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CHAPTER 1

Introduction

1.1 The Cosmic Microwave Background Radiation

1.1.1 Introduction

In the last decade an increasing number of experiments have produced important re-

sults in the field of cosmology, allowing for a better understanding and characteriza-

tion of the cosmological model of the universe. The “Concordance Model”, the current

model of Big Bang cosmology, is based on the theory of inflation and on the Λ-CDM

model, that includes cold dark matter (CDM) and a cosmological constant. The theory

of inflation predicts a nearly scale-invariant spectrum of primordial density pertuba-

tions, homegeneity and isotropy on the largest scales, a universe without spatial curva-

ture and Gaussianity of the density fluctuations. This simple model is supported by the

observations of the cosmic microwave background radiation (CMB), the accelerating

expansion of the universe measured with distant supernovae and the large scale struc-

ture of the universe. The “cold dark matter”, non-baryonic weakly interacting matter,

accounts for 26% of the energy density in the universe. The baryonic matter accounts

for an additional 4% that makes up the atoms. The remaining 70% is the “dark energy”,

with an equation of state close to a cosmological constant, that allows for the current

accelerating expansion of the universe. In particular, data from the experiments ded-

icated to the study of the CMB radiation have contributed to the determination with

unprecedented precision of the cosmological parameters that characterize this model.

The CMB radiation is a relic radiation from the Big Bang that has traveled through

the space time for ∼ 14 thousand million years. The mere existence of this radiation

and its precise measurement strongly supports the theory of the Big Bang. Moreover,

imprinted in this radiation is information about the early universe when it was only

approximately 375.000 years old.
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Figure 1.1 This image shows a full-sky map of the cosmic microwave background

anisotropy and foreground signal from our Galaxy (mainly concentrated in the cen-

tral red band) for the 94 GHz channel of the WMAP satellite third year data release

[73].

1.1.2 Origins of the CMB

Some 14 thousand million years ago the universe was born in a big explosion known

as the Big Bang. At that time the universe was made of a very hot plasma, a mixture of

very energetic photons continuously interacting with electrons and baryons, prevent-

ing these from forming atoms. Then the universe expanded for almost 375.000 years

and cooled to 3000 Celsius degrees, the protons and electrons came together to form

atoms and the photons, for the first time, were no longer scattered by collisions with

charged particles, and continued their journey through the space. The period of time

when this process took place is known as the epoch of decoupling. When this hap-

pened, different regions had slightly different temperatures, depending on their initial

conditions at the time when decoupling started. In general, these photons have pre-

served their relative temperature differences, and this produces the pattern of hotter

and colder regions in the microwave sky (see figure 1.1).

Nowadays, photons coming from all directions with a temperature of ∼ 2.725 ± 0.001

Kelvin form the CMB radiation [99]. This radiation was first detected back in 1964 by

Arno Penzias and Robert Wilson of AT&T Bell Laboratories, in Holmdel, New Jersey

with an antenna originally used for satellite communications. They found an excess

radio noise that seemed to be independent of the direction where the antenna was
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pointing, which in principle could give a hint of its non Galactic origin.

A decade before, George Gamow formulated the theory of the Big Bang, a theory that

could explain how the atoms could have formed in a hot expanding universe. Gamow’s

collaborators, Ralph Alpher and Robert Herman, studied the thermal evolution of the

universe and came to the conclusion that, in the present time, after thousands of mil-

lions of years of expansion, the temperature of the universe and that of the photons of

this relic radiation must be of the order of 5 Kelvin. Although they had made a clear

prediction of what the temperature of the universe had to be, they did not try to detect

it.

It was not until 15 years later that scientists Robert Dicke in Princeton and Yakov

Zel’dovich in Moscow rediscovered independently Gamow’s theory. Dicke, Peebles,

Roll and Wilkinson realized the great importance of the CMB radiation and decided

to build an instrument to search for it at radio wavelengths. At that time they heard

of Penzias and Wilson mysterious signal and, in a meeting between the Princeton and

Holmdel groups, they determined that the antenna temperature was indeed due to the

microwave background radiation. Both groups of scientists published their works si-

multaneously [36, 111]. Penzias and Wilson presented the details of their discovery

while Dicke formulated the theoretical framework for the origin of the CMB. In the late

1970s Penzias and Wilson were awarded the Nobel prize for their discovery.

In the last decades the CMB radiation has been studied thoroughly and it has been

found that this radiation is very uniform and isotropic all over the sky, roughly to 1

part in 100.000. If the radiation came from a source in the local universe it would be

unevenly distributed throughout space, therefore, it is believed that its origin is cosmo-

logical. The intensity of this radiation has been measured at many wavelengths and it

possesses the black-body spectrum characteristic of a system in perfect thermal equi-

librium, at a time when the matter and radiation had the exact same temperature. Let

us consider a box with such dense and opaque walls that there is no radiation exchange

with the outside. The field of radiation of this box is characterized by the temperature

of its walls and this kind of hypothetical perfect radiator/absorber at this temperature

is known as blackbody. The cosmic microwave background radiation is the best known

natural black body. In the early 1990s, NASA’s COsmic Background Explorer (COBE)

satellite carefully measured it using the Far-Infrared Absolute Spectrophotometer (FI-

RAS) instrument. The result of these measurements [99, 100] was the most precisely

measured black body spectrum ever (see figure 1.2).

Moreover, in the early 1970s cosmologists such as Zel’dovich, Harrison, Peebles and

Yu realized that the universe would have to have small inhomogeneities in the dis-
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Figure 1.2 CMB frequency spectrum obtained with the FIRAS instrument on COBE

in 1996. This spectrum corresponds to that of a black-body with temperature T =

2.725 ± 0.001 K. The error bars have been multiplied by 400.

tribution of matter and Rashid Sunyaev realized that they would have an imprint in

the CMB. These imprints were first detected by the Differential Microwave Radiome-

ter (DMR) instrument on the COBE satellite and allowed to measure the approximate

scale-invariant shape of the spectrum of density fluctuations [129]. This confirmed

the theory of gravitational instability for the formation of large scale structure (LSS)

and determined an initial spectrum of fluctuations characterized by density fluctua-

tions with approximately equal amplitude when entering the horizon. The scientist G.

Smoot, principal investigator of DMR, and J.C. Mather, principal investigator of FIRAS,

received the Nobel price in 2006 for the contribution of COBE to physics and cosmol-

ogy.

Following the results of COBE several ground and balloon-based experiments mea-

sured these anisotropies, departures of 1 part in 100.000 from the 2.73 Kelvin in the

microwave background radiation. In the late 1990s several experiments, in particular

BOOMERANG [28] and MAXIMA [64], determined that the curvature of the universe

is close to zero, that is, the geometry is spatially flat. This result was confirmed in 2003

by NASA’s satellite Wilkinson Anisotropy Probe (WMAP) [11].
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1.1.3 Anisotropies of the CMB and Power Spectrum

The anisotropies of the CMB are the angular fluctuations in the intensity of the CMB

radiation. In order to deal with these fluctuations in a statistical way, we may interpret

them as a realization of a random field on the sphere. As we mentioned above, the

spectral behavior of the CMB follows a blackbody of temperature 2.73 Kelvin, and

we will consider the anisotropies as fluctuations in temperature with respect to it in

different directions. These fluctuations of temperature on the surface of the sphere are

a function of the spherical coordinates and the most appropriate way to deal with these

fluctuations is expanding them in the orthogonal base of the spherical harmonics:

∆T
T

(θ, φ) =
T(θ, φ) − T0

T0
=

∞

∑
`=1

`

∑
m=−`

a`mY`m(θ, φ) (1.1.1)

a`m =
∫ 2π

0
dφ
∫ π

0
dθY∗

`m(θ, φ)
∆T
T

(1.1.2)

where θ and φ are the angular coordinates on the sphere and a`m represent the spherical

harmonic coefficients. In this expansion the mode ` corresponds to an angular distance

θ ∼ 180◦
`

, and therefore, low `′s correspond to big angular distances, whereas high ` ′s

correspond to small scales. A detailed review of this topic can be found in Bond &

Efstathiou [15], White, Scott, & Silk [152].

The temperature fluctuations of the CMB were originated by primordial quantum fluc-

tuations at the epoch of inflation [59]. This theory predicts Gaussian initial quantum

fluctuations and since ∆T/T is a linear combination of the latter, they will also follow

a Gaussian distribution.

The correlation function of the temperature fluctuations is

C(θ) =

〈

∆T
T

( ~Ω1)
∆T
T

( ~Ω2)

〉

= ∑
`m

∑
`′m′

〈a`ma∗`′m′〉Y`m(θ1, φ1)Y`′m′(θ2, φ2) (1.1.3)

where ~Ω1 and ~Ω2 denote two unitary vectors pointing towards the two directions in the

sky given by the coordinates (θ1, φ1) and (θ2, φ2), and ~Ω1 ~Ω2 = cos(θ). If the isotropy

and homogeneity properties are verified, then the angular power spectrum C` can be

written as

〈a`ma∗`′m′〉 = C`δ``′δmm′ , (1.1.4)

where 〈.〉 denotes averaging over sufficiently large volumes.

The correlation function of the temperature fluctuations, C(θ), is related to the angular

power spectrum C` through the Legendre transform
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Figure 1.3 The WMAP three-year power spectrum (in black) and recent measurements

of the CMB angular power spectrum with other experiments [73]. The band is the

binned 1σ cosmic variance error.

C(θ) = ∑
`

2` + 1
4π

C`P`(cosθ) (1.1.5)

where P` are the Legendre polynomials of order `, and we have used the following

property of the spherical harmonics

`

∑
m=−`

Y`m(θ1, φ1)Y∗
`m(θ2, φ2) =

2` + 1
4π

P`(cosθ). (1.1.6)

This expression for the correlation is independent of the direction, a sign of the isotropy

of the field. In principle, both quantities C(θ) and C` are equivalent in the sense that

they contain the same information. However, the null correlation of the C`′s for dif-

ferent values of ` makes it appropriate for this kind of studies, and we normally use

it as `(` + 1)C`/2π, i.e. the power per logarithmic interval in ` for large `, for ` ≥ 2.

The case ` = 1 is the dipole moment due to our own motion with respect to the CMB

and is not considered because of its extrinsic origin. In figure (1.3) we show the an-

gular power spectrum measured by the WMAP third year data [73] together with the

measurements of other recent experiments
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There is a limitation in the accuracy in the determination of the angular power spec-

trum Cl due to the so-called “cosmic variance”, the error introduced by the fact that

there is only one universe, and therefore, a single observable realization of the field

of temperature fluctuations. For Gaussian temperature fluctuations, the “cosmic vari-

ance” can be easily calculated. For a given ` there are (2` + 1) a`m coefficients and from

the dispersion of a chi-squared distribution with 2` + 1 degrees of freedom we obtain

∆C` =

√
2√

2` + 1
C`. (1.1.7)

The cosmic variance is just one of the several sources of error that must be taken into

account. It is important to know the fraction of the sky covered by the experiment as

well as its sensitivity. Moreover, a very important source of error that must be taken

into account arises from the fact that the field of temperature fluctuations can not be

observed directly because there are several other components that are mixed with it

and it is of great important to be able to separate these from the true underlying CMB

temperature field. These “contaminants” can be diffuse galactic contributions (syn-

chrotron, thermal dust and free-free emission), compact emissions (extragalactic point

sources and clusters of galaxies) and a small contribution from weak gravitational lens-

ing from the large scale structure.

The CMB anisotropies can be divided in two groups depending on their origin:

• primary anisotropies, which are due to effects that occurred at the last scattering

surface and before, an epoch known as the period of recombination or decou-

pling because due to the expansion of the universe the temperature cooled, the

radiation decoupled from the matter and the electrons and protons formed the

first atoms.

• secondary anisotropies, which are due the interactions of the CMB photons with

hot gas or gravitational potentials, between the last scattering surface and the

observer

Their structure is determined by the following effects: Sachs-Wolfe effect, acoustic os-

cillations of the photon-baryon fluid and diffusion damping (also known as collision-

less damping or Silk damping). Regarding the Sachs-Wolfe effect, it is the dominant

effect on large scales, the most important of the different physical processes by which

the primordial density fluctuations have left their imprint on the CMB radiation in the

form of small variations in the temperature of this radiation in different directions on

the sky. As for the acoustic oscillations, there is a competition between the radiation
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pressure from the photons and the gravitational compression of the fluid into poten-

tial wells, which sets up acoustic oscillations in the fluid. At the time of decoupling

all these oscillations stopped and the information of the phase in which they were just

before that moment is preserved in the photons. Therefore, there will be a harmonic

series of peaks in wavelength associated with the acoustic oscillations, and these peaks

will contain important information about the shape of the universe, the amount of

dark matter, baryon density, etc. The theory predicts the existence of the first acous-

tic peak between the angular scales 0.1◦ and 2◦, and corresponds to the scales at which

the acoustic oscillations of the photon-baryon fluid reached their maximum amplitude,

i.e. an oscillation that compressed and rarefied the regions of plasma to the maximum

extent at the time of recombination. The regions with the greatest variations in tem-

perature subtend about 1◦ across the sky. The subsequent peaks correspond to the

similar acoustic oscillations at other scales, although they were not at their maximum

amplitude. The position of these peaks is determined by the geometry of the universe,

because the same physical region subtends different angular scales depending on the

curvature of the universe.

Regarding the diffuse damping at very small scales, due to the expansion of the uni-

verse the plasma rarefies, but the decoupling of matter and radiation is not instanta-

neous and the surface of last scattering has a finite thickness (∆z ∼ 100, Jones & Wyse

[81], where z is the redshift, the relative difference between the emitted and observed

frequency of the photon). The fluctuations with angular sizes smaller than the thick-

ness of the surface of last scattering have their amplitudes reduced due to the averaging

produced between the photons coming from the inner side and those closer to the outer

side of the surface. This contributes to the exponential suppression of anisotropies on

small scales (θ <∼ 10′Ω1/2, where Ω is the ratio of the actual density of the universe and

the critical density, turnover density between a closed and an open universe). These ef-

fects, the Sachs-Wolfe plateau at large scales and the harmonic series of peaks together

with the exponential decay gives rise to the “angular power spectrum”, a representa-

tion of the amplitude of the fluctuations in temperature with angle (see figure 1.4).

Primary Anisotropies of the CMB

The primary anisotropies were produced before or during the recombination epoch.

They can be produced by perturbations in the metric, intrinsic fluctuations and velocity

contributions [97, 107, 152]. A general expression that takes into account these effects

is
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Figure 1.4 C` for the best fit model given in Bennett et al. [11]. The range of ` where the

different physical effects dominate is indicated. The gray band envolving the C` is the

unavoidable error due to the cosmic variance. The spectrum has been computed using

the CMBFAST code.

∆T
T

= ~n · (~vob −~vd) −
1
3

(φob − φd) +
1
4

δ
γ
d (1.1.8)

where ~n is the direction of observation and the subindex d denotes quantities at the

time of decoupling and c = 8πG ≡ 1. This terms are model dependent and will

characterize the anisotropies. Note that all these terms introduce angular dependencies

in the temperature except for φob.

1. Doppler effect: the first term in the previous equation ~n ·~vob corresponds to the

Doppler shift produced by the motion of the observer with respect to the co-

moving coordinate system of the CMB. The shift towards the blue region of the

spectrum will be observed in the direction of the motion and a red shift in the

opposite direction. This effect is also called “dipole” because it contributes to

the dipolar moment in the expansion in spherical harmonics of the temperature

fluctuations field. This anisotropy was detected for the first time in 1975 [26]

but it was not until 1996 that the COBE team measured its amplitude precisely:

3.372 ± 0.007mK [45]. There is an additional term~n ·~vd produced by the Doppler

effect, although in this case it corresponds to the motion of the electrons with

respect to the comoving system of the matter on the surface of last scattering.

2. Sachs-Wolfe effect (SW): this effect corresponds to the term 1
3 (φob − φd) in the
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previous equation and it was formulated by Sachs & Wolfe [122]. It is the most

important of the physical processes by which the primordial density fluctuations

left their imprint on the CMB in the form of small variations in the temperature

of this radiation in different directions on the sky. It has its origin in the grav-

itational potentials at the surface of last scattering, when the photons enter and

then leave the potential well at the epoch of recombination, loosing part of their

energy and getting redshifted and then gaining it and getting blueshifted. This

effect dominates at scales larger than the size of the horizon at the time of recom-

bination, θ >∼ 2◦Ω1/2. At these scales, the initial perturbations can not be affected

by causal processes and, therefore, cosmic microwave anisotropies correspond-

ing to these scales will be directly related to the fluctuations in the matter density

power spectrum. The best fit to the matter power spectrum made by COBE [10]

yielded an spectral index n = 1.2 ± 0.3, compatible to the Harrison-Z’eldovich

spectrum (n = 1, scale-invariant power spectrum). The lastest estimation from

WMAP third year data is n = 0.951 ± 0.017, and it is not compatible with the

Harrison-Z’eldovich spectrum above 2σ. This may be important when trying to

detect the B mode of polarization.

3. Intrinsic fluctuations: before the epoch of recombination, when the matter and

radiation were coupled, inhomogeneities in the matter density field induced fluc-

tuations in the temperature field of the photons. Then, when matter and radiation

decoupled, the photons were released preserving the information about the den-

sity fields in the surface of last scattering. In order to determine the fluctuations

in the radiation density field, the last term in the previous equation 1
4 δ

γ
d , a com-

plicated system of coupled differential equations describing the evolution of the

fluctuations in the radiation density field, baryonic matter and dark matter at the

time of decoupling must be solved.

As mentioned above, there are several physical processes that reduce the ampli-

tude of the fluctuations, mainly at smaller angular scales. One is related to the fact

that the surface of last scattering has a finite thickness. Another of these mech-

anisms is the “Silk damping” [128]. The photons will travel from those regions

with a higher density to those with a lower density through diffusion, dragging

the electrons, that are coupled to the protons, with them via Compton interaction.

This diffusion has the effect of damping out the fluctuations and is more impor-

tant with decreasing size of the fluctuations, and it is expected that the peaks

vanish for very small angular scales.
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Secondary Anisotropies of the CMB

The secondary anisotropies are produced due to the interactions of the CMB photons

between the last scattering surface and the observer. We will consider the following

effects:

1. Gravitational Effects

Gravitational fields can induce secondary anisotropies in the CMB temperature

field in different ways, e.g., through the integrated Sachs-Wolfe effect (ISW). In

this case, when a photon falls in and climbs out of a potential well the net change

in the energy of the photon is zero, as long as the depth of the well is constant.

If the depth is changing, the blueshift of the photon from falling and its redshift

from climbing out do not cancel. The magnitude of the ISW is given by:

∆T
T

=
∫

∂φ

∂t
(~r, t)dt. (1.1.9)

On the other hand, a gravitational field can also modify the trajectory of a photon

without modifying its energy, an effect known as gravitational lensing. We can

summarize the different cases that generate secondary anisotropies as follows:

• Early ISW: at the epoch of last scattering, when the universe is not com-

pletely matter dominated, the photon contribution to the density of the uni-

verse is not negligible and the decay in the potential shortly after the last

scattering gives rise to this effect. The contribution of this effect to the angu-

lar power spectrum is at scales just larger than the first acoustic peak.

• Late ISW: In an open or Λ model, when the matter does not dominate the

expansion, the universe enters a rapid expansion phase. As density fluctua-

tions are frozen in, the potential again decays leading to an ISW effect.

• Rees-Sciama: At later times, evolving non-linear structures cause the poten-

tials to vary with time. This kind of ISW effect is usually called the Rees-

Sciama effect [117].

• Gravitational lensing: This effect is also produced by gravitational fields, as

in the case of ISW effect, but can not change the energy of the photons, just

their trajectory. This effect slighly distorts the image of the last scattering

surface, producing a smearing of the angular power spectrum.

• Gravitational waves: this would affect the radiation power spectrum at scales

larger than the horizon at recombination.
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2. Scattering effects from reionization

The reionization of the universe after recombination produces free electrons that

rescatter off the photons of the CMB radiation. Therefore, primary anisotropies

are washed out and new secondary ones appear. If the universe becomes globally

reionized at high redshift, primary anisotropies can be dramatically suppresed.

On the other hand, local reionization also produces characteristic features in the

CMB.

• If the universe becomes globally reionized at a given redshift zr , a certain

fraction of the CMB photons will be rescattered by free electrons. Therefore,

a photon coming toward us from a particular direction, has not necessarily

been originated from that direction. Thus, each location of the sky contains

photons coming from different regions of the last scattering surface. Pro-

ducing a damping of the fluctuations. The scales affected by this smearing

are those smaller than the horizon size at the redshift zr of the rescattering

epoch. On the other hand, the fraction of photons that are never rescattered

is e−τ, where τ ≡ σT
∫

dt ne is the optical depth, ne is the electron density

and σT is the Thomson cross-section.

• Sunyaev-Zel’dovich effect (SZ): this effect induces a characteristic spectral dis-

tortion in the CMB and is produced by inverse Compton scattering of CMB

photons during their passage through hot ionized gas, mainly in the inner

regions of clusters of galaxies [136]. Let us assume that clusters are virialized

objects, meaning that their kinetic energy is equal to minus one-half of their

potential energy. They have very deep gravitational wells, and therefore,

large kinetic energies that keep most of the intracluster hydrogen gas ion-

ized. If a sufficient number of CMB photons traveling through the cluster are

scattered to higher energies, this produces a noticeable change in the CMB

spectrum of the order of 1 mK for hot massive clusters. High frequency pho-

tons will be blueshifted, whereas low frequency photons will be redshifted,

with a changeover frequency around 217 GHz, see figure 1.5. This effect is

known as the “thermal” SZ effect. There is another effect, known as “kine-

matic SZ effect” produced by the relative motion of the cluster with respect

to the CMB. This effect is one or two orders of magnitude weaker than the

thermal SZ effect and it is very difficult to detect.

12



CHAPTER 1: INTRODUCTION

Figure 1.5 In this figure we show the frequency dependence of the intensity for the

thermal Sunyaev-Zel’dovich effect (dashed-line) and the kinetic Suunyaev-Zel’dovich

effect (solid line).
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1.1.4 Foregrounds Contamination

When we observe the sky at microwave frequencies with state-of-the-art instrumenta-

tion we are not only collecting photons coming from the CMB. Actually these are just

a fraction of all the photons that we see because there are several sources of contam-

ination at microwave frequencies and it is the work of CMB scientists to study with

a great deal of detail these contaminants in order to remove them properly. Most of

this contamination is in the form of diffuse emission coming from our own Galaxy, al-

though there is a significant contribution from extragalactic compact sources, such as

galaxies and clusters of galaxies (Sunyaev-Zel’dovich effect). The purpose of this thesis

is to study mechanisms for the detection of compact sources. The spectral behaviour

of most of these components is approximately known. Some of them are brighter at

lower frequencies, i.e. synchrotron and free-free emission, and some at higher frequen-

cies, i.e. dust. As seen on figure (1.6) there is window at ∼ 100 GHz where the Galactic

contaminants have a minimum in their brightness and therefore, all the space-borne

CMB experiments have detectors at these frequencies. But as we mentioned above, in

order to obtain a clean signal from the CMB we need to study the frequency depen-

dence of the contaminants at different frequencies. And this is the purpose of having

several detectors at all the possible frequencies.

Moreover, not all the contaminants are from outer space. If our instrument is on the

surface of the Earth or balloon-born there is an important contamination coming from

the Earth atmosphere that must be taken into account. Not to mention the possible

interferences from ground and satellite communications in the microwave frequencies.

Finally the instruments themselves introduce some instrumental noise and possible

systematic effects that must be studied and understood in order to make a proper use

of the data. Now let us review the characteristics of the main sources of contamination.

1.1.5 Galactic Components

Synchrotron

The synchrotron emission is the radiation produced by particles when they get accel-

erated by a magnetic field. Whereas for non-relativistic velocities (cyclotron radiation)

the frequency of emission is simply the frequency of gyration in the magnetic field, for

extreme relativistic particles the frequency spectrum is more complex and can extend

beyond this gyration frequency. For a detailed descrition of this emission see Rybicki

& Lightman [120] and Smoot [131]. The cyclotron frequency wB is

14
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Figure 1.6 In this figure we can see the frequency dependence of the main Galactic

contaminants of the CMB, synchrotron, free-free and dust emission. For the lower

frequencies, the dominant emissions are free-free and synchrotron, whereas for higher

frequencies the main source of contamination is dust. In between, at ∼ 60-90 GHz,

there is a window where the CMB dominates over the contaminants. Also shown are

the 5 WMAP frequency bands between 23 and 94 GHz.
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ωB =
qB

γmc
(1.1.10)

where q and m are the particle’s charge and mass, respectively, B is the intensity of the

magnetic field, c is the light speed and γ is the relativistic factor. Since each charged

particle emits at the same gyration frequency, the spectrum of the cyclotron radiation is

very simple. In the relativistic case the emission is beamed into a narrow cone of width

∆θ = 2/γ and the frequency spectrum is more complex. Due to the beaming effect,

an observer will see a pulse of radiation confined to a time period much shorter than

the gyration period, i.e. γ3 times shorter. Therefore, the spectrum will spread over a

broader region with a cut off at the “critical frequency”

ωc =
3
2

γ2ωB sinα =
3γ3qB
2mc

sinα (1.1.11)

where sin α represents the projection of the electron trajectory into a plane perpendic-

ular to B. Then, if γ increases, the pulses are shorter and more harmonics of the fun-

damental ωB contribute. In the case γ → ∞, a large number of harmonics are needed

to describe the emission and the envelope of this emission approaches the form of a

certain function F(x). The power per unit frequency emitted by each electron is:

P(ω) =

√

(3)

2π

q3Bsinα

mc2 F
(

w
wc

)

(1.1.12)

where the function F(x) ≡ x
∫ ∞

x K5/3(y)dy, and K5/3 is the modified Bessel function of

5/3 order.

The situation in our Galaxy is even more complicated, since particles with different

velocities are present, and the magnetic field can vary from a point to another. It can be

shown that, if we assume that the direction of motion of the electrons is random with

respect to the magnetic field and that a power law can describe the electrons energy

spectrum, then the synchrotron luminosity is given by:

I(ν) =

√

(3)q3

8πmc2

(

3q
4πm3c5

)(p−1)/2

LN0B(p+1)/2
e f f ν−(p−1)/2a(p) (1.1.13)

where L is the length along the line of sight through the considered emitting volume,

Be f f is the effective magnetic field strength along the line of sight and a(p) is a weak

function of the electron energy spectrum and is given by:

a(p) = Γ

(

p
4

+
19
12

)

Γ

(

p
4

+
1

12

)

1
p + 1

(1.1.14)
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Figure 1.7 Synchrotron emission from the Planck Reference sky model. This is a cleaned

version of the 408 GHz Haslam et al. [65] map made by Giardino et al. [49]. The map is

in units of MJy/sr.

where Γ is the Gamma function. If we translate this luminosity in terms of brightness

temperature, we obtain that

T(ν) ∝ ν−(p+3)/2 = ν−β. (1.1.15)

In our case, relativistic electrons are being accelerated by the magnetic field of the inter-

stellar medium. Normally, this magnetic fields are very weak and do not produce sig-

nificant synchrotron radiation to be detected. Most of the detected synchrotron emis-

sion comes from supernovae or active galactic nuclei and for frequencies below ν ∼ 20

GHz this is the dominant galactic emission. In fact, most of the surveys have been

done in the MHz-GHz band. Before WMAP was launched, there existed only one all-

sky synchrotron survey at 408 MHz [65] that has been widely used. In figure (1.7) we

show a cleaned version of the Haslam 408 MHz, a synchrotron template used in the

“Planck Reference Sky” 1, a compilation made within the Planck Collaboration with

the latest templates for the different diffuse Galactic components, CMB, SZ clusters

and point sources. There are several other surveys covering small fractions of the sky

(see Smoot [131]), with the exception of the northern hemisphere survey at 1420 MHz

[116] and the southern hemisphere at 2326 MHz [80].

1http://www.planck.fr/heading79.html
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Figure 1.8 WMAP third year derived synchrotron template. It has been obtained using

a MEM-based approach, using as a prior the Haslam et al. [65] map. The map is in units

of mK. The procedure for creating the template is described in Hinshaw et al. [73].

In 2006 the WMAP team have published the results of three years of data and their

subsequent analysis, including a new synchrotron template obtained using the WMAP

K- and Ka-band data, at 23 and 33 GHz, respectively. This new template improves

the widely used Haslam map at 408 MHz because, first, the intrinsic systematic mea-

surement errors are smaller and, second, the low frequency Haslam map is less reli-

able at tracing microwave synchrotron emission because the synchrotron spectrum is

non-uniform and this produces morphological changes in the brightness as function of

frequency [11]. The WMAP team have used a Maximum Entropy Method approach

(MEM) to obtain the best fit synchrotron emission map. As a prior of the synchrotron

map needed by the method they used a modified Haslam map. The result from the

MEM-based approach is shown in figure 1.8.

Free-Free

The Bremsstrahlung or free-free emission is an electromagnetic radiation produced

when a charged particle is accelerated in the Coulomb field of another charged particle.

In our case, these particles are free high energetic electrons (T ∼ 104 K) interacting with

ions of the interstellar medium. It has been named free-free because in this process the

un-bound electrons remain un-bound after the interaction, as opposed to being cap-

tured into a bound state (free-bound) or making a transition between two bound states

(bound-bound emission). This radiation is poorly known, it is difficult to measure and
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dominates in a small range of frequencies ∼ 50 GHz where the other Galactic con-

taminants, thermal dust and synchrotron, are minimum. The physics of the free-free

radiation can be treated in a classical way because the derived expressions, for some

regimes, have the correct functional dependences for most of the physical parameters.

But since the photons produced in this kind of interactions can be very energetic, a

quantum correction to the classical expressions may be obtained. A more detailed dis-

cussion about this radiation can be found in Dickinson, Davies, & Davis [38], Rybicki

& Lightman [120], Smoot [130].

The expression for the total free-free emission per unit time, per unit volume and per

unit frequency by a single electron is given by:

dW
dωdVdt

=
16πq6

3
√

3c3m2v
neniZ2g f f (v, ω) (1.1.16)

where ni and ne are the ion and electron densities, q and m are the electron charge and

mass, v is the velocity respect to the ion, c is the speed of light and Z is the ion’s atomic

number. The quantum Gaunt factor g f f (v, ω) is the quantum correction and depends

on the energy of the electron and on the frequency of the emission.

In our Galaxy there is a population of electrons with a certain velocity dispersion. If

we extend the previous result to obtain the free-free emission of this population, it can

be shown [120] that the total intensity – integrated along the line of sight – is given by

I(ν) ∝ T−0.5
e e−

hν
kTe ḡ f f EM (1.1.17)

where ḡ f f is an average Gaunt factor and EM is the emission measure defined by:

EM =
∫

nenidl (1.1.18)

being the integral along the line of sight. An approximation for ḡ f f is given by Smoot

[130].

ḡ f f = 4.69
[

1 + 0.176 ln
(

Te

104K

)

− 0.118 ln
( ν

10GHz

)

]

(1.1.19)

As we mentioned above, the free-free is a diffuse emission very difficult to measure. It

is known that this radiation is correlated with other physical processes, i.e. Hα emission

at 4.57 × 1014 Hz, and can be used as a tracer of the free-free radiation (although it

requires to be corrected for dust absorption). Different authors derive slightly different

expressions for the Hα, e.g. the expression derived by Smoot [130] is:

IHα = 0.36
(

Te

10−4

)−0.9

EM[R] (1.1.20)

19



CHAPTER 1: INTRODUCTION

Figure 1.9 This image shows the total Hα intensity map and it was obtained by

the Wisconsin H-Alpha Mapper(WHAM), an instrument designed to produce a sur-

vey of Hα emission from the interstellar medium over the entire northern sky, see

http://www.astro.wisc.edu/wham for further information.

where 1 Rayleigh [R] is 2.41 × 10−7[erg cm−2s−1sr−1]. From the previous expression it

can be derived that

I f f ∝ IHα T0.4
e e−

hν
kTe ḡ f f (1.1.21)

In the last decade several Hα surveys have been conducted, such as the WHAM [61],

VTSS [34], SHASSA [48] and the AAO/Schmidt survey. The most sensitive is WHAM

(Wisconsin H Alpha Mapper), a survey in the northern hemisphere with 1 degree res-

olution covering δ ≥ −30◦ (see figure 1.9). The other relevant survey is SHASSA

(Southern H Alpha Sky Survey Atlas), a survey in the southern hemisphere covering

δ ≤ +15◦ (see figure 1.10).

As mentioned above, the WMAP have used three years of data to obtain new templates

for the galactic foregrounds, in particular for the free-free emission. They have used a

component separation method based on MEM, using as a prior of the free-free emission

the full-sky Hα map compiled by Finkbeiner, Davis, & Schlegel [44] corrected for dust

extinction [11], see figure 1.11. The resulting template for the free-free can be seen in

figure 1.12.
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Figure 1.10 Hα Emission from the interstellar medium in the southern

hemisphere obtained with the Southern Hα Survey Atlas (SHASSA), see

http://amundsen.swarthmore.edu/SHASSA for further information.

Figure 1.11 Full sky Hα map corrected for dust using the 100µ maps from Schlegel,

Finkbeiner, & Davis [125]
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Figure 1.12 WMAP third year derived free-free template. It has been obtained from the

difference of the WMAP K and Ka using a MEM-based approach. This map is in units

of mK. The procedure for creating the template is described in detail in Hinshaw et al.

[73].

Thermal Dust

The radiation that dominates the Galactic emission above 90 GHz is the emission pro-

duced by small grains of dust, just a few µm in size, that absorb the UV light from the

interstellar medium re-emitting it in the far-infrared part of the spectrum. The ther-

mal dust emission can be modeled by a modified black-body radiation, the so-called

grey-body:

Iν ∝ Bν(TD)να (1.1.22)

where Bν(T) is the black-body function, TD is the dust temperature (∼ 18K) and να

represents the emissivity. Depending on the nature of the dust grains, the emissivity

index varies [2]. A detailed study of the dust grain properties can be found in Desert,

Boulanger, & Puget [35]. Several experiments have provided a significant amount of

information about the dust emission, in particular IRAS (Infrared Astronomical satel-

lite), COBE-DIRBE (Diffuse Infrared Background Experiment) and COBE-FIRAS (Far-

infrared absolute spectrophotometer). Using this information [125] have produced a

thermal dust emission map at 100µm. This model reproduces the emission at ν ∈
[1250, 3000] GHz, with an emissivity α = 2 with dust temperature varying between 17

and 21 K. The resultant template has an angular resolution of 6◦. Finkbeiner, Davis, &

Schlegel [44] obtained a multi-component model capable of describing the dust emis-

sion from ν = [100, 3000] GHz. This model is a combination of two grey bodies with
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Figure 1.13 Thermal dust emission map at 857 GHz obtained from a combination of

two grey-bodies with mean emissivity α1 = 1.67 and α2 = 2.70 and mean temperatures

T1 = 9.4 K and T2 = 16.2 K. The map is in units of MJy/sr.

mean emissivity parameters α1 = 1.67 and α2 = 2.70 and mean temperatures T1 = 9.4K

and T2 = 16.2K. The resulting template for the dust component is shown in figure 1.13

In the last years an anomalous Galactic emission at low frequencies has been possibly

detected that can not be accounted as thermal dust or free-free emission. Moreover,

several authors have shown a correlation with thermal dust [83, 85, 106, 151]. A new

process that could explain this anomalous radiation was proposed by Draine & Lazar-

ian [40, 41]. This process has a frequency dependence similar to that of the free-free

emission in a certain range of frequencies, but with a larger intensity, and is produced

by rotational electric dipole emission and, thus, has been named “spinning dust”.

A careful study of the spinning dust can be found in Draine & Lazarian [40, 41]. In

the last years an increasing number of groups have reported on possible detections of

spinning dust, although none of them seems to be definitive. The WMAP group have

analyzed their three year data searching for evidences of this emission but no signifi-

cant result has been reported. They conclude that higher quality diffuse measurements

of the microwave sky at 5-15 GHz will be necessary to further understand this pro-

cess. A detailed compilation of the experiments that have reported on this anomalous

emission can be found in Hinshaw et al. [73].
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1.1.6 Extragalactic Components

Point Sources

The contamination of the CMB due to the extragalactic point sources is an important

problem and must be studied in detail. As compared with other contaminants, the

frequency dependence of extragalactic point sources is not very well known in the

GHz range. An important effort has been made in the last decade to model the dif-

ferent population of sources. These populations can be divided into two differentiated

groups, radio sources and infra-red/sub-millimeter (IR/sub-mm) sources. Radio emit-

ting extragalactic sources in the GHz range are mainly active galactic nuclei (AGN),

with a strong non-thermal emission originated in the center of the Galaxy. This emis-

sion is synchrotron radiation produced by relativistic electrons moving along magnetic

fields. The IR/sub-mm emission is produced by the dust, that absorbs UV and optical

radiation re-emitting it in the far-infrared part of the spectrum. This part of the point

source spectrum is poorly known, although in the last several years new surveys in

this frequency range have been conducted and more detailed theoretical models have

been proposed.

The models that describe the populations of radio and IR/sub-mm galaxies use the

so-called “source number counts” (number of sources per stereoradian and per flux

interval) that take into account the number of objects from a certain population and

their corresponding flux. The differential number counts per stereoradian dN/dS in a

given flux interval are:

dN
dS

=
∫ zh

zi

dz
dV
dz

dL(S; z)
dS

ψ[L(S; z), z], (1.1.23)

where ψ[L(S; z), z] is the redshift dependent luminosity function and dV/dz is the vol-

ume element per unit solid angle. Moreover, the integral number counts describe the

number of source per stereoradian with a flux above a given minimum flux, Smin:

N(> Smin) =
∫ Slim

Smin

dN
dS

dS, (1.1.24)

where Slim is the flux limit for detecting sources. The flux S is related to the intrinsic

luminosity within a given frequency interval as follows:

S∆ν =
L∆νK(L, z)

4πd2
L

(1.1.25)

where dL is the luminosity distance and K(L,z) is the K correction. For a more detailed

review of this topic see De Zotti et al. [30].
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Regarding the radio sources, number counts have been obtained from VLA observa-

tions for very low flux limits, ∼ µJy, at 1.41, 4.86 and 8.44 GHz [103] and the models

behave very well at this frequency range. For higher frequencies, where there is a lack

of observations, there has been an increasing effort in modeling the spectral properties

and evolution of the source populations.

In the last decade, several groups have studied the observations of radio sources at fre-

quencies below 8 GHz [42, 79, 141] and proposed models that explain the observations.

In particular, the model by Toffolatti et al. [141] has been widely used in the last years.

This model fits well the source number counts for ν ≤ 30 GHz with a flux limit of ∼ 20

mJy.

In the last year, a new model for the radio source has been proposed by De Zotti et al.

[32], improving the existing model by Toffolatti et al. [141]. In this work, they study

the contributions to the counts by different source populations in the range of 20 −
30 GHz. They have produced new evolutionary models for the flat-spectrum radio

quasars, BL Lac objects and steep-spectrum sources based on the latest observations,

see De Zotti et al. [32] for further details on the surveys. They also take into account the

synchrotron and free-free emission when estimating the counts of different populations

of star-forming galaxies. In figure 1.14 we show a comparison of the Toffolatti et al.

[141] model with the De Zotti et al. [32] model.

Following the latest model by de Zotti et al., figure 1.16 shows a full-sky simulation of

point sources at 30 GHz.

Regarding the IR/sub-mm galaxies, the models available just a few years ago did not

match the latest observations with SCUBA and MAMBO. Then a new population of

proto-spheroidal galaxies was introduced by Granato et al. [53, 54], see these works

for further details. To summarize, the latest model by De Zotti et al. [32] is the one

that better describes the radio galaxies number counts below ν ≤ 150 GHz, whereas

for frequencies well above ν ≥ 150, where dusty spheroids dominate, the best model

available today is the Granato et al. [53, 54] model.

In 2003, NASA’s WMAP satellite team published the results of the analysis of the first

year of available data. The five instruments on-board this satellite cover the range

23 − 94 GHz, and the study of the brightest point sources at these five frequencies

yielded a catalog with 208 sources [11]. In 2006, with three years of data, they have

published a new catalog with 323 objects, giving for most of them an estimation of

the flux density at each of the frequencies [73]. In López-Caniego et al. [91], we have

used a non-blind approach to study a few thousands of objects observed at 5GHz in

the WMAP three-year data. As a result, we have provided a catalogue with 938 objects
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Figure 1.14 Source number counts predicted by the Toffolatti et al. [141] model (black

solid line) and the new De Zotti et al. [32] (blue solid line) at 33 GHz (normalized to the

expected number counts for an Euclidean universe). For the latter model, the number

counts for three sub-populations of radio-sources are also shown, flat-spectrum sources

(solid green line), BL-Lac (green dashed line) and steep-spectrum sources (green dotted

line). The 1σ boxes correspond to observational results CBI (31 GHz, blue), VSA (33

GHz, green), DASI (31 GHz, red) and WMAP 1st year (33 GHz, cyan).
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Figure 1.15 Number counts multiplied by S5/2.Red asterisks: counts from the NEWPS5σ

catalogue at 33 GHz from López-Caniego et al. [91]. Black diamonds: WMAP counts

[73]. Black dots: ATCA 18 GHz pilot survey counts [119]. The parallelogram is from the

DASI experiment at 31 GHz [82]. The solid curve shows, for comparison, the counts

predicted by the model by De Zotti et al. [32].

Figure 1.16 Full-sky simulation of point sources at 30 GHz (in Log scale) following the

latest source number counts models by De Zotti et al. [32], made by J.González-Nuevo.

The map is in units of MJy/sr.
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Figure 1.17 SZ clusters simulations for the Planck Reference Sky at 70 GHz. The map is

in units of MJy/sr.

with an estimation of their flux, error and spectral index at the five WMAP frequencies.

Sunyaev-Zel’dovich effect from clusters of galaxies

The Sunyaev-Zel’dovich effect is considered a secondary anisotropy of the CMB as it

was described in section (1.1.3). This effect arises from the frequency shift when CMB

photons are scattered by the hot electrons in the intra-cluster gas. It has a characteristic

frequency dependence with a temperature decrement for frequencies below 217 GHz

and a temperature excess at higher than 217 GHz as shown in figure 1.5. In figure 1.17

we show a full-sky simulation of SZ clusters made by P. Mazzotta used in the Planck

Reference Sky.

1.2 The Component separation problem

In the previous section we have reviewed the origin of the CMB radiation. Then, we

have summarized the different sources of contamination that must be considered when

studying the CMB, in particular, the diffuse emissions from our Galaxy (dust, free-free

and synchrotron radiation) and the most important to us, the compact source emission

from extragalactic point sources and Sunyaev-Zel’dovich clusters. From a practical

point of view, the process of observing the sky at microwave frequencies and separat-
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ing the CMB signal from all the contaminants is not trivial. In the last decade there

has been a significant effort developing techniques that can separate a certain com-

ponent from the others. Depending on one’s interest, the component to be separated

could be the CMB radiation, the point sources or any of the diffuse galactic emissions.

Moreover, the separation of one component or the other requires very specific proce-

dures tailored for this purpose. The same procedure to separate the CMB from the

synchrotron will not be the same as the one to obtain the compact sources. Some tech-

niques approach this kind of analysis in a Bayesian way, taking into account a priori

information about the components to be separated, and other techniques do it blindly.

Some techniques work on a pixel-by-pixel basis, whereas other deal with maps. Some

of the methods that have been proposed are Wiener Filtering (WF) [17, 138], Maximum

Entropy Method (MEM) [6, 74, 75, 135], Fast Independent Component Analysis (Fas-

tICA) [93, 94], Spectral Matching Independent Component Analysis (SMICA) [29, 110]

and Mexican Hat Wavelet (MHW) [19, 145].

1.2.1 Techniques for the extraction of point sources

Among the different methods that have been used in the component separation prob-

lem, filtering is specially well suited for the detection of compact sources embedded in

a noisy background (e.g., the mixture of CMB and the Galactic contaminants).

In the context of compact source detection a filter is a device that transforms the data

in such a way that, after filtering, we have increased the signal-to-noise ratio (SNR) of

the objects we are trying to detect. From the mathematical point of view, a filter is an

operator:

L : f (x) → g(t) = L f (t) (1.2.1)

where f is the input signal, g is the output signal and t is the independent variable.

The filter is linear if the filtered quantity g is a linear functional of the inputs, and the

filter is homogeneous if the output is delayed by τ when the input is delayed by τ,

g(t − τ) = L( f (t − τ)). Most of the filters used in a wide range of disciplines are linear

and homogeneous.

The homogeneity is a desirable property of a filter. If we let δ be the Dirac distribution,

then if f is continuous, its value at t is obtained by the integral:

f (t) =
∫ ∞

−∞
f (u)δ(t − u)du. (1.2.2)

The continuity and linearity of L imply that
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L f (t) =
∫ ∞

−∞
f (u)Lδ(t − u)du. (1.2.3)

Now let us define h as the impulse response of L, h(t) = Lδ(t). Due to the homogeneity

property of the operator, Lδ(t − u) = h(t − u) and hence

L f (t) =
∫ ∞

−∞
f (u)h(t − u)du =

∫ ∞

−∞
h(u) f (t − u)du = h ⊗ f (1.2.4)

where ⊗ denotes convolution. Therefore, a homogeneous linear filter is equivalent to

a convolution with the impulse response h. This property is very useful if we decide to

work in Fourier space, because if we use the convolution theorem we obtain that

L f (t) = g(t) = h ⊗ f (t) =
∫ ∞

−∞
ĥ(q) f̂ (q)e−iqtdq, (1.2.5)

where we have taken into account the following convention for the Fourier transform:

f̂ (q) =
1

2π

∫ ∞

−∞
f (t)eiqtdt, (1.2.6)

f (t) =
1

2π

∫ ∞

−∞
f̂ (q)e−iqtdq, (1.2.7)

where the Fourier transform ĥ of the impulse response h is known as the transfer func-

tion of the filter. These considerations are valid for continuous signals, although it can

be generalized to discrete data.

From the previous expressions we see that filtering an image with a linear homoge-

neous filter is equivalent to multiply the Fourier transform of the data with a transfer

function, which in Fourier domain can be considered as a frequency-selective device, fre-

quency in the sense of Fourier mode. This will be of great interest to us, because using

the appropriate transfer function we will be able to reduce the contribution of those

frequencies corresponding to the noise. Moreover, since we know the frequency range

where the contribution from compact objects is significant, we can design a transfer

function that preserves these frequencies, while reducing the contribution of the back-

ground noise present in the data.

This is the idea behind the widely used band-pass filters, where the filter is set to zero

outside the desired range of frequencies (see figure 1.18)

ĥ(q) =







1, if |q| < qc

0, if |q| ≥ qc

(1.2.8)
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Figure 1.18 In this figure we show three commonly used filters in the literature. The

solid blue line corresponds to the top-hat filter, the black dashed line to the Mexican

Hat wavelet and the dot-dashed red line to the Matched filter for a typical CMB image.

Note that they are plotted in Fourier domain.
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where qc is the cutoff frequency. The region |q| < qc is the pass-band of the filter,

whereas the region |q| ≥ qc is called stop band.

The impulse response of this filter is

h(t) = 2qc
sin(qct)

t
(1.2.9)

and this kind of attenuated oscillations will introduce ring-shaped artifacts in the image

in real space. These effects are due to the discontinuous shape of the transfer function

and, even though this kind of filter has been extensively used in many areas of sig-

nal processing, we will not use it for the detection of compact sources in astronomical

images.

It is desirable to have a continuous filter in Fourier domain, we would like to design

a filter that transforms the data, a mixture of signal + noise, in such a way that after

the filtering process we recover a signal + a reduced noise. This is what we call “optimal

filtering”, a definition that needs further explanation, because one filter can be optimal

for one purpose and totally inappropriate for another. In the following section we

will review some of the common filters used to detect point sources. In the following

chapters we will then review the new filters that we have developed, in particular, the

“Modified Matched Filter” [86], the “Biparametric Scale-Adaptive Filter” [87, 88] and

the various members of the “Mexican Hat Family of Wavelets” [51, 90]. See Herranz

[67] and Barreiro [7] for detailed review of filters used for the detection of compact

sources.

The Matched or Adaptive Filter

Let us consider a signal s with amplitude A at the position x0 embedded in a noisy

background n with dispersion σ. The signal-to-noise ratio (SNR) is

s/n =
s(x0)

σ
=

A
σ

(1.2.10)

and our ability to detect the signal will be proportional to the SNR. Now, let us define

the “gain” or “amplification” λ of a signal obtained with a given filter

λ =
sψ(x0)/σψ

s(x0)/σ
(1.2.11)

where sψ(x0) is the filtered map at the position of the source and σψ is the dispersion

of the filtered map. If the amplification is greater than one, the signal-to-noise contrast
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has increased in the filtered map improving the chances of detection.

It is possible to maximize λ, the gain of the filter, making sψ(x0) = s(x0) while mini-

mizing σψ. If we perform this minimization in Fourier space, it can be proven that the

filter that satisfies this minimization is

Ψ(q) ∝
s(q)
P(q)

(1.2.12)

where s(q) is the Fourier transform of the signal profile s(t) and P(q) is the power spec-

trum of the data. Note that we have assumed that the noise can be reproduced by an

homogeneous and isotropic random field characterized by the power spectrum P(q),

i.e., 〈n(~q)n∗(~q′)〉 = P(q)δn(~q − ~q′), q ≡ |~q|.

where n(~q) is the two-dimensional Fourier transform of the noise.

As an example, let us derive the two-dimensional matched filter for a compact source

s(x) = Aτ(x) with spherical symmetry, where A is the amplitude and τ(x) is the

profile of the source. First, we consider a two-dimensional vector y(~x) = s(~x) + n(~x),

where n(~x) is the background noise. Then, for a given filter ψ with spherical symmetry,

the filtered field w is given by

w(~x) =
∫

y(~q)ψ(q)e−i~q~xd~q. (1.2.13)

Assuming that the source is at the origin, the filtered field at the position of the source

is given by

w(~0) = 2π
∫ ∞

0
qs(q)ψ(q)dq, (1.2.14)

and the variance of the filtered field is

σ2
ψ = 2π

∫ ∞

0
qP(q)ψ2(q)dq. (1.2.15)

where P(q) is the power spectrum. We want to find the filter ψ that satisfies the follow-

ing conditions:

• 〈w(~0)〉 = A, the filter is an unbiased estimator of the source amplitude.

• the filtered field has minimum variance σ2
ψ.

The first condition yields the constraint
∫

qτ(q)ψ(q)dq = 1/(2π). Using this constraint

with a Lagrange multiplier, and following condition two, we minimize the variance of
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the filtered map

L(ψ) = σ2
ψ(ψ) + λ

[

∫

qτ(q)ψ(q)dq − 1
2π

]

. (1.2.16)

Taking variations with respect to ψ and setting the result to zero, we find expression

(1.2.12)

ψ(q) = C
τ(q)
P(q)

(1.2.17)

where C is the appropriate normalization

C =

[

2π
∫

q
τ2(q)
P(q)

dq
]−1

. (1.2.18)

For example, let us consider a compact object in the sky (a Dirac-δ signal) that is ob-

served with an instrument with a Gaussian point spread function, where σ is the width

of the profile. Regarding the noise, we know that the instrument adds a certain amount

of white instrumental noise. Now, let us assume that the power spectrum of the image

is dominated by the noise, the point-like object contribution is minimal, and, therefore,

the P(q) is approximately constant. Then, the matched filter obtained from this image

would be proportional to a Gaussian of width σ. It is a very well known result that

the Gaussian filter is optimal for denoising signals with Gaussian profiles embedded

in white noise.

However, the previous example can be considered as ideal if we compare it with the

images with which we deal in everyday life, where the matched filter has some very

well known problems. In order to define the matched filter in an appropriate way, first,

it is necessary to estimate the value of the power spectrum for all the Fourier modes

present in the image, which is specially difficult for the low modes where the power

spectrum is noisy. Second, the use of such a noisy power spectrum to construct the MF

often yields a filter with many discontinuities in Fourier space which, in turn, produces

ringing effects in the filtered image (see figure 1.19). Therefore, some smoothing in the

spectra needs to be done before constructing the filter, which introduces further arbi-

trariness. Third, sometimes it will not be possible to properly estimate some Fourier

modes, for example when using masks with missing data, and these modes will have

to be guessed.

Wavelets as Filters: Mexican Hat Wavelet Family

Several techniques based on wavelets have been developed in the last decades for deal-

ing with data compression, pattern recognition, denoising, etc. It is only in recent years

that wavelets have been used to detect point sources in astronomical images. They have

an interesting property that makes them very useful, they retain information about the
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Figure 1.19 In the top panel we show the image before being filtered. In the middle

panel we show the ringing effects produced by the Matched Filter when the power

spectrum of the image is not well determined, as compared with the lower panel, where

the image has been filtered with the MHW2 (the second member of the Mexican Hat

Wavelet Family)
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scale and position of the image. Unlike the Fourier transform, the wavelet transform

allows one to have information about the importance of different scales at each posi-

tion.

Let us consider the discrete wavelet transform (DWT). The wavelet basis is constructed

from dilations and translations of the mother wavelet ψ (or analyzing wavelet) and the

scaling function φ:

ψj,l = 2j/2ψ(2jt − l) and φj,l = 2j/2φ(2jt − l), (1.2.19)

where j and l are integer numbers denoting the dilation and translation indexes, re-

spectively, and ψ and φ are chosen to be orthogonal and satisfy certain mathematical

relations [27]. In particular, they must satisfy that:

∫

ψ(t)dt = 0 and
∫

φ(t)dt = 1. (1.2.20)

The reconstruction of the signal f(t) using the wavelet basis is given by

f (t) = a0,0φ0,0(t) + ∑
j

∑
l

wj,lψj,l(t) (1.2.21)

where a and w are the wavelet coefficients and are defined as

a0,0 =
∫

f (t)φ0,0(t)dt, wj,l =
∫

f (t)ψj,l(t)dt. (1.2.22)

The expression (1.2.21) can be interpreted as the sum of a low resolution, smoothed

function plus a series of consecutive refinements that carry information about the de-

tails of the function f (t). The difference between the refinement level j and the next is

giving us information about the structure of f at the scale j. Therefore, the scaling func-

tion φ carries information about structures of a certain scale inside a region. For this

reason they are very useful for the point-source detection problem, because they can

separate structures from a given scale, those with the same scale as that of the wavelet,

while reducing the contribution of the other scales .

Now, let us consider the continuous wavelet transform (CWT). Instead of using an integer

number of dilations and translations, we allow them to vary continuously. Then, for

R > 0, where R is the scale of the wavelet, and b ∈ R,

ψR,b(t) = R−1/2ψ

(

t − b
R

)

. (1.2.23)
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Figure 1.20 Normalized one-dimensional Mexican Hat wavelet in real space.

The continuous wavelet transform is thus defined as

W f (R, b) =
∫ ∞

−∞
f (t)ψR,b(t)dt = f ⊗ ψ̄R(b), (1.2.24)

where ψ̄R(t) = R−1/2ψ(−t/R). As an example, let us consider the well known “Mex-

ican Hat wavelet”, a wavelet that has been extensively used in the literature for the

detection of point sources with Gaussian profiles [19, 87, 144]. This wavelet is obtained

applying the Laplacian operator to the Gaussian function of width R (see figure 1.20)

and in two dimensions has the following expression

ψ(x) =
1√
2π

[

2 −
( x

R

)2
]

e−
x2

2R2 . (1.2.25)

We remark that wavelets are compensated, i.e., the integral below the curve is zero and

using them as filters helps to remove background contributions with scales of variation

larger than the one of the wavelet. If we further apply the Laplacian operator to the

Gaussian function we obtain a family of wavelets. The first members of this family have

been studied [51] and it has been found that the first one, the previously mentioned

Mexican Hat Wavelet, and the second, the Mexican Hat Wavelet 2, are the most suitable

for the detection of point sources. In figure 1.21 we show the performance of the MHW

when dealing with the detection of point sources. In the upper left panel we shown a

simulation of Galactic diffuse emissions. In the upper right panel we show a simulation

of point sources and instrumental noise. In the lower left panel we have added the

previous two maps, and the result of filtering it with the MHW is shown in the lower
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Figure 1.21 In this figure we show the performance of the Mexican Hat Wavelet. In

the upper left panel we have a patch of the diffuse galactic contamination at 857 GHz,

where dust is dominant. In the upper right panel we show a simulation of point sources

+ instrumental noise. In the lower left panel we have added the previous two compo-

nents (dust, point sources and instrumental noise). Finally, when we filter the previ-

ous image with the Mexican hat wavelet at the optimal scale we obtain another image

where most of the dust contribution and some of the noise has been removed.

right panel.

In the following chapters we will show practical applications of wavelets in the field

of point source detections, from simple backgrounds, such as white noise, to the most

realistic simulations of the Planck Reference Sky. In the last chapter, we will show the

application of these techniques to real data from the WMAP third-year data. The main

results of these analysis can be found in López-Caniego et al. [90, 91].

Bayesian approach

Most of the techniques developed for the detection of compact sources in CMB as-

tronomy are based on linear filters. However, other methods can be applied, e.g. the
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Bayesian approach by Hobson & McLachlan [76]. This method is based on the eval-

uation of the unnormalized posterior distribution P̄r(θ|D) for the parameters θ that

characterize the unknown objects (such as the position, amplitude or size), given the

observed data D. The unnormalized posterior probability is given in terms of the like-

lihood Pr(θ|D) and the prior Pr as

P̄r(θ|D) ≡ Pr(D|θ)Pr(θ). (1.2.26)

There are two approaches to this method. The first one is an exact approach that tries

to detect all the objects present in the data simultaneously and the second, an iterative

and much faster method called the “McClean Algorithm”. In both approaches an esti-

mation of the parameters and their errors is given. In both approaches, the parameter

space that characterizes the objects is explored using Markov-Chain Monte-Carlo tech-

niques. In this work, the authors compare the performance of both algorithms for a

simple example, an image (200 × 200) pixels containing eight objects with a Gaussian

profile and embedded on a Gaussian white noise. The signal-to-noise of the objects

ranges from 0.25 to 0.5. In the first approach, the exact method, the number of objects

is an additional parameter to be determined by the algorithm and all the objects are

detected without false detections. However, two of the objects (which overlapped in

the noiseless data) are identified as a single detection. Although the method seems to

perform very well and the parameters have been estimated with a good accuracy, it is

computationally demanding.

The second approach, an iterative one, tries to detect the objects one-by-one. This is

going to reduce the CPU demand significantly, and the result is is very similar to that

of the exact method. In the considered example, the McClean algorithm provides quite

similar results to the exact method, although one of the objects remains undetected.

This approach can be competitive with other techniques for the detection of compact

sources in future CMB experiments. However, it assumes the knowledge of the func-

tional form of the likelihood, the prior of the parameters and the profile of the objects,

which in many real situations may not be known. Moreover, other contaminants such

as Galactic foregrounds would introduce additional complexity.

1.2.2 Techniques for the extraction of the Thermal SZ

The detection of the thermal SZ effect produced by clusters of galaxies in the CMB

signal can be achieved with point source extraction techniques. At microwave fre-

quencies, the clusters of galaxies appears as unresolved objects even for the highest

resolution experiments. The SZ emission appear as a compact source whose shape is a

39



CHAPTER 1: INTRODUCTION

convolution of the profile of the cluster with the beam response of the instrument used

for the observation. Therefore, most of the techniques developed for the detection of

point sources can be used to detect the SZ effect, simply by taking into account the

profile of the cluster. This has been done by Herranz et al. [68], Schulz & White [127]

and Hobson & McLachlan [76], among others.

As shown in figure 1.5, the thermal SZ effect has a characteristic frequency dependence.

If we have multi frequency observations, this dependence could be used to extract this

emission. There are several approaches to extract the SZ signal from a map. First,

there are some component separation methods that can recover simultaneously all the

components, including the SZ. Second, new methods could be specifically designed to

extract the SZ using multi frequency information [37, 70]. In the next subsection we

will show some examples of this.

Filtering techniques

In the work by Herranz et al. [70], the authors present two techniques for the detec-

tion of SZ clusters in multi frequency maps: a combination technique and a new multi

frequency filter. In both cases the profile of the cluster is assumed to be known. In

the first method a linear combination of the individual frequency maps is done, using

the appropriate weights to obtain the maximum amplification of the objects. Then, the

combined map is filtered with a filter that takes into account the characteristics of this

new map. In the second method, the individual frequency maps are filtered with a filter

that takes into account the cross-correlations between frequency channels as well as the

spectral dependence of the SZ effect. Then, the filtered maps are added together. In this

work, the authors compared different multi frequency filters and concluded that the

best one is the Matched Multifilter (MMF). This filter has been tested with Planck sim-

ulations, patches 12.8◦ × 12.8◦, containing CMB, thermal and kinetic SZ effect, Galac-

tic foregrounds (synchrotron, free-free, thermal dust and spinning dust), extragalactic

point sources and instrumental noise. The authors find that the mean error in the de-

termination of the position of the cluster is around 1 pixel, whereas the core radii are

determined with an error of 0.30 pixels. Regarding the determination of the cluster

amplitudes, the mean error is around 30 per cent for the brightest clusters, whereas the

estimation of the weakest clusters is biased. This bias is due to the fact that for weak

clusters, only those that fall on positive fluctuation of the background actually reach

the detection threshold. This leads to an overestimation of their amplitude. The au-

thors conclude that with this method it will be possible to detect ∼ 10.000 clusters in

2/3 of the sky observed with Planck.
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Bayesian non-parametric technique

An alternative method to detect SZ clusters in Planck has been proposed by Diego et al.

[37]. In this method, the extragalactic point sources are extracted from the individual

maps using the MWH. Then the map at 857 GHz is used to extract the dust component

and the map at 217 GHz is used to extract the CMB. Then, a map of the Compton

parameter yc is obtained in Fourier space using the remaining frequency channels by

maximizing, mode by mode, the posterior probability P(yc|d). Taking into account

Bayes’ theorem, this probability is given by

P(yc|d) ∝ P(d|yc)P(yc) (1.2.27)

This maximization is done only if the likelihood function P(d|yc) and the prior P(yc)

are known. Since the residuals left in the individual maps are mainly dominated by

the instrumental noise, the likelihood can be approximated by a multivariate Gaussian

distribution. Then, the authors find that the prior P(yc) follows approximately an ex-

ponential (exp(−|yc |2/Pyc) at each Fourier mode k, where Pyc is the power spectrum

of the SZ map. Taking these results into account, and after maximizing the posterior

probability, the following solution for the yc map is obtained at each mode:

yc =
dC−1Rt

RC−1Rt + P−1
yc

(1.2.28)

where d is the data, R is the response vector (this vector includes the information from

the beam at each frequency and the frequency dependence of the thermal SZ effect)

and C is the cross-correlation matrix of the residuals. This result is the same as the one

obtained with the multi frequency Wiener filter solution from the Compton parameter

yc. The authors remark that this method does not make any assumption about the

profile of the SZ clusters.

1.2.3 Techniques for the extraction of the Kinetic SZ

The kinetic SZ effect can be used to determine the peculiar velocities of individual

clusters. This is a very difficult task, because this emission is one order of magnitude

weaker than the thermal SZ effect, it has the same frequency dependence as the CMB

and multi frequency observations can not help distinguish between them as in the ther-

mal case. Moreover, the other diffuse galactic components and the instrumental noise

makes it even more difficult. A way to approach the problem is taking into account the

very strong spatial correlation between the kinetic and the thermal effects (both signals
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are produced by the same cluster), and consider observations at 217 GHz, where the

thermal SZ contribution is negligible. Finally, the highly non-Gaussian probability dis-

tribution from the kinetic SZ and its power spectrum are very different from the ones of

the cosmological signal, and this could also be used to separate it from the CMB. There

have been only a few methods that approached this complex problem [46, 60, 76]. In

this work,Herranz et al. [71], the authors have used a modified matched filter on Planck

simulations to study the detection of the kinematic SZ effect.

The Unbiased Matched Multifilter

A MMF can be constructed to detect the kinematic SZ effect in analogous way as for the

thermal SZ effect if multi frequency observations are available. The shape of the source

will be the convolution of the beam response of the instrument with the cluster profile,

although the frequency dependence will now follow that of the kinetic SZ effect. The

authors found that the estimation of the kinetic SZ effect (as well as the thermal one)

using the MMF is biased. It can be shown that this is due to the fact that both signals

have the same spatial profile. This bias is negligible for the thermal case, but not for the

kinetic one. In order to correct for this bias, the authors introduced a new MMF that is

unbiased, the Unbiased MMF (UMMF). The number of detections obtained with this

new filter are slightly lower, but they are intrinsically unbiased. The authors tested this

filter with Planck simulated data, assuming a known cluster position and profile. As

expected, the strong bias has been corrected, although the error in the determination of

the peculiar velocities remains very large, even for bright clusters.
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