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“Lo que sabemos es una gota de agua; 

lo que ignoramos es el océano” 

-Isaac Newton �������
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distancia, y a quién tanto extraño… que penita que “el paisito” me quede tan 
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plicata (Patata peluda o “furry potatoe” según Edu…), en enero del 2009. De 



V�
�

estos tres años y medio de tesis tengo tantas anécdotas que contar, tantos 

agradecimientos por dar… Voy a empezar por mis Directores de tesis, ya que sin 

ellos, hoy no tendría este espacio para agradeceros nada… Xavier, gràcies per 

confiar en mi quan ni tan sols jo mateixa ho feia. Gràcies per tot el que he aprés al 

teu costat, per tenir sempre una estona per xerrar o comentar uns resultats, tot i la 

teva agenda atapeïda. Gràcies per no deixar-me caure mai, tot i la meva tendència 

“resbaladiza”. Tu transmets calma i coneixement, qualitats que tanta falta em 

feien! Tenir-te de Director ha estat tot un honor i espero haver sabut aprofitar-ho 

be, impregnant-me de totes aquestes qualitats. Susanneta!!! Tu vas entrar a la 

meva vida com un remolí! Ets senzillament genial! Amb tu hem passat moments 
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GGEENNEERRAALL  IINNTTRROODDUUCCTTIIOONN  

 

BIOLOGICAL INVASIONS 

 

Biological invasions have notably increased during the last century, 

posing a major threat to global biodiversity and yielding a significant disruption 

of well-established communities (Vermeij 1996, Cohen & Carlton 1998, Mack & 

D’Antonio 1998, Mack et al. 2000, Mooney & Cleland 2001, Crooks 2002, 

Grosholz 2002, Blakeslee 2011). Despite some relatively recent attempts to buffer 

the ecological impact of these invasions (e.g., Lafferty & Kuris 1996, Bax et al. 

2001, Hulme 2006, Lodge et al. 2006), oceans remain one of the most affected 

ecosystems (Papaconstantinou 1990, Carlton & Geller 1993, Ruiz et al. 1997, 

Galil 2000, Grosholz 2002, Orensanz et al. 2002, Castilla et al. 2004, Zenetos 

2010). The increasing number of harbors and other artificial structures along the 

coast and the intensification of recreational boating activities is undoubtedly 

facilitating the establishment and spread of exotic species through the provision 

of novel habitat and entrance gates (Zibrowius 1991, Glasby et al. 2007, Tyrrell 

& Byers 2007, Dafforn et al. 2009a, Carman et al. 2009, Bulleri & Chapman 

2010, Hardiman & Burgin 2010, Dumont et al. 2011). The number of species that 

become invasive, however, is only the tip of the iceberg as approximately 99.9% 

of introduced species are unable to overcome biotic and abiotic barriers that will 

allow their long-term establishment in a new location (Williamson & Fitter 1996, 

Richardson et al. 2000, Colautti & MacIsaac 2004, Blackburn et al. 2011). To be 

successful, a species must first be able to survive transportation to a new area, a 

process commonly defined as pre-border (Forrest et al. 2009) or extra-range 

dispersal (Wilson et al. 2009). Among other transport vectors, non-native marine 

species arrive to new locations through ships’ hulls and sea chests, in ballast 

waters or with spats for mariculture (BOX1). Thus, the increasing activity in 

maritime traffic and aquaculture has favored the introduction of marine species 

all over the world (Carlton 1989, Ruiz et al. 1997, Blakeslee et al. 2010). 
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After initial introduction to a new area the successful establishment and 

spread of a species depends on post-border processes (Forrest et al. 2009). These 

processes entail prevailing over natural and human-made barriers to further 

dispersal, and the long-term survival and reproductive success of the newly 

arrived species (Figure 1; Baker 1974, Wasson et al. 2001, Blackburn et al.

2011). Thus, successful colonization of a new environment depends on the 

occurrence of adequate physical and biological conditions, both for adults and 

larvae (Blackburn & Duncan 2001, Stachowicz et al. 2002, Verween et al. 2007,

Fowler et al. 2011, Zerebecki & Sorte 2011) and the ability of a species to 

colonize new habitat rapidly, often exploiting temporal windows of tolerable 

conditions (Davis et al. 2000, McKinney 2002). Other traits that ensure the long-

term establishment of nonindigenous species include the capacity to adapt to 

sudden disturbances (Hobbs 1992, Altman & Whitlatch 2007, Crooks et al.

2011), a wide tolerance to environmental fluctuations (McMahon 1996, Marchetti 

et al. 2004, deRivera et al. 2007), the ability to outcompete and avoid 

autochthonous species and predators (Crawley 1987, Osman & Whitlatch 1998,

Stachowicz et al. 2002, Noonburg & Byers 2005, Liu & Stiling 2006, Chun et al.

2010, Dumont et al. 2011) and the capacity for rapid growth or high reproductive 

output (Marchetti et al. 2004, Burns 2008). 

MAIN SOURCES OF MARINE INTRODUCTIONS 

© G.Anderson 
Mariculture or aquaria 
(Griffiths et al. 2005)  

© NIO 
Ballast seawater         
(Carlton 1987, Chu et al. 1997)  

© CleanABoatServices 
Ships’ hulls and Sea Chests 
(Wasson et al. 2001, Coutts & 
Dodgshun 2007)  

BOX1 



INTRODUCTION | 5  
 

A newly arrived species may either remain confined in marginal marine 

habitats (i.e. harbors, introduced species) or spread out and colonize the 

surrounding areas often altering the structure and function of autochthonous 

communities. Whenever spread of an introduced species occurs to the detriment 

of existing communities, the species is then known as invasive and significant 

effort and resources are invested in contingency plans. On the other hand, 

introduced species that remain confined to one or a few habitats have been largely 

ignored (Kolar & Lodge 2001, Davis et al. 2011). These species, however, retain 

the potential to become harmful, for instance, by increased genetic diversity of 

the introduced populations resulting from multiple introductions (Kolar & Lodge 

2001, Lockwood et al. 2005). Predicting the potential impact of introduced 

species and developing prevention plans in case they become invasive is a far 

more cost-effective and environmentally desirable strategy than actions 

undertaken to eradicate them after establishment and spread (Kolar & Lodge 

2001, Hulme 2006, Forrest et al. 2009). 

Figure 1. The proposed unified framework for biological invasions (Blackburn et al. 2011)
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ASCIDIANS

Ascidians, or sea squirts, are conspicuous components of epibenthic marine 

communities all over the globe (e.g., Glasby 2001, Voultsiadou et al. 2007) and 

are among the most important marine invaders worldwide (Lambert 2002, 

Lambert 2007, Whitlatch & Bullard 2007). Ascidians have short-lived larvae, 

thus anthropogenic transport plays a fundamental role in long-distance dispersal 

of these species (e.g., López-Legentil et al. 2006, Rius et al. 2008). Although the 

rate of introduction of non-indigenous ascidians has been increasing in the last 

decades (Lambert 2007), some species may have been translocated centuries ago 

and have now become ancient introductions whose origins are poorly known 

(Lambert 2001). These ancient colonizers are often species commonly found in 

harbors and man-made substrates, have broad distribution ranges and, while 

naturalized in many areas, continue to be introduced in new regions of the globe 

(e.g., McDonald 2004, Ramsay et al. 2009, Locke et al. 2009, Lejeusne et al.

2011). These species that had become invasive (i.e. Didemnum vexillum) have 

been reported to severely modify the structure and functional integrity of coastal 

habitats by forming large aggregates that outcompete other organisms for 

resources (Zajac et al. 1989, Nandakumar et al. 1993, Lambert & Lambert 2003, 

Castilla et al. 2004, Agius 2007, Rius et al. 2009a). 

THE TARGET SPECIES: STYELA PLICATA

Styela plicata (Lesueur, 1823) (Tunicata, 

Ascidiacea) (Fig. 2) is a solitary ascidian 

commonly found inhabiting marinas and 

harbors of warm and temperate oceans, 

usually at high-densities. In spite of its 

broad geographical distribution (Fig. 3), the 

native range of this species is not yet 

elucidated (Lambert 2001) although

evidence to date suggests that it is native to © Southern Regional Center /S. Carolina DNR 
Figure 2. The solitary ascidian S. plicata 
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the NW Pacific Ocean (Hewitt et al. 2004, Carlton 2006, Carlton 2009, Abbott et 

al. 2007, Barros et al. 2009). In fact, the description of this species was based on 

an individual found on a ship’s hull in Philadelphia (NE USA), and no other

individual was observed in the surrounding natural substrata (Van Name 1945). 

All records of S. plicata are based on observations of man-made structures, and 

only few populations have been reported in natural habitat (Nishikawa, Rius,

Pérez-Portela pers. comm.). The introduction success of S. plicata to new regions 

has been attributed to the capacity of this species to physiologically adapt to 

widely fluctuating environments, particularly to changes in temperature and 

salinity (Sims 1984, Thiyagarajan & Qian 2003). This species can also tolerate 

highly polluted waters (Naranjo et al. 1996) and grows rapidly until reaching 

sexual maturity (Sabbadin 1957, Yamaguchi 1975, Sciscioli et al.1978). The high 

genetic variability reported in S. plicata (Barros et al. 2009) may also enable the 

species to rapidly adapt to new environments (Sakai et al. 2001). Finally, S. 

plicata is also able to displace indigenous species (Rius et al. 2009a). Taken 

together, this species appears to have all the requirements to bridge the gap 

between introduction and invasion, and quickly spread beyond its current 

boundaries worldwide.  

 

Figure 3. Current distribution of S. plicata. Introduced (red), cryptogenic (yellow), 
and failed (pink) range, from the NEMESIS Database (Fofonoff et al. 2003).
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TOOLS TO ASSESS THE INVASIVE POTENTIAL OF INTRODUCED 

SPECIES 

A necessary step to develop efficient management plans to control and monitor 

any introduced species is to acquire a deep knowledge on its biology, ecology and 

in particular on its reproductive strategies, population dynamics, interactions with 

other species and response to physiological stress. In addition, it is essential to 

characterize the genetic composition of each introduced population as it is often 

correlated with its ability to adapt to stressful environments (Fisher 1930, Sakai et 

al. 2001).  

1. Genetic variability 

 

Genetic diversity plays a crucial role on the successful establishment of an 

introduced species or variant in a new area (Holland 2000, Grosberg & 

Cunningham 2001, Sakai et al. 2001, Féral 2002, Geller et al. 2010). The 

development of genetic tools and markers has widely contributed to enhance our 

knowledge on these species. A throughout assessment of the genetic structure of 

an introduced species, including its history of subdivision and gene flow, allows 

the identification of range expansions, colonization events, and an understanding 

of the invasive potential and the relative contributions of artificial and natural 

dispersal (e.g., Govindarajan et al 2005, Darling & Blum 2007, Estoup & 

Guillemaud 2010, Goldstien et al 2010). These studies are especially relevant for 

cosmopolitan ascidian species thriving in harbors and marinas (Box 3). Genetic 

studies can reveal their origin/s and the introduction pathways, which are often 

complex due to multiple or recurrent introductions (Rius et al. 2012). A previous 

study conducted by Barros et al. (2009) regarding the phylogeography of S. 

plicata and based on the analyses of a fragment of the mitochondrial gene 

Cytochrome c Oxidase subunit I (COI) from seven populations could not unravel 

the origin of the species. However, these authors found high nucleotide and 

haplotypic diversities, especially in the Pacific region. A wider study, including 

more individuals and populations from all over the world, and using not only 
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mitochondrial data but also other markers (i.e. nuclear genes) is mandatory to 

acquire a throughout knowledge of S. plicata genetic structure and connectivity. 

2. Biology and reproduction

Rapid growth and high reproductive capabilities are some of the features that 

characterize invasive species. Although many life-cycles of ascidian species are 

known (e.g., Millar 1952, Dybern 1965, Svane 1983, Turon 1988, Becerro & 

Turon 1992, Rocha et al. 1999, Caralt et al. 2002, Sahade et al. 2004, López-

Legentil et al. 2005, Pérez-Portela et al. 2007), few studies have focused on

determining the reproductive and growth cycles of introduced species and even 

fewer have studied these animals in their introduced area (but see Bourque et al.

2007, Shenkar & Loya 2008, Rius et al. 2009b, Wong et al. 2011). The 

MOLECULAR STUDIES OF INTRODUCED ASCIDIANS 

© P. Barter        
Didemnum vexillum         
(Bullard et al. 2007, Lambert 2009) 

© C. Griffiths 
Microcosmus squamiger 
(Rius et al. 2008, 2012)  

© Y. Fontana 
Ciona intestinalis    
(Caputi et al. 2007) 

BOX 2 

© A. Gittenberg 
Styela clava              
(Dupont et al. 2009) 

© S. López-Legentil 
Botryllus schlosseri  
(López-Legentil et al. 2006) 

© J. Oakley 
Botryllus violaceus 
(Brown & Swalla 2007) 
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reproductive strategy of S. plicata has already been studied in some of its 

introduced populations and appears to be characterized by a long reproductive 

cycle and rapid growth until reaching sexual maturity (Sabbadin 1957, 

Yamaguchi 1975, Sciscioli et al. 1978, Tursi & Matarrese 1981, Panagiotou et al. 

2007). In contrast, there is some disagreement in the number of generations per 

year and in the reproductive activity of this species during winter. The apparent 

plasticity in its reproductive cycle makes it necessary to analyze it in the different 

regions where the species has become established.  

 

3. Stress response 

 

As for any other species, the distribution, abundance and long-term survival of 

introduced species are determined by biotic and abiotic regimes. Moreover, in 

order to cope with potential sharp environmental fluctuations that can yield 

suboptimal and stressful conditions, introduced species need to be equipped with 

efficient physiological mechanisms to respond to stress (Bijlsma & Loeschcke 

2005, Thomsen & McGlathery 2007, Piola & Johnston 2008, Dafforn et al. 

2009b). Heat shock protein response is the first mechanism deployed by 

eukaryotes to deal with an accumulation of non-native proteins in stressed cells 

and involves an increased expression of the so called heat shock proteins (hsps; 

Voellmy & Boellmann 2007). Hsps are involved in proper folding or unfolding of 

proteins and participate in the removal of non-native or aggregated proteins from 

the cell (Gething & Sambrook 1992, Parsell & Lindquist 1993, Feder & Hofmann 

1999). Thus, increased transcription of stress-related genes can be considered 

both an early indicator of stress and a response mechanism to it, which is of 

utmost importance when dealing with invasive species.  

The development of new genetic tools has greatly increased our 

knowledge of marine organisms’ stress responses to fluctuating environmental 

parameters (Jackson et al. 2002, Feder & Mitchell-Olds 2003, Thomas & Klaper 

2004, Hofmann & Place 2007). In particular, gene expression quantification has 

allowed the detection of stress at the sub-lethal level and thus the determination 

of the tolerance thresholds for some marine organisms in response to different 

stressors. To date, most of the studies ascertaining stress levels through 
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quantification of gene expression in marine organisms have targeted the heat 

shock protein 70 (hsp70) and have focused on thermal resilience (e.g., Osovitz & 

Hofmann 2005, López-Legentil et al. 2008, Henkel & Hofmann 2008, Feidantsis 

et al. 2009, Rodriguez-Lanetty et al. 2009). However, this tool can also be used to 

determine the plasticity in the production of stress proteins by introduced species 

and their response to sharp fluctuations in environmental parameters such as 

temperature and salinity. Accordingly, further knowledge on how S. plicata copes 

with stress will advance our understanding of the factors limiting its distribution 

and spread potential.  

 

4. The role of early life-history stages 

 

In many invertebrates, the early life-history stages are the most sensitive, and 

conditions that can be withstood by adults are lethal to embryos, larvae or 

juveniles. Processes acting at early stages (embryogenesis, larval settlement and 

metamorphosis) are therefore crucial to determine the success of the 

establishment of a species in a particular area (e.g., Bayne et al. 1976, Gaines & 

Roughgarden 1985, Caley et al. 1996, Verween et al. 2007, Polato et al. 2010). 

The early life-history phases are subjected to high mortalities and act often as 

selective bottlenecks (Gosselin & Qian 1997, Hunt & Scheibling 1997), more so 

in introduced species that can potentially face harsh conditions in man-made 

environments.  

Species tolerance to biotic and abiotic changes determines their capacity 

to survive and reproduce in a given environment; efficiently limiting range 

expansions in marine systems (Dunson & Travis 1991, Gaston 2003, Somero 

2002). Temperature and salinity are the main factors affecting survival, activity 

and distribution of marine organisms (Kinne 1964, O’Connor et al. 2007). Some 

marine environments, however, are also exposed to pollutants, such as heavy 

metals (e.g., copper), especially harbors, marinas and estuaries (Hall et al. 1998, 

Johnston & Keough 2005). Copper is, in comparison to other heavy metals, one 

of the most toxic to marine invertebrates, causing lethal and sublethal effects 

especially in early life-history stages (Bellas et al. 2004, Reichelt-Brushett & 

Harrisson 2005, Xie et al. 2005). Although tolerance to anthropogenic 
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contaminants has rapidly increased in numerous species (e.g., Hoffmann & 

Parsons 1991, Piola & Johnston 2006, Scarabel et al. 2007), the presence of site-

specific heavy metal pollution in aquatic habitats can subject populations to 

intense selection (Galletly et al. 2007, McKenzie et al. 2011). Early life-history 

stages are the key to determining the threshold of species’ tolerance to these 

environmental factors.

In ascidians, embryonic and larval performance and success can be 

influenced by many factors, including light, temperature, salinity, pollutants, 

presence of adults and competitors, and even energy limitation (e.g., Yamaguchi 

1975, Svane et al. 1987, Vázquez & Young 1996, 2000, Thiyagarajan & Qian 

2003, Bellas et al. 2001, 2004, Bennett & Marshall 2005, Rius et al. 2010). Thus, 

in order to predict the potential colonization range of an introduced or invasive 

ascidian species it is also essential to determine which abiotic factors limit or 

impair the correct development of early life history stages of these species (Box 

3).

    

EARLY LIFE HISTORY STAGES OF STYELA PLICATA 

© E. Arias 
Larva (14 h) 

© E. Arias 
Settler (24 h) 

© E. Arias
Metamorphosed (48 h) 

BOX 3 
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SSTTUUDDYY  GGOOAALLSS  

 

The main goal of this PhD thesis is to study the biology, phylogeography and 

resilience of the introduced ascidian Styela plicata in order to assess the invasive 

potential of this species. The results and multidisciplinary approach utilized here 

should in turn contribute to achieve a better understanding of the interaction 

among the many factors shaping invasiveness potential of introduced species in 

general and provide critical information needed to establish efficient management 

tools.  

To achieve this aim, the thesis has been structured in 4 chapters that 

address the objectives summarized in BOX 4. Although all of them are 

interconnected, each one was written as a standalone unit to allow independent 

reading. Therefore, each chapter includes its own introduction, material and 

methods, results and discussion, and may occasionally contain cross-references to 

other chapters.  

The first chapter aims to assess the genetic structure, global 

phylogeography and connectivity of introduced populations of S. plicata, and to 

look for present-day and historical genetic patterns. To address this objective we 

analyzed the genetic structure of seventeen populations distributed around the 

world with two genetic markers, a fragment of the mitochondrial gene 

Cytochrome c Oxidase subunit I (COI) and of the nuclear gene Adenosine 

Nucleotide Transporter (ANT).

The second chapter seeks to assess the reproductive features of S. 

plicata in the Western Mediterranean, an area that may act as a source for 

secondary introductions due to its high shipping activity. The reproductive cycle, 

population dynamics and recruitment patterns of this species was determined over 

a two-year period in two populations, Vilanova i la Geltrú and Blanes.  

Chapter three intends to advance our understanding of the factors 

shaping the current distribution of S. plicata. For this, we monitored the stress 

response of a USA population of this species exposed to wide environmental 

fluctuations over a 2-year period (i.e. temperature and salinity). Stress levels were 
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assessed monthly by quantifying heat shock protein 70 gene expression (hsp70)

using quantitative real-time PCR (QRT-PCR).

The last chapter deals with the susceptibility of S. plicata’s early life-

history stages to changes in salinity, temperature and pollutant concentrations.

This chapter also includes the study of another invasive species, Microcosmus 

squamiger, which can be found coexisting with S. plicata. The utilization of 

another introduced species allowed comparing their responses to abiotic stressors

and looking for patterns of similarities and differences that can potentially be 

extrapolated to other introduced ascidians.

AIMS OF THE CHAPTERS 

CHAPTER 1: The whereabouts of an ancient wanderer: Global 

phylogeography of the solitary ascidian Styela plicata 

- To assess the global phylogeography, diversity and connectivity of S. 

plicata populations. 

CHAPTER 2: Continual reproduction in a seasonal sea: Biological cycle of the 

introduced ascidian Styela plicata in the Western Mediterranean 

- To study the reproductive features, population dynamics and 

recruitment patterns of S. plicata in the Western Mediterranean. 

CHAPTER 3: Stress levels over time in the introduced ascidian Styela plicata: 

The effects of temperature and salinity variations on hsp70 gene expression 

- To monitor the stress response of S. plicata in a salt marsh population 

exposed to wide temperature and salinity fluctuations. 

CHAPTER 4: Tough adults, frail babies: Sensitivity to abiotic factors across 

multiple life-history stages of widely introduced marine invertebrates 

- To determine the effect of stressful abiotic conditions on the 

development success of two invasive ascidians, S. plicata and 

Microcosmus squamiger and correlate their response with the parental 

genotype. 

BOX 4 
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TThhee  wwhheerreeaabboouuttss  ooff  aann  aanncciieenntt  wwaannddeerreerr::  
GGlloobbaall  pphhyyllooggeeooggrraapphhyy  ooff  tthhee  ssoolliittaarryy  

aasscciiddiiaann  SSttyyeellaa  pplliiccaattaa  

ABSTRACT 

 
Genetic tools have greatly aided in tracing the sources and colonization history of 

introduced species. However, recurrent introductions and repeated shuffling of 

populations may have blurred some of the genetic signals left by ancient 

introductions. Styela plicata is a solitary ascidian distributed worldwide. 

Although its origin remains unclear, this species is believed to have spread 

worldwide by travelling on ship’s hulls. The goals of this study were to infer the 

genetic structure and global phylogeography of S. plicata and to look for present-

day and historical genetic patterns. Two genetic markers were used: a fragment of 

the mitochondrial gene Cytochrome Oxidase subunit I (COI) and a fragment of 

the nuclear gene Adenine Nucleotide Transporter/ADP-ATP Translocase (ANT). 

A total of 368 individuals for COI and 315 for ANT were sequenced from 17 

locations worldwide. The levels of gene diversity were moderate for COI to high 

for ANT. The Mediterranean populations showed the least diversity and allelic 

richness for both markers, while the Indian, Atlantic and Pacific Oceans had the 

highest gene and nucleotide diversities. Network and phylogenetic analyses with 

COI and ANT revealed two groups of alleles separated by 15 and 4 mutational 

steps, respectively. The existence of different lineages suggested an ancient 

population split. However, the geographic distributions of these groups did not 

show any consistent pattern, indicating different phylogeographic histories for 

each gene. Genetic divergence was significant for many population-pairs 

irrespective of the geographic distance among them. Stochastic introduction 

events are reflected in the uneven distribution of COI and ANT allele frequencies 

and groups among many populations. Our results confirmed that S. plicata has 

been present in all studied oceans for a long time, and that recurrent colonization 

events and occasional shuffling among populations have determined the actual 

genetic structure of this species.  
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HHiissttòòrriiaa  dd’’uunn  aannttiicc  rrooddaammóónn::  FFiillooggeeooggrraaffiiaa  
gglloobbaall  ddee  ll’’aasscciiddii  ssoolliittaarrii  SSttyyeellaa  pplliiccaattaa    

RESUM 

Les eines genètiques han estat de gran utilitat en l’estudi de l’origen i la història 

de colonització de les espècies introduïdes. Nogensmenys, les recurrents 

introduccions i barreges entre poblacions poden haver desdibuixat part del senyal 

genètic deixat per les introduccions ancestrals. Styela plicata és un ascidi solitari 

de distribució global. Malgrat encara no es coneix el seu origen exacte, es creu 

que aquesta espècie ha estat distribuïda globalment, viatjant al casc de les 

embarcacions. Els objectius d’aquest estudi han consistit en inferir l’estructura 

genètica i la filogeografia global de S. plicata i en buscar patrons genètics actuals 

i històrics. Vam fer servir dos marcadors genètics: un fragment de la subunitat I 

del gen mitocondrial Citocrom Oxidasa (COI) i un fragment del gen nuclear 

Transportador del Nucleòtid Adenina/Translocasa d’ADP-ATP (ANT). Vam 

seqüenciar 368 individus per al COI i 315 per a l’ANT, d’un total de 17 

poblacions d’arreu del món. Els nivells de diversitat gènica van ser moderats per 

al COI i alts per a l’ANT. Les poblacions del Mediterrani van mostrar els valors 

més baixos de diversitat i riquesa al·lèlica per ambdós marcadors, mentre els 

Oceans Índic, Atlàntic i Pacífic van mostrar els valors més elevats de diversitat 

genètica i nucleotídica. La xarxa d’haplotips i les anàlisis filogenètiques amb COI 

i ANT van revelar dos grups d’al·lels separats per 15 i 4 passos mutacionals, 

respectivament. La existència de diferents llinatges suggereix una divergència 

poblacional ancestral. En canvi, la distribució geogràfica d’aquests grups no va 

mostrar cap patró consistent, indicant diferents històries filogeogràfiques per 

cadascun dels dos gens. Es van observar també divergències genètiques 

significatives per molts parells de poblacions, independentment de la distància 

geogràfica. La distribució irregular de les freqüències al·lèliques i dels grups de 

COI i ANT entre les poblacions reflecteix la estocasticitat en els successos 

d’introducció. Els nostres resultats confirmen que S. plicata ha estat present en 

tots els oceans estudiats des de fa molt de temps, i que els processos de 

colonització recurrents i les barreges ocasionals entre poblacions han determinat 

l’actual estructura genètica de la espècie.  
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INTRODUCTION

Biological introductions have notably increased during the last century, posing a 

major threat to global biodiversity and altering the structure and function of many 

communities (Vermeij 1996, Cohen & Carlton 1998, Mack & D’Antonio 1998, 

Mack et al. 2000, Mooney & Cleland 2001, Crooks 2002, Grosholz 2002). 

Despite some relatively recent attempts to buffer the ecological impact of these 

introductions (e.g., Lafferty & Kuris 1996, Bax et al. 2001, Lodge et al. 2006), 

oceans remain one of the most affected ecosystems (Papaconstantinou 1990, 

Carlton & Geller 1993, Ruiz et al. 1997, Galil 2000, Grosholz 2002, Orensanz et 

al. 2002, Castilla et al. 2004, Zenetos 2010). Among other transport vectors, non-

native species arrive to new locations through ships’ hulls and sea chests, in 

ballast water or with spats for mariculture. Thus, the increasing activity in 

maritime traffic and aquaculture has favored the introduction of marine species 

all over the world (Carlton 1989, Ruiz et al. 1997, Blakeslee et al. 2010). The 

establishment of new genetic variants and spread of exotic species has also been 

facilitated by a proliferation of harbors and other artificial structures along the 

coast (Zibrowius 2001, Glasby et al. 2007, Tyrrel & Byers 2007, Dafforn et al. 

2009a, Carman et al. 2009, Bulleri & Chapman, 2010). 

Genetic diversity plays a crucial role on the successful establishment of 

an introduced species or variant in a new area (Holland 2000, Grosberg & 

Cunningham 2001, Sakai et al. 2001, Féral 2002, Geller et al. 2010). The 

development of genetic tools and markers has widely contributed to enhance our 

knowledge on these species. A throughout assessment of the genetic structure of 

an introduced species, including its history of subdivision and gene flow, allows 

the identification of range expansions, colonization events, and an understanding 

of the invasive potential and the relative contributions of artificial and natural 

dispersal (e.g., Govindajaran et al. 2005, Darling & Blum 2007, Estoup & 

Guillemaud 2010, Goldstien et al. 2010). 

The increasing pace of introductions has also fostered increased 

awareness. Monitoring and control programs have been established, and recent 

introductions are more easily detected and inventoried than in the past (e.g., 

Zenetos et al. 2010). However, historical invasions may still remain hidden. 
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Some species could have arrived to a new location long before the distribution 

ranges of autochthonous species were assessed, and be now regarded as native 

(Carlton 2003, 2009). Cosmopolitan or broadly distributed species, particularly 

those thriving in harbors and artificial substrata, are likely to be 

“pseudoindigenous” species (Carlton 2009). Lack of historical records in many 

regions, taxonomic flaws and cryptic speciation further complicate the issue (e.g., 

Turon et al. 2003, Zhan et al. 2010). In addition, and despite the new methods 

available (e.g., Estoup & Gullemaud 2010), our ability to extract information may 

be limited by our knowledge and access to native populations, recurrent 

introduction events, and shuffling of populations during a long period of time (i.e. 

centuries). 

The paramount importance of ascidians for the study of marine 

introductions is well recognized, as they represent one of the most common 

invaders (Lambert 2003, 2007). Ascidians have short-lived larvae, thus 

anthropogenic transport can greatly increase their dispersal abilities. The rate of 

introduction of non-indigenous ascidians has been increasing in the last decades 

(Lambert 2007), mostly linked to ship traffic or aquaculture activities (e.g., 

Lambert & Lambert 2003, López-Legentil et al. 2006, Turon et al. 2007, Lambert 

2009, Dupont et al. 2010, Goldstien et al. 2011, Lejeusne et al. 2011). However, 

some species may have been translocated centuries ago and have now become 

ancient introductions whose origins are poorly known (Lambert 2001). These 

ancient colonizers are often species commonly found in harbors and man-made 

substrates, have broad distribution ranges and, while naturalized in many areas, 

continue to be introduced in new regions of the globe (e.g., McDonald 2004, 

Ramsay et al. 2009, Locke et al 2009, Lejeusne et al. 2011).  

Styela plicata (Lesueur, 1823) (Tunicata, Ascidiacea) is a solitary 

ascidian commonly found inhabiting marinas and harbors of warm and temperate 

oceans, usually at high-densities. In spite of its broad geographical distribution, 

the native range of this species is not yet elucidated (Lambert 2001). Evidence to 

date suggests that S. plicata is native to the NW Pacific Ocean (Hewitt et al. 

2004, Carlton 2006, 2009, Abbott et al. 2007, Barros et al. 2009). In fact, the 

description of this species was based on an individual found on a ship’s hull in 

Philadelphia (NE USA), and no other individual was observed in the surrounding 
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natural substrata (Van Name 1945). All records of S. plicata are based on 

observations of man-made structures, except in Japan, where this species has 

been observed to grow in natural habitats (Nishikawa pers. comm., Barros et al.

2009). A series of unique characteristics has allowed S. plicata to thrive in these 

diverse environments and outcompete other benthic invertebrates. S. plicata can 

physiologically adapt to widely fluctuating environments, particularly to changes 

in temperature and salinity (Sims 1984, Thiyagarajan & Qian 2003, Pineda et al.

2012). This species can also tolerate highly polluted waters (Naranjo et al. 1996), 

grows rapidly until reaching sexual maturity (Sabbadin 1957, Yamaguchi 1975, 

Sciscioli et al.1978), and is capable of self-fertilization. 

To gain insight into the invasive potential of this species, we analyzed 

the genetic structure of seventeen populations covering most of S. plicata’s

distribution range. Using a mitochondrial (COI) and a nuclear (ANT) marker, we 

attempted to infer the global phylogeography of S. plicata, understand its 

dispersion patterns, and assess the diversity and connectivity of introduced 

populations. 

MATERIALS & METHODS 

Sampling 

Samples of Styela plicata were collected in 2009 and 2010 from seventeen 

localities (Table 1): two from the Mediterranean Sea (Iberian Peninsula), three 

from the North-Eastern Atlantic Ocean (Iberian Peninsula, Canary Islands), two 

from the North-Western Atlantic Ocean (US east coast), one from the South-

Western Atlantic ocean (Brazil), five from the North-Western Pacific Ocean 

(Japan and China), one from the South-Western Pacific Ocean (Australia), one 

from the North-Eastern Pacific Ocean (US west coast), and two from the South-

Western Indian Ocean (South Africa). These locations were chosen to cover as 

much of the distribution range of this widespread species as possible. All 

specimens were collected from artificial substrata (harbors, marinas or docks), 

except for one population collected from natural substratum in Sakushima Island 

(Japan). The shortest distance by sea between location pairs was calculated using 



26�
�

the “measure line” tool of Google Earth (version 3.0, Google Inc., Amphitheatre 

Parkway, CA, USA). S. plicata samples were obtained according to current 

Spanish regulations. Samples from outside Spain were collected by national 

researchers following their country regulations. This species is not protected by 

any law and all sampling was conducted outside protected areas.  

All specimens were collected from depths that ranged between 0 and 2 m 

by pulling up harbor ropes, removing specimens from submersed docks and 

pilings, or pulling individuals from rocky assemblages (natural population). 

Samples were dissected in situ and a piece of muscular tissue from the mantle or 

the siphon was immediately preserved in absolute ethanol. Ethanol was changed 

after a few hours, and samples were then stored at -20 ºC until DNA extraction.  

 

Table 1. Population code, name, geographical region (including country), and 
GPS position for the populations of Styela plicata analyzed in this study. 
 

Code Population Geographical Region/Country Latitude/Longitude 

AR Arenys de Mar NW Mediterranean Sea/Spain 41°34'36"N / 2°33'32"E 
JA Javea NW Mediterranean Sea/Spain 38º47’52”N / 0º11’06”E 
SP San Fernando NE Atlantic Ocean/Spain 36°27'36"N / 6°12'13"W 
FE Ferrol NE Atlantic Ocean/Spain 43º29'00''N / 8º14'00''W 
TEN Tenerife NE Atlantic Ocean/Spain 28º00'24''N / 16º39'38''W 
KNY Knysna SW Indian Ocean/South Africa 34°2'28"S / 23°2'38"E 
PE Port Elizabeth SW Indian Ocean/South Africa 33°57'49"S / 25°38'16"E 
NC North Carolina NW Atlantic Ocean/USA 34°8'24"N / 77°51'44"W 
SC South Carolina NW Atlantic Ocean/USA 32°12'57"N / 80°46'49"W 
CAL California NE Pacific Ocean/USA 32°47�00''N / 117°09�00''W 
BRA Santa Catarina SW Atlantic Ocean/Brasil 26º46’30”S / 48º36’34”W 
AM Manly SW Pacific Ocean/Australia 33°47'43"S / 151°17'38"E 
WAK Wakayama NW Pacific Ocean/Japan 34°11'17"N / 135° 8'48"E 
OKI Okinawajima NW Pacific Ocean/Japan 26º19’29”N / 127º50’15”E 

MIS Misaki NW Pacific Ocean/Japan 36° 9'21"N / 133°18'52"E 
SKS Sakushima Island NW Pacific Ocean/Japan 34º43'00''N / 137º02'00''E 
HK Hong Kong NW Pacific Ocean/China 22º24’00''N / 114º21’00'E 
 

DNA extraction and sequencing 

 

Total DNA was extracted using the REDExtract-N-Amp Tissue PCR Kit (Sigma-

Aldrich). The universal primers LCO1490 and HCO2198 described in Folmer et 
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al. (1994) were used to amplify a fragment of the mitochondrial gene 

Cytochrome Oxidase subunit I (COI) from 368 individuals. The primer set 

designed by Jarman et al. (2002) was used to amplify a fragment of the single-

copy nuclear Adenine Nucleotide Transporter (ANT) gene. Based on the resulting 

sequences, we also designed the specific primers ANTf_Splic (5’-TTG GCA 

GCT GAT ATT GGA AAA GG-3’) and ANTr_Splic (5’-CCA GAC TGC ATC 

ATC ATK CG-3’), using the software Primer 3 v.0.4.0. (Rozen & Skaletzky 

2000). Amplifications were carried out for 315 individuals using Jarman et al. 

(2002) primers or the newly designed ones.  

For both genes, amplifications were performed in a final volume of 20 

μL using 10 μL of REDExtract-N-amp PCR reaction mix (Sigma-Aldrich), 1 μL 

of each primer (10μM) for ANT or 0.8 μL for COI, and 2 μL of template DNA. 

The PCR program for ANT consisted of an initial denaturing step at 94 ºC for 2 

min, 30 amplification cycles (denaturing at 94 ºC for 1 min, annealing at 58 ºC 

for 30 seconds and extension at 72 ºC for 30 seconds), and a final extension at 72 

ºC for 6 min, on a PCR System 9700 (Applied Biosystems). The PCR program 

for COI was as described above, except for the amplification cycles, which were 

done at 94 ºC for 45 seconds, 50 ºC for 45 seconds and 72 ºC for 50 seconds. 

PCR products were purified using MultiScreen® filter plates (Millipore), labelled 

using BigDye® Terminator v.3.1 (Applied Biosystems) and sequenced on an ABI 

3730 Genetic Analyzer (Applied Biosystems) at the Scientific and Technical 

Services of the University of Barcelona (Spain). Other samples were directly sent 

for purification and sequencing to Macrogen Inc. (Seoul, Korea Korea). From the 

resulting sequences, we discarded low quality reads for ANT, hence the lower 

number of specimens sequenced for this marker. 

Sequences were edited and aligned using BioEdit® v.7.0.5.3 (Hall 1999). 

Some ANT sequences showed a deletion of 22 amino acids, thus heterozygotes 

had unequal lengths and had to be manually reconstructed by carefully analyzing 

both forward and reverse chromatograms. The allelic phase for ANT genotypic 

data was analyzed using fastPHASE 1.1 (Scheet & Stephens 2006) implemented 

in the software DnaSP v.5 (Librado & Rozas 2009). We also used the 

Recombination Detection Program (RDP3; Martin et al. 2010) to test for 

recombination in our nuclear sequences. Sequences obtained in this study have 
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been deposited in GenBank (accession numbers HQ916425 to HQ916446 for 

COI, and HQ916363 to HQ916423 for ANT). 

 

Population genetics 

Number of alleles (Nh), gene diversity (Hd), and nucleotide diversity (�) were 

computed with DnaSP v.5 (Librado & Rozas 2009). Allelic richness was 

calculated using the program Contrib v.1.02, which implements a rarefaction 

method to obtain estimates independently of sample size (Petit et al. 1998). 

Genetix v.4.05.2 (Belkhir et al. 2004) was used to calculate inbreeding 

coefficients for the ANT data obtained with fastPHASE. The nearly unbiased 

estimation of allelic differentiation between populations was based on the 

adjusted Dest measure described by Jost (2008), and calculated for each marker 

with SPADE (Chao & Shen 2009). The mean and SE values obtained with 

SPADE from 1,000 bootstrap replicates were used to calculate the confidence 

intervals and the degree of significance of the differentiation values (using a 

normal approximation). To correct for multiple comparisons, we set the p-value 

at 0.009, following the Benjamini and Yekutieli False Discovery Rate correction 

(Narum 2006). A value of D was deemed significant when the confidence interval 

around its mean did not contain 0. An analysis of molecular variance (AMOVA) 

was performed to examine population structure, and its significance was tested 

running 10,000 permutations in Arlequin v.3.1 (Excoffier et al. 2005). The 

correlation of genetic and geographical distances was tested for all pairs of 

populations with a Mantel test (Rousset 1997) and 10,000 permutations using 

Arlequin. 

In order to detect population growth and infer population demographic 

events, we computed Tajima's D (Tajima 1989), Fu's Fs (Fu 1997), R2 (Ramos-

Onsins & Rozas 2002), and the raggedness index (based on the mismatch 

distribution; Harpending 1994), using DnaSP. Visual assessment of between-

population differentiation was achieved by performing a discriminant analysis of 

principal components (DAPC, Jombart et al. 2010) on a dataset comprising 

information obtained from both genes. This recently developed technique extracts 

information from genetic datasets (multivariate in nature) by first performing a 
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principal component analysis (PCA) on groups or populations, and then using the 

PCA factors as variables for a discriminant analysis (DA). The previous PCA step 

ensures that the variables input to DA meet the requirements of having fewer 

variables (alleles) than number of observations (individuals) and not having any 

correlation between variables (Jombart et al. 2010). DA seeks to maximize the 

inter-group component of variation. We performed DAPC analyses on both genes 

combined by using the adegenet package for R (Jombart 2008). DAPC was 

performed (function dapc) using pre-defined groups corresponding to populations 

or groups of populations (see Results). Variables were centred but not scaled. In 

all analyses, 50 principal components of PCA were retained and input to DA. DA 

also provided estimates of the probability with which the analysis recovers the 

true membership of the individuals.  

 

Phylogenetic and phylogeographical analyses 

The complete dataset was used to construct a median-joining network for each 

marker using Network v.4.5.1.6 (Bandelt et al. 1999). Resulting loops for the 

ANT network were solved using criteria derived from the coalescent theory 

(Templeton et al. 1987, Templeton & Sing 1993). For the COI network, only one 

loop was observed but it could not be resolved.  

Phylogenetic analyses were conducted using Styela gibbsii as an 

outgroup (acc. number HQ916447 for COI and HQ916424 for ANT). The best-fit 

model of nucleotide substitution for each marker was selected using jModeltest 

v.0.1.1 (Guindon & Gascuel 2003, Posada 2008), with the Akaike Information 

Criterion (AIC) for COI, and the corrected version for small samples (AICc) for 

ANT. The positions corresponding to the indel detected for ANT were not 

included in the analysis (see Results). For Bayesian inference (BI), MrBayes 

v.3.1.2 software (Ronquist & Huelsenbeck 2003) was used to infer tree 

topologies, implementing the corresponding likelihood model for each gene 

fragment. For each gene, the program was run with 1 million generations with a 

sample frequency of 100 (10,000 final trees). After verifying that stationarity had 

been reached (i.e. the average standard deviation of split frequencies between two 

independent chains reached less than 0.01), the first 1,000 trees were discarded in 
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both cases as burnin. Majority-rule consensus trees were generated from the 

remaining 9,000 trees. Bayesian posterior probabilities were used as a measure of 

support for the branch nodes obtained. The obtained trees were drawn with 

FigTree v.1.2.2. DnaSP was used to perform the McDonald & Kreitman test 

(McDonald & Kreitman 1991), and check whether patterns of variation among 

groups of sequences were consistent with predictions for a neutral model. 

 

RESULTS 

Mitochondrial gene 

For the mitochondrial COI gene, 368 sequences with a final alignment length of 

624 bp were obtained. In total, we found 22 haplotypes with 38 polymorphic sites 

(6%), 6 of which corresponded to non-synonymous substitutions. The majority of 

haplotypes obtained (68%) corresponded to private haplotypes, most of which 

were found in the North-Western Atlantic Ocean (Fig. 1). Remarkably, the six 

haplotypes found for the North Carolina population (NC) were private. The 

number of haplotypes per location ranged between one in Tenerife and six in 

Ferrol and North Carolina (Table 2, Table S1). Regarding the oceanic basins, the 

Atlantic and Pacific Ocean had higher haplotype diversity (17 and 8 haplotypes, 

respectively) than the Mediterranean Sea and the Indian Ocean (4 and 5 

haplotypes, respectively; Table 2). Mean and total haplotype diversity (Hd) were 

0.497 (±0.266 SD) and 0.810 (±0.010 SD), respectively. Mean nucleotide 

diversity was 0.0055 (±0.005 SD), while total nucleotide diversity (�) was 0.0135 

(±0.0006 SD). Variation in haplotype and nucleotide diversity between 

populations within basins was considerable. For instance, the populations of 

Knysna (KNY) and Port Elizabeth (PE) located in the Indian Ocean, had a 

haplotype diversity of 0.668 and 0.205 respectively. The California population 

(CAL) presented the highest haplotype and nucleotide diversity values (0.800 and 

0.01684, respectively; Table 2). The higher allelic richness values (obtained after 

rarefaction to a common sample size of 11 and 40 genes per populations and 

basins) were found for the San Fernando (SP, 3.747) and Ferrol populations (FE, 

3.793), while the lower values corresponded to the populations of Manly (AM, 
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0.458) and Arenys de Mar (AR, 0.555). When comparing between basins, the 

Atlantic Ocean showed the highest allelic richness, whereas the Mediterranean 

Sea had the lowest value (Table 2).

Jost’s adjusted estimator (Dest) was used to assess the allelic differentiation 

between populations for each marker, showing high values of differentiation 

(mean Dest = 0.660). The COI data revealed high differentiation between many 

population-pairs, as 88 comparisons out of 136 resulted in significant differences 

after correction for multiple comparisons (Table 3). For instance, the North 

Carolina population had no alleles in common with any other population (Fig. 2), 

and many other populations (e.g., Port Elizabeth, Manly, Misaki, Okinawajima) 

also differed considerably in their allele composition. No particular pattern was 

found for the only population collected from natural substratum (Sakushima 

Island, SKS), which was significantly different from half of the remaining 

populations.

Figure 1. Map showing the sampling sites of Styela plicata. Pie charts represent
haplotype frequencies for the COI gene in each population analyzed. Private haplotypes are
shown in white.
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Table 2. Diversity measures for the studied populations of Styela plicata. 

Number of individuals analyzed per population (N). Allelic richnesstandarized across populations (r), Gene (Hd) and nucleotidic (�) diversity, and 
their corresponding standard deviations in brackets. Number of alleles per population (Nh), with private alleles shown in brackets. Inbreeding 
coefficient (Fis) for ANT. Asterisks represent significant coefficients at P<0.05.  Hexp represents the expected heterozygosity and Hobs represents the 
observed heterozygosity. 

Pop. COI ANT

N r Hd±SD �±SD Nh N r Hd±SD �±SD Nh Fis Hexp Hobs
AR 20 0.555 0.100 (±0.088) 0.00016 (±0.00014) 2 19 3.733 0.620 (±0.072) 0.02012 (±0.00260) 6 0.241* 0.620 0.474 
JA 20 1.785 0.484 (±0.113) 0.00388 (±0.00095) 3 (1) 20 3.307 0.494 (±0.088) 0.01670 (±0.00319) 5 (1) 0.802* 0.494 0.100 
SP 16 3.747 0.775 (±0.068) 0.01484 (±0.00200) 5 (2) 17 8.434 0.791 (±0.065) 0.02831 (±0.00345) 11 (3) 0.266* 0.795 0.588 
FE 21 3.793 0.795 (±0.051) 0.00835 (±0.00274) 6 (1) 13 7.363 0.822 (±0.059) 0.02258 (±0.00253) 9 (2) 0.259* 0.822 0.615 
TEN 24 0.000 0.000 (±0.000) 0.00000 (±0.00000) 1 29 5.349 0.743 (±0.040) 0.03475 (±0.00176) 10 (1) -0.210* 0.744 0.897 
KNY 23 2.354 0.668 (±0.057) 0.00359 (±0.00101) 4 19 8.145 0.828 (±0.044) 0.03608 (±0.00144) 12 (4) -0.018 0.828 0.842 
PE 20 1.158 0.195 (±0.115) 0.00532 (±0.00304) 3 12 14.83 0.953 (±0.029) 0.03889 (±0.00212) 17 (3) 0.040 0.953 0.917 
NC 23 3.323 0.692 (±0.085) 0.00374 (±0.00094) 6 (6) 18 8.927 0.789 (±0.065) 0.02859 (±0.00429) 13 (8) 0.586* 0.792 0.333 
SC 25 2.976 0.710 (±0.060) 0.00491 (±0.00046) 5 (2) 18 7.277 0.807 (±0.050) 0.02797 (±0.00251) 11 (1) 0.022 0.807 0.790 
CAL 11 3.000 0.800 (±0.075) 0.01684 (±0.00270) 4 (1) 11 5.000 0.818 (±0.049) 0.04023 (±0.00248) 6 -0.236 0.818 1.000 
BRA 19 1.818 0.503 (±0.113) 0.01100 (±0.00294) 3 17 6.882 0.775 (±0.052) 0.03290 (±0.00199) 10 (2) -0.301* 0.775 1.000 
AM 24 0.458 0.083 (±0.005) 0.00294 (±0.00264) 2 22 3.140 0.596 (±0.058) 0.01101 (±0.00118) 5 0.242 0.596 0.455 
WAK 25 1.690 0.527 (±0.084) 0.00212 (±0.00035) 3 24 7.863 0.806 (±0.043) 0.03334 (±0.00222) 14 (3) -0.035 0.806 0.833 
OKI 24 1.717 0.424 (±0.112) 0.00162 (±0.00042) 3 16 4.972 0.766 (±0.044) 0.03892 (±0.00176) 7 -0.233 0.766 0.938 
MIS 25 1.361 0.347 (±0.108) 0.01043 (±0.00309) 3 22 6.178 0.780 (±0.044) 0.03019 (±0.00208) 10 (1) -0.230* 0.780 0.955 
SKS 24 2.437 0.663 (±0.065) 0.00175 (±0.00033) 4 (1) 24 4.536 0.714 (±0.044) 0.03725 (±0.00128) 8 (1) -0.414* 0.714 1.000 
HK 24 2.891 0.692 (±0.065) 0.00269 (±0.00061) 5 (1) 13 9.614 0.834 (±0.044) 0.02363 (±0.00199) 12 (5) -0.177 0.855 1.000 
MED 40 3.000 0.314 (±0.091) 0.00226 (±0.00073) 4 (1) 39 5.377 0.554 (±0.058) 0.01833 (±0.00176) 7 (1) 0.494* 0.554 0.282 
ATL 128 9.419 0.759 (±0.034) 0.01373 (±0.00098) 17 (12) 124 17.60 0.852 (±0.015) 0.03269 (±0.00089) 34 (20) 0.155* 0.858 0.726 
PAC 157 4.544 0.768 (±0.011) 0.01380 (±0.00076) 8 (3) 132 13.55 0.803 (±0.016) 0.03200 (±0.00078) 27 (10) -0.067* 0.809 0.864 
IND 43 3.930 0.717 (±0.038) 0.01566 (±0.00085) 5 31 21.00 0.883 (±0.027) 0.03683 (±0.00103) 22 (8) 0.013 0.883 0.871 

Total 368 8.124 0.810 (±0.010) 0.01348 (±0.00057) 22 315 16.32 0.820 (±0.012) 0.03214 (±0.00059) 61 0.098* 0.824 0.743 
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Table 3. Jost’s Dest population differentiation statistic between populations of Styela plicata for the COI (upper diagonal) and ANT
(lower diagonal) markers.

AR JA SP FE TEN KNY PE NC SC CAL BRA AM WAK OKI MIS SKS HK

0.067 0.753 0.483 0.948 0.366 0.938 1 0.973 0.521 0.951 1 0.844 0.832 0.997 0.162 0.442 
0 0.76 0.452 1 0.299 0.944 1 1 0.481 1 1 0.888 0.841 1 0.132 0.439 

0.036 0.082 0.114 0.381 0.219 0.504 1 0.52 0.086 0.129 0.575 0.269 0.841 0.502 0.458 0.177 
0.032 0.129 0.015 0.45 0.05 0.767 1 0.241 0.184 0.246 0.835 0.311 0.804 0.793 0.185 0.032 
0.49 0.49 0.346 0.486 0.351 0.942 1 0.506 0.702 0.091 1 0.135 0.842 0.952 0.666 0.303 

0.281 0.289 0.116 0.258 0.058 0.923 1 0.557 0.325 0.29 0.997 0.238 0.774 0.965 0.101 -0.03 
0.522 0.567 0.342 0.391 0.318 0.138 1 0.969 0.312 0.656 0.003 0.941 0.981 0.015 0.93 0.925 
0.978 0.99 0.992 0.945 0.897 0.832 0.715 1 1 1 1 1 1 1 1 1
0.098 0.157 0 0.042 0.213 0.086 0.231 0.978 0.771 0.333 1 0.409 0.771 0.946 0.732 0.493 

0.35 0.358 0.176 0.314 0 0 0.134 0.923 0.07 0.44 0.386 0.6 0.857 0.316 0.338 0.338 
0.269 0.267 0.125 0.273 0.018 0 0.274 0.97 0.074 0 0.716 0.105 0.842 0.662 0.639 0.229 
0.134 0.113 0.099 0.189 0.461 0.319 0.509 1 0.09 0.297 0.284 1 1 0.027 1 0.994 
0.538 0.543 0.353 0.51 0 0.06 0.3 0.966 0.212 0 0.02 0.482 0.432 0.876 0.425 0.128 
0.261 0.273 0.161 0.274 0.084 0.015 0.117 0.875 0.106 0 0.025 0.321 0.142 0.798 0.503 0.637 
0.479 0.499 0.315 0.457 0 0.066 0.281 0.95 0.157 0 0.025 0.427 0 0.107 0.925 0.935 

0.22 0.21 0.128 0.259 0.051 0.001 0.273 0.937 0.082 0 0 0.248 0.093 0 0.071 0.101 
0.525 0.636 0.585 0.388 0.826 0.754 0.789 0.94 0.604 0.759 0.758 0.718 0.822 0.774 0.777 0.761   
Values in bold represent significant comparisons after FDR correction (see text)
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The results of the hierarchical AMOVA showed higher within 

population variability (58.41%) than the one between populations (41.59%, P < 

0.001, Table 4). AMOVA analyses performed by grouping populations according 

to their oceanic basin revealed that most of the genetic diversity was due to 

variability within populations (56.97%, P < 0.001), and among populations 

within basins (34.36%, P < 0.001). However, no significant differences in genetic 

structure were detected between basins (8.67%, P = 0.055 for COI; Table 4). 

Accordingly, the Mantel test showed no correlation between genetic 

differentiation and geographical distance between populations (r = 0.00009, P = 

0.434). 
 

Table 4. Analysis of the molecular variance (AMOVA) for the COI and ANT 
genetic markers. 
 

Source of variation df Sum of 
squares

Variance
components 

Variation
(%) 

P
value 

Fixation 
indices 

a) COI       

AMOVA without groups       

  Among populations without groups 16 63.536 0.17255 Va 41.59* 0.000 FST: 0.41589 

  Within populations 351 85.064 0.24235 Vb 58.41   

  Total 367 148.601 0.4149       

AMOVA between basins       

  Among groups 3 19.279 0.03690 Va 8.67 0.055 FCT : 0.08673 

  Among populations within groups 13 44.257 0.14618 Vb  34.36* 0.000 FSC : 0.37624 

  Within populations 351 85.064 0.24235 Vc 56.97* 0.000 FST : 0.43034 

  Total 367 148.601 0.42543    

b) ANT       

AMOVA without groups       

  Among populations without groups 16 28.988 0.03892 Va 9.40* 0.000 FST: 0.09397 

  Within populations 613 230.022 0.37524 Vb 90.6   

  Total 629 259.01 0.41416       

AMOVA between basins       

  Among groups 3 7.806 0.00670 Va 1.61 0.127 FCT : 0.01610 

  Among populations within groups 13 21.182 0.03412 Vb 8.20* 0.000 FSC : 0.08336 

  Within populations 613 230.022 0.37524 Vc 90.19* 0.000 FST : 0.09812 

  Total 629 259.01 0.41606    

Analyses are presented for the total of populations without grouping, and pooling 
populations from the same oceanic basin together (Mediterranean, Atlantic, Pacific and 
Indian). Va, Vb and Vc are the associated covariance components. FSC, FST and FCT are the 
F-statistics 
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Overall, neutrality tests were not significant (Table 5), and hence did not 

support any lack of equilibrium due to selection or population size changes at any 

level (either partitioned by populations or oceanic basins). The only exceptions 

encountered were for the Australian population of Manly (AM), with 

significantly negative Tajima’s D values, and for Sakushima and the Group 1 of 

haplotypes (see below), with a significant raggedness index (Table 5).  

 

Table 5. Demographic parameters of S. plicata populations for each genetic 
marker (COI and ANT), calculated for each population and samples grouped by 
basin and by group (1 and 2 for COI, and A and B for ANT). Tajima’s D, Fu’s Fs 
statistic, Ramos-Onsins & Rozas statistic (R2), and the raggedness index (r).  
 

COI   ANT

D Fs R2 r D Fs R2 r

AR -1.1643 -0.879 0.218 0.650  1.29064 2.347 0.169 0.243 

JA 0.74648 3.941 0.173 0.462  0.25898 2.715 0.126 0.345 

SP  2.15635 6.162 0.229 0.103  0.59380 0.232 0.143 0.077 

FE -0.8358 3.033 0.104 0.112  1.04251 -0.535 0.170 0.032 

TEN 0.0000 0.000 0.000 0.000  2.32335 5.011 0.187 0.190 

KNY -0.2735 2.391 0.123 0.149  2.15146 1.718 0.196 0.068 

PE -1.2995 5.371 0.090 0.658  1.83362 -4.076* 0.197 0.021 

NC -0.1446 0.419 0.124 0.127  -0.15150 -0.920 0.112 0.044 

SC 0.52180 2.497 0.153 0.348  0.63874 -0.198 0.141 0.140 

CAL 1.81929 6.420 0.239 0.155  2.46514 5.670 0.229 0.119 

BRA 0.55113 9.699 0.164 0.483  0.94915 0.814 0.152 0.101 

AM -2.53** 5.308 0.200 0.854  0.83652 2.602 0.149 0.366 

WAK 1.64264 2.196 0.220 0.384  2.48268 0.904 0.201 0.066 

OKI 0.64968 1.430 0.169 0.360  3.02590 6.494 0.235 0.215 

MIS 0.82576 10.821 0.163 0.578  1.06354 1.146 0.152 0.150 

SKS 0.05885 0.400 0.136 0.043*  3.17433 7.094 0.226 0.244 

HK 0.13328 0.478 0.137 0.069   0.50405 -0.338 0.141 0.046 

MED -0.7154 1.657 0.087 0.482  1.01299 2.380 0.139 0.286 

ATL 1.10126 3.816 0.125 0.109  1.02151 -7.404* 0.114 0.046 

PAC 2.66373 15.635 0.172 0.103  1.72095 -2.885 0.136 0.081 

IND 2.31343 -0.246 0.108 0.033   2.44640 -1.956 0.190 0.029 

Group 1(A) -0.8464 -2.032 0.054 0.024*  -0.04229 -11.46** 0.083 0.066 

Group 2(B) -0.5397 -0.488 0.075 0.360  -0.29695 -6.598 0.067 0.140 

Asterisks represent significant results: * P < 0.05; ** P < 0.01; *** P < 0.002 
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The network obtained for the COI gene (Fig. 2a) revealed two divergent 

lineages (hereafter called Group 1 and Group 2) separated by 15 mutational steps 

and without any intermediate haplotype in between. McDonald-Kreitman (MK) 

test of neutrality showed that there were no differences between proportions of 

silent and replacement sites within and between these two groups (P=0.64). 

Sequences from both Group 1 and 2 are found in all basins and coexist in most 

populations; except for the absence of Group 2 in the Mediterranean. Judging by 

their high frequency, wide geographical distribution, and central position in the 

network, H_2 may be the ancestral haplotype of Group I. No clear result was 

obtained for group 2, as the most abundant haplotype (H_5) occupied a distal 

position within the group. (Fig. 2a). The BI tree reconstructed with COI 

haplotypes showed two moderately supported clades exhibiting 3.27% sequence 

divergence among them (Fig. 2b). These two clades matched exactly with Group 

1 and 2 described for the COI network (Fig.2a). Haplotype H_2 (inferred as 

ancestral) held a basal position within Group 1, while no evidence for a basal 

haplotype or group of haplotypes was found for Group 2. 

Nuclear gene 

 

For the ANT gene, we obtained 315 sequences of 220 bp. The ANT fragment 

targeted here includes an intron in many metazoans (Jarman et al. 2002). 

However, in our case, all sequences could be translated to amino acids and final 

sequence length was in accordance with what has been found for species without 

an intron in this position (Jarman et al. 2002). Our resulting dataset contained 80 

homozygotes, which allowed a reliable reconstruction of the gametic phase of the 

heterozygotes (> 95% confidence). No evidence was detected for recombination 

within our sequences. In total we obtained 61 alleles (Tables S2 and S3), 34 in the 

Atlantic (20 of which were exclusive to this basin) and 27 in the Pacific (Table 2). 

A deletion of 22 amino acids was found in 5 alleles (Table S2). Once more, the 

Mediterranean showed the lowest number of alleles (7, of which only one was 

private). Mean and total haplotype diversity (Hd) were 0.761 (±0.011 SD) and 

0.820 (±0.012 SD), respectively. Mean nucleotide diversity was 0.0295 (±0.008 

SD), while total nucleotide diversity (�) was 0.0321 (±0.0006 SD). Gene and 
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nucleotide diversity did not differ between basins, except for the Mediterranean 

(Table 2). The South African populations of Knysna (KNY) and Port Elizabeth 

(PE) showed the highest values for genetic diversity, followed by most Pacific 

populations and some Atlantic ones (Table 2). Port Elizabeth (PE) was also the 

population showing the highest allelic richness (14.830) followed by Hong Kong 

(HK, 9.614), North Carolina (NC, 8.927) and Knysna (KNY, 8.145). As found for 

the mitochondrial gene, the lowest value of allelic richness corresponded to 

Manly (AM, 3.140). Low values were also retrieved for the Mediterranean 

populations of Javea (JA, 3.307) and Arenys de Mar (AR, 3.733). Comparisons 

between basins indicated that the Indian Ocean had the highest allelic richness, 

while the Mediterranean had the lowest (Table 2). Eight populations had less 

heterozygotes than expected, five of which (Arenys de Mar, Javea, San Fernando, 

Ferrol and North Carolina) deviated significantly from Hardy-Weinberg 

equilibrium (significant Fis values). Interestingly, 9 populations had an excess of 

heterozygotes (and negative Fis), and in 4 of them (Tenerife, Brasil, Misaki, 

Sakushima) these inbreeding coefficients were significant. Per basins, there was a 

heterozygote deficit in all populations except for the Pacific, and this deficit was 

most marked for the Mediterranean group of populations (0.282 Hobs vs. 0.554 

Hexp).  

Jost's adjusted estimator showed lower values of differentiation for the 

nuclear intron ANT (mean Dest = 0.324) than for the mitochondrial COI. Dest 

values obtained for the ANT gene revealed fewer significant differences in pair-

wise comparisons (45 out of 136). As before, the North Carolina population was 

significantly different from all the others (Table 3). Interestingly, the Sakushima 

population (on natural substratum) only differed from the North Carolina and 

Hong Kong populations.  

The hierarchical AMOVA analyses showed that most of the observed 

variability was found within populations (90.6%), and only a small but significant 

9.4% (p < 0.001) of variability was found among these populations (Table 4). 

When grouping populations according to their oceanic basins, AMOVA analyses' 

results were similar to those found for the mitochondrial marker. Most of the 

genetic diversity was due to variability within populations (90.19%, P < 0.001), 

and among populations within basins (8.20%, P < 0.001). No significant 
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differences in genetic structure were detected between basins (1.61%, P = 0.127;

Table 4). As found for COI, the Mantel test showed no correlation between 

genetic differentiation and geographical distance between populations (r =

0.000001, P = 0.243). Regarding the neutrality test, the same trend of COI was 

observed for ANT, with most tests being non-significant. However, Fu’s Fs were 

significant for the Atlantic Ocean and the Port Elizabeth population (Table 5). 

Figure 2. Network and phylogeny for COI. a) Median-joining haplotype network for Styela
plicata using COI results. Area of circles is proportional to the number of individuals found for
each haplotype. Partitions inside the circles represent the proportion of each population within
each haplotype. Small circles represent missing haplotypes. Lines between circles represent one
mutational step and non-synonymous substitutions are indicated with an asterisk; b) Phylogeny
of partial COI gene sequences using Bayesian inference. The congeneric species Styela gibbsii
was used as an outgroup. Posterior probabilities are indicated when >0.5.
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Network analyses showed a considerable amount of loops that were 

unambiguously resolved following coalescent rules (Fig. 3a). None of these loops 

affected the main structures shown in the network. However, the relationship 

among alleles should be considered with caution and no clear ancestral allele 

could be reliably designated. Although less divergent than with the COI data, the 

ANT network also showed a distinction in two groups of sequences separated by 4 

mutational steps (Fig. 3a). None of these four mutations corresponded to non-

synonymous changes. Finally, the 22 amino acids deletion found in 5 alleles 

(H_4, H_14, H_39, H_43, H_50) was also retrieved (represented by a dot line in 

Fig. 3a). McDonald-Kreitman neutrality tests could not be performed between 

these groups, as there was no fixed difference between them. BI analysis showed 

that one of the groups (hereafter called Group A) occupied a basal position within 

the resulting tree, while a second group (Group B) formed a monophyletic, 

derived clade supported by a posterior probability of 1 (Fig. 3b). Within group B, 

the five alleles with a 22 amino acid deletion also formed a monophyletic clade 

(posterior probability = 1; Fig. 3b). When the sequence fragment corresponding 

to the deletion was removed from the analyses, these 5 alleles still grouped 

together, indicating that their phylogenetic relationship was independent from the 

indel presence. The alleles containing the deletion were found in all studied 

basins, not showing any apparent geographic pattern (Table S2, Fig. 3a).  

The private allele H_41 from North Carolina appeared genetically 

distinct from all the others in both the network and the BI analyses (Fig. 3a). This 

sample was re-extracted and sequenced de novo, but the same resulting sequence 

was obtained. The Mediterranean populations only presented alleles from Group 

A of ANT, while the remaining populations presented alleles from both groups 

(especially, those populations from the Pacific Ocean). This pattern explains the 

lower genetic diversity found in the Mediterranean basin compared with that of 

the other oceans. Group B seems to be a highly successful derived clade that has 

spread in most populations. Interestingly, in all localities in which there was an 

excess of heterozygotes (negative Fis), there was also a higher than expected 

proportion of individuals having one allele of each group (A or B; 0.75 observed 

vs. 0.49 expected frequency). This is especially noteworthy in the Pacific 

populations, where we found twice the number of “mixed” genotypes than 
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expected. The only exception was for North Carolina, which had a significant 

deficit of heterozygotes and less than expected genotypes with an allele from each 

group. 

Finally, DAPC analyses were performed combining results obtained for 

COI and ANT. In order to avoid cluttering of populations, a first DAPC was 

performed with 3 groups: the North Carolina population (significantly different 

from the rest in previous analyses), the Sakushima population (the only natural 

Figure 3. Network and phylogeny for ANT. a) Median-joining allele network for Styela plicata using ANT
results. Area of circles is proportional to the number of individuals found for each allele. Partitions inside the
circles represent the proportion of each population within each allele. Small circles represent missing alleles.
Lines between circles represent one mutational step and non-synonymous substitutions are indicated with an
asterisk; b) Phylogeny of partial ANT gene sequences using Bayesian inference. The congeneric species Styela
gibbsii was used as an outgroup. Posterior probabilities are indicated when >0.5. The dot line mark the clade
corresponding to sequences with a 22 amino acid deletion.
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substratum population) and the remaining populations. The PCA components 

retained explained 98.6% of the total variance observed. The scatterplot of the 

first two components of the DA (Fig. 4) showed that the first axis separates North 

Carolina from the rest, which form a tight cluster, while the second axis slightly 

sets apart the Sakushima population, although with a clear overlap of the inertia 

ellipses. We then repeated the analysis removing the North Carolina population 

and considering all populations as separate groups. 99.2% of the total variance 

was explained by the retained components of the PCA. The populations appeared 

mixed in the space of the first two axes of the discriminant analysis (Fig. 4), 

although the first axis separated slightly Misaki, Port Elizabeth and Manly on one

extreme, and the two Mediterranean populations at the other end. The rest of the 

populations clustered tightly together, with the natural substratum population 

(Sakushima) appearing in a central position.

Figure 4. Discriminant analysis of principal components (DAPC). Left: plot of the first two principal
components obtained in the DAPC analysis considering three groups: the North Carolina population (NC),
the Sakushima Island population (SKS) and other populations (OP). Right: plot of the DAPC results
analyzing all populations as individual groups, except North Carolina, which was not analyzed (see text).
Population codes as in Table 1. Labels are placed at the centre of dispersion for each group, further
delineated by inertia ellipses. Dots represent individuals.
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DISCUSSION 
 

Several remarkable features emerged from the recovered distribution of the 

genetic variability. First, there is a divergence in lineages for both markers, each 

featuring two groups of sequences. Second, the genetic pool is well mixed at the 

basin level, with little or no phylogeographic signal remaining. Third, many 

population pairs are genetically different, regardless of the geographic distance 

among them. Finally, there seems to be an effect of selection on the genetic 

makeup of this species, as illustrated by the highly divergent population of North 

Carolina and the intra-individual distribution of both groups of ANT sequences. 

The most parsimonious explanation for the presence of two groups of 

sequences for COI (group 1 and 2) and ANT (group A and B) is that they have 

arisen concomitantly in a past fragmentation event within the native area of the 

species. We cannot, however, exclude an independent origin of these genetic 

splits. At present, the distribution of the groups obtained with the two markers is 

totally unrelated. Sequences of the Group A for ANT were found in ascidians 

having mitochondrial sequences of both lineages (Groups 1 and 2), and in direct 

proportion to their relative abundances. The same trend was observed for 

individuals having sequences of Group B for ANT (Table S3). If the 

differentiation of ANT and COI in different lineages occurred simultaneously in 

allopatric regions, the link between these markers was lost long ago. 

Mitochondrial genes are inherited maternally, while nuclear genes can be shuffled 

repeatedly through sexual reproduction. Thus, the lack of congruence found in the 

distribution of both markers could be due to frequent contact between individuals 

from different lineages coupled with genetic drift. A greater sensitivity of 

mitochondrial genes to genetic drift has been previously reported (Shaw et al. 

2004), and may explain the differences observed between mitochondrial and 

nuclear markers (e.g., Shaw et al. 2004, Darling et al. 2008, Drew et al. 2010). In 

addition, no geographic pattern was observed in the distributions of the lineages 

observed for both markers. Even in the putative native area of S. plicata (NW 

Pacific), we found sequences of the two groups of COI and ANT in the same 

populations and, for ANT, even in the same individual. 
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Barros et al. (2009) found nine COI haplotypes for Styela plicata, 8 

belonging to our Group 1 and one to our Group 2. Based on this divergent 

haplotype, these authors suggested that there could be a cryptic species within 

what is known as Styela plicata. Our results did not lend support to this 

hypothesis, as the nuclear marker showed a distribution unrelated to these two 

groups of mitochondrial sequences. Furthermore, when comparing our 

mitochondrial sequences with other species of the genus, the resulting genetic 

divergence was much higher than that found between our two COI groups (3.27% 

between our groups, 21.12% between S. plicata and S. gibbsii; 22.7% with S. 

clava, and 20% with S. montereyensis). The divergent sequences of S. plicata 

reported from Australia by Pérez-Portela et al. (2009) (GenBank accession 

numbers FJ528633-34 for COI and FH897323 for 18S rRNA) were likely a 

misidentification (Pérez-Portela, pers. comm.). 

Although the native range of Styela plicata is not known with certainty, 

the prevailing hypothesis is that it comes from the NW Pacific area (Barros et al. 

2009, Carlton 2009). S. plicata would have then dispersed to other tropical and 

warm-water regions by ship fouling, likely since the early transoceanic navigation 

times (Carlton 2009). Our results indicated that at present the genetic pool of S. 

plicata is well mixed among basins, with most genetic variability found within 

populations. Moreover, high genetic variability and the putatively most ancient 

alleles have not only been found in the NW Pacific populations (e.g., Sakushima, 

Hong Kong) but also in other oceanic basins (e.g., North East Pacific, Atlantic 

and Indian Ocean; see also David et al. 2010). Thus, we could not find any clear 

genetic signal in favor (or against) the hypothesis on the NW Pacific origin of this 

species. The only potential trend observed in our data was for the Mediterranean 

basin. The Mediterranean populations presented the lowest values for all diversity 

indexes, and only displayed group 1 for COI and group B for ANT. However, 

these findings should be interpreted with caution, as only two Mediterranean 

localities were included in this study. Lack of resolution for assessing native areas 

was also found in studies with other ascidian species that are believed to be 

ancient colonizers (e.g. Ciona intestinalis Zhan et al. 2010). On the other hand, 

species that have spread more recently still have a genetic signature of their 
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introduction history (e.g., Botryllus schlossei López-Legentil et al. 2006, 

Microcosmus squamiger Rius et al. 2008, Styela clava Goldstien et al. 2011).  

Long-distance dispersal of introduced marine species across oceans 

probably occurs via major shipping routes while further spread at a local scale 

may take place through local traffic and recreational boating (Ruiz et al. 1997, 

Wasson et al. 2001, López-Legentil et al. 2006, David et al. 2010, Goldstien et 

al. 2010). Our results indicate that many populations of S. plicata are well 

differentiated from others in terms of allele frequencies. This observation is in 

agreement with results obtained for other ascidians inhabiting harbors and 

marinas (Turon et al. 2003, López-Legentil et al. 2006, Dupont et al. 2010, 

Lejeusne et al. 2011 but see Zhan et al. 2010 for an exception). As expected when 

anthropogenic transport is the vector of dispersal, genetic differentiation among S. 

plicata populations was unrelated to geographic distance. Some distant 

populations (e.g., Hong Kong and Ferrol) were genetically similar, while closer 

populations such as Knysna and Port Elizabeth (South Africa) were significantly 

divergent. The stochasticity of main transport events through international ship 

traffic could determine the observed patterns among basins. However, our 

sampling design was inappropriate to assess the degree of connectivity among 

closely located populations (i.e. post-border dispersion, Goldstein et al. 2010). 

Thus, it still remains necessary to evaluate the role of small-scale processes in 

colonization dynamics, and to assess the importance of recreational boating in 

spreading introduced species.  

Low genetic diversity caused by a founder effect or a bottleneck is not 

always the benchmark for introductory events (Cornuet & Luikart 1996, Sakai et 

al. 2001, Dupont et al. 2007). In fact, recurrent introductions typically lead to 

highly diverse populations, especially if they receive migrants from native 

populations that are genetically structured (Holland 2000, Simon-Bouhet et al. 

2006, Roman & Darling 2007, Dupont et al. 2010, Geller et al. 2010). Here, we 

found that genetic diversity indexes varied according to the studied population, 

with overall values ranging from moderate to high for both markers. Some 

exceptions were these populations where only one or two mitochondrial 

haplotypes were present (i.e. Arenys de Mar, Tenerife, Manly).  
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Besides recurrent introductions through ship transport, population 

differentiation could also be due to selection. Here, we found uneven abundances 

for each major group obtained for COI (Group 1 and 2) and ANT (Group A and 

B). For COI, haplotypes from Group 1 were considerably more frequent and 

diverse than haplotypes from Group 2. It is possible that these groups stand for 

differential adaptive capabilities of the individuals to stressful environments. This 

adaptive capability does not need to be directly linked to our studied gene (non-

significant McDonald-Kreitman test), but to other mitochondrial genes. 

Differential adaptation to environmental factors (e.g., temperature, salinity) of 

mitochondrial sequences within one species is not a rare phenomenon, and has 

been described in many species (Bastrop et al. 1998, Gerber et al. 2001, Schizas 

et al. 2002, Rawson & Burton 2002, Kelly et al. 2006, Roman 2006, Folino-

Rorem et al. 2009). 

For the ANT gene, selection may be favoring heterozygotes that have an 

allele of each group (A and B). In fact, the excess of heterozygotes found in most 

populations is due to the number of individuals with an allele each of A and B. 

Accordingly, the number of individuals with both alleles from the same group (A 

or B) was lower than expected. Homozygotes for the basal Group A occurred ca. 

5 times less than expected based on allele frequencies. Thus, it is possible that 

populations that originally had only one group of ANT sequences were seeded 

with arriving individuals featuring the other group. The mingling of both groups 

may have favored the heterozygotes with an allele from each group, and if this 

combination had an adaptive value, enhanced the fitness of those individuals. As 

for the COI lineages, this new adaptive capability to the environment is not 

necessarily linked to the ANT gene itself. Admixture between lineages can foster 

the emergence of novel genetic combinations with different physiological 

attributes and invasive characteristics (Geller et al. 2010). In contrast to our 

results, solitary ascidians inhabiting artificial structures usually have a general 

deficit of heterozygotes (Dupont et al. 2009, 2010, Zhan et al. 2010). 

Early invasions should not be considered “naturalized,” rather, their 

impacts, potential for further spread, and degree of integration in local processes 

and interactions should be assessed. A throughout knowledge of introduced 

species is required to understand and interpret the present-day structure, function, 
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and conservation of marine communities (Grosholz 2002, Carlton 2003, 2009). 

Our genetic study of an ancient wanderer has uncovered signatures of deep 

divergences and recent mixing, with a phylogeographic signal mostly blurred. 

Current evolutionary processes may include adaptive changes and low and 

stochastic connectivity among established populations. More studies on S. 

plicata’s biological cycle, interactions with other marine species, and local-scale 

genetic structure are necessary to understand the biology, ecology and post-

border dispersal of this species and prevent ecosystem alterations.  
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Supporting information

Table S1. Haplotype frequencies observed for the COI gene. Numbers in bold are private haplotypes.

AR JA SP FE TEN KNY PE NC SC CAL BRA AM WAK OKI MIS SKS HK
H_1 0.95 0.7 0.125 0.2857 0 0.391 0.05 0 0 0.273 0 0 0.08 0.125 0 0.5 0.333
H_2 0.05 0 0.375 0.3333 1 0.435 0.05 0 0.32 0.182 0.684 0 0.64 0.125 0.04 0.292 0.458
H_3 0 0.2 0 0 0 0.13 0 0 0 0 0 0 0 0 0 0 0
H_4 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H_5 0 0 0.313 0.095 0 0 0.9 0 0 0.364 0.211 0.958 0 0 0.8 0 0
H_6 0 0 0.063 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H_7 0 0 0.125 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H_8 0 0 0 0.19 0 0 0 0 0.44 0 0.105 0 0 0 0 0 0
H_9 0 0 0 0.048 0 0 0 0 0 0 0 0 0 0 0 0 0
H_10 0 0 0 0.048 0 0.043 0 0 0 0 0 0.042 0 0 0 0 0.083
H_11 0 0 0 0 0 0 0 0.522 0 0 0 0 0 0 0 0 0
H_12 0 0 0 0 0 0 0 0.174 0 0 0 0 0 0 0 0 0
H_13 0 0 0 0 0 0 0 0.174 0 0 0 0 0 0 0 0 0
H_14 0 0 0 0 0 0 0 0.043 0 0 0 0 0 0 0 0 0
H_15 0 0 0 0 0 0 0 0.043 0 0 0 0 0 0 0 0 0
H_16 0 0 0 0 0 0 0 0.043 0 0 0 0 0 0 0 0 0
H_17 0 0 0 0 0 0 0 0 0.12 0 0 0 0 0 0 0 0
H_18 0 0 0 0 0 0 0 0 0.04 0 0 0 0 0 0 0 0
H_19 0 0 0 0 0 0 0 0 0.08 0 0 0 0.28 0.75 0.16 0.167 0.083
H_20 0 0 0 0 0 0 0 0 0 0.182 0 0 0 0 0 0 0
H_21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.042 0
H_22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.042
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Table S2. Allele frequencies observed for the ANT gene. Sequences with a 22 amino acid deletion are indicated with an asterisk.

AR JA SP FE TEN KNY PE NC SC CAL BRA AM WAK OKI MIS SKS HK
H_1 0.158 0.1 0.088 0.115 0.017 0 0.042 0 0.132 0 0 0.068 0 0.063 0.045 0.02 0
H_2 0.579 0.7 0.441 0.385 0.276 0.342 0.167 0 0.395 0.318 0.382 0.568 0.229 0.375 0.25 0.449 0.115
H_3 0.026 0 0 0.115 0.017 0 0 0.056 0 0 0 0 0 0 0 0 0.038
H_4* 0.184 0.125 0.059 0.154 0 0 0 0.028 0.053 0 0 0 0 0 0.023 0 0.308
H_5 0.026 0 0.059 0 0 0 0 0 0.026 0 0 0.023 0.021 0 0.023 0 0.038
H_6 0.026 0.05 0.059 0 0 0.053 0 0 0 0 0.029 0 0 0.031 0 0 0
H_7 0 0.025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H_8 0 0 0.059 0 0.414 0.237 0.083 0 0.132 0.273 0.294 0 0.375 0.219 0.386 0.286 0
H_9 0 0 0.059 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H_10 0 0 0.059 0.038 0.069 0 0.042 0 0.132 0.091 0.029 0.295 0.083 0 0.114 0.02 0.038
H_11 0 0 0.029 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H_12 0 0 0.059 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H_13* 0 0 0.029 0 0 0 0 0 0 0 0 0 0.021 0 0 0 0
H_14 0 0 0 0.077 0 0 0 0 0 0 0 0 0 0 0 0 0.038
H_15 0 0 0 0.038 0 0 0 0 0 0 0 0 0 0 0 0 0
H_16 0 0 0 0.038 0 0 0 0 0 0 0 0 0.021 0 0 0 0
H_17 0 0 0 0.038 0 0 0 0 0 0 0 0 0 0 0 0 0
H_18 0 0 0 0 0.034 0 0 0.056 0 0 0 0 0 0 0 0 0
H_19 0 0 0 0 0.017 0 0 0 0 0 0 0 0 0 0 0 0
H_20 0 0 0 0 0.121 0.079 0.167 0.111 0.026 0.136 0.059 0 0.063 0.25 0.091 0.143 0
H_21 0 0 0 0 0.017 0.053 0.042 0.444 0 0 0 0 0 0 0 0 0
H_22 0 0 0 0 0.017 0 0 0 0 0 0.059 0 0.042 0.031 0 0 0
H_23 0 0 0 0 0 0.053 0.042 0 0 0 0 0.045 0 0 0 0 0
H_24 0 0 0 0 0 0.026 0 0 0 0 0 0 0 0 0 0 0
H_25 0 0 0 0 0 0.026 0 0 0 0 0 0 0 0 0 0 0
H_26 0 0 0 0 0 0.026 0 0 0 0 0 0 0 0 0 0 0
H_27 0 0 0 0 0 0.053 0 0 0 0 0 0 0 0 0 0 0
H_28 0 0 0 0 0 0.026 0.042 0 0 0 0 0 0 0 0 0 0
H_29 0 0 0 0 0 0.026 0.042 0 0 0 0 0 0.042 0 0 0.02 0
H_30 0 0 0 0 0 0 0.042 0 0 0 0 0 0 0 0 0 0
H_31 0 0 0 0 0 0 0.042 0 0.026 0 0 0 0 0.031 0 0 0
H_32 0 0 0 0 0 0 0.042 0 0.026 0 0 0 0 0 0.023 0 0
H_33 0 0 0 0 0 0 0.042 0 0 0 0 0 0.021 0 0 0 0
H_34 0 0 0 0 0 0 0.042 0 0 0 0 0 0 0 0 0 0
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H_35 0 0 0 0 0 0 0.042 0 0 0 0 0 0 0 0.023 0 0
H_36 0 0 0 0 0 0 0.042 0 0 0 0.029 0 0 0 0 0 0
H_37 0 0 0 0 0 0 0.042 0 0 0 0 0 0 0 0 0 0
H_38 0 0 0 0 0 0 0 0.028 0 0 0 0 0 0 0 0 0
H_39* 0 0 0 0 0 0 0 0.028 0 0 0 0 0 0 0 0 0
H_40 0 0 0 0 0 0 0 0.028 0 0 0 0 0 0 0 0 0
H_41 0 0 0 0 0 0 0 0.056 0 0 0 0 0 0 0 0 0
H_42 0 0 0 0 0 0 0 0.028 0 0 0 0 0 0 0 0 0
H_43* 0 0 0 0 0 0 0 0.056 0 0 0 0 0 0 0 0 0
H_44 0 0 0 0 0 0 0 0.056 0 0 0 0 0 0 0 0 0
H_45 0 0 0 0 0 0 0 0.028 0 0 0 0 0 0 0 0 0
H_46 0 0 0 0 0 0 0 0 0.026 0 0 0 0 0 0 0 0
H_47 0 0 0 0 0 0 0 0 0.026 0 0 0 0.021 0 0 0 0
H_48 0 0 0 0 0 0 0 0 0 0.091 0.059 0 0 0 0 0.041 0
H_49 0 0 0 0 0 0 0 0 0 0.091 0 0 0 0 0 0 0
H_50* 0 0 0 0 0 0 0 0 0 0 0.029 0 0 0 0 0 0
H_51 0 0 0 0 0 0 0 0 0 0 0.029 0 0 0 0 0 0
H_52 0 0 0 0 0 0 0 0 0 0 0 0 0.021 0 0 0 0
H_53 0 0 0 0 0 0 0 0 0 0 0 0 0.021 0 0 0 0
H_54 0 0 0 0 0 0 0 0 0 0 0 0 0.021 0 0 0 0
H_55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.023 0 0
H_56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.23
H_57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.04
H_58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.04
H_59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.04
H_60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.04
H_61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0
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Table S3. ANT haplotypic phase and COI haplotypes for each individual 
analyzed.  
 

Ind. ANT COI  Ind. ANT COI  Ind. ANT COI  Ind. ANT COI
AR1 H1,H2 H1  TEN13 H2,H8 H2  SC11 H10,H46 H8  OKI3 H2,H20 H19 
AR2 H2,H2 H1  TEN14 H8,H21 H2  SC12 H1,H2 H8  OKI4 H2,H8 H19 
AR3 H2,H2 H1  TEN15 H2,H8 H2  SC13 H2,H31 H17  OKI5 - H19 
AR4 H2,H2 H1  TEN16 H8,H20 H2  SC14 H1,H5 H2  OKI6 H2,H8 H19 
AR5 H2,H3 H1  TEN17 H8,H8 H2  SC15 H2,H8 H8  OKI7 - H2 
AR6 H4,H5 H1  TEN19 H1,H22 -  SC16 H8,H10 H8  OKI8 H2,H20 H19 
AR7 H2,H2 H1  TEN20 H8,H8 -  SC17 H1H2 H2  OKI9 H2,H20 H19 
AR8 H1,H6 H1  TEN21 H8,H10 H2  SC18 H1,H20 H17  OKI10 H6,H8 H19 
AR9 - H1  TEN22 H2,H20 H2  SC19 H4,H8 H2  OKI11 - H19 
AR10 H2,H2 H1  TEN23 H2,H8 H2  SC20 H1,H8 H8  OKI12 H2,H8 H19 
AR11 H2,H4 H1  TEN24 H3,H20 H2  SC21 - H2  OKI13 - H19 
AR12 H2,H2 H1  TEN25 H8,H10 H2  SC22 H2,H10 H18  OKI14 H2,H31 H19 
AR13 H1,H1 H1  TEN26 H2,H8 -  SC23 - H8  OKI15 H2,H8 H2 
AR14 H4,H4 H1  TEN27 H10,H20 -  SC24 H10,H47 H19  OKI16 H20,H20 H1 
AR15 H1,H2 H1  TEN28 H8,H10 H2  SC25 - H19  OKI17 - H19 
AR16 H2,H4 H2  TEN29 H2,H8 H2  CAL1 H2,H48 H1  OKI18 H2,H8 H1 
AR17 H1,H4 H1  TEN30 H2,H20 -  CAL2 H8,H49 H20  OKI19 H1,H22 H1 
AR18 H2,H4 H1  TEN31 H2,H8 H2  CAL3 H2,H20 H5  OKI20 - H19 
AR19 H2,H2 H1  KNY1 H23,H23 H2  CAL4 H2,H20 H20  OKI21 H2,H8 H19 
AR20 H2,H2 H1  KNY2 H2,H2 H2  CAL5 H2,H20 H5  OKI22 H2,H20 H19 
JA1 H4,H4 H3  KNY3 - H2  CAL6 H2,H8 H5  OKI23 - H2 
JA2 H2,H2 H1  KNY4 H6,H8 -  CAL7 H8,H10 H1  OKI24 - H19 
JA3 H2,H2 H1  KNY5 H2,H8 H3  CAL8 H2,H8 H2  OKI25 - H19 
JA4 H1,H1 H4  KNY6 - H1  CAL9 H2,H48 H5  MIS1 H2,H8 H5 
JA5 H2,H7 -  KNY7 H2,H8 H1  CAL10 H8,H10 H1  MIS2 H2,H8 H5 
JA6 H2,H2 -  KNY8 - H1  CAL11 H8,H49 H2  MIS3 H8,H10 H2 
JA7 H2,H2 H1  KNY9 H2,H24 H1  BRA1 H2,H8 -  MIS4 H20,H20 H5 
JA8 - H1  KNY10 - H2  BRA3 H2,H20 -  MIS5 - H5 
JA10 H2,H2 H3  KNY11 H2,H25 -  BRA5 - H2  MIS6 H1,H8 H5 
JA11 H6,H6 H1  KNY12 H2,H26 H1  BRA7 H2,H8 H5  MIS7 - H5 
JA12 H2,H2 H1  KNY13 H20,H20 -  BRA8 H2,H8 H5  MIS8 H10,H35 H5 
JA13 - H1  KNY14 H2,H8 H1  BRA9 H2,H8 H2  MIS9 H8,H10 H5 
JA14 H2,H2 H4  KNY15 H6,H27 H2  BRA10 - H5  MIS10 H2,H8 H5 
JA15 H2,H2 H1  KNY16 - H3  BRA11 H6,H8 H5  MIS11 H2,H20 H5 
JA16 H2,H2 H1  KNY17 H2,H27 H2  BRA12 H2,H22 H2  MIS12 H8,H55 H5 
JA17 H1,H1 H3  KNY18 - H3  BRA13 H2,H48 H2  MIS13 H5,H8 H5 
JA18 H2,H2 H1  KNY19 H2,H8 H2  BRA16 H8,H50 H2  MIS14 H2,H8 H5 
JA19 H2,H2 H1  KNY20 H8,H28 H1  BRA17 - H2  MIS15 H2,H8 H5 
JA20 H2,H2 H3  KNY21 H2,H20 H10  BRA18 H36,H51 H2  MIS16 H2,H8 H5 
JA22 H2,H4 H1  KNY22 H2,H8 H2  BRA19 H2,H8 H2  MIS17 H8,H10 H5 
JA23 H2,H2 H1  KNY23 H21,H29 H1  BRA20 H8,H10 H2  MIS18 H2,H8 H5 
JA24 H4,H4 H1  KNY24 H2,H8 H2  BRA21 H2,H20 H2  MIS19 H8,H10 H5 
SP2 H8,H9 H5  KNY25 H8,H21 H1  BRA22 H2,H22 H8  MIS20 H2,H8 H19 
SP4 H2,H2 H6  PE2 H2,H20 H5  BRA23 H2,H8 H2  MIS21 H2,H20 H19 
SP5 H1,H10 H1  PE3 - H5  BRA24 - H2  MIS22 H4,H8 H19 
SP6 H4,H10 H2  PE4 - H1  BRA25 H2,H8 H2  MIS23 H1,H8 H5 
SP9 H2,H8 H5  PE5 H1,H30 -  BRA26 H2,H48 H8  MIS24 H2,H32 H5 
SP10 - H1  PE6 - H5  AM1 H2,H10 H5  MIS25 - H19 
SP11 H2,H2 H5  PE7 H28,H31 H5  AM2 H2,H10 H10  SKS1 H2,H8 H1 
SP12 H6,H6 -  PE8 - H2  AM3 H2,H10 H5  SKS2 H2,H8 H2 
SP14 H2,H2 H5  PE9 H10,H32 H5  AM4 H10,H10 H5  SKS3 H2,H48 H2 
SP15 H2,H11 H7  PE10 - H5  AM5 H1,H1 H5  SKS4 H2,H8 H2 
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Ind. ANT COI  Ind. ANT COI  Ind. ANT COI  Ind. ANT COI
SP16 H1,H9 -  PE11 - H5  AM6 H2,H2 H5  SKS5 H2,H8 H1 
SP18 H1,H2 H2  PE13 H21,H33 -  AM9 H2,H10 H5  SKS6 H2,H8 H1 
SP20 H2,H12 H2  PE14 - H5  AM10 H2,H2 H5  SKS7 H2,H8 H2 
SP21 H2,H12 H7  PE15 H8,H23 H5  AM11 H2,H2 H5  SKS8 H2,H61 H19 
SP22 H4,H13 H2  PE16 H2,H34 H5  AM12 H2,H2 H5  SKS9 H2,H8 H2 
SP23 - H2  PE17 H20,H20 H5  AM13 H2,H10 H5  SKS10 H2,H8 H1 
SP24 H2,H2 H2  PE18 H2,H20 H5  AM14 H2,H10 H5  SKS11 H8,H20 H21 
SP26 H2,H2 H6  PE19 - H5  AM15 H1,H5 H5  SKS12 H2,H8 H2 
SP29 H5,H5 -  PE20 - H5  AM16 H2,H10 H5  SKS13 H2,H20 H19 
FE1 H2,H2 -  PE21 H2,H35 -  AM17 H23,H23 H5  SKS14 H2,H8 H1 
FE2 H2,H2 H2  PE22 H29,H36 H5  AM18 H2,H2 H5  SKS15 H2,H20 H19 
FE3 H1,H2 H8  PE23 H8,H37 H5  AM19 H2,H2 H5  SKS16 H2,H8 H1 
FE4 H2,H2 H9  PE24 - H5  AM20 H2,H10 H5  SKS17 H2,H8 H1 
FE5 H4,H4 H10  NC1 H21,H21 H11  AM21 - H5  SKS18 H1,H48 H2 
FE6 H14,H14 H1  NC2 H3,H3 H12  AM22 H2,H2 H5  SKS19 H2,H8 H1 
FE7 - H8  NC4 H21,H38 H11  AM23 H2,H10 H5  SKS20 H2,H20 H19 
FE8 H1,H15 H5  NC5 H4,H21 H11  AM26 H10,H10 H5  SKS21 H2,H20 H1 
FE9 - H1  NC6 H21,H21 H11  AM29 - H5  SKS22 H2,H20 H1 
FE10 - H2  NC7 - H12  AM30 H2,H2 H5  SKS23 H10,H20 H1 
FE11 - H1  NC8 - H12  WAK1 H8,H10 H1  SKS24 H2,H29 - 
FE12 H3,H4 H8  NC9 H21,H21 H11  WAK2 H5,H8 H2  SKS25 H2,H2 H1 
FE14 - H5  NC10 H21,H21 H13  WAK3 H2,H8 H2  HK1 H14,H56 H1 
FE15 - H2  NC11 H39,H40 H11  WAK4 H8,H10 H19  HK2 H2,H10 H1 
FE16 - H2  NC12 H41,H41 H13  WAK5 H2,H33 H2  HK3 H2,H57 H10 
FE17 H4,H16 H2  NC13 H18,H18 H11  WAK6 H8,H10 H2  HK4 H4,H58 H1 
FE18 H2,H3 -  NC14 H20,H20 H11  WAK7 H2,H8 H2  HK5 - H10 
FE19 - H1  NC15 H21,H42 H13  WAK8 H8,H10 H2  HK6 H3,H5 H1 
FE20 H3,H17 H2  NC16 - H14  WAK9 H2,H47 H19  HK7 H59,H60 H2 
FE21 - H1  NC17 H43,H43 H15  WAK10 H2,H22 H2  HK9 - H1 
FE22 - H2  NC18 H20,H20 H12  WAK11 H8,H8 H2  HK10 - H2 
FE23 - H1  NC19 H21,H21 H11  WAK12 H2,H8 H19  HK11 - H2 
FE24 - H8  NC20 H44,H45 H11  WAK13 H2,H22 H2  HK12 - H19 
FE25 H1,H2 -  NC21 - H11  WAK14 H2,H13 H2  HK13 - H2 
FE26 H2,H10 -  NC22 H21,H44 H11  WAK15 H8,H8 H19  HK14 - H2 
TEN1 H2,H8 H2  NC23 - H13  WAK16 H8,H52 H2  HK15 - H1 
TEN2 H2,H8 H2  NC25 H21,H21 H16  WAK17 H16,H53 H2  HK16 - H2 
TEN3 H8,H18 H2  SC1 H2,H10 H8  WAK18 - H2  HK17 H4,H60 H2 
TEN4 H2,H8 H2  SC2 - H8  WAK19 H2,H29 H1  HK18 H4,H56 H1 
TEN5 H2,H8 H2  SC3 H4,H8 H2  WAK20 H8,H54 H19  HK19 H2,H4 H2 
TEN6 H2,H19 H2  SC4 H2,H2 H2  WAK21 H20,H20 H19  HK20 H4,H56 H2 
TEN7 H2,H8 -  SC5 H2,H32 H2  WAK22 H8,H8 H2  HK21 H4,H56 - 
TEN8 H8,H18 H2  SC6 - H2  WAK23 H2,H29 H19  HK22 - H22 
TEN9 H2,H8 H2  SC7 H2,H2 H8  WAK24 H8,H20 H2  HK23 H4,H56 H1 
TEN10 - H2  SC8 - H8  WAK25 H2,H8 H2  HK24 - H2 
TEN11 H2,H20 H2  SC9 H2,H2 H17  OKI1 H1,H20 H19  HK25 - H19 
TEN12 H2,H8 H2  SC10 H2,H2 H8  OKI2 H2,H20 -  HK27 H4,H56 H2 

 

 
 
 
 
 
 



52�
�

  





54�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
Gonad�histological�section�of�S.plicata�

©�M.C.�Pineda



CHAPTER�2�|�55��
�

CCoonnttiinnuuaall  rreepprroodduuccttiioonn  iinn  aa  sseeaassoonnaall  sseeaa::  
BBiioollooggiiccaall  ccyyccllee  ooff  tthhee  iinnttrroodduucceedd  

aasscciiddiiaann  SSttyyeellaa  pplliiccaattaa  iinn  tthhee  WWeesstteerrnn  
MMeeddiitteerrrraanneeaann

ABSTRACT 

 
The ascidian Styela plicata has been introduced in harbors and marinas of warm 

and temperate oceans all around the globe through shipping. This species is very 

common in the Western Mediterranean, an area that can easily act as a source for 

secondary introductions due to its high shipping activity. In order to understand 

the potential of this species to colonize new habitats, we assessed the 

reproductive features of S. plicata in the Western Mediterranean by monthly 

monitoring populations in two harbors from NE Spain over a two year period. 

The reproductive activity of this species was assessed through examination of 

gonad histology and the calculation of a gonad index (GI). We also measured 

monthly the size structure of one population in order to study the dynamics and 

patterns of recruitment. No clear seasonal pattern for reproduction was observed, 

with mature gametes present all year long and several gamete releases occurring 

over the years, particularly in spring. Likewise, size-frequency plots showed the 

presence of recruits almost every month, and a decrease of the largest size-classes 

in winter. There were also some differences among localities and between years 

in the number and intensity of spawning episodes, but a sharp decrease in the GI 

and mature gametes was observed in spring 2009 at both localities, indicating that 

the reproductive period is punctuated by occasional episodes of intense spawning. 

A prolonged reproductive period is likely to confer a competitive advantage to S. 

plicata in temperate seas, where most species reproduce seasonally. The continual 

presence of larvae also guarantees further reintroduction events and spreading via 

ship traffic, increasing the colonizing potential of this species.  
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RReepprroodduucccciióó  ccoonnttiinnuuaa  aa  uunn  mmaarr  
eessttaacciioonnaall::  CCiiccllee  bbiioollòòggiicc  ddee  ll’’aasscciiddii  

iinnttrroodduuïïtt  SSttyyeellaa  pplliiccaattaa  aall  MMeeddiitteerrrraannii  
OOcccciiddeennttaall    

RESUM 

L’ascidi Styela plicata ha estat introduït a ports i marines d’oceans càlids i 

temperats arreu del món. Aquesta espècie és comú al Mediterrani Occidental, una 

àrea que pot actuar fàcilment com a font d’introduccions secundàries degut a 

l’elevat tràfic marítim que s’hi dona. Per tal de comprendre el potencial de 

l’espècie de colonitzar altres hàbitats, vam avaluar les característiques 

reproductives de S. plicata al Mediterrani Occidental per mitjà d’un mostreig 

mensual, al llarg de dos anys, a dos ports del litoral Català. L’activitat 

reproductiva de l’espècie es va avaluar a partir de l’examinació de la histologia 

gonadal i del càlcul d’un índex gonadal (GI). Vam mesurar mensualment, també, 

l’estructura de mides d’una de les poblacions per tal de caracteritzar la dinàmica i 

els patrons de reclutament. No es va trobar cap patró estacional en la reproducció 

de l’espècie, amb presència de gàmetes madurs al llarg de tot l’any i diversos 

esdeveniments d’alliberament de gàmetes al llarg dels temps, particularment a la 

primavera. Similarment, els histogrames de classes de talla van mostrar la 

presència de reclutes a la majoria de mesos, i un decreixement de les classes de 

major talla a l’hivern. Es van trobar també algunes diferències entre localitats i 

entre anys en el nombre i la intensitat dels esdeveniments d’alliberament de 

gàmetes, però el marcat descens en el GI i en els gàmetes madurs observat a la 

primavera del 2009 es va donar a ambdues poblacions, indicant que al llarg del 

període reproductor es poden donar ocasionals esdeveniments d’intensa 

alliberació de gàmetes. Un període reproductor prolongat confereix S. plicata 

amb un avantatge competitiu a mars temperats, a on la majoria de les espècies es 

reprodueixen estacionalment. A més, la contínua presència de larves a la columna 

d’aigua al llarg de l’any assegura un assentament continu de juvenils als casc de 

les embarcacions, preparats per a ser dispersats a d’altres marines, facilitant així 

les introduccions recurrents de l’espècie.  
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INTRODUCTION

Countless marine species are travelling daily from their source of origin to new 

locations, either attached to ship’s hulls or chests, present within ballast waters, or 

co-translocated with organisms associated with aquaculture activities (Allen 

1953, Carlton & Geller 1993, Ruiz et al. 2000, Floerl & Inglis 2005, Blakeslee et 

al. 2010). Accordingly, introductions have increased notably during the last 

century, favored by the increasing activity in maritime traffic and aquaculture 

(Carlton 1989, Vermeij 1996, Ruiz et al. 1997, Mack & D’Antonio 1998, Crooks 

2002, Grosholz 2002). Although newly introduced species are often restricted to 

marginal habitats, such as harbors and aquaculture facilities, some may eventually 

spread to open habitats (Lambert 2002). Available information indicates that only 

one out of ten introduced species is able to survive and spread away from the 

introduced habitat, thus becoming invasive and causing serious alterations of the 

native populations, communities and ecosystems (Williamson & Fitter 1996). 

Invasive species are considered, after habitat loss and fragmentation, the second 

most important cause of species extinction (Zibrowius 1991, Mack et al. 2000, 

Clavero & García-Berthou 2005).  

Successful colonization of a new environment depends on the 

occurrence of adequate physical and biological conditions, both for adults and 

larvae (Blackburn & Duncan 2001, Stachowicz et al. 2002, Verween et al. 2007, 

Fowler et al. 2011, Zerebecki & Sorte 2011). Thus, invasive species should be 

opportunistic, exploiting temporal windows of tolerable conditions to proliferate 

and occupy new habitats (McKinney 2002). Other characters that make 

introduced species prone to become invasive are adaptation to disturbance (Hobbs 

1992, Altman & Whitlatch 2007), wide environmental tolerances (McMahon 

1996, Marchetti et al. 2004), the ability to overcome local control by resident 

species (Osman & Whitlatch 1998, Stachowicz et al. 2002), and high growth 

rates and reproductive output (Marchetti et al. 2004, McMahon 1996). Thus, in 

order to determine the invasive potential of a new introduced species and develop 

efficient management tools, it is necessary to acquire a better knowledge of their 

biological strategies and especially of their reproductive cycle (e.g., Grosholz & 

Ruiz 1996, Fine et al. 2001, Thornber et al. 2004). 
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Ascidians, or sea squirts, are conspicuous components of epibenthic 

marine communities all over the globe (e.g., Glasby 2001, Voultsiadou et al.

2007) and are among the most important marine invaders worldwide (Lambert 

2002, 2007, Whitlatch & Bullard 2007). This group has the ability to severely 

modify the structure of coastal habitats by forming large aggregates that 

outcompete other organisms for resources (Zajac et al. 1989, Nandakumar et al.

1993, Lambert & Lambert 2003, Castilla et al. 2004, Agius 2007, Turon et al.

2007). Although the life-cycles of several ascidians have been studied (e.g., 

Turon 1988, Becerro & Turon 1992, Rocha et al. 1999, Caralt et al. 2002, Sahade 

et al. 2004, López-Legentil et al. 2005, Pérez-Portela et al. 2007), few 

investigations have focused on introduced species in their new habitat (but see 

Bourque et al. 2007, Shenkar & Loya 2008, Rius et al. 2009b, Wong et al. 2011).  

Styela plicata (Lesueur, 1823) is a solitary ascidian commonly found 

inhabiting harbors and salt marsh habitats of warm and temperate oceans, usually 

at high densities (Pineda et al. 2011, 2012). A recent genetic study has confirmed 

that this species has colonized these oceans for a long time, and that recurrent 

colonization events and shuffling among populations are determining its current 

genetic signature (Pineda et al. 2011). Yet, most of the records of S. plicata are 

based on observations of man-made structures, and only few populations have 

been reported in natural habitat (Pineda et al. 2011, Valero-Jiménez et al. in 

press). The introduction success of S. plicata has been attributed to its high 

tolerance of polluted waters (Naranjo et al. 1996) and of moderately wide 

changes in temperature and salinity (Sims 1984, Thiyagarajan & Qian 2003, 

Pineda et al. 2012). The high genetic variability reported in S. plicata (Pineda et

al. 2011) may also enhance this species’ ability to adapt to new environments 

(Sakai et al. 2001) and displace indigenous species (Rius et al. 2009a). 

The reproductive cycle of S. plicata has been determined for introduced 

populations in Japan (Yamaguchi 1975), and the Eastern Mediterranean 

(Sabbadin 1957, Sciscioli et al. 1978). These studies have reported a strong 

influence of temperature regimes on the reproductive cycle of this species but 

differ in the length of the reproductive period and number of spawning events per 

year. These differences in the reproductive cycle could be due to a number of 

factors, including location and the genetic structure of the investigated 
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populations. Although there is no information available for the Eastern 

Mediterranean, gene and nucleotide diversity of S. plicata populations from the 

Pacific (including Japan) were significantly different from these in the Western 

Mediterranean (Pineda et al. 2011). No life-cycle data are available for 

populations in Western Mediterranean, where S. plicata is abundant in most 

harbors and marinas. Considering the high maritime traffic of some of those 

harbors (e.g., Barcelona, Alicante, Marseille) and the existence of smaller 

marinas all along the coast, this area can act as a source for secondary 

introductions in the Mediterranean and in other oceans, and thus deserves further 

investigation.  

The goal of this study was to assess the reproductive features and 

population dynamics of the introduced ascidian Styela plicata in the Western 

Mediterranean to predict the spreading potential of this species. To achieve this 

goal, the reproductive cycle was determined for two populations from the NE 

coast of Spain through examination of the gonad histology and calculation of a 

gonad index (GI) over a two year period. We also took monthly measurements of 

the size structure at one of the sites, in order to determine its population dynamics 

and recruitment patterns. We hypothesized that S. plicata, as is common in other 

marine invertebrates, will present a seasonal cycle of reproduction coupled to the 

strong seasonality of environmental parameters in the Mediterranean. 

MATERIALS & METHODS 

Study site, sampling and size-structure 

 

The study was undertaken in two harbors of the NW Mediterranean coast: 

Vilanova i la Geltrú (41º 12’ 53’’ N, 1º 44’ 11’’ E), the larger and more polluted 

harbor, and Blanes (41º 40' 29"N, 2º 47' 56"E) located ca. 100 km NE from the 

former. Both harbors sustain a variety of marine-related activities including 

recreational boating and commercial fishing. From January 2009 to December 

2010, ten adults (>40 mm, Yamaguchi 1975) were monthly collected at each site 

from depths that ranged between 0 and 1 m by pulling up harbor ropes or 

removing individuals from submersed docks. Samples were immediately fixed in 
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4% formaldehyde and stored at room temperature until analyzed. Water 

temperature was automatically registered every hour with HOBO® loggers 

(0.001 ºC precision), Onset Computer Corporation, Massachusetts. The size-

structure of this species was determined from November 2009 to December 2010 

in Vilanova i la Geltrú. Every month, different ropes located in the same area of 

the harbor were pulled out of the water to measure the height of 150 randomly 

selected individuals with a calliper. Clumps of individuals and ropes were 

scrutinized to look for small recruits among them.  

Morphometric variables 

 

Once in the laboratory, the sampled individuals were carefully cleaned to remove 

as many epiphytes as possible from their tunics. For each individual, we 

measured the height (maximal distance from base to tip), length (maximal 

dimension perpendicular to height), width (maximal dimension perpendicular to 

height and length), and intersiphonal distance (between siphon tips) using a 

calliper. The tunic was cut open to separate the mantle, measure its height, and 

dissect it along the ventral side to remove the branchial sac and expose the 

gonads. This species is hermaphroditic with each individual possessing 2 to 11 

gonads attached to the right side of the body wall, and 1 to 3 gonads to the left 

side. Each gonad has a central, elongated ovary covered with testis follicles 

(Tucker 1942). From each specimen, a small piece (< 1 cm in length) of one of 

the gonads from the right side was cut, weighed and kept in 4% formaldehyde for 

histology analysis; the remaining gonadal tissue was dissected, weighed and 

placed in an oven at 60 ºC for 48 hours to obtain its dry weight. To obtain the 

total dry weight of the gonads, we estimated the dry weight of the removed piece 

for histological purposes using the observed wet/dry weight ratio obtained for the 

other gonads. Wet and dry weights were also obtained for the tunic and mantle. A 

gonad index (GI) was calculated as the dry weight of the gonads divided by the 

mantle dry weight.  
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Histological analysis 

 

Each month, a piece of gonad from at least 5 individuals per population was 

dehydrated, embedded in paraffin, sectioned, and stained with haematoxylin-

eosin or methylene blue following standard procedures. The gonad sections were 

observed under a microscope equipped with a micrometer. We measured the 

diameter of 100 oocytes sectioned through the nucleolus per individual when 

possible, or a minimum of 200 oocytes per month and study site following 

Bingham (1997) procedures. In total, 7504 oocytes were measured for individuals 

from Vilanova i la Geltrú, and 6602 from Blanes. For the testes, a categorical 

maturity index was established, according to the development of the male 

follicles (i.e. 1 = immature, only spermatogonia, 2 = mature sperm, 3 = spawning, 

empty spaces within the lumen).  

Transmission electron microscopy (TEM) observations were performed 

to illustrate details of the gonads and gametes. Gonads from an individual of 

Vilanova i la Geltrú collected in December 2009 were dissected, and small (ca. 2 

mm3) pieces were fixed overnight in a mixture of glutaraldehyde (2.5%), 

paraformaldehyde (2%) and filtered seawater. After incubation, gonads were 

rinsed with filtered seawater, dehydrated in a graded ethanol series, and 

embedded in Spurr. Ultrathin sections were stained with uranyl acetate and lead 

citrate (Reynolds 1963) and observed under a JEOL JEM-2010. 

 

Data analysis 

 

The Spearman Rank Correlation was used to test the relationship between the 

different morphometric (size and weight) measures. To correct for multiple 

comparisons, we set the overall p-value at 0.05 and used the Benjamini and 

Yekutieli False Discovery Rate correction (Narum 2006). In addition, the mean 

gonad index over time was correlated between sites and to temperature variations 

using monthly means and cross correlation analyses (Pearson coefficient). In 

these analyses, values of one variable were correlated with values of the other at 

different time lags (months). Correlation at time lag 0 corresponds to the usual 

Pearson correlation, positive lags correlate values in the first series to values in 
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the second series that number of lags afterwards, and negative lags relate values 

in the first series to previous values in the second one. All analyses were 

performed using the software SYSTAT v. 12 (©SYSTAT Software, Inc. 2007), 

and SigmaStat v. 3.11 (©SYSTAT Software, Inc. 2004). 

RESULTS 
 

Morphometric variables and population structure 

 

The introduced ascidian Styela plicata was present all year round in both harbors, 

Vilanova i la Geltrú and Blanes, on hanging ropes and virtually any hard substrate 

available. This species was often found forming aggregates of individuals 

attached to each other’s tunics. During the study period, this species was more 

abundant and formed larger aggregates in Vilanova i la Geltrú than in Blanes. All 

the size variables showed a positive and significant correlation (Spearman Rank 

Correlation, p < 0.009 in all cases); therefore, individual height was selected as a 

proxy for size. The correlations of tunic, mantle, and gonad dry weights with size 

were significant in all cases (Table 1). Likewise, all weight variables were 

significantly correlated in pairwise comparisons (Table 1). 
 

Table 1. Spearman Rank Order correlations between height and dry weight (DW) 
of the tunic, mantle and gonad of S. plicata (n = 472). 

 

The population of Vilanova i la Geltrú was characterized by the presence 

of individuals from all sizes most of the year. Size values ranged from 2 mm in 

October to 68 mm in August. Based on occasional observations of settled 

individuals in newly placed ropes, we considered as recruits those individuals that 

measured less than 15 mm, which corresponded to an approximate age of one 

month (authors’ pers. obs.). Recruits were especially abundant after mid-summer, 

and absent only in May. Adults (>40 mm) were found all year round, although 

Spearman correlations Tunic DW Mantle DW Gonad DW 
Height 0.759*** 0.772*** 0.673*** 
Tunic DW  0.746*** 0.667*** 
Mantle DW   0.749*** 
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the largest sizes classes (>50 mm) were almost absent in December 2009 and in 

February and March 2010 (Fig. 1). Thus, size-frequency plots suggested higher 

recruitment in fall and winter coupled with slower growth and loss of the oldest 

individuals (Fig. 1). The presence of juveniles and adults all year long prevented 

the appearance of a cohort structure in our size-frequency histograms. Instead, the 

population structure seemed to result from an overlap of successive generations 

(Fig. 1).  

 

Reproductive cycle 

 

The mean gonad index (GI) and seawater temperature over the study period for 

Vilanova i la Geltrú and Blanes are shown in Fig. 2. Seawater temperature 

showed a clear seasonal cycle at both populations, with the lowest values at the 

end of winter (10.2 and 12.4 ºC in February 2010 for Vilanova i la Geltrú and 

Blanes, respectively) and the highest in September 2009 (29.1 and 26 ºC, 

respectively). Thus, temperatures in Blanes oscillated less (13.6 ºC from lowest to 

highest) than in Vilanova i la Geltrú (18.9 ºC). The mean GI did not show a clear 

seasonal pattern for either of the two populations, although a sharp decrease in the 

mean GI was observed in April 2009 at both populations (Fig. 2). Decreases in GI 

values were also observed in September 2009, and January, May, August and 

October 2010 for Vilanova i la Geltrú (Fig. 2a), and September and November 

2009, and January to May, July and December 2010 in Blanes (Fig. 2b). A 

noticeable peak was also observed in January 2010 for the population in Blanes 

(Fig. 2b). Assuming that a decrease in the mean GI signals a spawning event, 

these results indicate continual reproduction throughout the year, with several 

minor episodes of gamete release and occasional massive spawning events (i.e. 

April 2009). 

 Cross correlation analyses were not significant for most time lags. 

Nevertheless, there was a clear wave-like pattern of positive correlations between 

gonad index and temperature in the previous months for both populations, while 

correlations were negative between GI and the temperature measured in the 

subsequent months (Figs. 3a, 3b). This positive correlation indicated that GI 

tended to increase some months (peak of correlation at 2-3 mo) after temperature 
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increases. Correlations at time lag 0 were small and negative. Mean GIs followed 

similar patterns in both localities, as indicated by a significant correlation 

coefficient (cross-correlation analysis at time lag 0, Fig. 3c). The relationship was 

also positive and significant between the mean GI in Vilanova i la Geltrú and the 

values in Blanes the two subsequent months (time lags +1 and +2, Fig. 3c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1. Size-frequency histograms of S. plicata for each sampled month in 
Vilanova i la Geltrú
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The examination of the gonad histology showed, in cross section, the 

presence of a central core of female follicles with oocytes surrounded by 

peripheral male follicles (Fig. 4a). Mature oocytes showed test cells inside the 

chorion and two layers of follicle cells, an inner layer of globular cells laden with 

vacuoles and an outer layer of squamous cells (Fig. 4, b-d). Male follicles were 

characterized by a thick wall of germinative epithelium and a lumen occupied by 

developed spermatozoa (Fig. 4b, e). We found considerable variability in the 

maturation state of the male gonads within the same month and population, while 

mature oocytes were always present in at least some individuals. These 

observations confirmed the continual reproductive cycle previously found with 

the GI (Fig. 5). A sharp decrease in the mean oocyte diameter was also observed 

Figure 2. Mean Gonad Index and seawater temperature during the studied period 
in a) Vilanova i la Geltrú and b) Blanes.  
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in spring 2009 and 2010 at both populations, corroborating the release of mature 

gametes in spring (Fig. 5). Minimum values for the mean oocyte diameter were 

also recorded in August 2009 and December 2010 for the Vilanova i la Geltrú 

population, while for the Blanes population minima were recorded in July and 

September 2009, and January, April, August and December 2010. These 

decreases in mean oocyte diameter indicated that secondary spawning events 

occurred all year long (Fig. 5). Mature male follicles and follicles with partially 

empty lumens, due to the release of sperm, were also found all year round except 

for some of the coolest months (January 2009 in Vilanova i la Geltrú and 

December 2010 in Blanes), when populations were characterized by the presence 

of mostly immature male follicles (Fig. 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Cross-correlation analyses of S. plicata a) Gonad Index vs.
temperature in Vilanova i la Geltrú, b) Gonad Index vs. temperature in Blanes,
c) Gonad Index in Vilanova i la Geltrú vs. Gonad Index in Blanes. The curved
lines represent 95% confidence intervals of the correlation coefficient. 
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The percent of oocyte size-categories showed that pre-vitellogenic oocytes (<50 

μm) were present all year-round, but increased in proportion after each spawning 

event (Fig. 6). Mature oocytes (> 150 μm, Sciscioli et al. 1978) were also present 

all year, but were especially abundant during winter. In the individuals collected 

from Vilanova i la Geltrú, the proportion of mature oocytes peaked in winter-

early spring followed by a sharp decrease in April (Fig. 6a). In Blanes, the 

proportion of mature oocytes was more oscillating, with additional minimum 

values in May, June, and September 2009 and April, August and December 2010

(Fig. 6b).

Figure 4. a) Light micrograph of a gonad histological section stained with haematoxylin-
eosin (MMF: mature male follicle, DO: developing oocyte, MO: mature oocyte. b) Light
micrograph stained with methylene blue (TC: test cells, N: nucleolus). c-e) Transmission
electron micrscopy pictures showing details of the gonads in S. plicata: c) peripheral part of
an oocyte showing chorion, test cells and follicle cells; d) intersection of three oocytes
packed in the lumen of the ovary; e) distal part of the wall of a male follicle (CH: chorion,
IFC: inner follicle cell, OFC: outer follicle cell, S: spermatozoa, SG: Spermatogonia). Scale
bars = 200 μm (a), 50 μm (b), 5 μm (c), 10 μm (d), 2 μm (e).
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DISCUSSION 
 

The introduced ascidian Styela plicata was present all year round in the two 

studied populations from the Western Mediterranean. Individual sizes ranged 

from 2 mm to 68 mm in height, and height was significantly correlated with all 

other morphometric variables measured. There was no clear seasonal cycle for 

reproduction in Vilanova i la Geltrú or Blanes during the 2 years of study. In fact, 

this species had mature oocytes and male follicles all year round. Both the mean 

gonad index and the mean oocyte diameter showed a main spawning event in 

Figure 5. Mean oocyte diameter in sampled individuls of S. plicata and seawater 
temperature in a) Vilanova i la Geltrú, and b) Blanes. The horizontal bars display 
male maturation state over the study period. Vertical bars denote standard errors�
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spring (April 2009 and, to a lesser degree, 2010), followed by secondary 

spawning events throughout the year. These results indicate that S. plicata 

reproduces all year round in the Western Mediterranean, although there are some 

differences between localities and years in the number and intensity of spawning 

episodes. The study of the dynamics and patterns of recruitment in the harbor of 

Vilanova i la Geltrú showed that there were more recruits (less than one month 

old) and fewer adults during fall and winter. There were small differences 

between the three methods employed here, in particular for the secondary peaks 

of GI and oocyte diameter. As already noted for other ascidian species (Becerro 

& Turon 1992, Sahade et al. 2004), our results highlight once more the 

importance of combining several approaches, such as the calculation of a gonad 

index, gonad histology and population structure surveys, to fully understand the 

reproductive cycle of a species.  

Prolonged reproductive activity of S. plicata from spring to autumn has 

been previously reported in the Eastern Mediterranean (Sabbadin 1957, Sciscioli 

et al. 1978, Tursi & Matarrese 1981). These authors considered that this species 

did not actively reproduce during the coldest months, as no recruitment was 

detected during winter in artificial panels (Sciscioli et al. 1978, Tursi & Matarrese 

1981). Sabbadin (1957) set the low temperature threshold for Styela plicata 

reproduction at 10 ºC, a seawater temperature that was easily reached during the 

winter months in the Lagoon of Venice (Italy). Below 10 ºC this species not only 

was unable to reproduce but could also disappear (Sabbadin 1957). Such low 

temperatures are seldom reached in the Western Mediterranean (Margalef 1985, 

Coma et al. 2000) and, although there is a short period in which male follicles 

were not mature in the coolest months, mature individuals with large oocytes 

were found during winter in both studied populations. Moreover, small recruits 

were observed in Vilanova i la Geltrú during the winter months. Thus, taken 

together, our results indicate that S. plicata is also reproductively active during 

the winter months in the Western Mediterranean. These results are in agreement 

with Panagiotou et al. (2007), who reported the presence of S. plicata recruits all 

year in Thessaloniki Bay (Greece). In Tokyo Bay (Japan), where the temperature 

regime is more similar to the Western Mediterranean, Yamaguchi (1975) 

observed that individuals of S. plicata were ripe in winter, although they did not 
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spawn during the coldest months of the year. Finally, previous studies have 

reported the existence of several generations per year for this species in central 

Japan (Yamaguchi 1975), and Eastern Mediterranean (Sabbadin 1957). Our 

results did not show any clear-cut succession of generations for populations 

inhabiting Western Mediterranean harbors. Rather, individuals of a wide range of 

sizes were present all year round, suggesting that several cohorts were born 

thorough the year and were overlapping temporally. 

 

Interannual differences in the number and intensity of spawning episodes 

and mean oocyte diameters were also observed in the two monitored harbors. 

Temperature has been suggested as the main factor triggering not only ascidian 

Figure 6. Percentage of each oocyte size-class in sampled individuls of S. plicata over
the two year study period in a) Vilanova i la Geltrú, and b) Blanes. 
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reproduction (e.g., Millar 1971, Turon 1988) but also the reproductive cycles of 

many marine invertebrates in temperate seas (Orton 1920). Accordingly, 

temperature differences between years and sites could explain the similarities and 

differences found. For instance, there was an unusual and sharp increase in 

seawater temperature in February 2009 (6 ºC). This anomaly could in turn explain 

the massive spawning event observed for both populations two months later 

(April 2009). Similarly, the smaller spawning event recorded in spring 2010 

could be due to a later and more gradual increase in seawater temperature 

(March). 

 In the Mediterranean, most marine invertebrates present seasonal 

biological cycles (Coma et al. 2000), including colonial (Turon 1988, Caralt et al.

2002, López-Legentil et al. 2005) and solitary ascidians (Becerro & Turon 1992,

Panagiotou et al. 2008, Vafidis et al. 2008, Rius et al. 2009b). Summer is a 

limiting season for many sessile invertebrates in the Mediterranean, due to food 

shortage (Coma et al. 2000) and high densities of algae competing for space 

(Ballesteros 1991). Therefore, the continuous presence of this species and the 

ability to reproduce all year round may confer a competitive advantage to S. 

plicata compared to seasonally reproducing invertebrate species. Extended 

reproductive cycles and fast growth rates of juveniles to reach maturity have been 

reported for several invasive ascidians (Bourque et al. 2007, Shenkar & Loya 

2008, Wong et al. 2008). Thus, based on our current results, this species can 

become a threat to local biota if it spreads to natural habitats. However, although 

the species has been found outside harbors, to date its abundance has always been 

reduced and never monopolizes the substrate as it does inside harbors, marinas or 

on artificial structures (authors’ pers. obs.). Other factors controlling the spread 

of the species to natural substrate, such as predation (Sutherland 1974), 

competition, or the effects of hydrology, should be investigated.  

 Besides a competitive advantage, a continual reproductive period could 

also allow S. plicata to exploit temporal windows of favorable conditions. It has 

been demonstrated that adults of this species can respond to changes in 

temperature and salinity by increasing the production of stress proteins (Pineda et 

al 2012). However, the embryos and larvae of S. plicata, although relatively 

resistant to pollutants such as copper, are very sensitive to changes in temperature 
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or salinity (Chapter 4). Based on these observations, it is likely that some 

reproductive episodes fail to produce successful recruitment and spreading them 

over time will increase the probability that at least some larva will successfully 

recruit. In addition, the existence of multiple batches of larvae over the year 

ensures a plentiful supply of juveniles in ships’ hulls, ready to spread to other 

marinas, and facilitating recurrent introduction of the species. This fact, coupled 

with a large genetic pool (coherent with the genetic structure described for this 

species, Pineda et al. 2011) would ensure the persistence of Styela plicata 

populations living under harsh conditions such as those usually encountered in 

enclosed man-made habitats.  

In conclusion, the introduced ascidian S. plicata exhibits a continual 

reproductive cycle in the Western Mediterranean, with mature gametes and 

recruits being present almost all year round. Continual reproduction allows this 

species to effectively colonize any new substrate that is generated at any season 

in the year, thus gaining a competitive advantage over seasonal forms and 

favoring further spread via ship traffic. The assessment of the biological cycles of 

introduced species in their new habitats is crucial to understand their invasive 

potential and design efficient management tools. In our case, the lack of a specific 

reproductive season complicates potential measures to control this species.  
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SSttrreessss  lleevveellss  oovveerr  ttiimmee  iinn  tthhee  iinnttrroodduucceedd  
aasscciiddiiaann  SSttyyeellaa  pplliiccaattaa::  TThhee  eeffffeeccttss  ooff  

tteemmppeerraattuurree  aanndd  ssaalliinniittyy  vvaarriiaattiioonnss  oonn  
hhsspp7700  ggeennee  eexxpprreessssiioonn  

ABSTRACT 

 
Species distribution, abundance and long-term survival are determined by biotic 

and abiotic regimes. However, little is known about the importance of these 

factors in species range expansion. Styela plicata is a solitary ascidian introduced 

all over the world by ship fouling, including salt marsh habitats, where introduced 

populations must tolerate high seasonal variations in temperature and salinity. To 

determine the seasonal stress levels in a salt marsh population of S. plicata, we 

quantified heat shock protein (hsp70) gene expression using quantitative real time 

PCR throughout a two-year cycle. Results showed that hsp70 expression varied 

over time, with higher stress levels recorded in summer and winter. Periodic 

conditions of high temperatures, and low salinities coupled with high 

temperatures increased hsp70 gene expression. Mortality events observed every 

year around June were concurrent with sharp increases in temperature (> 6°C), 

indicating that drastic changes in abiotic factors may overwhelm the observed 

stress response mechanisms. Determining the ability of introduced species to 

cope with stress, and the thresholds above which these mechanisms fail, is 

fundamental to predict the potential expansion range of introduced species and 

design efficient containment plans. 
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NNiivveellllss  dd’’eessttrrèèss  aall  llllaarrgg  ddeell  tteemmppss  eenn  
ll’’aasscciiddii  iinnttrroodduuïïtt  SSttyyeellaa  pplliiccaattaa::  EEffeeccttee  ddee  

llaa  tteemmppeerraattuurrAA  ii  ssaalliinniittaatt  eenn  eellss  nniivveellllss  
dd’’eexxpprreessssiióó  ggéénniiccaa  ddee  llaa  hhsspp7700  

RESUM 

 
La distribució, abundància i supervivència a llarg terme de les espècies està 

determinada per règims de factors biòtics i abiòtics. Tanmateix, la importància 

d’aquests factors en el rang d’expansió de les espècies és poc coneguda. Styela 

plicata és un ascidi solitari introduït arreu del món a partir del fouling dels 

vaixells. Aquesta espècie és present inclús a ambients d’aiguamolls salabrosos, a 

on les poblacions han de tolerar elevades variacions estacionals en la temperatura 

i salinitat. Per tal de determinar els nivells estacionals d’estrès en una població de 

S. plicata en aquest tipus d’ambient, vam quantificar l’expressió gènica de la 

proteïna d’estrès hsp70, fent servir PCR quantitativa a temps real, en un cicle de 

dos anys. Els resultats mostren que la expressió de hsp70 varia al llarg del temps, 

amb els nivells més elevats d’estrès enregistrats a l’estiu i a l’hivern. Condicions 

periòdiques d’elevades temperatures i de baixes salinitats associades amb 

elevades temperatures incrementen l’expressió gènica de hsp70. Es van observar 

esdeveniments de mortalitat anuals al Juny, coincidint amb marcats augments de 

la temperatura (> 6 °C), indicant que canvis dràstics en els factors abiòtics poden 

ultrapassar els mecanismes de resposta a l’estrès observats en l’espècie. És 

fonamental, doncs, determinar l’habilitat de les espècies introduïdes per suportar 

l’estrès i els nivells per sobre dels quals aquests mecanismes poden fallar, per tal 

de predir el seu potencial invasor i possible rang d’expansió i poder dissenyar, per 

tant, plans eficients de gestió i contenció.  
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INTRODUCTION

Stress response mechanisms allow marine organisms to cope with unexpected or 

sharp fluctuations in one or several biotic or abiotic factors (Aruda et al. 2011, 

Clark & Peck 2009, Cottin et al. 2010, Huang et al. 2011, Lockwood et al. 2010). 

Depending on the extent and duration of the stress, organisms can recover, 

survive for a time with an impaired fitness or die. The persistence of stress factors 

can shape an organism’s distribution, excluding it from some locations (e.g., 

Osovitz & Hofmann 2005). Physical parameters such as temperature and salinity 

can vary over time, especially in particular habitats such as marginal-marine and 

anthropogenic environments (estuaries, bays and harbors). At a broader scale, 

climate change will yield a global increase of seawater temperature and current 

studies suggest that most marine organisms do not posses the necessary 

mechanisms to deal with this stress and will be replaced by species better adapted 

to warm environments (e.g., Helmuth et al. 2005, Somero 2010). Biological 

factors such as space competition, epibiosis, disease and predation may also stress 

an organism. The impact of these biological factors on a given population is often 

limited, as only a few individuals within a community are generally involved in a 

particular interaction. On the other hand, the arrival and establishment of a non-

indigenous species may alter the biological interactions of a whole community, 

yielding a significant disruption of well-established networks (e.g., Harris & 

Tyrrell 2001, Strayer et al. 2006). 

 From the point of view of an introduced species, successful colonization 

of a new environment also depends on the occurrence of adequate physical and 

biological conditions, both for adults and larvae (Stachowicz et al. 2002, 

Verween et al. 2007, Blackburn & Duncan 2001, Fowler et al. 2011, Zerebecki & 

Sorte 2011). Thus, widely introduced species should be opportunistic and able to 

colonize new habitat rapidly, often exploiting temporal windows of tolerable 

conditions (McKinney 2002). Among fluctuating environments, salt marsh 

communities provide an ideal setting to assess the natural ability of a species to 

cope with strong changes in salinity and seawater temperature (Weinstein 1996, 

Gascon et al. 2005). Only those organisms adapted to wide environmental 

fluctuations can survive in the long-term, successfully colonizing these habitats 
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(e.g., the polychaete Nereis diversicolor, Paramor & Hughes 2004, Aberson et al. 

2011; and the limpet Crepidula fornicata, Blanchard 1997, Bishop 2005). In 

order to cope with sharp abiotic changes that can yield suboptimal and stressful 

conditions, successful introduced species should be equipped with efficient 

physiological mechanisms to respond to stress (Thomsen & McGlathery 2007, 

Piola & Johnston 2008, Dafforn et al. 2009b). 

Heat shock protein response is the first mechanism deployed by 

eukaryotes to deal with an accumulation of non-native proteins in stressed cells 

through increased expression of heat shock proteins (hsps; Voellmy & Boellmann 

2007). Hsps are involved in proper folding or unfolding of proteins and 

participate in the removal of non-native or aggregated proteins from the cell 

(Gething & Sambrook 1992, Parsell & Lindquist 1993, Feder & Hofmann 1999). 

To date, it is unclear whether changes in hsp expression can be directly correlated 

with protein abundance (Vogel et al. 2010), although recent studies suggested 

that for most common heat shock proteins, an immediate induction of expression 

is followed by a subsequent increase of the corresponding protein abundances 

(Maier et al. 2011). Thus, increased transcription of stress-related genes can be 

considered an early indicator of stress, which is of utmost importance when 

dealing with invasive species. 

The development of new genetic tools such as gene expression 

quantification has allowed for the detection of minute changes in the stress 

response of marine organisms and provided insight into their tolerance thresholds 

and role in resilience (Hofmann & Place 2007). To date, most of the studies 

ascertaining stress levels through quantification of gene expression in marine 

organisms have targeted the heat shock protein 70 (hsp70) and have focused on 

thermal resilience (e.g., Osovitz & Hofmann 2005, López-Legentil et al. 2008, 

Henkel & Hofmann 2008, Feidantsis et al. 2009, Rodriguez-Lanetty et al. 2009).  

Ascidians, or sea squirts, are conspicuous components of epibenthic 

marine communities all over the globe (e.g., Glasby 2001, Voultsiadou et al. 

2007) and are among the most important marine invaders worldwide (Lambert 

2002, 2007). Most of these species are known to rely on anthropogenic transport 

for long-distance dispersal and new habitat colonization (e.g., López-Legentil et 

al. 2006, Rius et al. 2008, Barros et al. 2009, Pineda et al. 2011). Little is known 
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about stress tolerance in ascidians and the genes involved in stress response and 

regulation. In fact, stress related genes have only been described to a significant 

extent for one species, the phlebobranch ascidian Ciona intestinalis, for which the 

complete genome has been sequenced (Dehal et al. 2002, Fujikawa et al. 2010).  

Styela plicata (Lesueur, 1823) is a solitary ascidian commonly found 

inhabiting harbors of warm and temperate oceans, usually at high-densities. In 

spite of its broad geographical distribution, the native range of this species is not 

yet elucidated (Lambert 2001, Pineda et al. 2011). The introduction success of S. 

plicata to new regions has been attributed to its high tolerance of polluted waters 

(Naranjo et al. 1996) and changes in temperature and salinity (Sims 1984, 

Thiyagarajan & Qian 2003). A prompt response to stressors during larval stages 

and an efficient physiological mechanism to cope with stress in the adult are 

critical for the long-term establishment of a species in a new habitat (e.g., Dybern 

1967, Vázquez & Young 1996, 2000).  

In the United States of America, the Atlantic Intracoastal Waterway 

extends along most of the Eastern Seaboard, from Norfolk, Virginia to Miami, 

Florida. The waterway was built to provide a navigation channel for trade and 

transport and is periodically dredged to allow passage of deep-draught ships. 

Along its length, natural areas (rivers, bays, sounds) alternate with artificial 

stretches and numerous inlets that communicate the waterway with the Atlantic 

Ocean. In the Wilmington stretch (North Carolina), the waterway is surrounded 

by Spartina alterniflora salt marsh habitat and separated from the Atlantic by the 

Masonboro Island (Mallin et al. 2000). The Masonboro Sound is characterized by 

strong salinity and temperature oscillations (Sutherland 1974), with salinities 

often reaching values of 35-37‰ (Mallin et al. 2000). This area is also subjected 

to a fast terrestrial development, which has exposed the benthic communities 

living in the Sound to increased sediment runoff, nutrient and organic inputs 

(Mallin et al. 1999).  

The goal of this study was to advance our understanding of the factors 

shaping the distribution of the introduced ascidian Styela plicata by monitoring 

stress responses in a salt marsh population exposed to high temperature and 

salinity fluctuations. To achieve this goal, we measured temperature and salinity 

fluctuations over a two-year period and quantified hsp70 gene expression using 
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quantitative real time PCR (QRT-PCR). We hypothesized that S. plicata will 

feature a high plasticity in the production of stress proteins and will respond to 

sharp fluctuations in temperature and salinity by increased transcription of these 

proteins. 

MATERIALS & METHODS 

Hsp70 gene characterization and amplification 

 

The first objective of this study was to localize, isolate and sequence the hsp70 

gene for the ascidian Styela plicata. To achieve this goal, two individuals of S. 

plicata (Stolidobranchia: Lesueur 1823) from each of the following Spanish 

populations: Blanes (41º40'29''N, 2º47'56''E), Vilanova i la Geltrú (41º12'53''N, 

1º44'10''E) and San Fernando (36º28'51''N, 6º10'52''W), and from Wilmington 

NC in the United States of America (34º8'24''N, 77º51'44''W) were collected in 

2008 and kept in absolute ethanol until processed. Samples were collected from 

different countries to increase our probability of finding different alleles and 

locating conserved regions in S. plicata’s hsp70 gene. DNA extractions were 

obtained using the Puregene and the QIAamp DNA Mini Kit kits (Qiagen). For 

amplification of the target gene (hsp70), a nested PCR was performed using the 

primers described in Borchiellini et al. (1998) for sponges in the first PCR and, 

after obtaining some preliminary sequences, the newly designed primer set 

SPNC-INT A: 5’-TCC GGA AGA AAT CAG CTC AAT GGT -3’ and SPNC-

INT B: 5’-ATG CAA CAG CTT CGT CTG GAT TGA-3’ for the second. For the 

first PCR, conditions were as follows: A single soak at 95 ºC for 5 min, 35 

amplification cycles (denaturation at 95 ºC for 1 min; annealing at 45 ºC for 1 

min; and extension at 68 ºC for 3 min), and a final extension at 72 ºC for 10 min. 

PCR conditions for the second PCR consisted of a single soak at 95 ºC for 5 min, 

35 amplification cycles (denaturation at 95 ºC for 1 min; annealing at 50 ºC for 1 

min; and extension at 68 ºC for 2 min), and a final extension at 72 ºC for 10 min. 

Amplification for the San Fernando and Wilmington samples was carried out in a 

Peltier PTC-200, and for the Blanes and Vilanova i la Geltrú samples in a 

Eppendorf Mastercycler machine. To obtain purified amplification products, 
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amplification bands were cut from a low-melting-point agarose gel (1%) 

following the PerfectPrep Gel Cleanup kit procedure (Eppendorf). The purified 

DNA was cloned in E. coli using the TOPO® TA Cloning® Kit and One Shot® 

TOP10 competent cells, according to manufacturer’s instructions (Invitrogen). 

Sixteen positive colonies from each population were sequenced using the BigDye 

TM terminator v. 3.1 and the plasmid primers T7 and M13R. Sequences were 

obtained on an ABI Prism 3100 automated sequencer located at the Center for 

Marine Science (UNC Wilmington) or at the Scientific and Technical Services of 

the University of Barcelona (Genomic unit).  

 

Hsp70 phylogeny  

 

The phylogenetic relationships of the 22 hsp70 gene sequences obtained in this 

study were determined by comparison with previously reported hsp70 family 

sequences in GenBank derived from marine invertebrates (n = 20; representing 15 

species from 4 phyla) and two outgroup sequences from Fungi. Only 4 sequences 

from ascidians were found, 2 for the phlebobranch Ciona intestinalis (Fujikawa et 

al. 2010) and 2 for the phlebobranch Ectienascidia turbinata (López-Legentil & 

Turon 2007). Nucleotide sequences presented numerous deletions and mutations 

and could not be unambiguously aligned using standard alignment algorithms. 

Thus, we translated all nucleotide sequences to amino acid sequences and aligned 

them using the ClustalW Multiple Alignment tool in Bioedit® v.7.0.5.3 (Hall 

1999). This final alignment was used to build a consensus neighbor-joining tree 

using MEGA v.5.0 (Tamura et al. 2011). Confidence in the nodes was assessed 

by 10,000 bootstrap replicates (Felsenstein 1985). 

 

Hsp70 temporal variation samples and environmental data 

 

Six to seven adults of Styela plicata were collected monthly from April 2007 to 

July 2009 (28 months) from the Center for Marine Science docks. The docks are 

located in a salt marsh area within the Intracoastal Waterway (UNC Wilmington; 

34º8'24''N, 77º51'44''W). Seawater temperature and salinity were measured with a 

digital thermometer and a refractometer, respectively. Samples were handpicked, 
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immediately placed in a bucket with ambient seawater, and transported to the lab 

(less than 100 m away). Once in the lab, ascidians were carefully dissected to 

avoid puncturing their stomach and digestive tract, and branchial tissue was 

immediately frozen and stored at -80 °C.  

 

RNA extraction and cDNA synthesis 

 

From each individual, 100 mg of tissue from the branchial sac was carefully 

sampled and homogenized in TRIzol® reagent (Invitrogen). The Micro-to-midi 

RNA purification kit (Invitrogen) was subsequently used to purify RNA, 

according to manufacturer instructions. RNA was re-suspended in 100 μL 

nuclease free water. In order to eliminate any remaining DNA from the RNA 

extractions, all samples were DNAse treated using DNAse Amplification Grade I 

(Invitrogen). Complementary DNA (cDNA) was synthesized from 2 μg of total 

RNA using the SuperScript Reverse Transcriptase II kit (Invitrogen) following 

manufacturer’s instructions. Reactions to create cDNA were carried out with the 

specific primer for hsp70 SPNC-INT B described above, and a newly designed 

primer for 18S rRNA gene 5’-AAG ACT TTG GTT TCC CGG AAG CTG-3’, 

based on 14 sequences of Styela spp. available in GenBank (FM897318 to 

FM897325, L12442 to L12444, AH001758, AY903923, and M97577). To our 

knowledge, no previous study aiming to quantify gene expression in ascidians 

exists and therefore few sequences for potential reference genes are available. On 

the other hand, previous studies have demonstrated that 18S rRNA transcript 

abundance is stable under differing conditions (Marino et al. 2003, Kim et al. 

2003, Li et al. 2011) and this gene is commonly used in ascidians to perform 

phylogenetic analysis (e.g., Zeng et al. 2006, Pérez-Portela et al. 2009). Thus, 

based on current information and available data, we decided to use a fragment of 

the 18S rRNA gene as an internal reference gene for this study. 

 

QRT-PCR primer design 

 

The QRT-PCR primer set 5'-GYG GAA CAT TGG AAC CAG-3' (forward) and 

5'-CAG CTT CGT CTG GAT TGA TTG-3' (reverse) was designed against a 135 
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base pair region of the targeted hsp70 gene. The primers 5’-GGA AGA CGA 

ACT ACT GCG AAA GCA-3’ (forward) and 5’-AAG ACT TTG GTT TCC 

CGG AAG CTG-3’ (reverse) were designed against a 130 base pair region of the 

18S RNA gene of S. plicata. All primers for QRT- PCR were designed using the 

Primer Express software (Applied Biosystems). 

 

QRT-PCR of hsp70 transcripts 

 

To quantify mRNA abundance of the hsp70 gene, we used a 7700 Applied 

Biosystems quantitative real-time PCR and the standard curve method. Standards 

for the 18S rRNA gene (reference gene) and the hsp70 gene (target gene) were 

obtained by cloning (TOPO TA Cloning® Kit, Invitrogen). Positive colonies 

were analyzed by PCR using specific primers targeting the plasmid. Colonies 

containing the correct insert were grown overnight in a LB liquid media 

containing Kanamycin. Plasmid extraction was performed using the Perfectprep 

plasmid Mini kit (Eppendorf) and sequenced to verify again that the correct 

fragment of 18S rRNA or hsp70 gene was present. QRT- PCR reactions were 

performed with 2 μL of hsp70 cDNA or 1 μL of 18S cDNA (previously diluted to 

1:100 v:v), in 10 μL SYBR GreenER SuperMix (Invitrogen) and nuclease free 

water to a final volume of 20 μL. The PCR conditions were as follows: a single 

soak at 50 ºC for 2 min, and 95 ºC for 10 min, was followed by 40 amplification 

cycles (95 ºC for 15 s, 58 ºC for 15 s and 68 ºC for 45 s); finally, the dissociation 

step consisted on an extra cycle of 95 ºC for 15 s, 60 ºC for 20 s and 95 ºC for 15 

s. Each 96-well plate contained samples in triplicates, as well as sevenfold serial 

dilution of the corresponding standard and negative controls in duplicates, for 

both the target and reference genes. Melt curve analysis was performed following 

each PCR to confirm that a single product was amplified. Relative abundances 

were calculated for each triplicate according to a reference standard curve. 

Triplicate values were averaged to obtain a single value per sample and gene 

(target and reference). To obtain the ratio of the target gene corrected for the 

reference gene, we divided the averaged value of the target gene by the one of the 

reference gene. Replicate samples belonging to the same month were then 
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averaged to obtain a single ratio value for each month. This ratio value was used 

for subsequent analyses. 

 

Data analysis 

 

A non-parametric Kruskal-Wallis one-way analysis of variance was performed to 

assess whether there were significant differences in hsp70 gene expression among 

months. Post-hoc comparisons were made using the Dunn’s method. Likewise, a 

two-way ANOVA was performed to test for significant effects and potential 

interaction of temperature and salinity on hsp70 gene expression, according to 

pre-established groups for temperature (< 20 ºC, 20-25 ºC, > 25 ºC), and salinity 

(< 28‰, 28-32‰, > 32‰). Data were rank-transformed (Conover & Iman 1981) 

prior to this analysis to meet the assumptions of normality and homoscedasticity. 

In the presence of a significant interaction (see Results), comparisons using the 

Student-Newman-Keuls (SNK) test were made for levels of one factor at each 

level of the other factor using the common error mean square (Quinn & Keough 

2002).  

In addition, hsp70 gene expression over time was related to temperature 

and salinity variations using monthly means and cross-correlation analyses (using 

the Pearson coefficient). In these analyses, values of one variable were correlated 

with values of the other at different time lags (months). All analyses were 

performed using the software SYSTAT v. 12 (©SYSTAT Software, Inc. 2007), 

and SigmaStat v. 3.11 (©SYSTAT Software, Inc. 2004).  

RESULTS 

A total of 50 sequences of 761 base pairs were obtained for the hsp70 gene of 

Styela plicata (GenBank accession nos. JN593023 to JN593072). Further 

analyses revealed 30 unique sequences with an overall nucleotide diversity of 

0.07167 ± 0.00213. Translation of these sequences yielded 22 unique amino acid 

sequences and a total amino acid variability of 0.035 substitutions per site.  
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The amino acid sequences obtained here for S. plicata were distributed 

in two clades (Fig. 1), with a between groups mean distance of 0.057 substitutions 

per site. Both clades were further grouped with one hsp70 sequence described for 

the ascidian Ciona intestinalis, and were part of the largest clade retrieved in the 

analysis (Fig. 1). This large clade also included sequences from Cnidaria and 

Porifera, which formed two moderately supported clades (bootstrap values > 60), 

and the Arthropoda, which appeared as a polyphyletic group (Fig 1). Other 

ascidian sequences for C. intestinalis and E. turbinata formed a well-supported 

clade (bootstrap support = 99), but its position within the tree could not be 

resolved. 

The temperature showed a clear seasonal trend, with peaks above 30 ºC 

in summer and reaching down to less than 9 ºC in winter 2008, while in winter 

2009 the values were ca. five degrees higher (Fig. 2). The salinity values ranged 

between 26 and 38.5‰ and showed a less clear trend, with generally higher 

values in Autumn-Winter and lower values in Spring-Summer. However, abrupt 

fluctuations from one month to the next were also observed (e.g., December 

2008; Fig. 2). 

There were wide fluctuations in hsp70 ratio values during the study 

period (Fig. 2). These values ranged between 0.00011 (±SE 0.00042) in June 

2008 to 0.00178 (±SE 0.00069) in August 2007, with an overall mean of 0.00048 

(±SE 0.00008). Inter-individual variability was also observed within months (as 

revealed by wide error bars in Fig. 2). The monthly coefficient of variation (ratio 

between standard deviation and mean) of hsp70 values was of 0.71. In contrast, 

the intra-individual replicates had a coefficient of variation of 0.15. 

Overall, hsp70 expression varied widely over time, with higher stress 

levels recorded in summer and winter. The ANOVA (Kruskal-Wallis) showed 

significant differences between months (H = 83.42, df = 26, P < 0.001). Hsp70 

transcript levels were significantly higher in August 2007 and June-July 2009 

than during the other months (Dunn test, P < 0.05). The peak recorded in August 

2007 corresponded to a sharp increase in temperature, while the increase in hsp70 

gene expression observed in June-July 2009 corresponded to the conjunction of 

an increase in seawater temperature and a decrease of salinity values. Another 

increase in hsp70 transcript levels (albeit not significant due to large variance) 
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Figure 2. Hsp70 gene expression from April 2007 to July 2009 (black diamonds and
continuous line). Temperature and salinity values are superimposed (squares and short dashes
for temperature; triangles and long dashes for salinity). Vertical bars denote standard errors. 

Figure 3. Cross correlation analyses between hsp70 gene expression and a) temperature, and b) 
salinity. Curved lines bound the 95% confidence interval of the correlation coefficient in case of
no association. Time lag is in months. Correlation at time lag 0 is the usual Pearson correlation.��
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Examining hsp70 expression levels according to different temperature 

and salinity groupings revealed that high temperatures appeared to exacerbate the 

effects of salinity, especially in the low salinity group (Fig. 4). Accordingly, a 

two-way ANOVA revealed a significant interaction between temperature and 

salinity (Table 1). Comparisons of salinity effects at each temperature level (SNK 

tests) revealed that at seawater temperatures lower than 25 ºC, there was no clear 

effect of salinity on hsp70 expression levels (Fig. 4, SNK tests all non significant 

except for the comparison between low and intermediate salinities at < 20 ºC). 

However, when seawater temperature reached values over 25 ºC, hsp70 gene 

expression increased with decreasing salinity values (Fig. 4), with hsp70 

transcript levels significantly higher at < 28‰ than at higher salinities (SNK test, 

P = 0.019). Likewise, no significant effect of temperature was found at 

intermediate or higher salinities (SNK tests, all comparisons P > 0.05). At low 

salinities (< 28‰), hsp70 transcript levels were significantly higher at 

temperatures > 25 ºC than for the other temperature groups (SNK test, P <0.001).  

Table 1. Two-way ANOVA results to test for significant effects and potential 
Figure 4. Hsp70 gene expression over the 28 studied months grouped by temperature and 
salinity ranges. Vertical bars denote standard errors. 
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interaction of temperature and salinity on hsp70 gene expression. Salinity and 
temperature groups as in Fig. 4. Data were rank transformed (see text).
SS, sum of squares; df, degrees of freedom; MS, mean of square; F, F-statistic; P, P value

DISCUSSION 
 

Phylogenetic analysis showed a wide diversity in the hsp70-like proteins of 

marine invertebrates. Even the few ascidian sequences available in GenBank and 

included in this study grouped in two distinct clades. Two distinct clades were 

also retrieved for our S. plicata sequences, one of which was closely related to a 

sequence described for the phlebobranch ascidian Ciona intestinalis. Our results, 

however, demonstrated that all hsp70 sequences recovered herein were closely 

related and probably belong to the same gene ortholog.  

A seasonal trend in hsp70 gene expression was observed for the ascidian 

S. plicata in the studied salt marsh, indicating important changes in the 

physiological stress levels of this species over time. The observed variability in 

hsp70 expression levels among simultaneously sampled individuals (as reflected 

by the error bars in Fig. 2) was probably due to the presence of genetically 

distinct individuals in our sample set. Intraspecies variability in stress response 

has been reported in previous studies and is common in marine invertebrates 

(Agell et al. 2001, Osovitz & Hofmann 2005, Rossi et al. 2006, López-Legentil et 

al. 2008). 

High levels of hsp70 gene expression have been correlated with seawater 

temperature increases in many marine invertebrates (Osovitz & Hofmann 2005, 

López-Legentil et al. 2008, Pantile & Webster 2011). Accordingly, in this study 

we found that significantly higher levels of hsp70 gene expression occurred 

during the summer months. Moreover, important mortality events occurred 

around June 2007, 2008 and 2009 when seawater temperatures reached values 

  SS df MS F P 

Temperature 22566.707 2 11283.354 5.831 0.004 
Salinity 20789.934 2 10394.967 5.372 0.005 
Temperature * Salinity 40264.134 4 10066.034 5.202 < 0.001 
Residual 317327.181 164 1934.922   
Total 431462 172 2508.5   
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above 27 °C. During these times, over 90% of the population of S. plicata 

disappeared or were dying, with an uncharacteristically soft and blackened tunic 

and the interior guts spilling out through the siphons or cuts in the tunic (authors’ 

pers. obs.). Mortality or recovery of stressed animals is determined by the extent 

of damage to essential cellular structures (Downs et al. 2002). Minor damage can 

be repaired by an increase in hsp activity, while a prolonged exposure to stress 

leads to metabolic failure in a relatively short time (within a month in our case). 

Thus, our data suggested that extreme physiological stress resulting from a sharp 

increase in seawater temperature (> 6°C between monthly readings) caused the 

massive mortality observed in S. plicata. Important episodic decreases in S. 

plicata’s populations were also reported in previous studies conducted in the 

same area (Sutherland 1974, 1978). However, those events were recorded in fall 

and were attributed to substrate inadequacy to support the large individuals 

resulting from summer growth.  

Besides temperature, other factors are also known to significantly stress 

marine organisms, including sharp salinity decreases (e.g., Kültz 1996, Deane & 

Woo 2004, Yang et al. 2009), food constrains (e.g., Rossi et al. 2006), hipoxya 

(e.g., Ma & Haddad 1997), ocean acidification (e.g., O'Donnell et al. 2009), and 

the presence of pollutants (e.g., Müller et al. 1995, Agell et al. 2004, Azumi et al. 

2004, Micovic et al. 2009, Su et al. 2010, Bozinovic & Oleksiak 2011). Several 

studies have also documented the physiological response of organisms under a 

combination of multiple potential stressors (O'Donnell et al. 2009, Lockwood et 

al. 2010, Monari et al. 2011). Thiyagarajan & Qian (2003) found that S. plicata 

recruitment success and post-larval growth in summer were impaired by high 

seawater temperatures (26-30 ºC) and low salinities (about 22-30‰). Similarly, in 

our study, we have found that the interaction between temperature and salinity on 

hsp70 gene expression was significant. In particular, at seawater temperatures 

over 25 ºC, hsp70 gene expression appeared to increase with decreasing salinity 

values. However, statistical significance was only recorded for the combination of 

high temperatures (> 25 ºC) and low salinities (< 28‰) recorded only once in 

July 2009. Further experimentation in aquaria under tightly controlled 

environmental conditions is needed to pinpoint the effect of temperature and 
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salinity fluctuations over several development stages of S. plicata and assess 

whether these factors are currently limiting the actual distribution of this species. 

The biogeographic distribution of marine species is determined by each 

species tolerance to stress (Feder & Hofmann 1999), in which the heat shock 

response is a key factor. Thus, establishment of a new species is possible 

whenever the levels of environmental conditions fall within the tolerance range of 

the species. Likewise, if this range is wider for an introduced species than for 

directly competing native organisms then the newcomer can become invasive 

(Stachowicz et al. 2002). For instance, Lockwood & Somero (2011) suggested 

that the success of the mussel Mytilus galloprovincialis over M. trossulus in the 

west coast of the US was due to the ability of M. galloprovincialis to deal with 

acute heat stress by producing more stress proteins. Although in this study we 

have not assessed the stress response of S. plicata to biotic factors such as 

competition with other species, the artificial substrates surveyed here were 

colonized in their nearly totality by S. plicata, and no conspicuous predators were 

observed. Thus, based on our results, it appears that S. plicata’s ability to thrive 

and colonize salt marsh habitats may depend on its ability to withstand severe 

abiotic changes.  

In conclusion, hsp70 gene expression in the introduced ascidian S. 

plicata varied over time and was significantly correlated to high seawater 

temperature. Low salinities also appeared to increase hsp70 expression, with 

highest levels of expression recorded at temperatures > 25 ºC and salinities < 

28‰. The 15-fold variation in expression levels found here is consistent with the 

prediction that a certain degree of resilience to adverse environmental conditions 

has facilitated the worldwide distribution of this species. In addition, it is possible 

that this same ability to physiologically adjust to stressful conditions has allowed 

S. plicata to colonize fluctuating environments such as salt marshes. Even when 

severe changes in temperature or salinity overcome S. plicata tolerance thresholds 

(i.e. in June), the species was able to completely refill the studied docks within a 

month (authors’ pers. obs.), presumably by larvae originating from unknown 

reservoirs or from hulls of the many ships navigating the Atlantic Intracoastal 

Waterway. The fast growth rates recorded for S. plicata (Yamaguchi 1975, 

Sutherland 1978), should further allow this species to quickly repopulate any lost 
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habitat. This study highlights the importance of understanding how introduced 

species respond to a combination of environmental factors in order to predict their 

invasive potential and prepare efficient containment plans. 
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TToouugghh  aadduullttss,,  ffrraaiill  bbaabbiieess::  SSeennssiittiivviittyy  ttoo  
aabbiioottiicc  ffaaccttoorrss  aaccrroossss  mmuullttiippllee  lliiffee--
hhiissttoorryy  ssttaaggeess  ooff  wwiiddeellyy  iinnttrroodduucceedd  

mmaarriinnee  iinnvveerrtteebbrraatteess  

ABSTRACT 

Population persistence depends on the performance of both adults and offspring 

in their variable environments. Most studies analyzing the influence of abiotic 

conditions on species performance have focused on adults, while studies covering 

early life-history stages remain rare. We investigated the responses of early stages 

of two widely introduced ascidians, Styela plicata and Microcosmus squamiger, 

to different abiotic stressors in two populations. Stressors mimicked conditions in 

the habitats where both species occur and responses were related to genetic 

diversity (assessed with the COI gene) of the populations. Four developmental 

stages (egg fertilization, larval development, settlement, metamorphosis) were 

studied after exposure to high temperature (30 ºC), low salinities (26 and 22‰) 

and high copper concentrations (25, 50 and 100 μg/L). All treatments affected the 

development of both species, though responses differed with stage and stressor. 

Fertilization and larval development were the most sensitive. Remarkably, most 

stressors effectively led to failure of development (fertilization through 

metamorphosis). S. plicata was overall more resistant to copper, and some stages 

of M. squamiger to low salinities. No relationship was found between parental 

genetic composition and responses to stressors. We conclude that successful 

development can be prevented at several life-history stages, so considering a 

single stage can result in misleading conclusions about species’ abilities to 

tolerate stress. Moreover, we found that early life-history processes of these 

species cannot be completed under conditions prevailing where adults live. Given 

the short dispersal potential of many marine invertebrates, our results raise the 

questions of how populations in environmentally stressful situations are 

established and maintained. 
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AAdduullttss  rreessiisstteennttss,,  CCrriiaattuurreess  ffrrààggiillss::  SSeennssiibbiilliittaatt  

aa  ffaaccttoorrss  aabbiiòòttiiccss  aall  llllaarrgg  ddee  mmúúllttiipplleess  eessttaaddiiss  

ddeell  cciiccllee  bbiioollòòggiicc  dd’’iinnvveerrtteebbrraattss  mmaarriinnss  

iinnttrroodduuïïttss  gglloobbaallmmeenntt  

RESUM 

La persistència de les poblacions depèn de l’actuació d’ambdós adults descendència al 

seu ambient. La majoria dels estudis que avaluen la influència de les condicions 

abiòtiques en l’actuació de les espècies, s’han centrat en els adults, mentre que encara 

són escassos els estudis basats en els estadis primerencs del desenvolupament. Vam 

investigar les respostes dels primers estadis de vida de dues espècies d’ascidis 

introduïts, Styela plicata i Microcosmus squamiger, a diferents estressors abiòtics. 

Aquests estressors simulaven les condicions que podem trobar als hàbitats a on les 

dues espècies conviuen i les respostes van ser relacionades amb la diversitat genètica 

(a través del gen COI) trobada a les poblacions d’estudi. Quatre processos inicials del 

desenvolupament (fertilització de l’ou, desenvolupament de la larva, assentament i 

metamorfosis) van ser estudiats després de l’exposició a elevada temperatura (30 ºC), 

baixes salinitats (26 i 22‰) i elevades concentracions de coure (25, 50 i 100 μg/L). 

Tots els tractaments van afectar el desenvolupament d’ambdues espècies, tot i que les 

respostes van diferir segons l’estadi i l’estressor avaluat. En general, els processos 

primerencs (fertilització i desenvolupament larvari) van resultar ser els més sensibles. 

Sorprenentment, la majoria dels estressors van causar que no es pogués finalitzar el 

desenvolupament complert (des de la fertilització fins a la metamorfosi). A més, S. 

plicata sembla més resistent en general a la pol·lució per coure, mentre alguns estadis 

de M. squamiger ho són més a les baixes salinitats. No es va trobar cap relació entre 

la diversitat genètica de les poblacions i les respostes als estressors. Podem concloure 

que el desenvolupament exitós es pot veure dificultat en qualsevol dels diferents 

estadis analitzats, per tant, considerar un sol estadi del desenvolupament pot resultar 

en conclusions errònies sobre l’habilitat de les espècies per tolerar condicions 

estressants. Hem vist també que els processos de desenvolupament primerenc 

d’aquestes espècies no es poden completar en les condicions que prevalen als indrets 

a on viuen els adults. Tenint en compte el curt potencial de dispersió de les larves de 

molts invertebrats marins, aquest treball obre interrogants sobre com es poden establir 

i mantenir les poblacions en situacions tan ambientalment estressants.  
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INTRODUCTION

Abiotic factors such as temperature, salinity and habitat characteristics have long 

been considered primary factors affecting survival, fitness and distribution of 

marine organisms (Kinne 1964). More recently, anthropogenic changes to the 

environment have yielded new agents of selection, with resistance to pollution 

being one of the most important (Hall et al. 1998, Johnston & Keough 2005). 

Thus, the persistence of human-mediated stressors in the environment nowadays 

contribute to shaping the distribution of marine organisms, excluding some (e.g., 

Osovitz & Hofmann 2005) and facilitating the establishment of others (e.g., Piola 

& Johnston 2006). Moreover, a species’ long-term performance is modulated by 

abiotic factors across multiple life-history stages, including adulthood (Dunson & 

Travis 1991, Naranjo et al. 1996, Byers 2002, Addison et al. 2008), and 

embryonic and larval development (e.g., Thiyagarajan & Qian 2003, Przeslawski 

et al. 2005, Marshall et al. 2006). Among these, embryogenesis, settlement and 

metamorphosis are critical life-history phases for many organisms (e.g., Bayne et 

al. 1976, Verween et al. 2007), especially when exposed to anthropogenic 

stressors (Galletly et al. 2007, Polato et al. 2010, McKenzie et al. 2011). For 

sessile marine organisms, where adults are unable to escape unfavorable abiotic 

conditions, the importance of successful early stages is even more striking as it 

determines the viability of local adult populations (Giangrande et al. 1994, 

Berkelmans 2002, Linares et al. 2010). This in turn can have community-level 

consequences as many sessile species act as ecosystem engineers (sensu Jones et 

al. 1994), providing habitat for multiple associated organisms while excluding 

competitors for space. 

The arrival and establishment of non-indigenous species (NIS) via man-

mediated transport is a major factor altering communities worldwide (e.g., Harris 

& Tyrrell 2001, Strayer et al. 2006). Shipping facilities such as harbors and 

marinas often act as entrance gates for NIS (Zibrowius 1991, Glasby et al. 2007, 

Tyrrell & Byers 2007, Dafforn et al. 2009a, Bulleri & Chapman 2010), and thus 

newcomers have to be able to cope with the stressful conditions (e.g., pollution, 

disturbance) that characterize these altered habitats. Establishment of NIS in such 

environments depends on physical and biological conditions being suitable not 



104�
�

only for adults (Stachowicz et al. 2002, Blackburn & Duncan 2001, Zerebecki & 

Sorte 2011) but also for juvenile stages (e.g., Fowler et al. 2011).  

Genetic diversity is an important factor influencing the establishment of 

NIS (Holland 2000, Grosberg & Cunningham 2001, Sakai et al. 2001, Geller et 

al. 2010) and it is generally assumed that the richer the genetic composition of a 

species’ population, the wider its potential ability to adapt to stressful 

environmental situations (Fisher 1930, Sakai et al. 2001). The heritability of traits 

under selection depends on stress-response variation within a population, and the 

potential for rapid evolution in new environments (Reznick & Ghalambor 2001, 

McKenzie et al. 2011). For NIS, the latter can be problematic as introduced 

species often experience genetic bottlenecks that can reduce the genetic diversity 

needed for selection (Sakai et al. 2001, Novak & Mack 2005, Dupont et al. 

2007). The study of genetic variability of introduced populations is essential to 

understanding NIS tolerance of environmental stresses and their potential to 

spread. To date, however, few studies have considered how different levels of 

parental genetic diversity in NIS influence offspring responses to multiple 

stressors. 

Genotype-environment interactions are generally considered when 

differences in response between genotypes are not consistent from one 

environment to another, and have been investigated to assess, for instance, 

phenotypic stability (Pederson 1968) or genotypic responses to lethal and non-

lethal stresses (Barata et al. 2000). Most studies on genotype-environment 

interaction have analyzed the influence of abiotic conditions during adulthood 

(e.g., Tomas et al. 2011), while studies covering different, presumably more 

sensitive, early life-history stages remain rare. In line with this, polymorphic 

markers can be used to characterize different populations and to relate differences 

in biological response to genetic diversity and genetic differentiation between and 

within populations. 

Here we investigated the performance across multiple life-history stages 

of two widely introduced marine invertebrate species in two locations where 

these species coexist. The solitary ascidians Styela plicata (Lesueur, 1823) and 

Microcosmus squamiger (Michaelsen, 1927) are sessile organisms that have been 

introduced worldwide (Rius et al. 2008, Pineda et al. 2011) and that often inhabit 
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places with highly variable abiotic conditions (i.e. harbors; Lowe 2002, Naranjo 

et al. 1996, Rius et al. 2009a, Pineda et al. 2012). The success of introductions of 

S. plicata to new habitats has been attributed to its high tolerance of polluted 

waters and changes in temperature and salinity (Sims 1984, Naranjo et al. 1996, 

Thiyagarajan & Qian 2003), while M. squamiger is known to be resistant to low 

salinities as adults (Lowe 2002). In addition, previous genetic studies of these 

widespread species based on a fragment of the mitochondrial gene Cytochrome 

Oxidase subunit I (COI) have revealed the existence of two highly divergent and 

widely distributed haplogroups for each species (Rius et al. 2008, Pineda et al.

2011). No information is available, however, on the functional significance of this 

intraspecific genetic structure in terms of responses to stress. In this study, we 

targeted several early developmental stages (fertilization, larval development, 

settlement, and metamorphosis) and we genetically characterized the progenitors 

using COI sequence data. We tested species performance under thermal and 

salinity stress, and with several concentrations of a heavy metal (Cu). We 

hypothesized that S. plicata and M. squamiger offspring should be able to 

develop under realistic environmental conditions found in shallow and enclosed 

artificial habitats where adults occur, although different haplogroups might 

respond differently. 

MATERIALS & METHODS 

Field sites and general methods 

Adult individuals of Styela plicata and Microcosmus squamiger were collected 

during the austral spring of 2010 (October and November) when both species are 

known to reproduce (Yamaguchi 1975, Rius et al. 2009b). Two sites along the 

South African coast, approximately 160 km apart, were sampled: Port Elizabeth 

(33° 57' 44" S, 25° 38' 8" E) and Knysna (34° 02' 32" S, 23° 02' 40" E), and 

individuals were transported to the laboratory (located less than 6 h away) in 

insulated containers. Since seawater from harbors usually contains high 

concentrations of pollutants (Schiff et al. 2004, Valkirs et al. 2003), we also 

collected seawater from nearby clean sites far from any urban or industrial 
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influence (33° 58' 47" S, 25° 39' 29" E for Port Elizabeth, 34° 03' 42" S, 23° 22' 

38" E for Knysna). Animal storage and all laboratory experiments were 

conducted using this clean seawater, previously filtered using a vacuum filtration 

unit with 10 μm pore filters. Individuals were kept in the laboratory at constant 

temperature (20 ºC) and water aeration, for a maximum of four days. We used 

constant artificial illumination to prevent light-induced spawning (West & 

Lambert 1976). 

Experimental trials 

We chose an array of abiotic factors (temperature, salinity and pollution) that are 

known to influence survival of marine invertebrates (Lowe 2002, Thiyagarajan & 

Qian 2003), and analyzed four early life-history processes: fertilization, 

development of the larvae, settlement and metamorphosis. Temperatures were set 

to either 20 °C (control) or 30 °C (treatment) in a Constant Environment (CE) 

room. Seawater temperature of 30 °C represents the higher values occasionally 

reached in summer (Segar 1997, authors’ pers. obs.). Distilled water was added 

to seawater to achieve reduced salinity values (26‰ and 22‰) similar to those 

that are known to affect ascidian development and survival and can be found in 

estuaries (Vázquez & Young 2000, Pineda et al. 2012). For the pollution 

treatments, we added liquid copper (Spectrosol® ref.14139 1000 ppm copper 

standard solution) to filtered seawater to attain the desired concentrations: 25 

μg/L (mean concentration in a polluted harbor, Hall et al. 1998), 50 μg/L 

(common in highly polluted harbors or near boats recently painted with 

antifouling paint, Haynes & Loong 2002) and 100 μg/L (an extreme copper 

concentration often used in this type of study, see Marshall 2008). Copper is 

known to be one of the most toxic heavy metals for marine invertebrates (Piola & 

Johnston 2009), especially during early life-history stages (Bellas et al. 2004, 

Reichelt-Brushett & Harrisson 2005, Xie et al. 2005). 
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Gamete extraction, fertilization and experimentation 

 

Gametes were extracted by dissecting the ripe gonads as described in Marshall et 

al. (2000). A mix of eggs and sperm was poured through a 100-μm filter with 

seawater into a small beaker to retain the eggs in the filter and gather the sperm 

and seawater in the beaker. For each fertilization attempt (see Table 1 for details), 

around 10 individuals were dissected: 5 individuals for eggs and 5 for sperm 

(both species are simultaneous hermaphrodites). The oocytes obtained from the 5 

female donors (around 12 to 18 ml per individual, ~500 eggs ml-1) were 

subsequently pooled together, and the same was done with the sperm obtained 

from the 5 male donors (~107 sperm ml-1).  

For the fertilization and larval development assays, 6 ml of the oocyte 

suspension, 12 ml of the corresponding treatment solution (filtered seawater for 

the temperature treatment, other treatments adjusted to obtain the desired final 

concentrations after mixing with gametes), and 2 ml of concentrated sperm mix 

were added to a 65 mm Petri dish. The cultures were then immediately taken to 

the appropriate CE room for fertilization. After 1 hour, the eggs were washed 

with the treatment solution to remove excess sperm using a 100-μm filter and 

then distributed among five Petri dishes (~100-500 eggs per dish) containing 12 

ml of the treatment solution at the appropriate concentrations. This first set of 

cultures was used to assess fertilization and development rates. 

To obtain enough larvae to conduct the settlement and metamorphosis 

assays, new individuals were obtained from each species (Table 1) and fertilized 

in an aerated beaker containing 500 ml filtered seawater and maintained in a CE 

room at 20 ºC to maximize development rates (Rius et al. 2010). Post-hatching 

experiments consisted of 40 larvae carefully pipetted out and placed in a Petri 

dish with 12 ml of the corresponding treatment solution (5 replicates per 

treatment and location). Petri dishes were previously submerged in seawater for 

24 h to develop a biofilm in order to facilitate larval settlement (Keough & 

Raimondi 1995, Wieczorek & Todd 1997). All Petri dishes were then placed in 

CE rooms (30 ºC for the temperature treatment and 20 ºC for the rest of 

experimental conditions) and kept for 4 days.  
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Table 1. Artificial fertilization runs for each species and population. 

 

Data collection and analyses 
 

For both species, most of the larvae hatched within 14 hours of fertilization at 20 

ºC. Numbers of viable larvae, larvae with deformities (or immature larvae), 

undeveloped embryos and unfertilized eggs (Fig. 1) were then recorded using a 

stereomicroscope. Likewise, the numbers of settled, completely metamorphosed 

and unattached larvae were assessed every 24 h over 4 days (96 h) in the 

settlement and metamorphosis assays. The fertilization rate (FR), development 

rate (DR), settlement rate (SR) and metamorphosis rate (MR) was calculated as 

follows: 

FR = ((viable larvae + larvae with deformities + undeveloped embryos) / (total 

initial number of eggs)) *100 

DR = ((viable larvae) / (viable larvae + larvae with deformities + undeveloped 

embryos)) * 100 

SR = ((settled individuals after 96 h + metamorphosed individuals 96 h) / (total 

number of initial larvae))*100 

MR = ((metamorphosed individuals after 96 h) / (settled individuals 96h + 

metamorphosed individuals 96 h)) *100 

We analyzed two types of variables, the proportion of success at each 

developmental stage (i.e. fertilization rate, development rate, settlement rate, and 

metamorphosis rate) for controls and treatments, and the relative success ratios 

(RS) obtained by dividing the value of each rate by the mean of the corresponding 

controls. The former was used to assess treatment effects against the controls. For 

site effects, as differences between localities often occurred even in the controls, 

the RS were an appropriate assessment of the effect of interest (i.e. whether 

Species Population Fertil. Date N.Indiv. Parameters studied 

S. plicata Port Elizabeth 8th October 10 Settlement & Metamorphosis 
 16th October 10 Fertilization & Larval Development 
Knysna 24th October 10 All parameters 

M. squamiger Port Elizabeth 8th October  9 Settlement & Metamorphosis 
 5th November 6 Fertilization & Larval Development 
Knysna 24th October 10 All parameters 
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development was impaired differentially in one site with respect to the other, after 

eliminating the effect of differences in controls). 

For both types of variables, we performed separately two-way analyses 

of variance (ANOVA) per species with site and treatment as fixed factors. We 

used a logit transformation of the FR, DR, SR and MR data as it is known to 

stabilize the variances of proportional data better than other commonly used 

methods (Warton & Hui 2011). Our transformed data had homogeneity of 

Figure. 1. Eggs and larvae of a) S. plicata and b) M. squamiger (ue: unfertilized 
egg, um: undeveloped embryo, ul: unviable larvae, vl: viable larvae).
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variances in all datasets, although normality was only accomplished in a few 

cases. Nonetheless, we performed the ANOVA tests as they are robust to 

departures from normality when variances are homogeneous (Underwood 1997). 

For the relative success rates (RS), the data complied in all cases with the 

homoscedasticity assumption, although they were not normally distributed in 

some cases. As several transformations tried did not improve this, we proceeded 

with the raw data in the analyses. 

For the proportion data, used to assess treatment effects, if the 

interaction between factors was significant, post-hoc analyses of treatments were 

performed at each site against the control with Dunnett’s test. If the interaction 

was not significant, post-hoc tests on treatment levels were done combining both 

sites. For the RS variables, used to determine site differences, when interaction 

was significant, site effects were assessed within each level of treatment (using a 

post-hoc Student-Newman-Keuls test). If interaction was not significant, no test 

was necessary as site had only two levels. In all post-hoc analyses, the residual 

mean square obtained from the original two-way ANOVAs was used to calculate 

the standard errors of the means for the post-hoc comparisons (Underwood 1997, 

Quinn & Keough 2002). Statistical analyses were performed using the software 

STATISTICA v. 6.1 (©StatSoft, Inc. 1984-2004). 

In order to obtain an overall estimate of success (from egg fertilization to 

post-metamorphic formation), we also calculated the cumulative % success of the 

different stages, for each of the treatments. For this purpose, each of the different 

rates (FR, DR, SR, MR) was multiplied by the mean of the previous stage.  

 

Screening of parental genotypes

 

A piece of muscular tissue from the mantle or the siphon of each individual used 

for fertilization was dissected and immediately preserved in absolute ethanol 

(Table 2). After a few hours, the tainted ethanol was replaced by new absolute 

ethanol and samples were then stored at -20 ºC until extracted. Total DNA was 

extracted using the REDExtract-N-Amp Tissue PCR Kit (Sigma-Aldrich). The 

universal primers LCO1490 and HCO2198 described in Folmer et al. (1994) were 

used to amplify a fragment of the COI gene (maternally inherited). 
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Amplifications were performed in a final volume of 20 μL using 10 μL of 

REDExtract-N-amp PCR reaction mix (Sigma-Aldrich), 0.8 μL of each primer 

(10μM), and 2 μL of template DNA. The PCR program consisted of an initial 

denaturing step at 94 ºC for 2 min, 30 amplification cycles (denaturing at 94 ºC 

for 45 s, annealing at 50 ºC for 45 s and extension at 72 ºC for 50 s), and a final 

extension at 72 ºC for 6 min, on a PCR System 9700 (Applied Biosystems). PCR 

products were sent for purification and sequencing to Macrogen Inc. (Seoul, 

Korea). Sequences were edited and aligned using BioEdit® v.7.0.5.3 (Hall 1999). 

Number of alleles (Nh), gene diversity (Hd), and nucleotide diversity (�) were 

computed with DnaSP v.5 (Librado & Rozas 2009). Pairwise genetic distances 

(FST) using allele frequencies were calculated with Arlequin v.3.1 (Excoffier et 

al. 2005) and their significance were assessed by performing 10,000 

permutations. Note that because each fertilization attempt involved a combination 

of gametes from ten different donors, offspring resulted from a random 

combination of these genotypes.  

 

RESULTS 

Experimental trials 

 

The results of the ANOVA on the different logit-transformed rates are presented 

in Table 3. The results of post-hoc site comparisons using relative success rates 

are presented in Fig. 2, where these rates are depicted. All abiotic conditions 

analyzed: temperature at 30 °C, salinity values of 22‰ (22S) and 26‰ (26S), and 

copper at a concentration of 25 μg/L (Cu25), 50 μg/L (Cu50) and 100 μg/L 

(Cu100), produced important effects on the relative success ratio of each 

developmental stage considered, with differences due to both species and the site 

of adult collection. There was no consistent trend of one of the sites having higher 

or lower success rates, although many outcomes differed significantly between 

sites (Table 3, Fig. 2). 
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Table 2. Diversity measures and population differentiation values (FST) for the mtDNA sequences (COI gene). Mitochondrial lineages 
according to Rius et al. (2009) and Pineda et al. (2011). 
 

Species Pop. N Nh Hd        ±SD �  ±SD Haplotypes Lineage Fst p-value 
S. plicata PE 20 2 0.100 (±0.088) 0.00292 (±0.00257) Hap 2 (0.5) I 0.7278 < 0.001 

       Hap 5 (0.95) II   
S. plicata KN 10 2 0.556 (±0.075) 0.00095 (±0.00013) Hap 1 (0.5) I   

              Hap 2 (0.5) I     
M. squamiger PE 13 6 0.769 (±0.103) 0.0035 (±0.00173) Hap 7 (0.08) I -0.048 0.991 

       Hap 53 (0.08) I   
       Hap 1 (0.46) II   
       Hap 5 (0.23) II   
       Hap 9 (0.08) II   
       Hap 23 (0.08) II   

M. squamiger KN 10 6 0.844 (±0.103) 0.00495 (±0.00257) Hap 14 (0.1) I   
       Hap 1 (0.40) II   
       Hap 5 (0.20) II   
       Hap 54 (0.1) II   
       Hap 55 (0.1) II   
              Hap 56 (0.1)  II    

Number of individuals analyzed per population (N). Number of haplotypes per population (Nh), Haplotypic (Hd) and nucleotidic (�) 
diversity, and their corresponding standard deviations in brackets. Pairwise genetic distances (FST). 
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S. plicata 

There were significant interactions of treatment and site for all dependent 

variables. S. plicata showed significantly reduced fertilization rates (FR) in most 

treatments (Table 3a). Knysna gametes seemed somewhat less affected by the 

treatments than Port Elizabeth (Fig. 2a). All treatments had significant effects in 

Port Elizabeth, while gametes from Knysna were unaffected by temperature and 

Cu25 (Table 3a). Significant site differences were found for 26S and Cu25, where 

fertilization relative to controls was significantly higher in Knysna (Fig. 2a) 

 The development of viable larvae (DR) was probably the most sensitive 

stage in the early development of this species (Fig. 2a) and was significantly 

impaired by all treatments, except for Cu25 and Cu50 (Table 3a). Notably, the 

presence of Cu25 increased DR relative to the controls (thus relative success rates 

were above 1), although the effect is significant only in Knysna. Significant inter-

site differences in relative success rates were found only for Cu50, with embryos 

from Port Elizabeth being more resistant.  

Settlement rate (SR) tended to show higher relative success values (Fig. 

2a) than the previous variables, indicating that this stage is somewhat more 

tolerant. All treatments except 26S yielded significantly low values for Port 

Elizabeth larval settlement, while no significant effect was detected for Knysna 

(Table 3a). Relative success values in Port Elizabeth were significantly lower for 

22S, and significantly higher for Cu50. Although the effect of salinity (26S) on 

SR was not significant, low salinities did appear to accelerate settlement within 

24 hours (Fig. 3a). On the other hand, Cu100 seemed to accelerate settlement for 

larvae from Port Elizabeth adults but to delay it for Knysna (Fig. 3a). 

 As for settlement, metamorphosis in S. plicata (MR) was also a 

relatively tolerant process under most treatments and for both populations. The 

strongest inhibition effect on MR occurred at 22S and Cu100 for both populations 

(Fig. 2a), and these treatments yielded significantly lower metamorphosis than the 

controls at both localities (Table 3a). In addition, the metamorphosis of Knysna 

larvae was also impaired at 26S, Cu25 and Cu50 (Table 3a). Site differences were 

significant in the three copper treatments, with relative success rates higher in 

Port Elizabeth. Increased temperature accelerated the metamorphosis of the 

settled individuals within 72 h, although low salinities had the opposite effect, 
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causing a delay in metamorphosis (Fig. 3a). Most of the larvae from the 22S and 

Cu100 treatments never achieved complete metamorphosis within 96 hours, and 

none did so in Port Elizabeth at Cu100 concentration (Fig. 3a). 

 

M. squamiger 

All treatments except Cu25 significantly reduced the fertilization rates (Fig. 2b, 

Table 3b) at both localities combined (no significant interaction term), and the 

most drastic reduction was observed after exposure to 26S, 22S, Cu50 and Cu100 

(Fig. 2b). For the relative success rates (RS), the interaction term was not 

significant, and there was an overall effect of site, with mean success rates higher 

in Port Elizabeth. 

 As for S. plicata, larval development was the most sensitive stage (Fig. 

2b). The interaction was not significant and, combining localities, all treatments 

significantly reduced DR, especially high temperature, 26S, 22S, Cu50 and 

Cu100 (Table 3b, Fig. 2b). When analyzing relative success rates, the interaction 

proved significant, and this was due to the outcome of the Cu25 treatment, being 

significantly higher in Knysna. 

Settlement was also less affected by temperature and salinity treatments 

than the previous processes (Fig. 2b). The three copper concentrations resulted in 

significantly lower SR than the controls in Knysna, while only Cu50 and Cu100 

reduced settlement of larvae from Port Elizabeth (Table 3b). High temperatures 

and low salinities increased the number of settlers relative to the controls (values 

above 1, Fig. 2b), with a significant positive effect for Knysna larvae kept at 22S 

and Port Elizabeth larvae at 26S (Table 3b). Significant site differences in relative 

success rates were found for temperature and 22S (higher rates in Knysna), and 

Cu25 (higher rates in Port Elizabeth, Fig. 2b). Moreover, settlement was 

accelerated at higher temperature (Fig. 3b), while Cu50 and Cu100 delayed 

settlement of larvae from Knysna but not from Port Elizabeth (Fig. 3b).  

 All treatments except 26S significantly decreased the MR from Port 

Elizabeth larvae, while only 22S, Cu50 and Cu100 impaired metamorphosis of 

Knysna larvae (Table 3b). On the other hand, more larvae metamorphosed at high 

temperature and Cu25 than in the controls in Knysna (leading to relative rates 

higher than one, Fig 2b), although this outcome was not significant. The relative 
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success rates were significantly higher in Knysna for temperature and for Cu25, 

and in Port Elizabeth for 26S (Fig 2b). Cu25 also accelerated the timing of 

metamorphosis at Knysna (Fig. 3b). No metamorphosis was observed for larvae 

from Port Elizabeth subjected to the 22S treatment, larvae from Knysna at Cu50, 

or larvae from either population at Cu100 (Fig 3b). 

 

S. plicata and M. squamiger comparison 

When the whole developmental sequence was considered, from fertilization of 

the egg to post-metamorphic juveniles, clear differences in cumulative success 

were found between the species, with S. plicata being overall more tolerant of 

harsh conditions than M. squamiger (Fig. 4). As previously stated, the 

development of larvae seems to be the most sensitive stage for both species, 

acting as a bottleneck that result in a sharp reduction in the number of viable 

larvae in most treatments (Fig. 4).  

It is particularly relevant that the complete process of reproduction and 

recruitment only occurred in non-negligible numbers in the controls and the 

treatments with the lower copper concentrations assayed (Cu25, Cu50) in S. 

plicata (Fig. 4a), and only for the controls in the case of M. squamiger (Fig. 4b). 

In all other treatments, failure of one step or another (particularly development of 

larvae) prevented successful completion of the early life-history stages 

completely or almost so.  

 

Genetic screening 

All adults used for the fertilization experiments were sequenced (Tables 1, 2), 

except for two individuals of M. squamiger that failed to amplify. Three 

haplotypes were obtained for S. plicata, corresponding to haplotypes already 

described by Pineda et al. (2011). For M. squamiger, we found ten haplotypes. 

Six of these had previously been reported (Rius et al. 2008), while the sequences 

of the remaining four haplotypes (Hap 53-56) were new and were deposited in 

GenBank with accession numbers JQ815436-JQ815439 (Table 2). S. plicata 

showed two clear groups of haplotypes, with Knysna composed entirely of 

Lineage I (50% Hap 1 and 50% Hap 2) and Port Elizabeth mainly represented by 
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Lineage II (95% Hap 5, 5% Hap 2) sensu Pineda et al. (2011). Thus, although 

these three haplotypes are globally distributed (Pineda et al. 2011), Port Elizabeth 

and Knysna were highly differentiated (FST = 0.728, P < 0.001) (Table 2). 

Regarding M. squamiger, the two most frequent haplotypes were Haps 1 and 5 

(Table 2) for both populations, and together represented ca. 60% of the genetic 

pool. Haplotypes corresponding to Lineage II (sensu Rius et al. 2008) represented 

around 90% of each population, and the two populations did not differ 

significantly (FST = 0.048, P = 0.991) (Table 4). 

 

DISCUSSION 

 
Increased temperature, decreased salinity and elevated copper concentrations 

affected several life-history stages of the introduced ascidians Styela plicata and 

Microcosmus squamiger at the two populations studied. Differences according to 

sensitivity to abiotic stressors and life-history stages were observed but overall 

fertilization and larval development were the most sensitive stages for both 

species, and no consistent trend between localities was detected. Thus, although 

later stages (settlement and metamorphosis) seemed in general more tolerant, the 

initial stages (fertilization and development) must necessarily happen under more 

benign conditions.  

Some of the treatments had apparent positive effects on some stages 

(resulting in the corresponding rates being greater than in the controls, or 

accelerating processes). It has been reported that moderate concentrations of 

pollutants can enhance some early life-history stages of marine invertebrates but 

eventually lead to detrimental effects (e.g., Ng & Keough 2003, Cebrian & Uriz 

2007). Similarly, our combined rates show that, notwithstanding these positive 

effects, the overall effect through the developmental stages considered is negative 

in all cases. Therefore, considering a single stage independently can lead to 

misleading conclusions about the ability of a species to overcome stressful 

conditions during the early life-history stages. 
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Table3. ANOVA examining the effects of site and treatment at four 
developmental stages for A) S. plicata and B) M. squamiger (T: temperature at 30 
°C, 22S: 22‰ salinity, 26S: 26‰ salinity, Cu25: copper concentration of 25 
μg/L, Cu50: 50 μg/L, and Cu100: 100 μg/L). 

A)

Source df MS F P 
Effect on the FERTILIZATION Rate     
  Site 1 0.149 1.276   0.263 
  Treatment 6 4.063 34.903 < 0.001 
  Site x Treatment 6 0.37 3.179   0.009 
  Error 56 0.116   
Comparisons for factor Treatment within site (Dunnett test, p = 0.05)  
        Port Elizabeth              T,26S,22S,Cu25,Cu50,Cu100< Control 
        Knysna              26S,22S,Cu50,Cu100<Control 
Effect on the DEVELOPMENT Rate     
  Site 1 31.451 20.438 < 0.001 
  Treatment 6 135.769 88.230 < 0.001 
  Site x Treatment 6 5.332 3.465   0.006 
  Error 56 1.539   
Comparisons for factor Treatment within site (Dunnett test, p = 0.05)  
        Port Elizabeth               T,26S,22S,Cu100 < Control 
        Knysna               T,26S,22S,Cu100 < Control < Cu25 
Effect on the SETTLEMENT Rate     
  Site 1 115.035 74.075 < 0.001 
  Treatment 6 17.786 11.453 < 0.001 
  Site x Treatment 6 9.873 6.358 < 0.001 
  Error 42 1.553   
Comparisons for factor Treatment within site (Dunnett test, p = 0.05)  
        Port Elizabeth               T,22S,Cu25,Cu50,Cu100 < Control 
        Knysna              No differences 
Effect on the METAMORPHOSIS Rate     
  Site 1 3.256 1.246   0.271 
  Treatment 6 86.937 33.256 < 0.001 
  Site x Treatment 6 12.731 4.870 < 0.001 
  Error 42 2.614   
Comparisons for factor Treatment within site (Dunnett test, p = 0.05)  
        Port Elizabeth                22S,Cu100 < Control 
        Knysna               26S,22S,Cu25,Cu50,Cu100 < Control 
�

�

�

�
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B)�

Source df MS F P 
Effect on the FERTILIZATION Rate     
  Site 1 0.062 0.881   0.353 
  Treatment 6 1.912 27.295 < 0.001 
  Site x Treatment 6 0.156 2.231   0.059 
  Error 42 0.070   
Comparisons for factor Treatment (Dunnett test, p = 0.05)   
              T,26S,22S,Cu50,Cu100 < Control 
Effect on the DEVELOPMENT     
  Site 1 7.379 7.300   0.010 
  Treatment 6 69.155 68.415 < 0.001 
  Site x Treatment 6 2.108 2.086   0.075 
  Error 42 1.011   
Comparisons for factor Treatment (Dunnett test, p = 0.05)
                T,26S,22S,Cu25,Cu50,Cu100 < Control 
Effect on the SETTLEMENT Rate      
  Site 1 10.900 21.621 < 0.001 
  Treatment 6 28.538 56.610 < 0.001 
  Site x Treatment 6 3.789 7.517 < 0.001 
  Error 56 0.504   
Comparisons for factor Treatment within site (Dunnett test, p = 0.05)  
        Port Elizabeth                                                 Cu50,Cu100 < Control < 26S
        Knysna                Cu25,Cu50,Cu100 < Control <22S 
Effect on the METAMORPHOSIS      
  Site 1 0.782 1.362   0.248 
  Treatment 6 100.818 175.607 < 0.001 
  Site x Treatment 6 5.648 9.839 < 0.001 
  Error 56 0.574   
Comparisons for factor Treatment within site (Dunnett test, p = 0.05)  
        Port Elizabeth               T,22S,Cu25,Cu50,Cu100 < Control 
        Knysna               22S,Cu50,Cu100 < Control 
�

�

�

�

�

�
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In general, S. plicata was more resistant to copper pollution, and both 

species coped similarly with increased temperature. Decreased salinity prevented 

complete development in both cases; however, some stages of M. squamiger 

(e.g., fertilization, settlement) are actually less affected or actually enhanced by 

low salinities. These tolerances correlate well with the types of environments 

where these species are commonly found. S. plicata is often found in harbors, 

which are known to accumulate copper (Galletly et al. 2007, Pineda et al. 2011), 

and M. squamiger in estuaries, which are characterized by frequent salinity 

changes (Mead et al. 2011). In fact, Lowe (2002) found that adults of M. 

squamiger could withstand reduced salinity levels for extended periods of time, 

outcompeting native species such as Molgula manhattensis in southern California 

harbors. Similarly, estuarine sites along the southeast coast of South Africa (e.g., 

Port Alfred, Bushman’s River Mouth and East London) are dominated by M. 

squamiger while S. plicata is consistently absent in estuarine conditions but found 

in nearby harbors (M.R., pers. obs.). 

Sensitivity differences according to development stages and stressors 

have been observed across phyla for other marine invertebrates, including 

molluscs (Kinne 1964, Verween et al. 2007), echinoderms (Allen & Pechenik 

2010) and ascidians (Dybern 1967, Vázquez & Young 1996, Pennati et al. 2006). 

Our results indicate that complete development, from fertilization to 

metamorphosis, is impaired by all treatments, affecting several early life-history 

stages. In fact, we recorded completion of early stages only in S. plicata if copper 

concentrations are at/below 50 μg/L. Thus, the wide distribution of these species 

in environments where high temperature, low salinity or extreme pollutant 

concentrations are present cannot be inferred from laboratory or manipulative 

studies, but must be explained by novel strategies or behaviors in nature that 

increase overall reproductive success (Marshall 2002). In this sense, Bellas et al. 

(2004) suggested that the ascidian Ciona intestinalis could probably detect trace 

metals in the water with the adhesive papillae and delay or inhibit attachment. 

Although increasing the swimming period may decrease the probability of post-

settlement survival due to the high metabolic cost required for the latter (Wendt 

2000, Maldonado & Young 1999, Thiyagarajan & Qian 2003, Bennett & 

Marshall 2005), the successful settlement and survival of a few individuals could 
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result in successful introductions to new habitats. Even if recruitment failures 

were a common outcome, the prolonged reproductive period observed for both 

species (Rius et al. 2009b, Yamaguchi 1975, Chapter 2) would increase the 

chances of a propagule finding favorable temporal windows of tolerable 

conditions.  

The sensitivity of S. plicata embryos and larvae to temperature and 

salinity changes was in accordance with Thiyagarajan & Qian (2003), who 

studied S. plicata in Hong Kong and reported recruitment failure when seawater 

temperature reached values of 26-30 ºC and salinities of 22-30‰ in summer. In 

our study, these conditions prevented both S. plicata and M. squamiger from 

completing development, with the earlier stages (embryo fertilization and larval 

development) being especially sensitive, while settlement was hardly affected. 

The lowest salinity tested (22‰), however, prevented most larvae of either 

species to complete metamorphosis even after successful settlement, as 

previously described for other ascidians (Svane & Young 1989, Vázquez & 

Young 2000). High temperatures and low salinities also tended to accelerate 

development, with most larvae of both species settling within 24 h, which would 

limit options for escape to more favorable sites. Thus, the current climate change 

predictions of increasing temperatures and decreasing salinities (Drinkwater et al.

2009) suggest that these species, and in particular S. plicata (Pineda et al. 2012), 

do not possess the necessary mechanisms to deal with this predicted stress and 

will probably be replaced by species better adapted to warmer and less salty 

environments (Somero 2010).  

Copper has been shown to inhibit embryo development, reduce 

successful settlement and metamorphosis, and reduce growth in many marine 

invertebrates, including ascidians (e.g., Bellas et al. 2001, Cebrian et al. 2003, 

Agell et al. 2004, McKenzie et al. 2011). Elevated copper concentrations also 

negatively affected the early life-history stages of S. plicata and M. squamiger,

with more dramatic effects on developmental stages of the latter species. Even at 

copper concentrations similar to those found in highly polluted harbors (25-50 

μg/L); fertilization success of S. plicata was still around 50% that of the controls 

for both populations, and development through metamorphosis was possible. At 

the highest concentration (100 μg/L), though, there was no development of the 
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larvae and the metamorphosis of settled individuals was seriously impaired. In 

contrast, even the lowest concentration of copper assayed (25 μg/L) had 

detrimental effects on early development of M. squamiger. This suggests that S.

plicata will continue to perform better in polluted habitats than M. squamiger and 

has important implications for understanding the distributions of the two species 

across overlapping ranges.  

The genetic patterns found were clear-cut: genetic differentiation was 

high between populations of S. plicata, while it was negligible for M. squamiger.

However, we could not detect a clear correlation of this pattern with differential 

responses to abiotic stress. In general, although some particular outcomes were 

significantly different, all populations responded similarly to the tested stressors. 

Genetic diversity within populations was lower for S. plicata than for M.

squamiger, but again this has no clear connection with our results as, if any, the 

low diversity species S. plicata was overall more tolerant to stress than M.

squamiger. The only emerging pattern was found when comparing the responses 

to low salinity and high copper concentrations between populations of S. plicata.

For instance, fertilization rates at low salinities (26‰) were considerably higher 

for the eggs from Knysna than for the eggs from Port Elizabeth. Adult samples 

from Knysna exclusively displayed haplotypes from Lineage I, which is the most 

widespread haplogroup in the world (Pineda et al. 2011). In contrast, adults from 

Port Elizabeth mainly belonged to Lineage II (Pineda et al. 2011), which is also 

found in salt marsh habitats (Pineda et al. 2012). Thus, the slightly different 

response of these two populations of S. plicata may be related to differences in 

their genetic composition. Differential adaptation to environmental factors (e.g., 

temperature, salinity) of mitochondrial sequences within one species has been 

previously described in marine invertebrates (Bastrop et al. 1998, Gerber et al.

2001, Schizas et al. 2002, Kelly et al. 2006, Roman 2006). Of course this 

adaptive capability need not be directly linked to the studied gene, but can be 

related to other genes that vary between lineages. In order to assess whether there 

is any genetic basis in the responses featured by both species, a more precise 

genetic characterization (for example, using microsatellites), together with 

controlled crossings and transplant experiments are necessary. 
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 In conclusion, we found that several early life-history stages of the 

ascidians S. plicata and M. squamiger were seriously impaired by exposure to 

realistic scenarios of abiotic stressors, independent of the haplogroup tested. 

Moreover, abiotic factors do not affect animals in isolation but will normally 

combine as multiple stressors, often resulting in additive or synergistic effects. 

Thus, our results are likely to overestimate the resilience of the life-history 

processes studied here, a surprising fact given the abundance of these species in 

habitats such as harbors where such stressors are the norm. Behavioral strategies 

that can only be observed in the field (e.g., delay in spawning until suitable 

conditions are restored, strong propagule pressure with arrival of larvae from 

more benign environments, extended reproductive periods) seem plausible 

explanations for the presence of adults in these localities. Basic knowledge of 

reproduction, larval development and survival of these species in new habitats 

coupled with further information on their genetic variability is therefore essential 

to predict possible areas of establishment and spread worldwide. 
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GGeenneerraall  DDiissccuussssiioonn  

 

The aim of this discussion is to integrate all the relevant information from the 

four different chapters of this thesis to acquire a better understanding of the 

potential of Styela plicata to spread beyond its current boundaries and disturb 

natural substrate communities. Additional work in progress and future 

perspectives will also be exposed at the end of this section.  

As described in the introduction, S. plicata is a solitary ascidian 

introduced all around the world by ship traffic and that seems to have many of the 

required features to become invasive. The main contribution of this thesis is to 

determine the genetic composition of this species, its reproductive features and its 

capacity to cope with stress during its early life-history stages and adulthood. 

This knowledge, in turn, is necessary to predict invasiveness potential and to 

design management plans, should they be necessary. 

 

GENETIC STRUCTURE 

The study of the worldwide genetic variability of S. plicata showed firstly that 

there is a divergence in lineages for both markers assayed (the mitochondrial gene 

COI and the nuclear gene ANT), each featuring two groups of sequences. Second, 

the genetic pool is well mixed at the basin level, with little or no phylogeographic 

signal remaining. Third, many population pairs are genetically different, 

regardless of the geographic distance among them. Finally, there seems to be an 

effect of selection on the genetic makeup of this species, as illustrated by the 

intra-individual distribution of both groups of ANT sequences. 

The groups obtained with ANT were totally unrelated with the groups 

obtained with COI. Mitochondrial genes are inherited maternally, while nuclear 

genes can be shuffled repeatedly through sexual reproduction. Thus, the lack of 

congruence found between both markers could be due to frequent contacts 

between individuals from different lineages coupled with genetic drift. A greater 

sensitivity of mitochondrial genes to genetic drift has been previously reported 

(Shaw et al. 2004), and may explain the differences observed between 
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mitochondrial and nuclear markers (e.g., Shaw et al. 2004, Darling et al. 2008, 

Drew et al. 2010).  

We could not find any clear genetic signal in favor or against the 

potential NW Pacific origin of this species (Barros et al. 2009, Carlton 2009). Our 

results indicated that at present the genetic pool of S. plicata is well mixed among 

basins, with the highest genetic variability and the putatively most ancient alleles 

not only present in the NW Pacific but also in the other oceanic basins (see also 

David et al. 2010). Therefore, even if the native range of S. plicata was the NW 

Pacific, the species would have dispersed to other tropical and warm water 

regions by ship fouling, probably since the early transoceanic navigation times 

(Carlton 2009). Lack of resolution for assessing native areas was also found in 

studies with other ascidian species that are believed to be ancient colonizers (e.g., 

Ciona intestinalis Zhan et al. 2010). On the other hand, species that have spread 

more recently still have a genetic signature of their introduction history (e.g., 

Botryllus schlossei López-Legentil et al. 2006, Microcosmus squamiger Rius et 

al. 2008, 2012, Styela clava Goldstien et al. 2011). 

In our study we found that genetic diversity indexes varied according to 

the studied population, with overall values ranging from moderate to high for 

both markers. Although introductory events have been traditionally associated to 

low genetic diversity due to founder effects and subsequent bottlenecks, this is 

not necessary true when introductions are recurrent (Cornuet & Luikart 1996, 

Holland 2000, Sakai et al. 2001, Simon-Bouhet et al. 2006, Dupont et al. 2007, 

Roman & Darling 2007, Dupont et al. 2010, Geller et al. 2010).  

Besides recurrent introductions through ship transport, population 

differentiation could also be due to selection. The uneven abundances found in 

this study for each major group obtained for COI and ANT may be explained by 

differential adaptive capabilities of the individuals to stressful environments. 

Differential adaptation to environmental factors (e.g., temperature, salinity) of 

mitochondrial sequences within one species is not a rare phenomenon, and has 

been described in many species (Bastrop et al. 1998, Gerber et al. 2001, Schizas 

et al. 2002, Rawson & Burton 2002, Kelly et al. 2006, Roman 2006, Folino-

Rorem et al. 2009).  
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Overall, the study of the global phylogeography of S. plicata revealed an 

ancient introduction characterized by both deep divergences and recent mixing, 

with the final outcome of a quite blurred phylogeographic signal. Current 

evolutionary processes may include adaptive changes and stochastic connectivity 

among established populations. This connectivity may rely on maritime transport 

and on the presence of artificial structures along the coast that enables the genetic 

flow among both close and distant populations and ensures a considerably high 

genetic diversity for most of the populations.  

Early introductions, however, should not be considered “naturalized”. 

Instead, their potential for further spread and their degree of integration in local 

processes and interactions should be assessed. In this sense, rapid growth and 

high reproductive capabilities are some of the features that determine the invasive 

potential of a species.  

 

BIOLOGICAL CYCLE 

In the Western Mediterranean, S. plicata is abundant in most harbors and 

marinas. Considering the high maritime traffic of some of those harbors (e.g., 

Barcelona, Alicante, Marseille) and the existence of smaller marinas all along the 

coast, this area can act as a source for secondary introductions in the 

Mediterranean and in other oceans. 

The study of the gonad index and gonad histology of S. plicata in two 

populations of the Western Mediterranean showed a continual reproduction over 

the year, with mature oocytes and mature male follicles present almost all year 

round. However, a main spawning event was observed in spring, followed by 

secondary events through the year. Likewise, the monitoring of the size-structure 

in one of the populations showed the presence of recruits (less than one month 

old) in all the months except for May 2010 and a loss of the largest size-classes in 

winter.  

 Prolonged reproductive activity of S. plicata from spring to autumn has 

been previously reported in the Eastern Mediterranean (Sabbadin 1957, Sciscioli 

et al. 1978, Tursi & Matarrese 1981). These authors considered that this species 

did not actively reproduce during the coldest months, as no recruitment was 
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detected during winter in artificial panels (Sciscioli et al. 1978, Tursi & Matarrese 

1981). Nevertheless, such low temperatures are seldom reached in the Western 

Mediterranean (Margalef 1985, Coma et al. 2000) and, although during the 

coolest months male follicles were not mature, individuals with large oocytes and 

small recruits were found during winter in both populations. Thus, taken together, 

our results indicate that S. plicata is reproductively active during the winter 

months in the Western Mediterranean. 

 Continual reproduction is likely to confer a competitive advantage to S. 

plicata in terms of substrate colonization over seasonally reproducing and 

growing invertebrate species. Extended reproductive cycles have also been 

reported for other invasive ascidians (Bourque et al. 2007, Shenkar & Loya 2008, 

Wong et al. 2008). This reproductive strategy and the fast growth of juveniles are 

a characteristic found in many invasive species indicating that S. plicata has the 

potential to become a threat to local biota. In addition, the existence of multiple 

batches of larvae over the year ensures a plentiful supply of juveniles in ships’ 

hulls, ready for spread to other marinas, and facilitating recurrent introduction of 

the species. This fact, coupled with the large genetic pool described above, 

ensures the persistence of S. plicata populations in the Western Mediterranean. 

 

TOLERANCE TO STRESS 

The arrival and establishment of an introduced species depends on the species 

biology (in particular its reproductive strategy), the existence of suitable vectors 

of introduction (e.g., ship traffic, aquaculture facilities) and the occurrence of 

adequate physical conditions both for adults and larvae (Stachowicz et al. 2002, 

Verween et al. 2007, Fowler et al. 2011). Stress response mechanisms allow 

marine organisms to cope with unexpected or sharp fluctuations in one or several 

biotic or abiotic factors (Aruda et al. 2011, Clark & Peck 2009, Cottin et al. 2010, 

Huang et al. 2011, Lockwood et al. 2010). Thus, the capacity of both adults and 

larvae of an introduced species to cope with stress will determine its distribution 

and potential range expansion. Heat shock protein (hsp) response is the first 

mechanism deployed by eukaryotes to deal with stress and, accordingly, changes 

in hsp70 gene expression can be considered an early indicator of stress. A 
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seasonal trend in hsp70 gene expression was observed in a salt marsh population 

of S. plicata subjected to wide temperature and salinity fluctuations over a 2-year 

period, indicating important changes in the physiological stress levels of this 

species over time.  

Seawater temperature increases have been correlated with high levels of 

hsp70 in many marine invertebrates (Osovitz & Hofmann 2005, López-Legentil 

et al. 2008, Pantile & Webster 2011). Accordingly, we found that significantly 

higher levels of hsp70 gene expression occurred during the summer months. 

While minor damage can be repaired by an increase in hsp activity, a prolonged 

exposure to stress leads to metabolic failure in a relatively short time. Our data 

suggested that a sharp increase in seawater temperature in summer resulted in 

extreme physiological stress in the species and ultimately caused the massive 

mortality events observed annually in S. plicata in the study area. Besides 

temperature, other conditions such as sharp salinity decreases are also known to 

significantly stress marine organisms (e.g., Kültz 1996, Deane & Woo 2004, 

Yang et al. 2009). Thiyagarajan & Qian (2003) found that S. plicata recruitment 

success and post-larval growth in summer were impaired by high seawater 

temperatures (26-30 ºC) and low salinities (about 22-30‰). Similarly, in our 

study, we have found that the interaction between temperature and salinity on 

hsp70 gene expression was significant. In particular, at seawater temperatures 

over 25 ºC, hsp70 gene expression increased with decreasing salinity values. 

The biogeographic distribution of marine species is determined by their 

tolerance to stress (Feder & Hofmann 1999), in which the heat shock response is 

a key factor. Thus, establishment of a new species is possible whenever the levels 

of environmental conditions fall within the tolerance range of the species. 

Likewise, if this range is wider for an introduced species than for directly 

competing native organisms, then the newcomer can become invasive 

(Stachowicz et al. 2002). Based on our results, S. plicata’s ability to thrive and 

colonize salt marsh habitats depends on its ability to withstand severe abiotic 

changes. Thus, a certain degree of resilience to adverse environmental conditions 

appears to have facilitated the worldwide distribution of this species. Even when 

severe changes in temperature or salinity overcome S. plicata tolerance thresholds 

(i.e. as was observed every June in our population), the species was able to 
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completely refill the studied docks within a month (authors’ pers. obs.), 

presumably by larvae originating from unknown reservoirs or from hulls of the 

many ships navigating the area. The fast growth rates recorded for S. plicata 

(Yamaguchi 1975, Sutherland 1978) is also a key mechanism allowing this 

species to quickly repopulate any lost habitat. 

However, population persistence depends not only on adult’s survival 

and tolerance to stress, but also on their offspring endurance. We tested the effect 

of several stressors at levels comparable to those commonly found in the enclosed 

environments inhabited by S. plicata, on early life-history processes of this 

species (egg fertilization, larval development, settlement, and metamorphosis). 

Results were also compared with these obtained for another co-occurring 

introduced ascidian, Microcosmus squamiger. Increased seawater temperature, 

decreased salinity and elevated copper concentrations affected early 

developmental stages of both S. plicata and M. squamiger, preventing complete 

development through metamorphosis in most cases. This is in striking contrast 

with the fact that adults of both species can usually tolerate these conditions 

(Yamaguchi 1975, Sims 1984, Naranjo et al. 1996, Lowe 2002, Galletly et al. 

2007, Epelbaum et al. 2009).  

The sensitivity of S. plicata embryos and larvae to temperature and 

salinity changes was in accordance with Thiyagarajan and Qian (2003), who 

studied S. plicata in Hong Kong and reported recruitment failure when seawater 

temperature reached values of 26-30 ºC and salinities of 22-30‰ in summer. In 

our study, these conditions prevented S. plicata from completing development, 

with the earlier stages (embryo fertilization and larval development) being 

especially sensitive. Sensitivity to low salinities has been previously reported for 

other ascidians (Svane & Young 1989, Vázquez & Young 2000). Thus, a climate 

change scenario of increasing temperatures and decreasing salinities (Drinkwater 

et al. 2009) could be detrimental for S. plicata, while favoring other species with 

wider tolerance ranges (Fowler et al. 2001). Finally, copper has been shown to 

inhibit embryo development, reduce successful settlement and metamorphosis, 

and reduce growth in many marine invertebrates, including ascidians (e.g., Bellas 

et al. 2001, Cebrian et al. 2003, Agell et al. 2004, McKenzie et al. 2011). 

However, only elevated copper concentrations (> 50 μg/L) negatively affected 
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the early life-history stages of S. plicata, indicating that this species will continue 

to thrive in polluted habitats. M. squamiger, on the other hand, was highly 

sensitive to copper pollution but more resistant to low salinities than S. plicata, in 

accordance with the distribution of both species in the studied coast. 

Although several early life-history stages of S. plicata were seriously 

impaired by exposure to realistic scenarios of stressors, abiotic factors do not 

affect animals in isolation but will normally combine as multiple stressors, often 

resulting in additive or synergistic effects. Thus, our results are likely to 

overestimate the resilience of the life-history processes studied here, a surprising 

fact given the abundance of this species in habitats such as harbors where such 

stressors are commonly found. Behavioral strategies that can only be observed in 

the field (e.g., delay in spawning until suitable conditions are restored, strong 

propagule pressure with arrival of larvae from more benign environments, 

extended reproductive periods) seem plausible explanations for the presence of 

adults in harbors and salt marshes.  

 

In conclusion, multidisciplinary studies have been undertaken to assess 

genetic and biological parameters of the introduced ascidian Styela plicata and to 

understand its invasive potential. The phylogeography study has revealed high 

genetic diversity and high frequency of secondary introductions, which indicates 

a high potential to spread to even further locations (Fisher 1930, Allendorf & 

Lundquist 2003). A prolonged reproductive period also allows this species to 

exploit temporal windows of favorable conditions and persist in habitats with 

sub-optimal surroundings. Moreover, the embryos, larvae and adults of S. plicata 

exhibited high resistance of pollutants such as copper, a common heavy metal in 

harbors and marinas (Hall et al. 1998, Haynes & Loong 2002, Naranjo et al. 

1996). On the other hand, while adults cope with changes in temperature and 

salinity by increasing the production of stress proteins, fertilization and larval 

development were highly vulnerable to these conditions. Under a climate change 

scenario where temperature increases and salinity decreases this sensitivity may 

act as a natural containment factor for this species.  
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WORK IN PROGRESS: 

1. To assess the degree of connectivity among closely located populations of 

S. plicata 

The role of small-scale processes in colonization dynamics is currently being 

investigated to assess the importance of recreational boating in spreading 

this species. To this end, a fine-scale genetic study focused in the Iberian 

Peninsula and Western Mediterranean, is currently in process using the 

mitochondrial gene COI and 8 microsatellite markers recently developed 

(Valero-Jiménez et al. in press).  

2. To determine the temporal genetic structure between and within cohorts 

of S. plicata 

This study aims to describe the cohort structure of S. plicata and determine 

whether it remains genetically constant over time or if there is a periodic 

generational renewal with the introduction of new alleles. To address this 

goal, we sampled 6 individuals per month during 2.5 years in the same salt 

marsh where adult response to stress was studied. Samples will also be 

analyzed using both mitochondrial and microsatellites markers.  

3. Interspecific competition between S. plicata and other sympatric 

invertebrates 

Spatial competition among early life-history stages of S. plicata, the invasive 

ascidian Microcosmus squamiger and the bivalves Perna perna and Mytilus 

galloprovincialis is being investigated. Sperm interaction, competition 

between the two ascidians larvae and with bivalve juveniles will be assessed 

for two distant geographic areas (Western Mediterranean and Southern 

Africa). 

 

 

 

BOX 6 
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FUTURE PERSPECTIVES 

Taken together, our results indicate that S. plicata has the potential to proliferate 

and extend beyond its current boundaries. However, to date, this species has been 

mostly confined to harbors, marinas, and other artificial structures. Although this 

species has been found outside harbors in Brazil, Japan, Italy and Spain, these 

populations are formed by a reduced number of individuals and their impact was 

less notorious than inside harbors or over artificial structures. S. plicata has been 

present in all studied oceans for more than a century and thus has had ample 

opportunity to invade at least some of the natural communities along its current 

distribution range. Some other factors, such as predation (Sutherland 1974) or 

competition may be limiting the spread of this species to the surrounding natural 

habitats and requires further research. For instance, manipulative experiments 

(transplants) and surveys of the few populations of S. plicata recorded co-habiting 

with native communities could be conducted to determine these population 

dynamics, proliferation potential and interaction with the local biota. Once all the 

factors determining the invasive potential of this species have been pinpointed 

and, should this species spread and become a threat to local biota, adequate 

management and eradication plans can be designed.  
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GGeenneerraall  CCoonncclluussiioonnss  

CHAPTER 1: The whereabouts of an ancient wanderer: Global 

phylogeography of the solitary ascidian Styela plicata 

1. The levels of gene diversity for S. plicata were moderate for COI 

and high for ANT in all the studied basins, except for the 

Mediterranean, which could indicate a more recent introduction.  

2. Two lineages were retrieved for each marker, COI and ANT, 

suggesting an ancient population split. However, their distribution 

did not show any consistent pattern, indicating different 

phylogeographic histories for each gene, shaped by recurrent 

introduction events and shuffling among populations. 

3. The significant genetic divergence found for many population-pairs, 

irrespectively of their geographic distance, confirmed man-mediated 

transport through ship traffic as the most plausible way of dispersion 

for the species.  

CHAPTER 2: Continual reproduction in a seasonal sea: Biological cycle of 

the introduced ascidian Styela plicata in the Western Mediterranean 

4. Mature gametes and recruits were present all year long in the 

Western Mediterranean, with several gamete releases occurring over 

the years, particularly in spring. 

5. A prolonged reproductive period is likely to confer a competitive 

advantage to S. plicata in temperate seas, where most species 

reproduce seasonally. It can also enable the species to exploit 

temporal windows of favorable conditions to proliferate. 

CHAPTER 3: Stress levels over time in the introduced ascidian Styela 

plicata: The effects of temperature and salinity variations on hsp70 gene 

expression  

6. Hsp70 gene expression varied over time and was significantly 

correlated with high seawater temperature and low salinities. 



CONCLUSIONS | 139  
 

7. Drastic changes in abiotic factors may overwhelm the heat shock 

protein response mechanism, as observed by the concurrence of 

sharp increases in temperature with mortality events observed 

annually around June. 

CHAPTER 4: Tough adults, frail babies: Sensitivity to abiotic factors across 

life-history stages of widely introduced marine invertebrates 

8. The early life-history stages of S. plicata were impaired by high 

temperature and low salinities, with fertilization and larval 

development being the most sensitive. On the other hand, they can 

tolerate relatively high concentrations of copper pollution.

9. Parental genotype did not correlate with the response shown by 

early life-history stages to abiotic stressors. 

10. Early life-history processes of S. plicata cannot be completed under 

conditions commonly prevailing where adults live, and the species 

must therefore recruit from elsewhere or reproduce during temporal 

windows of more benign conditions.

11. S. plicata is an ancient introduced species that has been travelling 

around the globe through maritime transport for centuries. This 

species inhabits harbors, marinas and artificial structures, tolerating 

high concentrations of pollutants. Moreover, high genetic variability 

and continual reproduction facilitate further introduction events and 

spreading. Although S. plicata seems to have a high invasive 

potential, its current distribution appears to be limited by high 

temperatures and low salinities, especially during early life-history 

processes. Further studies should determine the dynamics of the few 

populations co-habiting with native communities to pinpoint all the 

factors regulating the spread of this species outside enclosed 

environments. 

FINAL CONCLUSION 
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IInnttrroodduucccciióó  

 

INVASIONS BIOLÒGIQUES 
 

Les invasions biològiques han incrementat notablement al llarg dels darrers 

segles, suposant una gran amenaça per a la biodiversitat global i l’estabilitat de 

les comunitats naturals (Vermeij 1996, Cohen & Carlton 1998, Mack & 

D’Antonio 1998, Mack et al. 2000, Mooney & Cleland 2001, Crooks 2002, 

Grosholz 2002, Blakeslee 2011). Tot i que recentment s’està intentant controlar 

l’impacte ecològic d’aquestes invasions (e.g., Lafferty & Kuris 1996, Bax et al. 

2001, Hulme 2006, Lodge et al. 2006), els oceans romanen un dels ecosistemes 

més afectats (Papaconstantinou 1990, Carlton & Geller 1993, Ruiz et al. 1997, 

Galil 2000, Grosholz 2002, Orensanz et al. 2002, Castilla et al. 2004, Zenetos 

2010). A més, el creixent nombre de ports i d’altres estructures artificials al llarg 

de la costa està facilitant l’establiment i la dispersió d’espècies exòtiques a causa 

de la provisió de nou hàbitat i de noves portes d’entrada (Zibrowius 1991, Glasby 

et al. 2007, Tyrrell & Byers 2007, Dafforn et al. 2009a, Carman et al. 2009, 

Bulleri & Chapman 2010, Hardiman & Burgin 2010, Dumont et al. 2011). El 

nombre d’espècies que esdevenen invasores, de fet, és només la punta de 

d’iceberg, ja que aproximadament el 99.9% de les espècies introduïdes no són 

capaces de superar les barreres tan biòtiques com abiòtiques que permetrien el seu 

establiment al nou hàbitat (Williamson & Fitter 1996, Richardson et al. 2000, 

Colautti & MacIsaac 2004, Blackburn et al. 2011). Primer de tot, les espècies han 

de superar el transport al nou indret, un procés conegut com “pre-frontera” 

(Forrest et al. 2009). Entre d’altres vectors de transport, les espècies marines no 

autòctones poden arribar als nous indrets a partir del transport marítim (p. ex. 

aigües de llast, adherides al casc dels vaixells) o associades a la introducció 

d’organismes d’interès econòmic (aqüicultura o aquariofília) (BOX 1). 

L’increment d’aquestes activitats ha afavorit la introducció d’espècies marines 

arreu del món (Carlton 1989, Ruiz et al. 1997, Blakeslee et al. 2010).  

 Un cop superada la introducció inicial al nou indret, els processos “post-

frontera” són els que determinaran l’establiment exitós i la posterior dispersió de 
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les espècies (Forrest et al. 2009). Aquests processos impliquen que les espècies 

acabades d’arribar han de superar les barreres naturals i humanes per a la seva 

dispersió, supervivència a llarg termini i èxit reproductor (Fig. 1; Baker 1974, 

Wasson et al. 2001, Blackburn et al. 2011). Per tant, les espècies introduïdes a un 

nou indret poden romandre confinades en hàbitats marins marginals (p. ex., 

ports), o dispersar-se i colonitzar les àrees confrontants, alterant l’estructura i 

funció de les comunitats autòctones. En aquest darrer cas, aquestes espècies 

introduïdes passen a considerar-se invasores i com a tals, requereixen esforços 

importants i la mobilització de recursos en plans de control i/o mitigació de la 

plaga. En canvi, les que romanen confinades en un o pocs hàbitats, han estat 

ignorades tradicionalment (Kolar & Lodge 2001, Davis et al. 2011). Tot i que 

aquestes espècies no amenacin actualment les comunitats naturals, sí que poden 

tenir un potencial invasor afavorit per diversos factors, com per exemple, una 

elevada diversitat genètica de les poblacions introduïdes deguda a múltiples 

successos d’introducció (Kolar & Lodge 2001, Lockwood et al. 2005), o unes 

adaptacions biològiques que els donin avantatges competitius davant de les biotes 

autòctones. Finalment, cal tenir en compte que predir el potencial invasor de les 

espècies introduïdes i desenvolupar plans de prevenció en cas necessari és una 

estratègia molt més eficient i adequada per al medi ambient que les accions que es 

puguin dur a terme per tal d’erradicar espècies ja establertes i disperses (Kolar & 

Lodge 2001, Hulme 2006, Forrest et al. 2009).  

 

ASCIDIS 

Els ascidis són un component comú en comunitats bentòniques d’arreu del món 

(e.g., Glasby 2001, Voultsiadou et al. 2007) i es troben entre els invasors marins 

més importants a nivell global (Lambert 2002, 2007, Whitlatch & Bullard 2007). 

Els ascidis tenen una curta vida larvària, i per tant el transport antropogènic juga 

un paper fonamental en el transport de llarga distància d’aquestes espècies (e.g., 

López-Legentil et al. 2006; Rius et al. 2008). Tot i que la taxa d’introducció 

d’espècies no autòctones d’ascidis ha anat incrementant en les darreres dècades 

(Lambert 2007), algunes espècies poden haver estat translocades segles enrere i 

considerar-se ara formes naturalitzades. Rarament es coneix l’origen d’aquestes 



RESUM�|�167��
�

introduccions prèvies al desenvolupament dels estudis marins (Lambert 2001). 

Aquest antics colonitzadors són espècies freqüentment trobades en ports i 

estructures artificials, solen tenir una àmplia distribució, i mentre es consideren 

naturalitzats en moltes àrees, encara poden continuar essent introduïts en molts 

altres indrets del planeta (e.g., McDonald 2004, Ramsay et al. 2009, Locke et al. 

2009, Lejeusne et al. 2011). Les espècies d’ascidis que han esdevinguts invasius 

(per ex., Didemnum vexillum) poden modificar severament l’estructura i la 

integritat funcional dels hàbitats costaners, degut als grans agregats que formen i 

que poden excloure la resta d’organismes competint pels recursos (Zajac et al. 

1989, Nandakumar et al. 1993, Lambert & Lambert 2003, Castilla et al. 2004, 

Agius 2007, Rius et al. 2009a). 

 

L’ESPÈCIE D’ESTUDI: Styela plicata 

Styela plicata (Lesueur, 1823) (Tunicata, Ascidiacea) (Fig. 2) és un ascidi solitari 

que es troba freqüentment habitant marines i ports a oceans càlids i temperats, 

sovint en grans densitats. Malgrat la seva àmplia distribució geogràfica (Fig. 3), 

l’origen d’aquesta espècie no ha estat encara dilucidat (Lambert 2001), tot i que 

les evidències suggereixen que és nadiu de l’Oceà Pacífic nord occidental (Hewitt 

et al. 2004, Carlton 2006, 2009, Abbott et al. 2007, Barros et al. 2009). De fet, la 

descripció de la espècie es va basar en un individu trobat al casc d’un vaixell a 

Philadelphia (USA), i no s’ha trobat cap altre individu en l’àrea dels voltants a 

substrat natural (Van Name 1945). Gairebé la totalitat de les cites d’ S. plicata es 

basen en observacions fetes a estructures artificials, i només s’ha trobat la espècie 

en substrat natural en contades ocasions (Nishikawa, Rius, Pérez-Portela comun. 

pers.). L’èxit en la introducció de S. plicata a les noves àrees ha estat atribuït a la 

seva capacitat d’adaptació fisiològica a variacions ambientals, particularment a 

canvis en la temperatura i la salinitat (Sims 1984, Thiyagarajan & Qian 2003). 

Aquesta espècie pot tolerar també aigües amb un alt nivell de contaminació 

(Naranjo et al. 1996) i té la capacitat de créixer ràpidament fins a assolir la 

reproducció sexual (Sabbadin 1957, Yamaguchi 1975, Sciscioli et al.1978). 

L’elevada variabilitat genètica trobada a S. plicata (Barros et al. 2009) pot també 

afavorir la ràpida adaptació de la espècie a nous ambients (Sakai et al. 2001). 
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Finalment, S. plicata té també l’habilitat de desplaçar altres espècies autòctones 

(Rius et al. 2009a). Tenint tot això en compte, aquesta espècie sembla presentar 

tots els requeriments necessaris per tal de passar d’una mera introducció a una 

invasió, i dispersar-se ràpidament més enllà dels seus límits actuals arreu del 

món. 

OBJECTIUS 
 

L’objectiu principal d’aquesta tesi Doctoral és estudiar la biologia, la 

filogeografia i la susceptibilitat a factors ambientals de l’ascidi introduït Styela 

plicata, per tal d’avaluar el potencial invasor de l’espècie. Els resultats i 

l’aproximació multidisciplinària d’aquest estudi haurien de contribuir a 

aconseguir una millor comprensió de la interacció entre els diversos factors que 

modelen el potencial invasor de les espècies introduïdes, i també proporcionar la 

informació crítica requerida per poder establir eines de gestió eficients. Per tal 

d’assolir aquest objectiu, la tesis ha estat estructurada en quatre capítols, els quals 

tot i estar relacionats entre ells, es presenten de forma independent, tenint 

cadascun la seva pròpia introducció, materials i mètodes, resultats i discussió, i 

ocasionalment poden contenir referències creuades als altres capítols.  

 El primer capítol té com a objectiu avaluar l’estructura genètica, la 

filogeografia global i la connectivitat entre poblacions introduïdes de S. plicata, i 

cercar els patrons genètics actuals i històrics. Per tal d’adreçar aquest objectiu, 

vam analitzar l’estructura genètica de disset poblacions distribuïdes arreu del 

món, amb dos marcadors moleculars, un fragment del gen mitocondrial Citocrom 

Oxidasa Subunitat I (COI) i un fragment del gen nuclear Transportador del 

Nucleòtid Adenosina (ANT).  

 El segon capítol busca avaluar les característiques reproductores de S. 

plicata al Mediterrani Occidental, una àrea que pot actuar fàcilment com a font 

d’introduccions secundàries a causa de l’elevada activitat marítima que hi té lloc. 

Al llarg de dos anys, i a dues poblacions, Vilanova i la Geltrú i Blanes, vam 

determinar el cicle reproductor, així com l’estructura de talles de la població i els 

patrons de reclutament de l’espècie.  
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 El tercer capítol pretén aprofundir en el coneixement dels factors que 

modelen la distribució actual de l’ascidi S. plicata. Per tal d’assolir aquest 

objectiu, vam estudiar la resposta a l’estrès davant de variacions ambientals 

(temperatura i salinitat), d’una població a Estats Units, al llarg de dos anys. Els 

nivells d’estrès van ser avaluats mensualment per mitjà de la quantificació de 

l’expressió gènica de la proteïna d’estrès tèrmic hsp70, fent servir PCR 

quantitativa en temps real (QRT-PCR).  

 L’últim capítol estudia la susceptibilitat dels primers estadis de vida de 

l’ascidi S. plicata a canvis en la salinitat, la temperatura i la concentració de 

contaminants. Aquest capítol inclou també l’estudi d’un altre ascidi invasor, 

Microcosmus squamiger, el qual es pot trobar convivint amb S. plicata. La 

utilització d’una altra espècie introduïda ens permet comparar les seves respostes 

a estressants abiòtics i buscar patrons de similitud que puguin ser potencialment 

extrapolats a d’altres ascidis introduïts.  

 

RReessuullttaattss  ii  DDiissccuussssiióó  

 

ESTRUCTURA GENÈTICA 

L’estudi de la variabilitat genètica global de S. plicata ens ha mostrat en primer 

lloc que hi ha una divergència en llinatges dels dos marcadors utilitzats (el gen 

mitocondrial COI i el nuclear, ANT), cadascun presentant dos grups de seqüències 

diferenciats. En segon lloc, el “pool” genètic es troba ben barrejat a nivell de 

conca, amb poca o cap senyal filogeogràfica permanent. Tercer, la majoria de 

parelles de poblacions es troben genèticament diferenciades, independentment de 

la distància geogràfica entre elles. Finalment, sembla que hi ha un efecte de la 

selecció en la composició genètica de l’espècie, com indica la distribució desigual 

entre els individus dels dos grups de seqüències d’ANT. 

La distribució actual dels dos grups genètics obtinguts amb l’ANT no 

guarda cap relació amb la distribució dels dos grups obtinguts amb el COI. Els 

gens mitocondrials són d’herència materna, mentre que els gens nuclears poden 

patir recombinacions durant la reproducció sexual. Per tant, la falta de 
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congruència trobada entre els dos marcadors pot ser deguda al contacte freqüent 

entre individus de diferents llinatges, combinat amb la deriva gènica. Ja ha estat 

descrita prèviament una major sensibilitat dels gens mitocondrials a la deriva 

gènica (Shaw et al. 2004) i això pot contribuir a explicar les diferències 

observades entre els marcadors mitocondrials i nuclears (e.g., Shaw et al. 2004, 

Darling et al. 2008, Drew et al. 2010).  

No vam poder trobar cap senyal genètica a favor o en contra de la 

hipòtesi del Pacífic Nord Occidental com a origen de la espècie (Barros et al. 

2009, Carlton 2009). Els nostres resultats van indicar que actualment el “pool” 

genètic es troba ben barrejat entre les diverses conques oceanogràfiques, i tant els 

valors més elevats de variabilitat genètica, com la presència dels al·lels 

potencialment ancestrals es dóna no solament al Pacífic NO sinó també a la resta 

de conques (veure també David et al. 2010). Per tant, tot i que l’origen de S. 

plicata hagués estat el Pacífic NO, l’espècie s’hauria dispersat a d’altres indrets 

tropicals i temperats a partir del transport marítim, probablement des dels primers 

temps de la navegació transoceànica (Carlton 2009). Aquesta falta de resolució a 

l’hora d’avaluar les àrees natives s’ha donat també en estudis d’altres espècies 

d’ascidis considerats com a antics colonitzadors (p. ex. Ciona intestinalis Zhan et 

al. 2010). En canvi, les espècies que s’han dispersat més recentment encara 

conserven la signatura genètica de la història de la seva introducció (e.g., 

Botryllus schlosseri López-Legentil et al. 2006, Microcosmus squamiger Rius et 

al. 2008, 2012, Styela clava Goldstien et al. 2011). 

En aquest estudi hem trobat índexs de diversitat genètica entre moderats 

i elevats, depenent de la població estudiada. Malgrat els esdeveniments 

d’introducció han estat tradicionalment associats a baixa diversitat genètica a 

causa de l’efecte fundador i als conseqüents colls d’ampolla, això no és 

necessàriament així quan es donen introduccions recurrents (Cornuet & Luikart 

1996, Holland 2000, Sakai et al. 2001, Simon-Bouhet et al. 2006, Dupont et al. 

2007, Roman & Darling 2007, Dupont et al. 2010, Geller et al. 2010). A més de 

les introduccions recurrents per mitjà dels transport marítim, la diferenciació 

poblacional també pot ser causada per la selecció. Les abundàncies irregulars 

trobades per a cadascun dels grups obtinguts amb el COI i l’ANT, es podrien 

explicar a partir de diferències en l’habilitat d’adaptació dels individus a ambients 
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estressants. Les adaptacions diferencials a factors ambientals (p. ex. temperatura, 

salinitat) d’individus pertanyents a diferents grups de seqüències mitocondrials 

dins d’una espècie, no són un fenomen rar i han estat descrites en diverses 

espècies (Bastrop et al. 1998, Gerber et al. 2001, Schizas et al. 2002, Rawson & 

Burton 2002, Kelly et al. 2006, Roman 2006, Folino-Rorem et al. 2009).  

 En general, l’estudi de la filogeografia global de S. plicata mostra que 

estem davant d’una introducció antiga, degut a la signatura trobada de 

diversificació ancestral i de barreja recent. La connectivitat observada entre les 

poblacions depèn probablement del transport marítim i de la presència 

d’estructures artificials al llarg de la costa que faciliten el flux gènic entre 

poblacions tan properes com llunyanes, assegurant així una diversitat genètica 

considerable per a la majoria de poblacions. No obstant, les introduccions 

antigues no s’haurien de considerar “naturalitzades”, i el seu potencial per a 

futures dispersions així com el seu grau d’integració en els processos locals 

hauria de ser avaluat. En aquest sentit, és àmpliament reconegut que el 

creixement ràpid i les elevades habilitats reproductores són algunes de les 

característiques que defineixen a les espècies invasores.  

 

CICLE BIOLÒGIC 

Al Mediterrani Occidental, una àrea a on l’espècie S. plicata abunda a la majoria 

de ports i marines, no trobem disponible cap dada sobre el cicle de vida de 

l’espècie. Si tenim en compte l’important tràfic marítim de la majoria d’aquests 

ports (p. ex. Barcelona, Alacant, Marseille) i l’existència de marines al llarg de 

tota la costa, aquesta àrea podria actuar fàcilment com a font d’introduccions de 

l’espècie a tot el Mediterrani i fins i tot a d’altres oceans.  

 L’estudi de l’índex i de la histologia gonadals de S. plicata a dues 

poblacions del Mediterrani Occidental, va mostrar un cicle reproductor continu al 

llarg de l’any, amb oòcits i fol·licles masculins madurs presents gairebé tot l’any. 

No obstant, es va observar també un esdeveniment important d’alliberació de 

gàmetes a la primavera, seguit d’esdeveniments secundaris al llarg de l’any. A 

més, el seguiment de les estructures de talla a una de les poblacions va mostrar la 
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presència de reclutes (menys d’un mes d’edat) a tots els mesos excepte Maig, i la 

pèrdua de les classes de talla més grans a l’hivern. 

 La reproducció de S. plicata al llarg d’un període prolongat, des de la 

primavera fins la tardor, ja havia estat descrita al Mediterrani Oriental (Sabbadin 

1957, Sciscioli et al. 1978, Tursi & Matarrese 1981). Aquests autors van 

considerar que la espècie no estava reproductivament activa al llarg dels mesos de 

més fred, ja que no van detectar reclutament a l’hivern en panells artificials 

(Sciscioli et al. 1978, Tursi & Matarrese 1981). Aquestes temperatures tan baixes, 

no obstant, són rarament assolides al Mediterrani Occidental (Margalef 1985, 

Coma et al. 2000) i, malgrat que hi ha un curt període en què els fol·licles 

masculins no estaven madurs als mesos més freds, sí que va haver-hi individus 

amb oòcits grans i madurs i també reclutes, al llarg de l’hivern. Els nostres 

resultats indiquen, per tant, que S. plicata es reprodueix activament al llarg dels 

mesos d’hivern al Mediterrani Occidental. 

 L’habilitat de reproduir-se al llarg de tot l’any, podria conferir un 

avantatge competitiu a S. plicata davant d’altres espècies d’invertebrats bentònics 

amb reproducció i creixement estacional. Cicles reproductius extensos han estat 

descrits per altres espècies d’ascidis invasius (Bourque et al. 2007, Shenkar & 

Loya 2008, Wong et al. 2008). Aquesta estratègia reproductiva, combinada amb 

un creixement ràpid dels juvenils, es dóna a moltes espècies invasores, i per tant 

reforça la idea de que S. plicata podria ser una amenaça per a la biota local si es 

dispersa a hàbitats naturals. Alhora, l’existència de larves a la columna d’aigua al 

llarg de l’any, assegura un assentament continu de juvenils al casc de les 

embarcacions, preparats per a ser dispersats a d’altres marines, i facilitant així les 

introduccions recurrents de l’espècie. Aquest fet, juntament amb el gran “pool” 

genètic descrit anteriorment, assegura la persistència de les poblacions de S. 

plicata al Mediterrani Occidental. 

 

TOLERÀNCIA A L’ESTRÈS 

L’arribada i l’establiment d’una espècie introduïda depèn de la biologia de la 

espècie (p. ex. el tipus d’estratègia reproductiva, de creixement, de competició), 

l’existència de vectors adients d’introducció (per ex. transport marítim, 
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aqüicultura), i l’existència de condicions físiques adequades tan per als adults 

com per a les larves (Stachowicz et al. 2002, Verween et al. 2007, Fowler et al. 

2011). Els mecanismes de resposta a l’estrès permeten als organismes marins 

suportar fluctuacions inesperades en un o diversos factors biòtics o abiòtics 

(Aruda et al. 2011, Clark & Peck 2009, Cottin et al. 2010, Huang et al. 2011, 

Lockwood et al. 2010). Per tant, la capacitat dels estadis tan adults com larvaris 

de les espècies introduïdes per suportar l’estrès, determinarà la seva distribució i 

el seu potencial d’expansió. La resposta de les proteïnes d’estrès tèrmic (hsp) és 

el primer mecanisme del que disposen els eucariotes per superar l’estrès, i per 

tant, els canvis en l’expressió gènica de la hsp70 es poden considerar com 

indicadors d’estrès ambiental i de la capacitat de resposta dels organismes. Vam 

observar, al llarg de dos anys, la tendència estacional en l’expressió gènica de la 

proteïna hsp70 en una població de S. plicata d’un ambient d’aiguamoll salabrós, 

subjecte a àmplies fluctuacions en la salinitat i la temperatura, el que suposava 

importants canvis en els nivells d’estrès fisiològic de l’espècie al llarg del temps.  

 Els augments en la temperatura de l’aigua han estat correlacionats amb 

elevats nivells d’hsp70 en invertebrats marins (Osovitz & Hofmann 2005, López-

Legentil et al. 2008, Pantile & Webster 2011). En S. plicata vam trobar també 

nivells d’expressió gènica d’hsp70 significativament superiors durant els mesos 

d’estiu. Mentre danys relativament petits poden ser reparats per un augment en 

l’activitat de les hsp, l’exposició prolongada al factor d’estrès pot conduir al 

col·lapse metabòlic en un temps relativament curt. Les nostres dades suggereixen 

que un augment sobtat en la temperatura de l’aigua a l’estiu resultava en un estrés 

fisiològic extrem per a l’espècie, i era el causant finalment dels esdeveniments de 

mortalitat massiva observats anualment en S. plicata a la zona d’estudi. A més de 

la temperatura, altres condicions, tals com disminucions sobtades de la salinitat, 

poden també estressar significativament els organismes marins (e.g., Kültz 1996, 

Deane & Woo 2004, Yang et al. 2009). Thiyagarajan & Qian (2003) van trobar 

que el reclutament i la supervivència i creixement posterior a la larva es veien 

greument afectats a l’estiu, quan la temperatura de l’aigua era alta (26-30 ºC) i la 

salinitat baixa (22-30‰). Nosaltres hem trobat que, de manera similar, la 

interacció entre la temperatura i la salinitat en l’expressió gènica d’hsp70 era 
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significativa. En particular, per a temperatures de l’aigua superiors a 25 ºC, 

l’expressió gènica d’hsp70 augmentava amb la disminució dels valors de salinitat.  

 La distribució biogeogràfica de les espècies marines es veu determinada 

per la seva tolerància a l’estrès (Feder & Hofmann 1999), en la qual la resposta de 

les proteïnes d’estrès tèrmic n’és un factor clau. Per tant, l’establiment d’una nova 

espècie és possible sempre i quan els nivells de condicions ambientals es trobin 

dins del rang de tolerància de l’espècie. D’aquesta manera, si aquest rang és més 

ample per a una espècie introduïda, en comparació amb el dels seus competidors 

directes nadius, llavors el nouvingut pot convertir-se en invasor (Stachowicz et al. 

2002). Basant-nos en els nostres resultats, l’habilitat de S. plicata de sobreviure i 

colonitzar aquests ambients d’aiguamolls depèn de la seva habilitat de superar els 

canvis abiòtics severs. En S. plicata s’ha trobat un cert nivell de resiliència cap a 

condicions ambientals adverses, i això pot haver facilitat la distribució global de 

l’espècie. Fins i tot quan els canvis severs de temperatura o salinitat van superar 

els nivells de tolerància de S. plicata (per ex., com vam observar anualment al 

juny a la població estudiada), l’espècie va ser capaç de recuperar-se 

completament i recolonitzar l’àrea d’estudi en menys d’un mes (obs. pers. dels 

autors), suposadament a partir de larves provinents d’un reservori desconegut o 

des dels cascs dels vaixells que fan escala per la zona. El ràpid creixement 

observat en S. plicata  (Yamaguchi 1975, Sutherland 1978) és també un 

mecanisme clau per permetre la ràpida repoblació després d’un episodi de 

mortalitat.  

 Nogensmenys, la persistència de les poblacions no depèn només de la 

supervivència dels adults i de la seva tolerància a l’estrès, sinó també de la 

fortalesa dels juvenils. Vam estudiar l’efecte de diversos estressors, a nivells 

realistes comparables als trobats als ambients tancats a on habita S. plicata, en els 

primers estadis de vida de l’espècie (fertilització de l’ou, desenvolupament 

larvari, assentament i metamorfosi). Els resultats van ser comparats amb els 

obtinguts per a un altre ascidi introduït, Microcosmus squamiger, el qual conviu 

en el mateix hàbitat que S. plicata. Elevades temperatures, baixes salinitats i 

elevades concentracions de coure, van afectar els primers estadis del 

desenvolupament d’ambdues espècies, impedint el complet desenvolupament fins 

a completar la metamorfosi en la majoria dels casos. Aquest resultat és 
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sorprenent, ja que els adults d’ambdues espècies poden tolerar normalment 

aquestes condicions (Yamaguchi 1975, Sims 1984, Naranjo et al. 1996, Lowe 

2002, Galletly et al. 2007, Epelbaum et al. 2009).  

 La sensibilitat trobada en els embrions i en les larves de S. plicata als 

canvis en la temperatura i la salinitat, va ser coherent amb la descrita per 

Thiyagarajan i Qian (2003), els quals van estudiar l’espècie a Hong Kong i van 

trobar una manca de reclutament quan la temperatura assolia valors de 26-30 ºC i 

les salinitats de 22-30‰, a l’estiu. Al nostre estudi, aquestes condicions impedien 

el correcte desenvolupament de S. plicata, sent els primers estadis (fertilització de 

l’embrió i desenvolupament larvari) especialment sensibles. La susceptibilitat a 

baixes salinitats ha estat prèviament descrita per altres ascidis (Svane & Young 

1989, Vázquez & Young 2000). Per tant, un escenari de canvi climàtic amb 

temperatures creixents i salinitats decreixents (Drinkwater et al. 2009) podria 

tenir efectes negatius en S. plicata, mentre que podria afavorir d’altres espècies 

amb rangs més amplis de tolerància a aquests factors (Fowler et al. 2001). 

Finalment, es coneix que el coure inhibeix el desenvolupament dels embrions, 

redueix l’èxit en l’assentament i la metamorfosi, i redueix també el creixement en 

moltes espècies d’invertebrats, inclosos els ascidis (e.g., Bellas et al. 2001, 

Cebrian et al. 2003, Agell et al. 2004, McKenzie et al. 2011). En canvi, només 

concentracions molt elevades de coure (> 50 μg/L) van impossibilitar els primers 

estadis de vida de S. plicata, indicant que aquesta espècie pot subsistir en 

ambients contaminats. M. squamiger, contràriament, va resultar més sensible a la 

contaminació per coure, però més resistent a les baixes salinitats que S. plicata, 

factor el qual es correlaciona correctament amb la distribució d’ambdues espècies 

a la costa estudiada.  

 Tot i que diversos estadis primerencs del cicle de vida de S. plicata�es 

van veure seriosament afectats al ser exposats a nivells realistes d’estressors, els 

factors abiòtics no afecten als animals de manera individual a la natura, sinó que 

normalment es combinen, donant lloc a estressors múltiples, els quals resulten 

sovint en efectes sinèrgics. Per tant, els nostres resultats poden haver sobreestimat 

la resiliència dels primers estadis de vida aquí estudiats, la qual cosa sembla un 

fet sorprenent tenint en compte l’abundància d’aquestes espècies en hàbitats tals 

com els ports, a on aquests estressors són comunament trobats. Una explicació 
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versemblant per a la presència d’adults en ports i aiguamolls salabrosos, podria 

ser l’existència d’estratègies comportamentals en aquestes espècies, les quals 

només es poden observar a la natura (p. ex. endarrerir el moment d’alliberar 

gàmetes en espera que les condicions ambientals siguin favorables, forta pressió 

de gàmetes i arribada de larves des d’hàbitats més favorables, període reproductiu 

extens). 

 

 En conclusió, hem fet servir estudis multidisciplinaris per tal d’avaluar 

els paràmetres genètics i biològics de l’ascidi introduït Styela plicata, així com 

conèixer el seu potencial invasor. L’estudi de la filogeografia ha revelat una 

elevada diversitat genètica i una elevada freqüència d’introduccions secundàries, 

indicant un elevat potencial de dispersió a d’altres poblacions (Fisher 1930, 

Allendorf & Lundquist 2003). Un període reproductor extens permet també, a 

l’espècie, explotar finestres temporals de condicions favorables i persistir en 

hàbitats amb condicions subòptimes. A més, tan els embrions i larves com els 

adults de S. plicata van exhibir una elevada resistència a contaminants tals com el 

coure, un metall pesat comú a ports i marines (Hall et al. 1998, Haynes & Loong 

2002, Naranjo et al. 1996). D’altra banda, mentre els adults poden suportar canvis 

en temperatura i salinitat, a través d’incrementar la producció de proteïnes 

d’estrès, els processos de fertilització i de desenvolupament larvari van ser 

altament vulnerables a aquestes condicions. Sota un escenari de canvi climàtic 

amb potencials augments de temperatura i disminucions de la salinitat, aquesta 

sensibilitat pot actuar com un factor natural de contenció de l’espècie.  

 

PERSPECTIVES FUTURES

Tenint en compte tots els resultats, sembla que S. plicata presenta el potencial de 

proliferar i estendre’s més enllà dels seus límits actuals. No obstant això, la 

espècie ha estat bàsicament confinada a ports, marines i d’altres estructures 

artificials en gran part de la seva distribució global. Malgrat que S. plicata ha 

estat observada fora de ports a Brasil, Japó, Itàlia o Espanya, aquestes poblacions 

estan formades per un reduït nombre d’individus i el seu impacte és menys notori 

que dins de ports o sobre estructures artificials. S. plicata ha tingut temps 
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suficient per envair les comunitats naturals a molts indrets del seu rang de 

distribució, ja que l’espècie ha estat viatjant al voltant del món durant més d’un 

segle. Hi hauria d’haver, per tant, factors fins ara desconeguts, que estiguin 

controlant la dispersió de l’espècie a comunitats naturals, com ara la competència 

o la depredació (Sutherland 1974) i requereixen, per tant, més investigació.  

 L’evolució de les escasses poblacions de substrat natural de S. plicata 

detectades fins ara, és la clau per entendre el potencial invasor de l’espècie. Per 

tal de detectar qualsevol proliferació de l’espècie que pogués afectar la comunitat 

natural, seria interessant realitzar experiments de manipulació (trasplants), 

avaluar experimentalment interaccions amb espècies locals, i dur a terme 

seguiments de les poblacions de substrat natural. Si es donés una proliferació 

d’aquestes poblacions, caldria llavors posar en marxa plans de control, tals com 

l’eradicació de les poblacions que viuen als ports, control de l’alliberació de les 

aigües de llast dels vaixells, etc. ��

�

CCoonncclluussiioonnss  GGeenneerraallss  

CAPITOL 1: Història d’un antic rodamón: Filogeografia global de l’ascidi 

solitari Styela plicata 

1. Els nivells de diversitat gènica trobats a S. plicata van ser moderats 

per al COI i elevats per l’ANT en totes les conques estudiades, 

excepte el Mediterrani, el qual podria ser una introducció més 

recent. 

2. Es van trobar dos llinatges per a cadascun dels marcadors, COI i 

ANT, suggerint una divergència poblacional ancestral. En canvi, la 

distribució d’aquests grups no va mostrar cap patró consistent, 

indicant diferents històries filogeogràfiques per a cadascun dels 

gens, modelades per introduccions recurrents. 

3. La divergència genètica significativa trobada per a la majoria de 

parells de poblacions, independentment de la distancia geogràfica 

entre elles, confirmava el transport antropogènic, associat al tràfic 

marítim, com el vector de dispersió de la espècie més versemblant. 
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CAPITOL 2: Reproducció continua en un mar estacional: Cicle biològic de 

l’ascidi introduït Styela plicata al Mediterrani Occidental 

4. Es van trobar gàmetes madurs i presència de reclutes al llarg de tot 

l’any al Mediterrani Occidental, amb diversos esdeveniments 

d’alliberació de gàmetes al llarg dels anys, especialment a la 

primavera. 

5. Un període reproductor prologat confereix S. plicata amb un 

avantatge competitiu a mars temperats, a on la majoria de les 

espècies es reprodueixen estacionalment. També pot permetre 

l’espècie explotar finestres temporals de condicions favorables per a 

la seva proliferació. 

 

CAPITOL 3: Nivells d’estrès al llarg del temps en l’ascidi introduït Styela 

plicata: Efecte de la temperatura i la salinitat en els nivells d’expressió gènica 

de la hsp70

6. L’expressió gènica de la hsp70 en l’ascidi introduït S. plicata va 

variar al llarg del temps i va estar significativament correlacionada 

amb elevades temperatures de l’aigua i baixes salinitats. 

7. Canvis dràstics en els factors abiòtics poden saturar el mecanisme de 

resposta de les proteïnes d’estrès tèrmic, com es va poder observar 

per la coincidència entre el dràstic augment de la temperatura de 

l’aigua i els esdeveniments de mortalitat massiva observats 

anualment al Juny. 

 

CAPITOL 4: Adults resistents, criatures fràgils: Sensibilitat a factors 

abiòtics al llarg de múltiples estadis inicials del cicle biològic d’invertebrats 

marins introduïts globalment 

8. Els primers estadis de vida de S. plicata es van veure afectats 

negativament per elevades temperatures i baixes salinitats, essent la 

fertilització i el desenvolupament larvari els més sensibles. En 

canvi, aquests estadis van tolerar les elevades concentracions de 

contaminació per coure. 
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9. El genotip parental no es va correlacionar amb la resposta a 

estressors abiòtics dels primers estadis del cicle de vida.

10. Els processos primerencs de desenvolupament de S. plicata no es 

poden completar sota les condicions generalment prevalents als 

ambients a on viuen els adults, i l’espècie per tant ha de reclutar 

d’algun altre lloc o reproduir-se durant finestres temporals de 

condicions més benignes per a aquests estadis.

11. S. plicata és una introducció ancestral que ha estat viatjant al voltant 

del món a partir del transport marítim al llarg de l’últim segle. 

Aquesta espècie habita a ports i altres estructures artificials, tolerant 

elevades concentracions de contaminants. A més, la seva elevada 

variabilitat genètica i continua reproducció afavoreixen 

esdeveniments d’introduccions secundaris i la dispersió de l’espècie. 

Tot i a l’elevat potencial invasor que S. plicata sembla presentar, la 

seva distribució es pot veure limitada per temperatures elevades de 

l’aigua i baixes salinitats, especialment al llarg dels primers estadis 

del desenvolupament. Calen per tant més estudis per tal d’estudiar la 

dinàmica i la interacció de les escasses poblacions detectades a 

substrat natural, i per tal d’avaluar els factors que determinarien la 

dispersió de l’espècie fora d’ambients tancats. 

  

  

  

  

  

  

CONCLUSIÓ FINAL 
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Abstract

Genetic tools have greatly aided in tracing the sources and colonization history of introduced species. However, recurrent
introductions and repeated shuffling of populations may have blurred some of the genetic signals left by ancient
introductions. Styela plicata is a solitary ascidian distributed worldwide. Although its origin remains unclear, this species is
believed to have spread worldwide by travelling on ship’s hulls. The goals of this study were to infer the genetic structure
and global phylogeography of S. plicata and to look for present-day and historical genetic patterns. Two genetic markers
were used: a fragment of the mitochondrial gene Cytochrome Oxidase subunit I (COI) and a fragment of the nuclear gene
Adenine Nucleotide Transporter/ADP-ATP Translocase (ANT). A total of 368 individuals for COI and 315 for ANT were
sequenced from 17 locations worldwide. The levels of gene diversity were moderate for COI to high for ANT. The
Mediterranean populations showed the least diversity and allelic richness for both markers, while the Indian, Atlantic and
Pacific Oceans had the highest gene and nucleotide diversities. Network and phylogenetic analyses with COI and ANT
revealed two groups of alleles separated by 15 and 4 mutational steps, respectively. The existence of different lineages
suggested an ancient population split. However, the geographic distributions of these groups did not show any consistent
pattern, indicating different phylogeographic histories for each gene. Genetic divergence was significant for many
population-pairs irrespective of the geographic distance among them. Stochastic introduction events are reflected in the
uneven distribution of COI and ANT allele frequencies and groups among many populations. Our results confirmed that S.
plicata has been present in all studied oceans for a long time, and that recurrent colonization events and occasional
shuffling among populations have determined the actual genetic structure of this species.
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Introduction

Biological introductions have notably increased during the last

century, posing a major threat to global biodiversity and altering

the structure and function of many communities [1–7]. Despite

some relatively recent attempts to buffer the ecological impact of

these introductions [e.g. 8–10], oceans remain one of the most

affected ecosystems [7,11–17]. Among other transport vectors,

non-native species arrive to new locations through ships’ hulls and

sea chests, in ballast water or with spats for mariculture. Thus, the

increasing activity in maritime traffic and aquaculture has

favoured the introduction of marine species all over the world

[13,18–19]. The establishment of new genetic variants and spread

of exotic species has also been facilitated by a proliferation of

harbours and other artificial structures along the coast [20–25].

Genetic diversity plays a crucial role on the successful

establishment of an introduced species or variant in a new area

[26–30]. The development of genetic tools and markers has widely

contributed to enhance our knowledge on these species. A

throughout assessment of the genetic structure of an introduced

species, including its history of subdivision and gene flow, allows

the identification of range expansions, colonization events, and an

understanding of the invasive potential and the relative contribu-

tions of artificial and natural dispersal [e.g. 31–34].

The increasing pace of introductions has also fostered increased

awareness. Monitoring and control programs have been estab-

lished, and recent introductions are more easily detected and

inventoried than in the past [e.g. 17]. However, historical

invasions may still remain hidden. Some species could have

arrived to a new location long before the distribution ranges of

autochthonous species were assessed, and be now regarded as

native [35,36]. Cosmopolitan or broadly distributed species,

particularly those thriving in harbours and artificial substrata,

are likely to be ‘‘pseudoindigenous’’ species [36]. Lack of historical

records in many regions, taxonomic flaws and cryptic speciation

further complicate the issue [e.g., 37,38]. In addition, and despite

the new methods available [e.g., 33], our ability to extract

information may be limited by our knowledge and access to native

populations, recurrent introduction events, and shuffling of

populations during a long period of time (i.e. centuries).

The paramount importance of ascidians for the study of marine

introductions is well recognized, as they represent one of the most

common invaders [39,40]. Ascidians have short-lived larvae, thus

anthropogenic transport can greatly increase their dispersal
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abilities. The rate of introduction of non-indigenous ascidians has

been increasing in the last decades [40], mostly linked to ship

traffic or aquaculture activities [e.g., 39, 41–45]. However, some

species may have been translocated centuries ago and have now

become ancient introductions whose origins are poorly known

[46]. These ancient colonizers are often species commonly found

in harbours and man-made substrates, have broad distribution

ranges and, while naturalized in many areas, continue to be

introduced in new regions of the globe [e.g. 47–50].

Styela plicata (Lesueur, 1823) (Tunicata, Ascidiacea) is a solitary

ascidian commonly found inhabiting marinas and harbours of

warm and temperate oceans, usually at high-densities. In spite of

its broad geographical distribution, the native range of this species

is not yet elucidated [46]. Evidence to date suggests that S. plicata is

native to the NW Pacific Ocean [36,51–54]. In fact, the

description of this species was based on an individual found on a

ship’s hull in Philadelphia (NE USA), and no other individual was

observed in the surrounding natural substrata [55]. All records of

S. plicata are based on observations of man-made structures, except

in Japan, where this species has been observed to grow in natural

habitats [Nishikawa pers. comm., 54]. A series of unique

characteristics has allowed S. plicata to thrive in these diverse

environments and outcompete other benthic invertebrates. S.

plicata can physiologically adapt to widely fluctuating environ-

ments, particularly to changes in temperature and salinity [56,57].

This species can also tolerate highly polluted waters [58], grows

rapidly until reaching sexual maturity [59–61], and is capable of

self-fertilization (authors’ current research).

To gain insight into the invasive potential of this species, we

analyzed the genetic structure of seventeen populations covering

most of S. plicata’s distribution range. Using a mitochondrial (COI)

and a nuclear (ANT) marker, we attempted to infer the global

phylogeography of S. plicata, understand its dispersion patterns,

and assess the diversity and connectivity of introduced popula-

tions.

Methods

Sampling
Samples of Styela plicata were collected in 2009 and 2010 from

seventeen localities (Table 1): two from the Mediterranean Sea

(Iberian Peninsula), three from the north-eastern Atlantic Ocean

(Iberian Peninsula, Canary Islands), two from the north-western

Atlantic Ocean (US east coast), one from the south-western

Atlantic ocean (Brazil), five from the north-western Pacific Ocean

(Japan and China), one from the south-western Pacific Ocean

(Australia), one from the north-eastern Pacific Ocean (US west

coast), and two from the south-western Indian Ocean (South

Africa). These locations were chosen to cover as much of the

distribution range of this widespread species as possible. All

specimens were collected from artificial substrata (harbours,

marinas or decks), except for one population collected from

natural substratum in Sakushima Island (Japan). The shortest

distance by sea between location pairs was calculated using the

‘‘measure line’’ tool of Google Earth (version 3.0, Google Inc.,

Amphitheatre Parkway, CA, USA). S. Plicata samples were

obtained according to current Spanish regulations. Samples from

outside Spain were collected by national researchers following

their country regulations. This species is not protected by any law

and all sampling was conducted outside protected areas.

All specimens were collected from depths that ranged between 0 and

2 m by pulling up harbour ropes, removing specimens from submersed

docks and pilings, or pulling individuals from rocky assemblages

(natural population). Samples were dissected in situ and a piece of

muscular tissue from the mantle or the siphon was immediately

preserved in absolute ethanol. Ethanol was changed after a few hours,

and samples were then stored at 220uC until DNA extraction.

DNA extraction and sequencing
Total DNA was extracted using the REDExtract-N-Amp Tissue

PCR Kit (Sigma-Aldrich). The universal primers LCO1490 and

HCO2198 described in Folmer et al. [62] were used to amplify a

fragment of the mitochondrial gene Cytochrome Oxidase subunit

I (COI) from 368 individuals. The primer set designed by Jarman

et al. [63] was used to amplify a fragment of the single-copy

nuclear Adenine Nucleotide Transporter (ANT) gene. Based on the

resulting sequences, we also designed the specific primers

ANTf_Splic (59-TTG GCA GCT GAT ATT GGA AAA GG-

39) and ANTr_Splic (59-CCA GAC TGC ATC ATC ATK CG-

39), using the software Primer 3 v.0.4.0. [64]. Amplifications were

carried out for 315 individuals using Jarman et al. [63] primers or

the newly designed ones.

For both genes, amplifications were performed in a final volume

of 20 mL using 10 mL of REDExtract-N-amp PCR reaction mix

(Sigma-Aldrich), 1 mL of each primer (10 mM) for ANT or 0.8 mL

for COI, and 2 mL of template DNA. The PCR program for ANT

consisted of an initial denaturing step at 94uC for 2 min, 30

amplification cycles (denaturing at 94uC for 1 min, annealing at

58uC for 30 seconds and extension at 72uC for 30 seconds), and a

final extension at 72uC for 6 min, on a PCR System 9700 (Applied

Biosystems). The PCR program for COI was as described above,

except for the amplification cycles, which were done at 94uC for

45 seconds, 50uC for 45 seconds and 72uC for 50 seconds. PCR

products were purified using MultiScreenH filter plates (Millipore),

labelled using BigDyeH Terminator v.3.1 (Applied Biosystems) and

sequenced on an ABI 3730 Genetic Analyzer (Applied Biosystems)

at the Scientific and Technical Services of the University of

Barcelona (Spain). Other samples were directly sent for purification

and sequencing to Macrogen Inc. (Seoul, Korea Korea). From the

resulting sequences, we discarded low quality reads for ANT, hence

the lower number of specimens sequenced for this marker.

Sequences were edited and aligned using BioEditH v.7.0.5.3

[65]. Some ANT sequences showed a deletion of 22 amino acids,

thus heterozygotes had unequal lengths and had to be manually

reconstructed by carefully analyzing both forward and reverse

chromatograms. The allelic phase for ANT genotypic data was

analyzed using fastPHASE 1.1 [66] implemented in the software

DnaSP v.5 [67]. We also used the Recombination Detection

Program (RDP3) [68] to test for recombination in our nuclear

sequences. Sequences obtained in this study have been deposited

in GenBank (accession numbers HQ916425 to HQ916446 for

COI, and HQ916363 to HQ916423 for ANT).

Population genetics
Number of alleles (Nh), gene diversity (Hd), and nucleotide

diversity (p) were computed with DnaSP v.5 [67]. Allelic richness

was calculated using the program Contrib v.1.02, which

implements a rarefaction method to obtain estimates indepen-

dently of sample size [106]. Genetix v.4.05.2 [69] was used to

calculate inbreeding coefficients for the ANT data obtained with

fastPHASE. The nearly unbiased estimation of allelic differenti-

ation between populations was based on the adjusted Dest measure

described by Jost [70], and calculated for each marker with

SPADE [71]. The mean and SE values obtained with SPADE

from 1,000 bootstrap replicates were used to calculate the

confidence intervals and the degree of significance of the

differentiation values (using a normal approximation). To correct

for multiple comparisons, we set the p-value at 0.009, following the

Global Phylogeography of Styela plicata
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Benjamini and Yekutieli False Discovery Rate correction [72]. A

value of D was deemed significant when the confidence interval

around its mean did not contain 0. An analysis of molecular

variance (AMOVA) was performed to examine population

structure, and its significance was tested running 10,000

permutations in Arlequin v.3.1 [73]. The correlation of genetic

and geographical distances was tested for all pairs of populations

with a Mantel test [74] and 10,000 permutations using Arlequin.

Visual assessment of between-population differentiation was

achieved by performing a discriminant analysis of principal

components (DAPC) [75] on a dataset comprising information

obtained from both genes. This recently developed technique

extracts information from genetic datasets (multivariate in nature)

by first performing a principal component analysis (PCA) on

groups or populations, and then using the PCA factors as variables

for a discriminant analysis (DA). The previous PCA step ensures

that the variables input to DA meet the requirements of having less

variables (alleles) than number of observations (individuals) and

not having any correlation between variables [75]. DA seeks to

maximize the inter-group component of variation. We performed

DAPC analyses on both genes combined by using the adegenet

package for R [76]. DAPC was performed (function dapc) using

pre-defined groups corresponding to populations or groups of

populations (see Results). Variables were centred but not scaled. In

all analyses, 50 principal components of PCA were retained and

input to DA. DA also provided estimates of the probability with

which the analysis recovers the true membership of the

individuals. Finally, in order to detect population growth and

infer population demographic events, we computed Tajima’s D

[77], Fu’s Fs [78], R2 [79], and the raggedness index (based on the

mismatch distribution) [80], using DnaSP.

Phylogenetic and phylogeographical analyses
The complete dataset was used to construct a median-joining

network for each marker using Network v.4.5.1.6 [81]. Resulting

loops for the ANT network were solved using criteria derived from

the coalescent theory [82,83]. For the COI network, only one loop

was observed but it could not be resolved.

Phylogenetic analyses were conducted using Styela gibbsii as an

outgroup (acc. number HQ916447 for COI and HQ916424 for

ANT). The best-fit model of nucleotide substitution for each

marker was selected using jModeltest v.0.1.1 [84,85], with the

Akaike Information Criterion (AIC) for COI, and the corrected

version for small samples (AICc) for ANT. The positions

corresponding to the indel detected for ANT were not included

in the analysis (see Results). For Bayesian inference (BI), MrBayes

v.3.1.2 software [86] was used to infer tree topologies, imple-

menting the corresponding likelihood model for each gene

fragment. For each gene, the program was run with 1 million

generations with a sample frequency of 100 (10,000 final trees).

After verifying that stationarity had been reached (i.e. the average

standard deviation of split frequencies between two independent

chains reached less than 0.01), the first 1,000 trees were discarded

in both cases as burnin. Majority-rule consensus trees were

generated from the remaining 9,000 trees. Bayesian posterior

probabilities were used as a measure of support for the branch

nodes obtained. The obtained trees were drawn with FigTree

v.1.2.2. DnaSP was used to perform the McDonald & Kreitman

test [87], and check whether patterns of variation among groups of

sequences were consistent with predictions for a neutral model.

Results

Mitochondrial gene
For the mitochondrial COI gene, 368 sequences with a final

alignment length of 624 bp were obtained. In total, we found 22

haplotypes with 38 polymorphic sites (6%), 6 of which corre-

sponded to non-synonymous substitutions. The majority of

haplotypes obtained (68%) corresponded to private haplotypes,

most of which were found in the north-western Atlantic Ocean

(Fig. 1). Remarkably, the six haplotypes found for the North

Table 1. Population code, name, geographical region (including country), and GPS position for the populations of Styela plicata

analyzed in this study.

Code Population Geographical Region/Country Latitude/Longitude

AR Arenys de Mar NW Mediterranean Sea/Spain 41u349360N/2u339320E

JA Javea NW Mediterranean Sea/Spain 38u479520N/0u119060E

SP San Fernando NE Atlantic Ocean/Spain 36u279360N/6u129130W

FE Ferrol NE Atlantic Ocean/Spain 43u299000N/8u149000W

TEN Tenerife NE Atlantic Ocean/Spain 28u009240N/16u399380W

KNY Knysna SW Indian Ocean/South Africa 34u29280S/23u29380E

PE Port Elizabeth SW Indian Ocean/South Africa 33u579490S/25u389160E

NC North Carolina NW Atlantic Ocean/USA 34u89240N/77u519440W

SC South Carolina NW Atlantic Ocean/USA 32u129570N/80u469490W

CAL California NE Pacific Ocean/USA 32u479000N/117u099000W

BRA Santa Catarina SW Atlantic Ocean/Brasil 26u469300S/48u369340W

AM Manly SW Pacific Ocean/Australia 33u479430S/151u179380E

WAK Wakayama NW Pacific Ocean/Japan 34u119170N/135u 89480E

OKI Okinawajima NW Pacific Ocean/Japan 26u199290N/127u509150E

MIS Misaki NW Pacific Ocean/Japan 36u99210N/133u189520E

SKS Sakushima Island NW Pacific Ocean/Japan 34u439000N/137u029000E

HK Hong Kong NW Pacific Ocean/China 22u249000N/114u219009E

doi:10.1371/journal.pone.0025495.t001
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Carolina population (NC) were private. The number of haplotypes

per location ranged between one in Tenerife and six in Ferrol and

North Carolina (Table 2, Table S1). Regarding the oceanic basins,

the Atlantic and Pacific Ocean had higher haplotype diversity (17

and 8 haplotypes, respectively) than the Mediterranean Sea and

the Indian Ocean (4 and 5 haplotypes, respectively; Table 2).

Mean and total haplotype diversity (Hd) were 0.497 (60.266 SD)

and 0.810 (60.010 SD), respectively. Mean nucleotide diversity

was 0.0055 (60.005 SD), while total nucleotide diversity (p) was

0.0135 (60.0006 SD). Variation in haplotype and nucleotide

diversity between populations within basins was considerable. For

instance, the populations of Knysna (KNY) and Port Elizabeth

(PE) located in the Indian Ocean, had a haplotype diversity of

0.668 and 0.205 respectively. The California population (CAL)

presented the highest haplotype and nucleotide diversity values

(0.800 and 0.01684, respectively; Table 2). The higher allelic

richness values (obtained after rarefaction to a common sample

size of 11 and 40 genes per populations and basins) were found for

the San Fernando (SP, 3.747) and Ferrol populations (FE, 3.793),

while the lower values corresponded to the populations of Manly

(AM, 0.458) and Arenys de Mar (AR, 0.555). When comparing

between basins, the Atlantic Ocean showed the highest allelic

richness, whereas the Mediterranean Sea had the lowest value

(Table 2).

Jost’s adjusted estimator (Dest) was used to assess the allelic

differentiation between populations for each marker, showing high

values of differentiation (mean Dest = 0.660). The COI data

revealed high differentiation between many population-pairs, as

88 comparisons out of 136 resulted in significant differences after

correction for multiple comparisons (Table 3). For instance, the

North Carolina population had no alleles in common with any

other population (Fig. 2), and many other populations (e.g. Port

Elizabeth, Manly, Misaki, Okinawajima) also differed considerably

in their allele composition. No particular pattern was found for the

only population collected from natural substratum (Sakushima

Island, SKS), which was significantly different from half of the

remaining populations.

The results of the hierarchical AMOVA showed higher within

population variability (58.41%) than the one between populations

(41.59%, P,0.001, Table 4). AMOVA analyses performed by

grouping populations according to their oceanic basin revealed

that most of the genetic diversity was due to variability within

populations (56.97%, P,0.001), and among populations within

basins (34.36%, P,0.001). However, no significant differences in

genetic structure were detected between basins (8.67%, P=0.055

for COI; Table 4). Accordingly, the Mantel test showed no

correlation between genetic differentiation and geographical

distance between populations (r=0.00009, P=0.434).

Overall, neutrality tests were not significant (Table 5), and

hence did not support any lack of equilibrium due to selection or

population size changes at any level (either partitioned by

populations or oceanic basins). The only exceptions encountered

were for the Australian population of Manly (AM), with

significantly negative Tajima’s D values, and for Sakushima and

the Group 1 of haplotypes (see below), with a significant

raggedness index (Table 5).

The network obtained for the COI gene (Fig. 2a) revealed two

divergent lineages (hereafter called Group 1 and Group 2)

Figure 1. Map showing the sampling sites of Styela plicata. Pie charts represent haplotype frequencies for the COI gene in each population
analyzed. Private haplotypes are shown in white.
doi:10.1371/journal.pone.0025495.g001

Global Phylogeography of Styela plicata

PLoS ONE | www.plosone.org 4 September 2011 | Volume 6 | Issue 9 | e25495



T
a
b
le

2
.
D
iv
e
rs
it
y
m
e
as
u
re
s
fo
r
th
e
st
u
d
ie
d
p
o
p
u
la
ti
o
n
s
o
f
S
ty
el
a
p
lic
a
ta
.

P
o
p
u
la
ti
o
n

C
O
I

A
N
T

N
r

H
d
±
S
D

p
±
S
D

N
h
(p
ri
v
a
te
)

N
r

H
d
±
S
D

p
±
S
D

N
h
(p
ri
v
a
te
)

F
is

H
e
x
p

H
o
b
s

A
R

2
0

0
.5
5
5

0
.1
0
0

(6
0
.0
8
8
)

0
.0
0
0
1
6

(6
0
.0
0
0
1
4
)

2
1
9

3
.7
3
3

0
.6
2
0

(6
0
.0
7
2
)

0
.0
2
0
1
2

(6
0
.0
0
2
6
0
)

6
0
.2
4
1
*

0
.6
2
0

0
.4
7
4

JA
2
0

1
.7
8
5

0
.4
8
4

(6
0
.1
1
3
)

0
.0
0
3
8
8

(6
0
.0
0
0
9
5
)

3
(1
)

2
0

3
.3
0
7

0
.4
9
4

(6
0
.0
8
8
)

0
.0
1
6
7
0

(6
0
.0
0
3
1
9
)

5
(1
)

0
.8
0
2
*

0
.4
9
4

0
.1
0
0

SP
1
6

3
.7
4
7

0
.7
7
5

(6
0
.0
6
8
)

0
.0
1
4
8
4

(6
0
.0
0
2
0
0
)

5
(2
)

1
7

8
.4
3
4

0
.7
9
1

(6
0
.0
6
5
)

0
.0
2
8
3
1

(6
0
.0
0
3
4
5
)

1
1
(3
)

0
.2
6
6
*

0
.7
9
5

0
.5
8
8

FE
2
1

3
.7
9
3

0
.7
9
5

(6
0
.0
5
1
)

0
.0
0
8
3
5

(6
0
.0
0
2
7
4
)

6
(1
)

1
3

7
.3
6
3

0
.8
2
2

(6
0
.0
5
9
)

0
.0
2
2
5
8

(6
0
.0
0
2
5
3
)

9
(2
)

0
.2
5
9
*

0
.8
2
2

0
.6
1
5

T
EN

2
4

0
.0
0
0

0
.0
0
0

(6
0
.0
0
0
)

0
.0
0
0
0
0

(6
0
.0
0
0
0
0
)

1
2
9

5
.3
4
9

0
.7
4
3

(6
0
.0
4
0
)

0
.0
3
4
7
5

(6
0
.0
0
1
7
6
)

1
0
(1
)

2
0
.2
1
0
*

0
.7
4
4

0
.8
9
7

K
N
Y

2
3

2
.3
5
4

0
.6
6
8

(6
0
.0
5
7
)

0
.0
0
3
5
9

(6
0
.0
0
1
0
1
)

4
1
9

8
.1
4
5

0
.8
2
8

(6
0
.0
4
4
)

0
.0
3
6
0
8

(6
0
.0
0
1
4
4
)

1
2
(4
)

2
0
.0
1
8

0
.8
2
8

0
.8
4
2

P
E

2
0

1
.1
5
8

0
.1
9
5

(6
0
.1
1
5
)

0
.0
0
5
3
2

(6
0
.0
0
3
0
4
)

3
1
2

1
4
.8
3

0
.9
5
3

(6
0
.0
2
9
)

0
.0
3
8
8
9

(6
0
.0
0
2
1
2
)

1
7
(3
)

0
.0
4
0

0
.9
5
3

0
.9
1
7

N
C

2
3

3
.3
2
3

0
.6
9
2

(6
0
.0
8
5
)

0
.0
0
3
7
4

(6
0
.0
0
0
9
4
)

6
(6
)

1
8

8
.9
2
7

0
.7
8
9

(6
0
.0
6
5
)

0
.0
2
8
5
9

(6
0
.0
0
4
2
9
)

1
3
(8
)

0
.5
8
6
*

0
.7
9
2

0
.3
3
3

SC
2
5

2
.9
7
6

0
.7
1
0

(6
0
.0
6
0
)

0
.0
0
4
9
1

(6
0
.0
0
0
4
6
)

5
(2
)

1
8

7
.2
7
7

0
.8
0
7

(6
0
.0
5
0
)

0
.0
2
7
9
7

(6
0
.0
0
2
5
1
)

1
1
(1
)

0
.0
2
2

0
.8
0
7

0
.7
9
0

C
A
L

1
1

3
.0
0
0

0
.8
0
0

(6
0
.0
7
5
)

0
.0
1
6
8
4

(6
0
.0
0
2
7
0
)

4
(1
)

1
1

5
.0
0
0

0
.8
1
8

(6
0
.0
4
9
)

0
.0
4
0
2
3

(6
0
.0
0
2
4
8
)

6
2
0
.2
3
6

0
.8
1
8

1
.0
0
0

B
R
A

1
9

1
.8
1
8

0
.5
0
3

(6
0
.1
1
3
)

0
.0
1
1
0
0

(6
0
.0
0
2
9
4
)

3
1
7

6
.8
8
2

0
.7
7
5

(6
0
.0
5
2
)

0
.0
3
2
9
0

(6
0
.0
0
1
9
9
)

1
0
(2
)

2
0
.3
0
1
*

0
.7
7
5

1
.0
0
0

A
M

2
4

0
.4
5
8

0
.0
8
3

(6
0
.0
0
5
)

0
.0
0
2
9
4

(6
0
.0
0
2
6
4
)

2
2
2

3
.1
4
0

0
.5
9
6

(6
0
.0
5
8
)

0
.0
1
1
0
1

(6
0
.0
0
1
1
8
)

5
0
.2
4
2

0
.5
9
6

0
.4
5
5

W
A
K

2
5

1
.6
9
0

0
.5
2
7

(6
0
.0
8
4
)

0
.0
0
2
1
2

(6
0
.0
0
0
3
5
)

3
2
4

7
.8
6
3

0
.8
0
6

(6
0
.0
4
3
)

0
.0
3
3
3
4

(6
0
.0
0
2
2
2
)

1
4
(3
)

2
0
.0
3
5

0
.8
0
6

0
.8
3
3

O
K
I

2
4

1
.7
1
7

0
.4
2
4

(6
0
.1
1
2
)

0
.0
0
1
6
2

(6
0
.0
0
0
4
2
)

3
1
6

4
.9
7
2

0
.7
6
6

(6
0
.0
4
4
)

0
.0
3
8
9
2

(6
0
.0
0
1
7
6
)

7
2
0
.2
3
3

0
.7
6
6

0
.9
3
8

M
IS

2
5

1
.3
6
1

0
.3
4
7

(6
0
.1
0
8
)

0
.0
1
0
4
3

(6
0
.0
0
3
0
9
)

3
2
2

6
.1
7
8

0
.7
8
0

(6
0
.0
4
4
)

0
.0
3
0
1
9

(6
0
.0
0
2
0
8
)

1
0
(1
)

2
0
.2
3
0
*

0
.7
8
0

0
.9
5
5

SK
S

2
4

2
.4
3
7

0
.6
6
3

(6
0
.0
6
5
)

0
.0
0
1
7
5

(6
0
.0
0
0
3
3
)

4
(1
)

2
4

4
.5
3
6

0
.7
1
4

(6
0
.0
4
4
)

0
.0
3
7
2
5

(6
0
.0
0
1
2
8
)

8
(1
)

2
0
.4
1
4
*

0
.7
1
4

1
.0
0
0

H
K

2
4

2
.8
9
1

0
.6
9
2

(6
0
.0
6
5
)

0
.0
0
2
6
9

(6
0
.0
0
0
6
1
)

5
(1
)

1
3

9
.6
1
4

0
.8
3
4

(6
0
.0
4
4
)

0
.0
2
3
6
3

(6
0
.0
0
1
9
9
)

1
2
(5
)

2
0
.1
7
7

0
.8
5
5

1
.0
0
0

M
ED

4
0

3
.0
0
0

0
.3
1
4

(6
0
.0
9
1
)

0
.0
0
2
2
6

(6
0
.0
0
0
7
3
)

4
(1
)

3
9

5
.3
7
7

0
.5
5
4

(6
0
.0
5
8
)

0
.0
1
8
3
3

(6
0
.0
0
1
7
6
)

7
(1
)

0
.4
9
4
*

0
.5
5
4

0
.2
8
2

A
T
L

1
2
8

9
.4
1
9

0
.7
5
9

(6
0
.0
3
4
)

0
.0
1
3
7
3

(6
0
.0
0
0
9
8
)

1
7
(1
2
)

1
2
4

1
7
.6
0

0
.8
5
2

(6
0
.0
1
5
)

0
.0
3
2
6
9

(6
0
.0
0
0
8
9
)

3
4
(2
0
)

0
.1
5
5
*

0
.8
5
8

0
.7
2
6

P
A
C

1
5
7

4
.5
4
4

0
.7
6
8

(6
0
.0
1
1
)

0
.0
1
3
8
0

(6
0
.0
0
0
7
6
)

8
(3
)

1
3
2

1
3
.5
5

0
.8
0
3

(6
0
.0
1
6
)

0
.0
3
2
0
0

(6
0
.0
0
0
7
8
)

2
7
(1
0
)

2
0
.0
6
7
*

0
.8
0
9

0
.8
6
4

IN
D

4
3

3
.9
3
0

0
.7
1
7

(6
0
.0
3
8
)

0
.0
1
5
6
6

(6
0
.0
0
0
8
5
)

5
3
1

2
1
.0
0

0
.8
8
3

(6
0
.0
2
7
)

0
.0
3
6
8
3

(6
0
.0
0
1
0
3
)

2
2
(8
)

0
.0
1
3

0
.8
8
3

0
.8
7
1

T
o
ta
l

3
6
8

8
.1
2
4

0
.8
1
0

(6
0
.0
1
0
)

0
.0
1
3
4
8

(6
0
.0
0
0
5
7
)

2
2

3
1
5

1
6
.3
2

0
.8
2
0

(6
0
.0
1
2
)

0
.0
3
2
1
4

(6
0
.0
0
0
5
9
)

6
1

0
.0
9
8
*

0
.8
2
4

0
.7
4
3

N
u
m
b
e
r
o
f
in
d
iv
id
u
al
s
an

al
yz
e
d
p
e
r
p
o
p
u
la
ti
o
n
(N
).
A
lle
lic

ri
ch
n
e
ss
ta
n
d
ar
iz
e
d
ac
ro
ss

p
o
p
u
la
ti
o
n
s
(r
),
G
e
n
e
(H
d
)
an

d
n
u
cl
e
o
ti
d
ic
(p
)
d
iv
e
rs
it
y,
an

d
th
e
ir
co
rr
e
sp
o
n
d
in
g
st
an

d
ar
d
d
e
vi
at
io
n
s
in

b
ra
ck
e
ts
.N

u
m
b
e
r
o
f
al
le
le
s
p
e
r
p
o
p
u
la
ti
o
n

(N
h
),
w
it
h
p
ri
va
te

al
le
le
s
sh
o
w
n
in

b
ra
ck
e
ts
.
In
b
re
e
d
in
g
co
e
ff
ic
ie
n
t
(F
is
)
fo
r
A
N
T
.A

st
er
is
ks

re
p
re
se
n
t
si
g
n
if
ic
an

t
co
e
ff
ic
ie
n
ts

at
P
,
0
.0
5
.H

e
x
p
re
p
re
se
n
ts

th
e
e
xp

e
ct
e
d
h
e
te
ro
zy
g
o
si
ty

an
d
H
o
b
s
re
p
re
se
n
ts

th
e
o
b
se
rv
e
d
h
e
te
ro
zy
g
o
si
ty
.

d
o
i:1
0
.1
3
7
1
/j
o
u
rn
al
.p
o
n
e
.0
0
2
5
4
9
5
.t
0
0
2

Global Phylogeography of Styela plicata

PLoS ONE | www.plosone.org 5 September 2011 | Volume 6 | Issue 9 | e25495



separated by 15 mutational steps and without any intermediate

haplotype in between. McDonald-Kreitman (MK) test of neutral-

ity showed that there were no differences between proportions of

silent and replacement sites within and between these two groups

(P=0.64). Sequences from both Group 1 and 2 are found in all

basins and coexist in most populations; except for the absence of

Group 2 in the Mediterranean. Judging by their high frequency,

wide geographical distribution, and central position in the

network, H_2 may be the ancestral haplotype of Group I. No

clear result was obtained for group 2, as the most abundant

haplotype (H_5) occupied a distal position within the group.

(Fig. 2a). The BI tree reconstructed with COI haplotypes showed

two moderately supported clades exhibiting 3.27% sequence

divergence among them (Fig. 2b). These two clades matched

exactly with Group 1 and 2 described for the COI network (Fig. 2a).

Haplotype H_2 (inferred as ancestral) held a basal position within

Group 1, while no evidence for a basal haplotype or group of

haplotypes was found for Group 2.

Nuclear gene
For the ANT gene, we obtained 315 sequences of 220 bp. The

ANT fragment targeted here includes an intron in many

metazoans [63]. However, in our case, all sequences could be

translated to amino acids and final sequence length was in

accordance with what has been found for species without an intron

in this position [63]. Our resulting dataset contained 80

homozygotes, which allowed a reliable reconstruction of the

gametic phase of the heterozygotes (.95% confidence). No

evidence was detected for recombination within our sequences.

In total we obtained 61 alleles (Tables S2 and S3), 34 in the

Atlantic (20 of which were exclusive to this basin) and 27 in the

Pacific (Table 2). A deletion of 22 amino acids was found in 5

alleles (Table S2). Once more, the Mediterranean showed the

lowest number of alleles (7, of which only one was private). Mean

and total haplotype diversity (Hd) were 0.761 (60.011 SD) and

0.820 (60.012 SD), respectively. Mean nucleotide diversity was

0.0295 (60.008 SD), while total nucleotide diversity (p) was

0.0321 (60.0006 SD). Gene and nucleotide diversity did not differ

between basins, except for the Mediterranean (Table 2). The

South African populations of Knysna (KNY) and Port Elizabeth

(PE) showed the highest values for genetic diversity, followed by

most Pacific populations and some Atlantic ones (Table 2). Port

Elizabeth (PE) was also the population showing the highest allelic

richness (14.830) followed by Hong Kong (HK, 9.614), North

Carolina (NC, 8.927) and Knysna (KNY, 8.145). As found for the

mitochondrial gene, the lowest value of allelic richness corre-

sponded to Manly (AM, 3.140). Low values were also retrieved for

the Mediterranean populations of Javea (JA, 3.307) and Arenys de

Mar (AR, 3.733). Comparisons between basins indicated that the

Indian Ocean had the highest allelic richness, while the

Mediterranean had the lowest (Table 2). Eight populations had

less heterozygotes than expected, five of which (Arenys de Mar,

Javea, San Fernando, Ferrol and North Carolina) deviated

significantly from Hardy-Weinberg equilibrium (significant Fis
values). Interestingly, 9 populations had an excess of heterozygotes

(and negative Fis), and in 4 of them (Tenerife, Brasil, Misaki,

Sakushima) these inbreeding coefficients were significant. Per

basins, there was a heterozygote deficit in all populations except

for the Pacific, and this deficit was most marked for the

Mediterranean group of populations (0.282 Hobs vs. 0.554 Hexp).

Jost’s adjusted estimator showed lower values of differentiation

for the nuclear intron ANT (mean Dest = 0.324) than for the

mitochondrial COI. Dest values obtained for the ANT gene

revealed fewer significant differences in pair-wise comparisons

(45 out of 136). As before, the North Carolina population was

significantly different from all the others (Table 3). Interestingly,

the Sakushima population (on natural substratum) only differed

from the North Carolina and Hong Kong populations.

Table 3. Jost’s Dest population differentiation statistic between populations of Styela plicata for the COI (upper diagonal) and ANT

(lower diagonal) markers.

AR JA SP FE TEN KNY PE NC SC CAL BRA AM WAK OKI MIS SKS HK

0.067 0.753 0.483 0.948 0.366 0.938 1 0.973 0.521 0.951 1 0.844 0.832 0.997 0.162 0.442

0 0.76 0.452 1 0.299 0.944 1 1 0.481 1 1 0.888 0.841 1 0.132 0.439

0.036 0.082 0.114 0.381 0.219 0.504 1 0.52 0.086 0.129 0.575 0.269 0.841 0.502 0.458 0.177

0.032 0.129 0.015 0.45 0.05 0.767 1 0.241 0.184 0.246 0.835 0.311 0.804 0.793 0.185 0.032

0.49 0.49 0.346 0.486 0.351 0.942 1 0.506 0.702 0.091 1 0.135 0.842 0.952 0.666 0.303

0.281 0.289 0.116 0.258 0.058 0.923 1 0.557 0.325 0.29 0.997 0.238 0.774 0.965 0.101 20.03

0.522 0.567 0.342 0.391 0.318 0.138 1 0.969 0.312 0.656 0.003 0.941 0.981 0.015 0.93 0.925

0.978 0.99 0.992 0.945 0.897 0.832 0.715 1 1 1 1 1 1 1 1 1

0.098 0.157 0 0.042 0.213 0.086 0.231 0.978 0.771 0.333 1 0.409 0.771 0.946 0.732 0.493

0.35 0.358 0.176 0.314 0 0 0.134 0.923 0.07 0.44 0.386 0.6 0.857 0.316 0.338 0.338

0.269 0.267 0.125 0.273 0.018 0 0.274 0.97 0.074 0 0.716 0.105 0.842 0.662 0.639 0.229

0.134 0.113 0.099 0.189 0.461 0.319 0.509 1 0.09 0.297 0.284 1 1 0.027 1 0.994

0.538 0.543 0.353 0.51 0 0.06 0.3 0.966 0.212 0 0.02 0.482 0.432 0.876 0.425 0.128

0.261 0.273 0.161 0.274 0.084 0.015 0.117 0.875 0.106 0 0.025 0.321 0.142 0.798 0.503 0.637

0.479 0.499 0.315 0.457 0 0.066 0.281 0.95 0.157 0 0.025 0.427 0 0.107 0.925 0.935

0.22 0.21 0.128 0.259 0.051 0.001 0.273 0.937 0.082 0 0 0.248 0.093 0 0.071 0.101

0.525 0.636 0.585 0.388 0.826 0.754 0.789 0.94 0.604 0.759 0.758 0.718 0.822 0.774 0.777 0.761

Values in bold represent significant comparisons after FDR correction (see text).
doi:10.1371/journal.pone.0025495.t003
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The hierarchical AMOVA analyses showed that most of the

observed variability was found within populations (90.6%), and

only a small but significant 9.4% (p,0.001) of variability was

found among these populations (Table 4). When grouping

populations according to their oceanic basins, AMOVA analyses’

results were similar to those found for the mitochondrial marker.

Figure 2. Network and phylogeny for COI. a) Median-joining haplotype network for Styela plicata using COI results. Area of circles is proportional
to the number of individuals found for each haplotype. Partitions inside the circles represent the proportion of each population within each
haplotype. Small circles represent missing haplotypes. Lines between circles represent one mutational step and non-synonymous substitutions are
indicated with an asterisk; b) Phylogeny of partial COI gene sequences using Bayesian inference. The congeneric species Styela gibbsii was used as an
outgroup. Posterior probabilities are indicated when .0.5.
doi:10.1371/journal.pone.0025495.g002
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Most of the genetic diversity was due to variability within

populations (90.19%, P,0.001), and among populations within

basins (8.20%, P,0.001). No significant differences in genetic

structure were detected between basins (1.61%, P=0.127 ;

Table 4). As found for COI, the Mantel test showed no correlation

between genetic differentiation and geographical distance between

populations (r=0.000001, P=0.243). Regarding the neutrality

test, the same trend of COI was observed for ANT, with most tests

being non-significant. However, Fu’s Fs were significant for the

Atlantic Ocean and the Port Elizabeth population (Table 5).

Network analyses showed a considerable amount of loops that

were unambiguously resolved following coalescent rules (Fig. 3a).

None of these loops affected the main structures shown in the

network. However, the relationship among alleles should be

considered with caution and no clear ancestral allele could be

reliably designated. Although less divergent than with the COI

data, the ANT network also showed a distinction in two groups of

sequences separated by 4 mutational steps (Fig. 3a). None of these

four mutations corresponded to non-synonymous changes. Finally,

the 22 amino acids deletion found in 5 alleles (H_4, H_14, H_39,

H_43, H_50) was also retrieved (represented by a dot line in

Fig. 3a). McDonald-Kreitman neutrality tests could not be

performed between these groups, as there was no fixed difference

between them. BI analysis showed that one of the groups (hereafter

called Group A) occupied a basal position within the resulting tree,

while a second group (Group B) formed a monophyletic, derived

clade supported by a posterior probability of 1 (Fig. 3b). Within

group B, the five alleles with a 22 amino acid deletion also formed

a monophyletic clade (posterior probability = 1; Fig. 3b). When the

sequence fragment corresponding to the deletion was removed

from the analyses, these 5 alleles still grouped together, indicating

that their phylogenetic relationship was independent from the

indel presence. The alleles containing the deletion were found in

all studied basins, not showing any apparent geographic pattern

(Table S2, Figure 3a).

The private allele H_41 from North Carolina appeared

genetically distinct from all the others in both the network and

the BI analyses (Fig. 3a). This sample was re-extracted and

sequenced de novo, but the same resulting sequence was obtained.

The Mediterranean populations only presented alleles from Group

A of ANT, while the remaining populations presented alleles from

both groups (especially, those populations from the Pacific Ocean).

This pattern explains the lower genetic diversity found in the

Mediterranean basin compared with that of the other oceans.

Group B seems to be a highly successful derived clade that has

spread in most populations. Interestingly, in all localities in which

there was an excess of heterozygotes (negative Fis), there was also a

higher than expected proportion of individuals having one allele of

each group (A or B; 0.75 observed vs. 0.49 expected frequency).

This is especially noteworthy in the Pacific populations, where we

found twice the number of ‘‘mixed’’ genotypes than expected. The

only exception was for North Carolina, which had a significant

deficit of heterozygotes and less than expected genotypes with an

allele from each group.

Finally, DAPC analyses were performed combining results

obtained for COI and ANT. In order to avoid cluttering of

populations, a first DAPC was performed with 3 groups: the North

Carolina population (significantly different from the rest in

previous analyses), the Sakushima population (the only natural

substratum population) and the remaining populations. The PCA

Table 4. Analysis of the molecular variance (AMOVA) for the COI and ANT genetic markers.

Source of variation df Sum of squares Variance components Variation (%) P value

Fixation

indices

a) COI

AMOVA without groups

Among populations without groups 16 63.536 0.17255 Va 41.59* 0.000 FST: 0.41589

Within populations 351 85.064 0.24235 Vb 58.41

Total 367 148.601 0.4149

AMOVA between basins

Among groups 3 19.279 0.03690 Va 8.67 0.055 FCT : 0.08673

Among populations within groups 13 44.257 0.14618 Vb 34.36* 0.000 FSC : 0.37624

Within populations 351 85.064 0.24235 Vc 56.97* 0.000 FST : 0.43034

Total 367 148.601 0.42543

b) ANT

AMOVA without groups

Among populations without groups 16 28.988 0.03892 Va 9.40* 0.000 FST: 0.09397

Within populations 613 230.022 0.37524 Vb 90.6

Total 629 259.01 0.41416

AMOVA between basins

Among groups 3 7.806 0.00670 Va 1.61 0.127 FCT : 0.01610

Among populations within groups 13 21.182 0.03412 Vb 8.20* 0.000 FSC : 0.08336

Within populations 613 230.022 0.37524 Vc 90.19* 0.000 FST : 0.09812

Total 629 259.01 0.41606

Analyses are presented for the total of populations without grouping, and pooling populations from the same oceanic basin together (Mediterranean, Atlantic, Pacific
and Indian). Va, Vb and Vc are the associated covariance components. FSC, FST and FCT are the F-statistics.
doi:10.1371/journal.pone.0025495.t004
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components retained explained 98.6% of the total variance

observed. The scatterplot of the first two components of the DA

(Fig. 4) showed that the first axis separates North Carolina from

the rest, which form a tight cluster, while the second axis slightly

sets apart the Sakushima population, although with a clear overlap

of the inertia ellipses. We then repeated the analysis removing the

North Carolina population and considering all populations as

separate groups. 99.2% of the total variance was explained by the

retained components of the PCA. The populations appeared

mixed in the space of the first two axes of the discriminant analysis

(Fig. 4), although the first axis separated slightly Misaki, Port

Elizabeth and Manly on one extreme, and the two Mediterranean

populations at the other end. The rest of the populations clustered

tightly together, with the natural substratum population (Sakush-

ima) appearing in a central position.

Discussion

Several remarkable features emerged from the recovered

distribution of the genetic variability. First, there is a divergence

in lineages for both markers, each featuring two groups of

sequences. Second, the genetic pool is well mixed at the basin

level, with little or no phylogeographic signal remaining. Third,

many population pairs are genetically different, regardless of the

geographic distance among them. Finally, there seems to be an

effect of selection on the genetic makeup of this species, as

illustrated by the highly divergent population of North Carolina

and the intra-individual distribution of both groups of ANT

sequences.

The most parsimonious explanation for the presence of two

groups of sequences for COI (group 1 and 2) and ANT (group A

and B) is that they have arisen concomitantly in a past

fragmentation event within the native area of the species. We

cannot, however, exclude an independent origin of these genetic

splits. At present, the distribution of the groups obtained with the

two markers is totally unrelated. Sequences of the Group A for

ANT were found in ascidians having mitochondrial sequences of

both lineages (Groups 1 and 2), and in direct proportion to their

relative abundances. The same trend was observed for individuals

having sequences of Group B for ANT (Table S3). If the

differentiation of ANT and COI in different lineages occurred

simultaneously in allopatric regions, the link between these

markers was lost long ago. Mitochondrial genes are inherited

maternally, while nuclear genes can be shuffled repeatedly through

sexual reproduction. Thus, the lack of congruence found in the

distribution of both markers could be due to frequent contact

between individuals from different lineages coupled with genetic

drift. A greater sensitivity of mitochondrial genes to genetic drift

Table 5. Demographic parameters of S. plicata populations for each genetic marker (COI and ANT), calculated for each population
and samples grouped by basin and by group (1 and 2 for COI, and A and B for ANT).

COI ANT

D Fs R2 r D Fs R2 r

AR 21.16439 20.879 0.218 0.650 1.29064 2.347 0.169 0.243

JA 0.74648 3.941 0.173 0.462 0.25898 2.715 0.126 0.345

SP 2.15635 6.162 0.229 0.103 0.59380 0.232 0.143 0.077

FE 20.83585 3.033 0.104 0.112 1.04251 20.535 0.170 0.032

TEN 0.00000 0.000 0.000 0.000 2.32335 5.011 0.187 0.190

KNY 20.27356 2.391 0.123 0.149 2.15146 1.718 0.196 0.068

PE 21.29958 5.371 0.090 0.658 1.83362 24.076* 0.197 0.021

NC 20.14467 0.419 0.124 0.127 20.15150 20.920 0.112 0.044

SC 0.52180 2.497 0.153 0.348 0.63874 20.198 0.141 0.140

CAL 1.81929 6.420 0.239 0.155 2.46514 5.670 0.229 0.119

BRA 0.55113 9.699 0.164 0.483 0.94915 0.814 0.152 0.101

AM 22.53406** 5.308 0.200 0.854 0.83652 2.602 0.149 0.366

WAK 1.64264 2.196 0.220 0.384 2.48268 0.904 0.201 0.066

OKI 0.64968 1.430 0.169 0.360 3.02590 6.494 0.235 0.215

MIS 0.82576 10.821 0.163 0.578 1.06354 1.146 0.152 0.150

SKS 0.05885 0.400 0.136 0.043* 3.17433 7.094 0.226 0.244

HK 0.13328 0.478 0.137 0.069 0.50405 20.338 0.141 0.046

MED 20.71549 1.657 0.087 0.482 1.01299 2.380 0.139 0.286

ATL 1.10126 3.816 0.125 0.109 1.02151 27.404* 0.114 0.046

PAC 2.66373 15.635 0.172 0.103 1.72095 22.885 0.136 0.081

IND 2.31343 20.246 0.108 0.033 2.44640 21.956 0.190 0.029

Group 1(A) 20.84647 22.032 0.054 0.024* 20.04229 211.460** 0.083 0.066

Group 2(B) 20.53974 20.488 0.075 0.360 20.29695 26.598 0.067 0.140

Asterisks represent significant results:
*P,0.05;
**P,0.002.
Tajima’s D, Fu’s Fs statistic, Ramos-Onsins & Rozas’s statistic (R2), and the raggedness index (r).
doi:10.1371/journal.pone.0025495.t005
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has been previously reported [88], and may explain the differences

observed between mitochondrial and nuclear markers [e.g., 88–

90]. In addition, no geographic pattern was observed in the

distributions of the lineages observed for both markers. Even in the

putative native area of S. plicata (NW Pacific), we found sequences

of the two groups of COI and ANT in the same populations and,

for ANT, even in the same individual.

Barros et al. [54] found nine COI haplotypes for Styela plicata, 8

belonging to our Group 1 and one to our Group 2. Based on this

divergent haplotype, these authors suggested that there could be a

cryptic species within what is known as Styela plicata. Our results

did not lend support to this hypothesis, as the nuclear marker

showed a distribution unrelated to these two groups of

mitochondrial sequences. Furthermore, when comparing our

mitochondrial sequences with other species of the genus, the

resulting genetic divergence was much higher than that found

between our two COI groups (3.27% between our groups, 21.12%

between S. plicata and S. gibbsii; 22.7% with S. clava, and 20% with

S. montereyensis). The divergent sequences of S. plicata reported from

Australia (Lake Conjola) by Pérez-Portela et al. [107] (GenBank

accession numbers FJ528633-34 for COI and FH897323 for 18S

rRNA) were likely the result of sample mislabelling (Pérez-Portela,

pers. comm.). We sequenced 4 further specimens from the same

locality and verified that they all had typical S. plicata COI

sequences (i.e., Haplotype 5).

Although the native range of Styela plicata is not known with

certainty, the prevailing hypothesis is that it comes from the NW

Pacific area [36,54]. S. plicata would have then dispersed to other

tropical and warm-water regions by ship fouling, likely since the

early transoceanic navigation times [36]. Our results indicated that

at present the genetic pool of S. plicata is well mixed among basins,

with most genetic variability found within populations. Moreover,

high genetic variability and the putatively most ancient alleles have

not only been found in the NW Pacific populations (e.g.

Sakushima, Hong Kong) but also in other oceanic basins (e.g.

North East Pacific, Atlantic and Indian Ocean; see also David et

al. [91]). Thus, we could not find any clear genetic signal in favour

(or against) the hypothesis on the NW Pacific origin of this species.

Figure 3. Network and phylogeny for ANT. a) Median-joining allele network for Styela plicata using ANT results. Area of circles is proportional to
the number of individuals found for each allele. Partitions inside the circles represent the proportion of each population within each allele. Small
circles represent missing alleles. Lines between circles represent one mutational step and non-synonymous substitutions are indicated with an
asterisk; b) Phylogeny of partial ANT gene sequences using Bayesian inference. The congeneric species Styela gibbsii was used as an outgroup.
Posterior probabilities are indicated when .0.5. The dot line mark the clade corresponding to sequences with a 22 amino acid deletion.
doi:10.1371/journal.pone.0025495.g003
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The only potential trend observed in our data was for the

Mediterranean basin. The Mediterranean populations presented

the lowest values for all diversity indexes, and only displayed group

1 for COI and group B for ANT. However, these findings should be

interpreted with caution, as only two Mediterranean localities

were included in this study. Lack of resolution for assessing native

areas was also found in studies with other ascidian species that are

believed to be ancient colonizers (e.g. Ciona intestinalis [38]). On the

other hand, species that have spread more recently still have a

genetic signature of their introduction history (e.g. Botryllus schlossei

[41,42], Microcosmus squamiger [92], Styela clava [45]).

Long-distance dispersal of introduced marine species across

oceans probably occurs via major shipping routes while further

spread at a local scale may take place through local traffic and

recreational boating [13,34,42,91,93]. Our results indicate that

many populations of S. plicata are well differentiated from others in

terms of allele frequencies. This observation is in agreement with

results obtained for other ascidians inhabiting harbours and

marinas [37,41,44, but see 38 for an exception]. As expected when

anthropogenic transport is the vector of dispersal, genetic

differentiation among S. plicata populations was unrelated to

geographic distance. Some distant populations (e.g. Hong Kong

and Ferrol) were genetically similar, while closer populations such

as Knysna and Port Elizabeth (South Africa) were significantly

divergent. The stochasticity of main transport events through

international ship traffic could determine the observed patterns

among basins. However, our sampling design was inappropriate to

assess the degree of connectivity among closely located populations

(i.e. post-border dispersion, [34]). Thus, it still remains necessary to

evaluate the role of small-scale processes in colonization dynamics,

and to assess the importance of recreational boating in spreading

introduced species.

Low genetic diversity caused by a founder effect or a bottleneck

is not always the benchmark for introductory events [28,94,95]. In

fact, recurrent introductions typically lead to highly diverse

populations, especially if they receive migrants from native

populations that are genetically structured [26,30,44,96,97]. Here,

we found that genetic diversity indexes varied according to the

studied population, with overall values ranging from moderate to

high for both markers. Some exceptions were these populations

where only one or two mitochondrial haplotypes were present (i.e.

Arenys de Mar, Tenerife, Manly).

Besides recurrent introductions through ship transport,

population differentiation could also be due to selection. Here,

we found uneven abundances for each major group obtained for

COI (Group 1 and 2) and ANT (Group A and B). For COI,

haplotypes from Group 1 were considerably more frequent and

diverse than haplotypes from Group 2. It is possible that these

groups stand for differential adaptive capabilities of the

individuals to stressful environments. This adaptive capability

does not need to be directly linked to our studied gene (non-

significant McDonald-Kreitman test), but to other mitochon-

drial genes. Differential adaptation to environmental factors

(e.g., temperature, salinity) of mitochondrial sequences within

one species is not a rare phenomenon, and has been described

in many species [98–104].

For the ANT gene, selection may be favouring heterozygotes

that have an allele of each group (A and B). In fact, the excess of

heterozygotes found in most populations is due to the number of

individuals with an allele each of A and B. Accordingly, the

number of individuals with both alleles from the same group (A

or B) was lower than expected. Homozygotes for the basal

Group A occurred ca. 5 times less than expected based on allele

frequencies. Thus, it is possible that populations that originally

Figure 4. Discriminant analysis of principal components (DAPC). Left: plot of the first two principal components obtained in the DAPC
analysis considering three groups: the North Carolina population (NC), the Sakushima Island population (SKS) and other populations (OP). Right: plot
of the DAPC results analyzing all populations as individual groups, except North Carolina, which was not analyzed (see text). Population codes as in
Table 1. Labels are placed at the centre of dispersion for each group, further delineated by inertia ellipses. Dots represent individuals.
doi:10.1371/journal.pone.0025495.g004
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had only one group of ANT sequences were seeded with arriving

individuals featuring the other group. The mingling of both

groups may have favoured the heterozygotes with an allele from

each group, and if this combination had an adaptive value,

enhanced the fitness of those individuals. As for the COI

lineages, this new adaptive capability to the environment is not

necessarily linked to the ANT gene itself. Admixture between

lineages can foster the emergence of novel genetic combinations

with different physiological attributes and invasive characteris-

tics [30]. In contrast to our results, solitary ascidians inhabiting

artificial structures usually have a general deficit of heterozy-

gotes [38,44,105].

Early invasions should not be considered ‘‘naturalized,’’ rather,

their impacts, potential for further spread, and degree of

integration in local processes and interactions should be assessed.

A throughout knowledge of introduced species is required to

understand and interpret the present-day structure, function, and

conservation of marine communities [7,35,36]. Our genetic study

of an ancient wanderer has uncovered signatures of deep

divergences and recent mixing, with a phylogeographic signal

mostly blurred. Current evolutionary processes may include

adaptive changes and low and stochastic connectivity among

established populations. More studies on S. plicata’s biological

cycle, interactions with other marine species, and local-scale

genetic structure are necessary to understand the biology, ecology

and post-border dispersal of this species and prevent ecosystem

alterations.
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Abstract Species distribution, abundance, and long-term
survival are determined by biotic and abiotic regimes.
However, little is known about the importance of these
factors in species range expansion. Styela plicata is a
solitary ascidian introduced all over the world by ship
fouling, including salt marsh habitats, where introduced
populations must tolerate high seasonal variations in
temperature and salinity. To determine the seasonal
stress levels in a salt marsh population of S. plicata,
we quantified heat shock protein (hsp70) gene expression
using quantitative real-time PCR throughout a 2-year cycle.
Results showed that hsp70 expression varied over time, with
higher stress levels recorded in summer and winter. Periodic
conditions of high temperatures, particularly when coupled
with low salinities, increased hsp70 gene expression. Mortal-
ity events observed every year around June were con-
current with sharp increases in temperature (>6°C),
indicating that drastic changes in abiotic factors may
overwhelm the observed stress response mechanisms.
Determining the ability of introduced species to cope
with stress, and the thresholds above which these mechanisms
fail, is fundamental to predict the potential expansion range of
introduced species and design efficient containment plans.

Keywords Hsp70 . Salinity . Temperature . Introduced
species . Ascidian . Salt marsh

Introduction

Stress response mechanisms allow marine organisms to
cope with unexpected or sharp fluctuations in one or several
biotic or abiotic factors (Aruda et al. 2011; Clark and Peck
2009; Cottin et al. 2010; Huang et al. 2011; Lockwood et al.
2010). Depending on the extent and duration of the stress,
organisms can recover, survive for a time with an impaired
fitness, or die. The persistence of stress factors can
shape an organism’s distribution, excluding it from some
locations (e.g., Osovitz and Hofmann 2005). Physical
parameters such as temperature and salinity can vary
over time, especially in particular habitats such as marginal
marine and anthropogenic environments (estuaries, bays, and
harbors). At a broader scale, climate change will yield a global
increase of seawater temperature, and current studies suggest
that most marine organisms do not posses the necessary
mechanisms to deal with this stress and will be replaced by
species better adapted to warm environments (e.g., Helmuth et
al. 2005; Somero 2010). Biological factors such as space
competition, epibiosis, disease, and predation may also stress
an organism. The impact of these biological factors on a given
population is often limited, as only a few individuals within a
community are generally involved in a particular interaction.
On the other hand, the arrival and establishment of a
non-indigenous species may alter the biological interactions
of a whole community, yielding a significant disruption of
well-established networks (e.g., Harris and Tyrrell 2001;
Strayer et al. 2006).

From the point of view of an introduced species, successful
colonization of a new environment also depends on the
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occurrence of adequate physical and biological conditions,
both for adults and larvae (Stachowicz et al. 2002; Verween
et al. 2007; Blackburn and Duncan 2001; Fowler et al. 2011;
Zerebecki and Sorte 2011). Thus, widely introduced species
should be opportunistic and able to colonize new habitat
rapidly, often exploiting temporal windows of tolerable
conditions (McKinney 2002). Among fluctuating environ-
ments, salt marsh communities provide an ideal setting to
assess the natural ability of a species to cope with strong
changes in salinity and seawater temperature (Weinstein
1996; Gascon et al. 2005). Only those organisms adapted to
wide environmental fluctuations can survive in the long term,
successfully colonizing these habitats [e.g., the polychaete
Nereis diversicolor (Paramor and Hughes 2004; Aberson et
al. 2011) and the limpetCrepidula fornicata (Blanchard 1997;
Bishop 2005)]. In order to cope with sharp abiotic
changes that can yield suboptimal and stressful conditions,
successfully introduced species should be equipped with
efficient physiological mechanisms to respond to stress
(Thomsen and McGlathery 2007; Piola and Johnston 2008;
Dafforn et al. 2009).

Heat shock protein response is the first mechanism
deployed by eukaryotes to deal with an accumulation of
non-native proteins in stressed cells through increased
expression of heat shock proteins (hsps; Voellmy and
Boellmann 2007). Hsps are involved in proper folding
or unfolding of proteins and participate in the removal
of non-native or aggregated proteins from the cell
(Gething and Sambrook 1992; Parcell and Lindquist
1993; Feder and Hofmann 1999). To date, it is unclear
whether changes in hsp expression can be directly correlated
with protein abundance (Vogel et al. 2010), although recent
studies suggested that for most common heat shock proteins,
an immediate induction of expression is followed by a
subsequent increase of the corresponding protein abundances
(Maier et al. 2011). Thus, increased transcription of
stress-related genes can be considered an early indicator
of stress, which is of utmost importance when dealing
with invasive species.

The development of new genetic tools such as gene
expression quantification has allowed for the detection of
minute changes in the stress response of marine organisms
and provided insight into their tolerance thresholds and
role in resilience (Hofmann and Place 2007). To date,
most of the studies ascertaining stress levels through
quantification of gene expression in marine organisms
have targeted the heat shock protein 70 (hsp70) and have
focused on thermal resilience (e.g., Osovitz and Hofmann
2005; López-Legentil et al. 2008; Henkel and Hofmann
2008; Feidantsis et al. 2009; Rodriguez-Lanetty et al.
2009).

Ascidians, or sea squirts, are conspicuous components of
epibenthic marine communities all over the globe (e.g.,

Glasby 2001; Voultsiadou et al. 2007) and are among the
most important marine invaders worldwide (Lambert 2002,
2007). Most of these species are known to rely on anthro-
pogenic transport for long-distance dispersal and new
habitat colonization (e.g., López-Legentil et al. 2006;
Rius et al. 2008; Barros et al. 2009; Pineda et al.
2011). Little is known about stress tolerance in ascidians
and the genes involved in stress response and regulation. In
fact, stress-related genes have only been described to a
significant extent for one species, the phlebobranch ascidian
Ciona intestinalis, for which the complete genome has been
sequenced (Dehal et al. 2002, Fujikawa et al. 2010).

Styela plicata (Lesueur, 1823) is a solitary ascidian
commonly found inhabiting harbors of warm and temperate
oceans, usually at high densities. In spite of its broad geo-
graphical distribution, the native range of this species is not
yet elucidated (Lambert 2001; Pineda et al. 2011). The intro-
duction success of S. plicata to new regions has been attrib-
uted to its high tolerance of polluted waters (Naranjo et al.
1996) and changes in temperature and salinity (Sims 1984;
Thiyagarajan and Qian 2003). A prompt response to stressors
during both larval and adult stages are critical for the long-
term establishment of ascidians in a new habitat (e.g., Dybern
1967; Vázquez and Young 1996, 2000).

In the USA, the Atlantic Intracoastal Waterway
extends along most of the Eastern Seaboard, from Nor-
folk, VI to Miami, FL. The waterway was built to
provide a navigation channel for trade and transport
and is periodically dredged to allow passage of deep-
draught ships. Along its length, natural areas (rivers,
bays, and sounds) alternate with artificial stretches and
numerous inlets that communicate the waterway with the
Atlantic Ocean. In the Wilmington stretch (North Carolina),
the waterway is surrounded by Spartina alterniflora salt
marsh habitat and separated from the Atlantic by the
Masonboro Island (Mallin et al. 2000). The Masonboro
Sound is characterized by strong salinity and temperature
oscillations (Sutherland 1974), and fast terrestrial develop-
ment, which has exposed the benthic communities living in
the Sound to increased sediment runoff, nutrient, and organic
inputs (Mallin et al. 1999).

The goal of this study was to advance our understand-
ing of the factors shaping the distribution of the intro-
duced ascidian S. plicata by monitoring stress responses
in a salt marsh population exposed to wide temperature
and salinity fluctuations. To achieve this goal, we mea-
sured temperature and salinity changes over a 2-year
period and quantified hsp70 gene expression using quan-
titative real-time PCR (QRT-PCR). We hypothesized that
S. plicata will feature a high plasticity in the production
of stress proteins and will respond to sharp fluctuations
in temperature and salinity by increased transcription of
these proteins.
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Materials and methods

Hsp70 gene characterization and amplification

The first objective of this study was to localize, isolate, and
sequence the hsp70 gene for the ascidian Styela plicata. To
achieve this goal, two individuals of S. plicata from each
of the following Spanish populations: Blanes (41°40′29″ N,
2°47′56″ E), Vilanova i la Geltrú (41°12′53″ N, 1°44′10″ E),
San Fernando (36°28′51″ N, 6°10′52″ W), and Wilmington,
NC in the USA (34°8′24″ N, 77°51′44″ W), were collected in
2008 and kept in absolute ethanol until processed. Samples
were collected from different countries to increase our proba-
bility of finding different alleles and locating conserved regions
in S. plicata’s hsp70 gene. DNA extractions were obtained
using the Puregene and the QIAamp DNA Mini Kit kits
(Qiagen). For amplification of the target gene (hsp70), a nested
PCRwas performed using the primers described in Borchiellini
et al. (1998) for sponges in the first PCR, and after obtaining
some preliminary sequences, the newly designed primer set
SPNC-INT A: 5′-TCC GGA AGA AAT CAG CTC AAT
GGT-3′ and SPNC-INT B: 5′-ATG CAA CAG CTT CGT
CTGGATTGA-3′ for the second. For the first PCR, conditions
were as follows: A single soak at 95°C for 5 min, 35 amplifi-
cation cycles (denaturation at 95°C for 1min; annealing at 45°C
for 1 min; and extension at 68°C for 3 min), and a final
extension at 72°C for 10 min. Conditions for the second PCR
consisted of a single soak at 95°C for 5 min, 35 amplification
cycles (denaturation at 95°C for 1 min; annealing at 50°C for
1 min; and extension at 68°C for 2min), and a final extension at
72°C for 10 min. Amplification for the San Fernando and
Wilmington samples was carried out in a Peltier PTC-200,
and for the Blanes and Vilanova i la Geltrú samples, in an
Eppendorf Mastercycler machine. To obtain purified amplifi-
cation products, amplification bands were cut from a low
melting point agarose gel (1%) following the PerfectPrep Gel
Cleanup kit procedure (Eppendorf). The purified DNA was
cloned in Escherichia coli using the TOPO® TA Cloning® Kit
and One Shot® TOP10 competent cells, according to
manufacturer’s instructions (Invitrogen). Sixteen positive
colonies from each population were sequenced using the
BigDye TM terminator v. 3.1 and the plasmid primers
T7 and M13R. Sequences were obtained on an ABI Prism
3100 automated sequencer located at the Center for Marine
Science (UNCWilmington) or at the Scientific and Technical
Services of the University of Barcelona (Genomics Unit).

Hsp70 phylogeny

The phylogenetic relationships of the 22 hsp70 gene sequences
obtained in this study were determined by comparison with
previously reported hsp70 family sequences in GenBank
derived from marine invertebrates (n020; representing

15 species from 4 phyla) and two outgroup sequences from
fungi. Only four sequences from ascidians were found, two
for the phlebobranchC. intestinalis (Fujikawa et al. 2010) and
two for the phlebobranch Ecteinascidia turbinata (López-
Legentil and Turon 2007). Nucleotide sequences presented
numerous deletions and mutations and could not be
unambiguously aligned using standard alignment algorithms.
Thus, we translated all nucleotide sequences to amino acid
sequences and aligned them using the ClustalWMultiple Align-
ment tool in Bioedit® v.7.0.5.3 (Hall 1999). This final alignment
was used to build a consensus neighbor-joining tree using
MEGA v.5.0 (Tamura et al. 2011). Confidence in the nodes
was assessed by 10,000 bootstrap replicates (Felsenstein 1985).

Hsp70 temporal variation samples and environmental data

Six to seven adults of S. plicata were collected monthly
from April 2007 to July 2009 (28 months) from the Center
for Marine Science docks. The docks are located in a
salt marsh area within the Intracoastal Waterway (UNC
Wilmington; 34°8′24″ N, 77°51′44″ W). Seawater tempera-
ture and salinity were measured with a digital thermometer
and a refractometer, respectively. Samples were handpicked,
immediately placed in a bucket with ambient seawater, and
transported to the lab (less than 100 m away). Once in the lab,
ascidians were carefully dissected to avoid puncturing
their stomach and digestive tract, and branchial tissue
was immediately frozen and stored at −80°C.

RNA extraction and cDNA synthesis

From each individual, 100 mg of tissue from the branchial
sac was carefully sampled and homogenized in TRIzol®
reagent (Invitrogen). The Micro-to-Midi RNA purification
kit (Invitrogen) was subsequently used to purify RNA,
according to manufacturer’s instructions. RNA was re-
suspended in 100 μL nuclease-free water. In order to
eliminate any remaining DNA from the RNA extractions, all
samples were DNAse-treated using DNAse Amplification
Grade I (Invitrogen). Complementary DNA (cDNA) was
synthesized from 2 μg of total RNA using the SuperScript
Reverse Transcriptase II kit (Invitrogen) following manufac-
turer’s instructions. Reactions to create cDNAwere carried out
with the specific primer for hsp70 SPNC-INT B described
above and a newly designed primer for 18S rRNA gene 5′-
AAG ACT TTG GTT TCC CGG AAG CTG-3′, based on 14
sequences of Styela spp. available in GenBank (FM897318 to
FM897325, L12442 to L12444, AH001758, AY903923, and
M97577). To our knowledge, no previous study aiming to
quantify gene expression in ascidians exists, and there-
fore, few sequences for potential reference genes are
available. On the other hand, previous studies have demon-
strated that 18S rRNA transcript abundance is stable under
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differing conditions (Marino et al. 2003; Kim et al. 2003; Li et
al. 2011), and this gene is commonly used in ascidians to
perform phylogenetic analysis (e.g., Zeng et al. 2006;
Pérez-Portela et al. 2009). Thus, based on current information
and available data, we decided to use a fragment of the 18S
rRNA gene as an internal reference gene for this study.

QRT-PCR primer design

The QRT-PCR primer set 5′-GYG GAA CAT TGG AAC
CAG-3′ (forward) and 5′-CAG CTT CGT CTG GAT TGA
TTG-3′ (reverse) was designed against a 135-base pair re-
gion of the hsp70 gene. The primers 5′-GGA AGA CGA
ACTACT GCG AAA GCA-3′ (forward) and 5′-AAG ACT
TTG GTT TCC CGG AAG CTG-3′ (reverse) were designed
against a 130-base pair region of the 18S RNA gene of S.
plicata. All primers for QRT-PCR were designed using the
Primer Express software (Applied Biosystems).

QRT-PCR of hsp70 transcripts

To quantify mRNA abundance of the hsp70 gene, we used a
7700 Applied Biosystems quantitative real-time PCR and
the standard curve method. Standards for the 18S rRNA
gene (reference gene) and the hsp70 gene (target gene) were
obtained by cloning (TOPO TA Cloning® Kit, Invitrogen).
Positive colonies were analyzed by PCR using specific
primers targeting the plasmid. Colonies containing the
correct insert were grown overnight in an LB liquid media
containing kanamycin. Plasmid extraction was performed
using the PerfectPrep plasmid mini kit (Eppendorf) and
sequenced to verify again that the correct fragment of
18S rRNA or hsp70 gene was present. QRT-PCR reactions
were performed with 2 μL of hsp70 cDNA or 1 μL of 18S
cDNA (previously diluted to 1:100 v/v), in 10 μL SYBR
GreenER SuperMix (Invitrogen) and nuclease-free water to
a final volume of 20 μL. The PCR conditions were as follows:
a single soak at 50°C for 2 min and 95°C for 10 min and was
followed by 40 amplification cycles (95°C for 15 s, 58°C for
15 s, and 68°C for 45 s); finally, the dissociation step consisted
on an extra cycle of 95°C for 15 s, 60°C for 20 s, and 95°C for
15 s. Each 96-well plate contained samples in triplicates, as
well as 7-fold serial dilution of the corresponding standard and
negative controls in duplicates, for both the target and refer-
ence genes. Melt curve analysis was performed following
each PCR to confirm that a single product was amplified.
Relative abundances were calculated for each triplicate
according to a reference standard curve. These triplicate
QRT-PCR values were averaged to obtain a single value per
sample and gene (target and reference). To obtain the ratio of
the target gene corrected for the reference gene, we divided the
averaged value of the target gene by the one of the reference

gene. This ratio value was used to obtain monthly averages
and for statistical inference (see below).

Data analysis

A non-parametric Kruskal–Wallis one-way analysis of
variance was performed to assess whether there were
significant differences in hsp70 gene expression among
months. Post hoc comparisons were made using the
Dunn’s method. Likewise, a two-way ANOVAwas performed
to test for significant effects and potential interaction of
temperature and salinity on hsp70 gene expression,
according to preestablished groups for temperature (<20°C,
20–25°C, and >25°C) and salinity (<28‰, 28–32‰,
and >32‰). Data were rank-transformed (Conover and
Iman 1981) prior to this analysis to meet the assump-
tions of normality and homoscedasticity. In the presence
of a significant interaction (see “Results” section), com-
parisons using the Student–Newman–Keuls (SNK) test
were made for levels of one factor at each level of the
other factor using the common error mean square (Quinn and
Keough 2002).

In addition, hsp70 gene expression over time was related
to temperature and salinity variations using monthly means
and cross-correlation analyses (using the Pearson coeffi-
cient). In these analyses, the values of one variable were
correlated with the values of the other at different time
lags (months). All analyses were performed using the
software SYSTAT v. 12 (©SYSTAT Software, Inc. 2007) and
SigmaStat v. 3.11 (©SYSTAT Software, Inc. 2004).

Results

A total of 50 sequences of 761 base pairs were obtained for
the hsp70 gene of S. plicata (GenBank accession nos.
JN593023 to JN593072). Further analyses revealed 30
unique sequences with an overall nucleotide diversity of
0.07167±0.00213. Translation of these sequences yielded
22 unique amino acid sequences and a total amino acid
variability of 0.035 substitutions per site.

The amino acid sequences obtained here for S. plicata
were distributed in two clades (Fig. 1), with a between
groups mean distance of 0.057 substitutions per site. Both
clades were further grouped with one hsp70 sequence
described for the ascidian Ciona intestinalis and were part of
the largest clade retrieved in the analysis (Fig. 1). This large
clade also included sequences from Cnidaria and Porifera,
which formed two moderately supported clades (bootstrap
values >60), and the Arthropoda, which appeared as a poly-
phyletic group (Fig. 1). Other ascidian sequences for C. intes-
tinalis and Ecteinascidia turbinata formed a well-supported
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clade (bootstrap support099), but its position within the tree
could not be resolved.

The temperature showed a clear seasonal trend, with peaks
above 30°C in summer and reaching down to less than 9°C in
winter 2008, while in winter 2009, the values were ca. 5°C
higher (Fig. 2). The salinity values ranged between 26‰ and
38.5‰ and showed a less clear trend, with generally higher
values in autumn–winter and lower values in spring–summer.
However, abrupt fluctuations from 1 month to the next were
also observed (e.g., December 2008; Fig. 2).

There were wide fluctuations in hsp70 ratio values during
the study period (Fig. 2). These values ranged between 0.00011

(±SE 0.00042) in June 2008 and 0.00178 (±SE 0.00069) in
August 2007, with an overall mean of 0.00048 (±SE 0.00008).
Inter-individual variability was also observed within months
(as revealed by wide error bars in Fig. 2). The monthly coeffi-
cient of variation (ratio between standard deviation and mean)
of hsp70 values was of 0.71. In contrast, the intra-individual
replicates had a coefficient of variation of 0.15.

Overall, hsp70 expression varied widely over time, with
higher stress levels recorded in summer and winter. The
ANOVA (Kruskal–Wallis) showed significant differences
between months (H083.42, df026, P<0.001). Hsp70 tran-
script levels were significantly higher in August 2007 and

Fig. 1 Phylogeny of partial
hsp70 amino acid sequences
from marine organisms
highlighting the phylogenetic
position of the 22 unique
sequences obtained in this study
for the ascidian Styela plicata
(bold letter). Two fungi
sequences were used as
outgroup taxa. Labels on
terminal nodes of reference
sequences indicate the species,
gene, and GenBank accession
numbers. Tree topology was
obtained from neighbor-joining
analysis and bootstrap values
above 50% confidence level
are shown above the nodes.
Scale bar represents 0.02
substitutions per site

Fig. 2 Hsp70 gene expression
from April 2007 to July 2009
(black diamonds and
continuous line). Temperature
and salinity values are
superimposed (squares and
short dashes for temperature;
triangles and long dashes for
salinity). Vertical bars denote
standard errors
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June–July 2009 than during the other months (Dunn
test, P<0.05). The peak recorded in August 2007 corresponded
to a sharp increase in temperature, while the increase in hsp70
gene expression observed in June–July 2009 corresponded to
the conjunction of an increase in seawater temperature and a
decrease of salinity values. Another increase in hsp70 transcript
levels (albeit not significant due to large variance) was
observed in December 2008, concomitant with a sharp
drop in salinity values.

Cross-correlation analyses between hsp70 gene expression
and temperature or salinity (Fig. 3) showed that the strongest
correlation occurred at time lags of 0 (i.e., within readings
from the same month), being positive in the case of tempera-
ture and negative in the case of salinity. A correlation at time
lag 0 indicates that the effect of these variables, if any, is
immediate and is not due to values in the preceding time
periods. It should be noted, however, that the correlation
was significant only for hsp70 and temperature at time lag 0
(Fig. 3a).

Examining hsp70 expression levels according to different
temperature and salinity groupings revealed that high temper-
atures appeared to exacerbate the effects of salinity, especially
in the low-salinity group (Fig. 4). Accordingly, a two-way
ANOVA revealed a significant interaction between temperature
and salinity (Table 1). Comparisons of salinity effects at each

temperature level (SNK tests) revealed that at seawater
temperatures lower than 25°C, there was no clear effect
of salinity on hsp70 expression levels (Fig. 4, SNK tests
all non-significant except for the comparison between
low and intermediate salinities at <20°C). However,
when seawater temperature reached values over 25°C,
hsp70 gene expression increased with decreasing salinity
values (Fig. 4), with hsp70 transcript levels significantly
higher at <28‰ than at higher salinities (SNK test, P0
0.019). Likewise, no significant effect of temperature
was found at intermediate or higher salinities (SNK tests, all
comparisons P>0.05). At low salinities (<28‰), hsp70 tran-
script levels were significantly higher at temperatures >25°C
than for the other temperature groups (SNK test, P<0.001).

Discussion

Phylogenetic analysis showed a wide diversity in the hsp70-
like proteins of marine invertebrates. Even the few ascidian
sequences available in GenBank and included in this study

Fig. 3 Cross-correlation analyses between hsp70 gene expression and
a temperature and b salinity. Curved lines bound the 95% confidence
interval of the correlation coefficient in case of no association. Time
lag is in months. Correlation at time lag 0 is the usual Pearson
correlation

Fig. 4 Hsp70 gene expression over the 28 studied months grouped by
temperature and salinity ranges. Vertical bars denote standard errors

Table 1 Two-way ANOVA results to test for significant effects and
potential interaction of temperature and salinity on hsp70 gene
expression

SS df MS F statistic P value

Temperature 22,566.707 2 11,283.354 5.831 0.004

Salinity 20,789.934 2 10,394.967 5.372 0.005

Temperature ×
salinity

40,264.134 4 10,066.034 5.202 <0.001

Residual 317,327.181 164 1,934.922

Total 431,462.000 172 2,508.500

Salinity and temperature groups as in Fig. 4. Data were rank-transformed
(see text)

SS sum of squares, df degrees of freedom, MS mean of square
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were grouped in two distinct clades. Two distinct clades
were also retrieved for our S. plicata sequences, both closely
related to sequences described for the phlebobranch ascidian
C. intestinalis. Our results, however, demonstrated that all
hsp70 sequences recovered herein were closely related and
probably belong to the same gene ortholog.

A seasonal trend in hsp70 gene expression was observed
for the ascidian S. plicata in the studied salt marsh, indicating
important changes in the physiological stress levels of this
species over time. The observed variability in hsp70
expression levels among simultaneously sampled individuals
(as reflected by the error bars in Fig. 2) was probably due to
the presence of genetically distinct individuals in our sample
set. Intraspecies variability in stress response has been
reported in previous studies and is common in marine inver-
tebrates (Agell et al. 2001; Osovitz and Hofmann 2005; Rossi
et al. 2006; López-Legentil et al. 2008).

High levels of hsp70 gene expression have been
correlated with seawater temperature increases in many
marine invertebrates (Osovitz and Hofmann 2005;
López-Legentil et al. 2008; Pantile and Webster 2011).
Accordingly, in this study, we found that significantly
higher levels of hsp70 gene expression occurred during
the summer months. Moreover, important mortality
events occurred around June 2007, 2008, and 2009 when
seawater temperatures reached values above 27°C. During
these times, over 90% of the population of S. plicata
disappeared or were dying, with an uncharacteristically
soft and blackened tunic and the interior guts spilling
out through the siphons or cuts in the tunic (authors’
personal observation). Mortality or recovery of stressed
animals is determined by the extent of damage to essential
cellular structures (Downs et al. 2002). Minor damage can be
repaired by an increase in hsp activity, while a prolonged
exposure to stress leads to metabolic failure in a relatively
short time (within a month in our case). Thus, our data
suggested that extreme physiological stress resulting from a
sharp increase in seawater temperature (>6°C between
monthly readings) caused the massive mortality observed in S.
plicata. Important episodic decreases in S. plicata’s populations
were also reported in previous studies conducted in the same
area (Sutherland 1974, 1978). However, those events were
recorded in fall and were attributed to substrate inadequacy to
support the large individuals resulting from summer growth.

Besides temperature, other factors are also known to
significantly stress marine organisms, including sharp salinity
decreases (e.g., Kültz 1996; Deane and Woo 2004; Yang et al.
2009), food constraints (e.g., Rossi et al. 2006), hypoxia (e.g.,
Ma and Haddad 1997), ocean acidification (e.g., O'Donnell et
al. 2009), and the presence of pollutants (e.g., Müller et al.
1995; Agell et al. 2004; Azumi et al. 2004; Micovic et al.
2009; Su et al. 2010; Bozinovic and Oleksiak 2011). Several
studies have also documented the physiological response of

organisms under a combination of multiple potential stressors
(O'Donnell et al. 2009; Lockwood et al. 2010; Monari et al.
2011). Thiyagarajan and Qian (2003) found that S. plicata
recruitment success and post-larval growth in summer were
impaired by high seawater temperatures (26–30°C) and low
salinities (about 22–30‰). Similarly, in our study, we have
found that the interaction between temperature and salinity on
hsp70 gene expression was significant. In particular, at
seawater temperatures over 25°C, hsp70 gene expression
appeared to increase with decreasing salinity values. However,
statistical significance was only recorded for the combination
of high temperatures (>25°C) and low salinities (<28‰)
recorded once in July 2009. Further experimentation in aquaria
under tightly controlled environmental conditions is needed to
pinpoint the effect of temperature and salinity fluctua-
tions over several development stages of S. plicata and assess
whether these factors are currently limiting the actual distri-
bution of this species.

The biogeographic distribution of marine species is
determined by each species tolerance to stress (Feder and
Hofmann 1999), in which the heat shock response is a key
factor. Thus, establishment of a new species is possible when-
ever the levels of environmental conditions fall within the
tolerance range of the species. Likewise, if this range is wider
for an introduced species than for directly competing
native organisms, then the newcomer can become invasive
(Stachowicz et al. 2002). For instance, Lockwood and Somero
(2011) suggested that the success of the musselMytilus gallo-
provincialis over Mytilus trossulus in the west coast of the
USAwas due to the ability ofM. galloprovincialis to deal with
acute heat stress by producing more stress proteins. Although
in this study we have not assessed the stress response of S.
plicata to biotic factors such as competition with other
species, the artificial substrates surveyed here were colonized
in their nearly totality by S. plicata, and no conspicuous
predators were observed. Thus, based on our results, it appears
that S. plicata’s ability to thrive and colonize salt marsh
habitats may depend on its ability to withstand severe abiotic
changes.

In conclusion, hsp70 gene expression in the introduced
ascidian S. plicata varied over time and was significantly
correlated to high seawater temperature. Low salinities also
appeared to increase hsp70 gene expression, with high-
est levels of expression recorded at temperatures >25°C
and salinities <28‰. The 15-fold variation in expression
levels found here is consistent with the prediction that a
certain degree of resilience to adverse environmental
conditions has facilitated the worldwide distribution of
this species. In addition, it is possible that this same
ability to physiologically adjust to stressful conditions
has allowed S. plicata to colonize fluctuating environments
such as salt marshes. Even when severe changes in temperature
or salinity overcome S. plicata tolerance thresholds (i.e., in
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June), the species was able to completely refill the studied
docks within a month (authors’ personal observation),
presumably by larvae originating from unknown reservoirs or
from hulls of the many ships navigating the Atlantic Intra-
coastalWaterway. The fast growth rates recorded for S. plicata
(Yamaguchi 1975; Sutherland 1978) should further allow this
species to quickly repopulate any lost habitat. This study
highlights the importance of understanding how introduced
species respond to a combination of environmental factors in
order to predict their invasive potential and prepare efficient
containment plans.
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