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I.1 The Basis Set Superposition Error (BSSE)

I.1.1 Historical overview

The application of quantum mechanics techniques based on the time-

independent Schrödinger equation to the study of chemical systems lead to different

differential equations that can only be solved exactly for monoelectronic systems. In

the most general case of the study of polyatomic molecules, even upon the use of the

so-called Born-Oppenheimer1 approximation to decouple the motion of the nuclei and

the electrons of the system, the electronic repulsion term forces the introduction of

further approximations that, roughly, consist in treating this interaction in a averaged

fashion.

The well-known Hartree-Fock equations are obtained when the molecular

orbital (MO) approximation is introduced. This approximation supposes that the

electrons of the system are described by single-particle wavefunctions, spin-orbitals,

extended over the whole system. The total wavefunction of the system is later

constructed from these MO's. In this way, a polyelectronic problem is transformed in

a set of monoelectronic (coupled, non-linear) equations where the electron-electron

repulsion can only be included in the monoelectronic (Fock) operator through an

averaged potential due to the field created by the other electrons of the system.

The introduction of monoelectronic functions where those orbitals can be

expanded in, carried out by Roothaan2, represent a key point from a computational

point of view. The complicated Hartree-Fock equations can be transformed now in an

approximate matricial pseudo-secular equation in order to obtain the coefficient of the

expansion of the molecular orbitals in the basis functions.

This technique was fist introduced independently by Hund3 and Mulliken4, as an

                                                
1 A. Szabo, N.S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure

Theory. MacMillan Publishing Co. Inc. (1982).
2 C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
3 F. Hund, Z. Phys. 36, 657 (1926)
4 R. S. Mulliken Phys. Rev. 32, 186 (1927)
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alternative to the valence bond theory5. It was later applied also to homonuclear

diatomic molecules in by Lennard-Jones6 and was finally generalized in a series of

excellent papers by Mulliken7, who was awarded the Nobel Prize in Chemistry in 1966

for his “fundamental work concerning chemical bonds and the electronic structure of

molecules.”

During the last fifty years an unnumerable amount of new ab intio

methodological improvements have appeared in the literature with two goal that are

often antagonistic: the accurate description of the nature of the chemical systems and

their properties, and the reduction in the computational cost of the calculations.

The Hartree-Fock model has often represented the starting point for other

sophisticated methods in order to include the so-called electron correlation. One can

roughly split those methods into two families: those based on a single Slater

determinant, and the multiconfigurational ones, where a linear combination of Slater

determinants are used as wavefunction in the Hartree-Fock procedure. The second

type of methods include the non-dynamic correlation, i. e., that due to the presence of

nearly degenerate configuration state functions to be combined with the single-

determinant Hartree-Fock ground state wavefunction. In all cases, however, the

wavefunction is finally expressed as linear combination of Slater determinants; the

coefficients and the structure of the expansion differ for one method to another.

Another approach which has been extensively developed and used during the

last decade with great success has been the Density Functional Theory (DFT). In this

method, the Hohenberg-Kohn theorem8 is used to express the energy of the chemical

system in terms of the electron density so that the concept of wavefunction is strictly

not necessary. However, the later Kohn-Sham9 formulation results in an algorithm

conceptually very similar to that of the Hartree-Fock method, with the introduction of

molecular orbitals and basis functions. The main advantage of such a methodology is

that the electron correlation is introduced with very low computational effort and

large systems like oligopeptides or organometallic compounds can be nowadays

                                                
5 W. Heitler and F. London, Z. Phys. 44, 455 (1927)
6 J. E. Lennard-Jones, Trans. Faraday Soc. 25, 668 (1929)
7 R. S. Mulliken, Phys. Rev. 43, 279 (1933), R. S. Mulliken, Phys. Rev. 41, 49 (1932), R.S. Mulliken,

J. Chim. Phys. 46, 497 (1949)
8 P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964).
9 W. Kohn, L. J. Sham, Phys. Rev. A 140, 1133 (1965)
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routinely studied with pseudo-ab initio techniques.

The ambiguous selection of the exchange-correlation functional and the lack of

a systematic methodology to improve these functionals are the main drawbacks of

DFT.

In short, there is a wide range of ab initio methodologies for the understanding

of the properties and nature of the chemical systems. State-of-the–art methods can

yield quantitative predictions within the so-called chemical precision, that is, of the

order of ca. 1kcal/mol. The fast development of the computational capabilities is also

helping us to set closer to the challenge of connecting the understanding of the

physico-chemical processes present at the molecular scale with the properties of the

bulk matter.

Even though it is not conceptually necessary, most of the present available ab

initio methods are based on the use of atomic orbitals centered on the nuclei where the

wavefunction or in general the electron density, is expanded. For the Hartree-Fock

method, the difficulties found in order to obtain analytically the exact solution implies

that the exact spin-orbitals to be used to build the Slater determinant must be

approximated by linear combination of monoelectronic functions (orbitals). This is

the so-called MO-LCAO approximation, i.e., molecular orbitals expressed as a linear

combination of atomic orbitals.

These set of functions centered on the nuclei simulate the shape of the exact

solution for the hydrogenoid atoms, and hence should represent a good approximation

from a both physical and chemical point of view. The atomic orbitals generally

correspond to Slater-type, Gaussian or linear combination of Gaussian functions. The

former are more suitable to describe the electron density at the atomic positions but

are much more expensive from a computational point of view. The expressions of

these atomic functions are obtained by optimizing a given molecular property with

respect to some parameters like the exponential factor or coefficients of the linear

combination. In this way, depending upon the property one is interested in and the

methodology used, one can use an specific set of atomic orbitals specifically

optimized for this purpose.

When dealing with molecules the set of functions formed by all the atomic

orbitals of the molecule is called basis set, which obviously must be linearly

independent.

There are other options, of course. One can use the so-called floating functions,
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that is, a set of basis functions that are free to move in space. Their main advantage is

that the polarization of the atoms due to the presence of external perturbations (other

atoms, electric field, etc) can be reproduced without the inclusion of high-order

angular momentum nuclei-centered functions. In a similar manner, the molecular

basis set can be further increased with some extra functions located in any place of the

space, commonly in the middle of a given intermolecular bond (bond functions).

In any case, the use of these atomic set of functions, both floating or fixed,

cause a mathematical inconsistency which is essentially ignored in the calculation of

polyatomic systems. For instance, when one is comparing different conformations of

a molecule, the position of the nuclei vary from one conformer to another an so does

for the position of the basis functions. Therefore, strictly speaking, the functional

space where the wavefunction of the system is expressed is different in both cases so

that, for instance, any comparison of the energy of the conformers can be considered

inconsistent from a purely mathematical point of view. The same would occur during

geometry optimizations, where the positions of the nuclei also change.

Only in a recent paper, Jensen examined10 this effect for the inversion barrier of

the ammonia and the rotational barrier for the ethane by using an extended basis set

including the basis functions of the two structures involved in the process, i.e. the C3v

and planar structures of the ammonia and the eclipsed and alternated conformers of

the ethane. The errors supposed more than 10% of the barrier for the smallest basis set

and converged to zero with much larger basis sets.

Historically, there is a case where the use of truncated basis sets under the

LCAO approximation has been recognized to produce large inconsistencies, being in

many cases the main source of error. This is clearly the case of the calculation of

weak intermolecular interactions.

Let us consider a chemical system AB composed of two interacting fragments A

and B. The interaction energy can be expressed simply as the difference of the energy

of the complex AB and the energy of its fragments A and B. Even though there are

methods to compute directly the interaction energy by means of Intermolecular

                                                
10 F. Jensen, Chem. Phys. Lett. 216, 633 (1996)
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Perturbation Theory11, this straightforward scheme, called supermolecular

approximation, has been and nowadays still is the most common procedure for the

quantitative determination of interaction energies. The problem is that, conceptually,

the description of the fragment A within the complex can be improved by the basis

functions of the fragment B and viceversa, whereas such an extension is not possible

in the calculation of the isolated fragments A and B. This unbalance provokes that the

overall description of the AB system is improved with respect to the fragments

description. Hence, the interaction energy, expressed as the difference between the

energies of the complex and its components is biased by the fact that the basis set

where the corresponding energies are expanded are different. The variational principle

implies that the computed energetic difference is artificially increased, as the

complex’s wavefunction is expanded in a larger basis set compared to that of the

fragments forming the complex. This effect was called Basis Set Superposition Error

(BSSE) and was firstly pointed out by Jansen and Ros12 in 1969, although the

terminology BSSE was first introduced by Liu and McLean13 in 1973.

Since this problem was first addressed, a number of methods and strategies have

been proposed to eliminate the BSSE or, at least, minimize it. Obviously, the most

natural way of eliminate it would be the use of exact wave functions, thus avoiding

the truncation of the basis set. The use of an infinite basis set is not feasible from a

computational point of view but the basis sets of the interacting fragments could be

improved in such a way that the presence of the basis functions of the partner would

not further improve the description of the considered fragment.

Another rather unexplored possibility is to use a set of functions centered at

some given points in the space to compute the energies of the complex and its

fragments. The three-dimensional space might be saturated of basis functions whose

position and parameters should be kept constant for each calculation. However, the

problem in this case would be that the wavefunction obtained will not be neither

translationally nor rotationally invariant. Also, linear dependencies could easily

                                                
11 B. Jeziorki, W. Kolos. Molecular Interactions. H. Ratajczak, W. J. Orville-Thomas, Eds.; Wiley,

New York, 1982; Vol 3.
12 H. B. Jansen, P. Ross, Chem. Phys. Lett. 3, 140 (1969)
13 B. Liu, A. D. McLean, J. Chem. Phys. 59, 4557 (1973)
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appear in the basis set if the space is too saturated with basis functions.

A promising tool to obtain good quality ab-initio DFT results within the local

spin density approximation (LSDA) without the use of nuclei centered basis sets are

the so-called plane waves. They are nowadays widely used in Car-Parrinello

molecular dynamics14 but there is not yet much work in electronic structure

calculations. In this particular case, the Kohn-Sham molecular orbitals are expanded

on a set of imaginary functions (plane waves) independent of the position and number

of nuclei of the molecule. The real space representation of the wavefunction is

obtained after the application of Fast Fourier transform techniques. Unfortunately,

recent work15 is pointing towards the combination of both nuclei-centered and plane

waves so that an eventual future application to intermolecular interactions will bear a

similar basis set unbalance.

I.1.1.1 The counterpoise philosophy

The discussion about the existence, definition, consequences or usefulness of

the correction schemes of the BSSE in the literature has been very active during the

last twenty years and it is still under debate. Most of these controversies are still due

to the BSSE-correction scheme based on the earlier work of Boys and Bernardi in

1970. They proposed the use of a function counterpoise (CP)16 in order to calculate

the interaction energy of a given AB system in such a way that the separate energies

of the fragments A and B are calculated using the full set of basis functions used in

the calculation of the energy of the AB system. Practically speaking, for each

fragment calculation, the electrons belonging to the other fragment were omitted and

its nuclear charges were set to zero.

After the counterpoise method was introduced, there was a widespread opinion

that the BSSE was being overestimated with this straightforward procedure. The

arguments given by several authors17,18 were that with the original function

                                                
14 R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)
15 M. Valiev and J. H. Weare, J.  Phys. Chem. A 103, 10588 (1999)
16 S. F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970)
17 A. Johansson, P. Kollman, S. Rothenberg, Theor. Chim. Acta 29, 167 (1973)
18 J. P. Daudey, P. Claverieand J. P. Malrieu, Int. J. Quantum Chem. 8, 1 (1974)
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counterpoise scheme, the fragment energies were evaluated using the whole basis set

of the complex, thus including the orbitals of the other fragment (ghost orbitals) to be

occupied in the complex formation. It was proposed another counterpoise scheme

where the fragment energies were calculated extending the monomer basis set with

just the ghost virtual orbitals of the partner. However, the BSSE is clearly an

unphysical effect, hence no arguments based on physical effects like the Pauli

exclusion principle in this particular case can be applicable in our opinion. Further

numerical results19,20 on the helium dimer showed that the use of the whole basis set

for the fragment calculations was necessary in order to reproduce the inherently

BSSE-free Intermolecular Perturbation Theory results.

The overcorrection debate has continued in the literature mainly due to results

obtained upon inclusion of electron correlation. It was argued that the counterpoise

method should be able to improve the description of the monomer’s orbitals yet

avoiding an increase of the number of virtual orbitals used for the correlation21. This

opinion is connected to the observation that, in some cases, when using small basis

sets, the counterpoise-corrected results seem to disagree more with the experimental

values than the uncorrected results; see for instance recent papers of Liedl22, Oliphant

et al.23 or Masamura24. It has been also proposed to scale the BSSE estimated with the

counterpoise method, in order to correct for its supposed overcorrection nature. Kim

et al.25 have been using half of the counterpoise correction as the estimate of the

BSSE, obviously with no solid argument to support this, more than ambiguous,

choice.

Some authors26,27 also concluded that the best strategy would be to use the

                                                
19 M. Gutowski, J. J. Van Lenthe, J. Verbeek, F. B. Van Duijneveldt and G. Chalasinski, Chem. Phys.

Lett. 124, 370 (1986)
20 M. Gutowski, F. B Van Duijneveldt, G. Chalasinski and L. Piela, Mol. Phys. 61, 223 (1987)
21 D. B. Cook, J. A. Sordo and T. Sordo, Intl. J. Quantum Chem. 48, 385 (1993)
22 K. R. Liedl, J. Chem. Phys. 108, 3199 (1998)
23 N. Oliphant, M. Rosenkrantz and D. D. Konowalow, Chem. Phys. Lett 223, 7 (1994)
24 M. Masamura, Theor. Chem. Acc. 106, 301 (2001)
25 K. S. Kim, P. Tarakashemar, J. Y. Lee, Chem. Rev. 100 4145 (2000)
26 D. W. Schwenke and D. G. Truhlar, J. Chem. Phys. 82, 2418 (1985); 84, 4113 (1986); 87, 3760

(1987)
27 M. J. Frisch, J. E. Del Bene, J. S. Binkley and H. F. Schaeffer III, J. Chem. Phys. 84, 2279 (1986)
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largest basis set possible and simply ignore the BSSE. However, it has been shown in

many benchmark studies24,28 that the convergence of the BSSE correction is very slow

at the correlated level and no BSSE-free results have been obtained so far.

At the same time, there have been other attempts to prove the correctness of the

counterpoise methods, both numerically19,20,29,30 and with theoretical arguments31. The

counterpoise method has even been considered a theorem as in case of the full-CI

wavefunctions31. However, none of these efforts have helped to end with the

controversy.

I.1.1.2 Beyond the CP-correction to the interaction energy

At the time when the BSSE was pointed out, the ab initio calculations in

molecular complexes were mainly used to explore the interaction potentials. It was

recognized that the BSSE induced to curves which are too attractive and that the

counterpoise-corrected ones lie above the uncorrected ones. The obvious

anharmonicity of the interaction potential curves and the fact that the basis set

extensions increases when the fragment get closer induced unavoidably to another

side effect: the position of the minimum of the curve, i. e., the optimum interaction

energy, had to change upon counterpoise correction too. This can be easily seen in the

following qualitative interaction potential picture

                                                
28 T. Van Mourik, A. K. Wilson, K. A. Peterson, D. E. Woon, T. H. Dunning Jr, Adv. Quantum Chem.

31, 105 (1999)
29 S. M. Cybulski anf G. Chalasinski, Chem. Phys. Lett. 197, 591 (1992)
30 M. Gutowski, J. G. C. M. van Duijneveldt-van de Rijdt and J. H. van Lenthe, F. B. Van Duijneveldt,

J. Chem. Phys. 98, 4728 (1993)
31 F. B. Van Duijneveldt, J. G. C. M. van Duijneveldt-van de Rijdt and J. H. van Lenthe, Chem. Rev.

94 1873 (1994)
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CP
Normal

∆R

a

b

SCHEME 1

The counterpoise-corrected interatomic potential lies above the uncorrected one

and the position of the optimum interatomic distance is displaced by ∆R. The shape of

the PES is modified as well. Furthermore, the counterpoise-corrected  interaction

energy computed at the uncorrected minimum (a) is always larger than (b) the

optimum interaction energy calculated on the corrected PES. This difference depends
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on the shape of the PES. The more shallow the potential well the larger the effect on

the interatomic distance.

Obviously, the interacting systems could be molecules as well. In this case, the

molecular complex must be partitioned into two or more interacting molecules or

fragments. One of the first attempts to assess the effect of the BSSE on the geometry

of the molecular complexes was carried out by Diercksen et al.32 in a SCF study of the

water dimer. They determined numerically that the intermolecular distance increased

by 0.04Å upon counterpoise-correction. Other authors33 reported similar effects on

both hydrogen-bonded and van der Waals complexes calculations including electron

correlation, also by performing numerical optimizations of the intermolecular

distance.

Soon, the simultaneous optimization of many geometrical parameters became

feasible so that the effect on the intramolecular parameters due to the interaction could

be assessed. This is essential in order to connect the theoretical values with

experiment. Indeed, one of the typical fingerprints of a molecular complex is the

shifting on the IR absorption bands of the isolated complexes. In the case of the

hydrogen bonded complexes X-H···Y, this red (blue) shift is due to the elongation

(shortening) of the intramolecular X-H bond upon interaction with Y34.

However, the fact that the geometries of the interacting molecules are distorted

by the physical interaction was not taken into account in the counterpoise scheme in

its original formulation, because only atomic interactions were considered. The

simultaneous consideration of this geometry relaxation, usually referred to as

relaxation energy, and the BSSE using the counterpoise method is not trivial. This

problem was addressed by Emsley et. al.35 in an early study of the hydrogen bonding

in the biformate anion. The total counterpoise-corrected interaction energy was

                                                
32 G. H. F. Diercksen, W. P. Kraemer, B. O. Roos, Theor. Chim. Acta 36, 249 (1975)
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Simons, M. Gutowski, G. Chalasinski, J. Phys. Chem. 93, 621 (1989); M. D. Newton, N. R. Kestner,

Chem. Phys. Lett. 94, 198 (1983); R. Eggenberger, S. Gerber, H. Hubert, D. Searles, chem. Phys. Lett.
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34 This topic is discussed later in Section II.1.1.3.
35 J. Emsley, O. P. A. Hoyte, R. E. Overill, J. Am. Chem. Soc. 100, 3303 (1978)
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calculated as the sum of the counterpoise-corrected interaction energy at the

supermolecular geometry and the fragment relaxation energy. Therefore, seven energy

calculations had to be carried out, instead of the three energy evaluations needed for

both an uncorrected or a counterpoise-corrected with the fragments geometries frozen,

for the determination of the interaction energy. The authors deduced that their results

were approximate since the fragment relaxation energy was carried out using the

fragment basis set, in contrast with the counterpoise-corrected interaction energy

calculated with the dimer basis set. The key point is that the conventional

counterpoise method cannot be applied unambiguously for fragment geometries

different from those within the complex, because the position of the ghost orbitals for

each fragment calculation becomes undetermined. Mayer and Surján36 showed that

the procedure outlined above was the only consistent way of introducing the fragment

relaxation in the counterpoise scheme.

Therefore, when dealing with molecular complexes, one must distinguish

between the interaction energy and the so-called stabilization energy. The former

stands for the energetic difference between the complex energy and that of their

subunits computed at the supermolecular geometry. The latter represents the total

stabilization energy resulting from bringing the fragments from an infinite separation

to the equilibrium distance. Both terms are often used in the literature ambiguously.

The interaction energy is, nevertheless, a useful theoretical concept. It can be

exactly computed by means of Intermolecular Perturbation Theory (provided that the

series converges). It allows for a further partitioning into different terms of more or

less clear physical significance and therefore gives insight into the nature of the

interaction. Another useful concept that can be derived is the so-called interaction

density, that is the difference between the electron density distribution of the

molecular complex and that of the free interacting molecules. A typical isosurface

map of the interaction density shows the polarization of the electron density of each

fragment induced by the presence of the other. Note that since the electron density is

mainly localized in the atomic positions, a density difference map comparing electron

densities of different geometries provides no meaningful chemical information in

terms of redistribution of the electron density due to charge densities overlap,

                                                
36 I. Mayer, P. R. Surján, Chem. Phys. Lett. 191, 497 (1992).
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induction, polarization, etc.

On the other hand, the stabilization energy provides the comparison with the

experimental results. Neither the thermometric nor the spectroscopical techniques can

provide such insight in the interaction energy, not even measure the relaxation energy.

There is a substantial difference between those experimental techniques. Direct

measures of the formation or dissociation energies yield no information of the

structural features of the complex. Of course, no pure energies can be measured;

instead, thermodynamic quantities such as enthalpies or free energies are determined.

That is, translational, rotational, vibrational thermal corrections and zero-point

vibrational energy contributions must be added to the computed stabilization energies.

Spectroscopic techniques do provide indirect insight in the geometry of the

complexes and the dynamical properties of the interaction. In the case of solid state,

X-ray and neutron diffraction give a averaged picture of the position of the atoms in

the crystal. Microwave and IR techniques are used to provide reliable interaction

potentials by fitting the experimental data to a parametrized potential, which will

provide information about the equilibrium configuration and zero-point oscillation

amplitudes37. NMR techniques can be used also to investigate proton transfers or

tautomerism equilibrium in solution and solid state.

From such a point of view, the theoretical modeling of the weak interactions

should provide not only accurate interaction energies, but also structural parameters of

the complexes, in order to correctly reproduce the anisotropy of the interaction, dipole

moments, electron density distribution, etc. When haunting for the accuracy, the

BSSE can represent and important source of error, yet keeping in mind that a correct

elimination of the BSSE does not ensure a good agreement with the experiment.

Indeed, efficient error cancellation sometimes induces to consider a given

methodology as accurate. Hence, correction of BSSE, anharmonicity, size consistency

and extensivity and proper inclusion of dynamical and statical correlation should be

added to the widely used black-box methodologies when looking for the chemical

precision.

In this work we focus on the efficient elimination of the BSSE in the

determination of any molecular property of the molecular complexes. That is, not just

                                                
37 K. R. Leopold, G. T. Fraser, S. E. Novick, W. Kemplerer, Chem. Rev. 94, 1807 (1994), and

references therein
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BSSE-corrected interaction energies, but also formation enthalpies38, geometrical

parameters39,40, force constants41, dipole moments42, rotational43 and tunneling

barriers41, wavefunction and electron densities44,45, one and two-center component

energies46 or many-body energetic contributions47.

To this end, the counterpoise method has been considered as a correction term

to the description of the molecular complex. This new interpretation48 of the

counterpoise method will be reviewed in  Section I.1.3.

I.1.1.3 Aprioristic methodologies

Another subject being discussed has been the so-called a priori correction

methodologies. In this case, rather than recalculating the fragments in the complex’s

basis set, these methods try to eliminate the BSSE at the complex’s calculation stage

by imposing some restrictions on the molecular orbitals, depending on the method.

The first attempt was carried out by Mayer49 in 1983, with the so-called Chemical

Hamiltonian Approach (CHA), which will be discussed in more detail in Section

I.1.4. Briefly, at the SCF level of theory, Mayer used second quantization techniques

to split the Hamiltonian into the sum of all the intramolecular operators and the pure-

interaction intermolecular operator. Then, the BSSE is removed by projecting all the

intramolecular terms into the subspace spawned by the basis functions of the
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corresponding molecular fragment. The final result is a description of the complex

where the BSSE has been eliminated, according to the defined fragments, with no

extra a posteriori calculations.

So far, the method has been applied at the SCF, MP2, DFT and CI levels of

theory with satisfactory results. The CHA and counterpoise methods correct for the

BSSE in a very similar way, and the most important fact is that “as the basis set

improves both methods converge to each other much faster than the BSSE disappears

from the interaction energies”50. Despite these findings, the non-hermitian nature of

the resulting BSSE-free Hamiltonian and the fact that the energy must be computed

using a different Hamiltonian (the conventional one) produced an skeptical reaction in

the scientific community31,51.

In another method, the so-called Constrained Dimer Function approach

(CDF)52, the BSSE is supposedly removed by including some extra constraints, with

the corresponding set of Lagrange multipliers, to the energy expression of the

supermolecule at the SCF level of theory. These constrains ensure that the occupied

orbitals of the supermolecule are not mixed with the approximate solutions of the

monomers. The solution of the final equations was derived using a perturbational

scheme. Only the leading term of the expansion was analyzed and no proof of the

convergence of the series was given. Moreover, Gutowski and Chalasinski51 proved

that the constraints imposed implied that the component of the occupied orbitals of

the fragment A which is orthogonal to the orbitals of fragment B is also excluded

from the dimer orbital space. Numerical calculations53 also pointed out the

degradation of the supermolecule description and hence no further development of the

method was performed.

Later on, other approaches have faced the BSSE problem in a similar manner

but all of them based in the (wrong) assumption that at the SCF level the BSSE can be

eliminated by imposing the molecular orbitals of each fragment to be expanded

exclusively on its own basis set.

                                                
50 I. Mayer, Int. J. Quantum Chem. 70, 41 (1998)
51 M. Gutowski, G. Chalasinski, J. Chem. Phys. 98, 5540 (1993)
52 A. J. Sadlej, J. Chem. Phys. 95, 6705 (1991)
53 I. Mayer, J. Chem. Phys. 97, 5257 (1992); A. J. Sadlej, ibid. 97, 5259 (1992)
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The first attempt, the Strictly Monomer Molecular Orbital (SMMO) SCF

approach, was developed by Cullen54 in 1991. In this method, the BSSE-corrected

supermolecule description is obtained by imposing to the SCF equations that each

molecular orbital must be localized into an individual fragment, and then expanded on

the fragment basis set. The author observed that the interaction energies obtained with

this method were systematically less attractive than the counterpoise-corrected ones.

Also, the difference was much larger at short intermolecular distances. He assigned

this effect to the neglect of the charge transfer contribution due to the special form of

the wavefunction. Indeed, Gutowski and Chalasinski51 pointed out that not just the

fragment energies but also the interaction energy are expanded strictly on the

fragment basis sets. That means that not only the charge-transfer contribution is

neglected but also other components of the interaction like the electrostatic and the

exchange are affected.

An analogous version, the co-called SCF for molecular interactions (SCF-MI)

was proposed by Gianinietti et al.55 a few years ago and very recently reformulated

using a locally projected technique by Iwata56 and coworkers. Again, the lack of some

of the true-interaction terms leads to BSSE-overcorrection. This can be clearly

observed when increasing the basis set size. For the water dimer complex , it was

observed57 that for a basis set like the TZP++, and systematically increasing the basis

set size to up to 548 functions, the SCF-MI interaction energy was 3.33kcal/mol,

whereas the uncorrected one was converged to 3.71kcal/mol. The difference in the

intermolecular distance was also larger than 0.1Å. Hence, the desired asymptotic

behavior of the uncorrected and the BSSE-corrected energies or any parameter in
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general, was not observed. It is worth noting that both the counterpoise and the CHA

results have proved to converge to the uncorrected ones when using large basis sets,

as will be shown in this work.

In the spirit of the two methods discussed above, Muget and Robinson58

proposed a much simpler self-consistent algorithm based on the localization of the

molecular orbitals. In this case, the orbital localization is not imposed in the SCF

equations. Contrarily, the canonic orbitals obtained from a conventional dimer SCF

calculation are localized on the monomers, reorthogonalized and further used to build

up the new Fockian. This process is carried out until self-consistency of the

wavefunction is achieved. Their interaction energy results for the ammonia dimer

showed the expected pathological behavior of such BSSE-correction methods.

Whereas the counterpoise-correction was converged to zero upon increasing the basis

set size, their BSSE values were far from being converged. Another rather surprising

effect was that the inclusion of diffuse functions in the basis set greatly enhanced the

BSSE extent in the interaction energies, which is in total disagreement with the

counterpoise and CHA results.

As for the electron correlation level, several methods59,60,61 have been also

proposed in order to minimize the BSSE. The most successful ones have been the so-

called local correlation methods61. Curiously, the main goal of these methods was to

reduce the computational cost of the application of high-level electron correlation

methods to large systems, while the BSSE reduction can be considered as a side

effect. In this method, the supermolecule occupied orbitals are localized and kept

orthonormal. Then, a set of virtual orbitals obtained by projecting out the occupied

space from the atomic orbitals is assigned to each localized molecular orbital (LMO).

The excitations involved in the corresponding correlated method are restricted to the

local domains so that the double excitations of the electrons of a fragment into the

localized virtual orbitals of the partner are automatically excluded. The method has
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been applied at the MPn, n=2-4 and CCSD levels of theory. Some recent calculations

at the MP2 level of theory (LMP2)62 have shown that the BSSE is dramatically

decreased, compared to the full-counterpoise method. The electron correlation

contribution is actually negative, that is, the estimated CP-correction with the LMP2

method is smaller than the HF+MP2 counterpoise correction. This shows that,

obviously, not only the BSSE is eliminated from the correlation energy but also some

true-correlation contribution is lost in the local approximation.

In a recent investigation, Schütz63 et al. studied small water clusters at LMP2

level of theory, where they showed that the geometrical parameters and stabilization

energies obtained with the LMP2 method for the water dimer were comparable to the

counterpoise-corrected ones obtained by Xantheas64.

This method, however, cannot be considered as the ultimate solution for the

BSSE correction. Indeed, the LMP2 method does represent a valuable way to reduce

the BSSE at the correlated level, although, by construction, it is unable to deal with

the BSSE at the HF level, since the localized molecular orbitals are obtained from an

uncorrected SCF calculation. Therefore, in case of a large BSSE effect at the

uncorrelated level, the LMP2 method might fail to predict reliable results, and a

method that eliminates the BSSE at both the uncorrelated and correlated level, like the

CHA-MP265, may be desirable.

In this work, as a paradigm of the aprioristic methodologies, the Chemical

Hamiltonian Approach has been used in order to obtain BSSE-corrected

wavefunctions at HF and DFT levels of theory. The results are given in Section II.1.3.

On the other hand, the restricted and unrestricted versions of the CHA-SCF

equations for an arbitrary number of fragments have also been implemented in a series

of external programs interfaced to the HONDO package. The details of the novel

developed algorithm are presented in Section II.2.
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I.1.1.4 Current trends

Nowadays, the counterpoise method is still the most widely used in the

literature. Most authors take the BSSE into account when performing calculations of

intermolecular complexes. In some particular cases, however, there is a marked

tendency to try to use the largest basis set possible or simply neglect the effect of the

BSSE. The most controversial situations occur when dealing with open-shell

complexes, charged molecular complexes, molecular aggregates composed by more

than two fragments, or intramolecular processes like rotational barriers or proton

transfer reactions. These particular cases have been addressed in this work and will be

discussed in more detail in Section I.1.6.

Regarding the a priori schemes, only the CHA and SCF-MI methods are

currently under development. During the last months prior to the completion of the

present work, Mayer succeeded to reformulate his CHA-SCF equations by using a

Hermitian Fock matrix66, which will hopefully lead to significant simplification on the

further treatment of the electron correlation, as well as facilitate the use of gradient

techniques with a reduced computational cost.

Also, the SCF-MI method has been implemented recently in standard ab initio

programs but the limitations of this approach, commented above, have prevented the

scientific community at the present time to adopt this methodology in their

calculations.

It is worth to note also that BSSE-free Intermolecular Perturbation Theory

methodologies like the SAPT have been also improved during the last years and they

are becoming more and more attractive, mainly for the study van der Waals

complexes. The implementation of the methodology for three fragments, the

derivation of equations for open-shell systems,67 and the inclusion of the

intramonomer correlation corrections to the interaction energy are the most important

achievements in the last few years. Furthermore, the SAPT method, together with the

conventional (counterpoise-corrected) supermolecular MPn results, can be seen also

as an energy decomposition scheme at the correlated level.

                                                
66 I. Mayer, Hermitized Fockian in the Chemical Hamiltonian Approach: Fulfilling a Löwdin
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Even though it is a methodology which is free of BSSE by construction, the

SAPT results depend upon the considered geometry of the complex, which in turn can

be strongly affected by the BSSE. In this work this dependence has been also

numerically investigated. The results obtained are presented in Section II.1.4.1.
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I.1.2 The actual implications of the BSSE

As commented in the previous section, the counterpoise-correction has been

traditionally related intimately to the concept of the interaction energy. Furthermore,

the existence of the BSSE has been connected only to the calculation of interaction

energies. The fact that the BSSE also affects the shape of the PES and thus the

position of the stationary points and curvature of the PES forces to a reinterpretation

of the problem.

Let us assume that one might be interested in the structure of a given molecular

complex, but not in the interaction energy that brings it weakly bonded. One can

argue that a conventional geometry optimization, followed by the corresponding

vibrational analysis, is free of the BSSE since the molecular complex is considered as

a whole. That is, no partitioning of the complex seems necessary if there is no

intention of computing the interaction energy.

In a second step, let us consider that the given complex is actually composed by

two monomers (fragments), and we do are interested in the stabilization energy. Once

the monomeric species are defined, the next step would be to compute the respective

absolute energies of the monomers and substract them from the complex energy.

However, in this case the BSSE appears because one is substrancting quantities

obtained using a projection of the exact values on different Hilbert spaces. The

unbalance is due to the monomer calculations so that the counterpoise philosophy is

to compute the monomer energies in the dimer centered basis set (DCBS), instead of

the monomer centered basis set (MCBS). For the sake of simplicity, let us assume that

nuclear relaxation effects upon complexation are negligible. Now, since the monomer

energies depend on the intermolecular parameters, because they determine the

position of the DCBS, the optimized complex geometry do not longer correspond to

the stationary point of the counterpoise-corrected interaction energy. In other words,

the counterpoise-correction induces to a new geometry of the molecular complex

whose interaction energy is optimum (point b in SCHEME 1), different from the

former geometry that was assumed to be correct because no MCBS were defined

(point a in SCHEME 1).

One has two options now; either the DCBS description of the complex bears
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some BSSE or the MCBS monomer energies are the only inconsistency. If one sticks

to the latter case, two different essentially correct geometries need to be defined,

depending upon whether the determination of the interaction energy is the goal or it is

not. Actually, it could be argued that whenever the definition of fragments is needed,

in essence any MCBS, the counterpoise-corrected geometry (PES) should be used.

Otherwise, the DCBS dimer geometry is the correct one.

Now let us go one step further. Suppose that one is interested in the electron

density distribution (wavefunction) of the complex, let us say to obtain the interaction

density. The arising question is obvious. Should the wavefunction be computed at the

uncorrected geometry of the complex or at the counterpoise-corrected one? In the first

case, the resulting wavefunction will include the BSSE effect indirectly, as it is

computed at a geometry which is inconsistent with the monomer DCBS calculations,

that is, with the one we are using to determine monomer-dependent properties of the

complex. In the latter case, the wavefunction of the complex will not be that of the

equilibrium geometry because it is not computed at the complex’s DCBS optimum

geometry.

This contradiction forces us to consider the first option proposed, that is, the

DCBS description of the dimer includes some BSSE. Even if there is no need to

define the MCBS basis sets, the BSSE appears in the calculation of the dimer.

Therefore, it is essential to assign any BSSE correction to the energy (description) of

the molecular complex, namely counterpoise or aprioristic, which by definition

already acts on the dimer.

However, the implications of this reasoning generate another ambiguity. The

DCBS description of the dimer is already BSSE-contaminated with no previous

definition of the MCBS or fragments, whereas different partitioning of the complex

leads to different BSSE-corrected descriptions of the system. In other words, there can

be several BSSE-corrected descriptions of the complex depending upon the definition

of the MCBS. At this point one may wonder what makes the weakly bound

complexes different from the strongly covalent or ionic bonded molecules. In fact,

there is no physical difference, other than the nature and strength of the interaction

between them. And obviously there is no mathematical difference either. Ab initio

calculations do not require a previous knowledge of the nature and number of bonds

of the chemical system.

All these considerations point out that the existence of the BSSE is not restricted
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to the molecular interaction calculations. The BSSE is a intramolecular phenomenon

due to the use of truncated atomic centered basis sets and it is present in any

calculation. Moreover, since the calculation of  a chemical system is inherently BSSE-

contaminated, the definition and exact correction of the BSSE must come from the

chemical system itself, and not out of any extra subunit contribution.

This means that the counterpoise correction cannot be considered as an exact

methodology, but a very good approximation and efficient simulation of the BSSE

effects within a molecular complex. This does not imply that the counterpoise

theorem is wrong. The counterpoise method do can provide an exact BSSE-free

interaction energy. In a sense, the interaction energy is only a specific characteristic

value that comes from a more general entity, i. e., that can be extracted from the

wavefunction of the quantum mechanical description of the systems. In our opinion,

since the counterpoise method can not provide this wavefunction, the counterpoise-

corrected description of a chemical system can not be considered exact within the

given basis set.

The only definition of the BSSE consistent with the considerations expressed

above was given by Mayer in his Chemical Hamiltonian Approach49. In his work, the

existence of an intramolecular BSSE is revealed by the analysis of the effects of the

truncation of the basis set expansion on each atom of the chemical system.

Unfortunately, the exploration of the CHA at the atomic level did not provide

satisfactory results for a main reason. First of all, the existing basis sets are optimized

in order to reproduce a given molecular property, namely dipole moments,

polarizabilities, formation enthalpies, etc... For the construction of these basis sets, a

set of different molecules are used to fit the experimental or desired results to the

predicted ones obtained from a given ab initio method. However, those molecules

were not free of the atomic BSSE so that its elimination results in poor results

compared to the uncorrected ones. In the case of weakly bonded systems, or

molecular aggregates, the correction of the intermolecular BSSE usually results in a

improvement of the molecular complex description because the sample molecules

from which the basis sets were parametrized were free of this specific BSSE.

This is why the intramolecular basis set extensions are necessary for a good

description of the chemical systems by means of ab initio techniques. It is

meaningless to try to eliminate all the basis set extension in a calculation as long as an

essential component of the ab initio methods, like the basis sets, are already taking
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them into account.

If the basis sets were constructed with a proper elimination of the intramolecular

BSSE, then there would be no ambiguities in the definition of the fragments in a

molecular aggregate since each atom would become a fragment. Chemical reactions

where the number and definition of the classical molecular fragments changes could

then be easily studied. Probably, the much-sought transferability of the atoms within

molecules could be more accurately reached.

This is however out of the scope of the present work and it will be limited to the

particular, yet very important, case of the elimination of the intermolecular BSSE on

molecular complexes.

I.1.3 An alternative interpretation of the CP-correction

Now, it will be shown how to trivially consider the counterpoise-correction as a

correction of the complex energy, and how this can be used to define counterpoise-

corrected gradients, vibrational frequencies, dipole moments and any derivative of the

molecular complex energy.

Let us consider a supermolecule AB made up of two interacting subsystems A

and B. The stabilization energy can be expressed as:

( ) ( ) ( ) ( )BEAEABEABE B
B

A
A

AB
AB −−=∆ (1)

We define ( )XE Z
Y as the energy of a subsystem X at geometry Y with basis set

Z. The stabilization energy can be split in the following way

( ) ( ) ( )BAEABEABE reltin ,∆+∆=∆ (2)

The first term represents the interaction energy contribution, which depends

only on the supermolecule geometrical parameters, {AB}

( ) ( ) ( ) ( )BEAEABEABE B
AB

A
AB

AB
ABtin −−=∆ (3)
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whereas the second (positive definite) term represents the relaxation

contribution, which compensates for the geometry distortion of the subsystems in the

supermolecule, ( ) ( )BEAE B
AB

A
AB and , with regard to the isolated optimum geometry,

( ) ( )BEAE B
B

A
A and .

( ) ( ) ( ) ( ) ( )BEBEAEAEBAE B
B

B
AB

A
A

A
ABrel −+−=∆ , (4)

Note that ( )BAErel ,∆  depends on both the supermolecule and subsystem

parameters, {AB, A, B}.

According to the counterpoise idea, since the same basis set is used in the

relaxation term for each subsystem, only the interaction energy contribution term

brings about BSSE. Thus, the counterpoise-corrected interaction energy should be

written as:

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]BEAEBEAEBEAEABEABE B
B

A
A

B
AB

A
AB

AB
AB

AB
AB

AB
AB

CP −−++−−=∆ (5)

Rearranging terms of the expression above one obtains

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ] ( ) BSSE

AB
AB
AB

AB
AB

B
AB

A
AB

B
B

A
A

AB
AB

CP

ABEBEAEBEAE
BEAEABEABE

δ+∆=−−++

+−−=∆
(6)

where the CP-correction expressed as BSSE
ABδ  presents the following properties:

� Tends to zero as the fragment’s basis set (MCBS) approaches completeness.

� Due to the variational principle, it is a positive definite value (definite no negative

in case of complete MCBSs)

� Depends upon the geometrical parameters of the complex, as shown by the

subindex AB

The third property implies that the BSSE is not an additive term to the
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stabilization energy. Actually can be strongly geometry-dependent so that it should be

taken into account at every point of the potential energy surface when looking for

stationary points.

Indeed, any stationary point of the uncorrected supermolecule PES determines a

stationary point of the interaction energy surface, because there is no variation in the

isolated subsystems. Differentiating Eq. (5)

( )( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( ) { }ABR
R

BE
R

AE
R

BE
R

AE
R

ABE
RR

ABE
R

ABE

i
i

AB
AB

i

AB
AB

i

B
AB

i

A
AB

i

AB
AB

i

BSSE
AB

ii

CP

∈∀
∂

∂−
∂

∂−
∂

∂+
∂

∂

+
∂

∂=
∂

∂+
∂

∆∂=
∂

∆∂ δ

(7)

it can be seen that the uncorrected supermolecular geometry is only valid under the

assumption that the BSSE defined as BSSE
ABδ  is stationary at the current nuclear

arrangement.

( ) { }ABR
R i

i

BSSE
AB ∈∀=

∂
∂ 0δ

In order to obtain corrected interaction energies, one has to deal with a

corrected supermolecular PES. The counterpoise corrected PES for the supermolecule

can be defined as follows

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]BEAEBEAEABEABEABE AB
AB

AB
AB

B
AB

A
AB

AB
AB

BSSE
AB

AB
AB

CP −−++=+= δ (8)

The equation above represents another point of view of the CP-correction. In

our opinion, it should be more generally assigned to the supermolecule description,

rather than to the interaction energy. Some authors have argued that BSSE is a pure

interaction energy term; however, BSSE exists even thought we are not interested in

interaction energy. In fact, EAB(AB) and ∆EAB(AB) differ by a BSSE-free constant term

which depends only on the system and the definition of the fragments. Therefore it

seems quite coherent to assign the BSSE correction to EAB(AB) .
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Eq. (8) can be easily generalised to Nth-order energy derivatives.

( ) ( )

( ) ( ) ( ) ( ) ( )









∂
∂−

∂
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=
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∂
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∂
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n

n

AB
AB

n

n

B
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n

n

A
AB

n

n

AB
AB

n

n

BSSE
AB

n

n

AB
AB

n

n

CPn

R
BE

R
AE

R
BE

R
AE

R
ABE

RR
ABE

R
ABE δ

(9)

Second and third derivatives to be used for both harmonic and anharmonic

vibrational frequency analysis are expressed as linear combinations of the

contributions of each term. Any property defined as a derivative of the energy can be

corrected for the BSSE by means of the counterpoise method. Unfortunately, there is

no definition for a CP-corrected electronic density for the supermolecule.

I.1.3.1  The role of the fragment relaxation term

In order to calculate the CP-corrected stabilization energy neglecting the

relaxation of the fragments geometry, one can take simply

( ) ( ) ( ) ( )BEAEABEABE AB
AB

AB
AB

AB
AB

CP
relno −−=∆ − (10)

that is, the CP-corrected interaction energy.

In principle, from Eq. (2), the fragment relaxation contribution is additive to the

interaction energy. Indeed, it is additive only in the sense that it switches from

interaction energies to stabilization energies at any point of the complex PES.

However, the geometries corresponding to the stationary points of both quantities can

be very different, so that the fragment relaxation should not be considered as an

additive term. The only exception is for single-point calculation at frozen complex

geometry, like most of the Intermolecular Perturbation Theory analysis in the

literature.

It is a common practice in the intermolecular interaction calculations to freeze

the fragment geometries and optimize complex energy for the rest of intermolecular

parameters. A test calculation of a full optimization is used to assess the magnitude of

the relaxation term. In many cases, it is claimed that the validity of Eq. (3) can be
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acceptable if the relaxation contribution is negligible or smaller than the desired

accuracy.

As shown in Eq. (4), its value depends both on the supermolecule parameters

and those of the isolated fragments. However, derivative of the fragment relaxation

term

( )( ) ( ) ( ) ( ) ( )( )

( )( ) ( )( ) { }BAR
R

BE
R

AE
R

BEAEBEAE
R

ABE

i
i

B
AB

i

A
AB

i

B
B

A
A

B
AB

A
AB

i

rel

,∈∀
∂

∂
+

∂
∂

=

=
∂

−−+∂
=

∂
∆∂

(11)

only depends on the intramolecular parameters. Indeed, derivatives with respect

to ( ) ( )BEAE B
B

A
A and  vanish by definition. Derivatives involving intermolecular

parameters also vanish because both fragment contributions are calculated using only

their own basis set. Therefore, the value of the fragment relaxation term does not

depend on the variation of the intermolecular parameters.

Neglecting the fragment relaxation is particularly dangerous when considering

transition states. In many cases, the geometries of the fragments in the supermolecule

transition state structures are much more stretched, leading to a large fragment

relaxation contribution. This is particularly evident for chemical reactions involving

intermolecular complexes, like the concerted hydrogen exchange. In case of internal

rotational barriers, the difference between the fragment relaxation contributions of the

minimum and transition state is usually very small. Nevertheless, in Section II.1.2 it

will be shown that these differences are not additive to the total barrier for internal

rotation, mostly when the fragment relaxation is clearly nonadditive to the interaction

energies.

However, when dealing with both the BSSE and the fragment relaxation another

problem arise. One must take into account that, if we stick to the old definition of the

CP correction, where it is assigned to the interaction energy, we will not be able to

obtain stationary points for the CP-corrected stabilization energy. Indeed, the

optimization of the CP-corrected interaction energy is only possible taking into

account the variation of the intermolecular parameters
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( )( ) ( )( ) ( )( ) ( )( ) { }'ABR
R

BE
R

AE
R

ABE
R

ABE
i

i

AB
AB

i

AB
AB

i

AB
AB

i

CP
relno ∈∀

∂
∂−

∂
∂−

∂
∂=

∂
∆∂ − (12)

{AB’} represent the variables corresponding to the intermolecular parameters of

the complex. For a full CP-corrected optimization, the CP correction must be formally

assigned to the complex’s energy and hence the fragment relaxation term must be

included.

The value of the fragment relaxation contribution is always determined at the

uncorrected supermolecule geometry, which is indeed different when corrected for

BSSE by the counterpoise method. One must assume that the relaxation contribution

at the geometry of both the corrected and uncorrected supermolecular stationary

points is of the same order of magnitude. Hence, even though it is a quantity free of

intermolecular BSSE, the fragment relaxation term can indirectly affect the CP-

correction value if the geometries of the uncorrected and CP-corrected stationary

points are very different. In this way, one could a priori predict a given fragment

relaxation contribution based on that of the uncorrected complex stationary point, and

then obtain a totally different value at the CP-corrected geometry.

It will be shown in this work that the effect of the BSSE on the intramolecular

parameters is negligible compared to the modification of the intermolecular distance

and bond angles. Hence, the inclusion of the CP-correction doesn’t change the

aforementioned problematic when the fragment relaxation is neglected.

The most important thing to bear in mind is that the monomer relaxation term is

additive only when switching from interaction energies to stabilization energies at any

point of the complex PES. As mentioned above, the CP-correction is indirectly

affected upon inclusion of the monomer relaxation due to the change in the location of

the stationary point. However, this change is by far less important than the induced

change on the total energy of the complex. In principle, total energies are not of much

interest. However, when calculating energetic barriers, i. e., differences between

states, the effects of neglecting the monomer relaxation are much more important than

merely the monomer relaxation energy. In other words, the monomer relaxation

contribution is not additive at all neither for energy differences between total energies

nor for interaction energies.
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I.1.4 The Chemical Hamiltonian Approach

In 1983 Mayer introduced the so-called Chemical Hamiltonian Approach

(CHA)49. In this method, the terms responsible for the BSSE are eliminated from the

Hamiltonian, yet keeping all true interaction delocalizations with physical meaning.

This method, however, is much more than a scheme to eliminate the BSSE in

molecular complexes as, indeed, it reveals the existence of an intramolecular basis set

superposition error.

The Hamiltonian operator, within the Born-Oppenheimer framework, contains

only one and two-particle operators, so that the three and four-center integrals that

appear as a consequence of the MO-LCAO approximation have no physical

correspondence. The CHA, in its original formulation, is intended to be a partitioning

scheme of the SCF Hamiltonian in different atomic and interatomic contributions

expressed in terms of the one and two-center integrals. One of these contributions is

assigned to basis set extensions due to the incompleteness of the atomic basis sets.

This methodology can be easily applied to the BSSE problem of the

intermolecular interactions simply by defining molecular fragments, instead of the

atomic ones. In this case, the Hamiltonian can be partitioned intro an (effective)

intramolecular, pure intermolecular and intermolecular basis set extension terms. This

particular case has been the most widely developed, in terms of using the physical

Hamiltonian, i.e., without the basis set extension term, to derive SCF-like equations

(CHA-SCF68) and further introduction of electron correlation through full-CI69 (CHA-

CI) or MP265 (CHA-MP2) CHA-adapted methodologies.

At the SCF and DFT level of theory a simpler way to eliminate the BSSE was

proposed70 and called CHA/F and CHA/DFT, respectively. Instead of acting on the

one and two-electron integrals, that is on the Hamiltonian, the essence of the CHA

method is applied at each step of a conventional SCF algorithm to the conventional

                                                
68 I. Mayer, Á. Vibók, Chem. Phys. Lett. 136, 115 (1987)
69 I. Mayer, Á. Vibók, P. Valiron, Chem. Phys. Lett. 223, 166 (1994)
70 I. Mayer, Á. Vibók, Int. J. Quantum Chem. 40, 694 (1991); Á. Vibók, I. Mayer, ibid. 43, 801 (1992)
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Fock matrix. In this case, the same HF solution than that of the isolated fragments is

ensured for a hypothetical ghost-orbital fragment calculation. The implementation of

this algorithm is much simpler than the CHA-SCF one and can be extended to DFT

calculations based on the Kohn-Sham equations.

As for the accuracy, both the CHA/F and CHA-SCF yield almost equivalent

results. However, only the CHA-SCF canonic orbitals (both occupied and virtuals)

can be safely used for further inclusion of electron correlation50 energy.

In this work, the CHA/F and CHA/DFT versions have been used for the study

of several complexes. On the other hand, the CHA-SCF equations for an arbitrary

number of fragments have been coded using a novel algorithm for both the restricted

and unrestricted versions. Further extension to the CHA-MP2 and CHA-UMP2

methodologies, respectively, is in progress and no results will be presented here.

In the following section, a deeper insight on the CHA philosophy, problems and

implementation will be given.

I.1.4.1 CHA-SCF

Let us consider a molecular aggregate composed of N interacting fragments. In

the case of the isolated fragments, one deals with intramolecular operators (with

respect to the molecular aggregate) acting on intramolecular basis functions, i. e. the

MCBS of the given fragment. The resulting function will have also an intramolecular

character because the final elements or integrals will be expanded in the Hilbert

subspace spawned by the respective MCBS. However, in the description of a given

fragment within the complex, i. e., when the whole basis functions of the complex are

available, the result of the action of an intramolecular operator on the same

intramolecular basis functions can be freely expanded in the whole basis set. These

basis set extensions have a purely BSSE character.

The basic idea is to analyze how these undesirable expansions can be avoided in

order to ensure that the resulting wavefunction is the same than that of the MCBS

calculation. And then, when doing the calculation of the molecular aggregate, the

same changes must be applied on the  intramolecular part of the Hamiltonian.

Therefore, let us define hA as the monoelectronic term of the Hamiltonian
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associated to the fragment A of the complex,

∑∑∑
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the total Hamiltonian being

∑∑∑∑∑
≠≠

++−∇−=
AAA AA MN

ii ij

N

i

M

i

N

i
i

A

R
ZZ

rr
ZH

βα α

βα

α α

α 1
2
1ˆ 2 (14)

NA, MA, and Zα correspond to the number of electrons, number of atoms and

their corresponding charge, of the fragment A.

The action of this operator, of intramolecular nature with respect to the

molecular complex Hamiltonian, on a basis function assigned to this fragment can be

formally expressed as

( ) AAAAAAAA hPhPh ϕϕϕ ˆˆ1ˆˆˆ −+≡ (15)

being

A
j

Aji
ijA

A
i

A SP χχ∑
∈

−=
,

1
)(ˆ (16)

the projector associated to the subspace spawned by the atomic orbitals of the

fragment A. The inverse matrix of the metric, S-1, must be included for the general

case of non-orthogonal basis sets.

As the basis set increases, the second term hopefully diminishes, being zero in

the hypothetical case of the complete basis set. It is expected that the contribution of

the first term is larger than that of the second. However, the most important point is

that, in the case of the isolated fragment calculation (MCBS) or the exact solution one

has trivially

AAAAA hPh ϕϕ ˆˆ = (17)
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Whereas this does not hold when the fragment dispose of the whole molecular

basis set or atomic orbitals. Thus, the term ( ) AAA hP ϕˆˆ1− , the projection on the

orthogonal complement of the Ath atomic orbital’s subspace of the result of applying

the intramolecular operator over a atomic orbitals of the same subspace, is the

responsible for the BSSE. In order to obtain a molecular complex description

consistent with that of the composing fragments this term must be dropped from the

Hamiltonian of the molecular aggregate. That means one must perform the following

substitutions

AAAAA hPh ϕϕ ˆˆˆ
⇒

( ) ( ) ( ) ( ) ( ) ( )2112ˆ1ˆ211

1212

A
j

A
i

AAA
j

A
i r

PP
r

ϕϕϕϕ ⇒

(18)

for the mono- and bielectronic term, respectively. Note that in the later case a

projector for each electron is needed.

It can be seen that, by performing these substitutions, the intramolecular

integrals that correspond to the representation of the operator in the given basis set are

transformed in the following way.

{ }j
A

ij
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Aij

A
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,
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)( =⇒ ∑
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∀ k,l ∈  A, ∀ i,j

(19)

Sij corresponds to the elements of the metric matrix of the molecular aggregate

basis set. Note that not all the integrals are transformed; only when the atomic orbital

of the right–hand side of the integral belongs to the Ath fragment basis set. The

projectors act on the right-hand side of the integrals, so that the CHA-transformed

integrals do not satisfy the usual symmetry. In fact, they have the following properties



The Chemical Hamiltonian Approach - 45

{ } { } [ ]

{ } { } },{},{|ˆ||ˆ|

},{},{|ˆ||ˆ||ˆ|

AjAiAjAihh

AjiAjihhh

i
A

jj
A

i

j
A

ii
A

jj
A

i

∈∉∀∨∉∈∀≠

∉∀∨∈∀==

χχχχ

χχχχχχ
(20)

In case of the two-electron integrals it reduces to

{ } [ ] },,,{},,,{|| AlkjiAlkjilkjilkji ∉∀∨∈∀= χχχχχχχχ

{ } { } { } },;,{},;,{||| AlkAjiAjiAlkjilkklijlkji ∉∈∀∨∉∈∀≠= χχχχχχχχχχχχ
(21)

In short, if all the atomic orbitals involved in the integral belong to the same

subset, the original integral remains unchanged. If both belong to the same fragment

that the corresponding operator, the integral has a pure intramolecular character

whereas if both belong to a different fragment, the integral is purely intermolecular.

Also, the two-electron integrals remain unchanged with respect to the interchange of

the electrons. Unfortunatelly, neither the one- nor the two-electron integrals are

symmetric, which means that the transformed intramolecular Hamiltonian is not

hermitian. As a consequence, the whole Hamiltonian of the Ath fragment in the whole

basis set complex will not be hermitian either. This will introduce some difficulties,

both technical and conceptual, when dealing with the CHA Hamiltonian of the

complex.

The previous analysis showed how obtain the description of a fragment in the

whole basis set consistent with that of the fragment with its own basis set. The

question now is the following: how the molecular complex Hamiltonian can be

partitioned into intra and intermolecular components?

It is not a trivial task, indeed. For instance, if one tries to separate the kinetic

energy into the contributions of the N fragments, one must distribute the electrons and

assign each of them to a fragment. For instance, in the simplest case of two fragments

A and B one has
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whereas it is well-known that by the Pauli antisymmetry principle, the electrons

must be indistinguishable and the wavefunction must be antisymmetric with respect to

the interchange of two electrons.

There is, however, a formalism that does allow for such a partitioning, the so-

called Second Quantization (SQ)71. The details of this formalism will not be discussed

here. In the particular but usual case of using a finite, truncated, basis set, the

Hamiltonian of a system can be expressed explicitly by means of the SQ formalism in

terms of the so-called annihilation and creation operator and the one and two-electron

integrals over the basis set. These operators act on the wavefunction in such a way

that the electron described by the corresponding molecular orbital is added or

removed. Therefore, the expression of the Hamiltonian is usually given with the

corresponding integrals expressed in terms of the molecular orbitals.

However, our goal is to work with the atomic orbitals since they can be

partitioned into different subsets, one for each fragment72. As mentioned before, these

atomic orbitals do not form an orthogonal set, so that a variant of the classical SQ

formalism that takes into account this overlap must be used. Basically, biorthogonal

orbitals are used to define the creation and annihilation operator whereas the one and

two-electron integrals are expressed on the AO basis set. A biorthogonal set {φi} is

defined in such a way that

( )
ijijijji

ijjiijii

SSandS

S
11
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|

|;|
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−

≡=〉〈

=〉〈=〉〈

χχ

δχφφφ
(23)

where the {χi} correspond to the original, non-orthogonal set. The

corresponding creation and annihilation operators are formally expressed in terms of

the AO set and the biorthogonal set, respectively, so that the necessary

anticonmmutation rule holds for the non-orthogonal case.

The interesting advantage of the SQ formalism is that the Hamiltonian does not

                                                
71 P. R. Surján, Second Quantized Approach to Chemistry, Springer-Verlag Berlin Heidelberg (1989)
72 In the case of using bond function they can be either assigned to a given fragment or they can be

considered as a (dummy) fragment itself.
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depend on the number of electrons of the system, but is determined uniquely by the

elements of the one and two-electron terms Hamiltonian. This dependence is moved

onto the wavefunction.

Having said that, the Hamiltonian of the complex in terms of this mixed

formalism is expressed as
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whereas for the Ath fragment description of the same basis set, i. e. including the

ghost orbitals one has
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where ĥ  and Aĥ  correspond to the monoelectronic part of the total and Ath

intramolecular Hamiltonian, respectively, as defined previously in Eq.(13).

Finally, the expression of the Ath fragment Hamiltonian expanded on its own

basis set (MCBS) can be written, analogously, in the following way

[ ] ∑∑

∑

≠

−−++−

∈

−

−+

∈

−

++

+=

AM

A
A
A

A

A
A

effA

R
ZZ

SS

hSH

βα αβ

βα
σρνµγν

γλρσνµ
λµ

νµ
λνµ

λµ

ρσγλχχχχ

νλχχ

~̂~̂ˆˆ|

~̂ˆˆˆ

1
)(

,,,,,

1
)(2

1

,,

1
)(

)(

(26)

The operator above is called effective intramolecular Hamiltonian, in the sense

that it acts on a molecular function expanded in the whole basis set in the same

manner the original Hamiltonian acts in the MCBS case.

All the integrals and creation operators ( ++ γλ ˆ,ˆ ) are expressed in terms of the

atomic orbitals, whereas the annihilation ones ( −− ρσ ~̂,~̂ ) are given by its biorthogonal

set.
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Now, we can easily express the Hamiltonian of the molecular complex as the

sum of the intramolecular Hamiltonians associated to each fragment and the pure

intermolecular interaction operator .

∑∑
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+=
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N
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A HHH int

1

ˆˆˆ (27)

were the intermolecular interaction term can be easily obtained substracting

Eq.(25) for each fragment from Eq.(24).
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It includes the interaction of the electrons of each fragment with the nuclei of

the other fragments and the electron repulsion between electrons belonging to

different fragments.

Now, if one substitutes the expressions of the intramolecular operators HA by

that of the effective intramolecular Hamiltonian HA(eff) for each fragment, and keeps

the intermolecular interaction contribution unchanged, the CHA Hamiltonian is

retrieved.



The Chemical Hamiltonian Approach - 49

[ ]

[ ]

∑ ∑

∑∑ ∑

∑ ∑∑

∑ ∑ ∑∑

∑

∑ ∑

≠
∈
∈

∈

−

∈

−++−−

∈

−+

∉

−

≠ ∈

−+

∉

−

−−++−

∈

−

−+

∈

−

+

+




+

+−

−




−

−




+

+




=

N

BA

NN

B
A

A B

B BA A

A

N

BA A AB B

B

A
A
A

N

A

A

A
A

CHA

BA

R
ZZ

SS

r
ZS

r
ZS

SS

hSH

,

1

,,,

1

,

1

,

1

1
)(

,,,,,

1
)(2

1

,,

1
)(

~̂~̂ˆˆ|

~̂ˆ

~̂ˆ

~̂~̂ˆˆ|

~̂ˆˆˆ

β
α αβ

βα

ρ σ
σρνµγν

γλνµ
λµ

ν
νµ

λµ
λµ

ν
νµ

λµ
λµ

σρνµγν
γλρσνµ

λµ

νµ
λνµ

λµ

ρσγλχχχχ

νλχχ

νλχχ

ρσγλχχχχ

νλχχ

(29)

The CHA philosophy is applied directly to the Hamiltonian operator and hence

to the corresponding one and two-center integrals. Therefore, no localization of the

molecular orbitals o restriction on their expansion coefficients is introduced, as

opposite to most of the other a priori BSSE-correction methods.

With this methodology, the total Hamiltonian of the molecular complex is

BSSE-free, but it has the main drawback that the hermiticity is lost. There are several

implications of this fact. The most important one is that the application of the

variational principle in order to find the expression for the spin-orbitals of the CHA

wavefunction is not at all trivial.

However, it was shown that a pseudo-secular equation analogous to the

conventional SCF can be derived by applying the Brillouin theorem. Starting from the

Schrödinger equation

0||ˆ >=Ψ−>Ψ EH CHA (30)

The trial wavefunction is approximated by a single-Slater determinant built up

of orthonormalized molecular spin-orbitals φi , and the expectation value is

>ΨΨ〈= |ˆ| CHAHE (31)
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Now, one must require that the difference in Eq.(30) has no component

including any singly-excited configurations, according to the Brillouin theorem. In

order to do that, the coefficient for all 〉→Ψ )(| 1
vir
p

occ
i φφ terms in this difference are

forced to vanish. The set of resulting equations68 provide the appropriate optimization

of the spin-orbitals that form the Slater determinant.

The final expressions closely resemble the conventional Hartree-Fock pseudo-

secular equations, with the difference that the Fock matrix being diagonalized is non-

hermitian. One has

iii
CHA cScF ε= (32)

where the modified Fock matrix can be written as the conventional one
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but using the CHA-modified one and two-electron integrals65
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(34)

Since the CHA Fockian is not hermitian, its eigenvectors are not orthogonal and

the virtual orbitals can overlap with the occupied ones. Also, both the eigenvectors

and the eigenvalues may become complex.

The CHA energy and wavefunctions of a system can be obtained the following

iterative self-consistent algorithm
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Converged

 One-and two-electron integrals
Initial guess of density matrix P

Construction of FCHA
matrix

Transformation of FCHA to
the MO basis set

Diagonalization of the non
symmetric transformed

Fock matrix

Orthogonalization of the
occupied orbitals set

Backtransformation
of the occupied MO

on the AO basis

Construction of the
new density matrix, P

Construction of
the conventional

Fock matrix

Determination of
the CHA molecular

energy

N

Y

SCHEME 2

Once the CHA Fockian is contructed, the algorithm above is analogous to that

of the conventional SCF procedure except for two important details. First, since the

Eq.(31) holds for Slater determinants build up from orthonormalized orbitals, the
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occupied orbitals must be orthonormalized before they are used to construct the

density-matrix for the next iteration. And second, note that when the self-consistency

is achieved, the conventional Fockian must be built and used to compute the CHA

energy.

However, the determination of the CHA Fockian at every iteration is not a

trivial task. Also, the diagonalization of a non-symmetric Fock matrix needs for a

robust method since the eigenvalues and eigenvectors may occur in complex pairs.

In Section II.2, these two problematic steps are examined with more detail.

Particularly, an algorithm for the efficient construction of the CHA Fockian is

presented. It will be shown that the computational cost of the described CHA

modifications is very small. The CPU time required for each CHA-SCF cycle is

almost the same than that of the conventional SCF. However, since the Fock matrix is

non hermitian, the application of the conventional convergence acceleration

techniques such as the DIIS73 is not trivial. As a consequence, the total number of

cycles necessary to achieve self-consistency is usually larger than for the conventional

SCF.

I.1.4.2 The CHA/CE concept

One of the typical aspects of CHA is that the total energy is calculated as an

expectation value of the full Hamiltonian over the CHA wave function (ΨCHA):

E
HCHA

CHA CHA

CHA CHA=
Ψ Ψ
Ψ Ψ

)

(35)

This equation defines the BSSE-free CHA potential energy surface. One of the

advantages of CHA over the counterpoise scheme is that in the former case the BSSE-

free PES can be determined by a single energy calculation for every geometrical

                                                
73 P. Pulay, Chem. Phys. Lett. 73, 393 (1980)



The Chemical Hamiltonian Approach - 53

arrangement of the system. The same holds for the case of supermolecules with an

arbitrary number of monomers.

It is rather surprising that the CHA Hamiltonian is only used to obtain the

molecular orbitals and that the CHA energy is computed as the expectation value of

the full Hamiltonian. This must be done in this way for two reasons: first, the

preliminary numerical results computed with the CHA Hamiltonian were not

satisfactory. The computed energy was far too small (in absolute value) than the

uncorrected one and the BSSE-corrected by other methods, whereas if the energy was

computed with the conventional Hamiltonian the results were much more satisfactory.

And second, since the molecular orbital energies may be complex, the total energy

computed with the CHA Hamiltonian could be complex as well, which is

unacceptable from a physical point of view.

One has to mention again that during the elaboration of this memory, a new

reformulation of the CHA has allowed to reproduce the CHA-SCF results by using a

new CHA hermitic Hamiltonian. Hence, the non hermiticity of the current CHA-SCF

procedure cannot be seen as formally incorrect but just a rather problematic

methodology.

Indeed, one has to face some rather serious difficulties calculating derivatives of

Eq. (35). Let us consider an SCF-type CHA method in the following. The first

derivative of the CHA-SCF energy with respect to a geometrical parameter can be

given as

dE
dx

E
x

E
C

C
x

CHA CHA CHA

ii

i= +∑
∂

∂
∂
∂

∂
∂

(36)

where 
∂

∂
E

x

CHA

 represents how the CHA energy explicitly depends on the

geometry parameter x and Ci are SCF coefficients. As we mentioned above the SCF

parameters (wave function) are determined by using CHAH)  but the energy is

calculated from the complete Hamiltonian 
)

H . This has the consequence that in a

SCF-type CHA model the partial derivatives 
∂
∂
E

C

CHA

i
 are not equal to zero. This fact is

in contrast to the usual Hartree-Fock theory where
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∂
∂
E
Ci

= 0 (37)

because the SCF parameters are determined by using the variational principle.

Hereby, to calculate gradients in the CHA framework, one must determine the

gradient of the SCF coefficients (Ci) with respect to the geometry parameters (x). This

step involves the solution of the CHA version of the coupled-perturbed Hartree-Fock

(CPHF) equations74. If the partial derivatives 
∂
∂
C
x

i are known, calculation of the CHA-

SCF gradient is straightforward. However, the calculation of the derivatives of the

SCF parameters is a rather time-consuming procedure. First, the CHA CPHF

equations have to be solved for all the geometrical parameters. Second, the solution of

the CHA CPHF equations does involve a full SCF-type procedure making the

practical calculation of the CHA gradient insufficient from the computational point of

view. Since the CHA models are not based on variational methods, it is obvious to

apply techniques which make the calculation of gradients of non-variational

correlation methods (MPn, Coupled Cluster) efficient. These techniques are based on

the so-called Z-vector method75 or algorithms that use fully variational correlation

functionals instead of the traditional non-variational ones76. The application of such

techniques is possible in the CHA framework, but the CHA-SCF gradient formulas

based on the Z-vector or on fully variational methods seem still too complicate for

practical computations at the SCF level of theory. Therefore, at present time, the

CHA-SCF gradient has not been implemented and the location of stationary points on

the CHA-SCF PES must be carried out by means of numerical first derivatives.

I.1.4.3 CHA/F and CHA/DFT

                                                
74 B. Paizs and I. Mayer, Chem. Phys. Lett., 220, 97 (1994)
75 N. C. Handy and H. F. Schaefer III, J. Chem. Phys., 81, 5031 (1984)
76 T. Helgaker and P. Jorgensen, Theoret. Chim. Acta, 75, 111 (1989)
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The easiest way of implementing the CHA ideas to correct for the BSSE has

been called CHA/F77. In this case, instead of modifying the total Hamiltonian by the

use of the corresponding projectors, the conventional Fock matrix is first constructed

and then properly modified in order to ensure the description of the fragments within

the complex is consistent with that of the fragments with the MCBS. Since it does not

act on the one- and two-electron integrals it can be easily generalized to the Kohn-

Sham case, and hence the elimination of the BSSE can be reached also at the DFT

level of theory (CHA/DFT78).

Let us start again with a molecular complex composed by N fragments. The

Roothaan equations for the isolated, non interacting, Ath fragment in terms of the spin-

orbitals can be written in this way

A
i

AAA
i

A
i

AA
A cScF ε= ∀ A∈ N; ∀ i∈ nA (38)

where nA is the number of molecular spin orbitals of fragment A and the Fock

matrix is a diagonal block of the Fock matrix of the given fragment expanded in the

whole basis set, i.e., using the ghost orbitals.
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(39)

This Fockian is obtained from the Hamiltonian associated to the Ath fragment,

given in Eq. (13).

Therefore, for the case of the calculation of this fragment using the whole basis

set one has

                                                
77 B. Paizs, S. Suhai, J. Comput. Chem 18, 694 (1997); G. Halász, Á. Vibók, P. Valiron, I. Mayer 6332,

100 (1996)
78 M. Kieninger, S. Suhai, I. Mayer, Chem. Phys. Lett., 485, 230 (1994)
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*** A
i

A
i

A
iA SccF ε= ∀ A∈ N; ∀ i∈ n (40)

In this calculation, n molecular orbitals and corresponding energies are

obtained, the first nA being, in general, different to that of the obtained for the isolated

fragment (Eq. (38)), both occupied and virtuals, due to purely BSSE effects.

The goal now is to determine how FA must be modified in order to obtain the

same orbitals and energies derived from FA
AA, that is

A
i

A
i cc =* ; A

i
A
i εε =* (41)

On can formally write the following equation for each fragment

A
i

A
i

A
iA SddF ε= (42)

where each pseudo-eigenvector has the following structure
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Expanding Eq. (42) in terms of the block structure given in Eq. (39), for both

the Fockian and the overlap matrix, the following matrix equations are derived
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The equation marked in bold is just the HF equation associated to the isolated

fragment A using the MCBS, i.e that of Eq. (38). It is easy to see that the other N-1

equations do not hold unless

AA
A

AABABA
A FSSF 1)( −= ∀ B≠A (45)

The same considerations hold for the N-1 fragments composing the molecular

complex. In general, in order that the description of a given fragment X within the

complex is not affected by the basis sets of the other fragments (ghost orbitals), the

following substitution must be performed for each block

YX
XF  ⇐  XX

X
XXYX FSS 1)( −  ; ∀ Y∈ N (46)

For an efficient implementation of the algorithm, the CHA Fockian can be

expressed as the sum of the conventional Fockian plus a correction matrix

FCHA/F = F + Fcorr (47)

where
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F (48)

Once the transformed Fock matrix is obtained, the same strategy than that of the

CHA-SCF case can be used now to obtain the CHA/F orbitals, and finally the

wavefunction. Moreover, as mentioned before, since the modifications are not carried

out on the integrals, the determination of the CHA Fockian is simplified.

The CHA/F procedure for each cycle of the self-consistent algorithm can be

summarized in the following way:
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Converged

 One-and two-electron integrals
Initial guess of density matrix P

Construction of FCHA
matrix

Transformation of FCHA to
the MO basis set

Diagonalization of the non
symmetric transformed

Fock matrix

Orthogonalization of the
occupied orbitals set

Backtransformation
of the occupied MO

on the AO basis

Construction of the
new density matrix, P

Construction of
the conventional

Fock matrix

Determination of
the CHA molecular

energy

N

Y

Construction of the 
conventional Fock matrix

Construction of the 
Fcorr matrix

SCHEME 3

Note that, as in the CHA-SCF case, the CHA energy is computed as the

expectation value of the conventional Hamiltonian over the CHA wavefunction. This

ensures the molecular energy to be real.
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I.1.5 Molecular Aggregates

The properties of the macroscopic bulk mater are entirely determined by the

intermolecular forces acting at the molecular scale. These interactions play an

essential role in the packing of the molecular crystals or the structure of large

macromolecules like DNA. These effects appear because of the nonadditivity of the

forces in the molecular aggregates. Indeed, the intermolecular potential of a cluster

cannot be expressed as the sum over of all the pairwise interactions, because the

nearest molecules not only interact with the considered pair, but also modify the way

they interact with each other.

This can be easily understood in the example of the interaction of two rare gas

atoms and a polar molecule like water. The two atoms interact with each other with

dispersion forces due to the mutual induced polarization of the charge density clouds,

that is, induced dipole-induced dipole interaction. When a water molecule approaches

one of the rare gas atoms, its permanent dipole moment polarizes the atom and allows

for a permanent dipole-induced dipole interaction. As a consequence, the interaction

between the two rare gas atoms is enhanced due to the polarization of the charge

distribution of one of them.

Ar Ar

OH

H

SCHEME 4

Obviously a two-body intermolecular potential will not be able to describe the

actual effects between the three interacting systems, as the three-body contribution is

not negligible at all.
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The many-body contributions are also responsible for the so-called cooperative

effects. Let us take for instance the case of the hydrogen fluoride. Rotational-

vibrational spectroscopy techniques have determined for the dimeric species an

intermolecular distance of 2.72Å in gas-phase experiments79, whereas neutron

diffraction experiments80 have revealed that in the crystalline solid state structure this

distance is shortened by ca. 0.3Å. Therefore the presence of many hydrogen fluoride

monomers contributes to the mutual polarization of the neighbor molecules and the

interaction is greatly enhanced.

H F H F H F H F H F H F H F H F H F H F H F

R

SCHEME 5

The ab initio calculations have helped to the development of accurate

interaction potentials, which are the starting point and the basis of both the molecular

mechanics and the molecular dynamics simulations. Not only is the use of accurate

pairwise interaction potentials very important but, in order to properly describe the

anisotropy of the interactions, taking into account explicitly the many body effects is

also necessary in order to obtain results comparable to the experiment.

It has been shown that the BSSE is one of the main sources of error in the

calculations of intermolecular interactions. In the case of molecular aggregates, in

analogy to the cooperative effects enhancing the stabilization energy, the magnitude

of the BSSE could also be affected in a non-additive fashion. However, the removal

of the BSSE in molecular complexes composed by more than two fragments has not

been discussed much in the literature.

A few years ago, Turi and Dannenberg81 pointed out the ambiguity of the

counterpoise correction when studying growing chains of hydrogen fluoride. They

                                                
79 T. R. Dyke, B. J. Howard, W. Kemplerer, J. Chem. Phys. 56, 2442 (1972)
80 M. W. Johnson, E. Sandor, E. Arzi, Acta Cryst. B31, 1998 (1975)
81 L. Turi and J. J. Dannenberg, J. Phys. Chem. 97 2488 (1993)
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showed that the BSSE computed for the insertion of a new HF monomer to the (HF)n

aggregate depends upon whether the incoming monomer is added to the H or to the F

end of the aggregate. Hence, one can obtain different stabilization energies for the

same chemical process, which is unacceptable. They proposed the use of the

counterpoise method by defining as many fragments as monomeric subunits present

in the molecular aggregate, the BSSE being the differences between the energies of

each monomer with their own basis set and the whole molecular aggregate. This is

just a trivial generalization of the earlier counterpoise method.

This method clearly solves the problem of the ambiguity of the CP correction,

but is unable to explain all the effects of the incoming monomer on the interaction

(and BSSE) already present in the molecular aggregate. Valiron and Mayer82

illustrated this deficiency with the example of three interacting H atoms described by

a Schrödinger 1s orbital. In this particular case, the counterpoise scheme above will

not predict any BSSE in the system whereas all the H-H + H interactions bear some

BSSE. Hence, there is a second-order BSSE due to the basis set extensions of all the

H dimer descriptions within in the H trimer.

H H

H

×

×

H H

H

×××

SCHEME 6

Indeed, these diatomic basis set extensions are as natural as the atomic ones.

The BSSE is due to the improvement of the description of the atoms (fragments)

within the complex by using the other fragment basis sets to expand the genuine

atomic (single fragment) contributions to the Hamiltonian. Analogously, the genuine
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diatomic (fragment pair) descriptions, including the respective interaction contribution

within the atom (fragment) pair, are also artificially improved due to their expansion

in the whole complex basis set (this is the particular case of the basis set extensions

present on the H-H + H interaction commented above). In this sense, the hierarchical

partition of an aggregate into atomic (single fragment), diatomic (fragment pairs), etc,

arises naturally.

One way to take into account those high-order BSSE effects within the

counterpoise framework was first introduced by White and Davidson83 and later

generalized by Valiron and Mayer82. They proposed a hierarchical counterpoise

scheme for N-body cluster that treats the basis set extension effects of the monomers

but also all the dimers, trimers, and so on, present in the aggregate.

In a recent paper, Mierzwicki and Latajka84 analyzed the behavior of these two

counterpoise methods in the calculation of many-body interactions of Li(NH4)n and

Li(NH4)n
+ clusters at several levels of theory. They also used another rather unusual

scheme introduced by Wells and Wilson85 where the counterpoise correction is carried

out over pairs of fragments.

Therefore, there is not a unique way of correcting the BSSE, even within the

counterpoise framework. In this section, the three counterpoise schemes mentioned

above will be derived from the well known many-body expansion of the interaction

energy.

Let us consider first a dimeric complex AB. The energy of the system at a given

geometry86 can be expressed simply as

ABBAAB EEEE ∆++= (49)

                                                                                                                                  
82 P. Valiron and I. Mayer, Chem. Phys. Lett. 275 46 (1997)
83 J. C. White, and E. R. Davidson, J. Chem. Phys. 93 8029 (1990)
84 K. Mierzwicki and Z. Latajka, Chem. Phys. Lett. 325 465 (2000)
85 B. H. Wells, and  S. Wilson, Chem. Phys. Lett. 101 429 (1983)
86 Since we are interested in the supermolecule energy there is no need to introduce now the relaxation

energy term. Once the counterpoise-corrected energy of the complex is obtained both the interaction

and stabilization (including monomer relaxation) energies can be easily calculated.
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where ABE∆  represents the two-body interaction energy. According to the

counterpoise philosophy, this value must be computed using the same basis set for all

the terms involved

( )AB
BB

AB
AAAB

AB
B

AB
AABBA

CP
AB EEEEEEEEEEE −+−+=−−++= (50)

where the superscript AB means the whole complex basis set is used for the

calculation (if no superscript is used, it is assumed that the energy is computed with

the subscript's basis set).

In this way, the counterpoise-corrected complex energy is recovered. Note that

the one-body interaction energies, i.e., the fragment energies, are computed with the

MCBS, whereas only the interaction energy term is computed with the DCBS. It is

very important to point out that this is conceptually similar to the case of the a priori

methods, like the CHA, where the diagonal (fragment-only) blocks of the

Hamiltonian are maintained, and the BSSE-correction takes place only in the off-

diagonal blocks (intermolecular interaction).

When the molecular complex is composed by three interacting units, ABC, the

energy of the system can be expressed as the sum of one-, two- and three-body

interaction energies,

ABCBCACABCBAABC EEEEEEEE ∆+∆+∆+∆+++= (51)

the later due to the non-additivity of the interaction.

Similarly, in order to obtain a counterpoise-corrected energy of the trimer, the

three-body energy term must be computed following the counterpoise receipt.

ABC
C

ABC
B

ABC
A

ABC
AC

ABC
BC

ABC
ABABCABC EEEEEEEE +++−−−=∆ (52)

The point now is to determine which two-body interaction energies must be

used. If no counterpoise-correction is taken into account at all for those terms, the

following expression is obtained by substituting Eq (49) and (52) into Eq (51)
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There are three counterpoise terms related to basis set extension for all the

dimers and monomers, respectively, the latter of different sign. The application of this

scheme, however, yields meaningless results because the monomer basis set

extensions are larger than the dimer ones and hence the BSSE is negative. In other

words, the description of the complex is improved upon counterpoise correction,

which is unacceptable.

On the other hand, one can consider using counterpoise-corrected two-body

interaction terms in Eq. (51) but using the whole trimer's basis set, ABC.
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(54)

In this case the conventional counterpoise scheme is obtained, which includes

only the basis set extensions of the monomers in the whole basis set. Wells and

Wilson85 called this approach site-site function counterpoise.

However, the same considerations than that of the dimer case imply that the

two-body interaction energy terms must be described with the respective DCBS basis

set. That is, the exclusively dimer energy contributions must be expanded in its own

DCBS, the same as the one-body monomer's contributions are expressed in the

MCBS. According to these considerations, the counterpoise-corrected trimer energy

will have the following expression
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(55)

Rearranging the terms, the Valiron and Mayer's hierarchical counterpoise



Molecular Aggregates - 65

expression for the energy of the molecular complex is gained
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The last three extra terms with respect to the conventional counterpoise scheme

of Eq. (54), correspond to the differences, for each dimer in the aggregate, between

the dimer interaction energy computed with the dimer DCBS basis set and the same

value computed using the whole basis set of the complex.

The other counterpoise scheme previously proposed by Wells and Wilson85, the

pairwise additive function counterpoise, can also be obtained in a systematic manner

like the other two schemes discussed above. In this case, the three-body (or higher in

case of an N-body cluster) interaction terms are not corrected following the

counterpoise scheme. Instead, only the two-body interaction energies are corrected by

using the DCBS. In the case of the considered trimer, the expression of the corrected

energy can be easily obtained from Eq. (51)

( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )BC

CC
AC

CC
BC
BB

AB
BB

AC
AA

AB
AAABC

CBAACBCABABC
AC

C
AC
AAC

BC
C

BC
BBC

AB
B

AB
AABCBA

CP
ABC

EEEEEE
EEEEEEE

EEEEEEEEEE
EEEEEEEEEE

++++++

+−+−+−+=

=+++−−−+−−+

+−−+−−+++=

(57)

The main feature of this approach is that the whole aggregate basis set is never

used for any subunit calculation, except for the trivial case of a dimer. The

counterpoise-correction is obtained by summing for all the subunits of the cluster, the

differences between the MCBS and all the different DCBS descriptions of the given

fragment.

Therefore, one can predict that this scheme will have problems to correct for the

high-order BSSE but also to deal properly with the conventional, first-order, BSSE.

Indeed, for a given N-body cluster, the energetic difference between the MCBS and

the whole-complex basis set description of each fragment, as defined in the

conventional counterpoise correction, is substituted by N-1 energy differences

calculated using only the corresponding DCBS. Therefore, one might expect that this
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scheme may have problems in dealing with cyclic or highly packed clusters where the

presence of many close-by DCBS representations for each fragment may lead to an

overestimation of BSSE.

The generalization for N-body clusters of these three function counterpoise

schemes is straightforward.. The final expressions for the so-called site site, pairwise-

additive and Valiron-Mayer hierarchical function counterpoise schemes, SSFC,

PAFC, and VMFC, respectively, are the following
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In Eq. (60), the third, fourth, and Nth term on the right hand side will be referred

to as the second-, third-, and Nth-order CP contributions.

An important point is the scalability of these methods. Obviously, VMFC is the

most accurate but the number of extra calculations needed rapidly increases with the

cluster size. The SSFC method needs 2N+1 calculations, including the supermolecular

one. For the PAFC, N times N-1 DCBS calculations plus N MCBS calculations must

be carried out, that is N2 extra energy calculations. In the case of the VMFC, it can be

proved that the total number of calculations needed are determined by

∑
=
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i

iN

i
N
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2

That means that a full hierarchical treatment of the BSSE for non-symmetric

trimer, up to hexamer would involve 19, 65, 211 and 665 energy evaluations,
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respectively. The correction just up to second-order BSSE will involve N (N+1)

single-fragment plus 








2
2

N
 dimer calculations, that is a total of 2N2 + 1 energy

evaluations. In this case only 19, 33, 51, and 73 calculations are needed for the trimer

trough hexamer cluster series.

The use of the hierarchical scheme is clearly prohibitive even for small

oligomers. However, in the particular case of highly symmetric clusters, the

assessment of high-order BSSE effects is still possible since many fragment

calculations are equivalent. Furthermore, due to the simplicity of the counterpoise

correction terms, and as all of them are computed at a given cluster's geometry, the

corrected gradients, Hessian and in general any derivative of the energy can be

obtained by a linear combination of all the terms properly differentiated.

In Section II.1.4.1, the results obtained for some small clusters of hydrogen

fluoride will be presented.
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I.1.6 Other controversies and paradoxes

As mentioned before, the counterpoise method is nowadays widely used to

estimate the BSSE in most ab initio calculations. Several studies have shown that:

a) It removes the BSSE in a way very similar to other sophisticated a priori

methods, like the CHA at different levels of theory.

b) It tends to the values obtained with an inherent BSSE-free method like

SAPT29.

c) It asymptotically (but slowly for correlated methods) tends to zero when the

basis set is increased40 and the CP-corrected results using small basis sets

are closer to the results with much larger basis sets.

However, most of these comparisons have been made upon calculations on

benchmark systems like water or hydrogen fluoride clusters, van der waals complexes

involving rare gas atoms, etc. With some exceptions87, no extensive calculations have

been carried out for open-shell interactions, charged complexes, or chemical

reactions, and indeed some researchers do not include the counterpoise correction in

those particular cases88.

In this section, these problematic cases will be critically examined.

                                                
87 N. Kobko, J. J. Dannenberg, J. Phys. Chem. A 105, 1944 (2001)
88 a) Y. Xie, R. B. Remington and H. F. Schaeffer III, J. Chem.Phys. 101 4878 (1994), b) E. F. Valeev

and H. F. Schaeffer III, J. Chem. Phys. 108 7197 (1998), c) J. R. Pliego Jr. and J. M. Riveros, J. Chem.

Phys. 112 4045 (2000), d) H.-H. Bueker and E. Uggerud, J. Phys. Chem. 99 5945 (1995).
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I.1.6.1 Charged and/or open-shell complexes

It has been pointed out that one has to be very careful when using the

counterpoise method for open shell systems89. First, DCBS and MCBS fragment

calculations must lead to the same spin state in order to assess properly the basis set

extension effects. However, even when these aspects are taken into account properly,

some ambiguities may rise when the PES exhibits two different states of the same

symmetry, as pointed out by Alexander90

When the complex is charged another problem arise. In the case of ion-neutral

molecule interaction, one can expect that the charge is located in one of the fragments,

and thus define the fragments in this way. This approach was used in a previous

study42 about the interaction between several X+ and X- ions and hydrogen peroxide

with satisfactory results. However, when the charge is not clearly located on one

fragment, i.e., when charged molecules are involved in the complex, the definition of

the fragments is sometimes not straightforward and unambiguous at all. This is the

case, for instance, of protonated (deprotonated) dimers, nucleophilic substitution

reactions or ionized dimers. The latter case is very peculiar because it involves a

charged radical complex. As an example, let us consider a protonated dimer like

A···AH+. One can define two fragments, A and AH+ , or consider the proton as an

independent moiety and define three fragments, the two neutral molecules and the

proton. In a CP-corrected optimization, both fragment definitions may force

artificially the optimized structure to be consistent with the complex partitioning

selected. Therefore, if the complex would tend naturally to a symmetric interaction

where the hydrogen atom involved in the hydrogen bond is equally shared by both A

moieties, the use of the CP correction with the two fragments as commented above

may artificially force the system towards a non symmetric interaction. The definition

of three fragments could provoke the opposite effect for nonsymmetric interactions.

One of the objectives of the present work is to check to which extent this assumption

is true.

                                                
89 Chalasinski and M. M. Szczesniak, Chemical Reviews 100, 4227 (2000).
90 M. H. Alexander, J. Chem. Phys. 99 6104 (1993).
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It is important to mention that those problems in the definition of the fragments

are intimately related to the counterpoise method, not being directly related with the

BSSE. Indeed, within the CHA framework, one has only to select which atoms belong

to a given fragment but not deal with how many electrons or which spin state the

fragment possesses. Because no extra fragment calculation is needed, the elimination

of the BSSE is carried out consistently with the supermolecule calculation. This is

not, however, a feature of all the so-called a priori methods. In the SCF-MI method of

Gianninetti et. al.55 , two modified SCF-like coupled equations must be solved (for a

dimer), whose dimensions depend on the number of occupied molecular orbitals of

each fragment. Therefore, in this framework, like in the counterpoise method, one has

to deal with the ambiguity of the definition of the fragments.

Finally, another conceptual inconsistency of some of the BSSE-correction

schemes is worth being pointed out. One has to bear in mind that the BSSE appears at

the supermolecule level, which is the reason why the a priori methods do not need to

deal with MCBS calculations. The BSSE is caused by the basis set extension that

arise only on the part of the intermolecular complex’s Hamiltonian assigned

exclusively to each of the fragments. The BSSE cannot be eliminated properly by

restricting the orbitals of each fragment to be expanded in their own basis set, because

the pure interaction terms will be underestimated, as discussed in Section I.1.1.3.

In principle, one cannot partition the Hamiltonian operator in terms of

intramolecular (fragment) and intermolecular terms because of the indistinguishability

of the electrons. However, it has been shown in Section I.1.4 that in the framework of

the second quantization this is possible as one deals with basis functions, instead. The

CHA method is based on the elimination of those terms of the Fockian which account

for the BSSE.

When using the counterpoise method one estimates those basis set extensions by

computing the energy difference (and derivatives) of each fragment computed using

the MCBS and DCBS, respectively. One assumes, hence, that this artificial energetic

difference is equivalent to the effect on the supermolecule Fockian of those

aforementioned basis set extensions. It has been shown that both somewhat

antagonistic methods, behave in a very similar way, and somehow can be considered

as complementary (while CP-corrected optimizations are straightforward, only the

CHA provides BSSE-corrected wavefunctions). We are not going to discuss here to

which extent the difference between the MBCS and DCBS calculations of the
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fragments accounts for the BSSE of a given calculation, but we can show under which

circumstances it cannot be exact.

A requisite that at least one can impose is that all the calculations, i.e., the

MCBS of the fragments and DCBS of the fragments and complex, must be performed

at the same level of theory. However, this rather trivial issue is not always fulfilled.

For instance, let us consider a typical SCF calculation of a homonuclear dimer A···A,

where A has an even number of electrons. In this particular case, with the CP method,

the BSSE is estimated using a different method (UHF or ROHF) of calculation than

that of the whole complex (RHF). An analogous situation occurs for ionized dimers

like (C2H4)2
.+.

With these considerations in mind, the open questions are now: can we still use

safely the counterpoise method or is it better not to correct for the BSSE in those

particular cases? How do the usually ambiguous definition of the fragments affect the

geometries, vibrational frequencies and interaction energies of those complexes?

These questions will be addressed in Section II.1.1.4

I.1.6.2 The intramolecular rotational barriers

The treatment of the BSSE in chemical reactivity is not trivial. In this particular

case, the definition of the fragments changes during the process so that the continuous

treatment of the BSSE is often possible only by taking each atom as a fragment.

Another option is to define different fragments for reactants and products, but then the

definition of the fragments of the transition state is rather ambiguous.

There have been a few attempts in the literature to take into account the BSSE

in chemical reactivity, with different conclusions. Mayer et. al.91 studied a proton

transfer reaction at several levels of theory by using the counterpoise method. Also,

whenever three fragments where defined, the hierarchical counterpoise method was

used. They concluded that when the fragment definition is kept constant during the

process, the results are not satisfactory, whereas the use of different fragment

definitions for the reactants, products and TS's is inconsistent from a mathematical

                                                
91 G. Lendvay, I. Mayer, Chem. Phys. Lett. 297, 365 (1998).
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point of view.

In a recent paper, Kobko and Dannenberg87 tested the use of the counterpoise

correction in the study of several reactions, including a Diels-Alder condensation,

which is particularly interesting since the product is usually a single molecule. They

determined reaction barriers by using a different fragment definition for reactants and

transition states. Finally, they concluded that the counterpoise-corrected results were

better than the uncorrected ones and that the use of rather small basis sets in

conjunction with the counterpoise correction to the complex gives satisfactory results.

On the other hand, one of the chemical processes where fragments are defined

continuously constant along the reaction coordinate is the internal rotation in weakly

bonded systems.

In the last years, Sordo and collaborators92-94 have been questioning the validity

of the counterpoise correction in the evaluation of energy barriers to internal rotation

including the fragment relaxation term. The main argument was that since the same

basis set is used to determine the minima and the corresponding transitions states

connecting them, there must be no inconsistency in the calculation and therefore no

BSSE.

The authors incorrectly claimed the nuclear relaxation to be responsible for the

inconsistency of the counterpoise correction in this case. It has been shown in  Section

I.1.3 that the concept of BSSE fragment relaxation term is misleading. The expression

for the BSSE-correction within the counterpoise approach is defined disregarding the

fragments of the system being allowed or forbidden to relax their own geometry. One

cannot split the BSSE-correction term into a relaxation term and an intermolecular

term. When the intramolecular parameters are frozen, the CP-correction depends only

on the intermolecular distances and angles, but the value of BSSE at a given geometry

depends conceptually on all the parameters involved in the calculation. Nevertheless,

experience shows that the intramolecular parameters are not too sensitive to the BSSE

correction.

The papers by Sordo et al. have assumed that there is no BSSE at all in the

                                                
92 V. M. Rayón, J. L. Sordo, Theor. Chem. Acc. 99, 68 (1998)
93 V. M. Rayón, J. A. Sordo, J. Chem. Phys. 110, 377 (1999)
94 J.A. Sordo, J. Chem. Phys. 106, 6204 (1997)
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evaluation of energy barriers to internal rotation processes. For a system S, the value

of the energy barrier is easily calculated as

( ) ( ) ( )SESESE minTSb −= (61)

Emin and ETS being the energy of the minima and the energy of the connecting

transition state structure involved in the process, respectively. Consistent results can

be obtained provided that the system is properly described. However, both ETS and

Emin and hence Eb are BSSE-contaminated, i.e., if the system S is made up of two

subsystems A and B. This is the case for weakly bonded complexes. Thus, the energy

barrier should be calculated as

( ) ( ) ( ) ( ) ( ) )()( SSSESESESESE CP
min

CP
TSminTS

CP
min

CP
TS

CP
b δδ −+−=−= (62)

The assumption of zero BSSE is only valid if the last two terms vanish, i.e., if

BSSE were independent of the geometry, which is not at all the case. Therefore, it can

be important to relocate the structures in the CP-corrected PES. Note that both

( ) ( )SESE CP
min

CP
TS and  can be obtained with the counterpoise receipt regardless the

fragment relaxation being included or excluded.

To gain a deeper insight on this point, the results obtained for the rotational

barriers of two weakly bonded systems will be discussed in  Section II.1.2.1.
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I.2 Methodological Aspects

In this section, the standard ab initio methods for solving the Schrödinger

equation that have been used in this work are briefly overviewed. First, the equations

resulting from the separation of the electronic and nuclear motion on the Hamiltonian

through the Born-Oppenheimer approximation are given. The most commonly used

technique to approximately solve the electronic Schrödinger equation is the Hartree-

Fock, or Self-Consistent Field method, based on the variational theorem. Moreover, it

represents the starting point for other sophisticated ab initio methods including the so-

called electron correlation. Among these methods, only the Many-Body Perturbation

Theory, and particularly the Møller-Plesset formulation, have been used in the

calculations presented in this work.

A conceptually different methodology to obtain the energy and electron density

of the chemical systems is the Density Functional Theory. In this work we have used

the most commonly applied Kohn-Sham formulation, which is practically analogous

to the Hartree-Fock equations. We have used the BLYP and B3LYP functionals for

our calculations.

I.2.1 The Born-Oppenheimer approximation

The starting point is the non-relativistic time-independent Schrödinger equation.

nnn RrRrH ),(),(ˆ Ψ=Ψ ε (63)

The set of solutions [εn, ψn] describe stationary states of the system, the

fundamental being the one with the lowest energy, εi, associated. The Hamiltonian of

the system, Ĥ , depends explicitly on the coordinates of the nuclei (Rα) and electrons

(ri)
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where all the terms are expressed in atomic units. N, M represent the number of

electrons and nuclei, respectively. Zα and Mα  hold for the atomic number of nucleus

α and the ratio between the mass of nucleus α and the mass of an electron,

respectively. The equation above may be written more compactly as

)(ˆ)(ˆ),(ˆ)(ˆ)(ˆˆ rVRVRrVRTrTH eeNNeNNe ++++= (65)

The first two term are the operators for the kinetic energy of electrons and

nuclei; the third term corresponds to the electron-nuclei coulombic attraction; the last

two terms represent the repulsion between the nuclei and electrons, respectively.

If the electronic and nuclear part could be separated, the molecular

wavefunction would be expressed as a product of nuclear and electronic terms.

However, the ),(ˆ RrVeN  term is responsible for the coupling of the electronic and the

nuclear parts and the exact separation is not possible.

In the Born- Oppenheimer approximation, the nuclear kinetic energy term

)(ˆ RTN , is neglected, and the nuclear repulsion, )(ˆ RVNN , is considered as a constant

value. That means it only adds a constant value to the eigenvalues and has no effect

on the corresponding eigenfunctions, so it can be dropped from the Hamiltonian. The

remaining terms form the so-called electronic Hamiltonian
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That depends explicitly on the electron coordinates and parametrically on the

nuclear positions. The solution of the Schrödinger equation involving the electronic

Hamiltonian yield the electronic wavefunction and the corresponding electronic

energy. Additionally, if the spin-orbit coupling effects are important, they can be

included in the electronic Hamiltonian at each nuclear geometry using the

corresponding spin-orbit Hamiltonian.
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soelel HHH ˆˆˆ ' += (67)

The total energy for fixed nuclei is obtained by adding the nuclear repulsion to

the electronic energy
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Within the Born-Oppenheimer approximation, the solution for the motion of the

nuclei can be obtained in a similar way using the nuclear Hamiltonian
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that includes the kinetic and coulombic energy repulsion for the nuclei and the

electronic energy averaged over the electronic wavefunction at a given, fixed, nuclear

geometry. Hence, the nuclei within this approximation are considered to move on a

potential energy surface obtained by solving the electronic problem. The solutions of

the nuclear motion give information about the vibrations, rotations, and translations of

the molecule.

When wavefunctions that diagonalize the electronic Hamiltonian are used, the

potential energy surfaces obtained are called adiabatic. This is the general procedure.

In some cases, namely when studying low lying excited states that may result in

conical intersections, it is preferable to minimize some coupling terms resulting from

the expansion of the total wavefunction in terms of electronic and nuclear

wavefunctions. In this case, the potential energy surfaces are called diabatic and are

free to cross.

In short, the Born-Oppenheimer approximation is of capital importance in

applied quantum chemistry. It is based on the assumption that the motion of the nuclei

is much slower than that of the electrons since the nuclei are much heavier than the

electrons. Therefore, one can consider that the nuclei are fixed in the space and the
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electrons move in the field of the frozen nuclei and that of the electrons themselves. In

this way, an electronic Schrödinger equation, that depends on both the nuclear and

electronic coordinates, is solved at a given nuclear position only for the electronic

motion. In other words, the initial equations depends parametrically on the nuclear

coordinates. By solving the electronic Schrödinger equation at different nuclear

arrangements one can obtain a potential energy hypersurface of the total energy,

where only the nuclear kinetic energy term has been ignored. This term contributes to

the vibrational, rotational and translational molecular energy and can be determined

by solving the corresponding nuclear Schrödinger equation.

In the present work, only ground-state electronic wavefunctions and energies

have been considered.

I.2.2 The Hartree-Fock method

The most commonly used technique to find approximate solutions to the

electronic Schrödinger equation is the so called molecular orbital approximation.

Within this approximation, the electrons are considered to occupy molecular spin-

orbitals of a given energy. In the single-determinant approximation, the approximate

wavefunction to the ground-state of the molecular system is expressed as a

determinant formed from these one-electron molecular spin-orbitals, which

diagonalize an approximate one-electron operator, the Fock operator. This single

determinant, the so-called Slater determinant, ensures the necessary antisymmetry

with respect to the exchange of two electrons of the molecular wavefunction.

According to the variational principle, the best spin-orbitals are the ones that

minimize the electronic energy computed as the expectation value of the electronic

Hamiltonian. Let us consider a trial wavefunction

>=>Ψ Nχχχ ...|| 210 (70)

made up of N spin-orbitals. Without loss of generality, these spin-orbitals can

be chosen to form an orthonormal set. In order to obtain the molecular spin-orbitals to

build the wavefunction, the energy expression for a single Slater determinant is

minimized with respect to the variation of the spin-orbitals, subject to the constraint
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that the spin-orbitals remain orthonormal

ijji δχχ >=< | (71)

Under these conditions, the expectation value of the electronic Hamiltonian over

the trial wavefunction can be expressed as
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where the two electron integrals are written following the [12|12] formalism.

It can be shown that the minimization of Eq. (72) with respect to the spin-

orbitals and imposing the constraints given in Eq. (71) for each pair of spin-orbital

leads to a set of equations of the following form

Nif
N

j
jiji ,1;|| =∀>>=∑ χεχ (73)

The Fock operator, f, is a single-particle operator expressed as the sum of a core

Hamiltonian, including the kinetic energy and nuclear attraction, and an effective one-

electron potential due to the N-1 electrons in the molecular system. Indeed, the form

of this operator depends explicitly on the spin-orbitals. Thus, the solution of these

equations must be performed iteratively until self-consistency. This is the reason why

the Hartree-Fock equations are sometimes referred as Self-Consistent Field equations.

However, it is convenient to formally perform unitary transformation among the

spin-orbitals to obtain the so-called canonical spin-orbitals, where the matrix of the

Lagrange multipliers εij is diagonal. The final expression take the following form

Nif iii ,1;|| =∀>>= χεχ (74)

where the χi and εi represent the canonical spin-orbital and the orbital energy

associated. By substituting Eq. (74) into Eq. (72), the Hartree-Fock energy is obtained

in terms of the spin-orbital energies and two-electron electron repulsion integrals
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Note that the total energy is not just the sum of the one-electron orbital energies,

as the electron-electron interactions are counted twice.

In practical implementations, for closed-shell systems, the spin is integrated and

the spin-orbitals are transformed into doubly-occupied spatial molecular orbitals.

These orbitals are expressed as linear combinations of a given set of pre-established

functions and the coefficients of the linear combination are obtained in a self-

consistent fashion. These set of functions are usually referred as atomic orbitals basis

set. In the present work only Gaussian-type nuclear centered basis sets have been

used, but also Slater-type or the so-called plane waves could be also applied. Once a

basis set is defined, the Fock operator is transformed into a Fock matrix expanded on

the atomic orbitals and the set of Eq. (74) transform into a pseudo-secular equation of

the following form

( ) CSCCF ε= (76)

where matrix S represents the metric matrix on the given atomic orbital basis

set, which, in general, is not diagonal. The coefficients of the molecular orbitals on

the atomic orbital basis are collected in the columns of matrix C with the

corresponding orbitals energies on the diagonal of the diagonal matrix ε. The

dimensions of the involved matrices is M×M, where M is the total number of atomic

orbitals. Therefore, upon self-consistency, the N/2 molecular orbitals with the

corresponding lowest orbital energies are considered as occupied orbitals and are

taken to build the ground-state Slater determinant. The rest of the molecular orbitals,

the virtual orbitals, do not influence the Hartree-Fock energy or wavefunction, but are

used for further inclusion of the so-called correlation energy.

The correlation energy is defined as the difference between the exact non-

relativistic Born-Oppenheimer energy of the system and the Hartree-Fock energy

obtained in the basis set limit. Indeed, the Hartree-Fock method has its limitations.

The main problem is that only the electrons with the same spin are correlated, that is,
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for a Slater determinant wavefunction, the probability of finding simultaneously two

electrons of the same spin in the same position in the space is zero, but this is not the

case for electrons of different spin.

The restricted Hartree-Fock method fails to describe the dissociation of

molecules into open-shell fragments and it is unsuitable also for the description of

excited states. These problems can be solved in some cases by using more than a

single determinant to express the approximate wavefunction, and hence dealing with

the Multi-Configurational Self- Consistent Field equations. However, none of these

particular cases have been treated in this work so we will not discuss the details of this

methodology here.

However, another drawback directly related to the chemical systems studied in

this work is that it does not account for the dispersion part of the interaction energy.

The dispersion energy results from the mutual polarization of the electron densities of

the molecules and it is essential for the intermolecular bonding of van der Waals

complexes and non-polar weakly bound complexes in general. In the case of hydrogen

bonding, the inclusion of the dispersion energy is still important in order to correctly

describe the anisotropy of the interaction and, in principle, to obtain more reliable

molecular geometries.

The easiest way to introduce the electron correlation from a Hartree-Fock

calculation, and thus include, among other contributions, the dispersion energy, is the

Many-Body Perturbation Theory (MBPT). In the next section, the most commonly

formulation of the MBPT is briefly discussed.

I.2.3 Møller-Plesset Perturbation Theory

In quantum chemistry, the Perturbation Theory is based on the partition of a

given Hamiltonian into a zero-order part, 0Ĥ , which has known solutions in terms of

eigenfunctions and eigenvalues, and a perturbation operator, V, so that

VHH ˆˆˆ
0 += (77)

Within the framework of the so-called Rayleigh-Schrödinger Perturbation
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Theory (RSPT), the solutions of the initial Hamiltonian are expressed as a summation

of infinite contributions for both the wavefunction and molecular energy.

>Ψ++>Ψ+>Ψ+>Ψ=>Ψ ∞)()2()1()0( |...|||| iiiii

)()2()1()0( ... ∞+++= iiiii EEEEE
(78)

 In general, the zero-order eigenfunctions, exact solutions, Ψi , of the

unperturbed Hamiltonian, are used as a basis to expand the higher-order corrections.

These eigenfunctions are constructed from both the occupied and virtual molecular

spin-orbitals obtained in the previous Hartree-Fock calculation. The singly-excited

zero-order wavefunctions are constructed by substituting one occupied spin-orbital by

another from the set of virtual orbitals. The doubly-excited wavefunctions involve

double substitutions of occupied spin-orbitals and so on.

Practically, one often starts from the Hartree-Fock wavefunction of the system

and wishes to improve the description of the system. Within the framework of the

RSPT, if the zero-order Hamiltonian is taken as the Fock operator, the so-called

Møller-Plesset Perturbation Theory (MP) equations are obtained.

Let us start from the Hartree-Fock description of the molecular system

>Ψ=>Ψ )0(
0

)0(
0

)0(
00 ||ˆ EH (79)

Now, the “zero” subscripts indicates that we are dealing with the ground-state

wavefunction whereas the “zero” superindex gives the order of correction. In this

case, we are considering obviously the zero-order correction to the exact solution.

From the RSPT, it is well-known that the Nth-order correction to the energy is

expressed simply as

>ΨΨ<= )0(
0

0)0( |ˆ| iii HE

0;|ˆ| )1(0)( >∀>ΨΨ<= − nVE N
ii

n
i

(80)

It is easy to see that the summation up to first-order correction on the energy

corresponds to the Hartree-Fock energy
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being

[ ] [ ] [ ]ijjijijijiji χχχχχχχχχχχχ |||| −= (84)

Note that the perturbation operator is taken as the difference between the actual

two-electron repulsion operator and the sum of the averaged one-electron potential

operators.

The first correction to the Hartree-Fock energy occurs in the second order of the

perturbation expansion. The general expression for Ei
(2) , obtained by expanding the

first-order correction to the wavefunction in terms of the zero-order solutions is as

follows

∑
≠ −
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Among all the k zero-order wavefunctions, only the ones involving double

excitations contribute to the second-order correction to the energy. Hence, the second

order correction to the energy can be finally expressed in terms of the molecular spin-

orbital energies and the two-electron integrals of the spin-orbitals.
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The so-called MP2 energy is obtained by truncating the expansion of the exact

energy up to the second-order correction. In contrast to the Hartree-Fock energy, it is

not variational, that is, it might be below the exact energy. Indeed, the perturbational

series might not be convergent. However, the great advantage of this method with

respect to other variational methods that introduce electron correlation is that it is

size-consistent. This property is essential when dealing with intermolecular

interactions since the errors due to size-inconsistency and size-extensitivity may be

larger than the BSSE itself.

I.2.4 Density Functional Theory

Density Functional methods represent an alternative to introduce electron

correlation on a single-determinant wavefunction at a very low computational cost.

Methods derived from the Density Functional Theory have been used for years for the

physicists to study solid state and electron gas, but only in the last decades it has been

applied to isolated molecular systems.

The original formulation of the DFT tells us that the energy of a system can be

exactly expressed as a functional of the one-electron density, ρ. Formally, it exists a

functional E[ρ] that determines the ground-state molecular electronic energy.

Unfortunately, this universal functional is not known. Obviously, the goal is to obtain

a good approximation of the universal functional to be applied to any one-electron

density.

In principle, since the energy can be extracted from the one-electron density,

there is no need to introduce the molecular orbital approximation in the DFT

methodology. However, in the most successful DFT methodology introduced by

Kohn and Sham, the electron density is expressed as a sum over some one electron

occupied molecular orbitals
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and the application of the variational principle to the energy functional lead to a

set of one-electron equations analogous to the Hartree-Fock ones, where the

molecular spin-orbitals are obtained from a Kohn-Sham-derived Hamiltonian.

Nih iiiKS ,1;||ˆ =∀>>= χεχ (88)

From the non-interacting particles model, the Kohn-Sham Hamiltonian can be

expressed formally as
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where the first term represents the exact kinetic energy for a non-interacting

electronic system; the second term is the external potential due to the nuclei; the third

term is the coulombic electron-electron interaction, and the last term represents the so-

called exchange-correlation functional. It must include the true effect of the electron

correlation and exchange on the kinetic energy and the electron-electron repulsion.

Since the Kohn-Sham Hamiltonian depends explicitly on the one-electron

density (second and third terms) , the solution of Eq. (88) must be carried out

iteratively until self-consistency is reached.

For practical applications, a DFT calculation is analogous to a Hartree-Fock

one, with the exception that, due to the complexity of the exchange-correlation

functional, the necessary integrations are carried out numerically.

The election of the exchange-correlation functional is the key point in a DFT

calculation. There is a wide number of functionals for the exchange and for the

correlation counterparts that can be chosen in a rather arbitrary way. There are

basically two families of functionals for the exchange-correlation energy: the ones

based on the Local Density Approximation (LDA) or including gradient corrections,

like the Generalized Gradient Approximation (GGA). The former depend only on the
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value of the density at each point of the space, whereas the later include also

dependencies of the gradient of the density and hence a two-electron character is

simulated. The GGA functionals seem to describe more properly the exchange-

correlation hole than the LDA functionals and are the most widely used in the

literature. In this work, only the GGA-type BLYP (Becke 88 exchange95  and Lee,

Yang, Parr correlation96) and B3LYP (Becke’s three parameter exchange97  and Lee,

Yang, Parr correlation) functionals have been applied. for the calculations of

intermolecular complexes.

These two functional belong to the so-called hybrid98 exchange-correlation

functionals. The hybrid model rests on a linear combination of HF exchange with

DFT exchange-correlation contributions:

)(0
GGA
xc

HF
xxc EEaE −= (90)

In the particular case of the BLYP functional, the exchange-correlation

functional is taken from the Becke 88 exchange and LYP correlation.

The most popular implementation, the B3LYP method, uses three parameters to

combine the B exchange functional, the LYP correlation functional, the expression for

the exchange of a uniform spin-polarized electron gas, and the correlation component,

represented by the Vosko-Wilk-Nusair parametrization (VWN).

VWN
cc

LYP
cc

B
xx

HF
xx

LSD
xx

LYPB
xc EaEaEaEaEaE )1()1( 100

3 −+++−+= (91)

The constants a0x, a1x, and ac, are those determined by Becke by fitting to the

G1 molecule set. Becke determined the values of the three parameters by fitting to the

56 atomization energies, 42 ionization potentials, 8 proton affinities, and 10 first-row

atomic energies in the G1 molecule set, computing values of a0x = 0.80, a1x, = 0.72

and ac = 0.81.

                                                
95 A.D. Becke, Phys. Rev. A,  38, 3098 (1988)
96 C. Lee, W. Yang, and R.G. Parr,  Phys. Rev. B, 37, 785 (1988)
97 A.D. Becke, J. Chem. Phys., 98, 5648 (1993)
98 In the hybrid functionals, the exact exchange part of the exchange-correlation energy is taken from

the Hartree-Fock exchange.
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The eminently local character of the existing functionals, even for the GGA-

type ones, in combination with the single-determinant nature of the electron density,

prevents, a priori, for a correct description of the dispersion energy. It has been

pointed out that the existing DFT methodology fail to describe van der Waals

complexes, where the dispersion interaction is the dominant term. However, for

hydrogen bonded complexes the results are comparable to the ones obtained with

more sophisticated and much more computational costly ab initio methodologies.
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I.3 Objectives

This thesis was originally thought to deal with the Basis Set Superposition Error

from both a methodological and a practical point of view.

The purpose of the present thesis is twofold: (a) to contribute step ahead in the

correct characterization of weakly bound complexes and, (b) to shed light the

understanding of the actual implications of the basis set extension effects in the ab

intio calculations and contribute to the BSSE debate.

One of the main goals in the field of intermolecular interactions is to be able to

obtain reliable ab initio descriptions of the intermolecular interactions occurring on

large systems with a low computational cost. In this work we have explored whether

the use of the counterpoise method, or any BSSE-correction scheme, in conjunction

with affordable basis sets can be used for this purpose. Prior to fulfill such a broad

purpose, the existing BSSE-correction procedures must be analyzed, compared,

validated and, if necessary, improved.

In this sense, in the workgroup of the Institute of Computational Chemistry a

novel methodology was developed for the calculation of counterpoise corrected

geometry optimizations and vibrational frequencies.

The first goal to accomplish was to improve the optimization algorithm in order

to reduce the computational cost of the calculations. Several methodologies were

implemented and tested, like the DIIS, C2-DIIS, and the respective combination with

variable metric methods like the BFGS or DFP and linear search techniques.

Numerical results showed an excellent performance of the combined DIIS-BFGS

method, as long as a initial hessian was provided.

The work on the code has been carried out continuously along the duration of

this thesis. Finally, the whole code was rewritten in order to implement the several

counterpoise schemes for the study of molecular clusters. The culmination of this

effort arrived when the method was implemented into the Gaussian98 package for the

use of the whole scientific community. At this point, the CP methodology can

automatically be applied for IRC calculations, PES scans, third derivatives of the

energy, etc...
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Nevertheless, the last version of the CP program is still useful in order to take

the molecular symmetry into account to drastically reduce the computational time and

also for future development of the counterpoise methodology. A detailed explanation

of the features of the program an its applicability is given in Section II.2.1.

Along with the development of the counterpoise methodology, the use of an

aprioristic method was necessary for a further exploration of the BSSE effects. After a

critical analysis of the existing methodologies, the Chemical Hamiltonian Approach

seemed the best option from a conceptual point of view. Furthermore, the difficulties

in the practical implementation of the method, mainly at the CHA-MP2 level of

theory, represented a challenge for the author of this work. In collaboration with Prof.

Mayer, the CHA methodology was successfully implemented at the SCF level both

restricted and unrestricted. Even though the CHA-MP2 methodology for an arbitrary

number of fragments has been implemented, the particular case of complex virtual

orbitals and energies has not been solved yet and hence no results are presented here.

Application to intramolecular BSSE was tested with unsatisfactory results.

Once the we disposed of a set of efficient programs, the next step was obviously

to explore the BSSE effects in any property of a molecular complex. For the energy-

related properties like Potential energy surfaces, the counterpoise method was used.

When dealing with the wavefunction and density-related properties, the CHA

methodology was the chosen one.

Obviously, the first step was to compare both BSSE-correction schemes by

means of a comparative systematic studies at different levels of theory and basis sets.

The results are presented in Section II.1.1.1.

Then, it was observed that the convergence towards zero for the BSSE

correction when applied to electron correlation methods like the MP2. An exploration

of the Complete basis set limit of both uncorrected and CP-corrected molecular

properties like stabilization energies and  intermolecular distances. It was shown that

the CP-corrected results monotonically behave with respect to the increasing basis set

size, whereas this is not always true for the uncorrected values. The results of these

large calculations are given in Section II.1.1.2.

Once the validity of the CP-correction was verified, we decided to apply our
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methodology to actual controversial topics.

First, the application of the counterpoise method was applied to internal

rotational barriers. It was shown that the BSSE-correction was essential for these

chemical processes, contrary to the existing opinion that there is no BSSE involved at

all. The results are presented in  Section II.1.2. The viability of the CP method for

dealing with charged complexes and the BSSE effects on the double-well PES blue-

shifted hydrogen bonds was also studied in detail. Our findings are given in Sections

II.1.1.3 and II.1.1.4

On the other hand, the lack of studies in the literature covering the effect of the

BSSE on the molecular orbitals and, in essence, on the wavefunction, motivated us to

investigate the effect of the BSSE on the electron density-related properties. For

practical reasons, the CHA/F and CHA/DFT methodologies, implemented by Dr.

Paizs into Gaussian 92, were the chosen to retrieve the corresponding BSSE-corrected

molecular orbitals. The first-order electron density was used to assess, both

graphically and numerically, the redistribution of the charge density upon BSSE-

correction. Several different tools were used to deeply analyze, for the first time, the

BSSE effects on the electron density of several hydrogen bonded complexes of

increasing size. The results can be found in Section II.1.3.

Finally, in order to complement this work, the intermolecular perturbation

theory was also explored during a collaboration with Prof. Szczesniak. The BSSE-free

SAPT method was used for several studies of molecular aggregates, like hydrogen

fluoride and carbon dioxide cluster. Despite the BSSE-free features of the method, it

was recognized that the use of a counterpoise-corrected PES was essential in order to

determine the molecular geometry to perform the SAPT analysis. These differences

between the uncorrected and CP-corrected geometries yield differences on the SAPT

expansion terms of up to 100%. These results are collected in Section II.1.4
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II Results
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II.1 On the effect of the BSSE on the properties of molecular
complexes
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II.1.1 Potential Energy Surfaces and Stabilization energies
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98 – PES and energetics



PES and energetics- 99

II.1.1.1 Comparison and validation of the CP and CHA methods

The main features of the a priori and a posteriori correction methods have already

been discussed in the sections I.3 and I.4. As mentioned before, it has been widely

accepted that the BSSE represents more than just an unbalance between the energies of

the complex and its fragments when computing the interaction energy. The BSSE is a

phenomenon related to the LCAO approximation that affects the whole description of the

complex, i.e. stationary points, vibrational frequencies, wavefunction, etc.

The appearance of the so-called a priori BSSE-correction methods helped to

understand this point of view and to recognize that the well-known and widely used Boys-

Bernardi (BB) or counterpoise correction is not an energetic correction to the interaction

energy but rather to the complex's energy. This interpretation permits the definition of

counterpoise-corrected derivatives of the energy in order to obtain the stationary points on

the counterpoise-corrected potential energy surface, and also vibrational frequencies,

dipolar moments, spin-spin coupling constants, etc. In the case of the a priori methods,

besides all of the above molecular properties, the important concept of the BSSE-

corrected wavefunction is also gained.

Despite this, no exhaustive comparison of the two antagonistic methods in terms of

molecular geometry have been carried out so far. Indeed, no geometry optimization have

been reported at the CHA level of theory.

In this section we address the problems of intermolecular structure determination

described above. One of the most important questions is how the BSSE distort the

calculated PES and how the a posteriori and a priori BSSE correction schemes perform

compared to each other. To evaluate these problems we carried out calculations at the

SCF, CHA/F-SCF, SCF-CP, DFT, CHA/F-DFT, DFT-CP, MP2, and MP2-CP levels of

theory in conjunction with twelve different basis sets of increasing size. Geometry

parameters and stabilization energies were determined for the (HF)2 , (H2O)2 , and H2O-

HF complexes by using all the possible theoretical models which can be derived from the

sets of methods and basis functions listed above. We chose these complexes because
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accurate experimental results are available and it is well known that DFT methods predict

quite reasonable results for these particular cases.

All the ab initio calculations were carried out using the Gaussian9299 and

Gaussian94100 program systems. For the CHA/F and CHA/DFT computations we used a

modified version of Gaussian9277, from Prof. Paizs. For the CHA/F geometry

optimizations the gradients were determined by the finite difference method and the

eigenvector following method was used to locate the stationary points. For the CP-

corrected geometry optimizations we used a program based on the Ref. 48 with some

small modifications in some Gaussian links ( for further details see  Section II.2.1). For

the calculations Pople’s 6-31G, 6-31G(d), 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p), 6-

311++G(d,p), 6-311++G(2df,2p), and 6-311++G(3df,2pd) and Dunning’s TZV(d,p),

TZV(d,p)++, aug-cc-pVDZ, and aug-cc-pVTZ basis sets were used. In the DFT

calculations the BLYP and potentials were applied.

The results for the three studied systems will be discussed separately. Also, the

rather unexpected values obtained when using the aug-cc-VXZ basis set series will be

analyzed.

II.1.1.1.a Hydrogen fluoride dimer

The HF dimer has a linear structure which is known from both experiment101 and

                                                
99 M.J. Frisch, G.W. Trucks, M. Head-Gordon, P.M.W. Gill, M.W. Wong, J.B. Foresman, B.G. Johnson,

H.B. Schlegel, M.A. Robb, E.S. Reploge, R. Gomperts, J.L. Andres, K. Raghavachari, J.S. Binkley, C.

Gonzalez, R.L. Martin, D.J. Fox, D.J. Defrees, J. Baker, J.J.P. Stewart and J.A. Pople, Gaussian, Inc.,

Pittsburgh PA, 1992.
100 M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T.A.

Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Ortiz,

J.B. Foresman, J. Cioslowski, B.B. Stefanov, A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y. Ayala, W.

Chen, M.W. Wong, J.L. Andres, E.S. Reploge, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J.

Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalez and J.A. Pople, Gaussian, Inc., Pittsburgh

PA, 1995.
101 B. J. Howard, T. R. Dyke, and W. Klemperer, J. Chem. Phys., 81, 5417 (1984), A. S. Pine, B. J. Howard,

J. Chem. Phys. 84, 590 (1983)
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high level calculations102 However, it is also well known103,104 that DFT methods in

conjunction with small basis sets tend to predict the cyclic structure to be the only stable

one on the PES.

F
H

F

H
rff

α

β
SCHEME 7:Geometrical parameters of the (HF)2

In the following, both these pathological and the linear cases will be examined from

the point of view of BSSE. Tables I and II summarize selected geometrical parameters of

the HF dimer (see SCHEME 7) calculated at the uncorrected and corrected SCF, BLYP,

B3LYP, and MP2 levels of theory using the Pople and the TZP** and TZP++** basis

sets.  The corresponding stabilization energies are shown graphically in Figure 1. The

dependence of the distance between the fluorine atoms on the applied theoretical model is

also shown graphically in Figure 2.

                                                
102 C. Maerker, P. v. R. Schleyer, K. R. Liedl, T.-K. Ha, M. Quack, and M. A. Suhm, J. Comput. Chem., 18,

1695 (1997) and references therein.
103 J. E. Del Bene, W. B. Person, and K. Szczepaniak, J. Phys.. Chem., 99, 10705 (1995)
104 P. Hobza, J. Sponer, and T. Reschel, J. Comput. Chem., 11, 1315 (1995)
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TABLE I.
Geometrical parameters for the HF-HF dimer calculated in ten different basis sets at the SCF, CHA-SCF,
SCF-CP, MP2 and MP2-CP levels of theory. The number of basis functions is given in parentheses. The
experimental values of rff (re), α and β are 2.72 Å, 10 ± 6 degrees and 117 ± 6 degrees, respectively. For
notation, see SCHEME 7.

Basis Set Method rff (Å) αααα ββββ Method rff (Å) αααα ββββ
6-31G
(22)

SCF
CHA-SCF
SCF-CP

2.706
2.713
2.741

8.3
5.1
3.7

126.0
135.6
143.1

MP2
MP2-CP

2.719
2.789

12.5
4.5

109.0
133.8

6-31G*
(34)

SCF
CHA-SCF
SCF-CP

2.709
2.756
2.798

17.1
7.6
6.9

96.6
114.8
117.7

MP2
MP2-CP

2.535
2.790

45.3
6.5

51.8
113.7

6-31G**
(40)

SCF
CHA-SCF
SCF-CP

2.725
2.760
2.811

14.4
8.3
6.7

101.7
116.7
120.1

MP2
MP2-CP

2.541
2.799

47.8
6.6

48.9
115.2

6-31++G**
(50)

SCF
CHA-SCF
SCF-CP

2.812
2.831
2.842

8.0
7.4
7.5

120.0
120.8
120.8

MP2
MP2-CP

2.776
2.836

7.6
7.7

115.3
114.9

6-311G**
(50)

SCF
CHA-SCF
SCF-CP

2.773
2.822
2.850

11.6
7.7
6.3

112.6
122.8
126.3

MP2
MP2-CP

2.710
2.850

17.8
6.0

94.7
121.9

6-311++G**
(60)

SCF
CHA-SCF
SCF-CP

2.825
2.868
2.871

6.4
6.8
7.0

126.7
126.3
126.4

MP2
MP2-CP

2.791
2.880

6.6
7.3

120.9
120.6

TZV**
(52)

SCF
CHA-SCF
SCF-CP

2.796
2.824
2.827

5.9
5.7
5.7

128.1
129.4
129.9

MP2
MP2-CP

2.756
2.842

5.6
5.5

122.8
124.9

TZV++**
(62)

SCF
CHA-SCF
SCF-CP

2.809
2.829
2.833

5.9
6.6
6.8

129.5
127.9
128.0

MP2
MP2-CP

2.782
2.851

5.6
7.4

125.1
121.8

6-311++G(2df,2p)
(98)

SCF
CHA-SCF
SCF-CP

2.837
2.851
2.860

7.6
7.9
7.8

120.4
120.5
120.8

MP2
MP2-CP

2.762
2.817

7.7
7.7

111.0
113.5

6-311++G(3df,2pd)
(122)

SCF
CHA-SCF
SCF-CP

2.821
2.840
2.846

7.0
7.2
7.1

118.7
119.9
119.9

MP2
MP2-CP

2.749
2.793

6.5
7.1

112.2
112.2

Concerning the effect of the BSSE on the energetics and geometry of the HF dimer

the following conclusions can be drawn. In all cases part of the binding is due to the

BSSE, the uncorrected stabilization energies are always larger than the corrected ones.

The corrected intermolecular distances (rff, the distance between the fluorine atoms) are

always longer than the corresponding uncorrected values. This finding is in line with

literature data48. The difference between the uncorrected and corrected rff distances is

rather large in the case of small basis sets but gets smaller by using larger basis sets.

Analyzing the data presented in Tables I and II it can be seen that even in the case of the

6-311++G(3df, 2pd) basis set the corrected and uncorrected rff distances differ from each

other by 0.015-0.025, 0.005-0.015, and 0.044-0.055 Å at the SCF, DFT, and MP2 levels,

respectively. Except for a few cases when the optimization leads to distorted structures,

the uncorrected SCF rff distances are longer than the corresponding experimental101 value

of 2.72 Å. Correction for BSSE even lengthens these distances, the corrected parameters

are farther from the experimental value than the uncorrected ones. Disregarding the
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pathological cases discussed below in detail, DFT methods predict reasonable rff

distances especially in the case of the B3LYP fuctional.

TABLE II.
Geometrical parameters for the HF-HF dimer calculated in ten different basis sets at the BLYP, CHA-BLYP,
BLYP-CP, B3LYP, CHA-B3LYP and B3LYP-CP levels of theory. The number of basis functions is given in
parentheses. The experimental values of rff (re), α and β are 2.72 Å, 10 ± 6 degrees and 117 ± 6 degrees,
respectively. For notation, see SCHEME 7.

Basis Set Method rff (Å) αααα ββββ Method rff (Å) αααα ββββ
6-31G
(22)

BLYP
CHA-BLYP
BLYP-CP

2.480
2.662
2.735

46.7
5.6
5.4

47.2
114.9
120.1

B3LYP
CHA-B3LYP
B3LYP-CP

2.478
2.647
2.701

48.5
5.2
4.7

49.8
120.0
125.2

6-31G*
(34)

BLYP
CHA-BLYP
BLYP-CP

2.485
2.652
2.762

44.9
5.2
7.1

45.2
105.9
107.0

B3LYP
CHA-B3LYP
B3LYP-CP

2.485
2.647
2.732

46.0
5.7
6.8

47.0
107.5
109.5

6-31G**
(40)

BLYP
CHA-BLYP
BLYP-CP

2.494
2.626
2.781

44.9
7.6
7.2

44.9
105.2
108.7

B3LYP
CHA-B3LYP
B3LYP-CP

2.493
2.627
2.749

46.0
7.8
7.0

46.9
107.5
111.3

6-31++G**
(50)

BLYP
CHA-BLYP
BLYP-CP

2.760
2.782
2.786

7.5
7.4
7.8

111.6
110.6
109.9

B3LYP
CHA-B3LYP
B3LYP-CP

2.732
2.752
2.758

7.6
7.4
7.7

113.1
112.5
112.0

6-311G**
(50)

BLYP
CHA-BLYP
BLYP-CP

2.572
2.730
2.809

46.9
8.8
7.2

48.3
107.9
113.6

B3LYP
CHA-B3LYP
B3LYP-CP

2.567
2.725
2.777

47.2
7.0
6.9

51.2
113.9
116.3

6-311++G**
(60)

BLYP
CHA-BLYP
BLYP-CP

2.778
2.822
2.816

6.9
6.3
8.0

116.2
115.6
113.1

B3LYP
CHA-B3LYP
B3LYP-CP

2.747
2.790
2.785

7.3
7.0
7.9

117.5
116.9
115.5

TZV**
(52)

BLYP
CHA-BLYP
BLYP-CP

2.740
2.783
2.786

6.6
6.1
6.5

115.4
116.5
116.5

B3LYP
CHA-B3LYP
B3LYP-CP

2.716
2.751
2.756

6.5
6.2
6.4

117.8
118.8
119.0

TZV++**
(62)

BLYP
CHA-BLYP
BLYP-CP

2.764
2.787
2.786

7.2
6.4
7.8

117.1
116.0
114.1

B3LYP
CHA-B3LYP
B3LYP-CP

2.734
2.755
2.755

7.2
6.7
7.7

119.1
117.9
116.7

6-311++G(2df,2p)
(98)

BLYP
CHA-BLYP
BLYP-CP

2.775
2.784
2.790

9.0
8.4
7.7

107.0
107.5
108.9

B3LYP
CHA-B3LYP
B3LYP-CP

2.750
2.756
2.760

8.1
6.0
7.8

111.0
113.7
110.9

6-311++G(3df,2pd)
(122)

BLYP
CHA-BLYP
BLYP-CP

2.768
2.778
2.780

5.3
4.8
6.9

112.0
113.0
109.1

B3LYP
CHA-B3LYP
B3LYP-CP

2.734
2.747
2.750

5.8
5.4
7.0

112.5
113.9
110.9

The BSSE has an enormous effect on the rff distances determined from MP2

calculations. The uncorrected rff values are close to the experimental data. The CP

corrected MP2 rff distances are always larger than the experimental value, the difference

between the corrected and uncorrected MP2/6-311++G(3df,2pd) distances is still 0.044 Å.

These results show that BSSE effects are significant in the MP2 calculations even using

the largest Pople basis sets.

Furthermore, the BSSE can have smaller or larger effect on the intermolecular

bond angles. This effect is quite large using the SCF method in conjunction with small

basis sets and results highly distorted uncorrected structures. In these cases correction for

the BSSE leads to reasonable geometrical parameters. By the appearance of diffuse

functions the corrected and uncorrected bond angles gets very close to each other. In the

case of the correlation methods the differences between the corrected and uncorrected
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bond angles are larger than the corresponding SCF values even if we do not consider the

totally pathological cases which will be discussed later in detail. In the case of the largest

Pople basis sets the corrected bond angles can still differ from the uncorrected ones by a

few degrees. It is to be noted in this respect that one can not find any tendency even in the

case of the CP or CHA surfaces regarding the bond angles. Basis set effects are rather

important as well, however, it is not easy to justify which theoretical model is preferable

in this respect because of the large uncertainties of the experimental results. Since the

intramolecular parameters (F-H distances) are not affected by the BSSE, their actual

values are not reported in order to save space.

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

1 2 3 4 5 6 7 8 9 10

SCF
BB at SCF
CHA-SCF
BB at BB

(a)

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

1 2 3 4 5 6 7 8 9 10

MP2
BB at MP2
BB at BB

(b)

FIGURE 1: Electronic stabilization energy (kcal/mol) for the (HF)2 in ten basis sets. The

experimental stabilization energy is -4.56 ± 0.29 kcal/mol (horizontal solid line).
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Comparing the behavior of the a priori and a posteriori correction schemes, one can

find large differences when small or moderate basis sets are used in the computations. By

comparing CP and CHA results one can explore the adequacy of the basis sets in a given

computational situation.

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

1 2 3 4 5 6 7 8 9 10
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BB at BLYP
CHA-BLYP
BB at BB

(c)
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-10.00

-8.00

-6.00

-4.00

-2.00

0.00

1 2 3 4 5 6 7 8 9 10

B3LYP
BB at B3LYP
CHA-B3LYP
BB at BB

(d)

FIGURE 1 (cont.): Electronic stabilization energy (kcal/mol) for the (HF)2 in ten basis

sets. The experimental stabilization energy is -4.56 ± 0.29 kcal/mol (horizontal solid line).

Except for a few cases when the CP and CHA values are very close to each other,

the CP intermolecular distances (rff) are longer than the corresponding CHA values. In the

case of small basis sets the difference between the CP and CHA values can be rather large

(for example, 0.105 Å at the B3LYP/6-31G(d) level of theory) but the difference gets
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smaller as the applied basis set is improved. From this point of view the role of diffuse

functions is rather important, by their appearance the difference between the CP and CHA

corrected rff values gets close to 0.005 Å. The largest deviations between the CP and CHA

corrected rff values can be found in those cases when the uncorrected model fails to

describe even qualitatively the PES of the HF dimer. (For detailed discussion of this

problem, see below.) In these cases the CP method shows smoother convergence than that

of the CHA.
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2,700
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2,550
2,600
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2,700
2,750
2,800
2,850
2,900

1 2 3 4 5 6 7 8 9 10

BB
MP2

(b)

FIGURE 2: F-F distance (Å) for the (HF)2 in ten basis sets. Expt: 2.72 Å (horizontal solid line).

As we mentioned above, the DFT methods in conjunction with small basis sets tend

to predict the cyclic structure to be the only stable one on the PES of the HF dimer. This

pathological behavior of the DFT methods can be seen also in our results in the case of
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the 6-31G, 6-31G(d), 6-31G(d,p), and even 6-311G(d,p) basis sets. Here, the α and β

bond angles are close to 45° and the rff distance is shorter than the corresponding

experimental value of 2.72 Å. On the other hand, both the CHA and the CP optimization

lead to the bent structure in these cases correcting the pitfall of the underlying uncorrected

models. One has to note in this respect that this pathological behavior described above is

believed in the literature as a problem of DFT methods. However, optimizations at the

MP2/6-31G(d) and MP2/6-31G(d,p), levels also lead to the cyclic structure while the

MP2/6-31G and MP2/6-311G(d,p) models predict distorted bent structures. Optimizations

on the corresponding CP-corrected potential energy surfaces lead to the bent structure and

predict (except for MP2/6-31G(d)) reasonable bond angles.

One can calculate the stabilization energy of an intermolecular complex considering

both BSSE and geometry effects in a few ways. First, the stabilization energy can be

calculated after geometry optimization of the complex without any correction for BSSE.

Second, one can calculate the BSSE-corrected stabilization energy at the optimized

geometry ("single-point CP, SP"). Furthermore, one can correct (CP or CHA) for the

BSSE during the geometry optimization, too, and determine BSSE-corrected stabilization

energies using geometries obtained from BSSE-free potential energy surfaces.

In Figure 1 we show our results for the stabilization energy of the HF dimer

obtained by using the four procedures described above. The behavior of the first two

procedures is not satisfactory, calculations without any BSSE correction can lead to high

stabilization energies while single-point CP corrections at the final (uncorrected)

geometries can predict too weak interaction for small basis sets. Of course this behavior is

due to the tendency that some of the uncorrected DFT and MP2 optimizations lead to the

cyclic structure.

This can be graphically seen in the Figure 2. On the other hand, corrected

stabilization energies computed at the BSSE-corrected geometries converge fast,

independent whether the CP or CHA method is used in the calculations. It is to be noted

that the difference between the CHA and CP stabilization energies is always smaller than

the difference between the uncorrected and corrected values. Using basis sets with diffuse

functions the single-point CP-corrected energies get closer to the fully corrected ones. The

energy data suggest that it is easier to reach convergence in the stabilization energy by

improving the quality of the applied basis set than getting close to the limit regarding the
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geometric parameters.
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FIGURE 2 (cont.): F-F distance (Å) for the (HF)2 in ten basis sets. Expt: 2.72 Å (horizontal

solid line).

Of course, this is due to the fact that these intermolecular potential surfaces are

much flatter than the intramolecular ones. Correction for BSSE seems to be important for

both energies and geometries.
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II.1.1.1.b Water dimer

The water dimer (SCHEME 8) has a linear structure which is known from both

experiment105 and theoretical calculations106.

O
H H

O

H
H

α
roo

β

SCHEME 8: Geometrical parameters of the (H2O)2

Our geometry results are summarized in Tables III and IV while the energetics of

the water dimer and the dependence of the roo distance on the applied theoretical model

are  shown graphically in Figures 3 and 4, respectively.

                                                
105 J. A. Odutola and T. R. Dyke, J. Chem. Phys, 72, 5062 (1980)
106 A. Halkier, H. Koch, P. Jorgensen, O. Christianses, I. M. Beck Nielsen, and T. Helgaker, Theor. Chem.

Acc., 97, 150 (1997)
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TABLE III
Geometrical parameters for the (H2O)2 dimer calculated in ten different basis sets at the SCF, CHA-SCF, SCF-
CP, MP2 and MP2-CP levels of theory. The number of basis functions is given in parentheses. The
experimental values of roo (re), α and β are 2.946 Å, 123 ± 10 degrees and 2 ± 10 degrees, respectively. For
notation, see SCHEME 8.

Basis Set Method roo (Å) αααα ββββ Method roo (Å) αααα ββββ
6-31G
(26)

SCF
CHA-SCF
SCF-CP

2.843
2.866
2.862

-0.3
0.0
0.0

152.0
155.9
157.5

MP2
MP2-CP

2.867
2.901

2.6
0.8

136.8
153.2

6-31G*
(38)

SCF
CHA-SCF
SCF-CP

2.973
2.985
3.002

4.6
2.6
1.4

118.4
128.4
134.1

MP2
MP2-CP

2.916
2.978

9.2
3.0

101.5
126.5

6-31G**
(50)

SCF
CHA-SCF
SCF-CP

2.983
2.999
3.017

5.2
2.2
1.2

117.3
133.1
137.2

MP2
MP2-CP

2.910
2.990

9.8
2.8

99.3
129.9

6-31++G**
(62)

SCF
CHA-SCF
SCF-CP

2.987
3.030
3.046

2.6
1.5
1.7

136.2
140.6
140.2

MP2
MP2-CP

2.921
3.007

3.5
4.6

133.4
129.9

6-311G**
(62)

SCF
CHA-SCF
SCF-CP

2.975
3.036
3.052

2.2
-0.1
-0.7

129.5
142.8
146.8

MP2
MP2-CP

2.907
3.038

4.3
-0.1

117.0
140.2

6-311++G**
(74)

SCF
CHA-SCF
SCF-CP

3.000
3.048
3.049

0.9
0.7
0.8

142.9
146.0
146.0

MP2
MP2-CP

2.922
3.019

2.2
3.1

135.7
135.7

TZV**
(64)

SCF
CHA-SCF
SCF-CP

2.970
3.006
3.007

2.4
0.4
0.2

138.2
148.9
150.3

MP2
MP2-CP

2.886
2.987

0.0
1.6

142.1
144.5

TZV++**
(76)

SCF
CHA-SCF
SCF-CP

2.976
2.996
3.006

0.4
0.9
0.9

147.2
148.0
148.0

MP2
MP2-CP

2.900
2.984

1.6
3.3

140.2
139.5

6-311++G(2df,2p)
(118)

SCF
CHA-SCF
SCF-CP

3.039
3.056
3.060

2.7
2.7
2.9

134.1
137.0
136.5

MP2
MP2-CP

2.919
2.966

4.5
5.2

126.2
125.7

6-311++G(3df,2pd)
(154)

SCF
CHA-SCF
SCF-CP

3.036
3.048
3.049

2.9
2.7
3.0

134.2
137.3
136.4

MP2
MP2-CP

2.911
2.950

4.8
5.3

125.4
125.0

Because many of the conclusions drawn in the preceding section are also valid for

the water dimer we do not discuss them in details. Because part of the binding is due to

the BSSE, all the corrected intermolecular distances (roo) are longer than the

corresponding uncorrected ones. The difference between the corrected and uncorrected

roo distances is similar to those values found in the case of the HF dimer. The SCF roo

distances are nearly always longer than the corresponding experimental105 value (2.946 Å)

and correction for the BSSE further lengthens this parameter.
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FIGURE 3: Stabilization energy (kcal/mol) for the (H2O)2 in ten basis sets Expt: -5.4 ± 0.2

kcal/mol (horizontal solid line).

DFT methods usually underestimate the roo distance, the corresponding BSSE-

corrected values are closer to experiment (Figure 3, Table IV). The uncorrected MP2

intermolecular distances are also too short, while the CP-corrected values are usually too

large. It is very promising, however, that by improving the quality of the basis both the

corrected and uncorrected roo distances get close to the experimental value.
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FIGURE 3(cont.): Stabilization energy (kcal/mol) for the (H2O)2 in ten basis sets Expt: -

5.4 ± 0.2 kcal/mol (horizontal solid line).

Both the BSSE and the quality of the basis set have a large effect on the optimized

bond angles. For example, nearly all the optimizations at the SCF level overestimate the β

bond angle. The corresponding CP and CHA optimizations do not improve these results.

In the case of the DFT methods the predicted β bond angles are close to the experimental

value when one uses the largest basis sets. However, this is not the case for the small and

moderate basis sets but both CP and CHA are able to correct these pitfalls. For example,

optimization at the B3LYP/6-31G(d,p) level led to 94.5 degrees, the corresponding CP

and CHA values are 114.3 and 119.1 degrees, respectively. The MP2 results also vary on

a wide range, one has to use at least moderate size basis sets and corrected models in

order to get reasonable bond angles.
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TABLE IV.
Geometrical parameters for the (H2O)2 dimer calculated in ten different basis sets at the BLYP, CHA-
BLYP, BLYP-CP, B3LYP, CHA-B3LYP and B3LYP-CP levels of theory. The number of basis functions is
given in parentheses. The experimental values of roo (re), α and β are 2.946 Å, 123 ± 10 degrees and 2 ± 10
degrees, respectively.

Basis Set Method roo (Å) αααα ββββ Method roo (Å) αααα ββββ
6-31G
(26)

BLYP
CHA-BLYP
BLYP-CP

2.814
2.823
2.836

6.1
4.0
2.0

116.0
132.1
142.2

B3LYP
CHA-B3LYP
B3LYP-CP

2.776
2.795
2.797

3.7
3.2
1.9

130.2
140.5
147.7

6-31G*
(38)

BLYP
CHA-BLYP
BLYP-CP

2.868
2.896
2.941

16.3
4.6
4.6

82.1
111.7
115.4

B3LYP
CHA-B3LYP
B3LYP-CP

2.861
2.878
2.911

12.1
4.9
4.4

93.1
114.3
119.1

6-31G**
(50)

BLYP
CHA-BLYP
BLYP-CP

2.884
2.901
2.970

15.2
5.5
4.5

83.3
114.0
118.0

B3LYP
CHA-B3LYP
B3LYP-CP

2.876
2.883
2.936

10.9
5.6
3.9

94.5
116.5
122.4

6-31++G**
(62)

BLYP
CHA-BLYP
BLYP-CP

2.912
2.955
2.961

4.2
3.5
6.2

127.3
127.1
119.8

B3LYP
CHA-B3LYP
B3LYP-CP

2.887
2.924
2.931

4.2
3.7
5.7

128.8
128.9
123.4

6-311G**
(62)

BLYP
CHA-BLYP
BLYP-CP

2.915
2.960
3.021

7.6
2.9
1.5

100.5
123.2
131.1

B3LYP
CHA-B3LYP
B3LYP-CP

2.887
2.941
2.979

8.3
2.8
1.1

105.1
127.3
135.3

6-311++G**
(74)

BLYP
CHA-BLYP
BLYP-CP

2.927
2.975
2.971

3.9
3.5
5.3

129.5
128.3
124.8

B3LYP
CHA-B3LYP
B3LYP-CP

2.900
2.944
2.941

3.8
3.5
4.6

131.3
131.1
129.5

TZV**
(64)

BLYP
CHA-BLYP
BLYP-CP

2.900
2.955
2.959

1.7
3.7
3.6

130.4
129.7
132.8

B3LYP
CHA-B3LYP
B3LYP-CP

2.877
2.920
2.925

1.0
3.7
2.9

136.5
133.1
137.6

TZV++**
(76)

BLYP
CHA-BLYP
BLYP-CP

2.910
2.935
2.942

3.4
3.8
5.3

131.2
129.7
127.2

B3LYP
CHA-B3LYP
B3LYP-CP

2.883
2.905
2.911

2.5
3.7
4.8

136.1
132.4
131.3

6-311++G(2df,2p)
(118)

BLYP
CHA-BLYP
BLYP-CP

2.949
2.960
2.966

5.3
5.8
6.0

120.4
118.4
118.7

B3LYP
CHA-B3LYP
B3LYP-CP

2.922
2.931
2.937

4.1
4.2
5.5

125.9
125.6
122.3

6-311++G(3df,2pd)
(154)

BLYP
CHA-BLYP
BLYP-CP

2.949
2.957
2.960

5.7
5.7
5.7

119.0
119.5
119.7

B3LYP
CHA-B3LYP
B3LYP-CP

2.919
2.928
2.931

5.1
4.0
5.2

122.3
126.7
123.2

Comparing the behavior of the a priori and a posteriori correction schemes one can

draw similar conclusions as those obtained for the HF dimer. Except for a very few cases

the CP method overcompensates the BSSE with respect to the CHA. values Usually, the

differences between the CP and CHA intermolecular parameters are smaller than the

differences between the corrected and uncorrected values. Larger differences between the

a priori and a posteriori corrected roo distances can be found in those cases when the

corresponding uncorrected model predicts distorted structures. As an overall conclusion

on the behavior of the CHA and CP correction schemes one can argue that when

correction for the BSSE is important both the a priori and a posteriori methods do the

same job at least in a qualitative manner.

Previous studies showed104 that the linear structures determined at the DFT level

with BLYP and B3LYP functionals in conjunction with the 6-31G* and 6-31G** basis

sets actually correspond to saddle points. Table IV presents the geometry data calculated

at the DFT level with both functionals.
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FIGURE 4: O-O distance (Å) in ten basis sets. Expt: 2.946 Å (horizontal solid line).

It can be seen that both BSSE-free methods correct the rather distorted uncorrected

structures, the angular features of these structures are closer to the large basis results than

those of the uncorrected ones. We carried out frequency calculations at the corrected and

uncorrected BLYP/6-31G(d,p) levels to explore the curvature of the PES from the BSSE

point of view. Similarly to the literature data the Hessian calculated at the uncorrected

BLYP/6-31G(d,p) level has a negative eigenvalue. The CHA/DFT(BLYP) optimized

structure was characterized as a minimum by calculating the Hessian using numerical

derivatives. The adequacy of the numerical differentiation was checked by comparing the

accuracy of full numerical and full analytical methods for the case of the uncorrected

BLYP/6-31G(d,p) level. Furthermore, analytical CP corrected derivatives were also used

to carry out frequency calculation at the CP corrected structure at the same level. The CP
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calculations also result a minimum, so the CP method can also correct the deficiency of

the BLYP/6-31G(d,p) model discussed above. Similar calculations were performed for

other pathological cases listed above resulting the same tendency obtained for the

BLYP/6-31G(d,p) model.
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FIGURE 4(cont.): O-O distance (Å) in ten basis sets. Expt: 2.946 Å (horizontal solid line).

We have already mentioned that some of the uncorrected DFT and MP2 models

resulted the cyclic structure of the HF dimer. To check the performance of the MP2

method in the case of the water dimer we carried out frequency calculations using the 6-

31G(d) and 6-31G(d,p) basis sets. Both the MP2/6-31G(d) and MP2/6-31G(d,p)

calculations lead to a minimum, indicating that the small basis MP2 models perform

better than the corresponding DFT ones from the PES curvature point of view.
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II.1.1.1.c HF-H2O complex

The HF-H2O complex is a rather special system, the determination of its structure is

a challenge for both experimentalists and theoreticians. Theoretical studies showed107 that

one can find stationary points on the HF-H2O PES with both Cs and C2v symmetries. (In

the case of the C2v structure the α and β angles (SCHEME 9) are 0 and 180 degrees,

respectively.)

F
H

O

H
Hβ

rfo
α

SCHEME 9: Geometrical parameters of the HF-H2O complex

The Cs structure is more stable than the C2v one, the energy difference between them

is 0.1 and 0.5 kcal/mol at the SCF and MP2 levels, respectively. The experimental108

estimate of the barrier is 0.4 kcal/mol. Based on these data one can understand that the

experimental determination of the angular features of the HF-H2O complex is not a trivial

task. The barrier is very close to the first vibrational level, most probably the two Cs

structures rapidly interconvert to each other and the underlying double well potential can

not be measured.

                                                
107 M. M. Szczesniak, S. Scheiner, and Y. Bouteiler, J. Chem. Phys, 81, 5024 (1984)
108 a) A.C. Legon and D. J. Millen, Faraday Discuss. Chem. Soc., 73, 71 (1982), b) J.W. Bevan, Z. Kisiel,

A.C. Legon, D.J. Millen and S.C. Rogers, Proc. Roy. Soc. A, 372, 441 (1980)
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TABLE V.
Geometrical parameters for the HF-H2O dimer calculated in ten different basis sets at the SCF, CHA-SCF,
SCF-CP, MP2 and MP2-CP levels of theory. The number of basis functions is given in parentheses. The
experimental  value of rfo (r0) is 2.66 Å. For notation, see SCHEME 9.

Basis Set Method rfo (Å) αααα ββββ Method rfo (Å) αααα ββββ
6-31G
(24)

SCF
CHA-SCF
SCF-CP

2.616
2.657
2.641

0.0
0.0
0.0

180.0
180.0
180.0

MP2
MP2-CP

2.646
2.686

0.0
0.0

180.0
180.0

6-31G*
(36)

SCF
CHA-SCF
SCF-CP

2.719
2.749
2.753

4.7
2.7
2.1

132.3
140.8
146.3

MP2
MP2-CP

2.689
2.748

7.1
2.5

116.9
135.8

6-31G**
(45)

SCF
CHA-SCF
SCF-CP

2.718
2.745
2.761

4.0
2.2
1.7

135.8
147.4
152.6

MP2
MP2-CP

2.675
2.750

6.3
2.2

117.6
135.8

6-31++G**
(56)

SCF
CHA-SCF
SCF-CP

2.713
2.741
2.753

1.6
1.1
1.1

151.7
158.1
159.0

MP2
MP2-CP

2.659
2.727

1.7
1.7

138.4
140.6

6-311G**
(56)

SCF
CHA-SCF
SCF-CP

2.700
2.752
2.759

2.7
0.5
0.0

145.4
170.9
180.0

MP2
MP2-CP

2.645
2.762

4.1
1.0

128.7
152.5

6-311++G**
(67)

SCF
CHA-SCF
SCF-CP

2.720
2.751
2.750

0.9
0.0
0.0

162.5
180.0
180.0

MP2
MP2-CP

2.664
2.739

1.4
1.4

138.9
149.1

TZV**
(58)

SCF
CHA-SCF
SCF-CP

2.695
2.712
2.725

0.0
0.0
0.0

180.0
180.0
180.0

MP2
MP2-CP

2.637
2.727

1.4
0.3

146.3
172.0

TZV++**
(69)

SCF
CHA-SCF
SCF-CP

2.690
2.717
2.718

0.0
0.0
0.0

180.0
180.0
180.0

MP2
MP2-CP

2.648
2.716

0.9
0.8

145.0
163.9

6-311++G(2df,2p)
(108)

SCF
CHA-SCF
SCF-CP

2.725
2.733
2.737

1.3
1.1
1.0

147.0
150.6
153.7

MP2
MP2-CP

2.661
2.693

1.3
1.4

133.6
134.9

6-311++G(3df,2pd)
(138)

SCF
CHA-SCF
SCF-CP

2.709
2.724
2.725

1.2
1.1
1.1

146.1
149.8
150.0

MP2
MP2-CP

2.635
2.671

1.1
1.4

134.2
133.2

Our main reason for investigating the Cs structure of the HF-H2O complex was to present

a system which, up to our knowledge, is free from DFT or MP2 pitfalls described in the

previous chapters for the cases of the HF and H2O dimers, respectively. In our opinion

this pitfall-free status of the HF-H2O complex can be connected with the strength of the

interaction in this system. As we go farther from the HF dimer to the H2O dimer and to

the HF-H2O complex the stabilization energies become larger.
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FIGURE 5: Stabilization energy (kcal/mol) in ten basis sets. Expt: -10.2 kcal/mol (horizontal

solid line).
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FIGURE 5(cont.): Stabilization energy (kcal/mol) in ten basis sets. Expt: -10.2 kcal/mol

(horizontal solid line)

In the case of the HF dimer the DFT and MP2 methods using small basis sets can

totally fail to describe the PES. In the case of the water dimer we found some problems

with respect to the curvature of the PES. For the HF-H2O complex, disregarding the

smallest 6-31G basis set, the Cs structure is predicted to be the more stable by all the DFT

and MP2 models.
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TABLE VI.
Geometrical parameters for the HF-H2O dimer calculated in ten different basis sets at the BLYP, CHA-
BLYP, BLYP-CP, B3LYP, CHA-B3LYP and B3LYP-CP levels of theory. The number of basis functions is
given in parentheses. The experimental value of rfo (r0) is 2.66  Å.

Basis Set Method rfo (Å) αααα ββββ Method rfo (Å) αααα ββββ
6-31G
(24)

BLYP
CHA-BLYP
BLYP-CP

2.610
2.642
2.638

2.8
0.0
0.0

149.4
180.0
180.0

B3LYP
CHA-B3LYP
B3LYP-CP

2.576
2.619
2.608

0.0
0.0
0.0

180.0
180.0
180.0

6-31G*
(36)

BLYP
CHA-BLYP
BLYP-CP

2.652
2.701
2.730

15.2
3.3
3.2

92.2
119.2
124.2

B3LYP
CHA-B3LYP
B3LYP-CP

2.650
2.682
2.701

10.4
3.2
3.0

106.0
123.9
128.5

6-31G**
(45)

BLYP
CHA-BLYP
BLYP-CP

2.663
2.678
2.733

13.1
3.1
2.9

96.2
122.1
127.3

B3LYP
CHA-B3LYP
B3LYP-CP

2.652
2.660
2.700

8.7
3.3
2.7

109.5
126.1
132.4

6-31++G**
(56)

BLYP
CHA-BLYP
BLYP-CP

2.642
2.672
2.665

2.6
2.6
2.3

129.4
128.9
129.3

B3LYP
CHA-B3LYP
B3LYP-CP

2.623
2.650
2.645

2.4
2.0
2.2

133.8
135.4
133.9

6-311G**
(56)

BLYP
CHA-BLYP
BLYP-CP

2.657
2.716
2.744

7.3
3.2
2.4

113.2
126.9
135.8

B3LYP
CHA-B3LYP
B3LYP-CP

2.636
2.690
2.708

6.4
2.4
1.5

119.5
135.3
145.2

6-311++G**
(67)

BLYP
CHA-BLYP
BLYP-CP

2.668
2.689
2.691

2.3
1.8
2.5

132.4
133.0
131.6

B3LYP
CHA-B3LYP
B3LYP-CP

2.645
2.663
2.667

2.0
1.6
1.8

137.6
139.4
141.0

TZV**
(58)

BLYP
CHA-BLYP
BLYP-CP

2.648
2.682
2.694

2.3
1.0
1.3

135.3
145.8
144.4

B3LYP
CHA-B3LYP
B3LYP-CP

2.631
2.654
2.666

1.2
1.3
1.3

146.4
149.1
150.8

TZV++**
(69)

BLYP
CHA-BLYP
BLYP-CP

2.654
2.662
2.675

1.5
0.8
2.7

138.2
143.8
136.7

B3LYP
CHA-B3LYP
B3LYP-CP

2.625
2.640
2.652

1.2
1.2
1.7

146.7
148.1
146.4

6-311++G(2df,2p)
(108)

BLYP
CHA-BLYP
BLYP-CP

2.664
2.675
2.672

2.1
2.0
1.8

127.0
126.7
127.4

B3LYP
CHA-B3LYP
B3LYP-CP

2.640
2.650
2.650

1.9
1.7
1.9

131.1
131.4
131.3

6-311++G(3df,2pd)
(138)

BLYP
CHA-BLYP
BLYP-CP

2.655
2.667
2.666

1.9
1.9
1.8

126.5
126.8
127.5

B3LYP
CHA-B3LYP
B3LYP-CP

2.632
2.644
2.642

1.8
1.7
1.8

130.9
131.4
131.1

In most of the cases when the underlying uncorrected DFT and MP2 methods

predict wrong α and β parameters, the corrected angular features are close to the large

basis results. Concerning the SCF results one has to mention that in some cases we could

find only the C2v structure on the PES. Correction for the BSSE does not change this

situation.
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FIGURE 6: F-O distance (Å) in ten basis sets. Expt: 2.66 Å (horizontal solid line).

Turning to the rof geometry parameter one can draw the following conclusions.

Because part of the binding is due to the BSSE, the corrected rof distances are always

longer than the uncorrected ones. The SCF rof distances are nearly always longer than the

experimental109 value of 2.66 Å. Correction for the BSSE further lengthens this parameter.

The uncorrected DFT rof distances are surprisingly close to the experimental value. In the

case of small basis sets the corrected rof distances are farther from the experimental value

than the uncorrected ones but for the largest basis sets they get close to each other.

                                                
109 A. C. Legon, D. J. Millen, and H. M. North, Chem. Phys. Lett., 135, 303 (1987)
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FIGURE 6(cont.): F-O distance (Å) in ten basis sets. Expt: 2.66 Å (horizontal solid line).

The largest BSSE effects can be found again in the case of the MP2 geometries. The

uncorrected rof distances usually closer to the experimental value than that of predicted

by the CP corrected MP2 model. However, the convergence of the rof distance on the

corrected PESs is smoother than for the uncorrected PESs.

Comparing the behavior of the CHA and CP correction methods one can find again

that CP tends to predict larger BSSE than CHA in the case of small basis sets. However, if

balanced basis sets are used for the calculations, both the CP and CHA methods yield

almost undistinguishable results.
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II.1.1.1.d Structures optimized using Dunning's aug-cc-pVDZ and aug-cc-pVTZ

basis sets

Our primary goal was to carefully investigate the effect of BSSE on the energetics

and structure of intermolecular complexes when only relatively small basis sets are

applied in the calculations. However, it was suggested to include results obtained from

calculations using Dunning's correlation consistent aug-cc-pVDZ and aug-cc-pVTZ basis

sets110. In the following we briefly summarize our findings obtained at the SCF, BLYP,

B3LYP, and MP2 levels in conjunction with the aug-cc-pVDZ and aug-cc-pVTZ basis

sets on the uncorrected and BSSE-corrected potential energy surfaces. The corresponding

energetical and structural data are listed in Tables VII-X.

The correlation consistent [(aug)-cc-p(C)VXZ, X = 2(D), 3(T), 4(Q), …)] basis sets

systematically extend the atomic radial and angular spaces as a function of the cardinal

number X. These basis sets were designed to be applied in conjunction with traditional

correlation methods where the electron-electron cusp is explicitly described. Because of

this feature one expects that the BSSE content of various properties are small using the

aug-cc-pVDZ and aug-cc-pVTZ basis sets at the HF and DFT levels. Going further to

largest cardinal numbers the effect of the BSSE on structural and energetical parameters

calculated at the HF and DFT levels should decrease enormously. This is not the case,

however, for traditional correlation methods like MP2 where the BSSE content of the

investigated properties decreases as the cardinal number of the applied basis set is

enlarged but it is practically impossible to reach that status when the effect of BSSE

becomes negligible.

                                                
110 T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989); R. A. Kendall, T. H. Dunning Jr. and R. J. Harrison,

J. Chem. Phys. 96, 6796 (1992); D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 98, 1358 (1993).
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TABLE VII.
Geometrical parameters for the HF-HF dimer calculated using the aug-cc-pVDZ and aug-cc-pVTZ basis
sets at the SCF, CHA-SCF, SCF-CP, MP2, MP2-CP, BLYP, CHA-BLYP, BLYP-CP, B3LYP, CHA-
B3LYP and B3LYP-CP levels of theory. The number of basis functions is given in parentheses.

Basis Set Method rff αααα ββββ Method rff αααα ββββ
aug-cc-pVDZ

(68)
SCF

CHA-SCF
SCF-CP

2.826
2.854
2.846

6.7
7.2
7.1

118.7
119.0
118.6

MP2
MP2-CP

2.751
2.812

6.2
6.9

110.6
111.6

aug-cc-pVDZ
(68)

BLYP
CHA-BLYP
BLYP-CP

2.761
2.805
2.772

5.9
8.9
6.2

109.1
107.0
109.2

B3LYP
CHA-B3LYP
B3LYP-CP

2.734
2.774
2.745

6.1
8.1
6.5

110.6
109.7
110.8

aug-cc-pVTZ
(160)

SCF
CHA-SCF
SCF-CP

2.825
2.831
2.828

6.2
6.7
6.5

121.0
120.2
120.4

MP2
MP2-CP

2.739
2.764

5.5
6.6

112.8
111.8

aug-cc-pVTZ
(160)

BLYP
CHA-BLYP
BLYP-CP

2.755
2.773
2.759

5.8
4.4
6.6

109.9
112.7
108.7

B3LYP
CHA-B3LYP
B3LYP-CP

2.727
2.740
2.730

6.1
5.0
6.5

111.4
113.6
110.8

In the light of these facts one can easily rationalize most of our data obtained using

the aug-cc-pVDZ and aug-cc-pVTZ basis sets. All the BSSE-free intermolecular distances

are longer than the corresponding uncorrected ones using the aug-cc-pVDZ basis set.

However, contrary to the tendency observed for the Pople basis sets, the CHA distances

are longer than the CP ones. The HF and DFT intermolecular distances corrected using

the CP algorithm are usually very close to the corresponding uncorrected values, see for

example the actual rfo values, 2.643 and 2.647 Å (HF-H2O complex, Table IX.) obtained

at the B3LYP/aug-cc-pVDZ level on the plain and CP-corrected PESs, respectively. This

behavior is a little bit surprising since the aug-cc-pVDZ basis set is the first and smallest

member of the aug-cc-pVXZ family with weaker performance compared to that of the

larger (aug-cc-pVTZ, aug-cc-pVQZ, etc.) Dunning basis sets. The CHA distances

obtained at the DFT and HF levels are more reasonable in this respect and are in

accordance with the size of the actual basis set.

TABLE VIII.
Geometrical parameters for the (H2O)2 complex calculated using the aug-cc-pVDZ and aug-cc-pVTZ basis
sets at the SCF, CHA-SCF, SCF-CP, MP2, MP2-CP, BLYP, CHA-BLYP, BLYP-CP, B3LYP, CHA-
B3LYP and B3LYP-CP levels of theory. The number of basis functions is given in parentheses.

Basis Set Method roo αααα ββββ Method roo αααα ββββ
aug-cc-pVDZ

(86)
SCF

CHA-SCF
SCF-BB

3.037
3.062
3.053

4.0
3.3
3.3

130.9
132.8
133.0

MP2
MP2-BB

2.921
2.978

6.4
5.7

119.6
122.5

aug-cc-pVDZ
(86)

BLYP
CHA-BLYP
BLYP-BB

2.950
2.995
2.958

6.0
3.5
5.7

118.0
126.1
119.0

B3LYP
CHA-B3LYP
B3LYP-BB

2.920
2.961
2.929

5.8
3.7
5.3

120.7
127.8
122.1

aug-cc-pVTZ
(210)

SCF
CHA-SCF
SCF-BB

3.038
3.044
3.041

2.8
3.0
2.9

137.7
138.0
137.9

MP2
MP2-BB

2.902
2.930

4.7
5.4

125.6
125.1

aug-cc-pVTZ
(210)

BLYP
CHA-BLYP
BLYP-BB

2.945
2.992
2.951

5.0
8.0
5.0

121.0
118.0
120.3

B3LYP
CHA-B3LYP
B3LYP-BB

2.916
-

2.920

4.9
-

5.3

123.8
-

123.5
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Our results obtained at the MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ levels are

consistent from the point of view of BSSE and reproduce the available literature data.39-41

(The small differences between our and the literature data are due to the fact that because

of program limitations we used Cartesian d and f functions in our calculations.) The

BSSE-content of the investigated properties decreases very much using the larger basis

set, however, the MP2/aug-cc-pVTZ data are still significantly polluted by the BSSE.

TABLE IX.
Geometrical parameters for the HF-H2O complex calculated using the aug-cc-pVDZ and aug-cc-pVTZ basis
sets at the SCF, CHA-SCF, SCF-CP, MP2, MP2-CP, BLYP, CHA-BLYP, BLYP-CP, B3LYP, CHA-
B3LYP and B3LYP-CP levels of theory. The number of basis functions is given in parentheses.

Basis Set Method rfo αααα ββββ Method rfo αααα ββββ
aug-cc-pVDZ

(77)
SCF

CHA-SCF
SCF-BB

2.725
2.760
2.734

1.5
1.2
1.4

142.8
149.2
144.0

MP2
MP2-BB

2.660
2.702

1.6
1.5

127.7
130.3

aug-cc-pVDZ
(77)

BLYP
CHA-BLYP
BLYP-BB

2.664
2.684
2.668

1.6
2.5
1.7

126.3
128.6
126.0

B3LYP
CHA-B3LYP
B3LYP-BB

2.643
2.664
2.647

1.6
1.6
1.7

130.1
135.1
129.8

aug-cc-pVTZ
(185)

SCF
CHA-SCF
SCF-BB

2.716
2.731
2.718

1.1
1.1
1.1

149.5
152.3
149.8

MP2
MP2-BB

2.640
2.662

1.3
1.4

131.1
132.3

aug-cc-pVTZ
(185)

BLYP
CHA-BLYP
BLYP-BB

2.658
-

2.662

1.6
-

1.6

126.4
-

127.1

B3LYP
CHA-B3LYP
B3LYP-BB

2.636
-

2.639

1.6
-

1.6

130.9
-

131.2

Our HF and especially the DFT calculations using the aug-cc-pVTZ basis set led to

some unexpected results. The difference between the CP-corrected and the corresponding

uncorrected parameters is usually smaller than what we found in the case of the aug-cc-

pVDZ basis set. For example, the actual values of rfo are 2.716 and 2.718 Å (HF-H2O

complex, Table IX.) calculated at the HF/aug-cc-pVTZ level on the uncorrected and CP-

corrected PESs, respectively. The CHA method performs better in this respect whenever

we could locate minima on the corresponding PESs. For example, the actual value of rfo

is 2.731 Å obtained at the CHA-SCF/aug-cc-pVTZ level of theory. However, in three

cases (water dimer at the B3LYP/aug-cc-pVTZ and the HF-H2O complex at the

BLYP/aug-cc-pVTZ and B3LYP/aug-cc-pVTZ levels) we could not optimize the

geometry of the investigated complexes at the CHA levels. Beside improving our

implementation of CHA (application of better convergence accelerators) we tried many

numerical tricks to obtain self-consistency of the applied CHA models. For example, the

geometry optimizations were started at large intermolecular distances allowing the

optimizer to get slowly close to the particular minimum. At large intermolecular distances

the CHA wave functions were easily obtained but we found serious convergence

problems getting close to the desired minima again. In the next step we removed that
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component of the applied aug-cc-pVTZ basis set which bears the smallest exponent. In

this case our convergence problems disappeared, we could easily obtain optimized

geometries using the modified basis set. Somewhat similar problems have been met at

small distances by Valiron and Mayer111, too.

TABLE X.
Uncorrected, CHA-corrected and Counterpoise-corrected stabilization energies (Kcal/mol) of (HF)2 , (H2O)2
and HF-H2O dimers calculated using the aug-cc-pVDZ and aug-cc-pVTZ (in parenthesis) basis sets.

HF-HF H2O-H2O HF-H2O

Method Interaction
Energy

(Kcal/mol)

Method Interaction
Energy

(Kcal/mol)

Method Interaction
Energy

(Kcal/mol)
SCF

CHA-SCF
SCF-BB

3.82 (3.72)
3.68 (3.65)
3.67 (3.65)

SCF
CHA-SCF
SCF-BB

3.86 (3.74)
3.71 (3.68)
3.71 3.69)

SCF
CHA-SCF
SCF-BB

7.31 (7.25)
6.98 (7.15)
7.10 (7.18)

BLYP
CHA-BLYP
BLYP-BB

4.23 (4.25)
3.87 (4.06)
4.04 (4.13)

BLYP
CHA-BLYP
BLYP-BB

4.24 (4.27)
3.89 (4.10)
4.06 (4.15)

BLYP
CHA-BLYP
BLYP-BB

8.49 (8.54)
7.86 (----)
8.26 (8.37)

B3LYP
CHA-B3LYP
B3LYP-BB

4.56 (4.56)
4.24 (4.41)
4.38 (4.46)

B3LYP
CHA-B3LYP
B3LYP-BB

4.64 (4.64)
4.34 (----)
4.48 (4.53)

B3LYP
CHA-B3LYP
B3LYP-BB

8.89 (8.91)
8.63 (----)
8.67 (8.78)

MP2
MP2-BB

4.69 (4.76)
4.04 (4.27)

MP2
MP2-BB

5.24 (5.24)
4.45 (4.74)

MP2
MP2-BB

8.97 (9.03)
7.86 (8.36)

In our opinion, the above described strange behavior of the CP (BB) and CHA

methods is related to some fundamental aspects these BSSE-correction models. In both

cases one has to specify subsystems of the investigated molecular complexes. This

partition is straightforward in the investigated hydrogen bonded complexes but is clearly

not unambiguous when one explores, for example, the effect of BSSE on proton transfer

reactions. Another difficulty arises when the applied basis set does consist of basis

functions with very small exponents. These functions represent very non-local objects

making the partition of the investigated supermolecule to subsystems questionable.

The observed strange behavior of the CP and the CHA methods can be explained

on the above basis. The CP approach predicts rather small BSSE-content of the

investigated properties using the aug-cc-pVDZ basis set. In this case the CHA performs

significantly better. However, the observed CHA convergence problems are clearly due to

the fact that the investigated minima are located on that region of the PES where, due to

the functions with small exponents present in the basis set, the partition of the

supermolecule to subsystems is not feasible. This explanation is well supported by the

                                                
111 I. Mayer, private communication.
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facts that we had no convergence problems at geometries with large intermolecular

distances and after removing that basis function of the basis set which bears the smallest

exponent. Furthermore, convergence problems were not found in the case of the CHA-

SCF optimizations where the optimized intermolecular distances are longer than the

corresponding DFT values. The same effect can be seen in the case of the BLYP/aug-cc-

pVTZ and B3LYP/aug-cc-pVTZ optimizations on the water dimer. The BLYP/aug-cc-

pVTZ optimization converged easily while we had serious convergence problems at the

B3LYP/aug-cc-pVTZ level. Analyzing our geometry data it is apparent that the B3LYP

intermolecular distances are always shorter than the corresponding BLYP values. One has

to note, however, that the validity of the CHA-BLYP/aug-cc-pVTZ geometry for the

water dimer is questionable since the BSSE content of the uncorrected roo distances

(Table VIII) are very similar at the BLYP/aug-cc-pVDZ and BLYP/aug-cc-pVTZ levels

predicted by the CHA method. These facts indicate that there is a rather sharp change of

behavior of CHA with decreasing intermolecular distances.

Based on our results obtained at the HF and DFT levels in conjunction with the aug-

cc-pVDZ and aug-cc-pVTZ basis sets one can clearly state that the effect of the BSSE on

energetical and structural parameters calculated at the above level is not significant and its

correct description is a difficult task for both the CP and the CHA approaches. However,

this is evidently not the case if traditional correlation methods are applied for which the

CP approach works reasonably well. Future work to test the CHA-MP2 method in

conjunction with the aug-cc-pVXZ basis sets is desired.
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II.1.1.2 Complete basis set limit extrapolations (CBS)

In the previous section, the Dunning and co-workers family of correlation consistent

[(aug)-cc-p(C)VXZ, X=2(D),3(T),4(Q),…)] basis sets110 have been used with some

convergence problems concerning the CHA method. As for the counterpoise-corrected

results, the BSSE is reduced considerably with respect to other standard Pople of

Huzinaga basis sets. As commented before, these basis sets systematically extend the

atomic radial and angular spaces as a function of the cardinal number X. Therefore, results

obtained with them seem to provide an excellent opportunity to extrapolate energies as

well as properties to the complete basis set (CBS) limit. In most systems studied, the

extrapolation of the total energy and many properties has been achieved with simple

functional forms. The exponential form

bX
X aeAA −+= CBS (92)

and polynomials of the form

∑
=

−++=
max

3
CBS )(

k

k

k
kkX XAA βα (93)

where kmax is small, or similar polynomial forms with non integer exponents have

been extensively employed to estimate the CBS limit.106,112-114

The form of Eq. (92), for example, suggests that properties obtained with three basis

                                                
112 T. van Mourik, A. K. Wilson, K. A. Peterson, D. E. Woon, T. H. Dunning Jr., Adv. Quant. Chem., 31,

105, (1998).
113 a) D. Feller, J. Chem. Phys. 96, 6104 (1992), b) K. A. Peterson and T. H. Dunning Jr., J. Chem. Phys.

102, 2032 (1995), c) M. W. Feyereisen, D. Feller and D. A. Dixon, J. Phys. Chem. 100, 2993 (1996)
114 a) A.G. Császár, W.D. Allen and H.F. Schaefer III, J. Chem. Phys. 108, 9751 (1998), b) J.M.L. Martin,

Chem. Phys. Lett. 259, 669 (1996), c) D. Feller, J. Chem. Phys. 98, 7059 (1993), d) Gy. Tarczay, A.G.

Császár, W. Klopper, V. Szalay, W.D. Allen and H.F. Schaefer III, J. Chem. Phys. 110, 11971 (1999), e) T.

Helgaker, W. Klopper, H. Koch and J. Noga, J. Chem. Phys. 106, 9639 (1997), f) Y. Chuang and D.G.

Truhlar, J. Phys. Chem. A 103, 651 (1999)
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sets (e.g., X=D, T, and Q) gives an opportunity to extrapolate to the CBS limit of the

investigated property.

Much experience112 has been accumulated on how the correlation-consistent basis

sets can be employed in calculations on various properties. For example, it is clear that for

calculations of intermolecular complexes113 one should apply the augmented version (aug-

cc-pVXZ) of the cc-pVXZ sets containing diffuse functions, which are essential for the

description of long-range interactions. However, the general trend is that the uncorrected

aug-cc-pVXZ results lie close to the corresponding experimental values and the

convergence of the CP-corrected aug-cc-pVXZ results to the CBS limit is slow. Based on

these findings many of the authors of the pioneering studies criticised113 the CP method

and questioned the applicability of the CP scheme in conjunction with the aug-cc-pVXZ

basis sets.

Dunning and co-workers have recently published a review112 about their activity

devoted to the exploration of the limits of the CP scheme. These authors have shown that,

in many cases, the convergence behaviour of various molecular properties is significantly

improved if the calculations are corrected for the BSSE. According these authors, for

many investigated properties the smooth convergence behaviour of the results obtained

with aug-cc-pVXZ basis sets is a pure illusion as it is due to a fortuitous cancellation of

the BSSE and the basis set incompleteness error (BSIE)31. Correction for the BSSE

destroys the balance of the two errors; consequently, the CP-corrected data lie farther

away from experiment than the uncorrected ones. However, the use of CP-corrected data

is much safer for CBS limit extrapolation: the corrected data suffer only from the BSIE,

which can be taken into account by a suitable extrapolation to the CBS limit. Anomalies

related to the extrapolation to the CBS limit were most pronounced for weakly-bound

intermolecular complexes (van der Waals and hydrogen-bonded systems), although

similar behaviour was observed even for certain strongly bound systems.

Dunning and co-workers have investigated various molecular properties like

stabilization energies and equilibrium distances of di- and triatomic molecules. However,

their work on real many-dimensional potential energy hypersurfaces (PESs) was limited

to (HF)2, partly due to the lack of an efficient automated procedure for BSSE-free

geometry optimizations. [The optimized geometries were computed from numerical

(CP-corrected or uncorrected) gradients.] Those studies, which expressed scepticism113

about the usefulness of the CP scheme when applied in connection with the aug-cc-pVXZ

basis sets were devoted to the characterization of PESs of hydrogen-bonded systems like
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the HF dimer and the water dimer.

To resolve this apparent controversy, we decided to carry out geometry

optimisations on the prototypical hydrogen-bonded systems chosen before. Our goal is to

investigate the behaviour of the CP method in conjunction with the aug-cc-pVXZ basis

sets for equilibrium geometric parameters. Therefore, we optimized the geometry of (HF)2

and (H2O)2 employing analytical gradients at both the uncorrected and BSSE-corrected

MP2/aug-cc-pVXZ [X=D(2), T(3), Q(4), for (HF)2 also 5] levels of theory. The

geometrical data obtained provide evidence in support of Dunning's opinion described

above, that is, the use of the counterpoise-corrected PES is essential in order to properly

apply the interpolation formulae to obtain the CBS limit of any molecular property.

From the comparison of our data with the literature results available on (H2O)2 we

evaluate the reliability of various approximations used in geometry optimizations (e.g.,

freezing a subset of the parameters) and show the importance of carrying out full

geometry optimizations when extrapolation of geometrical parameters to the CBS limit is

desired. Finally, we present optimized geometries and equilibrium stabilization energies

of the HF–H2O complex obtained on both uncorrected and BSSE-corrected

MP2/aug-cc-pVXZ (X = D, T, Q) PESs.

Again, the discussion of the results will be carried out separately for each system.

II.1.1.2.a HF dimer

The structure of (HF)2 was studied at the MP2/aug-ccpVXZ (X = D, T and Q) levels

by Peterson and Dunning (henceforth PD)113b. In that paper the geometry of the complex

was fully optimized at the MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ levels on both the

uncorrected and CP-corrected potential energy hypersurfaces. (PD used numerical

gradients for the optimization.) With the aug-cc-pVQZ basis set PD carried out full

geometry optimization on the uncorrected PES, while they optimized only the

intermolecular F–F distance (rFF, see SCHEME 7) on the CP-corrected PES, keeping the

other parameters fixed at their estimated MP2/aug-cc-pVTZ values. (For further details,

see Ref. 113b.)

The most important conclusions drawn by PD are as follows:
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(a) the uncorrected MP2/aug-cc-pVXZ stabilization energies and geometries are

closer to experiment than the corresponding corrected ones

(b) the convergence of the CP-corrected binding energies and geometries is more

regular than that of the uncorrected parameters, and

(c) the CBS limit of the CP-corrected rFF distance, 2.737 Å, is numerically

indistinguishable from the uncorrected aug-cc-pVQZ optimized value.

Overall, PD stressed the importance of the CP correction for the investigated

properties. As a first step in our investigation, we reoptimized the geometry of (HF)2 at

the levels for which PD published data. We were able to reproduce their results with only

slight deviations by using our automated CP optimization algorithm (see Table XI for the

results).

TABLE XI.
Geometrical parameters (angles/deg and lengths/Å) and total energies
(Etot/Eh) of the HF dimer calculated at the uncorrected and
CP-corrected MP2/aug-cc-pVXZ (X = 2, 3, 4, 5) levels of theory.

Uncorrected PES
N  rFF α β Εtot
D 2.753a 6.5 (6.6a) 110.2 (110.1a) –200.519075a

T 2.746a 6.4a 111.1a –200.689285a

Q 2.736 (2.737a) 6.4a 111.5 (111.6a) –200.746906a

5 2.739 6.3 112.0 –200.768417
Corrected PES

N rFF α β Εtot
D 2.812 (2.813a) 7.0a 111.3a –200.518060
T 2.770 (2.772a) 6.7a 111.7 (111.8a) –200.688525
Q 2.753a,b 6.7 111.7 –200.746495
5 2.749 6.7 111.7 –200.768158

aRef.114a. bPartial optimization. For details, see Ref. 114a. For the
definition of the variables, see SCHEME 7. In those cases, when two
values are presented for a variable, our optimized value does not agree
with that of Ref. 114a given in parentheses.

For the CP-corrected MP2/aug-cc-pVQZ case PD carried out partial optimizations

by fixing most of the internal parameters. Our full optimization at the same level

confirmed the adequacy of the approximations applied by PD, the fully optimized

parameters (α = 6.7°, β = 111.7°, rFF = 2.753 Å) are close to the corresponding values

(α = 6.4°, β = 111.15°, rFF = 2.753 Å) of PD. As mentioned above, the uncorrected
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MP2/aug-cc-pVQZ rFF distance seems to be converged, and agrees with the CBS limit,

2.737Å, obtained on the CP-corrected surface by PD. (One has to note here that the CBS

limit of rFF determined by our geometry data, 2.741 Å, differs slightly from the

corresponding value of PD, 2.737Å.) At the same time, the actual value of the rFF distance

(2.753 Å) on the corrected PES is far from both the MP2/aug-cc-pVQZ and the corrected

CBS limit values. This situation provides an opportunity to further investigate the

importance of CP correction in estimating the CBS limit of geometrical parameters, like

the rFF distance in (HF)2. It seems to be worth investigating the geometry of (HF)2 at the

MP2/aug-cc-pV5Z level for the following reasons. If convergence of rFF was really

manifested at the MP2/aug-cc-pVQZ level, the MP2/aug-cc-pV5Z value would coincide

with the MP2/aug-cc-pVQZ value. On the other hand, any other MP2/aug-cc-pV5Z rFF

value would question the extrapolation to the CBS limit using the uncorrected data. As it

turns out, both the uncorrected (α = 6.3 °, β = 112.0°, rFF = 2.739 Å) and CP-corrected

(α = 6.7 °, β = 111.7°, rFF = 2.749 Å) geometric parameters lie close to the corresponding

MP2/aug-cc-pVQZ values. It is noted, that the difference between the corrected and

uncorrected rFF values is substantial, 0.010 Å, at the MP2/aug-cc-pV5Z level of theory.

The series of MP2/aug-cc-pVXZ (X = D, T, Q, 5) rFF data represent a minimum curve with

the minimum between X equal to Q and 5, (see Figure 7). On the other hand, the

CP-corrected MP2/aug-cc-pVXZ (X = D, T, Q, 5) rFF distances follow a monotonic curve.

One could extrapolate to the CBS limit of the rFF distance in three ways using the

available data obtained on the corrected PES; e.g., one could use the {2,3,4}, {3,4,5}, and

{2,3,4,5} series for determining extrapolated geometric parameters according to Eq. (92).

Obviously, more reasonable values are expected for the latter choices. The CBS limit

values of the rFF distance of (HF)2 for the above listed series are reasonably close to each

other at 2.741Å, 2.748Å, and 2.745Å, respectively. (For the 2–5 fitting we used our own

CP-corrected data, which slightly differ from those of PD.)
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Cardinal number of the basis set applied
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FIGURE 7: Comparison of the plain and CP-corrected rFF distances for (HF)2.

One has to note that the MP2/aug-cc-pVDZ level, which represents the lowest level

of theory employed, provides a much poorer approximation than that obtained at the

MP2/aug-cc-pVTZ level. This effect can be seen, for example, in the huge BSSE content

of the geometry. After correction for BSSE, the rFF distance is lengthened by 0.059 Å,

0.024 Å, 0.017 Å, and 0.010 Å at the MP2/aug-cc-pVDZ, MP2/aug-cc-pVTZ,

MP2/aug-cc-pVQZ and MP2/aug-cc-pV5Z levels of theory, respectively. Inferiority of

the MP2/aug-cc-pVDZ geometry parameters, as compared to the larger basis set results, is

basically responsible for the differences between the CBS limit values obtained from the

three fittings.

Nevertheless, as Chuang and Truhlar114f explored, one is tempted to use the

inexpensive DZ and TZ data to obtain extrapolated geometric parameters corresponding

to the basis set limit. However, instead of using the scheme of Chuang and Truhlar, we

employed Eq. (93) in the form of

3
CBS

−+= aXAAX (94)
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to obtain estimates of the extrapolated rFF. Our noteworthy result is that the

extrapolated rFF distances, 2.743 Å and 2.752 Å in the uncorrected and BSSE-corrected

cases, respectively, are very close to the corresponding MP2/aug-cc-pV5Z numbers. This

is especially notable for the CP-corrected rFF distance, in which case the

MP2/aug-cc-pVTZ value deviates from the MP2/aug-cc-pV5Z value by 0.021 Å, while

the extrapolated distance deviates only by 0.003 Å.

In summary, the smooth convergence behavior of the geometric parameters

obtained directly with the aug-cc-pVXZ basis sets is due to a fortuitous cancellation of

BSSE and BSIE. The simple exponential or polynomial functions employed to extrapolate

to the CBS limit cannot work reliably if the points do not follow a monotonic curve, as is

the case for the uncorrected MP2/aug-cc-pVXZ results. On the other hand, although the

CP-corrected rFF distances are usually farther away from the extrapolated values than the

uncorrected distances (this is true for all but the MP2/aug-cc-pV5Z data), changes in the

corrected geometric parameters are monotonic and thus are in better accordance with the

design philosophy of the aug-cc-pVXZ basis sets.

II.1.1.2.b Water dimer

The first study devoted to the investigation of (H2O)2 (see SCHEME 8) employing

the aug-cc-pVXZ (X = 2, 3, 4, 5) basis sets at the MP2 level was carried out by Feller113a,

who determined the stabilization energy of the complex at various correlated levels at a

fixed geometry. The first geometry optimizations on the water dimer at the MP2(FC)/aug-

cc-pVXZ (X = D, T, Q) were carried out by Feller et al.115 on the uncorrected PES.

Importance of fragment relaxation terms in the CP scheme was investigated by

Xantheas64, who determined the fully relaxed geometry of (H2O)2 at the

MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ levels on the uncorrected potential energy

hypersurfaces. Furthermore, Xantheas carried out partial optimizations at the

MP2/aug-cc-pVQZ and MP2/aug-cc-pV5Z levels varying the intermolecular rOO distance

(Figure 8) and keeping other parameters fixed at their MP2/aug-cc-pVTZ value.

Xantheas’s MP2/aug-cc-pV5Z value for the rOO distance is 2.905 Å on the uncorrected

and 2.913 Å on the CP-corrected PESs, respectively. In a recent paper, Halkier et al.106

                                                
115 D. Feller, E. D. Glendening, R. A. Kendall and K. A. Peterson, J. Chem. Phys., 100, 4981 (1994)
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also investigated the structure of the water dimer employing the MP2/aug-cc-pVXZ

models. These authors performed constrained optimizations, e.g., they kept the water

monomer parameters frozen at the corresponding experimental values. With this

approximation, the geometry of (H2O)2 was determined at the MP2/aug-cc-pVXZ (X = 2,

3, 4) levels at both the uncorrected and the CP-corrected surfaces. (As a further

approximation, the intermolecular valence angles were also frozen in the optimizations on

the CP-corrected PES at their corresponding uncorrected values.) One should note here

that, based on the analysis of their data, Halkier and co-workers argued against the

computation of CP-corrected geometries at the MP2/aug-cc-pVXZ levels.

TABLE XII.
Geometrical parameters (deg, Å) and total energies (Etot/Eh) of the water dimer calculated at the
uncorrected and CP-corrected MP2/aug-cc-pVXZ (X = 2, 3, 4, 5) levels of theory.

Ref. 34 and 35 Ref. 15 Present work

Plain CP-cor. Plain CP-cor. Plain CP-cor.

X rOO rOO rOO α β rOO rOO α β Εtot rOO α β Εtot

2 2.916b 2.975c 2.912a 5.3a 124.7a 2.977a 2.917 5.8 122.4 –152.530207 2.976 5.8 122.5 –152.528936

3 2.907b 2.933c 2.891a 4.7a 124.1a 2.935a 2.907 5.5 123.4 –152.666241 2.932 5.5 124.7 –152.665503

4 2.903a,b 2.918a,c 2.895a 5.4a 124.3a 2.915a 2.903 5.5 124.4 –152.711954 2.917 5.5 125.0 –152.711954

5 2.905a,c 2.913a,c – – – – – – – – – – – –

aPartial optimizations, for details of the constraints employed during the optimizations, see text.
For the definition of the variables, see SCHEME 8.
b Ref 115
c Ref 64

The results of our full geometry optimizations carried out on the uncorrected and

CP-corrected PESs are shown in Table XII. At the MP2/aug-cc-pVDZ and MP2/aug-cc-

pVTZ levels we could reproduce Feller's and Xantheas’s results with slight differences on

both the uncorrected and corrected PESs. On the other hand, the rOO distances obtained by

Halkier et al. for the uncorrected surfaces differ considerably from the corresponding fully

relaxed values. For example, the difference between the rOO distances of Feller and

Halkier is 0.016 Å at the MP2/aug-cc-pVTZ level. This discrepancy questions the validity

of the approximations utilized by Halkier et al. Furthermore, Xantheas’s data determined

at the MP2/aug-cc-pVQZ level from partial optimizations agree reasonably well with both

Feller's and our values obtained from full optimizations. Hereby, we can confirm the

adequacy of the approximations employed by Xantheas in his partial optimizations on

(H2O)2, e.g., keeping all the intramolecular and the valence bending intermolecular

parameters at their optimized MP2/aug-cc-pVTZ values in the subsequent aug-cc-pVQZ
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and aug-cc-pV5Z optimizations. Because of the reliability of the approximations

employed by Xantheas and the cost of the MP2/aug-cc-pV5Z optimization we decided not

to determine the geometry of (H2O)2 at the MP2/aug-cc-pV5Z level.
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FIGURE 8: Comparison of the plain and CP-corrected rOO distances for (H2O)2.

Concerning the extrapolation of the rOO distance to the CBS limit, one can draw the

following conclusions. The two series of rOO distances, determined by Feller et al.,

Xantheas and Halkier et al. employing different approximations during the optimizations,

follow a curve with a minimum. That is, Halkier’s aug-cc-pVTZ rOO distance at 2.891 Å is

shorter than the corresponding aug-cc-pVDZ (2.912 Å) and aug-cc-pVQZ (2.895 Å)

values. This behavior is presumably due to the inadequacy of the constraints employed by

Halkier et al. during the optimizations. In the data series of Feller et al. and Xantheas, the

aug-cc-pVQZ rOO distance (2.903 Å) is shorter than the corresponding aug-cc-pVDZ

(2.916 Å), aug-cc-pVTZ (2.907 Å), and aug-cc-pV5Z (2.905 Å) values. This behavior of

the aug-cc-pVXZ basis sets in the case of uncorrected calculations is very similar to what

we observed in full geometry optimizations on (HF)2. On the other hand, the CP-corrected

rOO distances converge more regularly, all three data series obtained by Xantheas, Halkier
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et al. and the present work ascend gradually when enlarging the cardinal number of the

employed basis set, (see Figure 8). The extrapolated CBS limit of the rOO distance

obtained from Halkier’s data seems to be too short at 2.897 Å, indicating again the

inadequacy of the constraints employed during the geometry optimizations. On the other

hand, the extrapolated rOO CBS limit values obtained from Xantheas’s partially optimized

aug-cc-pVXZ {X = 2, 3, 4, 5} and our fully optimized aug-cc-pVXZ {X = 2 , 3, 4} data

using Eq. (92) practically coincide at 2.910 Å. It is worth noting in this respect that the

CBS limit values determined from the {X = 2, 3, 4} and {X = 3, 4, 5} series of Xantheas

are also the same at 2.910 Å.

Similarly to the case of (HF)2, use of Eq. (94) for the extrapolation of aug-cc-pVDZ

and aug-cc-pVTZ data gives very satisfactory results for the CP-corrected rOO distances.

While the difference between the aug-cc-pVTZ and aug-cc-pV5Z rOO distances is

0.020 Å, the extrapolated value differs by only 0.005 Å.

As a summary of the above considerations, we strongly advocate to perform full

geometry optimizations in those studies whose aim is the extrapolation of geometrical

parameters to the CBS limit. The reliability of the CBS limit of the rOO distance

determined from the fully relaxed CP-corrected aug-cc-pVXZ {X = 2, 3, 4} potential

energy hypersurfaces is appealing compared to the aug-cc-pVXZ {X = 2, 3, 4, 5} data

obtained by Xantheas.

II.1.1.2.c HF-H2O complex

The most recent theoretical investigation devoted to the structure of HF–H2O,

including geometry optimizations, was carried out by Novoa et al.116 at the

MP2/6-311++G(2d,2p) level of theory resulting in an energy difference of 0.45 kcal/mol

between the Cs and C2v structures (see Section II.1.1.1.c). They have also calculated the

equilibrium rFO distance (2.663 Å) using a constrained optimization keeping the monomer

parameters fixed. Finally, their stabilization energies computed at the uncorrected and CP-

corrected MP2/6-311++G(2d,2p) levels are –9.20 and –7.87 kcal/mol, respectively.

Because of the available experimental and theoretical information, the HF–H2O

complex is an ideal subject to test the CBS limit values of various properties determined

                                                
116 J.J Novoa, M. Planas, M. Whangbo and J.M. Williams, Chem. Phys., 186, 175 (1994)
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from calculations performed at the MP2/aug-cc-pVXZ {X=2, 3, 4} levels. To explore the

quality of theoretical results obtained on the uncorrected and CP-corrected surfaces, we

decided to calculate the equilibrium dissociation energy, the energy difference between

the Cs and C2v species, and the equilibrium geometry of HF–H2O. The calculated total

energies, energy barriers and geometrical parameters obtained at the MP2/aug-cc-pVXZ

{X=2, 3, 4} levels are given in Table XIII. The CBS value for the total energy of H2O is –

76.363558 Eh, obtained from the total energies (–76.260910, –76.328992, and –76.351919

Eh) calculated at the MP2/aug-cc-pVDZ, MP2/aug-cc-pVTZ, and MP2/aug-cc-pVQZ

levels, respectively.

TABLE XIII.
Geometrical parameters (angles/deg and lengths/Å) and total energies (Etot/Eh) of HF–H2O
calculated at the uncorrected and CP-corrected MP2/aug-cc-pVXZ (X = 2, 3, 4) levels of
theory.

Cs
Plain CP-corrected

X Etot rFO α β Etot rFO α β
2 –176.531107 2.658 129.5 1.4 –176.529305 2.701 130.6 1.5
3 –176.684156 2.643 130.7 1.4 –176.683198 2.662 132.0 1.5
4 –176.735847 2.640 132.4 1.4 –176.735257 2.654 132.6 1.4

CBS –176.762208 2.639 – – –176.761869 2.652 – –
C2v

Plain CP-corrected
X Etot rFO α β Etot rFO α β
2 –176.530314 2.666 0.0 180.0 –176.528674 2.710 0.0 180.0
3 –176.683503 2.655 0.0 180.0 –176.682605 2.670 0.0 180.0
4 –176.735318 2.648 0.0 180.0 –176.734751 2.661 0.0 180.0

CBS –176.761803 2.636 – – –176.761465 2.658 – –

The experimental109 equilibrium stabilization energy (Eint) of HF–H2O is –10.2

kcal/mol, determined by Legon and co-workers from absolute intensities of rotational

transitions. As mentioned before, the best theoretical values116 available are –9.20 and –

7.87 kcal/mol obtained from uncorrected and CP-corrected calculations using a

medium-size basis set and the MP2 method. The uncorrected aug-cc-pVXZ {X = 2, 3, 4}

stabilization energies shown in Table XIV are appealingly close to each other. The CBS

limit value of Eint obtained using the extrapolated total energies of the monomers and the

complex, differs only slightly from these values. The stabilization energies obtained at the

CP-corrected PESs considerably differ from the corresponding uncorrected energies.

However, this difference gradually decreases considering the series of basis sets, going



140 – PES and energetics

from the aug-cc-pVDZ set to the aug-cc-pVQZ one. The CP-corrected CBS limit of Eint at

–8.6 kcal/mol is remarkably close to the corresponding uncorrected value at –8.8

kcal/mol. Comparing the experimental and theoretical results, one has to note that the

CBS limit ∆E values obtained at the MP2 level considerably differ from the

experimental108a value (–10.2 kcal/mol). Perhaps, truncation of the correlation energy

expansion at the MP2 level does not represent a satisfactory description of the

investigated problem.

TABLE XIV
Equilibrium stabilization energies (Eint in kcal/mol) and energy splitting (∆E in kcal/mol)
between the Cs and C2v species of HF–H2O calculated at the uncorrected and CP-corrected
MP2/aug-cc-pVXZ (X = 2, 3, 4) levels of theory.

Eint ∆E
X Plain CP-corrected Plain CP-corrected
2 –9.0 –7.9 0.50 0.40
3 –9.0 –8.4 0.41 0.37
4 –8.9 –8.5 0.33 0.32

CBSa –8.8 –8.6 0.25 0.25
aThe CBS limit values were calculated using the respective CBS limit total energies
shown in Table XIII.

The calculated energy barriers (∆E) belonging to the transition from the Cs to the

C2v species of HF–H2O are also shown in Table XIV. ∆E gradually decreases going from

the smallest to the larger basis sets. It is worth noting that the ∆E values obtained at the

plain and CP-corrected surfaces are very close to each other at the MP2/aug-cc-pVQZ

level of theory. The CBS limit values of the same parameter obtained at the plain and the

CP-corrected PESs numerically coincide at 0.25 kcal/mol. The CBS limit of ∆E is

considerably smaller than the corresponding equilibrium experimental108a data (0.36 kcal

mol–1), again showing the importance of inclusion of higher order correlation terms. It is

worth noting that the good agreement with experiment obtained in previous theoretical

studies107,116 is clearly due to cancellation of errors, e.g., the quality of the basis sets

employed in those investigations was unsatisfactory to consistently deal with the

problems of BSSE and BSIE.

Analyzing the geometrical data (mainly the parameter rFO) presented in Table XIII,

one can find trends similar to those already detected in the cases of (HF)2 and (H2O)2. The

rFO values obtained on the uncorrected PES change less than the corresponding CP-
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corrected values with change in the basis set. The CBS limit of rFO at the uncorrected

PES, 2.639 Å, is very close to both the MP2/aug-cc-pVTZ (2.643 Å) and MP2/aug-cc-

pVQZ (2.640 Å) values. On the other hand, the CBS limit of rFO is 2.652 Å on the CP-

corrected PES, representing a difference of 0.013 Å between the two extrapolated values.

Legon and co-workers have determined the experimental value of rFO at 2.662 Å from the

microwave rotational spectrum108b of HF–H2O. Direct comparison of the experimental r0

and theoretical re values is not fully valid but it is clear that the CP-corrected CBS limit

rFO distance lies closer to experiment than the corresponding uncorrected value, (see

SCHEME 9). However, one has to note here that the vibrational effects on hydrogen bond

lengths can be substantial resulting in a case when the uncorrected CBS limit value is

closer to the unmeasured experimental re value. Another interesting anomaly concerns the

change of the actual value of rFO going from the Cs to the C2v species. One expects that the

intermolecular bond length lengthens when climbing the transition state (C2v species)

region. All the data listed in Table XIII supports this statement but the CBS limit of rFO

obtained at the plain PESs contradicts it. In our opinion, this strange behavior is again due

to the unreliability of the CBS limit values of geometry parameters obtained on the

uncorrected PES.
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FIGURE 9: Comparison of the plain and CP-corrected rFO distances for HF–H2O
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Concerning the extrapolated rFO distances obtained by using Eq. (94), one finds

tendencies similar to those observed in the cases of (HF)2 and (H2O)2. The extrapolated

C2v rFO distances, 2.650 Å and 2.653 Å, in the uncorrected and CP-corrected cases,

respectively, are very close to the corresponding CBS value (2.658 Å) determined by

using Eq. (92) on the CP-corrected PESs. The extrapolated Cs rFO distances, 2.637 Å and

2.646 Å determined on the plain and CP-corrected PESs lies close to the corresponding

CBS limit values (2.639 Å and 2.652 Å) obtained by using Eq. (92). It is worth noting here

that the extrapolated (Eq. (94)) C2v rFO value is longer than the corresponding Cs value in

both the plain and CP-corrected cases. This means that bond length extrapolation based on

Eq. (94) is more reliable in the case of the HF–H2O complex than application of Eq. (92)

since the expected change of parameter rFO is at least qualitatively given back by the

former technique.

In short, the application of the extrapolation to the CBS limit of intermolecular

geometry parameters seems to be fruitful if various species are to be compared on the PES

of the complex investigated. Also, fixing intramolecular parameters at their experimental

values could cause difficulties during the extrapolation. As the available literature data

and our results clearly show, the MP2/aug-cc-pVXZ {X = 2, 3, 4} data series of

intermolecular distances obtained from the CP-corrected surfaces can be safely used for

the purpose of CBS extrapolations.
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II.1.1.3 Blue-Shifting and double vs single-well PES

It has just been pointed out, that the hydrogen fluoride-water complex exhibits a

double-well PES, with a tunneling barrier of the order of the first vibrational level. The

interaction nergy of the complex was estimated to be around 10kcal/mol. Therefore, it

shows a quite strong hydrogen bond interaction which seemed to prevent for drastic

changes due to BSSE in the PES.

In this section we will see another type of weakly bonded complexes with a C-H···O

interaction which often present this double-well PES. Due to the particular nature of the

interaction one can expect the BSSE have a important role in the accurate description of

the PES, mainly with small basis sets. Another interesting point is concerning the so-

called blue-shifted hydrogen bonds117. This a rather hot issue in the literature in the last

few years and is generating important controversies about the nature of these hydrogen

bonds (see for instance Refs 118,119 and references therein). Roughly, in these particular

complexes, the intramolecular X-H, where X is usually C, shortens upon interaction and

hence the stretching frequency associated increases. This is in complete disagreement

with the typical situation in hydrogen bonded and van der Waals complexes where there is

a characteristic red-shift of the intramolecular frequency, which is often referred as the

fingerprint of the interaction.

In a recent paper, Gu et al.118 showed that the features of the C-H···O interactions

are very analogous to the standard O-H···O hydrogen bond interactions, though they are

much weaker as a consequence of the smaller acidity of the proton involved. By

comparing a C-H hydrogen-bonded complex to the water dimer in terms of the energetic

contributions to the bonding, these authors found that there is no actual distinction

between the two types of hydrogen bonds. In both cases, the main opposite forces

operating in the interactions are the electrostatic and the exchange ones. Thus, the blue

shift effect observed for some of these complexes is just a consequence of the balance of

two sets of forces acting in opposite directions.

In a previous paper119, Turi and Dannenberg studied several complexes containing

                                                
117 P. Hobza, Z. Havlas, Chem. Rev. 100, 4253 (2000)
118 Y. Gu, T. Kar and S. Scheiner, J. Am. Chem. Soc., 121, 9411 (1999)
119 L.Turi and J.J. Dannenberg, J. Phys. Chem., 97, 7899 (1993)
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intermolecular C-H···O interactions. They dealt with complexes between acetylene or

hydrogen cyanide (as hydrogen donors) and water, formaldehyde or ozone molecules. For

each system, full geometry optimizations and harmonic vibrational frequency calculations

were carried out. Stabilization energies corrected for BSSE, zero-point vibrational energy

(ZPVE) and thermal correction to enthalpy at 298K were also computed. The calculations

were made at the Hartree-Fock and MP2 levels of theory. For the complexes involving

ozone, two geometries were found on the PES, depending on the basis set used. With the

6-31G(d,p) basis sets, a three-center hydrogen bond between the hydrogen atom of the

donor molecule and the oxygen atoms of ozone was predicted. On the contrary, using the

larger d95++(d,p) basis set, non-symmetric structures were found, where the ozone

molecule rotated in the molecular plane so that one hydrogen bond was ca. 0.5 - 0.7Å

shorter than the other bond. Further ZPVE, BSSE and enthalpy corrections stabilized the

symmetric structure with respect to the non-symmetric complex, the largest differences

being ca. 0.1Kcal/mol.

Therefore the goal now is twofold. To investigate the BSSE effects on the PES by

means of the counterpoise method and to assess possible effects on the shift of the

intramolecular vibrational frequencies.

We perform a deeper study of some of the C-H···O complexes studied by Turi and

Dannenberg119, but now taking into account the BSSE effect in both the geometry and the

vibrational frequencies. We assess how the corresponding PES is modified through

correction by BSSE, and whether the counterpoise method is still able to yield reliable

results using small basis sets. In that case, the CP correction would be a good compromise

to obtain accurate descriptions of large systems presenting hydrogen bonds or weak

intermolecular interactions like crystals structures or biological molecules.

We have chosen as benchmarks the complexes of cyanide and acetylene with ozone

for two reasons. First, the interactions between the donor and acceptor moieties are small

enough to foresee that a correct estimation of the BSSE effect is essential to discern

between the possible structures the complexes have proved to adopt, namely the

symmetric three-center hydrogen bond (single well) and the non-symmetric bond (double

well). Second, because the early study of by Turi and Dannenberg119 already suggested

that correction for BSSE may transform a double well into a single well. For this reason

we have performed the CP-corrected calculation at the same level of theory than in Ref

119, that is, RHF and MP2 calculations with two different basis set, namely 6-31G(d,p)
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and D95++(d,p).

We expect that the deeper analysis of the CP correction by means of a CP-corrected

PES will help us to explain under which circumstances a single-well on the PES of some

weakly bonded complexes transforms into a double well, depending on the basis set and

methodology used, and whether this situation is due to a poor behavior of the method or

to a pure BSSE effect.

In the following we discuss the CP-corrected results obtained in terms of

geometries, stabilization energies and vibrational frequencies for the complexes, and

compare them with both the uncorrected results and the experimental data available.

II.1.1.3.a The CNH···O3 complex

The results obtained for the CNH···O3 complex are collected in Tables XV and XVI.

Two different planar geometries are considered for this complex. One of them has a

symmetric structure, where the rH1O1 and rH1O3 distances are equivalent and the CHO2

angle has a value of 180 degrees (see SCHEME 10). Uncorrected optimizations lead to

these symmetric structures with the 6-31G(d,p) basis set, whereas with Dunning's

d95++(d,p) basis set, only non-symmetric minima are found, which corresponds to the

other planar geometry considered.

N C H O2

O1

O3

N C H O2

O1

O3

Symmetric

Non-symmetric
SCHEME 10: CNH···O3 structures

Uncorrected stabilization energies range from -1.51 Kcal/mol, obtained at the
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HF//d95++(d,p) level, to the largest stabilization energy of -3.84Kcal/mol at the MP2//6-

31G(d,p) level of theory. ZPVE and enthalpy corrections decrease the stabilization energy

by roughly 0.5-0.8 and 1.0-1.1 Kcal/mol, respectively. Inclusion of correlation energy

through the MP2 method increases this value by more than 60% in all cases.

TABLE XV.
Comparison of the geometric parameters of CNH···O3 on the normal surface, the CP-
optimized surface and the symmetric CP-optimized. Distances in Å and angles in degrees.

6-31G(d,p) D95++(d,p)
HF MP2 HF MP2

rHO1 Normal 2.704 2.536 3.265 2.993
CP opt 3.163 2.983 3.292 3.020

CP opt (sym.) 2.771 2.631 2.822 2.755

rHO2 Normal 3.111 2.972 3.313 3.168
CP opt 3.244 3.167 3.338 3.252

CP opt (sym.) 3.185 3.108 3.238 3.213

rHO3 Normal 2.704 2.536 2.540 2.448
CP opt 2.507 2.452 2.560 2.570

CP opt (sym.) 2.771 2.631 2.822 2.755

a(HO1O2) Normal 59.4 58.1 77.2 70.2
CP opt 75.4 70.0 77.4 68.2

CP opt (sym.) 59.3 58.1 59.4 58.0

a(HO2O3) Normal 59.4 58.1 41.7 45.8
CP opt 43.4 46.1 41.5 47.9

CP opt (sym.) 59.3 58.1 59.4 58.0

a(CHO2) Normal 180.0 180.0 168.6 163.7
CP opt 168.1 167.3 168.2 168.2

CP opt (sym.) 180.0 180.0 180.0 180.0

When the CP correction is added to the uncorrected minima, the numerical

dispersion in the different stabilization energies clearly decreases. SP-corrected results

range from -1.23 to -1.66, -0.70 to -0.86, and -0.28 to -0.51 Kcal/mol for the electronic,

ZPVE-corrected and enthalpy-corrected stabilization energies, respectively. SP-correction

has proved to be larger at the MP2 level for both basis sets; however, the use of diffuse

functions clearly decreases its value.

Differing from conventional, BSSE-contaminated results, CP-corrected

optimizations yield non-symmetric minima in all cases. The ozone molecule is displaced

farther from the hydrogen and becomes slightly rotated in the molecular plane, so that the

intermolecular distances rHO1 and rHO2 increase, whereas O3 approaches the hydrogen

atom (see SCHEME 10).
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SCHEME 11: Comparison between conventional and CP-corrected PES. a) for the 6-31G(d,p)

basis set. b) for the d95++(d,p) basis set. Points a and c are optimized structures on normal and

CP-corrected surfaces, respectively, while points b and d represent optimized geometries on the

other surface.

Since symmetric structures were located on the uncorrected surface with the 6-

31G(d,p) basis set, larger geometric changes appear in this case. Differences of up to 0.4Å

in the intermolecular distances and 10-15 degrees in the hydrogen bond angles are

observed upon CP-correction. It is interesting to see that, even though the rHO1 and rHO2

distances clearly increase, the distance to the closest oxygen atom decreases by more than

0.1Å, thus leading to a stronger interaction.
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Concerning energetics, CP and SP electronic stabilization energies are reasonably

close for both basis sets, despite the large difference in the geometries. This is due to the

large flatness of the PES studied. The interaction is so weak that large displacements on

the quadratic region of a minimum translate into small energy penalties. However, the SP

correction slightly overestimates the effect of BSSE, because it is computed at the

uncorrected minimum. SCHEME 11a depicts the situation in this case: the distance

between the points c and b (CP-correction) is always shorter than the distance between d

and a (SP-correction).

TABLE XVI.
Energetic results of the NCH···O3 complex. The values labeled ZPVE corr. and Enthal. corr.
hold for the stabilization energy including the ZPVE correction and both the ZPVE and the
thermal correction to the enthalpy, respectively.

Basis Set Method Geom. Stabilization energy (Kcal/mol)
Electronic  ZPVE corr Enth. corr

∆∆∆∆EO3 ∆∆∆∆ECNH
(Kcal/mol)

HFa

SP-HFb

CP-HFc

CPsym-HFd

Symm.
Symm.

No Symm.
Symm.

-2.28 -1.69 -1.26
-1.39 -0.80 -0.38
-1.48 -0.83 -0.47
-1.41 -0.79 -0.41

0.83 0.05
0.61 0.05
0.81 0.046-31G(d,p) MP2a

SP-MP2b

CP-MP2c

CPsym-MP2d

Symm.
Symm.

No Symm.
Symm.

-3.84 -3.04 -2.69
-1.66 -0.86 -0.51
-1.78 -0.97 -0.64
-1.74 -0.96 -0.60

2.03 0.14
1.66 0.11
1.91 0.10

HFa'

SP-HFb'

CP-HFc'

CPsym-HFd

No Symm.
No Symm.
No Symm.
Symm.(TS)

-1.51 -1.01 -0.56
-1.35 -0.85 -0.41
-1.36 -0.87 -0.41
-1.28 -0.89 -0.94

0.09 0.05
0.10 0.06
0.10 0.05d95++(d,p) MP2a

SP-MP2b

CP-MP2c

CPsym-MP2d

No Symm.
No Symm.
No Symm.
Symm.(TS)

-2.20 -1.67 -1.24
-1.23 -0.70 -0.28
-1.27 -0.82 -0.34
-1.26 -0.88 -0.93

0.72 0.24
0.67 0.23
0.64 0.23

a Point a in SCHEME 11a
b Point d in SCHEME 11a
c Point c in SCHEME 11a
d Point c in a symmetric surface
a' Point a in SCHEME 11b
b' Point d in SCHEME 11b
c' Point c in SCHEME 11b

The behavior of CP-correction changes upon use of diffuse functions; as mentioned

above, with the d95++(d,p) basis sets, both the conventional and the CP-corrected PES

yield non-symmetric minima. A qualitative graphical representation of both PES is given

in SCHEME 10b. At the HF level, the BSSE effect on geometry is very small: maximum

differences of 0.03Å in the intermolecular distances are observed, whereas the angles

remain practically unchanged. At the MP2 level, the CP-corrected intermolecular
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distances increase by more than 0.1 Å for the rHO3 bond, and the ozone molecule rotates

about 3 degrees. Regarding stabilization energies, as both the SP and the CP corrections

are performed on a non-symmetric surface, the differences are very small. Again,

predicted SP-corrected stabilization energies are more repulsive than the corresponding

CP-corrected ones.

Because all CP-corrected structures are unsymmetrical, we performed CP-corrected

optimizations on a symmetry-restricted PES (CPsym) too, i.e., keeping the rHO1 and the

rHO2 distances the same, and freezing the angle a(C1H1O2) to be linear. The nature of the

corresponding CPsym stationary point will clarify whether the CP-corrected PES exhibits

either a double-well minimum separated by a small energetic barrier, or multiple minima

on an extremely flat surface. In the first case, the two equivalent CP-corrected non-

symmetric minima would be connected through a saddle point, which would correspond

to the CPsym. stationary point.

Harmonic frequencies computed at the corresponding stationary points of the three

different PES considered (uncorrected, CP and CPsym) are gathered in Table XVII. The

stationary points of the uncorrected PES are well-defined minima in all cases, showing

symmetric and non-symmetric features for the 6-31G(d,p) and d95++(d,p) basis sets,

respectively. However, when correcting for the BSSE the situation changes. For the

smaller basis set, both the symmetric and the non-symmetric structures located on the CP

and CPsym PES, respectively, exhibit real vibrational frequencies, i.e., both are local

minima. The energy difference between both geometries represents less than 0.1kcal/mol

in all cases, and even decreases after ZPVE and enthalpy correction. This difference is

smaller than that of the first vibrational level, and hence, the averaged atomic positions

correspond to a symmetric structure, which is actually what experimental data120 have

shown.

                                                
120 Z. Mielke, A Andrews, J. Phys. Chem. 94, 3519 (1990)
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TABLE XVII
Comparison of the vibrational frequencies of CNH···O3 on the normal surface, the CP-
optimized surface and the symmetric CP-optimized surface. (cm-1)

6-31G(d,p) D95++(d,p)
HF MP2 HF MP2

Normal 28 53 24 24
CP opt δδδδ 32 36 25 17

CP opt (sym) 30 43 47i 48i

Normal 51 63 71 79
CP opt δδδδ0 81 94 72 65

CP opt (sym) 58 73 38 31

Normal 54 67 44 41
CP opt ππππ1 65 80 45 42

CP opt (sym) 68 81 42 39

Normal 64 87 64 66
CP opt νννν 68 77 61 45

CP opt (sym) 56 67 52 53

Normal 150 162 121 126
CP opt ππππ2 144 160 120 123

CP opt (sym) 156 164 129 124

Normal 859 737 850 719
CP opt 856 735 850 711

CP opt (sym) 860 738 853 698

Normal 907 772 885 738
CP opt 916 791 884 730

CP opt (sym) 908 776 869 726

Normal 932 845 889 739
CP opt 928 833 887 737

CP opt (sym) 930 836 884 736

Normal 1447 1176 1424 1185
CP opt 1436 1174 1424 1185

CP opt (sym) 1443 1176 1432 1186

Normal 1539 2041 1557 1997
CP opt 1548 2039 1557 1997

CP opt (sym) 1537 2040 1546 1997

Normal 2434 2392 2405 2440
CP opt 2433 2389 2404 2440

CP opt (sym) 2434 2392 2405 2445

Normal 3642 3510 3619 3472
CP opt 3633 3503 3621 3477

CP opt (sym) 3641 3510 3627 3481

On the contrary, for the CPsym d95++(d,p) calculations, the CPsym geometries are
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found to be a saddle point, which must be related to two equivalent CP non-symmetric

structures. Therefore, one can determine the barrier height to internal rotation, estimated

as the energy difference between the CPsym and the CP minima. It is interesting to note

that this energy difference becomes negative upon ZPVE or enthalpy corrections, i.e., the

symmetric structure is favored respect to the non-symmetric one. In the latter case, this

gap is ca 0.5Kcal/mol. However, this large difference is spurious, as there is one

vibrational mode (that assigned to the imaginary frequency) that does not contribute to the

enthalpic thermal corrections for the CPsym structure121, and thus leads to an artificial

lowering in the energy of the CPsym stabilization energy.

Vibrational analysis shows the presence of up to five intermolecular vibrational

modes having an associated vibrational frequency below 200cm-1. Indeed, such vibrations

are those where the CP-correction has a largest effect, not just concerning the vibrational

frequency value (the maximum differences observed are ca. 40cm-1), but especially on the

relative ordering of the vibrational modes. We have sorted these intermolecular modes

from smaller to larger vibrational frequency, with respect to the values obtained using the

6-31G(d,p) basis set. These modes are assigned as follows: modes labeled δ and δ0

correspond to the oscillation of the H-donor molecule respect to the ozone moiety in the

molecular plane (for the δ0 case, the motion of the ozone molecule is  practically

negligible). Two out-of-plane bending modes are marked as π1 and π2 , and finally, ν

holds for the XH···O3 stretching frequency.

The overall effect of BSSE correction is similar to the effect of improving the basis

set; for instance, for the 6-31G(d,p) basis set, the δ0 frequency is smaller than one of the

out-of-plane bending (π1) and the CNH···O3 stretching (ν). Correcting by CP or improving

the basis set both reverse this trend, so their effect is similar.

Regarding the intramolecular modes, the uncorrected and CP-corrected frequencies

are very similar, in agreement with previous results for other intermolecular complexes48.

The comparison of calculated (uncorrected) and experimental vibrational

frequencies was already carried out by Turi and Dannenberg119. The same considerations

hold after CP-correction, as all experimental frequencies were assigned to intramolecular

modes, and the CP correction has proved to have no meaningful effect on them.

                                                
121 Each vibrational mode contributes with ca. 0.6kcal/mol (kT) to the thermal correction to the enthalpy
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II.1.1.3.b The HCCH···O3 complex

For this system, two planar geometries have been considered again. First, a

symmetric structure presenting two H···O interactions, and second a non-symmetric

structure (see SCHEME 12). The features of this system turn out to be similar to those of

CNH···O3 complex in terms of geometries and vibrational analysis. Most details discussed

above can apply to the acetylene complex. However, the acidic character of the hydrogen

atom of the acetylene is not so strong as that of the hydrogen cyanide hydrogen, and thus

the intermolecular interaction is weaker. Probably due to this situation, we know of no

experimental data for this complex. In practice, we studied the same two planar

conformations considered for the CNH···O3 complex, namely the symmetric and the non-

symmetric.

Non-symmetric

Symmetric

C H O2

O1

O3

C H O2

O1

O3

CH

CH

SCHEME 12: HCCH···O3 structures

The results collected on Tables XVIII-XX show trends similar to those of the first

complex studied. With the 6-31G(d,p) basis set, symmetric stationary points have been

located on the uncorrected PES at both the HF and MP2 levels of theory. CP-correction

changes this situation and non-symmetric minima are obtained in all cases. Inclusion of

diffuse functions dramatically decreases the BSSE effect on the PES.
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TABLE XVIII.
Comparison of the geometric parameters of HCCH···O3 on the normal surface, the CP-
optimized surface and the symmetric CP-optimized. Distances in Å and angles in
degrees.

6-31G(d,p) D95++(d,p)
HF MP2 HF MP2

RH1O1 Normal 2.888 2.642 3.420 3.271
CP opt 3.358 3.203 3.472 3.277

CP opt (sym.) 3.002 2.819 3.067 2.888

RH1O2 Normal 3.307 3.086 3.531 3.357
CP opt 3.474 3.507 3.550 3.434

CP opt (sym.) 3.430 3.282 3.499 3.357

RH1O3 Normal 2.888 2.642 2.794 2.529
CP opt 2.747 2.579 2.782 2.659

CP opt (sym.) 3.002 2.819 3.067 2.888

a(H1O2O1) Normal 59.5 58.1 74.8 75.0
CP opt 74.4 72.2 76.5 72.1

CP opt (sym.) 59.4 58.1 79.5 58.1

a(H1O2O3) Normal 59.5 58.1 44.2 41.2
CP opt 44.5 44.0 42.5 44.1

CP opt (sym.) 59.4 58.1 59.5 58.1

a(C1H1O2) Normal 180.0 180.0 174.5 180.0
CP opt 171.5 168.9 172.5 170.9

CP opt (sym.) 180.0 180.0 180.0 180.0

Compared to the hydrogen cyanide-ozone complex, the uncorrected intermolecular

distances are systematically larger, whereas the stabilization energy decreases. However,

all different correction terms to the energy, namely the CP and SP, ZPVE and enthalpy

corrections, are of the same magnitude, so the corresponding corrected stabilization

energies are less negative and even in some cases, e.g., the enthalpy-corrected ones, the

interaction turns out to be repulsive.
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TABLE XIX.
Energetic results of HCCH···O3 complex. The values labelled ZPVE corr. and Enthal. corr. hold
for the stabilization energy including the ZPVE correction and both the ZPVE and the thermal
correction to the enthalpy, respectively.

Basis Set Method Geom.
Stabilization energy (Kcal/mol)

Electronic  ZPVE corr Enthal. corr

∆∆∆∆EO3 ∆∆∆∆EHCCH

(Kcal/mol)

HFa

SP-HFb

CP-HFc

CPsym-HFd

Symm.

Symm.

No Symm.

Symm.

-1.37 -0.82 -0.34

-0.55 0.00 0.48

-0.60 -0.07 0.41

-0.57 0.01 0.46

0.80 0.02

0.59 0.02

0.76 0.02
6-31G(d,p)

MP2a

SP-MP2b

CP-MP2c

CPsym-MP2d

Symm.

Symm.

No Symm.

Symm.

-2.92 -2.16 -1.76

-0.83 -0.07 0.33

-0.97 -0.22 0.18

-0.93 -0.12 0.25

1.98 0.11

1.49 0.07

1.80 0.06

HFa'

SP-HFb'

CP-HFc'

CPsym-HFd

No Symm.

No Symm.

No Symm.

Symm.(TS)

-0.82 -0.39 0.09

-0.58 -0.15 0.33

-0.58 -0.15 0.33

-0.55 -0.18 -0.23

0.09 0.15

0.09 0.14

0.10 0.16
d95++(d,p)

MP2a'

SP-MP2b'

CP-MP2c'

CPsym-MP2d

No Symm.

No Symm.

No Symm.

Symm.(TS)

-1.75 -1.21 -0.76

-0.62 -0.08 0.36

-0.67 -0.21 0.30

-0.67 -0.27 -0.30

0.75 0.37

0.69 0.35

0.66 0.37
a Point a in SCHEME 11a
b Point d in SCHEME 11a
c Point c in SCHEME 11a
d Point c in a symmetric surface
a' Point a in SCHEME 11b
b' Point d in SCHEME 11b
c' Point c in SCHEME 11b

The energetic difference between the symmetric and non-symmetric structures on

the CP-corrected PES is also inverted when the ZPVE correction is included. Larger

differences on the enthalpy-corrected energies are found for the d95++(d,p) calculations

for the same reasons brought above for NCH···O3.
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TABLE XX
Comparison of the vibrational frequencies of HCCH···O3 on the normal surface, the CP-
optimized surface and the symmetric CP-optimized surface. (cm-1)

6-31G(d,p) D95++(d,p)
HF MP2 HF MP2

Normal 33 44 21 17
CP opt δδδδ 27 28 22 8

CP opt (sym) 35 39 24i 30i

Normal 41 49 48 49
CP opt ππππ1 51 65 43 48

CP opt (sym) 57 68 50 50

Normal 51 74 42 58
CP opt νννν 46 61 47 45

CP opt (sym) 43 54 36 42

Normal 58 67 57 72
CP opt δδδδ0 63 78 60 60

CP opt (sym) 61 72 44 32

Normal 118 130 102 110
CP opt ππππ2 113 127 100 108

CP opt (sym) 123 133 104 110

Normal 817 175 784 541
CP opt 816 490 783 537

CP opt (sym) 819 495 781 533

Normal 821 512 786 542
CP opt 818 510 786 538

CP opt (sym) 823 521 786 537

Normal 855 733 848 731
CP opt 854 732 847 731

CP opt (sym) 856 735 849 733

Normal 896 779 872 747
CP opt 896 788 871 743

CP opt (sym) 897 785 866 736

Normal 910 823 876 750
CP opt 904 812 875 746

CP opt (sym) 910 819 874 744

Normal 1449 1174 1433 1183
CP opt 1446 1173 1433 1182

CP opt (sym) 1447 1173 1434 1183

Normal 1537 1997 1547 1951
CP opt 1539 1996 1547 1951

CP opt (sym) 1536 1996 1544 1951
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TABLE XX (Cont.)
6-31G(d,p) D95++(d,p)

HF MP2 HF MP2

Normal 2241 2394 2206 2444
CP opt 2240 2391 2205 2443

CP opt (sym) 2241 2394 2206 2446

Normal 3583 3496 3567 3451
CP opt 3581 3492 3568 3452

CP opt (sym) 3582 3494 3570 3454

Normal 3695 3584 3679 3544
CP opt 3693 3581 3680 3545

CP opt (sym) 3694 3583 3681 3546

Concerning the vibrational features, it is interesting to see that the frequency labeled

δ0, in this case assigned to the oscillation of the HCCH molecule respect to the ozone, is

larger than both π1 and ν for the HF/6-31G(d,p) calculation, contrary to the behavior

found in the NCH···O3 complex.

II.1.1.3.c Single vs. Multiple PES well

One may wonder why and under which circumstances a single well on the PES

transforms into a double well (or shallow multiple well) when either BSSE is eliminated

at the geometry level or the basis set size is increased. To get a better insight into this

point, in the last column of Tables XVI and XIX, we collect the energy differences

between the fragment calculation with its own basis set and with the basis functions of the

whole complex for the ozone and the corresponding donor molecules, labeled ∆EO3 and

∆ECNH or ∆EHCCH , respectively. The energy differences are calculated at the uncorrected,

CP-corrected and CPsym-corrected stationary points. Note that the sum of both energy

differences yields the BSSE value. The bigger the energy difference, the larger BSSE-like

delocalizations are found for the corresponding fragment. From the reported results

several conclusions can be drawn; first of all, the most relevant contribution to the BSSE

term is caused by the partial delocalizations of the ozone orbitals onto the donor molecule

atomic orbitals, mainly due to the proximity of the s and p hydrogen atomic orbitals to the

oxygen atoms labeled O1 and O3.
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At the MP2 level of theory, the BSSE extent is much more important. In this case,

besides the artificial stabilization of the fragment molecular orbitals as a consequence of

BSSE-like delocalizations, a large number of virtual orbitals contribute to the MP2

correction energy term when the whole basis set is used for the fragment calculations.

Comparing the values obtained with the 6-31G(d,p) and d95++(d,p) basis sets, the main

contribution at the MP2 level of theory is found for the largest basis set.

A closer look at the reported data shows that the ∆EO3 is strongly dependent on the

geometrical structure of the complex when using the 6-31G(d,p) basis set. The energetic

stabilization due to BSSE is ca. 0.2kcal/mol smaller for the non-symmetric structures with

respect to the symmetric ones. At the MP2 level of theory, the difference increases up to

0.4kcal/mol. However, the ratio between the MP2 and HF ∆EO3 values ranges between

2.3-2.7, independently of the geometry complex. When diffuse functions are included in

the basis set, the dependence on the geometry is very small, even at the MP2 level. Again,

the ratio between the MP2 and HF ∆EO3 energies is rather constant in all cases. Thus, it

seems that the energy stabilization of the ozone molecule on the ghost-orbital calculation

at the MP2 level with respect to the HF level is independent of the molecular geometry

considered.

All in all, the underlying reason for the different topology of the uncorrected and the

CP-corrected PES obtained with the 6-31G(d,p) basis set is the strong dependence of the

∆EO3 value on the molecular geometry.

The behavior of the ∆EO3 can be understood by an analysis of atomic orbital

interplay. In the symmetric case, both O1 and O3 atoms are close to the hydrogen atom of

the donor, so in the ghost-orbitals calculation of the ozone molecule, the p atomic orbitals

of the hydrogen atom play an important role on BSSE-like delocalizations122.

However, in the non-symmetric structure, the O3 atom is closer to the hydrogen

atom but O1 is too far to interact with the hydrogen atomic orbitals. The final balance is

that the difference on the BSSE term is large enough to compensate for the energy penalty

caused by loss of symmetry, due to the flatness of the PES. Therefore, the CP-corrected

PES exhibits a second energy minimum, which is not symmetric.

                                                
122 The use of the 6-31G(d) basis would probably decrease the BSSE extent for this system. However, the

lack of p orbitals on the hydrogen would also rebound on the correct description of the whole complex.
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The inclusion of diffuse basis functions prevents this problem indeed. The BSSE

extent does not depend on the angular disposition of the fragments, but mainly on the

intermolecular rH-O3 distance. In this case, both the uncorrected and the CP-corrected

show similar topologies, the symmetric structure being saddle-point.

As a conclusion, the CP correction has proved to be important at the geometry level

for the two complexes studied with basis sets having no diffuse functions. In these cases,

the uncorrected optimizations lead only to symmetric structures, whereas the CP-

corrected PES exhibit both the symmetric and the non-symmetric geometries. Despite the

large differences in the intermolecular parameters, the CP correction only modifies

meaningfully the intermolecular vibrational frequencies, so that the ZPVE and thermal

corrections to enthalpy are almost not modified.

Numerical dispersion on the reported stabilization energies decrease upon CP

correction. SP and CP-corrected stabilization energies show very similar values for the

complexes studied. For such weakly bonded systems, the CP correction applied to the

geometry is not mandatory when one is interested merely on stabilization energies.

However, the BSSE correction term has proved to be strongly dependent on the

molecular geometry. The large energy stabilization in the ghost orbital calculations for the

ozone molecule at the symmetric arrangement of the complex accounts for the

overestimation of the stabilization energy at this geometry with respect to a non-

symmetric one, which is hidden by BSSE. When BSSE is taken into account by the CP

correction, both geometric minima are located on the PES, stabilizing slightly the non-

symmetric geometry with respect to the symmetric one.

When diffuse functions are included the situation changes, so both the uncorrected

and the CP-corrected PES show the same double-well profile. The BSSE correction term

does not depend on the angular features of the complex. In this case, the CPsym structures

turn out to be saddle points connecting two equivalent non-symmetric minima. This

situation suggests that, using the 6-31G(d,p) basis set, the CP-correction may not fully

account for BSSE; the PES is modified, as non-symmetric structures are found, but the

topology of the symmetric stationary points remains unchanged.

The most important fact is that the corresponding CP-corrected results reproduce, at

least qualitatively, the PES obtained with larger basis including diffuse functions. Thus,

the CP correction involving geometry reoptimizations can be a very useful tool in order to

yield good descriptions of larger molecular aggregates (i.e., crystal structures or
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biomolecules), where the use of large basis sets including diffuse functions is at the

moment prohibitive.
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II.1.1.4 Charged intermolecular complexes

In Sections II.1.1.1 to II.1.1.3, the validity of the counterpoise-correction in the

study of intermolecular complexes has been shown. The interpretation of the correction

term as a correction to the complex’s description has proved to be extremely useful in

order to study BSSE-corrected PES by means of analytical derivatives.

However, as noted in the introduction, under certain circumstances the

counterpoise-correction may fail to describe the molecular complex due to the limitations

of a purely correction method.

In this section we want to explore the limits of the counterpoise method by

performing a systematic study, using several basis sets and ab initio methods, of charged

molecular complexes. We have studied three charged closed shell molecular complexes:

the deprotonated and protonated water dimers and the protonated ammonia-water

complex. These are quite strong hydrogen bonds, the so-called charge-assisted hydrogen

bonds, where the molecular charge enhances the interaction. They behave, however, in a

quite different way. The deprotonated water dimer shows a non symmetric interaction.

The geometry of the protonated water dimer, contrarily, is symmetric, with the central

proton equally shared by two water molecule moieties. Thus, the charge delocalizations

for this complex is much larger than that of the deprotonated water dimer. Finally, in the

ammonium-water complex, the central proton involved in the intermolecular bond is

clearly attached to the ammonia moiety and the positive charge is mainly localized in one

of the fragments.

Since the definition of the fragments is ambiguous in all the cases, we have tried

two different strategies to compute the counterpoise correction. For the three model

systems studied, i.e. (H2O···OH)-, (H2O)2
+ and (NH4···H2O)+  , the counterpoise method

has been applied in two different ways, defining two and three fragments, respectively. In

one case we have defined two fragments for each complex (henceforth CP2), arbitrarily

assigning the charge of the complex to one of them. The corresponding fragments are

H2O and OH- , H2O and H2O+ ,and NH4
+ and H2O, respectively. On the other hand, one

can define three fragments for each system (henceforth CP3), i.e., 2×OH- and H+, 2×H2O

and H+, and NH3, H+ and H2O, respectively In all the cases, there is a ghost fragment

corresponding to the hydrogen atom involved in the hydrogen bond. This fragment has no

electrons and therefore only the two other fragments contribute to the counterpoise
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correction.

Note that in all cases, the fragments have been chosen as closed-shell so that no

extra ambiguities due to the use of open-shell fragments will be introduced. For each

complex, three PES have been studied at each level of theory. The uncorrected results

have been obtained by means of standard gradient optimization techniques. The

counterpoise-corrected gradients and second derivatives have been calculated using  a

modified version of Gaussian 98123, which will be discussed in detail in  Section II.2.1.

Also, for the calculations involving two fragments but having no electrons one of them, a

our program to externally drive Gaussian has also been used (see  Section II.2.1).

We have used the 6-31G, 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p), 6-311++G(d,p),

d95(d,p), d95++(d,p), and 6-311++G(3df,2pd) basis sets, together with the ab initio

methods Hartree-Fock (HF) and second order Møller-Plesset perturbation theory (MP2),

where all orbitals have been included for the correlation.

The results obtained for each complex will be discussed separately. Next, we

include some brief comments about the thermal correction to the energy.

II.1.1.4.a Deprotonated water dimer

The interaction of OH- with water molecules in gas-phase has been recently

studied88d,124,125. As for the OH-(H2O), it has been found to form an asymmetric complex

with an almost collinear hydrogen bond. The central proton can be transferred in a

isomerization reaction with almost no energetic barrier. Experimental studies126 have

                                                
123 Gaussian 98 (Revision A.11),  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,  M. A. Robb,

J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J.

M. Millam,  A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi,  V. Barone, M. Cossi, R.

Cammi, B. Mennucci, C. Pomelli, C. Adamo,  S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q.

Cui,  K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick,  A. D. Rabuck, K. Raghavachari, J. B.

Foresman, J. Cioslowski,  J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko,  P. Piskorz, I.

Komaromi, R. Gomperts, R. L. Martin, D. J. Fox,  T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,

M. Challacombe,  P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-

Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2001.
124 S. S. Xantheas, J. Am. Chem. Soc. 117 10373 (1995), and references therein.
125 M. Masamura, J. Comput. Chem. 22 31 (2001).
126 M. Meot-Ner (Mautner) and C. V. Speller, J. Phys. Chem. 90 6616 (1986)
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estimated a value of 26.5 ±1 kcal/mol for the formation enthalpy (∆Ho) of the complex.

In some of the papers devoted to this system the BSSE was neglected88d,124 ,

whereas others included single-point counterpoise calculations at the (uncorrected)

optimized stationary points125.

TABLE XXI
Formation Enthalpies ( kcal/mol) and H-bond distances (Å) for the H2O···OH- complex at
RHF and MP2 levels of theory. The CP-corrected results (CP2 and CP3) have been
obtained at the CP-corrected PES (see text for fragment definitions). The symmetric
structures are designed by s.

Formation Enthalpy rO···H distance (Å)
Method

Uncorr CP2 CP3 Uncorr. CP2 CP3

RHF/6-31G 38.41 31.39 31.05 1.400 1.457 1.445

RHF/6-31G** 34.52 27.21 26.44 1.459 1.494 1.501

RHF/6-31++G** 23.78 22.89 22.98 1.569 1.578 1.577

RHF/6-311G** 33.74 24.42 23.93 1.501 1.566 1.567

RHF/6-311++G** 23.23 22.43 22.46 1.581 1.588 1.586

RHF/D95 ** 31.21 27.66 26.91 1.452 1.489 1.487

RHF/D95++** 23.78 22.95 23.04 1.567 1.571 1.570

RHF/6-311++G(3df,2pd) 22.77 22.10 22.10 1.555 1.566 1.562

MP2/6-31G 45.15 32.79 33.24 1.244 s 1.435 1.362

MP2/6-31G** 44.52 30.96 31.92 1.223 s 1.388 1.256 s

MP2/6-31++G** 28.67 24.64 25.46 1.396 1.487 1.412

MP2/6-311G** 45.17 26.39 26.56 1.216 s 1.494 1.418

MP2/6-311++G** 28.60 23.69 24.31 1.380 1.515 1.468

MP2/D95 ** 40.30 31.94 33.15 1.217 s 1.382 1.235 s

MP2/D95++** 28.83 24.69 25.88 1.405 1.489 1.430

MP2/6-311++G(3df,2pd) 29.23 25.76 26.66 1.332 1.439 1.384

Our BSSE-corrected geometry optimizations results are gathered in the Table XXI.
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The variation of ∆Ho and the intermolecular hydrogen bond distance with respect to the

basis sets and methods used are depicted also in Figures 10 and 11, respectively.

As expected, after CP correction the hydrogen bond length increases and thus the

stabilization energy lessens.
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FIGURE 10: Convergence of RHF and MP2 calculated formation enthalpies (∆Ho) in kcal/mol

of the (H2O···OH)-complex vs. basis set. The shadowed region shows the experimental range

At the RHF level of theory, the effect of the BSSE in the hydrogen bond length is

not dramatic even for the smallest basis set used. This is not the same case, however, for

∆Ho. When diffuse functions are not included in the basis sets, the uncorrected ∆Ho values

are clearly overestimated. The CP-corrected results are much closer to the experimental

values and the ones obtained with the largest basis set used (see Figure 10). Also, the CP3

scheme yields lower ∆Ho values than the CP2, the difference being less than 1 kcal/mol.

The differences between both CP methods and the uncorrected values are dramatically

decreased when diffuse functions are included. In those cases CP2 and CP3 are within 0.1

kcal/mol, but in this case the CP2 values are lower. For the largest basis set used, the 6-
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311++G(3df,2pd), the uncorrected ∆Ho is still 0.67 kcal/mol above the predicted with the

CP-corrected methods, which yield almost equivalent results.
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FIGURE 11: Convergence of the RHF and MP2 O-H intermolecular distances (Å) of the

(H2O···OH)-complex vs. basis set.

The leading term of the CP correction is by far the basis set extension effect of the

OH- moiety. In the CP2 calculations without diffuse functions this value stands for up to

95% of the BSSE. In the CP3 calculations, there are two contributions to the BSSE due to

basis set extensions of two OH- fragments. The leading term corresponds to the H-bond

donor OH- moiety, as the central proton is much closer to this OH- fragment. Obviously,

this basis set extension will depend on the position of the proton. Hence, the BSSE of the

complex for the CP3 calculations is more than twice the CP2 one. The reason why this is

not translated also into the ∆Ho values is that to compute the ∆Ho for the CP3 method one

has to take into account the three-fragment nature of the complex. That is, the Ho values

of the H2O fragment must also be CP-corrected using the same fragment definition of the
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complex, i.e. H+ + OH-.

The explanation above can be expressed qualitatively in this way. The CP-corrected

absolute enthalpies can be expressed as

Ho
CP2 (H3O2

-) = Ho(H3O2
-) + δCP2(OH-)A + δCP2(H2O) (95)

Ho
CP3(H3O2

-) = Ho(H3O2
-) + δCP3(OH-)A + δCP3(OH-)D (96)

Ho
CP (H2O) = Ho(H2O) + δCP(OH-)D (97)

where δCP2(H2O), δ(OH-)A and δ(OH-)D represent the positive-definite counterpoise

contributions due to basis set extensions of the H2O moiety and the OH- H-bond acceptor

and donor, respectively. Accordingly, the CP-corrected ∆Ho values for the complex can

be obtained easily.

∆Ho
CP2 (H3O2

-)= ∆Ho(H3O2
-) + δCP2(OH-)A  + δCP2(H2O) (98)

∆Ho
CP3(H3O2

-) = ∆Ho(H3O2
-) + δCP3(OH-)A + δCP3(OH-)D - δCP(OH-)D (99)

The CP2 calculation bears no BSSE in the fragments. However, the BSSE

contribution of the H2O fragment, δCP(OH-)D , is large enough to compensate for the

δCP3(OH-)D term of the CP3 complex calculation. The final result is that both CP2 and

CP3 ∆Ho values are very close.

The qualitative differences between the results obtained with basis sets including

diffuse functions can be explained as follows. When no diffuse functions are included, the

intermolecular distance are ca. 0.1Å larger than the ones obtained using diffuse functions.

Consequently, the central proton's basis functions are closer to the H-bond donor OH-

moiety because the intramolecular bond shortens. This means that, in the CP3 calculation,

the term δCP3(OH-)D is greater than δCP(OH-)D so that the BSSE is larger than the

respective CP2 one and thus the ∆Ho is smaller. When diffuse functions are included the

contributions mentioned above compensate and the difference between the CP2 and CP3

values can be assigned to the δCP2(H2O) contribution, which is no longer negligible with

respect to the δ(OH-) ones. The final consequence is that, in these cases, the CP2  ∆Ho
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tend to be slightly smaller than the CP3 one.

At MP2 level of theory the picture is different. The BSSE effects are much larger

both energetically and geometrically. The intermolecular distances of the CP2 optimized

structures are much larger than both the uncorrected and the CP3 ones. Even for the

largest basis set, the intermolecular distance lengthens by more than 0.1A. The effect of

BSSE in the geometry for the CP3 calculations is, in general, less important. These large

discrepancies between both CP methods from a structural point of view are not translated,

however, into large differences in the formation enthalpies calculated. In all the cases,

both ∆Ho values are within 0.6-1.2 kcal/mol, whereas the differences with respect to the

uncorrected values range from 2.5 to up to 18 kcal/mol. Contrary to the RHF case, now

the ∆Ho values are smaller than the CP3 ones, obviously determined by the enlargement

of the intermolecular bond length.

From the Figure 11 it seems clear that there are two rather strange values,

corresponding to the CP3 MP2/6-31G** and MP2/d95** calculations. In these particular

cases, the effect of the BSSE in the geometrical parameters is almost negligible. This is

quite unexpected mostly in the case of the MP2/6-31G** level of theory, which is known

to bear large BSSE and even modify the topology of the PES of some weak hydrogen

bonded complexes38,39.

H
O

H
O

H

HO

H

H

O

CP2

CP3

SCHEME 13: Qualitative picture of the acting forces on the central H atom

A more detailed inspection to the optimized structures gives the answer. When

diffuse functions were not used, all the uncorrected calculations predicted stationary
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points where the central H nucleus is equally shared by both OH moieties. This effect is

correctly avoided in all the CP2 calculations. However, in the case of the CP3

optimizations, the already mentioned MP2/6-31G** and MP2/d95** incorrectly yield the

symmetric structure. One can rationalize these findings graphically as shown in SCHEME

13. As explained before, the main contribution to the BSSE in the counterpoise-corrected

calculations is due to the OH- fragments. In the uncorrected calculation, due to the lack of

diffuse functions, the O atoms tend to use the basis functions of the central H atom. As a

result the atom lay in the middle of both oxygen atoms under the effect of two BSSE-like

forces (lower arrows) of the same strength and opposite direction. In the CP3 calculations,

these artificial BSSE forces are equally annihilated by the counterpoise forces (upper

arrows) and the symmetry is maintained. However, in the CP2 calculations, it only

appears the force due to one OH- fragment, corresponding to the H-bond acceptor moiety,

therefore the symmetry is broken and the correct asymmetric structure is obtained. When

using diffuse functions or at the RHF level of theory, the true interaction forces are much

larger than the BSSE strength, and the uncorrected optimizations lead to the correct

geometries.

Obviously, this reasoning cannot explain why the MP2/6-31G and the MP2/6-

311G** CP3 calculations do produce the correct geometries. In these cases the true

interaction forces slightly overcome the BSSE effects. From another point of view, the

obtention of an asymmetric structure may imply that the stability of the water molecule is

enhanced with respect to the hydroxide ion at this level of theory. Indeed, at the MP2/6-

311G** level, the optimized O-H distance of the water molecule is the shortest of the

basis sets studied (0.957Å) and in the case of the 6-31G basis set, this distance is much

larger (0.974Å) but, at the same time, it is much shorter than the OH- bond distance (1.005

Å).

II.1.1.4.b Protonated water dimer

The protonated water dimer, H5O2
+, is one of the most studied charged hydrogen-

bonded complexes. Its potential energy surface is very flat and strongly dependent of the

basis sets and methodology. At the RHF level88a, the gradient optimization leads to a Cs

asymmetric structure where the hydrogen atom involved in the hydrogen bond is closer to

one of the water molecules of the complex. The inclusion of electron correlation is
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necessary to obtain the C2 structure88a,127 , where the proton is equally shared by both

water molecules. Another intermediate C1 structure was also obtained using the TZ2P

basis set together with the CCSD or CCSD(T) methods. Recently, state of the art ab initio

calculations, namely Brueckner coupled cluster88b or explicitly correlated methods128

together with large basis sets removed this spurious structure and determined a global

minimum of C2 symmetry only about 0.4 kcal/mol above the Cs geometry. Furthermore,

the geometrical parameters and energies seems not to smoothly converge with the

increasing size of the basis sets88b.

All these findings make this system very interesting for the purpose of this paper.

Our aim is to test how the correction of BSSE, often ignored in those studies, affect the

topology of this extremely sensitive PES and the convergence of the energetic and

structural features of the complex. Also, contrary to the deprotonated water dimer, the

best ab initio calculations predict a global minimum where the proton involved in the

hydrogen bond is shared by both water moieties. Hence, the CP3 scheme here seems, a

priori, more appropriate to preserve the symmetry of the complex.

Unc.
CP2
CP3

SCHEME 14: Uncorrected, CP2 and CP3 RHF PESs for the movement of the central

proton of the (H2O)2 H+ complex.

We have performed CP-corrected geometry optimizations for both structures to

determine the convergence of the energy gap between them and also possible inversion of

                                                
127 C. Tuma, A. D. Boesse and N. C. Handy, Phys. Chem. Chem. Phys. 1 3939 (1999)
128 A. A. Auer, T. Helgaker and W. Klopper, Phys. Chem. Chem. Phys., 2, 2235 (2000)
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the stability upon BSSE correction. The ∆Ho and H-bond distances obtained for the C2

and Cs structures are collected in Tables XXII and XXIII, respectively. The convergence

of their calculated ∆Ho with respect to the basis set used is also depicted in Figure 12 and

13. When focusing with the asymmetric Cs structure both CP2 and CP3 methods can be

easily applied and actually behave in a very similar way for all the basis sets. It is

important to note that the CP-corrected optimization of the symmetric structure, C2, is not

possible when two fragments are defined, as the symmetry of the molecule is broken. The

situation is qualitatively shown in the SCHEME 14. It represents the energy profile for the

movement of the central H atom between the oxygen atoms, at the RHF level of theory.

The uncorrected and CP3 curves show the typical double well PES where the Cs and C2

structures correspond to the minimum and the TS, respectively. The CP2 method forces

the PES to be asymmetric because the BSSE is larger when the H atoms is closer to the

water fragment than to the H3O+ one. Also, the stationary point corresponding to the TS

does not have the C2 symmetry.

In principle, at any (asymmetric) point of the PES, the partition of the complex into

H3O+ and H2O fragments can always be done following just geometrical criteria. The

central proton can be assigned to the water moiety with shorter O-H distance. That is, one

can easily study half of the PES depicted in SCHEME 14. If one is interested in the whole

PES, the fragment definition should change according to the relative position of the

proton with respect the two water moieties. In the symmetric case, the single-point CP2

calculation is independent of the definition of the fragments, as both water molecules are

equivalent. The problem is that an eventual CP2 geometry optimization of the TS at this

point will push the H atom to be closer to the other water fragment, hence forcing a

dynamic redefinition of the fragments. Therefore, our CP2 values shown in the Table

XXII are obtained by applying the single-point correction at the respective uncorrected

stationary point.
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TABLE XXII
Formation Enthalpies (kcal/mol) and H-bond distances (Å) for the C2 symmetric
(H2O)2H+ structure at RHF and MP2 levels of theory. The CP2 values have been obtained
by single-point CP correction on the uncorrected PES. The transition states are designed
by i.

Formation Enthalpy H-O distance
Method

Uncorr CP2 CP3 Uncorr. CP3

RHF/6-31G 42.64 41.24 41.77 1.183 a 1.185 a

RHF/6-31G** 35.62 34.46 34.66 1.181 i 1.182 i

RHF/6-31++G** 32.99 31.75 31.56 1.182 i 1.183 i

RHF/6-311G** 34.87 32.4 33.12 1.179 i 1.180 i

RHF/6-311++G** 32.48 31.24 31.37 1.180 i 1.181 i

RHF/D95 ** 34.29 33.82 34.13 1.181 i 1.181 i

RHF/D95++** 32.78 31.83 31.79 1.182 i 1.183 i

RHF/6-311++G(3df,2pd) 31.27 30.72 30.98 1.183 i 1.184 i

MP2/6-31G 44.79 41.87 43.30 1.200 a 1.208 a

MP2/6-31G** 39.71 36.14 37.58 1.193 1.200

MP2/6-31++G** 36.35 32.82 33.61 1.194 1.203

MP2/6-311G** 39.28 33.35 35.37 1.189 1.200

MP2/6-311++G** 35.92 31.94 33.07 1.191 1.199

MP2/D95 ** 37.96 35.15 36.80 1.192 1.200

MP2/D95++** 36.11 32.49 33.82 1.194 1.206

MP2/6-311++G(3df,2pd) 35.28 33.19 34.15 1.191 1.199

a D2d symmetry
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FIGURE 12: Convergence of RHF and MP2 calculated formation enthalpies (∆Ho) in

kcal/mol of the symmetric C2 (H2O)2H+ complex vs. basis set. The shadowed region

shows the experimental range.

At the RHF level of theory, except for the 6-31G basis set (in this case a D2d

symmetry structure was found to be the minimum even after CP correction), the C2

structure is a transition state. The counterpoise correction does not change the topology of

the PES. The CP3 optimized O-H distances are very similar to the uncorrected ones due to

the symmetry of this structure. The differences are larger for the Cs structure, the minima

in all cases but the 6-31G. The effect on the intermolecular distances are not, however, as

large as for the deprotonated water dimer. In some cases, for instance with the D95**

basis set, the hydrogen bond distance shortens upon CP3 correction because the

intramolecular O-H distance lengthens. This is because both O-H bonds can be considered

as intermolecular ones when defining three fragments.
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TABLE XXIII
Formation Enthalpies ( kcal/mol) and H-bond distance (Å) for the Cs asymmetric
(H2O)2H+ structure at RHF and MP2 levels of theory. The transition states are designed
by i.

Formation Enthalpy H-bond distance
Method

Uncorr CP2 CP3 Uncorr. CP2 CP3

RHF/6-31G 41.14 1.215

RHF/6-31G** 34.05 32.62 32.95 1.314 1.329 1.324

RHF/6-31++G** 31.21 29.88 29.74 1.348 1.365 1.372

RHF/6-311G** 33.14 29.99 31.15 1.342 1.384 1.366

RHF/6-311++G** 30.63 29.23 29.48 1.363 1.386 1.381

RHF/D95 ** 32.46 31.82 32.13 1.341 1.347 1.336

RHF/D95++** 30.98 29.93 29.95 1.361 1.370 1.372

RHF/6-311++G(3df,2pd) 29.54 28.94 29.23 1.374 1.383 1.377

MP2/6-31G 41.98 1.255

MP2/6-31G** 39.99 36.74 38.10 1.230 i 1.251 i 1.231 i

MP2/6-31++G** 36.65 33.44 33.84 1.246 i 1.220 i 1.270 i

MP2/6-311G** 39.45 33.88 35.76 1.244 i 1.193 i 1.261 i

MP2/6-311++G** 36.10 32.53 33.24 1.255 i 1.285 i 1.284 i

MP2/D95 ** 38.21 35.82 37.39 1.247 i 1.229 i 1.234 i

MP2/D95++** 36.20 33.04 33.98 1.267 i 1.230 i 1.277 i

MP2/6-311++G(3df,2pd) 35.42 33.60 34.30 1.253 i 1.220 i 1.263 i

Concerning the energetics, the Cs structure is from 0.15 to 0.5 kcal/mol below the

C2 one. The inclusion of standard thermal corrections to the enthalpy (including ZPVE)

inverts the relative stability of both structures. Upon correction, the calculated ∆Ho for the

C2 structure is about 1.5-2.0 kcal/mol larger. The counterpoise correction further increases

the energy gap between both structures because the BSSE is larger for the Cs structure. In

the CP3 method this is due to the proximity of the central H atom to one of the water
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fragments. With the CP2 method, the BSSE is computed on the uncorrected stationary

point, which has been proved to be the cause of the sometimes-referred overcorrecting of

the BSSE by means of the counterpoise scheme24,25.

Except for the 6-31++G** basis set, the CP2 calculated ∆Ho values are smaller than

the CP3 ones. Again, in the CP3 case, one has to correct for BSSE as well the ∆Ho of

H3O+ in order to be consistent with the number of fragments in the complex. This

compensates for some of the BSSE of the complex so that the final ∆Ho values are closer

to the uncorrected ones.
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FIGURE 13: Convergence of RHF and MP2 calculated formation enthalpies (∆Ho) in

kcal/mol of the symmetric Cs (H2O)2H+ complex vs. basis set. The shadowed region

shows the experimental range.

At the MP2 level the differences are larger, as expected. The inclusion of electron

correlation changes the topology of the PES and now the symmetric C2 structure is the

minima whereas the Cs stands for a transition state. The counterpoise correction does not

modify the nature of the stationary points but at the CP2 level the changes in the

geometrical parameters are dramatic. For the Cs structure, the intermolecular bond length

shortens upon CP2 correction and the intramolecular O-H lengthens. Indeed, in some
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cases like for instance with the 6-31++G** ,D95++** and 6-311++G(3df,2pd) basis sets,

both O-H distances are almost equivalent. This rather strange shortening of the CP-

corrected intermolecular distances was already reported in a previous paper of Kobko and

Dannenberg87. Basically, it is due to the fact that we are dealing with a transition state

instead of a minimum. The CP2 energies for the symmetric C2 structure are computed at

the uncorrected stationary points for the reasons given above. However, if one lets the

molecule to fully optimize, the symmetry is broken and the central H migrates towards the

oxygen atom of the H3O+ moiety. This spurious geometry corresponds to the C1 spurious

minimum already found by Xie et .al88a. The use of three fragments, more chemically

meaningful, solves this problem. The CP3 geometrical parameters of both structures are

more similar to the uncorrected ones and asymptotically tend to them by using diffuse

functions and increasing the basis set size.

The BSSE is again larger for the CP2 calculations. The differences are larger at the

C2 geometry because the CP2 values are computed at the uncorrected stationary point.

Nevertheless, the differences between both counterpoise calculations are smaller than the

BSSE, even in the most favorable cases.

Similarly to the RHF results, the thermal correction to the enthalpy including ZPVE

changes the relative stability of both structures and the Cs is favored with respect to the

symmetrical one. The CP-correction does not change the situation even though, in the

case of the CP2 method, one can reasonable expected the spurious C1 structure be the

more stable.

Experimental studies of the enthalpy of solvation of the H3O+ ion report values of

33.0 kcal/mol129 and 31.6 kcal/mol130, respectively. In general, our RHF results are closer

to the experimental values than the MP2 ones. Also, the C2 structures seem to produce

∆Ho values closer to the experiment. Figure 12 and 13 shows the variation of the

computed ∆Ho vs. the increasing basis set size. Except for the 6-31G basis set, which

totally failed to properly describe the system, the counterpoise-corrected MP2 values for

small basis sets are much better than the uncorrected ones.

                                                
129 M. Meot-Ner and  F. H. Field, J. Am. Chem. Soc. 99 998 (1977)
130 E. P. Grimsrud and P. Kerbale, J. Am. Chem. Soc. 95 7939 (1973).
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II.1.1.4.c Protonated ammonia-water

The case of the protonated ammonia-water complex is also interesting because there

is no possible equivalence between the fragments of the complex. Therefore, neither the

CP2 (NH4
+ + H2O) nor the CP3 (NH3 + H++ H2O) fragment definitions will break any

symmetry of the complex. It has been shown131 that the most stable structure of this

complex corresponds to a C1 direct H-bond interaction where the central proton involved

in the intermolecular bond is closer to the NH3 moiety and forms an almost linear angle

with the oxygen atom. Similarly to the protonated water dimer case, the BSSE is expected

to be rather small compared to the neutral of negatively charged complexes so both CP2

and CP3 calculations should not be very different. Since the proton is clearly attached to

the NH3 moiety, it seems more coherent the CP2 partitioning of the complex. However, if

one is interested in studying the proton transfer process

NH4
+ + H2O → NH3 +H3O+

only the CP3 method can yield a continuous PES. Hence, it is interesting to see

whether the CP3 calculations can also produce meaningful results when the central H

atom is clearly attached to the ammonia

The calculated ∆Ho and intermolecular O-H distance values are gathered in Table

XXIV. The convergence of both parameters with respect to the basis set used is also

depicted in Figures 14 and 15. Two different experimental estimations of the solvation

enthalpy of the ammonium cation are 19.9 kcal/mol132 and 17.2 kcal/mol133, respectively.

The two counterpoise-corrected calculations nicely converge for all the basis sets from

both an energetic and structural point of view (see Figures 14 and 15). The effect of the

BSSE is not dramatic either. Maximum differences of 3 kcal/mol and 0.05Å are observed

at the MP2 level of theory for ∆Ho and O-H distance, respectively.

                                                
131 J. C. Jiang, H.-C. Chang, Y. T. Lee and S. H. Lin, J. Phys. Chem 103 3123 (1999)
132 M. Meot-Ner, J. Am. Chem. Soc. 106 1265 (1984)
133 P. Kerbale, Annu. Rev. Phys. Chem. 16 267 (1977)
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TABLE XXIV
Formation Enthalpies ( kcal/mol) and H-bond distance (Å) for the (NH4···H2O)+ complex
at SCF and MP2 levels of theory. The CP-corrected results (CP2 and CP3) have been
obtained at the CP-corrected PES (see text for fragment definitions).

Formation Enthalpy rO···H distance (Å)
Method

Uncorr CP2 CP3 Uncorr. CP2 CP3

RHF/6-31G 25.32 25.15 24.43 1.629 1.641 1.636

RHF/6-31G** 20.14 19.96 19.11 1.719 1.730 1.729

RHF/6-31++G** 18.26 17.49 18.01 1.759 1.779 1.781

RHF/6-311G** 19.97 18.61 18.63 1.723 1.751 1.749

RHF/6-311++G** 18.06 18.01 17.99 1.751 1.767 1.767

RHF/D95 ** 19.12 19.34 18.53 1.729 1.738 1.739

RHF/D95++** 18.18 18.11 17.53 1.748 1.761 1.762

RHF/6-311++G(3df,2pd) 16.93 17.32 16.76 1.748 1.754 1.752

MP2/6-31G 26.87 25.79 25.80 1.603 1.629 1.616

MP2/6-31G** 23.76 21.86 21.26 1.616 1.648 1.636

MP2/6-31++G** 21.14 19.11 19.02 1.672 1.718 1.714

MP2/6-311G** 23.86 20.86 20.45 1.607 1.675 1.666

MP2/6-311++G** 21.03 19.06 18.45 1.647 1.698 1.695

MP2/D95 ** 21.91 21.17 20.90 1.632 1.660 1.652

MP2/D95++** 21.17 19.20 18.64 1.664 1.700 1.693

MP2/6-311++G(3df,2pd) 19.72 19.33 19.53 1.635 1.662 1.656

The CP-correction is very important in order to obtain more reliable ∆Ho values,

closer to the experiment, mainly for the small basis sets. Again the inclusion of diffuse

functions is essential for a good description and, usually a lower BSSE. Curiously, the

addition of diffuse functions to the D95** basis set further increases the BSSE.

Nevertheless, a smaller absolute value of BSSE does not ensure a better description of the

system and indeed, this is clearly shown in Figure 14. The CP-corrected values at the

MP2/D95++** are better compared to the experiment than the MP2/D95** ones.
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FIGURE 14: Convergence of the RHF and MP2 calculated formation enthalpies (∆Ho) in

kcal/mol of the (NH4···H2O)+ complex vs. basis set. The shadowed region shows the

experimental range.

It is noticeable also that with the largest basis set used the CP-corrected ∆Ho values

are still 1 kcal/mol lower than the uncorrected ones. The 6-31G basis set again shows that

the BSSE is not the most important source of error and predicts too strong interaction

even after counterpoise-correction.
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FIGURE 15: Convergence of the RHF and MP2 O-H intermolecular distances (Å) of the

(NH4···H2O)+ complex vs. basis set.

II.1.1.4.d The thermal correction to Enthalpy

The PES of the NH4
+-H2O complex is extremely flat. The water molecule can rotate

almost freely around the intermolecular bond. For instance, at the MP2/6-31G** level, the

energetic barrier for the rotation (without any thermal correction) is less than 10-4

kcal/mol. In most cases, the lowest vibrational frequencies for the minima and TSs are

about 10cm-1 and 10i cm-1, respectively, which indicates that the harmonic approximation

must be very rough for this PES. Indeed, the standard thermal correction to the energy

sums ∼ 0.6 kcal/mol121 (KT) for the lowest real vibrational energy, whereas any imaginary

vibrational frequency is ignored. Therefore, in this case, the calculation of the rotational

barrier including the thermal corrections would destabilize by ca. 0.6 kcal/mol the

minimum with respect to the TS. The values of ∆Ho presented in Table XXIV are
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computed ignoring the contribution of the lowest vibrational frequency, i.e. they are ∼ 0.6

kcal/mol shifted with respect to the standard thermal correction calculation. Indeed, this

problem was already observed38 for some C-H···O hydrogen bonded complexes that

exhibit a double well PES.

A similar situation occurs in case of the protonated water dimer. At the MP2 level

of theory, the Cs structure corresponds to a TS and hence is ca. 0.6 kcal/mol stabilized

with respect to the C2 minimum, resulting in an artificial inversion of the stability of both

structures. At the SCF level of theory, the Cs structure is the minimum and the C2 the TS.

After thermal corrections to the enthalpy the relative stability was also inverted. The

difference in this case is that the estimated zero-point vibrational energy is also about 2

kcal/mol larger for the Cs structure so that, even after removing the 0.6 kcal/mol due to

the contribution of the lowest vibrational frequency, the inversion of stability is

conserved. Furthermore, now the energy gap between the considered structures is in better

agreement with the predicted at MP2 level. Since the lowest vibrational frequencies were

about 150cm-1 and 350i cm-1 for the minima and the TS, much larger than the respective

values for the NH4
+-H2O complex, the values given in Tables XXII and XXIII are

computed taking into account the contribution of all the vibrational modes. Nevertheless,

our calculated ∆Ho values should be taken with care.

The main conclusion that can be derived is that both CP2 and CP3 methods yield

very similar results at the RHF level from both an energetic and structural point of view.

Only appreciable differences in the geometry have been observed for the (H2O···OH)-

complex when using the 6-311G** and D95** basis sets. At the MP2 level of theory the

differences increase but, in general, are less important than the BSSE itself. There is a

good agreement in the formation enthalpies for non symmetric complexes, like the

(H2O···OH)- and the (NH4···H2O)+.

The protonated water dimer shows more difficulties due to the symmetric nature of

the complex but the CP3 method correctly eliminates the BSSE. The counterpoise-

corrected results are much closer to the experimental values than the uncorrected ones.

The CP2 method shows some limitations when dealing with symmetric complexes. In this

case, the definition of two fragments allows the use of the single-point correction but do

prevents form counterpoise-corrected optimizations due to the break of he symmetry.

With small basis sets without diffuse functions the BSSE correction is essential. The
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bad results of the 6-31G basis set even after CP-correction show that the surprisingly good

results that sometimes are obtained must arise from an astonishing error compensation.

The use of single-point counterpoise-correction, that is the counterpoise correction

to the stabilization energy at stationary point of the uncorrected PES, yields larger BSSE

values. This is the reason why some authors claim for an overcorrection of the BSSE. We

show that the counterpoise-corrected values are better than the uncorrected ones provided

that the corrected PES is used throughout.

Finally, the CP3 methods has been shown to perform equally well for both

symmetric and non symmetric complexes. Hence, it may become a useful receipt in order

to deal with the BSSE in a continuos way for proton transfer reactions but further

systematic studies on other reactions are desirable.
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II.1.2 Chemical Processes and Reactivity
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.Structures involved in the internal rotation of the C2H4···SO2. complex. The

considered intermolecular parameters are also indicated.
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II.1.2.1 Internal rotation barriers

The problematic of the BSSE correction on chemical reactivity has already been

stressed. With the present methodology (a new heuristic approach in this direction is

proposed in this work), only chemical processes where the number and of fragments

is conserved along the reaction can be treated. This is the case of the internal rotation

barriers of weakly bonded complexes.

In the literature there has been some controversy about the existence of BSSE in

the determination of the energetic barriers for the internal rotation, as the structures

involved in the calculation, the minima and the transition state connecting them, are

evaluated with the same basis set.

In the following section we will show the results obtained for a couple of

intermolecular complexes already studied by Sordo et al.92,93, where the use of the

counterpoise-correction was criticized.

The two molecular complexes we are concerned are the BF3···NH3 and

C2H4···SO2. In our opinion the BSSE must be taken into account in the calculations of

the energetic barriers to internal rotation and, again, not only single-point corrections

to en energy but full counterpoise-corrected optimizations in order to avoid the BSSE

dependence on the molecular geometry.

Thus, we have performed both uncorrected and CP-corrected geometry

optimizations for the two weakly bonded subsystems and we will compare our values

obtained for the energy barriers using Eq. (61) and Eq. (62) with those obtained by

Sordo92. We have analyzed also the differences between the single-point counterpoise

correction, i.e. the energy correction at the uncorrected PES (SP-correction), and the

CP-corrected optimization. Finally, we decided to study the effect of the fragment

relaxation to both the energy and the geometry for these systems, in order to shed

light into Sordo’s results and criticism of the counterpoise method94. Therefore we

have re-optimized the geometry with the intramolecular parameters frozen at the

optimum value of the free monomers.

II.1.2.1.a BF3···NH3 complex.
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SCHEME 15 depicts the structures involved in the internal rotation along the C3

axis for the BF3···NH3 complex. Tables XXV and XXVI collect the total energies and

relevant geometric parameters for the minimum and transition state, respectively. In

both cases, uncorrected and CP-corrected optimizations have been carried out.

Uncorrected numbers are in perfect agreement with those obtained by Sordo. As

expected, the CP-corrected intermolecular distance (rB-N) is larger than the

uncorrected one. Differences of the order of 0.05Å are observed for both the eclipsed

and alternated geometry. However, the effect of BSSE on the intramolecular distances

and angles is very small. A maximum difference of 0.7 degrees and 0.003 Å is found

for the aBFN angle and rB-F distance, respectively in the TS structure. SP-correction

overcorrects the BSSE by about 0.2-0.3Kcal/mol.
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SCHEME 15: Structures involved in the internal rotation of the BF3···NH3 system.

The intermolecular distance is indicated

One of the main goals of this paper is the analysis of the relaxation term in both

the uncorrected and CP-corrected energy and geometry. In Tables XXV and XXVI we

also present the result of the optimization of the system with intramolecular variables

fixed to the values they exhibit in free fragments (e.g., BF3 being planar). Thus,

intermolecular interaction is studied also, by keeping fixed intramolecular parameters,

to assess the importance of fragment geometry relaxation on the intermolecular

geometries and energetics.

The relaxation energy is BSSE-independent in this system. The energy penalty

falls in the range of 54-59 cm-1 at both the minimum and TS geometry, independently

of the CP-correction being applied. However, the effect on the B-N distance is

dramatic. For both structures, rB-N is lengthened by about 0.7-0.8Å when the

fragments are not allowed to relax. The CP-correction increases this number even
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more. Thus, the BSSE effect on the geometry is more important without the relaxation

term, differences of ca. 0.13 being observed here.

TABLE XXV.
Geometrical parameters, electronic energies and relaxation contribution for the
minimum energy structure of BF3···NH3 complex calculated at MP2, SP-MP2 and CP-
MP2 levels of theory. The second half collects the values obtained in the calculations
where the intramolecular parameters where frozen to the values they have in the free
monomers. Relaxation energy is calculated using Eq.(4).

Method Energy (a.u.) rB-N
(Å)

rB-F
(Å)

aFBN
(deg.)

rN-H
(Å)

aHNB
(deg.)

Erel
(cm-1)

MP2/ d95 (d,p)

SP-corrected

-380.294 541 2

-380.281 615 0

1.671 1.377 104.1 1.019 110.5 59

CP-MP2/d95 (d,p) -380.282 071 8 1.725 1.375 103.5 1.018 110.4 55

MP2/ d95 (d,p)

SP-corrected

-380.268 241 7

-380.263 448 6

2.383 1.321* 90.0* 1.015* 112.2* 0**

CP-MP2/d95 (d,p) -380.263 922 7 2.519 1.321* 90.0* 1.015* 112.2* 0**

*Optimized parameters for BF3 and NH3 systems. **Zero by definition.

TABLE XXVI.
Geometrical parameters, electronic energies and relaxation contribution for the
transition state structure of BF3···NH3 complex calculated at MP2, SP-MP2 and CP-
MP2 levels of theory.

Method Energy (a.u.) rB-N
(Å)

rB-F
(Å)

aFBN
(deg.)

rN-H
(Å)

aHNB
(deg.)

Erel
(cm-1)

MP2/ d95 (d,p)

SP-corrected

-380.292 457 2

-380.279 754 8

1.687 1.377 104.2 1.018 110.4 58

CP-MP2/d95 (d,p) -380.280 267 3 1.747 1.374 103.5 1.018 110.4 54

MP2/ d95 (d,p)

SP-corrected

-380.267 710 8

-380.263 299 4

2.411 1.321* 90.0* 1.015* 112.2* 0**

CP-MP2/d95 (d,p) -380.263 730 3 2.533 1.321* 90.0* 1.015* 112.2* 0**

*Optimized parameters for BF3 and NH3 systems. **Zero by definition.

Table XXVII shows the calculated values for the barrier height to internal

rotation. It can be seen that it is not strongly affected by the CP-correction. That

means BSSE-contamination is similar for both the minimum and the TS. Using Eq.

(61) we obtained 457 and 408 cm-1 for the uncorrected and SP-corrected energies,

respectively, in good agreement with Sordo’s reported values92. Use of the CP-

corrected receipt (Eq. (62)) decreases that value to 396 cm-1. The effect of the
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relaxation term is again very important. The calculated values are much smaller when

the fragments are undistorted than in the full optimization. The uncorrected value

decreases to 117cm-1 whereas for SP- and CP-corrected rotations the barrier height is

only 33 and 42 cm-1, respectively. Note that whereas the relaxation energy at both the

eclipsed and alternated geometries is ca. 58 cm-1, the difference in the barrier height

turns out to be ca. 350 cm-1.

TABLE XXVII
Electronic energies (cm-1) for the internal rotation barrier in the
BF3···NH3 complex. In parenthesis the values obtained neglecting the
relaxation term.

Method Rotational Barrier (cm-1)

MP2/ d95 (d,p) 457 (117)

SP-corrected 408 (33)

CP-MP2/ d95 (d,p) 396 (42)

The same happens for the CP-corrected calculations. These results show clearly

the importance of the effect of the relaxation term on the geometry.

II.1.2.1.b C2H4···SO2 complex.

Tables XXVIII and XXIX collect the geometrical parameters obtained for the

C2H4···SO2 system at both the minimum and transition state structures (see SCHEME

16). Only selected intramolecular parameters are shown. Regarding the BSSE effect, a

trend similar to that found for the first system is observed. The SP-correction

overestimates BSSE in all the cases. CP-corrected intermolecular distance R is ca. 0.2

Å longer than the uncorrected value for the minimum geometry. Differences in the

order of 1.2 Å are obtained for the TS. The effect on the angular parameters is

meaningful, mostly at the TS, where α and β’ parameters change from 71.6 and 71.7

to 86.7 and 79.5 degrees , respectively. Neglect of the relaxation term does not change

this situation. Relaxation energy terms are negligible. The largest distortions are

found in the bond angles aSOO and aHCH, belonging to SO2 and C2H4 molecule
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respectively. However, differences of 0.009 and 0.022 Å in the intermolecular

distance are obtained. Note that neglect of the relaxation term lengthens slightly the

value of R for the minimum, whereas the effect is opposite for the transition state.
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SCHEME 16 : Structures involved in the internal rotation of the C2H4···SO2. system.

The intermolecular distance is indicated

TABLE XXVIII
Geometrical parameters, electronic energies and relaxation contribution for the minimum
energy structure of C2H4···SO2 complex calculated at MP2, SP-MP2 and CP-MP2 levels
of theory. The second half collects the values obtained in the calculations where the
intramolecular parameters where frozen to the values they have in the free monomers.

Method Energy (a.u.) R
(Å)

αααα
(deg.)

ββββ
(deg.)

aSOO
(deg)

aHCH
(deg.)

Erel
(cm-1)

MP2/ d95 (d,p)

SP-corrected

-626.044 177 6

-626.038 665 5

3.465 85.0 19.7 108.6 121.3 1

CP-MP2/d95 (d,p) -626.039 011 8 3.677 91.7 14.8 108.7 121.3 0.5

MP2/ d95 (d,p)

SP-corrected

-626.043 800 2

-626.038 287 3

3.474 84.0 20.1 108.9* 120.0* 0**

CP-MP2/d95 (d,p) -626.038 633 1 3.687 91.0 15.0 108.9* 120.0* 0**

*Optimized parameters for C2H4 and SO2 isolated systems. **Zero by definition.

Table XXX shows the values obtained for the rotational barrier; in this case, the

relaxation term does not have a large effect. Small differences of ca. 4-5 cm-1 are
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observed.

TABLE XXIX
Geometrical parameters, electronic energies and relaxation contribution for transition
state structure of C2H4···SO2 complex calculated at MP2, SP-MP2 and CP-MP2 levels of
theory.

Method Energy (a.u.) R
(Å)

αααα
(deg.)

ββββ
(deg.)

aSOO
(deg)

aHCH
(deg.)

Erel
(cm-1)

MP2/ d95 (d,p)

SP-corrected

-626.043 422 0

-626.038 455 9

3.619 71.6 71.8 108.7 121.3 0.5

CP-MP2/d95 (d,p) -626.038 798 3 3.732 86.7 79.5 108.7 121.3 0.5

MP2/ d95 (d,p)

SP-corrected

-626.043 068 4

-626.038 118 7

3.597 73.4 73.4 108.9* 120.0* 0**

CP-MP2/d95 (d,p) -626.038 437 7 3.726 87.1 80.3 108.9* 120.0* 0**

*Optimized parameters for C2H4 and SO2 isolated systems. **Zero by definition.

However, the CP-correction is mandatory: uncorrected values were three times

larger than both the SP- and CP-corrected. CP-corrected values are in much better

agreement with the estimated experimental value of 30cm-1 proposed by Andrews et.

al134.

TABLE XXX
Electronic energies (cm-1) for the internal rotation barrier in the
C2H4···SO2 complex. In parenthesis the values obtained neglecting the
relaxation term.

Method Rotational Barrier (cm-1)

MP2/ d95 (d,p) 166 (161)

SP-corrected 46 (37)

CP-MP2/ d95 (d,p) 47 (43)

In short, the counterpoise correction is found to be mandatory for these weakly

bonded systems. The effects on the barrier to internal rotation energy and geometrical

                                                
134 A.M. Andrews, K.W. Hillig II, R.L. Kuczkowski, J. Chem. Phys 96, 1784 (1992)
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parameters have been pointed out. It has been shown again that the CP-correction

term is strongly geometry dependent; so that CP-corrected optimization must be

carried out to obtain accurate BSSE-free geometry for further vibrational analysis.

Furthermore, the fragment relaxation energy cannot be seen as an additional

term to the rotational barrier. The effect of the fragment relaxation on the

intermolecular parameters probed to be very important for the BF3···NH3 complex, the

CP-correction not changing this situation. The CP-correction scheme can be

successfully applied despite the relaxation contribution being not taken into account.

In terms of rotational barrier height, the single-point CP-corrected and CP-

corrected values are very similar. However, anharmonic effects can be very important

in the hydrogen-bonded and van der Waals complexes. For instance, for several water

clusters, Jung et al135. have shown that the anharmonic correction modifies by 100 %

the vibrational frequencies of intermolecular modes. Moreover, large amplitude

modes related to flat potential energy surfaces are poorly described using the rigid

rotor-harmonic oscillator approach136. This is actually the case of internal rotation

motions. Thus, ZPVE corrections using CP-corrected harmonic and anharmonic

frequencies for the intermolecular vibrational modes should be considered when

looking for high accuracy.

                                                
135 O. Jung, R.B. Gerber, J. Chem. Phys 105, 23 (10332)
136 C. Muñoz-Caro, A. Niño, J. Phys.Chem. A 101, 4128 (1997)
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II.1.3 Wavefunction and electron densities
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C) QMS distance indices between conventional and CHA densities for the hydrogen fluoride dimer

D) Scheme of the different BSSE-effects in the electron density
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In this section we will deal with the BSSE effects on the wavefunction of the

molecular complexes, and specifically on the electron density. As mentioned before,

unfortunately, the CP recipe does not furnish a corrected wavefunction (and thus a

corrected electron density) from which one can obtain the CP-corrected energy as the

expected value of the Hamiltonian operator of the system.

These shortcomings can be avoided by the aprioristic methods, since they act

directly on the molecular complex description, contrarily to the counterpoise method

which is only an error compensation scheme.

Among the  a priori methods, the Chemical Hamiltonian Approach (CHA)

represents the best option, both from the numerical evidence and from a conceptual

point of view. The details of this methodology have already been given in the

introduction of this work.

Recent studies57,137 using the SCF-MI55 method have also dealt with the

obtention of BSSE-corrected electron densities for the water dimer complex. Since we

have already shown that the charge transfer is neglected in this kind of projection

methodologies, we believe that their results are, at least, questionable.

In this work we analyzed for the first time the CHA density at different levels of

theory, CHA/F77 and CHA/DFT78. The main goal is to proceed one step ahead on the

analysis of the effect of BSSE on molecular complexes, and to assess how the

artificial delocalizations caused by BSSE modify the first order electron density of

some hydrogen bonded complexes which have been previously studied in this work,

namely hydrogen fluoride dimer and water dimer. Short incursions on larger systems

in order to assess the possible long range effects on the electron density redistribution

upon BSSE correction have also carried out for the formic acid dimer and the uracil-

water complex.

There are several tools for the analysis of the charge densities of molecules. In

this case we have used density difference contour maps, topological analysis of the

density provided by the Atoms in Molecules (AIM) theory138, and Quantum

                                                
137 M. Raimondi, A. Famulari and E. Gianinetti, Int. J. Q. Chem 74, 259 (1999)
138 R. F. W. Bader, Atoms in Molecules: A Quantum Theory(Clarenton, Oxford, 1990)
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Molecular Similarity139 (QMS) measures for the quantitative comparison of

conventional and CHA densities. The results obtained by these techniques will be

presented in the next subsections.

Now, in order to gain insight into the changes between BSSE-corrected and

uncorrected densities, we have considered the BSSE-correction as a perturbation on

the system, in analogy with the inclusion of electronic correlation. We have

considered the conventional, uncorrected calculation as the unperturbed situation. At

the given geometry, the corresponding CHA calculation will affect the electronic

distribution, as the inclusion of correlation does on a system. A subsequent nuclear

relaxation will lead to the final BSSE-corrected description for the given method. The

situation is depicted on SCHEME 17, where X//Y represents a single-point

calculation using method X at the geometry optimized with method Y. We will use

this notation throughout the present section.
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SCHEME 17

The analysis of the BSSE effect on the electron density will be carried out in the

following way: the SCF//SCF point represents the unperturbed situation, where no

BSSE correction has been taken into account. When the corresponding CHA method

is applied over the SCF optimized geometry, the electron density is redistributed

                                                
139 R. Carbó, L. Leyda, M. Arnau, Int. J. Quantum Chem. 17, 1185 (1980); E. Besalú, R. Carbó, J.

Mestres, M. Solà, Top. Curr. Chem. 173, 31 (1995)
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according to the new Hamiltonian introduced by the CHA. We denote this transition

as SCF//SCF→ CHA//SCF. The influence on the electron density will be assigned

here to electronic relaxation effects. In a second step, the system is allowed to relax to

its optimal geometry, induced by the new electrostatic potential. This process is

represented by the CHA//SCF→ CHA//CHA transition, and accounts for nuclear

relaxation effects. The elimination of the perturbation (CHA//CHA→ SCF//CHA)

followed by the final nuclear relaxation (SCF//CHA→ SCF//SCF) would lead to the

starting point. An analogous pathway holds in the case of the DFT level of theory.

It is important to note that the CHA method is not a perturbation itself but by

considering the BSSE-correction as a perturbation one can study the BSSE-correction

in terms of two consecutive effects: the electronic redistribution and the nuclear

relaxation.

The effect of the electronic relaxation can be easily visualized by means of

contour maps of density differences between the conventional and the BSSE-

corrected densities. For nuclear relaxation effects, electron densities computed at

different nuclear arrangements can be compared through the AIM theory138 by means

of the characterization of the critical points on the electron density. Note that tackling

the analysis of the BSSE-correction is similar to the way that introduction of

electronic correlation on a system is usually studied. Indeed, the analysis of the

influence of the correlation energy on the bonding or the electron density is generally

carried out considering also the electronic and nuclear relaxation effects separately140.

In short, we will analyze the results obtained in terms of the electronic and

nuclear relaxation effects caused by the BSSE at different levels of theory. Numerical

geometry optimizations of the considered systems at the CHA/F and CHA/DFT with

two different functionals have been already presented and discussed in Section

II.1.1.1. Now, for each method we have computed the first-order electron density at

the stationary points of the conventional method and its CHA counterpart.

In the next section, the analysis of the critical points of the density will shed

light into the electron and nuclear relaxation processes induced by the correction of

                                                
140 M. Solà, J. Mestres, R. Carbó and M. Duran, J. Chem. Phys. 104, 636 (1996); K. B. Wiberg, C. M.

Hadad, T. J. LePage, C. M. Breneman and M. J. Frisch, J. Phys. Chem. 96, 671 (1992)
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the BSSE. The AIMPAC package141 was used for the characterisation of critical

points of the electron density. Next,. the local effects of the BSSE on the density will

be visualized by means of electron density difference plots. Finally, the QMS-derived

distance indices will give a quantitative measure of the similarities between the

uncorrected and BSSE-corrected densities.

Also, a novel methodology recently developed to split the total HF energy of a

molecular system into one- and two-center contributions will be used also to assess

the local effects of the BSSE in terms of energetic contributions. In this way, the local

BSSE effects qualitatively observed by means of density difference plots are

complemented with the quantitative counterpart.

                                                
141 F. W. Biegler-König, R. F. W. Bader and T. H. Tang, J. Comp. Chem. 3, 317 (1982)



Wavefunction and electron densities  199

II.1.3.1 Topologic analysis of the CHA density

II.1.3.1.a Hydrogen fluoride dimer

The geometrical parameters and electronic stabilization energies of the

hydrogen fluoride dimer (see SCHEME 7) for selected basis sets at the SCF, BLYP,

and B3LYP levels of theory together with their respective CHA counterparts are

collected in Tables XXXI-XXXIII, respectively. For the sake of completeness, we

have included the values of the intramolecular parameters. We will comment here just

the general trends concerning the effect of BSSE on the geometry in order to

understand better the effect of nuclear relaxation on the electron density. For a deeper

discussion, see Section II.1.1.1.

TABLE XXXI
Geometrical Parameters (Å and degrees) and electronic stabilization energy (Kcal/mol) for
the (HF)2 calculated with different basis sets at the SCF and CHA/F corrected levels of
theory. The experimental values of rF-F, α and β are 2.72 Å, 10±6 and 117±10 degrees,
respectively. The number of basis functions is showed in parenthesis.

Basis Set Method rfh1 rF-F rfh2 αααα ββββ
Stabilization

energy

6-31G

(22)

SCF

CHA/F

0.925

0.925

2.706

2.713

0.923

0.923

8.3

5.1

126.0

135.6

-7.49

-6.55

6-31G(d)

(34)

SCF

CHA/F

0.915

0.915

2.709

2.756

0.915

0.914

17.1

7.6

96.6

114.8

-6.06

-4.73

6-31G(d,p)

(40)

SCF

CHA/F

0.905

0.904

2.725

2.760

0.904

0.903

14.4

8.3

101.7

116.7

-5.97

-4.62

6-31++G(d,p)

(50)

SCF

CHA/F

0.906

0.906

2.812

2.831

0.905

0.905

8.0

7.4

120.0

120.8

-4.37

-4.14

6-311G(d,p)

(50)

SCF

CHA/F

0.900

0.900

2.773

2.822

0.899

0.899

11.6

7.7

112.6

122.8

-5.20

-4.45

6-311++G(3df,2pd)

(122)

SCF

CHA/F

0.902

0.901

2.821

2.840

0.900

0.900

7.0

7.2

118.7

119.9

-3.93

-3.69

It can be seen that intermolecular distances optimized on the CHA PES (rF-F)

are always longer that the corresponding BSSE-uncorrected ones, whereas the
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intramolecular parameters (rfh1 and rfh2) remain almost unchanged. The larger

intermolecular distance affects to the electronic stabilization energy, which decreases

its value after correction for BSSE. Tables XXXI-XXXIII also show the importance

of using diffuse functions for the correct description of the systems and the

minimization of BSSE. However, the use of the CHA methodology seems to ensure

correct descriptions142 of the systems even with small basis sets. A better agreement

with the experimental parameters is obtained in all cases, but for the SCF/6-31G

calculation. Finally, as expected, the uncorrected and the CHA molecular parameters

(energies, atomic distances) tend to each other as the size of the basis set increases,

converging to the same value in the complete basis set (CBS) limit. All these general

trends have been observed for all systems studied so far, both including hydrogen

bonds or Van der Waals interactions.

TABLE XXXII
Geometrical Parameters (Å and degrees) and electronic stabilization energy (Kcal/mol) for the
(HF)2 calculated with different basis sets at the BLYP and CHA/DFT(BLYP) levels of theory.

Basis Set Method rfh1 RF-F rfh2 αααα ββββ
Stabilization

energy

6-31G

(22)

BLYP

CHA/BLYP

0.972

0.972

2.480

2.662

0.972

0.964

46.9

5.6

47.0

114.9

-11.16

-7.27

6-31G(d)

(34)

BLYP

CHA/BLYP

0.954

0.954

2.485

2.652

0.954

0.949

45.0

5.2

45.0

105.9

-10.52

-5.88

6-31G(d,p)

(40)

BLYP

CHA/BLYP

0.946

0.946

2.494

2.626

0.946

0.940

44.8

7.6

45.0

105.2

-10.45

-5.71

6-31++G(d,p)

(50)

BLYP

CHA/BLYP

0.947

0.947

2.760

2.782

0.942

0.942

7.5

7.4

111.6

110.6

-4.75

-4.45

6-311G(d,p)

(50)

BLYP

CHA/BLYP

0.938

0.939

2.572

2.730

0.938

0.934

46.8

8.8

48.6

107.9

-8.28

-5.41

6-311++G(3df,2pd)

(122)

BLYP

CHA/BLYP

0.941

0.941

2.768

2.778

0.937

0.936

5.3

4.8

112.0

113.0

-4.40

-4.16

As mentioned before, an interesting situation arises in the case of the hydrogen

fluoride dimer. The results obtained for the angular parameters indicate that

                                                
142 In the sense that molecular properties found with the BSSE-corrected procedures are close to the

ones obtained with much larger basis sets.
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optimizations using the 6-31G(d), 6-31G(d, p) and even 6-311G(d, p) basis sets lead

to linear distorted structures for the SCF calculations, and to cyclic structures when

using both the BLYP and the B3LYP functionals. Note that the corresponding CHA

calculations change this situation and lead to the correct structures and stabilization

energies as compared to the experiment. These kind of dramatic changes in the

topology of the PES upon the BSSE-correction have also been discussed for other

weakly bound systems like the water dimer or some C-H···O hydrogen bonded

complexes. Both CHA and CP results point out that this effect is directly caused by

the BSSE rather than by a supposed poor behavior of the actual functionals used to

describe these kind of systems.

TABLE XXXIII
Geometrical Parameters (Å and degrees) and electronic stabilization energy (Kcal/mol) for the
(HF)2 calculated with different basis sets at the B3LYP and CHA/DFT(B3LYP) levels of
theory.

Basis Set Method rfh1 RF-F rfh2 αααα ββββ
Stabilization

energy

6-31G

(22)

B3LYP

CHA/B3LYP

0.956

0.957

2.478

2.647

0.956

0.951

48.7

5.2

49.6

120.0

-10.20

-7.56

6-31G(d)

(34)

B3LYP

CHA/B3LYP

0.941

0.942

2.485

2.647

0.941

0.938

46.4

5.7

46.6

107.5

-9.60

-6.15

6-31G(d,p)

(40)

B3LYP

CHA/B3LYP

0.933

0.933

2.493

2.627

0.933

0.929

46.4

7.8

46.5

107.5

-9.42

-5.87

6-31++G(d,p)

(50)

B3LYP

CHA/B3LYP

0.935

0.935

2.732

2.752

0.931

0.931

7.6

7.4

113.1

112.5

-5.08

-4.79

6-311G(d,p)

(50)

B3LYP

CHA/B3LYP

0.926

0.927

2.567

2.725

0.926

0.924

47.9

7.0

50.5

113.9

-7.53

-5.52

6-311++G(3df,2pd)

(122)

B3LYP

CHA/B3LYP

0.930

0.930

2.734

2.747

0.926

0.926

5.8

5.4

112.5

113.9

-4.71

-4.47

By studying the PES one can extract information mainly in terms of nuclear

relaxation, i.e., how the nuclear positions move according to the electronic potential.

To gain a deeper insight in how the BSSE affects the electronic distribution at a given

nuclear arrangement (electronic relaxation) one is driven to study the electron density

and its topology. In order to compare both the uncorrected and the CHA first order

electron densities we will use the well-know Atoms in Molecules (AIM) theory,
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characterizing the topology of the electronic distributions in terms of the nature of its

critical points and values of the electron density and its Laplacian. Note that since no

BSSE-corrected densities can be obtained by means of the CP method, this analysis

can be carried out only by using a priori methods for the elimination of the BSSE.

TABLE XXXIV
Electron density and its Laplacian at the intermolecular bond critical points located on the
SCF and CHA/F electron densities calculated with several basis sets. The distance of the
bcp to the fluorine atom of the H-acceptor molecule is also reported.

Basis Set
Method //

Geometry

ρρρρ(r)

(e/a.u.3)

∇∇∇ ∇ 2ρρρρ(r)

(e/a.u.5)

Distance to F

(Å)

1.153

1.1506-31G

SCF//SCF

CHA//SCF

CHA//CHA

0.0285

0.0278

0.0272

0.1242

0.1302

0.1304 1.147

1.195

1.1926-31G(d)

SCF//SCF

CHA//SCF

CHA//CHA

0.0252

0.0241

0.0231

0.1041

0.1114

0.1065 1.193

1.228

1.2236-31G(d,p)

SCF//SCF

CHA//SCF

CHA//CHA

0.0222

0.0213

0.0199

0.0946

0.0961

0.0914 1.231

1.262

1.2636-31G++(d,p)

SCF//SCF

CHA//SCF

CHA//CHA

0.0175

0.0177

0.0169

0.0763

0.0750

0.0713 1.273

1.201

1.2016-311G(d,p)

SCF//SCF

CHA//SCF

CHA//CHA

0.0227

0.0235

0.0167

0.1189

0.1129

0.0875 1.258

1.246

1.2466-311G++(3df,2pd)

SCF//SCF

CHA//SCF

CHA//CHA

0.0173

0.0180

0.0170

0.0779

0.0725

0.0697 1.258

The results for the topological analysis of SCF electron densities are collected in

Table XXXIV. In all cases a bond critical point between the hydrogen donor (H-

donor) and the hydrogen acceptor (H-acceptor) molecules is located on the electron

density. The values of the electron density and its Laplacian at this point are typical of

a closed-shell weak interaction. The large distance of the bcp to the F atom of the H-
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acceptor molecule also reveals this situation.  Deviations caused by the BSSE are

small in magnitude and, in general, represent about 5-10% of the value of ρ(r) and

∇ 2ρ(r) in the bcp. Note that the improvement of the quality of the basis set seems not

to be the main factor as, for instance, the differences represent up to 25% for the large

triple-zeta 6-311G(d, p) calculation. As expected, both the 6-31G++(d, p) and the 6-

311G++(3df, 2p), the largest basis set used for this study, present the smallest

differences, although these are still appreciable for the Laplacian, which is known to

be a parameter very sensitive to small perturbations in the electron density.

Concerning the electronic relaxation, the following trends have been observed.

For the small basis sets, the SCF//SCF → CHA//SCF transition causes a slight

displacement of the bcp towards the F atom of the H-acceptor molecule, a subsequent

reduction of the value of the electron density and an increase of charge depletion at

the bcp. However, when using larger basis sets including diffuse functions, or even

with the 6-311G(d, p) basis set, the opposite effect is found.

On the other hand, nuclear relaxation effects can be understood by the

subsequent CHA//SCF → CHA//CHA transition. The general trend, observed for all

cases but the 6-31G basis set, is the following: after BSSE correction, charge density

is more concentrated in the lone pairs of the F atoms. Therefore the electron repulsion

increases, and when nuclear relaxation is allowed, the intermolecular rF-F parameter

increases. The distance of the bond critical point to the F atom of the H-acceptor also

augments and finally, both the electron density and its Laplacian at this bcp decrease

to their minimum value.

When considering the whole process, SCF//SCF → CHA//CHA, it is worth to

note that the electron density at the bcp decreases in all cases, in good agreement with

the weakening of the intermolecular interaction after BSSE correction, whereas the

behavior of its Laplacian depends upon the precise location of this bcp. Hence, the

Laplacian decreases slightly when the bcp sets closer to the F atom when correcting

for BSSE. However, the opposite trend is found when the bcp is located farther of the

F atom after the BSSE correction.
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TABLE XXXV
Electron density and its Laplacian at the intermolecular critical point located on the
BLYP and CHA/BLYP first order electron densities calculated with several basis sets.
The distance of the corresponding critical point to the fluorine atom of the H-acceptor
molecule is also reported.

Basis Set
Method //

Geometry

Critical

Point
ρρρρ(r)

(e/a.u.3)

∇∇∇ ∇ 2ρρρρ(r)

(e/a.u.5)

Distance to F

(Å)

BLYP//BLYPa (3, -1)b

(3, +1)

0.0260

0.0250

0.1111

0.1262 1.245

CHA//BLYPa (3, -1)b

(3, +1)

0.0245

0.0240

0.1218

0.1289 1.249

6-31G

CHA//CHA (3, -1) 0.0398 0.1555 1.095

BLYP//BLYPa (3, -1)b

(3, +1)

0.0270

0.0268

0.1283

0.1403 1.246

CHA//BLYPa (3, -1)b

(3, +1)

0.0257

0.0256

0.1399

0.1449 1.252

6-31G(d)

CHA//CHA (3, -1) 0.0384 0.1406 1.108

BLYP//BLYPa (3, -1)b

(3, +1)

0.0271

0.0271

0.1345

0.1402 1.254

CHA//BLYPa (3, -1) 0.0259 0.1443 1.238
6-31G(d,p)

CHA//CHA (3, -1) 0.0380 0.1277 1.120

1.192

1.1916-31G++(d,p)

BLYP//BLYP

CHA//BLYP

CHA//CHA

(3, -1)

(3, -1)

(3, -1)

0.0264

0.0267

0.0254

0.0845

0.0807

0.0760 1.203

1.260

1.2646-311G(d,p)

BLYP//BLYPa

CHA//BLYPa

CHA//CHA

(3, -1)

(3, -1)

(3, -1)

0.0221

0.0214

0.0286

0.0968

0.0996

0.1077 1.179

1.185

1.1866-311G++(3df,2pd)

BLYP//BLYP

CHA//BLYP

CHA//CHA

(3, -1)

(3, -1)

(3, -1)

0.0263

0.0271

0.0265

0.0848

0.0789

0.0775 1.191
a Cyclic structures.
b Only the features of one of the bcp's are reported, as both are almost equivalent by symmetry.

Dynamic correlation has been included through Density Functional Theory with

the BLYP and B3LYP exchange-correlation functionals. As commented in Section
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II.1.1.1.a, the effect of BSSE on the molecular geometry is very important. All BSSE-

uncorrected optimizations involving basis sets without diffuse functions lead to cyclic

structures (see SCHEME 7), which should normally correspond to a transition state

connecting two equivalent linear conformations in an internal rotation process143.

Moreover, all CHA optimized structures yield the correct, nearly linear arrangement,

in good agreement with experimental data. Therefore, for this system, CHA deals well

with BSSE-like delocalizations occurring even when rather incomplete basis sets are

used, modifying the topology of the PES.

The results of a Bader analysis of the charge density are collected in Tables

XXXV and XXXVI. Again the values of the electron density and its Laplacian at the

bond critical points reveal a closed-shell interaction between the monomers.

Interestingly, for uncorrected BLYP, with all the basis sets without diffuse functions

(except the 6-311G(d, p)), one finds a ring critical point (rcp) and two bond critical

points, almost equivalent due to the symmetry, between both H-F molecules. That is,

both monomers act as H-donor and H-acceptor at the same time and the bonding is

described by two intermolecular interactions between both hydrogen fluoride

monomers. For the rest of calculations only a bond critical point is located on the

charge density in the intermolecular region. Using the uncorrected B3LYP functional

changes this situation dramatically. Then, only the smallest basis set, 6-31G, yields a

ring critical point, even though cyclic structures are found for the rest of basis sets

without diffuse functions. In terms of the geometrical parameters obtained for both

functionals, one could argue that both yielded bad descriptions of the bonding when

BSSE is not taken into account. However, Bader analysis shows that a cyclic structure

is not always associated with the existence of two hydrogen bonds in the BSSE-

uncorrected system.

                                                
143 For instance, at the SCF/6-31G(d) level of theory, a cyclic structure is located on the PES with an

imaginary frequency of ca. 150i cm-1. Similarly, with the CHA/DFT method using the same basis set,

another cyclic structure is located on the PES and characterized as a transition state with a similar

imaginary frequency.
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TABLE XXXVI
Electron density and its Laplacian at the intermolecular critical point located on the
B3LYP and CHA/B3LYP first order electron densities calculated with several basis sets.
The distance of the corresponding critical point to the fluorine atom of the H-acceptor
molecule is also presented.

Basis Set
Method //

Geometry

Critical

Point
ρρρρ(r)

(e/a.u.3)

∇∇∇ ∇ 2ρρρρ(r)

(e/a.u.5)

Distance to

F (Å)

B3LYP//B3LYPa (3, -1)b

(3, +1)

0.0240

0.0233

0.1106

0.1207 1.259

CHA//B3LYPa (3, -1) 0.0229 0.1186 1.199
6-31G

CHA//CHA (3, -1) 0.0387 0.1588 1.096

6-31G(d)

B3LYP//B3LYPa

CHA//B3LYPa

CHA//CHA

(3, -1)

(3, -1)

(3, -1)

0.0256

0.0244

0.0366

0.1287

0.1380

0.1409

1.207

1.210

1.114

6-31G(d,p)

B3LYP//B3LYPa

CHA//B3LYPa

CHA//CHA

(3, -1)

(3, -1)

(3, -1)

0.0254

0.0242

0.0353

0.1312

0.1399

0.1278

1.212

1.222

1.131

6-31G++(d,p)

B3LYP//B3LYP

CHA//B3LYP

CHA//CHA

(3, -1)

(3, -1)

(3, -1)

0.0263

0.0267

0.0254

0.0929

0.0885

0.0837

1.189

1.188

1.199

6-311G(d,p)

B3LYP//B3LYPa

CHA//B3LYPa

CHA//CHA

(3, -1)

(3, -1)

(3, -1)

0.0210

0.0204

0.0272

0.0950

0.0978

0.1103

1.246

1.248

1.183

6-311G++(3df,2pd)

B3LYP//B3LYP

CHA//B3LYP

CHA//CHA

(3, -1)

(3, -1)

(3, -1)

0.0268

0.0277

0.0267

0.0905

0.0849

0.0827

1.179

1.180

1.186
a Cyclic structures
b Only the features of one of the bcp's are reported, as both are almost equivalent by symmetry

In fact, up to four different connectivities are observed for these cyclic

structures. When a single intermolecular bcp is located on the charge density, the

intermolecular bond path links both F atoms. This molecular graph is also observed

for the cyclic transition state structures obtained at the SCF level of theory. When the

electron density exhibits a rcp there are several possible connectivities. For instance,

with the 6-31G basis set using the BLYP functional, both the uncorrected and the

CHA corrected electron density show a molecular graph where the two intermolecular

bcp connect each F atom with the H atom of the partner. When the basis set size is
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increased with polarization functions two bond paths connecting the F atoms are

observed. Finally, the B3LYP/6-31G electron density exhibits a rather unphysical

molecular graph with one bond path connecting the two F atoms and another one

linking one of the F atoms with the H atom of the other monomer. Indeed, the electron

density surface is so flat in the intermolecular region that small perturbations can

induce dramatic changes on its topology and connectivity. The main conclusion is that

the cyclic structure is very unstable and that the electronic relaxation caused by the

BSSE correction is unable to overcome this circumstance.

To investigate the effect of the CHA correction on the charge density we refer

again to the electronic relaxation process described by the transition DFT//DFT →

CHA//DFT. In general, rather small differences in the values of the charge density and

its Laplacian are found again and trends similar to those found above for the SCF

calculations are observed for some basis sets. However, for basis sets yielding ring

critical points, the effect of the electronic relaxation is very important. Regarding

BLYP results, it can be seen that in all cases the ring critical point is slightly moved

away from the F atom of the original H-acceptor molecule, which induces a decrease

of the electron density and an increase of its Laplacian. However, whereas the rank of

the critical point is not modified for the BLYP/6-31G and BLYP/6-31G(d, p) basis

sets after CHA correction, it is modified when adding polarization functions to H

atoms. In such a case, the critical point is displaced along the opposite direction.

Therefore, the two new bond critical points observed between both BSSE-uncorrected

F···H intermolecular interactions before the CHA correction is applied disappear, so

the hydrogen bonding becomes described by a unique bcp corresponding to a single

hydrogen bond.

Concerning B3LYP calculations, the ring critical point is found only for the

smallest basis set. Again, after electronic relaxation the topology of the charge density

changes and a single bond critical point is found. In this case, both the electron

density and its Laplacian decrease; the most important effect is, however, the

displacement of the critical point away from the F atom of the H-acceptor molecule

by more than 0.05 Å, The final distance of 1.199 Å is much closer to those obtained

with larger basis sets.

Finally, nuclear relaxation process is very important. In all cases the final

CHA//CHA structures have a linear arrangement and the bonding is represented by a
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single bond critical point in the intermolecular region. When nuclear relaxation is

allowed, the intermolecular rF-F distance increases by ca 0.2 Å, whereas the

intermolecular F···H distance decreases in the same way due to the changes in the

angular disposition of both monomers. Of course, the main differences in terms of the

location of the bond critical point and its density and Laplacian are observed for the

basis sets that yielded cyclic structures on the uncorrected PES. The final location of

the bcp is much closer to the F atom of the H-acceptor molecule whereas, contrary to

the linear arrangement cases, the value of the charge density increases by up to 35%

in some cases. There is a simple explanation for this effect. In the cyclic structure, the

intermolecular F···H distances are much longer than in the linear case. The

uncorrected stabilization energies are of the order of 8-10Kcal/mol, but this value can

be seen as the sum of the contributions of two intermolecular bonds, even though the

Bader analysis does not always detect their presence, e.g., at the BLYP/6-31G(d),

BLYP/6-31G(d, p) and BLYP/6-311G(d, p) levels of theory.  Under this assumption,

the stabilization energy per intermolecular bond is always larger for the CHA//CHA

calculation than for the DFT//DFT in the cyclic cases; therefore its seems reasonable

to expect a larger value of the density at the corresponding bond critical point.

Changes in the Laplacian are less important in general and much more erratic; is not

easy to define a tendency from the tabulated values.

The differences observed after the BSSE correction for the calculations

including diffuse functions are almost negligible, showing again the asymptotic

approach between the uncorrected and the CHA results when the quality of the basis

set is improved.

II.1.3.1.b Water dimer

All calculations refer to the trans-linear water dimer, having Cs symmetry and a

single H bond between the two water molecules. Although the general structure and

molecular connectivity are preserved along all calculations, the level of theory, basis

set and BSSE correction have a significant impact on the molecular geometry (see

Section II.1.1.1.b). Table XXXVII and XXXVIII reports the selected parameters

extracted from the AIM analysis of the critical point of the electron density for the

water dimer, at SCF and B3LYP levels of theory, with and without BSSE correction.
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The BLYP results are very similar to the B3LYP ones so, for the sake of simplicity,

they have been omitted.

TABLE XXXVII
Electron density, Laplacian and elypticity at the intermolecular bond critical points
located on the SCF and CHA/F electron densities calculated with several basis sets. The
distance of the bcp to the oxygen atom of the H-acceptor molecule is also reported.

Basis Set
Method //

Geometry

ρρρρ(r)

(e/a.u.3)

∇∇∇ ∇ 2ρρρρ(r)

(e/a.u.5)
Elypticity

Distance to

O1 (Å)

1.220

1.2176-31G

SCF//SCF

CHA//SCF

CHA//CHA

0.0297

0.0300

0.0283

0.1119

0.1125

0.1068

0.069

0.070

0.073 1.229

1.299

1.2966-31G(d)

SCF//SCF

CHA//SCF

CHA//CHA

0.0221

0.0216

0.0209

0.0743

0.0770

0.0749

0.035

0.035

0.042 1.299

1.334

1.3296-31G(d,p)

SCF//SCF

CHA//SCF

CHA//CHA

0.0199

0.0195

0.0186

0.0621

0.0619

0.0597

0.028

0.028

0.039 1.333

1.327

1.3296-31G++(d,p)

SCF//SCF

CHA//SCF

CHA//CHA

0.0183

0.0191

0.0173

0.0610

0.0579

0.0525

0.046

0.043

0.048 1.350

1.325

1.3256-311G(d,p)

SCF//SCF

CHA//SCF

CHA//CHA

0.0186

0.0193

0.0163

0.0824

0.0773

0.0675

0.032

0.031

0.043 1.356

1.345

1.3446-311G++(3df,2pd)

SCF//SCF

CHA//SCF

CHA//CHA

0.0157

0.0159

0.0154

0.0658

0.0636

0.0621

0.043

0.042

0.045 1.349

It has been determined that in general, the rO-O distance is longer at the SCF than

at the B3LYP level of theory. In both cases, the effect of increasing the basis set size

is to lengthen the rO-O bond. Furthermore, correcting the geometry for BSSE does

also yield systematically larger rO-O distances. At both levels of theory, results for

the 6-311++G(3df,2pd) basis set show that, when the complete basis set limit is
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approached, the corrected and uncorrected geometrical parameters tend to converge to

the same values.

TABLE XXXVIII
Electron density, Laplacian and elypticity at the intermolecular critical point located on
the B3LYP and CHA/B3LYP first order electron densities calculated with several basis
sets. The distance of the corresponding critical point to the oxygen atom of the H-
acceptor molecule is also presented.

Basis Set
Method //

Geometry

ρρρρ(r)

(e/a.u.3)

∇∇∇ ∇ 2ρρρρ(r)

(e/a.u.5)
Elypticity

Distance to

O1 (Å)

1.166

1.1646-31G

B3LYP//B3LYP

CHA//B3LYP

CHA//CHA

0.0399

0.0400

0.0377

0.1305

0.1318

0.1268

0.054

0.053

0.062 1.173

1.233

1.2316-31G(d)

B3LYP//B3LYP

CHA//B3LYP

CHA//CHA

0.0311

0.0302

0.0304

0.0879

0.0930

0.0924

0.027

0.025

0.032 1.226

1.256

1.2526-31G(d,p)

B3LYP//B3LYP

CHA//B3LYP

CHA//CHA

0.0288

0.0281

0.0284

0.0756

0.0753

0.0753

0.021

0.019

0.030 1.247

1.245

1.2456-31G++(d,p)

B3LYP//B3LYP

CHA//B3LYP

CHA//CHA

0.0264

0.0276

0.0255

0.0769

0.0709

0.0646

0.042

0.040

0.040 1.264

1.260

1.2636-311G(d,p)

B3LYP//B3LYP

CHA//B3LYP

CHA//CHA

0.0265

0.0277

0.0245

0.0953

0.0871

0.0806

0.019

0.018

0.032 1.285

1.263

1.2616-311G++(3df,2pd)

B3LYP//B3LYP

CHA//B3LYP

CHA//CHA

0.0244

0.0247

0.0241

0.0796

0.0774

0.0763

0.032

0.033

0.035 1.265

For all calculations, the water dimer maintains the same molecular connectivity

with and without BSSE correction. Thus, a bcp corresponding to an intermolecular H

bond is always observed between the two water monomers, and the properties

associated to this bcp can be used to assess the characteristics of the H2O-H2O

interaction for different calculations For the B3LYP/6-311++G(3df,2dp) calculations,

the value of the density at the bcp, ρbcp(r), is ca. 0.024, and the rO-O distance is ca.
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2.93 Å; these values are characteristic of a strong O-H·····O bond.144 Moreover, the

Laplacian of the density at the bcp, ∇ 2ρbcp(r), is ca. 0.08, also in agreement with the

values expected for this kind of interactions.

According to the positive value of ∇ 2ρbcp(r), there is no accumulation of charge

density at the intermolecular region, so the water-water interaction might be classified

as closed-shell; however, recent experimental and theoretical data suggest that, in

general, H bonds should be considered at least partially covalent.145,146

The ρbcp(r) and ∇ 2ρbcp(r) values are nearly unchanged after correcting for the

BSSE without reoptimizing the molecular geometry. Only ∇ 2ρbcp(r) displays

significant changes. However, there is no definite trend for the effect of BSSE

correction. In general, the BSSE correction leads to larger ∇ 2ρbcp(r) values for the

smaller basis sets (6-31G and 6-31G(d,p)), and to smaller values for the rest of basis

sets.

The effects of BSSE on the molecular density are more important when the

nuclear relaxation is also taken into account, i.e., for the CHA//SCF→CHA//CHA

transition. This is reflected on the corresponding values of ρbcp(r) and ∇ 2ρbcp(r) for

the intermolecular bcp. For all the approximations and basis sets, ρbcp(r) always

decreases significantly after BSSE correction, which agrees with a weakening of the

intermolecular interaction. As expected, the corrected and uncorrected values tend to

converge to the same limit for large basis sets. The BSSE correction also lowers the

∇ 2ρbcp(r) value for most calculations.

                                                
144 E. Espinosa, M. Souhassou, H. Lachekar, C. Lecomte, Acta Cryst. B 55, 563 (1999).
145 E. D. Isaacs, A. Shukla, P. M. Platzman, R. D. Hamann, B. Barbiellini, C. A. Tulk, Phys. Rev. Lett.

82, 600 (1999)
146 J. M. Ugalde, I. Alkorta, J. Elguera, Angew. Chem. Int. Ed. 39, 7171 (2000).
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II.1.3.1.c Formic acid dimer and uracil-water complex

In order to perform a BSSE-free calculation, first of all one must define which are

the fragments to be considered. For the molecular dimers discussed so far, the choice

is straightforward, and the fragments are coincident with the monomers within each

complex. Thus, it is expected that the non-physical terms removed by the CHA

method will correspond to interactions between atoms involved in the intermolecular

bonding. However, analysis of density difference maps for the water and hydrogen

fluoride dimers has shown that the effect of BSSE is not strictly localized in the

intermolecular region (see next subsection). Furthermore, in many cases, the density

redistribution associated to the elimination of the BSSE are located mainly in the

valence shells of the heavy atoms. It can be interesting to analyze the scope of the

BSSE-related density redistribution for larger complexes. For this purpose, we will

analyze briefly the effect of BSSE on the formic acid dimer and the uracil-water

complex. The latter example is of considerable interest because the hydration of

nucleic acids and biomolecules in general is important in many biological processes.

O2
C1H4

O3 H5
C7

O8

O6
H9

H10

(a)

O14
H13

H15

O9

H8

O7

H12

H11

H10C3 C4

C5N6
C1

N2

(b)

SCHEME 18: Formic acid dimer (a) and Uracil-water (b) complex
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TABLE XXXIX
Electron density and its Laplacian at the intermolecular critical points
located on the first-order electron density of the formic acid. SCF and
CHA/F values (in parenthesis) are reported. All the calculations have been
performed at the geometry optimized on the SCF PES

Basis Set
Critical

Point

ρρρρ(r)

(e/a.u.3)

∇∇∇ ∇ 2ρρρρ(r)

(e/a.u.5)

6-31G(d, p)
(3, +1)

(3, -1)

0.0059  (0.0056)

0.0286  (0.0290)

0.0282  (0.0291)

0.1034  (0.0976)

6-31G+(d,p)
(3, +1)

(3, -1)

0.0060  (0.0060)

0.0269  (0.0278)

0.0273  (0.0274)

0.0972  (0.0902)

TABLE XL
Electron density and its Laplacian at the intermolecular critical points located
on the first-order electron density of the uracil-water complex (see SCHEME
18b). SCF and CHA/F values (in parenthesis) are reported. All the calculations
have been performed at the geometry optimized on the SCF PES

Basis Set Critical Point
ρρρρ(r)

(e/a.u.3)

∇∇∇ ∇ 2ρρρρ(r)

(e/a.u.5)

6-31G(d)

(3, +1)

O14-H8 (3, -1)

O13-H7 (3, -1)

0.0086  (0.0084)

0.0203  (0.0197)

0.0193  (0.0188)

0.0460  (0.0465)

0.0699  (0.0726)

0.0700  (0.0730)

6-31G+(d)

(3, +1)

O14-H8 (3, -1)

O13-H7 (3, -1)

0.0079  (0.0081)

0.0173  (0.0179)

0.0182  (0.0183)

0.0427  (0.0424)

0.0672  (0.0658)

0.0691  (0.0692)

SCF and CHA/F calculations for the formic acid dimer and uracil-water complex

have been performed with the 6-31G(d,p) and the 6-31G(d) basis sets respectively, as

well as adding diffuse functions on the heavy atoms, at the molecular geometries

optimized on the conventional PES. All optimized structures exhibit a C2h symmetry,

for the formic acid dimer, and Cs, for uracil-water. For the latter complex, the

optimized structure reported corresponds in fact to one of several local minima which
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are close in energy.147 In all cases, two intermolecular H bonds are found, and the

corresponding bcp’s can be characterized on the electron density, together with a rcp

(see Table XXXIX and XL, for formic acid dimer and uracil-water, respectively).

As expected, since nuclear relaxation has not been allowed, the effect of the BSSE

correction on ρbcp(r) and ∇ 2ρbcp(r) is always very small. The patterns observed in the

density difference maps (see next section) are consistent with those found for the

water and hydrogen fluoride dimers.

                                                
147 T. van Mourik, S. L. Price, D. C. Clary, J. Phys. Chem. A  103, 1611 (1999)
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II.1.3.2 Electron density difference maps

One can get further insight on the local electronic redistribution caused after

correcting for BSSE at a fixed geometry by depicting density difference maps

between conventional and BSSE-corrected densities. These maps have been created

using a program that properly handles the electron density obtained from the Gaussian

package and creates a grid of points in a given plane.

For the hydrogen fluoride and formic acid dimers, the maps correspond to the

molecular plane. In case of the water dimer, the selected plane is that defined by the

H-bond water moiety and the oxygen atom of the partner. For the uracil-water

complex, the selected plane only excludes that hydrogen atom of the water molecule

that does not interact directly with the uracil moiety.

In all cases, the quantity plotted is the difference between the uncorrected

density and the corresponding CHA density, computed at the same, fixed, molecular

geometry, namely

∆ρSCF = ρSCF - ρCHA/F

∆ρDFT = ρDFT - ρCHA/DFT

Solid lines represent the zones where the electron density is overestimated by

BSSE, whereas dashed lines hold for the zones where the CHA density is larger than

the uncorrected one.

In order to follow the perturbative scheme aforementioned, the density

difference grids have been generated at the uncorrected geometry of the given level of

theory. Hence, the electronic relaxation contribution is the one that will be visualized.

II.1.3.2.a Hydrogen fluoride dimer

Figure 16 depicts these density difference maps for the hydrogen fluoride dimer

for several basis sets. The maps obtained with basis sets without diffuse functions are

qualitatively very similar (see Figures 16.a, b, and c.). The main differences between

the conventional and the CHA densities are found in the atomic basins of the F atoms,

mostly for the H-acceptor moiety.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 16: SCF//SCF- CHA//SCF Density difference isocontour maps. (a) 6-31G, (b) 6-

31G(d), (c) 6-31G(d,p), (d) 6-31++G(d,p), (e) 6-311G(d,p) and (f) 6-311++G(3df,2pd). The

nuclear positions are indicated by solid dots. Isodensity contours at 1.e-4, 2.e-4, 4.e-4, 8.e-4 ,etc...
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It can be observed that the elimination of the BSSE transfers electron density

from the intramolecular F-H bonds to the F lone electron pairs. The electron density

on the H atom regions is also increased, allowing for a minor charge transfer, and

hence decreasing the intermolecular bond strength. Finally, the electron density in the

intermolecular bond region is slightly overestimated by BSSE, except for the 6-

311G(d, p) basis set, for which this positive region in the map is not observed, (see

Figure 16.e). This overestimation is connected with the increasing value of ρ(r) at the

bcp after electronic relaxation, as commented above.

Adding diffuse functions changes the situation dramatically, because differences

between the corrected and uncorrected densities become less important. Isocontour

lines are more separated in the vicinity of the F atoms, (see Figures 16d and f). An

interesting point is that the BSSE effect tends to underestimate the electron density in

the intermolecular bond region. This situation, opposite to that observed in the other

cases, can be explained in the following way: the atomic orbitals of the hydrogen

involved in the intermolecular bond can be used by the F atom of the H-acceptor

molecule to become more stable, causing the BSSE-like delocalizations. The CHA

correction tends to increase the electron density on the F atom, thus avoiding a larger

charge transfer and hence a larger interaction. Therefore, after correction for the

BSSE, a decrease of ρ(r) is observed along the intermolecular bond zone, together

with an increase of the density in the valence region of both atoms. The situation

should be the same when diffuse functions are available for the H atom. However, in

this case, as the intermolecular bcp falls into the van der Waals radius of the H atom,

the main part of the ρ(r) at the bcp is provided by the orbitals with a larger

contribution of the diffuse functions. The final effect on the electron density is the

opposite; the charge density decreases at the H atom but increases slightly at the

intermolecular bond region after correcting for BSSE. One must say that the

differences are of the order of 0.0002 a.u. and have to be seen as a consequence of the

changes on the atomic basins of the F atoms, which have proved to be more

important.
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(a) (d)

(b) (e)

  
(c) (f)

FIGURE 17: DFT//DFT-CHA//DFT Density difference isocontour maps. (a) BLYP/6-

31G(d,p), (b) BLYP/6-31++G(d,p), (c) BLYP/6-311G(d,p), (d) B3LYP/6-31G(d,p), (e)

B3LYP/6-31++G(d,p) and (f) B3LYP/6-311G(d,p). The nuclear positions are indicated by

solid dots. Isodensity contours at 1.e-4, 2.e-4, 4.e-4, 8.e-4 ,etc...
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Density difference maps at DFT levels of theory are collected in Figure 17. All

maps have been obtained at the uncorrected geometry for each basis set. Maps for

basis sets with and without diffuse functions were very similar among them, so in

order to save space, only those corresponding to the 6-31G(d, p), 6-31G++(d, p) and

6-311G(d, p) are presented.

Interestingly, there are almost no differences between the maps obtained with

BLYP or B3LYP functionals, despite their rather different effect on the topology of

the charge density (see previous section), and the effect of the electronic relaxation.

Graphical representations for the basis sets including diffuse functions are as

well very similar to the SCF ones (see Figures 17b and e). The main differences are

located in the vicinity of the F atoms, mainly those of the H-acceptor molecule.

Furthermore, the large effect of the electronic relaxation for the rest of the basis sets

leading to cyclic structures is obvious from the maps (see Figures 17a, c, d f).

Isocontour lines increase in the vicinity of both F atoms.

Again, the CHA density is more concentrated in the lone pairs regions of the F

atoms and in both hydrogen atoms, whereas BSSE overestimates the charge density in

the intermolecular region and along the intramolecular F···H bond paths. This

overestimation of the charge density in the intermolecular zone is more concentrated

in the zone where the two new bond critical points associated to the ring critical point

are expected to appear in the uncorrected density. Nevertheless, all maps show

qualitatively the same trends, disregarding the existence of the rcp on the uncorrected

density or whether CHA correction changes this situation.

II.1.3.2.b Water dimer

The isodensity maps for the water dimer are depicted in Figures 18 and 19.

They are very similar to the ones obtained for the hydrogen fluoride dimer. The same

polarization pattern is observed on the heavy atoms and in the intermolecular bond

region
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(a) (b)

  
(c) (d)

    
(e) (f)

FIGURE 18: Water dimer SCF//SCF- CHA//SCF Density difference isocontour maps. (a) 6-

31G, (b) 6-31G(d), (c) 6-31G(d,p), (d) 6-31++G(d,p), (e) 6-311G(d,p) and (f) 6-

311++G(3df,2pd). Isodensity contours at 1.e-4, 2.e-4, 4.e-4, 8.e-4 ,etc...
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(a) (b)

      
(c) (d)

    
(e) (f)

FIGURE 19: Water dimer B3LYP//B3LYP- CHA//B3LYP Density difference isocontour maps.

(a) 6-31G, (b) 6-31G(d), (c) 6-31G(d,p), (d) 6-31++G(d,p), (e) 6-311G(d,p) and (f) 6-

311++G(3df,2pd). Isodensity contours at 1.e-4, 2.e-4, 4.e-4, 8.e-4 ,etc...
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SCF and DFT results are very similar. It can be seen that for the small 6-31G basis

set the CHA correction has a strong influence on the electron density around each of

the O atoms: with respect to a conventional calculation, CHA increases the electron

density along the axes corresponding to the three intramolecular O-H bonds which are

not involved in the intermolecular interaction, while there is a clear decrease of

density along the axis corresponding to the remaining intramolecular O-H bond.

Moreover, it is revealed that BSSE leads actually to an exaggeration of the density

within the intermolecular region. The difference map corresponding to the 6-31G(d,p)

basis set exhibits similar density redistributions for the two O atoms. However, in this

case, there is a region around the intermolecular bcp where the density actually

decreases after applying the CHA correction. In fact, this is the most common

situation observed when using small basis sets, i.e. double zeta without diffuse

functions. Finally, the difference map for the largest basis set used, 6-

311++G(3df,2p), reveals that there is still some redistribution of density around the

heavy atoms, and a region around the intermolecular bcp where CHA accumulates

more density.

However, the density differences are rather small, as reflected in the ρbcp(r) values

obtained at the SCF//SCF and CHA//SCF levels of theory. Similar trends are found

for density difference maps calculated at the B3LYP level of theory with the same

basis sets.

In short, according to the density difference maps, the main effects of the BSSE

correction in the electron density take place in the valence shells of the O atoms, both

at the HF and B3LYP levels of theory. Thus, for basis sets with no diffuse functions,

the BSSE correction leads to redistribution of electron density along the O-H

intermolecular axis and centered around each of the heavy atoms. For the O of the

donor moiety, the BSSE removes electron density from the O-H axis to an axis

perpendicular to it, pointing towards the other intramolecular O-H bond. For the O of

the acceptor molecule, the effect of BSSE correction is just the opposite. Indeed, the

subtle density differences found in the intermolecular region may actually be just a

consequence of the redistributions taking place around the heavy atoms. Finally,

density difference maps corresponding to calculations with diffuse functions, Figures

18,19,(d) and (f) exhibit also maximal density differences around the heavy atoms, but
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not the polarization patterns characteristic of the maps in Figure 18,19,(a), (b), (c) and

(e).

II.1.3.2.c Formic acid dimer and uracil-water complex

Results for the hydrogen fluoride and water dimers suggest that inclusion of

diffuse functions in the basis set is the main factor influencing the magnitude of the

BSSE, while the level of theory and inclusion of more valence or polarization

functions has a minor impact. Therefore, only the HF method and two different basis

sets were used for each system, namely, 6-31G(d,p) and 6-31++G(d,p) for the formic

acid dimer, and 6-31G(d) and 6-31+G(d) for the uracil-water complex. In this case,

both the critical points of the density and the atomic positions have been represented

(see SCHEME 18 for the atomic numbering). The maps for the calculations without

diffuse functions correspond to the Figures 20a and 21a. As compared to the ones

with diffuse functions (Figures 20b and 21b) the differences between the uncorrected

density and the CHA-corrected are much more important.

The formic acid dimer exhibits the main trends found for the water dimer and

hydrogen fluoride dimer. Thus, for the 6-31G(d,p) basis set, figure 20(a), there is a

narrow intermolecular region where the BSSE overestimates the electron density. This

region includes the rcp but not the two bcp's. That is, the electron density at the

intermolecular rcp is increased upon correction. The main density redistribution

effects take place in the valence shells of the heavy atoms. In particular, the O atoms

in the hydroxyl and carbonyl moieties exhibit the density redistribution patterns

directed along the bonding axes characteristic of H-donor and acceptor atoms,

respectively.

Now, let us focus on the atoms not directly involved in the hydrogen bond

formation, namely C1, C7, H4, and H9. The only appreciable difference is observed for

the 6-31G(d,p), where the electron density slightly increases upon BSSE correction on

the carbon atom domains. However, no polarization pattern similar to that of the

atoms involved in the interaction is observed in any case.
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FIGURE 20: Formic acid dimer SCF//SCF- CHA//SCF density difference isocontour maps. (a)

6-31G(d,p), (b) 6-31++G(d,p). Isodensity contours at 1.e-4, 2.e-4, 4.e-4, 8.e-4 ,etc...
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It seems that the effects on these skeleton atoms are residual. The ∆ρ value is

influenced by the difference pattern on the atoms involved on the interaction, in order

to counterpoise the electron redistribution upon BSSE correction. Indeed, the zone

corresponding to the intramolecular C-O bonds seems to be much more affected by

the polarization of the O atoms than that of the carbon atom.

When diffuse functions are added (see Figure 20(b)), SCF//SCF – CHA//SCF

density differences in the intermolecular region become slightly negative. In this case,

all the intermolecular cp's fall into this negative zone. The strong redistribution

patterns associated to the H-donor and acceptor atoms in figure 20(a) are not found in

this case. It appears that the negative region in the intermolecular zone is followed by

alternating positive and negative regions at each side, with some positive regions

focused strictly on the heavy nuclei. Nevertheless, the density difference decreases

dramatically when including the diffuse functions. The maximum density differences

observed with the 6-31G(d,p) basis set were -0.0190 and 0.0076 a.u., whereas for the

6-31++G(d,p) these values decrease to –0.0012 and 0.0015 a.u., respectively.

The results for the uracil-water dimer complex show a similar behavior. Once

again, the use of diffuse functions dramatically decrease the difference between the

uncorrected and the CHA densities.

However, the uracil-water complex has some features that may add interesting

insights. First of all, it is a relatively large system, which allows to study the scope of

the BSSE effects on molecular electron densities. Second, the O in the water moiety

acts as H-donor and acceptor at the same time. Figure 21(a) corresponds to the

SCF//SCF – CHA//SCF map with the 6-31G(d) basis set. In this case, a positive and a

negative region are found in the intermolecular region. All the intermolecular cp's fall

into the negative one. In the uracil molecule, the O7 and the N2 atoms exhibit the

directional density redistribution patterns characteristic of H-acceptor and donor

systems, respectively. Thus, the BSSE overestimates the electron density along the

N2-H8 bond and underestimates it along the O7-H13 intermolecular H bond.
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FIGURE 21: Uracil-water complex SCF//SCF- CHA//SCF density difference isocontour
maps. (a) 6-31G(d,p), (b) 6-31++G(d,p). Isodensity contours at 1.e-4, 2.e-4, 4.e-4, 8.e-4 ,etc...
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The O atom in the water molecule combines both features: the BSSE

overestimates the density along the O14-H13 intramolecular bond, and underestimates

it along the intermolecular O14-H8 bond. The C1 atom, which is bonded to an acceptor

and to a donor atom, exhibits minor density redistributions, similar to the ones in the

C atom in (HCOOH)2. Finally, the effect of the BSSE in the rest of atoms is

practically negligible, except for the carbonyl O9 atom.

The 6-31+G(d,p) difference map (Figure 21(b)) presents a relatively large

intermolecular region with negative values, which encloses all the intermolecular cp's.

Significant density redistribution takes place only around the atoms directly involved

in the H-bond interactions. As usual, the highly directional density redistribution

patterns around heavy atoms found in the 6-31G(d) difference map are lacking in the

6-31+G(d) one. Atoms not involved in the intermolecular interaction do not exhibit

meaningful density redistributions, except for O9.

It is noticeable that this atom is not even directly bonded to the heavy atoms

involved in the intermolecular bond. We believe that his effect is only due to the fact

that in the vicinity of this atom the accumulation of electron density is much larger

than for the rest of the molecule, basically due to the existence of two free electron

pairs. The absolute density difference is larger than for other atoms but relative to the

total electron density on the considered domain should be of the same order.

Nevertheless, the maximum density differences are about one order of

magnitude larger when no diffuse functions are included.
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II.1.3.3 Quantitative determination of the BSSE effect by means of

Quantum Molecular Similarity techniques

The differences between the conventional and CHA density have been

graphically and numerically pointed out by means of isodensity plots and the AIM

theory. Another possibility is to use Quantum Molecular Similarity139 (QMS)

measures to quantify the differences between conventional and BSSE-corrected

densities. QMS has been previously used for the analysis of atomic and molecular

one-electron densities in a variety of contexts, e.g., to assess the effects of electron

correlation on molecular densities140a, to quantify the electronic reorganisation taking

place in several reactions148,149, to analyze the quality of several basis sets150 and to

evaluate the interactions of the electron density with external electric fields150 or

continuos solvents151. Finally, QMS has recently been used to compare contracted

second-order electron densities152.

For any molecule, one can define an overlap-like similarity measure between

the conventional or uncorrected density, ρU(r), and the CHA or BSSE-corrected

density at the same geometry, ρC(r),

( ) ( )∫= rrr dZ CUUC ρρ . (100)

The value of ZUC is proportional to the degree of overlap between ρU(r) and

ρC(r). A normalized distance index is defined as,

                                                
148 M. Solà, J. Mestres, R. Carbó and M. Duran, J. Am. Chem. Soc. 116, 5909 (1994).
149 X. Fradera, L. Amat, M. Torrent, J. Mestres, P. Constans, E. Besalú, J. Martí, S. Simon, M. Lobato,

J.M. Oliva, J.M. Luis, J.L. Andrés, M. Solà, R. Carbó, M. Duran, J. Mol. Struct. (Theochem), 37, 1171

(1996)
150 S. Simon, M. Duran, J. Chem. Phys. 107, 1529 (1997)
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( ) 2/12 UCCCUUUC ZZZD −+= . (101)

where ZUU and ZCC and the self-similarities associated to ρU(r) and ρC(r),

respectively, that is, the overlap of each of these densities with itself. DUC in Eq. (101)

tends to zero for the limiting case of identical electron densities, which corresponds to

a null BSSE, and has no general upper limit.

Our aim is thus to introduce Quantum Molecular Similarity as a suitable tool

for the quantitative evaluation of the electron redistribution that takes place in a

molecular complex after correcting for BSSE. The hydrogen fluoride, water and

formic acid dimers, and the uracil-water complex are used to introduce this kind of

analysis. Since the effects of BSSE on the electron densities of these complexes have

been already analyzed at the SCF and DFT levels of theory, we will simply present

the similarity-based analysis.

All similarity calculations are performed between molecular densities at the

same molecular geometry (both the conventional and CHA geometries have been

used). Therefore, similarity measures and indices account merely for the electronic

relaxation effects associated to the BSSE.

For the water dimer complex, Table XLI collects all distance indices (DCU)

obtained from the comparison of conventional and CHA densities by means of

overlap similarity measures, for all the combinations of ab initio methodology and

basis set. For each case, the comparisons have been carried out both at the

conventional and BSSE-corrected optimized molecular geometries. In general, the

DCU values are very small, showing that BSSE is in fact a subtle error which leads

only to small deformations of the electron density.

The same trends are found for the comparisons at the conventional and CHA

geometries; however, DCU values are always slightly larger at the uncorrected

geometries, both for HF and B3LYP calculations. By considering the electronic and

relaxation redistributions caused by the CHA correction as perturbations with respect

to a conventional calculation (SCHEME 17), one can think that, at the conventional

geometry, CHA tends to exaggerate the density redistribution needed to correct the
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BSSE. In contrast, at the CHA optimized minimum, nuclear relaxation may account

for the major part of the BSSE correction; therefore, the density redistribution

associated to the BSSE correction is less important in this case. Altogether, this trends

confirm the importance of BSSE corrections to the molecular geometry for a proper

description of this kind of hydrogen-bonded complexes.

TABLE XLI
Distance indices between conventional and BSSE-corrected densities calculated with
several basis sets at the SCF, and B3LYP levels of theory, for the water dimer.

Basis Set Method
Conventional

Geometry

Corrected

Geometry

6-31G
SCF

B3LYP

0.004139

0.006283

0.003911

0.005800

6-31G(d,p)
SCF

B3LYP

0.004592

0.008562

0.003973

0.006749

6-31G++(d,p)
SCF

B3LYP

0.002654

0.003405

0.002499

0.003236

6-311G(d,p)
SCF

B3LYP

0.004011

0.006918

0.003714

0.005750

6-311G++(3df,2pd)
SCF

B3LYP

0.000948

0.001457

0.000894

0.001422

For the SCF and B3LYP calculations, the DCU values at the conventional and

CHA geometries decrease upon increase of basis set size, in agreement with the

corresponding decrease of the error in the stabilization energies. In fact, the inclusion

of diffuse functions and high order polarization functions in the basis set appears to be

the main factor for decreasing DCU. For instance, at the SCF level of theory, DCU is ca.

0.004, for all the basis sets without diffuse functions, 0.003 for the 6-31++G(d,p)

basis set, and 0.0009 for the 6-311G++(3df,2pd) basis set. Similar trends are found at

the B3LYP level: DCU lies between 0.006 and 0.008 for basis sets without diffuse

functions, while it is ca. 0.003 for 6-31++G(d,p), and  ca. 0.0015 for the largest basis

set. From these values it is also apparent that, according to the distance indices

obtained, the effect of BSSE on the electron density is larger at the DFT than at the

HF level of theory.
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As for the hydrogen fluoride dimer, Table XLII gathers the distance indices

corresponding to the comparisons between corrected and uncorrected densities, for all

the combinations of level of theory and basis sets. The distances obtained are always

very small, confirming again that the electron redistribution associated to the CHA

perturbation is very small. For instance, the largest indices are obtained for the

calculations with the 6-31G basis set at the conventional molecular geometry. In this

case, DUC is 0.0071 and 0.0213, at the SCF and B3LYP levels, respectively. Taking

into account that the distance index between the conventional SCF and B3LYP

densities of the (HF)2 dimer, at the same geometry, is 0.0277, one can assume that the

electron redistributions due to the elimination of the BSSE are comparable to those

caused by considering electron correlation, with respect to a conventional HF density.

TABLE XLII
Distance indices between conventional and BSSE-corrected densities calculated with
several basis sets at the SCF and B3LYP levels of theory, for the hydrogen fluoride
dimer.

Basis Set Method
Conventional

Geometry

Corrected

Geometry

6-31G
SCF

B3LYP

0.007101

0.021325

0.006734

0.011470

6-31G(d,p)
SCF

B3LYP

0.008113

0.020160

0.007450

0.012080

6-31G++(d,p)
SCF

B3LYP

0.000971

0.001490

0.000936

0.001385

6-311G(d,p)
SCF

B3LYP

0.004174

0.013927

0.003740

0.006043

6-311G++(3df,2pd)
SCF

B3LYP

0.001538

0.001844

0.001459

0.001796

Regarding the dependence of the distance indices on the level of theory, basis

set and molecular geometry, the trends are the same found for the water dimer. Thus,

distances between corrected and uncorrected densities are always larger at the B3LYP

level of theory. Moreover, distances calculated at minima on the conventional PES are

always larger than the equivalent distances at the CHA minima. Finally, as expected,
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distance indices decrease when improving the quality of the basis set. Again, diffuse

functions appear to be very important in order to minimize the BSSE on the density.

Finally, the distance indices between corrected and uncorrected densities

calculated at the SCF optimized geometries for the larger complexes are collected in

Table XLIII. Inclusion of diffuse functions halves the distance indices between both

densities. Distances calculated for both systems are quite similar even though the

difference on the strength of the respective intermolecular bonds (~14 Kcal/mol for

the formic acid dimer vs. ~8 Kcal/mol for the uracil-water complex) and their

molecular size.

TABLE XLIII
Distance indices between conventional and BSSE-corrected
densities at the SCF levels of theory, for formic acid dimer
and uracil-water complex.

Basis Set Formic acid dimer Uracil-water

6-31G(d, p) 0.006620 0.06402

6-31G+(d,p) 0.003195 0.03239

The effect of BSSE on the density of these complexes is quantitatively

comparable to the effect on the water and hydrogen fluoride dimers, which agrees

with the observation that the BSSE effect is mostly localized in the intermolecular

bond zone and the atoms involved in it.

As a conclusion, the distance indices for the studied complexes are in overall

agreement with the analyses of the critical points and the density difference maps, and

provide a quantitative measure of changes caused by correction or removal of BSSE.

In general, all the analyses performed show that the effects of BSSE on the electron

density are parallel to those on the molecular geometry and stabilization energies.

Improvement of the quality of the basis set leads always to smaller differences
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between conventional and CHA molecular properties and densities; in particular,

inclusion of diffuse functions is of great importance for minimization of the BSSE.

The same trends are found at the SCF and DFT levels of theory; however, distance

indices reveal that the effects of BSSE on the electron density are normally larger for

the DFT than for the SCF calculations. Moreover, distance indices are always larger at

minima optimized at the conventional PES, respect to indices corresponding to

minima on the CHA PES.

All in all, Quantum Molecular Similarity has been found to be useful for

evaluating quantitatively the differences between conventional and CHA-corrected

densities.
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II.1.3.4 Chemical Energy Component Analysis (CECA).

With semiempirical quantum methods, the molecular energy can be expressed

in terms of one- and two-center contributions only. This property allows for a

straightforward decomposition of the molecular energy into atomic (one-center) and

interatomic (two-center) contributions. In contrast, calculation of molecular energies

with ab-initio methods involves also three- and four-center terms. These terms may

contribute significantly to the total energy and cannot be generally ignored; however,

it is difficult to attach a direct chemical significance to these multicenter terms.

The basic idea in the CECA is to use a projective integral expansion scheme

that allows to express approximately each multicenter term as a summation of one-

and two-center terms. The theory behind the CECA is tightly related to the CHA (see

Ref. 153 for a detailed description). The main advantage of this approach compared to

the classical bond order analysis is that bonding interactions with formally the same

multiplicity (single, double, triple bonds) can be now clearly differentiated in terms of

energetic (static) contributions to the overall energy of the system. Also, it allows to

distinguish between bonding and antibonding interactions. However, one must take

into account that this decomposition is exact only for diatomic molecules, where no

multicenter contributions are possible. In the general case, the sum of all the energy

contributions does not match exactly the total molecular energy. Mayer states that the

CECA reproduces HF energies of small molecules with a precision between 10 and

40 mHartrees (≈ 6 to 25 kcal·mol-1)153. This is a relatively small error, compared to

the total molecular energy. Furthermore, one should take into account that this error

arises from the summation of all the one- and two-center energy contributions. One

can expect that the individual components have much smaller errors. Therefore, the

accuracy of the CECA decomposition scheme should be sufficient in most cases.

A second problem of the CECA is related to the fact that the energy

decomposition is performed in the Hilbert space. That is, each atomic orbital or basis

function is assigned to a single atom and the partition of each energetic term is carried

out by projecting over the subspace spawned by these atomic orbitals. Practically, the

                                                
153 I. Mayer, Chem. Phys. Lett. 332, 381 (2000).
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basis functions are supposed to belong to the atom in which they are centered. Then,

one- and two-center contributions are related to atomic and diatomic components.

However, the results of this kind of decomposition schemes can be very dependent on

the basis set used for the calculation. Particularly, these analysis may lose significance

when diffuse functions are included in the basis set. For instance, it is well known that

Mulliken charges, also based on the formal partition of the atomic orbital’s space,

have little chemical meaning when diffuse basis functions are used.

This problem can be solved by performing a similar decomposition in the

Euclidean space, for instance in the frame of the AIM theory154. It can be shown that a

partitioning of that kind, that can be connected to the CECA one by a simple mapping

of the integrals155, can provide an exact decomposition of the HF molecular energy.

Several test calculations revealed some differences between the CECA and the AIM-

based energy partitioning154. Unfortunately, the huge computational cost that implies

the evaluation of double integrations over two AIM atomic basins prevents the use of

this methodology for the present work, and only CECA approximated results will be

shown.

O1

H6H5 O4

H2

H3

β

α

Roo

SCHEME 19

Tables XLIV-XLVII gather the results of the CECA decomposition for all the

HF calculations of water dimer, formic acid dimer and uracil-water complex. Table

XLIV collects the one- and two-center energy components obtained for the water

dimer with the 6-31G(d,p) and 6-31++G(d,p) basis sets. Atomic energies are always

negative (stabilizing), as well as the interaction between bonded atom pairs. Some

terms like the O-O and H-H interactions are repulsive, which agrees with the chemical

intuition. Direct comparison of the energy components obtained with different basis

                                                
154 P. Salvador, M. Duran, I. Mayer, J. Chem. Phys. 115, 1153 (2001).
155 I. Mayer and A. Hamza, Theor. Chem. Acc. 105, 374 (2001).
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sets is not very convenient since the total molecular energy can be very different.

Hence, since we are interested in the analysis of the effects of the BSSE in the energy,

only selected differences between the SCF//SCF and CHA//SCF values for each basis

set are discussed.

TABLE XLIV
SCF one- and two-center energy components for the (H2O)2 complex for
the 6-31G(d,p) and 6-31++G(d,p) (lower triangle, in cursive) in a.u.. The
values in parenthesis correspond to the H2-H3 diatomic term.

Atom O1 H2 O4 H5 H6

O1
-74.3319

-74.3758

-0.7854

(0.0450)
0.0942 -0.1016 -0.0331

H2
-0.7819

(0.0609)

0.0450

-0.0736
-0.0380 0.0280 0.0142

O4 0.1087 -0.0422
-74.3423

-74.3884
-0.7859 -0.7909

H5 -0.0970 0.0332 -0.7853
-0.0612

-0.0599
0.0469

H6 -0.0406 0.0164 -0.7781 0.0674
-0.0810

-0.0828

We use EBSSE(A) and EBSSE(A,B) to denote the BSSE effect in one- and two-

center energy components involving atom A and the atomic pair A,B, respectively.

Negative EBSSE(A) and EBSSE(A,B) values correspond to energy components that are

too stabilizing in the uncorrected calculation, because of the BSSE. That is, the given

one or two-center component is more stabilizing (less destabilizing) for the SCF//SCF

than for the CHA//SCF calculation. Inversely, positive values correspond to energy

components that are lower in energy for the CHA than for the SCF calculations.

Tables XLV-XLVII also lists the total energy difference for each monomer as well as

the correction to the static interaction energy, computed by summing up all the

corresponding CECA one- and two-center terms.

Note that the sum of all the CECA intermolecular energy components must be
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clearly distinguished from the conventional stabilization and interaction energies, the

former reported in Section II.1.1.1. In the supermolecular approach, the interaction

energy is defined as the difference between the energy of the complex and the

energies of the monomers at the complex’s geometry. The stabilization energy is

obtained by taking into account also the energetic penalty due to the geometrical

distortions of the monomers in the complex. Hence, both the interaction and the

stabilization energies take into account the electronic relaxation, as the wavefunction

of the monomers is computed to obtain the corresponding energies. In the case of the

stabilization energy, the nuclear relaxation of the monomers is also taken into

account. In contrast, the static interaction energy account only for local energetic

interactions extracted uniquely from the complex’s wavefunction, and is easily

obtained as the summation of all the CECA energy components associated to

intermolecular two-center interactions.

TABLE XLV
CECA analysis of the (H2O)2 at the SCF level of theory for several basis sets. Given
values represent energetic differences between SCF//SCF and CHA//SCF calculations in
kcal/mol. EBSSE (O1-H5), (O4-H5) and (H5), hold for the BSSE contribution on selected
two- and one-center interactions (see SCHEME 19). ∆ED , ∆EA , and ∆Eint  are the static
BSSE contributions on donor, acceptor and interaction energies, respectively, computed
from the CECA one- and two-center terms. Last two columns give the exact and the
CECA approximated BSSE

Basis EBSSE

(O1,H5)
EBSSE

(O4,H5)
EBSSE

(H5)
∆∆∆∆Eint ∆∆∆∆ED ∆∆∆∆EA BSSE BSSEC

6-31G -9.4 -7.0 10.0 -8.5 3.6 4.6 -0.50 -0.23

6-31G(d) -12.4 -1.3 8.0 -11.9 3.5 8.2 -0.59 -0.02

6-31G(d,p) -11.1 3.1 3.1 -10.4 2.6 8.2 -0.70 -0.04

6-31++G(d,p) 6.5 -1.0 -1.3 9.7 -4.4 -7.4 -0.55 -2.17

6-311G(d,p) -9.5 3.0 1.1 -10.4 2.1 8.0 -1.03 -0.26

6-311++G(d,p) 15.6 -14.7 6.4 9.0 -4.7 -8.2 -0.54 -3.94

In a similar way, the static monomer energies can also be obtained by collecting

all the one- and two-center CECA components involving the atoms of the given

monomer. The summation of all BSSE corrections to each (static) monomer energy
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and to the (static) intermolecular component yields the total correction to the complex

energy. The overall BSSE calculated as the difference between the uncorrected

(SCF//SCF) and corrected (CHA//SCF) energies is also reported. Comparison of these

values gives a measure of the accuracy of the CECA partition in each case.

For the 6-31G basis sets, the BSSE is manifested mainly in the energy

components related to H5, which is the H participating in the intermolecular bond.

The principal destabilizing contribution comes from the one-center component in H5,

while the major stabilizing contributions correspond to two-center components

involving H5 and other atoms. Thus, EBSSE(H5) is +10.0 kcal·mol-1, while

EBSSE(O1,H5) and EBSSE(O4,H5) are -9.4 and -7.0 kcal·mol-1, respectively. However,

these trends are not general for all the calculations. For all the basis sets without

diffuse functions, (a), (b) (c) and (e),  EBSSE(O1,H5) is ca. -10 kcal·mol-1. EBSSE(H5)

and EBSSE(O4,H5) also contribute to the BSSE, but to a small extend, compared to the

6-31G results. EBSSE(H5) is always positive, but EBSSE(O4,H5) can be positive or

negative, depending on the basis set. In some cases, other components exhibit also

significant BSSE. In general, for all these basis sets, the BSSE destabilizes the two

water monomers, especially the donor one, but makes the intermolecular component

more stabilizing. The overall effect of the BSSE in the static interaction energy is

always stabilizing. This clearly shows that the interaction between the monomers is

artificially enhanced by the BSSE.

 The results of the analysis are quite different when diffuse functions are

included. For the 6-31++G(d,p) basis set, EBSSE(O1,H5) is +6.5 kcal·mol-1, and

EBSSE(H5,H6) component is +4.9 kcal·mol-1. This is compensated mainly in the one-

center components of the O atoms, which are ca. -6.6 kcal·mol-1 each. For the 6-

311++G(d,p) basis set, EBSSE(O1,H5) is +15.6 kcal·mol-1 and EBSSE(H5) is +6.4

kcal·mol-1, while EBSSE(O4,H5), EBSSE(O1,O4) and EBSSE(O1) are -14.7, -6.6 and -4.8

kcal·mol-1, respectively. In terms of molecular and intermolecular components, the

BSSE contribution to the intermolecular term is always unfavorable (ca. +9 kcal·mol-1

in both cases). For the 6-31++G(d,p) and 6-311++G(d,p) basis sets, the overall BSSE

contribution is negative for both the donor and acceptor molecules. Altogether, the

effect of BSSE on the molecular static interaction energy is always stabilizing, but the

sign of the contributing terms is reversed, compared to the calculation with no diffuse

functions.
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Table XLIV also lists also the BSSE calculated i) as the difference between

SCF//SCF and CHA//SCF energies, and ii) as the summation of the BSSE in each

one- and two-center energy component. The difference between the two values can be

used to estimate the accuracy of the CECA. In general, the differences are significant,

taking into account that the BSSE is generally small. For the basis sets with no diffuse

functions, the difference is always less than 0.8 kcal·mol-1, and the CECA always

underestimates the magnitude of the BSSE. On the contrary, for the 6-31++G(d,p) and

6-311++G(d,p) basis set, the CECA overestimates the magnitude of the BSSE by ca.

1.5 and 3.5 kcal·mol-1, respectively. Similar conclusions can be drawn when

comparing SCF//SCF and CHA//CHA energies, so the results are not reported.

TABLE XLVI
CECA analysis of the formic acid dimer . Given values represent energetic differences
between SCF and CHA at the SCF (uncorrected) geometries in kcal/mol. See
SCHEME 18a for the selected one- and two-center energy differences.∆EA-D , and
∆Eint  are the static differences on the formic acid moiety and the interaction energy,
respectively, computed from the CECA one- and two-center terms. BSSE and BSSEc
give the exact and the CECA approximated difference between the CHA and the SCF
energies.

Basis EBSSE

(C1,O2)
EBSSE

(H5,O6)
EBSSE

(H5)
∆∆∆∆Eint ∆∆∆∆EA-D BSSE BSSEC

6-31G(d,p) 15.6 -14.1 5.0 -29.2 13.8 -1.63 -1.42

6-31++G(d,p) -3.6 -7.3 8.4 -16.6 7.6 -0.78 -1.17

The results for the formic acid dimer are presented in Table XLVI. For the 6-

31G(d,p) basis set the main contributions to the BSSE are EBSSE(C1,O2) (15.6

kcal·mol-1) and EBSSE(O2,H10) (-14.1 kcal·mol-1). Note that due to the symmetry,

equivalent contributions arise from the C7, O6 and H5 atoms. EBSSE(H10) makes a

smaller but significant contribution (5.0 kcal·mol-1). For the 6-31++G(d,p) basis set,

EBSSE(C1,O2) and EBSSE(O2,H10) are smaller (-3.6 and -7.3 kcal·mol-1, respectively). In

contrast, EBSSE(H10) is significantly larger, +8.4 kcal·mol-1. The overall picture is the

same in both calculations: the BSSE stabilizes the two-center components related to

the H-bond interactions, as well as the one-center components in the acceptor atoms,

but destabilizes the H atoms participating in the intermolecular bond. Altogether, the

BSSE destabilizes each formic acid monomer but increases the attractive

intermolecular energy component. Hence, the overall contribution of the BSSE to the
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molecular interaction is stabilizing for both basis sets. For this complex, the error in

the CECA analysis is quite small, compared to (H2O)2. For the small basis set, the

BSSE calculated as the sum of the CECA components is ≈ 0.2 kcal·mol-1 lower in

magnitude than the real value. For the 6-31++G(d,p), CECA overestimates the

magnitude of the BSSE error by ≈ 0.4 kcal·mol-1.

TABLE XLVII
CECA analysis of the uracil-water complex . Given values represent energetic
differences between SCF and CHA at the SCF (uncorrected) geometries in kcal/mol.
See SCHEME 18b for the selected one- and two-center energy differences.∆EU , ∆EW,
and ∆Eint  are the static differences on the uracil, water and the interaction energy,
respectively, computed from the CECA one- and two-center terms.

Basis EBSSE

(C1,O7)

EBSSE

(H8,O14)
(H13,O7)

EBSSE

(H8)
(H13)

∆∆∆∆Eint ∆∆∆∆EU ∆∆∆∆EW BSSE BSSEC

6-31G(d) 18.5 -16.0
-12.6

7.6
4.8 -23.9 10.4 11.7 -1.48 -1.45

6-31+G(d) -1.3 -2.3
-11.8

3.2
9.2 1.0 -8.3 -2.3 -0.78 -8.71

The results of the CECA analysis for the uracil-water complex are collected in

Table XLVII. The main trends are very similar to those found for the formic acid

dimer. Thus, for both basis sets, the BSSE has a large stabilizing contribution to the

two-center components related to the H bonds, reflected in the large negative values

of EBSSE(O7,H13) and EBSSE(O14,H8), while EBSSE(H8) and EBSSE(H13) are positive. The

main difference between the 6-31G(d) and 6-31+G(d) results is that the BSSE in the

energy components associated to the O14-H8 interaction are much smaller when

diffuse functions are used. Furthermore, EBSSE(C1,O7) has a significant destabilizing

contribution, for the 6-31G(d) results, but small and negative for 6-31+G(d). There

are other components that have important contributions to the BSSE in the 6-31+G(d)

calculation. Some of these contributions come from atom pairs that are not directly

bonded, but are connected through a common atom. However, most of all the

significant contributions involve the atoms that directly participate in a H bond: C1,

N2, O7, H8, H13 or O14. In terms of intramolecular and intermolecular components, the

BSSE stabilizes the intermolecular component and destabilizes the intramolecular

ones, for the 6-31G(d) calculation, and inversely for the 6-31+G(d) one. As usual, the
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overall contribution of the BSSE to the interaction energy is attractive. For the 6-

31G(d) results, the CECA partition is nearly exact, and the error in the calculation of

the BSSE correction to the energy is only 0.03 kcal·mol-1. In contrast, for the 6-

31+G(d) case, the difference between the BSSE calculated by using the CECA and

the supermolecular approach is ca. 8 kcal·mol-1.

II.1.3.5 Concluding Remarks.

It is interesting to remark that the main effects of the BSSE correction on the

electron density of the water dimer are very similar to those found for the hydrogen

fluoride dimer. The patterns of electron redistribution caused by the removal of the

BSSE at frozen geometries for (HF)2 and (H2O)2 are very similar. Indeed, for

calculations without diffuse functions, the main feature of the difference maps is the

redistribution of electron density in the valence shells of the heavy atoms in both

cases. Moreover, similar trends are found for the 6-31G(d,p) and 6-31G(d)

calculations on the formic acid dimer and uracil-water complexes, respectively.

Furthermore, addition of diffuse functions leads to similar effects for all the systems

analyzed: an overall decrease of the differences between corrected and uncorrected

densities, negative differences in the intermolecular region, and lack of the highly

directional density redistribution patterns in heavy donor and acceptor atoms that are

observed with smaller basis sets.

In fact, some of the differences between the SCF//SCF and CHA//SCF electron

densities appear to be at odds with simple chemical intuition. For instance, it might be

expected that the BSSE correction should weaken the intermolecular interaction and

therefore lead to a decrease of the electron density in the intermolecular region.

Actually, in many cases, the BSSE correction works in the opposite direction, leading

to an accumulation of electron density in the intermolecular region. Moreover, the

BSSE correction also decreases the electron density in the intramolecular bonds of the

donor moieties. In general, it should be taken into account that the CHA//SCF results

used in the difference maps do not correspond to stationary points on the BSSE-

corrected surface. It is well-known that geometry relaxation is necessary for fully

correcting the BSSE. In fact, when nuclear relaxation is taken into account, there is
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always a depletion of the electron density in the intermolecular region, as reflected in

the properties of the intermolecular bcp's.

The study of larger systems, like the formic acid dimer, and especially the

uracil-water complex, reveals that the effects of BSSE on the electron density are

generally restricted to the intermolecular region and especially to the atoms directly

involved in the intermolecular interaction and their first-neighbors.

The CECA decomposition scheme has been found to be a valuable tool for

analyzing the local effects of BSSE in terms of atomic and interatomic contributions.

However, one has to be aware that the CECA decomposition is not exact. Therefore,

the applicability of this method to analyze the subtle effects of the BSSE on the

molecular energy depends on the accuracy of the approximation. In general, for the

calculations reported in this paper, the accuracy of the decomposition, calculated as

the difference to the true BSSE, is good or acceptable when basis sets without diffuse

functions are used. In these cases, the results of the CECA analysis are in agreement

with chemical intuition: the BSSE generally destabilizes the purely intramolecular

energies of the two molecules forming the complex, but it enhances the intermolecular

energy component. The final result is that BSSE always leads to more attractive

interaction energies. In general, it is worth to note that, although the BSSE in the total

molecular energy is usually small, the individual atomic or interatomic contributions

can be quite large.

When diffuse functions are taken into account, the results of the analysis are just

the opposite. That is, in general, small BSSE energy stabilization results from the

combination of a large stabilization of the intramolecular energies and a

destabilization of the intermolecular term. However, the validity of the CECA

analysis in these cases is questionable for two reasons. First, the accuracy of the

CECA decomposition is very low (the BSSE is overestimated by several kcal·mol-1,

except for the formic acid dimer). Second, the identification of the one- and two-

center components with atomic and interatomic contributions is questionable when

diffuse functions are involved. Nevertheless, the CECA results in these particular

cases seem to agree with the density difference maps in the sense that the differences

tend to be smaller when diffuse functions are included but they are more delocalized.

Indeed, the H atoms involved in the intermolecular H-bonds have similar BSSE effect
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on the two-center components with the acceptor atom and the neighbors of this atom.

In other words, since the diffuse functions are so spread in the space and hardly

assigned to a given nuclei, the BSSE is not only energetically localized in the bonds

but also in the same extent in non-bonded interactions. This effect is in agreement

with the observations of corresponding isocontour density difference maps
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II.1.4 Molecular Clusters
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α

R
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α
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F F

H

F HF F
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(A)

CYCLIC (HF)3 Uncorrected VMFC-corrected
   ε ind r

(20) (2-body) -19.22 -10.23
   ε ind,r

(20) (3-body) -2.13 -1.52
   ε ind,r

(30) (2-body) -0.23 -0.17
   ε ind,r

(30) (3-body) -0.58 -0.37
   εdisp

(20) (2-body) -8.64 -5.82
   εdisp

(30) (3-body) 0.04 0.02
   εes

(10) -31.79 -23.23
  εexch

HL 37.50 20.12
  εexch

HL  (3-body) -0.49 -0.20
  ∆E HL 5.71 -3.11
  ∆E def

SCF -13.09 -7.66
  ∆E int

SCF -7.38 -10.77
  ∆E int

SCF  (3-body) -4.92 -2.78
   ∆E int

(2) -5.46 -3.15
   ∆E int

MP2 -13.86 -14.54
rel∆E 0.93 0.53

   ∆E int
MP2  (3-body) -5.10 -2.91

(B)

(A) Geometrical parameters of the cyclic hydrogen fluoride oligomers

(B) SAPT results for the hydrogen fluoride trimer at the uncorrected and CP-corrected

cluster geometries with the Sadlej’s medium polarized basis set.
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II.1.4.1 Gas-Phase hydrogen fluoride clusters (HF)n

The counterpoise correction when there are more than two molecules interacting

is not trivial from a conceptual point of view. It has already been pointed out that

high order BSSE delocalizations arising from the dimers, trimers, tetramers, etc

descriptions within the molecular aggregate may contribute to the BSSE in analogy to

the non-additivity of the many-body interaction present in clusters.

In a recent paper, Mierzwicki and Latajka84 analyzed the behavior of several

counterpoise methods already proposed in the literature in the calculation of many-

body interactions of Li(NH4)n and Li(NH4)n
+ clusters at several levels of theory.

Unfortunately, only stabilization energies were computed and not even nuclear

relaxation effects were taken into account. The three counterpoise-correction schemes

they use were the so called site-site, pairwise additive and hierarchical (Valiron-

Mayer) function counterpoise; SSFC, PAFC and VMFC, respectively.

In the following we want to go one step forward. As commented throughout this

work, in order to properly take into account the BSSE, the counterpoise-correction

must be seen as a correction to be added to the molecular aggregate description. This

allows us to compute not just interaction energies but also gradients and harmonic

frequencies for the three different counterpoise schemes. Furthermore, the location of

the stationary points on the BSSE-corrected PES is essential to obtain reliable

counterpoise-corrected energies and avoid the sometimes referred as overcorrection

when using small basis sets.

We want to assess the differences between the different CP methods in terms of

molecular geometries, vibrational frequencies and stabilization energies. For the first

time, we will perform full geometry optimizations using both the pairwise additive

and the hierarchical counterpoise methods. The use of the hierarchical counterpoise

scheme will tell us the effects of the high-order BSSE terms and to which extent they

can be considered negligible. The validity of the pairwise additive scheme will also be

critically analyzed.

We will apply these methods to the hydrogen fluoride trimer and tetramer. The
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hydrogen fluoride clusters have received much attention in the last years. Last

experimental156,157 and theoretical158-160 studies predict planar ring structures of Cnh

symmetry for the (HF)n 3 ≤ n<6 gas phase oligomers. In the case of the tetramer and

pentamer, however, there is still some debate161. X-ray and neutron diffraction

experiments80 have shown that solid HF tends to form infinite zig-zag chains with

very large cooperative effects. Therefore there must be an inversion of the relative

stability of the cyclic and chain isomers as the molecular aggregate grows.

In this work, both the cyclic and chain-like arrangements are considered in order

to compare the BSSE effect for two structures where the importance of the

cooperative effects is very different. Also, the high symmetry of the cyclic aggregates

will allow us to perform geometry optimizations with a relatively large basis set using

the hierarchical counterpoise scheme even for the tetramer.

For all the geometry optimizations and frequency calculations, we have used

our code to automatically generate all the necessary input files and repeatedly call a

slightly modified Gaussian94100 package. For this particular study, the program was

updated in order to cope with the molecular symmetry and use the VMFC and PAFC

methods. A detailed explanation of the capabilities of the code will be give in the next

section.

As for the computational details, we have performed MP2 calculations (frozen

core) with the 6-31G(d,p), 6-31++G(d,p) and a medium polarized Sadlej's basis set

with a (10s,6p,4d,1f/6s,4p)→[5s,3p,2d,1f/3s,2p] contraction scheme. The aug-cc-

pVTZ basis set has also been used in order to compare our results with some of the

last uncorrected calculations.

                                                
156 L. Andrews, V. E. Bondybey and J. H. English, J. Chem. Phys. 81, 3452 (1984)
157 D. W. Michael and J. M. Lisy, J. Chem. Phys. 85, 2528 (1986)
158 L. Rincón, R. Almeida, D. Garica-Aldea and H. Diez y Riega, J. Chem. Phys. 114 5552 (2001)
159 K. R. Liedl, J. Chem. Phys. 108, 3199 (1998)
160 a) G. S. Tschumper, Y. Yamaguchi and H. F. Schaeffer III, J. Chem. Phys. 106, 9627 (1997); b) T.

A. Blake, S. W. Sharpe and S. S. Xantheas, J. Chem. Phys. 113, 707 (2000); c) B. L. Grigorenko, A. A.

Moskovsky and A. V. Nemukhin, J. Chem. Phys. 111, 4442 (1999); d) W. Klopper , M. Quack and M.

A. Suhm, Mol. Phys. 94 105 (1998).
161 F. Huisken, M. Kaloudis, A. Kulcke, C. Laush and J. M. Lisy, J. Chem. Phys. 103, 5367 (1995)



Clusters -  249

II.1.4.1.a (HF)n cyclic

The results of the geometry optimizations of the HF cyclic trimer and tetramer

are gathered in Table XLVIII. As shown in SCHEME 20, both trimer and tetramer

structures are determined by three parameters: the intermolecular F-F (RF-F) and the

intramolecular F-H (RF-H) distances and the angle between each HF unit and the

center or the ring structure (α). We have studied only the C3h and C4h cluster

arrangements for the trimer and the tetramer, respectively.

R

r

α

R

r

α

FH

H

F F

H

F HF F

F

H

H

H

SCHEME 20: Geometrical parameters of the C3h and C4h cyclic hydrogen fluoride trimer and

tetramer

As a general trend for the HF trimer results, it can be seen that intermolecular

distance increases upon correction for BSSE, the larger differences being observed for

the PAFC method. Upon CP-correction, the intramolecular F-H distance shortens by

less than 0.01Å. However, this difference is still larger than the variation of this

distance with respect to basis sets. The cyclic nature of the complexes prevents from

large effect of BSSE correction on the angular parameter. In all cases, α increases (up

to 3 degrees), inducing to a larger deviation from the triangular arrangement and

hence a large intermolecular distance and cluster size.

The effect of adding diffuse functions dramatically decreases the effect of BSSE

for the 6-31G(d, p) basis set. The differences between the uncorrected and CP-

corrected intermolecular distances, larger than 0.1Å for the small basis set, decrease to

ca. 0.05Å upon inclusion of diffuse functions. The medium polarized basis set,

specifically design for the description of intermolecular interactions yields large

BSSE. Indeed, both the uncorrected and the CP-corrected geometrical parameters are
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close to the values obtained with the 6-31G(d, p) basis set.

TABLE XLVIII
Geometrical parameters (Å, degrees), total (a.u.) and stabilization energies (kcal/mol),and
BSSE corrections (kcal/mol) for the cyclic HF trimer and tetramer in several basis sets and
counterpoise methods. See SCHEME 20 for the definition of the geometrical parameters.

RF-F RF-H αααα Energy BSSE SP
BSSE ∆∆∆∆E

TRIMER
MP2/6-31G(d,p)

Uncorr. 2.530 0.9432 20.6 -300.626538 -26.75
SSFC 2.651 0.9355 22.8 -300.608461 11.34 12.23 -15.40
PAFC 2.676 0.9345 23.6 -300.607189 12.14 13.47 -14.60
VMFC 2.666 0.9339 23.6 -300.607143 12.17 13.39 -14.57

MP2/6-31++G(d,p)
Uncorr. 2.649 0.9411 24.2 -300.672298 -15.40
SSFC 2.700 0.9391 24.5 -300.668919 2.12 2.21 -13.28
PAFC 2.708 0.9389 24.4 -300.668461 2.41 2.53 -12.99
VMFC 2.700 0.9390 24.7 -300.668901 2.13 2.23 -13.27

MP2/Sadlej
Uncorr. 2.521 0.9489 19.6 -300.843118 -23.87
SSFC 2.658 0.9423 22.2 -300.827375 9.88 10.94 -14.00
PAFC 2.680 0.9417 22.4 -300.825724 10.91 12.26 -12.96
VMFC 2.660 0.9422 22.2 -300.827249 9.94 11.03 -13.92

TETRAMER
MP2/6-31G(d,p)

Uncorr. 2.471 0.9563 9.0 -400.848922 -44.16
SSFC 2.580 0.9440 11.1 -400.824190 15.51 16.70 -28.64
PAFC 2.607 0.9422 11.7 -400.822892 16.33 18.26 -27.83

VMFC(2) 2.604 0.9408 11.1 -400.821037 17.50 19.36 -26.66
VMFC(3) 2.611 0.9400 12.0 -400.82055 17.80 19.91 -26.36

MP2/6-31++G(d,p)
Uncorr. 2.563 0.9516 11.5 -400.908758 -28.29
SSFC 2.623 0.9467 11.9 -400.902411 3.98 4.22 -24.31
PAFC 2.635 0.9462 11.8 -400.901641 4.47 4.79 -23.82

VMFC(2) 2.621 0.9468 12.0 -400.902673 3.82 4.03 -24.47
VMFC(3) 2.621 0.9468 12.1 -400.902642 3.84 4.06 -24.45

MP2/Sadlej
Uncorr. 2.479 0.9586 8.5 -401.140773 -42.26
SSFC 2.579 0.9515 9.9 -401.114300 16.61 17.55 -25.65
PAFC 2.604 0.9499 10.3 -401.110746 18.48 20.15 -23.42

VMFC(2) 2.583 0.9511 10.0 -401.114102 16.73 17.73 -25.52
VMFC(3) 2.583 0.9511 10.0 -401.114097 16.73 17.73 -25.52

Adding another HF unit to the complex results in a shortening of the
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intermolecular distance by ca. 0.06Å. The intramolecular H-F distance decreases

whereas the angular parameter slightly increases. Cooperative effects are also evident

from an energetical point of view. The stabilization energy per hydrogen bond

increases by more than 1kcal/mol, hence yielding an extra stabilization energy of ca.

6Kcal/mol for the tetramer

The same effect of the BSSE on the geometrical parameters is observed for the

tetrameric structure. However, even though the BSSE correction to the stabilization

energy increases respect to the trimer complex, the differences between the

uncorrected and the CP-corrected geometrical parameters are comparable to the ones

observed for the trimeric cluster.

As for the energies, the BSSE correction to the trimer and tetramer energies is

always overestimated at the uncorrected geometry. The CP-corrected stabilization

energies computed at the uncorrected minima (single-point counterpoise calculation)

are smaller than the ones computed at the respective CP-corrected stationary point.

The differences in the case of the trimer range from ca. 0.1Kcal/mol for the 6-

31++G(d, p) basis set to more than 1kcal/mol for both the 6-31G(d, p) and the Sadlej

basis set. For the tetramer these differences are twice as large. It is important to note

that, after CP-correction, the basis set dependence of both the calculated stabilization

energies and geometrical parameters decreases. The uncorrected stabilization energies

obtained with the 6-31G(d, p) and the Sadlej basis set are far too large. All the CP-

corrected values are within 3 and 5Kcal/mol for the trimer and the tetramer,

respectively. The same situation has been observed in previous studies of weakly

bonded complexes.

On the other hand, it can be seen that the differences between the SSFC and the

VMFC corrected values are still appreciable for the smallest basis set used, the 6-

31G(d, p). The intermolecular distance is again the most sensitive geometrical

parameter to the BSSE. The inclusion of high-order terms in the CP method leads to

larger intermolecular distances, the differences being of 0.015Å and 0.024Å for the

trimer and tetramer, respectively. The effect on the cluster energy is much more

relevant. The SSFC method overestimates the stabilization energy by ca. 1 Kcal/mol

and 2 Kcal/mol, for the trimer and tetramer, respectively. In the later case, the

inclusion of the third order CP-correction terms, VMFC(3), whose determination is

feasible in this case due to the high symmetry of the complex, shows no significant
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effect on neither the geometry nor the energy of the complex, provided that the basis

set used is flexible enough. Only for the 6-31G(d, p) basis set the intermolecular

distance still increases by 0.007Å and decreases the stabilization energy by 0.3

kcal/mol.

Fortunately, for the other basis sets including diffuse functions, the high-order

correction terms of the VMFC method have practically no effect on both geometrical

parameters and energies. It is worth to point out two facts. First, for the 6-31++G(d, p)

tetramer calculation, the inclusion of high-order CP-correction terms induces to a

smaller BSSE. The intermolecular distance slightly shortens and the stabilization

energy increases by 0.16Kcal/mol upon correction. Even though it is a rather

unexpected result, we would like to emphasize that the high-order terms in the VMFC

method can be actually of opposite sign, in other words, the BSSE can be

overestimated if one is restricted to the SSFC method. The fact that the dimer

correction term is negative does not mean that the dimer description is better with the

DCBS than with the TCBS (from an energetical point of view). Instead, it is the dimer

stabilization energy, which is larger (more negative). The reason why this happens is

because the lowering of the monomers energies are larger than the dimer counterparts

as the basis set increases. Secondly, it is remarkable that, even though the large BSSE

exhibit at the monomer level by the Sadlej basis set, the effect of high-order BSSE

correction is rather irrelevant. It is confirmed again that a basis set can not be

considered bad or unbalanced just because it bears large BSSE. Indeed, we will show

that the Sadlej basis set provides very accurate results, provided that the BSSE is

properly taken into account.

Finally, the PAFC method clearly overestimates the BSSE in all the cases

except for the calculations involving the 6-31G(d, p) basis set. In this case, the PAFC

results show that the method seems to mimic the effect of the high-order CP-

correction terms. However, the differences observed in both the geometrical

parameters and cluster energies when using more suitable basis sets make this method

not advisable.
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TABLE XLIX
Harmonic frequencies (cm-1), ZPVE correction (Kcal/mol) to the stabilization energy
and frequency shifts (cm-1) for the cyclic HF trimer. Values in parenthesis correspond to
the uncorrected harmonic frequencies and ∆ZPVE computed at the CP-corrected
geometry. Red shifts calculated respect the monomer H-F stretching frequencies
obtained at each level of theory (4193.4, 4118.7 and 4082.4 cm-1 for the 6-31G(d, p), 6-
31++G(d, p) and Sadlej basis sets, respectively)

Uncorrected SSFC PAFC VMFC

MP2/6-31G(d,p)
ω6 (E’) 259.6 203.1 (193.6) 189.1 (180.8) 194.7 (185.0)
ω3 (A’) 276.5 224.7 (202.2) 217.9 (186.9) 219.7 (193.1)
ω8 (E’') 539.6 505.8 (474.5) 489.5 (467.8) 476.7 (456.6)
ω5 (E’) 755.2 631.6 (607.1) 619.4 (577.2) 589.4 (571.1)
ω7 (A’') 765.9 711.6 (669.0) 689.4 (651.4) 688.9 (644.2)
ω2 (A’) 1153.4 988.3 (963.6) 954.0 (919.1) 948.3 (917.8)
ω1 (A’) 3668.4 3863.5 (3869.1) 3892.6 (3899.0) 3905.1 (3905.0)
ω4 (E’) 3841.4 3967.3 (3972.4) 3985.6 (3990.7) 3995.7 (3998.6)
∆ZPVE 5.84 5.48 (5.19) 5.36 (5.03) 5.30 (5.03)

Shift -352 -226 -188 -198
MP2/6-31++G(d,p)

ω6 (E’) 184.0 172.6 (160.4) 169.1 (157.3) 171.3 (160.0)
ω3 (A’) 207.4 197.3 (181.3) 194.1 (177.6) 196.0 (181.0)
ω8 (E’') 465.0 446.4 (432.1) 438.6 (427.7) 444.8 (432.5)
ω5 (E’) 553.2 531.2 (516.4) 524.6 (514.2) 531.2 (512.9)
ω7 (A’') 680.7 654.6 (648.3) 642.6 (645.8) 648.0 (646.0)
ω2 (A’) 936.5 884.0 (897.2) 884.1 (895.2) 876.0 (890.8)
ω1 (A’) 3785.8 3835.8 (3833.5) 3839.3 (3837.2) 3838.7 (3836.6)
ω4 (E’) 3878.6 3915.2 (3913.2) 3917.6 (3916.0) 3917.3 (3915.1)
∆ZPVE 4.89 4.78 (4.64) 4.72 (4.61) 4.76 (4.63)

Shift -240 -204 -202 -202
MP2/Sadlej

ω6 (E’) 259.7 186.2 (169.8) 174.3 (157.1) 185.5 (168.6)
ω3 (A’) 285.7 208.7 (181.1) 200.8 (166.1) 208.3 (179.8)
ω8 (E’') 579.2 468.0 (532.4) 443.4 (524.9) 468.8 (530.8)
ω5 (E’) 752.4 575.0 (582.9) 557.6 (564.4) 573.2 (580.9)
ω7 (A’') 771.7 654.0 (689.1) 625.7 (678.9) 654.8 (687.7)
ω2 (A’) 1166.0 936.4 (940.8) 912.3 (916.4) 933.1 (938.8)
ω1 (A’) 3533.0 3730.0 (3723.1) 3751.3 (3741.8) 3732.3 (3725.5)
ω4 (E’) 3711.4 3832.3 (3823.7) 3846.0 (3835.0) 3833.8 (3825.5)
∆ZPVE 5.72 4.71 (4.85) 4.54 (4.72) 4.70 (4.84)

Shift -371 -250 -236 -249

It has been shown how the BSSE and the several CP methods affect the PES in

terms of the location of the stationary points. Obviously, the harmonic frequencies on
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each PES will differ too. To which extent depends on two main factors. First, the

geometrical parameters of the stationary point are different, so that the frequencies

will vary, depending upon how large was the CP-correction on the geometry. And

second, the higher-order derivatives of the BSSE-correction term are non-zero, so that

the CP-corrected second derivatives will differ from the uncorrected supermolecule

derivatives. By comparing the corrected and uncorrected frequencies at the CP-

corrected stationary point one can determine to which extent the rather expensive

calculation of the CP-corrected second order derivatives are necessary. The

differences between the frequencies properly computed on the corresponding

uncorrected and CP-corrected PES contain both the geometrical and the differential

factor.

The uncorrected and CP-corrected harmonic frequencies for the cyclic HF

trimer calculated for the three basis sets and CP methods are gathered in Table XLIX.

In all the cases, the uncorrected low-frequencies are overestimated whereas the

frequencies of the two stretching modes are underestimated respect to the CP-

corrected ones. For the 6-31G(d, p) and Sadlej basis sets the differences between the

uncorrected and the CP-corrected frequencies range from 60cm-1
 for the lowest

frequency to more than 200cm-1 for the frequencies labeled ω1 and ω2. In general, the

BSSE modifies the low frequencies by 10-25%. The differences in the fundamental

stretching frequency ω4 are >100cm-1. As expected, the 6-31++G(d, p) frequencies

aren’t modified in a significant manner. The maximum differences are ca. 50cm-1,

even for the most sensitive frequencies ω1 and ω2.

The inclusion second-order CP-correction seems not to induce any appreciable

changes in the frequencies. Only for the smallest basis set the frequencies are further

shifted by up to 7% respect to the SSFC values. The PAFC frequencies are very

similar to both the SSFC or VMFC values.

The differences between the uncorrected and CP-corrected frequencies at a

given geometry are much smaller than the disagreement between the uncorrected and

CP-corrected values calculated on the stationary point of their corresponding PES. In

other words, out of the two factors explained above, the “geometrical” is clearly the

most important. It is worth to note that, in general, the addition of the second

derivatives of the BSSE term to the supermolecule derivatives shifts the frequencies

in the opposite direction. For instance, the uncorrected 6-31G(d, p) low frequencies
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decrease when computed on the CP-corrected PES minima, but tend to increase when

computed from the CP-corrected second derivatives. However, the opposite trend is

observed for the Sadlej basis set.

The effect on the ZPVE correction can be explained also in the basis of this

opposite effect. For the small basis sets, the ZPVE decreases when computed at the

CP-corrected PES but then increases after inclusion of BSSE-term’s second

derivatives. The opposite occurs for the Sadlej basis set, which shows the largest

effect in the ZPVE correction. In this case, the uncorrected ZPVE correction of 5.72

kcal/mol decreases to 4.84 when computed on the VMFC PES and further reduces to

4.54Kcal/mol.

In most of the last papers devoted to the study of the cyclic HF trimer, the BSSE

correction is not considered at all, and even criticized159. For instance, Tschumper et

al.160a carried out high level CCSD(T) ab initio calculations of the cyclic trimer and

compare them with the results obtained by using a empirically refined SC-

2.9+HF3BG potential from Quack and Suhm162. Their binding energies, ZPVE

correction and red shifts of the HF stretching frequency were systematically larger

than the ones obtained with the accurate potential. In our opinion this is probably due

because the authors neglect the effect of the BSSE. Our best CP-corrected results

obtained with the Sadlej basis set provide lower binding energies but closer to the

ones obtained with the SC-2.9+HF3BG potential after inclusion of the ZPVE

correction. Furthermore, the predicted redshift of the HF stretching frequency (249cm-

1) agrees with the experimental (249cm-1) and the one obtained with the potential

(250cm-1) of Quack and Suhm. Even though this perfect agreement can be considered

fortuitous, since our reported redshift does not include anharmonicity corrections, the

BSSE correction seems essential for this basis set in order to obtain accurate results.

Recently, Liedl159 studied the concerted hydrogen exchange process of the HF

trimer at the MP2/aug-cc-pVXZ, X=2,4. He found that the uncorrected energies for

the C3h and D3h structures were less dependent on the basis set than the counterpoise-

corrected ones. He claimed the counterpoise-corrected results were useless and

particularly the CP-corrected interaction energies, that is without the monomer

                                                
162 M. A. Quack, M. A. Suhm, (unpublished)
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relaxation contribution. Actually, his results show that the uncorrected MP2/aug-cc-

pVDZ energies are closer to the ones obtained with the larger basis set, but there is no

monotonic trend in the uncorrected values to properly extrapolate to the basis set

limit. For both the minimum and the TS, the MP2/aug-cc-pVTZ values are higher

than the MP2/aug-cc-pVDZ but lower than the MP2/aug-cc-pVQZ ones. His

estimated CBS values are, therefore, completely arbitrary. It is true that the CP-

corrected MP2/aug-cc-pVDZ interaction energies are too low compared with the

respective values obtained with larger basis sets, but in this case the energies

monotonically decrease and a proper extrapolation can be carried out.

Even though the CP-corrected values might be further from the extrapolated or

experimental results than the respective uncorrected ones, they still represent a better

description of the properties of the system. For instance, reported barriers for the

hydrogen exchange for the aug-cc-pVXZ, X=2,4 series are 20.17, 17.89 and

18.61kcal/mol, 23.83, 20.48 and 20.21kcal/mol for the uncorrected and the CP-

corrected values, respectively. The best estimate of this barrier using explicitly

correlated coupled cluster calculations is 20.33 kcal/mol. It is evident that the CP-

correction is absolutely necessary to obtain accurate CBS results for this process.

Another effect that was not taken into account was the use of CP-corrected

optimizations, that is, only single-point BSSE corrections were performed. Even

though it has been shown that the effect on the geometries can be very important, we

have observed that these differences are much lower for aug-cc-pVDZ basis set than

for other basis sets of comparable size (see  Section II.1.1.1.d). In this particular case,

the stabilization energy for the C3h structure computed on the CP-corrected stationary

point is -13.30kcal/mol, only 0.16kcal/mol lower than the single-point CP-corrected

one.

Finally, the usefulness of the CP-corrected interaction energy without fragment

relaxation can not be questioned by direct comparison with the uncorrected, fully

optimized, stabilization energies. This is obvious for the D3h structure where the

fragment relaxation energies (~60kcal/mol) are thirty times larger than the

stabilization energy itself.

II.1.4.1.b (HF)n linear
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The zig-zag linear arrangement of both the trimer and tetramer HF clusters have

been studied also at the same level of theory. The results obtained for the uncorrected

and the CP-corrected geometry optimizations are shown in Table L and LI for the

trimer and tetramer, respectively. The defined geometrical parameters are depicted in

the SCHEME 21. In the later case, only the SSFC method was used for the corrected

optimization, since including the second-order CP or full VMFC corrections involves

33 and 65 gradient calculations, respectively.

F
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H

H
F

H

H
α

β1

r1

R1

1

R2

r2

α2

β2 r3

r4
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SCHEME 21: Geometrical parameters of the zig-zag linear hydrogen fluoride trimer and

tetramer

Similar trends to the cyclic clusters are observed. Upon CP correction,

intermolecular distances increase while intramolecular HF bonds shorten, leading to a

weaker interaction. The differences between the uncorrected and CP-corrected

parameters are of the same order that for the cyclic complexes, except for the

intermolecular bond angles. In this case, the 6-31G(d, p) basis set poorly describes the

anisotropy of the interaction. Intermolecular bond angles α1 and α2 are overestimated

whereas β1 and β2 are clearly underestimated by up to 20 degrees. This is not

surprising since the uncorrected geometry optimization at this level of theory for the

hydrogen fluoride dimer leads to a spurious cyclic structure. The corresponding CP-

corrected optimizations, however, overcome this problem. Indeed, the CP-corrected

angular parameters are in good agreement with the ones obtained using more flexible

basis sets. Again, the effect of BSSE is minimized by adding diffuse functions.

Discrepancies between uncorrected and CP-corrected values are less than 1 degree for

the angles and 0.06Å for intermolecular distances.
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TABLE L
Geometrical parameters (Å, degrees), total (a.u.) and stabilization energies
(kcal/mol),and BSSE corrections (kcal/mol) (single-point BSSE in parenthesis) for the
linear HF trimer in several basis sets and counterpoise methods. See SCHEME 21 for
the definition of the geometrical parameters.

Uncorrected SSFC PAFC VMFC
MP2/6-31G(d,p)

r1 0.9293 0.9277 0.9277 0.9275
r2 0.9356 0.9310 0.9311 0.9303
r3 0.9266 0.9246 0.9246 0.9244
R1 2.647 2.752 2.754 2.755
R2 2.630 2.722 2.727 2.733
α1 8.98 2.87 2.94 3.05
β1 98.80 118.7 118.8 119.2
α2 5.24 3.22 2.85 3.48
β2 108.6 121.2 121.7 121.0

Energy -300.6104703 -300.60154618 -300.6015036 -300.6011282
∆E -16.66 -11.06 -11.04 -10.80

BSSE 5.60 (6.41) 5.63 (6.47) 5.86 (6.71)
MP2/6-31G++(d,p)

r1 0.9342 0.9331 0.9331 0.9331
r2 0.9377 0.9361 0.9360 0.9361
r3 0.9303 0.9298 0.9298 0.9299
R1 2.728 2.789 2.789 2.787
R2 2.700 2.762 2.764 2.760
α1 3.16 3.16 3.28 3.20
β1 119.31 119.1 119.1 119.4
α2 3.65 4.05 3.80 3.92
β2 121.2 121.0 121.5 121.9

Energy -300.6658512 -300.66329844 -300.6632270 -300.66335745
∆E -11.35 -9.75 -9.71 -9.79

BSSE 1.60 (1.70) 1.65 (1.75) 1.56 (1.66)

MP2/Sadlej

r1 0.9361 0.9346 0.9344 0.9346
r2 0.9398 0.9378 0.9374 0.9379
r3 0.9312 0.9306 0.9305 0.9306
R1 2.616 2.749 2.759 2.749
R2 2.596 2.722 2.734 2.722
α1 2.62 2.90 2.90 2.91
β1 110.8 114.7 115.9 114.7
α2 2.72 3.40 4.45 3.39
β2 114.7 117.0 117.2 117.2

Energy -300.8323145 -300.8205844 -300.8201539 -300.8205622
∆E -17.10 -9.73 -9.46 -9.72

BSSE 7.36 (7.93) 7.63 (8.32) 7.37 (7.95)
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The Sadlej basis set bears the largest BSSE. However, whereas the

intermolecular distances are underestimated by more than 0.12Å without CP-

correction, the angular features of the complex are well described even at the

uncorrected level.

Regarding the CP-corrected stabilization energies, the linear structures are about

4kcal/mol and 8Kcal/mol less stable compared to the cyclic trimer and tetramer,

respectively. The BSSE correction in the trimer ranges from 1.6 and 2.76kcal/mol for

the 6-31G(d, p) basis set to 7.95 and 12.31kcal/mol for the Sadlej basis set for the

trimer and the tetramer complexes, respectively. The dependence of the BSSE

correction to the energy on the geometry seems to be less important than for the cyclic

case. However, the BSSE can still be overestimated by up to 1kcal/mol (depending on

the basis set) when computed the uncorrected geometry. The cooperative effects are

obviously less important than in the cyclic structures. However, the inclusion another

HF unit to the linear trimer still enhances the stabilization energy per hydrogen bond

by ca. 0.5Kcal/mol

The performance of the two first-order CP methods, i.e. SSFC and PAFC, is

similar. Both methods modify the values of the geometrical parameters in the same

direction, even though the PAFC method seems to overcorrect the BSSE when using

larger basis sets.

Our results show again that the differences between the SSFC and VMFC

approaches are only appreciable when using small basis sets. The inclusion of second-

order CP terms for the 6-31G(d, p) basis set increases the intermolecular distances and

angles by up to 0.01Å and 0.5 degrees, whereas the stabilization energy is lowered by

0.26Kcal/mol. The effect of this term in the other basis sets is negligible.

Nevertheless, it is worth to note that in the case of the 6-31++G(d, p) basis set,

analogously to the situation in the cyclic structure, the sign of the correction is the

opposite, i.e. the stabilization energy  increases upon correction.

The inclusion of high-order CP-correction terms was computationally feasible

only for the trimer, therefore only the SSFC method was used to compute the CP-

corrected geometry of the linear tetramer. Nevertheless, we performed a single-point

second-order CP-correction at the SSFC corrected geometry with the 6-31G(d, p)

basis set, in order to estimate the effect of BSSE on the stabilization energy. The

BSSE increased by 0.64Kcal/mol upon correction. The final stabilization energy of
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17.59 Kcal/mol is closer to the ones obtained with larger basis sets.

TABLE LI
Uncorrected and SSFC-corrected Geometrical parameters (Å, degrees), total (a.u.)
and stabilization energies (kcal/mol),and BSSE corrections (kcal/mol) (single-point
BSSE in parenthesis) for the linear HF tetramer in several basis sets. See SCHEME
21 for the definition of the geometrical parameters.

MP2/6-31G(d,p) MP2/6-31++G(d,p) MP2/Sadlej

UNCORRECTED
r1 0.9307 0.9355 0.9376
r2 0.9400 0.9416 0.9442
r3 0.9379 0.9398 0.9422
r4 0.9271 0.9308 0.9318
R1 2.643 2.706 2.602
R2 2.575 2.639 2.550
R3 2.607 2.674 2.575
α1 6.85 2.40 2.17
β1 100.8 119.3 110.7
α2 2.15 1.16 1.22
β2 111.1 122.1 115.0
α3 4.04 2.72 2.31
β3 110.5 122.4 115.6

Energy -400.82141532 -400.8932367 -401.1172646
∆E -26.89 -18.55 -27.50

SSFC
r1 0.9287 0.9341 0.9358
r2 0.9344 0.9391 0.9413
r3 0.9331 0.9378 0.9399
r4 0.9251 0.9303 0.9311
R1 2.731 2.767 2.727
R2 2.660 2.699 2.662
R3 2.695 2.735 2.695
α1 2.2 2.44 2.13
β1 118.5 118.9 115.0
α2 1.0 1.37 1.11
β2 121.8 121.9 118.3
α3 2.4 3.03 2.50
β3 122.1 122.3 118.3

Energy -400.80761515 -400.8890763 -401.098932
∆E -18.23 -15.94 -16.00

BSSE 8.66 (9.69) 2.61 (2.76) 11.50 (12.31)

As pointed out recently by Rincón et al.158, the open chain structures for the HF

trimer and tetramer are first-order saddle points connecting two equivalent cyclic

configurations. Our results are consistent with their findings in all the cases. The CP-
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correction does not change the topology of the PES in any case, not even for the 6-

31G(d, p) basis set, where the effect on the geometry was very large.

In short, it has been shown that the effect of the second and third-order basis set

extensions is negligible for these systems, although they are still considerable when

using small basis sets. The use of diffuse functions is essential for the saturation of the

high-order BSSE.

The PAFC results obtained with small basis set tend to the VMFC values.

However, with larger basis sets it clearly overestimates the BSSE and large

differences with respect to the other counterpoise methods are observed. Therefore, in

our opinion it does not represent valid correction scheme.

The medium polarized basis set used bears large BSSE, but the results obtained

are very accurate compared to other empirical potential or high level ab initio

calculations, provided that the CP-corrected PES is used. For this basis set, the high-

order BSSE effects are almost negligible even though the first-order BSSE correction

is ca. the 70-80% of the stabilization energy.

II.1.4.1.c Symmetry-Adapted Perturbation Theory results.

The differences between the geometries of corrected and uncorrected surfaces

can be further emphasized by dissecting the interaction energy terms into perturbative

components obtained from the symmetry-adapted perturbation theory (SAPT).  These

corrections are free from BSSE and, as shown by Cybulski and Chalasinski, their sum

converges asymptotically to the BSSE-corrected supermolecular terms. The

supermolecular SCF interaction energy,  ∆E int
SCF , may be divided into the Heitler-

London interaction energy, ∆EHL and the SCF deformation part,    ∆E def
SCF .  The former

originates from the unperturbed monomer wavefunctions and can be further divided

into its electrostatic and exchange components (see Table LII).  The latter involves

effects of electronic polarization, which is restrained by the exchange effects. Its

exchangeless contributions can be represented by the sum of the SAPT induction

corrections    ε ind,r
(n0) . Out of these terms only the electrostatic term is additive; the

remaining ones contribute three-body components.
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TABLE LII.
Description of SAPT corrections ε(ij) (where i and j correspond to the interaction and
the intramonomer correlation operators, respectively) which are implicitly present in
the two- and three-body supermolecular Møller-Plesset interaction energy terms ∆Eint
at the SCF level and in the second order.

Supermolecular    SAPT Physical interpretation
Møller-Plesset
_____________________________________________________________________

Two-body
_____________________________________________________________________

  ∆E int
SCF

    εes
(10)

Electrostatic energy between SCF monomers
  εexch

HL
Heitler-London exchange effect between SCF monomers

 ∆E def
SCF

SCF-deformation energy =Induction effect restrained by

exchange (includes    εind,r
(20)

,    εind,r
(30)

 etc.)

   εind,r
(20)

2nd-order induction energy with response effects
  εind,r

(30)
3rd-order induction energy with response effects

   ∆E int
(2)   εdisp

(20)

2nd-order dispersion energy between SCF monomers.

_____________________________________________________________________
Three-body

_____________________________________________________________________
  ∆E int

SCF
  εexch

HL
Heitler-London exchange nonadditivity

 ∆E def
SCF

SCF-deformation nonadditivity (includes   εind,r
(20)

,    εind,r
(30)

, etc.)
  εind,r

(20)
2nd-order induction nonadditivity with response effects

  εind,r
(30)

3rd-order induction nonadditivity with response effects

   ∆E int
(2)

   ∆E int
(3)   εdisp

(30)

3rd-order dispersion nonadditivity

In the second-order of Møller-Plesset theory, one of the dominating SAPT

terms is the second order dispersion term   εdisp
(20) .  This term is additive and thus only

contribute the two-body components.  The first dispersion nonadditivity appears in the

third order of perturbation theory as the  ε disp
(30)

 term.  This term usually dominates the

nonadditivity of the    ∆E int
(3)

 supermolecular Møller-Plesset term.  The physical sense of

the SAPT corrections considered in this work, and their correspondence to the
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supermolecular Møller-Plesset terms are summarized in Table LVII.

TABLE LIII
Energetic SAPT contributions (kcal/mol) to the interaction energy for the cyclic and
linear HF trimer with the 6-31G(d, p) basis set at the uncorrected and VMFC-corrected
geometries. The difference between the corrected and uncorrected values and its
percentage with respect to the total corrected stabilization energy is also reported.

CYCLIC 6-31G(d, p) unc 6-31G(d, p) ∆∆∆∆corr.-unc. %total
   ε ind,r

(20) (2-body) -17.55 -9.08 8.47 58.1
   ε ind,r

(20) (3-body) -1.87 -1.35 0.52 3.5
   ε ind,r

(30) (2-body) -0.29 -0.17 0.12 0.8
   ε ind,r

(30) (3-body) -0.62 -0.35 0.26 1.8
   εdisp

(20) (2-body) -5.84 -3.57 2.27 15.5
   εdisp

(30) (3-body) 0.00 0.00 0.00 0.0
   εes

(10) -35.86 -26.47 9.39 64.4
  εexch

HL 36.55 19.40 -17.15 117.7
  εexch

HL  (3-body) -0.51 -0.22 0.30 2.0
  ∆E HL 0.69 -7.07 -7.76 53.2
  ∆E def

SCF -11.22 -5.89 5.33 36.5
  ∆E int

SCF -10.53 -12.96 -2.44 16.7
  ∆E int

SCF  (3-body) -4.59 -2.48 2.10 14.4
   ∆E int

(2) -2.83 -1.61 1.23 8.4
   ∆E int

MP2 -15.49 -15.70 0.21 1.4

rel∆E 0.97 0.41 -0.56 3.8
   ∆E int

MP2  (3-body) -4.86 -2.63 2.23 15.3
LINEAR 6-31G(d, p)unc 6-31G(d, p) ∆∆∆∆corr.-unc. %total

   ε ind,r
(20) (2-body) -8.38 -5.32 3.06 28.4

   ε ind,r
(20) (3-body) -0.31 -0.38 -0.07 0.6

   ε ind,r
(30) (2-body) -0.13 -0.10 0.04 0.3

   ε ind,r
(30) (3-body) -0.16 -0.13 0.03 0.3

   εdisp
(20) (2-body) -3.03 -2.18 0.85 7.9

   εdisp
(30) (3-body) 0.00 0.00 0.00 0.0

   εes
(10) -20.58 -17.10 3.48 32.2

  εexch
HL 17.49 10.95 -6.54 60.5

  εexch
HL  (3-body) -0.16 -0.10 0.06 0.6
  ∆E HL -3.09 -6.15 -3.05 28.3
  ∆E def

SCF -5.62 -3.99 1.63 15.1
  ∆E int

SCF -8.71 -10.14 -1.43 13.2
  ∆E int

SCF  (3-body) -1.09 -0.88 0.21 1.93
   ∆E int

(2) -1.24 -0.66 0.58 5.3
   ∆E int

MP2 -10.47 -11.14 0.67 6.2

rel∆E 0.22 0.08 -0.14 1.3
   ∆E int

MP2  (3-body) -1.14 -0.91 0.23 2.13
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The SAPT contributions were calculated for the cyclic and linear trimer at

three basis sets.  The calculations were carried out at uncorrected and VMFC-

corrected minima of the trimers and the results are shown in Tables LIII-LV. As a

trimer of highly polar molecules, (HF)3 is dominated, at the level of two-body

interactions, by the electrostatic attraction.  These effects are counterbalanced, to a

certain degree, by the repulsive exchange effects.  The two-body induction effects are

also important in view of the fact that HF has a considerable dipole moment and an

appreciable polarizability.  The two-body dispersion interaction is the third in

importance.  At the level of three-body interactions the bulk of nonadditive interaction

originates from the SCF-deformation term.  The exchange nonadditivity is quite small

while the three-body dispersion is nearly zero. The cyclic configuration is stabilized

over the linear one at the level of two body interactions, because of more favorable

electrostatic and induction effects in the cyclic arrangement.  The three-body terms

also favor the cyclic structure.

TABLE LIV
Energetic SAPT contributions (kcal/mol) to the interaction energy for the cyclic and
linear HF trimer with the 6-31++G(d, p) basis set at the uncorrected and VMFC-corrected
geometries.

CYCLIC 6-31++G(d,p)unc 6-31++G(d, p) ∆∆∆∆corr.-unc. %total
   ε ind,r

(20) (2-body) -9.69 -7.78 1.91 14.3
   ε ind,r

(20) (3-body) -1.38 -1.22 0.15 1.1
   ε ind,r

(30) (2-body) -0.15 -0.13 0.02 0.1
   ε ind,r

(30) (3-body) -0.35 -0.29 0.06 0.4
   εdisp

(20) (2-body) -4.07 -3.47 0.60 4.5
   εdisp

(30) (3-body) 0.00 0.00 0.00 0.0
   εes

(10) -24.97 -22.60 2.37 17.8
  εexch

HL 20.02 16.07 -3.96 29.8
  εexch

HL  (3-body) -0.23 -0.17 0.06 0.4
  ∆E HL -4.95 -6.54 -1.59 11.9
  ∆E def

SCF -6.82 -5.50 1.32 9.9
  ∆E int

SCF -11.77 -12.04 -0.27 2.0
  ∆E int

SCF  (3-body) -2.55 -2.10 0.45 3.3
   ∆E int

(2) -1.40 -1.23 0.17 1.2
   ∆E int

MP2 -13.61 -13.59 0.02 0.2

rel∆E 0.42 0.32 -0.10 0.8
   ∆E int

MP2  (3-body) -2.66 -2.20 0.47 3.5
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TABLE LIV (cont.)
Energetic SAPT contributions (kcal/mol) to the interaction energy for the cyclic and
linear HF trimer with the 6-31++G(d, p) basis set at the uncorrected and VMFC-corrected
geometries.
LINEAR 6-31++G(d,p)unc 6-31++G(d, p) ∆∆∆∆corr.-unc. %total

   ε ind,r
(20) (2-body) -6.27 -4.96 1.31 13.4

   ε ind,r
(20) (3-body) -0.36 -0.34 0.02 0.2

   ε ind,r
(30) (2-body) -0.10 -0.09 0.01 0.1

   ε ind,r
(30) (3-body) -0.15 -0.12 0.03 0.3

   εdisp
(20) (2-body) -2.62 -2.21 0.41 4.2

   εdisp
(30) (3-body) 0.00 0.00 0.00 0.0

   εes
(10) -16.25 -14.79 1.47 15.0

  εexch
HL 11.93 9.32 -2.61 26.7

  εexch
HL  (3-body) -0.13 -0.10 0.03 0.3
  ∆E HL -4.32 -5.47 -1.15 11.7
  ∆E def

SCF -4.81 -3.91 0.90 9.2
  ∆E int

SCF -9.13 -9.37 -0.25 2.5
  ∆E int

SCF  (3-body) -0.95 -0.78 0.16 1.6
   ∆E int

(2) -0.57 -0.42 0.16 1.6
   ∆E int

MP2 -9.79 -9.84 -0.05 0.5

rel∆E 0.13 0.09 -0.04 0.4
   ∆E int

MP2  (3-body) -0.98 -0.81 0.17 1.72

The calculations carried out in three different basis sets give insights into the

basis-set dependence of the SAPT terms.  In the 6-31G(d,p) basis set the electrostatic

effects are overestimated and the two-body dispersion contributions are

underestimated.  The 6-31++G(d,p) leads to the improvement in the electrostatic

interaction.  Only in the Sadlej basis set, however, all terms, including dispersion

energy, become correctly represented.

Calculations of SAPT terms at two different geometries, one uncorrected and a

counterpoise-corrected (at the VMFC level) are displayed in Tables LIII-LV. In the 6-

31G(d,p) basis set the evaluation of SAPT terms at the uncorrected minimum

geometry leads to large discrepancies in SAPT terms resulting in considerable per

cent errors in the electrostatic, exchange, and induction terms.  For example, in the

cyclic configuration, the errors in these terms range from 50% to over 100%.  These

errors are reduced in the 6-31++G(d,p) basis set to 15-30%.
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TABLE LV
Energetic SAPT contributions (kcal/mol) for the cyclic and linear HF trimer with the
Sadlej basis set

CYCLIC Sadlej unc. Sadlej corr. ∆∆∆∆corr.-unc. %total
   ε ind,r

(20) (2-body) -19.22 -10.23 9.00 64.6
   ε ind,r

(20) (3-body) -2.13 -1.52 0.61 4.3
   ε ind,r

(30) (2-body) -0.23 -0.17 0.06 0.4
   ε ind,r

(30) (3-body) -0.58 -0.37 0.20 1.4
   εdisp

(20) (2-body) -8.64 -5.82 2.82 20.2
   εdisp

(30) (3-body) 0.04 0.02 -0.02 0.1
   εes

(10) -31.79 -23.23 8.56 61.4
  εexch

HL 37.50 20.12 -17.37 124.8
  εexch

HL  (3-body) -0.49 -0.20 0.29 2.0
  ∆E HL 5.71 -3.11 -8.82 63.3
  ∆E def

SCF -13.09 -7.66 5.44 39.0
  ∆E int

SCF -7.38 -10.77 -3.38 24.3
  ∆E int

SCF  (3-body) -4.92 -2.78 2.14 15.3
   ∆E int

(2) -5.46 -3.15 2.30 16.5
   ∆E int

MP2 -13.86 -14.54 -0.68 4.9

rel∆E 0.93 0.53 -0.40 2.9
   ∆E int

MP2  (3-body) -5.10 -2.91 2.19 15.7
LINEAR Sadlejunc Sadlejcorr. ∆corr.-unc. %total

   ε ind,r
(20) (2-body) -10.03 -5.98 4.05 41.7

   ε ind,r
(20) (3-body) -0.36 -0.33 0.02 0.2

   ε ind,r
(30) (2-body) -0.13 -0.11 0.02 0.2

   ε ind,r
(30) (3-body) -0.22 -0.15 0.07 0.7

   εdisp
(20) (2-body) -4.76 -3.42 1.35 13.8

   εdisp
(30) (3-body) 0.00 0.00 0.00 0.0

   εes
(10) -18.70 -14.68 4.02 41.4

  εexch
HL 18.99 11.04 -7.95 81.8

  εexch
HL  (3-body) -0.19 -0.11 0.08 0.8
  ∆E HL 0.30 -3.64 -3.93 40.5
  ∆E def

SCF -8.96 -4.78 4.18 43.0
  ∆E int

SCF -8.67 -8.41 0.25 2.6
  ∆E int

SCF  (3-body) -1.27 -0.86 0.41 4.2
   ∆E int

(2) -0.48 -1.31 -0.82 8.4
   ∆E int

MP2 -9.34 -9.84 -0.50 5.1

rel∆E 0.17 0.10 -0.07 0.7
   ∆E int

MP2  (3-body) -1.30 -0.89 0.41 4.3

The results obtained in Sadlej basis set also indicate large discrepancies in

SAPT terms derived using these two geometries.  Although, this basis set produces
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reliable values of SAPT terms, it also generates large values of BSSE which results in

large distortions of geometrical parameters.  It is worth noting that because of this

difference in geometry it is possible to obtain a false picture of the interaction energy

composition if the calculations are done for the uncorrected minimum.  For example,

in Sadlej basis set the Heitler-London interaction energy, ∆EHL is negative (-3.11

kcal/mol) in the VMFC-corrected minimum whereas in the uncorrected minimum it

has a repulsive (5.71 kcal/mol) value for the cyclic configuration.  A similar sign

reversal of ∆EHL also takes place in the linear configuration.

In short, the presented SAPT results show that already at the level of two-body

interactions the cyclic configuration is stabilized over the linear one.  The three-body

terms also favor the cyclic structure. The large differences between the results

obtained at the uncorrected and counterpoise-corrected geometries underscore the

need for performing the analysis of the interaction energy at the counterpoise-

corrected minimum geometries.
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II.2 Methodologic Developments

k and l ∈ AIntermolecular
 [ij|kl]

Conventional
 treatment BSSE integral

 Discardedi and j ∈ A

Intramolecular
integral 

CHA procedure

For each integral [ij|kl]

Y

N

Y

N

Using B to add 
the contributions 

to Xαβ 

Using P to add 
the contributions 

to Gαβ 

GCHA = GCHA + X

Done for 
all [ij|kl]N

Y

Fragment specification and Number of fragments

Reading molecular basis set.
Setting inactive all atoms
except ith monomer.

Supermolecule calculation.
Saving basis set and MO’s.

ith monomer  Full-basis calculation.
Saving MO’s. Saving energy and
gradients. Restoring atom flags. If i≠1
restore MO’s from previous calculation

I  ≥ N ?

Y

N

Setting inactive all atoms
except ith monomer.Building
basis set.

ith monomer  MCBS calculation. Saving
MO’s. Saving energy and gradients.
Restoring atom flags. If i≠1 restore MO’s
from previous calculation

I  ≥ N ?

Y

N

Restore all 2N+1 energy and gradients.
Calculate cartesian corrected gradient,
dipole moment, molecular energy  and
BSSE.

Converged? Y

N

Print optimized
geometry. Restore
all 2N+1 energy and
gradients. Calculate
cartesian corrected
gradient, dipole
moment, molecular
energy  and BSSE.

Save restart
information in
checkpoint
file. Reorient
molecule
coordinates
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II.2.1 The application of the counterpoise method in order to obtain

corrected  molecular energies, gradients and vibrational frequencies.

II.2.1.1 Implementation into Gaussian98 Rev A10 (and further).

The counterpoise-procedure has been implemented into the Gaussian 98

package, in order to automatically carry out single-point, geometry optimizations,

vibrational frequency and even third order derivatives (were available) calculations at

any level of theory including the counterpoise correction. This work has been carried

out in collaboration with Prof. J. J. Dannenberg from the City University of New

York, and Dr. Mike Frisch, President of Gaussian Inc.

The main goal was to  provide the scientific community with an easy and simple

tool to perform CP-corrected geometry optimizations, where the BSSE may cause

major errors when unbalanced basis sets are used. The first operative version of the cp

program was already given to several research groups that were interested in taking

BSSE into account not only as a single-point correction. This program was designed

to drive Gaussian in order to automatically perform counterpoise-corrected single-

point, geometry optimizations and vibrational frequency calculations. However, due

to some restrictions in Gaussian and also some bugs on the code (already fixed in the

Rev A10), some Gaussian links had to be modified and recompiled in order to

properly run the program. The reduced number of geometry optimization methods and

options prevented the use of the program for location of transitions states or carry out

Intrinsic Reaction Coordinate (IRC) calculations. Due to the increasing interest of the

intermolecular interactions research groups on a efficient tools for taking BSSE into

account, the generalized counterpoise method was implemented into Gaussian in such

a way that most of the options of the program can be applied in conjunction with the

counterpoise calculation.

Briefly, a new link (l122) on Overlay 1 was created. It is used to control the

type of calculation (single-point, gradient, second derivative), the number of

fragments and which particular fragment (or supermolecule) calculation is going to be

computed next. The only keyword necessary in the Route section is
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counterpoise=N

where N holds for the total (integer) number of fragments composing the

complex. Its value is limited to fifty fragments.

Obviously, one must assign each atom of the complex to the corresponding

single fragment. Any dummy atom should not be assigned to any fragment. It is

possible also for one (or more) atoms not to be assigned to any fragment. In this way,

bond functions can be defined as single, dummy, fragments with no electrons

assigned to. Proton transfer reactions can eventually be studied also by assigning the

transferred proton to a dummy fragment without electrons, as shown in  Section

II.1.1.4.

Therefore, in order to specify the fragments, the input file also requires an

additional integer to be placed at the end of each atom specification indicating which

fragment/monomer it is part of.

Here are examples using a Z-matrix (left) and Cartesian coordinates (right):

# MP2/6-31G Counterpoise=2 Opt

Counterpoise with Z-matrix

0,1,0,3,1,2
O,0.0,0.0,0.0,1
O,1,ROO,2
H,1,RO1H,3,HOX3,2,90.,0,1
H,1,RO1H,3,HOX3,2,-90.,0,1
X,2,1.,1,52.5,3,180.,0
H,2,RO2H1,6,H7OX,1,180.,0,2
H,2,RO2H2,6,H8OX,1,0.,0,2

# MP2/6-31G Counterpoise=2 Opt

 Counterpoise with Cartesians

 0,1
 1  0.00  0.00  0.92  1
 9  0.17  0.00  2.73  2
 9  0.00  0.00  0.00  1

Note that the Z-matrix input requires a 0 after the dihedral angle value/variable

(to indicate that the final angle is a dihedral) prior to the fragment number. Also, the

first atom in the Z-matrix must be given in Cartesian coordinates. Clearly, using

Cartesian coordinates for such jobs makes specifying fragment numbers in the input

much more straightforward. The preceding Z-matrix also illustrates the use of

fragment-specific charge and spin multiplicity specifications. The format of the

corresponding input line in this case is:
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molecule-charge, molecule-spin multiplicity, frag.1-charge, frag.1 multiplicity,

frag. 2 charge, frag. 2 multiplicity,....

Note that if all the fragments present the same charge and multiplicity than that

of the molecular complex, the specification of all the monomer charge and

multiplicities is no longer necessary.

Practically, a gradient optimization is carried out as follows:

Fragment specification and Number of fragments

Reading molecular basis set.
Setting inactive all atoms
except ith monomer.

Supermolecule calculation.
Saving basis set and MO’s.

ith monomer  Full-basis calculation.
Saving MO’s. Saving energy and
gradients. Restoring atom flags. If i≠1
restore MO’s from previous calculation

I  ≥ N ?

Y

N

Setting inactive all atoms
except ith monomer.Building
basis set.

ith monomer  MCBS calculation. Saving
MO’s. Saving energy and gradients.
Restoring atom flags. If i≠1 restore MO’s
from previous calculation

I  ≥ N ?

Y

N

Restore all 2N+1 energy and gradients.
Calculate cartesian corrected gradient,
dipole moment, molecular energy  and
BSSE.

Converged? Y

N

Print optimized
geometry. Restore
all 2N+1 energy and
gradients. Calculate
cartesian corrected
gradient, dipole
moment, molecular
energy  and BSSE.

Save restart
information in
checkpoint
file. Reorient
molecule
coordinates
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The current implementation presents some limitations:

a) No ECP pseudopotentials or general basis set can be used.

b) If an atom is not assigned to any fragment, only cartesian coordinates optimization

can be performed.

c) In general, the use of molecular symmetry messes up the calculation, unless the

symmetry of the monomers is equal or higher of the whole molecule.

d) The molecular symmetry can not be used to save monomer calculations in

symmetric clusters.

e) No particular options for each of the 2N+1 can be given, unless specified using a

non-standard route.

With the last implementation of the CP program, all these drawbacks are

overcome, as will be discussed in the next section. The molecular symmetry can be

handled and used to save fragment calculations. Moreover, different function

counterpoise are implemented for the study of molecular clusters. The structure of the

program also allows for the definition of user-defined BSSE corrections by linear

combination of fragment calculations.

Only using the CP program, the analysis of BSSE in hydrogen fluoride clusters

presented in the  Section II.1.4 could be performed.

Next, a short manual of the CP program is attached.
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II.2.1.2 Manual of the CP program.

CP-DRIVER MANUAL

Pedro Salvador

Dept. of Chemistry, Oakland University, Rochester, Michigan, US

Institute of Computational Chemistry, University of Girona, Spain

CONTENTS:

1-SETTING UP

2- COUNTERPOISE CORRECTION METHODS

3-FILES

4-INPUT FILE DESCRIPTION

5-GEOMETRY OPTIMIZATIONS

6-FREQUENCY CALCULATION

7-SAMPLE INPUT FILES
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1-SETTING UP

The CP program automatically calls Gaussian94/98 in order to perform either energy,

gradient optimizations or frequency corrected for Basis Set Superposition Error. Three

methods can be used automatically to correct for BSSE. Moreover, the user can define

which fragment calculations are necessary in each case in terms of the fragment

symmetry of the supermolecule or any further approximation.

In order to carry on geometry optimizations with high accuracy, link l103 of Gaussian

must be slightly modified to output (to the file fort.99) the gradient vector with full

precision.

The modification consists in adding the following lines in subroutine GrdOpt,

Open(unit=99,status='unknown',form='unformatted')

Rewind 99

Write(99) Nvar

Write(99) (aprint(2,iii),iii=1,Nvar)

Close (99)

after the line:

515 Continue

A bug in link l301 (Massge subroutine) must be fixed too. The massage of an atom

located in the z-matrix just before a dummy atom induces to an error that stops the

gradient calculation. To fix the bug substitute the following lines
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Do 210 J = 1, NZ

If(IAnZ(J).ge.0) I = I + 1

 If(I.eq.ICntr) IAnZ(J) = IAn(ICntr)

  210   Continue

by

Do 210 J = 1, NZ

 If(IAnZ(J).ge.0) I = I + 1

If(I.eq.ICntr) then

   IAnZ(J) = IAn(ICntr)

          goto 213

       endif

 210   Continue

Continue

(Note that in Gaussian98 label 210 is changed to 20)

To create the new l103.exe and l301.exe files, first rename the original l103.exe and

l301.exe , use the update utility of Gaussian from the $g9*root/g9* directory,

mg l103.exe

mg l301.exe

then move the new l103.exe and l301.exe files to the desired directory and finally

restore the original l103.exe and l301.exe files.

The new links must be used for the CP-corrected geometry optimizations, hence,

before the route card of the Gaussian calculation the following lines must be included:

% subst l301 /home/usr/CP

% subst l103 /home/usr/CP

where /home/usr/CP is, in this case, the full path of the directory where the l301.exe

and l103.exe files are placed
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2-COUNTERPOISE-CORRECTION METHODS

The following counterpoise methods have been implemented in this version:

Site-Site CP method:

The BSSE is defined as the difference between the energy (gradient) of each fragment

with its own basis set and the basis set of the whole molecule, and summed up to the

uncorrected supermolecule respective values.

Pairwise Aditive CP method:

In this case, the BSSE is defined as the difference, for all pairwise interactions,

between the energy (gradient) of each fragment with its own basis set and the basis set

of each dimer in the supermolecule geometry. Again, the resulting energy(gradient) is

summed up to the uncorrected supermolecule respective values.

Hierarchical CP method:

The BSSE is split in one ,two-body, three-body etc… contributions to the

supermolecule energy. The number of calculations increases dramatically with the

number of fragments. Note that 17 calculations are needed for a three-body

calculation.

3-FILES

a) cp.f -> Source code of the driver program.

Input file: cp.met

Output files: cp.out, cp.res (info to restart calculation), cpfreq.out 

(only for frequency calculations)

Scratch files: *.in, cp.geo, cp.com, cp.fchk, cpfreq.fchk (only for 

frequency calculations)

Use Fortran77 compiler to create the executable, e.g. cp.x
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b) hess.f -> Program to yield inverse hessian from a Gaussian output file. The matrix

is created in file HESS and can be read by the driver program.

Usage : hess.x < gaussian_file

Use Fortran77 compiler to create the executable, e.g. hess.x

c) glocal.com -> Unix script to invoke Gaussian and formchk Gaussian utility. For

instance:

#!/bin/csh

setenv g98root /usr/soft

 source $g98root/g98/bsd/g98.login

 setenv GAUSS_SCRDIR  /scratch

 g98 < $1.in  > cp.qfi

 formchk $1.chk  cp.fchk

 rm cp.qfi

Note that formchk output MUST be cp.fchk whereas Gaussian output for $1.in

calculation can be overwritten.

d) freqlocal.com -> Unix script to invoke Freqchk Gaussian utility. For instance:

#!/bin/csh

setenv g98root /usr/soft

 source $g98root/g98/bsd/g98.login

freqchk cpfreq.chk <fc.inp> cpfreq.out

Also, input file for freqchk MUST be named cpfreq.chk. File fc.inp is used to include

the desired options for the freqchk utility (temperature, pressure, etc..). For instance
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N                                  (write Hyperchem files?)

0                    (Temperature (K)? [0=>298.15])

0                         (Pressure (Atm)? [0=>1 atm])

1                     (Scale factor for frequencies during 

thermochemistry? [0=>1/1.12])

Y                                      (use default isotopes?)

The cpfreq.fchk Gaussian formatted checkpoint file is obtained from the respective

supermolecule calculation checkpoint file (cp.fchk), where ONLY the second

derivative matrix has been substituted by the CP-corrected one. Hence, one can

further use the freqchk utility to extract the uncorrected frequencies from the cp.fchk

file (at the given geometry).

Files cp.x, glocal.com and freqlocal.com must be in the same directory and this

directory should be included in the user’s PATH, in order to allow user to run the

calculations in another directory.

When executing the driver program several gaussian input files (*.in) will be created,

as well as a the file cp.geo, containing the current geometry.

The cp.res file is either read upon request in cp.met file or created in order to save

information to resume the calculation. Unix script cp.com is also created for each

calculation and called by the previously set glocal.com script.

Note that only one calculation can be performed correctly in a given directory. Use

different directories for simultaneous calculations.

4-INPUT FILE DESCRIPTION

File consists in several sections, each starting with the following set of characters:

# NAME_OF_SECTION #.

Each section will be discussed separately
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A-# METODE # section:

Main section of the input file. Includes several fields in the form:

NAME_OF_FIELD= integer (I) or real (R) numbers

Each field represents either a parameter, like the number of fragments or number of

variables, or a flag to control other options of the program, spefified in the next

sections.

-Input parameters

NFRAG= I, being I the number of fragments of the calculation

NVAR= I, being I the number of variables for the calculation. (up to 100)

-Options for the geometry optimization:

TOL= R, being R the threshold of the RMS of the gradient for the geometry

optimization.

MAXIT= I, being I the maximum number of iterations for the geometry 

optimization

NDIIS= I, being I the maximum dimension of the DIIS subspace for the geometry

optimization (up to 10)

HESS= 1 if file HESS is to be used as starting hessian for the optimization, 0 if no

initial hessian is given (default)

UPDATE= 1 to activate the BFGS method to update the hessian for the optimization,

0 otherwise (default)

HESS= 1 if file HESS is to be used as starting hessian for the optimization, 0 if no

initial hessian is given (default)

-Options for the CP method and fragment definition

BSSE = 0 for the SSCP method, 1 for the hierarchical NBODY method, or 2 for the

PACP method, default 0.

SYM= 1 to use symmetry, included in # SYMMETRY # section (see below), 0

otherwise, default 0

RESTART= 1 to use cp.res file data to resume the calculation, 0 otherwise (cp.res file

will be overwritten), default 0
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SPIN= 0 to use supermolecule charge and multiplicity for all fragments, 1 to use

specific values for each fragment calculation, either in # FRAG # or  # SYMMETRY

# sections (see below). If BSSE=1 then specific charge and multiplicity must be

introduced in # SYMMETRY # section.

-Known problems and restrictions:

Using the hierarchical counterpoise method, the number of fragment calculations

needed increase enormously with the number of fragments. For this reason, automatic

calculations of either energy or geometry optimizations are not allowed if NFRAG >

3 and BSSE=1. However, in this case, if symmetry between the fragments exists, the

calculation can be performed by including in the # SYMMETRY # section the

necessary fragment calculations and their respective scale factors for both energy and

gradient.

B-# GEOM # section:

Enter Z-matrix or Cartesian coordinates in Gaussian format. Dummy atoms can be

used, however BQ should be avoided. For instance,

# GEOM ####

 X

 F1 1 r1

 F2 1 r1  2 120.

 F3 1 r1 3 120. 2 180.

 H1 2  rh1 1  alpha 4 180.

 H2 3  rh1 1 alpha 2 180.

 H3 4 rh1  1 alpha 3 180.

C-# FRAGS # section:

Free format input. Fist line must include the number of atoms included in each

fragment. The next N lines include, for each fragment, the number of the atoms (as

specified in the z-matrix or cartesian coordinates in # GEOM # section) belonging to

it.

Finally, if SPIN=1 then two extra lines are needed. First one including the charge and

the second one the multiplicity of each fragment. Note that, in this case, if BSSE=1
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the charge and multiplicity must be included instead in the # SYMMETRY # section.

D-# VARIABLES # section:

Free format. Enter initial values for the variables specified in the z-matrix or cartesian

coordinates. Do not use “=” between variable name and its value

E-# VARTYP # section:

Free format. Single line including, for each variable 1 if it represents a distance or 2 if

is an angle.

F-# GAUSSIAN # section:

Enter route card and charge and multiplicity for Gaussian calculation. Nosymm

keyword must be included. If force keyword is present CP-geometry optimization is

performed. If freq is present CP-frequency calculation is carried out (see below). If

none of the above keywords are present then a single-point CP-energy is performed

If a general basis is used for the calculation, the basis set specification MUST be

included in file cp.gbs but not in this section. For instance,

# GAUSSIAN ###

 %mem=100Mb

 %subst l103 /usr/users/pedros/bin

 # mp2/6-31++G(d,p) 6d nosymm force

MP2 HF-trimer CP-corrected optimization

 0 1

-Restrictions and problems:

Input is CASE SENTITIVE. Please, use lower case for force, freq and gen Gaussian

keywords.

-Frequency calculations:

No symmetry can be used. Note that the second derivatives for the fragment

calculations are obtained using the following Gaussian keywords:
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opt=CalcFC optcyc=1

Hence, most probably, an error message will appear at the end of each Gaussian

calculation, which, however, will not affect the CP-corrected frequency calculation.

G-# SYMETRY # section

Must be included if SYM=1 on # METODE # section.

First, enter number of fragment calculations will be performed. Then enter, separated

by commas, name of calculation to be performed, scale factor for the gradient and

energies. Charge and multiplicity for each calculation must also be included if

BSSE=1 and SPIN=0 in # METODE # section.

The name of each calculation is set in this way:

(fragments included) _ (basis set used)

For instance, the following line

12_123   , -2.0  , 0 ,1

specifies that fragments 1 and 2 (as defined in # FRAGS # section) using basis set of

fragments 1, 2 and 3 are included in the calculation. Also, both energy and gradient

will be scaled by -2.0 and summed up to the corresponding uncorrected

supermolecule energy and gradient respectively. Charge=0  and multiplicity=1 will be

used.

-Restrictions and problems:

 The uncorrected supermolecule calculation must be included in the last line.

eg.  for N fragments:

12...N_12...N, 1.0,   0 ,  1

H- Ending card:

Line including “---“ set of characters indicates the end of the input file.
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5-GEOMETRY OPTIMIZATIONS

Geometry optimization on the corresponding CP-corrected PES can be carried out

automatically by using the force keyword in the #GAUSSIAN# section of the input

file. The optimization starts at the given geometry and in the next iteration, a new

guess of the geometry is computed from the linear combination of the fragmetn

calculation gradients and it is written in the cp.geo file. For every iteration, the

energies and gradients of each fragment calculation are printed, as well as the RMS of

the gradient. When this parameter reaches a value below the introduced tolerance (see

#METODE#  section in the input file) or the total number of iterations is exceeded the

program stops.

The final geometry can be extracted both from the cp.geo file or from the cp.out

output file. In the later, the gradients of each calculation and the RMS is also given.

By choosing the different options in the first section of the input file, many different

optimization procedures can be selected.(see below)

Method NDIIS HESS UPDATE

DIIS N 0/1 0/1

Steepest-descent 1 0 0

BFGS 1 0/1 1

DIIS-VM N 0/1 0/1

If HESS is set to 1 , HESS file containing initial inverse hessian must be on current

directory. This file can be generated using the hess.f  program, that extracts from a

Gaussian output the first second derivative matrix found. In order to generate the

HESS file simply use

hess.x< gaussian_output

Note that is the uncorrected hessian at the given geometry.



286 - Methodologic Developments: Counterpoise

6- FREQUENCY CALCULATIONS

Frequency calculations using the corresponding CP-corrected second derivatives can

be carried out automatically by using the freq keyword in the #GAUSSIAN# section of

the input file.

The computations is carried out in the following way: for each fragment calculation,

the second derivative matrix in cartesian coordinates is extracted form the

corresponding Gaussian Formatted CheckPoint file. The CP-corrected second

derivatives are computed as linear combination of the necessary fragment

calculations. Then, the Formatted CheckPoint file of the supermolecule calculation,

cp.fchk file, is duplicated and the uncorrected second derivative matrix is substituted

by the CP-corrected one, generating the cpfreq.fchk file. Finally, the freqchk Gaussian

keyword is used automatically to extract form the properly modified cpfreq.fchk file

the vibrational frequencies and thermal analysis on a separated output file, in this case

the cpfreq.out. The parameters for the thermal analysis, namely pressure, temperature

and isotops can be easily selected in the fc.inp file (see FILES section of this manual)

7-SAMPLE INPUT FILES

A few examples of the applicability of the program are described below. Some

comment lines have been introduced in parenthesis.

EXAMPLE 1: HF trimer SCF/SSCP geometry optimization using symmetry:

EXAMPLE 2: HF trimer SCF/PACP single-point energy calculation:

EXAMPLE 3:HF trimer MP2/ Hierarchical CP-corrected frequencies:
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EXAMPLE 1

HF trimer SCF/SSCP geometry optimization using symmetry:

# METODE ##
NVAR=3 NFRAG=3 NDIIS=5  MAXIT=9 UPDATE=1 HESS=1  SPIN=0
BSSE=0 RESTART=0 SYM=1 TOL=0.0001
# VARIABLES #####
rh1 0.941
r1 1.550
alpha 52.3
# VARTYP ####
1 1 2 (Type of variable, in the same order as in previous section)
# FRAGS #####
2 2 2
1 4
2 5
3 6
0 0 0 (charge optional as SPIN=0)
1 1 1 (multiplicity optional as SPIN=0)
# GEOM ####
X (dummy atom not considered in previous section)
F1 1 r1
F2 1 r1  2 120.
F3 1 r1 3 120. 2 180.
H1 2  rh1 1  alpha 4 180.
H2 3  rh1 1 alpha 2 180.
H3 4 rh1  1 alpha 3 180.
# GAUSSIAN ###
%subst l103 /usr/users/pedros/bin
%subst l301 /usr/users/pedros/bin
# MP2/6-31G(d,p) nosymm force (CP-geometry optimization)

MP2 calculation of HF trimer using symmetry

0 1
# SYMETRY ##
3 (three calculations are needed)
1_1 , 3.0 (HF basis calculation, equiv. to the other HF’s in molecule)
1_123 ,-3.0 (HF full basis calc., equiv. to the other HF’s in molecule)
123_123   ,1.0 (Trimer calculation introduced last)

--- (end of file line)
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EXAMPLE 2:

HF trimer SCF/PACP single-point energy calculation:

# METODE ##
NVAR=3 NFRAG=3 NDIIS=5  MAXIT=9 UPDATE=1 HESS=1  SPIN=0  TOL=0.0001
BSSE=2  SYM=0 (any field  not present set to default value)

# VARIABLES #####
rh1 0.941
r1 1.550
alpha 52.3
# VARTYP ####
1 1 2 (Type of variable, in the same order as in previous section)
# FRAGS #####
2 2 2
1 4
2 5
3 6
# GEOM ####
X (dummy atom not considered in previous section)
F1 1 r1
F2 1 r1  2 120.
F3 1 r1 3 120. 2 180.
H1 2  rh1 1  alpha 4 180.
H2 3  rh1 1 alpha 2 180.
H3 4 rh1  1 alpha 3 180.
# GAUSSIAN ###
%subst l301 /usr/users/pedros/bin
%subst l103 /usr/users/pedros/bin
# SCF/6-31G(d,p) nosymm 6d (CP-corrected energy calculation)
gfinput

HF calculation of HF trimer

0 1

--- (end of file line)
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EXAMPLE 3:

HF trimer MP2/ Hierarchical CP-corrected frequencies:

# METODE ##
NVAR=3 NFRAG=3 NDIIS=5  MAXIT=9 UPDATE=1 HESS=1  SPIN=0
BSSE=1 RESTART=0 SYM=0
# VARIABLES #####
rh1 0.941
r1 1.550
alpha 52.3
# VARTYP ####
1 1 2 (Type of variable, in the same order as in previous section)
# FRAGS #####
2 2 2
1 4
2 5
3 6
# GEOM ####
X (dummy atom not considered in previous section)
F1 1 r1
F2 1 r1  2 120.
F3 1 r1 3 120. 2 180.
H1 2  rh1 1  alpha 4 180.
H2 3  rh1 1 alpha 2 180.
H3 4 rh1  1 alpha 3 180.
# GAUSSIAN ###
%subst l103 /usr/users/pedros/bin
%subst l301 /usr/users/pedros/bin
# MP2/6-31G(d,p) nosymm freq (CP-frequency calculation)

MP2 calculation of HF trimer

0 1
# SYMETRY ## (No symmetry can be used for frequencies)

--- (end of file line)
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II.2.2 Implementation of the CHA method

The CHA versions of the Restricted (Closed-shell) and Unrestricted Hartree-

Fock equations, CHA-RHF and CHA-UHF, respectively, have been implemented

using the FORTRAN 77 language in collaboration with Prof. I. Mayer, during a three-

month stay at the Hungarian Academy of Sciences in Budapest.

The main goal was to design efficient CHA-RHF and CHA-UHF algorithms for

the general case of N interacting fragments. In a next step, the CHA canonical orbitals

would be further used for the calculation of the corresponding CHA versions of the

second-order Møller-Plesset energy, CHA-MP2 and CHA-UMP2, respectively.

Finally, the so-called intramolecular formulation of the CHA equations for dealing

with the intramolecular BSSE problem was also explored. In this particular case, the

unsatisfactory preliminary results prevented for further investigation on this direction.

The CHA-SCF equations represent, thus, a preliminary but necessary step for

the implementation of the CHA-MP2 methodology. Furthermore, prior to the

codification of the CHA equations, it is desirable to implement the conventional

restricted closed-shell and unrestricted Hartree-Fock equations and apply the

necessary modifications introduced by the CHA equations on these programs.

The RHF, UHF, CHA-RHF and CHA-UHF equations have been coded as

external programs to the HONDO package163. The one and two-electron integrals are

extracted from a previous HONDO run and are utilized to reproduce the Hartree-Fock

orbitals and energy with full precision.

As commented in the introductory overview of the CHA methodology, the key

point at the SCF level of theory is the construction of the CHA Fockian. Once the

CHA Fockian is gained, the protocol to obtain the molecular orbitals and total energy

is well established (see SCHEME 2). The details of the implementation of the

designed algorithm for the efficient construction of the one- and two-electron part of

the CHA Fockian, in the restricted and unrestricted versions, are given in this Section.

                                                
163 HONDO-8, from MOTECC-91, contributed and documented by M. Dupuis and A. FFArazdel, IBM

Corporation,Center for Scientific and Engineering Computations, Kingstom, New York, 1991
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II.2.2.1 RHF and CHA-RHF

Let us assume first a typical restricted closed-shell problem of molecular system

composed of N electrons and M nuclei (see Section I.2.2 for a brief overview of the

SCF method). The matrix representation of the Fock operator in the atomic orbital

basis can be written as

νµµνµνµν ,; ∀+= GHF core (II.1)

were

>
−

−<+>∇−<=+= ∑ ν
α α

α
µνµµνµνµν ϕϕϕϕ |||

2
1| 2

M
core

Rr
Z

VTH (II.2)

and

[ ] [ ]( )λκνµλνκµ
λκ

λκµν ϕϕϕϕϕϕϕϕ ||2
,

−=∑PG (II.3)

The two-electron integrals over the atomic orbital basis are written following

the [12|12] notation and the Pµν represent the elements of the density matrix.

In HONDO, the two-electron integrals, henceforth [ij|kl], are classified in

fourteen different classes according to the relations between the four indexes i j, k, l.

When saved to the disk, five integers and a double-precision variables, corresponding

to the four indices, a tag to assign the integral to a class and the value of the integral

itself, respectively, are packed in 12 byte records. Then, depending on the assigned

class, the integral is multiplied by a factor and contributes in a determinate way to the

two-electron part of the Fock matrix. In our case, however, we felt more convenient

not to a priori classify the two-electron integrals, since they should be further

reclassified when constructing the two-electron part of the CHA Fockian. The

alternative algorithm designed for the calculation of the two-electron part of the

Fockian is as follows:
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 Gik ⇐  Gik + 2 × Plj × γ
  Gil ⇐⇐⇐ ⇐  Gil - Pjk ×××× γγγγ

   i ≠ j OR k ≠ l ?
         Gjl ⇐  Gjl + 2 × Pki × γ
         Gik ⇐⇐⇐ ⇐  Gjk - Pli ×××× γγγγ
   end if

  j ≠ l ?
         Gik ⇐  Gik + 2 × Plj × γ
         Gij ⇐⇐⇐ ⇐  Gij - Plk ×××× γγγγ

         i ≠ j OR k ≠ l ?
                Glj ⇐  Glj + 2 × Pki × γ
                Glk ⇐⇐⇐ ⇐  Glk - Pji ×××× γγγγ
         end if
  end if

  k ≠ i ?
         Gki ⇐  Gki + 2 × Plj × γ
         Gkl ⇐⇐⇐ ⇐  Gkl - Pji ×××× γγγγ

         i ≠ j OR k ≠ l ? 
               Gjl ⇐  Gjl + 2 × Pki × γ
               Gji ⇐⇐⇐ ⇐  Gji - Plk ×××× γγγγ
         end if  

         j ≠ l ? 
               Gki ⇐  Gki + 2 × Plj × γ
               Gkj ⇐⇐⇐ ⇐  Gkj - Pli ×××× γγγγ

               i ≠ j OR k ≠ l ?
                      Glj ⇐  Glj + 2 × Pki × γ
                      Gli ⇐⇐⇐ ⇐  Gli - Pkj ×××× γγγγ
               end if
         end if
  end if

N

N

N

N

N

N

N

SCHEME 22

where γ represents the actual value of the [ij|kl] integral. Depending upon the

relationship between the indexes, the given integral contributes to the two-electron

part of the Fockian in one or more cases. With this algorithm, the coulombic and

exchange (marked bold) contributions are computed simultaneously.



294 - Methodologic Developments: Chemical Hamiltonian Approach

In the case of CHA-SCF, the SCF algorithm must be slightly modified. As we

discussed in the first section of the present work, some of the one and two-center

integrals are modified or discarded in order to eliminate the pure BSSE-type extension

from the Fockian. Mayer showed that the expresion of the CHA Fockian can be

expressed simply as65

νµµνµνµν ,;)( ∀+= CHACHAcoreCHA GHF (II.4)

where the core and two-electron parts are obtained using the CHA-modified one

and two-electron integrals (see Eq. (34))
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The superscript A represents a given fragment composing the molecular

complex. Also, the auxiliary AA matrix is defined for each fragment as

)()( 1 ASSA
A

A
A ∈=∑

∈

− ν
κ

κνµκµν (II.7)

where S and SA
-1 represent the overlap matrix of the atomic orbitals of the whole

complex, and the inverse of the overlap matrix of the atomic orbitals assigned to the

Ath fragment, respectively.
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Note that the matrix elements of the core and two-electron contributions to the

Fockian are not symmetric, unless the two indices refer to atomic orbitals assigned to

the same fragment. In this particular case the CHA integrals are equivalent to the

conventional ones, as pointed out by Eqs. (20) and (21).

The proposed algorithm to obtain the CHA Fockian matrix is be presented next.

We will focus now on the one-electron (core) contribution.

First of all, as one can see in Eq. (II.5), the nuclear repulsion matrix elements

must be obtained for each fragment, separately, in order to build the core Hamiltonian

matrix for each atom (hA). The overlap matrix must also be split into block in order to

obtain the SA
-1 elements. However, all these fragment matrix elements can be put into

Nb×Nb square matrices (being Nb the total number of AO’s) and the CHA core

Hamiltonian can be obtained with the following matrix equation

inteffCHAcore VHSSH += −
0

1
0

)( (II.8)

where:
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is a block diagonal matrix gathering the fragment inverse overlap Nb
A× Nb

A

matrices;
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is the block diagonal matrix containing the Nb
A× Nb

A matrices of the kinetic
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energy and electrostatic interaction of the electrons and nuclei of each fragment;
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represents, in columns, the intermonomer electron-nuclei interaction, that is for

the ith block column, the electron-nuclei contribution due to the nuclei of the ith

fragment have been subtracted.
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The first term or the left-hand side of Eq. (II.8) can be further compacted by

computing the A matrix defined in Eq. (II.7)
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Hence, the elements of the CHA core Hamiltonian are simply computed by

straightforward matrix products and summation of Nb× Nb matrices. The final

expression results
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For the two-electron contribution, a similar algorithm to that of SCHEME 22

could be used by substituting the conventional [ij|kl] integrals by the CHA ones

{ij|kl}. However, in this way, a two-index transformation of the conventional integrals

by means of the A matrices would be necessary to get each CHA integral to be used

in the spirit of the previous algorithm. In other words, it would represent a O(Nb
2)

transformation carried out O(Nb
6) times; altogether O(Nb

6) calculations, as well as the

storage of a four index array, O(Nb
4). This procedure would be clearly inefficient from

a computational point of view compared to a conventional SCF calculation.

One can circumvent this transformation by using another strategy. The key

point is, given a conventional [ij|kl] integral, to compute all the partial contributions to

the elements of GCHA trough the CHA integrals. That is, the {ij|kl}CHA integrals are

never computed explicitly, but their contribution to the appropriate elements of GCHA

are stepwise added by performing the summation with all the [αβ|κλ ] integrals that

intervene in the computation of {ij|kl}.

In the Introduction it was shown that only that [ij|kl] integrals where k and l are

AO’s that belong to the same fragment A and both i and j do not belong A, must be

CHA-transformed. Moreover, Eq. (19) shows that the only [αβ|κλ ] integrals that

contribute to the CHA integral {ij|kl} are the ones of the form [i’j’|kl], ∀ i’, j’ ∈ A164.

By using the A matrix

),,,(]|[}|{
,

AAA AA ∈=∑ τλρνχχχχχχχχ
λτ

ρνλτσλµτρνσµ (II.15)

Hence the contribution of the CHA integrals to GCHA can be expressed as

                                                
164 Due to the structure of matrix A, in the particular case that either i or j belong to fragment A, the

only non-zero contribution to the CHA integral would occur for either i‘=i or j‘=j, respectively.
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The direct application of such an scheme is again too expensive. Now each

[ij|kl] integral would be used once but again a two-index transformation would be

necessary to determine all their contributions to the Fockian. That is, it requires to

perform O(Nb
4) times a O(Nb

2) transformation; again a O(Nb
6) algorithm but with no

storage of a four-index array since the CHA integrals will not be explicitly computed.

One can do the following165:

In the first step, an auxiliary matrix can be defined as

),( AAPB AA ∈=∑ λρ
σ

σλρσρλ (II.17)

for each fragment A and stored.

Then, using the previously computed B matrices, a second set of matrices can

be obtained using the two-electron integrals

[ ] ),(|
,

ABX
A

AA ∈= ∑
∈

ντχχχχ
λρ

ρνλτρλτν (II.18)

Finally, the product of both matrices gives the elements of GCHA :

)( AXAG
A

AACHA ∈=∑
∈

ν
τ

τνµτµν (II.19)

All the operations above must be carried out for each fragment in the molecular

system, as remarked by the corresponding subscripts. However, the use of block

diagonal and block off-diagonal Nb×Nb matrices again allows for an easy computation

of all the fragment contributions with a single calculation. Now, the B and X matrices

above mentioned take the form

                                                
165 I. Mayer, Á. Vibók, Chem. Phys. Lett. 140, 558 (1987)
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In this way, the O(N6) algorithm is transformed in 2× O(Nb
3) operations and the

unavoidable O(Nb
4) scaling, which is also necessary in case of the conventional SCF.

Hence, as the number of basis set increases the extra computational effort introduced

by the CHA tends to be negligible.

There are still an important point to take into account. Since, in general, each

CHA two-electron integral contributes to more than one element of the two-electron
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Fockian, GCHA, all the possible contributions (for instance, the exchange) must be

taken into account when building the X matrix in an analogous procedure to that of

the conventional SCF. However, in this case, only that conventional integrals

involving all four indexes of the same fragments will be taken into account. On the

other hand, all [ij|kl] integrals with k and l indices referring to different fragments are

pure intermolecular integrals. That means they are not CHA-modified and contribute

to GCHA in the same fashion they would contribute on a conventional SCF procedure.

Hence the final CHA algorithm for the two-electron contribution is the

following:

k and l ∈ AIntermolecular
 [ij|kl]

Conventional
 treatment BSSE integral

 Discardedi and j ∈ A

Intramolecular
integral 

CHA procedure

For each integral [ij|kl]

Y

N

Y

N

Using B to add 
the contributions 

to Xαβ 

Using P to add 
the contributions 

to Gαβ 

GCHA = GCHA + X

Done for 
all [ij|kl]N

Y

SCHEME 23
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At this point, the CHA Fockian is gained by adding the CHA one and two-

electron contributions, as given in Eq. II.4. Once we have the CHA Fockian computed

with some given molecular orbitals (by means of the density matrix, P), the algorithm

to solve the CHA-SCF equations is that presented before in Section I.1.4.3 (See

SCHEME 2).
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II.2.2.2 UHF and CHA-UHF

For the unrestricted equations the same strategy is followed. The only difference

now is that the alpha and beta contributions are computed separately. An extra set of

matrices must be used except for that containing one and two-electron integrals, like

overlap, kinetic energy, electron-nuclei attraction or two-electron repulsion.

The UHF equations can be expressed simply as

β
µνµν

β
µν

α
µνµν

α
µν

GHF

GHF
core

core

+=

+=
(II.23)

were Hcore is that given by Eq. II.2 and
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The core Hamiltonian does not depend on the density matrix so that it is

calculated once and it is used for both alpha and beta contributions.

The Gα and Gβ contributions must be computed at the same SCF step because

both depend explicitly on the density matrices of the alpha and beta part, Pα and Pβ.

Eq. (II.24) shows that the coulombic contribution (first term) is equivalent for both

alpha and beta parts. Only the exchange term can induce to different alpha and beta

Fockians and hence to different alpha and beta molecular orbitals (spin density

matrices). Obviously, when the number of alpha and beta electrons is different, the

resulting alpha and beta density matrices differ. If the number of alpha and beta

electrons is the same, the RHF solution is always a solution. There may exist other

UHF solutions lower in energy with different alpha and beta orbitals. In general, for

normal geometries the truly UHF solution may not exist. However, when a bond is

stretched with respect to the equilibrium distance, the UHF solution will always be
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observed at large bond lenghts.

The unrestricted open-shell algorithm for the determination of the two-electron

contribution to the conventional Fockian is easily derived from SCHEME 22:

 Gα
ik ⇐  Gα

ik +(Pα
lj+ Pβ

lj)× γ ; Gα
ik ⇐  Gα

ik +(Pα
lj+ Pβ

lj)× γ
  Gαααα

il ⇐⇐⇐ ⇐  Gαααα
il - Pαααα

jk ×××× γγγγ ; Gββββ
il ⇐⇐⇐ ⇐  Gββββ

il - Pββββ
jk ×××× γγγγ

   i ≠ j OR k ≠ l ?
     Gα

jl ⇐  Gα
jl +(Pα

ki+ Pβ
ki)× γ ;  Gα

jl ⇐  Gα
jl +(Pα

ki+ Pβ
ki)× γ

     Gαααα
jk ⇐⇐⇐ ⇐  Gαααα

jk - Pαααα
il ×××× γγγγ            ; Gββββ

jk ⇐⇐⇐ ⇐  Gββββ
jk - Pββββ

il ×××× γγγγ 
   end if

  j ≠ l ?
         Gα

ik ⇐  Gα
ik +(Pα

jl+ Pβ
jl)× γ  ; Gα

ik ⇐  Gα
ik +(Pα

jl+ Pβ
jl)× γ

         Gαααα
ij ⇐⇐⇐ ⇐  Gαααα

ij - Pαααα
lk ×××× γγγγ           ; Gββββ

ij ⇐⇐⇐ ⇐  Gββββ
ij - Pββββ

lk ×××× γγγγ

         i ≠ j OR k ≠ l ?
                Gα

jl ⇐  Gα
jl +(Pα

ik+ Pβ
ik)× γ ; Gα

jl ⇐  Gα
jl +(Pα

ik+ Pβ
ik)× γ

                Gαααα
kl ⇐⇐⇐ ⇐  Gαααα

kl - Pαααα
ji ×××× γγγγ             ; Gββββ

kl ⇐⇐⇐ ⇐  Gββββ
kl - Pββββ

ji ×××× γγγγ 
         end if
  end if

  k ≠ i ?
         Gα

ki ⇐  Gα
ki +(Pα

lj+ Pβ
lj)× γ  ; Gα

ki ⇐  Gα
ki +(Pα

lj+ Pβ
lj)× γ

         Gαααα
kl ⇐⇐⇐ ⇐  Gαααα

kl - Pαααα
ji ×××× γγγγ             ; Gββββ

kl ⇐⇐⇐ ⇐  Gββββ
kl - Pββββ

ji ×××× γγγγ

         i ≠ j OR k ≠ l ? 
               Gα

lj ⇐  Gα
lj +(Pα

ki+ Pβ
ki)× γ  ; Gα

lj ⇐  Gα
lj +(Pα

ki+ Pβ
ki)× γ

               Gαααα
ij ⇐⇐⇐ ⇐  Gαααα

ij - Pαααα
lk ×××× γγγγ             ; Gββββ

ij ⇐⇐⇐ ⇐  Gββββ
ij - Pββββ

lk ×××× γγγγ
         end if  

         j ≠ l ? 
               Gα

ki ⇐  Gα
ki +(Pα

jl+ Pβ
jl)× γ  ; Gα

ki ⇐  Gα
ki +(Pα

jl+ Pβ
jl)× γ

               Gαααα
kj ⇐⇐⇐ ⇐  Gαααα

kj - Pαααα
li ×××× γγγγ             ; Gββββ

kj ⇐⇐⇐ ⇐  Gββββ
kj - Pββββ

li ×××× γγγγ

               i ≠ j OR k ≠ l ?
                      Gα

lj ⇐  Gα
lj +(Pα

ik+ Pβ
ik)× γ  ; Gα

lj ⇐  Gα
lj +(Pα

ik+ Pβ
ik)× γ

                      Gαααα
il ⇐⇐⇐ ⇐  Gαααα

il - Pαααα
jk ×××× γγγγ             ; Gββββ

il ⇐⇐⇐ ⇐  Gββββ
il - Pββββ

jk ×××× γγγγ
               end if
         end if
  end if

N

N

N

N

N

N

N
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The corresponding CHA version of the UHF equations have the same

peculiarities. The CHA core Hamiltonian does not depend on the density matrix so

that it is calculated once following Eqs. (II.8)- (II.14) and it is used for both alpha and

beta Fockians. The two-electron alpha and beta Fockians must be obtained for the

alpha and beta contributions separately. At each iteration, Gα(CHA) and Gβ(CHA) are

constructed using the previous Pα and Pβmatrices and a new guess for the

corresponding density matrices is obtained after diagonalization of the alpha and beta

Fockians until self-consistency is reached.
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Analogously to the conventional UHF equations, the only difference with

respect to the RHF equations appears when computing the exchange contribution. In

the case of the coulombic contribution, the alpha or beta density matrices contribute

both Gα(CHA) and Gβ(CHA) ; that is, instead of using the corresponding Pα or Pβ

elements, the total spin matrix, P = Pα + Pβ, is necessary.

Hence, the implemented algorithm for the CHA-UHF case is easily derived

from the CHA-RHF one given in SCHEME 23.
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k and l ∈ AIntermolecular
 [ij|kl]

Conventional
 UHF treatment BSSE integral

 Discardedi and j ∈ A

Intramolecular
integral. 

CHA UHF
procedure

For each integral [ij|kl]

Y

N

Y

N

Using Bα and Bβ to 
add the contributions 

to the elements of 
Xα and Xβ

Using Pα and Pβ to 
add the contributions 

to the elements of 
Gα and Gβ 

Gα(CHA) = Gα(CHA) + Xα

Gβ(CHA) = G β(CHA) + Xβ

Done for 
all [ij|kl]N

Y

SCHEME 25
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II.2.2.3 Test results

A key point of the code is the diagonalization of a non-symmetric matrix. As

commented in the introductory section, the eigenvectors are not orthogonal to each

other. Since the actual derivation of the CHA-SCF equations imposed the

orthonormality condition for the occupied molecular orbitals, they must be

orthogonalized at each CHA-SCF cycle before using them for the next iteration. The

most important consequence of the non-orthogonality of the eigenvectors is that the

virtual and occupied spaces overlap (mix). In other words, they do not obey the

conventional Brillouin theorem. This problem can be circumvented by using the

biorthogonality properties of the left and right eigenvectors. Indeed, one can compute

both left and right eigenvectors (in columns and rows, respectively) and take the

occupied orbitals from the left eigenvectors and the virtual from the corresponding

right eigenvectors.

Another typical feature is that the diagonalization of a non-symmetric matrix

may produce complex eigenvectors and eigenvalues, that would occur in pairs, and

convergence problems due to singularities. Hence, it is essential to use a robust

algorithm capable to deal with complex solutions and avoid numerical instabilities. As

pointed out by Mayer68, the cases when the non-symmetric matrix is not

diagonalizable have no practical relevance since infinitesimal changes on the matrix

elements are sufficient to avoid this singularity. Several matrix diagonalization

techniques were tested by Mayer years ago. In the case of the implementation

presented here, a subroutine written by Mayer166 that performs the diagonalization of

a real non-symmetric matrix by a Jacobi-type method has been used. Also, both left

and right eigenvectors can be computed.

In the general case of CHA-SCF, only the right eigenvectors are used because

only the occupied orbitals are necessary to build the corresponding Fockian. The

                                                
166 Written by I. Mayer (Budapest 1986) on the basis of an algol procedure in Wilkinson-Reinsch book:

Handbook for automatic computation.Linear algebra,v.2,Springer,Berlin 1971.
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particular case of complex orbitals do not represent any complication as long as both

components of the complex pair are assigned to the occupied space. In that case the

density matrix remains real. Indeed, the normalized real and imaginary parts can be

used to build the density matrix.

Both methods have been successfully implemented and tested for several

molecular systems, namely H and He clusters, diatomic molecules and B2H6. The

results for up to three fragments have been compared with the existing programs of

Mayer showing perfect agreement. It is remarkable that the algorithm presented here

and that implemented by Mayer were completely different (A and B matrices were

computed using a different strategy that resulted efficient for the particular case of

two fragments). Since both programs produce identical results programming errors in

the code are highly unlikely.

Test calculations have revealed that CHA calculations of the same molecular

system but using different number of fragments (up to eight) show almost no extra

computational cost with respect to the number of fragments.

Also, for a given molecular orbital guess, the number of cycles to reach self-

consistency is, in general, similar for the CHA and for the conventional SCF.

However, the symmetric character of the conventional Fockian allows for the

application of convergence acceleration techniques, namely the DIIS73. Therefore,

when compared to a optimized SCF code including those convergence acceleration

techniques, the plain CHA calculation needs about twice the number of cycles to

reach convergence.

Obviously, the best strategy for a CHA calculation is to compute first the SCF

orbitals and use them as the initial guess for the CHA procedure. In general, about 5-

15 extra cycles are needed to obtain the CHA canonical orbitals. Nevertheless, the

derivation of efficient convergence acceleration techniques for non-symmetric SCF

equations would be very interesting from both a mathematical and a practical point of

view.
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The study of the BH diatomic molecule with the unrestricted methodology

provides both the RHF and the UHF solutions at large diatomic distances for both the

conventional and the CHA calculation. The CHA PES obtained for the BH system is

depicted in the following figure

FIGURE 22: RHF (upper line) and UHF CHA energies for the BH molecule

The CHA–UHF results correctly describe the dissociation of the atoms into open-shell

fragments, whereas the CHA-RHF does not. A closer inspection of the PES on the

zone where the RHF and UHF curves split, shows that the true UHF solution appears

at shorter distances for the conventional PES. The CHA PES softly splits into two,

showing no numerical instability problems.
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FIGURE 23 Comparison of CHA and conventional RHF (upper curve) and UHF

Potential Energy Surfaces. The CHA PES lies slightly above the uncorrected one.

The actual implementation of the CHA-SCF methods has some limitations that

are summarized below:

a) No gradients for eventual CHA geometry optimizations are available. As pointed

out in Section I.1.4, the equations for the CHA gradient were derived by Paizs and

Mayer, but they have not been implemented yet. As in the case of the CHA/F ,

numerical optimizations can be carried out by finite differences but this has not

been explored in this work.

b) As the program is external to the ab initio code, HONDO-8 in this particular case,

the CHA-SCF procedure must be carried out in a non-direct fashion. That is, the

two-electron integrals must be computed once with HONDO and must be stored

for its further use by the CHA subroutines. In this way, the storage requirement

increase enormously with the size of the problem and soon become the bottleneck
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of the algorithm. Hence, a direct algorithm were the two-electron integrals are

computed each time they are needed is highly desirable. Moreover, the

intramolecular and intermolecular two-electron integrals could be generated

separately. The discarded integrals on the CHA algorithm will be computed only

after self-consistency, in order to calculated the CHA energy167.

c) Our modified HONDO-8 version can handle only up to 127 basis functions for a

direct job so the use of the actual CHA programs for practical applications is very

restricted. We are working towards the implementation of the CHA programs into

a commercial package like Gaussian, in the spirit of the counterpoise

methodology.

d) An inherent drawback of the CHA-SCF methods is clearly that the electron

correlation is not taken into account. The accurate study of weakly bounded

complexes is not possible without the inclusion of electron correlation. Only

calculations for strong and moderate hydrogen-bonded complexes can be

considered reliable. The inclusion of electron correlation through second-order

Perturbation Theory is in progress. The preliminary results for both the restricted

and unrestricted formulations without complex orbitals are promising.

                                                
167 Note that the CHA energy is computed as the expectation value of the conventional Hamiltonian

over the CHA wavefunction. Hence, in order to compute the CHA energy an extra SCF conventional

cycle is necessary.
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III Conclusions

The most relevant results derived from this work on the efficient treatment of

the Basis Set Superposition Error can be summarized as follows:

FIRST: A new interpretation of the counterpoise method has been used in order to

define counterpoise-corrected description of the molecular complexes. This novel

point of view allowed us to study the BSSE-effects not only in the interaction energy

but also on the potential energy surface and, in general, in any property derived from

the molecular energy and its derivatives

SECOND: The usefulness of the combination of the DIIS and the variable metric

BFGS methods for the location of the stationary points on the CP-corrected surfaces

has been demonstrated. The use of an initial inverse Hessian matrix has been proved

essential for a good convergence.

THIRD: A program to perform counterpoise-corrected optimizations and vibrational

analysis at any level of theory and for three different counterpoise procedures has

been codified. The possible symmetry of the complex can be as well taken into

account in order to reduce the computational cost of the calculation. This program has

allowed us to perform hierarchical counterpoise correction to clusters to asses the high

order BSSE effects.

FOURTH: The BSSE induces to the overestimation of the interaction energy of the

molecular complexes. The magnitude can be strongly dependent on the geometrical

parameters so that the Potential Energy Surface and hence the vibrational frequencies

and zero point energy contributions are also affected.

FIFTH: Optimized molecular geometries and stabilization energies obtained with the

CHA/F and CHA/DFT methodologies have been compared with those obtained with

the counterpoise method for several hydrogen bonded complexes. It has been shown

that both methods correct for the BSSE in a very similar fashion and that the
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differences between them are much lesser than the BSSE itself. Contrary to other

approaches for the a priori correction of the BSSE, like the SCF-MI or SMMO

methods, both the CHA and counterpoise-corrected stabilization energies tend

asymptotically to the uncorrected ones as the basis set is increased.

SIXTH: The location of stationary points on this BSSE-corrected PES by means of

both counterpoise or CHA methodologies provides molecular geometries corrected

for BSSE. The BSSE-corrected geometries and vibrational frequencies obtained with

rather small basis sets tend to the values obtained for much larger basis sets.

Particularly the CP-correction involving geometry reoptimizations can be a very

useful tool in order to yield good descriptions of larger molecules where the use of

large basis sets including diffuse functions is prohibitive.

SEVENTH: The application of the extrapolation to the CBS limit of intermolecular

geometry parameters and energies seems to be fruitful as long as the corresponding

CP-corrected values are used. Also, fixing intramolecular parameters at their

experimental values could cause difficulties during the extrapolation. As the available

literature data and our results clearly show, the MP2/aug-cc-pVXZ {X = 2, 3, 4} data

series of intermolecular distances obtained from the CP-corrected surfaces can be

safely used for the purpose of CBS extrapolations.

EIGHTH: The fragment relaxation energy cannot be seen as an additional term to the

energy, mostly when studying chemical processes like rotational barriers. The effect

of the fragment relaxation on the intermolecular parameters probed to be very

important for the BF3···NH3 complex, the CP-correction not changing this situation.

The CP-correction scheme can be successfully applied despite the relaxation

contribution being not taken into account.

NINTH: When dealing with charged molecular complexes both CP2 and CP3

proposed methods yield very similar results at the RHF level from both an energetic

and structural point of view. Only appreciable differences in the geometry have been

observed for the (H2O···OH)- complex when using the 6-311G** and D95** basis

sets. At the MP2 level of theory the differences increase but, in general, are less

important than the BSSE itself. There is a good agreement in the formation enthalpies
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for non symmetric complexes, like the (H2O···OH)- and the (NH4···H2O)+.

TENTH: The corresponding expressions for the counterpoise-corrected cluster

energies using three different correction schemes, namely SSFC, PAFC and VMFC

have been derived by using a many-body partitioning of the energy of the aggregate.

It has been shown that the effect of the second and third-order basis set extensions

given by the VMFC method is negligible for some hydrogen fluoride cluster, although

they are still meaningful when using small basis sets. The use of diffuse functions is

essential for the saturation of the high-order BSSE.

ELEVENTH: The effect of the geometry on the energetic terms obtained from a

SAPT analysis of the hydrogen fluoride trimer reveal that that already at the level of

two-body interactions the cyclic configuration is stabilized over the linear one. The

main conclusion is that the large differences between the results obtained at the

uncorrected and counterpoise-corrected geometries underscore the need for

performing the analysis of the interaction energy at the counterpoise-corrected

minimum geometries.

TWELVETH: The CHA method applied at the Hartree-Fock (CHA/F) and DFT

(CHA/DFT) levels of theory has been used obtain BSSE-corrected wavefunctions of

several hydrogen bonded complexes. A systematic study of the effect of the BSSE

correction in terms of electronic and nuclear relaxation contributions has been carried

out for several basis sets and functionals.

THIRTEENTH: When the uncorrected PES is qualitatively well described without

the BSSE correction, both electronic and nuclear relaxation lead to deviations of the

order of 10% in the intermolecular critical point location, its electron density and

Laplacian. The convergence of uncorrected and CHA results for the largest basis set

shows again the validity of this BSSE-correction scheme.

FOURTEENTH: The effect of BSSE on the electron density has proved to be more

relevant at the DFT level than at the SCF level of theory, and to be strongly dependent

on the inclusion of diffuse functions in the basis set. Addition of diffuse functions

leads to similar effects for all the systems analyzed: an overall decrease of the
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differences between corrected and uncorrected densities, negative differences in the

intermolecular region, and lack of the highly directional density redistribution patterns

in heavy donor and acceptor atoms that are observed with smaller basis sets.

FIFTEENTH: Density difference maps at frozen geometry reveal that the effects of

the BSSE are not limited to the intermolecular region. Rather, the main redistribution

effects take place in the valence shells of the heavy atoms directly involved in the

intermolecular interaction. The study of larger systems, like the formic acid dimer,

and especially the uracil-water complex, reveals that the effects of BSSE on the

electron density are generally restricted to the intermolecular region and especially to

the atoms directly involved in the intermolecular interaction and their first-neighbors.

SIXTEENTH: The origin of the BSSE in terms of one- and two-center contributions

is very different depending on the inclusion of diffuse function. When no diffuse

functions are considered, the BSSE is stabilizing for the intermolecular component

and destabilizing for the intramolecular components. When diffuse functions are used,

exactly the opposite is found. The density difference maps do also reveal systematic

differences between calculations with and without diffuse functions, thus a CECA

analysis may well be meaningful as a complement for the understanding of

intermolecular interactions.

SEVENTEENTH: The Chemical Hamiltonian Approach methodology has been

successfully implemented at the CHA-RHF and CHA-UHF levels of theory. The use

of block diagonal matrices allows for an efficient implementation of the methodology

for an arbitrary number of fragments. The programs extract from a previous HONDO

run the necessary integrals and perform the CHA  transformation on the fly. Hence,

only nondirect type of calculations can be performed at the present time.

EIGHTEENTH: The implementation of the corresponding CHA-MP2 methodology

is not yet operative due to the complications introduced when complex molecular

orbitals and energies appear. The results for the intramolecular CHA formulation are

not satisfactory and have been omitted.
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published papers are given below:
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complexes.
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4
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5
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IV.2 Unpublished contributions

Some of the results shown in this Thesis have not been published at the present

time. The partial references of the accepted and submitted manuscripts are given

below:

6
Quantitative assessment of the effect of BSSE on the electron density of

molecular complexes by means of Quantum Molecular Similarity

Measures.

P. Salvador, M. Duran, X. Fradera

Adv. Mol. Sim., vol 4 (accepted)

7
On the counterpoise correction of charged intermolecular complexes

P. Salvador, M. Duran, J. J. Dannenberg
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Counterpoise-corrected geometries and harmonic frequencies of N-body
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Error changes on electron densities and one- and two-center energy

components.

Pedro Salvador, Miquel Duran, Xavier Fradera

J. Chem. Phys., (submitted for publication)



Appendix  - 321

IV.3  Other publications

A copy of two published papers corresponding to the references 42 and 154 is

provided. The results included in these publications have not been explicitly discussed

in this Thesis.

The first contribution, co-authored with Mrs M. Daza and Profs. J. Molina, J. A.

Dobado and J. L. Villaveces is part of the Ph. D. Thesis of the former.

The second paper describes the implementation of the partitioning scheme in

terms of one- and two-center energy components of the HF energy in the framework

of the Atoms in Molecules theory. As discussed in the  Section II.1.3.4, the

computational cost of the actual implementation is so elevate that prevented us for

systematically apply this methodology to the study of the considered hydrogen

bonded complexes. Moreover, test calculations for the smallest H-bonded complex

showed integration problems that weren’t observed for single molecule calculations.
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