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Abstract

The finite element method is a tool very often employed to dealwith the numerical simulation
of multiphysics problems. Many times each of these problemscan be attached to a subdomain
in space which evolves in time. Fixed grid methods appear in order to avoid the drawbacks of
remeshing in ALE (Arbitrary Lagrangian-Eulerian) methodswhen the domain undergoes very
large deformations. Instead of having one mesh attached to each of the subdomains, one has a
single mesh which covers the whole computational domain. Equations arising from the finite
element analysis are solved in an Eulerian manner in this background mesh. In this work we
present our particular approach to fixed mesh methods, whichwe call FM-ALE (Fixed-Mesh
ALE). Our main concern is to properly account for the advection of information as the domain
boundary evolves. To achieve this, we use an arbitrary Lagrangian-Eulerian framework, the
distinctive feature being that at each time step results areprojected onto a fixed, background
mesh, that is where the problem is actually solved. We analyze several possibilities to prescribe
boundary conditions in the context of immersed boundary methods.

When dealing with certain physical problems, and dependingon the finite element space
used, the standard Galerkin finite element method fails and leads to unstable solutions. The
variational multiscale method is often used to deal with this instability. We introduce a way
to approximate the subgrid scales on the boundaries of the elements in a variational two-
scale finite element approximation to flow problems. The key idea is that the subscales on the
element boundaries must be such that the transmission conditions for the unknown, split as its
finite element contribution and the subscale, hold. We then use the subscales on the element
boundaries to improve transmition conditions between subdomains by introducing the subgrid
scales between the interfaces in homogeneous domain interaction problems and at the interface
between the fluid and the solid in fluid-structure interaction problems. The benefits in each
case are respectively a stronger enforcement of the stress continuity in homogeneous domain
decomposition problems and a considerable improvement of the behaviour of the iterative
algorithm to couple the fluid and the solid in fluid-structureinteraction problems.

We developFELAP, a linear systems of equations solver package for problems arising from
finite element analysis. The main features of the package areits capability to work with sym-
metric and unsymmetric systems of equations, direct and iterative solvers and various renum-
bering techniques. Performance is enhanced by consideringthe finite element mesh graph
instead of the matrix graph, which allows to perform highly efficient block computations.
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Chapter 1

Introduction

The finite element method is a tool very often employed to dealwith the numerical simulation
of multiphysics problems. Many times each of these problemscan be attached to a subdo-
main in space which evolves in time. In these cases one usually relies in ALE (Arbitrary
Lagrangian-Eulerian) formulations. The ALE method consists in giving the finite element
mesh an arbitrary movement in such a way that the mesh continues to be a partition of the
considered subdomain accounting for its movement in time, and at the same time the shape
of the elements which conform the mesh remains as undistorted as possible. Obviously, this
procedure introduces some modifications in the computationof the convective terms arising in
the problem equations.

ALE methods work very well if the shape and size of each of the subdomains undergoes
relatively small changes in time. However, when these changes are large, it is impossible to
maintain mesh distortion at a reasonable level, which leadsto an ill-conditioning of the sys-
tems of equations which arise from the finite element analysis or even to folded elements.
In this case the deformed mesh is useless and remedies have tobe devised. Classical ALE
methods usually deal with this problem by computing a new undistorted mesh which fits with
the deformed domain. However, this can be an expensive procedure, especially if it has to be
repeated many times during the whole simulation procedure.Moreover, most finite element
codes rely the construction of the finite element meshes on external programs, which would
imply stopping the execution of the simulation many times, or coding a master program which
connects both codes.

Fixed grid methods appear in order to avoid the drawbacks of remeshing in ALE methods.
Instead of having one mesh attached to each of the subdomains, one has a single mesh which
covers the whole computational domain. Equations arising from the finite element analysis are
solved in an Eulerian manner in this background mesh. This obviously avoids remeshing, since
the mesh remains undeformed during the whole simulation process, but some other issues
appear. Let us consider a Fluid-Structure Interaction problem in which the flow problem is
solved by means of a fixed grid method.

• At each time step we have to solve a flow problem with a mesh which does not fit the
domain of the flow problem. If the boundary of the domain coincided with the edges
or faces of some elements, it would be immediate to consider asubmesh covering only
the flow domain, but in general the domain boundary willcut the elements in an arbi-
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trary way. Over which part of the region covered by the mesh dowe solve the physical
problem?

• Another important issue is the imposition of Dirichlet boundary conditions. In boundary
fitting meshes, the imposition of Dirichlet boundary conditions is straightforward, since
the boundary of the domain coincides with the edges or faces of the elements of the
mesh. This allows to prescribe the values of the unknowns in the nodes of the mesh
ubicated on the boundary of the domain. However, this is not possible in fixed grid
methods (there are no element edges which define the boundaryof the domain). This
forces us to devise some alternative strategies to prescribe boundary conditions.

• If we are dealing with a time dependent problem, we face with the need of computing
time derivatives. In the Eulerian finite element method usedin fixed grid methods, ma-
terial time derivatives are separated into their local and convective parts. The local time
derivative is basically computed as the difference betweenthe value of the unknown at
a node in the current time step and the value of the unknown at the same node but in
the previous time step. This leads us to the issue ofnewly created nodes: in evolving in
time domains, there will be nodes of the fixed mesh which were out of the domain in the
previous time step but inside the domain in the current one. How do we compute local
time derivatives if we do not know the value of the unknown in the previous time step?

• Finally, it is possible to deal with different physics problems which can be decomposed
into different subdomains with a single background mesh. However, in most cases the
unknowns fields (and their gradients) will be discontinuousacross the interface which
separates the various subdomains. Finite element shape functions are in general contin-
uous in the element interiors, so, how are we going to deal with the discontinuity of the
unknowns in the boundary of the subdomains?

As we have seen there are four major issues with which a fixed mesh method has to deal
with. Any fixed grid method can be classified depending on how it deals with each of these
issues. In this work we present our particular approach to fixed mesh methods, which we call
FM-ALE (Fixed-Mesh ALE).

In Chapter 2 we analyze several possibilities to strongly prescribe boundary conditions
in the context of immersed boundary methods. As starting variational approach we consider
Nitsche’s method, and we then move to two options that yield non-symmetric problems but
that turn out to be robust and efficient. The essential idea isto use the degrees of freedom of
certain nodes of the finite element mesh to minimize the difference between the exact and the
approximated boundary condition.

In Chapter 3 we propose a way to weakly prescribe Dirichlet boundary conditions in em-
bedded grids. The key feature of the method is that no large penalty parameter is needed and
that it is symmetric for symmetric problems. In the Poisson problem this is achieved by intro-
ducing an additional element-discontinuous stress variable. Additional terms are required in
order to guarantee stability in the convection-diffusion equation and the Stokes problem. The
proposed method is then easily extended to the transient Navier-Stokes equations.

In Chapter 4 we propose the FM-ALE method to approximate flow problems in moving
domains using always a given grid for the spatial discretization. Our main concern is to prop-
erly account for the advection of information as the domain boundary evolves. To achieve this,
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we use an arbitrary Lagrangian-Eulerian framework, the distinctive feature being that at each
time step results are projected onto a fixed, background mesh, that is where the problem is
actually solved.

In Chapter 5 we extend the FM-ALE method to the context of Solid Mechanics and Fluid-
Structure Interaction problems. For solid mechanics problems subject to large strains the FM-
ALE method avoids the element stretching found in fully Lagrangian approaches. For FSI
problems FM-ALE allows for the use of a single background mesh to solve both the fluid and
the structure. We also apply the FM-ALE method to the problemof floating solids, in which it
is used together with the level set function method.

When dealing with certain physical problems, and dependingon the finite element space
used, the standard Galerkin finite element method fails and leads to unstable solutions. This
is why a great effort has been put during the last decades to develop stabilized formulations
which deal with the stability problems of the standard Galerkin method. One of these stabi-
lizing techniques is the subgrid scale method, which is motivated by the decomposition of
the continuous solution into a coarse component (finite element solution) and a fine (subgrid)
component. In most cases these subscales are considered to vanish on the boundaries of the
elements.

In Chapter 6 we introduce a way to approximate the subscales on the boundaries of the el-
ements in a variational two-scale finite element approximation to flow problems. The key idea
is that the subscales on the element boundaries must be such that the transmission conditions
for the unknown, split as its finite element contribution andthe subscale, hold. In particular,
we consider the scalar convection-diffusion-reaction equation, the Stokes problem and Darcy’s
problem. For these problems the transmission conditions are the continuity of the unknown and
its fluxes through element boundaries. The former is automatically achieved by introducing a
single valued subscale on the boundaries (for the conforming approximations we consider),
whereas the latter provides the effective condition for approximating these values. The final
result is that the subscale on the interelement boundaries must be proportional to the jump
of the flux of the finite element component and the average of the subscale calculated in the
element interiors.

In Chapter 7 we use the subscales on the element boundaries toimprove transmition con-
ditions between subdomains by introducing the subgrid scales between the interfaces in ho-
mogeneous domain interaction problems and at the interfacebetween the fluid and the solid
in fluid-structure interaction problems. The benefits in each case are respectively a stronger
enforcement of the stress continuity in homogeneous domaindecomposition problems and a
considerable improvement of the behaviour of the iterativealgorithm to couple the fluid and
the solid in fluid-structure interaction problems.

When performing numerical simulations with the finite element method, one invariably
ends up with the need of solving a linear system of equations.Most finite element codes use
linear system solvers developed by other groups and for other purposes. In most cases, this
solvers are designed to cope with the most general kind of systems of equations, which means
that they do not take advantage of the particularities of thesystems of equations arising from
the finite element analysis. This is why we aim to develop a solver package especially designed
to solve finite element problems.

In Chapter 8 we presentFELAP, a linear systems of equations solver package for prob-
lems arising from finite element analysis. The main featuresof the package are its capability
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to work with symmetric and unsymmetric systems of equations, direct and iterative solvers
and various renumbering techniques. Performance is enhanced by considering the finite ele-
ment mesh graph instead of the matrix graph, which allows to perform highly efficient block
computations.

In Chapter 9 we apply the FM-ALE method to solve fluid-structure interaction problems in
3D. We pay special attention to the algorithms needed to compute the mesh-mesh intersections
and the subelement integration, which are a bit more complexwhen extended to 3D. TheFE-
LAPpackage for solving linear systems of equations is used. Thebehaviour of both algorithms
is tested in two numerical experiments with satisfactory results.

We close the work with Chapter 10, where conclusions and further possible research lines
are summarized. Chapters are quite self contained even if this implies the need of repeating
some information. This is due to the fact that each chapter isbased on the following publica-
tions:

• Chapter 2: ”Approximate imposition of boundary conditionsin immersed boundary
methods”, R. Codina and J. Baiges,Int. J. Numer. Meth. Engng, 80:1379-1405, 2009.

• Chapter 3: ”A symmetric parameter-free method for weakly imposing Dirichlet bound-
ary conditions in embedded grids”, J. Baiges, R.Codina, F. Henke, S. Shahmiri and W.A.
Wall, In preparation, 2010.

• Chapter 4: ”The Fixed-Mesh ALE method for the numerical approximation of flows in
moving domains”, R. Codina, G. Houzeaux, H. Coppola-Owen and J. Baiges,J. Comput.
Phys., 228:1591-1611,2009.

• Chapter 5:

– ”The Fixed-Mesh ALE approach applied to Solid Mechanics andFluid - Struc-
ture Interaction problems”, J. Baiges and R. Codina,Int. J. Numer. Meth. Engng,
81:1529-1557, 2010.

– ”The Fixed-Mesh ALE approach for the numerical simulation of floating solids”,
J. Baiges and R. Codina,Int. J. Numer. Meth. Fluids, Accepted, 2010.

• Chapter 6: ”Subscales on the element boundaries in the variational two-scale finite el-
ement method”, R. Codina, J. Prı́ncipe and J. Baiges,Computer Methods in Applied
Mechanics and Engineering, 198:838-852, 2009.

• Chapter 7: ”Finite element approximation of transmission conditions in fluids and solids
introducing boundary subgrid scales”, R. Codina and J. Baiges,Submitted, 2010.

• Chapter 8: ”FELAP Technical Reference Guide”, J. Baiges, J.Prı́ncipe and R. Codina,
2009.



Chapter 2

A non-symmetric method for strongly
imposing Dirichlet boundary conditions in
embedded grids

In this chapter we analyze several possibilities to prescribe boundary conditions in the context
of immersed boundary methods. As basic approximation technique we consider the finite el-
ement method with a mesh that does not match the boundary of the computational domain,
and therefore Dirichlet boundary conditions need to be prescribed in an approximate way. As
starting variational approach we consider Nitsche’s method, and we then move to two options
that yield non-symmetric problems but that turn out to be robust and efficient. The essential
idea is to use the degrees of freedom of certain nodes of the finite element mesh to minimize
the difference between the exact and the approximated boundary condition.

2.1 Introduction

The numerical approximation of boundary value problems on non-matching grids has the ob-
vious advantage of the freedom to generate the grid. Only a grid coveringthe computational
domain has to be created, leaving the imposition of boundaryconditions to the numerical for-
mulation being used. The physical boundary is contained in the domain actually discretized,
which is the reason why these methods are calledimmersed boundary methods(IBM).

The price to be paid when using IBM is a lack of control on the grid close to the boundary,
which may be very important in flow problems with boundary layers, for example. However,
this difficulty may be dealt with using composite grids or Chimera type techniques as that
proposed in [72]. Nevertheless, we will not touch this pointhere, nor the aspect that makes
methods with non-matching grids really attractive and thathas been our main motivation (see
Chapter 4), which is the modelling of flows with moving boundaries keeping the grid fixed.
In this case, not only the freedom to generate this grid is important, but also the fact that
re-griding as the computational domain evolves may be avoided. This is probably the reason
why the so called fixed grid methods have received and are currently receiving a great deal of
attention in the numerical literature (see for example the reviews [127, 103, 100]). Since the
fixed grid used is often Cartesian, these methods can be foundunder the keywordsCartesian
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6 Chapter 2. Strong Dirichlet boundary conditions in embedded grids

grid methods.
Our attention will be focused to finite element methods for flow problems, but the ideas

to be presented are extendable to other numerical formulations and other physical problems.
However, some of the difficulties we shall mention are characteristic of flow problems. Like-
wise, we will consider general non-structured meshes, the application to Cartesian meshes
being obvious. Furthermore, the exposition will be based on2D linear triangular meshes, al-
though, again, extensions to 3D and other finite element interpolations is straightforward.

Let us describe the problem to be solved. Consider the situation depicted in Fig. 2.1. A
domainΩ ⊂ R

d, d = 2, 3, with boundaryΓ = ∂Ω (red curve in Fig. 2.1), is covered by a mesh
that occupies a domainΩh = Ωin∪ΩΓ, whereΩin ⊂ Ω is formed by the elements interior toΩ
andΩΓ is formed by a set of elements cut byΓ. In turn, let us splitΩΓ = ΩΓ,in ∪ΩΓ,out, where
ΩΓ,in = Ω∩ΩΓ andΩΓ,out is the interior ofΩΓ\ΩΓ,in. Note thatΩ = Ωin∪ΩΓ,in. For simplicity,
we will assume that the intersection ofΓ with the element domains is a piecewise polynomial
curve (in 2D) or surface (in 3D) of the same order as the finite element interpolation. This
will be used in the proof of stability presented in Subsection 2.3.2, although in fact it is not
necessary to apply the method.

Suppose we want to solve a boundary value problem for the unknownu in Ω with the mesh
of Ωh already created and boundary conditionsu = ū onΓ. The obvious choice would be:

• Obtain the nodes ofΓ (circles in Fig. 2.1) from the intersection with the elementedges.

• Split the elements ofΩΓ,in so as to obtain a grid matching the boundaryΓ.

• Prescribe the boundary conditionuh = ū in the classical way, whereuh denotes the
approximate solution.

This strategy leads to a local remeshing close toΓ that is involved from the computational
point of view. Obviously, the implementation of the strategy described is very simple for un-
structured simplicial meshes, but it is not so easy if one wants to use other element shapes and,
definitely, prevents from using Cartesian meshes. Moreover, if the boundaryΓ evolves in time
(a situation not considered in the following) the number of degrees of freedom changes at each
time instant, thus modifying the structure and sparsivity of the matrix of the final algebraic
system. This is clearly an inconvenience even when using unstructured simplicial meshes.

Other possibilities can be found in the literature. One of them is the widely usedImmersed
Boundary Methodin its original form [113], which consists in adding point-wise penalty forces
in the domain boundary so that the boundary conditions are fulfilled. The method is first order
accurate even if second order approximation schemes are used, althoughformal second order
accuracyhas been reported in [87]. The more recentImmersed Interface Methodachieves
higher order accuracy by avoiding the use of the Dirac delta distribution to define the forcing
terms (see [91, 92, 137]).

Another approach is the use of Lagrange multipliers to enforce the boundary conditions.
However, the finite-element subspaces for the bulk and Lagrange multiplier fields must satisfy
the classical inf-sup condition proposed by Babuška [126], which usually leads to the need for
stabilization (see [70, 14, 82]). Moreover, additional degrees of freedom must be added to the
problem. The use of Lagrange multipliers is the basis of thefictitious domain method[62, 63]
(see also Chapter VIII in [61]).
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Figure 2.1: Setting
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Recently,hybrid Cartesian/immersed boundary methodshave been developed for Carte-
sian grids, which use the grid nodes closest to the boundary to enforce boundary conditions
[60, 139, 104]. The method is second order accurate, but it does not guarantee that the distance
betweenuh andū in Γ is minimized.

A discontinuous-Galerkin-based immersed boundary methodis proposed in [93], which
consists in switching elements intersected by the boundaryto a discontinuous-Galerkin ap-
proximation and impose the Dirichlet boundary conditions strongly. Although optimal-order
accuracy is achieved, the method requires additional degrees of freedom.

The target we pose is thereforeto impose the Dirichlet boundary conditions (in an approx-
imate way) without adding new degrees of freedom except fromthose of the original mesh in
Ωh, in such a way that the distance betweenuh and ū in Γ is minimized in a certain norm. In
the following Section we describe Nitsche’s method as a firstapproach to achieve this.

In Section 2.3 we introduce a first modification of Nitsche’s method, the main advantage
being that there are no parameters to choose and there is no ill-conditioning of the final alge-
braic system due to large factors enforcing the boundary condition. This is crucial for general
flow problems in which there is no rule to choose the parameterappearing in Nitsche’s method.
The essential idea is to use the degrees of freedom associated withΩΓ,out to prescribe approx-
imately the boundary conditions, while the discrete version of the differential operator is only
imposed for nodes inΩin. The drawback is that the problem obtained is not symmetric even for
symmetric problems, although the problems we are interested in are non-symmetric. In partic-
ular, we have applied the methods to be described to transient incompressible flow problems
in moving domains in Chapter 4.

The formulation of Section 2.3 turns out to be accurate, but depending on the way the phys-
ical boundaryΓ cuts the elements inΩh may lead to ill-conditioned matrices and difficulties
in the convergence of iterative schemes for nonlinear problems. We present a modification in
Section 2.4. In this case, the idea is to solve the problem only in the domain formed by the ele-
ments insideΩ, and prescribe the boundary conditions using the degrees offreedom associated
to the first layer of nodesinsideΩ, that is to say, on∂Ωin.

Numerical examples showing the performance of the different methods described are pre-
sented in Section 2.5, and some concluding remarks close thechapter in Section 2.6.

2.2 Nitsche’s method revisited

Our intention is to consider flow problems and, in particular, the scalar convection-diffusion-
reaction equation and the incompressible Navier-Stokes equations. However, for the exposition
it is enough to consider the former, leaving the latter for the numerical examples.

Let us consider the problem

Lu := −k∆u + a · ∇u+ su = f in Ω, (2.1)

u = ū onΓ = ∂Ω, (2.2)

wherek > 0,a is the advection velocity,s ≥ 0, f is a given forcing function and̄u is the given
Dirichlet boundary condition. We assume that the subdomainΩ is polyhedral, and covered by
the domainΩh, as explained in Section 2.1.
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Let Ph = {K} be a finite element partition ofΩh from which we construct the finite
element spaceVh ⊂ H1(Ωh) (we will considerVh made of continuous functions). OnVh × Vh
we define the bilinear form

B(uh, vh) = k(∇uh,∇vh) + (a · ∇uh, vh) + s(uh, vh), (2.3)

where(·, ·) is theL2-inner productin Ω, not inΩh. In general, the integral of two functionsf1
andf2 in a regionω will be denoted by〈f1, f2〉ω. The norm in a spaceX will be indicated as
‖ · ‖X , except whenX = L2(Ω), case in which the subscript will be omitted.

Nitsche’s method applied to problem (2.1)-(2.2) reads: finduh ∈ Vh such that

B(uh, vh)− k〈∂nuh, vh〉Γ − k〈uh, ∂nvh〉Γ +
αk∗

h
〈uh, vh〉Γ

= 〈f, vh〉Ω − k〈ū, ∂nvh〉Γ +
αk∗

h
〈ū, vh〉Γ ∀vh ∈ Vh, (2.4)

whereα > 0 is a numerical parameter,k∗ a parameter with the same dimensions ask (here
introduced with the only purpose to make the equations dimensionally consistent) andh is the
element size, that is to say,h = maxK hK , with hK = diamK, K ∈ Ph. For simplicity, we
will consider quasi-uniform partitionsPh.

It is observed that, apart from the way to impose the boundaryconditions, (2.4) is based on
the standard Galerkin method to solve the convection-diffusion-reaction equation. This method
is stable only for high values of the diffusion coefficientk. Even though in the examples we
will consider convection dominated flows solved using a stabilized formulation, for the sake
of conciseness the exposition will be developed in the diffusion dominated case. Likewise, we
will considera constant, for simplicity.

In the following we will try to “rederive” method (2.4). Thiswill allow us to introduce
the modification we propose. Let us consider the splittingVh = Vh,0 ⊕ Vh,Γ, whereVh,0 is the
subspace ofVh of functions vanishing at the nodes outsideΩin, including its boundary, and
Vh,Γ the complement, that is, the subspace of functions that are zero at the nodes in the interior
of Ωin. According to this splitting, we may split the unknown asuh = uh,0 + uh,Γ and the test
functions asvh = vh,0 + vh,Γ.

Nitsche’s method (2.4) can be obtained from the following set of equations

B(uh,0, vh,0)− k〈∂nuh,0, vh,0〉Γ +B(uh,Γ, vh,0)− k〈∂nuh,Γ, vh,0〉Γ = 〈f, vh,0〉Ω, (2.5)

B(uh,0, vh,Γ)− k〈∂nuh,0, vh,Γ〉Γ +B(uh,Γ, vh,Γ)− k〈∂nuh,Γ, vh,Γ〉Γ = 〈f, vh,Γ〉Ω, (2.6)

− k〈∂nvh,0, uh,0〉Γ − k〈∂nvh,0, uh,Γ〉Γ = −k〈∂nvh,0, ū〉Γ, (2.7)

− k〈∂nvh,Γ, uh,0〉Γ − k〈∂nvh,Γ, uh,Γ〉Γ = −k〈∂nvh,Γ, ū〉Γ, (2.8)
αk∗

h
〈uh,0, vh,0〉Γ +

αk∗

h
〈uh,Γ, vh,0〉Γ =

αk∗

h
〈ū, vh,0〉Γ, (2.9)

αk∗

h
〈uh,0, vh,Γ〉Γ +

αk∗

h
〈uh,Γ, vh,Γ〉Γ =

αk∗

h
〈ū, vh,Γ〉Γ. (2.10)

The first two equations (2.5)-(2.6) are obtained by multiplying the differential equation byvh,0
andvh,Γ and integrating by parts. Note that no boundary conditions are imposed, and thus the
solution of (2.5)-(2.6) is not unique. Equations (2.7)-(2.8) can be understood as a weak form
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of the boundary conditionuh = ū, weighting this equation by−k∂nvh,0 and−k∂nvh,Γ. These
two equations are needed to keep the symmetry of the problem whenB(uh, vh) = B(vh, uh),
that is to say, whena = 0 (see (2.3)). Finally, equations (2.9)-(2.10) are also obtained as a
weak form of the boundary conditionuh = ū, weighting now this equation byvh,0 andvh,Γ.

Obviously, equations (2.5)-(2.10) are all consistent, in the sense that ifuh is replaced by
the exact solutionu of problem (2.1)-(2.2) they hold exactly, provided this solution is regu-
lar enough. However, system (2.5)-(2.10) as a wholeis overdetermined, and there are several
possibilities to extract a system of algebraic equations with a unique solution from it. In par-
ticular, Nitsche’s method (2.4) is obtained by adding together all the equations. The method to
be proposed in the following section can be understood as themethod obtainedkeeping only
(2.5) and (2.10). In fact, for stability reasons described later it turns outto be convenient to
subtract(2.7) from (2.5).

Before describing an alternative to Nitsche’s method, let us comment on the role played
by the factorαk

∗

h
. Suppose thata = 0, so thatB is symmetric, and define the function-

als J1(uh,0, uh,Γ) = 1
2
B(uh,0 + uh,Γ, uh,0 + uh,Γ) − k〈∂n(uh,0 + uh,Γ), (uh,0 + uh,Γ)〉Γ −

〈f, uh,0 + uh,Γ〉Ω − k〈ū, ∂n(uh,0 + uh,Γ)〉Γ andJ2(uh,0, uh,Γ) = αk∗

h
‖uh,0 + uh,Γ − ū‖2L2(Γ).

If δ(vh,0,vh,Γ) denotes the weak (Gâteaux) derivative of a functional in the direction ofvh =
(vh,0, vh,Γ) we may write problem (2.4) as

δ(vh,0,vh,Γ)(J1(uh,0, uh,Γ) + J2(uh,0, uh,Γ)) = 0. (2.11)

From this expression it follows that satisfying the Dirichlet boundary condition mustcompete
with satisfying the differential equation,αk

∗

h
being the weight of the former. Moreover, since

the normh−1/2‖·‖L2(Γ) is equivalent to the norm of‖·‖H1/2(Γ) in Vh (see [22, 48]), the relevant
weighting is in fact the parameterα. The higher the value ofα, the better the approximation
to the boundary condition at the expense of a poorer approximation to the differential equa-
tion. However, it is possible to show that the method is stable and optimally convergent for a
suitable value ofα (in fact, stability is even easier to show than for the methodto be presented
in the following section). See [83] for a proof, including more general boundary conditions
than used here (although for Poisson’s problem). The good performance of Nitsche’s method
has been exploited also in other contexts, such as the imposition of boundary conditions for
discontinuous finite element approximations (see the original work in [5] and the extension in
[65], for example), the imposition of transmission conditions in domain decomposition with
non-matching grids (as in [16, 64], among many others) or also in some stabilized finite ele-
ment methods for which this method fits nicely [25].

Finally, let us remark that the volume integrals in (2.5)-(2.6) are performed overΩ =
Ωin∪ΩΓ,in. Integrals overΩin are easily computed, but in order to compute integrals overΩΓ,in

some care is needed. The simplest approach is to split the elements ofΩΓ,in so as to obtain a
grid matching the boundaryΓ, and then proceed to compute the integrals over the resulting
subelements (see [41]). Note that this splitting does not affect the degrees of freedom of the
problem.
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2.3 A first modification: using external degrees of freedom

2.3.1 The first method proposed

The essential idea of the method we propose first is to use onlyequations (2.5) and (2.10)
above. As it has been mentioned in the previous section, it isalso convenient, mainly for
the stability analysis, to subtract (2.7) from (2.5). Thus,the problem to be solved is: find
uh,0 ∈ Vh,0 anduh,Γ ∈ Vh,Γ such that

B(uh,0, vh,0) +B(uh,Γ, vh,0)− k〈∂nuh,0, vh,0〉Γ − k〈∂nuh,Γ, vh,0〉Γ
+ k〈∂nvh,0, uh,0〉Γ + k〈∂nvh,0, uh,Γ〉Γ = 〈f, vh,0〉Ω + k〈∂nvh,0, ū〉Γ, (2.12)
αk∗

h
〈uh,0, vh,Γ〉Γ +

αk∗

h
〈uh,Γ, vh,Γ〉Γ =

αk∗

h
〈ū, vh,Γ〉Γ, (2.13)

for all vh,0 ∈ Vh,0 andvh,Γ ∈ Vh,Γ.
Equation (2.13) can be equivalently written as

δ(0,vh,Γ)J2(uh,0, uh,Γ) = 0. (2.14)

From this equation it is clear thatthe componentuh,Γ of the unknown is determined from the
condition that the distance betweenuh,0+uh,Γ andū is minimized in the norm ofL2(Γ). Com-
paring this equation with (2.11), it is also seen that now this minimization does not compete
with the satisfaction of the differential equation (in weaksense). Obviously, the parameter
αk∗

h
is here unnecessary, and it has been introduced only to compare the resulting method

with (2.4).
Let us enumerate four major differences of (2.12)-(2.13) with respect to (2.4):

1. WhenΓ coincides with∂Ωh, the boundary condition is imposed exactly (providedū is
a finite element function).

2. There are no parameters to be tuned (αk∗

h
can be canceled out in (2.13)).

3. The method is non-symmetric, even ifB is symmetric.

4. The method is not well defined whenΓ coincides with∂Ωin.

The first two points are improvements with respect to Nitsche’s method. In particular, they
explain why the approximation of boundary conditions is in general better with our approach,
as we have experimented from numerical tests. The third point is a drawback from the imple-
mentation point of view only for symmetric problems, and notfor the flow problems we are
interested in. The important issue is point 4. Clearly, whenΓ = ∂Ωin (2.13) yields0 = 0.
In this case, elements outsideΩin could be eliminated and the case reduced to the first one.
However, this situation may be encountered ifΩin is a domain moving in time insideΩh. In
general, whenΓ is close to∂Ωin we may expect instability problems. Small variations inū
may yield large variations inuh,Γ. This fact will be used to motivate the method proposed in
Section 2.4. It is worth to mention that this type of instabilities are also encountered in other
methods for which modifications are also required (see [139,119]). We will come back to this
point in Section 2.4.

Precise conditions under which the method is stable are discussed in the following subsec-
tion.
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2.3.2 Stability

In this subsection we prove the following result:if Γ is kept away from∂Ωin the formula-
tion given by (2.12)-(2.13) is stable. As a consequence, the discrete problem admits a unique
solution.

Proving this fact requires some analytical technicalitiesthat will make us depart from the
line of formulating new methods rather than analyzing them.However, we believe this conclu-
sion is important and deserves this parenthesis in the main syllabus of the chapter.

Preliminary result

We will make use of a general result applicable to coupled systems of variational equations of
the form

a11(u1, v1) + a12(u2, v1) = l1(v1), (2.15)

a21(u1, v2) + a22(u2, v2) = l2(v2), (2.16)

whereu1, v1 ∈ V1, u2, v2 ∈ V2, aij is a bilinear form defined onVj × Vi andli a linear form on
Vi, a Banach space with norm‖·‖i, i, j = 1, 2. We assume that all the formsaij are continuous
andaii are coercive. LetCij be the constants defined by the inequalities

a11(v1, v1) ≥ C11‖v1‖21, a22(v2, v2) ≥ C22‖v2‖22,
a12(v2, v1) ≤ C12‖v1‖1 ‖v2‖2, a21(v1, v2) ≤ C21‖v1‖1 ‖v2‖2.

We will now prove that if

C12C21 < C11C22, (2.17)

then there exists a constantC > 0 such that for all(u1, u2) ∈ V1 × V2 there exists(v1, v2) ∈
V1 × V2 such that

B((u1, u2), (v1, v2)) := a11(u1, v1) + a12(u2, v1) + a21(u1, v2) + a22(u2, v2)

≥ C (‖u1‖1 + ‖u2‖2) (‖v1‖1 + ‖v2‖2) ,

that is to say,problem (2.15)-(2.16) is stable.
In the following,C will denote a generic positive constant, not necessarily the same at

different appearances. In the case in which (2.15)-(2.16) comes from a finite element approxi-
mation, the constantC will be independent ofh and inequality (2.17) will be assumed to hold
uniformly in h.

Let us start noting that using Young’s inequality we have

B((u1, u2), (u1, 0)) ≥ C11‖u1‖21 − C12

(

β1
2
‖u1‖21 +

1

2β1
‖u2‖22

)

,

B((u1, u2), (0, u2)) ≥ C22‖u2‖22 − C21

(

β2
2
‖u2‖22 +

1

2β2
‖u1‖21

)

,
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whereβ1 andβ2 are positive constants to be determined. Thus, for anyγ > 0 we have

B((u1, u2), (u1, γu2)) ≥
(

C11 − C12
β1
2
− C21

1

2β2

)

‖u1‖21

+

(

C22γ − C21
β2
2
γ2 − C12

1

2β1

)

‖u2‖22.

The constantsC12 andC21 must be such that there existsβ1, β2 andγ for which

C11 − C12
β1
2
− C21

1

2β2
> 0, (2.18)

C22γ − C21
β2
2
γ2 − C12

1

2β1
> 0. (2.19)

Condition (2.18) holds if

β1 <
2C11α1

C12
,

1

β2
<

2C11α2

C21
, α1 + α2 = 1.

Condition (2.19) requires then that

γ > Aγ2 +B, A :=
C2

21

4C11C22α2
, B :=

C2
12

4C11C22α1
,

a condition that is possible to fulfill if

AB <
1

4
⇐⇒ C12C21 < 2C11C22

√
α1α2.

Sinceα1 + α2 = 1, the maximum of
√
α1α2 is 1/2, from where the result follows.

Some useful relationships

The next step is to prove some inequalities that will be used later on. These inequalities make
use of the inverse estimates (see [22, 48]):

‖vh‖2L∞(ω) ≤
C

hd
‖vh‖2L2(ω), (2.20)

‖∇vh‖2L2(ω) ≤
C

h2
‖vh‖2L2(ω), (2.21)

whereω is any patch of elements ofPh (recall that this partition is assumed to be quasi-
uniform) andvh is a finite element function. Because of the assumption on theshape ofΓ, ω
can be also formed by subdomains of the formK ∩ ΩΓ,in,K ∈ Ph.

From these inequalities one can prove the following:

‖vh,Γ‖2 ≤ Cδ1h‖vh,Γ‖2L2(Γ), (2.22)

‖∇vh,Γ‖2 ≤ C
1

δ1h
‖vh,Γ‖2L2(Γ), (2.23)

δ1
δ22h
‖vh,0‖2L2(Γ) ≤ C‖∇vh,0‖2L2(ΩΓ,in)

, (2.24)

‖∂nvh‖2L2(Γ) ≤
C

δ1h
‖∇vh‖2L2(ΩΓ,in)

, (2.25)
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where (see Fig. 2.1)

δ1 =
1

h
min
x∈L0

dist(x,Γ), δ2 =
1

h
max
x∈L−1

dist(x,Γ).

Let us start noting that (2.22) is a direct consequence of theshape ofΩΓ,in and thatvh,Γ
vanishes at the nodes in the interior of this subdomain. The distance fromΓ to the nodes ofL0

can be bounded byCδ1h, where1 ≤ C is a constant which will be bounded ash→ 0 because
of the quasi-uniformity of the partition.

The proof of (2.23) is as follows:

‖∇vh,Γ‖2 =
∫

ΩΓ,in

|∇vh,Γ|2 (vh,Γ is zero elsewhere)

≤ C

δ21h
2

∫

ΩΓ,in

|vh,Γ|2 (by (2.21))

≤ C

δ1h

∫

Γ

|vh,Γ|2 (by (2.22))

=
C

δ1h
‖vh,Γ‖2L2(Γ).

For the proof of (2.24), letK be an element crossed byΓ andE = K ∩ Γ. We have:

∫

E

v2h,0 ≤ δ22h
2

∫

E

‖∇vh,0‖2L∞(K)

≤ Cδ22h
2hd−1‖∇vh,0‖2L∞(K)

≤ C
δ22
δ1
hd+1h−d‖∇vh,0‖2L2(K∩ΩΓ,in)

, (by (2.20))

from where (2.24) is obtained from summation over allE that formΓ. Finally, (2.25) follows
again from the shape ofΩΓ,in.

Application to the first method proposed

Finally, we will apply (2.22)-(2.25) to show that condition(2.17) holds, and thus the method
given by (2.12)-(2.13) is stable. Let us define the bilinear forms

a0,0(uh,0, vh,0) := B(uh,0, vh,0)− k〈∂nuh,0, vh,0〉Γ + k〈∂nvh,0, uh,0〉Γ,
a0,Γ(uh,Γ, vh,0) := B(uh,Γ, vh,0)− k〈∂nuh,Γ, vh,0〉Γ + k〈∂nvh,0, uh,Γ〉Γ,
aΓ,0(uh,0, vh,Γ) := 〈uh,0, uh,Γ〉Γ,
aΓ,Γ(uh,Γ, vh,Γ) := 〈uh,Γ, uh,Γ〉Γ,

and the norms

|||vh|||20 := k‖∇vh‖2 + s‖vh,0‖2, |||vh|||Γ := ‖vh‖L2(Γ).
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As it has been mentioned in Section 2.2, we assume that the problem is diffusion dominated.
More precisely, ifa = |a|, in what follows we assume thath is such that

k − Cah
2

δ22
δ1
≥ Ckk, 0 < Ck < 1, (2.26)

for a constantC introduced next.

We have to check (2.17), and therefore we need to estimate thecoercivity constants ofa0,0
andaΓ,Γ and the continuity constants ofa0,Γ andaΓ,Γ. We have

a0,0(uh,0, uh,0) = B(uh,0, uh,0)

= k‖∇uh,0‖2 + s‖uh,0‖2 + (a · ∇uh,0, uh,0)

= k‖∇uh,0‖2 + s‖uh,0‖2 +
∫

Γ

n · a1
2
u2h,0

≥ k‖∇uh,0‖2 + s‖uh,0‖2 −
a

2
‖uh,0‖2L2(Γ)

≥ k‖∇uh,0‖2 + s‖uh,0‖2 − C
ah

2

δ22
δ1
‖∇uh,0‖2 (by (2.24))

≥ Ck|||uh,0|||20,

and therefore the coercivity constant ofa0,0 may be taken as

C0,0 = Ck.

On the other hand, we have

aΓ,Γ(uh,Γ, uh,Γ) = ‖uh,Γ‖2L2(Γ) = |||uh,Γ|||2Γ,

and hence

CΓ,Γ = 1.

The continuity constant ofa0,Γ is obtained from the following bounding process:

a0,Γ(uh,Γ, vh,0) = k(∇uh,Γ,∇vh,0) + 〈a·nuh,Γ, vh,0〉Γ
− (uh,Γ,a · ∇vh,0) + s(uh,Γ, vh,0)

− k〈∂nuh,Γ, vh,0〉Γ + k〈∂nvh,0, uh,Γ〉Γ
≤ k‖∇uh,Γ‖ ‖∇vh,0‖+ a‖uh,Γ‖L2(Γ)‖vh,0‖L2(Γ)

+ a‖uh,Γ‖ ‖∇vh,0‖+ s‖uh,Γ‖ ‖vh,0‖
+ k‖∂nuh,Γ‖L2(Γ)‖vh,0‖L2(Γ) + k‖∂nvh,0‖L2(Γ)‖uh,Γ‖L2(Γ)
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≤ k
C

δ
1/2
1 h1/2

‖uh,Γ‖L2(Γ)‖∇vh,0‖ (by (2.23))

+ a‖uh,Γ‖L2(Γ)

Ch1/2δ2

δ
1/2
1

‖∇vh,0‖ (by (2.24))

+ aCδ
1/2
1 h1/2‖uh,Γ‖L2(Γ)‖∇vh,0‖ (by (2.22))

+ sCδ
1/2
1 h1/2‖uh,Γ‖L2(Γ)‖vh,0‖ (by (2.22))

+ k
C

δ1h
‖uh,Γ‖L2(Γ)

δ2h
1/2

δ
1/2
1

‖∇vh,0‖ (by (2.23)-(2.25))

+ k
C

δ
1/2
1 h1/2

‖∇vh,0‖ ‖uh,Γ‖L2(Γ) (by (2.25)).

This inequality can be written as

a0,Γ(uh,Γ, vh,0) ≤ CK
(

k‖∇vh‖2 + s‖vh,0‖2
)1/2 ‖uh‖L2(Γ), (2.27)

with

K :=
k1/2

δ
1/2
1 h1/2

+
ahδ2

k1/2h1/2δ
1/2
1

+
ahδ

1/2
1

k1/2h1/2
+ δ

1/2
1 h1/2s1/2 +

k1/2δ2

δ
3/2
1 h1/2

+
k1/2

δ
1/2
1 h1/2

.

Using (2.26) and the fact that0 < δ1, δ2 < 1, from (2.27) we see that we may take the
continuity constant ofa0,Γ as

C0,Γ = C
k1/2

h1/2δ
3/2
1

(

1 +
s1/2h

k1/2

)

.

The bound foraΓ,0 is easily obtained using (2.24):

aΓ,0(uh,0, vh,Γ) ≤ ‖uh,0‖L2(Γ)‖vh,Γ‖L2(Γ)

≤ Cδ2h
1/2

δ
1/2
1

‖vh,Γ‖L2(Γ)‖∇uh,0‖,

from where

CΓ,0 = C
δ2h

1/2

δ
1/2
1 k1/2

.

We are now in a position to check condition (2.17) in our case,which reads:

C0,ΓCΓ,0 = C
δ2
δ21

(

1 +
s1/2h

k1/2

)

< C0,0CΓ,Γ = Ck. (2.28)

This inequality is satisfiedprovidedδ2 is small enough, that is to say,Γ is sufficiently close
to ∂Ωh. This is the result we wanted to prove, and which allows us to guarantee that problem
(2.12)-(2.13) is well posed in this situation.

In passing, condition (2.28) allows us to observe how stability deteriorates in terms of
δ1, and also how the rate between reaction and diffusion effects, measured bysh2/k, affects
stability.
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2.3.3 Implementation aspects

The purpose of this subsection is to express in matrix form problem (2.12)-(2.13) and to discuss
some implementation aspects.

Suppose that the unknownuh is interpolated as

uh(x) =

nin
∑

a=1

Iain(x)U
a
in +

nout
∑

b=1

Ibout(x)U
b
out

= I in(x)U in + Iout(x)U out,

whereIain(x) andIbout(x) are the standard interpolation functions,nin is the number of nodes
in Ωin (including layerL0) andnout the number of nodes in layerL−1 (see Fig. 2.1).

The objective is to computeU out. As it has been shown, (2.13) is equivalent to the mini-
mization problem (2.14), that is to say,U out can be computed by minimizing the functional

J2(U in,U out) =

∫

Γ

(uh(x)− ū(x))2 =
∫

Γ

(I in(x)U in + Iout(x)U out − ū(x))2

Obviously, other options would be possible. In the case we consider,

∂J2
∂U out

= 0 ⇒ MΓU out = fΓ −NΓU in, (2.29)

where

MΓ =

∫

Γ

It
out(x)Iout(x), fΓ =

∫

Γ

It
out(x)ū(x), NΓ =

∫

Γ

It
out(x)I in(x).

Suppose the matrix form of (2.12) is

K in,inU in +K in,outU out = F in. (2.30)

The domain integrals in matricesK in,in andK in,out extend only overΩin. The nodal values
U out are merely used as degrees of freedom to interpolateuh in the subdomainΩin. Inserting
(2.29) into (2.30) results in

(

K in,in −K in,outM
−1
Γ NΓ

)

U in = F in −K in,outM
−1
Γ fΓ. (2.31)

This would be the system to solve. However, since matrixMΓ is not diagonal, this option is
not feasible unless implemented in an iterative scheme, forexample of the form

K in,inU
k
in = F in −K in,outU

k−1
out , (2.32)

MΓU
k
out = fΓ −NΓU

k
in, (2.33)

wherek is the iteration counter.
The most natural option is to solve problem (2.12)-(2.13), whose matrix counterpart is

(2.30)-(2.29), in a coupled way:
[

K in,in K in,out

NΓ MΓ

] [

U in

U out

]

=

[

F in

fΓ

]

. (2.34)
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It is important to note that this implementation maintains the connectivity of the mesh ofΩh,
that is to say, the mesh ofΩin extended with the nodes ofΩout corresponding to elements cut
by Γ.

Even though system (2.34) does not offer particular implementation problems, it could
be interesting to consider the possibility to obtain an approximation of the form (2.29) for
U out but replacingMΓ by a diagonal matrix. The practical reason for this need is clear. For
example, in a fluid-structure interaction problem, in ordernot to duplicate degrees of freedom
only nodal valuesinterior to the fluid and the solid can be used when solving the corresponding
problem.

Let xb
out be a node onΩout corresponding to an element cut byΓ. Consider the edges em-

anating fromxb
out cut byΓ, and letΓb

out be the path (surface in 3D) formed by the intersection
of these edges withΓ. These intersections are denoted byxΓ with a superscript. In the case of
Fig. 2.1, we would have that

Γ1
out is the path formed by x1

Γ - x2
Γ,

Γ2
out is the path formed by x3

Γ - x4
Γ,

Γ3
out is just x5

Γ,

Γ4
out is the path formed by x6

Γ - x7
Γ,

Γ5
out is the path formed by x8

Γ - x9
Γ - x10

Γ - x11
Γ .

When the path is just a point we can computeU b
out by imposing the boundary condition at

that point. In the rest of cases, on each path we have that

uh(x)|Γb
out

= Ibout(x)U
b
out + I in(x)U in.

The idea now is to impose that

∂

∂U b
out

∫

Γb
out

(uh(x)− ū(x))2 = 0,

which yields the scalar equation
(

∫

Γb
out

Ibout(x)I
b
out(x)

)

U b
out =

∫

Γb
out

Ibout(x)ū(x)−
∫

Γb
out

Ibout(x)I in(x)U in,

and we can proceed as above, now with a diagonal approximation toMΓ.
Considering again the situation in Fig. 2.1, it can be seen that with the approximation de-

scribed we could easily implement (2.31)if the connectivities were not modified by the approx-
imate imposition of boundary conditions. In the case of paths of one or two nodes, that is the
case, and (2.31) could be constructed bytrivial modifications of the element matrices. How-
ever, the situation becomes more involved because of the path formed byx8

Γ - x9
Γ - x10

Γ - x11
Γ .

The minimization proposed would lead to the coupling of nodesx4
in, x5

in, x6
in andx7

in in layer
L0.

A possibility to avoid the complication described would beto consider only elemental
paths. In the case of Fig. 2.1 that would mean to consider only pathsof two nodes. Possible
ways to choose this path are
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• The longest among the two-node subpaths.

• The closest to the geometric center of the global path.

The first option has been used in a numerical example of Section 2.5.

2.4 Second approach: using internal degrees of freedom

The method described in the previous section works very wellif Γ is not too close to∂Ωin.
When this happens, the method becomes unstable and remedieshave to be devised. Let us
mention, however, that this instability isnot particularly strong. In numerical experiments
it has manifested as a difficulty for convergence in nonlinear problems (the Navier-Stokes
equations in our case) and local spurious peaks close to boundaries for the values ofU out with
small influence on the values ofU in.

2.4.1 Description of the method

The idea of the method described in this section isto impose the satisfaction of the differential
equation in the nodes interior toΩin, and to use the nodes of∂Ωin to prescribe the boundary
conditions onΓ. Let us elaborate this idea.

Let us consider again (2.5), which is the weak form of the differential equation to be solved
tested withvh,0. The spaceVh,0 where this function belongs may be split asVh,0 = Vh,1⊕Vh,00,
whereVh,1 is the subspace ofVh,0 of functions vanishing on∂Ωin (at nodes of layerL0 in
Fig. 2.1) andVh,00 the complement, that is, the subspace of functions that are zero at theinterior
nodes ofΩin. According to this splitting, we may split the unknown asuh,0 = uh,1 + uh,00 and
the test functions asvh,0 = vh,1 + vh,00.

Equation (2.5) can be split as

B(uh,1, vh,1) +B(uh,00, vh,1) = 〈f, vh,1〉Ω, (2.35)

B(uh,1, vh,00) +B(uh,00, vh,00)− k〈∂nuh,00, vh,00〉Γ − k〈∂nuh,Γ, vh,00〉Γ = 〈f, vh,00〉Ω.
(2.36)

Recall that integrals are performed overΩ, although the integrals in (2.35) are extended only
overΩin because this is the support ofvh,1. The idea now is to keep (2.35) and to replace
(2.36) by an approximate prescription of the boundary conditions. In order to use only degrees
of freedom of nodes inΩin, let E be theextrapolation operatorof functions defined on the
elements with an edge in 2D or face in 3D on∂Ωin to ΩΓ,in. The boundary conditions will
be approximately imposed by minimizing the functionalJ ′

2(uh,1, uh,00) = ‖Euh,1 + Euh,00 −
ū‖2L2(Γ), that is, by imposing that

δ(0,vh,00)J
′
2(uh,1, uh,00) = 0. (2.37)

Equations (2.35) and (2.37) form the system of equations of the method we propose, which
reads: finduh1 ∈ Vh,1 anduh,00 ∈ Vh,00 such that

B(uh,1, vh,1) +B(uh,00, vh,1) = 〈f, vh,1〉Ω, (2.38)

〈Euh,1, Evh,00〉Γ + 〈Euh,00, Evh,00〉Γ = 〈ū, Evh,00〉Γ, (2.39)
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for all vh,1 ∈ Vh,1 andvh,00 ∈ Vh,00, where now functions in this last space are defined only on
Ωin and extrapolated toΩΓ,in.

The description of the method is complete up to the definitionof the extrapolation operator.
In fact, the obvious choice is to extend the local polynomialexpansion within the elements with
an edge in 2D or face in 3D on∂Ωin toΩΓ,in. Thus, what needs to be defined is only the domain
of the extrapolation. The option we use is described in the following subsection.

A comparison between methods (2.12)-(2.13) and (2.38)-(2.39) in a one-dimensional case
using linear elements is shown in Fig. 2.2. In this case it is possible to satisfy exactly the
boundary conditionuh = ū.

Figure 2.2: Comparison between methods (2.12)-(2.13) (top) and (2.38)-(2.39) (bottom) in a
one-dimensional case. The blue line denotes the solution computed in both cases.

Comparing the method proposed in this section with (2.12)-(2.13), some remarks need to
be made:

• No boundary integrals have to be computed in (2.38). This is aclear advantage over
(2.12).

• The instability detected for the first method whenΓ approaches∂Ωin does not appear in
this second modification. In fact, the solution is exact whenΓ = ∂Ωin (if ū is a finite
element function).

• From the numerical experiments to be presented in Section 2.5 it is concluded that
method (2.12)-(2.13) is more accurate than method (2.38)-(2.39). However, they have
the same order of convergence (two when using linear elements).
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2.4.2 Implementation aspects

The first point to consider is the extrapolation region of theoperatorE. There are several pos-
sibilities, but the one we have found most accurate is the following. LetK be an element with
an edge (in 2D) or face (in 3D)F on ∂Ωin. LetKΓ be the cylinder obtained from projecting
F ontoΓ in an orthogonal way. Then,E is defined as the extension from functions defined on
K to functions defined onK ∪KΓ. The extrapolation regions obtained this way in 2D using
triangular elements are shown in Fig. 2.3.

Figure 2.3: Domain of extrapolation in a 2D example.

Suppose now that inΩin the unknownuh is interpolated as

uh(x) =

n1
∑

a=1

Ia1 (x)U
a
1 +

n00
∑

b=1

Ib00(x)U
b
00

= I1(x)U 1 + I00(x)U 00,

whereIa1 (x) andIb00(x) are the standard interpolation functions,n1 is the number of nodes
interior toΩin (up to layerL1) andn00 the number of nodes in layerL0 (see Fig. 2.3).

The objective is to computeU 00. Equation (2.39) is equivalent to the minimization problem
(2.37), that is to say,U 00 can be computed by minimizing the functional

J ′
2(U 1,U 00) =

∫

Γ

(Euh(x)− ū(x))2 =
∫

Γ

(EI1(x)U 1 + EI00(x)U 00 − ū(x))2
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which leads to

∂J ′
2

∂U 00
= 0 ⇒ M 00U 00 = f00 −N 00U 1, (2.40)

where

M 00 =

∫

Γ

EIt
00(x)EI00(x), f 00 =

∫

Γ

EIt
00(x)ū(x), N 00 =

∫

Γ

EIt
00(x)EI1(x).

Suppose the matrix form of (2.38) is

K1,1U 1 +K1,00U 00 = F 1.

Combining this with (2.40) it turns out that the final system to be solved is
[

K1,1 K1,00

N 00 M 00

] [

U 1

U 00

]

=

[

F 1

f00

]

. (2.41)

2.4.3 Blending

Let us write problem (2.34) of the previous section as




K1,1 K1,00 0

K00,1 K00,00 K00,out

0 NΓ,00 MΓ









U 1

U 00

U out



 =





F 1

F 00

fΓ



 , (2.42)

where the splitting of the matrices corresponds to the splitting ofU in intoU 1 andU 00.
Problem (2.41) is obtained by considering the degrees of freedom ofall nodes in layerL0

as parameters to prescribe the boundary conditions, but of course the last equation in (2.42)
can be kept, in which case the system to be solved is





K1,1 K1,00 0

N 00 M 00 0

0 NΓ,00 MΓ









U 1

U 00

U out



 =





F 1

f 00

fΓ



 . (2.43)

Clearly,U out depends onU 00, but not the other way around. IfΓ is very close to∂Ωin, the
coefficients inMΓ can be very small, but this does not affect the unknowns in theinterior of
the computational domain and, in fact,MΓ can be replaced by any matrix without alteringU 1

andU 00.
As it has been mentioned and as it will be shown in Section 2.5,method (2.42) is more

accurate than method (2.43). In order to use (2.42) in all situations except when instability
problems may appear, we have implemented a blending of methods (2.42) and (2.43). The
idea is simple. When a node in layerL0 is detected to be very close toΓ, its degree of freedom
is used to prescribe the boundary conditions, that is to say,the row in the equation forU 00

in (2.42) is replaced by the corresponding row in (2.43). This strategy has proved robust and
effective. Since usually only a few equations need to be changed (in our case those for which
the distance of a node inL0 to Γ is less than0.1h), the overall accuracy obtained is very close
to that of method (2.42).
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2.5 Numerical examples

In this section we present the numerical results obtained with the two approximations of the
Dirichlet boundary conditions proposed. As it has been mentioned, we are interested in flow
problems, and in particular in situations in which the Galerkin formulation used heretofore
may be unstable. This is why we start this section presentingthe stabilized formulation used
in the numerical examples.

2.5.1 Stabilized convection-diffusion-reaction and incompressible
Navier-Stokes equations

It well known that when the diffusion coefficientk in (2.1) is small the Galerkin method fails
and stabilized finite element methods need to be used. It is not our purpose here to explain the
roots of the particular method we use (see for example [29]),but only to state it. The bottomline
is to replace the bilinear formB(uh, vh) and the linear form〈f, vh〉Ω in (2.4) byBstab(uh, vh)
and〈f, vh〉stab, respectively, given by

Bstab(uh, vh) = B(uh, vh) +
∑

K

τK〈−L∗vh,Luh〉K

= k(∇uh,∇vh) + (a · ∇uh, vh) + s(uh, vh)

+
∑

K

τK〈k∆vh + a · ∇vh − svh,−k∆uh + a · ∇uh + suh〉K ,

and

〈f, vh〉stab = 〈f, vh〉Ω +
∑

K

τK〈−L∗vh, f〉K

= 〈f, vh〉Ω +
∑

K

τK〈k∆vh + a · ∇vh − svh, f〉K ,

where the so called stabilization parameterτK is given by

τK =

(

c1
k

h2
+ c2

a

h
+ s

)−1

.

In the numerical experiments presented below we have takenc1 = 4, c2 = 2. The relationship
betweenτK and the stabilization parameter of other formulations can be found in [38].

The other problem for which a numerical example is presentedbelow is the incompressible
Navier-Stokes equations, which consist in finding a velocity field u and a pressurep such that

∂tu+ u · ∇u− ν∆u+∇p = f ,

∇ · u = 0,

in Ω and for t > 0, wheref is the vector of body forces andν the kinematic viscosity.
Appropriate initial and boundary conditions have to be appended to this problem. They are
described for the particular example of the flow over a cylinder shown later.
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Except for the treatment of the Dirichlet boundary conditions for the velocity, which is
similar to the one described in detail for the scalar convection-diffusion-reaction equation, the
space-discrete problem we solve is

(∂tuh, vh) + 〈uh · ∇uh, vh〉Ω + ν(∇uh,∇vh)− (ph,∇ · uh) + (qh,∇ · vh)

+
∑

K

τK〈ν∆vh + uh · ∇vh +∇qh, ∂tuh − ν∆uh + uh · ∇uh +∇ph〉K

− 〈f , vh〉Ω −
∑

K

τK〈ν∆vh + uh · ∇vh +∇qh, f〉K = 0,

wherevh is the velocity test function,qh the pressure test function and now the stabilization
parameter is computed as

τK =

(

c1
ν

h2
+ c2
|uh|K
h

)−1

,

where|uh|K is the mean velocity modulus in elementK. Any finite difference scheme can be
used to approximate the time derivative∂tuh. In particular, the second order Crank-Nicolson
scheme has been used in the example of Subsection 2.5.3.

Details for the motivation of the formulation described andstability and convergence
properties can be found in [31]. The most salient property ofthe formulation is thatequal
velocity-pressure interpolations can be used. In particular, linear velocities and linear pres-
sures have been used in the numerical example of Subsection 2.5.3 Note however that the
pressure interpolation does not affect the approximate imposition of Dirichlet boundary condi-
tions, since these affect only the velocity. Likewise, instabilities of the Galerkin method arising
in convection-dominated flows are prevented using the stabilized formulation presented.
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Figure 2.4: Structured mesh and domainsΩin (green) andΩΓ (red)

2.5.2 Results for the scalar convection-diffusion-reaction equation

In this subsection we illustrate the behavior of the proposed methods for the scalar convection-
diffusion-reaction equation. The Poisson, diffusion-reaction and convection-diffusion equa-
tions are solved in a domainΩ enclosed in a circle of radiusR < 1. We choose thehold-all
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domainB = (−1, 1)× (−1, 1), where a system of Cartesian coordinates(x, y) with its origin
at the center of the circle has been adopted. A structured mesh of right-angled linear triangular
elements is constructed inB, h being the length of the edges corresponding to the cathetus (see
Fig. 2.4).

The Poisson equation

Let us start solving the Poisson equation withk = 1, a = 0, s = 0, f = 1 to check the
performance and convergence of the proposed methods. Results are shown in Fig. 2.5 (top
and bottom left). No significative difference between the fieldsuh obtained with the different
methods can be appreciated, even for the coarsest meshes.
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Figure 2.5: Comparison between the proposed methods. Top left: elevationuh for the Poisson
equation for M1. Top right: same for M2. Bottom left: cut along y = 0 for the coarsest mesh
used, withh = 2

25
. Bottom right: convergence plot inL2(Ω) for methods M1, M1’ and M2

The analytical solution for this case is known to be

u(x, y) =
1

4
(R2 − x2 − y2).

Fig. 2.5 (bottom right) shows the errors‖u− uh‖L2(Ω) versus the element sizeh. As it can
be seen, both the first method described in Section 2.3 (labeled M1 in the following), and the



26 Chapter 2. Strong Dirichlet boundary conditions in embedded grids

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

h

||e
||

 

 

Nit. alpha = 1e2
Nit. alpha = 1e4
Nit. alpha = 1
M1

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

h
||e

||

 

 

M1
M2
Nit. alpha = 100

Figure 2.6: Comparison between M1, M2 and Nitsche’s method.Left: convergence plot in
L2(Ω) for method M1 and Nitsche’s method with different values of the parameterα. Right:
convergence plot inL2(∂Ω) for methods M1, M2 and Nitsche’s method withα = 100.

second one described in Section 2.4 (labeled M2) show quadratic convergence, although the
error turns out to be smaller for the former. The modified version of M1 (referred to as M1′),
which uses a diagonal approximation of matrixMΓ computed by considering only the longest
elemental paths (see Subsection 2.3.3), shows no significative error increment with respect to
M1.

In order to compare the performance of the methods proposed with Nitsche’s method, in
Fig. 2.6 (left) we have also plotted the convergence obtained using this method with three
different choices of the parameterα in (2.4) (takingk∗ = k), namely,α = 100, which is
approximately the optimal value found from numerical experiments,α = 1 andα = 10000.
It can be observed that the performance of method M1 is superior to Nitsche’s method, even
for its optimal case, and that this method is sensitive to thechoice of the parameterα. This
is aggravated in problems with convection and/or reaction,for which k∗ (or, alternatively,α)
must be chosen in terms of the advection velocity and the reaction coefficient. In Fig. 2.6 (right)
we have plotted convergence inL2(∂Ω), and therefore the error is due only to the imposition
of the boundary conditions. Nitsche’s method displays a non-monotone behavior due to the
way the elements cut the boundary of the domain for differentmeshes. Again, method M1 and
M2 show a similar behavior when only the errors on the boundary are taken into account.

Reaction-diffusion

When the reactive terms dominates over the diffusive one it is well known that oscillations
in the finite element approximated solutionuh appear near the boundary layer. It is thus con-
venient to check how do the proposed methods behave in the presence of thisGibb’s phe-
nomenon.Fig. 2.7 showsuh for M1, M2 and the local remeshing strategy described in Sec-
tion 2.1, labeled CD in Fig. 2.7. These results correspond tothe reaction dominated case, where
k = 10−5, a = 0, s = 1, f = 1.

Although oscillations remain bounded close to the exact solutionu both for M1 and M2,
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Figure 2.7: Reaction-dominated case, exact integration. Elevationuh for M1 (top left) and M2
(top right). Cut alongy = 0 for the coarsest used mesh(h = 2
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) (bottom).
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they happen to be greater in the former than in the latter. Nevertheless, when compared to
results obtained with CD, oscillations in M1 are practically of the same magnitude as those
obtained for the classical method, while the solution for M2clearly shows a reduction in the
amount of oscillation.

If nodal integration is used to compute the contribution of the reactive term to the resulting
system of equations, oscillations can be avoided, since theresulting matrix is ofnon-negative
type, and thus thediscrete minimum principleis satisfied, that is to say, forf ≥ 0 the min-
imum of the solution is attained at boundary nodes (this principle holds if and only if the
discrete maximum principle does, see e.g. [28]). In this case none of the two methods shows
any oscillation (see Fig. 2.8), and the only difference between them is due to the fact that M2
uses only the degrees of freedom corresponding to the nodes in theΩin domain, while M1
incorporates also the nodes corresponding to theΩout domain (this is also the reason why M1
leads to a better approximation touh than M2).
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Figure 2.8: Reaction-dominated case, nodal integration. Elevationuh for M1 (top left) and M2
(top right). Cut alongy = 0 for the coarsest used mesh(h = 2

25
) (bottom).
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Convection-diffusion

Fig. 2.9 shows the behavior of methods M1 and M2 in the convection-dominated case, where
k = 10−6, a = (1, 0), s = 0, f = 1. The stabilized formulation described in Subsection 2.5.1
has been used. Both methods M1 and M2 perform well, although again oscillations are greater
for M1. This time, however, oscillations for M1 are substantially greater than those which ap-
pear when applying Dirichlet conditions in boundary fittingmeshes CD, with the local remesh-
ing strategy described in Section 2.1. Again also, M2 shows less oscillations than CD.
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Figure 2.9: Convection-dominated case. Elevationuh for M1 (top left), M2 (top right) and CD
(bottom left). Cut alongy = 0 for the coarsest used mesh(h = 2

25
) (bottom right).

Despite the different behavior that both methods show in theboundary layer, the difference
between the two methods in theΩin domain is practically negligible.

The local oscillations appearing in M1, altogether with thefact that the splitting of elements
in theΩin domain can lead to an ill-conditioning of the resulting system of equations whenΓ
is too close to∂Ωin, can prevent convergence in nonlinear problems. This is what motivates
theblending strategyproposed in Subsection 2.4.3.
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2.5.3 Results for the incompressible Navier-Stokes equations

In this subsection we analyze a numerical example involvingthe flow past a cylinder. Again
the formulation described in Subsection 2.5.1 has been used.

Thehold-all domainis the rectangleB = [0, 16]× [0, 8], from which a cylinder of diameter
D = 1 and centered at (4,4) is extracted. The velocity atx = 0 is prescribed to (10,0), whereas
at y = 0 andy = 8 they−velocity component is prescribed to 0 and thex-component is left
free. The outflow (where both thex- andy-components are free) isx = 16. The Reynolds
number is 100, based on the cylinder diameter and the prescribed inflow velocity. The finite
element mesh employed consists of 10000 linear triangles. The Crank-Nicolson scheme has
been used for the time integration, with a time step sizeδt = 1.

Velocity contours and pressure contours att = 200 obtained using methods M1 and M2
are shown in Fig. 2.10. The important issue is to observe thatboundary conditions are well
approximated both using M1 and M2. The evolution of they-velocity component at point
(10, 4) is shown in Fig. 2.11. It can be observed that both methods yield a similar amplitude,
the frequency obtained with method M2 being slightly smaller. The dimensionless period of
the oscillations is found to beT = 6.11 for method M1 andT = 6.5 with method M2.
Consistently with the results for the convection-diffusion-reaction equation, method M2 seems
to behave always as more dissipative than method M1.

2.6 Conclusions

In this chapter we have proposed a way to prescribe approximately Dirichlet boundary con-
ditions for immersed boundary methods. The main idea is to use as degrees of freedom for
this imposition those associated to the nodes adjacent to the boundary of the computational
domain. In a first approach, these nodes are taken in the exterior of the domain, but this may
yield instabilities (mild and unusual) that can be overcomeby using interior nodes and extrap-
olation. In any case, the degrees of freedom are computed by minimizing the distance of the
unknown to the boundary datum in theL2 norm of the boundary.

The method proposed turns out to be accurate (second order for linear elements) and robust.
We have checked its numerical performance in a variety of situations in flow problems, paying
particular attention to problems that require stabilization.

From the implementation point of view, the method satisfies the main design condition of
using only the degrees of freedom of the mesh ofΩh. This is particularly important in the case
of domains with moving boundaries in which a single fixed meshis used during the whole
calculation, which in fact is the motivation that led us to formulate the method proposed.
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Figure 2.10: Incompressible Navier-Stokes equations. Solution at t = 200. Left: method
M1, Right: method M2. From the top to the bottom: velocity module, contours of velocity
x-component, contours of velocityy-component, pressure contours.



32 Chapter 2. Strong Dirichlet boundary conditions in embedded grids

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

v y

 

 
M1
M2

Figure 2.11: Incompressible Navier-Stokes equations. Evolution of they-velocity component
at point(10, 4) for methods M1 and M2.



Chapter 3

A symmetric method for weakly imposing
Dirichlet boundary conditions in
embedded grids

In this chapter we propose a way to weakly prescribe Dirichlet boundary conditions in embed-
ded grids. The key feature of the method is that no large penalty parameter is needed in order
to ensure stability and that it is symmetric for symmetric problems. In the Poisson problem
this is achieved by introducing an additional element-discontinuous stress variable. Additional
terms are required in order to guarantee stability in the convection-diffusion equation and the
Stokes problem. The proposed method is then easily extendedto the transient Navier-Stokes
equations.

3.1 Introduction

In this chapter we propose a new method for weakly imposing Dirichlet boundary conditions in
embedded grids. In contrast to the method presented in the Chapter 2, the equations imposing
boundary conditions need tocompetewith the ones enforcing the variational equation.

Several variations of Nitsche’s method for weakly imposingboundary conditions can be
found in the literature [64, 50, 108]. These methods are symmetric for symmetric problems,
and do not need additional degrees of freedom to impose boundary conditions. However, a
user defined stabilization parameter is required. Choosingthis stabilization parameter is not
straightforward: if the parameter is not large enough the problem becomes unstable, if it is
too large, the resulting system of equations becomes ill-conditioned. This drawback can be
addressed by using the inverse estimates in order to define the minimum value for the stabi-
lization parameter (see [44] in which the stabilization parameter for the heat transfer problem
is studied). However there are still some non-dimensional constants to be defined in the inverse
estimates, and it remains to be seen how to apply the method tonon-symmetric problems such
as the convection-diffusion equation.

A list of desired properties for our strategy for imposing Dirichlet boundary conditions in
non-matching grids can be extracted from the previously described methods:

• Optimal convergence order should be obtained.

33
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• No additional degrees of freedom should be needed in order toenforce boundary condi-
tions.

• The method should be free of user-defined penalty or stabilization parameters which
might ill-condition the resulting system of equations.

• The resulting variational form should be symmetric for symmetric problems, but also
capable of dealing with flow problems such as the convection-diffusion or the Navier-
Stokes equations.

The starting point of the strategy we propose is the method presented in [58]. This method
imposes Dirichlet boundary conditions weakly but does not require of any user defined sta-
bilization or penalty parameter. In order to do so, a hybrid-formulation which introduces an
additional element-wise discontinuous stress field is used. However, this additional stress field
is only required in the elements which are cut by the immersedboundary, and since it is dis-
continuous across inter-element boundaries, it can be condensed prior to solving the resulting
system of equations. The method shows optimal order of convergence and satisfies the design
condition of not needing additional degrees of freedom in order to impose boundary condi-
tions. However, it is non-symmetric even for symmetric problems.

In Section 3.2 a symmetric version of the method proposed in [58] for Poisson’s problem
is presented. The main idea is again to use a hybrid formulation with an additional element-
wise discontinuous stress field. However, some additional terms are added so that the method
is symmetric. A stability analysis is performed in order to ensure that the method is stable
without the need of user defined penalty parameters. In Section 3.3 we extend the method to
the convection-diffusion equation. Additional terms are required to further enforce boundary
conditions in order to guarantee the stability of the methodin the case of convection dom-
inated flows. The stability analysis shows that boundary conditions can be given a different
treatment in the inflow and the outflow boundary, which justifies the chosen weighting term
for the boundary conditions enforcement. In Section 3.4 we deal with the treatment of bound-
ary conditions in the case of the Stokes problem, and the stability of the proposed method for
this particular problem is shown. Additional terms which enforce the velocity in the direction
normal to the immersed boundary are required to keep the symmetry of the problem. Finally,
in Section 3.5 we put together the terms which define our method for the convection-diffusion
equation and the Stokes problem and we describe the strategyto impose boundary conditions
in the transient incompressible Navier-Stokes equations.Numerical examples illustrate the be-
havior of the proposed method in a number of situations in Section 3.6 and some conclusions
close the chapter in Section 3.7.

3.2 A symmetric method for Poisson’s problem

In this section a symmetric method for imposing boundary conditions for Poisson’s problem
is presented. In the following sections the method will be extended to other symmetric and
non-symmetric problems.
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3.2.1 Problem statement

Let us consider the problem

−k∆u = f in Ω, (3.1)

u = ū onΓ = ∂Ω, (3.2)

wherek > 0, f is a given forcing function and̄u is the given Dirichlet boundary condition.
We assume that the subdomainΩ is polyhedral, and covered by the domainΩh, as explained
in Section 3.1.

We can now consider a hybrid two-field formulation in which weintroduce an additional
flux unknownσ to the previous problem. The problem can now be written as:

−k∆u = f in Ω, (3.3)
1

k
σ = ∇u in Ω, (3.4)

u = ū onΓ = ∂Ω, (3.5)

3.2.2 Weak form

Let Ph = {K} be a finite element partition ofΩh from which we construct the finite element
spaceVh ⊂ H1(Ωh) (we will considerVh made of continuous functions) andSh ⊂ L2(Ωh)

d

(we will considerSh made of element-wise discontinuous functions). Our symmetric varia-
tional form of the problem consists of findinguh ∈ Vh andσh ∈ Sh such that:

k(∇uh,∇vh)− 〈σh · n, vh〉Γ +
1

n
(∇vh,σh)−

1

n
k(∇vh,∇uh) = 〈f, vh〉Ω, ∀vh ∈ Vh,

(3.6)

− 1

nk
(τ h,σh) +

1

n
(τ h,∇uh)− 〈τ h · n, uh〉Γ = −〈τ h · n, ū〉Γ, ∀τ h ∈ Sh

(3.7)

wheren is a free parameter for which we will propose an expression inthe following sections.
Note that in equation (3.6) we have used theσ field only in the terms corresponding to the
fluxes. Here and below,(·, ·) denotes theL2 product inΩ. In general, the integral of two
functiong1 andg2 over a domainω will be denoted by〈g1, g2〉ω, theL2(ω) inner product by
(·, ·)ω and the norm in a function spaceX by ‖ · ‖X , with the simplifications‖ · ‖L2(Ω) ≡ ‖ · ‖
and(·, ·)Ω ≡ (·, ·).

Note that there are four overlapping, non-independent equations in the previous variational
form which are added together, withn playing the role of the weight assigned to each of the
equations:

k(∇uh,∇vh)− 〈σh · n, vh〉Γ = 〈f, vh〉Ω, (3.8)
1

n
(∇vh,σh)−

1

n
k(∇vh,∇uh) = 0, (3.9)

− 1

nk
(τ h,σh) +

1

n
(τ h,∇uh) = 0, (3.10)

−〈τ h · n, uh〉Γ = −〈τ h · n, ū〉Γ, (3.11)
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(3.8) is weakly enforcing (3.3) tested againstvh. (3.9) and (3.10) are weakly enforcing
(3.4) tested against1

n
∇vh and− 1

n
τ h respectively, which corresponds to the least squares min-

imization of the functional:

J1(uh,σh) =
1

2n
‖σh − k∇uh‖2. (3.12)

Finally, (3.11) is weakly enforcing (3.5) tested against−τ h · n. Note that the main difference
between the presented method and the method described in [58] when applied to Poisson’s
problem is (3.10), which does not appear in [58], and is the term which makes the presented
method symmetric.

Let us remark that the volume integrals in (3.6)-(3.7) are performed overΩ = Ωin ∪ ΩΓ,in

as explained in Chapter 2.

3.2.3 Stability

In this subsection we prove that the formulation given by (3.6)-(3.7) is stable, and as a conse-
quence has a unique solution. We define the norm:

|||(u,σ)|||2 = k‖∇u‖2 + k

h
‖u‖2L2(Γ) +

1

k
‖σ‖2, (3.13)

whereh is the element size. For simplicity we will assume thatPh is a uniform finite element
partition. We define the bilinear form on[Vh, Sh]× [Vh, Sh]:

B([uh,σh], [vh, τ h]) =k(∇uh,∇vh)− 〈σh · n, vh〉Γ +
1

n
(∇vh,σh)−

1

n
k(∇vh,∇uh)

− 1

nk
(τ h,σh) +

1

n
(τ h,∇uh)− 〈τ h · n, uh〉Γ.

(3.14)

We now suppose thatVh andSh are such that the following conditions hold for all the
elements cut by the boundaryΓ:

∀vh ∈ Vh ∃τ h ∈ Sh| ‖vh‖2L2(Γ) . 〈τ h · n, vh〉Γ + δ0h‖∇vh‖2, (3.15)

‖τ h‖L2(K) = ‖vh‖L2(K), (3.16)

whereδ0 is a non-dimensional constant, and we have used the notation‖A‖X . ‖B‖Y if there
exists a constantC such that‖A‖X ≤ C‖B‖Y . In the case of a equal interpolation forVh and
Sh and straight intersection ofΓ with the elements,τ h can be defined as:

τ h = nvh, (3.17)

wheren is supposed to be constant in the part of the boundary corresponding to each element.
In the case of a linear interpolation forVh and piecewise constant interpolation forSh, which
is the situation of the numerical examples, we can defineτ h in each element cut by the domain
boundary as:

τ h = nvqmsgn(vlm), (3.18)
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wherevlm is the mean value ofvh in each element andvqm is the square root of the mean value
of v2h in each element:

vlm =

∫

K
vh

∫

K
1
, vqm =

√

∫

K
v2h

∫

K
1
.

(3.16) holds from the definition ofτ h. (3.15) holds forτ ∗
h = nvlm since for linear elements:

〈nvlm · n, vh〉Γ = 〈vlm, vlm〉Γ. (3.19)

On the other hand Schwarz inequality states that:

∫

K

fg ≤
(
∫

K

f 2

)
1

2
(
∫

K

g2
)

1

2

,

which, if we takef = vh andg = 1 allows us to state:

vqm ≥ vlm.

If we takef = −vh andg = 1 we can state:

vqm ≥ −vlm,

which impliesvqm ≥ |vlm|. Taking into account thatvqm ≥ 0 we can see that:

〈nvqmsgn(vlm) · n〉Γ = vqmsgn(vlm)
∫

K

vh

= vqm|vlm|
∫

K

1 ≥ |vlm|2
∫

K

1 = 〈vlm, vlm〉Γ, (3.20)

which demonstrates that (3.15) holds for the definition ofτ h in (3.18) in the case of a linear
interpolation space forVh and elementwise constant stresses forSh.

We take[vh, τ h] = [uh,−σh − β
h
kτ̃ h], whereτ̃ h is the counterpart ofuh in (3.15)-(3.16),

h is the element size andβ is a dimensionless constant to be defined. The following relation
holds foruh:

‖uh‖2L2(K) .h‖uh‖2L2(Γ∩K) + h2‖∇uh‖2L2(K). (3.21)
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We have:

B([uh,σh], [uh,−σh −
β

h
kτ̃ h])

=k(∇uh,∇uh)− 〈σh · n, uh〉Γ +
1

n
(∇uh,σh)−

1

n
k(∇uh,∇uh)

+
1

nk
(σh,σh)−

1

n
(σh,∇uh) + 〈σh · n, uh〉Γ

+
β

nh
(τ̃ h,σh)−

βk

nh
(τ̃ h,∇uh) +

βk

h
〈τ̃ h · n, uh〉Γ

&(1− 1

n
)k‖∇uh‖2 +

1

nk
‖σh‖2 +

βk

h
‖uh‖2L2(Γ)

− β

nh
‖uh‖‖σh‖ −

βk

nh
‖uh‖‖∇uh‖ − βδ0k‖∇uh‖2

≥(1− 1

n
)k‖∇uh‖2 +

1

nk
‖σh‖2 +

βk

h
‖uh‖2L2(Γ)

− βk

2nh2
‖uh‖2 −

β

2kn
‖σh‖2 −

βk

2nh2
‖uh‖2 −

βk

2n
‖∇uh‖2 − βδ0k‖∇uh‖2

≥
(

1− 1

n
− β( 1

2n
+ δ0)

)

k‖∇uh‖2 +
(

1

kn
− β

2kn

)

‖σh‖2 +
βk

h
‖uh‖2L2(Γ) −

βk

h2n
‖uh‖2

&

(

1− 1

n
− β( 3

2n
+ δ0)

)

k‖∇uh‖2 +
(

1

kn
− β

2kn

)

‖σh‖2 + (1− 1

n
)
βk

h
‖uh‖2L2(Γ).

(3.22)

Imposing:

n > 1, β < min

(

1− 1
n

( 3
2n

+ δ0)
, 2

)

, (3.23)

and taking into account that:

|||(uh,−σh −
β

h
kτ̃ h)|||2 =k‖∇uh‖2 +

k

h
‖uh‖2L2(Γ) +

1

k
‖ − σh −

β

h
kτ̃ h‖2

≤k‖∇uh‖2 +
k

h
‖uh‖2L2(Γ) +

1

k
‖σh‖2 +

kβ2

h2
‖τ̃ h‖2

=k‖∇uh‖2 +
k

h
‖uh‖2L2(Γ) +

1

k
‖σh‖2 +

kβ2

h2
‖uh‖2

.k(1 + β2)‖∇uh‖2 +
k

h

(

1 + β2
)

‖uh‖2L2(Γ) +
1

k
‖σh‖2,

(3.24)

we obtain the result we wished to prove:

Theorem For all [uh,σh] there exist[vh, τ h] andα > 0 such that:

B([uh,σh], [vh, τ h]) ≥ α|||(uh,σh)||||||(vh, τ h)|||. (3.25)

We have now demonstrated that our symmetric bilinear form isstable for the Poisson
problem for anyn > 1. We considern = 2 in the following.
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3.2.4 Implementation and comparison to Nitsche’s method

A key feature of the presented method is that since the stressfield is discontinuous across in-
terelement edges, it can be eliminated from the final equations. We will show in this section
that after eliminating the stress variables some of the terms cancel out, and the final expression
of the terms to be implemented is very similar to that of Nitsche’s method, but with the im-
portant feature that no penalty parameters need to be estimated, since we have already found a
value forn for which the method is stable.

Let U andΣ be the arrays of nodal unknowns ofuh andσh and let us define the matrices
Kuu, Kσσ, Kσu andKuσ related to the weak form integrals:

Kuu ·U which comes from the term+ k(∇vh,∇uh),

Kσσ ·Σ which comes from the term− 1

nk
(τ h,σh),

Kσu ·U which comes from the term+
1

n
(τ h,∇uh),

Kuσ ·Σ which comes from the term+
1

n
(∇vh, σh), (3.26)

as well asGuσ, Gσu, gσū andf :

Guσ ·Σ which comes from the term− 〈n · σ, vh〉Γ,
Gσu ·U which comes from the term− 〈n · τ h, uh〉Γ,

gσū which comes from the term− 〈n · τ h, ū〉Γ,
f which comes from the term+ (f, vh). (3.27)

The problem written in matrix form is:
[

(1− 1
n
)Kuu Kuσ +Guσ

Kσu +Gσu Kσσ

] [

U

Σ

]

=

[

f

gσū

]

. (3.28)

We can compute the fluxes as:

Σ = K−1
σσ (−(Kσu +Gσu) ·U + gσū). (3.29)

In elements cut byΓ, K−1
σσ is block diagonal, and therefore easy to invert due to the element-

wise discontinuous stress approximation. This allows the condensation of the stress unknowns
at the element level and we are left with only the original unknowns of the problem:

[(1− 1

n
)Kuu − (Guσ +Kuσ)K

−1
σσ (Kσu +Gσu)] ·U = [f − (Guσ +Kuσ)K

−1
σσgσū],

(3.30)

We now define the matricesG1
uu, G2

uu, Gα
uu and the vectorsguū andgα

uū:

G1
uu ·U which comes from the term− k〈n · ∇uh, vh〉Γ,

G2
uu ·U which comes from the term− k〈n · ∇vh, uh〉Γ,
Gα

uuU which comes from the term+ k
α

h
〈vh, uh〉Γ,

guū which comes from the term− k〈n · ∇vh, ū〉Γ,
gα
uū which comes from the term+ k

α

h
〈vh, ū〉Γ, (3.31)
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We will now see that the following equalities hold:

1.

1

n
Kuu ·U = −[KuσK

−1
σσKσu] ·U . (3.32)

Let us check this. IfSh is taken to be piecewise-discontinuous and rich enough we can
deduce that[K−1

σσKσu] ·U arises from the term :

−kPSh
(∇uh) = −k∇uh, (3.33)

where PSh
is the L2 projection into the stress space. And we can see now that

−[KuσK
−1
σσKσu] ·U arises from1

n
k(∇vh,∇uh) , that is to say, is equal to1

n
Kuu ·U .

2. Similarly:

G2
uu ·U = −[KuσK

−1
σσGσu] ·U ,

guū = −[KuσK
−1
σσgσū]. (3.34)

3. and:

G1
uu ·U = −[GuσK

−1
σσKσu] ·U , (3.35)

Taking these equalities into account we can write the matrixform (3.30) as:

[Kuu +G1
uu +G2

uu −GuσK
−1
σσGσu] ·U = [f + guū −GuσK

−1
σσgσū]. (3.36)

Let us now write Nitsche’s method for Poisson’s problem, which is:

k(∇uh,∇vh)− k〈∂nuh, vh〉Γ − k〈∂nvh, uh〉Γ + k
α

h
〈uh, vh〉Γ

= 〈f, vh〉Ω − k〈∂nvh, ū〉Γ + k
α

h
〈ū, vh〉Γ, (3.37)

which we can write in matrix form as:

[Kuu +G1
uu +G2

uu +Gα
uu] ·U = [f + guū + gα

uū]. (3.38)

We can conclude that the only difference between the presented method and Nitsche’s
method is that we have replaced:

Gα
uu ·U andgα

uū, (3.39)

by:

−GuσK
−1
σσGσu ·U and −GuσK

−1
σσgσū. (3.40)

We end up with a symmetric method which is identical to Nitsche’s method (for a rich enough
discontinuous stress field), except for the so called penalty term. The main advantage of our
formulation is that no large penalty parameter has to be usedin order to ensure stability since
we can define a value forn for which the method is stable. Note that the penalty terms in(3.39)
involve boundary terms, whereas in (3.40) they involve volume integrals.
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3.3 Introducing convection

3.3.1 Problem statement

In this section we deal with the convection-diffusion equation. The problem to be solved is no
longer symmetric, and additional terms are needed in order to ensure the stability of the final
weak form. The problem we are considering in this section is:

−∇ · σ + a · ∇u = f in Ω, (3.41)
1

k
σ = ∇u in Ω, (3.42)

u = ū onΓ = ∂Ω, (3.43)

wherek > 0, a is the advection velocity,f is a given forcing function and̄u is the given
Dirichlet boundary condition. We have already used the two-field formulation presented for
Poisson’s problem.

3.3.2 Weak form

The variational form of the problem consists of findinguh ∈ Vh andσh ∈ Sh such that:

(1− 1

n
)k(∇uh,∇vh)− 〈σh · n, vh〉Γ + (a · ∇uh, vh) +

1

n
(∇vh,σh) +

1

2
〈avh, uh〉Γ

= 〈f, vh〉Ω +
1

2
〈avh, ū〉Γ, ∀vh ∈ Vh, (3.44)

− 1

nk
(τ h,σh) +

1

n
(τ h,∇uh)− 〈τ h · n, uh〉Γ = −〈τ h · n, ū〉Γ, ∀τ h ∈ Sh (3.45)

Note that in the previous weak form we have replaced (3.8) with:

k(∇uh,∇vh)− 〈σh · n, vh〉Γ + (a · ∇uh, vh) = 〈f, vh〉Ω, (3.46)

and we have added:

1

2
〈avh, uh〉Γ =

1

2
〈avh, ū〉Γ, (3.47)

which is weakly enforcing (3.3) tested againsta
2
vh. We will see how to definea in the following

sections.
It is observed that, apart from the way to impose the boundaryconditions, (3.44)-(3.45)

is based on the standard Galerkin method to solve the convection-diffusion-reaction equation.
This method is stable only for high values of the diffusion coefficientk. Even though in the
examples we will consider convection dominated flows solvedusing a stabilized formulation,
for the sake of conciseness the exposition will be developedin the diffusion dominated case.
Likewise, we will considera constant, for simplicity.
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3.3.3 Stability

In this subsection we prove that the formulation given by (3.44)-(3.45) is stable, and as a
consequence has a unique solution.

We define the bilinear form on[Vh, Sh]× [Vh, Sh]:

Bc([uh,σh], [vh, τ h]) =(1− 1

n
)k(∇uh,∇vh)− 〈σh · n, vh〉Γ + (a · ∇uh, vh) +

1

n
(∇vh,σh)

+
1

2
〈avh, uh〉Γ −

1

nk
(τ h,σh) +

1

n
(τ h,∇uh)− 〈τ h · n, uh〉Γ

(3.48)

Taking[vh, τ h] = [uh,−σh− β
h
kτ̃ h], where we have defined̃τ h as in the previous section,

we have:

Bc([uh,σh],[uh,−σh −
β

h
kτ̃ h]) =

=(1− 1

n
)k(∇uh,∇uh)− 〈σh · n, uh〉Γ + (a · ∇uh, uh) +

1

n
(∇uh,σh)

+
1

2
〈auh, uh〉Γ +

1

nk
(σh,σh)−

1

n
(σh,∇uh) + 〈σh · n, uh〉Γ

+
β

nh
(τ̃ h,σh)−

βk

nh
(τ̃ h,∇uh) +

βk

h
〈τ̃ h · n, uh〉Γ

&

(

1− 1

n
− β( 3

2n
+ δ0)

)

k‖∇uh‖2 +
(

1

kn
− β

2kn

)

‖σh‖2 + (1− 1

n
)
βk

h
‖uh‖2L2(Γ)

+
1

2

∫

Γ

n · au2h +
1

2

∫

Γ

au2h

=

(

1− 1

n
− β( 3

2n
+ δ0)

)

k‖∇uh‖2 +
(

1

kn
− β

2kn

)

‖σh‖2 + (1− 1

n
)
βk

h
‖uh‖2L2(Γ)

+
1

2

∫

Γ

(n · a + a)u2h,

(3.49)

where the same steps as in (3.22) have been carried out.
From here we can deduce that, as long as the following relation holds:

a+ a · n ≥ 0, (3.50)

then:

Theorem For all [uh,σh]there exist[vh, τ h] andα > 0 such that:

B([uh,σh], [vh, τ h]) ≥ α|||(uh,σh)||||||(vh, τ h)|||. (3.51)

Taking into account (3.50) the obvious definition fora is:

a = −a · n, if a · n < 0

a = 0, otherwise (3.52)

The definition of the weighting terma is very similar to the one used in the weak imposition
of boundary conditions in [15], the main difference being that in our case it is accompanied
with a 1

2
factor.
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3.4 Extension to the Stokes problem

In this section we extend the previous ideas to the Stokes problem, for which we obtain a
symmetric method again. Once the method is defined for the Stokes problem we can deal with
the Navier-Stokes equations just by putting together to theformulation presented in Section 3.3
the one in the current section.

3.4.1 Problem statement

Let us consider the three-field formulation for the Stokes problem:

−ν∆u +∇p = f in Ω, (3.53)

∇ · u = 0 in Ω, (3.54)
1

ν
σ = ∇u in Ω, (3.55)

u = ū onΓ = ∂Ω, (3.56)

whereν > 0, f is a given forcing function and̄u is the given Dirichlet boundary condition.
Note thatσ only accounts for the deviatoric part of the pseudo-stresses (we could also formu-
late the method in terms of the strain rate tensor∇su).

3.4.2 Weak form

Let us consider the finite element spacesVh ⊂ H1(Ωh)
d , Qh ⊂ L2(Ωh) (we will consider

Vh andQh made of continuous functions) andSh ⊂ L2(Ωh)
d×d (we will considerSh made

of element-wise discontinuous functions). As stated in theprevious chapter the standard finite
element approximation of the Stokes problem is not stable for an arbitraryu, p interpolation.
This is the reason why we add stabilization terms to the original weak form of the problem,
which allow us to use equal interpolation spaces for velocity and pressure. Our stabilized
symmetric variational form of the problem consists of findinguh ∈ Vh, ph ∈ Qh andσh ∈ Sh

such that:

(1− 1

n
)ν(∇uh,∇vh)− (∇ · vh, ph)− 〈σh · n, vh〉Γ + 〈n · vh, ph〉Γ

−
∑

K

τK(ν∆vh, ν∆uh)K +
∑

K

τK(ν∆vh,∇ph)K +
1

n
(∇vh,σh)

= 〈f , vh〉Ω +
∑

K

τK(ν∆vh, f )K , ∀vh ∈ Vh, (3.57)

−(qh,∇ · uh) +
∑

K

τK(∇qh, ν∆uh)K −
∑

K

τK(∇qh,∇ph)K + 〈qh,n · uh〉Γ

= −
∑

K

τK(∇qh, f )K + 〈qh,n · ū〉Γ, ∀qh ∈ Qh, (3.58)

− 1

nν
(τ h,σh) +

1

n
(τ h,∇uh)− 〈τ h · n,uh〉Γ = −〈τ h · n, ū〉Γ, ∀τ h ∈ Sh (3.59)
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In this terms(·, ·)K ≡ (·, ·)L2(K) represents integrals over each element, and we define the
stabilizing parameterτK as:

τK =
(

c1
ν

h2

)−1

, (3.60)

in each element, whereh is the element size. For the numerical experiments we have taken
c1 = 4.

Note that there are several overlapping dependent equations in the previous variational
form:

ν(∇uh,∇vh)− (∇ · vh, ph)− 〈σh · n, vh〉Γ + 〈n · vh, ph〉Γ = 〈f , vh〉Ω, (3.61)

−
∑

K

τK(ν∆vh, ν∆uh)K +
∑

K

τK(ν∆vh,∇ph)K =
∑

K

τK(ν∆vh, f)K , (3.62)

1

n
(∇vh,σh)−

1

n
ν(∇uh,∇vh) = 0, (3.63)

−(qh,∇ · uh) = 0, (3.64)
∑

K

τK(∇qh, ν∆uh)K −
∑

K

τK(∇qh,∇ph)K = −
∑

K

τK(∇qh, f)K , (3.65)

〈qh,n · uh〉Γ = 〈qh,n · ū〉Γ (3.66)

− 1

nν
(τ h,σh) +

1

n
(τ h,∇uh) = 0, (3.67)

−〈τ h · n,uh〉Γ = −〈τ h · n, ū〉Γ. (3.68)

(3.61) is weakly enforcing (3.53) tested againstvh. (3.64) is weakly enforcing (3.54) tested
against−qh. (3.63) and (3.67) are weakly enforcing (3.55) tested against 1

n
ν∇vh and− 1

n
τ h

respectively. (3.68) is weakly enforcing (3.56) tested against−τ h · n.

(3.66) is weakly imposing (3.56) tested againstqhn. This term is added in order to keep
the method symmetric and also in order to be able to prove stability.

Finally (3.62) and (3.65) are the stabilizing terms for the Stokes problem, which are inde-
pendent of the way boundary conditions are imposed.

3.4.3 Stability

In this subsection we prove that the formulation given by (3.57)-(3.59) is stable, and as a
consequence has a unique solution. We define the norm:

|||(u, p,σ)|||2 = ν‖∇u‖2 + ν

h
‖u‖2L2(Γ) +

h2

ν
‖∇p‖2 + 1

ν
‖σ‖2. (3.69)
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We define the bilinear form on[Vh, Qh, Sh]× [Vh, Qh, Sh]:

Bs([uh, ph,σh], [vh, qh, τ h]) =

+ (1− 1

n
)ν(∇uh,∇vh)− (∇ · vh, ph)− 〈σh · n, vh〉Γ + 〈n · vh, ph〉Γ −

∑

K

τK(ν∆vh, ν∆uh)K

+
∑

K

τK(ν∆vh,∇ph)K +
1

n
(∇vh,σh)− (qh,∇ · uh) +

∑

K

τK(∇qh, ν∆uh)K

−
∑

K

τK(∇qh,∇ph)K + 〈qh,n · uh〉Γ −
1

nν
(τ h,σh) +

1

n
(τ h,∇uh)− 〈τ h · n.uh〉Γ (3.70)

We now suppose thatVh andSh are such that the following conditions hold for all the elements
cut by the boundaryΓ:

∀vh ∈ Vh ∃τ h ∈ Sh| ‖vh‖2L2(Γ) . 〈τ h · n, vh〉Γ + δ0h‖∇vh‖2, ‖τ h‖L2(K) = ‖vh‖L2(K)

(3.71)

Taking[vh, qh, τ h] = [uh,−ph,−σh− β
h
ντ̃ h], whereτ̃ h is the counterpart ofuh in (3.71),

we have:

Bs([uh, ph,σh], [uh,−ph,−σh −
β

h
ντ̃ h]) =

+ (1− 1

n
)ν(∇uh,∇uh)− (∇ · uh, ph)− 〈σh · n,uh〉Γ + 〈n · uh, ph〉Γ −

∑

K

τK(ν∆uh, ν∆uh)K

+
∑

K

τK(ν∆uh,∇ph)K +
1

n
(∇uh,σh) + (ph,∇ · uh)−

∑

K

τK(∇ph, ν∆uh)K

+
∑

K

τK(∇ph,∇ph)K − 〈ph,n · uh〉Γ +
1

nν
(σh,σh)−

1

n
(σh,∇uh) + 〈σh · n,uh〉Γ

+
β

nh
(τ̃ h,σh)−

βν

nh
(τ̃ h,∇uh) +

βν

h
〈τ̃ h · n,uh〉Γ

&

(

1− 1

n
− β( 3

2n
+ δ0)

)

ν‖∇uh‖2 −
∑

K

τK‖ν∆uh‖2K + (1− 1

n
)
βν

h
‖uh‖2L2(Γ)

+
∑

K

τK‖∇ph‖2K +

(

1

νn
− β

2νn

)

‖σh‖2

≥
(

1− 1

n
− β( 3

2n
+ δ0)− C1

)

ν‖∇uh‖2 + (1− 1

n
)
βν

h
‖uh‖2L2(Γ)

+ C2
h2

ν
‖∇ph‖2 +

(

1

νn
− β

2νn

)

‖σh‖2, (3.72)

whereC1 is such that, making use of the inverse estimates:

∑

K

τK‖ν∆uh‖2K ≤ C1ν‖∇uh‖2, (3.73)
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andC2 is defined as1
c1

in (3.60). Imposing:

n > 1, β < min

(

1− 1
n

( 3
2n

+ δ0)
, 2

)

, (3.74)

we can now define the constant:

α0 = min

(

1− 1

n
− β( 3

2n
+ δ0)− C1, C2,

1

n
− β

2n
, 1− 1

n

)

, (3.75)

which is positive for a sufficiently small stability parameter τK . We have now proved that:

B([uh, ph,σh], [uh,−ph,−σh −
β

h
ντ̃ h]]) & α0|||(uh, ph,σh)|||2, (3.76)

We now take into account that:

|||(uh,ph,−σh −
β

h
kτ̃ h)|||2 = k‖∇uh‖2 +

k

h
‖uh‖2L2(Γ) +

h2

ν
‖∇ph‖2 +

1

k
‖ − σh −

β

h
kτ̃ h‖2

≤k‖∇uh‖2 +
k

h
‖uh‖2L2(Γ) +

h2

ν
‖∇ph‖2 +

1

k
‖σh‖2 +

kβ2

h2
‖τ̃ h‖2

=k‖∇uh‖2 +
k

h
‖uh‖2L2(Γ) +

h2

ν
‖∇ph‖2 +

1

k
‖σh‖2 +

kβ2

h2
‖uh‖2

.k(1 + β2)‖∇uh‖2 +
k

h

(

1 + β2
)

‖uh‖2L2(Γ) +
h2

ν
‖∇ph‖2 +

1

k
‖σh‖2,

(3.77)

which allows us to obtain the result we were looking for:

Theorem For all [uh, ph,σh] there exist[vh, qh, τ h] andα > 0 such that:

B([uh, ph,σh], [vh, qh, τ h]) ≥ α|||(uh, ph,σh)||||||(vh, qh, τ h)|||. (3.78)

3.4.4 Implementation and comparison to Nitsche’s method

Equalities similar to (3.32)-(3.35) hold also for the Stokes problem. We can now write down
the weak form of the problem as it results if Nitsche’s methodis used to impose boundary
conditions, which is:

ν(∇uh,∇vh)− (∇ · vh, ph)− ν〈∇uh · n, vh〉Γ − ν〈∇vh · n,uh〉Γ + 〈n · vh, ph〉Γ
−
∑

K

τK(ν∆vh, ν∆uh)K +
∑

K

τK(ν∆vh,∇ph)K + ν
α

h
〈uh, vh〉Γ

= 〈f , vh〉Ω +
∑

K

τK(ν∆vh, f )K − ν〈∇vh · n, ūh〉Γ + ν
α

h
〈ūh, vh〉Γ, ∀vh ∈ Vh, (3.79)

−(qh,∇ · uh) +
∑

K

τK(∇qh, ν∆uh)K −
∑

K

τK(∇qh,∇ph)K + 〈qh,n · uh〉Γ

= −
∑

K

τK(∇qh, f)K + 〈qh,n · ū〉Γ, ∀qh ∈ Qh. (3.80)
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Making use of (3.32)-(3.35) we can conclude that after condensing the stress field at the el-
ement level, the presented method is very similar to Nitsche’s method, the main difference
being in the definition of the so-called penalty term, for which we do not need a large penalty
parameter in order to ensure stability.

3.5 Transient Navier-Stokes equations

The proposed method for imposing boundary conditions in thetransient Navier-Stokes equa-
tions consists simply in putting together the terms appearing in the convection-diffusion equa-
tion with the ones in the Stokes problem. As in the Stokes problem a stabilized formulation
is required so that equal interpolations for the velocity and the pressure can be used. More-
over, additional stabilization terms are added so that we can deal with convection-dominated
problems.

3.5.1 Problem statement

Let us consider the three-field formulation for the transient Navier-Stokes equations:

∂tu− ν∆u + u · ∇u+∇p = f in Ω, (3.81)

∇ · u = 0 in Ω, (3.82)
1

ν
σ = ∇u in Ω, (3.83)

u = ū onΓ = ∂Ω, (3.84)

in Ω and fort > 0, wheref is the vector of body forces andν the kinematic viscosity and
∂tu is the local time derivative of the velocity field. Appropriate initial conditions have to be
appended to this problem.
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3.5.2 Weak form

The variational form of the problem consists of findinguh ∈ Vh, ph ∈ Qh andσh ∈ Sh such
that:

(vh, ∂tuh) + (1− 1

n
)ν(∇uh,∇vh) + (vh,uh · ∇uh)− (∇ · vh, ph)− 〈σh · n, vh〉Γ

+〈n · vh, ph〉Γ +
∑

K

τK〈ν∆vh + uh · ∇vh, ∂tuh − ν∆uh + uh · ∇uh +∇ph〉K

+
1

n
(∇vh,σh) +

1

2
〈avh,uh〉Γ

= 〈f , vh〉Ω +
∑

K

τK〈ν∆vh + uh · ∇vh, f〉K +
1

2
〈avh, ū〉Γ, ∀vh ∈ Vh,

−(qh,∇ · uh) +
∑

K

τK(∇qh, ∂tuh − ν∆uh + uh · ∇uh +∇ph)K + 〈qh,n · uh〉Γ

= −
∑

K

τK(∇qh, f )K + 〈qh,n · ū〉Γ, ∀qh ∈ Qh,

− 1

nν
(τ h,σh) +

1

n
(τ h,∇uh)− 〈τ h · n,uh〉Γ = −〈τ h · n, ū〉Γ, ∀τ h ∈ Sh

(3.85)

and now the stabilization parameter is computed as

τK =

(

c1
ν

h2
+ c2
|uh|K
h

)−1

,

where|uh|K is the mean velocity modulus in elementK. The stability constants are defined as
c1 = 4 andc2 = 2. Any finite difference scheme can be used to approximate the time derivative
∂tuh.

3.6 Numerical examples

3.6.1 Convection-diffusion equation

In this subsection we illustrate the behavior of the proposed method for the scalar convection-
diffusion equation. The Poisson, and convection-diffusion equations are solved in a domainΩ
enclosed in a circle of radiusR < 1. We choose thehold-all domainB = (−1, 1)× (−1, 1),
where a system of Cartesian coordinates(x, y) with its origin at the center of the circle has
been adopted. A structured mesh of right-angled linear triangular elements is constructed inB,
h being the length of the edges corresponding to the cathetus.

The Poisson equation

Let us start solving the Poisson equation withk = 1, a = 0, f = 1 to check the performance
and convergence of the proposed method. The analytical solution for this case is known to be

u(x, y) =
1

4
(R2 − x2 − y2).
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Fig. 3.1 shows the errors‖u− uh‖L2(Ω) versus the element sizeh. The coarsest mesh is
built of 1250 elements, while the finer ones is built out of 320000 elements. The method
shows quadratic convergence when linear elements are used.When compared to the strong
imposition of boundary conditions described in Chapter 2, the error obtained is smaller in the
current method although both methods show quadratic convergence.
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Figure 3.1: Results and error convergence for the solution of the diffusion equation

Convection-diffusion

Fig. 3.2 shows the behaviour of the method in the convection-diffusion problem, wherek =
10−2, a = (1, 0), f = 1. A stabilized formulation similar to the one described in Section 3.5
has been used. In order to obtain the error we have computed the solution for a very fine
mesh (h = 2/800, 1200000 elements) which we have used as the reference solution. Again, the
method shows quadratic convergence, although the strong imposition of boundary conditions
performs slightly better in the convection-diffusion equation.
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Figure 3.2: Results and error convergence for the solution of the convection-diffusion equation

It is also interesting to observe how the method behaves in strongly convection dominated
problems. In Fig. 3.3 the solution for the problem with different viscosities are compared. We
can observe that when convection grows larger and the corresponding boundary layer becomes
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thinner, the mesh is no longer capable of capturing the boundary layer geometry. Due to the
fact that the weak formulation does not weight the boundary conditions against convection
velocity in the outflow boundary, we can observe that there are no spurious oscillations in
the outflow boundary layer. As viscosity grows smaller the solution of the problem resembles
the solution of the pure transport equation, where no boundary conditions are imposed on the
outflow.

Figure 3.3: Solution comparison for the convection-diffusion equation with viscosities10−1,
10−2 and10−5 .

3.6.2 Stokes problem

In this section we solve the Stokes problem and we check the convergence properties of the
proposed method. We study the stationary Stokes flow around acylinder. We use linear inter-
polations both for the velocity and for the pressure and the stabilized formulation proposed
in the previous sections. The setting of the problem is shownin Fig. 3.4. A parabolic inflow
profile with unitary mean horizontal velocity is set onx = 0. Velocity is prescribed to zero
on y = 0 andy = 1 and on the cylindric boundary. The proposed method for weakly impos-
ing boundary conditions has been used both in the immersed cylindrical interface and in the
external grid matching boundaries.

In Fig. 3.5 velocity and pressure fields for a fine mesh are shown. In Fig. 3.6 we have plot-
ted the error versus the mesh size, both for the velocity and for the pressure fields. The coarsest
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Figure 3.4: Geometry and boundary conditions for the Stokesflow around a cylinder.

mesh is built of 625 elements, while the finer one is built out of 40000 elements. Again, re-
sults for each mesh size have been compared against results in a much finer mesh (160000
elements). We can see that quadratic convergence rates are obtained in both cases. When com-
pared to the strong imposition of boundary conditions, we can conclude that both methods
perform equally well, except for the coarsest mesh case, in which the strong imposition of
boundary conditions performs slightly better.

3.6.3 Transient Navier-Stokes equations

In this section we deal with the transient incompressible Navier-Stokes equations. As in the
previous subsection, we will solve the flow around a cylinder, although the overall domain
is larger in this case in order to allow the development of thevortices which arise behind
the cylinder. The setting of the problem is depicted in Fig. 3.7. A parabolic inflow profile
with mean horizontal velocity equal to1 is set onx = 0. Velocity is prescribed to zero at
y = 0, y = 8 and the cylindric boundary. The proposed method for weakly imposing boundary
conditions has been used both in the immersed cylindrical interface and in the external grid
matching boundaries. Viscosity has been set toν = 10−2, which yields a Reynolds number
Re = 100 based on the cylinder diameter and the mean inflow velocity. Abackward Euler
scheme has been used for the time integration with time stepδt = 0.2. A 12566 linear element
mesh has been used to solve the problem. The mesh has been refined in the area around the
cylinder, but it is still a rather coarse mesh in which the length of the cylinder is only 12 times
the element length.

In Fig. 3.8 velocity and pressure fields at the end of the simulation (t = 100) are shown.
Fully developed vortices behind the cylinder, and a smooth solution around the immersed
boundary can be appreciated. Fig. 3.9 shows the time historyof the vertical velocity at a point
behind the cylinder(10, 4). After the initial transitory stage, an oscillatory pattern of amplitude
0.6 and period4.9 is established. When compared to the results of the strong imposition of
boundary conditions, we can see that both methods yield verysimilar results, the weak method
presenting slightly larger amplitudes in both the initial transitory and the periodic stages.
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Figure 3.5: Velocity and pressure fields for the Stokes flow around a cylinder.
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Figure 3.6: Convergence plots for the velocity (left) and pressure (right) fields in the Stokes
flow around a cylinder.
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Figure 3.7: Geometry and boundary conditions for the transient Navier-Stokes flow around a
cylinder.

Figure 3.8: Velocity and pressure fields for the transient Navier-Stokes flow around a cylinder.
Results att = 100.
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Figure 3.9: Vertical velocity evolution at(10, 4). Comparison between weak and strong en-
forcement of boundary conditions.

3.6.4 Weak imposition of boundary conditions in the transport equation

In this subsection we study the pure transport equation in which only boundary conditions on
the inflow are needed. We solve the problem described in the convection-diffusion subsection,
but we only impose boundary conditions on the inflow. Linear convergence is obtained with
both the strong imposition of boundary conditions described in Chapter 2 and the strategy
described in this chapter, although quadratic convergenceis obtained for the strong imposition
of boundary conditions in boundary matching grids. For the method described in this chapter,
the problem does not seem to be in the outflow, but in the inflow,where the method does not
impose boundary conditions strongly enough.

In Fig. 3.10 we can observe the error for different meshes in the pure transport equation.
It can be seen that the error diminishes linearly with the mesh size but also, and most impor-
tantly, that the computed solution is displaced, that is, the error does not oscillate around 0, but
around 0.08 (h = 1/50), 0.04 (h = 1/100) and 0.02 (h = 1/200). This suggests that the boundary
conditions are not strongly enough imposed.

Fig. 3.11 shows the convergence rates for the solution of thepure transport equation for
different methods. We can see that convergence is linear forboth weak and strong boundary
conditions if a stabilized formulation is used. If no stabilization is used,and the mesh nodes
are aligned with the advection direction, the convergence is closer to quadratic. This suggests
that the incorrect weighting of the boundary conditions is due to the stabilization terms.

Since the stabilization terms add numerical viscosity in the direction of the streamlines, we
can try considering a different viscosity in the term which weights the boundary conditions in
the Poisson problem:

k∗ = k + ατa2, (3.86)

whereα is a dimensionless constant. In this way we are able to recover a close to quadratic
convergence. We use this viscosity for the computation of the terms imposing the boundary
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Figure 3.10: Error comparison (uh - analytical) for the pure transport equation forh = 1/50,
1/100, 1/200. We can observe that the error is diminishing linearly withh. Moreover it is dis-
placed 0.08, 0.04 and 0.02 from the 0 position. A stronger imposition of boundary conditions
would improve the solution.
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conditions:

−GuσK
−1
σσGσu ·U and −GuσK

−1
σσgσū (3.87)

which we substitute by:

−k∗
k
GuσK

−1
σσGσu ·U and − k∗

k
GuσK

−1
σσgσū (3.88)

The optimal value forα happens to be aroundα = 200, which does not have any physical
meaning. Further work needs to be done in order to find a properdefinition of the weighting
terms for the boundary conditions in the pure transport equation.
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Figure 3.11: Convergence plots for the transport equation,comparison between several meth-
ods

3.7 Conclusions

In this chapter we have proposed a way to weakly prescribe Dirichlet boundary conditions
in embedded grids. The key feature of the proposed method is that we can ensure stability
without the need of a large penalty parameter and that it is symmetric for symmetric problems.
In the Poisson problem this is achieved by introducing an additional element-discontinuous
stress variable. Additional terms are required in order to guarantee stability in the convection-
diffusion equation, in which we weight the boundary conditions with a particular norm of
the convection velocity, and the Stokes problem, where we test the imposition of boundary
conditions against the pressure test functions. The proposed strategy is then easily extended to
the transient Navier-Stokes equations.
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The method turns out to be accurate (second order for linear elements) and robust for all
the problems tested except for the pure transport equation,in which we are not able to recover
quadratic convergence. Further work needs to be developed to find a proper definition of the
weighting terms for the imposition of boundary conditions in the pure transport equation. From
the implementation point of view, the method satisfies the main design condition of using only
the degrees of freedom of the mesh ofΩh. Moreover, the final resulting method is very easy
to implement, since it only requires some additional boundary integrals to be added to the
original variational form.

When compared to the method described in Chapter 2 we can conclude that both meth-
ods perform similarly well, and are both equally suitable for flow problems. However, recent
research suggests that the weak imposition of boundary conditions (both in matching and non-
matching grids) could be more suitable for highly turbulentflows (see [15]). On the other hand,
strong boundary conditions seem more suitable for problemswhich require a sharp tracking
of the domain movement, such as the free surface problems to be described in the following
chapters.
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Chapter 4

The Fixed-Mesh ALE approach applied to
flows in moving domains

In this chapter we propose a method to approximate flow problems in moving domains using
always a given grid for the spatial discretization, and therefore the formulation to be presented
falls within the category of fixed-grid methods. Our main concern is to properly account for the
advection of information as the domain boundary evolves. Toachieve this, we use an arbitrary
Lagrangian-Eulerian framework, the distinctive feature being that at each time step results are
projected onto a fixed, background mesh, that is where the problem is actually solved.

4.1 Introduction

In many coupled problems of practical interest the domain ofat least one of the problems
evolves in time. The Arbitrary Eulerian Lagrangian (ALE) approach is a tool very often em-
ployed to cope with this domain motion. In this work we aim at describing a particular version
of the ALE formulation that can be used in different coupled problems. In this chapter we will
particularize it to flow problems.

In the classical ALE approach to solve problems in computational fluid dynamics, the mesh
in which the computational domain is discretized is deformed (see for example [45, 79, 74]).
This is done according to a prescribed motion of part of its boundary, which is transmitted
to the interior nodes in a way as smooth as possible so as to avoid mesh distortion. In this
work we present an ALE-type strategy with a different motivation. Instead of assuming that
the computational domain is defined by the mesh boundary, we assume that there is a function
that defines the boundary of the domain where the flow takes place. We will refer to it as the
boundary function. It may be given, for example, by the shape of a body that moveswithin the
fluid, or it may need to be computed, as in the case of level set functions. It may be also defined
discretely, by a set of points. When this boundary function moves, the flow domain changes,
and that must be taken into account at the moment of writing the conservation equations that
govern the flow, which need to be cast in the ALE format. However, our purpose here is to
explain how to use always a backgroundfixed mesh. That requires a virtual motion of the
mesh nodes followed by a projection of the new node positionsonto the fixed mesh.

The basic numerical formulation we will use consists of a stabilized finite element method

59
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to solve the ALE flow equations and finite difference time integration schemes. However, other
discretization techniques could be applied, since the ideawe want to expose is independent
of the numerical method being used. This idea consists in projecting the results of the ALE
deformed mesh onto a fixed background meshat each time step, prior to solving the flow
equations. It will be shown that at the end all the calculations can be performed on the fixed
mesh, and in fact the ALE deformed mesh does not need to be explicitly built.

We want to stress that this idea is independent on the way to impose boundary conditions
on the moving boundary. The way to impose this prescription is often used to classify a par-
ticular fixed-mesh method. Since the physical boundary is contained in the domain actually
discretized, these methods are often calledimmersed boundary methods. Moreover, since the
fixed grid used is often Cartesian, these formulations can befound under the keywordsCarte-
sian grid methods(see for example the reviews [127, 103, 100]). These methodsare developed
for constant-in-time domains, and then extended in a more orless ad-hoc way to time depen-
dent domains. In spite of the fact that we want to distinguishbetween the way to deal with
moving domains from the way of approximately imposing the boundary conditions on the
moving boundary, we will briefly describe the particular approach we use, which corresponds
to the method described in Chapter 2.

The chapter is organized as follows. A general overview of the FM-ALE method is pre-
sented in Section 4.2, starting with the discretization of the classical ALE formulation and
then describing the algorithmic steps of the FM-ALE alternative. These steps are further elab-
orated in Section 4.3. Even though they are not intrinsic to the main idea of the method, there
are three numerical ingredients that are essential for the success of the formulation. These are
the definition and updating of the moving boundary, the approximate imposition of boundary
conditions and the projection of data between two differentfinite element meshes. These “side
ingredients” are here particularized to the FM-ALE method.They are described in Section 4.4.
A simple numerical example, but containing all the featuresof the formulation, is presented in
Section 4.5. For other applications of the FM-ALE method see[73], where the simulation of
lost foam casting is carried out, or [41], were classical free surface problems are solved with
the FM-ALE method. Some conclusions close the chapter in Section 4.6.

4.2 The Fixed-Mesh ALE method

In this section we describe the essential idea of the FM-ALE method. However, we start with
the classical ALE formulation of the incompressible Navier-Stokes equations and their numer-
ical approximation.

4.2.1 The classical ALE method and its finite element approximation

Problem statement

Let us consider a regionΩ0 ⊂ R
d (d = 2, 3) where a flow will take place during a time interval

[0, T ]. However, we consider the case in which the fluid at timet occupies only a subdomain
Ω(t) ⊂ Ω0 (note in particular thatΩ(0) ⊂ Ω0). Suppose also that the boundary ofΩ(t) is
defined by part of∂Ω0 and a moving boundary that we callΓfree(t) = ∂Ω(t) \ ∂Ω0 ∩ ∂Ω(t).
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This moving part of∂Ω(t) may correspond to the boundary of a moving solid immersed in the
fluid or can be determined by a level set function.

In order to cope with the time-dependency ofΩ(t), we use the ALE approach, with the
particular feature of considering a variable definition of the domain velocity. Letχt be a family
of invertible mappings, which for allt ∈ [0, T ] map a pointX ∈ Ω(0) to a pointx =
χt(X) ∈ Ω(t), with χ0 = I, the identity. Ifχt is given by the motion of the particles, the
resulting formulation would be Lagrangian, whereas ifχt = I for all t, Ω(t) = Ω(0) and the
formulation would be Eulerian.

Let nowt′ ∈ [0, T ], with t′ ≤ t, and consider the mapping

χt,t′ : Ω(t
′) −→ Ω(t)

x′ 7→ x = χt ◦ χ−1
t′ (x′).

Given a functionf : Ω(t)× (0, T ) −→ R we define

∂f

∂t

∣

∣

∣

∣

x′

(x, t) :=
∂(f ◦ χt,t′)

∂t
(x′, t), x ∈ Ω(t), x′ ∈ Ω(t′).

In particular, the domain velocity taking as a reference thecoordinates ofΩ(t′) is given by

udom :=
∂x

∂t

∣

∣

∣

∣

x′

(x, t). (4.1)

The incompressible Navier-Stokes formulated inΩ(t), accounting also for the motion of
this domain, can be written as follows: find a velocityu : Ω(t)× (0, T ) −→ R

d and a pressure
p : Ω(t)× (0, T ) −→ R such that

ρ

[

∂u

∂t

∣

∣

∣

∣

x′

(x, t) + (u− udom) · ∇u
]

−∇ · (2µ∇Su) +∇p = ρf , (4.2)

∇ · u = 0, (4.3)

where∇Su is the symmetrical part of the velocity gradient,ρ is the fluid density,µ is the
viscosity andf is the vector of body forces.

Initial and boundary conditions have to be appended to problem (4.2)-(4.3). The bound-
ary conditions onΓfree(t) can be of two different types: a)p (or the normal stress) given,u
unknown onΓfree; b) u given,p (or the normal stress) unknown onΓfree. On the rest of the
boundary ofΩ(t) the usual boundary conditions can be considered. In general, we consider
these boundary conditions of the form

u = ū onΓD,

n · σ = t̄ onΓN ,

wheren is the external normal to the boundary,σ = −pI + 2µ∇Su is the Cauchy stress
tensor and̄u andt̄ are the given boundary data. The components of the boundaryΓD andΓN

are disjoint and such thatΓD ∪ ΓN = ∂Ω, and therefore time-dependent.
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The time-discrete problem

Let us start introducing some notation. Consider a uniform partition of [0, T ] into N time
intervals of lengthδt. Let us denote byfn the approximation of a time dependent functionf
at time leveltn = nδt. We will also denote

δfn+1 = fn+1 − fn,

δtf
n+1 =

fn+1 − fn

δt
,

fn+θ = θfn+1 + (1− θ)fn, θ ∈ [1/2, 1].

Even though other options are possible, we will use the simple trapezoidal rule to discretize
problem (4.2)-(4.3) in time. Suppose we are given a computational domain at timetn, with
spatial coordinates labeledxn, andun andpn are known in this domain. The velocityun+1

and the pressurepn+1 can then be found as the solution to the problem

ρ
[

δtu
n+1
∣

∣

xn + (un+θ − un+θ
dom) · ∇un+θ

]

−∇ · (2µ∇Sun+θ) +∇pn+1 = ρfn+1, (4.4)

∇ · un+θ = 0, (4.5)

where nowδtun+1|
xn = (un+1(x)− un(xn))/δt, beingx = χtn+θ ,tn(x

n) the spatial coordi-
nates inΩ(tn+θ). The domain velocity given by (4.1), withx′ = xn, is approximated as

un+θ
dom =

1

θδt

(

χtn+θ ,tn(x
n)− xn

)

. (4.6)

Note that the order of accuracy of this approximation is consistent with the order of accuracy
of (4.4)-(4.5), that is to say, it is 2 forθ = 1/2 and 1 otherwise. We are interested only in the
casesθ = 1/2 andθ = 1 (implicit schemes are required).

Remark 1 The trapezoidal rule considered for the time integration, with a single mesh,
satisfies the so calledgeometric conservation law(GCL) condition (see, e.g. [20, 52, 90]).
However, there are second order accurate schemes based on multi-step time discretizations
that do not satisfy it. The price to be paid is that these schemes are usually only conditionally
stable, although stability conditions are often very mild and not encountered in practice (see for
example the analyses in [7, 20, 52, 53, 109]). We will use one of such schemes in Section 4.5.
△

The fully discrete problem

The next step is to consider the spatial discretization of problem (4.4)-(4.5). As for the time
discretization, different options are possible. Here we simply describe the stabilized finite ele-
ment formulation employed in our numerical simulations.

Let {Ωe}n+1 be a finite element partition of the domainΩ(tn+1), with indexe ranging from
1 to the number of elementsnel (which may be different at different time steps). We denote
with a subscripth the finite element approximation to the unknown functions, and byvh and
qh the velocity and pressure test functions associated to{Ωe}n+1, respectively.

An important point is that we are interested in using equal interpolation for the velocity
and the pressure. Therefore, the corresponding finite element spaces are assumed to be built
up using the standard continuous interpolation functions.
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In order to overcome the numerical problems of the standard Galerkin method, a stabilized
finite element formulation is applied. This formulation is presented in [31]. It is based on the
subgrid scale concept introduced in [76], although when linear elements are used it reduces
to the Galerkin/least-squares method described for example in [56]. We apply this stabilized
formulation together with the finite difference approximation in time (4.4)-(4.5).

The bottom line of the method is to test the continuous equations by the standard Galerkin
test functions plus perturbations that depend on the operator representing the differential equa-
tion being solved. In our case, this operator corresponds tothe linearized form of the time
discrete Navier-Stokes equations (4.4)-(4.5). In this case, the method consists of findingun+1

h

andpn+1
h such that

mn+θ
1

(

δtu
n+1
h

∣

∣

xn , vh

)

+ an+θ(uh, vh)

+ cn+θ(uh − udom;uh, vh) + bn+θ
1 (ph, vh) = ln+θ

1 (vh), (4.7)

mn+θ
2

(

qh, δtu
n+1
h

∣

∣

xn

)

+ bn+θ
2 (qh,uh) + sn+θ(qh, ph) = ln+θ

2 (qh), (4.8)

for all test functionsvh andqh, the former vanishing on the Dirichlet part of the boundaryΓD.
The different forms appearing in these equations are given by

m1(δtuh, vh) =

∫

Ω

vh · ρ δtuh +

nel
∑

e=1

∫

Ωe

ζu1 · ρ δtuh,

a(uh, vh) =

∫

Ω

2∇Svh : µ∇Suh +

nel
∑

e=1

∫

Ωe

ζu1 ·
(

−2∇ · (µ∇Suh)
)

+

nel
∑

e=1

∫

Ωe

ζu2∇ · uh,

c(a;uh, vh) =

∫

Ω

vh · (ρa · ∇uh) +

nel
∑

e=1

∫

Ωe

ζu1 · (ρa · ∇uh) ,

b1(ph, vh) = −
∫

Ω

ph∇ · vh +

nel
∑

e=1

∫

Ωe

ζu1 · ∇ph,

m2(qh, δtuh) =

nel
∑

e=1

∫

Ωe

ζp · ρ δtuh,

b2(qh,uh) =

∫

Ω

qh∇ · uh +

nel
∑

e=1

∫

Ωe

ζp ·
(

ρa · ∇uh − 2∇ · (µ∇Suh)
)

,

s(qh, ph) =

nel
∑

e=1

∫

Ωe

ζp · ∇ph,

l1(vh) =

∫

Ω

vh · f +

nel
∑

e=1

∫

Ωe

ζu1 · f +

∫

ΓN

vh · t̄,

l2(qh) =

nel
∑

e=1

∫

Ωe

ζp · f ,
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where the functionsζu1, ζu2 andζp are computed within each element as

ζu1 = τu
[

ρ (uh − udom) · ∇vh + 2∇ · (µ∇Svh)
]

, (4.9)

ζu2 = τp∇ · vh, (4.10)

ζp = τu∇qh, (4.11)

and the parametersτu andτp are also computed element-wise as (see [32])

τu =

[

4µ

h2
+

2ρ|uh − udom|
h

]−1

, τp = 4µ+ 2ρ|uh − udom|h,

whereh is the element size for linear elements and half of it for quadratics.

Remark 2

• The superscriptn + θ in all the terms in (4.7)-(4.8) indicates that all the forms are
evaluated with the unknowns atn + θ, except for the term coming from the temporal
derivative, whose superscript is explicitly indicated. Likewise, the integrals are evaluated
atΩ(tn+θ).

• The dependency on the advection velocitya = uh−udom has been only indicated in the
from coming directly from the convective term of the equations, namely,c(a;uh, vh).
However, it has to be noted that all the forms listed above depend on the stabilization
parameters, and therefore depend ona as well. Moreover, the dependency ofb2(qh,uh)
ona is even more explicit. However, in order to keep the notationmore concise only the
above mentioned dependency ofc(a;uh, vh) has been left.

• As usual, the mesh ofΩ(tn+1) is assumed to be obtained from the mesh ofΩ(tn) by
moving the nodes of the latter with the domain velocityudom (often referred to as mesh
velocity). This greatly simplifies the implementation of the ALE method, since in this
case the nodal values ofun+1(x) and those ofun(xn) correspond to the same nodes (at
time stepsn+ 1 andn, respectively).

• If θ = 1/2, the unknowns of the problem can be taken asun+1/2 and pn+1/2, since
δtu

n+1
h

∣

∣

xn = 2δt−1(un+1/2(x)− un(xn)). All the calculations to be performed are the
same as forθ = 1, with the only modification that onceun+1/2 is computedun+1 has
to be updated to go to the next time step. This analogy includes the updating of the
computational domain. Whenθ = 1/2 we need to update this domain fromn − 1/2 to
n + 1/2 to computeun+1/2 andpn+1/2, whereas whenθ = 1 we need to update it from
n to n+ 1 to computeun+1 andpn+1. For conciseness, the latter situation is considered
in the following.

• From (4.9)-(4.11) it is observed that these terms are precisely the adjoints of the (lin-
earized) operators of the differential equations to be solved applied to the test functions
(observe the sign of the viscous term in (4.9)). This method corresponds to the algebraic
version of the subgrid scale approach ([76]) and circumvents the stability problems of
the Galerkin method. In particular, in this case it is possible to use equal velocity pres-
sure interpolations, that is, we are not tied to the satisfaction of the inf-sup stability
condition. For more details about this formulation, see forexample [76, 31].
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△

4.2.2 The fixed-mesh ALE approach: algorithmic steps

The purpose of this subsection is to give an overview of the FM-ALE method and to describe
the main idea, leaving for the next section a more detailed description of the different steps
involved.

SupposeΩ0 is meshed with a finite element meshM0 and that at time leveltn the domain
Ω(tn) is meshed with a finite element meshMn (as we will see, close toM0). Let un be the
velocity already computed onΩ(tn). The purpose is to obtain the fluid regionΩ(tn+1) and the
velocity fieldun+1. The former may move according to a prescribed kinematics, for example
due to the motion of a solid, or can be an unknown of the problem. If the classical ALE method
is used,Mn would deform to another mesh defined attn+1. The key idea is not to use this mesh
to computeun+1 andpn+1, but to re-mesh in such a way that the new mesh is, essentially,M0

once again.
The steps of the algorithm to achieve the goal described are the following:

1. DefineΓn+1
free by updating the function that defines it.

2. Deformvirtually the meshMn toMn+1
virt using the classical ALE concepts and compute

the mesh velocityun+1
m .

3. Write down the ALE Navier-Stokes equations onMn+1
virt .

4. Split the elementsof M0 cut byΓn+1
free to define a mesh onΩ(tn+1),Mn+1.

5. Projectthe ALE Navier-Stokes equations fromMn+1
virt toMn+1.

6. Solve the equations onMn+1 to computeun+1 andpn+1.

In Section 4.3 we describe all these steps in detail. A globalidea of the meshes involved
in the process is represented in Fig. 4.1. Note in particularthat at each time steps two sets of
nodes have to be appropriately dealt with, namely, the so called newly created nodes and the
boundary nodes. Contrary to other fixed grid methods, some ofwhich are described in the next
subsection, newly created nodes are treated in a completelynatural way using the FM-ALE
approach: the value of the velocity there is directly given by the projection step fromMn+1

virt to
Mn+1. Boundary nodes require either additional unknowns with respect to those of meshM0

or an appropriate imposition of boundary conditions. This issue is treated in Section 4.4.

4.2.3 Other fixed grid methods

Other possibilities to use a single grid in the whole simulation can be found in the literature,
each one having advantages and drawbacks. As the method presented in this chapter, they were
designed as an alternative to body fitted meshes and are sometimes referred to asEmbedded
Mesh Methods. They can be divided into two main groups [35], corresponding in fact to two
ways of prescribing the boundary conditions onΓfree:
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Figure 4.1: Two dimensional FM-ALE schematic. Top-left: original finite element meshM0

of Ω0. Top-right: finite element meshMn of Ω(tn), with the elements represented by a thick
line and the elements ofM0 represented by thin line. The blue line representsΓn

free and the
red edges indicate the splitting ofM0 to obtainMn. Bottom-left: updating ofMn to Mn+1

virt

using the classical ALE strategy. The position ofΓn+1
free is again shown using a solid blue line

and the previous positionΓn
free using a dotted blue line. Bottom-right: MeshMn+1 of Ω(tn+1),

represented by a thick line. The edges that split elements ofM0 are again indicated in red.
Boundary nodes, where approximate boundary conditions need to be imposed, are drawn in
green, whereas newly created nodes are drawn in gray.
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• Force term. The interaction of the fluid and the solid is taken into account through a
force term, which appears either in the strong or in the weak form of the flow equa-
tions. Therefore, the boundary conditions onΓfree are neither imposed as Dirichlet nor
as Neumann boundary conditions. Among this type of methods,let us cite for exam-
ple the Immersed Boundary method as a variant of the Penalty method, where punctual
forces are added to the momentum equation, and the Fictitious Domain method, where
the solid boundary conditions are imposed through a Lagrange multiplier.

• Approximate boundary conditions. Instead of adding a force term, these methods impose
the boundary conditions in an approximate way once the discretization has been carried
out, either by modifying the differential operators near the interface (in finite differences)
or by modifying the unknowns near the interface.

The Immersed Boundary Methodin its original form [113] consists in adding punctual
penalty forces in the domain boundary so that the boundary conditions are fulfilled. The forces
are computed from a fluid-structure (elastic) interaction problem at the interface. The method
is first order accurate even if second order approximation schemes are used, althoughformal
second order accuracyhas been reported in [87]. The more recentImmersed Interface Method
achieves higher order accuracy by avoiding the use of the Dirac delta distribution to define the
forcing terms (see [91, 92, 137]).

ThePenalty methodis similar to the previous one in the sense that a force term isadded
to the momentum equations. The difference raises in the factthat the penalty parameter is not
computed from a fluid-structure interaction as in the original immersed boundary method, but
it is simply required to be large enough to enforce the boundary conditions approximately. The
force terms can be of two types, depending on whether they areimposed as boundary or as
volume forces [133] .

Another approach is the use of Lagrange multipliers to enforce the boundary conditions.
However, the finite element subspaces for the bulk and Lagrange multiplier fields must sat-
isfy the classical inf-sup condition, which usually leads to the need for stabilization (see
[70, 14, 82]). Moreover, additional degrees of freedom mustbe added to the problem. The
use of Lagrange multipliers is the basis of theFictitious Domain Method[62, 63].

Recently,hybrid Cartesian/immersed boundary methodshave been developed for Carte-
sian grids, which use the grid nodes closest to the boundary to enforce boundary condi-
tions [60, 139, 104]. The method is second order accurate.

Most of these methods have been well tested in the literaturefor both steady and moving
interfaces. Generally, the last case is treated by applyingdirectly the former at each time step.
However, very few authors have described the full formulation for moving interfaces, some-
times simply by ignoring the problem. The fact that the boundary moves and the subsequent
advection of unknowns is often not taken into account.

To explain an obvious consequence of the boundary motion, let us discuss the treatment of
the newly created nodes. To explain the problem, let us consider pointP in Fig. 4.1. Suppose
that the boundaryΓfree corresponds in this case to the rigid boundary of a moving object.
Physically, it is clear that the solution in the fluid cannot depend on what happens inside
the solid. Mathematically, this means that the values of theunknowns at the fluid nodes are
uncoupled from those at the solid nodes. Therefore, the velocity and the pressure at the solid
nodes (apart from those participating to the enforcing of the boundary conditions) can be
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whateverat a certain time stepn, in particular their value at nodeP (see Fig. 4.1, top-right).
Now we move on to the next time stepn+1 as the solid moves. Some solid nodes can therefore
become fluid nodes, such as nodeP (see Fig. 4.1, bottom-right). The velocity at this node at
time stepn is in fact needed in the temporal term of the momentum equations and cannot
bewhatever. In the case of fractional step techniques, the situation can even be worse as the
previous time step pressure could also be needed at these nodes.

A special treatment is needed for the newly created fluid nodes. In many publications,
the previous time step values are computed using ad hoc arguments, that sometimes lead to
good approximations from the practical point of view when small time steps are used. As
an example, in [100] the authors extrapolate the velocity and pressure from the nearest fluid
nodes at the previous time step. In [27], the Navier-Stokes equations are correctly expressed
in an ALE framework, but the velocity is taken as the solid velocity. It is worth to note that if
the solid is deformable and has been solved together with thefluid in a coupled way (as in the
original immersed boundary method [113] or in the fluid-solid approach in [141]), this velocity
is physically meaningful. This is not the case, however, is the case of rigid bodies or bodies
with rigid boundaries. A possibility to deal with this situation is to write the Navier-Stokes
equations in a non-inertial frame of reference attached to the body, as in [72] in the context of
Chimera meshes or in [86], where an immersed boundary methodis used.

We explain in the following what we believe is a consistent way of treating moving inter-
faces based on a fixed-mesh ALE approach.

4.3 Developing the Fixed-Mesh ALE method

In this section we describe the steps enumerated previously, concentrating on those specific of
the FM-ALE method and leaving for Section 4.4 those that can be considered side numerical
ingredients.

4.3.1 Step 1. Boundary function update

This step is completely problem dependent. The motion ofΓfree(t) may be determined by
different ways. In a typical fluid-structure interaction problem,Γfree(t) will be part of the solid
boundary, and therefore its kinematics will be determined by the dynamics of the solid under
the action exerted by the fluid. As a particular case, the motion of the solid boundary may be
directly prescribed. This is the simplest situation and theone corresponding to the validating
numerical example presented in Section 4.5.

In a wide variety of applications,Γfree(t) may be represented by a level set function. The
peculiarities of the levelset function update in the context of the FM-ALE approach are de-
scribed in Section 4.4.

4.3.2 Step 2. Mesh velocity

Updating the boundary function defines the deformation of the domain fromΩ(tn) toΩ(tn+1)
(recall that we are considering the caseθ = 1, see Remark 2). Consequently, the meshMn
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used at time stepn has to be deformed to adapt to the domainΩ(tn+1). This mesh deformation
has to be defined by means of a mesh velocity.

The mesh velocity on the boundary points can be computed fromtheir positionxn+1
b and

xn
b , where subscriptb refers to points onΓfree. Using approximation (4.6), this mesh velocity

would beun+1
dom,b = (xn+1

b − xn
b )/δt. Once the velocity at the nodes ofΓfree is known, it has

to be extended to the rest of the nodes. A classical possibility is to solve the Laplace problem
∆udom = 0 usingun+1

dom,b as Dirichlet boundary conditions. However, it is also possible to
restrictudom 6= 0 to the nodes next toΓn+1

free , since in our approach mesh distortion does not ac-
cumulate from one time step to another (see Fig. 4.1 for a schematic of the mesh deformation).
This is in practice what we do. The condition we use in order tochoose which of the nodes of
the mesh are allowed to move is:

dist(xnode,Γfree) < K ·max |udom,b| · δt

whereK > 1 is a user defined constant which adjusts the size of the regionof Ω in which the
mesh is deformed. This ensures that the mesh deformation is smooth enough for large values
of max |udom,b|·δt

h
, whereh is the element size. An example of mesh deformation fromMn to

Mn+1
virt is represented in Fig. 4.2.

Figure 4.2: Mesh deformation. Left:Mn. Right:Mn+1
virt . The red dotted line representsΓfree at

time tn, the black line corresponds toΓfree at timetn+1- Green elements are deformed from
Mn toMn+1

ALE while black elements remain undeformed.

Remark 3 As only nodes close toΓn+1
free are displaced, the projection operations between

meshes need only to be carried out in the deformed region of the mesh (green region in
Fig. 4.2).
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4.3.3 Step 3. Solving the flow equations I: Equations on the deformed
mesh

The previous procedure defines the domainΩ(tn+1) and a mesh that we callMn+1
virt , obtained

from a deformation of the meshMn. The equations to be solved there are (see (4.7)-(4.8)):

mn+1
1

(

1

δt

(

un+1
h,virt(x)− un

h,virt(x
n)
)

, vh

)

+ an+1(uh,virt, vh)

+ cn+1(uh,virt − udom,virt;uh,virt, vh) + bn+1
1 (ph,virt, vh) = ln+1

1 (vh), (4.12)

bn+1
2 (qh,uh,virt) + sn+1(qh, ph,virt) = ln+1

2 (qh), (4.13)

where subscript “virt” refers to the meshMn+1
virt on which these equations should now be solved

using the space discretization described in Subsection 4.2.1. Let us stress once again that, as it
is well known in the classical ALE approach,un(xn) is known onMn+1

virt because the nodes of
this mesh are obtained from the motion of the nodes ofMn with the mesh velocityun+1

dom,virt.

4.3.4 Step 4. Splitting of elements

The key idea of the FM-ALE method isnot to useMn+1
virt to solve the flow equations at time

tn+1, but to use instead another meshMn+1 that will be aa minor modification of the back-
ground meshM0. This meshMn+1 is obtained by splitting the elements ofM0 cut byΓn+1

free ,
as shown in Fig. 4.1. MeshesMn+1 andM0 only differ in the subelements created after the
splitting just mentioned.

MeshMn+1 could be thought as a local refinement of meshM0 to make it conform the
boundaryΓn+1

free . This is certainly a possibility that can be implemented as such. Let us note
however that this requires the introduction of boundary nodes at each step, as shown in Fig. 4.1,
and the subsequent change in the mesh graph and in the sparsity pattern of the matrix of the
final algebraic system to be solved for the arrays of nodal unknowns. As in other fixed grid
methods, this computational complication can be avoidedby prescribing boundary conditions
on Γn+1

free in an approximate way. Nevertheless, this issue, in spite of its major practical im-
portance, is not an essential concept of the FM-ALE method, and we defer its description to
Section 4.4.

The local refinement fromM0 toMn+1 is needed also to perform the numerical integration
of the different terms appearing in (4.7)-(4.8). The impactof this in the computational cost of
the overall calculation is minimum.

The splitting of elements is a strictly algorithmic step that shall not be discussed here. In
the case of 2D linear elements, Fig. 4.3 shows how the splitting can be done and the numerical
integration points (red points) required in each triangle resulting from this splitting.

4.3.5 Step 5. Solving the flow equations II: Equations on the background
mesh

LetP n+1 be the projection of finite element functions defined onMn+1
virt toMn+1. To define it,

for each node ofMn+1 the element inMn+1
virt where it is placed has to be identified. Once this

is done, the value of any unknown at this node can be obtained through interpolation, possibly
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1

2 3

Figure 4.3: Splitting of elements

with restrictions. The way to construct this projection operator is a problem common to differ-
ent situations in which transfer of information between finite element meshes is required. We
describe our approach in Section 4.4.

The velocityun in Mn+1
virt is known because its nodal values correspond to those of mesh

Mn. However, its nodal values onMn+1 have to be computed using the projection just de-
scribed. The same happens with the mesh velocityudom.

If now we define

un+1
h := P n+1(un+1

h,virt),

the problem to be solved at time stepn+ 1 is to find a velocityun+1
h and a pressurepn+1

h such
that

mn+1
1

(

δt−1
(

un+1
h (x)− P n+1(un

h,virt(x
n))
)

, vh

)

+ an+1(uh, vh)

+ cn+1(uh − P n+1(udom,virt);uh, vh) + bn+1
1 (ph, vh) = ln+1

1 (vh), (4.14)

bn+1
2 (qh,uh) + sn+1(qh, ph) = ln+1

2 (qh), (4.15)

which again must hold for all velocity test functionsvh and pressure test functionsqh.
Note thatpn+1

h 6= P n+1(pn+1
h,virt). Pressurepn+1

h is determined by imposing thatun+1
h is

divergence free, which at the discrete level is not equivalent to impose thatun+1
h,virt is divergence

free.
Problem (4.14)-(4.15) is posed onMn+1 which, as it has been said, coincides withM0

except for the splitting of the elements crossed by the interface. Even this difference can be
avoided if instead of prescribing exactly the boundary conditions an approximation is per-
formed, for example using Nitsche’s method, Lagrange multipliers or the strategy described in
Section 4.4. Therefore, the goal of using a fixed mesh during the whole simulation has been
achieved.

It is observed that the projectionP n+1 has to be applied to

• P n+1(un
h,virt(x

n)). This clarifies the effect of the mesh motion in the context offixed-
mesh methods. In particular, there is no doubt about the velocity at previous time steps
of newly created nodes.
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• P n+1(un+1
dom,virt). The mesh velocity is computed onMn+1

virt , and therefore needs to be
projected to compute onMn+1.

4.3.6 Comparison with the classical ALE approach

To conclude this section, it is important to highlight the differences between our FM-ALE
approach and a classical ALE formulation:

• Given a position of the fluid front on the fixed mesh, elements cut by the front are split
into subelements (only for integration purposes), so that the front coincides with the
edges of the subelements.

• After deforming the mesh from one time step to the other usingclassical ALE proce-
dures, results are projected back to the original mesh .

• The front is represented by a boundary function, and not by the position of the material
points atΓfree as in a classical ALE method.

4.4 Side numerical ingredients

In this section we describe some numerical ingredients that, in spite of being essential in the
development of the FM-ALE method, are not inherent to its main concept. In other words,
these ingredients may be changed without altering the main concept of the method.

4.4.1 Level set function update

In the applications, there are several ways to defineΓfree. In general, we assume that this part
of the boundary of the flow domain is defined by what we have called generically aboundary
function. This function may be defined analytically or by discrete means, for example through
interpolation from some nodes that define the location ofΓfree. That would be a natural way to
deal with fluid-structure interaction problems.

In some applications, it is convenient to representΓfree by a level set function(see [112]
for an overview of these methods). This function, sayψ, will be the solution of the problem

∂tψ + u · ∇ψ = 0 in Ω0 × (0, T ), (4.16)

ψ = ψ on Γinf × (0, T ),

ψ(x, 0) = ψ0(x) in Ω0,

whereΓinf := {x ∈ ∂Ω0 | u ·n < 0} is the inflow part of the domain boundary. In free surface
simulations, the initial conditionψ0 is chosen in order to define the initial position of the fluid
front to be analyzed. The boundary conditionψ determines whether fluid enters or not through
a certain point of the inflow boundary.

Due to the pure convective type of the equation forψ, we use the SUPG technique for the
spatial discretization. Again, the temporal evolution is treated via the standard trapezoidal rule.
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If ψ is taken as a step function, numerical problems may be encountered when it is trans-
ported. It is known that small oscillations in the vicinity of sharp gradients still remain using
the SUPG formulation. These oscillations may propagate andyield to distorted front shapes,
specially near corners. Compared to similar methods, such as the volume-of-fluid (VOF)
method [69], one particularity of the level set method is that it uses a smooth functionψ. As
the smoothness can be lost as the simulation evolves, the level set function must be redefined
for each mesh node as explained for example in [37].

Onceψ is computed,Γfree(t) is defined as

Γfree(t) = {x ∈ Ω0 | ψ(x, t) = 0}.

Thus,Γfree(t) is simply updated by solving the problem forψ(x, t).
The important point to be noted is that the system is solved onthe whole domainΩ0. As

mentioned earlier, we approximate this problem using a stabilized finite element method. For
the discrete problem it is necessary to extrapolate the velocity defined onΩ(t) to the rest of
Ω0. The question is how to perform this extrapolation. In principle, the advection velocityu
in (4.16) is only needed in the neighborhood ofΓfree(t), since the precise transport ofψ is not
needed, except for the transport of the isovalue that definesΓfree(t). In our calculations, we
have found useful to extrapolateu by solving a Stokes problem onΩ(t)c = Ω0 \ Ω(t). This
has two main advantages with respect to a simpler extrapolation procedure, namely, the ex-
trapolated velocity is weakly divergence free inΩ(t)c and we can impose the correct boundary
conditions for it.

4.4.2 Approximate imposition of boundary conditions

Even though we have not formulated it as such, the FM-ALE method can be considered an
immersed boundary method, in the sense thatΓfree(t) is a boundary that moves within a fixed
domainΩ0. From the conceptual point of view, there is no problem in imposing exactly Dirich-
let boundary conditions on this part of the boundary. However, this requires the dynamic ad-
dition of mesh nodes (see Fig. 4.1, where these nodes are drawn in green), with the associated
change in the sparsity of the matrix of the algebraic system to be solved mentioned earlier. This
is why it is very convenient from the implementation standpoint to avoid the explicit introduc-
tion of such nodes and to prescribe boundary conditionsapproximately, for example with the
method described in Chapter 2. It is important to note that this implementation maintains the
connectivity of the background mesh.

4.4.3 Data transfer between finite element meshes

The last crucial ingredient in the FM-ALE approach is the transfer of information between
meshesMn+1

virt andMn+1 for each time stepn (see Fig. 4.1). In principle, it would be possible
to use a simple interpolation operator. However, it is well known that this interpolation, for
example when it is of Lagrangian type, may suffer from overdiffusivity, in the sense that results
on the new mesh may be damped from those of the original one. Another possibility could be
to use theL2 projection as transfer operator. We explain here how to incorporaterestrictions
to the projection between meshes. The idea described in the following was introduced in [71]
in the context of transmission of information through boundaries in domain decomposition
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methods. For a method particularly designed in the context of immersed boundary methods
for the transfer of forces, see [141].

Let us consider two meshes,M1 andM2, of a domainΩ. For simplicity, we assume that
both are conforming (matching∂Ω). Let ni (i = 1, 2) be the number of nodes inMi and let
Φi ∈ R

ni be the array of nodal values of a scalar variableφ. Suppose thatΦ1 is known and we
want to project it ontoM2 to obtainΦ2. If P 21 ∈ MatR(n2, n1) is the transfer operator from
M1 toM2 (for example the standard interpolation or theL2 projection), a simple choice would
beΦ2 = P 21Φ1. However, suppose that we requireΦ2 to inherit a set of properties fromΦ1,
written in the form

R2Φ2 = R1Φ1, Ri ∈ MatR(nr, ni), (4.17)

wherenr is the number of restrictions to be imposed. The idea we propose is to takeΦ2 as
close as possible toP 21Φ1 but satisfying (4.17). A possibility is to solve the optimization
problem

minimize
1

2
|Φ2 − P 21Φ1|2,

under the constraint R2Φ2 = R1Φ1.

This problem can be solved by optimizing the LagrangianL(Φ2,λ), whereλ ∈ R
nr , given by

L(Φ2,λ) =
1

2
|Φ2 −P 21Φ1|2 − λt(R2Φ2 −R1Φ1).

This leads to the system

Φ2 −Rt
2λ = P 21Φ1,

R2Φ2 = R1Φ1,

which after solving forΦ2 yields

Φ2 = P 21Φ1 +Rt
2(R2R

t
2)

−1(R1 −R2P 21)Φ1.

In the applications, the number of restrictionsnr is small, so that invertingR2R
t
2 ∈

MatR(nr, nr) is computationally affordable. In the case of the FM-ALE method, a typical
restriction would be for example to impose global conservation of momentum and of mass
when projecting velocities from meshMn+1

virt toMn+1 for eachn. In this case,nr = d+ 1.

4.5 A numerical example

In this section we will solve the flow over a moving cylinder with the proposed FM-ALE
strategy. The objective is to apply this methodology to thissimple validating example.

The corresponding flow equations are those described in Section 4.2, although in this case a
multi-step time discretization will be used. In particular, we will use the second order backward
differentiation scheme (BDF2), in which the time derivative at timen+ 1 is approximated as:

∂u

∂t

∣

∣

∣

∣

n+1

≈ 1

δt

(

3

2
un+1 − 2un +

1

2
un−1

)

.
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Figure 4.4: Solution att = 3. From top to bottom:x-velocity,y-velocity, pressure.

The strategy described in Chapter 2 will be used to prescribeDirichlet type boundary condi-
tions on the surface of the moving solid, in this case the cylinder.

Thehold-all domainis the rectangleB = [0, 2.2]× [0, 0.44]. A background mesh of 9000
linear triangles has been used. The considered solid is a cylinder of diameterD = 0.2, its
trajectory being defined by the position of its center:

xc(t) = 1.1 + 0.8 sin

(

2π

3
(t− 0.75)

)

,

yc(t) = 0.22.

The velocity is prescribed to(0, 0) on the walls of the rectangular domain, except for the
wall corresponding tox = 2.2, where it is left free, whereas it matches the cylinder velocity
on the cylinder surface. Note that the flow is due only to the cylinder movement. Viscosity
is set to0.001, so that the maximum Reynolds number isRe ≈ 300 based on the cylinder
diameter and the (maximum) velocity when the cylinder is located at the central section of the
rectangle. The time step size has been set toδt = 0.05, and60 time steps (a full period) have
been performed, after which the flow is considered to be fullydeveloped.

Fig. 4.4 shows the results obtained at timet = 3. We would like to remark the smoothness
of the velocity field close to the cylinder surface.

It is also interesting to see which are the differences between the treatment of the newly
created nodes in the proposed FM-ALE approach and other usual procedures. To this end we
compare nodal values for newly created nodes at timetn (in the time step which goes fromtn

to tn+1) for the FM-ALE approach (information is convected and projected) and for the more
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Figure 4.5: Solution att = 2.25, extrapolation procedure. From the top to the bottom:x-
velocity before extrapolating,y-velocity before extrapolating,x-velocity after extrapolating,
y-velocity after extrapolating.
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Figure 4.6: Solution att = 2.25, FM-ALE procedure. From the top to the bottom:x-
velocity before convection-projection,y-velocity before convection-projection,x-velocity af-
ter convection-projection,y-velocity after convection-projection.



78 Chapter 4. The Fixed-Mesh ALE approach applied to flows in moving domains

usual procedure of extrapolating values from neighboring nodes mentioned earlier.
Fig. 4.5 and Fig. 4.6 show velocity values (before and after the convection-projection or

the extrapolation procedures) attn = 2.25. It can be seen that for large incremental dis-
placements, as those of the time step we are considering, extrapolated values differ signifi-
cantly from convected-projected values, and are much less smooth. Also, the values before the
convection-projection or extrapolation procedure are smoother for the FM-ALE approach. We
would like to stress that, contrary to the convection-projection of the FM-ALE method, the
extrapolation procedure lacks physical grounds.

4.6 Conclusions

In this chapter we have introduced in detail the concept of the FM-ALE approach. Succinctly,
it consists in using the standard ALE method but “remeshing”at each time step so as to use
always the same given mesh, which discretizes the whole region where the flow takes place.

The first benefit is conceptual. Ad-hoc approximations to account for the advection of
information that can be found in several fixed-grid methods are avoided. This is in particular
reflected by the treatment of the so called newly created nodes. When a node “dry” in one time
step becomes part of the flow region in the next time step, the value of the flow variables to be
assigned there to approximate (local) time derivatives is perfectly determined.

It has been our intention to clearly distinguish the main concept of the formulation from
other related issues, and in particular from the approximate imposition of boundary conditions.
Nevertheless, the way to carry out this imposition is essential for the success of the method. We
have described our particular approach. Some remarks concerning the transfer of information
between meshes have also been made, and the possibility to model the moving surface by level
set functions has been explained.

A numerical example has been presented which shows the performance of the method in a
simple validating example. Results have been compared to those of other fixed grid methods,
showing the need of correctly computing the advection of information between time steps.

Another natural application of the FM-ALE approach is the numerical approximation of
fluid-structure interaction problems, which we will deal with in the following chapter.



Chapter 5

The Fixed-Mesh ALE approach applied to
Solid Mechanics and FSI problems

In this chapter we propose a method to solve Solid Mechanics and Fluid-Structure Interaction
problems using always a fixed background mesh for the spatialdiscretization. The main fea-
ture of the method is that it properly accounts for the advection of information as the domain
boundary evolves. To achieve this, we use an arbitrary Lagrangian-Eulerian framework, the
distinctive characteristic being that at each time step results are projected onto a fixed, back-
ground mesh. For solid mechanics problems subject to large strains the Fixed Mesh - ALE
method avoids the element stretching found in fully Lagrangian approaches. For FSI problems
FM-ALE allows for the use of a single background mesh to solveboth the fluid and the struc-
ture. We also apply the FM-ALE method to the problem of floating solids, in which it is used
together with the level set function method.

5.1 Introduction

The Fixed Mesh ALE method (FM-ALE from now on) is a fixed grid method its main feature
being that the domain movement is taken into account when computing the temporal deriva-
tives. The basic idea consists in using an ALE (Arbitrary Lagrangian-Eulerian) strategy and
remeshing at each time step in such a way that the original fixed mesh is recovered. This has
two main advantages when compared to other fixed grid methods:

1. Since an ALE formulation is used, temporal derivatives can be correctly computed, in-
cluding the convective terms arising due to the domain movement.

2. The values of the variables in previous time steps are clearly defined in the so-called
newly created nodes, an issue of particular controversy in most fixed grid methods.

ALE formulations were initially developed for fluid dynamics problems, in which they
were necessary to cope with Fluid Structure Interaction (FSI) and free surface problems (see
References [45, 74, 79]). In classical ALE methods remeshing is often necessary after a certain
number of time steps in order to avoid element stretching. The FM-ALE method avoids this
need by projecting the results from the ALE deformed mesh onto a fixed background mesh

79
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at each time step, prior to solving the flow equations. At the end all the calculations can be
performed on the fixed mesh, and in fact the ALE deformed mesh does not need to be explicitly
built.

The FM-ALE method for flow problems in moving domains is extensively described in
Chapter 4: the main algorithmic steps of the method are set a numerical example in the field
of flow problems are presented. Here we take the same ideas andwe apply them to problems
in solid mechanics and Fluid-Structure Interaction.

The most usual approach to solve solid mechanics problems isthe use of Lagrangian for-
mulations. This means that equations are written formaterialpoints following the movement
of particles. This is a natural choice since in solid mechanics we are interested in tracking the
behavior of structures in time (contrary to many problems offluid mechanics where one is
interested on theeffectof the flow in a certain region, leading to Eulerian formulations). How-
ever, there are certain problems in which fully Lagrangian formulations cannot be used or lead
to numerical difficulties: when a solid body is subject to large strains the shape of the elements
which form the mesh can change a lot, resulting in stretched elements. Stretched elements
cause that the system of equations to be solved is ill-conditioned, an inconvenient of particular
importance if iterative methods are to be used. In this case ALE formulations are used and the
mesh is no longer deformed following the particles but is given an arbitrary movement which
avoids the stretching of elements.

ALE methods for solid mechanics problems have been extensively developed (see [99, 18,
59]). The main concern in these works is to correctly computethe stress and plastic history
variables update, since values of history variables at the previous time step are not available
at the quadrature points unless a fully Lagrangian approachis used. In the framework of ALE
strategies for solid mechanics problems, the FM-ALE methodcan be understood as an ALE
method in which the mesh velocity is set to zero in all the domain except in the region close
to the body surface. In [111] an Eulerian formulation for large deformation solid dynamics is
presented. However, it is not clear how the issue of newly created nodes near the boundary is
treated.

Once the FM-ALE strategy has been applied to both flow and solid mechanics problems it
is very natural to consider its use in the area of Fluid-Structure Interaction (FSI). Several fixed
grid strategies to solve FSI problems have been developed inthe past years. As a first example,
the immersed boundary method ([113, 87, 91, 92, 137]) consists in adding punctual penalty
forces in the domain boundary so that boundary conditions are fulfilled. Another possible
approach is the use of Lagrange multipliers to enforce boundary conditions (see [70, 14, 82]).
Both approaches are fictitious domain methods ([62, 63]) in the sense that the fluid-structure
interface divides the fluid domain in a physical flow field and afictitious field, which may be
discretized and solved, but has no physical meaning to the FSI problem. Usually the unknown
fields in this fictitious domain are used to assign values to the newly created nodesin the
computation of time derivatives. In theextendedfinite element method, special functions are
used to enrich the finite element space near the interface. In[89] a fixed mesh is used to solve
the fluid while the solid is treated by a Lagrangian description. The description of the fluid-
solid interface is done by means of a level set function. In all these works, a fully Lagrangian
approach is used to deal with the solid.

An interesting feature of using the FM-ALE method to solve FSI problems is that since
the regions occupied by the fluid and the solid do not superimpose, a single mesh can be used,
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giving some of the elements to the solid mechanics problem and the others to the flow problem.
Special care has to be given to the coupling conditions between fluid and structure: the usual
partitioned methods can be used with the FM-ALE method, although due to the fact that the
same mesh is used to solve both problems a monolithic approach seems more suitable.

We finally use the FM-ALE method to solve the problem of solid bodies falling into water.
This involves the additional need of tracking the free surface of the fluid by means of a level set
function. Several works have been already developed in the field of the simulation of floating
solids. In [138] floating bodies are simulated by means of theQALE-FEM method, but the
solid displacements in the numerical examples are small andthere is no need to remesh. In
[136] the finite element method is used to simulate the interaction between waves and a floating
body, but again it focuses in the case in which the solid body displacements are small. A fixed
grid strategy for the simulation of solids falling into water has been used in [98], where the
impact of a cylindrical object on a water surface is studied,the main difference with respect to
the present approach being the way newly created nodes are treated. Floating bodies can also
be treated with the Chimera strategy described in [72], provided the free surface is considered
as the interface between the fluid analyzed and a fictitious one, for example air. The flow
problem would become in this case a two-phase flow rather thana free surface problem, and
a possible way to deal with it is explained in [40]. ALE approaches are also possible for the
simulation of free surface - fluid structure interaction problems, as done for example in [94],
but they require rebuilding the finite element mesh when thismesh gets too distorted. In [43]
the phase-field method is used to analyze the wetting phenomena of the impact of a sphere
with a free surface, The novelty of the present work with respect to the previous ones is the use
of a fixed mesh strategy which correctly takes into account the movement of the fluid domain
at the time of computing the ALE convective terms and time derivatives.

The chapter is organized as follows. A review of ALE methods applied to solid mechanics
problems is presented in Section 5.2. Firstly the general ALE formulation is presented and par-
ticularized to the solid mechanics conservation laws. Afterwards the two possible approaches
to face the equations are discussed: the monolithic approach deals with the arising equations
in a classical manner, while in fractional - step methods theequations are solved in two steps:
the material and the convective phases. This allows for the use of specific numerical methods
to solve each of the phases. In Section 5.3 the FM-ALE method is described. Since a detailed
explanation of the method can be found in the previous chapter, only the general algorithm
and the particular features of its application to solid mechanics problems are presented. Stress
is put in critical issues such as the imposition of boundary conditions or the tracking of the
solid body surface. Section 5.4 deals with the FM-ALE methodapplied to FSI problems. The
equations for the coupled problem are presented. A description of some of the most common
coupling strategies and their particularization to FM-ALEfollows. Section 5.5 particularizes
the application of the FM-ALE method to the problem of solid bodies falling into water. In this
section we describe how the tracking of the free surface is done, and which are the additional
computational challenges in the interaction of the free surface with the solid body.

Finally in Section 5.6 some numerical examples and validation tests are carried out, show-
ing the behavior of the proposed methodology. Some conclusions close the chapter in Sec-
tion 5.7.
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5.2 ALE methods applied to solid mechanics

5.2.1 Problem statement

Let us consider a regionΩ0 ⊂ R
d (d = 2, 3) where a solid body moves through during a time

interval[0, T ]. The solid at timet occupies only a subdomainΩ(t) ⊂ Ω0. The boundary ofΩ(t)
is defined by part of∂Ω0 and a moving boundary that we callΓfree = ∂Ω(t) \ ∂Ω0 ∩ ∂Ω(t).

In order to cope with the time-dependency ofΩ(t), we use the ALE approach, with the
particular feature of considering a variable definition of the domain velocity. Letχt be a family
of invertible mappings, which for allt ∈ [0, T ] map a pointX ∈ Ω(0) to a pointx =
χt(X) ∈ Ω(t), with χ0 = I, the identity. Ifχt is given by the motion of the particles, the
resulting formulation would be Lagrangian, whereas ifχt = I for all t, Ω(t) = Ω(0) and the
formulation would be Eulerian.

Let nowt′ ∈ [0, T ], with t′ ≤ t, and consider the mapping

χt,t′ : Ω(t
′) −→ Ω(t)

x′ 7→ x = χt ◦ χ−1
t′ (x′).

Given a functionf : Ω(t)× (0, T ) −→ R we define

∂f

∂t

∣

∣

∣

∣

x′

(x, t) :=
∂(f ◦ χt,t′)

∂t
(x′, t), x ∈ Ω(t), x′ ∈ Ω(t′).

In particular, the domain velocity taking as a reference thecoordinates ofΩ(t′) is given by

udom :=
∂x

∂t

∣

∣

∣

∣

x′

(x, t). (5.1)

Three conservation laws are fundamental in solid mechanics, namely mass, momentum
and energy balance. Let us make the assumption that mechanical effects are uncoupled from
thermal effects. In this case, equations for mass and momentum balance can be solved inde-
pendently from the energy balance equation. The solid mechanics problem formulated inΩ(t),
accounting also for the motion of this domain, can be writtenas follows:

∂ρ

∂t

∣

∣

∣

∣

x′

+ (u− udom) · ∇ρ = −ρ∇ · u, (5.2)

ρ
∂u

∂t

∣

∣

∣

∣

x′

+ ρ(u− udom) · ∇u = ∇ · σ + ρb, (5.3)

whereρ is the solid density,u is the particle velocity,σ is the Cauchy stress tensor andb is
the vector of body forces.

It is usual in the field of solid mechanics to use the followingequation which relates the
densityρ in a given configuration with the densityρ0 at the undeformed configuration:

ρJ = ρ0, (5.4)

at each material point, where

F =
∂x

∂X
, J = det(F ).
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As long as the material surfaces which compose the boundary of the solid are tracked with
enough accuracy , this allows to avoid solving (5.2), and solving only for (5.3). An additional
constitutive equation that relatesσ andu will be needed so that the problem is well posed.

If path dependent constitutive equations are to be used, material derivatives of the plastic
internal variables have to account for the advection effects, leading to an equation for them of
the form:

∂α

∂t

∣

∣

∣

∣

X
=
∂α

∂t

∣

∣

∣

∣

x′

+ (u− udom) · ∇α = F(λ), (5.5)

whereα is the set of plastic internal variables andλ is the set of variables of interest of the
problem, which would typically include the plastic internal variables plus the displacements,
velocity and acceleration fields. The right-hand-side of (5.5) denotes a problem-dependent
operatorF applied toλ.

Initial and boundary conditions have to be appended to problem (5.3). Usual boundary
conditions are used for bothΓfree and∂Ω0:

u = ū onΓD,

n · σ = t̄ onΓN , (5.6)

wheren is the external normal to the boundary andt̄ are the given boundary data.ΓD andΓN

are respectively the Dirichlet and the Neumann parts of the boundary∂Ω(t).
To shorten the notation, we will introduce the convection velocity

c = u− udom

in what follows.

5.2.2 The time-discrete problem

Let us introduce some notation. Consider a uniform partition of [0, T ] intoN time intervals of
lengthδt. Let us denote byfn the approximation of a time dependent functionf at time level
tn = nδt. We will also denote

δfn+1 = fn+1 − fn,

δtf
n+1 =

fn+1 − fn

δt
,

fn+θ = θfn+1 + (1− θ)fn, θ ∈ [1/2, 1].

θ type schemes Suppose we are given a computational domain at timetn, with spatial coor-
dinates labeledxn, and an equation of the form:

∂v

∂t
+ c · ∇v = G(v),

wherev is the unknown function andG is an operator applied to it. Ifvn is known,vn+1 can
now be found as the solution of the problem:

δtv
n+1
∣

∣

xn + cn+θ · ∇vn+θ = G(vn+θ), (5.7)
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where nowδtvn+1|
xn = (vn+1(x) − vn(xn))/δt, beingx = χtn+θ,tn(x

n) the spatial coordi-
nates inΩ(tn+θ). The domain velocity given by (5.1), withx′ = xn, is approximated as

un+θ
dom =

1

θδt

(

χtn+θ ,tn(x
n)− xn

)

. (5.8)

which allows us to computecn+θ = un+θ − un+θ
dom in (5.7).

Fractional step methods for solid mechanics There are basically two ways of dealing with
the ALE system of equations (5.2) to (5.6) (see [117] and the references therein):

a) solving the fully coupled system of equations, accounting for the various terms simulta-
neously,

b) using a fractional-step method to treat material and convective effects separately.

Although solving the coupled system of equations is more accurate, the fractional step
method offers some very useful advantages. On one hand, eachof the equations to be solved
is simpler than the ones arising from the coupled problem. Onthe other, difficulties on the
computation of the stress field gradient, which are due to thefact that stresses are usually
discontinuous across element edges, are more easily circumvented.

Remark 1 The FM-ALE method presented in this work has no dependence onthe way the
system of equations (5.2) to (5.6) is dealt with. However, for ease of implementation, fractional
step schemes have been chosen in the numerical examples presented in Section 5.6. △

Let us consider theθ type scheme in (5.7). For simplicity we will considerθ = 1. This
equation can be solved in a monolithic way, but it can also be divided in two phases:

Material phase (first order splitting)
In the first phase we solve:

vn+1(xmat)− vn(xn)

δt
= G(vn+1(xmat)), (5.9)

wherexmat = X tn+1,tn(x
n) is the mapping given by the motion of the particles. Note thatthis

first phase corresponds toudom = u (c = 0), that is to say, to a fully Lagrangian approach.

Convective phase (first order splitting)In the second phase we solve:

vn+1(x)− vn+1(xmat)

δt
+ cn+1(x) · ∇vn+1(x) = 0, (5.10)

wherex = χtn+1,tn(x
n) are the spatial coordinates inΩ(tn+1).

If we add (5.9) and (5.10) we obtain:

vn+1(x)− vn(xn)

δt
+ cn+1(x) · ∇vn+1(x) = G(vn+1(xmat)), (5.11)

which corresponds exactly to (5.7) except for the fact that instead of evaluatingG(vn+1)
at x we evaluate it atxmat. This introduces an error ofO(δt): observe from (5.10) that
‖vn+1(x)− vn+1(xmat)‖ = O(δt), where‖ · ‖may be taken for example as theL2-norm.
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If one wants a second order in time scheme, this could be achieved by modifying scheme
(5.9) - (5.10) in the following manner:

Material phase (second order splitting)

vn+1(xmat)− vn(xn)

δt
+ cn · ∇vn(x) = G(vn+1(xmat)). (5.12)

Convective phase (second order splitting)

vn+1(x)− vn+1(xmat)

δt
+ cn+1 · ∇vn+1(x)− cn · ∇vn(x) = 0.

Note thatcn+1 · ∇vn+1(x) − cn · ∇vn(x) is expected to be, formally, of first order inδt,
and therefore‖vn+1(x)− vn+1(xmat)‖ = O(δt2). Thus, whenvn+1(xmat) is used in (5.12)
instead ofvn+1(x), the resulting splitting error is expected to beO(δt2). If an overall second
order scheme is to be used,θ = 1/2 must be chosen.

These fractional step schemes can be introduced to the system of equations (5.2) to (5.6)
and also for the plastic internal variablesα whose evolution equation is given by (5.5).

Newmark’s method If in the constitutive equation which relates the stress tensorσ with the
set of variables of interest of the problem there is a dependence on the displacement fieldd,
that is to sayσ = σ(d,α), (5.3) becomes a second order in time equation. In [107], Newmark
presented a method to discretely approximate the velocity and acceleration (a) at timetn+1 as a
function of displacements (d), velocity and acceleration at timetn in a Lagrangian framework.
These three fields can be related in the continuous case by means of the equations

∂u

∂t

∣

∣

∣

∣

X
= a,

∂d

∂t

∣

∣

∣

∣

X
= u.

Newmark method reads:

an+1 =
1

βδt2
[dn+1 − dn − unδt]−

(

1

2β
− 1

)

an,

un+1 =
γ

βδt
[dn+1 − dn] +

(

1− 1

2β

)

δtan, (5.13)

whereβ andγ are parameters to be chosen. Most usual values areβ = 1/4 andγ = 1/2,
which provide a second order stable and non dissipative scheme. In the case of displacement-
dependent stress tensors, this method is to be used instead of θ type schemes. For the sake of
conciseness, we will restrict what follows toθ schemes, both in the monolithic and fractional
step versions. The dependence ofσ on the rest of variables of the problem (including internal
variablesα) will be simply indicated byσ = σ(λ).

5.2.3 The fully discrete problem

The next step is to consider the spatial discretization of the time discrete problem for both
the coupled and fractional-step methods. Here we present the discretization obtained if finite
elements are used.
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Let {Ωe}n+1 be a finite element partition of the domainΩ(tn+1), with indexe ranging from
1 to the number of elementsnel. We denote with a subscripth the finite element approxima-
tion to the unknown functions. The test functions for the velocity uh will be denoted byvh,
whereasγh will be the test functions for the discrete internal variablesαh, the finite element
approximation to the solution of (5.5). All the unknowns andtest functions are referred to the
current configuration of the solid.

The standard Galerkin method applied to the monolithic timediscretized problem reads:
findun+1

h andαn+1
h such that

mn+θ
s

(

δtu
n+1
h

∣

∣

xn , vh

)

+ an+θ
s (λh, vh) + cn+θ

s (ch;uh, vh) = ln+θ
s (vh), (5.14)

(δtα
n+1
h

∣

∣

xn ,γh) + (cn+θ
h · ∇αn+θ

h ,γh) = (Fn+θ(λh),γh), (5.15)

for all appropriate test functionsvh andγh. The different forms appearing in (5.14) are given
by

ms(δtuh, vh) =

∫

Ω

vh · ρ δtuh,

as(λh, vh) =

∫

Ω

∇vh : σ(λh),

cs(ch;uh, vh) =

∫

Ω

vh · (ρ ch · ∇uh),

ls(vh) =

∫

ΓN

vh · t̄+
∫

Ω

vh · ρb,

wherech is the discrete convection velocity, defined as:

ch = uh − udom.

The superscriptn+ θ in the different terms of (5.14) indicates the time level where unknowns
and time dependent functions need to be evaluated, as well asthe spatial domain where in-
tegrals need to be performed. In (5.15) the symbol(·, ·) denotes theL2-inner product in this
spatial domain.

The test functionsvh in (5.14) must vanish at the Dirichlet part of the boundaryΓD. Since
F in (5.15) is usually an algebraic operator, functionsγh need to vanish only at pointsxn, at
which the temporal derivatives in (5.14)-(5.15) are referred.

Remark 2 When diffusion is small in a convection-diffusion process or, as in the case of
(5.15), the process is purely convective (which happens whenF is an algebraic operator), the
Galerkin method fails and stabilized methods need to be used. The method we use is SUPG
(see [29] for an overview of stabilization methods), which applied for example to (5.15) leads
to the modification of this equation to

(δtα
n+1
h

∣

∣

xn ,γh + τcn+θ
h · ∇γh) + (cn+θ

h · ∇αn+θ
h ,γh + τcn+θ

h · ∇γh)

= (Fn+θ(λh),γh + τcn+θ
h · ∇γh), (5.16)
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where the so called stabilization parameterτ is computed elementwise as

τe =

(

c
|c|e
he

)−1

, e = 1, ..., nel,

wherehe is the element size for linear elements and half of it for quadratics and|c|e is a charac-
teristic value of|c| on elemente. In the numerical experiments we have taken the algorithmic
constantc = 2. Stabilization might also be necessary if the coupled method is used. However,
it is not needed in most solid mechanics simulations since the convective term is usually not
dominant in equation (5.14). This method corresponds to thealgebraic version of the subgrid
scale approach (see [76]) and circumvents the stability problems of the Galerkin method. In
particular, in the case of incompressible materials it is possible to use equal velocity pressure
interpolations, that is, we are not tight to the satisfaction of the inf-sup stability condition.△

For the fractional-step approach, equations (5.14)-(5.15) may be split into material and
convective phases. Usingθ = 1 and a first order splitting, the former would consist in finding
u

L,n+1
h andαL,n+1

h such that

1

δt
mL,n+1

s

(

u
L,n+1
h − un

h, vh

)

+ aL,n+1
s (λh, vh) = lL,n+1

s (vh) ∀vh, (5.17)

1

δt
(αL,n+1

h −αn
h,γh) = (FL,n+1(λh),γh) ∀γh, (5.18)

where superscriptL is used to denote that all variables, including domain integrals, are eval-
uated considering zero convection velocity. The convection step consists in findingun+1

h and
αn+1

h such that

1

δt
mn+1

s

(

un+1
h − u

L,n+1
h , vh

)

+ cn+1
s (ch;uh, vh) = 0 ∀vh, (5.19)

1

δt
(αn+1

h −α
L,n+1
h ,γh) + (cL,n+1

h · ∇αn+1
h ,γh) = 0 ∀γh. (5.20)

In order to take the convective term linear, the convection velocity in this step may be taken as

c
L,n+1
h = u

L,n+1
h − un+1

dom.

Remark 3 Note that whenF is an algebraic operator, (5.18) is in fact an approximationto
an ordinary differential equation, which corresponds to the time integration, usually at each
numerical integration point, of the evolution equation forthe internal variables. Obviously,
options better than the simplest backward Euler scheme of (5.18) could be used. On the other
hand, (5.20) simply represents the transport of the internal variables from the material config-
uration to the final configuration attn+1. There are models in which also the stressesσh need
to be transported. Since these stresses are discontinuous across the element edges forC0 shape
functions, solving equation (5.16) forσ is not straightforward. There are a certain number of
strategies to deal with this problem which can be found for example in [75, 117, 4]. In the
numerical examples of Section 5.6 there is no need to update the stresses, since only elastic
materials have been considered. △
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5.3 The FM-ALE method applied to solid mechanics

In this section we describe how the Fixed-Mesh ALE method canbe applied to problems in
solid mechanics. An overview of the FM-ALE approach is presented but major attention is
given to the particular characteristics of its applicationto solids. For a more detailed explana-
tion of the FM-ALE method in the general framework of moving domains, see Chapter 4. In
this section and the ones that follow it, the numerical schemes will be particularized forθ = 1.

5.3.1 The general algorithm

SupposeΩ0 is meshed with a finite element meshM0 and that at time leveltn the domain
Ω(tn) is meshed with a finite element meshMn. Letun

h be the velocity already computed on
Ω(tn). The purpose is to obtain the region the solid occupies at time tn+1, Ω(tn+1), and to
compute the various unknown fields. If the classical ALE method is used,Mn would deform
to another mesh defined attn+1. In the FM-ALE approach we do not use this mesh to compute
the unknowns of the problem, but instead we re-mesh in such a way that the new mesh is,
essentially,M0 once again. The main steps of the algorithm have been presented in Chapter 4.
Here we present an alternative algorithm which would lead toa very similar result. A global
idea of the meshes involved in the process is represented in Fig. 4.1.

1. DefineΓn+1
free by updating the function that defines it.

2. Deform the meshMn toMn+1
ALE using the classical ALE concepts and compute the mesh

velocityun+1
dom.

3. Write down the ALE solid mechanics equations onMn+1
ALE.

4. Solve the equations onMn+1
ALE to compute the unknowns in the deformed mesh.

5. Split the elementsof M0 cut byΓn+1
free to define a mesh onΩ(tn+1),Mn+1.

6. Project the results fromMn+1
ALE toMn+1.

The conceptual idea of the algorithm in Chapter 4 and the one presented here is basically
the same, the only difference being that in the first algorithm the equations are solved onMn+1

while in the second algorithm they are solved onMn+1
ALE. However, the second approach is more

convenient if non-linear systems of equations are to be solved. This is due to the fact that the
projection fromMn+1

ALE to Mn+1 is done only at the end of the time step, while in the first
algorithm this projection has to be carried out at each iteration.

5.3.2 Details on some of the steps

Tracking of Γfree

In the examples presented in Section 5.6 the body surface hasbeen tracked by means of a
Lagrangian boundary mesh. The intersection between the finite element mesh and the La-
grangian mesh is found at each time step. After the ALE solid equations have been solved,



5.3. The FM-ALE method applied to solid mechanics 89

the Lagrangian contour mesh is deformed. The transmission of information between the two
meshes is done by means of anL2 projection. There are two possible ways of updating the
position of the Lagrangian mesh nodes. The first approach consists in computing:

∫

Γ

vh · δdn:n+1
L =

∫

Γ

vh · δdn:n+1
FE ,

dn+1
L = dn

L + δdn:n+1
L , (5.21)

while in the second approach we compute:
∫

Γ

vh · dn+1
L =

∫

Γ

vh · dn+1
FE , (5.22)

wheredFE are the displacements computed on the finite element mesh anddL are the dis-
placements of the Lagrangian surface mesh,δdn:n+1 are the incremental displacements from
time stepn to time stepn+ 1 andvh are now the test functions corresponding to the nodes of
the Lagrangian surface mesh.

Although (5.21) could seem a natural choice, since a usual approach in solid mechanics
is to solve for the incremental nodal displacements, (5.22)works better than (5.21). This is
a consequence of the fact that (5.22) preserves the information of the undeformed geometry,
while the incremental approach of (5.21) leads to the loss ofthis information.

Another possible approach which has not been exploited in this work would be to track the
body surface by means of a level set function. For more details on the use of level set functions
in the FM-ALE method, see [41]. A method to track initial position of the particles has been
developed in [47], which could also be applied to the presentformulation.

Approximate imposition of boundary conditions

As done in Chapter 4, the strategy described in Chapter 2 is used in order to impose Dirichlet
boundary conditions without changing neither the connectivity nor the sparsity of the final sys-
tem of equations matrix. There are a number of other methods for imposing Dirichlet boundary
conditions on fixed meshes which could have been used, see forexample the strategies pro-
posed in theImmersed Boundary Method[113], theFictitious Domain Method[62, 63], and
thehybrid Cartesian/immersed boundary methods[60, 139, 104]. The only difficulties in the
imposition of boundary conditions near boundaries with irregular geometry are associated to
the fact that we consider the interface between the ”inside the domain” region and the ”outside
the domain” region of each cut element to be a single line segment. This introduces limitations
in the tracking of the solid body geometry, specially when sharp corners are present or, in the
floating solids problems to be described later, in those elements which are cut by the solid
body boundary and the level set function at the same time. This is a common limitation of
fixed mesh methods which can be addressed by coding more complex subelement integration
subroutines, although this has not been done in the current work.

Splitting of elements

MeshMn+1 is obtained by splitting the elements ofM0 cut byΓn+1
free . MeshesMn+1 andM0

only differ in the subelements created after the splitting just mentioned. MeshMn+1 could be
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thought as a local refinement of meshM0 to make it conform the boundaryΓn+1
free . As in other

fixed grid methods, this computational complication can be avoided by prescribing boundary
conditions onΓn+1

free in an approximate way, although the local refinement fromM0 to Mn+1

is needed also to perform the numerical integration of the different terms appearing in (5.14)-
(5.20).

However, depending on howΓn+1
free intersectsM0, the resulting subelements size could be

very small compared to the size of elements adjacent toΓn+1
free . This results in an ill-conditioning

of the system of equations to be solved. In order to avoid thisissue we work with a slightly
deformed meshMn+1

ALE,def at each time step constructed as follows: exterior nodes very close to
Γn+1
free (closer than0.1h for example) are displaced in a direction orthogonal toΓn+1

free until they
match exactly the body surface. The splitting of this mesh will avoid ill-conditioned elements.

Remark 6 Note that since only nodes very close toΓn+1
free are displaced, the stretch of the

elements is negligible, as it can be seen in Fig. 5.1. △

Figure 5.1: Deformation ofM0 for splitting purposes. Left: undeformed mesh. Right: de-
formed mesh. Element stretch is barely appreciable.

5.4 The FM-ALE method applied to Fluid-Structure Inter-
action problems

In Chapter 4 the FM-ALE method for solving flow problems in moving domains was pre-
sented. In this chapter we have seen how the FM-ALE approach can be used to solve problems
in solid mechanics. In this section we will show how to solve Fluid-Structure Interaction prob-
lems using the FM-ALE approach for both the fluid and the structure. In this case the same
background fixed mesh can be used to solve both the first and thesecond case, leading to some
advantageous features in the coupling between them.
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5.4.1 The FM-ALE method for flow problems in moving domains

In this section an incompressible Newtonian fluid will be considered. As in the solid case, the
domain movement has to be taken into account. The incompressible Navier - Stokes equations
are:

Find a velocityu : Ω(t)× (0, T ) −→ R
d and a pressurep : Ω(t)× (0, T ) −→ R such that

ρ

[

∂u

∂t

∣

∣

∣

∣

x′

+ (u− udom) · ∇u
]

−∇ · (2µ∇Su) +∇p = ρf , (5.23)

∇ · u = 0, (5.24)

where∇Su is the symmetrical part of the velocity gradient,ρ is the fluid density,µ is the vis-
cosity andf is the vector of body forces. Initial and boundary conditions have to be appended
to problem (5.23)-(5.24).

If finite elements are used, the fully discrete stabilized counterpart of this equations is:
Findun+1

h andpn+1
h such that

mn+θ
1

(

δtu
n+1
h

∣

∣

xn , vh

)

+ an+θ(uh, vh)

+cn+θ(uh − udom;uh, vh) + bn+θ
1 (ph, vh) = ln+θ

1 (vh), (5.25)

mn+θ
2

(

qh, δtu
n+1
h

∣

∣

xn

)

+ bn+θ
2 (qh,uh) + sn+θ(qh, ph) = ln+θ

2 (qh), (5.26)

for all test functionsvh andqh, the former vanishing on the Dirichlet part of the boundaryΓD.
The different forms appearing in these have been defined in Chapter 4.

5.4.2 Solving the coupled problem

When dealing with the coupled problem, the domain is dividedinto a solid partΩs(t) and a
fluid part Ωf (t), whereΩ̄0 = Ω̄s(t) ∪ Ω̄f (t) andΩs(t) ∩ Ωf (t) = ∅. The boundary of the
coupled problem can now be divided into the Dirichlet boundary for the fluid Γf

D and the
solidΓs

D, the Neumann boundary for the fluidΓf
N and the solidΓs

N , and the common interface
boundary between the fluid and the solidΓfree. The boundary of the coupled problem is now
Γ = ΓD ∪ ΓN ∪ Γfree, whereΓD = Γf

D ∪ Γs
D andΓN = Γf

N ∪ Γs
N .

The problem now consists in solving (5.14) or (5.17)-(5.20)in Ωs(t) and (5.25)-(5.26)
in Ωf(t). The key point is obviously the boundary conditions to be applied. OnΓD andΓN

boundary conditions are the usual applied to solid and fluid mechanics problems:

us = ūs onΓs
D,

uf = ūf onΓf
D,

n · σs = t̄s onΓs
N ,

n · σf = t̄f onΓf
N ,

where superscripts has been introduced for the unknowns in the solid and superscript f for
the unknowns in the fluid. InΓfree conditions must be applied such that velocity and traction
continuity at all time steps is fulfilled:

us = uf onΓfree,

n · σs = n · σf onΓfree.
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Figure 5.2: Domain and domain boundary subdivision in FSI problems. Blue:Γs. Green:Γf .
Red:Γfree. Dashed line:ΓN . Continuous line:ΓD

Satisfying the kinematic continuity leads to mass conservation, whereas satisfying the dy-
namic continuity yields conservation of linear momentum.

Note that sincēΩ0 = Ω̄s(t) ∪ Ω̄f (t) andM0 is a mesh coveringΩ0, it is possible at each
time step to divideM0 intoM t

s andM t
f such that:

M0 =M t
s ∪M t

f ,

whereM t
s andM t

f are meshes coveringΩs(t) andΩf (t) respectively, and not necessarily
disjoint.This allows us to use a single meshM0 to solve both the fluid and the solid mechanics
problems fort ∈ [0, T ]. However, if boundary conditions are prescribed in an approximate
way, for example following the strategy proposed in Chapter2, there will be some nodes of
M0 which will belong to bothM t

s andM t
f . At these nodes degrees of freedom need to be

duplicated so that unknowns for both the fluid and the solid can be obtained.
There are basically two ways of dealing with the coupled Fluid-Structure Interaction prob-

lem: thepartitionedand themonolithicapproaches. In partitioned methods the solid and fluid
problems are solved independently and coupling between both is achieved iteratively by means
of the so calledcoupling algorithms. The major advantage of this approach is that specific
codes can be used for each of the two problems to be solved. Itsdrawback is that convergence
is difficult to achieve under certain circumstances. In the monolithic approach both problems
are solved simultaneously and coupling between them is imposed in animplicit manner, which
avoids the need of coupling iterations. The dimension of thesystem to be solved is larger in
the monolithic case. However, if iterations within each time step yield convergence of the par-
titioned solution to the monolithic one, the distinction between both is blurred. In fact, those
iterations can be understood as a certain preconditioner tosolve iteratively the monolithic
problem.

Although both strategies can be used together with the FM-ALE method, the monolithic
approach is the one which suits it best. We have already seen howM0 can be divided intoM t

s

andM t
f . Moreover, with the formulation we use to solve the incompressible Navier - Stokes

equations, it is possible to use the same interpolation functions for the unknowns correspond-
ing to the solid problem and for the ones corresponding to theflow problem. It is very easy
in this case to implicitly write the coupling conditions between fluid and structure. To this
purpose equations corresponding to fluid velocity unknownsin nodes belonging toLf

−1 (Ls
0)
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are used to prescribe implicitlyus = uf . On the other hand, traction continuity is imposed in
equations corresponding to solid velocity/displacement in L0 andL−1 simply by adding the
corresponding boundary terms to the momentum conservationequations.

The final system to be solved is: findun+1,s
h , un+1,f

h andpn+1
h such that

mn+θ
1

(

δtu
f
h, v

f
h

)

+ an+θ(uf
h, v

f
h) + cn+θ(uf

h − udom;u
f
h, v

f
h) + bn+θ

1 (ph, v
f
h) = ln+θ

1 (vf
h),

mn+θ
2

(

qh, δtu
f
h

)

+ bn+θ
2 (qh,u

f
h) + sn+θ(qh, ph) = ln+θ

2 (qh),

mn+θ
s (δtu

s
h, v

s
h) + an+θ

s (λh, v
s
h) + cn+θ

s (us
h − udom;u

s
h, v

s
h) = ln+θ

s (vs
h),

(5.27)

for all test functionsvf
h andvs

h vanishing on the Dirichlet part of the boundaryΓD, and all
test functionsqh. Obviously, integrals corresponding to forms defined on thefluid region are
extended overΩf (t), whereas integrals corresponding to forms associated to the solid are
extended overΩs(t).

Another point we want to stress is that if one wants to solve the Fluid-Structure Interac-
tion problem using a monolithic scheme, but the solid is to besolved using a fractional step
method, the strategy to follow is simply to solve thematerialphase of the solid coupled mono-
lithically with the fluid problem. Once this phase is solved variables of interest inΩs(t) can be
transported in theconvectivephase (only for the solid mechanics problem).

In the Fluid-Structure Interaction example in Section 5.6 the monolithic approach has been
used. However, there is no major drawback in using the FM-ALEapproach altogether with
partitioned schemes.

Let us close this section summarizing the final algorithm forthe FM-ALE method applied
to FSI problems, which is:

1. DefineΓn+1
free by updating the function that defines it.

2. Deform the meshMn toMn+1
ALE using the classical ALE concepts and compute the mesh

velocityun+1
dom.

3. Write down the ALE solid (M t
s) and fluid (M t

f ) mechanics equations onMn+1
ALE. If a

fractional step method is used for the solid equations this corresponds to the material
phase

4. Solve the equations onMn+1
ALE to compute the unknowns in the deformed mesh.

5. If a fractional step method is used for the solid, solve theconvective phase

6. Split the elementsof M0 cut byΓn+1
free to define a mesh onΩ(tn+1),Mn+1.

7. Project the results fromMn+1
ALE toMn+1.
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5.5 The FM-ALE method applied to Fluid-Structure Inter-
action problems involving a free surface

In the previous sections we have seen how to deal with fluid-structure interaction problems
using the FM-ALE method. In this section we introduce the extra ingredient of the free surface
of the fluid, which requires some care when the solid body boundary is close to the function
representing the free surface. In this case we consider the solid body to be rigid, and thus very
few degrees of freedom are needed to describe the solid body movement.

5.5.1 Problem statement

Let us consider a regionΩ0 ⊂ R
d (d = 2, 3) where a flow will take place during a time interval

[0, T ]. However, we consider the case in which the fluid at timet occupies only a subdomain
Ω(t) ⊂ Ω0 (note in particular thatΩ(0) ⊂ Ω0). Suppose also that the boundary ofΩ(t) is
defined by part of∂Ω0 and a moving boundary that we callΓf(t) = ∂Ω(t) \∂Ω0 ∩∂Ω(t). This
moving part of∂Ω(t) may correspond to the boundary of a moving solid immersed in the fluid
or can be determined by a level set function. The setting of the problem is described in Fig. 5.3,
where also the solid domainΩs(t) and the fluid structure interfaceΓsf have been depicted.

Figure 5.3: Setting

Boundary conditions are of the form

u = ū onΓD,

n · σ = t̄ onΓN ,

wheren is the external normal to the boundary,σ = −pI + 2µ∇Su is the Cauchy stress
tensor and̄u andt̄ are the given boundary data.

When dealing with the fluid part of the domain, we also have to take into account the
movement of the free surface. This movement is dealt with by means of a level set function,
as explained for example in [41, 37].
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In the level set method we define a smooth functionΨ overΩ0 which allows us to determine
Ω(t). In our case we defineΩ(t) as the region over whichΨ(x, t) is positive. The position of
the fluid front will be defined by the iso-value contourΨ = 0. The evolution of this level set
function is computed by means of the transport equation: findΨ : Ω0 × (0, T ) −→ R such
that:

∂Ψ

∂t
+ u · ∇Ψ =0, (5.28)

with the additional requirement that the advection velocity at the free surface coincides with
that of the fluid. The procedure used to compute the level set advection velocity is described
in subsection 5.5.2.

For the solid part, we consider only the case of rigid bodies.The solid also evolves in time,
and we denote its domain byΩs(t). As usual in solid mechanics problems, we face the problem
in a purely Lagrangian way. Let us denote byxrb the position vector of the center of mass of
the rigid body, and byθrb the Euler angles. The motion equations for the rigid body are: find
xrb : (0, T ) −→ R

d andθrb : (0, T ) −→ R
d such that

m
d2xrb

dt2
= F , (5.29)

I
d2θrb

dt2
= T , (5.30)

wherem is the mass of the rigid body,I is the inertia tensor,F is the force vector at the center
of mass andT is the torque at the center of mass.

Initial and boundary conditions have to be appended to problem (5.23)-(5.24) and initial
conditions to (5.29)-(5.30). In order to impose these conditions we redefineΓf(t) asΓf(t) =
Γfree(t) ∪ Γsf(t), whereΓfree(t) is the part ofΓf(t) corresponding to the free surface andΓsf(t)
is the part ofΓf(t) corresponding to the interaction between the fluid and the structure.

In Γfree boundary conditions are of Neumann type, specifically we prescribe tractions to
zero, neglecting surface tension. InΓsf we must impose the usual conditions in fluid-structure
interaction problems, which for rigid bodies are continuity of the velocity field and transmis-
sion of the forces and torques exerted on the solid body by thefluid.

On the rest of the boundary ofΩ(t) the usual Dirichlet and Neumann boundary conditions
can be considered.

5.5.2 Numerical treatment

The numerical treatment of the incompressible Navier-Stokes equations is done as described
in the previous sections, and a similar formulation is used in order to deal with the advection
of the level set function.
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For the temporal integration of the solid mechanics problemwe consider Newmark’s
method:

mẍn+1
rb = F n+1,

ẍn+1
rb =

1

βδt2
[xn+1

rb − xn
rb − ẋn

rbδt]−
(

1

2β
− 1

)

ẍn
rb,

ẋn+1
rb =

γ

βδt
[xn+1

rb − xn
rb] +

(

1− 1

2β

)

δtẍn
rb, (5.31)

and

Iθ̈
n+1

rb = T n+1,

θ̈
n+1

rb =
1

βδt2
[θn+1

rb − θn
rb − θ̇

n

rbδt]−
(

1

2β
− 1

)

θ̈
n

rb,

θ̇
n+1

rb =
γ

βδt
[θn+1

rb − θn
rb] +

(

1− 1

2β

)

δtθ̈
n

rb, (5.32)

whereβ andγ are parameters to be chosen. Most usual values areβ = 1/4 andγ = 1/2,
which provide a second order stable and non dissipative scheme.

Tracking of Γf

As explained before, the free surface is tracked by means of alevel set function. However,
there still remain some points to be clarified about how this process is exactly carried out. The
main particularity of our problem is that the fluid boundaryΓf is represented not only byΓfree

but also byΓsf (see Fig. 5.3). Theoretically, if the advection velocity ofΨ is that of the rigid
body inΓsf , Γfree ∩ Γsf = Γsf , but in practice both boundaries will rarely exactly coincide. A
strategy has to be devised to deal with this lack of coincidence of the functions which define
the boundary of the fluid domain, which is due to numerical approximation errors.

The first situation we consider is the one depicted in Fig. 5.4. As we can see,Γsf does not
coincide with the free surfaceΓfree, understood as the isovalueΨ = 0 of the level set function.
This problem can be solved in the following manner: let us define Γ∗

free as the part ofΓfree

interior toΩs(t). Now we can define the fluid boundary as:

Γf = (Γfree \ Γ∗
free) ∪ Γsf

The second and more delicate problem occurs whenΓfree getsdelayedwith respect to
Γsf due to the extra numerical diffusion which appears in the advection of the level set. This
situation is outlined in Fig. 5.5. As we are considering continuum mechanics, the only way the
water surface can separate from the solid is slipping. In order to avoid an incorrect separation
process of the fluid from the solid we rely on the velocity in the non-computedair domain.

In theair domainwe do not solve the Navier-Stokes equations. This is the reason why we
have to compute an artificial velocity to advect the level setfunction. To do this we solve a
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Figure 5.4: Lack of coincidence of the boundary defined byΓfree andΓsf

modified Stokes problem with the following particularities: find a velocityu : Ω0 \ Ω(t) −→
R

d and a pressurep : Ω0 \ Ω(t) −→ R such that

−∇ · (2ν∇Su) +∇p = f , (5.33)

∇ · u = −α, (5.34)

whereα is a constant which is positive in the solid domain, and zero outside of it. Note that
using the positive constantα in the interior of the solid body does not introduce any extranu-
merical error since (5.34) refers only to the computation oftheartificial velocity. Slip bound-
ary conditions are applied except forΓfree where the fluid velocity is imposed. The positive
constantα, which has units of[T−1], makes the solid body act as a sink, which allows us to
avoid any numerically induceddelayin the advection of the interface. Again, the subgrid-scale
method is used to stabilize the problem and allow for equal velocity-pressure interpolation.
This problem needs to be solved only in a region close toΓf . In the rest ofΩ0 \ Ω(t) the ad-
vection velocity can be more straightforwardly computed, for example by means of a linear
extrapolation.

As usual when using the level set method, we need to reinitialize the level set function every
certain number of time steps. This reinitialization may move the position of the interface. In
order to avoid this a special procedure is used in the nodes ofcut elements. It is a slight
variation of the method presented in [66], which consists ofthe following: Suppose that we
are given the free surface configuration in Fig. 5.6. Now we divide the nodes belonging to the
elements cut by the free surface in two sets, each set corresponding to one side of the free
surface. In the first wet side, we prescribe the nodal values of the level set function to be equal
to the (signed) distance between the node and the free surface.

We use the degrees of freedom of the nodes in the second side ofthe free surface to pre-
scribe the reinitialized level set function to be zero valued on the free surface, by using the
approximate imposition of boundary conditions of the previous section. On the rest of the
nodes we prescribe the level set function to be the signed distance from the nodes to the free
surface, although we could also use the more efficient procedure in [66], or other techniques as
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Figure 5.5:Γ∗
free for differentα parameters

the one described in [37]. This algorithmic procedure allows the reinitialized level set function
to very accurately track the free surface, that is, the free surface for the reinitialized level set
function minimizes the distance between the interface position before and after the reinitial-
ization. This guarantees that no significative mass loss is introduced during the reinitialization
of the level set function, since the error in the reinitialization is ofO(δt2) .

Figure 5.6: Green nodes: nodes in which we prescribe the level set function to be equal to the
signed distance from the nodes to the free surface. Red nodes: nodes whose nodal values are
such that the level set function is zero on the free surface (Approximate imposition of boundary
conditions).
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5.6 Numerical examples

In this section we present some numerical examples which illustrate the behavior of the
methodology proposed in this work.

5.6.1 An example on FM-ALE applied to solid mechanics

In this example a cantilever subject to gravity forces will be simulated by means of the FM-
ALE method. Since a fractional step method is used, the equations to be solved are (5.17)-
(5.19) (with the additional terms coming from the stabilization). A Neo-Hookean material
has been considered, which takes into account large strains. The constitutive equation of this
material is (see [17]):

σ =
1

J
[λ0 ln JI + µ0(B − I)], (5.35)

whereB = F · F T , λ0 andµ0 are material parameters andI is the identity tensor.
The hold-all domain is the rectangleB = [−1, 5] × [0, 11]. A background mesh of 3200

linear triangles has been used. The considered solid is a rectangular cantilever situated at
[0, 1] × [0, 10]. The material parameters areλ0 = 2000 andµ0 = 5000. The solid density
is ρ = 1, which has been considered to remain constant through the whole process.

In this case the body is only under the effect of (horizontal)body forces, given by
bT = (1, 0). Dirichlet boundary conditions are applied aty = 0, where displacements in
any direction are prescribed to zero. On the rest of the solidboundary, Neumann boundary
conditions are applied:

n · σ = 0.

Initial conditions correspond to the undeformed static configuration.
The time step size has been set toδt = 0.2 andθ = 1 has been taken (first order scheme in

time).
Fig. 5.7 shows the mesh used to solve this problem. The boundary of the body does not

match the boundary of the mesh. Fig. 5.8 shows horizontal andvertical displacements at time
step 90.

In order to validate the FM-ALE method, we have compared the results obtained with our
approach with those obtained if a classical Updated - Lagrangian method for boundary fitting
meshes is used. To this end we have used a boundary fitting meshwith the same element
density to solve the same problem. Fig. 5.9 shows the horizontal displacement of a material
point placed at the top of the cantilever, whose coordinatesareXT = (0.5, 10).

The simulation is carried out during 90 time steps. As it can be seen results are very similar
to the ones obtained in the classical Updated - Lagrangian approach.

Another issue which we were interested in is the effect of theuse of a fractional step
method. In Fig. 5.10 we have plotted the results obtained if we takeudom = uh (the convective
phase is avoided) versus the results obtained if we takeudom 6= uh (a convective phase is
needed). As we can see no difference can be appreciated between results, and we can conclude
that the error introduced by the use of a fractional step method is small.
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Figure 5.7: Immersed mesh use to solve the solid mechanics example and body surface
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Figure 5.8: Displacements after 90 time steps



5.6. Numerical examples 101

0 10 20 30 40 50 60 70 80 90
−0.5

0

0.5

1

1.5

2

2.5

Time step

H
or

iz
on

ta
l d

is
pl

ac
em

en
t

 

 

Updated Lagrangian
FM−ALE

Figure 5.9: Horizontal displacement at a point placed at thetop of the cantilever. Comparison
between FM-ALE and Updated - Lagrangian formulations
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Figure 5.10: Horizontal displacement at a point placed at the top of the cantilever. Comparison
between FM-ALEudom = uh and FM-ALEudom 6= uh formulations
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5.6.2 Examples of the FM-ALE applied to Fluid-Structure Interaction
problems

In the first example the same cantilever as in subsection 5.6.1 is simulated. However, the forces
acting on the cantilever are due to the interaction with a fluid in this case. The hold-all domain
is the rectangleB = [−10, 70] × [0, 20]. An unstructured background mesh of 4655 linear
triangles is used. This mesh is much coarser than the one usedin the previous example if we
consider the element density in the solid body area.
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Figure 5.11: Mesh used to solve the first Fluid-Structure Interaction example. Left: full mesh.
Right: detail of the area surrounding the solid body

The material parameters for the solid body are the ones used in the previous example. For
the fluid we have consideredρ = 2 andµ = 0.2. The velocity atx = 0 is prescribed to
(1,0), whereas aty = 0 andy = 20 they−velocity component is prescribed to 0 and thex-
component is left free. The outflow (where both thex- andy-components are free) isx = 70.
The Reynolds number is 100, based on the cantilever height and the prescribed inflow velocity.
The time step size has been set toδt = 1 andθ = 1.

A monolithic approach has been used to couple fluid and structure. Both the fluid and the
structure have been solved using the FM-ALE method with thesame background mesh(see
Fig. 5.11). The deformed configuration of the beam at time step 100 is shown in Fig. 5.12.

In Fig. 5.13 the horizontal displacement at a point placed atthe top of the cantilever is
plotted. This figure shows how the movement of the cantileveris dumped by the action of the
fluid. After a certain number of time steps the movement becomes stationary. Fig. 5.14 and
Fig. 5.15 show the cantilever displacements and the fluid velocities and pressures at time step
100.

In the second example we consider a thin elastic non-linear beam (Neo-Hookean material)
attached to a fixed square rigid body, which are submerged in an incompressible fluid flow.
Vortices separating from the corners of the rigid body generate oscillating forces on the beam.
Geometry is given in Fig. 5.16, while Fig. 5.17 shows the meshused to solve the problem.
Again, a higher element density has been used in the region which will be occupied by the
solid. The mesh is as coarse as possible, with the requirement that there are at least three ele-
ments to cover the beam width, and it is composed of 9388 triangular elements and 4812 nodes.
The setting of the problem is similar to that proposed in [135], although we have considered
a thicker beam in order to be able to use the rather coarse meshdescribed. It is clear that thin
structures are not the most favorable situation for fixed mesh methods, and in particular for
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Figure 5.12: The same mesh is used to solve both the fluid and the structure. Green: elements in
which only degrees of freedom corresponding to the fluid haveto be solved. Blue: elements in
which only degrees of freedom corresponding to the structure have to be solved. Red: Elements
in which degrees of freedom corresponding to both fluid and structure have to be solved.
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Figure 5.13: Horizontal displacement at a point placed at the top of the cantilever.
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Figure 5.14: Solution for the solid body at t = 100

Figure 5.15: Solution for the fluid at t = 100
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FM-ALE (an alternative would be to represent these structures by a zero width solid, which is
not a situation considered in this work).

Figure 5.16: Geometry
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Figure 5.17: Mesh used to solve the second Fluid-Structure Interaction example

The fluid material properties areρ = 1 × 10−2 andµ = 1.7 × 10−3. The solid material
properties areρ = 2, λ0 = 1.72 × 106 andµ0 = 7.4 × 105. The horizontal inflow velocity
at x = 0 is set to 40, yielding a Reynolds number ofRe = 235 referred to the length of
the square rigid body. Slip boundary conditions are set at the walls of the channel. The beam
and the square rigid body are assigned non-slip boundary conditions. The time step is set
to δt = 0.002 andθ = 1. A monolithic approach has been used to solve the FSI problem,
although the fractional step scheme has been used to deal with the solid. Both the fluid and the
structure have been solved using the fixed background mesh.
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Contours of pressure and velocity components andt = 5 are shown in Fig. 5.18, when the
vortex shedding behind the square cylinder has appeared butis not yet fully developed. It can
be observed that even in this transient stage results are smooth and boundary conditions on the
elastic beam perfectly accounted for. The evolution of the vertical displacement at the edge of
the beam is plotted in Fig. 5.19, where it can be observed thatthe dynamics of the system are
fully developed at aboutt = 7. Then, a perfectly harmonic flow pattern sets in, with a single
frequency in the time response, as it can be observed from Fig. 5.20.

Figure 5.18: Velocity and pressure at timet = 5.0

Finally we present a third example in which we compare the results obtained with the
FM-ALE method in the benchmark problem proposed in [129]. Again, we consider a thin
elastic beam attached to a rigid body. In this case, the material for the elastic beam is a Saint
Venant - Kirchhoff material, and the rigid body is a circle. The constitutive equation for a Saint
Venant-Kirchhoff material is (see [17]):

σ =
1

J
F [λtr(E)I + 2µE]F t, (5.36)

whereE = 1
2
(B−I). Both solid bodies are immersed in an incompressible fluid flow. Geom-

etry is given in Fig. 5.21, Fig. 5.22 shows the 10883 trianglemesh used to solve the problem.
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Figure 5.19: Vertical displacement at the edge of the beam
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Figure 5.20: Fourier transform of the maximum vertical displacement. The frequency of the
main vibration mode is 2.4

Figure 5.21: Geometry, benchmark [129]
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Figure 5.22: Mesh used to solve FSI benchmark [129]

The fluid material properties areρ = 1×103 andν = 1×10−3. The solid material properties
areρ = 1 × 103, ν = 0.4 andµ = 2.0 × 106. The horizontal inflow velocity atx = 0 is set
to a parabolic profile with mean value2, yielding a Reynolds number ofRe = 200 referred
to the size the circular rigid body. Non-Slip boundary conditions are set at the walls of the
channel. The beam and the square rigid body are also assignednon-slip boundary conditions.
The time step is set toδt = 0.005 and a second order backward difference scheme is adopted.
A monolithic approach has been used to solve the FSI problem,although the fractional step
scheme has been used to deal with the solid. Both the fluid and the structure have been solved
using the fixed background mesh.

Contours of pressure and velocity components andt = 6.8 are shown in Fig. 5.23, and
we can see that again smooth velocity and pressure fields are obtained in the fluid. Finally,
we compare the results obtained with the FM-ALE method with the ones presented in [129] in
Fig. 5.24. It can be observed that a very good agreement is obtained in both the period (≈ 0.18)
and amplitude of the tip displacement (≈ 0.002±0.035) in the oscillations of the elastic beam.

5.6.3 Examples of the FM-ALE method applied to FSI problems involv-
ing a free surface

In this section we present two numerical examples which illustrate the behavior of the method-
ology proposed in this work.

The first example we propose consists of two rigid bodies falling into an incompressible
fluid. To run this example we use the FM-ALE method on the fluid part, and we track the free
surface by means of a level set function. The initial configuration of the problem can be seen
in Fig. 5.25.

The hold-all domain is the rectangleB = [0, 2.4] × [0, 1]. A background mesh of 7968
linear triangles has been used. The fluid density isρ = 1, and the viscosity is set toµ = 0.001.
For the solid bodies, density isρ = 0.75.
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Figure 5.23: Velocity and pressure at timet = 6.8

6 6.1 6.2 6.3 6.4 6.5
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Time

D
is

pl
ac

em
en

t y

Figure 5.24: Vertical displacement at the edge of the beam. Comparison between benchmark
results in [129] (left) and results obtained with the FM-ALEmethod (right).

Figure 5.25: Initial configuration, example 1
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Both the fluid and the structure are subject to a vertical gravity force of valueg = −10.
We apply slip boundary conditions both at the interface between the fluid and the deposit wall
and at the interface between the solid bodies and the fluid. This means that only the velocity
in the direction normal to the interface has to coincide between the fluid and the solid bodies.
In the free surfaceΓfree tractions in the normal direction are prescribed to zero.

The time step has been set toδt = 0.02 and150 time steps have been carried out. Regarding
the advection of the level set function, theα parameter for the artificial mass sink explained in
subsection 5.5.2 is taken asα = 2.

Figures 5.26 to 5.29 show the results for various time steps.Let us remark that the solution
obtained is smooth along all the computation, even for the first critical steps in which the rigid
bodiescontactthe free surface. The irregular boundaries are due to the fact that for ease of post
processing we have plotted the solution in the elements cut by the boundary without taking into
account that the boundary of the domain does not fit the boundary of the elements.
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Figure 5.26: Unknown fields and free surface at t = 0.36

The kind of computation involved in this example, in which the fluid region undergoes
very large deformations, would have implied the need for continuous remeshing if classical
ALE methods were used. Our fixed mesh strategy avoids it by projecting the results to the
background mesh at each time step.

The most critical situations in this problem, which are the instant in whichthe fluid closes
around the rigid body, and surrounds it completely, and the instant whenthe solid body breaks
the free surface, are handled in a very natural way with the level set functionstrategy.

In the second example, we simulate an oval body falling into an incompressible fluid.
Again, we use the FM-ALE method to simulate the fluid part, andwe track the free surface
with a level set function. The initial configuration for thisproblem can be seen in Fig. 5.30.

The hold-all domain is the rectangleB = [0, 1]× [0, 1]. The fluid density isρ = 1, and the
viscosity is set toµ = 0.01. For the solid body, the density isρ = 0.5. Both the fluid and the
structure are subject to a vertical gravity force of valueg = −10. The time step has been set
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Figure 5.27: Unknown fields and free surface at t = 0.78
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Figure 5.28: Unknown fields and free surface at t = 0.98
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Figure 5.29: Unknown fields and free surface at t = 2.40

Figure 5.30: Initial configuration, example 2
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to δt = 0.02 and500 time steps have been carried out. Again, the parameterα has been set to
α = 2.

In this case we have used three different meshes in order to compare the behavior of the
method with different element sizes. In the first case, we have used a relatively coarse triangle
mesh with 1890 nodes. In the second case we have used a finer mesh, with 5205 nodes and
the last mesh consisted of 11614 nodes. We compare the vertical displacement of the center
of mass of the solid body in the three cases in Fig. 5.31. We cansee that we obtain a solution
close to the converged one for the vertical displacement with the two finer meshes. We have
also represented vertical and horizontal velocities for the solid body in Fig. 5.32. Horizontal
velocity for the solid body should be zero due to the problem symmetry. The numerical errors
introduced in the geometry interpolation of the cut elements (the considered meshes are not
symmetric) are the cause for horizontal velocity to appear,although the horizontal velocity is
small compared to the vertical velocity and the domain size.In any case, as already explained
this local error could be removed by improving the numericalintegration, which can be done
by introducing appropriate subelements for integration purposes.
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Figure 5.31: Time evolution of the vertical displacement

Fluid velocity, free surface and solid body configurations can be seen in Fig. 5.33 to
Fig. 5.35. As expected, in the final configuration, when the body is at rest, half of the body
is inside the fluid domain and half of it is in the air domain, sinceρs/ρf = 0.5. Again, the lack
of symmetry in the velocity fields in Fig. 5.35, when both the fluid and the solid are close to
rest, is due to the cumulative numerical errors of the geometry interpolation in the cut elements.

Fig. 5.36 shows the time evolution of the total fluid mass. We can see that mass loss is
larger in the coarse mesh case, and much smaller for the finer meshes although no method for
correcting mass loss has been used.
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Figure 5.32: Time evolution of the vertical and horizontal velocities
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Figure 5.33: Unknown fields and free surface at t = 0.28
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Figure 5.34: Unknown fields and free surface at t = 2.5
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Figure 5.35: Unknown fields and free surface at t = 10.0
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Figure 5.36: Time evolution of mass (with respect to initialmass)

5.7 Conclusions

In this chapter the FM-ALE approach has been applied to solidmechanics and Fluid-Structure
Interaction problems. The main feature of the method is its capability of using a fixed back-
ground mesh but at the same time correctly taking into account the domain movement in the
computation of the time derivatives. Moreover, values of the unknowns for the so-callednewly
created nodesare clearly and uniquely defined with the FM-ALE approach.

For solid mechanics problems the FM-ALE method is of specialinterest when the solid
body is subject to very large strains. In this case Lagrangian formulations cannot be used due
to the ill-conditioning caused by the large element stretch. The FM-ALE method, on the other
hand, avoids element stretching by using a fixed mesh. A validation test has been carried out
comparing results obtained with a classical Updated - Lagrangian formulation and the method
proposed in this work. Results show that the method is robustand accurate.

The FM-ALE concept can be applied together with any time integration scheme. In the
case of solid mechanics, we have shown how to use it in combination with classicalθ schemes
and fractional step methods that have a certain popularity in this context.

In the case of Fluid-Structure Interaction problems, the FM-ALE method can be applied
to solve the flow and the solid mechanics problems. The main feature of this approach is
the possibility of using asingle background mesh to solve both mechanical problems. We
have presented two numerical examples showing this particular capability. Even though mono-
lithic solid-fluid coupling schemes have been employed, thepossibility of using iteration-by-
subdomain techniques is open.

For free surface problems the FM-ALE method avoids the need for remeshing which ap-
pears in classical Lagrangian or ALE methods. Moreover, thefree surface is tracked in a very
natural way with the level set function strategy, allowing for the solid bodybreaking the free
surfacewithout any further algorithmic steps. We have paid specialattention to the interaction
between the level set function and the solid boundary function which define the fluid domain:
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in order to avoid the delay of the level set function with respect to the solid boundary function,
we have modified the Stokes problem to be solved in the empty part of the domain, imposing
the velocity divergence to be negative inside the solid body. The proposed method has been
used to solve the problem of rigid bodies falling into water,and has proved to be robust and
provide smooth solution fields, even at the critical instantin which the solid body contacts the
free surface.
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Chapter 6

Subscales on the element boundaries

In this chapter we introduce a way to approximate the subscales on the boundaries of the ele-
ments in a variational two-scale finite element approximation to flow problems. The key idea
is that the subscales on the element boundaries must be such that the transmission conditions
for the unknown, split as its finite element contribution andthe subscale, hold. In particular,
we consider the scalar convection-diffusion-reaction equation, the Stokes problem and Darcy’s
problem. For these problems the transmission conditions are the continuity of the unknown and
its fluxes through element boundaries. The former is automatically achieved by introducing a
single valued subscale on the boundaries (for the conforming approximations we consider),
whereas the latter provides the effective condition for approximating these values. The final
result is that the subscale on the interelement boundaries must be proportional to the jump
of the flux of the finite element component and the average of the subscale calculated in the
element interiors.

6.1 Introduction

The variational multiscale (VMS) framework to approximateboundary value problems starts
with the variational formulation of the problem. In particular, in the two-scale version we con-
sider, it consists in splitting the unknown and the test function into a component in a discrete
approximating space and another component in its complement, for which an approximation
needs to be proposed. This component is called subgrid scaleor, simply,subscale. This idea
was proposed in the finite element context in [76, 77]. The standard Galerkin method accom-
modates this framework simply by considering the subscalesto be negligible.

The main interest of the VMS framework is to developstabilizedfinite element methods
in a broad sense, meaning that it allows to design discrete variational formulations that do
not suffer from the stability problems of the standard Galerkin method. In particular, we are
interested here in finite element methods for some model problems arising in fluids mechanics
(see [29] for a review of different stabilization methods inflow problems).

The VMS concept as described above is quite general. The way to approximate the sub-
scales is left open. Many questions arise, such as the space for these subscales, the problem
to be solved to compute them or their behavior in time dependent problems. In principle, the
problem for the subscales isglobal, that is to say, defined over all the computational domain.

119
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In order to simplify it, some sort oflocalizationis necessary, for example by assuming that the
subscales vanish on the interelement boundaries, that is tosay, they are bubble functions (see
for example [12, 118] for application of this concept to flow problems).

The treatment of the subscales on the interelement boundaries is precisely the subject of
this chapter. We propose a way to compute them based on the following ideas:

• We assume the subscales on the element interiorscomputed, and thus the localization
process mentioned consists in computing these subscales without accounting for their
boundary values.

• The subscales on the element boundaries aresingle valued, even if they are discontin-
uous in the element interiors. This requires a hybrid-type formalism to write theexact
variational equations that we develop only in the first problem analyzed.

• The subscales on the element boundaries are computed by imposing that the correct
transmission conditions of the problem at hand hold. Obviously, these transmission con-
ditions are problem-dependent.

• The fluxes of the subscales on the interelement boundaries are approximated using a
simple finite-difference scheme. This isthe onlyapproximation we use, apart from those
shared with VMS methods that are required to approximate thesubscales in the element
interiors.

A completely different approach to compute subscales on theinterelement boundaries is
proposed in [2], where local problems along these boundaries are set.

We will not insist on other aspects of the VMS method, such as the problem for the sub-
scales in the element interiors, the space where they belongor their time dependency. Let us
only mention that we approximate them using an approximate Fourier analysis, that very often
we compute them asL2-orthogonal to the finite element space [30] and that we consider them
time dependent in transient problems [32, 36]. In order to skip as much as possible this discus-
sion, we will present our formulation without using the explicit expression for the subscales
in the element interiors This approach is, as far as we know, original, and we use it mainly to
focus the attention in the expression of the subscales on theinterelement boundaries.

The particular transmission conditions between interelement boundaries, that serve us to
compute the subscales on these boundaries, are problem dependent. This is why we will treat
different problems arising in fluid mechanics, all of them linear and stationary. The first is
the convection-diffusion-reaction (CDR) equation considered in Section 6.2. We show that the
subscale on the element boundaries is proportional to the jump of the fluxwith a negative sign,
and also to the average of the subscales computed in the element interiors adjacent to an edge
and extended to this edge. In the following, “edge” will refer to the intersection between two
element domains, understanding that it is a face in 3D problems. The sign of the subscales on
the edgessubtractsstability to the problem. However, we show that it is possible to control
the new terms added. Neither for this problem nor for the other two discussed in the chapter
we analyze convergence, since it depends on the particular expression of the subscale on the
element interiors. Nevertheless, we provide stability results for all the problems treated.

There is no apparent gain in considering the subscales on theelement edges for the CDR
equation the way we do. However, the situation is different for the Stokes problem written in
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velocity-pressure form analyzed in Section 6.3. We show that the subscales on the edges in
this case introduce two terms, one that depends on the velocity gradients and that needs to be
controlled with the viscous term and another onethat provides pressure stability. This term
is a least-squares form of the jump of the pressure across theedges, and therefore acts only
when discontinuous pressure interpolations are used (notethat it is not related to the jump
stabilization technique proposed for example in [26, 25]).The term we add is similar to the
one already introduced in [78], which has the local variant proposed and analyzed in [125, 85]
for theQ1/P0 (bilinear-constant) andP1/P0 (linear-constant) velocity-pressure pairs.

Section 6.4 describes the application of our ideas to Darcy’s problem. We propose a stabi-
lized formulation that includes, with minor modifications,the methods proposed for example
in [102] (and extended in [106]) and in [80]. As in the previous cases, we provide a stability
result. In this case, the bilinear form associated to the problem is not coercive, but only an
inf-sup condition can be proved.

Let us mention that the ideas presented here can be applied toother problems. In par-
ticular, in [34] a method to compute the subscales on the element boundaries for the stress-
velocity-pressure formulation of the Stokes problem is proposed and fully analyzed. In this
case, subscales on the boundaries are essential to deal withdiscontinuous pressure and stress
interpolations.

The main contributions of our approach can be summarized as follows:

• To provide a consistent VMS justification to some stabilizing terms introduced in previ-
ous works to deal with discontinuous pressures.

• To propose asymmetricstabilized problem for the Stokes and the Darcy equations (if
subscales in the element interiors can be considered negligible compared to the jump
of the stresses, see Remark 5). The sign of the symmetric operator, which subtracts
stability from the Galerkin terms, is crucial to achieve this symmetry. The situation is
similar to what happens when minus the adjoint of the differential operator applied to the
test functions is used instead of the original differentialoperator in the stabilizing terms.
This suggestion was first introduced in [55] and turns out to be completely natural in the
VMS framework. Also in this case, the diffusive termsubtractsstability in the case of
the CDR equation.

• Even though we do not exploit this point here, our approach suggests how to stabilize
Neumann boundary conditions, essential for example in somefluid-structure interaction
problems (see Remark 6).

Some numerical examples are presented in Section 6.5. Sincethe stabilizing effect of the
boundary terms introduced for the different problems is well known, we simply check what is
particular of our approach, namely, the terms that may deteriorate stability. We show that this is
not the case in two cases, namely, a convection-diffusion example and two Stokes problems. As
the stability analysis dictates, these terms can be controlled by the rest of the terms appearing in
the stabilized formulation. Moreover, in the Stokes problem case, some discontinuous pressure
interpolations unstable using the Galerkin method, such astheP1/P0 pair (see Section 6.5) can
be used.
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In Section 6.6 we look for an efficient implementation of theP1/P0 interpolation. Our
approach consists of condensating the pressure unknowns bysending the off-diagonal terms
corresponding to the pressure test function equations to the right hand-side. We illustrate the
performance of these algorithms with some convergence plots.

Finally, some conclusions close the chapter in Section 6.7.

6.2 Convection-diffusion-reaction equation

6.2.1 Problem statement

Let us consider the boundary value problem:

Lu := −k∆u+ a · ∇u+ su = f in Ω, (6.1)

u = 0 on∂Ω, (6.2)

whereΩ ⊂ R
d is a bounded domain, withd = 2, 3, u : Ω −→ R is the unknown,k is the

diffusion coefficient,s the reaction coefficient,a the advection velocity andf the given source
term. For simplicity, we assumek > 0, s ≥ 0 and the advection velocitya all constants.

Let V = H1
0 (Ω) and assumef ∈ H−1(Ω). The variational form of the problem consists of

findingu ∈ V such that

B(u, v) := k(∇u,∇v) + (a · ∇u, v) + s(u, v) = 〈f, v〉 =: L(v) ∀v ∈ V. (6.3)

Here and below,(·, ·) denotes theL2 product inΩ. In general, the integral of two functiong1
andg2 over a domainω will be denoted by〈g1, g2〉ω and the norm in a function spaceX by
‖ · ‖X , with the simplifications‖ · ‖L2(Ω) ≡ ‖ · ‖ and〈·, ·〉Ω ≡ 〈·, ·〉. This symbol will also be
used for the duality pairing.

6.2.2 Six and four field formulations

As mentioned earlier, we consider that the subscales on the element boundaries are single
valued, even if they are discontinuous in the element interiors. To give a variational foundation
to the approximation presented in the next subsection, let us consider a hybrid-type approach,
starting with a particular six field formulation of the problem. For simplicity, let us assume
that Ω̄ = Ω̄1 ∪ Ω̄2, with Γ = ∂Ω1 ∩ ∂Ω2. Consider a decomposition ofV = H1

0 (Ω) of the
form V = V̄ ⊕ V ′, and letu = ū + u′ be the corresponding decomposition of the unknown.
Let us state a variational formulation of the problem takingas unknowns̄u, u′, their traces on
Γ, denoted bȳγ andγ′, respectively, and their fluxes, denoted byλ̄ andλ′, respectively. The
space of tracesT = H

1/2
00 (Γ) and the space of fluxesF = (H

1/2
00 (Γ))′ (the dual ofT ) are also

assumed to be split asT = T̄ ⊕ T ′ andF = F̄ ⊕ F ′. Note that the prime inV ′, T ′ andF ′ is
notused to denote the dual of a space.

If we denote with a subscripti the restriction ofū, u′, λ̄, λ′, B andL to subdomaini
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(i = 1, 2), the problem for the six fields̄u, u′, γ̄, γ′, λ̄ andλ′ can be written as

B1(ū1, v̄1) +B1(u
′
1, v̄1)−

〈

λ̄1 + λ′1, v̄1
〉

Γ
= L1(v̄1) ∀ v̄1, (6.4)

B1(ū1, v
′
1) +B1(u

′
1, v

′
1)−

〈

λ̄1 + λ′1, v
′
1

〉

Γ
= L1(v

′
1) ∀ v′1, (6.5)

B2(ū2, v̄2) +B2(u
′
2, v̄2)−

〈

λ̄2 + λ′2, v̄2
〉

Γ
= L2(v̄2) ∀ v̄2, (6.6)

B2(ū2, v
′
2) +B2(u

′
2, v

′
2)−

〈

λ̄2 + λ′2, v
′
2

〉

Γ
= L2(v

′
2) ∀ v′2, (6.7)

〈µ̄1, γ̄ + γ′ − ū1 − u′1〉Γ = 0 ∀ µ̄1, (6.8)

〈µ′
1, γ̄ + γ′ − ū1 − u′1〉Γ = 0 ∀µ′

1, (6.9)

〈µ̄2, γ̄ + γ′ − ū2 − u′2〉Γ = 0 ∀ µ̄2, (6.10)

〈µ′
2, γ̄ + γ′ − ū2 − u′2〉Γ = 0 ∀µ′

2, (6.11)
〈

κ̄, λ̄1 + λ′1 + λ̄2 + λ′2
〉

Γ
= 0 ∀ κ̄, (6.12)

〈

κ′, λ̄1 + λ′1 + λ̄2 + λ′2
〉

Γ
= 0 ∀κ′. (6.13)

In these equations,λi = λ̄i + λ′i ∈ F are the fluxes computed from the side ofΩi andµi =
µ̄i + µ′

i ∈ F the corresponding test functions (i = 1, 2). The test function for the trace of the
unknownγ = γ̄ + γ′ ∈ T is denoted byκ = κ̄ + κ′ ∈ T . The boundary terms in (6.4)-(6.7)
correspond to the weak imposition of fluxes onΓ, equations (6.8)-(6.11) to the weak continuity
of ui = ūi + u′i onΓ (i = 1, 2) and equations (6.12)-(6.13) to the weak continuity of fluxes on
Γ.

The previous formulation can be considered a straightforward extension of the classi-
cal three field formulation foru, γ and λ, obtained by a splitting of the spaces where
these unknowns belong (see [116] for a three field formulation of the convection-diffusion
equation). Our particular formulation is obtained by imposing the fluxes ofū to be λ̄i =
ni · (k∇ūi + aūi)|Γ, whereni is the normal toΓ from Ωi, and γ̄ = ūi|Γ (i = 1, 2). In
other words,we prescribe the fluxes and the continuity ofū as in the one field variational for-
mulation (6.3), but treatu′, γ′ andλ′ as in the standard three field formulation. This approach
in particular implies that the test functionsµ̄i must be of the form̄µi = ni · (k∇v̄i + av̄i)|Γ,
for v̄i ∈ V̄i, andκ̄ = v̄|Γ, with v̄ ∈ V̄ . Therefore, the previous problem reads

B1(ū1, v̄1) +B1(u
′
1, v̄1)− 〈n1 · (k∇ū1 + aū1) + λ′1, v̄1〉Γ = L1(v̄1) ∀ v̄1, (6.14)

B1(ū1, v
′
1) +B1(u

′
1, v

′
1)− 〈n1 · (k∇ū1 + aū1) + λ′1, v

′
1〉Γ = L1(v

′
1) ∀ v′1, (6.15)

B2(ū2, v̄2) +B2(u
′
2, v̄2)− 〈n2 · (k∇ū2 + aū2) + λ′2, v̄2〉Γ = L2(v̄2) ∀ v̄2, (6.16)

B2(ū2, v
′
2) +B2(u

′
2, v

′
2)− 〈n2 · (k∇ū2 + aū2) + λ′2, v

′
2〉Γ = L2(v

′
2) ∀ v′2, (6.17)

〈n1 · (k∇v̄1 + av̄1), γ
′ − u′1〉Γ = 0 ∀ v̄1, (6.18)

〈µ′
1, γ

′ − u′1〉Γ = 0 ∀µ′
1, (6.19)

〈n2 · (k∇v̄2 + av̄2), γ
′ − u′2〉Γ = 0 ∀ v̄2, (6.20)

〈µ′
2, γ

′ − u′2〉Γ = 0 ∀µ′
2, (6.21)

〈κ̄,n1 · (k∇ū1 + aū1) + n2 · (k∇ū2 + aū2) + λ′1 + λ′2〉Γ = 0 ∀ κ̄, (6.22)

〈κ′,n1 · (k∇ū1 + aū1) + n2 · (k∇ū2 + aū2) + λ′1 + λ′2〉Γ = 0 ∀κ′. (6.23)

Adding up (6.14) and (6.16) and using (6.22) yields the original variational equation projected
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ontoV̄ , that is to say,

B(ū, v̄) +B(u′, v̄) = L(v̄) ∀ v̄.

It is understood thatB(u′, v̄) = B1(u
′
1, v̄1) + B2(u

′
2, v̄2). Integrating these terms by parts and

using (6.18) and (6.20) we get

B(ū, v̄) +
2
∑

i=1

〈u′,L∗v̄〉Ωi
+

2
∑

i=1

〈γ′,ni · (k∇v̄i + av̄i)〉Γ = L(v̄), (6.24)

where

L∗v̄ := −k∆v̄ − a · ∇v̄ + sv̄

is the formal adjoint ofL. Adding up (6.15) and (6.17) and integrating the first terms by parts
we get

2
∑

i=1

(Bi(ū, v
′) +Bi(u

′, v′)− 〈ni · (k∇ūi + aūi) + λ′i, v
′
i〉Γ)

=
2
∑

i=1

(

〈Lū, v′〉Ωi
+Bi(u

′, v′)− 〈λ′i, v′i〉Γ
)

=
2
∑

i=1

Li(v
′). (6.25)

It is understood in this equation that̄(·)|Ωi
= (̄·)i. The final problem can be written as (6.24),

(6.25), (6.23) and the addition of (6.19) and (6.21), that isto say,

B(ū, v̄) +
2
∑

i=1

〈u′,L∗v̄〉Ωi
+

2
∑

i=1

〈γ′,ni · (k∇v̄i + av̄i)〉Γ = L(v̄) ∀ v̄, (6.26)

2
∑

i=1

〈Lū, v′〉Ωi
+B(u′, v′)−

2
∑

i=1

〈λ′i, v′i〉Γ = L(v′) ∀ v′, (6.27)

2
∑

i=1

〈κ′,ni · (k∇ūi + aūi) + λ′i〉Γ = 0 ∀κ′, (6.28)

2
∑

i=1

〈µ′
i, γ

′ − u′i〉Γ = 0 ∀µ′
1, µ

′
2. (6.29)

This is the four field formulation we were looking for. Its importance relies on the fact thatit
is the theoretical framework to develop approximations in whichu is split into a contribution
which is continuous onΓ and another one which is discontinuous. Obviously, this formulation
is symmetric for symmetric problems (in our case, ifa = 0).

6.2.3 Finite element approximation

Let Th := {K} be a finite element partition of the domainΩ of sizeh, andVh ⊂ V a finite
element space where an approximate solutionuh ∈ Vh is sought. We assume that this space
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is made of continuous functions. To simplify the analysis, we will assume that the family
of finite element partitionsF = {Th}h>0 is quasi-uniform, so that all the element sizes are
bounded above and below by constants multiplied byh. We will also use the abbreviations
‖ · ‖L2(K) ≡ ‖ · ‖K and‖ · ‖L2(∂K) ≡ ‖ · ‖∂K .

Consider the previous setting with̄V = Vh, and thereforeV = Vh ⊕ V ′, with V ′ to be
defined, andu = uh + u′, v = vh + v′. In order to focus our attention on the expression for the
subscales on the interelement boundaries, we will not specify the choice forV ′, which depends
on the particular VMS approximation used.

As before, let alsoγ′ be the trace ofu′ on the interelement boundaries andλ′ the flux, being
the corresponding spacesT ′ andF ′, and the corresponding test functionsκ′ ∈ T ′ andµ′ ∈ F ′.
According to the four field formulation presented in the previous subsection, now considering
Ω split into the element domains of the finite element partition, the variational problem (6.3)
is exactly equivalent to finduh ∈ Vh, u′ ∈ V ′, γ′ ∈ T ′ andλ′ ∈ F ′ such that

B(uh, vh) +
∑

K

〈u′,L∗vh〉K +
∑

K

〈γ′, k∂nvh〉∂K = L(vh) ∀vh ∈ Vh, (6.30)

∑

K

〈Luh, v′〉K +B(u′, v′)−
∑

K

〈λ′, v′〉∂K = L(v′) ∀v′ ∈ V ′, (6.31)

∑

K

〈κ′, k∂nuh + λ′〉∂K = 0 ∀κ′ ∈ T ′, (6.32)

∑

K

〈µ′, γ′ − u′〉∂K = 0 ∀µ′ ∈ F ′. (6.33)

Note that the jumps of the convective fluxes are zero because of the continuity assumed for the
finite element functions.

The approximation process consists of different ingredients,all aiming at giving a closed
problem foruh alone. For that we will propose heuristic approximations forγ′ andλ′ and then
we will perform a stability analysis to check that the resulting formulation is stable. Let us
insist that, up to this point, problem (6.30)-(6.33) is exact. Furthermore, foruh = 0 it could
be used as the variational framework to develop discontinuous Galerkin approximations (see
Remark 2 below).

6.2.4 Subscales on the element boundaries

Let us consider for simplicity the 2D case and the situation depicted in Fig. 6.1, where two
elementsK1 andK2 share an edgeE (recall thatE stands for “edge” in 2D or face in 3D).
Unless otherwise indicated (see Remark 1 below), all the edges are considered interior, that is
to say, the element boundaries on∂Ω are excluded.

Let u′i be the subscale approximated in the interior of elementKi, i = 1, 2. We assume that
this approximation is valid up to a distanceδ to the element boundary. This distance will be
taken of the formδ = δ0h, with 0 ≤ δ0 ≤ 1/2.

Approximation of λ′. The values ofλ′ on ∂K areweakapproximations to the fluxes ofu′.
Given the traceγ′ of this unknown, we delete (6.33) and propose the following closed form
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Figure 6.1: Notation for the approximation of the subscaleson the element boundaries

expression forλ′:

λ′∂Ki∩E
≈ k

γ′E − u′i
δ

, i = 1, 2, (6.34)

where nowu′i has to be understood as the subscale computed in the element interiors and
evaluated at edgeE. We want to remark that, apart from the assumptions inherentto the VMS
framework and the imposition of the transmission conditions (see below), this is the only
approximation we really require to compute the subscales onthe interelement boundaries.
Obviously, other finite-difference-like approximations to the fluxes of the subscales could be
adopted.

Approximation of γ′. Equation (6.32) states the weak continuity of the total fluxes on the
element boundaries. The idea now is to replace this equationby an explicit prescription of this
continuity. If [[ ng ]]E := n1g|∂K1∩E+n2g|∂K2∩E denotes the jump of a scalar functiong across
edgeE and [[ ∂ng ]]E = n1 · ∇g|∂K1∩E +n2 · ∇g|∂K2∩E the jump of the normal derivative, the
continuity of the total fluxes can be imposed as follows:

0 = [[ k∂nu ]]E = [[ k∂nuh ]]E + λ′∂K1∩E + λ′∂K2∩E

≈ [[ k∂nuh ]]E + k
γ′E − u′1

δ
+ k

γ′E − u′2
δ

. (6.35)

From this expression, and fork constant, we obtain the approximation we were looking for:

γ′E ≈ {u′}E −
δ

2
[[ ∂nuh ]]E (6.36)

where{u′}E := 1
2
(u′1 + u′2) is the average of the subscales computed in the element interiors

evaluated at edgeE. From (6.36) it is observed thatδ0 will play the role of an algorithmic
parameter for which, following our approach, we have a geometrical interpretation.

From now onwards we will use the symbol= instead of≈, understanding that in some
places we perform approximation (6.34) that has led us to (6.36).
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Remark 1 (Neumann boundary conditions). Suppose thatFK = ∂K ∩ ∂Ω and that instead
of the Dirichlet condition (6.2) the Neumann condition−k∂nu = q is prescribed. In this case,
(6.35) should be replaced by

q = −k∂nuh|FK
− kγ

′
FK
− u′K
δ

,

so that the contribution toL in (6.3) that would appear due to the Neumann condition would
be modified by the approximation to the subscale on the boundary, and there would be also a
contribution to the bilinear formB. We will come back to this point in the case of the Stokes
problem, where this fact has more important consequences. △

Problem for uh and u′. From (6.36) we obtain the following approximation for the fluxes
of the subscales:

λ′∂Ki∩E
=
k

δ
({u′}E − u′i)−

k

2
[[ ∂nuh ]]E

= − k

2δ
ni · [[ nu′ ]] ∂Ki∩E

− k

2
[[ ∂nuh ]]E , i = 1, 2. (6.37)

Onceλ′ andγ′ are approximated, the problem we are left with reads as follows: finduh ∈
Vh andu′ ∈ V ′ such that

B(uh, vh) +
∑

K

〈u′,L∗vh〉K −
kδ

2

∑

E

〈 [[ ∂nuh ]] , [[ ∂nvh ]] 〉E +
∑

E

〈{u′}, k [[ ∂nvh ]] 〉E = L(vh),

(6.38)

B(u′, v′) +
∑

K

〈Luh, v′〉K +
k

2δ

∑

E

〈 [[ nu′ ]] , [[ nv′ ]] 〉E +
∑

E

〈k [[ ∂nuh ]] , {v′}〉E = L(v′),

(6.39)

for all vh ∈ Vh andv′ ∈ V ′.

Remark 2 Observe that this system of variational equations can be understood asa general
framework to approximate unknowns with a continuous part (uh) and an approximated dis-
continuous part (u′). Furthermore, if the continuous part is zero, we are left with(6.39) with
uh = 0, which corresponds tothe classical Galerkin method enforcing continuity acrossin-
terelement boundaries through Nitsche’s method, although with approximation (6.37) for the
fluxes, so that the classical terms involving∂nu′ and∂nv′ are missing (see [5, 64]). For piece-
wise constant approximations these terms would not appear,and we would obtain a classical
piecewise-constant discontinuous Galerkin approximation. △

6.2.5 Subscales in the element interiors

Up to now we have replaced variational equations for the fluxes of the subscales and their
traces by approximated closed form expressions. It can be seen from problem (6.38)-(6.39)
that the resulting formulation is symmetric for symmetric problems. However, now we will
use and additional approximation that will make the problemloose its symmetry, but that will
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greatly simplify the implementation of the formulation. This approximation is inherent to all
VMS formulations to yield a closed form expression for the subscales in the element interiors.

If we integrate the second term in the left-hand-side (LHS) of (6.31) by parts we get

B(u′, v′) =
∑

K

〈Lu′, v′〉K +
∑

K

〈k∂nu′, v′〉∂K .

If instead of using (6.37) we assume thatλ′ approximatesk∂nu′, the second term in this last
expression cancels with the third one in the LHS of (6.31). Therefore, the final problem is: find
uh ∈ Vh andu′ ∈ V ′ such that

B(uh, vh) +
∑

K

〈u′,L∗vh〉K +
∑

E

〈

{u′} − δ

2
[[ ∂nuh ]] , k [[ ∂nvh ]]

〉

E

= L(vh), (6.40)

∑

K

〈Luh, v′〉K +
∑

K

〈Lu′, v′〉K = L(v′), (6.41)

for all vh ∈ Vh andv′ ∈ V ′. The last term in the LHS of (6.40) is the main novelty with respect
to classical stabilized finite element methods designed in the variational multiscale framework.

Remark 3 Note that if in (6.39)v′ is consideredcontinuouswe obtain (6.41)with no addi-
tional approximation. In other words, if the subscale is approximated with a Petrov-Galerkin
method (leading to a non-symmetric formulation) in which the space of test functions is con-
tinuous, we recover (6.41). This is not however the approachwe will adopt. △

It only remains to approximateu′ in the element interiors. To this end, in (6.41) the ap-
proximation

〈Lu′, v′〉K = τ−1〈u′, v′〉K , τ =

(

C1
k

h2
+ C2

|a|
h

)−1

(6.42)

may be adopted. This can be motivated by a Fourier analysis ofthe problem for the subscales
[32]. In particular, it implies thatthe subscales in the element interiors are not affected by
their boundary values. This simplification makes the formulation we propose feasible from the
implementation standpoint. Let us stress once again that this approximation is not original of
this work, but common to all VMS methods that compute locallythe subscales in the element
interiors.

Once all the approximations are made, the final problem is to find uh ∈ Vh andu′ ∈ V ′

such that

B(uh, vh) +
∑

K

〈u′,L∗vh〉K +
∑

E

〈

{u′} − δ

2
[[ ∂nuh ]] , k [[ ∂nvh ]]

〉

E

= L(vh), (6.43)

∑

K

〈Luh, v′〉K +
∑

K

τ−1〈u′, v′〉K = L(v′), (6.44)

for all vh ∈ Vh andv′ ∈ V ′.
The variational equation (6.44) automatically yields and expression for the subscales in the

element interiors in terms of the finite element component, providedV ′ is approximated by a
space of discontinuous functions. It implies that

u′ = τPV ′(f − Luh),
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wherePV ′ is the projection ontoV ′. However, it will be convenient for the following analysis
to keepu′ as unknown of the problem. Particular cases of projection that fit into the present
framework are the orthogonal subscales stabilization (OSS) proposed in [30] and the algebraic
version of the subgrid-scale stabilization (ASGS) (see [29, 76]), wherePV ′ is the identity (at
least when applied tof −Luh). The expression ofτ (6.42) is in fact not important, except for
a condition on constantC1 indicated later.

6.2.6 Stability analysis

Let us consider the bilinear form of the problem in(Vh × V ′)× (Vh × V ′):

Bexp(uh, u
′; vh, v

′) := B(uh, vh) +
∑

K

〈u′,L∗vh〉K +
∑

E

〈{u′}, k [[ ∂nvh ]] 〉E

− δ

2

∑

E

〈 [[ ∂nuh ]] , k [[ ∂nvh ]] 〉E +
∑

K

〈Luh, v′〉K +
∑

K

τ−1〈u′, v′〉K .

Let us prove stability of the problem by showing thatBexp is coercive in a certain norm. We
have that

Bexp(uh, u
′; uh, u

′) = B(uh, uh) +
∑

K

〈u′,L∗uh + Luh〉K +
∑

E

〈{u′}, k [[ ∂nuh ]] 〉E

− δ

2

∑

E

k‖ [[ ∂nuh ]]‖2E +
∑

K

τ−1‖u′‖2K

≥ k‖∇uh‖2 + s‖uh‖2 −
∑

K

‖u′‖K‖−2k∆uh + 2suh‖K

−
∑

E

‖{u′}‖Ek‖ [[ ∂nuh ]]‖E −
δ

2

∑

E

k‖ [[ ∂nuh ]]‖2E +
∑

K

τ−1‖u′‖2K .

We assume now that the classical inverse estimates

‖∆vh‖2K ≤
Cinv

h2
‖∇vh‖2K , ‖vh‖2L∞(K) ≤

Cinv

hd
‖vh‖2K ∀vh ∈ Vh, (6.45)

hold true (see [48, 22]). In particular, the second, which also holds for derivatives of finite
element functions, implies the trace inequality

‖vh‖2∂K ≤ Ctrh
−1‖vh‖2K , (6.46)

which applied to∂nvh yields

‖∂nvh‖2∂K ≤ Ctrh
−1‖∇vh‖2K .
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Using these inverse estimates, we have (see Fig. 6.1 for the notation):

−δ
2

∑

E

k‖ [[ ∂nuh ]]‖2E = −δ
2

∑

E

k‖∂nuh|∂K1∩E + ∂nuh|∂K2∩E‖2E

≥ −δ
2

∑

K

2k‖∂nuh‖2∂K

≥ −δ0h
2

∑

K

2kCtrh
−1‖∇uh‖2K

= −δ0Ctrk‖∇uh‖2.

Let us obtain a working inequality. Leta andb be discontinuous positive functions defined
on the finite element partition. Using the notationai := a|∂Ki∩E, for anyβ > 0 we have that

∑

E

(a1 + a2)(b1 + b2) ≤
∑

E

h

2β
(a1 + a2)

2 +
∑

E

β

2h
(b1 + b2)

2

≤
∑

E

h

β
(a21 + a22) +

∑

E

β

h
(b21 + b22)

≤
∑

K

h

β
a|2∂K +

∑

K

β

h
b|2∂K .

Now we make the assumption that the subscales are such that the inverse estimates also
hold for them. Using the previous inequality we obtain, for any β3 > 0:

−
∑

E

‖{u′}‖Ek‖ [[ ∂nuh ]]‖E = −
∑

E

k
1

2
‖u′1 + u′2‖E‖∂nuh|∂K1∩E + ∂nuh|∂K2∩E‖E

≥ −
∑

K

β3
2
Ctr

k

h2
‖u′‖2K −

∑

K

1

2β3
Ctrk‖∇uh‖2K .
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Using the bounds obtained, it follows that

Bexp(uh, u
′; uh, u

′) ≥ k‖∇uh‖2 + s‖uh‖2

−
∑

K

‖u′‖K2k
C

1/2
inv

h
‖∇uh‖K −

∑

K

‖u′‖K2s‖uh‖K

− δ0Ctrk‖∇uh‖2 −
∑

E

‖{u′}‖Ek‖ [[ ∂nuh ]]‖E +
∑

K

τ−1‖u′‖2K

≥ k‖∇uh‖2 + s‖uh‖2

−
∑

K

(

β1k
Cinv

h2
‖u′‖2K +

1

β1
k‖∇uh‖2K

)

−
∑

K

(

β2s‖u′‖2K +
1

β2
s‖uh‖2K

)

−
∑

K

β3
2
Ctr

k

h2
‖u′‖2K −

∑

K

1

2β3
Ctrk‖∇uh‖2K

− δ0Ctrk‖∇uh‖2 +
∑

K

τ−1‖u′‖2K

=
∑

K

(

1− 1

β1
− δ0Ctr − Ctr

1

2β3

)

k‖∇uh‖2K +
∑

K

(

1− 1

β2

)

s‖uh‖2K

+
∑

K

(

τ−1 − β1k
Cinv

h2
− sβ2 −

β3
2
Ctr

k

h2

)

‖u′‖2K ,

whereβi are constants,i = 1, 2, 3. Taking these constants sufficiently large,δ0 sufficiently
small andC1 in the definition ofτ large enough, the following result follows:

Theorem 1 There are constantsC1 andδ0 in the definition of the stabilization parameters such
that

Bexp(uh, u
′; uh, u

′) ≥ C

(

k‖∇uh‖2 + s‖uh‖2 +
∑

K

τ−1‖u′‖2K

)

. (6.47)

Remark 4 Let us enumerate the essential ideas and highlight the original aspects of the
analysis presented in this section:

• The driving idea is that the subscales on the boundary are determined by the transmission
condition. In the case of the CDR equation and using continuous interpolations, this is
the continuity of the diffusive fluxes.

• The essential approximation to make the problem computationally viable is to compute
the subscales in the element interiors without taking into account their values on the
boundaries.

• In the stability analysis presented, the subscales have their own “personality”. They ap-
pear explicitly in the stability estimate. The final stability estimate for the finite element
unknown depends on the way the subscales are approximated (that is to say, on howV ′

is chosen).
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• It is observed that the expression ofτ in terms ofa is not used in the stability analysis.
However, it is required in the convergence analysis.

• The only thing we have shown is that the terms introduced by the boundary contribution
from the subscales can be controlled, but there seems to be nogain in considering the
subscales on the boundaries. The stability estimate (6.47)is the same that would be
obtained without the last term in the LHS of (6.40) which is, as it has been said, the
main novelty of our proposal.

As stated in the last item, subscales on the boundary do not improve stability for the CDR
equation. This is not so for the Stokes problem analyzed next. △

6.3 Stokes problem

6.3.1 Problem statement and finite element approximation

In this section we turn our attention to the Stokes problem, which consists of finding a velocity
u : Ω −→ R

d and a pressurep : Ω −→ R such that

−ν∆u +∇p = f in Ω ⊂ R
d,

∇ · u = 0 in Ω,

u = 0 on∂Ω.

The purpose is to extend the ideas of the previous section to this problem.
Let nowV = H1

0 (Ω)
d,Q = L2(Ω)/R. The variational problem consists of finding[u, p] ∈

V ×Q such that

B([u, p], [v, q]) := ν(∇u,∇v)− (p,∇ · v) + (q,∇ · u) = 〈f , v〉 ∀[v, q] ∈ V ×Q.

For the sake of simplicity, we will consider subscales only for the velocity, not for the
pressure. Pressure subscales can be easily introduced (see[32]), but they do not contribute
to the present discussion. It is also possible to derive a general framework as in the previous
section, using the trace of the velocity subscales and theirfluxes as additional variables, leading
to a five field formulation, the five fields being velocity, velocity subscale, trace of velocity
subscale, flux of velocity subscale and pressure. However, we may directly work with velocity,
velocity subscale and pressure, understanding that the velocity subscale on the interelement
boundaries (and its test function) will be approximated independently, being single valued on
these boundaries.

If Vh ×Qh ⊂ V ×Q is a conforming finite element approximation andV ′ is the space for
the velocity subscales, the discrete variational problem to be considered is to find[uh, ph] ∈
Vh ×Qh andu′ ∈ V ′ such that

B([uh, ph], [vh, qh]) +
∑

K

〈u′,−ν∆vh −∇qh〉K +
∑

K

〈u′, ν∂nvh + qhn〉∂K = 〈f , vh〉,
∑

K

〈ν(∂nuh + ∂nu
′)− phn, v′〉∂K +

∑

K

〈−ν∆uh +∇ph, v′〉K +
∑

K

〈−ν∆u′, v′〉K = 〈f , v′〉,
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which must hold for all[vh, qh] ∈ Vh×Qh and allv′ ∈ V ′. The first term in the second discrete
variational equation must be zero because of the (weak) continuity of the stress normal to the
element boundaries (recall thatv′ has to be considered single valued when evaluated at the
interelement boundaries).

As for the CDR equation, the approximation

〈−ν∆u′, v′〉K = τ−1〈u′, v′〉K , τ−1 = C1
ν

h2
(6.48)

is adopted. Likewise, the subscale on the boundary will be approximated by an expressionu′
E

to be determined, so that the problem to be solved is to find[uh, ph] ∈ Vh × Qh andu′ ∈ V ′

such that

B([uh, ph], [vh, qh]) +
∑

K

〈u′,−ν∆vh −∇qh〉K +
∑

K

〈u′
E, ν∂nvh + qhn〉∂K = 〈f , vh〉,

(6.49)
∑

K

〈−ν∆uh +∇ph, v′〉K +
∑

K

τ−1〈u′, v′〉K = 〈f , v′〉,

(6.50)

which must hold for all[vh, qh] ∈ Vh × Qh and allv′ ∈ V ′. The expression ofτ is given in
(6.48), butu′

E is required to close the problem.

6.3.2 Subscales on the element boundaries

The condition to determine the expression of the subscale velocity on the boundary is that the
normal component of the stress be continuous across interelement boundaries. Using the same
notation as in the previous section, this can be written as follows:

0 = [[−pn + ν∂nu ]]E
= [[−phn+ ν∂nuh ]]E + [[ ν∂nu

′ ]]E

= [[−phn+ ν∂nuh ]]E +
ν

δ
(2u′

E − u′
1 − u′

2) ,

from where the approximation we propose is

u′
E = {u′}E −

δ

2ν
[[ ν∂nuh − phn ]]E (6.51)

which is the counterpart of (6.36) for the Stokes problem.
Inserting (6.51) into the discrete variational problem (6.49)-(6.50) results in

B([uh, ph], [vh, qh]) +
∑

K

〈u′,−ν∆vh −∇qh〉K +
∑

E

〈{u′}, [[ ν∂nvh + qhn ]]〉E

−
∑

E

δ

2ν
〈 [[ ν∂nuh − phn ]] , [[ ν∂nvh + qhn ]] 〉E = 〈f , vh〉, (6.52)

∑

K

〈−ν∆uh +∇ph, v′〉K +
∑

K

τ−1〈u′, v′〉K = 〈f , v′〉, (6.53)
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which must hold for all[vh, qh] ∈ Vh×Qh and allv′ ∈ V ′. This is the numerical approximation
of the Stokes problem we propose and whose stability is analyzed next.

Remark 5 Note that if the term
∑

E 〈{u′}, [[ ν∂nvh + qhn ]] 〉E is neglected, the formulation
is symmetric. To this end, the sign ofqh in the term〈 [[ ν∂nuh − phn ]] , [[ ν∂nvh + qhn ]] 〉E is
essential. On the other hand, it seems reasonable to neglect{u′} if discontinuous pressures are
used because then the source of instability is known to be related to the lack of control on the
pressure jumps. In particular, for theP1/P0 element used in the examples of Section 5,u′ = 0

in the element interiors. △

Remark 6 (Neumann boundary conditions) Suppose again thatFK = ∂K ∩ ∂Ω and that the
Neumann condition−pn + ν∂nu = t is prescribed. The subscaleu′

FK
should be computed

from

t = −phn+ ν∂nuh +
ν

δ
(u′

FK
− u′

K).

In this case, the terms

∑

K

(

〈u′
K , ν∂nvh + qhn〉FK

− δ

ν
〈ν∂nuh − phn, ν∂nvh + qhn〉FK

)

and − δ

ν

∑

K

〈t, ν∂nvh + qhn〉FK

should be added to the LHS and right-hand-side (RHS) of (6.52), respectively. Stability on
these boundaries will be enhanced by the term

∑

K
δ
ν
〈ph, qh〉FK

. This approach might be im-
portant as well in fluid-structure interaction problems, where one of the problems (the struc-
ture for example) is computed using the normal stressest computed in the other domain. It
is known that in some situations staggered coupled algorithms may suffer from the so called
artificial mass effect due to the lack of stability in the imposition of the Neumann condition.
△

6.3.3 Stability analysis

As for the CDR equation, it is convenient to define the expanded bilinear form of problem
(6.52)-(6.53), including the subscales as unknowns, whichis

Bexp([uh, ph],u
′; [vh, qh], v

′) = B([uh, ph], [vh, qh])

+
∑

K

〈u′,−ν∆vh −∇qh〉K +
∑

K

〈v′,−ν∆uh +∇ph〉K

+
∑

E

〈{u′}, [[ ν∂nvh + qhn ]]〉E −
∑

E

δ

2ν
〈 [[ ν∂nuh − phn ]] , [[ ν∂nvh + qhn ]] 〉E

+
∑

K

τ−1〈u′, v′〉K .
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Taking [vh, qh] = [uh, ph] andv′ = u′ it follows that

Bexp([uh, ph],u
′; [uh, ph],u

′) = ν‖∇uh‖2

+
∑

K

〈u′,−2ν∆uh〉K +
∑

E

〈{u′}, [[ ν∂nuh + phn ]] 〉E

−
∑

E

δ

2
ν‖ [[ ∂nuh ]]‖2E +

∑

E

δ

2ν
‖ [[ nph ]]‖2E +

∑

K

τ−1‖u′‖2K .

We may deal with the terms

∑

K

〈u′,−2ν∆uh〉K , −
∑

E

δ

2
ν‖ [[ ∂nuh ]]‖2E,

∑

E

〈{u′}, [[ ν∂nuh ]] 〉E,

exactly as for the CDR equation. It only remains the following bound:

∑

E

〈{u′}, [[ phn ]] 〉E ≥ −
∑

E

‖{u′}‖E‖ [[ phn ]]‖E

≥ −
∑

E

(

βν

2δ
‖{u′}‖2E +

δ

2βν
‖ [[ nph ]]‖2E

)

≥ −
∑

K

βν

2δ
‖u′‖2∂K −

∑

E

δ

2βν
‖ [[ nph ]]‖2E

≥ −
∑

K

βν

2δ0h2
Ctr‖u′‖2K −

∑

E

δ

2βν
‖ [[ nph ]]‖2E,

which holds for allβ > 0. Taking it sufficiently large (β > 1) and proceeding exactly as for
the CDR equation we obtain:

Theorem 2 There are constantsC1 andδ0 in the definition of the stabilization parameters such
that

Bexp([uh, ph],u
′; [uh, ph],u

′) ≥ C

(

ν‖∇uh‖2 +
∑

E

δ

ν
‖ [[ nph ]]‖2E +

∑

K

τ−1‖u′‖2K

)

.

Remark 7 In the previous estimate, it is important to note that

• Contrary to the CDR equation, now there isa clear gainby accounting for the subscales
on the boundary: we have control on the pressure jumps over interelement boundaries.
This in particular stabilizes elements with discontinuouspressures.

• Control over‖ [[ nph ]]‖2E can be transformed intoL2 control overph. This can be proved
for example using the strategy presented in [34] and in references therein.

The stability estimate obtained is clearly optimal. △
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6.4 Darcy flow

6.4.1 Problem statement and finite element approximation

We will consider here the simplest situation in which the permeability is isotropic and uniform.
The problem to be solved consists in finding a velocityu and a pressurep such that

κ−1u+∇p = 0 in Ω,

∇ · u = f in Ω,

u · n = 0 on∂Ω,

whereκ is the permeability coefficient. The functional spaces where the problemcanbe posed
are

V = H0(div,Ω), Q = L2(Ω)/R,

for the velocity and the pressure, respectively. In this case,f ∈ L2(Ω). The classical variational
formulation of the Darcy problem is well posed in these spaces. However, it is observed from
the momentum equation that in fact the pressure will belong toH1(Ω)/R.

The weak form of the problem is

(κ−1u, v)− (p,∇ · v) = 0,

(q,∇ · u) = (q, f),

which must hold for all[v, q] ∈ V ×Q.
As in the previous section, the finite element spaces for velocity and pressure will be re-

spectively denoted byVh ⊂ V , Qh ⊂ Q (conforming approximations will be considered). If
we consider as before the scale splitting

u = uh + u′, uh ∈ Vh, u′ ∈ V ′,

p = ph + p′, ph ∈ Qh, p
′ ∈ Q′,

with spacesV ′ andQ′ for the moment undefined, the problem to be solved becomes

(κ−1uh, vh) + (κ−1u′, vh)− (ph,∇ · vh)− (p′,∇ · vh) = 0 ∀ vh ∈ Vh, (6.54)

(qh,∇ · uh)−
∑

K

(u′,∇qh)K +
∑

K

(qh,n · u′)∂K = (qh, f) ∀ qh ∈ Qh, (6.55)

together with the equations obtained by testing the differential equations with the velocity and
pressure subscale test functions.

In this case, we need to deal both with a velocity and with a pressure subscale, which makes
the derivation of a closed form for them more involved than for the problems of sections 6.2
and 6.3. This can be done in a similar way as for the Stokes problem in [34]. If PV ′ andPQ′

denote theL2-projection ontoV ′ andQ′, respectively, the final result is thatu′ andp′ can be
approximated in the element interiors by

u′ = −PV ′ (uh + κ∇ph) ,
p′ = τpPQ′ (f −∇ · uh) ,
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where the stabilization parameterτp is given by

τp = Cp
h2

κ
, (6.56)

Cp being an algorithmic constant. The main idea to obtain this approximation is to approximate
the Darcy operator in the equation for the subscales by a matrix diag(τ−1

u I, τ−1
p ), whereI is

thed× d identity. Using an approximate Fourier analysis it can be shown that the norm of this
matrix is an approximate upper bound to the norm of the Darcy operator ifτu = 1 andτp is
given by (6.56) (see [34] for details about this approach).

It is convenient to write the previous approximation in ‘weak’ form as follows:

(κ−1u′, v′) + (κ−1uh, v
′) +

∑

K

(∇ph, v′) = 0 ∀v′ ∈ V ′,

(q′,∇ · uh) +
∑

K

τ−1
p (p′, q′) = (q′, f) ∀q′ ∈ Q′.

6.4.2 Subscales on the element boundaries

The transmission conditions for this problem are differentfrom those of the Stokes problem of
the previous section. First of all, observe that

• Only the velocity subscale is needed on the boundary of the elements (see (6.54)-(6.55)).

• For each element, this velocity subscale can be computed from the pressure subscale on
the boundary by projecting the momentum equation.

• Since in factp ∈ H1(Ω), p must be such that

[[ np ]]E = 0, [[ ∂np ]]E = 0. (6.57)

Equations (6.57) are the transmission conditions that haveto allow us to compute the subscales
on the element boundaries. Since the pressure is allowed to be discontinuous across these
interelement boundaries, the pressure subscale must also be allowed to be discontinuous. Let
us denote byph,Ei

the pressure finite element function on an edgeE from the side ofKi (see
again Fig. 6.1) andp′Ei

the corresponding subscale. Pressure continuity acrossE implies

[[ np ]]E = (ph,E1
+ p′E1

)n1 + (ph,E2
+ p′E2

)n2 = 0,

from where

p′E1
− p′E2

= −ph,E1
+ ph,E2

= − [[ nph ]]E · n1. (6.58)

Using an approximation for the derivatives of the subscalessimilar to that of the previous
sections, continuity of the pressure normal derivative implies:

0 = [[ ∂nph ]]E + [[ ∂np
′ ]]E

= [[ ∂nph ]]E +
1

δ

(

p′E1
− p′K1

)

+
1

δ

(

p′E2
− p′K2

)

,
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from where

p′E1
+ p′E2

= p′K1
+ p′K2

− δ [[ ∂nph ]]E . (6.59)

The solution of system (6.58)-(6.59) yields

p′∂K = {p′K}∂K −
δ

2
[[ ∂nph ]]∂K −

1

2
[[ nph ]] ∂K · n (6.60)

Equation (6.60) is the expression of the pressure subscale on the element edges (now dis-
continuous), obtained from the application of our ideas to the Darcy problem. However, as
mentioned earlier, this expression is only required to compute the velocity subscales on the
edges, again considering them discontinuous. Projecting the momentum equation on the ele-
ment boundaries we have:

n · u′|∂K = −n · uh|∂K − κ∂nph|∂K − κ∂np′|∂K
= −n · uh|∂K − κ∂nph|∂K −

κ

δ
(p′∂K − p′K)

= −n · uh|∂K − κ∂nph|∂K −
κ

δ

[

{p′K}∂K −
δ

2
[[ ∂nph ]] ∂K −

1

2
[[ nph ]] ∂K · n− p′K

]

= −n · uh|∂K − κ∂nph|∂K +
κ

2
[[ ∂nph ]] ∂K +

κ

2δ
[[ n(ph + p′K) ]] ∂K · n,

from where we obtain the expression for the velocity subscale on∂K:

n · u′|∂K = −n · uh|∂K − κ{∂nph}|∂K +
κ

2δ
[[ n(ph + p′K) ]] ∂K · n (6.61)

Since no velocity derivatives appear in the transmission conditions for this problem, the veloc-
ity subscale on∂K turns out to be independent from the velocity subscale onK.

Note now that all the terms on the RHS of (6.61) are vectors whose normal component is
continuous across interelement boundaries (the first because we assumeVh ⊂ V ). If w is a
vector defined onE, with continuous normal component, it holds that

∑

K

〈qh,n ·w〉∂K =
∑

E

〈 [[ nqh ]] ,w〉E.

Using this in the finite element approximation for the continuity equation we obtain the final
problem to be solved, which consists of findinguh ∈ Vh, ph ∈ Qh, u′ ∈ V ′ andp′ ∈ Q′ such
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that

(κ−1uh, vh) + (κ−1u′, vh)− (ph,∇ · vh)− (p′,∇ · vh) = 0 ∀ vh ∈ Vh, (6.62)

(qh,∇ · uh)−
∑

K

(u′,∇qh)K

−
∑

E

〈

[[ nqh ]] ,uh + {κ∇ph} −
κ

2δ
[[ np′ ]]

〉

E

+
∑

E

κ

2δ
〈 [[ nqh ]] , [[ nph ]] 〉E = (qh, f) ∀ qh ∈ Qh, (6.63)

(κ−1u′, v′) + (κ−1uh, v
′) +

∑

K

(∇ph, v′) = 0 ∀v′ ∈ V ′, (6.64)

(q′,∇ · uh) +
∑

K

τ−1
p (p′, q′) = (q′, f) ∀q′ ∈ Q′, (6.65)

with τp given by (6.56).

6.4.3 Stability analysis

The previous problem can be written as

Bexp(uh, ph,u
′, p′; vh, qh, v

′, q′) = (qh, f) + (q′, f),

with the obvious definition for the bilinear formBexp. The stability analysis in this case is a bit
more delicate than for the CDR equation and for the Stokes problem. The problem is thatBexp

is not coercive, but satisfies an inf-sup condition in a norm to be introduced in the following.
We assume that the decompositionVh ⊕ V ′ is L2-stable, in the sense that for any func-

tionsvh ∈ Vh andv′ ∈ V ′ we have

‖vh + v′‖2 ≥ Cdec

(

‖vh‖2 + ‖v′‖2
)

, (6.66)

for a constantCdec independent of the equation parameters and of the mesh size.In general,
Cdec ≤ 1 and ifV ′ is takenL2-orthogonal toVh, Cdec = 1.

Let Uh = [uh, ph,u
′, p′] be the unknown of the problem andV h = [vh, qh, v

′, q′] the
corresponding vector of test functions. Let also

|||Uh|||2 :=κ−1‖uh‖2 +
∑

E

κ

δ
‖ [[ nph ]]‖2E +

∑

K

κ−1‖u′‖2K

+
∑

K

τ−1
p ‖p′‖2K +

∑

K

κ−1‖PVh
(uh + κ∇ph)‖2K ,

wherePVh
is theL2-projection ontoVh. However, later on we will introduce another norm in

which stability holds and that clearly displays the stability enhancement we obtain with respect
to the classical Galerkin method.

Let us start writing

uh + κ∇ph = PVh
(uh + κ∇ph) + PV ′ (uh + κ∇ph)

:= mh − u′,
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which allows us to write

Bexp(Uh,Uh) = κ−1‖uh + u′‖2 +
∑

E

κ

2δ
‖ [[ nph ]]‖2E +

∑

K

τ−1
p ‖p′‖2K

−
∑

E

〈 [[ nph ]] ,mh〉E +
∑

E

〈 [[ nph ]] , {u′}〉E +
∑

E

κ

2δ
〈 [[ nph ]] , [[ np′ ]] 〉E .

(6.67)

The objective now is to bound the last three terms in the RHS ofthis equality. Let us start with
the last one. Using (6.46) we have that

∑

E

κ

2δ
〈 [[ nph ]] , [[ np′ ]] 〉E ≥ −

κ

2δ

∑

E

(

β1
2
‖ [[ nph ]]‖2E +

1

2β1
‖ [[ np′ ]]‖2E

)

≥ − κ

2δ

β1
2

∑

E

‖ [[ nph ]]‖2E −
κ

2δ

1

2β1

∑

K

‖p′‖2∂K

≥ − κ

2δ

β1
2

∑

E

‖ [[ nph ]]‖2E −
κ

2δ

1

2β1
Ctrh

−1
∑

K

‖p′‖2K

≥ − κ

2δ

β1
2

∑

E

‖ [[ nph ]]‖2E −
1

4δ0β1
Ctr

κ

h2

∑

K

‖p′‖2K . (6.68)

We also have that

∑

E

〈 [[ nph ]] , {u′}〉E ≥ −
∑

E

(

δ

2β2
κ−1‖{u′}‖2E +

β2
2δ
κ‖ [[ nph ]]‖2E

)

≥ −
∑

K

δ

2β2
κ−1‖u′‖2∂K −

∑

E

β2
2δ
κ‖ [[ nph ]]‖2E

≥ −
∑

K

δ0
2β2

Ctrκ
−1‖u′‖2K −

∑

E

β2
2δ
κ‖ [[ nph ]]‖2E. (6.69)

Using (6.66), (6.68) and (6.69) in (6.67) we have

Bexp(Uh,Uh) ≥ κ−1Cdec‖uh‖2 + κ−1

(

Cdec −
δ0
2β2

Ctr

)

∑

K

‖u′‖2K

+
∑

E

κ

2δ

(

1− β1
2
− β2

)

‖ [[ nph ]]‖2E +
∑

K

κ

h2

(

1

Cp

− Ctr

4δ0β1

)

‖p′‖2K

−
∑

E

〈 [[ nph ]] ,mh〉E. (6.70)

It remains to control the last term. It is responsible for thefact that the bilinear formBexp is not
coercive, but it only satisfies an inf-sup condition. By the definition of mh and using (6.45)
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we have that

Bexp(Uh, [mh, 0, 0, 0])

= (κ−1uh +∇ph,mh) + (κ−1u′,mh)− (p′,∇ ·mh)−
∑

K

〈ph,n ·mh〉∂K

= κ−1(mh,mh)− (p′,∇ ·mh)−
∑

E

〈 [[ nph ]] ,mh〉E

≥ κ−1‖mh‖2 − ‖p′‖
Cinv

h
‖mh‖ −

∑

E

〈 [[ nph ]] ,mh〉E

≥ κ−1‖mh‖2 −
1

2β3

κ

h2
C2

inv‖p′‖2 −
β3
2
κ−1‖mh‖2 −

∑

E

〈 [[ nph ]] ,mh〉E ,

which combined with (6.70) yields

Bexp(Uh,Uh + [mh, 0, 0, 0])

≥ κ−1Cdec‖uh‖2 + κ−1

(

Cdec −
δ0
2β2

Ctr

)

‖u′‖2

+
∑

E

κ

2δ

(

1− β1
2
− β2

)

‖ [[ nph ]]‖2E +
∑

K

κ

h2

(

1

Cp
− Ctr

4δ0β1
− C2

inv

2β3

)

‖p′‖2K

+ κ−1

(

1− β3
2

)

‖mh‖2 − 2
∑

E

〈 [[ nph ]] ,mh〉E . (6.71)

On the other hand

−2
∑

E

〈 [[ nph ]] ,mh〉E ≥ −
∑

E

β4
κ

2δ
‖ [[ nph ]]‖2E −

∑

E

1

β4

2δ

κ
‖mh‖2E

≥ −
∑

E

β4
κ

2δ
‖ [[ nph ]]‖2E −

∑

K

1

β4
κ−1δ0Ctr‖mh‖2K ,

which used in (6.71) gives

Bexp(Uh,Uh + [mh, 0, 0, 0])

≥ κ−1Cdec‖uh‖2 + κ−1

(

Cdec −
δ0
2β2

Ctr

)

‖u′‖2

+
∑

E

κ

2δ

(

1− β1
2
− β2 − β4

)

‖ [[ nph ]]‖2E +
∑

K

κ

h2

(

1

Cp

− Ctr

4δ0β1
− C2

inv

2β3

)

‖p′‖2K

+ κ−1

(

1− β3
2
− δ0Ctr

β4

)

‖mh‖2.

From this expression we see that if we takeβi, i = 1, 2, 3, 4, sufficiently small, then there
exists a constantC for which

Bexp(Uh,Uh + [mh, 0, 0, 0]) ≥ C|||Uh|||2, (6.72)
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provided the constantsδ0 andCp are small enough. On the other hand,|||[mh, 0, 0, 0]||| ≤
C|||Uh|||, from where we obtain the result we wished to prove:

Theorem 3 There are constantsCp andδ0 in the definition of the stabilization parameters such
that for allU h there existsV h such that

Bexp(Uh,V h) ≥ C|||Uh||||||V h|||.

Remark 8 Sinceu′ = PV ′(uh + κ∇ph) and in view of (6.66) our result also applies with the
norm

|||Uh|||2∗ :=κ−1‖uh‖2 + κ
∑

K

‖∇ph‖2K +
∑

E

κ

δ
‖ [[ nph ]]‖2E +

∑

K

τ−1
p ‖p′‖2K ,

which allows us to see that the stability result of Theorem 3 is optimal. Moreover, from the
expression ofp′ in the element interiors, usually proportional to the velocity divergence, it is
possible to control‖∇ · uh‖ which, together with the stability obtained on‖uh‖, leads to full
control ofuh in H0(div,Ω). △

6.5 Numerical examples

In this section we present the results of some numerical examples in order to study the per-
formance of the presented method. We compare the results obtained using the approximation
of the subscales on the interelement boundariesu′E given by (6.36) (or (6.51) in the case of
the Stokes problem) with those obtained consideringu′E = 0. A parameterδ0 = 0.2 has been
adopted for the computation of the terms corresponding to the subscales on the element bound-
aries, as it has proved to be suitable for these numerical examples, even though for the Stokes
problem the effect of the choice ofδ0 has also been analyzed.

No results for the Darcy problem have been included, since inthe case of interest, that is
to say, for discontinuous pressure interpolations, the accuracy heavily relies on the expression
of the subscales in the element interiors.

6.5.1 Convection-diffusion equation

Let us start solving the convection-diffusion equation. Weconsider a domainΩ enclosed in
a circle of radiusR = 1, which we discretize in a triangular finite element mesh, andwe
prescribe

u = 0 on∂Ω.

We now study two different cases: in the first one diffusion dominates over convection
(k = 0.1, a = (1, 0), s = 0, f = 1 in (6.1)), while the second one is convection domi-
nated (k = 10−12, a = (1, 0), s = 0, f = 1 in (6.1)). In both the diffusion and the convection
dominated cases, no difference between the solution obtained consideringu′E and the one ob-
tained without considering it can be appreciated. Fig. 6.2 shows and compares the obtained
solutionu for the considered methods in the diffusion dominated case,while Fig. 6.3 does so
when convection dominates over diffusion. In any case, there is no noticeable influence of the
value ofδ0 on the results.
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Figure 6.2: Elevations for the diffusion dominated problemwithout (left) and considering
(right) u′E. Cut alongy = 0 (bottom).
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Figure 6.3: Elevations for the convection dominated problem without (left) and considering
(right) u′E. Cut alongy = 0 (bottom).
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6.5.2 Stokes problem

In this section we study the performance of the method proposed for the Stokes problem. As
stated in Section 6.3, considering the contribution of the subscales in the element boundaries
u′

E stabilizes elements with discontinuous pressures. In particular it allows the use ofP1/P0

(linear-constant) velocity-pressure pairs. Results using P1/P0 interpolation and considering
the contribution of the subscales on the boundary will be compared with those obtained us-
ing P1/P1 (linear-linear) velocity-pressure pairs, in which no subscales on the boundaries are
considered.

Flow in a cavity

In this example, the motion of a fluid enclosed in a square cavity Ω = [0, 1]× [0, 1] is analyzed.
The velocity is set to(1, 0) at the top horizontal wall( y = 1), while it is prescribed to0 on
the other walls(y = 0, x = 0 andx = 1). Pressure is fixed to0 in an arbitrary point of the
domain.
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Figure 6.4: Results for the flow in a cavity. Left:P1/P1 interpolation (withoutu′
E). Right:

P1/P0 interpolation (withu′
E). From top to bottom: streamlines and pressure contours.

As Fig. 6.4 shows, little difference can be observed betweenresults obtained usingP1/P1
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interpolation and those obtained usingP1/P0 and taking into account the contribution of the
subscales on the element boundaries withδ0 = 0.2. The slight differences which can be ob-
served between both results are due to the fact that a poorer interpolation space for the pressure
is used in the second case.

In order to check the behavior of the solution in terms ofδ0, Fig. 6.5 shows a comparison
between the pressure alongy = 1 for δ0 = 0.05, 0.2 and 0.5. Note that this last value would
be the maximum allowed by our way to motivate the subscales onthe element boundaries
(see Fig. 6.1). It is observed thatδ0 = 0.05 allows for pressure oscillations, whereas no much
difference is observed forδ0 = 0.2 andδ0 = 0.5 (in fact, similar results are obtained for any
δ0 greater than 0.1). Of course, results are more diffusive thegreater the value ofδ0 is.
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Figure 6.5: Results for the flow in a cavity, pressure on a cut alongy = 1. Top:P1/P0 element
with δ0 = 0.2 compared to theP1/P1 element. Bottom:P1/P0 element results for different
values ofδ0, global cut (left) and detail (right).

Flow over a cylinder

In this example we study the Stokes flow past a cylinder. The computational domain isΩ =
[0, 16]×[0, 8]\D, with the cylinderD of diameter 2 and centered at (4,4). The velocity atx = 0
is prescribed at(1, 0), whereas aty = 0 andy = 8, they-velocity component is prescribed to
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0 and thex-component is left free. The outflow, where both thex- andy- component are free,
is x = 16. Tractions are set to0 on the outflow.

Figure 6.6: Results for the flow over a cilinder. Left:P1/P1 (withoutu′
E). Right:P1/P0 (with

u′
E). From top to bottom: streamlines and pressure contours.

As in the previous example, little difference can be appreciated between the solutions ob-
tained with theP1/P1 pair with no subscales on the boundaries and theP1/P0 element with
subscales on the boundaries.

Once again, the behavior of the solution in terms ofδ0 has been checked. A comparison
between the pressure in a cut alongy = 4 is shown in Fig. 6.7 forδ0 = 0.05, 0.2 and 0.5. The
same conclusions as for the cavity flow example can be drawn inthis case, namely,δ0 = 0.05
allows for pressure oscillations which do not appear usingδ0 = 0.2 andδ0 = 0.5, the latter
being more diffusive than the former.
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Figure 6.7: Results for the flow over a cilinder, pressure in acut alongy = 4. Top: P1/P0

element withδ0 = 0.2 compared to theP1/P1 element. Bottom:P1/P0 element results for
different values ofδ0, global cut (left) and detail (right).
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6.6 In search of an efficient implementation for theP 1/P 0
element

We have seen how considering subscales to be different from zero in the element edges can be
used to obtain stabilized formulations for discontinuous pressure interpolations, in particular
for theP1/P0 element. However, this element is not very useful from the computational point
of view: compared to the stabilizedP1/P1 element, the number of pressure unknowns and
the number of connectivities for velocity unknowns are greater. In this section we try to find
a more efficient formulation in which pressure unknowns can be condensed by sending all the
off-diagonal terms of the LHS corresponding to pressure test functions equations to the RHS.
This is not effective for the Stokes problem, since an iterative process would be needed for a
linear problem, but can be worth in the Navier-Stokes equations where the iterations due to
the pressure condensation can be coupled with the iterations due to the non-linearity of the
convective term.

Let us consider the subscales on the boundary strategy for the Stokes problem defined
in (6.52)-(6.53) and apply it to theP1/P0 interpolation. We take into account that, for this
particular interpolation:

∆vh = 0, ∇qh = 0,

As we will see, subscales on the element interiors can be neglected in the Stokes problem
if the P1/P0 interpolation is used. However, this is not the case if we deal with the Navier-
Stokes equations. Let us start by defining an explicit expression for the subscales in the element
interiors, which can be obtained from (6.53):

u′ = τPV ′(f + ν∆uh −∇ph),
wherePV ′ is the projection onto the space for the subscales. This termcan be neglected if we
considerV ′ to be orthogonal to the finite element space andf to belong to the finite element
space. In this case, the final variational formulation is:

B([uh, ph], [vh, qh])−
∑

E

δ

2ν
〈 [[ ν∂nuh − phn ]] , [[ ν∂nvh + qhn ]] 〉E = 〈f , vh〉, (6.73)

which must hold for all[vh, qh] ∈ Vh × Qh. The matrix structure of the previous problem is
the following:

[

K0 +Kδ G0 +Gδ

GT
0 +GT

δ −J δ

] [

U

P

]

=

[

F

0

]

, (6.74)

where Kδ corresponds to−∑E
δ
2ν
〈 [[ ν∂nuh ]] , [[ ν∂nvh ]] 〉E , Gδ and GT

δ correspond to
−∑E

δ
2ν
〈 [[ phn ]] , [[ ν∂nvh ]] 〉E and−∑E

δ
2ν
〈 [[ ν∂nuh ]] , [[ qhn ]] 〉E respectively and−J δ cor-

responds to
∑

E
δ
2ν
〈 [[ phn ]] , [[ qhn ]] 〉E .

In order to be able to condensate pressure unknowns,J δ should be diagonal. SinceJ δ

involves the pressure jumps across interelement boundaries, it is not diagonal. However, we
can split it into a diagonal and a non-diagonal part:

J δ = J0
δ − J ′

δ,

J0
δ = diag(Jδ),
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We can now write the problem in the following form:
[

K0 +Kδ G0 +Gδ

GT
0 +GT

δ −J0
δ

] [

U

P

]

=

[

F

J ′
δP

]

, (6.75)

which can be solved by means of a fixed point iteration scheme:
[

K0 +Kδ G0 +Gδ

GT
0 +GT

δ −J0
δ

] [

U (i)

P (i)

]

=

[

F

J ′
δP

(i−1)

]

, (6.76)

wherei is the iteration counter. SinceJ0
δ can be trivially inverted, we can eliminate the pressure

unknowns from the matrix form of the problem and end up with:
[

K0 +Kδ + (G0 +Gδ)
(

J0
δ

)−1 (
GT

0 +GT
δ

)

]

U (i) = F + (G0 +Gδ)
(

J0
δ

)−1
J ′

δP
(i−1),

(6.77)

Jδ is diagonally dominant, and as a consequence the convergence of the scheme can be proved
as for the classical Jacobi method.

In the case of transient problems the same strategy can be used. However, we also have the
possibility of treating pressure in an explicit way. The matrix form of the transient problem is:

[

1
δt
M +K0 +Kδ G0 +Gδ

GT
0 +GT

δ −J 0
δ

] [

U (n+1)

P (n+1)

]

=

[

F + 1
δt
MUn

J ′
δP̃

n+1

]

, (6.78)

where we have added a mass matrix which takes into account thetime derivatives and̃P
n+1

is
an approximation to the pressure nodal unknowns at time stepn+ 1. A first order approxima-
tion to the pressure would be to consider the pressure at the previous time step:

P̃
n+1

= P n = P n+1 +O(δt),

Similarly we could consider the second order approximation:

P̃
n+1

= 2P n −P n−1 = P n+1 +O(δt2).

However, although some of these methods work, none of them shows a fast enough con-
vergence to be competitive with theP1/P1 interpolation. We solve the example of the flow
over a cylinder described in the previous section. Fig. 6.8 shows the convergence of the itera-
tive scheme proposed for the stationary Stokes problem. We can appreciate that convergence
is very slow, even if a relaxation strategy is used. If we try using over-relaxation the iterative
scheme diverges. In Fig. 6.9 we compare the convergence of the non-linearity of the Navier-
Stokes equations (Re = 100) solved with the original formulation with the convergenceif the
condensed pressure strategy is used. We can observe that theconvergence of the convective
non-linearity is much faster than the convergence of the iterative algorithm due to the pressure
condensation.

We finally try the explicit treatment for the pressures described for the transient Stokes
problem. After 50 time steps the first order scheme has not been able to converge to an incom-
pressible velocity field, as we can appreciate in Fig. 6.10, where the horizontal velocity has
been depicted. The second order scheme diverges after a few time steps.
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Figure 6.8: Convergence for the iterative scheme for the stationary Stokes problem. Compari-
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Figure 6.10: Horizontal velocity for the transient problemif an explicit scheme for the pressure
is used. Results for the first order scheme.

In conclusion, we have not been able to find a competitive algorithm for the implemen-
tation of theP1/P0 element. Further research will be carried out in order to consider more
complex iterative schemes (starting with, for example, Gauss-Seidel iterations) which might
allow to condense the pressure unknowns and at the same time to obtain convergence in very
few iterations.

6.7 Conclusions

In this chapter we have extended the two-scale approximation of variational problems with
an additional ingredient in the approximation of the subscales, which is an approximation for
their values on the interelement boundaries.

The key idea is to assume that the subscales are already computed in the element interiors
and to compute the boundary values by imposing the correct transmission conditions of the
problem under consideration. Three examples of how to undertake this process have been
presented, namely, the CDR equation, the Stokes problem andDarcy’s equations.

In order to be as general as possible, examples of how to compute the subscale on the
element interiors have been proposed,but not used, in the sense that our developments are
applicable to any approximation of these unknowns (provided they satisfy some conditions on
the algorithmic constants on which they depend). In fact, wehave proved stability estimates
for the three problems considered which are valid for any choice of subscales in the interior of
the elements. However, convergence analyses, not presented here, require the expressions of
these subscales.

For the case of the CDR equation, the new terms introduced by accounting for the subscales
on the interelement boundaries do not contribute to stability. However, our analysis and the
numerical example presented show that they do not spoil it, and also that accuracy seems also
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to be unaffected. However, for the Stokes problem and for Darcy flow the terms introduced by
the subscales on the boundaries are crucial to provide stability when discontinuous pressure
interpolations are used. Thestabilizing terms introduced are shared with other formulations
that can be found in the literature. However, some non-standard terms also appear. Again, our
analysis, and the numerical examples in the case of the Stokes problems, show that these terms
do not harm stability.

We have looked for an efficient implementation of theP1/P0 interpolation, which con-
sists of condensing the pressure unknowns by sending the off-diagonal terms corresponding to
the pressure test function equations to the right hand-side. Several iterative and explicit meth-
ods have been presented which are suitable for stationary and transient problems respectively.
However, although some of these methods work, none of them shows a fast enough conver-
gence to be competitive with theP1/P1 interpolation. Further research will be carried out in
order to consider more complex iterative schemes (startingwith, for example, Gauss-Seidel
iterations) which might allow to condense the pressure unknowns and at the same time obtain
convergence in very few iterations.
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Chapter 7

Finite element approximation of
transmission conditions in fluids and
solids introducing boundary subgrid
scales

Terms involving jumps of stresses on boundaries are proposed for the finite element approxi-
mation of the Stokes problem and the linear elasticity equations. These terms are designed to
improve the transmission conditions between subdomains atthree different levels, namely, be-
tween the element domains, between the interfaces in homogeneous domain interaction prob-
lems and at the interface between the fluid and the solid in fluid-structure interaction problems.
The benefits in each case are respectively the possibility ofusing discontinuous pressure in-
terpolations in a stabilized finite element approximation of the Stokes problem, a stronger
enforcement of the stress continuity in homogeneous domaindecomposition problems and a
considerable improvement of the behavior of the iterative algorithm to couple the fluid and
the solid in fluid-structure interaction problems. The motivation to introduce these terms stems
from a decomposition of the unknown into a conforming and a non-conforming part, a hybrid
formulation for the latter and a simple approximation for the unknowns involved in the hybrid
problem.

7.1 Introduction

Transmission conditions in the numerical approximation offluid and solid mechanics problems
play a key role at different levels. When the discretizationinvolves a partition of the compu-
tational domain, as in finite volume or finite element methods, the first level is the interaction
between the subdomains of the partition. Appropriate interaction conditions, associated to the
problem being solved, are satisfied in an approximate way, and this may have important con-
sequences in the stability of the numerical method. A secondlevel of analysis of transmission
conditions could be the interaction of subdomains in a homogeneous domain decomposition
method. This problem may be addressed using a purely algebraic point of view, but it is also
possible to analyze the interaction from the standpoint of the approximate boundary condi-
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tions applied to each subdomain. Both strategies are well known in the domain decomposition
community (see [115, 128], for example). A a third level of analysis could be the interac-
tion betweenheterogeneoussubdomains, in which different problems associated to different
physics are solved within each of the subdomains. This last category could be included in the
second, but the heterogeneity of the transmission conditions introduces additional difficulties
that deserve to be studied independently. The paradigmaticexample of this class of problems
are those involving fluid and structure interactions.

In this chapter we analyze the issue of dealing with transmission conditions in fluid and
solid mechanics problems approximated using finite elements. The model problems we will
consider are the Stokes problem and the Navier equations fora linear elastic solid. Our pro-
posal is to modify the classical approximation of the interaction stresses computed from the
finite element solution by introducing terms that depend on the jumps of these stresses when
computed from the two sides of the interaction boundary. Theway to motivate the introduction
of these terms is as follows. First, we consider a splitting of the unknown into a conforming
and a discontinuous part. A three-field hybrid formulation is used for the latter, involving the
primal variable, its traces and its fluxes on the element boundaries as unknowns. We assume
that these terms aresmall, and therefore we consider them assubgrid scales(or subscales) of
the conforming part of the solution. In this sense, our approach falls within the variational mul-
tiscale framework proposed in [77]. Rather than solving forthe subscales, we propose simple
expressions tomodelthem, the main idea being the correct continuity of stressesacross the
interelement boundaries.

When solving for the Stokes problem in a single domain, the introduction of the element
boundary terms involving jumps of stresses has as a consequence a stabilizing effect on the
pressure. In particular, in combination with a more standard stabilized finite element method,
these new terms open the possibility to use arbitrary discontinuous pressure interpolations,
avoiding the need to satisfy the classical velocity-pressure compatibility conditions [23]. Their
stabilizing effect is similar to that already found in [78],although their expression is different
and motivated in a completely different way.

Pressure stabilization due to the new interelement boundary terms was already proposed
and analyzed in Chapter 6. In the present chapter we derive indetail the formulation for the
Stokes problem (which in the previous chapter was directly stated from the derivation obtained
for the convection-diffusion equation), with emphasis on the treatment of Neumann bound-
ary conditions. This serves us to extend it to two cases, namely, the interaction between two
subdomains, in each of which the Stokes problem is solved, and the classical fluid-structure
interaction (FSI) problem. In the first case, the new terms wepropose help to enforce the conti-
nuity of stresses between subdomains. The domain interaction is however more complex than
in classical formulations. To introduce an iteration-by-subdomain scheme, we first analyze the
matrix structure of the problem and discuss how this iterative scheme can be designed. In the
FSI case, we apply the previous ideas to a time-marching block-iterative scheme in which
Dirichlet boundary conditions are prescribed to the fluid and Neumann boundary conditions
are applied to the solid. The latter correspond to the normalstress exerted by the fluid on the
solid. The introduction of the subscales on the element boundaries for the solid enhances no-
tably the stability of the scheme. We illustrate this enhancement with a numerical example. In
particular, the example we have chosen displays the so called added-mass effect, which is one
of the most important issues to be considered when solving fluid structure interaction problems
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by means of a domain decomposition technique. This phenomenon takes place when fluid and
solid densities are similar, and consists in a failing of simple coupling strategies. Either if
the coupling is implicit (iterating the solution at each time step to converge to the monolithic
problem) or explicit (no coupling iterations are done within the time step), the scheme becomes
unstable. Several strategies to deal with this problem havebeen recently proposed. For exam-
ple, a semi-implicit scheme for pressure-segregated methods is presented in [49], and is further
developed in [6]. A different approach for pressure-segregated schemes is proposed in [81]. In
[24] a strategy based on Nitsche’s method is proposed and a method based on Robin boundary
conditions can be found in [8]. Using a more algebraic point of view, several strategies using
preconditioned Krylov methods are presented in [9, 10, 11].Conditions under which the prob-
lem becomes unstable are studied in [54]. We present here ourown approach, which is directly
derived from the use of boundary subgrid scales.

The chapter is organized as follows. In Section 7.2 we state the Stokes problem in strong
form, in the classical velocity-pressure variational formand in a non-standard hybrid varia-
tional form that we use to motivate our numerical formulation. This formulation is presented
in detail in Section 7.3. The final result is a problem posed only for a conforming approx-
imation to the velocity and the pressure that involves jumpsof stresses at the interelement
boundaries. The application of the same ideas to a homogeneous domain interaction problem
is presented in Section 7.4, whereas the application to the FSI problem is the subject of Sec-
tion 7.5. Numerical examples are presented in Section 7.6 and finally conclusions close the
chapter in Section 7.7.

7.2 Problem statement

7.2.1 Stokes problem inu-p form

Let us start considering the Stokes problem written in the classical velocity-pressure approach
or displacement-pressure, in the case of an elastic solid. To fix terminology, we will consider
that it corresponds to a fluid, leaving for Section 7.5 the statement of the elastic problem.
Thus, the problem we consider here consists in finding a velocity u : Ω −→ R

d and a pressure
p : Ω −→ R such that

−µ∆u+∇p = ρf in Ω, (7.1)

∇ · u = 0 in Ω, (7.2)

u = 0 onΓD, (7.3)

−pn+ µn · ∇u = t onΓN . (7.4)

In these equations,Ω ⊂ R
d (d = 2, 3) is a bounded domain with boundary∂Ω and external

normaln, f is the vector of body forces andt is the (pseudo-)traction prescribed onΓN , with
∂Ω = ΓN ∪ ΓD, ΓN ∩ ΓD = ∅, ΓD 6= ∅. The physical parametersµ andρ are the viscosity
and the density, respectively. Note that the Neumann-type conditions do not correspond to
the physically meaningful tractions, for which the viscousterm should be written using the
symmetrical gradient of the velocity. This, however, is irrelevant for our discussion.

Let nowV = H1
Γ(Ω)

d := {v ∈ H1(Ω)d | v = 0 on ΓD}, Q = L2(Ω), and assume that
f ∈ (H1

Γ(Ω)
d)′ (the dual space ofH1

Γ(Ω)
d) andt ∈ H−1/2(ΓN)

d. We will use the symbol
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(·, ·)ω to denote theL2 product in a domainω. In general, the integral of two functionsg1 and
g2 over a domainω will be denoted by〈g1, g2〉ω. This symbol will also be used for the duality
pairing. The simplifications(·, ·)Ω ≡ (·, ·) and〈·, ·〉Ω ≡ 〈·, ·〉 will be used.

The variational problem consists of finding[u, p] ∈ V ×Q such that

B([u, p], [v, q]) = L([v, q]) + 〈t, v〉ΓN
∀[v, q] ∈ V ×Q,

where

B([u, p], [v, q]) := µ(∇u,∇v)− (p,∇ · v) + (q,∇ · u),
L([v, q]) := ρ〈f , v〉.

7.2.2 Hybrid formulation of an abstract variational proble m

The numerical approximation we propose can be motivated from a hybrid formulation of the
problem. To introduce it, let us assume thatΩ̄ = Ω̄1 ∪ Ω̄2, with Γ = ∂Ω1 ∩ ∂Ω2 (see Fig. 7.1).

Figure 7.1: Splitting of the domain

Consider an abstract variational problem consisting in finding an unknownu in a functional
spaceX such that

a(u, v) = l(v) ∀v ∈ X, (7.5)

wherea(u, v) is a bilinear form onX × X and l a linear form defined onX. Let ui, vi be
the restrictions ofu, v ∈ X to subdomainΩi, andXi the spaces where they belong,i =
1, 2. Suppose thatu ∈ X has a well defined trace onΓ belonging to a spaceT , and a flux
corresponding to the differential operator associated to (7.5) belonging to a spaceFi when
computed from subdomainΩi, i = 1, 2. Then, the hybrid formulation of (7.5) that we consider
is the following: findui ∈ Xi, λi ∈ Fi, i = 1, 2, andγ ∈ T such that

a1(u1, v1)− 〈λ1, v1〉Γ = l1(v1) ∀v1 ∈ X1,

a2(u2, v2)− 〈λ2, v2〉Γ = l2(v2) ∀v2 ∈ X2,

〈µ1, u1 − γ〉Γ = 0 ∀µ1 ∈ F1,

〈µ2, u2 − γ〉Γ = 0 ∀µ2 ∈ F2,

〈κ, λ1 + λ2〉Γ = 0 ∀κ ∈ T,
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whereai andli are the restrictions ofa andl toXi ×Xi andXi, respectively.
If the problem includes imposition of fluxes ofu in a partΓN of ∂Ω, which for the sake

of simplicity we may consider contained in∂Ω1 (see Fig. 7.1), this imposition may be also
“hybridized”, yielding the problem

a1(u1, v1)− 〈λ1, v1〉Γ − 〈λN , v1〉ΓN
= l1(v1) ∀v1 ∈ X1, (7.6)

a2(u2, v2)− 〈λ2, v2〉Γ = l2(v2) ∀v2 ∈ X2, (7.7)

〈µ1, u1 − γ〉Γ + 〈µ1, u1 − γ〉ΓN
= 0 ∀µ1 ∈ F1, (7.8)

〈µ2, u2 − γ〉Γ = 0 ∀µ2 ∈ F2, (7.9)

〈κ, λ1 + λ2〉Γ + 〈κ, λN〉ΓN
= 〈κ, q〉ΓN

∀κ ∈ T, (7.10)

whereq is the flux to be prescribed. In this case, the linear forml (and the formsl1 and l2
resulting from the splitting of the domain) doesnot include the prescription of the fluxes.

Several problems admit this hybrid formulation, includingfirst and second order linear
partial differential equations (the fluxesλi are zero in the first case). In the following subsection
we shall see its application to the Stokes problem. For the diffusion equation−∆u = f with
u = 0 on ∂Ω, we would have thatXi is the subspace ofH1(Ωi) of functions vanishing on
∂Ω ∩ ∂Ωi, T = H

1/2
00 (Γ) andFi = (H

1/2
00 (Γi))

′ (the prime denoting dual space), withΓi =
∂Ωi ∩ Ω. The solution of the hybrid problem isγ = u1|Γ1

= u2|Γ2
, λ1 = −λ2 = n1 ·

∇u1|Γ1
= −n2 · ∇u2|Γ2

. If flux conditions need to be prescribed, in this case they are of the
form n · ∇u = q, andΓ1 will containΓN , the part of the boundary where these conditions are
enforced.

7.2.3 Hybrid formulation of the Stokes problem

The Stokes problem (7.1)-(7.2) admits also the hybrid formulation described above by defining

u = [u, p], v = [v, q], X = V ×Q,
a(u, v) = B([u, p], [v, q]), l(v) = L([v, q]),

γ = u1|Γ1
= u2|Γ2

∈ T = H
1/2
00 (Γ)d,

λi = (−pni + µni · ∇u)|Γi
∈ Fi = (H

1/2
00 (Γi)

d)′, i = 1, 2,

andq = t (see (7.4)) being the boundary condition in terms of fluxes.
To present the formulation we are interested in, let us consider a splitting of spaceV of

the formV = V̄ ⊕ Ṽ . In principle, there is no restriction in the expression of spacesV̄ and
Ṽ . In the finite element approximation, the former will be approximated bycontinuousfinite
elements (and therefore conforming). The component ofu in this space can be considered as
resolvable, whereas a closed form expression will be given for the component in Ṽ , which
will be calledsubgrid scaleor, simply,subscale. A similar splitting could be performed for the
pressure, although it is not necessary for our purposes.

LetVi be also split asVi = V̄i⊕ Ṽi, i = 1, 2. If anyui ∈ Vi is written asui = ūi+ ũi, with
ūi ∈ V̄i andũi ∈ Ṽi, we assume that̄u1|Γ1

= ū2|Γ2
. Only the continuity for the component in

Ṽi needs to be enforced (weakly) through a variational equation.
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Let us introduce the boundary operators

Ti([v̄i, qi]) := (−qini + µini · ∇v̄i)|Γi
, T ∗

i ([v̄i, qi]) := (qini + µini · ∇v̄i)|Γi
,

where [vi, qi] ∈ V̄i × Qi, i = 1, 2. We may constrain the fluxes to be of the formλi =
Ti([ūi, pi]) + λ̃i, for appropriatẽλi ∈ F̃i, and likewise forλN . Test functions inFi can be
similarly split asµi = T ∗

i ([v̄i, qi]) + µ̃i, with v̄i ∈ V̄i, qi ∈ Qi, µ̃i ∈ F̃i. Finally, traces on
boundaries can be split asγ = ū + γ̃, both onΓ and onΓN . On the intersecting boundaryΓ
the restrictionū is well defined because of the assumptionū1|Γ1

= ū2|Γ2
. Note that, in fact,

F̃i = Fi andT̃ = T . The tilde has been introduced to stress that we seek the subscale of fluxes
and traces in these spaces.

Having introduced these decompositions of the functional spaces, we may write the hybrid
formulation of the Stokes problem as follows: findūi ∈ V̄i, ũi ∈ Ṽi, pi ∈ Qi, γ̃ ∈ T̃ , λ̃i ∈ F̃i

(i = 1, 2) such that

B1([ū1 + ũ1, p1], [v̄1 + ṽ1, q1])−
〈

T1([ū1, p1]) + λ̃1, v̄1 + ṽ1

〉

Γ

−
〈

T1([ū1, p1]) + λ̃N , v̄1 + ṽ1

〉

ΓN

= L1([v̄1 + ṽ1, q1]), (7.11)

B2([ū2 + ũ2, p2], [v̄2 + ṽ2, q2])−
〈

T2([ū2, p2]) + λ̃2, v̄2 + ṽ2

〉

Γ
= L2([v̄2 + ṽ2, q2]),

(7.12)

〈T ∗
1 ([v̄1, q1]) + µ̃1, γ̃ − ũ1〉Γ + 〈T ∗

1 ([v̄1, q1]) + µ̃1, γ̃ − ũ1〉ΓN
= 0, (7.13)

〈T ∗
2 ([v̄2, q2]) + µ̃2, γ̃ − ũ2〉Γ = 0, (7.14)

〈

v̄1 + v̄2 + κ̃, T1([ū1, p1]) + T2([ū2, p2]) + λ̃1 + λ̃2

〉

Γ

+
〈

v̄1 + κ̃, T1([ū1, p1]) + λ̃N

〉

ΓN

= 〈v̄1 + κ̃, t〉ΓN
, (7.15)

which must hold for all̄vi ∈ Vi, ṽi ∈ Ṽi, qi ∈ Qi, κ̃ ∈ T̃ , µ̃i ∈ F̃i (i = 1, 2). Recall thatL1

does not contain the contribution from the Neumann-type boundary condition (7.4).
Adding up (7.11) and (7.12) with̃v1 = ṽ2 = 0 and using (7.15) with̃κ = 0 yields the

original variational equation projected ontōV ×Q, that is to say,

B([ū, p], [v̄, q]) +B([ũ, 0], [v̄, q]) = L([v̄, q]) + 〈v̄, t〉ΓN
, (7.16)

which holds for all[v̄, q] ∈ V̄ ×Q. If we define the operators

Li([v̄i, qi]) := −µ∆v̄i +∇qi, L∗
i ([v̄i, qi]) := −µ∆v̄i −∇qi,

we may write, making use of (7.13) and (7.14) withµ̃1 = µ̃2 = 0,

B([ũ, 0], [v̄, q]) =
2
∑

i=1

Bi([ũi, 0], [v̄i, qi])

=
2
∑

i=1

〈ũi,L∗
i ([v̄i, qi])〉Ωi

+
2
∑

i=1

〈γ̃, T ∗
i ([v̄i, qi])〉Γ + 〈γ̃, T ∗

1 ([v̄1, q1])〉ΓN
.

(7.17)
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Adding up (7.11) and (7.12) with̄v1 = v̄2 = 0, q1 = q2 = 0 yields, after integration by
parts of some terms,

2
∑

i=1

Bi([ūi + ũi, pi], [ṽi, 0])−
2
∑

i=1

〈

Ti([ūi, pi]) + λ̃i, ṽi

〉

Γ
−
〈

T1([ū1, p1]) + λ̃N , ṽ1

〉

ΓN

=
2
∑

i=1

〈Li([ūi, pi]), ṽi〉Ωi
+

2
∑

i=1

Bi([ũi, 0], [ṽi, 0])−
2
∑

i=1

〈

λ̃i, ṽi

〉

Γ
−
〈

λ̃N , ṽ1

〉

ΓN

=
2
∑

i=1

L2([ṽi, 0]). (7.18)

As an alternative to (7.11)-(7.15), the final problem can be obtained from (7.16), (7.17),
(7.18), (7.13) with[v̄1, q1] = [0, 0], (7.14) with[v̄2, q2] = [0, 0] and (7.15) with̄v1 = v̄2 = 0.
It reads: findūi ∈ V̄i, ũi ∈ Ṽi, pi ∈ Qi, γ̃ ∈ T̃ , λ̃i ∈ F̃i (i = 1, 2) such that

B([ū, p], [v̄, q]) +
2
∑

i=1

〈ũi,L∗
i ([v̄i, qi])〉Ωi

+
2
∑

i=1

〈γ̃, T ∗
i ([v̄i, qi])〉Γ

+ 〈γ̃, T ∗
1 ([v̄1, q1])〉ΓN

= L([v̄, q]) + 〈v̄, t〉ΓN
, (7.19)

2
∑

i=1

〈Li([ūi, pi]), ṽi〉Ωi
+

2
∑

i=1

Bi([ũi, 0], [ṽi, 0])−
2
∑

i=1

〈

λ̃i, ṽi

〉

Γ

−
〈

λ̃N , ṽ1

〉

ΓN

=
2
∑

i=1

Li([ṽi, 0]), (7.20)

2
∑

i=1

〈

κ̃, Ti([ūi, pi]) + λ̃i

〉

Γ
+
〈

κ̃, T1([ū1, p1]) + λ̃N

〉

ΓN

= 〈κ̃, t〉ΓN
, (7.21)

2
∑

i=1

〈µ̃i, γ̃ − ũi〉Γ + 〈µ̃1, γ̃ − ũ1〉ΓN
= 0, (7.22)

for all v̄i ∈ Vi, ṽi ∈ Ṽi, qi ∈ Qi, κ̃ ∈ T̃ , µ̃i ∈ F̃i (i = 1, 2).
This is the hybrid formulation on which we will base the finiteelement approximation

described in the following. Its importance relies on the fact thatit is the theoretical framework
to develop approximations in whichu is split into a contribution which is continuous onΓ
and another one which is discontinuous. In Chapter 6 we presented a similar development
for the convection-diffusion equation. Now we have detailed this development for the Stokes
problem, considering also the presence of Neumann type boundary conditions.

7.3 Finite element approximation

7.3.1 Scale splitting

Let Ph := {K} be a finite element partition of the domainΩ of sizeh, andVh × Qh a finite
element space where an approximate solution[uh, ph] ∈ Vh × Qh is sought. We assume that
Vh is madeof continuous functions, that is to say,Vh is conforming inV .
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Consider the setting of the previous subsection withV̄ = Vh, and thereforeV = Vh ⊕
Ṽ , with Ṽ to be defined, andu = uh + ũ, v = vh + ṽ. The extension of (7.19)-(7.22)
to multiple subdomains is straightforward. In particular,we will apply it considering each
element a subdomain. No subscript will be used for the functions and operators in play to
characterize the element domain over which they are defined,being this clear simply by the
domain of integration.

The discrete variational problem to be considered is to find[uh, ph] ∈ Vh × Qh, ũ ∈ Ṽ ,
γ̃ ∈ T̃ andλ̃ ∈ F̃ such that

B([uh, ph], [vh, qh]) +
∑

K

〈ũ,L∗([vh, qh])〉K

+
∑

K

〈γ̃, T ∗([vh, qh])〉∂K = L([vh, q]) + 〈vh, t〉ΓN
, (7.23)

∑

K

〈L([uh, ph]), ṽ〉K +
∑

K

BK([ũ, 0], [ṽ, 0])−
∑

K

〈

λ̃, ṽ
〉

∂K
=
∑

K

LK([ṽ, 0]), (7.24)

∑

K

〈

κ̃, T ([uh, ph]) + λ̃
〉

∂K
= 〈κ̃, t〉ΓN

, (7.25)

∑

K

〈µ̃, γ̃ − ũ〉∂K = 0, (7.26)

for all vh ∈ Vh, ṽ ∈ Ṽ , qh ∈ Qh, κ̃ ∈ T̃ , µ̃ ∈ F̃ , whereT̃ is now the space of traces (of
subscales) on the element boundaries (satisfyingγ̃ = 0 onΓD) andF̃ the space of fluxes on
these boundaries.

Apart from the imposition of the condition thatph ∈ Qh, problem (7.23)-(7.26) is exact.
The final approximation is obtained by choosing a way to approximate the velocity subscales
ũ, their traces on the element boundariesγ̃ and their fluxes̃λ. This leaves many possibilities
open. In particular, if̃u is chosen to be a piecewise polynomial, the previous equations con-
stitute a very general framework to develop finite element approximations with a continuous
component (uh) and a discontinuous one (ũ). Traces (̃γ) and fluxes (̃λ) may be approximated
independently or linked tõu and/oruh if an irreducible formulation is to be used. Note that
if the first option is used there might be compatibility conditions between the approximating
finite element spaces to render the final discrete problem numerically stable.

Our purpose here isnot to exploit the possibilities of (7.23)-(7.26), butto propose a closed
form expression for̃u, γ̃ andλ̃. Only (7.23) will remain unaltered, but with a certain approx-
imation for ũ in the interior of the element domains required to evaluate the second term on
the left-hand-side of this equation, and an approximation for γ̃ on the element boundaries to
evaluate the third term. We proceed to explain how we do this in the following subsection,
understanding that other possibilities are open within thepresent framework.

7.3.2 Subscales on the element boundaries

The way we propose to approximate the subscales was already presented in Chapter 6. Let us
just recall the resulting expressions forλ̃ andγ̃.
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Approximation of λ̃. The values of̃λ on ∂K areweakapproximations to the fluxes of̃u.
Given the tracẽγ of this unknown, and taking into account that no pressure subscales have
been introduced, we propose the following closed form expression forλ̃:

λ̃∂Ki∩E ≈
µ

δ
(γ̃ − ũi), i = 1, 2, (7.27)

where nowũi has to be understood as the subscale computed in the element interiors and
evaluated at edgeE.

Approximation of γ̃. Equation (7.25) states the weak continuity of the total fluxes on the
element boundaries. The idea now is to replace this equationby an explicit prescription of this
continuity. We need to distinguish the case in which an edge is interior to the domainΩ and the
case in which it belongs toΓN . Edges onΓD will not contribute because of the zero velocity
prescription there.

Let [[ ng ]]E := n1g|∂K1∩E +n2g|∂K2∩E denote the jump of a scalar functiong across edge
E and [[ ∂ng ]]E = n1 · ∇g|∂K1∩E + n2 · ∇g|∂K2∩E the jump of the normal derivative. For a
vector fieldv, we also define[[ n⊗ v ]]E = n1 ⊗ v|∂K1∩E + n2 ⊗ v|∂K2∩E .

Consider first the case in whichE0 is an interior edge. The condition to determine the
expression of the subscale velocity on the boundary is that the normal component of the stress
be continuous across interelement boundaries. This can be written as follows:

0 = [[ −pn + µ∂nu ]]E0
(7.28)

≈ [[ −phn+ µ∂nuh ]]E0
+ λ̃∂K1∩E0

+ λ̃∂K2∩E0

≈ [[ −phn+ µ∂nuh ]]E0
+
µ

δ

(

2γ̃E0
− ũ1 − ũ2

)

,

from where the approximation we propose is

γ̃E0
≈ {ũ}E0

− δ

2µ
[[ µ∂nuh − phn ]]E0

, (7.29)

where{ũ}E0
:= 1

2
(ũ1 + ũ2) is the average of the subscales computed in the element interiors

evaluated at edgeE0. From (7.29) it is observed thatδ0 will play the role of an algorithmic
parameter for which, following our approach, we have a geometrical interpretation.

From now onwards we will use the symbol= instead of≈, understanding that in some
places we perform approximation (7.27) that has led us to (7.29).

Let us consider now a boundary edge of the formEN = ∂K ∩ΓN for a certain elementK,
where the Neumann condition (7.4) is prescribed. In this case, (7.28) has to be replaced by

t|EN
= (−pn+ µ∂nu)|EN

= (−phn+ µ∂nuh)|EN
+ µ∂nũ|EN

= (−phn+ µ∂nuh)|EN
+
µ

δ

(

γ̃EN
− ũEN

)

,

from where

γ̃EN
= ũEN

− δ

µ
(−phn + µ∂nuh − t)|EN

. (7.30)
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Problem for uh and ũ. From the approximation of the fluxes (7.27) and the expressions
obtained for the traces, (7.29) and (7.30), one can obtain a problem foruh andũ alone from
(7.23) and (7.24). After some algebraic manipulations, theproblem obtained is: find[uh, ph] ∈
Vh ×Qh andũ ∈ Ṽ such that

B([uh, ph], [vh, qh]) +
∑

K

〈ũ,L∗([vh, qh])〉K

+
∑

E0

〈{ũ}, [[ T ∗([vh, qh]) ]] 〉E0
− δ

2µ

∑

E0

〈 [[ T ([uh, ph]) ]] , [[ T ∗([vh, qh]) ]]〉E0

+
∑

EN

〈ũ, T ∗([vh, qh])〉EN
− δ

µ

∑

EN

〈T ([uh, ph]), T ∗([vh, qh])〉EN

= L([vh, qh]) + 〈vh, t〉ΓN
− δ

µ

∑

EN

〈t, T ∗([vh, qh])〉EN
, (7.31)

∑

K

BK([ũ, 0], [ṽ, 0]) +
∑

K

〈L([uh, ph]), ṽ〉K

+
∑

E0

〈 [[ T ([uh, ph]) ]] , {ṽ}〉E0
+

δ

2µ

∑

E0

〈 [[ n⊗ ũ ]] , [[ n⊗ ṽ ]] 〉E0

+
∑

EN

〈T ([uh, ph]), ṽ〉EN
=
∑

K

LK([ṽ, 0]) +
∑

EN

〈t, ṽ〉EN
, (7.32)

for all [vh, qh] ∈ Vh ×Qh, ṽ ∈ Ṽ .
Problem (7.31)-(7.32) is very general and could be used as such after choosing an approx-

imation forṼ . However, we will further simplify the problem by approximating directlyũ.

7.3.3 Subscales in the element interiors

To approximatẽu, we in fact approximate (7.24) by integrating by parts,

∑

K

BK([ũ, 0], [ṽ, 0]) = −µ
∑

K

〈∆ũ, ṽ〉K + µ
∑

K

〈n · ∇ũ, ṽ〉∂K ,

assuming thatµn · ∇ũ cancels with the fluxes̃λ and using the crucial approximation

〈−µ∆ũ, ṽ〉K ≈ τ−1〈ũ, ṽ〉K , τ−1 = C1
µ

h2
, (7.33)

whereC1 is an algorithmic constant. We will not justify this last step, which is the keystone
of stabilized finite element methods. It can be motivated forexample by using an approximate
Fourier analysis [32].

Summarizing, the subscales in the element interiors can be expressed in terms of[uh, ph]
from the equation

∑

K

〈L([uh, ph]), ṽ〉K + τ−1
∑

K

〈ũ, ṽ〉K = ρ
∑

K

〈f , ṽ〉K , (7.34)
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which can be described by saying theũ is the projection of the residualρf − L([uh, ph])
within each element multiplied byτ onto the space of subscalesṼ . The most usual option is
to take this projection as the identity (assuming this is feasible), although we favor the choice
of taking it as the projectionL2-orthogonal to the finite element spaceVh. This leads to the so
called orthogonal subscale stabilization (OSS) method [32, 33]. However, the final method is
independent of the choice of the space of subscales.

7.3.4 Stabilized finite element problem

The subscales in the element interiors can be approximated as stated in Chapter 6. With all the
approximations introduced, the problem to be solved consists of (7.31) and (7.34). However,
the approximations used to arrive to (7.34) have as a consequence the loss of symmetry of
the problem (which is in fact observed using−qh as test function). This symmetry can be
recovered neglecting the third and fifth terms in (7.31). Note that this maintains the consistency
of the method, in the sense that if the approximate solution[uh, ph] is replaced by the exact
solution[u, p], the discrete variational problem holds exactly.

The variation of the method just explained consists in finding [uh, ph] ∈ Vh × Qh and
ũ ∈ Ṽ such that

B([uh, ph], [vh, qh]) +
∑

K

〈ũ,L∗([vh, qh])〉K

− δ

2µ

∑

E0

〈 [[ T ([uh, ph]) ]] , [[ T ∗([vh, qh]) ]] 〉E0
− δ

µ

∑

EN

〈T ([uh, ph]), T ∗([vh, qh])〉EN

= L([vh, qh]) + 〈vh, t〉ΓN
− δ

µ

∑

EN

〈t, T ∗([vh, qh])〉EN
, (7.35)

∑

K

〈L([uh, ph]), ṽ〉K + τ−1
∑

K

〈ũ, ṽ〉K = ρ
∑

K

〈f , ṽ〉K , (7.36)

for all [vh, qh] ∈ Vh ×Qh, ṽ ∈ Ṽ .

We may write the solution of (7.36) as

ũ = τP̃ (ρf − L([uh, ph])),

whereP̃ denotes theL2 projection onto the space of subscales, which will be left undefined
(except in the numerical examples, of course). The problem can now be written in a compact
form, only involving the finite element component of the unknown [uh, ph], as follows: find
[uh, ph] ∈ Vh ×Qh such that

Bstab([uh, ph], [vh, qh]) = Lstab([vh, qh]) ∀[vh, qh] ∈ Vh ×Qh,
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where

Bstab([uh, ph], [vh, qh]) = B([uh, ph], [vh, qh])−
∑

K

τ〈P̃ (L([uh, ph])),L∗([vh, qh])〉K

− δ

2µ

∑

E0

〈 [[ T ([uh, ph]) ]] , [[ T ∗([vh, qh]) ]] 〉E0
− δ

µ

∑

EN

〈T ([uh, ph]), T ∗([vh, qh])〉EN
,

(7.37)

Lstab([vh, qh]) = L([vh, qh]) + 〈vh, t〉ΓN

−
∑

K

τ〈P̃ (ρf ),L∗([vh, qh])〉K −
δ

µ

∑

EN

〈t, T ∗([vh, qh])〉EN
. (7.38)

7.4 Interaction between subdomains

7.4.1 Motivation

The stabilized finite element formulation presented in the previous section has been designed
to allow arbitrary velocity-pressure interpolations, in particular discontinuous pressures. How-
ever, the concepts used to obtain it can be applied to other situations. In particular, we consider
in this section the application to the interaction between two subdomains, in both of which the
Stokes problem is solved.

The motivation to use the stabilization strategy in interaction problems arises from the fact
that if the subdomains are discretized independently, the pressure degrees of freedom at the
interface will be doubled and, therefore, pressure will be discontinuous at this interface. If a
method that is stable for continuous pressures is applied (either coming from a stabilized for-
mulation or from the use of inf-sup stable velocity-pressure pairs) there is no guarantee that this
stability will be preserved at the interface. The use of the approach described in the previous
section, known to be stable for arbitrary pressure interpolations, may thus be beneficial.

7.4.2 Continuous problem

The final discrete problem to be proposed can be derived directly using the ideas presented in
the previous section and extended to the case in which the physical properties, and in particular
the viscosityµ, are discontinuous. However, additional insight on the method is gained if a
more “physical” approach is used when two subdomains interact.

Let us consider again the situation of Fig. 7.1, now for simplicity with ΓN = ∅. For our pur-
poses, instead of using a three-field hybrid formulation, using the primal unknown, its traces
and its fluxes as variables, it is enough to consider the more common approach of using only
the fluxes onΓ as unknowns, and enforcing continuity weakly. The boundaryvalue problem
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to be solved consists in finding[u1, p1], [u2, p2] andλ such that:

−µ1∆u1 +∇p1 = ρf in Ω1,

∇ · u1 = 0 in Ω1,

u1 = 0 onΓD,1 = ∂Ω1 ∩ ∂Ω,
u1 = u2 onΓ,

λ = −p1n1 + µ1n1 · ∇u1 onΓ,

−µ2∆u2 +∇p2 = ρf in Ω2,

∇ · u2 = 0 in Ω2,

u2 = 0 onΓD,2 = ∂Ω2 ∩ ∂Ω,
−p2n2 + µ2n2 · ∇u2 = −λ onΓ.

These equations have been written in the order they can be solved in an iteration-by-subdomain
strategy. The first four equations can be solved for[u1, p1] if u2 is assumed to be known on
Γ, the flux on this surface can be then computed and used to solvethe problem onΩ2 with
Neumann conditions onΓ.

The variational form of the continuous problem consists in finding [u1, p1], [u2, p2] andλ
such that

B1([u1, p1], [v1, q1])− 〈λ, v1〉Γ = L1([v1, q1]) ∀[v1, q1],

B2([u2, p2], [v2, q2]) + 〈λ, v2〉Γ = L2([v2, q2]) ∀[v2, q2],

〈µ,u1 − u2〉Γ = 0 ∀µ,

where the bilinear and linear forms involved are the same as in the previous section. The spaces
of unknowns and test functions are also the same as those introduced previously.

When applying the Galerkin method to discretize this problem there are at least two issues
that have to be taken into account:

• The space forλ has to be properly chosen in order to obtain a numerically stable prob-
lem. There are compatibility conditions between the interpolation of this unknown and
the interpolation ofu andp that have to be met to satisfy the inf-sup conditions associ-
ated to the problem.

• It is preferable to computeλh weaklyrather than fromλ = −p1n1 + µ1n1 · ∇u1.

However, it is not our purpose to use the classical Galerkin method, but to extend the formula-
tion of Section 7.3.

7.4.3 Finite element approximation

LetB1,stab,L1,stab,B2,stab andL2,stab be the stabilized bilinear and linear forms corresponding
to each subdomainwithoutconsidering the boundary conditions onΓ, which act as Neumann
conditions on each subdomain. These forms are given by (7.37) and (7.38).
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If ti is the traction onΓ to be applied toΩi, the discrete variational equation on each
subdomain reads:

Bi,stab([uh, ph], [vh, qh])−
δ

µi

∑

EΓ

〈Ti([uh, ph]), T ∗
i ([vh, qh])〉EΓ

= Li,stab([vh, qh]) + 〈ti, vh〉Γ −
δ

µi

∑

EΓ

〈ti, T ∗
i ([vh, qh])〉EΓ

, (7.39)

which holds for all test functions[vh, qh] with support onΩi, i = 1, 2. The edgesEΓ are now
those contained inΓ.

Let us obtain which is the tractionti that results from the formulation developed in the
previous section. Note thatt1 = −λ2 and t2 = −λ1. Recall that we have neglected the
subscales in the element interiors (and evaluated on the boundary) when computing the fluxes
λ̃.

If the continuity of fluxes (7.28) is now imposed we find

γ̃|EΓ
= − δ

µ1 + µ2
[[ T ([uh, ph]) ]]EΓ

.

Using the basic decomposition assumed for the total fluxes and (7.27) we obtain, on each edge
EΓ,

λi = Ti([uh, ph]) + λ̃i = Ti([uh, ph]) +
µi

δ
γ̃.

Combining the last two expressions yields, on each edgeEΓ,

λi = Ti([uh, ph])−
µi

µ1 + µ2

[[ T ([uh, ph]) ]] . (7.40)

This expression for the traction associated to the formulation we propose has two interesting
features:

• It automaticallysatisfiesλ1 + λ2 = 0.

• Instead of the tractionTi([uh, ph]) associated to the standard Galerkin method,λi is a
weighted averageof T1([uh, ph]) andT2([uh, ph]), the weighting coefficients depending
on the viscosity on each subdomain. Ifi = 1, for example, we see that

λ1 =
µ2

µ1 + µ2
T1([uh, ph]) +

µ1

µ1 + µ2
(−T2([uh, ph])),

where−T2([uh, ph]) can be understood as the traction associated to[uh, ph] in Ω2 but
computed with the normaln1.

It is worth to remark that (7.40) can be used to compute the fluxes in domain interaction
problems as an alternative to the classical fluxes of the Galerkin method and also to the weak
computation of these fluxes. It can be used not only in the caseof meshes that match onΓ,
but also in domain decomposition methods with overlapping (see [72]) or when fluxes are
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needed on meshes that do not match the boundaries (as in the problems described in Chapter 4
and Chapter 5). Likewise, they can be modified to accommodateparticular conditions that a
certain application requires, such as conservation of angular momentum (using for example
the methodology proposed in [71]).

The formulation we propose can finally be obtained adding up (7.39) for i = 1 andi =
2. Writing explicitly the expressions ofT ([uh, ph]) andT ∗([vh, qh]), it consists of finding
[uh, ph], defined on the whole computational domainΩ, such that

B1,stab([uh, ph], [vh, qh]) +B2,stab([uh, ph], [vh, qh])

−
∑

EΓ

δ

µ1 + µ2
〈 [[ µ∂nuh − phn ]] , [[ µ∂nvh + qhn ]] 〉EΓ

= L1,stab([vh, qh]) + L2,stab([vh, qh]),

(7.41)

for all test functions[vh, qh]. It is observed that the term involving integrals overΓ penalizes
the jump of the (pseudo-) tractions along this interface. Wewill observe this effect in the
numerical examples.

7.4.4 Matrix structure

In order to write the matrix structure of problem (7.41), consider the splitting of the finite
element velocity

uh = uh,1 + uh,Γ + uh,2,

whereuh,i refers to the component associated to the degrees of freedominternal to Ωi, and
vanishing onΓ, whereasuh,Γ refers precisely to the degrees of freedom associated to the
interacting boundary. This splitting in the one dimensional case and using linear elements is
represented in Fig. 7.2. For the pressure,ph,i denotes simply its restriction toΩi.

Figure 7.2: Splitting of the unknown
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Having introduced this splitting, the matrix structure of the problem will be:





A1,1 A1,Γ + A′
1,Γ A′′

1,2

AΓ,1 + A′
Γ,1 AΓ,Γ + A′

Γ,Γ AΓ,2 + A′
Γ,2

A′′
2,1 A2,Γ + A′

2,Γ A2,2









U1

UΓ

U2



 =





F1

FΓ

F2



 . (7.42)

In this equation,Ui are arrays of degrees of freedom associated touh,i andph,i, andUΓ the
degrees of freedom associated touh,Γ. The terms from where the different submatrices and
components of the right-hand-side appear are obvious.

There are two remarks to be made referred to the algebraic problem (7.42):

• Submatrices with a prime and a double prime are due to thenew interaction termin
(7.41), which would not appear using a classical Gakerkin method for the domain in-
teraction problem (even if stabilized finite element formulations are used within each
subdomain).

• A′′
1,2 andA′′

2,1 appearbecause of the jump of the derivativesof the velocities. For ex-
ample, there are test functions inΩ1 which vanish onΓ but whose derivative does not
vanish (in the case of Lagrangian interpolations, those arethe test functions associated
to the nodes adjacent toΓ). Thus, the jump of these derivatives is not zero and has to be
multiplied against the jump of the velocity derivatives, which involves degrees of free-
dom ofuh interior to Ω2 (again, in the case of Lagrangian interpolations, those arethe
velocity degrees of freedom associated to the nodes adjacent to Γ in the interior ofΩ2).

7.4.5 Iteration-by-subdomain strategy

The most popular way to deal with a problem involving the interaction of two subdomains is
by using an iteration-by-subdomain strategy, that is to say, an iterative algorithm in which the
unknowns are computed in one of the subdomains assuming the data from the other known,
and proceeding iteratively until convergence.

To set possible iteration-by-subdomain schemes, it is convenient to consider first the matrix
version of the problem. The simplest way to solve (7.42) is tosolve forU1 first and forUΓ and
U2 in a coupled way. Denoting with a superscript the iteration counter, a solve of this iterative
algorithm would be:

A1,1U
(i)
1 = F1 − (A1,Γ + A′

1,Γ)U
(i−1)
Γ −A′′

1,2U
(i−1)
2 , (7.43)

[

AΓ,Γ + A′
Γ,Γ AΓ,2 + A′

Γ,2

A2,Γ + A′
2,Γ A2,2

]

[

U
(i)
Γ

U
(i)
2

]

=

[

FΓ − (AΓ,1 + A′
Γ,1)U

(i)
1

F2 − A′′
2,1U

(i)
1

]

. (7.44)

This scheme would in fact be of Gauss-Seidel type, since the value ofU1 just computed in
the first step of the iteration is used in the second. A Jacobi-type scheme would be obtained
replacingU (i)

1 byU (i−1)
1 in the second step.

Apart from the straightforward scheme (7.43)-(7.44), there are extensions and/or modifi-
cations that are convenient to use in the applications:
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• Under-relaxation. Numerical experiments show that it is crucial to use under-relaxation.
A simple scheme of the form

U
(i)
k ← αU

(i)
k + (1− α)U (i−1)

k (7.45)

turns out to be very efficient. The values of the relaxation parameterα that we use are
indicated in the numerical examples.

• Other iterative schemes, like GMRES. In principle, this type of schemes can be applied
directly to (7.42) with an adequate choice of the preconditionerP . The key issue is
to design this preconditioner in a modular way, that is to say, in such a manner that
it requires only information of the domain whose unknowns are being computed. Our
choice for the preconditionerP is:

P =





A1,1 A1,Γ + A′
1,Γ 0

AΓ,1 + A′
Γ,1 AΓ,Γ + A′

Γ,Γ 0
0 0 A22



 ,

which leads to the following preconditioned system:

AP−1PU = F (7.46)

The only system of equations to be solved in the GMRES iteration is the one associated
to P−1, in which we can separate terms associated to the problem in domain 1 from
terms associated to the problem in domain 2 (see also [9, 10]).
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The iterative scheme is better described using the algebraic form of the problem, but it
is also enlightening to write the discrete variational version. The problem corresponding to
(7.43)-(7.44) applied to (7.41) is:

B1,stab([u
(i)
h,1, p

(i)
h,1], [vh,1, qh,1])

= L1,stab([vh,1, qh,1]−B1,stab([u
(i−1)
h,Γ , 0], [vh,1, qh,1]))

+
∑

EΓ

δ

µ1 + µ2

〈

µ1∂n1
(u

(i)
h,1 + u

(i−1)
h,Γ )− p(i)h,1n1, µ1∂n1

vh,1 + qh,1n1

〉

EΓ

+
∑

EΓ

δ

µ1 + µ2

〈

µ2∂n2
(u

(i−1)
h,Γ + u

(i−1)
h,2 )− p(i−1)

h,2 n2, µ1∂n1
vh,1 + qh,1n1

〉

EΓ

,

B2,stab([u
(i)
h,Γ + u

(i)
h,2, p

(i)
h,2], [vh,Γ + vh,2, qh,2])

= L2,stab([vh,Γ + vh,2, qh,2])− B2,stab([u
(i)
h,1, p

(i)
h,1], [vh,Γ + vh,2, qh,2])

+
∑

EΓ

δ

µ1 + µ2

〈

µ1∂n1
(u

(i)
h,1 + u

(i)
h,Γ)− p

(i)
h,1n1, µ1∂n1

vh,Γ

〉

EΓ

+
∑

EΓ

δ

µ1 + µ2

〈

µ2∂n2
(u

(i)
h,Γ + u

(i)
h,2)− p

(i)
h,2n2, µ1∂n1

vh,Γ

〉

EΓ

+
∑

EΓ

δ

µ1 + µ2

〈

µ1∂n1
(u

(i)
h,1 + u

(i)
h,Γ)− p

(i)
h,1n1, µ2∂n2

(vh,Γ + vh,2) + qh,2n2

〉

EΓ

+
∑

EΓ

δ

µ1 + µ2

〈

µ2∂n2
(u

(i)
h,Γ + u

(i)
h,2)− p

(i)
h,2n2, µ2∂n2

(vh,Γ + vh,2) + qh,2n2

〉

EΓ

.

7.5 Fluid-structure interaction

In the previous section we have considered the interaction between two subdomains in both
of which the Stokes problem is solved. In this sense, the situation can be considered as a
homogeneousinteraction. The problem to be solved in each subdomain is (7.39) and, since
these equations are dimensionally homogeneous, they can beadded up fori = 1, 2 to obtain
(7.41). In this section however we are interested in the interaction between afluid and asolid,
and thus the problem can be termed asheterogeneous. In this case, it is better to work directly
with (7.39). The purpose of what follows is to apply the ideasintroduced previously to fluid-
structure interaction (FSI) problems and to design an iteration-by-subdomain strategy for this
particular problem.

7.5.1 Continuous problem

The nature of the problem to be considered is intrinsically transient (although it is obviously
possible that a steady-state is reached). Let[0, T ] be the time interval of analysis. In all what
follows we will use subscriptF to refer to the fluid and subscriptS to refer to the solid (and not
subscripts 1 and 2, as in the previous section). In particular,ΩF andΩS will be the subdomains
occupied by the fluid and the solid, respectively, andΓ = ∂Ω̄F ∩∂Ω̄S their common boundary.
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If d : [0, T ]× ΩS −→ R
d is the displacement field in the solid, the problem to be solved

consists in findingd, u andp such that

ρS∂
2
ttd−∇ · σS = ρSf in ΩS,

d = 0 on ΓDS
,

nS · σS = tS on ΓNS
,

ρF∂tu− µ∆u+∇p = ρFf in ΩF ,

∇ · u = 0 in ΩF ,

u = 0 on ΓDN
,

−pnF + µnF · ∇u = tF on ΓNF
,

nS · σS + (−pnF + µnF · ∇u) = 0 on Γ,

∂td− u = 0 on Γ,

together with initial conditions foru, d and∂td in the domain where they are defined. A linear
elastic behavior will be assumed for the solid, so that the stress tensor there is given by

σS = σS(d) = C : ∇Sd,

whereC is the constitutive tensor and∇Sd the symmetrical gradient ofd.
To simplify the exposition, we assume that the solid isnot incompressible, so that the

problem can be approximated without the need to introduce the volumetric stress as a new
variable (the extension to this situation would be straightforward and, in fact, we use it in the
numerical examples). Therefore, the standard Galerkin method can be used to approximate the
governing equations for the solid.

The variational counterpart of the FSI problem consists in findingd, u, p and the interac-
tion stressλ such that

ρS(∂
2
ttd, e)ΩS

+BS(d, e)− 〈λ, e〉Γ = LS(e) + 〈tS, e〉ΓNS
∀e ∈ W,

ρF (∂tu, v)ΩF
+BF ([u, p], [v, q]) + 〈λ, v〉Γ = LF ([v, q]) + 〈tF , v〉ΓNF

∀[v, q] ∈ V ×Q,
〈µ, ∂td− u〉Γ = 0 ∀µ ∈ F,

where

W = {e ∈ H1(ΩS)
d | e = 0 on ΓDS

},
BS(d, e) = (C : ∇Sd,∇Se)ΩS

,

LS(e) = ρS〈f , e〉ΩS
,

and for each timet ∈ (0, T ) the unknowns satisfyd ∈ W , [u, p] ∈ V × Q, λ ∈ F (with the
adequate regularity in time), with the appropriate initialconditions att = 0.

7.5.2 Finite element approximation and interaction stresses

Once finite element spacesWh ⊂W ,V h×Qh ⊂ V ×Q are chosen, the crucial issue to extend
the formulation of the previous section to the present FSI problem in to obtain the interaction
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stresses resulting from the introduction of subscales on the element boundaries contained inΓ.
Let TS(e) = nS ·σS(e). The velocity subscales̃γF and the displacement subscalesγ̃S can be
obtained from condition (7.28), which now can be written as follows:

0 = TF ([u, p]) + TS(d)
≈ TF ([uh, ph]) + TF ([ũ, 0]) + TS(dh) + TS(d̃), (7.47)

where d̃ are the displacement subscales. Neglecting the subscales in the element interiors
as before,TF ([ũ, 0]) can be approximated byµ

δ
γ̃F . The problem is how to approximate

TS(d̃). Approximating derivatives using finite differences will yield an expression of the form
TS(d̃) ≈ 1

δ
Gγ̃S for a certain matrixG depending on the physical parameters contained in the

constitutive tensorC. For our reasoning it is enough to approximateTS(d̃) ≈ G∗

δ
γ̃S,G∗ being

a scalar coefficient. Altogether, (7.47) yields, on each edge ofΓ,

G∗γ̃S + µγ̃F = −δ[TF ([uh, ph]) + TS(dh)]. (7.48)

The compatibility between the velocity in the fluid and the displacement in the solid implies
also the compatibility in the corresponding subscales, that is to say,γ̃F = ∂tγ̃S.

In FSI problems of interest, we may assume that the fluid and solid physical properties are
such that

G∗|γ̃S| ≫ µ|∂tγ̃S|,
which using (7.48) implies that

γ̃S ≈ −
δ

G∗
[TF ([uh, ph]) + TS(dh)], γ̃F ≈ 0,

and, consequently,

λS = TS(dh) +
G∗

δ
γ̃S ≈ −TF ([uh, ph]), (7.49)

λF = TF ([uh, ph]) + λ̃F ≈ TF ([uh, ph]). (7.50)

These approximations have an interesting consequence. LettSF = −λF = −TF ([uh, ph])
be the stressexerted on the solidbecause of the interaction with the fluid, andtFS = −λS =
TF ([uh, ph]) the stressexerted on the fluidbecause of the interaction with the solid. Suppose an
iterative strategy is used to solve the fluid-solid coupling(within each time step, for example).
If the solid is computed with a Neumann-type condition onΓ, tSF = −TF ([uh, ph]) has to be
used as traction, which corresponds to the common approach:stresses computed in the fluid
using the finite element solution are transmitted to the solid. In the fluid a Dirichlet boundary
condition onΓ can be used once the displacements in the solid have been computed. However,
it is not possibleto use a Neumann condition onΓ when solving in the fluid domain, since the
traction to be used istFS = TF ([uh, ph]), which depends only on the velocities. Thus, the fluid
would not “feel” the action exerted by the solid. This agreeswith the well known fact that in
FSI problems if a Dirichlet-Neumann coupling is used, Neumann boundary conditions have to
be applied always to the solid surface, not to the fluid.

A similar situation is encountered in homogeneous interaction problems if one of the sub-
domains is much “stiffer” than the other. From (7.40) it is observed that if, for example,
µ1 ≫ µ2 thenλ1 = −λ2 ≈ −T2([uh, ph]).
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7.5.3 Fully discrete problem and iterative coupling

Suppose to simplify that time is discretized using a backward-difference formula, that we de-
note byDt to approximate∂t andDtt to approximate∂2tt. Let δt be the time step size of a uni-
form partition of[0, T ]. Consider that the unknowns are computed at time levels0, 1, 2, ..., n−1
and we want to compute them at timetn = nδt. The fully discrete version of the problem cor-
responding to (7.39) is: finddn

h ∈ Wh, un
h ∈ Vh andpnh ∈ Qh such that

ρS(Dttd
n
h, eh)ΩS

+BS(d
n
h, eh)−

δ

G∗

∑

EΓ

〈TS(dn
h), TS(eh)〉EΓ

= LS(eh) + 〈tSF , eh〉Γ −
δ

G∗

∑

EΓ

〈tSF , TS(eh)〉EΓ
, (7.51)

ρF (Dtu
n
h, vh)ΩF

+BF,stab([u
n
h, p

n
h], [vh, qh])−

δ

µ

∑

EΓ

〈TF ([un
h, p

n
h]), T ∗

F ([vh, qh])〉EΓ

= LF,stab([vh, qh]) + 〈tFS, vh〉Γ −
δ

µ

∑

EΓ

〈tFS, T ∗
F ([vh, qh])〉EΓ

, (7.52)

which hold for alleh ∈ Wh, [vh, qh] ∈ Vh × Qh. This is themonolithicfluid-structure system
that we propose.

Of particular interest is the design of a simple iterative coupling between the solid and
the fluid using approximations (7.49)-(7.50). Let us denote byfn,i an approximation to an
unknownf at time stepn and iterationi, with the initializationfn,0 = fn−1. Suppose that
the solid is solved first, with[un,i−1

h , pn,i−1
h ] known. Then,tSF = −TF ([un,i−1

h , pn,i−1
h ]) can

be used in (7.51) to computedn,i
h . When solving for the fluid, the traction to be used must be

tFS = TF ([un,i−1
h , pn,i−1

h ]), sinceonly in this case one can guarantee thattSF + tFS = 0 at
each iteration. Using this, and noting thatvh|Γ = 0 if Dirichlet conditions are used to solve in
the fluid domain, the algorithm reads

ρS(Dttd
n,i
h , eh)ΩS

+BS(d
n,i
h , eh)−

δ

G∗

∑

EΓ

〈

TS(dn,i
h ), TS(eh)

〉

EΓ

= LS(eh)−
〈

TF ([un,i−1
h , pn,i−1

h ]), eh

〉

Γ
+

δ

G∗

∑

EΓ

〈

TF ([un,i−1
h , pn,i−1

h ]), TS(eh)
〉

EΓ
,

ρF (Dtu
n,i
h , vh)ΩF

+BF,stab([u
n,i
h , pn,ih ], [vh, qh])−

δ

µ

∑

EΓ

〈

TF ([un,i
h , pn,ih ]), T ∗

F ([vh, qh])
〉

EΓ

= LF,stab([vh, qh])−
δ

µ

∑

EΓ

〈

TF ([un,i−1
h , pn,i−1

h ]), T ∗
F ([vh, qh])

〉

EΓ
,

(7.53)
with the essential conditionun,i

h |Γ = Dtd
n,i
h |Γ for the second equation. It is observed that:

• The second term in the right-hand-side (RHS) of the first equation enforces the conti-
nuity of tractions between the solid and the fluid when testedby the displacement test
function.
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• The third term in the left-hand-side (LHS) and the third termin the RHS of the first equa-
tion enforce further this continuity, now by testing the tractions withTS(eh). However,
these terms are multiplied byδ

G∗
, which is very small when realistic physical properties

are used. Thus, their effect is in practice negligible.

• The crucial term is the second one in the RHS of the second equation. If it were evalu-
ated at iterationi, it would cancel with the third term in the LHS, which would infact
lead to the simplest fluid-structure iterative algorithm. However, evaluating it ati − 1
allows us to guarantee thattSF + tFS = 0 at each iteration, as it has been said, and
also acts as a penalization of the jump of fluid tractions between iterations, given by
TF ([un,i

h , pn,ih ])−TF ([un,i−1
h , pn,i−1

h ]). The bottom line of our formulation applied to FSI
iterative algorithms can be summarized by these terms, which cana posterioribe under-
stood as a modification of the simplest iterative scheme (more sophisticated algorithms
could also be used). Numerical experiments show that the improvement in convergence
observed well deserves their derivation.

7.6 Numerical examples

In this section we present some numerical examples corresponding to the formulation pre-
sented in Sections 7.4 and 7.5. The ability of the method to use arbitrary discontinuous pressure
interpolations for the pressure was already demonstrated in Chapter 6.

In all cases we will use the simplest choiceP̃ = I in (7.38), whereI is the identity (at least
when applied to the residual of the finite element solution).This corresponds the most popular
stabilized finite element method for the Stokes problem. Allthe examples have been run using
continuousP1 elements (linear triangles in 2D) for all variables. The algorithmic constantC1

in (7.33) has been set toC1 = 4. When approximating the elasticity equations,G∗ = E, the
Young modulus, has been chosen in (7.51).

7.6.1 Two examples of domain interaction

In this subsection we present the numerical results for two examples which illustrate the ideas
presented in Section 7.4, one of a solid-solid interaction and another of a fluid-fluid interaction.

The first example we consider consists of two incompressibleelastic bodies, which we
will model by means of the Stokes equations, nowµ being the shear modulus. The problem
setting and subdomains can be seen in Fig. 7.3. Both bodies are incompressible (Poisson ratio
ν = 0.5), but the body on the top is 10 times stiffer (Young modulusE = 3) than the one below
(Young modulusE = 0.3). The unstructured triangular mesh consisting of 1990 triangles used
to solve the problem can be seen in Fig. 7.4.

The displacement and pressure fields obtained are shown in Fig. 7.5. We also depict the
normal tractions on the solid body interface, which coincide with the componentσ22 of the
stress tensor, in Fig. 7.6. In can be observed that using subscales reduces the jump in tractions
between both solid bodies, but the solution is stable and very similar whether subscales on the
boundaries are used or not.

In the second example we will consider the stationary cavityflow example for the Stokes
problem. The fluid domain is given byΩ = [0, 1] × [0, 1]. All the boundaries are set to null
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Figure 7.3: Incompressible elastic bodies. Problem setting.
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Figure 7.4: Incompressible elastic bodies. Finite elementmesh.
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Figure 7.5: Incompressible elastic bodies. Displacement and pressure fields.
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Figure 7.6: Incompressible elastic bodies. Normal tractions along the interface for the upper
(red) and the lower (blue) solid bodies. Left: without subscales. Right: with subscales,δ0 = 0.5
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velocity except for the one corresponding toy = 1, in which we impose a horizontal velocity
ux = 1 and a vertical velocityuy = 0. The fluid viscosity is set toν = 1. A finite element
mesh of 7200 structured triangles (h = 0.16) has been used.

We now divide the fluid domain in two: the first subdomain corresponds tox < 0.1, while
the second subdomain corresponds tox > 0.1. We solve this numerical example by means of
a domain decomposition method and the GMRES strategy described in Subsection 7.4.5.

The velocity and pressure fields for the Stokes cavity problem are depicted in Fig. 7.7.
Since the fluid density and viscosity are the same in both subdomains, there should be no pres-
sure jump in the boundary separating them. However, a pressure jump appears in the numerical
solution which is due to the fact that extra pressure degreesof freedom have been added to the
nodes belonging to the boundary. This pressure jump can be seen in Fig. 7.8. We can see that
using subscales on the element boundaries helps reduce the pressure jump, and as a conse-
quence the pressure field gets closer to the one we would obtain if a monolithic approach was
used, in which the pressure field would be continuous.

Figure 7.7: Velocity and pressure fields for the Stokes cavity problem

7.6.2 Added-mass effect

In this section we present some numerical results which illustrate the behavior of the subscales
on the element boundaries as strategy to alleviate the addedmass effect. In order to do so, we
will use the example proposed in [24], in which we will couplethe 2D Stokes equations with
the linear elasticity equations.
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Figure 7.8: Pressure jump atx = 0.1.

The fluid domain is given byΩF = [0, 5]× [0, 0.5] and the solid domain byΩs = [0, 5]×
[0.5, 0.6]. Initially, both the fluid and the structure are at rest. The boundary conditions are as
follows. In the structure domain, we impose null displacement atx = 0 andx = 5, while zero
traction is applied ony = 0.6. For the fluid, we impose slip boundary conditions aty = 0.0,
and an over-pressure of104 during5 × 10−3 time units. For the coupling between fluid and
structure, we also impose slip boundary conditions, that is:

• Velocity continuity is imposed only in the direction normalto the fluid-structure inter-
face.

• We impose traction continuity in the direction normal to theinterface, but we do not
consider tangent tractions.

The spatial discretization is carried out by means of a finiteelement mesh, its size being
h = 0.1 (see Fig. 7.9), and the time step is set toδt = 10−4. The backward Euler scheme is
used for the integration of the transient Stokes equations in the fluid, and the explicit second
order Newmark method is chosen for the time integration of the linear elasticity equations in
the solid.

The main purpose of this numerical example is to compare the behavior of the numerical
scheme with or without considering the contribution of the subscales on the element bound-
aries, and in particular regarding the added mass effect.

We will firstly consider no subscales on the element boundaries and a Dirichlet–Neumann
coupling strategy: we apply Dirichlet boundary conditionsto the fluid domain and Neumann
boundary conditions to the solid one. The iterative scheme we use is (7.53), considering the
possibility to iterate within each time step to converge to the solution of the monolithic problem
or without iterations. In this last case, corresponding to the so called staggered schemes (or also
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Figure 7.9: Finite element mesh

“loose coupling”), there is an error of the order of the time step size with respect to the solution
of the monolithic problem. In (7.53) we will also consider the possibility of removing the terms
coming from the subscales on the boundaries.

Initially, we consider a fluid densityρF = 1.1 and a viscosityµ = 0.035. For the solid
we take a densityρS = 1.2, a Young modulusE = 3 × 108 and the Poisson ratioν = 0.0.
If we consider an explicit coupling (we do not iterate until convergence at each time step) the
numerical scheme explodes, and we obtain an unstable numerical solution.We now consider a
coupling strategy which involves convergence at each time step, in particular we impose that
the relative error between the solution obtained at iteration i and iterationi + 1 is less than
10−3. Due to the added mass effect, this simple Dirichlet-Neumann scheme does not converge,
and we need to use some additional tool in order to achieve thesolution of the monolithic
problem. Amongst the various existing methods, we can use a relaxation scheme. We have
found effective to take a relaxation parameterα = 0.3 in (7.45). Fig. 7.10 shows the vertical
displacement at a solid point placed in the center of the solid domain. Fig. 7.11 shows the
velocity and pressure fluid fields att = 75×10−4. The mean number of iterations at each time
step was 26 for this numerical scheme.

Let us now consider the use of the subscales on the element boundaries, for which we will
takeδ0 = 0.5×10−3. If we try to use an explicit coupling scheme, the method fails again due to
the added-mass effect, and we obtain an unstable solution. However, if we iterate at each time
step and we converge to the monolithic solution, we obtain the solution depicted in Fig. 7.12,
which is exactly equal to the one obtained without using subscales on the element bound-
aries, since the additional terms due to the use of these subscales vanish when convergence is
achieved. However, we did not need to use relaxation in this case, and the mean number of
iterations was substantially reduced to 5, with the subsequent reduction of CPU time required
to perform the computations.

Let us now consider a less demanding situation, in which the solid density isρS = 20. In
this case, theρS/ρF ratio is around20 too. This means that the added mass effect is not as
severe as it was in the previous example, and that there mightbe no need to use an iterative
scheme. We now test the explicit scheme with and without subscales on the element bound-
aries. In the first case we takeδ0 = 1 × 10−3. Fig. 7.13 shows the results obtained with both
schemes. We can see that the scheme becomes unstable after a few time steps if no subscales
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Figure 7.10: Results for the iterative scheme, no subscales, relaxation parameterα = 0.3
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Figure 7.11: Velocity and pressure fluid fields att = 75× 10−4
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Figure 7.12: Results for the iterative scheme with subscales, no relaxation.

are used, but it remains stable, even for the explicit scheme, if the strategy we propose is used.

7.7 Conclusions

In this chapter we have motivated the introduction of element boundary terms in the finite
element approximation the Stokes and the linear elasticityproblems. The starting point has
been the splitting of the unknowns of the problem into a conforming part and a discontinuous
one, introducing a hybrid formulation only for the latter (Section 7.2). Although this approach
could serve for different purposes, in Section 7.3 we propose a finite element approximation in
which the discontinuous component of the solution, its traces and fluxes are approximated by
expressions that involve only the conforming part of the solution. The resulting formulation is
a stabilized finite element method for the Stokes problem which allows arbitrary interpolations
of velocities and pressure. Particular emphasis has been put here on the treatment of Neumann-
type boundary conditions.

The same ideas have been applied to the homogeneous interaction between two subdo-
mains (Section 7.4). In this case, the benefit of the boundaryterms is a stronger enforcement
of the continuity of fluxes between subdomains. The matrix structure of the resulting system
has been described and iterative schemes to be used in an iteration-by-subdomain environment
have been proposed.

The fluid structure interaction problem has then been treated (Section 7.5). The extension
of the previous ideas to this case has led to a modification of what can be considered a classical
solid-fluid iterative coupling. The boundary terms introduced, which cancel when convergence
is achieved, would hardly be motivated from a purely algebraic point of view.

All our predictions have been stated based on physical reasoning, without numerical anal-
ysis. Numerical experiments have confirmed the theoreticalpredictions. In particular, a better
enforcement of the continuity of fluxes is found in homogeneous domain interaction problems
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Figure 7.13: Comparison between results with and without using subscales in the case of a
ratioρS/ρF around 20 and an explicit scheme.

and, what is probably the most salient result of this work, convergence of solid-fluid iterative
coupling algorithms is greatly improved by the terms we suggest to introduce.



Chapter 8

FELAP, a Finite Element Linear Algebra
Package

In this chapter we presentFELAP, a linear system of equations solver package for problems
arising from finite element analysis. The main features of the package are its capability to
work with symmetric and unsymmetric systems of equations, direct and iterative solvers and
various renumbering techniques. Performance is enhanced by considering the finite element
mesh graph instead of the matrix graph, which allows to perform highly efficient block com-
putations.

8.1 Introduction

When performing numerical simulations with the finite element method, one invariably ends
up with the need of solving a linear system of equations. Mostfinite element codes use linear
system solvers developed by other groups and for other purposes. In most cases, this solvers
are designed to cope with the most general kind of systems of equations, which means that they
do not take advantage of the particularities of the systems of equations arising from the finite
element analysis. This is why we aim to develop a solver package specially designed to solve
finite element problems, which we will callFELAP(Finite Element Linear Algebra Package).
This chapter departs significantly from the scope of the restof the thesis, and deals mainly
with the algorithmic and implementation aspects of the solver library. For completeness, the
detailed description of several basic algorithms is also included.

There are many different strategies to deal with the solution of linear system of equations.
The two main families of linear systems solvers aredirect anditerativesolvers.

In direct solvers the system matrix is factorized into an upper and a lower matrix which
are easily invertible. The main feature of direct solvers isthat the solution of the linear system
of equations is always achieved. However, the memory and CPUtime requirements increase
very rapidly with the size of the linear system of equations,which makes them inappropriate
for solving the very large systems of equations arising in finite element analysis. The earlier
strategies to deal with sparse linear systems were based on the skyline storage, in which all
the entries of the matrix comprised inside the row bandwidthare stored. Currently algorithms
based on compact sparse storage schemes are the most commonly used. These algorithms are
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basically composed of four steps [97]:

• Renumbering step, obtain an ordering which minimizes fill-in

• Symbolic factorization, compute fill-in pattern and memoryrequirements

• Factorization, compute the factors of the original matrix

• Obtain the system solution

The most time consuming step is the factorization of the matrix, but the two previous steps are
essential in order to minimize the number of operations needed to compute the factors. Review
papers on direct sparse solvers can be found in [46, 57, 67]. Some of the most popular direct
sparse solvers can be found in [42, 124, 1].

Although state of the art direct solvers are very efficientlycoded and are able to solve
relatively large systems of equations, the inconvenient ofdirect solvers is still the large amount
of time and memory required to obtain the solution if very large systems of equations are
solved. This is why iterative methods are needed. The iterative algorithm is composed of two
main ingredients:

• The driver, which successively reduces the error between the approximated solution and
the real solution.

• The preconditioner, which changes the system of equations to be solved into a new
equivalent system which is easier for the iterative algorithm to solve.

Drivers can be divided into non-Krylov methods (see [132, 140]) and Krylov methods. Krylov
methods are the most powerful and the ones usually used to solve large systems of equations.
Amongst them we can highlight the Conjugate Gradient method[88, 68], the GMRES method
[134] and the BICGSTAB method [131].

There are two families of preconditioners which have received major attention in the past
years: preconditioners deriving from the Algebraic Multigrid method (AMG) and incom-
plete factorization preconditioners (ILU). AMG was originally developed independently from
Krylov methods [21], but it was later reinterpreted as a preconditioner method and used to-
gether with Krylov methods, see [19] and the cites therein. After the development of AMG,
multigrid ideas were introduced in incomplete factorization preconditioners by means of re-
ordering algorithms which lead to multilevel ILU (MILU) preconditioners [13, 96, 122, 130].
A comparison between AMG and MILU methods can be found in [110]. In our solver pack-
age we opt for a multilevel ILU strategy, which benefits from the good scalability of AMG
methods and from the versatility of ILU strategies.

The main design characteristics of this solver package are:

• The solver will be designed in order to be able to cope with large systems of equations.
To this end storage of matrices will be done inCS format (Compact Sparse), and both
direct and iterative methods to solve linear systems of equations will be included in the
package.
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• The graph of the sparse matrix associated to the linear system of equations is associated
to the graph of the finite element mesh. The solver will work byblocks: if we denote
by ndof the number of degrees of freedom associated to each node of the mesh, then
each item of the mesh graph will correspond to a block of dimensionndof× ndof in the
matrix of the system of equations. This has three major advantages:

1. The number of non-numerical operations due to theCSstorage is drastically re-
duced in vectorial problems. For example, for a 3D stationary Stokes problems,
the number of non-numerical operations is reduced by 16 (4× 4).

2. Operations are computed by blocks, this allows to improvethe performance of each
single floating point operation.

3. There is a clear gain in the memory required to store the indices of the CS storage.
Again, for a 3D Stokes problem, the amount of memory is reduced by 16.

• Matrices arising from finite element analysis, although notalways symmetric, are always
structurally symmetric. We take advantage of this fact and we store separately the lower
triangular part of the matrix, the diagonal (or block diagonal), and the upper triangular
part. In particular, we store the upper part of the matrix by rows and the lower part by
columns. This has three major advantages:

1. Since the matrix isstructurally symmetricand we store the upper part by rows and
the lower part by columns, the graph of both halves coincides. This allows to save
half of the memory required for the matrix graph.

2. This approach leads toILUC preconditioners (Incomplete LU Crout) in iterative
solvers, which are much more efficient than classicalILUT preconditioners (In-
complete LU Tolerance) associated to theCSR(Compact Sparse Row) storage.

3. ILUC preconditioners (orLUC factorizations in the case of direct solvers) do the
factorization of the matrix in such a way that the Schur complement of a block of
the matrix is very easily computed with very little modification of the precondi-
tioner (factorizer) subroutine.

• We aim for our iterative solvers to have a computational costwhich increases as close
as possible to linearly with the number of unknowns of the system of equations to be
solved.

In the following sections we present the strategy followed to achieve these objectives.

8.2 The general strategy

One of the requirements FELAP has to fulfill is being as flexible as possible so that it can
be used to manage the several systems of equations which may have to be solved in a finite
element code. To achieve this FELAP is given a general entitystructure which we believe
responds to the needs of most finite element codes.
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The general structure of FELAP starts from one or more finite element meshes. Each finite
element mesh has an associated graph. Associated to the graph of the mesh we have a renum-
bering strategy. Several problems may be solved at the same time in a single finite element
mesh, this is why there can be several matrices associated toa single mesh, with which the
mesh shares the graph. Each matrix has its own (complete or incomplete) factorization. If we
were to use always direct solvers all the factorizations corresponding to the matrices of a sin-
gle mesh would share the graph, but as we may perform incomplete factorizations, there is a
different graph attached to each factorization. This general structure can be seen in Fig. 8.1.

Figure 8.1: FELAP general structure

8.3 Building the mesh graph

FELAP is a solver package specially developed in order to cope with problems arising from
finite element analysis problems. This means that linear systems of equations to be solved are
supposed to come from a finite element spatial discretization, involving a mesh, elements and
nodes. Possibly, multiple physics problems will be solved over the same mesh, and without
a doubt problems with several degrees of freedom per mesh node will have to be solved. In
all these cases, however, the graph of the matrix resulting of the system of equations to be
solved will be somehow related to the graph of the finite element mesh. In particular, for scalar
problems, the graph of the finite element mesh will coincide with the graph of the system
of equations to be solved. This is why, instead of building the graph of the matrix for each
problem to be solved on a finite element mesh, we store only thegraph of the mesh. As we
will see, positions in the matrix can be very easily accessedwith the graph of the mesh, even
for multiple degrees of freedom per node. This has the following advantages:

• The number of non-numerical operations is reduced in vectorial problems. For example,
for a 3D stationary Stokes problems, the number of non-numerical operations is reduced
by 16 (4 × 4).
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• Operations are computed by blocks in problems with multipledegrees of freedom per
node, this allows to improve the performance of each single floating point operation.

• There is a clear gain in the memory required to store the graphs of the matrices. Again,
for a 3D Stokes problem, the amount of memory is reduced by 16.

In order to build the mesh graph,FELAP requires a list of elements containing the nodes
of each element. We require this list in a compact format, allowing for a different number of
nodes in each element. The compact format is composed of two vector indices,iEL andjEL,
iEL(i) containing the starting position injEL of the list of nodes of elementi. jEL(iEL(i) :
iEL(i + 1)− 1) contains the node list for elementi.

Figure 8.2: Finite element mesh

Consider for example the finite element mesh in Fig. 8.2. Elements1 and2 have3 nodes,
whereas element3 has4 nodes. The storage of this mesh would produce the following:

Pos. 1 2 3 4 5 6 7 8 9 10
iEL 1 4 7 11
jEL 1 2 3 3 2 4 5 3 4 6

What we want to compute is the graph of the mesh, that is, for each node, the list of nodes
to which it is connected. Two nodes are connected when there is some element to which they
both belong. FELAP stores the graph of the mesh in a rather peculiar way, but that has some
very advantageous features. We store the mesh graph by meansof 3 vector indices,iA, iS, jA,
iA andiS of size the number of nodes plus 1,jA of size the total number of connectivities of
the mesh.iA andjA work asiEL andjEL, iA(i) pointing to the starting position of the list
of connectivities of nodei in jA, stored injA(iA(i) : iA(i + 1) − 1). However, we put an
extra requirement in the way this list is stored: for the listcorresponding to nodei, we require
all the nodes with node number lesser thani to be stored before the nodes with node number
greater thani. iS is built in the following manner:

iS(1) = 1, iS(i+ 1)− iS(i) = number of nodesj connected toi with j > i
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iA andjA allow to recover all the nodes connected to nodei, but adding the vectoriS to
the storage scheme allows, if desired, to recover only the nodesj connected toi with j > i.
Let us see what would this graph storage scheme result in for the mesh in Fig. 8.2:

Pos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
iA 1 3 6 11 15 18 21
iS 1 3 5 8 10 11 11
jA 2 3 1 3 4 1 2 4 5 6 2 3 5 6 3 4 6 3 4 5

We have depicted in green the cells injA corresponding to nodesj connected to nodei such
thatj > i.

Now iA andjA allow to access all the connectivities of a node. For scalar problems this
corresponds to the CSR format for sparse matrices to be seen in the next section (except for the
fact that, for nodei, we do not storei itself in jA). On the other hand, if one wants to access
only the nodesj connected toi such thatj > i, this can be achieved by usingiS:

∗ = iA(i+ 1)− iS(i+ 1) + iS(i)

allows to access the first nodej connected toi with j > i, which is stored injA(∗). As a
consequence,jA(∗ : iA(i+ 1)− 1) contains the nodesj connected toi with j > i. For scalar
problems this corresponds to the CS-Crout format for sparsematrices to be seen in the next
section.

The fact is that we will store our matrices in CS-Crout format, but that we will need the
graph of the mesh in CSR format for renumbering algorithms. This is the reason why we store
the extra arrayiS which allows us to have both formats in the same structure.

The mesh graph can be easily recovered from the element list by means of an efficient
O(npoin×nelem×nnode) algorithm, wherenpoin is the total number of points of the mesh,
nelem is the total number of elements andnnode is the mean number of nodes per element.

8.4 Storing the matrix

Let us consider a non singular square matrixA

A := (ai,j)n×n, 1 ≤ i ≤ n, 1 ≤ j ≤ n,

arising from a finite element analysis. Letb

b := (bi)n×1, 1 ≤ i ≤ n,

be the right hand side of the system of equations to be solved and

x := (xi)n×1, 1 ≤ i ≤ n,

the vector of unknowns satisfying

Ax = b. (8.1)

Matrices arising from linear systems of equations to be solved in finite element analysis
can be very large, but, at the same time, they are generally very sparse. In order to reduce the
required memory, the storage of matrixA should be done in such a way that the zero entries
of A are not stored. The most common and popular way of storing large sparse matrices are
Compact Sparse(CS) formats.
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8.4.1 The CSR format

In CS formats only the non-zero entries of a matrix and the necessary indices to ubicate them
in the matrix. The most popular CS format isCompact Sparse Row. Let us denote bynzA the
number of non-zero entries of the matrixA. CSR consists in storing the non-zero entries of
matrixA in a vectornA of sizenzA, and constructing two vector indicesiA andjA of size
n + 1 andnzA respectively:

nA(k) = ai,j, j = jA(k), iA(i) ≤ k ≤ iA(i+ 1)− 1, iA(1) = 1. (8.2)

This implies that the non-zero values of a given row are stored sequentially, and that rows are
stored in an increasing order. Vector indicesiA andjA form what we callthe graph of the
matrix for a the given compact sparse format.

Let us consider the following matrix:

A =













a11 a12 a13 0 0
a21 a22 0 a24 0
a31 0 a33 a34 a35
0 a42 a43 a44 0
0 0 a53 0 a55













(8.3)

If we store this matrix in CSR we obtain :

Pos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
iA 1 4 7 11 14 16
jA 1 2 3 1 2 4 1 3 4 5 2 3 4 3 5
nA a11 a12 a13 a21 a22 a24 a31 a33 a34 a35 a42 a43 a44 a53 a55

In the same way, theCompact Sparse Columnformat is a compact sparse format which
stores the matrix by columns instead of by rows.

Although this two formats are the most common ones, they havea major drawback: they
are not suitable for symmetric matrices, in which:

aij = aji, 1 ≤ i ≤ n, 1 ≤ j ≤ n, (8.4)

and in order to reduce memory requirement we are interested in storing only the diagonal and
the upper or lower triangular part, but not both. Taking thisinto account, we opt by theCom-
pact Sparse Croutformat (CS-Crout) which is suitable for both symmetric and unsymmetric
matrices.

8.4.2 The CS-Crout format

In the CS-Crout format we divide matrixA into a lower triangular matrixL, its diagonalD
and an upper triangular matrixU , such that:

A = L+D + U

Lij = 0 ∀j ≥ i

Uij = 0 ∀j ≤ i

Dij = 0 ∀j 6= i
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We denote bynzL the number of non-zero entries inD and bynzU the number of non-
zero entries inU . As a consequence,nzA = n+ nzL+ nzU , sincen is the number of entries
D, which are stored independently of their value.

CS-Crout consists in:

• Storing the diagonalD in a vectordA of sizen

• Storing the non-zero entries ofL in a vectorlA of sizenzL, and constructing to vector
indicesiL andjL of sizen+ 1 andnzL respectively

• Storing the non-zero entries ofU in a vectoruA of sizenzU , and constructing to vector
indicesiU andjU of sizen + 1 andnzU respectively.

The non-zero value vectors and the indices are constructed in the following way:

dA(i) = di,i, 1 ≤ i ≤ n,

lA(k) = Li,j, i = jA(k), iL(j) ≤ k ≤ iL(j + 1)− 1, iL(1) = 1,

uA(k) = Ui,j, j = jA(k), iL(i) ≤ k ≤ iL(i+ 1)− 1, iU(1) = 1.

Note that in this case the upper triangular part of the matrixis stored by rows, while the
lower part is stored by columns. This may seem an unnecessarycomplication, but we will see
that leads to a very advantageous feature.

Let us consider again the matrix in (8.3). This matrix, when stored in CS-Crout format,
yields:

Pos. 1 2 3 4 5 6
dA a11 a22 a33 a44 a55
iU 1 3 4 6 6 6
jU 2 3 4 4 5
uA a12 a13 a24 a34 a35
iL 1 3 4 6 6 6
jL 2 3 4 4 5
uL a21 a31 a42 a43 a53

There is no gain in using CS-Crout instead of CSR by now. The amount of memory re-
quired for the indices is the same (thejA positions corresponding to the diagonal in CSR -size
n- are replaced by the extraiL vector index in CS-Crout -sizen + 1-). Let us now consider a
structurally symmetricmatrix, which means:

aij 6= 0⇔ aji 6= 0 1 ≤ i ≤ n, 1 ≤ j ≤ n

but aij 6= aji in general. Matrices arising from finite element analysis are structurally sym-
metric. If this is the case, as in (8.3),indicesiL andiU coincide in the CS-Crout format. This
means that there is no need to store both of them. What we do is to store a single index which
we call iA. The same happens withjL andjU , which we condense in a single indexjA. As
a consequence, the amount of memory required for storing a structurally symmetric matrix in
CS-Crout format is significantly smaller than the memory required to store the same matrix in
CSR. Still, this is not the major advantage of using CS-Croutinstead of CSR.
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Let us now consider a symmetric matrix. Symmetric matrices are obviously structurally
symmetric. Moreover, in a symmetric matrix vectorsuA and lA in the CS-Crout format are
equal. This means that there is no need to store both vectors,and thatmemory requirements for
the storage of the matrix can be reduced to the half. This is the deciding factor which led us
to opt for CS-Crout instead of CSR. CS-Crout is a format in which symmetric and structurally
symmetric matrices are treated in a very natural way, and that takes advantage of this fact
in order to reduce storage memory requirements. Of course, this alone is not enough, since
another requirement for compact sparse formats is that operations involving matrices can be
performed in an efficient way. As we will see in the following sections, this requirement is
satisfactorily met by the CS-Crout format.

8.5 Matrix times vector product

There is a single operation to be performed with the originalmatrixA when solving a linear
system of equations. This is matrix times vector product:

c = Ab,

ci =
n
∑

j=1

aijbj (8.5)

For full matrices the algorithm to compute the product is straightforward, but if matrices are
stored in a sparse format, the operations involved in (8.5) have to be performed in the correct
order so thatthe need for searching through the vectors in which the matrix is stored is avoided.
Let us illustrate this point. Consider the matrix times vector product in (8.5) for a full matrix.
The algorithm associated to this operation can be seen in Algorithm 1.

Algorithm 1 Matrix times vector, full matrix,(i, j)
1: for i = 1 : n do
2: c(i) = 0
3: for j = 1 : n do
4: c(i) = c(i) + A(i, j) ∗ b(j)
5: end for
6: end for

If one wants to change the order of the loops there is no major problem (except for the
jumps in memory positions, which can be an issue in high performance computations), as seen
in Algorithm 2.

8.5.1 Matrix times vector in CSR

Let us now perform the same operation with the CSR storage. Algorithm 1 now turns to Al-
gorithm 3. Performed this way the algorithm is efficient and the complexity of the algorithm
(accounting also for non-numerical operations deriving from the need of reading the sparse for-
mat indices) is ofO(n × nzr), where we have denoted bynzr the mean number of non-zero
entries in a row of matrixA.
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Algorithm 2 Matrix times vector, full matrix,(j, i)
1: c(:) = 0
2: for j = 1 : n do
3: for i = 1 : n do
4: c(i) = c(i) + A(i, j) ∗ b(j)
5: end for
6: end for

Algorithm 3 Matrix times vector, CSR,(i, j)
1: for i = 1 : n do
2: c(i) = 0
3: for k = iA(i) : iA(i+ 1)− 1 do
4: c(i) = c(i) + nA(k) ∗ b(jA(k))
5: end for
6: end for

When trying to reproduce Algorithm 2 with the CSR format we find that it is very difficult
to travel through a column of matrixA due to the way in which non-zero coefficients inA are
stored. A first approach to Algorithm 2 would be Algorithm 4. But now the complexity of the
algorithm is ofO(n× n× nzr). This is obviously unaffordable. With this simple example we
have demonstrated that even the most simple operations haveto be done in the correct order
if the matrix is stored in a compact sparse format. Not doing so implies increasing the number
of operations by a factor ofn. As a consequence, opting for an specific storage format implies
that any algorithm involving the sparse matrix will have to be specifically coded for the chosen
format.

Algorithm 4 Matrix times vector, CSR,(j, i)
1: c(:) = 0
2: for j = 1 : n do
3: for i = 1 : n do
4: k = iA(i)
5: while jA(k) 6= j andk < iA(i+ 1) do
6: k = k + 1
7: end while
8: if jA(k) = j then
9: c(i) = c(i) + nA(k) ∗ b(jA(k))

10: end if
11: end for
12: end for

Algorithm 4 demonstrates that travelling through the matrix in anunnaturalway (referred
to the sparse matrix storage format) must be avoided by all means. However, there will be
times, and for certain algorithms, when it will be peremptory to do so. If this is the case, there
are tools which allow us to keep the number of operations being of the same order than if we
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moved through the matrix in thenaturalway. These are linked lists.

8.5.2 Linked lists

Linked lists consist of a sequence of nodes, each containingarbitrary data fields and a reference
pointing to the next node. In order to keep the number of operations in Algorithm 4 ofO(n×
nzr) we would require, for each columnj, a linked list with which we could travel through
the non-zero values of the column. Let us see how to build a linked list for the matrix in (8.3).

A linked list will consist of the indicesfirst, last and the vector indexlist of dimension
(2, n). Let us consider the second column ofA:

A:,2 =













a12
a22
0
a42
0













For the second column, the linked list pretends to travel through the non-zero entries of matrix
A which belong to the column. As a consequence we assign tofirst the row of the first non-
zero entry of column 2, which isa12:

first = 1

In the same way, we assign tolast the row of the last non-zero entry of column2, which is
a42:

last = 4

For column 2,list would contain:

list =

(

2 5 0 11 0
2 4 0 −1 0

)

(8.6)

list(1, i) contains the positions in vectornA in which ai2 is contained.a12 is stored in
nA(2), a22 is stored innA(5) anda42 is stored innA(11). list(2, i) contains which is the next
row which has a non-zero value in column 2. In this case, row 1 points to row 2, which points
to row 4. As there is no row greater than 4 whose component in column 2 is different from
0, row 4 points to -1. If we have a linked list for each of the columns of matrixA we will be
able to travel through the columns ofA, stored in CSR. However, keeping a linked list for each
column will require a lot of memory. Algorithm 5 shows how to dynamically build a linked
list which allows to columnwise traverseA even if this is stored by rows, at the sole cost of
two vectors,first andlast, of sizen, and the vectorlist of dimensions(2, n). The algorithm
has one requirement: column indices for a row injA must be stored in increasing order.

Let us apply Algorithm 5 to traverse matrixA columnwise when it is stored in a CSR
format. Lines 1 to 3 initialize the linked list to zero. Lines4 to 15 put the first component of
each row in the linked list. As we will see, only one non-zero entry of each will be in the linked
list at the same time. Once this non-zero entry has been used,it will be replaced by the next
non-zero of the row. After line 15 the linked list vectors formatrixA stored in CSR are:
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Algorithm 5 CSR,(j, i), Linked list
1: first(:) = −1
2: last(:) = −1
3: list(:, :) = 0
4: for i = 1 : n do
5: if iA(i) 6= iA(i+ 1) then
6: k = iA(i)
7: if last(jA(k)) = −1 then
8: first(jA(k)) = i
9: else

10: list(2, last(jA(k))) = i
11: end if
12: list(1, i) = k
13: last(jA(k)) = i
14: end if
15: end for
16: for j = 1 : n do
17: i = first(j)
18: while i 6= −1 do
19: k = list(1, i)
20: print nA(k)
21: if list(1, i) < iA(i+ 1)− 1 then
22: if last(jA(list(1, i) + 1)) = −1 then
23: first(jA(list(1, i) + 1)) = i
24: else
25: aux = last(jA(list(1, i) + 1))
26: list(2, aux) = i
27: end if
28: last(jA(list(1, i) + 1)) = i
29: end if
30: list(1, i) = list(1, i) + 1
31: aux = i
32: i = list(2, i)
33: list(2, aux) = −1
34: end while
35: end for



8.5. Matrix times vector product 197

Pos. 1 2 3 4 5
first 1 4 5 -1 -1
last 3 4 5 -1 -1
list(1, :) 1 4 7 11 14
list(2, :) 2 3 -1 -1 -1

As we can see, after this first loop the linked list is ready to traverse column 1 but it is not
ready to traverse any other column. The first iteration in theloop starting in line 16 prints the
first column ofA, but it also modifies the linked list so that at the end of this first iteration the
linked list is ready to traverse column 2:

Pos. 1 2 3 4 5
first 1 4 5 -1 -1
last 3 2 3 -1 -1
list(1, :) 2 5 8 11 14
list(2, :) 2 -1 -1 1 3

This procedure is repeated for each column ofA. This pseudocode applied to matrixA
prints:

a11
a21
a31
a42
a12
a22
a53
a33
a13
a43
a24
a34
a44
a55
a35

where we have grouped the coefficients of each column. Note that, for a given column,coeffi-
cients are not recovered in a row-increasing order. Algorithm 5 can be modified into a matrix
times vector product simply by replacing line 20 by:

c(i) = c(i) + nA(k) ∗ b(jA(k))

The complexity of the algorithm is nowO(n × nzr). For a matrix times vector product
Algorithm 5 is slower than Algorithm 3. For more complex computations, in which the com-
plexity of the operation in line 20 in Algorithm 5 is ofO(n) or O(nzr), Algorithm 3 and
Algorithm 5 will perform almost equally. This is in fact whathappens in the CS-Crout matrix
factorization algorithm, as we will see.
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8.5.3 Matrix times vector in CS-Crout

The efficient algorithm for computing a matrix times vector product if the matrix is stored
in CS-Crout format is Algorithm 6. Note that the complexity is ofO(n × nzr) and that the
number of operations is exactly the same than in Algorithm 3.

Algorithm 6 Matrix times vector, CS-Crout
1: c(:) = 0
2: for i = 1 : n do
3: for k = iA(i) : iA(i+ 1)− 1 do
4: c(i) = c(i) + uA(k) ∗ b(jA(k))
5: c(jA(k)) = c(jA(k)) + lA(k) ∗ b(i)
6: end for
7: end for

8.6 Direct solvers

When dealing with the system of equations (8.1), the exact solution can be found byfactorizing
matrix A and performing a backward and forward substitution. Factorizing a matrix means
finding two matricesL lower triangular andU upper triangular, the diagonal ofL full of ones,
such that:

uij = 0 ∀i > j, 1 ≤ i ≤ n, 1 ≤ j ≤ n,

lij = 0 ∀i < j, 1 ≤ i ≤ n, 1 ≤ j ≤ n,

lii = 1, 1 ≤ i ≤ n,

LU = A. (8.7)

Once these matrices have been factorized the solution of theoriginal system can be found
by solving:

Ly = b

Ux = y (8.8)

These two systems are very easily solved since they are triangular.

8.6.1 Matrix factorization

There are various algorithms which compute the factorization of a matrix (which is unique),
depending on the order in which the factorized matrix coefficients are computed. Each of these
algorithms is associated to a particular compact sparse storage scheme. Here we present the
Crout algorithm, which is the one associated to the CS-Croutformat we use.

For full matrices, the Crout algorithm can be seen in Algorithm 7, where the factorized
matrices have been stored in the same memory space occupied by A.
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Figure 8.3: Factorization order in CSR (left) and CS-Crout (right). Areas in gray are factorized,
in white, to be factorized

Algorithm 7 Crout algorithm
1: for k = 1 : n do
2: for i = 1 : k − 1 do
3: for j = k : n do
4: A(k, j) = A(k, j)−A(i, k) ∗ A(i, j)
5: A(j, k) = A(j, k)−A(k, i) ∗ A(j, i)
6: end for
7: end for
8: A(k, k) = 1/A(k, k)
9: for j = k + 1 : n do

10: A(k, j) = A(k, j) ∗ A(k, k)
11: end for
12: end for
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Obviously this algorithm crashes ifA(k, k) = 0 in line 8. When this happens there are a
series of pivoting algorithms which allow to change the matrix ordering in such a way that (for
non-singular matrices) no zeros are found in the diagonal during the factorization process. We
have to say, however, that in the finite element analysis linear systems of equations we have
solved this problem has not appeared (even for problems withLagrange multipliers in which
the original matrix has zeros on the diagonal).

When dealing with the factorization in Algorithm 7, which isthe most suitable in the case
of a matrix stored in CS-Crout format, we face with the problem that the loop ini accesses
the factorized matricesL andU in an unnaturalorder, as Fig. 8.4 shows. This corresponds
to coefficientsA(i, k) andA(k, i) in lines 4 and 5 in Algorithm 7, which for1 ≤ i < k
correspond to Fig. 8.4 right. This is the reason why we have toresort to the linked list strategy
described in Algorithm 5.

Figure 8.4: For a given row and columnk, positionsnaturally (left) andunnaturally(right)
consecutively accessed with the CS-Crout format

When dealing with the factorization of a matrix it is very convenient, in order to keep the
complexity of the algorithm as low as possible, to work with the uncompressed row/column
k. To this end, at the beginning of eachk iteration we uncompress the row and columnk into
vectorsrwa andrwa2 of maximum sizen and two vector indicesiwa of maximum sizen and
seen of sizen. The exact procedure is shown in Algorithm 8.

A position corresponding to column/rowj in row/columnk will have to be accessed in
general for two purposes:

• Firstly to add the contribution of previous rows/columnsi to row/columnk. To this end
the most efficient way of temporarily storing row/columnk would be in a completely
uncompressed vector. Any contribution to column/rowj in row/columnk would be done
in rwa(j) with no further complication.

• Secondly to store the non-zero coefficients corresponding to column/rowj of the factor-
ized row/columnk in the CS-Crout format. In this case it would be convenient towork
only with the non-zero coefficients of the factorized row/columnk in a compressed way.
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Algorithm 8 Uncompressing row/columnk for a fast factorization procedure
1: iwa(:) = 0
2: seen(:) = 0
3: rwa(:) = 0
4: rwa2(:) = 0
5: rwa(1) = dA(k) {Start Uncompressing}
6: iwa(1) = k
7: seen(k) = 1
8: nz = 1
9: for j = iA(k) : iA(k + 1)− 1 do

10: nz = nz + 1
11: rwa(nz) = uA(j)
12: rwa2(nz) = lA(j)
13: iwa(nz) = jA(j)
14: seen(jA(j)) = nz
15: end for

Algorithm 8 shows a working storage scheme which fulfills therequirements of both opera-
tions. In the first case,seen(j) contains an index which leads to the corresponding position
in the compressed arraysiwa, rwa andrwa2 without the need of searching through the com-
pressed arrays. For the second case non-zero entries are grouped in the compressed arrays
iwa, rwa andrwa2 and there is no need to traverse a full sizen array and check for non-zero
entries.

Now we have the necessary tools to write Algorithm 7 for sparse matrices. The factored
matrix will be stored in CS-Crout matricesL andU . We recall that one of the requirements
of the linked list strategy in Algorithm 5 was that the matrices were stored in a row/column-
increasing order. This is why working arraysiwa, rwa andrwa2 are reordered before being
stored intoL andU in CS-Crout format. There is no need for matrixA to be stored in a
row/column-increasing order. Note that sinceA is structurallysymmetric the factored matrices
L andU have the same sparsity structure:iL andjL coincide withiU andjU , and we have
condensed them toiC andjC. Moreover the diagonal ofL is full of ones and there is no need
to store it. Likewise, a single linked list will be enough to traverseL andU . Algorithm 9 is the
sparse version of Algorithm 7 using the strategies described in Algorithm 5 and Algorithm 8.
The resulting algorithm is of complexityO(n×nzr×nzr), where nownzr denotes the mean
number of non-zero entries in thefactorizedmatrix.

In the case of positive definite symmetric matrices, the Crout factorization is very easily
modified to the so calledCholeskyfactorization by replacing Algorithm 7 by Algorithm 10. In
this case, matrixA is factorized into:

LLT = A,

Ly = b,

LTx = y. (8.9)

Note that only the lower triangular part of matrixA is required and factorized. This can be
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Algorithm 9 Sparse Crout factorization using linked lists and fast working arrays
1: ic(1) = 1 {Initialize}
2: nxt = 1
3: iwa(:) = 0
4: rwa(:) = 0
5: rwa2(:) = 0
6: seen(:) = 0
7: last(:) = −1
8: first(:) = −1
9: list(:) = −1

10: for k = 1 : n do
11: rwa(1) = dA(k) {Uncompress}
12: iwa(1) = k
13: seen(k) = 1
14: nz = 1
15: for j = iA(k) : iA(k + 1)− 1 do
16: nz = nz + 1
17: rwa(nz) = uA(j)
18: rwa2(nz) = lA(j)
19: iwa(nz) = jA(j)
20: seen(jA(j)) = nz
21: end for
22: i = first(k) {Factorize row/column}
23: while i 6= −1 do
24: iz = list(1, i)
25: t = lC(iz) {Row pivot}
26: t2 = uC(iz) {Col pivot}
27: rwa(1) = rwa(1)− t1 ∗ t2 {Contribution to the diagonal}
28: for j = iz : iC(i+ 1)− 1 do
29: s = t ∗ uC(j)
30: s2 = t2 ∗ lC(j)
31: if seen(jC(j)) 6= 0) then
32: rwa(seen(jC(j))) = rwa(seen(jC(j)))− s
33: rwa2(seen(jC(j))) = rwa2(seen(jC(j)))− s2
34: else
35: nz = nz + 1
36: seen(jC(j)) = nz
37: iwa(nz) = jC(j)
38: rwa(nz) = −s
39: rwa2(nz) = −s2
40: end if
41: end for
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42: if list(1, i) < iC(i+ 1)− 1 then {Update linked list}
43: if last(jC(list(1, i) + 1)) = −1 then
44: first(jC(list(1, i) + 1)) = i
45: else
46: list(2, last(jC(list(1, i) + 1)))) = i
47: end if
48: last(jC(list(1, i) + 1)) = i
49: end if
50: list(1, i) = list(1, i) + 1
51: aux = i
52: i = list(2, i) {Next item in the linked list fork}
53: list(2, aux) = −1
54: end while
55: rwa(1) = 1/rwa(1) {A(k, k) = 1/A(k, k)}
56: dC(k) = rwa(1) {Storing the values indC, lC anduC}
57: SORTiwa, rwa, andrwa2 so that they are ordered in increasing row/column order
58: rwa2(2 : nz) = rwa2(2 : nz) ∗ dC(k)
59: for j = 2 : nz do
60: jC(nxt) = iwa(j)
61: uC(nxt) = rwa(j)
62: lC(nxt) = rwa2(j)
63: nxt = nxt + 1
64: end for
65: iC(k + 1) = 1
66: if nz > 1 then {Update linked list}
67: if last(iwa(2)) = −1 then {Only the first component of the row/column is added to

the list}
68: first(iwa(2) = k
69: else
70: list(2, last(iwa(2))) = k
71: end if
72: last(iwa(2)) = k
73: end if
74: for j = 1 : nz do
75: seen(iwa(j)) = 0
76: end for
77: end for
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also done to Algorithm 9, reducing both the number of operations and the memory require-
ments to the half.

Algorithm 10 Cholesky algorithm
1: for k = 1 : n do
2: for i = 1 : k − 1 do
3: for j = k : n do
4: A(j, k) = A(j, k)−A(k, i) ∗ A(j, i)
5: end for
6: end for
7: A(k, k) = 1/sqrt(A(k, k))
8: for j = k + 1 : n do
9: A(j, k) = A(j, k) ∗ A(k, k)

10: end for
11: end for

In the same manner, it is possible to modify Algorithm 7 so that it suits symmetric but
non-positive definite matrices. In this caseA is factorized into:

LDLT = A,

Ly = b,

Dz = y,

LTx = z. (8.10)

whereD is a diagonal matrix. This algorithm avoids the
√

A(k, k) appearing in line 7 in
Algorithm 10 which crashes in the case of non-positive definite matrices. Again, it is very
easy, due to the chosen CS format, to modify Algorithm 9 into its equivalentLDLT version.

8.6.2 Forward and Backward substitutions

Once matrixA has been factorized intoL andU , the only thing which remains in order to
solve the system of equations (8.1) is to solve the systems in(8.8). These systems are easily
solved, since they are triangular. Algorithm 11 and Algorithm 12 show how to do so with the
factored matrices stored in the CS-Crout storage format. This algorithm can be easily extended
to the case of positive definite symmetric matrices or symmetric non-definite matrices.

Algorithm 11 Forward substitution
1: for i = 1 : n do
2: for k = iC(i) : iC(i+ 1)− 1 do
3: b(jC(k)) = b(jC(k))− b(i) ∗ lC(k)
4: end for
5: end for
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Algorithm 12 Backward substitution
1: for i = n : −1 : 1 do
2: for k = iC(i+ 1)− 1 : iC(i) : −1 do
3: b(i) = b(i)− lC(k) ∗ b(jC(k))
4: end for
5: b(i) = b(i) ∗ dC(i)
6: end for

8.6.3 Symbolic factorization for structurally symmetric matrices

Algorithm 9 allows us to perform the factorization of matrixA stored in CS-Crout format.
However, the issue of memory allocation is still unresolved. When entering Algorithm 9 the
final memory requirement forjC, lC anduC should be known, so that they can be correctly
allocated. To this end, we perform asymbolic factorization, its requirements being:

• At the end of the process, it must returnnzC, the size of arraysjC, lC anduC.

• The complexity of the algorithm must be lower than the complexity of the real factor-
ization.

• The memory requirements of the algorithm must be low.

Algorithm 9 can be easily transformed into a symbolic factorization by:

1. Not performing the floating point operations. We are interested only in the sparsity pat-
tern of the factorized matrix, not in the values.

2. Skipping the update of the linked list between lines 42 and52. The fill-in caused by
row/columni in the following will be contained in the fill-in caused by row/columnk in
the following, so there is no need to take it into account.This reduces the complexity of
the algorithm toO(n× nzr).

3. Once row/columni has been once in the loop in 23 it will no longer be needed. The
information stored injC(iC(i) : iC(i + 1) − 1) is no longer needed and this memory
space can be deallocated. Obviously the storage scheme forjC should not be continu-
ous, and the use of structure data types to storejC is required so that we are capable of
dynamically allocating and deallocating the part ofjC associated to row/columni.

The complexity of this symbolic factorization is ofO(n× nzr).

8.7 Iterative solvers

Direct solvers are the most convenient option when the systems to be solved are of relatively
small size. However, for very large systems of equations, the memory requirements of direct
solvers are too large for this methods to be used. This is the reason why one relies in iter-
ative solvers. Most usual iterative methods for solving systems of equations areConjugate
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Gradient(CG), Generalized Minimum Residual(GMRES) andBiconjugate Gradient Stabi-
lized (BICGSTAB) which will not be described here. See [121] for a detailed explanation of
these methods. What we are interested in is that these methods convergence depends on the
condition number of matrixA, which for normal matrices can be defined as:

κ(A) =
|λmax(A)|
|λmin(A)|

,

1 ≤ κ(A) <∞. (8.11)

whereλmax(A) andλmin(A) are the maximum and the minimum eigenvalues of matrixA
respectively. The closerκ(A) is to1 the faster and more robust the iterative methods are. How-
ever, for many problems, the condition number of the system of equations can be extremely
large. In this case one should use preconditioners.

8.7.1 Preconditioned systems of equations

Preconditioning a system of equations consists in solving an equivalent system (in the sense
that it has the same solution, or that the solution of both systems can be easily related), but with
a condition number as close as possible to1. This allows for the iterative methods to solve the
system much faster.

In general, the preconditioned system of equations is obtained by pre- or post-multiplying
the original system by the inverse of a matrixM which we call thepreconditioner. The system
of equations in (8.1) now turns into:

AM−1Mx = b,

if the preconditioner is applied by the right, which is what we do: preconditioning by the right
has the advantage that the residual of the preconditioned system is the same that the residual
of the original system. As a consequence, stopping criteriaare the same in preconditioned and
the original systems. If we now call:

B : = AM−1,

y : =Mx,

the preconditioned system to be solved is:

By = b.

When the preconditioned system has been solved, the unknowns vectorx is recovered by
solving:

x =M−1y.

Obviously,M has to fulfill two basic design requirements:

• Its inverse has to be easily computable (or the result of multiplying its inverse times a
vector). In fact, computing the inverse ofM has to be much cheaper than computing the
inverse ofA.
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• κ(AM−1) has to be as close to1 as possible.

M = A obviously fulfills the second requirement, since the condition number of the iden-
tity matrix is1, but it does not fulfill the first requirement, that its inverse is easily computable.
A very usual manner of building preconditioners is by means of Incomplete Factorizations.

8.7.2 ILUC, an Incomplete LU Crout factorization

Incomplete factorizations are performed by using algorithms similar to complete factoriza-
tions, the main difference being that not all the elements inL andU are kept. This reduces
the memory required to storeL andU and the number of operations required to perform the
factorization. Obviously,

LU 6= A,

but hopefully

κ(A(LU)−1) ≈ 1.

The dropping strategies followed to build the preconditioners for the iterative methods are
of two kind:

• Limiting fill-in: in each row/columnk the number of non-zero entries to be stored is
limited tonfil. This means that only a maximum ofnfil components is stored, for each
k, in uC andlC. We choose the ones with greatest absolute value.

• Setting a drop tolerance. Only the values of the factorized matrices

ljk, ukj, k < j ≤ n,

such that

max |ljk, ukj| > tol ∗ |akk|

are kept.

Compared to other preconditioners like ILUT [120] (the preconditioner associated to the
CSR storage format), ILUC [95] has the advantage of computing the sort in line 57 of Algo-
rithm 9 outside thei loop. In ILUC this SORT operation can be done by means of aO(nfil)
computation, while in other preconditioner algorithms as ILUT the equivalent operation com-
plexity is ofO(nfil×nfil). This allows for the ILUC preconditioner to admit a much greater
number of fill-ins with much less increase of the CPU time required to build the preconditioner.

The values dropped during the incomplete factorization areadded to the diagonal ofU . In
particular, entries dropped inLjk are added toUjj, while dropped entries inUkj are added to
Ukk. This enhances the behaviour of the preconditioner, since for constant solution vectors the
factorization is exact: let us consider a solution vectorx of the form:

x = [x1, x2, ..., xn]
T | x1 = x2 = ... = xn.
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By definition:

Ax = b,

but for a constant solution vectorx the following also holds:

Dx = b,

whereD is a diagonal matrix its diagonal entries being:

dii =
n
∑

j=1

aij

This is the reason why adding the dropped entries to the diagonal ofU leads to a better pre-
conditioner.

8.8 Renumbering strategies

Renumbering strategies are a critical issue in solvers for linear systems of equations. No matter
how efficiently the solver algorithms are coded, the cost of solving the linear system will be
unaffordable unless a proper renumbering strategy is used.

Renumbering strategies respond to two basic objectives:

• In direct solvers, renumbering must minimize the amount of memory and the number of
operations required to factorize the matrix.

• In iterative solvers and for a given amount of memory assigned to the preconditioner,
renumbering must lead to the best possible preconditioner.

As we can see the objective of renumbering is different depending on the type of solver we
are using, and different renumbering strategies should be used for direct and iterative solvers.

8.8.1 Nested dissection

Nested dissection is the optimum renumbering strategy for direct solvers for sparse storage
schemes. It minimizes the amount of fill-in, which implies that the amount of memory required
to perform the factorization of the matrix is minimum, and soare the number of operations and
the CPU time required to solve the system of equations.

In the nested dissection algorithm the finite element mesh ispartitioned by means of do-
main decomposition techniques. If the nodes which separatethe different subdomains are as-
signed node numbers greater than the nodes in the interior ofthe subdomains, fill-in does not
occur between subdomains. If the resulting subdomains are recurrently partitioned, we obtain
the nested dissection algorithm. Interior nodes of each final level subdomain are numbered
successively, using for example a minimum degree ordering.

When using direct solvers, we use the METIS package [84], which provides an optimal
node ordering using nested dissection techniques.
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Figure 8.5: Two level nested dissection. The first level separator nodes are depicted in red,
while the second level separators are depicted in green.

8.8.2 Cuthill-McKee reordering

In the Cuthill-McKee renumbering strategy, instead of minimizing the amount of fill-in, we
minimize the bandwidth, that is to say, the maximum difference between the node number
of connected nodes. The Cuthill-McKee algorithm is not as efficient as the nested dissection
algorithm for direct methods, but it works much better in thecase of iterative solvers. This is
due to the fact that in the case of the nested dissection algorithms,informationis concentrated
in separator nodes, and thus if dropping occurs in fill-ins due to separator nodes the quality of
the incomplete factorization is affected. In the Cuthill-McKee reordering, on the other hand,
information is equally distributed, resulting in a much more efficient reordering for iterative
solvers.

In order to minimize the bandwidth, node numbering starts from an edge node. The first
layer of nodes corresponds to all the nodes connected to the first node. The second layer
corresponds to all the nodes connected to the first layer which do not belong to any layer yet,
and so on. A second possibility is to mark as first layer nodes all the nodes in the border of the
mesh. An example of the Cuthill-McKee algorithm can be seen in Fig. 8.6.

Figure 8.6: Cuthill-McKee ordering. Successive layers aredepicted in different colors. Left:
Cuthill-McKee starting from one node. Right: Cuthill-McKee starting from a first layer of
nodes.
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8.8.3 Multigrid reorderings

Although the Cuthill-McKee reordering algorithm providesa suitable ordering for iterative
solvers, there are a family of reordering techniques which give the optimal orderings for in-
complete factorizations in iterative solvers. These are multigrid reorderings. In multigrid re-
orderings the nodes of the mesh are separated into nodes belonging to fine and coarse meshes.
Nodes belonging to fine meshes are numbered first while nodes belonging to coarse meshes
receive the larger node numbers. Nodes in the fine mesh are factorized first. In a complete
factorization for direct solvers this implies that the Schur complement of the fine mesh onto
the coarse mesh is computed. This can be understood as solving the equivalent problem in the
coarse mesh and projecting back the results onto the fine mesh, which is the basis of multi-
grid algorithms. In multigrid algorithms the complexity ofthe operations required to solve the
system of equations increases linearly with the number of unknowns. This makes this kind
of reordering very suitable for iterative methods. A discussion on some methods for building
multilevel reorderings for incomplete factorization preconditioners can be found in [101]

We have developed our own multigrid renumbering algorithm,based on the graph of the
mesh. We take advantage that our system of equations arises from a finite element analysis and
we start from nodes in which Dirichlet boundary conditions are prescribed. These are in gen-
eral nodes on the boundary of the mesh. It is very convenient to start the matrix factorization
from these nodes, since equations attached to them are diagonal and cause no fill-in. From the
Dirichlet nodes we build a provisional numbering by means ofthe Cuthill-McKee algorithm
by considering Dirichlet nodes to be the first layer of nodes.

Now the first two layers are considered to be fine. After this, and following the Cuthill-
McKee order, the coarsening algorithm starts. Algorithm 13shows this coarsening algorithm.
It consists of the following: when an unclassified node is found, it is classified as Coarse, and
all of its unclassified neighbors are classified as Fine. Thisensures that there will not be any
pair of neighbor nodes classified as Coarse.

Algorithm 13 Coarsening algorithm
1: for i = 1 : n do
2: if i is unclassifiedthen
3: Classifyi as Coarse
4: for j = iA(i) : iA(i+ 1)− 1 do
5: if jA(j) is unclassifiedthen
6: ClassifyjA(j) as Fine
7: end if
8: end for
9: end if

10: end for

This procedure can be recursively repeated on the coarse mesh. The coarse mesh graph
is built by considering that two Coarse nodes are connected if they have a common neighbor
according to the previous level mesh graph. The final ordering is obtained by numbering first
the nodes on the finer mesh, then the nodes on the first level coarse mesh, etcetera, and finally
the nodes of the coarsest mesh. For each level, the nodes are numbered following the original
Cuthill-McKee ordering. Fig. 8.7 shows the three level coarsening of an example mesh.
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Figure 8.7: Multigrid ordering. Fine, intermediate and coarse mesh for a three level coarsening.
Fine nodes are depicted in black, intermediate nodes are depicted in red and coarse nodes are
depicted in green.

8.9 Block computations for problems with more than one
degree of freedom per node

All the computations we have described for a scalar matrix can be extended to matrices arising
from vectorial problems, that is to say, to finite element problems with more than one degree of
freedom per node. The strategy we follow is to use the graph ofthe mesh, which corresponds
exactly to the graph of the matrix in the case of scalar problems, to access the non-zero entries
of the matrix arising from vectorial problems. This is done simply by understanding that each
connectivity in the mesh graph refers to anon-zero blockinstead of a single non-zero entry.
Now, each scalar operation in the factorization algorithms, matrix times vector or forward and
backward substitutions turns into a matrix operation. As simple as it sounds, there are a number
of issues that have to be taken into account:

• Since we want our matrix storage scheme to besymmetric, the storage of blocks in the
upper triangular part of the matrix has to be the transpose ofthe storage of blocks in the
lower triangular part of the matrix. This means that if full blocks are stored by rows in
the upper part, they must be stored by columns in the lower part.

• In the factorization of the matrix (Algorithm 9) we store theinverse of the diagonal and
we multiply the row (the part of it in the upper triangular part) by it. This operation
requires some attention since now we are dealing with a diagonal block. Instead of com-
puting the inverse of the block (which could be done since thedimension of the block
is small enough in most cases) we prefer to perform a LU decomposition of each diag-
onal block. Now multiplying the row by the inverse of the diagonal turns into applying
a backwards substitution to each block of the block row and a forward substitution to
each block of the block column. The same happens when multiplying by the inverse of
the diagonal in the backwards and forwards substitutions algorithms.

• In order to have a significative gain in the performance of thesolver when compared to
an scalar solver it is necessary that all the loops corresponding to block operations are
unrolled. When dealing with a loop of the form:
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tndof3/tndof1 tndof3/(9 · tndof1)
Matvec+dot 4.19 0.4655
Backward-Forward Substitution 5.54 0.6155
ILUC 3.12 0.34

Table 8.1: CPU time ratio between scalar and 3 DOF vectorial problem

1: for i = 1 : ndof do
2: ...
3: end for

the programming languages treat it in a different way depending onndof being avari-
ableor aparameter. If ndof is a parameter its value is known during compilation time.
As a consequence the loop can be unrolled, meaning that the processor will not need to
ask if it has to end the loop at each iteration, since the number of iterations is known
in compilation time and they can be written one after the other instead of inside a loop.
On the other hand, ifndof is a variable its value is not known in compilation time,
so in execution time the processor will have to ask if the loophas ended at the end of
each iteration. Treatingndof as a parameter is a key ingredient in the success of the
by blocks formulation. This would mean to rewrite each routine for all the possible de-
grees of freedom per node. Fortunately, this can be avoided by means of the use of the
so calledtemplates, which allow to duplicate a routine for different parameters without
replicating it.

This is a very useful approach. First of all, there is no need to store the particular graph for the
matrix arising in each finite element problem, it is enough tostore the graph of the mesh. At the
same time, the non-numerical operations due to the compact sparse storage scheme are reduced
by the number of degrees of freedom per node to the power of two. Finally, computations can
be done by blocks and loops can be unrolled, which enhances the performance.

We have performed a small test in order to illustrate the increase in performance obtained
by using this approach. We have built a 25000 element finite element mesh, and, on this mesh,
we have solved a system of equations arising from a scalar problem, and a system of equations
which arises from a 3 degrees of freedom vectorial problem. Both systems of equations share
the matrix graph, and as a consequence, the number of floatingpoint operations we have to
perform in each routine of the 3 degrees of freedom problem is9 times larger (3*3) than the
number of operations needed in the scalar problem. However,the CPU time ratio between both
problems is smaller than 9 thanks to the use of block computations. Table 8.1 summarizes the
gain obtained by performing block computations.

In this case the time is reduced to the half approximately. For a greater number of degrees of
freedom per node, for example the 3D incompressible Navier-Stokes equations with 4 degrees
of freedom per node, the gain will be even larger.
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8.10 Some numerical examples

In this section we present some numerical examples in which the FELAP package has been
applied to solve the linear systems of equations arising from finite element analysis problems.
It is not our intention to deeply analyze the performance of the various algorithms but to give
an overview of the package capabilities.

8.10.1 Poisson problem

We first present an example of the performance of the solver routines on the Poisson problem.
This is one of the simplest examples if arising from a thermalproblem, but it also corresponds
to the pressure phase in fractional step methods used to dealwith the Navier-Stokes equations.
The differential equation to be solved is:

−∆u = f,

with the proper boundary conditions.
The Poisson problem is solved in a 2D structured square mesh,in the border of which

the unknown is prescribed to zero. Fig. 8.8 shows the performance of the Conjugate Gradient
iterative solver. The solver stops when the relative error is 10−8. In this plot we compare the
performance of the algorithm using the multigrid renumbering strategy. If we compare the
slopes of the different cases, we see that with diagonal preconditioning the global complexity
is ofO(n1.5). The slope diminishes slightly if the ILUC preconditioner is used (fill-in 30) but
the drops are not added to the diagonal. The best result is obtained for the multigrid reordering,
the ILUC preconditioner and diagonal compensation, for which the global complexity is of
O(n1.13), close to the desired linear complexity.
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Figure 8.8: Computational cost versus number of unknowns for a 2D Poisson problem.
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8.10.2 Stokes problem

Here we present an example on the stationary Stokes problem.The differential equation to be
solved is:

−∆u +∇p = f ,

∇ · u = 0,

with the suitable boundary conditions.
We have considered the typical 3D cavity problem in which a confined flow occurs in a

cube in the faces of which velocity is prescribed to zero except for one of the faces, in which it
is prescribed to 1 in one of the axes tangent to the face. We usea stabilized formulation which
allows us to use equal (P1/P1) interpolation for both velocity and pressure.

This is an example in which we can make use of block computations: for each connectivity
of the graph we have a4× 4 block and compact sparse non-numerical operations are reduced
by 16.

Firstly we will consider solving this problem with a direct solver. For this we perform a
completeLU by blocks factorization, using the nested dissection renumbering provided by
METIS. We consider a 48000 elements mesh, for which the memory requirements if using a
direct solver are close to 2 Gbytes. In this case our solver takes 26 seconds to solve the system.

We compare this time against the commercial direct solver codeMUMPS, which takes
only 17 seconds:MUMPS is a multifrontal solver. Its main strategy consists in grouping
non-zeros in large blocks, which results in a good performance, even at the cost of some extra
memory requirement and the storage of extra zero entries. However, this kind of strategy is
not convenient for incomplete factorizations, since it is not known a priory which entries of
the factorization will be kept. This is the reason why we do not rely on multifrontal strategies.
However, our by-blocks strategy leads to good enough results for the direct solver.

Let us now solve the same system of equations with the iterative solvers. The system of
equations arising from this problem is non symmetric (it canbe symmetrized, but then it is not
definite), thus, we use the BICGSTAB accelerator. We use the multigrid reordering strategy.
In this case we take only2 seconds to reach the10−8 residual. Moreover, the amount of mem-
ory required for the preconditioner (fill-in 10) is 20 times smaller than the memory required
in the complete factorization. Thus, iterative solvers areuseful both for reducing storage and
CPU time requirements if we are considering large systems ofequations. Fig. 8.9 shows the
computational cost versus number of unknowns plot. In this case it is not convenient to use
diagonal compensation, since, at least for the block ordering we have, it may cause the pre-
conditioner to fail due to zeros on the diagonal of the factorized matrices. The complexity is
ofO(n1.5). Diagonal preconditioning is not plotted since the solver does not converge for very
fine meshes.

8.10.3 Navier-Stokes equations

Finally we turn into a real problem, in which the incompressible Navier-Stokes equations have
to be solved:

∂tu+ u · ∇u−ν∆u +∇p = f ,

∇ · u = 0,
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Figure 8.9: Computational cost versus number of unknowns for a 3D stationary Stokes prob-
lem.

with the suitable boundary conditions.
The aim of this example is not to study the algorithms performance but to see how the

FELAP general structure can be used to deal with different kinds ofproblems. When dealing
with the incompressible Navier-Stokes equations in real-life simulations it is very convenient
to use fractional step methods, which uncouple the Navier-Stokes equations, with 4 unknowns
per node, into 4 scalar systems of equations of 1 unknown per node.FELAP allows to easily
deal with this problem by attaching the four systems of equations to the same finite element
mesh, with which they share the graph.

In the example presented in Fig. 8.10,FELAP has been attached to a computational fluid
dynamics code (FAUST ), and used to solve the systems of equations which arise fromthe
finite element simulation of the flow in a water tank. The objective of the simulation is to
compute the chlorine concentration. Water enters the tank through a hole in the upper part of
the tank and leaves the tank through the holes in the lower part of the tank. For the transient
analysis, a fractional step method has been used.

8.11 Conclusions

In this chapter we have introduced theFELAP package to deal with the linear systems of
equations arising from finite element analysis problems. The main features of the package
are its capability to work with symmetric and unsymmetric systems of equations, direct and
iterative solvers and various renumbering techniques, including a mix of Cuthill-McKee and
multigrid type reorderings. Performance is enhanced by considering the finite element mesh
graph instead of the matrix graph, which allows to perform highly efficient block computa-
tions. This graph is stored in a particular way so that it is suitable for both CSR and CS-Crout
storage formats. Some numerical examples have been presented showing the capabilities of
the package.

However, a very important point in linear system solvers is the possibility of performing
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Figure 8.10: Real 3D problem. Incompressible Navier-Stokes equations solved by means of a
fractional step method.
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parallel computations, which are unavoidable if large system of equations are to be solved. Fu-
ture work will be developed so that the package is able to do large scale parallel computations.
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Chapter 9

Final 3D examples

9.1 Introduction

In this chapter we extend the methods proposed in the previous chapters to three dimensional
problems and we apply them to solve some numerical examples.Special attention is paid to
some of the implementation issues of the Fixed Mesh-ALE method in 3D. The linear systems
of equations which arise from these 3D problems are solved with theFELAPsolver.

9.2 Mesh-Mesh intersection in 3D

In this section we deal with the implementation of the algorithms for finding the intersection
between two finite element meshes which superimpose in space. These algorithms are needed
in order to find the integration domain for the finite element equations in the Fixed Mesh-ALE
method. There are two main steps needed to compute mesh-meshintersections:

• In order to find the intersection between two different meshes we will need to find the
intersection between the elements of the fixed mesh (corresponding to the fluid), and
the elements of the moving Lagrangian mesh (corresponding to the solid geometrical
definition). If we check the intersection of all the elementsof the fluid mesh against
all the elements of the Lagrangian mesh the number of tests ateach time step is of
O(nelemfixed × nelemlag), wherenelemfixed is the number of elements of the fixed
mesh andnelemlag is the number of elements of the Lagrangian mesh. This is not af-
fordable, and therefore a search strategy which allows us toreduce the number of inter-
section tests is needed.

• The second step is the actual intersection test between elements, with which we obtain
the intersection surfaces between two elements.

9.2.1 Spatial search strategy

The problem we need to solve is: given an element on the fixed mesh, which are the elements of
the Lagrangian mesh which arecloseto the fixed mesh element and could potentially intersect
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it? By knowing this, we can reduce the number of intersectiontests needed for each fixed mesh
element fromnelemlag (which could be millions!) to just a few elements.

There are several spatial strategies available to deal withthis problem, amongst them the
well known quadtree and octree algorithms (see [51]). This search strategies are very conve-
nient when data is non uniformly distributed in space, for example when the mesh is strongly
refined in a certain region of the space. In our case, however,we will not implement these tree
structures, and instead we will use a simplebinsstrategy which consists of two steps:

• Preprocess: The bins strategy consists of uniformly partitioning the domain into several
cells, rectangles (in 2D) or rectangular prism (in 3D). Eachof these cells is assigned an
identity number, and a data structure is created in order to store the fixed-mesh elements
which are contained in the cell. Fig. 9.1 shows a uniform partition example for a 2D
square domain. The element in the figure would be included in cells F6, F7, G5, G6, G7,
H5, H6, H7 and H8. For ease of implementation, we also includethe element in cells
F5, F8 and G8: in this way we can check wether an element is contained in a cell just
by computing the minimum and maximumx, y andz coordinates of the element nodes.
For fixed meshes, this can be done once at the beginning of the computation.

• Search: when we want to test the intersection of a Lagrangianelement against the fixed
mesh elements, we check which are the cells of the bins partitioning in which the La-
grangian element is contained, and we perform the intersection test only against the fixed
elements which are also inside these cells.

Figure 9.1: Bins strategy for a fast element intersection algorithm. The element in red is con-
tained in the blue cells.

9.2.2 Element-element intersection

In the examples in the following sections we work with lineartetrahedra for both the fluid
and the solid problems. We will describe here the algorithmsused to compute tetrahedron-
tetrahedron intersections. These algorithms can be adapted to higher order elements.
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As explained in Chapter 4, in the FM-ALE method we integrate the finite element equations
only over the region of each element which is inside the physical domain. We need to find the
intersection between the boundary faces of the Lagrangian mesh and the fixed mesh elements,
as illustrated in Fig. 9.2. To do this we test the intersection of all the faces of the fixed element
against the boundary faces of the Lagrangian element. The information we keep from the
intersection are the intersection points on theedgesof the fixed mesh elements.

Figure 9.2: Intersection between a fixed mesh element (green) and a boundary face in a La-
grangian element (blue).

For the triangle-triangle intersection tests we use the algorithm proposed in [105], which is
widely used in the computer graphics community. This algorithm is intended to check wether
two triangles intersect in space, but it does not actually compute the intersection segments or
lines. We have slightly modified it so that we obtain also the intersection points. The algorithm
reads as follows:

Let us denote the two trianglesT1 andT2, and its vertices byV 1
0, V

1
1 andV 1

2 for T1 and
V 2

0, V
2
1 andV 2

2 for T2.

• Find the equations of the planes containingT1 andT2, which we denote byπ1 andπ2:

πi : N i ·X + di = 0

N i = (V i
1 − V i

0)× (V i
2 − V i

0)

di = −N i · V i
0 (9.1)

whereX is any point onπi.

• Compute the signed distance from the vertices ofT1 to π2 by inserting them in the
equation forπ2:

dV 1
j
= N 2 · V 1

j + d2, j = 0, 1, 2 (9.2)

• Compute the signed distance from the vertices ofT2 to π1 in the same manner.
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• If all the dV 1
j

have the same sign thenT1 lies on one side ofπ2 and the test is rejected.
We do the same forT2.

• We can now compute the intersection points betweenT1 edges andπ2. We do this only
for the triangle edges in which the sign ofdV 1

j
is different for each of the vertices of the

edge (that is to say, the vertices lie in different sides ofπ2). The intersection point for
the edge connectingV 1

i andV 1
j can be found by computing:

I1
ij = V 1

i +
dV 1

i

dV 1
i
− dV 1

j

· (V 1
j − V 1

i ) (9.3)

This yields two intersection points forT1. We do the same forT2.

• Now we have the intersection line segments forT1 andT2. This segments are both on the
same line, as shown in Fig. 9.3. We only need to check wether the intersection points of
T1 are contained on the intersection interval ofT2, and vice versa. This can be done by
computing the line equation and assigning a line parameterλ to each intersection point:

X = I1
ij + λ · (I2

ij − I1
ij) (9.4)

whereI1
ij andI2

ij are two of the previously computed intersection points.

Figure 9.3: Intersection between two element faces. Intersection line betweenπ1 andπ2 and
intersection points on the line. Blue points correspond toT1 intersection points, red points
correspond toT2 intersection points.

9.3 Subelement integration in 3D tetrahedra

In the previous section we have seen how to find the intersection points between fixed ele-
ments and Lagrangian elements. The intersection algorithmreturns the intersection points in
the edges of the tetrahedron. We now need to subintegrate inside the elements. There are three
different subintegration cases:

• One of the tetrahedron nodes is inside the physical domain and the other three nodes are
outside.
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• Two of the tetrahedron nodes are inside the physical domain and the other two nodes are
outside.

• Three of the tetrahedron nodes are inside the physical domain and the other one is out-
side.

Fig. 9.4 shows each of these subintegration cases, and how the subintegration region is decom-
posed into subelements in order to properly integrate in this region.

Figure 9.4: Subelement integration. Blue: integration region. Green: discarded region. Top:
1 node in case, integration region decomposed into 1 subelement. Middle: 2 node in case,
integration region decomposed into 3 subelements. Bottom:3 node in case, integration region
decomposed into 3 subelements.
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9.4 Numerical examples

9.4.1 Flow over a bending plate

In this section we consider the incompressible flow over a bending plate. The considered plate
is set inside a channel with dimensions3× 0.5 × 1, and the plate dimensions are0.1× 0.4×
0.6. Boundary conditions are set toux = 1 in the inflow wall, andu = 0 in the lateral
walls. A do nothing(zero-traction) boundary condition is set in the outflow. Inthe interface
between fluid and structure the usual non-slip Dirichlet boundary conditions and continuity of
tractions condition are applied. Fluid viscosity is set toν = 0.01, yielding a Reynolds number
Re = 100 based on the inflow velocity and the channel width. For the structure we consider a
Young modulus ofE = 500 and Poisson ratioν = 0.48. Although the plate undergoes large
deformations in this problem setting, we only consider a linear elastic material for this simple
illustrative example.

The strategies described in the previous chapters are used in order to perform the simula-
tion, including the FM-ALE strategy, the strong impositionof boundary conditions in embed-
ded grids strategy, the use of stabilized formulations for the computation of the fluid dynamics
(although we do not apply the subscales on the boundary strategy here) and the use of the
FELAP solver to deal with the linear systems of equations to be solved. A light preconditioner
(sparsity ratio equal to 2) is computed prior to the solutionof each linear system of equations in
order to improve the performance of the GMRES iterations. Weuse a semi-implicit approach
in which the domain for the simulation is computed explicitly at the beginning of each time
step and implicit integration schemes (backward Euler for the fluid, Newmark-beta scheme for
the solid) are used for the solution of the dynamics equations in each subdomain. An explicit
iteration by subdomain approach is used to deal with the coupling between fluid and structure
at each time step.

After an initial transient, the plate reaches an stationaryposition. Fig. 9.5 shows the final
position of the bending plate and the velocity and pressure fields in the channel. We can observe
that the fluid is forced to flow around the plate and at the same time exerts some pressure on
the it which makes the plate bend. As soon as the flow has surpassed the plate it returns to the
center of the channel.

Regarding the behavior of the linear systems of equations solver, the mean number of iter-
ations needed to achieve convergence in the GMRES algorithmwas102, with little variation
in the number of iterations between different time steps.

9.4.2 The water entry of a decelerating sphere

In this section we consider the 3D numerical simulation of ansphere falling into water. In
particular we try to reproduce the experimental results reported in [3]. Several experiments
are performed in this work, we will simulate the impact of a Nylon sphere into water. The
problem setting is the following: a one inch (2.54 cm) diameter nylon sphere is dropped into
a water tank. The tank has dimensions of30 × 50 × 60 cm3 and the sphere is dropped from
a 25 cm height, which yields an impact vertical velocity of2.17 m/s. Water density isρ =
1000 kg/m3, and its viscosity isµ = 0.00089 Ns/m2. Nylon density isρN = 1140 kg/m3, its
Young modulus beingE = 3 GPa, the Poisson coefficientν = 0.2.
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Figure 9.5: Velocity and pressure fields for the bending plate example after the stationary state
is reached.
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The physical domain of the water tank is much larger than the sphere, and in fact the
sphere water impact has little effect on the flow in the boundaries of the tank. Taking this into
account, and in order to minimize the required computational cost, we only simulate a region
of 10×10×20 cm3. In order to take into account that the physical domain is much larger than
the computational domain, we do not impose Dirichlet boundary conditions on the walls of
the computational domain but we let water freely flow through. Instead, we impose Neumann
boundary conditions on these walls in which we prescribe tractions to be:

σ · n = ρgh (9.5)

whereρ is the fluid density,g is the gravity field andh is the depth with respect to the original
position of the free surface. Finally, we prescribe tractions to be null in the free surface:

σ · n = 0 (9.6)

For the boundary conditions in the contact between the sphere and the water free surface,
we use slip boundary conditions. Slip boundary conditions are a good approximation to the
real boundary conditions due to the following:

• In order to promote cavity formation and minimize drag spheres were sprayed with an
hydrophobic coat in the experiments.

• The cartesian meshes used to perform the numerical experiments are not capable of
reproducing the boundary layer in the fluid- sphere contact.

Moreover, and due to the presence of the hydrophobic spray coat, we do not allow the boundary
conditions to prevent the water surface from separating from the sphere in the upper half of
the solid body. At each iteration we test wether the water surface is trying to separate from the
solid body. If it is trying to separate, then Neumann (instead of slip) boundary conditions are
applied in the contact surface. Surface tension is not considered in the simulations, although
according to [3] its effect can be neglected at the considered impact speeds. A schematic of
the boundary conditions of the problem can be found in Fig. 9.6.

The strategies described in the previous chapters are used in order to perform the simula-
tion, including the FM-ALE strategy, the strong impositionof boundary conditions in embed-
ded grids strategy, the use of stabilized formulations for the computation of the fluid dynamics
(although we do not apply the subscales on the boundary strategy here) and the use of the FE-
LAP solver to deal with the linear systems of equations to be solved. A robust preconditioner
(sparsity ratio equal to 5) is computed prior to the solutionof each linear system of equations in
order to improve the performance of the GMRES iterations. Weuse a semi-implicit approach
in which the domain for the simulation is computed explicitly at the beginning of each time
step and implicit integration schemes (backward Euler for the fluid, second order Newmark
for the solid) are used for the solution of the dynamics equations in each subdomain. The time
step is set toδt = 0.002 s. An explicit iteration by subdomain approach is used to dealwith
the coupling between fluid and structure at each time step.

The Reynolds number isRe = 64844 based on the impact speed, the sphere diameter
and the water viscosity. The LES Smagorinsky model is used inorder to take into account
the turbulent subscales (see, e.g. [114, 123, 39] for background). This model is tight to the
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Figure 9.6: Problem setting for the water entry of a decelerating sphere.

numerical discretization in space of the flow equations, which in our case is performed using
the finite element method. The turbulent kinematic viscosity associated to this model is

νtur = ρ−1
0 ch2 [∇s(u) : ∇s(u)]1/2 ,

wherec is a constant, usually taken asc = 0.01, the colon stands for the double contraction
of second order tensors andh is the length of the element of the finite element discretization
described later where the turbulent kinematic viscosity isto be computed. The total viscosity
will be ν = νmol + νtur, νmol being the molecular viscosity.

Two different meshes are used to perform the computations. Although qualitatively correct
results are obtained with a 514000 element mesh, a better numerical approximation for the
time evolution of the position of the sphere is obtained witha 2469600 element mesh. Fig. 9.7
shows the time evolution of the sphere vertical position forthe experimental results and the
numerical solution. A quite good agreement is obtained for the finer mesh. Fig. 9.8 shows the
velocity and pressure fields at some representative time instants. Immediately after impact,
the sphere pushes water radially out, and the cavity behind it increases its size as time evolves
(first row). At a certain point, gravitational force compensates for the momentum the sphere has
transmitted to water and the cavity begins to collapse (second row). After cavity collapse, two
vertical jets pointing upwards and downwards are formed dueto the water incompressibility
constraint (third row). The upwards pointing jet achieves avertical velocity of the same order
of the sphere impact speed (forth row). Several snapshots are presented in Fig. 9.9, where the
numerical and the experimental shape of the free surface arecompared. We can conclude that
the physical phenomena is being correctly represented. Despite the large Reynolds number
a smooth free surface is obtained, and the collapse of the cavity behind the sphere due to
gravitational forces is correctly recovered.

Regarding the solution of the linear system of equations, most of the problems to be solved
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Figure 9.7: Comparison between experimental and numericalposition of the sphere

were easily solved with the FELAP package: the solid dynamics problem, the advection of the
level-set function, theL2 projection involved in the FM-ALE method... The most challenging
problem, as expected, was the solution of the transient Navier-Stokes equations. The number
of iterations required to achieve convergence (which was set to a relative residual of10−10) was
between the range of 30-200 iterations. The number of iterations was larger in critical steps like
the initial impact instant and the cavity collapse instant,but there was also a certain randomness
in the number of iterations per time step which was probably due to the dependence of the
condition number on the way the boundary of the domain cuts the elements. Unexpectedly,
the number of required iterations was smaller for the finer mesh, although the same sparsity
ratio was used for building the preconditioner. This might be due to the fact that in this highly
convection-dominated problem the finer mesh yields a more stable finite element matrix.

9.5 Conclusions

In this chapter we have applied the FM-ALE method to solve fluid-structure interaction prob-
lems in 3D. We have paid special attention to the algorithms needed to compute the mesh-mesh
intersections and the subelement integration, which are a bit more complex when extended to
3D. TheFELAPpackage for solving linear systems of equations has been used. The behavior
of both algorithms has been tested in two numerical experiments with satisfactory results. We
can conclude that the FM-ALE method and theFELAPpackage provide an interesting tool to
deal with multiphysics problems in time evolving domains.
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Figure 9.8: Velocity and pressure fields at different steps of the simulation
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Figure 9.9: Comparison between experimental and numericalresults



Chapter 10

Conclusions

In this chapter we present the achievements and conclusionsobtained during the preparation
of the present work, and we state some of the possible future lines of research.

10.1 Achievements

We have presented a series of works in the fields of fixed mesh methods and stabilized numer-
ical formulations:

• In Chapter 2 we have proposed a way to strongly prescribe Dirichlet boundary conditions
for immersed boundary methods. The main idea is to use as degrees of freedom for this
imposition those associated to the nodes adjacent to the boundary of the computational
domain. The method proposed turns out to be accurate (secondorder for linear elements)
and robust. We have checked its numerical performance in a variety of situations in flow
problems, paying particular attention to problems that require stabilization. From the
implementation point of view, the method satisfies the main design condition of using
only the degrees of freedom of the mesh ofΩh.

• In Chapter 3 we have proposed a way to weakly prescribe Dirichlet boundary conditions
in embedded grids. The key feature of the proposed method is that we do not need a large
penalty parameter to ensure stability and that it is symmetric for symmetric problems.
The method turns out to be accurate (second order for linear elements) and robust for
all the problems tested except for the pure transport equation, in which we are not able
to recover quadratic convergence. Further work needs to be developed to find a proper
definition of the weighting terms for the imposition of boundary conditions in the pure
transport equation. When compared to the method described in Chapter 2 we can con-
clude that both methods perform similarly well and are suitable for flow problems.

• In Chapter 4 we have introduced in detail the concept of the FM-ALE approach. which
consists in using the standard ALE method but remeshing at each time step so as to use
always the same given mesh. Ad-hoc approximations to account for the advection of
information that can be found in several fixed-grid methods are avoided. This is in par-
ticular reflected by the treatment of the so called newly created nodes. Results have been
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compared to those of other fixed grid methods, showing the need of correctly computing
the advection of information between time steps.

• In Chapter 5 the FM-ALE approach has been applied to solid mechanics and Fluid-
Structure Interaction problems. For solid mechanics problems the FM-ALE method is
of special interest when the solid body is subject to very large strains. In this case La-
grangian formulations cannot be used due to the ill-conditioning caused by the large
element stretch. The FM-ALE method, on the other hand, avoids element stretching by
using a fixed mesh. Results show that the method is robust and accurate. In the case of
Fluid-Structure Interaction problems, the FM-ALE method can be applied to solve the
flow and the solid mechanics problems. The main feature of using this approach is the
possibility of using a single background mesh to solve both mechanical problems. For
free surface problems the FM-ALE method avoids the need for remeshing which appears
in classical Lagrangian or ALE methods. Moreover, the free surface is tracked in a very
natural way with the level set function strategy, allowing for the solid bodybreaking the
free surfacewithout any further algorithmic steps. We have paid specialattention to the
interaction between the level set function and the solid boundary function which define
the fluid domain. The proposed method has been used to solve the problem of rigid bod-
ies falling into water, and has proved to be robust and provide smooth solution fields,
even at the critical instant in which the solid body contactsthe free surface.

• In Chapter 6 we introduce a way to approximate the subscales on the boundaries of
the elements in a variational two-scale finite element approximation to flow problems.
The key idea is that the subscales on the element boundaries must be such that the
transmission conditions for the unknown, split as its finiteelement contribution and the
subscale, hold. The final result is that the subscale on the interelement boundaries must
be proportional to the jump of the flux of the finite element component and the average of
the subscale calculated in the element interiors. This allows for the use of discontinuous
pressure interpolations in the Stokes problem, like for exampleP1/P0 elements.

• In Chapter 7 we have applied the subscales on the boundaries strategy to deal with do-
main interaction problems. Particular emphasis has been put here on the treatment of
Neumann-type boundary conditions. The same ideas have beenapplied to the homo-
geneous interaction between two subdomains. In this case, the benefit of the boundary
terms is a stronger enforcement of the continuity of fluxes between subdomains. The
matrix structure of the resulting system has been describedand iterative schemes to be
used in an iteration-by-subdomain environment have been proposed. The fluid structure
interaction problem has then been treated. The extension ofthe previous ideas to this
case has led to a modification of what can be considered a classical solid-fluid iterative
coupling. The boundary terms introduced, which cancel whenconvergence is achieved,
would hardly be motivated from a purely algebraic point of view. All our predictions
have been stated based on physical reasoning, without numerical analysis. Numerical
experiments have confirmed the theoretical predictions. Inparticular, a better enforce-
ment of the continuity of fluxes is found in homogeneous domain interaction problems
and convergence of solid-fluid iterative coupling algorithms is greatly improved by the
terms we suggest to introduce.
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• In Chapter 8 theFELAP package to deal with the linear systems of equations aris-
ing from finite element analysis problems has been presented. The main features of the
package are its capability to work with symmetric and unsymmetric systems of equa-
tions, direct and iterative solvers and various renumbering techniques, including a mix
of Cuthill-McKee and multigrid type reorderings. Performance is enhanced by consider-
ing the finite element mesh graph instead of the matrix graph,which allows to perform
highly efficient block computations. This graph is stored ina particular way so that it
is suitable for both CSR and CS-Crout storage formats. Some numerical examples have
been presented showing the capabilities of the package.

• In Chapter 9 we have applied the FM-ALE method to solve fluid-structure interaction
problems in 3D. We have paid special attention to the algorithms needed to compute
the mesh-mesh intersections and the subelement integration, which are a bit more com-
plex when extended to 3D. TheFELAPpackage for solving linear systems of equations
has been used. The behavior of both algorithms has been tested in two numerical ex-
periments with satisfactory results. We can conclude that the FM-ALE method and the
FELAPpackage provide an interesting tool to deal with multiphysics problems in time
evolving domains.

10.2 Future work

We succinctly describe here the open lines of research:

• To apply the FM-ALE formulation to two phase flow problems. The classical way of
dealing with two phase flow problems consists of solving the problem in an Eulerian
manner, considering velocity, velocity gradients and pressure to be continuous across
the surface which separates the two immiscible fluids. As in fact only the velocity field
is continuous across this surface (not the velocity gradient nor the pressure), this causes
spurious velocity fields to appear. Some methods have been devised to minimize this
effect, in particular theX-FEM method which allows velocity and pressure to be discon-
tinuous across the surface. The method we have presented in Chapter 5, which consists
on duplicating the degrees of freedom of the nodes belongingto elements cut by the
body border, can be understood as an X-FEM method which couldbe applied to two
phase flow problems. However, our main contribution would beto treat the problem in
an ALE framework near the discontinuity: as explained in subsection 4.2.3, values of
the unknowns at the nodes of the first fluid are uncoupled from those at the second fluid,
and as a consequence they cannot be used to compute temporal derivatives on nodes in
the first fluid. The FM-ALE method copes with this problem by using ALE instead of
purely Eulerian formulations, which we hope will avoid the spurious velocity fields to
appear.

• To add some local-refinement capability to our FM-ALE code bymeans of the use of
hanging nodes. In the FM-ALE method we favour the use of Cartesian grids dueto
the ease of generation and the fact that there is no need for the boundary of the mesh to
match the boundary of the domain. However, it is still interesting to be able to have some
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local refinement around the fluid-solid interface region. A way to achieve this without
the need of using an unstructured mesh is to refine by subdividing elements in refined
regions and couple the refined elements to the original coarse elements with the so called
hanging nodes, and the use ofdiscontinuous Galerkintype strategies.

• To develop and incorporate to the FM-ALE algorithm a librarywhich includes a more
precise mesh-mesh and levelset-mesh intersection algorithm. In all the numerical exam-
ples presented, mesh-mesh and levelset-mesh intersections were simplified to points in
the edges of the elements. It would be interesting to improvethe performance of the
FM-ALE algorithm by using a library which is capable of correctly dealing with sharp
edges and the complex to integrate geometries of fluid volumes in elements cut at the
same time by the solid body boundary and the levelset function.

• To find a computationally efficient formulation for the stabilizedP1/P0 element for the
Stokes problem developed in Chapter 6. We have looked for an efficient implementation
of the P1/P0 interpolation, which consists of condensing the pressure unknowns by
sending the off-diagonal terms corresponding to the pressure test function equations to
the right hand-side. Several iterative and explicit methods have been presented which are
suitable for stationary and transient problems respectively. However, although some of
these methods work, none of them shows a fast enough convergence to be competitive
with theP1/P1 interpolation. Further research will be carried out in order to consider
more complex iterative schemes (starting with, for example, Gauss-Seidel iterations)
which might allow to condense the pressure unknowns and at the same time obtain
convergence in very few iterations.

• To continue developing theFELAP package of solvers for linear systems of equations
arising from the finite element method analysis. The main structure and the basic tools
of FELAP have already been coded. However, some of the design requirements for
FELAP have not been reached yet, amongst them, to make the solver capable of deal-
ing with parallel computations, which are unavoidable if large system of equations are
to be solved.
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[105] T. Möller. A fast triangle-triangle intersection test. 1997.



Bibliography 243

[106] K.B. Nakshatrala, D.Z. Turner, K.D. Hjelmstad, and A.Masud. A stabilized mixed finite
element method for Darcy flow based on a multiscale decomposition of the solution.
Computer Methods in Applied Mechanics and Engineering, 195:4036–4049, 2006.

[107] N.M. Newmark. A method of computation for structural dynamics. Journal of Engi-
neering Mechanics Division, ASCE., 85:67–94, 1959.
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