 2s — 12
T = : 2.1
vy 2n — 2 ’ (21)
however, z +y < p+ (p — 1) = 4n + 3. Consequently,
7 19 8 7 7
3< < —n+ — + < —n+4 - 2.2
R R N R (22)
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since n > 1.
If n is even, then n = 2k for some integer k, so

4s — 14

2%k — 1 (2:3)

r+y=k+3s—8+

by (2.1) and hence 2k — 1 divides 2s — 7 for k£ > 2, that is, there exists an
integer m such that
m(2k—1)47
2

Then, from (6.9), we obtain —1 < m < 2, implying that m = 1 since s is an
integer and k > 2. Hence, s = (n/2) + 3. For n = 2, notice that s = 3 or
s =4 by (6.9).

For the cases where n is odd, if n =3 (mod 4), then every vertex of B,
is even and ¢ = 2 (mod 4), so B,, is not super magic by Corollary 2.9. On
the other hand, if n =1 (mod 4), then n = 4k + 1 for some integer k£ and

= S.

28 — 7
k

2(x+y) =4k + 65— 15+

by (2.3), which means that k divides 2s — 7.
Now, if n = 8k — 1 for some integer k, then 2k divides 2s — 7, which is
not, possible. Therefore, when 7 is odd, there exists an integer k such that

m(2k+1)—1
2

— 5.

Then, from (6.9), we obtain —1 <m < 9; som € {—1,1,3,5,7,9} since
s is an integer. Therefore,

E —n+29 n+27 In+25 m+23 ™m+21 In+19
5 s '8 ' 8 '8 '8 ' 8 [

Finally, notice that s = (—n + 29)/8 only when n = 5, which completes
the proof. O

Conjecture 2.23. For every integer n > 5, the book B,, is super magic, if
and only if n is even orn=>5 (mod 8).

Although books are sometimes super magic, they are always magic as the
following theorem demonstrates.

Theorem 2.24. The book B, is magic for any positive integer n.
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Proof.
Let B, be the book defined as follows,
V(By) = {u,v} U{u;, v | 1 <i < n}

V(B,) = {u,v} U{u,v; | 1 <i<n}

and
E(B,) = {uv} U {uu;, vo,, uv; | 1 <i < n}.

Then consider the function

F:V(B,)UE(B,) —{1,2,... 5n+3},

where )
1, if z =u;
Sn + 3, if 2 = w;
2n + 2, if @ = uw;

v ) 2n+i+2, fzx=wu;and 1 <7< n;
flz) =9 2n—21+ 2, ifz=v,and 1 <1 <mn;
Sn—i+3, ifrz=wuu and 1 <i<mn;
3In+i+2, ifr=wuv andl <i<n;
2+ 1, ifz=wvv;and 1 <7 < n.

.
Finally, observe that [ is a magic labeling of B,, having valance Tn + 6.
O
In order to conclude this chapter, we will study the super magicness of
probably the most famous graph in the whole subject of graph theory: the
Petersen graph.

Theorem 2.25. The Petersen graph is super magic.

Proof.  See Figure 2.2. Od
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Figure 2.2
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