
2
Fundamentals

In this chapter we briefly review the fuzzy logic theory in order to focus the
type of fuzzy-rule based systems with which we intend to compute intelligible
models. Although all the concepts will be expressed in a formal manner, they
will also be clarified with examples in order to facilitate their understand-
ing. Moreover we detail some aspects to be considered in order to assure
intelligible models with a satisfactory accuracy.

Most topics have been obtained from the original work of L.A. Zadeh
[127] and the summaries written by A. Riid [98], J.M. Mendel [78] and G.J.
Klir and T.A. Folger [59]. Some aspects about propositional logic have also
been taken from the work of C.B. Allendoerfer and C.O. Oakley [2].

2.1 Fuzzy logic theory

Fuzzy logic was first introduced in 1965 by Lotfi A. Zadeh [125] with the
concept of fuzzy sets as an extension of the classical set theory formed by
crisp sets. Later he defined a whole algebra, fuzzy logic [127], which uses
fuzzy sets to compute with words as an extension of the proper operations
of classical logic.

In most cases a fuzzy logic system is, in fact, a nonlinear mapping of
an input data vector into a scalar output where this relation is defined by
linguistic expressions which are obviously computed with numbers. Thus
a fuzzy logic system is unique in that it is able to handle numerical data
and linguistic knowledge. The richness of this logic is that there are many
possibilities which lead to many different mappings.

In this section we will provide a summary of those necessary parts of the
fuzzy logic literature to understand how a fuzzy logic system works.
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2.1.1 Universe of scope

The universe of scope, also called the universe of discourse and typically
described as U , is the domain of each variable, either input or output. Thus
this is the set of allowable values for the variable.

The universe of scope can be a continuous domain or a discrete set of
points. And it can also have specific units or not.

Example
For example if we work with the variable temperature of human body the universe
of scope could be

U = {u ∈ R | 35 Celsius degrees ≤ u ≤ 42 Celsius degrees}
but if we work with the variable injured players in a football match the universe
of scope could be

U = {u ∈ N | 0 ≤ u ≤ 22}

2.1.2 Fuzzy sets versus crisp sets

In classical logic an element u is either a member or non-member of a crisp
set X, subset of the universe of scope U . It is typically defined with zero-one
membership functions denoted µX(u) such as

X ⇒ µX (u) =

{
1 if u ∈ X
0 if u /∈ X

(2.1)

In fuzzy logic theory an element belongs to a fuzzy set X of the universe
of scope U with a degree of membership µX(u) ∈ [0, 1] whose value is propor-
tional to the relevance of the element into the set X. They provide a measure
of the degree of similarity of the element to the fuzzy subset. The relations
between the values of the universe of scope and the degrees of membership
are characterized with membership functions which are represented as a set
of ordered pairs of each element u and its degree of membership µX(u) such
as

X = {(u, µX(u)) | u ∈ U} (2.2)

When U is continuous then X is commonly written as

X =

∫

U

µX(u)/u (2.3)

where the integral sign does not denote integration and the slash does not
denote a division. It is just a representation of the collection of all points
u ∈ U with associated degrees of membership µX(u).
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On the other hand, when U is discrete then X is commonly written as

X =
∑

U

µX(u)/u (2.4)

where neither the sum sign nor the slash denote these operations again.

Example
Consider the representation of the speed in a motorway either in classical logic or
in fuzzy logic theory as1:
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In this example we have three sets with classical logic theory:

µslow(v) =
{

1 if v ≤ 60
0 otherwise

µmedium(v) =
{

1 if 60 < v < 120
0 otherwise

µhigh(v) =
{

1 if v ≥ 120
0 otherwise

and also three sets with fuzzy logic theory:

µslow(v) =





1 if v ≤ 60
90−v
30 if 60 < v ≤ 90

0 if v > 90

µmedium(v) =





0 if v ≤ 60
v−60
30 if 60 < v ≤ 90

120−v
30 if 90 < v ≤ 120

0 if v > 120

µhigh(v) =





0 if v ≤ 90
v−90
30 if 90 < v ≤ 120

1 if v > 120

Thus, while in classical logic each element of the universe of scope V , for exam-
ple v = 100Km/h, only belongs to one set, µslow(100) = µhigh(100) = 0 and
µmedium(100) = 1; in fuzzy logic theory this element belongs to more than one
set, µmedium(100) = 0.66 and µhigh(100) = 0.33.

1The number of linguistic labels has been arbitrarly chosen. Obviously, it could be less
or more.
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2.1.3 Properties of fuzzy sets

Recall that fuzzy sets can be defined over a continuous universe of scope or
a discrete one. There are some typical functions used to define a fuzzy set:
gaussian membership functions, triangular membership functions or trape-
zoidal membership functions. All these functions are convex functions be-
cause ∀u1, u2, u3 ∈ U | u1 ≤ u2 ≤ u3 → µX(u2) ≥ min (µX(u1), µX(u3)).
Furthermore some properties can be defined about them, plotted in figure
2.1:

• The height of a fuzzy set is defined by

height(X) = supu∈UµA(u)

The fuzzy sets with a height equal to 1 are called normal sets.

• The core of a fuzzy set is a subset of X defined by

core(X) = {u ∈ U | µX(u) = 1}
Normal, convex and piecewise continuous fuzzy sets with only one value
in their core are called fuzzy numbers.

• The support of a fuzzy set is a subset of X defined by

support(X) = {u ∈ U | µX(u) > 0}
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Figure 2.1: Core, support and height of a fuzzy set.

A special case of fuzzy sets must be considered, the fuzzy numbers whose
core is equal to its support. These are fuzzy sets with only one value of the
universe of scope whose degree of membership is equal to one while the rest
of values have a degree of membership equal to zero. This type of fuzzy sets
are called singletons.
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2.1.4 Fuzzy partitions

All models are based on variables. When these models are based on fuzzy
logic, for each variable several fuzzy sets are usually defined because a lin-
guistic variable may be usually decomposed into a set of terms which cover
its universe of scope. Thus, in most cases either the variables or the fuzzy
sets have a linguistic meaning.

Example
Suppose that we must define the variable temperature. In this case we could
consider the following membership functions:
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Observe how given the lingustic variable temperature we can define several linguis-
tic labels which are related each one to a fuzzy set.

Like in the last example, it is common that each input value has nonzero
degree of membership for at least one fuzzy set. A partition satisfying this
premise has coverage property. In fact, if S is the number of sets which make
up the partition, whose membership functions are defined with µXs(u)|s=1...S,
usually these partitions assure that

S∑
s=1

µXs (u) = 1 ∀ u ∈ U (2.5)

S∑
s=1

µXs (u) > 0 ∀ u ∈ U (2.6)

and are called fuzzy partitions2. In this case, for each input value the sum of
the degrees of membership is equal to one and it can belong to two fuzzy sets
at most. The element of the universe of scope with a degree of membership
equal to 0.5 is called the crossover point.

2In fact its original name is Ruspini partitions, proposed by E.H. Ruspini.
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The number of fuzzy sets and therefore the number of membership func-
tions can differ between different people. Greater resolution is achieved by
using more membership functions at the price of greater computational com-
plexity. In fact this will be a very important aspect we will study in this
work.

If we have more than one variable when defining a system, we will prob-
ably have a fuzzy partition for each one of them. In this case we will split
the overall combination of universes of scope in several cases. For each one
we will probably define different situations and in this way, fuzzy modeling
can be understood as a piecewise modeling where we split the input scope in
several linguistic situations.

Example
Observe the following model where we have 4× 3 = 12 different situations:
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By working with fuzzy partitions we will have more than one active situation
(whose both degrees of membership are greater than zero) every time. In this
example we will have 2× 2 = 4 active situations for each possible input pair.

Thus the advantage of fuzzy sets over crisp ones becomes clearer. Mem-
bership functions allow the description of concepts in which the boundary
between having a property and not having a property is not sharp. We can
describe different situations to be considered more or less (not yes or no)
based on the current state. Moreover, by using fuzzy sets and their linguistic
labels, we are able to move from numbers to abstractions which is natural
for human beings but is otherwise difficult to formulate mathematically.
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2.1.5 Basic operations with fuzzy sets

Theoretic operations from classical logic such as the intersection, the union
and the complement are extended to fuzzy logic so as to do analogous things
with fuzzy sets. Anyway these extensions are not uniquely defined as in
classical logic.

To begin, let us briefly review the elementary operations with crisp sets.
Let X and Y be two subsets of U . The union denoted X ∪ Y contains all
of the elements in either X or Y . The intersection denoted X ∩ Y contains
all of the elements which are simultaneously in X and Y . The complement
denoted X̄ contains all of the elements which are not in X. In fuzzy logic
these operations denote the same concepts.

The general forms of intersection and union are represented by triangular
norms (T-norms) and triangular conorms (S-norms), respectively.

A T-norm is a function from [0, 1]× [0, 1] → [0, 1] satisfying the following
criteria:

T (u, 1) = u One identity
T (u1, u2) ≤ T (u3, u4) whenever u1 ≤ u3, u2 ≤ u4 Monotonicity
T (u1, u2) = T (u2, u1) Commutativity
T (T (u1, u2), u3) = T (u1, T (u2, u3)) Associativity

The most common T-norms are the minimum and the product.

µX∩Y (u) = min (µX(u), µY (u)) (2.7)

µX∩Y (u) = µX(u)µY (u) (2.8)

These operations are commonly considered when fuzzy sets are joined
with the linguistic operator AND due to the fact of being a restrictive oper-
ator.

A S-norm is a function from [0, 1]× [0, 1] → [0, 1] satisfying the following
criteria:

S(u, 0) = u Zero identity
S(u1, u2) ≤ S(u3, u4) whenever u1 ≤ u3, u2 ≤ u4 Monotonicity
S(u1, u2) = S(u2, u1) Commutativity
S(S(u1, u2), u3) = S(u1, S(u2, u3)) Associativity

The most common S-norms are the maximum, the probabilistic sum and
the bounded sum:

µX∪Y (u) = max (µX(u), µY (u)) (2.9)

µX∪Y (u) = µX(u) + µY (u)− µX(u)µY (u) (2.10)

µX∪Y (u) = min (1, µX(u) + µY (u)) (2.11)
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These operations are commonly considered when fuzzy sets are joined
with the linguistic operator OR due to the fact of being a boundadous oper-
ator.

Figure 2.2 shows these basic operations with sets defined over the same
universe of scope in order to define the resulting fuzzy set. Anyway T-norms
and S-norms can be applied to fuzzy sets (in fact fuzzy relations) defined
over different universes of scope as will be described later.
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Figure 2.2: Basic operations with fuzzy sets.

Typically, the complement of a fuzzy set is defined as 1 − µX(u). This
operation is commonly used when the linguistic variable has the linguistic
operator NOT before the variable itself like in figure 2.3.
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Figure 2.3: Complement.

2.1.6 Fuzzy relations and compositions

A relation can be defined [59] as the presence or absence of association,
interaction or interconnectedness between the elements of two or more sets.
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Like in the previous operations, the relations can be expressed in fuzzy logic
in a similar way as they are expressed in classical logic.

In this sense recall that a binary crisp relation R(U, V ) is typically defined
as

µR(u, v) =

{
1 if and only if (u, v) ∈ R(U, V )
0 otherwise

(2.12)

As an extension from the crisp relations, a fuzzy relation represents a
degree of the presence or absence of association, interaction or interconnect-
edness between the elements of two or more fuzzy sets. Thus if U and V are
two universes of scope then a binary fuzzy relation R(U, V ) is a fuzzy subset
of U×V characterized by a membership function with degrees of membership
µR(u, v) ∈ [0, 1] where u ∈ U and v ∈ V .

R(U, V ) = {((u, v), µR(u, v)) | (u, v) ∈ U × V } (2.13)

Example
Suppose that we want to define the concept the vehicle x is close to the vehicle y
where both vehicles run in a road of length 100Km. Each position is defined by
considering its distance from the origin. If we define this concept in classical logic
we first need to decide a clear edge between a close distance and a far distance,
for example 30Km. If in this case we consider discrete domains of each vehicle’s
position with a step of 20Km, the crisp relation could be expressed with a relational
matrix such as




v1 = 0 v2 = 20 v3 = 40 v4 = 60 v5 = 80 v6 = 100
u1 = 0 1 1 0 0 0 0
u2 = 20 1 1 1 0 0 0
u3 = 40 0 1 1 1 0 0
u4 = 60 0 0 1 1 1 0
u5 = 80 0 0 0 1 1 1
u6 = 100 0 0 0 0 1 1




On the other hand if we used a fuzzy relation we could define this concept
by computing each element of the relation with a membership function where
µR(u, v) = 1− |u−v|

100 .




v1 = 0 v2 = 20 v3 = 40 v4 = 60 v5 = 80 v6 = 100
u1 = 0 1.0 0.8 0.6 0.4 0.2 0.0
u2 = 20 0.8 1.0 0.8 0.6 0.4 0.2
u3 = 40 0.6 0.8 1.0 0.8 0.6 0.4
u4 = 60 0.4 0.6 0.8 1.0 0.8 0.6
u5 = 80 0.2 0.4 0.6 0.8 1.0 0.8
u6 = 100 0.0 0.2 0.4 0.6 0.8 1.0




Observe the difference between a crisp relation and a fuzzy relation. A
crisp relation µR(u, v) is equal to 0 or 1 while in a fuzzy relation µR(u, v) is
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a number between 0 and 1. The generalization of the crisp or fuzzy relations
to an N-dimensional domain is straightforward.

As a fuzzy relation is in fact a fuzzy set on a product space, the basic
operations of fuzzy sets can also be defined with fuzzy relations by using the
same operators. Thus, if R(u, v) and S(u, v) are two fuzzy relations on the
same product space U×V then their intersection and union are defined with
their composition by using a T-norm and a S-norm, respectively, as

µR∩S(u, v) = T (µR(u, v), µS(u, v)) (2.14)

µR∪S(u, v) = S (µR(u, v), µS(u, v)) (2.15)

Example
Suppose now that we want to define the concept the vehicle x is close to the vehicle
y AND the vehicle x is closer to the end of the road than the vehicle y. For the first
part of the sentence we recover the fuzzy relation of the last example. The second
part may be defined with the following fuzzy relation with the same universes of
scope than before:




v1 = 0 v2 = 20 v3 = 40 v4 = 60 v5 = 80 v6 = 100
u1 = 0 0.5 0.4 0.3 0.2 0.1 0.0
u2 = 20 0.6 0.5 0.4 0.3 0.2 0.1
u3 = 40 0.7 0.6 0.5 0.4 0.3 0.2
u4 = 60 0.8 0.7 0.6 0.5 0.4 0.3
u5 = 80 0.9 0.8 0.7 0.6 0.5 0.4
u6 = 100 1.0 0.9 0.8 0.7 0.6 0.5




As both part of the sentence are defined on the same product space U × V de-
fined by the position of each vehicle on the road, then the whole sentence can be
computed with a T-norm (i.e. the minimum) as




v1 = 0 v2 = 20 v3 = 40 v4 = 60 v5 = 80 v6 = 100
u1 = 0 0.5 0.4 0.3 0.2 0.1 0.0
u2 = 20 0.6 0.5 0.4 0.3 0.2 0.1
u3 = 40 0.6 0.6 0.5 0.4 0.3 0.2
u4 = 60 0.4 0.6 0.6 0.5 0.4 0.3
u5 = 80 0.2 0.4 0.6 0.6 0.5 0.4
u6 = 100 0.0 0.2 0.4 0.6 0.6 0.5




In fact most fuzzy relations are build by combining different fuzzy sets. In
order to make it possible, the fuzzy sets are first converted to fuzzy relations
which are later operated with a norm. The first step is realized with the
cylindrical extension principle proposed by L.A. Zadeh [127]. This principle
is applied when we are interested in adding a new dimension (universe of
scope) to a fuzzy relation with n domains to obtain a fuzzy relation with
n+1 domains.
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In this sense if we have a fuzzy set whose membership function is defined
in the universe of scope U , i.e. µX : U → [0, 1] the cylindrical extension of
X on U × V is a fuzzy relation defined by

ce of X on U × V = {(u, v), µX(u)} (2.16)

Thus, the degree of membership for each u is just copied to all (u, v) with
the same u.

Its complementary operator is the projection of U × V on U which gives
a fuzzy set defined by

proj of U × V on U =
{

u, max
v

(µR(u, v))
}

(2.17)

Example
Suppose that we have the two fuzzy sets called the (atmospheric) pressure is high
and the (atmospheric) temperature is hot from which we want to build the fuzzy
relation the temperature is hot when the pressure is high.
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In order to simplify the example we will work with discrete domains. The pressure
will be defined from 925hPa to 1075hPa with a step of 25 and the temperature will
defined from 14 to 32 Celsius degress with a step of 2. We first use the cylindrical
extension to create a fuzzy relation from the set pressure is high such as




press\temp 14 16 18 20 22 24 26 28 30 32
925 0 0 0 0 0 0 0 0 0 0
950 0 0 0 0 0 0 0 0 0 0
975 0 0 0 0 0 0 0 0 0 0

1000 0 0 0 0 0 0 0 0 0 0
1025 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
1050 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1075 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0




and also another cylindrical extension to create a fuzzy relation from the set tem-
perature is cold such as




press\temp 14 16 18 20 22 24 26 28 30 32
925 0 0 0 0 0.2 0.4 0.6 0.8 1.0 1.0
950 0 0 0 0 0.2 0.4 0.6 0.8 1.0 1.0
975 0 0 0 0 0.2 0.4 0.6 0.8 1.0 1.0

1000 0 0 0 0 0.2 0.4 0.6 0.8 1.0 1.0
1025 0 0 0 0 0.2 0.4 0.6 0.8 1.0 1.0
1050 0 0 0 0 0.2 0.4 0.6 0.8 1.0 1.0
1075 0 0 0 0 0.2 0.4 0.6 0.8 1.0 1.0



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in order to apply a T-norm (i.e. minimum) and to obtain the final fuzzy relation




press\temp 14 16 18 20 22 24 26 28 30 32
925 0 0 0 0 0 0 0 0 0 0
950 0 0 0 0 0 0 0 0 0 0
975 0 0 0 0 0 0 0 0 0 0

1000 0 0 0 0 0 0 0 0 0 0
1025 0 0 0 0 0.2 0.4 0.5 0.5 0.5 0.5
1050 0 0 0 0 0.2 0.4 0.6 0.8 1.0 1.0
1075 0 0 0 0 0.2 0.4 0.6 0.8 1.0 1.0




Now we consider the composition of relations on different product spaces
which share a common set, namely P (U, V ) and Q(V, W ) which is typically
defined as

R(U,W ) = P (U, V ) ◦Q(V,W ) (2.18)

In classical logic R(U,W ) is defined as a subset of U × W such that
(u,w) ∈ R if and only if there exists at least one v ∈ V such that (u, v) ∈ P
and (v, w) ∈ Q. In this case the composition of two binary crisp relations
may be defined as

µR(u,w) =
{

(u,w), max
v

[min (µP (u, v), µQ(v, w))]
}

(2.19)

or
µR(u,w) =

{
(u,w), max

v
[µP (u, v)µQ(v, w)]

}
(2.20)

which are called max-min composition and max-product composition, respec-
tively. These compositions are not the only ones which represent correctly
R(U,W ) but they seem to be the most widely used ones.

In the case of fuzzy relations, the composition on different product spaces
which share a common set is defined again analogously to the crisp compo-
sition but in this case each degree of membership may be any real number
between 0 and 1. By using a T-norm and a S-norm we could define the fuzzy
composition between two fuzzy relations P (U, V ) and Q(V,W ) as

R(U,W ) = {((u,w), µR(u,w)) | (u,w) ∈ U ×W} (2.21)

where
µR(u,w) = Sv (T (µP (u, v), µQ(v, w))) (2.22)

In fact these compositions are a simplified expression of two fuzzy rela-
tions on the same product space build with the cylindrical extension (ce) and
then simplified with the projection (proj):

R(U,W ) = proj(T (ce(P (U, V ) on W ), ce(Q(V, W ) on U))) on R×W (2.23)
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Recall that the projection is in fact a S-norm (typ. maximum). Anyway
this expression is rarely used because it is not necessary to build the fuzzy
relation on the same product space in order to obtain the final result correctly.

Although it is permissible to use many different T-norms and S-norms,
most compositions of fuzzy relations are computed with the maximum as S-
norm and either the minimum or the product as T-norm. In this case these
compositions are called max-min composition or max-product composition like
in the composition of crisp relations. Many people also call them sup-star
compositions where the star operator is any T-norm.

µR(u,w) = sup
v

[µP (u, v) ? µQ(v, w)] (2.24)

Example
We could consider the fuzzy relation of the last example the temperature is hot
when the pressure is high and also the fuzzy relation the number of people in the
beach is usually high when the temperature is hot build from the following fuzzy
sets, in order to compute the fuzzy relation the number of people in the beach is
usually high when the pressure is also high with the max-min composition.
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


press\temp 14 16 18 20 22 24 26 28 30 32
925 0 0 0 0 0 0 0 0 0 0
950 0 0 0 0 0 0 0 0 0 0
975 0 0 0 0 0 0 0 0 0 0

1000 0 0 0 0 0 0 0 0 0 0
1025 0 0 0 0 0.2 0.4 0.5 0.5 0.5 0.5
1050 0 0 0 0 0.2 0.4 0.6 0.8 1.0 1.0
1075 0 0 0 0 0.2 0.4 0.6 0.8 1.0 1.0




◦




temp\people 0 500 1000 1500 2000
14 0 0 0 0 0
16 0 0 0 0 0
18 0 0 0 0 0
20 0 0 0 0 0
22 0 0 0 0.2 0.2
24 0 0 0 0.4 0.4
26 0 0 0 0.5 0.6
28 0 0 0 0.5 0.8
30 0 0 0 0.5 1.0
32 0 0 0 0.5 1.0




=
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


press\people 0 500 1000 1500 2000
925 0 0 0 0 0
950 0 0 0 0 0
975 0 0 0 0 0

1000 0 0 0 0 0
1025 0 0 0 0.5 0.5
1050 0 0 0 0.5 1.0
1075 0 0 0 0.5 1.0




A special case appears when we must compute the composition between
a fuzzy set and a fuzzy relation (not two fuzzy relations). This operation
will be called a fuzzy implication. As we will point out later, this is probably
the most significant operation in most fuzzy logic systems due to the fact
of being similar to the composition between an input (the fuzzy set) and a
system (the fuzzy relation) in order to obtain the output of the system. See
figure 2.4.
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Figure 2.4: The fuzzy implication.

Let X be a fuzzy set of the universe of scope U with a degree of member-
ship µX(u) and R be a fuzzy relation of U ×V defined with the membership
function µR(u, v). The result of the fuzzy implication of X and R is a fuzzy
set Y = X ◦ R in the universe of scope V computed with a sup-star compo-
sition, typically a max-min composition or max-product composition. Thus,
the membership function for Y would be

Y (v) =

{(
v, sup

u
[µX(u) ? µR(u, v)]

)
| v ∈ V

}
(2.25)

The fuzzy implication is in fact just the name of the relation R, typically
denoted by µX→Y (u, v), but nowadays its name is used for either the relation
R or the composition X ◦R. By being the case with which we will study the
models in this work, we will analyze it later in detail.

2.1.7 Fuzzy logic versus propositional logic

Most systems based on fuzzy logic are expressed (and computed) with if ...
then ... statements, i.e. if u is X then v is Y where u ∈ U and v ∈ V .
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In order to operate these rules we need to compute an implication which is
usually denoted by µX→Y (u, v).

This operation resides within a branch of mathematics known as logic and
so far we have been discussing a set theory. Fortunately, as stated in [59] it
is well established that propositional logic is isomorphic to set theory under
the appropiate correspondence between components of these two mathemati-
cal systems. Furthermore, both of these systems are isomorphic to a Boolean
algebra ... The isomorphisms between Boolean algebra, set theory and propo-
sitional logic guarantee that every theorem in any one of these theories has a
counterpart in each one of the other two theories.

Consequently, by observing the previous extension from crisp sets, which
are the core of Boolean algebra, to fuzzy sets, we might suppose that we will
not have many problems to find the extension from the implication between
crisp sets to the implication between fuzzy sets. Unfortunately this extension
will no be so clear and it has been so far the most criticized aspect about
fuzzy logic. The fact is that propositional logic combines unrelated propo-
sitions into an implication without assuming any cause or effect relation to
exist while most fuzzy systems need to express related propostitions between
inputs and outputs.

Anyway we will show how there is a reasonable manner to compute the
implication with fuzzy sets which has been commonly accepted by giving a
satisfactory relation between the fuzzy logic and the human reasoning. First,
we will give a short review about propositional logic in order to explain the
necessary differences with fuzzy logic.

In propositional logic the rules are just a form of proposition and they
must be true or false. In fact any proposition may be combined with other
propositions in a process which is called a logical reasoning.

There are basically five fundamental combinations or operations which are
the core of logical reasoning: the conjunction denoted X ∧Y , the disjunction
denoted X ∨ Y , the implication denoted X → Y , the equivalence denoted
X ↔ Y and the negation denoted ¬X. Their truth tables are given in table
2.1.

X Y X ∧ Y X ∨ Y X → Y X ↔ Y ¬X
True True True True True True False
True False False True False False False
False True False True True False True
False False False False True True True

Table 2.1: Truth table of the elementary operations in logical reasoning.
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A tautology is a proposition formed by combining other propositions. The
most important tautologies for our work are those related with the implica-
tion such as

X → Y ↔ ¬ [X ∧ (¬Y )] (2.26)

X → Y ↔ (¬X) ∨ Y (2.27)

They let us express the membership function for X → Y in terms of
membership functions of either propositions X, Y , ¬X and ¬Y which is the
main objective of this section.

These tautologies can be easily demonstrated for example in the case of
Boolean algebra. Recall first that the mathematical equivalences between
logic and set theory (and Boolean algebra) are the next given in table 2.2.

Logic Set theory
∧ ∩
∨ ∪
¬ ( ¯ )

True 1
False 0

Table 2.2: Equivalences between logic and set theory.

Thus, by using the equivalences between logic and set theory we can
validate the membership functions for µX→Y (u, v) as can be observed in
table 2.3.

µX µY µX→Y ¬Y X ∧ (¬Y ) ¬ [X ∧ (¬Y )] ¬X (¬X) ∨ Y
1 1 1 0 0 1 0 1
1 0 0 1 1 0 0 0
0 1 1 0 0 1 1 1
0 0 1 1 0 1 1 1

Table 2.3: Validation of the tautologies for µX→Y .

Finally recall that in propositional logic there are two very important
inference rules, Modus Ponens and Modus Tollens, which are based on the
following criteria given in table 2.4.

Observe the resulting truth tables in the case of Boolean algebra in tables
2.5 and 2.6 in order to validate these inference rules.
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Modus Ponens Modus Tollens
Premise 1 ⇒ u is X v is not Y
Premise 2 ⇒ if u is X then v is Y if u is X then v is Y
Consequence ⇒ v is Y u is not X

Propositional logic ⇒ (X ∧ (X → Y )) → Y ((¬Y ) ∧ (X → Y )) → (¬X)

Table 2.4: Modus Ponens and Modus Tollens.

Modus Ponens

µX µY X → Y X ∧ (X → Y ) (X ∧ (X → Y )) → Y
1 1 1 1 1
1 0 0 0 1
0 1 1 0 1
0 0 1 0 1

Table 2.5: Validation of Modus Ponens with Boolean algebra.

Modus Tollens

µX µY ¬Y X → Y (¬Y ) ∧ (X → Y ) ¬X ((¬Y ) ∧ (X → Y )) → (¬X)
1 1 0 1 0 0 1
1 0 1 0 0 0 1
0 1 0 1 0 1 1
0 0 1 1 1 1 1

Table 2.6: Validation of Modus Tollens with Boolean algebra.

Whereas Modus Ponens plays a very important role in engineering appli-
cations due to its cause and effect form, Modus Tollens is rarely considered.
For this reason we will just study the Modus Ponens reasoning when we
consider fuzzy logic.

Once we have observed the main aspects of propositional logic, basically
focused on the implication and the reasoning rules, we can try to develop
the implication of fuzzy sets for fuzzy logic as an extension from the implica-
tion of crisp sets for propositional logic. As we have already explained, this
extension will not be so clear because most fuzzy systems need to express
related propostitions between inputs and outputs while propositional logic
works with unrelated propositions. Ultimately, this will cause us to define a
different implication operator for fuzzy logic.
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Like in our extension from crisp sets to fuzzy sets, our extension from crisp
logic to fuzzy logic should be made by replacing the bivalent membership
functions of crisp logic with fuzzy membership functions. Thus, the necessary
statement if u is X then v is Y in order to evaluate an inference rule has
a membership function µX→Y (u, v) that might be computed by taking the
previous tautologies for the implication of crisp sets and by replacing the
conjunction, disjunction and negation operators with S-norms, T-norms and
complements in the case of fuzzy sets. If we consider the the minimum and
the product as T-norm and the maximum as S-norm, then we could compute
the fuzzy implication (apparently) as

µX→Y (u, v) = 1−min [µX(u), 1− µY (v)] (2.28)

µX→Y (u, v) = 1− µX(u) (1− µY (v)) (2.29)

by being the extension from the tautology (X → Y ) ↔ ¬ [X ∧ (¬Y )] or

µX→Y (u, v) = max [1− µX(u), µY (v)] (2.30)

by being the extension from the tautology (X → Y ) ↔ (¬X) ∨ Y .
Once we have (apparently) the definitions for the fuzzy implication, we

can evaluate a fuzzy rule as the extension from the inference rules with crisp
sets, basically with the Modus Ponens form. In fact in fuzzy logic the Modus
Ponens takes the form given in table 2.7 and it is called Generalized Modus
Ponens.

Premise 1 ⇒ u is X∗

Premise 2 ⇒ if u is X then v is Y
Consequence ⇒ v is Y∗

Table 2.7: Generalized Modus Ponens.

The difference is that the fuzzy set in the antecedent of the rule X may be
different from the fuzzy set of the premise X∗, although they will be defined
on the same domain, as the fuzzy set in the consequent of the rule Y may be
different from the fuzzy set of the consequence Y ∗, although they will also
be defined on the same domain, because now we do not have true and false
values but degrees of membership.

In order to clarify it suppose that we have the inference rule if a man
is short then he will not be a very good basketball player and the premise
This man is 168cm. We can observe how the fuzzy sets involved within this
operation are clearly not the same. In other words in crisp logic an inference
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rule is fired only if the first premise is exactly the same as the antecedent
of the rule and the result of such operation is the rule’s consequent. But in
fuzzy logic a rule is fired so long as there is a degree of membership different
from zero.

Now we come back to the (incoherent) use of the previous fuzzy implica-
tions in order to evaluate an inference rule given with the Generalized Modus
Ponens form. In this case we will have a fuzzy relation X → Y defined as

X → Y = {(u, v), µX→Y (u, v)) | (u, v) ∈ U × V } (2.31)

a fuzzy set defined with µX∗(u) and we want to obtain a fuzzy set defined
with µY ∗(v). As we have explained before, this must be performed with a
composition. Thus, by using the sup-star composition we have that

Y ∗(v) =

{(
v, sup

u
[µX∗(u) ? µX→Y (u, v)]

)
| v ∈ V

}
(2.32)

The problem arise when we define the fuzzy relation µX→Y from the
previous tautologies because then the necessary cause and effect definition
is broken. Observe how the output fuzzy set Y ∗ will display high degrees
of membership in spite of having an input fuzzy set X∗ with low degrees of
membership. This is due to the fact that the definition for the implication
in propositional logic considers that a proposition is false if and only if the
antecedent is false and the consequent is true.

E.H. Mamdani [75] seems to have been the first one to observe this prob-
lem. When he designed a fuzzy logic system to control a process, he used
a definition for the implication operation according to the cause and effect
requirement for engineering applications. Thus, he proposed the use of the
minimum implication as

RM = µX→Y (u, v) = min [µX(u), µY (v)] (2.33)

The definition of the implication in fuzzy logic is not unique. For example
P.M. Larsen [67] proposed later the product implication as

RP = µX→Y (u, v) = µX(u)µY (v) (2.34)

These definitions have been clearly the most widely used inferences in
the engineering applications, in spite of not being according to the definition
of the implication with propositional logic. Although there are many other
tautologies for µX→Y in crisp logic and there are many other norms appart
from the minimum, product and maximum in fuzzy logic, there has not been
found any combination able to compute the fuzzy implication as an extension
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from the crisp implication which could express in a satisfactory manner the
cause and effect relation so necessary in most fuzzy logic applications [46].
For this reason, a different engineering implication was defined in fuzzy logic,
reason why fuzzy logic has been sometimes very criticized.

Anyway, many not engineering implications have also found its place in
fuzzy logic. D. Dubois and H. Prade [25, 26] have done a lot of research on
this field. For example when several rules are combined together to give an
unique relation which defines the overall system in contrast to the analysis
of each rule alone3, a better interpretation of the system can be sometimes
obtained with not engineering implications (i.e. Gödel implication). Some
alternatives are:

• Zadeh implication

RZ = µX→Y (u, v) = max (min (µX(u), µY (v)) , 1− µX(u))

based on (X → Y ) ↔ (X ∧ Y ) ∨ ¬X

• Kleene-Dienes or Dienes-Rescher implication

RD = µX→Y (u, v) = max (1− µX(u), µY (v))

based on the original (X → Y ) ↔ (¬X) ∨ Y

• Stochastic implication

RS = µX→Y (u, v) = min (1, 1− µX(u) + µX(u)µY (v))

based on the probabilistic equality P (Y |X) = 1− P (X) + P (X)P (Y )

• Lukasiewicz implication

RL = µX→Y (u, v) = min (1, 1− µX(u) + µY (v))

based on the original (X → Y ) ↔ (¬X)∨ Y with the bounded sum as
S-norm

3Later we will comment these alternatives which are called composition based inference
and individual-rule based inference, respectively.
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These implications satisfy the following relation RP ⊆ RM ⊆ RZ ⊆ RD ⊆
RS ⊆ RL. Thus the most restrictive implications that satisfy the cause and
effect requirement are the product (Larsen) and the minimum (Mamdani),
as we have pointed out before. The list of possible fuzzy implications goes
on (Goguen implication, Gödel implication, Sharp implication, ...). See [21]
for more details.

Example
We can consider the following example in order to observe the need of an engineer-
ing definition for the implication in the case of fuzzy logic. Suppose that we want
to regulate a climate system and one of the linguistic rules says if the temperature
is hot then the demanded power must be high. The linguistic variables are defined
with the following fuzzy sets:
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In order to compare the propositional implication and the fuzzy implication we
will consider for the first one the relation

µTHot→PHigh
(t, p) = 1−min

[
µTHot

(t), 1− µPHigh
(p)

]

while we will consider the Mamdani implication for the second one

µTHot→PHigh
(t, p) = min

[
µTHot

(t), µPHigh
(p)

]

If we consider discretes universes of scope such that the temperature has a step
of 5 Celsius degrees and the pressure has a step of 1KW, the resulting relation in
the case of the propositional logic is




pow\temp 0 5 10 15 20 25 30 35
0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1
4 1 1 1 0.75 0.50 0.25 0.25 0.25
5 1 1 1 0.75 0.50 0.50 0.50 0.50
6 1 1 1 0.75 0.75 0.75 0.75 0.75
7 1 1 1 1 1 1 1 1



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while the fuzzy relation is




pow\temp 0 5 10 15 20 25 30 35
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0.25 0.25 0.25 0.25 0.25
5 0 0 0 0.25 0.50 0.50 0.50 0.50
6 0 0 0 0.25 0.50 0.75 0.75 0.75
7 0 0 0 0.25 0.50 0.75 1 1




These relations show how the propositional implication does not agree with the
cause and relation requirement while on the other hand, the fuzzy implication
gives a relation which is according to it.
This phenomenon can be clearly observed by considering an input value. In fact
we will consider two cases. For the first one the temperature will be 10 Celsius
degrees while it will be 30 Celsius degrees for the second one.
First, we should create a fuzzy set which represents each situation (the fuzzy set
called A∗ in the theory). In fuzzy logic the best way to represent a single value is
a singleton set:
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Thus, we can compute the max-min composition for each case between these sets
given in discrete form as

µT∗ =
0
0

+
0
5

+
1
10

+
0
15

+
0
20

+
0
25

+
0
30

+
0
35

µT∗ =
0
0

+
0
5

+
0
10

+
0
15

+
0
20

+
0
25

+
1
30

+
0
35

and the previous relations (propositional and fuzzy).
For the first case when the temperature is 10 Celsius degrees, the output sets
would be

µP∗ =
1
0

+
1
1

+
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+
1
7

with propositional implication

µP∗ =
0
0

+
0
1

+
0
2

+
0
3

+
0
4

+
0
5

+
0
6

+
0
7

with fuzzy implication

and show how the propositional implication does not agree with the cause and
effect requirement.
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For the second case when the temperature is 30 Celsius degrees, the output sets
would be

µP∗ =
1
0

+
1
1

+
1
2

+
1
3

+
0.25
4

+
0.5
5

+
0.75
6

+
1
7

with propositional implication

µP∗ =
0
0

+
0
1

+
0
2

+
0
3

+
0.25
4

+
0.5
5

+
0.75
6

+
1
7

with fuzzy implication

and show how the fuzzy implication gives a clearer result of the demanded power.
In fact in most control systems we will need a single output value and not a fuzzy
value. This is normally computed with the center of gravity of the output set.
Anyway this aspect will be treated later.

2.1.8 Fuzzy systems

Although fuzzy logic can work with many forms of linguistic reasoning, with
the tolerance of the values4, with different operators, ... most fuzzy systems
and almost all fuzzy control systems, are given and are computed with few
differences between them. In this section we will review them because these
are the ones we will consider in our work.

Fuzzy logic provides the means for constructing fuzzy systems which con-
sist of several rules by explaining how the linguistic labels are related. Each
fuzzy rule is a statement where the antecedent and the consequent consist of
fuzzy propositions that in turn are statements which join the linguistic vari-
ables with linguistic operators like and, or, ... Nevertheless, in the majority
of fuzzy modeling and control problems, only the linguistic operator and is
used to join the linguistic labels of the antecedent whereas the consequent is
formed by only one linguistic label (MISO systems). For this reason we will
just consider this case. Thus most rules are based on statements like

if < antecedent fuzzy proposition > then < consequent fuzzy proposition >

and in general are statements like5

if input1 is X1r and input2 is X2r and ... inputN is XNr then output is Yr

We could compute these statements as we have done before but there are
two main reasons to demand a simpler method:

4If we recover the last example we could work with a fuzzified set different from a
singleton, i.e. µT∗ = 0

0 + 0
5 + 0

10 + 0
15 + 0

20 + 0.5
25 + 1

30 + 0.5
35 when the temperature is about

30 Celsius degrees.
5input1, input2, ... , inputN are the input variables; X1r , X2r , ... , XNr are the fuzzy

sets of each input variable; ouptut is the output variable; Yr is a fuzzy set.



32 Fundamentals

⇒ In most applications we will have single values for each input variable
(not fuzzy numbers) and we will expect a single value for the output
(not a fuzzy number).

⇒ It is interesting to avoid working with large matrices in order to sim-
plify the computation. Furthermore the output of the system normally
depends on a small part of these matrices for a given combination of
input values.

Consequently, most fuzzy systems relate the linguistic statements with
numerical values by using a simple algorithm in order to implement the
mapping between input-output variables, the fuzzy inference engine. Here
we will explain it. Anyway, we will first detail it in a formal manner and
later we will review it in a graphical manner to emphasize its simplicity.

Consider a MISO fuzzy system with R if ... then ... rules where each
one is defined with a fuzzy relation between the N fuzzy input sets in U =
U1 × U2 × · · · × UN and the output fuzzy set in V.

For each rule, the antecedent has N fuzzy sets X = {X1, X2, . . . , XN}
whose membership functions are µX(u) = {µX1(u1), µX2(u2), . . . , µXN

(uN)}
while the consequent has one fuzzy set Y with µY (v).

As the input sets are joined by AND’s, the antecedent is in fact a fuzzy
relation in U where for each possible input value u = (u1, u2, . . . , uN) there
will be a degree of membership such that µX(u) = µX1(u1)∩ µX2(u2)∩ · · · ∩
µXN

(uN) where the ∩ operator is any T-norm. This procedure is called the
conjunction.

The fuzzy rule is defined by computing the implication between the an-
tecedent X (fuzzy relation) and the consequent Y (fuzzy set). Consequently
X → Y is defined as a fuzzy relation in U1×U2×· · ·×UN×V having a degree
of membership µX→Y (u1, u2, . . . , uN , v) for each possible u1×u2×· · ·×uN×v.
Recall that the fuzzy implication, in contrast with the propositional logic, is
defined in general with a T-norm such as the minimum or the product. Thus
µX→Y (u1, u2, . . . , uN , v) = µX1(u1) ∩ µX2(u2) ∩ · · · ∩ µXN

(uN) ∩ µY (v) where
the ∩ operator is any T-norm.

As we have explained, the fuzzy inference engine gives an output value
v∗ for a given input value u∗ = (u∗1, u

∗
2, . . . , u

∗
N) applied to the fuzzy system.

Thus, for each rule we must compute the composition between the input rela-
tion X∗ = {X∗

1 , X
∗
2 , . . . , X

∗
N} and the fuzzy relation given by the implication

of the rule X → Y as Y ∗ = X∗ ◦ (X → Y ).

Before computing the composition, observe that the input relation X∗

must be the fuzzy representation of the input sample u∗ = (u∗1, u
∗
2, . . . , u

∗
N).

The most widely used form is the singleton. Thus, X∗ has a degree of mem-
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bership such that µX∗(u1, u2, . . . , uN) is equal to 1 if ui = u∗i ∀ i = 1 . . . N
and 0 otherwise. This procedure is called the fuzzification.

If the max-min composition or the max-product composition are used, the
result of the composition Y ∗ = X∗ ◦ (X → Y ) always gives a fuzzy set Y ∗

whose degrees of memberhsip are given as µY ∗(v) = µX→Y (u∗1, u
∗
2, . . . , u

∗
N , v)

because the minimum or the product between the zeros of µX∗(u1, u2, . . . , uN)
when ui 6= u∗i ∀ i = 1 . . . N and any µX→Y (u1, u2, . . . , uN , v) is always zero.
Thus, the degrees of membership of µX→Y (u∗1, u

∗
2. . . . , u

∗
N , v) prevail over the

rest when the maximum is computed.
Finally we desire an output single value from the R fuzzy sets Y ∗ of each

rule which have been obtained previously. This procedure is called defuzzifi-
cation. First, we will deal with the defuzzification of a single output set and
then we will consider the R output sets. For this purpose, many alternatives
have been proposed in the literature and have been deeply compared [21, 68].
However there are no scientific bases for any of them and its choice is an art
rather than a science. In the case of engineering applications the main crite-
rion is its computational simplicity. Here we can comment some of the most
popular techniques:

• Maximum defuzzification. The output value v∗ is the point of v for
which µY ∗ is maximum. A conflict arise if there is more than one
value and furthermore it does not take into account the distribution of
µY ∗(v).

• Mean of maxima defuzzification. The output value v∗ is the mean of
those v for which µY ∗ is maximum. Some other conflicts may arise if
for instance there are two points with the maximum µY ∗ which are not
together and the method gives as result a mid point whose degree of
membership is low. Anyway, this problem only occurs if there is an
incoherent definition of the system.

• Center of gravity, center of area or centroid defuzzification. The output
value v∗ is the center of gravity of the output set given by:

v∗ =

∫
V

vµY ∗(v)dv∫
V

µY ∗(v)dv

Despite considering all the information of the fuzzy set, it reveals two
problems: the higher computational cost and the fact that the extreme
values of the universe of scope are rarely obtained.

If the R output sets must be considered there are basically two options:
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• The output sets are aggregated with a S-norm, normally the maximum,
in order to apply a defuzzification technique to the resulting set.

• Each set is defuzzified alone and then the R results are weighted with
the relevance of each rule given by the activation degree α = µX1(u

∗
1)∩

µX2(u
∗
2) ∩ · · · ∩ µXN

(u∗N). Thus, if the defuzzified value of each set is
v∗r |r=1...R and the activation degree of the corresponding rule is αr |r=1...R

then,

v∗ =

∑
r αrv

∗
r∑

r αr

The last alternative, usually called the sum-product operator, is in general
faster by avoiding the aggregation. Furthermore, sometimes the values for v∗r
are computed ahead of time because most fuzzy sets are symmetric and its
most representative value is its center, no matter the defuzzification method
we choose. If the sets are not symmetric then the more representative value
of the universe of scope can vary based on the application. For instance the
sets placed in the extremes of the universe of scope are represented by the
value with the maximum degree of membership, and thus the output range
is usually bigger.

If the most representative value of each output set is computed every time
(not stored at the beginning) as the center of gravity of the set, the proce-
dure is called center of sums defuzzification. If these values are computed
every time as the mean of maxima of the set, this procedure is called height
defuzzification.

A comparison between all these methods can be found in [21]. The main
conclusion says that the height method and the center of sums satisfy the
same number of criteria and more than other methods. These criteria are
continuity6, disambiguity7, plausibility8, low computational complexity and
the possiblity of weight counting9.

Furthermore, later we will deal with a fuzzy structure (output singletons)
where the sum-product with center of sums or height defuzzification, gives
the same result than the original centroid method.

We have explained how a fuzzy system can be computed by evaluating
each rule individually. However it is possible to find only a fuzzy relation
describing the meaning of the overall set of rules. The first method is called

6A small change in the input should not result in a large change in the output.
7The result can not be ambiguous.
8The result should lie approximately in the middle of the support and with a high

degree of membership.
9The result can be computed as a weighted average of the defuzzified sets of the rules.
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individual-rule based inference in contrast to the second one called compo-
sition based inference. Nevertheless, the first method is preferred since it is
more comprehensible and computationally very efficient by saving a lot of
memory. For this reason all the fuzzy systems we consider will be individual-
rule type.

Although all these operations can finally derive a compact equation able
to obtain v∗, the overall method can be clarified with the steps given in figure
2.5, which will be explained in a graphical manner.
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Figure 2.5: Basic steps in a fuzzy inference engine.

1. Fuzzification
Normally the inputs of the fuzzy system are crisp values, reason why
they have to be converted to fuzzy sets. If the input values are vague
then these fuzzy sets can be modeled with fuzzy numbers such as tri-
angular membership functions but they are normally modeled with
singletons.

Obviously the singleton fuzzifier is simpler and more used than its nons-
ingleton counterpart in order to avoid a higher computational complex-
ity. Furthermore, the need for a more complex function has not been
well justified until the moment.

Figure 2.6 shows how the crisp value u1 of the input variable input1 is
modeled with a singleton membership function.
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Figure 2.6: Fuzzification with singleton.
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2. Evaluation of the input fuzzy sets
In order to evaluate the antecedent proposition of the rule r in numeri-
cal terms, we first compute the degrees of membership of the fuzzy set
related to the variable i (µir) for 1 ≤ i ≤ N . This is computed by using
a T-norm between the resulting fuzzy set of the fuzzification step and
the fuzzy set µir .

If the fuzzification has been done with singletons whose height is 1
then the evaluation of the input fuzzy set gives directly the degree of
membership of the fuzzy set evaluated at ui as shows figure 2.7.
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Figure 2.7: Evaluation of the input fuzzy sets.

3. Conjunction
If the linguistic operator and is used to join all the input labels then a T-
norm is applied to the degrees of membership (µir) obtained in previous
step in order to obtain the activation degree αr of the rule (also called
the degree of fulfillment, the firing strength, ...) as exemplifies figure
2.8 where 2 input variables are considered. This procedure is called
conjunction.

4. Implication & Composition
This step computes the then operation. Recall that the most widely
used implications in fuzzy logic are obtained by computing with a T-
norm (mininum or product) the input-output relation build from the
input-output sets.

Thus, if we have fuzzified with singleton sets then the output fuzzy set
is defined by applying a T-norm to each value of the output membership
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Figure 2.8: Conjunction.

function and the previous αr value in order to obtain an output fuzzy
set with a height equal to αr.

Results can obvioulsy differ according to the selected T-norm (min,
product, ...) as shows figure 2.9.
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Figure 2.9: Implication.

5. Rule aggregation
Once all the rules have been computed with the previous steps they
are aggregated by using a S-norm as if they had been joined with the
linguistic connector or (Zadeh said else) in order to obtain the final
output fuzzy set of the overall system.

In most cases the maximum is used as S-norm as shows figure 2.10
where we have considered a system with only 3 rules. Anyway this
step can be avoided if one uses the product-sum operator for the de-
fuzzification.
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Figure 2.10: Rule aggregation.

6. Defuzzification
Recall that the two common methods are the center-of-gravity (CoG)
and mean-of-maxima (MoM).
The first one is the same method employed to calculate the center of
gravity of a mass with the difference that the points of the mass are
replaced by the degrees of membership of the output set. The second
one discriminate the part of the output fuzzy set whose degrees of
membership are under a certain level, normally one, and thus, only
the mean of those points with a degree of membership equal to one is
considered. The CoG was the first one which was proposed whereas
the MoM had its origin in the search of a clearly faster option. Despite
giving different results as it is observed in figure 2.11, both methods
give a similar overall performance.
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Figure 2.11: Defuzzification.

Nevertheless and in order to accelerate the whole procedure, sometimes
the rule aggregation procedure is not computed and then a simplified
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defuzzification procedure (with the sum-product operator) can be con-
sidered. In fact it is possible to obtain a crisp output value after the
antecedent conjunction because the implication and the defuzzification
steps are computed together.

The first thing we must consider is that the output fuzzy sets of the
model are replaced by a representative real number, typically its center
of gravity or its mean of maxima, which is stored at the beginning and
thus, there is no need to compute them further more. Then the product
operator is used as T-norm to perform the antecedent conjunction and
also to weigh the output real values of the consequent in order to find
the final output. This option, exemplified in figure 2.12, is the one we
will consider in this work by being the fastest technique without loosing
intelligibility properties.
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Figure 2.12: Centroid method with sum-product operator.

2.2 Types of fuzzy rule-based systems

By being interested in getting intelligible fuzzy models it seems necessary
to remember the different kinds of fuzzy rule-based systems (FRBS) usually
employed in order to compare them. This is a very significant aspect to be
considered because nowadays there are basically three different fuzzy struc-
tures with different objectives and a different trade-off between intelligibility
and accuracy.
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2.2.1 Mamdani type

Ebrahim H. Mamdani was one of the responsible for the recognizion of fuzzy
logic as an interesting alternative to classical control methods [75, 74]. He
was the first to apply fuzzy logic to a real control problem and his efforts to
reveal the features of fuzzy control were granted with a name in the fuzzy
literature. Mamdani-type FRBS, also known as linguistic FRBS, are the
main tool in order to develop intelligible fuzzy models. Main reason is that
any element of the model is based on a linguistic label, for what the rules are
expressed with the following structure:

if input1 is S1r and input2 is S2r and ... inputN is SNr then output is SOr

where input1, input2, ... , inputN are the input variables; S1r , S2r , ... , SNr

are the fuzzy sets of each input variable represented by a linguistic label;
ouptut is the output variable; and SOr is a fuzzy set represented again by a
linguistic label.

As all of terms are linguistic labels it appears particularly suitable when
the human-machine interface is under observation because its information is
clearly understandable.

2.2.2 Takagi-Sugeno type

On the other hand, T. Takagi and M. Sugeno [112] were not satisfied with
the fact that Mamdani-type FRBS were not efficient with data-driven mod-
eling algorithms. Therefore and in order to automate the tuning of model’s
parameters and also to reduce the necessary rules to model the system, they
came up with an alternative rule format:

if input1 is S1r and input2 is S2r and ... inputN is SNr then ...
output is K0r + K1rinput1 + K2rinput2 + · · ·+ KNrinputN

where K0r , K1r , K2r , ... ,KNr are real numbers.
Thus, TS-type FRBS, also known as Takagi-Sugeno-Kang models or lin-

ear fuzzy models, replace the consequent fuzzy proposition formed by a fuzzy
set with a first order linear function of inputs. In this way each rule can be
considered as a local linear model which are blended together by means of
aggregation to define the overall output. In some cases also second order
linear functions or even higher order linear functions have been considered
in literature. Despite reducing significantly the necessary rules to model the
system with a satisfactory error, the intelligibility is very poor by not con-
sidering linguistic labels in their consequents. For this reason this type of
FRBS will not be considered in this work.
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2.2.3 Output singleton type

A special case of FRBS is given when a TS-type FRBS is considered but
with a zero order function in the consequent. This gives models whose rules
are expressed as:

if input1 is S1r and input2 is S2r and ... inputN is SNr then output is K0r

being K0r just a real number which can also be analyzed as a singleton fuzzy
set placed at K0r .

Either in terms of intelligibility or accuracy, this type of FRBS is placed
between Mamdani-type FRBS and TS-type FRBS.

Furthermore, as we have explained before, sometimes the defuzzification
is computed considering only a representative number of the output fuzzy
sets and thus, this is more or less equivalent to replace the Mamdani-type
FRBS with the corresponding output singleton type because the values of
the output membership functions other than crisp representations have no
influence to the system output. This is why they are very used in many
control systems.

This type of FRBS can be computed with a very compact equation. Con-
sider this system with R rules and N input variables for each rule, whose sets
are given with µ

X
(r)
n

(un) 1 ≤ n ≤ N , 1 ≤ r ≤ R. The output singleton

of each rule is placed at Y (r) 1 ≤ r ≤ R. The input sets for each rule are
connected with the linguistic operator AND. If we consider the product for
the T-norm and the sum-product operator for the defuzzification, the output
of the FRBS can be obtained with the following equation,

v(u) =

∑R
r=1 Y (r)

(∏N
n=1 µ

X
(r)
n

(un)
)

∑R
r=1

(∏N
n=1 µ

X
(r)
n

(un)
) (2.35)

In fact the choice of the product as T-norm instead of the minimum can
be well justified because it retains more information. Suppose for instance
a system with two inputs. When the product operator is used to compute
a rule then both inputs will have an effect on the output. On the other
hand, if the minimum operator is used, only one input will have an effect
on the output. Several authors have shown how the interpolation properties
of a fuzzy system can be better understood if the product is used [8, 98].
Anyway the method we will explain later can be applied with any of both
operators, although we also prefer the product.

By being interested in seeking intelligible fuzzy models but if possible in
a fast manner and also with a low computational cost, we will consider this
type of FRBS in our work.
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Its main benefits are that

⇒ they retain linguistic intelligibility in the manner of Mamdani-type
FRBS

⇒ they simplify the model’s computation

⇒ they also guarantee the attractive properties of TS-type FRBS which
open the way for automated determination of the system’s parameters
from input-output data.

For example R. Jang [47] demonstrated how the output singleton type
FRBS and the radial basis neural networks were equivalent and thus, many
techniques developed for neural networks can also be applied to fuzzy sys-
tems.

2.3 Criteria about intelligibility and accuracy

2.3.1 Trade-off between intelligibility and accuracy

As Zadeh stated in his Principle of incompatibility [127]: ”as the complexity
of a system increases, our ability to make precise and yet significant state-
ments about its behavior diminishes until a threshold is reached beyond which
precision and significance (or relevance) become almost mutually exclusive
characteristics”.

Consequently, it turns out to be contradictory to obtain high degrees of
intelligibility and accuracy. Thus, normally only one of these two properties
prevails and therefore, fuzzy modeling has been a discipline with two major
lines of work [13]:

• Precise fuzzy modeling: its main objective is to obtain precise models
and therefore to obtain very similar results between the real system
and the final model. This is an objective property which can be clearly
defined in terms of error.

• Linguistic fuzzy modeling: its main objective is to obtain intelligible
models and therefore to express the behavior of the system in an un-
derstandable way. This is a subjective property which depends on many
factors. Nevertheless, there are several criteria which can be found in
literature and will be considered in this work.
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2.3.2 Intelligibility criteria

Some researchers have become aware of the intelligibility of fuzzy models
and have proposed interesting properties to be analyzed. One must take into
account that these properties must not be considered as an obligation as a
whole and by depending on the problem some of them might be nonsense.
Here we will expose them just to introduce how they are treated and we will
recall them when explaining the method in the next chapter.

1. Distinguishability of fuzzy partitions
When designing an intelligible fuzzy system, the fuzzy sets of each
variable should be distinguishable with a clearly defined range of the
universe of scope in order to associate linguistic terms.

For this purpose, several techniques have been considered in literature:
the constraint of the membership function parameters, the merging of
similar fuzzy sets or the establishment of a semantic order among the
linguistic terms.

We will consider fuzzy partitions (or Ruspini partitions) by being dis-
tinguishable partitions as shows figure 2.13 where for each point of the
universe of scope the total degree of membership should be equal to
one and it could belong to two fuzzy sets at most.

Furthermore, we will not limit the number of fuzzy sets because the
maximum number of distinguishable linguistic terms is obviously a sub-
jective condition and this constraint could degrade seriously the per-
formance of the model.

� � � � � � � � � �� � � � � � 	 
 � �

�




�

���������
�
��

�




�

��	
��
��� 
����������
�
��

Figure 2.13: Distinguishability property.

2. Justifiable number of labels
The number of fuzzy sets for each variable should be compatible with
the number of conceptual entities. This property is justified with the
Principle of incompatibility and also with some studies [79] suggesting
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that the typical number of different labels which can be handled at the
short-time memory is 7± 2 depending on each individual person.

For this reason many fuzzy modeling techniques bound the number of
sets. Nevertheless and as we have explained, we will leave our method
to use as many sets as necessary. Anyway, we will use a hierarchi-
cal method from which users can stop the process at any time if the
intelligibility is degraded.

Furthermore and referring basically to the output sets, we will also use
clustering techniques in order to reduce the number of fuzzy sets and
to achieve a justifiable number of labels.

3. Completeness of fuzzy partitions
A partition is complete if for any point of the universe of scope there is
at least one fuzzy set with a degree of membership greater than zero as
shows figure 2.14. It avoids the fact that the system does not respond
to a given input value.
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Figure 2.14: Completeness property.

By using the former fuzzy partitions we satisfy this property. Anyway,
in some cases we will eliminate some of the final rules obtained with
our method at the end of the process, if the input-output data can
not validate them, and then we may break the completeness of fuzzy
partitions if finally we do not have any rule related to a fuzzy set, as
we will explain later in the method.

4. Coverage of the universe of scope
The membership functions must cover the entire universe of scope in
order to facilitate a linguistic representation to each possible input.
This property is defined in a way very similar to the completeness and
in fact both properties are considered the same in most cases.

We fulfill it by placing two extreme fuzzy sets in the upper limit and
in the lower limit of the universe of scope, and by working with fuzzy
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partitions whose sets are overlapped covering the entire universe of
scope.

5. Normality property
Fuzzy sets must be normal [116] because to consider non-normal mem-
bership functions is semantically to question the meaning of the repre-
sented linguistic term. We will work always with normal fuzzy sets.

6. Natural zero positioning
Only if the nature of the problem requires it, one of the membership
functions should be centered at zero in order to represent the linguistic
term nearly zero. This is very useful in many control problems in order
to track a reference signal.

In fact our method will consider a special treatment when working with
odd functions in order to assure this property.

7. Compactness of fuzzy rules
The number of rules must be as small as possible. In general the
typical full grid structure is not compact and the number of fuzzy rules
increases exponentially with the input labels as shows figure 2.15.
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Figure 2.15: Compactness property.

We will not be able to avoid this grid structure by working with fuzzy
partitions. Nevertheless, if the number of rules is very large we should
at least try that the number of rules which are fired simultaneously for
any input must remain as low as possible in order to furnish a simple
local view of the behavior [92]. By working with fuzzy partitions we
will always fire 2number of inputs rules at most.

8. Consistency of fuzzy rules
The rule base must be consistent with the knowledge it represents. This
is accomplished by considering the following points [54]:
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(a) If two rules have the same antecedent but different consequent,
they are inconsistent.

(b) If two rules have similar antecedents, but fully different conse-
quent, they are inconsistent.

(c) If the antecedents of two rules are different, they are always con-
sidered to be consistent, no matter what consequents they are.

(d) If two rules have similar antecedents and similar consequents, they
are consistent.

In fact [54] developed a consistency measure by using a fuzzy similarity
measure basically in order to control the previous second point because
the other three are in general satisfied. Nevertheless we will not control
it by believing that consistency must be assured with the input-output
data set. If the fuzzy model is according to the information available,
it must be as consistent as the input data.

9. Transparency
One should understand the influence of each system’s parameter on
the system output. Transparency was deeply analyzed by A. Riid [98]
who developed a complete study of 0th order Takagi-Sugeno systems
(output singleton FRBS) for the same fuzzy partitions we use. The
most significant conclusions to be considered are [98, 99]:

(a) With 50% overlapped fuzzy sets, the interval of the output values
which is consequence of the explicit contribution of a given rule is
defined with single points called transparency checkpoints.

(b) Consider triangular membership functions defined with three points
being l the lower limit, c the center and u the upper limit. In or-
der to assure the input transparency with triangular membership
functions, that is to guarantee the existence of transparency check-
points, the following condition must be applied: uset i-1 ≤ cset i ≤
lset i+1

(c) The interpolation between transparency checkpoints is linear in
a SISO system if the centroid defuzzification is considered. Oth-
erwise the output due to neighboring rules (transparency check-
points) is not linear because a planar surface is defined by three
freely chosen points.

In this way and since we will work with output singleton FRBS, we can
consider these aspects in order to understand the performance of the
models.
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2.3.3 Accuracy criteria

Accuracy refers to the capacity of the model to faithfully represent the mod-
eled system by giving output values very similar to the original data. This
property is clearly objective in contrast with the intelligibility criteria which
were very subjective.

The common technique able to quantify the accuracy is the error defined
as the difference between the output value obtained with the model and the
expected value from the original data. Anyway the error can be defined by
taking into account different alternatives which will be studied in the next
chapter.

2.4 Summary

In this chapter we have reviewed the basics of fuzzy theory and fuzzy logic.
The presented results are only a very small part of the body of fuzzy sets and
fuzzy logic but we have considered only those necessary aspects to understand
the rest of the thesis.

We have first defined the terms related to fuzzy logic to be used in the
thesis. Then we have reviewed and justified the type of system we will work
with. We have shown how in spite of the existence of many alternatives
in fuzzy logic, the use of FRBS with output singletons and the use of the
singleton fuzzyfication with the sum-product operator, simplify the overall
computation without degrading its most desirable properties.

Furthermore we have explained the criteria which should be considered
if we are interested in seeking intelligible fuzzy models, which are the core
of this work. They have been introduced in order to be applied as much
as possible in the method we propose and in fact most refinements we will
describe later have been adopted in order to satisfy as many properties as
possible.
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