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Introduction and outline

This thesis describes the work I have done during my PhD, in collaboration with Prof.
Joaquin Diaz Alonso, on the study of non-linear field theories supporting non-topological
soliton solutions and their possible applications in several branches of modern theoret-
ical physics. Before proceeding to the detailed exposition of the subject, let us sketch
in this introductory section a basic overview of the context and nature of the physical
problems tackled, as well as our own contributions and the perspectives for future de-
velopments. This introduction should be intended as a summary of the contents of the
thesis, allowing the reader to reach a global perspective before (or without) reading the
whole manuscript.

Scientific context of the work

In the context of field theory the interest in extended configurations describing fields
associated to point-like particles (particle-like solutions) dates back to the introduction
of non-linear field theories in the early twentieth century aimed to solve the problem of
the divergent self-energy of the electron field in Classical Electrodynamics. The models
of Mie [1], Born [2] and Born-Infeld (BI) [3] were attempts at this regard. The original
aim of Born and Infeld was to give, at a purely classical level, an electromagnetic origin
for the masses of the charged particles, through a modification of the Maxwell action.
Their idea was to regard elementary particles as “lumps” of the field (“solitons” in the
modern sense of the term) in such a way that the notion of mass could be expressed in
terms of the energy of the field configuration (an electromagnetic mass). However, the
discovery of electrically neutral particles showed that mass is not necessarily related to
electromagnetic charge. With the advent and success of quantum field theories (QFT)
this kind of models were forgotten for a long time. Almost half a century later there was
a renewed interest on Born-Infeld theory, as well as other non-linear electrodynamics
and their non-abelian generalizations, since it was realized that such non-linear theories
arise in several physical contexts as the low-energy limits of string and D-Brane physics
or as effective models in QFT. Today this kind of problems, related to non-linear field
theories and their particle-like solutions, fall inside the large domain of Soliton Physics,
whose methods and applications concern most branches of physical sciences [4].

1



Introduction and outline 2

There is not a universally accepted definition of the concept of soliton. While re-
strictive definitions require the stability in collision processes between two or more of
this class of solutions, a more useful one amounts to require a set of minimal properties
which seem to be widely accepted in most contexts: Solitons are stable, finite-energy
solutions of conservative non-linear differential equations. However, the accepted mean-
ing and content of the term stable is not universal. In a strong sense, it refers to the
existence of soliton entities which can be identified (if present) in field configurations
and are preserved by the dynamic evolution of the system. With this definition, the
analysis of such configurations in terms of many solitons, interacting via radiative field
exchanges, becomes possible. This kind of stability arises in some field theoretical models
(most of them in one-space dimension) exhibiting topological conservation laws, related
to a non-trivial structure of the vacuum [5]. In these cases the conserved topological
charges identify the presence of the topological solitons and ensure their preservation.
Examples of topological solitons in three-space dimensions are the monopole of 't Hooft
and Polyakov [6, 7] or the topological solitons of the Skyrme model [8, 9]. In the weak
sense stability is identified with linear stability, which demands the preservation of the
soliton identity against a certain class of small perturbations for which the soliton con-
figuration is a minimum of the energy functional. This restricted class of perturbations
is defined through boundary conditions which amount, in general, to the preservation
of (non-topological) charges associated with the soliton. The conservation laws of these
charges may be implicitly contained within the structure of the field equations (as in
electrodynamics) or be consequences of constraints imposed on the external sources, to
which the field is coupled. In these thesis we shall be only concerned with this class
of non-topological, finite-energy, weakly-stable soliton solutions which arise in classical,
local relativistic field theories in three-space dimensions.

What in early times raised lots of interest in Soliton Physics from the theoretical
point of view was the fact that solitons, despite being solutions of classical, non-linear
wave equations, exhibit some features usually ascribed to particles. In fact, in the early
sixties Skyrme proposed a phenomenological model for the description of the hadron
structure, identified as a topological soliton (the Skyrmion) of the non-linear sigma
model with a stabilizer quartic term added [8, 9]. In the eighties there was a revival in
this subject when the works of t’'Hooft [10, 11] and Witten [12] showed that the Skyrme
model can be interpreted within the large number of colors (N¢) limit of Quantum
Chromodynamics (QCD). It was shown that the non-linear sigma model is the lead-
ing term of an effective lagrangian accounting for the relevant (hadronic) structures in
the low-energy limit of QCD, where perturbative expansions cannot be applied. In nu-
clear physics, the analysis of high-density hadronic matter and its chiral phase structure
have been performed in terms of skyrmions in the framework of effective field theories
implemented with the large N¢ behaviour of QCD [13, 14, 15].

Other approaches to the phenomenological description of both the hadronic structure
and the hadronic interactions have been performed in terms of non-topological solitons
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through the effective model for the low-energy regime of QCD given by Friedberg and
Lee [16, 17, 18, 19] and related theories. In terms of topological solitons this analysis has
been also carried out within the generalized chiral-invariant model of Deser-Duff-Isham
(DDI) [20] whose lagrangian density is a rational power (3/2) of the non-linear sigma
model lagrangian, chosen in order to circumvent Derrick’s theorem [21]. This model
and its extensions support topological solitons [22, 23]. In the same context let us also
mention the toroidal solitons of Refs.[24, 25|, which might describe glueball collective
states (a particle-like field configuration constructed entirely from gauge fields) in the
low-energy limit of QCD, as suggested in Refs.[26, 27, 28]. Glueball collective states can
be shown to exist as soliton solutions of non-abelian BI gauge field models [29]. The
introduction of these generalized gauge models supporting soliton solutions and their
extensions to higher dimensions is suggested by string theory, since some of them arise
in the low-energy physics of D-Branes [30]-[34]. Moreover, it has been shown that the BI
extension of the basic lagrangian of the Skyrme model leads to stable solitons removing
the need of any “ad hoc” stabilizer term [35] (see also [36] for other Bl-like extensions
of the Skyrme model).

In the last two decades there has been an increasingly amount of works on self-
gravitating field configurations. The aforementioned presence of BI actions in the low-
energy physics of D-branes, whose fundamental excitation is gravity, is one of the moti-
vations for this renewed interest (see e.g [37]). But the search for self-gravitating field
configurations, as solutions of the Einstein equations for gravity coupled to different
kinds of fields, is an older topic [38]. In many works non-linear field theories (in partic-
ular Born-Infeld theory) coupled to gravitation have been considered (see e.g. [39]-[45]).
Indeed, in a four dimensional flat space-time, Derrick’s theorem [21] and other non-
existence theorems [46, 47, 48, 49] limit drastically the class of lagrangian field theories
supporting soliton solutions. However, the coupling to gravitation can remove these ob-
structions and thus allow for particle-like solutions in some cases. One example of this
is the pure Yang-Mills theory, which does not support glueball solutions in Minkowski
space but exhibits particle-like solutions in curved space [50]. Moreover, theories sup-
porting soliton solutions in flat space, as the abelian and non-abelian BI models, have
been extended to curved space, leading to black-hole-like solutions [51, 52, 53]. On the
other hand, although the existence of singularities in General Relativity seems to be
an inherent feature of most of the physically relevant solutions, it is possible to find
models describing regular, electrically charged black hole solutions for some particular
non-linear electrodynamics [54, 55, 56]. Unfortunately, the lagrangian densities of these
theories suffer “branching” phenomena since they correspond to multivalued functions.

In the fast-evolving context of modern Cosmology there are some problems for which
non-linear field theories have been invoked. It has been suggested that time-dependent
but non-dispersive solitons (Q-Balls [57, 58]) may account for the behaviour of self-
interacting dark matter [59]. There is also the suggestion that non-topological solitons
might have been formed in a second-order phase transition in the early Universe, and
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contribute significantly to the present mass density [60]. As another example, the Born-
Infeld generalization of SU(2) non-abelian gauge field theory, coupled to tensor-scalar
gravitation, has been used for the description of dark energy [61, 62, 63]. Also scalar
field models with lagrangian densities which are generalized functions of the kinetic
term have been used to drive inflationary evolution in the early Universe (k-inflation)
[64]. Solitonic configurations of these k-essence fields have been used to reproduce some
properties of dark matter as well [65, 66].

This thesis: aims, approaches and objectives

All these considerations underline the relevance of non-linear field theories and their
associated soliton solutions, mainly for the cases of (one and many-components) scalar
fields and generalized gauge-invariant field theories. By the term generalized we mean
models for gauge fields of compact semi-simple Lie groups, with lagrangian densities
defined as general functions ¢(X,Y) of the two standard first-order gauge invariants,
namely, X = tr (F,, ") and Y = tr (F,, F*"). Aside from the aforementioned Born-
Infeld-like gauge models, defined by the very particular BI choice of the lagrangian
density, there are not in the literature systematic studies on solitons for general scalar
and gauge-invariant field theories. In this thesis we have performed the analysis of a
large class of relativistic field theories (defined for scalar, electromagnetic and gauge
fields) supporting elementary solutions ! which are non-topological solitons.

The concept of admissibility, adopted for dealing with physically consistent models,
will play a central role in the sequel. We shall define a lagrangian field theory as ad-
missible if it satisfies the requirements of the positive-definite character of the energy,
the vanishing of the vacuum energy and the regularity, uniqueness and definiteness in
all space of their elementary solutions.

In principle, generalized gauge-invariant field theories are candidates to describe
the dynamics of the gauge fields in gauge theories of fundamental interactions. If one
accepts the fundamental character of string theory and the aforementioned results, ref-
erenced in [30]-[34], then the description of the gauge-field dynamics, through some
generalized lagrangians regarded as effective field models of string theory, could be more
“fundamental” that the usual Maxwell-like choice p(X,Y) ~ X a “minimal prescrip-
tion” which should be understood as a low-energy (or weak-field) approximation limit.
Nevertheless, from the field theory point of view, this minimal prescription is generally
assumed to describe the fundamental dynamics of the gauge fields when gauge-invariant
lagrangians are coupled to other (generally fermionic) sectors. In this case, when the

!Through this work we shall call “elementary solutions” the static spherically symmetric (SSS) solu-
tions of scalar field equations and the electrostatic spherically symmetric (ESS) solutions of generalized
gauge field equations.
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high-energy degrees of freedom are integrated out in the path integral of the original ac-
tion, generalized gauge-invariant models emerge as effective lagrangians [67], containing
new non-linear self-coupling terms accounting, at a classical phenomenological level, for
quantum effects and interactions with the removed heavy-mode sector. Historically, the
first example of this kind of effective lagrangians was obtained by Heisenberg and Euler
[68], in the context of Quantum Electrodynamics (QED). It accounts for the non-linear
effects of the Dirac vacuum on low-energy wave propagation, calculated to lowest order
in the fine structure constant. When higher order operators are included we are lead
to a sequence of effective lagrangians which take the form of polynomials in the field
invariants, arranged as an expansion in operators of increasing dimensions [69]. An in-
teresting question arises here, related to the possibility that these effective lagrangians
could exhibit soliton solutions, even though the bare lagrangian does not. In chapter 6
we shall give explicit examples for which the soliton elementary solutions of an effective
model may be interpreted as finite-energy fields of point-charges screened by the vacuum
effects, whereas the elementary field of the bare theory is energy-divergent.

For scalar fields, Derrick’s theorem [21] imposes severe restrictions on the class of
lagrangian models supporting time-independent soliton solutions in three space dimen-
sions. The choice of the lagrangian densities as general functions of the kinetic term
alone [70] (see Eq.(3.48) below) allows us to circumvent the constraints of Derrick’s
theorem. When these functions are properly chosen the resulting models exhibit static,
spherically symmetric (SSS) solutions which are of finite-energy and stable. This choice
seems rather arbitrary from the physical point of view. Nevertheless it is the natural
restriction for scalar fields of the lagrangian densities of the generalized gauge-invariant
models. Moreover, as we shall see in the sequel, many of the necessary results in the
analysis of the soliton problem in generalized (abelian and non-abelian) gauge-invariant
theories (characterization of the families of soliton-supporting lagrangians, explicit de-
termination of such models, analysis of stability, etc) can be obtained from similar results
more easily established for scalar models. Consequently the detailed study of these scalar
models will take an important place in this work.

Document organization

Let us summarize the main contents of this thesis.

Chapters 1 and 2 are introductory and summarize some basic results concerning the
physics of solitons in field theories (relativistic or not). In chapter 1 we discuss some main
results on soliton theory, especially those connected with the non-existence theorems
and the different ways to evade them. In chapter 2 we analyze generalized field theories,
defined as relativistic field models whose lagrangian densities are general functions of the
fields and their first-order derivatives through invariant kinetic terms. These functions
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can be chosen in order for the new theories to support soliton solutions. We discuss
some important examples, their origin and their applications in several contexts

In chapter 3 we consider the scalar field models in detail. We analyze lagrangians
depending on the standard kinetic term, i.e. X = 0,00"¢ through a general function
f(X). After an initial discussion on the admissibility conditions to be imposed on
these functions, we solve the field equations for SSS solutions of all the generic models.
This is achieved by obtaining the generic expression of a first-integral, which allows the
determination of the field strength once the form of the lagrangian function is specified.
We analyze the expression of the integral of energy for these solutions and determine
the conditions that must be satisfied (at r = 0 and as 7 — 00) in order for them to be of
finite-energy. These conditions imply supplementary restrictions to be imposed on the
lagrangian functions which allow for an exhaustive characterization of the admissible
models supporting finite-energy SSS solutions. We also extend these results to the case
of N-components scalar fields. We shall show that for a given form of the lagrangian
density as a function of the rotationally-invariant kinetic term (X = S°I, 8,6;0"¢;)
the N components of the SSS solutions have the same form, as functions of r, as the
SSS solution of the one-component model associated to the same form of the lagrangian
density function. This chapter is based on results contained in Refs.[71, 73].

In chapter 4, we consider the abelian and non-abelian generalized gauge-invariant
theories. After defining the dynamic problem and the admissibility conditions, we ana-
lyze the field equations for ESS fields. We prove that the ESS solutions of these equa-
tions, in the abelian and non-abelian cases, can be built from SSS solutions of associated
one and many-components scalar field problems, respectively. As a consequence there
is a correspondence between scalar models and families of generalized gauge models in
such a way that the SSS solutions and the corresponding ESS solutions have the same
functional form. Moreover, if the energy of a SSS solution is finite, so is the energy of
the ESS solutions of the corresponding generalized gauge family. The results of chapter
3 characterizing the admissible scalar models with finite-energy SSS soliton solutions,
characterize also the admissible generalized gauge models with finite-energy ESS solu-
tions, but the latter ones are not always stable. Stability requires now supplementary
conditions to be satisfied by the lagrangian densities, which will be determined in chap-
ter 5. The main content of this chapter has been published in Refs.[72, 73] but we also
make use of some results of [74].

Chapter 5 is devoted to the analysis of the stability of the elementary solutions for
scalar and gauge field models. This analysis leads to necessary and sufficient conditions
for the linear static and dynamic stability of the soliton solutions, going beyond the
necessary conditions demanded by Derrick’s theorem. From the variational study of
the energy functional and the spectral analysis of the small perturbations around the
elementary solutions we shall prove that the admissibility and the finite-energy condi-
tions imposed upon the admissible (multi-) scalar models supporting SSS solutions are
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necessary and sufficient for the stability of these solutions. In the gauge field case a sim-
ilar analysis determines supplementary conditions, aside from admissibility, which must
be imposed on the lagrangian densities in order for their finite-energy ESS solutions to
reach stability. The contents of this chapter are based on results of reference [73].

In chapter 6 we present some examples of field theories belonging to the different
classes analyzed in previous chapters, which exhibit soliton solutions and could be phys-
ically significant. We shall determine each model for the simpler case of a scalar field
theory (this question was extensively studied in reference [73]), before proceeding fur-
ther to the generalizations to the gauge field case, in such a way that the additional
stability constrains be fulfilled by the extended models. Among the models introduced
and analyzed in this chapter there are lagrangians of polynomial form in the field in-
variants, which include those obtained in different effective approaches to QED. Also
lagrangians generalizing the abelian and non-abelian Born-Infeld models in two different
ways. Finally, lagrangians describing short-ranged interactions without any symmetry
breaking mechanism. We also extend here some results outlined in reference [75].

We conclude in chapter 7 by drawing some perspectives and future developments.
Among these, let us mention

1. The possibility of elaborating phenomenological models for the internal structure
of the hadrons, based on the results of the analysis of dynamic stability in chapter
5. In this picture, quarks and gluons appear as quasi-particles resulting from the
quantization of the oscillation modes of a soliton solution of a generalized model,
coupled to a fermionic sector and preserving the appropriate symmetries. The
confinement should be a consequence of this quasi-particle nature which allows
the existence of quarks and gluons only inside the hadron.

2. The use of short-ranged elementary solutions of effective gauge-invariant lagrangian
models for the description of weak interactions, without appealing to the Higgs
mechanism.

3. The result obtained in chapter 6 on the existence of finite-energy ESS solutions for
effective lagrangians of QED (of polynomial form in the field invariants) suggests
an interpretation of the renormalization procedure of the self-energy of a point-like
charge, in terms of the screening effects of the Dirac vacuum on the field of this
charge. Indeed, the non-linear terms in the effective lagrangian account for the
vacuum corrections to the bare Maxwell lagrangian and lead to a renormalized
charge-field with finite-energy. Unfortunately, the approximation in which these
effective lagrangians are obtained fails for the strong values of the field near the
center of the charge and the validity of this interpretation requires a similar analysis
in terms of effective lagrangians including the vacuum effects in presence of strong
fields.
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4. The extension of the methods and results of this work in presence of gravitational
fields. This problem is outlined in Appendix A, where we show that the generalized
field equations in presence of gravitation have first-integrals of the same (or similar)
form than in the flat-space case, to which our methods can be applied. This issue
is currently in progress.

Our analysis deals with fields in three-space dimensions, but most of our results can
be straightforwardly generalized to other spatial dimensions.



Chapter 1

Solitons in relativistic field theories

In this chapter we shall give a short review of history, definitions and properties, as
well as some of the main results on solitons in relativistic field theories. Since the early
developments in the 60s, this research field has undergone highly significant advances.
Many solitons have been studied in great detail both analytically and numerically and
several links among them have been discovered. A broad analysis on the subject of
solitons in field theory lies beyond the scope of this thesis. Instead we will concentrate on
presenting some key ideas that are going to be used throughout subsequent theoretical
developments, performed in chapters 3 through 6. More details about the world of
solitons can be found in the textbooks of Lee [76], Rajaraman [77] and Manton [78].

1.1 Historical remarks

“I was observing the motion of a boat which was rapidly drawn along a narrow channel
by a pair of horses, when the boat suddenly stopped - not so the mass of water in the
channel which it had put it in motion; it accumulated round the prow of the vessel in
a state of wiolent agitation, then suddenly leaving it behind, rolled forward with great
velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-
defined heap of water, which continued its curse along the channel apparently without
change of form or diminution of speed...”

The above cite was written by the Scottish engineer John Scott Russell and it is part
of a report given in the British Association for the Advancement of Science (published
in 1844) where he describes his observations concerning an odd phenomenon. Around
1834 Russell was travelling on horseback near the bank of an Edinburgh canal when
he noticed the existence of a wave running down the canal. Intrigued, he followed it
for several miles, observing no changes in shape and velocity of the wave at all. The
phenomenon was called at first by Russell as “wave of translation” and later as “solitary

9
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wave” (“a solitary wave travels without changing its shape, size or speed...”). This
historical episode is usually recognized as the first mention of the “singular and beautiful
phenomenon”, in Russell’s own words of what is known today as soliton.

Russell suggested that this phenomenon represented a general class of solutions, com-
pletely different from the common plane waves in viscous media which tend to dissipate,
fading away in time. Unfortunately, he did not succeed in convincing his colleagues
and for a long time the subject of the solitary wave was in dispute. Finally, in 1895
Korteweg and de Vries found an equation for the motion of water waves, giving in this
way an analytic explanation of Russell’s solitary waves as solutions of this hydrodynam-
ical Korteweg-de Vries equation (KdV) [79].

However, the subject lay fallow for almost half a century and it was not until the
60s that some authors started to perform intensive investigations on this and similar
phenomena. One of the questions to be answered was if such non-dispersive phenom-
ena could exist in physical contexts other than hydrodynamics. Around 1965 Zabusky
and Kruskal, aside from providing a mechanism which explained the way non-linearity
balances the dispersive character of the KdV equation, showed that this equation can
be analytically solved despite its complexity. Among the solutions of the KdV equation
there exist solitary waves maintaining their shapes, heights and speeds during their prop-
agation, giving in this way an explanation for the water “lumps” of Russell. Moreover,
they showed how two waves combine in such a way that cannot be merely explained in
terms of linear superpositions: here non-linearity is essential.

The impact of these works was deep, giving rise to a vast and powerful variety of
mathematical techniques (inverse scattering method, Lax pairs, classical spectral trans-
forms, etc. [80]) for the analysis of solitons in (1 + 1) dimensions. In the last decades
solitons have played an important role in many physical and mathematical areas; their
applications cover diverse fields such as engineering, biology, optics, condensed matter
physics, cosmology, elementary particle theory, high energy physics including string the-
ory and so on [4]. On the other hand the mathematical methods for the analysis of these
soliton-supporting equations is a very active research field, with fruitful connections be-
tween different mathematical and physical branches.

1.2 Particle-like solutions

The concept of “particle-like” solutions arose as an attempt to solve some inherent
problems associated with the theories regarding elementary particles as mathematical
points, which are sources of fields. In this approach, the search for new theories is con-
nected with the hope of finding exact, regular and “localized” (the meaning of the term
will be discussed below) finite-energy solutions of classical non-linear field equations,
which allow to describe the physics of these elementary particles. Non-linearity is then
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a mechanism not only for removing divergences associated with classical solutions of
linear equations but also for allowing the description of interactions between fields and
particles. If this goal were achieved it would not be necessary to postulate the existence
of force-laws, which should emerge from the non-linearities of the field equations, thus
providing (at least at the classical level) a unified picture of the internal structure of
elementary particles as well as of their dynamics and interactions.

It is possible for some non-linear field equations, where both dispersive and non-
linear terms are present, that their effects balance each other in such a way that some
non-dissipative special solutions hold themselves due to their own auto-interaction. In
classical field theory there exist many non-linear models supporting this kind of solutions,
including vortices [81], monopoles [6, 7, 82] and instantons [83]. Several names have been
coined for these non-dissipative solutions, including localized solutions, solitary waves,
solitons, particle-like solutions and “lumps”. Depending on the features of the solutions
that one is concerned with, some names are more suitable than others and this have led
researchers in the field to make slightly different definitions. Then, the next task to be
faced is the choice of a precise nomenclature.

1.3 Solitons

1.3.1 Definition

It is fair to say that there is not a universally accepted definition of what a soliton is.
In the following definitions the term localized will refer to those solutions of the field
equations with an energy density p(Z,t) localized in space, i.e. non-vanishing in some
region of space and falling to zero at infinity, following the definitions of [77]. First of
all, it is necessary to clarify the difference between the concepts of solitary wave and
soliton:

A solitary wave is a modernized version of Russell’s wave of translation, defined as
a localized non-singular classical solution of any non-linear field equation, which energy
density propagates without any distortion in time.

On the other hand, a soliton! is a solitary wave which has a finite energy and is
stable under collisions with similar configurations. The latter condition implies that in
a scattering process between two or more solitary waves, initially well-separated (for
asymptotically negative times ¢t — —o0), they recover their initial shapes, at least as-
ymptotically (¢ — 00). It is therefore clear that solitons represent a small subset of the
wider class of solitary waves.

Obviously, the above stability requirement is too stringent at least, concerning its

! Apparently the name was coined by Zabusky and Kruskal in the sixties, to describe a solitary wave
with particle-like features.
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usefulness in field theory. Indeed, most of the known solitons appear not to fulfil this
criterion?. Only for very special models, namely, those where the presence of infinitely
many conservation laws guarantees that solitons re-emerge with their original shapes
restored after a scattering process (integrable models in (1+1) dimensions), this strong
stability criterion has been shown to hold. For the purposes of this thesis, we shall “relax”
the above definition of solitons instead of maintaining this restrictive requirement, and
adopt the following definition:

A soliton is a stable 3, finite-energy classical solution of conservative non-linear
differential field equations in a d dimensional Minkowski space. This is the soliton
definition in the spirit of Coleman’s “lump” of energy [84].

Although in this work we shall only consider static solitons, let us mention the
existence of localized time-dependent solutions of non-topological nature, the so-called
“Q-Balls” *. The term Q-Ball was introduced by Coleman [57] (although the concept was
developed earlier, see Friedberg et al. [85]) and includes a large class of non-topological
solitons in (3+1) dimensions which can be associated with several symmetries [86, 87, 88].

1.3.2 Classification

Following Lee’s scheme [76], in relativistic field theories all soliton solutions can be
classified into two general categories, according to the mechanism by which their stability
is ensured.

e Topological solitons: Solitons whose stability is supported by the existence of non-
trivial boundary conditions giving rise to a non-trivial homotopy group preserved
by the field equations. Soliton solutions of the field equations are then classi-
fied according to homotopy classes and characterized by a topological invariant
(“charge” of the soliton). This topological charge prevents the destruction of the
isolated soliton (as well as transitions between solitons belonging to different ho-
motopy sectors).

Some known examples of this class of solitons include vortices [81], the ‘t Hooft-
Polyakov monopole [6, 7, 82|, instantons [83] and skyrmions (see [89] and references
therein). The term “topological defects” is also frequently used for referring to a
class of topological solitons arising as a result of symmetry-breaking phase tran-
sitions, which find applications, in particular, in cosmological contexts (see e.g.
(90, 91)).

2In general it is hard to tell, because of the inherent mathematical difficulties associated with the
non-linear field equations, whether a particular solution satisfies the above requirement or not.

3In the weak sense, i.e. linearly stable against small charge-preserving perturbations. See chapter 5
for a more clarifying discussion.

4See [58] for a review.
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e Non-topological solitons: These solitons are stable because of the existence of con-
served charges of non-topological origin, carried by the soliton. For the class of
solitons analyzed in this thesis the mathematical structure of the field equations, or
the constraints imposed on the external sources (to which the field is coupled) al-
lows the definition of a charge carried by the soliton. This issue will be extensively
discussed in chapter 5.

1.3.3 Solitons in (1+1) dimensions

To illustrate some important results on soliton theory we start from the simpler and
better studied case of solitons in one spatial dimension. Here one takes advantage of
the large variety of available powerful mathematical tools. These methods are strongly
connected with the integrability property of the models, which implies the existence of
infinitely many conserved charges. As a result, the models which are exactly integrable
both at classical and quantum levels can be analytically treated and soliton dynamics
explicitly studied. A key result in the analysis of (141) dimensional solitons is that in the
so-called theories of Bogomolny type the second order partial differential field equations
can be reduced to first order equations, thus greatly simplifying their resolution [92].

Let then be a (1 + 1) dimensional one-component scalar field theory of the form

1
L(6) = 50,60"6 — U () (11)
where ¢ is a real scalar field and U(¢) a potential term. The static solutions are de-
termined by ;%5 = 8%—((;5) and the finite-energy and stability features of the associated

solutions are related to the asymptotic form of the field configurations. To support
soliton solutions this asymptotic behaviour must be different in positive and negative
spatial directions and identified to different zeros of the potential.

To solve this system one makes a formal mathematical analogy identifying the la-
grangian (1.1) with the Newton equation of motion for a particle of unit mass: L(z(t)) =
1@* — U(z). For this analogy to work properly the lagrangian (1.1) must be formally
interpreted as the trajectory of a point particle moving in an inverted potential —U/(¢).

Thus the field equation can be solved through a quadrature

o(z)
xr — X :/ d¢;. (1.2)
d(w0) 2U(9)

It is possible to obtain a lower bound for the energy of any field configuration following
an argument developed by Bogomolny [92], which leads to the inequality
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- [ [ (G )| [
= [W(¢ = +00) = W(p = —o0)|. (1.3)

To attain the equality in the Bogomolny bound (1.3) the field must be static and satisfy

the first order equations ¢'(z) = :I:%—Ig with W(¢) = [ \/2U(¢)d, and thus also solves
the second order equations by construction.

For these systems a topological current can be defined as j, = %gﬂ,ﬁ”qﬁ so a topo-

logical charge ¢ = fj;o Jjo = %(gb(x = +00) — ¢(x = —o0)) prevents non-trivial field
configurations with different asymptotic behaviours from decaying to the vacuum state.
A familiar system having the form (1.1) is the so-called Klem-Gordon kink, which cor-
responds to the Mexican hat potential U(¢) = 2 (¢* — v2)%, v2 = 22 of the ¢* model
[93]. The solution of topological number unit represents a soliton mterpolatlng between
the vacua ¢_ = —v = —%(x — —o0) and ¢4y = +v = —I—\%(x — +00) (there also
exists another solution interpolating between ¢, and ¢_ called antikink) with a shape

(see figure 1.1)

¢ = +vtanh < 5= x0)> (1.4)

Is

and energy € = vemd T where g = =25, so the mass of the kink increases when
3 A ’ m2

3 g
the coupling constant is reduced. However, these solutions do not retain their shapes
after collision processes [77].

Figure 1.1: One dimensional kink and antikink solutions centered at z = 0.
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A specially interesting example is the Sine-Gordon soliton, defined by a potential
U(¢) = 5 (1 — cos(8¢)). The zeros are given by ¢ = 2“7" so the system has an infinite
number of discrete vacua and, consequently, infinitely many non-trivial soliton solutions.
This model gives two remarkable results. First, their static solutions survive to collision
processes with similar configurations, thus providing examples of true solitons. Second,
the works of Coleman [94] and Madelstam [95] showed that the quantized Sine-Gordon
model is related to the massive Thirring model (see also [96])

— . 1 — 2
L =9 ("0, —=m) v — 59 (47"¢)", (1.5)
when the coupling constants g and § fulfill the relation g =3 +; T This implies that

solitons arising in the bosonic sine-Gordon theory correspond to fermion states of the
Thirring model. This phenomenon also exists in solitons arising in higher dimensional
models as, for example, the three-dimensional Skyrme model [8, 9, 97].

1.4 Solitons in higher dimensions

As already mentioned, there exist a large number of mathematical results in the literature
concerning solitons in (1+1) dimensions. However, in higher dimensions these methods
are not so useful and one is left, in general, with non-integrable systems whose analysis
is a complicated task even at the classical level. Moreover, much of the non-linear
differential equations admit soliton solutions which do not have a closed, analytic form
and, in most cases, they do not admit soliton solutions at all. Indeed, the existence of
soliton solutions in higher dimensions is severely restricted by the existence of several
no-go theorems which rule out many solutions both in scalar and gauge field theories.

1.4.1 Derrick’s theorem

A simple but powerful result concerning the existence of static solitons in a large class
of field theories is the so-called Derrick’s theorem [21]. It gives essentially a negative
result. In many field theories the variation of the energy functional against certain
spatial rescalings is never zero for any static (non-vacuum) field configuration. However,
a static field configuration which is a minimum of the energy should be stationary against
all admissible variations of the field, including these spatial rescalings. Then, in these
theories there do not exist static, finite-energy solutions of the field equations, excepting
the vacuum states. In particular, the theorem establishes the non-existence of non-trivial
scalar solitons in theories with canonical lagrangians (1.1) in dimensions greater than
one. For simplicity let us analyze the one-component scalar field theory with energy
functional given (for static configurations) by
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ol = [ a7 (396 9o+ U6(0) ) = slo] + el (16)

(D stands for the number of spatial dimensions). Here not only €[¢] but also es[¢] and
ev[¢] are non-negative. Following Derrick’s argument, consider a static solution ¢(x)
and let

oxn(z) = d(Az), A > 0, (1.7)

be a uniparametric family of field configurations. The transformation x — Ax through
this family will be called hereafter a spatial rescaling (sometimes called dilation). Der-
rick’s argument amounts to a study of what happens to the energy functional when this
rescaling is performed. If for an arbitrary (but static) solution with energy e[¢(z)]| the
rescaled energy functional €[¢,(x)] has not stationary points, then the theory does not
support static, finite-energy solutions of the field equations, excepting the vacuum. The
energy functional (1.6) transforms against these spatial rescalings (1.7) as

e[dr] = eslon] + evldn] = N> Pes[d] + A Pey[g]. (1.8)

Then €[¢,] is a simple function of A\, with the coefficients €5 and €y relying on the initial
choice of the field configuration ¢(z) while the character of €[¢,] depends critically on
the dimensionality of space. Now one must set the variation of €[¢,] with respect to a

rescaling (1.7) to zero, i.e. % |a=1= 0. From (1.8) it is trivial to see that this implies

(2 — D)es|¢] = Deyld], (1.9)

and since e€g[¢] and ey[¢] are non-negative, the relation (1.9) cannot be fulfilled for
D > 1 unless eg[¢] = ey[¢] = 0, the trivial vacuum solution. Then, the theorem holds
for scalar field theories of the form (1.1) in D > 1 dimensions: the only time-independent
solutions of finite-energy in these cases are the vacuum states. On the other hand, soliton
solutions in D = 1 are not ruled out by this theorem and this explains the existence of
static solitons for lagrangians of the form (1.1) in this case. The above argument can be
also straightforwardly extended to multicomponent scalar fields.

1.4.2 Circumventing Derrick’s theorem

To circumvent Derrick’s theorem many proposals have been considered in the literature.
Let us briefly discuss some of them:

e To include other fields in order to “balance” Derrick’s scaling. For example, one
can include gauge fields A*(z). In this case, the energy is the sum of terms of the
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form
eslol = [ @, (Di0) 5 evlol = [PaU(6) s ol = [ auFy (110)

where T,, stands for some power of the derivatives of the scalar kinetic term (n = 2
for the standard canonical kinetic term). The appropriate transformation against
spatial rescalings of a 1-form is AY = AA*(A\x) whereas the covariant derivative
transforms as DY¢(x) = (d oy (z) + AP@yr(z)) = AD#¢p(Ax) and the field strength
as F{"(z) = N*F*(\z). Then, the energy scaling will be

e[pr] = es[dn] + evldn] + ec[A4] = N Pes[o] + A Pep[o] + AT PeglA]. (1.11)

Again it is assumed that each term contributes positively to the total energy. The
extremum condition of the rescaled energy functional in A = 1 gives the constraint

(n—D)es — Dey + (4 — D)eg =0, (1.12)

to be satisfied. For having a static soliton one needs a zero exponent against
rescalings in all terms contributing to the energy functional ® or a balance between
positive and negative exponents, otherwise there are not finite-energy static solu-
tions, expecting the vacuum. As previously seen, such a balance depends critically
on space dimensionality. Many soliton solutions show this structure. A short list
includes:

— (141) dimensions: Scalar eg + potential e/ terms — kinks.

Scalar eg 4+ potential e + gauge €5 terms —
— (2+41) dimensions:{ — Nielsen-Olesen vortex.
Only a scalar eg term — O(3) sigma model lump.

— (341) dimensions: Scalar eg + potential ey + gauge e; terms —
— 't Hooft-Polyakov monopole.

— (4+1) dimensions: A pure gauge term ¢ in an Euclidean space — Instanton.

e To consider time-dependent but non-dispersive solutions — Q-Balls.

e To include higher powers of the derivatives of the scalar field — Skyrme and
Faddeev-Niemi models. Here, aside from standard kinetic terms a quartic term is
included.

e To consider more complicated models defined by lagrangians which are general
functions of the standard kinetic terms (both for scalar and gauge field theories),
in such a way that the pertinent symmetries be maintained.

5For instance, if the energy density consists only on scalar fields, then one is forced to fix n = D.
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Some comments are in order. First, Derrick’s theorem shows a striking feature:
the requirement of stability against rescalings represents a sort of “virial” theorem in
the sense that the extremum condition usually provides identities relating the different
contributions to the energy functional. If we take, for example, the simplest case, the
scalar field theory with lagrangian density (1.1) and energy (1.6), the extremum condi-
tion gives, as we have seen, a relation between both contributions, namely, Eq.(1.9). For
D =1 one trivially gets eg = €¢;. This implies that scalar and potential terms contribute
equally to the total energy of the static solitons. Another example showing this feature
is the three-dimensional Skyrme model.

Second, Derrick’s argument only involves a particular case within the set of all pos-
sible perturbations applicable upon the soliton, which could be unstable against other
perturbations or singularities of the field. That is to say, Derrick’s theorem only provides
necessary conditions for the existence and stability of static solitons, but not sufficient
ones. Moreover, for the case of gauge field theories aside from Derrick’s theorem other
non-existence theorems have been established which, consequently, must also be circum-
vented in order to obtain soliton solutions. We shall tackle these problems in the next
chapter.



Chapter 2

Generalized field theories

In this chapter we focus our attention upon a class of relativistic field theories defined
as generalizations of well-known models, such as the non-linear sigma model, Maxwell
electrodynamics or non-abelian gauge field theories. The latter cannot possess stable,
static, finite-energy soliton solutions in a four dimensional flat space-time (without the
inclusion of additional terms) due to the aforementioned Derrick’s theorem and other
non-existence theorems [46, 47, 48, 49], while the former, when some conditions are
fulfilled, do possess. We shall call this class of theories, defined for various kinds of
fields, generalized field theories.

2.1 Effective field theories

Effective field theories (EFTs) have a long history (see [67, 98, 99] for reviews). The
first developments of the subject date back to the work of Euler and Heisenberg in 1936,
where quantum corrections to the Maxwell electrodynamics were computed [68, 100].

EFTs have become a common tool for the analysis of physical problems which involve
two (or more) widely separated energy scales. To understand how EFTs work, it is
useful to adopt the and approach based on the integration of the high-energy degrees of
freedom. Let be a field theory which contains “heavy” particles ® of mass M and “light”
particles ¢ of mass m, such that m << M. Let us consider now a physical process which
typical energy scale A is much below the heavy mass scale so real heavy particles cannot
be generated. Following this scheme the lagrangian of the EFT can be written as

L(®,¢) = L(¢) + La (P, ¢), (2.1)

where the contribution of the light fields is isolated in the part L(¢), while the heavy
fields and the interaction between light and heavy fields is contained in Lg(¢, ®). Next,

19
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we must consider the generating functional of the full theory

Z[¢] = / DO Dge () = / Depe’™?) / Dde'S(®9), (2.2)

Then all heavy modes are integrated out (since they live on the scale M >> A) in
(2.2) and one is left with a theory for small momentum (or large distance) modes of the
light fields, defined by an effective lagrangian obtained in a perturbative way and having
infinitely many terms. The physics on the scale M is now encoded into the parameters
of this low-energy lagrangian.

A more useful approach (for practical calculations) to construct an EFT amounts
to identify the dynamical degrees of freedom (the light fields), satisfying the pertinent
symmetries of the underlying theory at the scale of reference. Then the most general la-
grangian (including the light degrees of freedom) consistent with these symmetries must
be written down. This low-energy theory can now describe accurately the predictions
of the underlying theory at this scale simply by including sufficiently many operators in
the effective lagrangian. This lagrangian can be written in terms of an expansion

Legs(9) = Lo(8) + Y _ cnOn, (2.3)

where we have isolated the renormalizable part (Lg) of L.ss, and O,, are operators of
dimension n built with the light fields, while the information of the heavy degrees of
freedom is contained in the couplings ¢,. The numerical value of these coefficients ¢,
could be obtained from the “fundamental” theory if it were available and manageable
or, alternatively, could be fitted from the experiments. Thus, this quasi-classical theory,
which contains new non-linear self-couplings, accounts, at a classical phenomenological
level, for quantum effects and interactions with the removed heavy-mode sector.

2.1.1 Skyrme model

For a long time the possibility that solitons may describe particles has attracted lots of
attention. An early attempt at this regard was the Skyrme model [8, 9, 97], developed in
the sixties as a model for the analysis of hadron physics, which only involves meson fields
(pions) and where baryons arise as topological solitons. A convenient parameterization
of these degrees of freedom amounts to define an unitary matrix U = exp (i7%7%/ f), 7
being the pion fields, 7* the Pauli matrices and f, ~ 93MeV the pion decay constant.
Written in this language the lagrangian reads
Lok = L2 0r (L= T (L LI = L2 (000U ) 4 ——tr (U 0,0, U+ 0,07
SKE = 77 7“(# )+32€2 7a[/“ v] *4T(H )—0—32627"<[ W (;43)’
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where L, = U"0,U and e is a constant. The first term in Eq.(2.4) corresponds to the
non-linear sigma model, which does not support static, finite-energy solutions because
of Derrick’s theorem . As previously mentioned this can be cured with the addition of
higher-order terms in derivatives. Indeed this is what Skyrme did through the inclusion
of a quartic term in the derivatives (the second term in the lagrangian (2.4)) in order to
balance this scaling, and thus allow for topological finite-energy soliton solutions.

The interest in the Skyrme model lies in the fact that gives a phenomenological
description (~ 30% of error for single-baryon properties [97]) of nucleons as solitons of the
pion field. This implies that the Skyrme model describes fermionic states although their
fundamental fields are bosons. This is a (3+1) dimensional version of the phenomenon
already seen in the (1+1) dimensional Sine-Gordon system. Indeed, the identification
of baryons with solitons arising in an effective boson field theory is related to the limit
of large number of colors N¢ of QCD. In the 70’s t‘Hooft [10] showed that if QCD is
generalized from SU(3)c to SU(N¢) with No — oo then 1/Ng can be taken as an
expansion parameter for the low-energy regimen. Planar diagrams are dominant in this
limit and QCD is reduced to a field theory of weakly coupled (i.e. with coupling constant
g ~ 1/y/N¢) mesons and glueballs. Indeed, Witten [12] was able to show that baryons
emerge in this theory as topological soliton solutions.

However, the quartic term in (2.4) is rather arbitrary since it has been introduced
“ad hoc” only for evading the hypothesis of Derrick’s theorem, and there are no real
physical basis to fix this particular choice. Clearly any term of degree fourth or higher
in derivatives would do equally well at this respect, which shows that the need to fix a
specific choice seems rather unnatural.

2.1.2 Scalar field models with generalized dynamics

To get around this ambiguity as well as to circumvent Derrick’s theorem, Deser, Duff
and Isham [20] proposed a modification of the non-linear sigma model, by defining a new
lagrangian as a function of the previous one, whilst maintaining the original symmetries.
This lagrangian reads (avoiding constants by simplicity)

Lppr = (—Lyzsm)*? = (TrL,L")*?. (2.5)

The motivation of this choice is given by the fact that the power (3/2) is just the
necessary one required to balance the rescaling of the standard kinetic term in (3+1)
dimensions.

Classical field theories with non-canonical kinetic terms are not unfamiliar in modern
theoretical physics, where they find several applications, in particular, within the context
of soliton physics. Following the fractional power idea of the example (2.5) other models

!Two spatial derivatives in the lagrangian do not rescale appropriately in three-space dimensions.
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have been studied. Two particular lagrangians, which are parameterized by a three-
component unit vector field n : R* — S?, [n| = 1, have attracted special attention

Ly = (9,)" ; La= [0 (0,0 x 0,0)). (2.6)

Making use of these lagrangians several theories have been proposed. For example a
model which finds applications both in field theory and condensed matter physics is the
well-known Skyrme-Faddeev-Niemi model [101, 26] with lagrangian Lgpy = Lo — ALy, A
being a constant. On the other hand, it is also possible to select lagrangians defined only
in terms of one of the previous lagrangians, either Ly or Ly. First, Nicole introduced the
lagrangian [22] (see also [23])

Lyt = (L))", (2.7)

showing that toroidal solitons are allowed to exist within this model. Another lagrangian
is the Aratyn-Ferreira-Zimmerman (AFZ) model [102, 103] defined as

Lapyz = — (L4)3/47 (2.8)

which contains infinitely many toroidal soliton solutions. Note that these theories Lppy,
Ly, Larpz are scale-invariant under Derrick’s transformations (1.7), which is a trivial
consequence of the way these lagrangians evade Derrick’s theorem - the rational powers
included are just the necessary ones in order to balance Derrick’s scaling in lagrangians
composed of a single term -. It has been argued that such scale-invariant models could
be unstable due to zero modes associated with changes in the scale of the soliton, which
might give rise to soliton collapse in a finite time [78, 104].

For both circumventing Derrick’s theorem and breaking the above scale invariance
in three-space dimensions it is necessary to go beyond the aforementioned single-term
models. During the last two decades lots of attention has been paid to scalar field
models with generalized dynamics. The terms “k-fields” or “k-essence”, where k stands
for “kinetic”, have been coined for referring to these extensions. They are scalar field
theories defined by generalized actions of the canonical kinetic term, which can have
unusual physical properties. K-essence models are specially interesting in Cosmology.
Here the idea was proposed at first in the context of inflation (k-inflation [64, 105]) but
it was soon noted that it can serve for modelling both dark energy and dark matter
(65, 66].

Concerning solitons, the search for scalar models supporting soliton solutions, by
considering lagrangians with generalized dynamics, circumventing in this way the con-
straints of Derrick’s theorem, was partially treated in [70]. K-fields have also been used in
investigations of defect structures of topological nature. Topologically non-trivial con-
figurations with symmetry-breaking potential terms, but with the standard canonical



23 Chapter 2. Generalized field theories

kinetic term being replaced by a k-field have been investigated in [106, 107]. K-vortices
[108] and compactons [109] (i.e. solitons with compact support, a class of topological
defects approaching the vacuum at a finite distance) have been considered as well.

2.2 Non-linear electrodynamics

Let us now focus our attention upon the non-linear generalizations of Maxwell’s elec-
trodynamics. Classical electrodynamics with charged massive point particles has two
restrictive features. First, the self-energy of the field of a point particle is infinite.
Second, a Lorentz force-law supplementing Maxwell’s equations must be postulated to
describe interactions between point particles and the electromagnetic field. Since the dis-
covery of the electron, physicists have tried to develop non-linear extensions of Maxwell’s
electrodynamics, namely, non-linear electrodynamics (NED), representing finite-energy
charged particles.

2.2.1 Born-Infeld theory

In 1912 G. Mie [1] introduced a “maximal field” E,,., (by analogy with the notion of
maximum velocity ¢ in Relativity) in the framework of a NED, in such a way that the
electric field of a point-like charge does not diverge at the origin, remaining bounded
everywhere

—

e
E2,..

max

L=y/1-

(2.9)

Although within this model the electron is represented by a solution of finite-energy
it is obvious that such an extension cannot be regarded as physically acceptable from
the point of view of relativistic field theories since it is not covariant under Lorentz
transformations.

Looking for physically acceptable models Born [2] extended Mie’s idea by consider-
ing a Lorentz and gauge-invariant NED (now including magnetic fields in the lagrangian
definition) supporting finite-energy electrostatic field solutions. Finally, Born and Infeld
[3] considered a more general NED including two quadratic, Lorentz and gauge invariants
of the field, giving rise to the well-known Born-Infeld electrodynamics. In the classical
standard picture infinities come from the fact that elementary particles are regarded
as mathematical points and then physical quantities, as the energy of the associated
field, diverge there. In BI theory the electric field reduces to Coulomb’s field at large
distances, but differ near the origin, where it attains its maximal value. The model
defines a characteristic length r, = (q/ Emax)1/2, which sets the scale of distance from
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the center where the non-linear effects become relevant. Born and Infeld were motivated
by the hope of finding sourceless, regular, finite-energy solutions to represent elemen-
tary particles. However they did not completely succeed in this regard since point-like
electrostatic solutions of BI theory still carry singularities in the electric displacement
field at the origin and, as a consequence, there is a Dirac-delta function 2, which can
be interpreted as a source (charge) at this point. Nevertheless, the model allows an
alternative interpretation of the charge of these solutions as a continuous distribution
in space. On the other hand, the main features ascribed to solitons, such as the finite-
energy character and the stability (in the usual weak sense, see chapter 5) are fulfilled
by the electrostatic solutions of this theory.

BI model is a very special theory among the NEDs. It is instructive to recall some
of its features, before studying the general NED case, which shall be discussed in greater
depth in chapter 4. The action reads 3

Ly = B (\/ det(guw) — /det(go + 5! ))
] T
= 2 <1 — \/1 + Q_BQFHVFu 65 (F Fv) > = (2.10)

- ﬁ2<1—\/1+%<§2—52)—ﬁi<£7 B>2)

Among the properties of this theory let us mention

1. Maxwell action is recovered in the § — oo limit:

Lo = — 1 Fu P+ 0(1/5%) = (B* ~ B%) + 0(1/) (2.11)

—

2. For purely electric configurations (B = 0)

L | 5= 52( \/1—621@2), (2.12)

there exist an upper bound for the electric field given by E (r) = 3, which is an
analogue of Mie’s maximal field. Indeed, a key point in BI electrodynamics (as
opposed to Maxwell electrodynamics) is the difference between the electric field E
and the “electrlc displacement” vector D. Here singularities are associated to D
rather than F since the former fulfils the relation

2Due to this feature the term Blon is frequently used in some contexts for referring to these config-
urations [110].
3Note that the first equality is obtained for the case of Minkowski space g,,, = 1.
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V- D = 476 (7), (2.13)

and, moreover, electric and displacement fields are related by the equality

. L E . D
D=2 - — S E=—" (2.14)
OE |5, 1— 5E? 1+ 3 D?

so although the vector D diverges at the origin (since D= %7, which is identical

to the Maxwell solution) the electric field E = ——Z_7 is everywhere finite and

/ 2
7"4+Z—2

so is the energy, as can be easily checked:

e:/dgf(E-E—L)rv/ dr (x/q2+7“4—7“2> < 0 (2.15)
0

3. Finally, BI theory has a set of good physical properties concerning wave propaga-
tion, such as the absence of birefringence and shock waves, belonging to the class of
theories called “completely exceptional” [111, 112] (see section 4.3). It also possess
some duality symmetries such as electric-magnetic duality (see appendix B).

Let us also recall that in recent decades there has been a renewed interest on BI
theory and its non-abelian extensions as well as other types of NEDs since some of
them arise in the low-energy limits of string theory and in the physics of D-Branes
(30, 31, 110, 113, 114].

2.2.2 FEuler-Heisenberg effective lagrangian

We shall now discuss some aspects concerning another physically meaningful example
of NED with applications in theoretical physics, which is found in a different context.

In classical electrodynamics, described by Maxwell linear field equations, photons do
not “fell” the presence of other photons. This is not so in QED, where the interaction
between photons and electron-positron virtual pairs in vacuum gives rise to measurable
effects. For energies much below the electron mass (¢ << m,), these effects can be
described through effective lagrangians [67], where the dominant term corresponds to
the Maxwell lagrangian Lo = —iF w M, describing free photons. In the scheme (2.3)
the subsequent terms O,, correspond to the coupling of photons to virtual electronic
loops in vacuum. These operators O,, must respect the symmetries of the underlying
theory (namely, Lorentz, gauge and parity invariance). Thus, they must be built with
terms invariant under the above symmetries and constructed from the field strength
tensor, its dual, and (in general) their derivatives.
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In determining the first terms of this expansion, Euler and Heisenberg [68] (see also
[100]) wrote down the four-vertex contribution (interaction of four photons via coupling
to an electronic loop in vacuum) for “slowly varying” fields, which reads

az 174 7 * v
gomi | Ew F)° 4 3 (B F)7) (2.16)

e

Lgy = Lo +

Higher-order corrections in the field invariants, corresponding to the coupling between
more photons, can be added to (2.16) (see e.g. [69]). We shall see in section 6.1.1 how
the Euler-Heisenberg lagrangian and the sequence of higher-order correction lagrangians
behave from the point of view of particle-like solutions.

2.3 Generalized non-abelian gauge field theories

We shall consider now the extension of non-linear electrodynamics to the case of non-
abelian gauge fields. In this case the study of generalized actions for the soliton problem
raises some mathematical subtleties which we are going to discuss briefly in this section.
Obviously the whole subject of non-abelian solitons is too vast to be fully discussed here
and we refer the reader to the review of Ref.[52] for more details.

2.3.1 Non-existence theorems

We have seen that the existence of soliton solutions in field theories is severely restricted
by Derrick’s theorem, widely discussed in previous sections. But concerning gauge field
theories supplementary non-existence theorems have been established, forbidding the
existence of finite-energy, stable field configurations made up only of gauge fields. In
order to understand how generalized gauge field models circumvent these restrictions let
us sketch the arguments underlying these theorems.

First of all, Deser [46] observed that “There do not exist non-trivial static solutions
of finite-energy in Yang-Mills theory, excepting in the (4+1) dimensional case”.

Subsequently Coleman [47] established that “There are not static, finite-energy so-
lutions for a traceless gauge field theory, excepting the vacuum”. Let us consider, by
simplicity, the (34+1) dimensional case. It is assumed that the field approaches zero
at infinity fast enough for the total energy to be finite. The requirement of traceless
energy-momentum tensor 7% = 0, which is a consequence of the scale invariance of the
theory 4, implies the existence of a “dilational” charge defined as

4As a consequence of this scale invariance an associated current can be defined as j, = T, from
which the charge (2.17) defined below is derived. The tracelessness of the energy-momentum tensor
follows immediately since 9,j* = T}V =0.
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QD = /d3$MTﬂo = /ds.T(Z’QTOO - leﬂo) = te — /d3l‘zxiﬂ0, (217)

which is conserved under the above assumptions, as can be easily seen
0Qp = /d?’x(Too - in(aoTio)) = /dgﬂé’(Too + inajTij) =
i i

/1:7j

Now, since for static solutions T;y does not depend on the time coordinate then it follows
immediately that 9yQp = [ d*zTyy = € = 0, that is, the vacuum solution.

Other theorems rule out the existence of static, finite-energy configurations which
hold themselves for a long time before radiating away their energy to infinity [48], or
spatially localized solutions but with a periodic time dependence [49].

The above non-existence theorems can be connected with physical grounds as follows:
as mentioned, the scale invariance of the theory implies the tracelessness of the energy-
momentum tensor T} = Tpo — Z?:1 T;; = 0, which can be physically understood in
the sense that the total stresses in an extended object must balance. Since the energy
density is positive definite by construction (7p9 > 0) this implies that the sum of the
principal pressures 2?21 T;; must be everywhere positive, i.e. Yang-Mills “matter” is
purely repulsive and a force balance within the localized, static Yang-Mills configurations
cannot be reached.

Although the standard Yang-Mills theory does not admit classical particle-like solu-
tions, in Yang-Mills systems coupled to gravity both attractive and repulsive forces are
present so the existence of such solutions is not excluded. But this does not guarantee
their existence. Thus it was a surprise when such solutions were numerically found by
Bartnik and McKinnon [50]. Here scale invariance is broken down by gravity. However,
it was next shown that Bartnik-McKinnon particles are unstable [115]. Anyhow, as
this was actually the first example of self-gravitating particle-like configurations a lot of
interest towards this kind of systems has been triggered.

Despite this discovery it remained the question if it is possible for generalized gauge
field theories (modifications of the standard Yang-Mills lagrangian) to admit these so-
lutions in flat space. For obtaining particle-like solutions the scale invariance should be
broken. A natural way to achieve this goal would be to consider gauge field theories
spontaneously broken down by scalar fields, which gives rise to configurations such as
monopoles and sphalerons. In this case the contribution of the Higgs field provides the
pure attraction needed for making a force balance possible. However, another option is
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given by field theories inspired by Bl generalizations of classical electrodynamics. Indeed
a suitable extension of these theories to the non-abelian fields will remove the obstruc-
tion of the non-existence theorems since they break the scale invariance of the classical
Yang-Mills theory °. However, it was soon realized that the extension of generalized
abelian actions to the non-abelian case raises a new problem.

2.3.2 Trace prescriptions

This problem is concerned with the trace definition, due to the existence of an ambiguity
about the way the trace of the non-abelian action is specified over the gauge group
generators. Formally several possibilities can be envisaged. Taking BI theory as an
example, an ordinary trace is usually considered, which leads to a simple and closed form
for the action [116]. On the other hand, another trace definition is favored by superstring
theory, the symmetrized trace [33], but the explicit lagrangian with such a trace is known
only as a perturbative series [117]. As a consequence of this ambiguity, in the general
case, if Fy,, = >, F3 T (T* being the gauge group generators) is the field strength of
the non-abelian group, there is not a direct relation between the “determinant” form of
the BI action (the first line of (2.10)) and the “square root” form given by the second
line of (2.10). In the ordinary prescription of the trace, this square-root form formulated
for gauge fields (i.e. simply by replacing F,, — Fy, and summing over a)

2
1
e o7 (Z FF) (2.19)

1
LNB[:ﬁzT’T’ 1-— 1+—ZF;}VF'“VG—

can be taken as a starting point for the non-abelian generalization of BI abelian actions.

Despite these difficulties, non-abelian Born-Infeld (NBI) actions have been widely
studied over the last decade both in flat and in curved space using different trace pre-
scriptions. In particular, classical glueballs for a SU(2) NBI in flat space, within the
monopole ansantz A3 = 0, A? = €,;;% (1—w(r)), were found by Gal‘tsov and Kerner [29].
These solutions show a remarkable similarity with Bartnik-McKinnon particles, despite
the fact that the former arise in flat space while the latter live in curved space. For
models already containing particle-like solutions in flat space it is interesting to study
how gravity affects them [118, 119]. The inclusion of Higgs fields allows for other field
configurations, such as monopoles and dyons, to exist both in flat and in curved space
[117, 120, 121, 122]. Finally, other trace prescriptions make use of results coming from
non-commutative geometry [123].

5Note that removing scale invariance, which is a necessary condition for the existence of classical
particle-like solutions, by no means is a sufficient one. Each particular case must be analyzed in looking
for such solutions.
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Scalar solitons

In this chapter we define models for scalar fields where the lagrangian densities are chosen
as general functions of the D’Alembert kinetic lagrangian, circumventing in this way the
constraints of Derrick’s theorem [21]. Many general results concerning the properties
of these families of field theories and their associated solitons solutions can be obtained
without specifying the particular form of the lagrangian function. A partial study on
this subject was considered in [70]. Here we shall extended those results and perform a
broad analysis of this class of theories.

We shall first introduce the lagrangian of the models. We write down the field
equations and compute the energy-momentum tensor. Then we shall establish the nec-
essary conditions to be imposed on our models ir order to obtain physically admissible
theories supporting unique, static, weakly-stable, finite-energy, spherically symmetric
non-topological soliton solutions. Finally we shall consider the extension of these meth-
ods to generalized multiscalar models.

3.1 The models

We begin with lagrangian densities for scalar field potentials ¢(z), defined in a four
dimensional Minkowski space-time as

L= f(@ub-0"9). (3.1)

where f(X) is a given continuous and derivable function in the domain of definition (£2)
which is assumed to be open, connected and including the vacuum (X = 9,¢-0*¢ = 0).
For future purposes, we also require f(X') to be monotonically increasing (more precisely,
df /dX > 0,VYX # 0 € Q and df /dX > 0 for X = 0) and df /dX to be continuous for
X < 0(X € Q). In absence of a coupling to external sources, the associated field

29
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equations take the form of a local conservation law

8" = 0, (3.2)

where the conserved current J* is

S =f (X)0", (3-3)

with ].“ (X) =df/dX. In these models, the D’Alembert linear wave equation corresponds
to! f(X) = X/2. For the SSS solutions ¢(r), Eq.(3.2) has the first-integral

r’¢ f (—¢7%) = A, (3.4)
where ¢ = d¢/dr, and A is the integration constant. This is an algebraic equation
which allows, in principle, the determination of the field strength as a function of r and

A. The positivity of f (X) requires both A and ¢'(r) to be simultaneously either positive
or negative. We can then consider the positive-sign case only without loss of generality.
Strictly speaking Eq.(3.4) determines the field ¢'(r) only for 7 > 0. If we replace the
solutions of Eq.(3.4) in Eq.(3.2) we do not obtain zero, but a Dirac ¢ distribution of
weight 4mA. We can then identify this parameter with the central scalar charge source
of the (at rest) SSS solution, in analogy with the point-like charges in the Maxwell
theory. Alternatively, in some cases as, for instance, the non-linear electromagnetism of
Born-Infeld, this charge may be interpreted as a continuous charge density distribution in
space. For non-linear electromagnetic models the continuous interpretation of the charge
is rather natural, owing to the conservation of the electric charge as a consequence of
the field equations, but this is not so for the scalar models [124]. Nevertheless, following
the analogy with the electromagnetic case, we can define for the models (3.1) the total
scalar charge associated with a given static asymptotically vanishing field solution ¢(7)
as

i [ (9 [foove]) = & [ Feotea (3.5)

A7 Soo

which, owing to the field equation (3.2), vanishes for everywhere regular solutions. For

the SSS solutions of (3.4) we have f (X)ﬁ(qb) = AT% and the total charge equals A. We
can then define the spatial charge-density distribution as

o(r) = (1/47) f (0)V?9, (3.6)

!As in this linear case, plane waves of the form ¢ = ¢(k,, - z*), with k? = k,k* = 0, are solutions of
Eq.(3.2) but superpositions of such waves are not, in general.
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which gives for the total scalar charge of the SSS solutions

+ [ ar T ©F% = lin F 01760 = fim S0 (3.7)

i 7 (x)
Clearly, this interpretation is only possible if f (0) is finite, or equivalently, if the function
r2¢ (r) goes to a constant as r — oo (asymptotically coulombian fields). This function
must also vanish as r — 0. As we shall see at once, this latter condition is fulfilled
for all the models with finite-energy SSS solutions, but the former defines a sub-class
of those models (see case B-2 below in this chapter) to which the scalar version of the
Born-Infeld model belongs.

Once the form of f(X) is fixed, equation (3.4) gives the expression of the field
¢ (r) = ¢ (r,A) in implicit form and allows the determination of the potential ¢(r) (up to
an additive arbitrary constant) through a quadrature. We also note that Eq.(3.4) implies
that ¢ (r), if single-branched 2, is necessarily a monotonic function of r. Moreover,
the solution depends on r and A through the ratio r/ V/A. This is a straightforward
consequence of the invariance of the solutions of the field equations (3.2) under space-
time scale transformations. Indeed, if ¢(7t) is a solution of this equation, so is the
modified function

(7,1, N) = AN Lo(MF, At), (3.8)

where A is a positive constant. This is a symmetry of the solutions of the field equa-
tions without sources, but is not an invariance of the action [125] (note that this scale
transformation is not the same as that given by Derrick’s theorem, defined by Eq.(1.7)).

The canonical energy-momentum tensor associated to the lagrangian (3.1) is

T =2 F (X)0,60,6 — F(X) (3.9)

The trace of the energy-momentum tensor (3.9) reads

T =2 (X F(X) - f(X)) , (3.10)

which shows that the only traceless model of this class of theories is, precisely, D’ Alembert

model f(X) ~ X.

2In some cases Eq.(3.4) can lead to discontinuities or several branches for the function ¢ (). We
shall regard such cases as “unphysical” and rule them out from this analysis, considering only models
for which the fields of the SSS solutions are (for r > 0) continuous, single-branched functions defined
everywhere. We shall establish at the end of this chapter that the corresponding admissibility condition
for the lagrangian densities is the strict monotonicity of f(X).
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The energy density in the SSS case becomes

p=T%"=—f(—¢?), (3.11)

whereas the total energy is

e(A) = —4r /000 r2f(—¢2(r,A))dr = A3?e(A = 1), (3.12)

where the last equality is a consequence of the aforementioned scale invariance 3. Us-
ing the first-integral (3.4) and integrating by parts we can obtain the following useful
expression for the energy in this SSS case

= e - [+ Lot e

As we shall see, if the energy of SSS solutions is finite the second bracket in the r.h.s.
vanishes and this expression reduces to

B STA

(A) = 22 [6(o0, A) — 6(0,A)], (3.14)

which shows that the potential ¢(r) must be a bounded function of 7, defined up to an
arbitrary constant. Note also that Eq.(3.14) has the form of the potential energy of a
point-like scalar charge of value 2A placed at infinity in the soliton field.

There is another way round to obtain the expression (3.14). Indeed, by performing
the usual rescaling of Derrick’s theorem, namely Eq.(1.7), the energy rescales as

i !

A6 (1), A) = (6 (W), A) = —dm / 2P 2 (A, A))dr =
= —Ar /0 oorzf(—)\Qqﬁar)()\r,A))dr, (3.15)

and can be easily checked that the condition of extremum of the energy against these
rescalings (w Ir=1= 0) leads automatically to the relation (3.14) when the con-
dition of finiteness of the energy is assumed. Although Derrick’s theorem is only a
necessary condition for stability, this signals the presence of a connection between sta-

bility and finite-energy condition of the SSS solutions considered here. This connection
will be precisely established in chapter 5.

3This kind of relation is completely general; in fact, for a theory in D dimensions one would have a
scaling of energies given by €(A) = AP e(A=1).
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Going beyond the results of reference [70], we shall determine general conditions to be
imposed on the functions f(X) in order to obtain physically consistent field theories such
that the SSS solutions of the corresponding field equations be stable and the associated
energy (3.12) be finite (non-topological solitons). We first summarize some criteria of
physical consistency adopted for the purposes of the present analysis (defining what
we shall call “admissible” field theories) and obtain the associated restrictions on the
lagrangian densities. Next we will obtain the conditions for such admissible models to
support SSS soliton solutions.

3.2 Conditions on the energy functional

If any of these models are to be used for descriptions of quantum physical systems,
the possibility of their quantization becomes important. This implies supplementary
conditions to be satisfied by the lagrangian densities, as necessary for any quantum
extension. Thus, aside from the above mentioned continuity and derivability conditions,
we must require the function f(X) to be defined everywhere (2 = R), in order to allow
for the proper definition of the associated path integral. Here we shall call such models
class-1 field theories. These conditions exclude models such as the scalar version of the
Born-Infeld Electrodynamics [3]. In such cases it is always possible to generalize the
model, by continuing the lagrangian density function to the undefined regions through
some prescription which must preserve the classical dynamical content of the initial
model. Then, the quantum behaviour of the extended model would depend on this
prescription. But this procedure will necessarily enlarge the space of solutions of the
classical theory. As we shall show below, these extensions introduce new branches for
the SSS solutions which become spurious at the classical level. We shall exclude such
extended models from the present analysis since they are non-admissible according to
our physical criteria.

Alternatively, as previously discussed, we can consider these scalar models (and their
generalized versions proposed below) as effective classical lagrangians of more “funda-
mental” theories (see section 2.1), including integrated high-energy and quantum effects
through new non-linear couplings. In these cases we can relax the everywhere definite-
ness conditions of the admissible lagrangians and require their regularity only within a
restricted domain of definition (€ C ), which is assumed to be open, connected and
including the vacuum (0 € ). We shall call these models class-2 field theories. Us-
ing this criterion, models such as the Born-Infeld one become admissible field theories
belonging to this class. Although these models are essentially classical, quantum cor-
rections to their particle-like solutions can be obtained by quantizing the field of small
fluctuations around these ground states. Such fluctuations obey Euler-Lagrange linear
field equations of admissible lagrangian densities defined everywhere (see Ref. [76] and
chapter 5, Eqgs.(5.12) and (5.13)).
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Obviously, a second condition to be imposed for admissibility in all cases concerns the
positive definite character of the energy, which is required to hold in the entire domain of
definition (2) of the lagrangian density. The expression for the energy density in terms

of f(X) is

p=T% =2} (X) (f;j) FX) =2X F ) - F(0) 427 (X) (V). (310

For the D’Alembert lagrangian we have f(X) = X/2, and the energy density reduces to

p= [(?;f) (%) 2] , (3.17)

which is positive for any non-constant function ¢(t, ) and vanishes in vacuum. In order
to obtain a similar behaviour in the general case (3.16) (requiring also the energy density
to vanish in vacuum) we are lead to the necessary conditions

f() = 0 (3.18)
f(X) > 0 VX.
For minimal sufficient conditions on f(X) let us analyze separately the cases X < 0 and

X > 0. On the one hand for X < 0 the term (9;¢)*> may vanish and the positivity of
the energy density (3.16) requires

f(X)<0 ; VX <O. (3.19)

On the other hand, for X > 0 the term (V¢)? may vanish and the positivity of the
energy requires

) 22X 00 - 100 = x0 g [ (5) ] 200 o

This equation, together with the conditions f(0) = 0 and f (X) >0 (VX) lead to

4l (P29)) 2 o

or, equivalently, the function f\(r (and hence f(X) itself) must be a positive monoton-
ically increasing function of X for X > 0. Equation (3.21) with the boundary condition
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f(0) = 0 fix the behaviour of f(X) around X = 0 as

f(X —0%) ~ Xt (3.22)

with a > —1/2, and the energy density behaves there as *

p(X = 0%) > (14 20) X+, (3.23)

3.3 Conditions for finite-energy SSS solutions

The convergence of the integral of energy (3.12) for the SSS solutions is governed by
the behaviour of the integrand near the limits r — oo and r — 0. This imposes
supplementary conditions on the form of the function f(X) around the values of X (r) =
—¢'%(r) in these limits. Let us assume a power law expression for the field around these
regions ° (¢'(r) ~ 7% as r — 0o or as r ~ 0). From the first-integral (3.4) we obtain the
relation

df /dr = _21\@5—2(7“) ~ —2Aqri—?, (3.24)
r

and in the limits of integration f(r) behaves as

F) ~ gLyt 4 D, (3.25)
if g #2, or as
f(r) ~—=4AIn(r) + D, (3.26)

if ¢ = 2. The integration constants D in these expressions are easily related to the values
of X and f(X) on the limits of the integral of energy e. Around each of these limits this
integral takes the form

4For values of o in Egs.(3.22) and (3.23) which lie in the interval —1 < o < —1/2 the condition

f(0) = 0 is fulfilled, but f (X) diverges at X = 0 in such a way that the energy density becomes
necessarily negative in the neighbourhood of X = 0. For aw < —1, f(X) diverges in vacuum. The limit
case « = —1/2 is singular.

5 Although this assumption excludes some transcendent behaviours such as the asymptotic exponen-
tial damping, our conclusions will remain valid for models exhibiting these “short-ranged” SSS solutions.
In fact such models are included in the case B-3 below. Note that damped oscillatory behaviour at
infinity is excluded by the monotonicity of the SSS field solutions.
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2A
—47r/d7" [q _q2rq + Drz] : (3.27)

for ¢ # 2 and

—47T/d’l" [4Ar* In(r) + Dr?] (3.28)

for ¢ = 2. Let us analyze separately the convergence of the energy integral around r ~ 0
(case A) and in the asymptotic limit r — oo (case B).

3.3.1 Convergence at the origin

In case A the convergence of (3.27) requires ¢ > —1 and we can distinguish three sub-
cases:

e A-1) If —1 < ¢ < 0 the field ¢'(r) diverges at » — 0 but the integral of energy
converges there and the potential ¢(r) is finite at the origin. Then, as r approaches zero,

X — —oo and f(X) and ].f (X) diverge as

a+

FX) ~ —(=X)5, F(X) ~ (=X)% (3.29)

(see figure 3.1). Such solutions can be stable and finite-energy SSS fields (depending
on their large-r behaviour) and, in this sense, they might be considered as genuine
non-topological solitons.

e A-2) If ¢ = 0 the field ¢ (r) goes to a constant value at the origin (¢'(0) = C,
which corresponds to X + C? = 0) and can be written around this point as

¢ (r) ~C—0r°, (3.30)

where C,6 and o are positive constants . Then f (X) diverges there as

F(X)~(X+CY) 5 (3.31)
Consequently, for o # 2, f(X) behaves around X = —C? as

+A, (3.32)

where A is a constant. For ¢ = 2 this behaviour becomes

SNote that the scalar version of the Born-Infeld model is an example which belongs to this case,
corresponding to o = 4.
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Figure 3.1: Different possible behaviours of the admissible lagrangians supporting finite-energy SSS
solutions. Note the existence of two A-2 cases, both ending at a finite value X = —C? (corresponding
to the maximum value of the field strength) but with one of them ending at a finite value of f(X) there
while the other one exhibits a vertical asymptote. A-1 branch is unbounded in X < 0.

f(X) ~In(X + C?). (3.33)

We see that when o < 2 these lagrangians diverge at X = —C? (figure 3.1). However
they can be accepted as admissible class-2 field theories if this point is located on the
frontier of the (open) domain of definition where the lagrangian density must be regular
(see the third example of chapter 6). Consequently the set X < —C? must be excluded
from the domain of definition (£2) in this case. This requires ¢ to be an irrational number
or four times the irreducible ratio between any natural and an odd natural. When
o > 2 these values also exclude the same region, leading again to admissible class-2 field

theories. However, in this case the lagrangians are finite in X = —C? (even if f (X)
diverges there). Then, for rational values of o > 2 which are irreducible ratios of an odd
natural and any natural 7, the lagrangians are defined and continuous for any X around
X = —(C?, exhibiting a vertical-slope inflexion in this point. If suitably extended to all
X, they lead to class-1 field theories which satisfy the everywhere positive definiteness

condition of the energy. Nevertheless they violate the requirement of continuity of f
(X) for X < 0 € Q and this leads to associated point-like solutions exhibiting several
branches. Indeed, as we shall see at once, this requirement for admissibility is introduced

TOther values of o, for which the lagrangian is also defined for X < —C?, lead to negative energy
densities there and consequently must be excluded.
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because it endorses the single-branched character of the SSS solutions. Consequently, in
this case A-2 all admissible lagrangians must remain undefined for X < —C? and thus
belong to class-2 field theories. This implies (as happens in the Born-Infeld model [3])
the existence of a maximum value of the field strength (¢ (r) < C).

As a function of r, the energy density behaves around the center as

r2f(r) ~r7 — Ar?, (3.34)
for 0 # 2 and as

r2f(r) ~ 2r¥In(r) + r* In(2CH), (3.35)
for o = 2. As expected, the energy integral converges there in both cases.

e A-3) The case ¢ > 0 must be discarded. Indeed, in this case } (X) behaves as

f(X)~ X5 (3.36)
around X = 0. Consequently, f(X) is singular in vacuum for 0 < ¢ < 2. For ¢ > 2 the
energy density for X — 07 behaves as

2 4=
pX) ~ ==X (3.37)
q
and becomes negative around the vacuum (see also Eqs.(3.22), (3.23) and the footnote

there).

3.3.2 Convergence at infinity

In case B the convergence of (3.27) in the » — oo limit requires ¢ < —1 (in this case
¢ (r — oo) = 0 and the integration constant D in (3.27) vanishes). Then the behaviour
of f(X) around X = 0 must be 8

FX) ~ X2 (3.38)

Now the existence of the lagrangian on both sides around X = 0 becomes crucial for the
consistency of the theory and this imposes supplementary restrictions on the possible
values of the parameter p. Indeed, the exponent in Eq.(3.38) must be the ratio of two

8For the sake of clarity we use here the parameter p = —gq in the exponent, in terms of which
¢(r — 00) ~ & with p > 1.

D
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odd naturals ? and this restricts the possible values of p to a sub-class of the rational

numbers. Let us analyze separately three possibilities:

e B-1) Consider first the case 1 < p < 2. We define P and @ as two positive odd
natural numbers in such a way that P < @ and the ratio ¥ = P/@ be irreducible. Then
the admissible values of the exponent in (3.38) are given by

p+2 3
= 3.39
2p 2+Y (3:39)
and the corresponding admissible values of p can be written as
4+ 2%
= . 3.40
PE Ty (3.40)

Now f (0) = 0 and the slope of the lagrangian vanishes in vacuum (see figure 3.1).

e B-2) For p = 2 the lagrangian behaves around X = 0 as the D’Alembert lagrangian

f(X —0%) ~ X, (3.41)
and the soliton field becomes asymptotically Coulombian (see figure 3.1).

e B-3) For p > 2 the behaviour of the lagrangian is also given by Eq.(3.38) but now
the admissible values of the exponent are constrained by

p+2 1
2 14+

where ¥ = P/(Q) must be the irreducible ratio between an even natural P and an odd
natural () such that () > P. The corresponding admissible values of p are

(3.42)

14+ X
=2——. 3.43
P=27 (3.43)
As easily seen, the slope of the lagrangian diverges at X = 0 in this case (see figure 3.1),
but the energy density remains positive definite there.

We conclude that the set of admissible models exhibiting finite-energy SSS solutions
can be classified into six families which are the combinations of the cases A-1 or A-2,
governing the central field behaviour and the cases B-1, B-2 or B-3, determining the
asymptotic field behaviour. Moreover, any given scalar, monotonically decreasing, SSS
function ¢'(r), which satisfies boundary conditions of A-type at the center and of B-type
asymptotically, is a finite-energy SSS solution of a particular lagrangian model belonging

91f this exponent is the irreducible ratio between an even and an odd natural numbers the lagrangian
is well defined on both sides of X = 0, but the energy density becomes negative for X < 0.
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to one of these families. The explicit form of the corresponding lagrangian density can
be found by integrating Eq.(3.4) with respect to the variable X = —¢%(r) with the
corresponding boundary conditions (see section 5.2).

3.4 Conditions for stability

For the sake of completeness of this chapter, we describe here the main steps in the
analysis of the linear stability of the scalar SSS soliton solutions (the detailed calculations
are given in chapter 5). The linear stability of these solutions requires their energy
(3.12) to be a local minimum against charge-preserving perturbations. We consider
finite-energy SSS solutions ¢(r) and small static perturbations d¢(7), finite and regular
everywhere and vanishing (as well as their radial derivatives) as r — oo, in such a way
that the scalar charge of the perturbed fields remains unchanged at the first order in
the perturbations. For the static solutions of the field equations (3.2) the first variation
of the energy (3.16) vanishes, while the second variation is positive if and only if the
condition 1°

FX)+2X F(X)>0, (3.44)

is satisfied in all the range of values of X covered by the solution (X = —¢2(r),0 < r <
00). As we shall see this requirement is always fulfilled by the finite-energy SSS solutions
of the admissible models defined in this chapter, proving their linear stability. A detailed
spectral analysis of the small oscillations around these SSS finite-energy solutions has
also been performed. It leads, for admissible models, to discrete spectra of eigenvalues
and normalizable orthogonal eigenfunctions in Hilbert spaces, whose scalar products
are built as three-dimensional integrals of their products with the functions f(X(r)) as
kernels. In their temporal evolution the perturbations to the soliton solutions remain
bounded in this norm, confirming the stability (see chapter 5).

3.5 Conditions for uniqueness

We return now to Eq.(3.4), which defines the SSS field solutions ¢ (r), and analyze the
conditions under which they are single-branched. As already mentioned, owing to the

positivity of f (X) both A and ¢ () must be simultancously either positive or negative
and then we can analyze only the case ¢ (r) > 0 without loss of generality. Let us write
(3.4) under the form

10See Eq. (5.7) and the footnote there.
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Yoo (0) y=¢
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Figure 3.2: Characterization in the y-z(y) = y f (—y?) plane of the admissible models supporting
finite-energy SSS solutions. Observe that all curves start at y = 0,2 =0 (y = ¢/ (r — o0) = 0, cases
B-1, B-2 and B-3) and grow monotonically without limit. This guarantees the existence of a single
cutting point with the z = constant lines and thus a single-valued solution (compare to figure 3.1)

=y )= (3.45)

r2
where we have introduced the variable y = ¢ (1) > 0. The field strength function is given
by the values of y obtained by cutting the curve z(y) with horizontal lines corresponding
to the different values of r. Then, for the field ¢ (r) to be defined in all space, z must
range from 0 to oo and the uniqueness of the solution requires a single cut point on
every z = constant line. This restricts z(y) to be a continuous monotonic function.
As a consequence, the requirements of continuity (for X < 0) and strict positivity (for

any X # 0) imposed on f (X) at the beginning of this chapter, when establishing the
admissibility conditions, are mandatory for the proper definition of the SSS solutions.
Indeed, a glance at the form of the function z(y) reveals that the existence of a jump

in the function }’ (X) at a finite value X < 0 would lead to SSS solutions which are

double-branched or undefined in some range of values of r. Moreover, if f (X) vanishes
for a value Xy < 0 (horizontal-slope inflexion point for f(X)), then z(y) vanishes at
y = (—Xo)"? reaching a minimum there and the SSS solutions become necessarily

multiple-valued (the vanishing of f (X) for a positive value Xy > 0 is discarded by the
energy-positivity condition (3.21)).
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For soliton solutions the finiteness of the energy requires the origin to be a point of
the curve z(y) (see figure 3.2) and the large-z behaviour is determined by the behaviour
of the field at the center of the soliton. Then, in the cases where the field strength
diverges as r — 0 (case A-1 above) the unicity of the solution requires the curve z(y) to
start at the origin and grow monotonically without limit as y — oo. When the field is
finite at r = 0 (case A-2) the curve z(y) must increase monotonically from the origin and

diverge at 3, = ¢ (0), showing a vertical asymptote there. In this case f (—y?) diverges
at y = yo and the unicity condition requires the lagrangian function to remain undefined
for y > v, for the function z(y) to exhibit an unique growing branch. Thus in all A-2
cases the set X < —y2 must be excluded from the domain of definition (2) and then,
the associated models must be necessarily class-2 field theories '!. The monotonicity
condition for the unique branch of z(y) in the admissible models with finite-energy
solutions takes the form

dz . [

—=f(~y") 2" f (=y*) 20, (3.46)
for any y > 0. This requirement coincides with the condition (3.44) for stability which, as
already mentioned, is fulfilled by all these admissible models. To summarize, we conclude

that all finite-energy SSS solutions of admissible scalar field theories considered in this
chapter are single-branched, stable and defined everywhere.

To close this chapter let us give an additional expression for the energy of the SSS
solutions in terms of the function z(y) which, as we shall see in the examples of chapter
6, will be useful in the explicit calculation of the soliton energy. This expression can be
obtained by taking into account Egs.(3.4), (3.13) and (3.45) (or rewriting Eq.(?7?) for
the variable z(y)) and reads

y(r—o0)
€ — 4_7TA3/2 f(=y%)
3 2(y)*?

y(r—o0)
9 / _dy \ (3.47)
y(r=0) 2(y)

y(r=0)
As can be seen from the preceding analysis, the first term in this formula vanishes for
admissible models with soliton solutions. Conversely, the conditions to be imposed on
the lagrangian densities of admissible models for supporting finite-energy SSS solutions
could have been directly obtained from the requirement of cancellation of the first term
in (3.47). Once the expression of the lagrangian density is known, the second term gives
the soliton energy directly through a quadrature.

1Tt can be shown from the analysis of the possible continuations of z(y) for y > o that the new
branches of SSS field solutions are pathological (non-defined everywhere, unstable, or both).
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3.6 The multicomponent scalar field

We shall extend the results of previous sections to the case of a set of scalar fields
¢i(z)(i = 1 — N). In many cases the covariant lagrangians including N scalar fields
and their first-order derivatives are constrained by conditions which allow to implement
some internal symmetries. Such conditions manifest themselves in the structure of the
manifold where the field takes its values. A well-known example is the non-linear sigma
model where this manifold is a Riemann space implementing the chiral SU(2) x SU(2)
symmetry [76, 46]. Here we shall restrict ourselves to the case where the field manifold is
the N-dimensional Euclidean space and the SO(N) invariant lagrangian density depends
only on derivative terms

L(¢s, 0uti) = (Zma @), (3.48)

where, as in the one-component case, f( ) is a given continuous, deriable (C' for
X < 0) and monotonically increasing ( > 0,VX #0; ddf( > 0, X = 0) function defined
in a open and connected domain (2 C 8?) which includes the vacuum ((X = 0) € Q).
Besides the fact that these models are the natural generalizations of the scalar field
theories studied so far, there is another motivation for their analysis. Indeed, as we shall
see in the following chapters, a class of soliton solutions arising in generalized gauge field
theories of some compact semisimple Lie group of dimension N reduce to multiscalar

(N components) solitons of some of the models (3.1).

The field equations associated to the lagrangians (3.1) take the form of N local
conservation laws

)

8" =0, (3.49)

where the conserved currents J!* are

T =F (X)9"6,, (3.50)

with X = Zf\il 0 @i - 0%¢@;. The canonical energy-momentum tensor is

N
X)) 0,0:0,6i — F(X )0, (3.51)
i=1

and the corresponding energy density

o) = i(d@) ~ X, (3.52)

=1
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is positive definite under the same conditions as for the function f(X) defined in the
one-component case.

For the SSS solutions ¢;(r), equations (3.49) have N first-integral field equations of
the form

N
r’¢; f (— > ¢;-2> = A;, (3.53)
j=1

where ¢, = d¢;/dr and A; are the integration constants. Now the signs of every compo-
nent of the scalar field and of the corresponding integration constant are the same, but
may differ for different components. In order to solve the system (3.53) let us introduce
the functions X;(r) = —¢;2(r), in such a way that X (r) = Y1, X,(r). By squaring and
adding Eqgs.(3.53) we obtain

N
X f2 (X) ==Y A7, (3.54)
=1

or, equivalently,

V=X f(X) = A, (3.55)

where

(3.56)

Equation (3.55) has the same form as the first-integral of the one-component scalar case
(3.4). Consequently, if the function f(X) is the same in both cases, we can associate
to any SSS solution of the one-component case, of the form ¢ (r, A), a set of sequences
of N functions which are SSS solutions of the multicomponent scalar equations. Such
functions take the form

/ A;
gbi(’l“, AJ) = qu (’I“, A)? (357)

and, owing to Eq.(3.56), there is a one-to-one correspondence between such sequences
and the points of the sphere of radius A in the N-dimensional Euclidean space (R%).
Obviously, this is a straightforward consequence of the invariance of the lagrangian
(3.48) under rotations in the internal space. The constants A; can now be identified
as the “source point-charges” associated to the different components of the SSS field,
namely
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:47T

and A as the mean-square scalar charge. The field potentials obtained by integration of
(3.57) read

A= [ (} (X)%i) | (3.58)

A
¢Z'(’f’, A]) = K¢(7’, A) + Ai7 (359)

where A; are integration constants.

If we consider now the energy associated to these SSS solutions we find from (3.52)

—. /OOO v (Z Xi(r)> dr — —dr /OOO v2f (X(r)) dr. (3.60)

This is the energy of the one-component SSS solution corresponding to the integration
constant (3.56). Thus the set of SSS solutions of the multicomponent scalar field asso-
ciated to the sphere of radius A in R is degenerate in energy. Moreover, the search of
conditions to be imposed on f(X) for the existence of finite-energy SSS solutions (as
well as the admissibility constraints) in the multicomponent case reduces to the analysis
performed for the one-component case.

Concerning the conditions for stability of the solutions (3.59), the analysis of the
one-component case can be straightforwardly generalized to the present situation (see
chapter 5 for details). The final conclusion is that the multicomponent soliton solutions
of admissible models are also linearly stable against charge-preserving perturbations.
This charge preservation prevents a soliton from evolving spontaneously towards another
equal-energy soliton state in the sphere of radius A.
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Chapter 4

Abelian and non-abelian gauge
solitons

In this chapter we shall extend the analysis developed in the former chapter to generalized
gauge field theories of compact semi-simple Lie groups. In this case the dependence of
the lagrangian on the field invariants is a natural consequence of the gauge principle.

To start with, we study the simpler case of generalized electromagnetic (U(1)-
invariant) fields. After defining the models we impose conditions for admissibility in
this case and solve the field equations for electrostatic finite-energy central field solu-
tions. We then establish a correspondence between families of admissible generalized
gauge-invariant theories supporting electrostatic, finite-energy solutions and a family of
admissible (multi-) scalar field theories supporting similar static, finite-energy solutions.
We discuss briefly the new conditions for stability to be imposed on the lagrangian den-
sities, leaving the full analysis for chapter 5. We then proceed further to the case of
non-abelian gauge fields, following a similar procedure as in the abelian case.

4.1 Generalized abelian field theories

We define lagrangian densities for generalized electromagnetic fields defined as arbitrary
functions of the two quadratic field invariants, built from the Maxwell tensor and its
dual. Following the conventions of Ref.[126], these tensors are defined as

F, = 0,A, —-0A,
1

F:y = EguuozﬁFaﬂ7 (41)

47
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where €923 = —g(193 = 1. The electric and magnetic fields are defined as E* = —F%

and H' = —1e"" [y, respectively. We introduce the two standard first-order gauge field
invariants, X and Y, defined as

1 - .,
X = —-F,F" =FE>—H?
2
1 — —
= —5 Bl =2E-H. (4.2)

We define the general form of the lagrangian density of our models as

L =¢(X,Y), (4.3)

where ¢ is a given continuous and derivable function on its domain of definition (Q2) of
the X —Y plane (%?). As in the scalar case we assume (2 to be open and connected and
including the vacuum ((X = 0,Y = 0) € 2). As a minimal extension of the assumptions
of chapter 3 concerning the regularity properties of the scalar lagrangian functions, which
is necessary for future purposes (see Eq.(4.21) below), we shall assume ¢(X,Y) to be of
class C' on the line (X > 0,Y = 0)(Q and dp/0X to be strictly positive there. By
generalizing the definitions of chapter 3 we shall call “class-1 field theories” the models
defined an regular everywhere (Q = R?) and “class-2 field theories” those with Q C R2.
We also require ¢(X,Y) to be symmetric in the second argument, in order to implement
parity invariance

P(X,Y) = p(X,-Y). (4.4)

This implies that the odd partial derivatives of p(X,Y’) with respect to Y must vanish
on Y = 0. In our notation the Maxwell lagrangian density corresponds to ¢(X,Y) = =

~ 8r
while the Born-Infeld electrodynamics is given by the lagrangian density
1=y /1— X — 2y
Lgr = X, Y) = 4.5
B1 = ¢p1(X,Y) A2 ) (4.5)

where %L is the maximum field strength, attained at the center of the solution. The

lagrangian (4.5) reduces to the Maxwell one in the limit g — 0.

4.1.1 Conditions on the energy functional

The symmetric (gauge-invariant) energy-momentum tensor obtained from the lagrangian
density (4.3) takes the form
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dp dp dp dp
T =2 =—F, "+ —F, | — y =2—F, F% Y—— — v, (4.
124 (aX pas vy + aY 210 24 ) SOT/M aX M v + aY ¥ n# ( 6)

and the associated energy density is

s s 6@ = agp_, = B
p=Thy = 250 +250E H - o(X)Y) =
_ dp dp  0p =y
= 2X o0 —e(XY) + Yo 2o S A (4.7)

We assume the symmetric energy-momentum tensor (4.6) to give the correct space-
time energy density distribution. Let us analyze the conditions for the positivity of the
energy density of any field configuration. The inspection of Eq.(4.7), together with the
requirement of vanishing of the vacuum energy, lead to the set of necessary conditions

0
0(0,0)=0 ; p(X,0)<0V¥(X<0,Y=0eQ) ; a—)"? SOVX,Y)eQ, (48)
to be satisfied by the lagrangian densities. However, it is possible to obtain a minimal
set of necessary and sufficient conditions of admissibility for a satisfactory energetic
behaviour. Solving Egs.(4.1) for the fields we obtain

1 Y?
E* = —[/X? X|>
2 ( + cos?(v) * > -

1 Y?2
H* = —|/Xx? -X|>
2 ( * cos?(0) ) -

where 1 is the angle between E and H. Note that the equality in the above expression
is reached for the special case of parallel ' and H vectors. From these expressions the
energy density can be written as

DO | —

(VX777 + X)

(VXZ+77- X)), (4.9)

N | —

s Op ) V2 dp
P = ax( X * o) +X> Y 5 - e(X,Y). (4.10)

Consequently, the requirement of the positive definite character of the energy leads to
the minimal necessary and sufficient condition
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9
<\/X2 TY? 4 X) =+ Ya;i P(X,Y) >0, (4.11)

to be satisfied in the entire domain of definition (£2). Generalizing the criteria of chapter
3, we only regard as “admissible” those models whose lagrangian densities satisfy the
condition (4.11), aside from the vanishing of the vacuum energy and the regularity and
parity-invariance conditions stated above !. Consequently the admissible lagrangians
must be solutions of the first-order linear inhomogeneous partial differential equation

0 0
(x/XQ TY? oy X) af( + Yaéi P(X,Y) = U(X,Y), (4.12)
where W(X,Y) is any function being positive definite in 2 and vanishing in vacuum
(¥(0,0) = 0). Such solutions must also satisfy the regularity and parity-invariance

requirements, as boundary conditions.

Let us also consider the trace of the symmetric energy-momentum tensor

T = 4{6—"0@ g 1225 g - (X,Y)]:

0X oY
B Dy Oy
— 4 [XaX +Yay (X, Y)] . (4.13)

From the last expression we see that the sub-class of models with traceless symmet-
ric energy-momentum tensors is given by the lagrangian densities ¢(X,Y) which are
solutions of the first-order linear homogeneous partial differential equation

x2%  y0

e TV - e(X.Y) =0 (4.14)

The general solution of this equation is the family of all conic surfaces in the
(X,Y, ¢)-space having the origin as a vertex. Clearly the set of planes of the form
¢ =aX +bY (a and b being constants) are particular solutions of this equation (which
violate parity invariance if b # 0). The simple case b = 0 with a = = corresponds to

8m
the Maxwell theory.

4.1.2 Field equations

The field equations are obtained by extremizing the action corresponding to the la-
grangian (4.3) with respect to A,,, which yields

LObviously, excepting the vanishing of the vacuum energy, the remaining conditions in (4.8) are
consequences of (4.11).
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dp w oy O o\ _
a(aXF + o F =0, (4.15)

to which we add the Bianchi identities

0, =0, (4.16)
In terms of the fields these equations (4.15) and (4.16) read

v - (8¢E+8—*‘7H) - 0

0X Y
0 (0p = 0Op = - Op = 0p =\
Q(aXEjLWH) + VX(a—H vE)=0. (4.17)
and
. OH
F = 2=
V X oy
V-H = 0. (4.18)

If we define now a tensor P* = a%‘%F H 4 %@F * and introduce electric displacement
D! = —PY = g—}?Ei + g—gﬁH" and magnetic intensity B' = —%6ijk}7jk = g—)“;Hi — g—;ﬁEi
vectors, it is immediately seen that the first group of field equations (4.17) take the form

VxB-="—" =0, (4.19)

which takes exactly the same form as in the usual Maxwell theory but with the “basm

electric and magnetic fields E H being replaced by their generalized versions D B2
Obviously in Maxwell theory D = E and B = H and we recover the usual Maxvvell field
equations. As we shall see below (Eq.(4.24)) the fact that the Dirac-delta singularities
at the center of the soliton be related to the vector D = 2er rather than E is a key
difference between Maxwell and generalized electrodynamlc theories supporting soliton
solutions, leading in the latter case to an integrable behaviour of the corresponding E

?Note that we have reversed the notation with respect to the more conventional one found in the
literature, where the B vector is taken as the basic magnetic field and H as the generalized one.
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field 3.

For electrostatic fields we have Y = 0 and in the ESS case these equations can be
written in terms of the electrostatic potential A%(r) (A =0, E(r) = =V A%(r)) in such a
way that the first group of equations in (4.17) leads to the first-integral 4

,dA° D
——=(X,Y =0) = 4.2

440\
Tdr
é(r,A) = A%r,q = A) this equation coincides with the first-integral (3.4) for the SSS

solutions of a scalar field model with a lagrangian density defined by

where now X = and ¢ is an integration constant. Using the identification

Lscalar = f(au¢ : 8”@5) = f(X) = _@(_X7 Y = 0)7 (421)

which leads to
Fx) =2 Cxy=o 4.22
F 0 =22 ) (122

Conversely we can associate to each scalar model defined by a lagrangian density f(X),
a family of electromagnetic field models defined by lagrangian densities p(X,Y") satisfy-
ing Eq.(4.21) as well as the admissibility (4.11) and stability constraints (see Eq.(4.32)
below). The ESS field solutions of all electromagnetic generalizations (|E(7_‘: q)|) have
the same form, as functions of r, as the SSS field solutions (¢'(r,A)) of the original
scalar model, ¢ and A being the integration constants, which should be identified as the
electric and scalar point-like charges associated to the solution, respectively. Indeed, in
the generalized electromagnetic case the definition of the electric charge associated to a
given field is

1 Op =  Op =

— E+ZZH

ir ax"” oy )
which now is conserved as a consequence of the field equations. Substituting in this
equation the ESS field coming from the solution of (4.20) we obtain ¢ as the value of its
total electric charge

P < (4.23)

iﬁ [g)iE] = 64(7). (4.24)

3Note that the field E can also diverge at the center of the soliton (case A-1 of chapter 3), but the
divergences are now ameliorated enough for the total energy to be finite.

4The remaining three equations in (4.17) are identically satisfied for arbitrary electrostatic fields,
owing to Eq.(4.4). On the other hand, the set of equations (4.18) are trivially satisfied by the ESS
solutions.
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In terms of the D vector the charge (4.23) takes the form

1 -
q=-— [ &rV-D. (4.25)

As pointed out in Ref.[3] for the Born-Infeld model this charge can be interpreted as a
source point-like charge at the center of the ESS solution or, alternatively, as a continuous
charge-density distribution associated with the field and given by

1 Odp

470X
This interpretation, as already discussed for scalar models, requires the function r2E(r)
to vanish at the origin (this condition is always fulfilled for the finite-energy ESS solu-
tions) and the field E(r) to be asymptotically coulombian (B-2 case models).

(X =0,Y =0)V-E. (4.26)

4.1.3 Energy

In calculating the total energy of these electrostatic central fields from the energy density
(4.7) we are lead to

0o 8@0 N .,
o 2 _ 2 _ 2 B
e(q) = 87r/0 r X [X E*(r,q),Y 0] E=*(r,q)dr
- 47r/ riy [X = E%(r,q),Y = O] dr, (4.27)
0

(the index e stands for electric field). The energy associated with the corresponding SSS
scalar field solutions, obtained from Egs.(3.12) and (4.21) reads

es(A) = 4m /OOO rp [EQ(T, A), 0] dr, (4.28)

(the index s stands for scalar field). If the total energy (4.28) associated to the scalar
field is finite, so is €.(q). Indeed, using Eq.(4.20) this energy becomes

ee(q) = 8mq [A°(00, q) — A%(0,9)] — s(a), (4.29)
which, owing to (3.14), is related with the scalar soliton energy through

eer(q) = 2€54(q), (4.30)

and must be also finite. Thus the energy of a ESS solution is twofold the energy of the
corresponding SSS soliton when the integration constants take the same value (A = ¢q).
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Equivalently, Eq.(3.12), which gives the scaling of energies, leads to the following relation
between the integration constants (the electric (¢) and the scalar (A) charges) of an
electrostatic soliton and the associated scalar soliton of equal-energy

g = (2. (4.31)

We then conclude that the ESS solutions for the families of electromagnetic models
which generalize (through Eq.(4.21)) the different classes of scalar models with soliton
solutions, have the same functional forms as the corresponding SSS scalar solutions
and are also of finite-energy. Moreover, the classification of the admissible models with
soliton solutions in the scalar case according to the central and asymptotic behaviours of
the fields, immediately induces, through Eq.(4.21), a similar classification of the finite-
energy ESS solutions in the electromagnetic case.

Let us point out an immediate consequence of this analysis (which is a corollary
of the non-existence theorems established in Refs. [46, 47]): there are not ESS soliton
solutions for admissible generalized electromagnetic field theories with traceless energy-
momentum tensor. Indeed, as mentioned above the lagrangian densities of such theories
(see Eq.(4.13)) are given by conic surfaces in the (X, Y, ¢) space and the associated scalar
field lagrangian densities f(X) = —p(—X,Y = 0) are straight lines in the (X, f) plane
for X < 0. Consequently the associated SSS solutions are coulombian in form as well
as energy-divergent, and so are the ESS solutions of these generalized electromagnetic
models.

4.1.4 Stability

Although finite-energy SSS solutions of admissible scalar models are always linearly
stable against charge-preserving perturbations, this is not so for the finite-energy ESS
solutions of admissible generalized electromagnetic theories. Indeed, the analysis of the
linear stability of the electrostatic solitons leads to a generalization of the criteria ob-
tained in the scalar case (see chapter 5 for details). As a result of this analysis, the
electrostatic finite-energy central field solutions of admissible generalized electromag-
netic field models, with their lagrangian densities (X, Y") satisfying the supplementary
condition

Dy PP
S 2X 2 >0, (4.32)

in the entire domain of existence of the ESS solutions in the plane (X,Y = 0), can
be shown to be local minima of the energy functional against small charge-preserving
perturbations. Consequently, the admissibility and finite-energy conditions of the ESS
solutions, aside from Eq.(4.32), are necessary and sufficient conditions for linear static
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stability. Moreover, the linear analysis of the dynamics of the small perturbations of the
soliton solutions performed for the scalar models can be generalized to the associated
families of electromagnetic models which satisfy (4.32) (see chapter 5).

Finally, the conditions for univoque and everywhere defined ESS solutions are straight-
forwardly deduced from those of the scalar case and Eq.(4.21).

4.2 Generalized non-abelian field theories

The results obtained for generalized electromagnetic fields can be extended to non-
abelian generalized gauge field theories of compact semi-simple Lie groups of dimension
N. Let then G be a gauge group with generators T,,a = 1... N, satisfying the Lie
algebra [T, Ty] = iCupeT.. As usual, in this case the tensor field strength components
in the algebra and their duals are defined from the gauge fields A,, and the structure
constants Cy,. as

Fauu = 8,uAaV - 8VAau -9 Z CabcAbuAcu
be

1
Er., =

apy 5 E}U/Oéﬁ

Fof (4.33)

whose components define the fields Ea, H, in the usual form, i.e.

E, = — _ VA — Clpe Ay A°
ot \Y a gzbc: beApA,

5 _ oo .9 . e
H, = VanJré;CabcA x A°. (4.34)

In order to introduce the lagrangian densities governing the generalized dynamics of
these fields we must define pertinent field invariants. However there is now an ambiguity
in the calculation of the traces over the group indices, leading to different possibilities
in the definition of these invariants (see section 2.3.2). Although at this regard different
prescriptions have been introduced, mainly in the context of string theory, where Bl-like
actions arise as a low-energy effective field limit [30, 31, 32, 33, 34, 116, 123, 127, 128,
129], here we shall restrict our analysis to the case of actions built from the two simplest
first-order field invariants, defined from the ordinary prescription for the calculation of
the traces as
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X = -2 Z Fop FI) = Z (£2 - a2)
Yy = —- Z oo F1) = 22 (E | ) (4.35)

where 1 < a < N. The generalized lagrangian density is now assumed to be a given
function ¢(X,Y’) which (again for parity invariance) must be symmetric in the second
argument (o(X,Y) = ¢(X,—Y)) and satisfy the same admissibility constraints of defi-
nition, continuity and derivability (as well as the distinction between class-1 and class-2
field theories) as in the electromagnetic case.

The associated field equations read now

Z Doy [890 o4 g}f Fv| =, (4.36)

where Dy, = 00c0, — 9 CancApy 15 the gauge-covariant derivative. In terms of the
fields these equations reads

V.5 4 g3 O B =0
be

J = a = na b e Ab e
— D"+ VxB +gZCabc<AOD + A ><B> — 0, (4.37)

where we have introduced the vectors

Be - (WEa &PHa)

0X oY
ha 890 rra 890 a
B - (a—XH 2F ) , (4.38)

This defines a transformation between the solutions of a basic gauge field theory and a
generalized one, generated by the lagrangian function ¢(X,Y), through the equations

02 _ g
dEe
0 B}
Y = 9B (4.39)

OHea



o7 Chapter 4. Abelian and non-abelian gauge solitons

where the fields E“, He obey to the field equations of the basic theory while ﬁa, B are
solutions of the generalized theory.

The symmetric energy-momentum tensor is

0P 1o | 09 e
— 22 Fope < XFW WFQV) — DN (4.40)

and the energy density takes the form

Pt =15, = Z E? + 2 Z E,-H,— o(X,Y). (4.41)

The admissibility conditions to be imposed on the lagrangian density, for the energy
functional to be positive definite and vanishing in vacuum, take the same form as in the
electromagnetic case (see Eqgs.(4.8) and (4.11)). Also the trace of the energy-momentum
tensor has the same expression (see the last member of Eq.(4.13)), and vanishes under
the same conditions (4.14). The subclass of models with non-vanishing trace energy-
momentum tensor (those which violate condition (4.14)) breaks the scale invariance and
thus circumvents the non-existence theorems [46, 47, 48, 49] allowing for particle-like
solutions (see section 2.3.1).

4.2.1 ESS solutions

Let us consider the ESS solutions of these models. We consider fields of the form

E(7) = =V (A(r)) = A2(r)- ;  H.=0, (4.42)

where the functions A%(r) are the time-like components of the gauge potential in the
Lorentz gauge (A, = 0) and A = %. When replaced in the field equations (4.36) we
are lead to

<3y

= (o= _ o (9Pe ) e (9 T\ _
9-(25) - v (Lva0) -5 (ZarmT) -0
&pz 0 = a‘P 0 = 40
) CacA)()E, = =223 CacAp(r)VANr) = (4.43)
0X £ 0X £
Oy d

where X =) Eg The first group of equations has a set of first-integrals of the form
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dp
299 400,y
POEAY) = Qu (141

where the (), are integration constants which will be identified below as “source color
charges”. With the identification ¢,(r) = A%(r) and A, = Q,, these equations coin-
cide with the field equations (3.11) for a multicomponent SSS scalar field theory whose
lagrangian density is given by

L= f (Z aﬂ¢a : 8N¢a> = f(X) = _@(_X> Y = 0) (445)
Thus the solutions of equations (4.44) are obtained from Eq.(3.57) as
Bur Q)| = A2 Q) = G4 .@) 5 Ha=0, (4.46)

where

is the mean-square color charge and ¢ (r,Q) is the SSS solution of the associated one-
component scalar model defined by a lagrangian density of the form (4.45). These
equations can be integrated once, leading to

AY(r,Qp) = %szﬁ(n Q) + Xa (4.48)

where y, are integration constants. These functions must also satisfy the second set of
equations (4.43). Owing to the antisymmetry of the structure constants these equations
lead to the supplementary restriction

Xa = %Xa (449)
and the final solution of (4.43) is
A Qu) = G 00Q) + 0. (4.50)

where Yy is an arbitrary constant, being now the same for all components of the potential.
In terms of the fields the final solution is still given by Eq.(4.46). The integration
constants (), in this solution must be interpreted as source point-like color charges
associated with the different components of the gauge field. Indeed, color charges are
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defined in general as

1 Oy Op
Qo = 47r/d3fv (aXE +8YH) (4.51)

which, owing to the field equations (4.36), include now external source charges and
charges carried by the field itself. The latter ones come from the integration of the term

dp i
CupeA Jind Em 4.52

gzbc b b“[axc+ay ] (4.52)
which vanishes for the ESS solutions. On the other hand the former are associated

to Dirac distributions of weight 47(@),, as can be easily seen from the substitution of
Eqgs.(4.44) in the first set of Eqs.(4.43).

The calculation of the energy associated to these solutions proceeds in the same way
as in the electromagnetic case. The integration of Eq.(4.41) gives

€f(Qq) = 8m /000 TQS—;? [X = ZE_'E(T, Q.),Y =0
— 47?/ r2p [X ZEZ  Qa),
0

where the index gf stands for gauge field. From this expression it is now straightforward
to show that, as in the corresponding multiscalar case, this energy is finite if the energy
of the associated scalar solitons is finite, and depends on the charges only through the
constant (), having the same kind of degeneration on spheres of radius ¢ in the N-
dimensional color-charge space. The relation between the finite energies of the solitons
with equal mean-square charges in the gauge models and in the associated multiscalar
models is given by the same equation (4.30) relating the finite energies in the cases of
the abelian models and their associated scalar models.

> EX(r,Qu)dr

dr, (4.53)

Concerning the stability of the gauge field solitons we shall show in the next chapter
that the finite-energy ESS solutions of admissible generalized non-abelian models are
linearly stable if (and only if) the lagrangian density functions satisfy the same criterion
(4.32) obtained in the abelian case.
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4.3 Discussion

Let us summarize the main conclusions of this chapter: The set of generalized gauge
field theories of compact semi-simple Lie groups, whose lagrangian densities are func-
tions ¢(X,Y") of the field invariants (4.35), satisfying the admissibility conditions and
the stability criterion (4.32), and supporting finite-energy ESS non-topological soliton
solutions, can be split in equivalence classes. Two models belong to the same class if
their respective lagrangian densities satisfy the condition

©1(X,0) = (X, 0). (4.54)

The forms of the ESS soliton solutions and their energies coincide for all the models
belonging to the same class. There is a one-to-one correspondence, given by Eq.(4.21),
between the set of these classes and the set of admissible scalar field models defined
by Eq.(3.1) and supporting finite-energy SSS non-topological solitons. The form and
energies of the gauge solitons are obtained from those of the corresponding scalar solitons
through Eqs.(4.46), (4.48) and (4.30). The analysis and classification of scalar solitons
performed in chapter 3 can be immediately generalized to the gauge solitons through this
correspondence. Furthermore, the explicit examples supporting scalar solitons, which
shall be introduced in chapter 6, can also be extended to the gauge field case simply by
including the Y invariant in such a way that the admissibility (4.11) and stability (4.32)
constraints be fulfilled by the extended models.

Let us conclude this chapter with some comments concerning an important ques-
tion which has not been addressed here. It refers to the analysis of propagation of
wave-like solutions of these models. As can be easily seen, all these theories exhibit
plane wave solutions propagating with the speed of light. But, owing to the non-linear
self-coupling, they also support other radiative solutions propagating with more com-
plex dispersion relations. In most cases such waves evolve towards spatially-singular
configurations. Roughly speaking, the wave fronts travelling with velocities which are
dependent on the values of the fields at every point tend to cumulate, generating discon-
tinuities and shocks after a critical time. Regularly evolving wave solutions of a system
of field equations are called exceptional. 1f all the wave solutions of a given system are
exceptional, the system is called completely exceptional [130]. A detailed analysis of the
problem of wave propagation for generalized electromagnetic field models was performed
by G. Boillat [111, 112], who established the complete exceptionality of the Born-Infeld
electrodynamics. Moreover, BI is the only admissible generalized electromagnetic field
theory (with asymptotically coulombian elementary solutions) exhibiting this property
5. Nevertheless, the Boillat analysis considers only models which satisfy the condition

SThere is another lagrangian belonging to this class of completely exceptional theories, given by
e(X,Y) = X/Y. However, this is not an admissible model according to the criteria established in
section 4.1.
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% v oy -1 (459

(case B-2) and, consequently, excludes the models belonging to B-1 and B-3 cases. It
would be interesting to perform a similar analysis for these cases. However, when one
considers the extensions of Bl electrodynamics to the non-abelian case or in the Kaluza-
Klein context, this exceptionality character is lost [131, 132].
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Chapter 5
Stability analysis

We turn now to analyze the stability of the finite-energy solutions of the different models
introduced so far. Aside from the fact that stability is a main feature of a soliton, there
is another motivation for such an analysis. If soliton solutions are to be useful for
modelling particle structure, the analysis of small fluctuations around them is the first
step towards a quantization of the modes of the soliton field (see chapter 7 for future
perspectives at this regard).

We first discuss the different criteria of stability. We then consider both the static
and dynamic stability for each class of problems. In all cases we shall find necessary and
sufficient conditions to be imposed on the lagrangian densities of the admissible models
for the linear stability of the associated soliton solutions.

5.1 Stability criteria

In the literature there are two main definitions of stability:

e Strong: We define the strong stability as the ability of a soliton to maintain its
identity under any perturbation or in closed many-soliton configurations [5, 133].

e Weak: Identified with usual linear stability, i.e. with stability under small per-
turbations.

Rigorous analysis of stability in the strong sense has been performed for a few field
theories in one-space dimension which exhibit conserved discrete topological charges
associated with the soliton solutions. In three-space dimensions similar topological con-
servation laws are responsible for the stability of the 't Hooft-Polyakov monopole solution
[6, 7] or the chiral soliton solution of Deser et al. [20]. But satisfactory general methods
for the analysis of interactions between non-topological solitons and strong external fields

63
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in three space dimensions are still lacking and only numerical analysis of the evolution of
the solutions can give some insight on this issue for most models. In our context, a ten-
tative approach to this question has been developed by Chernitsky for the Born-Infeld
model [134]. It is based on the use of the discontinuity of the field strength at the center
of static B-I solitons as a marker of the presence and location of the dynamic soliton
evolving in interaction with strong external fields, or in many-soliton configurations.
Since all SSS soliton solutions of the models considered here exhibit similar central field
singularities, this procedure might be extended to these cases, but such an extension lies
beyond the scope of the present work.

In the case of interactions between solitons and weak external fields (or for widely
separated soliton configurations) linear stability ensures the identity preservation of the
solitons and becomes a basic condition for the consistency of the low-energy analysis.
The results of this analysis may be interpreted in terms of particle-field (or particle-
particle) force laws and describe the radiative behaviour in these processes [134].

Anyway, to perform an analysis of stability in the strong sense, the function f(X)
or p(X,Y) should be explicitly fixed before studying the stability of the solutions of
a particular theory. However, we shall show that the analysis of stability in the weak
sense can be performed without fixing the particular form of f(X) or ¢(X,Y), since
the admissibility criteria, adopted in chapters 3 and 4, together with the finite-energy
condition, allow to determine the conditions that must be fulfilled by these models in
order for them to support weakly-stable SSS or ESS solutions.

5.2 Stability of one-component scalar solitons

5.2.1 Static stability

We shall begin with the study of the static linear stability for the soliton solutions of the
scalar models of chapter 3, by analyzing the behaviour of their energy, which must be
a minimum against appropriate small perturbations. As emphasized in Ref.[135], this
criterion is a sufficient condition for stability, but is not a necessary one. Here we shall
not consider the problem of stability of solutions which do not correspond to minima of
the energy, a complicated task which deserves a study in itself.

We shall show that, for these models, the conditions of admissibility guarantee this
kind of stability for all the finite-energy SSS solutions. We start with the SSS potential
¢(r) and introduce a set of small static perturbations d¢(7), finite and regular (as well
as their first order spatial derivatives) everywhere. We also require the perturbation to
leave unchanged the scalar charge associated to the solution. Let us emphasize that this
condition is essential for the energy of the soliton to be a minimum. Indeed, without
such a condition the perturbation does not necessarily lead to an increase of the energy
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of the soliton (as can be easily seen by differentiating Eq.(3.12) with respect to small
variations of A) and the perturbed soliton might evolve towards less energetic states.
To first order in the perturbations the modification of this scalar charge, obtained from
Eq.(3.5), reads

AA = ﬁ / ds7V - [f (X0)(Vdg) =2 F (Xo) (% : W) %] =0, (5.1)

where now Xy = —(V(¢))? = —¢%(r). The condition AA = 0 imposes restrictions on
the behaviour of the admissible perturbations at » = 0 and as r — oco. In particular,
do(7) must satisfy

lim —000)

r—o0 ¢(00) — ¢(r)
In this manner the perturbed fields remain inside the space of functions defined by
the prescribed boundary conditions (on Sy, in this case) which determine uniquely the
solution associated to a given value of the charge. At the center of the soliton §¢(7)
must be regular (see Eq.(5.28) and the analysis of the dynamic stability below).

(5.2)

The first-order perturbation of the energy, calculated by expanding (3.12) becomes

A = 2 / a7 F (Xo)V(6) - V(50) =
= 2 [wr¥ (Fsed(o) -2 [ o (Foave). 63

where a partial integration has been performed. Owing to Eq.(3.4) and the assumed
asymptotic behaviour of the perturbation d¢(7), the two integrals in the last equation
converge and cancel each other so that the first variation of the energy vanishes. This
is the necessary condition for the energy of the soliton to be an extremum. The second
variation reads
° o (1) o o 2

Bae = [ ot F (Xo)(Fo0)? ~2 [ aor T (x0) (96 50) (5.4)

where, owing to the boundary behaviours of the perturbation and the SSS field itself,

both integrals are also convergent. From the arbitrariness of d¢, the positivity of f (X)
and the minimum condition of the energy Ase > 0, we see that static stability is reached
if the requirement
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J(x) <0, (5.5)

is fulfilled in all the range of values of X = Xy, = —¢'2(r) covered by the solution.
However, if we rewrite Eq.(5.4) as

or
1 (060> 1 D6\ >
2 (W) T cos?(6) <8gp) ] ’ (5.6)

we are lead to the less restrictive static stability criterion !

Ase = / dsF [} (X0)+2X0}.(X0)] (@f

+ / ds7 | (Xo)

f(Xo) +2Xo f (Xo) >0, (5.7)
which is a necessary and sufficient condition for linear stability, as opposed to Eq.(5.5)
which is only a sufficient one. This criterion is always fulfilled for admissible models
with finite-energy SSS solutions. Indeed, by deriving the first-integral equation (3.4)
with respect to » we obtain

. , oo 2A
Xo) — 202 Xo)=——— 5.8
f ( 0) ¢ (T) f ( 0) T3¢//<7")’ ( )
which, owing to the monotonicity of ¢ (r), is positive in all the range of values of X
covered by the solution. We conclude that the finite-energy SSS solutions of ad-
missible scalar models are statically stable.

Against perturbations which modify the charge the solitons are unstable, but these
instabilities are blocked if charge conservation is implicit in the model (as in the case of
generalized gauge field theories considered below) or if it is a consequence of the nature
of the external sources.

5.2.2 Dynamic stability

Let us consider now the dynamic stability of the SSS solutions. The initial perturbation
defines the following Cauchy conditions

B(F,t = 0) = ¢(r) + 06(F) %—T(m:m:o, (5.9)

!The only model for which (5.7) vanishes everywhere is singular and corresponds to the lagrangian

FX) = X,
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for a dynamical problem determining the temporal evolution of the perturbed field
®(7,t), which is governed by the hyperbolic field equations (3.2). At the first order,
the evolution of the perturbation

56(7,t) = B(F, t) — o(r), (5.10)

is given by the linearized scalar field equation

9, (} (Xo)"6 +2 | (Xo)a,@a%a%) —0, (5.11)

which can be rewritten as

g (} <Xo>%) -V [}‘ (X0)V(39) =2 f (Xo) (Vo - Voo) %] =0 (512)

This is the Euler-Lagrange equation associated with the lagrangian density

L= [} (X0)8,66- 66 —2 T (Xo) (Vo Vo) 1 , (5.13)

which is defined everywhere. Equation (5.12) has the form of a local conservation law

for a charge density n =f (XO)% which, in integral form, becomes

d e 00 - ° . oo - 5 -

g [t = [a [} ovee) -2 F (x0) (o 9a0) Fo] <0
(5.14)

The r.h.s. of this equation is proportional to the first-order perturbation of the scalar

charge of the soliton (see Eq.(5.1)) which, consequently, remains conserved as time
evolves. Moreover, for solutions satisfying the initial conditions (5.9) the quantity

/ A7 | (X0)S0 (7, 1), (5.15)

remains constant in time.

Equation (5.12), together with the conditions (5.9) and (5.2), outline a spectral
problem to which we can apply standard methods. We look for solutions separating
time and spatial variables under the form

do(r,t, ) =T(t,T)(r 1), (5.16)
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where I is the separation constant and the eigenfunction ¢ (7, ") is assumed to satisfy
the boundary condition (5.2). Replacing this expression in (5.12) and using the second
of the initial conditions (5.9) we are lead to

T(t,T) = cos(VTH), (5.17)

and

rF e =9 |Fowve) -2 7 owe? (590) 7. sy

The sign of the eigenvalue I is crucial for stability. Multiplying this equation by (7, T")
and integrating over all space we are lead (after an integration by parts of the right-
hand-side) to

v et = [ ar [}‘ (X0) (Vi) =2 f (Xo)o” (gﬂ)] . (519)

Owing to Eq.(5.8), together with the admissibility and boundary conditions, both the
r.h.s. of this equation and the coefficient of I" are finite and positive. Then so is for I', and
the evolution is oscillatory and bounded in time 2. Moreover, if we consider two different
eigenvalues (I';,7 = (1,2)) and their associated eigenfunctions (i; = (7, [;),i = (1,2))
equation (5.18) leads to

(Ty —T) /dg,FJ.” (Xo)th1ths = /d3F (wﬁ Y — V- 2}) , (5.20)

where

5= (Xo)Voi =2 f (Xo) (Vo Vi) Vo (5.21)

After a partial integration and making use of the boundary conditions we see that the
right-hand-side of (5.20) vanishes and thus we are lead to the orthogonality relation

These results outline a Sturm-Liouville problem for each admissible scalar model of
the form (3.1) supporting finite-energy SSS solutions and lead to the following conclu-

ZNote that the r.h.s. of (5.19) coincides with the second variation of the energy associated to the
eigenfunction ¢(7,T") and has the same sign as I'. This establishes a strict correspondence between
static and dynamic stabilities of the SSS solutions.
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sions [136]:

1. The analysis of the dynamics of the small oscillations around these solutions leads
in all cases to discrete spectra of eigenvalues I';,

2. The associated eigenfunctions are orthogonal and finite-norm with respect to the
scalar product

A2€i

< i, >= /d?f} (Xo)¥i (P (r) = T(Sij’ (5.23)

defined with the kernel ].C (Xo) > 0. Such functions generate a complete Hilbert

space in which any perturbation can be expanded.

On the other hand, we can now separate the spatial eigenfunctions in radial and
angular coordinates as

(r, 9,9, 1,1) = R(r, I, 1) Yi(0, ), (5.24)

where the angular components are the usual spherical harmonics satisfying

NN AN o
8111298—19 (smﬁm) + 95 +I(l+1)sin*9Y; = 0. (5.25)

The radial components obey to the equation

d ( 1 dR> W+ -re, 4 (5.26)

dr \r¢” dr 2r2¢’
which is obtained from (5.18), (5.24) and using the first-integral (3.4). These equations

have the standard Sturm-Liouville form [136]

Ly + Ap(z)y=0
Ly = % [k(x)%} —q(z)y with k(z) > 0, p(z) > 0. (5.27)

The asymptotic behaviour of R(r) is obtained from the asymptotic form of the admissible
solitons (¢'(r — oo) ~ 1/r?;p > 1) through

2R pdR  ((l+1)—Tr2)
B (5.28)
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which is a Lommel equation and can be solved in terms of Bessel functions [137]. For
large r we can assume for the solution the asymptotic form

R(r — o0) ~ @, (5.29)

rd

where o(r) is a bounded function and, owing to the boundary condition (5.2), ¢ is
restricted to be ¢ > p > 1. By neglecting the higher-order terms in 1/r in the resulting
equation for p we are lead to

I
%g —0. (5.30)
Owing to the positivity of I" the solution of this equation is oscillatory and the asymptotic

behaviour of the eigenfunctions is given by 3

Ccos (\/%Fr +X)

rd

QII +

, (5.31)

R(r — o) ~
where y is a constant phase. This asymptotic form of the eigenfunctions makes the
integral of the second variation of the energy (5.6) to converge in the r — oo limit.

To determine the behaviour of R(r) around the center of the soliton we must consider
separately cases A-1 and A-2. Let us assume in both cases a form

R(r — 0) ~ a— pri. (5.32)
In case A-1 (¢ (r — 0) ~ 1/7,0 < p < 1) equation (5.26) becomes

25qp++_17’q + ({1 +1) = Ir?) (o= pr) = 0. (5.33)

For the first surface spherical harmonic (I = 0) we are lead to [138]

a=0; ¢g=1-—p, (5.34)
or
g I'p
o dp+1) 1 (5:35)
For [ # 0 we obtain

3The value of ¢ as a function of p and [ can be explicitly obtained from recursion formulae meth-
ods [138] applied to Eq.(5.28), which also allow for the approximate determination of the eigenvalue
spectrum of T".
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‘= 1—p+ \/(1—p)2+2l(l+1)p.

a=0 ; 5 (5.36)
In case A-2 (¢'(r — 0) ~ a — br?, o > 0) equation (5.26) becomes
—o—1 I(1+1)—-T72
o S U bk NS O (5.37)
bo a
If | =0 we must have
1] b To
[ . = 2 .
a 20012 1 ot (5:38)
or
a=; g=o0+1. (5.39)
For [ # 0
16 b
P00+ ; ¢= 4
T2 ¢ = (5.40)
or
a=0; g=0c+1 (5.41)

In all these cases the integral of the second order variation of the energy (5.6) can
be shown to converge in the limit » — 0.

We then conclude that all finite-energy SSS solutions of admissible scalar models,
which are statically stable, are also dynamically stable.

5.3 Stability of multicomponent scalar solitons

The analysis of stability in the scalar case can be extended to the multicomponent scalar
fields. Now we have N integration constants A; and a degeneration in energy of the SSS

solutions on the sphere of radius A = \/Zi]il A? in RN, Obviously the variations
of the energy vanish for perturbations which remain inside this sphere obtained by
modifying the constants A; in equation (3.57) in such a way that the “total mean-square
charge” A remains unchanged. The asymptotic boundary conditions satisfied by the
fields ¢;(r, A;) (obtained from the asymptotic behaviour of the associated one-component
scalar field solution ¢ (7, A) through Eq.(3.57)) are modified by these perturbations and
the associated charges (defined from Eq.(3.58)) as A;) are modified. Consequently, charge
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conservation condition blocks such perturbations and prevents a soliton from evolving
spontaneously towards another equal-energy configuration in the sphere.

For general perturbations d¢;(7) the first-order modifications of the scalar charges
take the form

sn=t fase |

with X = —Zfil ¢;2. The requirement of charge conservation (AA; = 0) imposes
boundary conditions on the perturbing fields which, as in the one-component case, must
vanish asymptotically faster than the SSS fields themselves.

N
(Xo) (Vo) —2 1 (X0) S (%j-quj) Wi,] L (5.42)

J=1

The first-order variation of the energy functional is obtained from the integral of
Eq.(3.52) and reads

Aje = zé% (/ a7V - {} (Xo)aqbﬁqﬁ] - /dgf(sqw- {} (Xo)ﬁ(qﬁ)D . (5.43)

where Eq.(3.59) has been used and a partial integration has been performed. Each term
of this sum has the form of Eq.(5.3) and vanishes because of the same reasons. Thus
the first variation of the energy vanishes, which is an extremum condition. The second
variation of the energy functional takes the form

N N 2
Do = [air|F X0 Y (F0) 267 F () (Z%agf) L (5.44)
=1

=1

and can be written as

A2€ = /dg?’_” |:} (X()) + 2X0 f XO COS :| Z (65¢Z> (545)
e Yot /086 1 D6b;
- Jorfowy [_( )+ e (a2

in terms of the angle Q(7) in the internal space between the vector formed by the radial
derivatives of the components of the perturbing fields and the direction AT defined by
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the SSS solution . The second integral in this equation is always positive. If f (Xj) is
negative the first integral is also positive. Otherwise we have

f (Xo) +2Xo f (Xo)cos*(Q) >f (Xo) +2Xo f (Xo) >0, (5.46)
and, owing to Eq.(5.8), this integral is always positive for admissible many-components
scalar models with finite-energy SSS solutions. Consequently, all these solutions are sta-
tically stable. Moreover, the analysis of the dynamical evolution of small perturbations
performed for scalar solitons can be straightforwardly generalized to this multicompo-
nent case. Such an analysis proves the dynamical stability of these solitons.

5.4 Stability of generalized electromagnetic solitons

We turn now to analyze the linear stability of generalized gauge field solitons. Methods
applied for scalar solitons in looking for the conditions for these solutions to be weakly
stable can be extended to generalized electromagnetic solitons. In this case, due to gauge
transformations, the analysis is quite more involved. Anyway, as we shall see, following
a similar procedure as in the scalar case we will obtain supplementary conditions to be
fulfilled by the admissible lagrangian densities in order for their soliton solutions to be
stable against small charge-preserving perturbations.

5.4.1 Static stability

A similar analysis of static stability as in the scalar case can be performed for generalized
abelian gauge fields. We consider a finite-energy ESS solution 4 of the field equations
(4.15) (Eo(r), Hy = 0) and introduce a small perturbing field

B = -2 i

H\(7) = V x A7), (5.47)

which does not modify the total electric charge of the soliton. The first-order modifi-
cation of the charge density is obtained by perturbing the first of the field equations
(4.17), which leads to

4To avoid difficulties related to the gauge determination we work directly with the fields. When the
use of the potentials becomes necessary in some step of the calculation we will fix the gauge through
appropriate conditions.
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V.-3=0, (5.48)
where
Do = P - o =
5 E 2——(Ey- E,)E, 5.49
o= 92X, + GXS( 0 1) 05 ( )

and the index 0 in the derivatives means that they are calculated for the unperturbed
solution (note that, owing to the parity invariance, the odd partial derivatives of ¢ with
respect to Y vanish in Y = 0). From the integration of (5.48), which leads to the
requirement of conservation of the electric charge

1
4r
we see that & must vanish asymptotically faster than r—2. Then, the regular perturbing
field | £ ()| must be damped faster than Fy(r) itself. This boundary condition is similar

to the one introduced for scalar models but, owing to the electric charge conservation
implicit in the field equations, the physical meaning becomes here more transparent.

5q = PPV -7 =0, (5.50)

Let us now consider the variations of the energy functional under such charge-
preserving perturbations. The first-order variation is obtained from the integration of
Eq.(4.7) and reads

where we have introduced the time-like component of the four-vector potential for the
solution (Fy = —V A% A = 0). This expression vanishes due to the boundary conditions
and the linearized field equation (5.48). This is an extremum condition.

In calculating the second variation of the energy let us expand the first of the field
equations (4.17) to the second-order. We are lead to

V- (G+1i) =0, (5.52)
where now the term
> o PP
7 o= 2 E,-E\)E E? — H)Ey + 2 E, - E,\)%E,
an( 0" 1) 1+0X§( VEo + an( 0" 1) o+
+ 8X08Y2(E0 Hy)*Ey+ 28_1/02(E0 - Hy)Hq, (5.53)
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includes the second-order corrections. Using this equation the second variation of the
energy, obtained from the integration of Eq.(4.7), becomes

_ o = P 0o =y 32_90 22|
Bae = /d3 {GXOE +2(9X2(E0 El)} /d {3X0H 23Y2(E0 )

- 2 / dsiV - [A%7] . (5.54)

The last integral in the r.h.s. of this equation vanishes, owmg to the boundary conditions.
The first term is positive if gxﬁ > 0; on the other hand, if a—X‘% < 0 the integrand of this
term can be written as

i o = Dy P9 =
E — 42 E; 0 E — +2——E§ .

(Ex)? (8)(0 * 6X2( cos’(9)) ) = (E1)? aX, | Coxz (5.55)
where 6 is the angle between EO and El. By deriving Eq.(4.20) with respect to r and

taking into account the monotonicity of Ey(r) we see that the first term in (5.54) is
always positive. Concerning the second term of (5.54) it is positive if a—y‘é < 0 while if
9%

v > 0 we can write its integrand as

(107 (92~ 25 5 (B eo(0)) 2 (A7 (52 —255(E)). (36)

From the arbitrariness of the perturbing fields, the positivity of this term and, finally,
the positivity of the second variation of the energy requires the condition

Do ot

X >2X el
to be fulfilled in the range of values of X (Y = 0) where the ESS solutions are defined.
This is a necessary and sufficient condition of static stability to be satisfied by the
lagrangian densities of admissible models supporting finite-energy ESS solutions. This
stability criterion goes beyond the widely used Derrick’s necessary conditions [21].

(5.57)

Let us check, using this criterion, the linear stability of the electrostatic finite-energy
solutions of the BI model. From Egs. (4.5) and (5.57) we immediately obtain

0(,0 a2<p 1 1/2
—2Xpos = — (1 — 12X, >0 5.58
X, Yov2  8r ( 0) ’ (5.58)

and the stability condition (5.57) is fulfilled since the ESS field is bounded everywhere
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(Xo < 1/p?).

5.4.2 Dynamic stability

Let us now analyze the dynamical evolution of the small perturbations of the ESS
solitons. The system of linearized field equations, obtained by expanding (4.17) to first
order, is formed by Eq.(5.48) aside from a vector equation:

V-d=V-(Z-E) = 0
0G B} 0 . - B

where now we have introduced the symmetric tensors

890 8290 o =

S = Iy + 2 Ey® F,
0X, *° axg( 0 ® Fo)

Q = Iy — 2 Eo @ Ep), 5.60
0X, ° ayg( 0 ® o) (5.60)

which will be useful in simplifying the notations in the sequel. The perturbing fields
must also satisfy the first set of Maxwell equations. Expanding (4.18) up to the first
order we obtain

o
ot
V-H, = 0. (5.61)

§XE_;1 =

Let us look for solutions of these equations which are products of functions of time and
space variables for both electric and magnetic fields, of the form

—

Byt ) = T.(t) - €r)
Hi(t,7) = Tu(t) k(7). (5.62)

In this way, by substituting (5.62) into the second of Egs.(5.59) and the first of (5.61),
we are lead to the first-order equations for the time variables
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T. = X\
T, = —uT, (5.63)

where A\ and p are separation constants. By deriving these equations we are lead to the
system

T.(t) +TT.(t) = 0

To(t) + TTy(t) = O, (5.64)

with T' = X - . The identification A = p = /T can be introduced without loss of
generality, as a consequence of the first-order equations and the positivity of I', which
will be established below. The eigenvalue I" being positive, the solutions (normalized to
unity) take the form

T.(t) = cos(VTt+4)
Ty(t) = sin(VTt+0), (5.65)
where ¢ is the same constant phase for both solutions. In this case the eigenfunctions

remain bounded as time evolves and the soliton is dynamically stable. The field equations
for the spatial components are

V- (Z-@& =0
Vx(Q-h) = VTZ-¢ (5.66)
where we have used the definitions (5.60). Note that the first of Eqgs.(5.66) is an imme-

diate consequence of the second one. Moreover, the first set of Maxwell equations leads
to

— VTh
= 0. (5.67)

X

SOy

v
v

where again the second equation is a trivial consequence of the first one. We shall now
introduce a four-potential A* for the perturbing fields, defined in the Hamilton gauge
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(A" = 0) in such a way that °

ﬁ 0A
E, = —2=
! ot
H = VxA. (5.68)

This vector potential is determined up to the gradient of an arbitrary time-independent
scalar field. In terms of this vector potential, the first set of field equations (5.61) are
identically satisfied while the second set (5.59) becomes

& (VoA =0,
2 (A +V x (Q(ﬁx ﬁ)) =0, (5.69)

a2
If we write equations (5.68) for the separated functions (5.62), by integrating in time the
first one and using (5.63), we obtain the general form of the vector potential for these
functions as

At,7) = Tu(D)a(7) + Vo (i), (5.70)

where ¢(7) is a time-independent function and

T =2t = . (5.7)
This vector potential, determined in Eq.(5.70) up to the gradient of a time-independent
scalar field, becomes univocally fixed by requiring its form to separate in time and space
variables, taking the form of the first term in the r.h.s of Eq.(5.70). In terms of this
potential, using the definitions (5.60), the field equations for the spatial part of the
perturbation reduce to the unique vector equation

V x (Q (V% a)) -IS. 4, (5.72)

which outlines the eigenvalue problem for the linear oscillations in this electromagnetic
case.

As in the scalar case, the standard analysis of this problem can be performed for the
ESS solitons of admissible generalized electromagnetic field models without any reference
to the explicit form of the lagrangian density. In this way we shall show that two given

5This gauge-fixing condition is allowed by the gauge invariance of the equations for the perturbing
fields (5.59)-(5.61) which are independent from any gauge choice for the unperturbed fields.
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eigenfunctions d@; () and dy(7) associated to the eigenvalues I'y and 'y, respectively, are

orthogonal and finite-norm with respect to the scalar product
(5.73)

< C_il . 52 >= C/dgf(c_il I 62),
where ( is a normalizing factor. Indeed, multiplying Eq.(5.72) (defined for a given
eigenfunction @;) by an eigenfunction ds, integrating in space, using the identity

Gy -V X (Q-(ﬁxal)):ﬁ[@x (Q-(ﬁxal))]+(€><51).Q.(6><52), (5.74)

and taking into account the symmetry of the tensors ¥ and €2, we obtain the equation

/dyfﬁ-[az x (Q (V% 51))]+/ (VX @1 )- (Y X i) = rl/df(dl-z:-ag). (5.75)
Owing to the boundary conditions the first integral in the 1.h.s of this equation vanishes

while the second one converges. By permuting the indices and subtracting we finally

(5.76)

obtain
(Fl — FQ) /dgf(@l -3 62) = (Fl — PQ) < (71 . 62 >= 0.

We see that the eigenfunctions associated to different eigenvalues are orthogonal with

respect to the scalar product (5.73). Moreover, if @ = dy we obtain from (5.75)
(5.77)

F/dgf(a-zm:/d?f(ﬁxa)-n-(ﬁxa),

and both integrals converge. The integrand in the Lh.s. of this equation can be written

as
00 (20 (- 7\ Op 0%\ (L T\
((a) - (a r) )+<8X0+2E08X02 a -, (5.78)

7-2.7) =
(@ Q) X,
and is positive for ESS soliton solutions of any admissible electromagnetic model. The

integrand of the r.h.s. of (5.77) takes the form
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=<3y

(Vxad) Q- (Vxad) = ai((ﬁﬁ)h(

2
X, -VXa))
2 - 2
+ (a—@—zEgaw) (f-vX ) . (5.79)

GXO 8}/02 T

This term is positive if (and only if ) the condition for static stability (5.57) is fulfilled.
Under this condition the eigenvalues I' are well defined and positive and, consequently,
the behaviour of any initially bounded perturbation remains bounded as time evolves.
We conclude that the statically stable ESS solitons of admissible electromagnetic models
which satisfy (5.57) are also dynamically stable. Moreover, the spectrum of eigenvalues
is discrete and the eigenfunctions generate the functional space of the physical vector
potentials, which can be written as

ST

A(t,7) = Cosin(y/Tot + 6, (F) (5.80)

and are in a one-to-one correspondence with the physical perturbed states of the soli-
ton. Indeed, any charge-preserving perturbation of the soliton field is described, in the
Hamilton gauge, by vector potentials which can be obtained from one (and only one) of
the form (5.80) by the addition of gradients of time-independent scalar functions.

The analysis of the spatial structure of the eigenfunctions and physical perturbations
can now be performed by separating in radial and angular parts the components of
the vector potentials @,(7) in the natural basis of the polar coordinate system. This
procedure, which is standard in spherically-symmetric physical problems [139, 140], will
determine the asymptotic and central-behaviour of the perturbing fields, as in the scalar
case already considered. We shall leave this study for future developments.

5.5 Stability of generalized non-abelian gauge soli-
tons

Owing to the essential self-interactions involving the field potentials, the treatment of the
static and dynamic stability of the solitons for generalized non-abelian gauge models is
more involved than in the abelian case. A detailed study of the stability of some extended
static finite-energy solutions for the standard Yang-Mills model has been performed in
Ref. [135], where similar difficulties arise. Most methods of that work can be generalized
to the present situation and we shall follow this way in analyzing the stability behaviour
of the ESS solutions (4.46).
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Consider a finite-energy ESS solution of the field equations (4.36) of the form (4.46)
and introduce small regular perturbing fields through the definitions

Ar) — A%+ 0AY(P)
A, =0 — 04,7
E (r) = =VAYr) — E,+ 6E,(7) (5.81)
H,=0 — 6H,(7). (5.82)
To first order these fields are related through
; - 9OA,
SE,(F) = —V3oA° — i abe
(T) \4 a ot b

§H,(P) = V x 64, (5.83)

and they are assumed to leave invariant the color charges ), associated to the unper-
turbed solution. To first-order the modifications of the charge densities are obtained from
the perturbation of the time-components of the field equations (4.36) (the generalized
Gauss laws) and read

— - agO — —
V-G, = —g%: Cane 04 - B (5.84)
where
L dp PP
&, = aXoéE +28X2 <ZE 5E> (5.85)

and the modifications of the total charges read

1 B d¢
AQu= - / A3tV - &y = —gZC’abc / aXOMb =0. (5.86)

The first-order perturbations of the vector equations, given by the spatial components
of Eqs.(4.36) (the generalized Ampere laws) read

o0 - 0 0
o+ V Xy = gZC’abc [ME + A%E,|, (5.87)

where
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L _ Oy
By = aXodH aYQ (ZE 5E> (5.88)

The r.h.s. in Eq.(5.84) is the color-charge density carried by the perturbations and its
spatial integral must vanish, according to our initial assumptions. This requirement
restricts the asymptotic behaviour of ¢, and, as for the other field models already con-
sidered, leads to boundary conditions to be satisfied by the perturbing fields. Moreover,
similarly to the multi-component scalar case, the color charges of the unperturbed solu-
tion (Q,) fix a direction in the color-charge space (called in Ref. [135] “electromagnetic”
direction, while the orthogonal directions are termed “charged”). Owing to the first-
integral equation (4.44), the potentials A? and the fields E, of the ESS solutions lie in
this direction. For the perturbing fields to remain purely electromagnetic the associated
charge densities that are induced by them must vanish and, owing to Eq.(5.84), 5 Ay must
also lie in this direction. In what follows, we shall prove the stability of the finite-energy
ESS solutions against this kind of non-charged perturbations.

Now let us analyze the variations of the energy functional. The first variation is
obtained by perturbing the spatial integral of (4.41) (this is a gauge-invariant quantity,
as well as its variations) around the ESS solutions, which reads

Ave— -9 / a7 SV - [A%,] + 2 / A" A - 5, (5.80)

The first integral in this expression vanishes, owing to the boundary conditions. Using
Eq.(5.84) the variation becomes

Aje = —2g / dngCabc AO(SAb (5.90)

abc

As expected this expression vanishes, owing to the parallelism of A and E, in the color
space (see Eqs.(4.46) and (4.50)) and the antisymmetry of the structure constants.

In obtaining the second variation of the energy functional we follow the same steps
as in the abelian case. First we expand the generalized Gauss law to the second order.
After the cancellation of the first-order terms we are lead to

V-3 :—gZOabc 6890 Ay - OE, +28 (ZE 5E>5Ab , (5.91)

where now
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- D% = o o Py o2 72\ 7
Gy = 28—)((?(%: L 0E, 5Ea+0ngp:<5Ep—5Hp>Ea+
o i o :
% AN % AN
2~ 0B, | E,42-——t—s E,-0H,| E, 92
© 2 (B 808 B (Saom) £ 6o
¢ e
+ za—YOQ (;Ep-de 0H,.

By expanding the integral of (4.41) up to second order and using Eqgs.(5.84) and
(5.91) the second variation of the energy becomes

e
_ )
Age = /dgr 3X0 E OE; +2(9X2

2
<Z E,- 5Ea> +

2
2
2 —_— —_— i . 7 —
+ / ds7 6X025H 29 T (ZE 5Ha> (5.93)
— 2 / PPV - (AS - 5% — / dgr—ZCabcAO(SAb SE,.

abc

Once again, the divergence term in this expression vanishes owing to the boundary
conditions. The integrand of the last term is the scalar product in color space between
the potential AY of the unperturbed field and the first component of the second-order
perturbation of the color-charge density in the r.h.s of Eq.(5.91). For electromagnetic
perturbations this component must satisfy the condition

0
a X Z Cope A% A, - 6E, = 0, (5.94)

a,b,c

(note that the remaining component in the r.h.s. of Eq.(5.91) lies already in the elec-
tromagnetic direction). Consequently, the last term in Eq.(5.93) must vanish and the
second variation of the energy takes a form similar to that of the abelian case. We
can now determine the conditions for stability of the finite-energy ESS solutions in this
non-abelian case through a similar argumentation. As easily seen stability requires the
lagrangian-density function ¢(X,Y") to satisfy the condition
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D D¢

X >2X ek (5.95)
in all the range of values of the gauge invariants (X,Y = 0) defined by the solution. This
condition is formally the same as in the abelian case and is also necessary and sufficient
for the stability of the solitons against electromagnetic perturbations. Obviously, it is a

gauge-invariant criterion.

The analysis of the dynamical stability of non-abelian solitons should now be per-
formed starting with Eqs.(5.84) and (5.87) and following similar steps as in the abelian
case. But the presence of the antisymmetric structure constants and the symplectic
character of the eigenvalue problem require new qualitative procedures and longer cal-
culations. This issue will be approached elsewhere.



Chapter 6

Some specific models

As illustrative examples of the considerations of the previous chapters we shall introduce
and discuss in this chapter four families of admissible models representatives of the
different classes analyzed so far. Some of these models should be viewed as approaches
to the physical problems which we are addressing from the methods developed here
(see chapter 7 for future perspectives). For each model we shall begin with lagrangian
densities defined for scalar fields, which support stable, finite-energy SSS solutions for
several values of the parameters. In some cases we also discuss how the Y-invariant can
be included in order for the extended gauge models to be admissible and support stable,
finite-energy ESS solutions. Obviously, for each admissible scalar model supporting
soliton solution there exist a class of equivalence of associated admissible gauge field
models supporting similar soliton solutions (see Eq.(4.54)).

6.1 Potential corrections to the D’Alembert Lagrangian

The first example is given by the two-parameter family of field theories defined by la-
grangian densities of the form

f(X)z%%—)\X“, (6.1)

where ) is a positive constant which gives the intensity of the self-coupling. When A = 0,
f(X) reduces to the usual D’Alembert lagrangian density (see figure 6.1). The values
of the exponent a are restricted to be irreducible ratios of two odd natural numbers (we
consider 1 as odd) a = P/(@ such that

3 3
P>§Q<:>a>§>. (6.2)
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Figure 6.1: Functional form of the lagrangian densities for the family of models (3.1) (A) for a fixed
value of the parameter A\(= 1) and several values of a(= 5/3,3,13/3,17/3,25/3) (B) for a fixed value
of the exponent a(= 3) and several values of A\(= 0.01,0.1,1,10,100). The dashed line corresponds in
both cases to the D’Alembert lagrangian (A = 0).

As easily verified these restrictions allow f(X) to be defined everywhere and the
associated energy density to be positive definite and vanishing in vacuum (admissible
class-1 field theories). The condition a > 3/2 is imposed to ensure the convergence of
the integral of energy at r = 0, where the SSS field strengths diverge.

This family of models can be extended to include rational values of the exponent
a = P/Q > 3/2 with P being an even natural number and @) an odd one. Such models
are admissible for X < 0 if we replace A\ > 0 by —\ in Eq.(6.1). But, for complete
admissibility, this function should be matched for X > 0 with another function satisfying
the condition (3.21). For example, the lagrangian obtained by replacing A by \-sign(X)
in (6.1). Since the structure and energy of the SSS solutions are determined by the form
of the lagrangian density for X < 0, the SSS solutions of these models are also solitons.

The following considerations are valid for the extended family. The form of the SSS
solutions is obtained from the equation (3.46), which now reads

A
+ (=) hayb = (6.3)

2(y) = 2

N <

with y(r,A) = ¢'(r,A). The function z(y) shows an unique growing branch for every
value of the scalar charge A > 0 and, consequently, there is an unique SSS solution
of Eq.(6.3), which vanishes as ¢ ~ 72 when r — oo (case B-2 above, asymptotically
coulombian) and diverges as ¢ ~ r~2/=1) when r — 0. Thus the argument (X) of
the lagrangian ranges from zero to —oo in this interval and, as expected, the stability



87 Chapter 6. Some specific models

condition (3.44), which now reads

[ ]_
f(X)+2X f(X)= 5+ (1) 'ha(2a — )Xt >0, VX <0, (6.4)
is fulfilled there.

The energy of the soliton, as a function of the model parameters, can be explicitly
obtained from the integral term of Eq.(3.47). The final result is

4 2r A2 1 2a — 3
€= - , , (6.5)
3 (a—-1)(2aN)T o \4a—1) 4(a—1)
where B(x,y) is the Euler integral of first kind
1
B(z,y) = / dtt™ (1 —t)¥"', Re(z) >0, Re(y)> 0. (6.6)
0
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Figure 6.2: Energy of the solitons of the family (6.1) as a function of the exponent a with the coupling
constant A as parameter. The dashed line correspond to the asymptotic limit of the energy for a — oc.
The small plot shows the behaviour of the energy for strong self-couplings. The energy is never zero for
any A < oo.

In figure 6.2 we have plotted this energy as a function of the exponent a, with the
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coupling constant A as a parameter. We see that the energy diverges, for any value of A,
as the exponent a approaches the value 3/2. This energy is strongly reduced in the region
of values of a 2 3/2 as the coupling constant A increases, reaching minima which vanish
as A — oo in this region. When the exponent a increases the energies of the solitons
become less dependent on A and approach asymptotically the value €/ A2 = 167v/2 /3
as a — 00. An interesting feature of these models is the existence of soliton solutions
for any a > 3/2, no matter how small the coupling parameter A may be. This implies
that any small correction of this kind to the “bare” D’Alembert lagrangian leads to the
possibility of excitation of soliton modes. For a fixed value of the exponent, the masses
of such modes increase as the intensity of the coupling is reduced. This behaviour is
similar to the one encountered in one-space dimensional models supporting topological
soliton solutions [76, 141].

The preceding analysis can be generalized to the case of theories whose lagrangian
densities for X < 0 take the form !

X N
fu(X) =+ ()P ax, (6.7)
n=1

where, for admissibility, the )\, are constrained to form a finite sequence of positive
constants and the exponents a, = P,/Q, to form an increasing sequence of rational
numbers, built as irreducible ratios of odd natural numbers or of even and odd naturals,
such that a, > 1 for n < N and ay > 3/2. In these models the energy density is
positive definite for X < 0 whereas the SSS field solutions diverge at the origin as
¢ (r — 0) ~ r~2/en=1 and vanish asymptotically as ¢ (r — 00) ~ r~2. The associated
energies

8 o d
ex(A) = 2T\ /ans / y | (6.8)
3 0 41/2 \/1 +9 227:1 Anlny2(@n—1)
are finite and the corresponding solitons are stable.

A particular case of Eq.(6.7) is obtained when the exponents are a finite sequence
of consecutive naturals a,, = n(n > 1). Moreover, let us assume that we take the limit
N — oo and that the infinite sequence of A\, > 0 converges to zero, in such a way that
the series

F(X) = % +) (=D)AL XT (6.9)

be convergent in an interval including VX < 0 (case A-1), or in an interval including

LObviously, for X > 0 they must be extended in agreement with the requirements of chapter 3.
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the range 0 > X > —(C? but excluding the values X < —C? (case A-2). We can then
extend the family (6.7) to a large class of analytic functions. Such functions must satisfy
the conditions established in section 3.3 for the integrals of energy associated to the SSS
solutions of such models to be finite. If we assume the positivity of the coefficients A,
in Eq.(6.9) we can explicitly check for these models the fulfillment of the condition of
stability (3.44), which now takes the form

FX) 42X f(X)= % + i An(2n 4 1)(4n + 1) X" > 0 (6.10)

and holds in the entire domain of definition of the soliton. Thus the requirement of
convergence of the series (6.9) for any X, with the assumed restrictions A, > 0 (Vn)
leads to class-1 field theories supporting SSS solitons. As an example of this let us
mention the analytic function f(X) = $sh(X), which diverges when X — —oo faster
than X7 with v > 3/2 (as required by Eq.(3.29) in the A-1 case) and behaves like X /2
around X = 0 (case B-2).

If we relax the requirement of positivity of the coefficients \,,, whenever the series
(6.9) converges in some restricted interval X > —C? and the sum remains a monoton-
ically increasing function of X there, we are lead to admissible class-2 field theories
exhibiting SSS soliton solutions. An example of this case is the lagrangian density
f(X) = tg(X) restricted to the interval —Z < X < Z. This model supports finite-
energy stable SSS solutions belonging to cases A-2 and B-2.

Let us consider the case A, > 0,Vn. The partial sums in (6.9) give rise to an infinite
sequence of admissible lagrangian models of the form (6.7) with natural exponents, all
of them supporting SSS soliton solutions belonging to cases A-1 and B-2. The explicit
forms ¢n (7, A) of these solutions can be obtained by solving the equation (3.45) for each
lagrangian in the sequence. These equations take the form

N
) , A
N (% + Z”)‘n(ﬁﬁz\/)%n_l)) =2 (6.11)
n=2

If the series (6.9) converges in X < 0, defining an analytic lagrangian density function
there, the sequence of SSS soliton solutions of the partial-sum models in the expansion,
corresponding to the same value of the scalar charge A for all N, must converge to
the SSS soliton solution (with the same charge) associated to this lagrangian density
(ON—oo(r,A) — ¢(r, A)). This can be directly established from Eq.(6.11), which defines
the forms of the SSS solutions. Then the limit solution can be written as a functional
series expansion in terms of the members of the sequence as
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$(r,A) = d1(r, A) + Y dn(r,A), (6.12)
N=2
where dn(r,A) = ¢n(r,A) — ¢n_1(r,A). Using Eqgs.(3.13) and (3.14) it is easy to show
that the sequence of energies of the equal-charge solitons associated to the partial-sum
lagrangian densities converges towards the energy of the equal-charge soliton associated
to the full series lagrangian (6.9), which can be written as the series expansion:

() =e(A)+ > Aye(), (6.13)

where Ane(A) = en(A) —en_1(A) is the difference between the energies of two consecu-
tive solitons in the sequence. The first two terms of this expansion are energy-divergent.
The first one corresponds to the divergent self-energy of the Coulomb field whereas the
first correction Age(A) cancels this divergence and “renormalizes” the self-energy to a
finite value. The subsequent terms are all finite and the series converges towards the
energy of the limit soliton. The energy associated with the soliton of order N in the
sequence can be obtained making use of the expression (3.47) and reads

en(A) = 8%\/%3/2 / dy , (6.14)
0 yl/2 \/1 +9 27]:7:2 nA,y2m—1)

which can be numerically calculated once the coefficients are fixed.

To illustrate this procedure let us consider the above mentioned analytic lagrangian
f(X) = %sh(X ). The energy associated to the soliton solutions of this model, obtained
from Eq.(3.47), is €(A) ~ 28.5607A%2. The partial sums of the McLaurin expansion
of this lagrangian function are admissible models supporting a sequence of SSS soliton
solutions. Their energies, obtained from Eq.(6.14), are plotted in figure 6.3 as functions
ofi = %, for the same value of the scalar charge A of each solution (N = 2i+1 being the
exponents of the surviving terms in the expansion which, in this case, are the sequence
of odd naturals). Obviously the energy of the first-order term (N = 1,7 = 0), which
corresponds to the Coulomb field, diverges but, as expected, the first correction already
“renormalizes” this coulombian divergent energy and the subsequent orders reduce the
(now finite) energy, which approaches asymptotically the energy of the soliton of the
exact model as 7 increases. The convergence in this example is related to the analytic
character of the sum (6.9) but the “renormalization” of the divergent self-energy is due
to the first correction to the pure D’Alembert lagrangian and would arise even if the
series were not convergent.
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Figure 6.3: Energy of the sequence of SSS soliton solutions (with the same scalar charge, A) of
the partial-sum lagrangian models obtained from the McLaurin expansion of the lagrangian density
f(X) = %sh(X), as functions of the integer parameter i = %, N being the odd exponents of the
surviving terms in the expansion. As N increases these energies approach asymptotically the value
€(A) ~ 28.5607A%/2 corresponding to the soliton energy of the exact theory.

6.1.1 Effective gauge-invariant lagrangian models

These results can be useful in the analysis of particle-like solutions in effective models
of gauge-invariant interactions. Indeed, effective lagrangians arise frequently in pertur-
bative schemas which lead to polynomial expressions in certain field invariants. For
example, in the case of QED the perturbative expansion of the photon effective ac-
tion, which is obtained by integrating out the high-energy degrees of freedom of the
electron sector, defines a sequence of lagrangians which take this polynomial form in
the field invariants (Euler-Heisenberg lagrangians [68] and the higher-order corrections
[69]). On the other hand, as we have established in the preceding chapters, the solu-
tion of the electrostatic spherically symmetric problem for a generalized gauge-invariant
lagrangian model can be reduced to that of an associated scalar field model, whose la-
grangian density is univocally defined from the gauge-invariant one. If the sequence of
gauge-invariant effective lagrangians are of polynomial forms in the field invariants, the
associated scalar lagrangians are also polynomials in the kinetic term, taking the form
of partial sums of a series as (6.9). In this way we have established that the sequence
of effective lagrangians describing the low-energy photon-photon interaction in QED
support electrostatic point-like finite-energy solutions [75]. Let us illustrate this result.

We can then proceed to extend the above scalar family (6.9) to the gauge field case.
The most general lagrangian belonging to this class of theories and supporting ESS
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soliton solutions would be a series of products of powers of the X-invariant and even
powers of the Y-invariant (in order for the parity requirement (4.4) to be fulfilled). This
leads (for positive values of X)) to lagrangians of the form

oo
PXY) =) XY (6.15)
n,m=0
where the coefficients o, ,,, are positive constants and the subindexes label the exponents
of each field invariant for the corresponding term (note that the first coefficient in the
expansion must take the value ago = 0 for vanishing vacuum energy). In our notation

the second term in this expansion must be set to ay g = 1/2 to recover Maxwell/Yang-
Mills theory in the weak-field limit. Then the family reads

X - 2m = ny/ 2m
P(XY) =5+ mzl(aom + oy, X))V 4 H;O g XYM (6.16)
for X > 0. As results from the preceding analysis, each partial-sum lagrangian in
the series (6.16) corresponds to an admissible field theory supporting finite-energy ESS
solutions, which energy can be calculated using formula (6.14) and the energy relation
(4.30).

The stability requirement (4.32) reads for this family

+ 3 (nano — 4an_91) X" > 0,VX > 0. (6.17)
=2

n

%) 0% P 1
0X, aW -2

A sufficient condition for this requirement to be satisfied is

4
Qo > —Qp_21 ; Vn. (6.18)
n

However, if we think of the lagrangian (6.16) as an effective lagrangian coming from a
perturbative expansion, obtained when some high-energy degrees of freedom are inte-
grated out in the path-integral of the original action, then we can assume the coeffi-
cients o, ,, to be small and decreasing for each order. In fact, this is the case for the
Euler-Heisenberg effective lagrangian (see section 2.2.2) and the sequence of higher-order
corrections, where the terms in the expansion (6.16) come from the coupling of photons
to virtual electron loops in the vacuum [68, 69]. With these assumptions, even though
the condition (6.18) is not fulfilled to all orders, a less restrictive sufficient condition for
stability demands that the requirement (6.17) be fulfilled beyond a certain order n; in
the expansion and for all the subsequent higher-order corrections, i.e.
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nj2n;
+ ) (noo — dag_01) X" > 0,VX >0, (6.19)

n=2

DN |

where the smallness of the coefficients a0, a,—21 guarantees that the 1/2 term will
dominate over the remaining terms in the series (6.19) for small values of X, in such
a way that the partial sums beyond the order n; are positive everywhere. Moreover,
we arrive at the conclusion that, if Eq.(6.18) is fulfilled to all orders, then each partial-
sum lagrangian in the expansion (6.16) corresponds to an admissible model supporting
finite-energy and stable ESS soliton solutions. On the other hand, if the condition (6.18)
is violated but (6.19) remains fulfilled for a certain n; and for all n; > n;, then each
partial-sum lagrangian in the series (6.16) supports finite-energy ESS solutions which
are unstable for orders n < n;, but become stable for n > n;. We notice that the EH
lagrangian (2.16) does not fulfill the stability conditions but the higher-order terms in
the effective lagrangian expansion [69] could do it.

Let us give a tentative physical interpretation of these results. The non-linear terms
in these effective lagrangians describe, at a classical level, a self-interaction of the gauge
field mediated by the Dirac vacuum. The point-like solution of the “bare” Maxwell
lagrangian is the Coulomb field, which has a divergent self-energy. The first non-linear
correction term of the effective lagrangian (Euler-Heinsenberg) incorporates polarization
effects of the vacuum on the classical field of the point charge, calculated to lowest
order in a perturbative expansion. These screening effects “renormalize” the charge
field, which becomes finite-energy. The subsequent corrections in the expansion describe
higher-order approximations to the behaviour of the screening, but the finite-energy
character of the screened fields is preserved to all orders. Unfortunately, the validity
of this effective approach is limited to energies much lower than the electron mass [67]
and is not accurate to describe the strong fields arising near the center of the particle-
like solutions. Consequently, this tentative interpretation can not be maintained only
on these grounds. For a more rigorous investigation this question should be considered
starting from a different effective approach incorporating the vacuum polarization effects
in presence of the strong fields of point-like charges. The analysis of this approach is
currently in progress (see also the comments on this point in chapter 7).

6.2 Bl-like models

The second example is a two-parameter family of field theories defined by lagrangian
densities of the form (see figure 6.4)

(14 p?X)*—1

(6.20)
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where p is a real constant. The admissibility conditions require the values of the

(1+u2X)%-1

f[X]= 702
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a=7/10
0=7/12
a=1/2

Figure 6.4: Functional form for the lagrangian densities (6.20). The dashed line (o = 1) corresponds
to the D’Alembert lagrangian while the case a = 1/2 is associated to Born-Infeld theory.

parameter « to be restricted to the range 1/2 < a < 1. Indeed, if 1 < a < 3/2 the
energy of the SSS solutions diverges around r = 0. On the other hand if o > 3/2 the
solution ¢'(r) is multi-valued and the different branches are either unstable or energy-
divergent. We also discard the models with 0 < a < 1/2, since the energy density in
this case is not positive definite for X > 0. Moreover, if « is a rational number built as
the irreducible ratio of an even natural and an odd natural numbers, the function f(X)

is defined everywhere, but f (X) changes sign in X = —1/u? and the energy becomes
negative for large negative values of X.

Finally, if « is the irreducible ratio of two odd naturals we are lead to models
which exhibit multi-branched SSS solutions. In fact, the function z(y) in (3.46) has
now two separated branches. The field associated to the first branch ranges in the
interval 0 < ¢'(r) < 1/ and satisfies the condition (3.44) there, leading to a stable
and finite-energy SSS solution, finite and defined everywhere (these branches fall inside
the cases A-2 and B-2, with ¢'(0) = 1/x and coulombian asymptotic behaviour). The
remaining branch of z(y) ranges in the interval 1/u < y < co and exhibits a minimum at
y = (uv2a — 1)~'. Consequently there are two additional solutions ¢'(r) defined only
inside the interval 0 < r < /2uA(2 — 20)1~9/2(2a — 1)~/ (see figure 6.5).

Consequently, we must exclude the models with these values of the parameter o and
restrict the family to the lagrangian densities which result from irrational values of «
or rational values which are irreducible ratios of an odd and an even natural (always
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Figure 6.5: Multiple-branched SSS solutions. In the figure of the small plot the parameter 7 =
2a—1

V2ul(2 — 20[)1%(20( —1)7 7 has been used.

within the range 1/2 < a < 1). In these cases the lagrangian densities are defined
only for X > —1/u* and behave as X/2 around X = 0, corresponding to class-2 field
theories. There are now unique, stable and finite-energy SSS solutions for each model,
which are defined everywhere and fall inside the cases A-2 and B-2 (with the maximum
field strength ¢ (0) = 1/p, and coulombian behaviour at infinity). In the limits 4 — 0 or
a — 1 Eq.(6.20) reduces to the D’Alembert lagrangian density. The scalar Born-Infeld
model is a member of this family, corresponding to the frontier value o = 1/2.

In calculating the energy of these soliton solutions as a function of the model parame-
ters we evaluate the integral in (3.47), as in the previous example. The final expression
is

4/2m A3 (13—
Ezﬁ—B _?_oz . (6.21)
3 w2 N2T 2
We see that, as function of x the soliton energy behaves like € ~ - and diverges as

Vi
p — 0 (D’Alembert limit), whereas it vanishes in the strong-coupling limit y — oo.

This energy is not very sensitive to the exponent « in the range of admissible values and
the behaviour for the whole family is similar to that of the scalar Born-Infeld model.

This family can be extended to the gauge field case in a straightforward way. A
natural choice would be to introduce the Y-invariant for the whole Bl-like family in
the same way as in the particular Born-Infeld lagrangian (4.5) and define a generalized
family



6.3. A three-parameter family 96

- (1-p2x - gy?)
2P«

p(X,Y) = (6.22)

It can be straightforwardly seen that such a family of lagrangians fulfills the admissi-
bility constraints (4.8), (4.11) and supports finite-energy ESS solutions. Moreover, the
condition of stability (4.32) reads now

Op P 1 9o \G&
— —2Xp—=—==-=-(1—-pn"X 0 6.23
0X,  ayz T 2 (1= X0)" >0, (6.23)

and is satisfied by the whole family since the ESS field is bounded everywhere (X, <
1/u?).

6.3 A three-parameter family

The third example is the three-parameter family of models defined by the lagrangian
densities

1 X«

where « is chosen as the irreducible ratio of two positive odd naturals (in order for the
lagrangian to be well defined on both sides of X = 0). The exponent § must be chosen
as a positive irrational number or as the irreducible ratio of an odd and an even natural
numbers. In this way the lagrangian is defined only for X > —1/u?, thus avoiding a
non-positive definite character of the energy as well as a singularity inside the domain
of definition. We emphasize that, as mentioned in chapter 3, we regard as acceptable
singularities of the lagrangian density only those lying on the boundary of the (open
and connected) domain of definition. In fact, one of the motivations in introducing
this example is to show how models with such a kind of singularities can also lead to
physically reasonable results.

These restrictions lead to a family of class-2 field theories belonging to the A-2
case, being examples of the sub-cases whose lagrangians diverge at X — —1/u? in the
boundary of the domain of definition. The behaviours of the lagrangians around X = 0
(r — oo for the SSS solutions) belong respectively to the cases B-1 (a > 1), B-2 (aw = 1)
or B-3 (o < 1), corresponding to asymptotic dampings of the soliton field strengths
which are slower than coulombian, coulombian or faster than coulombian, respectively

(see figure 6.6).

We also impose the condition o > 3+ 1/2, necessary to ensure the positivity of the
energy density for any X € (). Moreover, the convergence of the integral of energy for
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Figure 6.6: Form of the lagrangian functions corresponding to models of the family (6.24) for three
sets of values of the parameter « (§ 1). All lagrangians diverge at X — —1/u?, which corresponds

to the maximum value of the field strength. At the point X = 0, which determines the asymptotic
behaviour of the solitons, the three sets of values of « give the three different behaviours: case B-1
(a > 0), case B-2 (a = 0) and case B-3 (a < 0). The dashed lines show the behaviour of the lagrangian
function at large positive values of X for the admissible models corresponding to different relations
among the parameters.

the SSS solutions as r — oo requires o < 3/2, as can be easily verified from the analysis
of the field equation (3.4) and the integral of energy in this limit. Let us summarize in
the following equations the restrictions imposed on the parameters of the models (6.24)
in order to obtain admissible models with soliton solutions:

1 dd 3 d 1

5 <« % < 3 p——— irrational ; 0<f<a-— 5 <1 (6.25)
where the terms “odd” and “even” are implicitly understood to apply for natural num-
bers. The D’Alembert lagrangian is a limit member of this family obtained as @ — 1

and # —0orasa—1and p— 0.

As results from the analysis of the A-2 cases, near the center the SSS solutions
behave as

¢'(r—0)~ l—i —Ar?, (6.26)
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where the exponent ¢ is given by

2
l<o=——=<2, 6.27
T153 (6:27)

and A is a positive constant, which is the solution of the equation

2o\ + 3 = Ap@tB (20)F+L (6.28)
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Figure 6.7: Behaviour of the energy as a function « for five values of y and three of 3(0.01,0.4,0.7).
Note that the lower branches for each value of p do not cover all the range 1/2 < a < 3/2 since the
constraint a > 3+ 1/2 must be always fulfilled for admissibility.

As in the preceding examples, the energy of the soliton solutions can be explicitly
obtained from (3.47). The final expression is

€

421 AP 2 3—2a B+3 2 1 3-2a 9-2(a—p) a—p

_3W|“|2(4’T>1(§’4’ 4 ’a)’
(6.29)

where B(z,y) is again the Euler beta-function and F2(a,b, c,z) is the hypergeometric

function defined as
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1 1
F? = F(a,b,c,z) = ] / 711 — )P (1 — tz)7dt, Re(b) > 0, Re(c) > 0.
0

B(b,c—b
(6.30)

In figure 6.7 we have plotted the energy as a function of a with p and § as parame-
ters. For a given value of p the energy is rather insensitive to the parameter 5. As «
approaches the limit 3/2 the energy diverges for all values of p and (5. As a function of
i the energy decreases as the power 1/ u(%_a).

6.4 Short-ranged solutions

As a fourth example let us look for a family of models whose SSS solutions are exponen-
tially damped for large r. As already mentioned, these kinds of theories allow to describe
short-range interactions through the exchange of self-coupled scalar fields. Their gener-
alizations to the case of gauge fields, which was performed in chapter 4, lead to effective
non-linear lagrangians which also describe short-range interactions and preserve the ex-
plicit gauge-invariance. From this point of view such models provide alternatives to the
usual symmetry breaking mechanism in the description of weak interactions.

In obtaining these models we shall proceed backwards, looking for lagrangians whose
associated field equations have prescribed SSS solutions. In this way we shall look for
a family of lagrangian density functions of the form (3.1) whose associated SSS field
solutions have the simple exponentially damped form

¢ (r,A) = Aexp (_UATT7;2> : (6.31)

where A, o and n are positive constants determining the different models within this
family 2. More complex choices of exponentially damped SSS fields (as, for example,
¢ (r) = a(r)exp (—0557), where a(r) is assumed to be a bounded function) may be
analyzed in a similar way, but in the present example the calculations can be performed
in terms of elementary functions. With this choice the SSS field will be a soliton, but
the method works also in obtaining models with exponentially-damped SSS solutions
which are energy-divergent.

The constant A in (6.31) is the integration constant of the first-integral (3.4) of
the field equation (whose solution is required to be (6.31)) and parameterizes all SSS
solutions of a given model. It is explicitly introduced in (6.31) by implementing the

2The constant A is a parameter of the model and not an integration constant of the solutions. It
plays the role of the maximum field strength and is shared by all SSS solutions of a given model, but
differs for the various models in the family.
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scale law (3.8). These fields belong to the cases A-2 (finite field strength at the center)
and B-3 (asymptotic damping faster than coulombian), and the corresponding models
are class-2 field theories.

flx]
A

Figure 6.8: Functional form of the lagrangian densities for the family (6.33), exhibiting short-ranged
soliton solutions. The dashed line indicates possible continuations of the lagrangian density for X > 0.

By eliminating r between (6.31) and the first-integral (3.4) we obtain the form of
the first derivative of the lagrangian density

A (20)2/m
2P VX P ()
which holds in the interval —A? < X < 0 (where the SSS solution (6.31) is defined) and
diverges at the boundaries. The lagrangian density in this interval is

J(X) = (6.32)

0 —z
f(X) =20%" / Q/HL = —240%" / 62—/ndz. (6.33)
v=x In""(A/y) In(A/V=X) #

As easily verified, f(0) = 0 for any set of positive values of the parameters. In the
lower boundary of the interval we have f(X = —A?) = —2A0%"T' (1 - 2) for n > 2
(with T'(¢) = [~ 2" *e™*dz,t > 0 being the usual Euler gamma function) and f(X —
—A?) — —oo for n < 2 (see figure 6.8). This expression of the lagrangian density could
be continued to the region X > 0 by matching (6.33) to any function satisfying the
admissibility conditions there, but such continuations do not affect the structure of the
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solitons, which is completely determined by the part (6.33) of the lagrangian density .

An3/2
20
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Figure 6.9: Energy for short-ranged solitons (6.31) of unit maximum-field strength as a function of

_€

the exponent n, for several values of the parameter o (note that we have plotted a5z instead of 157
as in the previous examples).

We calculate now the energy of these soliton solutions starting by convenience from
Eq.(3.12) (although formula (3.47) would also work). After a partial integration we
obtain

4 / < .d
€= % {—r?’f <—¢2(r)) o +/0 r3d—idr} : (6.34)
The integrated part in this equation can be shown to vanish for the prescribed solutions.
In calculating the integral in the second term we use the first-integral field equation (3.4)

and the expression of the field (6.31), which leads to

df _ ° / " o _2A. " _ (2_n)/2 n_3 T‘n
= = o (r)=2A Anor™ ™ exp 08 | (6.35)

r2

and the final expression for the energy of the solitons reads

3Nevertheless, the requirements of positivity of the energy and vanishing vacuum energy of the
complete lagrangians are still necessary for the stability of the solitons (see chapter 5).
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3o/ n

which is proportional to the maximum amplitude of the field strength and decreases as
the range of the field is reduced. In figure 6.9 we have plotted the energy of the unit
maximum-field-strength as a function of n for several values of the constant 0. As we
see the energy diverges as n — 0 and becomes less dependent on the constant ¢ for large

values of n, approaching asymptotically a fixed value given by 57 = %”.

A |
e — DA \app ( i ") , (6.36)



Chapter 7

Conclusions and perspectives

In this thesis we have solved the problem of characterizing a large class of physically
consistent relativistic lagrangian field theories in three-space dimensions, supporting
unique, static spherically symmetric finite-energy non-topological soliton solutions. The
fields concerned were one and many-components scalar fields (whose lagrangian densities
depend on the kinetic term alone) and generalized gauge fields of compact semi-simple
Lie groups (whose lagrangian densities depend on the two standard first-order field
invariants). This characterization is exhaustive and leads to the classification of such
models into six types, according to the central and asymptotic behaviours of the soliton
fields. We have performed a broad analysis of the linear stability of the solutions,
obtaining necessary and sufficient stability conditions which go beyond the usual Derrick
criterion. We also have carried out a general spectral analysis of the linear perturbations
around the soliton solutions, confirming their dynamical stability and setting grounds
for their quantum extensions.

All these results allow the explicit determination of a large number of examples of
such a class of lagrangians, providing a wide panoply of tools for the analysis of diverse
physical problems, such as those discussed in the introduction and in chapters 1 and 2.
Among these problems let us outline several of particular interest, which we are address-
ing from the methods developed here. At this regard, the families of models introduced
in this thesis, belonging to the different classes of solitons, should be seen as a first step
on the approaches to tackle such problems.

Effective field theories supporting ESS soliton solutions in the framework
of QED.

As already discussed in section 6.1.1, the photon-photon interaction mediated by
the QED vacuum can be classically described in terms of effective lagrangians which
are polynomial expressions in the gauge invariants X and Y and can be obtained in a
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perturbative procedure [67], where the lowest order is the well-known Euler-Heisenberg
lagrangian [68]

O(X,Y) ~ X + E(4X? +TY?), (7.1)

(n and £ being positive constants). The sequence of these lagrangians exhibits finite-
energy ESS solutions and suggests an interpretation in terms of the screening effects
of the vacuum on the field of point-like charges. Unfortunately, as already mentioned,
the perturbative expansion involved in this procedure is a low-energy (or a low-intensity
field) approximation and is not accurate to describe the strong fields present near the
center of the ESS solutions. It is thus necessary to explore this issue with other effective
lagrangians, obtained from the perturbative renormalization of the self-energy of point-
like fields. The analysis of this problem is in progress [75, 142].

Short-ranged solutions without any symmetry breaking mechanism.

Scalar field models as that of the example treated in section 6.4, which belong to
the case B-3, exhibiting short-ranged SSS solutions (solitons or not), can be extended
to generalized gauge field models supporting similar ESS solutions. This behaviour,
which is related to the form of the lagrangian density around the vacuum, may arise in
effective actions for some fundamental forces. If we assume the effective dynamics of
the non-abelian gauge fields in electroweak interactions to be described by this kind of
lagrangians, the short range of these forces could be explained in terms of the non-linear
self-couplings among these fields, coming from the integration of some higher energy de-
grees of freedom of a more fundamental theory. In this case the appeal to any symmetry
breaking or Higgs mechanism should become superfluous. In our sense, this alternative
deserves to be thoroughly explored.

Soliton-based phenomenological approaches to hadron internal structure
and hadronic interactions.

A new approach to the phenomenological description of the hadronic structure can
be envisaged, using the results of chapter 5 on the spectral analysis of the excitations
of the (multi-) scalar or generalized gauge-invariant solitons. In the phenomenological
descriptions based on the Skyrme model the hadron arises as a topological soliton of
a non-linear field theory. Other models, which are believed to give an effective low-
energy approach to the non-perturbative regime of QCD (as the Friedberg-Lee model
[16, 17, 18, 19] and related theories), describe hadrons as confined states of quarks in
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non-topological solitonic bags of non-linear phenomenological fields. As an alternative
to these viewpoints, we are considering a generalized gauge-invariant lagrangian model
for gauge fields (“gluons”) coupled to a quark-like fermionic sector and implementing
properly chosen symmetries. Such a phenomenological model may be interpreted as an
effective lagrangian for QCD or, alternatively, as a field-theoretical low-energy limit of
string theory. The classical generalized gauge-field lagrangian can exhibit soliton solu-
tions in absence of other fields. If such solutions are minima of the functional of energy
of the full action, their small perturbations will involve fermionic and bosonic modes.
The quantization of these modes leads to “quasi-quarks” and “quasi-gluons” as quantum
excitations of the soliton field. This quantum extension becomes a model for the hadron
containing these particles. In this picture the confinement would be a consequence of
the fact that quarks are quasi-particles associated to these quantum excitations and (as
the phonons in a solid) they cannot exist outside the hadron.

Self-gravitating configurations for scalar and gauge field models.

Another domain where the results of this work could be useful concerns the search
for self-gravitating (scalar and gauge) field configurations in General Relativity [39, 40,
41, 51, 52]. The classification of the lagrangian field theories considered here, supporting
non-topological solitons in flat space, can be extended to the static spherically symmetric
solutions of the Einstein equations resulting from the coupling of these fields to gravita-
tion. Indeed, we have verified (see appendix A) that these equations have first-integrals
which have the same form as (or can be closely related to) the ones obtained from the
corresponding field theories in flat space (of the generic form of Egs.(3.4) or (4.20)).
This result opens the possibility of generalizing to the gravitational case many of the
methods and results obtained here [74]. We will continue to address this topic in future
work.

Other ansantzs?.

It would be also interesting to study the soliton solutions of generalized non-abelian
gauge field theories with other ansantzs than the ESS one. As mentioned in chapter 2,
such a kind of solutions have been already found for the SU(2) non-abelian BI theory
within the “monopole ansantz” Af = 0, A? = €,;;% (1 — w(r)) [29] (see section 2.3.2).
For general SU(2) non-abelian gauge field theories in this ansantz the field equations
(4.15) read, in our notation, after proper normalization of the action
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dp ,_ Do w(w? — 1)
<8Xw) ) G C (7.2)

and new conditions for stable and finite-energy non-abelian solutions must be found.
This issue should be a theme for a future investigation.



Appendix A

Self-gravitating ESS solitons

Let us consider some aspects of the problem of ESS soliton solutions in General Rela-
tivity, which we are currently addressing with the methods developed here. The general
form of the action for a generalized electromagnetic theory coupled to gravity is given
by

p— e 4 —_— J—
S =5c+5u= e d*z/—g[R— o(X,Y)], (A1)

where R is the scalar of curvature and g the determinant of the metric tensor g,,. The
field equations of the models (A.1) take the form

0X oy

The gauge-invariant symmetric energy-momentum tensor reads

v, (a—‘pFW + aﬁF*W) ~0. (A.2)

-2 0
T/,u/ SM - <a_(pF“aFya 8@

T V=gogv  T\ox Sy
We are interested in static, spherically symmetric solutions of Einstein-generalized elec-
tromagnetic theories. The metric for such a configuration can be cast into the form

F,uaF:a> - guVSO(X7 Y) (A3)

ds? = e’ — et dr? — 2 (d6* + sin® Bdp?) (A.4)

where v(r) and u(r) are functions to be determined. For ESS solutions in this metric
the field equations (A.2) can be written in terms of the electrostatic potential Ay(r) as

dii (@—(”?‘)Ag(r)g_;(x, Y = 0)) = 0. (A5)
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The components of energy-momentum tensor in this case are given by

dp
0X
and the three independent Einstein equations may be written in the form

TO =T} =252 AR — o(X) ;T =T = —p(X), (A.6)

| 0
G) = T) —e* <—*7‘ + (1— e“)) = 28—;?@—(”“)%2 —p(X) (1)

/

Gl = T —e* (5 42 (1— e“)) = za—“‘)e*@W)Ag —p(X) (II) (A7)

r o r? 0X
2 2 — V// V/ / / 1 / /
Gy = e -5+ W—v)+(W=v))=eX) (),

Due to the symmetry of the energy-momentum tensor 7 = T}, Einstein equations (1)
and (1) combine to give p/ + 1/ =0 — p + v = A, where the constant of integration \
can be put equal to zero by a redefinition of the time coordinate. Then, without loss of
generality we can write

2

ds® = g(r)dt* — dr r2(d6* + sin’ Odp?), (A.8)

g(r)

where we have defined g(r) = €’ '. With this form of the metric, the field equations
(A.5) have a first-integral which is precisely given by the same equation obtained for the
flat space case, namely, Eq.(4.20) and thus has no explicit dependence on the metric.
When the Einstein equations (A.7) are satisfied, the field equations are a consequence
of the Bianchi identities V,G* = 0. However, the first integral (4.20) is very useful for
our purposes, as we shall see later. Thus, the remaining equations we have to solve are

SOl — 1) = 22T ()
L309(r) = —2rp(X), (A.9)

where we have done some manipulations starting from (A.7). Integrating any of these
equations, using the first integral (4.20), and comparing with Eq.(A.6) we arrive to the
expression for the metric

1See [143] for generalizations of Birkhoff’s theorem, applied to theories whose energy-momentum
tensor satisfies T = T7}, as in the present case.
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2M 1 [
gry=1——+ —/ 72T (7)dr. (A.10)
roor,
According to this, we define an “effective mass” M(r) = M — ¢(r) where €(r) =

5 [°P2T9(7) which allow us to write

o) = 1-— w (A11)

so M is the gravitational mass given by M = lim,._, M (r) and satisfies M'(r) = €'(r) =
%rQTg. Some comments are in order. First, the quantity e(r) that we have defined
is just the expression of the energy density (integrated from r to oo) for a central
electrostatic field for a NED in Minkowski space. Second, the metric is reduced to well-
known solutions in some particular choices of the function ¢(X,Y’). For example, for the
Maxwell case we have p(X,Y) = X and M(r) = M — g—i giving rise to the well-known

metric g(r) for the Reissner-Nérdstrom solution g(r) = 1 — 2% + Z—z. For Born-Infeld

electrodynamics [3], choosing the BI Lagrangian as ¢(X,Y = 0) = 23? (1 —4/1- %)
and using the expression of the BI electric field F(r) = —L— the metric takes the

Vri+e /B2
form [41, 144, 145]

glr)y=1- 2]\{0(7‘) : M(r)=M — ﬁ/roo (\/m— ﬁf2> dr, (A.12)

The expression (A.11) can be expanded to give

gy =1- 2 % [L(Agz(r))TQ py (A()(r) - ;/w Ag(;«)drﬂ , (A.13)

r

which can be useful in some calculations. For example, for BI electrodynamics we obtain
the black hole solution found by Garcia-Salazar-Plebanski [39)].

2,..2 2 2 e’} ~

oy —1- 2 20T (1— R >+4i/ S (A.14)
r 3 G524 3r J, ™+ 2/ 3

From the expression (A.11) we see that for a particular model the horizons are given by

the roots of the equation r = 2M(r) and the number of horizons depends on the sign of

the quantity M (0) = M —e where € = ¢(0) is the total energy of the electromagnetic field

in Minkowski space and M (0) may be interpreted as the “binding energy”. For M (0) > 0
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there is exactly one non-degenerate horizon. The case M(0) < 0 has a similar behavior
than Reissner-Nordstrom solution, with either having zero horizons, one degenerate
horizon or two non-degenerate horizons, depending of the values of the parameters of
the model. Finally, if M (0) = 0 the metric can have one non-degenerate horizon or none
(again depending on the parameters of the model). In fact, the requirement that there
be no infinities in the metric g(r) forces this identification of the gravitational mass M
with the electromagnetic mass e.

Since we can write the metric (A.10) as

o) =1 2(M—¢) - 1/{: T () dF, (A.15)

r r
for the case M (0) =0 (M = €) we have

g(r)=1- %/OT?ZT(?(M?, (A.16)

which has for large r the Schwarzschild asymptotic behaviour g(r) = 1 — 27’” where m =
5 J, - r*TY(r). Since Tg(r) coincides with the expression of the energy-momentum tensor
in flat space, the functions ¢ (X, Y') supporting finite-energy ESS solutions generate non-
divergent metric functions (within the identification M = €) as well as finite energies
€. However, although one is able to obtain a everywhere non-singular metric function,
the curvature invariants blow up at the center of the solutions as a consequence of a
theorem [43, 146], which establishes the non-existence of electrically charged solutions
with Maxwell weak-field asymptotic limit having a regular center 2.

On the other hand, when the identification M = € is made, the expression (A.13) is
replaced by

; (A.17)

For BI electrodynamics this expression gives

_ 23%r2 / q? 4q% [T dr

which is the particle-like solution found by Demianski [40].

r

2Although the theorem might be circumvented if one considers models whose associated electro-
magnetic fields do not have the Maxwell weak-field limit, such as the cases B-1 and B-3 considered in
chapter 3.
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Extended electric-magnetic duality

This appendix is concerned with electric-magnetic duality rotations. As is well-known,
in absence of external sources Maxwell equations are invariant under SO(2) rotations of
electric and magnetic fields into each other. This duality transformation can be written
under the form

F,, — cos(a)F,, +sin(a)F} (B.1)

B

which in terms of the fields reads

E — cos(a)E —sin(o)H

H — sin(a)E + cos(a)H. (B.2)

However, as soon as one introduces generalized models through the function ¢(X,Y)
this duality invariance property is lost. Nevertheless, it is possible to define general-
ized “electric-magnetic” dualities for the extended models. For example, the covariant
generalization of invariance (B.2) was analyzed in [145] and amounts to define the trans-
formation

F., — cos(a)F,, —sin(a)Py,
Py, — sin(a)F}, + cos(a)P., (B.3)

(see section 4.1.2 for the definition of P,,). In determining the conditions for a general-
ized electromagnetic field theory to be invariant under these extended duality rotations
it was shown in [145] that the following equation
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F, F* = P, P, (B.4)

which, written in terms of our field invariants, reads

)@ e

must be fulfilled by the lagrangian densities which have the Maxwell weak-field limit.
It can be easily checked that BI theory (4.5) satisfies the above equation and thus it is
invariant under this extended duality. It would be also interesting to determine other
lagrangians, belonging to the class of soliton-supporting theories considered here, which
are duality-invariant. We shall leave this issue for future developments.
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Abstract

In this thesis we perform a general analysis of the dynamic structure of two classes of rel-
ativistic lagrangian field theories exhibiting static spherically symmetric non-topological
soliton solutions. The analysis is concerned with (multi-) scalar fields and generalized
gauge fields of compact semi-simple Lie groups. The lagrangian densities governing the
dynamics of the (multi-) scalar fields are assumed to be general functions of the kinetic
terms, whereas the gauge-invariant lagrangians are general functions of the field invari-
ants. These functions are constrained by requirements of regularity, positivity of the
energy and vanishing of the vacuum energy, defining what we call “admissible” mod-
els. In the scalar case we establish the general conditions which determine exhaustively
the families of admissible lagrangian models supporting this kind of finite-energy solu-
tions. Next, we analyze the gauge field case, where we add the requirement of parity
invariance to the admissibility constraints. We determine the general conditions defining
the families of admissible gauge-invariant models exhibiting finite-energy electrostatic
spherically symmetric solutions. We then establish a correspondence between any ad-
missible soliton-supporting (multi-) scalar model and a family of admissible generalized
gauge models supporting finite-energy electrostatic point-like solutions. Conversely, for
each admissible soliton-supporting gauge-invariant model there is an associated unique
admissible (multi-) scalar model with soliton solutions. From the variational analysis of
the energy functional, we show that the admissibility constraints and the finiteness of
the energy of the scalar solitons are necessary and sufficient conditions for their linear
static stability against small charge-preserving perturbations. Furthermore we perform
a general spectral analysis of the dynamic evolution of the small perturbations around
the statically stable solitons, establishing their dynamic stability. In the gauge field case
the variational analysis of the energy functional leads now to supplementary restrictions
to be imposed on the lagrangian densities in order to ensure the linear stability of the
solitons. We finally analyze some explicit examples of these different families, which
are defined by the asymptotic and central behaviour of the fields of the corresponding
particle-like solutions.
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