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Abstract

The finite element method is a tool very often employed to déhl the numerical simulation
of multiphysics problems. Many times each of these probleamsbe attached to a subdomain
in space which evolves in time. Fixed grid methods appearderao avoid the drawbacks of
remeshing in ALE (Arbitrary Lagrangian-Eulerian) methedsen the domain undergoes very
large deformations. Instead of having one mesh attacheacto@& the subdomains, one has a
single mesh which covers the whole computational domainakgns arising from the finite
element analysis are solved in an Eulerian manner in thikgraand mesh. In this work we
present our particular approach to fixed mesh methods, wigcball FM-ALE (Fixed-Mesh
ALE). Our main concern is to properly account for the adwecdf information as the domain
boundary evolves. To achieve this, we use an arbitrary loagaa-Eulerian framework, the
distinctive feature being that at each time step resultpeasgcted onto a fixed, background
mesh, that is where the problem is actually solved. We apagzeral possibilities to prescribe
boundary conditions in the context of immersed boundarhoux.

When dealing with certain physical problems, and dependmthe finite element space
used, the standard Galerkin finite element method fails eadd to unstable solutions. The
variational multiscale method is often used to deal witls thstability. We introduce a way
to approximate the subgrid scales on the boundaries of #maeglts in a variational two-
scale finite element approximation to flow problems. The kiegiis that the subscales on the
element boundaries must be such that the transmissiontmrsdior the unknown, split as its
finite element contribution and the subscale, hold. We thsmnthe subscales on the element
boundaries to improve transmition conditions between satains by introducing the subgrid
scales between the interfaces in homogeneous domaindtiteraroblems and at the interface
between the fluid and the solid in fluid-structure interatjwoblems. The benefits in each
case are respectively a stronger enforcement of the stoesmgity in homogeneous domain
decomposition problems and a considerable improvemertieobehaviour of the iterative
algorithm to couple the fluid and the solid in fluid-structurgeraction problems.

We develog=ELAP, a linear systems of equations solver package for problesiagfrom
finite element analysis. The main features of the packagisacapability to work with sym-
metric and unsymmetric systems of equations, direct anative solvers and various renum-
bering techniques. Performance is enhanced by considérednite element mesh graph
instead of the matrix graph, which allows to perform highffyceent block computations.
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Chapter 1

Introduction

The finite element method is a tool very often employed to detl the numerical simulation
of multiphysics problems. Many times each of these problearsbe attached to a subdo-
main in space which evolves in time. In these cases one ystgiés in ALE (Arbitrary
Lagrangian-Eulerian) formulations. The ALE method cotssia giving the finite element
mesh an arbitrary movement in such a way that the mesh cestittube a partition of the
considered subdomain accounting for its movement in timd, & the same time the shape
of the elements which conform the mesh remains as undidtaggossible. Obviously, this
procedure introduces some modifications in the computafitime convective terms arising in
the problem equations.

ALE methods work very well if the shape and size of each of thiedemains undergoes
relatively small changes in time. However, when these chsrage large, it is impossible to
maintain mesh distortion at a reasonable level, which I¢éads ill-conditioning of the sys-
tems of equations which arise from the finite element anglgsieven to folded elements.
In this case the deformed mesh is useless and remedies haeedevised. Classical ALE
methods usually deal with this problem by computing a newistaded mesh which fits with
the deformed domain. However, this can be an expensive guoeeespecially if it has to be
repeated many times during the whole simulation proceddogeover, most finite element
codes rely the construction of the finite element meshes trread programs, which would
imply stopping the execution of the simulation many timearing a master program which
connects both codes.

Fixed grid methods appear in order to avoid the drawbacksrmoéshing in ALE methods.
Instead of having one mesh attached to each of the subdamaméas a single mesh which
covers the whole computational domain. Equations arisioig the finite element analysis are
solved in an Eulerian manner in this background mesh. Thigobly avoids remeshing, since
the mesh remains undeformed during the whole simulationgs®y but some other issues
appear. Let us consider a Fluid-Structure Interaction lerakin which the flow problem is
solved by means of a fixed grid method.

e At each time step we have to solve a flow problem with a meshiwtiges not fit the
domain of the flow problem. If the boundary of the domain caed with the edges
or faces of some elements, it would be immediate to considebenesh covering only
the flow domain, but in general the domain boundary wiit the elements in an arbi-
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2 Chapter 1. Introduction

trary way. Over which part of the region covered by the meskwvédsolve the physical
problem?

e Another important issue is the imposition of Dirichlet bdany conditions. In boundary
fitting meshes, the imposition of Dirichlet boundary coadis is straightforward, since
the boundary of the domain coincides with the edges or fatéseoelements of the
mesh. This allows to prescribe the values of the unknowngennbdes of the mesh
ubicated on the boundary of the domain. However, this is mssible in fixed grid
methods (there are no element edges which define the bouatitttg domain). This
forces us to devise some alternative strategies to presisabndary conditions.

¢ If we are dealing with a time dependent problem, we face withrteed of computing
time derivatives. In the Eulerian finite element method usdiked grid methods, ma-
terial time derivatives are separated into their local amtective parts. The local time
derivative is basically computed as the difference betvikervalue of the unknown at
a node in the current time step and the value of the unknowneasame node but in
the previous time step. This leads us to the issuseoifly created nodes evolving in
time domains, there will be nodes of the fixed mesh which wate@bthe domain in the
previous time step but inside the domain in the current ommsv Ho we compute local
time derivatives if we do not know the value of the unknownha previous time step?

e Finally, itis possible to deal with different physics prebis which can be decomposed
into different subdomains with a single background meshwéi@r, in most cases the
unknowns fields (and their gradients) will be discontinuaasoss the interface which
separates the various subdomains. Finite element shagioiumare in general contin-
uous in the element interiors, so, how are we going to dedl thi2 discontinuity of the
unknowns in the boundary of the subdomains?

As we have seen there are four major issues with which a fixeshmethod has to deal
with. Any fixed grid method can be classified depending on hogeals with each of these
issues. In this work we present our particular approach amfimesh methods, which we call
FM-ALE (Fixed-Mesh ALE).

In Chapter 2 we analyze several possibilities to stronggsprbe boundary conditions
in the context of immersed boundary methods. As startingtranal approach we consider
Nitsche’s method, and we then move to two options that yiela-symmetric problems but
that turn out to be robust and efficient. The essential id¢a isse the degrees of freedom of
certain nodes of the finite element mesh to minimize the iiffee between the exact and the
approximated boundary condition.

In Chapter 3 we propose a way to weakly prescribe Dirichletolary conditions in em-
bedded grids. The key feature of the method is that no largelfyeparameter is needed and
that it is symmetric for symmetric problems. In the Poissorbfem this is achieved by intro-
ducing an additional element-discontinuous stress vigiakdditional terms are required in
order to guarantee stability in the convection-diffusiguation and the Stokes problem. The
proposed method is then easily extended to the transieneéiN&tokes equations.

In Chapter 4 we propose the FM-ALE method to approximate flosblems in moving
domains using always a given grid for the spatial discrébmaOur main concern is to prop-
erly account for the advection of information as the domaiariglary evolves. To achieve this,



we use an arbitrary Lagrangian-Eulerian framework, thardisve feature being that at each
time step results are projected onto a fixed, background ntleahis where the problem is
actually solved.

In Chapter 5 we extend the FM-ALE method to the context ofd&elechanics and Fluid-
Structure Interaction problems. For solid mechanics oisl subject to large strains the FM-
ALE method avoids the element stretching found in fully Laaggian approaches. For FSI
problems FM-ALE allows for the use of a single backgroundmtessolve both the fluid and
the structure. We also apply the FM-ALE method to the probdéffoating solids, in which it
is used together with the level set function method.

When dealing with certain physical problems, and dependmthe finite element space
used, the standard Galerkin finite element method fails aadd to unstable solutions. This
is why a great effort has been put during the last decadesvielajestabilized formulations
which deal with the stability problems of the standard Gatemethod. One of these stabi-
lizing techniques is the subgrid scale method, which is vatgid by the decomposition of
the continuous solution into a coarse component (finite efgreolution) and a fine (subgrid)
component. In most cases these subscales are consideradish wn the boundaries of the
elements.

In Chapter 6 we introduce a way to approximate the subscalésecboundaries of the el-
ements in a variational two-scale finite element approxionab flow problems. The key idea
is that the subscales on the element boundaries must belgidhe transmission conditions
for the unknown, split as its finite element contribution d@hd subscale, hold. In particular,
we consider the scalar convection-diffusion-reactioregign, the Stokes problem and Darcy’s
problem. For these problems the transmission conditiath&rcontinuity of the unknown and
its fluxes through element boundaries. The former is auticalbt achieved by introducing a
single valued subscale on the boundaries (for the confgrapproximations we consider),
whereas the latter provides the effective condition forrapimating these values. The final
result is that the subscale on the interelement boundanes be proportional to the jump
of the flux of the finite element component and the averageesttibscale calculated in the
element interiors.

In Chapter 7 we use the subscales on the element boundamnmepriave transmition con-
ditions between subdomains by introducing the subgrideschétween the interfaces in ho-
mogeneous domain interaction problems and at the intedatseeen the fluid and the solid
in fluid-structure interaction problems. The benefits inheease are respectively a stronger
enforcement of the stress continuity in homogeneous dodetgomposition problems and a
considerable improvement of the behaviour of the iteraigerithm to couple the fluid and
the solid in fluid-structure interaction problems.

When performing numerical simulations with the finite eletmethod, one invariably
ends up with the need of solving a linear system of equatigiost finite element codes use
linear system solvers developed by other groups and for gilngoses. In most cases, this
solvers are designed to cope with the most general kind eésyssof equations, which means
that they do not take advantage of the particularities okifstems of equations arising from
the finite element analysis. This is why we aim to develop eesglackage especially designed
to solve finite element problems.

In Chapter 8 we preseELAP, a linear systems of equations solver package for prob-
lems arising from finite element analysis. The main featofabe package are its capability
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to work with symmetric and unsymmetric systems of equatidirect and iterative solvers
and various renumbering techniques. Performance is ertldmcconsidering the finite ele-
ment mesh graph instead of the matrix graph, which allowsetéopm highly efficient block
computations.

In Chapter 9 we apply the FM-ALE method to solve fluid-struetunteraction problems in
3D. We pay special attention to the algorithms needed to cbethe mesh-mesh intersections
and the subelement integration, which are a bit more compleen extended to 3D. THeE-
LAP package for solving linear systems of equations is usedb&haviour of both algorithms
is tested in two numerical experiments with satisfactosylhes.

We close the work with Chapter 10, where conclusions antiéarpossible research lines
are summarized. Chapters are quite self contained evers iintiplies the need of repeating
some information. This is due to the fact that each chapteased on the following publica-
tions:

e Chapter 2: "Approximate imposition of boundary conditiansimmersed boundary
methods”, R. Codina and J. Baigdst. J. Numer. Meth. Engn@0:1379-1405, 2009.

e Chapter 3: "A symmetric parameter-free method for weaklpasing Dirichlet bound-
ary conditions in embedded grids”, J. Baiges, R.Codinagdrke, S. Shahmiriand W.A.
Wall, In preparation 2010.

e Chapter 4: "The Fixed-Mesh ALE method for the numerical agpnation of flows in
moving domains”, R. Codina, G. Houzeaux, H. Coppola-OwehaBaiges). Comput.
Phys, 228:1591-1611,20009.

e Chapter 5:

— "The Fixed-Mesh ALE approach applied to Solid Mechanics &hdd - Struc-
ture Interaction problems”, J. Baiges and R. Coding,J. Numer. Meth. Engng
81:1529-1557, 2010.

— "The Fixed-Mesh ALE approach for the numerical simulatidriloating solids”,
J. Baiges and R. Codintnt. J. Numer. Meth. Fluids, Accepte2D10.

e Chapter 6: "Subscales on the element boundaries in thetioauadh two-scale finite el-
ement method”, R. Codina, J. Principe and J. Bai@msnputer Methods in Applied
Mechanics and Engineerindg98:838-852, 2009.

e Chapter 7: "Finite element approximation of transmissionditions in fluids and solids
introducing boundary subgrid scales”, R. Codina and J. &aBubmitted2010.

e Chapter 8: "FELAP Technical Reference Guide”, J. BaigeBrihcipe and R. Codina,
20009.



Chapter 2

A non-symmetric method for strongly
Imposing Dirichlet boundary conditions in
embedded grids

In this chapter we analyze several possibilities to presdooundary conditions in the context
of immersed boundary methods. As basic approximation iqalenve consider the finite el-

ement method with a mesh that does not match the boundare afotmputational domain,

and therefore Dirichlet boundary conditions need to begoilesd in an approximate way. As
starting variational approach we consider Nitsche’s mathod we then move to two options
that yield non-symmetric problems but that turn out to beusttand efficient. The essential
idea is to use the degrees of freedom of certain nodes of tite dlement mesh to minimize

the difference between the exact and the approximated laoyicdndition.

2.1 Introduction

The numerical approximation of boundary value problemsa@mmatching grids has the ob-
vious advantage of the freedom to generate the grid. Onlydacgrveringthe computational

domain has to be created, leaving the imposition of boundamgitions to the numerical for-
mulation being used. The physical boundary is containetiéndomain actually discretized,
which is the reason why these methods are caftedersed boundary metho(iBM).

The price to be paid when using IBM is a lack of control on thd glose to the boundary,
which may be very important in flow problems with boundarydesy for example. However,
this difficulty may be dealt with using composite grids or @kra type techniques as that
proposed in [72]. Nevertheless, we will not touch this pdiate, nor the aspect that makes
methods with non-matching grids really attractive and Has been our main motivation (see
Chapter 4), which is the modelling of flows with moving bounda keeping the grid fixed.
In this case, not only the freedom to generate this grid isontgmt, but also the fact that
re-griding as the computational domain evolves may be aebidhis is probably the reason
why the so called fixed grid methods have received and arerlyrreceiving a great deal of
attention in the numerical literature (see for example twetws [127, 103, 100]). Since the
fixed grid used is often Cartesian, these methods can be fauher the keyword€artesian

5
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grid methods

Our attention will be focused to finite element methods fowflroblems, but the ideas
to be presented are extendable to other numerical forrongand other physical problems.
However, some of the difficulties we shall mention are chiaréstic of flow problems. Like-
wise, we will consider general non-structured meshes, gptication to Cartesian meshes
being obvious. Furthermore, the exposition will be base@Drinear triangular meshes, al-
though, again, extensions to 3D and other finite elementpotations is straightforward.

Let us describe the problem to be solved. Consider the mtudepicted in Fig.2.1. A
domainQ c RY, d = 2, 3, with boundanf = 992 (red curve in Fig. 2.1), is covered by a mesh
that occupies a domain, = Q;, UQr, where2;,, C Q is formed by the elements interior &b
andQr is formed by a set of elements cut ByIn turn, let us splif2r = Qp i, U Qr o4, Where
Qrin = QNQr andQr o is the interior of2r \ Qr ;.. Note that2 = Oy, UQr 5, For simplicity,
we will assume that the intersectionlofvith the element domains is a piecewise polynomial
curve (in 2D) or surface (in 3D) of the same order as the fingenent interpolation. This
will be used in the proof of stability presented in Subset®a3.2, although in fact it is not
necessary to apply the method.

Suppose we want to solve a boundary value problem for theavmkn in 2 with the mesh
of €2, already created and boundary conditians « onI'. The obvious choice would be:

e Obtain the nodes df (circles in Fig. 2.1) from the intersection with the elemedges.
e Split the elements df- ;,, S0 as to obtain a grid matching the boundgry

e Prescribe the boundary conditiey = w in the classical way, where, denotes the
approximate solution.

This strategy leads to a local remeshing closE that is involved from the computational
point of view. Obviously, the implementation of the stratefgscribed is very simple for un-
structured simplicial meshes, but it is not so easy if onetsvanuse other element shapes and,
definitely, prevents from using Cartesian meshes. Morgeduee boundaryl” evolves in time
(a situation not considered in the following) the numberegtes of freedom changes at each
time instant, thus modifying the structure and sparsivitghe matrix of the final algebraic
system. This is clearly an inconvenience even when usinguetared simplicial meshes.

Other possibilities can be found in the literature. One efiths the widely usetimmersed
Boundary Methodh its original form [113], which consists in adding poinis& penalty forces
in the domain boundary so that the boundary conditions dfited. The method is first order
accurate even if second order approximation schemes ade alf®ughformal second order
accuracyhas been reported in [87]. The more recentmersed Interface Methoakchieves
higher order accuracy by avoiding the use of the Dirac de#ibution to define the forcing
terms (see [91, 92, 137)).

Another approach is the use of Lagrange multipliers to eefdtihe boundary conditions.
However, the finite-element subspaces for the bulk and lragranultiplier fields must satisfy
the classical inf-sup condition proposed by Babuska [1&8]ch usually leads to the need for
stabilization (see [70, 14, 82]). Moreover, additional es of freedom must be added to the
problem. The use of Lagrange multipliers is the basis ofitligious domain methofb2, 63]
(see also Chapter VIl in [61]).
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Recently,hybrid Cartesian/immersed boundary methddse been developed for Carte-
sian grids, which use the grid nodes closest to the boundaenforce boundary conditions
[60, 139, 104]. The method is second order accurate, bues dot guarantee that the distance
between, andz in I' is minimized.

A discontinuous-Galerkin-based immersed boundary meth@idoposed in [93], which
consists in switching elements intersected by the bountiagy discontinuous-Galerkin ap-
proximation and impose the Dirichlet boundary conditiotiersgly. Although optimal-order
accuracy is achieved, the method requires additional degrefreedom.

The target we pose is therefdeimpose the Dirichlet boundary conditions (in an approx-
imate way) without adding new degrees of freedom excepttfiose of the original mesh in
Qn, In such a way that the distance betwegnand« in I" is minimized in a certain nornin
the following Section we describe Nitsche’s method as adjpgtroach to achieve this.

In Section 2.3 we introduce a first modification of Nitsche'sthod, the main advantage
being that there are no parameters to choose and there isaomditioning of the final alge-
braic system due to large factors enforcing the boundargition. This is crucial for general
flow problems in which there is no rule to choose the paranagteearing in Nitsche’s method.
The essential idea is to use the degrees of freedom assbwidte(2r- ., t0 prescribe approx-
imately the boundary conditions, while the discrete versibthe differential operator is only
imposed for nodes ifY;,. The drawback is that the problem obtained is not symmetga éor
symmetric problems, although the problems we are intedtestare non-symmetric. In partic-
ular, we have applied the methods to be described to transi@mpressible flow problems
in moving domains in Chapter 4.

The formulation of Section 2.3 turns out to be accurate, bpedding on the way the phys-
ical boundaryl™ cuts the elements ift;, may lead to ill-conditioned matrices and difficulties
in the convergence of iterative schemes for nonlinear prabl We present a modification in
Section 2.4. In this case, the idea is to solve the problemiarihe domain formed by the ele-
ments insidé€?, and prescribe the boundary conditions using the degrdessafom associated
to the first layer of nodemside(?, that is to say, o();,.

Numerical examples showing the performance of the diffemegthods described are pre-
sented in Section 2.5, and some concluding remarks closehdpger in Section 2.6.

2.2 Nitsche’'s method revisited

Our intention is to consider flow problems and, in particullae scalar convection-diffusion-
reaction equation and the incompressible Navier-Stokeateans. However, for the exposition
it is enough to consider the former, leaving the latter fermlumerical examples.

Let us consider the problem

Lu:=—kAu+a-Vu+su=f inQQ, (2.1)
u=1u onl =09, (2.2)

wherek > 0, a is the advection velocity, > 0, f is a given forcing function and is the given
Dirichlet boundary condition. We assume that the subdofaspolyhedral, and covered by
the domairn,, as explained in Section 2.1.
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Let P, = {K} be a finite element partition d®;, from which we construct the finite
element spac®;, c H'(Q;,) (we will considerV, made of continuous functions). Of x V,
we define the bilinear form

B(up, vn) = k(Vuy, Vou) + (@ - Vuy, vn) + s(up, vp), (2.3)

where(-, -) is the L2-inner productn ©, not in(2;,. In general, the integral of two functiorfs
and f, in a regionw will be denoted by( f1, f2).,. The norm in a spac& will be indicated as
| - ||x, except whenX = L?(Q), case in which the subscript will be omitted.

Nitsche’s method applied to problem (2.1)-(2.2) reads: fipé 1/}, such that

ak*
B(up, vy) — k(Onup, vn)r — k{up, Oyvn)r + T<uh> Up)r
k*
ah (@, vp)r Yy, € Vi, (2.4)

= (f,vn)a — k(u, Opyvp)r +

wherea > 0 is a numerical parametek; a parameter with the same dimensions:gbere
introduced with the only purpose to make the equations déoaally consistent) andlis the
element size, that is to saly,= maxyg hg, with hy = diamK, K € P,,. For simplicity, we
will consider quasi-uniform partition®),.

Itis observed that, apart from the way to impose the boundamgitions, (2.4) is based on
the standard Galerkin method to solve the convectionsiiffutreaction equation. This method
is stable only for high values of the diffusion coefficigntEven though in the examples we
will consider convection dominated flows solved using aiitadal formulation, for the sake
of conciseness the exposition will be developed in the difft dominated case. Likewise, we
will considera constant, for simplicity.

In the following we will try to “rederive” method (2.4). Thiwill allow us to introduce
the modification we propose. Let us consider the splitiig= V.o ® Vj,r, whereV}, , is the
subspace of/, of functions vanishing at the nodes outsidg, including its boundary, and
Vi, the complement, that is, the subspace of functions thatesiceat the nodes in the interior
of ;. According to this splitting, we may split the unknownwas= u;, o + u, r and the test
functions asy, = vs 0 + vp -

Nitsche’s method (2.4) can be obtained from the followingdequations

B(un,0, n0) — k{Ontn0, Vno)r + B(unr, vno) — k(Ontnr, vno)r = (f, vno)a, (2.5)
B(Uh,(), Uh,r) - k<anuh,07 Uh,r>r + B(Uh,l“a Uh,r) - k<8nuh,1"> Uh,F)F = (f; Uh,l">Qa (2-6)

— k{(Onvn 0, uno)r — k(Onn0, Unr)r = —k(Onvnh0, W1, (2.7)
— k(Onvn,r, uno)r — k(Opvnr, unr)r = —k(Opvnr, U)r, (2.8)
ak* ak* ak*

i (Uh,0, Un0)r + 5 (Un,r, Vho)r = T(@ Uh,o)T, (2.9)
ak* ak* ak*

3 (Uh,0, Up0)r + A (un,r, Vp,r)r = T@,Uh,r)r- (2.10)

The first two equations (2.5)-(2.6) are obtained by multipdythe differential equation by, o
andvy, r and integrating by parts. Note that no boundary conditisasraposed, and thus the
solution of (2.5)-(2.6) is not unique. Equations (2.7)8)Zan be understood as a weak form
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of the boundary condition;, = u, weighting this equation by-kd,v;, o and—kd,, v, r. These
two equations are needed to keep the symmetry of the probleen B(uy,, v,) = B(vn, up),
that is to say, whem = 0 (see (2.3)). Finally, equations (2.9)-(2.10) are also iokthas a
weak form of the boundary conditian, = u, weighting now this equation by, o anduvy, r.

Obviously, equations (2.5)-(2.10) are all consistenthie $ense that if,, is replaced by
the exact solution: of problem (2.1)-(2.2) they hold exactly, provided thiswga@n is regu-
lar enough. However, system (2.5)-(2.10) as a wi®keverdetermingdand there are several
possibilities to extract a system of algebraic equatiorth @iunique solution from it. In par-
ticular, Nitsche’s method (2.4) is obtained by adding thgetll the equations. The method to
be proposed in the following section can be understood am#thod obtaine#eeping only
(2.5) and (2.10)In fact, for stability reasons described later it turns wube convenient to
subtract(2.7) from (2.5).

Before describing an alternative to Nitsche’s method, etomment on the role played
by the factoraT“. Suppose that = 0, so thatB is symmetric, and define the function-

als Jy(up,0, unr) = %B(Uh,o + Up,r, uno + unr) — k(On(uno "‘*Uh,l“)a (uno + upr))r —
(f,uno +unrya — k@, Op(uno + upr))r and Jo(up o, upr) = %Huh,o + Upr — ﬂ”%z(p)-
If 3¢, 0,0n.r) dENOtES the weak (Gateaux) derivative of a functional endivection ofv;, =

(vn,0, Up,r) We may write problem (2.4) as

O(on.0vvn.r) (J1(Un0; Unr) + Jo(un 0, unr)) = 0. (2.11)

From this expression it follows that satisfying the Diriehboundary condition musbmpete
with satisfying the differential equatioﬁ’,j—* being the weight of the former. Moreover, since
the normi=/2|| - || .2 is equivalent to the norm df- || ;1.2 in V;, (see [22, 48]), the relevant
weighting is in fact the parameter. The higher the value af, the better the approximation
to the boundary condition at the expense of a poorer apptiom to the differential equa-
tion. However, it is possible to show that the method is st@pld optimally convergent for a
suitable value ofy (in fact, stability is even easier to show than for the mettwooe presented
in the following section). See [83] for a proof, including reageneral boundary conditions
than used here (although for Poisson’s problem). The goddmpeance of Nitsche’s method
has been exploited also in other contexts, such as the itigosif boundary conditions for
discontinuous finite element approximations (see the maigiork in [5] and the extension in
[65], for example), the imposition of transmission cormhts in domain decomposition with
non-matching grids (as in [16, 64], among many others) ar lssome stabilized finite ele-
ment methods for which this method fits nicely [25].

Finally, let us remark that the volume integrals in (2.5)6]2are performed oveR =
O, UQr . Integrals ovef);, are easily computed, but in order to compute integrals Qyer
some care is needed. The simplest approach is to split theeats of()-;,, S0 as to obtain a
grid matching the boundarly, and then proceed to compute the integrals over the regultin
subelements (see [41]). Note that this splitting does rfecathe degrees of freedom of the
problem.
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2.3 A first modification: using external degrees of freedom

2.3.1 The first method proposed

The essential idea of the method we propose first is to useempgtions (2.5) and (2.10)
above. As it has been mentioned in the previous section, atsis convenient, mainly for
the stability analysis, to subtract (2.7) from (2.5). Thtee problem to be solved is: find
Up,0 € Vh,O anduh,p c Vh,l" such that

B(up,0,vn,0) + B(unr, vho) — k(Ontn,o0, Vno)r — k{Ontnr, Uno)T
+ k(Onn,0, Uno)r + k{(Onvn 0, unr)r = (f, Uno)a + k{Onvno, Wr, (2.12)
ak* ak* ak*
A (Wh,0, Vp,r)1 + 3 (Wn,r, vp,r)r = T(ﬂ, UpT)Ts (2.13)
for all v, o € Vi o andu,r € Vi r.
Equation (2.13) can be equivalently written as

S0,0nr)J2(Un0, unr) = 0. (2.14)

From this equation it is clear théte component,, i of the unknown is determined from the
condition that the distance betweep, + u; r and is minimized in the norm df?(T"). Com-
paring this equation with (2.11), it is also seen that now thinimization does not compete
with the satisfaction of the differential equation (in wesdnse). Obviously, the parameter
“—}’j* is here unnecessary, and it has been introduced only to gentipa resulting method
with (2.4).

Let us enumerate four major differences of (2.12)-(2.13hwespect to (2.4):

1. WhenI coincides witho$2,, the boundary condition is imposed exactly (provideg
a finite element function).

2. There are no parameters to be tunﬁé €an be canceled out in (2.13)).
3. The method is non-symmetric, everffis symmetric.

4. The method is not well defined whércoincides witho€;,,.

The first two points are improvements with respect to Nit&hmethod. In particular, they
explain why the approximation of boundary conditions is@émgral better with our approach,
as we have experimented from numerical tests. The third pandrawback from the imple-
mentation point of view only for symmetric problems, and fatthe flow problems we are
interested in. The important issue is point 4. Clearly, whesa 0, (2.13) yieldsO = 0.

In this case, elements outsi€lg, could be eliminated and the case reduced to the first one.
However, this situation may be encountereflif is a domain moving in time insidg,,. In
general, when" is close tooS2;,, we may expect instability problems. Small variationsiin
may yield large variations im,, . This fact will be used to motivate the method proposed in
Section 2.4. It is worth to mention that this type of instaigis are also encountered in other
methods for which modifications are also required (see [139]). We will come back to this
point in Section 2.4.

Precise conditions under which the method is stable areskgd in the following subsec-
tion.
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2.3.2 Stability

In this subsection we prove the following resuftl’ is kept away frono<;, the formula-
tion given by (2.12)-(2.13) is stablAs a consequence, the discrete problem admits a unique
solution.

Proving this fact requires some analytical technicalitied will make us depart from the
line of formulating new methods rather than analyzing thdowever, we believe this conclu-
sion is important and deserves this parenthesis in the ngabas of the chapter.

Preliminary result

We will make use of a general result applicable to coupletesys of variational equations of
the form

ar(ur, v1) + ar2(ug, v1) = i (v1), (2.15)
a9 (U1, v2) + aga(ug, v2) = la(ve), (2.16)

whereu,, v; € Vi, ug, v2 € Vs, a5 is a bilinear form defined olt; x V; and/; a linear form on
V;, a Banach space with norjm||;, 7, 7 = 1, 2. We assume that all the formg are continuous
anda;; are coercive. Le€’;; be the constants defined by the inequalities

an (v, v1) > Cyp |||, (2, v2) > Cagl|val|3,

a12(v2,v1) < Chal|vr]|1 [J2]|2, ag (v1,v2) < Corl|vr]|1 [Jv2]]2-
We will now prove that if
C12C5 < C11C9, (2.17)

then there exists a constatit> 0 such that for alu;, us) € V; x V, there existgvy, vs) €
V1 x V5 such that

B((u1,u2), (v1,v2)) = a1 (w1, v1) + ara(ug, v1) + a1 (ur, v2) + age(ug, va)
> C ([lurlly + [Juzllz) (vills + [[va2l2)

that is to sayproblem (2.15)-(2.16) is stahle

In the following, C' will denote a generic positive constant, not necessargystame at
different appearances. In the case in which (2.15)-(2.@6)es from a finite element approxi-
mation, the constarit’ will be independent of and inequality (2.17) will be assumed to hold
uniformly in h.

Let us start noting that using Young's inequality we have

51 2 1 2
3 el + ol )
5

1
B((ur,us), (0,u2)) > Casllual|3 — Car | =|Jual3 + = llwalli )
2 2/,

Bl(us ), (11, 0)) = Craus]l2 = Cro (
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wheref; andf, are positive constants to be determined. Thus, forany0 we have

B((u1,ug), (w1, yuz)) > (Cll - 0125 —02125 ) [k

(o = a2 = Gz )l
The constant§’;; andCs; must be such that there exists (5, and~ for which

1

011 — 012& — 021— > 0 (218)
20,
Ba 1

CQQ’}/ 021 ’}/ — 012— > 0. (219)
261

Condition (2.18) holds if
20 1 - 201 a9

< ; )
hSTh, T BT om
Condition (2.19) requires then that

a1+ oy = 1.

v>AY P+ B, A:= 70221 B = 70122
’ 4011022042’ 4011022041’
a condition that is possible to fulfill if

1
AB < Z < 012021 < 2011022\/041042.

Sincea; + a, = 1, the maximum of, /a;a; is 1/2, from where the result follows.

Some useful relationships

The next step is to prove some inequalities that will be uaest on. These inequalities make
use of the inverse estimates (see [22, 48]):

C
[onl| 7oy < m”“h”%%w)’ (2.20)

C
190l < pollvnliZac, (2.21)

wherew is any patch of elements @?, (recall that this partition is assumed to be quasi-
uniform) andv, is a finite element function. Because of the assumption oshhaee of’, w
can be also formed by subdomains of the faknm Qr 5, K € Py,.

From these inequalities one can prove the following:

lonr]|* < C5lh||vh rllZaq), (2.22)
[Vonr|* < 05 hHUh,FH%am, (2.23)
0

szpllvnollize) < ClVunoliay,: (2.24)

C
10001 22y < 51—h||VUh||%z(an), (2.25)
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where (see Fig. 2.1)

o = % min dist(z,I"), &, = 1 max dist(x, ).

xE€Lg xel 1

Let us start noting that (2.22) is a direct consequence o$liape of)r;, and thatvy, r
vanishes at the nodes in the interior of this subdomain. T¢tante from" to the nodes of,
can be bounded by, h, wherel < C'is a constant which will be bounded As— 0 because
of the quasi-uniformity of the partition.

The proof of (2.23) is as follows:

vah,r‘sz/ |Vopr|? (vn 1 is zero elsewhere)
"

= 62h?

< 51 /|vhp|2 (by (2.22))

/ el (by (2.21))
Qr in

= (51—h||vh’r||L2(F)

For the proof of (2.24), lef{ be an element crossed byandE = K N I". We have:

/ o2y < 62N / Vom0l
E E

< COZR2 Y| Vool (i
52
< Cé_?hd+1h_d"vvh,OH%Q(KﬂQF,in)’ (by (2.20))

from where (2.24) is obtained from summation overfalthat formI'. Finally, (2.25) follows
again from the shape 6y ;,.

Application to the first method proposed

Finally, we will apply (2.22)-(2.25) to show that conditi¢®.17) holds, and thus the method
given by (2.12)-(2.13) is stable. Let us define the bilineants

) := B(tn,0,0n0) — k{Ontun0, Vno)r + k(Onn0, Uno)r,
ao,r(Unr, Vno) = B(unr, vno) — k(Onunr, Uho)r + k{(OnUn0, unr)r,
aro (uh,0> Up, P) (Uh 0, Un r>

) =

(Uh T, Up F>

@o,0 (Uh,Oa Uh,0

CLF,F(Uh,Fa Un,r
and the norms

lonllg = ElIVonl* + sllonoll®,  lonlle = lloall 2y
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As it has been mentioned in Section 2.2, we assume that tiepnas diffusion dominated.
More precisely, ifa = |a/|, in what follows we assume thatis such that

h 62
k- 0%5—2 > Ok, 0<Cy <1, (2.26)
1

for a constant” introduced next.

We have to check (2.17), and therefore we need to estimat®#reivity constants afy
andar r and the continuity constants @f - andar . We have

aO,O(Uh,Oa Uh,o) = B<Uh,07 Uh,o)
= k[ Vunol]® + sllunoll® + (@ - Vg, unp)
1
= k|| Vunoll* + s|lunol® + /r n- a@“i,o

a
2 k[ Vunoll” + sllunoll® = Sllunollzzy

ah5_§

> K|V unall* + sllunl = CFE [Vunal? oy 2:24)

> Cillunollo,

and therefore the coercivity constant@f, may be taken as

Coo = Cy.
On the other hand, we have
ar,r(un,r, unr) = ||uh,F||%2(r) = |||Uh,F|||%>
and hence
Crr=1.

The continuity constant af; 1 is obtained from the following bounding process:

ao.r(un,r, vno) = k(Vunr, Vupg) + (a-nupr, vho)r
— (upr,a - Vorg) + s(upr, vno)
— k(Onun,r, vno)r + k(Onvn0, unr)r
< k[[Vupr|[ [[Vonoll + allunrl 2y llvnoll 2
+ allunr || IVonoll + sllunrll [[vnoll

+ k|| Onun,r| L2y [|vnol L2y + El|Onvn ol 2y [[un,r | L2
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C
= k‘m”“hrnﬂ(r) IVono| (by (2.23))
Ch/%5
Fallunrllize =7 Vool (by (2.24)
1
+aC8y W2 funpll ey [ Vool (by (2.22))
+ 50620 |Jup | 2oy on o (by (2.22))
C Soh1/?

+ kdl—h Huh,rHLsz Vool (by (2.23)-(2.25))

C
+ k= IVonoll lunrllz2r) (by (2.25)).

5i/2h1/2
This inequality can be written as
aor(unr, vno) < CK (kVoull® + sllonol®) " llun w2, (2.27)
with
1/2 1/2 1/2 1/2
K = k / n CLh52 i CLh51 4 5i/2h1/231/2 I k / (52 k /

+ )
5%/2]11/2 kl/zhl/z(si/z k1/2p1/2 5?/2]11/2 5;/2;11/2

Using (2.26) and the fact th& < 6,9, < 1, from (2.27) we see that we may take the
continuity constant ofi; i as

]{21/2 81/2h
Cor = (1 " _) |
h/25%° L1/2
The bound fowur  is easily obtained using (2.24):

ar,o0(un,o0, Var) < |lunollc2@)llvnrll 2o

C'6yht/?
—WH%IIIB(DHV%OH,
1

from where
52h1/2
CF’O — CW
We are now in a position to check condition (2.17) in our cagech reads:
0 s'2h
C(]’FCI"O = C(S_§ (1 + W) < 007001",1" = Ck (228)

This inequality is satisfiegrovidedd, is small enoughthat is to say]" is sufficiently close
to 0€2;,. This is the result we wanted to prove, and which allows us@Ergntee that problem
(2.12)-(2.13) is well posed in this situation.

In passing, condition (2.28) allows us to observe how stghileteriorates in terms of
41, and also how the rate between reaction and diffusion effeceasured byh?/k, affects
stability.
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2.3.3 Implementation aspects

The purpose of this subsection is to express in matrix fowblem (2.12)-(2.13) and to discuss
some implementation aspects.
Suppose that the unknow is interpolated as

Min Nout

un(@) =Y I (@)US + Y 1 (2) Ul
a=1 b=1
- Iin(m)Uin + Iout(w)Uouta

wherel2 (x) and I’ . (x) are the standard interpolation functions, is the number of nodes
in Q;, (including layerL,) andn,,; the number of nodes in layér_; (see Fig. 2.1).
The objective is to comput&/ ;. As it has been shown, (2.13) is equivalent to the mini-

mization problem (2.14), that is to sdy,,.. can be computed by minimizing the functional
(Ui Up) = / (un() — () = / (I(@)U s+ T (@)U s — ()
r r
Obviously, other options would be possible. In the case wsicler,

0Js
8(]out

=0 = MpU,y = fr— NpUjy, (2.29)
where
M [ L@@, fo= [ L@@, Ne= [ @)
Suppose the matrix form of (2.12) is

Kin,inUin + Kin,outUout - Fin~ (230)

The domain integrals in matrices’;, ;, and K, ..« €xtend only ovef;,. The nodal values
U, are merely used as degrees of freedom to interpalate the subdomait;,,. Inserting
(2.29) into (2.30) results in

(Kin,in - Kin,outMEINF) Uin - Fin - Kin,outMEIfI‘- (231)

This would be the system to solve. However, since makdx is not diagonal, this option is
not feasible unless implemented in an iterative schemeXample of the form
Kin,inUﬁl - Fin - I{in,outl]k_1 (232)

out

MU* = f. — NoUF (2.33)

m?

wherek is the iteration counter.
The most natural option is to solve problem (2.12)-(2.13)p8e matrix counterpart is
(2.30)-(2.29), in a coupled way:

Kin in Kin out Uin Fin
’ i = ) 2.34
|: NF Ml" :| |:Uout:| [fF:| ( )
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It is important to note that this implementation maintaims tonnectivity of the mesh 6t,,,
that is to say, the mesh 6f,, extended with the nodes 6X,,; corresponding to elements cut
byT.

Even though system (2.34) does not offer particular implaateon problems, it could
be interesting to consider the possibility to obtain an appnation of the form (2.29) for
U .. butreplacing Mt by a diagonal matrixThe practical reason for this need is clear. For
example, in a fluid-structure interaction problem, in ondet to duplicate degrees of freedom
only nodal valuegterior to the fluid and the solid can be used when solving the corretipg
problem.

Letx’ . be a node o, corresponding to an element cut ByConsider the edges em-
anating frome? . cut byT', and letl’® . be the path (surface in 3D) formed by the intersection

of these edges with. These intersections are denotedizywith a superscript. In the case of
Fig. 2.1, we would have that

I'l. isthe pathformed by i - x7,

2. isthe path formed by z} - x},

s, isjust zf,

I, isthe path formed by % - x],

[° . isthe path formed by z? - . - 1" - .

When the path is just a point we can complife, by imposing the boundary condition at
that point. In the rest of cases, on each path we have that

uh(w)|rgut = Igut(m)Ub

out

+ Iin(m)Uin.
The idea now is to impose that

: .
s [, (@) — (@) = o.

out

which yields the scalar equation

(/Fb Igut<w)jgut(m>> Uby = /Fb I° (x)u(x) _/ I’ ()T (z) U,

out out

and we can proceed as above, now with a diagonal approximiatid/ .

Considering again the situation in Fig. 2.1, it can be seahwlith the approximation de-
scribed we could easily implement (2.3flthe connectivities were not modified by the approx-
imate imposition of boundary conditions the case of paths of one or two nodes, that is the
case, and (2.31) could be constructedtyial modifications of the element matricddow-
ever, the situation becomes more involved because of tihefpahed byx? - 2 - 0 - L.
The minimization proposed would lead to the coupling of reage, x? , 8 andz! in layer
LQ.

A possibility to avoid the complication described would toeconsider only elemental
paths In the case of Fig. 2.1 that would mean to consider only pathe/o nodes. Possible
ways to choose this path are
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e The longest among the two-node subpaths.

e The closest to the geometric center of the global path.

The first option has been used in a numerical example of Se2t®

2.4 Second approach: using internal degrees of freedom

The method described in the previous section works very ivéllis not too close t@();,.
When this happens, the method becomes unstable and renhediedo be devised. Let us
mention, however, that this instability ot particularly strong. In numerical experiments
it has manifested as a difficulty for convergence in nonlingablems (the Navier-Stokes
equations in our case) and local spurious peaks close talaoies for the values d¥ ., with
small influence on the values bf;,.

2.4.1 Description of the method

The idea of the method described in this sectic isnpose the satisfaction of the differential
equation in the nodes interior tQ;,, and to use the nodes 06f);, to prescribe the boundary
conditions orl". Let us elaborate this idea.

Let us consider again (2.5), which is the weak form of thesdéhtial equation to be solved
tested withuy, o. The spacé’, , where this function belongs may be splitids) = V.1 & Vi o0,
whereV}, ; is the subspace df}, , of functions vanishing o(2;, (at nodes of layer, in
Fig. 2.1) and/, oo the complement, that is, the subspace of functions thatsiceat thanterior
nodes of2;,,. According to this splitting, we may split the unknownwas, = w1 + un,00 and
the test functions as, o = vy, 1 + v 00-

Equation (2.5) can be split as

B(up,vn1) + B(unoo, vn1) = (f, vn1)a, (2.35)
B(up,1,vn,00) + B(tn,00, Un00) — k{Ontn,00, Un00)r — k{(Ontnr, Unhoo)r = (f, Vno0)0-
(2.36)

Recall that integrals are performed o¥&ralthough the integrals in (2.35) are extended only
over (), because this is the support of,. The idea now is to keep (2.35) and to replace
(2.36) by an approximate prescription of the boundary dionb. In order to use only degrees
of freedom of nodes if;,,, let £ be theextrapolation operatoof functions defined on the
elements with an edge in 2D or face in 3D 0ft;, to Qr;,. The boundary conditions will
be approximately imposed by minimizing the functiod&uy, 1, un.00) = || Funi + Eup oo —
|72, thatis, by imposing that

0(0,0n.00) 2 (Un,1, un,00) = 0. (2.37)

Equations (2.35) and (2.37) form the system of equationseofitethod we propose, which
reads: finduy,;, € Vi1 anduy, g0 € Vi, 00 Such that

B(up1,vn1) + B(unoo, vn1) = (f, vn1)a, (2.38)
(Eup.1, Evyoo)r + (Eup00, Evsoo)r = (U, Evpe0)r, (2.39)
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forall v, 1 € Vi1 andwy, g0 € Vi, 00, Where now functions in this last space are defined only on
(%, and extrapolated tQr ;,.

The description of the method is complete up to the definiiidhe extrapolation operator.
In fact, the obvious choice is to extend the local polynomigdansion within the elements with
an edge in 2D or face in 3D a;, to (r 5. Thus, what needs to be defined is only the domain
of the extrapolation. The option we use is described in tHeviing subsection.

A comparison between methods (2.12)-(2.13) and (2.380]2n a one-dimensional case
using linear elements is shown in Fig. 2.2. In this case itassfble to satisfy exactly the
boundary condition;,, = .

—— - Uy
/i h u

L, Lo 3 L,

Figure 2.2: Comparison between methods (2.12)-(2.13) é@ad (2.38)-(2.39) (bottom) in a
one-dimensional case. The blue line denotes the solutiopated in both cases.

Comparing the method proposed in this section with (2.22)3), some remarks need to
be made:

e No boundary integrals have to be computed in (2.38). Thisdtear advantage over
(2.12).

e The instability detected for the first method whHeapproache$X);, does not appear in
this second modification. In fact, the solution is exact whea: 0, (if u is a finite
element function).

e From the numerical experiments to be presented in Sectint2s concluded that
method (2.12)-(2.13) is more accurate than method (233Bj§. However, they have
the same order of convergence (two when using linear elesnent
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2.4.2 Implementation aspects

The first point to consider is the extrapolation region ofdperatorE. There are several pos-
sibilities, but the one we have found most accurate is tHeiahg. Let X' be an element with
an edge (in 2D) or face (in 3D}’ on 0€2;,,. Let K be the cylinder obtained from projecting
F ontol" in an orthogonal way. Therf is defined as the extension from functions defined on
K to functions defined o’ U K. The extrapolation regions obtained this way in 2D using
triangular elements are shown in Fig. 2.3.

Qin LO QF in

Figure 2.3: Domain of extrapolation in a 2D example.

Suppose now that ife;,, the unknowny,, is interpolated as

noo

up(x) = ZIf(w)Uf + ngo(m)Ugo
a=1 b=1
=I,(x)U; + Iy (x)U g,

where I{(x) and I}, (x) are the standard interpolation functioms,is the number of nodes
interior to€;, (up to layerL;) andn, the number of nodes in layér, (see Fig. 2.3).

The objective is to comput& . Equation (2.39) is equivalent to the minimization problem
(2.37), that is to sayl/ o, can be computed by minimizing the functional

Jé(Ub UOO) :/

A (Bup(x) — a(x))? = / (EI(z)U, + EIy(x)Uqy — a(x))”

T
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which leads to

0J5
U o

—0 = MU = foy — NoUn, (2.40)
where
Mo — /F EIY (2)Elo(x), fo = /F EIL (2)i(z), N — /F EI. (2)ETL ().
Suppose the matrix form of (2.38) is

K, U+ KUy = F;.

Combining this with (2.40) it turns out that the final systenbe solved is

Kll K100:| |:U1} |:F1:|
’ ’ = . 241
[Noo Moo | U] = |fuo (2.41)
2.4.3 Blending
Let us write problem (2.34) of the previous section as
K., Ky 0 U, F,
KOO,I KOO,OO KOO,out UOO = FOO ) (242)
0 Nrgo  Mr Uout Jr

where the splitting of the matrices corresponds to thetsgiof U;, into U; andU .

Problem (2.41) is obtained by considering the degrees etltre ofall nodes in layer.,
as parameters to prescribe the boundary conditions, budwte the last equation in (2.42)
can be kept, in which case the system to be solved is

K,, Ko 0 U, F,
NOO MOO 0 UO() — fOO . (243)
0 Nrg Mr| |Ugy fr

Clearly,U ,; depends oV, but not the other way around. If is very close ta)$2;,, the
coefficients inM - can be very small, but this does not affect the unknowns innttegior of
the computational domain and, in fadtf - can be replaced by any matrix without alteriig
andU .

As it has been mentioned and as it will be shown in Sectionr@dihod (2.42) is more
accurate than method (2.43). In order to use (2.42) in albsitns except when instability
problems may appear, we have implemented a blending of met{®42) and (2.43). The
idea is simple. When a node in laykg is detected to be very closelpits degree of freedom
is used to prescribe the boundary conditions, that is toteayrow in the equation fol/
in (2.42) is replaced by the corresponding row in (2.43)sTdtrategy has proved robust and
effective. Since usually only a few equations need to be gbariin our case those for which
the distance of a node ik, to I' is less thard.1h), the overall accuracy obtained is very close
to that of method (2.42).
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2.5 Numerical examples

In this section we present the numerical results obtaindll thie two approximations of the
Dirichlet boundary conditions proposed. As it has been oaetl, we are interested in flow
problems, and in particular in situations in which the Galeformulation used heretofore
may be unstable. This is why we start this section presemtiagtabilized formulation used
in the numerical examples.

2.5.1 Stabilized convection-diffusion-reaction and incmpressible
Navier-Stokes equations

It well known that when the diffusion coefficiehtin (2.1) is small the Galerkin method fails
and stabilized finite element methods need to be used. Itisurgpurpose here to explain the
roots of the particular method we use (see for example [B8})only to state it. The bottomline
is to replace the bilinear form®(u;, v,) and the linear form{ f, v, )q in (2.4) by By, (un, vp)
and(f, vx)stan, respectively, given by

Buan (un, 1) = Blup,va) + Y 7r(—L 0p, Lun)
K

= k(Vuy, Vo) + (a - Vuy, v) + s(up, vp)
+ Z T (EAvy, + a - Vo, — svp, —kAuy + a - Vuy, + sup) g,
K

and

(f,vn)stab = (f>vn)a + Z T (=L 0n, f) K
K

= (f,vn)a + ZTKUCA% +a- Vv, — sop, f) K,
K

where the so called stabilization parametglis given by

-1
k a
TK:<CIE+CZE+S) .

In the numerical experiments presented below we have takend, ¢, = 2. The relationship
betweenry and the stabilization parameter of other formulations eafoloind in [38].

The other problem for which a numerical example is preseédalv is the incompressible
Navier-Stokes equations, which consist in finding a veJoloitild « and a pressurg such that

ou+u-Vu—vAu+Vp=f,
V-u=0,

in Q and fort > 0, where f is the vector of body forces and the kinematic viscosity.
Appropriate initial and boundary conditions have to be aypleel to this problem. They are
described for the particular example of the flow over a cydinghown later.
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Except for the treatment of the Dirichlet boundary conditidor the velocity, which is
similar to the one described in detail for the scalar congeetliffusion-reaction equation, the
space-discrete problem we solve is

(Oyun, vp) + (wy, - Vuy,vn)a + v(Vuy, Vo) — (pr, V- un) + (qn, V - vp,)

+ Z TK<I/A’Uh + uy, - Vo, + th, 8tuh — uAuh + uy, - Vuy, + Vph>K
K

— (f.vnda — Y T (vAv, +wy, - Vv, + Vau, f)i =0,
K

wherew, is the velocity test functiony, the pressure test function and now the stabilization
parameter is computed as
(v lup| ) "
TK = C1ﬁ + co 3 )

where|uy, |k is the mean velocity modulus in eleméiit Any finite difference scheme can be
used to approximate the time derivativau,. In particular, the second order Crank-Nicolson
scheme has been used in the example of Subsection 2.5.3.

Details for the motivation of the formulation described astdbility and convergence
properties can be found in [31]. The most salient propertyhefformulation is thaequal
velocity-pressure interpolations can be used. In padiglinear velocities and linear pres-
sures have been used in the numerical example of Subsectd Rote however that the
pressure interpolation does not affect the approximatesitipn of Dirichlet boundary condi-
tions, since these affect only the velocity. Likewise, aislities of the Galerkin method arising
in convection-dominated flows are prevented using thelgtaliformulation presented.

1

0.5

-0.5

-1
-1 -0.5 0 0.5 1

Figure 2.4: Structured mesh and domdins(green) and?r (red)

2.5.2 Results for the scalar convection-diffusion-reaabn equation

In this subsection we illustrate the behavior of the prodasethods for the scalar convection-
diffusion-reaction equation. The Poisson, diffusionetean and convection-diffusion equa-
tions are solved in a domain enclosed in a circle of radiuB < 1. We choose théold-all
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domainB = (—1,1) x (—1, 1), where a system of Cartesian coordindtes,) with its origin
at the center of the circle has been adopted. A structured ofegyht-angled linear triangular
elements is constructed By h being the length of the edges corresponding to the cathates (

Fig. 2.4).

The Poisson equation

Let us start solving the Poisson equation with= 1, a = 0, s = 0, f = 1 to check the
performance and convergence of the proposed methods.tReselshown in Fig. 2.5 (top
and bottom left). No significative difference between th&lfe:;, obtained with the different

methods can be appreciated, even for the coarsest meshes.
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Figure 2.5: Comparison between the proposed methods. foplevationu,, for the Poisson
equation for M1. Top right: same for M2. Bottom left: cut afpm = 0 for the coarsest mesh
used, withh = % Bottom right: convergence plot ih?(§2) for methods M1, M1’ and M2

The analytical solution for this case is known to be

1
u(z,y) = (R* =" —y°).

Fig. 2.5 (bottom right) shows the errgf8 — us|| 2o, versus the element size As it can
be seen, both the first method described in Section 2.3 @dbdl in the following), and the
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— Nit. alpha = 1e2 —M1
—— Nit. alpha = 1e4 v M2 v
|| —Nit.alpha=1 —<— Nit. alpha = 100 >
10— w1 :
0%
T 10" o)
10°
10°}
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10 : : 10 ? . ,
10° 107 10" 10° 107 10"
h h

Figure 2.6: Comparison between M1, M2 and Nitsche’s methedt: convergence plot in
L?(2) for method M1 and Nitsche’s method with different valueshef parameted:. Right:
convergence plot ii.?(92) for methods M1, M2 and Nitsche’s method with= 100.

second one described in Section 2.4 (labeled M2) show gtiad@vergence, although the
error turns out to be smaller for the former. The modified ieref M1 (referred to as M},
which uses a diagonal approximation of mathikr computed by considering only the longest
elemental paths (see Subsection 2.3.3), shows no sigivéiGator increment with respect to
M1.

In order to compare the performance of the methods propogadNitsche’s method, in
Fig. 2.6 (left) we have also plotted the convergence obthimgng this method with three
different choices of the parameterin (2.4) (takingk* = k), namely,a« = 100, which is
approximately the optimal value found from numerical expents,a = 1 anda = 10000.

It can be observed that the performance of method M1 is supieriNitsche’s method, even
for its optimal case, and that this method is sensitive toctimce of the parameter. This

is aggravated in problems with convection and/or reacfimnyhich k£* (or, alternativelyq)
must be chosen in terms of the advection velocity and thdicgaooefficient. In Fig. 2.6 (right)
we have plotted convergence I3 (952), and therefore the error is due only to the imposition
of the boundary conditions. Nitsche’s method displays amamotone behavior due to the
way the elements cut the boundary of the domain for diffemeeghes. Again, method M1 and
M2 show a similar behavior when only the errors on the boundes taken into account.

Reaction-diffusion

When the reactive terra dominates over the diffusive one it is well known that osditins
in the finite element approximated solutiop appear near the boundary layer. It is thus con-
venient to check how do the proposed methods behave in tlsemqre of thisGibb’s phe-
nomenonkFig. 2.7 showsu, for M1, M2 and the local remeshing strategy described in Sec-
tion 2.1, labeled CD in Fig. 2.7. These results correspotiobgoeaction dominated case, where
k=10%a=0,s=1,f=1.

Although oscillations remain bounded close to the exacit&woi « both for M1 and M2,
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they happen to be greater in the former than in the lattereNkegless, when compared to
results obtained with CD, oscillations in M1 are practigaif the same magnitude as those
obtained for the classical method, while the solution for &f2arly shows a reduction in the

amount of oscillation.

If nodal integration is used to compute the contributiorhef teactive term to the resulting
system of equations, oscillations can be avoided, sincesghdting matrix is ohon-negative
type and thus thaliscrete minimum principles satisfied, that is to say, fgf > 0 the min-
imum of the solution is attained at boundary nodes (thisgiple holds if and only if the
discrete maximum principle does, see e.g. [28]). In thig came of the two methods shows
any oscillation (see Fig. 2.8), and the only difference leetwthem is due to the fact that M2
uses only the degrees of freedom corresponding to the nadé® {);,, domain, while M1
incorporates also the nodes corresponding tdhe domain (this is also the reason why M1
leads to a better approximationig than M2).

Figure 2.8: Reaction-dominated case, nodal integratitavaionu,, for M1 (top left) and M2
(top right). Cut along; = 0 for the coarsest used megh= %) (bottom).
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Convection-diffusion

Fig. 2.9 shows the behavior of methods M1 and M2 in the commeatominated case, where
k=107% a = (1,0),s = 0, f = 1. The stabilized formulation described in Subsection 2.5.1
has been used. Both methods M1 and M2 perform well, althoggimascillations are greater
for M1. This time, however, oscillations for M1 are substalhy greater than those which ap-
pear when applying Dirichlet conditions in boundary fittmgshes CD, with the local remesh-
ing strategy described in Section 2.1. Again also, M2 shess bscillations than CD.

Figure 2.9: Convection-dominated case. Elevatighor M1 (top left), M2 (top right) and CD
(bottom left). Cut along/ = 0 for the coarsest used me§h= %) (bottom right).

Despite the different behavior that both methods show itthendary layer, the difference
between the two methods in thig, domain is practically negligible.

The local oscillations appearing in M1, altogether withfdnet that the splitting of elements
in the (2;, domain can lead to an ill-conditioning of the resulting systof equations wheh
is too close ta)();,, can prevent convergence in nonlinear problems. This ig windivates
theblending strategyproposed in Subsection 2.4.3.
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2.5.3 Results for the incompressible Navier-Stokes equatis

In this subsection we analyze a numerical example involtiregflow past a cylinder. Again
the formulation described in Subsection 2.5.1 has been used

Thehold-all domainis the rectanglé? = [0, 16] x [0, 8], from which a cylinder of diameter
D = 1 and centered at (4,4) is extracted. The velocity at 0 is prescribed to (10,0), whereas
aty = 0 andy = 8 they—velocity component is prescribed to 0 and theomponent is left
free. The outflow (where both the andy-components are free) is = 16. The Reynolds
number is 100, based on the cylinder diameter and the pbestimflow velocity. The finite
element mesh employed consists of 10000 linear trianglles.Arank-Nicolson scheme has
been used for the time integration, with a time step §ize 1.

Velocity contours and pressure contours at 200 obtained using methods M1 and M2
are shown in Fig. 2.10. The important issue is to observeldbanhdary conditions are well
approximated both using M1 and M2. The evolution of {aeelocity component at point
(10,4) is shown in Fig. 2.11. It can be observed that both methodd gisimilar amplitude,
the frequency obtained with method M2 being slightly snralléne dimensionless period of
the oscillations is found to b& = 6.11 for method M1 andl” = 6.5 with method M2.
Consistently with the results for the convection-diffusi@action equation, method M2 seems
to behave always as more dissipative than method M1.

2.6 Conclusions

In this chapter we have proposed a way to prescribe appraeiynRirichlet boundary con-
ditions for immersed boundary methods. The main idea is #oassdegrees of freedom for
this imposition those associated to the nodes adjacenetbdbndary of the computational
domain. In a first approach, these nodes are taken in tha@xtéthe domain, but this may
yield instabilities (mild and unusual) that can be overcdiye@sing interior nodes and extrap-
olation. In any case, the degrees of freedom are computedriyniming the distance of the
unknown to the boundary datum in tiié norm of the boundary.

The method proposed turns out to be accurate (second ordiexefar elements) and robust.
We have checked its numerical performance in a variety o&siins in flow problems, paying
particular attention to problems that require stabilati

From the implementation point of view, the method satistiesrhain design condition of
using only the degrees of freedom of the mesRpfThis is particularly important in the case
of domains with moving boundaries in which a single fixed misshsed during the whole
calculation, which in fact is the motivation that led us tonfmlate the method proposed.
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Figure 2.10: Incompressible Navier-Stokes equationsutieel at¢ = 200. Left: method
M1, Right: method M2. From the top to the bottom: velocity mtaj contours of velocity
x-component, contours of velocifycomponent, pressure contours.
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Figure 2.11: Incompressible Navier-Stokes equations|ufem of they-velocity component
at point(10, 4) for methods M1 and M2.



Chapter 3

A symmetric method for weakly imposing
Dirichlet boundary conditions in
embedded grids

In this chapter we propose a way to weakly prescribe Dirtdid&indary conditions in embed-
ded grids. The key feature of the method is that no large pepalameter is needed in order
to ensure stability and that it is symmetric for symmetriolgems. In the Poisson problem
this is achieved by introducing an additional element-aiigimuous stress variable. Additional
terms are required in order to guarantee stability in thevection-diffusion equation and the
Stokes problem. The proposed method is then easily exteiodbeé transient Navier-Stokes
equations.

3.1 Introduction

In this chapter we propose a new method for weakly imposimgBlet boundary conditions in
embedded grids. In contrast to the method presented in thpt&h2, the equations imposing
boundary conditions need tmmpetewvith the ones enforcing the variational equation.

Several variations of Nitsche’s method for weakly impodiogindary conditions can be
found in the literature [64, 50, 108]. These methods are sgtrinfor symmetric problems,
and do not need additional degrees of freedom to impose loymdnditions. However, a
user defined stabilization parameter is required. Choasiisgstabilization parameter is not
straightforward: if the parameter is not large enough treble@m becomes unstable, if it is
too large, the resulting system of equations becomes ntitmned. This drawback can be
addressed by using the inverse estimates in order to defneitimum value for the stabi-
lization parameter (see [44] in which the stabilizationgmaeter for the heat transfer problem
is studied). However there are still some non-dimensionatants to be defined in the inverse
estimates, and it remains to be seen how to apply the methwzhteymmetric problems such
as the convection-diffusion equation.

A list of desired properties for our strategy for imposingi€hlet boundary conditions in
non-matching grids can be extracted from the previouslgrilesd methods:

e Optimal convergence order should be obtained.

33
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¢ No additional degrees of freedom should be needed in ordmftyce boundary condi-
tions.

e The method should be free of user-defined penalty or stabihiz parameters which
might ill-condition the resulting system of equations.

e The resulting variational form should be symmetric for syetne problems, but also
capable of dealing with flow problems such as the conveditfnsion or the Navier-
Stokes equations.

The starting point of the strategy we propose is the methesgnted in [58]. This method
imposes Dirichlet boundary conditions weakly but does equire of any user defined sta-
bilization or penalty parameter. In order to do so, a hyloishulation which introduces an
additional element-wise discontinuous stress field is udedever, this additional stress field
is only required in the elements which are cut by the immels®adary, and since it is dis-
continuous across inter-element boundaries, it can beecwed prior to solving the resulting
system of equations. The method shows optimal order of eganee and satisfies the design
condition of not needing additional degrees of freedom oheoto impose boundary condi-
tions. However, it is non-symmetric even for symmetric peots.

In Section 3.2 a symmetric version of the method propose88hfpr Poisson’s problem
is presented. The main idea is again to use a hybrid fornomatith an additional element-
wise discontinuous stress field. However, some additi@rai$ are added so that the method
is symmetric. A stability analysis is performed in order tsere that the method is stable
without the need of user defined penalty parameters. In@e8tB we extend the method to
the convection-diffusion equation. Additional terms agquired to further enforce boundary
conditions in order to guarantee the stability of the methothe case of convection dom-
inated flows. The stability analysis shows that boundarydit@ns can be given a different
treatment in the inflow and the outflow boundary, which jussifihe chosen weighting term
for the boundary conditions enforcement. In Section 3.4 aad dith the treatment of bound-
ary conditions in the case of the Stokes problem, and thdistadf the proposed method for
this particular problem is shown. Additional terms whicticene the velocity in the direction
normal to the immersed boundary are required to keep the ggmmof the problem. Finally,
in Section 3.5 we put together the terms which define our nufitiothe convection-diffusion
equation and the Stokes problem and we describe the striat@gypose boundary conditions
in the transient incompressible Navier-Stokes equatidomerical examples illustrate the be-
havior of the proposed method in a number of situations ini@e8.6 and some conclusions
close the chapter in Section 3.7.

3.2 A symmetric method for Poisson’s problem

In this section a symmetric method for imposing boundarydatons for Poisson’s problem
is presented. In the following sections the method will beerded to other symmetric and
non-symmetric problems.
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3.2.1 Problem statement

Let us consider the problem
—kAu=f inQ, (3.2)
u=u onl =09, (3.2)
wherek > 0, f is a given forcing function and is the given Dirichlet boundary condition.
We assume that the subdomaélns polyhedral, and covered by the dom&ip, as explained
in Section 3.1.

We can now consider a hybrid two-field formulation in which iw&oduce an additional
flux unknowne to the previous problem. The problem can now be written as:

—kAu=f in§, (3.3)
%a’ =Vu inQ, (3.4)
u=u onl =09, (3.5)

3.2.2 Weak form

Let P, = { K} be a finite element partition &¢t,, from which we construct the finite element
spacel,, ¢ H'(Q) (we will considerV;, made of continuous functions) asti c L?(2;,)?
(we will considerS;, made of element-wise discontinuous functions). Our symmearia-
tional form of the problem consists of finding € V}, ando), € S;, such that:

1 1
k(Vuh, Vuh) — <0’h . ’I’L,Uh>1" + E(vao-h) — Ek)(VUh, Vuh) = <f, Uh>Q, Yy, € Vh,

(3.6)
1 1 i
—%(Th,O'h) + E(Th,Vuh) — <’Th . n,uh>p = —<Th . ’I’L,u>p, VTh - Sh
(3.7)

wheren is a free parameter for which we will propose an expressidhearfollowing sections.
Note that in equation (3.6) we have used thdield only in the terms corresponding to the
fluxes. Here and below;, -) denotes thel.? product inQ. In general, the integral of two
function g, andg, over a domainu will be denoted by(g;, g2).., the L?(w) inner product by
(). and the norm in a function spaceby || - || x, with the simplificationg] - || z2o) = || - ||
and(-,-)q = (-, ).

Note that there are four overlapping, non-independentteansain the previous variational
form which are added together, withplaying the role of the weight assigned to each of the
equations:

k(Vup, Vuy) — (o -, op)r = (f, vn)a, (3.8)
1 1
E(Vvh, o) — Ek(vvha Vuy) =0, (3.9)
1 1
_%(Tm on) + E(Tha Vuy) =0, (3.10)

—(Th-n,up)r = —(Th - M, U)r, (3.11)
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(3.8) is weakly enforcing (3.3) tested againgt (3.9) and (3.10) are weakly enforcing
(3.4) tested again%thh and—%rh respectively, which corresponds to the least squares min-
imization of the functional:

1
Ji(up, o) = %Hah — kVuy % (3.12)

Finally, (3.11) is weakly enforcing (3.5) tested against, - n. Note that the main difference
between the presented method and the method described]iwifie® applied to Poisson’s
problem is (3.10), which does not appear in [58], and is tha tehich makes the presented
method symmetric.

Let us remark that the volume integrals in (3.6)-(3.7) arégumed over2 = i, U Qr;,
as explained in Chapter 2.

3.2.3 Stability

In this subsection we prove that the formulation given bg)83.7) is stable, and as a conse-
guence has a unique solution. We define the norm:

k 1
l(w, 0)II* = k|| Vull* + > llullz ey + Zlell, (3.13)

wherelh is the element size. For simplicity we will assume tRatis a uniform finite element
partition. We define the bilinear form ai,, S,] x [V4, Si):

1 1
B([up, on), [vn, Th]) =k(Vuy, Vop) — (o - n,vp)r + E(Vvh, o) — Ek(vvha Vup)
1

1
— %(Th,ﬂh) + E(Th,Vuh) — <Th . n,uh>p.

(3.14)

We now suppose thdt, and S, are such that the following conditions hold for all the
elements cut by the boundary

Vvh € Vh E|Th € Sh| ||’Uh||%2(p) 5 <'Th . ’I’L,'Uh>p + 60h||Vvh||2, (315)
I 7all2) = lvnll2 ), (3.16)

whered, is a non-dimensional constant, and we have used the notptipn < || B||y if there
exists a constar@@ such that| A||x < C||B||y. In the case of a equal interpolation figr and
Sy, and straight intersection @f with the elementsr;, can be defined as:

Th = NUp, (3.17)

wheren is supposed to be constant in the part of the boundary camelépg to each element.
In the case of a linear interpolation fb}, and piecewise constant interpolation fgy, which

is the situation of the numerical examples, we can definm each element cut by the domain
boundary as:

Th = anmSgr(’U]m), (318)
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whereuy,,, is the mean value af;, in each element and,,, is the square root of the mean value

of v? in each element:
i = fK Uh) Vam = fK Ulzz.
Jil V Jic1

(3.16) holds from the definition of,. (3.15) holds forr; = nuv, since for linear elements:

(NUm - 7, V)1 = (Vim, Vi) (3.19)

On the other hand Schwarz inequality states that:

)\ 2 )\ 2
Joo= () (L)
K K K
which, if we takef = v, andg = 1 allows us to state:
Vgqm 2 Ulm-
If we take f = —v;, andg = 1 we can state:

Vgm 2 —Ulm,

which impliesvg, > |uim|. Taking into account that,,, > 0 we can see that:

<nvqmsgr(vlm) : n>F = quSgr(Ulm) / o

K
N / 1> [om? / L= (oo, (3.20)
K K

which demonstrates that (3.15) holds for the definitionpfin (3.18) in the case of a linear
interpolation space for;, and elementwise constant stressesSior

We take[vy,, T1,] = [up, —o), — %kﬁ-h], wheret, is the counterpart o, in (3.15)-(3.16),
h is the element size andis a dimensionless constant to be defined. The followingiogla
holds foruy,:

lunllZ ey ShllunllZamary + B2 IVunllza ). (3.21)
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We have:

B([uh,ah], [uh, —Op — Ek%h])

:k(Vuh, Vuh) — <0’h n uh>1" + — (Vuh, O'h) — —k(Vuh, Vuh)

1 1
+ —(on,0n) — —(on, Vup) + (o - 1, up)r
nk n
N k k
+ %(Thao'h) - %(Tm Vup) + %(Th C T, Up)T
1 1 Bk
21— 5)k!\vuh||2+%||0h||2 ||uh||L2(F

k
Dol - %Huhuuwhn — Bk

1 1 Bk

> (1= k| Funll® + — [l + ||uh||m
B e B AR : :
ol = Sl = 2l — SE |l — k][ Vs

1 Bk Bk
> (1-2 - (5 +50))k’\vuh||2+<%——> ol + 2 a3y — D o

1 1 1. Bk
(1 -— =85 +<so>) k[ Vun* + <_ - i) loall* + (1 - —>6 lunllzem).

kn  2kn
(3.22)
Imposing:
1-1
n>1, [ <min (%,2) , (3.23)
and taking into account that:
I, —n — R =KVl + ~ felBaey + Tl = o0 —
<Kl + ElunlBay + ol + 272
KVl + oy + 1 lonl? + 2 i ol
SO+ ) IVl 4 (1 8) ey + 7l
(3.24)
we obtain the result we wished to prove:
Theorem For all [uy,, o}] there exis{uy,, 7] anda > 0 such that:
B(lun, o4); [vn, Th]) = al|(un, op) [l (vn, 7). (3.25)

We have now demonstrated that our symmetric bilinear forrstable for the Poisson
problem for anyn > 1. We consider. = 2 in the following.
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3.2.4 Implementation and comparison to Nitsche’s method

A key feature of the presented method is that since the disddss discontinuous across in-
terelement edges, it can be eliminated from the final equsitid/e will show in this section
that after eliminating the stress variables some of thegeancel out, and the final expression
of the terms to be implemented is very similar to that of Niss method, but with the im-
portant feature that no penalty parameters need to be ¢stinsince we have already found a
value forn for which the method is stable.

Let U andX be the arrays of nodal unknowns@f ando;, and let us define the matrices
K., K,,, K,, andK,, related to the weak form integrals:

K, - U which comes from the term- & (Vuy,, Vuy,),

. 1

K, - X which comes from the term- _k(Th’ on),
n
. 1

K, - U which comes from the term- — (7, Vuy,),
n

. 1
K, - ¥ which comes from the term- —(Vuy,, 03,), (3.26)
n
as wellasGz ., G,u, g,; and f:

G, - X which comes from the term- (n - o, v;,)r,
G, - U which comes from the term- (n - 71, up)r,
g, Which comes from the term- (n - 73,, @)r,
f which comes from the term- (f, v,). (3.27)

The problem written in matrix form is:
(1_%>Kuu Kuo+Guo U o f
Kot Go Koo |37 |gsa) (3.28)
We can compute the fluxes as:
Y =K, (~(Kgu+Goi) -U-+g,a) (3.29)

In elements cut by', K. is block diagonal, and therefore easy to invert due to theetd-
wise discontinuous stress approximation. This allows tmglensation of the stress unknowns
at the element level and we are left with only the originalmmkns of the problem:

1
(1= ) K = (Guo + Ko K 5y (Ko + Gou)] - U = [f = (Guo + Kuo) K 59,4,

(3.30)
G2

uu?

We now define the matricas?

uu?

G, and the vectorg,; andg?.:
G. - U which comes from the term- k(n - Vuy,, v,)r,
G?,, - U which comes from the term- k(n - Vo, up)r,
G:' U which comes from the term- k%(
9. Which comes from the term- k(n - Vuy,, u)r,

{Un, U)r, (3.31)

Uhyuh>1“7

g.. which comes from the term- k%
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We will now see that the following equalities hold:

1.

1
~-K,,-U=-|K,K,!K,,|-U. (3.32)
n

Let us check this. IS, is taken to be piecewise-discontinuous and rich enough we ca
deduce thatK ! K ,,] - U arises from the term :

—]{?PS}L(VUh) = —k:Vuh, (333)

where Ps, is the L? projection into the stress space. And we can see now that
~[K.. K, K, U arises from:k(Vv,, Vuy) , that is to say, is equal toK,,, - U.

2. Similarly:
G2, U=—[K,K,G,,] U,
9ui = [ KuK 5904 (3.34)
3. and:
G, U=-[G.,K, K, U, (3.35)

Taking these equalities into account we can write the métrix (3.30) as:
K+ Gy +Gh — GuoK G U = [f + g0 — Guo K 59,4 (3.36)
Let us now write Nitsche’s method for Poisson’s problem,ckhs:

k(Vup, Vo) — k(Opun, vp)r — k(Opvp, up)r + kg@h, Up)r

h
@)
- <f7 Uh)Q - k<anvh7 '&)I‘ + kﬁ<ﬂ7 Uh)l“, (337)
which we can write in matrix form as:
[Kuu + Giu + Giu + Ggu] : U = [f + guﬁ + ggﬁ]‘ (338)

We can conclude that the only difference between the predamethod and Nitsche’s
method is that we have replaced:

G, . U andg;,, (3.39)
by:
-G.,K;!G,,-Uand - G,,K.'g,.. (3.40)

We end up with a symmetric method which is identical to Nitssimethod (for a rich enough
discontinuous stress field), except for the so called pgmatm. The main advantage of our
formulation is that no large penalty parameter has to be usedler to ensure stability since
we can define a value farfor which the method is stable. Note that the penalty tern(3.80)
involve boundary terms, whereas in (3.40) they involve nadlntegrals.
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3.3 Introducing convection

3.3.1 Problem statement

In this section we deal with the convection-diffusion egu@atThe problem to be solved is no
longer symmetric, and additional terms are needed in oodensure the stability of the final
weak form. The problem we are considering in this section is:

—V-.-o+a-Vu=f inQ, (3.41)
%a =Vu inQ, (3.42)
u=u onl =0Q, (3.43)

wherek > 0, a is the advection velocityf is a given forcing function and is the given
Dirichlet boundary condition. We have already used the tila formulation presented for
Poisson’s problem.

3.3.2 Weak form

The variational form of the problem consists of findimge V), ando), € S, such that:

1 1 1
(1 — E>k(vu}” Vvh) — (O’h ‘N, Uh>1“ + (CL . Vuh,vh) + g(Vvh, O'h) + i(avh,uhﬁ

1
= <f7 Uh)Q + §<avh7 ﬂ)rv \V/'Uh € th (344)
1 1
—%(Th,ﬂh)—i-E(Th,vuh)—<Th~n,uh>1":—<7'h~n,ﬂ>p, VThESh (345)

Note that in the previous weak form we have replaced (3.8):wit
k(Vup, Vup) — (on -, on)r + (@ - Vg, vn) = (f, vn)a, (3.46)
and we have added:
1 1 _
§<Owh, Up)r = §<@Uh,U>F, (3.47)

which is weakly enforcing (3.3) tested agaifsf,. We will see how to define in the following
sections.

It is observed that, apart from the way to impose the boundangitions, (3.44)-(3.45)
is based on the standard Galerkin method to solve the coomediffusion-reaction equation.
This method is stable only for high values of the diffusiorfficient k. Even though in the
examples we will consider convection dominated flows solv&dg a stabilized formulation,
for the sake of conciseness the exposition will be develapede diffusion dominated case.
Likewise, we will consider constant, for simplicity.
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3.3.3 Stability

In this subsection we prove that the formulation given byl43-.(3.45) is stable, and as a
consequence has a unique solution.
We define the bilinear form oV}, Si] x [V, Sh:

1 1
Bc([uh, O'h], ['Uh, Th]) :(1 — E)k(Vuh, Vvh) — <O’h N, Uh)F + (a . Vuh,vh) + E(Vvh, O'h)

1

(avp, up)r — %(Th, on) + E(Th, Vup) = (Th -, up)r

N —

_l’_
(3.48)

Taking[vy, T4 = [up, —op — %ki—h], where we have definesgl, as in the previous section,
we have:

Bc([uh, O'h],[uh, —Op — Ek%h]) =

1 1
:(1 — E)k;(Vuh, Vuh) — <O'h n, uh>1" + (CL : Vuh,uh) + E(V’U,h, O'h)
1 1
(aup, up)r + E(Uh’ o) — E(Uhyvuh) +{on -1, up)r
- k. k.
E(Th,(fh) — %(‘rh,Vuh) -+ 7<Th . ’n,uh>p

1 3 13 1.8k
1= 1 = B+ ) KVl + (= g ) ol + (1= 25 Tl

kn  2kn h
1 1
§/Fn-aui+§/raui

1 3 2 1 5 2 1 5]{: 2
1= = B+ ) ) KVl + (= o ) ol + (1= 1) Tl

(3.49)
where the same steps as in (3.22) have been carried out.
From here we can deduce that, as long as the following relaidds:
a+a-n >0, (3.50)

then:

Theorem For all [uy,, o ]there existv,, 7,] anda > 0 such that:
B([un, o], [vn, 7)) = ol (un, op) || (on, 72 (3.51)
Taking into account (3.50) the obvious definition fois:
a=—-a-n, fa-n<0
a =0, otherwise (3.52)

The definition of the weighting termis very similar to the one used in the weak imposition
of boundary conditions in [15], the main difference beingttim our case it is accompanied
with a 5 factor.
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3.4 Extension to the Stokes problem

In this section we extend the previous ideas to the Stokeslgmg for which we obtain a
symmetric method again. Once the method is defined for theeStaroblem we can deal with
the Navier-Stokes equations just by putting together tédhmaulation presented in Section 3.3
the one in the current section.

3.4.1 Problem statement

Let us consider the three-field formulation for the Stokesbfam:

—vAu+Vp=f in €, (3.53)
V-u=0 in Q, (3.54)
l0' =Vu in €, (3.55)
1%
u=1u onI' = 09, (3.56)

wherer > 0, f is a given forcing function and is the given Dirichlet boundary condition.
Note thato- only accounts for the deviatoric part of the pseudo-ste@se could also formu-
late the method in terms of the strain rate terigou).

3.4.2 Weak form

Let us consider the finite element spadgsc H'(2,)?, Qn C L*(Q,) (we will consider
Vi, andQ;, made of continuous functions) arftf ¢ L?(€;,)?*? (we will considerS, made
of element-wise discontinuous functions). As stated inpite¥ious chapter the standard finite
element approximation of the Stokes problem is not stablarficarbitraryu, p interpolation.
This is the reason why we add stabilization terms to the waigiveak form of the problem,
which allow us to use equal interpolation spaces for vejoaitd pressure. Our stabilized
symmetric variational form of the problem consists of firghy, € V},, p, € Q) ando), € Sy,
such that:

(1= (s, Von) — (V-3 00) — (o7, 00)e + (- o, i
_ Z T (VAY,, VAU g + Z T (VAU V) ik + %(V'vh, o)
K K
= (frona+ > Tk(WAvy, fk, Yo, €V, (3.57)
K
—(qn, V - up) + ZTK(V%, VAU ) — ZTK(V%, Vpn)k + (qn, - up)r
K K

= — ZTK(V%, P+ (g, n-a)r, Vg, € Qn, (3.58)
K

1 1
—E(Th,ah)—l—E(Th,Vuh)—<Th~n,uh>p:—<7'h~n,11>p, VThESh (359)
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In this terms(-, )k = (-,)2(x) represents integrals over each element, and we define the
stabilizing parametery as:

T = (q%)_l , (3.60)

in each element, wherk is the element size. For the numerical experiments we h&enta
C1 = 4.

Note that there are several overlapping dependent egsaitiothe previous variational
form:

v(Vuy, Vo) — (V- v, pp) — (oh -, op)r + (n-vp, pr)r = (F, vn)as (3.61)
- Z T (VAL VAU, K + Z T (VAL V) = Z Tk (VAvy, fk, (3.62)
K K K

1 1
E(V’Uh, O'h) - EV(Vuh, V’Uh) = O, (363)
—(qn, V - uy) = 0, (3.64)
Z TK<VQh7 VAuh)K - Z TK(VQM vPh)K = — Z TK(th, f)K, (365)
K K K
{qn,m - up)r = (qn,n - w)r (3.66)
1 1
——(Th,0n) + —(Th, Vup) =0, (3.67)
ny n
—(Th - n,up)r = — (75 - M, W) (3.68)

(3.61) is weakly enforcing (3.53) tested againgt (3.64) is weakly enforcing (3.54) tested
against—q;,. (3.63) and (3.67) are weakly enforcing (3.55) tested aagakianh and—%rh
respectively. (3.68) is weakly enforcing (3.56) testedasta—7, - n.

(3.66) is weakly imposing (3.56) tested agaiggt. This term is added in order to keep
the method symmetric and also in order to be able to provdisgab

Finally (3.62) and (3.65) are the stabilizing terms for thiek®s problem, which are inde-
pendent of the way boundary conditions are imposed.

3.4.3 Stability

In this subsection we prove that the formulation given by T73(3.59) is stable, and as a
conseqguence has a unique solution. We define the norm:

v h? 1
I(w,p. o)|I” = v||Vul® + %||u||2L2(F) + 7HV29H2 + ;||0'||2- (3.69)
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We define the bilinear form ofV},, Qn, Si] X [Vi, Qn, Si):
BS([uh7ph7 o-h]u ['Uh, qh,s Th]) =
1
+(1— E)V(Vuh, Vo) = (V- vp,pr) — (0 -, vp)r + (1 O, Pr)T — ZTK(VA’UM vAuy)
K
1
+ ; TK(VA’Uh, Vph)K + g(V'uh, O'h) — (qh, V- uh) + ; TK(VC]h, I/A’U;h)](

1 1
— ZTK(th, Vph)K -+ <qh, n- uh>p — E(Tm O'h) + E(Th’ V’U,h) — <Th . n.uh)p (370)
K

We now suppose thaf, and.S,, are such that the following conditions hold for all the eletse
cut by the boundary':

Yo, €V, 31, € S ||’UhH%z(p) S (Th e myop)r + 0R||Vorll?,  ITellza) = okl 2
(3.71)

Taking[vn, qn, Th] = [wn, —pn, —0H — %ui-h], wheret, is the counterpart o, in (3.71),
we have:

B*(lup, pn, o), [Wh, —pp, —OH — EV":h]) =

1
+(1— E)V(Vuh, Vuy) = (V- up,pr) — (oh - 1, up)r + (1 wp, pr)r — ZTK(VAW“ vAuy)
K

1
+ ZTK(VAum Von)k + E(V’uh, on)+ (pn, V- uyp) — ZTK(VZ% vAu) g
K K

1 1
+ ZTK(VPh,Vph)K — (pr, - up)r + — (o, 04) — —(oh, Vuy) + (o -, up)r
% nr n
- v, _ vV, _
+ %(Tmﬂh) — %(vauh) + %(Th “M, Up)T
1 pv
> ( Lol +50)> ATl = Sl + (= D el
1 B
2 e 2
L O i
1. 06y
> (1= 2 = B +6) = €1 ) IVl + (1= )5l
2 1 5 2
o+ (L = LY el (3.72)
v vn 2un

where( is such that, making use of the inverse estimates:

> rrlvAu i < Cuvl| V|, (3.73)
K



46 Chapter 3. Weak Dirichlet boundary conditions in embeddé&tbg

andC; is defined asg- in (3.60). Imposing:

1-1
n>1, [ <min (7",2> , (3.74)
(% + do)
we can now define the constant:
1 3 1 1
aOZmin<1___5(_+50)_017027__£71__)7 (375)
n 2n n 2n n

which is positive for a sufficiently small stability pararaet, . We have now proved that:

B(fun. pron] [ —pn —0 — Svml)) Z ooll(wnpn o). (376)
We now take into account that:
B . k h? 1 B .
I (wn.pr, —on — EkTh)HP = E[[Vun|* + EHuh||2L2(F) + 7HVPh||2 ol —on— Elﬂ'hH2
k h? 1 k .
<k|[Vau|® + EHuhH%w) + 7||W?h”2 + EHUth + =517l
k h? 1 k
=k|[Vun|® + EHuhH%w) + 7||W?h”2 + EHUth + ﬁ”uhﬂz

k h? 1
Sk + B)[Vunl® + 5 (14 8°) lwnllzay + —IVell* + £llonll,

h
(3.77)
which allows us to obtain the result we were looking for:
Theorem For all [uy,, p, o] there existvy,, g,, 7] anda > 0 such that:
B([wn, pn, 1], [Vn, qn, Th]) > all(wn, pry o) 1 (Vs gn, )l (3.78)

3.4.4 Implementation and comparison to Nitsche’s method

Equalities similar to (3.32)-(3.35) hold also for the Stekgoblem. We can now write down
the weak form of the problem as it results if Nitsche’s metieodsed to impose boundary
conditions, which is:

v(Vuy, Vo) — (V- v, pp) — v(Vuy, - n,vp)r — v(Voy, - nyup)r + (0 v, pp)r

o
— Z T (VA vVAUL) i + ZTK(VA’U}L, Von)k + Vﬁ(uh, V)T
K K

&
= (fiona+ Y iAoy, fi — (Vo - n, @) + v (U, vp)r, Yo, € Vi, (3.79)
K
~(qn, V- wn) + Y 7 (Van, vAu) e — > 7x(Van, Vpn)k + (qn,m - p)r
K K

=— ZTK(VC]M fg +{qn,n-u)r, Vg, € Qy. (3.80)
K
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Making use of (3.32)-(3.35) we can conclude that after casohg the stress field at the el-
ement level, the presented method is very similar to Nitscimethod, the main difference

being in the definition of the so-called penalty term, for @hwe do not need a large penalty
parameter in order to ensure stability.

3.5 Transient Navier-Stokes equations

The proposed method for imposing boundary conditions irtrdresient Navier-Stokes equa-
tions consists simply in putting together the terms appgdan the convection-diffusion equa-
tion with the ones in the Stokes problem. As in the Stokeslprola stabilized formulation
is required so that equal interpolations for the velocitg #me pressure can be used. More-
over, additional stabilization terms are added so that wedesl with convection-dominated
problems.

3.5.1 Problem statement

Let us consider the three-field formulation for the transiavier-Stokes equations:

ou—vAu+u-Vu+Vp=f in €, (3.81)
V-u=0 in €, (3.82)
l0' =Vu in €, (3.83)
1%
u=1u onI" = 09, (3.84)

in 2 and fort > 0, where f is the vector of body forces andthe kinematic viscosity and
d,u is the local time derivative of the velocity field. Appropeanitial conditions have to be
appended to this problem.
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3.5.2 Weak form

The variational form of the problem consists of findiag € V,, p, € Q;, ando;, € S, such
that:

1
(vn, un) + (1 — E)V(Vum Voy) + (U, up - V) = (V- vp, pr) — (0, vp)r
- vppu)r + Y T (VA + wy - Vo, Oy — vAW, + g, - Vu, + Vi)
K

1 1
+g(V'vh, O'h) + §<CL’U}L, ’U,h>p

1
= (fion)a + Y T (VA +uy - Vo, i + lavn, e, Vo, € Vi,
K
—(qn, V- un) + Y 7 (Van, Oy, — vAW, + wy - Vg, + Vi) i + (gn, - w)r
K

= - ZTK(V% g+ {g,n-uwr, Vg € Qn,
K

1 1 _
—E(Th,dh) + g(Th, Vuy) — (T4 - n,up)r = — (14 - n,a)r, V7, €S,

(3.85)
and now the stabilization parameter is computed as

-1
v |uh\K
TK = (Clﬁ +C2T) )
where|u,, | is the mean velocity modulus in eleméiit The stability constants are defined as
¢, = 4 andcy = 2. Any finite difference scheme can be used to approximatertiederivative

&uh.

3.6 Numerical examples

3.6.1 Convection-diffusion equation

In this subsection we illustrate the behavior of the prodasethod for the scalar convection-
diffusion equation. The Poisson, and convection-diffngquations are solved in a domé&in
enclosed in a circle of radiu® < 1. We choose th&old-all domainB = (—1,1) x (—1,1),
where a system of Cartesian coordinatesy) with its origin at the center of the circle has
been adopted. A structured mesh of right-angled lineanguéar elements is constructedBn

h being the length of the edges corresponding to the cathetus.

The Poisson equation

Let us start solving the Poisson equation witk- 1, a = 0, f = 1 to check the performance
and convergence of the proposed method. The analyticai@olffior this case is known to be

1
ulz,y) = (R* —2* —¢°).



3.6. Numerical examples 49

Fig. 3.1 shows the errofgu — us ||, versus the element siZze The coarsest mesh is
built of 1250 elements, while the finer ones is built out of G20 elements. The method
shows quadratic convergence when linear elements are W4seh compared to the strong
imposition of boundary conditions described in Chaptehg,drror obtained is smaller in the
current method although both methods show quadratic cgeuee.
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Figure 3.1: Results and error convergence for the solutidineodiffusion equation

Convection-diffusion

Fig. 3.2 shows the behaviour of the method in the convedifiosion problem, wheré: =
1072, @ = (1,0), f = 1. A stabilized formulation similar to the one described irttRm 3.5
has been used. In order to obtain the error we have compugedaiation for a very fine
mesh (h = 2/800, 1200000 elements) which we have used adsénenee solution. Again, the
method shows quadratic convergence, although the stropgsition of boundary conditions
performs slightly better in the convection-diffusion etioa.

—@— Weak
—@— Strong
Slope 2

107

Figure 3.2: Results and error convergence for the solutitimeoconvection-diffusion equation

It is also interesting to observe how the method behavesongly convection dominated
problems. In Fig. 3.3 the solution for the problem with diéfet viscosities are compared. We
can observe that when convection grows larger and the gamelsng boundary layer becomes
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thinner, the mesh is no longer capable of capturing the bayndyer geometry. Due to the
fact that the weak formulation does not weight the boundaryd@ions against convection
velocity in the outflow boundary, we can observe that theesrar spurious oscillations in
the outflow boundary layer. As viscosity grows smaller thieitson of the problem resembles
the solution of the pure transport equation, where no baynanditions are imposed on the
outflow.

Figure 3.3: Solution comparison for the convection-diffinsequation with viscosities0 !,
1072 and10~° .

3.6.2 Stokes problem

In this section we solve the Stokes problem and we check theecgence properties of the
proposed method. We study the stationary Stokes flow arowgtirer. We use linear inter-
polations both for the velocity and for the pressure and thbilized formulation proposed
in the previous sections. The setting of the problem is shiowiig. 3.4. A parabolic inflow
profile with unitary mean horizontal velocity is set en= 0. Velocity is prescribed to zero
ony = 0 andy = 1 and on the cylindric boundary. The proposed method for weiakpos-
ing boundary conditions has been used both in the immerdedidgal interface and in the
external grid matching boundaries.

In Fig. 3.5 velocity and pressure fields for a fine mesh are showFig. 3.6 we have plot-
ted the error versus the mesh size, both for the velocity anithé pressure fields. The coarsest
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A |

Figure 3.4: Geometry and boundary conditions for the Stflk@saround a cylinder.

mesh is built of 625 elements, while the finer one is built du4@00 elements. Again, re-

sults for each mesh size have been compared against resaltsiuch finer mesh (160000
elements). We can see that quadratic convergence ratelstaneedl in both cases. When com-
pared to the strong imposition of boundary conditions, we canclude that both methods
perform equally well, except for the coarsest mesh case hichwthe strong imposition of

boundary conditions performs slightly better.

3.6.3 Transient Navier-Stokes equations

In this section we deal with the transient incompressiblgi®&aStokes equations. As in the
previous subsection, we will solve the flow around a cylin@dthough the overall domain
is larger in this case in order to allow the development ofubeices which arise behind
the cylinder. The setting of the problem is depicted in Fig. 3 parabolic inflow profile
with mean horizontal velocity equal tbis set onx = 0. Velocity is prescribed to zero at
y = 0,y = 8 and the cylindric boundary. The proposed method for weakjydsing boundary
conditions has been used both in the immersed cylindri¢aftface and in the external grid
matching boundaries. Viscosity has been set te 1072, which yields a Reynolds number
Re = 100 based on the cylinder diameter and the mean inflow velocitgagkward Euler
scheme has been used for the time integration with timedstep0.2. A 12566 linear element
mesh has been used to solve the problem. The mesh has beex iafthe area around the
cylinder, but it is still a rather coarse mesh in which theglérof the cylinder is only 12 times
the element length.

In Fig. 3.8 velocity and pressure fields at the end of the satiarh ¢ = 100) are shown.
Fully developed vortices behind the cylinder, and a smootht®n around the immersed
boundary can be appreciated. Fig. 3.9 shows the time histdahe vertical velocity at a point
behind the cylindef10, 4). After the initial transitory stage, an oscillatory pattef amplitude
0.6 and period4.9 is established. When compared to the results of the stropgsition of
boundary conditions, we can see that both methods yieldsiemjar results, the weak method
presenting slightly larger amplitudes in both the initralrtsitory and the periodic stages.
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Figure 3.5: Velocity and pressure fields for the Stokes flowuad a cylinder.
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Figure 3.6: Convergence plots for the velocity (left) andgsure (right) fields in the Stokes
flow around a cylinder.
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16

Figure 3.7: Geometry and boundary conditions for the teartdNavier-Stokes flow around a
cylinder.
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Figure 3.8: Velocity and pressure fields for the transientidlaStokes flow around a cylinder.
Results at = 100.
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Figure 3.9: Vertical velocity evolution dtl0,4). Comparison between weak and strong en-
forcement of boundary conditions.

3.6.4 Weak imposition of boundary conditions in the transpat equation

In this subsection we study the pure transport equation iclhwbnly boundary conditions on
the inflow are needed. We solve the problem described in theeotion-diffusion subsection,
but we only impose boundary conditions on the inflow. Lineamwergence is obtained with
both the strong imposition of boundary conditions desctibbe Chapter 2 and the strategy
described in this chapter, although quadratic convergesnmatained for the strong imposition
of boundary conditions in boundary matching grids. For tieghad described in this chapter,
the problem does not seem to be in the outflow, but in the infidvere the method does not
impose boundary conditions strongly enough.

In Fig. 3.10 we can observe the error for different mesheblénpure transport equation.
It can be seen that the error diminishes linearly with thelmseze but also, and most impor-
tantly, that the computed solution is displaced, that is giitor does not oscillate around 0, but
around 0.08/ = 1/50), 0.04 f = 1/100) and 0.02/( = 1/200). This suggests that the boundary
conditions are not strongly enough imposed.

Fig. 3.11 shows the convergence rates for the solution opthe transport equation for
different methods. We can see that convergence is linedrdtir weak and strong boundary
conditions if a stabilized formulation is used. If no staation is usedand the mesh nodes
are aligned with the advection directipthe convergence is closer to quadratic. This suggests
that the incorrect weighting of the boundary conditionsus tb the stabilization terms.

Since the stabilization terms add numerical viscosity endhiection of the streamlines, we
can try considering a different viscosity in the term whickights the boundary conditions in
the Poisson problem:

kx =k + atad?, (3.86)

wherea is a dimensionless constant. In this way we are able to re@wetose to quadratic
convergence. We use this viscosity for the computation eftéhms imposing the boundary
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Figure 3.10: Error comparisom,{ - analytical) for the pure transport equation for 1/50,
1/100, 1/200. We can observe that the error is diminishimgdily with/. Moreover it is dis-
placed 0.08, 0.04 and 0.02 from the O position. A strongeiositpn of boundary conditions
would improve the solution.
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conditions:
-G,K;!G,,-Uand - G, K g,. (3.87)
which we substitute by:
k
—%GMK;C}GM Uand - k—;GMK;;gUu (3.88)

The optimal value forr happens to be around= 200, which does not have any physical
meaning. Further work needs to be done in order to find a prdginition of the weighting
terms for the boundary conditions in the pure transport gojia
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Figure 3.11: Convergence plots for the transport equatiomparison between several meth-
ods

3.7 Conclusions

In this chapter we have proposed a way to weakly prescribietidet boundary conditions
in embedded grids. The key feature of the proposed methdthtswie can ensure stability
without the need of a large penalty parameter and that itmswsgtric for symmetric problems.
In the Poisson problem this is achieved by introducing antaaél element-discontinuous
stress variable. Additional terms are required in orderuargntee stability in the convection-
diffusion equation, in which we weight the boundary corafis with a particular norm of
the convection velocity, and the Stokes problem, where \wsethe imposition of boundary
conditions against the pressure test functions. The pezpsisategy is then easily extended to
the transient Navier-Stokes equations.
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The method turns out to be accurate (second order for lifearemts) and robust for all
the problems tested except for the pure transport equatievhich we are not able to recover
guadratic convergence. Further work needs to be develapkulk a proper definition of the
weighting terms for the imposition of boundary conditionghie pure transport equation. From
the implementation point of view, the method satisfies thenrdasign condition of using only
the degrees of freedom of the mesh(pf. Moreover, the final resulting method is very easy
to implement, since it only requires some additional bouypdategrals to be added to the
original variational form.

When compared to the method described in Chapter 2 we cahucdenthat both meth-
ods perform similarly well, and are both equally suitableffow problems. However, recent
research suggests that the weak imposition of boundaryitommsl(both in matching and non-
matching grids) could be more suitable for highly turbulgmws (see [15]). On the other hand,
strong boundary conditions seem more suitable for problehish require a sharp tracking
of the domain movement, such as the free surface problems described in the following
chapters.
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Chapter 4

The Fixed-Mesh ALE approach applied to
flows in moving domains

In this chapter we propose a method to approximate flow pnedi@ moving domains using
always a given grid for the spatial discretization, ande¢fame the formulation to be presented
falls within the category of fixed-grid methods. Our main cem is to properly account for the
advection of information as the domain boundary evolvesacloeve this, we use an arbitrary
Lagrangian-Eulerian framework, the distinctive featueely that at each time step results are
projected onto a fixed, background mesh, that is where thagmrois actually solved.

4.1 Introduction

In many coupled problems of practical interest the domaiatdeast one of the problems
evolves in time. The Arbitrary Eulerian Lagrangian (ALE)papach is a tool very often em-
ployed to cope with this domain motion. In this work we aim @scribing a particular version
of the ALE formulation that can be used in different coupleolgbems. In this chapter we will
particularize it to flow problems.

In the classical ALE approach to solve problems in compaoitaifluid dynamics, the mesh
in which the computational domain is discretized is defair(see for example [45, 79, 74]).
This is done according to a prescribed motion of part of itaratary, which is transmitted
to the interior nodes in a way as smooth as possible so as td enesh distortion. In this
work we present an ALE-type strategy with a different mdiva. Instead of assuming that
the computational domain is defined by the mesh boundarysanae that there is a function
that defines the boundary of the domain where the flow takes p\&e will refer to it as the
boundary functionlt may be given, for example, by the shape of a body that maitbsn the
fluid, or it may need to be computed, as in the case of levelsetibns. It may be also defined
discretely, by a set of points. When this boundary functimves, the flow domain changes,
and that must be taken into account at the moment of writiegctinservation equations that
govern the flow, which need to be cast in the ALE format. Howewar purpose here is to
explain how to use always a backgroufixkd mesh. That requires a virtual motion of the
mesh nodes followed by a projection of the new node positos the fixed mesh.

The basic numerical formulation we will use consists of diiteed finite element method

59
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to solve the ALE flow equations and finite difference time gnggion schemes. However, other
discretization techniques could be applied, since the wieavant to expose is independent
of the numerical method being used. This idea consists ijegtiag the results of the ALE
deformed mesh onto a fixed background maskach time stepprior to solving the flow
equations. It will be shown that at the end all the calcufetioan be performed on the fixed
mesh, and in fact the ALE deformed mesh does not need to biiydbuilt.

We want to stress that this idea is independent on the wayposmboundary conditions
on the moving boundary. The way to impose this prescriptsoofien used to classify a par-
ticular fixed-mesh method. Since the physical boundary igained in the domain actually
discretized, these methods are often callethersed boundary methoddoreover, since the
fixed grid used is often Cartesian, these formulations caoudred under the keywordSarte-
sian grid methodg¢see for example the reviews [127, 103, 100]). These methieddeveloped
for constant-in-time domains, and then extended in a molessrad-hoc way to time depen-
dent domains. In spite of the fact that we want to distinglistween the way to deal with
moving domains from the way of approximately imposing thermary conditions on the
moving boundary, we will briefly describe the particular eggch we use, which corresponds
to the method described in Chapter 2.

The chapter is organized as follows. A general overview efRM-ALE method is pre-
sented in Section 4.2, starting with the discretizationhaf tlassical ALE formulation and
then describing the algorithmic steps of the FM-ALE altéinea These steps are further elab-
orated in Section 4.3. Even though they are not intrinsibiéorain idea of the method, there
are three numerical ingredients that are essential forubeess of the formulation. These are
the definition and updating of the moving boundary, the axiprate imposition of boundary
conditions and the projection of data between two diffefigite element meshes. These “side
ingredients” are here particularized to the FM-ALE methuky are described in Section 4.4.
A simple numerical example, but containing all the featwfethie formulation, is presented in
Section 4.5. For other applications of the FM-ALE method §&8], where the simulation of
lost foam casting is carried out, or [41], were classica fsarface problems are solved with
the FM-ALE method. Some conclusions close the chapter itiGe4.6.

4.2 The Fixed-Mesh ALE method

In this section we describe the essential idea of the FM-Aldthmd. However, we start with
the classical ALE formulation of the incompressible Nav&okes equations and their numer-
ical approximation.

4.2.1 The classical ALE method and its finite element approxnation
Problem statement

Let us consider a regiad® C R (d = 2, 3) where a flow will take place during a time interval
[0, T']. However, we consider the case in which the fluid at tinoecupies only a subdomain
Q(t) c Q° (note in particular thaf2(0) c Q°). Suppose also that the boundary((t) is
defined by part 06Q2° and a moving boundary that we c@ll...(t) = 9Q(t) \ 9Q° N oQ(t).
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This moving part ob<)(¢) may correspond to the boundary of a moving solid immerseldan t
fluid or can be determined by a level set function.

In order to cope with the time-dependency(d(ft), we use the ALE approach, with the
particular feature of considering a variable definitionresf tomain velocity. Le, be a family
of invertible mappings, which for at € [0,7] map a pointX € Q(0) to a pointx =
x:(X) € Q(t), with x, = I, the identity. Ifx, is given by the motion of the particles, the
resulting formulation would be Lagrangian, whereag if= I for all ¢, Q(t) = ©(0) and the
formulation would be Eulerian.

Let nowt’ € [0, 7], with ¢ < ¢, and consider the mapping

X * Q(t/) — Q(t)

= x,0x; (@),
Given a functionf : (t) x (0,7) — R we define

d(fo Xt,t’)
ot

or

ot |, (2,2) := (x',t), xeQ), ' Q).

In particular, the domain velocity taking as a referencecthardinates of2(¢') is given by

oz

Udom ‘— E (m,t) (41)

ml

The incompressible Navier-Stokes formulatediift), accounting also for the motion of
this domain, can be written as follows: find a veloaity Q(t) x (0, T) — R and a pressure
p:Q(t) x (0,7) — R such that

du
Pl ot

(CB, t) + (u - udom) : VU} -V (2MVSU) + vp = pfv (42)

Vou=0, (4.3)

where V°u is the symmetrical part of the velocity gradieptjs the fluid densityy is the
viscosity andf is the vector of body forces.

Initial and boundary conditions have to be appended to prok{4.2)-(4.3). The bound-
ary conditions o'y,.(t) can be of two different types: @) (or the normal stress) givem,
unknown onl'y...; b) uw given,p (or the normal stress) unknown a@i... On the rest of the
boundary of2(¢) the usual boundary conditions can be considered. In geneeatonsider
these boundary conditions of the form

u onl'p,
t only,

u
n-o

wheren is the external normal to the boundasy,= —pI + 2V u is the Cauchy stress
tensor and: andt are the given boundary data. The components of the boudgaandI y
are disjoint and such that, U I'y = 052, and therefore time-dependent.
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The time-discrete problem

Let us start introducing some notation. Consider a unifoartifion of [0, 7] into N time
intervals of lengthit. Let us denote by™ the approximation of a time dependent functibpn
at time levelt™ = ndt. We will also denote

6fn+1 fn-i—l fn

6 fn+1 fn+1 fn

6t

=0+ 1-0)f", 0e1/2,1].

Even though other options are possible, we will use the srimppezoidal rule to discretize
problem (4.2)-(4.3) in time. Suppose we are given a comjmutat domain at time”, with
spatial coordinates labeleg’, andu™ andp™ are known in this domain. The velocity*+!
and the pressurg®*! can then be found as the solution to the problem

p [0+ (u™ —ugld) - V] = V- 2uVEut) £ vt = T (4.4)
V-u"t? =0, (4.5)

where nowd,u" |, = (u"*'(x) — u™(x"))/dt, beingx = X+ . (") the spatial coordi-
nates inQ)(t"*?). The domain velocity given by (4.1), with' = x", is approximated as
1
ug:rg - 96'[; (th+6 tn (mn) - -’.Bn> . (46)
Note that the order of accuracy of this approximation is eiaat with the order of accuracy

of (4.4)-(4.5), that is to say, itis 2 faFr = 1/2 and 1 otherwise. We are interested only in the
cased = 1/2 andd = 1 (implicit schemes are required).

Remark 1 The trapezoidal rule considered for the time integratioith & single mesh,
satisfies the so callegeometric conservation la§GCL) condition (see, e.g. [20, 52, 90]).
However, there are second order accurate schemes basedltpstepitime discretizations
that do not satisfy it. The price to be paid is that these s@sesme usually only conditionally
stable, although stability conditions are often very mitd @aot encountered in practice (see for
example the analyses in [7, 20, 52, 53, 109]). We will use drseich schemes in Section 4.5.
A

The fully discrete problem

The next step is to consider the spatial discretization oblem (4.4)-(4.5). As for the time
discretization, different options are possible. Here wepdy describe the stabilized finite ele-
ment formulation employed in our numerical simulations.

Let {Q°}"*! be a finite element partition of the domdit™ ), with indexe ranging from
1 to the number of elements, (which may be different at different time steps). We denote
with a subscript: the finite element approximation to the unknown functiomsl by v, and
q» the velocity and pressure test functions associatdt¢™ !, respectively.

An important point is that we are interested in using equerpolation for the velocity
and the pressure. Therefore, the corresponding finite elespaces are assumed to be built
up using the standard continuous interpolation functions.
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In order to overcome the numerical problems of the standatdr&in method, a stabilized
finite element formulation is applied. This formulation iepented in [31]. It is based on the
subgrid scale concept introduced in [76], although wheedirelements are used it reduces
to the Galerkin/least-squares method described for examdb6]. We apply this stabilized
formulation together with the finite difference approximatin time (4.4)-(4.5).

The bottom line of the method is to test the continuous eqoatby the standard Galerkin
test functions plus perturbations that depend on the opergpresenting the differential equa-
tion being solved. In our case, this operator correspondkedinearized form of the time
discrete Navier-Stokes equations (4.4)-(4.5). In thiectse method consists of finding' ™!
andp;*! such that

m?w (5t’U/Z+1‘mn ,’Uh) + an+€(uh7 vp)
+ c"+9(uh — Udoms Uh, vh) -+ brlH_e(ph, ’Uh) = l{”e(vh), (47)

m§+9 (Qh, 5tUZ+1‘mn) + b§+0(Qh, uh) + 8n+0(Qh,ph) = lznw(%), (4.8)

for all test functionw;, andgy,, the former vanishing on the Dirichlet part of the bound@yy
The different forms appearing in these equations are giyen b

Tel

Uy - pét'UJh + Z Cul ’ pétuhu
= Qe

mﬂ&umvwzi/

Q

Tel Tel

a(up,vy) = / oVivy, - uVoiuy, + Z Cot- (—2V . (,uVSuh)) + Z CuaV -y,
Q Qe — Jae

Tel

C(a;um’vh)Z/th'(pa'vuh)ﬂtz Cu-(pa-Vuy),

e=1 Qe

Nel

ma(qn, Sun) = Y [ €, porun,

e=1 Qe

ba(qn, un) = / aV - up + Z ¢y (pa -Vuy — 2V - (,uvsuh)) ,
& e=1 7

$(qn, pn) = Z/ ¢, Von,
e=1 ¢

Tel

ll(’Uh)Z/Q’Uh'erg/QeCul'er/Fthi
b= [ ¢ f.

e=1 Qe
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where the functiong,,;, (.2 and¢, are computed within each element as

Cul = Tu [p (u’h - udom) Vo, +2V - (:uvsvh)} ’ (49)
<u2 - Tpv * Up, (410)
¢ —nVan (4.11)

and the parameterg andr, are also computed element-wise as (see [32])

o= 4_:“ 2p‘uh_udom| -
u h2 h Y

wherelh is the element size for linear elements and half of it for gagads.

T, = 4p + 2p|up, — wdom |,

Remark 2

e The superscript: + ¢ in all the terms in (4.7)-(4.8) indicates that all the forme a
evaluated with the unknowns at+ ¢, except for the term coming from the temporal
derivative, whose superscript is explicitly indicateckéwise, the integrals are evaluated
atQ(t+?),

e The dependency on the advection veloaity: u;, —uq.m has been only indicated in the
from coming directly from the convective term of the equatipnamely¢(a; uy,, vy).
However, it has to be noted that all the forms listed abovesddpn the stabilization
parameters, and therefore dependcas well. Moreover, the dependencybefqy,, u,)
ona is even more explicit. However, in order to keep the notatmme concise only the
above mentioned dependencycof; uy,, v,,) has been left.

e As usual, the mesh di(¢"!) is assumed to be obtained from the mesk¢f*) by
moving the nodes of the latter with the domain veloaity,,, (often referred to as mesh
velocity). This greatly simplifies the implementation oetALE method, since in this
case the nodal values af ™! () and those of,™(z™) correspond to the same nodes (at
time steps: + 1 andn, respectively).

e If & = 1/2, the unknowns of the problem can be takem#s'/? andp"*'/?, since
Seuptt| =26t (w2 (xz) — u"(z")). All the calculations to be performed are the
same as fo# = 1, with the only modification that once™*'/? is computedu™*' has
to be updated to go to the next time step. This analogy inslikde updating of the
computational domain. Wheh= 1/2 we need to update this domain fram- 1/2 to
n + 1/2 to computeu™*/2 andp"'/2, whereas whefl = 1 we need to update it from
nton + 1to computeu™™! andp™*!. For conciseness, the latter situation is considered
in the following.

e From (4.9)-(4.11) it is observed that these terms are pictbe adjoints of the (lin-
earized) operators of the differential equations to beesbhpplied to the test functions
(observe the sign of the viscous term in (4.9)). This metlwdesponds to the algebraic
version of the subgrid scale approach ([76]) and circuns/ém stability problems of
the Galerkin method. In particular, in this case it is polgsib use equal velocity pres-
sure interpolations, that is, we are not tied to the satisfacof the inf-sup stability
condition. For more details about this formulation, seesfcample [76, 31].
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4.2.2 The fixed-mesh ALE approach: algorithmic steps

The purpose of this subsection is to give an overview of theAM method and to describe
the main idea, leaving for the next section a more detailetrijion of the different steps
involved.

Suppose&?’ is meshed with a finite element meaH and that at time level* the domain
Q(t™) is meshed with a finite element mesf* (as we will see, close td/°). Let u™ be the
velocity already computed di(¢™). The purpose is to obtain the fluid regitxi¢"*!) and the
velocity fieldu"*!. The former may move according to a prescribed kinematicsgXample
due to the motion of a solid, or can be an unknown of the probletine classical ALE method
is used M™ would deform to another mesh defined’at'. The key idea is not to use this mesh
to computeu™"! andp™*!, but to re-mesh in such a way that the new mesh is, essenfially
once again.

The steps of the algorithm to achieve the goal describechartotlowing:

1. Definel'*"! by updating the function that defines it.

free

2. Deformvirtually the meshV/™ to M™! using the classical ALE concepts and compute
the mesh velocity™ ™.

3. Write down the ALE Navier-Stokes equations.ff."".

irt

4. Split the elementsf M° cut byI'i:*! to define a mesh ofd(¢" 1), M7+,

free

5. Projectthe ALE Navier-Stokes equations fromd”. ! to M+,

virt

6. Solve the equations al™*! to computeu™*! andp™**.

In Section 4.3 we describe all these steps in detail. A glated of the meshes involved
in the process is represented in Fig.4.1. Note in partidhiarat each time steps two sets of
nodes have to be appropriately dealt with, namely, the dectakwly created nodes and the
boundary nodes. Contrary to other fixed grid methods, somdmh are described in the next
subsection, newly created nodes are treated in a compledélyal way using the FM-ALE
approach: the value of the velocity there is directly givgnte projection step from/” ! to
M™+1, Boundary nodes require either additional unknowns wisipeet to those of mesh/®
or an appropriate imposition of boundary conditions. Th&ie is treated in Section 4.4.

4.2.3 Other fixed grid methods

Other possibilities to use a single grid in the whole simatatan be found in the literature,
each one having advantages and drawbacks. As the methed{@eé this chapter, they were
designed as an alternative to body fitted meshes and areismsetferred to akmbedded
Mesh MethodsThey can be divided into two main groups [35], correspogdimfact to two
ways of prescribing the boundary conditionsian..
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Figure 4.1: Two dimensional FM-ALE schematic. Top-leftigimal finite element mesh/°

of Q°. Top-right: finite element mesh/™ of Q(¢"), with the elements represented by a thick
line and the elements af/® represented by thin line. The blue line represdrfls and the
red edges indicate the splitting 8f° to obtain /™. Bottom-left: updating of\/™ to M™H!
using the classical ALE strategy. The position[4f' is again shown using a solid blue line
and the previous positior__ using a dotted blue line. Bottom-right: Medti"+! of Q(¢" 1),
represented by a thick line. The edges that split elemenfgbfire again indicated in red.
Boundary nodes, where approximate boundary conditiond teebe imposed, are drawn in
green, whereas newly created nodes are drawn in gray.
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e Force term The interaction of the fluid and the solid is taken into actahrough a
force term, which appears either in the strong or in the weak fof the flow equa-
tions. Therefore, the boundary conditionsIgn,. are neither imposed as Dirichlet nor
as Neumann boundary conditions. Among this type of methletlsis cite for exam-
ple the Immersed Boundary method as a variant of the Penaitiyad, where punctual
forces are added to the momentum equation, and the FidiDaumain method, where
the solid boundary conditions are imposed through a Lagramgjtiplier.

e Approximate boundary conditionsistead of adding a force term, these methods impose
the boundary conditions in an approximate way once theelization has been carried
out, either by modifying the differential operators nearititerface (in finite differences)
or by modifying the unknowns near the interface.

The Immersed Boundary Methad its original form [113] consists in adding punctual
penalty forces in the domain boundary so that the boundanrglitions are fulfilled. The forces
are computed from a fluid-structure (elastic) interactiosbpem at the interface. The method
is first order accurate even if second order approximatiberses are used, althougdrmal
second order accuradyas been reported in [87]. The more redemiersed Interface Method
achieves higher order accuracy by avoiding the use of thechielta distribution to define the
forcing terms (see [91, 92, 137]).

The Penalty methods similar to the previous one in the sense that a force teradded
to the momentum equations. The difference raises in thetatthe penalty parameter is not
computed from a fluid-structure interaction as in the oadjimmersed boundary method, but
it is simply required to be large enough to enforce the bogndanditions approximately. The
force terms can be of two types, depending on whether thejngresed as boundary or as
volume forces [133] .

Another approach is the use of Lagrange multipliers to esfdéihe boundary conditions.
However, the finite element subspaces for the bulk and Lagramultiplier fields must sat-
isfy the classical inf-sup condition, which usually leadstihe need for stabilization (see
[70, 14, 82]). Moreover, additional degrees of freedom nibestidded to the problem. The
use of Lagrange multipliers is the basis of tetitious Domain Method62, 63].

Recently,hybrid Cartesian/immersed boundary methddse been developed for Carte-
sian grids, which use the grid nodes closest to the bounaasntorce boundary condi-
tions [60, 139, 104]. The method is second order accurate.

Most of these methods have been well tested in the literdurdgoth steady and moving
interfaces. Generally, the last case is treated by appljiregtly the former at each time step.
However, very few authors have described the full formalafior moving interfaces, some-
times simply by ignoring the problem. The fact that the bamgdnoves and the subsequent
advection of unknowns is often not taken into account.

To explain an obvious consequence of the boundary motibosldiscuss the treatment of
the newly created nodes. To explain the problem, let us dengiointP in Fig. 4.1. Suppose
that the boundary's... corresponds in this case to the rigid boundary of a movingaibj
Physically, it is clear that the solution in the fluid cann&pdnd on what happens inside
the solid. Mathematically, this means that the values ofuthkenowns at the fluid nodes are
uncoupled from those at the solid nodes. Therefore, thecitgland the pressure at the solid
nodes (apart from those participating to the enforcing ef boundary conditions) can be
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whateverat a certain time step, in particular their value at node (see Fig. 4.1, top-right).
Now we move on to the next time steg-1 as the solid moves. Some solid nodes can therefore
become fluid nodes, such as nagsee Fig. 4.1, bottom-right). The velocity at this node at
time stepn is in fact needed in the temporal term of the momentum eqgusitémd cannot
be whatever In the case of fractional step techniques, the situationev@n be worse as the
previous time step pressure could also be needed at thess.nod

A special treatment is needed for the newly created fluid soblemany publications,
the previous time step values are computed using ad hoc argsnthat sometimes lead to
good approximations from the practical point of view whenainime steps are used. As
an example, in [100] the authors extrapolate the velocity pressure from the nearest fluid
nodes at the previous time step. In [27], the Navier-Stokgmgons are correctly expressed
in an ALE framework, but the velocity is taken as the solidoedly. It is worth to note that if
the solid is deformable and has been solved together witfiutitein a coupled way (as in the
original immersed boundary method [113] or in the fluid-8alpproach in [141]), this velocity
is physically meaningful. This is not the case, howeveredase of rigid bodies or bodies
with rigid boundaries. A possibility to deal with this siti@n is to write the Navier-Stokes
equations in a non-inertial frame of reference attachellédbdy, as in [72] in the context of
Chimera meshes or in [86], where an immersed boundary méshembd.

We explain in the following what we believe is a consistenywétreating moving inter-
faces based on a fixed-mesh ALE approach.

4.3 Developing the Fixed-Mesh ALE method

In this section we describe the steps enumerated previaasigentrating on those specific of
the FM-ALE method and leaving for Section 4.4 those that cacdnsidered side numerical
ingredients.

4.3.1 Step 1. Boundary function update

This step is completely problem dependent. The motiol'f (1) may be determined by
different ways. In a typical fluid-structure interactioroptem,I';,..(¢) will be part of the solid
boundary, and therefore its kinematics will be determingthie dynamics of the solid under
the action exerted by the fluid. As a particular case, theanatf the solid boundary may be
directly prescribed. This is the simplest situation anddhe corresponding to the validating
numerical example presented in Section 4.5.

In a wide variety of applicationd}y...(t) may be represented by a level set function. The
peculiarities of the levelset function update in the cohtéxhe FM-ALE approach are de-
scribed in Section 4.4.

4.3.2 Step 2. Mesh velocity

Updating the boundary function defines the deformation efdbmain front2(¢*) to Q(¢"1)
(recall that we are considering the case- 1, see Remark 2). Consequently, the mésh
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used at time step has to be deformed to adapt to the donfairn**!). This mesh deformation
has to be defined by means of a mesh velocity.

The mesh velocity on the boundary points can be computed tinein positionz; ™ and
x;, where subscript refers to points o's... Using approximation (4.6), this mesh velocity
would bew[ , = (x;"" — a})/dt. Once the velocity at the nodes Bf.. is known, it has
to be extended to the rest of the nodes. A classical poggilsilto solve the Laplace problem
Augon = 0 usingujj’!, as Dirichlet boundary conditions. However, it is also pblesto
restrictug,, # 0 to the nodes next tﬁgjel, since in our approach mesh distortion does not ac-
cumulate from one time step to another (see Fig. 4.1 for ansatie of the mesh deformation).
This is in practice what we do. The condition we use in ordehimose which of the nodes of
the mesh are allowed to move is:

dist(Znodes [ree) < K - MaX [Wdom,p| - 0t

whereK > 1is a user defined constant which adjusts the size of the regi@nn which the
mesh is deformed. This ensures that the mesh deformationasth enough for large values
of w whereh is the element size. An example of mesh deformation frdfhto
M™*1is represented in Fig. 4.2.

virt

Figure 4.2: Mesh deformation. LeftZ™. Right: M:*'. The red dotted line represeritg,. at

time ", the black line corresponds 1g,.. at timet"*!- Green elements are deformed from
M™ to M4 while black elements remain undeformed.

Remark 3 As only nodes close td}."! are displaced, the projection operations between
meshes need only to be carried out in the deformed regioneofrtesh (green region in
Fig.4.2).
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4.3.3 Step 3. Solving the flow equations |. Equations on the ttemed
mesh

The previous procedure defines the donfajrr+!) and a mesh that we call’™!!, obtained

virt !

from a deformation of the mesiy”. The equations to be solved there are (see (4.7)-(4.8)):

1
it (5 (i i) = (&) ,vh) + @™ (Wi vn)

+ Cn+1<uh,virt - udom,virt; uh,virta Uh) + b?—i_l(ph,virta vh) = l?—i_l('vh)u (412)
b3+1(Qha uh,virt) + Sn+1(Qh7ph,virt) = l;H_l(C_Ih)a (413)

where subscript “virt” refers to the medti’ ! on which these equations should now be solved
using the space discretization described in Subsectioh.4.8t us stress once again that, as it
is well known in the classical ALE approact? (x") is known onM: ! because the nodes of
this mesh are obtained from the motion of the node&/6fwith the mesh velocity,”"!

dom,virt*

4.3.4 Step 4. Splitting of elements

The key idea of the FM-ALE method isot to useM”: ! to solve the flow equations at time
t"+1, but to use instead another mesi*! that will be aa minor modification of the back-
ground mesh\/°. This meshA//"+! is obtained by splitting the elements df° cut by '}/,

as shown in Fig. 4.1. Meshég"! and M° only differ in the subelements created after the
splitting just mentioned.

Mesh M/"*! could be thought as a local refinement of mégh to make it conform the
boundaryl'{'*!. This is certainly a possibility that can be implemented @shs Let us note
however that this requires the introduction of boundaryasaat each step, as shownin Fig. 4.1,
and the subsequent change in the mesh graph and in the gpatsérn of the matrix of the
final algebraic system to be solved for the arrays of nodahanks. As in other fixed grid
methods, this computational complication can be avoliegdrescribing boundary conditions
onI'ft! in an approximate wayNevertheless, this issue, in spite of its major practioal i
portance, is not an essential concept of the FM-ALE method,vee defer its description to
Section 4.4.

The local refinement from/° to M"*! is needed also to perform the numerical integration
of the different terms appearing in (4.7)-(4.8). The impzc¢his in the computational cost of
the overall calculation is minimum.

The splitting of elements is a strictly algorithmic stepttBhall not be discussed here. In
the case of 2D linear elements, Fig. 4.3 shows how the sygitan be done and the numerical

integration points (red points) required in each triangkuiting from this splitting.

4.3.5 Step 5. Solving the flow equations II: Equations on thedrkground
mesh

Let P"*1 be the projection of finite element functions defined\dfj,' to M"*1. To define it,
for each node ofi/"*! the element in\/:! where it is placed has to be identified. Once this

is done, the value of any unknown at this node can be obtalmmedgh interpolation, possibly
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Figure 4.3: Splitting of elements

with restrictions. The way to construct this projection iger is a problem common to differ-
ent situations in which transfer of information betweentér@lement meshes is required. We
describe our approach in Section 4.4.

The velocityu™ in M ! is known because its nodal values correspond to those of mesh
M". However, its nodal values ol/"*! have to be computed using the projection just de-
scribed. The same happens with the mesh velagity, .

If now we define

up = P (g ),
the problem to be solved at time step- 1 is to find a velocityu; ™ and a pressurg!™" such
that

mrlwrl <5t_1 (uzﬂ(w) - Pn+1(uz,virt<mn>>) >’Uh) + ClnH(’U/h, vp)
+ "y — PP (Wdomvint); Why O1) + 07 (o, vi) = B (), (4.14)
b5 (qn, wn) + 8" (qn, pr) = 157 (qn), (4.15)

which again must hold for all velocity test functiong and pressure test functiong

Note thatp; ™! # Pm!(pjtl,). Pressurej*! is determined by imposing that;*" is
divergence free, which at the discrete level is not equivateimpose that:, .., is divergence
free.

Problem (4.14)-(4.15) is posed ai™*! which, as it has been said, coincides witH
except for the splitting of the elements crossed by the fimter Even this difference can be
avoided if instead of prescribing exactly the boundary @ios an approximation is per-
formed, for example using Nitsche’s method, Lagrange pligtis or the strategy described in
Section 4.4. Therefore, the goal of using a fixed mesh dutiegathole simulation has been
achieved.

It is observed that the projectia?**! has to be applied to

o P"l(up ;. (x™)). This clarifies the effect of the mesh motion in the contextixgd-
mesh methods. In particular, there is no doubt about thecitglat previous time steps
of newly created nodes.
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o PrHi(uit! ). The mesh velocity is computed o', and therefore needs to be

udom,virt virt !

projected to compute oi/" 1.

4.3.6 Comparison with the classical ALE approach

To conclude this section, it is important to highlight théfetences between our FM-ALE
approach and a classical ALE formulation:

e Given a position of the fluid front on the fixed mesh, elementsy the front are split
into subelements (only for integration purposes), so thatftont coincides with the
edges of the subelements.

o After deforming the mesh from one time step to the other usiagsical ALE proce-
dures, results are projected back to the original mesh .

e The front is represented by a boundary function, and not eyptsition of the material
points atl'.. as in a classical ALE method.

4.4 Side numerical ingredients

In this section we describe some numerical ingredients thaipite of being essential in the
development of the FM-ALE method, are not inherent to itsm@incept. In other words,
these ingredients may be changed without altering the nuainept of the method.

4.4.1 Level set function update

In the applications, there are several ways to defing. In general, we assume that this part
of the boundary of the flow domain is defined by what we haveedajkenerically doundary
function This function may be defined analytically or by discrete nsdor example through
interpolation from some nodes that define the locatioh;Qf. That would be a natural way to
deal with fluid-structure interaction problems.

In some applications, it is convenient to represent. by alevel set functior{see [112]
for an overview of these methods). This function, gawill be the solution of the problem

Oy +u-Vip =0 in Q° x (0,7), (4.16)
=1 on Iy x (0,7,
(x,0) = do(x) QY

wherel'y,s := {x € 9Q° | u-n < 0} is the inflow part of the domain boundary. In free surface
simulations, the initial conditiom, is chosen in order to define the initial position of the fluid
front to be analyzed. The boundary conditidnletermines whether fluid enters or not through
a certain point of the inflow boundary.

Due to the pure convective type of the equation#omwe use the SUPG technique for the
spatial discretization. Again, the temporal evolutionéated via the standard trapezoidal rule.
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If ¢ is taken as a step function, numerical problems may be enethwhen it is trans-
ported. It is known that small oscillations in the vicinity sharp gradients still remain using
the SUPG formulation. These oscillations may propagateyaid to distorted front shapes,
specially near corners. Compared to similar methods, sscthe volume-of-fluid (VOF)
method [69], one particularity of the level set method id thases a smooth function. As
the smoothness can be lost as the simulation evolves, thkdevfunction must be redefined
for each mesh node as explained for example in [37].

Oncey is computed]'y,..(?) is defined as

ieo(t) = {2 € Q° | ¥(x,t) = 0.

Thus, T (t) is simply updated by solving the problem fofx, ).

The important point to be noted is that the system is solvetherwhole domairf2’. As
mentioned earlier, we approximate this problem using al&tad finite element method. For
the discrete problem it is necessary to extrapolate thecitgldefined orf)(¢) to the rest of
Q0. The question is how to perform this extrapolation. In pipte, the advection velocity
in (4.16) is only needed in the neighborhood@f.(#), since the precise transportofis not
needed, except for the transport of the isovalue that defipest). In our calculations, we
have found useful to extrapolateby solving a Stokes problem dn(¢)¢ = Q° \ Q(¢). This
has two main advantages with respect to a simpler extrapolptocedure, namely, the ex-
trapolated velocity is weakly divergence freel(¢)© and we can impose the correct boundary
conditions for it.

4.4.2 Approximate imposition of boundary conditions

Even though we have not formulated it as such, the FM-ALE oxkitan be considered an
immersed boundary method, in the sense Ihat(¢) is a boundary that moves within a fixed
domainQ’. From the conceptual point of view, there is no problem indsipg exactly Dirich-
let boundary conditions on this part of the boundary. Howetes requires the dynamic ad-
dition of mesh nodes (see Fig. 4.1, where these nodes ar@ dnayreen), with the associated
change in the sparsity of the matrix of the algebraic systeletsolved mentioned earlier. This
is why it is very convenient from the implementation standpto avoid the explicit introduc-
tion of such nodes and to prescribe boundary conditapmoximatelyfor example with the
method described in Chapter 2. It is important to note thiatithplementation maintains the
connectivity of the background mesh.

4.4.3 Data transfer between finite element meshes

The last crucial ingredient in the FM-ALE approach is thensfer of information between
meshes\/”! and M™*! for each time step (see Fig. 4.1). In principle, it would be possible
to use a simple interpolation operator. However, it is welbkn that this interpolation, for
example when itis of Lagrangian type, may suffer from oviudivity, in the sense that results
on the new mesh may be damped from those of the original onath&npossibility could be
to use thelL? projection as transfer operator. We explain here how torjgm@terestrictions
to the projection between meshes. The idea described iboging was introduced in [71]

in the context of transmission of information through boames in domain decomposition
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methods. For a method particularly designed in the contekhmersed boundary methods
for the transfer of forces, see [141].

Let us consider two meshe&{; and M,, of a domain(2. For simplicity, we assume that
both are conforming (matchingf). Letn; (i = 1,2) be the number of nodes ii; and let
®, € R™ be the array of nodal values of a scalar variahl8uppose tha®, is known and we
want to project it ontal/, to obtain®,. If Py; € Matg(no, n) is the transfer operator from
M, to M, (for example the standard interpolation or thfeprojection), a simple choice would
be®, = P, ®,. However, suppose that we requibg to inherit a set of properties frodr,
written in the form

RQ(I)Q = Rl‘I)l, Ri € MatR(nr,ni), (417)

wheren, is the number of restrictions to be imposed. The idea we p®p®to takeP, as
close as possible t#’,; ®; but satisfying (4.17). A possibility is to solve the optiration
problem
o 1
minimize §|<I>2 — Py, ®,)?,
under the constraint Ry®, = R, P;.

This problem can be solved by optimizing the Lagrandia®,, \), where\ € R"", given by
1
L(‘I’Q,)\) = 5“1)2 - P21(I)1‘2 - )\t(RQ(I)Q - Rl‘I)l).

This leads to the system

&, — R\ = Py @,
Ry®; = R ¥,

which after solving for®, yields
‘I’Q - P21(I)1 —|— R;(RQR;)_1<R1 - R2P21)(I)1.

In the applications, the number of restrictions is small, so that invertingR, R, <
Matg (.., n,.) is computationally affordable. In the case of the FM-ALE huat, a typical
restriction would be for example to impose global conseéovabf momentum and of mass
when projecting velocities from mesi™t! to M™*! for eachn. In this casep, = d + 1.

virt

4.5 A numerical example

In this section we will solve the flow over a moving cylindertiwithe proposed FM-ALE
strategy. The objective is to apply this methodology to simsple validating example.

The corresponding flow equations are those described imo8eLR, although in this case a
multi-step time discretization will be used. In particulae will use the second order backward
differentiation scheme (BDF2), in which the time derivatat timen + 1 is approximated as:

8U i 1 3 n+1 n 1 n—1




4.5. A numerical example 75

0.4}

0.21

Figure 4.4: Solution at = 3. From top to bottomz-velocity, y-velocity, pressure.

The strategy described in Chapter 2 will be used to pres@iliehlet type boundary condi-
tions on the surface of the moving solid, in this case thendgdr.

Thehold-all domainis the rectangleé? = [0, 2.2] x [0, 0.44]. A background mesh of 9000
linear triangles has been used. The considered solid isirdeylof diameterD = 0.2, its
trajectory being defined by the position of its center:

2T

z.(t) = 1.1+ 0.8 sin ( 3 (t — 0.75)) ,
ye(t) = 0.22.

The velocity is prescribed t@®, 0) on the walls of the rectangular domain, except for the
wall corresponding ta: = 2.2, where it is left free, whereas it matches the cylinder vigjoc
on the cylinder surface. Note that the flow is due only to thindger movement. Viscosity
is set t00.001, so that the maximum Reynolds numbemis ~ 300 based on the cylinder
diameter and the (maximum) velocity when the cylinder isted at the central section of the
rectangle. The time step size has been sét te 0.05, and60 time steps (a full period) have
been performed, after which the flow is considered to be fidlyeloped.

Fig. 4.4 shows the results obtained at titme 3. We would like to remark the smoothness
of the velocity field close to the cylinder surface.

It is also interesting to see which are the differences betwbe treatment of the newly
created nodes in the proposed FM-ALE approach and othef psagedures. To this end we
compare nodal values for newly created nodes at tii{a the time step which goes froti
to t"*1) for the FM-ALE approach (information is convected and pov¢d) and for the more
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Figure 4.5: Solution at = 2.25, extrapolation procedure. From the top to the bottom:
velocity before extrapolating;-velocity before extrapolating;-velocity after extrapolating,
y-velocity after extrapolating.
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Figure 4.6: Solution at = 2.25, FM-ALE procedure. From the top to the bottom:
velocity before convection-projectiop;velocity before convection-projection;velocity af-
ter convection-projectiony-velocity after convection-projection.
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usual procedure of extrapolating values from neighborimges mentioned earlier.

Fig.4.5 and Fig. 4.6 show velocity values (before and afterdonvection-projection or
the extrapolation procedures) @t = 2.25. It can be seen that for large incremental dis-
placements, as those of the time step we are considerimgpekted values differ signifi-
cantly from convected-projected values, and are much fessth. Also, the values before the
convection-projection or extrapolation procedure areatmer for the FM-ALE approach. We
would like to stress that, contrary to the convection-progn of the FM-ALE method, the
extrapolation procedure lacks physical grounds.

4.6 Conclusions

In this chapter we have introduced in detail the concept@fi-ALE approach. Succinctly,
it consists in using the standard ALE method but “remeshatggéach time step so as to use
always the same given mesh, which discretizes the wholemegere the flow takes place.

The first benefit is conceptual. Ad-hoc approximations tooaot for the advection of
information that can be found in several fixed-grid methagsawoided. This is in particular
reflected by the treatment of the so called newly createdsiélaen a node “dry” in one time
step becomes part of the flow region in the next time step,ahe\of the flow variables to be
assigned there to approximate (local) time derivativegrégotly determined.

It has been our intention to clearly distinguish the mainasgt of the formulation from
other related issues, and in particular from the approxenmaposition of boundary conditions.
Nevertheless, the way to carry out this imposition is esakfor the success of the method. We
have described our particular approach. Some remarks ongehe transfer of information
between meshes have also been made, and the possibilitydl the moving surface by level
set functions has been explained.

A numerical example has been presented which shows therpenfice of the method in a
simple validating example. Results have been comparedsgetbf other fixed grid methods,
showing the need of correctly computing the advection afnmfation between time steps.

Another natural application of the FM-ALE approach is thenawical approximation of
fluid-structure interaction problems, which we will deathvin the following chapter.



Chapter 5

The Fixed-Mesh ALE approach applied to
Solid Mechanics and FSI problems

In this chapter we propose a method to solve Solid Mechamids-id-Structure Interaction
problems using always a fixed background mesh for the sphsatetization. The main fea-
ture of the method is that it properly accounts for the adeaaf information as the domain
boundary evolves. To achieve this, we use an arbitrary loagaa-Eulerian framework, the
distinctive characteristic being that at each time steplteare projected onto a fixed, back-
ground mesh. For solid mechanics problems subject to ldrges the Fixed Mesh - ALE
method avoids the element stretching found in fully Lagrangpproaches. For FSI problems
FM-ALE allows for the use of a single background mesh to sbbih the fluid and the struc-
ture. We also apply the FM-ALE method to the problem of flogsolids, in which it is used
together with the level set function method.

5.1 Introduction

The Fixed Mesh ALE method (FM-ALE from now on) is a fixed gridtimed its main feature
being that the domain movement is taken into account wherpating the temporal deriva-
tives. The basic idea consists in using an ALE (Arbitrary laagian-Eulerian) strategy and
remeshing at each time step in such a way that the original fixesh is recovered. This has
two main advantages when compared to other fixed grid methods

1. Since an ALE formulation is used, temporal derivatives loa correctly computed, in-
cluding the convective terms arising due to the domain ma&rgm

2. The values of the variables in previous time steps arelgldafined in the so-called
newly created nodesn issue of particular controversy in most fixed grid meghod

ALE formulations were initially developed for fluid dynami@roblems, in which they
were necessary to cope with Fluid Structure Interaction)(&&d free surface problems (see
References [45, 74, 79]). In classical ALE methods remegisinften necessary after a certain
number of time steps in order to avoid element stretching. Ak-ALE method avoids this
need by projecting the results from the ALE deformed meslb anfixed background mesh

79
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at each time stepprior to solving the flow equations. At the end all the cadtidns can be
performed on the fixed mesh, and in fact the ALE deformed meshk dot need to be explicitly
built.

The FM-ALE method for flow problems in moving domains is exierly described in
Chapter 4: the main algorithmic steps of the method are satreerical example in the field
of flow problems are presented. Here we take the same ideaseaagply them to problems
in solid mechanics and Fluid-Structure Interaction.

The most usual approach to solve solid mechanics probleths igse of Lagrangian for-
mulations. This means that equations are writtemiaterial points following the movement
of particles. This is a natural choice since in solid mect&mie are interested in tracking the
behavior of structures in time (contrary to many problem$lwti mechanics where one is
interested on theffectof the flow in a certain region, leading to Eulerian formwat). How-
ever, there are certain problems in which fully Lagrangi@mulations cannot be used or lead
to numerical difficulties: when a solid body is subject tgkastrains the shape of the elements
which form the mesh can change a lot, resulting in stretchechents. Stretched elements
cause that the system of equations to be solved is ill-clmmdit, an inconvenient of particular
importance if iterative methods are to be used. In this cd<e farmulations are used and the
mesh is no longer deformed following the particles but isgian arbitrary movement which
avoids the stretching of elements.

ALE methods for solid mechanics problems have been extelysieveloped (see [99, 18,
59]). The main concern in these works is to correctly complestress and plastic history
variables update, since values of history variables at theiqus time step are not available
at the quadrature points unless a fully Lagrangian apprsagsed. In the framework of ALE
strategies for solid mechanics problems, the FM-ALE mettend be understood as an ALE
method in which the mesh velocity is set to zero in all the dioneacept in the region close
to the body surface. In [111] an Eulerian formulation fogkudeformation solid dynamics is
presented. However, it is not clear how the issue of newlgtedenodes near the boundary is
treated.

Once the FM-ALE strategy has been applied to both flow and soéichanics problems it
is very natural to consider its use in the area of Fluid-Stngcinteraction (FSI). Several fixed
grid strategies to solve FSI problems have been developbé ipast years. As a first example,
the immersed boundary method ([113, 87, 91, 92, 137]) ctmsisadding punctual penalty
forces in the domain boundary so that boundary conditiorsfalfilled. Another possible
approach is the use of Lagrange multipliers to enforce bagncbnditions (see [70, 14, 82]).
Both approaches are fictitious domain methods ([62, 63]hénsense that the fluid-structure
interface divides the fluid domain in a physical flow field aniicétious field, which may be
discretized and solved, but has no physical meaning to theeSlem. Usually the unknown
fields in this fictitious domain are used to assign values &n#wly created nodem the
computation of time derivatives. In tlextendedinite element method, special functions are
used to enrich the finite element space near the interfa¢89]ra fixed mesh is used to solve
the fluid while the solid is treated by a Lagrangian desaiptiThe description of the fluid-
solid interface is done by means of a level set function. llithalse works, a fully Lagrangian
approach is used to deal with the solid.

An interesting feature of using the FM-ALE method to solvd p&®blems is that since
the regions occupied by the fluid and the solid do not supeygapa single mesh can be used,
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giving some of the elements to the solid mechanics problahitenothers to the flow problem.
Special care has to be given to the coupling conditions katvleid and structure: the usual
partitioned methods can be used with the FM-ALE methodpaliih due to the fact that the
same mesh is used to solve both problems a monolithic appszsans more suitable.

We finally use the FM-ALE method to solve the problem of soldies falling into water.
This involves the additional need of tracking the free stefaf the fluid by means of a level set
function. Several works have been already developed inehe df the simulation of floating
solids. In [138] floating bodies are simulated by means ofQ#d¢.E-FEM method, but the
solid displacements in the numerical examples are smalklzer@ is no need to remesh. In
[136] the finite element method is used to simulate the ioteya between waves and a floating
body, but again it focuses in the case in which the solid baslgldcements are small. A fixed
grid strategy for the simulation of solids falling into wateas been used in [98], where the
impact of a cylindrical object on a water surface is studikd,main difference with respect to
the present approach being the way newly created nodesatedr Floating bodies can also
be treated with the Chimera strategy described in [72],idex/the free surface is considered
as the interface between the fluid analyzed and a fictitiows for example air. The flow
problem would become in this case a two-phase flow ratherdHaee surface problem, and
a possible way to deal with it is explained in [40]. ALE apprbeas are also possible for the
simulation of free surface - fluid structure interactionlgems, as done for example in [94],
but they require rebuilding the finite element mesh whenrtigsh gets too distorted. In [43]
the phase-field method is used to analyze the wetting phemaiiethe impact of a sphere
with a free surface, The novelty of the present work with eespo the previous ones is the use
of a fixed mesh strategy which correctly takes into accoumttibbvement of the fluid domain
at the time of computing the ALE convective terms and timevd¢ives.

The chapter is organized as follows. A review of ALE methopislied to solid mechanics
problems is presented in Section 5.2. Firstly the generd fdrmulation is presented and par-
ticularized to the solid mechanics conservation laws. iféeds the two possible approaches
to face the equations are discussed: the monolithic apprdeals with the arising equations
in a classical manner, while in fractional - step method<tiigations are solved in two steps:
the material and the convective phases. This allows for sieeofi specific numerical methods
to solve each of the phases. In Section 5.3 the FM-ALE methodéscribed. Since a detailed
explanation of the method can be found in the previous chapidy the general algorithm
and the particular features of its application to solid natbs problems are presented. Stress
is put in critical issues such as the imposition of boundanyditions or the tracking of the
solid body surface. Section 5.4 deals with the FM-ALE metapglied to FSI problems. The
equations for the coupled problem are presented. A desxnript some of the most common
coupling strategies and their particularization to FM-Atddows. Section 5.5 particularizes
the application of the FM-ALE method to the problem of solatikes falling into water. In this
section we describe how the tracking of the free surface e dand which are the additional
computational challenges in the interaction of the freéasearwith the solid body.

Finally in Section 5.6 some numerical examples and valaests are carried out, show-
ing the behavior of the proposed methodology. Some cormisstlose the chapter in Sec-
tion 5.7.
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5.2 ALE methods applied to solid mechanics

5.2.1 Problem statement

Let us consider a regio® c R? (d = 2, 3) where a solid body moves through during a time
interval [0, 7). The solid at time occupies only a subdomatin(¢) c Q°. The boundary of)(t)
is defined by part 0fQ° and a moving boundary that we c&ll.. = 9Q(t) \ 9Q° N IN(¢).

In order to cope with the time-dependency(e(t), we use the ALE approach, with the
particular feature of considering a variable definitiontesf tomain velocity. Lex, be a family
of invertible mappings, which for alt € [0,7] map a pointX € Q(0) to a pointx =
x:(X) € Q(t), with x, = I, the identity. Ifx, is given by the motion of the particles, the
resulting formulation would be Lagrangian, whereag if= I for all ¢, Q(¢) = 2(0) and the
formulation would be Eulerian.

Let nowt’ € [0, T, with ¢’ < ¢, and consider the mapping

Xoo Q") — Q(t)
x' — x=x,0x," ().

Given a functionf : Q2(t) x (0,7) — R we define

af L 8(f © Xt,t’) / / /
e B (x,t) := T(:1: ), xeQt), e Q).
In particular, the domain velocity taking as a referencecthardinates of)(¢') is given by
0
Udom = a_:: » (wat) (51)

Three conservation laws are fundamental in solid mechanasely mass, momentum
and energy balance. Let us make the assumption that meehaffaxcts are uncoupled from
thermal effects. In this case, equations for mass and mamebalance can be solved inde-
pendently from the energy balance equation. The solid nmecharoblem formulated i (),
accounting also for the motion of this domain, can be wrigstiollows:

0
T ) Vp=—pV - (5.2)
ou
rn + p(u — Ugom) - Vu =V - o + pb, (5.3)

wherep is the solid densityu is the particle velocityg is the Cauchy stress tensor ainis
the vector of body forces.

It is usual in the field of solid mechanics to use the followaguation which relates the
densityp in a given configuration with the densipy at the undeformed configuration:

pJ = po, (5.4)
at each material point, where
ox
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As long as the material surfaces which compose the bound#ng solid are tracked with
enough accuracy , this allows to avoid solving (5.2), angtisglonly for (5.3). An additional
constitutive equation that relatesandw will be needed so that the problem is well posed.

If path dependent constitutive equations are to be usedriabdlerivatives of the plastic
internal variables have to account for the advection effdeading to an equation for them of
the form:

b _oa
0tX_0t

wherea is the set of plastic internal variables aAds the set of variables of interest of the
problem, which would typically include the plastic intelwariables plus the displacements,
velocity and acceleration fields. The right-hand-side ob)%lenotes a problem-dependent
operatorF applied toA.

Initial and boundary conditions have to be appended to prolf5.3). Usual boundary
conditions are used for both,.. ando’:

+ (U = Ugom) - Vo= F(N), (5.5)

:l:l

u=u onlp,
n-oc=t only, (5.6)
wheren is the external normal to the boundary anare the given boundary dafd; andl"y

are respectively the Dirichlet and the Neumann parts of tuetaryo$(t).
To shorten the notation, we will introduce the convectioloeiy

C=U — Udom

in what follows.

5.2.2 The time-discrete problem

Let us introduce some notation. Consider a uniform partitb[0, 7' into Ntime intervals of
lengthdt. Let us denote by the approximation of a time dependent functibat time level
t" = ndt. We will also denote

5fn+1 — fn+1 _ fn’
n+1 n

n+1 __ f B f
5tf - 51,/_ )

=0t (1 —0)fr, 0 [1/2,1].

0 type schemes Suppose we are given a computational domain at timeith spatial coor-
dinates labelea™, and an equation of the form:

v
E—Q—(%VU—Q(U),

whereuv is the unknown function and is an operator applied to it. k" is known,»"*! can
now be found as the solution of the problem:

5tvn+1}wn + cn+9 . VUn-‘rG — g(vn-i-e)’ (57)
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where nowd;v" | . = (v"T!(x) — v"(x"))/dt, beingx = xn+o 1 (x") the spatial coordi-
nates in2(¢t"*?). The domain velocity given by (5.1), withl = z", is approximated as
n+60 __ 1

WUgom = 9—& (Xt”*e,t” (mn) - wn) . (58)
n+0 ;

which allows us to compute® ™’ = «"* — 4/}*" in (5.7).

Fractional step methods for solid mechanics There are basically two ways of dealing with
the ALE system of equations (5.2) to (5.6) (see [117] and éferences therein):

a) solving the fully coupled system of equations, accowtom the various terms simulta-
neously,

b) using a fractional-step method to treat material and ective effects separately.

Although solving the coupled system of equations is moreute, the fractional step
method offers some very useful advantages. On one handoé#oh equations to be solved
is simpler than the ones arising from the coupled problemth@nother, difficulties on the
computation of the stress field gradient, which are due tofdhethat stresses are usually
discontinuous across element edges, are more easily cienusad.

Remark 1 The FM-ALE method presented in this work has no dependentbeoway the
system of equations (5.2) to (5.6) is dealt with. Howevargfmse of implementation, fractional
step schemes have been chosen in the numerical exampleates Section 5.6. A

Let us consider thé type scheme in (5.7). For simplicity we will considér= 1. This
eqguation can be solved in a monolithic way, but it can alsoieed in two phases:

Material phase (first order splitting)
In the first phase we solve:
Un—l—l(wmat) _ ,Un(wn)
ot

wherex,,,, = X1 (") is the mapping given by the motion of the particles. Note thist
first phase corresponds g, = u (c = 0), that is to say, to a fully Lagrangian approach.

— g(vn+1(mmat))a (59)

Convective phase (first order splittindh the second phase we solve:

,Un—i-l (m) _ Un-i—l(wmat)
ot

wherex = x;..1 . (x") are the spatial coordinates@r(t"*').
If we add (5.9) and (5.10) we obtain:

V" (x) — v (")
ot

which corresponds exactly to (5.7) except for the fact thatdad of evaluating(v™"!)
at x we evaluate it atr,,,.. This introduces an error aD(dt): observe from (5.10) that
[0 () — v (@mat) || = O(6t), where]| - || may be taken for example as thé-norm.

+ " (x) - Vo () = 0, (5.10)

+e" (@) - Vorti(@) = 60" (@mar)), (5.11)
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If one wants a second order in time scheme, this could be\ahi®y modifying scheme
(5.9) - (5.10) in the following manner:

Material phase (second order splitting)

,Un+1 (mmat) _ Un<mn)

ot

e V(@) = G0 (@ma). (5.12)

Convective phase (second order splitting)

,Un-i-l (m) _ ,UTL+1 (mmat)

+ " vt (z) — " - Vo' (x) = 0.

ot
Note thatc™*! - Vot (z) — " - Vo™ (x) is expected to be, formally, of first order i,
and thereforg|v™ ! (z) — v (T )| = O(6t?). Thus, whenv™ ! (x,,..) is used in (5.12)

instead ofv™ ! (x), the resulting splitting error is expected to ®é5t?). If an overall second
order scheme is to be uset= 1/2 must be chosen.

These fractional step schemes can be introduced to thasydtequations (5.2) to (5.6)
and also for the plastic internal variablesvhose evolution equation is given by (5.5).

Newmark’s method If in the constitutive equation which relates the stressaea with the
set of variables of interest of the problem there is a depsrelen the displacement fieit]
that is to say = o (d, «), (5.3) becomes a second order in time equation. In [107],riesk
presented a method to discretely approximate the velogihyaacelerationd) at timet"*! as a
function of displacementsifj, velocity and acceleration at tim&in a Lagrangian framework.
These three fields can be related in the continuous case hysmoéthe equations

ot | x ot X -
Newmark method reads:
1 1
ntl _ — g+l g _ _n N n
a _B&Z[d d" — u"it] <25 1)a,
urt! = %[d”+1 —d"+ (1 - %) sta”, (5.13)

where and~ are parameters to be chosen. Most usual valueg arel/4 andy = 1/2,
which provide a second order stable and non dissipativensehia the case of displacement-
dependent stress tensors, this method is to be used indtédgpe schemes. For the sake of
conciseness, we will restrict what follows #icschemes, both in the monolithic and fractional
step versions. The dependencearobn the rest of variables of the problem (including internal
variablesa) will be simply indicated bys = o ().

5.2.3 The fully discrete problem

The next step is to consider the spatial discretization eftiime discrete problem for both
the coupled and fractional-step methods. Here we presertdiicretization obtained if finite
elements are used.
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Let {Q°}"*! be a finite element partition of the domdd(t" ), with indexe ranging from
1 to the number of elemenis,. We denote with a subscriptthe finite element approxima-
tion to the unknown functions. The test functions for theoedl w; will be denoted byv,,,
whereasy, will be the test functions for the discrete internal varesak,,, the finite element
approximation to the solution of (5.5). All the unknowns daslt functions are referred to the
current configuration of the solid.

The standard Galerkin method applied to the monolithic tthseretized problem reads:
find u; "' anda) ™' such that

m?+9 (&u}?“ zn 7'Uh) + a?w()\m vy) + C?+€(Ch§ Up, Vp) = l?+€(vh)7 (5.14)

(Geay ™ ) + (7 Vg™ ) = (F (), 7)), (5.15)

for all appropriate test functions, and~,_. The different forms appearing in (5.14) are given
by

ms(0uun, vp) = | v - pous,

CLS(Ah, ’Uh) = V’Uh . O'()\h),

cs(en;un, vp) = [ vi - (pen - Vug),

ls(’Uh)Z/ ’Uh't+/vh'Pb,
Ty Q

wherec,, is the discrete convection velocity, defined as:

S— S— 5 —

Cp = Up — Udom-

The superscript + ¢ in the different terms of (5.14) indicates the time level vehenknowns
and time dependent functions need to be evaluated, as wiilbaspatial domain where in-
tegrals need to be performed. In (5.15) the sym{bo) denotes thd.?-inner product in this
spatial domain.

The test function), in (5.14) must vanish at the Dirichlet part of the boundggy Since
F in (5.15) is usually an algebraic operator, functiensneed to vanish only at points®, at
which the temporal derivatives in (5.14)-(5.15) are refdrr

Remark 2 When diffusion is small in a convection-diffusion processas in the case of
(5.15), the process is purely convective (which happenswhes an algebraic operator), the
Galerkin method fails and stabilized methods need to be.udss method we use is SUPG
(see [29] for an overview of stabilization methods), whigipled for example to (5.15) leads
to the modification of this equation to

(5t0ﬁZ+1 }mn Y T TCZJFG V) + (CZ”’ : Va?i*", Yn T+ TCZ+€ V)

= (F"(An), vp + 1€ - V), (5.16)
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where the so called stabilization parametés computed elementwise as

-1
c
Te = (c%) , e=1,..,ng4,
e

whereh, is the element size for linear elements and half of it for qatds andc|. is a charac-
teristic value ofic| on element. In the numerical experiments we have taken the algorithmic
constant = 2. Stabilization might also be necessary if the coupled neeitbhoised. However,

it is not needed in most solid mechanics simulations sineectimvective term is usually not
dominant in equation (5.14). This method corresponds t@ldpebraic version of the subgrid
scale approach (see [76]) and circumvents the stabilitiplpros of the Galerkin method. In
particular, in the case of incompressible materials it isgilde to use equal velocity pressure
interpolations, that is, we are not tight to the satisfactbthe inf-sup stability condition.A

For the fractional-step approach, equations (5.14)-{5m&y be split into material and

convective phases. Usirtg= 1 and a first order splitting, the former would consist in firglin

w;" " anda; " such that

%mf’"ﬂ <u£’"+1 — uy, vh) +al" (A, vp) = 1" (0g) Yoy, (5.17)
1 n n n
E<a£’ o ah77h> = (‘FL +1<)‘h)77h) v7h7 (518)

where superscript is used to denote that all variables, including domain iratksg are eval-
uated considering zero convection velocity. The convectiep consists in finding) ™' and
a1 such that

1

Em?“ <uz+1 — ui’”“, 'vh> + " epup,vn) =0 Yoy, (5.19)
1 n n n

E(O‘ZH - a}LL’ +1>7h) + (CfLL . vah+177h) =0 Vv, (5.20)

In order to take the convective term linear, the convectielngity in this step may be taken as

Ln+1 _  Ln+l n+1
G = Uy — Ugom-

Remark 3 Note that whenF is an algebraic operator, (5.18) is in fact an approximatoon
an ordinary differential equation, which corresponds ® tilme integration, usually at each
numerical integration point, of the evolution equation foe internal variables. Obviously,
options better than the simplest backward Euler scheme b8)8sould be used. On the other
hand, (5.20) simply represents the transport of the intearéables from the material config-
uration to the final configuration &t*!. There are models in which also the stressgseed

to be transported. Since these stresses are discontincrmss séhe element edges fof shape
functions, solving equation (5.16) fer is not straightforward. There are a certain number of
strategies to deal with this problem which can be found faneple in [75, 117, 4]. In the
numerical examples of Section 5.6 there is no need to uptatsttesses, since only elastic
materials have been considered. JAN
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5.3 The FM-ALE method applied to solid mechanics

In this section we describe how the Fixed-Mesh ALE methodlma@applied to problems in
solid mechanics. An overview of the FM-ALE approach is preed but major attention is
given to the particular characteristics of its applicatiorsolids. For a more detailed explana-
tion of the FM-ALE method in the general framework of movingnehins, see Chapter 4. In
this section and the ones that follow it, the numerical saewill be particularized fof = 1.

5.3.1 The general algorithm

Suppose&?’ is meshed with a finite element mesh® and that at time level® the domain
Q(t") is meshed with a finite element mesf’. Let ) be the velocity already computed on
Q(t™). The purpose is to obtain the region the solid occupies a tim', Q(¢t"*!), and to
compute the various unknown fields. If the classical ALE rodtls used /™ would deform

to another mesh defined#t!. In the FM-ALE approach we do not use this mesh to compute
the unknowns of the problem, but instead we re-mesh in suchyatkat the new mesh is,
essentially)° once again. The main steps of the algorithm have been pegsEn€hapter 4.
Here we present an alternative algorithm which would lead wery similar result. A global
idea of the meshes involved in the process is representdd.id.E.

1. Definel>"! by updating the function that defines it.

free

2. Deform the mest/™ to M} . using the classical ALE concepts and compute the mesh
velocity u 1

dom*"

Write down the ALE solid mechanics equationsidij; ..

3.
4. Solve the equations oWy} to compute the unknowns in the deformed mesh.
5. Split the elementsf M° cut by'(:"! to define a mesh of2 (1), M+,

6.

Projectthe results from\/3 to M+,

The conceptual idea of the algorithm in Chapter 4 and the oegepted here is basically
the same, the only difference being that in the first algorithe equations are solved af"+!
while in the second algorithm they are solvedidt;’.. However, the second approach is more
convenient if non-linear systems of equations are to beesblVhis is due to the fact that the
projection fromM}; L to M™*! is done only at the end of the time step, while in the first
algorithm this projection has to be carried out at eachfitma

5.3.2 Details on some of the steps
Tracking of I'f.ce

In the examples presented in Section 5.6 the body surfackdes tracked by means of a
Lagrangian boundary mesh. The intersection between the #hément mesh and the La-
grangian mesh is found at each time step. After the ALE saligaéions have been solved,
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the Lagrangian contour mesh is deformed. The transmisgioriamation between the two
meshes is done by means of At projection. There are two possible ways of updating the
position of the Lagrangian mesh nodes. The first approackistsnin computing:

/ vy, - 6dp" = / vy - 0yt
r r

d; =dj +6dpm, (5.21)

while in the second approach we compute:

[t = [on (5.22)
I I

wheredrg are the displacements computed on the finite element meskdaade the dis-
placements of the Lagrangian surface mesli" ™ are the incremental displacements from
time stepn to time step: + 1 andwv,, are now the test functions corresponding to the nodes of
the Lagrangian surface mesh.

Although (5.21) could seem a natural choice, since a usyaioagh in solid mechanics
is to solve for the incremental nodal displacements, (5v@ks better than (5.21). This is
a consequence of the fact that (5.22) preserves the infaomat the undeformed geometry,
while the incremental approach of (5.21) leads to the logkisfinformation.

Another possible approach which has not been exploitedsmtbrk would be to track the
body surface by means of a level set function. For more deataithe use of level set functions
in the FM-ALE method, see [41]. A method to track initial piosn of the particles has been
developed in [47], which could also be applied to the pregamulation.

Approximate imposition of boundary conditions

As done in Chapter 4, the strategy described in Chapter 2 imsorder to impose Dirichlet
boundary conditions without changing neither the conmggthor the sparsity of the final sys-
tem of equations matrix. There are a number of other methavdsiposing Dirichlet boundary
conditions on fixed meshes which could have been used, sexdaonple the strategies pro-
posed in thdmmersed Boundary Methdd13], theFictitious Domain Method62, 63], and
the hybrid Cartesian/immersed boundary methd@®, 139, 104]. The only difficulties in the
imposition of boundary conditions near boundaries witbgular geometry are associated to
the fact that we consider the interface between the "insidelomain” region and the "outside
the domain” region of each cut element to be a single line gegnT his introduces limitations
in the tracking of the solid body geometry, specially whearpttorners are present or, in the
floating solids problems to be described later, in those etgswhich are cut by the solid
body boundary and the level set function at the same times iBhda common limitation of
fixed mesh methods which can be addressed by coding more epsydbelement integration
subroutines, although this has not been done in the curremt w

Splitting of elements

Mesh M+ is obtained by splitting the elements bf® cut by ("', Meshes)/™! and M°
only differ in the subelements created after the splittirgg jnentioned. Mesh/"*! could be



90 Chapter 5. The Fixed-Mesh ALE approach applied to Solid Meats and FSI problems

thought as a local refinement of mesH to make it conform the boundafy} . As in other
fixed grid methods, this computational complication can\mded by prescribing boundary
conditions onl':! in an approximate way, although the local refinement fiafhto M7+

is needed also to perform the numerical integration of tffergint terms appearing in (5.14)-
(5.20).

However, depending on hol*! intersects)/?, the resulting subelements size could be
very small compared to the size of elements adjacelitto. This results in an ill-conditioning
of the system of equations to be solved. In order to avoidisisise we work with a slightly
deformed meslMijé,dCf at each time step constructed as follows: exterior nodesolese to
It (closer thar).1h for example) are displaced in a direction orthogondl'tg" until they

free

match exactly the body surface. The splitting of this medhawoid ill-conditioned elements.

Remark 6 Note that since only nodes very closeltf)! are displaced, the stretch of the
elements is negligible, as it can be seen in Fig. 5.1. A

,,,,,

X

Figure 5.1: Deformation of\/° for splitting purposes. Left: undeformed mesh. Right: de-
formed mesh. Element stretch is barely appreciable.

5.4 The FM-ALE method applied to Fluid-Structure Inter-
action problems

In Chapter 4 the FM-ALE method for solving flow problems in nmay domains was pre-
sented. In this chapter we have seen how the FM-ALE appraatbe used to solve problems
in solid mechanics. In this section we will show how to solaid~Structure Interaction prob-
lems using the FM-ALE approach for both the fluid and the $tmec In this case the same
background fixed mesh can be used to solve both the first arsgtiomd case, leading to some
advantageous features in the coupling between them.
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5.4.1 The FM-ALE method for flow problems in moving domains

In this section an incompressible Newtonian fluid will be sidlered. As in the solid case, the
domain movement has to be taken into account. The incompled&vier - Stokes equations
are:

Find a velocityu : Q(t) x (0,7) — R? and a pressurg: Q(t) x (0,7) — R such that

[3u
p

Sp| (= taon) - Vu| = V- (2uVu) + Vp = pf, (5.23)

w/

V.u=0, (5.24)

whereV°u is the symmetrical part of the velocity gradiepiis the fluid density. is the vis-
cosity andf is the vector of body forces. Initial and boundary condisitvave to be appended
to problem (5.23)-(5.24).
If finite elements are used, the fully discrete stabilizednterpart of this equations is:
Findu) ™" andp}*! such that

myt (Gup ™| . o) + a"*? (uy, vy)
+c"+9(uh — Udom; Wh, Vp,) + b’f+€(ph, vp) = l{”e(vh), (5.25)
ms™ (qn, ™) 4 05 (an, wn) + 5" (qn, o) = 1570 (an), (5.26)

for all test functions,, andq,, the former vanishing on the Dirichlet part of the bound@yy
The different forms appearing in these have been defined apteh4.

5.4.2 Solving the coupled problem

When dealing with the coupled problem, the domain is diviod a solid part2,(¢) and a
fluid part Q;(t), whereQ® = Q. (t) U Q,(¢) and Q,(t) N Q(t) = 0. The boundary of the
coupled problem can now be divided into the Dirichlet bougdar the fluid FfD and the
solid %, the Neumann boundary for the fliiitd, and the solid™},, and the common interface
boundary between the fluid and the sdligl.. The boundary of the coupled problem is now
['=Tp Uy U, wherel', = I, UTS andTy = T'), UTY,.

The problem now consists in solving (5.14) or (5.17)-(5.20)2,(¢) and (5.25)-(5.26)
in Q4(t). The key point is obviously the boundary conditions to beliagpOnI'p, andl'y
boundary conditions are the usual applied to solid and flledhanics problems:

u’=u* only,
. f
u/ =ul onT},
n-o’ =t only,
Y f
n-of =t/ onT},
where superscript has been introduced for the unknowns in the solid and sugetrgcfor

the unknowns in the fluid. I, conditions must be applied such that velocity and traction
continuity at all time steps is fulfilled:

u’ = uf on 1—‘freea

n-o*=n-o0/ onlje.
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Iy

Figure 5.2: Domain and domain boundary subdivision in F8bfams. BlueI*. GreenI.
Red:I's.... Dashed linel'y. Continuous linel'p

Satisfying the kinematic continuity leads to mass cong@mawhereas satisfying the dy-
namic continuity yields conservation of linear momentum.

Note that since)’ = Q,(¢) U Q;(¢t) and M" is a mesh coverin@’, it is possible at each
time step to divide)/? into M and M/} such that:

M = MU M,

where M and M} are meshes covering,(¢) and(;(¢) respectively, and not necessarily
disjoint. This allows us to use a single me&H to solve both the fluid and the solid mechanics
problems fort € [0,7]. However, if boundary conditions are prescribed in an axiprate
way, for example following the strategy proposed in Chagtehere will be some nodes of
M? which will belong to bothA/! and Aff. At these nodes degrees of freedom need to be
duplicated so that unknowns for both the fluid and the solidlm@obtained.

There are basically two ways of dealing with the coupledd=Biructure Interaction prob-
lem: thepartitionedand themonolithicapproaches. In partitioned methods the solid and fluid
problems are solved independently and coupling betwedmniathieved iteratively by means
of the so calleccoupling algorithms The major advantage of this approach is that specific
codes can be used for each of the two problems to be solvettalishack is that convergence
is difficult to achieve under certain circumstances. In tlfwnalithic approach both problems
are solved simultaneously and coupling between them issegbon arimplicit manner, which
avoids the need of coupling iterations. The dimension ofsygtem to be solved is larger in
the monolithic case. However, if iterations within eacheistep yield convergence of the par-
titioned solution to the monolithic one, the distinctiortween both is blurred. In fact, those
iterations can be understood as a certain preconditionsolige iteratively the monolithic
problem.

Although both strategies can be used together with the FNE-Alethod, the monolithic
approach is the one which suits it best. We have already seed/Hf can be divided intd\/!
andM}. Moreover, with the formulation we use to solve the incorspiiele Navier - Stokes
equations, it is possible to use the same interpolationtioms for the unknowns correspond-
ing to the solid problem and for the ones corresponding tdltve problem. It is very easy
in this case to implicitly write the coupling conditions teten fluid and structure. To this
purpose equations corresponding to fluid velocity unknowrsodes belonging tdL’i1 (L¢)
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are used to prescribe implicitly* = w/. On the other hand, traction continuity is imposed in
equations corresponding to solid velocity/displacementy and L_; simply by adding the
corresponding boundary terms to the momentum conservatgjoations.

The final system to be solved is: find ™%, u"™"/ andp’*! such that

it (s, v]) + 0l of) + (] = wwaoms wh, 0f) + 6 (o, 0]) = 1 (0]),

it (g, b ) + 05 (an, ) + 5" (gn pn) = 57 (),

mi (S, v7) + al T (N, ) 4 T (uh, = waom; ui, vj) = 10 (v5),
(5.27)

for all test function3v£ andw; vanishing on the Dirichlet part of the bounddry, and all
test functionsy,. Obviously, integrals corresponding to forms defined onflind region are
extended ovef2,(t), whereas integrals corresponding to forms associatedetsdlid are
extended ovef,(t).

Another point we want to stress is that if one wants to soleeRhuid-Structure Interac-
tion problem using a monolithic scheme, but the solid is tetleed using a fractional step
method, the strategy to follow is simply to solve thaterialphase of the solid coupled mono-
lithically with the fluid problem. Once this phase is solvediables of interest ife,(¢) can be
transported in theonvectivgphase (only for the solid mechanics problem).

In the Fluid-Structure Interaction example in Section &drmonolithic approach has been
used. However, there is no major drawback in using the FM-Abplgroach altogether with
partitioned schemes.

Let us close this section summarizing the final algorithnttier FM-ALE method applied
to FSI problems, which is:

1. Definel'""! by updating the function that defines it.

free

2. Deform the mesi/™ to M} using the classical ALE concepts and compute the mesh
velocity w7

dom*

3. Write down the ALE solid §/!) and fluid (}) mechanics equations aW};s. If a
fractional step method is used for the solid equations tbisesponds to the material
phase

4. Solve the equations oW to compute the unknowns in the deformed mesh.
5. If a fractional step method is used for the solid, solvecibrevective phase
6. Split the elementsf 1/° cut byI'7:"! to define a mesh oft(¢"+1), M+,

free

7. Projectthe results from\/}; 5 to M+,
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5.5 The FM-ALE method applied to Fluid-Structure Inter-
action problems involving a free surface

In the previous sections we have seen how to deal with fluictgire interaction problems
using the FM-ALE method. In this section we introduce theaxigredient of the free surface
of the fluid, which requires some care when the solid body daonis close to the function
representing the free surface. In this case we considenptliet®dy to be rigid, and thus very
few degrees of freedom are needed to describe the solid bodgnmrent.

5.5.1 Problem statement

Let us consider a regiad® C R (d = 2, 3) where a flow will take place during a time interval
[0, T']. However, we consider the case in which the fluid at tinoecupies only a subdomain
Q(t) c Q° (note in particular thaf2(0) c Q°). Suppose also that the boundary((t) is
defined by part 062° and a moving boundary that we c&l(¢) = 9Q(t) \ 9Q° NOQ(t). This
moving part 0ofd€2(¢) may correspond to the boundary of a moving solid immerseldariltid
or can be determined by a level set function. The settingeoptbblem is described in Fig. 5.3,
where also the solid domalie’(¢) and the fluid structure interfade; have been depicted.

rfree(t)

QO

1—‘free(t)

Figure 5.3: Setting

Boundary conditions are of the form

wheren is the external normal to the boundasy,= —pI + 2V u is the Cauchy stress
tensor and: andt are the given boundary data.

When dealing with the fluid part of the domain, we also haveatetinto account the
movement of the free surface. This movement is dealt with bgms of a level set function,
as explained for example in [41, 37].
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In the level set method we define a smooth functiooverQ® which allows us to determine
Q(t). In our case we defin@(t) as the region over whiclr (x, t) is positive. The position of
the fluid front will be defined by the iso-value contolir= 0. The evolution of this level set
function is computed by means of the transport equation: §indQ° x (0,7') — R such
that:

ov

e +u- VU =0, (5.28)
with the additional requirement that the advection veloait the free surface coincides with
that of the fluid. The procedure used to compute the leveldetaion velocity is described
in subsection 5.5.2.

For the solid part, we consider only the case of rigid bodiée solid also evolves in time,
and we denote its domain I6¥;(¢). As usual in solid mechanics problems, we face the problem
in a purely Lagrangian way. Let us denoteby, the position vector of the center of mass of
the rigid body, and by, the Euler angles. The motion equations for the rigid body fard
x. : (0,7) — R¥andb,, : (0,7) — R? such that

dz.’l}rb
m—s = F, (5.29)
d?0,,
1 =T .

wherem is the mass of the rigid body, is the inertia tensoi#’ is the force vector at the center
of mass and’ is the torque at the center of mass.

Initial and boundary conditions have to be appended to prol{b.23)-(5.24) and initial
conditions to (5.29)-(5.30). In order to impose these cooils we redefind(¢) asl'¢(t) =
Cree(t) U Tt (1), wherel'g.(t) is the part ofl ¢ (¢) corresponding to the free surface dng¢)
is the part ofl'¢(¢) corresponding to the interaction between the fluid and thetstre.

In It boundary conditions are of Neumann type, specifically wesgtke tractions to
zero, neglecting surface tension.Ilg we must impose the usual conditions in fluid-structure
interaction problems, which for rigid bodies are contigwat the velocity field and transmis-
sion of the forces and torques exerted on the solid body bffutte

On the rest of the boundary 0Xf(t) the usual Dirichlet and Neumann boundary conditions
can be considered.

5.5.2 Numerical treatment

The numerical treatment of the incompressible Navier-&aquations is done as described
in the previous sections, and a similar formulation is usedrder to deal with the advection
of the level set function.
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For the temporal integration of the solid mechanics probieenconsider Newmark’s

method:
mEit = Frit
o L,
mrl:rl = W[wrb—’_l .’E rbét] (ﬁ o 1) rb’
g+l — l[mn+1 —an ]+ (1- 1 Stan (5.31)
T ot T 28)
and
10" =1,
w41 1 - n 1
rb 6(5752[ rb rb ] <26 ) rbo
- n+1 n"
N ( : ﬁ) L (5.32)

where 5 and~ are parameters to be chosen. Most usual valueg arel/4 andy = 1/2,
which provide a second order stable and non dissipativarsehe

Tracking of T

As explained before, the free surface is tracked by meansl@fed set function. However,
there still remain some points to be clarified about how thigess is exactly carried out. The
main particularity of our problem is that the fluid bound&gyis represented not only Qy;..
but also byl'y; (see Fig. 5.3). Theoretically, if the advection velocitydois that of the rigid
body inl'y, I'ee N 'y = L', but in practice both boundaries will rarely exactly codei A
strategy has to be devised to deal with this lack of coinaidenf the functions which define
the boundary of the fluid domain, which is due to numericakapjnation errors.

The first situation we consider is the one depicted in Fig.Asiwe can sed,; does not
coincide with the free surfade,.., understood as the isovaltie= 0 of the level set function.
This problem can be solved in the following manner: let usraefi = as the part of'f...
interior toQ(¢). Now we can define the fluid boundary as:

free

Iy = (Ffrco \ F;kroc) U g

The second and more delicate problem occurs whgp getsdelayedwith respect to
I';; due to the extra numerical diffusion which appears in thesation of the level set. This
situation is outlined in Fig. 5.5. As we are considering awnim mechanics, the only way the
water surface can separate from the solid is slipping. lemta avoid an incorrect separation
process of the fluid from the solid we rely on the velocity ia tlon-computedir domain

In theair domainwe do not solve the Navier-Stokes equations. This is theoreasy we
have to compute an artificial velocity to advect the levelfsattion. To do this we solve a
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0 1—‘free(t)
Q
\

1—‘free(t)

Figure 5.4: Lack of coincidence of the boundary defined'py, andl';

modified Stokes problem with the following particularitié&d a velocityw : Q°\ Q(t) —
R? and a pressurg: Q° \ Q(t) — R such that

—V - (2vVu) + Vp = f, (5.33)
V.ou=—a, (5.34)

wherea is a constant which is positive in the solid domain, and zenside of it. Note that
using the positive constantin the interior of the solid body does not introduce any ertia
merical error since (5.34) refers only to the computatiothefartificial velocity. Slip bound-
ary conditions are applied except fBf... where the fluid velocity is imposed. The positive
constanty, which has units of7~!], makes the solid body act as a sink, which allows us to
avoid any numerically inducedklayin the advection of the interface. Again, the subgrid-scale
method is used to stabilize the problem and allow for equblcig-pressure interpolation.
This problem needs to be solved only in a region closE;tdn the rest of2° \ Q(¢) the ad-
vection velocity can be more straightforwardly computext, dxample by means of a linear
extrapolation.

As usual when using the level set method, we need to reiagittie level set function every
certain number of time steps. This reinitialization may e position of the interface. In
order to avoid this a special procedure is used in the nodesitoélements. It is a slight
variation of the method presented in [66], which consisttheffollowing: Suppose that we
are given the free surface configuration in Fig. 5.6. Now wedei the nodes belonging to the
elements cut by the free surface in two sets, each set condsyg to one side of the free
surface. In the first wet side, we prescribe the nodal valti#sedevel set function to be equal
to the (signed) distance between the node and the free surfac

We use the degrees of freedom of the nodes in the second side see surface to pre-
scribe the reinitialized level set function to be zero vdloa the free surface, by using the
approximate imposition of boundary conditions of the poegi section. On the rest of the
nodes we prescribe the level set function to be the signedritis from the nodes to the free
surface, although we could also use the more efficient proedad [66], or other techniques as
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* 4
F free(t)a /[I
>0 , /)

1—‘*free(t)a A e
o=0

Figure 5.51°; _ for differenta parameters

free

the one described in [37]. This algorithmic procedure afidhe reinitialized level set function
to very accurately track the free surface, that is, the ftetase for the reinitialized level set
function minimizes the distance between the interfacetjpmsbefore and after the reinitial-
ization. This guarantees that no significative mass losglisduced during the reinitialization
of the level set function, since the error in the reinitiatinn is of O(5¢?) .

Figure 5.6: Green nodes: nodes in which we prescribe thédetéunction to be equal to the
signed distance from the nodes to the free surface. Red noddss whose nodal values are
such that the level set function is zero on the free surfapp{@ximate imposition of boundary
conditions).
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5.6 Numerical examples

In this section we present some numerical examples whicktitite the behavior of the
methodology proposed in this work.

5.6.1 An example on FM-ALE applied to solid mechanics

In this example a cantilever subject to gravity forces wdldimulated by means of the FM-
ALE method. Since a fractional step method is used, the ansto be solved are (5.17)-
(5.19) (with the additional terms coming from the stabilian). A Neo-Hookean material
has been considered, which takes into account large stiresconstitutive equation of this
material is (see [17]):

o= %[)\0 InJI + po(B — 1)), (5.35)

whereB = F - FT, \, and, are material parameters aifids the identity tensor.

The hold-all domain is the rectangle = [—1, 5] x [0, 11]. A background mesh of 3200
linear triangles has been used. The considered solid istangdar cantilever situated at
[0,1] x [0,10]. The material parameters akg = 2000 and o = 5000. The solid density
is p = 1, which has been considered to remain constant through tbé&ewwhocess.

In this case the body is only under the effect of (horizontady forces, given by
b" = (1,0). Dirichlet boundary conditions are applied @t= 0, where displacements in
any direction are prescribed to zero. On the rest of the dmichdary, Neumann boundary
conditions are applied:

n-o=0.

Initial conditions correspond to the undeformed staticfigumation.

The time step size has been sette= 0.2 andd = 1 has been taken (first order scheme in
time).

Fig.5.7 shows the mesh used to solve this problem. The boymddhe body does not
match the boundary of the mesh. Fig. 5.8 shows horizontalartetal displacements at time
step 90.

In order to validate the FM-ALE method, we have compared éiselis obtained with our
approach with those obtained if a classical Updated - Lageanmethod for boundary fitting
meshes is used. To this end we have used a boundary fitting witslthe same element
density to solve the same problem. Fig.5.9 shows the haatadimsplacement of a material
point placed at the top of the cantilever, whose coordinateX” = (0.5, 10).

The simulation is carried out during 90 time steps. As it casden results are very similar
to the ones obtained in the classical Updated - Lagrangiproaph.

Another issue which we were interested in is the effect ofube of a fractional step
method. In Fig. 5.10 we have plotted the results obtaine@ifakeu,,,, = u,, (the convective
phase is avoided) versus the results obtained if we takg # w; (a convective phase is
needed). As we can see no difference can be appreciateddretesalts, and we can conclude
that the error introduced by the use of a fractional step otkikh small.
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Figure 5.7: Immersed mesh use to solve the solid mechanas@e and body surface
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Figure 5.8: Displacements after 90 time steps
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Horizontal displacement

Updated Lagrangian
FM-ALE
_05 1 1 1 1 1 1 1 1
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Time step

Figure 5.9: Horizontal displacement at a point placed atapeof the cantilever. Comparison
between FM-ALE and Updated - Lagrangian formulations

Horizontal displacement

FM-ALE Ugom =Yn

-05} —x— FM-ALE U, #u

0 10 20 30 40 50 60 70 80 90
Time step

Figure 5.10: Horizontal displacement at a point placedatdp of the cantilever. Comparison
between FM-ALEuy,,, = u;, and FM-ALE ug.,, # u, formulations
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5.6.2 Examples of the FM-ALE applied to Fluid-Structure Interaction
problems

In the first example the same cantilever as in subsectioh &.68imulated. However, the forces
acting on the cantilever are due to the interaction with afinithis case. The hold-all domain
is the rectangleB = [—10,70] x [0,20]. An unstructured background mesh of 4655 linear
triangles is used. This mesh is much coarser than the onamugee previous example if we
consider the element density in the solid body area.

vaY
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vaY

Figure 5.11: Mesh used to solve the first Fluid-Structurerbuttion example. Left: full mesh.
Right: detail of the area surrounding the solid body

The material parameters for the solid body are the ones udbe iprevious example. For
the fluid we have considered = 2 andp = 0.2. The velocity atz = 0 is prescribed to
(1,0), whereas ag = 0 andy = 20 the y—velocity component is prescribed to 0 and the
component is left free. The outflow (where both theandy-components are free) is= 70.
The Reynolds number is 100, based on the cantilever heighth@prescribed inflow velocity.
The time step size has been sette= 1 andéd = 1.

A monolithic approach has been used to couple fluid and streiccBoth the fluid and the
structure have been solved using the FM-ALE method withsdrae background megbkee
Fig.5.11). The deformed configuration of the beam at timp $69 is shown in Fig. 5.12.

In Fig.5.13 the horizontal displacement at a point placethattop of the cantilever is
plotted. This figure shows how the movement of the cantilevdumped by the action of the
fluid. After a certain number of time steps the movement bexostationary. Fig.5.14 and
Fig.5.15 show the cantilever displacements and the fluidcigts and pressures at time step
100.

In the second example we consider a thin elastic non-lineambNeo-Hookean material)
attached to a fixed square rigid body, which are submerged in@mpressible fluid flow.
Vortices separating from the corners of the rigid body gateeoscillating forces on the beam.
Geometry is given in Fig.5.16, while Fig.5.17 shows the meséd to solve the problem.
Again, a higher element density has been used in the regiachwtill be occupied by the
solid. The mesh is as coarse as possible, with the requitaimeithere are at least three ele-
ments to cover the beam width, and it is composed of 9388juilain elements and 4812 nodes.
The setting of the problem is similar to that proposed in [L&88hough we have considered
a thicker beam in order to be able to use the rather coarse desshibed. It is clear that thin
structures are not the most favorable situation for fixedhnmasthods, and in particular for
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Figure 5.12: The same mesh is used to solve both the fluid arsdrilcture. Green: elements in
which only degrees of freedom corresponding to the fluid haee solved. Blue: elements in
which only degrees of freedom corresponding to the stradiave to be solved. Red: Elements
in which degrees of freedom corresponding to both fluid andctc&ire have to be solved.

Horizontal displacement

0 I I I I
0 20 40 60 80 100

Time step

Figure 5.13: Horizontal displacement at a point placed atdlp of the cantilever.
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Figure 5.14: Solution for the solid body at t = 100
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Figure 5.15: Solution for the fluid at t = 100
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FM-ALE (an alternative would be to represent these strastioy a zero width solid, which is
not a situation considered in this work).
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Figure 5.16: Geometry
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Figure 5.17: Mesh used to solve the second Fluid-Structuesdction example

The fluid material properties age= 1 x 102 andp = 1.7 x 1073. The solid material
properties arep = 2, Ao = 1.72 x 10° andpuy, = 7.4 x 10°. The horizontal inflow velocity
atz = 0 is set to 40, yielding a Reynolds numberleé¢ = 235 referred to the length of
the square rigid body. Slip boundary conditions are seteatills of the channel. The beam
and the square rigid body are assigned non-slip boundargtitomms. The time step is set
to ot = 0.002 and® = 1. A monolithic approach has been used to solve the FSI prgblem
although the fractional step scheme has been used to déaheisolid. Both the fluid and the
structure have been solved using the fixed background mesh.
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Contours of pressure and velocity componentstaad are shown in Fig. 5.18, when the
vortex shedding behind the square cylinder has appearad bat yet fully developed. It can
be observed that even in this transient stage results aretsraod boundary conditions on the
elastic beam perfectly accounted for. The evolution of #mieal displacement at the edge of
the beam is plotted in Fig. 5.19, where it can be observedhieadynamics of the system are
fully developed at about = 7. Then, a perfectly harmonic flow pattern sets in, with a €ngl|
frequency in the time response, as it can be observed frons 2Q.
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Figure 5.18: Velocity and pressure at time: 5.0

Finally we present a third example in which we compare thelte®btained with the
FM-ALE method in the benchmark problem proposed in [129]aikg we consider a thin
elastic beam attached to a rigid body. In this case, the mhfer the elastic beam is a Saint
Venant - Kirchhoff material, and the rigid body is a circld€lconstitutive equation for a Saint
Venant-Kirchhoff material is (see [17]):

o= %F[Atr(E)I + 2uE]F*, (5.36)

whereE = (B —I). Both solid bodies are immersed in an incompressible fluigl feom-
etry is given in Fig. 5.21, Fig. 5.22 shows the 10883 triamgésh used to solve the problem.
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Figure 5.21: Geometry, benchmark [129]
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Figure 5.22: Mesh used to solve FSI benchmark [129]

The fluid material properties ape= 1x10? andv = 1x1073. The solid material properties
arep = 1 x 103, v = 0.4 andp = 2.0 x 10°. The horizontal inflow velocity at = 0 is set
to a parabolic profile with mean valie yielding a Reynolds number @fe = 200 referred
to the size the circular rigid body. Non-Slip boundary cdiatis are set at the walls of the
channel. The beam and the square rigid body are also assigneslip boundary conditions.
The time step is set t& = 0.005 and a second order backward difference scheme is adopted.
A monolithic approach has been used to solve the FSI proéihmugh the fractional step
scheme has been used to deal with the solid. Both the fluidrensttucture have been solved
using the fixed background mesh.

Contours of pressure and velocity components @ard 6.8 are shown in Fig.5.23, and
we can see that again smooth velocity and pressure fieldsbéaed in the fluid. Finally,
we compare the results obtained with the FM-ALE method withdnes presented in [129] in
Fig.5.24. It can be observed that a very good agreementasnaotin both the periody 0.18)
and amplitude of the tip displacement ().002 +0.035) in the oscillations of the elastic beam.

5.6.3 Examples of the FM-ALE method applied to FSI problemsnvolv-
ing a free surface

In this section we present two numerical examples whicktitate the behavior of the method-
ology proposed in this work.

The first example we propose consists of two rigid bodiegfglinto an incompressible
fluid. To run this example we use the FM-ALE method on the flad pand we track the free
surface by means of a level set function. The initial configion of the problem can be seen
in Fig. 5.25.

The hold-all domain is the rectangle = [0,2.4] x [0, 1]. A background mesh of 7968
linear triangles has been used. The fluid densipy4s 1, and the viscosity is set @ = 0.001.
For the solid bodies, density js= 0.75.
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Figure 5.25: Initial configuration, example 1
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Both the fluid and the structure are subject to a verticaligrdorce of valueg = —10.
We apply slip boundary conditions both at the interface leetwthe fluid and the deposit wall
and at the interface between the solid bodies and the fluid. Mkans that only the velocity
in the direction normal to the interface has to coincide leefthe fluid and the solid bodies.
In the free surfacé’;,.. tractions in the normal direction are prescribed to zero.

The time step has been setito= 0.02 and150 time steps have been carried out. Regarding
the advection of the level set function, thg@arameter for the artificial mass sink explained in
subsection 5.5.2 is taken as= 2.

Figures 5.26 to 5.29 show the results for various time stegtsus remark that the solution
obtained is smooth along all the computation, even for tisédnitical steps in which the rigid
bodiescontactthe free surface. The irregular boundaries are due to théfaicfor ease of post
processing we have plotted the solution in the elementsyciltdbboundary without taking into
account that the boundary of the domain does not fit the boyraddhe elements.
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Figure 5.26: Unknown fields and free surface att = 0.36

The kind of computation involved in this example, in whicle tuid region undergoes
very large deformations, would have implied the need fortiomous remeshing if classical
ALE methods were used. Our fixed mesh strategy avoids it byegting the results to the
background mesh at each time step.

The most critical situations in this problem, which are th&tant in whichthe fluid closes
around the rigid bodyand surrounds it completely, and the instant wtinensolid body breaks
the free surfaceare handled in a very natural way with the level set funcsimategy.

In the second example, we simulate an oval body falling imdrecompressible fluid.
Again, we use the FM-ALE method to simulate the fluid part, amrdtrack the free surface
with a level set function. The initial configuration for thpsoblem can be seen in Fig. 5.30.

The hold-all domain is the rectangle = [0, 1] x [0, 1]. The fluid density i = 1, and the
viscosity is set tq: = 0.01. For the solid body, the density is= 0.5. Both the fluid and the
structure are subject to a vertical gravity force of vajue —10. The time step has been set
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to ot = 0.02 and500 time steps have been carried out. Again, the paramebers been set to
a=2.

In this case we have used three different meshes in ordemtpa@ the behavior of the
method with different element sizes. In the first case, weeheed a relatively coarse triangle
mesh with 1890 nodes. In the second case we have used a finey wigs5205 nodes and
the last mesh consisted of 11614 nodes. We compare thealattsplacement of the center
of mass of the solid body in the three cases in Fig. 5.31. Wesearthat we obtain a solution
close to the converged one for the vertical displacemertt thi¢ two finer meshes. We have
also represented vertical and horizontal velocities fergalid body in Fig.5.32. Horizontal
velocity for the solid body should be zero due to the problgmrmeetry. The numerical errors
introduced in the geometry interpolation of the cut eleradtite considered meshes are not
symmetric) are the cause for horizontal velocity to appaléinough the horizontal velocity is
small compared to the vertical velocity and the domain dizany case, as already explained
this local error could be removed by improving the numeriotdgration, which can be done
by introducing appropriate subelements for integratiorppses.
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-0.24

-0.26

-0.281
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-0.32

-0.34f

-0.36

Figure 5.31: Time evolution of the vertical displacement

Fluid velocity, free surface and solid body configuratiors de seen in Fig.5.33 to
Fig.5.35. As expected, in the final configuration, when thdybis at rest, half of the body
is inside the fluid domain and half of it is in the air domaimc&p,/p; = 0.5. Again, the lack
of symmetry in the velocity fields in Fig. 5.35, when both thedland the solid are close to
rest, is due to the cumulative numerical errors of the gepnirgtierpolation in the cut elements.

Fig.5.36 shows the time evolution of the total fluid mass. \&e see that mass loss is
larger in the coarse mesh case, and much smaller for the fiegles although no method for
correcting mass loss has been used.
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5.7 Conclusions

In this chapter the FM-ALE approach has been applied to seéidhanics and Fluid-Structure
Interaction problems. The main feature of the method isafsability of using a fixed back-
ground mesh but at the same time correctly taking into adcthendomain movement in the
computation of the time derivatives. Moreover, values efuhknowns for the so-callatewly
created nodeare clearly and uniquely defined with the FM-ALE approach.

For solid mechanics problems the FM-ALE method is of spdai@rest when the solid
body is subject to very large strains. In this case Lagranfgiemulations cannot be used due
to the ill-conditioning caused by the large element streid¢te FM-ALE method, on the other
hand, avoids element stretching by using a fixed mesh. Aatbid test has been carried out
comparing results obtained with a classical Updated - Liagjean formulation and the method
proposed in this work. Results show that the method is radmusiaccurate.

The FM-ALE concept can be applied together with any timegragon scheme. In the
case of solid mechanics, we have shown how to use it in cornbmaith classicab schemes
and fractional step methods that have a certain popularityis context.

In the case of Fluid-Structure Interaction problems, the AME method can be applied
to solve the flow and the solid mechanics problems. The maitufe of this approach is
the possibility of using aingle background mesh to solve both mechanical probl&yes
have presented two numerical examples showing this p&aticapability. Even though mono-
lithic solid-fluid coupling schemes have been employed pib&sibility of using iteration-by-
subdomain techniques is open.

For free surface problems the FM-ALE method avoids the needeimeshing which ap-
pears in classical Lagrangian or ALE methods. Moreoverfréee surface is tracked in a very
natural way with the level set function strategy, allowing the solid bodybreaking the free
surfacewithout any further algorithmic steps. We have paid speati@intion to the interaction
between the level set function and the solid boundary fonatthich define the fluid domain:
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in order to avoid the delay of the level set function with sdo the solid boundary function,
we have modified the Stokes problem to be solved in the emptyopthe domain, imposing
the velocity divergence to be negative inside the solid bdthe proposed method has been
used to solve the problem of rigid bodies falling into waterd has proved to be robust and
provide smooth solution fields, even at the critical instanthich the solid body contacts the
free surface.
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Chapter 6

Subscales on the element boundaries

In this chapter we introduce a way to approximate the subsaai the boundaries of the ele-
ments in a variational two-scale finite element approxioratod flow problems. The key idea
is that the subscales on the element boundaries must belgatahé transmission conditions
for the unknown, split as its finite element contribution d@hd subscale, hold. In particular,
we consider the scalar convection-diffusion-reactioragign, the Stokes problem and Darcy’s
problem. For these problems the transmission conditiath&rcontinuity of the unknown and

its fluxes through element boundaries. The former is autcaibt achieved by introducing a

single valued subscale on the boundaries (for the confgmapproximations we consider),

whereas the latter provides the effective condition forrapimating these values. The final
result is that the subscale on the interelement boundarnies be proportional to the jump

of the flux of the finite element component and the averageebtibscale calculated in the
element interiors.

6.1 Introduction

The variational multiscale (VMS) framework to approximataundary value problems starts
with the variational formulation of the problem. In partiay in the two-scale version we con-
sider, it consists in splitting the unknown and the test fiomcinto a component in a discrete
approximating space and another component in its complerfiegrwhich an approximation
needs to be proposed. This component is called subgrid scaenply,subscale This idea
was proposed in the finite element context in [76, 77]. Thedded Galerkin method accom-
modates this framework simply by considering the subsdalbs negligible.

The main interest of the VMS framework is to devektpbilizedfinite element methods
in a broad sense, meaning that it allows to design discretatvmal formulations that do
not suffer from the stability problems of the standard Gatemethod. In particular, we are
interested here in finite element methods for some modelgmubarising in fluids mechanics
(see [29] for a review of different stabilization methodglow problems).

The VMS concept as described above is quite general. The avaggroximate the sub-
scales is left open. Many questions arise, such as the spateeke subscales, the problem
to be solved to compute them or their behavior in time depenpl@blems. In principle, the
problem for the subscalesggobal, that is to say, defined over all the computational domain.

119
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In order to simplify it, some sort dbcalizationis necessary, for example by assuming that the
subscales vanish on the interelement boundaries, thaseytdhey are bubble functions (see
for example [12, 118] for application of this concept to flomplems).

The treatment of the subscales on the interelement bowsdiarprecisely the subject of
this chapter. We propose a way to compute them based on theifa) ideas:

e We assume the subscales on the element intecmrgputed and thus the localization
process mentioned consists in computing these subscdlesutvaccounting for their
boundary values.

e The subscales on the element boundariesengle valuedeven if they are discontin-
uous in the element interiors. This requires a hybrid-tygrenflism to write theexact
variational equations that we develop only in the first peoblnalyzed.

e The subscales on the element boundaries are computed bimgpihat the correct
transmission conditions of the problem at hand hold. Obsligthese transmission con-
ditions are problem-dependent.

e The fluxes of the subscales on the interelement boundameapproximated using a
simple finite-difference scheme. Thighe onlyapproximation we use, apart from those
shared with VMS methods that are required to approximatsubscales in the element
interiors.

A completely different approach to compute subscales ornntieeelement boundaries is
proposed in [2], where local problems along these bounslarie set.

We will not insist on other aspects of the VMS method, sucthagptroblem for the sub-
scales in the element interiors, the space where they belotigeir time dependency. Let us
only mention that we approximate them using an approximaitgi€r analysis, that very often
we compute them abs2-orthogonal to the finite element space [30] and that we denshem
time dependent in transient problems [32, 36]. In order tp ak much as possible this discus-
sion, we will present our formulation without using the egplexpression for the subscales
in the element interiors This approach is, as far as we knadginal, and we use it mainly to
focus the attention in the expression of the subscales antirelement boundaries.

The particular transmission conditions between interel@nboundaries, that serve us to
compute the subscales on these boundaries, are problemdgepeT his is why we will treat
different problems arising in fluid mechanics, all of themelar and stationary. The first is
the convection-diffusion-reaction (CDR) equation coesdl in Section 6.2. We show that the
subscale on the element boundaries is proportional to thp pf the fluxwith a negative sign
and also to the average of the subscales computed in therglerexiors adjacent to an edge
and extended to this edge. In the following, “edge” will rete the intersection between two
element domains, understanding that it is a face in 3D profldhe sign of the subscales on
the edgesubtractsstability to the problem. However, we show that it is possitd control
the new terms added. Neither for this problem nor for therotive discussed in the chapter
we analyze convergence, since it depends on the particxpaession of the subscale on the
element interiors. Nevertheless, we provide stabilityltssor all the problems treated.

There is no apparent gain in considering the subscales ogléh®gent edges for the CDR
equation the way we do. However, the situation is differenttfie Stokes problem written in
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velocity-pressure form analyzed in Section 6.3. We show ttie subscales on the edges in
this case introduce two terms, one that depends on the tefpeidients and that needs to be
controlled with the viscous term and another @hat provides pressure stabilityfhis term

is a least-squares form of the jump of the pressure acrossdipes, and therefore acts only
when discontinuous pressure interpolations are used (hatdt is not related to the jump
stabilization technique proposed for example in [26, 2bje term we add is similar to the
one already introduced in [78], which has the local varianppsed and analyzed in [125, 85]
for the ), / P, (bilinear-constant) and; / P, (linear-constant) velocity-pressure pairs.

Section 6.4 describes the application of our ideas to Daqadblem. We propose a stabi-
lized formulation that includes, with minor modificatiotse methods proposed for example
in [102] (and extended in [106]) and in [80]. As in the pre\sazases, we provide a stability
result. In this case, the bilinear form associated to thélpro is not coercive, but only an
inf-sup condition can be proved.

Let us mention that the ideas presented here can be applietthé¢o problems. In par-
ticular, in [34] a method to compute the subscales on the eiiinoundaries for the stress-
velocity-pressure formulation of the Stokes problem isppsed and fully analyzed. In this
case, subscales on the boundaries are essential to dealisatntinuous pressure and stress
interpolations.

The main contributions of our approach can be summarizedilasvs:

e To provide a consistent VMS justification to some stabiligiarms introduced in previ-
ous works to deal with discontinuous pressures.

e To propose aymmetricstabilized problem for the Stokes and the Darcy equatidns (i
subscales in the element interiors can be considered i@gligompared to the jump
of the stresses, see Remark 5). The sign of the symmetriatmpewhich subtracts
stability from the Galerkin terms, is crucial to achievestesymmetry. The situation is
similar to what happens when minus the adjoint of the difiéed operator applied to the
test functions is used instead of the original differerajaérator in the stabilizing terms.
This suggestion was first introduced in [55] and turns ouetadmpletely natural in the
VMS framework. Also in this case, the diffusive tesubtractsstability in the case of
the CDR equation.

e Even though we do not exploit this point here, our approagiyssts how to stabilize
Neumann boundary conditions, essential for example in ganekstructure interaction
problems (see Remark 6).

Some numerical examples are presented in Section 6.5. Biastabilizing effect of the
boundary terms introduced for the different problems id Wwebwn, we simply check what is
particular of our approach, namely, the terms that may aetde stability. We show that this is
not the case in two cases, namely, a convection-diffusiamgte and two Stokes problems. As
the stability analysis dictates, these terms can be céedirbl/ the rest of the terms appearing in
the stabilized formulation. Moreover, in the Stokes prabt@ase, some discontinuous pressure
interpolations unstable using the Galerkin method, sutheB, / P, pair (see Section 6.5) can
be used.
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In Section 6.6 we look for an efficient implementation of thé/ P0 interpolation. Our
approach consists of condensating the pressure unknowsenalyng the off-diagonal terms
corresponding to the pressure test function equationstoight hand-side. We illustrate the
performance of these algorithms with some convergencs.plot

Finally, some conclusions close the chapter in Section 6.7.

6.2 Convection-diffusion-reaction equation

6.2.1 Problem statement

Let us consider the boundary value problem:

Lu:=—-kAu+a-Vu+su=f in§, (6.1)
u=0 onos, (6.2)

whereQ) ¢ R? is a bounded domain, withh = 2,3, v : Q@ — R is the unknownf is the
diffusion coefficients the reaction coefficieny the advection velocity andl the given source
term. For simplicity, we assunie> 0, s > 0 and the advection velocity all constants.

LetV = HJ(Q2) and assum¢ € H~'(Q2). The variational form of the problem consists of
findingu € V such that

B(u,v) := k(Vu,Vv) + (a - Vu,v) + s(u,v) = (f,v) =: L(v) YvelV. (6.3)

Here and below-, -) denotes the.? product in2. In general, the integral of two functian
andg, over a domainv will be denoted by(g;, g2), and the norm in a function space by
| - ||, with the simplifications] - || 2 = || - || and (-, -)o = (-, -). This symbol will also be
used for the duality pairing.

6.2.2 Six and four field formulations

As mentioned earlier, we consider that the subscales onlémeeat boundaries are single
valued, even if they are discontinuous in the element iateriTo give a variational foundation
to the approximation presented in the next subsectionslebuasider a hybrid-type approach,
starting with a particular six field formulation of the prebt. For simplicity, let us assume
thatQ = Q; U Qy, with ' = 99, N 9Q,. Consider a decomposition &f = HZ(Q) of the
formV =V @ V’, and letu = @ + «’ be the corresponding decomposition of the unknown.
Let us state a variational formulation of the problem takisginknownsi, «’, their traces on
I', denoted byy and+/, respectively, and their fluxes, denoted bynd ', respectively. The
space of trace® = H/*(I") and the space of fluxes = (Hy/*(I'))’ (the dual of7") are also
assumed to be splitds =T @ T’ andF' = ' @ F'. Note that the prime i, T’ and I’ is
notused to denote the dual of a space.

If we denote with a subscriptthe restriction ofa, «/, A, N, B and L to subdomair
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(i = 1,2), the problem for the six fields, v/, 7, 7/, A and\’ can be written as

By (a1, 01) + Bi(u, 1) — (M + X, 01) = La(01) Y 7y, (6.4)
By (g, vy) + By(uf, v)) — (M 4+ A, 00)p = Li(vh) Vo, (6.5)
By (i, Ua) + Bo(ufy, U2) — (Mg + Ay, ), = Lo(02) Y ¥, (6.6)
By (tia, vh) + Ba(uy, vh) — (Ao + Ny, v5) . = La(vy) Vi, (6.7)
(i, 7+ —t —u))p =0 Y s, (6.8)
(WA +9 = —uy)p =0 v iy, (6.9)
(2, 7+ =y — uy)p =0 Y fia, (6.10)
(2 7+ — s — uz)p =0 v s, (6.11)
(Fo M+ X+ A+ 25) =0 VR, (6.12)
(K, M+ M 4+ A+ X)) =0 VK. (6.13)

In these equations\, = )\; + \, € F are the fluxes computed from the side(gfandy; =
i; + 1 € F the corresponding test functions=€ 1, 2). The test function for the trace of the
unknowny = 4+~ € T is denoted by: = & + ' € T. The boundary terms in (6.4)-(6.7)
correspond to the weak imposition of fluxeslgrequations (6.8)-(6.11) to the weak continuity
of u; = u; +u,onl (: = 1,2) and equations (6.12)-(6.13) to the weak continuity of fRiza
I

The previous formulation can be considered a straightfodvextension of the classi-
cal three field formulation forn,, v and A\, obtained by a splitting of the spaces where
these unknowns belong (see [116] for a three field formulatibthe convection-diffusion
equation). Our particular formulation is obtained by imipgsthe fluxes ofu to be \; =
n; - (kVu; + au;)|r, wheren,; is the normal tol’ from €;, andy = @r (¢ = 1,2). In
other wordswe prescribe the fluxes and the continuity:as in the one field variational for-
mulation (6.3), but treat, v' and \’ as in the standard three field formulatiohhis approach
in particular implies that the test functiops must be of the formu; = n; - (kVo; + av;)|r,
for v; € V;, andr = o|p, with o € V. Therefore, the previous problem reads

By(ay, 01) + Bi(d, 0y) — (ny - (kY@ + aiy) + N, 01)p = Li(31) Voo, (6.14)
By (1, v)) + Bi(uy, vy) — (ng - (kViuy + aty) + N, v))p = Li(v) Vo, (6.15)
Bo (s, B) + Ba(uh, B) — (ms - (kViia + aiiz) + AQ,U2>F Lo(d) Vi,  (6.16)
By(tig, vh) + Ba(uh, v5) — (ng - (Vg + atiz) + Ay, v)p = La(v5) Y vy, (6.17)
(ny - (kV0, + avy),y —u)p =0 Vo1, (6.18)
(Hy, 7 —up)p =0 Vi, o (6.19)
(ny - (kVvy + ats),y —ub)p =0 V Uy, (6.20)
(k3 Y = up)p =0 Vi, o (6.21)
(R,nq - (kVUy + atiy) + ny - (Ve + atis) + A + M) =0 VR, (6.22)
(', mq - (kVU + atiy) + ny - (Vg + atin) + N + A\y)p =0 VK. (6.23)

Adding up (6.14) and (6.16) and using (6.22) yields the aagyvariational equation projected
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ontoV, that is to say,
B(u,v) + B(u',v) = L(v) V0.

It is understood thaB (v, v) = B;(u}, v1) + Ba(uj, v5). Integrating these terms by parts and
using (6.18) and (6.20) we get

2 2

B(w,v)+ Y (W, L) + > (V,n;- (kVD; + av;))p = L(D), (6.24)

i=1 i=1

where
L :=—kAv—a -V + sv

is the formal adjoint ofZ. Adding up (6.15) and (6.17) and integrating the first termpéarts
we get

> (Bi(w, ') + Bi(u' ') = (n; - (kV; + ail;) + Aj, v})p)

i=1

=3 (. v)q, + Bl o) = (N, wi)p) = 3 Lilo). (6.25)

It is understood in this equation th@l|o, = (-),. The final problem can be written as (6.24),
(6.25), (6.23) and the addition of (6.19) and (6.21), thab isay,

2 2
B(a,0)+ Y (u, LD + > (7 ni (kVT; + av))p = L) V7, (6.26)

i=1 =1
2

(L1, 0')g, + B/, v') = > (N, vfp = L(v) V', (6.27)

2
i=1 =1
2

(K, n; - (kV; + aii;) + N)p = 0 Vi, (6.28)

[\

=1
This is the four field formulation we were looking for. Its ilmpance relies on the fact thiat
is the theoretical framework to develop approximations imch « is split into a contribution
which is continuous ofi and another one which is discontinuo@bviously, this formulation
is symmetric for symmetric problems (in our casey if= 0).

6.2.3 Finite element approximation

Let 7, := {K} be a finite element partition of the domé&inof sizeh, andV;, C V a finite
element space where an approximate solutipre V}, is sought. We assume that this space
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is made of continuous functions. To simplify the analysig, will assume that the family
of finite element partitions® = {7, },-0 IS quasi-uniform, so that all the element sizes are
bounded above and below by constants multipliedhbyVe will also use the abbreviations

I lzzgroy = I - Nl and]l - lzqom) = I - llox-

Consider the previous setting with = V},, and thereford” = V;, @ V’, with V'’ to be
defined, and: = u;, + v/, v = v, + v'. In order to focus our attention on the expression for the
subscales on the interelement boundaries, we will not pia choice forl’”’, which depends
on the particular VMS approximation used.

As before, let alsa’ be the trace of’ on the interelement boundaries axidhe flux, being
the corresponding spacésandF’, and the corresponding test functiotise 7" andy’ € F'.
According to the four field formulation presented in the poeg subsection, now considering
Q2 split into the element domains of the finite element paurtitithe variational problem (6.3)
is exactly equivalent to find;, € Vj,, v’ € V', + € T" and\ € F’ such that

B(up,vn) + Y (W, L) + Y (v kOwvn) e = L) You € Vi, (6.30)
K K

> (Lup, vy + B/ v') = > (N 0) e = L) Vo' e V7, (6.31)
K K

D (K kOyun + Ny =0 VK e T, (6.32)
K

D WA =)y =0 V' € F. (6.33)
K

Note that the jumps of the convective fluxes are zero becdube oontinuity assumed for the
finite element functions.

The approximation process consists of different ingrediedl aiming at giving a closed
problem foru, alone For that we will propose heuristic approximationsf6and)\’ and then
we will perform a stability analysis to check that the resgitformulation is stable. Let us
insist that, up to this point, problem (6.30)-(6.33) is ex&arthermore, for, = 0 it could
be used as the variational framework to develop discontiai@alerkin approximations (see
Remark 2 below).

6.2.4 Subscales on the element boundaries

Let us consider for simplicity the 2D case and the situatiepicted in Fig. 6.1, where two
elementsk; and K, share an edgé (recall thatE stands for “edge” in 2D or face in 3D).
Unless otherwise indicated (see Remark 1 below), all thegdge considered interior, that is
to say, the element boundaries @ are excluded.

Let u; be the subscale approximated in the interior of elendéni = 1, 2. We assume that
this approximation is valid up to a distanéeto the element boundaryhis distance will be
taken of the formy = dph, with 0 < §y < 1/2.

Approximation of ). The values of\’ on 0K areweakapproximations to the fluxes af.
Given the trace)’ of this unknown, we delete (6.33) and propose the followiloged form
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Figure 6.1: Notation for the approximation of the subscalethe element boundaries

expression fon\':

Ve~ Ui
hi,nE Ak Ea . i=1,2, (6.34)

where nowu; has to be understood as the subscale computed in the elembembris and
evaluated at edge. We want to remark that, apart from the assumptions inhéoghe VMS
framework and the imposition of the transmission condgig¢see below), this is the only
approximation we really require to compute the subscalethennterelement boundaries.
Obviously, other finite-difference-like approximatiomsthe fluxes of the subscales could be
adopted.

Approximation of ~/. Equation (6.32) states the weak continuity of the total ftluae the
element boundaries. The idea now is to replace this equlayiam explicit prescription of this
continuity. If [ng ], := n19|arx,ne+m29|ox.ne denotes the jump of a scalar functipacross
edgeF and[0,g]; = n1 - V9laxine + 12 - Vglar,ne the jump of the normal derivative, the
continuity of the total fluxes can be imposed as follows:

0= [kOnu]y = [EOwun] g + Nor,nm + Moruni

I I
~ [kdpun ]y + kL2 - Ry A2 - Y2, (6.35)
From this expression, and férconstant, we obtain the approximation we were looking for:
: : 0
TeRAUE =5 [Onun] g (6.36)

where{u'} ; := %(u} + uj) is the average of the subscales computed in the elemeribiister
evaluated at edgé&. From (6.36) it is observed thag will play the role of an algorithmic
parameter for which, following our approach, we have a ge¢ooa interpretation.

From now onwards we will use the symbelinstead ofx, understanding that in some
places we perform approximation (6.34) that has led us 86{6.
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Remark 1 (Neumann boundary conditions). Suppose that= 0K N df2 and that instead
of the Dirichlet condition (6.2) the Neumann conditiekd,,u = ¢ is prescribed. In this case,
(6.35) should be replaced by

Ve — U
q = —kOaun|F, — k%a
so that the contribution té in (6.3) that would appear due to the Neumann condition would
be modified by the approximation to the subscale on the baynaiad there would be also a
contribution to the bilinear fornB3. We will come back to this point in the case of the Stokes
problem, where this fact has more important consequences. A

Problem for u;, and «’. From (6.36) we obtain the following approximation for thexts
of the subscales:

k., Nk
Nok,np = 5 {u'te —u) - ) [Onun]p
k , k :
= —o5Mi [ ] ok — §|[8nuh]]E, i=1,2. (6.37)

Once) and~’ are approximated, the problem we are left with reads asvistiéindu,;, €
Vi, andw’ € V' such that

ko

B(up, vy) + Z W, Lo = o > [0wun] [0won s+ > {u'} k[0uvn])p = Liva),
: § (6.38)

B ) + 3 (Lun o) + % S ([ne'], [/ + Z [0 ], {0} o = L(o),
: " (6.39)

forall v, € V, andv’ € V.

Remark 2 Observe that this system of variational equations can berstabd as general
framework to approximate unknowns with a continuous paf) @énd an approximated dis-
continuous part4’). Furthermore, if the continuous part is zero, we are left W&39) with
up, = 0, which corresponds tthe classical Galerkin method enforcing continuity across
terelement boundaries through Nitsche’s methathough with approximation (6.37) for the
fluxes, so that the classical terms involvig: andd, v’ are missing (see [5, 64]). For piece-
wise constant approximations these terms would not appedrwe would obtain a classical
piecewise-constant discontinuous Galerkin approximatio A

6.2.5 Subscales in the element interiors

Up to now we have replaced variational equations for the fifethe subscales and their
traces by approximated closed form expressions. It can &e fsem problem (6.38)-(6.39)
that the resulting formulation is symmetric for symmetriolgems. However, now we will
use and additional approximation that will make the probleose its symmetry, but that will
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greatly simplify the implementation of the formulation.i$approximation is inherent to all
VMS formulations to yield a closed form expression for thbszales in the element interiors.
If we integrate the second term in the left-hand-side (LHP®31) by parts we get

B(u',v') = Z(ﬁu’, Ve + Z (kO u' V") g
K K

If instead of using (6.37) we assume thatpproximates:o,u’, the second term in this last

expression cancels with the third one in the LHS of (6.31gré&fore, the final problem is: find

up € V, andu’ € V' such that

B(up,vp) +Z (u', L*vy) K+Z<{u}——[[8 un |, k[@nvh]]> = L(vy), (6.40)

E

> (Lup, v +Z (L' v) e = L(v), (6.41)
K

forall v, € V}, andv’ € V'. The last term in the LHS of (6.40) is the main novelty withpest
to classical stabilized finite element methods designeadivariational multiscale framework.

Remark 3 Note that if in (6.39) is consideredontinuouswe obtain (6.41with no addi-
tional approximationIn other words, if the subscale is approximated with a Re@alerkin
method (leading to a non-symmetric formulation) in which #pace of test functions is con-
tinuous, we recover (6.41). This is not however the appreaekvill adopt. A

It only remains to approximate’ in the element interiors. To this end, in (6.41) the ap-
proximation

(Lu' Vg = 77 v ) g, (C’l }]:2 + Cy ‘Z‘) (6.42)
may be adopted. This can be motivated by a Fourier analysigegiroblem for the subscales
[32]. In particular, it implies thathe subscales in the element interiors are not affected by
their boundary valuesThis simplification makes the formulation we propose felesirom the
implementation standpoint. Let us stress once again tisagproximation is not original of
this work, but common to all VMS methods that compute locHily subscales in the element
interiors.

Once all the approximations are made, the final problem istb«fj, € V;, andu’ € V’
such that

B(up,vn) + Z(% Lrop) i + Z <{Ul} - gﬂﬁnuh]‘a k[ﬁnvh]l> = L(vp),  (6.43)

E

Z Lup, V) g + ZT (', vy = L(v'), (6.44)
K

forall v, € V3, andv’ € V7.

The variational equation (6.44) automatically yields arpression for the subscales in the
element interiors in terms of the finite element componemyigedV’ is approximated by a
space of discontinuous functions. It implies that

u' = TPy(f — Luy),
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where Py is the projection ontd’”’. However, it will be convenient for the following analysis
to keepu’ as unknown of the problem. Particular cases of projectianfihinto the present
framework are the orthogonal subscales stabilization {@&$osed in [30] and the algebraic
version of the subgrid-scale stabilization (ASGS) (see ¥8)), wherePy is the identity (at
least when applied t¢ — Lu;). The expression of (6.42) is in fact not important, except for
a condition on constartt; indicated later.

6.2.6 Stability analysis

Let us consider the bilinear form of the problem(if, x V) x (V;, x V'):
Boxp<uh7 ul; Up, UI) = B(“h? Uh) + Z<ula ‘C*Uh K +

Vi) (Y k[8hon]) g
—%annuh EXN) —i—ZCuh, K+ D7

1<u/7 U/>K-

Let us prove stability of the problem by showing tiat, is coercive in a certain norm. We
have that

B (up, v up, ') = B(up, up) +Z (', Lup + Luy,) K+Z {u'}, k[ Opun]) 5

——Zk‘H [Onun] ||E+ZT 1%

2 /fHVUhI|2 +slunl* - Z || =2k Ay, + 2sun]|
K
) .
— > Mkl [0wun ]z — 3 Y kI 0uun]llE + Y 7 I
E E K

We assume now that the classical inverse estimates

C(mv
h2

C(IHV
=5 IVunllie,  llonllZooy < < llvnllic Vo € Vi, (6.45)

1Av, I <

hold true (see [48, 22]). In particular, the second, whidodlolds for derivatives of finite
element functions, implies the trace inequality

lonll3s < Coch™ vk (6.46)
which applied ta), v, yields

1000155 < Coch™ |V |-
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Using these inverse estimates, we have (see Fig. 6.1 foiotiagian):
0 2 0 2
-3 XE: Bl [Owun Il = —5 XE: k|| Onunlokine + Ontnlomone %
)
> =3 Z 2k|0unl 35

> szctr IV ||%
= —5OCtrk:HVuh||2.

Let us obtain a working inequality. Letandb be discontinuous positive functions defined
on the finite element partition. Using the notation= a|yx,x, for anys > 0 we have that

(a1+a2)(bl+b2 < — CL1—|—CL2)2+ E(bl—i‘bg)2
25 2h
E
ZB 2+ a3) +Z (b2 + b2)
E
ZB |8K+Z b5

Now we make the assumption that the subscales are such éheiverse estimates also
hold for them. Using the previous inequality we obtain, foy &; > 0:

| >

D‘

1
= Ikl [onunllle = = k§||ull + || gl|Onunloxcing + Optunlorane |
E E

53 k /
=3 Coalllic - Z 57, Cukl Vsl
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Using the bounds obtained, it follows that

Besp (un, ' up, u') > K[|V || + s]|un |
ok

- Z |72k = Gt |1 - Z /|25l unl 1

- 5oCtrk‘||Vuh||2 = > M ekl [0nun] e + D w15
E K

> k|| Vun || + s]|un||*

an 1 / 1
> (ﬁl I + —knwhni) By <5zs||u %+ Esnuhn%()

K
B3 k /(12
—;7%@% ||K Z 26, CtrkHVUhHK
— 80Cuk || Vun|* + Zf—luu I

= E <1 — — —0oCy — Ctr ) k| V|7 + E : < ) sllunlli
2
Can k
+ g (7'_1 — —5 — 52 530& ) || ||K>
K

where ; are constants, = 1,2, 3. Taking these constants sufficiently largg,sufficiently
small andC’; in the definition ofr large enough, the following result follows:

Theorem 1 There are constant$, andd, in the definition of the stabilization parameters such
that

Besp (up, v';up,u') > C <k||VuhH2 + s||lup|]® + ZT_IHU/H%{) : (6.47)
K

Remark 4 Let us enumerate the essential ideas and highlight thenatigispects of the
analysis presented in this section:

e Thedriving idea is that the subscales on the boundary aeerdeted by the transmission
condition. In the case of the CDR equation and using contisueterpolations, this is
the continuity of the diffusive fluxes.

e The essential approximation to make the problem compuailpviable is to compute
the subscales in the element interiors without taking irdcoant their values on the
boundaries.

¢ In the stability analysis presented, the subscales haweaiva “personality”. They ap-
pear explicitly in the stability estimate. The final statyiestimate for the finite element
unknown depends on the way the subscales are approximagtds(to say, on how”’
is chosen).
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e It is observed that the expressionmoin terms ofa is not used in the stability analysis.
However, it is required in the convergence analysis.

e The only thing we have shown is that the terms introduced bytundary contribution
from the subscales can be controlled, but there seems to bainan considering the
subscales on the boundaries. The stability estimate (@s4ffe same that would be
obtained without the last term in the LHS of (6.40) which is,ibhas been said, the
main novelty of our proposal.

As stated in the last item, subscales on the boundary do rmbira stability for the CDR
equation. This is not so for the Stokes problem analyzed next A

6.3 Stokes problem

6.3.1 Problem statement and finite element approximation

In this section we turn our attention to the Stokes problehiclvconsists of finding a velocity
u: Q — R%and a pressurg: Q —s R such that

—vAu+Vp=f inQcR
V-u=0 1inQ,
u=0 ono.

The purpose is to extend the ideas of the previous sectidng@toblem.
LetnowV = H}(Q)4, Q = L*(Q)/R. The variational problem consists of findifwg, p| €
V x @ such that

B([u,p], [v,q]) == v(Vu,Vv) — (p,V-v) + (¢, V- u) = (f,v) Vv,q €V xQ.

For the sake of simplicity, we will consider subscales oy the velocity, not for the
pressure. Pressure subscales can be easily introducefB23gebut they do not contribute
to the present discussion. It is also possible to derive argéframework as in the previous
section, using the trace of the velocity subscales andfibggs as additional variables, leading
to a five field formulation, the five fields being velocity, veity subscale, trace of velocity
subscale, flux of velocity subscale and pressure. Howewemay directly work with velocity,
velocity subscale and pressure, understanding that tleityesubscale on the interelement
boundaries (and its test function) will be approximatecejmehdently, being single valued on
these boundaries.

If Vi, x Q) € V x @Q is a conforming finite element approximation akitlis the space for
the velocity subscales, the discrete variational probleret considered is to finds,, p,] €
Vi x Qp andu’ € V' such that

B([wp, pr), [vn, qn]) + Z(U/, —vAv, — V) k + Z (U, v0,v, + qun) i = (f, o),
K K

Z <V(anuh + 3n’U/) — PrM, ’Ul>aK + Z<—VAUh + Vpp, 'U,>K + Z<—VAU/7 'U,>K = <.f7 ’Ul>,
K K

K
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which must hold for allv;, ¢,] € Vi, x Q, and allv’ € V’. The first term in the second discrete
variational equation must be zero because of the (weak)nzotyt of the stress normal to the
element boundaries (recall that has to be considered single valued when evaluated at the
interelement boundaries).

As for the CDR equation, the approximation

(—vAW V) =7 v, T = 01% (6.48)

is adopted. Likewise, the subscale on the boundary will Ipeagpmated by an expressiari;
to be determined, so that the problem to be solved is to[tindp;,| € Vi, x @, andu’ € V'
such that

B([wn, prl, [vn, qn]) + Z(Ul; —vAv, — Vau) ik + Z (U, VO, VL + qum) o = (F, vn),
K K

(6.49)
Z(—yAuh + Vpp, V') k + Z TN Vg = (f,0),
) ) (6.50)

which must hold for allv,, ¢;] € Vi x Qp, and allv’ € V'. The expression of is given in
(6.48), butu/’, is required to close the problem.

6.3.2 Subscales on the element boundaries

The condition to determine the expression of the subscébeise on the boundary is that the
normal component of the stress be continuous across iaeteegit boundaries. Using the same
notation as in the previous section, this can be written bas:

0=[-pn+voul,
= [—pin +vo,up ] 5 + [vO,u'] 5

1%
= [—prn 4+ vo,up ] 5 + 5(2u’E—u/1 —uy),

from where the approximation we propose is

up = {u'}p —

)
gﬂyanuh —pn] g (6.51)

which is the counterpart of (6.36) for the Stokes problem.
Inserting (6.51) into the discrete variational problen#@-(6.50) results in

B([wn, pul, [on. aa]) + Y (W, —vAv, — V) + > ('}, [vd,04 + gun]) g
2 %W”a"“h —pn ], [vOhon + gn]) g = (f, vn), (6.52)

Z<—VAUh + Vpn, v') g + Z N u' V) = (f, V), (6.53)
K

K
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which must hold for allv,,, ¢;] € V;, x @, and allv’ € V’. This is the numerical approximation
of the Stokes problem we propose and whose stability is aadlpext.

Remark 5 Note that if the termd_ . ({u'}, [v0,v, + gun]) 5 iS neglected, the formulation
is symmetric To this end, the sign afj, in the term([v0,u;, — ppn ], [VO, v, + g0 ]) 5 IS
essential. On the other hand, it seems reasonable to néglédf discontinuous pressures are
used because then the source of instability is known to la¢etto the lack of control on the
pressure jumps. In particular, for tiig¢/ P, element used in the examples of Sectiom5= 0
in the element interiors. A

Remark 6 (Neumann boundary conditions) Suppose againfhat 0K N 02 and that the
Neumann condition-pn + vd,u = t is prescribed. The subscalg._should be computed
from

1%
t = —ppn + v, uy + < (up, — uy).

o

In this case, the terms

)
Z ((U,K, VO, vy, + qh">FK - ;(Vanuh — ppm, V0, Uy, + qhn>FK)
K

)
and — > ; (t,v0,v, + th>FK

should be added to the LHS and right-hand-side (RHS) of j6re@pectively. Stability on
these boundaries will be enhanced by the térip %(ph, qn) .- This approach might be im-
portant as well in fluid-structure interaction problemsenéhone of the problems (the struc-
ture for example) is computed using the normal stregsgsmputed in the other domain. It
is known that in some situations staggered coupled algosgtmay suffer from the so called
artificial mass effect due to the lack of stability in the insimn of the Neumann condition.
A

6.3.3 Stability analysis

As for the CDR equation, it is convenient to define the expdruénear form of problem
(6.52)-(6.53), including the subscales as unknowns, wisich

Besp([wn; pr], w's [vn; an], v') = B([wn, prl, [vn; qn])
+ Z(u’, —VA’Uh — th>K + Z<’Ul, —VA’LLh + Vph>K
K K

+ Z ({u'}, [vOhvn + aun]) p — Z i<|[V5nuh —pan ], [VOavn + @rm])

2v
E
+ Z N vk
K
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Taking [vy, gn] = [us, ps] andv’ = ' it follows that

BeXP([uhvph]v Ul; [uhvph], 'U/,) = 1/||Vuh||2
+ Z(u', —2vAuy) i + Z ({u'}, [vO,up +prm])
K E

) o 1y
- Z§vll[[8nuh]l!\%+zng[nph]lII%+ZT |l
E E K
We may deal with the terms

S a3 SlanllE Y (), (w0l

K E E

exactly as for the CDR equation. It only remains the follogvioound:

3 ' Imnl) = = S (el Toun] s
> -5 (SN + 5 I Tl
> =3 g5l — 3 g i 1

BV 1112 5 2
=2 g Gl = 2 52 I Tman s,

K E

v

which holds for all5 > 0. Taking it sufficiently large £ > 1) and proceeding exactly as for
the CDR equation we obtain:

Theorem 2 There are constant$, andd, in the definition of the stabilization parameters such
that

: 0 -
Bexp ([wn, pu], w'; [un, pp], u') > C <I/||Vuh||2 +Z;H [npn ]I+ 7 1||’41/H§<> :
E K

Remark 7 In the previous estimate, it is important to note that
e Contrary to the CDR equation, now theraislear gainby accounting for the subscales
on the boundary: we have control on the pressure jumps oteneiement boundaries.
This in particular stabilizes elements with discontinuptesssures.

e Control over||[np, ]||% can be transformed intb* control overp;,. This can be proved
for example using the strategy presented in [34] and in eefas therein.

The stability estimate obtained is clearly optimal. JAN
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6.4 Darcy flow

6.4.1 Problem statement and finite element approximation

We will consider here the simplest situation in which thenpeability is isotropic and uniform.
The problem to be solved consists in finding a veloeitsind a pressure such that

K lu+Vp=0 in Q,
V-u=f in €,
u-n=>0 on s,

wherex is the permeability coefficient. The functional spaces wtibe problentanbe posed
are

V = Hy(div,Q), Q = L*(Q)/R,

for the velocity and the pressure, respectively. In thigcAs L2(£2). The classical variational
formulation of the Darcy problem is well posed in these spaElwever, it is observed from
the momentum equation that in fact the pressure will belond't(2) /R.

The weak form of the problem is

(ktu,v) — (p,V-v) =0,
(¢, V-u)=(q, f),

which must hold for al[v, ¢] € V x Q.

As in the previous section, the finite element spaces forcitgl@and pressure will be re-
spectively denoted by, C V, Q, C @ (conforming approximations will be considered). If
we consider as before the scale splitting

u=u,+u, u,cV u eV,
p=pn+0, DnEQnpeEQ,
with spaced”” and(@’ for the moment undefined, the problem to be solved becomes
(ktup, vp) + (k71 v,) — (pp, Vo) — (P, Vovg) =0 Vo, €V, (6.54)
(qn. V- un) = Y (', Van )k + Y (ann-w)ox = (g, f)  Van € Qn, (6.55)
K

K

together with the equations obtained by testing the diffeaéequations with the velocity and
pressure subscale test functions.

In this case, we need to deal both with a velocity and with agaree subscale, which makes
the derivation of a closed form for them more involved thanthe problems of sections 6.2
and 6.3. This can be done in a similar way as for the Stokederoln [34]. If P, and Py
denote thel.?>-projection ontol’”’ andQ’, respectively, the final result is that andyp’ can be
approximated in the element interiors by

u = —Py (u, + Vpp),
p/:TpPQ/(f—V"U,h),
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where the stabilization parameteris given by

h2
=0, (6.56)

C, being an algorithmic constant. The main idea to obtain ghs@ximation is to approximate
the Darcy operator in the equation for the subscales by axmdtrg (7, 11, Tp‘l), wherel is
thed x d identity. Using an approximate Fourier analysis it can bashthat the norm of this
matrix is an approximate upper bound to the norm of the Dapsyrator ifr, = 1 andr, is
given by (6.56) (see [34] for details about this approach).

It is convenient to write the previous approximation in ‘ieform as follows:

(k1 V) + (K, V') + Z(Vph, V') =0 Vo' e V7,
K

¢,V -w)+> 7' (0. d)=(d.f) Y/ eQ
K

6.4.2 Subscales on the element boundaries

The transmission conditions for this problem are diffeffesrn those of the Stokes problem of
the previous section. First of all, observe that

e Only the velocity subscale is needed on the boundary of #ra@hts (see (6.54)-(6.55)).

e For each element, this velocity subscale can be computedtfie pressure subscale on
the boundary by projecting the momentum equation.

e Since in facp € H'(Q), p must be such that

Equations (6.57) are the transmission conditions that teaakow us to compute the subscales
on the element boundaries. Since the pressure is allowed tlisocontinuous across these
interelement boundaries, the pressure subscale mustealsiolved to be discontinuous. Let
us denote by, g, the pressure finite element function on an edgom the side of; (see
again Fig. 6.1) ang’, the corresponding subscale. Pressure continuity aéfoswplies

[np]y = (onpy + P )1 + (s + P, )12 =0,
from where

/

PE, — p/EQ = —Dhe +Phe = —[npr]g - na (6.58)

Using an approximation for the derivatives of the subscalsgslar to that of the previous
sections, continuity of the pressure normal derivativeliagp

0= [[anph]]E + |[0np/]]E

1 1
= [0l + 5 (g, — Pi,) + 5 (P, — Pky) »
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from where

plEl +p;52 = lel +p,K2 —0 [anph]]E (659)

The solution of system (6.58)-(6.59) yields

/ ) 1
Pox = {Pictor = 5 10wpnlorc — 5 [mpnlo - m (6.60)

Equation (6.60) is the expression of the pressure subscatbenelement edges (now dis-
continuous), obtained from the application of our ideash® Darcy problem. However, as
mentioned earlier, this expression is only required to aai@phe velocity subscales on the
edges, again considering them discontinuous. Projedti@gnomentum equation on the ele-
ment boundaries we have:

n-ulox = —n - Uplox — KOuPrlox — KOWD |ox
o Kk, /
=N Uh|aK - fi@nph\aK - g(paK - pK)
K., ) 1 ,
=N Uh|aK - fi@nph\aK - g {pK}aK - 5 ﬂanph]]a;( - 5 I[nph]laK "N — P

K K
= —n - Uplox — KODh|oK + 5 [0npn )55 + 2% [n(pn + 1) ok - 1,

from where we obtain the expression for the velocity sulesoab K':

/ K /
n-u |8K =—n-: uh|8K - /f{anthaK + % ﬂ"(ph +pK)]]aK 'n (6.61)

Since no velocity derivatives appear in the transmissioditmns for this problem, the veloc-
ity subscale oK turns out to be independent from the velocity subscal&on

Note now that all the terms on the RHS of (6.61) are vectorsselmmrmal component is
continuous across interelement boundaries (the first Isecae assumg), C V). If wis a
vector defined orF, with continuous normal component, it holds that

Z (qn, M- W)y = Z<|In9h]]aw>]3-

K E

Using this in the finite element approximation for the coniiy equation we obtain the final
problem to be solved, which consists of findiag € V},, p, € Qp, v’ € V' andp’ € @' such
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that
(m_luh, ’Uh) -+ (Ii_l’u,/, ’Uh) — (ph, V- ’Uh) - (p/, V- ’Uh) =0 Vo, €V, (662)
(qn, V - up) — Z(Ul, Van)
K
- Z< ngu ], un + {nVpn} - 3= [np'])
+3 55 {Inanl [ ) = (@, ) Yo €Qn  (6.63)
E
(k1 v") 4 (K T, V) + Z Vpn, v’ Vo' e V7, (6.64)
(¢, V-w)+> 70 d) = (d. f) Ve € Q' (6.65)
K

with 7, given by (6.56).

6.4.3 Stability analysis

The previous problem can be written as

Bexp(uhvphv ulvp/; Vh, qn, vlv q,) - (th f) + (qlv f)v

with the obvious definition for the bilinear ford,,,,. The stability analysis in this case is a bit

more delicate than for the CDR equation and for the Stokdsl@na The problem is thab.,

is not coercive, but satisfies an inf-sup condition in a nasrbe introduced in the following.
We assume that the decompositign® V' is L?-stable, in the sense that for any func-

tionswv,;, € V,, andv’ € V' we have

lon + o/ > Cee (Il ll> + 19711 (6.66)

for a constanty.. independent of the equation parameters and of the meshrsigeneral,
Ciee < 1 and if V' is takenL?-orthogonal tal},, Cgee = 1.

Let U, = [un,pn, o', p/] be the unknown of the problem arld, = [vy, qn, v, (] the
corresponding vector of test functions. Let also

2 _ K _
IUL" ==x 1||uhH2+ZgH|[nph]lH%+Z% |1 %
E K

207 Il + 30 P V)
K K

where Py, is the L2-projection ontol;,. However, later on we will introduce another norm in
which stability holds and that clearly displays the stéyp#inhancement we obtain with respect
to the classical Galerkin method.

Let us start writing

uy, + kVp, = Py, (uy, + £Vpy) + Py (uwy, + £Vpp)

=my —u,
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which allows us to write
Bep(Un, Up) = 57 up + ' ||2+Z | [mpn HE+Z o |I%

—Z npy |, my, E+Z np |, {u'} E+ZQ_5 [npn], [0 ]) g
E E E
(6.67)

The objective now is to bound the last three terms in the RHS8isfequality. Let us start with
the last one. Using (6.46) we have that

1
3 gyt I 2 =55 57 (G mwall gl i1
> g5y LNl = 5o S Wl

Hﬁl -1
> -
2~ 53 2 mmn ]l - qur > Wl
K B
> 555 > Inpn]ls - 5 ctthannK (6.68)
E

We also have that

S (Il s 2 =3 (G Il + Gl L1
—225 A3 Z S| [ ]I
2 =3 g, Con” ol - Zf—émmnphm. (6.69)

Using (6.66), (6.68) and (6.69) in (6.67) we have

)
Bep(Un Us) > 57 CaeJunl|? + 57" (cdec - 2—6020) Y %
K

1 Cir ,
#2055 (175 - W+ 3 (g ) W
K p

=Y (Inpn],mu) . (6.70)
E

It remains to control the last term. It is responsible forft that the bilinear fornB.,,, is not
coercive, but it only satisfies an inf-sup condition. By thedinition of m, and using (6.45)
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we have that

Bexp(Uha [mha 07 07 0])

= (K uy + Vpn,my) + (57, my) — (), V-my,) Z (pn,m - M),
K
- K'_l(mha mh) - (p/> V- mh) - Z <[[nph]]?mh>E
E
> 57l )2 — 1P mv||mh|| = ([npn],mu) g
E
_ I ﬁ
> 0 = 5 SR = Sl = 3 ([ ] )
E
which combined with (6.70) yields
Boxp(Uh7 Uh + [mhv 07 07 0])
0
> k7 Caallwnl? + 57 (G = 55-Co ) I
Ctr C112nv /]2
+Z25 <1—§— 2) [ [mpn ’\E+Zh2 <——m— 253) 12"
+ k! (1 — ?) |2 ||2 — QXE: ([mpn], mu) 5. (6.71)

On the other hand

25
—QZ [npn]. mu) g 254 I[mpn )% — Zﬁ my %
254 e llI% — Z—%_l%ctr”mh”%o

which used in (6.71) gives
Bexp(Uha Uh + [mhv 07 07 0])

B 3 )
zwodecnuhn?ml(cdec— 0 )H 12

Ctl‘ C'iznv /
g5 (15 s ) el i (5~ gy o) W

00C:
bt (1= 5= 20

From this expression we see that if we take: = 1,2, 3,4, sufficiently small, then there
exists a constant' for which

Bexp(Up, Uy, + [my,,0,0,0]) > C UL, (6.72)
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provided the constant§ and C, are small enough. On the other harj
C||U||, from where we obtain the result we wished to prove:

Gim,, 0,0,0]] <

Theorem 3 There are constants, andd, in the definition of the stabilization parameters such
that for allU;, there existd/;, such that

Besp(Un, Vi) = CIUIV u

Remark 8 Sinceu’ = Py (uy, + xVpy) and in view of (6.66) our result also applies with the
norm

2 — K _
IO =5 l” + 5> I Vonlli + 5|l [npn 1%+ 7 I %
K E K

which allows us to see that the stability result of Theorers 8ptimal. Moreover, from the
expression of’ in the element interiors, usually proportional to the vélodivergence, it is
possible to control| V - u,|| which, together with the stability obtained ¢, ||, leads to full
control ofuy, in Hy(div, ). A

6.5 Numerical examples

In this section we present the results of some numerical pkesin order to study the per-
formance of the presented method. We compare the resulihedtusing the approximation
of the subscales on the interelement boundarjegiven by (6.36) (or (6.51) in the case of
the Stokes problem) with those obtained considetipg= 0. A parameter, = 0.2 has been
adopted for the computation of the terms correspondingestibscales on the element bound-
aries, as it has proved to be suitable for these numericahpgbes, even though for the Stokes
problem the effect of the choice 6f has also been analyzed.

No results for the Darcy problem have been included, sindkercase of interest, that is
to say, for discontinuous pressure interpolations, theraoy heavily relies on the expression
of the subscales in the element interiors.

6.5.1 Convection-diffusion equation

Let us start solving the convection-diffusion equation. ¥dasider a domaif enclosed in
a circle of radiuskR = 1, which we discretize in a triangular finite element mesh, eed
prescribe

u=20 on of).

We now study two different cases: in the first one diffusiormdwates over convection
(k =0.1,a = (1,0), s = 0, f = 1in (6.1)), while the second one is convection domi-
nated § = 1072, @ = (1,0), s = 0, f = 1in (6.1)). In both the diffusion and the convection
dominated cases, no difference between the solution @utaionsidering/; and the one ob-
tained without considering it can be appreciated. Fig. 6B@s and compares the obtained
solutionu for the considered methods in the diffusion dominated ocabkée Fig. 6.3 does so
when convection dominates over diffusion. In any casegtieeno noticeable influence of the
value ofé, on the results.
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— Without U

25k < Withu'g

-1 -05 0 0.5 1

Figure 6.3: Elevations for the convection dominated pnoblgithout (left) and considering
(right) u/,. Cut alongy = 0 (bottom).
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6.5.2 Stokes problem

In this section we study the performance of the method pregésr the Stokes problem. As
stated in Section 6.3, considering the contribution of tessales in the element boundaries
u’; stabilizes elements with discontinuous pressures. Irigodat it allows the use of?, / Py
(linear-constant) velocity-pressure pairs. Resultsqigty F, interpolation and considering
the contribution of the subscales on the boundary will be gamed with those obtained us-
ing P,/ P, (linear-linear) velocity-pressure pairs, in which no stdles on the boundaries are
considered.

Flow in a cavity

In this example, the motion of a fluid enclosed in a squareg&vi= [0, 1] x [0, 1] is analyzed.
The velocity is set td1,0) at the top horizontal wall y = 1), while it is prescribed t® on
the other wall§fy = 0,z = 0 andx = 1). Pressure is fixed t0 in an arbitrary point of the
domain.

0.9

0.8

0.7

0.6

> 0.5

0.4

0.3

0.2

0.1

09f I \ [ ] 0.9F ‘

08t N 0.8¢ 1 i
07 1 0.7F

0.6 . — 066

04r 9 04t
0.3r 1 0.3}
0.2r 9 0.2t

0.1f 01l

Figure 6.4: Results for the flow in a cavity. Lef®; /P, interpolation (withoutu’;). Right:
P,/ P, interpolation (withu/;). From top to bottom: streamlines and pressure contours.

As Fig. 6.4 shows, little difference can be observed betwesaults obtained using, / P,
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interpolation and those obtained usifg/ F, and taking into account the contribution of the
subscales on the element boundaries wWith= 0.2. The slight differences which can be ob-
served between both results are due to the fact that a podeepolation space for the pressure
is used in the second case.

In order to check the behavior of the solution in termgQffFig. 6.5 shows a comparison
between the pressure alopg= 1 for §, = 0.05, 0.2 and 0.5. Note that this last value would
be the maximum allowed by our way to motivate the subscalegherelement boundaries
(see Fig. 6.1). It is observed that= 0.05 allows for pressure oscillations, whereas no much
difference is observed faoy, = 0.2 andd, = 0.5 (in fact, similar results are obtained for any
0o greater than 0.1). Of course, results are more diffusivgtbater the value af; is.

— PLP1
~+— P1POQ

0.05
—02 —02
6 —05 ———05

-6 L L L L L L L L L ) L L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1 0.02 0.04 006 008 01 012 014 016 018 0.2

Figure 6.5: Results for the flow in a cavity, pressure on a lantgy = 1. Top: P,/ P, element
with 6, = 0.2 compared to thé’ /P, element. BottomP; / P, element results for different
values ofé,, global cut (left) and detail (right).

Flow over a cylinder

In this example we study the Stokes flow past a cylinder. Tmeprdational domain i§) =
0, 16] x [0, 8]\ D, with the cylinderD of diameter 2 and centered at (4,4). The velocity at 0
is prescribed af1, 0), whereas ay = 0 andy = 8, they-velocity component is prescribed to
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0 and ther-component is left free. The outflow, where both theandy- component are free,
isx = 16. Tractions are set tod on the outflow.

Figure 6.6: Results for the flow over a cilinder. LeR;:/ P, (withoutw’;). Right: P,/ P, (with
u’;). From top to bottom: streamlines and pressure contours.

As in the previous example, little difference can be ap@ateci between the solutions ob-
tained with theP; / P, pair with no subscales on the boundaries andRh&-, element with
subscales on the boundaries.

Once again, the behavior of the solution in termgphas been checked. A comparison
between the pressure in a cut alang 4 is shown in Fig. 6.7 fob, = 0.05, 0.2 and 0.5. The
same conclusions as for the cavity flow example can be drawmsrtase, namely, = 0.05
allows for pressure oscillations which do not appear usjng 0.2 andj, = 0.5, the latter
being more diffusive than the former.
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Figure 6.7: Results for the flow over a cilinder, pressure sutalongy = 4. Top: P,/ F,
element withy, = 0.2 compared to the” /P, element. BottomP,; /P, element results for
different values ob,, global cut (left) and detail (right).
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6.6 In search of an efficient implementation for theP1/P0
element

We have seen how considering subscales to be different feomiz the element edges can be
used to obtain stabilized formulations for discontinuotespure interpolations, in particular
for the P1/P0 element. However, this element is not very useful from thematational point
of view: compared to the stabilizell/P1 element, the number of pressure unknowns and
the number of connectivities for velocity unknowns are tgedn this section we try to find
a more efficient formulation in which pressure unknowns cacdndensed by sending all the
off-diagonal terms of the LHS corresponding to pressureftestions equations to the RHS.
This is not effective for the Stokes problem, since an iteegbrocess would be needed for a
linear problem, but can be worth in the Navier-Stokes eguatiwhere the iterations due to
the pressure condensation can be coupled with the itegatioa to the non-linearity of the
convective term.

Let us consider the subscales on the boundary strategy éoftibkes problem defined
in (6.52)-(6.53) and apply it to th&1/P0 interpolation. We take into account that, for this
particular interpolation:

A,Uh = 07 VQh = 07

As we will see, subscales on the element interiors can besciegl in the Stokes problem
if the P1/P0 interpolation is used. However, this is not the case if wd déth the Navier-
Stokes equations. Let us start by defining an explicit exgpoador the subscales in the element
interiors, which can be obtained from (6.53):

’U,/ = TPVf(f + VA’LLh — Vph),

where Py is the projection onto the space for the subscales. This¢cambe neglected if we
considerV’ to be orthogonal to the finite element space gni belong to the finite element
space. In this case, the final variational formulation is:

)
B([un, prl, [vn, qn]) — Z $<|[Vanuh —pan ], [VOvn + @m]) p = (f, va), (6.73)
E
which must hold for allv,, ¢;] € V}, x Q. The matrix structure of the previous problem is
the following:

|:K0—|-K5 G0+G5] {U} _ {F]

G/ +GY  —Js ||P 0 (6.74)

where K corresponds to— ZE%annuh]], [v0,v,]) 5 Gs and G} correspond to
= > s 2(lpun], [vO,vr]) and =3 2 ([vd,un ], [ann]),; respectively and-J; cor-
responds t&_, £ ([pin], [ann]) -

In order to be able to condensate pressure unknownshould be diagonal. Sincé;
involves the pressure jumps across interelement boursdiris not diagonal. However, we
can split it into a diagonal and a non-diagonal part:

Js = ']g - g?
J0 = diag(J5),
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We can now write the problem in the following form:

Ky+Ks Gy+Gs| |U | F (6.75)
GL+GY —JY | |P| |J5P|° '
which can be solved by means of a fixed point iteration scheme:
Ko+ K; Gy+Gs| [UY] [ F 6.76
Gi+cl -5 | |po| = 5P (6.76)

wherei is the iteration counter. SincE) can be trivially inverted, we can eliminate the pressure
unknowns from the matrix form of the problem and end up with:

Ky+ K;s + (Go + Gs) (Jg)_l (GE"; + G?)} U9 = F + (G + Gs) (Jg)—l JgP(i_l),
(6.77)

J 5 is diagonally dominant, and as a consequence the convergétiee scheme can be proved
as for the classical Jacobi method.

In the case of transient problems the same strategy can delgeever, we also have the
possibility of treating pressure in an explicit way. The mafiorm of the transient problem is:

(6.78)

~n+1

IM+K,+K; Go+Gs| [U™D]
JiP

GI+G! -39 | |pm

F+ %MU"]

where we have added a mass matrix which takes into accoutitteeerivatives and®" " is
an approximation to the pressure nodal unknowns at timerstep. A first order approxima-
tion to the pressure would be to consider the pressure aréveops time step:

~n+1

P =P'=P" 0O,

Similarly we could consider the second order approximation

P —opr _ prl = Pl O®58).

However, although some of these methods work, none of themvsh fast enough con-
vergence to be competitive with thiel / P1 interpolation. We solve the example of the flow
over a cylinder described in the previous section. Fig. B@ws the convergence of the itera-
tive scheme proposed for the stationary Stokes problem.aeappreciate that convergence
is very slow, even if a relaxation strategy is used. If we tsyng over-relaxation the iterative
scheme diverges. In Fig. 6.9 we compare the convergence afdh-linearity of the Navier-
Stokes equationgde = 100) solved with the original formulation with the convergerftthe
condensed pressure strategy is used. We can observe tranergence of the convective
non-linearity is much faster than the convergence of thatitee algorithm due to the pressure
condensation.

We finally try the explicit treatment for the pressures dibsat for the transient Stokes
problem. After 50 time steps the first order scheme has nat @lele to converge to an incom-
pressible velocity field, as we can appreciate in Fig. 6.1%ere& the horizontal velocity has
been depicted. The second order scheme diverges after arfevsteps.
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Figure 6.10: Horizontal velocity for the transient probldéin explicit scheme for the pressure
is used. Results for the first order scheme.

In conclusion, we have not been able to find a competitiverdtga for the implemen-
tation of theP1/P0 element. Further research will be carried out in order tosm®r more
complex iterative schemes (starting with, for example, $8aBeidel iterations) which might
allow to condense the pressure unknowns and at the samedtiofain convergence in very
few iterations.

6.7 Conclusions

In this chapter we have extended the two-scale approximatio/ariational problems with
an additional ingredient in the approximation of the sules;avhich is an approximation for
their values on the interelement boundaries.

The key idea is to assume that the subscales are already tmanpuhe element interiors
and to compute the boundary values by imposing the corranstnission conditions of the
problem under consideration. Three examples of how to takierthis process have been
presented, namely, the CDR equation, the Stokes problerDaray’s equations.

In order to be as general as possible, examples of how to denpe subscale on the
element interiors have been proposbdt not usedin the sense that our developments are
applicable to any approximation of these unknowns (pravitiey satisfy some conditions on
the algorithmic constants on which they depend). In facthaee proved stability estimates
for the three problems considered which are valid for anyaghof subscales in the interior of
the elements. However, convergence analyses, not preseate, require the expressions of
these subscales.

For the case of the CDR equation, the new terms introduceddnuating for the subscales
on the interelement boundaries do not contribute to stgbHiowever, our analysis and the
numerical example presented show that they do not spoiidt adso that accuracy seems also
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to be unaffected. However, for the Stokes problem and focyp#ow the terms introduced by
the subscales on the boundaries are crucial to providdistalhen discontinuous pressure
interpolations are used. Tistabilizingterms introduced are shared with other formulations
that can be found in the literature. However, some non-stahig¢rms also appear. Again, our
analysis, and the numerical examples in the case of the Spokblems, show that these terms
do not harm stability.

We have looked for an efficient implementation of thé/ PO interpolation, which con-
sists of condensing the pressure unknowns by sending tltkagfbnal terms corresponding to
the pressure test function equations to the right hand-Sieeeral iterative and explicit meth-
ods have been presented which are suitable for stationdriramsient problems respectively.
However, although some of these methods work, none of thewsh fast enough conver-
gence to be competitive with thél/ P1 interpolation. Further research will be carried out in
order to consider more complex iterative schemes (stawitiy for example, Gauss-Seidel
iterations) which might allow to condense the pressure ankis and at the same time obtain
convergence in very few iterations.
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Chapter 7

Finite element approximation of
transmission conditions in fluids and
solids introducing boundary subgrid
scales

Terms involving jumps of stresses on boundaries are prapfsehe finite element approxi-
mation of the Stokes problem and the linear elasticity éqonat These terms are designed to
improve the transmission conditions between subdomaitisexd different levels, namely, be-
tween the element domains, between the interfaces in hameogs domain interaction prob-
lems and at the interface between the fluid and the solid id-8tructure interaction problems.
The benefits in each case are respectively the possibilibsiolg discontinuous pressure in-
terpolations in a stabilized finite element approximatidrihe Stokes problem, a stronger
enforcement of the stress continuity in homogeneous dodetgomposition problems and a
considerable improvement of the behavior of the iteratiger@hm to couple the fluid and
the solid in fluid-structure interaction problems. The mation to introduce these terms stems
from a decomposition of the unknown into a conforming and @-oonforming part, a hybrid
formulation for the latter and a simple approximation fag tinknowns involved in the hybrid
problem.

7.1 Introduction

Transmission conditions in the numerical approximatiofiuadl and solid mechanics problems
play a key role at different levels. When the discretizafiorolves a partition of the compu-
tational domain, as in finite volume or finite element methalds first level is the interaction
between the subdomains of the partition. Appropriate auiion conditions, associated to the
problem being solved, are satisfied in an approximate waytlsis may have important con-
sequences in the stability of the numerical method. A set®ral of analysis of transmission
conditions could be the interaction of subdomains in a h@megus domain decomposition
method. This problem may be addressed using a purely aiggiwnt of view, but it is also
possible to analyze the interaction from the standpointefdapproximate boundary condi-
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tions applied to each subdomain. Both strategies are welWknn the domain decomposition
community (see [115, 128], for example). A a third level oflsis could be the interac-
tion betweerheterogeneousubdomains, in which different problems associated teebfit
physics are solved within each of the subdomains. This kEsgory could be included in the
second, but the heterogeneity of the transmission comdifictroduces additional difficulties
that deserve to be studied independently. The paradigmetimple of this class of problems
are those involving fluid and structure interactions.

In this chapter we analyze the issue of dealing with transimmsconditions in fluid and
solid mechanics problems approximated using finite elesadrite model problems we will
consider are the Stokes problem and the Navier equatiores lfoear elastic solid. Our pro-
posal is to modify the classical approximation of the intéicmn stresses computed from the
finite element solution by introducing terms that dependhenjimps of these stresses when
computed from the two sides of the interaction boundary.Wagto motivate the introduction
of these terms is as follows. First, we consider a splittithe unknown into a conforming
and a discontinuous part. A three-field hybrid formulatismsed for the latter, involving the
primal variable, its traces and its fluxes on the element Haties as unknowns. We assume
that these terms amamall and therefore we consider themsagogrid scalegor subscales) of
the conforming part of the solution. In this sense, our agpindalls within the variational mul-
tiscale framework proposed in [77]. Rather than solvingtifier subscales, we propose simple
expressions tonodelthem, the main idea being the correct continuity of stressesss the
interelement boundaries.

When solving for the Stokes problem in a single domain, th@duction of the element
boundary terms involving jumps of stresses has as a conseg@estabilizing effect on the
pressure. In particular, in combination with a more staddaabilized finite element method,
these new terms open the possibility to use arbitrary dismoous pressure interpolations,
avoiding the need to satisfy the classical velocity-pressampatibility conditions [23]. Their
stabilizing effect is similar to that already found in [78]though their expression is different
and motivated in a completely different way.

Pressure stabilization due to the new interelement boyrtéams was already proposed
and analyzed in Chapter 6. In the present chapter we derigetail the formulation for the
Stokes problem (which in the previous chapter was diretited from the derivation obtained
for the convection-diffusion equation), with emphasis ba treatment of Neumann bound-
ary conditions. This serves us to extend it to two cases, lyathe interaction between two
subdomains, in each of which the Stokes problem is solvedl itz classical fluid-structure
interaction (FSI) problem. In the first case, the new termgrepose help to enforce the conti-
nuity of stresses between subdomains. The domain interaisthowever more complex than
in classical formulations. To introduce an iteration-lmpdomain scheme, we first analyze the
matrix structure of the problem and discuss how this iteesscheme can be designed. In the
FSI case, we apply the previous ideas to a time-marchingkbtecative scheme in which
Dirichlet boundary conditions are prescribed to the fluid &eumann boundary conditions
are applied to the solid. The latter correspond to the nostnaks exerted by the fluid on the
solid. The introduction of the subscales on the element daues for the solid enhances no-
tably the stability of the scheme. We illustrate this enlganent with a numerical example. In
particular, the example we have chosen displays the salcadlded-mass effect, which is one
of the most important issues to be considered when solvirdydttucture interaction problems
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by means of a domain decomposition technique. This phenomiakes place when fluid and
solid densities are similar, and consists in a failing of @encoupling strategies. Either if
the coupling is implicit (iterating the solution at each érstep to converge to the monolithic
problem) or explicit (no coupling iterations are done witthe time step), the scheme becomes
unstable. Several strategies to deal with this problem haea recently proposed. For exam-
ple, a semi-implicit scheme for pressure-segregated rdstispresented in [49], and is further
developed in [6]. A different approach for pressure-segtedjschemes is proposed in [81]. In
[24] a strategy based on Nitsche’s method is proposed andreothbased on Robin boundary
conditions can be found in [8]. Using a more algebraic pofntiew, several strategies using
preconditioned Krylov methods are presented in [9, 10, @dhditions under which the prob-
lem becomes unstable are studied in [54]. We present her@ouapproach, which is directly
derived from the use of boundary subgrid scales.

The chapter is organized as follows. In Section 7.2 we skegeStokes problem in strong
form, in the classical velocity-pressure variational foamd in a non-standard hybrid varia-
tional form that we use to motivate our numerical formulati®his formulation is presented
in detail in Section 7.3. The final result is a problem posely éor a conforming approx-
imation to the velocity and the pressure that involves jumfstresses at the interelement
boundaries. The application of the same ideas to a homogsmEmain interaction problem
is presented in Section 7.4, whereas the application to $ig@foblem is the subject of Sec-
tion 7.5. Numerical examples are presented in Section d&iaally conclusions close the
chapter in Section 7.7.

7.2 Problem statement

7.2.1 Stokes problem inu-p form

Let us start considering the Stokes problem written in tassital velocity-pressure approach
or displacement-pressure, in the case of an elastic saiflxTerminology, we will consider
that it corresponds to a fluid, leaving for Section 7.5 theest@nt of the elastic problem.
Thus, the problem we consider here consists in finding a itglac: © — R? and a pressure
p :  — R such that

—pAu+ Vp=pf inQ, (7.0
V-u=0 1inQ, (7.2)

u=0 onlp, (7.3)
—pn+pun-Vu=t only. (7.4)

In these equations) ¢ R? (d = 2,3) is a bounded domain with bounda®2 and external
normaln, f is the vector of body forces artds the (pseudo-)traction prescribed Br, with
0 =TyUTp, I'yNTp =0, T'p # 0. The physical parametersandp are the viscosity
and the density, respectively. Note that the Neumann-tgmelitons do not correspond to
the physically meaningful tractions, for which the viscaesn should be written using the
symmetrical gradient of the velocity. This, however, iglevant for our discussion.
LetnowV = HE(Q)? := {v € H'(Q)?|v =00nTp}, Q = L*), and assume that
f € (HLQ)?Y) (the dual space off}(Q)%) andt € H~'/%(T'y)? We will use the symbol



158 Chapter 7. Transmission conditions introducing boundahgsd scales

(-, ). to denote thd.? product in a domaiw. In general, the integral of two functiogs and
g» over a domainw will be denoted by(g:, g») .. This symbol will also be used for the duality
pairing. The simplifications:, -)o = (-, -) and(-, -)o = (-, -) will be used.

The variational problem consists of findifg, p] € V' x @ such that

B(luw,pl, [v,q]) = L([v, q]) + (¢, v)p, Y[v,q] €V xQ,

where

B([u,p], [v,q]) == u(Vu, Vv) — (p,V-v) + (¢, V - u),
L([v,q]) = p(f,v).

7.2.2 Hybrid formulation of an abstract variational proble m

The numerical approximation we propose can be motivated &dybrid formulation of the
problem. To introduce it, let us assume thiat Q; U Qy, with ' = 99, N OS2, (see Fig. 7.1).

Figure 7.1: Splitting of the domain

Consider an abstract variational problem consisting infigdn unknown: in a functional
spaceX such that

a(u,v) =1l(v) Yve X, (7.5)

wherea(u, v) is a bilinear form onX x X and! a linear form defined oX. Let u;, v; be
the restrictions ofu,v € X to subdomair);, and X; the spaces where they belong=
1,2. Suppose that € X has a well defined trace dnbelonging to a spac€, and a flux
corresponding to the differential operator associated’t6) (belonging to a spack; when
computed from subdomain;, i = 1, 2. Then, the hybrid formulation of (7.5) that we consider
is the following: findu; € X;, \; € F;,i = 1,2, andv € T such that

ar(ur,v1) — (A, v)p = hi(v) Vo € Xy,
—

as(ug, v2) — (Ao, Vo) = la(v2) Vg € Xy,
(p1,u1 —)p =0 Vi € Fh,
(o, us —)p =0 Vo € Iy,
(K, M1+ A)p =0 Ve eT,
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wherea; andl; are the restrictions af and/ to X; x X; and.X;, respectively.

If the problem includes imposition of fluxes afin a partl'y of 92, which for the sake
of simplicity we may consider contained &), (see Fig.7.1), this imposition may be also
“hybridized”, yielding the problem

ar(ug,v1) — (A1, v1)p — <)\N,U1>FN =l(v) Yu € Xy, (7.6)
as(ug, v2) — (A2, Vo) = la(v2) Yoy € X5, (7.7)
(1w — 7)p + (pa,ur — )p,, =0 Vi € I, (7.8)
(2, ug —7)p =0 Vg € Fy, (7.9)
(K, AL+ A2)p + (K5, AN)p, = (5, @py, Vi eT, (7.10)

whereq is the flux to be prescribed. In this case, the linear férand the formd; and/,
resulting from the splitting of the domain) doestinclude the prescription of the fluxes.
Several problems admit this hybrid formulation, includifingt and second order linear
partial differential equations (the fluxasare zero in the first case). In the following subsection
we shall see its application to the Stokes problem. For tfiesitbn equation—Au = f with
u = 0 on o, we would have thak; is the subspace aff!(Q;) of functions vanishing on
o0 N o, T = HAT) and F, = (H)/*(T';)) (the prime denoting dual space), wifh =
0€; N Q. The solution of the hybrid problem i = ui|r, = uslr,, A1 = =X\ = ny -
Vui|r, = —ng - Vus|r,. If flux conditions need to be prescribed, in this case theyddithe
formn - Vu = ¢, andl'; will contain T, the part of the boundary where these conditions are
enforced.

7.2.3 Hybrid formulation of the Stokes problem
The Stokes problem (7.1)-(7.2) admits also the hybrid fdathen described above by defining

u=|u,p], v=[v,q, X=VxQ,

a(u,v) = B([u,p], [v,q]), U(v) = L([v, q]),

Y =wilr, = wlr, € T = Hy*(T)*,

N = (—pn + pm; - Va)|r, € Fy = (Hpy ()Y, i=1,2,

andq = t (see (7.4)) being the boundary condition in terms of fluxes.

To present the formulation we are interested in, let us camsa splitting of spac&” of
the formV = V & V. In principle, there is no restriction in the expression pécesl’ and
V. In the finite element approximation, the former will be appmated bycontinuousfinite
elements (and therefore conforming). The component iof this space can be considered as
resolvable whereas a closed form expression will be given for the carepbinV’, which
will be calledsubgrid scaleor, simply,subscaleA similar splitting could be performed for the
pressure, although it is not necessary for our purposes.

LetV; be also splitad; = V; &V, i = 1,2. If anyu; € V; is written asu; = @; + @;, with
@, € V; anda; € V;, we assume that, |-, = us|r,. Only the continuity for the component in
V; needs to be enforced (weakly) through a variational eqoatio
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Let us introduce the boundary operators

Ti([vi, ¢i]) = (—qimi + pum; - V) |r,, T (s, ¢i]) == (gini + pim; - VO,) |y,

where[v,;,q;] € V; x Q;, i = 1,2. We may constrain the fluxes to be of the foln =
Ti([@s, pi]) + A, for approprlateA € F,, and likewise forAy. Test functions inF, can be
similarly split asp; = 7,*([0:, ¢;]) + f;, With ©; € Vi, ¢; € Qi, 1; € ;. Finally, traces on
boundaries can be split as= u + 4, both onI" and onI"y. On the intersecting boundaty
the restrictionu is well defined because of the assumptior, = us|r,. Note that, in fact,
F; = F;andT = T. The tilde has been introduced to stress that we seek thealalus fluxes
and traces in these spaces.

Having introduced these decompositions of the functiopatss, we may write the hybrid
formulation of the Stokes problem as follows: find € V;, w; € Vi, p; € Qi, ¥ € T, X\; € F;
(: = 1,2) such that

Bi([uy + @y, p1], [01 + V1, 1)) — <71([’L_b17p1]) + 5\17171 + ’l~11>F

— <7E([711>P1]) + Ay, 01+ 131>F = Li([v1 + 91, 1)), (7.11)
By([tg + U2, pa], [V2 + 02, ga]) — <75([’L_b2,p2]) + Ao, D2 + ’l~72>F = Ly([v2 + 02, ¢2)),
(7.12)
(T ([o1, @]) + 1,5 — w)p + (T ([01, @) + 24,5 — i)y, =0, (7.13)
(T ([02, g2]) + fag, ¥ — U2)p = 0, (7.14)
<’51+’52+'2'«771([’a1,p1]) ([u27p2])+5\1+5\2>r
+ <'I11 + K, Ti([uy, p1]) + 5\N>F = (01 + R, t)p (7.15)

which must hold for all; € V;, o, € V;, ¢; € Qs k € T, 1; € F, (i = 1,2). Recall thatL,
does not contain the contribution from the Neumann-typenbdaty condition (7.4).

Adding up (7.11) and (7.12) with;, = v, = 0 and using (7.15) witlk = 0 yields the
original variational equation projected oritox @, that is to say,

B(lu,p], [v,4q]) + B([w,0], [v,q]) = L([v, ¢]) + (0, t)r,, (7.16)
which holds for all[z, ¢] € V x Q. If we define the operators
Li([vi,qi]) == —pAv; + Vi, Li([vs,q]) == —pAD; — Vg,
we may write, making use of (7.13) and (7.14) wjith= i, = 0,

Bz([ﬁ’lv 0]7 [’Bi? QZ])

(wi, L3 ([0, 1)), + Z ¥, T ([vi, @i)))p + (¥, T ([0, a])py,
(7.17)
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Adding up (7.11) and (7.12) with;, = v, = 0, ¢; = ¢» = 0 yields, after integration by
parts of some terms,

ZB (). (5200 = S (Tilfmo) + 380), = (Tils.m) + Av. ),
<£i([ai7pi])71~]i>9i + ZZ:Bi([ﬁi’O]’ [f)i’ O]) N Z <5\i’@i>r B <5\N’@1>FN

1 i=1 i=1

]
Mw

2

]

Ly([®;,0]). (7.18)
=1
As an alternative to (7.11)-(7.15), the final problem can bwimed from (7.16), (7.17),
It reads: findu; € V;, w; € Vi, p; € Q;, ¥ €T, \; € F; (i = 1,2) such that

B( +Z u;, £ ([0, ¢i]) +Z ¥, T ([vi: ¢il)

+ T ([’Ul,qlmm = L(lv,q]) + <vvt>FNv (7.19)

S (Ll pi). Bi)g, + > Bl 01 [0,0) = > (A wi),

—(Ao1) =D Lil[®:,0)). (7.20)
> (R T((wep) + X))+ (R Tilam]) + Av) = (ko). (7.21)
2
D (¥ = )y + {0, 5 = W), =0, (7.22)

forallo, e V;, v, € Vi, i € Qi k €T, o, € F; (i = 1,2).

This is the hybrid formulation on which we will base the fingeement approximation
described in the following. Its importance relies on the thatit is the theoretical framework
to develop approximations in whial is split into a contribution which is continuous dn
and another one which is discontinuous Chapter 6 we presented a similar development
for the convection-diffusion equation. Now we have dethile@s development for the Stokes
problem, considering also the presence of Neumann typedaoyiconditions.

7.3 Finite element approximation

7.3.1 Scale splitting

Let P, := {K} be a finite element partition of the domdof sizeh, andV}, x @, a finite
element space where an approximate solutionp;] € V,, x @ is sought. We assume that
V,, is madeof continuous functionghat is to say}, is conforming inV/.
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Consider the setting of the previous subsection With= V},, and thereford” = Vj, @
V, with V to be defined, ande = w, + @, v = v), + ©. The extension of (7.19)-(7.22)
to multiple subdomains is straightforward. In particulae will apply it considering each
element a subdomain. No subscript will be used for the fonstiand operators in play to
characterize the element domain over which they are deflyedg this clear simply by the
domain of integration.

The discrete variational problem to be considered is to findp,] € Vi X Qn, u € v,
4 € T and € F such that

B([uh>ph]7 [vhv Qh]) + Z(ﬁﬁ E*([Um Qh]»K

£ 6T 7 (om o = o) + (o1 (7.23)
;w([uh,phb ot DBl 0L0.0) = (A 0), =S Lu((®0). (724
> (& T (unpr]) + 5\>8K — (R t)p.,. (7.25)
i; (7 =)y =0, (7.26)

forallv, € Vi, € V,qn € Qn, %k € T, i € F, whereT is now the space of traces (of
subscales) on the element boundaries (satisf§irg 0 onI') and F the space of fluxes on
these boundaries.

Apart from the imposition of the condition tha; € @, problem (7.23)-(7.26) is exact.
The final approximation is obtained by choosing a way to axprate the velocity subscales
@, their traces on the element boundarieand their fluxes\. This leaves many possibilities
open. In particular, ifx is chosen to be a piecewise polynomial, the previous equation-
stitute a very general framework to develop finite elemepraxmations with a continuous
component;) and a discontinuous on&). Traces {) and fluxes &) may be approximated
independently or linked ta and/oru,, if an irreducible formulation is to be used. Note that
if the first option is used there might be compatibility cdrahs between the approximating
finite element spaces to render the final discrete problenmenoally stable.

Our purpose here i3otto exploit the possibilities of (7.23)-(7.26), bt propose a closed
form expression fofi, 4 and X. Only (7.23) will remain unaltered, but with a certain appro
imation for« in the interior of the element domains required to evalulatesecond term on
the left-hand-side of this equation, and an approximatwmfon the element boundaries to
evaluate the third term. We proceed to explain how we do thihé following subsection,
understanding that other possibilities are open withimptiesent framework.

7.3.2 Subscales on the element boundaries

The way we propose to approximate the subscales was alreasiyrped in Chapter 6. Let us
just recall the resulting expressions foand~.
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Approximation of A. The values of\ on 9K areweakapproximations to the fluxes af.
Given the tracey of this unknown, and taking into account that no pressuresalbs have
been introduced, we propose the following closed form esgiom for:

NoKinp ~ %(:y — @), i=1,2, (7.27)

where nowu,; has to be understood as the subscale computed in the elememdris and
evaluated at edgg.

Approximation of 4. Equation (7.25) states the weak continuity of the total ffusa the
element boundaries. The idea now is to replace this equlayi@am explicit prescription of this
continuity. We need to distinguish the case in which an edg#erior to the domaif and the
case in which it belongs tby. Edges or" will not contribute because of the zero velocity
prescription there.

Let [ng] 5 := niglor,ne + n29|ar,ne denote the jump of a scalar functigracross edge
Eand[0,9]5 = n1 - Vglox,ne + N2 - Vglax,ne the jump of the normal derivative. For a
vector fieldv, we also defindn @ v], = n @ v|ok,ne + 12 @ V|ok,nE-

Consider first the case in which, is an interior edge. The condition to determine the
expression of the subscale velocity on the boundary is leatdrmal component of the stress
be continuous across interelement boundaries. This canitiewas follows:

0=[-pn+pdu]g, (7.28)
~ [—prn + popun ] g, + Noring + AoranE,

oo -
~ [—pnn + Manuh]]EO + s (2’)’50 — U — U2) )

from where the approximation we propose is

] ] 5
Yo =AU} n, — o [ 10nun — pam] g, (7.29)

where{a} g, := 1(@; + u,) is the average of the subscales computed in the elemeribiister
evaluated at edg&),. From (7.29) it is observed thag will play the role of an algorithmic
parameter for which, following our approach, we have a geooa interpretation.

From now onwards we will use the symbelinstead of~, understanding that in some
places we perform approximation (7.27) that has led us 29]7.

Let us consider now a boundary edge of the fd&tm = 0K NIy for a certain elemenk,
where the Neumann condition (7.4) is prescribed. In thie cg&28) has to be replaced by

t|EN - (—p’l’L + :uanu”EN
= (—=pnn + ponun) By + 10,45y

[T N
= (_phn + Mﬁnuh)‘EN + g (7EN - U’EN) )

from where

- - )
YEy = UENy — ;<_phn + ponhuy, — t>|EN' (7.30)
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Problem for w;, and w. From the approximation of the fluxes (7.27) and the expressio
obtained for the traces, (7.29) and (7.30), one can obtamolsgm foru; andw alone from
(7.23) and (7.24). After some algebraic manipulationsptiedlem obtained is: finfk, py| €

Vi, X Q, and@ € V such that

B([wn, pnl; [vn; an]) + Z(ﬁ, L*([on, anl))

+ Z Hat, [T ([on an)) D g, — o > T (fn o)) 1 [T (08, 6D 1) g,

21 4=

#3{0 T o)) - . 5 (7 funsn). T (o ),

= L([onan]) + (o), — %Z (& T ([0 1))y (7.31)
> Bi([a, 0], [0, 0] +Z uh,th

+Z ([wn; pn) {@}>EO+%Z<H7®®&]"H”®M>EO

Eo Eo

+Z ([ 1)), @) gy = Y Lic([9,00) + Y (8,9) ., (7.32)

En

for all [vy,, qn] € Vi, X Qpn, © € V.
Problem (7.31)-(7.32) is very general and could be useda@safter choosing an approx-
imation for V. However, we will further simplify the problem by approxitirey directly .

7.3.3 Subscales in the element interiors

To approximatez, we in fact approximate (7.24) by integrating by parts,
Z BK(['&H 0]7 [fja O]) =M Z(A'&, ’1~J>K T Z <n ’ V'&, 1~J>8K7
K K K

assuming thatn - V& cancels with the fluxed and using the crucial approximation

(—pAw, v) g ~ 7 Y, V), 01

oL (7.33)
where( is an algorithmic constant. We will not justify this last gtevhich is the keystone
of stabilized finite element methods. It can be motivatedf@mple by using an approximate
Fourier analysis [32].

Summarizing, the subscales in the element interiors caxegsed in terms disy,, py)
from the equation

Z(ﬁ([uh,ph V) + T 12 (w, )k —,OZ f,0) (7.34)

K
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which can be described by saying theis the projection of the residualf — L([up, ps])
within each element multiplied by onto the space of subscalEs The most usual option is
to take this projection as the identity (assuming this isitda), although we favor the choice
of taking it as the projectio?-orthogonal to the finite element spadg This leads to the so
called orthogonal subscale stabilization (OSS) method33P However, the final method is
independent of the choice of the space of subscales.

7.3.4 Stabilized finite element problem

The subscales in the element interiors can be approximatstheed in Chapter 6. With all the

approximations introduced, the problem to be solved ctssils(7.31) and (7.34). However,

the approximations used to arrive to (7.34) have as a coesequthe loss of symmetry of

the problem (which is in fact observed usingy, as test function). This symmetry can be
recovered neglecting the third and fifth terms in (7.31) @\tbat this maintains the consistency
of the method, in the sense that if the approximate solutignp;] is replaced by the exact

solution[u, p|, the discrete variational problem holds exactly.

The variation of the method just explained consists in figdmy,, py] € Vi, x @, and
u € V such that

B([wn, pi), [vn, an]) + (@, L7 ([on, an])) i

) o

T2 (T Qun, i) 1, 1T (fons ae)) D, = EZ (T ([wn, pa)), T*([0n: 1)) g,
= L([vhv Qh]) + <vhv t>FN - %Z <t7 T*([vhv Qh]»ENv (7.35)
> L pal), Oy + 7> (D) = p > (F. )k, (7.36)

for all [vs, qu] € Vi, X Qp, 0 € V.
We may write the solution of (7.36) as

@ =1P(pf — L([un, pr))),

where P denotes thd.? projection onto the space of subscales, which will be lettafimed
(except in the numerical examples, of course). The problemnow be written in a compact
form, only involving the finite element component of the uakm [u;, p;], as follows: find
[wp, pr] € Vi x @y such that

Bgtan ([wn, pn), [Vn, @n]) = Letab([Vn, qn])  V[vn, qn] € Vi x Qn,
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where

Btat([wns pil, [vn, an)) = B([wn, pa]s [vn, an]) = D 7{P(L ([, pa])), £ ([0n, an))) i

- > (17 a1 7o )] %; (e 2] T ([n. @)
(7.37)
Lsav([vn, qn]) = L([vn, qn]) + <’Uh>t>rN
=S AP, - % ST ([on 1)) - (7.38)

En

7.4 Interaction between subdomains

7.4.1 Motivation

The stabilized finite element formulation presented in tfevjpus section has been designed
to allow arbitrary velocity-pressure interpolations, arficular discontinuous pressures. How-
ever, the concepts used to obtain it can be applied to othuatgins. In particular, we consider
in this section the application to the interaction betweem$ubdomains, in both of which the
Stokes problem is solved.

The motivation to use the stabilization strategy in intéoacproblems arises from the fact
that if the subdomains are discretized independently, thespire degrees of freedom at the
interface will be doubled and, therefore, pressure will lse@htinuous at this interface. If a
method that is stable for continuous pressures is applidte(ecoming from a stabilized for-
mulation or from the use of inf-sup stable velocity-presquairs) there is no guarantee that this
stability will be preserved at the interface. The use of thpraach described in the previous
section, known to be stable for arbitrary pressure intefpahs, may thus be beneficial.

7.4.2 Continuous problem

The final discrete problem to be proposed can be derivedtjinesing the ideas presented in
the previous section and extended to the case in which th&gaiyroperties, and in particular
the viscosityu, are discontinuous. However, additional insight on thehmeétis gained if a
more “physical” approach is used when two subdomains iotera

Let us consider again the situation of Fig. 7.1, now for sigiglwith Iy = (). For our pur-
poses, instead of using a three-field hybrid formulatiomgighe primal unknown, its traces
and its fluxes as variables, it is enough to consider the mmremn approach of using only
the fluxes ol as unknowns, and enforcing continuity weakly. The boundafye problem
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to be solved consists in findifg, p1], [u2, p2] and such that:

—pmAuy +Vpy = pf in €y,
Veu =0 inQy,
u; =0 onl'p; = 0 NOQ,
U = Us onl’,
A= —png+ pung - Vu; onl|
—p2Auy + Vpy = pf in €,
V- uy=0 in Qy,
us =0 onl'po = 0 N 0L,
—PaMg + oMo - Vug = —A onT.

These equations have been written in the order they can bedsiol an iteration-by-subdomain
strategy. The first four equations can be solvedtar, p,| if u, is assumed to be known on
I', the flux on this surface can be then computed and used to swveroblem orf2, with
Neumann conditions on.

The variational form of the continuous problem consistsndifig [w,, p1], [uz, p2] @andA
such that

Bi([ur, pi]; [vi, ¢1]) — (A o) = Li([vr, ¢1]) - V[vr, ¢,
Bs([ug, pal, [v2, ga]) + (A, ’U2>r = Ly([v2, 2]) V[vz, o],
(1, wy — uz)p =0 Vi,

where the bilinear and linear forms involved are the same tiprevious section. The spaces
of unknowns and test functions are also the same as thosdurd previously.

When applying the Galerkin method to discretize this probileere are at least two issues
that have to be taken into account:

e The space fo has to be properly chosen in order to obtain a numericallylstarob-
lem. There are compatibility conditions between the intéapon of this unknown and
the interpolation ofu andp that have to be met to satisfy the inf-sup conditions associ-
ated to the problem.

e Itis preferable to computg;, weaklyrather than from\ = —p;n;, + p1m, - Vu,.
However, it is not our purpose to use the classical Galerlathid, but to extend the formula-

tion of Section 7.3.

7.4.3 Finite element approximation

Let By stab, L1 stabs B2 stab @NA Lo gap b€ the stabilized bilinear and linear forms corresponding
to each subdomaiwithoutconsidering the boundary conditions Bnwhich act as Neumann
conditions on each subdomain. These forms are given by)(@rg¥(7.38).
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If ¢; is the traction onl" to be applied ta2;, the discrete variational equation on each
subdomain reads:

Bistab([Wn, Prl, [Vn, qn]) — % > (Tillwn, pal), T ([vn, g1)) g,
:ummmﬂm+umwr—%§ymzwm@mmw (7.39)

which holds for all test function;, ¢,] with support orf2;, i = 1,2. The edges:r are now
those contained if.

Let us obtain which is the tractiot) that results from the formulation developed in the
previous section. Note thdt = —X, andt, = —A\;. Recall that we have neglected the
subscales in the element interiors (and evaluated on thedaoy) when computing the fluxes
A

If the continuity of fluxes (7.28) is now imposed we find

)
M1+ pio

;ﬂEF == |[T(|:u}“ph])]]E["

Using the basic decomposition assumed for the total fluxé§a27) we obtain, on each edge
Er,

A= Tilfuns ) + A = Tolfun pnl) + 5.

Combining the last two expressions yields, on each ddge

A= Til [ pn]) = -2 [T (i) ] (7.40)

This expression for the traction associated to the formanawe propose has two interesting
features:

e It automaticallysatisfies\; + A, = 0.

e Instead of the tractioff;([u,, pr|) associated to the standard Galerkin methods a
weighted averagef 7, ([u, pr]) andTz([us, pr]), the weighting coefficients depending
on the viscosity on each subdomain: K 1, for example, we see that

2 H1
A= T , + —T5 , ,
R 1([wn, pr) MJFM( 2([wn; pnl))
where—T;([uy, pp]) can be understood as the traction associatéd topy,| in 2, but
computed with the normat;.

It is worth to remark that (7.40) can be used to compute theeflum domain interaction
problems as an alternative to the classical fluxes of therdalenethod and also to the weak
computation of these fluxes. It can be used not only in the ohsgeshes that match dn
but also in domain decomposition methods with overlappsee ([72]) or when fluxes are
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needed on meshes that do not match the boundaries (as irottlermps described in Chapter 4
and Chapter 5). Likewise, they can be modified to accommauatécular conditions that a
certain application requires, such as conservation of langoomentum (using for example
the methodology proposed in [71]).

The formulation we propose can finally be obtained adding7Zup9) fori = 1 andi =
2. Writing explicitly the expressions of ([uy, ps]) and 7*([vn, ¢x]), it consists of finding
[up,, pr], defined on the whole computational domg&insuch that

By san([wn, prl, [Vn, qn]) + B2 stab([Wh, D], Uk, ¢n))
0

B Mt e

([1Onur, — pan ], [1Onvn + aum]) g, (7.41)

= Ll,stab([vfw Qh]) + L2,stab<[vh7 Qh])u

for all test functiongvy, g5,]. It is observed that the term involving integrals ovepenalizes
the jump of the (pseudo-) tractions along this interface. Wile observe this effect in the
numerical examples.

7.4.4 Matrix structure

In order to write the matrix structure of problem (7.41), swier the splitting of the finite
element velocity

Up = Up,1 + Upr + Up o,

wherew,, ; refers to the component associated to the degrees of freedemal to (2;, and
vanishing onI’, whereasu,, i refers precisely to the degrees of freedom associated to the
interacting boundary. This splitting in the one dimenslaiase and using linear elements is
represented in Fig. 7.2. For the pressuig,denotes simply its restriction 0;.

Unr
Up
u
1 Up,2

Q, Q,

A

v

~ ]

Figure 7.2: Splitting of the unknown
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Having introduced this splitting, the matrix structure loé tproblem will be:

Aiq Air+ Al p Al U, I
AF,I + Ai",l AF,F + Ai",l" Ang + A%’Q Ur = | Fr |. (742)
Ay, Apr + Ay p Az Us Fy

In this equation/J; are arrays of degrees of freedom associated,tpandp;, ;, andUr the
degrees of freedom associatedtpr. The terms from where the different submatrices and
components of the right-hand-side appear are obvious.

There are two remarks to be made referred to the algebratgmno(7.42):

e Submatrices with a prime and a double prime are due taéwve interaction termn
(7.41), which would not appear using a classical Gakerkithoge for the domain in-
teraction problem (even if stabilized finite element foratidns are used within each
subdomain).

e A], and Ay, appearbecause of the jump of the derivativefsthe velocities. For ex-
ample, there are test functions@n which vanish onl" but whose derivative does not
vanish (in the case of Lagrangian interpolations, thoserer¢est functions associated
to the nodes adjacent i9. Thus, the jump of these derivatives is not zero and has to be
multiplied against the jump of the velocity derivatives,igthinvolves degrees of free-
dom ofu,, interior to €2, (again, in the case of Lagrangian interpolations, thoséhare
velocity degrees of freedom associated to the nodes adjecEnn the interior of(2,).

7.4.5 lteration-by-subdomain strategy

The most popular way to deal with a problem involving the liatgion of two subdomains is
by using an iteration-by-subdomain strategy, that is tg aayterative algorithm in which the
unknowns are computed in one of the subdomains assumingathdrdm the other known,
and proceeding iteratively until convergence.

To set possible iteration-by-subdomain schemes, it is&oiewnt to consider first the matrix
version of the problem. The simplest way to solve (7.42) sawe forU; first and forUr and
U, in a coupled way. Denoting with a superscript the iteratioarter, a solve of this iterative
algorithm would be:

AL UP = F — (Aur + A ) USY — AL USY, (7.43)
Arp +Arpr Arp+ Ap, Uéi) _ | Fr—(Arg + Ap 1)U1(i)
’ ’ W | = @) (7.44)
Asr + Ajp Ago Us, Fy — Ay, U

This scheme would in fact be of Gauss-Seidel type, since a@hgevwofU; just computed in
the first step of the iteration is used in the second. A Jatygi#-scheme would be obtained
replacingU{"” by U in the second step.

Apart from the straightforward scheme (7.43)-(7.44), ¢hare extensions and/or modifi-
cations that are convenient to use in the applications:
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e Under-relaxation. Numerical experiments show that it i@l to use under-relaxation.
A simple scheme of the form

U+ aU + (1 — a)US™Y (7.45)

turns out to be very efficient. The values of the relaxatiorapeetera that we use are
indicated in the numerical examples.

e Other iterative schemes, like GMRES. In principle, thisetyid schemes can be applied
directly to (7.42) with an adequate choice of the precoodér P. The key issue is
to design this preconditioner in a modular way, that is tg §ayuch a manner that
it requires only information of the domain whose unknowres laeing computed. Our
choice for the preconditiond? is:

Aiq Air+ Ay 0
P — AF,]. + Ai’*71 AI“’F + Ai’*7r 0 5
0 0 Ago

which leads to the following preconditioned system:
AP7'PU=F (7.46)

The only system of equations to be solved in the GMRES it@nas the one associated
to P!, in which we can separate terms associated to the probleronmaith 1 from
terms associated to the problem in domain 2 (see also [9, 10])
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The iterative scheme is better described using the algeboan of the problem, but it
is also enlightening to write the discrete variational @rs The problem corresponding to
(7.43)-(7.44) applied to (7.41) is:

B (i) )

l,stab([uh,pph,l]a [,Uh,la Qh,l])

= Ll,stab([vh,la dh, 1] - B stab([ugj;l)a 0]7 [’Uh 15 %,1]))

0 -1y (@)
+ E <M13n uy) +u P15 110n, Vp 1 + Qh,1n1>
- i + L1 1( h 1 h,I’ ) h,1 1 B

r

0 (i—1) (i—1) (i—1)
-+ < O, (u +u Mg, 10p, V1 + n> ,
ZN1+M2 1120, ( h,T h,2 ) = Ph2 M2, 100, Vh,1 T qn1T0 .

B2,stab([u§:)p + uﬁfé,pﬁlé] [Uhr + Vn2, qn2l)
= Logtap([Unr + Vn2, Gno)) — B2 stab([uﬁ)ppﬁ)l]’ [Uhr + Vn2, qnol)

o ; ;
T Z L1+ o <Mlan1(uh 1T ugl)r) p&nl, ,Ulanl'vh,f‘>

T

M?arm ’LL ;:,)2) - pﬁ)gn% ,ulan1vh,f‘>

Er

M1+M2

Y ) — pﬁ)lnl, 14200, (VT + Vp2) + Qh,2n2>

Er

f120n, ( u’h rT u;:)z) pﬁfénz, 1120, (Vn,r + Vp2) + Qh,2n2>

r

7.5 Fluid-structure interaction

In the previous section we have considered the interactatween two subdomains in both
of which the Stokes problem is solved. In this sense, thaatsttn can be considered as a
homogeneoumteraction. The problem to be solved in each subdomain.B9§7and, since
these equations are dimensionally homogeneous, they caddsel up for = 1, 2 to obtain
(7.41). In this section however we are interested in theaateon between #uid and asolid,
and thus the problem can be termedaterogeneousdn this case, it is better to work directly
with (7.39). The purpose of what follows is to apply the idedsoduced previously to fluid-
structure interaction (FSI) problems and to design antitareby-subdomain strategy for this
particular problem.

7.5.1 Continuous problem

The nature of the problem to be considered is intrinsicalingient (although it is obviously
possible that a steady-state is reached)./0éf’] be the time interval of analysis. In all what
follows we will use subscripk’ to refer to the fluid and subscriptto refer to the solid (and not
subscripts 1 and 2, as in the previous section). In particQlaand(2s will be the subdomains
occupied by the fluid and the solid, respectively, &nd 9 NOQ their common boundary.
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If d: [0,T] x Qg — R%is the displacement field in the solid, the problem to be sblve
consists in findingl, « andp such that

psOpd —V o5 =psf in Qg,

d=0 on I'pg,

Nng-og =tg on I'y,,
prou — pAu+Vp = ppf in Qp,
V-u=0 in Qp,

u=20 onIp,,

—pnp + punp - Vu =tp on I'y,,
ng-os+ (—pnp +punp-Vu) =0 onT,
od—u=0 onT,

together with initial conditions fow, d andd,d in the domain where they are defined. A linear
elastic behavior will be assumed for the solid, so that thessttensor there is given by

og=0og(d)=C :V?d,

whereC is the constitutive tensor ar\d®d the symmetrical gradient af.

To simplify the exposition, we assume that the solicha incompressible, so that the
problem can be approximated without the need to introdueevtthumetric stress as a new
variable (the extension to this situation would be strdmard and, in fact, we use it in the
numerical examples). Therefore, the standard Galerkihogatan be used to approximate the
governing equations for the solid.

The variational counterpart of the FSI problem consistsidifigd, w, p and the interac-
tion stress\ such that

ps(0id, e)as + Bs(d,e) — (X, e)p = Ls(e) + (ts, e>FNS Ve e W,
PF(atU7 ,U)QF + BF([uvp]v [vv Q]) + <A7 ,U>I‘ - LF([’Uv Q]) + <tF7 ,U>FNF v[vv Q] € V X Qv
(,0d —u)r. =0 VY e F,

where
W={ec H'(Qs)"|e=0 on I'p,},
Bs(d.e) = (C : Vd, Ve)q,.
Ls(e) = ps(f, e)q,

and for each time € (0,7") the unknowns satisfg € W, [u,p] € V x @, XA € F (with the
adequate regularity in time), with the appropriate initi@ahditions at = 0.
7.5.2 Finite element approximation and interaction stresss

Once finite element spacés, C W, V, xQ, C V x( are chosen, the crucial issue to extend
the formulation of the previous section to the present F8blam in to obtain the interaction
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stresses resulting from the introduction of subscales eeldment boundaries contained’in
Let75(e) = ng - os(e). The velocity subscaleg, and the displacement subscaigscan be
obtained from condition (7.28), which now can be written@kfvs:

0 = Tr([u,p]) + Ts(d)
~ Tr([wn, pa)) + Tr([@, 0)) + Ts(dy) + Ts(d), (7.47)

whered are the displacement subscales. Neglecting the subscatée ielement interiors
as before, 7-([u,0]) can be approximated b¥~y.. The problem is how to approximate

7’3(@). Approximating derivatives using finite differences wileld an expression of the form
Ts(d) ~ %G’S/S for a certain matrixG depending on the physical parameters contained in the

constitutive tenso€'. For our reasoning it is enough to approxim%;té&) ~ %*’ys, G* being
a scalar coefficient. Altogether, (7.47) yields, on eacheenfg’,

G Yg + pyp = —O[Tr([wn, pr]) + Ts(dp)]. (7.48)

The compatibility between the velocity in the fluid and thepdacement in the solid implies
also the compatibility in the corresponding subscales i@ sayy = 9;¥-

In FSI problems of interest, we may assume that the fluid ahd gbysical properties are
such that

G|yl > ulovsl,
which using (7.48) implies that

- 0 .
s = Tefunpnl) + To(dn)), 7~ 0,

and, consequently,

G*
As = Ts(dy) + SV F —Tr([un, pr)), (7.49)
Ar = Tr([un, o)) + Ap =~ Tr([un, pa)).- (7.50)
These approximations have an interesting consequencégsket —Ar = —T7r([un, pr))

be the stresexerted on the solidecause of the interaction with the fluid, ahydh = —Ag =
Tr([un, pr)) the stresexerted on the fluidecause of the interaction with the solid. Suppose an
iterative strategy is used to solve the fluid-solid coup(wghin each time step, for example).
If the solid is computed with a Neumann-type conditionlgitsr = —7x([us, ps]) has to be
used as traction, which corresponds to the common appretrelsses computed in the fluid
using the finite element solution are transmitted to thedsai the fluid a Dirichlet boundary
condition onl” can be used once the displacements in the solid have beeutaanplowever,
it is not possibléo use a Neumann condition @ihwhen solving in the fluid domain, since the
traction to be used isrs = Tr([un, pr]), which depends only on the velocities. Thus, the fluid
would not “feel” the action exerted by the solid. This agredth the well known fact that in
FSI problems if a Dirichlet-Neumann coupling is used, Neamlaaoundary conditions have to
be applied always to the solid surface, not to the fluid.

A similar situation is encountered in homogeneous intevagiroblems if one of the sub-
domains is much “stiffer” than the other. From (7.40) it issebved that if, for example,
1 => 2 then)\l = -y & —B([uh,ph]).
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7.5.3 Fully discrete problem and iterative coupling

Suppose to simplify that time is discretized using a backiwdifference formula, that we de-
note byD; to approximate), and D;; to approximate)?. Let it be the time step size of a uni-
form partition of[0, 7']. Consider that the unknowns are computed at time lévél2, ..., n—1
and we want to compute them at tinfe= ndt. The fully discrete version of the problem cor-
responding to (7.39) is: find; € W}, u} € V,, andp} € @), such that

o

ps(Dudy. e1)ay + Bs(dy.en) — = EZ (Ts(dp), Ts(en)) i,

= Ls(en) + {tsr. en)r — o > tbsr Tl (7.51)
pr (Dt v, + B[ 1. [ 1) = 2 (). T (o ),

= Lra(on, ) + (ers. )y = 3 s, T (v i), (7.52)

Er

which hold for alle, € W}, [vp, qn] € Vi x Q4. This is themonolithicfluid-structure system
that we propose.

Of particular interest is the design of a simple iterativegong between the solid and
the fluid using approximations (7.49)-(7.50)et us denote by™* an approximation to an
unknown f at time stepn and iteration;, with the initializationf™? = f"~!. Suppose that
the solid is solved first, wittu]" ", p}"~'] known. Thentsr = —Tp([u}" ", p"~']) can
be used in (7.51) to _computé;’i. When solving for the fluid, the traction to be used must be
trg = %([uﬁ’l_l,pzﬂ_l]), sinceonly in this case one can guarantee thgi + trg = 0 at
each iteration Using this, and noting that, | = 0 if Dirichlet conditions are used to solve in
the fluid domain, the algorithm reads

PSPl enhos + Bl en) — g 3 (T ). Tlen)
= Ls(en) — (T ™ ) )y + S (o) Toten)
pr(Dy” v, + Brsa([w), p1'], [, anl) — % ; (Te([uy", 2] Te ([vns an))) 5,
~ Lrcun(on ) ~ > (7o) T (o))

_ (7.53)
with the essential conditioa,”’|r = D,d;*|r for the second equation. It is observed that:

e The second term in the right-hand-side (RHS) of the first #quanforces the conti-
nuity of tractions between the solid and the fluid when testiethe displacement test
function.
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e The third term in the left-hand-side (LHS) and the third témrthe RHS of the first equa-
tion enforce further this continuity, now by testing thectians with75(e; ). However,
these terms are multiplied bgL which is very small when realistic physical properties
are used. Thus, their effect is in practice negligible.

e The crucial term is the second one in the RHS of the secondiequ# it were evalu-
ated at iteration, it would cancel with the third term in the LHS, which would fact
lead to the simplest fluid-structure iterative algorithnowéver, evaluating it at — 1
allows us to guarantee thétr + trs = 0 at each iteration, as it has been said, and
also acts as a penalization of the jump of fluid tractions betwiterations, given by
Te([w), p']) — Te([up ", pp*~")). The bottom line of our formulation applied to FSI
iterative algorithms can be summarized by these terms,hwd@na posterioribe under-
stood as a modification of the simplest iterative scheme €resophisticated algorithms
could also be used). Numerical experiments show that theowement in convergence
observed well deserves their derivation.

7.6 Numerical examples

In this section we present some numerical examples comespg to the formulation pre-
sented in Sections 7.4 and 7.5. The ability of the methodé@dsitrary discontinuous pressure
interpolations for the pressure was already demonstrat€thapter 6.

In all cases we will use the simplest choiEe= I in (7.38), wherd is the identity (at least
when applied to the residual of the finite element soluti®h)s corresponds the most popular
stabilized finite element method for the Stokes problemtifdlexamples have been run using
continuousP; elements (linear triangles in 2D) for all variables. Theoaitipmic constant;
in (7.33) has been set 16, = 4. When approximating the elasticity equatioas, = F, the
Young modulus, has been chosen in (7.51).

7.6.1 Two examples of domain interaction

In this subsection we present the numerical results for tvaongples which illustrate the ideas
presented in Section 7.4, one of a solid-solid interactiahanother of a fluid-fluid interaction.

The first example we consider consists of two incompresslastic bodies, which we
will model by means of the Stokes equations, noweing the shear modulus. The problem
setting and subdomains can be seen in Fig. 7.3. Both bodiee@mpressible (Poisson ratio
v = 0.5), but the body on the top is 10 times stiffer (Young modulus: 3) than the one below
(Young modulugy = 0.3). The unstructured triangular mesh consisting of 199@¢lies used
to solve the problem can be seen in Fig. 7.4.

The displacement and pressure fields obtained are showmyi@.bi We also depict the
normal tractions on the solid body interface, which coiecwith the componeni,, of the
stress tensor, in Fig. 7.6. In can be observed that usingal#ssreduces the jump in tractions
between both solid bodies, but the solution is stable angsierilar whether subscales on the
boundaries are used or not.

In the second example we will consider the stationary cdloty example for the Stokes
problem. The fluid domain is given by = [0, 1] x [0, 1]. All the boundaries are set to null
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velocity except for the one correspondingite= 1, in which we impose a horizontal velocity
u, = 1 and a vertical velocity:, = 0. The fluid viscosity is set to = 1. A finite element
mesh of 7200 structured trianglgs£ 0.16) has been used.

We now divide the fluid domain in two: the first subdomain cep@ends tar < 0.1, while
the second subdomain corresponds te 0.1. We solve this numerical example by means of
a domain decomposition method and the GMRES strategy theskin Subsection 7.4.5.

The velocity and pressure fields for the Stokes cavity probéee depicted in Fig.7.7.
Since the fluid density and viscosity are the same in both@ulaths, there should be no pres-
sure jump in the boundary separating them. However, a pregsup appears in the numerical
solution which is due to the fact that extra pressure degregeedom have been added to the
nodes belonging to the boundary. This pressure jump candreigd-ig. 7.8. We can see that
using subscales on the element boundaries helps reduceedsupe jump, and as a conse-
guence the pressure field gets closer to the one we wouldchabtamonolithic approach was
used, in which the pressure field would be continuous.

X velocity ¥ velocity
1 v 1
‘ 0-2
05 0.5 0
-0.2
0 0
0 0.5 1 0 05 1

pressure
r ,
-100
0.5
-200
0 -300
0 05 1

Figure 7.7: Velocity and pressure fields for the Stokes gapribblem

7.6.2 Added-mass effect

In this section we present some numerical results whicktiifde the behavior of the subscales
on the element boundaries as strategy to alleviate the addsesd effect. In order to do so, we
will use the example proposed in [24], in which we will coughe 2D Stokes equations with
the linear elasticity equations.
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Figure 7.8: Pressure jump at= 0.1.

The fluid domain is given by2r = [0, 5] x [0, 0.5] and the solid domain b§2, = [0, 5] x
0.5, 0.6]. Initially, both the fluid and the structure are at rest. Tberdary conditions are as
follows. In the structure domain, we impose null displacet@ . = 0 andz = 5, while zero
traction is applied oy = 0.6. For the fluid, we impose slip boundary conditiongat 0.0,
and an over-pressure ®6* during5 x 10~ time units. For the coupling between fluid and
structure, we also impose slip boundary conditions, that is

e \elocity continuity is imposed only in the direction norntalthe fluid-structure inter-
face.

e We impose traction continuity in the direction normal to theerface, but we do not
consider tangent tractions.

The spatial discretization is carried out by means of a fieieenent mesh, its size being
h = 0.1 (see Fig.7.9), and the time step is setito= 10~*. The backward Euler scheme is
used for the integration of the transient Stokes equatiornise fluid, and the explicit second
order Newmark method is chosen for the time integration eflithear elasticity equations in
the solid.

The main purpose of this numerical example is to compare ¢hevaor of the numerical
scheme with or without considering the contribution of thescales on the element bound-
aries, and in particular regarding the added mass effect.

We will firstly consider no subscales on the element bouedand a Dirichlet—Neumann
coupling strategy: we apply Dirichlet boundary conditiaaghe fluid domain and Neumann
boundary conditions to the solid one. The iterative scheraaise is (7.53), considering the
possibility to iterate within each time step to convergémdgolution of the monolithic problem
or without iterations. In this last case, correspondindpodo called staggered schemes (or also
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Figure 7.9: Finite element mesh

“loose coupling”), there is an error of the order of the tinegpssize with respect to the solution
of the monolithic problem. In (7.53) we will also consideeossibility of removing the terms
coming from the subscales on the boundaries.

Initially, we consider a fluid density = 1.1 and a viscosity: = 0.035. For the solid
we take a densitys = 1.2, a Young modulus® = 3 x 10® and the Poisson ratio = 0.0.
If we consider an explicit coupling (we do not iterate unthgergence at each time step) the
numerical scheme explodes, and we obtain an unstable neahsolution.We now consider a
coupling strategy which involves convergence at each ti@e, $n particular we impose that
the relative error between the solution obtained at itenatiand iteration; + 1 is less than
10~3. Due to the added mass effect, this simple Dirichlet-Neunsmheme does not converge,
and we need to use some additional tool in order to achievedhgion of the monolithic
problem. Amongst the various existing methods, we can usgaaation scheme. We have
found effective to take a relaxation parameter 0.3 in (7.45). Fig. 7.10 shows the vertical
displacement at a solid point placed in the center of thedsidbdimain. Fig.7.11 shows the
velocity and pressure fluid fieldsat= 75 x 10~%. The mean number of iterations at each time
step was 26 for this numerical scheme.

Let us now consider the use of the subscales on the elementanes, for which we will
taked, = 0.5 x 1073, If we try to use an explicit coupling scheme, the methodfagain due to
the added-mass effect, and we obtain an unstable solutmmeter, if we iterate at each time
step and we converge to the monolithic solution, we obtagnstiiution depicted in Fig. 7.12,
which is exactly equal to the one obtained without using cales on the element bound-
aries, since the additional terms due to the use of thesealgissvanish when convergence is
achieved. However, we did not need to use relaxation in thée cand the mean number of
iterations was substantially reduced to 5, with the subseteduction of CPU time required
to perform the computations.

Let us now consider a less demanding situation, in which elid density isps = 20. In
this case, thes/pr ratio is around0 too. This means that the added mass effect is not as
severe as it was in the previous example, and that there méhb need to use an iterative
scheme. We now test the explicit scheme with and withoutealbs on the element bound-
aries. In the first case we takg = 1 x 1073, Fig. 7.13 shows the results obtained with both
schemes. We can see that the scheme becomes unstable aftetirad¢ steps if no subscales
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Figure 7.10: Results for the iterative scheme, no subsa&kesation parameter = 0.3
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Figure 7.12: Results for the iterative scheme with subscale relaxation.

are used, but it remains stable, even for the explicit schértiee strategy we propose is used.

7.7 Conclusions

In this chapter we have motivated the introduction of elenmundary terms in the finite
element approximation the Stokes and the linear elastwitylems. The starting point has
been the splitting of the unknowns of the problem into a confog part and a discontinuous
one, introducing a hybrid formulation only for the lattee¢®ion 7.2). Although this approach
could serve for different purposes, in Section 7.3 we pre@onite element approximation in
which the discontinuous component of the solution, itsésa@nd fluxes are approximated by
expressions that involve only the conforming part of theisoh. The resulting formulation is
a stabilized finite element method for the Stokes problentkvhilows arbitrary interpolations
of velocities and pressure. Particular emphasis has bedrepmion the treatment of Neumann-
type boundary conditions.

The same ideas have been applied to the homogeneous iitterbetween two subdo-
mains (Section 7.4). In this case, the benefit of the bountdangs is a stronger enforcement
of the continuity of fluxes between subdomains. The matrixcstire of the resulting system
has been described and iterative schemes to be used inatioitely-subdomain environment
have been proposed.

The fluid structure interaction problem has then been tde@ection 7.5). The extension
of the previous ideas to this case has led to a modificatiorhat wan be considered a classical
solid-fluid iterative coupling. The boundary terms intredd, which cancel when convergence
is achieved, would hardly be motivated from a purely algefpaint of view.

All our predictions have been stated based on physical neagowithout numerical anal-
ysis. Numerical experiments have confirmed the theorgpialictions. In particular, a better
enforcement of the continuity of fluxes is found in homogearsedgomain interaction problems
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and, what is probably the most salient result of this workwvesgence of solid-fluid iterative
coupling algorithms is greatly improved by the terms we |s¢o introduce.



Chapter 8

FELAP, a Finite Element Linear Algebra
Package

In this chapter we preseRELAP, a linear system of equations solver package for problems
arising from finite element analysis. The main features efglackage are its capability to
work with symmetric and unsymmetric systems of equatioirectiand iterative solvers and
various renumbering techniques. Performance is enhancedrisidering the finite element
mesh graph instead of the matrix graph, which allows to perfoighly efficient block com-
putations.

8.1 Introduction

When performing numerical simulations with the finite eletneethod, one invariably ends
up with the need of solving a linear system of equations. Mo#e element codes use linear
system solvers developed by other groups and for other pagodn most cases, this solvers
are designed to cope with the most general kind of systentu@itens, which means that they
do not take advantage of the particularities of the systemagaations arising from the finite
element analysis. This is why we aim to develop a solver pgekpecially designed to solve
finite element problems, which we will c&lELAP (Finite Element Linear Algebra Package).
This chapter departs significantly from the scope of the oéshe thesis, and deals mainly
with the algorithmic and implementation aspects of the esollorary. For completeness, the
detailed description of several basic algorithms is alstusted.

There are many different strategies to deal with the satutfdinear system of equations.
The two main families of linear systems solvers direct anditerative solvers.

In direct solvers the system matrix is factorized into anergmnd a lower matrix which
are easily invertible. The main feature of direct solveth& the solution of the linear system
of equations is always achieved. However, the memory and tGR&requirements increase
very rapidly with the size of the linear system of equatiamisich makes them inappropriate
for solving the very large systems of equations arising iitdielement analysis. The earlier
strategies to deal with sparse linear systems were basdtemkyline storage, in which all
the entries of the matrix comprised inside the row bandwadéhstored. Currently algorithms
based on compact sparse storage schemes are the most cormusenhl These algorithms are

185
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basically composed of four steps [97]:
e Renumbering step, obtain an ordering which minimizestiill-i
e Symbolic factorization, compute fill-in pattern and memogguirements
e Factorization, compute the factors of the original matrix
e Obtain the system solution

The most time consuming step is the factorization of the imdiut the two previous steps are
essential in order to minimize the number of operations egéo compute the factors. Review
papers on direct sparse solvers can be found in [46, 57, 6/leDf the most popular direct
sparse solvers can be found in [42, 124, 1].

Although state of the art direct solvers are very efficiemibgled and are able to solve
relatively large systems of equations, the inconveniedtreict solvers is still the large amount
of time and memory required to obtain the solution if verygisystems of equations are
solved. This is why iterative methods are needed. The ieratgorithm is composed of two
main ingredients:

e The driver, which successively reduces the error betweeapproximated solution and
the real solution.

e The preconditioner, which changes the system of equatiorieetsolved into a new
equivalent system which is easier for the iterative algomito solve.

Drivers can be divided into non-Krylov methods (see [132)]14nd Krylov methods. Krylov
methods are the most powerful and the ones usually usedve lsoge systems of equations.
Amongst them we can highlight the Conjugate Gradient mef&8d68], the GMRES method
[134] and the BICGSTAB method [131].

There are two families of preconditioners which have remgimajor attention in the past
years: preconditioners deriving from the Algebraic Muliidgmethod (AMG) and incom-
plete factorization preconditioners (ILU). AMG was origlly developed independently from
Krylov methods [21], but it was later reinterpreted as a prelitioner method and used to-
gether with Krylov methods, see [19] and the cites thereiiterAhe development of AMG,
multigrid ideas were introduced in incomplete factoriaatpreconditioners by means of re-
ordering algorithms which lead to multilevel ILU (MILU) pecenditioners [13, 96, 122, 130].
A comparison between AMG and MILU methods can be found in [1ltDour solver pack-
age we opt for a multilevel ILU strategy, which benefits frome igood scalability of AMG
methods and from the versatility of ILU strategies.

The main design characteristics of this solver package are:

e The solver will be designed in order to be able to cope withdaystems of equations.
To this end storage of matrices will be doneG® format (Compact Sparse), and both
direct and iterative methods to solve linear systems of #gusawill be included in the
package.
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e The graph of the sparse matrix associated to the linearmmystequations is associated
to the graph of the finite element mesh. The solver will workblycks: if we denote
by ndof the number of degrees of freedom associated to each node afi¢kh, then
each item of the mesh graph will correspond to a block of dsif@mdof x ndof in the
matrix of the system of equations. This has three major adgas:

1. The number of non-numerical operations due to@sstorage is drastically re-
duced in vectorial problems. For example, for a 3D statipr&okes problems,
the number of non-numerical operations is reduced byl 16 4).

2. Operations are computed by blocks, this allows to imptggerformance of each
single floating point operation.

3. There is a clear gain in the memory required to store thieéscdf the CS storage.
Again, for a 3D Stokes problem, the amount of memory is redigel 6.

e Matrices arising from finite element analysis, althoughaleys symmetric, are always
structurally symmetricWe take advantage of this fact and we store separatelywes lo
triangular part of the matrix, the diagonal (or block diaghnand the upper triangular
part. In particular, we store the upper part of the matrix dys and the lower part by
columns. This has three major advantages:

1. Since the matrix istructurally symmetriand we store the upper part by rows and
the lower part by columns, the graph of both halves coinci@ibs allows to save
half of the memory required for the matrix graph.

2. This approach leads 1@UC preconditioners (Incomplete LU Crout) in iterative
solvers, which are much more efficient than classicalT preconditioners (In-
complete LU Tolerance) associated to @8R(Compact Sparse Row) storage.

3. ILUC preconditioners (oLUC factorizations in the case of direct solvers) do the
factorization of the matrix in such a way that the Schur cammnt of a block of
the matrix is very easily computed with very little modificat of the precondi-
tioner (factorizer) subroutine.

e \We aim for our iterative solvers to have a computational edsth increases as close
as possible to linearly with the number of unknowns of thaesyisof equations to be
solved.

In the following sections we present the strategy follonedcthieve these objectives.

8.2 The general strategy

One of the requirements FELAP has to fulfill is being as flexia$ possible so that it can
be used to manage the several systems of equations which amaytd be solved in a finite
element code. To achieve this FELAP is given a general estitycture which we believe
responds to the needs of most finite element codes.
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The general structure of FELAP starts from one or more finégment meshes. Each finite
element mesh has an associated graph. Associated to theajrdqe mesh we have a renum-
bering strategy. Several problems may be solved at the sameirt a single finite element
mesh, this is why there can be several matrices associa@dgitagyle mesh, with which the
mesh shares the graph. Each matrix has its own (complete@miplete) factorization. If we
were to use always direct solvers all the factorizationsasponding to the matrices of a sin-
gle mesh would share the graph, but as we may perform incoenfaletorizations, there is a
different graph attached to each factorization. This ga@retructure can be seen in Fig. 8.1.

M ATRIX | — FACTORIZATION
|GRAPH | GRAPH PH |
MESH]
GRAPH
FACTORIZATION
FELAP [MATRIX]—— Grapit
@APH J

\ FACTORIZATION
[MATRIX] ——

GRAPH |

Figure 8.1: FELAP general structure

8.3 Building the mesh graph

FELAP is a solver package specially developed in order t@aoiph problems arising from
finite element analysis problems. This means that linedesysof equations to be solved are
supposed to come from a finite element spatial discretizaitiwolving a mesh, elements and
nodes. Possibly, multiple physics problems will be solvedrdhe same mesh, and without
a doubt problems with several degrees of freedom per mesh wildhave to be solved. In
all these cases, however, the graph of the matrix resultinbeosystem of equations to be
solved will be somehow related to the graph of the finite el@meesh. In particular, for scalar
problems, the graph of the finite element mesh will coincidththe graph of the system
of equations to be solved. This is why, instead of building ¢ginaph of the matrix for each
problem to be solved on a finite element mesh, we store onlgrideh of the mesh. As we
will see, positions in the matrix can be very easily accesgéuthe graph of the mesh, even
for multiple degrees of freedom per node. This has the folguadvantages:

e The number of non-numerical operations is reduced in vedtoroblems. For example,
for a 3D stationary Stokes problems, the number of non-nigaleyperations is reduced
by 16 @ x 4).



8.3. Building the mesh graph 189

e Operations are computed by blocks in problems with multif@grees of freedom per
node, this allows to improve the performance of each singifig point operation.

e There is a clear gain in the memory required to store the grapthe matrices. Again,
for a 3D Stokes problem, the amount of memory is reduced by 16.

In order to build the mesh graplh;ELAP requires a list of elements containing the nodes
of each element. We require this list in a compact formabwalg for a different number of
nodes in each element. The compact format is composed oféetonindices; £ L andjE L,
iF'L(7) containing the starting position ji¥o L of the list of nodes of element j EL(i E'L(i) :
iFL(i+ 1) — 1) contains the node list for element

Figure 8.2: Finite element mesh

Consider for example the finite element mesh in Fig. 8.2. Eles1 and2 have3 nodes,
whereas elemerthas4 nodes. The storage of this mesh would produce the following:

Pos. [1]2]3] 4[5]6]7[8]9]10]
EL [1]4]7]11
JEL|1]2]3]3[2[4]5][3[4] 6]

What we want to compute is the graph of the mesh, that is, fdr eade, the list of nodes
to which it is connected. Two nodes are connected when teeseme element to which they
both belong. FELAP stores the graph of the mesh in a rathedipeevay, but that has some
very advantageous features. We store the mesh graph by wigawsctor indicesi A, i.S, j A,
1A and:S of size the number of nodes plusjU of size the total number of connectivities of
the meshiA andjA work asiE'L andjEL, iA(i) pointing to the starting position of the list
of connectivities of nodé in j A, stored injA(iA(i) : iA(i + 1) — 1). However, we put an
extra requirement in the way this list is stored: for thedistresponding to node we require
all the nodes with node number lesser thao be stored before the nodes with node number
greater than. 75 is built in the following manner:

iS(1) =1, S(i+ 1) —iS(i) = number of nodeg connected ta with j > i
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1A andj A allow to recover all the nodes connected to ngdeut adding the vectaiS to
the storage scheme allows, if desired, to recover only thiesioconnected ta with j > 1.
Let us see what would this graph storage scheme result ihédomesh in Fig. 8.2:

Pos.|1|2|3|4|5]|6]7[8[9]10[11]12]|13|14[15]16[17]18][19] 20|
iA |1]3]6[11]15]18]21
S [1]3[5]8]10]11

11
jA 1] 2 |[ATSTI6N 2| 3 [IST6N 3[4 060 3[4]5]
We have depicted in green the cellsjid corresponding to nodesconnected to nodesuch
that; > i.

Now iA andjA allow to access all the connectivities of a node. For scaialblpms this
corresponds to the CSR format for sparse matrices to be s¢le® mext section (except for the
fact that, for node, we do not storé itself in j A). On the other hand, if one wants to access
only the nodeg connected te such thatj > i, this can be achieved by using§:

x = iA>i+1) —iS>i+1) +iS()

allows to access the first nogeconnected ta with j > i, which is stored injA(x). As a
consequencgA(x : iA(i + 1) — 1) contains the nodesconnected ta with j > i. For scalar
problems this corresponds to the CS-Crout format for spaieices to be seen in the next
section.

The fact is that we will store our matrices in CS-Crout forntatt that we will need the
graph of the mesh in CSR format for renumbering algorithnhgs s the reason why we store
the extra array.S which allows us to have both formats in the same structure.

The mesh graph can be easily recovered from the elementylistdans of an efficient
O(npoin x nelem x nnode) algorithm, wherewpoin is the total number of points of the mesh,
nelem is the total number of elements andode is the mean number of nodes per element.

8.4 Storing the matrix

Let us consider a non singular square mattix
A= (aij)nxn, 1<i<n, 1<j<n,

arising from a finite element analysis. Let

b= (bi)nx1, 1<i<n,
be the right hand side of the system of equations to be solvéd a

T = (T))px1, 1<i<n,
the vector of unknowns satisfying

Az =0. (8.1)

Matrices arising from linear systems of equations to beexbiw finite element analysis
can be very large, but, at the same time, they are generalysparse. In order to reduce the
required memory, the storage of matrixshould be done in such a way that the zero entries
of A are not stored. The most common and popular way of storing lsparse matrices are
Compact SparséCS) formats.
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8.4.1 The CSR format

In CS formats only the non-zero entries of a matrix and thessary indices to ubicate them
in the matrix. The most popular CS formatGempact Sparse Rowet us denote by.zA the
number of non-zero entries of the matrix CSR consists in storing the non-zero entries of
matrix A in a vectorn A of sizenz A, and constructing two vector indiced andjA of size

n + 1 andnzA respectively:

nAk) = ai;,  j=jAk), QA(G) <k<iAG+1)—1, iA(l)=1. (8.2)

This implies that the non-zero values of a given row are steegjuentially, and that rows are
stored in an increasing order. Vector indigesand j A form what we callthe graph of the
matrix for a the given compact sparse format.

Let us consider the following matrix:

aj; ajp a;z 0 0
as; azp 0 axy 0
A= an 0 az az ass (8.3)
0 a2 a3 ayy O
0 0 53 0 Q55

If we store this matrix in CSR we obtain :
Pos.| 1 2 3 4 5 6 7\8\9\10\11\12\13\14\15\
1A 1 4 7 | 11| 14 | 16
jA 1 2 3 1 2 4 1 3 4 5 2 3 4 3 5

nA Ayl | Ai2 | Q13 | Q21 | (22 | A24 | A31 | Q33 | A34 | (35 | A42 | A43 | Q44 | G53 | U55

In the same way, th€ompact Sparse Colunformat is a compact sparse format which
stores the matrix by columns instead of by rows.

Although this two formats are the most common ones, they havajor drawback: they
are not suitable for symmetric matrices, in which:

a; = a5, 1<i<n, 1<j<n, (8.4)

and in order to reduce memory requirement we are interestsbiing only the diagonal and
the upper or lower triangular part, but not both. Taking thte account, we opt by th€om-
pact Sparse Croufiormat (CS-Crout) which is suitable for both symmetric am$ymmetric
matrices.

8.4.2 The CS-Crout format

In the CS-Crout format we divide matri® into a lower triangular matrix, its diagonalD
and an upper triangular matrtX, such that:

A=L+D+U
Lij=0 Vj=>i
Uyj=0 Vj<i

Dy=0 Vj#i
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We denote by:z L the number of non-zero entries in and bynzU the number of non-
zero entries itU. As a consequence; A = n +nzL + nzU, sincen is the number of entries
D, which are stored independently of their value.

CS-Crout consists in:

e Storing the diagonab in a vectord A of sizen

e Storing the non-zero entries &fin a vectorl A of sizenz L, and constructing to vector
indicesiL andj L of sizen + 1 andnzL respectively

e Storing the non-zero entries bfin a vectoruA of sizenzU, and constructing to vector
indices:U and;jU of sizen + 1 andnzU respectively.

The non-zero value vectors and the indices are constructie ifollowing way:

IA(k) = Lij, i=jA(k), iL(j)
uA(k) = Uj, j=jA(k), iL(i)

Note that in this case the upper triangular part of the magrstored by rows, while the
lower part is stored by columns. This may seem an unnecessarglication, but we will see
that leads to a very advantageous feature.

Let us consider again the matrix in (8.3). This matrix, whared in CS-Crout format,
yields:

Pos] 1 [ 2] 3| 4| 5]6]
dA | ain | as | ass | @ | ass
U | 1]3]4]6]6]6]
U 23445

uA Q12 | A13 | Q24 | A34 | 435
1L 1 3 4 6 6 | 6 ‘
gL 2 3 4 4 5

ulL (21 | A31 | A42 | Q43 | 453

There is no gain in using CS-Crout instead of CSR by now. Theusaihof memory re-
quired for the indices is the same (t)é& positions corresponding to the diagonal in CSR -size
n- are replaced by the extid vector index in CS-Crout -size + 1-). Let us now consider a
structurally symmetrienatrix, which means:

CLU%O@CL]Z#O 1<i<n, 1<53<n

buta;; # aj; in general. Matrices arising from finite element analyss structurally sym-
metric. If this is the case, as in (8.3)dices:L and:U coincide in the CS-Crout formathis
means that there is no need to store both of them. What we datsite a single index which
we calliA. The same happens witl. andjU, which we condense in a single indgA. As

a consequence, the amount of memory required for storingietstally symmetric matrix in
CS-Crout format is significantly smaller than the memoryuieed to store the same matrix in
CSR. Still, this is not the major advantage of using CS-Chastead of CSR.
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Let us now consider a symmetric matrix. Symmetric matriaesabviously structurally
symmetric. Moreover, in a symmetric matrix vectard and/A in the CS-Crout format are
equal. This means that there is no need to store both veatawtshatmemory requirements for
the storage of the matrix can be reduced to the .hHffis is the deciding factor which led us
to opt for CS-Crout instead of CSR. CS-Crout is a format inchitsymmetric and structurally
symmetric matrices are treated in a very natural way, andtdikes advantage of this fact
in order to reduce storage memory requirements. Of coungeatone is not enough, since
another requirement for compact sparse formats is thaatipes involving matrices can be
performed in an efficient way. As we will see in the followingctions, this requirement is
satisfactorily met by the CS-Crout format.

8.5 Matrix times vector product

There is a single operation to be performed with the origmatrix A when solving a linear
system of equations. This is matrix times vector product:

c= Ab,
C; = Z Cl,z'jbj (85)
j=1

For full matrices the algorithm to compute the product isigintforward, but if matrices are
stored in a sparse format, the operations involved in (8&®ho be performed in the correct
order so thathe need for searching through the vectors in which the mé&stored is avoided
Let us illustrate this point. Consider the matrix times wegiroduct in (8.5) for a full matrix.
The algorithm associated to this operation can be seen ioridtgn 1.

Algorithm 1 Matrix times vector, full matrix(z, 5)
1: fori=1:ndo

22 ¢(i)=0

3: forj=1:ndo

4: c(i) = (i) + A(4,7) * b(y)
5. end for

6: end for

If one wants to change the order of the loops there is no magusle@m (except for the
jumps in memory positions, which can be an issue in high perdmce computations), as seen
in Algorithm 2.

8.5.1 Matrix times vector in CSR

Let us now perform the same operation with the CSR storaggorAhm 1 now turns to Al-
gorithm 3. Performed this way the algorithm is efficient ane tomplexity of the algorithm
(accounting also for non-numerical operations deriviogfithe need of reading the sparse for-
mat indices) is ofD(n x mzr), where we have denoted Bgr the mean number of non-zero
entries in a row of matrix.
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Algorithm 2 Matrix times vector, full matrix(7, )

10 ¢(:)=0

2. forj=1:ndo

3: fori=1:ndo

4 c(i) = c(i) + A(4,7) * b(j)
5. end for

6: end for

Algorithm 3 Matrix times vector, CSR(i, j)
1. fori=1:ndo

2. c(i)=0

3 fork=4A(i):iA(i+1)—1do
4: c(i1) = (i) + nA(k) x b(jA(k))
5 end for

6: end for

When trying to reproduce Algorithm 2 with the CSR format welfthat it is very difficult
to travel through a column of matrit due to the way in which non-zero coefficientsdrare
stored. A first approach to Algorithm 2 would be Algorithm 4dtBow the complexity of the
algorithm is ofO(n x n x mzr). This is obviously unaffordable. With this simple example w
have demonstrated that even the most simple operationsttdedone in the correct order
if the matrix is stored in a compact sparse format. Not domgrgplies increasing the number
of operations by a factor of. As a consequence, opting for an specific storage formatespl
that any algorithm involving the sparse matrix will have odpecifically coded for the chosen
format.

Algorithm 4 Matrix times vector, CSR(j, 7)
1:¢(:) =0
2. forj=1:ndo
3: fori=1:ndo

4 k =iA(1)

5: while jA(k) # j andk < iA(i + 1) do
6: k=k—+1

7 end while

8: if jA(k) = j then

o: c(i) = (i) + nA(k) x b(jA(k))

10: end if

11: end for

12: end for

Algorithm 4 demonstrates that travelling through the nxatrianunnaturalway (referred
to the sparse matrix storage format) must be avoided by ansieHowever, there will be
times, and for certain algorithms, when it will be peremptiardo so. If this is the case, there
are tools which allow us to keep the number of operationsgoeirthe same order than if we
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moved through the matrix in theaturalway. These are linked lists.

8.5.2 Linked lists

Linked lists consist of a sequence of nodes, each contaambitgary data fields and a reference
pointing to the next node. In order to keep the number of dfmersin Algorithm 4 ofO(n x
nzr) we would require, for each columi a linked list with which we could travel through
the non-zero values of the column. Let us see how to buildkednist for the matrix in (8.3).

A linked list will consist of the indiceg'irst, last and the vector indekist of dimension
(2,n). Let us consider the second columnAf

a2
a22

A:72 = 0
(42

0

For the second column, the linked list pretends to travelugh the non-zero entries of matrix
A which belong to the column. As a consequence we assigivta the row of the first non-
zero entry of column 2, which ig;:

first =1

In the same way, we assignfiost the row of the last non-zero entry of column2, which is
A49-

last =4

For column 2/ist would contain:

. 25 0 11 0
lzst—<2 10 -1 O) (8.6)

list(1,4) contains the positions in vectarA in which a;, is containeda, is stored in
nA(2), as is stored innA(5) andays is stored imA(11). list(2, i) contains which is the next
row which has a non-zero value in column 2. In this case, rowittp to row 2, which points
to row 4. As there is no row greater than 4 whose componentlimuo 2 is different from
0, row 4 points to -1. If we have a linked list for each of thewrnhs of matrixA we will be
able to travel through the columns 4f stored in CSR. However, keeping a linked list for each
column will require a lot of memory. Algorithm 5 shows how tgréimically build a linked
list which allows to columnwise traversé even if this is stored by rows, at the sole cost of
two vectors,first andlast, of sizen, and the vectolist of dimensiong2, n). The algorithm
has one requirement: column indices for a row #famust be stored in increasing order.

Let us apply Algorithm 5 to traverse matrix columnwise when it is stored in a CSR
format. Lines 1 to 3 initialize the linked list to zero. Lindgo 15 put the first component of
each row in the linked list. As we will see, only one non-zemtrgof each will be in the linked
list at the same time. Once this non-zero entry has been iiseidl,be replaced by the next
non-zero of the row. After line 15 the linked list vectors foatrix A stored in CSR are:
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Algorithm 5 CSR,(j, ), Linked list

1: first(:) = —1
2: last(:) = —1
3: list(:,:) =0

4: fori=1:ndo

5. if 4A(i) #iA(i + 1) then

6: k =iA(1)

7: if last(jA(k)) = —1 then
8: first(jA(k)) =i

o: else

10: list(2,last(jA(k))) =i
11: end if

12: list(1,i) = k

13: last(jA(k)) =1

14: endif

15: end for

16: for j =1:ndo
17: i = first(j)

18: whilei # —1do
19: k = list(1,1)
20: print nA(k)

21: if list(1,i) <iA(i+ 1) — 1then
22: if last(jA(list(1,7) +1)) = —1 then
23: first(jA(list(1,4) + 1)) =1
24: else

25: aux = last(jA(list(1,i) + 1))
26: list(2, aux) =i

27: end if

28: last(jA(list(1,1) + 1)) =1

29: end if

30: list(1,4) = list(1,7) + 1

31: auxr =1

32 i = list(2,1)

33: list(2, auzr) = —1

34: end while
35: end for
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Pos. 11234 ]|5
first 1/4/5|-1]-1
last 314|5|-1]-1
list(1,:) |1 4] 7 (11|14
list(2,:) 1 2]3]-1]-1]-1

As we can see, after this first loop the linked list is readyawdrse column 1 but it is not
ready to traverse any other column. The first iteration inldlog@ starting in line 16 prints the
first column ofA, but it also modifies the linked list so that at the end of thist fteration the
linked list is ready to traverse column 2:

Pos. 11234 ]|5
first 1(14|5|-1|-1
last 31213 |-1|-1
list(1,:) |2 5| 8| 11| 14
list(2,:) |2]-1|-1| 1| 3

This procedure is repeated for each colummdofThis pseudocode applied to matrik
prints:

a1
21
as1
42
a2
22
as3
33
a3
Q43

24
34
44
as5
a3s

where we have grouped the coefficients of each column. Natefthr a given columngoeffi-
cients are not recovered in a row-increasing ord&kgorithm 5 can be modified into a matrix
times vector product simply by replacing line 20 by:

c(d) = c(i) + nA(k) * b(GA(K))

The complexity of the algorithm is no@(n x mzr). For a matrix times vector product
Algorithm 5 is slower than Algorithm 3. For more complex camggions, in which the com-
plexity of the operation in line 20 in Algorithm 5 is @(n) or O(nzr), Algorithm 3 and
Algorithm 5 will perform almost equally. This is in fact whaappens in the CS-Crout matrix
factorization algorithm, as we will see.
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8.5.3 Matrix times vector in CS-Crout

The efficient algorithm for computing a matrix times vectooguct if the matrix is stored
in CS-Crout format is Algorithm 6. Note that the complexisydf O(n x mzr) and that the
number of operations is exactly the same than in Algorithm 3.

Algorithm 6 Matrix times vector, CS-Crout
1:¢(:) =0
2: fori=1:ndo

for k =iA(i) : iA(i+ 1) —1do

4 c(i) = e(1) + uA(k) * b(jA(k))

5: c(JA(k)) = c(jJA(k)) + LA(k) * b(4)

6

7:

end for
end for

8.6 Direct solvers

When dealing with the system of equations (8.1), the exdatisa can be found bfactorizing
matrix A and performing a backward and forward substitution. Féitagy a matrix means
finding two matriced. lower triangular and/ upper triangular, the diagonal éffull of ones,
such that:
w; =0 Vi>j, 1<i<n, 1<j<n,
Li; =0 Vi<yj, 1<i<n, 1<j<n,
Li=1, 1<i<n,
LU = A. (8.7)

Once these matrices have been factorized the solution afritp@al system can be found
by solving:

Ly =
Ur=y (8.8)

These two systems are very easily solved since they argtrian

8.6.1 Matrix factorization

There are various algorithms which compute the factowratif a matrix (which is unique),
depending on the order in which the factorized matrix coieifits are computed. Each of these
algorithms is associated to a particular compact sparsaggscheme. Here we present the
Crout algorithm, which is the one associated to the CS-Cmutat we use.

For full matrices, the Crout algorithm can be seen in Aldorit7, where the factorized
matrices have been stored in the same memory space occypied b
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N

Figure 8.3: Factorization order in CSR (left) and CS-Croigiht). Areas in gray are factorized,
in white, to be factorized

Algorithm 7 Crout algorithm
1: for k=1:ndo
2. fori=1:k—1do

Ak, k) = 1/A(k, k)
forj=k+1:ndo

10: Ak, j) = Ak, j) = A(k, k)
11:  end for

12: end for

3: for j =k :ndo

4: A(k,7) = A(k,j) — A(i, k) * A(1, j)
5: A(j, k) = A(j, k) — A(k, 1) = A(4,1)
6: end for

7:  end for

8:

9:
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Obviously this algorithm crashes if(k, k) = 0 in line 8. When this happens there are a
series of pivoting algorithms which allow to change the mairdering in such a way that (for
non-singular matrices) no zeros are found in the diagonahgthe factorization process. We
have to say, however, that in the finite element analysistisgstems of equations we have
solved this problem has not appeared (even for problemshaiginange multipliers in which
the original matrix has zeros on the diagonal).

When dealing with the factorization in Algorithm 7, whichtiee most suitable in the case
of a matrix stored in CS-Crout format, we face with the problinat the loop in accesses
the factorized matriced and U in anunnaturalorder, as Fig. 8.4 shows. This corresponds
to coefficientsA(:, k) and A(k, ) in lines 4 and 5 in Algorithm 7, which fot < i < k
correspond to Fig. 8.4 right. This is the reason why we havegort to the linked list strategy
described in Algorithm 5.

k k

Figure 8.4: For a given row and coluntn positionsnaturally (left) and unnaturally (right)
consecutively accessed with the CS-Crout format

When dealing with the factorization of a matrix it is very genient, in order to keep the
complexity of the algorithm as low as possible, to work wile tincompressed row/column
k. To this end, at the beginning of eakthteration we uncompress the row and coluinimto
vectorsrwa andrwa2 of maximum size: and two vector indicegva of maximum size: and
seen oOf sizen. The exact procedure is shown in Algorithm 8.

A position corresponding to column/royvin row/columnk will have to be accessed in
general for two purposes:

e Firstly to add the contribution of previous rows/columirie row/columnk. To this end
the most efficient way of temporarily storing row/colurhirwould be in a completely
uncompressed vector. Any contribution to column/raw row/columnk would be done
in rwa(j) with no further complication.

e Secondly to store the non-zero coefficients corresponadicglumn/row; of the factor-
ized row/columrk in the CS-Crout format. In this case it would be convenierook
only with the non-zero coefficients of the factorized rovideon £ in a compressed way.
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Algorithm 8 Uncompressing row/columinfor a fast factorization procedure
1: dwa(:) =0

2: seen(:) =0

3 rwa(:) =0

4: rwa2(:) =0

5. rwa(l) = dA(k) {Start Uncompressing
6: iwa(l) =k

7. seen(k) =1

8: nz=1

o: for j =iA(k) : iA(k+ 1) — 1do

10 nz=mnz+1

11:  rwa(nz) = vA(j)
12: rwa2(nz) = lA(j)
13:  dwa(nz) = jA(j)

14:  seen(jA(j)) = nz
15: end for

Algorithm 8 shows a working storage scheme which fulfills tguirements of both opera-
tions. In the first caseseen(j) contains an index which leads to the corresponding position
in the compressed arraysa, rwa andrwa?2 without the need of searching through the com-
pressed arrays. For the second case non-zero entries angedron the compressed arrays
1wa, rwa andrwa2 and there is no need to traverse a full sizarray and check for non-zero
entries.

Now we have the necessary tools to write Algorithm 7 for spansitrices. The factored
matrix will be stored in CS-Crout matricdsandU. We recall that one of the requirements
of the linked list strategy in Algorithm 5 was that the matsowvere stored in a row/column-
increasing order. This is why working arraisa, rwa andrwa?2 are reordered before being
stored intoL, and U in CS-Crout format. There is no need for matrixto be stored in a
row/column-increasing order. Note that sintes structurallysymmetric the factored matrices
L andU have the same sparsity structuié:and j L coincide withiU and;U, and we have
condensed them @' and;C'. Moreover the diagonal of is full of ones and there is no need
to store it. Likewise, a single linked list will be enough taversel, andU. Algorithm 9 is the
sparse version of Algorithm 7 using the strategies desgribb@lgorithm 5 and Algorithm 8.
The resulting algorithm is of complexitQ(n x mzr x nzr), where nownzr denotes the mean
number of non-zero entries in th@ctorizedmatrix.

In the case of positive definite symmetric matrices, the Cfactorization is very easily
modified to the so calle@holeskyfactorization by replacing Algorithm 7 by Algorithm 10. In
this case, matrixl is factorized into:

LLT = A,
Ly =,
LTz =y. (8.9)

Note that only the lower triangular part of matrikis required and factorized. This can be
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Algorithm 9 Sparse Crout factorization using linked lists and fast waglarrays
1: ic(1) = 1 {Initialize}

2: nwt =1
3: dwa(:) =0
4: rwa(:) =0
5. rwa2(:) =0
6: seen(:) =0
7: last(:) = —1
8: first(:) = —1
9: list(:) = —1
10: for £ =1:ndo
11:  rwa(l) = dA(k) {Uncompress
12:  dwa(l) =k
13:  seen(k) =1
14: nz=1
15:  for j =iA(k) : iA(k+1) — 1do
16: nz =mnz+1
17: rwa(nz) = uA(j)
18: rwa2(nz) = LA(j)
19: iwa(nz) = jA(j)
20: seen(jA(j7)) = nz
21:  end for
22: 1 = first(k) {Factorize row/columh
23:  while: # —1do
24: iz = list(1,1)
25: t = 1C(iz) {Row pivot}
26: t2 = uC(iz) {Col pivot}
27: rwa(1l) = rwa(1) — t1 * t2 {Contribution to the diagonal
28: for j=iz:iC(i+1)—1do
29: s=txuC(j)
30: s2 =12 x1C(j)
31 if seen(7C (7)) # 0) then
32: rwa(seen(jC(7))) = rwa(seen(jC(j))) — s
33: rwa2(seen(jC(j))) = rwa2(seen(jC(j))) — s2
34: else
35: nz =nz+1
36: seen(jC(5)) = nz
37 iwa(nz) = jC(j)
38: rwa(nz) = —s
39: rwa2(nz) = —s2
40 end if
41 end for
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42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54
55:
56:
57:
58:
59:
60:
61:
62:
63:
64.
65:
66:
67:

68:
69:
70:
71:
72:
73:
74:
75:
76:

if list(1,7) <iC(i + 1) — 1 then {Update linked lis}
if last(jC(list(1,7) +1)) = —1then
first(jC(list(1,i) + 1)) =i

else
list(2,last(jC(list(1,7) +1)))) =i
end if
last(jC(list(1,i) + 1)) =1
end if
list(1,1) = list(1,7) + 1
aur =1

i = list(2,4) {Next item in the linked list fok }
list(2, aux) = —1
end while
rwa(l) = 1/rwa(1) {A(k, k) = 1/A(k, k)}
dC (k) = rwa(1) {Storing the values idC', (C anduC'}
SORTiwa, rwa, andrwa?2 so that they are ordered in increasing row/column order
rwa2(2 : nz) = rwa2(2 : nz) x dC(k)
for j =2:nzdo
jC(nat) = iwa(yj)
uC(nxt) = rwa(yj)
IC(nxt) = rwa2(j)

nxt = nxt + 1
end for
iCk+1)=1

if nz > 1 then {Update linked lis}
if last(iwa(2)) = —1 then {Only the first component of the row/column is added to

the list}

first(iwa(2) =k
else
list(2,last(iwa(2))) = k
end if
last(iwa(2)) =k
end if
for j=1:nzdo
seen(iwa(j)) =0
end for

77: end for
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also done to Algorithm 9, reducing both the number of operetiand the memory require-
ments to the half.

Algorithm 10 Cholesky algorithm
1: for k=1:ndo
2. fori=1:k—1do

3 for j =k :ndo

4: A(j, k) = A(j, k) — A(k, i)« A(j,1)
5: end for

6: end for

7. A(k, k) =1/sqrt(A(k, k))

8 forj=k+1:ndo

9: A(j, k) = A(j, k) = A(k, k)

10:  end for

11: end for

In the same manner, it is possible to modify Algorithm 7 sa thauits symmetric but
non-positive definite matrices. In this cadas factorized into:

LDL" = A,

Ly =,

Dz =y,
LTy = 2. (8.10)

where D is a diagonal matrix. This algorithm avoids tRgA(k, k) appearing in line 7 in
Algorithm 10 which crashes in the case of non-positive defimatrices. Again, it is very
easy, due to the chosen CS format, to modify Algorithm 9 ite@quivalent.D L” version.

8.6.2 Forward and Backward substitutions

Once matrixA has been factorized intb andU, the only thing which remains in order to
solve the system of equations (8.1) is to solve the syster(&&). These systems are easily
solved, since they are triangular. Algorithm 11 and Aldaritl2 show how to do so with the
factored matrices stored in the CS-Crout storage formas. dlgorithm can be easily extended
to the case of positive definite symmetric matrices or symmebn-definite matrices.

Algorithm 11 Forward substitution
1: fori=1:ndo
2. for k=iC(i):iC(i +1)—1do
3: b(jC(k)) = b(iC(k)) — b(i) * IC (k)
4: end for
5. end for
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Algorithm 12 Backward substitution

1. fori=n:—-1:1do
for k=iC(i+1)—1:iC(i): —1do
3 b(i) =b(i) — IC(k) xb(jC(k))
4: end for
5
6

b(i) = b(i) x dC(7)
: end for

8.6.3 Symbolic factorization for structurally symmetric matrices

Algorithm 9 allows us to perform the factorization of matrix stored in CS-Crout format.
However, the issue of memory allocation is still unresolwathen entering Algorithm 9 the
final memory requirement foiC', [C' anduC' should be known, so that they can be correctly
allocated. To this end, we performsgmbolic factorizationits requirements being:

e Atthe end of the process, it must retutnC, the size of arraygC, [C' anduC.

e The complexity of the algorithm must be lower than the comipjeof the real factor-
ization.

e The memory requirements of the algorithm must be low.
Algorithm 9 can be easily transformed into a symbolic faiztaion by:

1. Not performing the floating point operations. We are iesézd only in the sparsity pat-
tern of the factorized matrix, not in the values.

2. Skipping the update of the linked list between lines 42 a2dThe fill-in caused by
row/columni in the following will be contained in the fill-in caused by rés@lumnk in
the following, so there is no need to take it into accodinis reduces the complexity of
the algorithm toO(n x nzr).

3. Once row/column has been once in the loop in 23 it will no longer be needed. The
information stored iyC(:C(7) : iC(i + 1) — 1) is no longer needed and this memory
space can be deallocated. Obviously the storage schemjé’feinould not be continu-
ous, and the use of structure data types to stéfes required so that we are capable of
dynamically allocating and deallocating the partj6f associated to row/columin

The complexity of this symbolic factorization is 6f(n x nzr).

8.7 Iterative solvers

Direct solvers are the most convenient option when the Byste be solved are of relatively
small size. However, for very large systems of equatioresntiemory requirements of direct
solvers are too large for this methods to be used. This isegason why one relies in iter-
ative solvers. Most usual iterative methods for solvingteys of equations ar€onjugate
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Gradient(CG), Generalized Minimum ResiduBBMRES) andBiconjugate Gradient Stabi-
lized (BICGSTAB) which will not be described here. See [121] foraailed explanation of
these methods. What we are interested in is that these nsetoodergence depends on the
condition number of matrixl, which for normal matrices can be defined as:

_ Pmax(4)|
W) = Amin(A4)|°
1 < k(A) < oo, (8.11)

where Amax(A) and Apin(A4) are the maximum and the minimum eigenvalues of matrix
respectively. The closer(A) is to 1 the faster and more robust the iterative methods are. How-
ever, for many problems, the condition number of the systéesgaations can be extremely
large. In this case one should use preconditioners.

8.7.1 Preconditioned systems of equations

Preconditioning a system of equations consists in solvingguivalent system (in the sense
that it has the same solution, or that the solution of bottesys can be easily related), but with
a condition number as close as possiblé.tdhis allows for the iterative methods to solve the
system much faster.

In general, the preconditioned system of equations is néthby pre- or post-multiplying
the original system by the inverse of a matkikwhich we call thepreconditioner The system
of equations in (8.1) now turns into:

AM ™Mz = b,

if the preconditioner is applied by the right, which is what do: preconditioning by the right
has the advantage that the residual of the preconditiorsdmyis the same that the residual
of the original system. As a consequence, stopping crieggdhe same in preconditioned and
the original systems. If we now call:

B:=AM™,
y:= Mz,

the preconditioned system to be solved is:
By =b.

When the preconditioned system has been solved, the unleneeatorz is recovered by
solving:

r=M1y.
Obviously,M has to fulfill two basic design requirements:

e Its inverse has to be easily computable (or the result ofiplyihg its inverse times a
vector). In fact, computing the inverse df has to be much cheaper than computing the
inverse ofA.



8.7. lterative solvers 207

e x(AM™') has to be as close toas possible.

M = A obviously fulfills the second requirement, since the caadihumber of the iden-
tity matrix is 1, but it does not fulfill the first requirement, that its invers easily computable.
A very usual manner of building preconditioners is by mednscomplete Factorizations

8.7.2 ILUC, an Incomplete LU Crout factorization

Incomplete factorizations are performed by using algarghsimilar to complete factoriza-
tions, the main difference being that not all the elements endU are kept. This reduces
the memory required to store andU and the number of operations required to perform the
factorization. Obviously,

LU # A,
but hopefully
k(A(LU) ™) ~ 1.

The dropping strategies followed to build the precondiefor the iterative methods are
of two kind:

e Limiting fill-in: in each row/columnk the number of non-zero entries to be stored is
limited ton fil. This means that only a maximumfil components is stored, for each
k, in uC andlC'. We choose the ones with greatest absolute value.

e Setting a drop tolerance. Only the values of the factorizattioes
Lig, wgj, k<j<n,
such that
max |lig, uy;| > tol * |ay|
are kept.

Compared to other preconditioners like ILUT [120] (the mreditioner associated to the
CSR storage format), ILUC [95] has the advantage of comgutie sort in line 57 of Algo-
rithm 9 outside the loop. In ILUC this SORT operation can be done by means ©fafil)
computation, while in other preconditioner algorithmsladT the equivalent operation com-
plexity is of O(n fil x nfil). This allows for the ILUC preconditioner to admit a much deza
number of fill-ins with much less increase of the CPU time nexglito build the preconditioner.

The values dropped during the incomplete factorizatioradded to the diagonal éf. In
particular, entries dropped ih;;, are added td/;;, while dropped entries ilV;; are added to
Ur- This enhances the behaviour of the preconditioner, simcednstant solution vectors the
factorization is exact: let us consider a solution veatof the form:

=11, 09, .00 | =20 =..=1,.
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By definition:
Ax = b,

but for a constant solution vectorthe following also holds:
Dz =0,

whereD is a diagonal matrix its diagonal entries being:

n
di; = E Qij
J=1

This is the reason why adding the dropped entries to the dalgy U leads to a better pre-
conditioner.

8.8 Renumbering strategies

Renumbering strategies are a critical issue in solversifeal systems of equations. No matter
how efficiently the solver algorithms are coded, the costobfiag the linear system will be
unaffordable unless a proper renumbering strategy is used.

Renumbering strategies respond to two basic objectives:

¢ In direct solvers, renumbering must minimize the amount efimary and the number of
operations required to factorize the matrix.

e In iterative solvers and for a given amount of memory assigoethe preconditioner,
renumbering must lead to the best possible preconditioner.

As we can see the objective of renumbering is different déjpgron the type of solver we
are using, and different renumbering strategies shouldsbd for direct and iterative solvers.

8.8.1 Nested dissection

Nested dissection is the optimum renumbering strategy ifectisolvers for sparse storage
schemes. It minimizes the amount of fill-in, which implieattthe amount of memory required
to perform the factorization of the matrix is minimum, andase the number of operations and
the CPU time required to solve the system of equations.

In the nested dissection algorithm the finite element meglaistioned by means of do-
main decomposition techniques. If the nodes which sepénatdifferent subdomains are as-
signed node numbers greater than the nodes in the intertbecubdomains, fill-in does not
occur between subdomains. If the resulting subdomainsatenently partitioned, we obtain
the nested dissection algorithm. Interior nodes of each lavel subdomain are numbered
successively, using for example a minimum degree ordering.

When using direct solvers, we use the METIS package [84]chvprovides an optimal
node ordering using nested dissection techniques.
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Figure 8.5: Two level nested dissection. The first level sstpa nodes are depicted in red,
while the second level separators are depicted in green.

8.8.2 Cuthill-McKee reordering

In the Cuthill-McKee renumbering strategy, instead of mmizing the amount of fill-in, we
minimize the bandwidth, that is to say, the maximum diffeeibetween the node number
of connected nodes. The Cuthill-McKee algorithm is not digieht as the nested dissection
algorithm for direct methods, but it works much better in tlase of iterative solvers. This is
due to the fact that in the case of the nested dissectionitilgay,informationis concentrated
in separator nodes, and thus if dropping occurs in fill-ing ttuseparator nodes the quality of
the incomplete factorization is affected. In the Cuthilckee reordering, on the other hand,
information is equally distributed, resulting in a much mefficient reordering for iterative
solvers.

In order to minimize the bandwidth, node numbering stadsfian edge node. The first
layer of nodes corresponds to all the nodes connected torg8tenfide. The second layer
corresponds to all the nodes connected to the first layerndomot belong to any layer yet,
and so on. A second possibility is to mark as first layer notléseanodes in the border of the
mesh. An example of the Cuthill-McKee algorithm can be sedfig. 8.6.

o ,/
N y,
X ¥
A N\
) A ¢

Figure 8.6: Cuthill-McKee ordering. Successive layersdapicted in different colors. Left:
Cuthill-McKee starting from one node. Right: Cuthill-McKestarting from a first layer of
nodes.
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8.8.3 Multigrid reorderings

Although the Cuthill-McKee reordering algorithm providassuitable ordering for iterative
solvers, there are a family of reordering techniques whighk the optimal orderings for in-
complete factorizations in iterative solvers. These ardigrid reorderings. In multigrid re-
orderings the nodes of the mesh are separated into nodewbejdo fine and coarse meshes.
Nodes belonging to fine meshes are numbered first while ncgleading to coarse meshes
receive the larger node numbers. Nodes in the fine mesh awifad first. In a complete
factorization for direct solvers this implies that the Schamplement of the fine mesh onto
the coarse mesh is computed. This can be understood asgtiteiequivalent problem in the
coarse mesh and projecting back the results onto the fine, mésth is the basis of multi-
grid algorithms. In multigrid algorithms the complexity thie operations required to solve the
system of equations increases linearly with the number &hawns. This makes this kind
of reordering very suitable for iterative methods. A distas on some methods for building
multilevel reorderings for incomplete factorization povaditioners can be found in [101]

We have developed our own multigrid renumbering algoritbased on the graph of the
mesh. We take advantage that our system of equations ases fiinite element analysis and
we start from nodes in which Dirichlet boundary conditions prescribed. These are in gen-
eral nodes on the boundary of the mesh. It is very conveniestiart the matrix factorization
from these nodes, since equations attached to them arendileeyad cause no fill-in. From the
Dirichlet nodes we build a provisional numbering by meanghef Cuthill-McKee algorithm
by considering Dirichlet nodes to be the first layer of nodes.

Now the first two layers are considered to be fine. After thig| #ollowing the Cuthill-
McKee order, the coarsening algorithm starts. Algorithns8ws this coarsening algorithm.
It consists of the following: when an unclassified node isniut is classified as Coarse, and
all of its unclassified neighbors are classified as Fine. €h&ires that there will not be any
pair of neighbor nodes classified as Coarse.

Algorithm 13 Coarsening algorithm
1. fori=1:ndo
2. if iis unclassifiedhen

3 Classifyi as Coarse

4: for j =iA(i) : iA(i +1) — 1 do
5: if jA(j) is unclassifiedhen
6: ClassifyjA(j) as Fine

7 end if

8: end for

9: endif

10: end for

This procedure can be recursively repeated on the coarde. e coarse mesh graph
is built by considering that two Coarse nodes are connettibey have a common neighbor
according to the previous level mesh graph. The final ordaesrmobtained by numbering first
the nodes on the finer mesh, then the nodes on the first levslecogesh, etcetera, and finally
the nodes of the coarsest mesh. For each level, the nodesraleered following the original
Cuthill-McKee ordering. Fig. 8.7 shows the three level seaing of an example mesh.
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Figure 8.7: Multigrid ordering. Fine, intermediate andrsgamesh for a three level coarsening.
Fine nodes are depicted in black, intermediate nodes afetddpn red and coarse nodes are
depicted in green.

8.9 Block computations for problems with more than one
degree of freedom per node

All the computations we have described for a scalar matmdozaextended to matrices arising
from vectorial problems, that is to say, to finite elementybeans with more than one degree of
freedom per node. The strategy we follow is to use the grapheomesh, which corresponds
exactly to the graph of the matrix in the case of scalar probldo access the non-zero entries
of the matrix arising from vectorial problems. This is doimaly by understanding that each
connectivity in the mesh graph refers tman-zero blocknstead of a single non-zero entry.
Now, each scalar operation in the factorization algorithmatrix times vector or forward and
backward substitutions turns into a matrix operation. Agse as it sounds, there are a number
of issues that have to be taken into account:

e Since we want our matrix storage scheme tsp@metricthe storage of blocks in the
upper triangular part of the matrix has to be the transposigeo$torage of blocks in the
lower triangular part of the matrix. This means that if fulbtks are stored by rows in
the upper part, they must be stored by columns in the lower par

¢ In the factorization of the matrix (Algorithm 9) we store timeerse of the diagonal and
we multiply the row (the part of it in the upper triangular §dvy it. This operation
requires some attention since now we are dealing with a deldock. Instead of com-
puting the inverse of the block (which could be done sincediheension of the block
is small enough in most cases) we prefer to perform a LU deositipn of each diag-
onal block. Now multiplying the row by the inverse of the diagl turns into applying
a backwards substitution to each block of the block row andradrd substitution to
each block of the block column. The same happens when muitigpby the inverse of
the diagonal in the backwards and forwards substitutiogerahms.

¢ In order to have a significative gain in the performance ofsthleer when compared to
an scalar solver it is necessary that all the loops correipgrio block operations are
unrolled When dealing with a loop of the form:
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tndofS/tndofl tndof?)/(g . tndofl)
Matvec+dot 4.19 0.4655
Backward-Forward Substitution 5.54 0.6155
ILUC 3.12 0.34

Table 8.1: CPU time ratio between scalar and 3 DOF vectoradlpm

1. for i =1 :ndof do
2:
3: end for

the programming languages treat it in a different way depenonndof being avari-
ableor aparameter|f ndof is a parameter its value is known during compilation time.
As a consequence the loop can be unrolled, meaning thataleegsor will not need to
ask if it has to end the loop at each iteration, since the nurabgerations is known

in compilation time and they can be written one after the oth&tead of inside a loop.
On the other hand, ifdof is a variable its value is not known in compilation time,
S0 in execution time the processor will have to ask if the lbap ended at the end of
each iteration. Treatingdof as a parameter is a key ingredient in the success of the
by blocks formulation. This would mean to rewrite each noatior all the possible de-
grees of freedom per node. Fortunately, this can be avoigeddans of the use of the
so calledtemplateswhich allow to duplicate a routine for different paramstasithout
replicating it.

This is a very useful approach. First of all, there is no neestare the particular graph for the
matrix arising in each finite element problem, it is enougsttwe the graph of the mesh. At the
same time, the non-numerical operations due to the comparge storage scheme are reduced
by the number of degrees of freedom per node to the power offimally, computations can
be done by blocks and loops can be unrolled, which enhaneggettiormance.

We have performed a small test in order to illustrate theciase in performance obtained
by using this approach. We have built a 25000 element findeht mesh, and, on this mesh,
we have solved a system of equations arising from a scalatgym and a system of equations
which arises from a 3 degrees of freedom vectorial problenth Bystems of equations share
the matrix graph, and as a consequence, the number of flgading operations we have to
perform in each routine of the 3 degrees of freedom probledtises larger (3*3) than the
number of operations needed in the scalar problem. Howianee€PU time ratio between both
problems is smaller than 9 thanks to the use of block comiputatTable 8.1 summarizes the
gain obtained by performing block computations.

In this case the time is reduced to the half approximatelyafgpeater number of degrees of
freedom per node, for example the 3D incompressible N&iekes equations with 4 degrees
of freedom per node, the gain will be even larger.
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8.10 Some numerical examples

In this section we present some numerical examples in wiieH-ELAP package has been
applied to solve the linear systems of equations arising fiinite element analysis problems.
It is not our intention to deeply analyze the performancenhefvarious algorithms but to give
an overview of the package capabilities.

8.10.1 Poisson problem

We first present an example of the performance of the solwgin®s on the Poisson problem.
This is one of the simplest examples if arising from a thenpnablem, but it also corresponds
to the pressure phase in fractional step methods used twithahe Navier-Stokes equations.
The differential equation to be solved is:

—AU:f,

with the proper boundary conditions.

The Poisson problem is solved in a 2D structured square nireshe border of which
the unknown is prescribed to zero. Fig. 8.8 shows the pedooa of the Conjugate Gradient
iterative solver. The solver stops when the relative esani®. In this plot we compare the
performance of the algorithm using the multigrid renumbegrstrategy. If we compare the
slopes of the different cases, we see that with diagonabpitioning the global complexity
is of O(n'5). The slope diminishes slightly if the ILUC preconditionsnised (fill-in 30) but
the drops are not added to the diagonal. The best resultagelotfor the multigrid reordering,
the ILUC preconditioner and diagonal compensation, forcltthe global complexity is of
O(n'1?), close to the desired linear complexity.

10" Diagonal preconditioning

F Fil = 30. No diagonal compensation
[ Fil = 30. Diagonal compensation

[ | —©—Slope 1
—@— Slope 1.5

CPU time (seconds)

Number of unknowns

Figure 8.8: Computational cost versus number of unknowna D Poisson problem.
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8.10.2 Stokes problem

Here we present an example on the stationary Stokes problegrdifferential equation to be
solved is:

V-u =0,

with the suitable boundary conditions.

We have considered the typical 3D cavity problem in which afioed flow occurs in a
cube in the faces of which velocity is prescribed to zero pkfa one of the faces, in which it
is prescribed to 1 in one of the axes tangent to the face. Wa sthilized formulation which
allows us to use equaP(l/ P1) interpolation for both velocity and pressure.

This is an example in which we can make use of block compurtstior each connectivity
of the graph we have & x 4 block and compact sparse non-numerical operations areeddu
by 16.

Firstly we will consider solving this problem with a direatlger. For this we perform a
completeLU by blocks factorization, using the nested dissection rdyermg provided by
METIS. We consider a 48000 elements mesh, for which the memoryresgents if using a
direct solver are close to 2 Gbytes. In this case our solkexsta6 seconds to solve the system.

We compare this time against the commercial direct solvdeddU M PS, which takes
only 17 secondsMUM PS is a multifrontal solver. Its main strategy consists in grog
non-zeros in large blocks, which results in a good perfoiceaaven at the cost of some extra
memory requirement and the storage of extra zero entriesekder, this kind of strategy is
not convenient for incomplete factorizations, since ita known a priory which entries of
the factorization will be kept. This is the reason why we donety on multifrontal strategies.
However, our by-blocks strategy leads to good enough efuithe direct solver.

Let us now solve the same system of equations with the werabtlvers. The system of
equations arising from this problem is non symmetric (it barsymmetrized, but then it is not
definite), thus, we use the BICGSTAB accelerator. We use thigignd reordering strategy.
In this case we take ontyseconds to reach tH®~® residual. Moreover, the amount of mem-
ory required for the preconditioner (fill-in 10) is 20 time®saller than the memory required
in the complete factorization. Thus, iterative solversuseful both for reducing storage and
CPU time requirements if we are considering large systenegjoations. Fig. 8.9 shows the
computational cost versus number of unknowns plot. In th&edt is not convenient to use
diagonal compensation, since, at least for the block andenie have, it may cause the pre-
conditioner to fail due to zeros on the diagonal of the fazta matrices. The complexity is
of O(n'®). Diagonal preconditioning is not plotted since the solasinot converge for very
fine meshes.

8.10.3 Navier-Stokes equations

Finally we turn into a real problem, in which the incompréssiNavier-Stokes equations have
to be solved:

ou+u-Vu—vAu+Vp=Ff,
V-u=0,
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Figure 8.9: Computational cost versus number of unknowna 8D stationary Stokes prob-
lem.

with the suitable boundary conditions.

The aim of this example is not to study the algorithms peréommoe but to see how the
FELAP general structure can be used to deal with different kingsablems. When dealing
with the incompressible Navier-Stokes equations in riéalsimulations it is very convenient
to use fractional step methods, which uncouple the Naviekes equations, with 4 unknowns
per node, into 4 scalar systems of equations of 1 unknownque.ii’ £ L AP allows to easily
deal with this problem by attaching the four systems of eqguatto the same finite element
mesh, with which they share the graph.

In the example presented in Fig. 8.10F L AP has been attached to a computational fluid
dynamics code { AU ST), and used to solve the systems of equations which arise tihem
finite element simulation of the flow in a water tank. The obyecof the simulation is to
compute the chlorine concentration. Water enters the targkigh a hole in the upper part of
the tank and leaves the tank through the holes in the loweérmpane tank. For the transient
analysis, a fractional step method has been used.

8.11 Conclusions

In this chapter we have introduced th&” L AP package to deal with the linear systems of
equations arising from finite element analysis problems fifain features of the package
are its capability to work with symmetric and unsymmetristeyns of equations, direct and
iterative solvers and various renumbering techniquesudieg a mix of Cuthill-McKee and
multigrid type reorderings. Performance is enhanced bgidening the finite element mesh
graph instead of the matrix graph, which allows to perforighhy efficient block computa-
tions. This graph is stored in a particular way so that it itadale for both CSR and CS-Crout
storage formats. Some numerical examples have been prdsgmiwing the capabilities of
the package.

However, a very important point in linear system solverdis possibility of performing
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Figure 8.10: Real 3D problem. Incompressible Navier-Sda@uations solved by means of a
fractional step method.
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parallel computations, which are unavoidable if largeeaysbdf equations are to be solved. Fu-
ture work will be developed so that the package is able todlacale parallel computations.
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Chapter 9

Final 3D examples

9.1 Introduction

In this chapter we extend the methods proposed in the prewvloapters to three dimensional
problems and we apply them to solve some numerical examPpescial attention is paid to

some of the implementation issues of the Fixed Mesh-ALE otkth 3D. The linear systems

of equations which arise from these 3D problems are solvédtive FELAP solver.

9.2 Mesh-Mesh intersection in 3D

In this section we deal with the implementation of the altjonis for finding the intersection
between two finite element meshes which superimpose in sphese algorithms are needed
in order to find the integration domain for the finite elemegquations in the Fixed Mesh-ALE
method. There are two main steps needed to compute meshimasections:

¢ In order to find the intersection between two different meske will need to find the
intersection between the elements of the fixed mesh (carekpg to the fluid), and
the elements of the moving Lagrangian mesh (correspondirtget solid geometrical
definition). If we check the intersection of all the elemeatghe fluid mesh against
all the elements of the Lagrangian mesh the number of testgacit time step is of
O(nelemgizeq x nelemyq,), Wherenelemy;,.q is the number of elements of the fixed
mesh anchelem,, is the number of elements of the Lagrangian mesh. This isfrot a
fordable, and therefore a search strategy which allows vediace the number of inter-
section tests is needed.

e The second step is the actual intersection test betweereetspwith which we obtain

the intersection surfaces between two elements.

9.2.1 Spatial search strategy

The problem we need to solve is: given an element on the fixesthméhich are the elements of
the Lagrangian mesh which arloseto the fixed mesh element and could potentially intersect

219
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it? By knowing this, we can reduce the number of intersedtsts needed for each fixed mesh
element fromelem,, (which could be millions!) to just a few elements.

There are several spatial strategies available to dealthighproblem, amongst them the
well known quadtree and octree algorithms (see [51]). Te@ésch strategies are very conve-
nient when data is non uniformly distributed in space, faraple when the mesh is strongly
refined in a certain region of the space. In our case, howeeewill not implement these tree
structures, and instead we will use a simipiles strategy which consists of two steps:

e Preprocess: The bins strategy consists of uniformly pamiitg the domain into several
cells, rectangles (in 2D) or rectangular prism (in 3D). Eatthese cells is assigned an
identity number, and a data structure is created in orddote $he fixed-mesh elements
which are contained in the cell. Fig.9.1 shows a uniformipant example for a 2D
square domain. The element in the figure would be includedlls E6, F7, G5, G6, G7,
H5, H6, H7 and H8. For ease of implementation, we also incthéeslement in cells
F5, F8 and G8: in this way we can check wether an element isiced in a cell just
by computing the minimum and maximumy andz coordinates of the element nodes.
For fixed meshes, this can be done once at the beginning obthputation.

e Search: when we want to test the intersection of a Lagrarej@nent against the fixed
mesh elements, we check which are the cells of the binsipartig in which the La-
grangian element is contained, and we perform the intecsetetst only against the fixed
elements which are also inside these cells.

12345678910

«TIGTMMOOT>

Figure 9.1: Bins strategy for a fast element intersectigo@hm. The element in red is con-
tained in the blue cells.

9.2.2 Element-element intersection

In the examples in the following sections we work with linéetrahedra for both the fluid
and the solid problems. We will describe here the algoritlused to compute tetrahedron-
tetrahedron intersections. These algorithms can be atlaptegher order elements.
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As explained in Chapter 4, in the FM-ALE method we integragsfinite element equations
only over the region of each element which is inside the gfajslomain. We need to find the
intersection between the boundary faces of the Lagrangeshrand the fixed mesh elements,
as illustrated in Fig. 9.2. To do this we test the intersectiball the faces of the fixed element
against the boundary faces of the Lagrangian element. Tioemation we keep from the
intersection are the intersection points on ¢lagef the fixed mesh elements.

Figure 9.2: Intersection between a fixed mesh element (y@e®ha boundary face in a La-
grangian element (blue).

For the triangle-triangle intersection tests we use therdalgn proposed in [105], which is
widely used in the computer graphics community. This atgariis intended to check wether
two triangles intersect in space, but it does not actualiymate the intersection segments or
lines. We have slightly modified it so that we obtain also titersection points. The algorithm
reads as follows:

Let us denote the two triangld$ andT5, and its vertices bW, V| and V) for T, and
V2, VZandV?; for Tb.

e Find the equations of the planes containiigand7s, which we denote by, andmr,:

N; = (Vi = V) x (Vy = V)
dj=—-N; -V} (9.1)

whereX is any point onr;.

e Compute the signed distance from the verticesotto 7, by inserting them in the
equation forr,:

dy: =Ny V+dyj=0,1,2 (9.2)

e Compute the signed distance from the vertice$,ao 7; in the same manner.
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o If all the dy» have the same sign th&n lies on one side of, and the test is rejected.

We do the same fdrfs.

We can now compute the intersection points betwEeadges and,. We do this only
for the triangle edges in which the signd@f: is different for each of the vertices of the
edge (that is to say, the vertices lie in different sidegQf The intersection point for
the edge connecting' andV}' can be found by computing:

dvl

I, =V + (Vi-V)) (9.3)

i
J
d‘/il - dv’]l

This yields two intersection points fa@r. We do the same fdry.

Now we have the intersection line segmentsfpandT;. This segments are both on the
same line, as shown in Fig. 9.3. We only need to check wetledantbrsection points of
T, are contained on the intersection intervalléf and vice versa. This can be done by
computing the line equation and assigning a line parameteeach intersection point:

X=I,+X\ (I}, - 1) (9.4)

2
j

wherel }j andI;; are two of the previously computed intersection points.

Figure 9.3: Intersection between two element faces. latéien line between; andr, and
intersection points on the line. Blue points correspond‘tontersection points, red points
correspond td5 intersection points.

9.3 Subelement integration in 3D tetrahedra

In the previous section we have seen how to find the intesegiints between fixed ele-
ments and Lagrangian elements. The intersection algométanns the intersection points in
the edges of the tetrahedron. We now need to subintegradie ithe elements. There are three
different subintegration cases:

e One of the tetrahedron nodes is inside the physical domaithenother three nodes are

outside.
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e Two of the tetrahedron nodes are inside the physical donmairttee other two nodes are
outside.

e Three of the tetrahedron nodes are inside the physical doamal the other one is out-
side.

Fig. 9.4 shows each of these subintegration cases, and leasubintegration region is decom-
posed into subelements in order to properly integrate srdggion.

Figure 9.4: Subelement integration. Blue: integrationargGreen: discarded region. Top:
1 node in case, integration region decomposed into 1 suleelerMiddle: 2 node in case,
integration region decomposed into 3 subelements. BotBomode in case, integration region
decomposed into 3 subelements.
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9.4 Numerical examples

9.4.1 Flow over a bending plate

In this section we consider the incompressible flow over almenplate. The considered plate
is set inside a channel with dimensighs 0.5 x 1, and the plate dimensions &@d x 0.4 x
0.6. Boundary conditions are set tg, = 1 in the inflow wall, andu = 0 in the lateral
walls. A do nothing(zero-traction) boundary condition is set in the outflowthe interface
between fluid and structure the usual non-slip Dirichletrimtary conditions and continuity of
tractions condition are applied. Fluid viscosity is sette 0.01, yielding a Reynolds number
Re = 100 based on the inflow velocity and the channel width. For thecstire we consider a
Young modulus off = 500 and Poisson ratio = 0.48. Although the plate undergoes large
deformations in this problem setting, we only consider adinelastic material for this simple
illustrative example.

The strategies described in the previous chapters are nseder to perform the simula-
tion, including the FM-ALE strategy, the strong impositioihboundary conditions in embed-
ded grids strategy, the use of stabilized formulationsiHerdomputation of the fluid dynamics
(although we do not apply the subscales on the boundaregyrdtere) and the use of the
FELAP solver to deal with the linear systems of equationstedived. A light preconditioner
(sparsity ratio equal to 2) is computed prior to the solutbeach linear system of equations in
order to improve the performance of the GMRES iterationsudéa semi-implicit approach
in which the domain for the simulation is computed explicdlt the beginning of each time
step and implicit integration schemes (backward Eulertferfluid, Newmark-beta scheme for
the solid) are used for the solution of the dynamics equatioach subdomain. An explicit
iteration by subdomain approach is used to deal with theloaypetween fluid and structure
at each time step.

After an initial transient, the plate reaches an statiomarsition. Fig. 9.5 shows the final
position of the bending plate and the velocity and pressel@sfin the channel. We can observe
that the fluid is forced to flow around the plate and at the same &€xerts some pressure on
the it which makes the plate bend. As soon as the flow has segpaise plate it returns to the
center of the channel.

Regarding the behavior of the linear systems of equationgisehe mean number of iter-
ations needed to achieve convergence in the GMRES algovithsi 02, with little variation
in the number of iterations between different time steps.

9.4.2 The water entry of a decelerating sphere

In this section we consider the 3D numerical simulation ofsphere falling into water. In
particular we try to reproduce the experimental result®regl in [3]. Several experiments
are performed in this work, we will simulate the impact of alédysphere into water. The
problem setting is the following: a one inch (2.54 cm) dia@netylon sphere is dropped into
a water tank. The tank has dimensions36fx 50 x 60 cm® and the sphere is dropped from
a 25 cm height, which yields an impact vertical velocity ®fl7 m/s. Water density i =
1000 kg/m?, and its viscosity ig: = 0.00089 Ns/m?. Nylon density isoy = 1140 kg/m?, its
Young modulus being’ = 3 GPa, the Poisson coefficiemt = 0.2.
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The physical domain of the water tank is much larger than fiteee, and in fact the
sphere water impact has little effect on the flow in the bouedaf the tank. Taking this into
account, and in order to minimize the required computatioost, we only simulate a region
of 10 x 10 x 20 cm?®. In order to take into account that the physical domain ismamer than
the computational domain, we do not impose Dirichlet boupdanditions on the walls of
the computational domain but we let water freely flow thraugktead, we impose Neumann
boundary conditions on these walls in which we prescrib&itas to be:

o-n = pgh (9.5)

wherep is the fluid densityg is the gravity field and: is the depth with respect to the original
position of the free surface. Finally, we prescribe trawito be null in the free surface:

oc-n=0 (9.6)

For the boundary conditions in the contact between the spdned the water free surface,
we use slip boundary conditions. Slip boundary conditiaresaagood approximation to the
real boundary conditions due to the following:

¢ In order to promote cavity formation and minimize drag splerere sprayed with an
hydrophobic coat in the experiments.

e The cartesian meshes used to perform the numerical expdesnaee not capable of
reproducing the boundary layer in the fluid- sphere contact.

Moreover, and due to the presence of the hydrophobic spatywe do not allow the boundary
conditions to prevent the water surface from separating filee sphere in the upper half of
the solid body. At each iteration we test wether the watdiasaeris trying to separate from the
solid body. If it is trying to separate, then Neumann (indtekslip) boundary conditions are
applied in the contact surface. Surface tension is not densd in the simulations, although
according to [3] its effect can be neglected at the consitlampact speeds. A schematic of
the boundary conditions of the problem can be found in F&y. 9.

The strategies described in the previous chapters are nseder to perform the simula-
tion, including the FM-ALE strategy, the strong impositioihboundary conditions in embed-
ded grids strategy, the use of stabilized formulationsherdomputation of the fluid dynamics
(although we do not apply the subscales on the boundarggyraiere) and the use of the FE-
LAP solver to deal with the linear systems of equations todbeesl. A robust preconditioner
(sparsity ratio equal to 5) is computed prior to the solutbeach linear system of equations in
order to improve the performance of the GMRES iterationsudé&a semi-implicit approach
in which the domain for the simulation is computed explicdlt the beginning of each time
step and implicit integration schemes (backward Euler Hierftuid, second order Newmark
for the solid) are used for the solution of the dynamics equatin each subdomain. The time
step is set tédt = 0.002 s. An explicit iteration by subdomain approach is used to dati
the coupling between fluid and structure at each time step.

The Reynolds number iRe = 64844 based on the impact speed, the sphere diameter
and the water viscosity. The LES Smagorinsky model is useatder to take into account
the turbulent subscales (see, e.g. [114, 123, 39] for backgl). This model is tight to the
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vy =-2.17m/s

Contact b.c.

t=pogh

Figure 9.6: Problem setting for the water entry of a decéleyasphere.

numerical discretization in space of the flow equationscWiin our case is performed using
the finite element method. The turbulent kinematic visgosstsociated to this model is

Vor = py ' ch® [V (u) - Vo(u)] 2,

wherec is a constant, usually taken as= 0.01, the colon stands for the double contraction
of second order tensors ands the length of the element of the finite element discrethrat
described later where the turbulent kinematic viscositp ise computed. The total viscosity
will be v = vy + Viars Yol D€ING the molecular viscosity.

Two different meshes are used to perform the computatioitiso@gh qualitatively correct
results are obtained with a 514000 element mesh, a betteenahapproximation for the
time evolution of the position of the sphere is obtained wi®469600 element mesh. Fig. 9.7
shows the time evolution of the sphere vertical positiontf@ experimental results and the
numerical solution. A quite good agreement is obtainedHerfiner mesh. Fig. 9.8 shows the
velocity and pressure fields at some representative tintants Immediately after impact,
the sphere pushes water radially out, and the cavity behindreases its size as time evolves
(first row). At a certain point, gravitational force compates for the momentum the sphere has
transmitted to water and the cavity begins to collapse ¢s&cow). After cavity collapse, two
vertical jets pointing upwards and downwards are formedtdube water incompressibility
constraint (third row). The upwards pointing jet achieveggical velocity of the same order
of the sphere impact speed (forth row). Several snapshetgrasented in Fig. 9.9, where the
numerical and the experimental shape of the free surfacecanpared. We can conclude that
the physical phenomena is being correctly representecpif@ethe large Reynolds number
a smooth free surface is obtained, and the collapse of thigydaehind the sphere due to
gravitational forces is correctly recovered.

Regarding the solution of the linear system of equationstmithe problems to be solved
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Experimental results
Numerical 2469600 elements
Numerical 514000 elements ||

|
o
o
[N

-0.04

Vertical position (m)

|
o
o
)

-0.08

01 . . . . . . .
-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Time (s)
Figure 9.7: Comparison between experimental and numeyasition of the sphere

were easily solved with the FELAP package: the solid dynamioblem, the advection of the
level-set function, thd., projection involved in the FM-ALE method... The most chafieng
problem, as expected, was the solution of the transientdd&@tokes equations. The number
of iterations required to achieve convergence (which wamserelative residual afdo—'°) was
between the range of 30-200 iterations. The number of iteratvas larger in critical steps like
the initial impact instant and the cavity collapse insthnot there was also a certain randomness
in the number of iterations per time step which was probabily t the dependence of the
condition number on the way the boundary of the domain cigsetaments. Unexpectedly,
the number of required iterations was smaller for the fineshmalthough the same sparsity
ratio was used for building the preconditioner. This mightdue to the fact that in this highly
convection-dominated problem the finer mesh yields a maidestinite element matrix.

9.5 Conclusions

In this chapter we have applied the FM-ALE method to solvelfktructure interaction prob-
lems in 3D. We have paid special attention to the algoritheggsled to compute the mesh-mesh
intersections and the subelement integration, which areradre complex when extended to
3D. TheFELAP package for solving linear systems of equations has beeh Tike behavior
of both algorithms has been tested in two numerical experisnith satisfactory results. We
can conclude that the FM-ALE method and #ELAP package provide an interesting tool to
deal with multiphysics problems in time evolving domains.
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Figure 9.8: Velocity and pressure fields at different stdgh®simulation
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Figure 9.9: Comparison between experimental and numesgsalts



Chapter 10

Conclusions

In this chapter we present the achievements and concluslmagied during the preparation
of the present work, and we state some of the possible fuhee bf research.

10.1 Achievements

We have presented a series of works in the fields of fixed megihotie and stabilized numer-
ical formulations:

¢ In Chapter 2 we have proposed a way to strongly prescribelidati boundary conditions
for immersed boundary methods. The main idea is to use asegf freedom for this
imposition those associated to the nodes adjacent to thedlaoy of the computational
domain. The method proposed turns out to be accurate (secdedfor linear elements)
and robust. We have checked its numerical performance inetyaf situations in flow
problems, paying particular attention to problems thatmegstabilization. From the
implementation point of view, the method satisfies the maisigh condition of using
only the degrees of freedom of the meshxpf

¢ In Chapter 3 we have proposed a way to weakly prescribe Detidloundary conditions

in embedded grids. The key feature of the proposed methbditsve do not need a large
penalty parameter to ensure stability and that it is symiméir symmetric problems.

The method turns out to be accurate (second order for linearemts) and robust for
all the problems tested except for the pure transport eguat which we are not able
to recover quadratic convergence. Further work needs tebel@ped to find a proper
definition of the weighting terms for the imposition of bowang conditions in the pure

transport equation. When compared to the method descnib€tiapter 2 we can con-
clude that both methods perform similarly well and are salédor flow problems.

¢ In Chapter 4 we have introduced in detail the concept of theAM approach. which
consists in using the standard ALE method but remeshingcht tiae step so as to use
always the same given mesh. Ad-hoc approximations to atdouthe advection of
information that can be found in several fixed-grid methadgsawoided. This is in par-
ticular reflected by the treatment of the so called newlytedaodes. Results have been
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compared to those of other fixed grid methods, showing thd akeorrectly computing
the advection of information between time steps.

In Chapter 5 the FM-ALE approach has been applied to solidhar@cs and Fluid-
Structure Interaction problems. For solid mechanics enoisl the FM-ALE method is
of special interest when the solid body is subject to vergdastrains. In this case La-
grangian formulations cannot be used due to the ill-comwlitig caused by the large
element stretch. The FM-ALE method, on the other hand, awliement stretching by
using a fixed mesh. Results show that the method is robust@nuolae. In the case of
Fluid-Structure Interaction problems, the FM-ALE methaoh de applied to solve the
flow and the solid mechanics problems. The main feature oiguisiis approach is the
possibility of using a single background mesh to solve bo#itmanical problems. For
free surface problems the FM-ALE method avoids the needfoeshing which appears
in classical Lagrangian or ALE methods. Moreover, the fiadege is tracked in a very
natural way with the level set function strategy, allowiogthe solid bodyoreaking the
free surfacewithout any further algorithmic steps. We have paid spegtit@ntion to the
interaction between the level set function and the solichidany function which define
the fluid domain. The proposed method has been used to selypedhlem of rigid bod-
ies falling into water, and has proved to be robust and pesgitiooth solution fields,
even at the critical instant in which the solid body contalctsfree surface.

In Chapter 6 we introduce a way to approximate the subscalate boundaries of
the elements in a variational two-scale finite element agpration to flow problems.
The key idea is that the subscales on the element boundatissba such that the
transmission conditions for the unknown, split as its fieliment contribution and the
subscale, hold. The final result is that the subscale on teesiement boundaries must
be proportional to the jump of the flux of the finite element pement and the average of
the subscale calculated in the element interiors. Thisvalfor the use of discontinuous
pressure interpolations in the Stokes problem, like fongxa P1/P0 elements.

In Chapter 7 we have applied the subscales on the bound&naésgy to deal with do-
main interaction problems. Particular emphasis has bethgre on the treatment of
Neumann-type boundary conditions. The same ideas havedm#ied to the homo-
geneous interaction between two subdomains. In this casdyenefit of the boundary
terms is a stronger enforcement of the continuity of fluxelsvben subdomains. The
matrix structure of the resulting system has been descabddterative schemes to be
used in an iteration-by-subdomain environment have begpgsed. The fluid structure
interaction problem has then been treated. The extensitimegbrevious ideas to this
case has led to a modification of what can be considered aaabsselid-fluid iterative
coupling. The boundary terms introduced, which cancel wdvergence is achieved,
would hardly be motivated from a purely algebraic point awi All our predictions
have been stated based on physical reasoning, without mahanalysis. Numerical
experiments have confirmed the theoretical predictionpahticular, a better enforce-
ment of the continuity of fluxes is found in homogeneous doniadieraction problems
and convergence of solid-fluid iterative coupling algarithis greatly improved by the
terms we suggest to introduce.
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e In Chapter 8 the’ ELAP package to deal with the linear systems of equations aris-
ing from finite element analysis problems has been preseftedmain features of the
package are its capability to work with symmetric and unstrio systems of equa-
tions, direct and iterative solvers and various renumigei@echniques, including a mix
of Cuthill-McKee and multigrid type reorderings. Perfommea is enhanced by consider-
ing the finite element mesh graph instead of the matrix graypinch allows to perform
highly efficient block computations. This graph is storediparticular way so that it
is suitable for both CSR and CS-Crout storage formats. Sameerical examples have
been presented showing the capabilities of the package.

e In Chapter 9 we have applied the FM-ALE method to solve fldardegure interaction
problems in 3D. We have paid special attention to the algort needed to compute
the mesh-mesh intersections and the subelement integratioch are a bit more com-
plex when extended to 3D. TH&ELAP package for solving linear systems of equations
has been used. The behavior of both algorithms has beenl iest@o numerical ex-
periments with satisfactory results. We can conclude tiafM-ALE method and the
FELAP package provide an interesting tool to deal with multipbggroblems in time
evolving domains.

10.2 Future work

We succinctly describe here the open lines of research:

e To apply the FM-ALE formulation to two phase flow problems.eTtlassical way of
dealing with two phase flow problems consists of solving thebjem in an Eulerian
manner, considering velocity, velocity gradients and gues to be continuous across
the surface which separates the two immiscible fluids. Asat dnly the velocity field
is continuous across this surface (not the velocity gradienthe pressure), this causes
spurious velocity fields to appear. Some methods have begsedeto minimize this
effect, in particular th&X-FEM method which allows velocity and pressure to be discon-
tinuous across the surface. The method we have presentdthptef 5, which consists
on duplicating the degrees of freedom of the nodes belongirelements cut by the
body border, can be understood as an X-FEM method which dmsildpplied to two
phase flow problems. However, our main contribution woulddogeat the problem in
an ALE framework near the discontinuity: as explained insadbion 4.2.3, values of
the unknowns at the nodes of the first fluid are uncoupled flosd at the second fluid,
and as a consequence they cannot be used to compute temgriratides on nodes in
the first fluid. The FM-ALE method copes with this problem byngsALE instead of
purely Eulerian formulations, which we hope will avoid theusous velocity fields to
appear.

e To add some local-refinement capability to our FM-ALE codentgans of the use of
hanging nodesin the FM-ALE method we favour the use of Cartesian grids tue
the ease of generation and the fact that there is no neededdtindary of the mesh to
match the boundary of the domain. However, it is still inggireg to be able to have some
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local refinement around the fluid-solid interface region. &ywo achieve this without
the need of using an unstructured mesh is to refine by suldgelements in refined
regions and couple the refined elements to the original eadesnents with the so called
hanging nodesand the use afiscontinuous Galerkitype strategies.

To develop and incorporate to the FM-ALE algorithm a librardyich includes a more
precise mesh-mesh and levelset-mesh intersection diguorih all the numerical exam-
ples presented, mesh-mesh and levelset-mesh interseatee simplified to points in
the edges of the elements. It would be interesting to imptheeperformance of the
FM-ALE algorithm by using a library which is capable of cartly dealing with sharp
edges and the complex to integrate geometries of fluid vadumelements cut at the
same time by the solid body boundary and the levelset fumctio

To find a computationally efficient formulation for the stated P1/P0 element for the
Stokes problem developed in Chapter 6. We have looked foffiareat implementation
of the P1/P0 interpolation, which consists of condensing the pressaieowns by
sending the off-diagonal terms corresponding to the predsst function equations to
the right hand-side. Several iterative and explicit methoalve been presented which are
suitable for stationary and transient problems respdgtittowever, although some of
these methods work, none of them shows a fast enough comeerge be competitive
with the P1/P1 interpolation. Further research will be carried out in erdeconsider
more complex iterative schemes (starting with, for exam@auss-Seidel iterations)
which might allow to condense the pressure unknowns andeatdme time obtain
convergence in very few iterations.

To continue developing the £ L AP package of solvers for linear systems of equations
arising from the finite element method analysis. The mauncstire and the basic tools
of FELAP have already been coded. However, some of the design retgnts for
FELAP have not been reached yet, amongst them, to make the sopadrleaof deal-
ing with parallel computations, which are unavoidable rHsystem of equations are
to be solved.
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