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SUMMARY 

  

 

The amount of blood generated in slaughterhouses might have a major environment impact if not 

adequately treated. However, blood can be considered as a by-product because of the nutritive 

quality and functional properties of its proteins, with the valorisation possibilities being increased 

when blood fractions (red cell and plasma) are separated before use. Plasma shows excellent heat-

induced gel properties at physiological conditions (pH 7.4), but they are gradually lost during its 

acidification. When plasma is acidified from pH 7.5 to pH 5.5, a ∼53 % reduction in gel hardness 

and an ∼8 % increase in released water after gel centrifugation are observed. These losses are 

related to changes not only in the protein interactions involved in the thermal gelation phenomena 

but also in protein structure. FT-IR measurements of protein secondary structure reveal the 

formation of non-native intermolecular β-sheet structure during thermal gelation of plasma, 

indicative of non-specific protein aggregation. At the end of the thermal gelation process the 

remaining native secondary structure diminishes as pH does, while the amount of the new-formed 

intermolecular β-sheet structure increases relatively. The lower the remaining native secondary 

structure and the faster the heat-induced aggregation with decreasing pH, the weaker and more 

exudative the gels obtained.  

Plasma is frequently added to improve texture and syneresis properties of meat products, which 

usually show acid pH. So, the main objective of this thesis is to improve the heat-induced gel 

properties of porcine blood plasma at acid pH using microbial transglutaminase (MTGase), an 

enzyme capable of catalysing cross-linking reactions between glutamyl and lysil residues. The 

enzymatic treatment enhances textural properties and water holding capacity of plasma gels at pH 

5.5, especially when incubated with 3 % of the enzymatic commercial product or MTG (equivalent 

to 43 U·g-1 of protein) for 3 h at 30 ºC and pH 7. This treatment increases ∼0.4 N the hardness of 

gels, ∼30 % higher than non-treated plasma gels at pH 5.5, and reduces ∼3 % the released water 

after gel centrifugation respect to the control samples adjusted to pH 5.5. These improvements can 

be attributed to the enzymatic cross-linking of some plasma proteins, particularly globulins and 

fibrinogen. In spite of the importance of the achieved improvements, they are not enough to 

overcome loses on gelling properties of plasma proteins due to acidification. 
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The globular structure of the main plasma proteins can make the attack of the MTGase difficult; 

thus, proteins can become more reactive in front of the enzyme after suffering a partial unfolding.  

Due to the abundance of disulfide bonds in plasma proteins, particularly serum albumin, the 

addition of a reducing agent like cysteine during the enzymatic treatment could result beneficial. 

However, the enzyme reactivity is not enhanced when 0.25 % cysteine is added to plasma treated 

with MTGase at the above mentioned conditions, although higher improvements on gel hardness 

are obtained, with increases ∼0.9 – 1 N when compared to gels from untreated plasma at pH 5.5. 

Also, cysteine does not negatively affect the enzyme activity, despite the presence of a free –SH 

group in the active centre of the enzyme. The effects on gel texture of both MTGase and cysteine 

when applied together are additive more than synergistic, while the presence of the reducing agent 

nullifies the improvements of the water-holding capacity of plasma gels achieved by the enzyme. 

High pressure is considered an alternative to provoke unfolding of plasma proteins in order to 

facilitate the MTGase activity. Treating plasma with MTGase (3 % MTG) under high pressure (400 

MPa, 30 min, pH 7) leads to important increases of plasma gel hardness, achieving improvements 

of ∼0.6 N relative to gels from untreated plasma at pH 5.5. However, water holding capacity is 

again only slightly modified. Under these conditions, the activity of MTGase is enhanced, and not 

only globulins and fibrinogen but also serum albumin are involved in the enzymatic cross-linking 

reactions. 

The effects of treating plasma with MTGase under high pressure conditions can be enhanced by 

holding pressurised-plasma solutions at refrigeration conditions (setting time) for at least 2 h prior 

to its heat-induced gelation at pH 5.5. Under such conditions, increases of ∼0.9 N in gel hardness 

compared to gels from untreated plasma at pH 5.5 are achieved. However, mechanisms other than 

MTGase polymerisation must take place during this cold storage. In contrast, the setting time has 

no effects on the water-holding capacity of heat-induced plasma gels at acid pH value. 

Overall, it can be concluded that losses in texture of heat-induced plasma gels at acid pH are 

recovered to an important degree by treating plasma with MTGase, especially with added cysteine 

or under HP conditions. However, their water holding capacity is only slightly enhanced for the later. 
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RESUM 

  

 

La quantitat de sang generada en els escorxadors pot comportar un important impacte ambiental si 

no es tracta adequadament. No obstant, la sang es pot considerar un subproducte degut a que les 

seves proteïnes presenten bones propietats nutricionals i funcionals, veient-se incrementades les 

possibilitats de revalorització quan les dues fraccions (cel·lular i plasmàtica) es tracten per separat. 

El plasma forma gels induïts per calor amb unes propietats excel·lents a pH fisiològic (pH 7,4), però 

aquestes propietats es van perdent gradualment a mesura que el pH s’acidifica. Una reducció de pH 

7,5 a pH 5,5 del plasma comporta una disminució en la duresa del gel del ∼53 % i un augment en la 

quantitat d’aigua alliberada després de la centrifugació del ∼8 %. Aquestes pèrdues no només són 

degudes a canvis en les interaccions proteiques relacionades amb la gelificació per calor, també a 

canvis relacionats amb l’estructura proteica. Estudis de l’estructura secundària de les proteïnes amb 

FT-IR mostren la formació d’estructures intermolecular de làmina-β no nativa durant la gelificació 

tèrmica del plasma, indicativa d’agregació proteica no específica. Al final del procés de gelificació 

induïda per calor, la quantitat d’estructura secundària nativa disminueix a mesura que el pH ho fa, 

mentre que la quantitat d’estructura intermolecular de làmina-β no nativa va augmentant. Els gels 

obtinguts són més tous i exodatius a mesura que el pH disminueix, veient-se una disminució de la 

quantitat d’estructura secundària nativa i una agregació induïda per calor més ràpida. 

El plasma s’utilitza freqüentment per millorar la textura i sinèresis de productes carnis, que solen 

presentar pH àcid. Així, l’objectiu d’aquesta tesis és millorar les propietats dels gels de plasma de 

sang porcina induïts per calor a pH àcid utilitzant transglutaminasa microbiana (MTGasa), un enzim 

capaç de catalitzar reaccions de polimerització entre residus de glutamina i lisina. El tractament 

enzimàtic millora la textura i la capacitat de retenció d’aigua dels gels a pH 5,5, especialment quan 

s’incuba amb 3 % de producte enzimàtic comercial o MTG (equivalent a 43 U·g-1 de proteïna) 

durant 3 h a 30 ºC i pH 7. Aquest tractament augmenta la duresa dels gels ∼0.4 N, ∼30 % superior 

a la duresa dels gels no tractats a pH 5,5, i redueix l’aigua alliberada després de la centrifugació ∼3 

% respecte a les mostres controls ajustades a pH 5,5. Aquestes millores es poden atribuir a la 

polimerització enzimàtica d’algunes proteïnes del plasma, especialment globulines i fibrinogen. Tot i 

que les millores obtingudes són importants, no són suficients per recuperar les pèrdues en les 
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propietats gelificants del plasma degut a la seva acidificació. L’estructura globular de les proteïnes 

majoritàries del plasma pot dificultar l’atac amb la MTGasa; així, les proteïnes poden esdevenir més 

reactives davant l’enzim després de ser parcialment desnaturalitzades.  

Degut a que les proteïnes del plasma presenten molts ponts disulfur, especialment l’albúmina 

sèrica, l’addició d’un agent reductor com la cisteïna durant el tractament enzimàtic pot resultar 

beneficiós. No obstant, la reactivitat de l’enzim no millora quan s’afegeix 0,25 % de cisteïna a 

plasma tractat amb MTGasa a les condicions descrites anteriorment, encara que s’obtenen millores 

importants en la duresa dels gels, amb augments ∼0,9 – 1 N respecte als gels obtinguts de plasma 

no tractat a pH 5,5. A més, la cisteïna no afecta negativament l’activitat enzimàtica, tot i la 

presència d’un grup –SH lliure en el centre actiu de l’enzim. L’efecte en la textura del gel quan es 

tracta conjuntament amb MTGasa i cisteïna és additiu més que sinèrgic, mentre que la presència de 

l’agent reductor anul·la la millora en la capacitat de retenció d’aigua aconseguida amb l’enzim. 

L’alta pressió es considera una alternativa per desnaturalitzar les proteïnes del plasma i així facilitar 

l’activitat de la MTGasa. El tractament del plasma amb MTGasa (3 % MTG) sota alta pressió (400 

MPa, 30 min, pH 7) comporta millores importants en la duresa dels gels, aconseguint així 

increments de ∼0,6 N en comparació als gels control a pH 5.5. No obstant, la capacitat de retenció 

d’aigua només s’aconsegueix millorar lleugerament. Sota aquestes condicions, s’incrementa 

l’activitat de la MTGasa, i no només les globulines i el fibrinogen sinó també l’albúmina es veuen 

involucrades en la reacció de polimerització enzimàtica. 

L’efecte de tractar el plasma amb MTGasa sota alta pressió es pot millorar mantenint les solucions 

de plasma pressuritzat en condicions de refrigeració almenys durant 2 h abans de la seva gelificació 

tèrmica a pH 5,5. Sota aquestes condicions, s’augmenta la duresa dels gels ∼0.9 N comparat als 

gels control a pH 5,5. No obstant, durant el període de refrigeració succeeixen mecanismes 

diferents a la polimerització de la MTGasa. D’altra banda, la refrigeració no millora la capacitat de 

retenció d’aigua dels gels de plasma induïts per calor a pH 5,5. 

En general es pot concloure que les pèrdues en la textura dels gels de plasma induïts per calor a pH 

àcid es poden recuperar parcialment tractant amb MTGasa, especialment afegint cisteïna o sota alta 

pressió. Encara que la seva capacitat de retenció d’aigua només es veu lleugerament millorada en el 

segon cas. 
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General Introduction 
 
 

1.1.  Food by-products: blood valorisation 

The rapid world population growth results in an increasing demand for food, which 

runs parallel to an interest in identifying cheap and readily accessible alternatives 

of protein sources to those being frequently added in food formulation. For a long 

time, the possibilities of using whey (a protein-rich by-product of the cheese-

making factories) as a food ingredient have been extensively studied because of 

both its nutritional and functional properties, including techno-functionality and 

bioactivity. Excellent reviews about it can be found in the literature (Foegeding et 

al., 2002; Yalçin, 2006; Smithers, 2008).  

 

However, there is a growing trend of searching new marketable protein by-

product sources. In fact, many studies can be found focusing on tests for the real 

possibilities of protein concentrates and/or isolates as well as other derivatives 

coming from different food by-products or surpluses (Hsu et al., 1982; Wang et 

al., 1999; Wu, 2001; Sogi et al., 2002; Rangel et al., 2003; Regenstein, 2004; 

Chandi & Sogi, 2007; Shand et al., 2007; Yu et al., 2007; Hoogenkamp, 2008; 

Roldan et al., 2008), which include blood from animal slaughtering, the main 

organic pollutant of abattoir effluents (Ockerman & Hansen, 1988; Pares et al., 

2000). Existing regulations restrict its direct dumping to wastewater treatment 

plants, the application of different elimination techniques like incineration being 

required to treat these effluents (Rendueles et al., 1996). However, the good 

nutritional and functional properties of blood proteins (Ockerman & Hansen, 1988; 

Raeker & Johnson, 1995) make their recovery a feasible alternative, especially 

due to their use not entailing any consumer health risk if correctly handled and, in 

this way, contributing to sustainable development and minimizing the 

environmental impact (Pares & Carretero, 1997). In spite of their poor consumer 

acceptability, animal blood proteins could be actually cost-competitive because of 

the high volume generated and the easy recovery process of blood and its 

fractions (Satterlee et al., 1973; Pearce & Kinsella, 1978; Caldironi & Ockerman, 
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1982; Autio & Mietsch, 1990; Ockerman & Hansen, 1994; Raeker & Johnson, 

1995; Lu & Chen, 1999; Torres et al., 2002; Veerman et al., 2003). Bovine blood 

from healthy animals and its fractions have long been studied and used as food 

ingredients. Nowadays, there is an interest in recovering blood from other 

animals, particularly pigs and chickens because of the amount of these animals 

being slaughtered annually. However, the first recorded case of bovine spongiform 

encephalopathy (BSE, a type of transmissible spongiform encephalopathy or TSE) 

in 1986 in United Kingdom (Wells et al., 1987) leds researchers to drastically 

diminish their interest for these topics, especially when the causal association 

between BSE and the new human variant of Creutzfeldt-Jakob disease was 

established in 1996 (Lasmezas et al., 1996; Collinge et al., 1996). BSE resulted 

from feeding cattle with scrapie-containing sheep meat and bone meal (MBM) 

(Wilesmith et al., 1991), with the inter-species transmission occurring after 

applying incomplete inactivation procedures to meat by-products, especially in 

ruminant animals. Regulation 999/2001 and subsequent revisions (Regulations 

1774/2002, 1923/2006, 828/2007 and 1069/2009) established the prohibitions 

concerning animal feeding and the classification of EU members and third 

countries into different categories depending on their TSE status to regulate the 

international trade.  

 

Non-ruminant animal 

pass fail 
Blood flour ante-mortem inspection Waste 

fail pass 
post-mortem inspection Technical uses

 
Figure 1. Possible uses of blood from non-ruminant animals in the EU 

 
 
Regulations cover all animal by-products not intended for human consumption, 

like those used in the petfood production, as well as those for technical uses that 
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include blood and blood products, both of which are not considered as SRMs 

(Specific Risk Materials). The regulation stipulates that only materials from non-

ruminant origin declared fit for human consumption following veterinary 

inspection and manipulated accordingly to hygienic-sanitary rules can be used for 

these purposes (Figure 1).  

 
 
 
1.2.  Animal blood in the food industry 

Whole blood and the red cell fraction have very limited applications in the food 

industry due to the hemoglobin in the red cells gives an undesirable dark red 

colour to products, thus being only used in black pudding and blood sausages. 

Their potential as food ingredients could be enhanced by eliminating the heme 

group from hemoglobin, which is the responsible for the characteristic blood 

colour (Aubes-Dufau et al., 1995; Yang & Lin, 1998) or, alternatively, by 

stabilizing the heme-iron in the reduced state to use hemoglobin as a natural red 

colorant (Saguer et al., 2003; Salvador et al., 2009). In contrast, plasma is 

actually used in the food industry to stabilize the water/protein/fat matrix in a 

large variety of comminuted meat products, such as frankfurters, bologna 

sausages, salami and mortadella (Sanina, 1971; Cironeanu et al., 1973; Savostin, 

1977; Breer, 1978; Rogov et al., 1981; Nakamura et al., 1983; Song et al., 1984; 

Dolatowski, 1985; Dolatowski, 1986; Georgakis et al., 1986). Moreover, many 

studies improving the already known plasma properties or searching for new 

possibilities –especially as fat or protein replacer– are being carried out for a long 

time (Satterlee et al., 1973; Sabljak-Uglesic & Prilika, 1979; Vuono et al., 1979; 

Torres et al., 2002). Unlike other proteins used as food ingredients, plasma 

proteins do not show allergenic problems and cannot be regarded as foreign 

ingredients in formulated meat products because of the residual blood always 

present in meat and the similarity in protein composition between meat and 

blood. 
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1.3.  Blood plasma: composition and functionality  

Mammalian plasma is a complex straw-coloured fluid consisting mainly of water 

(92 % w/v) and high biological value-proteins (6 – 7 % w/v), with serum albumin 

(60 %), globulins (36 %, basically immunoglobulins) and fibrinogen (4 % w/v) 

being the most abundant ones. Plasma functionality is related to the intrinsic 

molecular properties of its main proteins, such as amino acid composition, 

primary sequence, structural arrangements, molecular size and shape, surface 

charge and hydrophobicity distribution patterns, and nature and extent of intra- 

and inter-molecular bonds (Kinsella, 1976; Kilara, 1984; Damodaran, 1996), with 

some of them being strongly affected by environmental conditions like pH, 

temperature and ionic strength. 

 

For the main plasma proteins, their specific molecular characteristics are 

described below: 

 

a)  Serum albumin is a globular protein with a heart-shaped structure constituted 

by a polypeptide chain of 582 amino acids that has one highly flexible free 

sulfhydryl group in cysteine 34 (Cys34), which has a relatively low pKa value 

compared to cysteines found in other molecules, and resulting in a high 

reactivity (Pedersen & Jacobsen, 1980; Clark et al., 1981; Hermansson, 1982; 

Hermansson & Lucisano, 1982; Howell & Lawrie, 1984; Carter & Ho, 1994; 

Owusu-Apenten et al., 2003). Moreover, the molecule is made up of three 

homologous domains (I, II, III), with nine loops (L1-L9) held by 17 disulphide 

bonds. Its secondary structure is predominantly helical (α-helix represents 55 

– 68 % of its composition) with the remaining polypeptide occurring in turns 

and extended or flexible regions between subdomains with no or a very low 

amount of β-sheets (depending on the technique used or the physical state) 

(Carter & Ho, 1994). Its molecular weight is around 66 – 69 kDa and the 

isoelectric point (pI) is 4.8, although it is shifted to ~5.7 when fatty acids (FA) 
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are not bonded to the molecule (Carter & Ho, 1994). From DSC thermograms, 

it has been established that porcine FA-serum albumin shows a broad 

endothermic transition peak, with a minimum near 65 - 67 ºC and a broad 

shoulder between 82 - 85 ºC (Bleustein et al., 2000; Davila et al., 2007c). 

 
b) Globulins are a vast group of proteins sub-classified into α, β and γ-globulins, 

which present different molecular weights (from ∼40 to ∼950 kDa) and pIs 

(from 2.7 to 7.6). γ-Globulins or immunoglobulins represent the most 

abundant ones and, although can differ structurally, they all display a Y-

shaped structure composed of two light chains and two heavy chains, all 

basically constituted by β-sheet structure (Murray et al., 2005), held together 

by both non-covalent interactions and disulfide bonds, but showing differences 

in types and/or number of interactions between molecules. They show a 

higher thermo-stability than serum albumin, exhibiting an endothermic 

transition around 75 ºC (Davila et al., 2007c). 

 
c) Fibrinogen, the fibrin precursor – the protein responsible for coagulation of 

blood –, is a hexamer containing two sets of three different chains (α, β and 

γ), linked to each other by disulfide bonds. In total, fibrinogen contains 29 

disulfide bonds, but no free –SH groups are present (Henschen, 1964). Its 

molecular weight is ∼340 kDa and its pI is ∼5.5 (Putnam, 1975; Privalov & 

Medved, 1982; Weisel et al., 1985). It melts in three different ranges of 

temperatures, i.e., near 59 ºC, 78 ºC and 96 ºC, with a particular thermal 

profile showing two sharp peaks separated by a broad transition (Davila et al., 

2007c). Thus, fibrinogen appears to be the most heat-sensitive of the main 

plasma proteins. 

 

The ability to form heat-induced gels with good textural properties and high 

water-holding capacity has been established as the most important functional 

property of plasma. Heat-induced gelation is a complex physicochemical process 
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involving successive events. Nowadays, it is accepted that proteins are only 

partially unfolded during heating, with the molecular size of denatured proteins 

being just mildly modified and with both hydrophobic and sulphydryl groups 

initially masked in the inner core of protein flipping to the molecule surface 

(Catsimpoolas & Meyer, 1970a). Under appropriate conditions, these exposed 

functional groups promote protein-protein aggregation through both covalent and 

non-covalent bonds and the formation of a three-dimensional network 

(Damodaran, 1996), characteristics of which are strongly dependent on the 

involved protein-protein interactions. The gel structure is then stabilized through 

hydrogen bonds during the subsequent cooling step (Xiong & Kinsella, 1990). At 

physiological conditions (pH 7.4), the relative abundance of serum albumin in 

plasma, together with the reactivity of its free –SH group (Cys34), seem to be very 

important in enhancing the formation of a well-structured network by promoting 

intermolecular –SH/SS interchange reactions during thermal gelation 

(Catsimpoolas & Meyer, 1970a; Opstvedt et al., 1984; Yasuda et al., 1986; 

Shimada & Cheftel, 1988; Lee & Hirose, 1989; Legowo et al., 1996). Moreover, 

not only serum albumin but also immunoglobulins and fibrinogen might participate 

in these intermolecular cross-linking reactions. In this sense, although in the past 

serum albumin was considered the main protein implicated in plasma gelation 

(Harper et al., 1978), it is actually known that individually it is not able to develop 

strong gels; instead, the synergistic effect with globulins is responsible for 

achieving the desired gelation. Also, the presence or absence of fibrinogen leads 

to significant changes in the heat-induced plasma gel characteristics (Davila et al., 

2007a). Thus, under physiological conditions, the intermolecular covalent cross-

linking through disulfide bonds can be considered the essential factor in defining 

the three-dimensional network characteristics, although other molecular binding 

mechanisms like hydrophobic interactions, H-bonding, and/or electrostatic 

interactions forces also participate in the gel structure formation (Hermansson, 
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1982; Hermansson & Lucisano, 1982; Howell & Lawrie, 1984; Pares et al., 

1998a). 

 

The importance of the type of protein-protein interactions participating in the gel 

formation has been established for a long time. However, they are strongly 

affected by environmental conditions like pH, protein concentration, temperature, 

ionic strength, type of salt and/or pressure (Totosaus et al., 2002). It is known 

that plasma gels become softer and more exudative as pH reduces from 

physiological conditions to values near the pI of the serum albumin (∼4.8) 

(O'Riordan et al., 1989; Pares et al., 1998a; Davila et al., 2007a). A similar 

behaviour has been observed for other proteins (Matsudomi et al., 1991; Doi et 

al., 1994; Ju & Kilara, 1998), which has to a great extent been attributed to the 

decrease in the electrostatic repulsion and the increase in the exposition of the 

hydrophobic groups that lead to a high unspecific aggregation through non-

covalent interactions, in this way forming random aggregates which typically 

result in a decrease in gelling ability (Matsudomi et al., 1991; Doi et al., 1994; Ju 

& Kilara, 1998). In contrast, at pH values far from the protein pI, the electrostatic 

repulsions allow a more ordered protein network with better gel properties to be 

obtained (Egelandsdal, 1980; Dalgleish & Hunt, 1995). However, pH also affects 

the thiol group reactivity, with a positive correlation being observed between both 

parameters (Kella & Kinsella, 1988; Xiong & Kinsella, 1990). Thus, the serum 

albumin-Cys34 reactivity significantly decreases at low pH (∼4 – 6), limiting the 

intermolecular –SH/SS interchange reactions (Svenson & Carlsson, 1975; 

Pedersen & Jacobsen, 1980; Stewart et al., 2005). 

 

Also, these losses in gel properties as pH reduces from physiological conditions 

are strongly related to changes in gel microstructure, which becomes more 

heterogeneous and with higher porous (Figure 2). A close relationship between gel 

microstructure and its properties has long been established (Hermansson & 
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Lucisano, 1982; Verheul & Roefs, 1998). Gel microstructure depends on degree of 

unfolding, kinetics of the aggregation step and the type of involved interactions, 

all of which are strongly affected by environmental conditions (Mulvihill et al., 

1990; Renard & Lefebvre, 1992). In general, gels with fine-stranded 

microstructure are obtained from globular proteins under strong electrostatic 

conditions; in contrast, their microstructure becomes coarser and particulate in 

conditions of weak electrostatic repulsion (Clark et al., 1981; Doi & Kitabatake, 

1989). 

 

 

 a) pH 7.4 b) pH 6.0 c) pH 4.5 
 
 

1 μm 1 μm 1 μm1 μm1 μm 1 μm1 μm 1 μm1 μm1 μm

 
 
 
 
 
 
 
 
 

Figure 2. Scanning Electronic Microscopy (SEM) images of heat-induced plasma 

gel microstructure as a pH function. Source: Adapted from Pares et al. (1998a) 

 

 

1.4.  Improving of heat-induced gelation of plasma 

In terms of uses of plasma in the food industries, the loss of its heat-induced 

gelation properties as pH is reduced from physiological conditions is particularly 

relevant. There is actually an interest in enhancing these properties under more 

realistic conditions, i.e., closer to those in the food products (Torres et al., 1997; 

Makala, 1998; Klettner & Stiebing, 2002). Thus, different strategies have been 

used to improve the heat-induced gelling properties of different protein sources, 

which include chemical, physical and enzymatic treatments.  
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Chemical reactions 

Several chemical reactions can be applied to modify plasma protein functionality, 

which are mostly based on the reactivity of the individual amino acid side chains 

(Table 1), as well as on the hydrolysis of the peptide bonds. However, their 

applications are very limited due to concerns about: cultural, legal and economic 

aspects; possible reversibility of the achieved modification; and consumer 

acceptance and safety, including toxicity, loss of nutritional value, deterioration of 

sensorial or functional properties, and interactions with other consumed foods 

(Richardson, 1985; Howell, 1996; Means & Feeney, 1998). 

 

Table 1. Commonly modified amino acid side chains in proteins 
 

Side Chain Amino acid Commonly used modifications 

Amino Lysine Alkylation, acylation 

Carboxyl Glutamate, Aspartate Esterification, amide formation 

Disulfide Cystine Reduction, oxidation 

Imidazole Histidine Oxidation, alkylation 

Indole Tryptophan Oxidation, alkylation 

Phenolic Tyrosine Acylation, electrophilic substitution 

Sulfhydryl Cysteine Alkylation, oxidation 

Thioether Methionine Alkylation, oxidation 

Guanidino Arginine Condensation with dicarbonyls 

Source: Feeney (1977) 

 

Physical treatments 

In terms of physical treatments for proteins, high pressure (HP) processing is 

notable, especially for these products which easily undergo thermal coagulation, 

like blood and its fractions. Protein molecular changes caused by the application of 

elevated pressure (typically in the range from 100 to 600 MPa for foods and food 

ingredients) are governed by the principle of Le Châtelier, which says that 

pressure favours reactions resulting in a volume decrease and inhibits those 

provoking the opposite effect (Silva et al., 2001; Meersman & Heremans, 2008). 

Specifically, it has been shown that electrostatic and hydrophobic interactions are 

more pressure sensitive than hydrogen and disulfide bonds (Heremans, 1992; 
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Balny & Masson, 1993; Galazka & Ledward, 1998). The pressure-induced 

conformational changes under appropriate conditions of HP, temperature and time 

can allow the functionality of protein to improve or to open new possibilities of 

application (Totosaus et al., 2002). However, changes are also dependant on 

protein structure, as well as other environmental factors like pH, ionic strength 

and protein concentration (Pares & Ledward, 2001; Boonyaratanakornkit et al., 

2002; Lullien-Pellerin & Balny, 2002). 

 

Enzymatic treatments 

The application of enzymatic technologies has several advantages over the use of 

chemicals in protein modification, especially regarding the high reaction specificity 

and, in many cases, the mild conditions required for the enzyme activity 

(Hamada, 1992). Enzymes with different mechanisms have been largely used for 

the modification of food proteins. Protein cross-linking enzymes are one of the 

most promising tools to modify protein functionality (Nio et al., 1986; Nonaka et 

al., 1989; Kuraishi et al., 2001). Oxidative enzymes like lipoxygenases, protein 

disulfide isomerases, sulfhydryl oxidases, protein disulfide reductases, 

peroxidases, laccases, lysyl oxidases and tyrosinases (Table 2) from different 

sources can be used for such purposes. However, transglutaminases (TGases) are 

the most intensively studied and applied cross-linking enzymes in the field of food 

processing because of their broad application range relative to potential 

substrates. For a long time, the TGase commercialized by the Japanese company 

Ajinomoto Food Ingredients LLC has been the only one actually available for 

industrial applications in the European market. However, currently Ajinomoto’s 

TGase patent has expired all over the world, and other companies are producing 

TGase for food applications, including the Yiming Biological Products Co., Ltd 

(previously Yiming Fine Chemicals Co., Ltd), Chemaster International Inc., 

Zhengzhou Longxiangtianhua Biotechnology Co., Ltd, and Shanghai Kinry Food 

Ingredients Co., Ltd, all from China. 
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Table 2. Protein cross-linking oxidative enzymes applicable in food technology 

 

Enzyme 
Catalyzed 
reaction 

Cross-linkage 
type 

Partici-
pation 

Uses  Literature 

Lipoxy-
genase 

Lipid oxidation: 
peroxy free 
radical formation 

Disulfide bond Indirect Improver in bread making 
(better mixing tolerance 
and loaf volume) 

Frazier et al., 
1973; Hoseney et 
al., 1980 

Disulfide 
isomerase 

-SH/SS 
interchange 

Disulfide bond Direct Improver in baking 
industry 

Watanabe et al., 
1998; van Oort, 
2000 

Sulfhydryl 
oxidase 

-SH group 
oxidation 

Disulfide bond Direct Improve dough’s rheologi-
cal properties 

Haarasilta & 
Vaeisaenen, 1989; 
Vignaud et al., 
2002 

Protein 
disulfide 
reductase 

-SH/SS 
interchange 

Disulfide bond Direct   

Peroxi-
dase 

Tyrosine 
oxidation 

Dityrosine 
bond 

Direct/ 
Indirect 

 

Improve foaming proper-
ties of ovalbumin 

Improver in baking 
industry 

Increase film tensile 
strength 

Singh, 1991; 
Faergemand et al., 
1998; Michon et 
al., 1999 

Tyrosine 
oxidation 

Dityrosine-
bond 
Tyr-Cys bond 
Tyr-Lys bond 

Direct Tyrosinase 

Low Mw phenolic 
compound (PC) 
oxidation 

Protein1-PC-
Protein2 

Indirect 

Increase gel firmness in 
meat products 

Improve emulsifying pro-
perties 

Cross-linking gluten 
proteins 

Cross-linking dairy 
proteins 

Ito et al., 1984; 
Matheis & 
Whitaker, 1987; 
Takasaki et al., 
2001; Thalmann & 
Loetzbeyer, 2002; 
Lantto et al., 
2007b; Selinheimo, 
2008; Mattinen et 
al., 2008 

Tyrosine 
oxidation 

Dytirosine 
bond 

Direct Laccase 

Aromatic 
compound (AC) 
oxidation, 
including mono- 
and polyphenols 

Protein1-AC-
Protein2 

Disulfide bond 

Indirect 

Improve dough handling, 
loaf volume and crumb 
structure of bread 

Improve gel formation of 
meat products at high salt 
concentration, but decre-
ased with high dosages 

Cross-linking dairy 
proteins 

Kamaboko 
manufacturation 

Faergemand et al., 
1998; Figueroa-
Espinoza & Rouau, 
1998; Mattinen et 
al., 2005; Mattinen 
et al., 2006; 
Selinheimo, 2008 

Lysyl 
oxidase 

Aldehyde forma-
tion from Lys 

Aldehyde 
cross-linking  

Indirect Not yet been applied Matheis & 
Whitaker, 1987 

 

 

In spite of the low number of TGase manufacture companies, their potential 

applications in different areas may result in an important industrial expansion. 

Studies searching for new sources and for the optimization of the process, 

including both enzyme production and recovery (Zhu & Tramper, 2008), are being 
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carried out. In this regard, the relatively recent interest in solid-state fermentation 

assays should be particularly mentioned (Barros Soares et al., 2003; Souza et al., 

2008; Nagy & Szakacs, 2008). 

 

Enzymatic reactions can be favoured under pressure. In this sense, the application 

of TGase under HP has been used to enhance the enzyme-catalyzed modifications, 

especially in the case of globular proteins which are poor substrates for enzyme 

activity in their native state (Nonaka et al., 1997; Gilleland et al., 1997; Ashie & 

Lanier, 1999; Lauber et al., 2001a; Lauber et al., 2001b; Lauber et al., 2003; 

Partschefeld et al., 2007). 

 

 

1.5.  Transglutaminases (TGases) 

Transglutaminases or TGases have been defined as protein-glutamine-γ-glutamyl-

transferases (E.C. 2.3.2.13) that catalyse the acyl-transfer reaction between the 

γ-carboxylamide group of a glutamine residue and a primary amine, frequently the 

ε-amino group of a lysine residue, although water can also act as acyl acceptor in 

the absence of primary amines, resulting in the glutamine residue deamidation 

(Figure 3) (Ikura et al., 1980a; Ikura et al., 1980b; Ikura et al., 1981).  

 

However, more recently it was shown that these reactions are not the only ones 

carried out by TGases; some of them could also be able to carry out lipid 

esterification reactions with the formation of ester bonds between hydroxyl groups 

of polar lipids and glutamine side chains (Nemes et al., 1999), or acting as protein 

disulfide isomerases (Hasegawa et al., 2003). 

 

Reactions involving protein-bound lysine residues as acyl acceptors (Figura 3A), 

which result in the formation of high molecular weight polymers because of the ε-

(γ-glutamyl)-lysine intermolecular cross-linking (Folk & Finlayson, 1977), are 
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particularly interesting from the viewpoint of changes in the nutritional and 

techno-functional properties of food proteins.  

 

 

O

– (CH2)2 – C – NH2

Glutamine

Protein

+

NH2 – (CH2)4 –

Lysine

Protein

+  NH3

Primary amine

NH2 –

 

Figure 3. Reactions catalyzed by TGases: A) acyl-transfer reaction to a protein-

bound lysine residue or cross-linking reaction; B) acyl-transfer reaction to primary 

amine; and C) acyl-transfer reaction to water or deamidation reaction. Source: 

Adapted from Folk (1980) 

 

 

In fact, in the 1980s it was observed that milk caseins and soybean globulins are 

good substrates for TGase (Ikura et al., 1980a; Ikura et al., 1980b). 

 
 
From then, many industrial applications using this enzyme have been described: 

- increasing the nutritive value of foods by introducing limiting essential amino 

acids like lysine and methionine into proteins (Ikura et al., 1981; Iwami & 

Yasumoto, 1986; Nonaka et al., 1996), which could be cleaved by a γ-

glutamylamine cyclotransferase (Fink et al., 1980) and a γ-

glutamyltransferase (Meister et al., 2004), in spite of the resistance of 

glutamine-lysine bonds to gastrointestinal enzymes; 
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- improving the functional properties of proteins like solubility, thermal stability, 

emulsifying properties, water binding or gel texture (Nio et al., 1986; Zhu et 

al., 1995; Nielsen, 1995; Motoki & Seguro, 1998; Kuraishi et al., 2001; de 

Jong & Koppelman, 2002; Yokoyama et al., 2004; Jaros et al., 2006b; Dube et 

al., 2007);  

- decreasing the protein allergenicity (Watanabe et al., 1994); 

- forming edible films (Motoki & Seguro, 1998); 

- protecting lysine from Mallaird reactions (Aalami & Leelavathi, 2008; Gan et 

al., 2009a). 

 

Moreover, the cross-linking reaction with TGase is, apparently, free of undesirable 

side reactions producing off-flavours, bitter peptides or toxic products (Dickinson, 

1997). However, the ammonia released during the TGase activity could participate 

in Maillard reactions and contribute to changes in sensorial properties (Wu & 

Corke, 2005). 

 

 

1.5.1. TGases: sources and biological functions 

First studies on applications of TGase in food industry came after the isolation of 

enzymes from mammalian tissues and body fluids. However, TGases are widely 

distributed among animals (including mammals, fish, birds, amphibians and some 

invertebrate), plants and microorganisms, fulfilling a great variety of biologic 

functions. 

 

Animal transglutaminases 

To date, eight different mammalian TGases (Factor XIII and TG1-TG7) have been 

characterised at genomic level, forming a group of structurally and 

phylogenetically related multidomain enzymes for which protein post-translational 
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modification activity is strictly dependent on Ca2+ (Beninati & Piacentini, 2004; 

Stenberg et al., 2008). They are involved in several biological processes, including 

blood-clotting and wound-healing (Factor XIII); skin differentiation and epidermal 

keratinisation (TG1, TG3 and TG5); apoptosis, cell differentiation, intracellular 

signalling, cell-matrix interactions and cell migration (TG2); and semen 

coagulation (TG4) (Pisano et al., 1968; Ichinose et al., 1990; Aeschlimann & 

Paulsson, 1994; Nemes & Steinert, 1999; Akimov et al., 2000; Piacentini et al., 

2000; Candi et al., 2005; Mangala et al., 2005; Sarang et al., 2005; Arrizubieta, 

2007). The physiological functions for TG6 and TG7 remain unclear. Also, they are 

related to several diseases like coeliac disease, thus increasing their potential as 

therapeutic targets or diagnostic aids (Griffin et al., 2002; Gerrard & Sutton, 

2005). In addition, a TGase-like protein with no enzymatic activity located at the 

red blood cell membrane and called erythrocyte band 4.2 has been also described 

(Korsgren et al., 1990). 

 

The guinea pig liver TGase –a cytoplasmatic TG2– was the first identified and 

purified (Clarke et al., 1957; Sarkar et al., 1957) and the only commercially 

available enzyme until the late 1980s (Folk & Cole, 1965; Folk & Cole, 1966). 

Although its potential use as texture-enhancer in foods was established, its scarce 

availability, as well as the extensive purification procedure, entailed extremely 

high prices on the market, resulting in a low attractiveness for potential industrial 

applications (Zhu et al., 1995). In addition, the requirement of Ca2+ for its 

activation could entail protein precipitation in some food systems containing 

casein, soybean globulin or myosin (Seguro et al., 1996). In the early 1970s, the 

research was focused on blood coagulation factors, specifically on the human 

Factor XIII (Chen & Doolittle, 1971). Some years later, TGases from pork and 

cattle blood were also obtained (Wilson, 1992). However, although commercially 

available, they have not been practically used in food industry because of the 
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complexity of requirements for their activation, which include thrombin 

(Yokoyama et al., 2004). 

 

The effects of TGase found in fish muscle (endogenous TGase) on surimi quality 

have been intensively studied due to its direct relationship with the setting 

phenomenon of salted and ground fish flesh taking place during its production 

(Yasueda et al., 1994). Industrialized surimi-making process was developed in 

1960s by Nishitani Yosuke of Japan's Hokkaido Fisheries Experiment Institute to 

process the increased catch of fish and to revitalize Japan's fish industry. From 

then, a large amount of papers have been published concerning to it as well as on 

the effects of adding other TGases. However, until now, fish TGases have not 

been used as food additives. Recently, TGases from different fish species have 

been purified and characterized (Yasueda et al., 1994; Noguchi et al., 2001; 

Hemung & Yongsawatdigul, 2008). The potential uses in food industry can be 

related to their ability to act at relatively low temperatures. 

 

Other described animal TGases include that from chicken erythrocyte 

(Weraarchakul-Boonmark et al., 1992) or those from several invertebrates 

(Myhman & Bruner-Lorand, 1970; Brozen et al., 1987), although neither of them 

have been used in industry. 

 

Plant transglutaminases 

In plants, TGases have been located in different compartments such as 

chloroplasts, mitochondria, cell wall and cytoplasm (del Duca & Serafini-

Fracassini, 2005). Their functions are related to plant growth, cell division, 

differentiation, programmed cell death, fertilization and stress. The first identified 

plant-TGase was this one from pea seed (Icekson & Apelbaum, 1987), but up to 

now TGase-activity has been reported at different rates in higher plants and algae 

(Signorioni et al., 1991; Kuehn et al., 1991; Kang & Cho, 1996; Serafini-
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Fracassini et al., 2002; Villalobos et al., 2004; Della Mea et al., 2004a; Della Mea 

et al., 2004b; Carvajal-Vallejos et al., 2007; Serafini-Fracassini et al., 2009). The 

available data indicate that plant TGases are similar in overall structure and 

catalytic mechanism to those of mammals (Villalobos et al., 2004), also being 

Ca2+-dependent (Lilley et al., 1998), despite the fact that it was at first proposed 

that their activity did not require exogenous Ca2+. At present, no plant TGases are 

commercially available for industrial applications. 

 

Microbial transglutaminases 

Microbial TGase from Streptoverticillium mobaraensis, which was later classified 

as Streptomyces mobaraensis (Date et al., 2004), was firstly reported by Ando et 

al (1989). Several TGases from strains of the genus Streptoverticillium have been 

described, all showing a high activity and obtained from bacterial fermentation. 

Since then, other TGases have been isolated from different microorganisms, 

including moulds like Physarum polycephalum (Klein et al., 1992), in this case a 

mammalian-type TGase (Wada et al., 2002); yeasts like Candida albicans (Ruiz-

Herrera et al., 1995); and bacteria like Bacillus subtilis (Kobayashi et al., 1998; 

Suzuki et al., 2000) and Bacillus circulans (Barros Soares et al., 2003), as well as 

other Streptomyces isolates (Zhu et al., 1995). As above-mentioned, the most 

commonly used at an industrial level is that from Streptomyces mobaraensis, 

commercialized by Ajinomoto Food Ingredients LLC (Japan) as ACTIVATM TG 

through different powder formulations depending on specific applications 

(Ajinomoto Food Ingredients LLC, 2009). 

 

Recombinant transglutaminases 

It should be also mentioned that efforts have been made to obtain different 

TGases by genetic manipulation. Some examples include: human Factor XIIIa 

expressed in Saccharomyces cerevisiae (Bishop et al., 1990); Streptoverticillium 

TGase expressed in Escherichia coli (Takehana et al., 1994), Streptomyces 
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lividans (Washizu et al., 1994) and Corynebacterium glutamicum (Date et al., 

2003); fish TGase expressed in Escherichia coli (Yasueda et al., 1995); guinea pig 

TGase expressed in Escherichia coli (Ikura et al., 1998); TGase from 

Streptoverticillium ladakanum expressed in Streptomyces lividans (Lin et al., 

2004); TGase gene from Streptomyces platensis cloned and expressed in 

Streptomyces lividans (Lin et al., 2006b); or maize chloroplast TGase 

overexpressed in Escherichia coli (Carvajal-Vallejos et al., 2007). However, none 

of these enzymes have been commercialized because of the lack of food 

regulations and consumer acceptability (Motoki & Seguro, 1998).  

 

An interest has emerged in expressing animal TGases in plants due to the benefits 

in terms of cost, safety, productivity and convenience (del Duca & Serafini-

Fracassini, 2005). For example, Claparols et al. (2004) used rice to express 

mammalian TGase. 

 

 

1.5.2. Microbial transglutaminase from Streptomyces mobaraensis or 

MTGase 

TGase from Streptomyces mobaraensis (formerly classified as Streptoverticillium 

mobaraense) and referred to as microbial transglutaminase or MTGase, is a 

monomeric protein with 331 amino acids in a simple polymeric chain (Ando et al., 

1989; Kanaji et al., 1993), with the secondary structure consisting in eight β-

strands surrounded by eleven α-helices. The enzyme adopts a disk-like shape with 

a deep cleft at the edge of the disk, with a cysteine residue (position 64) located 

in the active site, the thiol group of which is involved in the enzymatic reaction 

(Kashiwagi et al., 2002). The molecular weight of MTGase has been reported to be 

about 40 kDa, as judged from SDS-PAGE and gel chromatography (Ando et al., 

1989). Mass spectrometry revealed a molar mass of 37869.2 ± 8.8 Da, which is in 

good agreement with the value of 37 863 Da estimated from amino acid sequence 
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(Kanaji et al., 1993). MTGase shows a pI around 8.9, and an optimum pH range 

from 6.0 to 7.0, but with some residual activity at pH 4.0 and 9.0, pointing 

towards stability over a wide pH range (Ando et al., 1989; Seguro et al., 1996; 

Motoki & Seguro, 1998; Yokoyama et al., 2004). Ando et al. (1989) determined 

an optimum temperature of 50 ºC at pH 6.0, although the enzyme retained some 

residual activity near freezing point. However, at 70 ºC it loses its activity within a 

few minutes (Seguro et al., 1996; Yokoyama et al., 2004). It is obtained by 

aerobic fermentation at 25 – 35 ºC and, because the bacteria excrete the enzyme 

into the cultural broth, cell disruption is not necessary, this way making the 

purification really easy.  

 

According to Kashiwagi et al. (2002), MTGase is not phylogenetically related to 

mammalian TGase; the similarities between the active site structures and the 

differences in the overall structure between MTGase and the FXIII and other 

similar TGases suggest that the relationship between these enzymes is a special 

case of convergent molecular evolution (Arrizubieta, 2007). MTGase shows a 

novel catalytic mechanism, which confers some advantages for its industrial 

applications, in comparison to other TGases such as: Ca2+ independent activity 

(Ando et al., 1989), lower molecular weight (Ohtsuka et al., 2001), lower 

substrate specificity (De Jong et al., 2001), lower deamidation activity (Ohtsuka 

et al., 2001; Kashiwagi et al., 2002), higher reaction rate (Shimba et al., 2002), 

and catalytic cysteine residue being sufficiently exposed (Kashiwagi et al., 2002). 

Also, no allergenic concerns of MTGase commercialized by Ajinomoto Food 

Ingredients LLC itself have been identified after applying the 2001 FAO/WHO 

Decision Tree (Pedersen et al., 2004). To date, the FDA does not disagree with its 

consideration as GRAS established for an expert scientific panel (Ajinomoto Food 

Ingredients LLC, 2009). However, it has recently been shown that TGase can 

enhance the gluten immunogenicity through the deamidation of glutamine to 
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glutamic acid; for this reason, its use is not recommended in food products 

intended for coeliac disease patients consumption (Dekking et al., 2008). 

 

All these advantages and the potential of cross-linked proteins for developing 

novel foodstuffs of products with high convenience, improved sensory and 

nutritional-physiological properties are reflected in the apparition of many patent 

applications and research papers in recent years. Specific applications have been 

reported for dairy, seafood and fish, meat, tofu, noodles and pasta and baked 

goods (Table 3). Dube et al. (2007) reported that from 1990 to 2007 highlighted 

165 relevant patent applications covering general applications of MTGase (34), 

processing of dairy (24), fish (18), meat (15), bread and bakery (17), noodles 

and pasta (17), soybean (24), and other vegetables or animal foods (14). Also, in 

2008 and 2009, 17 new patents concerning TGase applications in food industry 

have appeared: dairy: 8; fish: 2; meat: 2; vegetables proteins: 5 

(Freepatentsonline, 2009). 

 

However, it must be considered that MTGase cross-linking activity depends not 

only on the presence of the amino acids implicated in the reaction but also on the 

protein structure (Dickinson & Yamamoto, 1996; Ohtsuka et al., 2001). Usually, 

the reactive glutamine residues are in the loops and high flexible zones of the 

polypeptide chain, making MTGase react weakly with globular proteins in their 

native state. This poor reactivity of MTGase on globular proteins has been 

demonstrated for bovine and human serum albumin (Nonaka et al., 1989); 

globular whey proteins (Ikura et al., 1984; Nonaka et al., 1989; Aboumahmoud & 

Savello, 1990; Traore & Meunier, 1992); and 11S pea seed globulin (Larre et al., 

1992). A relatively low reactivity of plasma proteins with MTGase could be 

expected because of the globular structure of its main protein (Crumpton & 

Wilkinson, 1963; Triantaphyllopoulos & Triantaphyllopoulos, 1967; Denko et al., 

1970). 
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Table 3. MTGase applications in food industry 

 

 Product Effect Reference 

Yogurt Increases strength, 
viscosity, firmness and 
water binding; dry, 
smooth and whiter 
shining surface; reduces 
syneresis; middle taste 
and more palatable by 
the consumer 

Jaros et al., 2007; Ozer et al., 
2007; Boenisch et al., 2007; 
Oner et al., 2008; Gauche et al., 
2009 

Milk 

Fresh cheese 

 

Reduces syneresis and 
improves consistency 
and general appearance 

Grindstaff & Chappell, 2006; 
Radosevic et al., 2007; Gustaw 
et al., 2008 

Surimi gels and 
restructured fish 
products 

Improves texture and 
water-binding  

Jirawat & Penprapha, 2005; 
Moreno et al., 2008; 
Karayannakidis et al., 2008b 

Low-salt restructures 
fish products (surimi, 
patties…) 

Improves texture and 
water binding  

Ramirez et al., 2006; Min & 
Green, 2008 

Pieces of fish 
 

Binding together to 
produce restructures 
fish 

Huemer, 2005 

Seafood/Fish: 

carp 
flounder 
hairtail 
kamaboko 
lizard 
mackerel 
pollack 
sardine 
shrimp 
snapper 
etc. Packaging Increases bloom 

strength of gelatine 
used as biomaterial-
based packaging 
product 

Jongjareonrak et al., 2006; Yi et 
al., 2006; Piotrowska et al., 
2008 

Sausages/Comminuted 
meat 
 

Improves texture and 
water-binding  
 

Katayama et al., 2005; Lin et al., 
2006a; Ahhmed et al., 2007; 
Kawahara et al., 2007; Nefedova 
et al., 2007; Wu & Wang, 2007 

Low-salt products Produces meat products 
with similar 
physicochemical 
properties to salt-
containing products 

Jimenez-Colmenero et al., 2005 

Pieces of meat 
 

Binding together to 
produce restructured 
meat 

Huemer, 2005; Dimitrakopoulou 
et al., 2005 

Meat: 

beef 
pork 
chicken 
 

Frozen diced broiler 
breast 

Prevention of freeze 
cracking 

Sungtong et al., 2006 

Flour Improves functional and 
thermal properties 

Ahn et al., 2005; Hyun-Joo et 
al., 2008 

Tofu Improves texture, 
sensory properties and 
shelf life 

Chuan-He, 2007; Chuan-He et 
al., 2007; Yasir et al., 2007 

Soybean 

Films Improves mechanical 
and surface hydrophobic 
properties of cast films, 
used as wrapping of 
food products requiring 
a packaging allowing 
low gas exchange with 
the environment 

Chuan-He et al., 2005; di Pierro 
et al., 2005; Guocheng et al., 
2007 
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 Product Effect Reference 

Flour Improves functional and 
thermal properties 

Restore the functionality 
from insect-damaged 
wheat 

Reduction of its 
immunoreactivity 

Ahn et al., 2005; Bonet et al., 
2005; Leszczynska et al., 2006; 
Hyun-Joo et al., 2008 

Bread/Bakery Gives texturised 
products with improved 
elasticity, water binding, 
crumb strength, 
firmness and heat 
stability 

Increases 
characteristics of deep-
frozen products 

Young-Hyun et al., 2005; Collar 
et al., 2005; Collar & Bollain, 
2005; Dube et al., 2007; 
Yamazaki et al., 2007; Huang et 
al., 2008; Bong-Kyung & Ng, 
2008; Steffolani et al., 2008 

Wheat 

Noodles/Pasta 

 

 

 

Changes in properties, 
dry quality, cooking 
quality characteristics, 
and microstructure of 
cooked pasta 

Basman et al., 2006; Aalami & 
Leelavathi, 2008; Takacs et al., 
2008; Gan et al., 2009b 

Flour Improves functional and 
thermal properties 

Ahn et al., 2005; Gharst et al., 
2007; Takacs et al., 2007; 
Marcoa & Rosell, 2008 

Bread/Bakery Improves 
microstructure of 
gluten-free bread 

Moore et al., 2006; Dube et al., 
2007; Renzetti et al., 2008 

Other 
vegetables1: 

barley 
buckwheat 
corn  
oat 
pea  
peanut 
rice 
sorghum 
teff 
etc. 

Noodles/Pasta 

 

Improves mechanical 
and sensory properties 
of gluten-free pasta 

Takacs et al., 2007 

1  With the increasing demand for vegetarian foods, the application of MTGase for the production 
of plant protein-based foodstuffs as functional ingredients utilising novel proteins, e.g. from 
peas, lupins, sesame, and sunflower, seems promising (Dube et al., 2007). Also, the production 
of alternative dietary source for individuals suffering from coeliac disease or wheat allergy is 
another promising field (Takacs et al., 2007). 

 

 

 

However, globular proteins may become more susceptible to polymerization by 

MTGase following partial unfolding, due to an increase in the accessibility of 

glutamine and lysine residues (Nonaka et al., 1997; Gilleland et al., 1997; Ashie & 

Lanier, 1999; Lauber et al., 2001a; Lauber et al., 2001b; Lee & Park, 2002; 

Lauber et al., 2003; Menendez et al., 2006). Serum albumin cross-linking by 

MTGase after partial unfolding has been observed by several authors 

(Chanyongvorakul et al., 1997; Kang et al., 2003). Protein unfolding can be 

achieved by modifying some extrinsic factors like temperature, pH or Ca2+ 
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content, or by disrupting S-S bonds through enzymatic treatment (adding a 

disulfide isomerase) or adding a reducing agent. Dithiothreitol (DTT) has shown to 

be very efficient in the breaking down S-S bonds (Motoki & Nio, 1983; Jocelyn, 

1987; Tanimoto & Kinsella, 1988; Mahmoud & Savello, 1992; Siepaio & Meunier, 

1995; Yildirim & Hettiarachchy, 1997; Faergemand et al., 1997), although its use 

is not allowed in food applications. Alternatively, other compounds as sodium 

bisulfite, acid ascorbic, glutathione or cysteine have also been tested (Traore & 

Meunier, 1991; Jiang et al., 2000; Truong et al., 2004). HP has also been used to 

make some proteins like casein, lactoglobulin, BSA, ovalbumin, lysozyme and 

meat proteins, some of which normally do not react with MTGase at atmospheric 

pressure, more accessible to the active site of the enzyme. MTGase has been 

shown to be stable to pressures up to 400 MPa at room temperature (Nonaka et 

al., 1997; Lauber et al., 2001b; Lee & Park, 2002; Menendez et al., 2006). 

Menendez et al. (2006) proposed that its remarkable stability under HP can be 

explained by the characteristics of its active site, which is located within an 

extended β-strand region of the protein. Regions containing β-sheet structures are 

nearly incompressible and more stable against HP than α-helix structures. 

 

 

1.6.  Objectives 

The main objective of the studies reported in this thesis was to improve the 

heat-induced gel properties of porcine blood plasma at acid pH. As previously 

described, plasma shows good gelling capacity under physiological conditions, but 

this property is lost when the environment is acidified.  

 

To achieve the main objective it is proposed: 

1. to study in depth the effects of pH on the heat-induced gel properties of 

porcine plasma and to elucidate the structure-functionality relationship; 
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2. to investigate if treating porcine plasma with microbial transglutaminase 

(MTGase) enhances its heat-induced gel properties at acid pH; 

3. to determine the effects of treating porcine plasma simultaneously with 

MTGase and cysteine as a reducing agent on the heat-induced gel properties 

at acid pH;  

4. to improve the heat-induced gelation properties of porcine plasma at acid pH 

by treating plasma with MTGase under high pressure and to determine how 

keeping treated plasma solutions at chilled temperature can affect the heat-

induced plasma gel properties. 
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Abstract 

FTIR spectroscopic and texture analysis studies were undertaken to elucidate the 
molecular basis of structure–functionality relationships of porcine plasma proteins 
in solution and the gel state at varying pH. At room temperature, porcine plasma 
proteins aggregated as a function of decreasing pH. A parallel decrease in the 
intensity of amide I′ bands at 1652 cm−1 in the infrared spectra of the protein 
solution (assigned to α-helix, predominant in serum albumin) and 1688/1638 cm−1 
(assigned to intramolecular antiparallel β-sheet, predominant in immunoglobulins) 
along with an increase in the band at 1644 cm−1 (assigned to unordered or random 
structure) was observed to take place with decreasing pH. Bands assigned to 
intermolecular antiparallel β-sheet structures (1683 and 1617 cm−1) were observed 
in infrared spectra of porcine plasma protein solutions heated to the point of gel 
formation. Texture and water holding capacity were also very sensitive to pH. The 
results indicate that the lower the remaining native secondary structure and the 
faster the heat-induced aggregation (observed by FTIR spectroscopy) with 
decreasing pH, the weaker and more exudative the gels. 

 

Keywords: Porcine plasma proteins; pH; Aggregation; FTIR spectroscopy; Gelling 
properties 
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Abstract 

The effect of microbial transglutaminase (MTGase) on the texture and water-
holding capacity (WHC) of heat-induced gels prepared from porcine blood plasma at 
pH 5.5 was investigated. Different concentrations of commercial MTGase were 
added to plasma and incubated for several times under specific conditions of 
temperature and pH. From the results obtained, it can be postulated that enzymatic 
treatment enhances textural properties and WHC of plasma gels at pH 5.5, 
especially when incubated with 3% of the commercial product for 3 h at 30 °C and 
pH 7. This treatment increased by 0.4 N the hardness of gels and reduced by 3% 
the water released after gel centrifugation with respect to the control samples. 
SDS–PAGE confirmed that cross-linking took place when MTGase was added to 
plasma solutions. However, the results suggest that the sole addition of MTGase 
was not effective enough to improve the gelling properties of plasma proteins under 
acidic conditions. 

 

Keywords: Porcine plasma; MTGase; Cross-linking; Texture; Water holding 
capacity 
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Abstract 

The effects of the treatment of porcine plasma with microbial transglutaminase 
(MTGase) and cysteine on its heat-induced gelation at pH 5.5 were studied. Four 
different conditions, besides the control samples, were considered in this work: 
cysteine addition; MTGase alone treatment; MTGase and cysteine simultaneously 
treatment; and MTGase treatment first, adding then cysteine just before the 
thermal gelation. Texture (hardness, springiness and cohesiveness) and water-
holding capacity (WHC) were the measured gel properties. Scanning electron 
microscopy images were also taken in order to evaluate the effects on gel 
microstructure, and differential scanning calorimetry (DSC) and SDS-
polyacrylamide gel electrophoresis analysis (SDS-PAGE) analyses were carried out 
to get information about the implied proteins in the cross-linking reactions. The 
results suggest that gel properties were differently affected due to of the applied 
treatment. All of them improved the texture of plasma gels with respect to the 
control samples; however, in the case of the combined treatments the order of 
addition of cysteine did not affect the obtained results and their effects seemed to 
be additive more than synergic. The MTGase treatment was the only one capable of 
improving WHC. Cysteine alone did not improve this parameter but, on the 
contrary, the improvements achieved with MTGase were lost when treating also 
with cysteine. From DSC and SDS-PAGE we postulate that at least fibrinogen and 
globulins would be proteins participating in the MTGase reaction. 

 

Keywords: Porcine plasma; Gelling properties; MTGase; Cysteine; Acidic 
conditions 
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Abstract 

The effects of treating porcine plasma with microbial tranglutaminase (MTGase) 
under high hydrostatic pressure (HHP) were studied as a means of improving its 
gel-forming properties when subsequently heated at pH 5.5, near the pH of meats. 
Plasma containing varying levels of commercial MTGase was pressurized (400 MPa, 
room temperature, pH 7) for different times, and adjusted to pH 5.5 prior to 
heating to induce gelation. MTGase-treatment under HHP led to greater 
enhancement of heat-induced plasma gel properties as compared to control 
samples. The greatest improvements were achieved by pressurising plasma with 
43.3 U MTGase/g protein for 30 min, thereby achieving recoveries of 49% and 63% 
in fracture force (gel strength) and fracture distance (gel deformability) of the 
subsequently heat-induced gels, respectively, relative to gel properties obtained by 
heating untreated plasma at physiological conditions (pH 7.5). 
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Abstract 

The objective of this work was to study the heat-induced gelling properties, at acid 
pH, of porcine plasma previously treated with microbial transglutaminase (MTGase) 
under high pressure (HP), when kept under refrigeration conditions for different 
times (setting time). The results indicated that, although the cross-linking activity 
of MTGase was enhanced under pressure, consequently, improving the thermal gel 
texture, the most significant effects, particularly on gel hardness, were obtained by 
keeping the treated plasma solutions under refrigeration for at least 2 h before 
gelation. On the whole, under such conditions, increases of approximately 60% of 
this textural parameter, calculated on the basis of the values corresponding to the 
heat-induced non-treated plasma gels at pH 5.5, were achieved. However, from the 
SDS–PAGE profiles, it can be suggested that mechanisms other than polymerisation 
by MTGase explain the beneficial effects of the treated plasma cold storage on gel 
texture. In contrast, the setting time had no effects on the water-holding capacity 
of heat-induced plasma gels at acid pH value, although this gel property was 
slightly enhanced by submitting porcine plasma solutions to the combined 
treatment (MTGase plus HP), with improvements being in accordance with the 
better-structured network of these heat-induced plasma gels. 
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Porcine plasma forms heat-induced gels with excellent texture and water holding 

capacity at pH 7.5, i.e., very close to physiological conditions (pH 7.4). At these 

pH conditions, the formation of intermolecular disulfide bonds through –SH/SS 

interchange reactions probably plays an important role in governing the 

mechanisms implied in the plasma thermal gelation and, consequently, in the gel 

properties (Catsimpoolas & Meyer, 1970b; Pedersen & Jacobsen, 1980; Opstvedt 

et al., 1984; Shimada & Cheftel, 1988; Lee & Hirose, 1989; Legowo et al., 1996; 

Owusu-Apenten et al., 2003; Visschers & de Jongh, 2005). In this sense, disulfide 

bonds and free –SH groups –both implied in the -SH/SS interchange reactions– 

are relatively abundant in plasma proteins. Serum albumin shows 17 disulfide 

bonds and 1 free -SH group at Cys34 (Carter & Ho, 1994), while fibrinogen 

contains 29 disulfide bonds and no free –SH groups (Henschen, 1964). Globulin 

fraction exhibits changeable amounts of them. In fact, at neutral pH, albumin and 

globulins show a synergistic effect with regard to major physical attributes of gels, 

being mainly disulfide bonds but also some hydrophobic residues the interactions 

involved in protein aggregation. Fibrinogen also entails a positive effect on texture 

and water holding capacity of plasma gels; in this sense, the presence of 

fibrinogen increase the formation of disulfide bonds between plasma proteins 

(Davila et al., 2007a; Davila et al., 2007b).  

 

However, gelling properties of plasma are negatively affected as pH is reduced. At 

pH 5.5 –typical for lots of meat products– a ∼53 % reduction in gel hardness and 

an ∼8 % increase in released water after centrifugation relative to gels at pH 7.5 

are obtained (see Section 2). These losses can be partially attributed to the lower 

reactivity of the -SH groups at these pH conditions (Kella & Kinsella, 1988; Xiong 

& Kinsella, 1990), thus limiting the intermolecular –SH/SS interchange reactions, 

i.e., the number of covalent bonds between plasma proteins. In contrast, the 

electrostatic repulsion is diminished because of the proximity of the pH value to 

the pI of plasma proteins, particularly of serum albumin, and the exposition of 
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hydrophobic groups is increased, promoting a high non-specific aggregation 

through non-covalent interactions. Thus, random aggregates are formed, which 

typically result in a decrease in gelling ability (Matsudomi et al., 1991; Doi et al., 

1994; Ju & Kilara, 1998; Pares et al., 1998a; Davila et al., 2007a). This is 

consistent with the fact that an increase in intermolecular β-sheet structure –

related to protein aggregation– relative to the amount of remaining intramolecular 

structures is actually observed during heat-induced gelation by decreasing pH 

(see Section 2). This extensive formation of non-native intermolecular β-sheets 

leads to compact structures that limit proteins-water interactions. Also, 

interactions between different plasma protein fractions have been shown to be 

altered as pH reduces, being covalent bonds decreased and hydrophobic 

interactions increased (Davila et al., 2007a). Moreover, as pH is acidified, 

fibrinogen has a negative effect at least on gel texture (Davila et al., 2007a). 

 

Thus, incorporating new intermolecular covalent interactions others than disulfide 

bonds between plasma proteins could be expected to compensate for the low 

participation of these last ones in the development of a protein network at acidic 

conditions. In fact, intermolecular cross-linking resulting from microbial 

transglutaminase (MTGase) activity improves the ability of several food proteins 

to form heat-induced gels (Sakamoto et al., 1994; Muguruma et al., 2003; Truong 

et al., 2004; Jongjareonrak et al., 2006; Jaros et al., 2006b; Ahhmed et al., 

2007; Kawahara et al., 2007; Gharst et al., 2007; Boenisch et al., 2007; 

Karayannakidis et al., 2008b). However, adequate incubation conditions during 

the enzymatic treatment –including temperature, time, pH and enzyme 

concentration– must be established for each particular substrate.  

 

For porcine plasma treated with MTGase, temperature is a key factor in improving 

its thermo-gelling ability at acid pH. According to Fort et al. (2004), plasma should 

be treated at ∼30 ºC for 3 h to enhance gel properties, in spite of a >50 % 
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reduction in the enzyme activity at this temperature (Seguro et al., 1996; 

Ajinomoto Food Ingredients LLC, 2009). As the temperature is increased up to the 

optimal for the MTGase activity (50 ºC, Ajinomoto Food Ingredients LLC, 2009), 

the beneficial effects are progressively diminished, to the point that thermal gels 

at pH 5.5 obtained from plasma treated with MTGase at 50 ºC has poorer 

properties than those ones from untreated plasma (Fort et al., 2004).  

 

Although no effects of temperature on protein plasma structure are expected 

based on their thermo-stability at the pH conditions (pH 7.0) at which the 

enzymatic treatment is carried out (Pares et al., 1998b; Davila et al., 2007b), we 

must bear in mind that the folding–denaturing transition in proteins is now 

considered as a multi-step, not as a 2-state approach where proteins have a 

native or denatured structure (Schellman, 1997; Lazaridis & Karplus, 2003; 

Scharnagl et al., 2005). Thus, we hypothesize that for plasma the relatively long 

incubation times applied could induce little alterations in the native molecular 

structure even at 30 ºC, which could favour non-specific aggregation during 

gelation. The negative effects would increase as temperature did, so when the 

enzymatic treatment is carried out at temperatures above 30 ºC, the enzymatic 

treatment is not effective enough to overcome the effects of temperature itself.  

 

On the other hand, although MTGase still retains some residual activity near 

freezing point (Seguro et al., 1996; Yokoyama et al., 2004), as temperature is 

reduced from the optimal for its activity, this becomes gradually slower 

(Ajinomoto Food Ingredients LLC, 2009), with the relationship between 

temperature and time needing to be established for each substrate. For plasma, 

similar improvements on heat-induced gel texture are achieved at 30 ºC and 

under refrigeration conditions, but longer incubation times are required at the 

latter case (3 h as much versus more than 4 h, respectively). However, it is 

important to note that water-holding capacity of MTGase-treated gels is only 
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improved at 30 ºC (see Section 3 and Section 6). Differences in the molecular 

processes taking place during the enzymatic treatment can be expected, 

especially when considering that effects of temperature itself on the gel properties 

are detected. In this sense, it is observed that, on hold plasma without MTGase at 

30 ºC for 3 h, gel hardness tends to increase slightly relative to untreated plasma, 

although no other properties are modified (see Section 3). In contrast, when 

plasma is held under chilled conditions for different time periods (from 2 h to 

overnight), no effects on gel properties are observed (see Section 6). This also 

means that the effects on gel texture attributed to the enzyme activity could be, 

in some cases, partially due to the incubation conditions.  

 

Surprisingly, most studies of improvement of protein functionality through 

treatment with MTGase have been carried out under a specific temperature, 

without taking into account the contribution of varying this parameter during 

enzymatic treatment. This could be especially important because of the relatively 

broad range of temperatures (from chilled conditions to 55 ºC) overall applied on 

proteins from different sources (Aluko & Yada, 1999; Babiker, 2000; Gomez-

Guillen et al., 2001; Siu et al., 2002; Pietrasik & Li-Chan, 2002b; Jimenez-

Colmenero et al., 2005; Wang et al., 2007; Lantto et al., 2007a; Karayannakidis 

et al., 2008a; Norziah et al., 2009). However, more recently several authors are 

considering the importance of establishing the optimum temperature during the 

enzymatic treatment for each specific protein substrate (Tammatinna et al., 2007; 

Lorenzen, 2007; Tang et al., 2007; Agyare et al., 2009; Castro-Briones et al., 

2009a; Castro-Briones et al., 2009b). 

 

In contrast, no differences in the improvements of the heat-induced plasma gel 

properties at acid pH are observed after its treatment with MTGase in the pH 

range 5.5 – 8.0 (Fort et al., 2004). However, effects of pH have been reported on 

both MTGase activity, which optimum is at pH 6 – 7 and has an activity above 80 
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% between pH 5 – 9 (Ando et al., 1989; Seguro et al., 1996; Motoki & Seguro, 

1998; Yokoyama et al., 2004), and on plasma protein structure as pH is reduced 

from physiological conditions to acid pH (Pares et al., 1998a; Davila et al., 2006; 

Davila et al., 2007a). At neutral pH, i.e., close to physiological conditions and to 

the optimum for the MTGase activity, the globular structure of most plasma 

proteins could make the enzymatic attack more difficult, which would compensate 

for the higher enzyme reactivity; as pH is either increased or reduced, a greater 

susceptibility of substrate to enzyme attack due to protein denaturation can be 

expected but, at the same time, reduced enzyme activity.  

 

Improvements in heat-induced gel properties previously treated with MTGase are 

also highly dependent on enzyme concentration. Use of levels of MTGase in the 

range 0.1 – 300 U·g-1 of protein can be found in the literature depending on the 

protein substrate, but most studies used concentrations from 0.1 to 20 U·g-1 of 

protein (Faergemand & Murray, 1998; Jiang et al., 2000; Siu et al., 2002; 

Pietrasik & Li-Chan, 2002a; Pietrasik & Li-Chan, 2002b; Jaros et al., 2007; 

Boenisch et al., 2007; Jiang et al., 2007; Guangfeng, 2007; Tang et al., 2007; 

Agyare et al., 2008; Gan et al., 2008; Moreno et al., 2009; Lin et al., 2009; 

Castro-Briones et al., 2009a). Also, from these studies, it can be established that 

low levels (0.1 – 1 U·g-1 of protein) are more often used to treat fish proteins 

(Jiang et al., 2000; Ramirez et al., 2001; Tammatinna et al., 2007; Perez-Mateos 

& Lanier, 2007; Karayannakidis et al., 2008b; Moreno et al., 2009), probably due 

to the contribution of the endogenous transglutaminase present in the raw 

material (Kimura et al., 1991; Kamath et al., 1992), while the level of MTGase 

used for plant, meat or milk proteins varies between studies (Faergemand & 

Murray, 1998; Ramirez et al., 2002; Siu et al., 2002; Pietrasik & Li-Chan, 2002a; 

Pietrasik & Li-Chan, 2002b; Jaros et al., 2006a; Jaros et al., 2007; Yamazaki et 

al., 2007; Boenisch et al., 2007; Jiang et al., 2007; Guangfeng, 2007; Mohamed 

& Gordon, 2007; Bonisch et al., 2007; Marco et al., 2007; Tang et al., 2007; Oner 
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et al., 2008; Agyare et al., 2008; Gan et al., 2008; Moon et al., 2009; Medina-

Rodriguez et al., 2009; Lin et al., 2009; Castro-Briones et al., 2009a).  

 

As stated in Section 3, for porcine plasma, 43 U·g-1 of protein –the equivalent to 3 

% of commercial product ACTIVA or MTG in this work– is established as the 

adequate concentration when the enzymatic treatment is carried out at 30 ºC for 

3 h. Higher enzyme concentrations reduce the achieved improvement on heat-

induced gel properties, probably because of an excess of cross-linking covalent 

bonds as a consequence of the MTGase activity, which would prevent a correct 

protein unfolding during the subsequent thermal gelation step and, this way, 

making the formation of an homogeneous protein network more difficult 

(Sakamoto et al., 1994; Asagami et al., 1995; Tsai et al., 1996; Kuraishi et al., 

1997; Imm et al., 2000; Jiang et al., 2000).  

 

A negative effect is also obtained for incubation times longer than 3 h (Fort et al., 

2004), which can be also attributed to an excess of covalent bonds or to more 

temperature-induced molecular changes taking place as incubation period is 

increased, which could have adverse effects for the formation of a better 

structured network. Other authors have observed increases in gel properties with 

increasing time, until reaching a constant value or a decrease when optimum time 

is exceeded (Soeda et al., 1996; Arciszewska & Cegielka, 2003; Hwang et al., 

2008; Castro-Briones et al., 2009a). 

 

At the conditions above mentioned (3 % MTG / 3 h / 30 ºC / pH 7), increases of 

∼0.4 N in gel hardness, i.e., ∼30 % higher than the control at pH 5.5, and with a 

slight protective effect on gel structure, as indicated by the springiness and 

cohesiveness values, along with reductions ∼3 % (w/w) of released water after gel 

centrifugation are achieved when compared to control plasma adjusted to pH 5.5 

(see Section 3). However, bearing in mind the texture and water-holding capacity 
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of the heat-induced plasma gels at pH 7.5, the improvements achieved are not 

enough to considerably counteract the negative effects of acidification of plasma 

(see Section 2 and Section 3).  

 

From the SDS-PAGE patterns, it is clearly evident that globulins and fibrinogen 

participate in the MTGase cross-linking reactions. However, serum albumin –one 

of the most important proteins in thermal gelation of plasma through a synergistic 

behaviour with globulins (Davila et al., 2007a)– seems to not participate in such 

reactions, at least to an appreciable degree (see Section 3). This would be in 

agreement with the fact that no evidences of isolated serum albumin 

polymerization are observed when treated with MTGase at the same conditions 

than whole plasma (unpublished data). The lack of albumin polymerisation is 

probably because of its globular and compact structure, making it very resistant 

to enzymatic attack (Traore & Meunier, 1992). However, its reactivity could be 

increased through its molecular unfolding before or during the enzymatic 

treatment.  

 

Treating globular proteins with MTGase in the presence of DTT –a strong reducing 

agent which is able to break disulfide bonds– has been shown to be effective in 

enhancing the cross-linking activity of MTGase (Motoki & Nio, 1983; Jocelyn, 

1987; Tanimoto & Kinsella, 1988; Mahmoud & Savello, 1992; Siepaio & Meunier, 

1995; Yildirim & Hettiarachchy, 1997; Faergemand et al., 1997). Due to the fact 

that use of DTT is not allowed in food applications, cysteine was chosen for our 

studies. Cysteine, a reducing agent with the ability to interact with free -SH 

groups and disulfide bonds -thus also favouring the –SH/SS interchange 

reactions– has been shown to be able to unfold bovine serum albumin (Boye et 

al., 1996). However, it is important to consider that adding reagents with these 

abilities can alter the heat-induced gel properties (Pour-El & Swenson, 1976; 

Schmidt et al., 1979; Yasuda et al., 1986; Shimada & Cheftel, 1988; Matsudomi 
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et al., 1991; Legowo et al., 1996; Hoffmann & Vanmil, 1997; Hongsprabhas & 

Barbut, 1997; Boye & Alli, 2000). Indeed, our studies provide evidence that 

increases in plasma gel hardness at acid pH take place as added cysteine 

concentration does in the range 0.05 - 0.25 %. Particularly, adding 0.25 % 

cysteine increases plasma gel hardness by ∼0.4 – 0.5 N, ∼40 % higher than the 

control at pH 5.5, but unfortunately without positive effects on the water-holding 

capacity at the tested concentration range (Saguer et al., 2004). The 

microstructure of gels formed from plasma solutions with added cysteine, which is 

shown to be very heterogeneous and particulate, with large aggregates, are 

consistent with the effects on gel functional properties (see Section 4). 

 

When plasma is submitted to a combined treatment with MTGase (3 % MTG / 3 h 

/ 30 ºC / pH 7.0) and cysteine (0.25 %), increases on texture of plasma gels ∼0.9 

– 1 N with respect to the control samples at pH 5.5 are achieved. However, the 

observed improvements result from an additive effect more than synergic 

between both MTGase and cysteine. Such behaviour is observed not only when 

treating cysteine-added plasma with MTGase but also adding cysteine after the 

enzymatic treatment (see Section 4). Thus, cysteine has no effects on MTGase 

activity, neither positive nor negative, in spite of the presence of a –SH group in 

the active center of the enzyme. Again, globulins and fibrinogen are clearly the 

proteins mainly involved in the cross-linking reaction (see Section 4). The low 

accessibility of the disulfide bonds in serum albumin to reducing agents in the pH 

range of 5 – 7 (Katchalski et al., 1957), and the decrease in –SH/S-S interchange 

reaction rate due to the pKa of the -SH group of cysteine (between 8.5 – 9.5, 

depending on its location in the structure) (Swaisgood, 2005) could be related to 

the noted lack of effects of cysteine on the reactivity of MTGase towards serum 

albumin. In this sense, it must be noted that the –SH group reactivity depends on 

the protonation state of the cysteine residue, being less reactive below its pKa, 

when protonated (Visschers & de Jongh, 2005).  
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Regardless of the positive effects of cysteine –both in the presence and absence of 

MTGase– on gel texture, the water-holding capacity is only improved after the 

enzymatic treatment without cysteine (see Section 4). In spite of this, from the 

SEM micrographs, no clear differences in the heterogeneous gel microstructure 

could be detected between MTGase-treated gels with or without cysteine (see 

Section 4). In the conditions carrying out the experiments, added cysteine would 

tend to form more easily disulfide bonds with plasma proteins, especially through 

its reaction with the free –SH group of serum albumin (Gabaldon, 2002), due to 

the fact that, at low pH, intermolecular –SH/SS interchanges reactions are limited 

(Mckenzie et al., 1972; Monahan et al., 1995). In such situations, it can be 

suggested that the interaction between cysteine and the -SH group of Cys34 of 

albumin would lead to a higher unspecific aggregation. 

 

The high stability of MTGase to pressures up to 400 MPa at room temperature 

(Nonaka et al., 1997; Lauber et al., 2001b; Lee & Park, 2002; Menendez et al., 

2006; Menendez et al., 2009), makes us to consider treating plasma under high 

pressure (HP) as an alternative way to unfold its proteins. HP is able to increase 

reactivity of MTGase towards proteins that effectively do not react at atmospheric 

pressure (Nonaka et al., 1997; Gilleland et al., 1997; Ashie & Lanier, 1999; 

Lauber et al., 2001a; Lauber et al., 2001b; Lauber et al., 2003; Gomez-Guillen et 

al., 2005; Hsieh et al., 2009). Due to the fact that pressure itself can modify 

protein functionality (Heremans, 1992; Balny & Masson, 1993; Galazka & 

Ledward, 1998; Pares & Ledward, 2001; Silva et al., 2001; Totosaus et al., 2002; 

Boonyaratanakornkit et al., 2002; Lullien-Pellerin & Balny, 2002; Meersman & 

Heremans, 2008), its effects on the heat-induced gelation ability of plasma 

proteins have been also studied regardless of the MTGase treatment. In fact, HP 

treatment of plasma at 400 MPa for 30 min before its heat-induced gelation at pH 

5.5 lead to slightly softer gels compared to non-pressurised samples, although no 
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effects on water-holding capacity are observed. However, hardness tends to 

recover when pressurised-plasma solutions are kept at refrigeration temperatures 

for at least 2 h prior to their thermal gelation (see Section 6). These results seem 

to indicate that HP treatment can unfold plasma proteins, although these are 

partially refolded after releasing the pressure. Other authors have observed a 

similar behaviour (Pothakamury et al., 1995; Royer, 2002; Tabilo-Munizaga & 

Barbosa-Canovas, 2004; Montero et al., 2005). However, submitting plasma with 

3 % MTG to pressures of 400 MPa for 30 min at pH 7.0 before heat-induced 

gelation at pH 5.5 lead to increases of ∼0.6 N in hardness compared to control 

heat-induced gels at pH 5.5, with slight positive effects on water-holding capacity. 

Prolonging HP-treatment time or increasing enzyme concentration doesn’t 

improve the recovery of plasma gels achieved (see Section 6).  

 

It is important to note that the previously mentioned improvements in MTGase 

gels treated under HP are enhanced after a holding period under refrigeration (or 

setting time) between pressurisation treatment and heat-induced gelation. When 

plasma was kept under refrigeration for 2 h, there were no effects on elasticity 

and cohesiveness, nor on water-holding capacity; however, improvements of ∼0.9 

N on hardness compared to non-treated gels at pH 5.5 are achieved (see Section 

6). It has been proved that the enzymatic cross-linking activity happens only 

during pressurization, and the beneficial effects of keeping the treated plasma 

under refrigeration conditions should be attributed to other phenomena (see 

Section 6). On the other hand, it seems that, under these conditions, not only 

globulins and fibrinogen but also serum albumin are involved in the cross-linking 

reactions (see Section 6). 

 

According to the results, texture of heat-induced plasma gels at acid pH can be 

improved when submitted to MTGase treatment, especially when adding cysteine 

or under HP conditions. However, losses in gel texture due to plasma acidification 
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are not completely recovered relative to untreated-plasma gels at pH 7.5. On the 

other hand, water holding capacity of the gels is only improved –though slightly– 

under HP conditions. Bearing in mind that this parameter affects product stability 

and quality, as well as its yield, HP treatment is, as a whole, considered the most 

adequate one. 

 

The poor effects of MTGase treatment on gel microstructure under any of the 

assayed conditions are consistent with the lack of improvements obtained in the 

water holding capacity of plasma heat-induced gels at pH 5.5. So, future studies 

could be focused on finding alternatives to get gels with more ordered and 

structured microstructures. Different approaches can be considered in order to get 

better results: 

 

- regarding MTGase reactivity, proteins which are highly reactive in front of the 

enzyme like myosin, meat gelatine, soy globulins, casein, etc. (Ajinomoto 

Food Ingredients LLC, 2009) could show a synergetic effect with the reactivity 

of plasma proteins. In this sense, Pietrasik et al. (2007) observed increases in 

both texture and water holding capacity of gels from muscle proteins when 

dairy proteins were added during the enzymatic treatment; 

- plasma proteins could be treated with enzymes showing a cross-linking 

activity different from that one showed by MTGase. Tyrosinase, laccase or 

lysyl oxidase could be considered (Ito et al., 1984; Matheis & Whitaker, 1987; 

Faergemand et al., 1998; Figueroa-Espinoza & Rouau, 1998; Takasaki et al., 

2001; Thalmann & Loetzbeyer, 2002; Mattinen et al., 2005; Mattinen et al., 

2006; Lantto et al., 2007b; Selinheimo, 2008; Mattinen et al., 2008). 

Different types of intermolecular interactions can confer modified 

characteristics to plasma heat-induced gels. Also, combinations of enzyme 

treatments – including or not MTGase – should be considered; 
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- mixing plasma with proteins from other sources with different characteristic. 

Focusing on the acid nature of the plasma proteins, basic proteins like 

lysozyme, clupeine, modified β-lactoglobulin or egg yolk low density 

lipoprotein could promote gelation through attractive electrostatic forces 

(Kojima & Nakamura, 1985; Poole et al., 1987; Phillips et al., 1989; Arntfield 

& Bernatsky, 1993; Yang & Choi, 1995; Friedli & Howell, 1996). Plasma 

gelation could also be improved by adding proteins rich in disulfide bonds 

and/or free -SH groups to favour –SH/SS interchange reactions. There are 

different proteins that could be considered like proteins from milk (whole milk, 

whey or isolated proteins), egg (especially ovalbumin), soy (like glycinin), etc. 

(Swaisgood, 2005; Visschers & de Jongh, 2005). 

- combinations of the above-mentioned individual treatments should be 

considered, which include mixtures of different proteins and/or enzymes at 

different conditions (including concentration, temperature, pH, ionic strength, 

pressure conditions,….) 
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According to the studies enclosed in this thesis, it can be concluded:  

 

1. Porcine plasma forms heat-induced gels with excellent texture and water 

holding capacity at pH 7.5 (very close to physiological conditions), although 

they are severely diminished when plasma is acidified. Specifically, decreasing 

pH of plasma from 7.5 to 5.5 entails reductions of ∼53 % in gel hardness and 

increases of ∼8 % in released water after gel centrifugation. Losses on gel 

properties are strongly related with changes in its microstructure. 

2. The losses on heat-induced gel properties are related to changes in the protein 

structure, with a higher extent of the formation of new antiparallel 

intermolecular β-sheet structures relative to the amount of remaining native 

intramolecular structures being observed as pH of plasma is acidified. 

3. The incorporation of new intermolecular covalent interactions between plasma 

proteins resulting from microbial transglutaminase (MTGase) activity prior to 

its thermal gelation at pH 5.5 partially counteracts the negative effects of 

acidification of plasma on its heat-induced gel properties. The best conditions 

for the enzymatic treatment are: 3 % MTG (equivalent to 43 U·g-1 of protein) 

for 3 h at 30 ºC and pH 7, which allows us to obtain increases of ∼0.4 N in gel 

hardness, ∼30 % higher than the untreared-plasma gels at pH 5.5, and 

reductions of ∼3 % in released water after gel centrifugation when compared 

to untreated heat-induced gels at pH 5.5.  

4. The thermal conditions (30 ºC for 3 h) associated with the proposed enzymatic 

treatment slightly increases gel hardness –but not the water-holding capacity– 

to values not significantly different to those obtained with the enzymatic 

treatment. This fact suggests that the achieved improvements in hardness 

after the enzymatic treatment are partially related to the associated thermal 

conditions. 
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5. MTGase concentrations or incubation times above the optimal have 

detrimental effects on the improvements achieved by the enzymatic 

treatment.  

6. Adding cysteine to plasma as a reducing agent does not enhance the cross-

linking activity of MTGase. Even so, the combined treatment (3 % MTG for 3 h 

at 30 ºC and pH 7.0 of plasma containing 0.25 % cysteine) enhances gel 

texture, with increases of ∼0.9 – 1 N on gel hardness when compared to non 

cysteine-added plasma heat-induced gels at pH 5.5. This improvement results 

from an additive more than synergistic effect between both, MTGase and 

cysteine. However, cysteine nullifies the positive effects of MTGase on water-

holding capacity of heat-induced plasma gels at pH 5.5. 

7. Treating plasma containing MTGase (3 % MTG) under high pressure (400 MPa 

for 30 min at pH 7) increases the MTGase cross-linking activity, entailing 

improvements of ∼0.6 N in hardness of heat-induced gels at pH 5.5 compared 

to untreated-plasma gels at pH 5.5. However, water-holding capacity is only 

slightly improved. Prolonging pressure treatment time or increasing enzyme 

concentration does not improve the recovery of plasma gels achieved. 

8. Globulins and fibrinogen are the main proteins involved in the MTGase cross-

linking reactions; albumin participates –and in a minor degree– only when the 

enzymatic treatment is performed under high pressure. 

9. The high pressure (400 MPa for 30 min at pH 7) itself has a slightly negative 

effect on texture of heat-induced plasma gels at pH 5.5 but not water holding 

capacity, although it tends to recover after holding pressured plasma at 

refrigeration temperatures up to 2 h prior to the thermal gelation. 
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10. Holding pressurized-porcine plasma containing MTGase (3 % MTG / 400 MPa / 

30 min / pH 7.0) for 2 h under refrigeration (setting time) enhances hardness 

of heat-induced gels at pH 5.5, with increases of ∼0.9 N being obtained 

relative to gels from untreated plasma at pH 5.5. Setting time has no effect on 

the water-holding capacity. During setting time, other mechanisms than 

MTGase cross-linking are responsible of the improvements on texture, 

although the cross-linking previously achieved under high pressure has an 

important influence on these improvements. 

 

According to the above mentioned conclusions resulting from the studies reported 

in this thesis, it can be mainly concluded that losses in texture of heat-induced 

plasma gel at acid pH are partially recovered –especially carrying out the MTGase 

treatment under high pressure (HP)–, although their water holding capacity is 

only slightly enhanced. The results are consistent with the slightly modification on 

gel microstructure achieved. 
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