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1.1. Genes, mutations and diseases 
 
The origins of modern genetics date back to 1866, when Johann Mendel published 
his work on pea plants and described the basic patterns of inheritance and several 
seminal concepts such as phenotype, dominance and recessiveness. Some years 
later it was established that these principles could be applied to the human 
inheritance of several traits, including diseases such as alkaptonuria1 (the first 
genetic disease identified ever, by Sir Archibal Garrod in 1902). However, it wasn’t 
until 1943 that Avery, MacLeod and McCarty identified the DNA as the cellular 
component holding the genetic information2. This discovery, along with that of the 
DNA’s composition by Chargaff in 19483 and the DNA’s structure in 1953 by Francis, 
Watson and Crick4, set the ground for Baglioni to discover alterations in the globin 
gene causing sickle-cell anemia, the first mutations at the protein level associated to 
a disease in 19625.  
 
The identification of the mutations and genes causing disorders at the DNA level was 
difficult at first. For example, the first published repository of genetic disorders, 
“Mendelian Inheritance in Man” by Victor McKusick6, had over 1400 entries but no 
autosomal loci in its first edition. The development of various biological 
technologies, including DNA sequencing, southern, northern or western blotting and 
DNA recombination among others, facilitated the discovery of several types of 
disorders caused by both germline and somatic mutations. 
 
There are several types of mutations depending on the type and extend of the DNA 
alteration (table 1). The largest mutations are the loss or gain of complete 
chromosomes, followed by inversions deletions and duplications of chromosomal 
regions (that usually involve several genes), or translocations of DNA fragments from 
one chromosome to another. There are also various types of mutations that involve 
smaller regions of DNA, such as deletions or insertions of few bases or the 
substitution of one base for another. This group of smaller mutations can be 
classified according to the location of the mutation in the gene body into coding and 
non-coding mutations. 
 
Non-coding mutations are those mutations that are located in genomic regions that 
are not translated into protein. These mutations are usually associated to disease by 
disrupting genomic regions that regulate gene expression, such as promoters or 
enhancers. Another pathogenic mechanism is the disruption of splicing sites that 
impede the proper splicing of transcripts and, thus, their correct translation into 
proteins. 
 
Coding mutations affect the region of genes that is translated into protein. Deletions 
and insertions in coding regions are usually pathogenic by altering the reading-frame 
of the transcript. Yet, some other remarkable mechanisms have been described, 
such as the repeated in-frame insertion of triplets that has been associated to 
neurodegenerative diseases like Huntington’s disease7. Those diseases are usually 
caused by the in-frame expansion of a codon (CAG). In fact, clinical features of these 
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diseases, such as their age of onset or their severity, are correlated with the number 
of expanded triplets8. 
 
Coding point substitutions can have various effects in the protein. Due to the 
degeneracy of the genetic code they may simply alter the DNA sequence but not its 
translation, in which case they are referred to as “synonymous” or “silent”. These 
mutations, while usually are not associated to disease, can alter the splicing of the 
mRNA9, the protein translation rate10 or the RNA structure11, sometimes leading to 
the appearance of some disorders. Another option is that they introduce a stop 
codon. In this case they are called “truncating” or “nonsense” mutations and are 
usually pathogenic by disrupting the protein. The last possibility is that they change 
the aminoacid that the codon is coding, in which case one talks about “missense” 
mutations. 
 
Missense mutations can be pathogenic through several mechanisms. For example, 
among others, they may alter the proper folding of a protein, disrupt the catalytic 
site of an enzyme, impede the formation of disulfide bonds, modify an interaction 
region or disrupt motifs of post-translational modification, such as phosphorylations 
or glycosylations. 
 

Table 1.- Types of mutations and associated diseases 
 

Extension of 
DNA affected Name Example Diseases 

Large 

Chromosome 
gain/loss 

Down’s syndrome12, cancer13, triple X 
syndrome14  

Inversion Holoprosencephaly spectrum disorder15 

Deletion Wolf-Hirschhorn Syndrome16, 11q- 
syndrome17 

Translocation Chronic myeloid leukemia18 

Small 

Insertion Huntington’s disease19, Tay-Sach’s 
disease20 

Deletion Hypercholesterolemia21, familial 
adenomatous polyposis22 

Silent Cystic fibrosis9,11, Treacher-Collins 
syndrome23 

Nonsense Beta-thalassemia24, Breast and Ovarian 
cancer25 

Missense Sickle-cell anemia26, Noonan syndrome27 
 
It is important to notice that though all the types of mutations can be associated to a 
disease, most mutations are benign. For example, the most common form of 
mutations, single-base substitutions, occur at a frequency of about 1 mutation per 
200-1000 nucleotides28, which means that every human genome contains around 6 
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million such mutations. In order to differentiate between the two, mutation is 
normally used to describe those alterations that are disease-associated and variation 
is used to describe those alterations that are benign. 

1.2. Bioinformatics and disease 
 
The publication of the first draft of the human genome29,30 and further technological 
developments allowed scientists to use genome-wide technologies, such as 
microarrays, proteomics, GWAS or whole-genome or exome sequencing. All these 
genome-wide technologies have proven useful in pinpointing pathogenic 
mechanisms and identifying pathways involved in a wide variety of phenotypes 
including cancer31,32, Crohn’s disease33 or schizophrenia34. This is reflected by the 
exponential growth of the number of entries in two of the most common-used 
repositories devoted to human diseases: OMIM and COSMIC (figure 1).  
 
The typical output of the aforementioned technologies is usually a large list of genes 
or mutations that are potentially associated to a given phenotype, which may not be 
the actual list of those disease-associated. For example, in the case of GWAS, the 
output is a list of single nucleotide polymorphisms (SNPs) ordered according to their 
p value of association to the phenotype35. Given that not all the SNPs are actually 
explored in a GWAS, associated SNPs might be simply pointing to a region in linkage 
disequilibrium where the actual causal mutation is located or even be false positives. 
This highlights the need of further evidence in order to accurately identify the causal 
mutation from the whole list.  However, since it is unfeasible to obtain experimental 
evidence for all the genes and mutations from these lists, computational approaches 
to prioritize them or suggest molecular hypotheses on their underlying pathogenic 
mechanisms have become a must. 

 

The contributions of computational biology to the study of diseases and their 
associated genes and mutations are extensive. For example, several groups have 
developed algorithms that are able to sort pathogenic from neutral mutations based 
on several features. These include, but are not limited to, their structural 
properties36,37, the degree of conservation along the evolution of the affected 
position38, the propensity of the mutation to cause changes in the protein stability39 
or a combination of several of these properties40,41. 

Figure 1.- Data regarding disease associations has experienced an exponential growth in recent 
years. (a) Number of mutations in each version of the COSMIC database. (b) Number of entries per 
year in OMIM. 
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An experimental technique that has been proven very useful in identifying the 
pathogenic mutations involved in mendelian42 or complex43,44 disorders is whole-
genome or exome sequencing. Several types of cancer have also been sequenced 
(table 2). In this latter case a biomedical problem similar to that of the analysis of 
GWAS results arises: the identification of driver mutations. Tumor mutations can be 
classified into driver or passenger according to their overall contribution to the 
apparition of cancer. Driver mutations are those that are critical for a tumor to 
develop, whereas passenger mutations are those cancer-neutral variations retained 
during the evolution of the tumor45. 
 
Recent sequencing of genomes from tumor samples have revealed that the number 
of missense mutations per tumor ranges between 40 and 600 (table 2), though some 
cases of up to 4000 missense mutations have been described46. In order to identify 
the few driver mutations in each tumor the usual approach is to identify genes that 
are heavily mutated -by statistical means- along several tumor samples when 
compared to a random distribution of the mutations47, or compare the ratio of non-
synonymous to synonymous mutations in each gene48.  
 
The underlying idea in both cases is that, since these genes are systematically 
affected by missense mutations in cancer, their alteration must be a key event in 
cancer development. On the other hand, those genes mutated in only a few tumor 
samples are more likely to contain passenger mutations. Interestingly, a similar 
approach has been recently used to identify protein domains that are largely 
mutated in cancer, including the kinase domain, MH2, Miro or APC49. 
 
Detailed in silico studies of mutations can also lead to the generation of hypotheses 
regarding their molecular pathogenic mechanisms. Shan et. al. used computational 
molecular simulations to discover that the mutation L834R in the EGFR gene, 
associated to cancer, is pathogenic because it stabilizes an intrinsically disordered 
region of the protein50. This stabilization causes the domain to overdimerize, leading 
to abnormal activation of proteins downstream in the pathway. Similarly, Fröhling 
et. al. used a combination of in vitro and in silico experiments in order to identify 
driver mutations in the kinase FLT3 in acute myeloid leukemia51. They used 
predictions by SIFT38 and Pmut52 algorithms to complement results obtained from in 
vitro assays. Bioinformatic results correctly predicted 3 of the 9 driver mutations, 
whereas in 2 other cases the results of both programs did not agree. 
 
Analysis of pathogenic mutations and genes as a group has also led to important 
discoveries of the biology of diseases. Torkamani et. al. where able to identify 
regions of the kinase domain that are enriched in disease-related mutations when 
compared to background missense SNPs53. They related this phenomenon to 
differences in the degree of conservation along the regions and in their overall 
contribution to the function of the domain. Interestingly in another paper they also 
found differences in the location within the domain of mutations causing cancer and 
those causing any other disease54.  
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Table 2.- Average number of missense mutations per tumor identified in different types of tumor 
from several cancer genome sequencing projects 

 

Type of cancer Average missense 
mutations per tumor References 

Breast 60 Sjöblom47 

Colorectal 44 - 170 Sjöblom47, Nehrt49 

Large B-cell lymphoma 16 Pasqualucci55 

Prostate 50-4000 Kumar46 

Melanoma 643 Hodis56 

Lung 540 Lee57 

Ovarian 40 TCGA58 

Pancreatic 41 Jones59 

Glioblastoma multiforme 28 Parsons60 
 
 
Another fascinating example is the recent work by Vavouri et. al61 describing the 
correlation between the content of intrinsically disordered regions in a protein and 
dosage-sensible genes. They observed that genes that are harmful when 
overexpressed tend to have a high content of protein intrinsic disorder. Their 
proposed mechanisms is that overexpression of intrinsically disordered proteins is 
likely to result in interaction promiscuity and appearance of unspecific interactions, 
thus, causing a malfunction of the cell. Notably, cancer-related genes tend to have 
longer intrinsically disordered regions62. 

1.3. Enrichment Analysis 
 
Some of the first computational approaches developed to generate hypotheses and 
analyze genome-wide data were based in enrichment analysis. These approaches 
rely on the extensive annotation of the human genes with descriptions of the 
biological features of genes, such as their function or their involvement in biological 
pathways among many others. 
 
The main idea of the enrichment analysis is that the list of genes derived from a 
genome-wide experiment may be statistically biased in some of their biological 
properties (annotations) when compared to a list of genes of interest (usually the 
whole genome). These biased biological properties will then give a hint on the 
underlying biology involved in the studied phenotype (figure 3).  
 
In order to identify the biased features the enrichment analysis takes as input 
genome-wide annotations and a list of genes suspected to be related to the disease 
(derived from a genome-wide experiment). Then, in its simplest implementation, the 
Singular Enrichment Analysis (SEA), the analysis compares for each term of the 
controlled vocabulary the number of genes in the list derived from the experiment 
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that have the annotation with the number that would be expected if the list was 
chosen randomly from the genome, usually performing a hypergeometric or 
Fischer’s test. 
 
 

 

 
 
Enrichment analysis relies on extensive gene annotations of biological features. 
Given that the human genome contains around 20.000 genes, algorithms 
automating this analysis soon became popular. However, in order to automate this 

Figure 3.- Description of enrichment analysis to study genome-wide data. (a) General schema of 
the analysis. First of all a background model is needed (e.g. all the genes in the genome). Then, 
the distribution of annotations in the background model and in the list of genes of our interest 
obtained from the genome wide experiment (for example, all the genes above a certain fold-
change from a microarray experiment) is compared using statistics such as Fischer’s test. This is 
done by creating the contingency table shown in (b) and applying some method to correct for 
multiple testing, such as Bonferroni correction 
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analysis, the annotations must be computer-friendly, thus it is particularly important 
that they are unique and univocally identified. This need quickly turned scientists to 
the use of controlled vocabularies to annotate genes.  
 
A controlled vocabulary is a list of terms that describe a realm of knowledge. Each 
term of the vocabulary can be univocally identified, so that no confusions or miss-
annotations can be made. An example of a biologically relevant controlled 
vocabulary is KEGG63, which, among other things, provides the terms to describe 
several protein pathways. Each pathway and gene in KEGG has a unique identifier, 
which allows its users to recognize it unambiguously (for example, the “Glycolysis 
pathway” is always identified as “hsa:00010”). 
 
While controlled vocabularies solved the automation problem of enrichment 
analysis, its use has one limitation: when performing genome-wide analysis the p 
values required for an association to be statistically significant are very high. This is 
because multiple testing corrections are needed, which makes lack of statistical 
power an issue. One way to circumvent this problem is to use ontologies to annotate 
genes. An ontology in computer science is a type of controlled vocabulary defined by 
a set of terms that describe the domain of knowledge (the different biological 
processes in a cell for example) and the relationships between them. It can be 
represented by a directed acyclic graph in which nodes are the terms that belong to 
the domain of knowledge and edges represent the relationships between the terms 
(figure 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This structure of ontologies allows the identification of non-obvious associations by 
propagating the annotations using the relationships between terms described in the 
ontology64. Propagating the annotations along the ontology increases the statistical 

Figure 4.- Representation of a part of the gene ontology using a directed acylic graph. Bubbles 
represent different terms of the ontology. Arrows go from “child” to “parent” terms. Free text 
next to arrows explains the type of relationship. Notice that every child term is automatically 
annotated with all its parents. 
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power65 of the analysis. For example if a gene is annotated with the Gene Ontology66 
term “stem cell proliferation” (GO:0072089) we can infer also the annotation of this 
same gene with the GO term “cell proliferation” (GO:0008283) since the ontology 
defines that GO:0072089 “is a” GO:0008283 (figure 4). The most used ontology to 
perform SEA is the Gene Ontology. One of the reasons for that is probably that it has 
been extensively used to annotate human genes, both manually and electronically, 
and thus, it has a wide coverage of the genome.  
 
While the basic enrichment analysis, SEA, has proven useful in a variety of contexts 
several modifications have been developed trying to use more information derived 
from the experiment. These algorithms are usually referred to as Gene Set 
Enrichment Analysis65 (GSEA) and use all the genes and their associated values 
obtained in a genome-wide experiment (e.g. the fold-change in a microarray 
experiment) to perform the analysis and obtain the enriched terms67. 
 
The main idea of the GSEA is that instead of using only the genes with the highest 
signal (for example, those with a p value < 0.05), it uses the whole list of genes 
ranked according to their value in the experiment. This allows the use of information 
from genes that would be simply discarded in the SEA. The maximum enrichment 
score (MES) of each term of the controlled vocabulary is calculated using the ranked 
list of genes from the experiment, whereas the enrichment p values of each MES are 
obtained by comparing the rank with random distributions of the same genes67 or 
parametric statistical approaches such as the Z-score68,69. 
 
Some groups have also used the information from the ontology to improve the 
results obtained with the SEA. These approaches, usually referred to as Modular 
Enrichment Analysis (MEA)65, take advantage of the information regarding the 
relationships among terms that is intrinsic to the ontology. The main improvement 
of these algorithms is that by grouping the enriched terms according their biology, in 
the form of modules, biological patterns that wouldn’t be captured or difficult to 
identify by SEA may emerge70,71.  
 
The extensive annotation of human genes with GO terms and their use in 
enrichment analyses with data derived from genome-wide experiments, have 
certainly provided some insights into the biology of diseases. For example, López-
Bigas et. al. observed differences in the Biological processes and Molecular functions 
of genes associated to different types of diseases72. For example, they observed that 
genes involved in transport are overrepresented in metabolic disorders, but 
underrepresented in cancer. Hence, SEA has been particularly useful in the case of 
complex phenotypes, where focusing on single genes can be misleading since 
epistatic interactions are overlooked. Moreover, the aggregation of information 
makes the ontology useful in cases where epistatic associations may exist such as 
atherosclerosis73 or inflammatory bowel disorders74. 
 
Cancer is likely the disease that has profited the most from the use of ontologies to 
analyze its lists of associated genes in enrichment analyses75,76,77 where various GO 
terms, such as “Apoptosis”, “DNA repair”, “Intracellular signaling”, have been 
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identified to be overrepresented in cancer-causing genes and other GO terms, such 
as “Transporter” or “metabolism” are underrepresented. These associations have 
been used as predictors to identify new cancer-related genes or to infer new 
functional annotations in known cancer-associated genes77. 
 
Enrichment analysis can be performed using any ontology. However, though there 
are over 100 different ontologies listed in the OBO foundry78, few attempts to 
perform enrichment analysis using other ontologies than GO have been done. In one 
of them Tirrell and collaborators created a framework able to perform enrichment 
analysis in any set of genes using any type of ontology79. This same framework has 
been used later to perform an enrichment analysis using the DO80. In that 
experiment disease ontology terms were mapped to human genes using the NCBO 
annotator service and afterwards they performed an enrichment analysis using a set 
of genes that were annotated with the GO term “aging”. By doing this they were 
able to identify terms of the DO that were associated to aging-related genes, such as 
“Alzheimer’s disease”, “Insulin Resistance” or “Atherosclerosis” among others.  
 
Another example is the identification of a group of diseases with fewer mutations 
than expected within O-glycosylation sites81. In this example, mutations in proteins 
were related to disease terms extracted from the Unified Medical Language System 
(UMLS) and their properties where compared to those of a group of benign 
mutations from Swissprot. Nevertheless, recent work by Roque et. al. has shown 
that the normalization of clinical data with ontologies can provide meaningful 
insights into complex aspects of diseases such as their interrelationships and 
comorbidity82. 
 
The description and widespread availability of several sets of protein-protein 
interactions83 led to the general realization that proteins usually don’t perform their 
functions alone, but interacting with other proteins. Recently, some groups have 
developed algorithms that integrate this information with the enrichment 
analysis84,85. In order to do so they represent protein-protein interactions using 
networks, and take advantage of several of their mathematical properties 86. These 
approaches, unlike basic SEA, are not limited to genes with annotations or 
overlapping gene sets.  

1.4. Networks in biology 
 
A network (G) is formally defined in mathematics by the following equation: 
 
G(V,E) 
 
Where V are the nodes, or vertices, of the network and E are the edges connecting 
the nodes. They are usually used to represent, analyze and interpret complex 
relational data. They have been proven useful in the study of fields as diverse as 
social sciences87, semantics (ontologies are term networks66), economics88, or 
biology89. In these cases a node in a network represents an entity of our interest (a 



 17 

protein, for example), whereas the edges represent any relationship between the 
nodes (a physical interaction, correlation of expression between two genes etc.).   
 
Nodes and edges have some attributes. For example, edges can have different 
weights (usually in this case more important/relevant edges have higher weights 
than less important ones) and either be directed (if they have a direction, or are one-
way) or undirected (if they do not have a direction and thus are two-way). All these 
concepts have also implications when calculating the shortest path between nodes 
(the path between two nodes that has the minimum weight, calculating this weight 
as the sum of all edges involved in the path). 
 
Properties can be defined for nodes, such as their degree (the number of edges 
connected to a node) their clustering coefficient (the ratio between the actual 
connections between all node’s neighbors and those that are possible) or their 
betweenness. This last concept is defined as the fraction of shortest paths of a 
network where a node appears. Networks have several attributes that can be used 
to characterize and describe them too (table 3). 
 

Table 3.- General attributes of networks 
 

Attribute Definition 

Size The number of nodes in a network 

Density The ratio between the number of actual edges and the 
number of possible edges 

Average degree The average number of edges per node in a network 

Average path length The average number of steps between two nodes of the 
network 

Diameter The longest of all the shortest paths of a network 
Average clustering 

coefficient The average clustering coefficient of the nodes in a network 

 
 
According to these attributes, several models of networks have been defined. These 
include regular networks, the Random graph model90 (often referred to as the Erdös-
Reyni), the Small world model91 (or Watts-Strogatz) or the Scale-free model, defined 
by Barabasi and Albert92.  
 
There are several differences between the models. For example, in a regular 
network all nodes have the same degree, whereas in random networks the degree 
distribution of the nodes follows a normal distribution90 thus, nodes with very high 
or very low degrees are scarce or even absent. Networks following the Watts-
Strogatz model are built from regular networks with a posteriori random rewiring of 
a subset of their edges. This confers the network some interesting properties, such 
as a higher clustering coefficient than random networks, but higher connectivity 
than regular networks91. The degree distribution of these networks depends on the 
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percentage of rewired edges, the higher the percentage the more similar to a normal 
distribution and the smaller the clustering coefficients. 
 
Finally, in the scale-free network the degree distribution of its nodes follows a power 
law, where most nodes have very few edges and a very few nodes have the most 
edges92. This model is currently used to describe a great variety of things, such as the 
connections between different web sites, the worldwide distribution of flights and 
airports or the physical interactions between proteins in a cell93. An important 
concept that appears in scale-free networks is the “hub”. These are the nodes with 
the highest degree and, because of that, are critical in the connectivity of the 
network since their removal greatly increases the average path length94. 
 
Figure 5 shows one undirected example of each model of network and some of their 
properties are summarized in table 4. All the networks have a size of 100, however 
their densities (which correlates with the number of edges) are different, being the 
scale-free model the one with the lowest density (and the lowest number of edges), 
which is reflected in the average node degree of each network. However, despite the 
lower number of edges and average degree, the average path length and diameter 
of the scale-free model are not different to those of Erdös-Renyi or Watts-Strogatz. 
This is due to the presence of hubs in the scale-free model, which centralize the 
paths of the network, allowing the shorter connections between nodes with few 
edges. 
 
Several types of networks have been used to describe complex biological data such 
as food-webs95 or neuronal networks96, most attention has turned to networks 
describing molecular data.  For example, protein interaction networks are currently 
described for several organisms, from Homo sapiens83 to Drosophila melanogaster or 
Caernohabtidis elegans97. These are usually undirected networks, and all of them 
have shown a scale-free distribution, suggesting an evolutionary role of this type of 
organization of the interactome98.  
 
Not only global network properties of protein-protein interaction networks are 
preserved through evolution, but also the organization of certain sub-networks or 
“modules” with critical functions for the cell98,99. Networks representing metabolic 
data have also been created and do have scale-free properties too89. In this case 
nodes usually represent metabolites whereas edges connect metabolites sharing 
reactions100. 
 
Transcriptional regulation networks are used to represent information regarding 
gene regulation101.  Therefore, unlike protein-protein interaction networks, they are 
usually directed with edges going from the transcription factor to the target 
regulated gene101,102. Interestingly, this network in Saccharomyces cerevisae is scale 
free when taking into account only the outgoing edges for all nodes (the out-
degree), whereas they follow an exponential function model when analyzing the in 
edges only (in-degree)103. This suggests that regulation of the same gene by multiple 
transcription factors is less likely to occur than regulation of multiple genes by a 
single transcription factor104. 
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Table 4.- Attributes of three networks following different models 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
One last interesting example of the application of network science in biology is the 
analysis of disease networks. These networks connect diseases according to different 
features such as sharing genes105 or comorbidity106,82. One striking feature of the 

Parameter Regular Erdös-Renyi Watts-Strogatz Scale-free 

Size 100 100 100 100 

Density 0.061 0.053 0.060 0.040 

Av. degree 6 5.2 5.96 3.94 

Av. path length 3.99 2.91 2.88 2.97 

Diameter 7 6 5 5 

Av. clustering 0.2 0.037 0.214 0.142 

Figure 5.- Graphical representation of three networks of the same size (100) but created following 
different models. Nodes are colored and sized according to their degree from bigger and red 
(nodes with higher degree) to smaller and blue (lower degree). From left to right: Regular 
network, Ërdos-Renyi, Watts-Strogatz and Scale-free. Notice the lower number of edges in the 
scale-free network and the presence of hubs (bigger nodes colored red) connecting most nodes. 
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network by Goh et. al. is that most (68%) diseases are connected to other diseases 
and a significant proportion (40%) form a single component, which means that there 
is indeed a genetic connection between the majority of disorders105. 

1.5. Diseases and networks 
 
Recent developments in network science and mathematics have also had 
implications into our understanding of how diseases arise. From the “one gene, one 
protein, one function” hypothesis107, with the description of the interactome and the 
complex interrelationships between proteins, scientists now also take into account 
the influence of the network organization as factor to describe the interrelationship 
between genotype and phenotype108.  
 
One great example on how interactome data can help in understanding 
genotype/phenotype relationships is the recent work by Zhong et. al.109. They 
hypothesized that mutations in the same gene might be associated to different 
disorders depending on the type of network perturbation that they were causing. 
From the point of view of interaction networks mutations may cause two types of 
alterations with different consequences: removal of a node or removal of an edge(s) 
(figure 6). 
 
Removal of a node could be caused by nonsense mutations that cause non-viable or 
very small protein products (figure 6). In this case, since the protein is not present in 
the network, all the edges disappear which implies that none of the interactions of 
that protein can happen and, thus potentially affecting all the functions of 
neighboring proteins. On the other hand, missense mutations affecting an 
interaction surface, or nonsense mutations that leave a partial protein product, only 
disrupt some of the interactions of that protein. This affects only the function of 
some of the neighboring proteins, which can lead to different phenotypes. 
 
Zhong et. al. tested this hypothesis by mapping 50.000 mutations causing mendelian 
disorders109. They indeed observed different phenotypes for node-removal and 
edge-removal mutations. Moreover they were also able to identify differences in the 
phenotypes associated to mutations in the same gene but affecting different 
domains, thus putatively affecting different edges of the protein. 
 
However, the most important contribution of network science to the biology of 
diseases is probably the identification of new disease-related genes. Since the 
observation that genes encoding hubs tend to be essential93, several groups have 
tried to answer whether disease genes have specific locations in molecular 
networks. There is evidence, for example, that cancer proteins tend to have more 
connections when compared to the rest of the genome110,111. Genes associated to 
mendelian disorders also have more protein-protein interactions112 and lower 
clustering coefficients113 than the rest of the proteins of the genome. 
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These results, along with the observation that genes encoding similar functions tend 
to be located together in the interactome114 and that genes associated to the same 
or similar diseases tend to interact more than expected105, led to the development 
of several algorithms to predict disease-associated genes based on network features. 
These features include the closeness to other disease genes115, the disease centrality 
of the gene116, or its local topology signature117.  
 
Closeness-based methods, also called “guilty-by-association” methods, though they 
are not controversy-free118, are becoming very popular and several approaches have 
been proposed. The simplest method consists in ranking a list of candidate genes 
according to the number of direct neighbors (DN) in the interactome (distance 1) 
associated to the disease of interest119. This same idea has been successfully applied 
to protein function prediction120, and variations exploring neighbors in distances 2 or 
3 from the source node have also been developed121. In this last case a weighting 
schema proportional to the distance to the source node was also applied, so that 
annotations from genes at distance 3 had lower weight than annotations at distance 
2 (the same between distance 2 and 1). 
 
Other closeness-based methods rely of the identification of disease-modules. These 
methods arise from the observation that functionally related genes tend to form 

Figure 6.- Diseases as result of network perturbations. Mutations affecting the same gene may be 
associated to different diseases depending on the network perturbation they cause: the 
consequences of removing a whole node (e.g. a nonsense mutation at the beginning of the 
transcript) might be different than the consequences of a missense mutation affecting a single 
domain. 
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locally dense sub-networks122,123. Sub-networks can be identified by looking for 
groups of nodes with higher than expected number of edges between them and 
fewer than expected edges outside the module. These methods can be 
computationally challenging, though several algorithms have been developed 
recently124,125,126. 
 
There is also another group of algorithms exploiting the closeness to other diseases 
genes. These are based on diffusion of information through the network and they 
fully-exploit the local network structure, and thus, are usually more successful than 
direct-neighbor or module-based approaches115. Algorithms in this category include 
random walk with restart (RWR), diffusion kernels (DK)127 or propagation flow128. In 
the case of RWR127 the algorithm calculates the steady-state probability of ending in 
each node of the network when walking randomly through the network. Candidate 
disease genes are ranked according to this probability. Higher probabilities indicate 
higher connectivity to genes known to be associated to the disease, and thus, it is 
more likely that the candidate gene is also associated to the disorder. The walker 
starts from any node associated to the disease of interest and goes from one node to 
another randomly. Another interesting feature of this algorithm is that, in each 
iteration, there is a probability “p” of going back to the source node.  
 
Methods based on the similarity of the local topology of the gene are based on the 
idea that genes with similar local topologies can have similar functions129. The local 
topology of a gene can be captured using graphlet-based vectors. A graphlet is an 
induced non-isomorphic subgraph of a larger network. The difference between a 
graphlet and a motif is that, while both are subgraphs, a graphlet must contain all 
the edges between its nodes that appear in the larger network (that’s why it is 
induced), whereas a motif mustn’t, since it is only a partial subgraph130.  
 
Another important concept is that, in order to capture local topologies, one must 
take into account the difference between the positions within the graphlet. For 
example, in the 3-node graphlet forming a line, G1 (figure 7), there is a difference 
between being at the extreme of the line or in the middle. To identify genes 
associated to melanoma, Milenkovic et. al. counted the number of times that each 
node in the network appeared in each position of every graphlet between 2 and 5 
nodes. With this data they created for every node a vector with 72 dimensions (one 
for every position in each graphlet). Then, candidate genes were ranked according to 
the similarity of their vector to vectors from genes associated to melanoma117. 
 
Networks derived from interaction data have been also combined with networks 
derived from other sources of information to identify disorder-related genes. Yang 
et. al.131 used a RWR in a mixed network to perform their predictions. Their joint 
network consisted in a combination of two networks, one derived from interaction 
data and another one derived from protein-complex data, that were connected by 
edges connecting proteins belonging to each complex. Similar approaches combining 
networks from interaction and phenotypic similarity data have also been 
developed132,133,134,135. 
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Another approach consists in integrating the information from the protein-protein 
interaction network with that from other sources such as the GO, expression data 
from microarrays or ESTs or metabolic and pathway data from KEGG among many 
others. The main differences between these approaches rely on how they integrate 
the information. Chen et. al. calculated the score derived from a DK algorithm of 
each candidate gene in several networks and kept the highest136 for each gene after 
normalizing all the scores. On the other hand, Li and Patra137 and Lage et. al.138 used 
ranking statistics to combine the rankings of candidate genes obtained from multiple 
data sources. Other approaches are the use of support vector machines classifiers139 
or the creation of functional networks using naïve Bayesian classifiers140,141. 
 
A nice example of the application of functional networks to disease is the work by 
Lee et. al.142. To create their network they used 21 different types of information, 
such as mRNA coexpression, protein-protein interactions or protein complexes for 
human proteins and their orthologs in mouse, yeast, C. elegans or fly. Then, they 
trained a Bayesian classifier using one gold-standard of true interacting proteins and 
a set of negative interactions. This classifier yielded 476,399 functional interactions 
between 16,243 human genes. An important feature of this network is that 
functional interactions, the edges of the network, are weighted according to their 
supporting evidence. While they initially used this network to predict phenotypic 
effects in C. elegans143, their success encouraged them in using it to predict new 
disease-associated genes from GWAS data for diseases such as Chron’s disease or 
type II diabetes142. 
 
  

Figure 7.- The thirty different graphlets that can be constructed with 2, 3, 4 or 5 nodes. Different 
non-symetrical positions within each graphlet are also highlighted and numbered. This figure is 
from the publication by Milenkovic et. al.115 
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1.6. Summary 
 
In the era of “omics” data, the use of computational approaches to store, integrate 
and analyze biological information is becoming a priority, particularly in the field of 
biomedicine and the study of diseases. Bioinformatics methods have been 
successfully applied to numerous problems derived from this data explosion, such as 
the integration of experimentally-derived raw data with other sources of biological 
information in order to analyze it, the identification of features specific for 
biologically relevant sets of genes (such as those related to disease) or the 
prioritization of long lists of genes and mutations potentially associated to different 
phenotypes. 
 
In this thesis we will develop a new relational database of genes and mutations 
associated to disorders where annotations will be mapped to ontologies. By doing 
so, we will overcome some limitations of existing databases, such as their lack of 
normalization of annotations. This will provide us an optimal framework to 
investigate the use of ontologies and enrichment analysis to identify disease-specific 
mutation features that, hopefully, will help us in understanding some aspects of the 
underlying molecular biology of these diseases. Finally, we will explore whether 
networks derived from different types are better are predicting different diseases. 
Moreover, we will also test several combinations of these networks in order to see if 
they perform better than the networks alone. 
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Figure 8.- OCG tables and their relationships. Arrows indicate one-to-many relationships 

2.1.  Data handling 

Design and development of the relational databases 
 
Two databases were designed during this thesis. Both databases were created, 
managed and queried using the relational database system MySQL (version 5.1.39). 
The first one, OCG, was created to store data regarding disease-associated 
mutations and the corresponding protein features. The second one, CCBG, was 
created to manage proteins, their associated diseases and different types of 
relationships between proteins. 

OCG 
 
This database is based on the schema from the COSMIC database v44 (November 
2009). However, while we reused some of their tables, we have not used those 
containing information about samples and patient data. We also created some other 
tables to fit in information on mutation and protein features. The final database 
contains 21 tables. A general schema of the final database can be found in figure 8.  
All table’s descriptions can be found in the supplementary material 9.1. 
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Figure 9.- CCBG tables and their relationships. Arrows indicate one-to-many relationships. 

CCBG 
 
This database contains information on proteins, associated diseases and several 
types of relationships among the proteins. The final database contains 12 tables and 
its schema is described in figure 9. The descriptions of all the tables can be found in 
the supplementary material 9.2.  
 
Since the main purpose of the database is to retrieve different types of protein 
networks as fast as possible, all the entries in the table storing relationships among 
proteins, “Genes_related”, are duplicated. In one of the entries the first gene of the 
relationship is one of the members of the pair and in the other entry is the other 
gene. By doing this we only have to make one query instead of two to retrieve all the 
neighbors of a protein in a network. We are well aware that this could introduce 
some problems as it makes the table more prone to inconsistencies; this is why this 
table is only modified once, and by a script, when all the information is entered. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ontology Lookup Service 
 
All the ontologies used in this thesis were stored and queried in a relational database 
provided by the Ontology Lookup Service144 (OLS). This service, provided by a project 
of the European Bioinformatics Institute, maintains a database with many 
biomedical related ontologies, included those used in this thesis: the “Gene 
Ontology”66 (GO), the “Sequence Ontology”145 (SO) and the “Disease Ontology” (DO). 
Weekly releases of whole database dumps are available through EBI’s FTP server. 
We used the latest version available on 14/04/2011. 
 
The database contains mainly two tables named “Term” and “Term_path”. Table 
“Term” contains the definition of all the terms of all the ontologies while the 
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“Term_path” table contains information regarding relationships among terms. A 
more detailed description of this database can be found in the supplementary 
material 9.3. In order to fulfill our needs we added some terms and their 
corresponding relationships to the Sequence Ontology (SO). These are terms 
regarding different types of post-translational modifications and aminoacid-biased 
regions (table 5). 

 
Table 5.- SO terms manually added to the ontology. Terms highlighted in red are children of “Post-

translationally modified region” (SO:0001089), in dark blue of “sumoylation” (SO:1), in light orange of 
“palmitoylation” (SO:2), in light brown of “Phosphorylation” (SO:4), in light purple of “glycosylation 

(SO:3), in yellow of “compositionally biased region” (SO:0001066), in dark brown of “aminoacid 
enriched region” (SO:13) and in dark orange of “stretch” (SO:14) 

 

 

Term ID Translation Term ID Translation Term ID Translation 

SO:1SO1 sumoylation SO:28SO1 Ser-rich SO:54SO1 PolyThr 

SO:2SO1 palmitoylation SO:29SO1 Pro-rich SO:55SO1 Gln/Pro-rich 

SO:3SO1 glycosylation SO:30SO1 PolyHis SO:56SO1 Leu-rich 

SO:4SO1 phosphorylation SO:31SO1 His-rich SO:57SO1 Met-rich 

SO:5SO1 sumoylation type I SO:32SO1 Tyr-rich SO:58SO1 Arg/Asp/Glu/Lys-rich 

SO:6SO1 sumoylation type II SO:33SO1 Pro/Ser-rich SO:59SO1 PolyPro 

SO:7SO1 PKC phosphorylation SO:34SO1 Ala-rich SO:60SO1 PolyAla 

SO:8SO1 palmitoylation type III SO:35SO1 PolyPhe SO:61SO1 PolyIle 

SO:9SO1 palmitoylation type I SO:36SO1 PolyLys SO:62SO1 Gln/Gly-rich 

SO:10SO1 o_glycosylation SO:37SO1 Arg/Asp-rich SO:63SO1 Gln/His-rich 

SO:11SO1 palmitoylation type II SO:38SO1 Gln-rich SO:64SO1 Cys/His-rich 

SO:12SO1 n_glycosylation SO:39SO1 PolyMet SO:65SO1 Glu/Pro-rich 

SO:13SO1 aminoacid enriched_region SO:40SO1 Gly/Pro/Ser-rich SO:66SO1 Gln/Glu/Pro-rich 

SO:14SO1 stretch SO:41SO1 Pro/Ser/Thr-rich SO:67SO1 PolyAsn 

SO:15SO1 Ala/Gly/Ser-rich SO:42SO1 Glu-rich SO:68SO1 PolySer 

SO:16SO1 Arg/Glu-rich SO:43SO1 PolyGlu SO:69SO1 Ala/Gly-rich 

SO:17SO1 Arg/Lys-rich SO:44SO1 Glu/Pro/Ser/Thr-rich SO:70SO1 Ala/Pro-rich 

SO:18SO1 Arg-rich SO:45SO1 PolyGly SO:71SO1 Gln/Gly/Ser/Tyr-rich 

SO:19SO1 Thr-rich SO:46SO1 Lys-rich SO:72SO1 Glu/Lys-rich 

SO:20SO1 Asp/Glu-rich SO:47SO1 PolyLeu SO:73SO1 Ser/Thr-rich 

SO:21SO1 Lys/Ser-rich SO:48SO1 Gly/Leu-rich SO:74SO1 PolyAsp 

SO:22SO1 Arg/Ser-rich SO:49SO1 Ala/Gly/Pro-rich SO:75SO1 Asp/Ser-rich 

SO:23SO1 Cys-rich SO:50SO1 Glu/Ser-rich SO:76SO1 Gly-rich 

SO:24SO1 PolyGln SO:51SO1 Gly/Pro-rich SO:77SO1 Asp/Glu/Lys-rich 

SO:25SO1 Gly/Ser-rich SO:52SO1 Asp-rich SO:78SO1 PolyVal 

SO:26SO1 Ala/Asp-rich SO:53SO1 PolyArg SO:79SO1 Arg/Gly-rich 

SO:27SO1 Gly/Thr-rich     
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Figure 9.- Identification and verification of genes and mutations found in text files using ENSEMBL 
API. Arrows in blue indicate steps involved in both, CCBG and OCG. Arrows in red indicate steps 
involved only in OCG. 

 

 Extraction of information from OMIM and GAD text files to OCG and CCBG 
 
OMIM6 and GAD146 text files were downloaded in 21/04/2010 and 16/03/2010 
respectively. We designed a parser written in Perl programming language (version 
5.10) to identify the genes, mutations and disease terms in both text files. We used 
the Perl module DBI (version 1.609) as interface to the relational databases and the 
module Bio::ENSEMBL to use the ENSEMBL147 Perl API. 
 
Both parsers first establish a connection to the corresponding database (OCG or 
CCBG) and to ENSEMBL. Then, the parser reads the file until a gene symbol, a disease 
and, in the case of OCG also a mutation, are found. At that moment, the information 
and the corresponding relationships between the elements are stored in the proper 
database.  
 
 
 
 
 
 
 
 
 
 
 
 
 

In order to do so, the parsers first look for the gene symbol in the text files. When 
the symbol is identified, a query is made to ENSEMBL to find the proper ENSEMBL 
identifier for the gene (figure 9, step 1). If a single gene is retrieved the parser moves 
to next step, however if more than one gene is found (which is usual for example if 
the gene is located in the HLA region of chromosome 6), the proper gene is manually 
identified from all the possibilities (usually less than 5).  
 
Then, the parsers search the DO term that best matches the disease words in the 
text file (figure 10). In order to do so they first look for the disease terms as found in 
the text in the DO. If there is a single match it keeps the DO identifier. If no matches 
are found they compare the words found in the text file with all the terms in the DO 
and keep those DO terms above a certain threshold. The edition score is calculated 
using the Perl module Text::Levenshtein (figure 10). If more than one match is found 
at this stage, the parsers iteratively look the parent of the terms that contains the 
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Figure 10.- Flowchart of the parser to identify the DO term from the description of the disease 
found in the text files. 

most initial terms (i.e.: if the two matches are “gastrointestinal adenoma” and 
“gastrointestinal lymphoma” we keep the parent of these two “gastrointestinal 
system cancer”) and keep its DO identifier. At this point, in the case of CCBG the 
gene’s symbol, ENSEMBL identifier and DO term identifier of the associated disease 
are stored and the parser moves to the next entry. 
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Since in CCBG we are only interested in gene-disease relationships this is the final 
step of the parser. However, in the case of OCG, we want to also store mutation 
data. In order to do so the parser takes two additional steps (figure 9, steps 2 and 3, 
marked in red). These consist in fetching all the coding transcripts of the ENSEMBL 
gene and their corresponding protein sequences. Then the parser checks in which of 
the protein isoforms the identified mutation is plausible. When a protein isoform 
matches the mutation’s coordinates, the gene symbol, its ENSEMBL identifier, the 
DO term, the mutation and the isoform’s ENSEMBL identifier are stored in the 
database. 

Extraction of information from COSMIC database 
 
An Oracle dump containing the whole COSMIC148 database version 44 was 
downloaded from the Sanger Institute FTP server on 25/11/2009. This dump was 
converted to MySQL format using DBConvert. COSMIC stores the histological 
description and the anatomical location of the samples where the mutations are 
found. The histology does not add a lot of information in version 44, since most of 
the mutations (>90%) are described as “carcinoma”. Thus we inferred the type of 
cancer for each sample from its anatomical location. Since the number of anatomical 
locations is relatively small (220), when possible, we manually mapped all the 
anatomical location to the best matching DO term.  
 
We tried to identify all the COSMIC genes in ENSEMBL. For each gene identified, its 
associated DO terms where extracted, as explained above, from the anatomical 
information of the mutated tumor samples. The gene symbol, its ENSEMBL identifier 
and the associated DO terms were stored in the databases. Again, in the case of 
CCBG this is the final step, since we were only interested in gene-disease 
associations. 
 
In the case of OCG, the program additionally fetches all the coding transcripts for 
each gene correctly identified in ENSEMBL and tries to map all the non-synonymous 
mutations described in COSMIC to them. When a mutation was successfully mapped 
to an isoform, the gene symbol, its own ENSEMBL identifier and that of the protein 
isoform, the mutation description and the DO term inferred from the anatomical 
location of the sample were stored in OCG. 

Mutated protein features 
 
For all the proteins in OCG we extracted different sequence features from both, 
publicly available resources and dedicated software. All the features were manually 
mapped to their corresponding PFAM or SO term and associated to the mutation site 
in OCG.  
 
We have added novel SO terms because we believe that important differences with 
biological impact are not reflected in the SO (table 5, mentioned in section 2.1). For 
instance, an “aminoacid-biased region” or “cryptic repeat” is a region of a protein 
that shows enrichment in a given amino acid. While it is a compositionally biased 
region (and, thus, it has been added as a children of this term in the SO), we have 
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made a distinction between this type of bias and “homopolymeric stretches”. These 
are regions that are made of linear repetition of a single amino acid (this term has 
also been added as a son of “compositionally biased regions” as well). 
 
The rationale to make this distinction is because polymorphisms in homopolymeric 
stretches have been associated to several types of diseases such as Huntington’s 
disease7 or oculopharyngeal muscular dystrophy149. The difference between these 
two, according to Uniprot, is that “aminoacid tandem repeats” are homopolymers of 
a single aminoacid with less than one interruption per five aminoacids, whereas 
“cryptic repeats” are larger regions that show a lower level of bias, but in which the 
aminoacid composition also differs significantly from that expected at random. We 
added also subtypes of “aminoacid-biased region” and “aminoacid tandem repeats”. 
For example, “Serine-rich regions” are “aminoacid-biased regions” where the amino 
acid bias is caused by an excess of serines. 

ENSEMBL 
 
Using the ENSEMBL Perl API we extracted information regarding compositionally 
biased region and PFAM domains for all the mutation sites. Mutation sites falling 
within compositionally biased regions where associated to its corresponding SO term 
identifier (SO:1066SO1), whereas those located inside a PFAM domain were 
associated to the domain’s PFAM identifier. Finally, we also extracted all the GO 
terms associated to the mutation site protein. 

Uniprot 
 
We queried Uniprot through its Das server to fetch several types of information on 
the mutation sites using the Perl module Bio::Das::Lite. However, since mapping 
ENSEMBL isoforms to Uniprot proteins is not direct we used the ENSEMBL API to 
find, for each ENSEMBL protein, the corresponding Uniprot ID. Once a Uniprot 
protein id was found, we tried to remap a window of 10 aminoacids centered in the 
mutation site from the ENSEMBL protein to that Uniprot protein. If the window 
could be mapped, the Uniprot coordinates for the mutation-site were calculated and 
the features extracted and mapped to the mutation, otherwise the feature was only 
extracted and stored in the table “ENSEMBL_prot_features”. We extracted 
information from Uniprot regarding several types of compositional bias, post-
translational modification sites, transmembrane regions, disulfide bonds, signal 
peptides and secondary structure. 
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Predictors 
 
We used a series of predictors to extract different types of features around the 
mutation sites. These predictors were either run locally or queried through Internet 
using different Perl modules. Table 6 summarizes this information. 
 
It’s important to notice that only wild-type sequences were used to make the 
prediction, thus we have no information on the mutated sequences. 
 
 

Table 6 .- Software used to predict mutation features 
 

Predictor Feature Run 
PsiPred150 Secondary structure Local 

CSS Palm151 Palmitoylation sites Local 
Sumo SP152 Sumoylation sites Local 
Sherloc153 Sub-cellular localization Local 
NetPhos154 Phosphorylation sites Das Server 
NetOGlyc155 O-glycosylation sites Das Server 

NetNGlyc N-Glycosylation sites Das Server 
FoldIndex156 Unstructured regions Server API 
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2.2. Identification of disease-specific features 
 
In order to identify features statistically associated to specific diseases we performed 
a two-tailed Fisher’s test comparing the distribution of the mutations between pairs 
of ontology terms. These pairs are formed by a term from the DO and another term 
from either the GO, the SO or PFAM. 

Enrichment analysis  
 
Two terms of two different ontologies are related if they share at least one 
mutation. We used the ontology structure to aggregate the information from 
children to parents so that we would be able to detect non-obvious associations. We 
have corrected multiple testing results using Bonferroni to avoid false positives. We 
have also identified three other possible sources of non-informative associations in 
our analysis. 
 
First, in any ontology there is a strong interdependence of the different terms. This is 
an intrinsic property of any ontology and therefore difficult to overcome. If two 
terms in our analysis show a statistically significant association it is possible that 
their respective parents are also associated. However, this particular association 
between the parents may be an artifact caused by extending the information from 
the children. In order to solve this issue we have implemented the “elim” algorithm 
(figure 11) described by Alexa and collaborators157, where information from a child 
to its parent is not aggregated if the child is already associated to a given feature. 
This way we keep only the most informative associations (the ones further from the 
root of the ontology and, as a consequence, that involve the most specific terms). 
 
Secondly, there is indeed a bias in the number of mutations depending on the gene. 
Popular genes, which are usually associated to extensive studied diseases, have been 
scanned for mutations more often than those that have not been associated to 
those diseases. This could introduce a bias in the features associated to a disease. 
For example, the TP53 gene is one of the most studied cancer genes. It has 189 
different missense mutations according to our data. If all its mutations would share 
one particular feature, that feature could be considered as “associated to cancer” 
even if it is only present in that single gene. In order to solve this problem we only 
kept associations involving more than 3 genes.  
 
Finally, the absence of a given feature in certain diseases though statistically 
meaningful, might not be biologically relevant. In those cases where a feature never 
appears in a set of disease-associated mutations, this particular feature is most likely 
irrelevant for that certain disease and therefore the association is uninformative. 
Otherwise, if the feature is present in some mutations, but less than expected, it is 
more likely that the association is biologically relevant. This issue has been corrected 
by introducing the 3 genes association threshold aforementioned. 
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Figure 11.- Use of the ontologies to aggregate the information. Arrows go from parents to children. 
Terms filled in white are not associated to the disease of interest, whereas those filled in red are 
associated. When propagating the information from children to parents (a) when a term is associated 
to a disease, its parents are usually also associated because the same mutations are being analyzed. In 
(b), thanks to the “elim” algorithm, once associated, mutations do not propagate to the parents and, 
thus, less informative associations are avoided. 
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 Identification of mutation patterns across different PFAM domains and DO 
terms 

 
We next interrogated whether similar DO terms would be enriched or depleted of 
mutations in similar PFAM domains. In order to answer this question we calculated 
the odds ratio (OR) of all the DO/PFAM pairs using our mutation data. The odds ratio 
is calculated using the following equation: 
 
OR = p11*p00/(p01*p11) 
 
Where the p00, p01, p10 and p11 represent the values of each cell of the following 
contingency table: 
 
 
 
 
 
 
In order to analyze the data we created a heatmap using the R package “gplots”. The 
rows and columns are clustered using a hierarchical clustering algorithm and the 
cells are colored according to the logarithm of the OR from red (negative values) to 
green (positive values). 
 
Since there are over 1000 DO terms in our database and considering that most of 
them are related to each other, the interpretation of a heatmap including all of them 
would be difficult to interpret. Moreover, some DO terms are associated to a handful 
of mutations, so we would only have data for few PFAM domains.  
 
Therefore, we designed an approach to select an optimal group of DO terms. We 
established an adaptive mutation threshold that we ranged between 50 and 300 in 
intervals of 5 mutations. Then, for each threshold we calculated which DO terms 
have a number of mutations above the threshold and are the most distant from the 
root (all those that have no children with mutations above the threshold). Once this 
set of “root” DO terms was generated, we calculated its mutation coverage, since 
the DO terms should represent at least the 90% of the mutations in the database).  
 
We finally obtained an optimal threshold of 295 mutations and generated the 
heatmap with the DO terms derived from this threshold. 

Association with the mutations or association with the genes 
 
We next addressed if the associations found between SO and DO terms were caused 
by a bias in the properties of the genes or by a true bias in the properties of the 
mutations. Then, we calculated for each feature associated to cancer mutations 
whether such association was maintained when only considering genes having the 
feature. By doing this we removed the possible bias caused by the gene properties: 
all genes have the property, thus, any difference in the mutation rate will be truly 
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disease dependent and not a sampling problem. 
 
To do so we extracted all the genes having a given feature, regardless of its mutation 
state, and divided them into two groups: cancer-associated and no cancer-
associated. Then, we recalculated to statistical significance of all the associations 
using these unbiased groups. 

Confirmation of the associations in an independent dataset 
 
In order to confirm the relevant associations of SO terms with cancer-associated 
mutations found in the enrichment analysis we downloaded a set of missense 
mutations from the Cancer Genome Atlas (TCGA)158. This other dataset of cancer 
mutations includes 18834 missense mutations from 814 cancer samples of acute 
myeloid leukemia, colorectal cancer, glioblastoma, ovarian cancer and rectum 
adenocarcinoma.  
 
Genes and mutations were validated, mapped to ENSEMBL identifiers and stored in 
the database as explained in section 2.1 with the only difference that the 
phenotypes were manually mapped to DO terms.  
 
Information regarding the 6 relevant SO terms found in the enrichment analysis was 
retrieved as described in section 2.1. We then used this information to perform a 
two-tailed Fischer test comparing the abundance of each feature in this set of cancer 
mutations against the abundance in the set of mutations associated to other 
diseases. 

Intra-ontology associations 
 
Since a single mutation can map to more than one SO term, some SO terms might be 
giving us the same information than others and, thus, be redundant. We established 
the independence of information between the different SO terms by looking for 
higher than expected co-occurrences of features in mutations. To do so we 
performed a two-tailed Fisher’s test comparing every pair of SO terms that mapped 
to the same mutations. We corrected the results for multiple testing using the 
Bonferroni correction. 
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2.3. Network-based prioritization of disease genes 
 
We extracted information from different public resources on four different types of 
relationships among human genes: physical interactions, coexpression in healthy 
tissues, belongingness to the same biological pathway and paralogy. 
 
For each type of relationship we defined a network G(V,E) where V is the set of 
nodes and E is the set of edges. The set of nodes V of each network comprises all the 
genes for which at least one relationship of the given type is defined. The edges, E, 
of each network, G, are the relationships extracted from public resources. It is 
important to notice that: 
 
� A gene Vi can be present in a network Gi, but absent in another Gj, if a 

relationship is defined for network Gi but not for Gj 
� All the genes Vi that belong to network Gi, have at least one edge 
� All the edges in all the networks are undirected 

Interaction network 
 
We used the file “BINARY_PROTEIN_PROTEIN_INTERACTIONS.txt” (downloaded 
from the HPRD159 web site on 25/10/2011) to create this network. This is a tab-
delimited file that defines in each row a physical interaction between two proteins 
and provides information on the experiments were the interaction was found and 
the Pubmed identifier(s) of the publication(s) of the experiments. All the interactions 
of these networks are identified with the term “CCBGID:1”. 
 
A Perl script was created in order to identify both members of the interaction in 
ENSEMBL using its API. An interaction was stored only when both genes were 
identified and their ENSEMBL identifiers were kept. All the papers describing the 
associations were also kept. Self-interactions or multimerizations were not stored.  
The original file contains 36849 interactions between 9451 proteins Of these, we 
could successfully extract 7605 interactions (21%) between 3852 proteins (41%). 

Coexpression network 
 
Data for this network comes from files from the BioGPS160 website downloaded on 
23/09/2011. The files contain gene expression data from 79 human tissues 
measured using two different chips: HG-0133A and GNF1 from Affymetrix. This data 
has been normalized using the gcRMA algorithm161. 
 
We did not use expression values from whole tissue and disease samples as they 
might add noise to the data, and we only kept expression values from those probes 
that could be mapped to ENSEMBL genes through its API. For those genes that 
mapped to more than one probe, their final expression value was calculated as the 
average of all probes. Moreover, we used only those probes that had a gcRMA value 
above 8 in at least one tissue, since values below that threshold are considered to be 
background fluorescence. 
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We then calculated the Spearman’s rank correlation coefficient between all gene 
pairs. An edge between two genes is defined in this network when both genes show 
an R correlation value above 0.71 (which corresponds to an R2 value of 0.5), 
regardless of the slope of the correlation (thus we have edges connecting correlated 
-positive slopes- and anti-correlated -negative slopes- genes).  All the interactions 
are defined in the database with the word “CCBGID:2”. The original file contains 
expression data for 14455 genes, which means that there are 208.947.025 potential 
interactions in this network. However, after applying all the aforementioned filters 
and calculations, the final network contains 8056 nodes and 790113 edges. 

Pathways network 
 
Edges in this network are defined when two genes are sequentially connected in a 
pathway. All the edges are identified in the database by the word “CCBGID:3”. Data 
for this network comes from Reactome162. The file “homo_sapiens_interactions.txt” 
was downloaded from the Reactome162 site on 16/09/2011. This tab-delimited file 
contains in each line different identifiers of two genes and their type of relationship. 
Reactome defines 4 types of relationships: “reaction”, “neighbouring_reaction”, 
“complex” and “indirect_complex”. In this case we used those pairs labeled as 
“reaction” or “sequential_reaction” and, again, we kept only those were we could 
retrieve ENSEMBL identifiers for both genes. The original file contains 76438 pairs 
between 3979 genes. Of these, we successfully parsed 72817 relationships (95%) 
between 3790 genes (95%). 

Paralogs network 
 
To generate this network we used the homology-derived data from ENSEMBL, 
extracted via its API on 22/02/2012 using a Perl script. An edge is defined in this 
network when two human genes are defined as paralogs in ENSEMBL. Only data for 
protein coding genes was stored. This network contains 14580 genes connected by 
91022 edges. All the interactions that belong to this network are labeled in the 
database with the identifier “CCBGID:4”. 
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2.4. Performance of the different networks and algorithms 
 
We chose 5 different diseases to evaluate the performance of each network and 
each algorithm: “cancer”, “colorectal cancer”, “simple genetic diseases”, “diabetes” 
and “neurodegenerative diseases”. We chose these 5 diseases because there are at 
least 20 genes associated to each one of them in each network and their underlying 
biology is different from each other.  
 
We assessed the predictive power for each network and algorithm in each disease by 
calculating the area under the ROC curve (AUC) obtained in a 5-fold cross validation 
experiment. Briefly, we divided each group of disease-associated genes in 5 different 
sets and used 4 of these sets to try to predict the last one. This was repeated 5 
times, one to predict each group. The AUCs were calculated using the ROCR163 R 
package. 
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Figure 12.- Illustration of the weighted DN algorithm. Nodes in red represent disease-associated 
genes. The table on the right summarizes the scores obtained for 3 candidate genes (nodes 2,5 
and 4) when going to distance 3. Notice that, while gene 2 is connected to gene 3 also at distance 
2 (through the path 2-5-3), it is not taken into account when analyzing that distance because this 
relationship has been analyzed at distance 1. 

2.5. Network algorithms 
 
We evaluated five different algorithms to predict in a set if candidate disease genes 
that might be associated to a disease: “direct neighbor” (up to distances 1, 2 and 3), 
“diffusion kernels” and “random walks with restart”. 

Direct neighbor (DN) 
 
This algorithm ranks candidate genes according to the number of neighbors up to 
distance D that are associated with the phenotype of interest. In order to do so, the 
algorithm sums, for each candidate gene, the number of nodes associated to the 
disease of interest up to a predefined maximum distance (Dmax): 
 

Score(A) �
i
DD�1

Dmax

�
i�I
�  

 
Where A is the candidate gene, I is the set of disease-associated genes, D is the 
distance to gene A and Dmax is the maximum distance. Notice also that the weight 
given to the disease-associated neighbors is inversely proportional to the distance to 
the candidate gene. 
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Figure 13.- The example network and the colum-normalized adjacency matrix. Notice that this 
matrix is not symmetric. 

We studied the performance of the algorithm using maximum distances of 1, 2 and 
3. A neighbor of the candidate gene is only taken into account once in the analysis in 
the shortest distance where it appears. This is exemplified in figure 12. In this figure 
we can see that gene 3 (associated to the disease) is found at distances 1 (edge 2-3) 
and 2 (edges 2-5-3) from candidate gene 2. Only the distance 1 is taken into account 
for our analysis, regardless of the maximum distance explored. 
 
It is important to also notice that the weight of the disease genes is proportional to 
the distance where they are found. For instance, in figure 12, gene 1 adds a score of 
0.5 to gene 5, since it is located at distance 2 from that gene. Something similar 
happens with gene 4 and gene 1, which only ads 0.33 since it’s located at distance 3 
from that gene.  

Random Walk with Restart (RWR) 
 
The random walk on graphs is defined as an iterative walker’s transition from its 
current node to a randomly selected neighbor starting at a given source node. We 
used a variant of this approach as defined by Kohler et. al.127 that allows the restart 
of the walk at each time with probability r. The random walk is described by the 
equation: 
 
 
 
Where W is a column-normalized adjacency matrix of the graph, pt is a vector in 
which the i-th element holds the probability of being at node i at time t and p0 is the 
initial probability vector. For each set of disease-associated genes, D, elements of p0 

are defined as: 
 
1/|D| for each gene d�D 
0 otherwise 
 
Figure 13 shows a small network and its associated column-normalized adjacency 
matrix. 
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The first iteration (p1) in such network with a restart probability “r” of 0.25 would be 
calculated by: 
 

 
 
The walker in the first iteration, starting from both disease genes, has moved to the 
neighboring nodes 2 and 5. However, notice that there is a non-null probability that 
the walker goes back to the disease genes. 
 
In the second iteration (below) the walker has a non-null probability of being in 
every node. The two disease-related genes, nodes 1 and 3, have now increased their 
score because the walker can go back to them either through the normal iteration 
(from nodes 2 and 5) or through the restart mechanism: 
 

 
 
 

Ideally, the score for each candidate gene A should be a-th element of p�. However, 

since it is not feasible to calculate the steady-state probability vector p�, we 
approximated its value by iterating pt until the L1 norm between pt and pt+1 fell 
below 10-6, which is usually before 50 iterations. In order to explore longer distances 
of the networks we used a low restart probability of 0.1. 

Influence of the different parameters in the performance of the RWR 
 
After evaluating each of the 5 methods and comparing their performances, we 
decided to use only the RWR for the next part of the project because: 
 

a) It usually performs better than the DN algorithm 
b) It is usually much faster than the DN and DK algorithms, particularly for large 

networks 
 
Given that the algorithm depends mainly on 3 factors, the restart probability, the 
initial probability vector and the matrix, we decided to evaluate the influence of 
each of these 3 factors in the performance of the algorithm. 
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Figure 14.- Example network and its associated adjacency and node-diagonal  matrixes. 

In order to assess the influence of the restart probability we calculated the AUC of all 
the disease/network combinations varying the restart probability between 0.1 and 
0.9 in 0.1 intervals.  
 
In the case of the initial probability vectors, for each network and each disease we 
created 10 random vectors with the same number of starting nodes and measured 
their capability to predict 1/5 of the disease genes using each network.  
 
Finally, we designed a similar experiment for the matrixes: we generated 10 random 
matrixes and, using the initial probability vectors, we tried to predict 1/5 of our 
disease genes. 

Diffusion Kernel (DK) 
 
The idea of the diffusion kernels of graphs consists in simulating a random walk 
without restart (explained in the following section) with and infinite number of 

infinitesimally small steps, which would be similar to p� in a random walk without 
restart. It is used to simulate the diffusion of an element introduced in a given node 
through the graph. In our case we are using this concept to evaluate how the 
information introduced in a candidate gene diffuses through the network, as a proxy 
to how close two genes are. Mathematically, the diffusion kernel K of a graph G is 
defined as:  
 
 
 
Where � is a parameter that controls the magnitude of the diffusion and L is a matrix 
defined as L = D-A. D is the diagonal matrix containing the nodes’ degrees and A is 
the adjacency matrix of G. Figure 14 shows a network and its corresponding A, D, L 
and K matrixes. 
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Thus, in this the L matrix (D-A) would be: 
 
 
 
 
 
 
 
 
 
And the diffusion kernel (K) with � = 0.1: 
 

 
 
In this case, given a set of genes, D, associated to a disease, the score of a candidate 
gene A is defined as:  
 
 
 
 
 
Where Ki(A) is the value in row “i” (the row with the values of a disease-associated 
gene), column “A” (the column of the candidate gene) of matrix K. In our example, 
the final score for genes 2, 5 and 4 would be: 

 
Score (2) = K1,2 + K3,2 = 0.0824 + 0.0042 = 0.0866 
Score (5) = K1,5 + K3,5 = 0.0039 + 0.0751 = 0.0790 
Score (4) = K1,4 + K3,4 = 0.0001 + 0.0042 = 0.0043 

 
Gene 2 would be ranked as the best candidate because its DK value is the highest. 
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2.6. Combination of the networks 
 
There have been some attempts to combine different types of information in a 
single network164 or different networks between them131. We then explored whether 
the combination of networks outperforms the networks alone when trying to predict 
disease-associated genes. We also tested whether this could depend on how the 
networks are combined. We evaluated 4 different ways to combine the networks: 

Bayesian inference 
 
This method consists in learning the a priori probabilities of a gene to be associated 
to a disease or not given some parameter and labeled positive and negative 
examples. In our case we used 3/5 of the disease-associated genes in each network 
to start a RWR and calculate the closeness of the rest of the genes in the network to 
the disease genes. 
 
As labeled positive genes we used 1/5 of the disease genes, and as negative genes 
we used the rest of the genes in the network that are not associated to the disease 
of interest. The next step is to calculate the mean and standard deviation of the 
scores of these two groups. With this information we estimated the probabilities of 
the remaining 1/5 of disease genes to be associated to the disease or not using the 
following equation: 
 
 
 
 
 
Where “sd” and “mean” are the standard deviation and the mean of the scores of 
each group (disease-associated and non disease-associated) and “Score” is the score 
of the candidate gene. This equation estimates the probability of a certain 
observation to belong to a given group given the distribution of other observations 
that belong to this group (defined by its mean and standard deviation). 
 
For each candidate gene we repeated this operation in each network where it 
appears. We then calculated the integrated probabilities of all candidate genes to 
belong to each group. In order to do so, we multiplied the probabilities obtained in 
each network and the global probability to be a disease gene or not. The final score 
of the candidate genes is the ratio between the integrated probabilities of the gene 
to be associated to the disease with that of not being associated to it. 

Juxtaposition 
 
This method simply consists in adding the nodes and edges of a network Gi(Vi, Ei) to 
another network Gj(Vj, Ej): 
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Notice that in this case all the edges have the same weight, regardless of the 
network they come from or the number of networks they appear in.  

Simple addition 
 
This approach is similar to the previous one, however in this case the edges are 
weighted according to the number of networks they appear in. If we are combining 
two networks, all the edges that only appear in one of them will have a weight of 1 
and all the edges that appear in both will have a weight of 2.  
 
 
 
 

Weighted addition 
 
In this case we first weight the edges of each network in an arbitrary scale between 
0 and 20. Then, we make the addition of the networks as in the case of “Simple 
addition” and evaluate the combination of weights by calculating the AUC. Thus, the 
network is defined as: 
 
 
 
 
Where “i” is the network identifier, wi is the optimized weight for network “i”, and  
Vi and Ei are the nodes and edges of that network.  
 
In order to find the optimal combination of weights we thought about evaluating all 
the possible network combinations using a predefined set of weights in the 
aforementioned range (e.g. 1, 5, 10, 15, 20). However, given that the solution space 
is very large and that the optimal solution for one disease is unlikely to be the same 
for another disease, we decided to optimize the weights for each network by using a 
simulated annealing over 200 iterations.  
 
The simulated annealing varies one parameter each time in a scale that is 
proportional to the number of iterations that have already happened (at the 
beginning the changes are likely to be larger than at the end), and to the variation of 
the AUC between the two last iterations (if there has been little variation in the AUC, 
the parameter is more likely to have a bigger variation). 

RWR in weighted matrixes 
 
The networks derived from the simple and the weighted addition methods have 
weighted edges. In order to use this information in the RWR the generation of the 
matrix is slightly different than for unweighted networks. In this case the transition 
probabilities from one node to another instead of being purely random are 
proportional to the weight of the edge connecting the two. This is shown in figure 15 
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Figure 15.- Comparison between unweighted (a) and weighted (b) networks and their associated 
transition matrixes 

where edges 2-3 and 4-5 now have a weight of 2, whereas all the other edges in the 
network have a weight of one: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15a shows the transition matrix when the weights are not taken into account. 
In this case, all the transition probabilities are the same and equal to: 
 
 
 
 
Where P(ti,j) is the transition probability between nodes “I” and “j” and Ni is the 
number of edges from node “i”. As shown in figure 15b, when the weights are taken 
into account the transition probabilities are directly proportional to the weight of 
the edge and calculated by: 
 
 
 
 
Where P(ti,j) is the transition probability between nodes “I” and “j”, Wi,j is the weight 
of the edge between the two nodes, “wh” is the weight of the edge between nodes 
“I” and “h” and N is the set of nodes connected to “i”. 
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Identification of “driver” genes 
 
We finally tested the performance of one of our combined networks to predict 
“driver” genes in cancer. Given that it is quite complex to define whether a gene is a 
true cancer driver or not, we decided to use one of the most accepted approaches 
and used mutation frequency data to define a list of driver cancer genes. 
 
Then, we downloaded the mutation frequency data in colorectal cancer from 
COSMIC version 61. This table contains for each of the 17660 genes that have been 
found mutated in samples of colorectal cancer (15031 of which can be mapped to 
ENSEMBL genes), the number of times that the gene has been scanned for 
mutations and the number of times the gene has been actually identified as 
mutated.  
 
We then defined a list of true driver genes by selecting those that have been found 
mutated 15 or more times in colorectal cancer according to COSMIC. This yielded a 
total of 482 genes. In order to be able to use all the genes in our database as seed, 
we discarded those that were associated to cancer or colorectal cancer according to 
our data, so we would only rank “new” driver cancer genes. Of the total 482 genes, 
353 where not associated to colorectal cancer and 252 where not associated to any 
kind of cancer at all in out database. We then evaluated the capability of our 
combined network H-P-R (result from adding the HPRD, Paralogy and Reactome 
networks) to predict these 252 and 353 genes using as seed to start the RWR all the 
genes from our database associated to cancer and CCR genes respectively. 

Boosted RWR 
 
Some groups have tried to use external data to improve the results obtained by 
guilty-by-association approaches. For example, in a recent publication Lee et. al. 
used GWAS data to improve the results obtained when predicting disease-related 
genes in using their functional network142.  
 
With the purpose of increasing the predictive power of our method in colorectal 
cancer we decided to make use of mutation frequency data to generate the initial 
probability vector. In order to do so, each element of the vector has a probability 
that is proportional to the number of times the gene has been found mutated in 
colorectal cancer by applying the following equation: 
 
 
 
 
Where Pi is the i-th element of the vector, Ni is the number of times the gene has 
been found mutated in colorectal cancer and M is the set of mutated genes in CCR 
and Nj is the number of CCR mutations found in gene “j”. We evaluated the 
performance of this boosted RWR by trying to predict the 252 and 353 driver genes 
aforementioned. 
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Evaluation of the methods 
 
In order to evaluate the performance of the standard and the boosted RWR at 
predicting driver genes we decided to use 2 different methods: 
 

� Area Under the Curve: As for all the other methods, we calculated the AUC 
using the ROC curve 
 

� Rank enrichment: We created, for each driver gene, groups of both 10 and 25 
genes containing one driver gene and the 9 or 24 closest genes in the 
genome to the driver gene. We then ranked all the genes in each group 
according to their scores and observed the rank of the true driver gene 
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3. Objectives 
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The main goal of this thesis is: 
 

To identify new disease-associated genes and mutations  
and their disease mechanisms 

 
In order to accomplish this objective we propose the following work plan:  

3.1. Development of a relational database of disease-associated genes and 
mutations 

 
Available databases containing information about disease-associated mutations do 
not provide the adequate framework to address our objective. Some are text-based 
and do not use controlled vocabularies nor ontologies6,146 to describe the diseases, 
or rather focus in a single disease165. To circumvent this, we wanted to create a new 
relational database containing information on disease-associated genes and 
mutations. The database should include automatically extracted features for both, 
genes and mutations. All terms describing diseases or biochemical properties should 
be mapped to the corresponding ontologies or controlled vocabularies. 

3.2. Identification of disease-specific mutated features 
 
There have been several attempts to identify features associated to pathogenic 
mutations166,167. While each approach has its own biological assumption, such as the 
degree of conservation through evolution38 or the protein’s structure37, most of 
them168,169 are based in the comparison of the properties of benign single nucleotide 
polymorphisms (SNPs) and those of disease-associated mutations. While this 
approach is useful to identify which properties make a mutation pathogenic, subtle 
differences between mutations associated to different phenotypes might be missed. 
In order to overcome this limitation, we propose to compare the properties of 
mutated features in different phenotypes to reveal phenotype-specific mechanisms 
that help understanding the underlying biology of the diseases. 

3.3. Network based prioritization of disease-associated genes 
 
Methods based on the use of biological networks to prioritize lists of putative 
disease-related genes are becoming very popular135,142,127. Though there are several 
types of networks (representing protein-protein interactions159 or functional 
relationships164 for example) and diverse algorithms depending on different features 
of the network (such as closeness127, centrality170 or topological similarity of the 
nodes117) most approaches are one-size-fits-all in the sense that can’t be adjusted to 
the specific particularities of each phenotype. In this work we also aim to provide a 
schema of selecting the optimal algorithms, networks and combinations of networks 
to predict distinct diseases. 
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4. Results 



 54 

Figure 16.- Summary of the information stored in OCG grouped according to its origin. There is 
little overlap between the mutations from OMIM/GAD and those that come from COSMIC 

4.1.  Design and development of OCG 
 
As mentioned above, existing public databases of associations between diseases and 
genes or mutations have certain limitations. For example, some are text-based, 
which makes it very difficult to perform complex queries, others lack controlled 
vocabularies and most are focused to single phenotypes. 
 
In order to overcome some of these limitations we created a relational database 
containing information on disease-associated missense mutations and their 
biochemical properties. We focused on missense mutations because, unlike 
nonsense mutations or deletions and insertions, their pathogenic mechanism is in 
principle more feasible to interpret. Moreover, the lack of standardized description 
makes descriptions of insertion and deletion mutations extremely hard to correctly 
interpret and map. 
 
In terms of mutations the database contains 9276 mutations in 2716 genes (figure 
16), which is a similar value to that of OMIM (9760 mutations in 1870 genes) and 
COSMIC v44 (7361 mutations in 2630 genes). We have extracted 12429 mutation-
disease associations from OMIM, COSMIC and GAD. The disease coverage in our 
database is wide and contains 569 different disease terms (supplementary table 1), 
which grows to 1195 DO terms when including indirect relationships (the 569 terms 
mentioned before and all their parents).  
 
Regarding biochemical properties we have included 88 terms from SO , 122 including 
indirect associations. There is at least one SO term for 8529 mutations (figure 16) 
and a total of 50898 mutation-feature associations. 
 
 
 
 
 
 
 
 
 
 
  

Mutations come mainly from COSMIC165, (6056) and OMIM6 (3222), therefore the 
vast majority of the them are associated to cancer or mendelian diseases. While it is 
important to incorporate mutations associated to complex diseases (the ones that 
come from GAD146), the structure of this repository makes extremely difficult its 
automatic extraction due to the ambiguous description of the mutations. As a result 
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only 102 mutations were extracted and included in the database from the flat text 
file provided by the authors146. 
 
The coverage of the original data varies depending on the repository. For example, 
while we could successfully extract 6036 missense mutations form the original 7361 
present in COSMIC v44 (82%), the numbers for OMIM are smaller: 3222 (33%) out of 
the 9760 missense mutations in the original text file. In the case of GAD, given that 
missense mutations do not have a standard description, it is very difficult to estimate 
the original number of missense mutations. If we take only into account the 
missense mutations that have their own field in the tabulator-separated file and that 
are marked as truly associated, there are 1855 possible mutations (which include 
also insertions, deletions and truncating mutations), thus, the 102 mutations that we 
recovered, represent at least the 5% of the total. 
 
In order to properly understand the limitations of our data, we estimated the 
accuracy of the disease annotations. This is an important step, since all the terms 
describing the diseases associated to the mutations from OMIM and GAD have been 
automatically mapped to the Disease Ontology171 (DO) by in-house built parsers. We 
have calculated that the parsers have an accuracy of 85% by manually checking 100 
entries in the database. In the case of COSMIC, the accuracy is 100%, since we 
manually mapped the DO terms from the anatomical locations of the tumor 
samples. We successfully identified a DO term for 158 anatomical locations of the 
total 220 (72%). 
 
Given that 3307 mutations come from OMIM/GAD, and that we have an accuracy of 
85%, only about 500 mutations of the whole database are mapped to a wrong DO 
term. Since we have manually mapped the mutations from COSMIC (which represent 
63% of the total number of mutations in OCG), we assume that we have 100% 
accuracy in those annotations, thus, we estimate that only about 5.4% out of the 
total 9276 mutations are mapped to a wrong DO term. 
 
The overlap between OMIM/GAD and COSMIC is small and covered by 87 mutations 
and 144 genes (figure 16) which reflects the different nature of inherited and 
somatically acquired mutations. The number of overlapping genes is higher than the 
number of mutations because there are genes for which a mutation is described in 
OMIM or GAD and another different mutation is described in COSMIC. Overlapping 
mutations were usually identified in OMIM either as somatic (for example ABL1 
F311L, MIM number 189980) or associated to dysplasia or cancer-related syndromes 
(for instance, APC I1307K, which is associated to familial adenomatous polyposis -
MIM number 611731-). 
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Figure 17.- Number of mutations per DO term. Terms describing cancer phenotypes have the 
highest number of mutations.  

Consistency of the data 
 
In order to check the consistency the data in OCG we looked for diseases, mutations 
or genes with abnormally high associations in the database by calculating the 
distribution of the mutations along the genes and the DO terms.  
 
Regarding the distribution of DO terms along the mutations (figure 18), we observed 
that it follows a logarithmic distribution. The vast majority of the mutations (85%) 
are associated to a single DO term and 99% of them to five or less. The main outliers 
were different mutations in KRAS G12 (mutated to different amino acids) and BRAF 
V600E, which are mutations identified in several different types of cancers in 
COSMIC. 
 
The same distribution for the mutations is observed along the disease space (figure 
17). Of the 569 terms from the DO that have one mutation associated, 76% have less 
than ten mutations. The exceptions are cancer-related terms such as “colorectal 
cancer” (DOID:9256) with 1037 mutations , “lung carcinoma” (DOID:3905, with 926), 
“breast carcinoma” (DOID:3459, with 890) or “skin carcinoma” (DOID:3451, with 
768).  
 
Finally, the distribution of mutations along the genes (figure 19) also follows a 
logarithmic distribution, with 57% of the genes having only one mutation and 88% 
carrying five or less mutations. The exceptions are genes such as PTEN (299 
mutations), EGFR (228), CDKN2A (222), VHL (216) or TP53 (189) that have a strong 
association with cancer and, thus, have been scanned for mutations more times than 
other genes associated to less studied diseases.  
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Figure 19.- Number of mutations per gene. Genes strongly associated to cancer show the highest 
number of mutations. 

Figure 18.- Distribution of the number of diseases per mutation. Mutations in G12 of KRAS gene 
(to various alleles) and V600E in BRAF showed the highest number of disease associations.  
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Next, we reviewed the origin of the mutations that were associated to two or more 
phenotypes. Of the 1629 mutations identified in two or more phenotypes, 1281 
were found only in COSMIC. These are probably associated to different types of 
cancer (for example, KRAS G12D, associated to “sarcoma” and “breast carcinoma” 
among 43 other DO terms).  
 
There are 84 mutations that come from both databases (mutations identified in 
some types of syndrome and cancer samples, or that have been mapped to terms 
describing similar phenotypes -“melanoma” and “skin carcinoma” for example-) and 
only 26 were found only in OMIM and GAD. All but four of these 26 mutations were 
associated to 3 or less phenotypes and in most cases they were associated to related 
terms. One example of this last case is mutation M196R in gene TNFRSF1B. This 
mutation was mapped once to “lupus erythematosus” (DOID:8857) whereas in 
another record from GAD it was mapped to “systemic lupus erythematosus” 
(DOID:9074). While these two terms have different identifiers, they refer to similar 
phenotypes. 
 
As a summary, the mutations and their related information seem to have a normal 
distribution in our dataset, similar to that observed in studies annotating data from 
OMIM with DO171. Moreover, DO terms, genes and mutations with abnormally high 
number of associations have been manually reviewed and appear to be coherent in 
the framework they are present. 
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4.2. Identification of disease-specific mutation features 
 
The normalization of all the annotations for the genes and mutations with terms 
from different ontologies provides an excellent framework to perform enrichment 
analysis and identify pairs of ontology terms that are over or underrepresented in 
disease-associated mutations. In order to do so we used the “elim” algorithm by 
Alexa et. al. as explained in the material and methods section and compared the 
distribution of annotations in the DO and 3 other controlled vocabularies: GO, PFAM 
and SO. 

DO vs GO 
 
Though the GO terms are not a feature of the mutation itself but of its gene, we 
thought that it would be a good control of our method because of the extensive use 
of GO in similar analysis72. 
 
We obtained 3199 pairs of DO and GO terms that were statistically significant after 
applying the aforementioned thresholds and the Bonferroni correction. Of these, 
2352 were pairs representing an enrichment of mutations (odds ratio > 1) and 847 a 
depletion of mutations (odds ratio < 1). If we classify the results according to the 3 
main branches of GO terms, 1898 involved a GO term of the “Biological process” 
branch, whereas 806 and 495 involved GO terms from the “Molecular function” and 
“Cellular component” branches respectively. Finally, by dividing the pairs according 
to general groups of diseases, we observe that 1609 pairs involved the DO term 
“Cancer” (DOID:162) or one of its children and 351 contained a term related to 
“Simple Genetic Diseases” (DOID:0050177). 
 
We observed some pairs that make biological sense and that would be expected 
from the biology of the disease. For example, we see an enrichment of mutations 
causing different blood coagulation disorders in genes annotated with the GO term 
“Blood coagulation”. Another example would be the enrichment of mutations 
associated to “inborn errors of metabolism”, “inborn errors of carbohydrate 
metabolism” and “inborn errors of aminoacid metabolism” in genes annotated with 
the GO term “metabolic process”. This provides evidence that method is able to 
identify relevant disease-feature pairs.  
 
Regarding cancer-related mutations, we observed an enrichment (table 7) in genes 
with GO terms related to transcription (“regulation of transcription”, “transcription 
initiation”, “transcription factor binding” or “transcription factor complex”), the DNA 
damage response pathway (“double-strand break repair”, “response to DNA damage 
stimulus”, “base-excision repair” or “DNA repair”) or several pathways previously 
associated with cancer such as Wnt (“Wnt receptor signaling pathway”), JNK (“JNK 
cascade”), MAP kinases (“MAPKKK cascade”), SMAD (“SMAD protein complex 
assembly”) or Ras (“small GTPase mediated signal transduction”). On the other hand, 
we also found some GO terms that were depleted in cancer mutations (table 3), such 
as “ion transport”,  “glycolysis”, “protein glycosylation”, “fatty acid beta-oxidation” 
or “integral to membrane”. 
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Table 7.- Representative associations between DO and GO terms. Terms marked with zero, one, two 

or three asterisks (*) have corrected P values below 5E-2, 1E-2, 1E-3 and 1E-4 respectively. 
 

GO term Enriched DO terms Depleted DO terms 

Blood coagulation Hemorrhagic disorder***, 
coagulation factor deficiency*** Cancer*** 

Metabolic process 
Lung carcinoma*, glycogen 

storage disease***, inborn errors 
carbohydrate metabolism*** 

Pancreatic 
neoplasm***, breast 

carcinoma***, genetic 
skin disease* 

Regulation of 
transcription 

Cancer***, lymphoma***, bone 
carcinoma** 

Disease of 
metabolism***, simple 

genetic disease*** 
Transcription factor 

binding Cancer***, bone carcinoma*** - 

Double-strand break 
repair 

Lung carcinoma, colorectal 
cancer***, cancer* 

Musculoskeletal system 
disease 

Wnt receptor 
signaling pathway 

Colorectal cancer***, stomach 
carcinoma***, bone carcinoma 

Nervous system 
disease** 

JNK cascade Cancer*** - 

MAPKKK cascade Skin carcinoma***, endocrine 
gland cancer*** - 

Small GTPase 
mediated signal 

transduction 
Skin carcinoma*** - 

Ion transport 
Myopathy***, brugada 
syndrome***, long QT 

syndrome*** 

Cancer***, lung 
carcinoma*** 

Glycolysis Mitochondrial disease***, 
glycogen storage disease*** Carcinoma 

Integral to membrane 
Long QT syndrome***, muscular 

dystrophy***, retinitis 
pigmentosa*** 

Colorectal cancer***, 
kidney neoplasm***, 

lymphoma*** 
 
 
Interestingly, we observed 89 GO terms that were enriched in mutations associated 
to certain types of cancer and depleted in others (some are exemplified in table 8). 
These include “signal transduction”, “metabolic process”, “kinase activity” or 
“transmembrane receptor activity”. It is particularly in these cases that our approach 
is more useful, since these differences between cancers cannot be identified when 
comparing the distribution of pathogenic mutations against a set of random 
mutations or nsSNP. 
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Table 8.- DO/GO pairs that distinguish between cancer subtypes Terms marked with zero, one, two or 
three asterisks (*) have corrected P values below 5E-2, 1E-2, 1E-3 and 1E-4 respectively. 

 

GO term Enriched DO terms Depleted DO terms 

Signal transduction Skin carcinoma***, lymphoma***, 
sarcoma***, cancer** Kidney neoplasm*** 

Kinase activity Lymphoma***, lung carcinoma***, 
cancer***, sarcoma*** Breast carcinoma** 

Transmembrane 
receptor activity Lung carcinoma***, cancer Breast carcinoma** 

Angiogenesis Cancer***, kidney neoplasm*** Breast carcinoma**, 
lung carcinoma*** 

Metabolic process Brain neoplasm***, lung carcinoma* 
Breast carcinoma***, 

pancreatic 
neoplasm*** 

Aging Cancer*, central nervous system 
neoplasm*** Lung carcinoma* 

DO vs PFAM 
 
As observed in the association study between DO and GO, there are several 
associations between DO terms and PFAM domains that are consistent with the 
biology of the disease (table 9). For example, mutations associated to “Adenosine 
deaminase deficiency” tend to fall within the “Adenosine deaminase” domain. 
Another example is the enrichment of mutations causing “Collagen disease” in the 
“Collagen triple helix domain”.  
 
Regarding cancer-related mutations, there are several PFAM domains that are 
consistently enriched in mutations associated to this disease, including “Miro-like”, 
“Beta-transducin”, “Ras”, “PIP 3 and 4 kinase” or “Protein kinase”. Moreover, there 
are also some PFAM domains depleted in cancer mutations, such as “ABC 
transporter transmembrane region” (which is consistent with the association found 
between the DO term “cancer” and the GO term “integral to membrane” or the SO 
term “transmembrane” which will be discussed in the next section), “Cytochrome 
P450”, “Sulfatase” or “Intermediate filament”.  
 
In order to identify diseases showing similar mutational landscapes across the 
different PFAM domains, we generated a heatmap representing the logarithm of the 
OR between every pair of DO terms and PFAM domains using our mutation data. As 
explained above, the full heatmap containing all DO terms would be very hard to 
interpret, so we simplified the number of DO terms until only non-related terms 
were included in the heatmap and the coverage of mutations was above 90%. Rows 
and columns were then grouped using a hierarchical clustering algorithm (figure 20). 
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Table 9.- Examples of statistically significant pairs between DO terms and PFAM domains. Terms 
marked with zero, one, two or three asterisks (*) have corrected P values below 5E-2, 1E-2, 1E-3 and 

1E-4 respectively. 
 

PFAM Enriched DO terms Depleted DO 
terms 

ABC transporter Simple genetic disease***, endocrine 
system disease*** - 

Beta transducin Colorectal cancer** - 

Collagen triple helix Genetic skin disease***, collagen 
disease***, Metabolic bone disease*** Cancer**, 

Connexin Genetic skin disease*** - 

Cytochrome p450 - Cancer*** 

Dual specificity 
phosphatase Cancer*** - 

EGF-like domain Congenital disorder*** Cancer*** 

Intermediate filament - Cancer 

Ion transport Genetic disorder***, myopathy*** Carcinoma*** 

Ligand binding 
domain of nuclear 
hormone receptor 

- Carcinoma 

MH2 Colorectal cancer*** - 

Miro-like 
Skin cancer, lymphoma*, endocrine 

gland cancer***, abdominal cancer***, 
bone marrow cancer* 

- 

Phosphatidylinositol 
3- and 4- kinase Cancer** - 

Kinase 
Cancer***, lymphoma***, sarcoma**, 

skin cancer*, small intestine cancer, 
stomach cancer*** 

Breast 
cancer*** 

RAS family Lymphoma**, skin cancer*, endocrine 
gland cancer***, abdominal cancer* - 

Sarcoglycan Muscular dystrophy*** - 

Short chain 
dehydrogenase Disease of metabolism*** - 
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Figure 20.- Heatmap distribution of DO terms and PFAM domains according to the logarithm of 
the odds ratio. Red values indicate negative OR (depletion of mutations of the pair) while green 
values indicate positive OR (enrichment of mutations)  
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The first interesting observation from that heatmap is that all types of cancers 
cluster together in one group whereas other diseases, but brain disease, cluster in 
another different group. In terms of domain clustering, there is a group of domains 
that is clearly enriched in mutations associated to all types of cancers and depleted 
in most other diseases. This group includes PFAM domains involved in Ras signaling 
(“Miro-like”or “Ras family”), phosphorylation cascades, (“PIP 3 and 4 kinase”, 
“Protein kinase”, “SH2”) or protein-protein interactions (“Ankyrin repeat”, “Beta-
transducin repeat”). 
 
There is a group of domains that includes some domains related to extracellular 
functions (“Serpin”, “ANF receptor”, “FN3”), others involved in transcription 
regulation (“ZNF C2H2”, “SNF2”) or cell adhesion (“Sushi”, “Ig I-set” or “Ig V-set”) 
and that separates between two markedly different groups of cancers. One group, 
formed by “neck neoplasm”, “endocrine gland cancer”, “kidney neoplasm” and 
“sarcoma”, and the other group, formed by the rest of types of cancers enriched. 
This is a similar situation than the one observed with GO terms, where some GO 
terms are able to distinguish between cancer types (section “a” of this chapter). 
 
Finally, there is a group of domains that is consistently depleted in mutations related 
to most cancers and enriched in some particular phenotypes. These include domains 
mainly related to membrane transport (“Major Facilitator Superfamily”, “Sugar 
transporter”, “Ion transport”, “ABC transporter”) or extracellular functions (“EGF-like 
domain”, “Calcium binding EGF”, “Collagen triple helix repeat”).  

Mutations in the protein kinase domain and breast cancer 
 
As shown in table 9 and figure 20, though there is a strong association between the 
term “cancer” and the PFAM domain “protein kinase”49, we found that there are less 
mutations associated to “breast carcinoma” (DOID:3459) in this domain than 
expected. 
 
Interestingly, there are reports describing differences in the distribution of neutral 
and pathogenic mutations along the kinase domain53. To further explore this idea, 
we looked potential differences in the distribution of the mutations within the 
kinase domain depending on the cancer type. Aiming for that goal, we built a 
multiple alignment of all the 163 kinase domains in our database using MAFFT172. 
Then, we mapped all the mutations to the multiple alignment and separated the 
alignment in 12 canonical subdomains173 representing the most conserved regions of 
the domain. 
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Figure 21.- Distribution of different types of polymorphisms along the subdomains of the kinase 
domain. Subdomain V shows a statistically significant difference between the fraction of 
mutations associated to breast cancer and those associated to other types of cancer. 

 

In order to have a neutral model of the distribution of the mutations, we retrieved 
non-synonymous SNP (nsSNP) from dbSNP for all our disease-associated kinases and 
did the same analysis. We next calculated the ratio between mutations and nsSNP in 
each subdomain for different diseases. We found a higher proportion of cancer-
related mutations in subdomains I and VIII and a lower proportion in subdomains IX 
to XI, in line with the results obtained by Torkamani et al53. However, we found a 
different distribution of the mutations associated to “breast carcinoma”. In this case, 
we don’t observe a higher proportion of mutations in subdomain I, but we do in 
subdomain, VIII like in the rest of cancers (3 mutations in 3 genes), and also in 
subdomain V (with 6 mutations in 6 genes), which was not associated to cancer 
before (figure 21). 

DO vs SO 
 
Of all the three controlled vocabularies that we have used to perform enrichment 
analysis, SO is probably the least explored in biomedicine research.  We identified a 
total of 82 statistically significant DO/SO pairs (supplementary table 9.4), of these 33 
referred to the DO term “cancer” or one of its children. These 33 cancer-related 
pairs included SO terms such as “alpha helix”, “beta-strand”, “coiled coil”, or 
“polypeptide region”, however the biological interpretation of most of them its 
confusing, since these are very general terms and, thus, they provide very little 
information, which makes it very difficult to extract biologically meaningful 
hypotheses.  
 
Yet, after manually reviewing the associations, we selected 6 pairs for further 
analysis. These involved 3 SO terms that show a statistically significant 
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underrepresentation in cancer: “disulfide bond” (SO:0001088), “peptide localization 
signal” (SO:0001527) and “transmembrane region” (SO:0001077). Conversely, 
“serine-rich region” (SO:28, which was added to the ontology by us), 
“compositionally-biased regions of peptide” (SO:0001066) and “intrinsically 
unstructured polypeptide regions” (SO:0100003) were overrepresented in cancer-
associated mutations. Table 10 summarizes these results. 
 

Table 10 .- SO terms associated to cancer mutations 

 

Association to disease or association to genes 
 
Since disease-associated genes have a bias in some of their properties when 
compared to the rest of the genome174,175,62 we wondered whether the SO terms 
associated to cancer mutations were also associated to the genes. If that were the 
case, the associations found would not be specific for the mutations, but rather an 
intrinsic property of the set of cancer-causing genes.  
 
In order answer this question we took for each feature associated to cancer all the 
genes in our database that had the feature, mutated or not. Then we divided the 
genes in two groups: genes associated to cancer and genes associated to other 
diseases, and repeated the two-tailed Fisher’s test. We did not perform this assay in 
the “intrinsically unstructured polypeptide region” (IUR) as this particular feature is 
usually described in qualitative terms (longer or shorter) instead quantitative 
(presence vs. absence), therefore it is difficult to analyze in binary terms as the rest 
of our comparisons. 
 

                                                      
1 Association of SO term “Serine-rich region” is calculated using the DO term “Carcinoma” instead of 
“Cancer”. If “Cancer” is used instead, the P value is 0,02. All the other associations are calculated 
using the DO term “Cancer” 
 

OR Feature Observed number 
of mutations 

Expected number 
of mutations P Value 

< 1 

Transmembrane 
region 117 235 3,41 e-38 

Peptide 
localization signal 24 43 1,01 e-6 

Disulfide bond 12 42 3,7 e-14 

> 1 

Serine-rich 
region1 84 49 2,76 e-11 

Compositionally 
biased regions 216 162 2,54 e-14 

Intrinsically 
unfolded regions 1753 1602 1,01 e-13 
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In the cases of “transmembrane region”, “peptide localization signal” and “disulfide 
bonds” we confirmed the associations previously observed: there are fewer genes 
than expected having the feature mutated when taking into account only those 
genes that already have the feature (table 11). We could not confirm the 
associations of those features overrepresented, “compositionally biased regions” 
and “Ser-rich regions”. 
 

Table 11 .- Analysis of the associations using only genes with the features 

 
 
This analysis showed for the features under-represented in cancer mutations that, 
even when the feature is present in the protein, for some reason, cancer mutations 
affect the feature less times than expected when compared to other pathological 
mutations (the set of mutations associated to other diseases). 
 
In the case of the two overrepresented features, “Serine-rich regions” and 
“compositionally biased regions”, we did not observe any statistically significant 
association. In these cases it could be that the association that we are observing for 
the mutations is caused by a bias in the properties of the genes related to the 
diseases. In other words, we might be observing more mutations associated to 
cancer and falling in compositionally biased regions because cancer-related genes 
tend to have more compositionally biased regions than genes associated to other 
diseases. 

Confirmation of the SO associations with an independent dataset 
 
To confirm the 6 associations found between cancer and SO terms we used an 
independent dataset of cancer-associated mutations from the Cancer Genome Atlas. 
This new dataset consisted on 18834 mutations from over 800 samples of 5 different 
types of tumors: acute myeloid leukemia, colorectal cancer, glioblastoma, ovarian 
cancer and rectum adenocarcinoma. We could retrieve at least one feature for 
14283 (76%) of these mutations. 
 

OR Feature Observed genes 
mutated in cancer 

Expected genes 
mutated in cancer P Value 

< 1 

Transmembrane 
region 57 104 1,01 e-19 

Peptide 
localization signal 22 40 5,39 e-7 

Disulfide bond 9 27 1,87 e-9 

> 1 
Serine-rich region 13 11 0,11 

CBR 81 83 0,68 
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We then compared the proportions of the 6 SO terms associated to cancer 
(“disulfide bonds”, “transmembrane regions”, “peptide localization signals”, “Ser-
rich region”, “compositionally biased regions” and intrinsically unstructured 
regions”) in this new dataset of cancer mutations with that of the mutations 
associated to other diseases than cancer in our original dataset (table 12). 
 

Table 12 .- Comparison of the independent dataset of cancer mutations from CGA with mutations 
associated to other diseases than cancer in OCG 

 
This analysis showed that there are fewer mutations than expected in “disulfide 
bonds”, “transmembrane regions” and “peptide localization signals” in the set of 
mutations from the CGA when compared to the mutations associated to other 
diseases than cancer (table 12). Notice that in this case there are fewer differences 
between groups of mutations (table 10). This could be caused by an increased 
number of passenger mutations in the CGA compared to the version of COSMIC that 
we used. 
 
Moreover, we also observed more mutations than expected in “intrinsically 
unstructured regions” and “compositionally biased regions” in the set of CGA when 
compared to the set of mutations associated to other diseases (table 12). Finally, we 
found no difference in the proportion of mutations falling in “Serine-rich regions” in 
mutations from the CGA when compared to mutations associated to other diseases. 

Internal associations between SO terms 
 
Some biochemical features can overlap in a protein, thus, a mutation can map to 
more than 1 SO term. This is an important aspect to take into account in our 
analysis, because those SO terms that overlap more than expected might be 
providing the same information, and thus be less relevant for our results.  
 
In order to assess the influence of this event in our dataset we performed an 
enrichment analysis looking for pairs of over or underrepresented SO terms. We 
successfully identified 87 pairs of SO terms at ratios higher or lower than expected 

OR Feature Observed number 
of mutations in CGA 

Expected number of 
mutations in CGA P Value 

< 1 

Transmembrane 
region 787 880 1,8 e-6 

Peptide 
localization signal 98 120 2,5 e-4 

Disulfide bond 82 116 2,8 e-9 

> 1 

Serine-rich region 103 110 0,06 

CBR 1602 1395 6,0 e-100 

IUR 6769 6381 4,2 e-150 



 69 

(supplementary material 9.5), indicating that they are providing similar information 
in the first case and that they are mutually exclusive in the latter.  
 
Interestingly, mutations falling in “intrinsically unstructured regions” tend to be 
located also in “serine-rich regions” (pvalue below 1E-15) and “compositionally 
biased regions” (pvalue below 0.01) more often than expected, which is consistent 
with previously reported data176,177. This implies that the overrepresentation of 
these 3 terms in cancer mutations is probably reflecting the same trend. Another 
example is mutations in “phosphorylation” sites that also happen more than 
expected in “intrinsically unstructured regions”178 (pvalue below 1E-32). 

Illustrative examples 
 
Our data suggests that mutations in the same gene might be causing different 
phenotypes not only because they are occurring in different domains, as previously 
described109, but also because they alter different biochemical features. 
 
Interestingly we found in our dataset 4 genes exemplifying this phenomenon. These 
genes have two distinct groups of mutations, one group causing cancer-related 
disorders and the other some other type of disease (figure 22).  
 
For example, gene CACNB2 (a gene that modulates G-protein inhibition) is 
associated to colorectal cancer by a mutation located in a compositionally-biased 
region and to Brugada syndrome (a heart disease) by a mutation located outside of 
that type of region.  
 
Something similar happens with SCN3B, another voltage channel modulator with a 
different domain composition, and the same diseases, but in this particular case, the 
mutation associated to Brugada syndrome is located at the peptide localization 
signal, whereas the two mutations associated to colorectal cancer are located 
outside this region.  
 
In the case of FZD4 (a G-coupled receptor for Wnt proteins) the mutation causing 
retinopathy of prematurity falls within the transmembrane domain of the protein, 
while the mutation associated to colorectal cancer is outside of this region.  
 
Finally, the mutation in CD40, another receptor, causing immunodeficiency with 
increased IgM is located in a cysteine involved in a disulfide bond and the mutation 
related to skin carcinoma outside of it.  
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Figure 22.- Illustrative examples of the associations. These four genes are associated to two 
phenotypes, one of them being cancer the other a different disease. Arrows indicate the 
mutations, and the colored region the feature. 
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4.3. Network based identification of disease genes 
 
Proteins do not perform their functions alone, but in cooperation with other 
proteins. This information could be used to predict disease-related genes. To this 
purpose several groups have used ideas derived from graph theory, such as the use 
of bipartite graphs133, or algorithms like the direct neighbor119, diffusion kernels or 
random walks179.  
 
While different algorithms and networks have been used in the quest for disease 
genes, so far, to the best of our knowledge, no systematic study looking for 
differences in their performance depending on the disease has been attempted. 
Here we will aim to identify the optimal network/algorithm combination for 
different diseases. 

Design and development of CCBG 
 
This database contains information on disease-related genes and several types of 
relationships between them, including physical interactions, coexpression in healthy 
tissues, paralogy or belonging to the same biological pathway. As in OCG, all the 
genes are univocally identified using ENSEMBL gene identifiers and the terms 
describing the diseases have been mapped to the DO using the same parsers that 
were used to build OCG.  
 
The final database contains 17696 genes. Of these, 3240 (18%) are associated to 666 
different DO terms (1343 including their parents). It is important to notice that the 
number of gene-disease associations in CCBG is higher than in OCG because in this 
case, there is no need for a particular known mutation in the gene to be store the 
association. 
 
There is a remarkable overlap of nodes between networks, with 9054 genes (51%) 
appearing in two or more networks and 578 (3%) appearing in all four (figure 23). 
Considering each network alone, the one derived from paralogy data has the most 
unique nodes (nodes that are only present in this network): 6543 out of 14580, 
which represents a 45% of the whole network. In the other networks this percentage 
goes down to 20% in the coexpression network, 8% in the metabolic and 5% in the 
physical interaction network. 
 
Regarding interactions, there are a total of 912796 relationships among genes, but 
only 3245 (0.3%) appear in more than one network (figure 24) and only a single edge 
is present in all four networks, so overall, there is little overlap among networks. This 
is probably a reflection of the different biology that each type of relationship 
represents. The network with the most shared edges, in terms of percentage, is the 
one from physical interaction data, with 6%. For the pathway network, the paralogy 
network and the coexpression network this figure is 4%, 2% and 0.3% respectively. 
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Figure 24.- Venn diagram representing the overlap between edges (connections) in the different 
networks 

Figure 23.- Venn diagram representing the overlap between nodes (genes) in the different 
networks 
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Figure 25.- Degree distributions of the 4 networks. 

 
  

Topological characterization of the networks 
 
We next assessed the topological properties of the networks to check their 
consistency with previous descriptions of biological networks. As shown in figure 25 
the networks derived from HPRD and BioGPS follow a power-law distribution of their 
node’s degrees.  
 
Interestingly, the networks derived from paralogy and metabolic information show a 
different distribution but for different reasons. In the case of the paralogy network, 
its node’s degree distribution is caused by the fact that the nodes are forming 
cliques (is a subset of nodes of a network that are connected all with each other) of 
gene families that are not connected between them. The degree distribution suffers 
a sudden drop at about 50, which means that there isn’t any gene family with more 
than 50 members. This is clearly exemplified in figure 26 where we can see a 
representation of all networks with nodes colored and scaled according to their 
degree. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The network created from metabolic and pathway information from Reactome 
deviates also from the power-law distribution but in this case this is due to the 
definition of the network. In this network an edge connects two nodes when they 
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Figure 26.- Representation of the four different networks. Nodes are colored and sized according 
to their degree. Nodes with higher degrees are colored red and are bigger, while nodes with lower 
degrees are colored blue and are smaller. (a) Representation of the network derived from physical 
interactions. Most nodes are and are forming a single cluster. (b) Network derived from the 
paralogy data. Nodes are forming unconnected cliques that represent the different gene families. 
(c) Representation of the metabolic/pathway network. There is a high density of edges and 
cliques are connected through genes that belong to more than one pathway. (d) Coexpression 
network. Most hubs in this network (coloured red) are clustering together.  

belong to the same biological pathway, thus cliques are formed between genes 
sharing the same pathway. However, unlike the paralogy network, edges connecting 
cliques between them appear every time a gene belongs to more than a single 
pathway (figure 26).  
 
Topological properties of the networks are summarized in table 13. The network 
with the biggest size is the paralogy network, whereas the smallest is the one 
derived from Reactome pathway data. The coexpression network is the one with 
highest density.  
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Figure 27.- Representation of the gene-disease associations. As in the case of OCG, associations in 
CCBG show a logarithmic distribution. Diseases with the higher number of genes associated are 
highlited. 

Table 13.- Topological properties of the different networks 
 

 
The paralogy network has the lowest diameter despite having the biggest size and 
the lowest density. This is because in this network there are a very large number of 
unconnected components. This implies that the biggest distance in this network has 
to be calculated inside the strongly interconnected families of genes (with an 
average path length of 1.25), thus, the maximum distance is only of 2. 

Consistency of the disease-gene associations 
 
In order to check the consistency of the disease-gene associations we calculated the 
number of genes per disease. As shown in figure 27, gene-disease associations in 
CCBG show the same logarithmic distribution that was observed in OCG (section 
4.1). Over 90% of the disease terms (612 out of 676) are associated to 10 or less 
genes. The diseases with most genes are several types of cancers and diabetes 
(including types I and II). 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter HPRD Paralogy Reactome Coexpression 

Number of nodes 3852 14580 3790 8056 

Density 0.001 0.000 0.010 0.024 

Av. degree 3.95 6.24 38.43 196.15 

Av. path length 4.95 1.25 4.87 3.96 

Diameter 13 2 20 14 

Av. clustering 0.088 0.636 0.622 0.559 
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Selection of the disease models 
 
We next looked for 5 different DO terms to be used as models to evaluate the 
different algorithms and networks. In order to do so, we searched DO terms that are 
supposed to have differences in their underlying biology and that had at least 20 
genes in each network, so that we would be able to perform cross-validation to 
estimate the performance of all the algorithm/network combinations (table 14).  
 
After evaluating these two criteria for several diseases, we finally decided to use the 
DO terms “Simple genetic diseases”, “Neurodegenerative disorders”, “Myopathy”, 
“Cancer” and “Colorectal cancer” as disease models. Not only they have more than 
20 genes in each network, but also from the analysis of the features associated to 
their associated mutations (section 4.2), we had evidence that these disorders are 
caused by alterations in different PFAM domains. This suggests that the network 
alterations, at least in the protein-protein interaction network, might be different 109.  
 

Table 14.- Total number of genes associated to each disease in each network 

 
As shown in table 15 and supplementary material 9.6 there is little overlap in the 
genes associated to each disease (with the obvious exception of “colorectal cancer” 
which is included in “cancer”, as it is a child of this term and, thus, all of its genes are 
also associated to this term), which also suggests that the underlying biology of each 
disease is likely to be different. We decided to include also colorectal cancer in our 
group of case diseases because it would be interesting to see if there are any 
differences in the performance of the different networks and algorithms between 
this term and its parent cancer. 
 

Table 15.- Percent of unique genes for each disease in each network 

 

Network Cancer Neurodegenerative 
disorders 

Simple genetic 
diseases Diabetes 

Physical 
interactions 832 50 84 87 

Paralogy 1784 118 198 181 

Pathway 638 60 147 116 

Coexpression 1102 80 151 126 

Network Cancer Neurodegenerative 
disorders 

Simple genetic 
diseases Diabetes 

Physical 
interactions 94% 62% 54% 55% 

Paralogy 95% 68% 65% 66% 

Pathway 90% 53% 61% 61% 

Coexpression 95% 64% 66% 68% 
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Prioritization of disease-associated genes 
 
Most network-based approaches to predict novel disease-associated genes use the 
same network and the same algorithm regardless of the disease. We wondered if it 
would be possible to find an optimal network/algorithm combination and whether 
this combination would be different for different diseases. We first looked for 
variations in the capability of 4 types of networks and 5 different of algorithms to 
predict the genes associated to the 5 distinct diseases, for a total of 100 
combinations. In order to do so we calculated the area under receiver operating 
curve (ROC) for each combination in a 5-fold cross validation experiment. 
 
With this data we next tried to answer 3 different questions:  
 

� Which network works better?  
� Which algorithm works better?  
� Which disease is better predicted? 

 
In order to answer these questions we generated three different boxplots, each one 
comparing a different variable and all of them representing the different 100 
combinations. 

Which network works better? 
 
Figure 28 shows the changes in the AUCs when predicting genes associated to the 
same disease, using the same method but changing the network. The first 
remarkable observation is that there is no single network that stands out from the 
rest. The performance of each network seems to be strongly dependent on the 
algorithm used and the disease that is being predicted. 
 
Analyzing the results per method some interesting trends in each network appear. 
For instance, when using the direct neighbor method with distance 1, the Paralogy 
and Reactome networks usually perform the better. For example, in cancer the 
average AUCs of the Paralogy and Reactome networks are 0.64 and 0.60 
respectively, compared to 0.55 for the HPRD and 0.51 for the coexpression network. 
In the case of colorectal cancer the values are 0.60 and 0.59 for the Paralogy and 
Reactome networks and 0.54 and 0.53 for HPRD and coexpression.  
 
However, when using the same method, but up to distances to 2 or 3, the 
differences change and the Reactome network performs much worse, being the 
worst network in diabetes (AUC of 0.57 for DN2 and 0.53 for DN3) and simple 
genetic diseases (AUC of 0.49 when using DN2 and 0.42 with DN3). Interestingly, 
when using the two diffusion methods, DK and RWR, the performance of the 
Reactome network in simple genetic diseases, cancer and in neurodegenerative 
disorders improves again. For example, in the case of simple genetic diseases this 
network goes from an AUC of 0.42, when using the DN3 method, to 0.64 if the 
method is DK and 0.63 if it is RWR. Thus, the Reactome network seems to benefit of 
using diffusion methods that exploit its whole topology to explore longer distances. 
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Figure 28.- Comparison of the results obtained in each network grouped according to the 
predicted disease and the method used. Pairs marked with one or two asterisks indicate    
p-values below 0.05 and 0.01 respectively. The dashed purple line marks the 0.5 AUC value 
threshold. 
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Analyzing the results grouping them per disease shows also some tendencies. When 
trying to predict genes associated to colorectal cancer, the coexpression network is 
the worst when using 3 of the 5 methods. In the case of cancer, the paralogy 
network is the top performer regardless of the method (average AUC of 0.65 in all 
methods), joined by the Reactome network when using the direct neighbor in 
distance 1, and the two diffusion methods.  
 
In the case of diabetes, there are not many differences, except in the case of the 
direct neighbor with distance 2, where the HPRD network seems to perform better 
(average AUC 0.67), and the same method with distance 3, where the Reactome 
network performs the worst. In the case of neurodegenerative disorders, the 
Reactome network seems to be better than the others, whereas in simple genetic 
diseases, if one uses the direct neighbor with distances 2 or 3, this network is the 
worst, as explained above. Finally, in the case of simple genetic diseases, there are 
not many differences, but it seems that the Reactome and HPRD networks are the 
best when using the diffusion methods (AUCs of 0.64 and 0.66 for the Reactome and 
HPRD networks respectively using the DK and of 0.65 and 0.71 when using the RWR). 
 
Wrapping up, it seems that networks derived from different types of biological 
information perform differently at predicting different diseases, thus it would be 
interesting to use networks derived from other information than protein-protein 
interaction data to predict genes associated to diseases. 

Which algorithm works better? 
 
We next compared the performance of the different algorithms at predicting the 
disease genes when using the same network. This is an interesting question, since 
diffusion based methods have been claimed to perform better than direct neighbor 
algorithms115,180. However, figure 29 shows that there are little differences in general 
and in few cases the difference between the two groups is significant.   
 
The network that benefits the most from diffusion methods is the Reactome 
network. When using this network to predict disease-related genes in 4 of the 5 
diseases the diffusion methods outperform the DN methods. In the only disease 
where the differences are not significant, colorectal cancer, a strong tendency in the 
same direction can also be appreciated (the AUCs for the DN methods are 0.60, 0.55 
and 0.56 for distances 1, 2 and 3 respectively, whereas the AUCs for DK and RWR are 
0.65 and 0.63 respectively).  
 
Another important observation is that, in the case of the paralogy network, the 
choice of the algorithm is not important. In figure 29 we can see that, in all the 
diseases, the predictive power of this network doesn’t change with the algorithm. 
This is probably caused by the particular topology of this network, which is formed 
by several independent cliques  (the average shortest path of the network is 1.25), 
but no connections at all between cliques. Thus, in this case, exploiting the full 
topology of the network does not provide any advantage compared to simply count 
the neighbors associated to the feature of our interest. 
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Figure 29.- Comparison of the results obtained in each method grouped according to the 
network used and the predicted disease. Pairs marked with one or two asterisks have P values 
below 0.05 and 0.01 respectively. The dashed purple line marks the 0.5 AUC threshold. 
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As a summary, our results point to the fact that the superior performance of 
diffusion methods is dependent on the network being used to make the predictions 
and that the performance of the different algorithms seems to be strongly 
influenced by the topology of the network. 

Which disease is predicted better? 
 
We finally evaluated which diseases were predicted better using each method and 
each network (figure 30). The coexpression network seems to work only to predict 
genes related to diabetes (average AUC between 0.59 and 0.65 depending on the 
method) since most values for the other diseases range around 0.50.  
 
Regarding the HPRD network, it seems to be able to predict with similar 
performance all the disease-related genes with the exception of those associated to 
neurodegenerative disorders (average AUC between 0.48 and 0.56, whereas for all 
the other diseases the range is between 0.55 and 0.67). The disease that seems to be 
better predicted this network is diabetes, which is the top performer when using 4 of 
the 5 algorithms.  
 
When using the paralogy network, cancer genes are predicted the most successfully 
(average AUC of 0.65 in all methods), whereas those associated to 
neurodegenerative disorders don’t seem to benefit from this network (average AUC 
0.53). Finally, though there aren’t any clear trends, the Reactome network seems to 
poorly predict genes associated to simple genetic diseases when using the 2 and 3 
direct neighbor methods (AUCs of 0.49 and 0.42 respectively), but apart of this, 
there is little variation between diseases regardless of the method. 
 
The group of disease genes that seems to be predicted better is the one associated 
to simple genetic diseases. In eight out of the total 20 network/algorithm 
combinations this disease is among the best predicted, and the highest AUC value of 
all combinations belongs to this disease when predicted using the Reactome 
network and RWR (0.71). This is important to take into account as most methods are 
evaluated using only gene-disease associations from OMIM, which are the strongly 
represented in this group, and it seems that predicting genes associated to other 
phenotypes is more complicated, as their AUCs are lower. 
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Figure 30.- Comparison of the results obtained in each disease grouped according to the 
network and the method used. Pairs marked with one or two asterisks have a P value below 
0.05 and 0.01 respectively. The dashed purple line indicates the AUC 0.5 threshold. 
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Figure 31.- Correlation between the rank for candidate cancer genes in the different 
networks using the direct neighbor algorithm with distance 1. There is no correlation 
between any network, indicating that each type of network is predicting different genes. 

Correlations between networks 
 
We next wondered whether different networks were predicting different genes. If 
that were the case the integration of the networks would not be likely to increase 
the performance of the networks alone. However, as shown in figure 31, there is no 
correlation between the rank of cancer associated genes in one network with the 
ranking of the same genes in another using the direct neighbor 1 algorithm. The 
same is true for the other diseases and methods tested (supplementary material 
9.7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

An interesting observation that arises from these correlation plots, is that the 
dispersion of the points, which is a reflection of the variability of the scores, 
correlates with the average degree of the network and how far the method explores 
the network. Thus, simpler methods like direct neighbor with distance 1, have a 
lower variability of scores than more complex methods like DK or RWR. The same 
happens between the HPRD network, which has a lower average degree and a lower 
distribution of score, than the coexpression or Reactome networks. 
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Figure 32.- Influence of the restart probability when predicting each disease depending on the 
network. There are no statistically significant differences in any case. The dashed purple line marks 
the AUC value of 0.5 

Influence of the different parameters in the performance of the RWR 
 
After evaluating the different methods, not only in terms of their predictive power, 
but also of speed and ease of use, we decided to only use the RWR to evaluate the 
different network combination methods. The performance of this method depends 
on three different factors: the restart probability, the topology of the network and 
the initial probability vector. Given that this method would be the only one used for 
the next part of the project, we decided to investigate the influence of these three 
factors more in detail. 

Restart probability 
 
We compared the AUC obtained in each network when predicting each disease and 
varying the restart probability between 0.1 and 0.9 in 0.1 intervals. As shown in 
figure 32, though some tendencies may be observed, there are no statistically 
significant differences in any network/disease combination. 
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Figure 33.- Comparison of the performance of our standard RWR method, and the same 
method using either random initial probability vectors or randomized networks 

 
 
After analyzing these results, we decided to keep the restart probability at 0.1 in 
order to explore longer distances in the network. 

Initial probability vector 
 
The main idea of the RWR is to calculate the “closeness” of all the genes in a given 
network to a set of “seed” or “initial” genes that are supposed to have some 
biological meaning. These genes are the ones that have non-null equal probabilities 
of being a starting point of the random walk, thus, define the initial probability 
vector. 
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In our case, we used as a seed genes associated to the different diseases of our 
interest. However, in order to evaluate the influence of these “seed” genes, we 
created for each disease 10 random vectors of the same size of the original disease-
related initial probability vector, and calculated the predictive power of this vector. 
 
Surprisingly, as shown in figure 33, some of these random vectors are indeed able to 
predict genes associated to the disease being studied, particularly when using the 
HPRD network (AUCs of 0.54, 0.55 and 0.60 when predicting colorectal cancer, 
cancer and diabetes respectively). In the case of colorectal cancer using the 
coexpression network, the results obtained when using the random seed are even 
better that when using the disease seed. 

Topology of the network 
 
In order to assess the effect of the particular topology of each of our 4 networks we 
generated, for each one of them, 10 randomized networks. These networks preserve 
the original topology in terms of number of nodes, number of edges and degree 
distribution, however the specific connections between genes have been 
randomized. As shown in figure 33, randomizing any of the four networks results in 
removing all their predictive power. This is reflected by an average AUC around 0.5 
in all cases. 

Summary 
 
Our results indicate that networks derived from other biological types of information 
than protein-protein interactions can be successfully used to predict disease-related 
genes. The performance of each network, however, seems to be strongly dependent 
on the type of disease being studied and, to a lesser extend, to the algorithm being 
used. Something similar happens with the different network algorithms. Our data 
supports the idea that the performance of the different algorithms depends strongly 
on the disease being studied and the network being used. Thus, simpler algorithms, 
like direct-neighbor counting, can perform as good as more complex difussion-based 
method, like RWR or DK, depending on the type of network. In this line, the 
evaluation of the influence of the different parameters in the RWR highlighted that, 
at least for this method, the predictive power seems to come from both, the seed 
being used to train the method and the network topology. 
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4.4. Performance of the combined networks 
 
We next assessed whether the combination of networks performed better than the 
networks alone when trying to predict genes related to disorders. We compared 4 
different ways to integrate the networks: juxtaposition, addition, weighted addition 
and Bayesian inference.  
 
In order to simplify the layout of the plots, in the following figures the initial letter of 
the network substitutes full network names: “HPRD” is “H”, “Paralogy” is 
represented as “P”, “Reactome” as “R” and the coexpression network as “C”. For 
example, network noted as “H-P” is the combination of “HPRD” and “Paralogy” 
networks. The p-values will not be represented, as it would further complicate the 
representation of the data. 
 
Figure 34 shows the AUC values obtained in each disease using each combination of 
networks and combining them by either addition or juxtaposition. The main 
conceptual difference between the two is that, in the case of juxtaposition all edges 
have the same weight, whereas in simple addition, edges have a weight proportional 
to the number of networks where they appear (i.e., if they appear in a single 
network, they have a weight of 1, but if they appear in 2 networks they have a 
weight of 2). 
 
While one can observe differences in the performance of different network 
combinations, those will be analyzed in the following figure. The important point of 
figure 34 is that there are no differences when combining the networks using the 
simple addition or the juxtaposition approaches. This is probably due to the fact that 
there are very few edges shared between networks; thus, these are likely to have 
very small effect to the overall prediction. In order to simplify further analyses, since 
there is no significant difference between addition and juxtaposition, only results for 
the addition method are shown. 
 
We then compared the performance of the networks combined using the simple 
addition method, with that of the networks alone (figure 35).  For most diseases we 
found at least one combination that outperformed the majority of the single 
networks.  
 
In the case of colorectal cancer, combining the coexpression network (C) with any 
other network generated a metanetwork that was better than the coexpression 
network. For example, while the coexpression network has an AUC of 0.53, the 
metanetworks H-C, P-C and R-C have AUCs of 0.56, 0.62 and 0.57 respectively.  
Something similar happens with the paralogy network. This network has an AUC of 
0.59 when predicting colorectal cancer genes, whereas the combination networks H-
P, P-R, and P-C have AUCs of 0.64, 0.62 and 0.62 respectively. While no network 
combination outperformed the Reactome network alone (AUC of 0.65), the network 
derived from the addition of HPRD, Paralogy and Reactome, H-P-R, performed as 
good as it while increasing their coverage significantly. 
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Figure 34.- Performance of the predictions obtained in each network combination using the 
simple addition and the juxtaposition algorithms. There is no difference between them, 
probably because there is little overlap between the edges of each network. The dashed line 
marks an AUC level of 0.5 
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Figure 35.- Performance of the RWR in every disease using both, the networks alone (light blue) 
and those resulting from their addition (light red). Results with combined networks usually 
yielded similar AUC than networks alone, but are better in terms of coverage. Dashed light purple 
line marks the AUC level of 0.5 

In the case of cancer, there are similar trends. For example, any combination of the 
coexpression network with another one again performs better than the coexpression 
network alone. We have been able to find combinations of networks that 
outperform all the single networks, but the one from paralogy data (0.65). For 
example, network P-R (0.66) is better than the Reactome network alone (0.63), or 
networks H-P (though it has an AUC of 0.69, the difference is not statistically 
significant) or H-P-R (0.68, again not statistically significant compared to the Paralogy 
network) are better than the HPRD network alone (0.57).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 90 

Diabetes is the disease that seems to benefit the most from the combination of 
networks, since it is only disease where we could find a combination of networks 
that outperforms all the networks alone with statistically significant differences H-P-
R (AUC of 0.73, compared to 0.70 when using the HPRD network, pvalue 0.03). In the 
case of neurodegenerative disorders and simple genetic diseases, we could not find 
any combination with a better AUC than the Reactome network alone (AUC values of 
0.65 and 0.71 in neurodegenerative disorders and simple genetic diseases 
respectively), but again, we could find some that performed as good as this network 
but with significantly larger coverage of the genome, such as H-P-R, which has AUC 
values of 0.68 and 0.77 respectively. 
 
Overall, it seems that when combining two or more networks it is very difficult to 
increase the predictive power above that of the best network alone. What is possible 
though, is to extend the coverage of that network using other sources of information 
without significantly affecting its predictive power. 
 
Interestingly, the addition of all 4 networks, labeled as H-P-R-C in figure 35, was only 
once among the best networks, in the case of CCR (AUC of 0.63). Thus, in most 
diseases, adding new information (edges) to the network doesn’t imply an increase 
in the capability to predict disease-related genes, at least using the simple addition 
method. In order to check whether this was dependent on how we integrated the 
networks we compared the results obtained using the simple addition algorithm 
with those obtained by the Bayesian Inference and the weighted addition optimized 
by simulated annealing (figure 36). 
 
In all the diseases the results derived from the Bayesian Inference where worse than 
those obtained by both, simple and weighted addition of the networks, with the only 
exception of neurodegenerative disorders. However, in this last case, the same 
tendency is observed, though the differences are not statistically significant. 
Moreover, the weighted addition of the networks was better than their simple 
addition in all diseases but colorectal cancer and neurodegenerative disorders. 
Moreover, the simulated annealing is able to increase the predictive power of the H-
P-R-C network in 3 of the 5 diseases: Cancer (from 0.63 to 0.68), diabetes (from 0.70 
to 0.73) and simple genetic diseases (from 0.68 to 0.74). 
 
Another remarkable observation is that the weights obtained for each network by 
simulated annealing (figure 37) usually correlate with the performance of the 
network in the same disease. For example, in the case of cancer, the two most 
important networks are “Physical interactions” and “Paralogy”, whereas in the case 
of neurodegenerative disorders they are the “Pathway” and “Physical interactions” 
networks. It is important to notice that there are some exceptions to this tendency. 
For example, in the case of cancer, the Pathway network was better than the 
Physical interaction network, however the weight of the latter is 4 times the one of 
the former. 
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Figure 36.- Performance of the different algorithms used to combine the 4 networks when 
predicting genes associated to each disease. Bayesian Inference was the worst performer in 4 of 
the 5 diseases. Pairs marked with one or two asterisks have P values below 0.05 and 0.01 
respectively. Dashed purple line marks the AUC level of 0.5 
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Figure 37.- Optimized network weights for each disease. Weights were obtained by simulated 
annealing  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Recently, some groups have used another approach to integrate biological 
information in networks. It consists in using a Bayesian Classifier trained with several 
sources of information and a set of true positive and true negative interactions to 
score all the possible interactions of a protein network. The classifier uses all the 
biological evidence to score the interactions, which gives rise to a weighted 
functional network.  
 
We downloaded one such functional network constructed by Marcotte et. al.142. It 
has been constructed using 21 different types of biological information. In order to 
evaluate this network we launched a RWR with the same sets of disease genes and 
compared its performance with that of our network-combination algorithms. 
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The functional network ranked in all cases among the top networks to predict 
disease genes (figure 38). However, the network resulting from simple addition of 
the 4 networks, H-P-R-C, performed as good as the functional network by Marcotte 
in all the diseases. Moreover, in the case of cancer, the weighted combination of the 
4 networks obtained by simulated annealing was actually better with a statistically 
significant difference (AUCs of 0.68 and 0.63 for the simulated annealing and 
functional network respectively, with a p-val of 0.015). Also in the case of cancer, a 
combination of only three of our networks, H-P-R, outperformed the functional 
network with AUCs of 0.68 and 0.63 respectively (p-val < 0.01).  
 



 94 

Figure 38.- AUCs obtained when predicting genes associated to the different diseases with each 
method that combines 2 or more networks. The dashed light purple line marks an AUC level of 0.5
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4.5. A case study: prediction of driver genes in colorectal cancer 
 
We then studied the performance of our method when predicting driver genes in 
colorectal cancer. In order to do so, we decided to use the network derived from the 
addition of HPRD, Paralogy and Reactome networks, H-P-R. We chose this network 
instead of the one optimized by simulating annealing because the calculations are 
faster, because the transition matrix is calculated only once, and the performance in 
both, cancer and CCR, are quite similar (p-values of 0.54 and 0.69 in colorectal 
cancer and cancer respectively). Moreover, the weight of the coexpression network 
obtained by simulated annealing is very close to 0, which means that the 
metanetwork is using very little information from this network to make the 
predictions. 
 
We defined our list of true driver genes as all those that have been found mutated in 
15 or more CCR samples according to COSMIC, yielding a total of 482 genes. Of 
these, we excluded those already associated to either CCR or cancer in general 
according to our database. After this filtering step, we ended with a total of 353 
genes not associated to CCR, according to our database, and 252 new cancer 
associated genes not originally included in our database. Notice that the numbers 
are different because, in the case of CCR genes we are only excluding from the driver 
list genes associated to CCR in our database. In the case of cancer, we are excluding 
all the driver genes that are associated to any type of cancer, thus the number is 
lower. 

Standard RWR 
 
When we measure our ability to predict this new driver genes, the results obtained 
using the H-P-R network and the seed with all the cancer genes in our database, or 
only those associated to CCR, were very similar in terms of AUC (AUCs of 0,66 and 
0,65 respectively). They were also quite similar when compared to the average AUC 
calculated in the crossvalidation experiment (0,64).  
 
In a more realistic set up, we ranked all the new genes compared with the 9 and 24 
closest genes in the genome (figure 39a and 39b respectively). There is a clear 
enrichment in both cases towards the first positions of the ranking. Interestingly, 
when we remove all the driver genes that have a score of 0 (which are 2 in the case 
of cancer and 5 in the case of CCR), this enrichment is even more clear (figures 39c 
and 39d). 

Boosted RWR 
 
Using initial probability vectors adjusted by mutation frequencies did not yield 
significantly better results compared to using our standard vectors. In terms of AUC, 
using genes only associated to CCR we obtained a value of 0,66 which is very similar 
to the preivous value of 0,65. When using all cancer genes, the AUC obtained was 
0,65 that is even a little bit lower than the one obtained before (0,66). 
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Figure 39.- Driver CCR genes are consistently ranked in the top positions of a group including the 9 
(a,c) or 24 (b,d) nearest genes in the genome. This enrichment is consistent when using both, all 
cancer genes (top graphs) or only CCR-related genes (bottom graphs) and is even more evident 
when removing driver genes with 0 score (c,d) 

 
The rank analysis, shown in figure 40 also led to similar observations than before: 
there is a strong enrichment of driver genes towards the first positions of the ranking 
using either CCR or all-cancer genes and removing genes with 0 score (which are 41 
in the case of cancer and 52 in the case of CCR) led to an even stronger enrichment. 
However, including this type of information, at least in the initial seed, does not 
seem to improve the overall performance of the method. 
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Figure 40.- Results of the rank enrichment experiment when using the RWR and initial probability 
vectors adjusted to mutation frequency. Again, driver CCR genes are consistently ranked in the 
top positions of a group including the 9 (a,c) or 24 (b,d) nearest genes in the genome. This 
enrichment is consistent when using both, all cancer genes (top graphs) or only CCR-related genes 
(bottom graphs) and is even more evident when removing driver genes with 0 score (c,d) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Summary 
 
According to our data, it seems that, while it is possible to generate metanetworks of 
similar predictive power than the best network alone, however, it is difficult to go 
beyond that, since only in one disease, diabetes, we have been able to identify a 
network combination that outperformed all the networks alone. However, by adding 
different networks one can achieve similar performances while extending the 
disease coverage. Moreover, it is better to combine the information from different 
networks by directly adding the networks than combining the scores, at least when 
using a Bayesian classifier. Finally, there is not a direct correlation between the 
amount of information used to generate a metanetwork and its performance. 
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5. Discussion 



 100 

With the increased use of genome-wide technologies that identify genomic regions 
and mutations susceptible to be associated to disease, it is imperative to develop 
bioinformatic tools able to deal with this information in order to (I) properly 
understand the biology of the diseases and (II) pinpoint those genes truly associated 
to the phenotype of interest from those that are not. In this thesis we explored two 
of the most used computational approaches in this direction: the use of enrichment 
analysis to identify biological features specifically mutated in certain diseases and 
the use of biological networks and graph theory algorithms to identify disease-
associated genes. 

5.1. Development of a database of disease-associated genes and 
mutations 

 
To identify disease-specific mutated features using the enrichment analysis, we 
needed a proper framework that could not be provided by existing databases about 
disease-associated mutations. For example, while there are several resources and 
databases about different biomedical aspects of diseases181,182, our analysis required 
a resource focused on disease-related mutations and protein features, where all the 
annotations are normalized using controlled vocabularies or ontologies. This reduces 
the number of available public resources and none of them fulfilled all our needs, so 
in order to overcome some of these limitations, we have developed a new database 
named OCG (table 16). This database is stored as a relational database instead of a 
simple text file, all its annotations have been normalized using controlled 
vocabularies or ontologies and all the mutations have been verified in their 
corresponding ENSEMBL proteins. Thus, it provides an adequate framework to 
retrieve the information needed to identify mutated features associated to certain 
diseases.  
 

Table 16.- Summary of the properties of different databases 
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The design of the OCG database has been inspired in that of COSMIC183 in its 44th 
version. Its mutation coverage is wide as it contains 9.276 mutations. While this 
number may seem very low when compared with databases such as COSMIC, which 
contains over 200.000 mutations in its version 61, its quite similar to that of COSMIC 
itself in the version we used (7.361 mutations) or OMIM6 (9.760 mutations). This last 
comparison is particularly relevant, since OMIM contains curated mutations that are 
very likely to be causal whereas databases with much larger numbers of mutations, 
like COSMIC v61, are more likely to include passenger mutations.  
 
In terms of diseases our database has 1195 different DO terms, which is an 
intermediate value between the 220 types of cancer, present in COSMIC and the 
7316 distinct phenotypes in OMIM. It is important to take into account that not all 
these 7316 phenotypes from OMIM are diseases. While non-disease phenotypes 
described in OMIM, such as gene expression or drug sensitivity, might be important 
for other studies, are not relevant for our study. Moreover, as we have shown in 
chapter 4 (figures 17, 18 and 19), the distribution of the mutations, genes and 
diseases is consistent with previous reports171, following a logarithmic scale with 
most genes or diseases having low numbers of mutations and few genes or disorders 
associated with many mutations. Regarding the mapping of the phenotype 
descriptions to DO terms, we have achieved an accuracy and recall of 85% and >33% 
respectively using OMIM (some of the mutations for which we had identified a DO 
term could not be mapped to ENSEMBL proteins, so they were discarded). These are 
similar parameters to those obtained by other authors trying to map disease 
descriptions from OMIM to either the DO171 or MeSH184, another biomedical 
ontology. 

Limitations of our dataset 
 
While globally speaking the database schema and content are appropriate to pursue 
the subsequent objectives, our dataset has some limitations that have to be taken 
into account when analyzing the results. First of all, we have not been able to extract 
all the information from the original databases. For example, though there are 9760 
missense mutations in the version of OMIM that we used, due to problems mapping 
the phenotype terms to the right DO term (either because the name is different in 
OMIM and DO or simply because the exact word for that phenotype does not exist in 
the DO), we could only keep 3222 (33%) of them. Another problem that we found is 
that, sometimes, OMIM and ENSEMBL coordinates do not match exactly, so the 
mutation cannot be mapped to the ENSEMBL protein and it is not stored in the 
database. 
 
Another potential limitation of our study arises from the imbalance between the two 
main groups of mutations (those from COSMIC and those from OMIM/GAD). We 
have roughly 45% more mutations from COSMIC than from OMIM and GAD (6056 
and 3307 respectively). However, according to our results, the set of COSMIC and 
OMIM/GAD mutations have little overlap (chapter 4, figure 16). Moreover there is a 
low number of mutations associated to complex diseases, which are mainly those 
coming from GAD. It would be interesting to have a higher number of complex 
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mutations in our analysis in order to have a more complete dataset and extend the 
scope of our analysis, however, the lack of standardization of GAD makes this very 
complicated to automatize. As a summary, we think that the dataset is diverse 
enough to make a first approach in that direction and, at least, analyze the 
differences between mutations associated to cancer and those related to simple 
genetic disorders. 
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5.2. Disease-specific mutated features 
 
Enrichment analyses have been widely used in biomedical studies, as they are 
particularly well suited to analyze genome-wide data, such as that derived from 
microarray or ChIP experiments. However, though enrichment analyses can be 
performed using any type of controlled vocabulary or ontology79 and there are over 
100 ontologies in the OBO foundry78, according to our knowledge, enrichment 
analyses have been extensively performed in the framework of GO terms, and few 
attempts to extend them to other ontologies have been performed. 
 
We performed an enrichment analysis trying to identify pairs of terms that showed 
statistically significant associations using 4 different controlled vocabularies: the DO, 
GO, SO and PFAM. Most studies trying to identify disease-associated features have 
focused on comparing the properties of mutations associated to either diseases in 
general81, or some more detailed phenotypes185,72, with those of neutral 
polymorphisms (such as nsSNPs) or simulated random mutations49. Our approach is 
different in that we are always comparing disease-related missense mutations. By 
doing this, we can identify subtle differences in the pathogenic mechanisms of 
mutations associated to different phenotypes.  
 
While each controlled vocabulary is meant to describe different aspects of protein 
biology, there are some areas in which they overlap. As would be expected, 
associations involving terms in those overlapping areas of knowledge are consistent 
along the different controlled vocabularies. For example, there are less mutations 
than expected associated to cancer in genes “integral to membrane” (GO:0016021), 
“transmembrane regions” (SO:0001077) or the “ABC transporter transmembrane 
region” (PF00664). 

Identification of known associations 
 
Associations found between DO and GO terms provide a first good control of the 
performance of the method. We found 3199 such pairs, most of which could be 
expected from the biology of the disease. For example, DO terms related to 
inherited blood disorders are associated to genes whose function is related to blood 
coagulation. One of the factors contributing to these associations comes from the 
fact that some GO annotations are inferred from phenotypes observed in individuals 
where the gene is mutated. Of the total 44.914 annotations of human genes with GO 
terms, 2725 are inferred from mutant phenotypes (evidence code “IMP”). 
 
Another group of DO/GO associations that provided us good evidence about the 
performance of the method are those that have been previously described. For 
example, we have several GO terms that are strongly associated to the DO term 
“Cancer” (DOID:162) such as “Transcription”, “DNA repair” or “MAPKKK cascade”, 
which have been previously related to cancer175,59,77. 
 
Interestingly, we found also some of the statistically significant pairs between DO 
and GO that had been identified in one of the few enrichment analysis previously 
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performed using these two ontologies139. In that work, LePendu et. al. showed that 
genes annotated with the GO term “aging” (GO:0007568) are enriched in DO terms 
such as “Cancer” or “Alzheimer’s”. In agreement with these studies, using our 
analysis we identified DO terms such as “Brain’s disease” or “Cancer” as associated 
to this same GO term. 
 
Regarding associations between disease and PFAM domains, it is important to 
remark that others have recently analyzed disease-related mutations in that context. 
For example, Zhong et. al. described a series of proteins that when mutated in 
different domains are associated to different phenotypes109. This observation has 
been recently confirmed an attributed to mutations altering interfaces of domain-
domain interactions186. In another recent publication, Nehrt et. al.49 used the PFAM 
domains to group somatic mutations from samples of either breast or colorectal 
tumors. When the mutational landscape of somatic mutations is analyzed by 
grouping the mutations according to the gene containing them59,47,187 two main 
patterns emerge: strong peaks, which are genes systematically mutated in cancer 
and, thus, very likely to be drivers, and weak “hills” of genes that are mutated less 
frequently but that may contain some genes that contribute to cancer in specific 
contexts. In order to identify these context-specific drivers, they decided to group 
the mutations according not to the gene where they are happening, but to the 
domain were they are located. They observed a series of domains, each of which can 
happen in one or more proteins that are enriched in somatic mutations when 
compared to a random distribution of the same mutations. These domains include, 
among others, “P53”, “MH2”, “APC”, “PI3K p85 binding domain” or “Miro” in the 
case of colorectal cancer and “P53”, “PI3ka” or “IL8” in the case of breast cancer. 
Interestingly, we also found a strong enrichment in the “Miro” domain in both types 
of cancers and “MH2” in colorectal cancer. The Miro domain is a GTPase signaling 
domain, found in proteins involved in mitochondrial motility. This could indicate that 
mutations in this particular pathway are important for these particular diseases. 
Proteins containing this domain have different subfunctionalization codes that 
differentiate them from the rest of GTPases. Therefore, they could be used as a nice 
framework for further therapeutic studies. However, we did not find the other 
associations, probably because, as reported in the paper, these domains are 
mutated in one or two different proteins and we need a minimum of 3 to take the 
association into account. 

Breast cancer and the kinase domain 
 
The GO term “Kinase activity” (GO:0016301) has been previously associated to 
cancer77,188, and mutations associated to the DO term “Cancer” and some of its 
children are, indeed, strongly enriched in this GO term (corrected p value 2.27 E-26). 
However, mutations associated to “Breast carcinoma” are depleted in this GO term 
(corrected p value 0.0001). 
 
A similar association has been found using the PFAM domain “Protein kinase 
domain”. This domain has been previously associated to cancer110,54 and, indeed 
shows a strong enrichment in mutations associated to several types of cancer 
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according to our data, but it also shows a strong depletion of mutations associated 
to breast carcinoma. One of the possible interpretations of these results is that only 
the mutation in a reduced set of kinases can cause cancer in this tissue (19 genes), in 
contrast to other related diseases, such as skin cancer, where the number of kinases 
that can be mutated to originate the disease seems to be larger (27 genes).  
 
It is also established that there are differences in the distribution of the mutations 
along the kinase domain depending on whether the mutation is associated to cancer 
or not54. This feature has even been used to differentiate driver from passenger 
mutations189. Subdomain I of protein kinases is a preferential cancer hotspot54 
because it is implicated in the active-inactive transition of the domain, thus 
mutations in that subdomain may cause a permanent activation or inactivation of 
the protein. A similar effect has been hypothesized for mutations in subdomain VIII, 
since it contains the DFG flexible loop and a phosphorylation site involved in 
regulation. On the other side, subdomain V, which is enriched in breast cancer 
mutations according to our data (6 mutations in 6 genes), has not been previously 
associated to cancer or any other disease and is thought to play basic structural 
roles. While the underlying mechanisms of some of the mutations in this subdomain 
that are associated to breast cancer have been previously described (for example, 
mutation L184S in MAPKKK4 inactivates the gene, which is a tumor suppressor190), 
more work on the role of subdomain V is needed in order to understand its 
relationship with breast carcinoma. 

DO and SO associations 
 
Grouping mutations according to their presence in PFAM domains has proven to be 
successful when interpreting the properties of disease-related mutations, as 
aforementioned. One of the factors contributing to this success is that it provides a 
lower level of granularity than the GO. In this line, the use of SO to analyze disease-
related mutations becomes the next straightforward step and an even provides a 
higher resolution level of analysis.  
 
The SO has been previously used to annotate variations and features in the human 
genome191 and is gaining attention in recent years, to the point that SO annotations 
are included in ENSEMBL since 2012192. This has led to the development of some 
tools to annotate personal genomes and provide simple statistics193, retrieve known 
mutation consequences194 or retrieve genome SO annotations by using DAS 
servers195. 
 
We analyzed the potential associations among the 1195 DO terms describing 
diseases and 88 SO terms describing sequence features by analyzing the number of 
shared mutations between every pair of DO and SO terms. We found 82 statistically 
significant associations after Bonferroni correction. Of these, 76 associations 
involved very general DO terms or were difficult to interpret, thus we did not 
perform any further analysis on those. The remaining 6 associations were selected 
for further analysis. All of them involved a DO term related to cancer and a sequence 
feature that was informative enough to make some biological hypothesis: “disulfide 
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bonds”, “transmembrane region”, “protein localization signal”, “compositionally 
bised region of peptide”, “serine-rich region” and “intrinsically unfolded region”. The 
first three SO terms were underpresented in cancer mutations, whereas the other 
three showed an enrichment of mutations associated to that phenotype.  
 
We could confirm 3 of these associations using only genes that have the considered 
feature, which suggests that the associations are not caused by a bias in the 
properties of the genes. Moreover, we could also confirm 5 of these associations 
using a different set of cancer mutations. Considering that cancer is no longer 
viewed as a single treat, but a compendium of multiple diseases, our data indicate 
that biochemical properties are indeed informative to identify common mutated 
protein features involved in the development of the disease. 

The influence of the unfolded protein response in cancer evolution 
 
Mutations in disulfide bonds are often pathogenic and associated to several diseases 
in our database such as dysplasia (MATN C304S), Fabry disease (GLA C56G and GLA 
C202W), Marfan syndrome (several mutations in FBN1) or retinitis pigmentosa (CRB1 
C1181R) among others. Since many cancer mutations are expected to be pathogenic 
by disrupting the protein’s structure81 it is perplexing to find that mutation of 
disulfide bonds is underrepresented in cancer mutations (12 mutations in 9 genes). 
 
One plausible hypothesis is that the disruption of disulfide bonds may create 
unfolded protein products that are retained longer in the endoplasmic reticulum196. 
This retention could ultimately increase the stress in that organelle and activate the 
unfolded protein response (UPR)197. Although the UPR has been shown to protect 
cancer cells from apoptosis in some cases198,199,200, over a certain threshold, its 
maintained activation leads to exactly the opposite and induces the apoptosis of 
these cells201. Given that cancer cells, particularly those in solid tumors, are already 
under endoplasmic reticulum stress mainly due to hypoxia conditions and glucose 
starvation201, additional stress may be indeed disadvantageous. Therefore, unless 
the disrupted protein is giving a clear biological advantage, mutations increasing the 
overall stress in the cell (like disulphide bonds) may be under strong removal 
pressure. In this line, Geiler-Samerotte et. al.202 have recently quantified the costs of 
protein misfolding in yeast and they found a positive correlation between the 
amount of misfolded proteins and the fitness decrease of the cell. UPR-induced 
apoptosis has been proposed to be involved in other diseases, such as type II 
diabetes. In this case islet beta-cells in the pancreas would die due to excessive 
accumulation of insulin in the ER that would lead to prolonged UPR activation and 
cell apoptosis203. 
 
In a similar line, there are several ways for a mutation in a transmembrane region to 
be pathogenic such as impeding interactions that occur through transmembrane 
domains204,205 or affecting the correct conformational settings for the regulation of 
the receptor206. Mutations may also affect the proper folding of the transmembrane 
region of the protein impeding the insertion of the polypeptide in the membrane207. 
Supporting this ideas, it has been described that pathogenic missense mutations in 
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transmembrane domains tend to occur in polar residues which are likely involved in 
salt-bridges208, thus disrupting important interactions for protein stability. In this last 
case, the misfolded protein will remain in the ER increasing the organelle’s stress 
and ultimately leading to UPR activation209, which agrees with the hypothesis 
explained above for disulfide bonds and could help in understanding why mutations 
in these regions are underrepresented in cancer mutations (117 mutations in 60 
genes). Finally, mutations in peptide localization signals, which are also 
underrepresented in cancer-associated mutations (24 mutations in 22 genes) are 
likely to disrupt the correct protein trafficking and cause the protein product to 
remain stalled in the ER209 increase ER stress and activate the UPR, ultimately also 
having a pro-apoptotic effect in cancer cells. 
 
Taking all into account, the three under-represented features in cancer mutations 
seem to affect tumor evolution. Cancer cells are under ER stress and mutations in 
any of those features are likely to be under strong selective pressure.  Therefore, 
mutations in these regions may be unsustainable for the cell’s viability and most 
likely purified during the evolution of the tumor population. 
 
Notably, ER stress and UPR have been proposed to be a key mechanism of several 
drugs in preclinical and even clinical settings for cancer treatment201,210. It has been 
recently shown that Bortezomib (also known as Velcade), a cancer-approved drug 
that inhibits the proteasome, acts, at least partially, by inducing ER stress in multiple 
myelomas211 or human pancreatic cancer cells212. Increase of ER stress through 
inhibition of secretion and vesicle trafficking by chemical agents is also being tested 
as an anti-cancer therapy in chronic lymphocytic leukemia213. 

Intrinsically unfolded regions and cancer 
 
We also found 3 sequence features overrepresented in cancer mutations: 
“compositionally biased regions” (216 mutations in 72 genes), “intrinsically 
unstructured regions” -IURs- (1753 mutations in 928 genes) and “Ser-rich regions” 
(84 mutations in 12 genes), though we could not confirm the latter association in the 
set of mutations from the TCGA.  
 
Considering that compositionally biased regions and serine-rich regions are highly 
unstructured177,214 and are strongly related (section 4.2), we analyze all the three 
features together to avoid potential biases caused by this effect and to simplify the 
analyses. 
 
IURs are regions of proteins that do not need a regular fold in order to be biologically 
functional215,216. These are highly flexible and dynamic regions involved in several 
cellular functions, particularly those that require protein-protein or protein-DNA 
interactions, such as signal transduction or transcription regulation217. IURs have a 
higher flexibility and a larger interaction surface than regularly folded regions that 
allow them to interact with high specificity and low affinity and with multiple 
partners, which explains their preferential positions in hubs of the interactome218,219. 
Moreover, proteins with high content of IUR are tightly regulated220,221, particularly 
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by post-translational modifications such as phosphorylations178 or ubiquitinations220. 
 
Different types of alterations, such as copy number variations61 or chromosomal 
rearrangements222, involving proteins containing IURs have been previously 
associated to different diseases223,224, particularly neurodegenerative disorders225,226 
and cancer223,62. In our dataset missense mutations in IURs are associated, among 
other diseases, to long QT syndrome (mutation S1103Y in gene SCN5A), congenital 
heart defects (N21H in gene CFC21), frontotemporal dementia (G272V in gene 
MAPT) or several types of cancer such as colorectal cancer (A189V in TP53). 
 
In a recent paper227 Vacic et. al. propose that missense mutations in IURs associated 
to disease should be analyzed differently than mutations in folded regions. They 
argue that since the properties that confer the biological function of the folded and 
intrinsically unfolded regions are different, the pathogenic mechanisms of the 
missense mutations in these regions should also be different. For example, since 
IURs tend to be less conserved228, one of the most popular programs to predict 
whether a mutation will be pathogenic, SIFT38, since it is precisely based on 
aminoacid conservation through evolution, tends to incorrectly predict the outcome 
of mutations in IUR81. This is an important point to consider when predicting driver 
mutations by using conservation-based derived scores. If one tries to identify driver 
cancer mutations by using scores derived from conservation, these mutations are 
probably going to be misinterpreted. 
 
Missense mutations in IURs are expected to be pathogenic by different mechanisms, 
among others disrupting protein-protein or protein-DNA interactions, that could 
lead to “edgetic perturbations”109. In this line, alterations in IURs have been recently 
associated to rewiring interactomes through evolution229. Another possible 
pathogenic mechanism is that these mutations alter post-translational modification 
sites involved in the regulation of the protein, which could cause accumulation of 
dosage sensitive proteins61. These results agree with our observation that mutations 
occurring in post-translational modification sites are also located within intrinsically 
unstructured regions more than expected (section 4.2). For example, mutations 
Y591C in gene FLT3 (associated to lymphoma in COSMIC) and Y336F in PTEN 
(associated to brain cancer in COSMIC), are located at intrinsically unstructured 
regions and both mutations disrupt phosphorylation sites that have been described 
to be important for the proper regulation of the proteins' activity230 and degradation 
rate231 respectively. These pathogenic effects could also be caused indirectly if a 
missense mutation induces disorder/order transition of the region (D -> O)232,227 that 
would impede the unfolded state of the region and block the accessibility of a post-
translational modification site or disrupting an interaction surface. This would be the 
case for mutation R306C in gene MeCP2 that is associated to Rett syndrome in 
OMIM and was predicted to induce an order to disorder transition inside an IUR227.  

Discriminative associations 
 
To the best of our knowledge, few analyses capable of discriminating between 
disease subtypes have been performed using controlled vocabularies. One of the few 



 109 

examples would be IntOGen233, which is focused on cancer and uses the 
International Classification for Oncology. IntOGen is an excellent framework to 
analyze cancer genomic data and it includes several types of data, besides 
mutations, that we have not used in our analysis, such as expression from thousands 
of microarray experiments. However it does not include information on other 
disease types. The interesting thing of our method, besides those novel associations 
that help us highlight important aspects of disease biology (such as the role of UPR 
and IURs in cancer) is that it provides associations that show different trends in 
distinct phenotypes, even between DO terms that are closely related such as 
subtypes of cancers. It is in these cases that the design of our experiment becomes 
the most relevant, because these types of associations would be difficult to identify 
when comparing disease-related mutations to random sets of mutations or benign 
variations.  
 
We have found several examples of GO terms, particularly in cancer, that show an 
association in one direction with a given DO term and another association in the 
other direction with another closely related DO term. For example, “Metabolic 
process” is enriched in mutations associated to “Lung carcinoma” and depleted in 
mutations associated to “Pancreatic neoplasm” and “Breast carcinoma”. Another 
interesting example is “Angiogenesis”, enriched in mutations related to “Cancer” and 
“Kidney neoplasm” and depleted in mutations associated to “Breast carcinoma” and 
“Lung carcinoma”. 
 
While we observed a total of 89 GO terms that follow this trend, this idea is better 
represented in figure 20. This figure shows a clustered heatmap representing 
whether a given DO/PFAM pair shows an enrichment or depletion of mutations. The 
distinct subtypes of cancer cluster together forming two distinct subgroups and DO 
terms describing other diseases cluster on the other side of the heatmap. In this 
figure it is possible not only to identify domains strongly enriched in cancer 
mutations, such as Miro, Ras or Ankyrin, but also to appreciate a series of PFAM 
domains, such as SNF2, Sushi FN3, or Protein Kinase that show a depletion of 
mutations in several types of cancers and an enrichment in other subtypes of 
tumors. 
 
One possible use of all these associations that we have not explored in this thesis is 
the training of a classifier able to identify/prioritize pathogenic mutations. Similar 
approaches using features associated to disease to identify driver/pathogenic 
mutations have already been described234. For example, Nehrt et. al. have used 
domain enrichment analysis to identify PFAM domains enriched in driver 
mutations49, but their background model, like that of Yue et. al.235, were estimations 
of mutation rates instead of disease-associated mutations. In another recent 
publication Peterson et. al. compared the distribution of mutations associated to 
mendelian disorders along the different PFAM domains with that of cancer-related 
mutations236. While their framework is more similar to the one that we have used, 
their design is unable to identify differences between cancer subtypes, as all the 
mutations have been mapped directly to cancer. Protein annotations with GO terms 
have also been used to identify pathogenic nsSNPs either alone237 or in combination 
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with other protein features169.  

Summary: Disease-specific mutated features 
 
Our findings indicate that mutations in the same gene might be causing different 
phenotypes, not only because affect different functions or interactions of the same 
protein109, but also because they occur at regions with different biochemical 
properties. In conclusion our results provide evidence that using ontologies to 
identify non-obvious associations between mutated biochemical features and the 
diseases they are associated to is a valuable tool to this purpose. We have 
exemplified this approach by comparing cancer-associated mutations versus 
mutations associated to other diseases and provided examples of significant 
enrichment and depletions. The associations identified in this work are pointing to 
underestimated aspects of the biology of cancer and may help us in the future to 
discriminate between passenger and driver mutations.  



 111 

5.3. Prediction of disease-related genes 
 
Besides enrichment analysis, another class of methods that have been gaining 
attention in recent years to prioritize lists of putative disease-related genes are those 
base in biological networks. These have their origin after the description of the first 
interactomes in some model organisms97,114,238, when scientists started using 
algorithms and concepts from network theory to systematically analyze the 
properties of such networks239,91,94. The observation that proteins closer in the 
interactome tended to perform similar functions114, led some groups to try to exploit 
this idea in order to predict disease-related genes by using protein-protein 
interaction networks. This strategy has provided some successful results, such as the 
identification of the role of gene KIF1A in a neurological disorder240, and it has been 
exploited using several types of algorithms and networks. We have performed a 
systematic study to evaluate which types of networks and algorithms perform better 
at predicting different types of diseases. 

Performance of the different methods using individual networks 
 
As mentioned before, most existing methods base their predictions in measuring the 
closeness of the candidate genes to a set of genes known to be associated to the 
phenotype of interest. We assessed the performance of 5 such algorithms in 4 
different networks when predicting genes associated to 5 different diseases. By 
doing this we have been able to address whether there are any networks, algorithms 
or diseases that show superior performance over others. 
 
Regarding the algorithms, although previous reports115,180 claim a better 
performance of the diffusion algorithms, such as the Random Walk with Restart 
(RWR)179 or Diffusion Kernels (DK)179 over simpler methods, like direct neighbor 
counting (DN)119. However, we did not observe major differences in the performance 
of both classes of methods. There are, however, some cases in which the diffusion 
methods outperform the DN algorithms. For instance, when predicting genes related 
to simple genetic diseases or neurodegenerative disorders using the Reactome 
network. This seems to be strongly dependent on the type of network used. For 
example, in the case of the paralogy network, due to its particular topology (it is 
basically formed by highly interconnected cliques), we have not found significant 
differences between all the algorithms. In contrast, the Reactome network, showing 
a high internal connectivity (see section 4.3) similar to the paralogy network, is 
better analyzed by diffusion methods probably due to the connections between 
cliques. This is exemplified in the case of simple genetic diseases where the use of 
RWR produces higher outcomes than other methods, by means of AUC values, being 
0.71 compared to 0.49 obtained by DN2. 
 
Regardless of the algorithm used, most groups only use networks derived from 
protein-protein interaction data to make their predictions179,119,241,242,243 and few 
attempts to use other types of networks, such as those derived from metabolic244 or 
regulatory102 data, to predict disease genes have been performed. However, as 
shown in this work, we have demonstrated that the use of these networks is 
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comparable to that of PPIs and even in some cases, outperform them. In fact, out of 
25, only in 3 of the different combinations analyzed here PPIs rank among the top 
networks in terms of AUC. For example, the network derived from phylogenetic 
data, the Paralogy network, performs significantly better than the PPI network from 
HPRD159 at predicting genes related to cancer (pvalue below 0.01), regardless of the 
method used to prioritize the genes. This suggests that, though cancer-related genes 
have been claimed to be interactome hubs245,111,246 and several approaches have 
taken advantage of topological features in protein-protein interaction networks to 
identify cancer genes110,247, paralogy information can be better at predicting disease-
related genes. One possible explanation could be that, as it has been previously 
shown, cancer is usually caused by alterations of certain cellular functions or 
pathways rather than specific genes. One consequence of this phenomenon is that 
alterations in the same pathway or cellular function tend to be mutually exclusive248. 
Thus if two paralogs are performing similar functions, mutations altering one or the 
other might lead to cancer, which would explain this better performance of the 
Paralogy network over the HPRD. One factor contributing to this hypothesis is that 
cancer genes tend to have less paralogs174, thus, it could be more likely that a single 
mutation altering one of the members of the family is enough to cause cancer. 
Another idea that comes from these results is that not only paralogs tend to be 
associated to disease by mutations in equivalent positions (as described by Yandell 
et. al.249) but that they are also associated to similar phenotypes.  
 
We also have observed that diseases are predicted differently, in terms of AUC, 
when using distinct networks. For example, as explained before (figure 28), cancer is 
predicted better when using the paralogy network (AUC of 0.65) than when using 
HPRD (AUC of 0.57) or the coexpression network (AUC of 0.52). In this last case, it 
could be that cancer cells have seriously altered expression patterns (a feature that 
has been even used to discriminate between cancer types250), thus the network 
derived from healthy expression data is not informative enough to make any 
prediction in this disease. In fact, the coexpression network seems to be good only at 
predicting genes related to diabetes (AUC of 0.63). In the cases of HPRD and 
Reactome networks, there are little differences between diseases.  
 
The main idea that emerges from these results is that networks derived from 
different sources of information perform differently when predicting distinct 
diseases. Moreover, as we have shown, different networks tend to predict different 
genes (reflected in figure 31, which shows that there is no correlation between the 
ranking of one gene in one network and the ranking of the same gene in another 
network). These results support the notion that networks that combine several types 
of data could outperform networks derived from single sources, an idea that has 
been already tested using various approximations and that will be discussed in the 
following section. 
 
Finally, the evaluation of the influence of the different parameters in the 
performance of the RWR algorithm provided some interesting results. For example, 
the restart parameter, which in principle should affect that maximum length of the 
random walk and thus, could potentially alter the results, has no influence in the 
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performance of the network (figure 32), which is something that has been previously 
reported137. Another interesting observation is that the random seed sets have some 
predictive power, particularly in the HPRD network (figure 33). This network had 
AUCs of 0.54, 0.55 and 0.60 when predicting colorectal cancer, cancer and diabetes 
respectively when using random seeds.  Our interpretation of these results is that 
genes associated to diabetes, cancer or colorectal cancer tend to occupy central 
locations in HPRD, a phenomenon that has been described for cancer genes174. If 
that were the case, regardless of the starting point, the probability of ending in a 
disease gene would be greater than that of ending in a non-disease gene. 
Interestingly, the random seeds have no predictive power for simple genetic 
diseases (AUC of 0.50), which could be related to the fact that these genes, unlike 
those related to cancer, do not have higher connectivity than average genes in the 
genome113. 

Performance of the combined networks 
 
Several methods to combine different types of biological information in form of 
network have been tested, but they can be classified into two categories: those that 
combine the information a priori and those that combine it a posteriori. Among the 
first group we found methods that rely on generating metanetworks using several 
sources of information to later run the prediction algorithm. For example, one of 
such methods consists in using a Bayesian classifier to infer which of all the possible 
interactions in a given proteome are true. The classifier is trained with a set of true-
positive interactions and another set of true-negative interactions, and several 
sources of information are used to predict which of all the possible interactions in a 
set of proteins are more likely to be true. These methods create functional networks 
that are weighted according to the probability of the interaction to be true143,141,140. 
Another class of methods that belongs to the a priori group, consists in creating bi-
partite graphs in which each type of biological information is represented as 
independent networks, connected with each other in specific points shared between 
the different networks131,251,252,132. 
 
The a posteriori group consists of those methods that combine the results obtained 
from several sources of information, after running the algorithms to produce a meta-
score or a meta-ranking. This can be done by combining either the raw scores136 or 
the ranking of the candidate genes253,254,137.  
 
In this thesis we have explored the two groups of methods by (a) integrating the 
scores obtained by a RWR in each single network using a Bayesian classifier, which 
would fall in the a posteriori classification, and (b) creating a meta-network by 
adding the different networks, which would be included among the a priori methods.  

Combining the networks seems to perform better than combining the scores 
 
The first interesting result is that the Bayesian classifier trained with the RWR scores 
always performed worse than the addition of the 4 networks, with the exception of 
neurodegenerative disorders, though a strong tendency in that direction was also 
observed in that case. In figure 36 one can observe that, for example, in the case of 
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cancer the AUC of the H-P-R-C network is around 0.62 whereas the Bayesian 
classifier has an AUC of 0.65 (pvalue below 0.01). These results suggest that when 
predicting genes related to disease it is better to combine the information from the 
different networks by directly adding them to create a meta-network than to 
combine their distinct scores, at least using a Bayesian classifier. However, it is 
important to keep in mind that there are several other approaches that fall in the a 
posteriori group that we could have tried, thus we cannot generalize this affirmation 
beyond the scope of our results. One approach that might improve the results of 
combining the scores is the one described by Chen et. al.136. In that work they 
combined the scores derived from running the DK algorithm in several networks by, 
among other things, selecting only the best network for each gene (the one that give 
the gene the highest disease score). By doing this they claimed an AUC of 0.80 at 
predicting diseases from OMIM. Another possibility would be to use ranking 
statistics instead of the raw scores. This idea, as we have explained before, has also 
been applied before and several variations have been tried, being probably 
ENDEAVOUR it’s most well-known example138. 

Combined vs single networks 
 
There are several ways to combine two or more networks. Here we have explored 3 
of them: juxtaposition, addition and weighted addition. The first method consists in 
the union of “N” networks giving all the edges the same weight regardless of the 
number of networks where the edge appears. The addition method, again, adds “N” 
networks but gives the edges a weight proportional to the number of networks 
where it appears. Finally, the weighted addition generates a metanetwork where the 
edges are weighted according to the sum of weights of their original networks (if an 
edge appears in two networks, one of which has a weight of 1 and the other a 
weight of 0.7, the edge in the metanetwork will have a weight of 1.7). 
 
We first compared the results obtained when juxtaposing or adding the different 
networks. As we have shown in figure 34 there are no differences at all between the 
two. This is likely to be caused by the fact that the number of edges shared between 
networks is very low (figure 24). Thus, the influence of their weight in the overall 
performance is also quite small. 
 
We then compared the performance of the individual networks with that of their 
different combinations. The first important result that we obtained is that the 
combination of two or more networks does not always outperform the networks 
alone. In fact, we could not obtain any combination of networks that performed 
better than the best network alone in 4 of the 5 diseases. The only exception was 
diabetes, where the network resulting from the addition of H-P-R outperformed the 
best single network in that disease, HPRD (AUCs of 0.73 and 0.70 respectively, 
pvalue 0.03). However, for the other diseases the resulting meta-network could 
perform only as good as the best individual network, in terms of AUC. Nevertheless, 
it is worth to note that the coverage of the meta-network is larger than that of the 
networks alone. Thus, globally speaking, if a meta-network has the same AUC than a 
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simple network, since it includes more disease genes, one could say that it is better 
to predict disease-related genes.  
These results agree with those described in a recent publication by Gonçalves et. 
al.180. In that publication they compared the performance of the whole STRING 
functional network255 with that of the networks derived from each source of 
information at predicting disease-associated genes. They observed that the network 
derived from the integration of the individual networks was not better than the best 
individual source of information for that network, which was text mining.  

Influence of the amount of information 
 
Given that the different networks represented very different types of relationships 
between genes (as reflected by the little amount of shared edges between networks, 
figure 24) and that they tend to predict different genes (as shown in figure 31, there 
is no correlation between the ranks obtained by the same genes in different 
networks), one might think that metanetworks including more sources of 
information would perform better than those with less types of information. 
Moreover, some publications describing methods to prioritize lists of putative 
disease-related genes disclaim the results obtained when using different 
combinations of information to perform their predictions and, usually, the 
combination that performs the best is the one that uses all types of 
information136,138. However, our results seem to indicate that there is no correlation 
between the amount of information used to generate the metanetwork and its 
performance. 
 
The first evidence in that direction comes from the fact that, as we have explained, 
in 4 of the 5 diseases we have not found any combination of networks that 
outperform the best single network (figure 35). Something similar happens when 
comparing the performance of metanetworks resulting from the addition of 2 or 3 
networks. For example, in the case of cancer the H-P (0.69) or P-R (0.66) networks 
performed as good as the H-P-R (0.68) and better than the P-R-C (0.61, pvalues 
below 0.01 in both cases) and H-R-C networks (0.54, pvalues below 0.01 in both 
cases). When analyzing genes associated to other diseases the conclusions are 
similar. When predicting genes related to diabetes, for instance, the P-R network 
(0.70) performed as good as the P-R-C network (0.67). Moreover, recent publications 
suggest that tissue-specific networks perform better than global networks at 
predicting genes involved in phenotypes256. However, when we tried to include this 
information by adding the coexpression network to the other networks adding this 
type of information decreased the performance of the other networks. Two facts 
support this idea: (I) the combination of the HPRD, Paralogy and Reactome networks 
was among the best combinations in all the diseases, whereas the combination of all 
networks was rarely among the best performers; (II) the optimized weight of the 
coexpression network calculated by simulated annealing was the lowest (below 0.5) 
in all the diseases. More evidence supporting this lack of correlation between 
amount of information and performance comes form the observation the functional 
network by Lee et. al.143 that integrates up to 21 types of biological information did 
not perform better in any disease than the combination of only 3 networks: HPRD, 
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Reactome and Paralogy (figure 38). Finally, the weighted metanetwork H-P-R-D 
optimized by simulated annealing, while performed better than the network 
resulting from the simple addition of these four networks, did not outperform in any 
case the H-P-R network. 

Prediction of CCR driver genes 
 
In a recent publication Bömingen et. al. evaluated 8 different gene prioritization 
tools257, including some network-based such as Gene Wanderer by Köhler et. al.127. 
They assessed the performance of each gene prioritization tool using a series of 
gene-disease associations that were not included in the training set of the methods. 
By doing this, they could test the performance of the methods in a setting more 
resembling of a real-world scenario. They observed that, while all methods could 
predict the new disease-gene associations to a certain degree, most of them 
performed worse than what was claimed in the original paper. They attributed this 
result to an overestimation of the performance by cross-validation based 
benchmarks. 
 
In order to assess whether we were properly estimating the performance of our 
methods and to test them with external data, we tried to predict cancer driver genes 
that were not associated to cancer in our database. Aiming for that goal, we 
downloaded the latest available summary of mutations associated to colorectal 
cancer in COSMIC (v61). We defined our set of driver as those who had been found 
mutated in at least 15 tumor samples. This rendered a list of 482 genes. Of these, 
129 and 230 were already associated to CCR and cancer respectively in our database. 
We tried to predict the remaining 353 and 252 genes using as seed sets all the CCR 
and all the cancer genes respectively, using the network derived from the addition of 
HPRD, Paralogy and Reactome and a RWR. 
 
There were no differences in terms of AUC when trying to predict the driver 
colorectal cancer genes using the cancer seed (0.66) or the CCR seed (0.65). This 
suggests that genes associated to related phenotypes in the DO can be used to 
predict genes related to the disease of interest when using our method. This is an 
idea that has been explored before, but calculating the similarity between diseases 
using text-mining approaches instead of ontologies106,105. Moreover, these values are 
also quite close to those obtained in the cross-validation benchmarking, 0.64 for 
colorectal cancer and 0.68 for cancer in general. This suggests that our cross-
validation settings give us a good and objective idea of the performance of the 
different methods. 
 
Methods trying to predict cancer driver genes or mutations that make use mutation 
frequency data are becoming very popular. For example in a recent publication 
Gonzalez-Perez et. al. described a method that integrates pathogenic scores from 
several predictors with mutation frequency data258. Moreover, some other groups 
added, for instance, the p values of GWAS studies to the candidate genes before 
running the network algorithm242,142. Therefore, we also tried to improve the results 
of our method by adding the gene mutation frequency data to the seed used to start 
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the RWR. This adjusted seed, however, did not improve the AUC values of the 
method (0.65 and 0.66 for cancer and CCR respectively). One hypothesis explaining 
this lack of improvement is that in the H-P-R network colorectal cancer genes seem 
to be central, as random seeds have some predictive power in this network (AUC of 
0.56), whereas randomized networks do not (AUC of 0.50). 
 
We also simulated GWAS data by creating, for each colorectal cancer gene, a group 
of genes made of the 9 or 24 closest genes in the genome. We next ranked the group 
according to the scores obtained in the H-P-R network using the RWR and observed 
the ranking of the true driver gene. As we have shown in figure s 39 and 40, there is 
indeed an enrichment of driver genes towards the first positions of the ranking. This 
supports the idea that our method is able to identify known-driver genes. 

Summary 
 
Despite previous reports suggesting otherwise, our results indicate that difussion-
based methods do not necessarily perform better than simple methods like direct 
neighbor counting, and whether they do or not seems to be influenced by the 
topology of the network being used. Similarly, though most people solely use 
protein-protein interaction networks our data suggest that networks derived from 
other sources of information can perform as good as this network, or even better, 
depending on the disease being studied.  
 
Adding various types of biological information in form of networks can improve the 
predictive power of the resulting meta-network over the individual networks, in 
terms of coverage of disease genes, while maintaining the AUC values of the best 
network. However, this is not straightforward as depending on the type of 
information one is combining, the resulting combined network might perform worse. 
Another layer of complexity comes from the fact that, depending on the disease of 
interest, the optimal network combination might differ, though some general trends 
might be observed (for example, it seems that adding the coexpression network to 
any other network decreases its predictive power). Moreover, according to our 
results, it seems that it is better to combine the information from various networks 
by directly adding the networks than by combining the scores of the different genes 
in the obtained using the different networks alone. Finally, we have been able to use 
the combination of the HPRD, Paralogy and Reactome networks to successfully 
identify known driver genes in colorectal cancer. 
 
Overall it seems that there is no rule of thumb on which networks and algorithms 
will perform better at predicting each disease-type, which is something that should 
be taken into account when designing automatic pipelines to prioritize list of 
disease-related genes. This is an aspect that is going to be important in the near 
future as whole genome/exome sequencing becomes more widespread or 
international projects, like the Cancer Genome Atlas58 or the International Cancer 
Genome Consortium259, make their data available to the public releasing hundreds 
of thousands of putative cancer driver mutations. 
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5.4. Implications of this work and future perspective 
 
Besides the possible application of the associations found between the different 
ontologies in the first part of this project to either build a classifier of pathogenic 
mutations or to generate hypotheses on their biological origin (such as the role of 
the UPR in tumor evolution), our results highlight the importance of normalizing 
biomedical data using ontologies in the OMICs era. Complete normalization of 
biological data would help to automate the data analysis and increase our capability 
of hypothesis generation, a must when the data to analyze comes from thousands of 
experiments performed with samples of thousands of patients. Some successful 
efforts in this line are already happening. The clearest example would be the 
normalization of gene function annotations using GO and their widespread use to 
analyze genome-wide experiments. Another example of biological data that is 
currently being normalized would be the annotation of variations in the genome 
with the SO that we have commented. However, the type of biomedical data that 
probably would benefit scientists the most of its normalization is disease description. 
Though there have been some efforts in this direction, such as the example of 
IntOGen that we have commented, or the use of ICD10, another disease ontology, to 
describe tumor samples in the TCGA project, more work needs to be done in order 
to fully exploit this type of data. One great example of the potential use of 
normalized disease description is the recent work by Roque et. al. using data from 
electronic records of Danish patients done by Denmark’s government, which has 
been normalized using ICD10. 
 
Regarding the second part of the project, we have shown that it is important to 
make no a priori assumptions on which networks or algorithms will be the best at 
prioritizing genes associated to the disease of our interest. As we have commented, 
this is important when designing automated pipelines that analyze putative disease-
related genes or mutations. Another group of methods that might be worth 
exploring are those that rely on centrality measures instead of closeness to other 
disease genes. As we have seen, while are able to predict disease-related genes, our 
AUC values range between 0.60 and 0.80, thus, there is still room for improvement. 
It is possible that, just like the Reactome network benefits of diffusion-based 
methods, other networks representing other types of data might benefit from 
methods based on centrality measures. 
 
Another further development of the results described in this work could be the 
integration of the disease-specific mutated features with the metanetworks to 
create a mutation classifier that uses, not only network data, but also information 
coming from the mutation. While we have tried to include some of this information 
by weighting the seed genes according to their mutation propensity, this approach is 
not extensible to other diseases than cancer and, as we have seen, our method 
seems to not benefit from this idea. Thus, a framework integrating the disease-
specific features with the metanetwork and the network algorithm could perform 
better than the metanetwork alone. If that were the case, unlike the mutation-
frequency approach, this idea would be extensible to other diseases than cancer. 
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6. Conclusions 
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1. Mutations related to different diseases show a bias in the 
features that they are affecting, not only when compared 
to nsSNPs, but also when compared to mutations related 
to other diseases 
 

2. Mutations in the same gene can be associated to different 
diseases, not only by disrupting different protein 
domains, but also by altering regions showing distinct 
biochemical features 
 

3. Simple methods like direct neighbor counting can perform 
as good as more complex methods, such as those based 
on diffusion 

 
4. Networks derived from other types of biological 

information show performances comparable those 
derived from protein-protein interaction data 

 
5. Combining networks that exploit different kinds of 

information (a priori approaches) outperforms the 
combination of individual scores (a posteriori approaches) 
when predicting disease-related genes 

 
6. Increasing the number of sources of information used to 

generate a meta-network does not imply an increase in 
the performance of the network at predicting disease-
related genes 
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8.1. Introducció  

  

L’augment de l’ús de les tecnologies d’abast genòmic, com ara la seqüenciació 
massiva, microarrays o les diverses tècniques de proteòmica, ha provocat una 
explosió de dades biomèdiques durant els darrers anys. En aquest context l’ús 
d’aproximacions computacionals per emmagatzemar, integrar i analitzar aquesta 
informació biològica és una prioritat.   
  
Els mètodes bioinformàtics s’han aplicat amb èxit a nombrosos problemes derivats 
d’aquest augment exponencial de la informació, com per exemple la integració de 
dades experimentals provinents de diferents fonts d’informació o la priorització de 
llistes de gens candidats. Dins aquest últim camp hi ha dues tècniques que 
destaquen pel seu extensiu ús dins la comunitat científica: l’anàlisi d’enriquiment i la 
teoria de xarxes.  
  
L’anàlisi d’enriquiment consisteix en comparar les propietats d’un grup determinat 
de gens o proteïnes amb les d’un grup control que generalment és el genoma 
sencer. Utilitzant eines estadístiques és possible identificar propietats que estiguin 
enriquides o empobrides en el grup d’interès respecte el grup control, el que pot 
permetre identificar aspectes interessants de la biologia d’aquest grup de gens. Per 
tal de poder explotar al màxim aquesta tècnica és necessari que les anotacions 
estiguin normalitzades, com a mínim, amb un vocabulari controlat, ja que sino no és 
possible fer una correcta comparació de la distribució d’aquestes anotacions entre 
els dos grups (podríem perdre anotacions degut a la seva incorrecta anotació). No 
obstant, és fins i tot més recomanable l’ús d’ontologies per analitzar les anotacions 
de les propietats enlloc del de vocabularis controlats, ja que els algorismes 
desenvolupats recentment permeten explotar les relacions entre els termes que 
s’inclouen en aquest. Això generalment permet augmentar el poder estadístic, el 
que és rellevant quan es fan anàlisi a escala genòmica.  
  
La teoria de xarxes ve de les matemàtiques i tracta de descriure les propietats d’uns 
objectes matemàtics que s’anomenen xarxes. Una xarxa es descriu formalment com 
un conjunt de nodes que estan connectats entre si per arestes. Els nodes poden 
representar qualsevol entitat que ens interessi i les arestes generalment representen 
les relacions entre ells. La gran flexibilitat i generalització de la teoria de xarxes 
s’exemplifica pel fet que s’ha emprat amb èxit a nombrosos camps de la ciència, com 
ara l’economia, l’ecologia, les ciències socials o la semàntica. En el camp de la 
biologia molecular el seu ús es va estendre arran de la descripció de les primeres 
xarxes d’interaccions de proteïnes. D’aleshores ençà s’han emprat diversos 
algorismes derivats de la teoria de xarxes amb finalitats tant diverses com la 
descripció de les propietats de xarxes de regulació gènica, la predicció de la funció de 
proteïnes o la predicció de gens associats a diverses malalties. 
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8.2. Objectius  

  
En aquesta tesi ens hem plantejat explorar l’ús de tècniques bioinformàtiques per tal 
d’identificar nous gens i mutacions associats a malaltia i els seus possibles 
mecanismes moleculars. Els objectius concrets per tal d’acostar-nos a aquesta meta 
són:  
  

1. Desenvolupament d’una base de dades relacional amb informació sobre 
mutacions i gens associats a malalties i les propietats de les seves proteïnes  
 

2. Implementar i utilitzar l’anàlisi d’enriquiment per tal d’identificar propietats 
de proteïnes que s’alteren específicament en determinades malalties  

 
 

3. Ús d’algorismes i conceptes de la teoria de xarxes per extraure informació de 
xarxes biològiques i predir nous gens associats a malalties 

 

8.3. Materials i mètodes  

  

Per tal de poder dur a terme l'anàlisi d'enriquiment, és necessari disposar d'una base 
de dades amb informació de gens i mutacions associats a diverses malalties així com 
d'anotacions sobre diverses propietats moleculars dels mateixos. Tanmateix, tal com 
hem explicat a la introducció és important que aquestes anotacions estiguin 
normalitzades amb vocabularis controlats o ontologies.  
  
Donat que cap de les bases de dades públiques existents amb informació sobre gens 
i mutacions associats a malaltia reunien tots els requisits, hem decidit generar una 
base de dades nova. Les mutacions d'aquesta base de dades provenen bàsicament 
de 3 fonts: COSMIC, un catàleg de mutacions somàtiques en càncer, OMIM, la base 
de dades de referència sobre mutacions i malalties hereditàries i GAD, una base de 
dades amb informació sobre polimorfismes associats a malalties complexes. A més a 
més, hem extret d'altres repositoris públics informació referent a la funció de les 
proteïnes mutades així com informació sobre la zona alterada: estructura 
secundària, modificacions post-traduccionals, possible activitat catalítica, dominis 
etc. A aquest efecte també hem utilitzat programari dedicat per tal de fer 
prediccions sobre aquestes regions. Totes les anotacions referents a les malalties 
associades a les mutacions s'han fet emprant l'ontologia de malalties (DO), aquelles 
referents a  la funció de proteïnes amb l'ontologia de gens (GO), les relacionades 
amb dominis estructurals amb PFAM i les de propietats de la seqüència biològica 
amb l'ontologia de seqüències (SO).  
  
L'anàlisi d'enriquiment s'ha dut a terme comparant les propietats dels gens associats 
a cadascun dels diferents termes de la DO amb les de la resta de gens associats a 
malaltia. Aquest és un punt important del nostre disseny experimental, ja que la 
majoria d'experiments que utilitzen l'anàlisi d'enriquiment comparen les propietats 
de les mutacions associades a malaltia amb aquelles propietats del genoma sencer, 
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pel que s'identifiquen aquelles propietats que donen caràcter patogènic. Nosaltres, 
en canvi, al comparar propietats de mutacions associades a una malaltia en concret 
amb la resta de mutacions associades a malaltia hem pogut identificar propietats 
més específiques (allò que fa que una mutació provoqui càncer i no Alzheimer, per 
exemple). Per tal de simplificar la interpretació posterior dels resultats, hem decidit 
implementar l'algorisme "elim", descrit per Alexa i altres. Aquest algorisme descarta 
aquelles anotacions associades a gens que mostren un enriquiment o empobriment 
estadísticament significatiu per als posteriors termes analitzats. Això permet que 
només es donin com a significatives aquelles associacions més específiques (i per 
tant amb més informació) i evita que l'anàlisi d'enriquiment doni associacions 
involucrant termes massa genèrics (i per tant amb menys informació).  
  
Pel que fa a l'ús d'algorismes derivats de la teoria de xarxes per a predir nous gens 
associats a malaltia, hem comparat l'eficiència de 5 algorismes diferents, en 4 xarxes 
biològiques alhora de predir 5 malalties diferents: càncer, càncer colorectal, diabetis, 
malalties neurodegeneratives i malalties hereditàries. Els algorismes són 3 variants 
del comptatge de veïns (DN, de l'acrònim en anglès), la difusió de nucli (DK, de 
l'acrònim en anglès) i el passejador a l'atzar (RWR de l'acrònim en anglès també). El 
funcionament de cada combinació malaltia/xarxa/algorisme s'ha mesurat utilitzant 
l'AUC, que significa l'àrea sota la corba ROC.  
  
El comptatge de veïns és un algorisme conceptualment molt intuïtiu que consisteix 
en ordenar la llista de gens candidats a estar associats amb la malaltia d'interès en 
funció del nombre de veïns a la xarxa que es sap que estan associats a la malaltia. El 
nombre de veïns es compta fins a una distància predefinida "d". Nosaltres hem 
utilitzat 3 distàncies diferents: 1, 2 i 3. Els algorismes DK i RWR pertanyen a la 
categoria d'algorismes de difusió en xarxes. Ambdós tracten de simular la difusió 
d'informació al llarg de la xarxa, pel que són capaços d'explotar-ne la topologia i, 
d'aquesta manera, extraure'n més informació. El DK es basa en el càlcul infinitesimal 
i utilitza matrius que representen la xarxa per simular com la informació que surt des 
dels gens associats a la malaltia d'interès es propaga fins als gens candidats. Com 
més informació continguin els últims després de la simulació, més probable és que 
estiguin associats a la malaltia. El RWR simula infinits caminadors que van d'un node 
a un altre a l'atzar. Aquests caminadors surten des d'algun dels gens associats a la 
malaltia i vas caminant a l'atzar un temps infinit. Al final els gens candidats s'ordenen 
en funció de la probabilitat que el caminador es trobi en ells quan el temps tendeix a 
infinit.  
  
Pel que fa a les xarxes biològiques, n'hem construït 4, cadascuna d'elles representant 
un tipus de relació biològica diferent entre els gens/proteïnes. La primera representa 
interaccions físiques entre proteïnes. Es tracta d'un tipus de xarxa àmpliament 
emprat en biologia computacional tant per a predir gens associats a malaltia com per 
a altres finalitats. Les dades d'aquesta xarxa provenen de la "Base de dades de 
Proteïnes de Referència Humanes" (HPRD de l'anglès). La segona connecta gens que, 
d'acord amb la informació a ENSEMBL, pertanyen a la mateixa família (són paràlegs). 
Una altra de les xarxes s'ha construït utilitzant informació de Reactome. En aquesta 
xarxa dues proteïnes estan connectades si formen part de la mateixa via biològica 
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(metabòlica, de senyalització etc.). Finalment, la última de les xarxes s'ha creat 
utilitzant dades d'expressió en teixit humà sa dels diferents gens. Aquestes dades 
provenen de BioGPS i ens han permès connectar aquells gens que mostren un elevat 
grau de coexpressió (un coeficient d'R al quadrat superior a 0.7).  
  
Una de les estratègies habituals per tal de millorar l'eficiència de les xarxes 
biològiques consisteix en combinar-les amb altres fonts d'informació. Per tal 
d'avaluar si aquesta és una bona estratègia hem intentat combinar la informació de 
les 4 xarxes de diferents maneres: utilitzant un classificador Bayesià, sobreposant-
les, sumant-les directament o fent-ne una suma ponderada, els pesos de la qual 
s'han optimitzat amb un algorisme anomenat recuita simulada (simulated 
annealing).  
  

8.4. Resultats  
  
La nova base de dades relacional sobre gens i mutacions associats a malaltia conté 
2716 gens, 9276 mutacions i 1195 termes de DO diferents. A més a més, hi ha 
almenys una propietat bioquímica per a 8529 mutacions. Pel que fa al seu origen, les 
mutacions venen en la seva majoria de COSMIC (6056), mentre que de OMIM i GAD 
n'hi ha un total de 3307.  
  
Per tal d'estar segurs de no haver introduït cap error en el procés d'extracció de les 
mutacions hem representat el nombre de mutacions per gen i per malaltia, així com 
el nombre de malalties per mutació. Les tres representacions segueixen una escala 
logarítmica, el que significa que, per exemple, la majoria de malalties estan 
associades a una sola mutació mentre que hi ha molt poques malalties associades a 
moltes mutacions (a més a més es tracta sempre de neoplàsies, pel que la 
observació té sentit biològic). Aquests resultats concorden amb observacions prèvies 
d'altres grups.  
  
Després de comprovar que les dades que hem extret i anotat amb les diverses 
ontologies tenen sentit i no estan esbiaixades hem dut a terme l'anàlisi 
d'enriquiment tal com s'ha explicat  l'apartat de material i mètodes.  
  
Les associacions entre termes de l'ontologia de malalties (DO) i la de funcions 
gèniques  (GO) donen una bona primera idea del funcionament de l'algorisme, ja que 
com s'ha mencionat prèviament, la GO s'ha utilitzat de manera extensiva en anàlisi 
similars. Hem obtingut 3199 parelles de termes de la DO i de la GO que mostren una 
associació estadísticament significativa, ja sigui per una enriquiment o per 
empobriment de mutacions. La gran majoria de parelles tenen sentit des del punt de 
vista biològic. Així per exemple observem que mutacions en gens anotats amb la 
funció biològica "coagulació sanguínia" (GO:0007596) tendeixen a causar "malalties 
de coagulació sanguínia" (DOID:1247).  
  
D'altra banda, també hem observat termes de GO que estan enriquits en una 
determinada malaltia i empobrits en una altra de relacionada. Un exemple seria el 
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terme funcional "transducció de senyal", que mostra un fort enriquiment en 
mutacions relacionades amb càncer de pell, limfoma, sarcoma o càncer en general i, 
al mateix temps, un empobriment en mutacions associades a càncer de ronyó.  
  
Un fenomen similar passa amb els dominis de proteïnes. Entre les 83 associacions 
estadísticament significatives entre dominis de proteïnes i malalties n'hi ha algunes 
que s'havien descrit prèviament i altres que mostren un comportament desigual en 
malalties, a principi, similars. Dins el primer grup hi trobem varies associacions entre 
càncer i dominis com ara Ras, Miro o PIP-3,4K. El representant més interessant del 
segon grup és el domini quinasa. Aquest domini s'ha associat prèviament, i 
nombroses vegades, amb càncer. Nosaltres hem pogut reproduir aquesta associació, 
no obstant també hem trobat que hi ha menys mutacions de les esperades en 
aquest domini que causin càncer de mama.  
  
Per tal d'analitzar amb detall aquest fenomen hem separat les mutacions en funció 
dels diferents subdominis del domini quinasa on estan localitzades. Estudis previs 
havien demostrat que les mutacions en aquest domini que estan associades a càncer 
tendeixen a estar localitzades en els subdominis I i VIII del domini quinasa. Nosaltres 
hem pogut confirmar aquestes associacions per les mutacions que causen càncer, i a 
més a més hem observat un enriquiment en mutacions causals de càcner de mama 
en el subdomini V, que no havia estat associat prèviament a cap tipus de malaltia en 
particular.  
  
Finalment, hem trobat 82 associacions entre termes de DO i SO. La majoria 
d'aquestes associacions involucren terms de SO que són força genèrics, pel que el 
seu anàlisi és complicat. No obstant, després de revisar manualment totes les 
associacions n'hem trobat 6 involucren càncer i algun terme de SO suficientment 
informatiu per a formular hipòtesis sobre les raons biològiques que provoquen 
aquesta associació. De les 6 associacions 3 ho són per enriquiment i 3 per 
empobriment de mutacions. Els 3 termes de SO enriquits en mutacions canceroses 
són "regions intrínsecament desestructurades", "regions riques en serina" i "regions 
de composició esbiaixada". D'altra banda, els termes SO empobrits en mutacions de 
càncer són "ponts disulfur", "pèptids de localització"  i "regions transmembrana". 
Per tal d'assegurar-nos que les associacions són sòlides hem dut a terme dos 
controls addicionals, un de tècnic i un altre amb un nou set de mutacions de càncer 
que hem obtingut del "Atles Genòmic del Càncer" (TCGA). El primer control, de 
caràcter tècnic, ens ha permès confirmar les 3 associacions d'empobriment, però no 
2 de les 3 associacions per enriquiment: regions de composició esbiaixada i regions 
riques en serina (l'associació amb les regions intrínsecament desestructurades no la 
vam poder comprovar en aquest control per raons conceptuals). El control amb el 
set de dades nou ha confirmat totes les associacions amb l'excepció de la que 
involucra les regions riques en serina.  
  
Un cop analitzats els resultats de l'anàlisi d'enriquiment, hem dut a terme l'estudi de 
les xarxes biològiques. Si bé hi ha grups que suggereixen que els mètodes de difusió 
són millors que mètodes més simples com ara el comptatge de veïns, els nostres 
resultats no apunten en aquesta direcció, almenys com a norma general. En la 
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majoria de xarxes no hem observat aquesta eficiència superior i, de fet, en la xarxa 
de paràlegs, els resultats de les diferents malalties són iguals independentment de 
l'algorisme emprat. La única xarxa que sembla que millora clarament amb els 
mètodes de difusió és la que integra les diverses vies cel·lulars.  
  
Pel que fa al comportament de les diferents xarxes, és important destacar que en 
poques ocasions s'empren altres xarxes biològiques que no siguin la d'interacció 
proteïna-proteïna per si soles (si que es s'empren en combinació amb aquesta). No 
obstant, els nostres resultats suggereixen que aquestes xarxes poden ser tant bones 
o fins i tot millors, que la d'interaccions entre proteïnes alhora de predir gens 
relacionats amb malalties. Per exemple, la xarxa de paràlegs es superior, de manera 
estadísticament significativa, a la d'interaccions alhora de predir gens relacionats 
amb càncer.  
  
A continuació, hem intentat combinar les xarxes de diverses maneres per veure si 
aconseguíem millorar-ne la capacitat predictiva. El primer resultat destacable és que 
no hi ha diferències entre combinar les xarxes per adició o per juxtaposició. Això 
probablement es deu a que les xarxes comparteixen poques arestes, pel que no hi ha 
diferència entre que aquestes arestes tinguin un pes igual o  proporcional al nombre 
de xarxes en les que apareixen. 
 
Si es comparen els resultats obtinguts per les xarxes soles o per la seva combinació 
alhora de predir les diferents malalties, s’observa que només en una malaltia, 
diabetis, hem pogut obtenir una combinació de xarxes que obtingués valors d’AUC 
que fossin millors de manera estadísticament significative que els de la millor xarxa 
individual en aquella malaltia. No obstant, sí que és possible obtenir combinacions 
de xarxes que funcionin tant bé com la millor xarxa individual. Donat que la 
combinació de xarxes inclou més gens relacionats amb la malaltia que les xarxes 
individuals, es pot dir que a igualtat de valors d’AUC, la combinació funciona millor. 
 
Moltes de les publicacions que intenten combinar diferents fonts d’informació per 
tal de predir nous gens relacionats amb malalties descriuen un cert grau de 
correlació entre la quantitat d’informació emprada per fer la predicció i l’eficiència 
de la mateixa. Per tal d’estudiar aquest fenomen hem descarregat una xarxa 
funcional descrita per Marcotte i altres que inclou 21 fonts d’informació diferents i 
n’hem comparat el poder predictiu amb cadascuna de les nostres combinacions de 
xarxes en les diferents malalties. Els nostres resultats indiquen que no hi ha 
correlació entre la quantitat d’informació emprada per crear una xarxa de proteïnes i 
el seu poder predictiu, ja que xarxes resultants de la combinació de 2 o 3 xarxes 
biològiques diferents tenen tant o més poder predictiu que la xarxa de Marcotte o la 
combinació de les 4 xarxes. 
 
La informació provinent de les xarxes no només es pot combinar a priori, sino que 
també es poden combinar els resultats obtinguts amb els diferents algorismes en les 
diferents xarxes a posteriori. Recentment s’han descrit diverses aproximacions en 
aquesta línia, com ara l’ús d’estadística d’ordre o classificadors Bayesians entre 
altres. Per tal de veure si és millor combinar la informació de les xarxes abans o 
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després de còrrer els algorismes hem comparat l’eficàcia d’un classificador Bayesià 
que combina les puntuacions obtingudes en les diferents xarxes després d’utilitzar el 
RWR amb la de còrrer el RWR amb la xarxa resultant de la suma de les 4 xarxes 
individuals i en tots els casos el resultat ha estat a favor de la combinació de xarxes a 
priori. 
 
Finalment hem tractat d’avaluar una de les combinacions de xarxes més 
prometedores, la derivada de la suma de HPRD, Paralogia i Reactome, utilitzant un 
set de dades extern al que havíem emprat per entrenar el mètode. Per a fer-ho ens 
hem descarregat el l’últim resum de mutacions en càncer colorectal disponible a 
COSMIC i hem escollit tots aquells gens que s’ha trobat mutats en, almenys, 15 
mostres tumorals. Aquest primer filtre ens ha donat una llista de 482 gens que hem 
classificat com a causals. A continuació hem aplicat un segon filtre que ha consistit 
en extraure de la llista de 482 tots aquells gens que, d’acord amb el nostre set de 
dades ja estaven associats a (I) càncer colorectal i (II) qualsevol tipus of càncer. 
Aquest segon filtre ens ha donat una llista de 353 i 252 gens respectivament. 
 
Hem utilitzat tots els gens de la nostra base de dades que estan associats a càncer 
colorectal o a càncer en general per fer la predicció dels 353 o 252 nous gens. Hem 
observat que som capaços de predir aquests gens amb un valor d’AUC de 0.65 i que 
no hi ha diferència entre utilitzar tots els nostres gens de càncer o només els de 
càncer colorectal alhora de predir els nous gens associats a càncer colorectal, el que 
suggereix que el nostre mètode permet utilitzar informació de malalties similars per 
a fer les prediccions. 
 
A més a més, hem emprat un altre mètode d’avaluació que ha consistit en crear, per 
a cadascun dels nous gens de càncer colorectal grups de 10 o 25 gens, formats pel 
propi gen de càncer i els 9 o 24 gens més propers en el genoma. A continuació hem 
ordenat els diferents grups en funció de la puntuació obtinguda pel nostre mètode i 
hem observat que hi ha un enriquiment dels gens associats a càncer en les primeres 
posicions. En conclusió, tant els valors d’AUC com els de l’order dels grups de gens 
del genoma indiquen que el nostre mètode es capaç de predir gens coneguts 
associats a càncer colorectal. 

8.5. Discussió 
 
El desenvolupament de la base de dades relacionals ha estat complex i té unes 
certes limitacions que s’han de tenir en compte alhora d’avaluar els resultats. En 
priemr lloc no hem pogut extraure totes le smutacions disponibles, degut a 
problemes amb els repositoris originals (per exemple GAD no descriu les mutacions 
de manera sistemàtica), tant com per problemes de limitacions de l’ontologia (no 
totes les malalties estan presents a l’ontologia). Haguès sigut millor disposar de més 
dades referents a mutacions associades a malalties complexes, no obstant aquestes 
són complicades d’obtenir. No obstant, creiem que el nostre set de dades és prou 
representatiu d’almenys dos grans grups de malalties: càncers i malalties 
hereditàries. 
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Amb relació a l’anàlisi d’enriquiment, dir que hem detectat una sèrie de funcions 
biològiques, propietats de seqüència i de dominis que mostren associacions 
discordants entre fenotips similars. Aquestes associacions són les més interessants 
del nostre mètode, ja que només poden ser detectades amb el nostre disseny 
experimental que compara mutacions associades a diferents malalties entre si. A 
més a més es podrien emprar en el futur per tal d’entrenar un predictor de 
mutacions patogèniques. 
 
Pel que fa a les associacions de càncer amb termes de SO, hem pogut generar una 
sèrie d’hipotesi sobre el seu possible origen biològic. Els tres termes empobrits en 
mutacions cancerígenes (ponts disulfur, pèptid senyal i domini transmembrana) 
creiem que estan relacionats amb una via cel·lular que s’ha implicat prèviament amb 
càncer, la resposta a proteïnes malplegades. Aquesta via pot tenir efectes apoptòtics 
o antiapoptòtics i s’activa quan detecta una acumulació de proteïnes malplegades al 
reticle endoplasmàtic. Les cèl·lules tumorals tenen un nivell d’activació basal 
d’aquesta via superior al normal degut a les condicions d’hipòxia i manca de 
nutrients. La mutació en qualsevol de les propietats de seqüència mencionades 
provoca l’acumulació de proteïnes malplegades dins el reticle i la sobreactivació de 
la via, el que finalment porta a la cèl·lula a morir per apoptosi. És per això que 
observem menys mutacions en aquestes propietats de seqüència de les esperades 
en càncer. 
 
En referència a les 3 propietats enriquides en càncer, creiem que es poden analitzar 
en conjunt ja que les nostres dades suggereixen que  les 3 estan interrelacionades i 
no són independents. Les regions intrínsicament desestructurades s’han relacionat 
prèviament amb càncer per diverses raons, tot i que la principal es sospita que és el 
seu paper en les interaccions proteïna-proteïna. És possible que les mutacions en 
aquestes regions alterin interaccions importants per al desenvolupament del càncer 
sense destruir la proteïna. 
 
Respecte l’ús de xarxes biològiques, explicar que hem demostrat que xarxes 
biològiques derivades d’altres fonts que no siguin interaccions proteïna-proteïna es 
poden utilitzar amb èxit per a predir nous gens relacionats amb malaltia. A més a 
més no hem observat que els mètodes de difusió siguin superiors a mètodes simples 
com el comptatge de veïns, almenys de manera estadísticament significativa. 
 
D’acord amb les nostres dades, sembla que alhora de predir gens relacionats amb 
malaltia és millor combinar la informació de les xarxes biològiques sumant-les que 
utilitzant mètodes estadístics per combinar-ne les puntuacions independents. A més 
a més és difícil combinar les xarxes de manera que s’obtingui un resultat millor que 
la millor xarxa independent. 
 
Finalment, explicar que el nostre mètode és capaç de predir gens associats a càncer 
colorectal que provenen d’un set de dades independent de l’utilitzat per entrenar el 
mètode. 
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9.1. OCG tables 
 

AA_features 

Field Type Example 

Id_feature Int(11) 50 
Description Varchar(50) Stretch 

Specification Varchar(100) Poly-Ala 
 

AA_features_ontology 

Field Type Example 

Id_aa_features_ontology Int(11) 1083 
Id_feature Int(11) 50 

Id_sequence_ontology Varchar(30) SO:60SO1 
 

AA_features_source 

Field Type Example 

Id_source Int(11) 1 
Description Varchar(50) Netphos 

Status Varchar(100) NULL 
 

Disease 
Field Type Example 

Id_disease Varchar(40) DOID:162DOID1 
 

Disease_protein 

Field Type Example 

Id_disease_protein Int(11) 1 
id_disease Varchar(40) DOID:3451DOID1 

Id_gene Int(11) 1 
Id_mutation Int(11) 1 
Id_reference Int(3) 2 

 

DO_GO_pairs 

Field Type Example 

Id_pair_do_go Int(11) 1 
Id_do Varchar(30) DOID:8499DOID1 
Id_go Varchar(30) GO:0007601 
P_val double 2.227675 e-13 

Num_muts_do Varchar(20) 14 / 18 
Num_muts_go Varchar(20) 14 / 258 
Num_genes_do Varchar(20) 6 / 8 
Num_genes_go Varchar(20) 6 / 74 

Id_source Int(3) 4 
Odds_ratio Float 128.665 

95_perc_conf_int Varchar(30) 40.06401 547.8941 
 

DO_PFAM_pairs 

Field Type Example 

Id_pair_do_pfam Int(11) 1 
Id_do Varchar(30) DOID:4907DOID1 

Id_pfam Varchar(30) PF00069 
P_val double 0.01656962 

Num_muts_do Varchar(20) 16 / 57 
Num_muts_pfam Varchar(20) 16 / 640 
Num_genes_do Varchar(20) 3 / 9 
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Num_genes_pfam Varchar(20) 3 / 163 
Id_source Int(3) 4 

Odds_ratio Float 5.37326 
95_perc_conf_int Varchar(30) 2.798045 9.850881 

 

DO_SO_pairs 

Field Type Example 

Id_pair_do_pfam Int(11) 1 
Id_do Varchar(30) DOID:5041DOID1 
Id_so Varchar(30) SO:0001078SO1 
P_val double 0.004729497 

Num_muts_do Varchar(20) 36 / 73 
Num_muts_so Varchar(20) 36 / 2044 

Num_genes_do Varchar(20) 4 / 13 
Num_genes_so Varchar(20) 4 / 385 

Id_source Int(3) 4 
Odds_ratio Float 3.4855 

95_perc_conf_int Varchar(30) 2.134675 5.687335 
 

DO_SO_pairs 

Field Type Example 

Id_pair_do_pfam Int(11) 1 
Id_do Varchar(30) DOID:5041DOID1 
Id_so Varchar(30) SO:0001078SO1 
P_val double 0.004729497 

Num_muts_do Varchar(20) 36 / 73 
Num_muts_so Varchar(20) 36 / 2044 

Num_genes_do Varchar(20) 4 / 13 
Num_genes_so Varchar(20) 4 / 385 

Id_source Int(3) 4 
Odds_ratio Float 3.4855 

95_perc_conf_int Varchar(30) 2.134675 5.687335 
 

ENSEMBL_protein 

Field Type Example 

Id_protein_ocg Int(11) 3 
Ensembl_prot_id Varchar(30) ENSP00000388246 

Id_gene Int(11) 2 
 

ENSEMBL_prot_features 

Field Type Example 

Id_ensembl_prot_feat Int(11) 1 
Id_prot_OCG Int(11) 1 

Id_feature Int(11) 33 
Start Int(6) 655 
Stop Int(6) 661 

Id_source Int(11) 3 
Score Float 0 

 

Gene 

Field Type Example 

Id_gene Int(11) 1 
Gene_name Varchar(240) BRAF 
ENSEMBL_id Varchar(20) ENSG00000157764 
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GO_terms 
Field Type Example 

Id_go_term Int(11) 1 
Go_term Varchar(30) GO:0005737 

 

Info_reference_dict 
Field Type Example 

Id_reference Int(3) 1 
Reference_name Varchar(30) OMIM 

 

Mutated_mut_sites 

Field Type Example 

Id_mutated_mut_site Int(11) 1 
Id_mut_site Int(11) 2 
Id_mutation Int(11) 1 

 

Mutated_mut_site_features 

Field Type Example 

Id_mut_features Int(11) 29627 
Id_mutated_mut_site Int(11) 27586 

Id_feature Int(11) 3 
Id_source_feature Int(11) 7 

Score Float 0.876 
 

Mutation_reference 

Field Type Example 

Id_mutation_reference Int(11) 1 
Id_mutation Int(11) 1 
Id_reference Int(3) 2 

 

Mut_site 

Field Type Example 

Id_mut_site Int(11) 1 
Id_protein_ocg Int(11) 1 

Coords Int(11) 439 
Wt_allele Varchar(10) K 

 

Protein_go_term 

Field Type Example 

Id_go_protein Int(11) 1 
Id_protein_ocg Int(11) 1 

Id_go_term Int(11) 1 
 

Sequence_mutation 

Field Type Example 

Id_mutation Int(11) 1 
Id_gene Int(11) 1 

Aa_mut_start Mediumint(9) 439 
Aa_mut_allele_seq Longtext Q 
Aa_wt_allele_seq Longtext K 

 

Mut_site_features 

Field Type Example 

Id_mut_site_features Int(11) 15247 
Id_mut_site Int(11) 650 
Id_feature Int(11) 970 
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Id_source Int(11) 6 
Score Float 0.94 

Id_ensembl_prot_feat Int(11) NULL 
 

9.2. CCBG tables 
 

Disease 
Field Type Example 

Id_disease Varchar(40) DOID:162DOID1 
 

Disease_protein 

Field Type Example 

Id_disease_protein Int(11) 1 
id_disease Varchar(40) DOID:3451DOID1 

Id_gene Int(11) 1 
 

Disease_protein_reference 

Field Type Example 

Id_disease_prot_reference Int(11) 238 
Id_disease_protein Int(11) 238 

Id_source Int(3) 3 
Id_reference Int(11) 12601293 

Score Int(3) 1 
 

Disease_source 
Field Type Example 

Id_disease_source Int(3) 2 
Source_name Varchar(30) OMIM 

 

Gene 

Field Type Example 

Id_gene Int(11) 1 
Gene_symbol Varchar(30) ALDH1A1 

ENSEMBL_id_gene Varchar(30) ENSG00000165092 
ENSEMBL_version Varchar(30) homo_sapiens_core_62_37g 

 

Genes_related 

Field Type Example 

Id_genes_related Int(11) 300855 
Id_gene1 Int(11) 16590 
Id_gene2 Int(11) 13666 

Id_relationship Int(11) 6 
Relationship_value Float 0.8954 

 

Genes_related_pmed 

Field Type Example 

Id_genes_related_pmed Int(11) 3 
Id_genes_related_pmed Int(11) 5 

Id_pubmed Int(11) 9201297 
 

Ontology_info 
Field Type Example 

Id_ontology Varchar(30 CCBGID:1 
Description Varchar(30) Genes physically interacting 
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Relationship 

Field Type Example 

Id_relationship Int(11) 2 
Id_ontology Varchar(30) CCBGID:4 
Id_source Int(5) 2 

 

Sources_info 
Field Type Example 

Id_source Int(5) 2 
Source_name Varchar(30) ENSEMBL 

 

9.3. OLS tables 
 

Term 

Field Type Example 

Term_pk Varchar(40) DOID:162DOID1 
Term_name Varchar(60) Cancer 
Ontology_id Int(11) 563002 

 

Term_path 

Field Type Example 

Term_path_pk Int(11) 1 
Subject_term_pk Varchar(40) DOID:9256DOID1 

Predicate_term_pk Varchar(40) DOID:IS_ADOID1 
Object_term_pk Varchar(40) DOID:162DOID1 

Distance Int(3) 1 
Ontology_id Int(11) 563002 

 
 

9.4. DO/SO associations 
 
 

DO term SO term OR P val 
inborn errors metal metabolism transmembrane_polypeptide_region 21.0929 3.88E-08 

motor neuron disease aminoacid_enriched_region 19.1216 4.85E-09 

anterior horn cell disease compositionally_biased_region_of_peptide 17.3757 1.75E-08 

long QT syndrome transmembrane_polypeptide_region 11.4346 6.51E-05 

inborn errors renal tubular transport transmembrane_polypeptide_region 11.4261 1.08E-06 

Noonan syndrome polypeptide_secondary_structure 8.90063 0.03460876 

myopathy coiled_coil 6.28292 0.002811855 

muscle tissue disease polypeptide_structural_motif 6.17192 0.003482194 

congenital disorder disulfide_bond 5.62758 0.000900182 

severe combined immunodeficiency polypeptide_secondary_structure 4.76066 0.01507244 

disease of metabolism protein_binding_site 4.41876 0.02999278 

disease of metabolism sequence_variant_causing_inactive_ligand_bind
ing_site 4.41876 0.02999278 

myopathy transmembrane_polypeptide_region 4.38175 6.54E-09 

muscle tissue disease intramembrane_polypeptide_region 4.29636 1.15E-08 

musculoskeletal system disease disulfide_bond 3.97658 0.04667697 

breast carcinoma coiled_coil 3.97411 0.002519508 

carcinoma Ser-rich 3.94086 5.19E-07 
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intracranial neoplasm polypeptide_secondary_structure 3.86152 8.60E-14 

male genital cancer alpha_helix 3.51659 0.0189492 

male reproductive system disease right_handed_peptide_helix 3.51659 0.0189492 

esophageal neoplasm polypeptide_secondary_structure 3.4855 0.004729497 

genetic disorder intramembrane_polypeptide_region 3.39768 0.01797461 

endometrial carcinoma alpha_helix 3.34845 2.62E-07 
nervous system heterodegenerative 

disease transmembrane_polypeptide_region 3.23602 0.000345457 

brain neoplasm beta_strand 3.13996 2.27E-10 

neoplastic disease compositionally_biased_region_of_peptide 3.09438 1.25E-06 

brain neoplasm alpha_helix 2.85495 3.67E-07 

intracranial neoplasm right_handed_peptide_helix 2.85495 3.67E-07 

cancer aminoacid_enriched_region 2.79248 0.000262729 

endometrial carcinoma beta_strand 2.7285 0.000702741 

cancer of reproductive system right_handed_peptide_helix 2.71723 0.003065169 

colorectal cancer aminoacid_enriched_region 2.66113 0.000247744 

sphingolipidosis polypeptide_secondary_structure 2.64929 0.000732642 

neurodegenerative disease intramembrane_polypeptide_region 2.57807 0.03620567 

congenital disorder membrane_structure 2.57782 0.000264116 

bone marrow cancer beta_strand 2.5578 1.63E-09 

inborn errors of metabolism intramembrane_polypeptide_region 2.48253 0.002940634 

endocrine system disease transmembrane_polypeptide_region 2.46725 0.000109441 

lymphoma beta_strand 2.41199 2.65E-11 

large Intestine carcinoma compositionally_biased_region_of_peptide 2.40239 0.002462735 

simple genetic disease membrane_structure 2.24123 0.000973413 

reproductive system disease polypeptide_secondary_structure 2.12031 0.00179245 

lymphoid cancer polypeptide_secondary_structure 2.08594 1.12E-11 

bone marrow disease polypeptide_secondary_structure 1.95547 2.97E-06 

brain disease right_handed_peptide_helix 1.93006 1.60E-05 

brain disease polypeptide_secondary_structure 1.86369 0.002784963 

soft tissue disease polypeptide_secondary_structure 1.75798 0.01261616 

central nervous system neoplasm peptide_helix 1.74419 0.04907455 

cancer by anatomical entity alpha_helix 1.56422 0.01003404 

central nervous system neoplasm polypeptide_structural_region 1.54158 0.01940891 

pelvic cancer polypeptide_secondary_structure 1.51004 0.01391864 

cancer intrinsically_unstructured_polypeptide_region 1.46751 0.000147879 

neoplastic disease polypeptide_structural_region 1.30499 0.000376776 

disease of cellular proliferation polypeptide_region 1.29831 0.000146788 

carcinoma intrinsically_unstructured_polypeptide_region 1.25414 0.03249705 

endocrine system disease intrinsically_unstructured_polypeptide_region 0.604194 0.000784021 

carcinoma transmembrane_polypeptide_region 0.537177 0.003694729 

lymphoid cancer polypeptide_structural_region 0.533869 0.003086615 

bone marrow disease polypeptide_structural_region 0.451679 0.000452141 

inborn errors of metabolism intrinsically_unstructured_polypeptide_region 0.387852 1.34E-06 

retinal disease polypeptide_secondary_structure 0.355451 0.02750617 

breast carcinoma beta_strand 0.350784 7.50E-09 

adrenal gland disease polypeptide_structural_region 0.330911 0.005149903 

neuromuscular disease polypeptide_secondary_structure 0.315643 0.002057483 

eye disease beta_strand 0.298127 0.02736738 

cancer peptide_localization_signal 0.296133 0.01964821 

sphingolipidosis intrinsically_unstructured_polypeptide_region 0.29438 0.01507502 

myopathy alpha_helix 0.26193 0.04833389 
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disease of anatomical entity coiled_coil 0.25869 0.004289242 

muscle tissue disease right_handed_peptide_helix 0.257375 0.02356769 

neoplastic disease intramembrane_polypeptide_region 0.242143 1.32E-33 

disease of cellular proliferation membrane_structure 0.242143 1.32E-33 

urologic neoplasm transmembrane_polypeptide_region 0.214357 0.007497535 

cancer disulfide_bond 0.185306 0.04963278 

cancer transmembrane_polypeptide_region 0.174619 1.71E-15 

inborn errors of amino acid metabolism intrinsically_unstructured_polypeptide_region 0.167623 0.001303283 

adrenal hyperplasia polypeptide_region 0.155605 9.49E-05 

gallbladder carcinoma polypeptide_region 0.145595 0.01034421 

carcinoma disulfide_bond 0.123528 7.56E-06 

simple genetic disease aminoacid_enriched_region 0.115732 0.002828451 

hereditary disease compositionally_biased_region_of_peptide 0.105618 0.000264869 

lung carcinoma transmembrane_polypeptide_region 0.0971447 8.65E-08 

 
 

9.5. Intra-SO associations 
 

Term 1 Term 2 OR P val 
Ser-rich intrinsically_unstructured_polypeptide_region 5.68 6.40E-16 

Ser-rich phosphorylation 3.65 3.49E-07 

disulfide_bond beta_strand 3.52 1.81E-02 

o_glycosylation intrinsically_unstructured_polypeptide_region 5.61 2.04E-06 

o_glycosylation aminoacid_enriched_region 7.58 2.97E-02 

o_glycosylation phosphorylation 4.19 1.54E-03 

protein_binding_site beta_strand 3.77 8.34E-03 

alpha_helix transmembrane_polypeptide_region 0.19 2.58E-06 

alpha_helix phosphorylation 0.54 3.05E-06 

signal_peptide palmitoylation type III 55.81 4.69E-02 

coiled_coil intrinsically_unstructured_polypeptide_region 16.68 1.89E-28 

coiled_coil polypeptide_secondary_structure 0.16 7.19E-03 
sequence_variant_causing_inactive_ligand_

binding_site beta_strand 3.77 8.34E-03 

palmitoylation type III signal_peptide 55.81 4.69E-02 

n_glycosylation intrinsically_unstructured_polypeptide_region 0.26 8.53E-03 

transmembrane_polypeptide_region alpha_helix 0.19 2.58E-06 

transmembrane_polypeptide_region intrinsically_unstructured_polypeptide_region 0.04 6.63E-37 

transmembrane_polypeptide_region phosphorylation 0.21 1.63E-10 

beta_strand disulfide_bond 3.52 1.81E-02 

beta_strand protein_binding_site 3.77 8.34E-03 

beta_strand sequence_variant_causing_inactive_ligand_bindin
g_site 3.77 8.34E-03 

beta_strand beta_turn 2.86 1.47E-06 
intrinsically_unstructured_polypeptide_regi

on Ser-rich 5.68 6.40E-16 

intrinsically_unstructured_polypeptide_regi
on o_glycosylation 5.61 2.04E-06 

intrinsically_unstructured_polypeptide_regi
on coiled_coil 16.68 1.89E-28 

intrinsically_unstructured_polypeptide_regi
on n_glycosylation 0.26 8.53E-03 

intrinsically_unstructured_polypeptide_regi
on transmembrane_polypeptide_region 0.04 6.63E-37 
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intrinsically_unstructured_polypeptide_regi
on peptide_localization_signal 0.17 3.35E-02 

intrinsically_unstructured_polypeptide_regi
on phosphorylation 2.09 4.99E-32 

intrinsically_unstructured_polypeptide_regi
on compositionally_biased_region_of_peptide 2.30 9.23E-03 

intrinsically_unstructured_polypeptide_regi
on polypeptide_secondary_structure 0.79 3.68E-02 

beta_turn beta_strand 2.86 1.47E-06 

right_handed_peptide_helix intramembrane_polypeptide_region 0.19 2.58E-06 

right_handed_peptide_helix post_translationally_modified_region 0.50 1.59E-08 

binding_site polypeptide_secondary_structure 3.46 1.80E-03 

aminoacid_enriched_region o_glycosylation 7.58 2.97E-02 

aminoacid_enriched_region post_translationally_modified_region 1.97 1.49E-02 

peptide_localization_signal intrinsically_unstructured_polypeptide_region 0.17 3.35E-02 

phosphorylation Ser-rich 3.65 3.49E-07 

phosphorylation o_glycosylation 4.19 1.54E-03 

phosphorylation alpha_helix 0.54 3.05E-06 

phosphorylation transmembrane_polypeptide_region 0.21 1.63E-10 

phosphorylation intrinsically_unstructured_polypeptide_region 2.09 4.99E-32 

intramembrane_polypeptide_region right_handed_peptide_helix 0.19 2.58E-06 

intramembrane_polypeptide_region post_translationally_modified_region 0.27 4.00E-09 

post_translationally_modified_region right_handed_peptide_helix 0.50 1.59E-08 

post_translationally_modified_region aminoacid_enriched_region 1.97 1.49E-02 

post_translationally_modified_region intramembrane_polypeptide_region 0.27 4.00E-09 

post_translationally_modified_region polypeptide_structural_region 1.52 2.63E-10 

membrane_structure peptide_helix 0.19 2.58E-06 

membrane_structure biochemical_region_of_peptide 0.27 2.75E-09 

compositionally_biased_region_of_peptide intrinsically_unstructured_polypeptide_region 2.30 9.23E-03 

compositionally_biased_region_of_peptide polypeptide_secondary_structure 0.11 1.11E-14 

compositionally_biased_region_of_peptide biochemical_region_of_peptide 2.12 2.77E-04 

peptide_helix membrane_structure 0.19 2.58E-06 

peptide_helix biochemical_region_of_peptide 0.50 1.22E-08 

polypeptide_secondary_structure coiled_coil 0.16 7.19E-03 

polypeptide_secondary_structure intrinsically_unstructured_polypeptide_region 0.79 3.68E-02 

polypeptide_secondary_structure binding_site 3.46 1.80E-03 

polypeptide_secondary_structure compositionally_biased_region_of_peptide 0.11 1.11E-14 

polypeptide_secondary_structure polypeptide_motif 0.70 2.35E-04 

biochemical_region_of_peptide membrane_structure 0.27 2.75E-09 

biochemical_region_of_peptide compositionally_biased_region_of_peptide 2.12 2.77E-04 

biochemical_region_of_peptide peptide_helix 0.50 1.22E-08 

polypeptide_structural_region post_translationally_modified_region 1.52 2.63E-10 

polypeptide_motif polypeptide_secondary_structure 0.70 2.35E-04 
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9.6. Overlap between diseases in each network 
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9.7. Overlap between networks in each disease 
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9.8. Correlations between scores of genes in the different networks 
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