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Abstract

The device-independent formalism is a set of tools to analyze experimental
data and infer properties about systems, while avoiding almost any assump-
tion about the functioning of devices. It has found applications both in
fundamental and applied physics: some examples are the characterization
of quantum nonlocality and information protocols for secure cryptography
or randomness generation. This thesis contains novel results on these topics
and also new applications such as device-independent test for dimensionality.

After an introduction to the field, the thesis is divided in four parts. In
the first we study device-independent tests for classical and quantum dimen-
sionality. We investigate a scenario with a source and a measurement device.
The goal is to infer, solely from the measurement statistics, the dimension-
ality required to describe the system. To this end, we exploit the concept
of dimension witnesses. These are functions of the measurement statistics
whose value allows one to bound the dimension. We study also the robust-
ness of our tests in more realistic experimental situations, in which devices
are affected by noise and losses. Lastly, we report on an experimental imple-
mentation of dimension witnesses. We conducted the experiment on photons
manipulated in polarization and orbital angular momentum. This allowed
us to generate ensembles of classical and quantum systems of dimension up
to four. We then certified their dimension as well as its quantum nature by
using dimension witnesses.

The second part focuses on nonlocality. The local content is a nonlocality
quantifier that represents the fraction of events that admit a local descrip-
tion. We focus on systems that exhibit, in that sense, maximal nonlocality.
By exploiting the link between Kochen-Specker theorems and nonlocality, we
derive a systematic recipe to construct maximally nonlocal correlations. We
report on the experimental implementation of correlations with a high degree
on nonlocality in comparison with all previous experiments on nonlocality.
We also study maximally nonlocal correlations in the multipartite setting,
and show that the so-called GHZ-state can be used to obtain correlations
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suitable for multipartite information protocols, such as secret-sharing.

The third part studies nonlocality from an operational perspective. We
study the set of operations that do not create nonlocality and character-
ize nonlocality as a resource theory. Our framework is consistent with the
canonical definitions of nonlocality in the bipartite setting. However, we
find that the well-established definition of multipartite nonlocality is incon-
sistent with the operational framework. We derive and analyze alternative
definitions of multipartite nonlocality to recover consistency. Furthermore,
the novel definitions of multipartite nonlocality allows us to analyze the va-
lidity of information principles to bound quantum correlations. We show
that ‘information causality’ and ‘non-trivial communication complexity’ are
insufficient to characterize the set of quantum correlations.

In the fourth part we present the first quantum protocol attaining full
randomness amplification. The protocol uses as input a source of imperfect
random bits and produces full random bits by exploiting nonlocality. Ran-
domness amplification is impossible in the classical regime and it was known
to be possible with quantum system only if the initial source was almost
fully random. Here, we prove that full randomness can indeed be certified
using quantum non-locality under the minimal possible assumptions: the
existence of a source of arbitrarily weak (but non-zero) randomness and the
impossibility of instantaneous signaling. This implies that one is left with
a strict dichotomic choice regarding randomness: either our world is fully
deterministic or there exist events in nature that are fully random.
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Chapter 1

Introduction

A measurement process is an interaction among physical systems from which
one acquires classical information. These processes are one of the building
elements of the development of scientific knowledge, as the results of mea-
surements are to be confronted with theoretical models predicting the be-
havior of nature. It is often the case that the measurement process itself
can be divided into sub-blocks. One may have a well-tested model for some
of the sub-blocks, however other sub-blocks are to be tested experimentally.
Consider for example the interaction of an atom and a magnetic field cre-
ated by an electrical current. One may have a well-tested model for the
generation of the field by the current, however the interaction between atom
and field is to some extent uncharacterized. In this situation it is perfectly
reasonable to make use of the well-tested model for the current producing
the field when the results of the whole experiment are interpreted. Indeed,
it is very useful to extend the explicative power of well-tested models as far
as possible, so one can isolate the sub-block that is to be understood.

It is also common that the model under test is formulated within a
theoretical framework assumed to be correct. To follow with the previous
example, one can measure the value of the magnetic dipole of the atom by
using a well-tested framework as Maxwell equations. Indeed, it seems rea-
sonable to say that the more assumptions on the theoretical framework, the
more precise the interpretation of the results. To summarize: measurements
are a complex network of interacting processes. The interpretation of mea-
surement results relies on very intricate assumptions about the functioning
of the devices, and these assumptions enhance a deeper understanding of
the measurement outcomes.

However, there exist situations where it is convenient to avoid as many
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1.1. DIMENSIONALITY

assumptions as possible about the internal working of the measurement de-
vice, even if one has a well-tested theory for some of its parts. We identify
three possible scenarios in which this is the case: (i) When the unknown
physical property to be measured is very fundamental, and therefore it is
difficult to build theoretical models that do not rely on this unknown prop-
erty. For example, if one aims at measuring the dimensionality of a system,
it is difficult to build models that are dimension-free, that is, that do not
make any initial assumption on the dimension. (ii) When the experiment
is designed to certify a property of the theoretical framework describing the
experiment. For example, Bell’s theorem shows that there is no local theory
able to describe measurements on certain quantum states. (iii) When one
aims at performing a task in which making assumption is explicitly unde-
sired. For example if the task has to be carried out in competition with a
malicious agent that may take advantage of your incorrect assumptions.

In these scenarios one is compelled to interpret the measurement results
by using as few assumptions as possible. This paradigm is known as device-
independent and this thesis offers examples of its usefulness, both from the
theoretical and the applied viewpoint. More interestingly, the interplay be-
tween scenarios (i), (ii) and (iii) makes that results initially conceived to
make a fundamental statement about nature later find an application for cer-
tain device-independent tasks. Conversely, the study of device-independent
tasks often yield to statements with a fundamental importance to understand
our current theories. This thesis offers many examples of this interplay.

1.1 Dimensionality

The first chapter is devoted to device-independent tests for dimensionality.
This fits in the scenario (i) that was considered above. The aim is to in-
fer from the experimental data which is the dimensionality (the number of
degrees of freedom) needed to describe a physical situation. Every model
makes explicitly an assumption about the degrees of freedom, which is the
very quantity to measure. Therefore, there is a dramatic restriction on the
assumptions that one can use to describe the experiment. Nevertheless,
it is reasonable to make some general assumptions about the theory that
describes the experiment, for example, that it has to be compatible with
the laws of quantum mechanics (or classical mechanics). Interestingly, by
using such general assumptions it is possible to obtain relevant bounds on
the dimensionality of the system from the raw experimental data. Further-
more, we provide an experimental demonstration of our results. That is, we
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CHAPTER 1. INTRODUCTION

estimate the dimension of a physical system.

As mentioned above, in such tests, the only assumption is the theory
describing the experiment (classical mechanics or quantum mechanics). This
allows one to compare the performance of the two different theories for a
fixed dimension. We show how to build tests for distinguishing quantum
and classical systems of a fixed dimension.

Main results on dimensionality
Dimension witness

We derive a recipe to test the dimensionality of an arbitrary system only from
the statistics of measurements performed on it. This method can be adapted
to every experiment involving a source and a measurement device and all
the theoretical machinery is distilled into a single linear combination of the
observed statistics. We provide specific examples for classical and quantum
systems useful in quantum information theory and provide a formalism to
distinguish classical and quantum systems of a fixed dimension. Moreover,
the techniques are appealing from an experimental viewpoint.

Detection loophole in tests for dimensionality

We study the performance of our tests for dimensionality in the presence
of imperfect detectors. We derive lower and upper bounds on the detection
efficiency necessary to bound the dimensionality of quantum and classical
systems. Furthermore, we show that an extra assumption on the functioning
of the devices allows one to bound the dimension for an arbitrary non-zero
value of the detection efficiency.

Experimental demonstration of tests for dimensionality

We perform an experimental tests on photons up to dimension four. We
exploit the polarization and angular momentum of photons and certify the
dimension and the quantumness of the photons. This is the first experimen-
tal demonstration of a test of dimensionality.

1.2 Nonlocality

The second chapter focuses on nonlocality. The modern foundations for
the study of nonlocality were settled by Bell’s Theorem (also known as
Bell inequalities). This theorem states that, according to the predictions
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1.2. NONLOCALITY

of quantum theory, the results of measurements performed on two spatially
separated systems are not compatible with any local theory. In a sense, Bell
designed an experiment that measures a property of any theory that aims at
describing it, namely, whether it is nonlocal. This is by definition a scenario
where it is mandatory to avoid as many assumptions as possible on the func-
tioning of the device. Otherwise, one would end up with weak statements
such: ‘no local theory can describe the experiment, provided that such and
such assumptions are true about the functioning of the devices’. That is,
Bell theorem can be understood as a foundational example of the a device-
independent tests where the scenario (ii) applies. As anticipated before, the
impossibility of describing the experiment by a local theory has implications
for device-independent tasks. In particular, nonlocality is intimately related
to secrecy and randomness. This thesis contain several example of these
relations.

Main results on nonlocality
Maximally nonlocal correlations

We design experiments to show that quantum mechanics is maximally non-
local. As entanglement, nonlocality is not only a dichotomic feature and
here exist quantifiers of nonlocality. It is often the case, as in Bell’s original
inequality, that quantum mechanics provides nonlocal correlations, but not
as nonlocal as it would be possible within a non-signaling theory (a theory
that does not allow for instantaneous transmission of information). We give
a systematic recipe to construct maximally nonlocal correlations, that is, as
nonlocal as allowed by the no-signaling principle. Furthermore, we perform
an experimental implementation of these correlations, providing the most
nonlocal correlations ever reported. Also we focus on maximally nonlocal
correlations in a multiparty scenario. We find correlations that are maxi-
mally nonlocal, monogamous (i.e. uncorrelated with any other party, for
example an eavesdropper) and locally random. We show that these correla-
tions are suitable for device-independent cryptographic tasks such as secret
sharing.

An operational framework for nonlocality

The second section focuses on operational frameworks for nonlocality and
information principles. Here we build an operational framework to describe
nonlocality analogous to the operational framework of LOCC (local opera-
tions and classical communication) for the study of entanglement. We show
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CHAPTER 1. INTRODUCTION

that the standard definition of multipartite nonlocality adopted by the com-
munity is not consistent with the framework, and propose alternatives to
recover consistency. These alternative consistent definitions allows us to
study nonlocal correlations and its behavior under certain operations. We
use all this machinery to analyze the performance of information-theoretic
principles for quantum correlations. We show that the most promising
information-theoretic principles (information causality and non-triviality of
communication complexity) are insufficient to bound quantum correlations.

Certifying randomness by nonlocal correlations.

The fourth section focuses on randomness. Nonlocality is directly related to
randomness: a nonlocal theory cannot be deterministic if compatible with
the no-signaling principle. Therefore, Bell theorem can be used to certify
that no deterministic theory can describe the experiment, or in other words,
that the outputs are random. It has been shown by other authors that
Bell experiments are randomness amplifiers. Our main result is that this
amplification can be made arbitrarily large. That is, provided an arbitrarily
small amount of randomness, we can certify an arbitrarily large randomness
on the measurement outputs.

15



1.2. NONLOCALITY

16



Chapter 2

Background

2.1 The device-independent formalism

In the device-independent formalism measurement processes are represented
by two classical variables: the input and the ouput. The input z € {1,...,m}
codifies all the tunable parameters of the measurement device. One can
imagine an apparatus with many knobs that modify the magnetic fields, the
temperature, the happiness, or any other property that one believes inter-
esting for an experiment. The precise way in which these knobs modify the
parameter is irrelevant. One just needs to encode the position of the knobs
into the variable x. The output a € {1,...,k} represents the outcome of the
measurement. Again, the relation of the outcome with a certain physical
property is irrelevant in the formalism. The output @ is an encoding of a
certain variable that one is able to read from a pointer, a screen or any other
output generator, see Fig 2.1.

It is usually assumed within the device-independent formalism that it
is possible to prepare independent and identically distributed copies of the
experiment (i.7.d. assumption). The ensemble of copies provides a set of
experimental data comprising the input and output at every copy of the
experiment, see Fig. 2.1. Under the i.i.d. assumption, one can compute
P(alz), the probability of obtaining outcome a when the measurement la-
beled by x has been performed. This is done just by assigning probabilities
in a frequentist manner, P(alz) = N(a,z)/N(z), where N(-) counts the
number of events within the ensemble of copies '. After collecting those

'In real experimental situations, the set of data is obtained by reusing the same ex-
perimental device, rather than manufacturing many identical copies. By this procedure,
the 4.i.d. assumption is clearly not satisfied if the devices have memory [BCH'02]. This
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2.1. THE DEVICE-INDEPENDENT FORMALISM
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Figure 2.1: The measurement process is seen as a black box. All the configuration of
knobs and buttons is encoded onto the classical variable x, which should be regarded as a
label for the measurement. The output is equivalently encoded onto the classical variable
a. After many repeatitions of the experiment, one can compute P(A|X) just by the usual
definition in terms of frequency of events.

probabilities for each input and output, one can compute the whole prob-
ability distribution. Let us denote the probability distribution by P(A|X),
a vector with components P(a|z) for all (a,z), where ) P(alr) =1, and
P(a|z) > 0 Y(a,z), that is, a well-defined probability distribution.

The interesting scenarios in the device independent formalism usually in-
volve two ore more distant observers performing measurements on its share
of a physical system. Let us consider N observers, each with a measurement
device. Let us denote by x; and a; the input and output of the i-th observer.
Similarly as explained above, by collecting statistics one can compute the
probability distribution P(Ay,..., Anx|X1,...,Xn), a vector with compo-
nents P(ai,...,an|z1,...,zn). We will also use a more compact notation
by defining A= (A1,...,An) and X = (X1,...,XnN). The probability dis-
tribution is then referred to as P(A, X). On the other hand, it is often the
case that only few parties are involved. In this case they are commonly
referred to as Alice, Bob, Charlie, etcetera. The probability distribution is
then denoted as P(A, B,C|X,Y, Z). This will be the standard notation used
in most of this thesis.

becomes important in scenarios where memory effects could be exploited by a malicious
agent. In section 6, for example, we avoid using the i.i.d assumption. However, in less
paranoid scenarios, the i.i.d assumption fits perfectly the expected behavior of the devices.
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Figure 2.2: The source prepares upon request a physical system. The different preparations
are labeled by the classical variable w. In this example, it is a bipartite system on which
two distant observers measure x and y and obtain the outcomes a and b, respectively.

Another interesting scenario involves sources that produce physical ob-
jects that are later exposed to a measurement. Again, sources can be inte-
grated in the device-independent formalism. This will be considered in detail
in further sections. At this point, it suffices to say that the source may also be
controlled by knobs that vary certain parameters. The preparation, or posi-
tion of the knobs, can be encoded in the variable w. Therefore, if N observers
perform measurements on a physical object prepared by the source, one
can compute the probability distribution P(A1,..., Anx|X1,..., XN, W), see
Fig. 2.2.

2.1.1 Assumptions

The device-independent formalism avoids as many assumption as possible
about the functioning of the devices. Precisely for this reason, the as-
sumptions that one does make play an important role and have to be well-
characterized. Furthermore, as it will be explained later in detail, most of
the results in the device-independent formalism can be understood as neg-
ative results such ‘assumption A and B are not compatible with a certain
probability distribution’. Therefore one has to characterize not only the
assumptions, but how they relate to each other and which mathematical
constraints impose on the probability distribution when acting together.

Measurement independence

The measurement independence assumption can be stated in the strongest
version as: ‘the input choice of every device is independent of the rest of
the universe’. Mathematically it is expressed as P(z|U) = P(x) where z
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2.1. THE DEVICE-INDEPENDENT FORMALISM

is any input involved in the experiment and U is the state of the universe.
This assumption can be justified by using different arguments, that usually
depend on the philosophical viewpoint of the authors, or the operational
motivation of the result that is presented.

As mentioned above, the inputs represent parameters of the devices that
the experimenter can vary at will in the laboratory. Therefore the assump-
tion can be justified in the first place by the free will of the individuals
performing the experiment to choose a certain measurement. Indeed, this
assumption is often referred to as ‘free-will assumption’ by some authors
[CKO06]. The personal viewpoint of the author of this thesis is that free will
is rather an ill-defined concept within a physical framework, therefore the
use of this terminology is avoided.

It is indeed sufficient to assume that the input choice does not depend
on the fraction of the universe that is relevant to the experiment, that is
P(z|E,U — E) = P(z|U — E), where E represents the state of the physical
entities involved in the experiment, and U — E the rest of the universe that
is assumed to play no role in the results of the measurements. For instance,
imagine that the inputs are chosen by tossing a coin, the measurement in-
dependence assumption just states that the coin is independent of photons,
apparatuses, atoms or anything involved in the experiment, regardless of
whether the coin enjoys free will. However, the situation is more intricate
when using the device-independent formalism to perform tasks such as ran-
domness generation or cryptography. To obtain acceptable generation rates
of random numbers or secret bits one cannot rely on coins or experimenter
choices. The input choice is integrated in the device and can be manipu-
lated by a malicious party. All these issues are discussed deeply in section
6. In the following, we always work under the measurement independence
assumption, unless the contrary is explicitly mentioned.

No-signaling

This assumption states that the choice of a measurement device cannot
influence the statistics of other distant observers. It can be mathematically
expressed as

ZP(al,...,ai,...,aN|:c1,...,a:i,...7$N)
a

’ ) (2.1)
:ZP(UH,---,ai,---,CLN|CU1,---,fUi,---,CUN)
a;
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CHAPTER 2. BACKGROUND

for all ay,...,ai—1,ai41,...,an,21,...,2N,2; and for all¢ = 1,..., N. This
assumption is often justified by the laws of special relativity. If the mea-
surements performed by the observers define space-like separated events,
then the laws of special relativity prohibit that inequality (2.1) is violated.
Otherwise, information about the input x; would travel to distant observers
faster than light.

Validity of quantum theory

This assumption states that the measurements processes are compatible with
the laws of quantum mechanics. In particular, that exist a quantum state
and quantum measurements that reproduce the statistics according to the
Born rule. Mathematically it can be expressed as

P(ay,...,an|z1,...,2n) = Tr(pMg! @ ... @ MGY) (2.2)

where p is a semi-definite positive operator of unit trace acting on a Hilbert
space H = H{ ® ... ® Hy. The measurement operators Mff; are semi-
definite positive operators acting on H;, fulfilling Zai Mgi =T for all x;
and all ¢ € {1,...,N}. These conditions guarantee that the probability
distribution is normalized and positive.

Validity of local hidden-variable models

This assumption states that the measurement processes are compatible with
the laws of classical mechanics. More precisely, a probability distribution is
said to be described by a local hidden-variable model (LHVM) if it can be
written as

P(ay,...,aN|z1,...,2N) = /d)\p(A)PAl(a1|x1,)\) ... Pyy(an|zn, A)

(2.3)
where p and Py, are well-defined probability distributions [Bel64]. This
formula has a well-defined operational interpretation: the state of the whole
experiment at the moment of performing the measurement is described by
A. To describe the statistics one averages over all the possible states of the
experiment according to p(A). All the experimental devices produce the
output a; according to the information locally available to them: the input
x; and the description of the experiment A. Apart from the hidden variable
A, there is no other correlation among the distant devices, therefore the total
probability is the product of the local probability distributions, Py, .
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2.1. THE DEVICE-INDEPENDENT FORMALISM

Nonetheless, the nomenclature associated to the LHVM assumption is
inspired by different viewpoints. On the one hand, the hidden variable A
can be understood as a label assigned to the state of the experiment at the
moment of measuring. It is not necessary at all to assume that the state
is classical nor that A encodes all the relevant information. Therefore it is
accurate to say that the only assumption therein is locality. Namely, that the
outputs are generated upon the local information available to the observers:
A and the input. On the other hand, it has been shown by [Fin82, Hal09]
that (2.3) is equivalent to

Plai,...,anlz1,. .., zN) = /dA p(\)ghiAan) | sAn(Aan) (2.4)

where A;(\, z;) € {1,...,d}. That is, the local response of the devices Pjy,
can always be considered deterministic, or in other words, A encodes all the
relevant information of the experiment, as it can be used to predict with
certainty the outcomes. Therefore, LHVM assumption is often referred to
as ‘local determinism’ or ‘local realism’.

2.1.2 Sets of probability distributions

As explained above, each of these three assumptions relates to a theoreti-
cal framework. Furthermore, each assumption defines a set of probability
distributions that are compatible with the assumption. The set of all prob-
ability distributions fulfilling (2.1) will be denoted by P. This set contains
the statistics allowed by special relativity. Equivalently we denote by Q and
L the set of all quantum and local correlations, respectively.

Polytopes

Let us fix some mathematical concepts that will appear recurrently, in par-
ticular, the notion of polytope (see also [BV] for more details on polytopes
and convex optimization problems that may appear along this thesis).

Definition 2.1. A polytope T is defined by
T:{UGRn’Fi-USfi;Ej-Uzej; i=1,...,rj=1,...,s} (2.5)

where F;, E; € R™ and f;,e; € R. The half-planes F; - v < f; are referred to
as facets of the polytope T .
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CHAPTER 2. BACKGROUND

Figure 2.3: A polytope 7 C R?, grey region. The polytope is equivalently defined either
by the facets F; (represented by normal vectors) or by the set of extremal points r;. For
instance, the condition Fi-v < fi would define a semi-plane (blue region). The intersection
of all these semi-planes is the polytope T

Equivalently, see Fig. 2.3 the polytope T can be described by the so-called
extremal points. That is,

={veR"Nv=piri+...+pgrq; Zpizl,p,zow} (2.6)
i

where r; € R™ Vi are the extremal points.

Three theories, three sets

The no-signaling set P is defined by positivity, normalization and condition
(2.1) [MAGO6]. It is a convex set, as one can easily check that

A‘pz sz 3 E‘X (27)

with p; > 0Vi and 3, p; = 1, is such that if P;(4|X) € P Vi, then P(A|X) €
‘P also. The set P is defined by a finite number of linear constraints, therefore
it is a polytope (a polygone in higher dimensional vector space). It can be
described equivalently by the set of extremal points of the polytope. The
extremal points are referred to a extremal non-signaling boxes [BP05].

The quantum set Q is defined by condition (2.2). It is also a convex set,
however it is not a polytope because the number of extremal points is not
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Local

Figure 2.4: There is a strict inclusion among the three sets, so that the local set (blue) is a
polytope, strictly contained into the quantum set (green). The latter is strictly contained
into the no-signaling polytope (grey). A probability distribution P(A|X) is represented by
the black point. It can be decomposed as a mixture of local and no-signaling probability
distribution. Geometrically, the local content pr, is the distance to the local polytope

finite. One can trivially check that condition (2.2) implies (2.1), therefore
Q C P. Indeed, as shown in [PR94] there exist probability distributions
that lie outside the quantum set, however are non-signaling, hence Q C P.

The local set L is also polytope. According to equation (2.4) every prob-
ability distribution with a LHVM can be written as a convex combination of
deterministic strategies. These are precisely the extremal points of the set
L. This set can be equivalently characterized by its facets. The local set is
contained in the quantum set, and therefore in the non-signaling set, see Fig.
2.4 This can be easily seen by noticing that the hidden variable A\ in equa-
tion (2.3) may be itself a quantum state py = [A\)(A| ® ... ® |A)(A], and one
can always choose quantum measurement operators such that P(a|z,\) =
Tr(|A)(A|MZ). More surprisingly, the set £ is strictly contained in Q. This
has been proven by Bell in his seminal work of [Bel64]. Such statement
deserves development in a section of its own.

2.2 Nonlocality

The field on nonlocality relies on an apparently innocent and rather mathe-
matical concept, £ C Q. However the implications are still nowadays a field
of research in foundations of physics and recently have become a source of
new applications in quantum information theory. The field of nonlocality
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explores many questions related to this phenomenon: How can we quantify
nonlocality?, what other properties can we infer from a probability distribu-
tion being nonlocal?, which tasks can we perform with nonlocal resources?,
etcetera. In this section we review the modern formulation of Bell’s theorem
and many of the mathematical and conceptual tools that are used in this
thesis.

2.2.1 Bell’s theorem

Bell’s theorem shows that £ C Q. The argument uses the so-called Bell
inequalities.

Definition 2.2. Given a vector C' with real entries Cgl o , we say that

C-PAX)= > Cim¥ Play,...,an|z1,...,2n)  (2.8)

ai,...,an

al,..,aN
Tl TN

is a Bell inequality if: (i) C-P(A|X) < Cr where Cy is a real constant, for all
P(A|X) € L; (ii) there exists another probability distribution P(A|X) € P
such that C' - P(A|X) > Cr.

There exist Bell inequalities that are violated by quantum correlations,
that is, such that there exists a quantum probability distribution p(/_ﬂ)? ) €
Q such that C - P(A|X) > Cr. In fact, most Bell inequalities display a
quantum violation. These violations imply that £ C Q.

Tight Bell inequality. A Bell inequality is tight whenever it corresponds
to a facet of the local polytope. Tight Bell inequalities are optimal to detect
whether a probability distribution belongs to the local set. To see this,
consider a probability distribution P(A|X), that does not belong to £. As
the facets of £ completely characterize the set, P(A|X) has to violate at
least one of the inequalities defining the facets.

2.2.2 Nonlocality quantifiers: the local content

Whereas the violation of a Bell inequality implies nonlocality, it does not
quantify it. A first attempt would be to quantify nonlocality by the amount
by which a Bell inequality is violated [LVB11]. For example, take two prob-
ability distributions P(A]X) and Q(A|X) that violate a Bell inequality de-
fined by the vector C. One is tempted to affirm that C-P(A|X) > C-Q(A|X)
imply that the former is more nonlocal than the latter. However this de-
pends crucially on the specific Bell inequality considered, as there may be
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another Bell inequality for which the relation is inverted, and @) provides a
larger violation than P. A more natural measurement of nonlocality can be
given in terms of communication complexity [BCT99]. That is, how many
bits of classical communication need the observers to exchange among them
to reproduce some given nonlocal correlations. While operational appeal-
ing, this quantification has the problem that there is no algorithm to find
the optimal communication protocol to reproduce some set of correlations,
apart from some very specific scenarios. A more promising measure is the
so-called local content [EPR92].

Definition 2.3. Consider a non-signaling probability distribution P(ff\)?)
The local content pr, of P(A|X) is defined as

7, — 1max
b Pys,Pr e (2.9)

such that P(A|X) = q Pr(A|X) + (1 — q) Pvs(A|X)

where Pyng is an arbitrary non-signaling probability distribution fulfilling
(2.1), and Py, is an arbitrary local probability distribution fulfilling (2.3).

The local content should be interpreted as the fraction of events that
admit a local description Pp. If P(A|X) is local then p;, = 1, see Fig
2.4. On the other hand, a probability distribution is nonlocal if p;, < 1. A
probability distribution is said to be maximally nonlocal if p;, = 0. As we will
study in detail in Section 4.1, maximally nonlocal probability distributions
are interesting both from a theoretical and applied point of view.

2.2.3 Multipartite nonlocality

Let us consider, for the sake of simplicity, a scenario with three parties, Alice,
Bob and Charlie. A probability distribution P(A, B,C|X,Y, Z) is said to
be nonlocal if it cannot be written according to (2.3). However, it may be
the case that the probability distribution has a decomposition as

P(a,b,clz,y,z) = Zp()\)PA(a|x, A)Ppc(b, cly, z, \). (2.10)
A

If this is the case, one says that the probability distribution is local along the
bipartition A|BC. Such probability distributions, however nonlocal, can be
reproduced by just two parties acting together and, therefore, do not repre-
sent any intrinsic form of among more than two parties [Sve87]. Therefore,
a stronger notion of nonlocality is needed for multipartite scenarios.
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Definition 2.4. A tripartite probability distribution P(A, B,C|X,Y,Z) is
said to be genuwine multipartite nonlocal if it cannot be written as

P(A7B7C’X7KZ) = 4da|BC PA|BC(A7B7C’X7Y72)
+ gBjac Ppjac(A, B,C|X,Y, Z)
+ qcjaB Pojag(A, B, C|X,Y, Z)  (2.11)

with g1\ pc+4Bjac+dciaB = 1, 4a|BC: 4B|AC: dcjaB = 0, and Py a,4, being
a probability distribution bi-local along the bipartition A1|A2As, (i.e. Pyjaya, =

Z)\ P(/\)PA1PA2A3)-

Probability distributions with genuine multipartite nonlocality are dis-
cusses in deep in Section 4.2. There, we study which quantum states provide
such a form of nonlocality and how it can be used to perform information
tasks that are impossible in a scenario with two parties.

2.2.4 An example: The Clauser-Horne-Shimony-Holt inequal-
ity

Consider a scenario with two distant observers, Alice and Bob, that perform
measurements on their share of a physical system. Both can choose between
two dichotomic measurements, that is, N = m = d = 2. Let us label the
inputs and outputs as z,y € {0,1} and a,b € {1, —1}. If the results of the
experiment are to be described by a LHVM, then the probability distribution
can be written as

P(a,blz,y) = Zp(/\)PA(a\x,)\)PB(b]y,/\) (2.12)
A

where, without loss of generality P4(alz,\) and Pg(bly, A) take values in
the set {0,1}, that is, they are deterministic. Consider now, the so-called
correlator defined as

AB,y = Z ab P(a,b|z,y) (2.13)
a,b

One can easily check, for example by exploring all the deterministic functions
P4 and Pg, that

C-P(A,B|X,Y) = ABy + AByi + ABjg — ABy; < 2 (2.14)
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is fulfilled. This inequality is known as the CHSH inequality, for Clauser-
Horne-Shimony-Holt [CHSHG69].

Let us study the predictions of quantum mechanics for such experiment.
We will show a quantum state and quantum measurements such that the
predicted probability distribution does not fulfill (2.14), therefore one can
conclude that it does not admit a description in terms of LHVM.

Theorem 2.5. [CHSHG69] There exist a quantum state and a set of measure-
ments such that the probability distribution predicted by quantum mechanics
Po(A, B|X,Y), violates the inequality (2.14) and therefore does not admit
a LHVM description.

Proof. Consider the singlet two-qubit quantum state |¥) = %(|Ol> —[10))
shared by Alice and Bob. Both perform two distinct measurements on their
share of the quantum state. The measurements for Alice (Bob) are described
in the Pauli basis by A, = A,-6 (B = B a) where & is a vector containing
as entries the three Pauli matrices and Ax, B are normalized vectors in R3,
as usual in the literature. One can easily check that when measuring on
the singlet state on obtains AB,, = —A, - Ey. Hence, for this quantum
realization C - P(A, B|X,Y) = —Ay(By + B,) — A\ (By — By). By choosing
B, = —f(Ao + (—1)Y4)) one finds that C' - P(A, B|X,Y) = 21/2, hence, it
violates inequality (2.14). O

Thm. 2.5 implies that there exist quantum experiments that do not
admit a local description, therefore quantum mechanics is said to be a non-
local theory. Once proven that quantum mechanics can perform beyond the
limits of locality, another question arises: Can quantum mechanics realize
any nonlocal correlation? The answer is no. Clearly, quantum mechanics
cannot be used to signal information between two distant observers, or in
other words, quantum mechanics provide correlations that fulfill (2.1). The
question should be sharpened: Can quantum mechanics realize any nonlo-
cal correlation that does not lead to signaling? The answer is again no. As
anticipated before @ C P, and this can be shown within the CHSH scenario
considered here.

Theorem 2.6. [PR9/}] There exist a probability distribution Ppr(A, B|X,Y)
that does not allow any signaling, that is, fulfills (2.1), however it cannot be
realized by quantum means.

Proof. Consider the following probability distribution
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1/2: a+b=2xy mod 2

Ppr(a,blz,y) = { 0: otherwise. (2.15)

One can easily check that Ppr(A, B|X,Y) fulfills the non-signaling condi-
tions. Furthermore C'- Ppr(A, B|X,Y) = 4. On the other hand, it is shown
in [Tsi83], that maxpeg C - P(A, B|X,Y) = 2/2. Therefore Ppp ¢ Q. [

This simple scenario allows us to detect the structure of the local, quan-
tum and non-signaling sets. The two previous results imply that £ C Q C P.
Last inclusion means that quantum mechanics is not as nonlocal as the no-
signaling principle allows. This can be illustrated as well by using the notion
of local content of quantum correlations. Consider a decomposition of the
quantum correlations used in Thm. 2.5

Po(A|X) = q PL(AIX) + (1 - q) Pxs(A]X). (2.16)

By using linearity of Bell inequalities one can check that

=< Pys(A1X) - C- Py(AX) (2.17)
C- Pys(AIX) — C - Py(AX)

If we define C, = maxpes C- P(A|X), and equivalently for Cvg and Cg we

obtain that the local content of PQ(A'|X)

< Ons - C
~ COns—Cy
This implies that the Bell inequality violation provided by quantum mechan-
ics in this scenario can be simulated by mixture of classical and non-signaling
correlations. Classical correlations can be assigned a weight such that 58%
of the events observed in the experiment are classical.

pr(Po) =2-V2=058 (2.18)

2.2.5 Quantum information principles

In previous sections three different sets of correlations have been character-
ized: the non-signaling set, the quantum set and the local set. The assump-
tion defining the non-signaling set as a clear interpretation: no information
can be transmitted arbitrarily fast. Also does the local set: the information
about the system is encoded in a classical variable that determines the out-
come. However, quantum correlations, despite having a clear mathematical
definition in terms of Hilbert spaces, lack of an operational interpretation.
It has become a field of increasing interest to find a simple statement with
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an operational interpretation that describes the set of quantum correlations.
Reversing the question: why some non-signaling correlations are not avail-
able in nature? The two most promising attempts are ‘information causal-
ity’ and ‘non-triviality of communication complexity’, that we review very
briefly.

Information casuality. [PPKT09] Tt considers a scenario with two par-
ties, Alice and Bob, that share a physical system that behaves according to
the probability distribution P(A, B|X,Y"). Alice holds a string of n4 bits and
is then allowed to send m classical bits to Bob. Information causality bounds
the information Bob can gain on the ny4 bits held by Alice whichever pro-
tocol they implement making use of the bipartite correlations P(A, B|X,Y’)
and the message of m bits. It has been shown that there exist probability
distributions that belong to the set P however violate the principle of infor-
mation causality. On the other hand, all quantum probability distributions
fulfill the principle. Therefore, it is allegedly a candidate to describe quan-
tum correlations without referring to the Hilbert space structure required to
formulate quantum mechanics.

Nontriviality communication complezity.[Dam05, BBL" 06] Consider again
a scenario with two parties, Alice and Bob, who share a probability dis-
tribution P(A, B|X,Y). They are given a string of bits x4 and zp and
want to compute a function F(x4,xp). The communication complexity
of the function is the number of bits that they have to communicate in
order to compute the function F(z4,2zp). It has been shown that there
exist some P(A, B|X,Y) € P, that allow to compute any function with a
constant amount of communication between the parties, in the sense that
this communication is independent of the size of the vectors z,4 and zpg.
Such probability distributions would make communication complexity triv-
ial. The principle of ‘nontriviality communication complexity’ states that
correlations that make communication complexity trivial do not exist in
nature.

2.2.6 Randomness

As discussed in section 2.1.1 LHVM’s can be understood as models in which
the outputs are generated in a deterministic causal way, see (2.4). Quan-
tum correlations cannot be described by a LHVM, therefore one can easily
anticipate that nonlocal correlations are in a sense random. This intuition
has been further developed in several recent works [PAM*10, Col07], which
show that nonlocality can indeed be used to generate a large number of
random bits by using entangled states and a source of a few perfect random
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bits.

Let us first provide a precise definition of random event. Consider a
protocol generating a random variable k£ € {0,1}. Roughly speaking, one
says that the variable k is a random event if k£ and any other classical vari-
able e are completely uncorrelated, with e being generated by performing a
measurement z on a physical system which lies outside a certain light-cone
containing k. This captures the idea that any rational agent, Eve, who ac-
quires knowledge by measuring a physical system on her possession, cannot
predict the value of the variable k. Another way of looking at it is by noticing
that any variable defined outside the future light-cone defined by the event
k can be considered a cause of it. If k is uncorrelated with all these events,
then k£ is a random event to which one cannot assign any cause. Apart
from the independence from any potential cause, the event has to produce
both outcomes with equal probablity. Putting these two things together, an
ideal random bit is defined as Pqeal (K, E|Z) = 3 P(E|Z), where K can take
two values. Now, the randomness of an arbitrary probability distribution
P(K, E|Z) describing a system can then measured by any linear function of
the distance between P (K, E|Z) and the ideal distribution Pge. (K, F|Z),

1 1 1
Pguess = 5 + 7 Ek:maxz [P (k. e]z) = 5 P(el2)]. (2.19)

This quantity has a well-defined operational meaning [Mas09]. Given two
probability distributions P(K, E|Z) and Paea(K, E|Z) = 1P(E|Z), Pguess
measures the probability of successfully distinguishing which of the proba-
bility distributions describes the experiment. If pguess = %, then P(K, E|Z)
is indistinguishable from a random bit. In Section 6 these ideas are further
developed to define a protocol providing random bits.

2.3 Dimensionality

So far, physical tools and concepts explained above try to tackle the question:
what can one say about a theory describing an experiment from the observed
statistics? Clearly, this is an interesting question from a purely theoretical
point of view. Furthermore, having information about the theories that are
or are not capable of reproducing the experiment allows one to perform
useful tasks such as cryptography and randomness amplification. However,
it is easy to conceive situations in which one is interested not only in the
theory describing the system, but in properties of the system within a theory.
The standard procedure is to use theoretical models that one assumes to
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be correct and that depend on certain parameters. The parameters that fit
optimally the experimental data are the ones that one assigns to the physical
system. However, this algorithm is not valid if one wants to measure the
dimensionality of a physical system. It is often impossible to even conceive
a model without making an assumption on the dimensionality, which is the
very quantity to be measured.

The device-independent formalism can be used to tackle this question.
In this thesis we develop tools to estimate the dimensionality of a physi-
cal system only from the raw statistics of an experiment. In contrast to
the scenarios used in nonlocality, we do not make use of distant observers
performing measurements on their share of a physical system. Instead, we
consider a source of particles. This source has some tunable parameters that
are encoded in the classical variable z € {1,..., N}. Then, a measurement
is performed on the particle produced by the source. The measurement is
described by an input y € {1,...,m} and and output b € {1,...,k}. After
repeating the experiment in order to collect reliable statistics one compute
the probability distribution P(B|X,Y’), a vector with components P(b|z,y)
for all b, z,y, where P(b|z,y) is the probability of obtaining output b when
measurement y has been performed on preparation x. As mentioned above,
the input of both the source and the measurement device is assumed to be
chosen independently of the rest of the experiment. That is, the assumption
of measurement independence is applied in the following to the variables x
and y. Let us now define the sets of classical and quantum correlations that
one can obtain for a fixed dimension d.

Definition 2.7. A probability distribution P(B|X,Y") admits a d-dimensional
classical representation if it can be written as

d—1
P(blz,y) = > Ps(A|z)Pas(bly, A) (2:20)
A=0
where X\ is the hidden classical state of the system produced by the source
according to the probability distribution Ps(\X), and Pps(bly, \) is the re-
sponse function of the measurement device for a given hidden state X.

Definition 2.8. A probability distribution P(B|X,Y") admits a d-dimensional
quantum representation if it can be written as

P(blz,y) = Tr(p:My) (2.21)
where p, is a quantum state acting on a Hilbert space of dimension d and

M} is a valid measurement operator such that >, M} =1
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In the next chapter we provide techniques to establish whether a proba-
bility distribution has d-dimensional classical or quantum models. Further-
more, we characterize the set of probability distributions with a decomposi-
tion 3.2 or 2.21.
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Chapter 3

Device-independent tests for
dimensionality

The scope of this chapter is to introduce techniques in the device-independent
scenario that allow one to estimate the dimension of uncharacterized clas-
sical and quantum systems. The chapter is organized as follows: In section
3.1 we formalize the scenario and introduce the concept of dimension wit-
ness and discuss relevant examples. In section 3.2 we study the performance
of our techniques in realistic implementations by considering the effect of
detection inefficiencies. In section 3.3 we present the results obtained in an
experimental realization of dimension witnesses with photons.

3.1 Device independent tests of dimensionality

In quantum mechanics, experimental observations are usually described us-
ing theoretical models which make specific assumptions on the physical sys-
tem under consideration, including the size of the associated Hilbert space.
The Hilbert space dimension is thus intrinsic to the model. In this chapter,
the converse approach is considered: is it possible to assess the Hilbert space
dimension from experimental data without an a priori model?

This is particularly relevant in the context of quantum information sci-
ence, in which dimensionality enjoys the status of a resource for information
processing. Higher dimensional systems may potentially enable the imple-
mentation of more efficient and powerful protocols. It is therefore desirable
to design methods for testing the Hilbert space dimension of quantum sys-
tems which are ‘device-independent’; that is, where no assumption is made
on the devices used to perform the tests.
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Recent years have seen the problem of testing the dimension of a non-
characterized system considered from different perspectives. Initially, the
concept of a dimension witness was introduced by Brunner et al. [BPAT08§]
in the context of non-local correlations. Such witnesses are essentially Bell-
type inequalities, the violation of which imposes a lower bound on the Hilbert
space dimension of the entangled state on which local measurements have
been performed [PGWPT08, VP08, PV08, VP09, BT09, VPB10, JPPG'10].
Wehner et al. [WCDO08] subsequently showed how the problem relates to
random-access codes, and could thus exploit previously known bounds. Fi-
nally, Wolf and Perez-Garcia [WPGO09] addressed the question from a dy-
namical viewpoint, showing how bounds on the dimensionality may be ob-
tained from the evolution of an expectation value.

Though these works represent significant progress, they all have sub-
stantive drawbacks. The approach of Ref. [BPAT08] may not be applied to
single-party systems as it is based on the non-local correlations between dis-
tant particles; the bounds of Ref. [WCDO08] are based on Shannon channel
capacities, which are, in general, difficult to compute; whilst the approach of
Ref. [WPG09] cannot be applied to the static case. More generally, all these
works show how to adapt existing techniques developed for other scenarios
to the problem of assessing the dimension of a non-characterized system.
However, (i) no systematic approach to this problem has yet been developed
and (ii) there are no techniques specifically designed to tackle this question.

Our work bridges this gap and formalizes the problem of testing the
Hilbert space dimension of arbitrary quantum systems in the simplest sce-
narios in which the problem is meaningful. We introduce natural tools for
addressing the problem, starting by developing methods for determining the
minimal dimensionality of classical systems, given certain data. Using geo-
metrical ideas, we introduce the idea of tight classical dimension witnesses,
leading to a generalization of quantum dimension witnesses to arbitrary sys-
tems.

3.1.1 Scenario and definitions

We consider the scenario depicted in Fig. 3.1. An initial ‘black box’, the
state preparator, prepares upon requests a state—we will consider the case
of both classical and quantum states. The box features N buttons which
label the prepared state; when pressing button x, the box emits the state p,
where z € {1, ..., N}. The prepared state is then sent to a second black box,
the measurement device. This box performs a measurement y € {1,..., M}
on the state, delivering outcome b € {1,....,k}. The experiment is thus
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Figure 3.1: Device-independent test of classical or quantum dimensionality. Our scenario
features two black boxes: a state preparator and a measurement device.

described by the probability distribution P(B|X,Y), giving the probability
of obtaining outcome b when measurement y is performed on the prepared
state py.

Our goal is to estimate the minimal dimension of the mediating particle
between the devices needed to describe the observed statistics. That is, what
are the minimal classical and quantum dimensions necessary to reproduce a
given probability distribution P(B|X,Y)?

Formally, a probability distribution P(B|X,Y") admits a d-dimensional
quantum representation if it can be written in the form

P(blz,y) = tr(p. M), (3.1)

for some state p, and operators M, é/ acting on a d-dimensional Hilbert space.
We also say that probability distribution P(B|X,Y’) admits a d-dimensional
classical representation if it can be written as

d—1
P(blz,y) =Y Ps(Alz)Pa(bly, \) (3-2)
A=0
where A is the hidden classical state of the system produced by the source
according to the probability distribution Pg(A|X), and Pys(bly, \) is the
response function of the measurement device for a given hidden state .
This model is in the spirit of ontological models, recently investigated
in Refs. [HAO7, Gal09]. The classical set can be equivalently defined using
quantum states. We say that P(B|X,Y) admits a d-dimensional classical
representation if it can be written in the form (3.1) with [pz, pur] = 0 Va, 2.
Both definitions will be used, when convenient, along this thesis.

Definition 3.1. The set of all probability distributions that have a decompo-
sition of the form (3.2) is referred to as C%,M,k' On the other hand, the set
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of all probability distributions that can be written as convex combination of
P(B|X,Y) € Cj‘f,Mk is referred to as 73]“(, my- This set is a convex polytope
as it can be described by a set of extremal points.

The distinction between these two sets will become relevant in following
sections. Let us also define the concept of dimension-witness that will be
used throughout this chapter.

Definition 3.2. Given a vector W with real entries be’y we say that

W-P(BIX,Y) =Y W P(blz,y) (3.3)

b,z,y

is a classical dimension-witness if (i) W - P(B|X,Y) < Cy, where Cy is a
real constant, for every P(B|X,Y) with a classical description of dimension
d, (ii) there exist another probability distribution P(B|X,Y) with a classical
description of dimension d > d such that W - P(B|X,Y) > Cy.

Definition 3.3. Given a vector W with real entries W, we say that

W-P(B|X,Y) =Y Wy P(blz,y) (3.4)

b,z,y

is a quantum dimension-witness if (i) W - P(B|X,Y) < Qq, where Qg is a
real constant, for every P(B|X,Y") with a quantum description of dimension
d, (ii) there exist another probability distribution P(B|X,Y) with a quantum
description of dimension d > d such that W - P(B|X,Y) > Qq.

3.1.2 Dimension-witnesses from the classical polytope

Tight classical dimension witnesses.

We start by deriving a general method for finding a lower bound on the di-
mensionality of the classical states necessary to reproduce a given probability
distribution P(B|X,Y"). For simplicity we shall focus on measurements with
binary outcomes, which we denote b = +1; the generalization to larger al-
phabets is straightforward. It then becomes convenient to use expectation

values:
Eyy = P(b= +1[z,y) — P(b= —1|z,y). (3.5)

Every experiment is characterized by a vector of correlation functions
E = (Uy=1,Up=2, ..., Up=N), (3.6)
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where U, = (Ey1, Fy2, ..., Ezm) is a vector containing the correlation func-
tions for a given preparation x and all measurements. Deterministic experiments—
those in which only one outcome appears for any possible pair of prepara-
tion and measurement—correspond to vectors Edet for which E,, = £1
for all z,y. Clearly, any possible experiment may be written as a con-
vex combination of deterministic vectors Edet. Thus, the set of all possi-
ble experiments defines a polytope—i.e. a convex set with a finite number
of extremal points—denoted by Py a2. The facets of Py a2 are termed
positivity facets, of the form E,, < 1 and E,, > —1, which ensures that
probabilities P(b|z,y) are well defined. Thus Py ar2 may be viewed as the
set of all valid probability distributions. Note that Py a2 resides in a space
of dimension N M and has 2¥M vertices, corresponding to the deterministic
vectors Edet.

Next, we would like to characterize the set of realizable experiments in
the case that the dimension d of the classical states is limited. We first
note that if d > N, all possible experiments can be realized. Indeed, it is
then possible to encode the choice of preparation x in the classical state;
i.e. p(A|lx) = §). Thus, any probability distribution P(B|X,Y)—i.e. any
vector E in P, m,2—can be obtained, since the measurement device has full
information of both x and y.

Therefore the problem of bounding the dimension of classical (or quan-
tum) systems necessary to reproduce a given set of data is meaningful only
if d < N. In this case, it turns out that not all possible experiments can
be realized. Let us first focus on deterministic experiments. Clearly, if the
classical state sent by the state preparator is of dimension d < N, then (at
least) [IN/d] preparations must correspond to the same state (i.e. the same
classical dit). Therefore, only a subset of the 2V deterministic vectors can
be obtained in this case: those deterministic vectors E_"get composed of (at
least) [N/d] vectors ¥, which are the same.

General strategies consist of mixtures of these deterministic points. It
is however possible to identify two different scenarios. In the first scenario,
the state preparator and the measurement device share no pre-established
correlations and, thus, mix different deterministic preparations and mea-
surements in an uncorrelated manner. In a practical setup, this is often a
very reasonable assumption. In this case, the set of experiments realizable
with a d-dimensional classical system is C?\/,m,Q‘ This set is not convex, as

not every mixture of points Eget has a decomposition of the form (3.2). This
scenario will be considered in detail in Section 3.2. In the second scenario,
the state preparator and the measurement device share classical correlations.
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This is the natural situation in a device-independent scenario, where no as-
sumption about the devices is possible. Now, the set of realisable points is
by construction convex and corresponds to the convex hull of deterministic
vectors Eget, a polytope denoted P]C\l, - In this section, we focus on the
second scenario since: (i) its characterization is simpler, as a polytope is
defined by a finite set of linear inequalities and (ii) it is more general, as any
experiment in the first scenario is contained in Pj‘\lh M2

The polytope Pj{,’ M2 is a strict subset of Py ar2. Thus it features ad-
ditional facets which are not positivity facets. These new facets are ‘tight
classical dimension witnesses’ (for systems of dimension d), and are formally
given by linear combinations of the expectation values Ey; i.e.

W-E=> weyEy < Cq (3.7)

x?y

where the probabilities (entering E, ) are of the form of Eq. (3.2), a classical
representation of dimension d. These inequalities are classical dimension
witnesses in the sense that: (i) for any experiment involving classical states
of dimension d, the associated correlation vector E will satisfy inequality
(3.7); (ii) in order to violate inequality (3.7), classical systems of dimension
strictly larger than d are required. Note that a witness is termed ‘tight’
when it corresponds to a facet of the polytope 77]”(, M .o3 this terminology is
borrowed from the study of non-locality, in analogy to ’tight Bell inequalities.

To summarize, by characterizing the polytopes 73]0(,7 M2 (that is, by finding
all the facets of P¢ ,,,) one can lower bound the dimension of the classical
systems necessary to feproduce a given probability distribution P(B|X,Y).
Clearly, if a probability distribution is proven not to belong to 73]‘%, Mo, it
requires classical systems of dimension strictly larger than d. In the case
that the state preparator and the measuring device are allowed to share
pre-established correlations, our technique also provides an upper bound on
the dimension, since all experiments in 77]‘{, o can then be obtained from
classical systems of dimension d. In this case our methods makes it possible,
in principle, to determine the minimum dimensionality required in order to
reproduce any given probability distribution.

Quantum dimension witnesses

The above ideas can be extended to the problem of finding lower bounds
on the Hilbert space dimension of quantum systems necessary to repro-
duce a certain probability distribution. We first define linear quantum d-
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dimensional witnesses as linear expression of the form

W : E = wayExy < Qd7 (38)

'Z,7y

where the correlation functions E,, can be written in terms of probabilities
of the form (3.1) with p, acting on C¢, and there exists a probability dis-
tribution P(B|X,Y) such that W - E > Qq. This generalises the concept of
dimension witness of Ref. [BPAT08] to arbitrary quantum systems.

It would be, in general, very interesting to fully characterize the set of
experiments, i.e. of vectors E, that can be obtained from quantum states
of a given dimension. Indeed, this would allow one to determine the min-
imal Hilbert space dimension necessary to reproduce any given probability
distribution. As above, it is possible to define different scenarios, depending
on whether the state preparator and the measurement device share corre-
lations, which can now be quantum. In the case of no correlations, the set
of realizable points is again not convex. In the case of correlated devices,
the set of quantum experiments is convex. However, obtaining its complete
characterization represents a more difficult problem, since it is not a poly-
tope. That is, the number of extreme points is infinite and its boundary
cannot be characterized by a finite number of linear dimension witnesses.
All these different scenarios will be discussed in Section 3.2. As stated,
for the sake of simplicity, our analysis here is restricted to devices sharing
classical correlations.

3.1.3 Case studies

As an application of our general formalism, we now present several examples
of dimension witnesses. In particular, we give a family of linear witnesses
which can be used as both a classical and quantum witness for any dimen-
sion. In general, the classical and quantum bounds of our witnesses—C; and
@4, respectively—differ, and thus our witnesses can distinguish between clas-
sical and quantum resources of given dimensions. We also give an example
of a non-linear witness for qubits.

Simplest case

We start by considering the case d = 2, i.e. where the classical state sent
by the state preparator is simply a bit. Indeed, we saw above that our
problem is meaningful only if d < N, and thus we consider the case of
three preparations (N = 3) and two measurements (M = 2) with binary
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Quantum

—

Tight classical
2-dim witness
I3 <3

Figure 3.2: Schematic representation of the sets of experiments achievable from classical
and quantum states of given dimensions for case study 1. The set of experiments (more
precisely its convex hull) attainable from 2-dimensional classical states, i.e. bits, forms the
polytope 773?7272 (blue region). The inequality I3 < 3 (solid line), a facet of this polytope,
is a ‘tight 2-dimensional classical witness’. The set of experiments attainable from 2-
dimensional quantum states, i.e. qubits, (green and blue region) is strictly larger. The
inequality J3 < 37" (dashed curve) is a qubit-witness; it cannot be violated by performing
measurements on qubits: qutrits are required. The set of all possible experiments (blue,
green and red regions) forms the polytope P32,2; any point in it can be reproduced with
a trit or a qutrit.

outcomes '. We fully characterize the polytope 77%7272. It features a single
type of non-trivial facet given by

I3 =B + Erg + Eo — Eag — B3| < 3. (3.9)

This inequality is a tight 2-dimensional classical witness. To be violated, trits
(or higher-dimensional systems) are required. Note that trits are sufficient
to reach the algebraic maximum of I3 = 5; indeed any correlation vector E
in P3 22 can be obtained using trits. Fig. 3.2 shows a schematic view of the
situation.

The witness I3 is also a 2-dimensional quantum witness. The maxi-
mal value of I3 obtainable from qubits can be computed analytically. Here
the analysis may be restricted to pure states, since I3 is a linear expres-
sion of the probabilities, and to rank-one projective measurements, since
we consider measurements of two outcomes [Mas05]. By solving the maxi-
mization problem, it can be shown that max,cpc2) I3 =1+ 2v/2 ~ 3.8284.
The first four terms in Eq. (3.9) can be seen as the CHSH polynomial,
whose maximum quantum value is equal to 2v/2. This maximization does
not involve the third preparation, which can be always chosen such that

!Note that the CHSH polynomial does not work as a dimension witness, since it features
only two preparations—indeed, it is necessary to have d < N. In the device-independent
scenario considered here, it is possible to reach the maximum of CHSH=4 by sending a
classical bit (the bit simply indicates which preparation has been chosen).
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FE31 = —1. In order to quantum mechanically reproduce a probability dis-
tribution P(B|X,Y) leading to I3 > 1+ 2v/2, qutrits (or systems of higher
dimension) are required; in fact classical trits would suffice. The maximal
qubit value can be obtained from the following preparations and measure-
ments: p, = (I1+75 - 7)/2, M = (I + bs, - &)/2 with 51 = (71 + 72)/V2,
5y = (F1 — ) /V2, 73 = (=71 — 72)/V/2, and where & = {04,0y4,0:} de-
notes the vector of Pauli matrices. Indeed, the correlation functions are
then simply given by E., = 7 - 5.

An interesting feature of the witness I3 is that it can also distinguish
between classical and quantum resources of a given dimension; here, bits
and qubits. If the inequality (3.9) (or one of its symmetries) is violated
by a given probability distribution, then it follows that qubits, rather than
classical bits, have been used. It is interesting to contrast this result with
the Holevo bound [Hol73], which shows that one qubit cannot be used to
send more than one bit of information. In our scenario, the state of the
mediating particle somehow encodes the information about the value of the
classical value z. However, here the use of quantum particles does provide
an advantage.

Furthermore, we have strong numerical evidence that the following in-
equality (based on I3) is never violated by qubits:

J3 = |arcsin Eq; + arcsin Eqo + arcsin Fo;
3T
— arcsin Fgy — arcsin Fs;| < - (3.10)
suggesting that Js3 may be used as a non-linear dimension witness. More-
over, the bound is tight, in the sense that there exist qubit preparations
and measurements attaining it—for instance the states and measurements
leading to I3 = 1 + 2v/2 given above.

Generalization.

Next we generalize the witness I3 presented above, in order to obtain classical
and quantum dimension witnesses for any dimension. The form of I3—

see Eq. (3.9)—suggests the following natural generalization for the case
N=M-+1:

N-1 N N+1—i
Iy = Z Elj + Z Z OéijEij (311)
j=1 i=2 j=1

- +1 ifi4j <N,
with «;; =
Y —1 ifi+j=N+1.
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H Cy (bit) Q2 (qubit) Cs (trit) Q3 (qutrit) Cy (quat)
3 1422 5 5 5
5)

6 7 7.9689 9

I3
1

Table 3.1: Classical and quantum bounds for the dimension witnesses I3 and I4. Notably,
these witnesses can distinguish classical and quantum systems of given dimensions.

It can be erified that for classical states of dimension d < N, the following

relation holds:

N(N —3)
2

Indeed for d = N one obtains the algebraic bound Iy = Lg—y = N(N +1)/2—
1. Using the methods of Ref. [Mas02] we have checked that the inequality
Iy < Lg—n—_1 is a tight classical dimension witnesses (i.e. a facet of the
polytope P%}MQ with M =d = N — 1) for N < 5. Based on this evidence,
we conjecture that it is a tight witness for all values of V.

Next we show that the inequality Iy < Lg—py is a quantum dimension
witness. More precisely, it is impossible to reach the algebraic bound of I by
performing measurements on quantum states of dimension d = N — 1. Since
Iy is a linear expression of expectation values, it is sufficient to consider
pure states, and one may write Ey; = (13]O;]t);), where O; = M7, — M7, is
the measured quantum observable. Clearly, in order to reach the algebraic
maximum of Iy we require Ej;; = sign[a;] for i + j < N + 1, and thus the
states {[1;)} must be eigenstates of the observables {O;} with eigenvalues
{sign[a;;]}. From the structure of Iy, it can be seen that for any pair of
preparations |¢s) and |¢4) with 1 < s < t < N, the observable Oy _¢11 must
have eigenvalue +1 for |1)5) and eigenvalue —1 for |¢). Thus all preparations
must be mutually orthogonal, since any pair of states |1¢s) and |i;) can be
perfectly distinguished by measuring observable On_;y1. Since we must
consider N mutually orthogonal preparations, a Hilbert space of dimension
(at least) d = N is required to reach the algebraic maximum of In. It
therefore follows that the inequality Iy < Lg—pn is a dimension witness for
quantum systems of dimension d = N — 1.

IN<Lg= +2d—1. (3.12)

We believe, however, that better bounds can be obtained for the expres-
sion In. This is the case for N = 3, as shown above, as well as for N = 4
where we have been able to compute numerically the bounds for qubits and
qutrits. These results are summarized in Table 1. Indeed, it would be de-
sirable to find tight bounds for the witness Iy for quantum states of any
Hilbert space dimension d < N.
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3.1.4 Conlusions

We have addressed the problem of testing the dimensionality of classical and
quantum systems in a device-independent scenario. We have introduced the
concept of ‘tight classical dimension witnesses’ which allows one to put a
lower bound on the dimensionality of classical states necessary to reproduce
certain data. This naturally led us to generalize the concept of quantum di-
mension witnesses to arbitrary quantum systems. To illustrate these ideas,
we have provided explicit examples of dimension witnesses. We have shown
that these witnesses (i) are tight for small number of classical preparations,
(ii) work both as classical and as quantum dimension witnesses, and (iii)
allow one to distinguish classical and quantum states of given dimensions.
Finally, we have introduced non-linear dimension witnesses, and have pre-
sented an example of such a witness for the simplest scenario.
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3.2 Detection Loophole in dimension witnesses

Any experimental implementation of dimension witnesses is unavoidably af-
fected by noise and loss, thus making important the question whether it
is possible to perform reliable dimension witnessing with non-optimal de-
tection efficiency. Despite its relevance for experimental implementations
and practical applications, this problem is usually referred to as detection
loophole, and it is equivalently present in the experimental violation of Bell
inequalities [CHT74]. In this section we study the performance of dimension
witnesses under detection inefficiencies. We calculate bounds on the mini-
mum detection efficiency required to bound the dimension. We show that
the detection loophole imposes a serious limitation when measuring systems
of high dimensionality. However, we overcome this negative result by adding
a mild assumption on the devices, namely, that source and measurement de-
vice do not share correlations. In this case, we exploit the non convexity of
the resulting set of correlations to show that the detection loophole can be
closed for any (non-null) value of the detection efficiency.

3.2.1 Minimum efficiencies

Consider a scenario as in Fig 3.1. If the measurement device has detec-
tion inefficiencies, then one registers events in which none of the outcomes
b € {1,....,k} is observed. This events are called no-click events and can
be integrated as a new outcome in the formalism. Therefore, in an imper-
fect experiment one observes a probability distribution of k + 1 outcomes,
where the last outcome corresponds to the no-click event. This probability
distribution is denoted by P"(B|X,Y) and we model an arbitrary device
subjected to imperfections as

PY(bla,y) = tr(p,1T), (3.13)
with IT) = nM/, Vb e {1,..,k} and I}, | = (1 — n)I, where M are valid
measurement operators with Zlgzl M} = 1. That is, we are assuming that
an ideal quantum realization with measurement operators Mé/ is affected by
inefficiencies in such a way that the no-click event occurs with probability
(1 —7n). We make here the implicit assumption that the probability of a
no-click event does not depend neither on the preparation z, nor on the
measurement y. This is a natural assumption if the inefficiencies are due to

losses in optical fibers or no-clicks on photo-detectors 2.

’It is worth to point out that these assumptions do not compromise the device-
independent approach. We are making assumptions about how inefficiencies affect the
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We note that by definition (3.13)

P'(B|X,Y) =nP?(B|X,Y) + (1 — n)P"(B|X,Y) (3.14)

where PP(blz,y) = Tr(p, M) for b € {1,...,k} and PP(k+1|z,y) = 0, that
is, PP(B|X,Y) is the probability distribution that one would obtain in a
perfect experiment without inefficiencies; and P™°(b|x,y) = (5,2 41, that is, a
probability distribution that always output no-click. Let us define the two

parameters that we investigate

Definition 3.4. Given a quantum dimension witness W such W-P(B|X,Y) <
Qq for all P(B|X,Y) with a d-dimensional description, we define 1y, as
the minimum value of n such W-P"(B|X,Y) > Q4 while PP(B|X,Y) has a
d + 1-dimensional realization. In other words, consider a d + 1-dimensional
system affected by inefficiencies, then ngim quantifies the minimum efficiency
required to violate a d-dimensional dimension witness.

Definition 3.5. Given a dimension witness W such W-P(B|X,Y) < Cy for
all P(B|X,Y) with a d-dimensional classical description, we define ng. as the
minimum value of n such W - P1(B|X,Y) > Cy while PP(B|X,Y) has a d-
dimensional quantum realization. In other words, consider a d-dimensional
quantum system affected by inefficiencies, then 14. quantifies the minimum
efficiency required to violate a d-dimensional classical dimension witness.

In general, 7qim and 7y depend on the particular dimension witness
considered. We will focus on the class of dimension witnesses considered in
(3.23), with N + 1 = d, thus we denote Wy - P(B|X,Y) = I;41

By linearity of dimension-witnesses and normalization of the probability
distribution one can easily check that

Was1 - P1(B|X,Y) =1 Wap - Py(B|X,Y). (3.15)

and by using the bounds imposed by (3.12) and the fact that maxp(p|x,y) Wa+1-
P(B|XY) > maxpg|x,y) Wa - P(B|XY) + 1 (see [DAPGA12] for details)
we obtain that

d—1 d—1

< Pyge < ————— 3.16
d _77q d—2+ﬁ ( )

probability distribution designed to violate a dimension-witness. However, once the prob-
ability distribution violates a dimension-witness one can lower bound the dimension re-
gardless of the validity of those assumptions.
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Figure 3.3: (Color on line) Threshold value (middle line) of the detection efficiency 7qc
obtained after numerical optimization as a function of the dimension d. Lower bound
(lower line) and upper bound (upper line) given by Eq. (3.16) are also plotted. Upper
bound is tight for d = 2. The detection efficiency 7nq. asymptotically goes to 1 as d — oo
since its upper and lower bound do the same.

and
212
d

These lower bounds imply that required efficiency tends to one as the
dimension increases, hence the detection loophole plays a dramatic role when
dealing with high-dimensional systems, see Fig. 3.3 and 3.4.

1—

< 7)dim- (3.17)

3.2.2 Closing the detection loophole with an extra assump-
tion

Throughout the previous chapters no assumption is made about the func-
tioning of the devices. In particular, the preparator and the measurement
device are allowed to share classical correlations. For this reason, the set
of correlations that admit a d-dimensional classical description is a convex
polytope, that we referred to as ’P]‘%, M i a scenario of N preparations,
M measurements and & outcomes. If one does not allow for shared pre-
established correlations between apparatuses, then the set of d-dimensional
classical correlations is not convex in general and it is not possible to charac-
terize it by its facets. Nevertheless, these non-convex sets of correlations are
interesting when considering scenarios with inefficient detectors. We show,
that under the assumption that the devices do not share classical correla-
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Figure 3.4: (Color on line) Threshold value (upper line) of the detection efficiency 7naim
after numerical optimization as a function of the dimension d. Lower bound (lower line)
given by Eq. (3.17) is also plotted. Lower bound is tight for d = 2. The detection efficiency
Naim asymptotically goes to 1 as d — oo since its lower bound does the same (and ngim < 1
is a trivial upper bound).

tions, it is possible to certify the dimension of a classical system for any
non-null value of the efficiencies.

Classical sets without shared randomness.

We recall definition (3.2). The set of all probability distributions with such
decomposition is denoted by Cj‘f, m k- This set is to be understood as the cor-
relations that one can perform with a d-dimensional classical system when
the devices do not share pre-established correlations. If one allows the source
and the measurement device to share correlations, then any convex mix-
ture of d-dimensional classical strategies can be performed, that is, the set
73]0\[,7 M- Interestingly, the set Cj‘f[’ M 18 nonconvex and thus, strictly con-

tained in the set 77]‘{[ k- An example can be found in the simplest scenario.

Lemma 3.6. In a scenario with N =3, M =2,k = 2,d = 2, the set C§72’2
s nonconvex and strictly contained in 733?7272

Proof. Consider the probability distribution P(B|X,Y") defined as

P(B|X,1) = . P(B|X,2) (3.18)

== O

Ol =
N[ = N
= O Nl
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where, the rows indicate the value of x and columns the value of . One can
easily check that this probability distribution does not violate the dimension
witness (3.9), therefore it belongs to the set P3,,. However, it does not
belong to the set C§7272. Let us prove this by reductio ad absurdum. Suppose
there exists a decomposition of the form (3.2) for the previous probability
distribution. Since the measurement y = 1 is deterministic for z = 1,3 and
measurement y = 2 is deterministic for x = 2, the three preparations must
be deterministic, that is Pg(A|z) € {0,1}. As A can only take two possible
values, it must be the case that P(blz,y) = P(blz/,y) V y for at least two
preparations x and 2’. One can clearly see in tables above that this is not
the case, and thus, one arrives to a contradiction. ]

Detection loophole without shared correlations

We will study the performance of imperfect devices under the assumption
that they do not share pre-established correlations. Consider the probability
distribution affected by inefficiencies as defined in (3.14).

Theorem 3.7. If PP(B|X,Y) & CX y; py1 then P1(B|X,Y) ¢ C3 1y pq Jor
any value of 1.

Proof. Let us recall first that we are assuming that the efficiencies do not
depend neither on the preparation x nor on the measurement performed y.
Actually, the proof holds only by assuming that the efficiency is independent
of z, (see [DAPG™12] for details). That is,

Plb=k+1X,Y)=P'b=k+1[Y). (3.19)

Let us now prove a converse equivalent statement to the one of the theo-
rem. That is, we show that if P"(B|X,Y) € C¥ 5/, then PP(B|X,Y) €
C3 s g+1- Lhe former, see (3.2), implies that

1

P(blz,y) =) P(z) Py (bly, A) (3.20)
A=0

which together with (3.19) implies that

[Pd(X = 0lz) =P (A = 0[z")][(Py; (b = k+1|A = 0,y)—(Py;(b = k+1[A = 1,y)] = 0
(3.21)

for all x,2/. This clearly implies that at least one of the brackets has to

be equal to zero. If [PJ(A = Olz) — PI(\ = 0[]2")] = 0 Vx,2’, then the
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message A sent by Alice to Bob does not depend on the input x, that is,
P(Xz) = PJ(X) VA, z, therefore PJ(B|X,Y) = PJ(B|Y'). As the efficiency
is assumed to be independent of z, by (3.14), one has that PP(B|X,Y) =
PP(B|Y'), which clearly belongs to C]2V7 M k41 @8 it can be simulated without
any message being send from Alice to Bob.

On the other hand, if [(P{,(b = k+ 1A = 0,y) — (P{;(b =k + 1|\ =
1,y)] = 0, by (3.14) and (3.19) one has that

PP (blz, ) = ZPS Ne) (P (b — (L= mé). (322

By defining Py, (b|\, y) = (%(P}Z/[(bp\, y)—(1— )6,’;“)), one obtains a valid
model of the form (3.2) for PP(B|X,Y), which implies that it belongs to
CJQ\L Mpt1- One can easily check that PP (b|A, y) is a positive and normalized
probability distribution. O

This theorem has very useful implications for experimental implementa-
tions of dimension witnesses. Consider a source that it is not heralded, that
is, the experimenter does not have a record of the no-click events (or can-
not distinguish this event from an absence of emission from the source) and
they do not enter into the statistics. Then, the computed statistics are pre-
cisely PP(B|X,Y). If this probability distribution violates a d-dimensional
dimension witness one can conclude that it does not belong to the polytope
Pj‘fﬂ M +1> hence, does not belong to the set C]”{f, Mj+10 88 this set is contained
in the former. Then, by using Theorem 3.7 one can infer that the real prob-
ability distribution that the experimenter had no access to, P7(B|X,Y),
does not belong to Cj‘fﬁ M+1 either. Thus the experiment requires at least a
d 4 1-dimensional description under the assumption that the devices do not
share classical correlations.
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3.3 Experimental implementation

The concept of dimension witness is appealing because it is specifically de-
signed for an experimental implementation. All the theoretical machinery
is distilled into a linear combination of the measurement statistics. Further-
more, the approach can be applied to any kind of physical system: classical,
quantum, photons, atoms, etcetera. In particular, due to its interest in
quantum information science, we have conducted an experiment on pho-
tons, manipulated on polarization and angular momentum [HGM™12]. We
have shown experimentally the violation of a dimension witness and certified
dimensionality up to dimension four. Furthermore, we are able to measure
the distinction between classical and quantum systems of a given dimension.
We note that the interest of our dimension-witness techniques has driven an-
other group to a parallel experimental demonstration of dimension witness.
This parallel demonstration has been conducted with photons manipulated
on polarization and on spatial modes [ABCB12]. These two approaches
highlight the versatility of the dimension-witness approach.

3.3.1 Experiment with polarization and angular momentum
of photons

Here we shall focus on a dimension witness (3.23), for a scenario consisting
of N = 4 possible preparations and M = 3 measurements with only two
possible outcomes, labeled by b = +1:

Iy = Ey1 + B2 + B3+ Eg1 + Egy — Eo3 + E31 — Esp — Eyy, (3.23)

where E,, = P(b = +1|z,y) — P(b = —1|z,y). The witness I can distin-
guish ensembles of classical and quantum states of dimensions up to d = 4.
All the relevant bounds are summarized in Table 3.1.

In order to test this witness experimentally, we must generate classical
and quantum states of dimension 2 (bits and qubits, respectively), clas-
sical and quantum states of dimension 3 (trits and qutrits), and classical
states of dimension 4 (quarts). To do so we exploit the angular momentum
of photons [MTTTO07, MVWZ01], which contains a spin contribution as-
sociated with the polarization, and an orbital contribution associated with
the spatial shape of the light intensity and its phase. Within the parax-
ial regime, both contributions can be measured and manipulated indepen-
dently. The polarization of photons is conveniently represented by a 2-
dimensional Hilbert space, spanned by two orthogonal polarization states
(e.g., horizontal and vertical). The spatial degree of freedom of light lives
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in an infinite-dimensional Hilbert space [MTTTO01], spanned by paraxial
Laguerre-Gaussian (LG) modes. LG beams carry a well-defined orbital an-
gular momentum (OAM) of mh (m is integer) per photon that is associated
with their spiral wavefronts [ABSW92].

In our experiment, we use both the polarization and the OAM (m = +1)
of photons to prepare quantum states of dimension up to 4, spanned by
the orthogonal vectors |H,+1), |H,—1), |V,+1) and |V, —1), where |H, £1)
(|V,£1)) denotes a horizontally (vertically) polarized photon with OAM m =
+1. We first generate via spontaneous parametric down-conversion (SPDC)
pairs of photons (signal and idler) entangled in both polarization and OAM,
see Fig. 3.5. The entangled state is of the form [V7) | ® [U7),y, Where
"II_>pol = %(|H>s‘v>z_|v>s|H>z) and |\I]_>OAM = %qm = 1>s’m = _1>z+
|m = —1),|m = 1);). By performing a projective measurement on the idler
photon, we prepare the signal photon in a well-defined state of polarization
and OAM. In particular, we project the idler photon on states of the form
(cos@|H),+sinb|V),)®|m £ 1);, which has the effect of preparing the signal
photon in the state (sinf|H), — cos0|V),) ® |m F 1),. Thus the combina-
tion of the source of entanglement and the measurement of the idler photon
represents the state preparator. The prepared state is encoded on the signal
photon which is then measured. The signal photon represents the mediating
particle between the state preparator and measurement device of Fig. 3.1.

To implement a continuous transition from quantum to classical states,
a polarization-dependent temporal delay 7 between the signal and idler pho-
tons is introduced. If the temporal delay between the photons exceeds their
correlation time, the coherence is lost, i.e., the off-diagonal terms vanish for
all states in the ensemble (see Supp. Info in [HGM'12]).

For the sake of clarity, we list the assumptions made when processing
the observed data: (i) the statistical behavior P(B|X,Y’) is the same at
every run of the experiment; (ii) the detectors used in the source and in
the measurement device do not share prior correlations. This implies, as
shown in Thm. 3.7, that one does not need to take in account the no-click
events due to imperfect detectors for dimension d = 2. For systems of higher
dimensionality, we need to assume that the set of observed events is a random
sample of the whole set of events obtained with perfect detectors. This is
known as the fair sampling assumption. (iii) the observer can freely choose
the preparation and measurement in each run. All these assumptions are
standard in any estimation scenario. The value of the dimension witnesses is
then calculated from the raw data, that is, from all the observed coincidences
between detection at the preparator and at the measuring device, including
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dark counts.

In the experiment we first generate and measure the four qubit states
|¢s) given in Fig. 3.5. The first measurement (y = 1) assigns dichotomic
measurement results of b = +1 and b = —1 to horizontally and vertically
polarized photons, respectively. The second measurement (y = 2) assigns
b= +1and b = —1 to OAM values of m = +1 and m = —1, respectively.
The third measurement (y = 3) assigns b = +1 and b = —1 to photons
polarized at +45° and —45°, respectively. The expected value of the dimen-
sion witness of Eq. 3.23 for this combination of states and measurements is
Iy = 3+2v/2 ~ 5.83 (see Supp. Info. in [HGMT12]). From our experimental
data we obtain I, = 5.66 £ 0.15. This clearly demonstrates the quantum
nature of our 2-dimensional system, since classical bits always satisfy I, < 5.

In the above, the delay between signal and idler photons was set to 7 = 0.
Now we gradually increase this delay to convert a qubit into a classical bit.
The measured value of the witness I, then drops below 5, as expected (see
blue triangles of Fig. 3.6).

Next we generate ensembles of qutrits. The prepared states and the
measurements are identical to the previous (qubit) experiment, except that
the OAM of state |¢3) is now flipped. For 7 = 0, we obtain a measured
value of the witness of I, = 7.5740.13, certifying the presence of a quantum
system of dimension (at least) 3. This value is in good agreement with the
theoretical prediction of Iy = 5 + 2v/2 ~ 7.83 for this set of states and
measurements.

Now, increasing again delay 7 between the photons, the value of the wit-
ness drops below 7. In a certain range of delays, the value of I remains above
the qubit bound of 6, testifying that at least 3 dimensions are present (see
red circles of Fig. 3.6). In the limit of large delays, the values of the witness
are still larger than the bound of I, = 5 for bits, but below the bound for
qubits. This is because the curve was measured with a set a measurements
optimized for the qutrit/trit discrimination. This set of measurements is not
optimum for the trit/qubit discrimination.

Finally, we prepare classical 4-dimensional systems, i.e. quarts. Now
the first measurement (y = 1) assigns the outcome b = —1 to vertically
polarized photons with OAM m = —1, and the outcome b = +1 to all the
other orthogonal states. The second measurement (y = 2) assigns b = +1
and b = —1 to horizontally and vertically polarized photons, respectively.
The third measurement (y = 3) assigns b = +1 and b = —1 to OAM
of m = +1 and m = —1, respectively. In this case, the expected value
of the witness is Iy = 9, which corresponds to the algebraic maximum.
Experimentally we measure I, = 8.57+0.06, which violates the qutrit bound
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Figure 3.5: Experimental setup. (I) The state preparator consists of a source of entangled
photons (A), followed by a measurement (B) on one photon of the pair (idler) that pre-
pares its twin photon (signal) in the desired state. The signal photon is then sent to the
measurement device. Block (A) is the source of entangled photons. The second harmonic
(Inspire Blue, Spectra Physics/Radiantis) at a wavelength of 405 nm of a Ti:saphire laser
in the picosecond regime (Mira, Coherent) is shaped by a spatial filter and focused into a
1.5-mm thick crystal of beta-barium borate (BBO), where SPDC takes place. The non-
linear crystal is cut for collinear type-II down-conversion so that the generated photons
have orthogonal polarizations. Before splitting the signal and idler photon, a polarization-
dependent temporal delay 7 is introduced. The delay line (DL) consists of two quartz
prisms whose mutual position determines the difference between the propagation times of
photons with orthogonal polarizations. Block (B) performs a measurement on the idler
photon to prepare the signal photon. It consists of a half-wave plate (HWP), polarizer (P),
spatial-light modulator (SLM) and a Fourier-transform lens (FL). The half-wave plate and
polarizer project the photon into the desired polarization state. The desired OAM state
is selected by the SLM. SLM encodes computer-generated holograms that transform the
m = 41 state or m = —1 state into the fundamental LG state LGoo [MTTTO7] that is
coupled into a single-mode fiber (SMF). The measurement device uses an identical block
(B) to measure the signal photon. (II) Ensembles of quantum states |¢z) (z = 1...4)
prepared in the experiment. (III) Measurements performed at the measurement device
for qubits and qutrits. In the case of quarts, the three measurements are constructed by
combining (1) and (2).
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Figure 3.6: Dimension witness I for qubit (blue triangles), qutrit (red circles) and quart
(green diamonds) as a function of temporal delay 7. For delays 7 > 255 fs, coherence is
lost and quantum superpositions turn into statistical mixtures, i.e., classical states. The
maximum observed violations for qubit, qutrit and quart are 5.66 +0.15, 7.57 + 0.13, and
8.57 + 0.06, respectively. These values are close to the corresponding theoretical bounds,
given in Table 3.1, which are represented here by the horizontal lines. The error bars plot
standard deviations on the value of the witness calculated from the measured data using
error propagation rules.
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of Iy = 7.97 by more than 10 standard deviations. In this case, the values
of the witness are independent of the temporal delay 7. This is because the
state is here classical (a statistical mixture of orthogonal quantum states)
and no superposition is present (see green diamonds of Fig. 3.6).

To conclude, we have demonstrated how the concept of dimensionality,
which is fundamental in science, can be experimentally tested. Using dimen-
sion witnesses, we have bounded the dimension of classical and quantum
systems only from measurement statistics, without any assumption on the
internal working of the devices used in the experiment. Dimension witnesses
represent an example of a device-independent estimation technique, in which
relevant information about an unknown system is obtained solely from the
measurement data. Device-independent techniques provide an alternative
approach to existing quantum estimation techniques, such as quantum to-
mography or entanglement witnesses, which crucially rely on assumptions
that may be questionable in complex setups, e.g., its Hilbert space dimen-
sion. Our implementation demonstrates how the device-independent ap-
proach can be employed to experimentally estimate the dimension of an
unknown system.
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Chapter 4

Maximally nonlocal quantum
correlations

Since the seminal work by Bell [Bel64], we know that there exist quan-
tum correlations that cannot be thought of classically. This impossibility
is known as nonlocality and follows from the fact that the correlations ob-
tained when performing local measurements on entangled quantum states
may violate a Bell inequality, which sets conditions satisfied by all classically
correlated systems.

In this section we study nonlocality from a quantitative point of view.
The local content is defined as the fraction of events that admit a description
in terms of local hidden variables. We study the local content as a quantifier
of nonlocality and find quantum correlations that are maximally nonlocal.

In Section 4.1 we derive a recipe to find maximally nonlocal correlations.
We relate these correlations to Kochen-Specker theorems, which study clas-
sical assignments to quantum operators at the single-party level. We apply
our techniques to design an experiment with highly nonlocal correlations.
We report on experimental results, yielding the most nonlocal correlations
ever reported.

In Section 4.2 we study maximally nonlocal correlations in the multipar-
tite scenaro. Furthermore, we find correlations that are maximally nonlocal,
monogamous and random. These properties make them suitable for multi-
partite device-independent information protocols. Indeed, we show that the
correlations can be applied to protocols of device-independent secret sharing.
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4.1 Bounding the local content of quantum corre-
lations

The standard nonlocality scenario consists of two distant systems on which
two observers, Alice and Bob, perform respectively M, and M, different
measurements of d, and dp possible outcomes. The outcomes of Alice and
Bob are respectively labeled a and b, while their measurement choices are
x and y, with a = {0,...,d, — 1}, b=10,...,dy — 1, z = 1,..., M,, and
y=1,..., M. The correlations between the two systems are encapsulated
in the joint conditional probability distribution P(A, B|X,Y), a vector with
entries P(a,b|z,y) being the probability of obtaining outcomes a and b when
measurements x and y have been performed by Alice and Bob respectively.

As explained in sections 2.1.2 and 2.2.4, the violation of Bell inequalities
by entangled states implies that £ C Q. A similar gap, @ C P, appears
when considering quantum versus general nonsignaling correlations: there
exist correlations that, despite being compatible with the no-signaling prin-
ciple, cannot be obtained by performing local measurements on any quantum
system [PR94]. In particular, there exist nonsignaling correlations that ex-
hibit stronger nonlocality, in the sense of giving larger Bell violations, than
any quantum correlations.

Interestingly, there are situations in which this second gap disappears:
quantum correlations are then maximally nonlocal, as they are able to at-
tain the maximal Bell violation compatible with the no-signaling principle.
Geometrically, in these extremal situations quantum correlations reach the
border of the set of nonsignaling correlations. From a quantitative point
of view, it is possible to detect this effect by computing the local content
[EPR92] of the correlations, see section 2.2.2. This quantity measures the
fraction of events that can be described by a local model. Maximally non-
local correlations feature pr, = 0 [see Fig. 2.4].

Any Bell violation provides an upper bound on the local fraction of
the correlations that cause it. In fact, a Bell inequality is defined as (5 -
P(A,B|X,)Y) = > BapayPl(a,blz,y) < Br, where Byp4, is a tensor of
real coefficients. The maximal value of the left-hand side of this inequality
over classical correlations defines the local bound Sr, whereas its maximum
over quantum and nonsignaling correlations gives the maximal quantum
and nonsignaling values 8g and fng, respectively. From this and Def. 2.3
it follows immediately that [BKP06]

< Bns — Bo

= Bns— By Tlmae (4.1)

pL
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Thus, quantum correlations violating a Bell inequality as much as any
nonsignaling correlations feature p;, = 0.

Here we study the link between the Kochen-Specker (KS) [KS67] and
Bell’s theorems, previously considered in Refs. [HR83, Cab01, BBT05, CK06,
HHH'10]. We recast this link in the form of Bell inequalities maximally
violated by quantum states. We then show that the resulting Bell inequal-
ities can be used to get experimental bounds on the nonlocal content of
quantum correlations that are significantly better than Bell tests based on
more standard Bell inequalities or multipartite Greenberger-Horne-Zeilinger
(GHZ) paradoxes [GHZ89]. This allows us to perform an experimental
demonstration, which yields an experimental upper bound on the local part
DLmaz = 0.218 £ 0.014. To our knowledge, this represents the lowest value
ever reported, even taking into account multipartite Bell tests.

4.1.1 General formalism

In this section, we present the details of the construction to derive different
Bell inequalities maximally violated by quantum mechanics from every proof
of the KS theorem. This construction was first introduced in [HR83] and was
later applied in the context of “all-versus-nothing” nonlocality tests [Cab01],
pseudo-telepathy games (see [BBTO05] and references therein), the free will
theorem [CKO06], and quantum key distribution [HHH*10]. Here we exploit
it to generate quantum correlations with no local part.

Kochen-Specker theorem

The Kochen-Specker (KS) theorem studies whether deterministic outcomes
can be assigned to von Neumann quantum measurements, in contrast to the
quantum formalism which can only assign probabilities.

Definition 4.1. The Kochen-Specker set. A set of p rank-1 projectors
{ITy,...,1L,} is a KS set if there exist no map v(Il;) = {0,1} with the
property that ZﬁjeBz v(ﬁj) =1 for every subset of projectors B, being an
orthonormal bastis.

Let us reformulate it to give a more precise interpretation to the KS set.
Let us denote by M the number of orthonormal basis that one can construct
from the set {IIy,...,II,}. Bach of these basis defines a von Neumann mea-
surement z defined by a set of d orthogonal projectors acting on a Hilbert
space of dimension d. Therefore, one can construct M such measurements
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from the KS set. Let us rename the projectors involved in the M measure-
ments as II7, with 2 = 1,...,M and 7 = 1,...,d, such that II71I?, = ¢, ;
and ), II? =T for all z, with I being the identity operator. The measure-
ments may have some common projectors, so let us denote by D; the set
of two-tuples D; = {(i,2)} such that (i,z) € D; if II¥ = II;. Assigning
deterministic values to the M von Neuman measurements is equivalent to
finding a map f(z) € {1,...,d}, or equivalently a map f(z,4) € {0,1} such
that >, f(2,4) = 1. If one imposes no restriction, such assignment is al-
ways possible. However, it is not the case if one imposes an extra condition
commonly referred to as noncontextuality: the assignment f has to be such
that it assigns equal values to outcomes represented by equal projectors.
That is, f(z,4) = f(2/,4) if II7 = Hf,/. Now the KS set plays a significant
role: if {1:[1, . ,l:Ip} is a KS set, then this is impossible to find such map f,
otherwise there would exist a map v simply defined as v(I1;) = f(z,4).

One can find in the literature several examples of KS sets [KS67, Mer90b,
Per91, CEGA96] which show that a noncontextual assignment to quantum
measurements is impossible. Therefore quantum mechanics is said to be a
contextual theory.

Each KS set leads to maximally nonlocal correlations

Let us now see how this highly nontrivial configuration of measurements
given by a KS set can be used to derive maximally nonlocal quantum corre-
lations. Consider the standard Bell scenario depicted in Fig. 4.1 (b). Two
distant observers (Alice and Bob) perform uncharacterized measurements in
a device-independent scenario. Let us assume that Alice can choose among
M, = M measurements of d, = d outcomes. On the other hand, Bob can
choose among M; = p measurements of d, = 2 outcomes, labeled by 0 and
1. We denote Alice’s (Bob’s) measurement choice by = (y) and her (his)
outcome by a (b) and the joint probability distribution by P(A, B|X,Y).

Theorem 4.2. From every KS set {IIy,..., I} one can derive a nonlocal
experiment yielding a quantum probability distribution P(A, B|X,Y) with
zero local content.

Proof. The strategy of the proof can be summarized as follows. We will
show that there exist a Bell inequality 5- P(A, B|X,Y’) with two properties:
(1) there exist a quantum realization of the experiment yielding correlations
Po(A,B|X,Y), such that 8- Po(A, B|X,Y) = g = fns and (ii) the max-
imum over local probability distributions fulfills 8, = 8ys — 1. Therefore,
using (4.1) one gets that p;, = 0.
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Let us show (i): Consider the following quantum realization of the exper-
iment yielding Pg(A, B|X,Y): Alice and Bob perform their measurements
on the bipartite maximally entangled state |¢4) = ZZ;% %[kk} Alice per-
forms the M measurements that correspond with the M different orthonor-
mal basis that one can construct out of the KS set. The measurements are
labelled such that when Alice chooses input z, measurement {IIg},_[.q is
performed. In turn, when Bob chooses input y, the following 2-outcome
measurement takes place: {(II,)*,T— (II,)*}, where the asterisk (*) denotes
complex conjugation, and where the first and second projectors are assigned
to outcomes 0 and 1 respectively. This realization leads to the nonsignaling
value Sng of the following linear combination of probabilities:

B-PABIX,Y) = > > [Pla=db=1z,y)

y=1 (a’,x)ED,
© Pla#d.b=0lzy). (12)

Indeed, for all the terms appearing in (4.2), Pg(a = d’,b = 1|z,y) + Pg(a #
a’,b = 0]z,y) = 1. This can be easily seen by noticing that if Bob’s output is
equal to 1, Alice’s system is projected onto ﬁy = IIZ,, and thus, the result of
Alice’s measurement z is a’. On the contrary, if Bob’s box outputs 0, Alice’s
system is projected onto I — ﬁy = [ —1II,, and thus, Alice’s outcome is such
that @ # a’. As the sum of the two probabilities Py(a = a’,b = 1|z, y) and

Pg(a # d’,b= 0|z, y) can never be larger than 1, one has

Bo=Bns=>»_ > L (4.3)

y=1 (a’,x)EDy

Let us show (ii): As for local correlations, we now show that it is
Br < Bns — 1. To see this, recall first that the maximum of (4.2) over
local models is always reached by some deterministic model, in which a de-
terministic outcome is assigned to every measurement [and all probabilities
in (4.2) can thus only be equal to 0 or 1]. Hence, deterministic models can
only feature 8; € Z. Therefore, it suffices to show that the maximum of
(4.2) over local models satisfies 81, < Bnyg. This can be proven by reductio
ad absurdum. Suppose that a local deterministic model attains the value
Bns. Any deterministic model then specifies the outcomes a and b on both
sides for all measurements. Equivalently, it can be understood as a defi-
nite assignment to every measurement outcome on Alice’s and Bob’s sides:
va(T1%) € {1,0} and vp(Il,) € {1,0}, with 3, va(I1%) = 1, for all z. If
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a) b) ALICE BOB

Figure 4.1: Noncontextual assignments in the black-box scenario. (a) A KS proof
consists of a single observer, say Alice, who performs m measurements of d outcomes.
The KS proof requires that outcomes of different measurements correspond to the same
projector. There are altogether p projectors, denoted by ﬁj, shared by different measure-
ments. The common projectors impose constraints that, if the outcomes are assigned by
noncontextual deterministic maps, lead to contradictions. (b) In the Bell test associated
with the KS proof, Bob’s box has m; = p possible measurements of d, = 2 outcomes. In
the quantum setting, the two observers share a maximally entangled state. Alice makes
me = m measurements of d, = d outcomes, which correspond to the obserxables in the
KS proof. Bob’s measurements are perfectly correlated with the p projectors II; on Alice’s
side, thanks to the properties of the maximally entangled state. A local model reproducing
all these correlations would imply the existence of a deterministic assignment for Bob’s
measurements, which is impossible as they define a KS set.

(4.2) reaches its maximum algebraic value, the assignment map is subject to
the constraints v4(Il) = vp(Ily) = vA(MZ) for all (a,z) and (d,2') € D,.
This implies that Zﬁj eB, VB (IL;) = 1 for all the M orthonormal basis. This,
however, is prohibited because {ﬁy} is a KS set. Thus, one concludes that
Br < Bns — 1. This completes the proof. O

Before concluding this section, we would like to emphasize that this
recipe can lead to other, possibly nonequivalent, Bell inequalities. For in-
stance, it is possible to keep Alice’s measurements equal to those in the
KS proof and replicate them on Bob’s side, i.e., {II} = (II%)*, with y = z
and b = a}. Note that then all the projectors needed to enforce the KS
constraints on Alice’s side by means of perfect correlations appear on Bob’s
side. Other examples are provided by some proofs that possess inherent
symmetries, allowing for peculiar distributions of the contexts in the proof
between Alice’s and Bob’s sides, as is discussed in the next section.
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y=1 y=2 y=3
r=1 ZQ X1 X1Z2 =1
r=2 Zl X2 Z1X2 =1
=3 leg X1X2 Y1Y2 =1
=1 =1 =1 | ]I

Table 4.1: The Peres-Mermin square. One of the simplest KS proofs was derived
by Peres and Mermin [Per91, Mer90b] and is based on the nine observables of this table.
The observables are grouped into six groups of three, arranged along columns and rows.
Xn, Yy, and Z,, refer to Pauli matrices acting on qubits n = 1 and n = 2, which span
a four-dimensional Hilbert space. Each group constitutes a complete set of mutually
commuting (and therefore compatible) observables, defining thus a context. In this way,
there are six contexts, and every observable belongs to two different ones. The product
of all three observables in each context is equal to the identity I, except for those of
the third row, whose product gives —I. It is impossible to assign numerical values 1
or —1 to each one of these nine observables in a way that the values obey the same
multiplication rules as the observables. This, in turn, implies that it is impossible to make
a noncontextual assignment to the 24 underlying projectors (not shown) in the table (one
common eigenbasis per context, with four eigenvectors each).

4.1.2 A simple Bell inequality

The previous recipe is fully general. In this section, in contrast, we apply the
ideas just presented to derive a specific Bell inequality maximally violated
by quantum mechanics from one of the most elegant KS proofs, introduced
by Peres and Mermin [Mer90b, Per91]. Apart from being one of the simplest
Bell inequalities having this property, its derivation shows how symmetries
in the KS proof can be exploited to simplify the previous construction.
The Peres-Mermin (PM) KS proof is based on the set of observables of
Table 4.1, also known as the PM square, which can take two possible values,
41. This proof in terms of observables can be mapped into a proof in terms
of 24 rank-1 projectors [Per91, CEGA96]. To these projectors we could
then apply the formalism of the previous section and derive Bell inequalities
maximally violated by quantum correlations of the sort of (4.2). However,
some special features of this particular KS proof allow one to simplify the
process and derive a simpler inequality straight from the observables. The
key point is that in the PM square each operator appears in two different
contexts, one being a row and the other a column. This allows one to
distribute the contexts between Alice and Bob in such a way that Alice (Bob)
performs the measurements corresponding to the rows (columns) (see also
[HHH"10]). The corresponding Bell scenario, then, is such that Alice and
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Bob can choose among three different measurements x,y € {1, 2,3} of four
different outcomes, a,b € {1,2,3,4}. Consistent with the PM square, we
associate in what follows Alice and Bob’s observables x and y with the rows
and columns of the square, respectively, and divide the four-value outputs
into two bits, a = (a1, az) and b = (b1, by), each of which can take the values
+1.

Consider first the following quantum realization: Alice and Bob share
two two-qubit maximally entangled states |¢4) = %(|00>—H 11>)12®%(|00>+
|11))34, which is equivalent to a maximally entangled state of two four-
dimensional systems. Alice possesses systems 1 and 3, and Bob possesses
systems 2 and 4. Alice can choose among three different measurements that
correspond to the three rows appearing in Table 4.1. If Alice chooses in-
put x, the quantum measurement defined by observables placed in row x
is performed. Note that the measurement acts on a four-dimensional quan-
tum state; thus there exist four possible outcomes (one for each eigenvector
common to all three observables), which in our scenario are decomposed
into two dichotomic outputs. We define a; to be the value of the observable
placed in column y = ¢ for ¢ = 1,2. The value of the third observable in
the same row is redundant as it can be obtained as a function of the other
two. Equivalently, Bob can choose among three measurements that corre-
spond to the three columns appearing in Table 4.1. If Bob chooses input y,
outputs b; are the values of observables placed in column y and row = = j
for y =1,2,3 and j = 1,2. This realization attains the algebraic maximum
Bg = Bns = 9 of the linear combination

g

o~ o~~~

a1bi|1,1) + (azb1|1,2) + (a1b2|2,1)

azb2|2,2) + (arazbi|1,3) + (a1a2b2(2, 3)

a1b1be|3,1) + (azb1ba|3, 2)

ajazbiba|3, 3), (4.4)

+
+

where (f(a1,a2,b1,b2)|x,y) denotes the expectation value of a function f of
the output bits for the measurements x and y.

To prove this statement, let us first focus on the term (a1b;|1,1). Bit by
is obtained as the outcome of the measurement of the quantum observable
Z4®Io. As the measurement is performed on the maximally entangled state,
the state on Alice’s side is effectively projected after Bob’s measurement onto
the eigenspace of Z3 ® I} with eigenvalue b;. Bit a1 is defined precisely as
the outcome of the measurement of the observable Zs ® I1; thus a; = by
and (a1bi|1,1) = 1. The same argument applies to the first four terms
n (4.4). Consider now the term (ajasg - b1|1,3). Bit by is the outcome of the
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measurement of the observable Z4 ® X5. The state after Bob’s measurement
is effectively projected on Alice’s side onto the eigenspace of Z3 ® X7 with
eigenvalue b;. Bit aj - as is obtained as the measurement output of the
observable Z3 ® Xi; thus a; - ag = by and (ajag - b1|1,3) = 1. The same
argument applies to the four terms involving products of three bits. The last
term (ajas - by - ba|3, 3) requires a similar argument. Bit a - ay is obtained as
the output of the operator Y3 ® Y7 (note that the product of the observables
associated with a; and az is Y3 ® Y7, see Table 4.1). Thus the state is
effectively projected onto the eigenspace of Yy ® Y5 with eigenvalue a; - as.
The bit by - by is precisely the meqasurement outcome of —Y; ® Yo, thus
aj - ag = —bl . bg and <a1a2 . b1 . b2|3,3> = —1.

We move next to the classical domain, to show that the maximum value
of polynomial (4.4) attainable by any local model is 8;, = 7, and thus, the
inequality

BT, (4.5)

with 8 defined by (4.4), constitutes a valid Bell inequality, maximally vio-
lated by quantum mechanics. Remarkably, this inequality has already ap-
peared in Ref. [Cab01] in the context of all-versus-nothing nonlocality tests.
Computing the local bound B = 7 can easily be performed by brute force
(that is, by explicitly calculating the value of 1 for all possible assign-
ments). However, it is also possible to derive it using arguments similar to
those in the previous section. In the PM square, each of the nine dichotomic
observables belongs to two different contexts, one being a row and the other
a column, as mentioned. Therefore, nine correlation terms are needed to
enforce the KS constraints. As said, the symmetries of the PM square allow
one to split the contexts between Alice and Bob, arranging these correlation
terms in a distributed manner. Such correlation terms correspond precisely
to the nine terms appearing in (4.4). Again, the existence of a local model
saturating all these terms would imply the existence of a noncontextual
model for the PM square, which is impossible.

4.1.3 Previous bounds on local content using other Bell in-
equalities

The scope of this section is to show how the previous construction offers im-
portant experimental advantages when deriving bounds on the local content
of quantum correlations. First of all, and contrary to some of the examples
of quantum correlations with no local part [BKP06], the Bell inequalities
derived here not only involve a finite number of measurements but are in
addition resistant to noise. Moreover, as shown in what follows, they allow
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one to obtain experimental bounds on the nonlocal part that are significantly
better than those based on other Bell tests.

Let us first consider the Collins-Gisin-Linden-Massar-Popescu inequali-
ties presented in [CGLT02]. These inequalities are defined for two measure-
ments of d outcomes. The maximal nonsignaling violation of these inequal-
ities is equal to Byg =4, while the local bound is 87, = 2. The maximal
quantum violation of these inequalities is only known for small values of d
[ADGL02, NPAOS]. A numerical guess for the maximal quantum violation
for any d was provided in [ZGO08]. This guess reproduces the known values
for small d and tends to the nonsignaling value when d — co. Assuming the
validity of this guess, a bound on the local content comparable to the exper-
imental value reported in the next section, namely, pr,,,. = 0.218 £ 0.014,
requires a number of outputs of the order of 200 (see [ZGO08]), even in the
ideal noise-free situation. Note that the known quantum realization attain-
ing this value involves systems of dimension equal to the number of outputs,
that is, 200, and the form of the quantum state is rather complicated. If the
quantum state is imposed to be maximally entangled, the maximal quantum
violation tends to 2.9681, which provides a bound on the local content of
just Proae = 0.5195.

The chained inequalities [BC90, BKPO06], defined in a scenario where
Alice and Bob can both perform m measurements of d outcomes, provide
a bound on the local content that tends to zero with the number of mea-
surements, m — oo [BKP06]. However, in this limit the nonlocality of the
corresponding quantum correlations is not resistant to noise (see Fig. 4.2),
and thus, the use of many measurements requires an almost-noise-free real-
ization. We compare the chained inequalities [BC90] for d = 2 (the simplest
case to implement) with our inequality (4.5) in a realistic noisy situation.
The quantum state is written as the mixture of the maximally entangled
state, as this state provides the maximal quantum violation of both the
chained inequality and inequality (4.5), with white noise,

p= VIl + (1~ V). (1.6)

The amount of white noise on the state is quantified by 1—V. The bound on
the local content then reads pr,, ., = 6NS—Z§§:L(1_V)BH, where f is the value
of the Bell inequality given by white noise with the optimal measurements.
We plot the obtained results in Fig. 4.2. As shown there, the Bell inequality
considered here provides better bounds on the local content than the chained

inequalities for almost any value of the noise.
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Figure 4.2: Resistance to noise of different Bell tests. Dashed red curves show the
resistance to noise of the chained inequality [BC90] for different numbers m of measure-
ments. The local content and also the resistance to noise tend to zero when the number
of measurements tends to infinity, as expected. Standard Bell inequalities, such as the
Clauser-Horne-Shimony-Holt (CHSH) inequality [CHSHG69], can be violated in a robust
manner and with few measurements, but the obtained bound on the local content never
goes to zero (in fact, the CHSH inequality is the chained inequality [BC90] for m = 2).
Inequality (4.5) (solid blue curve) in contrast combines all three features: its violation is
resistant to noise and requires few measurements, and its bound on the local content is
equal to zero in the noise-free case.

4.1.4 Experimental highly nonlocal quantum correlations

We performed a test of inequality (4.5) with two entangled photons, A and
B, generated by spontaneous parametric down conversion (SPDC). We used
type-I phase matching with a S-barium-borate (BBO) crystal. The source
used a single crystal and a double passage of the UV beam after the reflection
on a spherical mirror [see Fig. 4.3 (a)] and generated the hyperentangled
state [CBP105]

vy = j§<|H>A|H>B+|v>A\v>B>
®é<\r>Au>B+u>Arr>B>, (4.7)

where |H) (]V)) represents the horizontal (vertical) polarization and |r) and
|l) are the two spatial path modes in which each photon can be emitted.
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Figure 4.3: Experimental setup. (a) Source of hyperentangled photon states. The
relative phase between the states |[HH) , 5 and |VV) ,5 can be varied by translating the
spherical mirror. A lens L located at a focal distance from the crystal transforms the
conical emission into a cylindrical one. (b) Scheme for the path measurements. c. The
parametric radiation is coupled into single-mode fibers by a GRIN lens and sent to the
detectors.

Maximally entangled state |¢4) between A and B, as defined in Sec. 4.1.2,
is recovered from (4.7) through the following identification: |H) AB= |0>1’2,
Vias = Wi M4 = 1005 (D4 = D, [p = [0)y, and |r)p = [1),.
Therefore, state (4.7) also allows for the maximal violation of (4.5).

In the SPDC source, the BBO crystal is shined on by a vertically polar-
ized continuous wave (cw) Ar™ laser (A, = 364 nm), and the two photons are
emitted at degenerate wavelength A = 728 nm and with horizontal polariza-
tion. Polarization entanglement is generated by the double passage (back
and forth, after the reflection on a spherical mirror) of the UV beam. The
backward emission generates the so called V cone: the SPDC horizontally
polarized photons passing twice through the quarter-wave plate (QWP) are
transformed into vertically polarized photons. The forward emission gener-
ates the H cone [the QWP behaves almost as a half-wave plate (HWP) for
the UV beam]. See Fig. 4.3 (a). Thanks to temporal and spatial superpo-
sition, the indistinguishability of the two perpendicularly polarized SPDC
cones creates polarization entanglement (|H) ,|H) g + [V)4|V)5)/V2. The
two polarization entangled photons are emitted over symmetrical directions
belonging to the surface of the cone. By selecting two pairs of correlated
modes by a four-holed mask [CBP*T05, VPDMMO08, CVB™10] it is possible
to generate path entanglement.

In order to measure the path operators, the four modes of the hy-
perentangled state are matched on a beam splitter (BS) in a complete
indistinguishability condition. This operation corresponds to the projec-
tion onto %(V}A + eAll) ) ® %(!r}B + €i®B|l) ). Suitable tilting of
two thin glass plates allows one to set phases ¢4 and ¢p [see Fig. 4.3
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Figure 4.4: Measurement setups used by Alice and Bob. See text for a detailed
explanation of the measurements. BS, beam splitter; PBS, polarizing beam splitter; HWP,
half-wave plate.

(b)]. Photon collection is performed by integrated systems of graded-index
lenses and single-mode fibers connected to single-photon counting modules
[RVCT09, VDDMMO9] [see Fig. 4.3 c)]. Polarization analysis is performed
in each output mode by a polarizing beam splitter (PBS) and a properly ori-
ented HWP. The experimental setup used for each polarization measurement
setting is shown in Fig. 4.4.

The nine terms of Bell polynomial (4.4) correspond to the different com-
binations between one of Alice’s three contexts and one of Bob’s three con-
texts listed in Table 4.2. In the settings x = 1,2 (y = 1,2) Alice (Bob) must
project into states that are separable between path and polarization (eigen-
states of Pauli operators X and Z). To project into {|r),|l)} the modes
are detected without BS. On the other hand, the BS is used to project into

%(V} +|l)). PBSs and wave plates have been exploited to project into

{|H),|V)} or %(|H) +1|V)). More details are needed for contexts =,y = 3,
corresponding to the projection into single-photon Bell states (the two en-
tangled qubits of the Bell state are encoded in polarization and path of the
single particle, see Table 4.2). For instance, let us consider the projection
on the states |H)|l) = |V)|r) and |V)|l) £ |H)|r) for Alice. By inserting a
HWP oriented at 45° on the mode |l) , before the BS, the previous states
become |V)|£) and |H)|+), respectively. The two BS outputs allow one to
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Alice
a1:—1, CLQZ—l alz—l, 02:1 CL1:1, CLQZ—l CL1:1, CLQZ]_
r=1 |=)10) +)10) |=)1r) [+)1r)
r=2 V)I=) V)I+) [H)|-) [H)|+)
=3 | [H)|) = [V)|r) | [H)ID) +[V)|r) | [H)|r) = [V)Il) | [H)r) +[V)ID)
Bob
bi=—1, bo=—1 | bi=—1, bo=1 | bi=1, bo=—1 | b=1, bp=1
y=1 V)Ir) [H)|r) 3y [H)IT)
y=2 =)= =)+ [+)1-) [+)1+)
y=3 | D)) =)0 [ DN+ 10 | D) = [01D | [=)r) +[H)D

Table 4.2: Measurement settings. Each row represents a measurement (context). The
four states in each row represent the four projectors of each measurement. a;,2 and b1z
are the two-bit outcomes of Alice and Bob respectively. In each state, the first ket refers
to polarization, while the second one refers to path. |4) correspond to %(|H> +|V)) or

L (|ry £ 1)), for polarization or path respectively.

Vol
Correlation  Experimental result
(a1b1]1,1) 0.9968 + 0.0032
(a1b2|2,1) 0.9759 £ 0.0058
(agb1|1,2) 0.9645 £ 0.0068
(agb2|2,2) 0.941 £ 0.010
(aya9b1|1, 3) 0.9705 £ 0.0048
(a1a2b2|2, 3) 0.9702 £ 0.0049
(a1b1b2]3,1) 0.9688 £ 0.0073
(agb1b2|3,2) 0.890 + 0.013
<a1a2b1b2|3, 3) —0.888 £ 0.018

Table 4.3: Experimental results. Errors were calculated by propagating Poissonian
errors of the counts.

discriminate between |r) +|l) and |r) —|I), while the two outputs of the PBSs
discriminate |H) and |V).

Table 4.3 provides the experimental values of all nine correlations in
Bell polynomial (4.4). The obtained violation for Bell inequality (4.5) is
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Experiment DL
Aspect et al. [ADRS2] < 0.80
Weihs et al. [WJST98] < 0.64
Kiesel et al. [KSWT05] < 0.64
Zhao et al. [ZYCH03] < 0.60
Pomarico et al. [PBST11D)] < 0.49
Our experiment (and Yang et al. [YZZ105]) < 0.22

Table 4.4: Bounds on the local content of quantum correlations from previous
Bell experiments. The selection includes representative experiments testing different
forms of nonlocality, or Bell inequalities, in both the bipartite [CHSH69, BC90] and mul-
tipartite [Ard92, SASAO05] scenarios. Other published experiments, not shown in the table,
lead to pr,,,, > 0.49. Note the significant improvement given by the techniques discussed
here (see also Sec. 4.1.3).

ﬂgp = 8.564 £ 0.028 and provides the upper bound pr,,., = 0.218 £ 0.014.
At this point it is important to mention that another experimental test of
(4.5) was reported in Ref. [YZZ105] in the framework of all-versus-nothing
nonlocality tests. The violation in Ref. [YZZT05] is compatible (within
experimental errors) with the value obtained by our experiment.

4.1.5 Conclusions and discussions

In this section we have provided a systematic recipe for obtaining bipartite
Bell inequalities from every proof of the Kochen-Specker theorem. These
inequalities are violated by quantum correlations in an extremal way, thus
revealing the fully nonlocal nature of quantum mechanics. We have shown
that these inequalities allow establishing experimental bounds on the local
content of quantum correlations that are significantly better than those ob-
tained using other constructions. This enabled us to experimentally demon-
strate a Bell violation leading to the highly nonlocal bound p;, < 0.22.
The local content py, of some correlations P(A, B|X,Y) can be under-
stood as a measure of their locality, as it measures the fraction of experi-
mental runs admitting a local-hidden-variable description. As mentioned,
some of the previously known examples of bipartite inequalities featuring
fully nonlocal correlations, i.e., pr, = 0, for arbitrary dimensions require an
infinite number of measurement settings and are not robust against noise
[EPR92, BKP06]. More standard Bell inequalities using a finite number
of measurements, such as the well-known Clauser-Horne-Shimony-Holt in-
equality [CHSHG69], give a local weight significantly larger than zero even in
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the noise-free situation. Thus, the corresponding experimental violations,
inevitably noisy, have only managed to provide bounds on the local content
not smaller than 0.5 (see Table 4.4). In contrast, the theoretical techniques
provided here enable the experimental demonstration of highly nonlocal cor-
relations. This explains why the experimental bound we obtain is signifi-
cantly better than those of previous Bell tests, even including multipartite
ones. In fact, multipartite Greenberger-Horne-Zeilinger tests [GHZ89] also
in principle yield p;, = 0 [BKP06] using a finite number of measurements
and featuring robustness against noise. Still, to our knowledge, the reported
experimental violations lead to significantly worse bounds on py, (see Ta-
ble 4.4). Our analysis, then, certifies that, in terms of local content, the
present bounds allow a higher degree of nonlocal correlations than those re-
ported in [ADR82, WJS198, KSWT05, ZYC"T03, PBST11b] or in any other
previous experiment of our knowledge.
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4.2 Multipartite nonlocal correlations suitable for
device-independent information protocols

As extensively studied in the previous section, given some correlations be-
tween the measurement results on two parts, the local fraction [EPR92]
quantifies the number of events that can be described by a local model.
As such, it can be taken as a measure of nonlocality. Apart from maximal
nonlocality, another extreme property of correlations is that of monogamy
with respect to general nonsignaling correlations. Any given (nonsignaling)
N-partite correlations are monogamous if the only nonsignaling extension
of them to N 4+ 1 parts is the trivial one in which the part N + 1 is uncor-
related to the initial N parts. Monogamy of correlations is clearly a very
desirable property for cryptographic purposes. Note, however, that local de-
terministic correlations are monogamous but useless for cryptography. This
is where the third ingredient comes into play: randomness. The correlations
have to be such that the local outcomes are fully unpredictable by an ad-
versary. A nonlocal fraction of unity is necessary but not sufficient both for
the monogamy and full randomness of nonlocal correlations.

In Ref. [BKPO06], Barrett, Kent, and Pironio showed that bipartite maxi-
mally entangled states can yield maximally nonlocal and monogamous corre-
lations with fully random outcomes. They first exploited the fact that these
states maximally violate the chained inequality [BC90], which implies that
the nonlocal fraction is one. Then, contrary to other examples of bipartite
maximally nonlocal correlations [HR83], they proved that the correlations
leading to the maximal violation of the chained inequality also have the
properties of being monogamous and having fully random local outcomes.

In a general multipartite scenario with N parts, these questions have
hardly been considered (see, however, [ACSA10]). The multipartite situation
is conceptually richer, as apart from the bare division between local and
nonlocal, correlations allow for finer subclassifications in terms of locality
among the different partitions. Indeed, one can consider k-local models in
which the N parts are split into k& < N groups such that (i) the parties within
each group can make use of any nonlocal resource, but (i) the k groups
are only classically correlated. Any correlations that can be reproduced
by these models do not contain genuine-multipartite nonlocality, as nonlocal
resources among only subsets of the N parts suffice. As in the case of locality
in the bipartite setting, it is possible to construct inequalities to detect
genuine-multipartite nonlocality, known as Svetlichny inequalities [Sve87]. A
maximal violation of a Svetlichny inequality implies that the corresponding
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correlations are maximally genuinely multipartite nonlocal.

It was an open question whether there exist fully genuinely multipartite
nonlocal correlations with a quantum realization [ACSA10]. We show here
that this is the case: Fully genuine-multipartite nonlocal correlations can
be derived from Greenberger-Horne-Zeilinger (GHZ) states [GHZ89] of any
number N of parts and local dimension d. To this end, we construct a family
of Svetlichny inequalities generalizing the bipartite chained inequality, and
show that GHZ states attain the algebraic violation in the limit of an infinite
number of measurements. Then, we prove that the corresponding nonlocal
quantum correlations are monogamous and fully random in the sense that
the outcomes of any choice of m < N parts provides m perfect random dits.
Finally, we draw some implications on device-independent secret sharing.

Before proceeding, it is worth mentioning the relation between our re-
sults and Ref. [ACSA10]. There, criteria for the detection of quantum
states with maximally genuine-multipartite correlations were provided. Us-
ing these criteria, it was shown that all graph states lead to such extremal
nonlocal correlations. However, there genuine-multipartite nonlocality was
studied with respect to k-local models in which the correlations among par-
ties within each of the k£ groups are, for each value of the hidden variable,
nonsignaling. In contrast, the k£ local models considered here are the most
general ones, as no constraint is imposed on the correlations among par-
ties within the same group. In this fully general scenario, no example of
fully genuine-multipartite nonlocal correlations with quantum realization
was known. Moreover, monogamy and randomness in a general multipartite
scenario had not been considered previously either.

4.2.1 Background
Genunine multipartite nonlocality and bi-local content

As explained in preliminaries, there exist a notion a genuine multipartite
nonlocality, analogous to the genuine multipartite entanglement displayed
by quantum states. Consider for the sake of simplicity a scenario with three
observers obtaining a probability distribution P(A, B,C|X,Y, Z). We recall
from section 2.2.3 that the probability distribution is said to be genuine
multipartite nonlocal if it cannot be written as

P(A7B50‘X’Y7Z) = 4a|BC PA\BC(AaBaC|X7Y’Z)
aBjac Pplac(A, B,C|X,Y, Z)
+ qcja Peja(A, B, C|X,Y, Z) (4.8)

_|_
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with gapc+aBjac+dcias =1, qaBc: 4BjAC: doja = 0, and Py, 4,4, being
a probability distribution local along the bipartition A;[A2As3, (i.e. P4 4,4, =
Z)\ p(A)PA1PA2A3)'

Equivalently as the local content for the case of two observers, one can
define a bi-local content for the case of three observers. The bi-local content
is defined as the fraction of events that admit a description which is local
along at least one of the bipartitions.

Definition 4.3. Consider a non-signaling probability distribution among
three parties P(A, B,C|X,Y, Z). The bi-local content of P(A, B,C|X,Y, Z),
denoted by ppr, is defined as
BL = max + +
p PaisePoiac:Poias dA|BC T 4B|AC T 4C|AB
such that P = qapc Papc + 4Bjac Piac + qcias Pojas
+ (1 = qaBc + 4Bjac + dcjaB)Prs

(4.9)

where Png is an arbitrary non-signaling probability distribution.

This construction generalizes straightforwardly to the N-partite scenario:
the bi-local content is the fraction of events that admit a description which
is local along any bipartition.

Equivalently to the bipartite case, Bell inequalities can be used to bound
the bi-local content of a probability distribution. One has to consider Bell-
inequalities that cannot be violated by probability distributions fulfilling
(4.8). These are the so called Svetlichny-like inequalities.

Definition 4.4. A Svetlichny inequality is a linear combination of the set
of probabilities C - P = ZC::;{’CZP(CL, b,clz,y, z) such that: (i) C- P < Cpy,
for all P(A, B,C|X,Y, Z) fulfilling (4.8) and Cpy, being a real constant, (ii)
there exist a probability distribution P(A, B, C|X,Y,Z) such that C - P>

Cpr. The probability distribution P s then genuine multipartite nonlocal.

Equivalently to the case of Bell inequalities and local content for the
bipartite case, one can easily check that if C' - P = maxpygep C - Pns, then
the bi-local of P content is zero. Such correlations are called maximally
genuine nonlocal.

It was an open question whether there exist quantum correlations with
bi-local content equal to zero. Here we provide such correlations. Further-
more, we show that these correlations are monogamous and random, two
properties that we explain now in detail and that make them appealing for
device-independent multipartite protocols.

7



4.2. MULTIPARTITE NONLOCAL CORRELATIONS SUITABLE FOR
DEVICE-INDEPENDENT INFORMATION PROTOCOLS

Monogamy and randomness

Consider an N-partite probability distribution P(Aq,..., Ay|X1,..., XN)
that one uses to distribute secret information between the N parties in com-
petition with a malicious party, the eavesdropper. Then, one should consider
the N+1 extended probability distribution P(A1,..., AN, F|X1,..., XN, Q).
Clearly, a desired situation is to certify that the eavesdropper is completely
uncorrelated with the statistics of the IV parties. If that is the case, one says
the the N-partite probability distribution is monogamous.

Definition 4.5. The N-partite probability distribution
P(Aq,...,AN|X1, ..., XN) is said to be monogamous if the only N + 1-non-
signaling extension fulfills

P(Ay,...,AN,E|X1,...,XN,Q) = P(A1, ..., AN|X1,..., XN)P(E|Q).
(4.10)
In Ref [MAGO6] it is shown that P(Ay,...,An|X1,...,XN) being an ex-

tremal point of the nosignaling polytope ensures monogamy.

Nevertheless, monogamy is not sufficient to certify that the eavesdropper
cannot acquire information about the secrecy distributed by the N parties.
Another required ingredient is local randomness, i.e.that the outputs are
equally likely. Otherwise the eavesdropper, however uncorrelated to the N
parties, would hold some information about the secret just by betting for
the most probable outcome.

Definition 4.6. The N -partite probability distribution
P(Ay,...,AN| X1, ..., XN) is fully locally random if for alli € {1,...,N}
the N — 1-partite marginal probability distribution fulfills

P(ai,...,a;-1,0;41,...,aN|T1,. .., Ti—1,Tig1,. .., TN)
1 4.11
:ZP(al,...,aN]xl,...,xN):W ( )
a;

for all outputs and at least one input combination . Note that this is the
strongest notion of local randomness, as it implies that any N — k marginal
1$ also random.

Tt is not necessary to demand this property for all the input combinations. One
can perform the secrecy protocol whenever the chosen inputs are such they fulfill the
randomness condition and discard the outputs otherwise.
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A probability distribution that displays monogamy and local random-
ness is, roughly speaking, as good as possible for secrecy protocols. Such
correlations have been found for the bipartite scenario using the chained Bell
inequality as explained below.

Bipartite chained Bell inequality

Let us start by reviewing the Bell inequality used in the bipartite case to
find maximally nonlocal, monogamous and locally random correlations. The
bipartite chained Bell inequality for M settings and d outcomes can be
expressed as [BKP06]

M
112\/[ = Z (([Aoc — Bala) + ([Ba — Aa+1]>) >d—1, (4.12)
a=1

where () stands for the average Zf:_ll iP(Q2 = 1), with

P(Q(Ag, By) = 1) = > P(Ay, By|z,y) (4.13)
{AfrBy}/Q(AI’By):i

the probability that random variable Q, is observed to take value i, [Q]
is Q, modulo d, and Ap;11 = [A; + 1]. Inequality (4.12) is satisfied by
all local correlations and algebraically violated by the correlations of the
maximally entangled state |U2) = - ZZ;(I) lgq) [BKP06, CRO8]|. More pre-

d
cisely, measuring the quantum observables A, = Ef;lzo ra,|ra,)(ra,| and
1e3

By = Zf«l;ﬁl:o 7B, |7B,) (T B, |, Where

1 d—1 s 12
ra,) = —=» e aiaa"m)|g),
- Vd

q=0
d—1

1 _2mi _B

and |rp,) = —5 3 e T, (4.14)

q=0

for a, =1, ..., M, on |¥3), leads to a Bell value that for large M can be
well approximated as

d—1 .
T L, . o (T
I2,(0%) ~ 12 g i/ sin® <E> (4.15)

1=

[\

This value tends to 0 as M grows. Since all the terms in (4.12) are by defini-
tion non-negative, this is the maximal violation any probability distribution
can render.
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4.2.2 Extension to the multipartite case
Tripartite case

Let us now extend inequality (4.12) to the multipartite scenario. We first
discuss the case N = 3 and extend the formalism to arbitrary IV later. Con-
sider then three random variables A, Bg, and Cy, for o, 8,7 =1, ..., M,
each of d possible outcomes {0, ..., d — 1}, measured by Alice, Bob, and
Charlie, respectively.

Theorem 4.7. The inequality

M
IJE\}/[ = Z (<[Aa — Bayp—1+ C8l) + ([Batp-1 — Aat1 — Cﬁ]>) > M(d—1)
a,f=1
(4.16)
18 fulfilled by all the bi-local probability distributions with decomposition of the
form (4.8). Furthermore, it is maximally violated by quantum correlations.
Hence, those quantum correlations are maximally genuine nonlocal.

Proof. Here we have introduced Bps4, = [B, + 1], for any v = 1, ..., M.
Given that (4.12) is a bipartite Bell inequality, the fact that the tripartite
inequality is fulfilled by all correlations local in any bipartition can be seen
with an argument similar to one of the arguments of [BBGL11]. The local
relabeling B, — Byys-1 of Bob’s bases in I3, gives I3,(8) = Zé\f:l ({[Aa —
Bayp-1]) + ([Bats-1 — Aat1])). Since this simply defines a symmetry? of
(4.12) it also fulfills the inequality I2,(8) > d — 1. In turn, the 3-th term in
the definition of I3, can be recast as I3,(3) o Cz = Zi/[ﬂ (([Aa — Bagp-1—
C3)) + ([Ba+p—1—Aat1—Cgl)), where “o Cg” stands for the “insertion of Cj
with the opposite sign from B,yg_1.” Grouping Bob and Charlie together
with a single effective variable B, 31 —Cg we see that, for any correlations
local with respect to the bipartition A : BC, it must be I3,(8) o Cs > d — 1.
In addition, since this holds for all 8 and I3, = Zgil I2,(B) o Cg, any
correlations local with respect to A : BC satisfy I3, > M(d — 1). The same
reasoning holds of course for correlations local with respect to B : AC' and
an effective variable A, + Cp. Finally, since I3, is symmetric with respect
to the permutation of A and C' (see Appendix A.2), the tripartite inequality
must be satisfied by all probability distributions with a bilocal model. That

2A symmetry in the sense that a relabeling of measurements or outcomes leads to
the original inequality. As relabeling is a pure classical operation that can be performed
locally, hence a symmetry of a Bell inequality is also a Bell inequality with the same
properties.
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is, by all the distributions that can be written as a convex combination of
correlations with a local model with respect to any bipartition of the three
parties. For later convenience, instead of (4.16), we consider its regularized
version E =I3,/M:

M
— 1
Iy =17 >~ ({[Aa = Basg—1+ Csl) + {[Batp—1 — Aay1 — Cgl)) > d — 1.
CZ,BZI

(4.17)

For the quantum realization, we introduce first Charlie’s observable C, =
d—1
Zrc7 —oTc,|re, ) re, |, where

Ire,) = fZe Falre, =) |g), (4.18)

for vy =1, ..., M. Measurements are performed on the d-dimensinoal GHZ
state |¢3) = Zg;é lgqq). In appendix A.3 it is shown that I3,(¥3) =

E(\Ilg) = 0. Thus, it displays the maximal nosignaling violation of in-
equality (4.17).
O

Arbitrary number of parties

For arbitrary N, the inequality generalizes as I} N = M Zw i -t 1(1/;) o Zy,
where Z is the N-th variable and the generahzatlon followed by induction.
This gives

JE— 1 M

o = - > (([Aa=Barpor+ o = ()" Wy + (=11 Zy))

MN-2
o, B, x,P=1

+ ([Batp-1— Aot — o+ (=) T Woppr = ()Y TIZy])) 2d -1, (4.19)

for N random variables A,, Bg, C,, ..., Yy, and Z¢, in possession of Alice,
Bob, Charlie, ..., Yakira, and Zack, respectively. Here we introduce this
alphabetic notation instead of the common Ai, As,... Ay in order to avoid
an overpopulation of indexes. Also, for Q = A, B,C,....Y, or Z, we have
introduced, in a general way, Q;xp+w = [ + 7], for any integer ¢ and all
w =1, ..., M. In the generic case of arbitrary N, the composition rule
“o” refers to “insertion of the new variable with the opposite sign from the
previously inserted one.” With the same reasoning [BBGL11] as above, from

the fact that I} ™' > d — 1 is satisfied by all (N — 1)-partite correlations
local in at least one bipartition, it follows by construction that (4.19) is
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satisfied by any IN-partite correlations local with respect to any bipartition
“Z with at least anyone else versus the rest.” Once again, by symmetry un-
der the permutation of Z with some other part (see Appendix A.2), one
sees that (4.19) is satisfied by all N-partite distributions local in a bipar-
tition. Equation (4.19) is the Svetlichny inequality used in what follows to
prove our results. Actually, equation (4.19) encapsulates an entire family of
Svetlichny inequalities for M measurements of d outcomes. The same family
of inequalities is independently derived in [BBB*12].

In order to show that there exist a quantum realization of correlations
that violate maximally (4.19), we introduce analogous observables to the one
for the tripartite case (4.18). For instance, for Yakira and Zack we define
f@ and ZC respectively with eigenstates

ry,) 1 = —(—)N-12Zig(ry —%H )
TYw = = € v q
Vd =
d—1 )
1 (—)N-L2mig(r, —STL)
and |r = — ) ¢ 4T M , 4.20
Irze) Vi 2 |q) (4.20)
q_
for ¢, =1, ..., M. In the limit M — oo the maximal violation of inequal-

ity (4.19) is obtained by measuring these observables on the N-partite GHZ
state ]\I/év) = id Zg;é lgqq ... qq). To see this we show in Appendix A.3
that L L L

13,(02) = I3,(93) = ... = IN(¥Y), (4.21)
where E(‘IIZ) and @(\I'év ) are, respectively, the Bell values of (4.17) and
(4.19) for the observables defined above on states |¥3) and |¥X). Thus,
the Bell values for all N equally tend to zero as M grows. Since inequality
(4.19) consists, as in the bipartite case, exclusively of non-negative terms,
in the limit M — oco GHZ states attain its algebraic violation. Further-
more, since the inequality is only violated by genuinely multipartite nonlocal
correlations, the latter implies that all GHZ states are maximally genuine-
multipartite nonlocal.

4.2.3 Monogamy and randomness
Any correlations P featuring @(P) = 0 must necessarily satisfy
Plra#[rg—...— (=)""Yrgl,rp,....,rzla, B, ....,{) =0, (4.22)

for all 74, rp, ..., rz € {0,1,...,d — 1} and (o, f3,...,() being any of the
2MN~1 measurement bases appearing in (4.19). Note that not all possible
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combinations of the M local bases appear in the inequality. Hereafter, we
study the properties of the probability distributions P corresponding to the
bases appearing in (4.19). For each such distribution, d —d¥ ! coefficients
are automatically set to zero by (4.22). The remaining d’¥ !
determined by the marginal probability distribution corresponding to any
N — 1 parts. For instance,

Z P(TA, TBy.y 7’2‘0[, ﬁ, ceey C)
TA

are univocally

Plra=[rp—..— (—1)N_1rz],7“3, o rzlay By .. Q)
= P(rp,..,rz|5,...,0), (4.23)

and equivalently for other parties and measurement bases. When M — oo,
the following theorem fixes the value of all (N — 1)-partite marginals and
hence imposes uniqueness. In turn, the uniqueness of P implies also its
monogamy [MAGO06]. Moreover, the theorem proves also the full randomness
of all its marginal distributions.

Theorem 4.8. For any N-partite nonsignaling distribution P such that
IN(P) < e, with e > 0, the marginal distributions fulfill

d(N —
P(S(ras - r2)IS(a; ... Q) < d]\}_1 " | 4 1)6’

(4.24)

for (a,...,C) any of the settings appearing in (4.19), where S refers to any
subset of N — 1 parts out of all N.

The proof of the theorem is provided in A.1. Note that for P realized

by GHZ states |¥)') and the measurements considered here, it is I N(P) ~
2

YRR Zf:_ll i/ sin?(Z}), which tends to 0 as M grows. Therefore, the GHZ-
state quantum realization fulfills the theorem for any arbitrarily small €. In
this limit, the theorem thus guarantees that P(S(rA, ey 72)|S (v, ...,C)) =
dN%l' That is, that all the (N — 1)-partite marginal distributions (and
therefore all the marginal distributions) have each and all of their outcomes

equally probable, or in other words, that they are fully random.

4.2.4 Device-independent secret sharing

Monogamy of multipartite correlations is a desired property in multipartite
cryptographic scenarios. In particular, for instance, if I.(P) = 0 then cor-
relations P fulfill the requirements for a device-independent implementation
of the quantum secret-sharing protocol introduced in [HBB99]. We analyze
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this for the particular case N = 3 for ease of notation, but the same con-
clusions are valid for any N > 3. Alice wishes to share secret dits with
Bob and Charlie, but she suspects that one of them is dishonest. There-
fore, she wishes to do it in such a way that Bob and Charlie can access
the value of the dits only if they are together. The three distant users then
randomly input settings «, 3, and 7 into three black boxes described by
correlations P(ra,7p,7¢c|a, 8,7) with the property that I3,(P) = 0. They
repeat the procedure many times, each time recording the outcome, and
at the end publicly broadcast all the settings used. From Theorem 1 they
know that whenever their settings happen to match those of (4.17), i.e.,
a—p+~v—1=0 (modulo M), or « =+ = 0 (modulo M), then
P(ra = al|lrc —rg] =a) =1 for all a € {0,1,...,d — 1}. This means that
then, if Bob and Charlie meet, they can determine with certainty the value
of Alice’s dit r 4 simply by subtracting their outcomes. In addition, since all
marginals of P (for the relevant settings) are fully random, neither Bob nor
Charlie can obtain any information at all from their local outcomes alone.
Finally, as the correlations are monogamous, Alice’s dit is also unpredictable
by any external adversary.

4.2.5 Conclusions and discussion

We presented a multipartite version of the multiple-setting multiple-outcome
chained Bell inequalities. The inequalities introduced are Svetlichny-like:
they are satisfied by all probability distributions expressed as mixtures of
local correlations with respect to any bipartition. We showed that, in the
limit of an infinite number of settings, correlations from GHZ states of any
local dimensions or numbers of parts violate these inequalities as much as
any non-signaling correlations. This proves that the genuine-multipartite
nonlocal content of GHZ states is maximal. Moreover, we showed that any
correlations algebraically violating the present inequalities are monogamous
with respect to nonsignaling compositions and yield fully random outcomes
for any subset of parts. This proves monogamy and full randomness of gen-
uinely multipartite quantum correlations in a nonsignaling scenario. Finally,
we showed that the correlations from GHZ states approach, as the number
of measurement settings grows, those required for device-independent se-
cret sharing secure against eavesdroppers limited solely by the no-signaling
principle.

84



Chapter 5

An operational framework
for quantum correlations

It is often useful, when defining a framework for a new field, to establish
analogies with other fields that have already gone through this process. This
allows one to identify the elements that the new field lacks in comparison
with the elder and to find hints for its characterization. This situation
matches perfectly the case of nonlocality and entanglement. The former,
however first established by Bell’s theorem in the early sixties, has only
been recently established as an important resource to perform quantum in-
formation protocols. On the other hand, entanglement has been already
extensively studied and characterized.

In particular we focus on the operational framework that is used to
study entanglement as a resource. Local Operations assisted by Classical
Communication (LOCC) play a key role in this framework, and indeed en-
tanglement can simply be defined as a resource that cannot be created by
LOCC. This operational definition is consistent with other mathematical
criteria expressed in terms of the structure of the quantum state itself and
that provide alternative definitions of entanglement. The generalization to
multipartite scenarios is straightforward: genuine multipartite entanglement
is a resource that cannot be created by LOCC, even if one allows a subset of
parties to collaborate. Again, this operational definition is consistent with
mathematical criteria based on the quantum state that define multipartite
entanglement.

Surprisingly, an analogous operational definition for nonlocality has been
neither established nor studied. In the second section of this chapter we pro-
vide a natural operational definition of nonlocality and we compare it with
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the canonical definitions of nonlocality based on Bell local decompositions.
Remarkably, we find that the standard definition of genuine multipartite
nonlocality is inconsistent with the operational framework. We provide al-
ternatives to recover consistency and discuss their main features.
Throughout the third section we apply the tools provided by the op-
erational framework for nonlocality to the study of information theoretic
principles for quantum mechanics. Roughly speaking, information theoretic
principles aim at defining the set of quantum correlations among distant
observers without making any reference to the structure of Hilbert spaces.
Two particular principles are considered potential good candidates: Infor-
mation causality and Non-triviality of communication complexity. Here, we
show that both are insufficient and furthermore, we recognize the features
that such principle should display in order to define quantum correlations.

5.1 An operational framework for nonlocality

Let us first review the most important features of the well-known operational
framework for entanglement theory. The formalism for nonlocality will be
established thereafter, with special focus on the analogies and differences
between the two.

5.1.1 The framework of LOCC

The first step when deriving this theoretical formalism consists in identifying
the relevant objects and set of operations, see Table 5.1. The relevant objects
in the entanglement scenario are quantum states in systems composed by N
observers, labeled by A; with i = 1,..., N. The relevant set of operations is
the set of LOCC. The whole formalism then relies on the following principle,
which has a clear operational motivation: entanglement of a quantum state
is a resource that cannot be created by LOCC. This implies that those states
that can be created by LOCC are not entangled. These states are called
separable and can be written as [HHHHO09]

ParLAy =D DiPy, ® @ . (5.1)
j

In turn, those states that cannot be created by LOCC are entangled and
require a nonlocal quantum resource for the preparation. It is easy to see
that LOCC protocols map separable states into separable states. Finally,
entanglement witnesses are Hermitian operators W such that (i) Tr(Wpg) >
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Resource Objects Operations
Entanglement | Quantum states LOCC
Nonlocality Joint Probability Distributions | WCCPI

Table 5.1: Comparison of entanglement and non-locality from an operational point of view.
Once the basic ingredients of the theory have been identified, an operational framework
is based on the following principle: the resource contained in the states cannot increase
under the set of operations.

0 for all separable states pg but (ii) there exist an entangled state p such
that Tr(Wp) < 0.

The picture becomes richer when considering intermediate cases where
only some of the IV parties share entangled states. For simplicity we restrict
our considerations in what follows to three parties. Consider an entangled
state in which only two parties, say Ay and Az are entangled. The corre-
sponding state is called biseparable and can be written as

PA1A2 A3 = ijp]Al ® p342A3' (5.2)
J

This state is not genuine 3-partite entangled, as for its LOCC creation, it
suffices that two of the parties act together. Similarly as above, (i) LOCC
protocols where A, and As act together map biseparable states into bisep-
arable states along the bipartition Ay — A3 A3 and (ii) these states do not
violate any entanglement witness along this partition. Finally, it is possible
to define entanglement witness for genuine 3-partite entanglement, which
are positive when acting on biseparable states along any bipartition, but
give a negative value for some states.

5.1.2 The formalism of WCCPI

As extensively introduced and discussed in chapter 2, within the device-
independent formalism the relevant objects are the sets of joint probability
distributions. That is, consider N distant observers. Each observer ¢ can
input a classical variable z; in his system, which produces a classical outpu
a;. The correlations among the input/output processes in each system are
described by the joint probability distribution P(Aj,..., An|X1,..., XN).
The main reason why device-independent applications are possible in the
quantum regime is because of the existence of nonlocal quantum correlations.
Therefore it is nonlocality the resource that we characterize operationally in
the following.
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In a similar way as it is done for entanglement, the first step consists in
identifying the relevant objects and set of operations, see Table 5.1. The rele-
vant objects are the joint probability distributions P(Aq,..., Anx|X1,..., XN).
The corresponding set of operations should include local processing of the
classical inputs and outputs. These operations, by definition, do not create
nonlocality. On the other hand, communication is allowed only if it takes
place before the inputs are known, otherwise it can be used to create non-
local correlations. Such communication taking place before the inputs are
known can be used either to generate shared randomness or to announce
the outcomes of a sequence of measurements prior to the realization of the
nonlocal experiment. A general protocol in the nonlocality scenario would
thus begin with a preparation phase, where one of the parties would measure
its system and broadcast the measurement outcome. On the basis of that
result, a second party measures its system, etc. At the end of the prepa-
ration phase, the parties exchange some shared randomness and announce
that they are ready for the nonlocal experiment. Communication between
them is forbidden from this point on. The second step is the measurement
phase, where each party is given an input, or question, and they compute the
outcome or answer by using the correlations resulting from the preparation
phase and by processing the obtained classical information at will. The last
process is commonly referred to as ‘wirings’. Thus, in the nonlocality frame-
work, the set of relevant operations is Wirings & Classical Communication
Prior to the Inputs (WCCPI).

Once these two ingredients are identified, it is straightforward to obtain
an operational definition of nonlocality: nonlocality of correlations
P(ay,...,an|z1,...,xN) is a resource that cannot be created by WCCPIL

Not surprisingly, this operational definition leads to the standard defini-
tion of nonlocality due to Bell [Bel64] when considering N distant parties.
Indeed, it is easy to see that the correlations that can be created by WCCPI
have the form, see Eq. (5.1),

P (a1,...,aplx1,...,2N) = Zp()\)Pl(al\:L‘l, A) ... Pi(ap|zn, A),  (5.3)
)

in which the local maps P;(a;|z;, A) produce the classical output a; depending
on the input x; and a shared classical random variable A. All correlations
that admit a decomposition (5.3) are local, while they are nonlocal otherwise.
WCCPI protocols map local correlations into local correlations. Finally,
nonlocality can be detected by the violation of Bell inequalities (see chapter
2) such that, with ¢ containing the coefficients of the Bell inequality (i)
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C - P, > 0 for all local correlations Pj, but (ii) there exist correlations P
such that C'- P < 0.

As for entanglement, the next step is to characterize genuine multipartite
nonlocality. This question has already been studied and the standard def-
inition of genuine multipartite nonlocalty is due to Svetlichny [Sve87]. We
restrict our considerations again to three parties and the partition A; — A2 A3
for sake of simplicty. According to Svetlichny, correlations that can be writ-
ten as, see Eq. (5.2),

P(a1, a2, a3|z1,@2,3) = p(A) Pi(a1|r1, A) Pos(az, aglwa, x3,0)  (5.4)
A

do not contain any genuine tripartite nonlocality, as there is a local de-
composition when parties A, and Az are together. Correlations admitting
a decomposition like (5.4) are named in what follows bilocal (BL). As it
happened for entanglement and LOCC, it is expected that under WCCPI
protocols along the partition A; — A As, bilocal correlations are mapped into
bilocal correlations. Consequently, no bipartite Bell inequality between A;
and A A3 can be violated. Remarkably, we prove here that this intuition is
incorrect. This implies that the standard definition of genuine multipartite
nonlocality, given by (5.4), is inconsistent with the operational approach. In
the following we show examples of the inconsistencies and also provide and
discuss alternative definitions of genuine multipartite nonlocality that are
consistent with our operational framework.

5.1.3 Inconsistencies of bilocal decompositions with the op-
erational formalism

We show the inconsistencies of the definition of BL by providing correlations
that (i) have a decomposition of the form (5.4) and (ii) become nonlocal
along the partition A; — AsAs when a WCCPI protocol, where A, and
As collaborate, is implemented. An example of these correlations with a
quantum realization can be established in the simplest scenario consisting
of two measurements of two outcomes for each of the three observers. The
measurements are performed on the quantum state |GHZ) = %( |000) +
|111)). The first observer, A; measures o, and o,, labeled by z; = 0 and
x1 = 1 respectively. A, measures o, and o, labeled by 22 = 0 and 29 = 1
respectively. A3 measures 02\4/%01 and "Z\;gm, labeled by 3 = 0 and x3 = 1

respectively. These correlations have a decomposition of the form (5.4). This
can be easily computed by a linear program, see Ref. [PBS11a].
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Let us now see how these tripartite collaborations can be mapped into
nonlocal bipartite correlations along the partition A; — A3 A3 with an WC-
CPI protocol in which Ay and Ajs collaborate. The protocol works as fol-
lows (see also Figure 5.1.b): the first observer A; obtains the output by
using trivially his share of the tripartite box. As and Ajs collaborate by
using the output obtained by As as input for As. The resulting tripar-
tite probability distribution reads P(A;, A2, A3|X1, X9, X3 = Az). The
final output is Ajz’s output, so that the final probability distribution is
P(Al, A3‘X1, XQ) = ZaQ P(Al, ag, A3’X1, XQ, Ag) This bipartite probabil—
ity distribution P(A;, Az|X1, X2) does not have a local model. This can be
verified by calculating the value of the Clauser-Horne-Shimony-Holt (CHSH)
polynomial

g =C(0,0)+C(0,1)+ C(1,1) — C(1,0), (5.5)

with C(Xl,XQ) = P(a1 = ag‘Xl,XQ) — P(a1 7§ a3|X1,X2). The value
obtained is 8 = % ~ 2.12. Local correlations fulfill 8 < 2, thus we conclude
that the correlations are nonlocal along the partition Ay — AsAs.

Alternatively, one can assess the inconsistency of Svetlichny’s definition
by noting that our tripartite example behaves non-locally if one of the parties
broadcasts its measurement outcomes before the nonlocal experiment takes
place. Indeed, suppose that, prior to the experiment, As measures ro =
1. If the result is ao = 1, Ay and As are projected onto the distribution
P'(Aq, A3| X1, X3) = P(A1, A3| X1, X3,29 = 1,a2 = 1). On the contrary,
if Ay reads as = —1, A; receives the order of inverting her measurement
outcomes for measurement x; = 1, and so the system is projected again
into P/(Al,A3|X1,X3) = P(—Al,A3|X1,X3,:E2 =1l,a0 = —1). It can be
checked that the new bipartite distribution P’'(A4;, A3| X1, X3) violates the
CHSH inequality maximally (8 = 2v/2 ~ 2.82).

5.1.4 A new definition of multipartite nonlocality consistent
with WCCPI

As mentioned above, the existence of these correlations implies that the stan-
dard definition of genuine multipartite nonlocality (5.4) is inconsistent with
our operational approach, as it would imply that genuine tripartite nonlo-
cality could be created by WCCPI when two parties collaborate !. Thus,

! Actually, the last construction suggests another venue to generate non-locality, namely,
to make use of Stochastic Wirings € Classical Communication Prior to the Inputs (SWC-
CPI). However, it is easy to see that, whenever non-locality can be generated probabilis-
tically with SWCCPI protocols, it can be also activated deterministically via WCCPI.
Imagine, for instance, that Pi(a1,as|z1,z3) = P(a1,as|z1,z3,22 = 1,a2 = +1) is non-
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Figure 5.1: WCCPI protocols. a) Example of a WCCPI protocol consistent with the
definition of genuine nonlocality provided by Eq. (5.4) (BL). The resulting probability
distribution P(a1,az2,as|z1,z2,2z3) does not violate any Bell inequality along the bipar-
tition A; — AzAs. However, this may be no longer true for WCCPI protocols where
inputs depend on outputs produced by the collaborating parties. b) WCCPI protocol in
which the input of party As is the output of A2. As shown in the text, this protocol
can map tripartite probability distributions with a bilocal decomposition as in (5.4) into
bipartite distributions P (a1, as|z1,z2) that violate a Bell inequality. This proves that this
type of WCCPI protocols is not compatible with the definition of genuine multipartite
nonlocality (5.4).

the concept of genuine multipartite nonlocality is not correctly captured by
Eq. (5.4).

Now, the natural question is whether there are definitions of bilocality
which do not suffer from these inconsistencies. Or in other words, whether
one can find an analogous version of equation (5.2) in the context of non-
locality consistent with the operational framework established by WCCPI.
Before moving into that, it is worth understanding why the previous Bell
violation is possible even if the correlations seem to have a proper local de-
composition. The main reason is that no structure is imposed on the joint
terms Pa3(Ag, Ag| X9, X3, \); in particular, these terms may be incompatible
with the no-signaling principle, e.g. Pa3(az|xa, x3,\) # Pas(ag|za, 245, X) for
some A. Further, if no structure is imposed on Pa3(Asg, A3| X2, X3, ) the
decomposition (5.4) may include terms which display both signaling from
Ay to Az and from As to Ao; that is, the outcome probability distribution of
Ay depends on Aj’s input and viceversa. Hence, a decomposition including

local, but Px(a1,as|z1,z3) = P(a1,as|z1,x3,22 = 1,a2 = —1) is not. Let C be such that
C-L > 0 for all bipartite local distributions L and C~ﬁ1 < 0. In the event as = —1, A; and
As receive the order of simulating a local box Pj(a1,as|r1,xs) such that ¢- P, = 0. Then,
it is clear that the so-constructed box Q(a1,as|z1,x3) = p(az = 1|z2)Pi(a1, as|z1,z3) +
plaz = —1|z2)Py(a1, as|z1, z3) satisfies C - Q < 0, and, consequently, is non-local.
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these terms cannot be considered a physical description of the situation in
which one of the observers measures first. This is crucial in our previous
example.

In our protocol the output of one of the parties is used as the input of
the other party, or it is broadcast prior to the nonlocality experience. This
implicitly assumes a temporal order in the measurements which is incon-
sistent with such decompositions. Indeed, all the examples of distributions
of the form (5.4) leading to a Bell violation under WCCPI have to be such
that the bilocal decomposition requires terms displaying signaling in both
directions. Whether the converse is true, that is, whether every decompo-
sition with such terms can be mapped via LOCC into a nonlocal one is an
interesting open question. We come back to this point below.

It is now clear that tripartite correlations with bilocal models (5.4) such
that all the terms P3(Asg, A3| X2, X3, A) satisfy the no-signaling principle, i.e.
marginal distributions on As (As) do not depend on the input by As (As) for
all A, are consistent with our operational framework. We name these cor-
relations no-signaling bilocal (NSBL). They are operationally understood
as correlations obtained by collaborating parties sharing no-signaling re-
sources. This definition however is too restrictive, as it excludes correlations
obtained by protocols in which the collaborating parties communicate, which
is perfectly valid within our framework. Indeed, we show next that NSBL
correlations do not define the largest set of correlations compatible with our
framework, see Figure 5.2.

Consider instead the set of tripartite no-signaling correlations (see ap-
pendix B.1 for the corresponding N-party generalization) that can be de-
composed as

P(arasag|zrzars) = paP(a1|z1, A) Pass(agas|wars, A)

A (5.6)
= paP(a1|1,\) Pac(azas|wazs, A)
A
with the distributions P»_,3 and P>, 3 obeying the conditions
Py i3(aglawz, \) =Y Posa(agag|zaxs, A), (5.7)
as
P263(a3|x3, )\) = Z PQeg(azagg‘.%Ql‘g, )\) (5.8)

az

We say that these correlations admit a time-ordered bilocal (TOBL) model in
the bipartition A; — A2 A3. As can be seen from relations (5.7) and (5.8) we
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TOBL
Wiring

Figure 5.2: Representation of no-signaling, time-ordered and general bilocal correlations.
We prove here that the set of non-signaling bilocal correlations (NSBL) is strictly contained
in the set of time-ordered bilocal correlations (TOBL). The set TOBL is closed under
wirings in the sense that LOCC protocols involving two collaborating parties, say A2 and
As, map TOBL correlations to correlations which are local with respect to the partition
A1 — Az As. The set of general bilocal correlations (BL) however, contains correlations
that can be mapped by LOCC protocols to correlations that violate a Bell inequality in
the bipartition A; — A2 As.

impose the distributions P> .3 and P», 3 to allow for signaling at most in one
direction, indicated by the arrow. Decomposition (5.6) has also been consid-
ered in [PBS11al, and has a clear operational meaning: P(A;A2A3| X1 X2X3)
can be simulated by a classical random variable A with probability distri-
bution p, distributed between parts A; and the composite system AjAs.
Using this variable, A; generates the output according to the distribution
P(A1|X1,A); on the other side, the two outputs ag, az are generated using
either Py_,3(A2A3|X2X3,\) or Po, 3(A2A43|X2X3, \), depending on which of
the inputs zo or x3 is used first.

We now show two results that show the importance of TOBL decom-
positions to characterize multipartite nonlocality. First, TOBL correlations
are consistent with our operational point of view, as we show that any WC-
CPI protocol along the partition A; — A2 A3 maps TOBL correlations (5.6)
into probability distributions with a local model along this partition, this is
our first theorem. On the other hand, one may wonder whether the set of
TOBL correlations is indeed larger than the well-known NSBL set, which
is itself also comnsistent with WCCPI protocols. This is precisely what is
shown in our second theorem. These two results taken together show that

93



5.1. AN OPERATIONAL FRAMEWORK FOR NONLOCALITY

the set of TOBL correlations is a distinct set from the ones that have been
previously considered in the literature, and furthermore, it is the adequate
set to describe multipartite nonlocality.

Theorem 5.1. Consider [ tripartite systems behaving according to the prob-
ability distributions P, ..., P* respectively. If all the probability distributions
have a TOBL decomposition along the bipartition A1 — Ay As (that is, a de-
compostion as in (5.6)), then any WCCPI along A1 — A3As maps the |
systems into a resultant system Pp;, that is local along the same bipartition

(that is, Ppy fulfills (5.4)).

Proof. As it has been mentioned previously in the definition of WCCPI pro-
tocols, they can be divided into a preparation phase and a measurement
phase. During the preparation phase, one can use communication to es-
tablish shared-randomness and/or measure on a subset of the [ tripartite
boxes and broadcast the outcome to the other observers. We first show
that this measurement and outcome broadcasting process is indeed equiv-
alent to shared randomness. Consider for example that one of the [ tri-
partite boxes P’ is measured by the third observer, by inputing #3 which
provides an ouput asz which is broadcasted to the remaining parties. The
other parties are then left with a bipartite system that behaves according
to PY(Ay, Ag, | X1, Xo,73,a3). One can easily check that this probability
distribution has a local model as

P(ayag|wywasas) = Y phPlas|y, NP (aglas, A), (5.9)
A
with
/ DX ~ i~
=—>=_P A),
P P(a3|:i'3) 2&3(03\563, )
Pl(aglwg, )\) = P2<_3(a2\x2§c3d3, )\) (5.10)

This argument holds equivalently for the [ tripartite boxes and for any
observer or input/output combination. Therefore, one can conclude that
the tripartite boxes intervened in the preparation phase can be thought as
shared randomness.

Let us know show that a similar statement can be made regarding the
measurement phase. That is, that any sequence of wirings provides a final
probability distribution with a local model along the bipartition A; — As As.
For simplicity, we illustrate our procedure for the wiring shown in figure 5.3,
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““““ Iy

Figure 5.3: Wiring of several tripartite correlations distributed among parties A and B.
The generated bipartite box accepts a bit = (two bits y1, y2) as input on subsystem A (B)
and returns a bit a (two bits b1, bz) as output. Relations (5.11) guarantee that the final
bipartite distribution Pan(a, (b1, b2)|z, (y1,y2)) admits a local model.

where boxes P!, P?, P? are distributed between two parties A and B, and
party A only holds one subsystem of each box. The construction is nev-
ertheless general: it applies to any wiring and also covers situations where
for some TOBL boxes party A holds two subsystems instead of just one (or
even the whole box).

From (5.6) we have

P'(ajabab|eiahal) =y piPilaila, N) P g(abas|ehal, )
Yoo (5.11)
— 3" i Pilaila}, )Py, s(abafasal, V),
)\i
for © = 1,2,3. Consider the first box that receives an input, in our case
subsystem 2 of P!. The first outcome al can be generated by the probabil-
ity distribution Py ,5(A3, A} X3, X1, A1) encoded in the hidden variable A!
that models these first correlations. This is possible because for this decom-
position a} is defined independently of x%, the input in subsystem 3. Then,
the next input x%, which is equal to a}, generates the output a% according
to the probability distribution Pj, 5(A3, A3|X3, X2, A\?) encoded in A\?. The
subsequent outcomes a) and a} are generated in a similar way. The gen-
eral idea is that outputs are generated sequentially using the local models
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according to the structure of the wiring on 2 — 3. Finally, subsystem 1 can
generate its outputs a’ by using the probability distribution P}(A%]X?, \?).
This probability distribution is independent of the order in which parties 2
and 3 make their measurement choices for any of the boxes. Averaging over
all hidden variables one obtains FPs,. This construction provides the desired
local model for the final probability distribution. The analysis can be triv-
ially extended to an arbitrary number of N-partite boxes. See appendix B.1
for a N-partite generalization of TOBL models. O

This theorem implies that TOBL models are consistent with the WCCPI
formalism, and therefore it is to be considered as the adequate definition of
multipartite nonlocality. On the other hand, the set of NSBL is as well
consistent with the formalism, so one may ask whether TOBL set is indeed
larger than the former. This is shown in the next theorem.

Theorem 5.2. The set of TOBL correlations is strictly larger than the set
of NSBL correlations.

Proof. This theorem is shown by constructing an explicit example of a prob-
ability distribution which has a TOBL decomposition, however does not be-
long to the set of NSBL probability distributions. To prove this result, we
consider the ‘Guess Your Neighbor’s Input’ (GYNI) polynomial [ABB*10]

BGyYNI - P(A1, Ao, A3|X1, Xo, Xg) :P(000|000) + P(llO\Oll)

+ P(011|101) + P(101|110).
The maximum of this quantity over the set of probabilities having a NSBL
decomposition is equal to 1, that is Sgyni(P € NSBL) < 1. In fact, con-
sider the terms in the NSBL decomposition Py (a1|x1, \) P2y (ag, az|za, 23, \).
Without loss of optimality, one can restrict the analysis to correlations where
Pi(aq|z1, ) is deterministic, say P;(0|0,\) = P;(0[1,\). Thus, the GYNI
polynomial for this set of probabilities satisfies

Baynt - P(A1, Ay, A3| X1, X, X3,A) = P35°(0,0[0,0,A) + Pp3°(1,1]0,1, )
< Po(0[0,A) + Po(1]0,A) < 1

(5.12)

(5.13)
with P(az|ze,A) = 3, P}3(ag, as|za, 23, \) being a well-defined distribu-
tion due to the no-signaling constraints. One can easily check that the bound
holds for any other deterministic choice of P;(0|0,A) and P; (0|1, A). As the
NSBL decomposition is a convex mixture of these points, the GYNI polyno-
mial is also bounded by 1. Note, however, that in Thm. 5.3 it is shown that
there is a set of probabilities in TOBL obtaining larger values of the GYNI
polynomial. Hence, the set of NSBL is strictly contained in TOBL. 0
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5.1.5 Conclusions

We have introduced a novel framework for the characterization of nonlocality
which has an operational motivation and captures the role of nonlocality as a
resource for device-independent quantum information processing. In spite of
its simplicity, the framework questions the current understanding of genuine
multipartite nonlocality, as the standard definition adopted by the commu-
nity is inconsistent with it. Similar conclusions are reached from another
perspective in [BPBG11]. We provide alternative frameworks where consis-
tency is recovered. The main open question is now to identify the largest set
of correlations that remain consistent under WCCPI protocols when some
of the parties collaborate. We conjecture that TOBL correlations consti-
tute such a set and, therefore, that for any bilocal model requiring two-way
signaling terms there is a valid WCCPI protocol detecting its inconsistency.
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5.2 Quantum correlations require multipartite in-
formation principles

An ubiquitous problem in Physics is to understand which correlations can
be observed among different events. In fact, any theoretical model aims at
predicting the experimental results of measurements, or actions, performed
at different space-time locations. Naively, one could argue that any kind of
correlations are in principle possible within a general physical theory, and
that only the details of the devices used for establishing the correlations im-
ply limitations on them. Interestingly, this intuition is not correct: general
physical principles impose non-trivial constraints on the allowed correlations
among distant observers, independently of any assumption on the internal
working of the devices. It is then a crucial question to identify which corre-
lations among distant observers are compatible with our current description
of Nature based on Quantum Physics. In particular, it would be desirable
to understand why some correlations cannot be realized by quantum means,
even if they do not allow any faster-than-light communication [PR94].

Recently, information concepts have been advocated as the key miss-
ing ingredient needed to single-out the set of quantum correlations [Dam05,
CBHO03]. The main idea is to identify ‘natural’ information principles, for-
mulated in terms only of correlations, which are satisfied by quantum cor-
relations and proven to be violated by supra-quantum correlations. The
existence of these supra-quantum correlations, then, would have implau-
sible consequences from an information point of view. These information
principles would provide a natural explanation of why the correlations ob-
served in Nature have the quantum form. Celebrated examples of these
principles are information causality [PPK™09] or non-trivial communication
complexity [Dam00, Dam05]. While the use of these information concepts
has been successfully applied to some specific scenarios [BBLT06, BS09,
ABPS09, AKR™10, CSS10], proving, or disproving, the validity of a princi-
ple for quantum correlations is extremely challenging. On the one hand, it
is rather difficult to derive the Hilbert space structure needed for quantum
correlations from information quantities. On the other hand, proving that
some supra-quantum correlations are fully compatible with an information
principle seems out of reach, as one needs to consider all possible protocols
using these correlations and show that none of them leads to a violation of
the principle. Thus, it is still open whether this approach is able to fully
determine the set of quantum correlations.

In this section, we consider a general scenario consisting of an arbitrary
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number of observers and show a fundamental limitation of this information-
based program: no information principle based on bipartite concepts is able
to determine the set of quantum correlations. Our results imply that deter-
mining the set of quantum correlations for an arbitrary number of observers,
requires principles of an intrinsically multipartite structure.

5.2.1 Information principles

The analyzed scenario consists of n distant observers that can perform m
possible measurements of d possible results on their systems. The observed
correlations are described by the joint probability distribution

P(Ay, ..., An| X1, ..., X)), where z; = 0,...,m—1 denotes the measurement
performed by party ¢ = 1,...,n; and a; = 0,...,d — 1, the corresponding
result. Each system is just seen as a black box producing the output a; given
the input ;.

As explained in section 2.1.2, there exist three relevant sets of probabil-
ity distributions: the no-signaling set P, the local set £, and the quantum
set Q. The first two sets have a clear interpretation. The set P represents
the valid correlations under the principle of impossibility of faster-than-light
communication. The set £ represents the deterministic and local correla-
tions.

On the other hand, the set Q, despite having a clear mathematical defini-
tion (2.2), lacks a nice interpretation in terms of general principles, contrary
to the classical and non-signaling counterparts. As said, it has been sug-
gested that information concepts could provide the missing principles for
quantum correlations.

It is worth mentioning before proceeding with the proof of the results
that most of the existing examples of information principles have been for-
mulated in the bipartite scenario. For example, information causality con-
siders a scenario in which a first party, Alice, has a string of n4 bits. Alice
is then allowed to send m classical bits to a second party, Bob. Informa-
tion causality bounds the information Bob can gain on the n4 bits held by
Alice whichever protocol they implement making use of the pre-established
bipartite correlations and the message of m bits. Alice and Bob can violate
this principle when they have access to some supra-quantum correlations
[PPKT09]. In the case m = 0, information causality implies that in absence
of a message, pre-established correlations do not allow Bob to gain any in-
formation about any of the bits held by Alice, which is nothing but the
no-signaling principle. The multipartite version of the no-signaling principle
consists in the application of its bipartite version to all possible partitions
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of the n parties into two groups. This suggests the following generaliza-
tion of information causality to an arbitrary number of parties: given some
correlations P(aq,...,an|x1,...,2,), they are said to be compatible with
information causality whenever all bipartite correlations constructed from
them satisfy this principle. This generalization ensures the correspondence
between no-signaling and information causality when m = 0 for an arbi-
trary number of parties. This generalization of information causality has
recently been applied to the study of extremal tripartite non-signaling cor-
relations [YCA112].

Regarding non trivial communication complexity, it studies how much
communication is needed between two distant parties to compute proba-
bilistically a function of some inputs in a distributed manner. It can also
be interpreted as a generalization of the no-signaling principle, as it imposes
constraints on correlations when a finite amount of communication is allowed
between parties. Different multipartite generalizations of the principle have
been studied, see [BvDHT99]. However, as for information causality, one can
always consider the straightforward generalization in which the principle is
applied to every partition of the n parties in two groups.

5.2.2 Supra-quantum correlations fulfilling information prin-
ciples

In this section, we show that any physical principle that, similarly to no-
signaling, is applied to every bipartition in the multipartite scenario is not
sufficient to characterize the set of quantum correlations. We show this
by finding tripartite correlations that, on one hand, fulfill any information
principle based on bipartite concepts and, on the other hand, are supra-
quantum.

Theorem 5.3. There exist tripartite probability distributions that do not
belong to the set of quantum correlations, however fulfill any information
theoretic principle applied to all the bipartitions.

Proof. This theorem is proven by finding an explicit example of a supra-
quantum tripartite probability distribution that behaves locally under any
bipartition. Any information principle has to be fulfilled by quantum cor-
relations, and as a particular case, by local correlations. Therefore, the
fact that the probability distribution is local in all bipartitions clearly im-
plies that fulfills any information principle under any bipartition. Theorem
5.1 grants that a probability distribution with a TOBL decomposition with
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a particular bipartition will behave locally under this bipartition. Further-
more, a tripartite probability distribution with a TOBL decomposition along
any bipartitions will behave locally under any bipartition. In order to grant
that the probability distribution does not have a quantum realization we
will use the GYNI Bell inequality (5.12). Therefore, the whole problem of
finding an example of a probability distribution proving Theorem 5.3 can
reduced to the following numerical problem

Biax = maximize B(P)
subject to (5.14)

P(Ay, Ag, A3 X1, X9, X3) € TOBL in all biparitions.
The maximization yields a value of Byax = %. As it has been previously
mentioned, the maximum for quantum probability distributions is the unity.
Therefore, the probability distribution maximizing the problem is supra-
quantum and fulfills any information principle applied to the bipartition.
Details of this probability distribution attaining the maximum of 7/6 and
its TOBL decomposition can be found in Appendix B.2 . O

5.2.3 Conclusions

To summarize, we have shown that there exist tripartite non-signaling cor-
relations that fulfill the principles of information causality and non-trivial
communication complexity although they do not belong to the set of quan-
tum correlations. The presented reasoning also applies to every other princi-
ple applied to the bipartitions of a multipartite system. This result provides
a helpful insight for the formulation of a future principle aiming at distin-
guishing between quantum and supra-quantum correlations. In contrast to
the no-signaling principle, such a forthcoming principle will need to be an
intrinsically multipartite concept. This suggests that future research should
be devoted to the development of information concepts of genuinely multi-
partite character. More specifically, one could investigate which multipartite
generalizations of non trivial communication complexity can be considered
intrinsically multipartite, and furthermore, how to generalize information
causality for the case of multipartite communication protocols.
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Chapter 6

Full randomness
amplification

Understanding whether nature is deterministically pre-determined or there
are intrinsically random processes is a fundamental question that has at-
tracted the interest of multiple thinkers, ranging from philosophers and
mathematicians to physicists or neuroscientists. Nowadays this question
is also important from a practical perspective, as random bits constitute a
valuable resource for applications such as cryptographic protocols, gambling,
or the numerical simulation of physical and biological systems.

Classical physics is a deterministic theory. Perfect knowledge of the
positions and velocities of a system of classical particles at a given time,
as well as of their interactions, allows one to predict their future (and also
past) behavior with total certainty [Lap40]. Thus, any randomness observed
in classical systems is not intrinsic to the theory but just a manifestation of
our imperfect description of the system.

The advent of quantum physics put into question this deterministic view-
point, as there exist experimental situations for which quantum theory gives
predictions only in probabilistic terms, even if one has a perfect description
of the preparation and interactions of the system. A possible solution to
this classically counterintuitive fact was proposed in the early days of quan-
tum physics: Quantum mechanics had to be incomplete [EPR35], and there
should be a complete theory capable of providing deterministic predictions
for all conceivable experiments. There would thus be no room for intrinsic
randomness, and any apparent randomness would again be a consequence
of our lack of control over hypothetical “hidden variables” not contemplated
by the quantum formalism.
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Bell’s no-go theorem [Bel64], however, implies that hidden-variable the-
ories are inconsistent with quantum mechanics. Therefore, none of these
could ever render a deterministic completion to the quantum formalism.
More precisely, all hidden-variable theories compatible with a local causal
structure predict that any correlations among space-like separated events
satisfy a series of inequalities, known as Bell inequalities. Bell inequalities,
in turn, are violated by some correlations among quantum particles. This
form of correlations defines the phenomenon of quantum non-locality.

Now, it turns out that quantum non-locality does not necessarily imply
the existence of fully unpredictable processes in nature. The reasons be-
hind this are subtle. First of all, unpredictable processes could be certified
only if the no-signaling principle holds. This states that no instantaneous
communication is possible, which imposes in turn a local causal structure
on events, as in Einstein’s special relativity. In fact, Bohm’s theory is both
deterministic and able to reproduce all quantum predictions [Boh52], but it
is incompatible with no-signaling. Thus, we assume throughout the validity
of the no-signaling principle. Yet, even within the no-signaling framework, it
is still not possible to infer the existence of fully random processes only from
the mere observation of non-local correlations. This is due to the fact that
Bell tests require measurement settings chosen at random, but the actual
randomness in such choices can never be certified. The extremal example is
given when the settings are determined in advance. Then, any Bell viola-
tion can easily be explained in terms of deterministic models. As a matter
of fact, super-deterministic models, which postulate that all phenomena in
the universe, including our own mental processes, are fully pre-programmed,
are by definition impossible to rule out.

These considerations imply that the strongest result on the existence
of randomness one can hope for using quantum non-locality is stated by
the following possibility: Given a source that produces an arbitrarily small
but non-zero amount of randomness, can one still certify the existence of
completely random processes? Our main result is to provide an affirma-
tive answer to this question. Our results, then, imply that the existence
of correlations as those predicted by quantum physics forces us into a di-
chotomic choice: Either we postulate super-deterministic models in which
all events in nature are fully pre-determined, or we accept the existence of
fully unpredictable events.
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Figure 6.1: Local causal structure and randomness amplification. A source S
produces a sequence i, Z2,...Z;,... of imperfect random bits. The goal of randomness
amplification is to produce a new source Sy of perfect random bits, that is, to process the
initial bits to get a final bit k fully uncorrelated (free) from any potential cause of it. All
space-time events outside the future light-cone of & may have been in its past light-cone
before and therefore constitute a potential cause of it. Any such event can be modeled
by a measurement z, with an outcome e, on some physical system. This system may be
under the control of an adversary Eve, interested in predicting the value of k.

6.1 Randomness from an information science per-
pective

Besides the philosophical and physics-foundational implications, our results
provide a protocol for perfect randomness amplification using quantum non-
locality. Randomness amplification is an information-theoretic task whose
goal is to use an input source S of imperfectly random bits to produce
perfect random bits that are arbitrarily uncorrelated from all the events
that may have been a potential cause of them, i.e. arbitrarily free. In
general, S produces a sequence of bits z1,x2,...x;,..., with x; =0 or 1 for
all j, see Fig. 6.1. Each bit j contains some randomness, in the sense that
the probability P (xj|e) that it takes a given value x;, conditioned on any
pre-existing variable e, is such that

e< P(zjle) <1—e (6.1)

for all j and e, where 0 < ¢ < 1/2. The variable e can correspond to any
event that could be a possible cause of bit x;. Therefore, e represents events
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contained in the space-time region lying outside the future light-cone of z;.
Free random bits correspond to ¢ = %; while deterministic ones, i.e. those
predictable with certainty by an observer with access to e, to € = 0. More
precisely, when € = 0 the bound (6.6) is trivial and no randomness can be
certified. We refer to S as an e-source, and to any bit satisfying (6.6) as an
e-free bit. The aim is then to generate, from arbitrarily many uses of S, a
final source Sy of €y arbitrarily close to 1/2. If this is possible, no cause e can
be assigned to the bits produced by Sy, which are then fully unpredictable.
Note that efficiency issues, such as the rate of uses of S required per final
bit generated by Sy do not play any role in randomness amplification. The
relevant figure of merit is just the quality, measured by €y, of the final bits.
Thus, without loss of generality, we restrict our analysis to the problem of
generating a single final free random bit k.

Santha and Vazirani proved that randomness amplification is impossible
using classical resources [SV86]. This is in a sense intuitive, in view of the
absence of any intrinsic randomness in classical physics. In the quantum
regime, randomness amplification has been recently studied by Colbeck and
Renner [CR12]. There, S is used to choose the measurement settings by
two distant observers, Alice and Bob, in a Bell test [BC90] involving two
entangled quantum particles. The measurement outcome obtained by one
of the observers, say Alice, in one of the experimental runs (also chosen with
S) defines the output random bit. Colbeck and Renner proved how input
bits with very high randomness, of 0.442 < ¢ < 0.5, can be mapped into
arbitrarily free random bits of e, — 1/2, and conjectured that randomness
amplification should be possible for any initial randomness [CR12]. Our
results also solve this conjecture, as we show that quantum non-locality can
be exploited to attain full randomness amplification, i.e. that ey can be
made arbitrarily close to 1/2 for any 0 < e < 1/2.

Before presenting the ingredients of our proof, it is worth commenting
on previous works on randomness in connection with quantum non-locality.
In [PAM10] it was shown how to bound the intrinsic randomness generated
in a Bell test. These bounds can be used for device-independent random-
ness expansion, following a proposal by Colbeck [Col07], and to achieve a
quadratic expansion of the amount of random bits (see [AMP12, PM11,
FGS11, VV12] for further works on device-independent randomness expan-
sion). Note however that, in randomness expansion, one assumes instead,
from the very beginning, the existence of an input seed of free random bits,
and the main goal is to expand this into a larger sequence. The figure of merit
there is the ratio between the length of the final and initial strings of free ran-
dom bits. Finally, other recent works have analyzed how a lack of random-
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ness in the measurement choices affects a Bell test [KPB06, BG10, Hall0)]
and the randomness generated in it [KHS'12].

6.2 A protocol for full randomness amplification

Let us now sketch the realization of our final source Sy. We use the input
e-source S to choose the measurement settings in a multipartite Bell test
involving a number of observers that depends both on the input € and the
target ef. After verifying that the expected Bell violation is obtained, the
measurement outcomes are combined to define the final bit k. For pedagogi-
cal reasons, we adopt a cryptographic perspective and assume the worst-case
scenario where all the devices we use may have been prepared by an ad-
versary Eve equipped with arbitrary non-signaling resources, possibly even
supra-quantum ones. In the preparation, Eve may have also had access to
S and correlated the bits it produces with some physical system at her dis-
posal, represented by a black box in Fig. 6.1. Without loss of generality, we
can assume that Eve can reveal the value of e at any stage of the protocol
by measuring this system. Full randomness amplification is then equivalent
to proving that Eve’s correlations with k£ can be made arbitrarily small.
In order to give a more intuitive description of our results, we first detail
how a less strong result can be easily stated from basic properties of Bell
inequalities.

6.2.1 Partial randomness from GHZ paradoxes

Bell tests for which quantum correlations achieve the maximal non-signaling
violation, also known as Greenberger-Horne-Zeilinger (GHZ) paradoxes [GHZ89],
are necessary for randomness amplification. This is due to the fact that un-
less the maximal non-signaling violation is attained, for sufficiently small e,
Eve may fake the observed correlations with classical deterministic resources.

Consider any correlations attaining the maximal violation of the five-
party Mermin inequality [Mer90a]. In each run of this Bell test, measure-
ments (inputs) x = (z1,...,x5) on five distant black boxes generate 5 out-
comes (outputs) a = (aq,...,as), distributed according to a non-signaling
conditional probability distribution P(a|x). Both inputs and outputs are
bits, as they can take two possible values, x;,a; € {0,1} with i = 1,...,5.
The inequality can be written as

> I(a,x)P(ax) > 6, (6.2)
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with coeflicients
I(a,x) = (a1®a2®a3®asBas) dxex, +(a1Ba2Baz®asDas 1) oxex, , (6.3)

where

s 1 ifxeX
X€% T 0 ifx ¢ X

and

Xy = {(10000), (01000, (00100), (00010), (00001), (11111)},
Xy = {(00111), (01011), (01101), (01110), (10011), (10101),
(10110), (11001), (11010), (11100)}.

That is, only half of all possible combinations of inputs, namely those in
X = Ay U A1, appear in the Bell inequality.

The maximal, non-signaling and algebraic, violation of the inequality
corresponds to the situation in which the left-hand side of (6.2) is zero. The
key property of inequality (6.2) is that its maximal violation can be attained
by quantum correlations. In fact, Mermin inequalities are defined for an
arbitrary number of parties and quantum correlations attain the maximal
non-signaling violation for any odd number of parties [Kly93]. This violation
is always attained by performing local measurements on a GHZ quantum
state.

Our interest in Mermin inequalities comes from the fact that, for an odd
number of parties, they can be maximally violated by quantum correlations.
These correlations, then, define a GHZ paradox, which is necessary for full
randomness amplification. Nevertheless, GHZ paradoxes are however not
sufficient. In fact, it is always possible to find non-signaling correlations
that (i) maximally violate the 3-party Mermin inequality but (ii) assign a
deterministic value to any function of the measurement outcomes. This ob-
servation can be checked for all unbiased functions mapping {0, 1} to {0, 1}
(there are (i) of those) through a linear program analogous to the one used
to prove the next Theorem. For a larger number of parties, however, some
functions cannot be deterministically fixed to an specific value while maxi-
mally violating a Mermin inequality, as implied by the following Theorem.

Theorem 6.1. Let a five-party non-signaling conditional probability distri-
bution P(a|x) in which inputs x = (z1,...,x5) and oulputs a = (ay,...,as)
are bits. Consider the bit maj(a) € {0,1} defined by the majority-vote func-
tion of any subset consisting of three of the five measurement outcomes, say
the first three, a1, as and as. Then, all non-signaling correlations attaining
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the mazimal violation of the 5-party Mermin inequality are such that the
probability that maj(a) takes a given value, say 0, is bounded by

1/4 < P (maj(a) = 0) < 3/4. (6.4)

Proof. This result was obtained by solving a linear program. Therefore, the
proof is numeric, but exact. Formally, let P(a|x) be a 5-partite non-signaling
probability distribution. For x = xg € X, we performed the maximization,

Pz = max P(maj(a) = 0]|x0)

subject to (6.5)
I(a,x)- P(a]x) =0

which yields the value P,,4, = 3/4. Since the same result holds for P(maj(a) =
1]xp), we get the bound 1/4 < P(maj(a) =0) < 3/4.

As a further remark, note that a lower bound to FP,,,, can easily be
obtained by noticing that one can construct conditional probability distri-
butions P(a|x) that maximally violate 5-partite Mermin inequality (6.2) for
which at most one of the output bits (say aj) is deterministically fixed to
either 0 or 1. If the other two output bits (a2, as) were to be completely ran-
dom, the majority-vote of the three of them maj(ai, az, as) could be guessed
with a probability of 3/4. Our numerical results say that this turns out to
be an optimal strategy.

O

The partial unpredictability in the five-party Mermin Bell test is the
building block of our protocol. To complete it, we must equip it with two
essential components: (i) an estimation procedure that verifies that the un-
trusted devices do yield the required Bell violation; and (ii) a distillation
procedure that, from sufficiently many €;-bits generated in the 5-party Bell
experiment, distills a single final es-source of ey — 1/2. To these ends,
we consider a more complex Bell test involving N groups of five observers
(quintuplets) each, as depicted in Fig. 6.2. The protocol is described in the
next section.

In the Appendix 6 we prove using techniques from [Mas09] that, if the
protocol is not aborted, the final bit produced by the protocol is indistin-
guishable from an ideal random bit uncorrelated to the eavesdropper. Thus,
the output free random bits satisfy universally-composable security [Can01],
the highest standard of cryptographic security, and could be used as seed
for randomness expansion or any other protocol.
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.
Steps 1 and 2 Steps 3 and 4 Step 5
as .
’ maj(a;)
Distillation block
— az [as fas
. maj(asz)
— ‘ k
g ¢ 06 ¢
a as a: a ar
Max violation S B
maj(an, )

Max violation

Figure 6.2: Protocol for full randomness amplification based on quantum non-
locality. In the first two steps, all N quintuplets measure their devices, where the choice
of measurement is done using the e-source S; the quintuplets whose settings happen not
to take place in the five-party Mermin inequality are discarded (in red). In steps 3 and
4, the remaining quintuplets are grouped into blocks. One of the blocks is chosen as the
distillation block, using again S, while the others are used to check the Bell violation. In
the fifth step, the random bit k is extracted from the distillation block.

6.2.2 Protocol for full randomness amplification

In this section, we describe the protocol to obtaine a fully random bit. The
protocol uses as resources the e-source S and 5N quantum systems. Recall
that the bits produced by the source S are such that the probability P (z;|e)
that bit j takes a given value x;, conditioned on any pre-existing variable e,
is bounded by

e < P(zjle) <1—k, (6.6)

for all j and e, where 0 < € < 1/2. The bound, when applied to n-bit strings
produced by the e-source, implies that

€' < P(x1,...,zp]e) < (1 —€)". (6.7)
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Each of the quantum systems is abstractly modeled by a black box with
binary input x and output a. The protocol processes classically the bits
generated by S and by the quantum boxes. The result of the protocol is a
classical symbol k, associated to an abort/no-abort decision. If the protocol
is not aborted, k encodes the final output bit, with possible values 0 or 1.
Whereas when the protocol is aborted, no numerical value is assigned to k
but the symbol @ instead, representing the fact that the bit is empty. The
formal steps of the protocol are:

1. S is used to generate N quintuple-bits x1,...xy, which constitute the
inputs for the 5N boxes. The boxes then provide N output quintuple-
bits a1, ...ay.

2. The quintuplets such that x ¢ X are discarded. The protocol is
aborted if the number of remaining quintuplets is less than N/3.

3. The quintuplets left after step 2 are organized in N, blocks each one
having Ny quintuplets. The number N, of blocks is chosen to be
a power of 2. For the sake of simplicity, we relabel the index run-
ning over the remaining quintuplets, namely x1,...xy, n, and outputs
ay,...an,n,. The input and output of the j-th block are defined as
Yj = (X(jfl)NdJrl) .- 'X(jfl)NdJrNd) and b; = (a(jfl)NdJrla . -‘a(jfl)Nd+Nd)
respectively, with j € {1,..., Np}. The random variable I € {1,... Ny}
is generated by using logy N}, further bits from S. The value of [ speci-
fies which block (b, y;) is chosen to generate k, i.e. the distilling block.
We define (b,§) = (b, y;). The other N, — 1 blocks are used to check
the Bell violation.

4. The function

r[b,y] = { 1 if I(a;,x1) =---=I(an,xn,) =0 65)

0 otherwise

tells whether block (b,y) features the right correlations (r = 1) or the
wrong ones (r = 0), in the sense of being compatible with the maximal
violation of inequality (6.2). This function is computed for all blocks
but the distilling one. The protocols is aborted unless all of them give
the right correlations,

N 1 not abort
o= T risul={y e (69
i=1#l
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Note that the abort/no-abort decision is independent of whether the
distilling block [ is right or wrong.

5. If the protocol is not aborted then k is assigned a bit generated from
by = (a,...an,) as

k= f(maj(a;),...maj(ay,)) - (6.10)

Here f : {0,1}¢ — {0,1} is a function characterized in Lemma C.4
below, while maj(a;) € {0,1} is the majority-vote among the three
first bits of the quintuple string a;. If the protocol is aborted it sets
k=o.

At the end of the protocol, k is potentially correlated with the settings
of the distilling block § = y;, the bit g in (6.9), and the bits

t=1[l,(br,91), - (bi—1,%1-1), (bi1, Yis1)s - - - (b, YN, )]

Additionally, an eavesdropper Eve might have a physical system correlated
with k, which she may measure at any instance of the protocol. This system
is not necessarily classical or quantum, the only assumption about it is that
measuring it does not produce instantaneous signaling anywhere else. We la-
bel all possible measurements Eve can perform with the classical variable z,
and with e the corresponding outcome. In summary, after the performance
of the protocol all the relevant information is k, ¢, t, g, e, z, with statistics de-
scribed by an unknown conditional probability distribution P(k,3,t, g,e|z).

To assess the security of our protocol for full randomness amplification,
we have to show that the distribution describing the protocol when not
aborted is indistinguishable from the distribution Pgea1(k,9,t,g,¢elzg =1) =
%P(gj, t,e|zg = 1) describing an ideal free random bit. For later purposes, it
is convenient to cover the case when the protocol is aborted with an equiv-
alent notation: if the protocol is aborted, we define P(k,7,t,elzg = 0) =
67 P(y,t,elzg = 0) and Pgeal(k, 7, ¢, €|zg = 0) = 67 P(y,t,e|zg = 0), where
(5,’5 is a Kronecker’s delta. In this case, it is immediate that P = P,gea1, as the
locally generated symbol @ is always uncorrelated to the environment. To
quantify the indistinguishability between P and P,gea, We consider the sce-
nario in which an observer, having access to all the information k, 9, t, g, €, z,
has to correctly distinguish between these two distributions. We denote by
P(guess) the optimal probability of correctly guessing between the two dis-
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tributions. This probability reads

P(guess) = % + i Z mzaxz ’P(k,gj,t,g,e[z) — Pgeal(k,9,t,9,¢|2)],
k.g.t.g €
(6.11)
where the second term can be understood as (one fourth of) the variational
distance between P and P,gea generalized to the case when the distributions
are conditioned on an input z [Mas09]. If the protocol is such that this
guessing probability can be made arbitrarily close to 1/2, it generates a
distribution P that is basically undistinguishable from the ideal one. This is
known as “universally-composable security”, and accounts for the strongest
notion of cryptographic security (see [Can01] and [Mas09]). It implies that
the protocol produces a random bit that is secure (free) in any context. In
particular, it remains secure even if the adversary Eve has access to g, t and
g.
Our main result, namely the security of our protocol for full randomness
amplification, follows from the following Theorem.

Theorem 6.2 (Main Theorem). Consider the previous protocol for ran-
domness amplification and the conditional probability distribution P(k,y,t, g,e|z)
describing the statistics of the bits k, 1, t, g generated during its execution and
any possible system with input z and output e correlated to them. The prob-
ability P(guess) of correctly guessing between this distribution and the ideal
distribution Pgea(k,7,t,g,€|z) is such that

1 N O —€ _
P(guess) < o+ 3V2 g [aNd+2Ng 220179 (328¢ 5)Nd] . (6.12)

where o and B are real numbers such that 0 < a <1 < f.

The right-hand side of (6.12) can be made arbitrary close to 1/2, for
instance by setting N, = (32 I} 6_5)2Nd/|10g2(1_6)| and increasing Ny subject
to the fulfillment of the condition N4, > N/3. [Note that logy(1 —€) <
0.] In the limit P(guess) — 1/2, the bit k generated by the protocol is
indistinguishable from an ideal free random bit.

The proof of Theorem 6.2 is provided in appendix C. Here, we comment
on the main intuitions behind our protocol. As mentioned, the protocol
builds on the 5-party Mermin inequality because it is the simplest GHZ
paradox allowing some randomness certification. The estimation part, given
by step 4, is rather standard and inspired by estimation techniques intro-
duced in [BKPO06], which were also used in [CR12] in the context of ran-
domness amplification. The most subtle part is the distillation of the final
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bit in step 5. Naively, and leaving aside estimation issues, one could argue
that it is nothing but a classical processing by means of the function f of
the imperfect random bits obtained via the Ny quintuplets. But this seems
in contradiction with the result by Santha and Vazirani proving that it is
impossible to extract by classical means a perfect free random bit from im-
perfect ones [SV86]. This intuition is however wrong. The reason is because
in our protocol the randomness of the imperfect bits is certified by a Bell
violation, which is impossible classically. Indeed, the Bell certification allows
applying techniques similar to those obtained in Ref. [Mas09] in the context
of privacy amplification against non-signaling eavesdroppers. There, it was
shown how to amplify the privacy, that is the unpredictability, of one of the
measurement outcomes of bipartite correlations violating a Bell inequality.
The key point is that the amplification, or distillation, was attained in a de-
terministic manner. That is, contrary to standard approaches, the privacy
amplification process described in [Mas09] does not consume any random-
ness. Clearly, these deterministic techniques are extremely convenient for
our randomness amplification scenario. In fact, the distillation part in our
protocol can be seen as the translation of the privacy amplification tech-
niques of Ref. [Mas09] to our more complex scenario, involving now 5-party
non-local correlations and a function of three of the measurement outcomes.

To end up with, we must show that quantum resources can indeed suc-
cessfully implement our protocol. It is immediate to see that the qubit
measurements X or Y on the quantum state |¥) = %(\0000@ + [11111)),

with |0) and |1) the eigenstates of the Z qubit basis, yield correlations that
maximally violate the five-partite Mermin inequality in question. This com-
pletes our main result.

6.3 Conclusions

In summary, we have presented a protocol that, using quantum non-local
resources, attains full randomness amplification. This task is impossible
classically and was not known to be possible in the quantum regime. As
our goal was to prove full randomness amplification, our analysis focuses
on the noise-free case. In fact, the noisy case only makes sense if one does
not aim at perfect random bits and bounds the amount of randomness in
the final bit. Then, it should be possible to adapt our protocol in order to
get a bound on the noise it tolerates. Other open questions that naturally
follow from our results consist of studying randomness amplification against
quantum eavesdroppers, or the search of protocols in the bipartite scenario.
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From a more fundamental perspective, our results imply that there exist
experiments whose outcomes are fully unpredictable. The only two assump-
tions for this conclusion are the existence of events with an arbitrarily small
but non-zero amount of randomness and the validity of the no-signaling
principle. Dropping the former implies accepting a super-determinisitc view
where no randomness exist, so that we experience a fully pre-determined
reality. This possibility is uninteresting from a scientific perspective, and
even uncomfortable from a philosophical one. Dropping the latter, in turn,
implies abandoning a local causal structure for events in space-time. How-
ever, this is one of the most fundamental notions of special relativity, and
without which even the very meaning of randomness or predictability would
be unclear, as these concepts implicitly rely on the cause-effect principle.

115



6.3. CONCLUSIONS

116



Chapter 7

Conclusions and outlook

In this thesis we have introduced novel applications of the device-independent
formalism and achieved significant improvements in other applications that
were previously known. Also, we have studied the phenomenon of nonlo-
cality, focusing on quantum correlations that are maximally nonlocal and
multipartite nonlocality. In this section we review on further research and
open venues that the work in this thesis leads to.

Dimensionality

Our contribution was to develop tests to estimate the dimensionality of an
unknown physical system. In analogy with Bell inequalities, we built a fam-
ily of linear inequalities that allow one to lower bound the dimensionality
required to describe the experiment. We studied the set of valid probability
distributions for classical and quantum systems of a given dimension. This
was done under the assumption that the source and the measurement shared
classical correlations or no correlations at all. A natural extension to be fur-
ther studied is a scenario in which the devices are allowed to share quantum
correlations. Clearly, this would provide a enlarged set of probability dis-
tributions. A source sending classical systems but allowing for quantum
correlations would coincide with the scenario of entanglement assisted ran-
dom access codes (EARAC) [PZ10]. It is interesting to study how results
in EARAC can be translated into classical dimension witnesses in the pres-
ence of quantum correlations. A more general scenario is to study sources
sending quantum systems in the presence of quantum correlations. This is
related with the scenario considered in super-dense coding [BW92]. Can
one estimate the dimensionality of the pre-established correlations and the
message sent? How does the gap between classical and quantum messages
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behave in a scenario where quantum correlations are allowed?

Maximally nonlocal correlations

We have studied quantum systems providing correlations that are maximally
nonlocal. First, we have studied the bipartite scenario. Our main contribu-
tion was to provide a recipe to design maximally nonlocal experiments. We
have conducted an experiment on entangled photons to obtain the most non-
local correlations ever reported. An immediate challenge remains to perform
an experiment providing almost fully nonlocal correlations. More interest-
ingly, one may study which properties of the correlations obtained by our
recipe are useful for information tasks such as cryptography or randomness
expansion. Some of the examples we provided have been studied in this
direction, however providing negative results. One may consider how these
useful properties depend on the Kochen-Specker set used as a primitive and
perhaps engineer new sets that are useful.

In the multipartite setting, our main contribution is to show that quan-
tum mechanics provide correlations that are maximally genuine nonlocal,
monogamous and locally random. These properties make them appealing
for multipartite information protocols. Indeed, we have shown that are use-
ful to implement device-independent secret-sharing. However, the Bell test
we have designed requires an absurdly large number of measurements per-
formed on the systems and it is not robust against noise. Interestingly,
this drawback was also present in the first device-independent protocols re-
ported on cryptography [BHKO05]. It is of a clear interest to design similar
multipartite nonlocal correlations in a more experimental-friendly manner.

Operational framework for nonlocality and information-theoretic
principles

Our contribution was to study nonlocality in the framework of resource the-
ories. We have shown that nonlocality can be defined as a property that
is preserved against a set of operations that includes wirings and prior to
inputs classical communication. In the multipartite setting, we have shown
that the current definition of multipartite nonlocality is inconsistent with
the operational framework. We have proposed new definitions to recover
consistency. It remains open whether one can find new definitions of multi-
partite nonlocality that are consistent with the formalism but that impose
less constraints than TOBL models. On the other hand, our formalism al-
lows one to reveal multipartite nonlocality of new probability distributions
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and possibly, new quantum states. Our formalism may be useful to estab-
lish a sharpened link between multipartite entanglement and multipartite
nonlocality.

Regarding information-theoretic principles, our main contribution was to
show that the most promising candidates are insufficient to bound quantum
correlations. In particular, we showed that information-theoretic principles
cannot be successful if applied to the bipartitions of a multipartite system.
It remains open to find an operational principle that takes into account these
limitations.

Full randomness amplification

We have addressed the problem of certifying a full random process. Quan-
tum theory makes probabilistic predictions, however a forthcoming deter-
ministic theory may complete quantum predictions. Thus, randomness has
to be certified independent of the theoretical framework. This question is
tackled by Bell’s theorem, however it requires an initial source of perfect
randomness. Our contribution is to remove the assumption on the initial
source of random bits. Our protocol only requires initial bits providing an
arbitrarily small, but nonzero, amount of initial randomness. The implica-
tions for foundation of physics are extremely profound: our world is either
completely deterministic or there exist fully unpredictable processes. Our
result is to be understood as a thought experiment, therefore it is shown to
work in an idealized noise-free experiment. A natural extension would be to
provide similar protocols that are efficient in realistic situations.

Final remarks

The vast majority of device-independent protocols are based in nonlocality.
However, in spite of large improvement of experimental capabilities, a defini-
tive experiment showing nonlocality is still missing. This is mainly due to
the imperfection of the devices and the detection loophole. There exist two
alternatives for the scientific community: (i) we continue developing device-
independent protocols relying on nonlocality and hope for a forthcoming res-
olution of the detection loophole (ii) we develop not-so-device-independent
protocols that overcome the detection loophole, and that require a less de-
manding experimental implementation in comparison with nonlocality. Al-
ternative (i) has been vastly followed by the community and this thesis is a
good example. Nevertheless, an approach following (ii) is stated in section
3.2. Although it is a very specific result concerning dimension witness, we
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believe that this kind of approaches, where extra reasonable assumptions
are imposed, are the future of device-independent protocols.
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Appendix A

Proofs of section 4.2

A.1 Proof of Theorem 4.8

To end up with, we provide here just the main steps of the proof, the most
technical calculations being detailed in the appendices.

The proof for arbitrary N > 2 is in a similar spirit to the proof given in
[BKPO06] for the particular case N = 2. We proceed by reductio ad absurdum.
We start by the particular marginal P(rg4,....,ry|la,a+ 8 —1,...,x +¢ — 1),
corresponding to all parts but Z, and assume that for some input (o, o’ +
B'—1,....,x +1¢" —1) the most probable outcome (a?&‘,’f“w,), ...,y@‘}fﬂw,)) is
such that

d(N -1
P((I'EZC/LT“’#]/), ...,y(g?f.7w/)|a/,a/+/3/_1, ,X/+¢/_1) > 1/dN71+ ( 7)5.

(A.1)
Then, we prove that this implies that I3(P) > e, which contradicts the
hypothesis. [The same assumption for (o + 1,0/ + 8 —1,..,xX +¢' — 1)
would lead to an equivalent contradiction.] Finally, we extend the proof to
the other (N — 1)-partite marginals by symmetry.

First, since

d—1
(W) =ZiP([W] =i)>1-P(W]=0), (A.2)
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we see from (4.19) that

@ZQM—W'

M
S (P = Bassor — o+ (DY Wy — ()N 24
a,B,...,x, =1

P(Aat1 = [Basg1— o+ (DY Wy - (—1)N_1Zw])>-

Next, we notice in section A.4 that, for all (o, ...,w),
P(Aq = [Bg— ...+ (-1)N 1y — (-1)N 7)) <
1—|P(Aa=a,Bg=b,...Yy =) (A.4)
—P(Bg=b,..Yy =y, Zc=[y— ... + (=1)" b — (-1)""a])

for any (a,b,...,y). Then,

— 1
IJ{}zMM2 > |P(Aa=a,Basp1 =0, ... Vypp_1 =)

—P(Aa+1 =a Ba—i—ﬁ 1= b X“""/’ 1= y) s (A5)

where the triangle inequality has been used.

In section A.5, in turn, we see that hypothesis (A.1) implies that there
exists some point (ag(ar,....p)s -+ Y0(ar,....pry) i the dV~'-dimensional cubic
grid G = {0,1,...,d — 1}*(N=1D _such that

|P(Ao/ = CLO(O/ VST YX +p'—1 — yO(a ) )

P(Ay = A0(a,...p")s o YxIp =1 = yo lees®”) ’ (A.6)

where (do(a,...y7)s s Y0(ar,....pr)) € G is any nearest neighbor of
(00 i) o> YO ) i

Now, defining 3=a+ 43, ..., x=¢+x and ¥ = x + ¢ in (A.5), we see
that

M
1
2 M Z ‘Z B*l :b""Yd:fl :y)
w, Se=1 o=l (A.7)
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Here, we choose b = by(w/,... 1), - and Y = Yo(,....gr)- In turn, we set a =
ao(ar,... .y, forall 1 <a <o, and a = ag(qr,.. gy + 1, forall o' +1 < a < M.
With this, inequality (A.7) becomes

M

— 1
Lr 2 3= D> |(P(Aa = aoar,...w)s By = bogar,wys s Y1 = Yo(ar,....o0)
P,...,B=1
= P(Aa=ao(, .yt 1L, Bz 1y =boar, )y Y5 1 = Yo(ar,.., ¢'))|

where we have used that Ayr1 = [41 + 1] and invoked property (A.6). The
last inequality finishes the proof for marginal P(rg4, ...,ry|a,a+5—1, ..., x+
v —1).

The proof for any other (N — 1)-party marginal that includes A is a
replica but where, before (A.5), instead of grouping it together with B, C,
..., and Y, one groups A with any choice of N — 2 out of the other N — 1.
Finally, the proof for the marginal P(’I“B, worzla,a+ B =1, x +¢ — 1),
follows due to invariance of I 1\]\} under the exchange of A with, for instance,
C' (see section A.2). O

A.2 Symmetry under permutations of parts

Here we show the invariance of the N-partite inequality (4.19) under certain
permutations of parts, the same arguments holding also for the tripartite
case of (4.17). We show explicitly that (4.19) is symmetric with respect to
the exchange of the N-th and the (N — 2)-th parts, Z and X. The proof for
the exchange A < C' is exactly the same. We write the Bell polynomial of
(4.19) as

M
- 1
N _
Ly = 33— > (Jaonw(A B, ., XY, Z) A8)
a,fB,...,0,x, =1 '
+Ha,,..,<p,x,w(A7 Ba ceey Xa Y7 Z))?
with
Jo,onp(A, B, ..., X, Y, 7) =
N-1 N-1 N-—1

<[Aa — Ba+5,1 e (—1) XSO+X—1 — (—1) YX+¢*1 + (—1) Z¢]>,
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A.2. SYMMETRY UNDER PERMUTATIONS OF PARTS

Hy.. oxw(AB,. .. XY, Z)=
N N N
([Batp-1 = Aat1 o+ (=1)" Xpiy1 — (1) Vg1 + (—1) 7 Zy]).

Under the exchange X < Z, these matrices transform as

Jo,ox(A, B, .. XY, Z) =Jo, . onw(A B, ..., Z,Y, X)
= Ja7."7¢7w,¢+1,w+X,1(A7 B7 ceny )(7 Y, Z)

Hy  onw(AB,. .. XY, Z) =H,  oyu(AB,....Z,Y,X)
Ha,.,.,cp,w—<p+1,<p+x—l(A7 B, (X3 Xv K Z)

We notice that, due to the symmetries in the definition of matrix J, the
fact that Qixpr+w = [Qw + 7], for any Q = A, B, C, ..., Y, or Z, implies that

Ja,...,w:ﬁ:M,...,@,x,d)(Aa Ba ey Xa Y7 Z) = Ja,...,w,...,go,x,w(Av B, ) X, Y, Z)

for any w = a, 3, ...p, x or . Analogously, the same property holds also for
matrix H. Hence, we have that

> Japnw(AB, XY, Z)
a7ﬁ7"'7907X$/¢):1
M

= Y Jepw—prlpx—1(4,B, .., XY, Z)
Q’Br“v@:Xﬂp:l

and

Z Ha’,._7¢’x7w(A,B7...7X7 Y7 Z)
a757"~7§0)X7w:1

M
= Y Ha.pwprton-1(4B, ... XY, Z).
O‘aﬁv"'v(p?)(v’w:l

Therefore, it is @ =INX + Z). O
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A.3 Quantum realization. Equation (4.21)

Here we prove that, for any N > 2, it is @(\Iijdv) = Iﬁfl(‘llévfl). Consider
first the expectation value

(UYM[Aa = Bagpr + . — ()N WY
d—1

— N-1 N—1\|2
= > [rae = TBarpy + oo = (DT T [ ragrpa sy - (rv [ )]
TAq TBa+B—1 ..... 'ryxfo
d-1 —mi/M
1 N—2 1—e / 2
=——xd )— , A9
dN ngln 1_672;’1("4‘1/2) ( )
where we have used the explicit definitions of |ra,), [rB, 5 ,); -, and |y, ),
summed a geometric sequence, and introduced n = 74, — 7B, pog T —
N-1 .
(=1)" " 'ry,. Consider next

(U [Aa = Bagp1 + ... + (=1 Z,)10))

N—-1

2
= [TAQ —TBajp-1 +.+ (71) TZw”<T'AQ |<TBa+ﬁ—1 ""<TZ¢; ‘\ijiv>’

1 d—1 1 _ /M

_ N—1 ’ €
=gy X d Zn

27
_ e Tq (n'+1/2)
n/=1 1 e d

2

, (A.10)

where we have now also used the definition of |rz, ), and introduced n’ =
TAy — TBayp_q + o T (—1)N_17"Zw. Notice that both expectation values
coincide for any «, g, ..., X, and %. In addition, the same analysis holds true
1A ; N-1y - A

for (WY Bt — Aass — o+ (=1) " TN and (9 [[Boupos —
Agy1 — . — (=1)N1Z,]|WE). Therefore, the Bell value of the ¥-th term of
o " B B

I 3=z Lap,. =1 (([Aa=Bagp-1+.—(=1)N Yy +H(=1)N 1 Zy))+
([Batp—1 — Aag1 — . + ()N "W pyo1 — (-1)V71Zy))), obtained from
quantum measurements on |¥Y), is equal to 1/M times the Bell value of

I A]\;_l obtained from |\IJ(]1V ~1). Summing over 1 completes the proof. []
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A.4 Proof of bound (A .4)

Here we show that, for all («, g, ...,%,(), and any (a,b, ...,y), bound (A.4)
holds. One has

P(Aa=Bs — ..+ (=)', = (=)' Z¢)
Z P(Aa=4,Bg=j,..Ypy =m,Zc=m— ...+ (-)N 1 — (fl)Nfli)

< Z min (P(Aa =i,Bg =j,.... Yy =m),
P(BB = j7 -"7Y’¢1 =m, ZC =m-—..+ (_1)N71j - (_l)Nili)
Smin (P(Aa = a, B/g = b7 7Yw = y)7

P(Bs=b,,Yo=y, Zc=y— .t (- b (—I)N_la)

+min( Z P(AafaB,B*b w*y)
(254505 m)#(a,b,..., y)
3 P(By=b,..Yy=y Zc=y— .+ (-1)"'b— (—1)N*1a))

(4,550 ym)#(asb,...ry)
=min (P(Acx =a, Bﬂ = b, ...,Yw = y),
P(By = b Yo = 1. 2% = y = o+ (<1 g = (1) "a))
+ min (1 - P(Aa = a’vBB = b7 7Yw = y)7
_ P(BB =b..,.Yy=y,Zc=y— ..+ (_1)N*1b _ (_1)N71a))
=1—|P(Aa =a,Bs=b,...Yy =)
—P(Bs=b,...Yy =y, Zc=y— ...+ (-)" b - (-1)""a)],

for arbitrary a, b, ...,y € {0, ... ,d—1}. O

A.5 Proof of condition (A.6)

Here we prove that, if for some setting (o/, o' + 8" — 1,....,x  + ¢’ — 1) the
highest probability P(a’(z‘}f_’w,), s y?;‘}f“’w,ﬂa’, o +08 =1, X+ —1)is
bounded from below as in (A.1), then inequality (A.6) is true. Again, we
proceed by reductio ad absurdum: Suppose (A.6) is false. Then,

|P(AO/ :(IO( IRV ERTES X+¢/ 1 —y() ) )
P(Ay = a‘o(a,“_,,w,), oo V-1 = Yo(ar )| <& (A.11)

for all points (ao(a/,.._ﬂpl), v yo(a’,...,w’)) € G, where (a'(](a’,...,zp’)’ ey yb(a’,...,’t/)’))
is any other point of G whose distance
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D(ao(a/p“’wl), ceny yo(a/“”’w/); dO(a’,...,w’)v ceny yo(a’,...,d}’)) from (ao(a/“."w), ceey yO(a/7.."wl))
is one:

D(A0 (A ) s +++3 YO () FO( it} 2 YO (7))
= D(a0(a!,....'); G0 (e o.t)) + o+ DYoo) yO(a pt?))
= |a/0(0¢’,...,’l[)/) — CI:O(O(/7”_7,¢/)‘ =+ ...+ |y0 L) T y() ") ’ = l(A 12)

This, in turn, implies that

P(Aa’ = a?"wYXUrI[J/fl = y)

(P(A = @( BRVATEEEE Yyqypr—1 = y( 1/,/))

—5D( a,...,ys;a ( 1/1)""’ an,wl)))

o, (A.13)
dN(N ~1) N2 NS p
>l+————e—e(N - 1)d Z D(i;0)
z:D(d)
d2 D(+d>
=14+ dV%(N - 1)a(4 - > D(i;O)),
i= D(_d)
where we have introduced DEZI) =d-1/2= - (@) for d odd, and

+ = d/2 =— (_) +1, for d even, and have used that
D( a,...,Yy;a ( 1/1’) 7y( )) D(a, a?&?f’w,))++D(y, y?;(ll’xﬂ/ﬂ)) No-
tice that, for d odd, it is Z Pl D(i;0) = (d? — 1)/4, whereas for d even

i= D(d)

Dt

it is Z,_(jg, D(i;0) = d?/4. Thus, in both cases the last line of (A.13) is
=D,

strictly greater than 1, which contradicts probability normalization. [
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Appendix B

TOBL models and extensions

B.1 TOBL models for an arbitrary number of par-
ties

Suppose that M + N parties share a no-signaling set of correlations

P(Aq, ..., ApenN| X1, ooy Xrenv). We are interested in which restrictions we
should enforce over such a distribution in order to make sure that it cannot
be used to violate a bipartite Bell inequality when parties 1,..., M and M +
1,...,M + N group together, even when several of such boxes are initially
distributed.

One possibility is to demand the new bipartite object to behave as a
generic classical bipartite device would. Viewed as bipartite, the distribution
P(Ay,...; Ap+n| X1, -, Xar4 ) is such that it allows each of the two virtual
parties (call them Alice and Bob) to perform sequential measurements on
their subsystems. If we assume that the outcomes Alice and Bob observe are
generated by a classical machine, it follows that P(Aq, ..., Apre N[ X1, -y XranN)
can be written as:

P(alv"'aaM+N|x1a"'a$M+N):ZPAPQ'P§7 (Bl)
A

where we can regard each Pj as a collection of probability distributions
Pz;\(l)ﬁ...ﬁa(M) (A1, Ay X1, s Xr)s (B.2)

one for each possible permutation o of the M physical parties. Here (1) —
... = 0(M) would indicate the process in which the first party to measure
is o(1), followed by o(2), etc.
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If, during a communication protocol, Alice must measure, say, x3, she
only has to choose an arbitrary permutation o, with ¢(1) = 3 and then
generate ag according to the probability distribution
Pj‘(l)%“ﬁU(M)(Al, oy Apr| X1, oo, Xog). If) at some time later, she needs to
simulate the measurement of z; and ¢(2) # 1, she would thus have to find a
new permutation o', with o’(1) = 3,0’(2) = 1, and generate a; from the con-
ditional probability distribution Pg\'(1)—>...—>a'(M)(a1> a2, A4y ..oy Qpf|T1, ooy Tar, a3).
By consistency, for any pair of permutations o', 0% such that o'(j) = o2(j),
for all j € {1,...,m}, such distributions need to satisfy the condition:

Za>mPo)'\l(1)~),,,~)o'1(M)(a17'”7aM|x1'”xM) =

= Za>m PO)_‘Q(l)%mHO_Q(M)(al, ceny G,M|.T1...$M), (B3)

where Y
considerations apply for Pg.

Local postselections on a prior sequence of Alice’s and Bob’s outcomes
would imply changing the probabilities py, but otherwise can be simulated
in a similar fashion.

Putting everything together, we have that WCCPI operations over a
set of (possibly different) boxes generate bipartite classical correlations if
each box P(A1,....,Anim| X1, ..., Xpr+n), distributed along the partition
1..M|M +1...M + N, admits a decomposition of the form

denotes the sum over all variables a,(;) with j > m. The same

P(ala ) aM—HV"Tl’ "'7$M+N)

= ZPAP3(1)—>...—>J(M)(%(1), oo (M) |Ta(1)Ta(ar)) - (B.4)
X

'pci\’(MJrl)%.“ﬁU’(MJrN)(aU’(M+1)7 0! (N+M) ’xo’(N+1)-~-37o'(N+M))-

The reader can check that in the tripartite case the above description
reduces to the TOBL definition given in the main text.

B.2 Probability distribution maximizing (5.14)

This appendix presents a tripartite non-signaling probability distribution
that attains the maximum of 7/6 for the ‘Guess Your Neighbor’s Input’
inequality, as well as its TOBL decomposition. To simplify notation, let us
switch from (ajagag) to (abc); and from (x1z23), to (zyz). Now, consider
the non-signaling tripartite probability distribution P(A, B, C|X,Y, Z) given
by the probabilities shown in Table B.1.
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000 001 010 011 100 101 110 111

000 % 0 0 0 0 0 0 %

001\ 5 ; 0 0 0 0 ¢ ;

oo 3 0 + 0 0 & 0 &
O T SR Y

011 G L L ; 0 . L 0

0 0 0 & 0 0 &
P A SO

101 ! 0 0
i A SR B S

S R

iy o § § § § § 5 0

Table B.1: Tripartite probability distribution P(A, B,C|X,Y, Z) attaining the maximum
of 7/6 for the ‘Guess Your Neighbor’s Input’ inequality, where the rows correspond to the
inputs zyz and the columns to the outputs abc.

The value of the ‘Guess Your Neighbor’s Input’ inequality for

P(A,B,C|X,Y,Z) equals
2 1 1 1 7
B(P)—3+6+6+6—6751, (B.5)

and thus P(A, B,C|X,Y, Z) cannot be approximated by any quantum sys-
tem. Next we will prove that P(A, B, C|X,Y, Z) belongs to the TOBL set of
correlations, and so it is compatible with any bipartite information principle.

First, notice that P(A, B,C|X,Y, Z) is invariant under permutations of
the three parties. It is therefore enough to show that it admits a decom-
position of the form (5.6) for the partition A|BC. Along this bipartition,
probability distributions appearing in the decomposition (5.6) are such that
the outcome a only depends on the measurement choice = for every given
A; let a, denote this outcome for x = 0,1. Conditions (5.7) and (5.8) tell
us that for every A the marginal Pg_,o(B|Y,\) is independent of z, and the
marginal Pg. ¢(C|Z, \) is independent of y. Thus, for B — C we have that
b depends on y and ¢ depends on both z and y. The possible outcomes will
then be denoted by, cy.. Similarly, for B < C, the possible outcomes are
by.,c.. Tables B.2 and B.3 contain the output assignments corresponding
to deterministic probability distributions together with the weights p, for
A|B — C and A|B < C, respectively. Note that, in agreement with (5.6),
the outcome assignments for A and the weights py are the same for both
decompositions.
It is trivial to see that both tables indeed reproduce P(A, B,C|X,Y, Z), and
hence such a distribution belongs to the TOBL set.
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Table B.2: TOBL decomposition into deterministic probabibility distributions character-
ized by outcome assignments for the bipartition A|BC in the case A|B — C. For every A
the outcome a only depends on z, and b only depends on y.

X py Jao ai boo bot b b co a
1 |1/12| 0 0 0 0 0 1 0 O
2111210 0o 0o 0o 0o 1 0 1
3 11/12 | 0 0 0 0 1 1 0 O
4 |1/12 1 0 0 0 0 1 1 0 1
5 11/12 | 0 1 0 0 0 0 0 O
6 | 1/12 | 0 1 0 0 0 0 0 1
7 11/12 | 0 1 0 0 1 0 0 O
s/1/12/0 1 0 0 1 0 0 1
9 1/6 1 0 1 1 1 0 1 1
10| 1/6 1 1 1 1 0 1 1 0

Table B.3: TOBL decomposition into deterministic probability distributions characterized
by outcome assignments for the bipartition A|BC' in the case A|B < C. For every A the
outcome a only depends on z, and ¢ only depends on z.
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Appendix C

Proof of full randomness
amplification

Before entering the details of the proof of Theorem 6.2, let us introduce
a convenient notation. In what follows, we sometimes treat conditional
probability distributions as vectors. To avoid ambiguities, we explicitly label
the vectors describing probability distributions with the arguments of the
distributions in upper case. Thus, for example, we denote by P(A|X) the
(25 x 2%)-dimensional vector with components P(a|x) for all a,x € {0,1}°.
We also denote by I the vector with components I(a,x) given in (6.3). With
this notation, inequality (6.2) can be written as the scalar product

P(AIX) = Zlax (alx) > 6.

Any probability distribution P(a|x) satisfies C' - P(A|X) = 1, where C is
the vector with components C'(a,x) = 27°. We also use this scalar-product
notation for full blocks, as in

Ny
I®Nd . B|Y Z Z [HI(aiaXi)

ai,...any X1,..XnN, Li=1

P(ai,...an,|x1,...XnN,) -

Following our upper/lower-case convention, the vector P(B|Y, e, z) has com-
ponents P(bly, e, z) for all b,y but fixed e, z.

The proof of Theorem 6.2 relies on two crucial lemmas, which are stated
and proven in Sections C.2 and C.2.1, respectively. The first lemma bounds
the distinguishability between the distribution distilled from a block of Ny
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quintuplets and the ideal free random bit as function of the Bell viola-
tion (6.2) in each quintuplet. In particular, it guarantees that, if the corre-
lations of all quintuplets in a given block violate inequality (6.2) sufficiently
much, the bit distilled from the block will be indistinguishable from an ideal
free random bit. The second lemma is required to guarantee that, if the
statistics observed in all blocks but the distilling one are consistent with a
maximal violation of inequality (6.2), the violation of the distilling block
will be arbitrarily large.

C.1 Proof of Theorem 6.2

We begin with the identity

P(guess) = P(g = 0)P(guess|g =0) + P(g = 1)P(guess|g=1) . (C.1)
As discussed, when the protocol is aborted (g = 0) the distribution generated
by the protocol and the ideal one are indistinguishable. In other words,
1
5 -
If P(g = 0) = 1 then the protocol is secure, though in a trivial fashion. Next

we address the non-trivial case where P(g = 1) > 0.
From formula (6.11), we have

P(guess|g =0) = (C.2)

P(guess|g =1)

1

= 5—1— ZmaXZ’Pky,t elz,g=1) = S P(y,t,elz,g=1)
1

= 5L Pl =1) ZmaXZ\Pkeiz Jtg=1)— 5P(elz g tg=1)

y7

1 - ®N, IR

<3 EZP(y,t\g=1>6 Ni (aC+ 81N P(BIY  t.g = 1)
1 3\/ IV

= 5+ g (aCH BN TP tlg = DP(BIY tg = 1)

Yt

, -

- = 3F( C + pI)*N. ZPtlg—l) (BIY,t,9=1)
2
1 3\/7 ®N,

= Z I)y="d. PBtY =1
=+ (aC + BI) Zt: Y,g=1)

- % 3F( C+BN*N. P(B|Y,g=1)
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where the inequality is due to Lemma C.1 in Section C.2, we have used
the no-signaling condition through P(y,t|z,g = 1) = P(g,t|g = 1), in the
second equality, and Bayes rule in the second and sixth equalities. From
(C.3) and Lemma C.2 in Section C.2.1, we obtain

logs(1—¢)

+ A (32ﬂ6_5)Nd] . (C4)

1 3vNg
P =1) < =
(guesslg =1) < 5 5 Plg=1)

Finally, substituting bound (C.4) and equality (C.2) into (C.1), we obtain

1 3v/N,
P(guess) < §+ 5 d

[P(g = 1) 42 NoB079) (3256*5)“} , (C.5)

which, together with P(g = 1) < 1, implies (6.12).

C.2 Statement and proof of Lemma C.1

As mentioned, Lemma C.1 provides a bound on the distinguishability be-
tween the probability distribution obtained after distilling a block of Ny
quintuplets and an ideal free random bit in terms of the Bell violation (6.2)
in each quintuplet. The proof of Lemma C.1, in turn, requires two more
lemmas, Lemma C.3 and Lemma C.4, stated and proven in Section C.2.2.

Lemma C.1. For each integer Ng > 130 there exists a function f : {0,1}N¢ —
{0,1} such that, for any given (5Ng4 + 1)-partite non-signaling distribu-
tion P(ay,...an,,e€|x1,...Xn,,2) = P(b,ely, z), the random variable k =
f(maj(ay),...maj(an,)) satisfies

Zmzaxz‘P(k,dy,z)—%P(ew,z)‘ < 6Ny (aC + B1)®Ne . P(BJY)
k e

(C.6)
for all inputs y = (x1,...Xn,) € XNa  and where o and B are real numbers
such that 0 < a < 1 < f.

Proof of Lemma C.1. For any xg € & let M3° be the vector with com-
ponents MX0(a,x) = 5r1ﬁaj(a)6§§0. The probability of getting maj(a) = w
when using x¢ as input can be written as P(w|xo) = MX° - P(A|X). Note
that this probability can also be written as P(w|xg) = I'X0 - P(A|X), where
Y0 = MXo + AX0 and AX° is any vector orthogonal to the no-signaling sub-
space, that is, such that A% - P(A|X) = 0 for all non-signaling distribution
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P(A|X). We can then write the left-hand side of (C.6) as

1
k €|y7 - §P(€|y7 Z)
k 1
= Zm?xZP(e\y,z) (5f(w)—§ P(wly,e, 2)
k e w

1 [ &
k e w

i=1
where in the last equality we have used no-signaling through P(e|y,z) =
P(e|z) and the fact that the probability of obtaining the string of majorities
w when inputting y = (x1,...xy,) € XN¢ can be written as

Ny
P(wly) = <® r;z) . P(BIY). (€.9)

=1

In what follows, the absolute value of vectors is understood to be component-
wise. Bound (C.7) can be rewritten as

Plk,ely, 2) ~ 3 Plely. 2)

zk:mngP(e]z) Z <5f(w >®FX’ :
1\ &

= 2 max Z(éiﬁwrg)@ﬁz -(ZP BYez))

1 N i=1
= SIS (G~ ) Q|- PEW) ()
k

w =1

IN

P(B|Y,e,z)

where the inequality follows from the fact that all the components of the
vector P(B|Y, e, z) are positive and no-signaling has been used again through
P(BJY, z) = P(B|Y) in the last equality. The bound applies to any function
f and holds for any choice of vectors A% in I'%i. In what follows, we compute
this bound for a specific choice of these vectors and function f.

Take AYi to be equal to the vectors AX° in Lemma C.3. These vectors
then satisfy the bounds (C.21) and (C.30) in the same Lemma. Take f to
be equal to the function whose existence is proven in Lemma C.4. Note

136



APPENDIX C. PROOF OF FULL RANDOMNESS AMPLIFICATION

that the conditions needed for this Lemma to apply are satisfied because of
bound (C.21) in Lemma C.3, and because the free parameter Ny > 130 satis-

fies (3\/Nd)71/Nd >« = 0.9732. With this choice of f and A, bound (C.9)

becomes
E max g P(k,ely,z) — flP(e|y z)
k P . ) ) 2 )

Ny
> 3vNa <® ﬂ) - P(BJY)
k =1

61/Ny (aC + 1)*Ne . P(B|Y) | (C.10)

IN

IN

where we have used 0% = /(T'g")% + (I'7")?, >_;3 = 6, bound (C.21) in
Lemma C.3 and bound (C.30) in Lemma C.4. O

C.2.1 Statement and proof of Lemma C.2

In this section we prove Lemma C.2. This Lemma bounds the Bell viola-
tion in the distillation block in terms of the probability of not aborting the
protocol in step 4 and the number and size of the blocks, N, and Ng.

Lemma C.2. Let P(bi,...bn,|y1,--.yn,) be a (5N4Ny)-partite non-signaling
distribution, y1,...yn, and | the variables generated in steps 2 and 3 of the
protocol, respectively, and o and 3 real numbers such that 0 < a < 1 < 8;

then

logs(1—¢)
ONa DRIV og—1) < oo 20 —5\Na
(aC + BI) P(B|Y,g=1) < o™i+ Ply=1) (328¢7°)7 . (C.11)

Proof of Lemma C.2. According to definition (6.8) we have I(a;,x;) <
5S[by] for all values of b = (aj,...an,) and y = (x1,...xxn,). This also

implies I(a;,x;)I(aj,x;) < 59[}; . and so on. Due to the property 0 < a <
1 < B, one has that (a27°)Na=i3" < Na for any i = 1,... Ny. All this in
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turn implies

Ng
[ [e27 + 51]
=1
= (a 2—5)Nd + (a 2—5)Nd—1/BZIi + <a2_5)Nd—2 52 Zfi-’j NI
@ i#]

IN

(a2~%) N 4 pa (Zli+zfilj+"')

i ij

]
< (a2 pNe (2N 1) 8%, < (a279) 4 (82)N 69, (C.12)

< (O[ 275)Nd + ﬂNd (Z 59[b,y] + 25?[17’3/] 4. )

where I; = I(a;,x;). This implies that
(aC + B1)*N - P(BJY,g = 1)

Nq
= > > Ille27+s8I(ai,x)] Plas,...an,[x1, ... xn, 9 = 1)

ai,...an; X1,--- XN, =1

< Z |:(Oé 275)Nd + (2ﬁ)Nd679[b,y}:| P(b’yag = 1)

by

= oMoy 27N (28)NeN " P(r = 0ly, g = 1)

Y Yy

= oM+ (28N P(r=0ly,g=1)
Yy

N (25)Ndzyjp (TPTy?;y:'g; b (C.13)

We can now bound P(y|g = 1) taking into account that y denotes a 5N4-bit
string generated by the e-source S that remains after step 2 in the protocol.
Note that only half of the 32 possible 5-bit inputs x generated by the source
belong to X' and remain after step 2. Thus, P((xy,...,xy,) € XNi|g=1) <
16M4(1—¢€)5Na where we used (6.7). This, together with P((x1,...,xn,)|g =
1) > ¢*Ne implies that

€ Na
Pylg=1) = <16(1—6)5) . (C.14)
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Substituting this bound in (C.13), and summing over y, gives

16(1 — e)>\
(aC +BDNP(BY,g = 1) < aMit(25)Vs < o ) P(r=0g=1).
€

(C.15)
In what follows we use the notation

P(11,09,13,14,...) = P(r[bi,y1] = 1,r[ba, y2] = 0,7[b3,y3] = 1,r[bs,ya] =1,...).

According to (6.9), the protocol aborts (¢ = 0) if there is at least a “not
right” block (r[b;,y;] = 0 for some j # ). While abortion also happens if
there are more than one “not right” block, in what follows we lower-bound
P(g = 0) by the probability that there is only one “not right” block:

1 > P(g=0)
N, N
> ZP(Z) Z Py, o Lo, Ly g, O Ty, oo 1)
=1 V=1, £l
> ZP(Z)ZP(h,m1171,11,11+1,---11'—1,01',11'+1,---1N,,)
! V£l

= Z [EZ#/P(Z)} P(ly, .. Loq, Uy Ly g, Oy Ly, o2 1)
l/

= > =P P>y, . 1p_1,00, g, 1ny,), (C.16)
ll

where, when performing the sum over [, we have used that

P(llu s 11—17 1l7 1l+17 s ]-l’—laol’) 1l’+17 s ]-Nb) = P(]-lu s 1l’—17 Ol’v 1l’+17 s 1Nb)
does not depend on . Bound (6.7) implies

1 1
1_ P(l) - 1 — (1 _ 6)logg Ny B N]og2 = 1> Nb0g2 e
P(l) = (1—¢)logaNe 70 - 2

(C.17)

where the last inequality holds for sufficiently large Np. Using this and (C.16),
we obtain

1 logy T
1 > 2lZ/Nb 2 P(l/) P(lly---1l’—1701'71l’+17"'1Nb)

1 _1
NPT PFE=0,g=1), (C.18)
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where 7 = r[b;, y;]. This together with (C.15) implies

(aC + B*N* . P(B|Y g =1)

16(1 — €)>\ V¢
€
P 328(1 — )\ ™ 1o, (10)
< ol N, %82 C.20
where, in the second inequality, Bayes rule was again invoked. Inequality
(C.20), in turn, implies (C.11). O

C.2.2 Statement and proof of the additional Lemmas

Lemma C.3. For each xg € X there are three vectors AJ°, AT°,A3° or-
thogonal to the mon-signaling subspace such that for all w € {0,1} and
a,x € {0,115 they satisfy

VIV (a,%) + A2 (2, %)) + [M°(a, %) + AT (a, %))
< aC(a,x) + fI(a,x) + A’ (a,x) (C.21)

and
|M°(a, x) + A7 (a,x)|
< /1M, %) + AR (@, %)) + [M(a,x) + AR (a, %)) (C.22)

where o = 0.8842, f = 1.260 and v = 0.9732.

Proof of Lemma C.3. The proof of this lemma is numeric but rigorous.
It is based on two linear-programming minimization problems, which are
carried for each value of xg € X. We have repeated this process for different
values of v, finding that v = 0.9732 is roughly the smallest value for which
the linear-programs described below are feasible.

The fact that the vectors AJ?, AT, A3 are orthogonal to the non-signaling
subspace can be written as linear equalities

D-AX =0 (C.23)

for w € {0,1,2}, where 0 is the zero vector and D is a matrix whose rows
constitute a basis of non-signaling probability distributions. A geometrical
interpretation of constraint (C.21) is that the point in the plane with coordi-
nates [MJ°(a,x) + AJ°(a,x), M7 (a,x) + AT°(a,x)] € R? is inside a circle
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of radius aC'(a,x) + fI(a,x) + AJ°(a, x) centered at the origin. All points
inside an octagon inscribed in this circle also satisfy constraint (C.21). The
points of such an inscribed octagon are the ones satisfying the following set
of linear constraints:

(M3 (a, ) + A3 (a, )] m cos 0+ [M7° (a, x) + AT"(a, x)] nsin
< aCla,x) + fl(a,x) + AP (a,x) | (C.24)

w 3 bw 7w 9w 1llw 13w 1bw _ T\—1 ~
fOI‘ all 9 € {g, 817818787 8 1 8 ?}, where n= (COS g) ~ 1.082. In

other words, the eight conditions (C.24) imply constraint (C.21). From now
on, we only consider these eight linear constraints (C.24). With a bit of
algebra, one can see that inequality (C.22) is equivalent to the two almost
linear inequalities there was an error in the following equation, as the pre-
factor in terms of v was wrong. Please check what was computed and how
it affects to v and, then, to the value of Ny

~2

+ [MX0(a,x) + A (a,x)] < =2

| Mz° (a,x) + A7 (a, %), (C.25)

for all w € {0,1}, where w = 1 — w. Clearly, the problem is not linear
because of the absolute values. The computation described in what follows
constitutes a trick to make a good guess for the signs of the terms in the
absolute value of (C.25), so that the problem can be made linear by adding
extra constraints.

The first computational step consists of a linear-programming minimiza-
tion of « subject to the constraints (C.23), (C.24), where the minimization
is performed over the variables a, 3, A§®, AT°, A5°. This step serves to guess
the signs

ow(a,x) = sign[M °(a,x) + AX°(a,x)] , (C.26)

for all w, a, x, where the value of AX%(a, x) corresponds to the solution of the
above minimization. Once we have identified all these signs, we can write
the inequalities (C.25) in a linear fashion:

ow(a,x) [MX°(a,x) + AX°(a,x)] >0, (C.27)

o8, 3) M (2, %) + A% (a,%)] < o8, x) M (a, %) + A (a,%)]

1—12

(C.28)
for all w € {0,1}.
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The second computational step consists of a linear-programming mini-
mization of a subjected to the constraints (C.23), (C.24), (C.27), (C.28),
over the variables «, 5, Aj?, AT°, A5°. Clearly, any solution to this problem
is also a solution to the original formulation of the Lemma. The minimiza-
tion was performed for any xg € X and the values of «, 8 turned out to
be independent of xg € X. These obtained numerical values are the ones
appearing in the formulation of the Lemma. ]

Note that Lemma C.3 allows one to bound the predictability of maj(a)
by a linear function of the 5-party Mermin violation. This can be seen
by computing I'¥0 - P(A|X) and applying the bounds in the Lemma. In
principle, one expects this bound to exist, as the predictability is smaller
than one at the point of maximal violation, as proven in Theorem 6.1, and
equal to one at the point of no violation. However, we were unable to find
it. This is why we had to resort to the linear optimization technique given
above, which moreover provides the bounds (C.21) and (C.22) necessary for
the security proof.

Lemma C.4. Let Ny be a positive integer and let T (a,x) be a given set of
real coefficients such that for alli € {1,... Ny}, w € {0,1} and a,x € {0,1}°
they satisfy

T (a,x)| < (3@)7” M i) | (C.29)

where Q;(a, x) = \/Fg(a, x)2 + I'i (a,x)2. There exists a function f : {0,1}¢ —
{0,1} such that for each sequence (ai,X1),...(an,,Xn,) we have

k 1 all i
> <5f(w) - 2) [Ir. (aix)
i=1

w

Ny
< 3v/Ng [ 2 xi) (C.30)
=1

where the sum runs over all w = (wy, ... wy,) € {0, 1}Ve.

Proof of Lemma (C.4). First, note that for a sequence (aj,x1), ... (an,,xXn,)
for which there is at least one value of i € {1,... Ny} satisfying T} (a;,x;) =
I (a;,x;) = 0, both the left-hand side and the right-hand side of (C.30)
are equal to zero, hence, inequality (C.30) is satisfied independently of
the function f. Therefore, in what follows, we only consider sequences
(a1,x1),...(an,,xn,) for which either [y (a;,x;) # 0 or T (a;,x;) # 0, for
alli=1,... Ny Or, equivalently, we consider sequences such that

Ny
[T %@ xi) >0. (C.31)
=1
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The existence of the function f satisfying (C.30) for all such sequences is
shown with a probabilistic argument. We consider the situation where f is
picked from the set of all functions mapping {0, 1}¥¢ to {0, 1} with uniform
probability, and upper-bound the probability that the chosen function does
not satisfy the constraint (C.30) for all k and all sequences (ai,x1), ... (an,, Xn,)
satisfying (C.31). This upper bound is shown to be smaller than one. There-
fore there must exist at least one function satisfying (C.30).

For each w € {0,1}¢ consider the random variable Fy, = (5?(‘”) -
%) € {%,—%}, where f is picked from the set of all functions mapping
{0,1}N¢ — {0,1} with uniform distribution. This is equivalent to saying
that the 24 random variables {Fy }w are independent and identically dis-
tributed according to Pr{Fy, = :i:%} = % For ease of notation, let us fix
a sequence (a1,X1),...(an,,xy,) satisfying (C.31) and use the short-hand
notation I, =TI, (a;,x;).

We proceed using the same ideas as in the derivation of the exponential
Chebyshev’s Inequality. For any p, v > 0, we have

Ng
Pr{ZFWHFfW > ,u,}
w =1
Ng
= Pr{u (—,LL%—ZFWHF,{UZ.) > O}
w =1
Ng
= Pr{exp(—yu—}—uZFwHwa) > 1}
w =1

N,
< E [exp (—Vu +v> Py ﬁ %)] (C.32)
w ) =1
= E [e’/,u H exp (VFW H Fh)]
w z;dl
— e—wHE exp (I/FW H%)] (C.33)
w =1
Ny Ny 2
< e []E |1+ vh [T, + (VFW H%) . (C.34)
w i=1 i=1

Here E stands for the average over all Fy,. In (C.32) we have used that any
positive random variable X satisfies Pr{X > 1} < E[X]. In (C.33) we have
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used that the {Fy }w are independent. Finally, in (C.34) we have used that
e < 141+ n?, which is only valid if n < 1. Therefore, we must show that

y N
)
1Im,
=1

which is done below, when setting the value of v. In what follows we use
the chain of inequalities (C.34), the fact that E[Fy] = 0 and E[F2] = 1/4,
bound 1+ n < e for > 0, and the definition Q? = (I'})? + (T%)*

pr{zpwﬁrz,izﬂ}
o el srtief )
=‘WHG+fﬁfﬂﬁ
(e

=1

<1, (C.35)

2Nd

= exp (—u,u + Z H )
2 N
= exp (—u,u +— H Q2> (C.36)

In order to optimize this upper bound, we minimize the exponent over v.
This is done by differentiating with respect to v and equating to zero, which
gives

d
I/ZQ/,LHQ;2. (C.37)

Note that constraint (C.31) implies that the inverse of §2; exists. Since we
assume p > 0, the initial assumption v > 0 is satisfied by the solution (C.37).
By substituting (C.37) in (C.36) and rescaling the free parameter u as

)
Hzdel Q;
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we obtain
Ny Ny
: =2
Pr{§ FWHFfviZﬂHQi}ge_“ , (C.39)
w =1 =1

for any fi > 0 consistent with condition (C.35). We now choose i = 3v/Ny,
see Eq. (C.30), getting

N, N,
Pr {Z Fy ﬁ%i > 3@1‘19} < e Wa (C.40)
w =1 =1

With this assignment, and using (C.37) and (C.38), condition (C.35), yet
to be fulfilled, becomes

Tt T |
3\/NdHTf <1, (C.41)
i=1 "

which now holds because of the initial premise (C.29).

Bound (C.40) applies to each of the sequences (ai,x1),...(an,,xn,)
satisfying (C.31), and there are at most 4>¢ of them. Hence, the probability
that the random function f does not satisfy the bound

Ny Ny
> BT, =3vNa ][, (C.42)
w 1=1 i=1

for at least one of such sequences, is at most 4°Nae=9Na  which is smaller
than 1/2 for any value of Ny. A similar argument proves that the probability
that the random function f does not satisfy the bound

Ny Ny
> P [T, < -3V Na ][] (C.43)
w =1 =1

for at least one sequence satisfying (C.31) is also smaller than 1/2. The
lemma now easily follows from these two results. O

C.3 Final remarks

The main goal was to prove full randomness amplification. In this Appendix,
we have shown how our protocol, based on quantum non-local correlations,
achieves this task. Unfortunately, we are not able to provide an explicit
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description of the function f : {0,1}"¢ — {0,1} which maps the outcomes
of the black boxes to the final random bit k; we merely show its existence.
Such function may be obtained through an algorithm that searches over the
set of all functions until it finds one satisfying (C.30). The problem with this
method is that the set of all functions has size 2V¢, which makes the search
computationally costly. However, this problem can be fixed by noticing that
the random choice of f in the proof of Lemma C.4 can be restricted to a four-
universal family of functions, with size polynomial in Ny. This observation
will be developed in future work.

A more direct approach could consist of studying how the randomness
in the measurement outcomes for correlations maximally violating the Mer-
min inequality increases with the number of parties. We solved linear opti-
mization problems similar to those used in Theorem 6.1 which showed that
for 7 parties Eve’s predictability is 2/3 for a function of 5 bits defined by
£(00000) = 0, f(01111) = 0, f(00111) = 0 and f(x) = 1 otherwise. Note
that this value is lower than the earlier 3/4 and also that the function is dif-
ferent from the majority-vote. We were however unable to generalize these
results for an arbitrary number of parties, which forced us to adopt a less
direct approach. Note in fact that our protocol can be interpreted as a
huge multipartite Bell test from which a random bit is extracted by classical
processing of some of the measurement outcomes.

We conclude by stressing again that the reason why randomness amplifi-
cation becomes possible using non-locality is because the randomness certifi-
cation is achieved by a Bell inequality violation. There already exist several
protocols, both in classical and quantum information theory, in which imper-
fect randomness is processed to generate perfect (or arbitrarily close to per-
fect) randomness. However, all these protocols, e.g. two-universal hashing
or randomness extractors, always require additional good-quality random-
ness to perform such distillation. On the contrary, if the initial imperfect
randomness has been certified by a Bell inequality violation, the distillation
procedure can be done with a deterministic hash function (see [Mas09] or
Lemma C.1 above). This property makes Bell-certified randomness funda-
mentally different from any other form of randomness, and is the key for the
success of our protocol.
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