Chapter 5

Deficiency

5.1 Introduction

In this chapter, we will study “how close” is a graph to be super magic.
Of course it is possible to think about many different ways to attack this
question. However we will follow the line introduced by Kotzig and Rosa
in [28], who presented the following definition. The magic deficiency of a
graph G, denoted by u(G), is defined to be the minimum number of isolated
vertices that we have to union G with, so that the resulting graph is magic.
Of course if G' is magic, we have that u(G) = 0. The first question that
appears in relation to this definition is: for any graph G, does there exists
always a finite number of isolated vertices n, so that the graph G U nk; is
a magic graph? Kotzig and Rosa [28] provided an affirmative answer to this
question, proving that for any graph G, u(G) = n for some n in Z.

Motivated by this work Figueroa, et al. [16] defined the concept of super
magic deficiency of a graph G as follows. Let G be a graph and let

M(G) ={n > 0| GUnkK; is super magic} .
Then the super magic deficiency of G, denoted by u(G), is defined to be

[ min M(G), if M(G) # 0;
a(G) = { +00, if M(G) = 0.

Of course, if G is super magic, we have that u,(G) = 0. Also it is a
direct consequence of the definitions that 4(G) < p(G), and in fact, as we
will see in this chapter, there are graphs which are neither magic nor super
magic, and for which the magic and super magic deficiency are equal. One
of the main differences between the magic and super magic deficiencies is
that while the magic deficiency is always finite, the super magic deficiency
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is not necessarily finite, and as we will see, graphs with infinite super magic
deficiency are not hard to find. One of the main goals in this chapter will be
to try to find conditions that guarantee infinite super magic deficiency. Also,
we will study the super magic deficiency of the complete bipartite graphs,
and motivated by the Ringel-Lladé conjecture [34] that all trees are super
magic [], we will prove that the super magic deficiency of such graphs is
always finite by proving that the super magic deficiency of forests is always
finite. Finally, we will compute the exact super magic deficiency of some
forests and 2-regular graphs, as for instance the graph nkK,, and the cycle

Ch.

5.2 Graphs Whose Super Magic Deficiency is
Infinity

As we already mentioned in the introduction, one of the main differences
between magic and super magic deficiencies is that while the magic deficiency
is always finite, the super magic deficiency is not necessarily finite. In fact,
it is not hard to find graphs with infinite super magic deficiency. In this
section we will provide examples of different types of graphs with infinite
super magic deficiency. In order to do this, we will first state the following
two results introduced first by Figueroa et al. in [].

Lemma 5.1. Let G be a graph of size q having the property that, for all sets
Vi and V; such that Vi UV, =V (G), ViNVa =0 and

{uv € E(G) |u e Vi and v € Vo }|
is neither |q/2] nor [q/2]. Then, u(G) = +co.

The proof of this lemma is basically identical to the proof of Lemma 2.8,
and hence it will be omitted.

Although Lemma 5.1 is theoretically interesting it is not always easy
to use. The next corollary gives an easier to use, although less powerful
condition. The proof of the corollary will be omitted since it is similar to the
proof of Theorem 2.9.

Lemma 5.2. Let G' be a graph of size q such that degv 1s even for all v €
V(G), and ¢ =2 (mod 4). Then u(G) = +o0.

It is worthwhile to remark that there are graphs satisfying the hypothesis
of Lemma 5.1, but not those of the previous theorem. For example, take the
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graph G 2 Kjy. Then, |E(K12)| # |E(Kp12-0)| for n=1,2,...,11 since the
resulting quadratic equation n? — 12n + 33 = 0 has no integer solutions.

Another type of graphs that have infinite magic deficiency are those with a
“large” clique, where the clique of a graph G is the largest complete subgraph
of G. In order to formalize the previous assertion, we will borrow some ideas
from what today is known as additive number theory.

Kotzig defined in 1972 [26] (although this concept was first introduced
by Sidom, and it’s sometimes refered to as a weak Sidom set, in 1949 []), a
set © = {z1 <22 < - < z,} CZto be a well-spread set (WS set for short),
if the sums z; + z; for i < j are all different. Furthermore, Kotzig in the
same paper also defined the smallest span of pairwise sums of cardinality n,
denoted by p*(n) to be

p'(n) =min{z, + 1 —x2a —21+ 1| {21 <29 <--- < ,} is a WS-set.}

The next lemma provided also by Kotzig [26] states the values of p*(n)
for n =4,5,6,7, and 8, and provides a lower bound for n > 9.

Lemma 5.3. The smallest span of pairwise sums of cardinality n, p*(n),
satisfies p*(4) = 6, p*(5) = 4, p*(6) = 19, p*(7) = 30, p*(8) = 43, and
p*(n) > n?—5n+ 14 forn > 9.

With all this information in mind, we are now ready to state and prove
the following theorem by Figueroa et al. [16].

Theorem 5.4. Let G be a graph that contains the complete subgraph IK,,. If
|E(G)| < p*(n) then pus(G) = +o0.

Proof.

We will use an indirect argument in order to prove the theorem. Suppose
that there exists a graph G containing the complete subgraph H = K, with
|E(G)| < p*(n) and such that u(G) = m where m € NU {0}.

Now assume that f is a super magic labeling of G UmkK, and let

S ={f(w) + f(v) |uv € B(G)}
Then S is a set of |E(G)| consecutive integers and hence
{f) |w e E(GQ)} ={z1 <zy <--- <z}

is a WS-set. Thus |F(G)| =maxS—minS+1>z,+x, 1 —29—21+1>
p*(n) > |E(G)|, and therefore the desired contradiction has been reached. O

As an immediate corollary of the previous theorem, we can compute the
super magic deficiency of the complete graph K, as follows [16].
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Theorem 5.5. The super magic deficiency of the complete graph K, satis-
fies the following formula.

0, ifn=1,23;
Hs (Kn) = 1: Ef n= 4'
+o0, ifn>05.

Proof.
The graphs K;, K, and Kj are trivially super magic and thus

ps (K1) = ps(Ka) = ps(Ka) = 0.

Also, K, is certainly not super magic; however K, U K is super magic as one
simply needs to label the isolated vertex with 2, and the rest of the vertices
with the remaining labels. Thus, u,(K4) = 1. Finally, by Theorem 5.4 we
have that p,(K,) = +oo for n > 5. O

5.3 The Super Magic Deficiency of Complete
Bipartite Graphs

Before beginning this section, we point out that all results in it were first
proved by Figueroa et al. in [16].

Our first result in this section provides an upper bound for the super
magic deficiency of K,,, for all m and n, implying that p,(K,,,) < 4oc.

Theorem 5.6. The super magic deficiency of the complete bipartite graph
satisfies that ps(Km.,) < (m—1)(n—1) for all possible positive integer values
of m and n.

Proof.

Let Vi and V; be the partite sets of K,,,, and let G be isomorphic to
Kun U (m —1)(n—1)K;. Then it suffices to present a super magic labeling
of G.

Thus, we consider the vertex labeling f : V(G) — {1,2,...,mn + 1} such
that f(V3) = {1,2,...,m} and f(V3) = {m+ 1,2m+1,...,nm + 1}, and
the remaining labels from 1 to nm + 1 are placed arbitrarily on the isolated
vertices of G, which extends to a super magic labeling of G. a

For the next proof, we will need the following notation. Let A C R and
beRthen A+b={a+b|ac A}

Theorem 5.7. The super magic deficiency of the graph K, is ezactly equal
to (n — 1) for every positive integer n.
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Proof.
First, notice that, by a previous theorem p,(/,,2) < m—1, so we assume
ps(Km2) =mn and let G = K, , UnK, such that

V(G) = {ur,us} U {v1,v9,...,0m} U{w,ws,...,w,}

and

E(G)={{uv|i=1,2and j=1,2,...,m}.

Now, let

f:V(G)UE(G) = {1,2,...,3m +n+ 2}
be a super magic labeling of G such that f(u1) < f(uy) and f(v;) < f(v;) if
and only if i < j. Also let a = f(uy) — f(u1) —1 and §; = f(v;) — f(vieg) — 1
for 1 = 2,3,...,m, and define ¢ = max {¢ | §; =0 for all j <i}. First, we
show that « = ¢ — 1.

If e = m, then f(u1)+f(vm)+1 = flug)+ f(v1). Thus, f(v,)—f(v1) =
however, f(v,,) = f(v1) +m — 1, s0o @ = ¢ — 1. Hence, we may assume that
£ < m.

Next consider

S = {f(z)+ f(y) | zy € E(G)}
= {f(w)+ f(v;) |t=1,2and j =1,2,...,m},

which is a set of 2m consecutive integers by Lemma 1. Now, by subtracting
f(uy) from each element of S, we obtain

R={f(v1), f(va),..., f(o)}U{f(v1), f(va),.., flvm)} + (a+ 1),

which is also a set of 2m consecutive integers.
Since £ < m, it follows that 8.1 = f(ves1) — f(ve) —1 > 0 is well defined.
Then f(v.) + fBey1 + 1 = f(vep1) — 1. This implies that

{1}2, .. ‘sﬁzﬁ-l} + f(Us) - {.f(vl)af(UZ)a L ':f(vm)}

and thus,
{1,2,..., Bea} + fve) C{fv1), flv2), s fom)} + (@ + 1)

Assume now that f(v;) +a+1< f(ve) + 1, then f(vy) +a+ 1< f(v.)
and hence f(vy)+a+1 € {f(v1), f(va),..., f(ve)}, which is a contradiction.
Thus, f(v1)+a+1> f(v.)+ 1 which implies that f(v;)+a+1= f(v.)+1
since f(rUE) +1le {f(rul)ﬂ f(UE)) R f(?}m)} + (Q + 1)

Hence, since f(v.) = f(v1) 4+ & — 1, it follows that @« =& — 1.
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Next, we want to show that m = £J for some integer 6,

g, ifi=1 (mod ¢);

b= { 0, otherwise; (5.1)

fori =2,3,...,m, and that if we order the elements of R, we get the sequence
= (ry)27,, where

Toietj = [ (View) and 7(giy1)erj = f(Viers) +€ (5.2)

ifl1<i<d—1and1<j<e. Todo this, we proceed by induction.

First, notice that if m = e, we are done, so we assume that £ < m.

Next, by assumption §; = 0 and r; = f(v;) for i = 1,2,...,e. Now,
notice that since {1,2, ..., Ber1} + f(ve) is a set of consecutive numbers in R
starting with f(v,) + €, it follows that S.4; <e.

Note that since a = ¢ — 1, it follows that f(uy) = f(u1) + €. Also,
f(ve) +1 < f(veyr), however, f(vi) + e = f(ve) + 1 and hence f(v,) +€ <
f(veg1). Now, assume that f(v.) +& > f(veq1) then since f(vy) + 1, f(vo) +
E,..., f(ve) + € are consecutive, there exists 1 < k < e such that f(v) +¢ =

f(vex1). Thus,
fop) + f(uz) = flo) + flua) + € = f(veqs) + fwa),

in other words, we have two distinct edges to which f assigns the same
label, which is a contradiction. Therefore, f(v.) + € < f(v.r1) and since
fwe) + Bey1 + 1 = f(veyq) we have G4y > . Thus, we conclude that
Bey1=cand rep = f(up) +efor k=1,2,...,¢ and 79.11 = f(Vesr1).

Now assume that (5.1) holds for g, 8z, ... 41 and consequently, (5.2)
also holds for 71,79, ... 79y for a fixed ¢ with 1 <7 < (m/e) — 1. Then we
wish to prove that (5.1) holds for

Bieta,Biet3, - - 5 Blis1)e
and (5.2) holds for
T2ie42,T 21435 - - - s T2(i41)e+1.
In order to do this, we first show that
Bietz = Bierz =+ = Bt+1)e = 0; (5.3)
so assume, the contrary, that there exist

j=min{k | >0and ie +2 < k < (i + 1)e}.
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Then f; = f(v;) — f(vj—1) — L so f(vj—1)+8; = f(v;) — 1, which implies that
{1,2,...,8;}+f(v;—1) is a set of 8; consecutive elements of R wedged between
flv;- 1) and f(v;). Thus, since we have assigned { f(v1), f(v2), ..., f(vic)} +¢
already to terms in the sequence ﬁ it follows that

{1,2,...,8;} + f(vj—1) C{f(Vies1), f(Viet2), - -, f(vm)} + €.
Then
f(Vier1) + < f(vjo1) + 1= f(Viera) +J +1e — L.

Thus, (i + 1)e < j— 1, s0 (i + 1)e < j, which is a contradiction, since
ic +2 < j < (i+ 1)e. Therefore f(vit1)+e > f(vj_1) + 1, which is also
a contradiction, and we have that (5.3) holds, which implies that ry;.; =
fvsess) for j =2,3,... €.

Second, we show that 3(1).41 = £. Notice first that

{11 2‘1 v }ﬁ(i-l-})s-i-l} + f(U(H'l)E) - {f(viﬁ'{'l)! f(vis-i-'l)r AR f(?-}m)} +e€,

assume that f(vii1) +€ < f(Vagne) +1, 80 f(Vier1) +€ < f(vig1e) + 1 and
hence
f(vies1) +€ € {f(Viex1), f(Viesa)s - o, F(VGr1)) }
which is a contradiction. Thus, f(vic41) +€ > f(viy1)e) + 1, which implies
that f(vieq1) +€ = f(vi)e) + 1. Therefore, By < €.
Notice, that f(v(iy1)e) +1 < f(V(i41)e+1). Also since

{f(vwrl f(Vieq2), - - :f(“(i+1)s)}

are consecutive, f(vit1)e) +1 = f(Vies1) +€, thus f(vier1) +€ < f(Vig1)et1)-
Now, assume
f(’U(éH}z) +e2> f(’U(z'-i-l)eH):
then since
{f(”i5+l)a f(iey2), .-, f(U(i-i—l)s)} +€
are consecutive, there exists 1 < k < e such that f(vies) +e=f (U(€+1J5+1):
which implies that

f(Wien) + fuz) = f(Viegr) + f(ur) + € = f(Vis1)es1) + flua),

in other words, f assigns to two distinet edges the same label, which is a con-
tradiction. Hence, f(v(is1)et1) > f(V(it1)e) + €, 50 Bliz1)e1 > €. Therefore,
we conclude that G(iy1ye41 = € and 7(9i41)e4; = f(Vieq;) + €. This concludes
the inductive part of the proof.
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Finally, the above facts yield that f(us) = f(u1) + €, f(vier;) = f(v1) +
2ie+j—1lforl <j<eandl1 <i< (mfe)—1and >, 03 =m—¢,
which we use to conclude that py(K,,2) > m — 1. We do this by comput-
ing the minimum number of elements that would have to be added to the
set {f(uy), flug)} U{f(v1), f(va),..., f(um)} to obtain a set of consecutive
integers starting at 1. For this, we need two cases.

Case 1: Let f(u;) < f(ua) < f(v1). We would need to add in this case at
least

(f'('tm_)—1)+Oz+(f('ul)—f(uz)—1)+Zﬁ=m+f(v1)—22m~1

'l‘::2

since f(ug) = f(u1) + € and (f(v1) > 3.
Case 2: Let f(vy,) < f(u1) < f(ug). we would need to add in this case at
least

(F00) = 1)+ 3 o (Flur) = (F(om) = 1)+ @ = flur) = m+e =2 > m =1

since f(v,,) = f(v1) +2m —e—1and f(uy) > 2m+¢e+ 1.
Notice that no other cases are possible since f(uy) — f(uy) = € — 1.
Therefore, we arrive to the desired result. O
A computer search of small cases together with Theorems 7 and 8 lead
us to conjecture that in fact ps(Kpmn) = (m — 1)(n — 1).

5.4 The Deficiency of Forests

In [7], Enomoto et al. conjectured that all trees are super magic, so a very
natural question is wether one can compute, or at least bound, p:(7") for any
tree T'. Figueroa et al. [16] computed a possible bound, which is presented
in the next theorem.

Theorem 5.8. Let F' be a forest, then p (F) < +o0.

Proof.

Without loss of generality, assume that in this proof, forests have no
isolated vertices. Notice that any forest F' can be thought of as having
its vertices to be ordered triples that satisfy the following properties. Let
v € V(F), then we call v -1, v-j and v - k, respectively, the component,
label and position of v (“” denotes the inner product of two vectors and
i= (1,007, j=(0,1,07T and k = (0,0,1)7). Then the component of



5.4. THE DEFICIENCY OF FORESTS 73

v ranges from 1 to k(F'), the number of components of F. Also, the set
R={(2,0,00T | 1 <z < k(F)} is asubset of V(F). Welet r(v) = (v-i,0,0)T
be called the root of the component that v lies in; thus the level of v is
v-j = d(v, r(v)), which is the distance from v to r(v). Now, let v € V(F')— R,
then let f(v), which we call the father of v be the vertex adjacent to v in the
(v,7(v))-path in F. Then if u,v € V(F) have the same component and level
and the position of the father of u is less than or equal to the position of the
father of v (u-i=wv-i,u-j=v-jand f(u) -k < f(v)-k), then the position
of u is less than or equal to the position of v (u-k < v-k). Finally, for
z,y € N, let I(z,y) = [{(z, y,2)' e V(F) |z € NH the number of vertices in
component z and level y. Then {z | (z,y,2)T € V(F)} = {1,2,...,1(z,y)}.
That is given a fixed component x and a fixed level y of F', the vertices within
them both, have consecutive positions which range from 1 to {(z,y). Now, if
e € B(F) and e = wv, where u = (z,y,2)? and v = (z,y + 1,6)", then we
denote e by an ordered triple in brackets as follows: e = [z,y+1,d]. We will
call z, y + 1, § the component, level and position of e, respectively. Let y*
denote the maximum level of the component z — 1. We will call an edge even
or odd depending on the parity of the level of the edge. Also, the set of even
edges and odd edges will be denoted by E, and E,, respectively. Define the
function € : E(F) — {—1,1}, such that e(e) = —1ife € E, and 1 if e € E,.

Next, define the function ¢ : E(F) — Z recursively as follows. Let
e = [1,y, 4], then

(e) = { y—1—e(e)d, forall d € {1,2,...,1(1,y)}, ifye{l,2};
TE= gty — 2,11,y - 2)]) —e(e)d, if y ¢ {1,2}.

Let a and A be the minimum and maximum labels, respectively, among all
the labels of the edges of component © — 1. Let e = [z,y, d] with z # 1, then
if g([z — 1,y* l(x — 1,y)]) > 0 we have that

a— 90, ify=1;
gle) =4 B+, ify =2
9([z,y = 2,U(z,y = 2)]) +e(e)d, ify¢{1,2}.

If ([ — 1,y*,l(z — 1,y)]) <0, then we have that

B+ 9, if y=1;
gle) = a—4, if y = 2;
g(['E,y— 2,5(3,{}-2)1) ‘—6‘(8)5} 1[‘@, ¢ {112}

Next, define the function h : V(F) — Z recursively as follows. First,
let h ((1,0,0)T) = 0. Second, if v = (x,y,2)" € V(F) — R and [z,y,2] =
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{(z,y—1,6),(z,y,2)T}, then h(v) = g([z,y,2]) — h ((z,y — 1,8)7). Now,
for v = (2,0,0)" with,  # 1, we let v = h ((z — 1,4, l(z — 1,y*))7), then
h(v)=v—1ify<0and h(v) =vy+1if vy > 0.

Finally, let X : V(F) — N be such that A(v) = h(v) + m, where m =
min {h(v) + 1| v € V(F)}. Then for all u,v € V(F), we have that A\(u) > 1
and A(u) = A(v) if and only if u = v. Also, {A(u) + A(v) |uv € E(F)} is a
set of |E(F")| consecutive integers. Therefore, pi,(F) < +00. O

5.5 Some Particular Families of Forests and
2-Regular Graphs

Unless stated otherwise, all the results on this section where first introduced
by Figueroa et al. in [15] and [16]

We will calculate the super magic deficiency of some particular families
of forests and 2-regular graphs. We begin this section calculating the magic
and super magic deficiencies of n disjoint copies of the graph K.

Theorem 5.9. The magic and super magic deficiencies of nK,y (n > 1) are
gwen by the formula

0, ifn is odd;
ps(nKy) = p(nksy) = { 1 5 n is even.

Proof.

Note first that Kotzig and Rosa [6] showed that nK; is magic if and only
if n is an odd integer. Hence, p(nk,) = 0 if n is odd and p(nk;) > 1 when
n is even. Actually, the magic labeling that they provide in their proof for
nk, when n is odd, is in fact, a super magic labeling, which implies that
ps(nKy) = p(nky) = 0 for n odd. Thus, assume without loss of generality,
that n is even.

Consider the graph G = nK, UK, such that V(G) = {y;,z; | 1 <1 <n}uU
{z} and E(G) = {yi, z | 1 <i <n}. Then we construct the vertex labeling
g:V(nK,UK;)— {1,2,...,2n+ 1} as follows,

nt? - if w =g

2
(w) = i, ifw=y and 1 <i<n;
g\ = 2 fw=zandl<i<

2414, fw=zand $+1<i<n,

Then g is the canonical form of a magic labeling of G. Hence, p (nkj) <
1. Therefore, we conclude that u(nks) = ps(nk;) =1 when n is even. O
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This family of graphs is an example that shows that the magic and super
magic deficiencies of a graph that is not magic may be equal.

Our next immediate goal is to characterize the super magic deficiency of
the forest formed by the disjoint union of a path and a star. In order to do
this we will present the following lemmas.

Lemma 5.10. For every positive integer n, we have that

0, ifn is even;

s ( Py U K],n) - { 1, ifn is odd.

?

Proof.

First, note that the forest P, U K, = K;, U K}, is shown to be super
magic in [13] if and only if n is even. Consequently, it is sufficient to verify
that (P, U Ky ,) <1 when n is odd.

Now assume that n is odd, and define the forest ' = P, U K , U K, with

V(F) ={u,ug} U{v; |1 <i<n}U{v,w}
and
E(F)={uj,ug} U{uv; | 1 <i<n}.

The vertex labeling f : V(F) = {1,2,...,n + 4} such that

(1, if @ = uy;
n+4, if r=wuy;
n+45 S oan — g

flz)=14 .2 ?i:l:v? . < ntl.
i+1, ifz=wvand 1 <7< =
142, if:c:v;-and%gign;
n+3, fz=w.

\

is the canonical form of a super magic labeling of F' with valence (5n+ 19)/2.
Therefore, (P UK ,) < 1 when n is odd, and this completes the proof.
O

Theorem 5.11. For every integer n > 2,

[0, ifn=0 (mod 3);
,US(P;; U 1{1,71) - { 1) ?’fn) = ]__1 2 (mOd 3)

Proof.
First, note that it is proven in [13] that the forest P3 U K ,, U K with

V(F) = {u'l Uy, Us, fuarw} U {Ui | 1 é i S ?'i-}
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and
E(F) = {uuy, uus} U {uy; | 1 <@ <n}

is super magic. Now consider two cases.
Case 1: Assume that n is a positive integer such that n =1 or 5 (mod 6).
Then the vertex labeling f : V(F) — {1,2,...,n+ 5} such that

(1, ifz =u;
n+i+3, fz=uandl <i<2;
n-4H . R
: ifr=w
r)=¢( .2 . ’ _

/@) i+1, if r=wv;and 1 < i< 2L,
1+ 3, if z=wv; and 222 <4 <m;

| = if 7 = w.

extends to a super magic labeling of F' with valence (5n + 23)/2. Thus, we
conclude that ps(Ps U K5 ,) < 1 in this case.

Case 2: Assume that n(> 2) is an integer such that n = 2 or 4 (mod 6).
Then the vertex labeling f : V(F) — {1,2,...,n + 5} such that

(1, it © = u;
n+i+3, fe=wu,and 1 <i<2;

n+6 s i
f@ =4, iy .
i+ 1, ifr=wvand 1 <i<Z;
1+ 3, if:czvt-andg-gi_'(_n;

| 2, if . = w.

extends to a super magic labeling of F' with valence (5n + 24)/2. Thus, we
conclude that ps(P; U K;q,) < 1 in this case.
Therefore, the proof is completed. O
Now, the previous two theorems, together with the facts that the graph
P, U K, ,, is super magic and that for n > 4, F,, U K, is super magic, this
last one proved in Chapter 2 of this thesis, we obtain the following result.

Theorem 5.12. For every positive integer n, the super magic deficiency of
the forest P, U K, ,, is given by

1, of m =2 and n is odd,
ps( P U Ky ) = orm=23andn#0 (mod 3)
0, otherwise.

At this point, we will study the super magic deficiency of some types of

two regular graphs.
First of all we recall the following lemma already proved in Chapter 2.
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Lemma 5.13. The graph mC,, s super magic if and only if m > 1 and
n > 3 are both odd.

With this result in mind, we are ready to state and prove the following
three results concerning the super magic deficiency of C,,, 2C,, and 3C,.

Theorem 5.14. The super magic deficiency of the cycle C,, is given by

0, ifn=1o0r3 (mod4),
ws(Cn) =< 1, ifn=0 (mod4);
+oo, tfn=2 (mod 4).

Proof.
Let n be odd, then C, is super magic implying that u,(C,) = 0. For

n=0 (mod 4), C, is not super magic. That is, us(C,) > 1.
For the other inequality, define the graph G'= C,, U K; having

V(G) = {:ri;yf | 1<i< %} U {2}
and
; . T . 71
BE(G) = {5Uﬂi:;¢)’-ﬁ [1<i< 5} U {:L'i_Lyi 12<i< 5} U{wsm},

where n = 0 (mod 4). The following vertex labeling f extends to a super
magic labeling of G, where

3 ifv=gx;and 1 <1< 3;

i+ %, ifv=y and 1 <i<Z;
floy=4¢ 'T2 ST

i+45+1, fv=yand §+1<7< 3

4, if v = 2.

Thus, 1,(C,) < 1, which leads us to conclude that p,(C,) = 1.
Finally the remaining case immediately follows from Lemma 5.2. O

Theorem 5.15. For every positive integer n, the super magic deficiency of
the 2-regular graph 2C,, is given by

1, if n is even;

J[.LS(?rCn) - { _+_oo? gf n 18 Odd

Proof.
First, suppose that n is odd. Thus, by Lemma 5.2, we obtain that
1s(2C,) = +oo. Next, assume that n is even, then the 2-regular graph

2C,, is not super magic by Lemma 5.13. Hence, u,(2C,) > 1.
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For the reverse inequality, define the graph G = 2C,, U K, with
V(G) = {zs,y; |1 <i<n}U{z}

EG) = {m_leyw + 1} Ufzi,vi |1 <i<n}
U {:I:Z-y,;_}_l 11<i< g - 1} U{zwin |1 <i<n—1}.
Next, two cases will be considered for the vertex labeling
f:V(G)—{1,2,...,2n+1}.

Case 1: For n = 4k, where k is a positive integer, let

-

4k +1+1, fw=mx;and 1 <1 <k;

8k+i1+2, fw=uxand k+1 <12 <2k;

1—k+1, ifw=uz and 2k +1 <7 <3k — 1, where k > 2;
141, if w=a; and 3k <1 < 4k;

flw) =< 1, ifw=y and 1 <1<k

4k — i+ 2, ifw=y; and k+ 2 <i < 2k, where k& > 2;

8k —i+2, ifw=y and 2k +1 <1 < 3k;

4k + 141, fw=1y and 3k +1 <1 < 4k;

2k 41, if w=z.

‘.

Case 2: For n = 4k + 2, where k is a positive integer, let

(6k—i+5, ifw=xandl<i<k-—1, wherek > 2;

bk+1+4, fw=ua;andk <i<2k+1;

1—2k—1, fw=xand2k+2<:i<3k+2;

f(w) = ¢ 6k —1i+5, fw=wxand3k+3<1<4k+2;
2k—i+2, fw=yand 1 <i<k

2k+i142, HHw=yandk+1<i<3k+ 3

10k =247, Hw=y,and 3k +4<i<4k+ 2

2k + 2, if w= 2z

.

Then f extends to a super magic labeling of G with valence 5n + 4, which
implies that 11,(2C,,) = 1 when n is even and completes the proof. O

Theorem 5.16. For every positive integer n, the super magic deficiency of
the 2-reqular graph 3C,, is given by

0, if nois odd;

ws(3C,) =< 1, ifn=0 (mod 4);
+00, ifn=2 (mod 4).
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Proof.

First, let n be odd, then the 2-regular graph 3C), is super magic by Lemma
5.13, implying that p4(3C,) = 0. For n =0 (mod 4), the 2-regular graph
3C,, is not super magic by Lemma 5.13, that is, u,(3C,) > 1.

For the other inequality, assume that n = 4k, where K > 2, and define
the graph G = 3C,, U K; with

V(G) ={zi,yi | 1 <i <6k} U{z}
and

E(G) = {zi,yi |1 <i <6k} U{ziyip [1 <i <2k -1}
U{zo, y1} U{ziyisr [ 2k +1 <4 < 4k — 1}
U {:Eelk,’yzkﬂ} U {mi?f'i-i—l | 4k +1 <0 <6k — 1} U {6k, Yars1} -

We now consider the vertex labeling f : V(G) — {1,2,...,3n + 1} such that

(1, if w=x; and 1 <1 < Gk;

8k — 1, if w=y;

6k+i1—1, fw=y; and 2 <i <k;

9%, if w=yp.1;

6k +i—2, fw=1y and k+ 2 <1i < 2k;
Fw) = 4 6k + 1, if't;}:yia.11d2k+1§i§3k—1;
' 6k +1+ 3, ifw=1y; and 3k <i <4k —1;
8k, if w = ya;

6k +i+2, ifw=uy and 4k + 1 <1 < 5k;
9k + 2} if w= Tok415

6k +i+1, ifw=1y; and 5k + 2 <1 < 6k;
9k + 1, if w=2z.

\

Then f is the canonical form of a super magic labeling g with valence
(15m)/2 + 3. Also, it is possible to verify by exhaustive search that 3C; U K
is super magic or not. Thus, we conclude that p,(3C,) = 1 when n = 0
(mod 4).

Finally, the remaining case immediately follows from Lemma 5.2. O



