Chapter 3

The Place of Super Magic
Labelings Among Other
Labelings of Graphs

3.1 Relationship with Other Labelings

Before starting with the material of this section, we will say that the results
3.1 through 3.7 are found in [17]. The results 3.8, 3.9, 3.10, 3.11 in [14], and
those found in the section regarding counting appear in [17], unless stated
otherwise.

This chapter places super magic labelings in their proper place among
other classes of labelings that have been previously well studied. The order
in which we present these relations is the one that we feel is most conducive
to a coherent and brief presentation (as opposed to one that lists each kind of
labeling by its “relative” importance). With this in mind, we start defining
sequential labelings.

The definition of sequential labelings was introduced by Grace [21] and
is inspired by the concept of harmonious labelings (which we will discuss
shortly). A sequential labeling of a (p, ¢)-graph G is an injective function
f:V(G) = {0,1,...,q — 1} (with the label g allowed if G is a tree) such
that the induced edge labeling given by the rule f(uv) = f(u)+ f(v) has the
property that

{f(w) |uww € E(G)} ={m,m+1,m+2,...,m+q—1}
for some integer m. Moreover, G is said to be sequential if such a labeling

exists.
With this definition in hand, we present the following result.
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Theorem 3.1. If G is a super magic graph of order p and size q which is
either a tree or with p > q, then G is sequential.

Proof.
Let f be a super magic labeling of G with valence &, then

{fw)+ ) |weE@G)}={k-p-1Lk-p=2,....k—p—q)}

by Lemma 2.3.
Now, define the function g : V/(G) — {0,1,...,p — 1} to be the injective
function such that g(v) = f(v) — 1 for each vertex v of G. Hence,

{g(u) + g(v) |uww € E(G)} ={m,m+1,...,m+q— 1},

where m = k — (p + ¢ + 2), which implies that g is a sequential labeling of
G. O

Harmonious labelings have been defined and studied by Graham and
Sloane [20] as part of their study of additive bases and are applicable to error-
correcting codes. A harmonious labeling of a (p, ¢)-graph G with ¢ > p is an
injective function f : V(G) — {0,1,...,q — 1} satisfying the condition that
the induced edge labeling given by the rule f(uv) = f(u) + f(v) (mod q)
for any edge uv of G is also an injective function. Furthermore, G is said to
be harmonious if such a labeling exists. This definition extends to trees (for
which ¢ = p — 1) if at most one vertex label is allowed to be repeated.

The previous theorem, together with the fact that Grace [21] showed that
sequential (p, ¢)-graphs with ¢ > p are harmonious yields the following result.

Theorem 3.2. If a (p,q)-graph G with ¢ > p is super magic, then G is
harmonious.

This theorem extends easily to trees as the next result shows.

Theorem 3.3. If a tree T of order p and size q is super magic, then G is
harmonious.

Proof.

Recall that ¢ = p — 1 and then reduce the edge labels modulo p — 1. O

This result implies that the conjecture by Enomoto et al. [7] that all trees
are super magic is at least as hard as the conjecture by Graham and Sloane
that all trees are harmonious!

The oldest and most famous graph labeling problem that has been studied
is that of finding graceful labelings of graphs, which were defined by Rosa
[35]. These arose naturally out of the study of graph decompositions and the
subsequent Ringel-Kotzig conjecture that all trees are graceful.
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Let G be a (p,q)-graph and f : V(G) U E(G) — {0,1,...,¢} such that
f(w) = [f(u) = f(v)| for any edge wv of G and f |v(g) and f |g) are
injective. Then f is a graceful labeling of G and G is called a graceful graph.
Also, as a result of Rosa’s interest on graph decompositions, he defined what
he called an a-valuation of a graph [35]. A graceful labeling f of a (p, q)-
graph G is said to be an a-valuation of G if there exist an integer k with
0 < k < g, called the characteristic of f, such that min{f(u), f(v)} < k <
max { f(u), f(v)} for every edge uv of G.

The next two theorems establish the relationships between super magic
labelings and a-valuations.

Theorem 3.4. Suppose that G is a super magic bipartite (p,p — 1)-graph
with partite sets Vi and V, where p, = |Vi| and p, = |Va| and let

FiV(G)UE(G) - {1,2,...,2p— 1}

be a super magic labeling of G such that f(V1) = {1,2,...,p1}, then G admits
an a-valuation.

Proof.

Consider a (p,p—1)-graph G and a super magic labeling f of GG such that
both satisfy the hypothesis of the theorem. Furthermore, select the vertices
of G so that V(G) = {v; € V(G) | f(v;) =1i}. Then

f(Vl) = {1121 L :pl} aﬂd f(%) - {pl + 1:}91 + 2: Y it +p2} .
Now, let ¢ : V(G) U E(G) — {0,1,...,p— 1} be the labeling with the
property that
| fv) -1, if v e Vi
g(v) = { 21+ ps — f(v), ifveEVh

We next prove that g is an a-valuation of G' with characteristics p; —1. First,
observe that

g1)={0,1,...,p1 — 1} and g(V) = {p1,;1 + 1,...,p1 +p — 1}.
Also, if u € V, and v € Vi, then
lg(u) —g(v)] = g(u) —g(v)
= 2p1+pe+1—(f(u)+ f(v)).

Hence, 1 < |g(u) — g(v)| < p— 1, since py + 2 < f(u) + f(v) < 2p1 + pa.
Finally, since u € V4 and v € V] are arbitrary vertices of G, it suffices to

observe that {f(u) + f(v) | uv € E(G)} is a set of p— 1 consecutive integers

by Lemma 2.3, which implies that g(£(G)) = {1,2,...,p — 1}. O
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We comment here that Rosa [35] has shown that all graphs that admit
a-valuations are bipartite. Therefore, we have the converse of the previous
theorem, which we state without proof.

Theorem 3.5. Let G be a bipartite (p,p — 1)-graph with an a-valuation f
such that there exists partite sets Vi and Vs, where p, = |Vi|, pa = |Va| and
f(Vy) =10,1,...,p1 — 1}, then G is super magic.

This theorem is important due to the following corollary.
Corollary 3.6. If T is a tree having an a-valuation, then T' is super magic.

A number of techniques to construct trees from smaller ones with a-
valuations have been shown to yield a-valuations in the resulting trees. The
reader is referred to the survey paper by Gallian [18] for references to these
methods.

Cahit [5] defined cordial labelings of graphs as a way of stating a weaker
condition that would reflect the spirit of both graceful and harmonious la-
belings. A cordial labeling of G is a function f : V(G) — Zs with an induced
edge labeling f(uv) = f(u) — f(v) (mod 2) such that if v(7) and e;(7) are
the number of vertices v and edges e satisfying that f(v) =i and f(e) =i
for all ¢ € Zy, respectively, then |vs(0) — vp(1)] <1 and |ef(0) — ef(1)| < 1.
A graph that admits a cordial labeling is said to be cordial.

With this definition in mind, we are able to show the next relationship
between labelings.

Theorem 3.7. If a graph G is super magic, then G is cordial.

Proof.

Let G' be super magic with a super magic labeling f. Then consider the
function g : V(G) U E(G) — Zs such that g(v) = f(v) (mod 2) for every
vertex v of G and g(uv) = g(u)—g(v) (mod 2) for any edge uv of G. Notice
that

g(wv) = g(u) — g(v) = g(u) + g(v) = f(u) + f(v) (mod 2).

Also, since f(V(G)) and {f(u) + f(v) | uv € E(G)} are sets of consecutive
integers by definition of super magic graph and Lemma 2.3, respectively, it
follows that |v,(0) — v,(1)] <1 and [e,(0) — e,(1)] < 1. 0
Ringel [33] has also provided the definition for edge-antimagic graphs.
For a (p,q)-graph G, a bijective function f : V(G) — {1,2,...,p} is an
edge-antimagic labeling of G if

[{f(w) + f(v) [ue € B(G)} = q.
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If such a labeling exists, then G is called an edge antimagic graph.

In this section, we present some relationships between super magic and
edge-antimagic graphs.

The following is an immediate consequence of Lemma 2.3.

Theorem 3.8. Every super magic graph is edge antimagic.

We then note that Lemma 2.2 follows from Theorem 3.8 and a comment
by Ringel [33] to the effect that the inequality ¢ < 2p — 3 holds for edge-
antimagic (p, q) graphs.

Ringel [33] also mentioned that if a graph G of order p is edge antimagic
with an edge-antimagic labeling f, then

{f(u)+ f(v) |uwv € E(G)} € {3,4,...,2p— 1}.
This remark implies the following partial converse of Theorem 3.8.

Theorem 3.9. If G is an edge-antimagic (p, q)-graph with ¢ = 2p — 3, then
G is super magic.

Proof.
Let G be an edge antimagic (p,g)-graph such that ¢ = 2p — 3 with an
edge antimagic labeling f. Then

{f(u) + f(v) [uv € E(G)} = {3,4,...,2p - 1}

so the result follows from Lemma 2.3. O
Ringel [33] presented the following theorem as well.

Theorem 3.10. If G is a mazimal outerplanar graph of order p with ezactly
two vertices a, b of degree 2 and whose distance dg(a,b) on the Hamilton cycle

H in G is either » p
- rl=| -1
bJ or [2J ’

Since all maximal outerplanar (p, q)-graphs satisfy ¢ = 2p — 3, we have
the following result from Theorems 3.9 and 3.10.

then G is edge-antimagic.

Corollary 3.11. IfG is a mazimal outerplanar graph of order p with ezactly
two vertices a, b of degree 2 and whose distance dg(a,b) on the Hamilton cycle

H G s D o
5 o |5) -1

The previous corollary implies that the upper bound in Lemma 2.2 is also
sharp for maximal outerplanar graphs.

then G is super magic.



38 CHAPTER 3. THE PLACE OF SUPER MAGIC LABELINGS

3.2 Counting

A well known result by Gilbert [19] states that almost all graphs are con-
nected, which implies that almost all (p, q)-graphs satisfy that ¢ > p. This
combined with Graham and Sloane’s result [20] that almost all graphs are
not harmonious and Theorem 3.2 leads to the following theorem.

Theorem 3.12. Almost all graphs are not super magic.

Next, we will provide the following closed formula for the number of super
magic graphs.
Theorem 3.13. The number of distinct super magic labeled (p, q)-graphs is

2p—qifg—1
a(j)
i=3 j=1
where LE-ZlJ F3<i<ptl
a(i) =1 g, oo aZPT
|5, ifp+2<i<2p-1
Proof.

Consider the complete graph K, with
V(Ky) ={vi|1<i<p}
and the labeling

2

such that f(v;) = i for every integer ¢ with 1 <14 < pand f(uv) = f(u)+ f(v)
for any edge uv of G.

Let A; = {uww € E(G) | f(uv) = j} and a(j) = |A4;| for every integer j
with 3 < 7 < 2p — 1. Then, by Lemma 2.3, a vertex labeling f of a (p, ¢)-
graph G with f(V(G)) extends to a super magic labeling if

{f(u) + f(v) |ww € E(G)}
is a set of ¢ consecutive integers. Thus, a super magic (p, ¢)-graph G can be
constructed from the labeling f of K, by taking
V(G)=V(K,) and E(G) ={e; € A; | i <j<i+q—1}

for some fixed integer ¢ with 3 <14 < 2p — ¢. Then a super magic labeling of
G is obtained by restricting f to V(G). Notice that E(G) can be selected in
[T;4 aj) ways.

Finally, if we take all possible integer values of 7 such that 3 < ¢ < 2p—gq,
then the result follows immediately. O

f:V(G)UE(G) — {1,2?...,p+m}
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The following is a table of the number of super magic labelings of (p, q)-
graphs, where 2 <p<T7and 1 <¢g<11.

Table 2
1 [2 |34 [5 |6 7 [8 J9 J10 Ju
2]1
313 2
416 6 6 4 2
5|10 14 20 24 24 16 8
6|15 26 48 80 120 144 144 96 48
7121 44 99 212 420 720 1080 1296 1296 864 432
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