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CHAPTER

1 Complex Systems

1.1 More is different

This Thesis deals with different systems- interfaces in random media, social mod-
els, and complex networks- that, at first glance, have nothing to do with each other.
What may an expanding oil stain, a discussion group of individuals, or the Internet
network have in common? Apparently very little. However, a closer look reveals that
all of them are dynamical systems with a large number of discrete units (molecules,
agents, and routers). The microscopical interactions between such many elements
make these systems to develop a level of organization often reflected as certain struc-
ture on scales much larger than that of their individual components. This effect gives
rise to emergent properties of the whole system that fall into the realm of the Physics
of Complex Systems.

Complexity may be defined as the global behavior of many interacting units that
evolve toward self-organized steady states whose properties are largely independent
of the interaction details. Nonlinear interactions are responsible for this coherent col-
lective behavior, or emergent properties, that cannot be described at the level of the
individual units. In this sense the whole is more than the sum of its parts- a character-
istic shared with other nonlinear systems. This point of view was first exposed in the
famous article of P.W. Anderson , titled ”"More is different” [Anderson 1972], which
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had a deep impact in the development of complexity ideas and in the way scientists
tackle the analysis of many-particle systems.

In his paper Anderson questioned the generality of the reductionistic approach,
that considers simple systems to analyze them in detail focusing on their constituent
elements. According to this traditional point of view, the fundamental laws are only
those associated with elementary particles. The reductionistic vision can be cer-
tainly applied to a great deal of situations but it necessarily assumes the existence
of characteristic scales: the size of an atom, of a molecule or of some macroscopic
object. However, there are many situations in which the knowledge of the individual
elements is not sufficient to characterize the properties of the whole system. As pre-
viously pointed out, when many elements interact in a nonlinear way, they can lead
to complex structures and fundamental laws which cannot be directly related to the
individual elements. This phenomenon is rooted in at the hierarchical organization
of Nature, which gives rise to collective emergent properties every time one moves
from a level of the hierarchy to the next one. Examples of these various levels can
be quarks and nucleus, atoms, molecules, proteins, the emergence of life and on up
to the macroscopic scales and the entire universe. The idea is that each discipline
(particle physics, nuclear physics, molecular physics, and so on) refers to the step
between one level and the next one. In this process, the essential concepts are the ba-
sic elements and their interactions. These lead to emergent properties and collective
behaviors that cannot be identified from the original elements. From these collective
properties one can then identify the basic elements of the next level of the hierarchy,
and each of these steps is characterized by its own fundamental laws. Therefore,
there are no absolute fundamental laws which, starting form the smallest scale, per-
mit the derivation of all the other properties at all other scales. In this perspective,
the various scientific disciplines become part of the same global system with much
more possibilities to be integrated among them.

1.2 Scaling and Universality

The science of Complexity arises naturally from Statistical Mechanics which, in the
late 1960s, introduced a fundamental change of paradigm with respect to the reduc-
tionistic scientific vision. It was in the context of critical systems where the first man-
ifestations of complexity were observed and mathematically described. At the equi-
librium point between order and disorder one can observe fluctuations at all scales
that cannot be explained at the level of elemental components; the system cannot
be described any more with the usual formalism, in which one tries to write simple
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equations for average quantities. During this conceptual revolution many new ideas
were developed: scaling, renormalization group, fractal geometry, and universality.

The scaling hypothesis, originally proposed by Widom, Domb and Hunter [Widom
1965, Domb and Hunter 1965] basically tell us that the lack of any characteristic
length scale at criticality (observed later in many other complex systems) implies a
power law functional form for some of the magnitudes that characterize the system
behavior. Strictly speaking, the original statement of the hypothesis asserts that the
thermodynamical potentials and their derivatives are generalized homogeneous func-
tions in the proximities of the critical point. This assumption leads to several scaling
laws that relate the various critical exponents and to scaling functions in which data
from very different systems- sharing some common global properties (symmetries
and dimensionality)- collapse.

The predictions of the Scaling Theory were confirmed and expanded later by the
Renormalization Group Theory, a rigorous conceptual construction from the math-
ematical point of view developed by Wilson and Fisher [Wilson and Kogut 1974,
Fisher 1974] !. Basically, RG works by changing the length scale of the system
by removing degrees of freedom and considering that the properties of the system
remain unaltered. This leads to a systematic procedure to obtain the scaling func-
tions and exponents at criticality. More recently, these general principles of scale
invariance have proved useful in interpreting not only critical systems but a number
of other complex phenomena. The concepts of scaling and universality are now ap-
plied to several complex systems that exhibit universal properties independently of
the specific form of their interactions. Topics of research are not restricted to physi-
cal systems, but also include other fields as complex social, economic, and biological
systems.

1.3 The extent of Complexity

Complex Systems research tries to discover the nature of the emerging behavior of
complex systems, basically derived from the non-linear interaction of their many
constituent elements. Such individual components may be atoms or macromolecules
in a physical or biological context, but also people, machines or companies in a
socio-economic context.

More than a new scientific discipline, the physics of Complex Systems provides
a change of perspective in dealing with collective phenomena observed in Nature.

'These references are probably the most influential early reviews on Renormalization Group The-
ory. Other interesting reviews antedating Renormalization Group concepts are [Kadanoff et al. 1967,
Stanley 1971].
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Emergent behavior can be identified not only in physical systems but also in many
other systems, from Ecology to the immune system, from social behavior to Eco-
nomics. To provide a rapid perspective of the extent of Complexity, we enumerate
here some examples which may appear, in principle, far away from physics.

Earthquakes

Because of convective flow generated from internal fission processes, the tec-
tonic plates that compose the outermost layer of the Earth suddenly stick and slip
giving rise to events commonly known as earthquakes. This stick-slip response of
the Earth’s crust is highly non-linear and gives rise to earthquakes that have no char-
acteristic size. The duration of an earthquake varies from fractions of a second to
minutes, and the relative displacement of the tectonic plates can be of the order of
centimeters to metres. The annual number of events with a size S larger than a given
size is consistent with a power-law decay N(S > s) o« s~ B, with B ~ 0.95. This
is the famous Gutenberg-Richter law for the earthquake-size frequency [Gutenberg
and Richter 1944].

Cosmic structures

In Cosmology, the standard theories of structure formation describe the early
universe as a homogeneous and isotropic distribution of matter whose fluctuations
gave rise, through a complex dynamical evolution, to the emergence of a scale-
free distribution of matter. The smooth microwave background radiation observed
at large scales is considered as a trace of the initial conditions from which complex
cosmic structures have emerged through gravitational dynamics. On smaller scales,
evidences of an heterogeneous and correlated distributions of matter have been ob-
served. Galaxy structure is just an example. Early angular surveys and more re-
cent three dimensional maps evidence regions with a high concentration of galaxies
and also some randomly distributed areas, called voids, which are almost empty [cf.
Fig. 1.1]. This fractal galaxy distribution can be described in terms of the radial den-
sity N(< R) o< RP, where N(< R) is the average number of galaxies within radius
R from a given galaxy. The exponent D has been measured by several authors, with
D =~ 1.2 — 2.2 [Guzzo et al. 1991], D =~ 2.25 — 2.77 [Martinez and Coles 1994],
D =~ 2 [Labini et al. 1996], and D ~ 2.93 [Scaramella et al. 1998].

Financial markets

Financial markets are complex dynamical systems with many interacting ele-
ments that can be grouped into two categories: traders- such as investors, firms,
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Figure 1.1: Galaxy distribution of the SLOAN (top) and CfA2 Great Walls, the first and sec-
ond largest known super-structures in the Universe, respectively. The red-shift distances are
determined by Hubble’s law (given by ¢z/100 Mpc/h) and angular distances across the sky
are measured by right ascension. A proportional breadth of declination, the second angular
coordinate, is considered for each slice. Scale invariance is evidenced as both structures ex-
hibit the same statistical properties, challenging the traditional conjeture of a homogeneous
distribution of matter. After Ref. [Pietronero and Labini 2004].

banks- and assets- such as stocks, futures and options. Interactions between these
elements are highly non-linear and generate large fluctuations in observables as the
stock price, trading volume, and the number of trades. The analysis of extensive
financial databases shows that such fluctuations are well described by power-law
functions whose exponents are similar for different types and sizes of market trends
and even for different countries [Stanley et al. 1996, Liu et al. 1999, Takayasu and
Takayasu 2003]. The emergence of this universal behavior is in contradiction to
the “Efficient Market Hypothesis”, traditionally evoked in economics [Fama 1970],
which assumes that the movements of financial prices are an immediate and unbiased
reflection of incoming news about future earning prospects. However, this hypothe-
sis could be still valid considering that the emergence of scaling in financial markets
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Figure 1.2: Example of scale invariance in financial data. The panels show the exchange rate
Yen/USD variation for various time scales. Up to the time scale of hours, the panels show
similar behavior, but this self-similarity changes drastically at every short times (minute scale
of right panel at bottom). From Ref. [Pietronero 2008].

would simply reflect similar scaling in the input signals that the traders manage dur-
ing their mutual interaction [Lux and Marchesi 1999].

Extinction events in Ecology

Ecosystems have become paradigmatic examples of complex systems, show-
ing organization and collective dynamics across very different temporal and spatial
scales. The analysis of fossil records reveals global patterns in the evolution of bio-
diversity that emerge from localized interactions and selection processes that occur
at lower scales. The lifetime distribution of species provides clear evidence of the
hierarchical structure of ecosystems. Although species lifetime is reported to be ex-
ponentially distributed, higher orders of taxa lifetimes, such as families or genera,
exhibit power law decay emerging from interactions between the different species
[Sneppen et al. 1995, Pigolotti et al. 2005]. Such recurrence of scale-free distribu-
tions have been measured over many orders of magnitude and exhibit similar patterns
across very different living ecosystems and also in different quantitative studies of
fossil records.
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1.4 Outline of the Thesis

The examples mentioned above describe typical situations in which complex features
appear particularly relevant. The ubiquity of complexity in Nature provides examples
of a huge variety of systems to be analyzed by means of Statistical Mechanics and
leads to the interconnection among various scientific disciplines. This Thesis focuses
on three highlight topics of spatially extended complex systems: Interface Growth,
Sociophysics, and Complex Networks. The document has been partitioned in three
separated parts according to those topics.

The first part deals with far-from-equilibrium growing interfaces. This subject
represents one of the main fields in which fractal geometry has been widely applied,
and is nowadays of great interest in Condensed Matter Physics. For a review of this
topic, see [Barabdsi and Stanley 1995, Vicsek 1989].

The Chapter 2 provides a brief and basic introduction to interface growth. We
introduce some fractal and scaling concepts, as well as the main universality classes
in presence of annealed disorder (EW and KPZ) in terms of both growth equations
and discrete models.

In Chapter 3 we focus on the elastic interface dynamics in disordered media, i.e.,
in presence of quenched randomness. This Chapter contains original research based
on cellular automata simulations. We carry out a novel study of the dynamics by
focusing on the discrete activity patterns that the interface sites describe during the
relaxation toward the steady state. We analyze the spatio-temporal correlations of
such patterns as the temperature is varied. We observe that, for some range of low
temperatures, the out-of-equilibrium relaxation can be understood in the context of
creep dynamics.

Figure 1.3: Fractal patterns are widespread in Nature. I observed these nice snow patterns
during a walk in the mountains of the Campoo valley (Cantabria, Spain).
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The second part of the Thesis focus on Sociophysics. This discipline attends
to the social interactions among individuals -most often mapped onto networks to
provide them a topological structure- and has recently attracted much interest in the
physics community. Social interactions give rise to adaptive systems that exhibit
complex features as self-organization and cooperation. Therefore, Statistical Me-
chanics provides the necessary tools to analyze the behavior of such groups of agents
in a first level of simplification. A good review of the state-of-art in this topic is
given in Ref. [Castellano et al. 2007].

The topics that Sociophysics deals with are quite a number, and we particularly
focus on processes of opinion formation. The Chapter 4 presents a basic classifica-
tion of the different opinion formation models present in the literature. In Chapter
5 we provide some analytical and numerical own results to describe the effect that
the social temperature- understood as a simplified description of the interplay be-
tween an agent, its surroundings, and a collective climate parameter- may exert on
such opinion formation processes. The thermal effect can be implemented in dif-
ferent ways. In the first part of the Chapter we work on a simple opinion formation
model that, according to some procedural rules, reproduces the Sznajd dynamics. We
include the thermal effect by means of some probability that the agents adopt the op-
posite opinion that the one indicated by such rules. In the second part of the Chapter
we consider a system with three different interacting groups of individuals, where
the thermal effect is implemented as certain probability of spontaneous changes of
the agents opinion. We exploit the van Kampen’s expansion approach to analyze
the macroscopic behavior of the different supporter group densities as well as the
fluctuations around such macroscopic behavior.

The third and last part of the document concerns Complex Networks, which have
recently prompted the scientific community to investigate the mechanisms that de-
termine their topology and dynamical properties.The rapid development of networks
like the Internet and the World-Wide-Web, which represent today the basic substrate
for all sort of communications at planetary level, has given rise to a number of inter-
disciplinary studies with highly technological applications. The analysis of Complex
Networks is a relatively incipient but very active topic, and there are excellent books
and reviews about this new discipline [Bornholdt and Schuster 2003, Newman 2003,
Albert and Barabdasi 2002].

We first provide an introduction to complex networks in Chapter 6, where we
introduce some basic concepts as scale-free graphs, mixing patterns, clustering co-
efficient, and small-world effect. In Chapter 7 we deal with traffic processes on net-
works, and specifically we focus on optimization of the routing protocols that define
the connecting paths among all the pair of nodes. Such optimization pursues to avoid
the traffic jams that emerge for huge quantities of matter or information flowing in
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the graph. We propose an optimization algorithm that, in order to avert jamming,
minimizes the number of paths that go through the most visited node (maximal be-
tweenness) while keeping the path length as short as possible, i.e., in the proximities
of the length distribution of the initial shortest-path protocol.

Figure 1.4: Internet network structure. Each node represents an autonomous system, i.e., a
group of computers under a single administrative control, and the edges are direct relations
between them. This structure emerges as a self-organized distribution since new servers are
continuously added to or eliminated from the network with no global supervision. From
Ref. [Pietronero 2008].
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CHAPTER

2 Introduction and theoretical
models

According to the definition, an interface is the place at which different systems, bod-
ies or phases meet and act or communicate with each other. There are interfaces
whose properties determine many important aspects of our life. For instance, the
transport of sustenance that arrives to a biological cell is highly influenced by the
features of its surface membrane that acts as a selective barrier of substances. And
also the formation of clouds and rain due to nucleation of matter around small dust
particles is dominated by surface effects.

The interest of surfaces characterization is greatly motivated by the fact that they
are closely related to a wide range of phenomena. In some of them the interface
is the result of either a deposition process or, in contrast, erosion or etching. A
clear example is the molecular beam epitaxy technology employed to manufacture
some semiconductor devices like computer chips. It basically consists in a slow
rate deposition of single atoms onto a thin film. The atoms diffuse on the substrate
and tend to stick together, giving rise to rough patterns as the ones shown in Fig 2.1.
Another method commonly used in film growth is called sputter deposition, in which
the material is bombarded with an ion beam that hits the surface and kicks out the
atoms. In order to develop deposition processes of practical interest engineers usually
aspire to make a smooth film, since rough surfaces have poor contact properties.
Then, to avoid roughness it is first required to understand the basic mechanisms that

13



14 Chapter 2. Introduction and theoretical models

Figure 2.1: Several patterns obtained by atomic deposition onto a thin substrate. When
deposited, atoms make contact with the surface, then migrate, meet, and stick. They often
end up settling into particular patterns, forming dots, lengthy strands, distinctively shaped
islands, vacancies, and terraces [pictures copyrighted to the Max Lagally group].

generate it and to characterize the morphology and dynamical processes that lead to
these rough interfaces.

An interface may also be defined as the frontier between two different phases that
propagates through an inhomogeneous material. Let us think, for instance, of the ad-
vance of a burning front in a piece of paper. Due to the heterogeneity of the medium
the interface acquires certain roughness in time. Another illustrative example could
be the oil extraction method based on pumping water through the rock porosities. The
effectiveness of this method is influenced by the properties of the viscous water-oil
interface.

There are also other processes that do not exhibit a surface at all, but with a
natural choice of variables they can be described in terms of an interface. This is,
for instance, the method employed to study the correlations of DNA code for protein
structures. The building blocks for coding the information, called base pairs, can be
classified in two classes called purines and pyrimidines. In order to study the purine-
pyrimidine correlations in the code one can introduce a graphical representation of
the sequence. A “DNA walk” is defined in terms of a variable that increases or
decreases when a purine or a pyrimidine is found in the lecture of the sequence. This
artificial surface, shown in Fig 2.2, allows one to visualize directly the fluctuations
of the purine-pyrimidine concentration in the sequence by means of an increasing or
decreasing drift of the surface height.

To characterize all these interfaces we are interested not only in their formation
or their morphology, but also in how they grow and behave in time. However, their
characterization is not easy since we find interfaces at very different scales, from
the cellular membrane to the coastline or even the Earth surface. Furtheremore, the
interface shape often depends on the scale at which it is observed. Let us think of
the Earth surface: whereas we clearly appreciate its mountains and valleys when we
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Figure 2.2: Schematic representation of DNA structure as a sequence of base pairs composed
by pyrimidines (C or T) and purines (A or G). The “DNA walk” is defined by means of an
auxiliary variable y () that steps "up’ if a pyrimidine occurs at position 7 along the DNA chain
and steps ’down’ if a purine is at position 7. At the bottom the “walk” for a DNA sequence of
25000 pase pairs is shown [Barabdsi and Stanley 1995].

move on it, an astronaut only appreciates it as a smooth ball when observed from
outter space. However, there are certain surfaces that exhibit scale invariance and
present analogous properties whatever scale we observe them. The coastline is just
an example of this: the shape of Gulf of Mexico does not differ to much from the
shape of a little creek. These are the interfaces we are interested in, and due to their
scale invariance we can describe them in terms of fractality.

2.1 Fractal concepts

2.1.1 Self-similar fractality

A fractal is a geometrical structure that looks alike on all length scales. This feature
makes them to be described as scale-invariant or self-similar objects. There is no a
priori way of identifying a characteristic scale nor is it possible to determine at which
scale a fractal is being viewed.

The term fractal was coined by Mandelbrot in 1975 and derives from the Latin
“fractus”, that means “broken” or “fractured”. This name refers to the striking fea-
ture of these mathematical entities that cannot be described in the traditional Eu-
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clidean geometric language. Instead, they are described by the fractal dimension d,
a dimension that corresponds in a unique fashion to the geometrical shape and is
often a non-integer number.

To illustrate this concept lets turn to the box-counting method traditionally em-
ployed in Euclidean geometry. Consider an object embedded in a d.-dimensional
space. To measure its volume we can cover it with N (1) spheres of dimension d,
and linear size [. In ordinary metrics N (I) ~ =% when | — 0 and then the volume
V ~ N(I)i% does not depend on the length I employed to carry out the measure-
ment. However, this is not what occurs when one tries to measure the volume of a
fractal object. For fractals we have, in general, N (I) ~ [=%f where d t < de. Letus
turn again to the coastline example given in the introduction of the chapter. We could
consider the shore as a one-dimensional object embedded into a plane. By measur-
ing its total length we would find that it tends to grow almost indefinitely with the
decreasing length of our measuring sticks. Koch Island, shown in Fig 2.3, is also a
clear example of this paradoxical measurement, for which V(1) ~ 12797,
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Figure 2.3: The Koch island, also known as snowflake, is a fractal of dimension dy =
1.262 [Mandelbrot 1998].

In practice, the fractal dimension of a geometrical structure is determined by
measuring N ([) as a function of the linear scale
log(N (1))

dy =lim ———=. 2.1
U e log(1/1) 1)

A typical example of a self-similar fractal is the so-called Sierpinski gasket,
whose construction is illustrated in Fig. 2.4. We can cover the whole structure at
level k with N (1) = 3* triangles of linear size | = (1/2)*. Then, the fractal dimen-
sion is dy = log(3)/log(2) = 1.585, smaller than the Euclidean dimension of the
embedding space d. = 2.
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Figure 2.4: Construction of the Sierpinski gasket. Starting from a filled triangle, remove
from the middle a triangle whose area is one fourth of the total. In the next step, we re-
peat the same procedure for the remaining three filled triangles, and this process is iterated
indefinitely.

2.1.2 Self-affine random fractals

Up till now we have considered geometrical structures that present scale invariance
under isotropic transformations, i.e., they remain invariant when the scale is changed
equally in all directions.

However, in Nature one can find situations where the dimensions of the embed-
ding space are not equivalent. In this case the geometrical objects must be rescaled
using an anisotropic transformation. If one axis is rescaled with a factor b, (1 —
bx1), then the rest of dimensions must be rescaled as (x; — b“ix;), where the expo-
nents «; are called Hurst exponents.

Other important feature to take into account is randomness. Koch island or
Sierpinski gasket are examples of fractals constructed from the simple iteration of
a growth rule. However, what is commonly found in Nature- and what we are inter-
ested in this work- are objects that are not fractals by themselves but exhibit fractality
from a statistical point of view.

This kind of fractals are called random-fractals. The simplest random self-affine
fractal is generated by a one-dimensional random walk on a lattice. Consider a par-
ticle at x = 0. At every moment, the particle moves one site randomly up or down
with equal probability p = 1/2. Although the trajectory x(¢) for a single realization
does not strictly exhibit scale invariance, its statistical properties stay unaltered under
scale transformations [cf. Fig. 2.5].

2.2 Scaling of interfaces

Interfaces are random self-affine fractals defined by the height profile h(x,t) over
certain d-dimensional substrate x. The surface usually grows from a flat initial con-
figuration. For simplicity we focus on growth processes for which overhangs are
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Figure 2.5: Several realizations of typical trajectories of a random walker. In the continuous
approximation the probability distribution of the random variable is a simple Gaussian distri-

bution P(x,t) = \/21? exp(—a2/2t), whose standard deviation o (t) ~ ¢/2 is marked with

dashed lines.

not permitted. In these cases, h(x, t) is a single valuated function that exhibits self-
affinity where all spatial dimensions but one are equivalent, which is the growth di-
rection. If the substrate coordinate is rescaled as bx the system keeps invariant by the
transformation h(x) ~ b~“h(bx), where the Hurst exponent « is also called rough-
ness exponent. Furthermore, the whole dynamics of the system exhibits self-affinity
and the time coordinate also rescales with an exponent z, called dynamical expo-
nent. This means that the complete transformation under which the system remains
invariant is

X = bx<=1t—bt<= h—b*h. 2.2)

As previously pointed out, all surface growth processes in Nature are character-
ized by certain degree of randomness. Therefore it is not interesting to focus on a
single interface but to analyze the statistical properties of the set of interfaces that
result from different realizations of a given experiment. In other worlds, we attend
to their statistical properties to describe them quantitatively. We will now shortly
introduce typical measures employed to characterize surface growth.

The global width W (L,t) is defined as the squared-mean root of the surface
height
W (L, 1) = {{[h(x,t) = (W) (O }'/?, 23)



Section 2.2. Scaling of interfaces 19

10°F T T T T 10 T E
- [— L=40% 0a=0.7 p=0.5
[ |— L=2048
L=1024 7
- _ | |z
— . 107 E é |
= 10F 1 <
2 °f 1=
= f 14
L N
L 10-2:_ _E ;
¢ PRRTITT EERERTTITY ERTERETTT RRTEERTTIT RAT T 10-3 L | oium | v | oo
10° 100 100 10° 10* 100 10° 10* 107 10° 10°
z
t t/L

Figure 2.6: Width curves resulting from simulations of a given growth model. Different
colours correspond to different system sizes L = 4096, 2048, 1024, 512. They collapse by
plotting W (L, t)/Wsa+ as a function of (¢/ty).

where (...) denotes spatial mean over the whole system size and {...} represents the
average over a set of different height profiles. If the growth starts from a flat substrate,
h(x,t = 0) = 0, the global width is zero. Then the system evolves and the interface
gradually roughens. The lack of a characteristic scale implies that the global width
grows as a power law of time, W (L, t) ~ t®/%, where o/ z = (3 is also called growth
exponent. As the interface width grows, correlations in the height profile expand
over the system and the correlation length grows as £(t) ~ t1/%. When the whole
system is correlated, that is & ~ L, the interface reaches a stationary state due to
finite size effects. This occurs at certain time, called saturation time, that scales as
t« ~ L?. The interface width then reaches its saturation value Ws,; ~ L%. This
complex behavior of the interface width can be expressed by a unique formula:

W(L,t) = t7f(t/tx) =t f(t/L7), (2.4)

where the scaling function f(u) is defined as

const ifu <1,
Fu) ~ { uw B otherwise. 2:5)

This compact expression allows to indistinctly deal with different systems if they
are described by the same universal exponents (o, z, ). Indeed, different width
curves can be collapsed by plotting W (L, t)/L* as a function of ¢/L*. An example
is shown in Fig. 2.6, where these curves are depicted for different system sizes.
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Height fluctuations can also be analyzed in a smaller region ¢ of the whole inter-
face L, and then we obtain the local width

w(t,t) = {([h(x,1) = (h)e(t)])e}' (2.6)

Although there are many systems in which these two quantities, i.e. global and
local surface fluctuations, scale in the same way, we will see that the behavior of
global and local width will not be, in general, the same.

As we have already mentioned, spatial correlations have an important role in the
interface evolution. To analyze them we define the spatial correlation function

C(0,t) = {(Ah(x + £,1) - Ah(x, 1))}, .7

where Ah(x,t) = h(x,t)— (h)(t). In the following we employ this notation for sim-
plicity. For ¢ = 0 this function equals the square of the global width. As ¢ increases
correlations decay exponentially till they become negligible above the correlation
length £ = &(t) ~ t1/2,

The analysis of correlations can also be carried out in the Reciprocal Space. We
can easily define the Fourier transform of C'(¢,t) as the product of the Fourier trans-
form of Ah, and then we define the structure factor as

S(g,t) = (h(a,t)h(—q,1)) . 2.8)

where

~

P, t) = ﬁ S Ah(x, ) exp[—i(ax)] - 2.9)

Working in Fourier space has many advantages and the structure factor is usually
employed to analyze the correlations. This quantity scales as

wetd if g < 1,

. 2.1
const otherwise. (2.10)

500.0) = vz sala’) where s(u) ~ {

Atcorrelated scales ¢ > ¢*, S(q) decays as a power-law with exponent — (2« + d).
This power law extends until certain value ¢* that decreases with time. In fact, this is
an obvious evidence of the correlation length growth, as ¢* ~ &1 ~ t~1/2. At satu-
ration the whole spectrum decays as S(g) ~ ¢(=2%+%)_ This behavior is illustrated in
Fig 2.7. The spectral power density of the interface is connected to the global width
by the Parseval identity

W?2(L,t) = /qu(q,t) . (2.11)
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Figure 2.7: Structure factor of a given one-dimensional interface at different times. Cor-
related scales are observed at large values of ¢ at which S(q) decays as a power-law with
exponent —(2a + 1). This power law fashion extends until certain value ¢* ~ ¢~ ~ t71/%,

At saturation the whole spectrum decays as S(q) ~ ¢~ 22F1.

Finally, we introduce an useful tool in the analysis of surface roughness, the
height-height correlation function given by

G(¢,t) = {{(Ah(x + £,t) — Ah(x,1))*)} . (2.12)

Since it scales in the same way as the local width G(¢,t) ~ w?(¢,t), the height-
height correlation function is commonly employed to analyze the local fluctuations
of the height profile. G(¢,t) is related with the spatial correlation function and the
structure factor as

G(l,t) = 2W?(L,t) — 2C(4, 1), (2.13)
Gl,1) / dq[1 — cos(al)]S(q, 1) - (2.14)

The scaling presented up till now does not embrace all the cases described in
the literature. In previous descriptions we have focused on the Family-Vicsek scal-
ing [Family and Vicsek 1985], for which global and local fluctuations scale in the
same way. In this case, the behavior of W (L,t) and S(q,t) is correctly given by
Egs.(2.4) and (2.10). However, there are many other systems whose dynamics does
not satisfy the Family-Vicsek scaling. All the possible behaviors that can be found
in surface growth processes are captured by the generic scaling ansatz introduced
by Ramasco et al. [2000]. Here we briefly describe its main conclusions to give a
general outline of interface scaling.
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In Ref. [Ramasco et al. 2000] three different roughness exponents are considered:
the global exponent, «; the local exponent, ay; and the exponent obtained from the
analysis of the structure factor, as. In fact only two of them are really independent.
However, as local fluctuations cannot grow faster than the local scale ¢ [Leschhorn
and Tang 1993], it is not possible to observe roughness exponents oy > 1 and then
the introduction of this third exponent is useful to distinguish all the possible cases.

The generic scaling ansatz is expressed in terms of the structure factor as follows

1
S(@t) = v s(qt'/?), (2.15)

where now the general scaling function is

u2atd ifu<l,
s(u) ~ { 20-0) iy s 1 (2.16)
instead of Eq. (2.10).
From Eq. (2.11) one obtains the counterpart scaling for the global width
2o/ ift <t
2 Xy
W*(L,t) { L2 iftst, 2.17)

and from the expression given in Eq. (2.13) the height-height correlation function,
usually employed to analyze local fluctuations

t2o/% if t <ty (£),
Gl L,t) ~{ tAa—an/zg200 ft () <t < ty, (2.18)
Peea=en) if st

According to the behavior of these quantities during the growth process, differ-
ent relationships are established between the three roughness exponents «a;, ay, and
a. This gives rise to four different forms for the scaling behavior, schematized in
Table 2.1

e Family-Vicsek scaling

In this case we have o = as = ay < 1. From Eq. (2.16) is easily recovered
the structure factor scaling expressed in Eq. (2.10). There is no real distinction
between local and global fluctuations in this case. This means that correlations
at scale ¢ saturate at time scales ¢, (¢) ~ ¢7, analogously the whole system
saturates at t (L) ~ L?. Interfaces showing this kind of scaling behavior are
then self-affine fractals and the only characteristic length scale is the system
size L.
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¢ Intrinsic anomalous scaling

The global and local roughness exponents differ and we have @ # a5 =
ay < 1. From Eq. (2.18) this means that local fluctuations at scale ¢ do
not become independent of time at ¢ (¢) ~ (%, i.e. they do not saturate,
but they keep evolving till the whole system saturates at ¢, (L). Further-
more, the saturation value of local fluctuations depends on the system size
as Wgqr(0) ~ ¢ [(a=a¢) The behavior of local fluctuations also affects to the
structure factor. At early times, ¢t < t, S(g,t) depends on a factor $2(@—@s)/z,
On the other hand, at saturation the structure factor dependens on the system
size S(q,t > ty) ~ L2(a—as) g~ (2atd),

e Super-roughening scaling

In this case the system exhibits global roughness exponent a = o5 > 1 while
ay = 1. As in the previous case, this implies that local fluctuations scale
with the system size L and they do not saturate until correlations have spread
over the whole interface. However, the reason for this case of scaling is quite
different from the intrinsic anomalous one: as local fluctuations cannot grow
faster than £ [Leschhorn and Tang 1993], local roughness exponent is bounded
by oy = 1, while the global « is not limited by such restriction. Nevertheless,
the structure factor S(q) scales according to (2.10), in contrast to the intrinsic
anomalous case.

e Faceted surfaces scaling

This scaling is associated with the formation of facets or structures. Then
as > 1, which differs from the global exponent . The Sneepen model [Snep-
pen 1992], associated with the formation of triangular structures, is a clear
example. However, there are many other examples of interface growth that
give rise to different facets as parabolic mounds [Ballestad et al. 2001],coni-
cal [Cates and Ball 1988] or triangular shapes [Szendro et al. 2008].

Table 2.1: Generic scaling ansatz summary

o, <1=a=a, as = a Family-Vicsek scaling

s # « Intrinsic anomalous

s — - heni
fa,>1=a;=1 as = « Super-roughening

«as # o Faceted interfaces
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Figure 2.8: Two dimensional Eden model applied to the formation of cell colonies. Left:
In vitro generated sample of insulin producing cells [ Photo by Aldo Rozzo at European
Neuroscience Institute Goettingen, Germany]. Right: Sample obtained by iteration of the
Eden model [ from the website of the Department of Computer Science at the University of
Calgary]. The colours indicate the state of the structure at different times. Similarity with the
real sample is clear.

2.3 Theoretical models

As we have discussed above, interfaces are relevant in many process in Nature. Ex-
amples are found in biological systems (cell colonies formation), deposition pro-
cesses (molecular beam epitaxy technology), or interface motion in disordered media
(fluid flow in porous media and propagation of flame fronts).

To study these phenomena physicists create models which describe through spe-
cific rules the surface growth. These are cellular automaton models that reproduce
the main microscopical features and interactions which are responsible for the growth
of the complex macroscopic shapes that result. Results obtained by means of sim-
ulations provide a relatively simple approximation to the phenomenon. One of the
simplest models of surface growth was introduced by Eden [1961] to reproduce the
formation of cell colonies, such as bacteria or biological tissues. This simple model
starts from a single particle placed at a lattice site. A new particle is added on any
randomly-chosen perimeter of the seed. When iterated, it generates a cluster with
compact overall shape, i.e, an object whose fractal dimension is equal to the Eu-
clidean dimension of the embedding space. However, the whole shape has a rough
perimeter, and the surface of the growth zone has a nontrivial behavior [Plischke and
Récz 1984]. A sample structure obtained with this model is shown in Fig. 2.8.
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Growth processes can also be described through growth equations, which are
nothing but Langevin equations for the spatially extended height field h(x, t)

(%(5;,15) =G(h,x,t)+1n, (2.19)
where G includes all the deterministic terms, while the noise term 7 incorporates the
stochastic character of the growth process. The explicit form of function GG depends
on the symmetries of the system and the conservation laws acting during the growth.
This description is particularly useful as we know that different microscopical sys-
tems sharing symmetry properties can be grouped in universality classes. So one can
define a stochastic growth equation that contains all the relevant features of a given
universality class. The rest of terms, which are not relevant in determining the scaling
exponents, can be neglected to study the asymptotic properties of the growth process.
However, they may determine the short length scale morphology, and also the short
time scale behavior.

In the following we introduce the most important universality classes with non-
conserved annealed disorder, that is, time-depending noise with correlations

(n(x,t)n(x',t')) = 2D5%(x — x")(t —t') . (2.20)

This kind of randomness reproduces, for instance, the effect of thermal fluctua-
tions. In next chapter we will see that noise can also depend of the medium where
the growth process takes place. In this case noise is quenched on the lattice, 7(x, h),
and represents the inhomogeneities or disorder of the medium.

2.3.1 Edwards-Wilkinson universality class

This universality class corresponds to the simplest linear growth process with con-
served dynamics and non-conserved annealed noise. The“Random deposition with
surface relaxation” model is probably the simplest example. It was proposed by Fam-
ily [1986] as a simplified representation for vapor deposition on a cold substrate. Par-
ticles are deposited onto a perpendicular substrate in a randomly chosen place and
then diffuse until a local minima on the surface is reached, as shown in Fig. 2.9.

The continuous version of the model was first derived by Edwards and Wilkinson
[1982]. The equation of motion is

oh(x,t
g;’) = vV2h+ f +n(x,t) 2.21)
in the small gradient approximation (Vh) < 1. Diffusion is here represented by the

linear term V2h, which tends to smoothen the interface. The parameter v uses to be
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Figure 2.9: Random deposition with surface relaxation model. Each particle falls along a
single column toward the surface until reaching it. Then , they relax to the neighbor site with
lower height.

called surface tension. As it is a conserved term, the smoothing effect redistributes
the irregularities of the interface maintaining the average height unchanged. There-
fore, the contribution of this term to the average velocity of the interface is zero. The
driving force f represents the constant influx of particles on the surface and can be
transformed away by a Galilean transformation » — h -+ ft. Since both (V2h) = 0
and (n) = 0, the average surface velocity is given by (9;h) = f.

The scaling exponents of EW universality class can be obtained easily by rescal-
ing the variables according to Eq. (2.2). Then Eq. (2.21) becomes

Oh

5 =TV h bF O () + f . (2.22)
Scale invariance of this equation implies
a=%54 g=24 =2, (2.23)

Such scaling exponents depend on the dimension of the interface. Indeed, from these
expressions one can deduce a critical dimension d. = 2 at which diffusion dominates.
For dimensions d > d,. the exponent o« = 0, this implies that the model leads to flat
interfaces above d..

One can also obtain these results by solving Eq. (2.21) exactly in the Reciprocal
Space [Nattermann and Tang 1992]. By Fourier transformation of space and time

one obtains (@.0)

mq, w

h ==
(q,w) i

where h(q,w) = [ dxdt elm{&=wtp(x ) and n(q,w) = [dxdt el7H{ax—wiy(x ).

The noise correlator in Fourier space then takes the form (n(q, w)n(q’,w’)) = 2D(27)%6%(q+

qd) fooo dr expli(w + W')7], with (n(q,w)) = 0.

(2.24)
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From this expression it is possible to obtain the amplitude of modes ﬁ(q, t) by
performing the inverse Fourier transformation of frequencies, and then

(h(a, O)h(d, 1) = (D/ve®)(1 — exp[-2va®)) 2m) "6 a+d) . (2.25)

Thus the interface width and the structure factor can be obtained easily as

2 2 /!
WAL, = / ((Ziﬂ(id ((;Fq)d (@, Oh(d’,#) (220
2
S(q,t) = / %(h(q,t)h(—q,t», (2.27)

from which the exponents (2.23) are recovered.

2.3.2 KPZ universality class

Consider now a deposition model in which falling particles are able to stick onto any
perpendicular surface to their trajectory. A particle sticking in this way provides a
lateral growth contribution that can be represented as a non-linear term in the growth
equation. This description corresponds to the so-called “Ballistic Deposition Model”.

Figure 2.10: Sample of linear size L = 200 containing 35000 particles deposited onto
a substrate by ballistic deposition. Greyscale differences are included as a guide of time
measuring each 2500 depositions [Barabdsi and Stanley 1995].

The continuous limit of this model was first proposed by Kardar, Parisi and
Zhang [Kardar et al. 1986] giving rise to a different universality class from the
Edward-Wilkinson one. As growth occurs locally normal to the interface, only the
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projection of the local velocity onto the vertical axis will contribute to the growth
equation. This implies a height increase 6h = [f +1n]cos 0 = [f+n]/(1+(Vh)?)1/?
[¢f. Fig. 2.11]. In the small gradient approximation, |Vh| < 1, we have (1 +
(Vh))Y?2 ~ (1 - $(VRh)? 4+ 3(Vh)" + ...). Considering only the first term at the
lowest order in (Vh) and adding the diffusive term, we obtain the KPZ equation of
motion

Oh(z,t)
ot
where v, A and f are constants, and the noise term again represents the presence of
uncorrelated random fluctuations.

= vV?h + g(Vh)Q + f+n(z,t), (2.28)

f+n

Figure 2.11: Growth occurs locally normal to the surface. This is the origin of the nonlinear
term in the KPZ growth equation.

Due to the lateral growth, the up-down symmetry of the interface height is bro-
ken, unlike in the EW case. This can be clearly observed in the sample shown in
Fig. 2.10. On the other hand, the presence of this non-linear term leads to non-
conserved dynamics, producing an excess of velocity even in the absence of driving
force. If A > 0 non-linearities generate a height increment by adding material to the
interface (or just the opposite if A < 0). This behavior may be contrasted with the
effect of the linear term, which reorganizes the interface height maintaining the total
mass unchanged (conserved dynamics).

Useful information on KPZ scaling can be obtained mapping Eq. (2.28) to the

Burgers equation via the transformation v = —Vh,
ov 9
n +Av-V)v=0vViv—-Vnx,t). (2.29)

This Noisy Burgers Equation describes the vorticity-free dynamics (V x v = 0)
of a turbulent fluid, where v(x, t) is the velocity of the fluid, v is the viscosity and
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Vn(x,t) is a random force. The parameter A is included here only for convenience
and we particularize A = 1. This equation is invariant under the Galilean transforma-
tion v(x,t) — v + v/(x — vot, t). In terms of KPZ this means an invariance under
tilt of the interface an angle €. This result is finally expressed as a scaling relation
between the exponents [Krug 1987]

a+z=2. (2.30)

For dimension d = 1 another scaling relation can be obtained from the ap-
plication of the fluctuation-dissipation theorem, which relates the system response
to external perturbations with its spontaneous fluctuations. We can associate with
Eq. (2.28) a Fokker-Planck equation describing the time evolution of the probability
II(h,t) of having height h at time ¢

oIl 0 0?11

where G (h) is the deterministic contribution of the KPZ equation of motion, G(h) =
vV2h + % (Vh) + f. For one dimension the stationary solution of this equation is
known, and it results to be the same solution as for the linear case (EW univer-
sality class). Therefore, the value of the KPZ roughness exponent for d = 1 is
a = 1/2 [Barabdsi and Stanley 1995].

Combined with Eq. (2.30) this result leads to the exact values of the KPZ expo-
nents for dimension d = 1

2.31)

a=1/2 B=1/3 2=3/2. (2.32)

Although the Galilean invariance is valid in any dimension, the stationary solu-
tion of Eq. (2.31) is only known in one dimension. In order to determine higher-
dimensional exponents one could solve the KPZ equation in the Reciprocal Space,
as was done in previous section for the linear model. However, parameters do not
rescale independently in the non-linear case. Consequently, this method does not lead
to an exact solution as in the Edwards-Wilkinson regime. By Fourier transformation
Eq. (2.28) becomes

(—iw)h(q,w) = —v(iq)*h(q,w) + n(q,w) — (2.33)

—// (k,Q)h(q — k,w — Q)iki(q — k)(dk;iﬁl

The integrals involved in the previous equation diverge at first order in A. There-
fore, it is necessarily to solve the equation perturbatively around the exact linear
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solution. A bare propagator is defined as Go(q,w) = (vg®> — iw)~!. Then the
general solution h(q,w) = G(q,w)n(q,w) is written in terms of the linear solution
h(q,w) = Go(q,w)n(q,w)+AN[h(q,w)], where N[h(q,w)] is a nonlinear integral
functional of the height. Assuming that X is a small parameter the solution can be
approached as

h(q,w) ~ Go(q,w)n(q,w) + a1 MG [A(q, w)] + asA2No[h(q,w)] + ... (234)

The expression (2.34) still contains non-linear integrals over the phase space
(q,w) that diverge for small momenta, so the terms of the perturbation expansion
are not arbitrarily small. However, we are interested in the hydrodynamic behavior
of the system, which gives the scaling behavior in the large system size and long time
limits. In Fourier Space this corresponds to the ¢ — 0 and w — 0 limit. In order
to avoid this problem, Renormalization Group analysis divide the Brillouin zone of
momenta, g € [0, A], to handle separately small and large values, ¢< € [0, A/b] and
q~ € [A/b, A]. Fast modes are easily integrated out from the equation, which sim-
ply corresponds to coarse-graining of the lattice spacing. On the other hand, small
modes contribution is rescaled in order to recover the whole space (q, w) of the orig-
inal system. As the interface is self-affine, an invariant system is obtained by means
of rescaling both height and time according to h — b“h and ¢ — b*t. The change in
the parameters under the RG transformation is described by the flow equations. For
KPZ the flow equations up to the lowest order A of the RG approximation are

dv 22 —2
dD g°
— =D[z—d—-2 Ky=— 2.
7 =Dle—d =20+ K;7] (2.35b)
d\

where g = (A\2D)/(v3) is the coupling constant that establishes the relationship be-
tween parameters. The parameter [ is related with the rescaling factor as dl = dlog b
and the constant K; comes from the integration of the solid-angle element in the
d-dimensional unit sphere. In a scale-invariant system the parameters of the rescaled
equation do not change any more upon further applications of the RG transformation.
Then, the exponents are obtained by searching the fixed points of the flow equations,

dv dD d\

a-a-a-" (2-36)



Section 2.3. Theoretical models 31

" - g,*=0 j\ %" R
/ g*=0 A E N/ Che

Figure 2.12: Coupling constant flow for KPZ system. Left: In the 1-dimensional case the
attractive nonzero fixed point g5 determines the scaling exponents while the lineal fixed point
g7 = 01is repulsive. Right: For higher dimensions the nonzero fixed point go* is repulsive.
For g < g3 the system flows toward the linear solution g; = 0. On the other hand, for g > g5
the system is in the strong coupling regime and the coupling constant diverges.

From Eq. (2.35¢c) we recover the Galilean invariance @ + z = 2. As the A parameter
rescales independently from the rest of parameters, this scaling relation is always
fulfilled whatever the dimension d is. From Egs. (2.35a) and (2.35b) we can observe
that the parameters v and D do not rescale independently. Both equations can be
compacted in a unique flow equation for the coupling constant

dg 2—d 2d -3 4

27 s K,— - 2.
dl 5 9+ Ka——9 (2.37)

and the system behavior can then be analyzed for different values of the dimension
d:

e For d = 1 a nonzero attractive fixed point determines the scaling exponents.

The dynamics exhibits two fixed points g} = 0 and g5 = (2/K4)?. The first
one is repulsive and implies A = 0, that is, the system behaves according with
the linear EW regime. The second one is attractive and implies z = 3/2 and
a = 1/2, in agreement with the previously discussed arguments.

e Ford > 2 the coupling constant flows to infinity (strong coupling regime).

The dynamics is again determined by two fixed points g] = 0 and g5 # 0. Now
the former is attractive while the latter is repulsive. If g < g5 the system flows,
under renormalization approach, towards the attractive fixed point gi = 0.
However, for g > g5 the coupling constant diverges and the system is in the
strong coupling regime. Particularly, for d = 2 only the repulsive fixed point
g7 = 0 exists and the coupling constant grows indefinitely under rescaling.

Since perturbative methods fail in the strong coupling regime, considerable ef-
forts have been invested to attain higher-dimensional analysis of the KPZ universality
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Table 2.2: Numerical results for the KPZ exponents in the strong coupling regime for d >
2. These values are obtained by means of simulations of the ballistic deposition and Eden
models, as well as numerical integration of the KPZ growth equation.

| Model |[d] o | B | Ref |
Ballistic | 2 | 0.33 | 0.24 [Meakin et al. 1986]
Ballistic | 2 | 0.3 0.22 [Baiod et al. 1988]
Ballistic | 2 | 0.35 | 0.21 [Family 1990]
Eden 21 0.20 [Jullien and Botet 1985]
Eden 21033 ] 022 [Wolf and Kertész 1987]
Eden 21039 0.22 [Devillard and Stanley 1989]
KPZ 21018 | 0.10 [Chakrabarti and Toral 1989
KPZ 21024 | 0.13 [Guo et al. 1990]
KPZ 21039 025 [Amar and Family 1990]
Eden 3| 0.08 [Jullien and Botet 1985]
Eden 31024 | 0.146 [Wolf and Kertész 1987]
Eden 31022 0.11 [Devillard and Stanley 1989]
KPZ 3 0.17 [Moser et al. 1991]

class. Numerical simulations have been employed to determine the scaling exponents
in dimension d > 2. Some results are shown in table 2.2. In the same way new
approaches to determine analytically the exponents in d > 2 have been also intro-
duced. For instance, Schwartz and Edwards [1992] developed a perturbative method
to solve the Fokker-Planck equation associated with the KPZ dynamics. On the other
hand, some authors predict a critical dimension d. over which the strong coupling
fixed point vanish and the system is dominated by the A = 0 fixed point. However,
the existence of this critical dimension remains controversial. Functional renormal-
ization group calculations to two-loop order suggest d. ~ 2.5 [Doussal and Wiese
2003]. A set of related theories as replica symmetry breaking [Mézard and Parisi
1991] and variational studies [Garel and Orland 1997] predict d. = 2, while mode-
coupling equations predict d. = 4 [Colaiori and Moore 2001] . On the contrary,
real space calculations find no evidence at all for a finite d. [Castellano et al. 1998].
Finally, more recent mode-coupling calculations predict two branches of solutions,
one existing only for dimensionalities d < d. = 2 and the other one existing up to
d. = 4 [Canet and Moore 2007].
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CHAPTER

3 Interfaces in random media

Quenched randomness gives rise to a new type of complex phenomena. Interface
growth in disordered media has attracted much attention in many branches of physics.
In this chapter we particularly focus on the problem of a moving elastic interface in
the presence of quenched disorder. Understanding the dynamics of elastic manifolds
in disordered media has been the focus of intense activity in the last two decades,
both from a theoretical and experimental point of view. The reason for such an in-
terest is that these models are well adapted to describe, in a first approximation, non
linear collective transport in many disordered systems as diverse as charge density
waves [Griiner 1988], vortex lines in type-II superconductors [Blatter et al. 1994,
Cohen and Jensen 1997], domain wall in magnetic materials [Lemerle et al. 1998,
Repain et al. 2004, Tybell et al. 2002, Paruch et al. 2005] or crack propagation [Pon-
son et al. 2006]. The outline of the chapter is as follows. First we make a general
introduction to quenched disorder phenomena. Later we particularize the different
regimes observed in the elastic manifold dynamics. In the last section we focus on
the non-equilibrium relaxation of the string when a low external driving and finite
temperatures are considered.

35
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3.1 Quenched phenomena

Models presented in previous chapter have randomness embodied by an annealed-
noise term, 7)(x, t), that varies in time in every point of the interface. It represents,
for instance, the randomness in the influx of atoms onto the interface. However, many
other interface growth processes are not described by this kind of noise. A typical
example may be the propagation of a driven fluid through a porous medium. In this
case the resistance against the interface motion is different at each site of the medium
due to its inhomogeneities. On the other hand this resistance does not depend on
time. This kind of randomness is called quenched disorder, n(x, h), and explicity
depends on the surface position inside the medium.

h(z,t)

Figure 3.1: Schematic representation of a driven interface in a random environment. The
pinning strength and position of the medium inhomogeneities are independent on time. Their
effect is then modeled by means of quenched disorder n(z, h).

Let us consider an elastic string driven through a disordered medium. Its dy-
namics results from the competition between the inhomogeneities of the background
(modeled by means of a quenched disorder) and the elasticity degrees of freedom of
the manifold. The former induce wandering in order to take advantage of the low
energy regions in the medium, while the latter tends to smoothen the interface. The
Hamiltonian of a d-dimensional elastic manifold h(x, t) in the limit |[VA| < 1is

_ d Y
H = /d x[§(Vh)2 +V(x,h) — f-hl, (3.1)

where v is the surface tension parameter and f represents the external driving force.
V' (x, h) describes the random potential, which gives rise to the pinning force n(x, h) =
—0V/Ox acting on the interface.

From Eq. (3.1) the equation of motion can be inferred:

g’; — UV2h+ f 4 n(x, h) + e(x, ). (3.2)
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The thermal noise, £(x,t), is Gaussian with zero average and delta correlation,
(e(x,t)e(x', 1)) = T6%(x — x')6(t — '), where T is the temperature. The quenched
noise can be considered in different ways depending on the nature of the medium
inhomogeneities. Correlations of both potential and pinning force are given by

(V(x,h) - V(X 1)) = —20%x — x')R(h — 1) (3.3)
(n(x,h) - (' 1)) = 8% (x = <) A(h = 1) | (3.4)
where R and A may be short or long ranged depending on the microscopic origin

of the disorder. The functional form of these correlators give rise to two different
classes of quenched noise [cf. Fig. 3.2]

e Random Bond Disorder

This corresponds to finite-size impurities that do not couple to the order pa-
rameter, but directly attract or repel the interface. The total energy depends
only on the disorder in the immediate neighborhood of certain interface posi-
tion. Then, correlations of both disorder potential and pinning force are short
ranged. R(h) range distance is typically given by the size of the impurities.
Therefore, R'(h) decreases to zero at infinity and the integral [ A(h) dh = 0.
Due to the local coupling with the disorder, the random potential is directly
included in the Hamiltonian as in Eq. (3.1).

e Random Field Disorder

This case corresponds to physical situations where a random disordered field
couples differently to each of the two phases separated by the interface. Thus
the energy resulting from the coupling involves an integral over the bulk. Ran-
dom field disorder describes, for instance, a fluid invading a porous medium,
where the final form of the interface is affected by all impurities in the region
previously invaded by the fluid. In contrast with the random-bond case, R(u)
has long-range correlations and therefore [ A(h) dh does not vanish. The
Hamiltonian can be now expressed in terms of the pinning force to include the
coupling between the noise and the order parameter

h
Hor = [5G0+ [Cdyneeg) =0 GS)
where fh dy n(x,y) is the random potential V' (x, h).

The dynamics of elastic manifolds in disordered media exhibits a rich static and
dynamical behavior, as we briefly discuss in the following.
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R(h) random bond | random field
- Aw] R h Am:
2 N /} N s
h

\/I/

RB RF

Figure 3.2: Difference between random-bond (RB) and random-field (RF) disorder. For the
former one (/eft) the pinning effect depends only on the noise at the interface (grey sites). For
the latter the energy of the interface is determined by the entire area swept by the manifold
during its motion (grey area). On the top correlators of potential, R(h), and pinning force,
A(h), are depicted for both quenched noise classes [Chauve et al. 2000].

3.1.1 Statics

In absence of driving force (f = 0) the state of the system results from the compe-
tition between elasticity, pinning, and thermal fluctuations. In this case Eq. (3.2) is
equivalent to the equilibrium problem at temperature 7'. There exists a trivial critical
temperature 7' = 0 such that, for higher temperatures, the interface swings with zero
global velocity around an average height (h) = 0 due to thermal fluctuations. For
dimension d > 4 the diffusion term dominates making the interface flat. For lower
dimensions than this, d < d. = 4, the interface follows rough optimal paths through
the disordered medium. Thermal fluctuations make the system continually change its
configuration and readapt itself to the disorder, adopting one of the infinitely many
optimal paths in agreement with the balance between elasticity and disorder. The ge-
ometry of these optimal paths is characterized by the roughness of the manifold. At
large distances the roughness w(f) = {((h — (h))?)¢}'/? scales as w ~ (£/L.)*x,
where a4 is the equilibrium roughness exponent and L. is a characteristic scale
called Larkin length [Larkin and Ovchinnikov 1979]

e ()™
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where v is the surface tension parameter, 7 is the size of the impurities, and A(0) is
the height-autocorrelation of the pinning force n(x, h).

This pinning length defines the minimum average energy barrier between neigh-
boring metastable configurations of the string. The energy barriers are expected to
be randomly distributed as P(U) ~ e~Y/Ue [Vinokur et al. 1996], where U, is the
amount of energy required to cause the minimum coherent movement of the interface
at the scale L.. However, the actual form of the distribution of energy barriers is still
matter of debate [Kolton et al. 2005a]. The string can be considered as a sequence
of Larkin domains independently pinned '. On the other hand, thermal fluctuations
can give rise to larger displacements of the string. In this case the energy required
to provoke the correlated movement of certain region £ of the interface is assumed to
scale as U(£) ~ (%a, with 6., some exponent that will be discussed in more detail
later [cf. Eq. (3.11)].

Up till now, we have provided a general insight into the static regime of elastic
interfaces in random media. However, the equilibrium problem at 7 = 0 is an ex-
traordinary rich subject that concerns diverse manifolds of different dimensionalities.
A unified picture of the static regime of such diverse manifolds in quenched random
media was given by Halpin-Healy [1989]. He introduced a general Landau Hamil-
tonian for an n-component vector field h(x) with d dimensional support subject to
correlated disorder V' (x, h)

H= /ddx{(u/Q)(Ah +0oV(h)}, (3.7)

where correlations of the pinning potential can be long or short ranged depending on
the functional form of R(h — h')

(V(x,h)-V(x', 1)) = 6%x —x')R(h — ') . (3.8)

Clearly, if n = 1 the system corresponds to an interface moving in a random me-
dia of d + 1 dimensions. On the other hand, the d = 1 case corresponds to a directed
polymer in n + 1 dimensions. Directed polymers in random media (DPRM) are con-
sidered as a model for physical processes such as tearing or cracks, and are essentially
directed walks biased along a single preferred direction that fluctuate along the n
transverse dimensions due to the thermal coupling to a short-correlated quenched dis-
order (RB). In Fig. 3.3 we show the typical wedge geometry for the one-dimensional
DPRM discrete model. For further information on DPRM see Ref. [Halpin-Healy
and Zhang 1995].

!"This simple picture can explain the system behavior above the critical dimension d. = 4. From
Eq. (3.6) it can be inferred that the Larkin length diverges for d > 4 and, consequently, the flat interface
can be considered as a unique pinning domain of size L.
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Figure 3.3: The wedge geometry for the 1+1 DPRM. Time evolves upwards and the path
energy is the sum over the bond energies along the polymer length. At each time slice the
path is reconfigured to have the minimum energy. On the left the globally optimal path after
5 time steps in shown. On the right the ensemble of locally optimal paths to the time slice
t = 200 for the same realization of randomness are shown [Halpin-Healy and Zhang 1995].

For d = 1 the interface and directed polymer problems become equivalent. In
these conditions the interface configuration is simply the path h(z) described by the
random polymer. Without disorder, the matter is simple. Transverse fluctuations of
the polymer scale with longitudinal length as |h| ~ x®, with the trivial random-walk
exponent o = 1/2. If finite impurities are present the polymer behaves as an interface
subject to a random-bond disorder. For this case, Huse and Henley [1985] provided
an exact solution based on the relationship between the DPRM problem and the KPZ
interface [see also Huse et al. 1985, Kardar 1985]. In their seminal paper, the authors
considered the partition function of the directed polymer paths at finite temperature
T,

Z(x,h) = / Dhexp{ - % / da:[%v2h +V(, h)]} , (3.9)
I L

where I" denotes the ensemble of all directed paths starting at (z = 0, (0)) and
ending at (z = L, h(L)).

This function satisfies the following functional differential equation with quenched
multiplicative noise

0Z(x,h) 1T0*Z(z,h) 1
—_— = — — h)Z(xz, h 3.10
Ox 2v  0Oh? Tv(x’ )Z(z,h), (3-10)
which can be mapped into KPZ via Hopf-Cole transformation Z(x, h) ~ exp [ﬁ] As
the free energy of the directed polymer is defined as F' = —k; 1" In Z, the transforma-

tion links the energy of the polymer path to the height, h, of a KPZ interface. In the
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same way, the position x of the elastic manifold plays the role of time for the KPZ
interface. From this equivalence it is possible to extract the exact values of the expo-
nents that define the energy and roughness fluctuations of the 1-dimensional elastic
interface

AE = ((E— (E))'/? ~ 2%
Ah = ((h— (h)})Y? ~ g% | (3.11)

with

Qeq = =2/3 O =Prpz=1/3, (3.12)

ZKPZ

and both exponents satisfy the scaling relation 2c.cq; — 64 = 1. The DPRM and the
random-bond elastic interface are not equivalent in d > 1. To obtain the exponents
in higher dimensions one has to resort to a FRG expansion in ¢ = 4 — d, which
approaches aey ~ 0.208(4 — d). In such dimensionalities the generalized scaling
relation 2ceq — 0cqg = 2 — d is still valid. For d = 2 numerical tests were done
by Kardar and Zhang [1989], who found a.q, = 0.50 & 0.08 using the transfer matrix
method.

On the other hand, FRG calculations also provide useful approximations for the
random-field disorder problem. In this case the roughness exponent has been esti-
mated to be a.y ~ (4 — d)/3 [Fisher 1986]. This approach has been validated by
numerical simulations, which found a,(d = 1) = 1 in excellent agreement with
FRG results [Kardar and Zhang 1987]. Similarly, the transfer matrix method ex-
tended to two dimensions gave a.q = 0.59 & 0.07, which is compatible with the
prediction aq(d = 2) ~ 2/3 [Kardar and Zhang 1989].

3.1.2 Depinning at 7' = 0

At zero temperature Eq. (3.2) becomes the simplest representation of the quenched

Edwards-Wilkinson universality class (QEW), first introduced by Bruinsma and Aep-

pli [1984]

oh 9

s =vV*h+ f+n(x,h). (3.13)
Due to the competition between elasticity and quenched disorder the system un-

dergoes a critical transition at a threshold driving force, f = f., from a moving to

a pinned phase. For an external driving f < f. (pinned phase) the interface moves

until it finds the closest configuration where the energy has a local minimum, where-

upon it becomes pinned. For f >> f., however, random pinning forces are overcome
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by the external driving and the average position of the front moves at finite velocity
v ~ f. In these conditions the quenched noise is washed out and the noise term
reduces to an annealed one, 7(x,h) ~ n(x,vt). Then, Edwards-Wilkinson univer-
sality class of Eq. (2.21) is recovered (flow phase). In the critical region f < f. the
interface consists of pinned and unpinned sections. Once the combined effect of the
driving and elastic forces overcome the pinning forces in a particular area, the inter-
face ’jumps’ ahead, but is eventually trapped again by an another region of strong
pinning sites. Thus the interface exhibits a slow, smooth motion interspersed with
avalanches, which present a critical size distribution p(s) ~ s~7. In connection with
the previously discussed static regime, pinned regions of the interface can be consid-
ered as a sequence of pinned Larking domains. Then, the critical force f. may be
estimated as the minimal applied force able to depin one of these Larkin domains L,
atT = 0.

./ FLOW
DEPINNING,//

‘/

CREEP " 150/

/ -0

|
fe f

Figure 3.4: Typical force-velocity characteristics [Chauve et al. 2000], exhibiting pinning
at T' = 0 with a threshold force f.. At large drive, the system flows as if there were no
quenched disorder. When finite temperatures are considered creep dynamics is observed at
T>0and f < f.(T =0) [¢f Sec.3.1.3].

This critical transition is well characterized as f — f. by a diverging correla-
tion length £ ~ (f — f.)~"aer, which corresponds to the average size of the pinned
regions. Also the asymptotic velocity has the form v ~ (f — f.)%er. The critical ex-
ponents are Vgep = 1/(2 — agep) and Ogep = (Zdep — Odep ) Vdep Where agep and zgep
are the roughness and dynamical exponents of a pinned interface at f = f.. FRG
calculations give estimates for the values of these exponents in the form of series
expansions in the variable ¢ = 4 — d [Narayan and Fisher 1993, Nattermann et al.
19921:

3
~ 2 ~
Rdep ~ 2 9e Vdep ~

(3.14)

wil o

Oldep =
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In principle, one could expect different values of the depinning exponents depending
on the nature of the quenched disorder, as occurs in the statics regime. However,
Chauve et al. [2000] showed by means of FRG calculations that the RB quenched
noise correlator evolves during the flow towards a RF disorder. This leaves only
one universality class for the elastic manifold at depinning, in contrast with the two
classes RB and RF that appear in the static regime.

Such an expansion in € = 4 — d provides trustworthy results only for sufficiently
small values of the expansion parameter, i.e., in the vicinity of the critical dimension
d. = 4. To study the system in lower dimensionalities one must resort to numerical
simulations [Dong et al. 1993, Jensen 1985]. Probably, the most accurate estimation
of the exponents comes from a cellular automaton proposed by Leschhorn [1993;
1996], which is based on a simplification of the continuous equation (3.13). The
model is defined on a square lattice where each cell is assigned a random force n; 5,
which takes the value 1 with probability p and 7; ,, = —1 with probability 1 — p. The
surface height is an integer h;(t) starting from a flat initial condition. At each time
step the function v;(t) = K (hi+1 + hi—1 — 2h;) + gni(h;) is evaluated for all sites
i = 1,..., L. The surface advances at site i, h;(t + 1) = h;(t) + 1, whenever the
condition v;(¢) > 0 is hold. The parameter g measures the strength of the disorder,
while the driving force is determined by the difference p — (1 — p) = 2p — 1. The
exponents measured by Leschhorn at the critical point were o ~ 1.25, § = 0.88,
0 ~ 0.25 and v ~ 1.33 for dimension d = 1. He also measured the exponents for
d = 2, such were o = 0.74, 3 ~ 0.47, 6 ~ 0.65 and v ~ 0.8.

If nonlinear corrections are included in the growth equation one arrives at the
quenched-KPZ (QKPZ) equation [Galluccio and Zhang 1995]

% = vV?h + %(Vh)2 + f+n(z,h), (3.15)
which gives rise to a different universality class. Such nonlinearity may be kinet-
ically generated and thus )\ is proportional to the global velocity of the interface,
A o« v. However, it has been shown to be irrelevant at the depinning threshold,
as v goes to zero and the QEW universality class is recovered [Narayan and Fisher
1993]. On the other hand, the nonlinear effect may be originated by the anisotropy
of the quenched disorder, which yields a nonvanishing A at the depinning transi-
tion [Tang et al. 1995]. If the medium randomness has different correlations in the
directions perpendicular and parallel to the growth direction, there exists an overall
slope ((Vh)) that constributes to the interface velocity (6;h) ~ A{(Vh))? even at
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f — f. 2. Such contribution modifies the critical behavior of the system with regard
to the QEW universality class.
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Figure 3.5: Dependence on the tilt m = ((Vh)) of the average velocity, in one-dimensional
models belonging to QEW (left) and QKPZ (right) universality classes. Data from different
forces are indicated by different symbols, approaching to f,. from top to bottom [Amaral et al.
1994].

The different scaling properties of this new universality class have also been
demonstrated by means of simulations of simple automaton models (see Fig. 3.5
from [Amaral et al. 1994]). Tang and Leschhorn [1992] and Buldyrev et al. [1992]
proposed simple models based on directed percolation to show depinning mecha-
nisms according to Eq. (3.15). These algorithms are known as directed percolation
depinning (DPD) models. They basically consist on a lattice with certain fraction p
of blocked cells that put up resistance to the interface advance. At certain critical
density p., the blocked sites are enough to form a continuous directed path that spans
across the whole system. Under these circumstances the interface is stopped by the
pinning path. In d = 1 the path of blocked sites can be mapped onto a directed perco-
lation path that leads to infer the scaling exponents o = 0.63, z = 1, and = 0.636.
Higher dimensional generalization of directed percolation considers directed paths
embedded in higher dimensional spaces. Such analysis is of general interest, in par-
ticular because many experimentally relevant interfaces are two-dimensional. The
problem can still be mapped onto a percolation problem, but the pinning cluster must
be considered as a directed surface instead of a directed path. For d = 2 Amaral et al.
[1995] observed the exponents «« = 0.48, z = 1.15, and § = 0.8.

This hallmark dependence of the global velocity with the average slope m = ((Vh)) was ex-
pressed by Tang et al. [1995] as v(0) ~ v(0) + 3m”, with A diverging at the critical point. Further
analysis of such dependence suggests that the velocity goes as v(m) = [v(0) + Am?]/v/1 +m?2 and
not as a single parabola [Neshkov 2000]. This result washes away the divergence of the nonlinear
parameter at the critical point.
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3.1.3 Creep

In between the two limits (f # 0,7 = 0) and (f = 0,7 # 0) there is a region of
very rich dynamics when low temperatures and well below zero-temperature depin-
ning threshold forces are considered, called creep regime. In this scenario motion
occurs at any drive since thermal fluctuations help the interface advance even at low
driving forces f < f.(T = 0). As shown in Fig 3.4 the velocity does not vanish for
small values of f, in contrast to the 7" = 0 depinning case. The dynamics of the man-
ifold can be understood as quasi-pinned configurations that move to more favorable
metastable states due to the effect of thermal fluctuations. The relaxation toward the
steady state is extremally slow and the system exhibits properties of glassy systems as
aging, memory effects, and violation of the fluctuation-dissipation theorem [Young
1998, Duemmer and Le Doussal 2007, Ramasco et al. 2006]. Based on the sluggish
motion of the interface, a qualitative understanding of the problem has been made
considering thermal activations over the energy barriers of the equilibrium problem,
for which the velocity is strictly zero [¢f. Sec. 3.1.1]. A quite successful scaling
theory can be constructed assuming this quasi-equilibrium hypothesis.This approach
predicts a creep velocity for the steady-state that links the statics with the nonlinear
transport of the disordered elastic system [loffe and Vinokur 1987, Nattermann 1990,
Scheidl and Vinokur 1996]

o (£, T) ~ exp [— % : (J;) _“] , (3.16)

where the exponent y is given by the equilibrium exponents:
p=(d—2420q)/(2 — tteq). (3.17)

This approach also suggests that there is a typical length scale Loy ~ (f/fc) "
that separates scales controlled by thermal activated motion (¢ < L) from large
scales (¢ > L) that slide freely with veq = 1/(2 — aveq).

The creep law (3.16) has been observed to be in good agreement with various ex-
periments [Blatter et al. 1994] and the scaling relation (3.17) has also been confirmed
experimentally for magnetic domain walls [Lemerle et al. 1998] and vortices [Fuchs
et al. 1998]. On the theoretical side, functional renormalization group calculations
based on a ¢ = 4 — d expansion have confirmed and expanded the conclusions of
the scaling theory [Le Doussal et al. 2006]. Also, the recent introduction of fast-
convergent algorithms to reach the steady-state [Rosso and Krauth 2002] has allowed
to test the validity of the creep velocity with great accuracy [Kolton et al. 2005a].

The quasi-equilibrium hypothesis also provides an interesting approach to under-
stand the relaxation mechanism toward the steady state. This relaxation is governed
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by a growing characteristic length, L(t), separating the equilibrated short length
scales from the long distance ones that keep a memory of the initial condition [Kolton
et al. 2005b]. It can be inferred that L(t) evolves logarithmically with time [Fisher
and Huse 1988]

Ue

where L. is the Larkin length , U.(L.) is the associated energy scale that character-
izes the equilibrium barrier distribution, and £ is a microscopic time scale. Below
this growing length L(t) one expects that the dynamics is governed by thermally ac-
tivated jumps over the equilibrium energy barriers U(¢) ~ ¢4, which have to be
overcome to equilibrate the system up to the scale ¢. Thermal fluctuations make the
system move from certain quasi-pinned configuration to a more favorable one, and
the system visits different metastable states in its evolution to the steady state.

L(t)~ L [—log(to)] e (3.18)

As corresponds to a thermally activated process, the average waiting time for a
barrier U (¢) to be overcome is given by an Arrhenius law, (7(¢)) ~ 19 exp [U(¢)/T],
where 7p is a microscopic time scale. These events are supposed to be uncorrelated
and follow a Poissonian distribution in time. Then, the corresponding probability
density of waiting times over a given barrier U (¢) is

Pu(r) ~ (r(£))~" - exp[~7/(1(0))] . (3.19)

Considering the whole distribution of barriers P(U) that conform the equilib-
rium energy landscape of our system we have a distribution of waiting times ¥ (7)
given by ¥(7) ~ [ P(U 7)dU. From Sec. 3.1.1 such equilibrium barriers are
expected to be dlstrlbuted as P (U ) ~ exp (—aU/U,) [Vinokur et al. 1996], where U,
is the minimum average energy barrier between neighboring metastable configura-
tions at the Larkin microscopic pinning length scale L., and a is some dimensionless
constant. With this choice for P(U) one then arrives at the distribution of waiting
times between two consecutive metastable states

70 ) Hrat/te (3.20)

U(r) ~ T(—

T

This power-law distribution is bounded from above by the maximum time 7,40 ~
70 €xp[U(Lopt) /T corresponding to the typical scale Loy. As previously men-
tioned, this characteristic length scale separates scales controlled by thermal acti-
vated motion (¢ < L) from large scales (¢ > L) that slide freely. In other
words, L., gives us the upper bound above which thermally activated processes are
no longer relevant. This characteristic scale has been demonstrated via FRG calcu-
lations [Chauve et al. 2000]. It corresponds to the optimal excitation that minimizes
the free energy cost to equilibrate the system, U (Lop) ~ min[U.(¢/L.)%:].



3.2. Forced Relaxation at finite temperatures 47

As exposed up till now, the quasi-equilibration hypothesis leads to a quite suc-
cessful scaling theory of the creep regime. However, these arguments are based on
strong assumptions. This physical picture of creep motion is still very phenomeno-
logical, and many important questions remain open.The fact that dynamical barriers
can be determined purely from the statics is not clear. Moreover, the assumption that
the energy landscape is characterized by a unique scale U, that describes differences
between energy barriers does not directly imply that this unique scale may also char-
acterize the energy differences between neighboring metastable states. The fact that
static barriers and valleys scale with the same exponent is already a non trivial hy-
pothesis. The second and more delicate assumption is the validity of the Arrhenius
description of the thermally activated jumps between metastable states. Recent stud-
ies prove clear deviations from this quasi-equilibrium picture. For instance, strong
violation of the creep formula is observed at low enough temperatures in [Kolton
et al. 2005a]. Although the creep velocity law is still valid, Kolton et al. observed
that the exponents p and « clearly deviate from their equilibrium values as " — 0
.The surprising conclusion is that only for moderately low temperatures the expected
values of the exponents o = g and p = (d—2+420eq) /(2 — teq) are found. On the
other hand, deviations from the Eq. (3.18) for the equilibrium length L(¢) have also
been observed [Kolton et al. 2005b]. An alternative form L(t) ~ ¢/ is obtained at
short time scales of the relaxation process toward the stationary creep regime. This
would suggest a thermally activated motion over barriers scaling logarithmically with
the system size, instead of U ({) ~ (P<a,

3.2 Forced Relaxation at finite temperatures

In this section we present original research work for this Thesis. As shown before,
considerable progress has been made in last few years in our understanding of the
steady-state of the driven elastic string. However, the nonequilibrium relaxation dy-
namics toward the stationary state has received comparatively much less attention.
Particularly, many questions remain still open for the elastic string relaxation at fi-
nite temperatures. Understanding such nonstationary physics is clearly crucial since
it gives complementary information on the energy landscape of barriers that deter-
mine the manifold dynamics and, for experiments, is needed to describe the many
systems that are quenched in the glassy state and then have to relax (e.g., by chang-
ing rapidly the temperature). Theoretical attempts to describe the dynamics during
relaxation has been made using mean-filed and renormalization group approaches
[loffe and Vinokur 1987, Nattermann 1987, Vinokur et al. 1996, Cugliandolo et al.
1996, Chauve et al. 2000, Balents and Le Doussal 2004, Schehr and Le Doussal
2004; 2005]. However, direct application of these results (valid close to the critical
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dimension) to one dimensional domain walls is difficult. Numerical studies in low
dimensions provide hints on this difficult problem, although they are also difficult
since they have to deal with ultra long time scales. Recently, Schehr and Le Dous-
sal [2004; 2005] investigated the relaxation regime for an interface initially flat by
analyzing two-time correlation functions, as f — f., showing by functional renor-
malization group methods that the transient dynamics displays universal behavior.
This strongly suggests that some degree of universality is also present in the interme-
diate nonsteady regime.

In this section we consider the non-equilibrium relaxation of the one-dimensional
forced elastic string in a random-field disorder for driving forces well below the
T = 0 depinning force. As we discussed previously, these conditions give rise to
a slow creep regime where the interface dynamics can be described by thermally
activated jumps of spatially correlated regions over the energy barriers separating
different metastable states. A novel type of study is carried out by focusing on the
local activity statistics as the temperature is varied. At variance with most existing
studies of the creep regime of the elastic line, the model we consider does not allow
for backward movements of the interface. This up/down asymmetry is relevant in
some type of experimental systems like for instance in forced fluid imbibition, paper
wetting, advancing cracks in solids, and flux lines in superconductors when an elec-
tric field is applied. This asymmetry could also illustrate the dynamics of an elastic
string on ratchet-like potentials, which facilitate movement in a preferred direction.

Our numerical model for the elastic string is discrete, which allows us to char-
acterize properly the activity. The lack of up/down symmetry is responsible for new
phenomenology at very low temperatures, which is different from the equilibrium-
like behavior typically observed in previous studies of the zero-temperature limit of
the driven string.

A key quantity we look at is the return probability, P,.(7), for the activity to
be back at a particular site after a time 7. We show that this probability is directly
connected with the interface velocity, the power spectrum S(w) ~ 1/w® of veloc-
ity fluctuations, and the structure of avalanches of activity. Our analysis provides
global dynamical information from a local observable, which may be useful in ex-
periments. By means of scaling arguments we show that local activity statistics in the
region of moderate temperatures can be interpreted as thermally activated jumps of
spatially correlated regions over the energy barriers separating different metastable
states. However, as temperature is decreased this picture breaks down, since our
model is a genuinely out-of-equilibrium system in the limit 7" — 0.
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3.2.1 Description of the model

Our model is inspired in Leschhorn cellular automaton [Leschhorn 1993; 1996] for
the string at zero temperature, which was introduced in Sec. 3.1.2. Here we study the
one-dimensional case; generalization to higher dimensions is straightforward. We
consider semi-infinite square lattice L X oo, and the string position h; at each point
i takes integer values. A random pinning force n;(h;) is assigned to each lattice site.
As corresponds to random-field disorder 7 is an uncorrelated Gaussian variable with
zero mean and unit variance. The surface height is a single-valued integer function
hi(t) and the model is evolved at a fixed temperature 7" as follows. Starting from a
flat initial state, the function

vi(t) = K (hipr + hion — 2hy) + AV () +
+ T2 e5(t) + f (3.21)

is evaluated at time ¢ > O forall sitesi = 1,--- , L. Site ¢ moves forward, h;(t+1) —
hi(t) + 1, if and only if v;(t) > 0, otherwise it remains pinned. Periodic boundary
conditions in the substrate direction, hy 1 = hj and hg = hjp, are used. After
evaluation of Eq. (3.21) for all i the update is carried out in parallel for the whole
front. Note that backward movements are not permitted.

Following Ref. [Leschhorn 1996], both stiffness x and noise strength parameters
are chosen to have the same order of magnitude, so the interface can become rough
on length scales of the order of the lattice spacing. We fix x = 10 and A1/2 = 20.
To analyze the slowly driven regime we employ a very small applied force f =~
5 x 1073 x f.(T = 0), although other values have been also tested. The equation of
motion can be rescaled and the dynamics of the system can be described in terms of
the dimensionless temperature ' = T'(r;/A2)Y/3,

3.2.2 Dynamical regimes

First we focus on how the average velocity of the interface, v(t) = (Ah/At), be-
haves with time. In Fig. 3.6, we have represented v(t) for different values of temper-
ature that can be identified with different dynamical regimes: high, low and ultra-low
temperatures. For high values of 7', the system rapidly relaxes toward an steady-state
with constant velocity [see Fig. 3.6(a)]. When temperature decreases, as mentioned
before, the relaxation time becomes longer and longer, eventually diverging in our
limited time window simulations. In the range of times displayed in Fig. 3.6(b) the
relaxation of the velocity decays toward a stationary velocity vo(f,T') as a power-
law v(t) — voo ~ t7T) for low temperatures 0.15 < T < 0.40. We find the exponent
to be v = 0.82(4), 0.76(4), and 0.72(3) for temperatures T’ = 0.20, 0.24, and 0.28,
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respectively. Surprisingly, when temperature is lowered even further, T < 0.15,
the velocity exhibits a series of plateaus separated by well defined and sudden drop-
offs at which the interface motion is rapidly slowed down [Fig. 3.6(c)]. We suggest
that this distinct ultra-low regime arises due the lack of up/down symmetry of our
forced elastic string, and it is absent in the continuous model of the driven string
(QEW) [Kolton et al. 2005a].
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Figure 3.6: Interface velocity (left) and energy per site (right panels) averaged over 500 runs
for a system of size L. = 16384. Different dynamical regimes are shown. High temperature
regime (a-b) for T' = 2 (yellow), 1.2 (green), 0.8 (red), and 0.6 (black). Low temperature
regime (c-d) for T = 0.28 (green), 0.24 (red), and 0.20 (black). Curves are vertically shifted
for clarity. The dashed line has a reference slope —0.85. Ultra-low temperature regime (e-f)
for T = 2 x 1072 (red) and 4 x 103 (black). The relative error of the velocity data is
v/o ~ 1072 at any temperature.

As this model has a well defined Hamiltonian, we can also study how the average
energy of the system evolves in time. According to Eq. (3.5) the energy per site can
be estimated as

1 K [hit1 —hi—172 1/2 & ,
e(t) = LZ{Q[Z} —f-hi+A Zni(])}a (3.22)
: =0

where L is the lateral size of the substrate. The resulting e(t) is shown in the right
panels of Fig. 3.6.
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During the relaxation time the system explores configurations accordant with the
strength of the disorder, therefore the energy per site increases during this transitory
evolution toward the steady state. In the high temperature regime, it can be observed
how this initial increase finishes when the system is in the vicinity of the equilibrium
point and then the energy decreases, according to the Langevin equation. In this
particular case the energy, referred to the initial flat surface at zero height, keeps
decreasing ad infinitum due to the presence of the driving force term,— f - h, in the
Hamiltonian.

In the low and ultra-low dynamical regimes the relaxation of the system continues
during the time span considered, so e(t) increases continuosly. It is interesting to
underline that the behavior of e() is always consistent with the functional form of
v(t).

In order to better characterize these dynamical regimes we can also attend to
other features as the roughness and spatial correlations of the interface.

o~ o~

The structure factor is defined in one dimension as S(q,t) = (h(q,t)h(—q,t)),
where /i\L(q, t) = L~1/2 Z£=1 hy(t) exp(2mign) is the Fourier transform of the string
profile. As S(q,t) is the Fourier transform of the autocorrelation function of the
interface height, it scales as ¢~ (2**1) with the roughness exponent .. In Fig. 3.7 we
show S(q,t) for typical temperatures T = 0.02,0.24 and 1.2, corresponding to the
three different dynamical regimes.

At high temperatures we are able to obtain the stationary structure factor S(q)
due to the fast convergence to the system toward the steady-state. In this regime
we observe a roughness exponent o, == 0.5 that falls into the so called Edwards-
Wilkinson universality class [¢f: Sec. 2.3.1]. This result is in agreement with the
expected behavior of the system at high temperatures, as thermal fluctuations wash
out the effect of quenched randomness and the front moves freely trough the disor-
dered medium.

When temperature is decreased the picture is totally different. In the low temper-
ature regime, 0.15 < T < 0.40, random forces are able to locally pin the interface
and the relaxation time increases considerably, giving rise to a non stationary S(q, t)
in the considered time span. However thermal fluctuations are able to equilibrate the
line at short scales. We observe a characteristic wavenumber ¢*(t) over which the
interface exhibits the equilibrium random-field roughness exponent, o, = 1. This
result is consistent with the picture of creep dynamics as a thermally activated mo-
tion at scales below the equilibration length L(t) = [¢*(¢)]~! [Vinokur et al. 1996,
Chauve et al. 2000] . These two regimes and roughness exponents, i.e., roughness
oy, and e for high and low temperatures respectively, are also observed in nu-
merical simulations of the one-dimensional continuous model QEW [Kolton et al.
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Figure 3.7: Evolution of the structure factor for temperatures T = 1.2,0.24 and 0.02 (from
left to right) at different times ¢t = 10%,10°, 10%, 2 - 10%mct (from bottom to top). Lines with
exponent —(2c + 1) are plotted as a guide with ayy, = 0.5 (solid), ceq = 1 (dashed), and
«a = 0.75 (dot-dashed).

2005a], for which random-bond disorder is considered and thus o, = 2/3 at equili-
brated scales. This picture changes in the ultra-low temperature regime, at which the
structure factor is also non-stationary but with a roughness exponent o ~ 0.75 # g
below certain equilibration scale that grows extremely slowly in time. In this regime
the movement of the interface is so slow that the discreteness of the model and the
lack of up-down symmetry of the front motion in our model become relevant. There-
fore, in the ultra low T regime, the behavior of the system is not expected to be
described in terms creep relaxational dynamics.

To characterize the interface we can also attend to its multiaffinity. Many growth
processes in random media give rise to multi-affine surfaces. Quenched disorder
often leads to power-law distributed noise, that makes the interface roughness to ex-
hibit different scaling exponents at different scales. A nice example is found in the
SOD model belonging to the previously discussed DPD universality class [Sneppen
and Jensen 1993] [cf. Sec. 3.1.2]. In order to analyze multiaffinity we compute the
height-height g-correlation function Cy(¢) = (|h(z 4 £) — h(z)|?)/ for different
values of ¢ (Fig. 3.8). We observe that the same scaling C;;(¢) ~ ¢* holds for differ-
ent values of ¢ and the values of the exponents are in agreement with the roughness
exponents observed in the structure factor scaling. This result rules out the existence
of multiscaling in our model.

3.2.3 Activity statistics: Numerical results

Once we have identified the mentioned temperature ranges as different dynamical
regimes we now focus on the typical activity patterns observed. The main advantage
of the discrete model is that the activity can be directly examined. Any given site
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Figure 3.8: Correlation function Cy;(¢) measured after 10° time steps for temperatures T =
1.2,0.24 and 0.02 (from left to right) and moments ¢ = 2, 3, 4 (from bottom to top). Lines
are plotted as a guide with exponent 0.45 (solid), 0.85 (dashed), and 0.65 (dot-dashed).

i € [1, L] is active at time ¢ if it is to be updated h; — h; + 1 (i.e. if v;(t) > 0) and
inactive otherwise. The activity is therefore a binary variable taking values either 1
(moving) or 0 (resting) at each site. Typical patterns of activity are shown in Fig. 3.9
for T' = 0.04,0.24,1.2. A first thing to note is the high diversity in the density of
active sites between the three plots. This corresponds to the different velocity regimes
of the fronts at each temperature. Another important aspect is that the activity tends
to be concentrated in clusters, as also does the inactivity (white areas). In order to
characterize in a quantitative way the activity patterns we measure the statistics of the
sizes of such clusters, i.e., the spatio-temporal activity distribution. In the following
we calculate the first-return time probability density, P¢(7), and its counterpart for
the distance between active sites L¢(¢). As a complement, we also measure the
probability of returning activity (not necessarily the first return), P.(7), and also the
equivalent magnitude for the distribution of distances between any two active sites

L, (0).

Temporal statistics

First let us focus on the behavior of the time statistics. The activity temporal statistics
can be determined by calculating the first-return time probability density function,
P¢(7), which stands for the probability for a site to become active again after a period
of inactivity 7. This probability describes the time intervals separating subsequent
returns of activity at any given site.

As shown by Maslov et al. [1994] the average total number of return points n(7)
in a time interval 7 is

n(t) =1 —n(1) /17 sPy(s)ds . (3.23)
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Figure 3.9: Activity patterns for a single realization of a system of size L. = 4096 at different

temperatures: T=12 (left), T = 0.24 (center) and T = 0.04 (right). The plots are © — ¢
maps where the active sites are marked in black. For the lowest temperature, 7' = 0.04 on the
right, the moments at which the system describes the characteristic drop-offs are signalled by
the horizontal black lines.

On the other hand, this quantity is also related to the fractal dimension D of return
points, and in the long time limit 7 — oo it can be written as n(7) ~ 77 with
0 < D < 1. Then for D — 1 activity returns become dense in time, while for
D — 0 returns rarely occur.

In the case of a scale-invariant (fractal) activity the asymptotic distribution of
first-return times decays as a power law, Py(7) ~ 775 for 7 > 1, with 1 < 3 < 2.
Then, the scaling relation

D=p3y—-1 (3.24)

connecting the fractal dimension of return points with the distribution of inter-event
times can be obtained.

One can also consider the probability of returning activity (not necessarily the
first return), P,(7), defined as the probability that activity at certain site at time 7
will return to the same site after 7 time steps >.

This distribution can also be related to the average total number of return points

Pr(r) =n(r+1) —n(7) . (3.25)

*Note that P (7) is a density probability function while P,.(7) is a probability with values con-
strained between zero and one. Both functions are conditional to the presence of activity at the initial
measuring time.
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So both local return time probabilities are related via n(7) and from Egs. (3.23) and
(3.25) we have

Pr(r) ~ 1+ /IT SPf(S)dS]_l . (3.26)

This relation is always fulfilled no matter the functional forms of our time dis-
tributions. In the case of an activity pattern with fractal statistics in time, then both
distributions exhibit power-law scaling, Py(7) ~ 777/ and P.(7) ~ 777, and we
have [Maslov et al. 1994]

Pr(t)=n(r+1)—n(r) ~ (7 + l)D AN
~ TP B2 (3.27)

that implies

Br + Br = 2. (3.28)

This scaling relation suggests that fractal activity implies an infinite average re-
turn time (7) = [ sPy(s)ds. However, as we shall see in detail in next section, the
first-return time distribution can be directly related with the waiting time distribution
between metastable states of the string (see Sec. 3.1.3). This implies that Py(7) is
bounded by an upper cutoff 7,,,, associated to the optimal excitation of the thermal
activation process. Therefore, Eq. (3.28) is compatible with a finite average return
time in the context of creep dynamics.

As n(7) is simply the sum of all returns of activity to a particular site up to time
T, it can be easily related with the average instantaneous velocity of the system

v(t) xn(t+1) —n(t) = Pr(t) . (3.29)

This allows us to identify v = (3, whenever the distribution P,.(7) is a genuine
power-law, i.e., when vo, — 0. In the case of creep motion v, is expected to be
small but finite and the equality becomes only approximate

VT) = B:(T) - (3.30)

Finally, from Eq. (3.29) we can also obtain the power spectrum of the velocity,
S(w) = (V(w)v(—w)), in terms of the local return time distributions with v(w) o<
[ Pr(7) exp(2miwT)dr. If fractal activity is present then S(w) ~ w261 1n
the more general case of an exponential decay of the first-return time probability as
Py(1) ~ 7757 exp(—7/7x) we have
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N w2Bs=1) if w S>> we
s<w>o<<v<w>v(—w>>~{ s (3.31)

We if w<uwe,

where the cut-off frequency is w. ~ 7, .

These relations establish an interesting connection between the statistics of the
local waiting times and the global dynamics of the interface. In the following we
describe our numerical results concerning the local activity and the global velocity
of the interface in the different dynamical phases.

In Fig. 3.10 we plot Py and P, for typical temperatures within these regimes.
The measurements are done after a long enough transient from the initial condition
and the distributions are stationary in the time span considered.
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Figure 3.10: Activity statistics collected from 100 realizations in a system of size L = 4096.
Pe(7) is shown on the left panels and P, (7) on the right ones. High temperature regime (a-b)
for T; = 2 (yellow), 1.2 (green), 0.8 (red), and 0.6 (black). Low temperature regime (c-d)
for T = 0.28 (green), 0.24 (red), and 0.20 (black). Curves are vertically shifted for clarity.
Dashed lines with slope —1.1 in (¢) and —0.8 in (d) are drawn for reference. Ultra-low
temperature regime (e-f) for T = 2 x 1072 (red) and 4 x 10~ (black).

At high temperatures, for which the front asymptotically reaches a constant ve-
locity and thermal fluctuations dominate the dynamics, we observe an exponen-
tial decay of the inter-event times distribution preceded by a power-law decay at
short 7, P¢(7) ~ 7757 exp(—7/7«), where B; and 7« vary with temperature [see
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Fig. 3.10(a)]. We find that ¢ varies from 1.3 to 1.5 for T = 0.6to T = 2. The extent
of the approximate power-law regime is bounded by 7., which enlarges with de-
creasing T'. This distribution implies the existence of a finite average time (7) o 7
for the activity to return at any given site. This behavior can be related analytically
with the asymptotic functional form of the return probability

Pr(r) ~ 1+ /17 $Y7B5 exp(r /7 )ds] ~ [1 4+ 7 (T)] 71, (3.32)

which becomes a temperature dependent constant in the long time limit 7 >> 7.
This also implies v = 0 and, therefore, a constant velocity. These analytical results
are in excellent agreement with the results shown in Fig. 3.10(b) and Fig. 3.6(a).

As previously introduced, we can also attend to the temporal correlations of the
interface global velocity. According to Eq. (3.31), it is expected to exhibit long-
range temporal correlations in this regime of high temperatures. In Fig. 3.11 we plot
S(w) for several values of temperature within this high-temperature regime. All the
spectra are obtained for a temporal range in which the signal is already stationary.
We observe S(w) ~ w™2P with 2D ~ 1 for w > w, and a crossover to pure thermal
behavior S(w) ~ w’ for w < w,. In agreement with the behavior of the exponential
cutoff of Py () the typical frequency w.(T") increases with temperature.
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Figure 3.11: Spectral density of the velocity signal for a system of size L = 4096 at temper-

atures 7' = 2,1.2,0.8 and 0.6 (from bottom to top). Curves are vertically shifted for clarity.
Dashed line has slope —1.

The existence of a 1/w?P velocity spectrum with 2D = 1.0 within a range of
high temperatures had already been observed in simulations of the QEW continuous
model [Ramasco et al. 2006]. In that work velocity correlations were linked with
the emergence of local temperature induced avalanches of depinning events. Now
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we show the connection between the local activity statistics and the global dynamics
of the interface. At high temperatures thermal fluctuations are able to depin the
interface and the velocity shows long-range correlations in time. When temperature
is even higher this effect is washed out and the interface is in practice depinned from
the disorder, so a flat spectrum S(w) ~ w° is observed in agreement with a pure
thermal dynamics.

The pattern of activity changes substantially when temperature is decreased. For
our simulation parameters, temperatures within the range 0.15 < 7' < 0.40 (inter-
mediate regime) lead to a first-return time distribution that exhibits a power-law tail
over several decades in time Pf(7) ~ 7%/(T), with an exponent 1 < 3;(T) < 2.
We shall see in detail in next section that this functional decay of P;(7) can be
directly related with the thermally activated jumps over energy barriers U (¢) that
characterize the creep dynamics. On the other hand, this implies that P, (7) also
decays as a power-law (see Fig. 3.10(d)) and the relation given in Eq. (3.28) must
hold. For instance, for typical values of the temperature within this dynamical regime
we obtain §y = 1.12(5),1.13(2),1.15(1) and 3, = 0.88(5),0.86(6),0,80(7), for
T = 0.20,0.24, 0.28, respectively. These results are in good agreement with the scal-
ing relation 3¢+ 3, = 2.0(1). They are also in fair good agreement with (but slightly
different from) the velocity exponents y observed for the same values of temperature
[cf: Sec. 3.2.2], as expected due to the existence of a small but finite asymptotic creep
velocity.

Finally, the activity statistics changes even further at ultra-low temperatures T <
0.15. Both local return-time probabilities show sudden declivities at certain charac-
teristic times [see Figs. 3.10(e) and (f)]. This behavior, similar to the one observed
in other discrete glassy systems [Sibani and Littlewood 1993, Sibani and Dall 2003,
Sibani and Jensen 2004], is to be compared with that observed for the average veloc-
ity in Fig. 3.6(e), which is indeed expected to be the same, v(t) o< P;(t). For this
ultra-low temperatures the space-time activity patterns reveal that the spatial distribu-
tion of events becomes very narrowly localized around a few sites that are co-active
at the same time instant. In this case the discreteness of the model becomes relevant
at any scale due to the sluggish dynamics of the front. The typical creep picture pre-
sented in Sec. 3.1.3 that describes the dynamics as coherent advances of regions L.
up to certain equilibration length L(t) is not applicable here. The system stays out
of equilibrium at all scales and the activity statistics is dominated by these very local
events, giving rise to the characteristic downward jumps observed in Figs. 3.6 and
3.10.
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Spatial statistics

A next question to take into account is the statistics of distances between active sites.
We define the functions £ () and £,.(¢) as the counterpart of the distributions Py(7)
and P, (7) we have employed to analyze the temporal statistics. These distributions
are defined in terms of distances on the interface at a given time. The former rep-
resents the distribution of distances between active sites of the interface. The latter
represents the probability of having activity at distance ¢ from a certain active site. In
an analogous way to that in previous section to obtain Eq. (3.26) we get the following
expression

74
ﬁr(e)~[1+/ sCy(s)ds] ™t (3.33)
1

that relates both distance distributions.

In the following we analyze the behavior of L¢(¢) and £, (¢) at different tem-
peratures. In order to make a similar analysis to that of time statistics, done for a
time-window of 10° time steps, we analyze the distance distributions in a large sys-
tem of L = 131200 sites. The measurements are done after a long enough transient
from the initial condition.

In Fig. 3.12 the functions L () and L,.(¢) are presented for typical temperatures
within the different dynamical regimes. As we observed in the time-statistics anal-
ysis, at low temperatures both distributions exhibit a power-law decay, that reflects
coherent advances of regions of the string due to thermal activation of the quasi-
equilibrium barriers. However, as we mentioned before, these advances occur at
scales below the equilibrium length L(t). Because of this, L¢(¢) and £,.(¢) decay
in a power-law fashion only up to this characteristic length. Above this scale, both
functions become uniform distributions as corresponds to equiprobable distances be-
tween active sites. In the case of £,.(¢) a slight increase is observed at long distances,
that reflects the presence of several independent advances in the interface at the same
time. The presence of this dynamical characteristic scale L(t) makes us rule out the
counterpart in distances of the scaling relation Eq. (3.28), which would correspond
to fractal activity in distances.

On the other hand, in the high temperature regime thermal behavior of the in-
terface growth dominates and we observe an exponential decay of L£¢(¢). This is
connected by Eq. (3.33) with a uniform distribution £, (¢), in an analogous way to
what we observed in the time statistics analysis.

Finally, no substantial changes are found when temperature is decreased from low
to ultra-low values (compare Figs. 3.12(c-d) with Figs. 3.12(e-f)). So, whatever the
dynamical features of this regime are, as long as the distance statistics of activity are
concerned there are not important differences with the former one. There seems to be
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also certain typical scale that grows slower than L(t) in the low temperature regime,
as was also observed in the evolution of the structure factor shown in Fig. 3.7.
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Figure 3.12: Activity statistics for distances collected from 100 realizations in a system of
size L = 131200. L;(¢) is shown on the left panels and £, (¢) on the right ones. High

temperature regime (a-b) for T' = 2 (blue), 1.2 (green), 0.8 (red), and 0.6 (black). Low
temperature regime (c-d) for T = 0.28 (green), 0.24 (red), and 0.20 (black). Ultra-low
temperature regime (e-f) for T = 2 x 1072 (red) and 4 x 103 (black).

3.2.4 Theoretical arguments

A scaling theory can be developed to explain the activity statistics in our model at
least for the region of moderate temperatures. For low temperatures, 7' < U,, one
would expect the dynamics to be governed by thermally activated jumps over the
energy barriers U ({) that have to be overcome to equilibrate the system up to the
length scale ¢, which is the mechanism leading to the characteristic creep motion. In
Sec. 3.1.3 we have described how creep dynamics can be connected with a power-
law distribution of waiting times in Eq. (3.20). These waiting times between two
consecutive metastable states can be related directly with the first-return times we
have analyzed in our activity patterns. Then, we have the following distribution

Pe(T) ~ T(—

T
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where we can identify 5 = 1 + aT'/U,. This linear variation with 7" is consistent
with our numerical results at low temperatures [Fig. 3.10(c)].

A distribution of first-return times as (3.34) would imply that the average re-
turn time (7) is infinite for ¢ < 2, i.e. for the low-temperature regime. However, as
was previously mentioned, one can assume that there exists a cutoff of the first-return
time distribution arising from the elastic nature of the problem. The creep behavior is
controlled by the characteristic length scale Lopt = Lc(fo/f )1/ (2=@eq) correspond-
ing to the optimal excitation that minimizes the free energy cost to nucleate such a
perturbation [Chauve et al. 2000, Vinokur et al. 1996]. Therefore, during creep mo-
tion the average first-return time of the activity distribution is bounded from above
by Timaz ~ 7o exp[U(Lopt)/T). We then have (1) ~ [[™* sPy(s)ds, where Pg(s)
at temperature 7' is given by Eq. (3.34). The stationary velocity can then be obtained
as Voo ~ (7)1 and satisfies the creep law of Eq. (3.16).

The fact that P;(7) and P,.(7) are not ‘pure’ power-laws can also be considered
to explain the evolution of the interface velocity in the long time limit. The existence
of this cutoff at 7,4, implies that v(¢) cannot decay as a a power-law unless the
asymptotic creep velocity v (f,T) is subtracted [cf. Fig. 3.6(c)], and then v(t) —
Voo ~ t7T) in agreement with our results.

This interpretation of creep dynamics is also consistent with our results for the
spatial statistics of the activity of the interface sites. Distance distributions decay as
power-laws up to the equilibration length L(t), which grows extremely slowly in time
[Figs. 3.12(c) and (d)]. In fact, the value of this typical distance is consistent with the
typical wavenumber ¢*(¢) observed at the same instant in the structure factor of the
interface [Fig. 3.7(b)], above which height correlations are given by the roughness
exponent at equilibrium oy = 1.

The situation is completely different for high values of temperature. In this
regime thermal fluctuations are strong enough to renormalize the elementary pin-
ning scales U, and L. [Nattermann et al. 1990, Miiller et al. 2001]. Now the system
evolves significantly faster toward the steady state due to stronger thermal fluctu-
ations, and the constant values of the stationary velocity do not satisfy the creep
law. In terms of activity statistics this regime implies the existence of finite aver-
age first-return time (7) independently of the value of L,,. Then, from Eq. (3.34)
one can define a depinning temperature Tgep, ~ U.(Tgep)/a separating the high-
temperature and the low-temperature regions, and the distribution P,.(7) becomes
bounded for T" > T{cp. In other words, the high temperature regime appears when
Br(T) = 14aT /U, < 2 becomes [ = 2, implying the existence of a finite (7), and
therefore v ~ (7)1,
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This scenario is consistent with our numerical results of time and distance statis-
tics of the activity. Our inter-event distributions Pr(7) and £ f(¢) exhibit exponential
decays [c¢f. Figs. 3.10(a) and 3.12(a)], while their complementary distributions of
all events, P,(7) and L, (¢), become flat in the long-time limit. The functional form
of the time distributions also leads us to establish an interesting connection between
the statistics of the local waiting times with the global dynamics of the interface in
Eq. (3.31). We observe long-range correlations of v(t) that can be directly connected
with the emergence of thermally induced local avalanches in coherence with the ob-
served activity statistics in time.

The presented arguments allow us to understand the local activity statistics in the
low and high temperature regimes and leads to conclusions consistent with our nu-
merical results. However, such a line of reasoning based on energy barriers breaks
down at ultra-low temperatures due to the up/down asymmetry that causes our model
to be generically out-of-equilibrium in the absence of thermal fluctuations (7" — 0).
Unfortunately, at this point we do not have a theoretical understanding of the dynam-
ics in the ultra-low temperature regime. We claim that the dynamics of our model in
this regime strongly resemblances to that observed in other discrete disordered sys-
tems with glassy behavior by Sibani and co-workers [Sibani and Littlewood 1993,
Sibani and Dall 2003, Sibani and Jensen 2004], which is still poorly understood on
general grounds.

3.2.5 Nonlinear contributions

The study of nonlinear contributions to the elasticity should allow a better under-
standing of the glassy properties of more realistic elastic models. As previously
pointed in Sec. 3.1.2, nonlinearities may emerge, for instance, from the anisotropy
of the medium randomness. Thus the interest of such analysis is clear, especially
for many experimental setups. However, the scenario for the QKPZ dynamics in
presence of non-negligible thermal fluctuations is still an open question and only a
few attempts to clarify it have been carried out up till now [Ramasco et al. 2006].
Although we are not able to formulate any theoretical framework for the nonlinear
case, in this section we provide a first insight into this scenario from the analysis
of the local activity statistics. It could be considered as a counterpart survey of the
analysis provided by Ramasco et al. [2006].

The inclusion of nonlinear corrections up to the lowest order in V1 in the growth
equation leads to Eq. (3.15), which in terms of our discrete automaton model implies

vi(t) = K (hit1 +hic1 —2h) + X (hig1 — hi1)? +
+AYZpi(hy) + TV &5(t) + f (3.35)
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where v;(t) is again evaluated at time ¢ > 0 for all sites, and h;(t + 1) — h;(¢) + 1
if v;(t) > 0. The parameters are fixed to k = 10, AV2 = 20, A = 1, and
f ~ 1072 x f.(T = 0). The dimensionless temperature remains as T = T'(r/A%)/3,

Due to the nonlinear effect the activity rapidly spreads laterally, giving rise to
considerably different activity patterns to that the linear case. In contrast with the
A = 0 case, the thermally induced bursts of activity tend to overlap with the pre-
vious ones, giving rise to spatially extended events that correlate the interface at
large scales. We observe that for a range of intermediate temperatures around certain
fopt = 0.032 such correlation length extends over the whole system & ~ L and the
avalanches cover a macroscopic region of the system.

0 1000 2000 3000 4000 400 600 800 1000 1200 775 800 825 850 875
X X X

Figure 3.13: Activity pattern for a single realization of a system of size L = 4096 at tem-

perature iwt = 0.032 and A = 1. The left panel shows the whole system activity during a
time span of 10° steps after a long enough transient from the initial condition. The remaining
panels are cross-sections at scales 0.2 (middle) and 0.03 (right). The fractal structure of the
avalanches is evidenced as the rescaled sections seem to exhibit the same statistical properties
as the original one.

In Fig. 3.14 we plot the structure factor of the interface for several values of the
temperature after a transient long enough from the initial conditions. While for high
temperatures a crossover to pure thermal behavior is observed, with oy, = 0.5, at
T5,p¢ we observe that spatial correlations extend the whole system, with a roughness
exponent o = (.67 that, in agreement to that observed by Ramasco et al. [2006],
remains the same for a considerable range of temperatures around 75,,;.

Finally we analyze how these thermally induced avalanches affect the global ve-
locity of the interface. As previously observed in the linear case, there are large
correlations due to the presence of the bursts of activity. In Fig. 3.15 we show the
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Figure 3.14: Structure factor of an interface of size L = 4096. On the left the spatial power
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spectra is shown for high, low and ultra-low temperatures. At Zi = 0.4 (green) pure thermal
behavior is observed with cvg;, = 0.5. At ultra-low temperature 7" = 0.004 (blue) the unlikely
avalanches are not enough to correlate the interface, but at temperature 7,,,; = 0.032 (red)
such thermally induced events correlate the whole interface. On the right we plot the structure
factor for a range of intermediate temperatures around 7,,,;. Dashed line in the inset has slope
(2c0 + 1) = 1.95 and dot-dashed line (2 + 1) = 2.34.

spectral density of the velocity signal for several values of temperature. In the low
frequency limit we observe a power-law decay S(w) ~ wX(T)_ For ultra-low tem-
peratures T' < T, the signal velocity is uncorrelated with x ~ 0, while for high
temperatures y ~ 1/3 as corresponds to a freely moving KPZ interface [Krug 1991].
At intermediate temperatures we indeed observe long-range temporal correlations
with x(T') ~ 1.5 within a quite extent region around To.

3.3 Conclusions

In this chapter we have introduced a discrete model to study the local activity statis-
tics of a forced elastic interface in heterogeneous media at a finite temperature. The
model presents an up/down movement asymmetry that renders the model out-of-
equilibrium in the limit of zero temperature. The system exhibits three dynamical
regimes, two of which are equivalent to the ones observed in the QEW continuous
elastic model. Thanks to the discrete character of our model, the activity becomes
a binary variable and can be precisely tracked in space and time. The model shows
significant differences of the activity patterns in the three regimes, being specially
interesting those corresponding to the intermediate and low temperature regimes. In
order to analyze in a quantitative way these activity patterns, we have defined the
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Figure 3.15: Spectral density of the global velocity of the interface. Colored spectra cor-

respond to intermediate temperatures T = 0.016,0.020,0.024, 0.028, 0.032, 0.36,and 0.04
(from bottom to top). Black spectra correspond to ultra-low and high temperatures, with
T = 0.004 (bottom) and 7" = 0.4 (top) respectively. The dashed line has slope -1.5.

spatio-temporal distributions of the first-return and all-returns of activity. We find
that these probabilities show a power-law decay in the intermediate regime with ex-
ponents that depend on temperature. Simple scaling arguments based on an exponen-
tial distribution of energy barriers lead us to propose an expression for the temporal
probability distributions of activity in good agreement with simulations. The non-
equilibrium character of the model becomes relevant as the temperature is decreased
toward zero and the quasi-equilibrium arguments fail to describe the dynamics. In
this ultra-low temperature regime the activity statistics is similar to that observed in
certain discrete glassy systems [Sibani and Littlewood 1993, Sibani and Dall 2003,
Sibani and Jensen 2004].

One of the main results presented in this chapter concerns the novel approach
to study the problem of the relaxation of the driven elastic string in terms of the
local activity and avalanche statistics. We show that activity statistics is directly
connected with the interface velocity, the power spectrum S(w) ~ 1/wX of velocity
fluctuations, and the structure of avalanches of activity. Our analysis provides global
dynamical information from a local observable. We expect this can be useful in
experiments, in particular in those cases where only local proves can be used to
obtain information about the position of the interface.
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Part 11

Sociophysics
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CHAPTER

4 Introduction to social
models

4.1 Introduction

The application of Statistical Physics methods to social phenomena has recently at-
tracted the attention of theoretical physicists. Statistical Mechanics teaches us that,
even when it is impossible to foresee what a single particle will do, one can often
predict how a sufficiently large number of particles will behave. One may conjeture
that this can also be applicable to societies made of many individuals which interact
mostly locally with each other, like in classical statistical mechanical systems. This
approximation is probably too ambitious as social interactions are not mechanical,
but complex and hardly reproducible. Therefore these models cannot - and do not
pretend- reproduce the real Society. However, we expect that some aspects of col-
lective behavior and self-organization in a society may be reasonably well described
by means of simple statistical models. In recent years a number of such models
have been introduced and analyzed, giving rise to the new field of Sociophysics. In
contrast to classical systems studied by Statistical Physics, the particles (agents) and
interactions of a human society are not of an elementary but of a highly complex
nature. In many cases the thoughts, emotions and intentions of a single individual
are as complex as the complexity of the brain itself. Another fundamental difference
is that in physico-chemical systems the interactions lead to a blind, unintended self-
organization of the system , whereas the nature of interactions in sociology leads, at
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least partially, to intelligent "planed’ structures. In order to have a useful and, there-
fore, still sufficiently simple quantitative theory, those sociologic phenomena have to
be excluded and the full complexity of human behavior and interactions have to be
taken into account in the sense of a comprehensive microscopic theory. Sociophysics
studies phenomena where- at the level of the single individual- a complex mixture
of fluctuating rational considerations, emotional preferences and motivations finally
merge into one of relatively few well demarcated resultant attitudes. Social sys-
tems can then be quite well described at this level by Langevin and Fokker-Planck
equations where the interactions between individuals or agents can be understood
as the deterministic contribution, while the fluctuations due to political evolution,
economics, etc. are embraced in stochastic terms.

These systems can also be treated as agent-based models by means of simulations
based on the global consequences of local interactions of individuals. The origin of
agent-based modeling can be traced back to the 1940s with the introduction by Von
Neumann and Ulam of the notion of cellular automaton models [Neumann 1966,
Ulam 1960]. These individual-based models were primarily used for social systems
by Reynolds [1987], who tried to model the behavior of a flock of geese. In such
models the individuals might represent plants and animals in ecosystems, vehicles
in traffic, people in crowds, or autonomous characters in animation and games. The
agents interact in a given environment according to procedural rules tuned by char-
acteristic parameters, and the characteristics of each individual are tracked through
time. This stands in contrast to modeling techniques where the characteristics of
the population are averaged together and the model attempts to simulate changes in
these averaged characteristics for the whole population. Some of these individual-
based models are also spatially explicit since the individuals are associated with a
location in geometrical space or their position on a specified network. In this case
the models can also exhibit more complex features as, for instance, mobility of the
individuals around their environment (this would be a natural model, for example, of
an animal in an ecological simulation).

The number of different issues that Sociophysics embraces is quite large. The
most studied are probably language dynamics [Milroy 1960, Abrams and Strogatz
2003, Stauffer and Schulze 2005, Stauffer et al. 2007, Wang and Minett 2005, Bax-
ter et al. 20006], cultural dissemination [Axelrod 1997, Axelrod and Hamilton 1981;
2005, Castellano et al. 2000, Deffuant et al. 2000, Laguna et al. 2003, Vazquez and
Redner 2007] and opinion dynamics [Sznajd-Weron and Sznajd 2000, Slanina and
Lavicka 2003, Schulze 2003, Fortunato 2004, Bernardes et al. 2002, Galam 2004,
Stauffer and Martins 2004, Krapivsky and Redner 2003]. Other interesting topics
deal with crow dynamics, the emergence of hierarchies or traffic. Sociophysics is
also deeply related with other fields as Evolutionary Game Theory or Econophysics.
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In the following some examples are presented to provide a general overview of
the different topics in this field (opinion formation is excluded here, to be presented
in detail in the following section).

Language dynamics

The similarity of the evolution of human languages to biological evolution of
species is utilized to study the rise or fall of language use inside large groups of in-
dividuals. Like species, a language can split into several languages, it can mutate, by
modifying words or expressions over time, or it can face extinction. Such similarities
have fostered the application of models used to describe biological evolution in a lan-
guage competition context. These models can be based on macroscopic differential
equations (similar to Lotka-Volterra equations) or by microscopic Monte-Carlo sim-
ulations, where the state of each individual is monitored in time, incorporating the
birth, maturity and death of individuals. This very old idea of describing language
evolution as being similar to the evolution of biological species has been recently
quantified by Sutherland [2003].

A well-known example of language competition modeling was proposed by Abrams
and Strogatz [2003]. Their study considers a two-sate society, i.e., a community in
which there are speakers of either a language X or a language Y. They describe
the competitive evolution of both languages in the community by means of a Lotka-
Volterra equation. Considering a constant population of N individuals where ev-
erybody speaks one of the two languages, the dynamics is given by the simple rate

equation
dx

dt
where z is the fraction of the population that speaks X and the fraction of Y speakers
is given by y = 1 — 2. The parameter s, with 0 < s < 1, gives the relative status
(prestige, usefulness) of language X (for Y it will be 1 —s) and a is some positive ex-
ponent. The above equation thus describes how people switch from one language to
the other one. Y speakers switch over to language X with a rate proportional to z%s
(the complementary way to switch from X to Y'). The factor z* takes into account
that people prefer to switch to a widely spoken language from a rare language.

=1—-z)z%s —z(l—x)(1—-3), 4.1)

This model predicts that one language will die out and the other will be spo-
ken by everybody. The dynamics has only two stable fixed points, corresponding
to z = 0 and x = 1. There is a third fixed point, corresponding to = 1/2 and
s = 1/2, when both languages are equivalent. However, it is unstable as confirmed
by numerical simulations of a microscopic version of the model on different graph
topologies [Stauffer et al. 2007]. These results are illustrated in Fig. 4.1. In sum-
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Figure 4.1: Fraction of population speaking first language (X) in the two-language model of
Abrams and Strogatz. Left: Symmetrical initial distribution with z(t = 0) = 1/2, a = 1.31,
and s = 0.1,0.2,0.3,0.4, 0.5 (from bottom to top). The fraction x decays rapidly for small
values of the s < 1/2 parameter while for s = 1/2 both languages are equally strong and
nothing changes. For larger s > 1/2 the other language dominates in a symmetrical behavior.
Right: Initial distribution favors one of the languages, with z(t = 0) < 1/2, a = 1.31 and
s =0.1,0.2,0.3,0.4,0.5,0.6 (from bottom to top). In this case x decays toward zero even
for s = 0.5 and 0.6. Only for s = 0.7 and above x approach unity in the final state. From
Ref. [Stauffer and Schulze 2005].

mary, simulations of this model predict that one of the two languages wins, and this
is the language which is favored by a larger initial population or a more favorable
status s. In their seminal paper, Abrams and Strogatz tested the model with real
data on the proportion of speakers over time collected from 42 different regions of
Peru, Scotland, Wales, Bolivia, Ireland and Alsace-Lorraine. They showed that the
model is able to reproduce the decrease in time of the number of speakers of various
endangered languages.

Several modifications of the model have been proposed to consider richer lan-
guage dynamics. For instance, in Ref. [Mira and Paredes 2005] bilingual speak-
ers were introduced in the original Abrams-Strogatz model. In this case the system
reaches a steady state characterized by the coexistence of one group of monolin-
gual speakers with a group of bilinguals. Monolingual speakers of the endangered
language are bound to disappear, but the survival of the language is ensured by bilin-
gualism. In [Patriarca and Leppédnen 2004] the effect of population density is in-
troduced, by turning the rate equation Eq. (4.1) into a reaction-diffusion equation.
In this version people can move on a plane divided in two regions, and in each of
them one language has a higher status that the other one, respectively. The system
converges to a stable configuration where both languages survive, although they are
mostly concentrated in the zones where they are favored.
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Cultural dynamics

A large number of models have been recently proposed to describe cultural and
population dynamics [Axelrod 1997, Castellano et al. 2000, Deffuant et al. 2000,
Laguna et al. 2003, Vazquez and Redner 2007]. As an example, we briefly intro-
duce here a cooperation model introduced by Axelrod and Hamilton [2005; 1981]
in which interaction between peers of different cultural groups lead to a tendency
toward cooperation between similar featured agents.

An open system is considered on a square lattice and the agents are labeled with
three different tags; the first one specifies its group membership ( the original version
of the model considers four different cultural groups), the second one specifies its
tendency to cooperate or defect with the agents from its own cultural group, and the
third one quantifies the tendency to cooperate with individuals from different cul-
tural groups. Four different strategies are then observed, namely ethnocentric (only
in-group cooperation), generous (collaboration with any individual), egoist (non col-
laboration), and mole (only out-group collaboration).

The simulation begins with an empty space. At each time period the system is
updated considering several phenomena:

e Immigration: A new agent with random traits enters at a randomly empty site.

e Reproduction: Each agent creates analogous individuals at the adjacent sites
with probability R and considering certain probability for an aleatory mutation M.

e Interaction: Each pair of neighbors interact according to the one-move Pris-
oner’s Dilemma in which each one chooses (independently) whether or not to coop-
erate with the other. Cooperation has a cost, namely a fixed decrease of the repro-
ductive capability R in a fraction n. In contrast, receiving help increases R in m > n.

e Death: Each individual dies with certain probability.

This simple rules lead to a dominance of ethnocentric strategy even when fa-
voritism toward similar others is not built in to the model. Fig(4.2) shows how a run
of the model looks like. After a large time span the model exhibits a great predomi-
nance of the ethnocentric strategy.
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Figure 4.2: A typical run of the model after 100 periods (left) and 2000 periods (right). The
shading of the foreground of a cell indicates the agents strategy toward others of its own color,
with a dark dot indicating cooperation. The shading of the background of a cell indicates the
agents strategy toward agents of other colors, with black indicating defection. Thus agents
using the ethnocentric strategy have a dark dot on a black background, and egoist agents have
a light dot on a black background [Axelrod and Hamilton 1981].

4.2 Opinion formation models

The spread and evolution of opinions in a society has always been a central topic
in Sociology, Politics and Economics. Among other aspects, the building (or the
lack) of consensus in social systems has been focus of much interest. The first opin-
ion dynamics designed by a physicist was a model proposed in 1971 by Weidlich
[1971]. Later on Ising-like models made their first appearance in opinion dynam-
ics [Galam et al. 1982, Galam and Moscovici 1991], in which the spin-spin cou-
pling represents the pairwise interaction between agents. Since then a number of
models have been considered in order to mimic the dynamics of consensus in opin-
ion formation [Sznajd-Weron and Sznajd 2000, Slanina and Lavicka 2003, Schulze
2003, Fortunato 2004, Bernardes et al. 2002, Galam 2004, Stauffer and Martins 2004,
Krapivsky and Redner 2003]. They are basically cellular automata, where one starts
by assigning, usually at random, a set of numbers to any of the /N agents of a com-
munity. One of these numbers is the opinion, and the others may describe specific
features of the agents, like persuasiveness, tolerance, etc. Society is modeled as a
graph, and each agent interacts with its graph neighbors. The procedure is iterative:
at each iteration one takes a set of interacting agents and updates their opinion accord-
ing to a simple dynamical rule. After many iterations, the system usually reaches a
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state of static or dynamic equilibrium. The dynamics usually favors the agreement of
groups of agents about the same opinion, so that one ends up with just a few opinions
in the final state. In particular, it is possible that all agents share the same opinion
(consensus), or that they split in two or more factions. Here we briefly present some
basic types of opinion formation models.

4.2.1 Voter model

A well established model class is known as the Voter Model (VM). It is based on
the idea that the adoption of a given opinion (behavior, attitude) depends on its fre-
quency in the neighborhood. VM is possibly the minimal model for opinion spread-
ing and one of the simplest models of nonequilibrium statistical mechanics with non-
conserved dynamics. It is defined as a set of IV voters with two opinion states (or
spin) s; = £1 located at the nodes of a graph. The elementary dynamical step con-
sists in randomly choosing one node and assigning to it the opinion, or spin value,
of one of its nearest neighbors, also chosen at random. This dynamics describes a
coarsening process driven by interfacial noise. In sociophysical terms it mimics the
homogenization of opinions through the confrontation of peers and reflects a com-
plete lack of self-confidence of the agents.

The asymptotic behavior of the ordering process highly depends on the dimen-
sion of the graph where the dynamics is defined. On regular graphs of dimension
d < 2 the system eventually converges to an ordered state with all agents sharing
the same opinion. This is an absorbing state since the system cannot escape from it
once it is reached. In this case the time needed to reach consensus scales as 7 ~ N2
ford = 1and 7 ~ NIn N for d = 2. On regular lattices with d > 2 (as well as
in small-world networks and scale-free graphs) the VM dynamics is unable to order
the system in the thermodynamic limit of large systems. Starting from a random ini-
tial condition and after an initial transient the system falls in a metastable partially
ordered state. Therefore the critical dimension of the VM is d, = 2 [Krapivsky and
Redner 2003, Krapivsky 1992]. However, in a finite system this metastable state has a
finite lifetime, as a finite fluctuation takes the system from the metastable state to one
of the two absorbing states. Therefore, the average consensus time for a finite sys-
tem above the critical dimension is given by 7 ~ N. A standard order parameter to
describe the ordering dynamics is the average interface density, p,, (t), defined as the
fraction of links connecting sites with different spin value. These connections form
the surface where the interfacial coarsening process takes place. In the coarsening-
phase (where p,,(t) — 0 when t — o0) the asymptotic regime toward the ordered
state is characterized in d = 1 by a power law p,,(t) ~ t~Y/2, while at the critical
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Figure 4.3: Illustration of the domain growth in the two-dimensional VM for a system of
size 256 x 256 sites. Top: Evolution at different times from an initial compact bubble of
opinion (+) (agents with opinion (—) are depicted in white). Bottom: Same from symmetric
random initial conditions. Ref. [Dornic et al. 2001].

dimension d, = 2 a slow logarithmic decay is found p,,(t) ~ 1/Int [Dornic et al.
2001].

In the VM temperature is absent but since the dynamics is noiseless (only inter-
facial noise is present) it works at zero temperature in nature. However, the critical
temperature is also zero. If one introduces noise, by allowing spontaneous changes
of opinion, the system does not coarsen in any dimension [Ben-Naim et al. 1996],
even for d < d.

This model has been widely studied in many different versions and dimensions [Castel-
lano et al. 2003], mostly due to its intrinsic interest in non-equilibrium statistical
mechanics. The reasons for its success are simplicity (the intuitive ‘convincing’
rule) and the profound relationship with other non-conserved coarsening processes,
as for instance the Ising model with Metropolis dynamics at 7" = 0 (Glauber ki-
netic Ising model). In both models the dynamics gives rise to coarsening patterns
characterized by a correlation length £(¢) ~ +/t. However in Glauber dynamics
phase competition is driven by surface tension and the interface density decays as
pm(t) ~ 1/€(t) ~ t~1/2 while in the VM with d > 1 this surface tension is absent.
Only in d = 1 both models are actually equivalent [Ben-Naim et al. 1996].

4.2.2 Social impact models

The psychological theory of social impact describes how individuals feel the pres-
ence of their peers and how they influence other individuals. The impact of a social
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group on a subject can depend on the number of individuals in the group, on their
convincing power, or on the distance from the subject (where the distance may refer
both to spatial proximity or to the closeness in an abstract space of personal relation-
ships). The first mathematical model to describe social impact effect was introduced
by Latané [1981]. In this model each individual is characterized by two random pa-
rameters that estimate the strength of its action on the others: persuasiveness p; and
supportiveness s;. They describe the capability to convince someone to change or
keep its opinion, respectively. These parameters conform the total impact I; that an
individual ¢ experiences from its social environment. Then an individual state flips
if the pressure in favor of the opinion change overcomes the pressure to keep the
current opinion.

Other models have been proposed to account for more complex processes re-
lated with social impact [Kohring 1996, Bordogna and Albano 2007, Holyst et al.
2001]. Probably the most popular one that studies social impact effects is the Szanjd
model [Sznajd-Weron and Sznajd 2000], based on the idea that the impact exerted by
a social group on an individual depends on the size of such group.

Sznajd model

One starts with a simple observation: an individual is more easily convinced to
change its mind if more than just a single person tries to persuade him. This ten-
dency of any individual to imitate the behavior observed in large enough groups is
called social validation. In their original paper, Sznajd-Weron and Sznajd proposed
a two states s; = %1 Ising-like spin model considering this particular effect of social
impact [Sznajd-Weron and Sznajd 2000]. They defined a one dimensional chain with
periodic boundary conditions where each spin (or lattice site) + = 1, ..., N interacts
with its neighbors following two basic rules:

Rule 1: If two consecutive lattice sites have the same opinion, s; X s;+1 = 1,
then s;_1 = 5; = Sj4+1 = Sit+2-

Rule 2: If two consecutive lattice sites have a different opinion, s; X s;4+1 = —1,
then s;_1 = s;4+1 and s;49 = s;.

So, if the pair of agents share the same opinion, they successfully impose their
opinion to their neighbors (this rule resembles ferromagnetism). However, if the
two agents disagree, each agent imposes its opinion to the other agent’s neighbor
(as in anti-ferromagnetism). Opinions are updated in a random sequential order.
Starting from a totally random initial configuration, two types of stationary states are
found, corresponding to either consensus, with all spins up (m =, s;/N = 1)
or down (m = —1), or to a stalemate, with the same number of up and down spins
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Figure 4.4: Left: Dependence between initial concentration of supporters of opinion (+),
C4(t = 0), and the probability of reaching the steady state m = +1 (squares), m = 0
(triangles), or m = —1 (circles). Even a relatively small group can make the system go to the
stalemate state. However, to win the group has to be greater (to have the 50% of probability
to win the initial concentration has to be of 70%). Right: Decision time distribution exhibit
power law behavior with exponent ~ —1.5. Picture by the present author, based on the
original paper by Sznajd-Weron and Sznajd [2000].

in antiferromagnetic order (m = 0). The latter is a consequence of the second rule,
which favors antiferromagnetic configurations, and has a probability p = 1/2 to
be reached when both opinions are equally distributed in the initial configuration.
In these conditions each of the two consensus states occurs with probability p =
1/4. In a more general case, the dependence between the final state and the initial
concentration of supporters is shown in Fig. (4.4). The relaxation time of the system
into one of the three possible attractors has a log-normal distribution [Behera and
Schweitzer 2003]. It was also observed that a change of opinion is usually followed
by further changes, and these periods of frequent changes are followed by periods
of stagnancy. Indeed, the decision time, which is the time that an agent needs to
change its opinion, decays as a power-law in time P(7) ~ 773/2. The fraction
x of individuals who never changed opinion decays also as a power-law in time,
P,.(t) ~ t~3/8, with the same exponent as the 1-d Ising model.

However, the original Sznajd model does not satisfy the principle of social vali-
dation that intends to represent (that was enunciated as “United we stand and divided
we fail”). It has been proved in Ref. [Behera and Schweitzer 2003] that the Sznajd
model in one dimension is equivalent to a voter dynamics in which each spin is in-
fluenced by its next-nearest-neighbor. Therefore, the original Sznajd model does not
exhibit the features that motivated its introduction, as each spin is influenced only by
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a single spin, not by a pair. On the other hand these rules lead to a quite unrealistic
antiferromagnetic state in terms of a real community (although it is possible in other
spin systems). Because of this, the second rule was soon replaced in subsequent ver-
sions of the model. In the most popular alternative only the ferromagnetic rule holds,
so the neighbors of a disagreeing agents pair maintain their opinions [Sznajd-Weron
and Sznajd 2000]. Other possibility was proposed by Sanchez [2004], in which each
spin of the disagreeing peer convinces its own neighbor (that is, if s;5;41 = —1, then
s; = Sj—1 and s;41 = S;4+2). These versions of the model exhibit similar behavior
as the original one with the exception of the antiferromagnetic steady-state. In this
case the final state is clearly determined by the initial configuration: if the initial
magnetization is m > 0 (m < 0) the system always attains consensus with m = +1
(m = —1).

An exact solution for the Sznajd-like dynamics on a complete graph was later de-
rived by Slanina and Lavicka [2003]. These results were obtained for the simplified
“two against one” version. If two agents, randomly taken, are in agreement they are
able to convince to another randomly chosen agent, otherwise nothing hapens. The
evolution equation for the probability density P(m,t) that the system has magneti-
zation m at time ¢ reads:

OP(m, ) 0

5 = "3 [(1 —m?)ymP(m, T):| . (4.2)

The general solution of this equation is

2y, 1=lef —t_ T

Pl ) = (1= m?m] 7 (7 o= ) (4.3)
where the function f depends on the initial conditions. In the particular case P(m, T =
0) = §(m — my) the distribution P(m,t) is a d-function at any moment of the evo-
lution. It drifts toward the extremes +1 if mg > 0 or —1 if mg < 0. This analysis
properly recovers the above exposed results obtained by means of numerical simu-
lations. The average time to reach the steady state of the system, starting from an
initial fraction p of up’ spins, can also be deduced from Eq. (4.2):

2p—1] 1
Tet) ~ — In(——————— 4.4
which diverges for p — 1/2 according to the presence of a phase transition at
moy = 0.
Later modifications of the model have certainly brought the Sznajd model closer
to reality, for instance by changing the topology of the chain to more complicated
structures like two dimensional lattices [Stauffer et al. 2000], scale free networks
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[Bernardes et al. 2002, Sousa 2005] or a fractal structure coming from percola-
tion [Moreira et al. 2001]. Another step toward a realistic model for opinion dy-
namics has been done by increasing the range of interactions [Schulze 2003] and the
number of agent states [Sznajd-Weron and Sznajd 2005, Fortunato 2004].

4.2.3 Majority rule models

This class of opinion models includes all the models in which the process of opinion
formation is favored by a majority or minority opinion. Some of them are defined in
terms of a single spin that adopts the majority/minority opinion in its neighborhood.
For instance the model proposed by Ligget [1985], in which a single spin takes with
probability ¢ (or 1 —g) the sign of the minority (or the majority) of its neighbors. Also
the Klimek model [Klimek et al. 2007], where an agent is convinced if there is at least
a fraction p of its neighbors sharing the same opinion. In some other majority rule
models the whole system is splitted in discussion groups in which majority/minority
tendencies dominate the dynamics [Krapivsky and Redner 2003, Mobilia and Redner
2003]. Among all these models, probably the most studied one is the introduced
by Galam [1990].

Galam model

The simplest version of the model considers two possible option states s; + 1 and
a population of N individuals that randomly gather in discussion groups of fixed
size G. The basic premise of the model is that all the people within a group adopt
the opinion of the majority of the discussion cell. In the case of a tie (which may
occur only if the size cell is an even number) a bias is introduced in favor of one of
the opinions, say (+), and this opinion prevails in the group. This prescription is
inspired in the principle of social inertia: people are reluctant to accept a reform if
there is no clear majority in its favor.

The main finding of this model is that any initial distribution of voters leads to
a collective stable state with a total polarization of the opinion along either one of
the two competing states. If Py (¢) = N, (t)/N is the probability of having the (+)
opinion at time ¢, the final state will be P, = 1 for initial density Py (¢t = 0) > p,
and zero otherwise. In the case of odd size groups this critical density is exactly
pe = 1/2. By contrast, groups of even sizes have p. # 1/2 as an effect of the tie
rule. This implies that even an initially minority opinion can win in the long term.

Krapivsky and Redner [2003] made further analysis of the behavior of the system
for odd size groups, for which both possible opinions are symmetrical. They analyti-
cally solved the mean-field limit for arbitrary discussion groups of size G = 3. They
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found two stable fixed points at P, = 0, 1 and an unstable one at Py = 1/2. Starting
from any initial concentration P (¢ = 0) # 1/2 all agents will converge to the state
of the initial majority, recovering Galam’s results. It was also obtained that the time
needed to reach this consensus grows as 7 ~ In V. In Ref. [Krapivsky and Redner
2003] the authors also analyzed the model on finite-dimensional lattices. In this case
the initial majority also determines the steady state of the system but the consensus
time grows as a dimension-dependent power of N. The 1-dimensional model is the
only case where the minority can ultimately win, with 7 ~ N2.

Several versions of this model have been recently proposed. A generalization for
discussion groups distributed according to a given distribution of gathering sizes has
been achieved [Galam 2002; 2003, Tessone et al. 2004], and the same asymptotic
behavior with 7 ~ In N was observed (here the value of p. depends of the employed
distribution of group sizes).

An interesting modification was also introduced in the model in order to ana-
lyze the presence of some agents called contrarians- namely, people who are in a
“nonconformist opposition”. That is, people who always adopt the opposite opin-
ion to the majority [Galam 2004, Stauffer and Martins 2004]. In stock markets for
instance, contrarians are those investors who buy shares of the stock when most oth-
ers are selling, and sell when others are buying. The existence of a high proportion
of contrarians in a society may play an important role in social dynamics. With a
small fraction a of contrarians and odd sized groups, the unstable separator is still
P, = 1/2, but the system no longer leads to total polarization: starting from any
initial concentration P (t = 0) # 1/2, the fully ordered state with a unique opinion
becomes mixed with a stable majority-minority splitting. Then, the presence of a
small concentration of contrarians preserves the minority opinion in the population.
On the other hand, for concentrations of contrarians above some critical fraction a,
the population equally divides between the two possible opinion states. The system
exhibits a disordered phase with no opinion dominating (m = ), s;/N = 0).

Further studies of the Galam model in presence of contrarians have extended
it to multi-state opinions [Chen and Redner 2005], spatial distribution of meeting
cells [Tessone et al. 2004] or even movement of the agents in space [Stauffer 2002].

4.2.4 Bounded-confidence models

In the models considered so far opinion is a binary variable, which represents a rea-
sonable description in several instances. However, there are cases for which the po-
sition of an individual can vary smoothly from one extreme to the other of a range of
possible choices. Continuous opinion states invalidate some of the concepts adopted
in models with binary choices, like the concepts of majority of an opinion or equality
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of opinions, so they require a different framework. The initial state is usually a pop-
ulation of IV agents with randomly assigned opinions, represented by real numbers
within some interval. In contrast with binary opinion dynamics, here all the agents
usually start with different opinions, and the possible scenarios are more complex,
with opinion clusters emerging in the final stationary state. Such opinion clusters
can be one (consensus), two (polarization) or more (fragmentation). Discussion only
takes place between two agents if their opinions are sufficiently close to each other.
This realistic aspect of interaction is called bounded confidence. It is usually intro-
duced by employing the tolerance parameter € such that an agent with opinion = only
interact with other agents whose opinion lies in the interval |z — &, x + £|. One of the
most popular bounded-confidence models is probably the Deffuant model [Deffuant
et al. 2000].

Deffuant model

This model is based on a compromise strategy. After a constructive debate, the po-
sitions of the interacting agents get closer to each other by a relative amount y. The
dynamics is defined on a complete graph and based on random binary encounters.
Let ¢ and j be the pair of interacting agents at time ¢, with opinions x;(¢) and z;(t),
respectively (initially chosen at random in the interval [0,1]). If the difference of
opinions exceeds the tolerance parameter € then nothing happens. Otherwise,

zj(t+1) = @;(t) + plri(t) — ;1)) - (4.6)

The parameter p is the so-called convergence parameter, and its value lies in
the interval [0,1/2]. For any values of the parameters, the average opinion of the
interacting pair is the same before and after the interaction, so the global average
opinion of the population is an invariant for this dynamics.

The dynamics gives rise to different patches with an increasing density of agents,
that will become the final opinion clusters. Once each cluster is sufficiently far from
the others, so that the difference of opinion for agents of different clusters exceeds
the threshold, only agents inside the same cluster may interact, and the dynamics
leads to the convergence of the opinions of all agents in the cluster to the same value.
Therefore, the final opinion configuration is a succession of Dirac’s delta functions
centered around well defined opinions.
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80 100

Figure 4.5: Opinion evolution of a population of N = 500 agents under Deffuant dynamics
for ¢ = 0.25. The system is considered on a complete graph, i.e., everyone may interact
with everybody else. The dynamics leads to a polarization of the population in two fac-
tions [Castellano et al. 2007].






CHAPTER

The effect of social
temperature

In this chapter we deal with Ising-like opinion formation models as some presented
in the previous chapter. We include here the effect of a stochastic driving that can
be understood as a simplified description of the interplay between an agent, its sur-
roundings, and a collective climate parameter, which is usually referred to as social
temperature of the system. The chapter is fully devoted to our own original research.
In the first part we understand the effect of this social temperature as a tendency of
certain individuals to act in the opposite way to the procedural rules of the model.
In the second part of the chapter we implement such effect by means of spontaneous
changes of opinion that the agents may experience due to the effect of this stochastic
driving.

5.1 Emergence of contrarian-like behavior

An important aspect, recently discussed within opinion formation models, has been
the presence of some agents called contrarians, people that are in a “nonconformist
opposition”. As we have discussed previously (cf. Sec. 4.2.3), such individuals rep-
resent people that always adopt the opposite opinion to the majority [Galam 2004,
Stauffer and Martins 2004, Schneider 2004]. The existence of a significant propor-
tion of contrarians in a society may play an important role in social dynamics (think
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for instance of referendums or stock markets dynamics). In an attempt to include
the contrarian effect in existing social models, a number of previous studies have
considered contrarian agents as an initial condition, either a given fixed density of
contrarians is introduced in the model by hand (annealed disorder) [Galam 2004]
or a fraction of the population is randomly selected from the start to always behave
as a contrarian (quenched disorder) [Stauffer and Martins 2004]. This is somewhat
artificial and one would expect that simple models of opinion spreading should spon-
taneously lead to the existence of a fraction of contrarians among the population
as some sort of emergent property. In the following we analyze the emergence of
contrarian-like behavior that results from adding a stochastic term to the procedu-
ral rules that define the model. As a typical model we employ the Sznajd model
introduced in Sec. 4.2.2.

5.1.1 Mean-field approach

Following the previously discussed approach made by Slanina and Lavicka [2003]
for the Snajdz-like dynamics, we consider the simplified version in which two agents
are chosen randomly and, if they are in consensus, then another randomly chosen
agent is convinced by them (called “two over one” case). Up to second order in
1/N (with N the total number of agents) the Fokker-Planck equation (FPE) for the
probability of having a magnetization m at time ¢ (given a certain initial condition at
time £y < t) results to be

+ <2;\f> 8?)222 [(1 — mQ)P(m,t)} , (5.1)

where the magnetization m = (NT — N7)/N, and N*, N~ are the number of
agents supporting the (+) or the (—) position, respectively (with Nt + N— = N).

Now we include the effect of social temperature by considering certain probabil-
ity p that the rules of the Sznajd model are fulfilled (p < 1), while there is a prob-
ability 1 — p that those rules are not fulfilled (and then an agent adopts the opposite
option than the one indicated by the rules). Following the same procedure that yields
Eq. (5.1), we arrive at a FPE for P,(m, t) (idem for P(m,t), when a probability p is
included) that reads

%Pp(m,t) S %{ [(6p —5)m — (2p — 1)m3)}Pp(mat)}

+ 2;[) aan;{ 320 - (2p— Dm2|By(m, 1)}, (52)
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The latter FPE has the general form & = — -2 [A(m) P(m, t)]+3 aaTjg [B(m)P(m,t)],

. . . . P
and can also be written as a continuity equation 9 gtn’t) + %J (m,t) = 0 for the

current J(m,t) = A(m)P(m,t) — %a%[B(m)P(m,t)]. In the case of dP/Jt = 0
and J = 0 the stationary probability distribution function (PDF) results to be

stat ~ " (6p - 5)“(217 - 1)u3 N
Ps'*(m) ~ exp {21\]/1 33 (ap — 1z T = T 1)m2} (53)

and it can also be expressed in terms of an effective potential as P;t“t(m) ~ e Vers,

The analysis of this stationary solution for varying p shows that there is a thresh-
old value, p = p., such that for p > p. the system is bistable with a probability
density P5'*(m) having two maxima at m+ = /(6p —5)/(2p — 1). In this case
the system gets ordered by spontaneously selecting one of the stable solutions .
On the contrary, for p < p. the system becomes monostable and disordered with a
magnetization density peaked at m = 0 in which no dominant opinion survives. The
threshold p. can be calculated in this mean-field approximation equation by equating
m4 = m_, as the value of p at which all three extrema coalesce into single minimum
at m = 0, so that we find p. = 5/6 (see Fig. 5.1).

For details of calculations carried out in this section we refer the reader to ap-
pendix A.

p<p, p=p, p>p,

Veff

o
o
T

Potential minima
& o

T T

|

- | I I | I -
Yo 08 0.85 0.9 0.95 1
p

Figure 5.1: The effective potential obtained from Eq. (5.3) shows, for large values of p,
two minima m. that become closer to each other for decreasing values of p (second order
transition). Bottom: Position of the potential minima vs. p. When both extrema coalesce
into m = 0, the transition point is reached. 7op: Effective potential for (from left to right)
p=20.7,p=p. =5/6,and = 0.9.
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The picture emerging from the mean-field approach is clear. The effect of includ-
ing thermal fluctuations in Sznajd type models immediately leads to a spontaneous
contrarian-like effect. Some agents randomly take decisions that oppose the rules
of the model, indicating some undecideness in a fraction of the population. If such
a fraction overcomes the critical threshold (p. = 1 — p. = 1/6) the system will
reach a stalemate situation, analogous to the contrarians effect discussed in [Galam
2004, Stauffer and Martins 2004, Schneider 2004]. Furthermore, this critical density
of contrarians is in good agreement with the numerical result presented by Galam
in [Galam 2004] for groups of size G = 3.

5.1.2 Monte-Carlo simulations

In what follows we report on Monte Carlo simulations in order to test the above-
discussed mean-filed results. We have studied the model on regular lattices and
small-world networks (which in the limit of high rewiring probability should re-
produce the mean-field results). To make such an analysis we consider now the
more general case in which four spins are updated at each time (version “two against
two”). In order to avoid the spurious antiferromagnetic solution of the original Sz-
najd model, we have studied a convenient variation proposed by Sdnchez [2004] and
previously introduced in Sec. 4.2.2:

Rule 1: if s; X s;41 = 1, then s;_1 and s;2 adopt the direction of the selected
pair [z,7 + 1].

Rule 2:: if s; X s;41 = —1, then s; adopts the direction of s;_1 and s; 1 the
direction of s;9.

In the case of disagreement of the pair (s;, $;+1), the second rule makes the agent
1 to feel “more comfortable” since it ends up with at least one neighbor having its
same opinion. This variation of the Sznajd model does not affect the basic behavior
and indeed has been shown to exhibit the same type of scaling features as the original
model [Sanchez 2004], while lacking the spurious antiferromagnetic phase.

As indicated above, we introduce a stochastic mechanism in the dynamics in
order to consider the effect of certain social temperature. At each Monte Carlo step
we assume that, with a probability p, the rules are applied as indicated above, while
the opposite happens with a probability 1 — p. We define the probability p in analogy
with previous works of Weidlich [Weidlich 2002; 1991] and Babinec [Babinec 1997,
Kuperman and Zanette 2002],

p = Aexp [%] , 5.4)
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where « is some fixed parameter related with the strength of nearest-neighbor inter-
actions, which just defines the units in which temperature is measured (we use natural
units in what follows, a = 1), and 6 is the collective climate parameter (social tem-
perature). A is just a normalization parameter (A~ = exp[(c) /8] + exp[—(c)/0)).

The asymptotic behavior of p is

e if § — 0, we have p — 1, indicating that without thermal fluctuations we
recover the original dynamics;

e if @ — oo, we have p — 0.5, the probability of fulfilling the rules or the
opposite is the same. The model has a totally random behavior.

a) One-dimensional lattice results

Firstly we report on our results on the one-dimensional lattice, where each lattice
site is occupied by one agent with opinion (spin) s; € {+1, —1}. We started with
a randomly distributed opinion of the NV agents and let the system evolve toward its
stationary state. For & = 0 a consensus state arises (m+ = +1). However, as 6 is
increased we observe a phase transition towards the stalemate state. Nonetheless,
in a different way that in the mean-field case, this transition is discontinuous (first
order) as shown in Fig. 5.2.
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Figure 5.2: Discontinuous phase transition for one-dimensional regular lattice: the jump of
the order parameter m from 41 to zero occurs abruptly. That discontinuity is clearer the
larger NV is. Top: Stationary PDF for § = 0.44, 0.46, 0.6 (from left to right), and N = 512.
For small values of 6 a relative maximum appears at m=0 and dominates for § > 6*, as
corresponds to a first order transition
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b) Fully-connected network results

In order to compare with the mean-field results, we have studied our model in a fully
connected network, which is expected to behave as the mean-field theory. Indeed,
in these conditions we observe that the transition between order and stalemate states
becomes continuous. The qualitative agreement with the previously discussed the-
oretical result is apparent (see Fig. 5.3). The critical density of contrarians needed
to reach the phase transition can be approached as p.(6*) ~ 1 — p(6*). In the large
system size limit this value tends to p.(6*) — 1/3, as is shown in Fig. 5.4.
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Figure 5.3: Stationary PDF for a fully-connected lattice of N = 512. From left to right
6 = 0.30, 2.30, 2.60, and 2.90. A second order transition toward a ‘“‘stalemate” state is
apparent: the most probable values of the order parameter m change continuously from m =
+1 (bistable) to m = 0 (monostable).
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Figure 5.4: Critical density of contrarians p. versus system size N for a fully connected
network. In the large system size limit this value tends to p.(60*) — 1/3.
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¢) Small-world network results

In order to find the intermediate behavior between one-dimensional and the mean-
field-like approach, we have applied the rules of the model on a small-world network.
Such networks are characterized by Poissonian distributions of the number of links
and short distances between nodes. To generate them we employ the Watts-Strogatz
algorithm [Watts and Strogatz 1998], departing from a regular lattice with connec-
tions up to n neighbors and then redirecting the links with probability . For further
reading on small-world networks see Sec. 6.4. We observed that even for small val-
ues of r the system undergoes a continuous phase transition from order to disorder as
predicted by mean-field theory [c.f. Fig. 5.5]. We also observed that for increasing
values of the rewiring probability r, the critical temperature 0* separating the ordered
and disordered phases also increases, as shown in Fig. 5.6.
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Figure 5.5: Stationary PDF for a small-world lattice of N = 512 obtained from a regular
lattice with connections up to n = 5 neighbors that are redirected with probability » = 0.1
(top) and r = 0.8 (bottom). A second order transition towards a “stalemate” state is observed
even in case of low rewiring probability.

Summarizing, we observe a contrarian-like effect analogous to the one described
in [Galam 2004]. If social temperature is above a critical threshold, the density of
contrarians is high enough to avoid the consensus, and the opinion is equally dis-
tributed between the two options leading to a zero global magnetization state with
no opinion dominance. In some cases the critical density of contrarians needed to
force the stalemate state, p. = 1 — p(6*), may be quite large (we observed p. ~ 1/3
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Figure 5.6: 0%, the critical temperature for the phase transition, vs. r, the probability of link
redirection. It is apparent that for increasing values of r (larger small-world effect the lattice
has), 8* increases monotonously. In all cases N = 512.

for the “two against two” model on fully-connected networks). However, even such
large concentrations of contrarians could be considered in realistic systems, as the
agents adopt this role dynamically. We do not have to assume the presence of a
large fixed group of “nonconformist agents”, as is done when they are introduced by
hand [Galam 2004, Stauffer and Martins 2004].

5.2 Spontaneous change of opinion. Van Kampen’s
approach

In this section we try to implement the thermal effect by means of agents that can
suffer spontaneous changes of opinion. We work on a simple opinion formation
model, analogous to the one studied in [Vazquez et al. 2003, Vazquez and Redner
2004]. The system consists of two parties, A and B, and an “intermediate” group I,
that we call undecided agents. We consider that members of groups A and B have
well established positions about a given subject (e.g. European constitution) and [
constitutes a group of undecided agents that could possibly be converted to one of
the dominant positions. We assume that the supporters of parties A and B do not
interact directly, but only through their interaction with group /. However, we do not
consider that members of I can convince those of A or B, mainly because they do not
have a definite opinion, but instead we assume that there is a nonzero probability of a
spontaneous change of opinion from I to the other two parties and viceversa I = A
and I < B. We will see that this probability of spontaneous change of opinion
(implying the existence of a social temperature) prevents the system from reaching a
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consensus. Instead of consensus, we find that each party has some statistical density
of supporters, and there is also a statistical stationary number of undecided (/) agents.

Our aim is to write a master equation for this toy model, and study its behavior
via a van Kampen’s (2-expansion approach [van Kampen 1981]. After determining
if, in this case, the conditions for the validity of using such an approach are fulfilled,
we will obtain the macroscopic evolution equations for the density of supporters of
A and B parties, as well as the Fokker-Planck equation governing the fluctuations
around such deterministic or macroscopic behavior. The same approach also gives
information about the typical relaxation behavior of small perturbations around the
stationary macroscopic solutions.

5.2.1 The model and the approach
Description of the model

We consider a system composed by three different groups of agents, namely N 4 and
Np for the number of supporters of the A and B parties, respectively, and a group of
undecided, indicated by N;. We have the constraint Ny + N + Ny = N, where N
is the total number of agents. Such a constraint implies that, for fixed N, there are
only two independent variables N4 and Np. As mentioned above, the interactions
we are going to consider are only between A and I, and B and /. That means that
we do not consider direct interactions among A and B. The different contributions
that we include are

e spontaneous transitions A — I, occurring with a rate oy IV 4;
e spontaneous transitions I — A, occurring with a rate ag N;
e spontaneous transitions B — I, occurring with a rate ag Np;
e spontaneous transitions I — B, occurring with a rate ay Ny;
e convincing rule A + I — 2 A, occurring with rate %N ANT;

e convincing rule B + I — 2 B, occurring with rate %N BNT.
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Figure 5.7: All possible interactions among the three different groups of agents, namely A,
B, and undecided ones, /. Spontaneous transitions occur at rate «;, for which ¢ = 1,2, 3,4
(top). Convincing process occur at rate 3;, ¢ = 1, 2 (bottom).

With the above indicated interactions and rates, the master equation for the prob-
ability P(N 4, Np,t) of having populations N4 and Np at time ¢ (given that we had
populations N§ and /N3 at an initial time ¢, < ), may be written as

19)

EP(NAaNBat) :Ozl(NA+1)P(NA+1,NB,t)+
+a3(NB+1)P(NA,NB+1,t)+
+Ck2(N—NA—NB-‘rl)P(NA—LNB,t)-F
+Oé4(N7NA7NB+1)P(NA,NB71,t)+
+ %(NA —1)(N—Nao—Np+1)P(Ns—1,Np,t)+
—I—%(NB—1)(N—NA—NB—FI)P(NA,NB—l,t)—

- [OqNA + asNp + (a2 + ag)(N — Ny — Np)+

n (51NA + B2Np

e )(N ~Na— Np)|P(Nu,Np,t). (55

This is the model master equation to which we will apply van Kampen’s ap-
proach [van Kampen 1981].

Van Kampen’s expansion

In order to apply van Kampen’s approach, as discussed in [van Kampen 1981], we

identify the large parameter €2 with N (assuming N > 1); and define the following

separation of the /V;’s into a macroscopic part of size NV, and a fluctuational part of
1

size Nz:
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No = NU4(t)+ N2ga(t
Np = NUg(t)+ Nzég(t

)

)
), (5.6)

where W 4(p) is the density of supporters of party A(B) and & 4(py represents fluc-

tuations around the macroscopic solution. A “reference” density p = % is defined,
that in our case is simply p = 1. We also define the “step operators”

Eff(N:) = f(Ni+1),
E; f(N:) = f(N:—1),

with f(N;) an arbitrary function. Using the forms indicated in Egs. (5.6), in the limit
of N > 1, the step operators adopt the differential form [van Kampen 1981]

1\ & 1/1)\ 02
Ezizli(N) a§i+2<N)6§2i”" (5.7)

with ¢ = A, B. Transforming from the original variables (N4, Np) to the new ones
(€4,&B), we have the relations

P(Na,Np,t) = 11(§4,€B: 1) , (5.8)
1 0 0
N§aNiP(NA7NB7t):T&H(EAagBat)7 (59)
d 9 1dVy Ol 1d¥p Ol

Putting everything together, we can rewrite the master equation Eq. (5.5) in terms
of the new variables. We are now in a position to collect the different powers of V.

Considering contributions up to order N'/2, yields the following two coupled
differential equations for the macroscopic behavior

d
SWA(t) = —anWa + a2+ Bi¥a] (p— 04— Up), (5.11)
d
%\I/B(t) =—a3¥p + [044—|-ﬁ2\113} (p—\I/A—\I/B>. (5.12)
It can be proved that the last set of equations has a unique (physically sound) station-
. AU A(t) _ dUp(t) _ : .
ary solution ( —7~ = —z~— = 0, i.e. a unique attractor

Vgt —o00) = U
Up(t —o0) = U
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This is the main condition to validate the application of van Kampen’s {2-expansion
approach [van Kampen 1981]. To prove this we analyze the linear stability of the
solution when a small perturbation Vg + dW is considered. Fluctuations around
the stationary solution are supposed to evolve exponentially with time §; ~ e*?,
i = A, B and we can prove that for any value of the parameters the exponents As,\p
result to be negative. Up to this point, we have discussed the N*/2 order.

The following order, that is N, yields the Fokker-Planck equation governing the
fluctuations around the macroscopic behavior. It is given by

Sl €0.6) = 50 (@16a + (0 + BrA)En +€8) — r6alp — Wt = W) (€, 0. )]
+ g [(0aa + (a4 Ba¥m)(€a + €0) ~ Pakanlp — ¥a — V) (. E.1)]
o[t (s + B wa - wn)] 0y (%A (€, €5 1)
2
+ 300 Ws+ (0t BWe)(p = Va — Vo)) T TlEnstn ). 613

This is a two-dimensional linear FPE, with a general form

OP(z,y,t) 0 g 0?’P 1 _ 9°P
Qa0 %[(Ao + Arz + Axy) Pl + 87/[(30 + By + Bax) P] + C'o 922 T §D03T/2 ;

which describes a Ornstein-Uhlenbeck process. It is well known that the solution

of this FPE is a Gaussian determined by the first and second moments of the fluc-
tuations [van Kampen 1981]. Hence, in the next section we analyze the equations
governing those quantities.

5.2.2 Behavior of fluctuations

From the FPE in Eq. (5.13), it is possible to obtain equations for the mean value of the
fluctuations as well as for the correlations of those fluctuations. For the fluctuations,

(€a(t)) = na and (p(t)) = np, we have

>=//5A%Itldmd53=

o1+ as+ B2V + Up) = Bip]na — (02 + Bi¥as, (514)

o=/ €50 dEa deis =

- [as +ag+ F2(Va +2Up) — 520} ng — (4 + B¥p)na.  (5.15)
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Calling 04 = (£a()?), o = (€B(1)?), and oap = (£4(t)EB(E)), we also
obtain for the correlation of fluctuations

d
—oA(t) = —20104 — 2[ag + 51V a][oa + 0aB] +26104lp — Va4 — Up]

: + a1V + (a2 + 1¥a)(p— Vs — VUp)], (5.16)
%UB(t) = —2a30p — 2[as + BoVBl[oan + oB] + 2B20B[p — VA — Up]
+ [a3¥p + (4 + B2¥E)(p — ¥a — V)], (5.17)
%UAB(t) = —[o1 + asloap — [a2 + B1Va][oap + 0B]

— [ag + B2¥B|[oa+0oaB] + [p— Ya — VBB + f2loap - (5.18)

a) Reference state: symmetric case

Here we particularize the obtained equations for the symmetric case, i.e., the case
when 8! = W5, Hence, we adopt

ap=o3=qa, ay=o04=ao,

and
pr=p2=p.
In such a case, the macroscopic equations (5.11) and (5.12) take the form
d
Z0alt) = —fa+ o — Bl — BUY — UV — /T + o (5.19)
d
a\IlB(t) = —fa+d =BV — UL - U Tp — /Ty + . (5.20)

In order to make the solution of these equations more explicit, we work with the
auxiliary variables > = U4 + Vg and A = ¥4 — Up, and use p = 1. The last
equations now transform into

%E(t) — [a 420/ — 5] S - 522 4 24/ (5.21)
d
AWM = - [oz - ﬁ] A — BAS. (5.22)

In the long time limit, ¢ — oo, we found on one hand

A% =0,
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implying U = W5, while on the other hand
0=p4%%+ [oz—{—Qo/—ﬁ} ¥ —2d.

This polynomial has two roots, but only one is physically sound, namely

s at+2d =B 8a/ 3
) -5 ( 1+\/1+[a+2a’ﬁ]2>’ (5.23)

yielding U} = W3t = @5 = 150,

In a similar way, we can also simplify the equations (5.14) and (5.15) for 74 and
ng, calling S(t) = na + np and D(t) = n4 — np. The corresponding equations are
then rewritten as

d
280 = - [a 20/ +28(U4 + Vp) — ﬁ} s, (5.24)
d
2D = - [a L B(Ua+Up) — ﬂ} D - ﬂ[wa — QB} S, (5.25)
while for the correlation of the fluctuations we have
d
@UA(t) = —2a04 — 2[0/ + ﬁ\I’A][UA + UAB] + 25[1 — Wy — \I’B]O'A
+[a®a+ (o +BPA) (1 - Ty —Tp)], (5.26)
d
%03(75) = —2a0p —2[ + BYp|loap+op]+26[1 — V4 — Vplop
+ [a¥p + (o' + BUB)(1— Ty — Up)], (5.27)
d
%UAB“) = —2a04p — [0/ + BV 4lloap + oB]

—[o/ + BUBl[oas +0a] + 281 — U4 — Ugloap. (5.28)

Equations (5.24) and (5.25) show that, in the asymptotic limit ¢ — oo, both
S = 0and D = 0, implying that n5/ = 75/ = 0. However, also in the general (non
symmetric) case we expect to find 7% = 7§ = 0. In addition, from Eqs. (5.26),
(5.27) and (5.28), it is clear that we obtain 05! # 0 (i = A, B, AB) for t — oo.

b) Beyond the symmetric case

Let us call v, o), and (3, the parameter’s values corresponding to the symmetric case.
We consider now the following cases, where we vary the parameters

Blzﬁov ﬁQZﬁo‘{'AB?
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Figure 5.8: Evolution of the macroscopic solutions [Eqgs.(5.11) and (5.12)]. Case (a) corre-
sponds to trajectories toward a symmetric solution (i.e. with U3/ = W5!), with parameters
ap = a3 =1, a0 = a4 = 3,and f; = [ = 2. Case (b) corresponds to trajectories
toward an asymmetric solution (i.e. with \Ilif #+ \If‘g), with parameters ov; = 1, ag = 9,
ay =g =3,and f; = Fy = 2.

a1 =y, a3 =, + Aa,
as =al, ag=a +Ad.

We will vary only one of these parameters, while keeping the rest fixed. In the
following section we present the results (mainly numerical) corresponding to these
different cases.

5.2.3 Numerical Results

As indicated above, the macroscopic equations (Egs. (5.11) and (5.12)) have a unique
attractor, indicating that it is adequate to apply van Kampen’s expansion approach. In
this section we will present some results corresponding to symmetric and asymmetric
situations, which show some typical behavior to be expected from the model and the
approximation method. In what follows, all parameters are measured in arbitrary
units.

In Fig. 5.8 we show the evolution of W 4(¢) and ¥ p(t), the macroscopic solu-
tions, indicating some trajectories toward the attractor: (a) for a symmetric, and (b)
an asymmetric case. It is worth recalling that ¥ 4 and W p are the density of support-
ers of party A and party B, respectively. During the evolution toward the attractor,
starting from arbitrary initial conditions, we observe the possibility of a marked ini-
tial increase of the macroscopic density for one of the parties, followed by a marked
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Figure 5.9: Dependence of the stationary macroscopic solutions on different system param-
eters: (a) On ag, the rest of parameters are a; = a2 = a4 = 1, and §; = F2 = 1. (b) On
vy, the rest of parameters are a; = as = a3 = 1, and ; = 2 = 1. (c) On (s, the rest of
parameters are a; = g = g3 = a4 = 1, and (5; = 1. In all three cases, the continuous line
corresponds to W/ while ¥$! is indicated by the dotted line.

reduction, or other situations showing only a decrease of an initial high density. Such
cases may indicate that one should be careful when evaluating the results of surveys
and polls during, say, an electoral process. It is possible that an impressive initial
increase in the support of a party can be followed by an equally impressive decay of
support. We remark that in both panels of Fig 5.8 the sum of ¥ 4 and ¥ p is always
U4 4+ Up < 1, so implying that there is always a finite fraction of undecided agents.

On the other hand, we analyze the dependence of the stationary macroscopic
solutions on the system parameters. In Fig. 5.9 we depict how ¥$ and U$/ vary with
a3, ay, and B2. Due to the symmetry of the problem, varying the set of parameters
(a3, ay, P2) is equivalent to varying the set (a1, ao, 51). In Fig. 5.9(a) the dependence
on az is represented. It is apparent that for aig < 1, we have ¥$, < Us{, while for
as > a1, we find the inverse situation. Clearly, U3 = 5! when a3 = 1(= o),
as it corresponds to the symmetric case. Similarly, in Figs. 5.9(b) and 5.9(c) we
see the dependence of the stationary macroscopic solutions on the parameters a4 and
(o, respectively. Also in these cases we observe similar behavior as in the previous
one, when varying the indicated parameters. The parameters a3 or a4 (and similarly
for a1 or ap) correspond to spontaneous changes of opinion, and may be related to
the presence of a social temperature. However, also 31 and (33, which correspond to
convincing capacities, are affected by such a temperature. So, the variation of these
parameters in Fig. 5.9 corresponds to changes in the social temperature, changes that
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Figure 5.10: Dependence of the stationary correlation functions o; (with ¢ = 1,2) corre-
sponding to the projection of o4, g, 4p on the principal axes, on different parameters of the
system: (a) on asg, the other parameters are vy = g = ag3 = 1, and ; = B2 = 1. (b) on
o, the other parameters are a; = as = ag = 1, and $; = (2 = 1. (b) on [s, the other
parameters are a; = oo = a3 = a4 = 1, and §; = 1.

could be attributed, in a period of time preceding an election, to an increase in the
level of discussions as well as to the amount of propaganda.

We can also analyze numerically the behavior of fluctuations. As was previously
pointed out for a general non symmetrical case we have % = ni = 0. However,
we can analyze the behavior of the stationary correlation of such fluctuations. In
Fig. 5.10 we depict the dependence of the stationary correlation functions for the
fluctuations o; (with ¢ = 1,2, corresponding to the projection of 04 g ap on the
principal axes) on different systems’ parameters. In Fig. 5.10(a) the dependence on
a3 is represented, and similarly in Figs. 5.10(b) and 5.10(c), the dependence on the
parameters «4 and s, respectively. We observe that, as the parameters are varied
(that, in the case of a3 and oy, and as indicated above, could be associated with a
variation of the social temperature) a tendency inversion could arise. This indicates
that the dispersion of the probability distribution could change with a variation of the
social temperature.

We can also depict the stationary (Gaussian) probability distribution:

-1
T(Ea, €p)" ~exp{ (€1 €p) ( oA 0AB > < 2;‘ ) } (5.29)

0OAB OB

Figure 5.11 shows II projected on the original (N4, Np) plane where, following
Eq. (5.6),& = NVN — VN, i = A, B.

We show three cases: on the left a symmetrical case, the central panel corre-
sponds to an asymmetrical situation with a population of N = 100, and on the right
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Figure 5.11: Stationary, Gaussian, probability distribution TI(£4,£5)%t projected on the
original (N4, Np) plane. On the let we have a symmetrical case with ay = a3z = 2,
ay = aq = 1, f1 = P2 = 2, and the population is N = 100. The central plot shows an
asymmetrical case, with a; = 2 and a3 = 2.5, while s = ay = 1, f1 = [ = 2, and the
population is N = 100. On the right we have the same asymmetrical case as before, but now
N = 1000, showing the dispersion’s reduction of the Gaussian distribution.

the same asymmetrical situation but with N = 1000. The latter clearly shows the
influence of the population number in reducing the dispersion (as the population in-
creases). We can use this PDF to estimate the probability p; (i = A, B) of winning
for one or the other party. This corresponds to the volume of the distribution re-
maining above, or below, the bisectrix N4y/N = Np/N. In the symmetrical case,
obviously, we obtain p4 = pp = 0.5 (or 50%), while in the asymmetrical case we
find pp = 0.257 (or 25.7%) and pg = 0.015 (or 1.5%) for N = 100 and N = 1000,
respectively. These results indicate that, for an asymmetrical situation, we have a
non zero probability that the minority party could, due to a fluctuation during the
voting day, win a close election. However, in agreement with intuition, as far as
N > 1 and the stationary macroscopic solution departs from the symmetric case,
such a probability p; reduces proportionally to N =1 I,

By analyzing the evolution in time of the macroscopic solution and the correla-
tions of the fluctuations we can get an idea of how this Gaussian probability behaves
in time. In Fig. 5.12, on the left, we show a typical result for the time evolution of
the macroscopic solution toward an asymmetric stationary case. In the same figure,
in the central part, we find the associated time evolution of the correlation functions

't is worth commenting that it is convenient to avoid pathological ranges of parameters that make
Y = U5 4+ W to fall within a very thin strip near the frontiers of the physical region (i.e. the region
limited by T = 1, U/ = 0, and W3} = 0). In such cases, the tail of fluctuations falling outside the
physical region will be too large invalidating the whole approach. Clearly, the parameters chosen for
Fig. 5.11 avoid such pathological situation, as the fluctuation tails falling outside the physical region
are negligible.
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Figure 5.12: On the left, we have the time evolution of the macroscopic solutions W 4 (¢) and
U (t). The parameter values are «; = 1, ag = 5, ag = ayq = 3, f1 = B3 = 2. The stars
indicate the position where o and o attain their maximum, as seen in the central panel.
Central part, time evolution of the correlation functions o; (with ¢ = 1,2) corresponding
to the projection of 04 g ap on the principal axes. On the right, the angle between the
principal axes and the figure axes. The parameters are vy = 1, ag = 5, as = a4 = 3, and

B1 =2 =2.

for the fluctuations o; (with ¢ = 1, 2) corresponding to the projection of 04 g, 4B on
the principal axes, while on the right we show the evolution of the angle between
the principal axes and the figure axes. The temporal reentrance effect that has been
observed in other studies based on the van Kampen’s approach [van Kampen 1981,
Schat et al. 1991] is apparent. This is again a warning sing indicating the need to take
with some caution the results of surveys and polls during an electoral process.

Finally, we focus on the analysis of the typical time for the system to relax when
small perturbations take it out from the stationary state. In the symmetric case we
know that U%{ = W3 = W5 hence it is clear that o4(¢) and op(t) behave in a
similar way. And in particular 0% = o5 = o5, If we assume small perturbations
of the form o} ~ o3 + doy(t) (with i = A, B) and o¥{p = 0% , + doap(t), we
find again that both do 4(¢) and dop(t) behave in the same way, and this helps us
reduce the number of equations describing the decay of correlations. Hence, we can
put do4(t) = dop(t) = do,(t). The system driving the correlations becomes

%500@) - 9 [a v — B+ Sﬂxpit} S0 — 2 [a' + 5\1/31 S0 45 (5.30)
%&;AB(t) - 9 [a ta — B+ 3@3@ Soap —2 [o/ + ngt} §0,.(5.31)
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Figure 5.13: Dependence of the dominant relaxation time on different system parameters.
On the left, symmetrical case: continuous line varying ;1 = a3 = asg, dotted line varying
1 = g = ay, and dashed line varying © = (1 = (2. In order to compare all three, the
dotted line was multiplied by 3, while the dashed one by 10. The inset shows, now on the
same scale, the crossing of the lines at the point where all the parameters are equal to 1. On
the right, asymmetrical case: continuous line varying av, dotted line varying «, and dashed
line varying (3;. In all cases, the parameters that remain constant are all equal to 1.

Clearly, 605" = dost = 0. After some algebraic steps we obtain

J0,(t) ~ 056(0) exp [—2[a 12508 — 4] t} (5.32)
Soap(t) ~ 0oap(0) exp [—Z[a + 2808t — ] t]. (5.33)

These results indicate that, for the symmetrical case, the typical relaxation time is
given by

1 B
Teolax = 5[a + 28wt — g1, (5.34)

In Fig. 5.13 we depict the dependence of the dominant (or relevant) relaxation
time, that is the slowest of the three relaxation times, for different parameters of the
system. On the left, we show a symmetrical case where the different lines represent
the dependence on variations of: ;4 = «; = ag indicated by a continuous line;
1 = ag = a4 indicated by dotted line; © = (51 = 2 indicated by dashed line.
The strong dependence of the relaxation time on o« = ai; = a3 is apparent (in order
to be represented in the same scale, the other two cases are multiplied by 3 or 10,
respectively). This means that changes in the social temperature that, as discussed
before, induce changes in o(= a1 = «a3), could significatively change the dominant
relaxation time.
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For the non symmetric case the expression of the relaxation time is much more
complicated than for the symmetrical case. However, in Fig. 5.13 we show its de-
pendence on variations of the parameters of the system. As before, the different lines
represent the variation of: oy, indicated by a continuous line; a2, indicated by a dot-
ted line; and (31, indicated by dashed line. It is worth remarking that, when all the
the parameters (1, s and (1) are equal to 1, we see that the relaxation time is the
same. This is shown in the inset of the left panel figure. In the asymmetrical case,
the behavior is of the same order for the variation of the three parameters. However,
the comment about the effect of changes on the social temperature remains valid.

5.3 Conclusions

In this chapter we have analyzed the effect that the social temperature, 6, understood
as a collective climate parameter, exerts on processes of opinion formation. In the
first section of the chapter we have considered the temperature effect as a tendency
of the agents to act in a way that is opposite to the procedural rules of the opinion
formation model. We have considered a variation of the Sznajd model in which the
convincing rules are fulfilled with probability p o< exp[f]~!. Then, with probability
(1 — p) these rules are not fulfilled, and the spins to be updated adopt the opposite
option that the one indicated by the rules. We observe that this dynamical mech-
anism leads to a contrarians-like effect analogous to the one described in [Galam
2004]. We found that for low temperatures the system gets to a consensus where
a majority opinion emerges like in Sznajd type models. On the other hand, if tem-
perature is above a critical threshold the density of contrarians is (on average) high
enough to make it impossible for the system to reach a consensus and the opinion
is equally divided between both options. However, in contrast to Galam [2004], we
found that contrarians may spontaneously emerge from the dynamics when social
temperature effects are taken into account. Here, we have considered different forms
and the most convenient prescriptions of the Sznajd model for the analytical and the
numerical analysis. However, we have checked that the phenomenon is robust and
does not depend on the particular form of the model. Moreover, since the Sznajd
model (as well as many other two state opinion formation models) is similar to a
Ising type model [Galam 2005] up to a certain extent, we can regard our results as a
sophisticated manifestation in social systems of the ferromagnetic transition in spin
systems.

In the second part of the present chapter, we implemented the thermal effect as
spontaneous changes of opinion that the agents can suffer during the opinion forma-
tion dynamics. We introduced a model consisting in two parties, A and B, that do not
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interact among them, but only through their interaction with the group /. Members
of I are not able to convince those of A or B, because they do not posses a proper
opinion, but instead we considered a nonzero probability of a spontaneous change of
opinion from I to the other two parties and viceversa. It is this possibility of sponta-
neous change of opinion what inhibits the possibility of reaching a consensus: each
party has some statistical density of supporters, while a statistical stationary number
of undecided agents remains. As long as the direct interaction between both parties A
and B remains small, the monostability will persist, and the Van Kampen’s approach
will remain valid. We obtained the macroscopic evolution equation for the density of
supporters of A and B parties, as well as the Fokker-Planck equation governing the
fluctuations around such deterministic macroscopic behavior. We have also analyzed
the relaxation of small perturbations near the stationary state, and the dependence of
the typical relaxation times on the system parameters was obtained. This could shed
some light into the social response to small perturbations like an increase of propa-
ganda, or dissemination of information about some “negative” aspects of a candidate,
etc. However, it is important to underline that such an analysis is only valid near the
macroscopic stationary state, but loses its validity for a very large perturbation. Fi-
nally, we can conclude that the inclusion of the group of undecided agents is essential
to explain the fluctuations in the possible outcomes of a poll, as it is to be expected.
The polarization of those undecided agents to one of the positions A or B is strongly
dependent of the social temperature during the immediate time preceding the voting.
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CHAPTER

6 Introduction to complex
networks

6.1 Introduction

The study of networks has been traditionally in the real of Mathematics and Social
Science in the context of Graph Theory. Such theory is one of the pillars of discrete
mathematics and is rooted in the 18th century, beginning with the work of Euler,
whose celebrated solution of the Konigsberg bridge problem is often cited as the
first true proof in the graph theory. At first, the problems analyzed by this discipline
dealt with small systems, containing at most a few hundred nodes, and focused on
the individual properties of its elements. Recent years, however, have witnessed a
substantial new movement in network research. The current availability of comput-
ers allows the collection and analysis of more data, and the interest has shifted to
the examination of large-scale statistical properties of graphs. Statistical Mechanics
provides the necessary tools to carry on such analysis, and the subject of Complex
Networks nowadays represents a focus of intense activity in the Physics community.

Complex networks analysis may be applied to many real systems that can be
mapped as graphs. Examples include the Internet, social networks among individu-
als, networks of business, relations between companies, neural networks, metabolic
networks, and many others. A network is a collection of vertices or nodes, connected
by a set of edges or links. However, these mathematical items may be more complex
than this simple definition. For instance, there may be more than one different type of
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(a) (b) (c)

Figure 6.1: Examples of various types of networks: (a) an undirected network with only a
single type of vertex and a single type of edge; (b) a network with varying vertex and edge
weights; (¢) a directed network in which each edge has assigned a preferred direction.

vertex in a network, or more than one different type of edge. Very often the links of
the network are labeled with weights that represent, for instance, the different capac-
ity of each connection in a transportation network or the connection strength between
two nodes. They can also be directed, pointing in only one direction, and thus we talk
about directed graphs or, sometimes, digraphs. A graph representing email messages
between individuals would be directed, since each message goes in only one direc-
tion. Many other levels of sophistication can be added, according with the variety
of networks that can be found in Nature. For instance, one can also consider hyper-
edges connecting more than two vertices together. Graphs may also evolve over time,
with vertices or edges appearing or disappearing, as well as values defined on those
vertices and edges changing. In this chapter we introduce some common features of
graphs, and we provide a short approximation to the state-of-art in network modeling
and to the dynamics of processes that may take place on them.

6.2 Random and Scale-free graphs

The degree distribution is one of the most basic quantitative properties of a network,
and its functional form determines many of its features. The degree of a node is the
number of edges connected to that node. Thus, the degree distribution of a network
represents the probability that a vertex chosen at random has degree k.

Random graphs

In a random graph the links between nodes are placed simply at random, and the
resulting degree distribution is Poissonian, or binomial in the small size limit, with
P(k) ~ e~ %) (k)*/k!. Both functional distributions are strongly peaked around the
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mean (k) and exhibit a tail for large values of & that rapidly decays as 1/k!. This
means that in these graphs most nodes have degree close to the mean value.

Probably the biggest impact on the development of a mathematical theory of ran-
dom graphs was due to Erd6s and Rényi [1959; 1960]. According to the ER model,
every pair of the N nodes of a network is connected independently with probability
p, creating a graph with approximately p/N(N — 1)/2 edges randomly distributed.
This extremely simple model gives rise to random graphs whose structure varies with
the value of the connecting probability, since they exhibit a phase transition from a
disconnected to a fully-connected structure for increasing values of p. Below the crit-
ical probability p. the network is composed of isolated clusters, but above p. a giant
cluster spans the entire graph and most of the nodes are connected by paths through
the network. This phenomenon can be studied as a manifestation of a percolation
transition on networks [Albert and Barabasi 2002].

Random graphs have fundamented the analysis of complex networks for decades
after its introduction in the late 1950s. In Physics, they have been employed to
study a variety of systems too, as spin models [Barrat and Zecchina 1999], random
walks [Cassi 1996], and quantum chaos [Kottos and Smilansky 1997]. However,
real-world networks are mostly found to be very distinct from random graphs. In
order to obtain more realistic networks, non-Poisson degree distributions were incor-
porated. This lead to the so-called configurational model [Molloy and Reed 1995],
that enables to build generalized random graphs with an arbitrary degree distribution.
Basically this model consists in assigning to each vertex a certain number of possible
connections or stubs according to a previously determined degree distribution, and
then the network is built randomly choosing pairs of stubs and connecting them to
form the edges.

Scale-free graphs

As it has just been pointed out, real networks are often far from Poissonian.
Indeed, in many real networks the node degree distribution is highly rightskewed,
meaning there is a long right tail to values that are far above the mean. In other
words, there exist some few nodes, called hubs, that exhibit a large number of con-
nections. These networks apparently exhibit no characteristic scale and display a
power-law degree distribution P(k) ~ k~*. Such graphs are called scale-free (SF)
networks [c¢f. Fig. 6.2]. Examples are the World-Wide Web [Albert et al. 1999],
protein networks [Jeong et al. 2001], and language [Ferrer i Cancho and Solé 2001]
or sexual contacts networks [Liljeros et al. 2001]. The exponent in the power law
distribution has been obtained for many different real-world networks, and it usually
has values in the range 2 < A < 4 [Newman 2003, Albert and Barabdasi 2002].
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P(k)
log P(k)

k log k

Figure 6.2: The random network generated by the ER model is rather homogeneous (left),
while the scale-free network is extremely inhomogeneous and few nodes have a large num-
ber of links (right). In both graphs the five nodes with the largest number of connections
are colored in red, and its first neighbors are colored in green. While in the exponential net-
work only 27% of the nodes are reached from these five highlight nodes, in the power-law
distributed graph more than the 60% of the nodes are reached from them. This evidences
the key role that hubs play in scale-free networks. Both graphs contain the same number of
nodes and links. Ref. [Barabasi 2003].

Scale-free networks can be constructed in different ways. If one strictly focus on
the network topology, they can be built as generalized random graphs with power-law
degree distribution [Newman et al. 2001, Catanzaro et al. 2005]. However the degree
distribution alone does not characterize the graph in full, and these random scale-free
networks do not capture all the features that most real power-law distributed networks
exhibit. It has been claimed that the nature of such networks is rooted at their dy-
namical assembly [Newman 2003]. Thus, several models have been proposed to de-
scribe SF network formation, in which vertices and edges are gradually added to the
graph in some manner intended to reflect real network growth mechanisms. An early
model was proposed by Price [1976], based on what he called cumulative advantage.
This idea was much later adopted in the preferential attachment (PA) mechanism in
the well-known Albert-Barabési model, in which the likelihood of connecting a new
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node to the existing ones depends on the node degree [Barabasi and Albert 1999].
Although PA is widely accepted as the probable explanation of most of the observed
real scale-free networks, other mechanisms based on vertex copying have been pro-
posed [Kleinberg et al. 1999, Vazquez et al. 2003, Krapivsky and Redner 2005], in
which new nodes choose an existent node at random and copy a fraction of its links.
These models may describe, for instance, some biochemical power-law distributed
networks for which PA seems to be a non appropriate model [Kim et al. 2002b, Solé
and Pastor-Satorras 2003, Newman 2003].

6.3 Mixing patterns and clustering

In order to observe deeper patterns in network structures one can look at the ten-
dency for vertices to be connected to other vertices that are like (or unlike) them in
some specific way. This kind of selective linking is called assortative (or dissor-
tative) mixing. A special case of assortative mixing by a scalar vertex property is
mixing according to vertex degree, also commonly referred to simply as degree cor-
relation. This particular case is interesting since degree is itself a property of the
graph topology, and degree correlations can give rise to some interesting network
structure effects.

Several different ways of quantifying degree correlations have been proposed.
One can simply plot the two-dimensional histogram of the degrees of vertices at ei-
ther ends of an edge, as was done by Maslov et al. in Ref. [Maslov and Sneppen
2002, Maslov et al. 2004], where they showed results for both protein interaction
networks and the Internet. A more exhaustive way to detect correlations is to cal-
culate the average degree of the neighbors of a node with degree k [Pastor-Satorras
et al. 2001, Zhanga and Zhou 2007]. This number is formally defined as:

(knn) (k) = D K'P(K|k) (6.1)
m

where P(k'|k) is the conditional probability that an edge of a node with degree k
points to a node with degree k’. If there are no degree-degree correlations P(k’|k)
only depends on £’ and the neighbor connectivity (k) is a constant. However, if
this function increases with k, the network is assortative, since nodes of high degree
connect, on average, to nodes of high degree. Alternatively, if the function decreases,
the network is dissortative, since nodes of high degree tend to connect to nodes of
lower degree.

The level of degree correlations can also be quantified in terms of an assorta-
tivity coefficient, introduced by Newmann in the general context of mixing patterns
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according to scalar properties of the vertex [Newman 2002]. For the particular case
of mixing by vertex degree in a graph with M links, this coefficient takes the form

o MUY Giki — (MY 3G+ R
MY 507+ kD) — IM 32, 5 (i + ko)l

where j;, k; are the degrees of the vertices at the ends of the ith edge, with ¢ =

1,...,M. This definition is nothing but the Pearson correlation coefficient of the

degrees at either ends of an edge. Indeed, it can be written in a more familiar way in
terms of the pairs of connected nodes as

(kikj)isj — (k)?
o

T (6.2)

) (6.3)

r =

where (k) and oy, are, respectively, the mean and standard deviation of the degree
distribution and the (...);; term is averaged over all the nearest-neighbor pairs in
nodes of the network. Thus, networks with positive values of r are assortative and
tend to have a core-periphery structure. The nodes with high degree are attracted
to one another forming a highly interconnected core surrounded by a periphery of
lower-degree nodes, as shown in Fig. 6.3(a). On the other hand, in dissortative cor-
related networks, the high-degree nodes tend to be scattered more broadly over the
network, as shown in Fig. 6.3(b).

Figure 6.3: Two networks built with the same degree distribution but with different mixing
according to vertex degree: assortative (a) and dissortative (b). Nodes are colored according
to their degree (from yellow to red as their degree increases). The former is positively cor-
related and exhibit a clump of high-degree nodes. The latter is negatively correlated and the
high-degree nodes spread over the graph as they tend to connect to nodes of lower degree.
From Ref. [Newman 2008]
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It is clear that degree correlations have a strong effect on the structure of net-
works as well as on the behavior of the processes that take place on them. A disease,
for instance, can more easily persist in a positively correlated network by circulating
in the dense core where there are many opportunities to spread. In a negatively corre-
lated graph, the same disease finds it harder to persist and, if it does, then it typically
spreads over the whole network. Random graphs with arbitrary degree distribution do
not exhibit degree correlations [Newman et al. 2001, Catanzaro et al. 2005]. On the
other hand, Krapivsky and Redner [2001] have shown that, in the scale-free graphs
generated with the Barabdsi-Albert model, correlations develop spontaneously be-
tween the degrees of connected nodes during the network growth. The assortativity
coefficient has also been measured for many real-world networks [Newman 2002],
and some of these results are shown in table 6.1.

Table 6.1: Assortativity coefficient measured for various real-world networks of size
N [Newman 2002]. From top to botton: collaboration networks of scientists in physics,
collaborations between film actors, connections between autonomous systems on the Inter-
net, protein-protein interactions in yeast, and the synaptic connections in the neural network
of a nematode.

‘ ‘ Network N ‘ T ‘ ‘

Physics coautorship 52909 | 0.363
Film actors collaborations | 449913 | 0.208

Internet 10697 | -0.189
Protein interactions 2115 -0.156
Neural network 307 -0.163

Up till now we have focused on nearest-neighbor degree correlations. However,
three node correlations are also interesting to analyze network structure. Analo-
gously to the previous case, three node correlations can be measured by means of the
probability P(k’, k”|k) that a node of degree k is simultaneously connected to nodes
with degree k&’ and k”. The direct evaluation of this conditional probability is gener-
ally difficult. To overcome this problem, another interesting alternative quantity, the
clustering coefficient, is frequently used. By definition, the clustering coefficient of
a node ¢ with degree k; is defined as the probability that two neighbors of this node
are also neighbors themselves [Watts and Strogatz 1998]. This local coefficient is
computed as C; = t;/ (I;Z), where ¢; is the number of links among the node neigh-

bors (triangular connections) and (kZZ) is the number of possible pairs that could exist
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among its k; neighbors. To characterize the clustering coefficient of the whole graph,
the most extended criterion is !

= Yt 3 x number of triangles

= . 6.4
ZN (’;1) number of pairs of adjacent edges (©4)

i=1

In contrast with ordered lattices, whose clustering only depends on their coor-
dination number, complex networks exhibit size dependent clustering coefficients.
In a random graph the probability of connection for two neighbors is equal to the
probability that two randomly selected nodes are connected. Consequently, the clus-
tering coefficient for a random graph is Ci.qng = % On the other hand, scale-free
networks exhibit larger values of clustering. Numerical simulations indicate that for
Albert-Barabasi SF networks the clustering coefficient decays with the system size
as C' ~ N~07 [Albert and Barabasi 2002], and also a high degree of clustering has
been observed in many SF real networks [Ravasz and Barabdasi 2003, Vazquez et al.
2002].

This high probability of interconnection between the neighbors of a given node
leads in turn to another interesting analysis in the study of SF networks, that is
the appearance of hierarchical and community structures [Everitt 1974, Ravasz and
Barabadsi 2003, Soffer and Vazquez 2005]. The development of methods for find-
ing communities within networks is nowadays a sub-area of intense activity, with
an enormous number of different techniques under development [Lancichinetti et al.
2008, Arenas et al. 2008, Pollner et al. 2006].

6.4 Small-world effect

In a network, the distance between two nodes is defined as the number of edges along
the shortest path connecting them. The diameter d of a network, therefore, is defined
to be the average path length of the graph, i.e., the mean distance between two nodes
averaged over all pairs of nodes. This quantity determines the effective size of a
network, the most typical separation of one pair of nodes therein.

An interesting feature of most complex networks is that their diameter is rel-
atively smaller than that of regularly constructed graphs with the same number of
vertices and edges. For instance, in a random graph the mean number of neighbors at
distance £ away from a vertex is n ~ (k)?, and hence the typical value of d needed to

'Other definitions of the clustering coefficient are also found in literature. C'is often defined as the
average value of the local clustering coefficients of each node. However, as shown in Ref. [Bollobés
and Riordan 2003], both definitions of the global coefficient are nor equivalent.
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p=0 » p=1
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Figure 6.4: Starting from a regular lattice, the Watts-Strogatz model randomly rewires its
edges with probability p. Results for different values of the rewiring probability are shown.
For p = 0, the original lattice is unchanged; as p increases, the graph becomes increasingly
disordered until for p = 1, for which all edges are rewired randomly. For intermediate values
of p, the graph is a small-world network: highly clustered like a regular graph, yet with small
characteristic path length, like a random graph. Ref. [Watts and Strogatz 1998].

encompass the entire network from a typical central node scales as d ~ In N. This
smallness leads to the idea of the small-world effect, hence the name of small-world
networks.

One of the first proofs of the small-world effect in real networks was performed
in the 1960s by Milgram [1967]. In his experiment some letters were given to ran-
domly chosen people and passed person to person till reaching a designated target
individual. Only a small number of steps, around six, were necessary for the mail
to reach its final destination. Later, Watts and Strogatz [1998] observed that many
real-world graphs have a small average shortest path length. They proposed a model
to build small-world graphs starting from a low-dimensional regular lattice and then
randomly adding or moving edges to create a low density of “shortcuts” that connect
remote parts of the lattice to one another. This rewiring mechanism allows to inter-
polate between a regular lattice and a random graph, giving rise to highly clustered
structures with low path lengths. As the rewiring probability increases, such net-
works exhibit a crossover from a “large world” (as a regular lattice) to a small-world
random network [Barthélémy and Amaral 1999, Barrat and Weigt 2000].

In recent years the term small-world has been sharpened and given a more precise
meaning: networks are said to show the small-world effect if the network diameter
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d scales logarithmically or slower with network size for a fixed mean degree. Loga-
rithmic scaling can be proved for a variety of network models [Newman et al. 2001,
Albert and Barabasi 2002] and has also been observed in various real-world net-
works [Newman 2001, Amaral et al. 2000]. Even more, some networks have been
observed to have mean vertex-vertex distances that increase slower than In N. Cohen
and Havlin [2003] found analytically that for scale-free networks with 2 < A < 3
the diameter of the graph behaves as d ~ In(In(V)), for which they coined the name
of ultra-small world networks.

6.5 Processes on networks

A natural step after analyzing the structure of networks is to look at the behavior
of dynamical processes that may take place on them. Real networks are the basis
for a wide range of mechanisms in which the topology of the underlaying network
plays a crucial role. In many cases the time scales describing the network growth
and the dynamical process that take place on the graph are widely different, then the
dynamics can be modelled considering a fixed network structure. A good example
is the Internet traffic, which involves a time resolution from millisecons up to a day,
while periods of order of months are required for significant topological changes
in the network structure. On the other hand, when the time scales governing the
dynamics on the network are comparable with the characteristic times defining its
assembly, the supported process can itself influence network structure and growth.
This is the case, for instance, of some biological models inspired by the emergence
of cellular structures.

Many dynamical processes have been studied on networks. The topics under
investigation include weakly coupled oscillators [Barahona and Pecora 2002, Hong
et al. 2002], neural networks [Lago-Fernandez et al. 2000], social influence phenom-
ena [Sénchez et al. 2002], and iterated games and coopertation models [Abramson
and Kuperman 2001, Ebel and Bornholdt 2002, Kim et al. 2002a].

Understanding the effects that the network structure has on the dynamics is a
hard task since the topological features of complex networks are not fully under-
stood yet. However, there have been some important advances in last few years. In
this context, spreading and diffusion have been studied on several types of networks,
from regular structures [Keeling 1999] to random [Weigt and Hartmann 2001], small-
world [Moukarzel 1999, Kuperman and Abramson 2001] and scale-free networks [Bilke
and Peterson 2001, Dezs6 and Barabdasi 2002]. Epidemic models can be easily for-
mulated on networks, in which nodes represent the agents that may be infected and
links represent the possible contacts along which the epidemic diffuses. Particularly
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interesting is the analysis provided by Pastor-Satorras and Vespignani [2001; 2003]
about the influence of the network topology on the spread of viral diseases. They
showed that, while on a random network a local infection spreads over the whole
graph only if the spreading rate « is larger than a critical value k., for a scale-free
network any spreading rate leads to the infection of the entire graph. This lack of any
epidemic threshold arises from the extreme degree heterogeneity and high clustering
that these graphs exhibit. Hence, the scale-free nature of networks calls for different
immunization strategies in order to eradicate infections. In contrast to standard mod-
els, SF networks do not acquire global immunity in the presence of a high density of
randomly immunized individuals, but successful immunization strategies must take
into account the inhomogeneous connectivity patterns.

Percolation theory has also been studied on networks, not only related to epi-
demic spread but also to analyze the network resilience. Real-world networks are
often found to be highly resilient to the random deletion of vertices. A percolation
process is one in which vertices or edges on the graph may be either “occupied” or
“unoccupied” and one analyzes the properties of the resulting pattern and contiguous
clusters of occupied/unoccupied items. These clusters determine whether the graph is
fully connected or a set of disconnected subgraphs, which usually implies a network
failure. Resilience can be measured in different ways. Perhaps the simplest indicator
of resilience in a network is the variation in the fraction of vertices belonging to the
giant component of the graph, i.e., the largest fully-connected subgraph. Callaway
et al. [2000] proposed a percolation method in which the probability of occupation
of a vertex can be any function of the degree of that vertex. In order to analyze the
network resilience, this method allows to remove vertices from the graph in an or-
der that depends on their degree. In agreement with Pastor-Satorras and Vespignani
results, they found that networks with power-law degree distributions are highly sus-
ceptible to this type of targeted attack; one needs to remove only a small precentage
of vertices to destroy the giant component entirely. Similar results were also found
independently by Cohen et al. [2001] using a similar method.

Dynamical searching processes have also attracted much interest. Suppose some
resource of interest is stored at the vertices of a network, such as information on
Web pages or computer files on a distributed database. One would like to be able
to rapidly determine where on the network a particular item of interest can be found
(or determine that it is not on the network at all). It has been shown that the shortest
paths between nodes of the graph can be found employing local strategies, i.e., with
strategies that do not require precise global information of the network. Theoretical
explanations of this mechanism have been given by Kleinberg [2000] and Watts et al.
[2002], based on the idea that the structure of the network provides information that
can be exploited heuristically in a search process. In scale-free communication net-
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works and in some decentralized peer-to-peer communication networks it has been
shown that the existence of highly connected hubs allows the design of quite efficient
local search algorithms [Adamic et al. 2003].

Further investigations carried out in the context of communication networks fo-
cus on the traffic derived from the communication process itself. Some stylized mod-
els of traffic flow [Arenas et al. 2001, Ohira and Sawatari 1998, Solé and Valverde
2001] can be used to gain intuition about dynamics on complex networks, and to
determine the leading parameters of the dynamic processes related to the network
topology. The main results obtained up to now about traffic flow in complex net-
works are related to the determination of bounds for this flow to become congested.
In the following chapter, we present original research work on this topic.



CHAPTER

7 Optimization of transport
protocols

7.1 Transport processes on networks

In this chapter, we focus on the transport capacity of communication networks and
present our own research work concerning congestion phenomena. Transportation
processes are ubiquitously present in our lives and nowadays play a decisive role
in the progress and development of human societies. Everyday communication net-
works are used all around the world for different purposes, as for transferring of in-
formation (e.g. the Internet) or transportation of goods and people (such as networks
of roads and airlines). This relevance, exponentially increasing over the past years,
explains the intense activity in the study of such transportation networks, in fields as
diverse as Biology [Tlalka et al. 2003], Informatics [Ohira and Sawatari 1998, Solé
and Valverde 2001], or urban planning (vehicular traffic) [Nagel and Schreckenberg
1992, Nagel and Paczuski 1995].

Tools taken from Statistical Mechanics are often employed to study the topologi-
cal properties of these communication networks and also their dynamics. Particularly
interesting is the analysis of congestion. A transition from a sparse to a jammed phase
may occur due to increased traffic, yielding an increase in the transit time of infor-
mation. A clear example of that is the first Internet collapse reported in the literature,
occurred in October of 1986. It was reported that, due to this collapse, the connection
speed between two places separated 200 meters dropped by a factor of 100 [Jacobson
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1988]. This transition has also been observed in many numerical simulations. For
instance, in models of traffic flow, such as the Nagel-Schreckenberg model [Nagel
and Schreckenberg 1992]. The referred work shows how, as the density of cars p
increases, a well-defined transition that separates a fluid phase from a jammed phase
occurs. At the critical threshold p., the jams are observed as back-propagating waves
with fractal properties.

Therefore, many efforts have recently focused on understanding the physics of
congestion for general communication processes to optimize the transport capacity
of the information networks. A general collection of models that captures the es-
sential features of communication processes has been proposed [Arenas et al. 2001,
Ohira and Sawatari 1998, Solé and Valverde 2001]. These models include the basic
ingredients for communication between two elements:

— Physical support for the communication process (agents and channels).
— Discrete information packets that are exchanged
— Limited capacity of the agents to handle such packets.

In what follows we will refer to a general model defined as a communication
network mapped onto a lattice, where the N nodes represent the communicating el-
ements and the links between them represent communication channels. The packet
transmission is modeled by a discrete time parallel algorithm. The information pack-
ets flow via neighbor connections toward its final destination, and every node stores
in queue the packets received from its neighbors. The algorithm basically consists of
three operations at each time-step:

o Packet generation: every node introduces a new packet in the system at rate
v, independently from the rest of the nodes. The final destination of this new
packet is chosen at random from the remaining N — 1 nodes. The packet is
then appended at the end of the host tail that the node stored in previous steps.

e Routing: according to a set of previously defined routing paths, every node
sends the packets at the head of its queue to one of its neighbors. The nodes
can deliver, on average, only a finite number of packets at each time step and,
without lost of generality, this number can be fixed to 1.

e Reception: the nodes can receive an unlimited number of packets. If the re-
cipient node is the target destination, the packet is eliminated from the system.
Otherwise the node stores it at the end of its queue. All the packets received
in the same time step are randomly ordered in a subqueue appended to the ex-
isting tail. This randomization is needed because times are not resolved below
the single-packet processing time scale.
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Figure 7.1: Behavior of the rate of steady-state packet growth 7(~) for a communication
model according with the previous general description . The solid line corresponds to the
analytical calculation for two nodes exchanging information packets. Symbols corresponds
to simulations performed in regular lattices of dimmension d = 1, d = 2 and hierarchical
Cayley lattices. Ref. [Guimera et al. 2002a].

It has been observed in Refs. [Arenas et al. 2001, Ohira and Sawatari 1998, Solé
and Valverde 2001] that, for low values of the packet generation rate -y, the system
reaches a steady state in which the total number of floating packets in the network,
P(t), fluctuates around a finite value. As +y increases the system undergoes a contin-
uous transition to a congested phase in which P(¢) o t¢. At the critical point, ., the
number of packets present in the network diverges, as well as other quantities as the
delay times and the queue lengths [Guimera et al. 2002a, Solé and Valverde 2001].

Thus, to characterize this transition, the rate of steady-state packet growth is
introduced as a convenient order parameter [Arenas et al. 2001, Sreenivasan et al.
2007] (AP)

1
n(y) = Pty YN At
where AP = P(t + At) — P(t) and (...) indicates average over time windows of
width At. Essentially, this order parameter represents the ratio between undelivered
and generated packets at the stationary state. For vy > ~, the system collapses, (AP)
grows linearly with At¢, and therefore 7 = 7(7). On the other hand, for v < 7,
(AP) =0andn = 0.

Further analysis of this sparse/congested transition has been carried out [Arenas
et al. 2001] to analyze the behavior of the system when the number of delivered pack-
ets depends on the queue length of the nodes. If the agents are able to deliver more
packets as they are more congested then the network never collapses. On the other
hand, if agents deliver fewer packets as their loads increase, then the system exhibits
a discontinuous transition toward a congested phase and the network collapses in an

(7.1)
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inhomogeneous way, giving rise to several congestion nuclei. Only in the case in
which the delivering capacity of the nodes is independent of their load, the dynamics
leads to the previously described critical phase transition.

In order to avoid congestion and optimize the transport capacity of the networks,
many efforts have been focused on enhancing the critical threshold .. This would
allow to cope with a higher number of packets while the system is still in the sparse
phase. Several studies [Yan et al. 2006, Sreenivasan et al. 2007, Danila et al. 2006]
have shown that the transport capacity of these communication networks (quantified
by the packet insertion rate at which jamming occurs) can be optimized by means of
optimization of the routing criterion employed to send the packets from one node to
one of its neighbors at every time step.

The sequence of nodes and edges that a given packet visits during its flow toward
its destination constitutes the route for that source-destination pair of nodes. For a
network of size N, the routing problem consists in finding an assignment of routes
for all N(N — 1)/2 pairs of nodes of the graph. This set of paths conform the as-
signed static routing protocol (SRP) to the communication network. A quantity of
interest for a given SRP is the centrality or betweeness b; of each node, defined as
the total number of paths that pass through node ¢ [Newman 2001]. The jamming
effect is directly related with the betweeness distribution of the SRP. Indeed the con-
gestion threshold . can be expressed in terms of the maximal node betweeness B as
follows. The average packet current incurred from a given source node s to certain
destination node d is v/(IN — 1), as the destination of every generated packet at s
is randomly chosen from the remaining N — 1 nodes. This current flow through the
network following the routing path given by the SRP. Thus, for a node with between-
ness b the average packet inflow current will be by/(IN — 1). Since the outflow of
packets occurs at unit latency, we will have queuing and congestion at the node for
which this quantity reaches unity for the first time, namely at the node with maximal
betweenness B. Then it can be expressed as

N -1
%:T. (7.2)

From this equation follows that for a given SPR the dependence of the congestion
threshold . on the network size is determined by the scaling with NV of the maximal
node betweenness. Therefore the optimal routing protocol, from the point of view
of congestion avoidance, should be the one for which B exhibits the slowest growth
with N. In other words, the optimal SRP implies a betweenness distribution as ho-
mogeneous as possible, giving rise to a maximal node betweenness B ~ N1*¢ with
the minimal value of €. [Guimera et al. 2002a].
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Figure 7.2: Illustrative sketch of a vertex separator G that divides the network in three
disconnected subgraphs, in such manner that every path from G; to G; pass through G if

i

But minimizing B is not a simple task. It was shown in Ref. [Sreenivasan et al.
2007] that there exists a lower bound Bz for the maximal node betweenness given
by the network topology. This limit is independent of the routing protocol employed,
and implies that congestion can never be avoided for large enough values of the
packet insertion rate, v > . Here we briefly expose the graph partitioning argu-
ments employed by Sreenivasan et al. [2007] to introduce Br. A subgraph G is
extracted from the whole graph (G, in such manner that the rest of the graph becomes
a set of n disconnected subgraphs GG; with n > 2. Then G is called a vertex separa-
tor of G (see Fig. 7.2). The number of nodes contained in a subgraph G; is denoted
by [G|. Since G is a separator set, there is at least ), ; [G;[|G}| routes passing
through G5 for any SRP. In this case the average betweenness of the nodes of G4
is Bs = {3_; ;|Gil|Gi|}/|Gs|. Since the maximum is always larger or equal than
the average, the maximum betweenness of the nodes in GG must be no less than Bg.
Considering all the possible choices of vertex separators, there will be an optimal
one for which By is as small as possible. Thus, this is the lower bound Bt for the
maximal node betweenness given by the network topology.

Sreenivasan et al. [2007] focused on the particular case of random, uncorrelated,
scale-free networks. They estimated the scaling of By with the network size N as

< By ~ N1 | (7.3)

~

Br

where P(k) ~ k™ is the degree distribution of the graph. When A — oo the
network approaches a random regular graph and Eq. (7.3) estimates B.s; ~ N°. On
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the other hand, for A = 2 the network becomes a star-like graph, for which the only
possible separator is the central node and Besy ~ N 2. Between these two limits,
scale-free networks typically employed in communication problems present a degree
distribution with 2 > A > 3. Thus one could expect a topological bound for the
maximal node betweenness of By < Begt ~ N 3/2 (same as for A = 3 in Eq. (7.3)).

Traditionally, Shortest-Path (SP) based protocols have been applied as the best
option to optimize the transport capacity of networks. Focusing on SF networks with
A = 2.5, we observe that the maximal node betweenness scales as Bgp(A = 2.5) ~
N6 [Danila et al. 2006], which is in quite good agreement with the estimation of
By provided in Eq. (7.3). However, the optimality of SP routing protocols is clearly
questioned in the light of the above exposed arguments. SP algorithms minimize the
length of the routing paths, but do not take into account minimization of the maximal
betweenness.

At this point the following question arises: Is it possible to design an optimal
SRP whose maximal node betweenness approaches B better than the Shortest-Path
SRP?.

Recently, other algorithms have been proposed to replace the traditional Shortest-
Path SRP. In Ref. [Sreenivasan et al. 2007] a hub avoidance (HA) method is intro-
duced. This algorithm surpasses the scaling of the topological estimation B.g; with
Brpa(A = 2.5) ~ N'42_ This is a significant improvement over the SP protocol.
The work presented in Ref. [Yan et al. 2006] also provides an alternative SRP based
on the redistribution of the paths toward the lower degree nodes. In this case they
obtained Bpr(\ = 2.5) ~ N13L,

An alternative and useful method to minimize the maximal node betweenness
consists of an iterative method that detects the node with highest centrality B and
somehow reduces it. Based on this criterion, Danila et al. [2006] proposed a opti-
mization algorithm that reduces the maximal betweenness in a deterministic way, by
increasing the weights of all the links of the maximal betweenness node. With this
method they achieve Bpan (A = 2.5) ~ N 185 Following this line of thought, we
propose here an alternative stochastic algorithm that differs from Danila’s determinis-
tic optimization method. With the aim at preserving a stronger compromise between
optimization and short-distances, we have designed a new stochastic algorithm that,
based on extremal optimization [Boettcher and Percus 2001], minimizes the maxi-
mum node betweenness keeping the path lengths as short as possible. The addition
of this constrain gives rise to an algorithm that, although it is not able to reach better
optimization for the betweenness than other already proposed methods [Danila et al.
2006], it is able to keep the paths with only small fluctuations over the initial SP
protocol.
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7.2 Our proposal for an optimal SRP

We now focus on power-law degree distributed networks, P(k) ~ k=, with A = 2.5
to facilitate the comparison with previous studies [ Yan et al. 2006, Sreenivasan et al.
2007, Danila et al. 2006] !. In order to generate our ensemble of networks, we em-
ploy the configurational model [Molloy and Reed 1995] introduced in Sec. 6.2. Each
node is first assigned a random integer k > ko according to the degree distribution
P(k), where ko = 2 is the minimal number of links for each node that guarantees
the full connection of the graph. Next we randomly select stubs and connect them to
form the edges, respecting the preassigned degrees and avoiding multiple and self-
connections. We consider an additional restriction on the maximum possible degree
of the vertices, kmaz ~ N1 to build graphs with no degree-degree correla-
tions [Catanzaro et al. 2005]. This restriction ensures that, on average, only one node
has k;q.c connections, i.e., 1/N = [ P(k)dk.

The optimization algorithm starts from the non-degenerated Shortest-Path SRP.
So once the network is built, the first step is to calculate the SP using Dijkstra’s
algorithm [Cormen et al. 2005]. As this optimization is based on an iterative min-
imization of the maximal node betweenness, we must also calculate the number of
paths passing through each node for this initial SP routing table. In Ref. [Newman
2001] the betweenness b; of the node 7 is defined as the sum of all the fractional
paths that pass through that node. In other words, degenerated paths are considered.
Therefore, the number of times that an information packet passes through the node
1 on its way from a source node s to a destination node d is computed as follows:
the source node s is assigned a weight w = 1 and then the weight of every node
along each path is split evenly among its predecessors in the routing table. Thus, the
weight of a vertex ¢ represents the number of distinct paths from the source vertex
to 4. The betweenness of the node 7 is then calculated as b; = 1 + 3, bj(w;/wy),
where the first term is the contribution of the path (s, %) and the second term takes
into account the contribution derived from all the neighbors j immediately below the
vertex . However, for the present optimization algorithm we follow the convention
of considering only one path for each pair of nodes (s,%). Therefore, the probabil-
ity of choosing certain path is equally distributed between all possible degenerated
paths. To illustrate the betweenness calculation, we present an schematic picture in
Fig. 7.3.

Once the initial SP protocol and the corresponding betweenness are calculated,
we proceed to optimize the table of the N (NN — 1)/2 routing paths. To unequivocally
identify them, we assign to every path (i, j) a label £ as follows

'Nevertheless, we have also performed the study on networks with A = 4.5 finding no qualitative
difference in the final results.
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S d=0 S d=0

d=1

prob=1

d=2

prob=1/2

Figure 7.3: Calculation of betweenness for nodes at distance d from the source node s. Top:
All degenerated SP from s to every node are considered. Each node is assigned a weight
w that represents the number of distinct paths touching it. The centrality b of a node is
then defined as the sum of all fractional paths that pass through that node. Bottom: only one
shortest-path is considered to connect each node to the source s. When several w degenerated
paths are possible, one of them is chosen with probability prob = 1/w.

(t—1)
2
where ¢« = min(z,j) and N is the network size. Since we are dealing with non
directed graphs we have £(i,j) = L£(j, 7). An illustrative interpretation of Eq. (7.4)
is shown in Fig. 7.4 for a system of size N = 5. For every node ¢ we store the
labels of the b; paths passing through it. Up to this point we have our initial SRP
unequivocally described since we know the path labels assigned to each node and the

link connections of the graph 2.

L(i,j)=(i—1)N — +Jj—1, (7.4)

2This statement will be strictly valid if there are no triangular connections involved in the paths
definition. However, the networks built with the uncorrelated configurational model [Catanzaro et al.
2005] exhibit an average cluster coefficient that decreases with the system size as (C') ~ N2~ for
SF networks with P(k) ~ k~*. Therefore, the presence of triangular connections in our graphs is
negligible for large enough networks.
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Figure 7.4: Label assignment for path (i = 3,j = 4) in a system of size N = 5. There are
10 paths (7, j) labeled £ = 1,2, ..., N(N — 1)/2 according to Eq. (7.4). The path (3,4) has
assigned the label £(3,4) = 8 . The panels show the different constributions of Eq. (7.4) to
the path label.

To carry out the optimization we repeat, in an iterative way, the following steps:

e The node m with the highest betweenness is selected.

e One of the paths, £, passing through m is chosen at random. £ must not start
or finish at m, let us refer to its initial and final nodes as ¢ and j.

e An alternative to £ between ¢ and j is searched trying to keep the distance as
short as possible without passing through m. If there is no such alternative, the
path remains unchanged.

An schematic illustration of these rules is shown in the panels a) and b) of
Fig. 7.5. In the sketch, a path passing through the node with the highest between-
ness, represented as an square, is deviated to an alternative route avoiding it. It is
worth noting again the usefulness of degenerated paths. The constraint of alternative
paths as short as possible means in practice that, if another choice of equal extension
exists, the path will never be increased in length. The method takes advantage of the
possible degeneracy of the paths in length to reorder the protocol and ease the traffic
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Figure 7.5: The sketches a) and b) illustrate the way in which the method optimizes the
protocol by selecting another path that must be either of the same length or the shortest
alternative to the original one. In c), the probability of finding alternative length-degenerate
paths, P,,~1, for the SP protocol is displayed as a function of the network size N. In the
inset: histogram for the number n of degenerate alternatives for each path in the SP protocol.
The different curves correspond to the following network sizes: N = 102 (circles), 5 x 102
(squares), 2 x 103 (diamonds) and 10* (triangles).

passing through the maximal betweenness node. The paths can thus be only one of
two possibilities: the SP configuration or the shortest alternative to them.

The important role played by the length degeneracy can be observed in Fig. 7.5c.
There, the probability of having n alternative paths for a SP configuration, P,~1(N),
is displayed as a function of the size of the network. P,~1(/N) consistently grows
with N, becoming higher than 65% for the largest graphs that we have considered
N = 10%. In the inset, the distribution of the number of degenerated paths, P(n), is
also shown for four network sizes. Note that P,,~1 = Y ", P(n).

This considerable presence of degenerated paths gives us the chance to achieve
the proposed compromise between minimization of maximal centrality and short dis-
tances. In the following, we will study how our extremal optimization algorithm
affects the different features of the protocols.
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Figure 7.6: Betweenness distribution for a N = 500 system. The (black) circles correspond
to the stationary distribution reached with our optimization method while the (red) squares
are for the initial SP protocol. In the inset, the stationary betweenness distributions of the
method for other two network sizes N = 350 and N = 700.

7.3 Betweenness distribution

In this section, we will discuss the results concerning the betweenness of the nodes
and how it behaves after the optimization method is employed. After some iterations
of the method the betweenness distribution, P(b), reaches a stationary form that can
be seen in Fig. 7.6. The highlight task here is to compare this stationary distribution
with the initial SP betweenness distribution. From Ref. [Goh et al. 2001, Barthélemy
2003] we know that the SP protocol produces a power-law of the betweenness dis-
tribution P(b) with an exponent that depends on the exponent \ of the degree dis-
tribution. This is in agreement with the distribution plotted in Fig. 7.6. We observe
that the protocols resulting from our optimization method show the tail of this initial
distribution P(b) collapsed into a peak at high values of the betweenness. Also the
region of low b suffers a slight variation, although the functional form of P(b) in the
intermediate regions seems largely unaffected. A change in the size of the network
displaces the position of the peak but not the quality of the effects observed in the
main plot of Fig. 7.6.

The peak induced in P(b) by the optimization method at high values of b cor-
relates with a decline of the maximum betweenness in the network. As we have
discussed above, this betweenness, B, is crucial for the transport capability of a pro-
tocol, since it imposes an upper cutoff to the traffic the network is available to sustain
before jamming [Arenas et al. 2001, Ohira and Sawatari 1998, Solé and Valverde
2001]. The scaling of B with the network size, NV, can be seen thus as a measure of
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Figure 7.7: The maximum betweenness, B, as a function of the network size N for the
optimized protocol (the scale of the axis are in log-log representation). Lines are shown as
a reference scaling with exponent 1.3 (solid), 1.2 (dashed), and 1.5 (dotted). In the table,
scaling exponents « obtained with different optimization methods are listed. The initials
correspond to Shortest-Path (SP) [Danila et al. 2006], Hub-Avoidance (HA) [Sreenivasan
et al. 2007], Danila’s method (DAN) [Danila et al. 2006], Efficient Routing (ER) [Yan et al.
2006] , and our own method (OUR).

the scalability of a protocol. The faster B grows with IV, the less useful the protocol
will be for large networks. In Fig. 7.7 we plot the average maximal betweenness
in the stationary state of our optimized protocol as a function of the network size.
We find a power-law increase with a functional form B ~ N¢ and o®V% ~ 1.3.
This value of a must be compared with the results encountered for other protocols
or other protocol optimization methods presented in the introduction of the chapter.
In the same figure, we have also included a table with the exponents « for other
methods. It is specially interesting the comparison with the original SP protocol
P ~ 1.6 or with the best of the optimization methods listed (Danila’s method)
with P4 ~ 1.18 [Danila et al. 2006]. Our optimization method, without deviating
substantially from the SP protocol, as the length of the paths is concerned, produces
a very acceptable value of the exponent .

7.4 Path Length

Although our optimization is mainly based on a minimization of the maximal node
betweenness, a compromise between optimization and short-distances is necessary
to obtain an efficient routing protocol. A protocol that elongates the paths too much
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is not useful for network communications. Commonly, there exists a nonzero prob-
ability of losing a packet in every communication between two servers. The longer
the paths become, the higher is the probability of missing information. This loss can
attain a point at which most of the paths are not functioning and the network may
suffer from disruptions. On the other hand, longer paths lead to longer “ping” times,
with the corresponding delay in processing information.

In this section we will focus on studying how the length of the paths of the proto-
col changes when the optimization method is applied to the protocol. In Fig. 7.8, we
have plotted the path length distribution P(¢) for the original Shortest Path protocol
and for the stationary regime of the protocols obtained with our optimization method
on a network of size N = 102. As can be seen, the center of the distribution has
slightly displaced but its shape remains essentially invariant. In order to quantify the
displacement of the center of P(¢) with the system size, we have represented in the
panel b) of Fig. 7.8 the ratio between the average length of the paths in our method
and that calculated with the SP protocol. The curve is monotonically decreasing with
N, and for large systems it moves very slowly toward unity or a value close to it. This
means that, as the network becomes larger, the lengths of our paths become closer to
shortest-paths.
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Figure 7.8: In a), paths length distribution for a network of size N = 1000. In the figure,
the results of the protocols obtained with our optimization method can be compared with the
initial SP. In b), the ratio between the average length of the paths in the two protocols (ours
and SP) is visualized as a function of the network size.

As occurs with B, the scaling of the average length of the paths, (¢), with the sys-
tem size is also important. In Figure (7.9), we show how (/) behaves with increasing
network size. In ultra-small scale-free networks with 2 < A\ < 3, as the ones we
use, the SP protocol (¢gp) is expected to grow as log(log(/N)) [Cohen and Havlin
2003]. We cannot numerically test this formula for many decades in /N but within
the limited range of values we can explore the relation seems to hold.
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Figure 7.9: The average path length, (I), of the protocols we obtain as a function of the
network size. It can be seen that the fit b) to a log(log(N')) functional form approaches better
the results from the simulation than a single log(/N) in a).

Finally, as explained above, we underline that the paths of our optimized SRP can
be only in two states: either the SP configuration or the shortest alternative to them
in the case that the expelled path from the highest betweenness node does not exhibit
degeneration. Such a two-state configuration recalls many physical systems in which
the components can be in the ground state or being excited by thermal (stochas-
tic) fluctuations and end up in higher energy levels. To confirm such a picture, we
have plotted in Fig. 7.10 the cumulative distribution, Cs.(R) = [° dR' P(R), of
the ratios R = fsyqt/sp, Where £g4; corresponds to the length of each path in an
stationary configuration of the optimized protocol and £gp is the length of the corre-
sponding path in the initial SP configuration. As can be seen, the probability for the
paths to be below a certain excited level R decays rapidly as an exponential function.
In the present example, the characteristic ratio of such exponential decay is around
0.55, which makes extremely unlikely for any path to suffer a large stretching out of
its SP length. However, we expect that such characteristic ratio may depend on the
topology of the network employed; whether it is scale-free or not, and, if it is, also
on the exponent of the degree distribution.

7.5 Weighted networks

Up to this point we have considered graphs with indistinguishable links. However, as
we mentioned in the previous chapter, for many applications in transport optimization
it is useful to consider connections with different qualities. This is something that
can be observed in many real communication networks. For instance, in an airline
network the quality of the links could represent the cost of the flights in terms of
money or time. In the Internet this difference represents the variability of capacities
or bandwidths of the links between computers. Mathematically speaking, the quality
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C,(R)

Figure 7.10: Cumulative distribution of the ratio between the longitudes of the paths obtained
with our protocol optimization method and the length of the corresponding original SP for
scale-free networks P(k) ~ k=2, The distribution becomes step-like due to the discrete
character of the length.

of a connection is represented by a scalar variable attached to each link that is known
as weight w. The presence of weighted links alters the definition of distance. The
effective length of a given path between two nodes is not determined only by the
number of links that belong to it, but it is rather given by the sum of the weights
of those links. Therefore, to optimize the routing protocol between all the pairs of
nodes the concept of short-path has to be reconsidered. Instead of the shortest in the
sense of number of links, it may be important to find the path with the lowest weight
from source to destination. These paths are often referred to as optimal paths in the
literature [Porto et al. 1999, Braunstein et al. 2003, Park et al. 2004, Kalisky et al.
2005, Wu et al. 2006].

Protocols based on optimal paths (OP) exhibit a very particular scaling with the
network size [Braunstein et al. 2003, Kalisky et al. 2005]. Depending on the level
of randomness of the weights of connections, the system can be either strongly or
weakly disordered. In the former case, the fluctuations on the weight are so large
that the weight along the paths is controlled by the edge with the largest weight,
while in the weak disorder case the responsibility is distributed between the links
that constitute the path. For SF networks with degree distribution P(k) ~ k= and
2 < X < 3the average length of the optimal paths scales as (/,,;) ~ log(N) for weak
disorder, while a scaling (,,:) ~ (log(N))*~! has been proposed for the strong
disorder case. However, in both cases and particularly for 2 < A < 3, the scaling
of B with N does not change too much with respect to unweighted graphs [Goh
et al. 2001, Barthélemy 2003, Goh et al. 2005]. Here we will focus only on the
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weak disorder case since it is the only one in which it makes sense to search for an
alternative protocol to the OP, the cost of doing so in the strong disorder limit would
diverge with the size of the graph.

One of the positive aspects of our protocol optimization is that its generalization
for weighted graphs is straightforward: at each step, a path £ passing through the
node with highest betweenness is randomly selected to be redirected. Now the alter-
native path to avoid this node is searched trying to keep the cost as low as possible
(such cost is understood as the sum of all the weights along the path since we are
in the weak disorder limit). As before, if there is no alternative, the path remains
invariant. In the following, we will study the performance of the stationary protocols
produced by this method on Reed-Molloy graphs with A = 2.5 and with two possible
functional forms for the weight distribution: either an exponential P(w) ~ e~%/we
or a power-law distribution P(w) ~ w™?. In order to keep the results comparable
for both distributions, we fix the parameter w, to obtain a similar average weight as
in the power-law distribution. In the data shown, this will be w. = 2 and 8 = 2.5.

The scaling of B as a function of the network size is shown in Fig. 7.11 for both
types of weight distributions. The application of the optimization method produces
a significant improvement in B with respect to the OP protocol. For the range of
system sizes shown in the figure, this means a factor 3 or even higher. Also, the
exponent « of the optimized protocols is close to 1.4 while that of the original OP
protocols was about 1.56.
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Figure 7.11: Dependence of B with the system size for weighted graphs. The (red) circles
are the results for the protocols of our method and the (blue) squares are for the original OP
protocol. The weight distribution for a) is an exponential P(w) ~ e~*/2, and for b) is the
power-law P(w) ~ w~25 as can be seen in the insets for networks of size N = 500.
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One can wonder then what is the price to pay for such an improvement. In net-
works with continuous values of the weights, as the ones we deal with, the degen-
eracy on the weight of the alternative paths is extremely unlikely. Strictly speaking
thus, there is always a price to pay, although it could be a small one. To answer this
question, we have plotted in Fig. 7.12 how the average weight of the paths scales with
N for protocols obtained with our method and for the corresponding OP. We show
these results for both exponential and power-law distributed weights. Similarly to
what occurred with the path lengths in the unweighted case, we find that the average
weight is slightly higher but not extremely so. Also the ratio between the average
weight of the paths of our optimized protocol and that of the initial OP protocol de-
creases for increasing network sizes and slowly moves toward a value close to one.
Furthermore, even though it is not shown in the figure, the shape of the distribution of
the weight of the paths remains almost unaltered by the optimization of the protocols.
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Figure 7.12: Comparison between the average weight of the paths, (wyq¢p), in the original
OP protocol and in the optimized protocols with our method. The curves in a) correspond to
weighted graphs with an exponentially decaying weight distribution, while those in b) have
a power-law weight distribution.

7.6 Discussion and Conclusion

Traffic flow in networks, and particularly jamming and its dynamical relation to the
network structure, has become a topic of intense investigation in the last few years.
To outperform the transport capacity of such communicating networks, the routing
protocol - which defines the paths between all pairs of nodes - may be optimized in
order to avoid congestion.

In this chapter we have introduced our own protocol optimization algorithm that
is applicable to both weighted or unweighted graphs. Our aim is not to produce a fast
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or computational ambitious algorithm to improve protocols but to explore how much
a slight variation on the Shortest Path (or Optimal Path) protocol can be compatible
with an acceptable improvement of the protocol. The method we propose exploits
the paths degeneracy or the close-weight alternatives to minimize the maximal node
betweenness, B. If the resulting protocol is considered as the routing table of a
traffic model based on packet flow, this would imply a maximization of the packet
insertion rate at which jamming occurs. This will immediately increase the amount of
information (capacity) that the communication network can handle without jamming.

We observe that the scalability of the SP (or OP) betweenness is significantly
improved with our algorithm, while the length (or weight) of the paths remains al-
most invariant. An iterative application of the algorithm collapses the power law
tail of the initial betweenness distribution into a peak, but keeps the length distri-
bution practically unaffected. The power-law dependence of the maximal node be-
tweenness with the system size, B ~ N¢, is thus improved as compared with the
initial SP protocol, agp ~ 1.6, to the stationary optimized protocol, apyr ~ 1.3.
This exponent, which can be considered as a measure of the algorithm optimality,
is comparable with the method proposed by Danila et al. [2006] for which they ob-
tain apan ~ 1.18. Danila’s method is the best performing protocol, as information
capacity is concerned, but does not explicitly take into account the increase of path
lengths and the corresponding worsening of the ping times. Our algorithm is optimal
in the sense that it performes very well by producing a slow growth of the maximal
betweenness, while the routing paths are kept as close as possible from the initial SP
(or OP) protocol. This strongly suggests that our algorithm may be the best option
for some practical applications.
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APPENDIX

A Mean-field approach of the
Sznajd model

In this appendix we detail the calculations of the analysis provided in Sec. 5.1.1.

We consider the simplified “two over one” version of the Sznajd model, in which

two randomly taken agents are able, if they are in consensus, to convince another
randomly chosen agent. The system consists of N individuals where N and N~

are the number of agents supporting the (+) and the (—) position, respectively (with

Nt 4+ N~ = N). In terms of the total magnetization of the system, m = (N* + N~)/N,
the number of agents reads N* = N (1 &+ m)/2.

The master equation is a gain-loss equation for the probability of the system to
have magnetization m, which reads

OP(m, 1)

ot /[W(m!m’)P(m’,t) — W/ |m)P(m,t)jdm’ (A1)

where W (m|m') is the transition probability per unit time from m' to m (and vicev-
ersa).

In our model a pair of agents is chosen at random at each time step, and depending
on their agreement they are able to convince a third one. Thus the probability of
having (Nt, N ™) agents at time ¢ includes all the possible contributions
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P(NT,N",t) = Qa(N*—1,N +1—N" N )P(N' —1,N" +1,t —1)+
+ Qp(NT+1,N" -1 —=NT NH)P(N" +1,N~ —1,t —1) +
+ Qo(NT,N~ = NF N )P(NT,N",t—1), (A2)

where the transition probabilities, (), depend on the probability of choosing each
agent with (+) or (—) opinion

@a = <N+N_ 1) ' <J\JT\;F—_12> ' (]JVV_—JF31> =+
@p = (N_N_ 1) ' <]\Jif_—_12> ' (]\zf\f+—+31) ==-+4 &3

Qo = [+ ++] + [+ =+ + [+ = =]+ [ + +] + [~ + =] +[- = —].

of the magnetization m) as
N 8 e ﬂ

2 1[ <
=3 (3 o )

In the thermodynamic limit N >> 1 such quantities can be approached (in terms
Qalm—— —m)=-|1- (m——) Hl—i—
8

Qo=(m—-m)=1-Q1-Qp=1-(1-m m?). (A4)
yielding the master equation
Plm.t) = Qa(m— % —m)P(m—=t-1)+
= _—_— —> — — -
m, Alm N m m N’

2 2
+ QB(m+N—>m)P(m+N,t—l>+

+ Qc(m — m) P(m,t — 1) ) (A.5)

In order to properly achieve the continuous limit (% < 1) we expand P(m + %)
and Q(m £ £ — m) around m up to the second order in (1/N):

2 2
P(mi%,t) P(mt)i%%P( )+%(ﬁ) aiﬂp(mtwo(;s) (A.6)
Q,ﬂm—%am)%%(l—m )(1+m)—%%[1—2m—3m2}—é<%) (1—|—3m)+0($)
Qs (m—l—%—wn)fvé(l— 2)(1—m)—%%[1+2m—3m2]—%(%)2(1—3771)4—0(%)
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Then, rescaling the time as ¢ = 2N7 we finally obtain the FPE up to second
order in (1/N) [cf. Eq. (5.1)]

0
S-P(m,r) = — = [m(l — m2)P(m, T)]
d (L) 2 [ mpmn] . A
ON 8171,2 m m,T . .
Now we include the effect of the social temperature by introducing some proba-

bility (1 — p) that the procedural rules of the model are not fulfilled (with the agent
to be updated adopting the opposite opinion that the one assigned by the rules).

1st 2nd 3,-d p;)ob 11_‘(}))(3 1st 2nd 3,.1 p}';)b 17:(}))13
+ + + | - - |- |- - +
+ [+ |- ‘ + - - |- + ‘ - +
+ |- |+ + | - - |+ |- - +
+ |- |- |+ SR I [ + | -

Figure A.1: The model rules read that the pair of chosen agents are able to convince the
third one if they are in agreement between themselves, and otherwise nothing happens. This
scheme shows all the possible choices when the possibility of not fulfilling such rules is
considered with probability (1 — p).

Thus the contributions that need to be taken into account in the master equation

Qain= 2w =i (- ) [ (- 2)
B 2] (- D) 2 (e 2]

Qe 2 m =21 e 2 (o 2)
B 2] (e D) 2 (e 2]

and
Qc(m—m)=1-Qa—Qp. (A.10)
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We again expand these functions around (m =+ %) ~ m up to the second or-
der in (1/NN) to approach the continuous limit (4 < 1). In this case, the general
formulation of the master equation given in Eq. (A.5) yields the FPE in presence of
contrarians [cf. Eq. (5.2)]

;TP,,(m, = — %{ [(Gp —5)m — (2p — 1)m3)] By(m, T)}
+ (2;[> 867;{ [3 —2p—(2p — l)mﬂPp(m,T)},(A.ll)

where time has been again rescaled as ¢t = 2N.

Upon reaching this point, we can obtain from Eq. (A.11) the stationary prob-
ability distribution function (PDF) for the system to have magnetization m. The

Fokker-Planck equation, which has a general form % = —2-[A(m)P(m,t)] +
i 8?22 [B(m)P(m,t)], can be broken up in a continuity equation for the probability
density
OP(m,t) 0
— + —J(m,t) =0 A.12
o T om (m, ) ; (A.12)
with the current J(m, t) = A(m)P(m,t) — %%[B(m)P(m, t)].
The PDF is given by 0Pg,/0t = 0 that implies % = 0, and particularly

J(m,t) = 0. This implies

Afm) mBW] (L] = Q) O

2 877’L 5 Pstat (’I’)’L)

(A.13)

Integrating such an expression and taking the exponential form we arrive at

Pyiar(m) = exp { /m 24(m) dm' —In B(m)} (A.14)

1 B(m')

In our case, we extract from Eq. (A.11) the following terms for the current

A(m) = [(6p — 5)m — (2p — 1)m”]

B(m)=N"13-2p— (2p — 1)m?] (A.15)
that yields
™ (6p — 5)u(2p — 1)u? N
Pstat(m) ~ on [ du +1 .
p o (m) eXp{ /1 3_op—(2p— 12 " 3—2p—(2p—1)m2}

(A.16)
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This PDF can be expressed in terms of an effective potential as Py*™(m) ~
e~ Vess . In order to analyze the stability of such stationary solution for varying p, we
consider the condition 8}9/% = 0 to obtain the potential minima

WVerr (6p —5)m — (2p — 1)m3 m =0
om  3—2p—(2p—1)m2

6p—>5
2p—1"

(A.17)
in doing so the second term in V, ;¢ has been not considered as it increases slower
than the former one with the system size IV, and can be neglected.
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DPRM = Directed Polymer in Random Media

DPD = Directed Percolation Depinning

ER = Erdos-Rényi graph

EwW = Edwards-Wilkinson universality class
FPE = Fokker-Planck Equation

FRG = Functional Renormalization Group

KPZ = Kardar-Parisi-Zhang universality class

mct = Monte-Carlo time

opP = Optimal-Path

PDF = Probability Distribution Function

QEW  — Quenched Edwards-Wilkinson universality class
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RB = Random-Bond disorder

RF = Random-Field disorder

RG = Renormalization Group Theory

SF = Scale-Free network

SP = Shortest-Path

SRP = Static Routing Protocol
VM = Voter Model
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APPENDIX

D Resumen en Castellano

Uno de los aspectos més fascinantes del mundo que nos rodea es la gran variedad de
escalas a las que tienen lugar los diversos fendmenos. En muchos casos esta diver-
sidad pone de manifiesto la estructura fractal de la Naturaleza y podemos hablar
entonces de fenomenos complejos, en los que eventos de diferentes magnitudes no
pueden analizarse de manera independiente. Dicha complejidad emerge como un
fendmeno cooperativo a escalas microscépicas, que produce un complejo compor-
tamiento macroscépico caracterizado por correlaciones de largo alcance e invarianza
de escala. Aparecen asi conceptos como leyes de escalado, universalidad y renor-
malizacion, pilares fundamentales dentro de la Fisica Estadistica.

El abanico de fenémenos complejos es muy amplio, y abarca sistemas de muy di-
versas disciplinas que van desde la Fisica mds “ortodoxa’ hasta la Biologia, Sociologia,
Geologia e, incluso, Economia. Esta Tesis se centra en fendmenos complejos ex-
tendidos en el espacio. En concreto hemos focalizado nuestra labor en tres grandes
temas que constituyen importantes focos de interés dentro de la Mecédnica Estadistica:
Crecimiento de Interfases, Sociofisica y Redes Complejas. A continuacién presenta-
mos la estructura de la Tesis, que se ha dividido en tres partes independientes corres-
pondiendo con los temas previamente sefialados.

La primera parte se centra en Dindmica de Interfases. A modo de introduccion, en
el Capitulo 2 se definen los conceptos de fractal y escalado dindmico. Se describen
las magnitudes bésicas empleadas en la caracterizacién del crecimiento interfacial
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asi como los distintos tipos de escalado definidos en la literatura [Ramasco et al.
2000]. Asimismo, se introducen las principales clases de universalidad con desor-
den térmico, conocidas como EW [Edwards and Wilkinson 1982] y KPZ [Kardar
et al. 1986], describiendo sus correspondientes ecuaciones de crecimiento asi como
algunos modelos discretos.

En el Capitulo 3 particularizamos al crecimiento de interfases eldsticas en presen-
cia de desorden congelado o quenched disorder. Dicha particularizacién es de gran
interés, ya que describe fendmenos tan diversos como la dindmica de los vortices
de campo magnético en un superconductor de tipo-1I [Blatter et al. 1994] o el corri-
miento de dominios magnéticos en un ferromagneto [Lemerle et al. 1998, Repain
et al. 2004]. En la primera parte del capitulo introducimos al lector en este tipo de
fendmenos en los que el desorden sélo depende de la posicién de la interfase. Aten-
diendo a su correlacion espacial dicho desorden puede ser de corto alcance (random
bond) o largo alcance (random field). Ademas, atendiendo a la fuerza de empuje, f,
y la temperatura, 7', la interfase eldstica describe diferentes regimenes estacionarios:
estdtica o equilibrio (f = 0), depinning (T =0y f = fo)ycreep (f < foyT 2 0).

En la segunda parte de este capitulo analizamos la relajacién hacia el estado
estacionario de una interfase unidimensional forzada en presencia de desorden de
tipo random-field y fluctuaciones térmicas. La dindmica de relajacion de la interfase
eléstica ya ha sido previamente abordada desde el punto de vista tedrico empleando
aproximaciones de Campo Medio y Grupo de Renormalizacion [loffe and Vinokur
1987, Nattermann 1987, Vinokur et al. 1996, Cugliandolo et al. 1996, Chauve et al.
2000, Balents and Le Doussal 2004, Schehr and Le Doussal 2004]. Sin embargo,
la aplicacién de estos resultados a sistemas de bajas dimensiones es dificil y, espe-
cialmente en lo que concierne a observaciones experimentales, analisis numéricos
puede ser de gran utilidad [Schehr and Le Doussal 2004; 2005, Rosso and Krauth
2002, Kolton et al. 2005b; 2006]. Nosotros consideramos la condicién (f < f.)
y observamos, mediante simulaciones de un modelo de autémata celular inspirado
en [Leschhorn 1993], cémo el sistema relaja en los distintos rangos de temperatura.
La discretitud de nuestro modelo nos permite construir patrones espacio-temporales
de la actividad en los distintos puntos de la interfase y llevar a cabo un novedoso
andlisis de las correlaciones de los mismos a partir de las distribuciones de inter-
valos temporales y espaciales entre puntos activos. Relacionamos, ademds, estas
variables locales con variables globales de la dindmica como la velocidad de la in-
terfase y sus correlaciones. Observamos tres regimenes de relajacién diferenciados
atendiendo a la intensidad de las fluctuaciones térmicas. A altas temperaturas dichas
fluctuaciones dominan sobre el desorden (clase de universalidad EW) y las distribu-
ciones de intervalos espacio-temporales entre eventos o puntos activos describen
decaimientos exponenciales. A bajas temperaturas encontramos un régimen cuya
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dindmica puede describirse mediante los argumentos teéricos del creep. La interfase
describe largos periodos de inactividad, correspondientes a estados metaestables o
“quasi-pinned”, seguidos de activaciones térmicas sobre las barreras de energia del
equilibrio que producen avances coherentes a las escalas equilibradas de la misma.
Acorde a esta descripcion, observamos distribuciones potenciales de los intervalos
espacio-temporales entre eventos. Sin embargo, a ultrabajas temperaturas observa-
mos que los argumentos de la dindmica de creep no son aplicables debido a la rele-
vancia que adquiere la asimetria de nuestra interfase forzada. Terminamos el capitulo
con la inclusién en las simulaciones de correcciones no-lineales al orden més bajo.

La segunda parte de la Tesis versa sobre Sociofisica. Esta disciplina analiza,
desde la Fisica de los Sistemas Complejos, diversos fendmenos sociales colectivos
como la formacidn de opinién, propagacion de tendencias culturales, cooperacion
entre grupos de individuos o evolucién de los mercados. Sin pretender reproducir la
realidad de una Sociedad dificilmente reproducible, este nuevo campo de la Mecénica
Estadistica analiza los patrones globales y autoorganizados que emergen del com-
portamiento “microscépico” de los individuos que la constituyen, y lo hace mediante
simulaciones de modelos basados en agentes (ABM) y cdlculo de ecuaciones maes-
tras o de balance. En este trabajo nos centramos en fendmenos de formacion de
opinién. En el Capitulo 4 introducimos los diversos tipos de modelos de opinién
presentes en la literatura, entre los que destacamos principalmente cuatro tipos: mo-
delo del votante [Ben-Naim et al. 1996, Dornic et al. 2001, Krapivsky and Redner
2003], modelos de impacto social (modelo de Sznajd [2000]), modelos basados en la
mayoria (modelo de Galam [1990]) y modelos continuos (modelo de Deffuant et al.
[2000]). En el Capitulo 5 presentamos dos trabajos en los que analizamos cémo la
temperatura social, entendida como un parametro de agitacion colectiva fruto de la
interaccién de cada individuo con su entorno, puede afectar a los procesos de for-
macién de opinién. En el primero de ellos consideramos un ABM de tipo Ising que
reproduce la dindmica de Sznajd. Realizamos simulaciones en distintos tipos de re-
des (unidimensional, completamente conectada y de pequefio mundo), considerando
el efecto de la temperatura social como una cierta probabilidad de que los individuos
actien de forma opuesta a las reglas establecidas del modelo. Observamos que di-
cho mecanismo introduce de forma dindmica un efecto tipo “contrarian”, que pueden
definirse como agentes que ejercen oposicion constante a la mayoria [Galam 2004].
Observamos cierta temperatura critica por encima de la cual el sistema, debido al
efecto de dicha oposicién constante, no es capaz de alcanzar un estado final de con-
senso. Corroboramos estos resultados numéricos mediante calculos analiticos de la
ecuacion maestra y de Fokker-Planck, que nos permite aproximar la distribucion esta-
cionaria de la magnetizacion del sistema para el caso de Campo Medio (equivalente
al caso discreto de la red completamente conectada).
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En la segunda parte de este capitulo consideramos otro ABM en el que el efecto
de la temperatura se entiende como cierta probabilidad de que los agentes sufran
cambios espontdneos de opinién. El modelo consiste en dos grupos de agentes con
opiniones definidas, N4 y Np, que solo interaccionan con un tercer grupo de inde-
cisos, Ny (de modo que el nimero total de agentes N = N4+ Np+ Ny). Debido ala
posibilidad de cambios espontaneos, todos los grupos son estadisticamente estables
y el sistema tiende hacia una tnica solucién estacionaria, lo cual nos permite aplicar
la aproximacion de van Kampen [van Kampen 1981] en torno al ndmero total de
agentes, IV. Partiendo de la ecuacién maestra del sistema obtenemos las ecuaciones
macroscopicas para la densidad de los distintos tipos de agentes, asi como la ecuacion
de Fokker-Planck que describe las fluctuaciones en torno a la solucién macroscépica.
A partir de ellas analizamos los tiempos de relajacion del sistema ante perturbaciones
de la solucion estacionaria y la variacién de la dindmica ante modificaciones de los
distintos pardmetros que definen las interacciones entre agentes. Observamos intere-
santes fendmenos de reentrancia, en los cuales la dispersion de la PDF se invierte
durante la evolucién hacia el estado estacionario. Dicho efecto evidencia la necesi-
dad de interpretar con precaucion las encuestas realizadas a lo largo de, por ejemplo,
un hipotético proceso electoral.

La tercera y ultima parte de la Tesis se ubica dentro del marco de las Redes
Complejas. Esta reciente y activa disciplina de la Fisica Estadistica estudia diversos
sistemas que pueden ser representados mediante graficas o redes, es decir, como un
conjunto de nodos conectados mediante enlaces o links. Constituyen claros ejemplos
Internet, redes neuronales o metabdlicas, redes sociales, etc. En el Capitulo 6 pro-
porcionamos una introduccién al tema, en la que describimos el concepto de redes
libres de escala o scale-free, los patrones de asortatividad y coeficiente de cluster-
ing, asi como el fenémeno de pequefio mundo o small-world. En la dltima seccién
del capitulo hacemos una breve introduccién a los distintos tipos de procesos que
se pueden simular sobre redes complejas, para pasar a centrarnos en procesos de
transporte en el siguiente capitulo.

En este dltimo Capitulo 7, definimos un modelo general de transporte basado
en la distribucién de paquetes de informacién a través de caminos definidos entre
los pares de nodos de la red (cuyo conjunto se denomina cominmente “protocolo
de enrutamiento”). En concreto nos centramos en el problema de optimizacién de
dicho protocolo, entendiendo como tal la cantidad de informacién que el sistema
es capaz de soportar antes de colapsar y atascarse (fenémeno de jamming). Esta
optimizacién puede entenderse en términos de la minimizacién de la maxima cen-
tralidad o betweenness, esto es, del nimero de caminos que atraviesan el nodo mads
visitado, que en redes scale-free escala con el tamafio del sistema como B ~ N!*¢,
Tradicionalmente el protocolo definido mediante los caminos mds cortos entre pares
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de nodos (shortest-paths) ha sido comtiinmente empleado como protocolo éptimo.
Sin embargo, varios estudios evidencian la falibilidad de dicho protocolo y presen-
tan otros algoritmos para la optimizacién de protocolos de enrutamiento [Yan et al.
2006, Sreenivasan et al. 2007, Danila et al. 2006]. Continuando en esta linea de tra-
bajo, nosotros proponemos un algoritmo basado en optimizacion extremal [Boettcher
and Percus 2001] que, partiendo del protocolo shortest-paths, minimiza la betwee-
ness maxima manteniendo los caminos entre nodos lo mds cortos posible, esto es, en
torno a la distibucién de distancias internodales del protocolo inicial. A lo largo del
capitulo analizamos las propiedades del protocolo estacionario que resulta al aplicar
nuestro algoritmo en redes scale-free, con distribucién de grados P(k) ~ k™y
tipicamente A = 2.5. Observamos que, efectivamente, la cola de la distribucién ini-
cial de betweenness se concentra en un pico a valores moderados, mientras que la
distribucién de distancias apenas varia con respecto a la inicial. Esto hace que el
escalado de la betweennes méxima, inicialmente Bgp(A = 2.5) ~ N6, se opti-
mice hasta Boyr(A = 2.5) ~ N L3 Este resultado es comparable con el obtenido
mediante el algoritmo presentado por Danila et al. [2006], en el que la minimizacién
de la betweenness méxima estd mejor lograda, Bpan(A = 2.5) ~ N2, pero no
se afiade explicitamente la restriccién de minimas distancias. Los resultados men-
cionados hasta el momento se refieren inicamente a redes con links indistinguibles.
En la dltima seccién del capitulo aplicamos también el algoritmo en redes con pesos,
es decir, redes cuyos links se caracterizan individualmente mediante un valor o peso
acorde a una distribucién dada. En este caso el concepto de shortest-path torna a
optimal-path, el camino entre dos nodos cuyo peso total es el minimo posible. Anal-
izamos los resultados para el caso de desorden débil, en la que la dispersion de los
pesos es pequeiia y el peso total de los caminos no estd dominado por un dnico en-
lace. Consideramos dos tipos de distribuciones de pesos diferentes: exponencial y
potencial. En ambos casos observamos de nuevo una disminucién de la betweennes
maxima respecto al protocolo inicial de optimal-path, mientras que la razén entre el
peso medio de los caminos inicial y final tiende a la unidad segin aumenta el tamaiio
del sistema.
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