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Abstract 

The aim of this study was to establish the population pharmacokinetics of amikacin in 
newborns from serum concentration data obtained during the routine therapeutic drug 
monitoring and to explore the influence of patient covariates on drug disposition. To 
validate the developed model in into a external dataset, belonging to the same 
population as the development group, to evaluate the current dose regimen and to 
optimize the first dose recommendations, were also aims of the study. Data were 
retrospectively collected for a study in newborns with postnatal age less than 90 days 
admitted in the neonatal unit of Vall Hebron (July 2000 to July 2006) who were treated 
with amikacin and with at least two serum concentration data of the aminoglycoside. 
Amikacin was administered as an i.v. infusion over 30 or 60 min. Blood samples were 
collected just before (“through”) and 1h after start of the infusion (“peak”). 
Demographic, clinical and amikacin dosing and concentration data were collected. 
Amikacin serum concentration measurements were done using fluorescence 
polarization immunoassay (TDx; Abbott Laboratories). Population PK analysis was 
performed from 149 newborns using the non linear mixed-effect approach (NONMEM 
version VII). The First order conditional estimation method (FOCE) with interaction was 
used throughough all the model bulding process.The PK of amikacin after iv 
administration was best described by a two-compartment linear disposition model. 
Between-patient variabilities expressed as coefficient of variation (CV%) were 
associated to total plasma clearance (CL) (16.39%) , central compartment distribution 
volume (V1) (25.23%) and  distributional clearance (Q) (40.08%). Residual variability, 
modelled as a combined error model (proportional + additive), was 6.97% and 15.37%, 
respectively. Creatinine Clearance (CLCR) and body weight (WGT) were the most 
influential covariates in CL, and WGT was in V1. The final population model is: 
TVCL=0.133·(CLCR/31.97)0.649·x(WGT/1880)0.752 and TVV1=0.837·(WGT/1880)1.09. 
The external validation as well as th internal validation either through bootstrapping, or 
by Visual Predictive Check, prediction-corrected visual predictive check, posterior 
predictive check, or by normalised prediction distribution errors, suggested a good 
predictive ability for the developed model. 
The several simulations based on the final pharmacokinetic estimates of the model 
showed the influence of the covariates identified as significant in the serum amikacin 
concentrations, demonstrating the ability of the model to stablish optimal initial doses of 
amikacin for the treatment of neonatal sepsis. Due to the possibility of including the 
model in clinical pharmacokinetic software, the use of this model could improve the 
design of initial amikacin dosage in neonate populations and provide feedback 
adjustments of dosage regimens to achieve desired serum concentrations. 
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1.1 PHARMACOLOGY OF AMIKACIN 

1.1.1 Background 

Aminoglycoside antibiotics were the first drugs discovered by systematic screening of 
natural product sources for antibacterial activity. The aminoglycoside antibiotics 
comprise a large group of naturally occurring or semi-synthetic polycationic 
compounds. Streptomycin was the first aminoglycoside identified, in 1944 by 
Waksman’s group, as a natural product of a soil bacterium, Streptomyces griseus. This 
was followed by the discoveries of neomycin by the same group in 1949, kanamycin by 
Umezawa et al in 1957, and later tobramycin. Gentamicin, first reported in 1963 by 
Weinstein, netilmycin and sisomycin were isolated from different species of 
Micromonospora. Thereafter, the research was focused on chemical modification of 
known compounds in order to increase its antibacterial activity and reduce its 
associated toxicity, rather than on the discovery of new antibiotics from soil microbes 
(1). Amikacin and dibekacin are derivative compounds of kanamycin through chemical 
modifications, while netilmycin is a semi-synthetic derivative of sisomicin. 

The chemical structure of all natural aminoglycosides includes an aminocyclitol moiety 
of 2-deoxystreptamine (2-DOS), where amino sugars are linked glycosidically to 
aminocyclitol at positions 4-, 5- or 6- (Figure 1.1). According to these substitutions, 
aminoglycosides can be classified into three different groups, of which the two first are 
the most important (2): 

• 2-DOS (4,5-disubstituted). Including neomycin B, one of the oldest 
aminoglycosides still used today, but limited to topical application because of its 
potential toxicity. 

• 2-DOS (4,6-disubstituted). The largest group, which includes gentamicin, 
tobramycin and amikacin. 

• 2-DOS (4-monosubstituted). Apramycin, which use is limited to clinical 
veterinary, is the only compound known of this group. 

The chemical differences between these compounds are particularly important in 
determining differences related with the antibacterial activity. Streptomycin and 
spectinomycin are not strictly 2-DOS derivatives, because its central moiety is a 
streptidine derivative (with and hidroxil- group at position 2), while spectinomycin 
sometimes is not classified as an aminoglycoside, because it does not has the 
aminocyclitol moiety of 2-DOS. Nonetheless, the group of compounds derived from 
streptidin, 2-DOS aminoglycosides derivatives and Spectinomicyn, are all known as 
Aminocyclitols. 
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Figure 1.1. Structural families of aminoglycoside antibiotics 

Physicochemically, amikacin ( )1354322 ONHC  is a white, crystalline, basic and water-

soluble antibiotic with a molecular weight of 585.60 g/mol, a melting point of 201º-
204ºC, and a specific optical rotation from +97º to 105º (3). It is a semi-synthetic 
derivative of kanamycin A developed in order to protect it from the inactivating 
mechanisms of resistant organisms. Amikacin differs in its chemical structure from 
kanamycin by the acylation with dihydroxyaminobutyric acid (HABA) at the C-1 amino 
group of the 2-DOS nucleus. The addition of this HABA moiety confers upon amikacin 
its unique properties, which include a broadening of its antibacterial spectrum over that 
of kanamycin, and resistane to most plasmid mediated inactivating enzymes (4). 

1.1.2 Mechanism of action and Resistance 

Amikacin, like other aminoglycoside antibiotics, shows a concentration-dependent 
bactericidal activity (its effectiveness is related to the maximum concentration 
achieved). Its diffusion across the cell membranes is very limited because of its polar 
characteristics, being carried out through aqueous channels in the outer membrane of 
gram-negative bacteria into the periplasmic space, and being then actively transported 
across the cytoplasmic membrane to the site of action (1). Therefore, intracellular 
accumulation of this group of antibiotics occurs by active transport. Once transported 
across the bacterial cell membrane, the aminoglycosides are attached to 30S and 50S 
ribosomal units, inhibiting protein synthesis by three mechanisms: (i) blockage of the 
start of protein synthesis, (ii) premature blockage of translation process by separating 
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the ribosomic complex 30S-50S, with the consequent misreading of the genetic code 
and production of defective proteins, and (iii) incorporation of incorrect amino acids, 
resulting in abnormal polypeptides synthesis. Other possible mechanisms contributing 
to the overall antimicrobial effect of aminoglycoside antibiotics can be the modification 
of cytoplasmic membrane, which results in the release of intracellular components, and 
the alteration of metabolism and cell respiration (5). The rate of transport of 
aminoglycosides across the bacterial cell membranes can be altered significantly by 
the presence of divalent cations (Mg2+, Ca2+), the pH of the environment, and the 
amount of oxygen present. This observation explains the significant decrease in 
antimicrobial activity in anaerobic or acidic environments (4). 

Resistance to aminoglycosides can be developed mainly by the following three 
mechanisms (5): 

i. Enzymatic inactivation. Microbial enzymes are the main cause of resistance 
within this class of antibiotics. Once the aminoglycoside reaches the periplasmic 
space, it is susceptible to enzymatic action, which is mediated by plasmids, by 
phosphorylation, adenylation or acetylation. Although it does not inactivate the 
antibiotic directly, it alters the transport mechanism across the cell, inactivating 
its union to ribosomes. Eleven different responsible enzims of this action have 
been described. The degree of susceptibility of the antibiotics to enzymatic 
inactivation is location and time-dependent. Amikacin has been reported to be 
the most stable (being susceptible only to two out of the 11 enzymes), because 
of the presence of molecular side chains that protect amikacin from the enzyme 
action. The enzymatic inactivation of amikacin occurs mainly by acetylation of 
the amino group at C6’ position. 

ii. Loss of permeability of the bacterial cell to the drug. This mechanism is 
related to chromosomal mutations that affects gene responsible of the 
amynoglicosides transport by blocking the transport of the drug inside the cells. 

iii. Ribosomal alterations. A very specific resistance mechanism of streptomycin 
triggered by an alteration of the 30S ribosomal subunit of the receptor. 

The main mechanism of resistance associated to amikacin seems to be related with a 
decreased penetration of the drug into the bacterial cell. This type of resistance seems 
to be non-specific, and this vulnerability is shared by all other amynoglicosides. As a 
consequence, the strains resistant to gentamicin or tobramycin by enzymatic 
inactivation remain sensitive to amikacin, but strains resistant by the non-enzymatic 
inactivation are generally cross-resistant to all three aminoglycosides =7). 



Introduction 

6 

1.1.3 Spectrum of activity 

Aminoglycosides are indicated primarily for the treatment of infections caused by 
aerobic gram-negative bacilli. The spectrum of activity of aminoglycosides includes 
Citrobacter spp, Enterobacter spp, Escherichia Coli, Klebsiella pneumoniae, Proteus
spp, Providencia spp and Pseudomonas aeruginosa. Other aerobic gram-negative 
bacilli are also susceptible to aminoglycosides but are rarely indications for their clinical 
use, as Neisseria gonorrhea, Neisseria meningitidis, and Haemophilus influenza. The 
usefulness of aminoglycosides against gram-positive organisms is greatly restricted to 
Staphylococus aureus and Staphylococus epidermidis. The oxygen-dependent 
mechanism of action explains its inactivity against anaerobic bacteria (1). 

Several antibiotic groups have been demonstrated to have synergistic activity with 
aminoglycosides. This is especially true for the �-lactam antibiotics, including penicillins 
and cephalosporins. One of the proposed mechanisms of synergy is the increase in 
porosity of the bacterial cell wall caused by the �-lactam antibiotic, allowing a higher 
penetration of the aminoglycoside into the bacterial cell. Enterococcus and some 
Streptococcus species are sensitive to the aminoglycoside action by this synergistic 
effect of the aminoglycosides with penicillins (5).

The “in vitro” activity of the aminoglycosides against several microorganisms can be 
assessed based on the Minimum Inhibitory Concentration (MIC), which values differ 
depending on the antibiotic and the microorganism. Table 1.1 shows MICs of some 
aminoglycosides against aerobic gram-negative bacilli according to the standards of 
the National Committee for Clinical Laboratory Standards (NCCLS) (6) 

Table 1.1. Classification of MICs of the aminoglycosides against aerobic gram-negative bacilli 

MICs interpretation (mg/L) 
Aminoglycoside 

S I R 
Gentamicin �4 8 �16 
Amikacin �16 32 �64 
Tobramycin �4 8 �16 
Kanamycin* �16 32 �64 
Netilmycin �8 16 �32 
S: Sensitive. I: Intermediate. R: Resistant 
* Only valid for Enterobacteriaceae spp. 
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1.1.4 Clinical Pharmacokinetics 

1.1.4.1 Absorption 

Like all aminoglycosides, amikacin is a large, highly polar and basic compound, which 
explain its low absorption from the gut. When given orally, less than 1% can reach the 
blood stream. For this reason, these drugs are not administered orally, but by 
parenteral injection. Amikacin is well absorbed after intramuscular injection, and it 
achieves peak levels within 30-90 minutes. However, the absorption may be delayed in 
alterations of tissue perfusion, such as in cases of shock or hypoxemia, leading to a 
high interindividual variability. When hypoxemia occurs, the intravenous route of 
administration is preferable to the intramuscular (7). Aminoglycosides can be 
administered intravenously by 30 to 60 minutes intermittent infusions, by continuous 
intravenous infusion, or by slow bolus injection (5). The intermittent infusion is the most 
frequently administration way used, mainly with infusion periods of 60 minutes, 
because of pharmacokinetic and practicability reasons. Some authors have been 
reported a three-compartment pharmacokinetic behaviour with first order elimination 
kinetics after intravenous bolus administration, although two- and one-compartment 
models have also shown to fit the time-concentration profiles reasonably well (8). 
Differences in sampling schedule (dense or sparse data) is the main reason of the 
different pharmacokinetic behaviours described. 

Direct administration of amikacin via inhalation has also been used, especially in cystic 
fibrosis patients with infections caused by Pseudomonas aeruginosa (9). 
Subconjunctival injection gives adequate levels in the aqueus humor, but neither 
parenteral injection nor subconjunctival administration give effective levels in vitreous 
humor. So, in the case of endophtalmitis, the use of intravitreal administration is 
required. 

Other ways of administration less recommended are: subcutaneous administration, that  
although it has a similar kinetic to intramuscular administration it has a risk of skin 
necrosis; administration into pleural and peritoneal cavities, because of the possibility 
of rapid absorption and the subsequent toxicity (10); and topic administration, due to its 
transdermal absorption, caution should be taken when administered for long periods of 
time on burns, wounds and skin ulcers, particularly if the patient shows a compromised 
renal function, because of the risk of toxicity. 

1.1.4.2 Distribution 

The volume of distribution of aminoglycosides decreases from birth to 5 years, when 
reaches a value similar to that of adulthood, between 0.2-0.3 L/Kg. Protein binding of 
almost all aminoglycosides is less than 10%. 
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Their polar nature is determining in its body distribution. Firstly, due to its polar 
characteristics, the distribution of amikacin to adipose tissue is very limited. This should 
be taken into account in obese patients, in which case dose tailoring adjustment should 
be performed based on lean body weight or ideal weight rather than on total weight. 
Their polarity also determines the intracellular body distribution, being usually confined 
to the extracellular fluid compartment. Besides, the pass through membranes is poor, 
not only because of its size but also due to its positive charge. As a consequence, the 
concentrations achieved in most tissues are really low, with the exception of the inner 
ear and renal proximal tubule, which have active transport systems for 
aminoglycosides. It could explain the nephrotoxicity and ototoxicity seen with this class 
of antibiotics; by contrast, amikacin concentrations in cerebral spinal fluid (CSF), in the 
absence of inflammation, are less than 10% of plasma concentrations. For this reason, 
to achieve therapeutic concentrations in CSF, these antibiotics must be administered 
by intrathecal or intraventricular routes; in the case of newborns, however, the 
penetration into the CSF is higher than in adults. These agents can cross the placenta, 
achieving fetal serum concentrations that are 21 to 37% of maternal serum 
concentrations. Adequate antibiotic concentrations are achieved in most other body 
fluids, including synovial, peritoneal, ascetic and pleural fluids (5). 
There are several factors that can contribute to the interpatient variability observed in 
the amikacin distribution volume, such as the presence of edema or ascites, that are 
responsibles not only of the high interpatient variability, but also of the so called “third 
space”, increasing the distribution volume and decreasing plasma concentrations (1). 

1.1.4.3 Metabolism and Elimination 

Aminoglycosides are primarily eliminated unchanged by the kidney via glomerular 
filtration (85-95%), being a linear correlation between creatinine clearance and the 
clearance of aminoglycosides (5). However, a non linear relationship has been 
reported between filtration rate and gestational age (11,12). Until 34 weeks of 
gestation, filtration rate values are low and constant, coinciding with the completion of 
the glomerulus formation. From 34 to 36 weeks, the filtration rate increases with age, 
reflecting a significant maturation of renal function that could be attributable to 
morphological changes of the glomerulus. Besides, extraction renal rates of the drug 
around 50% can be achieved in patients undergoing renal dialysis. For this reason, 
aminoglycosides can be safely used in patients with renal impairement. Contrary, in 
peritoneal dialysis, the extraction rate is between two and three times less effective. 

The amikacin serum half-life, in adults under normal renal function, ranges from 2 to 3 
hours. However, several factors either physiological or pathological can alter these 
values .i.e., in the case of newborns clearly higher half-life values can be found 
compared to those of the childhood and adulthood, or lower values can be found either 
during pregnancy or in patients with cystic fibrosis. 
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1.1.5 Pharmacodynamics 

The efficacy of overall effect of aminoglycosides is the result of: (i) the concentration-
dependent bactericidal activity, (ii) the adaptive resistance, and (iii) the occurrence of a 
post-antibiotic effect (10). 

Due to its concentration-dependent bactericidal activity, also characteristic of 
quinolones, the rate and magnitude of the bactericidal action increases with increasing 
antibiotic concentrations above the minimum bactericidal concentration until achieving 
a maximum effect. Various empirical pharmacokinetic/pharmacodynamic (PK/PD) 
indices have been proposed to predict the success or failure of therapy (13). In 
concentration-dependent antibiotics, both Maximum Concentration/Minimum Inhibitory 
Concentration (Cmax/MIC) and Area Under the Curve/Minimum Inhibitory Concentration 
(AUC/MIC) ratios are the main PK/PD parameters correlating with efficacy. In animal 
infection models, the 24h AUC/MIC ratio demonstrated to be a better predictor of 
therapeutic efficacy than the Cmax/MIC ratio, whereas the opposite was true in human 
clinical trials (14). It has been reported that to obtain a clinical response of ≥ 90% and 
reduce the risk of emergence resistance, Cmax/MIC needs to be around 8-10 (15). This 
is easily achieved in individuals with normal renal function by the administration of a 
single day large dose of aminoglycosides, which also minimizes the consequences of 
adaptive resistance (16). Adaptive resistance is a phenotypic and reversible increase in 
MIC associated with a temporary lack of drug transport into the bacterial cells. The 
post-antibiotic effect, defined as the residual bactericidal activity of the antibiotic 
persisting some time after the drug concentrations have reached values below the MIC, 
persists up to around 2-4 hours in the case of aminolgycosides. So, the efficiency of 
spaced administration of large doses of aminoglycosides is related to their prolonged 
and concentration-dependent post-antibiotic effect, which prevents bacterial regrowth 
when serum levels fall below the MIC. 

The overall combination of the concentration-dependent bactericidal activity, the 
adaptive resistance and the post-antibiotic effect provides the theorical basis 
supporting the use of aminoglycosides at high doses and wide dosage intervals (once 
daily dose administration). So that, the administration as a single dose maximizes the 
ratio Cmax/MIC, increasing and prolonging the bactericidal action, preventing the 
development of bactericidal resistance and reducing potential toxicity. 

1.1.6 Adverse effects 

The administration of aminoglycosides through intramuscular and intravenous routes is 
usually well tolerated without causing local inflammatory reactions. However, all of 
them, with the exception of spectinomycin, exhibit a relatively high potential risk of 
renal and otic toxicity, and rarely neuromuscular blockade, that are an important 
limitation for their use. However, the incidence of toxicity is difficult to be established, 
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because there are several factors that should be considered: the uniformity in the 
denifition of toxicity applied, the measurement methods used, the type of target 
population, the duration of the treatment and the route of administration, among others. 
In adults it has been well reported that the toxicity of aminoglycosides is usually 
associated with maintained high predose serum concentrations (trough concentrations 
> 5 mg/L, or > 10 mg/L in some cases). No previous data exist about the 
consequences of maintaining high trough concentrations in newborns. Otherwise, the 
few available data obtained from controlled studies that have evaluated the incidence 
of toxicity of aminoglycosides in pediatry suggest that the risk of toxicity in this 
population is lower than in adults (16(18). 

1.1.6.1 Nephrotoxocity 

Aminoglycoside-induced nephrotoxicity can be attributed to its uptake by proximal 
tubular cells and to its long-term retention in the renal cortex (19). Aminoglycosides can 
gradually accumulate in the lysosomes of these cells and induce morphological 
changes. After multiple dosing, lysosomes can increase in size and ultimately burst. 
Above a critical threshold, mitochondrial damage and cell necrosis occur. In most 
cases, the nephrotoxicity is manifested as non-oliguric acute renal failure, usually 
reversible, that appears some days after starting the treatment. 

Both animal and clinical studies have shown that, at therapeutic doses, amikacin 
causes less lysosomal overloading than other aminoglycosides, with the exception of 
netilmycin. Otherwise, the incidence of nephrotoxicity is difficult to be established (5-
25%) because it depends not only on the aminoglycoside considered but also on other 
aspects. One of them is related to the definition of nephrotoxocity taken into account. 
The most frequently used definition is based on serum creatinine variations; generally, 
serum creatinine is monitored routinely to detect changes in renal function before the 
onset of substantial damage, manifested by clinically apparent symptoms. The 
presence of nephrotoxicity is considered to be appeared when increases of at least 
15% to 50% from the baseline serum creatinine concentrations exist. It should be 
noted, however, that serum creatinine is primarily a reflection of glomerular damage 
and, as such, is a less than optimal means of monitoring aminoglycoside-induced 
nephrotoxicity. Moreover, both animal and human studies have shown that 
nephrotoxicity depends on the time of the day is given (20), being more likely 
administered at inactivity hours (night) versus active hours (day). Other factors 
influencing the occurrence of nephrotoxicity are the concentration and the duration of 
treatment. For these reasons, once daily administrations have been postulated as the 
best to decrease the risk of nephrotoxocity (21,22). Finally, there are many other 
factors to consider, such as the type of target population or the simultaneous 
administration of other potentially nephrotoxic drugs. 
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No clear relationship between serum concentration of aminoglycosides and presence 
of nephrotoxicity has been previously established. Nevertheless, high trough 
concentrations are generally related to its appearance, being an indicator of renal 
clearance of the drug but not a predictor of nephrotoxicity by themselves (23). 

1.1.6.2 Ototoxicity 

Aminoglycosides can cause irreversible ototoxicity, which occurs in a dose-dependent 
and idiosyncratic way (24). The mechanism of selective toxicity of aminoglycosides for 
auditory cells is only poorly understood, but experimental evidence in animals has 
pointed reactive oxygen species as possible responsibles of the development of 
aminoglycoside ototoxicity (25). Otherwise, the idiosyncratic mechanism of this adverse 
effect has also been linked to genetic predisposition, relating it to an inheritable 
mutation (A1555G) in the mitochondrial 12S ribosomal RNA (24,26). For this reason, 
preventive screening of mitochondrial 12S rRNA mutations has been suggested as a 
way to decrease the incidence of aminoglycoside-induced hearing loss (27,28). The 
severity of the toxicity, usually bilateral, is higher in prolonged treatments, since 
repeated dosing with aminoglycosides produce a cumulative lesion (cochlear cells 
previously destroyed cannot regenerate). On the other hand, the risk of ototoxicity 
increases with the co-administration of other drugs showing the same kind of potential 
toxicity (loop diuretics, vancomycin, etc...) (5). 

Ototoxicity has two types of expression: auditive alterations (hearing loss), and 
vestibular symptoms. Auditive alterations result from the destruction of the outer hair 
cells of the organ of Corti. This auditive damage initially affects to high frequencies, but 
it can progress until affecting intermedium or low frequencies. Vestibular manifestations 
(vertigo, nausea, dizziness) comes from the destruction of the hair cells of the 
semicircular ducts. The kind of toxicity expressed depends on which aminoglycoside is 
used. Amikacin mainly causes auditive alterations. Similarly to nephrotoxicity, the 
relationship between serum concentrations of aminoglycosides and presence of 
ototoxicity has not been well stablished, but high peak levels (> 38.5 mg/L, in the case 
of amikacin) have been reported to be probable responsibles of this kind of toxicity, 
when considering the use of conventional dosing regimens. 

1.1.6.3 Neuromuscular blockade 

In rare situations, aminoglycosides can produce neuromuscular blockade, that can lead 
to death. It is manifested as a respiratory muscle weakness, flaccid paralysis and 
midriasis (8). It can occur associated to diseases or drugs that interfere with 
neuromuscular transmission (carrying botulism, myasthenia gravis or treatment with 
curaritzants) and being related with quick intravenous perfusions of large amounts of 
aminoglycosides. 
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1.1.7 Therapeutic use 

Aminoglycosides are primarily indicated for the treatment of infections caused by 
aerobic gram-negative bacilli (including septicaemia, neonatal sepsis, osteomelitis, 
septic arthritis, respiratory and urinary tract infections), mainly Enterobacteries spp and 
Pseudomonas aeruginosa. Their spectrum activity makes them the best choice against 
Enterococcus faecalis (associated to ampicilin or vancomycin); Enterococus faecium
(associated to vancomycin and rifampicin), Pseudomonas aeruginosa and Yersinia 
enterocolitica (associated to a third generation cephalosporine), Serratia marcenses, 
Providencia, Hafnia, Francisella tularensis and Yersinia pestis, among others. 
Otherwise, aminoglycosides are usually used in empirical treatments (when the 
treatment is started before a diagnosis is confirmed). The use of amikacin is generally 
limited to the treatment of infections caused by gram-negative bacilli resistant to other 
aminoglycosides (29). Several antibiotic groups have been demonstrated to have 
synergistic activity with aminoglycosides. This is particularly true for the �-lactam 
antibiotics, being active for the treatment of endocarditis caused by some gram-positive 
bacteria, such as Streptococcus spp, Enterococcus spp and Staphylococcus spp (5).

Antimicrobial therapy is widely used during the neonatal period. Specifically, 
aminoglycosides are very important in cases of sepsis by aerobic gram-negative bacilli, 
either confirmed or suspected. The main indications of aminoglycosides during 
neonatal period are: 

i. Neonatal sepsis. Referred to the clinical situation derived from the invasion and 
proliferation of bacteria, fungi or viruses in the bloodstream of the newborn 
manifested during the first 28 days of life. According to the transmission 
mechanism, it can be distinguished sepsis of vertical transmission  (caused by 
germs located in the maternal genital canal, where the transmission is produced 
via ascending or by direct contact with contaminated secretions during delivery); 
and sepsis of nosocomial transmission, which is caused by microorganisms 
located on Neonatal Services that colonize the newborn through medical staff 
and/or diagnostic material. Amikacin is mainly used in nosocomial infections, 
where the treatment of choice is based on the association of an antibiotic 
against Staphylococcus coagulase-negative (vancomycin or teicoplanin) and 
another against gram-negative bacteria (an aminoglycoside, usually gentamicin 
or amikacin). 

ii. Necrotizing enterocolitis. Of unknown etiology, it is the most frequent and 
severe digestive pathology during the neonatal period that can results into 
intestine necrosis. There are some determining factors, such as ischemia, 
bacterial overgrowth and systemic inflammatory response. Aminoglycoside 
antibiotics, gentamicin or amikacin, are used as a part of the treatment. 

iii. Meningitis. As neonatal sepsis, neonatal meningitis can be classified as one of 
vertical transmission (when clinical manifestations appear before 3 days of life 
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and early nosocomial infection is discarded), and as nosocomial meningitis
(when clinical manifestations appear after 72 hours of life and late vertical 
infection is discarded). In both, the empirical treatment is based on the 
association of ampicilin, to the double dose used in sepsis, with a third 
generation cephalosporin. Once the microorganism has been identified, some 
aminoglycoside is associated. The pathogens related to each one are slightly 
different; vertical meningitis are usually caused by Streptococcus haemolytic B, 
E. Coli and L. Monocytogenes, and less frequently by gram-negative bacilli. 
Contrary, around 45% of the nosocomial meningitis are caused by gram-
negative bacilli, mainly by E. Coli. 

iv. Antibiotic prophylaxis. Aminoglycosides are given intravenously, associated to 
other antibiotics, as prophylactic treatment before and after many surgical 
interventions. Among them, gentamicin is the most used. 

1.1.8 Dosage 

Initially, the dosing regimen of aminoglycosides consisted on divide the total dose to be 
administered into two equal parts. However, the concept of once-daily dosing was 
gradually introduced, firstly for the treatment of urinary tract infection (30,31), and later 
for systemic infections. There is currently a large number of meta-analysis that support 
the safe use of aminoglycosides in once-daily doses (32-37). All of these meta-analysis 
have shown either equivalence or superiority for once-daily dosing in clinical and 
bacteriologic efficacy, and also in nephrotoxicity. None of them have shown differences 
related to ototoxicity or mortality rates. 

The once-daily dosing is widely accepted in adults, but not in the neonatal period. 
During this period, the existence of reduced values of renal clearance compared to 
infants has been recognized for many years, and twice daily regimens have 
consequently become the standard. In the 70s, the first recommendation of amikacin 
dosing was based on an initial dose of 7.5 or 10 mg/Kg every 12 hours (38,39), which 
was widely accepted. Later, it was observed that this dosage was not appropriate in all 
cases, and new protocols arised based on postnatal age (PNA). Cookson et al (40) 
suggested a dosing regimen of 10 mg/Kg every 12 hours during the first month of life, 
and every 8 hours from then. Ortherwise, Prober et al (41) proposed the administration 
of 7.5 mg/Kg every 12 hours during the first month of life. Nevertheless, the use of 
these recommendations led to a rather large percentage of ineffective concentrations. 
From then to now, several studies that support the utility and safety of the 
administration of aminoglycosides as a single daily dose have been published, 
demonstrating that the conventional dosing regimens are not well adapted to the 
newborn population, and so resulting in serum concentrations not always in agreement 
with the expected, particularly in very low birth weight individuals (42). In the particular 
case of amikacin, there are currently several specific studies that support it (35,43,44). 
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Table 1.2 summarizes some of the several guidelines for amikacin dosing in neonates. 
Most of them propose the use of once-daily dosing, and in detriment of it, dosing 
intervals higher than 24 hours. Otherwise, the current product sheet (45) does not 
recommend it, establishing guidelines similar to those of 70s. Its recommendations are, 
for the first 2 weeks of life: a dose of 7.5 mg/Kg every 12 hours for premature 
newborns; for full-term neonates, the same regimen but adding an initial dose of 10 
mg/Kg. From 2 weeks of life, dosing recommendation is of 7.5 mg/Kg every 12 hours or 
5 mg/Kg every 8 hours. 

Table 1.2. Guidelines for amikacin dosing in neoantes 

 Neofax (29)

GA  (weeks) PNA (days) Dose (mg/Kg) Interval (hours) 

0-7 18 48 
8-28 15 36 � 29* 
� 29 15 24 
0-7 18 36 30-34 
� 8 15 24 

� 35 Tots 15 24 
* or significant asphixia, PDA or treatment with indometacine 

Spanish Association of Pediatrics (AEP) (46)

WEIGHT (g) PNA (days) Dose  (mg/Kg) Interval 
(hours) 

<1200 � 28 7.5 12 
0-7 7.5 12 1200-2000 
>7 7.5 8 
0-7 10 12 >2000 
>7 10 8 

Sherwin et al (47)

GA  (weeks) PNA (days) Dose (mg/Kg) Interval (hours) 

<29 15 36 
29-36 14 24 
>36 

�9 
15 24 

Allegaert et al (48)

GA  (weeks) PNA (days) Dose (mg/Kg) Interval (hours) 

<28 20 42 
28-30 20 36 
31-33 18.5 30 
34-37 17 30 
>37 

<29 

15.5 24 

GA: gestational age; PNA: postnatal age; PDA: patent arterial duct 
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1.1.9 Therapeutic monitoring of aminoglycosides 

Conventionally, aminoglycosides have been monitored during therapy in an effort to 
reduce the risk of toxicity, being particularly useful when the treatment is extended 
more than 48 hours. This process requires two blood samples. One, extracted 60 
minutes after the start of the intravenous administration that is called maximum or peak 
concentration (Cpeak), but not always corresponds with the highest drug concentration. 
The other, extracted just before the administration of the next dose, corresponds to the 
minimum or trough concentration (Cthrough). 

Studies in adults suggest that, using conventional dosing schedules, amikacin toxicity 
is minimal with peak concentrations below 38.5 mg/L and trough concentrations lower 
than 5 mg/L (in some cases, trough concentrations below 10 mg/L) (49). Therefore, 
peak concentrations between 20 and 30 mg/L and trough concentrations below than 5 
mg/L are intended to be reached. Recently, Shwervin et al (47) revised the target 
concentrations in neonates using the results of the PD analysis, and adjusting the 
optimum target for Cpeak from 20–30 mg/L to 24-35 mg/L. But there is not enough 
data in pediatrics, so the adult threshold is used. Using the once-daily dosing, peak 
concentrations achieved are generally higher, and, although therapeutic ranges have 
not been defined, it is recommended to be around 8 to 10 times the MIC value.  

Three groups of monitoring methods have been developed: 

i. Single-level methods. This type of monitoring involves the determination of a 
single concentration value in the elimination phase, usually between 6 and 14 
hours after the end of the infusion. The first of the single-level methods 
developed was the Hartfort method (50). A variation of this method was 
developed at the Barnes-Jewish Hospital in St. Louis. A third single-method, 
promulgated in Australia, was based on the administration of a varying dose 
depending on age. All of the single-dose methods assume that patients show 
normal distribution volumes, although this is not always true. Moreover, 
because peaks are not measured, reduced peaks are not recognized. 
Nevertheless, these methods are simple to apply and less costly. 

ii. Area-under-the curve (AUC) methods. Two methods have been developed 
(Christchurch and Aladdin methods), in which two concentrations are measured 
and the AUC estimated by means of a simplified monoexponential model. 

iii. Bayesian methods. Bayesian methods applied to aminoglycoside monitoring 
have been used for a long time (51,52). These methods usually use population 
pharmacokinetic values to generate prior probabilities, and then, from one or 
two measured levels, perform dosage tailoring adjustment. The more used 
computer programs for this purpose are ABBOTTBASE and SeBA-GEN.
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1.2 PHARMACOKINETICS IN NEONATES 

The adequate use of drugs supposes not only the knowledge of the drug but also of the 
individual to whom it will be administered, as well as the factors and conditions that can 
modify the pharmacokinetic (PK) and pharmacodynamic (PD) characteristics. One of 
these factors is age. Consistent definitions are required to describe the length of 
gestation and age in neonates and to compare data. The terms “gestational age” (GA), 
“postmenstrual age” (PMA), “corrected age” and “postconceptional age” (PCA) have 
frequently been defined unconventionally (53), or left undefined. For this reason, a 
standard terminology is required (54) (Figure 1.2):

• “Gestational age” (or “menstrual age”) is the time elapsed between the first day 
of the last normal menstrual period and the day of delivery. Gestational age is 
conventionally expressed as completed weeks. 

• “Postnatal age” is the time elapsed after birth. It is usually described in days, 
weeks, months, and/or years. 

• “Postmenstrual age” is the time elapsed between the first day of the last 
menstrual period and birth (gestational age) plus the time elapsed after birth 
(postnatal age). Postmenstrual age is usually described as the number of 
weeks and is most frequently applied during the perinatal period beginning after 
the day of birth. 

• “Conceptional age” is the time elapsed between the day of conception and the 
day of delivery. 

Figure 1.2. Standard terminology for neonate ages (Modified 
from Engle WA (53)

Pharmacokinetic characteristics in pediatrics are greatly different from adult and even 
among the childhood (neonates versus infancy and children). The first year of age is 
associated with major changes in processes affecting the absorption, distribution, 
metabolism and excretion of drugs. The rate of development of these processes is 
maximum from birth to one month of age but changes also occur rapidly during infancy 
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(1 month to 1 year), as well as in children (1 year through to puberty). During postnatal 
age, the maturation process takes place at several rates and patterns, giving a great 
pharmacokinetic variability within neonates as a reflex of the immaturity of various 
organs involved in drug disposition. So that, nowadays is widely accepted that the 
newborn infant cannot be considered as a “small adult”. Maturation of pharmacokinetic 
processes occurs gradually until equalling those of adults, early (gastric emptying and 
tubular secretion maturation take place during the first 6 months of life) or later 
(compartmental volumes and metabolic activity achieved total maturity around 15 years 
of life). Table 1.3 summarizes some of the most important differences of 
pharmacokinetics between the preterm and born at term neonates compared to adult, 
and the derived pharmacokinetic consequences. 

Table 1.3. Differences of pharmacokinetics between newborns and adults and derived 
pharmacokinetic consequences. 

Age group Pharmacokinetic 
parameter Preterm 

neonate 
At term 
neonate 

Pharmacokinetic 
consequence Examples

Absorption ↓ ↔ ↓ AUC Penicillins, 
sulfonamides 

Distribution     
Body water ↑↑↑ ↑↑ ↓ Cmax of water-

soluble drugs 
Gentamicin, 
digoxin 

Body fat ↓↓ ↓ Minimal clinical 
effect 

- 

Metabolism     
Hidroxilation ↓↓↓ ↓↓ ↓ Clearance Diazepam 
N-demethylation ↓↓↓ ↓  Theophiline, 

caffein 
Acetilation ↓ ↓  Sulfonamides 
Glucuronidation ↓↓ ↓  Chloramphenicol

Renal excretion     
Glomerular filtration ↓↓ ↓ ↑ AUC 

↑ t1/2

Gentamicin 

Tubular secretion ↓↓ ↓ ↑ AUC 
↑ t1/2

Gentamicin 

↑: increased;    ↓: decreased;     ↔: unaltered.  
Source: George W. Rylance (55)

Systemic action of a drug depends on its concentration, that is related to 
pharmacokinetic processes. For this reason, the knowledge of pharmacokinetic 
characteristics and of all potential physiological and pathological modifiers is of great 
importance in order to optimize pharmacological treatments. In addition to the 
physiologic complexity during the first days of life, there are several factors that 
contribute to the lack of knowledge in pediatric clinical pharmacology. First of all, the 
ethical-legal considerations related to pediatric studies (being sometimes a great 
barrier to do them). Secondly, the lack of micromethods suitable for drug assay in small 
serum and plasma samples. And finally, the refusal to accept routine drug monitoring 
as an approach capable of generating scientific and valuable data (54). 
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1.2.1 Drug absorption 

The gastro-intestinal absorption of drugs is mainly done by passive difusion. It depends 
on several factors, changing from individual to individual, but mainly on pH and gastric 
emptying time. Both factors affect the solubility and the degree of ionization of drugs, 
as well as gastro-intestinal motiliy (56). Moreover, these factors are markedly different 
between neonates and those present in older children and adults. 

At birth, gastric pH is usually neutral (between ph 6 and 8) because of the presence of 
amniotic fluid. But it transitionally falls within the first 24 hours to values of 1 to 3. 
Subsequently, until day 8 to 10 of life there is practically no acid secretion, with a 
condition of more or less relative achlorhydria. From this moment, there is a gradual 
acidification that equals pH to adult values around 3 years of life, coinciding with the 
maturation of the acid secretion mechanisms (54). Gastric pH differences affect the 
absorption of several drugs, usually producing an increase of the absorption of basic, 
and a decrease of those with weak acid nature. Since most orally administered drugs 
are absorbed in the small intestine, the rate of gastric emptying is an important 
determinant of the rate and extent of drug absorption. The rate of gastric emptying 
decreases from birth until equalling those of adults, approximately around 6 to 8 
months of life, depending on several factors, as gestational age (it is greater in preterm 
than in neonates borned at term) (57). 

Also irregular and unpredictable gastrointestinal motility explain the slower absorption 
of neonates compared with older infants. Table 1.4 displays some drugs showing 
modified or unchanged bioavailability in neoates compared with adult. 

Table 1.4. Bioavailability of some drugs during neonatal period compared to 
adult. 

Decreased absorption Unchanged 
absorption 

Increased absorption 

Nalidixic acid Co-trimoxazole Amoxicillin 
Phenytoin Diazepam Ampicillin 

Phenobarbital Digoxin Penicillin G 
Paracetamol Eritromicin  
Rifampicin Phenilbutazone  

 Sulfonamides  

Absorption following intramuscular administration depends mainly on the regional blood 
flow. So, situations with a low peripheric perfusion, such as in low heart rate or in the 
distress respiratory syndrome, can compromise the absorption if using this route of 
administration. In the neonate, the intramuscular absorption pattern may considerably 
change during the first 2 weeks of extrauterine life. But there are some cases 
(aminoglycosides, ampicillin and carbenicillin), in which the time to achieve maximum 
concentrations after intramuscular administration is comparable among neonates, 
pediatrics and adults (58). Percutaneous absorption, inversely related to the thickness 
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of the stratum corneum and directly related to skin hydration, is clearly increased in 
neonates. So that, chemical drugs applied to the skin of a premature infant may result 
in an inadvertent poisoning. 

1.2.2 Drug distribution 

Distribution of drugs is mainly affected by the quantitative and qualitative availability of 
plasma proteins and by the relative size of body compartments. All these factors are 
clearly different among neonates, pediatrics and adults (59). 

Plasma protein binding of drugs depends on the amount of proteins, the affinity 
constant of the drug for them and the presence of patho-physiological conditions and/or 
compounds capable of modifying the drug-protein interaction. In the newborn, the 
concurrence of several factors leads to a decreased plasma protein binding compared 
to older children and adults (54): (i) a lower plasma protein concentration, not being 
equal to adult until 10-12 months of life, (ii) a qualitatively different albumin (fetal 
albumin shows a lower affinity for drugs), and (iii) endogenous competing substrates, 
such as bilirrubin and free fatty acids, that compete for protein union. Reduced protein 
binding will change the relationship between total and free (presumably active) 
amikacin concentrations, and will also result in amikacin being distributed more widely 
through the body, increasing the apparent volume of distribution of the it. Table 1.5 
shows some examples of drugs with different distribution volumes between neonates 
and adults as a result of the different protein binding. 

Table 1.5. Distribution parameters of some drugs in neonates and adults. 

% Protein binding Vd (L/Kg) Drug 
Neonates Adults Neonates Adults 

Gentamicin <10 <10 0.77-1.62 0.30-0.67 
Theophylline 32-48 53-65 0.20-2.80 0.44-0.50 
Diazepam 84 94-98 1.40-1.82 2.20-2.60 
Phenytoin 75-84 89-92 1.20-1.40 0.60-0.67 
* Source:Rebecca L Milsap, William J. Jusko (59)

The distribution volume of drugs is also influenced by body composition, which 
depends on both gestational and postnatal ages (Table 1.6). In preterm, total body 
water comprises nearly 92% of bodyweight, with the extracellular fluid volume 
accounting for 65% of bodyweight. Increasing postnatal age, percentage of total body 
water decreases and body fat and intracellular volume increases, at the same time. 
Water-soluble drugs, mainly distributed to the water compartment, will be the most 
affected, showing distribution volumes in the neonate higher than in adult. That is the 
case of aminoglycosides, whose differences in the distribution volume is due to only 
differences in body composition, as their protein binding is really low (60). 
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Table 1.6. Body composition at different ages 

 Body water (%) 

Extracellular 
fluid 

Intracellular 
fluid 

Total body 
water 

Body fat (%) 

Preterm 65 25 92 <1% 
Neonate 45 35 75 15% 
Adult 20 40 60 30% 

Because of the expanded apparent volume of distribution in neonates, for a given 
dose, maximum concentrations will be lower than in adults. 

1.2.3 Metabolism 

During the neonatal period, both hepatic enzymatic and blood esterase activities are 
decreased (57). Enzymatic microsomal system is already present at birth, but its 
activity is quite lower than that of older children and adults. Therefore, at birth a 
maturation process begins, which increases with both gestational and postnatal ages, 
being slower in preterms than in born at term (61). Phase I metabolism processes 
(hydroxylation, deacetylation and oxidation) develop quickly, equalling to that of adult 
around the 6 months of life. Phase II reactions (conjugation) are usually reduced or do 
not exist, as gluco-conjugation reactions, exclusives of adults. During the neonatal 
period, only glycine or sulphate conjugations are present. This is why theophylline is 
only metabolized to caffeine in neonates (62). The immediate consequence of the 
hepatic metabolism immaturity is a more prolonged elimination half-life value. Several 
mechanisms to compensate the decreased enzymatic function are possible, either 
general, as the relative higher size of the liver and the higher hepatic flux compared 
with adult, or specifics, such as the case of phenobarbital, whose decreased 
conjugation is compensated by the elimination of the inaltered drug and its conjugated 
metabolite by urine. For acetaminophen, a sulphuric conjugation occurs as an effort to 
compensate the lack of conjugation with glucuronic acid (63). 

Blood esterases activity is also decreased, mainly in preterm, in which activity levels 
similars to those of born at term are reached around 10 or 12 months of postnatal age. 
The decrease of blood esterases activity, joint to the characteristic low distribution 
volume of the anesthesics in neonates, could be the reason of the prolonged effect 
observed in this drugs at birth. 

Other functions also decreased during the neonatal period can affect the disposition of 
some drugs. The incomplete development of biliar function can modify the disposition 
of those drugs undergoing gluco-conjugation and enterohepatic circulation. Pancreatic 
enzyme activity can also be incomplete at birth, being lower in premature than in full 
term neonates, but at 1 week of postnatal age, is greater in preterm than in full term 
neonates (64). 
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Prolonged elimination half-life values in neonates involve either lower doses or wider 
dosage intervals to achieve drug concentrations within the therapeutic range. Table 1.7 
summarizes the differences in the elimination half-life values of some drugs between 
neonates and adults. 

Table 1.7. Comparative elimination half-life values of some 
drugs during neonatal period and adulthood 

Elimination half-life (hours) 
Drug 

Neonates Adults 
Diazepam 25-100 15-25 
Digoxin 60-107 30-60 
Phenytoine 30-60 12-18 
Phenobarbital 100-500 64-140 
Paracetamol 2.2-5 1.9-2.2 
*Source: P.L. Morselli (54)

1.2.4 Renal excretion 

At birth, renal function is greatly reduced, both glomerular filtration (approximately 
around 30-40% of that in the adult) and tubular secretion (around 30-40% of that in the 
adult). The maturation of these processes of renal function takes place at different 
rates and according to gestacional and postnatal ages, achieving adult values around 
6-12 months of life. The drug filtration process depends mainly on (i) the drug protein 
binding, (ii) the renal blood flow and (iii) the area and filter characteristics (glomerular 
membrane). Renal blood flow increases with age as a result of an increase in cardiac 
output and a reduction in peripheral vascular resistance. Neonate kidney can only get 
around 5-6% of the cardiac output, compared with the 15-20% of the adult. Renal 
plasma flow averages 12 mL/min at birth and increases to 140 mL/min by one year of 
age. The most important consequences of the maturation of this process affects to 
those drugs that are mainly eliminated by glomerular filtration, such as 
aminoglycosides. 

At birth, in the full-term newborn, the postnatal renal maturation involves only 
elongation and maturation of tubules, while in the premature there is also a deficiency 
in glomerullus (65,66). Tubular function is also influenced by several factors, such as 
the reduced capacity to concentrate urine, the lack of a diurnal circadian rhythm and 
the low urinary pH (it can affect mainly the excretion of acid compounds, giving an 
increase of the re-absorption rate). 

The clinical consequences of renal maturation become apparent when considering 
drugs that are mainly eliminated unchanged through the kidneys (penicillins, 
cephalosporines, digoxin, aminoglycosides…). In those cases, the high elimination 
half-life in neonates will be a potential toxicity risk in this population. Among neonate 
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population, in order to achieve the same concentrations at steady state, preterms 
should have lengthened dosing intervals or decreased individual doses, compared with 
full term. 

1.2.5 Physio-pathological factors on neonatal pharmacokinetics  

The design of dosage regimens in neonates leads to consider the most important 
physiological factors, such as age or weight, affecting drug pharmacokinetics. Other 
common pathological conditions should also be taken into account. Table 1.8. 
summarizes the most frequent pathological conditions and the corresponding 
pharmacokinetic processes affected. 

Table 1.8. Pathological conditions in neonates affecting pharmacokinetic processes. 

Pathology Phisiological change Pharmacokinetic 
alteration 

Gastroenteritis 
Inflammatory bowel 
disease 

Increase of intestinal motility ↓ Absorption 

  
Intestinal obstruction Delay on gastric empty Delay on absorption 

Hepatic cholestasi 
Biliar obstruction ↓ Biliary salts excretion ↓ Absorption of water-

soluble compounds 

  
Hyperbilirrubinemia Displacement of binding plasma 

proteins 
↑ Free fraction 

Respiratory distress 
syndrome 
Ductus arteriosus 
Cardiac insufficiency 
Perinatal asphyxia 
Septic shock 

↓ Splenic area perfusion  
↓ Cerebral perfusion 
↓ Hepatic perfusion 

↓ Oral and im BDP*  
↓ Tissular distribution and 
cross of BBB* 
↓ Enzymatic microsome 
activity 

  
Intrauterine growth 
retardation 

↓ Albumin concentration 
Delay on gastric empty 
↓ Intestinal area surface 

↑ Free fraction  
↓ Absorption 

Necrotizing enterocolitis 
Respiratory distress 
syndrome 
Gastroenteritis 

↓ Binding plasma protein 
↑ Tissular distribution 
↑ No-ionized fraction for weak-acids 

↑ Volume of distribution 

  
Edema ↑ Intracellular water 

Delay on gastric empty 
↑ Volume of distribution 
↓ Absorption 

*BDP: bioavailability; BBB: blood brain barrier 
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The most influencing factors of the absorption process are the rate of gastric emptying, 
intestinal motility and blood flow in splenic area. Several clinical situations can affect 
this process: diarrhoea (gastroenteritis or inflammatory bowel disease) by an increase 
of gastro-intestinal transit, malnutrition by a delay on gastric emptying and a decrease 
of the intestinal area surface, and edemas by a delay on gastric emptying (57). 
Pathologies related to biliar obstruction can also cause a reduction of the absorption of 
the drugs undergoing enterohepatic recirculation. When the obstruction goes with 
hyperbilirrubinemia, the high affinity of bilirrubin for serum albumin can either be 
displaced by several drugs, resulting in kernicterus, or even bilirrubin can displace 
other drugs from their binding site, such as phenytoine and phenobarbital. 

The distribution volume can also be modified by several factors as the acid 
environment caused by some conditions (necrotizing enterocolitis, respiratory distress 
syndrome) and the edema (shock, hypoxia, renal diseases, cardiac insufficiency). The 
edema can cause an increase of the volume of distribution of water-soluble drugs by 
increasing extracellular volume. Conditions involving hypoxia not only affect the volume 
of distribution but also can produce a decrease of the renal excretion of some drugs 
due to a lack of control of the filtration process. There are two common situations on 
the neonate that results in hypoxia: respiratory distress syndrome and meconium 
aspiration syndrome. 

Renal clearance can also be modified by several pathological conditions, such as 
shock and sepsis, which cause a decrease of the cardiac output by decreasing 
systemic venous return, and consequently the blood renal, hepatic and visceral flow. It 
will be important mainly for those drugs whose clearance depends on the blood renal 
flow, such as vancomycin, digoxin, beta-lactam antibiotics and aminoglycosides. 
Finally, all pathologies than can modify renal hemodynamics can also delay renal 
maturation or decrease its functional capacity, resulting in a decrease of the clearance 
of drugs eliminated through the kidneys. 
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1.3 PHARMACOMETRICS 

The term of pharmacometrics first appeared in the literature in 1982 in the Journal of 
Pharmacokinetics and Biopharmaceutics (67). Since this time, the importance of 
pharmacometrics in optimizing pharmacotherapy and drug development has been 
recognized, and increasing rate of literature focused on this field has been observed. 
Pharmacometrics is therefore the science of developing and applying mathematical 
and statistical  methods to (i) caractherize, understand and predict a drug’s 
pharmacokinetic and phamacodynamic behaviour; (ii) quantify uncertainty of 
information about that behaviour; and (iii) rationalize data-driven decision making in the 
drug development process and pharmacotherapy. In effect, pharmacometrics is the 
science of quantitative pharmacology (68). Due to the current importance of this field, 
guidelines for industry have been published by the FDA (1999) (69) and by the EMEA  
(2007) (70). 

Pharmacometrics begins with pharmacokinetics (PK), which can be defined as the 
study of various biological processes affecting the rate of disposition of the drug in the 
body: dissolution, absorption, distribution, metabolism and elimination. The counterpart 
to pharmacokinetics is pharmacodynamics (PD), which in short is the study of the 
biological effects induced by drugs on the body. PK/PD modelling provides the 
integration of PK and PD models to obtain a good understanding of the dose-exposure-
response relationship. 

Every drug has a so-called “therapeutic window” (Figure 1.3). It means that for every 
drug there is a certain range of concentrations that promise successful treatment, while 
at the same time have a sufficiently low chance for adverse events. The probability of 
treatment failure is acceptable large with concentrations below and upper the 
“therapeutic window”. This concentration range exists for the majority of drugs, being 
quite wide for some and extremely narrow for others. It is in particular for the ones with 
the narrow window that pharmacokinetic monitoring is of benefit. 
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Figure 1.3. Concentration ranges 
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To achieve drug concentrations within the “therapeutic range”, there are prestablished 
dose regimens for almost all drugs, but even in these cases, monitoring drug 
concentrations sometimes is required to optimize efficacy and reduce the toxicity of the 
treatment. 

In order to be applied to clinical practice, pharmacokinetics requires the use of models 
that describe the evolution of serum drug concentrations over time, from which it can 
be estimated the pharmacokinetic parameters that characterize the drug behaviour in 
the individual and allow to predict serum concentrations that will be achieved after the 
administration of a given dose. Organisms are complex systems in which it is difficult to 
establish quantitative relashionships between dose, route of administration and drug 
concentration in different body regions as a function of time. For the description of the 
temporal evolution of drug levels, mathematical models are used. Among all the 
models, compartmental are the most used in pharmacokinetics (71). A compartment 
represents a fraction of biological material in which the drug is supposed to be 
uniformly distributed and has the same kinetic properties. Obviously, the body contains 
no such distinct compartments, but through this approach drug plasma concentrations 
can be predicted satisfactorily. The body is a very complex system and could 
theorically be divided into a large number of compartments. However, this would 
require a complex mathematical treatment and a large number of observations. For this 
reason, in practice it is used a simplification where the body is considered to be 
constituted by the minimum number of compartments with which is possible to describe 
the kinetics of the drug (one-compartmental, two-compartmental or a maximum of three 
compartments). Figure 1.4 shows the schematic of a two-compartment model for a 
drug which is absorbed into the central compartment. From there, the drug can be 
either eliminated or distributed to the peripheral compartment. There is also transport 
back from the peripheral compartment and into the central one once distribution has 
started out. 

Given the complexity of the human body, usually it is not feasible to measure the 
concentrations of drugs or metabolites at every location, or compartment, in the body 
and so, to achieve the concentrations of the active drug at the site of action. In most 
cases, one only has plasma-samples to work with, and has to extrapolate 
concentrations in other locations, correlating this concentration with the success or 
failure of treatment. The integration of pharmacokinetic and physiopatological data of a 
specific population of interest allows to obtain a more rational and effective 
individualized therapeutic strategy (72). 
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Ka: absortion constant 
V1: distribution volume into central compartment 
V2: distribution volume into peripheral compartment 
Q: inter-compartment distribution 
CL: total clearance 

Figure 1.4. Schematic of a two-compartment model 

The estimation of pharmacokinetic parameters can be considered from two 
approximations. Initially, pharmacokinetic studies were designed to obtain the 
maximum information about the disposition of the drug in an individual, without 
considering the associated interindividual variability of the pharmacokinetic parameters. 
It was the individual pharmacokinetics. Later, the attention was focused into the 
estimation of the population pharmacokinetic parameters in order to define the typical 
kinetic behaviour of a drug in a target population, but also the interindividual variability 
associated. It was the so called population pharmacokinetics, whose is the individual 
dosing considering all physiological and patological factors that explains part of the 
associated variability (73). 

1.3.1 Individual pharmacokinetics 

This approach allows to study the kinetic of a drug in a particular individual, not 
focusing on the intersubject variability of the pharmacokinetic parameters in the target 
population. The estimation of the individual pharmacokinetic parameters is performed 
after fitting given mathematical models to the concentration vs time data. The 
availability of the individual pharmacokinetic parameters allows to calculate appropriate 
dose regimens for each subject. Several methods can be applied to study individual 
pharmacokinetics. 

1.3.1.1 Linear Regression 

The linear regression analysis allows to fit a linear regression equation to the drug 
concentration vs time data in order to be used for concentration predictions. In 
pharmacokinetics, the relationship between variables is generally not linear, so the 
application of this analysis requires the prior linealization of the function (logarithmic 
transformation). From transformed plasma concentrations, it is calculated the straight 

V1 V2 

Ka 

CL 

Q 

DOSE 



Introduction 

27 

that minimizes the sum of squares (SS) of the differences between the observed and 
the predicted concentrations by the regression line (1.1). 

( )[ ]
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where Yi refers to the experimental values of dependent variable and f(Xi) the predicted 
values by the selected equation. 

The linear regression is a simple and quick technique with several advantages: (i) the 
reduced number of blood samples required to estimate the pharmacokinetic 
parameters, (ii) the ease of implementation (it does not require any computer), and (iii) 
the greater accuracy of the predictor algorithms. However, it has some drawbacks: (i) it 
does not allow to use all available information of an individual. It uses only the 
concentrations values from a dose interval, discarding all previous information of the 
individual. For this reason, the estimation of the pharmacokinetic parameters depends 
on the clinical situation in which it is the individual at this time (renal function, hydration 
status, weight, etc…), and so, the results obtained are less consistent along the time 
and with a limited posterior predictive value for future plasma levels; (ii) the error 
associated to the previous linearization of the functions (not possible to do for 
variances or its associated errors), causing errors in the estimation of parameters, and 
(iii) it ignores any available prior population information about the pharmacokinetics of 
the drug (74). 

1.3.1.2 Non-linear Regression 

The non-linear methods do not require previous linearization of data. The estimation of 
model parameters is done by the use of iterative algorithms that start from an initial 
value (initial estimates) and search for the combination of these values that minimizes 
a previously defined objective function. The most used iterative algorithms are the 
direct search (Simple, Nelder-Mead) and the gradient search (Steepest Descent, 
Mardkart, Gauss-Newton). 

Among the large number of non-linear regression methods, Ordinary Least Squares 
and Expanded Least Squares are the most importants. The latter is the most widely 
used in clinic, and the function to be minimized is (1.2): 
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where n is the number of serum concentrations, Ci is the drug concentration at time t, 
Pm are the parameters to be estimated, f(Pm,t) is the equation of the model to fit the 
data, and Wi is a statistical weighting factor. The weighting factor into the dependent 
variable indicates that not all the experimental data either have the same degree of 
reliability or is not affected by the same degree of error (it depends on the variance of 
the experimental data). 

In general, non-linear regression methods provide good pharmacokinetic estimations 
(eliminate the errors associated with linearization). There are several advantages 
associated to the use of these methods: (i) they allow to use all available information 
(old data) and properly weighted data, (ii) they also allow model updating adjustments 
by introducing some clinical descriptors based on physiological and clinical 
characteristics of the individual that can vary along the treatment (i.e. weight, surface 
area, creatinine clearance), and (iii) they do not require concentrations in steady state 
to be applied (75). The most important limitation of this approach is the low reliability 
and accuracy of the obtained parameters when the number of concentration-time data 
is low, a situation very common in the clinical practice. Some other drawbacks are (i) its 
required, at least, the same number of serum concentration levels as the PK 
parameters being estimated, being of little use at the beginning of the treatment, (ii) for 
its use they require a computer and enough experience, and (iii) they ignore the 
possible knowledge of the population pharmacokinetic behaviour of the drug. 

Gentamicin and amikacin pharmacokinetic parameters in the newborn have been 
obtained and compared (76) by non-linear regression using program MULTI2(BAYES) 
(77). 

1.3.1.3 Bayesian methods 

In clinical pharmacokinetics is common to have a very limited number of concentration-
time data, resulting in a lost of precision of the parameters determined individually. It 
can lead to the estimation of individual parameters far from the parameters of the 
population with similar characteristics to the monitored patient. In order to solve what 
represents the major limitation of the non-linear regression methods, an alternative 
method based on Thomas Bayes (1702-1761) theory (78) was introduced. This theory 
allows to calculate the likelihood of an event based on the initial probability and the 
contribution of new data. 

Unlike methods described above, Bayesian method allows to incorporate into the 
model not only experimental information (concentration-time data) obtained for a given 
individual, but also priori known information about the pharmacokinetic behavior of the 
drug in a population with similar characteristics to those of the individual (population 
information). So, the application of Bayes theory allows, knowing the probability that an 
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even occurs, modify its value when we have new information. It describes the 
quantitative relationship between the a priori probability that the individual has a 
defined PK parameters before knowing its plasma concentration and the resulting a 
posteriori probability to obtain similar parameters once analytical results are known. 

In this method, the objective function to minimize, using non-linear regression is (1.3): 
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where, P*j and Pi are the mean population parameters and the estimated for the 
individual, �2Pj the interindividual variance of P*j, Ci,t the observed drug concentration 
at time t, f(Pm,t) the predicted concentration at time t, and �2Ci the variance of Ci 

(analytical error and interindividual variance). This function can be divided into two 
parts, one relative to the individual information, and the other to the population. 
Increasing individual information (greater number of serum concentrations), the 
individual contribution to the objective function increases, and the solution is close to 
that obtained by non-linear regression. However, at the begining of the treatment there 
are little serum concentrations of the individual, so the population term contribution is 
higher than the individual. In this case, the schedule dosing is based, mainly, on the 
population information. 

Bayesian method has some advantages: (i) the information required is minimum (only 
n�1 during the monitorization, but being able to predict the first optimal dose without 
any drug concentration data), what is of great utility in therapeutic drug monitoring, 
where usually there is limited available information, (ii) having a good population 
model, the predicitive function of Bayesian method is higher than the convencional 
methods (74). The most important disadvantage related to Bayesian methodology is 
the need to have prior good information of the pharmacokinetic parameters. The 
suitability of the prior population information influence on the fiability and predictive 
capacity of the bayesian methods, particularly when the individual information is 
limited. 

1.3.2 Population pharmacokinetics 

Population pharmacokinetics can be defined as the study of variability in plasma drug 
concentrations in a population representative of the individual of interest. This type of 
study focuses on certain demographical, pathophysiological, physiological, 
therapeutical, and other kinds of features that vary between individuals, and that are 
known to possibly be responsibles of some of the differences in the achieved drug 
concentrations (i.e, obese patients have an increased body-mass, going to a higher 
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distribution volume. A given amount of drug will therefore result in a lower apparent 
concentration than in a patient with normal weight). 

Unlike traditional pharmacokinetic studies, population pharmacokinetics is greatly 
concerned about the identification and measurement of the sources of variability 
responsibles of some of the differences in drug concentrations. Taking it into account, 
the dose given to each patient could be modified ensuring optimal therapeutic 
concentration (68). Generally, variability is divided into interindividual and residual 
variability. The interindividual variability is a biological imperative, and stems from the 
simple fact that every person is biologically different from practically all others. This 
leads in most cases to variations in plasma drug concentrations which can be quite 
large. Residual variability is a combination of sources of variation, such as 
intraindividual differences, interoccasional differences, and errors made in 
measurement, dosing and modelling. Although population pharmacokinetics try to 
explain and measure most of all the variabilities, there will almost always be a 
remaining unexplained variability, both interindividually and intraindividually. This may 
be because of time-dependent pharmacological variations within each patient, errors 
during sampling, or possibly other unforeseen events. It is important for the optimal 
treatment of patients to have a sense of understanding for how these unexplained 
differences behave, and the magnitude of them. 

A great advantage of population pharmacokinetics is that it allows to gain quite 
extensive and integrated information on pharmacokinetics from sparse data, being also 
usable on dense data, and even mixed sparse/dense data. This makes it possible to 
analyze and gain information from studies of unbalanced design, and also some that 
would otherwise have been excluded because they do not normally lend themselves to 
pharmacokinetic analysis. 

The establishment of a good population model is really important not only to apply 
Bayesian method effectively, and then to be able to predict individuals serum 
concentrations, but also to create dose regimens when there is not previous 
information about individual pharmacokinetic parameters (72). The use of population 
approach has been a major development in pharmacometrics. A brief summary of the 
different population methodologies is given in the following sections. 

1.3.2.1 Naïve pooled data approach 

This method, together with Naïve Averagin Data, belongs to the group of “Simple or 
Naïve Methods”. As the name implies, the Naïve Pooled Data (NPD) is a method that 
treat all the data from the different patients as if it came from a single patient. 
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The main advantages associated to this method are that, (i) it is easy to use and 
requires only little computational power, and (ii) it can be used on a variety of data, 
from experimental to routine pharmacokinetic data. But there are also some drawbacks 
that lie mainly in the simplification process: (i) by pooling, there is a lost of detailed 
information of each subject and of variation between individuals. So that, this can lead 
to the mistake of believe that the data is neat and simple, or also possible trends in 
individual curves, smothered in the multitude, can become unrecognizable. For this 
reason, the method works specially well when there are low variations between 
individuals, what is rarely in the case of humans, so that limiting its usefulness; (ii) 
although this approach is interesting because of its simplicity, it performs poorly in 
terms of parameter estimation, and (iii) also sources of variability are confused 
because no separation of interindividual and residual variability is possible. 

The utility of this method to the clinical practice is really limited, because dose 
adjustment is done without taking into account physiological and clinical changes that 
may be occur in an individual. 

1.3.2.2 The two-stage approach 

The two-stage approach is a traditional pharmacokinetic analysis, designed to be used 
in the data-rich environment. As the name indicates, mean population parameters are 
obtained through two stages. The first part entails using nonlinear regression to 
estimate individual pharmacokinetic parameters from the concentration-time data 
gathered. These estimates are then used in the second step to calculate statistics such 
as mean parameter estimates, variance and covariance of these parameters estimates. 

Whilst this approach allows the separation of interindividual and residual variability, it 
tends to over-estimate either interindividual or residual variabilities. Besides, it requires 
that data are rich enough so that all parameters can be estimated for each individual. 
So, being a method easy to use, it gives good parameters estimations of the population 
when it is done with a large number of individuals and with rich data (79). 

1.3.2.3 Nonlinear mixed-effects modelling 

In the mixed-effects modeling, data from all individuals are used to simultaneously 
estimate the typical population parameters and the variability (interindividual and 
residual) associated. Even so, during this process the individual is not lost in the 
masses, and it is possible to make predictions regarding individual patients through the 
estimates of population parameters and their variability (and not least the covariates 
that influence these parameters) (80). 
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This approach is based on the principle that individual pharmacokinetic parameters of a 
population came from the distribution of this parameter. This distribution can be 
described by the mean parameter population and its interindividual variance. So, each 
individual pharmacokinetic parameter can be expressed as mean population plus a 
typical deviation for this individual. This deviation is the difference between the 
parameter population mean and the individual parameter. 

The term “mixed-effects” comes from the fact that a model built this way will contain a 
fixed structure and a randomness block (81): 

• The fixed structure, quantify mean pharmacokinetic parameters values of a 
drug in a population, and the relation among pharmacokinetic parameters. 

• The randomness block, quantify the magnitude of interindividual and 
intraindividual (residual) variability. 

The use of nonlinear mixed-effects modeling offers some advantages: (i) sparse or rich 
data can be analysed, (ii) data do not have to be balanced, (iii) samples do not need to 
be taken at the same time for all subjects, and (iv) rich and sparse data can be 
analysed simultaneously. 

The use of nonlinear mixed-effects modelling on population pharmacokinetics makes 
possible to design less extensive studies than what is needed for a two-stage 
approach, and still gives valid results. These designs are less restrictive to the patients, 
which make it easier both for the participants and the conductors. Mixed-effects 
modelling is currently the method of choice for analysing pharmacokinetic data arising 
from clinical studies. 

Nonlinear mixed-effects modelling can be performed by two approximations: 

i. Parametric: It assumes that the pharmacokinetic parameters of the studied 
population belong to a known distribution (normal or log- normal), characterized 
by a mean and its dispersion measures. The most used computer program for 
data treatment is NONMEM (“Nonlinear Mixed-Effects Model”) (82).

ii. Non-parametric: This approach arises from the impossibility to characterize 
adequately the population parameters of samples with non-parametric 
distributions. It is based on the probability (density function) that some of the 
studied parameters explain the process to be studied (80). There are two 
approximations: Nonparametric maximum likelihood method (NPML) (83) and 
Nonparametric expectation maximisation method (NPEM) (84). Both have the 
inappropriate that do not allow to separate the sources of inter- and 
intraindividual variability, and also that it is not possible to quantify the 
confidence limits of the distributions obtained.
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During the last decades several softwares that implements the non-linear mixed-effects 
modelling (WinNonmix (85), NONMEM (82), Monolix (86)) have been developed. 
NONMEM was the first such program that stands for nonlinear mixed-effects modelling. 
This program allows to analyze large quantities of pharmacokinetic data, and the most 
important advantage of NONMEM is the possibility to use pharmacokinetic data from 
clinical practice, even though when there are not many samples by individual and they 
have been obtained in different circumstances. It has other several advantages: (i) the 
estimation of parameters is more efficient, (ii) it can estimate conficence intervals of the 
parameters obtained, and (iii) it is possible to evaluate statistically the fit of the model 
(79,87). The main obstacle is that it is based on a complicated theory and it is not a 
particularly user-friendly program. 

The development of a model with NONMEM takes into account both fixed structure and 
randomness block. The model built of the fixed structure has two stages: 

i. Development of a base model (which describes observed concentrations 
without relating pharmacokinetic parameters with individual characteristics), that 
includes a structural part, pharmacokinetic model (one-, two- and three-
compartmental models are the most usual), and a random variability part, 
statistical model (defines both interindividual and residual variability). 

ii. Introduction of covariates into the base model to obtain the final model. 

The randomness block of the model will quantify the magnitude of all kind of 
variabilities: 

Inter-individual variability is the result of the simple fact that we are not all alike, even 
physiologically. Represent the difference (η) between the individual pharmacokinetic 
parameter and the population pharmacokinetic parameter (typical value of the 
parameter into the population). The interaction between η and the typical value can be 
modelled as: 

• Additive model: η is added to the population typical value of the parameter. In 
this case, parameter variance is constant along independent variable range 
(1.4). 

i1pop1i1 ηθθ += (1.4) 

θ1i� is the 1-th pharmacokinetic parameter for the i-th individual, θ1pop is the 
population “typical value” of the 1-th�parameter, η1i is a random variable for the 
i-th individual on the 1-th parameter. 

• Proportional model: η is multiplied to the population typical value of the 
parameter. In this case, parameter variance increases with the increase of 
parameter value (1.5 and(1.6). It can be modelled as: 
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( )i1pop1i1 1 ηθθ +×= (1.5) 

( )i1epop1i1
ηθθ ×= (1.6) 

Equation (1.5) assumes a normal distribution, whereas equation (1.6) assumes 
a log-normal distribution. 

Both models have a distribution of 0 and a variance of ωij
2. The variance-covariance 

matrix Ω includes variances ω2
1….n (n is the number of estimated pharmacokinetic 

parameters) and possible covariances that characterize interindividual variability of the 
pharmacokinetic parameters. 

Residual variability is the “noise”, or the associated errors, as well as intraindividual 
variance. Represent the difference (�) between observed concentrations and predicted 
by the structural model combined with the interindividual variability model. The 
interaction between � and the typical value can be modelled as: 

• Additive model: � is added to the function that describes the individual 
pharmacokinetic profile (f(pki,Di,tij)). Parameter variance is constant along 
independent variable range (1.7). 

( ) ijijiiij t,D,pkfC ε+= (1.7) 

Cij is the observed concentration of the drug in the individual i at j time; f the 
pharmacokinetic selected model; pki the group of pharmacokinetic parameters 
estimated for the individual i; Di the dose administered to the individual i; tij the 
independendent variable time, and �ij the residual error. 

• Proportional model: � is multiplied to the function that describes the individual 
pharmacokinetic profile (f(pki,Di,tij)). In this case, parameter variance increases 
with the increase of parameter value (1.8). 

( ) ( )ijijiiij 1t,D,pkfC ε+×= (1.8) 

• Combined model: is the combination of additive and proportional model, having 
two components of residual variability, one additive and another proportional 
(1.9). 

( ) ( ) ij2ijijiiij 1t,D,pkfC εε ++×= (1.9) 
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All of them have a distribution of 0 and a variance of �2. The variance-covariance 
matrix � includes variances �2

1….n (n is the number of estimated pharmacokinetic 
parameters) and possible covariances that characterize residual variability. 

1.3.3 Model performance 

A fundamental principle of modeling is that a model can never be proven, only 
disproved. Thus, model evaluation attempts to disprove a model by applying a series of 
evaluation tests to a model and its predictions. The more tests a model passes, the 
greater credibility the model will have. The degree of model evaluation will ultimately 
depend on the model objectives. Strategies for model evaluation have been object of 
intense research recently, and currently many advances in pharmacometrics are 
related to this area. 

It is now recognized that there is not a single statistic or graphic that allows selecting 
and evaluating a population PK model, therefore several diagnostics should be used 
together to evaluate a model performance. Commonly used diagnostics are presented 
making a distinction between numerical and graphical and simulation based 
diagnostics. 

1.3.3.1 Numerical diagnostics 

The Objective Function Value (OFV) measures the difference between observed and 
predicted values for a group of patients, describing how good a model is at fitting the 
observed data. It does this by assuming that the model is correct, and asks how 
probable is it to get data like that which has been observed if the model is true. It 
employs the -2log likelihood, or -2LL equation (1.10): 

�
=

��
�
�
�

�

�

��
�
�
�

�

�
�
�
�

�
�
� −

++=−
n

1i
2
i

2^

i
2
i

yy
log)2log(n)Llog(2

σ
σπ (1.10) 

By minimizing this value, one increases the likelihood of the model being a good fit for 
the data. To minimize -2LL one cannot do anything about the part nlog(2�), seeing as 
this is a constant. However it is possible to minimize the second part, also known as 
the “extended least squares” objective function. NONMEM looks for parameter 
estimates that will give the smallest possible -2LL. NONMEM can minimize the 
objective function by different estimation methods. The most used are: 
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i. FO (First-order estimation method): all η take the value of 0 (mean population 
of η is 0) during the estimation process. This is the default estimation method.  

ii. FOCE (First-order Conditional Estimation method): all η are considered during 
the estimation process. FOCE with INTERACTION is the most used version (it 
assumes that there is interaction between ε and η). 

However, the -2LL value does not say anything of interest by itself. It allows to compare 
models trying to describe the same data. By subtracting the lowest OFV from two 
models, one can see if one is significantly better than the other. The likelihood ratio test 
is a common test for statistical significance. If there are two models, one of which is 
nested within the other (a nested model is where one model can be written as a 
simplification of another model), we can test the significance of the parameter which 
differs between the two models. The difference between -2LL values follows a chi 
squared distribution, with the degrees of freedom being the difference in the number of 
parameters. For example, with a probability of 0.05, and 1 degree of freedom, the value 
of the chi distribution is 3.84. Thus, if the difference in -2LL values (i.e., the difference 
in NONMEM objective function) for two models that differ by only 1 parameter exceeds 
3.84, then the parameter is significant at p<0.05 level. In fact, the level of significance 
to accept/reject extra parameters in the model depends on the type of data analyzed, 
and the estimation method used (88,89). In the case of non-nested models, the log-
likelihood test does not apply, and other criteria such us the Akaike Information criteria 
have to be used to compare between models (90). 

The uncertainty in the parameters is an indicator of the reliability of the model. Ette et al 
2004 (91), indicates that the standard error for structural model parameters and 
random effects parameters should not exceed 25% and 50%, respectively. The 
standard errors for the model parameters can be obtained directly from NONMEM. 
From the standard errors provided, confidence intervals (CIs) can be computed under 
the assumption that CIs are symmetric around the point estimate of the parameter. In 
some cases the standard errors are not accurately estimated from the NONMEM 
output or it is not possible to estimate them. In those situations, CIs can be obtain with 
other methods such as log-likelihood profiling and parametric or nonparametric 
bootstrap. 

Correlation between parameters and conditional number, calculated from the eigen 
values, are additional useful information to get insight around model over-
parameterization. 

1.3.3.2  Graphical diagnostics 

Goodness-of-fit plots (GOF) have been used in the past to show how different aspects 
of the population data are described by the selected model. GOF plots are created to 
detect potential bias or problems in the structural model and/or the random effects 
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models, and are generated based on the (i) typical population predictions (PRED), (ii) 
individual model predictions (IPRED), (iii) observations (DV), (iv) residuals (RES), (v) 
weighted residuals (WRES), (vi) conditional weighted residuals (CWRES) (92) and time 
(TIME). 

Some authors have reviewed the several evaluation methods more often applied in the 
literature (93). A useful display is the observed data (DV) and the individual (IPRED) 
and population (PRED) predictions plotted versus time after dose (TAD). If IPRED vs 
TAD and PRED vs TAD are satisfactory, meaning that they look similar as DV vs TAD, 
it indicates that the model is improving. 

These plots are good for obtaining a general impression of the performance of the 
model. For getting more detailed look at how the predictions mate the observations, we 
can plot them against each other. The first one is to plot DV vs PRED (94), which is 
appealing in its simplicity and in that each individual’s data are not involved in making 
the prediction, except as being part of the data defining the population parameters. The 
most common manner of displaying this diagnostic is as a plot of observations versus 
population predictions (the latter often denoted “PRED”). A line of identity, and 
sometimes also a regression line, is included to illustrate how well the observations and 
predictions agree. This diagnostic may give a useful impression of the extent of 
variability in the data that is explained by the structural and covariate components of 
the model. However, a drawback is that there is no expected pattern for this plot. One 
possible solution to this is to generate a mirror plot, that is to create a PRED vs DV 
plot, where DV in this case corresponds to model based simulated observations and 
look for similarities in the trends between both plots. The second one, the plot showing 
DV vs IPRED, which is based on individual parameters estimates, is also very 
common. However, for this diagnostic to be informative on model misspecification the 
individual data has to be informative on the parameters that are estimated in the 
individual fit. Otherwise an overfit will occur and even a misspecified model can give 
agreement between observation and predictions. The ε-shrinkage (1.11) is used to 
quantify how informative this plot is, and thus will increase from zero to one as data 
becomes less informative. In Equation (1.11), SD(IWRES) is the standard deviation of 
IWRES. 

(IWRES)SD-  1 shrinkage- =ε (1.11) 

The DV vs IPRED plots have been reported to lose their power and become 
meaningless around shrinkage values of 20-30% and higher (95). Individual 
parameters are based on individual values of η, which are obtained from the estimated 
elements of the Ωmatrix. Individual η are often used for covariate selection. The 
concept of shrinkage is also applied to η, and a high η-shrinkage is associated with 
less reliable individual parameters. (1.12) shows how η-shrinkage can be calculated; 
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where SD(η) is the standard deviation of the empirical Bayes estimates of the 
interindividual random effects (η) and ω the population model estimate of the η. 
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1shrinkage (1.12) 

To get a more detailed impression of the differences between the predictions and the 
observations and how these differences are distributed over the independent variable, 
the plot IWRES vs TAD can be useful. An alternative, especially in the case when the 
data per individual is sparse, is to plot the WRES instead of IWRES. However, even 
when FOCE is employed to estimate the population parameters, the WRES is 
computed using the first-order (FO) approximation in NONMEM. It is not clear what 
statistical properties the WRES should have when using the FOCE approximation. In 
this case, has been proposed to use the conditional WRES (CWRES), when the FOCE 
approximation is used (92). 

1.3.3.3  Model evaluation 

Most of the used evaluation methods are based on simulation diagnostics. Simulation 
is defined as the use of a model and its parameters to predict possible outcomes. 
External and Internal methods can be distinguished.

External validation is the most stringent type of validation. It can be done when both 
input data to estimate and develop the model, and output data on which the model can 
be tested exist. It consists on the application of the developed model to a new data set. 
When a model is validated externally, it provides the strongest evidence for 
transportability. 

Internal validation has several approaches, which include data splitting, resampling 
techniques and simulation-based diagnostics, as described below: 

Bootstraping is a resampling method suggested by Bradley Efron in 1979 (96). 
Resampling has been defined as a method of repeatedly generating pseudosamples 
distributed according to the same distribution as the original sample. The procedure of 
interest is then carried out on each pseudosample and then the results of the 
application of these procedures to the pseudosamples are summarized. This 
methodology also allows to estimate the precision of the parameters estimations 
through the calculation of the confidence intervals associated to each. 

“Predictive check” is the name given to the multiple simulations that are made from the 
model and reference distributions created for features of the observed data. Within 
these diagnostics, the visual predictive check (VPC) refers to the plot of the time 
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course of the observations together with the time course of prediction intervals for the 
simulated values, this approach being a diagnostic of both the fixed and random effects 
parts of the PK/PD model (97). The numerical predictive check (NPC) is a related 
statistic derived from the simulated data used for the VPC (98). Heterogeneity in the 
design and in the model has to be low for a VPC to be informative (94). One way to 
account for this situation is to stratify VPCs by the variable that is varying (for example 
to stratify by dose or even a given covariate), but this can lead to few information per 
plot and therefore uninformative plots. Recently, in an effort to account for this 
situation, the predicted corrected VPCs (pc-VPCs) have been proposed (99). The pc-
VPC normalizes the observations and the model predictions by the typical model 
prediction in each bin of the independent variable.

Posterior Predictive Check (PPC) was suggested by DB Ruffin in 1984 (100) as a tool 
for constructing inferential procedures in modern statistical data analysis. In this 
approach a model is estimated directly from the index data, and then a new set of data 
is generated through the simulation of the resulting model. The simulated data set is 
compared with the index data to see if the model’s deficiencies have a noticeable effect 
on the substantive inferences. 

Normalised prediction distribution errors (NPDE) are a relatively new metric designed 
to allow the evaluation of non-linear mixed-effect models (101(102). Briefly, prediction 
discrepancies are obtained as the quantile of each observation within its predicted 
distribution. A model describes the data well when the predicted discrepancies are 
evenly distributed. 

The current model evaluation standards can only be handled in a practical and efficient 
manner with the help of tools specifically designed to aid in the developing process of 
population PK/PD models, such as PsN (http://psn.sourceforge.net/), Xpose 
(http://xpose.sourceforge.net/), Census (http://census.sourceforge.net/) and Pirana 
(http://pirana.sourceforge.net/). Also, software for data manipulation, statistical 
calculation and graphical display such as R (http://cran.r-project.org) and S-PLUSR 
(Copyright 1988, 2002 Insightful Corp) are widely used in the field of pharmacometrics. 
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The main objectives of this study were: 

1. To develop a population pharmacokinetic model for amikacin from data 
collected in the neonatal and pediatric units of Vall d’Hebron University Hospital 
during routine clinical monitoring of a neonatal population with postnatal ages 
�90 days, and to evaluate the effect of several phisiologyical and pathological 
factors on amikacin pharmacokinetics, to identify potential predictive factors for 
dosage individualization. 

2. To verify the predicitive performance of the final population pharmacokinetic 
model into a external dataset, belonging to the same population as the 
development group. 

3. To evaluate the current dose regimen, in order to achieve amikacin 
concentrations within the therapeutic range, preventing under- or over-exposure 
in the target population, by comparing with the amikacin concentrations 
achieved after applying the population pharmacokinetic model developed. 

4. To optimize the initial dose recommendations, according to the individual 
characteristics identified as best predictors of between-patient variability in 
amikacin pharmacokinetics, in order to achieve therapeutic concentrations in 
the target population. 



�

44 



�

45 

 3. METHODS  



�

46 

�



Methods 

47 

3.1 STUDY DESIGN AND PATIENT CHARACTERISTICS 

3.1.1 Study design 

Amikacin serum concentration-time data from therapeutic drug monitoring were 
retrospectively collected from patients belonging to the neonatal intensive care and 
pediatric units of Vall Hebron University Hospital (Barcelona, Spain) between July 2000 
and July 2006, that accomplished the following inclusion and exclusion criteria: 

Inclusion criteria: 

• Available patient demographic characteristics. 
• Dose regimen and blood sampling times known. 
• Available at least 2 samples per patient. 
• Postnatal age � 90 days at the time of serum amikacin concentration 

determination. 

Exclusion criteria: 

• Acute or chronic renal failure requiring extra-renal purification techniques for the 
maintenance of homeostasis (hemodialysis, hemofiltration). Of note, the 
presence of unestable renal function, defined as fluctuations in serum creatinine 
values higher than 0.5 mg/dl during the treatment, was not considered as 
exclusion criterion (103=��7).

• Serum concentrations determined at no steady state conditions. 

Good Clinical Practice (GCP) and the Declaration of Helsinki agreements were fulfilled. 
No additional blood samples were requested other than those strictly necessary for 
classical therapeutic drug monitoring of aminoglycosides. Hence, no informed consent 
from parents was needed, according to Spanish laws.

The patients included in the study were randomly distributed into two groups. The first 
one, called “Model building dataset”, was used to build the population pharmacokinetic 
model. The second one, the “External evaluation dataset”, was used to verify the 
predictive performance of the final model with an external group of patients belonging 
to the same population as the target one. 
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3.1.2 Patient characteristics 

Data recording was performed through the datasheet included in Appendix 1, 
specifically designed for this study. The following data were recorded for each patient: 

• Initials, medical record and date of birth. 
• Gender. For this categorical variable, the value of 1 was assigned to males and 

of 0 to females.
• Main diagnosis. 
• History of dose regimen and serum concentrations: date and time of start of the 

amikacin treatment, dosing schedule (dose and interval), duration of perfusion, 
exact times of amikacin administration and blood sampling. All these data were 
recorded from nursing data. 

• Perinatal data: 
- Apgar evaluation. Apgar test is a medical test used in neonatology. It 

allows the assessment of the neonate according to five parameters (skin 
colour, heart rate, reflexes, muscular tone and breathing). A score 
between 0 and 2 was assigned to each parameter, so that the final test 
score results from the sum of the individual ones. This test should be 
performed at one (APGAR1) and five (APGAR5) minutes after birth to be 
considered as valid, with an expected value ranging from 8 to 9. 

- Number of gestation. 
- Twin pregnancy. 

• Age measurements: 
- Gestational age (GA) (weeks), that allowed to classify neonates into: (i) 

Premature neonates, those with a GA less than 37 weeks (within this 
group “Extremely prematures” were considered when GA was less than 
32 weeks), and (ii) Term neonates, when the GA was equal or greater 
than 37 weeks. 

- Postnatal age (PNA) (days). 
- Postmenstrual age (PMA) (days). 

• Anthropometric characteristics: 
Height (cm) (BHGT), weight (Kg) (BWGT) and head circumference (cm) (BHC) 
were recorded at the day of delivery, but also at the same day of blood 
sampling or alternatively within the closest ± 2 days (HGT, WGT and HC). All of 
these data were collected from nursing graphs. 
Body Surface Area (BSA) was calculated according to DuBois nomogram (105), 
as follows (3.1): 

4

0.7250.425
2

10
71.84 * (cm)Height * (Kg)Weight )BSA(m = (3.1)
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According to BWGT, neonates could be classified in three groups: (i) Low birth 
weight (< 2500 g), (ii) Very low birth weight (<1500 g), and (iii) Extremely low 
birth weight (<1000g). Moreover, an infant was considered to be Small for 
Gestational Age (SGA) when BWGT and GA values were below the 3th 
percentile according to the fetal growth weight pattern of the neonatal unit of 
Vall Hebron University Hospital (Appendix 2 and 3). Otherwise, the infant was 
considered to be Adequate for Gestational Age (AGA).

• Urea (UREA) (mg/dl) and creatinine (CREA) (mg/dl) serum concentrations, 
indicative of renal function, were measured at the same day of blood sampling 
or alternatively within the closest ± 2 days. 
Additionally, creatinine clearance (CLCR) was calculated according to Schwartz 
nomogram as follows (106) (3.2): 

CREA
HGT(cm)*K)73(mL/min/1.CL 2

CR = (3.2) 

where K was equal to 0.33 for prematures and SGA neoantes, and equal to 
0.45 for term neonates. 

SPSS ver.19 for statistical analysis (107) was used for the descriptive analysis (mean, 
median, standard deviation, maximum, minimum, etc…). 

3.2 AMIKACIN DOSING AND BLOOD SAMPLING 

Amikacin dosing was done according to the established protocol of the neonatal 
intensive care and pediatric units of Vall Hebron University Hospital, based on Neofax 
recommendations (29) (Table 3.1). But in some cases, Neofax guide was not applied 
strictly. Amikacin administration was done either after the identification of the 
microorganism or as empirical treatment. 

Table 3.1 Dosage protocol 

GA (weeks) PNA (days) Dose (mg/Kg) Interval (hours)

0 to 7 18 48 
8 to 28 15 36 � 29* 
� 29 15 24 
0 to 7 18 36 

30 a 34 
� 8 15 24 

� 35 ALL 15 24 

* or significant asphyxia, patent arterial duct, or treatment with indomethacin 
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Amikacin was administered by intravenous infusion over a period of time ranging from 
30 to 60 minutes. Blood samples were collected at the steady state. Trough or predose 
(just before the following dose) and peak or postdose (1 hour after initiation of 
administration) samples were obtained in all the cases. Any deviation from these 
theorical times was registered to be considered in the subsequent pharmacokinetic 
analysis. From each sample, serum was obtained by centrifugation for subsequent 
amikacin concentration analytical quantification. 

3.3 DRUG ANALYSIS AND BIOCHEMICAL DETERMINATIONS 

Drug analysis 

Serum amikacin concentrations were determined by a fluorescence polarization 
immunoassay (FPIA) method using the TDX system from Abbott Laboratories. This 
assay was linear up to 50 mg/L, the intra- and interassay precision values were lower 
than 5% and the lowest limit of quantification (LLOQ) was 0.1 mg/L (108). 

Fluorescence polarization is a competitive assay where the substance to be measured  
in the sample competes with the fluorescent-labeled compound (tracer) for a limited 
number of binding sites on the antibody. So, the greater is the concentration of analyte, 
the smaller is the fraction of tracer that is bound, and hence, smaller the polarization 
detected. The relationship between fluorescence polarization and compound 
concentration is established by measuring a set of calibrations of known concentration. 

Biochemical determinations 

Serum urea concentrations were determined by a kinetic procedure with urease and 
glutamate dehydrogenase, based on the method of Talke and Schubert (1965) 
according to reactions given by equation (3.3 and equation 3.4. This method was 
optimized for use in automatic analyzers and the Modular Analytics system from Roche 
Laboratories® was used in our case  

−+ +⎯→⎯+ 2
342 CO 2NHO2H Urea (3.3) 

OH NADglutamate-L NADHtoxoglutara-2 NH 2
GLDH

4 ++⎯⎯ →⎯++ ++ (3.4) 

The ammonia obtained in the first step reacts with 2-oxoglutarat in the presence of 
glutamate dehydrogenase and the coenzyme NADH to produce L-glutamate. In this 
reaction, two moles of NADH to NAD+ are oxydized per mol of urea hydrolysed. The 
NADH concentration, that decreases proportionally to the concentration of urea in the 
sample, is photometrically measured. This assay is linear up to 400 mg/dL , the intra- 
and interassay precision values are lower than 3.5% and the LLOQ is 5 mg/dL (109). 
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Serum creatinine concentrations were determined by the method of Jaffé with sample-
blank based on the following reaction (3.5).  

complexred- yellowacidpicricCreatinine alcalíph ⎯⎯ →⎯+ (3.5)

The production rate of the colorant (yellow intensity) that is directly proportional to the 
concentration of creatinine in the sample, is photometrically measured. The “rate-
blanking” method minimizes interferences by bilirrubin. Since serum and plasma 
samples contain proteins that react unspecifically with Jaffé method, the results are 
corrected to obtain accurate results. The Modular Analytics system from Roche 
Laboratories® was used. This method is linear up to 24.9 mg/dL, the intra- and 
interassay precisions values are lower than 3.5% and the LLOQ is 0.17 mg/dL (110). 

3.4 POPULATION PHARMACOKINETIC (PPK) ANALYSIS 

The PK analysis was performed with the nonlinear mixed-effects modeling (NONMEM) 
software, version 7.2 (82). Psn 3.5.2 (pearl speak for nonmem) (111) was used for 
generation of visual predictive checks and bootstrap analysis. R software ver.2.14 
(112) and the R package Xpose ver. 4.2 (113) were used for post-processing of data, 
graphical analysis of model outputs, and for generalized additive modelling during the 
exploratory covariate analysis. SPSS ver.19 was used for statistical analyzes 
performed during the initial data exploration (107). 

The modelling process consisted on the following steps: 

i. Data exploration. 
ii. Model development. Including base model development, covariate selection 

process and final model development. 
iii. Final model evaluation and qualification. 

3.4.1 Data exploration 

Prior to modelling, exploratory graphs and tables of the data to be analysed were 
generated to gain understanding of the data to be modelled, to look for trends in data, 
to identify potential outliers or erroneous data values, to check for errors in data coding 
and to verify model assumptions. A graphical exploration of the data to be analyzed 
was performed according to the following steps: 

• Histograms of all the quantitative continuous covariates (age, weight, etc..). 
• Scatterplots of all the continuous covariates, in order to investigate the potential 

correlations existing among them. 
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• Plots corresponding to the amikacin concentrations vs time data in order to 
investigate the general trend of the data and to identify potential outliers. 

Numerical exploration by descriptive statistics (mean, median, standard deviation, 
maximum, minimum, etc…) of demographic and biochemical characteristics, doses 
given and blood sampling times, was also considered. 

3.4.2  Model development 

All amikacin serum concentration-time data were analyzed simultaneously by the 
nonlinear mixed-effects approach implemented in NONMEM software. The first-order 
conditional estimation (FOCE) and the first-order conditional estimation with interaction 
(FOCEI) methods were tested throughout the model building process. 

3.4.2.1 Base model development 

Handling of below the limit of quantification (BLQ) data

The model building process was done according to three different approaches: 

i. Simultaneous analysis of concentration vs time data including concentration 
values below the limit of quantification (<BLQ), all of them treated as continuous 
data. The pharmacokinetic analysis was performed including the concentrations 
below the limit of quantification reported as a value of 0.09 mg/L, just below the 
lower limit of quantification (LLOQ=0.1 mg/L). 

ii. Simultaneous analysis of concentration vs time data after removing data below 
the lowest limit of quantification.�

iii. Simultaneous analysis of concentration vs time data including data below the 
lowest limit of quantification, that were treated as censored data (the Method 3 
reported by Bergstrand and Karlsson) (114-(117). The Laplacian estimation 
method was applied in this case.�

In all the cases, the structural and the statiscial models were developed as follows: 

Structural model development

One-, two and three-open compartment models with linear elimination process and 
zero order input were tested using the following subroutines: 

• One-compartment model: ADVAN1 TRANS2, parameterized in terms of 
distribution volume (Vd) and total drug clearance (CL). 

• Two-compartment model: ADVAN3 TRANS4, parameterized in terms of central 
compartment distribution volume (V1), total drug clearance (CL), distributional 
clearance (Q) and peripheral compartment distribution volume (V2). 

• Three compartment model: ADVAN11 TRANS4, parameterized in terms of 
central compartment distribution volume (V1), total drug clearance (CL), 
distributional clearance corresponding to compartment 2 (Q2), peripheral 
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compartment distribution volume corresponding to compartment 2 (V2), 
distributional clearance corresponding to compartment 3 (Q3) and peripheral 
compartment distribution volume corresponding to compartment 3 (V3). 

Statistical model development

The between-patient variabilities (BPV), were modeled exponentially, assuming a log-
normal distribution. The diagonal and full variance-covariance matrices were tested. 
Additive, proportional and combined models were compared to assess the residual 
error (RE) in amikacin serum concentrations. The inter-occasion variability modelling 
was also tested. 

Initial estimates of parameters

The initial estimates of fixed parameters were in accordance with those previously 
reported in the literature (118). The lower limit of all pharmacokinetic parameters (θ ) 
was fixed at 0 in order to ensure a positive value. The initial values for the variances 
associated to the distributions of between-patient variability (ω2 for etas) or residual 
variability random effects (σ2 for epsilons), were selected considering an associated 
error of 50%, expressed as coefficient of variation. Since the coefficient of variation 
was the square root of the variance parameter, the initial estimates of ω2 or σ2 (when 
modelled proportionally) were set to 0.25 (3.6). 

( ) 25.05.0 22 ==ω 3.6 

The initial estimate considered for the the additive residual error was the limit of 
quantification of the analytical method (0.1 mg/L).

3.4.2.1.1 Model Discrimination 

The evaluation of the base models developed and their comparison was performed 
according to the recommendations of the “European Medicines Agency (2007)” (70) as 
follows: 

• Statistical criteria:
To statistically assess the differences between nested models, the likelihood 
ratio test, based on the reduction of the OFV was used (ΔOFV: -2 log likelihood 
(-2LL), approximate χ2 distribution). A significance level of p<0.005 
corresponding to a ΔOFV= -7.879 for 1 degree of freedom was considered. For 
non-hierarchical models, the most parsimonious model with the lowest OFV 
according to the Akaike Information Criterion (AIC) calculated as -2LL+2·Np, 
where Np is the number of model parameters, was used instead (90). 
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• Plausibility and precision of the parameters estimates:
Plausibility of the pharmacokinetic parameter values from a physiological point 
of view was taken into account. The precision of the parameters estimates 
expressed as relative standard error (RSE%), that is the the ratio between the 
standard error, obtained from the covariance step in NONMEM, and the 
parameter estimate, was also evaluated (3.7). 

100*
valueParameter
errorStandard%RSE ��

�

�
��
�

�
= (3.7) 

• Goodness-of-fit-plots:
The following graphs were investigated: 

- Plots of observed (DV) vs population predicted and individual predicted  
(PRED and IPRED) concentrations including the identity line and an 
smoothed line representing the general trend of the data. Data points 
should be distributed closely and symmetrically to the line of identity, if 
the data were adequately described by the model. Comparing both plots, 
DV vs IPRED plot should adjusted better than DV vs PRED, as IPRED 
incorporated between-patient variability. 

- Plots of weighted residuals (WRES) or conditional weighted residuals 
(CWRES) vs population predicted concentrations with a zero horizontal 
line and smoothed trend line included. These plots allowed the 
evaluation of the suitability of the residual error model. Residuals should 
be spread randomly and closely around the zero horizontal line, without 
any specific trend. 

- Plots of weighted residuals (WRES) or conditional weighted residuals 
(CWRES) (when FOCE method was applied) vs time (expressed either 
as time after the last dose or as time from the start of the study) with a 
zero horizontal line and smoothed trend line included. These plots 
allowed to assess the general model fit, mainly the structural model. 
Residuals should be spread randomly and closely around the zero 
horizontal line withouth any specific trend. 

- Plots of absolute individual weighted residuals (IWRES) vs individual 
predicted concentrations (IPRED) with a trend line included. 

- Plots of superimposed observed (DV), individual predicted (IPRED), and 
population predicted (PRED) concentrations vs. time in order to check if  
IPRED and PRED values described adequately the observed 
concentrations for each individual. 

- Other plots provided by the Xpose software were also explored, as: 
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� Histograms or QQ-plot of weighted residuals in order to check 
if they were distributed normally. 

� Histograms of between-patient variability random effects in 
order to check if they were symmetrically distributed. 

� Scatter plots of individual random effects associated to the 
pharmacokinetic parameters in order to identify potential 
correlations among them. 

• Reductions in model residual error in each step of the modelling process were 
also assessed. 

The model with the lowest -2LL value (for nested models) or AIC value (for non-nested 
models), with the best plausibility of the parameter estimates and an acceptable 
parameter precision supported by the goodness of fit plots was finally selected. 

3.4.2.1.2 Shrinkage evaluation 

To assess the informativeness of the data in terms of BPV parameters, shrinkage was 
calculated before the covariate selection and final model development. High shrinkage 
values (>20%) could lead to unreliable diagnostics for covariate versus empirical Bayes 
estimates. Hence, it is desirable to report the extent of η- and ε-shrinkage to assess the 
relevance of diagnostics employing EBEs, IPRED and IWRES. η-shrinkage and ε-
shrinkage of the parameter estimates were computed as indicated by equation 3.8 and 
equation 3.9, respectively: 

( )
�
�
�

�
�
�−=−

ω
ηη x

x
SD1shrinkage (3.8) 

( )IWRESSD1shrinkage −=−ε (3.9) 

Where SD(η) was the standard deviation of the empirical Bayes estimates of the 
interindividual random effects (η), ω was the population estimate of that parameter and 
SD(IWRES) was the standard deviation of IWRES (94,(95). 

3.4.2.2 Covariate selection and final model development. 

Once the base model had been developed, the influence of all covariates 
physiologically reasonable on PK parameters was investigated. Before the inclusion of 
the covariates, an initial exploration was performed including: 

i. Identification of potential correlations among covariates by visual inspection of 
correlation plots. For high correlated covariates, clinical relevance criteria were 
used for selection of the most appropriate. 
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ii. Identification of potential statistically significant covariates, by: 

- Plots of individual random effects associated to each PK parameter, 
estimated from the base model, vs covariates. 

- Plots of CWRES vs covariates. 

- Multivariant analysis using the “Stepwise Generalised Additive 
Modelling” (GAM), a technique not restricted to linear models, 
implemented in Xpose. The GAM allowed to identify statistically 
significant relationships, between Bayesians estimates of the individual 
pharmacokinetic parameters and covariates, according to the Akaike 
Information Criterion (AIC) (119). 

According to the information obtained from the initial exploration, all the covariates 
physiologically plausible were tested in NONMEM on any of the model pharmacokinetic 
parameters. The impact of continuous covariates was tested in their respective 
parameters as allometric (Equation 3.10) or linear relationships.  

COV)COV/COV·(TVP median1j
θθ= (3.10) 

where the population typical value of the pharmacokinetic parameter was defined by θ1

as the typical value of the jth pharmacokinetic parameter for a patient, COVmedian as the 
median covariate value in the population, and θCOV as the change in lnTVPj per unit 
change in ln(COV/COVmedian). 

The categorical covariates (i.e. gender, number of gestation) were tested in their 
respective parameters as indicated by equation 3.11: 

1Zfor·TVP
0ZforTVP

21j

1j

==
==

θθ
θ

(3.11) 

where Z values represent each level of the categorical covariate. Specifically, in the 
case of gender, TVPj was the typical value of the jth pharmacokinetic parameter for 
females, and θ2 was the fractional change in θ1 by males. 

Covariates were firstly tested univariately in the model and then by the cumulative 
stepwise forward inclusion/backward elimination procedures. Multiplicative equations 
were used to describe the combined effect of multiple covariates on the same 
parameter. Those that had been significant on each of the pharmacokinetic parameters 
were sequencially combined following the descending order according to the decrease 
on the OFV they had produce. If the addition of a covariate produced a significant 
decrease in the objective function, it was retained in the model. If not, the covariate 
was removed. Once the intermediate or covariate model was established, the 
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retrospective covariate exclusion (backward) until reaching the base model was carried 
out. 

The following selection criteria were considered during the covariate model building: 

• Statistical criteria given by changes in OFV (-2 log likelihood). Significance 
levels of 5% (ΔOFV=-3.841 units) and 0.1% (ΔOFV=10.8 units) were 
considered during the forward addition and backward elimination steps, 
respectively. 

• Parameter precision estimates expressed as relative standard error (RSE%). 
• Reductions in BPV associated with pharmacokinetic parameters on which the 

covariate resulted to be statistically significant.
• Reductions in residual error. 
• Model completion status. Visual inspection of the goodness-of-fit plots before 

described (3.4.2.1.1.), together with the additional following graphs: 
- Plots of the random effects vs the covariates in the final model. 
- Histograms of the Bayesian estimates of the parameters or random 

effects associated (	). 
• Clinical relevance of the covariate given by changes in the pharmacokinetic 

parameter value of at least 10%. 

3.4.3 Final Model evaluation and qualification 

Once the final model had been selected, additionally to the diagnostic plots used for 
the evaluation during the model building development, external and internal evaluations 
were applied in order to check the performance of the final covariate model. 

3.4.3.1 External validation techniques 
The predictive performance of the developed model was assessed in 53 new patients 
(External evaluation dataset) that belonged to the same population as those of the 
“Model building dataset” using the posterior Bayesian estimates of amikacin 
concentrations. The observed concentrations of the new dataset were compared with 
the corresponding predictions given the final model. This performance was evaluated in 
terms of bias (median prediction error (ME)) and precision (root median squared 
prediction error (RMSE)) using the equations 3.12 and 3.13, according to the method 
proposed by Sheiner and Beal (120). Both the bias and precision were calculated from 
the observed versus population predicted concentrations (PRED) and from the 
observed versus individual predicted concentrations (IPRED), either for trough or peak 
concentrations. 
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In equation 3.14, each value therein were first squared. In both equations, Cpred were 
either the trough or peak predicted concentrations (PRED or IPRED) and Cobs were 
either the trough or peak observed concentrations. 

3.4.3.2 Internal validation techniques 

The prediction ability of the model was further evaluated by several internal evaluation 
techniques as bootstrap, visual predictive check (VPC), prediction-corrected visual 
predictive check (pcVPC), posterior predictive check (PPC) and normalised prediction 
distribution errors (NPDE). 

Bootstrap

The bootstrap method (96) with replacement was used to assess the robustness of the 
final model and to construct the prediction intervals (PIs) of the parameters estimated 
using PsN-Toolkit version 3.5.2. One thousand data sets of the same size as the 
original were reconstructed by resampling from the original data. The final model was 
fitted to each replicate data set, and the parameter estimates were obtained for each 
one. Then, the mean values of the parameters obtained were calculated and the 
percentages of difference with respect to those estimated from the original data were 
calculated according to the equation 3.14. 

100·
estimatemeanPopulation

valuemeanbootstrapestimatemeanPopulationdifference% −
= (3.14) 

The population mean estimate of each parameter should be included within the 
prediction intervals given by the bootstrap method.

Visual Predictive check (VPC) and Prediction-corrected visual predictive check (pcVPC)

For the VPC (97), one thousand individual profiles as those of the original dataset were 
simulated from the final model and then, the 95% confidence intervals for the median, 
and the 5th and 95th percentiles of the predicted data, were calculated and plotted 
together with the median, and the 5th and 95th percentiles of the observed data. If the 
model described data adequately, the lines corresponding to the median, the 5th and 95th

percentiles of the observed data should fall in the respective 95% confidence intervals of 
the predicted data. By using pcVPC (99), both the observations and model predictions 
were normalized for the typical model predictions in each bin of independent variables. 
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Then, the 95% confidence intervals for the median, and the 2.5th and 97.5th percentiles 
of the predicted data were calculated and plotted together with the median, the 2.5th and 
97.5th percentiles of the observed data. If the model described the data adequately the 
lines corresponding to the median, and the 2.5th and 97.5th percentiles of the observed 
data should fall in the respective 95% confidence intervals of the predicted data. 

Posterior Predictive Check (PPC)

In the PPC (100), investigation of how well the model predicted trough and peak 
concentration values of amikacin by simulating 1000 data sets as the original dataset 
was performed. Then, distributions of simulated trough and peak concentrations were 
compared with those of trough and peak observed concentrations. The trough and 
peak concentrations were selected for evaluation because these parameters were, as 
described before, the most relevant surrogate markers of efficacy and toxicity for 
amikacin, and were expected to vary with dose and relevant covariates. 

Normalized Prediction Distribution Errors (NPDE)

One thousand individual profiles as those of the original dataset were simulated from 
the final model (101,(102). Then, the differences between each observation and 
simulations were calculated and they were then normalized by using the inverse of the 
cumulative density function. If the model fitted data adequately, NPDEs should result in 
a normal distribution with a  mean of zero and variance of 1. 

3.5 MODEL-BASED SIMULATIONS 

Once the final model was achieved, simulations based on the final pharmacokinetics 
estimates were performed in order to: 

i. Assess the influence of the covariates that were identified as statistically 
significant, on amikacin trough and peak concentrations. 

For that purpose, and for different cut-offs of body weights and estimated CLCR 
values of the original dataset (Table 3.2), simulations of trough and peak 
concentrations for 1000 virtual patients of the same characteristics and having 
received the same dosage as those of the original data set were performed. 

The resulting simulated concentrations vs time data for each cut-off were used to 
calculate the percentages of patients with trough concentrations < 5 mg/L (within 
the therapeutic range), < 10 mg/L (the threshold considered as potentially toxic) 
and peak concentrations < 20 mg/L (marker of inefficacy). The medians and 2.5% 
and 97.5% percentiles of the trough and peak concentrations achieved in all the 
cases were also calculated. 
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Table 3.2. Cut-offs of CLCR and WGT values taken from the original dataset for 
simulations 

WGT (g) 
CLCR (mL/min)

<1199 1200-1999 � 2000 

<15 SIM1 SIM2 SIM3 

15-30.99 SIM4 SIM5 SIM6 

31-59.99 SIM7 SIM8 SIM9 

�60 SIM10 SIM11 SIM12 

Besides, the overall resulting simulated concentrations vs time data were stratified 
by the same age groups as those considered by the Neofax guide (Table 3.1). For 
each group, the percentages of patients with trough concentrations < 5 mg/L (within 
the therapeutic range), < 10 mg/L (the threshold considered as potentially toxic) 
and peak concentrations < 20 mg/L (marker of inefficacy) achieved in all the cases 
were calculated and compared with the corresponding percentages achieved with 
the previously indicated CLCR/weight cutoffs (Table 3.2). 

ii. Establish initial dose recommendations, in view of the efficacies and 
toxicities given by serum amikacin concentrations. 

For that purpose, the parameter estimates from the final pharmacokinetic model 
were used to simulate amikacin concentration-time profiles for different dosing 
regimens. Simulations were performed for differents cut-offs of WGT and CLCR 
values (Table 3.3). The selection of cut-offs was performed by covering as much as 
possible the entire range of WGT and CLCR values of the target population.

Table 3.3. Values of CLCR and WGT taken into acocunt for the simulations 
corresponding to first dose recommendations 

WGT (g) CLCR 
(mL/min) 500 1000 1200 1500 2000 2500 

10 SIM13 SIM14 SIM15 SIM16 SIM17 SIM18 

20 SIM19 SIM20 SIM21 SIM22 SIM23 SIM24 

30 SIM25 SIM26 SIM27 SIM28 SIM29 SIM30 

50 SIM31 SIM32 SIM33 SIM34 SIM35 SIM36 

60 SIM37 SIM38 SIM39 SIM40 SIM41 SIM42 

80 SIM43 SIM44 SIM45 SIM46 SIM47 SIM48 

In a first step, a prospective analysis of trough and peak concentrations achieved 
after doses ranging from 2.5 to 50 mg with dosing intervals of 12, 24, 36 or 48 
hours, was performed for all the CLCR/WGT cut-offs. Based on these results, the 
best recommended dose was selected for each pair of CLCR and WGT values, 
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aiming to achieve peak concentrations around 30mg/L and through concentrations 
below or between 1.5 and 3 mg/L. The resulting simulated concentrations vs time 
data were used to calculate the percentages of patients with trough concentrations 
< 5 mg/L (within the therapeutic range) and peak concentrations < 20 mg/L, within 
the therapeutic range (20-30 mg/L) and > 30 mg/L. The 2.5% and 97.5% 
percentiles of the trough and peak concentrations achieved in all the cases were 
calculated, and also the 50% percentile of the peak concentrations.
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4.1 PATIENT CHARACTERISTICS 

A retrospective chart review was performed that included all newborns treated with 
amikacin in the neonatal intensive care and pediatric units at Vall Hebron University 
Hospital from July 2000 to July 2006. Data were collected from 202 newborns who had 
at least two amikacin concentrations recorded, and accomplished the above mentioned 
inclusion criteria (3.1.1). These 202 subjects were randomly distributed into two groups, 
so that 149 were assigned to the “Model building dataset ”, and the other 53, to the 
“External evaluation dataset”. Table 4.1 summarizes the main demographic and 
biochemical characteristics of both groups. 

Table 4.1. Demographic and biochemical characteristics of patients included into the “Model 
building dataset ” and into the “External evaluation dataset”. 

“Model building 
dataset” 

“External evaluation 
dataset” Characteristics Units 

Median (Range) Median (Range) 

Gender (male/female) N 86/63 * 34/19 * 
Gestational age (GA)  weeks 31.8 (24.3 – 41) 32.5 (24.3 – 42) 
Postnatal age (PNA)** days 28 (4 – 86) 26 (5 – 89) 
Postmenstrual age (PMA)** days 248 (183 – 358) 257 (178 – 374) 
Birth weight (BWGT) Kg 1.64 (0.45 – 3.89) 1.76 (0.37 – 3.82) 
Current weight (WGT)** Kg 1.88 (0.52 – 4.62) 2.09 (0.44 – 5.54) 
Birth height (BHGT) cm 40.01 (27 – 55) 41.09 (26 – 56) 
Current height (HGT)** cm 42.01 (28.5 – 57) 43.83 (28.5 – 57) 
Current head circumference (HC) cm 29.46 (20 – 38) 30.28 (22 – 38.5) 
Body Surface Area (BSA) m2 0.14 (0.06 – 0.26) 0.15 (0.06 – 0.27) 
Serum urea (UREA)** mg/dL 26.69 (3 – 138) 28.23 (2 – 97.49) 
Serum creatinine (CREA)** mg/dL 0.59 (0.19 – 2.50) 0.54 (0.20 – 1.90) 
Creatinine clearance (CLCR)** mL/min 31.97 (5.87 – 121.5) 36.78 (8.7 – 110.25) 

*number in each group 
**Parameters determined at the beginning of treatment 
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4.2 AMIKACIN DOSING AND SERUM CONCENTRATIONS 

4.2.1 Amikacin dosing 
A total of 2443 doses were administered to the 149 newborns belonging to the “Model 
building dataset”. The infusion rate could not be accurately recorded so that it had to be 
assumed a mean value of 45 minutes in all the cases. The number of doses given by 
individual ranged from 3 to 61.The median value of amikacin administered doses was 
20 mg, ranging from 2.5 mg to 125 mg. The distribution of administered doses 
normalized by bodyweight is showed in Figure 4.1. The most common administered 
doses were 10 mg/kg (14.3%), 7 mg/Kg (13%), 15 mg/Kg (11.3%) and 8 mg/Kg 
(10.7%). Doses over 50 mg/Kg only represent 1.1% of the total and were given in very 
few occasions and always to the same patient. The dosing intervals were whether 8, 
12, 18, 24, 36 or 48 hours depending on the patient. 
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Figure 4.1 Distribution of amikacin doses (mg/kg) administered to the patients of the ”Model 
building dataset” 
�
Amikacin dosing protocol, based on Neofax recommendations, should be done 
according to the age groups specified in Table 3.1. Table 4.2. summarizes the 
percentages of patients that received doses below (< Protocol) and over (> Protocol) 
than those recommended by the Neofax guide for each one of the groups defined (29). 
Percentages of patients treated with each one of the dosing intervals from 8 to 48 
hours are also summarized in this table. Bold numbers correspond to the percentages 
of patients with doses or dosing intervals coinciding with those recommended by 
Neofax. 
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Table 4.2. Amikacin dosing in the “Model building dataset” according to age groups of the 
Neofax guide. 

  GroupA GroupB GroupC GroupD GroupE GroupF 

GA (weeks) < 29 30-34 > 35 

PNA (days) 0–7 8–28 >29 0–7 >8 All 

< Protocol 48.7% 78% 67.8% 84.8% 77.2% 75.2% 
Protocol 43.9% 5.7% 9.3% 10.9% 13% 14.4% 

Dose 
(mg/Kg) 

> Protocol 7.4% 16.3% 22.9% 4.3% 9.8% 10.4% 

8 - - 10.3% - 9.2% 36% 
12 - 3.6% 48.9% 5.3% 47.1% 21.1% 
18 - - 1.1% 31.6% 4.7% 2.1% 
24 57.9% 72.1% 30.3% 42.1% 32.3% 35.9% 
30 - - - - 0.4% - 
36 13.2% 16.3% 6% 15.7% 3.6% 2.7% 

Interval 
(hours) 

48 28.9% 8% 3.4% 5.3% 2.7% 2.2% 

In bold, values in accordance with Neofax guide. In cursive, the most frequent values among each group

As Table 4.2 shows, neither dose nor interval recommendations were followed strictly 
in any group. The most frequent administered doses were always below the guide 
recommendations. For dosing intervals, those recommended by Neofax were not the 
most frequent applied in any group. The 48 hours interval was mainly applied to the 
youngest group (Group A), as it was the recommended by Neofax, but it was rarely 
applied to the rest of the groups. The Group B was mainly dosed using a 24 hours 
interval schedule. In Group C, dosing intervals of 12 and 24 hours were almost equally 
applied meanwhile, surprisingly, in Group E the 18 hours interval in place of that of 12 
hours was used. The oldest group (Group F) was the only one that used the 8 hours 
interval with similar frequency to those of the 12 and 24 intervals. 

Taking into account both doses and intervals, the lowest gestational and postnatal age 
group (Group A) showed the greatest percentage of dosing regimens applied according 
to Neofax guide (22%). The lowest gestational age with postnatal ages between 8 and 
28 days group (Group B) showed the least percentage of coincident dosing regimens 
according to Neofax guide (2.1%). In the remaining groups, similar precentages of 
patients dosed according to Neofax were found (from 5.7% to 9.7%). 

4.2.2 Amikacin serum concentrations 

A total of 446 concentration-time values (203 trough concentrations and 243 peak 
concentrations) from 149 patients were simultaneously analysed. Among all the 
concentrations analyzed, 8.8% corresponded to data below the limit of quantification 
(0.1 mg/L), which were recorded as 0.09 mg/L. Figure 4.2 displays the amikacin serum 
concentrations (trough and peak concentrations) vs time (after the last dose) profiles 
including the smoothed line representing the general trend of the data, in the target 
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population. It should be noted that each patient was sampled between 2 and 11 times. 
While trough concentrations were taken just before the following dose; i.e. 8 (9.4%), 12 
(20.2%), 18 (1.9%), 24 (46.8%), 36 (14.3%) or 48 (7.4%) hours post-dosing (depending 
on the dosing interval), the sampling times of so-called peak concentrations ranged 
from 1 to 3.25 hours after initiation of administration. 
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Figure 4.2. Amikacin serum concentrations (mg/L) versus time after the last dose for the target 
population. Orange solid line: smoothed line showing the general trend of the data

For the entire population, mean ± SD values of trough and peak amikacin 
concentrations were 3.09 ± 3.01 mg/L and 23.97 ± 11.04 mg/L, respectively. The 
83.2% of trough concentrations were within the therapeutic range (lower than 5 mg/L), 
and the 94.6% were lower than 10 mg/L, the threshold considered potentially toxic. 
Regarding peak concentrations, the 40.7% were below the value considered as 
effective (20 mg/L). 

Trough and peak concentrations achieved were analysed according to the Neofax age 
groups (Table 4.3). Percentages of trough concentrations within the therapeutic range 
(< 5 mg/L) decreased from groups A-C to groups D followed by E and then by F. 
Among the latter (D-F) only Groups E and F had potentially toxic through 
concentrations (> 10 mg/L), 10.3% and 7.9% respectively. Regarding, percentages of 
peak concentrations below 20 mg/L, the Group C was that achieved the highest 
percentage (52.2%) of ineffective peak concentrations, whereas values ranging from 
33.3% to 43.2% were found in the other groups. Group A was only represented by one 
individual so that percentages in this group were not calculated. 
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Table 4.3 Percentages of through and peak concentrations within the 
therapeutic range 

Through concentrations Neofax age 
group < 5 mg/L < 10 mg/L 

Peak concentrations 
< 20 mg/L 

Group A 100% 100% -*
Group B 95.9% 98% 36.2% 
Group C 100% 100% 52.2% 
Group D 80% 100% 33.3% 
Group E 78.1% 89.7% 43.2% 
Group F 72.2% 92.1% 37.3% 

* Not calculated because only one individual was available for this group 
Group A: GA<29 weeks + PNA 0-7 days; Group B: GA<29 weeks + PNA 8-28 
days; Group C: GA<29 weeks + PNA>29 days; Group D: GA:30-34 weeks + 
PNA 0-7 days; Group E:GA 30-34 weeks + PNA>8; Group F: GA>35 weeks 

Furthermore, patients were splited in two classes, i.e. those dosed according to Neofax 
recommendations (Class I) and those patients that were not (Class II). Figure 4.3 
shows the distribution of percentages of trough concentrations < 5 mg/L for Classes I 
and II according to Neofax age groups. A trend to lower percentages of trough 
concentrations within the therapeutic range (< 5 mg/L) in patients of Class II vs Class I 
was observed for GA from 30 to upwards (groups D, E, F) meanwhile similar values 
were found in the remaining groups (A-C) The lowest percentage of trough 
concentrations < 5 mg/L was found in patients not dosed according to Neofax (Class II) 
of Group D (GA between 30-34 weeks and PNA within 0-7 days). 
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Figure 4.3. Percentages of amikacin trough concentrations < 5 mg/L for Class I and Class II 
according to Neofax age groups. 

Figure 4.4 shows the distribution of percentages of trough concentrations < 10 mg/L 
among all the Neofax age groups. Only Groups E and F of both Classes I and II 
showed trough concentrations above 10 mg/L, considered as potentially toxic. 
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Figure 4.4. Percentages of amikacin trough concentrations lower than the limit considered 
potencially toxic (10 mg/L) for Class I and Class II according to Neofax age groups. 
�
Figure 4.5 shows the distribution of percentages of peak concentrations < 20 mg/L 
among all the Neofax age groups. Patients of Class II showed higher percentages of 
peak concentrations below the value considered as effective (< 20 mg/L) than those of 
Class I, regardless of GA and PNA. The Group A, in both Class I and Class II, did not 
show any peak concentration lower than 20 mg/L, but only two peak levels had been 
analysed on both cases. From the remaining, the most effective dosing regimen was 
that of groups B, D and F for patients dosed as Neofax, with no ineffective peak 
concentrations. The highest percentage of peak concentrations < 20 mg/L were found 
in Group C (GA ≤ 29 weeks and PNA ≥ 29 days) both for patients of Class I and II. 
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Figure 4.5. Percentages of amikacin peak concentrations < 20 mg/L for Class I and Class II 
according to Neofax age cut-offs. 
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4.3 POPULATION PHARMACOKINETIC ANALYSIS 

4.3.1 Data exploration 

Exploratory data process was based not only on descriptive analysis of demographic 
and biochemical characteristics of the individuals (see section 4.1), and amikacin 
dosing and serum concentrations (see section 4.2), but also on the exploratory graph 
analysis of the registered covariates, that is presented in the following paragraphs. 

4.3.1.1 Age covariates 

Among the 149 subjects of the “Model building dataset”, 112 (75.2%) of them were 
premature newborns, with gestational ages lower than 37 weeks, while the remaining 
37 (24.8%) borned at term, with gestational ages greater than or equal to 37 weeks. 
Regarding to postnatal ages, the 64% of data recorded at the time of amikacin 
concentration measurement belonged to subjects under 30 days of life, and the 93% to 
subjects under 60 days of life. Figure 4.6 shows the statistical distributions for GA, PNA 
and PMA. According to the Kolmogorov-Smirnov test, GA showed a normal distribution 
(p>0.05), while no normality could be proved for PNA and PMA (p<0.05). 
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Figure 4.6. Histograms of the distributions of GA, PNA and PMA 

When the relationships among these variables (GA, PNA and PMA) were investigated, 
a strong linear correlation was found between PMA and GA (Pearson correlation 
coefficient=0.898, p<0.01) while it was medium between PMA and PNA (r=0.399, 
p<0.01). However, no linear (Pearson correlation coefficient, r=-0.046) or any other 
kind of correlation was found between PNA and GA. Figure 4.7 shows the graphic 
representation of these relationships. 
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Figure 4.7. Relationships between age covariates (Pearson correlation coefficient, at p=0.01 
significant level**). 
�

4.3.1.2 Covariates related to body size 

According to the Kolmogorov-Smirnov test, the assumption of normality was rejected 
for all the covariates related to body size. Figure 4.8 shows the histograms 
corresponding to the statistical distributions of each one of these covariates. 
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Figure 4.8. Histograms of the distributions of covariates related to body size 
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The Pearson correlation coefficient was statistically significant (p<0.01) among all the 
covariates related to body size (WGT, BWGT, HGT, BHGT, HC and BSA). A high 
linear correlation was found in all the cases (Figure 4.9). 
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Figure 4.9. Relationships among all the covariates related to body size (Pearson correlation 
coefficient at p=0.01 significant level**). 

4.3.1.3 Covariates related to renal function 

According to the Kolmogorov-Smirnov test, the assumption of normality was rejected 
for all of these covariates. Figure 4.10 shows the histograms corresponding to the 
statistical distribution of covariates related to renal function. 
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Figure 4.10. Histograms of the distributions of UREA, CREA and CLCR 
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When the relationships among these covariates (CLCR, CREA and UREA) were 
investigated, a high negative linear correlation was found between CREA and CLCR 
(Pearson correlation coefficient = -0.655, p<0.01), being positive between CREA and 
UREA (Pearson correlation coefficient = 0.529, p<0.01). A low linear correlation was 
found between CLCR and UREA (Pearson correlation coefficient = -0,165, p<0.01). 
Figure 4.11 shows the relationships among covariates related to renal function. 
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Figure 4.11. Relationships among covariates related to renal function (Pearson correlation 
coefficient at p=0.01 significant level**). 

4.3.1.4 Relationships among covariates related to renal function, body 
size and age  

The relationships among covariates representing age, body size and renal function 
were analyzed. Graphics were used for the inspection of potential correlations, and the 
Pearson correlation coefficient was used to investigate the existence of linear 
correlation. 

Covariates related to body size vs age covariates 

Figure 4.12 shows the relationships among covariates related to body size and ages 
(GA, PMA and PNA). The Pearson correlation coefficient was statistically significant 
(p<0.01) in most cases, except for the relationship between PNA vs BWGT and PNA vs 
BHGT. There was a high linear correlation between GA and PMA vs all covariates 
related to body size (Pearson correlation coefficients between 0.83 and 0.92), while it 
was low between PNA vs WGT, HGT, HC and BSA (Pearson correlation coefficients 
between 0.18 and 0.29). 
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Figure 4.12. Relationships among covariates related to body size and ages (GA, PNA and PMA) 
(Pearson correlation coefficient at p=0.01 significant level**).

Covariates related to renal function vs age covariates 

Regarding to relationships among age covariates and renal function markers (Figure 
4.13), the Pearson correlation coefficient was statistically significant (p<0.01) in all the 
cases with the exception of  CREA vs GA relationship. None other kind of relationship 
was found between CREA and GA. The highest linear correlation was found between 
CLCR vs PMA (Pearson correlation coefficient = 0.582), followed by CLCR vs GA and 
PNA, and also between CREA vs PNA relationships, while low correlations were found 
between UREA vs all age covariates, and between CREA vs PNA. 
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Figure 4.13. Relationships among ages and renal function parameters (Pearson correlation 
coefficient at p=0.01 significant level**).

Because CLCR had a higher linear correlation with age covariates than other renal 
function parameters, changes of CLCR with time were also investigated. Figure 4.14 
shows the evolution of the mean CLCR with GA. According to this plot, CLCR tended 
to increase gradually with GA, except between 35 and 37 weeks of GA where there 
was an unexpected decrease of CLCR. Similarly occurred for GA of 41 weeks. 
Therefore, further inspection of these data would be required to guess the causes of it. 
Morevoer, high variabilities were observed for any of the GA groups. 
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Figure 4.14. Evolution of mean values of CLCR with gestational ages 

The evolution of the mean CLCR along PNA within each one of the previous GA 
groups (≤31 days, 32-36 days and ≥37 days) was also studied (Figure 4.15). 
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Figure 4.15. Evolution of CLCR (mean) with PNA within the gestational ages groups of ≤31 
days, 32-36 days and ≥37 days. 

Visual inspection of this plot indicates that CLCR values increased with PNA, 
regardless of the GA group considered. The group of gestational ages ≤ 31 weeks had 
the lowest CLCR values independently of PNA. The exception was for PNA ≤ 7 days, 
in which case the highest values were observed. These results should be taken with 
caution due to the low number of data available for PNA ≤ 7 days among all GA groups 
(only 12 CLCR values from 6 individuals with GA ≤ 31 weeks; 6 CLCR values from 3 
individuals with GA from 32 to 36 weeks, and 2 values from only 1 individual with GA ≥
37 weeks). 
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Regarding to the 32-36 weeks GA group, CLCR increased with PNA with values close 
to those of the lowest GA group until days 11-15 of life. From this point a greater 
increase was observed. 
CLCR values of the term newborns (GA ≥ 37 weeks) were the highest, excepting for 
PNA ≤ 7 days, increasing with postnatal age, with values close and higher to those of 
the other GA groups. The improvement of renal function with both GA and PNA 
confirmes the renal function maturation with time. 

Covariates related to body size vs renal function markers 

Relationships among covariates related to body size and renal function parameters are 
presented in Figure 4.16. The highest correlation with body size covariates was found 
for CLCR, whereas very low correlations were found for UREA, and no statistically 
significant correlation was found for CREA. The highest correlation between CLCR and 
body size parameters could be explained by the fact that body size is taken into 
account in the calculation of CLCR according to the Schwarz formula. 
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Figure 4.16. Relationships of collinearity among covariates related to body size renal function 
covariates (Pearson correlation coefficient at p=0.01 significant level**).
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4.3.2 Model development 

4.3.2.1 Base model development 

The base model development was performed in several steps, starting out by fitting the 
most simple pharmacokinetic model (one-compartment model) and then going on 
through higher complex models. Interoccasion variability modeling was also tested 
(121). Results corresponding to the three approaches of handling BLQ data before 
mentioned are described below. 

Data analysis including BLQ data, treated as continuous data 

Table 4.4 summarizes the most relevant steps of the model building process from 
simultaneous analysis of concentration vs time data including BLQ values (reporting 
BLQ values as LLOQ of the analytical method). Number of compartments, parameters 
to which between-patient variability was associated, type of residual error model and 
estimation method tested in each step, as well as results and decisions taken from 
these, are presented in this table. 

Table 4.4. Summary of the base model development strategy from concentrations vs time data 
including BLQ values. 

Strategy Model Results �OFV Compared 
to model 

Model 
selected 

Decision 

PK Model 
IIV 
REM 
EM 

One-compartment 
CL 
Additive 
FOCE 

Run 1 Obj: 2651.60 - - Run 1 Try proportional REM 

PK Model 
IIV 
REM 
EM 

One-compartment 
CL 
Proportional 
FOCE 

Run 2 Obj: 3125.48 
• Adjust error 

+473.88 Run 1 Run 1 Try additive-
proportional REM 

PK Model 
IIV 
REM 
EM 

One-compartment 
CL 
Additive-proportional 
FOCE 

Run 3 Obj: 2442.557 
• Significant decrease of 

Obj with respect to Run1 

-209.04 Run 1 Run 3 $EST FOCE I 

PK Model 
IIV 
REM 
EM 

One-compartment 
CL 
Proportional 
FOCE I 

Run 4 Obj: 2329.596 - - Run 4 Improve of OFV 
Try additive-
proportional REM 

PK Model 
IIV 
REM 
EM 

One-compartment 
CL 
Additive-proportional 
FOCE I 

Run 5 Obj: 2302.867 
• Significant decrease of 

Obj with respect to Run4 

-26.73 Run 4 Run 5 IIV on V 

PK Model 
IIV 
REM 
EM 

One-compartment 
V 
Additive-proportional 
FOCE I 

Run 6 Obj: 2393.870 
• Not significant decrease 

of Obj with respect to 
Run5

+91.00 Run 5 Run 5 IIV on CL and V 

PK Model 
IIV 
REM 
EM 

One-compartment 
Cl+V 
Additive-proportional 
FOCE I 

Run 7 Obj: 2245.526 
• Significant decrease of 

Obj with respect to Run5 

-57.34 Run 5 Run 7 Try two-compartment 
model 

PK Model 
IIV 
REM 
EM 

Two-compartment 
Cl 
Additive 
FOCE 

Run 8 Obj: 2632.98 - - Run 8 Try proportional REM 

PK Model 
IIV 
REM 
EM 

Two-compartment 
Cl 
Proportional 
FOCE 

Run 9 Obj: 2804.38 
• Not significant decrease 

of Obj with respect to 
Run8 

+171.40 Run 8 Run 8 Try additive-
proportional REM 
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�
PK Model 
IIV 
REM 
EM 

Two-compartment 
Cl 
Additive-Proportional 
FOCE 

Run 10 Obj: 2391.792 
• Significant decrease of 

Obj with respect to Run8 

-241.19 Run 8 Run 10 IIV on CL+V1 

PK Model 
IIV 
REM 
EM 

Two-compartment 
CL+V1 
Additive-Proportional 
FOCE 

Run 11 Obj: 2336.538 
• Significant decrease of 

Obj with respect to 
Run10 

-55.25 Run 10 Run 11 IIV on CL+V1+Q 

PK Model 
IIV 
REM 
EM 

Two-compartment 
CL+V1+Q 
Additive-Proportional 
FOCE 

Run 12 Obj: 2317.513 
• Significant decrease of 

Obj with respect to 
Run11 

-19.03 Run 11 Run 12 IIV on CL+V1+Q+V2 

PK Model 
IIV 
REM 
EM 

Two-compartment 
CL+V1+Q+V2 
Additive-Proportional 
FOCE  

Run 13 Obj: 2317.513 
• Not significant decrease 

of Obj with respect to 
Run12 

• RSE of θ3-Q higher than 
40%. 

+00.00 Run 12 Run 12 $EST FOCE I 

PK Model 
IIV 
REM 
EM 

Two-compartment 
CL 
Proportional 
FOCE I 

Run 14 Obj: 2211.346 - - Run 14 Try addivitive-
proportional REM 

PK Model 
IIV 
REM 
EM 

Two-compartment 
CL 
Additive-Proportional 
FOCE I 

Run 15 Obj: 2210.242 
• Not significant decrease 

of Obj with respect to 
Run14 

• Improve precision 
estimation of parameters.

-1.10 Run 14 Run 15 FOCE I betther than 
FOCE 
IIV on CL+V1 

PK Model 
IIV 
REM 
EM 

Two-compartment 
CL+V1 
Additive-Proportional 
FOCE I 

Run 16 Obj: 2169.076 
• Significant decrease of 

Obj with respect to 
Run15 

-41.17 Run 15 Run 16 IIV on CL+V1+Q 
FINAL MODEL 

Model PK 
IIV 
REM 
EM 

Two-compartment 
CL+V1+Q 
Additive-Proportional 
FOCE I 

Run 17 Obj: 2132.931 
• Significant Decrease of 

Obj with respect to 
Run16 

• Covariance step aborted. 

-36.15 Run 16 Run 16 IIV on CL+V1+V2 

PK Model 
IIV 
REM 
EM 

Two-compartment 
CL+V1+V2 
Additive-Proportional 
FOCE I 

Run 18 Obj: 2166.101 
• Not significant decrease 

of Obj with respect to 
Run16 

+2.98 Run 16 Run 16 - 

PK Model: Pharmacokinetic Model. IIV: Interindividual variability parameters. REM: Residual Error. Model EM: Estimation Method 
(Method 1: FOCE, First Order Conditional Estimation Method ; Method 1 + Interaction: FOCE1, First Order Conditional Estimation with 
Interaction) 

After the analysis of all amikacin concentration vs time data, the First Order Conditional 
Estimation Method with Interaction resulted in a better precision of the pharmacokinetic 
parameters estimated, so that models that applied this method were considered for 
comparison and further selection of the best base model. According to the Akaike 
Criterion, the two-compartment model provided the best fit of the data, so that when 
models of two compartments were compared to the corresponding one compartment 
models an statistical reduction of the AIC values was found in all the cases. 
Specifically, AIC was reduced 76.45 units from model 7 (one-compartment) to 16 (two-
compartment). The combined residual error model (additive and proportional) provided 
a better fit than the proportional error model with a lower OFV achieved (model 9: 
proportional error OFV=2804.38 vs model 10: combined error OFV=2391.79). 
Between-patient variability could be associated to plasma clearance (CL) and central 
compartment distribution volume (V1). Therefore, model 16 was selected as the best 
base model when BLQ data were included as continuous data values. 

Figure 4.17 shows the goodness-of-fit plots corresponding to the base model (#16) 
developed using concentration vs time data including BLQ values. 
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Figure 4.17. GOF plots of the final base PK model developed including BLQ values (#16).Upper 
panels: DV vs PRED (left) and IPRED (right) concentrations. Middle panels: IWRES vs IPRED 
(left) and CWRES (calculated as PRED-DV) vs TIME (right). Lower panel: CWRES (calculated 
as DV-PRED) vs PRED. Concentrations expressed as mg/L. Black solid line: identity line. Red 
solid line: smoothed line showing the general trend of the data.

�� ���

��
��
	
	
��
��
�

�	
��

�
��
��
�	
��
��
��

��� ��� ���

��

�

�
�

�

������
	�������	�
	����



Results 

85 

The evaluation of the structural part of the model was done trough the goodness-of-fit 
plots of DV vs PRED, CWRES vs TIME and also CWRES vs PRED. All data points of 
the selected final base model were homogeneously distributed around identity line on 
DV vs PRED plot, and were fairly well centered on the zero-line on CWRES vs TIME 
and CWRES vs PRED plots. Otherwise, CWRES vs PRED shows a tendency of the 
model to overestimate at high concentrations, as can be also observed on DV vs 
PRED. Goodness-of-fit plots of DV vs IPRED and IWRES vs IPRED have already 
some variability incorporated, not bringing much information for the evaluation of the 
structural part of the model. 

Data analysis after removing BLQ data 

Table 4.5 summarizes the most relevant steps of the model building process from 
simultaneous analysis of concentration vs time data after removing BLQ values. As 
before, number of compartments, parameters to which between-patient variability was 
associated, type of residual error model and estimation method tested in each step, as 
well as results and decisions taken from these, are presented in this table. 

Again, the First Order Conditional Estimation Method with Interaction resulted in a 
better precision in the pharmacokinetic parameters estimated, so that models that used 
this method were considered for comparison and further selection of the best base 
model. According to the Akaike Criterion, the two-compartment model provided the 
best fit of the data, so that when models of two compartments were compared to the 
corresponding one compartment models an statistical reduction of the AIC values was 
found in all the cases. Specifically, AIC was reduced 71.43 units from model 25 (one-
compartment) to 32 (two-compartment). The combined residual error model (additive 
and proportional) provided a better fit than the proportional error model with a lower 
OFV achieved (model 30: proportional error OFV=2142.475 vs model 32:combined 
error OFV=2092.812). Between-patient variability could be associated to plasma 
clearance (CL), central compartment distribution volume (V1) and intercompartmental 
or distributional clearance (Q). Therefore, model 33 was selected as the best base 
model when BLQ data were removed from the analysis.
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Table 4.5. Summary of the base model development strategy from concentrations vs time data 
after removing BLQ values. 

Strategy Model Results �OFV Compared 
to model 

Model 
selected 

Decision 

PK Model 
IIV 
REM 
EM 

One-compartment 
CL 
Additive 
FOCE 

Run 19 Obj: 2477.502 - - Run19 Try proportional REM 

PK Model 
IIV 
REM 
EM 

One-compartment 
CL 
Proportional 
FOCE 

Run 20 Obj: 2584.849 
• Not significant decrease 

of Obj with respect to 
Run19 

+107.35 Run19 Run19 Try additive-
proportional REM 

PK Model 
IIV 
REM 
EM 

One-compartment 
CL 
Additive-proportional 
FOCE 

Run 21 Obj: 2368.466 
• Significant decrease of 

Obj with respect to 
Run19 

-109.04 Run19 Run21 $EST FOCE I 

PK Model 
IIV 
REM 
EM 

One-compartment 
CL 
Proportional 
FOCE I 

Run22 Obj: 2278.247 - - Run22 Improve of OFV 
Try additive-
proportional REM 

PK Model 
IIV 
REM 
EM 

One-compartment 
CL 
Additive-proportional 
FOCE I 

Run23 Obj: 2248.981 
• Significant decrease of 

Obj with respect to 
Run22 

-29.27 Run22 Run23 IIV on V 

PK Model 
IIV 
REM 
EM 

One-compartment 
V 
Additive-proportional 
FOCE I 

Run24 Obj: 2393.870 
• Not significant decrease 

of Obj with respect to 
Run23

+144.89 Run23 Run23 IIV on CL+V 

PK Model 
IIV 
REM 
EM 

One-compartment 
Cl+V 
Additive-proportional 
FOCE I 

Run25 Obj: 2168.245 
• Significant decrease of 

Obj with respect to 
Run23 

-80.74 Run23 Run25 Try two-compartment 
model 

PK Model 
IIV 
REM 
EM 

Two-compartment 
Cl 
Additive 
FOCE 

Run26 Obj: 2457.019 - - Run26 Try proportional REM 

PK Model 
IIV 
REM 
EM 

Two-compartment 
Cl 
Proportional 
FOCE 

Run27 Obj: 2519.596 
• Not significant decrease 

of Obj with respect to 
Run26 

+62.58 Run26 Run26 Try additive-
proportional REM 

PK Model 
IIV 
REM 
EM 

Two-compartment 
Cl 
Additive-Proportional 
FOCE 

Run28 Obj: 2318.367 
• Significant decrease of 

Obj with respect to 
Run26 

-138.65 Run26 Run28 IIV on CL+V1 

PK Model 
IIV 
REM 
EM 

Two-compartment 
CL+V1 
Additive-Proportional 
FOCE 

Run29 Obj: 2336.538 
• Not significant decrease 

of Obj with respect to 
Run28 

+18.17 Run28 Run28 $EST FOCE I 

PK Model 
IIV 
REM 
EM 

Two-compartment 
CL 
Proportional 
FOCE I 

Run30 Obj: 2142.475 - - Run30 Try additive-
proportional REM 

PK Model 
IIV 
REM 
EM 

Two-compartment 
CL 
Additive-Proportional 
FOCE I 

Run31 Obj: 2140.493 
• Not significant decrease 

of Obj with respect to 
Run30 

• Improve precision 
estimation of parameters 

-1.98 Run30 Run31 IIV on CL+V1 

PK Model 
IIV 
REM 
EM 

Two-compartment 
CL+V1 
Additive-Proportional 
FOCE I 

Run32 Obj: 2092.812 
• Significant decrease of 

Obj with respect to 
Run31 

-47.68 Run31 Run32 IIV en el CL+V1+Q 

PK Model 
IIV 
REM 
EM 

Two-compartment 
CL+V1+Q 
Additive-Proportional 
FOCE I 

Run33 Obj: 2075.969 
• Significant decrease of 

Obj with respect to 
Run32 

• Improve precision 
estimation of parameters 

-16.84 Run32 Run33 
FINAL MODEL 

PK Model: Pharmacokinetic Model. IIV: Interindividual variability parameters. REM: Residual Error. Model EM: Estimation Method 
(Method 1: FOCE, First Order Conditional Estimation Method ; Method 1 + Interaction: FOCE1, First Order Conditional Estimation with 
Interaction) 

Figure 4.18 shows the goodness of-fit-plots of the best base compartment model (#33) 
developed removing BLQ data from the analysis. 



Results 

87 

Figure 4.18. GOF plots of the final base PK model developed removing BLQ values (#33).Upper 
panels: DV vs PRED (left) and IPRED (right) concentrations. Middle panels: IWRES vs IPRED 
(left) and CWRES (calculated as PRED-DV) vs TIME (right). Lower panel: CWRES (calculated 
as DV-PRED) vs PRED. Concentrations expressed as mg/L. Black solid line: identity line. Red 
solid line: smoothed line showing the general trend of the data. 
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All data points of the goodness-of-fit plots that allowed the evaluation of the structural 
base model were randomly distributed around the indentity line (DV vs PRED) or zero-
line (CWRES vs TIME and CWRES vs PRED). As in the model obtained including BLQ 
data, CWRES vs PRED showed a tendency of the model to overestimate at high 
concentrations, similarly at DV vs PRED plot. 

Data analysis including BLQ data treated as censored data 

Table 4.6 summarizes the most relevance steps of the model building process 
considering BLQ data as described by Method 3. As before, number of compartments, 
parameters to which between-patient variability was associated, type of residual error 
model and estimation method tested in each step, as well as results and decisions 
taken from these, are presented in this table. 

Table 4.6 Summary of the base model development strategy from concentrations vs time data 
including BLQs treated as censored data. 

Strategy Model Results �OFV Compared 
to model 

Model 
selected 

Decision 

PK Model 
IIV 
REM 
EM 

One-compartment 
CL 
Additive 
FOCE I Laplacian 

Run 40 Obj: 2532.832 
• Minimization succesfull. 

However… covariance 
aborted 

- - - Try proportional REM 

PK Model 
IIV 
REM 
EM 

One-compartment 
CL 
Proportional 
FOCE I Laplacian 

Run 41 Obj: 2927.735 
• Minimization succesfull. 

However… covariance 
aborted 

- - - Try additive-
proportional REM 

PK Model 
IIV 
REM 
EM 

One-compartment 
CL 
Additive-proportional 
FOCE I Laplacian 

Run 42 Obj: 2418.804 
• Minimization terminated 

due to rounding errors 
(E=134) 

- - - Try two-compartment 
model 

PK Model 
IIV 
REM 
EM 

Two-compartment 
Cl 
Additive 
FOCE I Laplacian 

Run 43 Obj: 2533.548 
• Minimization terminated 

due to rounding errors 
(E=134) 

- - - Try proportional REM 

PK Model 
IIV 
REM 
EM 

Two-compartment 
Cl 
Proportional 
FOCE I Laplacian 

Run 44 Obj: 2762.330 
• Minimization terminated 

due to rounding errors 
(E=134) 

- - - IIV on CL+V1 

PK Model 
IIV 
REM 
EM 

Two-compartment 
CL+V1 
Proportional 
FOCE I Laplacian 

Run 45 Obj: 2751.109 
• Minimization terminated 

due to rounding errors 
(E=134) 

- - - IIV en el CL+V1+Q 

PK Model 
IIV 
REM 
EM 

Two-compartment 
CL+V1+Q 
Proportional 
FOCE I Laplacian 

Run 46 Obj: 2734.808 
• Minimization succesfull. 

However… covariance 
aborted  

- - - IIV en el CL+V1+V2 

PK Model 
IIV 
REM 
EM 

Two-compartment 
CL+V1+V2 
Proportional 
FOCE I Laplacian 

Run 47 Obj: 2739.139 
• Minimization terminated 

due to rounding errors 
(E=134) 

- - - Try additive-
proportional REM 

PK Model 
IIV 
REM 
EM 

Two-compartment 
CL 
Additive-Proportional 
FOCE I Laplacian 

Run 48 Obj: 2399.574 
• Minimization terminated 

due to rounding errors 
(E=134) 

- - - IIV on CL+V1 

PK Model 
IIV 
REM 
EM 

Two-compartment 
CL+V1 
Additive-Proportional 
FOCE I Laplacian 

Run 49 Obj: 2352.030 
• Minimization succesfull. 

However… covariance 
aborted 

- - - IIV on CL+Q

PK Model 
IIV 
REM 
EM 

Two-compartment 
CL+Q 
Additive-Proportional 
FOCE I Laplacian 

Run 50 Obj: 2395.683 
• Minimization terminated 

due to rounding errors 
(E=134) 

- - - 

PK Model: Pharmacokinetic Model. IIV: Interindividual variability parameters. REM: Residual Error. Model EM: Estimation Method 
(Method 1: FOCE, First Order Conditional Estimation Method ; Method 1 + Interaction: FOCE1, First Order Conditional Estimation with 
Interaction) 
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The method that treated BLQ data as censored did not provide good fits in any case, 
so this method was discarded. For the other two methods, similar values of the most 
relevant pharmacokinetic parameters were obtained with both (Table 4.7), however the  
proportional residual error was overestimated when BLQ concentrations were included 
in the analysis. Due to the fact that the actual concentration values of BLQ data were 
lacking, the same value (0.09 mg/L) was assigned to all of them. This value may be 
overestimating the actual concentrations below the limit of quantification resulting in 
higher proportional residual error. Comparison of the goodness-of-fit-plots of the base 
population PK model developed either including BLQ data (Figure 4.17) or after 
removing BLQ data (Figure 4.18), was unsufficient to be used as a unique tool to 
discriminate and select the best base model. 

Table 4.7. Population pharmacokinetic parameters of the base models developed from 
data either including the BLQ concentrations or not considering them. 

Including  
BLQ data 

(#16) 

Removing  
BLOQ data  

(#33) 

CL (L/h) 0.137 (6.92) 0.129 (6.95) 
V (L/h) - - 
V1 (L) 0.658 (6.25) 0.595 (6.84) 
Q (L/h) 0.046 (19.89) 0.128 (14.84) 

Pharmacokinetic 
parameters 

V2 (L) 0.723 (18.53) 1.15 (11.39) 
IIV-CL (%) 69.90 (14.62) 74.23 (15.01) 
IIV-V (%) - - 

IIV-V1 (%) 57.10 (17.70) 58.48 (19.04) 
Between- patient 

variability  
IIV-Q (%) - 80.72 (23.85) 

Additive (mg/L) 0.41 (6.72) 0.42 (4.81) Residual variability 
Proportional (%) 110 (16) 24.00 (32.88) 

ηηηη1-shrinkage % 14.68 10.34 
ηηηη2-shrinkage % 22.60 31.56 
ηηηη3-shrinkage % - 55.97 
�-shrinkage % 19.40 19.95 

RSE%: Precision given by the relative standard error in parenthesis 

According to Bergtrand and Karlsson (115), there is no predictable pattern when BLQ 
data are replaced by LOQ/2 , sometimes reducing and sometimes inflating the bias in 
parameter estimates. In our case no relevant differences in the main parameter 
estimates were observed, but the inflated proportional residual error lead to select the 
base model developed after omitting BLQ data (#33). According to this: 

• Two-compartment kinetic model with first order elimination process, 
parameterized as clearances and distribution volumes best described the PK of 
amikacin. 

• Between-patient variability modelled exponentially was associated with plasma 
and distributional clearances and central compartment distribution volume. 
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• Combined residual error model (additive + proporcional) provided the best fit of 
data. 

• FOCEI was used as estimation method. 

The pharmacokinetic parameter estimates corresponding to the base model (model 33) 
and schrinkage values associated to the between-patient (η) and residual (ε) random 
effects are listed in Table 4.7. All the parameters were estimated with adequate 
precision (RSE< 33%). Between-patient variabilities were from 58.48% (V1) to 80.72% 
(Q). Additive residual error was 0.42 mg/L and proportional error was 24%. η1-
shrinkage value was around 10%, while η2- and η3-shrinkage were higher than 20%. ε-
shrinkage was around 20%. Interoccasion variabilities on CL and V1 did not reduce 
significantly the objective function value. 

4.3.2.2 Covariate selection and final model development 

Once the base model had been obtained, the covariate effects on pharmacokinetic 
parameters were studied. Among all the variables recorded, CLCR, CREA, UREA, 
BSA, WGT, HGT, HC, BWGT, HWGT, GA, PMA and PNA were taken as first level 
covariates, meanwhile BHC, APG1, APG5 were  considered as second level 
covariates. GA and BWGT were also treated as categorical covariates: premature vs 
term neonates, and low birth weight vs very low birth weight vs extremely low birth 
weight, respectively. Gender, gestation number and twined pregnancy information was 
not considered relevant for the amikacin pharmacokinetics, so that their potential 
effects were not assessed. According with Savic et al (95),� who reported that a 
shrinkage higher than around 20–30%, leads to EBE-based diagnostics lack 
informativeness, it would be desirable to use alternative diagnostic methods and direct 
testing of covariates on PK parameters with NONMEM during the covariate model 
building process. For this reason, .although the steps summarized for the covariate 
selection, all the covariates physiologically plausible were tested in NONMEM in order 
to avoid the falsely indicate relationships or even obscure relationships due to the 
presence of η- and ε-shrinkage, when it existed. 

i. Identification of potential correlations among covariates. It was studied in order 
to avoid the possible overparameterization caused by the simultaneous introduction 
of covariates related to each other. Results corresponding to the most relevant 
potential correlations among recorded continuous covariates have been presented 
in section 4.3.1). 

ii. Identification of potential statistically significant covariates. 

- Figure 4.19, Figure 4.20 and Figure 4.21 show the plots of individual Bayesian 
estimated from the base model versus the most relevant covariates from a 
physiological point of view to explain BPV associated with them. 
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Regarding to covariates related to body size, all covariates (BWGT, BHGT, 
WGT, HGT, HC, BSA) were correlated with either CL or V1. No marked trend 
was observed in the relationship between the distributional clearance and any 
of the covariates related to body size (Figure 4.19). 
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Figure 4.19. Plots of Individual Bayesian values of parameters CL, V1 and Q, vs covariates 
related to body size. Solid red line: smoothed line showing the general trend of the data.

PMA and GA correlated with either CL or V1. A less marked trend existed 
between PNA and CL, while it did not exist between PNA and CL, but neither 
between any of the ages nor distributional clearance (Figure 4.20). 

HC 

PMA PMAPMA

HC HC 

BSA BSA BSA 
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Figure 4.20. Pots of Individual Bayesian values of parameters CL, V1 and Q, vs covariates 
related to age. Solid red line: smoothed line showing the general trend of the data.

Plasma clearance values also correlated with all the covariates related to renal 
function. Although visual inspection suggested a correlation between V1 and 
CLCR values, it was not considered further because it did not make sense from 
a physiological point of view. In fact other factors as body weight could be 
responsible of this, since CLCR, as described before (section 4.3.1.1), is also 
highly correlated with bodyweight. No correlations existed between V1 and the 
other renal covariates (CREA and UREA) neither between any renal function 
covariate and Q (Figure 4.21). 
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Figure 4.21. Plots of Individual Bayesian values of parameters CL, V1 and Q, vs covariates 
related to renal function. Solid red line: smoothed line showing the general trend of the data. 

- Plots of CWRES vs covariates are displayed in Figure 4.22. There was a 
marked trend in CWRES versus WGT, indicating an underestimation of 
amikacin concentrations at low weights but an overestimation of them at high 
weights, and also versus CLCR. Similar trends were observed in CWRES 
versus HGT, BSA, HC and PMA. There was also a marked but negative trend in 
CWRES versus CREA, suggesting a more overestimation of amikacin 
concentrations at more high serum creatinine concentrations. These trends 
suggest that these covariates could explain some of the variability on the pK 
parameters of the structural model, being required some adjustment to reduce 
part of the observed variability. Less trend in CWRES versus BWGT, BHGT, 
PNA and GA was observed. Finally, no trend was observed in the case of 
CWRES versus UREA. 

BSA

CLCR

HC 

CLCR CLCR
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Figure 4.22. Plots of CWRES vs the most relevant covariates (BWGT, BHGT, WGT, HGT, CP, 
BSA, PNA, PMA, GA, UREA, CREA, CLCR). Solid red line: smoothed line showing the general 
trend of the data. 

Although the marked trend observed in some CWRES versus covariates plots 
(WGT, CLCR) all the covariates physiologically plausible were tested in 
NONMEM, except  gender, gestation number and twined pregnancy, for the 
above reasons. 

- Multivariant analysis using the “Stepwise Generalised Additive Modelling” 
(GAM) identified as potential pharmacokinetic parameter predictors: WGT, 
UREA and CREA on CL; BSA on V1; HGT and CREA on Q. 

Table 4.8. summarizes the covariate testing strategy during the covariate model 
development, for the most relevant covariates. The introduction of categorical 
covariates (sex, gender, prematurity and the classification according to BWGT) did not 
improve the OFV and neither did precision estimation of the parameters. 

PMA

CLCR
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Table 4.8. Summary of the univariate covariate testing during the initial 
steps of the covariate model development. 
Pharmacokinetic 

parameter Covariate Model Results �OFV 

FINAL 
STRUCTURAL 

MODEL 

- Run33 Obj: 2075.969 - 

CL WGT Run87 Obj: 1929.819 -146.15 
CL HGT Run93 Obj: 1955.438 -120.53 
CL BWGT Run105 Obj: 2008.348 -67.62 
CL BHGT Run104 Obj: 1999.562 -76.41 
CL HC Run85 Obj: 1924.644 -151.33 
CL BSA Run88 Obj: 1930.688 -145.28 
CL PNA Run102 Obj: 1997.736 -78.23 
CL PMA Run83 Obj: 1909.177 -166.79 
CL GA Run101 Obj: 1994.064 -81.91 
CL CLCR Run80 Obj: 1873.002 -202.97 
CL CREA Run89 Obj: 1935.717 -140.25 

V1 WGT Run82 Obj: 1905.093 -170.88 
V1 HGT Run84 Obj: 1924.214 -151.76 
V1 BWGT Run97 Obj: 1964.688 -111.28 
V1 BHGT Run95 Obj: 1961.627 -114.34 
V1 HC Run86 Obj: 1927.869 -148.10 
V1 BSA Run81 Obj: 1904.589 -171.38 
V1 PNA Run109 Obj: 2066.497 -9.47 
V1 PMA Run98 Obj: 1965.653 -110.32 
V1 GA Run106 Obj: 2012.050 -63.92 
V1 CREA Run109 Obj: 2080.141 -4.17 
V1 CLCR Run107 Obj: 2036.199 -39.77 

Q WGT Run90 Obj: 1942.656 -133.31 
Q HGT Run92 Obj: 1953.954 -122.02 
Q BWGT Run100 Obj: 1968.139 -107.83 
Q BHGT Run96 Obj: 1962.439 -113.53 
Q HC Run94 Obj: 1960.725 -115.24 
Q BSA Run91 Obj: 1943.927 -132.04 
Q PNA Run110 Obj: 2072.532 -3.44 
Q PMA Run99 Obj: 1967.518 -108.45 
Q GA Run103 Obj: 1998.766 -77.193 
Q CLCR Run108 Obj: 2052.299 -23.67 
Q CREA Run111 Obj: 2070.766 -5.20 

Because of the existence of η and ε-shrinkage, all of the covariates were tested in 
NONMEM during the univariate covariate testing. All the covariates introduced 
univariately in the model resulted in a statistically significant reduction of the OFV, with 
the exception of CREA on V1 and Q, and PNA on Q. So, although no marked trend 
was observed when bayesian estimates of distributional clearance were plotted versus 
almost all the covariates (Figure 4.19, Figure 4.20 and Figure 4.21), the univariate 
covariate introduction on Q was also tested. All the covariates related to body size 
produced a statistically significant reduction of the OFV, on CL, V1 and Q. Due to the 
linear correlations existing among all of them, only those most frequently managed in 
the clincal practice were considered. Hence, body weight (WGT) was selected, 
whereas BSA, HGT, BHGT and CH, were not considered further to be introduced in the 
model. Regarding to covariates related to age, the introduction of GA either on CL, V1 
or Q, produced a significant decrease on OFV, but the precision estimation of 
parameters was incorrect. The most statistically significant covariate related to age was 
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PMA either on CL, V1 or Q. CLCR was more statistically significant than CREA as 
renal function covariate on CL. Some other covariates, that produced a significant 
decrease on the objective function value, resulted in low precision estimates for some 
parameters, that is HGT and BWGT on V1; and CLCR on Q. After the univariately 
testing, the most statistically significant covariates were CLCR on CL, followed by two 
covariates related to body size, BSA and WGT, both on V1, and then PMA, on CL. But 
BSA was discarded because its less frequent use during the clinical practice. 

From this point, sequential forward inclusion of covariates that had showed to be 
statistically significant was carried out, as summarized in Table 4.9. It should be noted 
that only the most relevant steps of the process, from a physiological point of view, are 
displayed in this table. 

Table 4.9. Summary of most relevant steps of the sequencial forward covariate inclusion during 
the covariate model development. 

Hypothesis Model Results �OFV Respect to 
the model 

Model 
selected 

Decision 

BASE MODEL Run 33 Obj: 2075.969 - - - - 

+ CLCR on CL 
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The covariate model development started out with the creatinine clearance model 
(#80), given that it had resulted to be the most statistically significant covariate during 
the univariate analysis. When WGT was added to V1 (#121) from model #80, the 
objective function value  as well as the BPV_V1 associated, decreased 192 units and 
41,32%, respectively. WGT was retained in V1, based on phisiological and clinical 
criteria, and this was considered from here to forwards.Then, from model #121, PMA 
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was tested on CL, resulting in a statistically significant decrease of the OFV (-61.098). 
But no clinical reduction of the BPV associated to this parameter was observed, and 
precision of some estimated parameters worsened. The inclusion of WGT on CL from  
model #121, (model #123) produced a decrease in the objective function with an 
additional improvement of BPV_CL (-72,445 units and 30.68%, respectively). 
Therefore, WGT was keeped into the model (#123). The several body size covariates 
tested on pharmacokinetic parameters (#124 and #125) did not reduce the OFV in any 
case and similarly occurred when PMA and PNA were tested on CL, V1 or Q (models 
#125, #128 and #130). According to these results, model #123 was selected as the 
best final model. The backward elimination, of each covariate, one by one, from the full 
model, increased the objective function value in more than 10.8 units in all the cases 
(p<0.001). 

4.3.2.3 Final model 

The main characteristics of the final population pharmacokinetic model were: 

• Two-compartment kinetic model with first order elimination process, 
parameterized as clearances and distribution volumes. 

• Between-patient variability modelled exponentially was associated with plasma 
and distributional clearances and central compartment distribution volume. 

• Combined residual error model (additive + proportional) provided the best fit of 
data. 

• FOCEI was used as estimation method 
• WGT and CLCR showed to be the best predictor covariates of CL. 
• WGT was the most significant predictor covariate of V1. 

Table 4.10 lists the population pharmacokinetic parameter estimates for the base and 
final models and the corresponding shrinkage values as well as the bootstrap results. 
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Table 4.10. Population pharmacokinetic parameters of the base and final models and the 
bootstrap results. 

Base model 
(#33) 

Final model 
(#123) 

Mean value 
from Bootstrap  

(95% PI)* 
θ1-CL (L/h) 0.129 (6.95) 0.133 (4.23) 0.133        

(0.122 – 0.145) 
θ2-CL~CLCR - 0.649 (9.78) 0.642        

(0.508 – 0.771) 
θ5-CL~WGT - 0.752 (12.02) 0.758        

(0.581 – 0.955) 
θ3-V1 (L) 0.595 (6.84) 0.837 (3.80) 0.834        

(0.768 – 0.900) 
θ4-V1~WGT - 1.09 (4.86) 1.09          

(0.978 – 1.201) 
θ7-Q (L/h) 0.128 (14.84) 0.039 (28.13) 0.041        

(0.020 – 0.068) 

Pharmacokinetic 
parameters

θ6-V2 (L) 1.15 (11.39) 0.409 (23.94) 0.427        
(0.251 – 0.667) 

BPV-CL (%) 74.23 (15.01) 34.50 (16.39) 33.72        
(27.15 – 39.64) 

BPV-V1 (%) 58.48 (19.04) 21.07 (25.23) 20.92        
(14.91 – 26.66) 

Between-patient 
variability

BPV-Q (%) 80.72 (23.85) 70.29 (40.08) 68.73        
(32.27 – 94.24) 

Additive (mg/L) 0.42 (4.81) 0.28 (6.97) 0.28            
(0.24 – 0.32) Residual 

variability Proportional (%) 24.00 (32.88) 50.4 (15.34) 51.84          
(29.8 – 97.2) 

ηηηη1-shrinkage % 10.34 17.82 - 
ηηηη2-shrinkage % 31.56 43.04 - 
ηηηη3-shrinkage % 55.97 74.18 - 
�-shrinkage % 19.95 17.64 - 

RSE%: Precision given by the relative standard error in parenthesis 
* From 1000 resamplings
** Final model: 

( ) ( ) ( ) 039.0TVQ   ;409.0TVV2   ;1880
WGT837.0TVV1   ;1880

WGTX97.31
CLCR133.0TVCL

09.1752.0649.0
==	


�
�

�=	


�
�

�=

Inclusion of CLCR on clearance accounted for a reduction of the BPV_CL from the 
base model of 34.55%. The further inclusion of WGT on V1 reduced BPV_V1 of 
63.32%. The final inclusion of WGT on CL, being the final model, accounted for a 
reduction of the between-patient variability of CL and V1 from the base model of 
53.59% and 63.97%, respectively. Figure 4.23 shows the goodness-of fit plots 
corresponding to the final model. 



Results 

101 

Figure 4.23. GOF plots of the final PK model developed (#123).Upper panels: DV vs PRED (left) 
and IPRED (right) concentrations. Middle panels: IWRES vs IPRED (left) and CWRES 
(calculated as PRED-DV) vs TIME (right). Lower panel: CWRES (calculated as DV-PRED) vs 
PRED. Concentrations expressed as mg/L. Black solid line: identity line. Red solid line: 
smoothed line showing the general trend of the data. 
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The introduction of covariates on the base model (#33) accounted for an improvement 
of the structural part of it. Goodness-of-fit plots that allowed the evaluation of the 
structural population PK model (DV vs PRED, CWRES vs TIME and CWRES vs 
PRED) showed all data points in the final model closer to the identity line on DV vs 
PRED plot and to the the zero-line on CWRES vs TIME and CWRES vs PRED plots 
than in the base model, indicating that the correlation DV/PRED in the final model was 
better than in the base one. Plots of CWRES vs PRED, presented a clear tendency to 
overestimation at high concentrations in the base model. After the introduction of 
covariates, data points were closely and symmetrically distributed around the zero-line, 
confirming the effect of the introduction of the covariates to achieve a good precision of 
the model and also the elimination of the trend of the model to overestimation at high 
concentrations. Moreover, the model was able to predict the individual and population 
concentration-time profiles of neonates for the whole range of body weights, as 
illustrated in Figure 4.24. 

The comparative plots of CWRES vs WGT and CLCR for the base and the final models 
(Figure 4.25) confirms the better performance of the final model fitting to data. The 
marked trend observed in CWRES versus WGT plots for the the base model, 
suggested an underestimation of amikacin concentrations at low values of WGT but an 
overestimation of them at high values. This trend disappeared in the final model, 
indicating an adequate prediction of individual amikacin concentrations for the whole 
range of WGT. Similar changes in trends of CWRES versus CLCR plots were 
observed. 
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Figure 4.24. Superimposed values of observed (DV), population predicted (PRED) and 
individual predicted (IPRED) concentrations vs time for each individual of the “Model building 
dataset”. DV are represented by grey points, IPRED as red continue line and PRED as blue 
dashed line. 
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Base model (#33) 

Final model (#123) 

Figure 4.25. CWRES vs WGT and CLCR plots of the base model (upper pannel) and the final 
model (lower pannel). Concentrations expressed as mg/L. Solid red line: smoothed line showing 
the general trend of the data. 

Morevoer, the marked trend observed in the between patient random effects 
associated with CL (ETA1) and V1 (ETA2) versus covariates WGT and CLCR in the 
base model disappeared in the final model after adjusting by the corresponding 
statistically significant covariate (Figure 4.26). 

CLCR

CLCR
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Base model (#33) Final model (#123)

Figure 4.26. Plots of between patient random effects associated to CL and V1 versus covariates 
on the base (left) and final model (right). Solid red line: smoothed line showing the general trend 
of the data.

CLCR CLCR



Results 

106 

Finally, between-patient random effects associated with CL (η1), V1 (η2) and Q(η3) 
were approximately normally distributed around zero in the final model (Figure 4.27). 

Figure 4.27. Distributions of between-patient random effects associated with CL (η1), V1 (η2) 
and Q(η3) in the final model. 

4.3.3 Final model evaluation and qualification 

Results corresponding to the predictive capacity of the model developed are presented 
in the following sections. 

4.3.3.1 External validation techniques 

Data set for the external validation comprised 53 newborns, of which 34 were boys 
(64%) and 19 girls (36%). The main demographic and biochemical characteristics of 
these patients are summarized in Table 4.1. As Figure 4.28 shows, good agreement 
between the observed (DV) and either population predicted (PRED) or individual 
predicted (IPRED) concentrations was found. It suggested that the developed model 
had a good predictive power. The median values and the 2.5 and 97.5 percentiles of 
bias and precision are displayed in Table 4.11 for both trough and peak concentrations.  
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Figure 4.28. Relationship between observed and population/individual model predicted 
concentrations for the external evaluation dataset using the final model. Concentrations 
expressed as mg/L. Red solid line: smoothed line showing the general trend of the data. Black 
solid line: identity line. 

Totally acceptable median bias and precision values were found, it suggesting a good 
predictive ability for our model. The 95% confidence intervals of bias associated with 
both trough and peak concentrations included the zero value suggesting no statistically 
significant differences from zero. Based on median trough and peak concentrations of 
2.21 and 22.12 mg/L, respectively, the median precisions of trough and peak 
concentrations estimated from individual predictions (0.71 and 1.20, respectively) 
represented the median errors of 32.12% (for trough concentrations) and 5.42% (for 
peak concentrations). As expected, accuracy and precision confidence intervals were 
narrower for individual prediction vs population prediction concentrations. 

Table 4.11. Median values and percentiles 2.5 and 97.5 of accuracy and precision for 
trough and peak concentrations achieved by the external evaluation 

 Trough concentrations Peak concentrations 
 Bias            

(mg/L) 
Precision 

(mg/L) 
Bias          

(mg/L) 
Precision 

(mg/L) 
PRED vs 
OBS 

0.09 
(-8.92 – 4.50) 

0.91 
(0.52 – 1.73) 

-0.22 
(-11.34 – 17.40) 

1.26 
(0.72 – 2.04) 

IPRED vs 
OBS 

0.13 
(-1.95 – 1.81) 

0.71 
(0.45 – 1.24) 

1.10 
(-5.05 – 9.43) 

1.20 
(0.71 – 1.75) 
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4.3.3.2 Internal validation techiques 

Bootstrap 

Table 4.10 lists the results corresponding to the means and 95% PIs of parameters 
estimates from 1000 bootstrap samplings. The mean value from bootstrapping were 
very close to the population means for all the parameters. The percentages of 
difference between the final model and the bootstrap means were lower than 6% for all 
the pharmacokinetic structural and random-effect parameters. All the final model 
parameter estimates lie within the bootstrap 95% prediction intervals. These results 
indicated that the estimates for the fixed and random effects in the final model were 
accurate and that the model was stable. 

Visual Predictive Check (VPC) and Prediction-corrected Visual Predictive Check 
(pc-VPC) 

The VPC and pcVPC are displayed in Figure 4.29 and Figure 4.30, respectively. In 
both cases, the simulations of 1000 populations, as the original, were performed from 
the parameter estimates of the final model. In the case of pcVPC, both the 
observations and model predictions were normalized by the typical model predictions in 
each bin of independent variables such as time, dose and covariate values. Hence, the 
pcVPC allowed to correct for the differences within a bin coming from these variables. 
Neither VPC nor pcVPC suggested discrepancies between observations and model 
predictions, and therefore any important model missespecification across post-dosing 
time or concentrations. The median and the 5% and 95% percentiles of the observed 
data fell within the 95% confidence intervals of the corresponding model predicted 
percentiles in all the cases, but a tendency toward underpredicted amikacin 
concentrations at the predose sample can be observed in these plots from 24 hours 
post-dosing to upwards. Besides, a slightly overprediction of peak concentrations is 
also present. 

On the other hand, the pcVPC showed slightly narrower blue fields with respect to the 
VPC. This could be due to the fact that part of the variability could be corrected with 
normalization by independent variables. Besides, the underprediction of trough 
concentrations from 24 hours post-dosing to upwards is also present, as well as the 
overprediction of some peak concentrations. 
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Figure 4.29. Visual Predictive Check for amikacin concentration vs time data for the final 
model. Median (solid line), 95th and 5 th percentile (dashed lines) of the observations. Pink 
area cover the 95% CI of the median and light blue areas cover the 95% CI of the 5th and 
95th percentiles of the simulated profiles. 

Figure 4.30. Predicted-corrected Visual Predictive Check for amikacin concentration vs time 
data for the final model. Median (solid line), 95th and 5 th percentile (dashed lines) of the 
observations. Pink area cover the 95% CI of the median and light blue areas cover the 95% 
CI of the 5th and 95th percentiles of the simulated profiles. 
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Posterior Predictive Check (PPC) 

Figure 4.31 and Figure 4.32 show the distributions of simulated trough and peak 
amikacin concentrations (mg/L) respectively, from 1000 populations as the original. 
The simulated median distributions (middle panel), and  the 25% (upper panel) and 
75% (lower panel) percentiles distributions were superimposed to the corresponding 
median values and the 25% and 75% percentiles of observed trough or peak 
concentrations respectively. The medians of simulated trough and peak concentrations 
were both adequately within the 25% and 75% percentiles of observed trough and 
peak concentrations respectively, although the medians of trough concentrations were 
slightly overpredicted and the medians of peak concentrations were underpredicted 
some. According to this results, the posterior predictive check (PPC) indicated a 
reasonable prediction of the original data. 

Figure 4.31. Posterior Predictive Check (PPC) for amikacin 
trough concentration vs time data for the final model. 
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Figure 4.32 Posterior Predictive Check (PPC) for amikacin 
concentration vs time data for the final model. 

Normalised prediction distribution errors (NPDE) 
Figure 4.33 shows discrepancies between simulated and observed data for 1000 
simulations from the final model graphed as an histogram and a dispersion plot. 
According to these plots, the density of predictive model discrepancies (npde) went 
along theorical normal distribution, without extreme valules, indicating that the final 
model (#123) estimations variance was low. On the other hand, discrepance errors of 
predicted concentrations had an homogeneous distribution around npde=0, without a 
specific tendency. 
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Figure 4.33. Npde obtained from 1000 simulations of the final model 

4.3.4 Model based simulations 

Results corresponding to the simulations based on the final model parameter estimates 
are presented in the following sections. 

i. Assessment of the influence of the covariates identified as statistically 
significant on amikacin trough and peak concentrations. 

For different cut-offs of WGT and CLCR previously established, simulations of trough 
and peak concentratios of 1000 virtual patients of the same characteristics and having 
received the same dosage as those of the original data set, were performed. The 
different cutoffs of WGT and estimated CLCR values used for the simulations (Table 
3.2) were established in an effort to categorize the patients of the entire population into 
well distinct groups depending on their WGT and CLCR values. Hence, WGT was 
classified as: low (≤ 1199 g), medium (1200 – 1999 g) and high (≥ 2000 g). Based on 
CLCR, four groups were considered as representative of the main stages of the renal 
failure defined by the Chronic Kidney Disease (122). 

Table 4.12 summarizes the percentages of patients with trough concentrations below 5 
mg/L as well as below the concentration value considered as potentially toxic (10 
mg/L). Table 4.13 shows the percentages of individuals with ineffective peak 
concentrations (< 20 mg/L). The 2.5%, 50% and 97.5% percentiles values of the trough 
and peak concentrations for each cut-off are also displayed. 
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Table 4.12. Percentages of patients with amikacin trough concentration < 5 mg/L as well as < 
10 mg/L and 2.5%, 50% and 97.5% percentiles of the predicted trough concentrations. 

Trough concentrations 

CLCR WGT < 5 mg/L 
(%)

< 10 mg/L 
(%)

p2.5% p50% p97.5% 

≤≤≤≤1199 85.6 96.1 0.03 0.75 8.17 

1200-1999 86.3 96.5 0.02 0.55 8.12 <15 

≥≥≥≥2000 64.2 77.3 0.03 0.58 9.31 

≤≤≤≤1999 89.6 97.7 0.04 1.01 9.62 

1200-1999 80.1 91.6 0.04 1.18 8.97 15-30.99

≥≥≥≥2000 70.7 84.7 0.06 1.90 8.00 

≤≤≤≤1999 79.6 90.3 0.02 0.69 8.46 

1200-1999 92.6 97.9 0.03 0.57 6.89 31-59.99

≥≥≥≥2000 74.7 88.9 0.04 1.04 8.83 

≤≤≤≤1999 98.6 100 0.02 0.46 3.90 

1200-1999 - - - - - ≥≥≥≥60 

≥≥≥≥2000 95.1 98.4 0.02 0.51 7.75 

(-) There were no patients with WGT and CLCR values within this range in the original 
dataset. 

Table 4.13 Percentages of patients with amikacin peak concentrations < 20 mg/L and 2.5%, 
50% and 97.5% percentiles of the predicted peak concentrations. 

Peak concentrations 
CLCR WGT 

< 20mg/L (%) p2.5% p50% p97.5% 

≤≤≤≤1199 46 20.45 31.37 72.41 

1200-1999 36.7 20.53 32.67 80.78 <15 

≥≥≥≥2000 19 20.89 36.93 89.95 

≤≤≤≤1199 49.4 5.50 20.21 64.52 

1200-1999 44.6 5.90 21.78 63.57 15-30.99 

≥≥≥≥2000 54.2 20.42 30.87 70.68 

≤≤≤≤1999 52 20.38 30.70 65.94 

1200-1999 53 3.99 18.99 59.24 31-59.99 

≥≥≥≥2000 52.3 20.37 29.58 67.26 

≤≤≤≤1999 68.1 20.22 26.64 52.33 

1200-1999 87.3 3.71 11.90 28.98 ≥≥≥≥60 

≥≥≥≥2000 55.1 4.13 18.58 50.58 
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According to the results of Table 4.12, the current dosages given provided safe trough 
concentrations, that is within the therapeutic range, in the 80% or more of the patients, 
and below the threshold of toxicitiy in the 90% or more of the patients in all the cases, 
excepting in those patients of WGT higher than 2000 g and CLCR lower than 60 
mL/min. In these cases, there was a trend to over-dosing which was greater the 
smaller was the creatinine clearance. In general, patients with the highest CLCR values 
were those best dosed in view of the potential toxicity. However, they were also the 
worst dosed in view of efficacy (Table 4.13), with the highest percentages of peak 
concentrations below the threshold of 20 mg/L (from 55.1 to 87.3%). In the other 
groups, there were lower percentages of patients with peak concentrations below 20 
mg/L as well as a trend to median peak concentration values closer to 30 mg/L, 
excepting patients of CLCR ranging from 15 to 30.99 mL/min and WGT below than 
1999 g or patients with CLCR values ranging from 31 to 59.99 mL/min and WGT from 
1200 to 1999g. In summary, all these results show that the current dosage (dose and 
dosing interval) provides trough and peak concentrations within the therapeutic range 
in most cases, but revision would be required for some groups, particularly arranging 
trough concentrations for the patients of CLCR with CLCR lower than 15 mL/min and 
WGT ≥ 2000 g, and peak concentrations for the patients with the highest CLCR values 
except those with WGT ≥ 2000 g. 

After stratified the overall resulting simulated concentrations vs time data by the same 
age groups as those considered by the Neofax guide,  
Table 4.14 summarizes, for each group, the percentages of patients with trough 
concentrations < 5 mg/L and below the concentration value considered as potentially 
toxic (10 mg/L), as well as the percentages of individuals with ineffective peak 
concentrations (< 20 mg/L). 

Table 4.14 Percentages of through and peak concentrations within the 
therapeutic range 

Through concentrations Neofax age 
group < 5 mg/L < 10 mg/L 

Peak concentrations 
< 20 mg/L 

Group A 100% 100% 11.4% 
Group B 88.7% 97.2% 49.5% 
Group C 88.1% 95.2% 51.6% 
Group D 75.6% 95.2% 47.7% 
Group E 82.1% 92.0% 48.5% 
Group F 75.6% 89.0% 49.3% 

The percentage of patients with trough concentracions within the therapeutic range (< 
5 mg/L) was around 80% in all the groups, from 75.6% (Group D) to 100% (Group A). 
Besides, the percentage of trough concentrations > 10 mg/L was higher than 88% in all 
the cases. Regarding peak concentrations, all the groups achieved percentages 
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around 50%, except for the Group A, with only a 11.4% of trough concentracions < 20 
mg/L. 
These results show that cutoffs according to our model (CLCR and WGT) are more 
sensitive to detect an ineffective dosage regimen than stratifying by Neofax in such a 
way that provides higher percentages of peak concentrations within the therapeutic 
range for the most immature group (Group A) than when considering CLCR <15 
mL/min and WGT �1199 g. It suggests that patients of GA ≤29 weeks and PNA 0-7 
days do not exactly correspond to patients of CLCR <15 mL/min and WGT �1199 g, 
with probably slightly higher CLCR or WGT values than those of the first cutoff of our 
distribution. Similarly, a trend to lack of correlation was observed when percentages of 
target trough concentrations were compared for CLCR �60 mL/min and GA �35 weeks, 
in that case higher precentages of trough concentrations within the therapeutic range 
were observed for CLCR �60 mL/min vs GA �35 weeks, it suggesting that patients of 
GA �35 weeks tended to show lower CLCR values than 60 mL/min. Therefore no 
correlation between the type of stratification was found for the most imamature groups 
when compared peak cocnentrations and for the less immature groups when compared 
trough concentrations. 

ii. To stablish initial dose recommendations, in view of the efficacies and 
toxicities given by serum amikacin concentrations.

In this case, the dosages to be used for simulations from the final model were chosen 
by trial and error aiming to achieve mean peak concentrations values of at least 30 
mg/L and mean through concentrations below or ranging from 1.5 to 3 mg/L. These 
doses were selected after testing them in the model with dosing intervals of either 12, 
24, 36 or 48 hours and taking into account not only the therapeutic range defined for 
trough and peak concentrations but also criteria of usefulness in the clinical practice. 

Table 4.15 summarizes the initial doses/dosing intervals selected to be given to 
patients with CLCR values of 10, 20, 30, 50, 60 and 80 mL/min, and WGT values of 
500, 1000, 1200, 1500, 2000 and 2500 g, in order to achieve the trough and peak 
concentrations above mentioned. 

Regardless of CLCR values, dose requirements increased with WGT. Similarly, for a 
given WGT, dosing interval increased with decreasing CLCR. Dosing interval of 12 
hours could only be used in patients with normal renal function (≥ 60 mL/min), with the 
exception of the group with CLCR of 60 mL/min and WGT 500g, that required a 24 
hours dosing interval. When the CLCR was 10 mL/min, 48 hours dosing interval was 
applied, regardless of WGT. For CLCR values of 20 mL/min, the dosing interval was 
reduced to 36 hours, for the whole range of WGTs. For CLCR values from 30 to 50 
mL/min,  the dosing interval of 24 hours was the most suitable, regardless of WGT. 
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Table 4.15. Summary of the first doses (mg) and dosing intervals (hours) estimated from 
the final developed model to be given in order to achieve the stablished peak and trough 
concentrations. 

WGT (g) CLCR 
(mL/min) 500 1000 1200 1500 2000 2500 

10 9.5 (48h) 16 (48h) 19 (48h) 23 (48h) 30 (48h) 36.5 (48h) 

20 10.5 (36h) 18 (36h) 20.5 (36h) 25 (36h) 32.5 (36h) 39.5 (36h) 

30 11.5 (24h) 19 (24h) 22 (24h) 26 (24h) 33.5 (24h) 40.5 (24h) 

50 14 (24h) 21.5 (24h) 25 (24h) 29.5 (24h) 37 (24h) 44.5 (24h) 

60 15 (24h) 22 (12h) 25 (12h) 29.5 (12h) 36.5 (12h) 43.5 (12h) 

80 16.5 (12h) 24.5 (12h) 27.5 (12h) 32 (12h) 39.5 (12h) 46.5 (12h) 

Table 4.16 show the percentage of patients with trough concentrations below 5 mg/L 
as the p2.5% and p97.5% percentile values estimated from 1000 simulations from each 
one of the first dose and dosing interval selected for each CLCR and WGT cutoff. The 
corresponding percentage of patients with peak concentrations below the threshold 
defined as effective (20 mg/L), within the therapeutic range (20 – 30 mg/L) and higher 
than the therapeutic range (30 mg/L), estimated as peak concentrations, and the 
p2.5% and p97.5% percentile values are shown in Table 4.17. 
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Table 4.16. Percentages of patients showing amikacin trough concentration < 5mg/L (percentile 2.5 - 
percentile 97.5) after 1000 simulations of the first dose selected from the final model to be given. 

WGT (g) CLCR 
(mL/min) 500 1000 1200 1500 2000 2500 

10 
86.9%   

(0.167-8.227) 
90.7%   

(0.05-7.65) 
90%      

(0.06-7.71) 
89.3%   

(0.09-8.22) 
86.9%   

(0.11-8.83) 
85.5%   

(0.12-9.17) 

20 
92.1%      

(0.05-7.02) 
93.9%   

(0.22-6.53) 
94.3%      

(0.25-6.44) 
93.9%    

(0.30-6.60) 
93.2%   

(0.28-7.21) 
92.4%   

(0.30-7.34) 

30 
86.8%   

(0.15-8.52) 
89.6%   

(0.07-7.94) 
89.6%      

(0.10-8.07) 
89.7%      

(0.12-8.31) 
86.7%   

(0.12-9.14) 
85.4%   

(0.11-9.62) 

50 
94.2%   

(0.17-6.50) 
97.2%    

(0.38-5.23) 
97.2%    

(0.41-5.26) 
97.3%   

(0.44-5.26) 
97.1%   

(0.46-5.45) 
96.5%   

(0.47-5.74) 

60 
95.3%   

(0.27-5.74) 
75.5%      

(0.19-11.82) 
75.6%   

(0.15-12.12) 
73.7%   

(0.17-12.55) 
70.5%      

(0.22-13.04) 
65.9%   

(0.32-13.90) 

80 
79.5%      

(0.12-11.50) 
83.8%   

(0.03-10.33) 
83.8%   

(0.05-10.26) 
83.3%   

(0.06-10.50) 
81.4%   

(0.05-11.53) 
79.6%   

(0.01-11.96) 
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Table 4.17. Percentages of patients showing amikacin peak concentration < 20 mg/L, 20 – 30 mg/L and > 30 mg/L (percentile 2.5 - percentile 97.5) after 1000 
simulations of the first dose selected from the final model to be given. 

WGT (g) 

500 1000 1200 1500 2000 2500 CLCR 
(mL/min)

<20 
mg/L 

20-30 
mg/L 

>30 
mg/L 

<20 
mg/L 

20-30 
mg/L 

>30 
mg/L 

<20 
mg/L 

20-30 
mg/L 

>30 
mg/L 

<20 
mg/L 

20-30 
mg/L 

>30 
mg/L 

<20 
mg/L 

20-30 
mg/L 

>30 
mg/L 

<20 
mg/L 

20-30 
mg/L 

>30 
mg/L 

20% 35.5% 44.5% 16.2% 38.3% 45.5% 15.2% 37.1% 47.7% 15.3% 37.2% 47.5% 14.6% 36.9% 48.5% 14.8% 36.6% 48.6%
10 

(10.70-55.62) (11.81-54.56) (12.11-54.95) (12.18-53.93) (12.36-54.96) (12.33-54.58) 

23.4% 36.7% 39.9% 16.4% 38.3% 45.3% 16.7% 40.1% 43.2% 15.9% 38.6% 45.5% 14.9% 37.6% 47.5% 15% 36.2% 48.8%
20 

(10.37-54.41) (11.88-54.70) (11.70-52.91) (11.93-53.73) (12.20-54.12) (12.31-54.21) 

22.8% 35.9% 41.3% 16.9% 37.8% 45.3% 16.2% 37.5% 46.3% 16.7% 38.6% 44.7% 15.3% 37.9% 46.8% 15.1% 37.4% 47.5%
30 

(9.88-55.53) (11.98-54.79) (11.89-54.49) (11.79-53.46) (12.09-53.80) (12.02-53.71) 

23.8% 34.2% 42% 18.9% 39.2% 41.9% 17.5% 38.1% 44.4% 17% 38.6% 44.4% 16.9% 38.3% 44.8% 15.7% 38% 46.3%
50 

(9.33-57.35) (10.65-53.84) (11.34-54.64) (11.62-53.72) (11.89-52.97) (11.88-52.76) 

25.4% 33.5% 41.1% 18.6% 38.5% 42.9% 18.2% 39.7% 42.1% 17% 38.3% 44.7% 17% 38.5% 44.5% 15.9% 37.9% 46.2%
60 

(8.87-58.17) (10.44-54.30) (10.88-53.71) (11.50-54.08) (11.79-53.13) (11.84-52.81) 

26.4% 33.2% 40.4% 19.5% 36.8% 43.7% 19% 37.7% 43.3% 17.9% 38.2% 43.9% 16.9% 36.9% 46.2% 16.1% 37% 46.9%
80 

(8.17-59.22) (10.19-57.32) (10.88-53.71) (10.98-56.01) (11.79-53.13) (11.78-55.69) 
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Percentages of patients with trough concentrations < 5 mg/L were near 80% in all the 
groups tested. The percentage of peak concentrations between 20 mg/L and 30 mg/L 
was around 35% and 38% in all the groups. The lowest WGT group (WGT of 500 g) 
had the highest percentages of ineffective peak concentrations (< 20 mg/L) , from 20% 
to upwards. The rest of the groups, the percentages of ineffective peak concentrations 
were lower than 20%. Figure 4.34  and Figure 4.35 show the distribution of trough and 
peak concentrations for all the groups, respectively. They are in accordance with the 
results discussed above. So, the initial doses proposed for the different groups based 
on WGT and CLCR provided safe and effective trough and peak concentrations for a 
high percentage of patients in all the groups. 
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Trough concentrations (mg/L)

Figure 4.34. Boxplots of amikacin trough concentrations achieved after the first dose 
administered. 

Peak concentrations (mg/L)�
Figure 4.35. Boxplots of amikacin peak concentrations achieved after the first dose 
administered. 
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Understanding the variability associated with pharmacokinetics (PK) and identifying 

subpopulations with special characteristics can provide clinicians with relevant 

information for dosage individualization. Uncertainty still exists concerning to the most 

safe and effective dosing regimen of aminoglycosides in neonates. Target 

concentrations for amikacin have not been prospectively defined, but clinical 

convention aims for defined trough and peak concentrations. However, these 

recommendations have not been based upon studies in neonates. Several studies 

have demonstrated that conventional paediatric dosing regimens are not well adapted 

to neonates because of the between-patient variability in pharmacokinetics in this 

population, resulting in inconsistent serum concentrations, particularly in the most 

immature individuals (42). In the current study we have developed a population 

pharmacokinetic model for amikacin in neonates as a first step for establishing the 

therapeutic range through a dose/exposure-response relationship. The development of 

a Bayesian estimator from prior population pharmacokinetics information could help to 

maintain concentrations within a given therapeutic range as well as the dose 

optimization during the therapeutic drug monitoring (TDM). 

Several population PK studies have been conducted to describe the PK of amikacin in 

neonates (42(123-(125). Major differences among these studies are mainly based on 

ranges of postnatal (PNA) and gestational (GA) ages, and on the size of the 

populations studied, apart from the estimation methods applied (parametric vs non 

parametric). Only analyses of Botha et al (123), Allegaert et al (125) and Sherwin et al 

(47) were performed according to the parametric approach with NONMEM, while 

others applied the non-parametric approach. Regarding GAs, some of these studies 

involved really immature neonates, GA <30 weeks (125). The present study, with a GA 

median of 31.8 weeks is located between the above and the studies of Bleyzac et al 

and Botha et al, with GAs medians of 34 and 35 weeks, respectively. Tréluyer et al did 

not include preterm infants in the studied population. Besides, the present study 

included a large amount of more extremely premature neonates (GA<28 weeks, 

35.6%) and more extremely low-birth-weight infants (birth weight <1000g, 34.2%), 

similarly than Sherwin et al (47) (57.5% of extremely premature neonates, and 55% of 

low-birth-weight infants). In relation to PNA, while studies of Bleyzac et al (42) and 

Allegaert et al (125) were limited to PNAs lower than 2 and 3 days, respectively, 

median PNA of Tréluyer et al (124) was 69 days, ranging from 1 to 3650 days, and so 

being a really heterogeneous population. Our population, showed a somewhat higher 

median PNA (28 days) than that of Sherwin et al (9 days) and with a wider range of 

variation (4-86 days vs 3-64 days) Only Allegaert et al studied a larger size sample 
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(n=205) than ours, but their population was restricted to PNAs below 3 days. 

Therefore, the large size of the sample studied (n=149), the wide range of GAs 

covered and the relatively high percentage of young premature babies with their 

associated renal immaturity included, gave relevance to our study compared to the 

previous. 

In the current study, the PK of amikacin was best described by a two-open-

compartmental model with zero order input and first order elimination kinetics. All 

population PK studies of amikacin in neonates above cited reported a one-

compartment pharmacokinetic model as the best to describe the respective data, 

despite the fact that amikacin pharmacokinetics shows a bi-exponential decay. In all 

these studies, sparse data designs were also applied due to the sampling limitations 

existing in neonates. As all of these studies, our sampling schedule coincided with the 

times corresponding to the trough and the so-called peak concentrations, equivalent to 

an early distributional phase sampling time of 30 minutes after the end of the infusion, 

as recommended by amikacin dosing protocols (29). However, it should be noted that 

in our case, due to limitations during the clinical practice, the time of sampling of peak 

concentrations ranged from 1 to 3.25 hours after the start of the infusion, it allowing a 

better description of the early distributional phase and hence justifying the better fit of 

the two-compartment model vs the one-compartment to the data. The PK parameters 

estimated by omitting data below the limit of quantification (BLQ) were very close to 

those obtained considering BLQ values reported as 0.09 µg/L, that is a value just lower 

the LLOQ of the analytical method. However, an inflated proportional residual error was 

estimated in the later vs the former case. According to Bergstrand and Karlsson (115), 

there is no predictable pattern when BLQ data are replaced by LOQ/2, sometimes 

reducing and sometimes inflating the bias in parameter estimates. The inflated 

proportional residual error found in our case lead to select the base model developed 

after omitting BLQ data. Handling of BLQ by using “Method 3” recommended by 

Bergstrand and Karlsson was also tested, but any of the models assayed fit data 

properly). In fact, the percentage of BLQ data of our study was low (<9%) compared to 

other studies where this method had been applied successfully. 

The population PK model developed in this study allowed the inclusion of between-

patient variability in plasma clearance (34.50%), central compartment distribution 

volume (21.07%) and distributional clearance (70.29%). Inter-occasion variability could 

not be captured by the model and the fit did not terminate successfully. This could be 

due to the sparse data design of the study with only two samples per patient at each 
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occasion and the few number of occasions assayed within each patient (from 2 to 3 

occasions). Physiologically feasible estimates of the basic PK parameters of amikacin 

were found and they did not differ significantly from previous findings of studies in 

neonates. Unlike adults, differences observed in neonates in growth and maturity, 

associated with development, can contribute to the variability found in the 

pharmacokinetic parameters, particularly in clearance. Therefore two scaling 

approaches can be considered, that is allometric and mechanistic. Allometric scaling is 

only based on size and says nothing about the maturity of the processes involved in 

the clearance of the compound, whereas mechanistic scaling considers each process 

involved in the drug clearance separately and their different maturation rates. These 

relevant aspects in paediatrics are covered by covariates such as body size covariates, 

i.e., birth weight (BWGT), current weight (WGT), birth height (BHGT), or current height 

(HGT) among others; and by age covariates, i.e., gestational age (GA), postnatal age 

(PNA) and postmenstrual age (PMA), or by renal function covariates, i.e., serum 

creatinine (CREA) and creatinine clearance (CLCR). The percentage of change 

observed in these covariates among all the individuals of the population clearly 

exemplifies their potential contribution to the variability in the pharmacokinetic 

parameters. For our population, changes of 103.7% and 100% occurred for BHGT and 

HGT, respectively, and were of approximately the 750% for both BWGT and WGT. Age 

covariates changed by less than 100% (68.7% for GA and 95.6% for PMA), with the 

exception of PNA, that increased a 2050% from the lowest to the highest value, 

reflecting the maturity heterogeneity of our target population. Apart from PNA, the 

highest percentages of changes were observed for renal function covariates, that is 

CREA (1215.8%) and CLCR (1971.4%). This lead to the identification of several 

subpopulations with varying degrees of renal function, either due to immaturity or renal 

impairment, within the target population. These changes, not being readily apparent in 

adults, are in line with the high reported between-patient variability (BPV) associated 

with PK parameters in neonate populations. As expected, correlations were found not 

only among covariates representing ages, body size or renal function but also between 

body size parameters and either maturation-related parameters such as ages (as all 

body size parameters vs GA and PMA) or CLCR (all body size parameters vs CLCR). 

Correlations between ages and renal function parameters were also found (all age 

covariates vs CLCR and also between CREA and PNA). Otherwise, as expected, no 

correlations were observed between PNA and BWGT or BHGT. These correlations 

resulted to be very informative for the covariate model development. In effect, 

according to all the above aspects mentioned when clearance in neonates is discussed 

weight, age and CLCR (provided that the drug is eliminated by renal excretion) should 



Discussion 

126 

be considered to explain between patient variability in this parameter and regardless of

their relative degree of correlation, they may or may not be mutually exclusive, that is, 

any one factor may or may not predict between-patient differences in clearance. 

Although some authors advocate selection of weight as the first covariate to be entered 

in the model before investigating the secondary effects of the other covariates related 

with maturity and renal function, in our case, we firstly tested the inclusion of CLCR on 

plasma clearance. This deliberate choice was based on known statistical criteria, as 

CLCR was the covariate that produced the highest decrease of the objective function 

value (OFV). This was expected for a drug that as amikacin is excreted unchanged by 

the kidney (5) through glomerular filtration, making renal function given by CLCR 

(estimated through the Schwarz formula) one of the most determining factors of 

amikacin disposition. Therefore, CLCR was shown to be the most influential covariate; 

the estimated CLCR explained 34.55 % of the between-patient variability in CL. 

Inclusion of CREA on CL resulted in a markedly lower decrease of the OFV than CLCR 

(-140.25 vs -202.97, respectively). Moreover, although it is also a good marker of renal 

function in paediatrics, the placental transfer of maternal creatinine, from the first two 

days of life until several weeks after birth, can contribute to elevated creatinine 

concentrations inappropriate to age and muscle mass in very preterm neonates. So, it 

is obvious that the relationship of CREA with amikacin CL during the physiological 

development of premature infants is complex and CLCR is considered to be a better 

marker of renal function of the maturation process. Other covariates tested on CL, 

physiologically and statistically justifiable for the model, were PMA, WGT, BSA, GA, 

PNA, and BWGT. 

From the statistical point of view, postmenstrual age and body weight were the 

following more influential covariates when tested univariately on amikacin clearance. 

The cumulative inclusion of PMA in the CLCR-covariate-model did not provide a 

statistically significant reduction of the BPV associated to CL, which was estimated with 

very low precision, so that this covariate was removed from the model. Otherwise, body 

weight tested according to an allometric relationship produced a great reduction of OFV 

(-72.45) but also of BPV_CL from the base model (53.59%), being the allometric 

exponent value estimated (0.752) in agreement with biological principles (3/4 or 0.75) 

and supported by extensive observations from diverse areas in biology. This finding 

confirmed the expected non linear correlation of renal drug clearances with size factors 

(as body weight), determining glomerular filtration rate. Thus, total amikacin clearance 

may be expected to scale with a power of 0.75, even though 0.133 L/h is the typical 
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clearance for a newborn weighting 1880 g and also a renal function given by a CLCR 

value of 31.97 mL/min. Allometry has been used to predict either clearance or 

distribution volumes in infants by scaling the infants weight to that of 70-kg standard 

adult subject. Of note, a wide range of varying body weights is required to develop 

such a model and to estimate the scaling exponent. However, in our case, the non-

linear allometric scaling power describing the relationship between body size (WGT) 

and organ function (CL) has been estimated within our neonatal population, this 

confirming the relative wide range of body weights in this population. However, 

newborns must grow from an immature form to reach a size that allows reproduction. 

This maturation factor can not be explained by allometry so that a model describing 

maturation in required As mentioned before, the inclusion of PMA on the CLCR 

covariate model was not clinically significant although it has been reported to be a 

physiological appropriate covariate to explain the time course of changes in clearance. 

Inclusion of PNA on CLCR covariate model did not provide a statistically significant 

reduction of the OFV. This was physiologically plausible, since major developing of 

functional nephrons occurs during the gestational period (126) also discarded PNA as 

a good descriptor of renal maturation because of the large variability in weight and 

gestation possible at birth, it also occurring in our study. PNA would have rather been a 

good predictor if the target population had only included term newborns with larger 

PNA ranges than that of our population (from 4 to 86 days). In effect at 1-year PNA in 

neonates born at term the glomerular filtration rate is 90% that of the mature (126). 

Surprisingly, inclusion of GA in the CLCR-covariate model did not provide a statistically 

significant significant reduction of the OFV. Therefore, in the current study, unlike other 

authors (124(125), age was not the best predictor of amikacin renal clearance. This 

could be due to the high influential effect of CLCR on amikacin clearance it covering 

differences in renal function associated with factors as maturity, disease and possible 

drug interactions and hence masking the effect of the own maturity covariates as either 

PMA or GA. In fact, the studied population has shown a clear increasing of CLCR with 

either GA or PNA, and hence it may be expected with PMA, with different patterns 

depending on the degree of prematurity, so that preterm neonates have shown a 

slower increase in CLCR during the first days of life than full term neonates. This 

confirms that CLCR can be considered in the current study an accurately measured 

marker of the maturity degree. On the other hand, a high collinearity has been found 

between CLCR and both PMA and GA (r2= 0.921 and 0.865, respectively); so that PMA 

and GA can be almost predicted by CLCR. 
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We are aware of results of previous studies reporting age as a good predictor of renal 

function, i.e., GA (42), PCA, (125) or PMA (47) and PNA, (124). However, we were 

unable to find among these, any study reporting CLCR as a predictor of amikacin 

clearance in neonates. This could be justified by the difficulties encountered for 

determining renal function in children although a high number of formulas have been 

published. Some of these authors justified this by the fact that CREA is not always 

routinely measured in neonatal nurseries, converting it into a restricted information, as 

well as CLCR, and being a reason because of the absence of studies including some 

marker of renal functionality as a predictor of aminoglycosides CL. In spite of this 

CLCR has been reported to be a good predictor of plasma clearance of other drugs 

also excreted by kidneys as vancomycin in neonates (127). The incorporation of CLCR 

as predictor of amikacin plasma clearance in the clinical setting is a major finding, 

particularly considering the large variable ranges of CLCR in the neonatal populations 

confirmed in the current study (from 5.87 to 121.5 mL/min). This maybe due to the 

presence of more patients with renal impairment, being an enough wide range to 

quantify some of the differences of amikacin CL independently of body size and also to 

estimate the covariate effect of CLCR, not included in other studies. On the other hand, 

some of the population pharmacokinetic studies of amikacin in neonates had reduced 

ranges of PNAs (125), and hence CLCR/CREA was more a reflex of maternal than 

neonatal renal function. Then the current model allowed estimating a plasma clearance 

value of 0.074 L/h/kg for a patient with a renal function given by a CLCR value of 31.97 

mL/min. This value resulted to be lower than those reported for adults. On the other 

hand, this value (0.074 L/h/kg) was slightly higher than that of 0.05 L/h/kg, reported  by 

Sherwin et al. Of note, the target population of Sherwin et al, was that closest to the 

ours among other studies, but these authors reported a lower CL value probably due to 

the inclusion of more immaturity. 

Regarding other pharmacokinetic parameters estimated by the final model reported 

herein, as expected BSA, WGT, and the remaining body size parameters were 

statistically significant on the central compartment distribution volume, as were PMA, 

GA and PNA due to their correlation with body size parameters. As known, between-

patient variability on the central compartment distribution volume, is determining of the 

peak concentrations achieved after a given dose and secondly the peak concentrations 

are good markers of efficacy during the amikacin therapeutic drug monitoring. Although 

BSA provided a more statistically significant reduction of the OFV when tested on V1, 

vs body weight, only the inclusion of the last, supported by physiological 

considerations, was considered. For V1, the power function of weight again allowed the 
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size to be referenced to a 1880 g newborn with allometry using an estimated exponent 

close to 1 (1.09) as when referenced to a 70 kg-adult. Therefore, the inclusion of WGT 

on V1 represented a decrease around 63.32% of the BPV_V1, it allowing better 

individual predictions of the peak concentrations with changes of body weight. A higher 

central compartment distribution volume was found in the current study (0.465 

L/Kg),when compared to adults (0.27 L/Kg) .This could be due to the highest volume of 

extracellular water reported in neonates (44%) vs the adults (19%), where 

aminoglycosides use to be distributed because of their polarity. 

On the other hand, because of the relatively large extracellular fluid volume of the 

preterm infants, the volume of distribution is increased and varies greatly from infant to 

infant, but dramatically decreases during the very first weeks of life. For this reason, 

some studies have attributed an effect of PCA on volume of distribution of several 

drugs during the first weeks of life in cohorts of more heterogeneous ages 

(124,(128(130). In our study, during the univariate covariate testing, all the age 

covariates decreased significantly the OFV, being PNA which produced the smaller 

decrease (-9.47). However, the inclusion of either PMA or PNA on the WGT covariate 

model of V1, not only did not decrease significantly the OFV, but also provided 

incorrect precision of estimated parameters, revealing a probable overparametrization 

of the model. Therefore, any of them was finally kept in the model. Although other 

studies with other drugs have found additional covariates influencing volume of 

distribution in neonates, such as sepsis and body water (123(131), these were not 

proved in our dataset. Then, results of the present study predicted that typical CL 

would range from 0.133 L/h (for a typical patient of 1880 g and CLCR of 31.97 mL/min) 

to 0.314 L/h ( for a typical patient of 1880 g and CLCR of 120 mL/min) or from 0.133 

L/h (for a typical patient of 1880 g and CLCR of 31.97 mL/min) to 1.764 L/h ( for a 

typical patient of 4000 g and CLCR of 31.97 mL/min. Moreover the typical V1 would 

range from 0.837 L (for a typical patient of 1880 g) to 1.906 L (for a typical patient of 

4000 g). The therapeutic implications of this are that patients with CLCR/WGT values 

of 120 mL/min/1880 g would require larger initial doses than patients with CLCR/WGT 

values of 31.97 mL/min /1880 g to achieve peak concentrations within the therapeutic 

range, or that patients with CLCR/WGT values of 120 mL/min/1880 g would require 

also larger doses than patients of 120 mL/min/4000 g to achieve peak concentrations 

within the therapeutic range. 

Regarding to distributional clearance and peripheral compartment distribution volume, 

typical values of 0.039 L/h and 0.409 L were found, respectively, however given that no 
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previous models for amikacin in neonates where a two-compartment model best 

described the pharmacokinetic profile, comparisons were not able to be performed. 

Once the model had been developed, its predictive performance assessment was 
considered necessary before the intended use of this for either initial dose calculations 
or dose tailoring during the therapeutic drug monitoring. The two widely known 
approaches (internal and external evaluation methods) were applied and their results 
compared. Firstly the most methodologically pure approach was considered by 
measuring the predictive performance of the model in a separate population of 53 
neonates. The bias and precision of population and individual predicted concentrations 
estimated according to Sheiner and Beal (120), were totally acceptable. Although we 
were not aware of previous developed models for amikacin that were validated 
externally, our results were in line with those found after an external validation of a 
previously reported population PK model for vancomycin in neonates (132). Based on 
the median trough and peak concentrations of 2.21 and 22.12 mg/L, respectively, of 
the current study, the median precisions of trough and peak concentrations estimated 
from individual predictions (0.71 and 1.20, respectively) represented the median errors 
of 32.12% (for trough concentrations) and 5.42% (for peak concentrations). 

As far as model validation is concerned, internal validation techniques, more complex 

and computationally intense were also applied. Hence, the bootstrap, the visual 

predictive check, or the normalized distribution prediction errors confirmed the good 

performance of the model. However, the prediction corrected visual predictive check 

technique was considered more suitable, because of the changing doses and covariate 

values in the target population). In this case, a slight underprediction of peak 

concentrations was suggested and also of trough concentrations beyond the 24 hour 

dosing intervals. Surprisingly, the posterior predictive check proved to be the most 

sensitive technique to model misspecifications. Results of this also suggested good 

predictability for the model although a slight under and over prediction of the medians 

of the trough and peak concentrations, respectively, was observed. 

One of the purposes of this study was to use the developed model to evaluate the 
influence of the statistically significant identified covariates on the amikacin exposure 
(trough and peak concentrations) with the actual dose regimens being given. Hence, 
the influence of WGT and CLCR on amikacin trough and peak concentrations was 
investigated, after establishing several CLCR/WGT cutoffs according to the 
CLCR/WGT distributions in the target population. Results suggested that for most of 
the CLCR/WGT cutoffs, the current dosage (dose and dosing interval) provided trough 
and peak concentrations within the therapeutic range (trough < 5 mg/L) and peak 
concentrations > 20 mg/L) However, further revision would be required for some 
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groups, particularly in regard to trough concentrations of patients with CLCR < 15 
mL/min and WGT ≥ 2000g (with only 64.2% of trough concentrations <5 mg/L), or  
peak concentrations of patients with CLCR values �60 mL/min. (with more than 68% of 
peak concentrations < 20 mg/L), except for those with WGT ≥ 2000g. This could be 
due to the lack of correlation between the stratifying criteria applied by us vs Neofax 
guide, especially for the most immature groups when compared peak concentrations, 
and for the less immature groups when compared trough concentrations. That is, 
probably patients of GA <29 weeks and PNA 0-7 days, showed slightly higher CLCR 
values or WGT than those of the first cutoff of our distribution, meanwhile, patients of 
GA �35 weeks tended to show lower CLCR values than 60 mL/min. On the other hand, 
as expected, results of simulated percentages of trough and peak concentrations from 
the original dataset, once stratified according to the Neofax criteria, strengthened the 
fact that the current dosage involves a great percentage of underdosed individuals 
However caution should be taken because as described before the recommendations 
of Neofax guide were not strictly followed-up in this study. 

Secondly, the model was applied to investigate the most recommended dose regimens 

in order to prevent under or over-exposure based on target trough and peak 

concentrations. Hence, the initial dosage recommendations were established. 

According to this, amikacin dosage regimens should be individualised particularly in 

those patients with more reduced renal function (CLCR< 15 mL/min), either due to 

immaturity or impairment. These patients would require dose but also dosing interval 

adjustments to larger values than 24 hours. To avoid toxicity These results are in 

accordance with the recommendations of Neofax guide, which establishes dosing 

intervals of 36 hours and 48 hours for the most premature neonates. The base-model 

simulations also confirmed the impact of changes of CLCR on trough concentration 

values and hence on the potential toxicity of the drug determining the dosing interval 

values. Otherwise, changes in body weight are more influential on peak concentration 

values, efficacy markers determining the amounts of drug to be given. 

In summary a validated population pharmacokinetic model has been developed for 

amikacin in a relatively large paediatric population of young premature babies which 

are a faithful representation of renal immaturity. Dosing adaptation from the start of the 

treatment to avoid under or over exposure is feasible in this population treated with 

repeated doses. Hence, results of this study may assist the optimization of initial dosing 

regimen aimed at achieving target trough and peak concentrations form the start of the 

treatment. Moreover the implementation of this model in a Bayesian prediction software 

can provide feedback dosage adjustments to achieve desired serum concentrations 

during the therapeutic drug monitoring. 
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Nevertheless, one of the main limitations associated with the present study is the lack 

of pharmacodynamic (PD) data, not only because it could allow us to build our own PD 

model, but also to be taken into account for dosage and monitoring of the antibiotic. In 

order to solve it in the near future, one possibility could be the use of a published PD 

model obtained in a population with similar characteristics than our, and validate its use 

in our population. Secondly, it could be valued the use of cumulative fraction response, 

based on the distribution of minimum inhibitory effect (MIC) in our hospital area, as 

another way to improve the PK model developed, and consequently, the dosage and 

monitoring of amikacin in the neonate population. 

One of the main limitations associated with the present study was the lack of 

pharmacodynamic data (PD) in order to develop a pharmacokinetic-pharmacodynamic 

model allowing to more precisely establish the therapeutic range in the neonatal 

population. However alternative approaches can be applied for this purpose as i) to 

incorporate a previously published PD model , developed in a similar population than 

ours, and to validate it in our population or ii) to use the cumulative fraction response, 

based on the distribution of minimum inhibitory concentrations (MIC) of our hospital 

area. 
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1. A population pharmacokinetic model for amikacin in newborn patients has been 
developed. 

2. The pharmacokinetics of amikacin in newborn patients has been best described by 
a two-compartment kinetic model with first order elimination process, parameterized 
as clearances and distribution volumes. 

3. Between-patient variability, modelled exponentially, has been associated with 
plasma and distributional clearances and central compartment distribution volume. 
Combined residual error model (additive + proportional) has provided the best fit of 
data. 

4. Current weight and creatinine clearance have showed to be the best predictor 
covariates of plasma clearance, and current weight the most significant predictor 
covariate of central compartment distribution volume. Inclusion of current weight on 
plasma clearance and distribution volume has been performed according to an 
allometric model. 

5. The results of an external validation with a group of patients not included in the 
development, belonging to the same population as the target one has proved a 
good predictive ability for the model. Median bias and precision values for trough 
and peak individual predicted concentrations (IPRED) have been lower than 0.72 
mg/L and 1.21 mg/L, respectively. 

6. Internal validation techniques as bootstrap, visual predictive checks, Npde and PPC 
have all confirmed the good predictive power of the model, being in agreement with 
the results from the external validation. 

7. Model-based simulations have allowed to evaluate the impact of changes in WGT 
and CLCR values on the amikacin exposure. 

8. The model developed has allowed to evaluate the current dose regimen and to 
recommend initial dosing strategies for different cutoffs of the covariates identified 
as best predictors of the PK behaviour, i.e.  WGT and CLCR. 

9. This model further implemented in a Bayesian dose optimization software will help 
in the dose adjustment during the therapeutic drug monitoring of amikacin in the 
target population. 

10. Additionally, the model can be used to further investigate optimal dosing strategies. 

11. The implementation of the model in the routine therapeutic drug monitoring practice 
will allow prospective validation of this model.
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* Registrat el mateix dia de l’extracció de sang o alternativament entre els ± 2 dies consecutius.�
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APPENDIX 2.1 GROWTH GRAPHIC (GIRLS)
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APPENDIX 2.2 GROWTH GRAPHIC (BOYS)
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