Chapter 6

Results using additive number
theory

6.1 Magic Graphs and Sidon Sets

6.1.1 Introduction

The results found in this section appear in [30].In the 1996 Conference of
Kalamazoo, after a talk by G. Ringel, P. Erdds asked: “How large a clique
in a magic graph can be?”.

Throughont the paper G = (V, E) denotes a finite graph without loops
nor multiple edges.

In this chapter we address the Erdés’ question about the maximum size
of a clique in a connected magic graph. An upper bound had been given
already by Kotzig and Rosa [28|, where they proved that if G = (V, E) is a
magic graph containing a complete graph of order n > 8 then

V| +|E| > n® - 5n + 14.
Their result was improved by Enomoto et al. [8] to

V| + |E| > 2n* + O(n*?), (6.1)
by using the known bounds for the size of a Sidon set. Recall that a set A of
integers is said to be a Sidon set if the sums a; +a;, where a;, a; are two (non
necessarily different) elements of A, are pairwise distinct. Erdés and Turdn
[10] showed that a Sidon set A contained in {1,2,..., N} has cardinality

|A| S NUQ 1+ O(nl;’xi)
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and they asked if the bound can be improved to |[A| < NY? + C for some
constant C', but this question is still unanswered.

The upper bound for the size of a Sidon set in [1, N] gives essentially an
upper bound for the size of a clique in a magic graph. The reason is that,
if f is a magic labeling of G = (V| E) and the subgraph induced by X C V
is a complete graph, then all sums of distinct elements in f(X) are different.
Kotzig [26] called a set A C Z a well spread sequence if all sums of distinct
elements in A are pairwise different. He showed that, if A C [1,N], then
N >4+ (";"). Ruzsa [36] calls such a set a weak Sidon set, and gives a very
nice short proof of the following inequality

|A] < NY2 L aNYt 11 (6.2)

Since f(X) is a weak Sidon set then | X| is bounded above by (6.2). Enomoto
et al. [8] give also a lower bound for the size of the largest possible clique
in a connected magic graph. Actually they use a more restricted kind of
labelings. A magic labeling is said to be super magic if f(V') = [1,|V]], that
is, f assigns the smallest labels to vertices and the largest ones to edges.
By using the construction of Singer [37] for dense difference sets they show
that, for any graph H with n vertices and m edges, there is a connected
super magic graph G which contains H as an induced subgraph such that
V(G)| < 2m +2n?+ o(n?). In particular, there are super magic graphs such
that

V(G)| < 3n® + o(n?) and K, C G. (6.3)

Moreover, if G' is a super magic graph which contains a clique, then (6.1)
becomes
V(G)| > n? — O(n*?). (6.4)
We prove the following result.
Theorem 6.1. Let A C [1,N] be a weak Sidon set of order n. There is a

connected supermagic graph G of order 2N which contains a clique of order
n -+ 1.

Let f(n) denote the size of the largest Sidon set in [0,n| and f,(n) be the
size of the largest weak Sidon set in [0,n], so that f'(n) > f(n). By (6.2), it
is clear that lim,_,eon~Y?f,(n) > 1. By the Erd6s -Chowla Theorem,

Jz'mﬂ_mcn_mf(n) =1,

so that the same is true for f,(n). Therefore, we can find weak Sidon sets
of order n contained in [1, f,,(n))] with f,(n) = n? + o(n*). Hence, Theorem
6.1 implies that there is a connected graph G of order

[V(G)| = 2n* + o(n?) (6.5)
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containing a clique of order n, improving on (6.3). In Section 3 we get the
following improvement on the constant in 6.5.

Theorem 6.2. For every € > 0 there is ng such that, for each n > ny there
is a connected magic graph G of order

which contains a clique of order n.

Let f(n) be the the smallest order of a connected magic graph G contain-
ing a clique of order n. We conjecture the following.

Conjecture 6.3. f(n) =n*+ o(n?).

6.1.2 Magic graphs containing a large clique

Let A = {ay,...,a,} C [1,N] be a weak Sidon set, that is, the sums a; -+
a;,t < j are pairwise distinct. Note that A + x is also a weak Sidon set for
any integer z, so we may assume that 1 € A. We also assume N € A. We
denote by S = A A A the set of sums of distinct elements in A. We have
S C[3,2N —1] and || = (}).

Lemma 6.4. Let {1, N} C A C [1, N] be a weak Sidon set and A; = A\{1}.
Let Sy be the set of sums of distinct elements in Ay. If

H{z,z+N—-1}NS| <1, z €N, (6.6)

then there is a supermagic connected graph G of order N such that K,, C G.

Proof. Define the graph G with vertex set [1, N| and set of edges Ey U Ey U Fy
with

El = {aﬂajaz%»,!u*haj EA}'.I EQ-—_{lj., 2§.} ﬁN—l,l—l—j Qs}a
EB3={jN,2<j<N-1,j+N¢S}

Then the vertices in A clearly induce a clique of order n in G and the map
f(i) =14,1<i <N, f(ij) = 3N — (i + j) is a supermagic labeling of the
graph. Finally, by the condition on S, for each vertex = & A, either z+1 & S
or z + N ¢ S, so that z is connected to at least one of the two vertices 1 and
N, which both belong to the same clique. Hence GG is connected. O

Note that if (6.6) is not satisfied for a weak Sidon set A C [1, N]] then
clearly there is x € S; N [1, N|, so that there is an element a € 4, N[1, N/2].
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Lemma 6.5. Let A= {l=a; <ay <--- <a, = N} be a weak Sidon set.
Then B = {1} U (A + a,) C [1,2N] is a weak Sidon set with n + 1 elements
containing {1,2N — 1} such that

Hz, 2+ 2N —1}N (B A By)| > 1,z € N, (6.7)
where By = B\ {1}.

Proof. By = A + a, is clearly a weak Sidon set with set with By A By C
2N +5,4N —2]. Since 1 + By C [1,2N], B is also a weak Sidon set. Since
the smallest element by in B satisfies by = a; + @, > (an_1 + @n)/2 = b, /2,
then (6.7) follows by the remark preceding this lemma. 0

We are now ready for the proof of Theorem 6.1.
Proof of Theorem 6.1 By Lemma 6.5, there is a weak Sidon set B C [1,2N]
satisfying condition (6.7). Then the result follows from Lemma 6.4. O

6.1.3 Embeding a clique in a large magic graph

In this Section we show that, for N large enough, there is a magic graph ¢
of order |V (G)| < en? 4 o(n?) for any constant ¢ > 5/4. We first need the
following lemmas.

Lemma 6.6. Let G = (V, E) be a graph of order N and f : V — [1,N] a
bijection such that the edge sums f(x)+ f(y), zy € E are pairwise different.
Then there is a super magic graph G' of order N which contains G as a
spanning subgraph.

Proof. Denote the vertices of G by @1, ..., zy such that f(z;) =4,1 <i < N.
Let B = {f(x:) + f(z;), ziz; € E} = {by < --+ < by}, where m = |E|,
be the edge sumset. Let Y = [by,b,] \ B and set Y7 = Y N [by, N + 1],
Yo =Y N[N +2,b,). Consider the graph G' = (V, E U E') where

E = {.’151:1’31-? 1+ 1€ Y]} U {.iC;;,:'L'N, i+ N € Yg}

It is easily checked that E' is well defined and that {i + j, z;2; € EUE'} =
[b1,b,n]. Define f on the set of edges of G’ as f(x;x;) = k — i — j, where
k = 3N. Then, f is a super magic labeling of G". 0

Lemma 6.7. Let G = (V, E) be a connected graph graph and f : V — [1, N]
an injective map such that the edge sums f(z) + f(y), zy € E are pairwise
different. Let S = {f(z)) + f(y), zy € E(G)} denote the edge sumset of f.
If there is an increasing map g : ([1, N]\ f(V)) = ([3,2N — 1]\ S, such that

(i) i < g(i) <N +1 foralli e [L,N]\ f(V), and
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(i) g(i) # 2i, for alli € [1,N]\ f(V),

then there is a supermagic connected graph G' of order N which contains G
a s a subgraph.

Proof. Consider the graph G| with vertex set [1, N| and set of edges F; U E,
where

Ey={ij:i,5€ f(V)and f'(i)f'(j) € E(G)},

and
By ={ij:i €[, N]\ f(V) and j = g(i) — i}.

Graph GY clearly contains G as a subgraph. By the conditions on g, set F,
is well defined, contains no loops and it is disjoint from E;. Let us show that
(| is connected.

Suppose on the contrary that G is not connected. Denote by 4 = f(V),
X =[1,N]\ Aand Y = [3,2N — 1]\ S. Since the subgraph of G induced
by the vertices in A contains (an isomorphic copy of ) G' as a spanning
subgraph, there is a connected component of G containing only vertices in
X and edges in £,. Let X’ C X be the vertex set of such a component. Give
an orientation to each edge zy in the induced subgraph G/ [X'] as (z,y) if and
only if y = g(x) — z. In the resulting digraph, every vertex has out-degree
1, so that we have a directed cycle C'. Let 21, z3, . .. z; denote the vertices of
C" such that (z;, z;11) is an arc of the directed cycle for each ¢ = 1, ..., the
subscripts taken modulo [, that is, g(z;) = 2z; + z;11. Since g is an injective
function, we have [ > 2. We may assume that z; = min{z,..., z/} and set
z; = max{zy,2,...,2}. f j =1then g(zi_1) =21 + 20 > 21 + 20 = g(z)
contradicting the assumption that ¢ is an increasing function. Suppose that
7 < 1. We claim that zo > z;. If j > 2, we have z; > z and z;_; > 2, which
imply g(zj—1) = zj—1+2; > z1 + 21 = g(z). Since g is an increasing function,
we have z;_; > z. By iterating the argument if necessary we eventually
get zg > z;. But then, g(z;) = z1 + 21 < 20 + 21 = g(z1), contradicting the
minimality of z;. These contradictions show that G| must be a connected
graph.

Note that the identity map ¢ : V(G]) — [1, N| has all edge sums pairwise
distinct. This is so for pair of edges from F; by the hypothesis on GG and in all
other cases by the definition of E,, whose edge sums are in the complement
of S, and by the injectivity of g. Therefore, G satisfies the conditions of
Lemma 6.6and there is a magic graph G’ containing G. a

Proof of Theorem 2. Let € > 0 be given and set ¢ = /1 +4e. From
Ruzsa’s bound (6.2), there is Ny such that, for all N > Nj and every weak
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Sidon set A C [1, N], we have |A| < ¢NY/2, Therefore the set of sums satisfies
2
S = [AAA] < |AP/2 < SN). (6.8)

Let G be a complete graph of order n = |A| with vertex set V(G) = A.
We will show that there is a connected magic graph G' of order N’ = (2+¢)N
containing GG as a subgraph by using Lemma 6.7,

For a set U C N and integers = < y we denote by U(z,y) = |U N [z, y]l.

Note that —A+ (N +1) is also a weak Sidon set contained in [1, N]. Since
one of A and —A + (N + 1) has at least half of the sums in [1, N|, we may
assume that S(N +1,2N — 1) < 5(3, N).

Let N' = (1+<)N and set X = [1, N']\ Aand Y = [3,2N — 1]\ S. We
then have

2
Y(N,2N —1)> N — S(N+1,2N —1) > (1 — %)N - (g —¢)N. (6.9)
Let us define g : X — Y as follows. For z € X((3 —¢)N, (3+¢)N —1) we -
have N’ +z € Y/(2N,2N' — 1), so we define g(z) = N'+ z. Now, from (6.9),
we have as many elements in Y(N,2N — 1) as in [1, (3 — ¢)N]. Therefore
we may define an increasing map from X N [L,(2 — e)N] to Y(N,2N — 1)
satisfying < g(z) < N’ +z) for all x € X. More precisely, if X = {z; <
Ty < --- < 2%}, and we denote by X; = {x,41,...,2x} de final segment of
length & — ¢ of X, then

g(z;) =max{y € Y\ g(X;) : y < N + x;}. (6.10)

It can be easily checked that ¢ satisfies properties (i) and (ii) in Lemma 6.7.
Therefore, there is a graph G of order N’ = (2 + €)N containing G, a clique
of order n. O

Let f(n) denote the size of the largest Sidon set in [0, n] and f,,(n) be the
size of the largest weak Sidon set in [0,n], so that f'(n) > f(n). By (6.2),
it is clear that lim,_.on ?f,(n) > 1. By the Erd6s -Chowla Theorem,
limnseon 2 f(n) = 1, so that the same is true for f,(n). Therefore, we
can find weak Sidon sets of order n contained in [1, f,,(n))] with f,(n) =
n? + o(n?). Hence we have the following Corollary:

Corollary 6.8. There is a connected graph G of order
V(@) = 2n® + o(n?)

containing a cliqgue of order n.
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6.2 Magic trees containing a given forest

Below we give the procedure that provides a proof of Theorem ?77. We show
an example which illustrates this procedure at the end of the paper.

Given a forest F', let Ty = (Vg, Ey) be any tree of order n containing F. In
order to extend Ty to a magic tree, we will introduce the following notation
for the vertices of T,. Let r be any vertex of Vj, which will represent the root
of Tj,. Partition the vertices of V} into levels

Vo ={z € Vy:d(r,z)=1)}, i >0,

where d(r,z) denotes the distance in 7, between z and 7.

We define a labeling fy : V5 — [1,n] recursively on the levels of the tree
Ty rooted at r. Set fo(r) = 1. Suppose that f; has been defined in level
Vi, i > 0. Take the vertex with smallest label in V; whose neighbours in V,
have not been yet labelled, and label them with the smallest labels not yet
used. In this way we define and injective map and the labels in a given level
are consecutive.

Let S = {fo(u) + fo(v) : uv € Ep} denote the edge sumset of fy. By the
definition of fy the sums of S are pairwise different, and |S| = |Ey| =n — L.
If the elements of S are consecutive then, by Lemma x, Tj is already a super
magic tree.

Suppose that the elements of S are not consecutive numbers and let

S = [min S, max S| \ S.
We have min S = 3 and max S < 2n — 1, so that
h=|S|=maxS-n—-1<n-2.

In what follows we proceed to extend the tree Ty in order to fill the gaps
in S. This is done in at most three steps.

Let Sy = {s; < 83 < -+ < s} be a maximal subset of S such that, for
every s; € Sp, there is v; € Vp with fo(v;) = s; +i — 1.

Let X = {zy,...,x} be a set of k additional points and construct a new
tree Ty = (V4, Ey) with vertex set V; = VoUX and By = EqU{vi21,. .., ke }
Consider the labeling f; : Vi — [k + 1, n| defined by

Ay ={ P 2e

l—i, v=z€X

The edge sumset of f; is S} = SU Sy C [3,max S]. If S; = [3, max 5] then
/i = fi +k is a vertex labeling that extends to a supermagic labeling of 73
and we are done.
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Suppose that S; is a proper subset of [3, max S].

Let Y = {y;,n +1 <i<maxS +|5| — 1} be a set of additional points.
Let ww' € E(T}) be the edge with largest edge sum, f(w) + f(w') = max S,
where f(w) < f(w') = n. We extend 77 to the tree T, = (V5, E;) where
Vo=V, UY and

Ez = E] L {’{U’y-,; Y € Y}

Take fy : Vo — [k + 1,n + |Y|] defined by

f2(v) = { ;-fl(v)? v i;?y

The edge sumset of f; is
Sy = SUS U (f(w)+[n+1,max S+ S| —1]) C [3, f(w) +max S + |S| — 1].
By the choice of w, the union above is disjoint and

Sy =3, f(w) + max S +|S| — 1]\ Sy =5\ Sp = {spe1 < -+ < s}

Note that, for each @ € {k,...,h — 1}, we have s;,; +i € [n+ 1,n + |Y]].
Let Y' = {y;, : ji = sitz1 + 1, k <i < h—1} CY and consider a set of new
points Z = {z;: k << h—1}. Let T3 = (Va, E5) with V3 = V, U Z and
Es = Es U{zkYjs-- s 2n—1Yj,_, - Take f3 : V3 — [=h + 1,n + |Y|| defined
by
Ja(v), veE Vs
fS(T)) - { —Z'(, ) V=2 € Z

Now the edgesum of f3 is Sz = [3, f(w) + max S + |S| — 1]. Therefore, the
edgesum of g = f3+h is a set of consecutive integers. By Lemma x, ¢ extends
to a supermagic labeling of T3, and the order of this supermagic tree, which
contains T, is

N=|Vyl=n+h+|Y|=maxS+2h—1<4n—T.

O
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Figure 6.1: Labeling of Tj.
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