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Enrique Fernández por permitirme realizar una tesis doctoral. A Enrique Gaztañaga
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Abstract

This thesis presents a method to build mock galaxy catalogues by populating N-body
simulations using prescriptions based upon the halo occupation distribution model
(HOD). The catalogues are constructed to follow some global local properties of the
galaxy population already observed, such as the luminosity function, the colour-
magnitude diagram and the clustering as a function of luminosity and colour. The
observed data constraints come from the Sloan Digital Sky Survey (SDSS).

The theoretical framework in which the production of the catalogues is based on,
the halo model and the HOD, are described. Our mock catalogues are built from
halo catalogues extracted from the Marenostrum Institut de Ciències de l’Espai N-
body dark matter simulations (MICE). We characterize our input halo catalogues by
computing their halo mass function, two-point correlation function and linear large
scale halo bias.

The HOD provides prescriptions of how galaxies populate haloes. The HOD can
be parameterized in several ways. We start by following the HOD recipes given by
Skibba & Sheth 2009 to generate galaxy catalogues. Since the luminosity function
of the catalogue does not fit observations, we investigate an analytical derivation
of two HOD parameters, Mmin and M1 (α is assumed to be 1), by only using two
observed constraints: the galaxy number density and bias. Then, a grid of 600 mock
galaxy catalogues that covers a wide range of values of the three HOD parameters,
Mmin, M1 and α, is generated to obtain the best-fit HOD parameters that match
the observed clustering of galaxy luminosity threshold samples. As we cannot match
observations we introduce additional ingredients: the SubHalo Abundance Matching
(SHAM) and a modified NFW density profile.

A unique mock galaxy catalogue that follows at the same time the clustering
at all luminosities and colours is produced using the halo catalogue extracted from
the snapshot at z=0 of the MICE Grand Challenge run. The catalogue is built by
following a new algorithm in which several modifications are introduced: scatter
in the halo mass - central luminosity relation, the HOD parameter M1 is set as a
function ofMh, and three Gaussian components (instead of only two) are included to
describe the colour-magnitude distribution. A derivation of the luminosity function
and the linear galaxy bias of the mock catalogue is shown. How galaxy velocity
affects the galaxy clustering and an estimation of the angular correlation function at
the BAO scale are presented too. Finally, different versions of the catalogue currently
used in PAU and DES projects, which include specific characteristics such as shear
information or 42 different magnitudes in narrow band filters and also morphological
properties for each galaxy, are briefly described.
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Chapter 1

Introduction

1.1 Motivation

Observational cosmology unlike theoretical cosmology is a very “young science”.
Its origin, despite chinese astronomers documenting a “new star” in 185 AD that
appeared in the sky and was visible for eight months, could be dated when Vesto
Slipher detected the first redshift of spectral lines from distant galaxy spectra 1. The
difference between cosmology and almost every other science is that cosmologists
observe an already completed experiment, which is our universe. There is no way,
for instance, of controlling with some determined conditions a star, or recreating the
formation of cosmic structure in a laboratory. This last example can be taken as the
main motivation of this work: in almost every study related to large scale structure
of the universe a mock galaxy catalogue is essential. Moreover, relevant physical
processes, where perturbation theory fails, are within the nonlinear regime. In order
to reproduce the non-linear regime of matter clustering and achieve the accuracy of
observations it is mandatory to use numerical simulations with enough precision and
realistic modeling.

The first evidence of the expansion of the universe was Hubble’s law. General
relativity theory predicts this phenomenon but it was Edwin Hubble, in 19292, who
discovered this law by studying spectra of galaxies that contained cepheid stars.
These stars allow us to derive how far their host galaxies are from us. Hubble
observed a systematic redshift in almost all the spectra of the selected galaxies and
realized that they were all moving away from us. When he compared the velocities
and the distances of the galaxies he found a linear relation between them. At small
redshifts a linear proportionality to velocity v can be used, v = cz (where c is the
speed of light in a vacuum). Figure 1.1 shows the velocity-distance relation originally
published for extra galactic Nebulae. This relation is known as Hubble’s law. Recent
studies using different ways of measuring distances show the same trend found by
Hubble (see figure 1.2).

1The redshift (or blueshift) of a galaxy is the shifting of its spectral features to longer (or shorter)
wavelengths primarily due to the combination of Doppler motions and the general expansion of the
universe.

2Although a recent article written by Livio 2011 demonstrates that Edward Lemâıtre was actually
the first one who derived the law from the General Relativity equations in a 1927 article.
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Figure 1.1: Velocity-Distance relation among Extra-Galactic Nebulae. Figure from Hubble
1929.

Saul Perlmutter, Brian P.Schmidt and Adam Riees won the Nobel Prize for
Physics in 2011 “for the discovery of the accelerating expansion of the universe
through observations of distant supernovae”. Two independent international teams,
the High-z Team and the Supernova Cosmology Project (Riess et al. 1998; Perlmut-
ter et al. 1999), reached the conclusion of accelerating expansion. This is one of
the most significant discoveries in cosmology, and it was an unexpected fact. Cos-
mologists had been trying to probe the decceleration of the universe due to the
gravitational force for decades. Type Ia Supernovae appeared fainter than would
be expected for a decelerating universe and the reason for this phenomenon is still
an open debate. Data suggest that since around z = 0.5 the expansion of the uni-
verse has been accelerating. Significant efforts have been made in observations and
theory in the last decade in order to understand this phenomenon. The accelerat-
ing expansion has been verified by a variety of independent types of observations:
anisotropies of the Cosmic Microwave Background (CMB) (Jaffe et al. 2001, Pryke
et al. 2002), regarding the large scale structure (LSS), the Baryon Acoustic Oscilla-
tions peak (BAO) (Eisenstein et al. 2005), the large-angle anisotropy in the CMB
through the integrated Sachs-Wolf (ISW) effect (Boughn & Crittenden 2004, Fosalba
& Gaztañaga 2004, Afshordi et al. 2004, Scranton et al. 2003), correlated distortions
of galaxy shapes due to gravitational lensig (Schneider 2006, Munshi et al. 2008,
Bacon et al. 2000, Kaiser et al. 2000, Van Waerbeke et al. 2000, Wittman et al.
2000), recent supernova results (Knop et al. 2003, Riess et al. 2001, Riess et al. 2004,
Riess et al. 2007, Astier et al. 2006, Miknaitis et al. 2007), ratio of X-ray emitting
gas to total mass in galaxy clusters (Allen et al. 2004, Allen et al. 2008), the age of
the universe (Krauss & Chaboyer 2003, Tegmark et al. 2006). Citing Weinberg et al.
2012, “The question is no longer whether the universe is accelerating, but why”.

The physical explanation for the accelerating expansion is still a mystery. Fol-
lowing the theory of general relativity, if the universe contains only ordinary matter
and radiation, one would expect a slowing of the expansion due to gravity. At this
point there exist two possibilities for explaining the accelerating expansion, either
General Relativity theory fails at cosmological scales and it has to be replaced by
another more complete theory or there exists an entity, which is called dark energy
(DE), with peculiar physical properties that exhibits a gravitational force opposite
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Figure 1.2: Top panel: Hubble diagram of distance vs. velocity for secondary distance
indicators calibrated by Cepheids. Bottom panel: Value of H0. Figure from Freedman et al.
2001.

to the gravity of ordinary matter.

The most straight forward and simple candidate for this dark energy component
is vacuum energy. Zel’dovich in 1968 realized that the cosmological constant, intro-
duced by Einstein and many times rejected and reincorporated in Einstein’s equa-
tions (which is equivalent to the stress-energy of the vacuum) cannot be removed
from the field equations of General Relativity. If one computes from quantum field
theory this energy density, it is larger than what one observes by a factor of 10120.
Although there exists this disagreement between theory and observations the idea of
an accelerating universe based on observations, is completely accepted as it provides
the missing element needed to complete the current cosmological model. The stan-
dard cosmological model is based on the cosmological principle: our location is not
special and on large enough scales, the universe looks homogenous in all directions
and from every location. In this model the universe is flat and is in accelerating
expansion. This model also assumes that the universe is formed of 23% dark mat-
ter, only 4.6% of baryonic matter and the remaining 72% is this entity called dark
energy (based on data of the Wilkinson Microwave Anisotropy Probe (WMAP)). At
the beginning it was hot and dense with an early expansion phase where light ele-
ments were formed by nucleosynthesis. It is also assumed that a previous accelerated
expansion, called inflation, produced density perturbations from quantum fluctua-
tions, leaving a trace of temperature fluctuations on the CMB which later will be
the origin of the formation of large scale structure governed by gravitational insta-
bilities. The standard model attempts to describe the observable universe. Present
advances permit to measure cosmological parameters with high accuracy. The basic
set of cosmological parameters according to Lahav & Liddle 2010 is shown in table
1.1.
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Parameter Symbol Value

Hubble parameter h 0.72 ± 0.03

Total matter density Ωm Ωmh2 = 0.133 ± 0.006

Barion density Ωb Ωbh
2 = 0.0227 ± 0.0006

Cosmological constant ΩΛ ΩΛ = 0.74± 0.03

Radiation density Ωr Ωrh
2 = 2.47 × 10−5

Neutrino density Ων lower limit of Ων ≈ 0.001

Density perturbation amplitude ∆2

R(k = 0.002 Mpc) (2.41) ± 0.11) × 10−9

Density perturbation spectral index n n = 0.9630.014−0.015

Tensor to scalar ratio r r < 0.43(95% conf.)

Ionization optical depth τ τ = 0.087 ± 0.017

Bias parameter b depends on galaxy type and scale

Table 1.1: Basic set of cosmological parameters from Lahav & Liddle 2010.

Observational cosmology has a fundamental role to understand the nature of dark
energy. Dark energy has an impact on the geometry of the universe and on the growth
of structure, both of which depend on the expansion history of the universe. The
inhomogeneous large-scale distribution of matter is not directly observable because,
as mentioned, it is basically formed of dark matter. If one assumes that galaxies
are tracers of the underlying distribution of dark matter the properties of the large
scale structure of matter could be studied by observing the galaxy distribution in the
universe. This assumption is based on several plausible reasons. The most powerful
method to study both expansion history and growth of structures is through galaxy
redshift surveys, and mock galaxy catalogues are essential (calibrating errors or
exploring systematic effects) to fully exploit data from future galaxy redshift surveys.

1.2 Outline of the thesis

The first chapter summarizes the motivation of this work, introduces the different
probes to measure some cosmological parameters and describes briefly galaxy sur-
veys, in particular future photometric galaxy surveys such as DES, PAU and Euclid
in which our group is involved. The second chapter gives an idea of the state of
the art of mock galaxy catalogues and concisely presents some methods to build
them. The third chapter introduces the basics of the halo model and focuses on
the halo occupation distribution model on which the mock galaxy catalogues of this
work are based. The fourth chapter gives a brief summary of the basics of N-body
simulations and presents the Marenostrum Institut de Ciències de l’Espai (MICE)
cosmological simulations that are used to generate the mock galaxy catalogues. The
fifth chapter explains the algorithm used to build our mock galaxy catalogues, the
modifications and improvements to the method and the properties followed by the
mocks such as the luminosity function and the color-magnitude diagram3. The sixth

3The galaxy luminosity function gives the mean number density of galaxies per luminosity in-
terval and is the most fundamental statistic describing the galaxy population. The galaxy colour-
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chapter presents some checks, validations and possible scientific applications of the
generated mock galaxy catalogues such as the galaxy spatial two-point correlation
function, the large scale galaxy bias, the effects of galaxy velocities in the galaxy clus-
tering and the galaxy clustering at the BAO scales. The seventh and last chapter
deals with the conclusions and future work.

1.3 Cosmological probes

This section describes some of the techniques used to constrain various parameters
that govern the universe: CMB anisotropies, Ia-type Supernovae (SNe), weak lens-
ing shear, cluster counts, the matter two-point correlation function, redshift space
distortions and baryon acoustic oscillations.

1.3.1 Cosmic microwave background (CMB)

One of the most powerful probes of Cosmology is the comic microwave background
radiation (CMB). According to the standard cosmological model it is the radiation
that originated at an early stage in the development of the universe. It consists of
photons that last interacted with matter when recombination occurred (at z ≈ 1000).
Along time photons travel and get colder and nowadays they are at a very low tem-
perature, T = 2.728K. This electromagnetic radiation is remarkably uniform over
the sky. The origin of the structures we observe in the universe is assumed to come
from inhomogeneities at a very early stage of the universe. These inhomogeneities
induce (small) anisotropies in the temperature of the CMB. In 1992 the COBE
satellite first detected these temperature fluctuations (with an amplitude of about
∆T/T ∼ 2 × 10−5). To describe the statistical properties of the CMB anisotropies
the two-point correlation function of the temperature on the whole sky is commonly
employed, in the same way as it is used to study density fluctuations of galaxies.
Since temperature fluctuations are defined in a sphere, spherical harmonics work
analogously to the Fourier modes in a flat space. The power spectrum of temper-
ature fluctuations describes the amplitude of the fluctuations on an angular scale
θ ∼ π/l, where l is the fluctuation mode. Figure 1.3 shows the angular power spec-
trum of the CMB measured after 7 years of WMAP. These data are consistent with
a cosmological model where the universe is flat and formed of a dark energy com-
ponent that provides 73% of the total density of the universe, another 23% of the
density is dark matter and only 4% of the density is ordinary matter. In addition,
and not less curious, only 0.5% is composed of stars.

By itself, the angular power spectrum of the temperature fluctuations can con-
strain many of the cosmological parameters. In fact, CMB anisotropies depend
on nearly all cosmological parameters, so in principle, by comparing the angular
distribution of the CMB with theoretical expectations all these parameters can be
determined.

magnitude diagram shows the relationship between luminosity or absolute magnitude and galaxy
colour.
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Figure 1.3: Angular power spectrum of the temperature fluctuations with 7 years of WMAP
full-sky map. Source: http://map.gsfc.nasa.gov/. Credit: NASA Web Page.

1.3.2 Supernovae SNe Ia. Relation between distance and velocity

Type Ia Supernova (SNe Ia) are supposed to be the result of an explosion of a white
dwarf that has crossed the critical mass threshold (Chandrasekhar limit) by accreting
mass from a companion star (see review from Hillebrandt & Niemeyer 2000). The
assumption is that this threshold should be the same for all type Ia Supernovae, and
therefore all these objects have approximately the same intrinsic luminosity. If this is
the case SNe Ia would be an ideal candidate for standard candles4. After correcting
their light curves using an empirical correlation found between the peak luminosity
and the width of the light curve SNe Ia become standardized candles.

Since the observed flux of a source depends on its luminosity, L, and its luminosity
distance, dL, which also depends on the cosmological model (and of course redshift),
one can determine cosmological parameters by measuring the luminosity distance
as a function of redshift. Different cosmological models with different values of
Ωm and ΩΛ predict different forms for the relation. Models with ΩΛ 6= 0 tend to
have luminosity distances that are larger at any given redshift and therefore objects
appear systematically fainter than one would expect without dark energy. In order
to detect deviations from the Hubble flow many SNe Ia in a wide range of redshift
are necessary. Current data favour a universe dominated by dark energy. SNe Ia
observations combined with CMB data provide the tightest constraints on the dark
energy equation of state and by themselves are currently the best established probe
of dark energy. Figure 1.4 shows the Hubble diagram for 557 SNe.

1.3.3 Weak gravitational lensing

When light passes through or near a mass distribution, according to general relativity,
it suffers a deflection. If the deflection is strong this effect can produce giant arcs
or multiple images. In the case of weak lensing the effect only produces distortions
in the observed shapes of galaxies (Bartelmann & Schneider 2001, Schneider 2006,

4A standard candle is an astronomical object with known intrinsic luminosity.
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Figure 1.4: Upper panel: Hubble diagram for 557 SNe. The solid line represents the best-
fitted cosmology for a flat universe including the CMB and BAO constraints. Colors represent
different data sets. Lower panel: Hubble diagram residuals where the best-fitted cosmology
has been subtracted from the light-curve shape and color corrected peak magnitudes. The
gray points show the residuals for individual SNe, while the black points show the binned
values in redshifts bins of 0.05 for z < 1.0 and 0.2 for z > 1.0. The orange points show the
previously unpublished SNe introduced in the work of Amanullah et al. 2010. The dashed
lines show the expected Hubble diagram residuals for cosmological models with w±0.1 from
the best-fitted value. Figure from Amanullah et al. 2010.

Munshi et al. 2008 for reviews). Light from distant galaxies gets deflected on the
way to us by the mass distribution in between. Therefore, images of high-redshift
sources suffer shear (stretching of the galaxy image) and magnification (ratio of the
image area to the source area) because of gravitational lensing due to fluctuations of
the gravitational potential. These effects, shear and magnification, can be related to
the underlying density field of the large scale structure. Weak gravitational lensing
provides a way of measuring the mass of astronomical objects without making any
assumption about their composition or dynamical state.

To describe the distortion between a lensed and an unlensed system it is common
to use a Jacobian matrix of this form:

Aij =
∂θSi
∂θj

=

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
(1.1)

where θSi are the angular coordinates of the source and θj are the observed angles,
κ is the convergence that is the responsible for the image size and γ = γ1 + iγ2 is
the complex shear and controls the distortion of the shape. If one can measure the
distortion or the ellipticity of observed galaxies, one can estimate the corresponding
shear field via the following formula (Bartelmann & Schneider 2001):

ǫ =
ǫS + g

1 + g∗ǫS
(1.2)
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where ǫ is a complex quantity that represents the observed ellipticity of a galaxy, ǫS
is the source ellipticity and g = γ/(1 + κ) is the reduced shear. Since the intrinsic
ellipticity is unknown, one has to measure as many as galaxy ellipticities as possible
to average and infer the shear. If one assumes that galaxies are randomly oriented,
then 〈ǫ〉 = g. Convergence and shear are related to the deflecting or gravitational
potential via:

Aij − δij = 2

∫ χ

0
dχ′ r(χ− χ′)

r(χ)r(χ′)
∂2φ(χ′, r(χ′)θ)

∂θi∂θj
(1.3)

where χ is the comoving distance to the source and r(χ) is the corresponding coor-
dinate distance. Cosmologists estimate from observations the angular shear power
spectrum as a function of the multipoles, Pγ(l). One can derive Pγ(l) from equation
1.3 applying the Poisson equation and assuming the Limber approximation following
Bartelmann & Schneider 2001:

Pγ(l) =
9H4

0Ω
2
m

4

∫ ∞

0
dz
W (z)(1 + z)2

H(z)
Pδ

(
l

r(z)
, z

)
(1.4)

where W (z) is a weighting function, which depends on the source-distance distribu-
tion, and Pδ is the power spectrum of the density fluctuations.

1.3.4 Cluster counts

Another method used to constrain cosmological parameters comes from the study of
the number of clusters of galaxies. Clusters of galaxies are the biggest gravitationally
bound structures in the universe. The mass function of galaxy clusters5 provides an
effective method for constraining cosmological parameters (Press & Schechter 1974,
Peebles 1993). The number of objects above a mass per unit comoving volume, can
be predicted theoretically and depends on dark energy in two aspects, first geomet-
rically through the comoving volume element, and second through the growth of
the amplitude of the density perturbations, on which the cluster abundance depends
exponentially.

The main issue is that one cannot directly observe the mass of a cluster, instead
one has to estimate it using different methods. The simplest method is using stellar
light and assuming a mass-to-light ratio. The first mass estimates were based on the
velocity dispersion along the line-of-sight of the galaxies of the cluster and assuming
that clusters are relaxed and in virial equilibrium. X-ray emission from hot ionized
gas inside the cluster permits one to measure the temperature of the gas and one can
estimate the mass assuming (again) that the cluster is in virial equilibrium. Weak
gravitational lensing also permits one to derive the mass of the cluster. When light
from farther away galaxies passes near a cluster, gravity generates a slight apparent
distortion in the shape of the galaxies. One can derive the mass of the cluster by
measuring the average shape of background galaxies in different annuli around the
cluster and measure the surface mass profile of the cluster. In addition, the richness

5The galaxy cluster mass function defines the mean number density of galaxy clusters as a
function of its mass.
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of a cluster, given the number of galaxies inside the cluster, can be used as a measure
of the cluster mass once a richness-mass relation is calibrated, e.g. by weak lensing
measurements (Rozo et al. 2009).

Since galaxy clusters are assumed to be the high peaks of the initial density
perturbations on comoving scales of 10 Mpc/h, their abundance is sensitive to the
amplitude of the fluctuation power spectrum on those scales. Press & Schechter
1974 showed that the number density of galaxy clusters of a given mass provides a
constraint on σ8Ω

γ
m, where σ8 is the r.m.s. fluctuation amplitude within a sphere

of 8 Mpc/h radius, Ωm is the matter density parameter, and the exact value of the
exponent γ depends on the mass range of the haloes that are considered.

1.3.5 The two-point correlation function and the power spectrum
of matter

The two-point correlation function and the power spectrum are two complementary
statistical methods that describe the spatial distribution of the matter density of
the universe. The two-point correlation function is used to describe the clustering of
galaxies. It is defined as the excess probability of finding a galaxy at some distance
away from another galaxy. Another way of thinking about it is how different is the
spatial distribution of galaxies from that if galaxies were random distributed. If the
average number density of galaxies is n̄, the probability of finding a galaxy in the
volume element dV around x̄ is then (following Schneider, P. 2006):

P1 = n̄dV, (1.5)

independent of x̄ if we assume that the universe is statistically homogeneous.

The probability of finding a galaxy in the volume element dV at a location x̄ and
at the same time finding another galaxy in the volume element dV at location ȳ is
then:

P2 = (n̄dV )2 [1 + ξg(x̄, ȳ)] (1.6)

Equation 1.6 defines the two-point correlation function or autocorrelation of galaxies
ξg(x̄, ȳ).

The two-point correlation function when dealing with variations in the density
field, δ(x) = (ρ(x)/ρ̄) − 1 (where ρ(x) is the density at position x, ρ̄ is the average
density field), is defined as:

ξ(r) = 〈δ(x)δ(x + r)〉 (1.7)

There exist several methods to statistically estimate ξ(r). The idea is to count
the number of pairs of galaxies at a given distance in a box of a given size. One of
the problems with these techniques is the underestimation of pairs for those galaxies
placed near the boundary of the box. The simplest method, proposed by Peebles &
Hauser 1974 to correct for that problem, is given by the expression:

ξ̂g(r) =
DD(r)

RR(r)
− 1 (1.8)
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where DD(r) is the number of pairs of galaxies and RR(r) is the number of pairs
of random points (placed in the same volume as the galaxies), each in the range
[r, r + dr].

Davis & Peebles 1983 presented another improvement for the estimator using

ξ̂(r) =
DD(r)

DR(r)
− 1 (1.9)

where DR(r) is the number of pairs between galaxies and random points.
Other estimators were introduced by Hamilton 1993 and Landy & Szalay 1993:

ξ̂Ham(r) =
DD(r)RR(r)

(DR(r))2
− 1 (1.10)

ξ̂LS(r) =
DD(r)− 2DR(r) +RR(r)

RR(r)
− 1 (1.11)

Kerscher et al. 2000 made a fair comparison of nine of the most important esti-
mators known for the two-point correlation function. They recommend the Landy
& Szalay estimator in comparison with the other indicators. At small scales all the
estimators are comparable.

An alternative (an equivalent) method to describe the statistical properties of
the structure of the universe is the power spectrum, P (k). It describes the power
of fluctuations on different scales in k-space. To relate ξ(r) to P (k), first of all we
define the Fourier transform pair for δ(r) (following Longair 1998):

δ(x) =
V

(2π)3

∫
δke

−ikxd3k (1.12)

δk =
1

V

∫
δ(x)eikxd3x (1.13)

Using Parseval’s theorem to relate the integrals of squares of δ(x) and its Fourier
transform δk:

1

V

∫
δ2(x)d3x =

V

(2π)3

∫
|δk|2d3k (1.14)

|δk|2 is the power spectrum of the fluctuations, P (k) = |δk|2, therefore:

〈
δ2k
〉
=

V

(2π)3

∫
|δk|2d3k =

V

(2π)3

∫
P (k)d3k (1.15)

The two-point correlation function is spherically symmetric so the volume ele-
ment of k-space can be written as d3k = 4πk2dk,

〈
δ2k
〉
=

V

(2π2)

∫
|δk|2k2dk =

V

(2π2)

∫
P (k)k2dk (1.16)

The density field can be expressed as a sum via:

δ(x) =
∑

k

δke
ikx (1.17)



1.3. COSMOLOGICAL PROBES 11

Since δ(x) is a real function, we can write |δ(x)|2 = |δ(x)δ∗(x)| where δ∗(x) is the
complex conjugate of δ(x). From eq. 1.7 and taking into account that cross terms
all vanish in the summation except for those for which k = k′,

ξ(r) =

〈
∑

k

∑

k′

δkδ
∗
k′e

−i(k−k′)xeik
′x

〉
=
∑

|δk|2eikr (1.18)

We now convert the summation into a Fourier integral:

ξ(r) =
V

(2π)3

∫
|δk|2eikrd3k (1.19)

Finally, since ξ(r) is a real function, the two-point correlation function is spher-
ically symmetric, and defining the power spectrum as P (k) = |δk|2 we obtain the
final relation between the two-point correlation function and the power spectrum of
the matter density fluctuations:

ξ(r) =
V

(2π)3

∫
P (k)

sin(kr)

kr
4πk2dk (1.20)

Therefore, one is able to determine the power spectrum of a sample of galaxies
by deriving the two-point correlation function of the galaxies. In the framework of
Cold Dark Matter models (CDM), the power spectrum of density fluctuations can be
predicted under several assumptions (Newtonian framework and linear perturbation
theory in the matter dominated era of the universe) except for its normalization,
which has to be measured empirically. In order to estimate the matter power spec-
trum of the universe from the galaxy power spectrum it is necessary to assume a
relation between (dark) matter and galaxies. If galaxies trace the distribution of
dark matter, the power spectrum can be determined from the galaxy distribution.
Since the formation and evolution of galaxies is not yet a well understood process,
the simplest relation between galaxies and dark matter is a linear bias factor:

δg ≡
∆n

n̄
= b

∆ρ

ρ̄
= bδ (1.21)

The bias factor is the ratio of the relative overdensities of galaxies to dark matter.
Such a linear relation is not justified by theory, but it is a reasonable assumption on
scales where the density field is linear. The bias factor should depend on redshift,
galaxy type and the scales that are considered.

If one assumes that galaxy bias does not depend on the scale, the shape of the
dark matter power spectrum can be determined from the galaxy power spectrum.
The shape depends on the shape parameter Γ = hΩm (in the CDM models frame-
work). One can compare the shape of the power spectrum of galaxies with that of
the CDM models and obtain a value for Γ.

1.3.6 Baryon acoustic oscillations

The same oscillatory structure found in the angular power spectrum of the CMB is
also present in the power spectrum of the matter distribution (with a much smaller
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amplitude). Before the universe became neutral, baryons, photons and electrons
were coupled. The oscillations of this plasma due to gravity and radiation pressure
travelled as sound waves. At the time of recombination the oscillations of the plasma
stopped. The sound waves provide a feature of known size in the structure of mat-
ter and galaxies. The fundamental mode of the sound waves of the oscillations was
imprinted on the matter distribution and is now visible as a bump in the correla-
tion function or as tiny wiggles (called baryon acoustic oscillations (BAO)) in the
galaxy power spectrum. This fundamental mode is given by the sound horizon at
recombination (z ≈ 1100):

s =

∫ trec

0

cs
H(z)

dz ∼ 150Mpc (1.22)

where cs is the sound speed of the baryon-photon fluid, trec is the time of recombi-
nation and H(z) is the Hubble expansion rate.

This fundamental mode has been detected in the large-scale correlation function
of galaxies (Eisenstein et al. 2005, Cole et al. 2005). Figure 1.5 shows the two-
point correlation function measured from a spectroscopic sample of luminous red
galaxies from the SDSS. There is a peak at 100 Mpc/h which agrees perfectly with
the predicted shape and location of the imprint of the recombination-epoch acoustic
oscillations on the low-redshift clustering of matter. Gaztanaga & Cabre 2008 studied
the bidimensional galaxy correlation function ξ(π, σ), separated in perpendicular σ
and line-of-sight π distances of 75000 LRG galaxies. They find a significant detection
of the BAO peak at r ∼110 Mpc/h. Figure 1.6 shows the bidimensional galaxy
correlation function, ξ(π, σ), where the BAO peak appears as a circular ring.

In order to explain how standard rulers6 can be used to constrain cosmological
parameters, first it is useful to define some common cosmological distance definitions.

The line-of-sight comoving distance, χ, is defined by the expansion history of
the universe. It is the distance between two objects that remains constant with the
expansion of the universe,

χ =

∫ t0

t

cdt′

a(t′)
=

∫ 1

a

cda′

a′2H(a′)
=

∫ z

0

cdz′

H(z′)
(1.23)

where a(t) is the scale factor of the universe as a function of time, c is the speed of
light in a vacuum and H(z) is the Hubble expansion rate.

The angular diameter distance, dA, is defined as the ratio of the transverse phys-
ical size of an object to its angular size in radians:

dA =
l

θ
=

DM

1 + z
(1.24)

where DM is the transverse comoving distance, which is also defined as the distance
separating two objects at the same redshift but separated on the sky:

DM =





c
H0

√
Ωk

sinh [
√
Ωk

χH0

c ] for Ωk > 0

χ for Ωk = 0
c

H0

√
Ωk

sin [
√

|Ωk|χH0

c ] for Ωk < 0

(1.25)

6Standard rulers are astronomical objects or features whose approximate size is known.
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where Ωk is the spatial curvature density. The luminosity distance, dL, is defined as:

dL ≡
√

L

4πS
(1.26)

where L is the bolometric luminosity7 and S is the bolometric flux. dL can also be
expressed as a function of χ or dA:

dL = (1 + z)χ = (1 + z)2dA (1.27)

Standard rulers, (χ), can be used to derive the angular diameter distance, dA,
by using the subtended angle by the ruler, θ:

θ =
χ

dA(z)
dA(z) =

dL(z)

(1 + z)2
=

1

1 + z

∫ z

0

dz′

H(z′)
(1.28)

By measuring the redshift interval (∆z) associated with this distance one can
map out the Hubble parameter, H(z):

c∆z = H(z)χ (1.29)

Figure 1.5: Two-point correlation function in redshift-space of the SDSS LRG sample. Ver-
tical axis mixes logarithmic and linear scalings. The inset panel shows a zoom view with
linear vertical axis in order to better note the interest region where BAO peak appears.
Coloured lines represent different cosmological models: Ωmh

2 = 0.12 (top green), 0.13 (red),
0.14 (bottom blue, with peak). Magenta line represents a pure CDM model (Ωmh

2 = 0.105)
with no acoustic peak. The bump at 100 Mpc/h scale is statistically significant. Figure from
Eisenstein et al. 2005.
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Figure 1.6: Two-point correlation function from LRG SDSS measurements for a slice at
z = 0.15− 0.30. The vertical axes shows radial direction, π, while the horizontal axes shows
the transverse direction σp. Data shows a prominent BAO ring at radius of about 110 Mpc/h
Figure from Gaztanaga & Cabre 2008.

1.3.7 Redshift space distortions

Redshift space distortions (RSD) are caused by the peculiar velocities of galaxies
not associated to the Hubble flow. When measuring galaxy redshifts, the velocity
of a galaxy is the superposition of the Hubble flow velocity and its peculiar velocity
v along the line-of-sight. Deviations from the Hubble flow are caused by local den-
sity fields, and such fields are in turn generated by local density fluctuations. The
observed redshift of a galaxy is therefore given by the expression:

cz = H0d+ v (1.30)

One expects that the correlation function of galaxies is not isotropic in redshift
space, however the angular position of the galaxies is not affected by the peculiar
velocity.

There are two important contributions to the radial displacements caused by
peculiar velocities. The first one, on large scales, is due to coherent bulk motion.
One can see bigger voids and denser walls that produce a squashing effect along the
line-of-sight in the two-point correlation function. This effect is known as the Kaiser
effect (Kaiser 1987). The second, at small scales, is produced by random velocities
inside clusters and groups of galaxies which create a radial stretching. This effect
is known as the Fingers-of-God. When one is computing the correlation function,
ξ(r), in redshift space it is common to decompose distance between galaxy pairs, r,

7The bolometric luminosity or magnitude refers to the luminosity of an object taking into account
all electromagnetic wavelengths.
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into two components, a line-of-sight component, π, and a transverse component, σp.
The transverse component, σp, is a true measure of distance while π is distorted.

Figure 1.7: Two-point correlation function from 2dFGRS. The vertical axes shows radial
direction, π, while the horizontal axes shows the transverse direction σ. Figure from Peacock
et al. 2001.

Developing the fluctuations of the density field using linear theory one can get
to an expression that relates the velocity field and the density field (with some
approximations for the dependence on Ωm and ΩΛ):

u(x, t) =
Ω0.6
m

4π
aH(a)

∫
d3yδ(y, t)

y− x

|y− x|3 (1.31)

Equation 1.31 shows that the velocity field can be derived from the density field. At

z ∼ 0 and defining the factor β ≡ Ω0.6
m

b , where b is the linear bias factor that relates
the galaxy density field to the matter density field, one can get to the equation:

u(x) = β
H0

4π

∫
d3yδg(y)

y− x

|y− x|3 (1.32)

The anisotropy caused by peculiar velocities in the two-point correlation function
is now caused by this correlation between the density field δg(x) and the velocity
field u(x). If one measures the correlation function in both components, radial and
transverse, the parameter β can be determined at large separations where the Kaiser
effect emerges and depends directly on β. However, one has to take into account
that galaxies do not perfectly follow the velocity field, instead they have a velocity
dispersion, σ, at small scales due to gravitational interactions around the velocity
field (as predicted by linear theory). Therefore the derived value of β is related to
σ. One can model the two-point correlation function using different values of β and
σ and determine both parameters.
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1.4 Galaxy surveys

1.4.1 General Description

The main objective of galaxy surveys is to measure the positions of distant galax-
ies. Thinking naively, one would like to derive the positions of every galaxy in the
universe with infinite accuracy (it could be named the Last Galaxy Survey or LGS).
Being more realistic, one can attempt to get the redshifts of as many galaxies as
possible in a determined region of the sky. There are, in principle, two main possi-
bilities of deriving the redshift of a galaxy, using spectroscopy or using photometry.
Spectroscopic surveys can measure galaxy redshifts with a very high precision com-
pared to photometric surveys. On the other hand, obtaining spectra takes much
more time than obtaining photometry. Moreover, in order to get the spectroscopic
spectra one needs the position (in angle) of the galaxies where the spectroscopic in-
strument will be pointed. As in many other branches of Astronomy, redshift surveys
evolve with the development of technology. In the early 1980s, with the introduction
of the charge-couple devices (CCDs), optical detectors experienced a very important
improvement in sensitivity and accuracy. In the beginning only one or very few
galaxies were recorded simultaneously, as it was only possible to use a single slit in
the spectrograph. It was also a great advance when the multi-spectrograph was in-
troduced and the spectra of many objects (up to thousand) in the field of view of the
telescope could be observed at the same time. The first redshift galaxy survey was
completed in 1982 at the Center for Astrophysics (CfA), the CfA Survey. The CfA
Survey measured radial velocities of about 14000 galaxies up to redshift cz∼15000
km/s. Figure 1.8 shows the first slice of CfA Survey, where galaxies actually appear
to be distributed in space in a manner that is anything but random.

Figure 1.8: First CfA strip. Source: https://www.cfa.harvard.edu/∼dfabricant/huchra/zcat/.
Credit: John Huchra.
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In 1991, Las Campanas Redshift Survey (LCRS) measured the redshift of 26418
galaxies from an area of 700 square degrees in six strips of 1.5 deg× 80 deg, three each
in the North and South galactic caps up to z = 0.2. The goal of the survey was to
provide a large galaxy sample with properties such as the clustering and luminosity
in the local universe. In figure 1.9, the distribution of galaxies is displayed and
it shows the typical bubble structure. Because of the volume covered one can see
that no structures exist with scales comparable to the extent of the survey. Using
targets from the IRAS satellite, which compiled the first infrared map of the sky
at 12, 25, 60 and 100 µm, various different redshift surveys such as QDOT and
PSCz were performed. The difference with optical surveys is that these galaxies are
nearly unaffected by Galactic absorption. The PSCz, as an “all-sky” survey, shows
the galaxy distribution in a sphere around us. The Canada-France Redshift Survey
(CFRS), performed at the Canada-France-Hawaii Telescope, using a multi-object
spectrograph (up to 100 objects simultaneously) compiled the redshifts of over 1000
faint galaxies (17.5 6 I(AB) 6 22.5) with a median redshift of about 0.5. After the
first galaxy redshift surveys, cosmologists thought about the production of bigger
surveys with two main goals: extending the volume will improve the statistics of the
galaxy distribution and also higher redshifts will provide more information to study
galaxy evolution.

The Two-degree-Field Galaxy Redshift Survey (2dFGRS), is a spectroscopic sur-
vey that measured the spectra of a total number of 232155 galaxies between 1997 and
2002 from the 3.9m Anglo-Australian Telescope at the Anglo-Australian Observa-
tory (AAO) using a spectrograph that can simultaneously measure 400 spectra. The
area covered was about 1500 square degrees from the north and the south galactic
poles taking targets sources from the previous Automated Plate Measuring catalogue
(APM). Figure 1.10 shows the large scale structure, with filaments and voids, of the
2dF galaxy redshift survey. This survey measured the density parameter of non-
relativistic matter. It detected the baryonic acoustic oscillations and it measured
the contribution of massive neutrinos to dark matter.

The Sloan Digital Sky Survey (SDSS) is an imaging and spectroscopic survey. It
was performed at the Apache Point Observatory in New Mexico using a dedicated
2.5 m optical telescope. The field of view of the camera covers 1.5 degrees of sky. It
uses a new photometric system with 5 filters (u, g, r , i and z) built such that their
transmission curves have a very little overlap. Using this photometric information,
targets were selected to measure their spectra with a multi-object spectrograph of
640 optical fibers. During eight years of operation it obtained more than 930000
galaxies and more than 120000 quasars from over a quarter of the sky. The volume
of the collected data is huge and its management and reduction required an extraor-
dinary effort. It is one of the most influential surveys in history and it will continue
operating until 2014. Among many discoveries some science highlights, which have
to do with this work, made by the SDSS are: a detailed characterization of small and
intermediate scale clustering of galaxies, precision measurements of large scale clus-
tering and cosmological constraints, the detection of acoustic oscillation signatures
in the clustering of galaxies, mapping extended mass distributions around galaxies
with weak gravitational lensing, the demonstration of ubiquitous substructure in the
outer Milky Way, etc.
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Figure 1.9: The six fields in Las Campanas Redshift Survey. Three in each Galactic pole.
Each field is a strip 1.5o wide and 80o long. Figure from Lin et al. 1996.

Nowadays, there is a large effort to carry out large cosmological surveys to study
dark energy, in particular the projects aim to measure the history of expansion and
growth of structure with percent-level precision or higher. Albrecht et al. 2006 in the
report of the Dark Energy Task Force (DETF) described the different experimental
approaches to study dark energy and provide a quantitative framework to compare
their capabilities. More recently Weinberg et al. 2012 update the report of DETF
and review in detail the four most well stablished cosmological probes: Type Ia
supernovae, BAO, weak gravitational lensing and the abundance of galaxy clusters.
In their review one can realize the large number of projects attempting to find out
what is causing the accelerating expansion.

1.4.2 DES, PAU and Euclid

This section very briefly describes three future galaxy redshift surveys in which our
scientific group is involved: the Dark Energy Survey (DES), the Physics of the
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Figure 1.10: 2dF Galaxy Redshift Survey. Source: The 2dF Galaxy Redshift Survey Web
Page.

Accelerated Universe project (PAU) and the Euclid project. These surveys will
study the accelerating expansion of the universe besides other science that can be
done with their data. Our group has already provided mock galaxy catalogues for
PAU and DES projects. The idea is also to produce galaxy catalogues for Euclid.

The Dark Energy Survey’s main goal is to probe the origin of the accelerating
universe and understanding the nature of dark energy. It will use five filters, grizY,
which cover a spectral range from the visible to the infrared. The project aims
to detect around 300 million galaxies, 15000 galaxy clusters up to z∼1.2 and over
1000 distant type-Ia SNe. The camera, which contains 62 CCDs, will be placed at
Cerro Tololo on the Blanco telescope. The expected area covered will be 5000 deg2

composed of images of 3 deg2 on the sky. The survey will be performed over 525
nights in 5 years and the commissioning started in September 2012 and it is not fin-
ished yet. DES will combine four probes of Dark Energy: Type Ia Supernovae (SN),
Baryon Acoustic Oscillations (BAO), Galaxy Clusters (GC) and Weak Gravitational
Lensing (WL). Our group at the “Institut de Ciències de l’Espai” (IEEC-CSIC) is
involved mainly in the photometric redshift, large scale structure and simulations
science groups.
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Figure 1.11: Distribution of galaxies from the SDSS redshift survey out to redshift 0.25.
Source: Sloan Digital Sky Survey Web Page.

Figure 1.12: Lateral view of the inside of the PAUcam. The top piece is the Copper cold-piece
that maintains the CCDs at constant and uniform temperature.

The Physics of the Accelerated Universe (PAU) is a photometric redshift survey
performed to study the nature of dark energy. Its principal characteristic is the use
of 42 narrow band filters that will provide very high accuracy photometric redshifts
(σz 6 0.0035(1 + z), which corresponds to d 6 10 Mpc for the whole redshift range
of the survey). The camera will cover the electromagnetic spectra from ∼ 4500Å
up to ∼ 8500Å and will also have 5 broad band filters, ugriz which will cover from
∼ 3000Å up to ∼ 8575Å. The expected area will be 120 deg2. The camera, which
contains 18 CCDs, will have a field of view of 40 arcmin without vignetting and 60
arcmin with vignetting. It will be placed at the 4.2m William Herschell Telescope
(WHT) in La Palma. Our scientific group is involved in the whole project.

Euclid is a space mission that has been accepted as an M-class mission by the



1.4. GALAXY SURVEYS 21

European Space Agency (ESA). Euclid’s main target is to understand the nature
of dark energy and dark matter too. It will measure with very high accuracy the
accelerated expansion of the universe through different independent methods such as
weak gravitational lensing (WL) and baryon acoustic oscillations (BAO) by mapping
the large scale distribution of the dark matter. The 1.2m space telescope is planned
to be launched in 2019 and will cover 15000 deg2 (and a deep survey of 40 deg2).
It will have two instruments, VIS and NISP. The former will observe galaxies in
the visible range down to magnitude 24.5 for measuring weak gravitational lensing
and the latter will take images in the near infrared with three bands (Y, J, H)
and spectra slitless for each field of view. Our scientific group is involved in the
photometric redshift, simulations and data management science groups, and it is the
responsible of building the filter wheel for the near-infrared imaging.





Chapter 2

Mock Catalogues

Solving the problem of galaxy formation is one of the most exciting challenges in
Astrophysics. According to the current paradigm of structure formation it is well
established that galaxies are formed and reside in overdensities of the underlying dark
matter field. These overdensities are called dark-matter haloes. N-body simulations
and analytical models give a detailed picture of the abundance and clustering of
dark-matter haloes. The link between the properties of the halo population and
the galaxy population is a key ingredient in order to understand galaxy formation.
Galaxies form by the cooling and condensation of gas inside these dark-matter haloes.
Besides cooling, complicated physical properties such as star formation, merging,
tidal interactions and several feedback processes, determine galaxy formation and
its evolution. To simulate these processes and reproduce galaxy formation there
exist several methods, which by themselves, and together with other ingredients, are
used to build mock galaxy catalogues.

Mock catalogues are useful for a variety of cosmological applications such as cal-
ibrating errors or exploring systematic effects for galaxy surveys, calibrating cluster
finders and photometric redshift estimators, and, of course, learning about processes
driving galaxy evolution. Moreover they are useful for testing and improving the
models and algorithms with which they are built. There are many different ways of
building mock galaxy catalogues. This chapter is an attempt to show the state of
the art of building mock galaxy catalogues and to summarize the most important
techniques used to generate them. One could say that methods to build mock galaxy
catalogues can be separated into the ones involving N-body simulations and the ones
that do not use them. The former are more common than the latter. Methods that
do not use N-body simulations avoid the problem of managing and solving the equa-
tions of motion of a huge number of particles, which is computationally expensive.
One of the reasons why the majority of galaxy catalogues are built using N-body
simulations is because one obtains much more information about the underlying dark
matter distribution. In fact the methods that do not use N-body simulations usually
use results from N-body simulations (such as the dark-matter halo density profile
to place galaxies). For both methods, in most cases, the essential ingredients are a
correct number density and spatial distribution of dark-matter haloes.

There are, in general, three different approaches to relate haloes with galax-
ies: hydrodynamical simulations, semi-analytical models, and extensions of the halo
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model such as the conditional luminosity function (CLF) or the halo occupation dis-
tribution (HOD). Hydrodynamical simulations, which are another type of numerical
simulations in a cosmological context, study galaxy formation and evolution. These
simulations incorporate gas dynamics. The involved physics in these simulations
is more complicated than in the pure gravitational case. Unlike gravity, which is
a long range force, hydrodynamic mechanisms are important on small scales (6 1
Mpc/h), e.g. in the formation of galaxies and in linking the matter distribution
of the universe to the observed light distribution. Hydrodynamical simulations are
not going to be described in this work. Semi-analytical models attempt to simulate
galaxy formation and evolution using simple analytic prescriptions to approximate
star formation and feedback processes. We will briefly describe them in this chapter.
Extensions of the halo model like the CLF as well as other methods such as the halo
abundance matching (HAM), which are useful to build mock galaxy catalogues, will
be discussed later in this chapter.

The chapter is structured as follows: it starts by discussing methods that, in
principle, do not use N-body simulations to build galaxy catalogues followed by
methods that do use N-body simulations as input. The last section shows some
examples of catalogues used in the literature and in past, present and future galaxy
surveys.

2.1 Mock galaxy catalogues without N-body simulations

Scoccimarro & Sheth 2002 cite in their conclusions some methods developed along the
history of making mock galaxy catalogues without using as input N-body simulations:
Soneira & Peebles 1978 show an algorithm to reproduce the observed two-point
statistics at small-scales. Their method does not include velocities nor large-scale
correlations. By adjusting the parameters of the model they produce a galaxy map
that visually appears as a first approximation of the Lick survey. Coles & Jones 1991
study a model for the distribution of matter using a lognormal random field. Sheth &
Saslaw 1994 use a technique to distribute cluster centers using a Poisson distribution
and place galaxies around them following a specific recipe for the shape, the radius,
the number of particles and the radial density profile of the cluster. Bond & Myers
1996 describe a rapid Monte-Carlo method to identify collapsed structures based
on the peak-patch picture. This method attempts to distinguish “fast (nonlinear)
internal dynamics from slower (hopefully linear) external dynamics of collapsing
structures”.

Another approach to model galaxy formation, and to build mock galaxy cata-
logues, are semi-analytic models. They need a halo merger history tree and, in prin-
ciple, they do not necessary use N-body simulations. In its origin the halo merger
history tree was obtained using the extended Press-Schechter prescription1, but more
recently halo merger history trees are obtained by using N-body simulations.

In this section semi-analytic models and PTHALOS method are described.

1It will be explain in chapter 3.
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2.1.1 Semi-analytic models of galaxy formation

Semi-analytic models (SAMs) try to describe the physical processes involved in the
formation and evolution of galaxies assuming that structure grows hierarchically.
These models approximate the assumed physics that occur during the formation
and evolution of galaxies, and they offer the possibility of predicting a wide range of
properties for the galaxy population at any redshift. One of the advantages of semi-
analytic models is that they include baryon physics in a fast, transparent and easy
way in comparison with hydrodynamical simulations. However, in addition to the
cosmological parameters, SAMs, in the most general case, introduces a limited set
of free parameters because some of the processes have to be dealt empirically. These
parameters can be tuned to reasonably match the selected observational properties
such as the galaxy luminosity function. In the most complex models the number
of parameters is so large that models are non-unique and hardly are able to make
predictions. As mentioned, there exist gas dynamics simulations, which one can say
that have many aspects in common with SAMs. Gas dynamics numerical simula-
tions are helpful to refine recipes used by SAMs. Both, SAMs and gas dynamics
simulations, are complementary ways of approaching the galaxy formation problem.
At scales where gas simulations fail because of lack of resolution or because the
physical mechanisms are not (completely) understood, SAMs are used to extend the
modeling.

A summary of the galaxy formation and evolution processes within the framework
of hierarchical galaxy formation may be described as follows: initial temperature
perturbations observed in the CMB can be related to density perturbations which are
amplified by the gravitational force and collapse and form virialized structures called
dark-matter haloes. Smaller haloes form first (in all cold dark matter scenarios2),
and bigger haloes form from the collapse of smaller haloes. Gas is collisionally heated
when it collapses in the potential wells of haloes (White & Rees 1978). Inside these
haloes the gas cools through atomic line transitions (depending on the properties
of the gas) and collapses and forms rotationally supported discs (Fall & Efstathiou
1980, Dalcanton et al. 1997, Mo et al. 1998). Cold gas forms stars with a determined
efficiency depending on the density of the gas (Kennicutt 1989). The most massive
stars and SNe reheat, and maybe expel, the gas, and therefore quench subsequent star
formation (Dekel & Silk 1986). Galaxy mergers occur and trigger star bursts, galaxy
tidal disruption, or galaxy morphological modifications. From the star formation
rate history and initial mass function3, models of spectrophotometric evolution of
the stellar population provide luminosities and spectra (Bruzual 1981). If one put
all these ingredients together with the mass accretion history of dark-matter haloes,
which is represented by “merger trees” (see figure 2.1), which can be described
analytically (e.g. extended Press-Schechter prescription), one can obtain spectral
energy distributions of stellar populations as well as many other properties of the
galaxy population.

2In this scenario most part of matter in the universe is formed by components that do not interact
with electromagnetic radiation and therefore they “move” slow (cold).

3The initial mass function gives the distribution of stellar masses formed in a burst of stellar
formation (SF) in terms of the initial mass where they were formed.
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Figure 2.1: Figure from Baugh 2006. Figure shows a schematic merger tree for a dark-matter
halo. The horizontal lines represent snapshots in the evolution of the history of the halo,
corresponding to timesteps in an N-body simulation or Monte-Carlo realization of the merger
tree (t1 < t2).

Earlier semi-analytical models failed mainly in two related aspects: they formed
too many galaxies because of an overcooling/cooling problem in galaxies and clus-
ters, and they did not reproduce the observed color-magnitude diagram. Even if new
models introduce new elements to solve these problems, the approach itself still has
the inconvenient for building realistic mock catalogues due to the lack of information
regarding halo spatial and velocity distributions. New ‘hybrid’ models use merging
history trees from large very high-resolution N-body simulations to include spatial
and velocity of dark-matter haloes and subhaloes, and keep the usual semi-analytic
approach to model physics of galaxy formation assuming that baryons do not strongly
affect the dynamics of the dark matter. The first attempt in using a “hybrid” model
was made by White et al. 1987 and Roukema et al. 1997 using less than 10 snaphots
of a N-body simulation. Up to date many more models have been proposed includ-
ing new ingredients in order to match more and different observational constraints.
There are also many different codes in the literature (e.g. GALICS, GALFORM,
Galacticus, etc.). The review of Baugh 2006 summarizes some of the successes and
failures of the models and the areas in which future developments are most likely to
be made.

2.1.2 PTHALOS

Scoccimarro & Sheth 2002 present a new method, PTHALOS, to generate mock
galaxy catalogues in a faster way (orders of magnitudes ) than N-body simulations.
Galaxy evolution models divide the problem basically in two parts that in summary
are: first, dark-matter particles evolve and form virialized dark-matter haloes and
second, inside haloes, gas cools and forms stars. The first step is usually carried
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out using numerical simulations and the second step uses prescriptions to mimic
non-linear physics of gas cooling in gravitational potential wells to include star and
galaxy formation into the simulations. Scoccimarro & Sheth 2002 argue that since
the behavior of baryons inside dark-matter haloes is not completely known it is pos-
sible to obtain similar galaxy distributions without solving the equation of motion
for the dark matter due to gravitational clustering. The idea is to obtain a correct
number and space distribution of virialized dark-matter haloes without using the
computationally expensive method used in N-body simulations. PTHALOS method
combines perturbation theory with halo models of the non-linear density and velocity
fields. They claimed that the point distributions the method produces reproduce the
observed galaxy clustering statistics (the galaxy counts-in-cells, the power spectrum
and the bispectrum). They generate a realization of the large scale dark matter den-
sity field by using the second-order perturbation theory, which reproduces correctly
the two- and three-point statistics at large scales but does not reproduce correctly
the correlations at small scales. They proposed an algorithm that place and par-
tition the large scale dark matter density field created using the 2LPT into haloes
and place galaxies around them by using NFW density profiles. They claimed that
the two- and three-point statistics of the resulting fields are exact at large scales and
rather accurate in the non-linear regime, specially for two-point statistics.

2.2 Mock galaxy catalogues with N-body simulations

Most of the present galaxy catalogues are built using N-body simulations. And most
of these kind of catalogues use a halo catalogue as input. It is not important how
one obtains the halo catalogue (or no matter how one obtains a halo merger history
tree for semi-analytic models). One of the advantages of using N-body simulations is
the knowledge of space and velocity dark matter distributions. If one is interested in
producing mock galaxy catalogues with the correct clustering the essential point is
to have a halo population with the correct number density and the correct clustering.
Then, one can populate it with galaxies. The most extended approach to describe
how galaxy clustering depends on galaxy type (i.e. what we call galaxy bias), is
the halo model. If the goal is to determine the luminosity dependence of clustering
there are usually three different methods: the Halo Occupation Distribution (HOD),
the Conditional Luminosity Function (CLF) and the Subhalo Abundance Match-
ing (SHAM). There are also many catalogues that do not populate haloes but they
populate directly dark-matter particles, these catalogues are the ones that we call
dark-matter mock galaxy catalogues. This section describes some methods and ex-
amples of mock galaxy catalogues that are built using N-body simulations. CLF and
SHAM are discussed in the next sections. The HOD method will be described in
detail in the next chapter (as well as the halo model) since it is the main method we
use for generating our mock galaxy catalogues.

2.2.1 Dark matter mock galaxy catalogues

Populating N-body simulations without previously using any method to locate haloes
or overdensities is another way of generating mock galaxy catalogues. The idea is to
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put galaxies in the same place of dark-matter particles following some property of the
galaxy population. There are actually a very large number of mock galaxy catalogues
built only using dark-matter particles. In general they are built in a simple way to
follow a single property. As an example, it is easy to build a galaxy catalogue that
follows a given redshift distribution, dN

dz . By computing the probability of a particle
to be a galaxy depending on its redshift, one is able to build a realization of the
simulation that follows dN

dz .

Other methods, instead of locating haloes, also use directly the dark matter field.
For instance the ADDGALS (Adding Density Determined GAlaxies to Lightcone
Simulations) algorithm. This method relates local dark matter density to galaxy
magnitudes. It was developed by Michael T. Buscha and Risa Wechsler in order to
produce mock photometric galaxy catalogues. The algorithm is able to reproduce
the luminosity function and the luminosity dependence of the two-point correlation
function. After luminosities are assigned they add colours to galaxies in a way that
satisfies the colour-environment relation observed. This method has been developed
within the context of DES.

2.2.2 Subhalo / halo abundance matchting technique

The subhalo / halo abundance matching technique (SHAM) automatically fits the
empirical observational constraint and provides a relation that can be checked against
observations. Assuming that galaxies form from the gas falling into dark-matter
haloes or subhaloes, we know that the mass of a halo is strongly correlated with
some properties of galaxies, such as their luminosity, the star formation rate or the
stellar mass. The relation between the galaxy property and the mass of its parent
dark halo or subhalo is assumed monotonic. Using as an example the luminosity
function, one usually computes the cumulative function of the luminosity function
and the cumulative function of the halo mass function. Then one relates the most
massive halo with the most luminous galaxy, the second most massive halo with the
second most luminous galaxy and so on. Trujillo-Gomez et al. 2011a use the halo
abundance matching technique (HAM) to fit, at least on average, all basic statistics
of galaxies with circular velocities Vcirc > 80 km s−1 calculated at a radius of ∼ 10
kpc. Moreover they introduce a small scatter in the halo mass-luminosity relation
(∼ 0.15−0.2 dex in luminosity at a given halo mass) that improves the results of the
two-point correlation function of bright galaxies4. The most probably cause of the
scatter is given by differences in mass accretion histories. Up to date this technique
provides excellent agreement with a wide range of galaxy statistics, such as the two-
point and three-point correlation functions (e.g. Trujillo-Gomez et al. 2011a, Nuza
et al. 2012). Another ingredient in the relation is the time. Is this relation constant
in time? One of the ideas is that as haloes grow hierarchically, some of the galaxy
properties grow in parallel. The HOD parameters also seem to be almost constant
for a fixed number density of objects up to z ∼ 1.

4In our approach to generate mock galaxy catalogues we also have to introduce a scatter of 0.15
dex in luminosity in the relation between halo mass and galaxy luminosity for bright galaxies in
order to better fit observed galaxy clustering.
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2.2.3 Conditional Luminosity Function

The Conditional Luminosity Function (CLF) is another technique to populate dark-
matter haloes with galaxies. It is an statistical approach and one could say that it is
an extension of the so called halo occupation distribution (HOD). The HOD model
quantifies the relation between dark-matter haloes and galaxies. The HOD model
gives the probability of having Ngal (with some specific property) in a dark-matter
halo with mass Mh, P (Ngal|Mh). P (Ngal|Mh) can be constraint by using clustering
observational data. Yang et al. 2003 and van den Bosch et al. 2003 extended the
approach and presented the CLF method. The CLF technique gives the number of
galaxies that resides in a halo of massMh as a function of luminosity. The conditional
luminosity function, Φ(L|Mh), is the average number of galaxies with luminosities
in the range L± dL/2 as a function of the halo mass. Kravtsov et al. 2004 studied
the HOD and two-point correlation function of galaxy-size dark-matter haloes using
high-resolution dissipationless simulations and they found that the probability for a
halo of mass , Mh, to host a number of subhaloes, Nsh, is similar to that found in
semi-analytic and N-body + gas dynamics studies. They showed that the HOD can
be thought as a combination of the probability for a halo of mass, Mh, to host a
central galaxy, Ncen, and the probability to host a given number of satellite galaxies,
Nsat. This idea, in the context of CLF, is expressed as follows:

Φ(L|Mh) = Φcen(L|Mh) + Φsat(L|Mh) (2.1)

where Φcen(L|Mh) an Φsat(L|Mh) are the number of central galaxies and satellite
galaxies as a function of luminosity respectively. Using the CLF one can relate the
luminosity function of galaxies, Φ(L), and the halo mass function, dn

dMh
:

Φ(L) =

∫ ∞

0
Φ(L|Mh)

dn

dMh
dMh (2.2)

One can put constraints in Φ(L|Mh) with equation 2.2 but there is an infinite
number of functions that follow 2.2. Additional constraints are necessary in order
to remove degeneracies. Data from luminosity dependence of galaxy clustering are
commonly used for this purpose.

2.3 Examples of mock galaxy catalogues

This section is a compilation of some catalogues. It is an attempt to show the huge
number of different mock galaxy catalogues that exist in the literature but it is by
no means complete. Some of them are publicly available.

Cole et al. 1998 present mock galaxy catalogues for the 2dF and SDSS galaxy
redshift surveys using N-body simulations that cover a wide range of cosmologies.
They reproduce the radial selection functions and the geometry of the surveys and
also approximately reproduce clustering at small scales (1− 10 Mpc/h).

Coil et al. 2001 build mock galaxy catalogues to study the clustering within
the DEEP2 survey volume using the GIF Virgo Consortium simulations. They use
semi-analytic models (Kauffmann et al. 1999) and also produce mocks by introducing
some galaxy bias using directly dark-matter particles following Yoshida et al. 2001.
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Yang et al. 2004 build mock galaxy redshift surveys for 2dFGRS. They follow
the CLF model established by Yang et al. 2003 and van den Bosch et al. 2003 and
use a set of simulations with N = 5123 particles each.

In 2005 the Millenium Simulation project produces the largest ever simulation
of structure formation and generates mock galaxy catalogues using 2 different semi-
analytical models (De Lucia & Blaizot 2007 and Bower et al. 2006). In 2008 the
projects also generates a second simulation with 125 higher mass resolution and, in
2010, makes public new mock galaxy catalogues using an extended semi-analytical
model (Guo et al. 2011).

Croton et al. 2006 using lightcones of the Millenium simulation (Springel 2005)
and a semi-analytic galaxy model produce SDSS and DEEP2/AEGIS mock galaxy
and halo catalogues.

Li et al. 2007 present the algorithm to build mock galaxy catalogues using the
semi-analytic models and compare them to SDSS data. They also build mock galaxy
catalogues for the LAMOST project.

Huff et al. 2007 study baryon oscillations using a simple HOD prescription pop-
ulating N-body simulations.

Cai et al. 2009 describe a method to build mock galaxy catalogues using semi-
analytic galaxy formation model of Bower et al. 2006 implemented in the Millenium
N-body simulation.

Jouvel et al. 2009 build realistic galaxy spectro-photometric catalogs for future
dark energy space missions. The catalogues are built in a way that they do not use
N-body simulations. They produce two different types of catalogues. Ones that fit
observed luminosity functions and others that are based on the galaxy distribution
of the COSMOS survey.

Cabré & Gaztañaga 2011 produce mock galaxy catalogues to study BAO using
the Marenostrum Institut de Ciències de l’Espai (MICE) cosmological simulations
assigning directly galaxies to dark-matter particles in order to cover similar volume,
density and bias as the real data.

Las Damas project is a set of large dark-matter N-body simulations to follow the
evolution of large scale structure. They are designed to model the clustering of the
SDSS galaxies in a wide luminosity range. They use a HOD prescription to populate
them. They have several mocks publicly available.

Font-Ribera et al. 2012 simulate Lyα absorption spectra, that can be used to
measure large scale structure. They present a new efficient method to generate lines
of sights to the survey sources only.

Manera et al. 2012 produce 600 mock galaxy catalogues using a HOD prescription
populating a halo population generated using PTHALOS algorithm. The catalogues
are generated to compute covariance matrices of large-scale clustering and test the
methods of analysis for the Baryon Oscillation Spectroscopic Survey (BOSS).

Our scientific group also produces mock galaxy catalogues using MICE N-body
simulations. Recently, we have produced the DES-MICE galaxy catalogue. It is
constructed using HOD prescriptions by populating the halo catalogue extracted
from the MICE N4096L3072 dark-matter simulation lightcone output. It contains
more than 100 million galaxies in one octant of the sky. We include in the information
of each galaxy, in addition to the positions, magnitudes and colours, the lensing
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information also extracted from the MICE simulations. The catalogue is available
to the DES collaboration.

2.4 Summary

The importance of generating mock galaxy catalogues and their profits in cosmology
have been presented. Besides being a key tool to understand the galaxy formation
and evolution processes, the mock galaxy catalogues are essential for galaxy surveys:
calibrating errors and exploring systematic effects, calibrating photometric redshift
estimators, etc. The most important methods to produce mock galaxy catalogues,
either using N-body simulations or not, have been described. The idea of having
as input a correct and fair halo population has been stressed. Using or not N-body
simulations mainly depends on the information one wants the mock galaxy catalogue
to contain. If one uses N-body simulations to produce the halo catalogue, the output
mock galaxy catalogue will contain the clustering information. If one does not use N-
body simulations, the mock galaxy catalogue will be limited in the galaxy clustering
information. Finding out another way of including the galaxy clustering information
is not an easy task. We have also described two of the three common different
methods in order to determine the luminosity dependence of galaxy clustering, which
are the conditional luminosity function (CLF) and the subhalo abundance matching
(SHAM). The third method, the halo occupation distribution model will be analyzed
in the next chapter. Finally, a compilation of some mock galaxy catalogues, which
are built using different methods, is listed.





Chapter 3

Halo Occupation Distribution
model (HOD)

This chapter describes the HOD approach, which is the theoretical framework on
which the mock galaxy catalogues presented in this work are based. The chapter is
structured in 2 main sections. The first one is a description of the halo model, which
is a previous and necessary concept to introduce the HOD model. The motivation
of the halo model was born in order to explain the observed power spectrum and
correlation function of galaxies. A probe that was not described well by the dark
matter models. They predict a power spectrum which is too steep at small scales and
have features at intermediate scales that enter in contradiction with the observed
galaxy power spectrum that follows almost perfectly a power-law. Three common
different approaches are used to connect galaxies with dark-matter haloes. (i) The
semianalytic models (SAMs) try to describe galaxy formation and evolution using
simple prescriptions to describe star formation and feedback processes (e.g. White
& Rees 1978, White & Frenk 1991, Kauffmann et al. 1993, Cole et al. 2000, Hatton
et al. 2003, Springel 2005, Somerville et al. 2008, Benson 2012). They use dark-
matter simulations to follow the evolution of dark-matter haloes and they populate
them with galaxies using recipes depending on their formation history. Many of
the physical processes are still poorly understood which causes large uncertainties
in various recipes used to follow the formation and evolution of galaxies. It is not
computationally expensive but there are many degeneracies in the SAMs parameters.
(ii) N-body simulations with hydro-dynamics also try to understand qualitatively
galaxy properties from first principles but it is computationally too expensive to
develop cosmological simulations with enough resolution and volume (Katz et al.
1992, Evrard et al. 1994, Frenk et al. 1996, Weinberg et al. 1997, Springel & Hernquist
2003, Springel 2005, and for a review, e.g. Springel 2010). (iii) The basic halo model
of large-scale distribution of galaxies, which is discussed later in more detail, describes
galaxy formation and evolution and is a statistical approach that links galaxies with
their host dark-matter haloes.

The second section treats the HOD framework. It is not very easy to put the
limit between whether one is talking about the halo model or the halo occupation
distribution model. One could say that the HOD approach is a logical extension, or
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a component, of the halo model when one wants to relate dark matter and baryonic
matter. In order to build mock galaxy catalogues from N-body dark-matter simula-
tions one needs “something” to relate dark matter and galaxies, and the HOD model
is one of the methods that deals with this relation. Following Mart́ınez & Saar 2002,
there are several components necessary for describing dark matter clustering using
the halo model: (1) a population of virialized dark-matter haloes which samples the
large-scale linear density field (described by its power spectrum, Plin(k)), (2) a mass
density profile of the haloes, which is usually taken from simulations (e.g. NFW and
M99 density profiles which are briefly discussed later), (3) a concentration parameter
which defines how concentrated is the mass inside the halo and depends on its mass,
(4) the halo mass function, which defines the average number density of haloes of a
given mass and (5), in order to know what is the relation between the underlying
dark matter distribution and dark-matter haloes, the halo bias function, bh.

But what we actually can observe is the large scale galaxy distribution, so if one
wants to compare predictions to observations one would need some other ingredients,
which could be defined as the Halo Occupation Distribution model (HOD). This
relation between the galaxy and matter distributions (which can be called as a whole
as “galaxy bias”) is fully defined by: (6) the probability distribution, P (Ng|Mh), that
a halo of mass Mh contains Ng galaxies, (7) a relation between the galaxy and dark
matter spatial distribution and (8) a relation between the galaxy and dark matter
velocity distribution. All these ingredients will be treated in this chapter of the
thesis. They are necessary elements to build the mock galaxy catalogues if one
follows the HOD model.

3.1 Halo model

This section is mainly based on the review “Halo models of large scale structure”
wrote by Cooray & Sheth 2002. It describes the halo model approach, which is
a formalism to describe the non-linear gravitational clustering. The first work on
the idea of describing the statistics of large scale structure of dark matter like the
halo model was developed by Scherrer & Bertschinger 1991. Description of different
elements of the halo model and its relation with baryon matter can be found in
several papers (Peacock & Smith 2000, Ma & Fry 2000, Seljak 2000, Scoccimarro
et al. 2001, Sheth et al. 2001a, Sheth et al. 2001b, Cooray & Sheth 2002, Berlind &
Weinberg 2002, Yang et al. 2003, Tasitsiomi et al. 2004, Mandelbaum et al. 2005,
Mandelbaum et al. 2006, Yoo et al. 2006, Skibba & Sheth 2009, Cacciato et al.
2009, Leauthaud et al. 2011). The main idea of the approach is that all the matter
in the Universe is contained in virialized dark-matter haloes. The distribution of
matter and the distribution of velocities inside the haloes with the number and
spatial distribution of these dark-matter haloes are used to estimate the statistics
of the large scale structure of the density and velocity fields as a consequence of
the non-linear gravitational clustering. The halo model approach has the means for
modeling and interpreting many different observational probes such as the large and
small scale distribution of galaxies, which constrain the dark matter distribution,
the weak gravitational lensing, which provides a direct detection of the dark matter
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density field, the distribution of the pressure on large scales given by the Sunyaev-
Zel’dovich effect, and the signature on small angular fluctuations on the CMB of the
density, velocity, momentum and pressure fields of the dark or/and baryonic matter.

As mention above, what one can observe is the spatial distribution of galaxies
rather than dark matter. The first work on trying to describe the spatial distribution
of galaxies was made by Neyman & Scott 1952 (similar works by McClelland & Silk
1977 and Peebles 1974 to describe galaxy clustering as superposition of randomly
distributed clusters with specified profiles and a range of masses). They built a
theory based on four main assumptions: (i) galaxies occur only in clusters; (ii) the
number of galaxies varies from cluster to cluster, subject to a probabilistic law; (iii)
the distribution of galaxies within a cluster is also subject to a probabilistic law;
and (iv) the distribution of cluster centers in space is subject to a probabilistic law
described as quasi-uniform. So in order to study the statistical properties they needed
the distribution of cluster sizes, the spatial distribution of clusters and the spatial
distribution of galaxies inside these clusters of galaxies1. At that time there were
no data to infer this information. Nowadays it is assumed that most of the matter
is dark and is homogeneously and rather smoothly distributed at large scales. The
idea is that galaxies trace the underlying dark matter distribution. This complicated

relation between dark matter and galaxies is called “galaxy bias”, bg. The HOD
formalism describes the “bias” relation between galaxies and mass at the level of
individual dark-matter haloes.

Linear and higher order perturbation theory description of the gravitational evo-
lution of density perturbations (of dark matter) from Gaussian initial conditions
(there is evidence of thinking that initial perturbations were not far from a Gaussian
distribution, Guth & Pi 1982, Starobinsky 1982, Bardeen et al. 1983) have been
developed (see the review by Bernardeau et al. 2002), but they fail when one wants
to study clustering in the non-linear regime (density contrast δ & 1). Perturbation
theory does not provide a rigorous framework for describing the difference between
galaxy clustering and dark matter clustering.

Non-linear dark matter clustering has been studied using numerical simulations.
They provide information about the distribution of dark-matter particles inside the
haloes (halo density profile) using very high resolution simulations (Navarro et al.
1996, Moore et al. 1999) and they also describe the evolution of large scale struc-
tures such as filaments, voids, clusters and haloes (e. g. Jenkins et al. 2001, Crocce
et al. 2010) using simulations with larger volume such as, for exemple, the Marenos-
trum Institut de Ciències de l’Espai simulations (MICE) (Fosalba et al. 2008) or the
Hubble Volume simulations (Thomas et al. 1998). The approach where every mass
in the universe is contained in haloes is becoming very interesting since the idea of
galaxies are formed inside dark-matter haloes is the most reliable. White & Rees
1978 proposed a galaxy formation model in which dissipation plays a role as well as
purely gravitational processes. The galaxy formation takes place in two stages, the
distribution of the dominant mass component on all scales arises from purely grav-
itational clustering and the observed sizes and luminosity functions of galaxies are
defined by gas-dynamical dissipative processes. Structure is formed in a hierarchical

1Galaxies were treated as discrete points in order to derive statistical properties
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way, starting from little objects that merge and form bigger structures. Gas inside
the resulting potential wells cools, collapses and forms galaxies.

In the halo-based description, one of the most important things to remember, is
that physical properties of galaxies are completely determined by the halo in which
they are formed. In the work of White & Rees 1978 galaxies of different type are
formed in different haloes, so the halo model provides a natural way of explaining
galaxy clustering as a function of the galaxy type. Assuming that galaxies are bias
tracers of the underlying dark matter distribution one can assume that physical
properties of galaxies in a volume (e.g. velocity) can tell us information about the
content of dark matter in the same volume. The halo model assumes that haloes are
in a state of virial equilibrium and therefore one can also inferred physical properties
of galaxies for any given halo.

As mentioned before the approach considers that all the mass in the universe
is contained into different entities, which are usually called dark-matter haloes, or
simply haloes. If these units can be distinguished it is reasonable to assume that
they are small in comparison with the common separation between them. One can
then infer that the statistics of the mass density field on small scales are basically
governed by the distribution of matter inside the halos. The spatial distribution of
haloes is not relevant for the statistics at small scales. Similarly halo mass density
profiles are not relevant at scales larger than the size of a typical halo. Therefore
the most important thing on the large scale structure is the spatial distribution of
the haloes. Moreover, the halo model assumes that even physics can be separated
into two regimes. Physics from scales larger than the typical size of a halo are
described by the linear perturbation theory. And physics inside the haloes can be
inferred since the model assumes that the haloes are in a state of virial equilibrium.
There is a key point in this approach, the transition from physics inside haloes and
physics between haloes. This limit is given by the definition of the halo. There are
several ways of defining a dark-matter halo in numerical simulation and it is not
straight forward (e.g. Anderhalden & Diemand 2011). The two main definitions
come from the spherical overdensity method (SO, e.g. Warren et al. 1992) and the
friends-of-friends algorithm (FoF, e.g Davis et al. 1985a).

In oder to build the mock galaxy catalogues it is necessary to know the spatial
distribution, the abundance, the bias and the mass density profile of haloes. These
properties will be described in the next sections.

3.1.1 Spatial distribution of haloes

To visualize the two regimes, the one inside haloes and the one between haloes,
one can use the two-point correlation function of dark-matter haloes. The two-
point correlation function of any distribution of particles refers to the two-point
autocorrelation function. It measures how the particles are distributed with respect
to an hypothetical random distribution of particles, and is given by the expression:

ξ(r) ≡< δ(x)δ(x + r) > (3.1)
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where

δ(x) =
ρ(x)− ρ

ρ
(3.2)

and δ(x) is the density contrast at the position x, and ρ(x) and ρ are the density at
the position x and the mean density respectively. The two-point correlation function
of haloes can be divided into 2 terms:

ξ(r) = ξ1h(r) + ξ2h(r) (3.3)

The 1-halo term takes into account contributions to the density that come from the
same halo and the 2-halo term takes into account contributions to the density that
come from different haloes. They can be expressed as:

ξ(r)1h =

∫
dm

m2n(m)

ρ2

∫
d3x u(x|m) u(|x+ r||m) (3.4)

ξ(r)2h =

∫
dm1

m1n(m1)

ρ

∫
dm2

m2n(m2)

ρ
·

·
∫
d3x1 u(x1|m1)

∫
d3x2 u(x2|m2) ξhh(|x1 − x2 + r||m1,m2)

(3.5)

where n(m) is the mean number density of haloes as a function of m and u(r|m) is
defined as the normalized density profile of a halo as a function of distance from its
center for a given halo of virial mass,

u(r|m) ≡ ρ(r|m)

m
, (3.6)

which by definition satisfies
∫ rvir(m)
0 d3xu(x|m) = 1. According to equations 3.4 and

7.2, in order to compute the correlation function one also needs the abundance, and
spatial distribution of haloes and their density profile depending on the halo mass.
Eq. 3.4 is just the convolution of two similar profiles of shape u(r|m), weighted by
the total number of pairs contributed by halos of mass m. To derive the 2-halo term
is more complicated and moreover it requires the two-point correlation function of
halos of mass m1 and m2, ξhh(|x1 − x2 + r||m1,m2). However if one assumes that
the profiles are very sharp, one can model them as delta functions, so integrals over
x1 and x2 yield ξhh(r|m1,m2). On large scales one can assume that the halo bias
is linear and therefore the two-point correlation function of haloes of mass m1 and
m2 is related to the two-point correlation function of the underlying dark matter
distribution in this manner:

ξhh(r|m1,m2) ≈ b(m1)b(m2)ξDM (r) (3.7)

where ξDM (r) is the two-point correlation function of the dark matter. Now ξDM(r)
can be taken outside of the integrals over m1 and m2, making integrals separa-
ble. Thus, the two-point correlation function of haloes at large scales (scales much
larger than the typical halo) is well approximated by the two-point correlation func-
tion of the dark matter distribution, ξ2h(r) ≈ ξDM(r). Moreover, on large scales,
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ξDM ≈ ξlin(r), and the 2-halo term become very simple, ξ2h(r) ≈ ξlinDM (r). Using
the approximation of linear halo bias, ξhh(r|m1,m2) ≈ b(m1)b(m2)ξDM (r), will over-
estimate the value of the two-point correlation function of haloes on intermediate
scales. On small scales, due to the so-called “halo exclusion” (haloes are spatially
exclusive, haloes are like hard small billiard balls) the halo-halo correlation func-
tion must eventually turn over. Assuming that the two-point correlation function of
haloes scales like ξDM(r) at small scales is a large overestimate. Nevertheless using
ξhh(r|m1,m2) ≈ b(m1,m2)ξ

lin
DM (r), i.e., using the linear rather than the non-linear

correlation function, even on the smallest scales, is a crude but convenient way of
accounting for this overestimate. This assumption is not very relevant because at
small scales the main contribution comes from the 1-halo term anyway.

At this moment it is convenient to say that the easiest way of working on these
two-point statistics is the Fourier space. Convolutions in real-space density pro-
files become simple multiplications in the Fourier transforms of the halo profiles.
Therefore, in Fourier-space one can write:

P (k) = P 1h(k) + P 2h(k) (3.8)

where

P 1h(k) =

∫
dmn(m)

(
m

ρ̄

)2

|u(k|m)|2 (3.9)

P 2h(k) =

∫
dm1n(m1)

(
m1

ρ̄

)
u(k|m1)

∫
dm2n(m2)

(
m2

ρ̄

)
u(k|m2)Phh(k|m1,m2)

(3.10)
where u(k|m) is the Fourier transform of the dark matter distribution within a halo
of mass m, which for spherically symmetric profiles truncated to the virial radius is
given by:

u(k|m) =

∫ rvir

0
dr4πr2

sin kr

kr

ρ(r|m)

m
(3.11)

and Phh(k|m1,m2) is the power spectrum of haloes of mass m1 and m2. One can
also approximate it, like discussed before for the two-point correlation function, as 2

P hh(k|m1,m2) ≈
2∏

i=1

bi(mi)P
lin(k) (3.12)

Figure 3.1 shows the two-point correlation function for different halo mass thresh-
olds of the halo catalogue derived from the Grand Challenge run of the MICE simu-
lations3. One can realize in the figure that there are no haloes closer than a certain
distance. It depends on the mass. The bigger the halo the bigger the distance. This
is the already mentioned characteristic of the halo exclusion.

2The one-loop perturbation theory estimate of the power spectrum of dark matter may be more
accurate than P lin(k).

3see chapter 4 of Cosmological Simulations.
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Figure 3.1: Two-point correlation function of dark-matter haloes for different halo mass
thresholds of the MICE Grand Challenge run.

The halo model approach can also model higher order clustering such as the
bispectrum and the trispectrum but they are not the scope of this work and they
are not going to be discussed here.

3.1.2 Halo abundance

The mean number density of haloes as a function of their mass is given by the halo
mass function. These haloes are formed in a hierarchical way, little objects start
first and then by merging bigger structures are formed. In order to understand the
structure evolution it is necessary to know the initial conditions. The amplitude of
the CMB temperature fluctuations suggests that the density fluctuations at redshift
z ∼ 1000, where photons and matter interacted for the last time4, must have had
very small amplitudes. The small density perturbations increase over time due to
the gravitational force; while underdense regions decrease their density contrast,
overdense regions increase their density contrast over the course of time. In both
cases the absolute value of the density contrast, |δ|, increases.

The model of gravitational instability describes the evolution of structure in the
universe. The abundance, spatial distribution and internal density profiles of haloes
depend mainly on the halo mass. When the density contrast δ & 1, i.e. in the
non-linear regime, perturbation theory fails when trying to describe the structure
evolution. To explore the non-linear regime one can start for studying an overdense
sphere. One can assume a simple model in which haloes (non-linear objects) formed

4It is not completely true because photons suffer several other scatters during their travel towards
us.
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from a spherical collapse of a initially density perturbation (first studies by Gunn &
Gott 1972). The dynamics of a gravitating sphere of mass in a matter-dominated
universe (ΩΛ = 0) of mass M and a radius R can be described by the Newtonian
approach:

d2R

dt2
= −GM(R)

R2
(3.13)

If one assumes that the mass is constant over time one can integrate the equation
3.13 over time and it yields:

1

2

(
dR

dt

)2

=
GM(R)

R
+ C (3.14)

where C is a constant that defines the total energy of the sphere. Equation 3.14
is practically the same as the one of the Friedmann equations, which governs the
expansion of space in homogeneous and isotropic models of the universe, because any
spherical region in the universe expands at the same rate as the overall expansion
factor. If C > 0 then the sphere will expand forever, while if C < 0, the sphere will
expand for a certain period of time until a time (or a radius) where it will begin to
contract. The solution for the latter case (C < 0) is given by:

t = A(θ − sin θ) and R = B(1− cos θ) (3.15)

where θ is a parameter and A and B are constants. When θ = π the expansion will
stop, this time (maximum expansion) is defined as the turnaround, tturn, which is
the point at which expansion ceases and collapse begins via:

t

tturn
=

1

π
(θ − sin θ) and

a(t)

aturn
=

1

2
(1− cos θ) (3.16)

where a(t) is the scale factor of the universe. If one expands equation 3.16 to second
order gives:

t

tturn
=

1

π

(
θ3

6
− θ5

120

)
and

a(t)

aturn
=
θ2

4
− θ4

48
(3.17)

Taking the leading order of the left expression of equation 3.17 gives:

θ2 =

(
6πt

tturn

) 2

3

(3.18)

Substituting 3.18 back into the left expression of equation 3.17 gives:

θ2 ≃
(

6πt

tturn

) 2

3

[
1 +

1

30

(
6πt

tturn

) 2

3

]
(3.19)

And substituting again 3.19 into right expression of equation 3.17 gives the linearised
scale factor

alin(t)

aturn
≃ 1

4

(
6πt

tturn

) 2

3

[
1− 1

20

(
6πt

tturn

) 2

3

]
(3.20)
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The linear density contrast is defined as:

δlin =
ρ− ρ̄

ρ̄
=

(
aback(t)

alin

)3

− 1, (3.21)

where aback is the background evolution and:

aback(t)

aturn
≃ 1

4

(
6πt

tturn

) 2

3

(3.22)

Dividing 3.20 by 3.22 one obtains:

aback(t)

aturn
≃ 1

4

(
6πt

tturn

) 2

3

(3.23)

Substituting 3.23 into 3.24 one obtains the linear density contrast evolution:

δlin =
3

20

(
6πt

tturn

) 2

3

(3.24)

And therefore the density contrast at turnaround is δturnlin = (3/20)(6π)2/3 = 1.06.
At t = 2tturn the collapse will occur and one finds that the density contrast at that
time is δcolllin = δc = (3/20)(12π)2/3 = 1.686. This value of the density contrast sets
the perturbation threshold at which the density field collapses.

Press & Schechter 1974 developed a formalism which predicts the comoving num-
ber density of haloes of a certain massM at redshift z, n(M,z). This approach starts
searching for objects of mass M by smoothing (filtering) the initial overdensity field
by a filter of radius Rf = Rf (M). The fraction of mass in collapsed objects more
massive than some mass M is related to the fraction of regions where the smoothed
initial density fluctuations are above some density threshold, δ(x) > δc. This as-
sumption follows from the spherical collapse solution described previously. A given
point belongs to a collapsed object assuming Gaussianity of the initial overdensity
field with a probability:

PG(δ > δc|Rf ) =
1

2

[
1− erf

(
δc√

2σ(Rf )

)]
, (3.25)

where Rf is the characteristic length of the filter function and σ(Rf ) is the linear rms
in the filtered version of δ. The total probability from equation 3.25 is only equal to
1/2 and therefore Press & Schechter introduced a “fudge factor5” and wrote for the
fraction of mass in haloes with mass greater than M :

F (> Mh) = 1− erf

(
ν√
2

)
(3.26)

where ν ≡ δc/σ(Mh) (in the original Press-Schechter theory), and σ2(Mh) is the
variance on the initial density fluctuation field when smoothed with a tophat filter
of scale R = (3Mh/4πρ̄)

1/3, extrapolated to the present time using linear theory:

5It is not clear the assumption that all the mass in the universe should be concentrated in objects.
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σ2lin(Mh) ≡
∫
dk

k

k3P lin(k)

2π2
|W (kR)|2, (3.27)

where W (x) = (3/x3)[sin (x)− x cos (x)].

The mass function, n(Mh) is defined as the comoving number density of haloes
of mass Mh, so:

n (Mh) =
dn

dMh
=

ρ̄

Mh

∣∣∣∣
dF

dMh

∣∣∣∣ (3.28)

where ρ̄ = 3H2
0Ωm/8πG is the mean comoving density. Multiplying equation 3.28

by Mh and substituting 3.26 leads to:

n(Mh) =
dn

dMh
=

ρ

M2
h

∣∣∣∣
dF

d logMh

∣∣∣∣ =
ρ̄

M2
h

d

d logMh

[
1− erf

(
ν√
2

)]
(3.29)

which leads to the standard form of the mass function:

n(Mh) =

√
2

π

ρ̄

M2
h

ν

∣∣∣∣
dnσ(Mh)

d lnMh

∣∣∣∣ exp
(
−ν

2

2

)
(3.30)

This mass function depends on the cosmological model only via the mean density ρ̄
and on the assumed power spectrum through the density variance, σ2(Mh) (equa-
tion 3.27). After the analytical model proposed by Press & Schechter 1974, which
described not only the abundance of dark-matter haloes as a function of mass but
also the evolution, several other analytical works were developed (Bond et al. 1991,
Lee & Shandarin 1998, Sheth et al. 2001c). Early comparisons with numerical ex-
periments showed that the Press & Schechter 1974 formalism describes simulations
well. The problem of the “fugded factor” was solved by Peacock & Heavens 1990
and Bond et al. 1991. In comparison with more recent numerical simulations the
standard Press & Schechter 1974 mass function tends to overpredict largest haloes
and underpredict smaller haloes and showed that these predictions were in general
not sufficiently accurate for cosmological applications. Sheth & Tormen 1999 and
Jenkins et al. 2001 by using numerical results obtained a more accurate calibration
of the mass function. Specifically Sheth & Tormen 1999 found a function that fits
better the observed mass function:

fST (ν) = A

√
αν2

2π

[
1 +

1

(αν2)p

]
exp

(−αν2
2

)
(3.31)

where α = 0.707, p = 0.3 and A is determined by requiring that

∫
nST (Mh)MhdMh = ρ̄ = 2

∫ ∞

0
ρ̄fST (ν)d ln ν (3.32)

which leads to A = 1/
(
1 + Γ(0.5−p)

2pπ

)
.

More recent calculations were done by Warren et al. 2006 and Tinker et al. 2008
and got errors in the halo mass function of a few percent. Crocce et al. calibrate the
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most massive regime of the halo mass function using the MICE simulations, which
are the simulations used to generate the mock galaxy catalogues presented in this
work. In the next chapter of the thesis we will treat the best halo mass function fit
found for the MICE simulations.

3.1.3 Halo bias

Dark matter haloes are biased tracers of the underlying dark matter distribution.
The two previous sections describe two concepts, the halo abundance and the halo
clustering, that are essential in the halo model. Following Sheth & Tormen 1999 the
two are not independent, and this is explained in an idea that has come to be called
the peak-background split (Bardeen et al. 1986, Cole & Kaiser 1989, Mo & White
1996). This idea can be visualized as follows (from Peacock 1999): one conceptually
decomposes the density field into short-wavelength terms, which generate the peaks,
plus terms of much longer wavelength, which modulate the peak number density (see
figure 3.2). There is an environmental dependence of structure formation. The large-
scale environment is often thought of as providing an effective background cosmology
or say it in another way, on large scales, perturbed regions of the matter field are
treated as universes with slightly different mean density and Hubble constant (see
Martino & Sheth 2009 for an accurate derivation). In the Press-Schechter analytical
model if a region has a density greater than a certain density threshold, δc, it will
collapse. The effect of having two density field components can be seen in an example:
where the large-scale component is δ = ǫ, the small-scale component only needs to
reach δ = δc − ǫ in order to collapse. The number density of haloes is modulated
by the large-scale component. In addition, the large-scale perturbation will move
haloes closer together where ǫ is large, and therefore, as mentioned above, the halo
abundance and the halo clustering are not independent.

Figure 3.2: Environmental dependence of structure formation. Large- and small-scale com-
ponents of the density field. Figure from Peacock 1999.

Mo & White 1996 following the spherical collapse model showed that haloes trace
the dark matter field with bias, b(Mh), given by:

b(ν(Mh)) = 1 +
ν2 − 1

δc
(3.33)
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Sheth & Tormen 1999 extended equation 3.34 to a more general form to:

b(ν(Mh)) = 1 +
aν2 − 1

δc
+

2p

δc[1 + (aν2)p]
(3.34)

3.1.4 Halo density profiles

Since galaxies are assumed to be formed inside dark-matter haloes, the internal
density profile of haloes is very important. Knowledge of the distribution of matter
within haloes is crucial for understanding the observed interactions of galaxies with
their underlying dark matter density field. Several functions for the density profile
have been studied, such as:

ρ(r|M) =
ρs

(r/rs)α(1 + r/rs)β
or ρ(r|M) =

ρs
(r/rs)α [1 + (r/rs)β ]

(3.35)

Navarro et al. 1997 found a universal profile to describe the density profile of
dark-matter haloes studying high resolution numerical simulations. Galaxies of the
mock galaxy catalogues created in this work follow the NFW density profile when
populating MICE cosmological simulations. Navarro et al. 1997 used the left expres-
sion of equation 3.35 with (α, β) = (1, 2). Moore et al. 1999 used (α, β) = (3/2, 3/2)
in the expression on the right in equation 3.35 and it also provides very good de-
scriptions of the density run around virialized haloes in numerical simulations. It is
called M99 profile. NFW profile is described by:

ρNFW =
ρs

(r/rs)(1 + r/rs)2
(3.36)

where rs is the inner scale radius, and ρs is the amplitude of the density profile.
For r << rs, ρNFW ∝ r−1, whereas for r >> rs, ρNFW ∝ r−3. If one assumes
the definition of a halo as a spherical region within which the average density is
∼ 200 times the critical density6 at the respective redshift, ρcr(z), one can define the
concentration parameter,

c ≡ r200
rs

(3.37)

The larger the value of c, the more concentrated is the mass towards the inner
regions. If one assumes that the origin of dark-matter haloes come from peaks in the
initial density field (Kaiser 1984, Hoffman & Shaham 1985), one can also assume that
more massive haloes correspond to the highest density peaks. The density around
small peaks is steeper than the density around higher peaks and therefore high
peaks are less centrally concentrated than smaller peaks. One can generalize that
to massive haloes and think that massive virialized haloes are also less concentrated
than low mass haloes. Simulations show that given a halo mass the distribution of
concentrations is well fitted by a log-normal distribution (Jing 2000, Bullock et al.
2001):

6ρcr(z) is the critical density which is the averaged density required for flatness at redshift z,
ρcr(z) = 3H2(z)/(8πG).
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p(c|m, z)dc = d ln c√
2πσ2c

exp

[
− ln2[c/c̄(m, z)]

2σ2ln c

]
(3.38)

For the NFW profile,

c̄(m, z) =
9

1 + z

[
m

m∗(z)

]−0.13

and σln c ≈ 0.25 (3.39)

where m∗(z) is the characteristic mass scale at which ν(m, z) = 1. The mass of the
halo is related to r200, (where, again, is the radius at which the average density is
∼ 200 times the critical density) by

M =
4π

3
r3200200ρcr(z) (3.40)

and using the definition of the critical density one can relate the mass of the halo
with the expansion history factor, H(z), by:

M =
100r3200H

2(z)

G
(3.41)

One can also define V200, as the circular velocity at r200,

V 2
200 =

GM

r200
(3.42)

and one can express the halo mass and r200 as a function of V200

M =
V 3
200

10GH(z)
(3.43)

r200 =
V200

10H(z)
(3.44)

and therefore since the Hubble function increases with redshift, r200 at a fixed V200
decreases with redshift. Also, given a halo mass, r200 decreases with redshift, which
means that haloes of a given mass are more compact at higher redshift than they
are nowadays.

No good analytical reasons of why NFW profile fit dark matter density distri-
bution of dark-matter haloes has yet been found. The main idea is that density
depends mainly on its mass and also the concentration parameter (which, in turn,
is also determined by the mass of the halo).

3.1.5 Halo model assumptions and drawbacks

Before getting into the details of the HOD model it is also important to summarize
some of the assumptions and drawbacks of the halo model. First of all when one is
following this approach, one is assuming that all the mass in the universe is contained
in dark-matter haloes which is not true.

The model also assume that all the haloes have the same parameterized smooth
spherical-symmetric profile which depends only on halo mass. This approximation is
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not true because it is well known that haloes with the same mass can have different
concentration parameters at a fixed mass7. Moreover, regarding the shape, haloes
are not usually spherically symmetric and they are not usually smooth. Assuming a
spherical averaged profile when studying the power spectrum is adequate, however
the dependence of the bispectrum configuration on the spherical assumption may
cause errors at the 20 − 30% level between the halo model predictions and config-
uration dependence of the bispectrum in the mildly non-linear regime measured in
simulations.

The contribution of the substructures on the total mass of a dark-matter halo
is about 15% and it will have a contribution in the power spectrum, P (k), and
higher order statistics on small scales. The contribution of smoothing the profile for
k 6 10knonlin is not important for deriving the power spectrum and the bispectrum
according to studies done with simulations.

3.2 Halo Occupation Distribution

This section describes the Halo Occupation Distribution model (HOD). This formal-
ism relates galaxy and matter distributions, or saying the same in other words, the
HOD studies galaxy bias in terms of a probability distribution, P (Ngal|Mh), that a
halo of massMh contains Ngal galaxies of a given type. It also provides prescriptions
to describe galaxy positions and velocities within dark-matter haloes. Mock galaxy
catalogues are built in order to follow observational probes. In this work the mocks
are going to match the luminosity function, the colour-magnitude diagram and the
luminosity and colour dependence of clustering of SDSS data. The description of the
luminosity dependence of clustering is usually done in three rather different ways,
the halo occupation distribution (HOD, Jing et al. 1998, Benson et al. 2000, Sel-
jak 2000, Scoccimarro et al. 2001, Berlind & Weinberg 2002, Bullock et al. 2002,
Zheng et al. 2002, Berlind et al. 2003, Magliocchetti & Porciani 2003, Zehavi et al.
2005, Zehavi et al. 2011, Leauthaud et al. 2011), the conditional luminosity function
(CLF, Peacock & Smith 2000, Yang et al. 2003, Cooray 2005, Cooray 2006, Cooray
& Milosavljević 2005, van den Bosch et al. 2007, Wang et al. 2010) and the subhalo
abundance matching (SHAM, Klypin et al. 1999, Kravtsov et al. 2004, Tasitsiomi
et al. 2004, Vale & Ostriker 2004, Vale & Ostriker 2006, Conroy et al. 2006, Guo
et al. 2010, Trujillo-Gomez et al. 2011b). As mentioned, the HOD describes the
galaxy bias of a type of galaxies using the probability P (Ngal|Mh) that a halo of
virial mass Mh hosts Ngal. The CLF is an extension of the basic halo model. It
describes the averaged number of galaxies as a function of luminosity and halo mass,
φ(L|Mh) that resides in a halo of mass Mh. It tries to match the observed lumi-
nosity function by specifying how the luminosity distribution in haloes changes as a
function of halo mass. One can derive the HOD from the CLF and vice-versa. The
SHAM technique is used to populate dark-matter haloes with galaxies. It assumes a
monotonic relation between observable properties of galaxies, such as luminosity or

7It is not very complicated to include the distribution of the concentration parameter as a function
of the halo mass in the formalism. It will change the non-linear regime (small scales) for the two-
point correlation function and will have a higher impact on the bispectrum.
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stellar mass, and dynamical properties of dark matter substructures. The first step
to use SHAM is to identify the substructures (subhaloes) within virialized haloes in
simulations and use the subhalo properties to match the subhalo abundances to the
observed distribution of luminosities. Then, one can measure CLFs or HODs in the
simulation too.

Studying the relation between the galaxy and dark matter distribution offers
the possibility of better understanding the physics of galaxy formation. Berlind &
Weinberg 2002 studied galaxy bias in the framework of the HOD, and examine the
sensitivity of different galaxy clustering statistics to properties of the HOD. They
claimed that reproducing the shape of the two-point correlation function of galaxies
is completely non-trivial, and that other clustering statistics provide complementary
information about galaxy bias. They found that an incorrect cosmological model
will not reproduce the observations for any choice of HOD.

Gasdynamics, radiative cooling and star formation can strongly influence the
distribution of galaxies within haloes. Notice that the spatial distribution and the
abundance of haloes are determined mainly by gravitational dynamics of dark matter.
The HOD prescription can help to separate the cosmological model and the theory of
galaxy formation in predictions of galaxy clustering: the cosmological model defines
the properties of the halo population, whereas the theory of galaxy formation deter-
mines how galaxies populate those haloes. The three ingredients necessary to define
a galaxy population from a halo population using the HOD model, the number of
galaxies in each halo, their positions and velocities, will be explained in the next
sections, as well as the possible physical meaning of the HOD parameters related to
galaxy formation. The idea is that for a given cosmological model the HOD can tell
us plenty of information a theory of galaxy formation has to say regarding statistics
of clustering at every scale and in real and redshift space. So, if one can determine
the HOD parameters that best match some observed galaxy clustering one can infer
information about the physics of galaxy formation of that data set. Moreover, if
one assumes that the content of haloes of the same mass is independent of the large
scale environment (i.e. they have on average the same galaxy populations), HOD
completely describes the bias between galaxies and mass8.

In the works of Tinker et al. 2008, Tinker 2010, they claim that although there is
no physics in the HOD method, it is possible to test ideas about galaxy formation.
They say that in all environments, a halo of a given mass always has the same galaxies
inside (with some scatter). Thus the observed change in the LF with density is a
consequence of the change in the mass of dark-matter haloes, and not due to any
change in galaxy formation with environment. The model does not contain a physical
theory of galaxy formation, it merely posits that this theory - whatever it may be - is
independent of large-scale environment at fixed halo mass. They conclude that the
luminosity and color of field galaxies are determined predominantly by the mass of
the halo in which they reside and have little direct dependence on the environment

8The assumption that haloes at fixed mass in different environments have similar properties
and formation histories is expected on the basis of fairly general theoretical arguments (Lemson
& Kauffmann 1999, Berlind et al. 2003, Sheth & Tormen 2004.). The correlation between galaxy
properties and environment is naturally explained with the environmental dependence of the halo
mass function (Berlind et al. 2005)
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in which the host halo formed.
It is very important to remember that every different type of galaxy, depending

for instance on its luminosity or colour or spectral type, has its own HOD. The
parameters of the HOD are also known to be self-similar, thus it is possible to scale
the form of the HOD between galaxy samples of different luminosities (Zehavi et al.
2005; Zheng et al. (2007)).

More recently Leauthaud et al. 2011 proposed and developed a theoretical model
that describes the galaxy-dark matter connection based on the standard halo occupa-
tion distribution technique. They made an effort on combining different cosmological
probes rather than just use one individually. The theoretical model combines mea-
surements of galaxy-galaxy lensing, galaxy clustering and the galaxy stellar mass
function, which will permit to explore galaxy-dark matter relation, constrain cosmo-
logical parameters and understand the nature of dark energy.

As mentioned before, the next section describes, according to the HOD model,
the number of galaxies in each halo, their positions and velocities, and the galaxy
two-point correlation function.

3.2.1 Number of galaxies

The first HOD prescription is the number of galaxies inside each halo. Some authors
claimed that they were able to reproduce the clustering of galaxies populating haloes
from N-body simulations using semianalytic models according to a predicted prob-
ability distributions of galaxies within haloes, P (Ng|Mh) (e.g. Zheng et al. 2005,
Benson et al. 2000, Kauffmann et al. 1997, Kauffmann et al. 1999). Hydrodynamic
simulations also predicted P (Ng|Mh) (e.g. Zheng et al. 2005, White et al. 2001,
Yoshikawa et al. 2001). The probability distribution that a halo of mass Mh con-
tains Ngal is the most important part of the HOD regarding the effect on galaxy
clustering.

Berlind & Weinberg 2002 studied the physical meaning of the HOD parame-
ters. Different physical mechanisms will influence in the formation of galaxies within
virialized dark matter structures. They used two different average mean number
galaxies per halo as a function of the halo mass, Mh. A power law (eq. 3.45), and a
broken power law (eq. 3.46) which depends on the halo mass range:

Ngal =

{
0 if Mh < Mmin

(Mh/M1)
α otherwise,

(3.45)

where α is the power-law index, Mmin is the cutoff halo mass below which haloes
cannot form galaxies, and M1 defines the amplitude of the relation and corresponds
to the mass of haloes that contain, on average, just one galaxy.

Ngal =





0 if Mh < Mmin

(Mh/M1)
α if Mmin 6Mh 6Mcrit

(Mh/M
′

1)
β otherwise,

(3.46)

Parameters Mmin, α, β and Mcrit are related to the galaxy formation efficiency.
Haloes that do not contain enough gas will not be able to host a galaxy. Therefore it



3.2. HALO OCCUPATION DISTRIBUTION 49

is necessary to have a minimum mass above which haloes will have the possibility of
hosting, at least, one galaxy. α and β are the low- and high-mass power law indices.
Mcrit is the halo mass at which the power-law slope changes. For instance, the typical
cooling time for gas increases with halo mass and therefore, α < 1 is favored. On the
contrary, hierarchical structure formation will produce at the beginning many galax-
ies which will end up in high-mass haloes. Many physical mechanisms could affect
the average number of galaxies depending on the galaxy type (mergers, morpholog-
ical transformations, etc.) and will change the number of galaxies. Comparison of
the HOD set of parameters for different galaxy types can provide information about
the formation process which produce such galaxy properties. Once one has the aver-
age number density of galaxies per halo, it is necessary to investigate what function
will determine the probability distribution, P (Ngal|Mh). Berlind & Weinberg 2002
studied 3 different probability density distribution functions: a Poisson distribution,
a very narrow distribution where the actual number of galaxies is the integer either
above or bellow Ngal, and a negative binomial distribution. They do not consider
the possibility of changing the probability distribution with the mass. In the low-
mass regime the probability density distribution will depend on the cooling and star
formation rates, but in the high-mass end galaxy mergers will have a fundamental
role in those haloes.

Kravtsov et al. 2004 found that in the HOD framework it is very useful to separate
galaxies into contributions of central galaxies and satellite galaxies. They also found
that the probability distribution for a halo of massMh to host a number of subhaloes
Nsub is similar to that found in semi-analytic and N-body+gasdynamics studies. The
HOD can be understood as a combination of the probability for a halo of mass Mh

to host a central galaxy and the probability to host a given number Nsat of satellite
galaxies. The probability to host a central galaxy can be approximated by a step-
function while the probability of hosting satellite galaxies is well described by a
simple power law Nsat ∝ Mβ with β ≈ 1 for a wide range of number densities,
redshifts, and different power spectrum normalizations.

More recently Zehavi et al. 2011 interpret the luminosity and colour dependence
of galaxy clustering in the seventh realease of the main sample of the Sloan Digital
Sky Survey (SDSS) using the HOD approach. They separate galaxies as centrals or
satellites (Kravtsov et al. 2004, Zheng et al. 2005). They model the mean number of
galaxies that a halo of massMh following the funcional form with five free parameters
(also Leauthaud et al. 2011 use five parameters to model 〈Ncen〉 and another five
parameters to model 〈Nsat〉):

〈Ngal〉 = Ncen +Nsat =
1

2

[
1 + erf

(
logMh − logMmin

σlogMh

)][
1 +

(
Mh −M0

M
′

1

)α]

(3.47)
where erf is the error function erf(x) = 2√

π

∫ x
0 e

−t2dt. The number of central galaxies

is a step function with a smoothed cutoff in order to account for the scatter between
galaxy luminosity and halo mass (see also More et al. 2009). The mean number of
satellite galaxies is a power law modified by a similar cutoff profile. This functional
form uses five free parameters. This form is motivated by a theoretical study pre-
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sented in Zheng et al. 2005, and is identical to the five-parameter model adopted in
Zheng et al. 2007 (see also Zheng et al. 2009). According to Zheng et al. 2005 five
free HOD parameters model perfectly the mean number of galaxies predicted by hy-
drodynamic simulations and semi-analytic models. Mmin characterizes the minimum
mass of a halo hosting a central galaxy above the luminosity threshold. Depending
on the HOD parameterization Mmin can vary. In eq. 3.47 is the mass for which half
of the haloes which have the minimum mass contains one central galaxy with lumi-
nosity greater or equal the luminosity threshold. Another characteristic mass scale
M1, defines the haloes which on average have one additional satellite galaxy above
the luminosity threshold, defined as 〈Ncen(Mmin)〉 = 0.5. In eq. 3.47 M

′

1 andM0 are
related to M1. Zehavi et al. 2011 used the nearest-integer and Poisson distributions
for central and satellite galaxies, respectively. Kravtsov et al. 2004, Zheng et al.
2005, Boylan-Kolchin et al. 2010 claimed that, in high mass haloes, the distribution
of satellite galaxies become super-Poisson at high 〈Nsat〉. Zehavi et al. 2011 argued
that this feature does not impact quantitatively on the clustering derivations.

3.2.2 Galaxy positions

The second point in the HOD is the spatial distribution of galaxies. As mentioned
before, Kravtsov et al. 2004 found that it is very useful to separate galaxies into
contributions of central galaxies and satellite galaxies. When building mock galaxy
catalogues using N-body simulations, there are different possibilities to place the
galaxies inside the haloes. The common way is to place the central galaxy at the
center of its host halo, it can be either the most bound dark-matter particle or the
center of mass of the halo. Satellite galaxies are placed either following a mass density
profile, which is usually the NFW profile, or assigning directly the position of the
satellite galaxy to a dark-matter particle within the halo. Placing satellite galaxies
following a mass density profile solves the problem of resolution given by the linking-
length of the simulation. On the other hand if one places satellite galaxies in the
same place as dark-matter particles one is fairly following the spatial distribution
of dark matter. According to Berlind & Weinberg 2002 the effect of the spatial
distribution of galaxies within haloes on the two-point correlation function has a
relatively modest impact that is confined to small spatial scales.

3.2.3 Galaxy velocities

In the halo model one assumes that dark-matter haloes are relaxed and virialized
structures, and therefore the virial theorem holds. Physical properties of galaxies
can be inferred given the halo mass. In order to build mock galaxy catalogues
using N-body simulations one can choose between following the virial theorem or
taking velocities from particles. If one decides to place satellite galaxies in the
same place as dark-matter particles the logical approach is to assign their velocities
too. In this method satellite galaxies fairly follow the dark matter velocity field
and no approximation has to be done. Sheth & Diaferio 2001 found that to a good
approximation the motion of a particle in an N-body simulation can be described as
the sum of the virial motion of the particle within its host halo and the bulk motion
of the halo as a whole:
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v = vvir + vh (3.48)

The virial motions within a halo are well approximated by velocities that are
independent Gaussians in each of the three cartersian components, with rms values

that depend on the halo mass: σ2vir =< v2vir >∝ GMh/rvir ∝M
2/3
h .

The next section describes the galaxy two-point correlation function according
to the halo model approach.

3.2.4 Galaxy two-point correlation function

The galaxy two-point correlation function in the halo model can be also decomposed
in two terms as well as the halo two-point correlation function. The 1-halo and the
2-halo terms. In the 1-halo term only galaxy pairs that reside in the same halo
contribute, and the 2-halo term is dominated by galaxy pairs that reside in separate
distinct haloes. The 1-halo term dominates at small scales while the 2-halo term
is the main responsible of the total correlation function at scales & 5 Mpc/h. The
main difficulty of modeling the correlation function comes from the transition region
between both terms. Zehavi et al. 2004 measuring the projected correlation function
wp(rp) from the Sloan Digital Sky Survey for a flux-limited sample of 118.000 galaxies
and a volume-limited sample subset of 22000 with absolute magnitude Mr < −21
found systematics departures from the best-fit power law, in particular a change in
slope at rp ∼ 1 − 2 Mpc/h. The departures are stronger for the relatively luminous
galaxies. They naturally explained this departure using the HOD fitting approach to
model the correlation function. They interpret the inflection point as the transition
from large to small scale regimes, i.e. the different contributions from galaxy pairs
in separate dark-matter haloes and galaxy pairs in the same dark-matter haloes.
One can realize this effect of the halo exclusion regarding the two-point correlation
function of haloes depending on the halo mass. As already shown, figure 3.1 shows
the two-point correlation function of haloes from the Grand Challenge run of the
MICE simulations. The higher the mass of the haloes the larger the distance at
which the amplitude drops drastically towards smaller scales because of the halo
exclusion. No pair counts of haloes at distances smaller than the typical virial radius
are found.

Berlind & Weinberg 2002 showed the analytic model of the galaxy two-point
correlation function in the halo bias model in real space. They presented the idea
already developed in Seljak 2000, Ma & Fry 2000, Scoccimarro et al. 2001 and Sheth
et al. 2001b. The analytical model of the two-point correlation function shown later
is similar to that presented by Zheng(2004) and used also in Zehavi et al. 2004, 2005
for modeling the SDSS projected two-point correlation function, wp(rp), but it also
includes the improvement in the treatment of the halo exclusion developed by Tinker
et al. 2005. Following the appendix B of Tinker et al. 2005 (where the analytical
model of the galaxy clustering is explained from start to finish) the 1-halo term can
be expressed by the expression:

ξgg(r) = [1 + ξ1hgg (r)] + ξ2hgg (r) (3.49)
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The “1+” comes from the pairs counts, proportional to 1+ξ1hgg and 1+ξ2hgg , that sum
to give the total pairs counts, proportional to 1+ ξgg. Following Berlind & Weinberg
2002 the 1-halo term in real space is given by the expression:

1 + ξ1hgg (r) =
1

2πr2n̄2g

∫ ∞

0
dMh n(Mh)

〈N(N − 1)〉Mh

2

1

2Rvir(Mh)
F ′
(

r

2Rvir

)
(3.50)

where n̄g is the mean number density of galaxies, n(Mh) is the halo mass function,
and 〈N(N)− 1〉Mh

/2 is the average number of pairs in a halo of mass Mh. The
function F (x) is the average fraction of galaxy pairs in a halo of mass Mh that have
separation less than r. This function is related to the mass halo density profile,
ρm(r), and F ′(x) is its derivative. For the central-satellite galaxy pairs the distribu-
tion of pairs is proportional to the volume-weighted density profile, F ′(x) ∝ ρmr

2,
normalized to 1. The satellite-satellite galaxy pairs come from the convolution of
the mass density profile with itself. The average number of pairs in the 1-halo term
in the range (x, x+ dx) in haloes of mass Mh can be expressed as:

〈N(N − 1)〉Mh

2
F ′(x)dx = 〈NcenNsat〉Mh

F ′
cs(x)dx+

〈Nsat(Nsat − 1)〉Mh

2
F ′
ss(x)dx

(3.51)
where the subscripts “cs” and “ss” mean central-satellite and satellite-satellite pairs
respectively.

Zheng 2004 treated the halo exclusion in the 2-halo term only taking into account
haloes with virial radii less than half the value of r for which ξgg(r) is being calculated,
which is the same as taking just haloes with mass smaller than Mlim,

Mlim =
4

3
π
(r
2

)3
ρcritΩm∆ (3.52)

where ∆ is the virial overdensity of the halo. This treatment does not take into
account pairs between haloes more massive than Mlim and smaller haloes. Tinker
et al. 2005 showed that this treatment, together with a not accurate halo bias,
overpredicts galaxy bias by ∼ 15% and the galaxy correlation function by ∼ 30%
at scales r & 10 Mpc/h. At smaller scales underpredicts the number of 2-halo pairs
with errors greater than 50% at 1 Mpc/h. Taking into account this method for the
halo exclusion the galaxy 2-halo term of the power spectrum9 is given by:

P 2h
gg (k, r) = Pm(k)

[
1

n̄′g

∫ Mlim

0
dMhn(Mh) 〈N〉Mh

bh(Mh, r)yg(k,Mh)

]2
(3.53)

where Pm(k) is the non-linear matter power spectrum, yg(k,Mh) is the Fourier trans-
form of the halo density profile, bh(Mh, r) is the halo bias as a function of the halo
mass and separation r and n̄′g is the average number density of galaxies which reside
in haloes of mass Mh 6Mlim:

9It is easier to work in Fourier space rather than real space because convolutions in real space
become simple multiplications in Fourier space.
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n̄′g =
∫ Mlim

0
dMhn(Mh) 〈N〉Mh

(3.54)

Tinker et al. 2005 improved the halo exclusion treatment taking into account all
halo pairs for which the sum of virial radii is smaller than the separation and therefore
Rvir1 + Rvir2 6 r. In the new method they assumed that haloes are spherical.
Introducing this improvement in the halo exclusion treatment, the expression of the
2-halo term of the galaxy power spectrum is given by:

P 2h
gg (k, r) = Pm(k)

1

n̄2g

∫ Mlim,1

0
dMh,1n(Mh,1) 〈N〉Mh,1

yg(k,Mh,1)·

·
∫ Mlim,2

0
dMh,2n(Mh,2) 〈N〉Mh,2

yg(k,Mh,2)

(3.55)

where Mlim,1 is the maximum halo mass such that Rvir(Mlim,1) = r − Rvir(Mmin)
and Mlim,2 is related to Mh,1 by Rvir(Mlim,2) = r−Rvir(Mh,1). In the new method
the average number density of galaxies, n̄′g, is given by the expression:

n̄
′2
g =

∫ Mlim,1

0
dMh,1n(Mh,1) 〈N〉Mh,1

∫ Mlim,2

0
dMh,2n(Mh,2) 〈N〉Mh,2

(3.56)

Equation 3.55 is a double integral but it’s more accurate than equation 3.53. The
error at the scale of 1 Mpc/h using Zheng’s method was of ∼ 50% and correcting for
the closer pair counts reduces the error down to ∼ 25%. At the scale of 2 Mpc/h the
error is completely removed against the previous ∼ 20% error. Tinker et al. 2005
also studied the case in which haloes are not spherical but triaxial objects, and they
improved the error at r = 1 Mpc/h down to ∼ 10%.

Coming back to the HOD parameters and their effects in the galaxy two-point
correlation function, ξg(r), Berlind & Weinberg 2002 found that the amplitude on
large scales is determined by the relative number of galaxies in high mass and low-
mass haloes, and is sensitive to α, and to a lesser extent, Mmin. On small scales the
amplitude and the shape of ξg(r) are highly sensitive to α, Mmin, and P (N |Ngal),
although each feature affects ξg(r) in a different way. The power-law in the shape
of ξg(r) in the HOD framework requires a very specific combinations of parameters.
The sensitivity of ξg(r) to the HOD parameters implies that its observed power-law
shape is a strong constraint on the physics of galaxy formation, and that the success
of semianalytic models and hydrodynamical simulations in reproducing this form is
completely non-trivial. They also studied the influence of the HOD parameters on
other clustering statistics like the bispectrum, the galaxy-mass cross correlation or
the void probability function. These statistics are not going to be explored in this
work.

3.3 Summary

The halo model and the halo occupation distribution model (HOD) have been pre-
sented in this chapter. Both are complementary concepts and are the theoretical
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framework in which the method we use to generate the mock galaxy catalogues
is based. As a consequence, we have also introduced the actual kwnoledge of the
scenario of galaxy formation, which is basically that galaxies form inside overdense
regions of the dark-matter field (usually called dark-matter haloes). In the gravi-
tational potential wells of these haloes the gas collapses, cools and form stars, and
galaxies.

Some basic properties of the halo population, which are included in the halo
model, have been studied. In particular, the spatial distribution, the abundance, the
bias and the mass density profile of haloes. One of the most relevant properties of
the halo clustering is that the two-point correlation function of haloes can be divided
in two terms, the 1-halo and the 2-halo terms. The 1-halo term takes into account
contributions to the density that come from the same halo and the 2-halo term takes
into account contributions to the density that come from different haloes. We have
also shown that even physics can be separated in these two regimes. Physics from
scales larger than the typical size of a halo are described by the linear perturbation
theory. And physics inside the haloes can be inferred since the model assumes that
the haloes are in a state of virial equilibrium. We have explained the different
approaches in order to derive the mean number density of haloes. We have also
introduced the concept of halo bias and shown the internal mass density profile of
haloes. To finish with the halo model we have presented some of its limitations and
drawbacks.

We have explained in detail the HOD, which is an attempt to relate the dark
matter and the galaxy field. The HOD is one of the most powerful methods to
describe galaxy bias. It basically describes the number of galaxies with a certain
property inside each halo depending on its mass, and it also provides recipes to
place galaxies within dark-matter haloes and to include the velocity of galaxies.



Chapter 4

Cosmological Simulations

In this chapter we introduce one of the ingredients we use to generate the mock galaxy
catalogues, the Marenostrum Institut de Ciències de l’Espai simulations (MICE). The
chapter is structured as follows: in the first section we discuss about the motivation to
simulate the universe and provide a brief history of N-body simulations. In the second
we summarize the basics of how to produce N-body simulations and in the third and
last sections we describe and characterize in particular the MICE simulations.

4.1 Introduction

Since one cannot examine the universe in the laboratory (let alone “several uni-
verses”), it is necessary to produce simulations of the universe in order to implement
a given experiment. Simulations bridge the gap that often exists between observa-
tions and theory. Moreover it is also one way to validate that future projects are
feasible (or not) beyond theoretical approaches. The main goal and challenge of cos-
mological simulations is to reproduce the evolution of the universe from the initial
conditions to the present day. The initial conditions are prescribed by a cosmological
model, which provides the composition of matter, radiation, and exotic fields, such
as a cosmological constant, and primordial fluctuations in the matter, radiation, and
spacetime geometry.

The evolution of the universe is characterized by the formation of large structure
such as filaments and voids, also dark-matter haloes, clusters of galaxies, galaxies,
etc. The most common explanation for the formation of this structure is as the
result of the gravitational force in an expanding universe on small primordial density
fluctuations together with the action of other physical processes such as adiabatic gas
dynamics, radiative cooling, photoionization, recombination and radiative transfer
(Peebles 1982, Blumenthal et al. 1984, Davis et al. 1985b).

In our case, we use numerical N-body simulations to trace the evolution of the
universe. An N-body simulation is a type of numerical simulation that has a large
number of particles interacting under different physical forces forming a dynamical
system. Mainly, there are two different kinds of N-body simulations, one composed
just of dark matter and one that also takes into account the physics of the gas
(hydrodynamical simulations).
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The Wilkinson Microwave Anisotropy Probe (WMAP), just by itself, is able to
measure the basic parameters of the Big Bang model. It suggests that the content
of non-baryonic matter is 23% of the total content of the universe and the content
of baryonic matter is just 5%. One can say that the dynamics of the universe
is governed by dark matter. One can also say that only gravitational forces and
electromagnetic forces can act over large distances. Since cosmic matter is electrically
neutral on average, electromagnetic forces do not play any significant role on large
scales. Dark matter simulations in comparison with hydrodynamical simulations are
simpler because the only physical force involved is the gravitational force. They have
become an essential tool in Cosmology and they help us to predict the evolution of
the structure in the universe not only in the linear regime but also in the non-linear
regime.

In the era before electronic computing one might say that the first N-body sim-
ulation was performed by Erik Holmberg in 1941 using an analog computer. He
was studying the interaction of galaxies. He used 37 light-bulbs to simulate each
galaxy. The intensity of every light-bulb represented gravity. Both intensity of light
and gravitational force follow the same inverse-square law. The brighter the light-
bulb, the greater the gravitational force. The cumulative intensity measured at a
given position (where a light-bulb is placed) was used as an indicator of the gravita-
tional force. He computed the acceleration over a time-step for each light-bulb and
changed its position. His experiment was the first to clearly demonstrate effects of
tidal interactions that occur during the encounter of two galaxies.

In the early 1960’s the first digital N-body simulations in astronomy, studying the
N-body problem to the fields of stellar dynamics, were performed by Sebastian Von
Hoerner (1960, globular star clusters) and Sverre Aarseth (1963, galaxy clusters).
The simulations were limited to systems with no more than 100 particles. The
same problems related to computational efficiency and numerical accuracy that we
encounter nowadays were discussed by Aarseth and Hoyle in 1964. Through the
1960s and 1970s direct N-body methods using several hundreds of particles were
used for several astronomical and cosmological problems. Then the early 1980s saw
significant theoretical and technical progress such as the theory of inflation, which
provided the initial conditions for simulations, and also the first use of grid-based N-
body algorithms, which allowed more than 105 particles to be traced. Since the mid
1980s advances in simulations have relied on the increase of computing power and the
availability of computers that work in parallel. In the 1990s showed an impressive
growth in the size of cosmological simulations and also in the sophistication of the
physics. Since the first computer calculations (1960) the number of particles involved
has nearly doubled every two years in accordance with Moore’s law (fig. 4.1 from
Dehnen & Read 2011). The latest collisional N-body calculations have reached over
106 particles while collisionless calculations can now reach more than 109 particles
(Dehnen & Read 2011). Here one realizes the difference in complexity between
both kinds of simulations. Projects regarding very large N-body simulations are, for
example, those generated by the Virgo Consortium (Frenk et al. 2000), the Millenium
I and II (Springel et al. 2005, Boylan-Kolchin et al. 2009), the MICE simulations
(Fosalba et al. 2008), the Horizon run (Kim et al. 2009) or the Horizon project
(Teyssier et al. 2009).
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Figure 4.1: Number of particles as a function of time over the past 50 years. Red points rep-
resent collisional simulations and blue points collisionless simulations. Figure from Dehnen
& Read 2011).

4.2 Basics of Dark Matter N-body Simulations

The basic idea of N-body simulation is to know the position and the velocity of every
particle at “any” given time. One starts with a dynamical system of N particles with
known masses 1, initial positions and initial velocities in an expanding universe. Then
we let the gravitational force act. In the case of just two particles, the motion can
be studied analytically. With three or more particles, we get to the N-body problem
and there is in general no analytic solution for the problem, so we have to solve it
numerically.

The first step is to know the initial conditions of the simulation. One has to
specify the background cosmological model and the perturbations imposed on this
background. The cosmological model determines the content of dark matter and
baryons, a possible cosmological constant, the shape of the universe (in general
flat), etc. More recently there are simulations that include different models of dark
energy or modified gravity. When baryons decouple from radiation at very high
redshift (z ∼ 1100) small density fluctuations are found in every component of
the universe, baryons, photons, massless neutrinos and dark matter. These small
amplitude density fluctuations depend on how they were created. There are mainly
two classes of early universe models considered, inflation (Guth 1981) with Gaussian

1Once one assumes some cosmological model and once one knows the volume and the total
number of dark-matter particles in the simulation, one can derive the mass of each particle if they
are of equal mass.
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fluctuations and topological defects (Vilenkin & Shellard 1994) with non-Gaussian
fluctuations.

The matter power spectrum, P (k), completely determines Gaussian fluctuations.
Given a position ~x and its density δ(~x), the probability of having a certain fluctuation
at that position is given by:

p(δ)dδ =
δ√
2πσ

exp− δ2

2σ2
(4.1)

where σ2 =< δ2 >. The probability of having certain densities, ~δ, in N points is
given by a multidimensional Gaussian function:

p(~δ)d~δ =
~δ√

2π|C|
exp−

~δTC−1~δ

2
(4.2)

where Cij =< δiδj >= ξij, and ξ(r) is the Fourier transform of the power spectrum:

ξ(r) =
1

2π2

∫ ∞

0
k2P (k)

sin(kr)

kr
dk (4.3)

so, as previously stated, Gaussian fluctuations are fully specified by the power spec-
trum.

In real space the joint probability distribution at N points is a multidimensional
Gaussian function (equation 4.2). In Fourier space the covariance matrix of this
Gaussian becomes diagonal and therefore one can sample a Gaussian random field
by sampling its Fourier components on a cartesian grid (Peacock & Heavens 1985,
Bardeen et al. 1986). Non-Gaussian models are much more complicated and are
beyond the scope of this thesis, since our simulations assume Gaussian fluctuations.
Once one knows the linear density fluctuation field at some initial time, typically
z ∼ 100, one has to obtain the position and velocity of the particles. The standard
approach is to displace equal-mass particles from a uniform Cartesian lattice using
the Zel’dovich (1970) approximation (Doroshkevih et al 1980, Dekel 1982, Efstathiou
et al 1985):

~x = ~q +D(t)~ψ(~q) (4.4)

~v = a
dD

dt
~ψ = aHfD~ψ (4.5)

where ~q labels the unperturbed lattice position, D(t) is the growth factor of the linear
growing mode, and f = d lnD/d ln a ≈ Ω0.6 is its logarithmic growth rate (Peebles
1980). The irrotational (curl-free) displacement field ~ψ is computed by solving the
linearized continuity equation:

~∇ · ~ψ = − δ

D(t)
(4.6)

where δ(~x, t) = [ρ(~x, t)− ρ] /ρ is the relative density fluctuation. The displacement
field is evaluated from equation 4.6 using Fourier transform methods. Some details
of the method to generate the initial conditions are not described here. To find out
more about it one can read, for example, the review of Edmund Bertschinger (1998).
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Moreover, there are alternative methods to generate initial conditions (Scoccimarro
1997).

Once the particle positions and velocities are known, one has to derive, at each
time-step, the gravitational forces experienced by each particle due to the other
(N − 1) particles. As mentioned before, only gravitational and electromagnetic
forces can act over large distances. Since, on average, cosmic matter is neutral,
gravity has to be considered as the driving force of the universe. The laws of gravity
are described by the theory of General Relativity (GR), however Newton’s theory
of gravitation has been proven to be eminently successful in certain systems (e.g.
motion of planets). Contributions from GR can be ignored since typical dynamical
timescales are long compared to the light crossing time for the simulation, and the
space-time curvature induced by the particles and the particle velocities are small.
The gravitational force ~Fi acting on a particle i of mass mi is given by Newton’s law:

~Fi = −
∑

j 6=i

G
mimj(~ri − ~rj)

|~ri − ~rj|3
(4.7)

If one divides the force by the mass of the particle one gets its acceleration. Mul-
tiplying the acceleration by the time step one finds its change in velocity. Multiplying
the average velocity by the time step one finally arrives at the change in position of
the particle. This derivation must be done for every particle, so there are N(N − 1)
calculations per time-step.

One can easily realize that equation 4.7 presents a singularity when the distance
between two particles approaches zero and therefore can lead to very large relative
velocities. The singularity can be avoided (at the price of altering the dynamics of
the system) by introducing the so-called softening length, that is by modifying the
gravitational force at small scales and suppressing it below a typical distance, ǫ.

~Fi = −
∑

j 6=i

G
mimj(~ri − ~rj)

|~ri − ~rj|2 + ǫ2

3/2

(4.8)

A problem related to the CPU time comes from the huge amount of particles
involved in sampling a wide dynamic range of structures. Nowadays, as stated be-
fore, state-of-the-art simulations have about N = 1010 particles (collisionless simula-
tions). If we compute every particle-particle interaction the number of interactions
to compute increases as N2. So, there are several refinement techniques which aim
at obtaining a reliable numerical solution with the minimum amount of CPU time
depending on the astrophysical problem.

The two important factors that have to be taken into account to treat this kind
of problem are the timescale and the collisionality. This work is concerned with the
large scale structure of the universe. A dynamical system of N particles that interact
gravitationally reaches a state of dynamic equilibrium on a time scale comparable
to a few times the typical cross time2. This is the time the system needs to settle
down to a state of virial equilibrium. Once the system is in dynamic equilibrium,
long term evolution is possible, driven by two-body encounters. The relaxation time

2The cross time, Tcr, is the time one particle needs to cross the system.
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for a dynamical system such as galaxies or dark-matter haloes is much longer than
the life of the universe, so they are considered collisionless systems.

There are several methods employed for solving Newtonian gravity systems. The
easiest and most intuitive method to derive the gravitational accelerations is the so
called direct summation approach. It does not introduce any approximation and
therefore you get the highest accuracy solution. The big disadvantage is that the
computational cost per body is O(N), so one needs O(N2) operations to compute
the forces on all bodies. A second order accurate leapfrog integration is usually
used to make the time integration of trajectories and it only requires one force
evaluation per time-step (Efstathiou et al. 1985). One can get more accuracy in
the trajectories using higher order schemes with longer time-steps. They are rarely
used because of CPU time cost. Another algorithm to compute the gravitational
force is the hierarchical tree algorithm (Appel 1985, Barnes & Hut 1986). It divides
the system recursively into a hierarchy of cells (i.e.“tree”), each containing one or
more particles. It is a method for collisionless systems when close encounters are not
important and where the contribution to the net force from very distant particles
does not need to be computed with very high accuracy. Strong interactions at small
scales are typically softened, while the potentials due to distant groups of particles
are approximated by multipole expansions about the group centers of mass. The
resulting computation time scales as O(N log (N)) but the approximations introduce
small force errors. The criteria to separate strong and distant interactions comes
from the parameter θ. If a cell of size s and distance d (from the point where
acceleration has to be derived) satisfies s/d < θ, the particles in this cell are treated
as a pseudoparticle located at the center of mass of the cell. As already stated, the
set of particles in the cell is replaced by a low-order multipole expansion depending
on the cell mass distribution. The particle-mesh (PM) algorithm is another method
to compute the direct summation for collisionless systems in less time. It is based
on representing the gravitational potential on a Cartesian grid (with a total of Ng

grid points) starting from the density field and by solving Poisson’s equation on this
grid. The Poisson equation is typically solved using a Fast Fourier Transform (FFT)
requiring O(Ng log (Ng)) operations (Miller & Prendergast 1968, Hohl & Hockney
1969, Miller et al. 1970). The method has three steps:

The first step is called mass-assignment. The mass density field, ρ(~x, t), is com-
puted on a grid from discrete particles positions and masses. The simplest method
assigns each particle to the nearest grid point (NGP) with no contribution of mass
to any other grid point. This method produces rather large truncation errors (Efs-
tathiou et al. 1985, Hockney & Eastwood 1988). The most used assignment method
is Cloud-in-Cell (CIC), which uses multilinear interpolation on the 8 grid points
defining the cubical mesh containing the particle. Another method uses 27 grid
points to reduce force fluctuations due to the sharp edges.

The second step is to solve Poisson’s equation for the gravitational potential:

~φ(~k, t) = −4πGa2
ρ̂(~k, t)

k2
(4.9)

where ρ̂ and ~φ are the discrete Fourier transforms of the mass density and potential,
respectively. The gravity field is then obtained by transforming the potential back
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to the spatial domain and approximating the gradient by finite differences, or by
multiplying by i~k in the Fourier domain.

The third step is to interpolate the gravity field from the grid back to the particles.
The same interpolation scheme should be used here as in the first step to ensure
that particles self-forces vanish. The total number of required operations in the PM
method is O(N)+O(Ng log (Ng) to evaluate the forces on all particles. As the force
is a poor approximation of Newton’s law up to several grid spacings, there is a net
loss of short range accuracy. There exists an adaptive mesh refinement method,
which uses an adaptive rather than a static grid to solve the Poisson equation. The
grid elements are concentrated where a higher resolution is needed (in the highest
density regions for instance).

The main drawback of the PM method is the limitation of the force resolution due
to the spatial grid. In order to increase this force resolution one can supplement the
forces with a direct sum over pairs separated by less than two or three grid spacings,
resulting in the particle-particle/particle-mesh (P 3M) algorithm. Hockney et al.
1974 developed this hybrid method and Efstathiou & Eastwood 1981 first used it
in cosmology. Problems arise when clustering becomes strong because the cost of
direct summation dominates. One solution is to replace the direct summation by
a tree code, leading to a hybrid PM-Tree scheme. These methods are generally
extremely well suited for cosmological simulations, for example see GADGET-II
(Springel 2005). Another method is to create a subgrid mesh. Pair summation is
still done but only for pairs whose separation is less than two or three spacings of
the subgrid mesh, resulting in a substantial reduction. As the pair summation no
longer dominates as it does in P 3M , the force computation of this new adaptive
P 3M scales as O(N log (N)), similar to a tree code.

4.3 MICE Simulations

The Marenostrum Institut Ciències de l’Espai simulations (MICE) are a set of N-
body simulations carried out at the Marenostrum supercomputer at the Barcelona
Supercomputing Center 3. The GADGET-II code (Springel 2005) is used to gener-
ate all simulations, in particular the Lean-GADGET-II, which is a highly memory
efficient version of GADGET-II. It computes gravitational forces with a hierarchi-
cal tree algorithm (optionally in combination with a particle-mesh scheme for long
range gravitational forces). The MICE simulations are a suite of different runs that
assume a flat concordance ΛCDM model with parameters Ωm = 0.25, ΩΛ = 0.75,
Ωb = 0.044, h = 0.7 and the spectral index ns = 0.95. The linear power spectrum
is normalized to yield σ8 = 0.8 at z = 0. Initial conditions were given by either
using the Zel’dovich approximation or 2nd order Lagrangian Perturbation Theory
(2LPT) (Scoccimarro 1998, Crocce et al. 2006). The main goal of the simulations
is to study the formation and evolution of structure at very large scales and also
to determine how well future astronomical surveys, such as DES or PAU, can an-
swer the current cosmological questions. Figure 4.2 shows the suite of simulations
in the mass resolution-volume plane. They sample a wide range of cosmological vol-

3Barcelona Supercomputing Center, www.bsc.es.
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umes, from the SDSS main sample (0.1h−3Gpc3) to DES (9h−3Gpc3) or even Euclid
(∼ 100h−3Gpc3), and mass resolutions, from 3×1012h−1M⊙ down to 3×108h−1M⊙.
Table 4.1 shows the suite of MICE simulations with their main characteristics.

Figure 4.2: Set of MICE simulations in the mass particle-volume plane. Big squares map the
halo mass function at the high mass end whereas small triangles (test simulations) extend
the dynamical range down to haloes of 1010M⊙.

Run Lbox/h
−1Mpc Npart mp/h

−1M⊙ lsoft/h
−1Kpc zi

GRAND CHALLENGE 3072 40963 2.93× 1010 50 100
MICE7680 7680 20483 3.66× 1012 50 150
MICE3072 3072 20483 2.34× 1011 50 50
MICE4500 4500 12003 3.66× 1012 100 50
MICE3072LR* 3072 10243 1.87× 1012 50 50
MICE768* 768 10243 2.93× 1010 50 50
MICE384* 384 10243 3.66 × 109 50 50
MICE179* 179 10243 3.70 × 108 50 50
MICE1200* (x20) 1200 8003 2.34× 1011 50 50

Table 4.1: MICE N-body simulation description. The first column is the name of the sim-
ulation. Lbox is the size of the box, Npart is the number of particles, mp gives the particle
mass, lsoft is the softening lenght and zin denotes the initial redshift of the simulations.
Simulations with the mark * were done for completeness or testing.

The MICE simulations have been used to produce both comoving and lightcone
outputs. In particular a lightcone output of the simulation MICE3072 has been
built, which has Np = 20483 and Lbox = 3072 Mpc/h. About 200 comoving outputs
separated by constant spacing in cosmic time (≈ 70 Myr) has been used to build the
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lightcone. Figure 4.3 shows an octant of the MICE3072 run lightcone, from r = 0 to
r = 150 Mpc/h. Blue points are dark-matter particles. Different structures, such as
filaments and voids, can be seen in the image.

Figure 4.3: Lightcone image from MICE3072 run. Blue points represent dark-matter parti-
cles.

Projected density and weak lensing maps have also been produced from the main
MICE runs (Fosalba et al. 2008). Some of the MICE simulations have already been
used to study the clustering of LRG galaxies with multiple-band photometric surveys
such as PAU (Beńıtez et al. 2009), the large-scale clustering in the spectroscopic LRG
SDSS sample through redshift space distortions (Cabré & Gaztañaga 2009a, Cabré
& Gaztañaga 2009b), baryonic acoustic oscillation in the three-point correlation
function (Gaztañaga et al. 2009a) and in the radial direction (Gaztañaga et al.
2009b), and also to study the high-mass end of the halo mass function (Crocce et al.
2010).

MICE simulations are ideal for studying very large scale statistics because of
their volume. One can study very long distance effects or the baryonic acoustic scale.
Having such a big difference in volume between simulations helps to study volume
effects. Another competitive aspect of the simulations is the fact that replication is
not required out to z = 1.4 for the simulations with the largest box-size.

During the process of generating mock galaxy catalogues we have used both
the MICE3072 and Grand Challenge (GC) runs. At the beginning we used the
MICE3072 run and then we used the MICE GC run when it was performed. The
MICE3072 run has, as previously stated, 20483 particles and a box-size Lbox = 3072
Mpc/h. This is the same number of particles as the Millenium simulation (Springel
2005) but 216 times more volume. To put some numbers, the snapshot of MICE3072
run at z = 0 occupies 250GB, and contains ∼ 25 million haloes more massive than
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3.9× 1012h−1M⊙ (using a FoF code and setting b=0.2)4. The MICE GC run traces
the evolution of 40963 particles, which is, along with the work of (Teyssier et al. 2009),
the largest N-body simulation ever produced until recently with box-size Lbox = 3072
Mpc/h. Every snapshot occupies ∼ 2TB. In this case the number of haloes in the
z = 0 output contains more than 350 million haloes.

The theoretical linear power spectrum of fluctuations at z = 0, P(k), used in the
MICE simulations is shown in figure 4.4 (it is already normalized). Figure 4.5 shows
the two point correlation function, ξ(r), derived using eq. 4.10.

ξ(r) =
1

2π2

∫ ∞

0
k2P (k)

sin(kr)

kr
dk (4.10)

Figure 4.4: The left panel shows the linear power spectrum at z= 0 (normalized), P0(k),
used in MICE simulations. The right panel also shows P0(k) adding points in order to cover
the whole range in k’s and derive its Fourier Transform.

Figure 4.5: The left panel shows the two point correlation function of dark matter from
MICE simulations, ξ(r), derived using equation 4.10. The right panel is a zoom of the left
panel and multiplied by the square of the separation in order to emphasize the BAO peak.

4The parameter b determines the maximum distance at which dark-matter particles in the simu-
lation are defined as friends. In particular the distance is usually expressed as the mean inter-particle
distance of the simulation times the parameter b.
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The P(k) data are available on the MICE webpage, http://www.ice.cat/mice.
This file contains two columns, the first one is k and second one is P(k). The lowest
k is 0.001 and the largest one is 1000.0. Some additional points either at low k
(P (k) ∝ k0.95) and high k (P (k) ∝ kns−4) are added, and also an interpolation of
the power spectrum with a different constant step in ln (k), ∆(ln (k)) = 0.001, in
order to derive the correlation function (figure 4.4).

The P(k) file is not normalized. Equation (4.11) is used to derive the normaliza-
tion constant assuming σ8 = 0.8. The normalized σ(Mh, z = 0) is shown in figure
4.6 and is defined as the variance of the linear density field smoothed with a top hat
filter of radius R and enclosing an average mass M = ρb4πR

3/3.

σ2 (Mh, z) =
D2(z)

2π2

∫ kmax

kmin

k2P (k)W 2(kR)dk (4.11)

where D(z) is the linear growth factor between z = 0 and the redshift of interest and
W (kR) is the Fourier transform of the top hat filter of radius R.

D(z) =

(
x

x0

)(
x3 + 1

)1/2
∫ 1

0
dy
(
1 + x3y6/5

)−3/2
(4.12)

x =

(
Ω−1
0 − 1

) 1

3

1 + z
(4.13)

where Ω0 is the matter density parameter at z = 0, and x0 is the value of x at z = 0.

W (x) =
3

x3
(sin(x)− x cos(x)) (4.14)

Figure 4.6: Variance of the linear density field as a function of radius (left panel) and mass
(right panel).

4.4 MICE Halo Catalogues

To generate the mock galaxy catalogues using the HOD model (previously discussed
in chapter 3) it is essential to derive a dark-matter halo population. As mentioned



66 4 Cosmological Simulations

before, defining a halo is not a simple question (e.g. haloes in simulations may be
in a state of merging or accreting). There are two main methods to define a halo,
the spherical overdensity (SO, Lacey & Cole 1994) and the Friends-of-Friends (FoF,
Davis et al. 1985a) algorithms.

Spherical overdensity defined haloes are spherical regions around matter density
peaks, which have an inside mean matter density larger than a given threshold. This
threshold is usually taken as a fixed multiple of the critical or background density.
The FoF algorithm looks for neighbours of a given particle. Neighbours (or “friends”)
are defined as particles that are closer than a certain distance to the given particle.
The algorithm follows this procedure recursively with the neighbours until no more
“friends” are found. The result is a group of dark-matter particles that are closer
than a given distance, the linking length, which is some fraction, b, of the mean
interparticle distance. The standard value b = 0.2 produces haloes that match the
mean density of the SO mass definition quite well (for comparisons of the halo mass
obtained with SO and FoF see White 2001, White 2002, Warren et al. 2006, Tinker
et al. 2008, Lukić et al. 2009, Robertson et al. 2009). The abundance of FoF haloes
seems to be universal at the < 10% level (Jenkins et al. 2001, Reed et al. 2003, Reed
et al. 2007, Heitmann et al. 2006, Lukić et al. 2007, Tinker et al. 2008, Crocce et al.
2010) with some dependence on the linking length (Jenkins et al. 2001, Tinker et al.
2008), so there is no need to simulate every cosmological model.

Figure 4.7: Slice through the MICE3072 lightcone map of the distribution of dark-matter
particles, from z = 0 to z ∼ 1.4. The distance from the vertex represents the real space of
the dark-matter particle.

MICE halo catalogues are derived using the public halo finder code available at
the N-body Shop (http://www-hpcc.astro.washington.edu/) with some modifications
to gain CPU efficiency because of the large amount of particles involved. Every halo
contains all the information needed to generate the mock galaxy catalogues, not
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only the mass, position and velocity of the center of mass, and the virial velocity,
but also the position and velocity of every particle that belongs to the halo. This
information is essential when one wants to place galaxies inside the haloes. One easy
and visual check, beyond data analysis or theoretical matches, is plotting the halo
catalogue and the dark-matter particles at the same time. In this case, to visualize
the simulations we use the public available partiview5 software developed at the
American Museum of Natural History. It is also very useful not only as another test
for the halo catalogues but also to observe different structures at large scales such
as voids, filaments or clusters.

Figure 4.8: Slice through the MICE3072 lightcone of the distribution of dark-matter haloes.
The positions of 148928 haloes with no more than 100 dark-matter particles are plotted in
this diagram.

A slice through the MICE3072 lightcone of the distribution of dark-matter par-
ticles is shown in figure 4.7. The blue points represent dark-matter particles. It
actually shows a diluted dark matter field, i.e. just 1 over 500 of the total number
of dark-matter particles. The lower vertex corresponds to z = 0, the maximum
radial distance is 3072 Mpc/h which is z ∼ 1.4 and the thickness of the slice is 50
Mpc/h. Large density regions and voids can clearly be distinguished. The clustering
time evolution cannot be clearly appreciated from figure 4.7, i.e. to observe more
overdense regions close to the vertex (z = 0) rather than far away (z = 1.4). In
figure 4.8 white points represent dark-matter haloes in the same slice. The plotted
haloes do not have more than 100 dark-matter particles. There are a total of 148928
haloes in the map. It is easy to see the inhomogeneities and in this case one can
observe that there are more haloes at low redshift than at high redshift (clustering
evolution). This feature is even clearer in figure 4.9 where red points represent dark-
matter haloes consisting of more than 100 dark-matter particles in the same slice.

5http://www.haydenplanetarium.org/universe/partiview.
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Virtually no very massive haloes can be found at high redshift (there has been no
time to build such big structures). In figure 4.10 one can see a zoomed-in region of
the previous figures. Blue points represent dark-matter particles. One can observe
clearly that there is a concentration of dark-matter particles at the center of the
image, and with more difficulty, and to a lesser degree, another concentration of
dark-matter particles at the bottom right (notice that the density field is diluted so
not every particle is plotted). Figure 4.11 shows the same region as the previous one
but in this case dark-matter haloes are also plotted. The central concentration of
blue points form a massive halo (red point), and the bottom right blue points are
part of a less massive halo (white point).

Figure 4.9: Slice through the MICE3072 lightcone of the distribution of very massive dark-
matter haloes. Red points represent dark-matter haloes with more than 100 dark-matter
particles.

4.4.1 Halo mass function

The halo mass function (MF) describes the halo mass distribution in the universe.
It usually refers to the cumulative halo MF, i.e. the number density of haloes with
mass greater than some mass Mh, n(> Mh) = dn

dMh
(> Mh). Structure formation

models predict that high density peaks of the density field evolve and collapse into
dark-matter haloes once the density contrast reaches a certain threshold. According
to the spherical collapse model (Gunn & Gott 1972) a region is going to collapse
into a point when its mean density reaches ∼ 200 times the background density at
formation:

〈ρ〉 > 200ρcr = 200ρ0cr(1 + z)3 (4.15)

The Press-Schechter model (Press & Schechter 1974) uses the model of spherical
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Figure 4.10: Zoom from previous images. Blue points represent dark-matter particles. There
exist an overdensity at the center of the image and to a lesser degree another overdensity at
the bottom right.

Figure 4.11: Idem as figure 4.10 but including dark-matter haloes. The central concentration
of blue points form a massive halo (red point), and the bottom right blue points are part of
a less massive halo (white point).

collapse to approximately compute the number density of dark-matter haloes as a
function of their mass and redshift. Let δ0(x) be considered as a density fluctuation
field, with fluctuations on all scales following the power spectrum, P0(k). This field
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is smoothed with a smoothing length R. Let δR(x) be the smoothed density field
linearly extrapolated to the present day. Fluctuations on scales . R are removed
because they have been smoothed out. Each maximum in δR(x) corresponds to a
peak with characteristic scale & R and according to the spherical collapse model also
corresponds to a mass M∼ (4πR3/3)ρ0. If δR is sufficiently large a spherical region
of radius R will decouple from the linear growth of density fluctuations and will
begin to grow non-linearly. If δ0(x) is a Gaussian distribution (which is expected for
several reasons) the statistical properties of the field are completely described by the
power spectrum, as explained in previous chapter, and one can compute the number
density of maxima with δR > δmin (where δmin determines the minimum value for a
region to collapse and form a halo and can be computed for any cosmological model)
and therefore the number density of relaxed dark-matter haloes in the universe as a
function of mass and redshift, n(M,z). In the mid-1990s numerical simulations of
structure formation reached a precision that found significant discrepancies between
the number density of haloes in simulations and the Press-Schechter predictions.
Analytical predictions have also been improved (Bond et al. 1991, Sheth et al. 2001c).
Instead of using the spherical collapse model a more realistic ellipsoidal collapse have
been introduced by which the number density of haloes is modified in comparison
to the Press-Schechter model and it is in very good agreement with the numerical
results. After Press-Schechter, semianalytic fits by Sheth & Tormen 1999, Jenkins
et al. 2001, Warren et al. 2006 and many more have been done using simulations.

Crocce et al. 2010 studied the abundance of massive haloes in the MICE simula-
tions6. They provide a re-calibration of the MF over 5 orders of magnitude in mass
(1010 <M/(h−1M⊙ < 1015)), that accurately describes its redshift evolution up to
z = 1. They used the very large volumes of MICE to make a fair sample of the very
high mass end of the halo MF. As a first check they compared the halo abundance
in MICE3072 to that in the Hubble Volume Simulation (HVS) (Jenkins et al. 2001,
Evrard et al. 2002) because they simulate almost the same volume. They found that,
after correcting for different cosmologies (HVS assumes σ8 = 0.9 vs. σ8 = 0.8 of the
MICE simulations) and also for artificially lower abundance in the HVS simulations
due to its late start zi = 34, the difference between the measured ratio and the
prediction are within the claimed accuracy for the Jenkins fit (10-15%). They also
found that available fits to the local abundance of haloes (Warren et al. 2006) match
the abundance estimated in the large volume of MICE up to M ∼ 1014h−1M⊙ but
significantly deviate for larger masses, underestimating the MF by 10% (30%) at
M = 3.16 × 1014h−1M⊙ (1015h−1M⊙). The same underestimation occurs when one
extrapolates the Sheth & Tormen 1999 fit to high redshift (assuming universality).
The cluster abundance decreases by 30%, 20% and 15% at z=0, 0.5, 1 for fixed
ν = δc/σ ≈ 3 (corresponding to M ∼ [7− 2.5 − 0.8]× 1014h−1M⊙ respectively).

The differential MF is defined as:

f(σ, z) =
Mh

ρb

dn (Mh, z)

d lnσ−1 (Mh, z)
(4.16)

where n (Mh, z) is the comoving number density of haloes with mass Mh, σ(Mh, z)

6The MICE GC run was not available at that time.
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is the variance of the linear density field (defined previously in equation 4.11) and
ρb is the background density. R is given in comoving distance, ρb is also a comoving
density (it is constant in time) so the mass does not change with time for each radius.

The number density of objects in a halo mass bin is given by the expression:

nbin =

∫ Mh2

Mh1

(
dn(Mh, z)

dMh

)
dMh (4.17)

Using equation 4.16,

dn(Mh, z)

dMh
= − ρb

σ(Mh, z)

1

Mh

dσ(Mh, z)

dMh
f(σ, z) (4.18)

Crocce et al. 2010 fit a Sheth & Tormen-like Mass Function (ST-like MF) to their
simulations:

f(σ, z) = fWarren(σ(Mh), z) = A(z)
[
σ−a(z) + b(z)

]
exp

[
−c(z)
σ2

]
(4.19)

In table 2 of Crocce et al. 2010 the MF best-fitting parameters for f(σ, z) for
the MICE simulations are shown. They derive how the parameters evolve with
redshift: A(z) = 0.58(1 + z)−0.13, a(z) = 1.37(1 + z)−0.15, b(z) = 0.3(1 + z)−0.084,
c(z) = 1.036(1 + z)−0.024.

dn(Mh, z)

dMh
= − ρb

σ(Mh, z)

1

Mh

dσ(Mh, z)

dMh
A(z)

[
σ−a(z) + b(z)

]
exp

[
−c(z)
σ2

]
(4.20)

nbin =

∫ Mh2

Mh1

(
dn

dMh

)
dMh =

∫ Mh2

Mh1

−ρb
Mh

1

σ

dσ

dMh
f(Mh, z)dMh (4.21)

In order to compare the MF with predictions we measure the MF of the MICE
GC run at z = 0. In practice we measure the number of haloes ∆N in a given mass
bin [M1,M2] of width ∆Mh and define (as in Crocce et al. 2010):

dn

d lnMh
=

∆N

Vbox

Mh

∆Mh
(4.22)

The halo mass is computed taking into account the Warren correction, given by
equation 4.23:

MW
h = mp(Np(1−N−0.6

p )) (4.23)

that corrects a systematic problem that FOF halo masses suffer when haloes are
sample by relatively small number of particles. The mass bins are equally space in
log-mass, with ∆ log10Mh/(h

−1M⊙) = 0.1. The corresponding value of the mass of
the bin is obtained as:

Mbin =

∫M2

M1

(
dn
dMh

)
MhdMh

∫M2

M1

(
dn
dMh

)
dMh

(4.24)
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from theory and as a mass weighted average:

M bin =

∑
binM

i
h

∆N
(4.25)

from the simulation. To estimate the errors of the MF we use the Jack-knife re-
sampling method. We divide the simulation volume into NJK = 102 non-overlapping
regions, and compute the MF in the full volume excluding one of the non-overlapping
regions at a time. We choose as a non-overlapping region a prism of square base
with size 307.2 Mpc/h and height 3072 Mpc/h. Crocce et al. 2010 perform a de-
tailed study of different methods to estimate the error or variance in mass function
measurements. They found that at smaller masses the sampling variance becomes
increasingly important rapidly dominating the total error, and that the Jack-knife
re-sampling method does capture this trend but only partially, in particular for the
smaller box-sizes (. 500 Mpc/h, which is not our case), where sampling variance
from the absence of long-wavelength modes is more significant. For the Jack-knife
method Crocce et al. 2010 used NJK = 53 and they checked that the estimates have
already converged for those values with varying NJK . The variance (defined as the
relative error squared) in the i-bin of the number of haloes is obtained as:

σ
(i)2

JK (∆N) =
1

n(i)
2

NJK − 1

NJK

NJK∑

j=1

(
n
(i)
j − n(i)

)2
(4.26)

where n(i) is the mean number density of haloes for that bin. We checked our errors
with the measurements done by Crocce et al. 2010. The top panels of figure 4.12 show
the errors measured using different methods (Jack-knife, sub-volumes and Poisson
methods) by Crocce et al. 2010 for MICE3072 and MICE7680 runs. The bottom
panel of 4.12 shows the errors we estimate for the MICE GC run, respectively. They
agree in the same halo mass range and the same simulation size (Lbox = 3072 Mpc/h).

Figure 4.13 shows the MF for the MICE GC run at z = 0. Red triangles represent
dn/d log (Mh) in the simulation. Errors are not visible because they are very small.
The blue solid line is the best fit using a Schechter-like function (equation 4.27),
where a0 = 6.1065 × 10−5, a1 = −0.8438, a2 = 0.6946 and M∗

h = 2.3880 × 1014.

dn

d logMh
= a0

(
Mh

M∗
h

)a1

exp

[
−
(
Mh

M∗
h

)a2]
(4.27)

4.4.2 Linear large scale halo bias

There are several different ways of measuring halo bias (see e.g. Manera et al. 2010).
It measures the relation between the matter density field and the halo density field.
The linear large scale halo bias, bLinh , can be derived using the two point correlation
function. In this section we derive the large scale MICE halo bias using this method
and compare our results with fits from Manera et al. 2010.

Expression 4.28 relates the two point correlation function of haloes and dark mat-
ter assuming a linear bias relation between the haloes and dark matter distributions,
δh(r) = bLinh δm(r):
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Figure 4.12: Top panels: Different estimates for the variance in the halo mass function
within MICE3072 and MICE7680 runs using different methods for two different box-sizes
(3072−7096 Mpc/h) (two panels of a figure from Crocce et al. 2010). Bottom panel: Poisson
and Jack-Knife errors from MICE GC run.

ξh(r) =
(
bLinh

)2
ξDM(r) (4.28)

Manera et al. 2010 presented a maximum-likelihood method for fitting parametric
functional forms to halo abundances. Manera et al. 2010 showed a linear bias function
for haloes applying the peak background split to a Warren-form halo mass function:

bW (ν (σ (Mh))) = 1 +
c
′

ν − 1

δc
+

2a
′

b
′

+ b
′

+
(
c
′

ν
)a′

δc

(
b′ + (c′ν)

a′
) (4.29)

where ν is the natural scaling variable according to the spherical evolution model
and is defined as:

ν ≡ δ2sc (Ωz,Λz , z)

σ2(Mh)
(4.30)
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Figure 4.13: Differential halo mass function dn
dlogm

. The red triangles are the average HMF

derived from 100 JK volumes. The black solid line is a fit Schechter-like function (equation
4.27)

where δsc is the critical density required for spherical collapse given a cosmological
model (Ωz,Λz):

δsc (Ωz,Λz, z) =
δsc(0)

D(z)
(4.31)

where δsc(z = 0) = 1.686 in an Einstein-de Sitter cosmology, and δsc(z = 0) = 1.673
in the MICE cosmology.

Manera et al. 2010 also suggested an expression for the MF depending on the
variable ν:

νfW (ν) =
Mh

ρb

dn(Mh)

d lnMh

d lnMh

d ln ν
=
Mh

ρb

dn(Mh)

d ln ν
= A

′
[
1 + b

′

(c
′

ν)−a
′
]
exp

(
−c′ν/2

)

(4.32)
In order to derive the MICE parameters of halo bias we use the MF expressions

from Crocce et al. 2010 and Manera et al. 2010. We use equation 4.16, equation 4.32
and the relation between ν and σ (eq. (4.30)) to get equation 4.33:

νfW (ν) =
1

2
f(σ, z) (4.33)

Parameters are related in this way:

c = c
′ δ2sc
2D2

c
′

= c
2D2

δ2sc
(4.34)
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a = −2a
′

a
′

= −a
2

(4.35)
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2
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b =
1

b
′

(
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′

b
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=
(2c)−

a
2

b
(4.37)

We divide the MICE GC run into 103 cubes of box-size Lbox = 307.2 Mpc/h
and we estimate the two-point correlation function of haloes, ξh(r), from very small
scales (∼ 0.1 Mpc/h) up to intermediate scales (10-30 Mpc/h) using the following
estimator for each cube:

ξh(r) =
DD(r)

RR(r)
− 1 (4.38)

whereDD(r) refers to the number of pairs in the simulation and RR(r) is the number
of pairs as if haloes were spatially randomly distributed. We run a FoF code in the
MICE GC run going down toNmin

p = 10 to form a halo. The corresponding minimum
halo mass is log10(Mmin) = 11.34. The maximum halo mass is log10(Mmax) = 15.70,
that corresponds to a number Np of about 170K dark-matter particles. We estimate
the two point correlation function for seven different halo mass thresholds and three
halo mass bins. Table 4.2 shows the chosen halo mass ranges. We developed a C code
to compute the two point correlation function (see Appendix A for more details.)

> Np > log10Mh Np1 > Np > Np2 log10Mh1 > log10Mh > log10Mh2

10 11.3 10 to 39 11.3 to 12.0
21 11.7 39 to 359 12.0 to 13.0
39 12.0 359 to 3443 13.0 to 14.0
179 12.7
359 13.0
1728 13.7
3443 14.0

Table 4.2: Halo mass thresholds and halo mass bins.

Figure 4.14 shows the average of ξh(r) for the different halo mass thresholds tak-
ing into account the 103 volumes. Errors bars show the error on the mean value
between volumes. The different colours correspond to different halo mass thresh-
olds. The first three halo mass thresholds (up to log10(Mh) > 12.0) have the same
amplitude. More massive haloes show a faster increase in the amplitude, and they
also show larger errors due to the small number of massive objects in comparison
with less massive haloes. One can easily notice the halo exclusion effect (see section
3.1.1). There are no pairs at very small distances. The scale, at which the correla-
tion function turns, approximately shows the size of the haloes. It depends on their
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masses. The more massive the halo is, the larger its radius becomes. For comparison,
the linear two-point correlation function of the MICE simulations (calculated as the
FT of the linear MICE power spectrum) is shown as a black dashed line.

Figure 4.14: Mean value of the real space two-point correlation function for seven different
halo mass thresholds for the 103 volumes with box-size Lbox = 307.2 Mpc/h. The error bars
are the errors on the mean value between volumes. The dashed black line is the two-point
correlation function of the linear MICE correlation function calculated as the FT of the
linear MICE power spectrum.

Figure 4.15: Scale dependent linear halo bias for seven different halo mass thresholds.

Figure 4.16 shows the average of ξh(r) for the different halo mass bins. The errors
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bars show again the error on the mean value between volumes. The different colours
correspond to different halo mass bins. There are almost no difference between the
first two low halo mass bins. However the more massive bin shows a considerable
larger amplitude. The black dashed solid line is the linear two-point correlation
function used in MICE simulations.

We estimate the linear halo bias as a function of the scale, bLinh (r), following
equation 4.28 and using the linear MICE correlation function calculated as the FT
of the linear MICE power spectrum. Figure 4.15 and figure 4.17 show the scale
dependent halo bias for halo mass thresholds and halo mass bins respectively. The
error is larger at large scales because the less number of pairs at those distances.
The value of the bias at large scales does not converge into a constant because of
the so-called integral constraint effect. Because of the way we divide the simulation
into little boxes not all the scales are well represented in the correlation function.

In order to compute the halo bias as a function of the mass we have estimated
the value of the bias at large scales. We have chosen the values at r = 16.9 and
r = 26.8. Figures 4.18 and 4.19 show the large scale halo bias as a function the
mass for different halo mass thresholds and bins using the value of the correlation
function at r = 16.9 and r = 26.8, respectively. The black solid line is the expression
of the halo bias given by Manera et al. 2010 and using the parameters found by
Crocce et al. 2010 for the MICE simulations. The blue solid line is the cumulative
bias derived by integrating equation 4.29:

bh(> Mh) =

∫∞
Mh

dn
dM ′

h

bhdM
′
h∫∞

Mh

dn
dM ′

h

dM ′
h

(4.39)

The derivation of the large scale halo bias from MICE simulations and the ana-
lytical expression from Manera et al. 2010 agree quite reasonably.

4.5 Summary

Dark-matter N-body simulations, which are used in this work to generate the mock
galaxy catalogues, have been introduced and characterized in this chapter. We have
briefly described the history and the basics of N-body simulations. The importance
of computational advances has been stressed, as well as some improvements in the
algorithms to compute the gravitational force between particles.

We have described and analyzed in particular the MICE simulations, which
are essential for the process of building our mock galaxy catalogues. The MICE
simulations assume a flat concordance ΛCDM model with parameters Ωm = 0.25,
ΩΛ = 0.75, Ωb = 0.044, h = 0.7 and the spectral index ns = 0.95. The linear power
spectrum is normalized to yield σ8 = 0.8 at z = 0, and the initial conditions are given
by either using the Zel’dovich approximation or 2nd order Lagrangian Perturbation
Theory (2LPT). The MICE simulations have been already used to study different as-
pects of galaxy clustering, such as LRG clustering, weak gravitational lensing, BAO,
redshift space distortions, etc. The whole set of simulations has been presented. We
have introduced and derived some of the ingredients for generating the mock galaxy
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Figure 4.16: Mean value of the real space two-point correlation function for three different
halo mass bins for the 103 volumes with box-size = 307.2 Mpc/h. Error bars are the errors
on the mean value between volumes. The dashed black line is the two-point correlation
function of the linear MICE correlation function calculated as the FT of the linear MICE
power spectrum.

Figure 4.17: Scale dependent linear halo bias for seven different halo mass bins.

catalogues, such as the halo mass function, the two-point correlation function and
the halo bias.

The linear MICE two-point correlation function is calculated as the FT of the
linear MICE power spectrum. The halo catalogue extracted from the MICE simula-
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Figure 4.18: Linear bias at large scales for the halo mass thresholds and halo mass bins
using the value of the correlation function at r = 16.9 Mpc/h. The black solid line is the
expression of the halo bias given by Manera et al. 2010 and using the parameters found
by Crocce et al. 2010 for the MICE simulations. The blue solid line is the cumulative bias
derived by integrating equation 4.29.

Figure 4.19: Idem as figure 4.18 but using the value of the correlation function at r = 26.8
Mpc/h.

tions has been described. Haloes are derived using a FoF code with a value of b=0.2.
We have used expressions given by Crocce et al. 2010, which characterized the mass
function of MICE simulations. We used also the analytical expression for the halo
bias found by Manera et al. 2010 and we compare it to the MICE simulations. We
have derived the errors of the halo mass function of the MICE GC run using the
Jack-knife re-sampling method. A comparison against Poisson errors is done. In
order to derive the halo bias we derived the correlation function of haloes dividing
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the whole simulation volume into 103 non-overlapping cubes of box-size Lbox = 307.2
Mpc/h. We showed the correlation function for different halo mass threshold and
halo mass bin samples and we estimated the halo bias using the linear MICE correla-
tion function of the dark matter density field (derived as the FT of the linear MICE
power spectrum). The results show a very good agreement between the halo bias
derived from simulations and the analytical expressions from Manera et al. 2010.

During the process of generating the catalogues we have used the MICE3072 and
the Grand Challenge runs. Both simulations have a box-size Lbox = 3072Mpc/h.
The first one contains 20483 particles and the MICE GC run has 8 times more
particles and therefore a better mass resolution. The minimum luminosity of the
mock galaxy catalogue depends strongly on the mass resolution of the simulation. We
will see in section 5.3.3 of chapter 5 that the minimum luminosity of the mock galaxy
catalogue decreases ∼ 2 orders of magnitude (from Mr ∼ −21.0 to Mr ∼ −19.0)
when going from the mass resolution of the MICE3072 run to the MICE GC one.



Chapter 5

Building mock galaxy catalogues

This chapter describes the process of producing mock galaxy catalogues populat-
ing dark-matter N-body simulations. We want the catalogue to follow some global
properties of the observed galaxy population, such as the luminosity function, the
colour-magnitude diagram and the clustering as a function of luminosity and colour.
All observational data come from the Sloan Digital Sky Survey (SDSS). In particular
we use the luminosity function in the 0.1r band derived by Blanton et al. 2003 using
a catalogue of 147986 galaxy redshifts and fluxes, the galaxy clustering as a function
of the luminosity and colour derived by Zehavi et al. 2011, and the colour-magnitude
diagram from the NYU DR7 catalogue.

Our idea, since the beginning, was to be as simple as possible. Before getting
to the last version of the mock galaxy catalogue, previous and different attempts,
including a mock galaxy catalogue built by using a different approach than the HOD
model, have been developed. The first section of the chapter describes the generation
and reproduction of the mock galaxy catalogue presented by the Institut de Cienciès
de l’Espai (ICE) as a collaborating group in the “Large Scale Structure Simulation
Challenge” of the Dark Energy Survey (DES) within the Galaxy Clustering Working
Group. The second section describes the algorithm presented by Skibba & Sheth
2009 that extends the halo occupation distribution model and include colours into
the galaxies, which is a previous step to include spectral energy distribution to the
galaxies. The algorithm also reproduces the colour-magnitude diagram and the clus-
tering as a function of colour as well as the luminosity function and the clustering as
a function of luminosity. We show the results and issues we found using the method
of Skibba & Sheth 2009 by populating halo catalogues extracted from the MICE
simulations. The second section also describes the attempt to analytically compute
two HOD parameters using the MICE simulations. The third section shows the
derivation of three HOD parameters by generating a grid of 600 catalogues popu-
lating with galaxies a halo catalogue with a box-size Lbox = 307.2 Mpc/h extracted
from the MICE GC run. In section 4 we describe the method we use in order to pro-
duce a unique mock galaxy catalogue that follows all the observed galaxy properties
previously mentioned at the same time. It also shows the results we obtain when
following the method populating again a halo catalogue with a box-size Lbox = 307.2
Mpc/h of the MICE GC run.
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5.1 DES LSS Challenge I

The first attempt to generate a mock galaxy catalogue was done to participate in the
“LSS Simulation Challenge” of the Dark Energy Survey within the Galaxy Clustering
Working Group. The working group issued a challenge with the following rules:
the parent N-body dark-matter simulation must follow the concordance model, the
simulation corresponds to a snapshot at z = 0, and the box-size must be greater
or equal 1 Gpc/h (Lbox > 1 Gpc/h). The mock galaxy catalogue has to follow
a determined redshift distribution, and contains a total number of galaxies, Ngal,
between 107 and 108.

The idea of the challenge was to generate a mock galaxy catalogue that simulates
a photo-z catalogue of an octant of the sky (0◦ < RA < 90◦ and 0◦ < DEC < 90◦)
with the correct number density in a redshift range 0.2 < z < 1.4. The final purpose
was to roughly simulate the redshift measured using photometry. The plan was to
include two different photometric redshift precisions, σz = 0.01(1 + z) and σz =
0.03(1 + z), and therefore we generated two catalogues.

As mentioned, the mean number density of particles in the octant in comoving
coordinates (assuming the mean density of particles is constant) had to follow a
particular distribution for the challenge. It was given by the following expression:

dNdm = ρ̄rdV (r) = ρ̄r
1

8
4πr2dr = ρ̄r

π

2
r2dr (5.1)

Therefore, using the relation between the redshift and the comoving-distance,

dr =
cdz

H(z)
(5.2)

yields,

dNdm

dz
=
dNdm

dr

dr

dz
=
dNdm

dr

c

H(z)
(5.3)

In order to generate the mock galaxy catalogue we use one of the MICE runs.
In particular the snapshot at z = 0 with Ndm = 20483 and Lbox = 3072 Mpc/h. In
our case no replication is necessary to go up to z ∼ 1.4 because Lbox corresponds to
z ∼ 1.4. Figure 5.1 shows a slice of the simulation in comoving coordinates where
it is possible to visualize the large scale structures formed, such as filaments, voids
and overdensities. It is a z-axis section of thickness 96 Mpc/h.

In particular for the challenge the distribution of galaxies as a function of redshift
has to follow the expression:

dNgal

dz
= 1.5Ntotal

z2

0.5
exp

[
−
( z

0.5

)1.5]
(5.4)

As already said, the mock galaxy catalogue must have a total number of “par-
ticles” (or galaxies) between 107 − 108. We normalize the distribution in order to
have the needed number of galaxies. We derive the probability for a dark-matter
particle “being” a galaxy depending on its comoving distance, r, which is given by
the expression:
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Figure 5.1: Complete z-axis section of the N2048L3072 MICE run with a thickness of 96
Mpc/h. Horizontal and vertical axis refer to the x and y axis respectively of the simulating
box in comoving distance in units of Mpc/h. The pixel resolution is 5 Mpc/h. Each pixel
shows the mean number density of dark-matter particles. The whiter the pixel appears, the
largest the mean number density is.

Pdm(Ngal|r) =
Ngal(r)

Ndm(r)
(5.5)

We divide the volume in constant comoving-distance bins of width ∆r and there-
fore the probability of a dark-matter particle of “being” a galaxy in the redshift range
(z1, z2) or the equivalent comoving distance range (r1, r2) is given by the expression:

Pdm(z1, z2) =

∫ z2
z1

dNgal

dz dz
∫ z2
z1

dNdm

dr
c

H(z)dz
= Pdm(r1, r2) =

∫ r2
r1

dNdm

dz
H(z)
c dr

∫ r2
r1
ρ̄r

π
2 r

2dr
(5.6)

In practice we draw a random number u0 uniformly distributed between 0 and
1 for each dark-matter particle and if u0 < Pdm(r) we assign one galaxy to that
dark-matter particle.

Figure 5.2 shows the expected and the actual distribution of galaxies in comoving
coordinates. Red solid line is the predicted distribution and the blue noisy line is
the actual distribution of galaxies.

Figure 5.3 shows the spatial distribution of galaxies in a slice through the simula-
tion of the distribution of galaxies. The top panel shows the distribution of galaxies
with no error in the galaxy positions. The bottom panels show the distortions in
the distribution when photo-z are introduced. Clusters and voids in the top panel
become blurred in the left bottom panel, and completely disappear in the right one.
Only slightly elongated patterns in the line-of-sight hold.

The effects of the photo-z errors are (also) found in the two-point correlation
function. Figure 5.4 shows the two point correlation function as a function of the
radial or line-of-sight distance, π (in vertical axis), and the perpendicular distance,
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Figure 5.2: Actual and predicted galaxy distributions. Red solid line refers to the predicted
galaxy distribution in comoving coordinates and the blue solid (noisy) line is the actual
distribution of the mock galaxy catalogue.

σ (in horizontal axis). It is usually called the sigma-pi correlation function, ξ(σ, π).
Figure 5.4 comes from the MICE webpage. They was produced by Anna Cabré. The
left panel shows the sigma-pi correlation function for the true galaxy radial distances.
The red colour corresponds to large values of the correlation (ξ > 1) and the blue
colour to negative values (ξ < 0). The BAO scale can be seen as dark yellow at the
scale ∼ 100 Mpc/h. The right panel shows the same plot but in this case a photo-z
error of σ(z) = 0.01(1 + z) is included. The BAO amplitude is now very difficult to
see in the σ axis (as a yellow contour) and completely removed in the π direction.
Horizontal stripes are due to redshift discretization (∆z = 0.0002).

5.2 HOD mock galaxy catalogues

This section describes the next attempt to create a mock galaxy catalogue by using
a more sophisticated method than the previous one. The goal is to populate the
MICE cosmological simulations using a HOD model. The simplest and faster way
to proceed is to follow already developed algorithms. In particular we follow the
algorithm presented in Skibba & Sheth 2009 (hereafter SS09). SS09’s work is a very
interesting approach since they present a method to introduce colours in the HOD,
which is a previous step to introduce galaxy spectral energy distributions. Section
5.2.1 describes the SS09’s algorithm which we have followed to produce mock galaxy
catalogues. Section 5.2.2 describes the issues found when trying to match the correct
luminosity function following the SS09’s algorithm. Section 5.2.3 shows the attempt
of analytically constraining two HOD parameters using only two conditions, the
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Figure 5.3: Slices through the simulation of the distribution of galaxies. The top panel, in
comoving distances, without error in the galaxy positions. The bottom panels, in redshift
space, include Gaussian errors in galaxy redshifts.

observed mean number density of galaxies and the average linear large scale galaxy
bias at a certain scale.

5.2.1 The Skibba and Seth’s algorithm. Colours in the halo model
approach

Skibba & Sheth 2009 (SS09) presented an algorithm to create mock galaxy cata-
logues. These catalogues are constructed to have the correct luminosity function as
well as the correct luminosity dependence of the two-point correlation function. In
addition, SS09 introduced galaxy colours in the framework of the HOD. Their model
also reproduces the galaxy clustering dependence on colour. In their method they
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Figure 5.4: Two point correlation function of radial or line-of-sight distance, π (in vertical
axis), and perpendicular distance, σ (in horizontal axis). Left panel shows the sigma-pi
correlation function for the true galaxy radial distances and the right panel shows exactly
the same with a photo-z error of σ(z) = 0.01(1 + z). Both panels come from the MICE
webpage (http://maia.ice.cat/mice/) produced by Anna Cabré.

assume that: (i) the bimodality of the colour distribution at fixed luminosity is in-
dependent of the halo mass and, (ii) the fraction of satellite galaxies which populate
the red sequence increases with luminosity.

Colour and absolute magnitude are two of the most useful variables to character-
ized galaxies. Different galaxy types, elliptical, lenticular and spiral, show different
relationships between the colour and the absolute magnitude. When one considers
all galaxy types together, the colour function can be approximated by two Gaussian
functions. Baldry et al. 2004 reported this trend for the distribution of rest frame
u − r colour at a fixed r-magnitude, and e.g., Blanton et al. 2005, found the same
for the distribution of g − r colour. SS09 provide simple equations to describe this
dependence1:

〈g − r|Mr〉red = 0.932 − 0.032(Mr + 20.0)
rms (g − r|Mr)red = 0.07 + 0.01(Mr + 20.0)

(5.7)

〈g − r|Mr〉blue = 0.62 − 0.11(Mr + 20.0)
rms (g − r|Mr)blue = 0.12 + 0.02(Mr + 20.0)

(5.8)

Figure 5.5 shows the bimodal distribution of g− r colour using the data from the
NYU DR7 catalogue. The red and blue lines refer to the mean values of the red and
blue sequences given by the expressions 5.7 and 5.8 respectively.

We follow, in principle, the SS09’s algorithm to populate the MICE simulations.
The SS09’s algorithm is made up of three steps. First, the galaxy luminosities are
generated. Second, they are used to generate colours. And, third, galaxies are spa-
tially distributed. The method used to generate luminosities is not relevant. One can

1Restframe magnitudes in SS09’s work are associated with SDSS filters shifted to z = 0.1.



5.2. HOD MOCK GALAXY CATALOGUES 87

Figure 5.5: Colour-magnitude diagram in the NYU DR7 catalogue for the Mr < −19.5
volume limited sample. The red and blue lines show the mean values of the red and blue
sequences given by SS09 following equations 5.7 and 5.8 respectively. Black line is a crude
cut which some authors use to separate galaxy population into the red and blue sequences.

use either the Conditional Luminosity Function (CLF), the Halo Occupation Distri-
bution (HOD) or the SubHalo Abundance Matching (SHAM) methods (described
in previous chapters). SS09 proposed a complete algorithm to build mock galaxy
catalogues and these are the steps to follow:

(i) Specify a minimum luminosity, Lmin, smaller than the minimum luminosity
one wishes to study.

(ii) Select the subset of haloes in the simulation that have a halo mass Mh >

Mmin, where Mmin is the mass of the halo that corresponds to Lmin. The way to
relate galaxy luminosities and halo masses is given by the following equation:

(
Mh

M∗

)
≈ exp

(
Lr

L∗

)
− 1 (5.9)

where M∗ = 1012h−1M⊙ and L∗ = 1.12 · 1010h−2L⊙. Expression 5.9 comes from the
relation between the minimum halo mass, Mmin, and the corresponding luminosity,
Lmin, found by Zehavi et al. 2005 (or Skibba et al. 2006) when they studied the
SDSS galaxy clustering using the HOD approach2. Zehavi et al. 2005 (hereafter
ZH05) computed the parameters that best match the luminosity function and the
luminosity dependence of the galaxy clustering and SS09 derived an approximate
relation between Mmin and Lmin. Table 5.1 shows the best-fit HOD parameters
for luminosity threshold samples estimated by ZH05. Figure 5.6 shows the HOD

2Mmin, M1 and α are three free HOD parameters explained in chapter 3.
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parameters as a function of the luminosity threshold galaxy samples from ZH05. The
left panel shows Mmin (blue squares), M1 (red triangles) and the relation between
Mmin and Lmin given by expression 5.9 (orange solid line) as a function of the
luminosity threshold of the galaxy sample. The right panel shows the parameter α
as a function of the luminosity threshold of the galaxy sample3.

(iii) Every selected halo contains a central galaxy with a luminosity given by
inverting the relation between halo mass and luminosity using the expression 5.9.

(iv) Specify a number of satellite galaxies per halo choosing an integer from a
Poisson distribution with mean value Nsat(> Lmin|Mh), which is the mean number
of galaxies with luminosity brighter than Lmin that reside in a halo of mass Mh. In
our case we use the expressions of ZH05 to derive the number of galaxies inside each
dark-matter halo, a step function for the central galaxies and a simple power law for
the mean value of the number of satellite galaxies4:

Ngal(> Lr|Mh) = Ncen(> Lr|Mh) +Nsat(> Lr|Mh) (5.10)

Ngal(> Lr|Mh) = 1 +Nsat(> Lr|Mh) = 1 +

[
Mh

M1(Lr)

]α
if Mh ≥Mmin(Lr)

Ngal(Mh) = 0 otherwise, (5.11)

(v) The luminosity of satellite galaxies is assigned by generating a random number
u0 uniformly distributed between 0 and 1, and finding that Lr for which

Nsat(> Lr|Mh)

Nsat(> Lmin|Mh)
= u0, (5.12)

this ensures that satellite galaxies follow the correct luminosity distribution.

(vi) Assign colours to central and satellite galaxies in order to follow the correct
colour-magnitude diagram. SS09 showed that if one uses equation 5.7 to assign
satellite colours, the results do not provide a very good agreement with observations.
Instead SS09 proposed the next relation in which satellite galaxies have colours bluer
than the red sequence at faint luminosities:

〈g − r|Mr〉sat = 0.83 − 0.08(Mr + 20.0) (5.13)

which provides better agreement with the observations. The selection of the function
is merely empirical. The implementation of SS09 to assign colours to satellites is
generating a uniformly random number between 0 and 1, u1, per satellite. If u1 6

p(red sat|Lr), the satellite is drawn from the red sequence (equation 5.7). The colour
of satellite galaxies is assigned to the blue population, i.e. equation 5.8, otherwise (it
is important to remark that colours only depend on luminosity; the halo mass does
not appear explicitly; the halo mass is implicitly included because galaxy luminosity
depends on the halo mass). p(red sat|Lr) is given by the following equation:

3ZH05 do not show the error bars of the HOD parameters in their work.
4Galaxy luminosities are given in the r-band.
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Figure 5.6: HOD parameters as a function of the luminosity threshold of galaxy samples.
The left panel shows Mmin (blue squares) and M1 (red triangles). The dashed blue line is
the Mmin −Mr curve scaled by a factor of 23, and the orange solid line is the SS09’s fit.
The right panel shows the HOD parameter α.

p(red sat|Lr) =
〈c|Lr〉sat − 〈c|Lr〉blue
〈c|Lr〉red − 〈c|Lr〉blue

(5.14)

where all terms can be derived from data except 〈c|Lr〉sat which, as mentioned, is
set by SS09 to follow equation 5.13. To assign colours to central galaxies, SS09 use
another uniformly random number between 0 and 1, u2. If u2 > fblue(Lr)/fcen(Lr),
then the central galaxy belongs to the red sequence, and therefore one uses equation
5.7 to generate a red colour for this galaxy. Otherwise, it belongs to the blue sequence
and one uses equation 5.8 instead. fblue(Lr) is the fraction of objects in the blue
component, and can be derived from observations. SS09 provided the following
expression:

fblue(Lr) ≈ 0.46 + 0.07(Mr + 20) (5.15)

The fraction of central objects as a function of the luminosity in the catalogue,
fcen(Lr), can be derived from the HOD model. SS09, in the appendix A, showed
a derivation of fcen(Lr). It can be expressed as a function of nsat(Lr)/ncen(Lr)
for which SS09 proposed the following reasonable fit using their actual halo model
values:

nsat(Lr)

ncen(Lr)
≈ 0.35 [2− erfc [0.6 (Mr + 20.5)]] (5.16)

(vii) Place a central galaxy at the center of its halo and distribute satellite galaxies
in the halo following a NFW density profile.
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Mmax
r log10Mmin log10M1 α

-22.0 13.91 14.92 1.43
-21.5 13.27 14.60 1.93
-21.0 12.72 14.09 1.39
-20.5 12.30 13.67 1.21
-20.0 12.01 13.42 1.16
-19.5 11.76 13.15 1.13
-19.0 11.59 12.94 1.08
-18.5 11.44 12.77 1.01
-18.0 11.27 12.57 0.92

Table 5.1: Best-fit HOD parameters for luminosity threshold samples from ZH05.

SS09 claimed that following their algorithm the resulting mock galaxy catalog is
constructed to have the correct luminosity function as well as the correct luminosity
dependence of the galaxy two-point correlation function. SS09 also pointed out that
there are some assumptions in their algorithm to build mock galaxy catalogues.
They assume haloes are spherical which are not. The number of galaxies in a halo,
the spatial distribution of galaxies within a halo and the galaxy luminosity only
depend on halo mass. And the same is true for colours. Therefore the environmental
dependence only comes from the halo population dependence on environment. SS09
also point that they are not taking into account the halo formation history, i.e. the
number of galaxies and their stellar populations are not correlated with the formation
history.

We have described the starting algorithm we have used to generate the galaxy
mocks. The next sections will show the issues we have found during the process,
their possible causes and how we have tried to solve them.

5.2.2 Matching the luminosity function

If one follows the SS09’s algorithm, the generated mock galaxy catalogue has to
match the correct luminosity function. In particular galaxy luminosities are assigned
to fit the luminosity function at z = 0.1 measured by Blanton et al. 2003 using
a catalogue of 147986 galaxy redshifts and fluxes from the SDSS. The luminosity
function gives the space density of galaxies within a luminosity bin. We use the
best-fit Schechter function in the 0.1r-band. It is given by the expression:

φ(Mr) =
dn

dMr
=

2

5
φ∗ ln (10)

(
10

2

5
(M∗

r−Mr)
)α+1

exp
(
−10

2

5
(M∗

r−Mr)
)

(5.17)

where φ∗ = (1.49 ± 0.04) × 10−2h3Mpc−3, M∗
r − 5 log10 (h) = −20.44 ± 0.01, and

α = −1.05± 0.01. Figure 5.7 shows the best Schechter function fit to the SDSS data
in the 0.1r-band assuming Ω0 = 0.3 and ΩΛ = 0.7.

We follow the SS09’s algorithm and populate with galaxies the halo catalogue ex-
tracted from the snapshot at z = 0 of the N2048L3072 MICE simulation. The mass
of each dark-matter particle is mp = 23.418 × 1010M⊙/h. We choose the minimum
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Figure 5.7: Best Schechter function fit to the SDDS data in the 0.1r band.

number of dark-matter particles, Nmin
p = 20, to form a halo, which correspond to a

minimum halo mass Mmin = 390.7468 × 1010M⊙/h. HOD fitting to observed lumi-
nosity limited galaxy samples shows that at small halo masses the number of galaxies
is well modeled by a step function. We decide that all haloes in our simulation will
have, at least, one central galaxy at its center (instead of choosing a minimum lumi-
nosity we choose a minimum halo mass, which is actually equivalent given the recipe
to relate halo mass and galaxy luminosity). The luminosity of central galaxies is
given by inverting the relation between halo mass and luminosity given by equation
5.9. Therefore the luminosity of the minimum halo mass is Lmin = 1.78×1010Lr⊙/h

2,
which corresponds to an absolute magnitude in the r-band Mr − 5 log (h) = −20.87.

The mass of each halo is computed counting the number of dark-matter parti-
cles it contains, Np. We estimate their mass taking into account the Warren mass
correction:

MW
h = mp(Np(1−N−0.6

p )) (5.18)

Equation 5.18 corrects a systematic problem that FoF halo masses suffer when haloes
are sampled by relatively small number of particles. If a given halo has too few
particles, its FoF halo mass turns out to be systematically too high. The fact that
the number of particles that form a halo is discrete causes that galaxy luminosities
(specially close to Lmin) are also discrete. We introduce a scatter of half a dark-
matter particle in every halo mass equation to solve this issue. We generate a
uniformly distributed random number, −(1/2) > u1 > (1/2), which we multiply by
a linear weighted dark-matter particle mass depending on the Warren correction5:

Mh =MW
h +∆Mh (5.19)

5Note: It is easier to introduce the scatter in the number of particles and then apply the Warren
mass correction.
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∆Mh =





[
(Np + 1)

(
1− (Np + 1)−0.6

)
−Np

(
1−N−0.6

p

)]
mp if u1 > 0

[
Np

(
1−N−0.6

p

)
− (Np − 1)

(
1− (Np − 1)−0.6

)]
mp if u1 < 0

(5.20)

Before generating the galaxy catalogue one can analytically compute the con-
tribution of the central galaxies to the total luminosity function. The luminosity
function is formed by two components, central and satellite galaxies. If we assume
that every halo has one galaxy at its center and one knows the halo mass function
and the relation between halo mass and central luminosity (equation 5.9), one can
derive the central galaxy luminosity function.

(
dn

dMr

)

cen

=

(
dn

dMh

)(
dMh

dMr

)
(5.21)

more explicitly,

(
dn

dMr

)

cen

=

(
dn

d logMh

)(
d logMh

dMh

)(
dMh

dLr

)(
dLr

dMr

)
(5.22)

(
dn

dMr

)

cen

=

(
dn

d logMh

)(
1

ln (10)Mh

)(
dMh

dLr

)(
dLr

dMr

)
(5.23)

where (
dMr

dLr

)
= − 2.5

ln (10)

1

Lr
(5.24)

and (
dMh

dLr

)
=

(
M∗

h

L∗
r

)
exp

(
Lr

L∗
r

)
(5.25)

We use the halo mass function fit derived by Crocce et al. 2010 (showed in section
4.4.1 of chapter 4 for the MICE simulations). Figure 5.8 shows the contribution of
central galaxies to the total luminosity function (red line) in comparison to the
luminosity function derived by Blanton et al. 2003 using a Schechter function to fit
SDSS data (blue line). The halo mass-central luminosity relation does not provide
a good agreement with observations. One can realize in the figure that neither the
amplitude nor the shape agree. Looking at the very brightest part of the luminosity
function in figure 5.8 (galaxies brighter than Mr ∼ −22.0) one realizes that in order
to match the observed luminosity function it is necessary to add satellite galaxies.
Following the SS09’s algorithm using the MICE simulations makes our catalogue to
have satellite galaxies as the brightest galaxies. This is not what we want since we
assume the brightest galaxies are, in general, central galaxies.

We would also like to highlight other different aspects about figure 5.8. First,
we have used a snapshot of the simulation at z = 0, and the relation is derived to
match the luminosity function at z = 0.1. Figure 5.9 shows the difference between
the HMF at z = 0 and z = 0.1. There exists a little difference in the halo mass
function for haloes more massive than 1013.5M⊙. The reason is because there are
more massive haloes at z = 0 than at z = 0.1 due to time evolution. We shift the
MICE HMF from z = 0 to z = 0.1 but it does not produce a significant change in
the fit of the luminosity function since the difference is not much in logarithmic scale



5.2. HOD MOCK GALAXY CATALOGUES 93

Figure 5.8: Contribution of central galaxies to the luminosity function using the halo mass -
luminosity relation from equation 5.9 (red solid line) compared to the best Schechter function
fit to the SDDS data (blue solid line).

and figure 5.8 is also plotted in logarithmic scale. Second, the assumed cosmological
model when generating the MICE simulations is not the same as the model assumed
when computing the luminosity function of SDSS (Blanton et al. 2003). Blanton
et al. 2003 assume Ωm = 0.3 to measure distances, and MICE simulations assume
Ωm = 0.25. This change in Ωm has only a 1% effect on the distance-redshift relation
even up to z = 0.25. Third, the luminosity - halo mass relation we used is proposed
by SS09 (derived from results of ZH05) and the assumed cosmological parameters
in their simulation are not the same as the one assumed in the MICE simulations.
ZH05’s cosmological parameters are Ωm = 0.3, σ8 = 0.9 and ns = 1. The parameter
that can affect the most is σ8. We correct for this issue by modifying the MICE halo
masses. We derived a relation between halo masses for the two different cosmologies:

log(MZH05
h ) = log(MMICE

h ) + 0.145 + 0.069 arctan
(
1.25(log(MMICE

h − 14.0))
)

(5.26)
Using their different cumulative halo mass functions (abundance matching tech-
nique). We compute both HMFs using first the CAMB code to obtain their power
spectrum and then the genmf.f code6 to generate their halo mass function. We ap-
ply the relation found to shift the MICE halo masses into the masses in the ZH05
cosmology. Figure 5.10 shows the difference in the HMF between the different cos-
mologies. Black and red lines refer to the ZH05 and MICE cosmologies, respectively.
The mean value of the MICE GC run is shown as a reference (red triangles) and
also its corresponding value once the mass is shifted to the ZH05 cosmology (black
triangles).

We derived the corresponding central galaxy luminosity using equation 5.9. The

6http://icc.dur.ac.uk/ reed/genmf.html.
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Figure 5.9: The MICE halo mass function at z = 0 (red line) and z = 0.1 (blue line) derived
from a box with Lbox = 302.7 Mpc/h of the MICE GC run.

Figure 5.10: HMF of different cosmologies using CAMB.

result is shown in figure 5.11 as well as the original fit before correcting for the
masses. We do not find a good agreement either.

We also explored the possibility of modifying theM∗
h and L∗

r parameters of equa-
tion 5.9 to match the SDSS luminosity function but we did not find the agreement we
wanted. We think that it is necessary more free parameters in the relation between
galaxy luminosity and halo mass to match the observed luminosity function using
the MICE simulations.

Actually, all previous checks were done after generating a mock galaxy catalogue
following SS09’s algorithm and remarking that the resulting galaxy catalogue lu-
minosity function does not match with observations. When generating the galaxy
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Figure 5.11: Contribution of central galaxies to the luminosity function using the halo mass -
luminosity relation from equation 5.9 compared to the best Schechter function fit to the SDDS
data (blue line) for both cosmologies, and therefore for two different halo mass functions:
the one assumed in ZH05’s work and the MICE cosmology.

catalogue we used ZH05’s HOD parameters, Mmin, M1 and α. At this point we
explore the possibility of deriving our own HOD parameters using the MICE sim-
ulations. As mentioned before we assume α = 1 for simplicity (and also because
previous works show that α is almost constant with respect to the luminosity and
close to 1, α ∼ 1 6= α(L)). Therefore we only have to derive two parameters. The
next section shows the process to analytically derive Mmin and M1.

5.2.3 Constraining Mmin and M1

In order to constrain Mmin and M1 (we assume α = 1) we use two conditions, the
observed mean number density of galaxies, and the average linear large scale galaxy
bias at a certain scale. Both observational constraints come from the work of Zehavi
et al. 2011 (hereafter ZH11) and depend on the absolute magnitude threshold of
different galaxy samples. Tables 1 and 2 of ZH11’s work show the mean number
density of galaxies for galaxy samples corresponding to luminosity bins and lumi-
nosity thresholds respectively. Table 3 of ZH11 shows the HOD and other derived
parameters (such as the galaxy bias) for luminosity threshold samples. They used
volume-limited samples, extracted from a parent sample of ∼ 700000 galaxies over
8000 deg2 up to redshift z = 0.25.

We assume that the mean number density of galaxies that reside in a halo of
mass Mh is given by the expression 5.11 and therefore one can compute the number
of galaxies per halo as a function of mass:

ncen(> Mmin)(Mmin) =

∫ Mmax
h

Mmin
h

(
dn

dMh

)
dMh (5.27)
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nsat(> Mmin)(Mmin,M1) =

∫ Mmax
h

Mmin
h

(
dn

dMh

)(
Mh

M1

)α

dMh (5.28)

where we assume α = 1. The first constraint is the mean number density of galaxies
and therefore:

nobs(> Lr) = ncen(> Mmin)(Mmin) + nsat(> Mmin)(Mmin,M1) (5.29)

We use the following equation for the differential halo mass function (see chapter
4):

dn(Mh, z)

dMh
= − ρb

σ(Mh, z)

1

Mh

dσ(Mh, z)

dMh
f(σ, z) (5.30)

where f(σ, z) is given by the expression:

f(σ, z) = fWarren(σ(Mz), z) = A(z)
[
σ−a(z) + b(z)

]
exp

[
−c(z)
σ2

]
(5.31)

using the best-fit parameters derived by Crocce et al. 2010 for the MICE simulations.

The second constraint is given by the linear galaxy bias at large scales. We know
the projected correlation function of galaxies as a function of luminosity, wgal

p (rp| >
Lr), from SDSS. We know that real space correlation function, ξr, is related to the
projected correlation function, wp(rp), as follows:

wp(rp) = 2

∫ ∞

0
ξ(r)drπ = 2

∫ ∞

0
ξ(r = (r2p + r2π)

1/2)drπ (5.32)

We assume a linear bias relation between the galaxy and dark matter distributions:

ξgal(r| > Lr) = (bLingal (> Lr))
2ξDM (r) (5.33)

and therefore:

wgal
p (rp| > Lr) = 2

∫ ∞

0
ξgal(r| > Lr)drπ = 2(bLingal (> Lr))

2

∫ ∞

0
ξDM(r)drπ (5.34)

We know wgal
p (rp| > Lr) from data. We can derive ξDM (r) as the FT of the

assumed linear MICE power spectrum. And therefore, we can derive the linear
galaxy bias as a function of the luminosity:

bLingal (> Lr) =

(
wgal
p (rp| > Lr)

2
∫∞
0 ξDM (r)drπ

)1/2

(5.35)

On the other hand we can also derive the linear galaxy bias as a function of the
luminosity assuming a linear relation between the halo field and the dark matter
density field, δhalo(Mh) = b(Mh)δDM , and following the next expression:
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bLingal (> Lr) =

∫∞
Mmin

(
dn
dMh

)
Ngal(Mmin,M1)b(Mh)dMh

∫∞
Mmin

(
dn
dMh

)
Ngal(Mmin,M1)dMh

(5.36)

We use equations 5.35 and 5.36 as a second constraint.

We sample the parameter space by generating a grid of possible values of Mmin

and M1. The minimum halo mass to host a central galaxy, Mmin, covers the range
log10(Mmin) ∈ (9 − 15)(M⊙/h) with ∆ logM = 0.03. The second parameter M1 is
determined by the factor fM1

following M1 = fM1
Mmin. The factor fM1

varies from
5 to 25 with ∆fM1

= 0.1.

The left panel of figure 5.12 shows the halo bias from Manera et al. 2010 using
the parameters for the MICE simulations (see chapter 4 for more details). The right
panel shows the mean number density of central galaxies as a function ofMmin (solid
line). The figure also shows the cumulative of the mean number density of central
galaxies as a function of Mmin but including the halo bias in the integral (dashed
line), given by the expression 5.37. It is the mean number density of central galaxies
(or haloes since we assume that each halo contains one central galaxy) weighted by
the halo bias.

∫ ∞

Mmin

(
dn

dMh

)
Ncen(Mmin)b(Mh)dMh (5.37)

The left panel of figure 5.13 shows the cumulative mean number density of satel-
lite galaxies as a function of Mmin and M1. When M1 increases the mean number
density of satellites decreases. The right panel shows the cumulative mean number
density of satellite galaxies as a function of Mmin and M1 but including the halo
bias in the integral, i.e:

∫ ∞

Mmin

(
dn

dMh

)
Nsat(Mmin,M1)b(Mh)dMh (5.38)

The left panel of figure 5.14 shows the cumulative mean number density of total
galaxies as a function of Mmin and M1 (black solid line). The dashed line shows the
same but, as before, including the bias in the integral. It is the sum of expressions
5.37 and 5.38:

∫ ∞

Mmin

(
dn

dMh

)
Ngal(Mmin,M1)b(Mh)dMh (5.39)

In the left panel of figure 5.14 the cumulative number density of galaxies as a
function ofMmin andM1 appears as a unique line (solid lines, right part of eq. 5.29).
To explain why it appears as a unique solid line we can look at the values of ncen(>
Mmin) and nsat(> Mmin,M1) at a fixMmin and at the largest and smallest values of
M1. AssumingMmin = 1012(M⊙/h),M1 = 5×Mmin andM1 = 24.5×Mmin, we have
ncen(> Mmin = 1012(M⊙/h)) = 2.97 × 10−3, nsat(> Mmin = 1012(M⊙/h), fM1

=
5.0(M⊙/h)) = 5.94 × 10−4 and nsat(> Mmin = 1012(M⊙/h), fM1

= 24.9(M⊙/h)) =
1.19 × 10−4. Therefore at Mmin = 1012, the minimum and maximum value of ngal
are 3.10 × 10−3 and 3.60 × 10−3 respectively. These values in a logarithm scale are
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Figure 5.12: Left panel: Expression of halo bias from Manera et al. 2010 for MICE simu-
lations. Right panel: mean number density of central galaxies as a function of Mmin (solid
line, eq. 5.27) and the same but including the halo bias in the integral (dashed line, eq.
5.37).

Figure 5.13: Left panel: Mean number density of satellite galaxies as a function of Mmin

and M1 (eq. 5.28). Right panel: Idem but including the halo bias (eq. 5.38). Note that
many curves are plotted, corresponding to different values of the parameter M1, and that is
why it appears as a thick solid line.

almost similar and this is why ngal(> Mmin,M1) seems to be a unique line in the
left panel of figure 5.14. The same happens for expression 5.39 (dashed lines). The
contribution of satellites is smaller and almost negligible compared to the central
term.

As mentioned before, table 3 from Zehavi et al. 2011 shows the galaxy bias derived
for luminosity threshold samples. The right panel of figure 5.14 shows the analytical
galaxy bias derived using equation 5.36. Again, the whole grid appears like a solid
line and we find big degeneracies to constrain the HOD parameters Mmin and M1

by only using two conditions, the mean number density of galaxies as a function of
the luminosity and the average linear large scale galaxy bias at a certain scale.

Up to now we have shown that using the MICE simulations and following SS09’s
recipes do not provide a good fit to the observed luminosity function and also that
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Figure 5.14: Left panel: Mean number density of total galaxies as a function of Mmin and
M1 (solid line, right part of eq. 5.29) and the same but including halo bias in the integral
(dashed line, eq. 5.39). Right panel: Galaxy bias as a function of Mmin and M1 derived
using eq. 5.36.

we are not able to analytically constrain two HOD parameters by only using two
conditions. The next section describes a method that overcomes these limitations.
It describes a way to assign galaxy luminosities in order to improve the luminosity
function fit. It also describes how we constrain the three HOD parameters (Mmin,
M1 and α) by generating a grid of mock galaxy catalogues, each of them with a
different set of HOD parameters. In this case we use as constraints the observed
mean number density of galaxies and the whole observed luminosity dependence of
clustering and not just the linear galaxy bias at a given scale.

5.3 MICE HOD parameters

The next approach consists on using more constraints in order to derive the HOD
parameters that match the best-fit Schechter luminosity function from Blanton et al.
2003 and the luminosity dependence of clustering using MICE simulations. We
generate a grid of mock catalogues sampling the HOD parameter values (Mmin, M1

and α). We vary the factor fM1
, that multiplies Mmin to determine M1, from 10 to

29.5 in steps of 0.5, and α from 0.50 to 1.50 in steps of 0.05, and we build a catalogue
for each set of parameters (a total number of 600 galaxy catalogues), using in this case
a little box of the Grand Challenge simulation with a box-size Lbox = 307.2 Mpc/h
and taking into account haloes with a minimum number of dark-matter particles
Np = 10. We follow the next steps to build the catalogues: (1) Select haloes from
the halo catalogue with mass greater than Mmin and assume that every halo will
contain a central galaxy (each halo will have one central galaxy). (2) Compute the
number of satellite galaxies per halo given its mass assuming that the mean number
density of satellite galaxies follows a Poisson distribution with mean value given by
equation 5.11. (3) Assign galaxy luminosities following a method which matches
the luminosity function (we use the SHAM technique that will be explain in detail
later). (4) Place central galaxies at the center of their host haloes and place satellite



100 5 Building mock galaxy catalogues

galaxies assuming that they follow a modified NFW density profile (it will also be
described in detail later).

Once the catalogues are derived we compute the projected correlation function
of galaxies depending on luminosity, wp(< Mr), and compute the best HOD set
of parameters that matches at the same time the luminosity function and wp(<
Mr). The next section describes, in particular, step (3), the way we assign galaxy
luminosities.

5.3.1 Assigning galaxy luminosities

This section describes a new method to assign galaxy luminosities using the abun-
dance matching technique in order to fit correctly the observed luminosity function.
We choose a set of HOD parameters and using the MICE HMF we derive the cumu-
lative number density of objects (central and satellite galaxies) that inhabit haloes
of mass greater than a certain value, ngal(> Mmin) = ncen(> Mmin)+nsat(> Mmin):

ncen(> Mmin) =

∫ ∞

Mmin

dn

dMh
dMh (5.40)

nsat(> Mmin) =

∫ ∞

Mmin

dn

dMh

(
Mh

M1

)α

dMh (5.41)

On the other hand we compute the mean number density of galaxies with lumi-
nosity brighter than a certain value, ngal(< Mr), using the best-fit Schechter function
derived by Blanton et al. 2003:

ngal(> Lr) =

∫ ∞

Lr

dn

dLr
dLr (5.42)

Having both cumulative functions we are able to derive a relation between mass
and galaxy luminosity, Mgal−Lgal. This is called the SubHalo Abundance Matching
technique (SHAM):

ngal(> Mmin) = ngal(> Lr) (5.43)

We decide to model the relationMgal−Lgal by using a function of five free parameters
(a more complex function than equation 5.9 proposed by SS09):

log (Lr) = c0 + c1 sinh
[
c2 (log (Mh − c3))

2 + c4 (log (Mh)− c3)
]

(5.44)

Once we have this relation between mass and luminosity, one can proceed in two
different ways. One can assume that only central galaxies follow the Mgal − Lgal

relation or one can assume that all galaxies follow the same relation. If we assume
that all galaxies follow the relation we can derive the contribution of satellite galaxies
to the total galaxy luminosity function introducing the relation Mgal − Lgal into
equation 5.41:

nsat(> Mmin(Lgal)) =

∫ ∞

Mmin(>Lgal)

dn

dMh

(
Mh

M1

)α

dMh (5.45)
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Once we have nsat(> Lr) we can subtract it from the observed total cumulative
galaxy luminosity function and obtain the central contribution:

ncen(> Lr) = ngal(> Lr)− nsat(> Lr) (5.46)

If we assume that only central galaxies follow the relation we can compute in
this case the contribution of central galaxies to the total galaxy luminosity function
introducing the relation Mgal − Lgal into equation 5.40:

ncen(> Mmin(Lgal)) =

∫ ∞

Mmin(>Lgal)

dn

dMh
dMh (5.47)

and then derive the contribution of satellite galaxies to the total galaxy luminos-
ity function by subtracting ncen(> Mmin(Lgal)) from the observed total cumulative
galaxy luminosity function:

nsat(> Lr) = ngal(> Lr)− ncen(> Lr) (5.48)

We have to remark that we have tested both approaches in the construction of
the mock galaxy catalogues and we did not find big differences between them, but we
have obtained slightly better fits using the first one, all galaxies follow the relation
Mgal − Lgal. In the following we show the results when we assume that all galaxies
follow the Mgal − Lgal relation.

Using the HOD parameters we know that every halo more massive than Mmin

host a central galaxy, and therefore having the halo catalogue we can derive the to-
tal number of central galaxies in the catalogue, Ncen. Since we assume that central
galaxies follow the relation Mgal − Lgal, given the halo mass we can derive the lu-
minosity of its central galaxy. We can also compute the number of satellite galaxies
inside each halo given its mass, and therefore we know the total number of satellite
galaxies in the catalogue, Nsat. Finally, for each mock galaxy catalogue, we know
the number of total galaxies that it contains, Ngal = Ncen + Nsat. To assign satel-
lite luminosities, we generate randomly Nsat “available” luminosities sampling the
cumulative satellite luminosity function, nsat(> Lr). We assume that, in general,
the most luminous galaxy in a halo is the central galaxy (although there are sev-
eral works that claim that a non negligible number of haloes does not contain the
brightest galaxy at its center (e.g. Skibba et al. 2011). We enforce satellite galaxies
not to be brighter than a certain value times the luminosity of the central galaxy. In
particular we assign one of the “available” and sampled luminosities for each satellite
galaxy if Lsat 6 1.05 × Lcen. Following this method one gets to a point in which no
“available” satellite luminosity fulfill the constraint. It is very important to remark
that the number of objects left is very small. We have explored two possibilities,
either assigning the minimum luminosity of the catalogue or assigning one of the
“available” luminosities (even without following the assumed condition). We do not
find significant differences between both methods (again, the number of satellite
galaxies with no assigned luminosity at this moment is very small) regarding the
luminosity function and the clustering as a function of luminosity. In the following
the results we show are derived using the second possibility.
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Following the method described in this section guarantees that each mock galaxy
catalogue follows the observed luminosity function. The next section explains step
(4) of the algorithm, how we place galaxies inside the halo.

5.3.2 Positions and velocities of galaxies

This section describes the method we follow to place central and satellite galaxies
inside their host haloes. It also describes how we assign a velocity to each galaxy.

In principle we place galaxies in order to follow a NFW density profile. High-
resolution N-body simulations (Navarro et al. 1996) show that the spherically average
density around the center of a virialized dark-matter halo containing mass M with
virial radius rvir is well fitted by

ρ(r)

ρ̄
=
∆vir(z)

3Ω(z)

c3f(c)

x(1 + x)2
(5.49)

where x ≡ c(Mh)
r

rvir
, ρ̄ is the average density of the background universe at red-

shift z, ρ̄(z) ∆vir(z)/Ωz is the average density within the virial radius and f(c) =
[ln (1 + c) − c/(1 + c)]−1. The parameter c is often called the central concentra-
tion of the halo. More massive haloes are less centrally concentrated. We used the
parametrization of this trend provided by Bullock et al. 2001:

c(Mh) ≈
9

(1 + z)

(
Mh

M∗0

)−0.13

, (5.50)

where M∗0 is the standard non-linear mass scale: σ(M∗) ≡ δsc(z). We assume
M∗0 = 2× 1013M⊙ for z = 0.1,

∆vir(z) = 18π2 + 82d− 39d2; d = Ω(z)− 1. (5.51)

rvir =

(
3M

4π∆vir(z)ρcrit.

)(1/3)

(5.52)

We place central galaxies at the center of their host haloes and satellite galaxies
following a NFW density profile. When implementing the mass density profile, after
trying with different values, we set the cut-off of the integral to be 5 times the
virial radius. For some haloes, where their centers are very close to the simulation
limits, satellite galaxies may be outside of the simulation. In this case we assume
periodicity conditions. If we follow the method described before we do not correctly
fit observations. The galaxy clustering of the mocks at very small scales (from
∼ 0.1 to ∼ 0.5 Mpc/h) has a smaller amplitude than observations. ∆vir and the
concentration parameter modify strongly the 1-halo term of the wp(rp). We have
tested several values of M∗0 in equation 5.50 and also different values for ∆vir. If
the concentration parameter increases the amplitude of the correlation function at
very low scales becomes more cuspy. We still do not find the expected results after
these tests.

The position of satellite galaxies inside the halo affects both regimes of the galaxy
clustering, the non-linear and the linear scales. But it is specially important for the
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clustering at the scales equal or smaller than the size of the haloes (the biggest haloes
have virial radius of ∼ 1Mpc). At larger scales what is important for the satellite
clustering is the number of satellite galaxies rather than their position inside their
host haloes. We therefore have to modify the NFW density profile to better fit ob-
servations. Central galaxies are still placed at the center of their host haloes but
satellite galaxies are placed following a modified NFW density profile. As mentioned
we find that the galaxy clustering of the mocks at very small scales (from ∼ 0.1 to
∼ 0.5 Mpc/h) has a smaller amplitude than observations. We modify how we place
satellite galaxies inside the halo. We derive the distance to the center of the halo.
Then, we apply a factor to the distance, f , depending on the luminosity of the satel-
lite galaxy, M sat

r . This factor makes the satellite galaxies to be more concentrated
than a NFW density profile. The faintest galaxies are even more concentrated than
the brightest ones. The factor f follows this equation:

f = 0.30 if M sat
r > −19.5

f = 0.30 + 0.65−0.30
10.30−9.60 (logL

sat
r − 9.60) if − 21 6M sat

r 6 −19.5

f = 0.65 if M sat
r < −21.0

(5.53)

Watson et al. 2012 study the radial distribution of galaxies within their host dark
matter halos by modeling their small-scale clustering, as measured in the Sloan
Digital Sky Survey. They use the HOD framework to model the number and the
spatial distribution of galaxies inside the haloes. They assume that the central galaxy
is at the center of the halo and satellite galaxies follow a NFW density profile, except
that they allow to vary the concentration and the inner slope. They find the same
trend as we find. Satellite galaxies are more concentrated than a NFW density
profile, although the dependence on luminosity is different. We concentrate more
the fainter galaxies and they concentrate more the brighter galaxies.

We also assign velocities to galaxies. It is a good approximation to assume that
the motion of a particle in a N-body simulation can be described as the sum of the
virial motion of the particle within its host halo and the bulk motion of the halo as
a whole (Sheth & Diaferio 2001),

v = vvir + vh (5.54)

The virial motions within a halo are well approximated by velocities that are inde-
pendent Gaussians in each of the three cartesian components, with rms values that

depend on halo mass: σ2vir =< v2vir >∝ GMh/rvir ∝ M
2/3
h . To obtain the velocity

dispersion of the halo we use in particular (Bryan & Norman 1998, Sheth & Diaferio
2001):

σvir = 476fvir[∆virE
2(z)]1/6

(
Mh

1015M⊙h−1

)1/3

kms−1, (5.55)

where fvir=0.9 and E2(z) = Ω0(1 + z)3 + ΩΛ for a flat model with a cosmological
constant.

When implementing the NFW density profile we are also assuming that haloes
are spherical. We know this is not true and therefore we have implemented triaxial
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profiles for the haloes (non-spherical haloes) with a constant ratio between the axis.
We do not find big differences in the clustering though.

In the following section we show the results of the galaxy clustering as a function
of the luminosity when placing the satellite galaxies following the modified NFW
mass density profile we have just described.

5.3.3 Matching the clustering as a function of luminosity

As it is explained in section 5.3.1 the method we use to assign luminosities matches
the observed luminosity function for every set of HOD parameters. Therefore we are
interested in the set of parameters that, in addition, matches the luminosity depen-
dence of clustering. What we actually match is the projected correlation function,
wp(rp), from SDSS data (see appendix A for a detailed explanation of the estima-
tion of wp(rp) in our mock galaxy catalogues). We use as constraint the projected
correlation function, wp, of volume-limited samples. We use the data from table B7
of Zehavi et al. 2011 where they show the diagonal terms of the error covariance
matrix. We use these errors to compute χ2 for every set of HOD parameters:

χ2 (Mmin,M1, α) =
∑

i

(
wSDSS
p (ri)− wHOD

p (ri)

σi

)2

(5.56)

where i = 13 is the number of scale bins in the projected correlation function, and
wp is defined as:

ωp(rp) = 2

∫ ∞

0
ξ(r)drπ = 2

∫ ∞

0
ξ(rp, rπ)drπ (5.57)

where ξ(r) is estimated on a two-dimensional grid of pair separations parallel, rπ,
and perpendicular, rp, to the line-of-sight.

The generated grid of mock galaxy catalogues does not yields good χ2 values and
one of the reasons is that the catalogues have higher amplitude at faint luminosi-
ties compared to observations. Since we assume a univocal relation between central
luminosities and their host halo masses we decrease the clustering of the catalogue
by decreasing the clustering of satellite galaxies. In order to do it we penalize the
faintest satellite galaxies to inhabit the most massive haloes. Therefore, we introduce
another condition, in addition to the maximum satellite luminosity with respect to
the central luminosity (explained in section 5.3.1), when we assign the “available
satellite luminosities” to the satellite galaxies. We implement this condition as fol-
lows. We set a straight line in the luminosity-halo mass plane and we compute the
distance, d, for its “available” satellite luminosity and the halo mass:

logLsat = a0 logMh + b− d
√
a20 + 1 (5.58)

where a0 = 0.36, b = 4.86 and d is the value that we use to impose the conditions.
For each satellite galaxy we draw a uniformly distributed random number between 0
and 1, u3. Then if d < 0 or u3 > 1− exp (−7d) then we assign the available satellite
luminosity to the satellite galaxy. Basically, following this method makes the faintest
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satellite luminosities not to be in the most massive haloes. We obtain better χ2 values
when we fit the projected correlation function as a function of luminosity.

Table 5.2 shows the best HOD parameters found to fit wp(rp)(< Mr) including
the described previous modifications. Due to the halo mass resolution in our simu-
lations (and because of the Mgal −Lgal relation used) our catalogue has a minimum
galaxy luminosity of Mr = −18.78 (using the MICE GC run), and therefore we
cannot compare the mock to data from the two faintest samples (Mr < −18.00 and
Mr < −18.50). The left panel of figure 5.15 shows the parameters Mmin and M1

as a function of the luminosity threshold of the sample compared to the best HOD
parameters found by ZH05. The values we found of the parameter Mmin are smaller
at all luminosities compared to values from ZH05. However, the difference is very
small for the two brightest samples. This means that galaxies with the same lumi-
nosity inhabit more massive haloes in ZH05’s simulations than in MICE simulations,
except for the two brightest samples where the haloes will have roughly the same
mass. Looking at the parameter M1 the trend is similar, i.e. the values we found are
smaller at all luminosities compared to values from ZH05 except for the brightest
sample. First, at the fainter luminosities, it decreases slowly, then at Mr < −20.0 it
decreases faster down to Mr = −20.50, it stays almost constant and finally for the
two brightest samples it increases fast making the value of M1 to be larger than the
value in ZH05’s work at Mr < −22.00. The factor fM1

is not constant as it is in data
from ZH05 (M1 ∼ 23Mmin). This can also explain the fact that the relation between
halo mass and luminosity proposed by SS09 using data from ZH05 does not work
correctly when using the MICE simulations. The right panel shows the parameter α.
The values we found are smaller at all luminosities. Except for the threshold sample
at Mr < −21.5, our results are very close to 1. This result means that the number
of satellites are approximately proportional to the mass of the halo. At Mr < −21.5,
where ZH05 found the highest value, we find the smallest value. The parameter α
seems to have a large scatter at the brightest luminosities.

< Mr logMmin logM1 fM1
α χ2 N

-19.00 11.35 12.79 22.50 1.05 18.77 13
-19.50 11.58 12.89 18.50 1.00 18.13 13
-20.00 11.79 13.16 18.50 1.10 7.15 13
-20.50 12.17 13.25 10.50 0.95 26.15 13
-21.00 12.48 13.77 11.00 0.95 103.66 13
-21.50 13.17 14.40 15.50 0.70 63.40 13
-22.00 13.82 15.18 23.50 1.00 26.21 13

Table 5.2: Best HOD parameters found when matching the projected correlation function
of SDSS luminosity threshold samples. The first column is the luminosity threshold, the
second column shows the value of log (Mmin) using Mgal − Lgal relation. The third column
is log (M1) and the fourth column is the factor fM1

that multiplies Mmin to determine M1.
The fifth column shows the values of the α parameter. The sixth column is the value of χ2

and the last column refers to the number of points used to derive the χ2.
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Figure 5.15: HOD parameters as a function of the luminosity threshold of galaxy samples.
The left panel showsMmin andM1 for our best fit (black squares and triangles respectively)
and for ZH05 best fit (blue squares and triangles). The dashed blue line is the Mmin −Mr

curve scaled by a factor of 23, and the orange solid line is the SS09’s fit. The right panel
shows the HOD parameter α.

Figure 5.16 shows the projected correlation function depending on luminosity
threshold samples (from Mr < −19.0 to Mr < −22.0) for the best HOD parameters
that we found. The fits are quite reasonable for luminosities fainter than M∗

r =
−20.44. For all luminosities, at large scales, the fits have higher amplitude compared
to the observed data but this feature is even more significant for the brightest samples
(Mr < M∗

r ) (in addition, the number of brightest galaxies is small compared to the
faintest one and it produces the correlation function to have much more noise). This
result is not very surprising since we are only using three free parameters to describe
the number of galaxies inside each halo. The step function used in equation 5.11
for central galaxies may be not accurate enough to reproduce the correct clustering.
Recent works (e.g. Zehavi et al. 2011 or Leauthaud et al. 2011) point to a number
of at least five free parameters to a better fit, which seems to be specially necessary
for the brightest samples since the mean number of galaxies in each halo cannot be
perfectly described by a step function and a power law. The method we use to build
the mock galaxy catalogues places the most brilliant galaxies at the most massive
haloes, and mostly they will be central galaxies, which are most of the galaxies. A
possible method to decrease the amplitude of the clustering of the most brilliant
galaxies (instead of using five free parameters) is to introduce scatter in the halo
mass - central luminosity relation which will cause bright galaxies to reside in less
massive haloes and therefore to have smaller bias. We will implement this scatter in
the next section.

It is also very important to remark that the HOD parameters are useful for a
specific type of galaxies which follow a certain property, such as the luminosity in
our case. This means that if one uses a HOD set of parameters to build a catalogue
that best matches luminosity dependence of clustering for galaxies brighter than a
certain value, Mr < Mr1, and one computes the clustering for galaxies brighter than
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Figure 5.16: Projected correlation function for luminosity threshold samples using the best-
fit HOD parameters. The different colours represent the different magnitude limits, from
Mr < −19.0 to Mr < −22.0. The different samples are staggered for clarity.

another brighter value, Mr < Mr2, with Mr2 < Mr1, the clustering may not be
necessarily correct. Our purpose is to build a unique catalogue that has the correct
clustering for all luminosities (and also colours). We will deal with this problem in
the next section.

5.4 Building a unique galaxy catalogue

This section describes the method we have followed to build a unique catalogue that
reproduces, not only the clustering for one luminosity threshold sample or one lumi-
nosity bin sample, but a galaxy catalogue that follows at the same time the galaxy
clustering for all luminosity threshold and bin samples (as well as the luminosity
function, the colour-magnitude diagram and the colour dependence of clustering).
The process is similar to the previous section, in the way that we continue using
the parameterization of the number of galaxies followed by SS09, i.e. haloes with
mass greater than Mmin hosts a central galaxy, and the number of satellite galaxies
is given by the expression:

[
Mh

M1(Lr)

]α
if Mh ≥Mmin(Lr) (5.59)



108 5 Building mock galaxy catalogues

The main difference is that instead of using discrete values of the HOD parameters
we assume the parameter M1 to be a function which depends on Mh. In addition,
we have also introduced some other changes in the method to be able to reproduce
the observed data. We have introduced scatter in the relation between halo mass
and central galaxy luminosity in order to decrease the clustering of the brightest
galaxies to better reproduce their clustering at large scales. We have included another
Gaussian component to better fit the distribution of the g−r colour vs. the absolute
magnitude in the r-band. As a consequence, we have also changed the recipes to
determine the galaxy colours in order to fit correctly the colour-magnitude diagram
and at the same time the clustering as a function of colour.

5.4.1 HOD function

As it was mentioned the main difference in the new method is that instead of using
discrete values of the HOD parameters we assume the parameterM1 to be a function
which depends on Mh. We still assume that all haloes have one central galaxy and
the parameter α = 1. Our best HOD parameters shown in the previous section did
not show a constant relation between the parameters M1 and Mmin, as it was found
in ZH05 (see figure 5.15). The factor fM1

, which multiplies Mmin to obtain M1,
varies with luminosity. After making different tests we set the factor fM1

to follow
the expression:

fM1
= 0.5((a1−a2) tanh (s1(b1 − logMh))+(a3−a2) tanh (s2(logMh − b2))+(a1+a3))

(5.60)
where a1 = 25.0, a2 = 11.0, a3 = 14.0, b1 = 11.5, b2 = 12.5, s1 = 2.0 and s2 = 2.50.
We found that using expression 5.60 provides a reasonable fit to observations.

5.4.2 Scatter in the halo mass luminosity relation

We find that generating a unique mock galaxy catalogue without introducing scat-
ter makes the clustering of the brighter galaxies much larger than observed data.
Previously, in section 5.3.3, we showed that we use the subhalo abundance matching
technique to obtain Mgal − Lgal. Basically we compared the cumulative luminos-
ity function of galaxies and the cumulative mass function of haloes/subhaloes. In
this case we generate an “unscattered” luminosity function that after introducing the
scatter in the central luminosities the cumulative luminosity function of the catalogue
will match the observed cumulative luminosity function. We compute Mgal − Lgal

using the same SHAM technique but in this case with the “unscattered” luminosity
function and the cumulative number density of objects (central and satellite galax-
ies), ngal(> Mmin). We assign central luminosities following this relation and we
only introduce scatter if the luminosity is brighter than the characteristic luminos-
ity, L∗

r (M∗
r = −20.44). In particular, if log (L∗

r) < log (Lcen
r ) 6 log (L∗

r) + 1 then we
introduce the following scatter:

log (Lcen
r ) = log (Lcen

r ) + u1∆log(Lr) (log (L
cen
r )− log (L∗

r)) (5.61)
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and if log (Lcen
r ) > log (L∗

r) + 1:

log (Lcen
r ) = log (Lcen

r ) + u1∆log(Lr) (5.62)

where u1 is a uniformly distributed random number between 0 and 1 and ∆log(Lr)

is the maximum amplitude of the scatter. We tried different values for ∆log(Lr) and
we find that using a value of ∆log(Lr) = 0.15 yields quite good results. We find that
using a larger value, ∆log(Lr) ∼ 0.2, makes the “unscattered” luminosity function to
almost drop vertically since it is an exponential function. We do not need to have
a χ2 value equal to 0 since, in addition, we are calibrating our method using a box
of the MICE GC run with side-box Lbox = 307.2 Mpc/h and it may change from
box to box. Figure 5.17 shows the “unscattered” cumulative luminosity function
(black line) used to derived the halo mass - luminosity relation compared to the
cumulative luminosity function of the best fit Schechter function of SDSS data (blue
line). Figure 5.18 shows the relation between halo mass and luminosity obtained
using the SHAM technique. The blue line is the relation Mgal − Lgal we found
for the best HOD parameters that best match the luminosity clustering of galaxies
brighter thanMr = −20.0 using the “common” cumulative luminosity function. The
black line is the relation Mgal − Lgal obtained using the “unscattered” cumulative
luminosity function. The green line is the relation suggested by SS09, and the red
and orange lines represent Mmin of the halo population for the MICE N2048L3072
(intermediate) and GC runs, respectively. It is very interesting to realize that, finally,
our halo mass - central luminosity relation is quite similar to that proposed by
SS09, which was the relation used at the beginning. At a fix halo mass, our central
galaxies are always brighter than SS09’s galaxies. This is significant at the faintest
luminosities and up toMr ∼ −21.5. Then, at luminosities brighter thanMr ∼ −21.5,
the relation is almost similar. The main difference comes from the fact that we are
now introducing scatter in the relation. This makes possible to have central galaxies
as the brightest galaxies in our catalogue.

Figure 5.19 shows the relation between halo masses and luminosities of their
central galaxies using a little box (Lbox = 307.2 Mpc/h). The blue points represent
central galaxies and the solid red line is the relation Mgal − Lgal without scatter.

Figure 5.25 shows the luminosity function of the generated mock galaxy cata-
logue compared to the best fit Schechter function found by Blanton et al. 2003. As
expected, by following the method to assign luminosities, the agreement between the
mock and the data is almost perfect. And we are also confident of having correctly
implemented the scatter between halo mass and central galaxy luminosity.

5.4.3 Galaxy colours: a third Gaussian component

The last change in the algorithm is the introduction of a third Gaussian component
to better describe the colour - magnitude distribution (g − r vs. Mr). Skibba &
Sheth 2009 presented a method to incorporate colours in the HOD model in order
to follow the color magnitude diagram and the clustering as a function of colour as
well as the luminosity function and the clustering as a function of luminosity. We
explained their method in section 5.2.1. We use the NYU DR7 catalogue to generate
figure 5.20 which shows the bimodality in the colour-magnitude diagram (Mr vs.
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Figure 5.17: Cumulative luminosity functions. The black line represents the “unscattered”
cumulative luminosity function and the blue line is the cumulative luminosity function of
the best fit Schechter function of SDSS data.

(g − r)) by using different histograms of the number of galaxies as a function of
colour for different luminosity bins. Following SS09 we fit two Gaussian functions
for both, the blue and the red sequences. The fits are not perfect. There is a small
excess of galaxies in the so called green valley when fitting two Gaussian functions.
We find small differences between our best-fit parameters and SS09’s ones. Figure
5.22 shows the comparison between the parameters we fit and the SS09’s parameters
when using two Gaussian functions. These are the fits to the values of the mean and
the rms we found of the two Gaussian functions:

〈g − r|Mr〉red = 0.923 − 0.020(Mr + 20.0)
rms (g − r|Mr)red = 0.044 + 0.001(Mr + 20.0)

(5.63)

〈g − r|Mr〉blue = 0.655 − 0.090(Mr + 20.0)
rms (g − r|Mr)blue = 0.177 + 0.003(Mr + 20.0)

(5.64)

In order to have a better fit we decide to introduce another sequence using a third
Gaussian function. Equations 5.65, 5.66 and 5.67 are the fits to the values of the
mean and the rms of the three Gaussian functions we fit. Figure 5.21 shows SDSS
colour distribution using our fit with three Gaussians functions.

〈g − r|Mr〉red = 0.923 − 0.021(Mr + 20.0)
rms (g − r|Mr)red = 0.041 − 0.003(Mr + 20.0)

(5.65)
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Figure 5.18: Halo mass - luminosity relation obtained using the SHAM technique. The blue
line is the relation Mgal − Lgal we found for the best HOD parameters that best match the
luminosity clustering of galaxies brighter than Mr = −20.0 using the “common” cumulative
luminosity function. The black line is the relation Mgal − Lgal obtained using the “unscat-
tered” cumulative luminosity function. The green line is the relation suggested by SS09, and
the red and orange lines represent Mmin of the halo population for the MICE N2048L3072
(intermediate) and GC runs, respectively.

〈g − r|Mr〉green = 0.880 − 0.035(Mr + 20.0) − 0.062 tanh
(
Mr+22.60

0.12

)

rms (g − r|Mr)green =





0.055 + 0.023(Mr + 20.0) if Mr > −22.5

−0.002 − 0.280(Mr + 22.5) if − 22.5 > Mr > −22.75

0.067 + 0.020(Mr + 22.75) otherwise

(5.66)

〈g − r|Mr〉blue =
{
0.610 − 0.100(Mr + 20.0) if Mr > −22.0

0.810 − 0.020(Mr + 22.0) otherwise

rms (g − r|Mr)blue = 0.170 − 0.005(Mr + 20.0) − 0.037 tanh
(
Mr+22.38

0.27

) (5.67)

The way we assign colours to galaxies is similar as in SS09’s model in the sense
that it depends on the galaxy type (whether it is a central or a satellite galaxy)
and also on the colour sequence (blue, green or red) it belongs to. First we assign
colours to satellite galaxies and later we force central colours to follow the total
colour-magnitude diagram. SS09 proposed a function that defines the mean colour
of satellite galaxies given the luminosity. They used this function (in addition to
the assumption that colours do not depend on the halo mass) to define the fraction
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Figure 5.19: Relation between central galaxy luminosities and their host halo mass showing
the scatter applied in the halo mass-central luminosity relation. The total number of central
galaxies plotted is 343351, which corresponds to a simulation of box-size Lbox = 307.2Mpc/h.
The scatter is applied for galaxies brighter than M∗

r = −20.44.

of satellite galaxies that belongs to the red sequence. In our case we directly set
the fraction of satellite galaxies that belongs to the red sequence to be given by the
expression7 5.68 since it yields reasonable results. The fraction is not very different
from the one proposed by SS09. The physical reason why most satellite galaxies
are red and how this function depends on luminosity should be related to galaxy
formation and evolution. When satellite galaxies fall into a big halo can experienced
an episode of star formation and ram pressure stripping of their gas. Then, they are
expected to passively evolve, which bring them to the red branch.

f redsat (Mr) = 1.00 − 0.30 tanh

(
Mr + 22.20

1.20

)
(5.68)

We also set the fraction of satellite galaxies that belongs to the green sequence which
is given by the expression:

f greensat (Mr) = 0.05 − 0.05 (Mr + 20.0) (5.69)

and therefore the blue sequence is determined by:

f bluesat (Mr) = 1−
(
f redsat (Mr) + f greensat (Mr)

)
(5.70)

7When the function is greater than 1 all satellite galaxies are red, and therefore the fraction of
green and blue satellite galaxies become 0.
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Figure 5.20: Bimodal distribution of (g − r) colour in the SDSS. The black solid line is the
SDSS distribution and black dashed line is the sum of two Gaussian functions to the red and
blue sequences (dashed lines).

Figure 5.21: Idem as figure 5.20 but using three Gaussian functions instead of two to fit the
observed distribution.

We find that setting the fraction of satellite galaxies to follow expressions 5.68,
5.69 and 5.70 provides very good results regarding the colour-magnitude diagram
and reasonable good results regarding the clustering as a function of colour.

Figure 5.24 shows the fraction of objects as a function of the absolute magnitude
Mr. The black solid line and the black point-dashed line show the fraction of central
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Figure 5.22: Parameters found when fitting two Gaussian functions compared to SS09’s fits.
The red and blue solid lines are the SS09’s fits to the mean values. The dashed red and blue
lines are the SS09’s fit to the rms values. The red and blue triangles are our best mean values
of the two Gaussian functions and the red and blue point-lines are the straight line fits to
the points. The red and blue stars are our best rms values of the two Gaussian functions,
and the point-dashed lines are straight line fits to the points.

Figure 5.23: Idem as figure 5.22 but using three Gaussian functions instead of two.

and satellite galaxies respectively. It also shows the fraction of central, satellite and
total galaxies that belong to the red, green and blue sequences. As mentioned the
fraction of red satellite galaxies is very large at all luminosities. At the faintest lumi-
nosities this fraction tends to 0.7 and it increases slowly towards higher luminosities,
becoming 1 at Mr ∼ −22.0. The fraction of green satellite galaxies is very small at
all luminosities although it was necessary to better match the observations as it was
shown in figure 5.23.
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Figure 5.24: Fraction of objects as a function of the absolute magnitudeMr. The black solid
line refers to the fraction of central objects. The black dotted line is the satellite fraction
of objects. The red, green and blue solid lines correspond to the total (central + satellite)
red, green and blue fraction of galaxies. The dashed and dashed dotted lines show the same
colour fractions but for central and satellite galaxies respectively.

In detail, we assign colours to the galaxies in the following way: for each satellite
galaxy we draw two random numbers, u0 and u1. u0 is a uniformly distributed
random number between 0 and 1, and determine to which sequence the satellite
galaxy belongs to depending on the expressions 5.68, 5.69 and 5.70. Then we compute
the mean value of the colour depending on the luminosity following the expressions
5.65, 5.66 or 5.67. u1 follows a Gaussian distribution with mean value 0 and rms = 1
and it is used to determine the standard deviation from the mean (by multiplying u1
times the rms). For central galaxies, as mentioned before, we force their colours to
follow the total colour-magnitude diagram: by using our three Gaussians to fit the
colour-magnitude diagram (expressions 5.68, 5.69 and 5.70) we can compute what is
the fraction of red, green and blue objects (central + satellite galaxies) as a function
of the absolute magnitude, f redtot (Mr), f

green
tot (Mr) and f redtot (Mr), respectively. We

can also describe the fraction of red objects as:

f redtot (Mr) = f redcen(Mr)fcen(Mr) + f redsat (Mr)fsat(Mr) (5.71)

and therefore we can derive the fraction of central galaxies that belongs to the red
sequence since we know every term in the following equation:

f redcen(Mr) =
f redtot (Mr) + f redsat (Mr)fsat(Mr)

fcen(Mr)
(5.72)

We can derive the green fraction of central galaxies in the same way:

f greencen (Mr) =
f greentot (Mr) + f greensat (Mr)fsat(Mr)

fcen(Mr)
(5.73)
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and we estimate the blue fraction of central objects as f bluecen (Mr) = 1− (f redcen(Mr) +
f greencen (Mr)).

Once we know the probability for central galaxies to belong to one of the three
sequences we follow the same method we have followed for satellite galaxies, one
random number to determine the sequence and another one to derive a realization
of the colour.

5.4.4 Results

This section shows the resulting mock galaxy catalogue generated using the last
method explained in the previous section populating a halo catalogue (with a mini-
mum number of dark-matter particles to form a halo equal to 10) extracted from a
box-size Lbox = 307.2 Mpc/h of the snapshot at z = 0 of the MICE GC run.

Figure 5.25 shows the luminosity function of the catalogue compared to the best
Schechter function fit to the SDSS data. The error bars are derived using Poisson
errors in each bin. As it was expected the agreement is almost perfect because the
method used force the galaxy catalogues to follow the luminosity function. In the
next chapter the luminosity function of the whole snapshot, Lbox = 3072 Mpc/h, is
derived estimating the errors using the Jack-kinfe resampling method.

Figures 5.26, 5.28 and 5.29 show the color-magnitude diagram for all (central
+ satellite), central and satellite galaxies respectively. The red and blue solid lines
are SS09’s fits to the SDSS volume limited samples using two Gaussian functions
and dashed lines are our fits when using three Gaussian functions in order to model
the colour distribution as a function of the magnitude. The green solid line refers
to the satellite sequence set by SS09, equation 5.13. In figure 5.26, in addition, the
colour-magnitude diagram in the Mr < −19.0 SDSS volume limited sample (black
dashed-dot contours) is shown. The agreement between DR7 and the mock is very
good. Figure 5.27 shows the bimodal distribution of g− r colour of the mock galaxy
catalogue for different absolute magnitude-bin samples.

Figure 5.30 shows the luminosity dependence of galaxy clustering for different
luminosity threshold samples compared to the SDSS data. The samples are staggered
for clarity since galaxies fainter than M∗

r have almost a similar bias. The fits are
reasonably good, although at large scales the amplitude of the clustering is in general
slightly larger that SDSS data, specially for galaxies brighter than M∗

r . However,
as explained previously, if we do not include scatter in the relation Mgal − Lgal

the amplitude of the clustering at large scales would be much higher. Figure 5.31
shows the projected correlation function of luminosity-bin samples of the catalogue
compared to SDSS data. The fits show the same trend at large scales for the brighter
galaxies, the amplitude is larger than observations.

Figure 5.32 shows the colour dependence clustering of the catalogue. We show
separately red (left panel) and blue galaxies (right panel). When separating galaxies
in colour one observes that fixing the luminosity red galaxies are more clustered
than blue ones. It is also important to remark another characteristic of red galaxies.
They exhibit a higher clustering amplitude on small scales increasing towards low
luminosities. This strong clustering of the fainter luminosities can be an indication
that most of these galaxies are satellite galaxies that reside in massive haloes that
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have stronger bias. Our catalogue does not fairly follow this trend. In addition,
the brightest blue galaxies are too clustered compared to observations too. We plan
to solve these issues in the near future. We think that introducing a condition
depending on the galaxy colour during the satellite luminosity assignation could be
a possible solution.

Figure 5.25: Luminosity function of the mock galaxy catalogue. The blue solid line is the best
Schechter function fit to the SDSS data shifted to z=0.1. The black, blue and red triangles
are the luminosity function of total (central+satellite), central and satellite galaxies of the
catalogue respectively. The error bars are derived as Poisson errors.

5.5 Summary

The whole process of generating mock galaxy catalogues has been presented in this
chapter. We have developed a method to construct a unique mock galaxy catalogue
that follows some observed global local properties of galaxies, in which we use both,
the HOD and the SHAM models to assign galaxy luminosities. In particular the
luminosity function in the r-band, the g−r vs. Mr diagram, and the galaxy clustering
as a function of luminosity and colour. The observed properties come from observed
SDSS data at z = 0.1.

First, we generated a mock galaxy catalogue to participate in the LSS Simulation
Challenge of the Dark Energy Survey within the Galaxy Clustering Working Group.
In this case, instead of using HOD prescriptions, we selected dark matter particles
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Figure 5.26: Colour-magnitude diagram of all galaxies (central + satellite) of the mock
galaxy catalogue. The red and blue solid lines show the mean values of the red and blue
sequences derived by SS09, given by equations 5.7 and 5.8, respectively. The black solid line
is a crude cut which some authors use to separate the galaxy population into the red and blue
sequences. The green solid line refers to the satellite sequence set by SS09, equation 5.13.
The black dashed-dot contours refer to the colour-magnitude diagram in the Mr < −19.0
SDSS volume limited sample. The red, green and blue dashed lines are the mean values of
the red, green and blue sequences we fit to improve the fitting.

Figure 5.27: Bimodal distribution of (g-r) colour in the mock galaxy catalogue. Different
colours refer to different absolute magnitude-bin samples. The total number of galaxies in
the catalogue is 515830.

from the MICE2048L3072 run to be galaxies in order to follow a determined number
density as a function of redshift (from z = 0.2 up to z = 1.4). The catalogue was
built in an octant of the sky and we introduced different errors in the galaxy redshifts
in order to simulate photometric redshifts.
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Figure 5.28: Colour-magnitude diagram of central galaxies of the mock galaxy catalogue.
Solid and dashed lines are the same as in figure 5.26.

Figure 5.29: Colour-magnitude diagram of satellite galaxies of the mock galaxy catalogue.
Solid and dashed lines are the same as in figure 5.26.

We have presented Skibba & Sheth 2009’s method to include colours in the halo
occupation model, and an algorithm to build mock galaxy catalogues that preserve
the mean number density of objects, the global colour-magnitude diagram and the
correct clustering as a function of luminosity and colour. We have shown the colour-
magnitude diagram and the bimodal distribution of (g-r) colour in the SDSS.

We have generated a mock galaxy catalogue following SS09’s algorithm. We
populate with galaxies the halo catalogue extracted from the simulation N2048L3072
using the best HOD parameters found by ZH05 and then we assign luminosities to
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Figure 5.30: Luminosity dependence of galaxy clustering. Figure shows the projected cor-
relation functions for different luminosity threshold samples of SDSS and the mock galaxy
catalogues. The samples are staggered for clarity.

Figure 5.31: Projected correlation function of luminosity-bin samples of the catalogue.

the galaxies following the relation between the parameters Mmin and Lmin proposed
by SS09 using data from ZH05 in order to reproduce the luminosity function. We
found that the prescription does not work correctly in our simulations since we are
not able to follow the luminosity function even after correcting for the differences in
the cosmological model.

We tried to analytically derive two HOD parameters, Mmin and M1, for the
MICE simulations using as constraints the mean number density of objects and the
average linear galaxy bias at a certain scale (larger than 10 Mpc/h). We found big
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Figure 5.32: Projected correlation function for different luminosity-bin samples of the cata-
logue. The left panel shows red galaxies and the right panel shows blue galaxies.

degeneracies for both parameters. The mean number density of objects constrain
quite well the parameter Mmin but degeneracies do not disappear when using the
average linear galaxy bias at low halo mass.

We have derived the HOD parameters, Mmin, M1 and α, for MICE simulations.
We use as constraints the mean number density of galaxies as a function of luminosity
and the correlation function as a function of luminosity. We use the halo abundance
matching technique as well as HOD prescriptions to compute the relation between
halo mass and galaxy luminosity. We have also modified the galaxy density profile
from the standard NFW that determines the halo dark matter density. We need
to place satellite galaxies closer to the center of the halo, i.e. satellite galaxies are
more concentrated that a “common” NFW density profile. We also penalized the
faintest satellite galaxies to inhabit the most massive haloes since we did not obtain
the expected ξ2 values for the clustering.

We are able to build mock galaxy catalogues that follow the luminosity function,
the colour-magnitude diagram and the clustering as a function of luminosity and
colour for a determined galaxy population. It is important to remark that these
catalogues do not fulfill the properties for other galaxy populations, for instance one
catalogue could follow the clustering at a certain luminosity but the same catalogue
may not have the correct clustering for a brighter luminosity.

We developed a method to build a unique mock galaxy catalogue that reproduces
at the same time the observed galaxy properties already mentioned. We assume
α = 1.0 but the relation between M1 and Mmin is not constant and depends on the
halo mass following a certain function. We also introduced scatter in the relation
between halo mass and the luminosity of central galaxies. This scatter is needed in
order to decrease the amplitude of the clustering for the brighter galaxies. We found
that a value of ∆log(Lr) = 0.15 yields reasonable results. We also incorporate three
Gaussian functions, instead of two, to describe the observed SDSS colour-magnitude
diagram in order to have a better fit to the data. As a consequence we also modified
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and found new recipes to assign colours to central and satellite galaxies to get the
correct clustering as a function of colour. We showed the results of implementing
this method in a halo catalogue extracted from a box with Lbox = 307.2 Mpc/h of
the MICE Grand Challenge run resulted in a catalogue with ∼ 0.5 million galaxies.
The luminosity function, the colour distribution as a function of the magnitude and
the clustering as a function of luminosity and colour are also shown.

We found that it is not straight forward to produce a unique catalogue to follow
different observed galaxy properties at the same time and it requires some changes
in the method, including a lot of tuning in the parameters. The results showed very
good agreement in the luminosity function and in the color-magnitude diagram.
Regarding the clustering the results show in general quite good agreement with
observations. However we have also pointed out different aspects of the galaxy
clustering that could be improved. The amplitude of the clustering of bright galaxies
at scales larger than 1 − 2 Mpc/h is, in general, not perfect. The catalogue does
not follow properly the trend of the faint red galaxies to be more clustered than
the bright ones. The blue brightest galaxies, as well as the whole catalogue, have a
slightly larger amplitude of the clustering at the largest scales. We will try to solve
these issues in the following versions of the catalogue in the near future.



Chapter 6

Catalogue’s validations and
applications

This chapter shows the implementation of the method explained in the previous
chapter using the halo catalogue extracted from the whole snapshot, covering one
octant of the sky with a box-size Lbox = 3072 Mpc/h, at z=0 of the MICE Grand
Challenge run (rather than a little cube with a box-size Lbox = 307.2 Mpc/h) and
building a unique mock galaxy catalogue. The chapter also analyzes different aspects
and possible scientific applications of the generated mock galaxy catalogue.

The first section shows the derivation of the luminosity function computing the
error bars by using the Jack-knife re-sampling method. The second section shows the
correlation function and the projected correlation function computed as an average
of 103 non-overlapping volumes, each of them with a box-size Lbox = 307.2 Mpc/h,
for luminosity threshold, luminosity bin, and colour-luminosity bin samples. It also
shows an estimation of the linear galaxy bias by comparing the galaxy correlation
function and the linear dark matter correlation function. The third section shows
the correlation function of the catalogue including the effects of galaxy velocities
(redshift space distortions) at small (∼ 0.1 Mpc/h) and intermediate (20-30 Mpc/h)
scales. The fourth section shows the correlation function of the catalogue at the
BAO scale, and the fifth section presents three applications already carried out of
the mock galaxy catalogue.

6.1 Luminosity function of the snapshot at z = 0 of the
MICE GC run

This section shows the estimation of the luminosity function of a galaxy catalogue
generated using the MICE GC snapshot at z = 01. To generate the galaxy catalogue
we divide the whole halo catalogue into 103 non-overlapping cubes with a box-size of
Lbox = 307.2, and we populate with galaxies each cube. Then, in order to estimate
the errors of the luminosity function (LF) of the whole catalogue we use the Jack-
knife re-sampling method in the same way as in chapter 4 when we computed the

1Notice that halo masses are shifted to z = 0.1
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errors of the halo mass function. Now we divide the whole catalogue into NJK = 102

non-overlapping regions, and compute the LF in the full volume excluding one of
the non-overlapping regions at a time. Again, we choose as a non-overlapping region
a prism of square base with size 307.2 Mpc/h and height 3072 Mpc/h (which is
formed by 10 of the cubes with a box-size of Lbox = 307.2). As mentioned in chapter
4, Crocce et al. 2010 used NJK = 53 to measure the errors in the halo mass function,
and they checked that the estimates have already converged with varying NJK . We
expect the same behaviour for the luminosity function. The variance (defined as the
relative error squared) in the i-luminosity bin of the number of galaxies is obtained
as:

σ
(i)2

JK (∆N) =
1

n(i)
2

NJK − 1

NJK

NJK∑

j=1

(
n
(i)
j − n(i)

)2
(6.1)

where n(i) is the mean number density of galaxies for that luminosity bin. Figure 6.1
shows the LF of the MICE GC run at z = 0. The black triangles represent log

(
dn
dMr

)

in the mock galaxy catalogue. It is estimated as the mean value of the Jack-knife
volumes. The red solid lines represent the luminosity function of all prism volumes
and the blue solid line is the best fit Schechter function to the SDSS data. The
luminosity function of the catalogue and the Schechter function fit are in very good
agreement across the whole luminosity range.

Figure 6.1: Luminosity function of the MICE GC run at z = 0. The black triangles represent
the LF in the mock galaxy catalogue. The red solid lines shows the luminosity function of
all prism volumes and the blue solid line is the best fit Schechter function to the SDSS data
at z = 0.1.
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6.2 Galaxy bias

Halo bias measures the relation between the matter density field and the halo density
field. Galaxy bias measures the relation between the matter density field and the
galaxy density field. In addition to the non-linear evolution of dark matter, baryonic
physics takes an important role in the structure evolution of galaxies. The galaxy
distribution depends on the efficiency of haloes to form galaxies. This efficiency
depends on halo mass. Very small haloes cannot form galaxies. The inside gas is
reheated by feedback processes, whereas in more massive haloes galaxy formation
is inhibited by the long cooling time of the gas. Due to these phenomena, among
others, there exists a scale dependent bias in the distribution of galaxies relative to
the distribution of mass.

We derive the linear large scale galaxy bias in the same way as it is described
in section 4.4.2 of chapter 4 where the MICE simulations are introduced. We derive
the two point correlation function of galaxies and we estimate their bias assuming a
linear bias relation with the dark matter field, δg(r) = bLing δm(r), and therefore:

ξg(r) =
(
bLing

)2
ξDM (r) (6.2)

We estimate the two-point correlation function of galaxies, ξg(r), from small
scales (∼ 0.17 Mpc/h) up to intermediate scales (10-30 Mpc/h). We divide the
MICE GC run into 103 cubes of side 307.2 Mpc/h and we use the following estimator
to compute ξg(r) (it is called the natural estimator):

ξg(r) =
DD(r)

RR(r)
− 1 (6.3)

where DD(r) refers to the number of galaxy pairs in the simulation at a certain
distance r and RR(r) is the number of galaxy pairs as if they were spatially randomly
distributed.

We estimate the two point correlation function, ξg(r), and the projected correla-
tion function, wp(rp), for seven different luminosity thresholds, four luminosity bin
(see table 6.1), and also for different galaxy types (central and satellite galaxies).
We also compute ξg(r) and wp(rp) for red and blue galaxies for four luminosity bins
samples.

< Mr Mr1 < Mr < Mr2

-19.0 -19.0 to -20.0
-19.5 -20.0 to -21.0
-20.0 -21.0 to -22.0
-20.5 -22.0 to -23.0
-21.0
-21.5
-22.0

Table 6.1: Absolute magnitude thresholds and bins in the r-band.
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Figure 6.2 shows the correlation function, ξg(r), depending on the galaxy type
for luminosity threshold samples. Different colours correspond to different galaxy
luminosities. The left panel shows the correlation function for the whole catalogue,
including central and satellite galaxies. The central and right panels refer to centrals
and satellites respectively. We have not staggered the different luminosity threshold
samples this time. The errors are computed as the standard deviation using 103

cubes of side 307.2 Mpc/h. Some error-bars are only plotted in one direction to avoid
crowding the plot with little extra information. The agreement of the correlation
function with observed SDSS data is similar to the previous chapter. However, we
have not included SDSS data in the following plots for clarity. The black dashed
line is the linear two-point correlation function of the dark matter MICE simulations,
ξ(r)MICE

Lin , calculated as the FT of the linear MICE power spectrum. There are many
different interesting aspects in the three panels to look at. At the same luminosity,
satellite galaxies are more clustered than central galaxies, except for the brightest
sample. This is expected since in the HOD model satellite galaxies inhabit, in
general, in haloes that contain enough mass to form satellite galaxies, and therefore
these haloes are usually more massive and more biased. The brightest galaxies,
centrals or satellites, inhabit in the most massive haloes and therefore they have the
same bias. The amplitude of the clustering is very similar between galaxies with
luminosity fainter than the characteristic absolute magnitude, M∗

r = −20.44. When
Mr < M∗

r the luminosity function drops very fast, and therefore there are less number
of bright galaxies but their bias increases rapidly, which means that, in general,
they reside in the more massive haloes. The change in the slope of the correlation
function between scales larger and smaller than 1-2 Mpc/h is significant for the two
brightest samples of the whole catalogue and satellite galaxies. For central galaxies,
at r < 1−2 Mpc/h, due to the halo exclusion effect, there are very few pairs. Central
galaxies (or haloes) cannot be placed closer than a certain distance. The bigger the
halo, the larger this distance. The amplitude of the correlation function for the whole
catalogue compared to ξ(r)MICE

Lin is always larger except for the faintest sample at the
largest scales where it has almost the same amplitude, which means that the faintest
sample is approximately an unbiased sample of galaxies. All luminosity threshold
samples of satellite galaxies have a larger amplitude than ξ(r)MICE

Lin . Only the three
central brightest samples have a larger amplitude than ξ(r)MICE

Lin , and therefore the
fainter samples are anti-biased. Figure 6.3 shows the correlation function, ξg(r),
depending on the galaxy type for luminosity bins samples. The same trends as in
figure 6.2 can be seen.

The left panel of figure 6.4 shows the correlation function, ξg(r), for red galaxies
separated into four luminosity bin samples whereas in the right panel blue galaxies
are represented and split into three different luminosity bin samples. One can observe
that red galaxies are more clustered than blue ones at the same luminosity, and the
difference is larger at small scales. The difference in the slope at small scales is quite
significant, while the slope of red galaxies is almost constant at all scales, the slope
of blue galaxies changes and it is less steeper at small scales than at large scales.
As mentioned in the previous chapter we do not reproduce precisely the small-scale
clustering of red galaxies increasing towards low luminosities. We also mentioned
that we will try to solve this problem in the following versions of the catalogue in
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the near future.

Figure 6.2: Two-point correlation function of total (left panel), central (central panel) and
satellite galaxies (right panel) for the whole snapshot of the MICE GC run at z=0. Different
colours represent different luminosity thresholds. The black dashed line is the linear two-
point correlation function of the MICE simulations derived as the FT of the linear MICE
power spectrum.

Figure 6.3: Idem as figure 6.2 but for luminosity bin samples.

Figure 6.4: Two-point correlation function of red (left panel) and blue galaxies (right panel)
for the whole snapshot of the MICE GC run at z=0. Different colours represent different
luminosity bin samples. The black dashed line is the linear two-point correlation function of
the MICE simulations derived as the FT of the linear MICE power spectrum.

Figures 6.5, 6.6 and 6.7 show the same as the three previous figures but for the
projected correlation function, w(rp), rather than the two-point correlation function.
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When looking at figure 6.5 one can see the same trends as in figure 6.2. At the
same luminosity, satellite galaxies are more clustered than central galaxies, specially
for the fainter samples. The projected correlation function, compared to the two-
point correlation function, is flatter. The change in the slope at scales larger and
smaller than 1-2 Mpc/h is also present, specially for the two brightest samples of
the whole catalogue and satellite galaxies. Again, the amplitude of the clustering is
very similar between galaxies with luminosity fainter than the characteristic absolute
magnitude, and the bias of the galaxies increases rapidly for galaxies more luminous
than Mr = −20.44. In this case, the amplitude of wp(rp) at scales of the 1-halo
term for central galaxies does not drop towards zero since we are integrating in the
line-of-sight. Now it is possible to find central galaxies closer than any distance
and all galaxies have an almost constant amplitude. The amplitude of the three
brightest samples at scales of the 1-halo term, from larger to smaller scales, first
slightly decreases down to r ∼ 0.3 Mpc/h and then slightly increases up to r ∼ 0.17
and reaches the value at scales r ∼ 1− 2 Mpc/h. Figure 6.6 shows wp(rp) depending
on the galaxy type for luminosity bin samples. We can see the same trends as in
figure 6.5. The left panel of figure 6.7 shows wp(rp) for red galaxies separated into
four luminosity bins samples and in the right panel, blue galaxies are represented
and split into three different luminosity bin samples. One can also observe the same
trends as in figure 6.4.

Figure 6.8 and figure 6.9 show the linear galaxy bias of luminosity threshold
and luminosity bin samples respectively as a function of scale extracted from the
two-point correlation function following equation 6.2. The error-bars are derived
propagating the errors derived in the two-point correlation function. Looking at
the central panels of both figures, they show the same shape as the one derived in
chapter 4 for different halo masses since we place central galaxies in every halo. As
it is already mentioned, brighter galaxies are more clustered than fainter ones, and
therefore the bias is larger. At scales r < 1 − 2 Mpc/h where there are a very few
number of central pairs the bias drops towards zero very fast, exactly in the same way
as the two-point correlation function. The whole catalogue (left panel) and satellites
(right panel) have, in general, a very similar shape. Again, brighter galaxies are
more clustered than fainter galaxies. At large scales, at the same luminosity, satellite
galaxies have a larger bias than central galaxies, and central galaxies have a smaller
bias than the whole catalogue. The bias for central and satellite galaxies, and for the
whole catalogue, tends to a constant value, that depends on the galaxy luminosity
and on the galaxy type, at large scales. This is expected since we assume that
galaxies at large scales tends to follow the distribution of dark matter more closely.

Figures 6.10 shows the bias as a function of scale for red (left panel) and blue
galaxies (right panel). Red galaxies are more clustered than blue galaxies for all
luminosities and at all scales. Notice that the clustering at scales of the 1-halo term
of red galaxies is not properly followed (explained in previous chapter). The blue
line, that corresponds to the faintest sample, should have a larger bias, larger even
than the red one in order to follow the observations. The red faintest galaxies are, in
general, satellite galaxies that inhabit in the most massive haloes. This is the reason
why they have such a large bias.

Finally we show the linear galaxy bias as a function of Mr. We derive the bias
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Figure 6.5: Idem as figure 6.2 but showing the projected correlation function.

Figure 6.6: Idem as figure 6.3 but showing the projected correlation function.

Figure 6.7: Idem as figure 6.4 but showing the projected correlation function.

by averaging the bias at the scales r1 = 6.0 and r2 = 10.6 Mpc/h. The left panel of
figure 6.11 shows bg(< Mr) and bg(Mr) for the whole catalogue. The triangles refer
to luminosity threshold samples and the asterisks represent luminosity bin samples.
The blue dashed line is a fit to HOD model bias factors derived by Zehavi et al. 2011
given by the following expression:

bg(> Lr)× (σ8/0.8) = 1.06 + 0.21(Lr/L
∗
r)

1.12 (6.4)

where Lr is the r-band luminosity corrected to z = 0.1 and L∗
r corresponds to M∗

r =
−20.44 (Blanton et al. 2003). The red dashed line is the fit of Zehavi et al. 2011 to
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Figure 6.8: Galaxy bias of luminosity threshold samples as a function of scale. The left,
central and right panels refer to the whole, central and satellite catalogues.

Figure 6.9: Galaxy bias of luminosity bin samples as a function of scale. The left, central
and right panels refer to the whole, central and satellite catalogues.

Figure 6.10: Galaxy bias of colour luminosity bin samples as a function of scale. The left
panel refers to red galaxies and the right panel to blue galaxies.

the luminosity bin samples and is given by the following expression:

bg(Lr)× (σ8/0.8) = 0.97 + 0.17(Lr/L
∗
r)

1.04 (6.5)

We have also plotted the formula derived by Norberg et al. 2001 to fit the projected
correlation functions in the 2dFGRS (black solid line):

bg(> Lr)/b
∗ = 0.85 + 0.15(Lr/L

∗
r) (6.6)
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where we take b∗ ≡ bg(L
∗
r) = 1.14 as in Zehavi et al. 2011, and a modified fit to

SDSS power spectrum measurements derived by Tegmark et al. 2004 (dotted black
line):

bg(> Lr)/b
∗ = 0.85 + 0.15(Lr/L

∗
r)− 0.04(Mr −M∗

r ) (6.7)

The agreement between the bias of luminosity threshold samples of the catalogue
with the fit of ZH11 is quite reasonable. And the agreement between the bias of
luminosity bin samples with the fit obtained by ZH11 is also very good except for
the brightest samples where our catalogue is more clustered that the fit. At fainter
scales the agreement with the fit of Norberg et al. 2001 is almost perfect and very
good also with the fit of Tegmark et al. 2004. The right panel of figure 6.11 shows
the bias as a function of Mr for red (triangles) and blue galaxies (asterisks). Red
galaxies are much more clustered than blue ones at all luminosities.

In figure 6.12 the bias as a function of Mr for central (left panel) and satellite
galaxies (right panel) is shown. In both panels, the triangles refer to luminosity
threshold samples and the asterisks refer to luminosity bin samples. In the left panel,
the blue and black solid lines are derived using the analytical expression for the MICE
halo bias (combining the expression of Manera et al. 2010 and the parameters found
by Crocce et al. 2010 for the halo mass function) and converting halo masses to
luminosities by using the relation, Msh − Lgal, obtained when building the mock
galaxy catalogue. The agreement is very good for both, luminosity threshold and
bin samples. The figure should be similar to the results shown in figures 4.18 and
4.19 of chapter 4 since central galaxies are placed at the center of their host haloes.
A possible reason of having a smallest bias than the halo bias fit for the brightest
sample is the scatter introduced in the relation Msh − Lgal when assigning central
luminosities. In the right panel we have also plotted the fits derived by Zehavi et al.
2011, Norberg et al. 2001 and Tegmark et al. 2004 for comparison. Satellite galaxies,
at the same luminosity, are much more clustered than central galaxies and it is also
very easy to observe that galaxies fainter than M∗

r = −20.44 have a similar bias and
it increases very fast when their luminosity is brighter than M∗

r . Notice that certain
central populations can be anti-biased, satellite populations have always bsat(Lr) > 1
and the whole population may be almost unbiased.

6.3 Redshift space distortions

This section analyzes the distortions in the galaxy clustering when measuring galaxy
redshifts due to their peculiar velocities. When one wants to measure how far a
galaxy is instead of measuring directly its distance, one measures its redshift. The
observed redshift is the sum of the redshift due to the expansion of the universe
and the redshift due to the peculiar velocity of the galaxy. There are two well-
known effects, the so-called Fingers-of-God effect, and the Kaiser effect. On small
scales galaxy velocities within a cluster are well approximated by velocities that are
independent Gaussians in each of the three cartesian components, with rms values
that depend on the halo mass. This causes galaxies at the same distance to be at
different redshifts and makes the distribution of galaxies in redshift space maps to
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Figure 6.11: Galaxy bias as a function of Mr of luminosity threshold, bg(< Mr), and bin
samples, bg(Mr), for the whole catalogue (left panel), and bg(Mr) for red and blue galaxies
(right panel). Left panel: the coloured triangles and asterisks represent luminosity threshold
and bin samples respectively. The light blue dashed line is the fit to the HOD model bias
factors for luminosity threshold samples from Zehavi et al. 2011 (eq. 6.4). The red dashed
line is the fit to the HOD model bias factors for luminosity bin samples from Zehavi et al.
2011 (eq. 6.5). The black solid line is a fit to projected correlation functions in the 2dFGRS
(eq. 6.6) and the dashed curve is a modified fit to SDSS power spectrum measurements
derived by Tegmark et al. 2004 (eq. 6.7). Right panel: the coloured triangles correspond
to red luminosity bin samples and the coloured asterisks correspond to blue luminosity bin
samples. The lines are the same as in the left panel for the luminosity bin samples.

Figure 6.12: Idem as left panel of figure 6.11 but for central (left panel) and satellite galaxies
(right panel). Left panel: the black line is the halo bias derived by Crocce et al. 2010 for
the MICE simulations relating halo masses to absolute magnitudes by using the relation
Mh −Lgal presented in chapter 5 derived using the subhalo abundance matching technique.
The blue line is derived by integrating the black line. Right panel: the lines are the same as
the ones plotted in figure 6.11.

be elongated along the line-of-sight (like fingers). The Kaiser effect is evident at
larger scales. Galaxies are falling into overdense regions and this makes the galaxies



6.3. REDSHIFT SPACE DISTORTIONS 133

between the overdensity and us to appear further away. However, galaxies that are
placed further away than the overdensity appear to be closer. This effect produces
the overdensity to be squashed in the line-of-sight. We can visualize these two effects
when computing the two-point correlation function as a function of radial or line-of-
sight, rπ, and perpendicular distance, rp, in the ξ(rp, rπ) diagram since both effects
are going to produce distortions in the positions and therefore distortions in the
number of pairs depending on the distance at any scale.

We analyze the distribution of the galaxy velocities in a cube with a box-size
Lbox = 307.2 Mpc/h of the snapshot at z = 0 of the MICE GC run. Figure 6.13
shows the normalized distribution of the three different velocity components and
the distribution of the velocity modulus for central (solid lines) and satellite galaxies
(dashed lines). Since we have assumed that the velocity of satellite galaxies is derived
as the sum of their host halo velocity plus the velocity due to virial motions inside
the halo, the dispersion in the satellite distribution is larger than for centrals. It is
interesting to notice that the mean values for all velocity components are negative.
This means that even at such very large scales (∼ Lbox) there exists a bulk motion.
Galaxies, in average, in this particular cube, are moving towards the observer.

Figure 6.13: Galaxy velocity histogram. Solid and dashed lines show the Gaussian fits to the
three different components of the central and satellite galaxy velocity, respectively. Black
lines show the modulus of the velocities.

We use the expression 5.55 to derive the velocity dispersion of satellite galaxies.
Figure 6.14 shows the normalized number of satellites as a function of the velocity
dispersion of haloes. When two or more satellite galaxies inhabit in the same halo
they will have the same value of σ.

Once we know the comoving-distance of a given galaxy to obtain the cosmological
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Figure 6.14: Normalized velocity dispersion histogram of satellite galaxies from a cube of
box-size Lbox = 307.2 Mpc/h extracted from the snapshot of the MICE GC run at z=0.

redshift we use a table generated by using the relation between the comoving-distance
and the redshift:

rcom(z) =

∫ z

0

cdz′

H(z′)
(6.8)

We locate the comoving-distance between two values in the table and then we linearly
interpolate to get its corresponding redshift. We compute the distortion due to the
peculiar velocity in the radial direction by directly using the Hubble parameter:

robs|| = rcom|| +
v||

aH(z)
(6.9)

where a = 1
1+z is the scale factor and we assume that all galaxies in the snapshot

are at the same redshift, z = 0.1.

Figure 6.15 and 6.16 show the correlation function ξ(rp, rπ) of galaxies (central
+ satellite) brighter than Mr < −19.0 without taking and taking into account the
velocity of galaxies respectively. We have mirrored the first quadrant along both
axes in order to stress deviations from circular symmetry. The colours of the plots
refer to different values of the two-point correlation function. The larger the scale
the smaller the value of χ(r) (a few values of χ(r) are shown to see the trend).
Both, the Fingers-of-God and the Kaiser effect, are clearly visible in figure 6.16.
We can observe at small perpendicular scales, virial velocities of satellite galaxies in
haloes causes a larger amplitude in the clustering (Fingers-of-God). In addition, at
large scales the infall motion of galaxies towards overdensities causes the correlation
function to be “flatter”.

Figures 6.17 and 6.18 show the correlation function ξ(rp, rπ) of the total (left
panel), central (center panel) and satellite (right panel) galaxies brighter than Mr <
−19.0 without taking and taking into account the redshift space distortions respec-
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Figure 6.15: Two-point correlation function ξ(rp, rπ) as a function of radial or line-of-sight
(rπ in vertical axis) and perpendicular distance (rp in horizontal axis) for a sample of galaxies
(central+satellite) brighter than Mr < −19.0 without taking into account galaxy velocities.
Orange and red colours correspond to large values of the correlation whereas blue and grey
colours to small values.

Figure 6.16: Idem as 6.15 but taking into account galaxy velocities. Both phenomena, the
Fingers-of-God and the Kaiser effect, are clearly shown at small and large scale respectively.
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tively. In this case we have not mirrored the first quadrant along both axes. Again,
colours refer to different values of the correlation function as in previous figures, at
larger scales the amplitude is smaller than at small scales. In figure 6.17 one can
observe the same trends explained when measuring the correlation function in the
previous section. Basically at the same luminosity (Mr < −19.0) satellite galaxies
(right panel) are more clustered than the whole population (centrals + satellites),
and the whole population is more clustered than central galaxies. The three panels
show symmetry in the correlation function for both distances, along the line-of-sight,
rπ and perpendicular to the line-of-sight, (rp). The effects of redshift space distor-
tions in figure 6.18 are evident. In the left and right panels one can observe both
effects, the Fingers-of-God and the Kaiser effect. However in the central panel, where
only the correlation function of central galaxies is shown, the Fingers-of-God effect
is not visible as it is expected due to the way we assign velocities to central galaxies.
We only add dispersion to satellite velocities. Central galaxies “only” feel the large
scale Kaiser effect.

It is also interesting to see the effect of galaxy bias in the redshift space dis-
tortions. Following Dodelson 2003, working in the context of linear theory and
assuming the distant observer approximation, one can reach to an expression that
relates the Fourier transform of the redshift space overdensity, δ̃s(~k), and the real
space overdensity, δ̃(~k):

δ̃s(~k) = [1 + fµk] δ̃(~k) (6.10)

where µk is defined to be ẑ · k̂, the cosine of the angle between the line of sight and
the wavevector k̂. And therefore one can relate the power spectrum in redshift space,
Ps(~k), and in real space, P (~k):

Ps(~k) = P (~k)
[
1 + βµ2k

]2
(6.11)

where it follows that Ps(~k) depends not only on the magnitude of ~k but also on its
direction. The parameter β is not only the linear growth rate, f = d lnD

d lna . There
is an additional factor in β, though, due to the fact that the mass overdensity δ
is not necessarily equal to the overdensity in galaxies, δg. If one defines galaxy
bias as δg ≡ bgδ, then the correction due to redshift space distortions in equation
6.11 is proportional to the parameter β. The smaller the galaxy bias, the more the
galaxy population feels the Kaiser effect. We have just shown that satellite galaxies
are always more clustered than central galaxies at a given luminosity and therefore
central galaxies should feel more the Kaiser effect. One can observe in the central
and right panels of figure 6.18 that the Kaiser effect (the squashing effect) is slightly
larger for central galaxies than for satellite galaxies.

6.4 Baryonic acoustic oscillations

This section shows the angular two-point correlation function, w(θ), of the mock
galaxy catalogue at the scale of the Baryonic Acoustic Oscillations (BAO). We do
not intend to do an exhaustive study of the large scale clustering of the catalogue,
we just want to show another check. We use, again, the catalogue generated by
populating the halo catalogue extracted from snapshot at z = 0 of the MICE GC
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Figure 6.17: Two-point correlation function ξ(rp, rπ) as a function of radial or line-of-sight
(rπ in vertical axis) and perpendicular distance (rp in horizontal axis) for a sample of galaxies
brighter than Mr < −19.0 without taking into account the velocity of galaxies. Orange and
red colours correspond to large correlation and blue and grey colours to small correlation.
Left, central and right panels correspond to the total (central+satellite), central and satellite
catalogues respectively.

Figure 6.18: Idem as figure 6.17 taking into account the velocity of galaxies.

run. In particular we derive w(θ) for a comoving-distance spherical shell of width
300 Mpc/h, covering the range (2772− 3072) Mpc/h. The mean value of the shell is
z ∼ 1.35 in the MICE cosmology. We take into account in the analysis all galaxies
(Lr > Lmin

r ) in the chosen region. The number of central galaxies is 48837263
(∼ 49M), the number of satellite galaxies is 22846895 (∼ 23M), so the total number
of galaxies in the shell is 71684158 (∼ 72M). The solid angle of an octant of the sky
is (4π/8) rad2 (or 5156.62 deg2). The number of objects per arcmin2 is 2.63, 1.23
and 3.86 for central, satellite and total galaxies respectively.

The BAO scale is assumed to be at rBAO
com ∼ 100 Mpc/h (e.g. Eisenstein et al.

2005). If we assume the observer to be at one vertex of the box, and we know that
the mean comoving-distance of the shell is r̄com = 2922 Mpc/h we can compute at
which angle the BAO feature should be in the angular correlation function.

θBAO ∼ arctan
rBAO
com

r̄com
(6.12)

We obtain θBAO ∼ 1.96 deg.

In this case we compute the angular correlation function starting from Healpix2

angular maps (Górski et al. 2005). We build a grid with a number of pixels of

2http://healpix.jpl.nasa.gov
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Nside = 512 and a pixel size of ∼ 0.01 deg2, and we use a standard pixel estimator
(Barriga & Gaztañaga 2002, Eriksen et al. 2004) to compute wBAO(θ):

ŵBAO(θ) =
1

Npairs(θ)

∑

i

∑

j

δiGδ
j
G (6.13)

where δiG = N i
gal/N̂gal − 1 is the fluctuation in number of galaxies in the i-th pixel

with respect to the mean in the angular map, pixels i and j are separated by an
angle θ and Npairs(θ) is the corresponding number of pixel pairs. The error bars are
estimated using the Jack-Knife resampling method. We only use about 92% of the
total area to compute the errors due to the way the code generates the Jack-knife
volumes. Then we scale them to be appropriate for the whole octant.

Figure 6.19 shows the w(θ) for the total (black), central (blue) and satellite (red)
galaxies. The cross-correlation between central and satellite galaxies (green) is also
shown. The black dashed line is the theoretical angular correlation function of the
MICE simulations. In order to compute it we use the MICE power spectrum, then
we compute its FT to get the two point correlation function (we normalize it to get
σ8 = 0.8). Finally, we integrate to obtain the projected correlation and transforming
the distance into angles using the mean value of the redshift bin. The inset shows an
expanded view of figure 6.19 in order to better show the region where the acoustic
peak is present and where the correlation function becomes negative. Looking at the
outer figure one can observe that the angular correlation function decreases very fast
at small angles until θ ∼ 0.5 and then becomes almost flat around zero. Looking
at the inset, w(θ) is decreasing until θ ∼ 1.5 where the amplitude starts to be
almost flat at ∼ 0.5 deg, in this angle interval is where the θBAO should be, then
decreases and becomes negative (θ ∼ 2.3), and then increases slowly towards zero.
As described in previous sections, one can observe that, at the same luminosity,
satellite galaxies (red) are the most clustered. It is interesting to notice that the
cross-correlation between central and satellite galaxies is less clustered than satellite
galaxies themselves but it is more clustered than the autocorrelation of the whole
catalogue and the central catalogue. Looking for example at the satellite clustering,
another aspect to notice, is that the amplitude of the clustering when the correlation
is positive is the largest, however it is the smallest when the correlation is negative.
This behaviour is also expected since the integral of the correlation function over
the whole angle range is zero. The error-bars are larger for satellite galaxies because
the number of satellites is smaller than the number of objects in the other galaxy
samples. Figure 6.20 also shows the angular correlation function but multiplied by
θ2 which flatten out the curve and at the same time magnified the “bump” at the
scale θBAO in the correlation.

6.5 Applications

We expect the catalogue to be used in many different areas and for many differ-
ent purposes since it follows some global and important properties of the galaxy
population. We have covered in this chapter without entering into detail different
scientific aspects that can be studied using our mock galaxy catalogues, such as
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Figure 6.19: Angular correlation function for the whole (black), central (blue) and satellite
(red) galaxies. The green triangles refer to the cross-correlation between central and satellite
galaxies. The black dashed line is the theoretical angular correlation function of MICE
simulations. The inset is an expanded view.

Figure 6.20: Angular correlation function times θ2. Colours refer to the same correlations
as in the upper figure.
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galaxy bias, redshift space distortions or baryonic acoustic oscillations. Currently
the mock galaxy catalogues are being used in several applications. This section
briefly describes them.

The first versions of the catalogue were used to test the cluster finder code de-
veloped by Farrens et al. 2011. This first test helped us to realize that the catalogue
had problems with the luminosities and colours of the galaxies. It was the time when
the catalogue did not fit correctly the luminosity function.

The Physics of the Accelerated Universe project (PAU) expects to obtain pho-
tometric spectra from ∼ 10M galaxies. The PAU Data Management group is devel-
oping different pipelines which will reduce the observed images taken at the William
Herschell telescope at La Palma and produce galaxy catalogues. Our mock galaxy
catalogues are being used to feed the pipelines, the data base and the storage system
with formatted data before real data arrives. This is useful to test and optimize the
data reduction algorithms with known data and to identify possible survey-specific
handicaps. Morphological properties, that follow empirical distributions extracted
from the stuff code3, and spectral energy distributions (SED), that are derived using
a relation between galaxy colour (g − r) and 66 templates of galaxy spectra, are
included in the catalogue. Figure 6.21 shows the first simulated image produced by
the PAU data management pipeline.

Figure 6.21: First simulated image generated by the PAU data management pipeline using
our mock galaxy catalogue as input.

We have also generated a version of the catalogue that has been made avail-
able to the DES collaboration for DES-related studies. The catalogue contains 117
million galaxies. It is generated by populating a halo catalogue extracted from the
lightcone output of the MICE Grand Challenge run. It approximately reproduces
the magnitude limits of the DES survey. The catalogue provides information about
positions, magnitudes and colours. In addition, we have included shear information
for all galaxies out to z = 1.4 extracted from the input MICE simulation. Figure

3Stuff code is part of the software developed by Emmanuel Bertin (web-
page:http://www.astromatic.net/software)
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6.22 shows the shear amplitude of dark matter (left panel) and galaxies (right panel)
for sources at redshift z=1.

Figure 6.22: Left panel shows the shear amplitude of the dark matter simulation at z=1
from the lightcone of the MICE GC run. Right panel shows the same but for the galaxy
catalogue.

6.6 Summary

Different properties of the last version of the generated mock galaxy catalogue have
been analyzed: the luminosity function, the linear large scale galaxy bias, the effect
of the redshift space distortions in the galaxy clustering and the angular correlation
function at the BAO scale.

The resulting mock galaxy catalogue is generated by using the halo catalogue
extracted from the snapshot at z=0 of the MICE GC run. The total number of
haloes in the halo catalogue is ∼ 350M , with logMmin

h = 11.31. Since one central
galaxy is placed at the center of each halo, the catalogue contains the same number of
central galaxies. The number of satellite galaxies is ∼ 150M and therefore the total
number of galaxies in the catalogue is ∼ 500M . The minimum absolute magnitude
of the catalogue is Mr = −18.78.

The luminosity function of central, satellite and total (central+satellite) galaxies
has been computed. We have derived the errors of the luminosity function using the
Jack-knife re-sampling method in the same way as we did in chapter 4 for the halo
mass function of the MICE GC run. The fit against the SDSS data derived from
Blanton et al. 2003 is almost perfect as expected since the method forces the galaxies
to follow the observed luminosity function.

In order to compute the galaxy bias we have derived the correlation function of
galaxies dividing the whole simulation volume into 103 non-overlapping cubes of box-
size Lbox = 307.2 Mpc/h. We showed the correlation function for different luminosity
threshold, luminosity bin, and colour-luminosity bin samples and we have estimated
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the galaxy bias using the linear MICE correlation function of the dark matter density
field derived as the FT of the linear MICE power spectrum. We have computed the
linear galaxy bias as a function of the luminosity and colour assuming a linear relation
between the dark matter field and the galaxy field.

We have shown what are the effects of including the velocity of galaxies in the
determination of galaxy redshift in the two-point correlation function, and we have
also shown the clustering of galaxies at the BAO scale for a sample of galaxies at
high redshift (∼ 1.35).

We have also presented 3 applications already carried out. The first versions
of the catalogues were used to test the cluster finder code developed by Farrens
et al. 2011. A modified version of the catalogue where morphological properties
and spectral energy distributions are assigned to every galaxy is used to feed the
Data Management pipelines in the PAU project. Our science group has also pro-
vided a mock galaxy catalogue to the Euclid project collaboration including shear
information to each galaxy.



Chapter 7

Discussion and conclusions

The main goal of this thesis was to present a method to build mock galaxy cata-
logues using the halo occupation distribution model. We populate with galaxies halo
catalogues extracted from the Marenostrum Institut de Ciències de l’Espai Simula-
tions (MICE). The catalogues follow some observed global properties of the galaxy
population already observed, such as the luminosity function, the colour-magnitude
diagram and the clustering as a function of luminosity and colour. The observed
data constraints come from the Sloan Digital Sky Survey (SDSS). We hope that the
catalogues are going to be used for many different purposes in future and current
galaxy surveys such as DES, PAU or Euclid. This chapter summarizes the work pre-
sented in this thesis and lists the conclusions. The last section discusses the ongoing
and future work.

7.1 Summary and conclusions

The following list enumerates and discuss the steps followed during the thesis:

➤ We have presented some of the most important present cosmological probes to
measure cosmological parameters, and the benefits and needs of building mock
galaxy catalogues to be able to fully exploit data from future galaxy surveys.
We have shown different methods to produce mock galaxy catalogues using (or
not) N-body simulations.

➤ We have described in more detail the halo model and the halo occupation dis-
tribution (HOD) model. The halo model describes the non-linear gravitational
clustering. This approach assumes as the main idea that all the matter in the
universe is comprised in virialized dark-matter haloes. We have explained some
ingredients of the halo model, such as the spatial distribution of haloes, their
mean number density, the amplitude of the clustering of haloes as a function
of their mass and their mass density profile. All these ingredients are neces-
sary when generating the mock galaxy catalogues using the HOD model. The
HOD is one of the methods to relate the dark matter and galaxy distributions.
It treats galaxy bias in a statistical way. The HOD describes the number of
galaxies in a halo in terms of a probability distribution that depends on some



144 7 Discussion and conclusions

free parameters and the mass of the halo. It also gives prescriptions to place
galaxies in the halo and to describe galaxy velocities within dark-matter haloes.

➤ We have briefly described the history and the basics of dark matter N-body
simulations. The importance of computational advances has been stressed as
well as some improvements in the algorithms to compute the gravitational force
between particles.

➤ We have presented the Marenostrum Institut de Ciències de l’Espai simulations
(MICE). The MICE simulations assume a flat concordance ΛCDM model with
parameters Ωm = 0.25, ΩΛ = 0.75, Ωb = 0.044, h = 0.7 and the spectral index
ns = 0.95. The linear power spectrum is normalized to yield σ8 = 0.8 at z = 0,
and the initial conditions are given by either using the Zeldovich approximation
or 2nd order Lagrangian Perturbation Theory (2LPT), depending on the run.
We have introduced the suite of the MICE simulations, which covers a wide
range of halo masses and volumes, from volumes comparable to the SDSS main
sample (0.1 h−3Gpc3) to DES (9 h−3Gpc3) or even Euclid (∼ 100 h−3Gpc3),
and mass resolutions, from 3× 1012h−1M⊙ down to 3× 108h−1M⊙.

➤ We have specially analyzed the Grand Challenge (GC) run, which is one of the
largest N-body simulations up to now with N = 40963 particles and LBOX =
3072 Mpc/h. Using as input the halo catalogue extracted from the snapshot
of the GC run at z = 0, we have computed its halo mass function by using the
Jack-knife resampling method. We have compared our derivation of the errors
with the previous work developed by Crocce et al. 2010. They also analyzed
the MICE simulations but they did not include the MICE GC run since it
had not been performed yet. Our error measurements agree with the errors
computed by Crocce et al. 2010 in the same halo mass range and the same
simulation size.

➤ We have also fitted a Schechter-like function to the halo mass function of the
GC run at z = 0:

dn

d logMh
= a0

(
Mh

M∗
h

)a1

exp

[
−
(
Mh

M∗
h

)a2]
(7.1)

where a0 = 6.1065×10−5 , a1 = −0.8438, a2 = 0.6946 and M∗
h = 2.3880×1014 .

➤ We have derived the two-point correlation function at small scales (∼ 0.1
Mpc/h) up to intermediate scales (∼ 20 − 30 Mpc/h) of haloes depending
on their mass. We have computed the large scale halo bias extracted from
the two-point correlation function assuming a linear relation between the dark
matter field and the dark matter halo field, and we have shown the scale depen-
dence of bias for different halo masses. More massive haloes are more clustered
than the lighter ones. Haloes less massive than a certain mass (log (Mh) 612.5)
have a similar bias (bh ∼ 1) and haloes more massive than that characteristic
mass have a bias that increases very fast with mass. Therefore rare haloes,
the most massive ones, are the most clustered. We compared our bias results
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to analytical expressions from Manera et al. 2010. These authors presented a
method to fit functional forms to halo abundances and linear halo bias. We
have used their bias expression and the parameters found by Crocce et al.
2010 when they fitted the MICE halo mass function using a Sheth & Tormen-
like mass function, to compare to our linear bias derivations from simulations.
The results show a very good agreement between the halo bias derived from
simulations and the analytical expressions.

➤ We have populated the MICE simulations with galaxies and we have produced
different mock galaxy catalogues. As a first approach we have reproduced the
mock galaxy catalogue that was released by our scientific group to the DES
collaboration for a DES simulation challenge. In this case we assigned galaxies
to dark matter particles in the MICE N2048L3072 run to follow a determined
galaxy redshift distribution.

➤ We have also built mock galaxy catalogues by populating with galaxies different
halo catalogues extracted from different MICE runs using the HOD model,
which is a much more complex approach than the previous one. We started by
using the intermediate run, MICE N2048L3072, with N = 20483 particles and
LBOX = 3072 Mpc/h, and we finished by using the GC run. The latter contains
8 times more particles than the former in the same volume and therefore we
gained 8 times in mass resolution. This is very important since in our method
to build mock catalogues, central galaxy luminosities depend strongly on the
halo mass.

➤ We have had in mind, since the beginning, to be as simple as possible when
building the mock galaxy catalogues. Because of this we started by using the
simplest HOD model, which only uses 3 free parameters to describe the number
of galaxies inside the haloes (Mmin, M1 and α), and by following algorithms
from previous works. We have described the algorithm developed by Skibba
& Sheth 2009 to produce mock galaxy catalogues. They introduced galaxy
colours in the framework of the HOD, which is a previous step to include the
full spectral energy distribution. They claimed that the mock galaxy cata-
logues produced by following their algorithm fit the luminosity function, the
luminosity dependence of the two-point correlation function and, in addition,
the galaxy clustering dependence on colour.

➤ We have found that it is not straight forward to follow prescriptions from other
authors when they assume a different cosmological model and therefore their
input cosmological simulations are different too. We found that the halo mass
luminosity relation proposed by Skibba & Sheth 2009 from SDSS clustering
data obtained by Zehavi et al. 2005 does not work perfectly when applied to
the MICE simulations. It does not provide a good fit to the luminosity function
either in the shape or in the amplitude. The main difference comes from the
halo mass function due to different cosmologies. Even correcting for this issue
by shifting masses from one cosmology to another it still does not work. Little
changes in the relation produce big changes in the luminosity function. We
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reached to the conclusion that it is necessary a more complicated relation
(rather than an exponential function with 2 free parameters) to correctly fit
the SDSS luminosity function using MICE simulations.

➤ We have derived our own HOD parameters. First, we have tried to analytically
derive only two HOD parameters, Mmin andM1, by only using two conditions,
the mean number density of objects as a function of the luminosity and the
linear mean large scale galaxy bias at a certain scale (we assumed α ∼ 1). We
have found that the first condition can constrain Mmin but the second one is
not enough to constrain M1. We have found big degeneracies and therefore
we need more constraints. Second, we have derived the best HOD parameters,
Mmin, M1 and α, to match the luminosity dependence of the clustering using
the MICE simulations, but in this case we have used as constraints the whole
two-point correlation function from small scales r ∼ 0.1 Mpc/h up to scales
r ∼ 30 Mpc/h from SDSS data shown in Zehavi et al. 2011 (in addition to the
mean number density of galaxies). We have built a grid of 600 catalogues each
of them using a different set of HOD parameters, Mmin, M1 and α, covering
a wide range of values, by populating a halo catalogue extracted from the
snapshot of the MICE GC run at z = 0 with box-size LBOX = 307.2 Mpc/h.
We have still followed the algorithm proposed by Skibba & Sheth 2009 to
produce the catalogues but we have introduced some modifications:

✹ We have used the SubHalo Abundance Matching technique (SHAM) to
match the best fit Schechter function to the SDSS data derived by Blanton
et al. 2003. We have derived and modelled a relation between mass and
galaxy luminosity, Mgal − Lgal, by comparing two cumulative functions,
the observed mean number density of galaxies with luminosity brighter
than a certain value, ngal(< Mr), using the best-fit Schechter function
derived by Blanton et al. 2003, and the cumulative number density of ob-
jects (central and satellite galaxies) that inhabit in haloes of mass greater
than a certain value, ngal(> Mmin) = ncen(> Mmin) + nsat(> Mmin).

✹ We have assumed that all galaxies follow the Mgal −Lgal relation and we
have been able to derive the contribution of satellite galaxies to the total
galaxy luminosity function by using the relation Mgal −Lgal in the equa-

tion nsat(> Mmin) =
∫∞
Mmin

dn
dMh

(
Mh

M1

)α
dMh. Finally we have subtracted

nsat(> Mmin) from the observed total cumulative galaxy luminosity func-
tion and we have obtained the central contribution.

✹ We have derived the total number of central galaxies in the catalogue,
Ncen, having the halo mass function and the HOD parameters, and we
have assigned a luminosity for each central galaxy using the relation
Mgal − Lgal. We have also computed the total number of satellite galax-
ies, Nsat, and we have generated randomly Nsat “available” luminosities
sampling the cumulative satellite luminosity function, nsat(> Lr), already
computed.

✹ We have assumed that central galaxies are, in general, the brightest galax-
ies and therefore we have enforced satellite galaxies not to be brighter than
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1.05 times the central galaxy luminosity.

✹ We have placed satellite galaxies in the haloes following a NFW density
profile. We did not obtain the expected correlation function at very small
scales (r 6 0.5 Mpc/h). Therefore we have had to modify the NFW den-
sity profile. We have made the satellite galaxies to be more concentrated
than a NFW density profile. The faintest satellite galaxies are even more
concentrated than the brightest ones.

✹ We have had to decrease the clustering of the catalogues since they still
did not yield the expected χ2 values. We decreased the clustering of
the catalogue by decreasing the clustering of satellite galaxies since we
assumed a univocal relation between central luminosities and their host
halo masses. We penalized the faintest satellite galaxies to inhabit the
most massive haloes by setting a straight line in the luminosity-halo mass
plane, computing a distance, d, for every available satellite luminosity and
the halo mass, and imposing a condition to the distance that basically
makes the faintest satellite galaxies not to be placed at the most massive
haloes.

✹ We have derived the best set HOD parameters by computing the min-
imum χ2 to fit the luminosity dependence of clustering. Every mock
galaxy catalogue generated followed the luminosity function no matter
how many galaxies it contains and the halo mass - central luminosity re-
lation changed depending on the HOD parameters accordingly. Mocks
and observations agree although we still have found small discrepancies.
The fits are quite reasonable for luminosities fainter than M∗

r = −20.44.
For all luminosities, at large scales, the fits have higher amplitude com-
pared to the observed data. This feature is even more significant for the
brightest samples (Mr < M∗

r ). The results were not surprising since we
have only used three HOD parameters to describe the number of galaxies
inside each halo. Recent works (e.g. ZH11 or Leauthaud et al. 2011) point
to a number of at least five free parameters for a better fit, which seem to
be specially necessary for the brightest samples since the mean number
of galaxies in each halo cannot be perfectly described by a step function
and a power law.

➤ We have realized that the fact that every galaxy population had its own set of
HOD parameters has its advantages and drawbacks. One is able to produce a
mock galaxy catalogue given a set of HOD parameters that follows perfectly
the global luminosity function and the clustering for galaxies brighter than a
certain luminosity, Lr1, but it will not follow correctly, in general, the clustering
for galaxies brighter than another given luminosity, Lr2 > Lr1. Specially if
Lr1 < L∗

r < Lr2 because galaxies fainter than M∗
r have almost the same bias

and the bias grows much faster when Mr < M∗
r .

➤ We have developed a method to generate a unique catalogue that reproduces,
not only the clustering for one luminosity threshold sample or one luminosity
bin sample, but a galaxy catalogue that follows at the same time the galaxy
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clustering for all luminosity threshold and bin samples, as well as the lumi-
nosity function, the colour-magnitude diagram and the colour dependence of
clustering. We have introduced some changes with respect to the previous
method:

✹ We have assumed the parameter M1 to be a function that depends on Mh

since we have found that the factor fM1
, that multiplies Mmin to obtain

M1, is not constant and varies withMh. We modeled it with the following
function since it provides a reasonable fit to observations:

fM1
= 0.5((a1 − a2) tanh (s1(b1 − logMh))+

+(a3 − a2) tanh (s2(logMh − b2)) + (a1 + a3))
(7.2)

where a1 = 25.0, a2 = 11.0, a3 = 14.0, b1 = 11.5, b2 = 12.5, s1 = 2.0 and
s2 = 2.50.

✹ We have had to introduce scatter in the relation between halo mass and
central galaxy luminosity since the clustering of the mock galaxy catalogue
of the brighter galaxies was much larger than observed data. In order to
implement the scatter we have generated an “unscattered” luminosity
function that after introducing the scatter in the central luminosities the
cumulative luminosity function of the catalogue will match the observed
cumulative Schechter luminosity function. We have computedMgal−Lgal

using the same SHAM technique but in this case with the “unscattered”
luminosity function and the cumulative number density of objects (central
and satellite galaxies), ngal(> Mmin). We then assigned central luminosi-
ties following this relation and we only introduced scatter if the luminosity
is brighter than the characteristic luminosity, L∗

r (M∗
r = −20.44).

✹ We have included another Gaussian component to better fit the distri-
bution of g − r colour vs. the absolute magnitude in the r-band. We
have changed the recipes to determine the galaxy colours depending on
the galaxy type (whether it is a central or a satellite galaxy) in order
to fit correctly the colour-magnitude diagram and at the same time the
clustering as a function of the colour.

➤ We have shown the results we obtain after implementing our method to build
a unique mock galaxy catalogue by populating a halo catalogue extracted from
the snapshot of the MICE GC run at z = 0 with box-size LBOX = 307.2 Mpc/h,
compared to SDSS data. We have derived the contributions to the luminosity
function of central and satellite galaxies. The best fit Schechter function to
the SDSS data derived by Blanton et al. 2003 and the luminosity function
of the generated mock agree almost perfectly. The agreement between the
SDSS colour-magnitude diagram and that of the mocks is also very good. The
luminosity dependence of galaxy clustering for different luminosity threshold
samples compared to the SDSS data agree quite reasonable although at large
scales the amplitude of the clustering is still slightly larger that SDSS data,
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specially for galaxies brighter thanM∗
r . The same occur with the luminosity bin

samples. Regarding the colour dependence of clustering our catalogue does not
reproduce precisely the small-scale clustering of red galaxies increasing toward
low luminosities and in addition, the brightest blue galaxies are too clustered
compared to observations. We have mentioned that introducing a condition
depending on the galaxy colour during the satellite luminosity assignation could
be a possible solution. We plan to solve these issues in the near future.

➤ We have done some validations of the generated unique catalogue:

✹ We have derived the luminosity function computing the error bars by
using the Jack-knife re-sampling method in the same way as we have
computed the errors of the halo mass function. The luminosity function
of the catalogue and the Schechter function fit are in very good agreement
across the whole luminosity range.

✹ We have estimated the two point correlation function, ξg(r), and the pro-
jected correlation function, wp(rp), for seven different luminosity thresh-
olds, four luminosity bins (see table 6.1), and also for different galaxy
types (central and satellite galaxies). We have also computed ξg(r) and
wp(rp) for red and blue galaxies for four luminosity bin samples.

✹ We have measured the linear large scale galaxy bias extracted from the
two-point correlation function assuming a linear bias relation with the
dark matter field as a function of the scale and as a function of the ab-
solute magnitude. We have estimated the two-point correlation function
of galaxies, ξg(r), from small scales (∼ 0.17 Mpc/h) up to intermediate
scales (10-30 Mpc/h) by dividing the MICE GC run into 103 cubes of side
307.2 Mpc/h and we have used the natural estimator to compute ξg(r).
We have estimated the errors as the standard deviation using the 103

cubes of side 307.2 Mpc/h. The agreement between the bias of luminos-
ity threshold samples of the catalogue with the fit of Zehavi et al. 2011 is
quite reasonable. And the agreement between the bias of luminosity bin
samples with the fit obtained by Zehavi et al. 2011 is very good except for
the brightest samples where our catalogue is more clustered that the fit.
At fainter scales the agreement with the fit made by Norberg et al. 2001
is almost perfect and also very good with the fit proposed by Tegmark
et al. 2004.

✹ We have shown the distortions in the galaxy clustering when measuring
galaxy redshifts due to their peculiar velocities by deriving the two-point
correlation function of radial or line-of-sight distance, rπ, and perpendic-
ular distance, rp. Both known effects, the Fingers-of-God and the Kaiser
effects, are also shown depending on the galaxy type. We have also pointed
to the effect of galaxy bias in the redshift space distortions.

✹ We have derived the angular correlation function up to the BAO scale
of a sample of galaxies from the catalogue generated by populating the
halo catalogue extracted from the snapshot at z = 0 of the MICE GC
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run. In particular we have taken into account all galaxies in a comoving-
distance spherical shell of width 300 Mpc/h, covering the range (2772 −
3072) Mpc/h. We also computed the analytical prediction of the angular
correlation function for the MICE simulations and the agreement with
the mock is very good.

➤ Finally we have very briefly described some already done and in progress ap-
plications of the mock galaxy catalogues such as testing a cluster finder code
or being used for different purposes in projects such as DES and PAU.

We finish this section by listing what we think they are the main conclusions of
our work:

✮ The halo model and the halo occupation distribution model are together a
useful approach to deal with the production of mock galaxy catalogues. Al-
though the approach is a statistical method and it is not based on physical
principles one can infer and draw conclusions about the processes involved in
galaxy formation.

✮ The fact that every galaxy population has its own set of HOD parameters has
its advantages and drawbacks. On the one hand, a specific galaxy population
has its own set of HOD parameters and the differences with another set from
another galaxy population may reveal characteristics and differences from both
populations. On the other hand, if one uses a HOD set of parameters to
build a catalogue that best matches, for instance, the luminosity dependence
of clustering for galaxies brighter than a certain value, Mr < Mr1, and one
computes the clustering for galaxies brighter than another brighter value,Mr <
Mr2, with Mr2 < Mr1, the clustering will probably not be the same because
the best set of HOD parameters for the brighter sample will be different than
the one used for the fainter catalogue.

✮ Using HOD recipes and algorithms from other works, specially if they assume
different cosmologies, and therefore different simulations, cannot be followed
word by word. It is not straight forward to implement already developed
recipes using the MICE cosmological simulations since we have found several
difficulties in the process. In particular we cannot match the luminosity func-
tion derived by Blanton et al. 2003 using the relation between halo mass and
galaxy luminosity derived from the HOD parameters shown in Zehavi et al.
2005.

✮ We have had to introduce different modifications to the common HOD model
in order to obtain reasonable results in the galaxy clustering as a function of
luminosity. Basically we modify the way to assign galaxy luminosities since,
as mentioned previously, we did not match the total luminosity function.

✮ If we assume that satellite galaxies follow a NFW profile we cannot match
the observed clustering at small scales. Therefore we modify the way to place
satellite galaxies inside the haloes.
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✮ We have had to introduce more modifications in the common HOD model to
generate a unique catalogue that has the correct clustering for all luminosities
(and also for colours). We somehow introduce continuity in the discreteness
of the HOD parameters, in particular by modeling the variation of M1 with
a continous function. We introduce scatter in the relation between galaxy
luminosity and halo mass for the brighter galaxies. This is equivalent to in-
troducing more free HOD parameters in the model. We also include another
Gaussian component to describe the colour-magnitude diagram. Therefore we
need to apply different recipes depending on the galaxy type to better describe
at the same time the colour-magnitude relation and the colour dependence of
clustering.

✮ The generated unique galaxy catalogue can be useful for a variety of cosmolog-
ical applications such as calibrating cluster finders and photometric estimators,
studying galaxy clustering at small and large scale and therefore galaxy bias
or exploring the effects of redshift space distortions. It is also useful to explore
systematics effects and calibrate errors for galaxy surveys, and of course to
learn and improve the models and algorithms with which they are built.

✮ The MICE simulations are ideally suited for studying very large scale structures
and specially to study the most massive part of the halo mass function (Crocce
et al. 2010). When following the HOD model to generate galaxy catalogues
the mass resolution of the input N-body simulation constrain strongly the
minimum luminosity of the catalogue, which mainly depends on the minimum
halo mass. By using the MICE GC run, which divides by 8 the minimum
halo mass of the previous run, we have decreased Mmin

r from Mr ∼ −21.0 to
Mr ∼ −19.0. However we find that it is necessary to reach to an even better
mass resolution in order to produce galaxy catalogues with a fainter Mmin

r to
be complete at small redshifts when simulating deep surveys. At the same time
the catalogues we have generated use haloes formed by only 10 dark-matter
particles, and we know that structures formed by such a few number of particles
may not be virialized. The interesting point is that even by populating these
haloes one is able to generate galaxy catalogues which have quite reasonable
results.

✮ The degree of success of a mock galaxy catalogue depends on the complexity
one wants to reproduce. It can be straight forward to fit only one observable
but we have found that fitting many of the galaxy properties requires the
implementation of complicated recipes.

7.2 Ongoing and future work

There are many interesting improvements and benefits left to be explored regarding
the mock galaxy catalogues that we have generated. In future research we intend to
improve the mock galaxy catalogues in different ways. We think that one of the most
important defficiency of the mock galaxy catalogues is the almost complete absence

of evolution. We aim to introduce evolution in the algorithm. We have said almost
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complete absence since we have already used and we are currently using the lightcone
output of the MICE GC run to produce mock galaxy catalogues. The lightcone, by
itself, contains evolution. The halo mass function evolves as a function of time since
we assume that structure formation is hierarchical, which means little things collapse
first and big things collapse later. There are more massive haloes at z = 0 than at
high redshift. Several works point out that the values of the HOD parameters do
not change significantly from z = 0 to z ∼ 1. If this is correct we will not have to
make big modifications in our algorithm to fit intermedium and high redshift data.
We are on the way of validating the galaxy catalogues produced populating the
lightcone output. We already know that these catalogues have some issues related
to the distribution of colours compared to observed data. This is not surprising
since the observations we fit are local data. Several efforts on validating galaxy
clustering and also studies of cross-correlations functions between galaxy positions
and shear information extracted from the MICE simulations are being developed too.
We plan to compare data from medium and high redshift surveys such as DEEP2,
VVDS, COMBO-17, NDWFS or more recently COSMOS and CFHTLS. One can
use Schechter fits to luminosity functions as a function of redshift from COMBO-17
and DEEP2 (Faber et al. 2007), or from NDWSFS (Brown et al. 2008). Also colour-
magnitude diagrams at different redshifts (Brown et al. 2008). Evolution also plays
a very important role in the spectra of galaxies. We plan to assign spectral energy
distributions, that evolve with redshift, to galaxies in the lightcone too.

As it was mentioned in the previous section we have been producing the cata-
logues that feed the data reduction pipelines of the PAU project. In the very near
future we aim to improve the morphological properties as a condition for the next
Data Challenge inside the Data Management working group of the PAU project. We
plan to use data from the stuff code1 and COSMOS or CFHTLS surveys for that
purpose.

Since our group has wide access to supercomputing facilities such as the Port
d’Informació Cient́ıfica (PIC) in Barcelona, which is a center of excellence for sci-
entific data processing and storage supporting scientific groups that require massive
computing resources for the analysis of large sets of distributed data, we would like to
incorporate the code to produce mock galaxy catalogues in a mass production way,
and from different MICE runs, since the MICE simulations are already stored at
PIC. This massive production of catalogues could be useful in particular to produce
the required catalogues for future galaxy surveys such as the Euclid mission.

We would also like to explore the different scientific applications that we have
covered, without entering into detail, in the previous chapter. We think that studies
of galaxy redshift space distortions, galaxy clustering at small and large scales and
cross-correlations between galaxy positions and galaxy shear information, or galaxy
positions and galaxy magnitudes could be carried out using our mock galaxy cat-
alogues. Some of these scientific applications are being studied in particular inside
the PAU project.

Another interesting idea is the possibility of producing mock galaxy catalogues
using different methods than the HOD model. Most of the methods that produce

1Stuff code is part of the software developed by Emmanuel Bertin (web-
page:http://www.astromatic.net/software).
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mock galaxy catalogues use as input a halo catalogue, and some of them, in addition,
a merger history tree. It would be very interesting to derive the merger history tree
of the MICE simulations and be able to produce mock catalogues using a different
method than the HOD model. We think it would be useful to implement a semi-
analytic model once the merger history tree is obtained, for instance.

We hope to be involved in the development and production of the mock galaxy
catalogues that are going to be essential in current and future galaxy surveys.
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Cabré, A. & Gaztañaga, E., 2009a. Clustering of luminous red galaxies - I. Large-scale
redshift-space distortions. MNRAS , 393, 1183–1208.
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Cooray, A. & Milosavljević, M., 2005. What is L∗? Anatomy of the Galaxy Luminosity
Function. ApJ , 627, L89–L92.

Cooray, A. & Sheth, R., 2002. Halo models of large scale structure. PHyRev., 372,
1–129.

Crocce, M., Fosalba, P., Castander, F. J. & Gaztañaga, E., 2010. Simulating the
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Gaztañaga, E., Cabré, A. & Hui, L., 2009b. Clustering of luminous red galaxies -
IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z).
MNRAS , 399, 1663–1680.

Gaztanaga, E. & Cabre, A., 2008. The anisotropic redshift space galaxy correlation
function: detection on the BAO Ring. ArXiv e-prints .
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Appendix A

Estimating wp(rp)

To estimate wp(rp) at small scales (∼ 0.1 Mpc/h) up to intermediate scales (20− 30

Mpc/h), first we estimate the two-point correlation function, ξ̂(r), and then we inte-
grate it. We implement a code that measures distances between particles or galaxies
(not between pixels). We optimize the code by dividing the box of the simulation
in a grid with a pixel-size ∼ 60 Mpc/h and compute the number of pairs of galaxies
that are placed in the same pixel of the grid, and also in the nearest neighbors. The
code does not count pairs twice and assumes periodicity conditions. We use the
Peebles & Hauser 1974’s estimator to derive the two-point correlation function, ξ(r).
On small scales, all the estimators are comparable, (Kerscher et al. 2000). This esti-
mator computes the ratio of the number of pairs of galaxies separated at a distance
r counted in the sample, DD(r), to that expected for a random distribution, RR(r),
with the same mean density and sampling geometry, suitably normalized:

1 + ξ̂(r) =
DD(r)

RR(r)
(A.1)

Since we know the total number of galaxies, Ngal, and the total volume of the
box, Vbox, we are able to analytically estimate RR(r) by following the expression:

RR(r) = Ngal · n ·∆V · 1
2
= Ngal

Ngal

Vbox

4

3
π
(
r32 − r31

) 1
2

(A.2)

where r1 and r2 are the limits of a spherical shell around each galaxy (r1 < r2) and
the factor 1

2 is introduced in order not to count twice each pair.

The projected correlation function, wp, can be computed following:

ωp(rp) = 2

∫ ∞

0
ξ(r)drπ (A.3)

In practice to derive ωp(rp) one has to put a limit in the integral, rπmax . In our
case we integrate up to rπmax ∼ 60 Mpc/h (as in ZH11’s work), which is large enough
to include most correlated pairs and suppresses noise from distant uncorrelated pairs:

ωp(rp) = 2

∫ rπmax

0
ξ(r)drπ (A.4)



This is a way of computing the projected correlation function. However, in
the thesis, we also derive the correlation function of radial or line-of-sight distance,
rπ, and perpendicular distance, rp. Therefore we can also compute the projected

correlation function by using ξ̂(rp, rπ). Since we are working with a simulation and
because we assume small angle approximation, we can place the observer at minus
infinite in the z axis and taking it as the line-of-sight. The distance between particle
1 and 2 is given by the expression:

~r12 = ~r2 − ~r1 (A.5)

and we can decompose ~r12 in a perpendicular, ~rp, and parallel, ~rπ, components to
the line-of-sight:

~r12 = ~rp + ~rπ (A.6)

The component in the line-of-sight of the distance is derived as:

~rπ12
= ~rπ2

− ~rπ1
= |z2 − z1|~urπ (A.7)

And the component in the perpendicular component of the distance as:

~rp12 = |(x2 − x1)
2 + (y2 − y1)

2|~urp (A.8)

In order to compute the number of random pairs RR(rp, rπ) we proceed in the
“same” way as previously described for RR(r). We analytically compute RR(rp, π)
(after checking with the code that the expression used is consistent using random
catalogues). The number of galaxies that are placed at a perpendicular distance rp
and a parallel distance rπ from a random galaxy are placed in two rings with radius
rp and height rπ:

RR(rp, rπ) =
1

2
·Ngal · n ·∆V (A.9)

where ∆V is given by the expression:

∆V = 2π
[
r2p2 − r2p1

]
[rπ2

− rπ1
] (A.10)

and therefore:

RR(rp, rπ) = Ngal
Ngal

Vbox
π
[
r2p2 − r2p1

]
[rπ2

− rπ1
] (A.11)

Then, one can estimate the projected correlation function:

1 + ξ̂(rp, rπ) =
DD(rp, rπ)

RR(rp, rπ)
(A.12)

and finally, we integrate over rπ:

ω̂p(rp) = 2

∫ rπmax

0
ξ̂(rp, rπ)drπ (A.13)


