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CHAPTER 4

Biparametric Scale Adaptive Filter:

2D approach

This chapter considers the detection of point sources in two dimensional astronomical

images. The detection scheme we propose is based on peak statistics. We discuss the

example of the detection of far galaxies in Cosmic Microwave Background experiments

throughout the work, although the method we present is totally general and can be

used in many other fields of data analysis. We assume sources with a Gaussian profile

–that is a fair approximation of the profile of a point source convolved with the detector

beam in microwave experiments– on a background modeled by a homogeneous and

isotropic Gaussian random field characterized by a scale-free power spectrum. Point

sources are enhanced with respect to the background by means of linear filters. After

filtering, we identify local maxima and apply our detection scheme, a Neyman-Pearson

detector that defines our region of acceptance based on the a priori pd f of the sources

and the ratio of number densities. We study the different performances of some linear

filters that have been used in this context in the literature: the Mexican Hat wavelet,

the matched filter and the scale-adaptive filter. We consider as well an extension to

two dimensions of the biparametric scale adaptive filter (BSAF). The BSAF depends

on two parameters which are determined by maximizing the number density of real

detections while fixing the number density of spurious detections. For our detection

criterion the BSAF outperforms the other filters in the interesting case of white noise,

see López-Caniego et al. [88].
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4.1 Introduction

A very challenging aspect of data analysis in astronomy is the detection of extragalactic

pointlike objects (far galaxies) embedded in two dimensional images. Since the typical

angular size of the distant galaxies in the microwave sky is a few arcseconds and the

angular resolution of the microwave detectors is typically greater than a few arcmin-

utes1, galaxies appear as points to the detector, which is unable to resolve their inner

structure. Therefore, they are usually referred to as extragalactic point sources (EPS)

Note that, however, they do not appear as points in the images but as the convolution

of a pointlike impulse with the angular response of the detector (“beam”). The instru-

ments (radiometers and bolometers) that are used in CMB experiments have angular

responses that are approximately Gaussian and therefore EPS appear as small Gaussian

(or nearly Gaussian) spots in the images2.

The problem with EPS is that galaxies are a very heterogeneous bundle of objects, from

the radio galaxies that emit most of their radiation in the low frequency part of the

electromagnetic spectrum to the dusty galaxies that emit mainly in the infrared (De

Zotti et al. [32], Guiderdoni et al. [58], Toffolatti et al. [141], Tucci et al. [143]).

This makes it impossible to consider all of them as a single foreground to be separated

from the other by means of multi-wavelength observations and statistical component

separation techniques. EPS constitute an important contaminant in CMB studies at

small angular scales (Toffolatti etal. 1998), affecting the determination of the CMB angu-

lar power spectrum and hampering the statistical study (e.g. the study of Gaussianity)

of CMB and other foregrounds at such scales. Moreover, while there are good galaxy

surveys at radio and infra-red frequencies, the microwave window of the electromag-

netic spectrum is a practically unknown zone for extragalactic astronomy. Therefore, it

is important to have detection techniques that are able to detect EPS with fluxes as low

as possible.

One possibility is to consider the EPS emission at each frequency as an additional noise

to be considered in the equations of a statistical component separation method. Once

the algorithm has separated the different components, the residual that is obtained by

subtracting the output foregrounds from the original data should contain the EPS plus

1For example, the upcoming ESA’s Planck satellite will have angular resolutions ranging from 5 ar-

cminutes (for the 217-857 GHz channels) to 33 arcminutes (for the 30 GHz channel).
2It is also common to speak of compact sources, describing a source that is comparable to the size of the

beam being used. Non-pointlike sources (such as large galaxy clusters with arcminute angular scales) will

have more complicated responses when convolved with a beam, but if the source profile is known it is

always possible to apply the methods presented in this work.
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the instrumental noise and some amount of foreground residuals that remain due to a

non-perfect separation. As an example, Figure 4.1 shows the residual at 30 GHz after

applying a Maximum Entropy component separation algorithm (Hobson et al. [75]) to

a 12.8 × 12.8 sqr deg simulated sky patch as would be observed by the Planck satellite.

The brightest point sources can be clearly observed over the residual noise. However,

fainter point sources are still masked by a residual noise that is approximately Gaussian

and must be detected somehow. Besides, the situation is more complex because the

presence of bright EPS in the data affects the performance of the component separation

algorithms so the recovered components are contaminated by point sources in a way

that is difficult to control. Therefore, any satisfactory method should detect and extract

at least the bright sources before the component separation. Then, after separation

some additional low intensity EPS could be detected from the residual maps such as

the one in Figure 4.1.

Several techniques based on linear filters have been proposed in the literature for the

detection of point sources in CMB data. Linear filtering techniques are suitable for

this problem because they can isolate structures with a given characteristic scale, as is

the case of pointlike sources, while cancelling the contribution of diffuse foregrounds.

Among the methods proposed in the literature, we emphasize the Mexican Hat wavelet

(MHW, Cayón et al. [19], Vielva et al. [144, 145]), the classic matched filter (MF, Tegmark

& de Oliveira-Costa [139]), the Adaptive Top Hat Filter (Chiang et al. [20]) and the scale-

adaptive filter (SAF,Herranz et al. [68], Sanz, Herranz, & Martínez-Gónzalez [124]).

Moreover, linear filters can be used in combination with statistical component separa-

tion techniques in order to produce a more accurate separation of the different fore-

grounds (Vielva et al. [145]).

The goal of filtering is to enhance the contrast between the source to be detected and

the background that masks it. For example, if we filter the image in Figure 4.1, assum-

ing that the background can be characterised by a white noise, with the well known

matched filter (see section 4.4.1) at the scale of the 30 GHz detector beam (FWHM=33

arcminutes) the signal to noise ratio of the sources increases by more than 25%. There-

fore, a source whose signal to noise ratio was ∼ 3 before filtering becomes a source

with signal to noise ratio ∼ 4 and will be easier to detect.

After filtering, a detection rule is applied to the data in order to decide whether the

source is present or not. The usual detection approach in astronomy is thresholding:

for any given candidate (for example a local peak in the data) a positive detection is

considered if the candidate has a signal to noise ratio greater than a certain threshold

(in many astronomical applications, a typical value of this threshold is 5σ). This naive
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Figure 4.1 Residual map of a 12.8 × 12.8 sqr deg sky patch at 30 GHz after the applica-

tion of a Maximum Entropy component separation. The residual map is obtained by

subtracting from the 30 GHz map the different components (CMB and foregrounds)

given by the Maximum Entropy algorithm. Bright point sources appear as spots in the

images whereas faint point sources are masked by the residual noise.
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approach works fine for bright sources, but weak sources can be easily missed.

More sophisticated detection schemes can use additional information in order to im-

prove the detection. If the detection is performed by means of the study of the statistics

of maxima in the images, such information includes not only the amplitude of the max-

ima but also spatial information related with the source profile, for example the deriva-

tives of the intensity; in our approach we will consider the amplitude, the curvature

and the shear of the sources (the last two quantities are given by the properties of the

beam in the case of point sources) to discriminate between maxima of the background

and real sources. Moreover, in some cases a priori information on the distribution of

intensity of the sources is known. We will therefore use a Neyman-Pearson detector

that uses the three above mentioned elements of information (amplitude, curvature

and shear) of the maxima as well as the a priori probability distribution of the sources.

This technique has been successfully tested in images of one-dimensional fields (López-

Caniego et al. [86, 87]). In this work we will generalise it to two dimensions.

The overview of this work is as follows: in section 4.2 we describe the statistics of

the peaks for a two-dimensional Gaussian background in the absence and presence

of a source. In section 4.3 we introduce the detection problem, define the region of

acceptance and derive our detector. In section 4.4 we briefly review some of the linear

filters proposed in the literature. In section 4.5 we describe a probability distribution

of sources that is of interest and compare the performance of the filters, regarding our

choice of detector. Finally, in section 4.6 we summarise our results.

4.2 Peak statistics

In this section we will study the statistics of peaks for a two-dimensional Gaussian

background in both the absence and presence of a source. We will focus on three quan-

tities that define the properties of the peaks: the intensity of the field, the curvature and

the shear at the position of the peak. The first quantity gives the amplitude of the peak.

The curvature and the shear give information about the spatial structure of the peak

and are related to its sharpness and eccentricity, respectively.

4.2.1 Background

Let us assume a two-dimensional (2D) background represented by a Gaussian random

field ξ(~x) with average value 〈ξ(~x)〉 = 0 and power spectrum P(q),

〈ξ(~Q)ξ∗(~Q′)〉 = P(q)δ2
D(~Q − ~Q′), q ≡ |~Q|, (4.2.1)
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where ξ(~Q) is the Fourier transform of ξ(~x)3 and δ2
D is the Dirac distribution in 2D.

We are interested in the distribution of maxima of the background with respect to the

three variables already mentioned: intensity, curvature and shear. Let us define the

normalized field intensity ν, the normalized curvature κ and the normalized shear ε as:

ν ≡ ξ

σ0
, κ ≡ λ1 + λ2

σ2
, ε ≡ λ1 − λ2

2σ2
, (4.2.2)

where ν ∈ (−∞, ∞), κ ∈ [0, ∞), ε ∈ [0, κ/2), λ1 and λ2 are the eigenvalues of the

negative Hessian matrix, and the σn are defined as

σ2
n ≡ 1

2π

∫ ∞

0
dq q1+2nP(q). (4.2.3)

The moment σ0 is equal to the dispersion of the field.

The distribution of maxima of the background in one dimension (1D) with respect to

the intensity and curvature (the shear is not defined in 1D) was studied by Rice [118].

If we generalize it to 2D, including the shear, the expected number density of maxima

per intervals (~x,~x + d~x), (ν, ν + dν), (κ, κ + dκ) and (ε, ε + dε) is given by

nb(ν, κ, ε) =
8
√

3ñb

π
√

1 − ρ2
ε(κ2 − 4ε2)e

− 1
2 ν2−4ε2− (κ−ρν)2

2(1−ρ2) , (4.2.4)

where ñb is the the expected total number density of maxima (i.e. number of maxima

per unit area d~x)

ñb ≡
1

4π
√

3 θ2
m

, (4.2.5)

and ρ and θm are defined as

θm ≡
√

2
σ1

σ2
, ρ ≡ σ2

1
σ0σ2

=
θm

θc
, θc ≡

√
2

σ0

σ1
. (4.2.6)

In the previous equations θc and θm are the coherence scale of the field and maxima,

respectively. The formula in equation (4.2.4) can be derived from previous works (Bar-

reiro et al. [4], Bond & Efstathiou [15]).

4.2.2 Background plus point source

To the previous 2D background we add a source with a known spatial profile τ(~x)

and an amplitude A, so that the intensity due to the source at a given position ~x0 is

3Throughout this chapter we will use the following notation for the Fourier transform: the same sym-

bol will be used for the real space and the Fourier space versions of a given function. The argument of

the function will specify in each case which is the space we are referring to. For instance, f (q) will be the

Fourier transform of the function f (x).
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ξs(~x) = Aτ(~x −~x0). For simplicity, we will consider a spherical Gaussian profile given

by

τ(x) = exp(−x2/2R2), x ≡ |~x|, (4.2.7)

where R is the Gaussian width (in the case of point sources convolved with a Gaussian

beam, R is the beam width). We could easily consider other functional profiles4 without

any loss of generality. The expected number density of maxima per intervals (~x,~x +

d~x), (ν, ν + dν), (κ, κ + dκ) and (ε, ε + dε), given a source of amplitude A in such spatial

interval, is

n(ν, κ, ε|νs) =
8
√

3 ñb

π
√

1 − ρ2
ε(κ2 − 4ε2)e

− 1
2 (ν−νs)2−4ε2− (κ−2κs−ρ(ν−νs))2

2(1−ρ2) (4.2.8)

where νs = A/σ0 is the normalized amplitude of the source, κs = −Aτ′′/σ2 is the nor-

malized curvature of the source and τ ′′ is the second derivative of the source profile τ

with respect to x at the position of the source. Note that in equation (4.2.8) we are tak-

ing into account that the shear of the source is zero since we are considering a spherical

profile. It is useful to define a quantity ys that is related to the curvature of the source:

ys ≡ − θ2
mτ′′

ρ
, κs =

νsys

2
. (4.2.9)

4.3 The detection problem

Equations (4.2.4) and (4.2.8) can be used to decide whether a source is present or not

in a data set. The tool that allows us to decide whether a point source is present or

not in the data is called a detector. In this section we will describe the Neyman Pearson

detector (NPD). We will study its performance in terms of two quantities: the number

of true detections and the number of false (spurious) detections that emerge from the

detection process. Our approach fixes the number density of spurious detections and

determines the number density of true detections in each case.

4.3.1 The region of acceptance

We consider a peak in the 2D data set characterized by the normalized amplitude, cur-

vature and shear (ν, κ, ε). The number density of background maxima nb(ν, κ, ε) rep-

resents the null hypothesis H0 that the peak is due to the background in the absence

4For example, more complicated beams or sources that are not pointlike but have some resolved struc-

ture.
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of source. Conversely, the local number density of maxima n(ν, κ, ε) represents the al-

ternative hypothesis, that the peak is due to the source added to the background. The

local number density of maxima n(ν, κ, ε) can be calculated as

n(ν, κ, ε) =
∫ ∞

0
dνs p(νs)n(ν, κ, ε|νs). (4.3.1)

In the last equation we have used the a priori probability p(νs), that gives the amplitude

distribution of the sources.

We can associate to any region R∗(ν, κ, ε) in the (ν, κ, ε) parameter space two number

densities n∗
b and n∗

n∗
b =

∫

R∗
dν dκ dε nb(ν, κ, ε), (4.3.2)

n∗ =
∫

R∗
dν dκ dε n(ν, κ, ε). (4.3.3)

where n∗
b is the expected number density of spurious sources, i.e. due to the back-

ground, in the region R∗(ν, κ, ε), whereas n∗ is the number density of maxima expected

in the same region of the (ν, κ, ε) space in the presence of a local source. The region R∗

will be called the region of acceptance.

In order to define the region of acceptance R∗ that gives the highest number density

of detections n∗ for a given number density of spurious detections n∗
b , we assume a

Neyman-Pearson Detector (NPD) using number densities instead of probabilities

L(ν, κ, ε) ≡ n(ν, κ, ε)

nb(ν, κ, ε)
≥ L∗, (4.3.4)

where L∗ is a constant. The proof follows the same approach as for the standard

Neyman-Pearson detector. If L ≥ L∗ we decide that the signal is present, whereas

if L < L∗ we decide that the signal is absent. From this ratio L ≥ L∗, we derive the

region of acceptance, that is given by the sufficient linear detector ϕ (see Appendix)

R∗ : ϕ(ν, κ) ≥ ϕ∗, (4.3.5)

where ϕ∗ is a constant and ϕ(ν, κ) is given by

ϕ(ν, κ) ≡ aν + bκ, a ≡ 1 − ρys

1 − ρ2 , b ≡ ys − ρ

1 − ρ2 . (4.3.6)

We remark that the detector is independent of the shear ε. This is due to the fact that

we are considering a source with a spherical profile with shear εs = 0. If the profile is

not spherical, the detector may depend on the shear.
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4.3.2 Spurious sources and real detections

Given a region of acceptance R∗, we can calculate the number density of spurious

sources and the number density of detections as given by equations (4.3.2) and (4.3.3)

n∗
b =

√
3ñb√
2π

∫ ∞

0
dκ (κ2 − 1 + e−κ2

)e−
κ2
2 erfc (M) , M ≡ ϕ∗ − ysκ

a
√

2(1 − ρ2)
. (4.3.7)

n∗ =

√
3ñb√
2π

∫ ∞

0
dνs p(νs)

∫ ∞

0
dκ(κ2 − 1 + e−κ2

)e−
1
2 (κ−νsys)2

erfc (Q) , (4.3.8)

Q ≡ M + νs
ρys − 1

√

2(1 − ρ2)
. (4.3.9)

Our approach is to fix the number density of spurious detections and then to determine

the region of acceptance that gives the maximum number of true detections. This can

be done by inverting the equation (4.3.7) to obtain ϕ∗ = ϕ∗(n∗
b/nb; ρ, ys). Once ϕ∗ is

known, we can calculate the number density of detections using equation (4.3.8).

4.4 The filters

Detection can, in principle, be performed on the raw data, but in most cases it is conve-

nient to transform first the data in order to enhance the contrast between the distribu-

tions nb(ν, κ, ε) and n(ν, κ, ε). Hopefully, such an enhancement will help the detector

to give better results (namely, a higher number of true detections). In this chapter we

will focus in the use of linear filters as a means to transform the data in such a way.

Filters are suitable for this task because background fluctuations that have variation

scales different from the source scale can be easily filtered out while preserving the

sources. Different filters will improve detection in different ways: this work compares

the performance of several filters. The filter that gives the highest number density of

detections, for a fixed number density of spurious sources, will be the preferred filter

among the considered filters.

Let us consider a filter Ψ(~x; R,~b), where R and~b define a scaling and a translation re-

spectively. Since the sources we are considering are spherically symmetric and we as-

sume that the background is statistically homogeneous and isotropic, we will consider

spherically symmetric filters,

Ψ(~x; R,~b) ≡ 1
R2 ψ

(

|~x −~b|
R

)

. (4.4.1)

If we filter our background with Ψ(~x; R,~b), the filtered field is

w(R,~b) =
∫

d~x ξ(~x)Ψ(~x; R,~b). (4.4.2)
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The filter is normalized such that the amplitude of the source is the same after filtering:
∫

d~x τ(~x)Ψ(~x; R,~0) = 1. (4.4.3)

For the filtered field equation (4.2.3) becomes

σ2
n ≡ 2π

∫ ∞

0
dq q1+2nP(q)ψ2(q). (4.4.4)

The values of ρ, θm, θc and all the derived quantities change accordingly. The curvature

of the filtered source κs can be obtained through equation (4.2.9), taking into account

that for the filtered source

− τ′′
ψ = π

∫ ∞

0
dq q3τ(q)ψ(q). (4.4.5)

Note that the function ψ(q) will depend as well on the scaling R. As an applica-

tion of the previous ideas, we study the detection of point sources characterised by

a Gaussian profile τ(x) = exp(−x2/2R2), x = |~x|, and Fourier transform τ(q) =

R2 exp(−(qR)2/2). This is the case we find in CMB experiments, where the profile

of the point source is given by the instrumental beam, that can be approximated by a

Gaussian.

This profile introduces in a natural way the scale of the source R, the scale at which

we filter. However, previous works in 1D using the MHW, MF, SAF and the BSAF

have shown that the use of a modified scale αR can significantly improve the number

of detections (Cayón et al. [19], López-Caniego et al. [86, 87], Vielva et al. [144, 145]).

Therefore, we generalise the functional form of these filters to 2D and allow for this

additional degree of freedom α.

4.4.1 The Matched Filter (MF)

Let us introduce a circularly-symmetric filter Ψ(~x; R,~b). The filtered field is given by

equation (4.4.2). Now, we express the conditions to obtain a filter for the detection of

the source s(x) = Aτ(x) at the origin taking into account the fact that the source is

characterized by a single scale Ro. We assume the following conditions:

1. 〈w(Ro,~0)〉 = s(0) ≡ A, i.e. w(Ro,~0) is an unbiased estimator of the amplitude of

the source.

2. The variance of w(R,~b) has a minimum at the scale Ro, i.e. it is an efficient estima-

tor.
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Then, the 2D filter satisfying these conditions is the so-called matched filter. As men-

tioned before, we will allow the filter scale to be modified by a factor α. If α = 1 we

have the well-known standard matched filter use in the literature. For a source with a

Gaussian profile, a scale-free power spectrum P(q) ∝ q−γ and allowing the filter scale

to vary through the α parameter, the modified matched filter is

ψMF(q) = N(α)zγe−
1
2 z2

, z ≡ qαR,

where

m ≡ 2 + γ

2
, N(α) =

α2

∆m
1
π

1
Γ(m)

, ∆ =
2α2

(1 + α2)
, (4.4.6)

and Γ is the standard Gamma function. The parameters of the filtered background and

source are

ρ(α) = ρ =

√

m
1 + m

, θm(α) = αR
√

2
1 + m

, ys(α) = ρ∆ (4.4.7)

The corresponding threshold as compared to the standard matched filter (α = 1) is

ν(α)

νMF(α=1)
= αt−2∆m, (4.4.8)

where

t ≡ 2 − γ

2
. (4.4.9)

We remark that for the standard matched filter the curvature does not affect the region

of acceptance and the linear detector ϕ(ν, κ) is reduced to ϕ = ν.

4.4.2 The Scale-Adaptive Filter (SAF)

The scale-adaptive filter (or optimal pseudo-filter) has been proposed by Sanz etal.

(2001). The filter is obtained by imposing an additional condition to the conditions that

define the MF:

3. w(R,~0) has a maximum at (Ro,~0).

Assuming a scale-free power spectrum, P(q) ∝ q−γ, a modified scale αR and a Gaussian

profile for the source, the functional form of the filter in 2D is

ψSAF(q) = N(α)zγe−
1
2 z2
[

γ +
2t
m

z2
]

, z ≡ qαR,

where

N(α) =
α2

∆m
1

πΓ(m)

1
γ + 2t

m ∆
(4.4.10)
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and where m and ∆ are defined as in equation (4.4.6), t is defined as in equation (4.4.9).

The parameters of the filtered background and source are

ρ(α) = ρ =

√

m
1 + m

H1√
H2 H3

, θm(α) = αR
√

2
1 + m

√

H1

H3
,

ys(α) =

√

m
1 + m

√

H2

H3
∆

γ + c(1 + m)∆

γ + cm∆
, (4.4.11)

where c = 2t/m and

H1 = γ2 + 2γc(1 + m) + c2(1 + m)(2 + m),

H2 = γ2 + 2γcm + c2m(1 + m),

H3 = γ2 + 2γc(2 + m) + c2(2 + m)(3 + m). (4.4.12)

The corresponding threshold as compared to the standard matched filter (α = 1) is

ν

νMF(α=1)
=

αt−2∆m(γ + cm∆)√
H2

. (4.4.13)

4.4.3 The Mexican Hat Wavelet (MH)

The MH is defined to be proportional to the Laplacian of the Gaussian function in 2D

real space

ψMH(x) ∝ (1 − x2)e−
1
2 x2

, x ≡ |~x|. (4.4.14)

Thus, in Fourier space we get the modified Mexican Hat wavelet introducing the α

parameter as follows

ψMH(q) = N(α)z2e−
1
2 z2

, z ≡ qαR,

N(α) =
1
π

( α

∆

)2
(4.4.15)

Thus, the filtered background and source parameters are

ρ(α) = ρ =

√

2 + t
3 + t

, θm(α) = αR
√

2
3 + t

, ys(α) =
2

√

(2 + t)(3 + t)
∆, (4.4.16)

where m and ∆ are defined as in equation (4.4.6) and t is defined as in equation (4.4.9).

The corresponding threshold is

ν(α)

νMF(α=1)
=

αt−2∆2
√

Γ(m)Γ(2 + t)
. (4.4.17)
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4.4.4 The Biparametric Scale-Adaptive Filter (BSAF)

López-Caniego et al. [87] have shown that removing condition 3 defining the SAF and

introducing instead the condition

3. w(Ro,~b) has a maximum at (Ro,~0),

leads to the new filter

ψ(q) ∝
τ(q)
P(q)

[

1 + c(qR)2] , (4.4.18)

where c is an arbitrary constant related to the curvature of the maximum. For the case

of a scale-free spectrum and allowing for a modified scale αR, the filter is given by the

parameterized equation

ψBSAF(q) = N(α)zγe−
1
2 z2 (

1 + cz2) , z ≡ qαR,

N(α) =
α2

∆m
1
π

1
Γ(m)

1
1 + cm∆

, (4.4.19)

where m and ∆ are defined as in equation (4.4.6). We remark that c = 0 leads to the MF

and if c ≡ 2t/mγ, with t defined as in equation (4.4.9), the BSAF defaults to the SAF.

The parameters of the filtered background and source are

ρ(α) = ρ =

√

m
1 + m

D1√
D2 D3

, θm(α) = αR
√

2
1 + m

√

D1

D3
,

ys(α) =

√

m
1 + m

√

D2

D3
∆

1 + c(1 + m)∆

1 + cm∆
, (4.4.20)

where

D1 = 1 + 2c(1 + m) + c2(1 + m)(2 + m),

D2 = 1 + 2cm + c2m(1 + m),

D3 = 1 + 2c(2 + m) + c2(2 + m)(3 + m). (4.4.21)

The equivalent threshold is given by

ν(α)

νMF(α=1)
=

αt−2∆m(γ + cm∆)√
D3

. (4.4.22)

4.5 Analytical results

In this section we will compare the performance of the different filters previously intro-

duced. We use as example the interesting case of white noise as background. This is a
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fair approximation to the case presented in Figure 4.1, where the sources are embedded

in a background that is a combination of instrumental noise (approximately Gaussian)

and a small contribution of residual foregrounds that have not been perfectly sepa-

rated. For this example, we will consider sources with intensities distributed uniformly

between zero and a upper cut-off.

The comparison of the filters is performed as follows: we fix the number density of

spurious detections, the same for all the filters. Then, for any given filter we calculate

the quantities σn, ρ and ys. Using equation (4.3.7) it is possible to calculate the value of

ϕ∗ that defines the region of acceptance. Then we calculate the number density of real

detections using equation (4.3.8). The filter that leads to the highest number density of

detections will be the preferred one. We do this for different values of α in order to test

how the variation of the filtering scale affects the number of detections.

4.5.1 A priori probability distribution

As mentioned before, we will test a pd f of source intensities that is uniform in the

interval 0 ≤ A ≤ Ac. In terms of normalized intensities, we have the pd f

p(νs) =
1
νc

, νs ∈ [0, νc ]. (4.5.1)

We will consider a cut-off in the amplitude of the sources such that νc = 2 after filtering

with he standard MF, that is, we will focus on the case of faint sources that would

be very difficult to detect if no filtering was applied. Note that while the value νc

is different for each filter (because each filter leads to a different dispersion σ0 of the

filtered field), the distribution in source intensities A is the same for all the cases.

4.5.2 Results for white noise

We want to find the optimal filter in the sense of maximum number of detections. For

the sources, we use a uniform distribution with amplitudes in the interval A ∈ [0, 2]σ0 ,

where σ0 is the dispersion of the linearly-filtered map with the standard MF. We focus

on the interesting case of white noise (γ = 0) and explore different values of n∗
b and R.

We study the performance of the different filters as a function of α. This allows us to

test how the variation of the natural scale of the filters helps the detection. In the case

of the BSAF, which has an additional free parameter, c in equation (4.4.19), for each

value of α we determine numerically the value of c that gives the highest number of

detections. Then the BSAF with such c parameter (that is a function of α, n∗
b and R) is

compared with the other filters.
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Figure 4.2 The expected number density of detections n∗ as a function of α for γ = 0 for

the BSAF (c has been obtained by maximising the number of detections for each value

of α), MF and SAF filters. We consider the case R = 1.5, n∗
b = 0.01
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Figure 4.3 The expected number density of detections n∗ as a function of α for γ = 0 for

the BSAF (c has been obtained by maximising the number of detections for each value

of α), MF and SAF filters. We consider the case R = 2, n∗
b = 0.01
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R n∗
b α c n∗

BSAF n∗
MF RD[%]

1.5 0.005 0.5 -0.44 0.0507 0.0484 4.7

0.01 0.5 -0.46 0.0709 0.0620 14.3

2 0.005 0.4 -0.54 0.0396 0.0335 18.2

0.01 0.4 -0.54 0.0567 0.0406 39.6

2.5 0.005 0.3 -0.64 0.0320 0.0245 30.6

Table 4.1 Number density of detections n∗ for the BSAF and the standard MF(α = 1)

with optimal values of c and α for different values of n∗
b and R. RD means relative

difference in number densities in percentage: RD ≡ 100(−1 + n∗
BSAF/n∗

MF).

In Figure 4.2, we plot the expected number density of detections n∗ for different values

of α, R = 1.5 pixels and n∗
b = 0.01. Note that for the 2D case the MHW and SAF are the

same filter for γ = 0 and we have only included the latter in our figures. In this case,

the curve for the BSAF always goes above the other filters. The maximum number of

detections is found for small values of α. In this region, the improvement of the BSAF

with respect to the standard matched filter is of the order ' 15%.

In Figure 4.3, we show the results for R = 2. We have increased the beam width

as compared with the previous example and leave unchanged the number density of

false detections. The BSAF outperforms all the other filters, and for small values of α

the improvement is of the order ' 40%. Note that in this figure the MF takes values

α ∈ [0, 1]. For greater values of α, with R = 2 and n∗
b = 0.01, we can not solve for ϕ∗ in

the implicit equation (4.3.7) and can not calculate n∗.

We remark that filtering at scales much smaller than the scale of the pixel does not

make sense. This is due to the fact that we are not including the effect of the pixel in

our theoretical calculations and, thus, the results would not exactly follow what would

be found in a real image. Therefore, we present the results only for those values of α

such that αR is at least ∼ 1.

4.6 Conclusions

Several techniques have been introduced in the literature to detect point sources in

two-dimensional images. Examples of point sources in astronomy are far galaxies as

detected by CMB experiments. An approach that has been thoroughly used in the liter-

ature for this case consists in linear filtering the data and applying detectors based on

thresholding. Such approach uses only information on the amplitude of the sources:
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the potentially useful information contained in the local spatial structure of the peaks

is not used at all. In our work, we design a detector based on peak statistics that uses

the information contained in the amplitude, curvature and shear of the maxima. These

quantities describe the local properties of the maxima and are used to distinguish sta-

tistically between peaks due to background fluctuations and peaks due to the presence

of a source.

We derive a Neyman-Pearson detector (NPD) that considers number densities of peaks

which leads to a sufficient detector that, in the case of the spherically symmetric sources

that we consider, is linear in the amplitude and curvature of the sources. For this par-

ticular case, then, the information of the shear of the peaks is not relevant. In other

cases, however, it could be useful.

It is a common practice in astronomy to linear filter the images in order to enhance very

faint point sources and help the detection. The best filter would be the one that makes

easier to distinguish between peaks coming from the background alone and those due

to the presence of a source, according to the information used by the detector. In the

case of simple thresholding, that considers only the amplitude of the peaks, the answer

to the question of which is the best filter (in the previous sense) is well known: the

standard matched filter. But in the case of the Neyman-Pearson detector, that considers

other things apart from mere amplitudes, this is not longer true.

We have compared three commonly used filters in the literature in order to assess

which one of them performs better when detecting sources with our scheme. In ad-

dition, we have designed a filter such that optimizes the number of true detections for

a fixed number of spurious sources. The optimization of the number of true detections

is performed by using the a priori pd f of the amplitudes of the sources. This filter

depends on two free parameters and it is therefore called biparametric scale adaptive

filter (BSAF). By construction, the functional form of the BSAF includes the standard

MF as a particular case and its performance in terms of number of true detections for a

fixed number of spurious detections must be at least as good as the standard MF’s one.

Following the work done in the 1D case, we generalize the functional form of the filters

to 2D and introduce an extra degree of freedom α that will allow us to filter at different

scales αR, where R is the scale of the source. This significantly improves the results.

We have considered an interesting case, a uniform distribution of weak sources with

amplitudes A ∈ [0, 2]σ0, where σ0 is the dispersion of the field filtered with the standard

matched filter, embedded in white noise (γ = 0). We have tested different values of the

source size R and of the number density of spurious detections n∗
b that we fix. We find

that the BSAF improves the number density of detections up to ' 40% with respect
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to the standard MF (α = 1) for certain cases. Note that since the Neyman-Pearson

detector for the standard MF (α = 1) defaults to the classic thresholding detector that

is commonly used in astronomy, the results of this work imply that it is possible, under

certain circumstances, to detect more point sources than in the classical approach.

The generalization of these ideas to other source profiles and non-Gaussian backgrounds

is relevant and will be discussed in a future work.

4.7 Appendix

We will show in this Appendix that ϕ(ν, κ) ≥ ϕ∗ given in equation (4.3.5) is a sufficient

linear detector, i.e., the detector is linear in the threshold ν and the curvature κ and

the data it uses is a sufficient statistic to decide if a peak is a source (independent of

the a priori probability P(νs)). The ratio L(ν, κ, ε|νs) ≡ n(ν, κ, ε|νs)/nb(ν, κ, ε) can be

explicitly written as

L(ν, κ, ε|νs) = eϕνs− 1
2 (ν2

s +(ρνs−2κs)2) (4.7.1)

The criterion for detection can be written as

Ł(ν, κ) ≡
∫ ∞

0
dνs p(νs)L(ν, κ|νs) ≥ L∗, (4.7.2)

where L∗ is a constant. L is a function of ϕ,

ϕ(ν, κ) ≡ aν + bκ, a =
1 − ρys

1 − ρ2 , b =
ys − ρ

1 − ρ2 . (4.7.3)

By differentiating L with respect to ϕ we find that

∂L
∂ϕ

=
∫ ∞

0
dνs p(νs)νseϕνs− 1

2 (ν2
s +(ρνs−2κs)

2) ≥ 0, (4.7.4)

and therefore setting a threshold in L is equivalent to setting a threshold in ϕ:

Ł(ν, κ) ≥ L∗ ⇔ ϕ(ν, κ) ≥ ϕ∗, (4.7.5)

where ϕ(ν, κ) is given by equation (4.7.3) and ϕ∗ is a constant.
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