Chapter 4

Operations on Graphs

4.1 Magic Labelings of Unions of Graphs

4.1.1 Main Result

This section contains a result by Figueroa et al., found in [13] that allows to
generate infinite classes of disconnected magic and super magic bipartite and
tripartite graphs with relative ease. This kind of result was unexpected since
previously no such a technique was available for harmonious, sequential or
cordial graphs.

Theorem 4.1. Let G be a (super) magic bipartite or tripartite graph and let
m be an odd integer. Then mG is also (super) magic.

Proof.

The result is trivial for m = 1 so we assume, without loss of generality,
that m > 3. Let G be a tripartite (p, ¢)-graph with partite sets U,V and W
(let W = 0 if G is bipartite). Then let E(G) = UV UUW U VW, where the
juxtaposition of names of partite sets denotes the set of edges between those
two sets. Also, let f: V(G)U E(G) — {1,2,...,p+ ¢} be a (super) magic
labeling of G. Now, we define mG to be such that

V(mG) = JU:uViuw;)
i=1
and
E(mG) = | J(UV; UUW,; UVIV,),
i=1
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42 CHAPTER 4. OPERATIONS ON GRAPHS

where for every i we have that z; € X; if and only if x € X, where X is one
of the sets U, V, W, UV, UW or VW. Consider then g : V(mG)U E(mG) —
{1,2,...,m(p+ q)} such that

mf(x) —m+ 1, ifee WUUV and 1 <i<m;
mf(’r)—2z+1 ifz€c UUVW and 1 <1 < 2L
g(zi) = mf(z)+m—2i+1, f € UUVW and 2 <i <m;
mf(z) — 252 +14, IfTEVUUI’Va]ld1<Z<m21?
mf(zx) — 3m1+z, if z€ VUUW and 2 < i <m.

Then, g is a (super) magic labeling of mG. To verify this, observe first that
g9(z) + g(y) + g (zy) = mk + 3(1 — m)/2 for every zy € E(mG), where k is
the valence of f. Next, to see that

g(V(mG)UE(mG))={1,2,...,m(p+q)},

notice that for every z € V(G) U E(G) we have that

U{g }*U{mf —m+i},

thus, the set
fV(G)VE(G) ={12,....p+q}

is spread by the function g to the entirety of its range. O

The preceding result is best possible in the sense that m cannot be even
for Kotzig and Rosa [27] have shown that the graph m P, is magic if and only
if m is odd.

4.1.2 Results on 2-Regular Graphs

The results on this section can be found in [13] unless otherwise stated.
The result on the previous section, makes it worthwhile to search for graphs
which are (super) magic and either bipartite or tripartite. In this section, we
thus, concentrate on the magic properties of some 2-regular graphs, which
are certainly either bipartite or tripartite, depending on the length of the
cycles that form them.

The following example is the kind of result that follows immediately from
Theorem 4.1 with the help of the work done by Kotzig and Rosa in (27], and
Enomoto et al. in [7].

Corollary 4.2. For every odd m and positive integer n, the 2-regular graph
mC, is magic. Moreover, it is super magic if n is odd.
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Proof.

Kotzig and Rosa [27] have shown that ), is magic for every n, and Eno-
moto et al. [7],proved that C,, is super magic if and only if n is odd. There-
fore, our corollary follows immediately using Theorem 4.1.

O

With the previous theorem in hand, it is not hard to see that mC, is
super magic if and only if both m > 1 and n > 3 are odd. Thus, mC,, is
magic if m is odd. For the case when m is even, we only have basically the
following result.

Theorem 4.3. The 2-reqular graph G = 2C,, is magic forn = 1,5 or 7
(mod 12).

Proof.
Assume that n = 1,5, or 7 (mod 12), and let G = 2C,, be the 2-regular
graph with

VI(G) = {uw,v; |1 <i<n}

and
E(G) = {uitin, vV} U {tittis1, Vv | 1 <i <n— 1},

We will consider three cases.
Case 1: Let n = 12k — 7, where k is a positive integer, and define the vertex
labeling f: V (G) — {1,2,...,48k — 28} such that

( 24k — 31 — 10, if 2 = uy_; and 1 <i < 3k — 1;
6k + 3i — 5, if = wuy_, and 3k < i <6k — 3;
12k — 31 —5, ifz=uyand 1 <7< 3k —2;

3i — 6k + 3, if z=uy and 3k — 1 <i <6k —4;
12k —-3i—4, fz=wy_;and1<i<3k—2;
24k — 31— 12, ifx =wvy and 1 <i <3k — 2,
FE)=19 3k —3i11,  if2 = veesro and 1 < i < k:
16k — 31— 5, if 2 = vgppis and 1 <@ < k;

3k — 31+ 2, if v = VBk4-6i—T and 1 <1< :IC;
15k — 3i — 7, ifz= Vbk+6i—6 and 1 S 7 g k — 1;
3k — 31, if 2= vgapis and 1 <i <k —1;
15k —3i—6, ifz=wvsigaandl <i<k—1.

.

Case 2: Let n = 12k — 5, where k is a positive integer, and define the vertex
labeling f : V (G) — {1,2,...,48k — 20} such that
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((24k —3i—6, ifz=wug_;and 1 <i<3k—1,;
6k +3i —4, if x =wuy_; and 3k <i <6k — 2
12k —3i—3, ifz =wuy and 1 <1 <3k —1;

3t — 6k + 2, if x =wuy and 3k <17 <6k — 3;
12k —3i — 2, if x =wvy_jand 1 <17 < 3k —1;
24k —3i—8, ifx=wvy and 1 <7< 3k— 2;
f(z)=1< 15k —3i—3, if £ = vepypis and 1 < i < k;
3k—31+2, fr=vsqp7randl <i<k-—1;
15k —3i — 2, if 2 = vgpypi6 and 1 <i < k;

3k — 31, if 2 = vgrygis and 1 <1< k—1;
15k —3i—4, if z = vgrpgia and 1 <i < k —1;
3k—31+1, frx=vgegsand 1 <2<k —1,;
E., if z = V19k42i—9 and 1 <1< 2.

\

Case 3: Let n = 12k + 1, where k is a positive integer, and define the vertex
labeling f: V(G) — {1,2,...,48k + 4} such that

(( 24k —3i+6, if 2 =wuy_; and 1 <i < 3k + 1;
6k+3i—1, ifx=1uy_yand 3k+2<i<6k+1;
12k —3i+ 3, if x =wug and 1 <4 < 3k;
Ji—6k—1, ifz=uwuy and 3k+1<1i<6k;
12k — 3i + 4, if 2 = ’Ugg_lr'llld 1 S ) S 3;{}?
24k — 3i 44, if x = vy and 1 <1 < 3k;
fx)=<¢ 3k—3i+3, ifz=uvgissandl <i<k
15k — 3145, if 2 = vgpagiga and 1 <1 < k;

3k —3i+4, ifr=uvege-zandl <i<Ek;
16k — 31+ 3, if z = vgppi—2 and 1 < i < k;
3;6—33—1—2. ifSC:’Uﬁk_Hﬁ_l and 1 <1< k—1;
15k — 31 —|—4, if z = Vk4-6i and 1 <1 < k;

L 7, if 2 = vigp42i3 and 1 < i < 2.

Therefore, f extends to a magic labeling of G with valence 5n +2. O

4.1.3 Results on Forests

This section is devoted to the study of magic and super magic properties
of certain classes of forests; which complements the results in the previous
section nicely, since these graphs are bipartite and hence can serve as seeds
for creating other infinite classes of bipartite graphs by means of Theorem
4.1. They are also interesting since the forests referred to, in this section,
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have each two components and thus, show that bipartite graphs with an even
number of components may be magic or super magic. For the results of this
section see [13]

Theorem 4.4. If m is a positive multiple of n + 1, then the forest ' =2
Ky UKy, is super magic.

Proof.
Let
V(F) - {I}y} U {uilu2? s 7”11:5} U {'[.’1}'1'.)2, ey Ufn}
and
E(F) - {;L"U,I,IUQ, ceey 1:””.rrn}‘ U {yvla Yug, ..., yUn} .
Consider a bijective function f : V(F) — {1,2,...,m +n+ 2} such that
fle) =a+2,fly) =1land f(v;) =+ 1)(a+1)+1fori=1,2...,n,
where a = m/(n + 1). Therefore, f is the canonical form of a super magic

labeling of F' with valence a + 2m + 2n + 4. O
We actually suspect that the converse of the previous theorem also holds.

Conjecture 4.5. The forest K, U K, ,, is super magic if and only if m
is a positive multiple of n + 1.

The following remark and two theorems support the above conjecture.
Notice that the forest K;, U K, ,, n > 1, is super magic if and only if n is
even by Lemma 2.1 and the previous theorem.

Theorem 4.6. The forest F' = K, , U K, is super magic if and only if n
is a positive multiple of 3. Furthermore, there are essentially only two super
magic labelings of F.

Proof.
Let
V(F) - {U} U {UHU‘Za (RS Uvb} U {wl: wa, 'LUS}’
and
E(F) = U{uvy, uvy, ..., uv, } U {wjwy, wyws},
and f : V(F) — {1,2,...,n+4} be an arbitrary super magic labeling
of F' such that f(u) = a and {f(w1), f(ws), f(ws)} = {i,,k}. Notice
then that «,i,j and k are different. Without loss of generality, we may
assume that ¢ < j < k. Let S = {f(z)+ f(y) |zy € E(F)} and L =
{a+1,a+2,...,a+n+ 4}, which are two sets of consecutive integers with
|S| =n+ 2 and |L| = n+ 4. Observe then that

S —{f(w1) + f(wa), f(wr) + f(ws)} = L — {20,a + 4,0 + j,a + K}
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Thus, {a +1,a+n+4} C {2a,a +i,a + k} since by removing 2a, a + 1,
o+ 7 and a + k from L, we obtain

§ = {f(wi) + fwa), f(wr) + f(ws)},

which is a set of consecutive integers minus two elements and ¢ < j < k.
This implies that {1,n +4} C {a,1, k}.

Next, we show that i = 1 and k = n+4. In order to do this, it suffices to
verify that a ¢ {1,n+4}. Let 3 = f(w,), then since degw; = 2, degu = n
and f (u) = a, it follows from Lemma 2.3 that

n+4
Zt+a(n-—1)+ﬁ:(n—l—2)s+ (73—21—2)’
t=1

where s = min .S. Hence,

S_W3(n+3)+a(n—~1)+ﬁ
- n+ 2 '

Now, assume, to the contrary, that a = 1. Then, s =4+ 3/(n+2), so n + 2
divides 4, which implies that § = n+2. This, in turn, leads to conclude that
s = 5. Furthermore, the vertex w which is labeled 1 cannot be adjacent to
the vertices labeled 2 or 3; for otherwise s = 3 or 4. Therefore, {2,3,n + 2} =
{7, 7, k}, which is impossible.

Next, suppose, to the contrary, that @« = n+4. Then s = n + 4 +
(8 —3)/(n+ 2) and, consequently, n + 2 divides § — 3, which implies that
f—3=0sincen+2>3and1 <F<n+3. Thus, =3and s=n+ 4.
Therefore, either f(wy) =1 or f(ws) = 1, implying that f(w;) + f(ws) = 4
or f(wy) + f(ws) =4 and 4 < s = n + 4, which is a contradiction. Finally,
since the vertices wy; and ws are indistinguishable, the following three cases
remain.
Case 1: Suppose that f(w;) = 1, f(wy) = n + 4 and f(ws) = j. Then, we
obtain {1+ j,n+5} = {a+j,2a}. Thus, 1+ j =2aand n+5 = a+ j,
which leads to @ = (n/3) + 2, so n is a positive multiple of 3. Therefore by
taking f(u) = (n/3) + 2, f(wy) =1, f(ws) =n+4 and f(ws) = (2n/3) + 3,
we get a super magic labeling of F'.
Case 2: Suppose that f(w;) = n+4, f(wy) = 1 and f(wz) = j. Then, we
obtain {n + 5,7 +n+4} = {a + j,2a}. Hence, n+5=a+jand j+n+4 =
2ar, which leads to @ = (2n)/3 4 3, so n is a positive multiple of 3. Now, it is
easy to verify that if we take f(u) = (2n)/34 3, f(w1) = n+4, f(w;) = 1 and
flws) = (n/3) + 2, then we attain a super magic labeling of F' by assigning
the remaining labels to all other vertices of F'.
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Case 3: Suppose that f(wy) = j, f(wy) = 1 and f(ws) = n + 4. Then
we obtain {1+ 7,7 +n+4} = {a+j,2a}. Since a > 1, it follows that
147 # a+j. Thus, 1+j = 2a and j+n+4 = a+7; hence j = 2n+7 > n+4,
which is not possible.

The labelings provided in Cases 1 and 2 are unique (up to isomorphism),
and therefore the proof is complete. O

The approach used in the previous proof can also be applied to establish
the following theorem which we state without proof.

Theorem 4.7. The forest F' = K, 3 U K, ,, is super magic if and only if n is
a positive multiple of 4.
The next characterization is the magic analogue to Conjecture 4.5.

Theorem 4.8. For all positive integers m and n,m > n, the forest F' =
Ky UKy, is magic if and only if m or n is even.

Proof.
If I is magic, then m or n is even.
For the converse, without loss of generality, assume that n is even and let

V(F)={z,y}U{w |i=1,2,...,m}U{v; |1 =1,2,...,n}
and
E(F)={zu;|i=12,....m}U{yv; | j=1,2,...,n}.

Then consider the vertex labeling f : V(G) — {1,2,...,m+n + 2} such

that
2m + %‘E +2, ifw=ux;
m+3+1, fw=y

flw)=q 4 ifw=w;and 1 <i<m;
T}'I—i"i, ifiu:viand].giggi;
m-+1i+1, if?u:vt-a,nd&‘é‘_lgign_

Therefore, f extends to a magic labeling of F' with valence 4m + (5n)/2 + 4.
(|

In [14], it is shown that the forest mK;, is super magic if m is odd.
Further, in light of the previous theorem, the forest 2K, is magic if and
only if n is even, which together with Theorem 4.1 leads to conclude that
whenever m =2 (mod 4), the forest mK; ,, is magic if and only if n is even.
Thus, the only instance that needs to be settled is when m is a positive
multiple of 4. For this, we have found that the linear forest 4K, = 4PF; is
super magic with valence 30 by simply labeling the four disjoint copies of Py
as follows: 1 —9—-24—-8—5,6—10—7 and 11 —3 — 12. On the other
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hand, Kotzig and Rosa [27]| determined that the linear forest mK,; = mP;
is magic if and only if m is odd (Figueroa et al. recently showed in [14] that
this result can be extended to state that the linear forest m P, is super magic
if and only if m is odd).

We studied above the forests K, U K ,, and K;, U K;, as members of
the class of forest K, ,, U K;,. However, they are also in the class of forests
P, UK, ,. Therefore, the next theorem by Figueroa et al. [13] fits well into
our theme. This generalizes the result found in [14] that P, U P, is super
magic for m > 3.

Theorem 4.9. The forest F' = P,, U K, , is super magic for every integer
m=>4 andn > 1.

Proof.
Let

V(F)=A{u; |t=12,....om}U{v; | j=1,2,...,n} U{w}
and
E(F) = {wwp |i=12... . m—-1}U{ow|j=1,2,...,n}.
Suppose that f: V(F) = {1,2,...,m +n+ 1} is a vertex labeling of F". We

will consider four cases.
Case 1: Let m=0 (mod 4), then

(el g" 2_, if z = wuy;
mbntt if © = ug;

2
n+2i—1, ifr=wugyand1<i< 2,

m-+42n+4i46 if 2= Uit and 1 S i g md—4.

xT) = ¢ 2 . : _
f() n+ 2t 4+ 2, 1f$=u4i+23nd0§3§f_n4_4;
w; if$:u4-i+3and1§ig"4;4;
2 ife=uvand1<i<n;
m+2n+4 : o
\ s, if z=w.

Case 2: Let m =1 (mod 4), then
(n+2i—1, if 2= uy, a.ndlgigm—f-;
ML if 3 = g4 and 0 <0 < T
m—5,

B n+§i+2, frz=ugyand 0<i < ;
f(-f) = 4 m+2n+4i47 lf T = Ugiyg a.nd 0 S i S md 5;
i, ifx=v and 1 <7<
Imtdntd if z =w.

.
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Case 3: Let m =2 (mod 4), then

fm-!—n-i—l? if @ = wuy;
m+n-—1, it © = ug;
midnodivd if 2 =ug and 1 < < 22
m+n—2i—1, fe=uyand 1 <i< ’"';2;
f(z) = ¢ mnodd if & =y and 0 <7 < 1’-‘-;—5;
m+n— 21, if £ = uy45 and 1 < 7 < 28
m+n, if &=ty
i, ifz=wvand 1 <i<n;
\ m——n—mJ’%"*Q, if 2 = w.
Case 4: Let m =3 (mod 4), then
( m+2n+1] if 1 = Uy
-m.+l527'r1—|—5.J lf T = Uus;
n+2—1, ifz=uyand 1 <i< 23
MRS | if 2 = wgiq and 1 <@ < 253,
flz)=14 n+2i+2, ifz=usand0<i< 2T,
mAtAS if 7 = ugis and 1 <4 < s,
mesn L if 7 = Up_1;
% ifz=wv and 1 <i <n;
| mdgetd if 7 =w.

Therefore, f is a canonical form of super magic labeling of F' with valence

b — 2+ 3n+ 2, ifmn=2 (mod 4);
B LZ—LJ +2m + 3n + 3, otherwise.

The next class of forest that we study is 2F,.

Theorem 4.10. The forest F =2 2P, is super magic if and only if n 2 or

3.
Proof.
Assume that n > 4, and let F' = 2P, be the forest with
V(F) = {u,v | 1 <i<n}
and

E(F) = {uti41, 0041 | 1 <7 <n—1}.
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Then we proceed by cases according to the possible values of the integer

n.

Case 1: If n = 9, then label the vertices of one Py with 10 — 17 — 14 — 4 —
13 -6 — 16 — 9, and the label the ones of the other Py with 8 — 18 — 5 — 15 —
1—-11 -2 - 12— 3 to obtain a super magic labeling of 2F.

Case 2: If n = 4k, where k is a positive integer, then define the vertex
labeling f: V (F) — {1,2,...,8k} such that

(1

2k +i—1,
2k — i+ 2,
6k + 1,
f(z)=( 6k—i+1,
3k+i—1,
3k —i+2,
Tk 41,
Tk —i+1,

if & =uy;

if £ =ug;_1 and 2 <7 < k;
ifrx=wuy_and k+1 <7< 2k;
if £ =ug and 1 < i < k;
fx=uyand k+1 <17 <2k;
ifex=wvy and 1 <i<k+1;
if 2 = vy, 1 and k+ 2 <1 < 2k;
if x=wy and 1 <1 < k;

if 2 =wvy and k+1 <1< 2k.

Case 3: if n = 12k — 7, where k is a positive integer, then define the vertex
labeling f: V (F) — {1,2,..., 24k — 14} such that

f(x) =4

12k — 3 — 4,
3i — 6k + 1,
24k — 3i — 12,
6k + 3i — 4,
24k — 3i — 11,
12k — 3i — 6,
15k — 3i — 6,
3k — 3i+ 1,
15k — 3i — 5,
3k —3i— 1,
15k — 3i — 7,
3k — 34,

fz=uyand 1 <:i<3k-—1;
if o= U951 and 3k _<_ 1 S 6k — 3?
if x =ug and 1 <1 <3k —2;

if v =uy; and 3k — 1 < i <6k —4;
ifx=wvy_1and 1 <i<3k-—2;
if t =wvy; and 1 <17 <3k — 2;

if v = Vg k+6i—9 and 1 <1< k,

if 2 = vgpypi—g and 1 <z < k;

if £ = vggspi—7 and 1 < i < k;
if z = Vek+-6i—6 and 1 <1< k— 1,
if = V6 ke--6i—5 and 1 g ) S k — 1,
if r = Vek+6i—4 and 1 <1< k—1.
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Case 4: If n = 12k — 6, where k is a positive integer, then define the vertex
labeling f: V (F) — {1,2,...,24k — 12} such that

(12k—3i—3, ifz=wuy_andl<i<3k-—1;
31— 6k + 2, if £ =wug_1 and 3k <1i < 6k — 3;
24k — 3i— 11, fz =wug; and 1 <7 <3k — 2;

6k + 3i — 3, if £ =uy and 3k <17 <6k —3;
24k — 31— 10, if z = vy and 1 < ¢ < 3k — 2;
12k —3i -5, ifz=wvyand 1 <i<3k-—2
f(z)=<( 16k—3i—5, ifx=uvgpiioand 1 <i<Ek;

3k —3i+ 2, if £ = vgrypis and 1 < i < k — 1;
15k — 31 — 4, if 2 = Vek+6i—T and 1 << -!C,

3k — 31, if £ = vgkypig and 1 < i< k —1;
15k — 3t — 6, if ¢ = Vgk4-6i—5 and 1 <1 < k — 1;
3k —31+1, if £ =vgpaeigand 1 <1<k —1;
Z', if o = U12k4-2i—10 and 1 < ? < 2.

\

Case 5: If n = 12k — 5, where k is a positive integer, then define the vertex
labeling f : V (F) — {1,2,...,24k — 10} such that

(24k —3i—7, fx =ug_; and 1 <3 <3k —1;
6k + 31 — 5, if x = uy;_1 and 3k < i < 6k — 2;
12k —3i—3, if t =ug; and 1 < ¢ < 3k — 1;

3i —6k+2, if 2 =uy and 3k <i <6k —3;
12k —3i—2, fx=wvy yand 1 <i<3k—1;
24k —3i—9, ifx=wvy and 1 <i <3k —2;
f(z)=1< 15k —3i—4, if = vgpyei-s and 1 <7 < k;
3k—3i+2, ifz=uvges_7and 1l <i<k-—1,;
15k — 3i — 3, ifx = Ubk4+6i—6 and 1 <3< iL.',;

3k — 31, if r =wvgpypis and 1 <1< k—1;
15k — 31 — 5, ifx = Vek+6i—4 and 1 <1< k— ].;
3k—3i+1, ifzrx=vgyssandl <i<k-—1;

- if © = M ok+2i—9 and 1 <3< 2.
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Case 6: If n = 12k — 2, where k is a positive integer, then define the vertex
labeling f: V (F) — {1,2,...,24k — 4} such that

fla) =3

(( 12k —3i+1,
3i — 6k — 1,
24k — 3i — 2,
6k + 3i — 1,
12k — 3i,
24k — 3i — 3,
3k — 3i + 2,
15k — 3i + 1,
3k — 3i + 3,
15k — 3i — 1,
3k — 3i+1,
15k — 3i,

if 2 =ug 7 and 1 <1 < 3k;

if 2 =wuy7and 3k+1<1<6k—1;
ifr =uypyand 1 <i<3k—1;

if £ = uy; and 3k <1 < 6k — 1;

if  =wvy_1and 1 <i <3k —1;
fxz=wvyand1<i<3k-—1;

if & = vgpqgi7 and 1 <7 < k;

if = V6k+6i—6 and 1 S 1 S k,

if x = V6k4-6i—5 and 1 <1 < k;
if z = Vek4-6i—a and 1 <i < i!’.f;
if £ = vgpapig and 1 <1 < k;
if = vgpipioand 1 <7< k.

Case 7: If n = 12k — 1, where k is a positive integer, then define the vertex
labeling f : V (F) — {1,2,...,24k — 2} such that

(12k — 3i + 2,
3i — 6k — 2,
24k — 3i,
6k + 3i — 1,
24k — 3i + 1,
12k — 3i,

{ 3k—1,

15k — 3i + 2,
3k — 3i + 3,
15k — 34,
3k—3i+1,
15k — 3i + 1,
3k — 3i— 1,

if.’}:zﬂ.gi_l and 1 <i< Sk',

if £ =ug_1 and 3k + 1 <1 < 6k;
if 2 =g and 1 < i < 3k;

if v =ug; and 3k +1 <12 <6k —1;
if z = Uoi—1 and 1 <1< 3k‘,

if z=wvyand 1 <7 <3k —1;

if x = vex;

if = V6k+6i—5 and 1 < 1 S k,

if x = Vgk4-Bi—a and 1 <3 < .I(';.

if r = Vek+6i—3 and 1 <3 < k;

if v = Vek+6i—2 and 1 <1< k‘,
ifz= Vek4-6i—1 and 1 < i < k;

if oz = Vk1-6i and 1 <1< k—1.
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Case 8: If n = 12k + 1, where k is a positive integer, then define the vertex
labeling f : V (F) — {1,2,...,24k 4 2} such that

24k — 31 +5, fxz=wupy_,and 1 <i<3k+1;
6k +3i—2, ifz=1uy 1 and3k+2<17<6k+1;
12k — 3143, if x = ug; and 1 < i < 3k;

3i — 6k —1, ifz=uy and 3k +1 <i <6k;
12k — 31+ 4, if e =wvy_; and 1 <1 < 3k;

24k — 31+ 3, if x = vy and 1 <1 < 3k;

f ('13) = 3k—3i+ 3, ifz= Vek+-6i—5 and 1 <3 < k‘,
15k — 3¢ + 4, if z= Vek16i—4 and 1 é i S kf;
3k—3i+4, ifz=uvgeiaandl <i<Ek;
15k —3i4+ 2, fz=1vgqp-2and 1l <i<Fk;

3k — 31+ 2, if &= Ugkt6i—1 and 1 <<k — 1;
15k — 32+ 3, if 2= Vek4-61 and 1 < 1< k;

i, ifx= V12k42i—3 and 1 <1< 2.

Case 9: If n = 12k + 2, where k is a positive integer, then define the vertex
labeling f: V (F) — {1,2,...,24k + 4} such that

( 12k —3i+5, fz=ug_jand 1 <i<3k+1;
3i—6k—3, ifzx=wuy ,and3k+2<1<6k+1;
24k — 3i +6, if z = ug; and 1 < i < 3k;

6k +3i+1, ifx=uyand3k+1<0<6k+ 1
12k —3i+4, ifz=1wvy_1and 1 <i<3k;

24k —3i+5, ifx=wy and 1 <i < 3k + 1;
f(z) = | 3k+i—1, if = vgpuni1and 1 <i <2

AT 15k — 31+ 6, if 2 = vgpqpio and 1 < i < k;

3k — 31+ ]., ifx = Vek46i—1 and 1 <1< k’,
15k — 3t 4+ 4, if x =uvgye and 1 <7 < k —1;

3k — 31+ 2, ife = Vek+6i+1 and 1 S 1 S k,
15k — 3142, if £ = vgpapipz and 1 <ie <k —1;
3:’(5—3?, ifiII:'Uﬁk_th‘_Fg and 1 <1< k— ].;
12k +i+2, ifx=vppi9oandl <i <2,
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Case 10: If n = 12k + 3, where £ is a positive integer, then define the vertex
labeling f: V (F) — {1,2,...,24k + 6} such that

( 12k —3i+6, ifz=1uy_; and 1 <i<3k+1;
355—6;6—4, 1f:{,:u21_1and3k+2§z§6k+2,
24k — 31+ 8, ifz =wug; and 1 <1 < 3k + 1;
6k +3i+1, ifz=1wuy and 3k+2 < i <6k + 1;
24k — 3149, fx=wvy_;and 1 <1 <3k+2;
12k —3i+4, ifxz=wvy and 1 <i < 3k;
o) = 3k+1i—1, if £ = vgpyo and 1 <7 < 25

v 15k —3t+ 7, if # = vgpypi1 and 1 <@ < k;
3k—3i+1, ifx=wvgueandl <i<k;
15k —3i+ 5, if 2 = vgrypipy and 1 <i < k —1;
3k — 3i + 2, if = Vgk4-6i+2 and 1 <1 < .I(',
15k =31+ 3, if x = vgpapipg and 1 <7 < k — 1
3k — 3i, if r =vgpyoipqand 1 <i <k —1;
L 12k +’I—|—3, if = M2k4-2i—1 and 1 < <2

Case 11: If n = 12k + 9, where k is a positive integer, then define the vertex
labeling f: V (F) — {1,2,...,24k + 18} such that

(12k—3i+12, ifz =wuy_qand 1 <i<3k+3;
3i — 6k — 17, if £ =gy and 3k +4 <i <6k + 5;
24k — 31420, ifz =wuy and 1 <i <3k + 2
6k + 3¢ + 4, if £ = uy; and 3k + 3 <1 < 6k + 4;
24k — 31+ 21, ifz=wv9_1and 1 <i<3k+2;
12k —3i+ 10, ifz =wvy; and 1 <1 < 3k + 3;
j. (3) ) 15k +1— 10, ifz= Vekt2i13 and 1 S 7 S 2;

' 3k — 3i+ 5, if = vgrypizo and 1 < i <k +1;
15k — 314+ 12, if £ = vpp4eivs and 1 < ¢ < k;
3k — 3i + 3, if # = vgrrgiva and 1 <@ < k;
15k — 314+ 13, if £ = vegapizs and 1 < i < K
3k —3i + 1, if z = V6k+-6i+6 and 1 <1 S k,
151!8 — 31—|— 11, if ¢ = Vek-+2i4-7 and 1 § 7 S k‘,
12k + 7 + 9, ifz = V19k42i45 and 1 < i S 2.

.

Therefore, f is the canonical form of a super magic labeling of /' with
valence bn when n = 4k and 5n + 1, otherwise. O

Theorem 4.11. The forest F' = K, U 2nK,, where m and n are positive
integers, is super magic. Furthermore, if m + 2n and 2n + 1 are relatively
prime then only the valences 2m + 9n + 4 and 3m + 9n + 3 are attained by
the super magic labelings of I
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Proof.
Let F' = K ,, U2nK, be a (p, g)-forest such that
V(F) = {u}U{v,vg,...,v} U{wy,wo,..., wem}
and
E(F) = {uvy,uvy, ..., uvn} U {wiWep 1, Wollonyo, - . ., WonWan } -

Then consider f and g : V(F) — {1,2,...,p} to be the vertex labelings
of F' such that

(n+1, if =,
2n+1+1, ife=wv and 1 <i<m;
Fz) = 4 i, ife=w; and 1 <7 < n;
' i+ 1, fr=w,andn+1<12<2n;
m+n+i+1, ifrz=w and 2n+1<1i < 3n;
m-n+i+1, fr=w and3n+1<z<4n;

and
(m +3n+1, if r =u
1, if z =v;and 1 <1 <m;
m -+ 21, it =w;and 1 <i<mn;

g(z) = 1 m—2n+2i—1, ife=w,andn+1<i < 2n;
m+dn—i+1, ifr=w and2n+1<i<3n;
[ m+Tn—i+2, ifz =w; and 3n +1 <i < 4n.

Then, f and g are the canonical form of some super magic labeling of F
with valences 2m + 9n + 4 and 3m + 9n + 3 respectively.

To see that, the above two valences are the only possible ones when m-+2n
and 2n+1 are relatively prime, let & be the valence of a super magic labeling
f of F. Then

(m —1) fu) + 324
q

k =

2n+1)(n+1— f(v))
m -+ 2n '

= 2m+8n+3+ f(u)+

Then, there exists an integer « such that a(m+2n) = 14+n— f(v). Since
1 < f(v) < p, we have that « is 0 or —1, values that lead to the valences
2m + 9n + 4 and 3m + 9n + 3 respectively. a

Notice that if we relax the hypothesis of the previous theorem to refer to
just magic labelings, we have that another valence occurs as stated in the
following corollary.
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Corollary 4.12. Let F' =2 K, ,,U2nK,, where m and n are positive integers
such that m + 2n and 2n + 1 are relatively prime. Then only the valences
2m+9n+4, 3Im+9n+ 3 and 4m+9n+ 2 are attained by the magic labelings
of F.

Proof.

To prove this we use the facts and notation of the proof of the previous
theorem. First, notice that the vertex labeling h : V/(F) — {1,2,...,p} such
that h(v) = p+ g+ 1— f(v) extends to a magic labeling of F' with valence
4m + 9n + 2. Next, if we allow magic labelings of I, the value of o in the
proof can also be —2, and thus, only one further valence is attained. O

4.2 Crown Products of Some Super Magic
Graphs

4.2.1 General Results

Unless stated otherwise, the results on this section are due to Figueroa et al.
[12]. In this section, we first provide a construction that shows that G @ K,
is super magic whenever GG is a graph of odd order at least 3 and admits
certain super magic labelings.

Theorem 4.13. Let G be a graph of odd order p > 3 for which there exists
a super magic labeling f with the property that

3p+1

max {f (u) + f (v) | uv € E(G)} 5

then, G ® K, is super magic for every positive integer n.

Proof.
Let f be a super magic labeling of G with valence k, and assume that f

has the property that f(v;) = ¢ for every integer i with 1 < 1 < p, where
V(G)={v; |1 <1i<p}. Further, let

% (G 6K, =V(G)U {-wf |1<i<pand1<j< n}
and
E(G@fn) :E(G)U{'Ui'?ﬂf [1<i<pand1<j<n}.
Now, define the vertex labeling
9:V(GOK,) = {1,2,....p(n+1)}
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