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Abstract 

This thesis focuses on the development of active multifunctional dressing materials and 

nanoparticle formulations with suitable exploitation characteristics for chronic wounds 

treatment. Chronic wounds – a growing clinical challenge in the aging and/or reduced mobility 

population – include pressure, venous, arterial and diabetic neuropathic ulcers. Due to the non-healing 

character of these ulcers their management requires an intensive medical intervention at huge 

healthcare costs. The prolonged inflammation and elevated concentrations of oxidative and 

proteolytic enzymes in all chronic wounds, imposes the need for novel functional dressing materials 

to actively modulate the wound environment at molecular level and stimulate the healing process. 

Based on an extensive analysis of the current state-of-the-art in chronic wound healing, the proper 

dressings should combine both antimicrobial and enzyme inhibitory functions coupled to optimal 

hydrophilicity. Such integrated approach would allow for the suppression of the persistent 

inflammation and stimulation of the synthesis of the dermal tissue components. Biopolymers with 

intrinsic antimicrobial and wound repair properties appear as appropriate matrix materials to be 

further upgraded with bioactive molecules (therapeutics) that couple high reactivity with the ability to 

address specific targets in the biochemical environment of chronic wounds. Therapeutic devices can 

be designed in different forms depending on the particular clinical application, i.e. wound type and its 

characteristics. 

During the thesis realisation biopolymer-based platforms were generated in various designs and 

functionalised with active agents for controlled inhibition of major chronic wound enzymes. The 

capacity of all developed materials to inhibit proteolytic (e.g. collagenase) and oxidative (e.g. 

myeloperoxidase) enzymes involved in chronic inflammation was evaluated in vitro. 

In the first approach sponge-like biopolymer matrices were produced via freeze-drying technique 

and controlled chemical cross-linking. These matrices were further impregnated with natural 

polyphenolic compounds. Modulation of the deleterious wound enzyme activities was achieved upon 

release of active agent from the platform. The exploitation characteristics of the sponges, i.e. 

mechanical properties, biostability, biocompatibility, extent and duration of wound enzymes 

inhibition, were tuned by: the biopolymer composition, concentration of the cross-linking agent, and 

the proper selection of the bioactive phenolic compounds.  

The second approach aimed at the permanent functionalisation of the biopolymeric platforms with 

thiol-bearing compounds. In this case the active agent is expected to act from the platform, without 

being released into the wound. The obtained thiolated biopolymers were further processed into 

functional nanomaterials of different design: 
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 Nanoscale films/coatings were built using a layer-by-layer approach for alternate deposition 

of oppositely charged polyelectrolytes. Naturally occurring glycosaminoglycans were used as 

counterions to cationic thiolated conjugates. 

 Nanoparticle formulations were obtained from thiolated conjugates in a one-step 

sonochemical process. 

 

In both cases the biopolymer thiolation degree was identified as a key factor for the successful 

fabrication of the multilayered coatings and nanoparticles, as well as to achieve control of the 

thickness/size of the functional nanomaterials. In addition, tuneable inhibition/adsorption of the 

deleterious enzymes coupled to fibroblast attachment/proliferation was observed by ruling the 

biopolymer modification degree. 

 

Keywords: Biopolymers • Polyphenols • Thiol compounds • Functionalisation • Cross-linking • 

Functional materials • Wound dressings • Myeloperoxidase • Collagenase • Chronic wounds • 

Enzyme inhibition • Wound healing   
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Objective of the thesis 

Since chronic wounds most often occur in a setting of combined risk factors of age, repeated ischemia 

- reperfusion injury, oxidative stress and bacterial colonisation, it could not be expected that a therapy 

directed at only one of these factors would be efficient. Even though many active and passive 

approaches have been investigated there is not yet a valid and unique approach to heal chronic 

wounds. Hence there is a need to provide an, as much as possible, general strategy combining 

previously developed knowledge, and based on understanding of chronic wound pathogenesis. 

Despite different underlying mechanisms of formation, the common feature of virtually all chronic 

wounds is the prolonged inflammation. Continuous influx of inflammatory cells into the wound site 

where they undergo apoptosis leads to the accumulation of their secondary metabolites. The elevated 

levels of the released oxidative and proteolytic enzymes appear to degrade the dermal tissue 

components, growth factors and receptors essential for healing. Therefore, it is believed that chronic 

wound repair would be stimulated after the partial inhibition of the deleterious neutrophil-derived 

proteolytic and oxidative enzymes, besides providing the infection-free and moist environment. 

Under these circumstances, recent progress in dermal tissue management is directed towards 

physiological repair at molecular level using functional dressing materials. An efficient chronic 

wound dressing should comprise an intrinsically antimicrobial platform/carrier upgraded with active 

agents to address the local biochemical environment and stimulate the wound healing process. The 

use of biopolymer platforms to support the formation of the new extracellular matrix in the wound 

further loaded with bioactive molecules able to reduce the excessive enzyme levels appears to be an 

integrated approach for efficient chronic wound management. This thesis aims on the development 

of various multifunctional dressings/formulations based on the biopolymer-therapeutic 

combinations for modulation of the enzymatic activities related to the prolonged inflammation 

in chronic wounds.  





 

 
 

 

 

 

Chapter 1 
1 Chapter 1: General introduction 

General introduction
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1.1 Chronic wounds: formation and pathogenesis  

1.1.1 Skin and its function 

Skin is the largest organ in the human body with several important functions, including body’s 

regulation of water and electrolyte balance, thermoregulation, and function as a protective barrier. It is 

well-known that skin is composed of epidermis, dermis and hypodermis (Figure 1.1). The outer 

epidermis forms a protective barrier, being responsible for keeping water in the body and preventing 

pathogens from entering in addition to helping the skin to regulate body temperature. This layer is a 

stratified scaly epithelium composed of proliferating basal and differentiated suprabasal keratinocytes. 

The stratum corneum is the outermost part of epidermis with specific barrier properties. It consists of 

non-viable cells and is very firm but pliable and wrinkled. The underlying layer, the dermis, is largely 

composed of a very dense fibre network – extracellular matrix (ECM), dominating the mechanical 

behaviour of the total skin, and therefore providing structural support to the organ. This gel-like 

matrix, secreted locally by the cells that it surrounds, is composed of a variety of polysaccharides and 

proteins: collagen fibrils, microfibrils, and elastic fibres, embedded in proteoglycans. An intricate 

network of these macromolecules assembled in close association with the surface of the cell that 

produced them provides the unique structure of the ECM, exhibiting high tensile strength combined 

with the substantial elasticity and compressibility. The deepest skin layer, the hypodermis or 

subcutaneous adipose tissue, is composed of loose fatty connective tissue. Finally, all skin layers 

contain blood vessels, lymph vessels, nerve endings, sweat glands and hair follicles. 

Figure 1. 1 Histology of the human skin (taken from: http://www.lab.anhb.uwa.edu.au) 

 

http://www.lab.anhb.uwa.edu.au/
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1.1.2 Acute wounds and healing process 

According to the Wound Healing Society (www.woundheal.org), a wound is the result of disruption 

of normal anatomic structure and function of a tissue. A dermal wound is defined as a break in the 

integrity of the skin, raised due to external or internal noxious stimulus, and leads to an inadequate 

performance of the skin functions. It is therefore vital to restore the skin integrity and consequently 

functions as soon as possible. A completely healed wound implies that the affected part of the skin 

has returned to its normal anatomical structure and function, and similar appearance within a 

reasonable period of time [2]. The primary causes of acute wounds include mechanical injuries due to 

external factors such as abrasions and tears due to a frictional contact between the skin and hard 

surfaces. These also include penetrating wounds caused by knives and firearm shots, surgical 

incisions, etc. Burns and chemical injuries arise from a variety of sources such as radiation, electricity, 

corrosive chemicals and thermal sources. For burns, the temperature of the source and the exposure 

time defines the degree of a thermal burn. Another classification of wounds is based on the number of 

skin layers and area of skin affected. Based on this it is possible to distinguish between an epidermal 

or a superficial wound and an injury involving both the epidermis and dermis that in addition affects 

the blood vessels and is referred to as partial thickness wound. Full thickness skin wounds occur when 

the underlying subcutaneous fat or deeper tissues are damaged in addition to the epidermis and dermal 

layers [3]. Epidermal and partial thickness wounds can regenerate by the body’s self-healing capacity 

for re-epithelisation. Conversely, in the full-thickness wounds regenerative elements that reside in 

dermis are completely destroyed such that epithelisation is possible only on the wound edges. Such 

wounds need skin grafting to prevent extensive scar formation, using allo- or autografts, or tissue 

engineered skin substitutes. Unfortunately, even after successful treatment full-thickness wounds 

almost exclusively result in an impaired mobility and cosmetic deformities of the affected part of the 

skin [4]. The basis of the tissue engineering consists in the development of temporary, or in some 

cases, permanent biological substitutes for failing tissues and/or organs. In particular, skin engineering 

involves seeding of cells onto porous biodegradable polymer scaffold that serves as a starting 

platform for dermal tissue recovery. However, skin grafting is not in the scope of this thesis and 

therefore is not discussed in detail.  

Normal wound healing involves a complex series of orchestrated events leading to the repair of 

injured tissues. These dynamic events occur as a sequential cascade of processes requiring the 

coordinated completion of a variety of cellular activities correlating with the appearance of different 

cell types in the wound during various stages of the healing process [5]. All acute wounds heal in a 

very orderly and efficient manner characterised by several distinct in nature, but overlapping phases: 

haemostasis, inflammation, cell migration and proliferation, and maturation or remodelling phase. 

After injury the bleeding flush out bacteria and antigens from the injury site, also causing the 

aggregation of the platelets accumulated in the wound. The platelets form a haemostatic plug due to 

http://www.woundheal.org/


General introduction 

9 
 

conversion of fibrinogen to fibrin in order to prevent an excessive loss of blood. Thus, haemostasis 

contributes to successful wound healing playing a protective role to the underlying layers of opened 

skin. In addition, platelets release growth factors such as tumour growth factor (TGF-β), platelet 

derived growth factor (PDGF) and adhesive proteins to activate cells in the surrounding area. During 

the inflammatory phase neutrophils arrive at the site of the injury, releasing a variety of highly active 

antimicrobial substances such as, proteases and reactive oxygen species, important for wound 

cleaning and the prevention of infections [6]. Moreover, phagocytes enter the wound and engulf dead 

cells (necrotic tissue). Hard necrotic tissue is liquefied by enzymatic (protease) action to produce a 

yellowish coloured mass characterised with bad odour referred as slough. The inflammatory phase 

occurs almost simultaneously with haemostasis and lasts for about 3 days in normal healing process. 

However, if the action of these active compounds released in wound is prolonged or they are found in 

counts higher than normal levels, the process is harmful for healthy cells – the common situation 

found in chronic wounds (discussed in sections 1.1.3 and 1.1.4) [7]. Thus, multiple processes for 

digestion of matrix elements and cell debris occur [8]. Moreover, cytokines released by circulating 

basophiles and other leukocyte subsets are also considered to be involved in tissue repair. The 

migration phase involves the movement of keratinocytes and fibroblasts to the injured area to replace 

damaged and lost tissue. These cells regenerate from the margins, rapidly growing over the wound 

and cause epithelial thickening. Accompanied proliferative phase is characterised by the in-growth of 

capillaries and lymphatic vessels into the wound and collagen synthesis by fibroblasts giving the skin 

strength and form. The newly formed granulation tissue and ECM consist of glycosaminoglycans 

(GAGs), proteoglycans, collagen (type III), thrombospondin, fibronectin and vitronectin to promote 

angiogenesis. During angiogenesis the fibroblasts transform into myofibroblasts that bring the 

margins of the wound together in order to reduce its size. The final phase of wound healing is the 

transformation of granulation tissue into a scar. The scar formation is characterised by a decreased 

inflammation and reduction of the capillaries size. Myofibroblasts further undergo apoptosis and a 

new collagenous matrix replaces the provisional one [7, 9]. The described cascade occurs in normal 

wound healing, with a reestablishment of the equilibrium between scar formation and scar 

remodelling, the longest part of the healing (up to two years) marking the end of the wound healing 

process (Figure 1.2). 
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1.1.3  Chronic wounds and impaired healing 

In contrast to acute wounds, abnormal response to an injury leads to formation of non-healing 

wounds, referred as chronic. Chronic wounds can affect any anatomical region as a result from 

various causes and thereby are classified as chronic venous leg ulcers, arterial ulcers, neuropathic 

ulcers, pressure ulcers (decubitus), vasculitis and serious burns. Except for burns, all the conditions 

leading to chronic ulceration are more prevalent in the population with low mobility and elderly 

population in general. In addition, the increased occurrence and longevity of these ulcers are further 

compounded by the detrimental effects ageing has on the skin and the wound healing process. Due to 

their non-healing nature, intensive and costly medical treatment is required for the successful 

management. Furthermore, as elderly individuals become the fastest-growing segment of the 

population, the chronic wounds occurrence will have an even more pronounced economic impact in 

the future. 

 

Chronic wound formation 

A chronic wound arises after disruption of the acute wound healing process at one or more of its 

phases, impairing the reestablishment of anatomical and functional integrity of the affected tissue in a 

physiologically appropriate length of time. In such cases the healing process is stuck in one of its 

phases. Various factors can cause the failure of the normal healing process. For example, foreign 

bodies introduced deep into the wound at time of injury can trigger chronic inflammatory responses, 

Figure 1. 2 Phases and physiological process in acute wound healing (taken from: http://www.fastbleep.com) 

http://www.fastbleep.com/
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sometimes leading to macrophages granuloma or abscess formation. On the other hand, inadequate 

management of already infected wounds can lead to inflammation of cells and loss of their function. 

Poor nutritional status of a patient and aged skin also reduce the ability to fight infection. Moreover, 

underlying diseases such as diabetes and anaemia compromise the circulation resulting in poor 

delivery of blood cells and oxygen to the wound.  

The disruption of the acute healing process is usually expressed in its inflammatory phase. The caused 

prolonged inflammation leads to fibrosis, an excessive matrix deposition and loss of tissue function 

[10]. As growth factors, cytokines and specific enzymes play important roles in this phase of the 

healing process, their altered expression during the prolonged inflammation could account for the 

impaired healing in chronic wounds. In addition, oxidative damage caused by free radicals contributes 

to the non-healing nature of these ulcers. Healing is also impeded by the accumulation of necrotic 

tissue or slough at the wound site. Moreover, the initiation of chronic wounds is accelerated in 

situations of bacterial infection, common in such environment. Indeed, the prolonged treatment times 

makes chronic ulcers prone to infections and most of them are colonised with several bacterial species 

like: Staphylococcus aureus, Pseudomonas aeruginosa and Peptostreptococcus [11]. The 

polymicrobial synergy and bacteria metabolites accumulated in the site delay the wound healing [12] 

which, in many cases, is additionally impaired by acquired bacteria resistance against medication (e.g. 

antibiotics). Hence, chronic ulcers have both biological and physiological reasons for not healing. 

 

1.1.4  Chronic wound pathogens 

Despite the different underlying aetiology, most chronic wounds show a similar behaviour and 

progress. This uniformity is due to consistent components of the multifactorial pathogenesis of most 

chronic wounds: impaired oxygen supply (hypoxia) to local tissue, repeated friction of the local 

tissue, severe bacterial colonisation of an acute wound, reperfusion injury and cellular as well as 

systemic changes of ageing [10]. Likewise, the specific biological markers characterise all chronic 

wounds. Accordingly, key biomolecules significantly differentiate the environment of acute and 

chronic wounds. In acute wounds there is a balance between production and degradation of molecules 

(e.g. collagen); in chronic wounds this balance is disturbed in favour of degradation.  

Chronic ulcer fluids contain elevated level of neutrophils and neutrophil-derived enzymes compared 

with acute wound fluids [13]. During the healing process these most abundant white blood cells leave 

the vasculature and migrate towards the inflammation site. However, the continuous influx of 

neutrophils during the prolonged inflammation in chronic wounds cause the accumulation of these 

cells on the site, where they undergo apoptosis and release their constituents such as oxidative enzyme 

myeloperoxidase (MPO). Under physiological conditions MPO catalyses the generation of 
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hypochlorous acid (HClO), the most powerful reactive oxygen species (ROS) in human body, creating 

oxidative stress and impairing the healing of the wounds. The cytotoxicity of this reaction allows the 

killing of bacteria in the first line of defence. However, the HClO reacts with most biological 

molecules, including natural protease inhibitors. In healing wounds the production and activity of 

proteolytic enzymes, such as matrix metalloproteinases (MMPs) and serine proteases (e.g. elastase), 

are tightly regulated by counteraction of their natural inhibitors [14]. During granulation tissue 

formation levels of MMPs have been shown to be decreased compared to levels found in chronic 

wounds. In normal levels, these proteases play a role in cellular migration through extracellular 

matrix. In chronic wounds the generation of HClO induces disturbed ratio proteases/inhibitors [15], so 

that most of the enzymes are uninhibited [16]. In increased levels these proteases have detrimental 

effect on wound healing by uncontrolled digestion of the extracellular matrix and the growth factors 

[17]. 

 

Myeloperoxidase 

Myeloperoxidase (EC 1.11.2.2), a versatile heme-containing protein is the key enzyme in human 

neutrophils and monocytes. In contrast to other peroxidases, MPO also shows chlorinating activity. 

When neutrophils become activated during phagocytosis, they undergo the respiratory burst process, 

generating antimicrobial ROS such as superoxide radical and hydrogen peroxide (H2O2). MPO 

catalyses the conversion of the produced H2O2 and halides (mainly Cl
-
) into corresponding 

hypohalous acid, e.g. HClO, 50 times more potent in killing bacteria than hydrogen peroxide. In 

addition, the products of the MPO/H2O2/Cl
-
 system are believed to play a role in killing other 

microorganisms like fungi, parasites, protozoa and viruses. MPO also directly chlorinates 

phagocytosed bacteria, completing the importance of this enzyme in the innate immune system. The 

enzyme is further thought to be involved in terminating the respiratory burst process, since the 

individuals deficient in MPO display prolonged respiratory burst (source: 

http://emedicine.medscape.com). 

In the presence of H2O2, the MPO native form is oxidised by a two-electron equivalent to the redox 

intermediate – compound I (Figure 1.3). Being a strong oxidant, compound I mediates both one- and 

two-electron oxidation reactions. Depending on the substrate availability, MPO follows either the 

halogenation or the peroxidase cycle. The halogenation cycle is a direct two-electron reduction of 

compound I to the native form of the enzyme. In the peroxidase cycle, this compound is reduced in a 

two-step one-electron sequential reaction (via formation of compound II). Many inorganic and 

organic substrates have been found to act as electron donors for these intermediates. The principal 

reaction catalysed by MPO under physiological conditions is the oxidation of Cl
-
 to the corresponding 

HClO due to high concentrations of Cl
-
 in vivo [18]. 

http://emedicine.medscape.com/
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Figure 1. 3 The enzymatic cycles of myeloperoxidase (adapted from [18] 

 

Matrix metalloproteinases - collagenases 

Matrix metalloproteinases belong to the family of structurally related Zn
2+

- and Ca
2+

-dependent 

endopeptidases, all involved in the cleavage of the ECM constituents. To date, numerous MMPs have 

been identified and these enzymes are loosely classified based on their substrate specificity into 

collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and seven others not 

classified in those categories. In normal physiology, MMPs are required for various processes such as 

tissue remodelling, embryonic development, angiogenesis, cell adhesion and proliferation, and wound 

healing [19]. During these processes synthesis/activation levels of MMPs are tightly regulated by 

cytokines, growth factors, other enzymes and tissue inhibitors of metalloproteinases (TIMPs). There 

are a total of four TIMPs (TIMP-1, -2, -3, and -4) and these four protein inhibitors are able to control 

the proteolytic activity of all MMPs [20]. The diversity of MMPs and their expression implies that 

these enzymes perform many functions during e.g. wound healing, acting on a variety of substrates at 

the wound site [21, 22]. 

Despite their physiological importance, misregulation of MMPs activities leads to the progression of 

various pathologies such as arthritis, multiple sclerosis, periodontal disease, and cancer. 

Overexpression of MMPs during the chronic inflammatory diseases has verified the importance of 

MMPs as a therapeutic target. Because of the role of MMPs in these pathologies, MMP inhibitors 

have emerged as an important area of drug development research [20].  
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1.2  Chronic wound management 

Effective treatment of chronic wounds depends on understanding a number of different factors such as 

the underlying mechanism of wound formation, the type of wound, the healing process and general 

condition of a patient in terms of health (e.g. diabetes, aged patient, etc.). First, in order to inspect a 

wound correctly for the proper treatment choice, it is indispensible to remove the necrotic tissue and 

foreign material from the areas around the wound. The removal of the dead tissue is known as wound 

debridement and could be carried out using several methods. Surgical removal using scalpel and 

scissors is the most effective and precise, however, can only be undertaken by highly skilled and 

trained practitioners. Wound irrigation, on the other hand, implies rehydration of necrotic tissue using 

e.g. hydrogel dressings and further its autolytic digestion by the enzymes accumulated in the wound 

site [23]. Here the outcome depends on many individual factors in the treated patient, and thus, little 

control over the process is granted. The more efficient alternative is the enzymatic removal of the 

necrotic tissue after liquefying using bacterial or animal derived collagenases [24]. Despite being 

more controllable than the autolytic digestion, the biggest disadvantage of all enzymatic methods still 

remains the long duration compared to the surgical debridement. Besides to assure establishing of the 

proper diagnosis of the wound, another objective of debridement is to provide a favourable 

environment at the surface of the wound in which healing could take place in combination with proper 

treatment strategy [25]. 

 

Depending on the type and cause of the chronic wound, and its position on the body, the 

management can involve one or the combination of the conventional treatment options: topical 

application of antibiotics and/or antiseptics, multiple dressing changes per day and, recently, 

treatments involving the application of local mechanical stresses or energy to a wound: negative 

pressure wound therapy (NPWT) and mist ultrasound therapy. 

 

Epicutaneous application of antimicrobial agents is, thus far, the most effective way to treat wound 

infections. However, the biggest concern is the overdoses due to the accumulation of immunoreactive 

compounds at the wound site [26]. 

 

Negative pressure wound therapy involves the controlled application of sub-atmospheric pressure to 

the local wound environment, using a sealed wound dressing connected to a vacuum pump. Studies 

suggested that NPWT assists in wound healing by providing a moist environment, stimulating 

circulation to the wound bed, decreasing bacterial colonisation and increasing the rate of granulation 

tissue formation [27]. On the negative side, NPWT is a costly treatment and there is not still an 
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overall plan of care for the patients suffering different kind of ulcers, especially chronic wounds. 

Although a consistent evidence of the benefit of NPWT in the treatment of diabetes-associated 

chronic leg ulcers together with safety of the treatment was found [28], its effectiveness compared to 

conventional/advances dressing treatments is still disputable [29, 30]. Moreover, the evaluation on 

“mixed wounds” was of poor quality and therefore requires better quality research to be conducted. 

 

A novel technology using non-contact, kilohertz-range ultrasound therapy is gaining popularity in 

chronic wound management. Energy from the ultrasound wave is absorbed by individual bioentities, 

proteins and cells, resulting in their conformational changes and initiating signal-transduction 

pathways with direct implications for wound healing. The key effect of the mechanical energy 

realised by the cells is that of cavitation – the production and vibration of micron-sized bubbles [31] 

within inter- and intracellular fluids. The movement and compression of the microbubbles cause 

changes in the cellular membrane potentials and cellular activities of the tissues subjected to 

ultrasound. Mist ultrasound has been shown to increase the healing rate in recalcitrant diabetic foot 

ulcers [32] and other lower extremity wounds [33], however, it is rather cost-ineffective compared to 

standard wound care. 

 

Regarding wound dressings, in most cases a combination of dressings that feature different 

functional properties, including antibacterial, occlusive, absorbent and adherence, is necessary in 

order to achieve efficient wound healing in a reasonable time. Besides the classification on their 

function, wound dressings can be categorised according to the type of material employed for their 

production (synthetic or naturally occurring polymers) and the dressing design (film, sponge, 

(hydro)gel) [34]. The design of wound dressings is dominated nowadays by the hydrocolloids applied 

to a carrier – usually polyurethane foam or film. Hydrocolloids are useful for clean, granulating, 

epidermal wounds, with low to medium exudate, and inefficient on infected and exuding wounds. 

Over recent years, many new dressings, but few new dressing types appeared on the market. 

Currently, polyurethane foams are promoted as an alternative to hydrocolloids, but no significant 

improvement was recorded in the healing rate of chronic ulcers. The healing concept of most 

dressings relies on maintaining of a moisture environment, without any active component involved. 

Regardless of the wound dressing constituents and design, a major focus of chronic wound care in 

recent years has been the development of new advanced dressings able to promote chronic wound 

healing, combining as many as possible functional properties in one [25]. However, despite the 

advances in understanding of molecular aspects of chronic wound pathogenesis, the development of 

functional dressings and tissue-engineered skin substitutes, and a range of other therapeutic options, 

chronic ulceration remains a significant problem in society. 
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1.3  Biopolymers as dressing materials 

The modern industries necessarily need to exploit renewable resources in a sustainable manner, 

promoting bio-based, environmentally friendly and beneficial technologies in order to keep 

competitive market position. The highly demanding market calls for constant improvement in quality 

of products as well as competitive technologies for their generation. In last decades naturally derived 

polymers, due to their intrinsically beneficial properties for a broad spectrum of applications, are 

gaining importance as raw materials in many industrial sectors. Biodegradable and biocompatible 

materials that do not cause immune response in organism, able to integrate with a particular cell 

type/tissue are required for medical and pharmaceutical uses. 

A primary factor for dermal repair is the availability of suitable biomaterials to support and evoke 

regeneration of the skin. The biomaterials used in skin repair should display intrinsic biocompatibility 

and biodegradability at the ideal rate corresponding to the rate of new tissue formation [35]. 

Moreover, these materials and their degradation products should not be toxic, immunogenic and 

carcinogenic. Polysaccharides and proteins, being natural components of all living structures, are 

fascinating candidate materials for fabrication of wound dressings. Carbohydrate moieties of the 

polysaccharides interact with integral components of many extracellular matrix glycoproteins and cell 

adhesion molecules in the skin. Chitin and its deacetylated derivative chitosan, due to their molecular 

and supramolecular structure, and intrinsic antimicrobial and wound healing properties have been 

identified as suitable bioplatforms that can be further improved by targeted functionalisation for skin 

repair. Among proteins collagen and its partial hydrolysate gelatine showed potential for wound 

dressings and drug delivery systems being a major natural constituent of connective tissue and a major 

structural protein of any organ. The collagen-based materials are meant to provide a structural support 

for the various cells involved in dermal tissue regeneration.  

 

1.3.1 Chitosan 

Chitin, a polysaccharide composed of ß-(1-4)-linked N-acetyl-D-glucosamine residues, is a structural 

material in the exoskeletons or the cuticles of many invertebrates and in the cell walls of green algae, 

some fungi, and yeasts. It is one of the most abundant organic materials obtained through 

biosynthesis. Chitin exhibits structural similarity to cellulose, differing only in the replacement of C-2 

hydroxyl groups by acetamide residues. Depending on the polysaccharide source and isolation 

conditions, chitin could have a different degree of acetylation. Chitin is insoluble in water, diluted 

acid/base solutions and in most of the organic solvents. It is usually dissolved in concentrated acids as 

well as in hexafluoroisopropanole or hexafluoroacetone. 

Chitosan is produced by chitin deacetylation with concentrated alkali solutions at elevated 

temperatures. The degree of chitin deacetylation can be controlled by the temperature of the process. 
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Moreover, since the length of chitin molecule in nature largely varies, the molecular weights of 

chitosan ranging from oligosaccharides to well above 1000 kDa are available. For instance, 5000-

8000 N-acetyl-D-glucosamine residues are found in the crab chitin, while the one from yeast contains 

only up to 100 residues [36]. The rigid D-glucosamine structures of chitosan (Figure 1.4), 

characterised with high crystallinity and hydrogen bonding capacity between its macromolecules, 

define the poor solubility of chitosan in common organic solvents and complete insolubility in 

aqueous solutions above pH 7. Reducing the molecular weight and lowering the crystallinity by 

random deacetylation improves its solubility in dilute acids below pH 5 where the free amino groups 

are protonated. Chitosan displays interesting physicochemical properties, including both its solid-state 

structure and the dissolved state conformation [37]. In solid state, relatively rigid crystals are formed 

due to the regularly arranged hydroxyl and amino groups, while in solution hydrogen bonding drives 

the formation of microfibrils, depending on chitosan concentration [38]. Furthermore, chitosan is a 

biopolymer easy to develop in various designs, i.e. films, sponges, scaffolds, and hydrogels, a fact 

essential for the preparation of a great diversity of wound dressings and tissue engineering materials. 

 

 

The unique biological properties of chitosan including biocompatibility, biodegradability, nontoxicity, 

antibacterial and haemostatic properties assure the biochemical significance of this biopolymer in skin 

repair processes. The haemostatic activity of chitosan is crucial for early treatment of open wounds 

[39], especially in large injuries subjected to heavy bleeding [40]. Many haemostatic products on the 

market consist, fully or partially, of chitosan. Moreover, a rapid closure of full-thickness cutaneous 

wounds was demonstrated using poly-N-acetyl glucosamine membranes, attributing the effect to the 

fast growing of new blood vessels (angiogenesis) in the injured tissue [41]. On the other hand, 

chitosan has indirect role in wound healing supporting the regeneration of the extracellular matrix, 

and promotes physiologically ordered dermal regeneration during skin reconstruction regulating the 

deposition and faster arrangement of thin collagen fibres [42]. However, chitosan surfaces are hostile 

environments for fibroblasts viability and proliferation [43, 44].  

Therefore, chitosan that shares structural similarities with GAGs from skin, attracted much attention 

as material for dermal regeneration, as these should closely match properties of the targeted tissue 

Figure 1. 4 Chitosan structure 
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[45]. On the other hand, these materials and their degradation products are still not sufficiently 

characterised for their inflammatory response cytotoxicity induced effects.  

 

1.3.2 Collagen 

Collagen is the major structural protein in any organ and the principal constituent of the connective 

tissue. The collagen fundamental structural unit, the right-handed triple helix, consists of three coiled 

polypeptide chains. A repeated sequence of three amino acids together with the unique conformation 

accounts for the collagen great tensile strength in biological tissues. Every third amino acid is glycine, 

a small amino acid that easily fits inside the helix. Many of the remaining positions in the chain are 

filled by two large amino acids: proline and hydroxyproline. Due to their conformational rigidity, 

these amino acids are difficult to accommodate in typical globular proteins, however, both fit into the 

triple-helical structure. Polypeptide chains are held together by hydrogen bonds that link the peptide 

amine bonds of glycine residues to peptide carbonyl groups in an adjacent polypeptide.  

Collagen fibrils are formed by the packing of many three-stranded collagen molecules. The molecules 

packing is stabilised by covalent aldol cross-links between lysine or hydroxylysine residues at the C-

terminus of one collagen molecule and the N-terminus of an adjacent one. A highly organised 

meshwork of collagen fibres strengthen ligaments and tendons, and support the skin and internal 

organs providing the structure to our bodies, protecting and supporting the softer tissues and 

connecting them with the skeleton. 

So far, 29 types of collagen have been identified and described. However, over 90 % of all collagen in 

the body are of type I, II, III, and IV. The most abundant type of collagen in the skin is type I. Type 

III is also found in the skin in the early stages of wound repair, later being replaced by type I. 

The resemblance to human tissue has been exploited to produce biomaterials of all designs for 

medical purposes for more than a quarter of a century [46]. Biomaterials made of collagen are 

biocompatible and nontoxic to tissues, and have well-documented structural, physical, chemical, 

biological and immunological properties [47]. Mechanical biological and, to some extent, 

immunologic properties of collagen-based materials can be influenced by modification of matrix 

properties (porosity, density) or by different chemical treatment affecting its degradation rate [48, 49]. 

Furthermore, the collagen matrix can be medicated, thus serving as a reservoir for drug delivery. The 

use of collagen matrices for delivery of different antibiotics have been discussed extensively [50]. The 

collagens from biomaterials may be derived from bovine, porcine and, lately, human sources. 

Although expensive, the human collagen, derived from donor cadavers, placentas and aborted fetuses, 

may minimise the possibility of immune reactions of collagen degradation products. 
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Previously, this protein was thought to be used only as a structural support. However, it is evident that 

collagen and the derived fragments control many cellular functions during dermal regeneration. 

Collagen plays a significant role in the wound healing process from the induction of clotting to the 

formation and appearance of the final scar [51]. It stimulates formation of fibroblasts and accelerates 

the migration of endothelial cells upon contact with damaged tissue [52]. Thus, collagen is a natural 

substrate for cellular attachment, growth and differentiation in its native state. 

 

1.3.3 Glycosaminoglycans 

Glycosaminoglycans or mucopolysaccharides are long unbranched polysaccharides consisting of a 

repeating disaccharide unit. GAGs form an important component of connective tissues where their 

chains are covalently linked to a protein to form proteoglycans. As highly hydrophilic structures 

GAGs possess especially high affinity for physiological fluids that originates from the high density of 

negative charges binding a cloud of cations, most notably Na
+
, which are osmotically active and, thus, 

promote swelling [53]. GAGs in nature include heparin and heparan sulphate as anticoagulants, 

keratan and dermatan sulphate, and the most abundant chondroitin sulphates and hyaluronans. 

Chondroitin sulphate is composed of a chain of alternating monosaccharides N-acetylgalactosamine 

and glucuronic acid. This GAG is an important structural component of cartilage and provides much 

of its resistance to compression [54]. Materials made from chondroitin sulphate are biocompatible and 

non-immunogenic. In addition, it has been suggested that these biomaterials act as surrogate 

extracellular matrices, serving as repositories for cytokines and growth factors during wound healing 

[55]. They may also provide structural frameworks for fibroblasts and epithelial regeneration. 

 

The only GAG that is exclusively non-sulphated is hyaluronic acid (HA), a copolymer of D-

glucuronic acid and N-acetyl-D-glucosamine (Figure 1.5), and is an intracellular component of 

connective tissues such as the synovial fluid of joints, vitreous fluid of the eye, the scaffolding within 

cartilage and the umbilical cord, and an important part of the ECM. 

Figure 1. 5 Structure of hyaluronic acid 
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Perhaps the most important property of HA is its crucial effect in the formation of new blood vessels 

(angiogenesis): whereas high molecular weight HA inhibits angiogenesis, HA oligosaccharide units 

are proangiogenic [56, 57]. Conversely, HA macromolecules have greater ability to inhibit the 

expression of some MMPs [58]. Furthermore, HA plays an important role in cell differentiation and 

growth [59], influencing the processes of morphogenesis, inflammation and wound repair. Like that 

soluble HA has been used in several clinical applications including wound healing. However, the poor 

mechanical properties, rapid degradation and clearance in vivo of soluble HA are limiting factors for 

the more widespread use of HA in direct clinical applications [60].  

The processed biomaterials based on HA are naturally biocompatible, biodegradable and lack 

immunogenicity. Cross-linked hyaluronic acid hydrogel films have been produced for use as 

polymeric drug delivery platforms with improved exploitation characteristics [61]. Furthermore, the 

biological properties of HA have been also combined with other biomaterials for the production of 

tissue engineering scaffolds or membranes [62, 63]. Hyaluronic acid-modified liposomes as 

bioadhesive carriers for topical delivery of growth factors to wound site have been developed [64]. An 

open ended study of hyaluronic acid based dressing found them to be effective for managing acute 

wounds particularly in terms of its safety and efficacy [65]. 

 

 

1.3.4 Problematic and advanced treatment solutions 

Despite all biopolymer-based materials promote wound repair to a certain extent, these 

materials exploit only the intrinsic properties of the biopolymer matrix itself without further 

upgrading them with active functions to interact with the chronic wound pathogens at the 

molecular level. Moreover, the use of biopolymers in wound management has not yet been clearly 

translated into a platform for widespread clinical use, as the existing studies only offer evidences for 

beneficial properties of the biopolymers as dressing matrices and not as active agents. The 

multifactorial nature of virtually all chronic wounds requires an intervention at molecular level 

with the biochemical events governing the ECM breakdown and impaired healing. Such effect is 

expected in case of controlled application of active agents, e.g. antimicrobials and enzyme 

inhibitors. 
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1.4 Attenuating the enzymatic activities in chronic wounds 

The recent discovery of elevated levels of oxidative and proteolytic enzymes in conditions 

characterised with prolonged inflammation, such as chronic wounds, gave new insights for their 

treatment. The effect of biopolymers per se, e.g. chitosan and its derivatives on the MMPs activities 

has been the subject of a limited number of scientific reports [66]. It has been found that especially 

oligosaccharides of chitosan display inhibitory effect on gelatinase (MMP-2) expression and its 

transcriptional activity. Both zymogen and active MMP-2 were inhibited with 3 - 5 kDa chitosan and 

this effect was attributed to their chelating ability on Zn
2+ 

[67]. At the same time partially hydrolysed 

chitosan was found to be potent inhibitor of gene and protein expression of other gelatinase (MMP-9) 

according to the same inhibitory mechanism [68]. High molecular weight chitosan (500 kDa) showed 

elevated binding-specificity for MMP-2 and also displayed inhibitory activity by non-competitive 

inhibition. Atomic force microscopy revealed complex formation between the chitosan and the 

enzyme [69]. On the other hand, collagenases, a group of MMPs that specifically recognise and 

cleave collagen include MMP1, MMP8 and MMP13. Collagen produced in various designs was 

investigated as a competing enzyme substrate, with a goal to distract MMPs from the cleavage of the 

ECM [70, 71]. Up to a certain extent this can positively influence the imbalance between proteinase 

activities and inhibitors and thus, the coordination of the breakdown/regeneration of the ECM. 

Further, the addition of HA macromolecules to the collagen-based dressings suppress the expression 

of some MMPs [58]. 

However, the intrinsic biodegradability of the biopolymers may compromise their use in the 

physiological fluids with elevated and persistent enzymatic activity. This is especially emphasized due 

to the requirement for low frequency of dressing changes during the management of chronic wounds 

[72]. Moreover, little control over attenuation of the chronic wound enzyme activities by application 

of biopolymers per se can be guaranteed. Both oxidative and proteolytic enzymes play a role in 

controlled proteolysis of the ECM in the inflammatory phase of healing. Thus, the total inhibition of 

these enzymes is also not desirable for the regeneration of the ECM and wound progression towards 

closure. 

In one attempt, an active dressing specifically targeted towards reducing local levels of MMPs in non-

healing wounds was developed using bovine collagen and oxidised regenerated cellulose. When 

placed in the woundbed, the dressing chemically binds MMPs. The concept is based on bringing the 

active levels of these enzymes back down into the ranges found in healing wounds to allow healing to 

progress [70]. The mechanism of action has been postulated as the collagen moiety acting as a 

“sacrificial” substrate for the proteases, whereas the oxidised cellulose with its multiple negative 

charges dislodges the positively charged metal ions common to this family of enzymes. Although this 

composite represented a breakthrough in the dressings meant specifically for chronic wound 

treatment, the concept considers only attenuation of the activities of some proteases at the wound site. 
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This concept could be further complemented by addressing other common factors influencing non-

healing nature of chronic wounds of various aetiologies. 

 

1.4.1 Active agents to modulate the enzymes activities in chronic wounds – 

an integrated approach 

Abnormal redox state and impaired antioxidant defence in the inflammatory stage of chronic wounds 

calls for the use of redox drugs. Matrix metalloproteinases are a group of metalloenzymes, where the 

catalytic Zn
2+

 in the active centre is coordinated by a redox-sensitive cysteine residue. Displacement 

(e.g. upon oxidation) of the cysteine ligand coordinating the metal ion leads to the activation of the 

enzyme [73] – a mechanism termed “cysteine switch”. The MMP activation/inhibition could be, 

therefore, redox-regulated by e.g. thiol compounds affecting the sulfhydryl/disulphide state of the 

switch [74]. Another, rather non-specific regulation of MMPs activity could be achieved through 

metal chelation. Since thiols combine both metal chelating and redox functions [75], thiol-

functionalised biopolymers could be expected to control the activities of these enzymes via a 

combination of these two mechanisms. To this end, thiolated conjugates have been patented as MMP 

inhibitors, however, the application is limited to thiol-compound release from a platform. Moreover, 

the release mechanism is either complicated [76], or realised in a non-controllable way [77]. 

On the other hand, MPO is an oxidative enzyme able to produce HClO, overwhelming the natural 

shield of protease inhibitors, enabling accumulation of these enzymes in the chronic wound site. 

Furthermore, through HClO generation MPO is directly involved in the regulation of MMPs activity 

[78]. The prevention of MPO-derived HClO accumulation can be envisaged at two levels by: i) using 

competitive amounts of peroxidase substrates to avoid the pathway of the enzyme chlorination 

activity and subsequently HClO production, and ii) application of HClO scavengers. Thiol-containing 

molecules were reported to interfere with MPO/H2O2/Cl
-
 system and consequently inhibit HClO 

production [79]. Thus, the use of thiol-bearing compounds would be an integrated approach for 

attenuation of both oxidative and proteolytic enzyme activities. 

Similar effects on both enzymes are expected using polyphenolic antioxidants. Plants polyphenolic 

extracts, which structures vary from simple molecules to highly polymerised compounds are well-

known for their antioxidant capacity and scavenging activity over both free radical and non-radical 

reactive species [80], metal-chelating capability [81] and inhibitory activity over radical-generating 

enzymes [82]. The degree of polymerisation and the chemical nature of the repetitive units constitute 

important structural features related to their physicochemical and biological properties. Plant 

polyphenols have been also reported to have anti-inflammatory [83], antimicrobial [84], 

immunomodulatory [85] and wound healing promoting properties [86]. All of these benefits indicate 

that plant polyphenols could be employed for the chronic wound management. Some polyphenolic 
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extracts are widely used in the therapy of skin diseases, skin damages such as burns, and as protective 

component in cosmetic formulations [87, 88]. Various polyphenolic extracts are reported as efficient 

inhibitors of both MPO [89] and MMPs [90]. Indeed, their propensity to bind proteins presumably 

accounts for the fact that polyphenols inhibited virtually every enzyme tested with in vitro [91]. 

Moreover, by functionalisation of the biopolymer carrier with microbicidal polyphenols synergistic 

enzyme inhibition and antibacterial activity is expected. 

The use of biopolymeric materials with intrinsic antimicrobial properties, further upgraded 

with bioactive compounds that specifically interfere with biochemical environment of chronic 

wounds could be an integrated strategy for their efficient management. Moreover, controllable 

enzymatic inhibition could be expected by tuning the degree of biopolymer functionalisation (e.g. 

biopolymer thiolation, dosed biopolymer impregnation with polyphenols). This would be a step 

forward towards the regulation of the optimal enzyme/inhibitors ratio necessary for healing. 

 

 

1.5 Modification/functionalisation of biopolymers  

Biopolymers have been used as materials in dermal wound regeneration due to their beneficial skin 

repair properties. However, despite the fact that these natural macromolecules appear to be efficient to 

a different extend in the tissue repair process, the currently marketed products exploit only the 

intrinsic properties of the biopolymers without further upgrading them with active functions to react at 

molecular level with chronic wound pathogens. Moreover, biopolymers attracted much attention as 

materials for recovery of damaged skin because the materials degradation and the new tissue 

formation should be parallel processes. The situation with chronic wounds is more complicated due to 

very low stability of these materials in contact with the fluids containing elevated levels of enzymes 

that hydrolyse biopolymers. For example, chitosan is a substrate of lysozyme [92] and chitosan-based 

materials are readily digested by this enzyme [93], whereas collagen is a natural substrate of several 

MMPs.  

Regarding targeted functionalisation, chitosan bears two types of reactive groups that can be modified 

- the free amino groups on the deacetylated units and the hydroxyl groups on the C3 and C6 carbons 

on both acetylated and deacetylated units. This allows its functionalisation with a variety of 

(bio)active molecules or the use of cross-linking reagents for blending with other biopolymers. The 

cationic nature of chitosan facilitates the preparation of various materials in combination with anionic 

GAGs forming polyelectrolyte complexes (PEC). This property of chitosan was exploited in this work 

for the development of polyelectrolyte multilayered (PEM) assemblies combining the biopolymer and 

its thiolated derivatives and GAGs for modulation of collagenase and MPO activities (Chapter 5).  
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Being a protein, collagen has much more complex structure allowing for many functionalisation 

approaches. One of the most used protein modifications is targeting controlled biodegradation through 

mentioned cross-linking reactions between the protein molecules itself or for combining with other 

materials. 

 

1.5.1 Chemically modified chitosan 

Chemical modification of biopolymers to improve their biofunctionality (e.g. biocompatibility, 

biodegradability, antibacterial activity and wound healing promotion) tends to preserve the original 

physicochemical and biochemical properties of the polymers, while widening their biomedical 

applications potential. However, except for the chemically cross-linked biomaterials, the use of 

chemically modified biopolymer derivatives specifically evaluated in vitro or in vivo for dermal tissue 

regeneration has been sparsely reported. 

Major functionalisation of chitosan include: (i) substitution, introducing small functional groups to 

chitosan backbone and (ii) depolymerisation by chemical, physical or enzymatic treatments. 

Moreover, further chemical modifications of the functionalised chitosan can be performed in order to 

extend the range of their applications [94].  

Introducing small functional groups to the chitosan structure, such as carboxymethyl groups, can 

drastically increase the solubility of chitosan at neutral and alkaline pHs, a major drawback for the 

processing of this biopolymer, without affecting its cationic character. N-carboxyalkylation of 

chitosan involves the introduction of acidic (anionic) groups onto the polymer backbone. Besides 

good solubility, carboxymethylated chitosan promotes significantly the proliferation of normal skin 

fibroblasts, but inhibits the proliferation of keloid (scar) fibroblasts; reduces the ratio of collagens I/III 

in keloid fibroblasts by inhibiting the secretion of collagen type I, while not affecting the secretion of 

collagens I and III in normal skin fibroblasts [95, 96]. Increase of the antimicrobial activity is also 

observed with this derivative, which either renders unavailable the essential transition metal ions for 

bacteria by complexation, or disturbs the cell membrane binding to the negatively charged bacterial 

surface [97]. Finally, carboxymethyl chitosan can be used in the development of different protein drug 

delivery systems as porous, pH-sensitive, cross-linked hydrogels for wound healing applications [98, 

99]. 

N-acylation involves reaction between chitosan and an acid anhydride or acyl halide. The reaction 

proceeds through an addition/elimination type mechanism, where the amide functionality of the N-

amino groups is restored. Several N-acyl derivatives comprising aliphatic side chains have been 

prepared. For example, a series of water-soluble N-saturated fatty acyl derivatives of chitosan have 

been synthesised through reactions with propionic, butyric, pentanoic, hexanoic, and octanoic 
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anhydride, and the longer chain acid anhydrides decanoic, lauric, myristic, palmitic, and stearic 

anhydride [100]. Studies also showed that N-acylated chitosans with different degree of substitution 

prepared exhibited different antibacterial activity in vitro [101]. 

N-sulphation of chitosan is another example of introducing anionic charge to the polymer backbone 

with various methods involving combinations of sulphating agents and reaction media used to date 

[102]. Sulphated chitosan is analogue to the natural blood anticoagulant heparin [103, 104], a highly 

sulphated glucosaminoglycan used for treatment of various conditions in medicine. 

Phosphate groups, due to their ion-exchange properties, are appropriate functionalities for specific 

binding of biologically active species. Phosphate carriers in solution are exchangers of ionically 

bound cations (e.g., Na
+
, Ca

2+
) with cationic residues of biomolecules. Phosphorylation of porous 

chitosan matrices can be used to immobilize signalling biomolecules and growth factors [105]. The 

ionic binding character coupled with the mild conditions for immobilisation leads to minor 

conformational changes in the immobilised biomolecules with subsequent high retention of activity. 

Phosphorylation of chitosan can be achieved by various chemical methods. The products of these 

reactions are normally water-soluble phosphorylated chitosans with high degree of substitution. 

Furthermore, chitosan phosphorylation has been reported as a way to improve viability, attachment 

and proliferation of cells onto chitosan-based surfaces [106]. Both phosphorylation and sulphation 

increase the biopolymer anti-inflammatory properties [107]. 

The derivatisation of the primary amino groups of chitosan with coupling reagents bearing thiol 

functions leads to the formation of thiolated chitosans. Sulfhydryl bearing agents such as cysteine and 

thioglycolic acid can be covalently attached via amide bond formation between the carboxylic acid 

group of the thiolating agent and the primary amino group of chitosan mediated by a water-soluble 

carbodiimide [108]. In another approach, a one-step method using 2-iminothiolane HCl (Traut’s 

reagent) for preparation of highly thiolated chitosan was described [109]. Thiolated polymer 

conjugates display a series of interesting functions such as mucoadhesive [110], permeation-

enhancing [111] and in situ gelling properties within a wide pH range [112], in addition to be 

biodegradable. Further studies in the direction of the use as novel scaffold materials were performed 

with L-929 mouse fibroblasts seeded onto chitosan–thioglycolic acid sheets. The thiolated chitosan 

provided a porous scaffold structure for cell anchorage, proliferation and 3D tissue formation [113]. 

Water insoluble thiolated polysaccharides (e.g. chitin/chitosan) with antioxidant properties against 

ROS present in early stages of chronic wounds are patented [114]. The thiolated polysaccharides were 

also able to complex Fe
3+

 essential for the bio-cycle of some bacteria found in chronic wound 

environment. 

Quaternary ammonium functionalities could be introduced to chitosan either by direct alkylation of 

the N-amino functional groups, or via covalent attachment of quaternary ammonium substituents to 
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the N-amino groups. These processes are referred to as quaternisation. The simplest synthetic 

approach to give chitosan quaternary ammonium functionality is via conversion of the N-amino 

groups into N-trimethylammonium halide salts. Different degree of quaternisation of amino groups in 

chitosan can be achieved with methyl iodide in alkaline solution of N-methyl pyrrolidinone [115]. The 

major advantage of these derivatives over the parent chitosan is the permanent positive charge of the 

macromolecules, resulting in increased antimicrobial activity [116, 117]. Alkylchitosans quaternised 

by methylation [118] increased their free radical scavenging activity making them potentially useful 

in inflammatory diseases such as chronic wounds [119], characterised with elevated levels of ROS.  

Other interesting biomedical applications using biochemically modified chitosan have also been 

reported. The hydrogel showed strong tissue-adhesion properties, significant induction of wound 

contraction and acceleration of wound closure and healing properties, hence suitable as biological 

adhesive in surgical applications. Ethylene diamine tetraacetic acid (EDTA) grafted onto chitosan 

increased its antibacterial activity by complexing magnesium that under normal circumstances 

stabilizes the outer membrane of gram-negative bacteria [120]. Grafting of cyclodextrins (CDs), 

cyclic oligosaccharides built from six to eight D-glucose units that are formed during the enzymatic 

degradation of starch and related compounds, onto chitosan may lead to a molecular carrier that 

possess the cumulative effects of inclusion, size specificity and transport properties of CDs together 

with controlled release ability of the polymeric matrix. There are different methods used to graft CD 

on chitosan and the inclusion ability, sorption and controlled release properties of the products [121]. 

For example, chitosan-based systems bearing cyclodextrin cavities have been proposed as a matrix for 

controlled drug release [122]. Due to the presence of the hydrophobic-cyclodextrin rings these 

systems provide slow release of the entrapped hydrophobic drug. 

 

1.5.2 Chemical cross-linking of biopolymers 

Due to their intrinsic biodegradability, biopolymers are digested by enzymes in body fluids. The 

biodegradability of biomaterials is even more pronounced in contact with chronic wound fluids, 

containing elevated counts of digestive enzymes. Therefore, for the exploitation of biopolymers as 

clinical materials this deterioration must be avoided, preferably beyond the material application time. 

The aim is to prolong the original structural and mechanical integrity of the biomaterial and to 

neutralise the antigenic properties attributed to their hydrolysis products [46]. Methods typically 

include creating new additional chemical bonds between the biopolymer molecules and within the 

same molecule, i.e. inter- and intra-molecular cross-links, respectively. These supplementary links 

reinforce the material to give a strong but usually less viable material. Both physical and chemical 

methods for the biopolymers cross-linking are available. The chemical ways are employed to stabilise 
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the material using the bifunctional cross-linking agent to form irreversible or reversible chemical 

bonds between the functional groups of biopolymers at two different sites. A drawback of using cross-

linking agents is the potential cytotoxic effect resulting from a reversal of the cross-links or 

unremoved reagent after the treatment. Physical methods include drying, heating or exposure to 

ultraviolet (UV) or gamma radiation. Unlike chemical cross-linking, these methods do not use 

potentially toxic chemicals. However, the efficiency of the physical cross-linking is usually lower 

than using chemical reagents. Accordingly, the exploitation properties of the obtained materials are 

not comparable with the covalently cross-linked biopolymers. 

The more exploited functional group of chitosan is –NH2 and most of the chitosan chemical cross-

linkers are homobifunctional reagents. On the other hand, due to the presence of other functional 

groups, collagen cross-linkers include a variety of homo- and hetero-bifunctional chemicals. Due to 

their reactivity with amino groups (and in less extent with hydroxyl moieties) in aqueous media under 

mild reaction conditions, the most exploited cross-linkers of both collagen and chitosan are 

dialdehydes, such as glyoxal and glutaraldehyde. Their use, however, was lately avoided due to 

toxicity concerns [123]. Other reagents that have been used for cross-linking chitosan include 

tripolyphosphate, ethylene glycol, diglycidyl ether and diisocyanate. Toxicity studies have shown that 

these synthetic cross-linking reagents are cytotoxic to a certain extent and may impair the 

biocompatibility of the chitosan delivery system. 

Recently, the naturally occurring genipin (isolated from Genipa Americana and Gardenia jasminoides 

Ellis) has been used to promote cross-linking reactions between proteins and polysaccharides 

containing amino moieties. The biocompatibility of genipin in humans has not yet been assessed, 

while in vitro tests and injection in rats did not show cytotoxicity. Based on biochemical data on 

genipin safety it was concluded that the cross-linked complexes formed with genipin were not 

cytotoxic for the animal and human cells tested so far [124]. Moreover, the gelling of chitosan 

solutions treated with low amounts of genipin (0.05 – 0.20 %) at close to neutral pH in presence of 

glycerol phosphate can be controlled by changing the genipin concentration in the solution [125]. 

Importantly, the chitosan bacteriostatic activity remains unaffected after the cross-linking reaction 

[126]. Furthermore, genipin was successfully employed for controlled cross-linking of collagen 

extracts in a relatively short time-frame [127]. In addition, genipin-fixed collagen-based biological 

tissues of various origins have demonstrated improved mechanical properties and resistance to 

enzymatic degradation compared to non-cross-linked tissues [128, 129]. 

By varying the concentration of genipin, the cross-linking degree of chitosan and/or chitosan with 

another biopolymer can be modulated. In an example, genipin was used for blending with chitosan 

aiming tissue engineering applications [130]. Higher genipin concentration (2.5 % w/w of gelatin) 

negatively affected properties desirable for dressing applications such as wettability and swelling 

degree of the blends. On the other hand mouse fibroblast adhesion and proliferation on substrates 
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increased due to the fact that gelatin contains Arg-Gly-Asp (RGD) attachment site, a major 

recognition sequence for cell adhesion and proliferation [131]. The relative comparison of biological 

response involving cell proliferation and viability on chitosan-gelatin scaffolds suggested that 

blending of the two biopolymers could improve the cellular efficiency. Furthermore, chitosan–gelatin 

scaffolds were cytocompatible with buffalo embryonic stem cells [132]. This study disclosed for the 

first time that the chitosan–gelatin scaffolds were promising candidates for stem-cell-based tissue 

engineering, considered as the next generation of skin substitutes. Stem cells, as cells being able to 

renew themselves through mitotic cell division and differentiating into a diverse range of specialized 

cell types, have been increasingly reported to confer benefits in vivo as agents of angiogenesis and 

multilineage restoration in the face of soft tissue defects [133, 134]. In yet another example chitosan 

has been cross-linked with genipin to obtain an asymmetric structure chitosan membrane further 

loaded with type I collagen particles (CGC membrane). Cell adhesion tests after 7 days of dynamic 

culture revealed a flat cell morphology and good spreading on the membrane scaffold. In animal 

studies, this potential skin substitute seeded with fibroblast and grown for 7 days, was more effective 

for healing wounds that the commercial ones. Histological in vivo assessment indicated that covering 

the wound with CGC membrane resulted in epithelialization and reconstruction [135].    

Water soluble carbodiimides such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) or N-

(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDAC) have been frequently applied 

as cross-linking agents for biological materials. Carboxyl residues in biopolymers are activated with 

carbodiimides usually in the presence of N-hydroxysuccinimide (NHS). The activated carboxyl 

groups then react with nucleophiles such as primary amine groups to form stable zero-length amide 

bonds [136]. Byproducts of the reaction are easily rinsed away leaving a stable non-cytotoxic matrix. 

Accordingly, carbodiimides have become popular in a wide range of tissue engineering-based 

applications [137]. In one of the studies chitosan was covalently coupled to type I collagen by using 

EDC [138]. The platelet deposition and endothelial cell culture experiments showed that the 

chitosan/collagen matrices had good cell and excellent blood compatibility, therefore suggesting 

creation of an appropriate environment for the regeneration of endothelial cells in tissue regeneration. 

In another study, sponge scaffolds comprising different ratios of chitosan, collagen and hyaluronic 

acid cross-linked with EDC displayed a steady improvement of the biostability observed with 

increasing chitosan concentration, suggesting greater extent of cross-linking. The biocompatibility test 

showed high proliferation of fibroblasts cultured on these sponges [62]. 

All these findings suggested that genipin and carbodiimides are promising cross-linkers of 

biopolymers and blends thereof for fabrication of wound dressing materials. In this thesis, both 

reagents were used for biopolymers cross-linking in order to rule the exploitation characteristics of the 

obtained materials.  
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1.5.3 Modification/blending of biopolymers using enzymatic tools  

The enzymatic methods for polymer modification rely on the high specificity of the biocatalysts at 

mild reaction conditions to achieve targeted functionalisation, whereas eliminating a series of 

complicated protection/deprotection steps, typical for the chemical synthetic routes. Enzymatic 

modifications of natural polymers are less frequently reported than the conventional chemical 

modifications; however, this trend is progressively changing. Recent studies clearly indicate that the 

modification of natural polymers with enzymes is an environmentally friendly alternative to the 

chemical methods using harsh conditions [139]. However, despite the increasing number of reports on 

using of biotools for tuning of biopolymer properties, their functionalisation using active compounds 

aiming at wound healing and dermal engineering application are still sparsely reported. 

 

Enzymatic functionalisation/cross-linking 

The enzymatic tools for functionalisation are selected on the basis of the chemical structure of 

biopolymers, functional groups and targeted enzyme activities related. These usually include oxidases 

(e.g. tyrosinase, peroxidase, laccase), transferases (transglutaminase) and isomerise (protein 

disulphide isomerise) type of enzymes. The same enzymatically-assisted reactions are employed to 

cross-link and blend biopolymers in order to improve the exploitation characteristics of the materials, 

i.e. stability at use. 

Grafting of phenolic compounds onto chitosan using tyrosinase (EC 1.14.18.1) to confer water 

solubility under basic conditions has been reported [140]. The tyrosinase converts the phenol moieties 

into electrophilic o-quinones in a wide variety of phenolic substrates, which subsequently undergo 

non-enzymatic reactions with chitosan amino groups to yield either Schiff bases or Michael type 

adducts. However, coupling reactions of the phenolic active species result in a complex mixture of 

mono- and oligomeric products grafted on chitosan. On the plus side, the modified chitosan is soluble 

in both acidic and basic media. In addition, the tyrosinase-catalysed modification of chitosan with 

phenols dramatically alters the rheological and surface properties of the biopolymer. Generally, this 

reaction would allow for grafting of any phenol group-containing molecule and therefore introducing 

various functionalities into polysaccharides that contain amino residues. For example, grafting of 3,4-

dihydroxyphenethylamine onto chitosan could find application as a water-resistant adhesive [141]. In 

another study various phenolic substrates with different molecular weights to induce enzymatic 

gelation of chitosan were used [142]. Interaction between chitosan and polymers, such as poly(4-

hydroxystyrene) in the mixture of methanol and water has been also reported [143]. The increased 

interest in blending of two or more natural derived compounds to improve their physicochemical 

properties resulted in many publications in the field. Chitosan was blended with sericin containing 

peptides using tyrosinase [144]. Following the same route chitosan was combined with proteins, such 
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as silk fibroin [145], and collagen hydrolysate gelatin to induce gelation [146]. The so obtained gels 

showed improved mechanical properties when compared to gels formed by gelatin cooling. 

Transglutaminases (EC 2.3.2.13) catalyse the formation of a highly resistant
 
to chemical and 

enzymatic degradation covalent bond between a primary amino group of lysin and the -carboxamide 

group of protein-bound glutamine. Preparation of chitosan-protein gels using transglutaminases has 

been reported. Although chitosan was not required to obtain strong gels from gelatine (as in the case 

of tyrosinase), it was observed that its presence leads to faster gelation, and the resulting protein-

polysaccharide gels were mechanically stronger [146]. 

Horseradish peroxidase (HRP)-catalysed gelation system has been studied as a novel and effective 

route for obtaining hydrogels from various biopolymers. HRP catalyses the oxidation of donors using 

H2O2 resulting in polyphenols linked at the aromatic ring by C-C and C-O coupling of phenolic 

moieties. The versatility of the HRP-catalysed gelation has been demonstrated on the biopolymer 

derivatives bearing phenolic groups such as modified polysaccharides, e.g. hyaluronic acid [147], 

alginate [148], dextran [149], carboxymethylcellulose [150] and chitosan [151], and proteins such as 

gelatine [152]. Simultaneous conjugation and hydrogelation of phenol-bearing polysaccharides and 

proteins using horseradish peroxidase is also reported [153]. The gelation time of the resulting 

systems decreased with increasing the enzyme concentration and was controllable from a few seconds 

to several min. The tuneable gelation, biodegradability, mechanical properties, and cell adhesiveness 

of the obtained polysaccharide-protein conjugated hydrogels indicate high potential for a wide range 

of applications, among which scaffolds for tissue engineering and carriers for drug delivery systems. 

Recently, HRP was used to cross-link chitosan derivatives prepared by conjugation of chitosan and 

phenol containing α-hydroxy acids to produce biodegradable injectable hydrogels for medical 

purposes [93]. In the same study was shown that these hydrogels showed good biocompatibility by in 

vitro culturing of chondrocytes and can be readily degraded by lysozyme. 

 

Enzymatic depolymerisation of chitosan  

Chitosan can be controllably depolymerised by various enzymes, including lysozyme and especially 

chitosanases [92, 154]. In general, the efficacy of chitosan oligomers for wound healing is superior to 

chitosan macromolecules. A mixture of chitosan oligomers up to the hexamer including D-

glucosamine have been compared with macromolecules in a linear incisional wound model in rats. 

The wound breaking strength in the cases where chitosan oligomers were applied was higher than in 

the macromolecule-treated group of wounds. Collagenase activity also followed the same trend [155]. 

In another study, chitosan oligomers were found to inhibit the growth of deleterious bacteria and to 

boost immune function [156]. 
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1.6 Dressing design 

The design of a dressing depends on the type of the wound, its thickness, position on the body, 

exudate volume, the stage of the healing process (early, late) and age of the affected individual. The 

modern dressings are mainly classified according to the materials from which they are produced and 

generally occur in the design of (hydro)gels, thin films/coatings and foam sheets (i.e. sponges). 

 

Hydrogels are highly absorbent water-insoluble networks of polymer chains with high degree of 

flexibility similar to that of the natural tissue. The hydrogels are normally classified according to the 

nature of network formation as physical and chemical hydrogels. The physical hydrogels are obtained 

by reversible electrostatic interactions (e.g. PEC) or through secondary interactions (e.g. hydrogen 

bonds), while the chemical hydrogels are covalently cross-linked. Hydrogels are useful for exudative 

wounds because of their high absorptive capacity. In addition, they provide excellent pain relief by 

cooling the wound. Nevertheless, due to their low adherence hydrogels should be covered by an outer 

layer of tape, netting or roll bandage. They were found particularly useful for the treatment of deep 

partial thickness wounds. 

 

Hydrophilic foam dressings are permeable to oxygen and water vapour. They usually have a 

hydrophobic backing and some have an adhesive surface to make the application easier. Sponges are 

more easily saturated with wound exudates than hydrogels, hence their changing frequency is 

considerably higher, especially during early wound healing when exudation is greater. Foam dressings 

are ideally suited for superficial, and dry and semi-dry wounds, in addition to chronic ulcers since 

they provide padding that can relieve pressure over bony prominences. From a technological point of 

view, the production of a foam dressing is an easy process consisting only of freeze-drying of a 

moulded suspension of the dressing components. 

  

Thin transparent film dressings have low absorption capacity, thus not useful for wounds with 

significant exudates. Sometimes films are used as top layers to keep other dressings in place, e.g. over 

ointment or hydrogel dressing. Moreover, film dressings are used for the later stage healing, when the 

wound exudates are minimised. If applied alone, transparent films allow for on-site inspection of the 

healing progress without removal of the dressing. Films/coatings bearing active functions could be an 

ideal solution for the combined wound treatment and monitoring of the wound status.  
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1.7 Research objectives 

The main objective of this thesis is the development of functional biopolymer-based materials 

upgraded with bioactive molecules based on understanding and targeted intervention in chronic 

wound management. Since the dressing design should be optimised according to the particular clinical 

application (type, cause and size of the wound; location on the body), as examples the dressings in the 

form of sponges and films/coatings, and nanoparticle formulations will be generated during the work 

realisation. To this end, the following specific objectives have been set up: 

 Generation of cross-linked biopolymer(s) sponges using chemical techniques (Chapter 2). 

The optimisation of the cross-linking process is the crucial step in the development of stable in the 

physiological environment materials. The obtained sponges will serve as a base for further 

upgrading with active functions. 

 Impregnation of the cross-linked biopolymer(s) platforms with bioactive molecules and 

evaluation of their functional properties (Chapter 3). The functionalised sponges will be 

investigated for the capacity to inhibit the enzymes related with prolonged inflammation in chronic 

wounds. 

 Permanent modification of biopolymer platforms with bioactive agents, e.g. thiol-bearing 

compounds (Chapter 4). The thiolated protocols will set up the basis for further processing of 

thiolated biopolymers in various designs. 

 Layer-by-layer build-up of active multilayered films/coatings (Chapter 5). Nano-scale 

materials will comprise thiol-modified chitosan and oppositely charged glycosaminoglycans. The 

multilayered assemblies will be studied for controlled adsorption of the major chronic wound 

enzymes and the fibroblasts attachment/proliferation. 

 Formation of nano/micro-particles from thiolated chitosan conjugates under ultrasonic 

irradiation (Chapter 6). Especially the feasibility of the new strategy for nanoparticles generation, 

stability improvement and functionalisation in a single-step sonochemical process will be studied. 
 

The experimental set-up of the thesis and the summary of the investigation and overall objectives are 

given on Scheme 1.1. 
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Scheme 1. 1 Summary of the work carried out during the thesis development 
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SECTION B: Dressing platforms loaded with plant polyphenols 

Dressing platforms loaded with plant polyphenols 
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2.1 Introduction 

Biopolymers nowadays play increasingly important role in applications where the materials are in 

direct contact with body tissue due to their biodegradability, biocompatibility, low immunoreactivity 

and ability to integrate with a particular cell type/tissue. Their unique physicochemical and biological 

properties have been exploited in variety of commercially available wound dressings [25]. Among 

them, collagen - the most abundant structural component of the ECM - is largely employed in 

dressings to create optimal moist conditions for wound healing and absorb proteases from wound 

exudates [157].  In addition, collagen ensures fibroblasts adhesion and growth, leading to the 

formation of new granulation tissue and epithelium at the wound site [158]. Hyaluronic acid is an 

important moisturising constituent of the ECM. Chitosan (CS), sharing structural similarities with 

naturally occurring GAGs, possesses intrinsic antimicrobial properties and accelerates early phase 

wound healing [39]. Assembling of collagen, HA and/or CS into composite materials has displayed 

advantages in tissue regeneration applications over the use of any of these biopolymers alone [159, 

160].  

Wound dressings, on the other hand, require high stability during the extended treatment duration 

combined with low frequency of dressing changes as recommendable for chronic wounds treatment. 

This stability-at-use might be compromised by the intrinsic susceptibility of the biopolymer 

components to enzymatic degradation in contact with biological fluids. Furthermore, their digested 

fragments, especially from collagen, are many times more immunoreactive than macromolecule per 

se [161]. The application of suitable chemical cross-linkers, depending on the functional group 

availability, overcomes the enzymatic degradability of biopolymeric materials. Naturally-derived 

genipin is widely used nowadays for covalent cross-linking of biopolymers due to its low cytotoxicity. 

It efficiently reacts with primary amines and has been reported for cross-linking of many biopolymers 

and blends thereof [162, 163]. Water soluble EDAC is another well-known cross-linker usually 

applied in combination with N-hydroxysuccinimide to form “zero length” bonds between polymers 

[137]. 

The current study focuses on generation of the biopolymer-based sponges with improved enzymatic 

stability, mechanical performance and hydrophilicity through cross-linking with genipin and EDAC. 

The exploitation characteristics of either single biopolymer (i.e. collagen) or composite sponge-like 

dressings were investigated as a function of the cross-linker concentration or the biopolymer 

composition, respectively. Moreover, the combined intrinsic properties of the individual biopolymers 

– collagen, hyaluronic acid and chitosan – in a composite dressing material and the optimisation of the 

biopolymer composition of such dressing for chronic wound treatment are discussed. 
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2.2 Materials and methods 

2.2.1 Biopolymers 

Collagen type I from bovine skin was kindly supplied by Lohmann & Rauscher International GmbH 

& Co. (Germany). Hyaluronic acid sodium salts of different Mw (6, 830 and 2000 kDa) from Lifecore 

Biomedical (USA) and ultrapure chitosan (Mw ~50 kDa) from KitoZyme (Belgium) were used for the 

experiments. 

 

2.2.2 Reagents 

Collagenase from Clostridium histolyticum (277.50 U/mg solid, one unit liberates peptides from 

collagen equivalent in ninhydrin colour (at 570 nm) to 1.0 mol of leucine in 5 h at pH 7.4 and 37 ºC 

in presence of calcium ions), EDAC and NHS were purchased from Sigma-Aldrich. Genipin was 

purchased from Challenge Bioproducts (Taiwan). EnzChek
®
 kit was purchased from Life 

Technologies (Spain). All other reagents were of analytical grade purchased from Sigma-Aldrich and 

used as received. 

 

2.2.3 Preparation of biopolymer sponges 

All individual biopolymer solutions were prepared in concentration of 1 % (w/v). Collagen and CS 

were dissolved in 1 % acetic acid, while HAs were dissolved in distilled water. The prepared collagen 

solution was used as such or mixed as follow: collagen-hyaluronic acid (CHA) in 9:1 weight ratio, 

and collagen-hyaluronic acid-chitosan (CHACS) in ratio 4.5:1:4.5. The mixtures were homogenised 

for 20 min, poured at Petri dishes with 3 mm thickness and freeze-dried to obtain porous biopolymer 

sponges. Thereafter, to study the cross-linker effect, the collagen sponges were immersed in genipin 

solution (0.25, 0.50, 0.75 and 1.00 mM) in phosphate buffered saline (PBS, pH 7.4) and let to react 

for 3 h at 37 ºC. Finally, the genipin cross-linked collagen samples were thoroughly washed with 

double distilled water and freeze-dried again. 

On the other hand, to study the effect of the materials composition, the freeze-dried composite 

sponges were cross-linked in 96 % ethanol containing EDAC (50 mM) / NHS (10 mM) for 24 h, 

thoroughly washed with distilled water and freeze-dried again. CHA specimens were named after the 

Mw of the used HA (CHA6, CHA830, and CHA2000). CHACS specimen was prepared using HA 

with Mw of 830 kDa. 
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2.2.4 Determination of the degree of collagen cross-linking with genipin  

The cross-linking degree of the genipin cross-linked collagens was determined by ninhydrin assay and 

was defined as the ratio between the amount of amino groups involved in the cross-linking, and the 

amount of free amino groups in the non-cross-linked samples [128].The samples were weighed and 

further heated with ninhydrin solution for 20 min at 100 °C. After cooling, the solutions were 

transferred into a 96-well microplate and their absorbance was recorded at 570 nm (microplate reader 

Infinite M200, Tecan, Austria). The amount of free amino groups in the samples was determined 

using glycine standards. After reaction with ninhydrin, the amount of free amino groups in the tested 

samples is proportional to the optical absorbance of the solution. 

 

2.2.5 Scanning electron microscopy (SEM) 

SEM images were taken on the cross-sections of the cross-linked collagen sponges in magnification 

of x100 using scanning electron microscope (JSM 5610, JEOL Ltd Japan). The samples were 

previously sputter coated with gold. Data of the mean pore size ± standard deviation of each 

experimental group (n=5) are reported. 

 

2.2.6 Fourier transform infrared spectroscopy (FTIR)  

Infrared spectra of the non-cross-linked and cross-linked composite sponges were recorded using 

Perkin Elmer Spectrum 100 FT-IR spectrometer utilising the attenuated total reflectance technique. 

Spectra were acquired with an average of 75 scans. 

 

2.2.7 Tensile testing 

Strip-shaped sponges (30 x 10 x 3 mm) cross-linked with different cross-linking reagents were 

subjected to uniaxial tensile test in a wet state at room temperature using universal mechanical testing 

machine INSTRON 5540. After removing the excess of PBS (pH 7.4) by gentle contact with filter 

paper, the specimens were stretched at a crosshead speed of 5 mm/min until failure (n=5). 

 

2.2.8 Biostability of the cross-linked biopolymer sponges 

In vitro biodegradation tests of the sponges were carried out by incubating the specimens in 50 mM 

Tris-HCl (pH 7.4, 40 mM CaCl2) containing collagenase at 37 ºC for 24 h. The resulting mixtures 
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were centrifuged at 4000 rpm for 10 min and the supernatant hydrolysed in 6 M HCl for 24 h at 90 ºC. 

Hydroxyproline (Hyp) content of the hydrolysate was determined according to the method described 

by Reddy and Enwemeka [164]. The percentage of collagen in the hydrolysate was based on the 

assumption that collagen contains approximately 14 % Hyp [165]. All measurements were done in 

one assay to avoid inter-assay variability. Five samples were evaluated for each composition and the 

results are expressed as mean values ± standard deviation. 

 

2.2.9 Swelling behaviour of the biopolymer sponges 

Specimens were evaluated for their ability to absorb physiological fluid [166]. The sponges were 

weighed (Wi) before immersing in PBS (pH 7.4) for 24 h. The swollen samples were withdrawn and 

weighed again without dripping (Ws). The capacity to absorb physiological fluid was defined as the 

ratio between the bounded fluid (Ws - Wi) and the dry weight of the sample (Wi). 

 

2.2.10 Extent of collagenase adsorption onto the biopolymer composite 

sponges 

Collagenase binding onto the cross-linked composite sponges was studied in 500 L of 50 mM PBS 

(pH 7.4, 40 mM CaCl2) containing 2 g/mL collagenase by incubating 10 mg of cross-linked 

specimens for 24 h at 37 ºC. Thereafter, the supernatants were collected and analysed for remaining 

collagenase activity using EnzChek
®
. Briefly, the remaining in the supernatants collagenase was left 

to cleave a gelatin-fluorescein conjugate in dark at room temperature for 6 h after which the 

fluorescence was measured (495/515 nm) using a microplate reader Infinite M200, Tecan (Austria). 

The results are expressed as the percentage of collagenase binding onto the materials (inversely 

proportional to the enzymatic activity in the supernatant) ± standard deviation (n=5). 

 

2.2.11 Statistical analysis 

All data are presented as mean values ± standard deviation. For multiple comparisons of composite 

sponges, statistical analysis by a one way analysis of variance (ANOVA) followed by post-hoc Tukey 

test was performed using Graph Pad Prism Software 5.04 for Windows (USA). Statistical significance 

was considered at p < 0.01. 
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2.3 Results and discussion 

2.3.1 Genipin cross-linked collagen sponges 

According to the EN ISO 10993-1 Standard the chronic wound dressings are classified as materials 

having direct contact with injured skin and the time of activity longer than 24 h. Elevated enzymatic 

activity in chronic wounds requires therefore increased stability-at-use of the biopolymer carrier 

applied as a dressing material. The bifunctional cross-linking reagent genipin reacts promptly with 

amino groups in biopolymers. Two reaction pathways for cross-linking at the neutral pH (used in the 

study) are possible. The faster one goes through nucleophilic attack by the amino groups on the C-3 

atom in genipin dihydropyran ring, followed by opening of the ring and attack by the secondary 

amino group on the newly formed aldehyde group [167]. As a result, stable condensation products 

containing tertiary amine are obtained. The subsequent slower reaction is a nucleophilic substitution 

of the ester group of genipin to form an amide linkage. Simultaneously, an oxygen radical-induced 

polymerisation occurs between genipin molecules already attached to amino groups leading to cross-

linkers built by short genipin copolymers [168]. The resulting cross-linked biopolymer matrices 

typically possess good mechanical properties, reduced swelling, slower degradation rate and good 

biocompatibility. 

 

 

Characterisation of genipin cross-linked collagen sponges  

As expected, the cross-linking degree increased with higher concentrations of genipin used (Table 

2.1). Cross-linking degree of 24 % and 67 % was achieved with 0.25 and 1 mM genipin, respectively. 

The degree of cross-linking depends on the reagent concentration, as well as on the number and 

availability of anchoring points (e.g. amine functional groups) [169]. In this study up to 1 mM genipin 

for cross-linking was used considering that further increase of genipin concentration could induce 

significant cell death [127]. On the other hand, the sponges obtained with less than 1 mM genipin 

displayed suitable for the envisaged application mechanical properties, swelling behaviour and 

proteolytic stability. 

 

Table 2. 1 Denomination and the cross-linking degree of the genipin treated collagen sponges 

Specimen 

denomination 

Genipin 

concentration (mM) 

Cross-linking 

degree (%) 

Mean pore size 

(μm) 

Collagen 0 - 129±21 

CG0.25 0.25 24.0±1.2 106±31 

CG0.5 0.50 35.9±0.3 100±34 

CG0.75 0.75 50.4±5.2 99±45 

CG1 1.00 67.0±2.7 92±27 
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The microstructure of the material, such as porosity, pore shape, size, and distribution has prominent 

influence on cell intrusion, proliferation and function in tissue repair. Lien et al. [170] studied the 

effect of porosity of the genipin cross-linked gelatin on ECM secretion and found a macroporous 

structure as preferable for proliferation of chondrocytes and ECM production.  

Pore size between 50 and 150 μm are indicated as optimal for improved ECM production [171]. 

Cross-sectional morphology of the sponges obtained in this study showed typical for freeze-dried 

collagen macroporous structure with three-dimensional interconnected pores of various shapes and 

homogeneous distribution (Figure 2.1). The mean pore diameters ranged from 92 to 129 m, and 

decreased as genipin concentration increased (Table 2.1). 

 

 

The obtained stress-strain curves of the sponges showed typical for freeze-dried collagen behaviour 

with three distinguished regions: toe, linear and failure region (Figure 2.2) [172]. An increase in 

elastic modulus and decrease of the elongation of genipin treated collagen sponges was observed 

increasing the cross-linking degree (Table 2.2). 

 

Table 2. 2 Mechanical properties of the genipin cross-linked collagen sponges 

Specimen Young’s modulus (kPa) Elongation (mm) 

Collagen 7.7±0.3 11.8±0.9 

CG0.25 43.8±9.5 6.5±0.8 

CG0.5 60.6±5.9 6.4±1.1 

CG0.75 66.8±8.7 5.8±1.4 

CG1 72.0±23.4 6.1±1.2 

 

Figure 2. 1 SEM images of collagen sponges. (A) Uncross-linked, cross-linked with (B) 0.25 mM, (C) 
0.50 mM, (D) 0.75 and (E) 1.00 mM genipin. 
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Figure 2. 2 Representative stress-strain curves of uncross-linked and collagen sponges cross-linked with 

different concentrations of genipin. 

 

Collagen in biological tissues possesses low stretchability and high tensile strength unlike the 

materials prepared from collagen extracts. Both intra- and intermolecular cross-links may stabilise the 

collagen fibres. Studies on genipin fixation of biological tissues showed that intermolecular cross-

links within collagen brought about increased ultimate tensile strength and stiffness [128, 129].On the 

contrary, intramolecular cross-links modify the collagen fibres along their preferential orientation, and 

have little effect on the mechanical strength. Thus, the orientation of the fibres plays a crucial role in 

the mechanical properties of cross-linked collagens [173]. However, in collagen extracts the fibrils are 

not aligned and do not have preferential orientation. Consequently, the cross-linking should improve 

the overall tensile strength of the material independent on the direction of the stress applied. The 

considerable increase in elastic modulus observed after genipin treatment is probably due to both 

intermolecular and intramolecular stabilisation of the sponges, and can be tuned varying the amount 

of genipin cross-linker. 

 

 

Exploitation characteristics of genipin cross-linked collagen sponges 

The ability of the dressing to bind biological fluids is an important factor in wound repair, and 

wounds are best treated in moist environment. Since the amount of exudates in chronic wounds varies 

depending on the wound type, location on the body and its status, there is no general recommendation 

for the water uptake properties of the dressings. The hydrophilic nature of the biopolymer material 

determines its fluid retention capacity. Cross-linking treatment results in the consumption of 

hydrophilic groups in the biopolymer and subsequently, swelling decreases. As expected, in this study 

the swelling of the sponges decreased with the increase of cross-linking degree (Figure 2.3). The type 

of cross-linker used does not alter significantly the water uptake, but rather the cross-linking degree 
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[174]. Since the generated dressings have a porous structure (Figure 2.1) the fluid uptake did not 

cause significant volume expansion and deformation of the specimens. The finding is important for 

the ease of the dressing removal. 

 

Figure 2. 3 Swelling capacity of uncross-linked and collagen sponges cross-linked with various genipin 

concentrations 

 

 

In vitro test for biodegradability of genipin cross-linked collagen sponges showed considerable 

increase of their resistance (up to 94 % when 1 mM of genipin was used) to collagenase digestion 

after cross-linking (Figure 2.4). The uncross-linked collagen sponge was completely digested after 24 

h incubation with collagenase. Although the biostability of the cross-linked sponges was in agreement 

with the cross-linking degree it should be noticed that at higher genipin concentrations, sponges with 

different cross-linking degree showed similar resistance to enzymatic digestion. The cross-linking 

degree of the sponges treated with 0.75 mM and 1 mM genipin was 50 % and 67 % respectively 

(Table 2.1), while the difference in their stability towards proteolysis was within 1 % (Figure 2.4). In 

contrast, both cross-linking degree and biostability of the samples treated with 0.5 mM and 0.75 mM 

genipin differed considerably (Table 2.1, Figure 2.4). 

This suggests that the improved biostability was not only due to cross-linking, but also possibly due to 

reduced accessibility of collagenase to the cleavage sites in the cross-linked collagen network 

[169].This effect will be studied in the continuation through collagenase binding on the cross-linked 

biopolymer composite materials. In addition, the sponges cross-linked with 0.5 mM and higher 

genipin concentration conserved their structural integrity in the enzymatic digestion experiments. 

Preservation of the material integrity is one of the important properties of the dressing that would 

allow for its easy removal from the wound site. 
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Figure 2. 4 Percentage of collagen degradation from the uncross-linked and sponges cross-linked with various 

genipin concentrations 

 

2.3.2 EDAC cross-linked biopolymer composite sponges 

Characterisation of cross-linked biopolymer composite sponges 

EDAC-mediated cross-linking can undergo two distinct pathways depending on the available 

functional groups in polymers: either formation of amide linkages by activation of carboxylic moieties 

to react with free amines, or an acid anhydride formation from two carboxyl groups and further 

reaction with hydroxyl groups to yield ester bonds may occur [175]. Both pathways are likely to be 

followed for CHAs and CHACS to form inter- and intra-molecular cross-links between the 

biopolymers (e.g. some examples of intermolecular cross-linking are shown in Scheme 2.1). 

 

Scheme 2. 1 Cross-linking of the biopolymers with EDAC 
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After collagen treatment with EDAC, increase in the intensity of the amide I (C=O stretching at 1630 

cm
-1

) and amide II (N-H bending at 1543 cm
-1

) bands was observed (Figure 2.5A,b). These signals 

together with the less intensive symmetric stretching band of carboxylate salts at 1399 cm
-1

 and the 

ester band with higher intensity at 1079 cm
-1

 confirmed the covalent cross-linking of the biopolymer. 

The intensity of the ester band became more pronounced in the spectra of the cross-linked CHA 

sponges, for simplicity represented only with CHA830 spectrum (Figure 2.5A,c). This indicated a 

higher esterification yield for these samples compared to collagen alone. In addition, the changes were 

more pronounced in CHA sponges containing higher Mw HA compared to CHA6 (Figure 2.5B). The 

latter observation could be explained with the higher number of carboxylic groups in a single 

molecule that increases the probability of acid anhydride formation mediated by EDAC and thus, 

subsequent ester bonding. On the other hand, the increased involvement of the carboxyl groups in 

these specimens to form acid anhydrides led to the lower extent of amide cross-linking, confirmed by 

the lower intensities of the amide I and amide II bands compared to CHA6. Finally, with the addition 

of chitosan to CHA830 sponge, a pronounced peak attributed to the mixed stretching and bending 

vibrations of the C–O–C bond (1150–970 cm-1) appeared and overlapped the ester peak (Figure 

2.5A,d). The FTIR spectrum of CHACS hybrid sponge is rather complicated and shows overlapping 

effects of all three biopolymers after cross-linking. 

 

 

Figure 2. 5 Representative FTIR A) spectra of a) collagen, and EDAC cross-linked biopolymer matrices: b) 

collagen, c) CHA830, d) CHACS. B) normalised spectra of CHA6 (dot line), CHA830 (dashed line), CHA2000 
(solid line) 

 

 

The results from uniaxial tensile tests performed on the cross-linked biopolymer sponges showed 

increase in both the material elastic modulus and failure strain for CHA and CHACS specimens 

compared to the pure collagen sponge (Figure 2.6). Although amongst CHAs the modulus did not 

differ significantly, its values were higher for CHA830 and CHA2000 compared to CHA6 (Figure 

2.6A). The elasticity of the composite matrices further increased with the addition of chitosan. 

Similarly, CHA specimens with higher Mw and CHACS displayed significant (p<0.001) increase in 
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the strain at break, while those of CHA6 were not considerably different from the cross-linked 

collagen (Figure 2.6B). 

As the results for the genipin treated collagen indicated, cross-linking improves the elastic modulus of 

biopolymer materials, however negatively affecting their stretchability. To overcome this problem, 

hydrophilic in nature polymers could be used in a combination with cross-linking, resulting in 

increased water retention capacity and energy storage of the matrices, and consequently, higher 

stretchability and tensile strength [172]. This study confirms that the addition of polysaccharides, such 

as chitosan and high molecular weight hyaluronic acid into collagen-based matrices, in combination 

with chemical cross-linking is an efficient strategy to improve both elastic modulus and material 

stretchability. 

 

 

Figure 2. 6 A) Linear elastic (Young’s) modulus and B) failure strain for the cross-linked, hydrated (PBS, pH 7.4) 

biopolymer composite sponges. Statistical differences are related to the collagen sponge and represented as 
**p<0.01 and ***p<0.001 

 

Exploitation characteristics of cross-linked biopolymer composite sponges 

In acute wounds the collagenases contribute to the controlled reconstruction of the damaged skin 

during wound closure and remodelling. In chronic wounds, however, their elevated levels cause 

uncontrolled breakdown of the newly formed ECM and impair the healing process. It is therefore 

crucial to maintain the collagenases active during the tissue reconstruction but interfere with their 

pathophysiologically persistent activation. One of the strategies for chronic wound treatment is based 

on the removal of these enzymes from the wound exudates by enzyme adsorption onto the dressing 

material [176]. Therefore, in this study the extent of collagenase binding onto the developed collagen-

based sponges was evaluated in vitro. 

Although in many cases collagenase adsorption onto collagenous substrates occurs within 1 h, the 

process is much slower on dense (e.g. cross-linked) matrices [71]. In order to assure equilibrium 

binding the biopolymer sponges were incubated for 24 h with the enzyme in concentration not causing 

degradation of the materials (2 g/mL, results not shown), and the activity of the supernatants were 

further determined. All enzymatic solutions incubated with the sponges displayed lower activities 
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compared to the control, meaning that collagenase was adsorbed on all specimens (Figure 2.7A). As 

expected, the extent of binding decreased with the decrease of the substrate (collagen) content in the 

sponges. The protein adsorption on the cross-linked collagen was 52 %, while the addition of HA to 

the blends led to 38 % protein adsorption on CHA6, 22 % on both CHA830 and CHA2000, and only 

9 % on CHACS sponges.  

Despite that the extent of collagenase adsorption differed between the experimental groups, in vitro 

test for material biostability revealed similar (>95 %) resistance to collagenase (10 g/mL) 

degradation for all cross-linked biopolymer sponges (Figure 2.7B). However, using higher enzyme 

concentration (60 g/mL) made possible to distinguish between the enzymatic sensitivity of different 

experimental groups, the results being in agreement with the enzymatic adsorption tests. More than 30 

% of the protein was digested from the pure collagen sponge, whereas the biostability of the sponges 

significantly increased after addition of HA and CS (p<0.01 for CHA6, p<0.001 for CHA830, 

CHA2000 and CHACS). Also, it is worthy to mention that even when higher enzyme concentration 

was used all sponges could preserve their structural integrity during incubation – an important 

property of a dressing material that allows for its easy removal from the wound site.  

 

 

Figure 2. 7 A) Binding extent of collagenase onto the cross-linked collagen-based matrices and B) collagen 

proteolysis by 10 g/mL (light grey bars) and 60 g/mL (dark grey bars) collagenase from the cross-linked 
collagen-based matrices. Statistical differences are related to the collagen sponge and represented as **p<0.01 

and ***p<0.001 

 

 

It is known that the susceptibility of insoluble substrates, e.g. biopolymer matrices, to enzymatic 

transformations is inversely proportional to the cross-linking degree of the material. Higher cross-

linking density of the substrate results in reduced surface area [169], lower accessibility of the enzyme 

to the binding sites and consecutively limited enzymatic adsorption and efficiency [177]. Thus, the 

inclusion of more cross-linking points (amino and carboxylic groups) by the addition of HA and CS to 

the collagen-based sponge resulted in improved biostability of the materials, but limited collagenase 

adsorption. 
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As already mentioned (see section 2.3.1), besides the extent of cross-linking in the matrix, the most 

important parameter influencing the swelling of the biopolymer constructs is the hydrophilicity of its 

constituents [174]. Again, owing to the diverse and dynamic nature of all chronic wounds, there is no 

general recommendation for the fluid uptake capacity of the corresponding dressings as long as the 

material maintains its form and stability after swelling to be easily removed from the wound site. In 

this study the addition of HA of different Mw to collagen altered differently the swelling of the CHA 

systems without causing a significant volume expansion of the specimens (Figure 2.8). While CHA6 

did not differ from the cross-linked collagen in swelling, the addition of HA with higher molecular 

weights resulted in significant increase in fluid uptake (p<0.01 and p<0.001 for CHA830 and 

CHA2000, respectively). 

 

The presence of HA in collagen-based sponges is expected from one side to increase the swelling due 

to the high hydrophilicity of this polymer, but from another, to increase the cross-linking density of 

the system and affect negatively the swelling [166]. Although the results from the biostability test and 

collagenase binding studies indicated higher cross-linking densities in the specimens prepared with 

HA with longer polymer chains, the latter retained more fluid compared to CHA6. The high affinity 

of HA for physiological fluids originates from the high density of negative charges that bind a cloud 

of cations, most notably Na
+
 (here from PBS), which are osmotically active and promote swelling 

[53]. In order to estimate the anionic character of HA used in the study, the ζ -potential of HA 

solutions were determined (Nano-ZS from Malvern, UK). These values for HAs of 6, 830 and 2000 

kDa were -5.3 ± 1.2, -17.1 ± 2.2 and -16.6 ± 1.1 mV, respectively. Thus, it can be hypothesised that 

HA with higher Mw would retain more fluid compared to HA of low Mw and, in spite of its densely 

Figure 2. 8 Swelling of the cross-linked biopolymer matrices after 24 h incubation in PBS (pH 

7.4). Statistical differences are related to the collagen sponge and represented as **p<0.01 
and ***p<0.001 
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cross-linked structure, would enhance the hydrophilic properties of CHA system. The addition of CS 

to CHA830 decreased the swelling capacity of the specimen due to further cross-linking reactions 

with the amino groups from CS [171]. 
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2.4 Conclusions 

Low stability of biopolymers in contact with chronic wound exudates requires the use of cross-linking 

agents to diminish the susceptibility of biopolymer-based dressings to enzymatic degradations. In this 

study two chemical cross-linkers were tested to improve bulk properties and biostability of freeze-

dried collagen and various biopolymer composite sponges. Collagen sponges cross-linked with 

genipin displayed beneficial for the extracellular matrix reconstruction macroporous structure able to 

retain more than 10-fold of their own weight of physiological fluid without deformation. By varying 

the amount of genipin, tuning of the mechanical properties and biostability of the materials was 

achieved. On the other hand, biopolymer composite sponges comprised collagen-hyaluronic acid and 

collagen-hyaluronic acid-chitosan were stabilised with EDAC through amide- and ester-bond 

formation. The physico-mechanical properties of the bio-composites were easily adjustable by altering 

their polymer composition, i.e. through the formation of additional cross-links after collagen blending 

with hyaluronic acid and chitosan. Additionally, the composite sponges also exhibited improved 

biostability compared to the collagen one. Improved swelling was achieved only by addition of 

hyaluronic acid with higher molecular weights (830 and 2000 kDa). 
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3.1 Introduction 

During the persistent inflammation in chronic wounds numerous mutually causative cellular events 

lead to overexpression of proteolytic and neutrophil-derived oxidative enzymes. For example, total 

MMPs activity, being predominantly collagenases, is up to 30-fold greater in chronic than in acute 

wound fluids [17], resulting in a protease/antiprotease imbalance and excessive breakdown of the 

ECM. The proteolytic damage of the tissue is further promoted by oxidation of the natural protease 

inhibitors with hypochlorous acid generated by myeloperoxidase [178]. It is believed that bringing the 

counts of the deleterious chronic wound enzymes down to the levels found in acute wounds would 

allow healing to progress through the restoration of the balance between molecule degradation and 

production [179]. Therefore, the multifactorial nature of the chronic wounds requires the use of active 

agents to interfere more efficiently at molecular level with the biochemical events governing the ECM 

breakdown. The latter can be achieved by topical application of bioactive molecules, e.g. enzyme 

inhibitors.  

Polyphenolic structures present in plant extracts are lately gaining considerable medical significance 

due to their therapeutic properties coupled with low toxicity to animal cells [180]. As such, different 

polyphenolic compounds have been already reported as wound healing promoters [181, 182], 

accounted for their antioxidant activity [183]. Moreover, the propensity of these compounds to bind 

proteins presumably accounts for the fact that polyphenols were able to inhibit virtually every enzyme 

tested with in vitro [180]. The previous studies in the group indicated that by the application of 

Hamamelis virginiana (witch-hazel) polyphenolic extracts controlled inhibition of major chronic 

wound enzyme activities (myeloperoxidase and collagenase) could be achieved [184]. On the other 

hand, biopolymeric platforms are increasingly used for delivery of active compounds into the wound 

site. The ability of polyphenols to complex with proteins and polysaccharides could be exploited for 

improving the biopolymers stability to enzymatic degradation [185], in addition to upgrade of these 

platforms with an active agent. 

This work aims to functionalise different biopolymer-based sponges developed in Chapter 2 by 

integrating Hamamelis virginiana extract or single polyphenolic units from Camellia sinensis to 

generate active chronic wound dressings. The capacity of such devices to address the persistent 

inflammation in chronic wounds was evaluated in vitro by inhibition of MPO, taking into account the 

continuous influx of this enzyme to the wound site and the duration of such effect. In addition, 

inhibition of collagenase was also assessed with an intention to achieve a dual effect: i) attenuation of 

the deleterious chronic wound proteolytic activity, and ii) additional stabilisation of the biopolymeric 

platforms. 
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3.2 Materials and methods 

3.2.1 Sponges and reagents 

Collagen sponges cross-linked with genipin and biopolymer composite sponges cross-linked with 

EDAC developed in Chapter 2 were used in this study. Highly purified MPO from human leukocytes 

(1550 U/mg solid, one unit will produce an increase in absorbance at 470 nm of 1.0 per min at pH 7.0 

and 25 °C, calculated from the initial rate of reaction using guaiacol substrate) was purchased from 

Planta Natural Products (Austria). Collagenase from Clostridium histolyticum (277.50 U/mg solid, 

one unit liberates peptides from collagen equivalent in ninhydrin colour (at 570 nm) to 1.0 mol of 

leucine in 5 h at pH 7.4 and 37 ºC in presence of calcium ions) and N-(3-[2-Furyl]Acryloyl)-Leu-Gly-

Pro-Ala (FALGPA) were obtained from Sigma-Aldrich. If not indicated otherwise, all other reagents 

were of analytical grade purchased from Sigma-Aldrich and used as received. 

 

3.2.2 Active agents - polyphenols 

Purified single polyphenolic units from Camellia sinensis – epigallocatechin gallate (EGCG), catechin 

(CAT) and gallic acid (GA) – were purchased from Sigma-Aldrich (Scheme 3.1). Hamamelis 

virginiana stems were provided by Martin Bauer GmbH (Alveslohe, Germany). Phenolic extracts 

were obtained following the previously reported method [186]. The extraction was carried out by the 

colleagues in the group. Briefly, chopped stems of the plant were incubated in an acetone/water 

mixture for 24 h at room temperature. The solid was filtered off, and the acetone was evaporated at 

reduced pressure. The remaining solution was defatted with n-hexane, and the oligomeric fraction was 

extracted with ethyl acetate. After drying this organic phase under vacuum, the obtained pellet was 

dissolved in deionised water, and the solution was filtered through a porous plate. The organic dry 

fraction (OWH) was finally obtained by freeze-drying. 

 

 

Scheme 3. 1 Structure of polyphenolic units from Camellia sinesis: A) EGCG, B) CAT and C) GA 
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3.2.3 Loading of the biopolymer sponges with polyphenols 

The cross-linked sponges were loaded with polyphenols by immersing specimens of 10 mg into 1 mL 

of aqueous polyphenols solutions at 4 ºC for 24 h. The impregnation time was chosen according to the 

literature to assure equilibrium loading of the polyphenols [187]. Thereafter the samples were freeze-

dried. Since the collagen sponge cross-linked with 1 mM genipin displayed the highest mechanical 

and enzyme stability among all samples studied, this specimen was chosen for loading with 

Hamamelis virginiana polyphenols. These polyphenols-loaded specimens were denominated as 

CG1P0.5, CG1P1 and CG1P2 (treated with 0.5, 1 and 2 mg/mL of polyphenols, respectively). On the 

other hand, due to the large number of experimental groups, for simplicity only collagen, CHA830 

and CHACS specimens were loaded using 1 mM aqueous solutions of EGCG, CAT or GA.  

 

3.2.4 Polyphenols binding onto the biopolymer sponges and release studies 

The experiments for the release of Hamamelis virginiana polyphenols were conducted by immersing 

10 mg of sample in 1 mL dH2O at room temperature. At defined time periods 20 L of solution were 

withdrawn and the polyphenols concentration was determined by the Folin-Ciocalteu’s 

spectrophotometric method, measuring absorbance at 760 nm [188]. In the case of polyphenols single 

units the uptake by the sponges was estimated by comparison of the total phenol content in solution 

before and after incubation with cross-linked specimens. Moreover, their cumulative release was 

measured. The experiments for the cumulative release of polyphenols were started by immersing 5 mg 

of specimens in 500 L dH2O. At defined time periods the sponges were transferred into the same 

amount of fresh dH2O. The total phenol content at each time point was determined as described 

above. The calibration curves were prepared using different concentrations of the corresponding 

polyphenolic extract/compounds. 

 

3.2.5 Swelling behaviour of the biopolymer dressings 

Cross-linked specimens impregnated with plant polyphenols were evaluated for their ability to absorb 

physiological fluid [166]. The sponges were first weighed (Wi) and then immersed in PBS pH 7.4 for 

24 h. The swollen samples were withdrawn and weighed again without dripping (Ws). Their capacity 

to absorb physiological fluid was defined as the ratio between the retained fluid (Ws - Wi) and the dry 

weight of the sample (Wi). Five samples of each specimen were evaluated for swelling. 
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3.2.6 Biostability of the biopolymer dressings 

Biodegradation tests were carried out in vitro by incubation of the dressings impregnated with 

polyphenols in 50 mM Tris-HCl (pH 7.4, with 40 mM CaCl2) containing 60 g/mL collagenase at 37 

ºC for 24 h. After complete hydrolysis of the supernatants in 6 N HCl for 24 h at 90 ºC and 

neutralisation with 6 N NaOH, the Hyp content was determined by the method described by Reddy 

and Enwemeka [164]. The calculation was based on the assumption that collagen contains 

approximately 14 % Hyp [165]. 

 

3.2.7 Collagenase inhibition with polyphenols 

Inhibition of collagenase activity was determined either by monitoring collagen degradation or 

cleavage of the specific collagenase substrate FALGPA using the enzyme pre-incubated with different 

polyphenols. For the polyphenolic extract from Hamamelis virginiana collagenase (10 g/mL) was 

pre-incubated for 24 h at room temperature with different amount of polyphenols (0.2, 0.5, 1 and 2 

mg/mL) in Tris-HCl buffer containing 100 mM CaCl2 (pH 7.4). Subsequently, non-cross-linked 

collagen (10 mg) was treated with the pre-incubated enzyme for 24 h at 37 ºC. Hyp content of the 

resulting mixtures was analysed as previously described and the percentage of collagen degradation 

was determined. The enzyme inhibition was calculated as the difference in the percentage of collagen 

digestion by native collagenase and by polyphenols-incubated collagenase. 

Inhibition of collagenase activity by single polyphenolic units from Camellia sinensis was determined 

using FALGPA as a substrate [189]. Collagenase (5 μg/mL) hydrolysis of FALGPA (1 mM) 

incubated with different concentrations of polyphenols for 1 h in 50 mM Tricine buffer (pH 7.5) 

containing 100 mM CaCl2 and 400 mM NaCl, was monitored at 345 nm during 5 min. The results are 

expressed as the concentration required for the inhibition of 50 % FALGPA hydrolysis by collagenase 

(IC50) ± standard deviation (n=3). 

 

3.2.8 Myeloperoxidase inhibition assay  

The inhibitory effect of the polyphenols and polyphenols loaded sponges on MPO activity was 

measured using guaiacol as a substrate. Different polyphenols concentrations were incubated for 1 h 

with MPO (0.60 U) and guaiacol (167 mM) buffered with 500 L of 50 mM PBS pH 6.6 at 37 ºC. 

Thereafter, 270 L aliquots were placed in a 96-well microplate and the enzymatic reaction was 

started by adding 30 L of 10 mM H2O2. The change in absorbance at 470 nm was monitored and the 

activity determined by the rate of absorbance increase per min. The capacity of the polyphenols to 

inhibit MPO is expressed in IC50 values. 
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 The inhibitory effect of the polyphenols released from the biopolymer sponges on MPO activity was 

determined after specimens (2 mg) incubation with the enzyme (0.60 U). After different incubation 

times the enzymatic activity was determined as described above and expressed as a percentage of 

enzyme inhibition compared to the control (sponges without polyphenols). All measurements were 

carried out in triplicate. 

 

3.2.9 Cell viability, morphology and distribution 

The sponges were sterilised by ethylene oxide and hydrated in PBS for 1 h before seeding with mouse 

NIH 3T3 fibroblasts or L929 human fibroblast-like cell lines (European Collection of Cell Cultures, 

UK) at 50000 and 100000 cells/sponge concentrations, respectively. The cultures were carried out in 

Dulbecco’s modified eagle’s medium (DMEM; Sigma-Aldrich, USA) supplemented with 10 % of 

fetal bovine serum (FBS, Biochrom AG, Germany) and 1 % antibiotic/antimycotic (Gibco, USA). 

Cells were cultured at 37 ºC under a humidified atmosphere of 5 % CO2. 

For the genipin cross-linked collagen sponges, cell viability was evaluated using MTT (3-

dimethylthiazol-2,5-diphenyltetrazolium bromide) colorimetric assay. After culturing the cells for 24 

hours, the medium was removed, 10 % MTT solution (5 mg/mL in DMEM) was added to the cell 

monolayers, and the multi-well plates were incubated at 37 °C for another 4 h. After discarding the 

supernatants, the dark blue formazan crystals were dissolved by adding 100 µL of dimethylsulphoxide 

(DMSO) and quantified spectrophotometrically (Secomam, Anthelie light, version 3.8, Contardi, 

Italy) at 570 nm (n=3). 

For the biopolymer composite sponges, cell viability was determined at 24, 48 and 72 h by CellTiter 

96 Aqueous One Solution Cell Proliferation Assay (Promega, USA). The absorbance was measured at 

490 nm using a microplate reader (Synergie HT, Bio-Tek, USA). Three samples of each specimen 

were characterised per time point. 

 

3.2.10 Statistical analysis 

All data are presented as mean values ± standard deviation. For multiple comparisons of composite 

sponges, statistical analysis by a one way analysis of variance (ANOVA) followed by post-hoc Tukey 

test was performed using Graph Pad Prism Software 5.04 for Windows (USA). Statistical significance 

was considered at p < 0.01. 
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3.3 Results and discussion 

The multifactorial nature of all chronic wounds, characterised with prolonged inflammation and 

deleterious concentrations of oxidative and proteolytic enzymes, emphasizes the necessity for 

investigation of dressing materials with the ability to actively modulate the wound environment at 

molecular level and stimulate the healing. As a part of the immune response, MPO plays a major role 

in many diseases by catalysing the formation of the potent antimicrobial oxidant HClO from Cl
-
 in 

presence of H2O2. However, the persistent activity of MPO-H2O2 system during prolonged 

inflammation, such as in chronic wounds, and the consequent HClO accumulation at the wound site 

may adversely affect the tissue regeneration [190]. It is therefore essential that the chronic wound 

treatment include controlled MPO inhibition, which may also contribute to the control of the 

proteolytic activity [191]. Plant polyphenols exert their beneficial effect acting as both MPO 

inhibitors and MPO substrates, thereby deviating the enzyme from its catalytic cycle of HClO 

generation [184]. To this end, the cross-linked biopolymer-based sponges were impregnated with 

bioactive molecules, e.g. plant polyphenols, and evaluated in vitro as chronic wound dressings.  

 

3.3.1 Collagen sponges loaded with Hammamelis virginiana polyphenols 

Stability-at-use and swelling 

Surprisingly, treatment with Hamamelis virginiana polyphenols (0.5 mg/mL) considerably increased 

the collagen degradation (65 %) by collagenase (60 g/mL) compared to degradation of the cross-

linked collagen without polyphenols (Figure 3.1), thus adversely affecting the stability-at-use of the 

dressing. On the other hand, when the samples were treated with higher polyphenols concentration the 

biostability was partially recovered. When 1 mg/mL polyphenols was used for loading collagen 

degradation decreased to 36 %, and further increasing concentration (2 mg/mL) resulted in 22 % 

collagen degradation. 

 

Figure 3. 1 Percentage of collagen degradation from the collagen sponges cross-linked with 1.00 mM genipin 

and further loaded with different polyphenols concentration (0.5, 1 and 2 mg/mL) 
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In order to clarify these findings, the protein degradation from uncross-linked collagen after treatment 

with collagenase pre-incubated with polyphenols was measured by released hydroxyproline. 

Collagenase incubation with polyphenols brought about dose dependent inhibition of the 

collagenolytic activity (Figure 3.2). The polyphenols (0.2 mg/mL) exhibited about 10 % collagenase 

inhibition measured by collagen degradation, whereas the inhibition of up to 73 % was achieved when 

the enzyme was pre-incubated with 2 mg/mL polyphenols. 

 

 

Figure 3. 2 The percentages of collagenase activity inhibition with polyphenols at different concentrations 

The possibility that the polyphenols cleave the genipin bridges described in Chapter 2 is rather 

improbable. On the other hand, at pH 7.4 used in the study the structure of the Hamamelis virginiana 

polyphenols in the extract might be altered resulting in increase of the gallic acid content [186]. 

Unlike the other phenolic structures containing galloyl moiety, gallic acid does not promote collagen 

stabilisation [192].  Moreover, polyphenols organize along the collagen macromolecules interacting 

via hydrogen bonds and hydrophobic interactions [180]. It might be hypothesised that the interaction 

of the polyphenols with the cross-linked collagen matrix exerts a plasticising effect on the structure 

making it more accessible to enzymatic attack, thereby promoting increased collagen degradation. 

Nevertheless, higher concentrations of polyphenols were found to effectively inhibit the proteolytic 

degradation of collagen, and thus partially compensate the loss of biostability. 

 

Moreover, due to the above mentioned nature of the polyphenols interactions with proteins it was not 

expected that their loading would significantly influence the swelling properties of the sponges, unlike 

the genipin covalent cross-linking. Some authors report even increase of the water binding capacity of 

collagen/phenolics aggregates [193]. In this study the genipin (1 mM) cross-linked sponges with or 

without polyphenols could all bind similar amounts of physiological fluid (results not shown). 
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Myeloperoxidase inhibition 

All samples containing Hamamelis virginiana polyphenols showed efficient inhibition of MPO 

activity (Figure 3.3A) depending on polyphenol concentration, while inhibition was not observed with 

the cross-linked collagen control (result not shown). Large part of the activity was reduced within 1 h 

for all specimens used. It was also found that the MPO inhibition is related to the polyphenols release 

profiles from the cross-linked biopolymer platform (Figure 3.3B). Most of the polyphenols from the 

sponge treated with 0.5 mg/mL extract were released within the first hour. On the other hand, for the 

samples treated with 1 mg/mL and 2 mg/mL polyphenols, the release continued up to 3 days showing 

initial burst release followed by sustained release of small amounts of polyphenols (Figure 3.3C). 

Such duration of the active agent release corresponds to the need for less frequent changing of the 

chronic wound dressing. 

 

 

Figure 3. 3 Time-course inhibition of MPO by Hamamelis virginiana polyphenols released from the collagen-

based sponges (A), and polyphenols release from the sponges within 6 h (B) and 96 h (C). Collagen sponges 
were cross-linked with 1 mM of genipin and further loaded with various polyphenols concentrations: 0.5 mg/mL 

(□), 1 mg/mL (○) and 2 mg/mL (Δ). 

 

In addition to be an integral component of the innate immune response, the MPO plays major role in 

many diseases by catalysing the formation of HClO from Cl
-
 in the presence of H2O2, contributing to 

tissue damage during inflammation. As already mentioned, by controlling the activity of MPO in 

chronic wound site it is possible to control the levels of HClO and consequently the proteolytic 

activity. It is therefore essential that besides protease inhibition, the chronic wound healing approach 

include controlled MPO inhibition. 

 

Cytotoxicity evaluation 

MTT test showed good viability of NIH-3T3 mouse fibroblasts cultured in a medium which was 

previously in contact with the collagen, genipin cross-linked collagen and sponges loaded with 

various concentrations of polyphenols for 24 h (Figure 3.4). Nevertheless, a slight decrease in 

biocompatibility was observed after collagen cross-linking with 1 mM genipin and further after 

addition of polyphenols. Maximum reduction of 14 % of the fibroblast activity was observed for 

collagen cross-linked with genipin and loaded with 2 mg/mL polyphenols. 
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Figure 3. 4 Toxicity effects of uncross-linked, collagen cross-linked with 1 mM of genipin and cross-linked 

collagen sponges loaded with different polyphenols concentration (0.5, 1 and 2 mg/mL) on fibroblasts measured 
by MTT colorimetric assay at 24 h. 

 

Although fibroblast cytotoxicity does not directly correlate with impairment of wound healing process 

in humans, the sensitivity of these cells gives insight to the biocompatibility of the systems. The MTT 

assay, a method to assess metabolic activity in cells, does not reflect cell death directly although it is 

accepted as an indicator for cytotoxicity measurements [194]. Usually up to 20 % reduction in cell 

viability is acceptable in vivo [192]. Since the decrease in fibroblast viability for all samples did not 

reach 20 %, it can be considered that the prepared sponges presented good biocompatibility profile for 

dermal applications. The cytotoxicity-provoking concentration usually exceeds by several folds the 

beneficial effects-providing concentration of phenolics [195, 196]. 

 

 

3.3.2 Biopolymer composite sponges loaded with green tea polyphenols 

Stability-at-use and swelling 

Unlike for the dressing materials treated with Hamamelis virginiana polyphenols, the treatment of the 

EDAC cross-linked biopolymer composite sponges with the single polyphenolic units from Camellia 

sinensis did not affect negatively the biostability of the materials against collagenase (60 g/mL) 

degradation (Figure 3.5A). Specimens loaded with EGCG displayed the lowest degradation (less than 

5 %) regardless to their biopolymer composition. Although not as efficient as EGCG, CAT also 

brought about significant increase in the dressing resistances to enzymatic degradation. In this case, 

the values for collagen degradation obtained for experimental groups with different biopolymer 

composition followed the same trend as in the case of dressings without polyphenols. Treatment with 

GA did not affect the materials biostability which is in good agreement with literature [192]. 
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Figure 3. 5 A) Collagen proteolysis in cross-linked biopolymers matrices without and loaded with polyphenols by 

60 g/mL collagenase, and B) extent of polyphenols binding onto cross-linked specimens: Collagen (white bars), 
CHA830 (grey bars) and CHACS (black bars). Statistical differences in the biostability of the non-treated and 

polyphenols loaded specimens are represented as **p<0.01 and ***p<0.001, in light grey, dark grey and black if 
related to Collagen, CHA830 and CHACS, respectively 

 

Some phenolic compounds exert a well-known improvement in the stability of protein/polysaccharide 

matrices towards enzymatic degradation through phenols-biopolymers interactions [185, 197] and 

enzyme inhibition [180]. In most cases, The extent of biostability improvement is proportional to the 

number of phenol moieties in the polyphenolic compound [187]. Thus, the highest potential of EGCG 

to stabilise biopolymer sponges could be related to its high number of phenolic groups able to react 

with the biopolymers (Figure 3.5B), and its highest potential for collagenase inhibition (Table 3.1). 

Although GA binds stronger to the sponges compared to CAT, the higher potential of CAT to inhibit 

collagenase still provided improved biostability of the materials. In conclusion, EGCG and CAT were 

found to effectively inhibit the proteolytic degradation of collagen, and thus have potential to partially 

compensate the loss of materials biostability. 

 

 

 

 

 

 

 

On the other hand, loading of the biopolymer matrices with polyphenols did not cause changes in the 

swelling behaviour of any experimental group (results not shown). Their concentration used in this 

study (1 mM) was probably too low to influence the swelling capacity of the cross-linked sponges. 

 

 

 

Table 3. 1 IC50 values for collagenase inhibition by single unit polyphenols  

Polyphenol compound IC50 collagenase (M) 

EGCG 92±8 

CAT 152±11 

GA 298±23 
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Myeloperoxidase inhibition and durability of the inhibition effect 

Since the inhibition of MPO activity by biopolymer platforms loaded with Hamamelis virginiana 

polyphenols was related to their release profile, the MPO inhibition caused by the released single unit 

polyphenols was also investigated in vitro. In this case, in order to simulate the chronic inflammation, 

i.e. continuous influx of neutrophil derived MPO to the wound site, at each reading point the 

incubation solutions were replaced with new solutions containing the fresh enzyme. Thus, the MPO 

inhibition in each reading point corresponds only to the effect of the polyphenols released between the 

two reading points. The durability of such effect was evaluated up to six days. 

 

 

 

 

 

 

 

 

Although CAT reduces stronger than GA the MPO activity (Table 3.2), the lowest extent of CAT 

binding on the materials (Figure 3.5B) might have led to the least efficient initial MPO inhibition with 

CAT-loaded dressings (Figure 3.6). Moreover, except for CAT-loaded collagen, all GA- and CAT-

loaded dressings inhibited MPO during only up to 6 h despite that their release continued after this 

point (Figure 3.6B,C). The possible reasons for such short period of efficiency could be: i) a large part 

of the active agent was released within the first few hours as in the case of CAT-loaded sponges 

(Figure 3.6B inset), and ii) the initial burst release was followed by a slow release of phenolics, 

apparently insufficient to achieve an inhibitory effect as in the case of GA-loaded sponges (Figure 

3.6C inset).  On the other hand, the pattern for EGCG was of initial burst release followed by a 

sufficient for MPO inhibition sustained release (Figure 3.6A inset). The inhibitory potential of EGCG-

loaded systems was also due to the high binding affinity of EGCG onto the biopolymer sponges.  

 

Figure 3. 6 Time-course inhibition of MPO by polyphenols: A) EGCG, B) CAT and C) GA released from the 

cross-linked Collagen (solid line), CHA830 (dot line) and CHACS (dash line). The inset graphs show the 
polyphenols release patterns from the corresponding biopolymer composite matrices. 

 

Table 3. 2 IC50 values for MPO inhibition by single unit polyphenols  

Polyphenol compound IC50 MPO (M) 

EGCG 15±1 

CAT 21±2 

GA 29±1 
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Finally, the EGCG released from CHACS sponge maintained the MPO inhibitory capacity up to 3 

days, whereas when released from CHA830 and collagen alone the effect was prolonged up to 4 and 5 

days, respectively (Figure 3.6A). Strong complexation of polyphenols with chitosan at neutral pH  

was possibly the reason for the slowest release pattern from CHACS sponge [197]. 

 

In vitro evaluation of cell viability and morphology 

Although fibroblasts were metabolically active on all biopolymer matrices over the studied period, 

some differences were observed among the experimental groups at the end of 72 h (Figure 3.7). The 

results clearly demonstrated the effect of the HA molecular weight on the cells viability: while there 

was no significant difference in viability after adding low molecular weight HA (6 kDa), the values 

were significantly (p<0.001) lower for the sponges containing longer HA chains (CHA830, CHA2000 

and CHACS). Moreover, the cells cultured in contact with the collagen, CHA6 and CHACS sponges 

showed progressive increase in their metabolic activity during the whole period of culture. However, 

the addition of HA with higher molecular weight (CHA830 and CHA2000) resulted in an increase of 

the metabolic activity only during the first 48 h, which then was maintained or decreased. The 

reduced cell viability in the specimens containing longer HA chains can be assigned to their increased 

hydrophilicity related with reduced fibroblast cell growth [198]. On the other hand, this study 

confirms that different molecular weights of HA can be used to tune cell differentiation [199] and rule 

different cell responses [200].  

 

 

Figure 3. 7 Time-course evaluation of fibroblasts metabolic activity using MTS assay. Statistical differences are 

represented as * p<0.05, ** p<0.01 and *** p<0.001 

 

SEM analysis showed that adherent cells could be observed on all cross-linked sponges at the end of 

the culture period – 72 h (Figure 3.8). It is worthy to notice the different morphology of the cells on 

different specimens: when cultured on collagen sponge, fibroblasts show typical spindle morphology, 

establishing several contacts with neighbouring cells. More elongated cells are visible on CHA6 and 
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CHA830, while round cells indicating a poor attachment to the surface of the sponge are observed for 

CHA2000 and CHACS. The amount of cells detected in CHACS sponges is remarkably lower when 

compared to the other specimens, due to the presence of chitosan in the formulation, related with the 

poor cell adhesion [44].  

 

 

Figure 3. 8 Morphology of the fibroblasts cultured for 3 days onto cross-linked Collagen (A-B), CHA6 (C-D), 

CHA830 (E-F), CHA2000 (G-H), CHACS (I-J). Scale bars correspond to 100 µm (left-side images) and 10 µm 
(right-side images). 

 

Finally, the cytotoxicity of the biopolymer composite sponges before and after loading them with the 

polyphenols was compared. Generally, the loading of the sponges with polyphenols in the 

concentration used (1 mM) did not induce significant difference in the cytotoxicity of the matrices; 

the only significantly lower metabolic activities (p<0.01) were found for the cells cultured on the GA-

loaded composite sponges (Figure 3.9). Thus, the overall results for the biocompatibility demonstrated 

that the composition of the biopolymer-based material can have stronger influence on cell viability 

than functional polyphenolic compounds per se. 
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Figure 3. 9 Effect of the polyphenols loaded sponges on fibroblasts viability after 3 days in culture. Statistical 

differences are represented as * p<0.05, ** p<0.01 and *** p<0.001, in black, light grey or dark grey, if related to 
Collagen, CHA830 or CHACS, respectively. 
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3.4 Conclusions 

An efficient chronic wound treatment approach requires the application of stable-at-use biocompatible 

dressing platforms upgraded with active functions for the control of the inflammation-related 

enzymatic activities at the wound site. To this end, chemically cross-linked collagen and biopolymer 

composite sponges comprising collagen-hyaluronic acid and collagen-hyaluronic acid-chitosan 

(obtained in Chapter 2) were functionalised by impregnating them with natural bioactive compounds, 

e.g. Hamamelis virginiana extract and single polyphenolic units from Camellia sinensis. Whereas the 

polyphenols incorporation did not affect swelling behaviour of any of the cross-linked specimens, 

their biostability was differently altered. Impregnation of Hamamelis virginiana extract to collagen 

sponge induced its higher susceptibility to collagenase digestion. This negative effect could be 

diminished by using higher polyphenols concentrations to inhibit proteolytic degradation of collagen. 

An efficient myeloperoxidase inhibition (within 1 h) occurred due to the initial burst release of the 

polyphenolic extract from the collagen-based platform. Nevertheless, sustained release of the extract 

was observed over three days, indicating the prolonged active function of such dressing. On the 

contrary, all biopolymer composite sponges loaded with EGCG and CAT (but not GA) exhibited 

improved biostability to collagenase degradation compared to non-treated materials. As expected, 

these dressings efficiently inhibited the inflammation-related MPO activity in vitro. The duration of 

the MPO inhibition effect could be tuned by the biopolymer composition of the materials and proper 

selection of the polyphenolic compound. 
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4.1 Introduction 

While acute wound healing can be enhanced by dressings based on a single biopolymer or their 

blends, the persistent inflammation related with aberrant expression of myeloperoxidase and MMPs in 

chronic wounds must be treated differently. Some dressings on the market combine biopolymers with 

therapeutics, most of them antimicrobials on an empirical basis. However, the need to heal chronic 

wounds faster will require the development of biopolymer-therapeutic combinations acting on specific 

molecular targets in wound environment. Functionalisation of biopolymer platforms with wound 

healing promoting agents means development of active dressings able to counteract the chronic 

wound pathogens (e.g. deleterious enzymes).  

The activation/inhibition of MMPs (e.g. collagenase) could be regulated by oxidation/reduction of the 

cysteine ligand coordinating Zn
2+

 in the enzymes active centre using thiol compounds [74], or non-

specifically with the same functionality through metal chelation [75]. In addition, these versatile 

compounds were reported to inhibit the human myeloperoxidase [79], directly involved in the 

regulation of MMPs activity [191]. Thus, thiol-functionalised biopolymers should be able to control 

both collagenase and myeloperoxidase activities through different mechanisms. In line with this, due 

to their reactivity biopolymers can be easily modified via chemical techniques through covalent 

grafting of a bioactive agent. In such cases the active function would act from the polymer matrix, 

without release to the wound. 

This work focuses on permanent modification of two biopolymers, chitosan and aminocellulose, by 

immobilisation of different thiol bearing compounds and optimisation of the protocols in order to 

achieve the maximum thiolation yields, i.e. the amounts of free thiols immobilised onto the polymer 

backbone. The effect of the thiolated conjugates, e.g. chitosan, on the chronic wound enzyme 

activities was evaluated in vitro. To this end, the rate inhibition of myeloperoxidase and collagenase 

activities as a function of the chitosan modification degree was investigated. 
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4.2 Materials and methods 

4.2.1 Biopolymers and reagents 

Ultra-pure chitosan (50 kDa) was obtained from KytoZyme. Aminocellulose conjugate (Scheme 4.1) 

was prepared by nucleophilic displacement reaction of p-toluenesulfonic acid ester of cellulose 

(cellulose tosylate) with ethylendiamine (EDA) and characterised by means of NMR at the Centre of 

Excellence for Polysaccharide Research, Friedrich Schiller University of Jena, Germany, and kindly 

provided as 1 % aqueous solution with pH~9.2.  

 

Reagents for thiolation used were: 2-Iminothiolane hydrochloride (Traut’s reagent) and imidoester 

cross-linker - dimethyl 3,3'-dithiobispropionimidate dihydrochloride (DTBP). Dithiothreitol (DTT) 

was used to cleave disulphide bond in DTBP-cross-linked biopolymer to obtain free thiols. 5,5’- 

dithiobis (2-nitrobenzoic acid) - Ellman’s reagent was used for quantification of free thiol groups 

immobilised onto biopolymer backbones. Highly purified MPO from human leukocytes (1550 U/mg 

solid, one unit will produce an increase in absorbance at 470 nm of 1.0 per min at pH 7.0 and 25 °C, 

calculated from the initial rate of reaction using guaiacol substrate) was purchased from Planta 

Natural Products (Austria). FALGPA was obtained from Sigma-Aldrich. All other reagents were of 

analytical grade purchased from Sigma-Aldrich and used as received. 

 

4.2.2  Chitosan thiolation 

The synthesis of thiolated chitosan (TC) was carried out in a one-step coupling reaction between 2-

iminothiolane HCl and primary amino groups of chitosan, according to Bernkop-Schnürch et al. 

[109]. Briefly, chitosan was dissolved in CH3COOH (1%, v/v). The pH of the solution was adjusted to 

6 with NaOH (5 M) Traut's reagent added and the solution was stirred overnight at closed vessel in 

dark. The resulting mixture was dialysed two times for 24 h against 1 mM HCl containing NaCl (1 %) 

and finally for three days in 1 mM HCl. Dialysed products were freeze-dried and stored at +4 °C until 

Scheme 4. 1 Schematic representation of aminocellulose structure 
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further use. Batches differing in the thiolation degree were prepared altering the amount of the 

coupling reagent in the reaction mixture and the thiolated conjugates were designated accordingly 

(Table 4.1). 

 

Table 4. 1 Denomination of the thiolated chitosan conjugates 

Thiolated specimen Chitosan:2-iminothiolane HCl 

(w/w) 

Chitosan - 

TC10-1 10:1 

TC5-1 5:1 

TC5-2 5:2 

TC2-1 2:1 

 

4.2.3 Synthesis of thiolated aminocellulose  

The thiolation of aminocellulose was achieved by cross-linking with disulphide containing 

homobifunctional imidoester - DTBP and subsequent cleavage of disulphides with DTT. The 

thiolation protocol was optimised for obtaining the highest amount of free thiol groups onto the 

biopolymer, in terms of DTBP concentration and pH of the reaction. 

 

Optimisation of the imidoester concentration  

Aminocellulose solution (5 mL) of was brought to pH 8 with 1 M HCl. DTBP was added at different 

concentrations, pH readjusted to 8 and reaction allowed to proceed in closed tubes at room 

temperature for 30 min. To stop the reaction pH was dropped to 3 and thereafter 150 mM of DTT was 

added, pH adjusted to 7 and the solutions were left 45 min at 37 ºC for disulphide reduction. The 

resulting mixture was dialysed 2 times against 3 L of 1 mM HCl solution for 24 h, and finally 

extensively against 1 mM HCl for three days. The products were then freeze-dried. Control sample 

was prepared the same way just omitting imidoester. 

 

Optimisation of the reaction pH 

Aminocellulose conjugate was brought to the desired pH (7, 8 and 9) with 1 M HCl and DTBP was 

added in the final concentration 5 mM. Thereafter, the reaction protocol described above was 

repeated. Control sample was prepared at pH 3 to assure that the imidoester does not react with 

primary amines from aminocellulose. 

 



Multifunctional biopolymer-based materials for modulating the activities of chronic wound enzymes 
 

80 
 

4.2.4 Quantification of the thiol groups immobilised onto biopolymers 

The amount of free thiol groups immobilised on biopolymers was determined spectrophotometrically 

using Ellman’s reagent. First, 1 mg of specimen was hydrated in 500 L of 0.5 M phosphate buffer 

(PB), pH 8.0 and then 500 L of Ellman’s reagent solution (3 mg of the reagent dissolved in 10 mL 

PB) was added. The samples were incubated for 3 h at room temperature in dark. After centrifugation 

(5000 rpm, 5 min), the absorbance was measured at 450 nm. L-cysteine standards were used to build 

the calibration curve. 

Sulphur elemental analysis (EuroVector 3011 CHNS Elemental Analyzer, Italy) was performed to 

determine total sulphur content in the conjugates. 

 

4.2.5 -potential measurements 

The ζ-potential of the chitosan some and thiolated chitosan solutions was determined at 25 °C (Nano-

ZS from Malvern, UK) after the appropriate dilution of conjugates in ultrapure-grade water. The 

instrument was previously calibrated with a ± 66 mV latex standard. 

 

4.2.6 Enzymes assays 

The inhibitory effects of thiolated chitosan (2 mg) on collagenase and MPO activities were measured 

by the same methods applied in Sections B 3.2.7. and B 3.2.8. 
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4.3 Results and discussion 

4.3.1 Thiolated chitosan 

2-Iminothiolane HCl is a compound that reacts with primary amines to add a small spacer arm (8.1 Å) 

terminated by a free sulfhydryl group. The reaction is well established for the modification of proteins 

[201]. On the other hand, it can be applied for modification of other biopolymers, being especially 

efficient with those bearing comparatively much more amino groups than proteins. The advantage of 

Traut’s reagent over other thiolation compounds is that its sulphhydryl group is not in the free form, 

in which it is sensitive to air oxidation [202], but rather forms part of the cyclic thioimidate. Other 

advantages include one-step coupling with amines from polymers to immobilise free thiol groups, 

mild reaction conditions and improved cationic character of the conjugate polymers due to the 

established amidine linkages (Scheme 4.2) [1]. The latter was confirmed by -potential measurements 

(Table 4.2).  

 

Table 4. 2 -potential of some thiolated chitosan solutions (0.5 mg/mL) prepared in 0.15 M NaCl, pH 5.5 

Specimen -potential (mV) 

Chitosan 6.97±0.50 

TC10-1 13.20±0.46 

TC5-2 13.30±0.94 

 

The sulphur content in the samples (Table 4.3) increased with the increase of 2-iminothiolane HCl 

concentration, demonstrating a successful coupling with chitosan. Between 31 and 43 % of the total 

sulphur content was in the form of disulphide bridges, oxidised during the time consuming dialysis 

step of the conjugates preparation. 

It is also worthy to notice that the -potential values (Table 4.2) increased with the chitosan thiolation 

independently of the degree of the modification (Table 4.3). Thus, the cationic character of the 

thiolated chitosan did not depend on the percentage of the polymer thiolation, but rather on the 

modification itself. 

Scheme 4. 2 Proposed structure of the obtained thiolated chitosan [1] 
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Table 4. 3 Total sulphur content, percentage of free thiol groups, and disulphide content in the obtained thiolated 

chitosan conjugates 

Specimen Total sulphur 

content 

(%, w/w) 

Free thiol groups 

(mol/g of 

conjugate) 

Free thiol groups 

(% of total S) 

S-S (% of 

total S) 

Chitosan - - - - 

TC10-1 2.08 158±8 61 39 

TC5-1 3.61 288±4 69 31 

TC5-2 5.43 515±53 60 40 

TC2-1 5.82 582±35 57 43 

 

4.3.2 Thiolated aminocellulose 

The thiolation of aminocellulose was achieved in the reaction with homobifunctional -S-S- bearing 

imidoester cross-linker – DTBP and subsequent cleavage of disulphides with DTT (Scheme 4.3). The 

imidoester functional group is one of the most specific acylating groups available for the modification 

of primary amines and has minimal cross reactivity towards other nucleophilic groups [203]. This 

reaction has been used previously to cross-link proteins, e.g. for stabilisation of collagen matrices 

[204]. Unlike the modification with Traut’s reagent, the reaction products obtained in the reaction 

with the imidoester do not alter the overall charge of the polymer [205]. Imidoesters react with 

primary amines at pH 7-10. 

Scheme 4. 3 Synthetic pathway for thiolation of the aminocellulose conjugate 
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The protocol was firstly optimised in terms of the reagent concentration. To this end, different 

concentrations of DTBP were used for the modification while pH of the reaction was kept constant. 

Results indicated a good correlation between increasing DTBP concentration in the range of 0.5 – 5 

mM and free thiol groups immobilised onto EDA-cellulose (Figure 4.1). Further increase of DTBP 

concentration (10 mM) did not result in the higher thiolation grade of the conjugate. Therefore, 5 mM 

concentration was chosen to carry out the further experiments.  

 

The thiolation protocol was also optimised in terms of the pH of the cross-linking reaction, where the 

concentration of 5 mM of DTBP was kept constant. Control sample was prepared at pH 3, in which 

no thiol groups were detected confirming that the reaction is not possible at lower pH (Figure 4.2). In 

this experiment, the highest thiol content of 694±31 μmol/g of conjugate was found for the specimen 

prepared at pH 8 followed by the sample prepared at pH 7 (358±9 μmol/g) and at pH 9 (289±6 

μmol/g). Therefore, pH 8 and 5 mM of DTBP were chosen as the optimal to yield the highest amount 

of free thiol groups immobilised onto the biopolymer backbone. 

 

Figure 4. 1 Amount of free thiol groups immobilised onto EDA-cellulose prepared using 
different concentrations of DTBP 

Figure 4. 2 Amount of free thiol groups immobilised onto EDA-cellulose prepared at different pH 
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Finally, the reproducibility of the thiolation protocol used has been evaluated. For this purpose the 

thiolation has been repeated three times and the aminocellulose modification degrees have been 

compared. No substantial differences have been found comparing the amount of free thiol groups 

immobilised onto the aminocellulose in three independent experiments. Thus, the thiolation protocol 

used had good reproducibility (Table 4.4). 

Table 4. 4 Amount of free thiol groups immobilised onto aminocellulose prepared using the same reaction 

conditions for three independent experiments 

Experiment DTBP concentration (mM) Reaction pH –SH (mmol/g conjugate) 

1 5 8 699±15 

2 5 8 724±40 

3 5 8 694±31 

 

 

4.3.3 Effect of thiolated chitosan on myeloperoxidase and collagenase 

activities 

The identification of elevated levels of oxidative MPO and matrix degrading proteolytic MMPs in 

chronic wound fluids [17, 206] led to a considerable interest for these enzymes as potential 

therapeutic targets [207, 208]. The product of the MPO-induced oxidation of physiological chloride in 

the presence of H2O2 is the potent antimicrobial oxidant HClO. However, the persistent activity of the 

MPO-H2O2 system may adversely affect the tissues under pathological conditions. The accumulated 

HClO is able to oxidatively modify lipids, DNA and (lipo)proteins by halogenation, nitration and 

oxidative cross-linking. On the other hand, collagenases are able to hydrolyse the triple helical regions 

of collagen under physiological conditions during many repairing processes. Therefore, it is crucial to 

maintain MPO and MMPs active during the host defence (MPO induces HClO generation needed for 

the bacterial killing) and reconstruction of the ECM (involving collagenases), but interfere with their 

pathophysiologically persistent activation. 

Some authors reported thiolated polymers as efficient inhibitors of zinc-dependent enzymes through 

metal chelation [209]. However, others found that the binding tendency of thiols immobilised onto 

polymers in solution is not high enough to develop effective ion depletion from the active sites of 

enzymes, unlike when such systems are applied as coating components due to different polymer 

chains rearrangement [210]. 

The thiolated chitosan conjugates obtained in this work were able to inhibit the activity of MPO in 

solution (Figure 4.3). Moreover, the degree of MPO inhibition could be tuned by the percentage of the 

chitosan thiolation. However, no reduction of collagenase activity by thiolated conjugates was found 

measured using FALGPA as a substrate (results not shown). Furthermore, the IC50 values for MPO 

and collagenase inhibition by 2-iminothiolane HCl were of 85 ± 2 M and 24 ± 3 mM, respectively. 
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This large difference indicates that chitosan with much higher thiolation grade is needed to inhibit 

collagenase in solution and to be detected by the enzymatic assay used. 

 

 

Figure 4. 3 Effect of thiolated chitosan conjugates on MPO activity measured with guaiacol as substrate 
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4.4  Conclusions 

Permanent modification of chitosan and aminocellulose to introduce free thiol groups has been 

achieved using different chemical approaches. In the first, chitosan was thiolated in a one-step 

coupling with 2-iminothiolane HCl. Total sulphur content as well as the amount of free thiol groups 

immobilised on the conjugates depended on the amount of the reagent used for the reaction. On the 

other hand, thiolation of aminocellulose was carried out in two steps, by cross-linking of the polymer 

with disulphide containing imidoester and subsequent reduction of -S-S- bridges with dithiothreitol. 

The thiolation protocol was optimised in terms of the imidoester concentration (5 mM) and pH of the 

cross-linking reaction (pH 8). Preliminary results show that the thiolated conjugates are efficient 

myeloperoxidase inhibitors, where the extent of inhibition could be controlled by the degree of the 

polymer modification. However, no reduction of collagenase activity by thiolated conjugates was 

found. 
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5.1 Introduction 

Most of the approaches for chronic wounds management are based on the topical application or the 

release of active compounds from the dressing platforms into the wound [211]. Despite some of the 

approaches include controlled release of active agents [25] the biggest concern, however, remain the 

side effects due to the accumulation of immunoreactive compounds at the wound site [26], i.e. 

overdoses. The permanent immobilisation of the active agents on the surface of the dressing would 

prevent from overdoses in clinical application. On the other hand, the modification of surfaces is 

nowadays a key aspect in biotechnology including development of substrates for regenerative 

medicine [212]. By alteration of the surface functionality controlled chemical and biological 

interactions can be achieved [213]. 

This study aims in development of a functional coating able to control the activities of deleterious 

proteolytic enzymes found in chronic wounds through specific surface interactions for promoting the 

healing process. To this end, the thiolated chitosan prepared in Chapter 4 was used to build PEM 

structures by assembling with the GAGs, chondroitin sulphate (CSU) and hyaluronic acid, as 

counterions. The preparation of such assemblies through layer-by-layer approach is a convenient 

technique for surface functionalisation and to impart specific surface bio-activity towards e.g. proteins 

and cells [214, 215]. From a technological point of view, the alternate deposition of oppositely 

charged polymers represent a simple way for surface modification, while rendering it suitable for the 

interaction with biological tissues in a relatively predictable way [216]. Moreover, control of the 

physicochemical and biological properties of multilayer coatings/films can be achieved by adjusting 

the process parameters such as pH, layer number, cross-linking and nature of the outermost layer 

[217]. 

To this end, the capacity of the fabricated multilayered structures for removal of collagenase from 

biological fluids by enzymatic adsorption was evaluated in vitro. Build-up of the coatings onto gold 

surfaces was assessed in situ by quartz crystal microbalance with dissipation (QCM-D). Since no 

inhibition of collagenase could be detected using spectrophotometric assay (Chapter 4), QCM-D was 

also used to study the affinity of collagenase towards surfaces coated with thiolated chitosan. Finally, 

the nature of the outermost layer was investigated in terms of fibroblasts adhesion and proliferation. 
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5.2 Materials and methods 

5.2.1 Polyelectrolytes and reagents 

Hyaluronic acid with different Mw (6 kDa, 830 kDa and 2000 kDa) from Lifecore Biomedical (USA) 

and the sodium salt of chondroitin sulphate (~20 kDa, DS 0.9) kindly supplied by Innovent 

(Germany) were used. Medical grade chitosan (~50 kDa, DDA 87 %) from Kitozyme (Belgium) was 

used for further thiolation as described in Chapter 4. Two batches with different thiolation degrees 

(TC10-1 and TC5-2) together with chitosan control were selected for PEM assembling. Collagenase 

from Clostridium histolyticum (0.27 U/mg solid, one unit hydrolyses 1.0 μmol of FALGPA per 

minute at pH 7.5 and 25 ºC in the presence of calcium ions) were purchased from Sigma-Aldrich. 

Unless specified otherwise, all other reagents and buffers were of analytical grade purchased from 

Sigma-Aldrich and used as received. 

 

5.2.2 Layer-by-layer assembly of PEM coatings and collagenase adsorption 

Solutions of chitosan, thiolated conjugates and glycosaminoglycans (0.5 mg/mL) containing NaCl 

(0.15 M) were prepared, and the pH adjusted to 5.5 with HCl or NaOH solutions. The ζ -potential of 

each solution was determined at 25 °C (Nano-ZS from Malvern, UK). The deposition of the 

polyelectrolytes was carried out at the same temperature and at a constant flow rate (75 L/min) onto 

the surface of Au coated sensor crystals (Q-Sense, Sweden). The crystals were first cleaned with 

H2O2(30%) / NH4OH(25%) / H2O (1:1:5) for 10 min at 75 ºC. The process was followed in situ by 

QCM-D E4 system (Q-Sense, Sweden). The baseline was built using a 0.15 M NaCl solution. 

Different multilayered systems were built by consecutive depositions of polycation (CS, TC10-1 or 

TC5-2) and polyanion (HA with different molecular weight or CSU) solutions. The solutions were 

injected into the measurement chamber for 10 min followed by a rinsing step (10 min) with 0.15 M 

NaCl, pH 5.5. This procedure was repeated 5 times to obtain five bi-layer substrates. Collagenase (0.1 

mg/mL in 0.15 M NaCl, pH 5.5) deposition was monitored in situ by QCM-D for 3 h at a constant 

flow of 10 L/min. At the end of this time a rinsing step with a protein-free solution was applied (1 h) 

to remove weakly and unadsorbed protein. Each study was performed in triplicate. For graphical 

simplification the evolutions of the normalised frequency (f/) and dissipation (D) shifts as 

functions of time of one representative per experimental group and only for the 9th harmonic are 

shown. Coating growth (thickness variation) as a function of the layer number and the amount of 

collagenase adsorbed on coatings was estimated using the Voigt model (Q-Tools software, Q-Sense). 

By using this model the values for the coating thickness obtained for the first layer adsorption are 

usually non-reproducible, therefore these values were excluded from the data [218]. 
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5.2.3 Characterisation of PEM coatings 

The PEM coatings were characterised by X-ray photoelectron spectroscopy and contact angle 

measurements. Multilayered systems were deposited on Au coated (100 Å) glass microscopy slides 

(Sigma-Aldrich), cut into pieces of 1 cm
2
 and cleaned using the same protocol as the one described for 

QCM crystals. Custom made dipping robot was used for the biopolymers deposition. The assembling 

process was performed using the same conditions (solution concentration, pH, ionic strength and 

deposition/rinsing times) described in section 5.2.2. Multilayered systems differing in layer number 

(1, 3, 7 and 11) and composition of the outermost layer were prepared. 

 

X-ray photoelectron spectroscopy 

X-ray photoelectron spectroscopy (XPS) analyses were performed on a PHI 5500 Multitechnique 

System (Physical Electronics, USA) using monochromatic Al-K X-ray source (h1486.6 eV), 

placed perpendicularly to the analyser axis and calibrated using 3d5/2 line of Ag with a full width at 

half maximum (FWHM) of 0.8 eV. The analysed area was a circle of 0.8 mm diameter, and the 

resolution chosen for the spectra was 187.5 eV of pass energy and 0.8 eV/step for survey spectra, and 

0.1 eV/step for each analysed element. Binding energies were referenced by setting the Au4f7/2 at 

84.0 eV. Surface elemental composition was determined using the standard Scofield photoemission 

cross sections. 

 

Contact angle measurements 

The hydrophilicity of the PEM coatings prepared on the Au coated glass microscopy slides was 

assessed by means of static contact angle measurements (sessile drop method) with ultra-pure water, 

using drop shape analysis system DSA 100, Kruss, GmbH (Germany), equipped with ½ CCD camera. 

The volume of the liquid droplet was 5 L. Ten measurements at room temperature were taken for 

each sample. 

 

5.2.4 Cell adhesion, proliferation and morphology  

PEM coatings of 5 and 5½ bi-layers were sterilised by UV radiation for 15 min and washed with PBS. 

The substrates were seeded with L929 human fibroblast-like cell line (European Collection of Cell 

Cultures, UK) at concentration of 16500 cells/cm
2 

in DMEM supplemented with 10 % of FBS 

(Biochrom AG, Germany) and 1 % antibiotic/antimycotic (Gibco, USA). Cells were cultured for 1 

and 7 days at 37 ºC under a humidified atmosphere of 5 % CO2.  

The morphology of the cells was observed by SEM (Leica Cambridge S-360, 15kV) and fluorescence 

microscopy (Zeiss Imager Z1, Germany). The samples were washed twice with PBS and fixed either 
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in 2.5 % glutaraldehyde in PBS (for SEM) or in 10 % neutral buffered formalin for 1 h at 4 ºC for 

immunostaining assays. For the SEM analysis, samples were washed twice in PBS, dehydrated in a 

graded series of ethanol, and finally, dried using hexamethyldisilazane. Cytoskeleton organisation was 

analysed after treatment of the cells with 0.2 % Triton X-100 in PBS for 5 min and 3 % bovine serum 

albumin (BSA) in PBS for 30 min at room temperature. Phalloidin–TRITC conjugate was used (1:200 

in PBS for 30 min) to assess cytoskeleton organisation. Nuclei were counterstained with 1 μg/mL 4,6-

diamidina-2-phenylin (DAPI) for 30 min. Samples were washed with PBS, mounted with 

Vectashield® (Vector) in glass slides and images were acquired with an Axio Cam MRm (Zeiss). 

 

5.2.5 Statistical analysis 

All data are presented as mean ± standard deviation. For multiple comparisons, statistical analysis by 

a one way analysis of variance (ANOVA) followed by post-hoc Tukey test was performed using 

Graph Pad Prism Software 5.04 for windows (USA). Statistical significance was considered at p < 

0.01. 
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5.3 Results and discussion 

5.3.1 Build-up of polyelectrolyte multilayered coatings 

Being natural components of the ECM, GAGs were selected as building elements for PEM coatings. 

They are also capable to adsorb wound exudates while providing favourable for wound healing moist 

environment. In this work HA (pKa~3 [219]) with different Mw and CSU (pKa~3.5 for higher ionic 

strengths [220]) were used. CS (pKa~6.5 [221]) has similar structure to the natural GAGs but it bears 

positive charge. Moreover, as commented in Chapter 4, by thiolation of chitosan using 2-

iminothiolane HCl, the cationic character of the polymer improves. This allows for assembling via 

electrostatic interactions with the negatively charged GAGs (Figure 5.1).  

 

 

Effect of the chitosan thiolation degree on build-up of PEMs 

The stepwise adsorption of polyelectrolytes was monitored in situ by QCM-D, and the effect of the 

chitosan thiolation degree and molecular weight of GAGs on the growth of the coatings was assessed. 

The successful build-up of the PEM constructs using layer-by-layer process was confirmed by the 

decrease in f/ and increase of D after each polyelectrolyte deposition (Figure 5.2a-b). Bigger 

changes in f/ and D shifts were observed for the first layer when thiolated chitosan was used as a 

polycation instead of unmodified chitosan. This difference was expected because of the well-known 

high affinity of the thiol groups to Au [222]. Changes in the frequency and dissipation shifts become 

more pronounced after the deposition of the 6th layer for all experimental groups and especially for 

the systems built with thiolated chitosan conjugates. These data indicated an exponential growth 

confirmed by calculation of thickness variation using the Voigt model (Figure 5.2c). The results imply 

polyelectrolytes diffuse “in and out” of the coating during the build-up process [223]. Interestingly, 

Figure 5. 1 ζ-potential of collagenase and the polyelectrolytes used for the QCM-D studies. Polyelectrolytes (0.5 mg/mL) 
and collagenase (0.1 mg/mL) solutions were prepared in 0.150 M NaCl, pH 5.5 
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the thickness variation in respect of layer number was higher when thiol-modified compared to non-

modified chitosan was used, where the thiolation degree promoted the growth, as the final thicknesses 

for the 5½ bi-layer systems were of 27±2 nm, 37±2 nm and 52±5 nm for CS/CSU, TC10-1/CSU and 

TC5-2/CSU, respectively. Thus, the improved cationic character after chitosan thiolation with 2-

iminothiolane HCl (Table 4.2) induces stronger electrostatic interactions with chondroitin sulphate 

and together with better deposition of the first layer favours the PEM coating growth. 

 

 

Figure 5. 2 Build-up assessments of 5½ bi-layers of CS/CSU (light grey), TC10-1/CSU (black) and TC5-2/CSU 

(dark grey). Signals for normalized a) frequency (f/) and b) dissipation (D) were obtained during QCM-D 
monitoring. Labelled arrows indicate polyelectrolyte injection (PC for polycation, PA for polyanion), whereas small 

arrows without labels indicate rinsing with 0.15M NaCl, pH 5.5. c) Thickness evolution of the obtained PEMs 
estimated using the Voigt model for three independent experiments 

 

Finally, although the stability of the PEM coatings was not investigated here, the partial oxidation of 

the free thiol groups is expected to occur after deposition in situ [224]. This would lead to the 

formation of disulphide cross-links in chitosan that would certainly improve the mechanical properties 

of the systems containing thiolated conjugates and enhance their stability in biological fluids. 

Chemical cross-linking has been already investigated as an approach to increase the stability of PEMs 

[225] and improve their mechanical properties [226]. 

 

Effect of molecular weight of glycosaminoglycans on build-up of PEMs 

QCM-D experiments were also conducted to investigate the effect of Mw of polyanion on the build-

up of multilayered coatings containing thiolated chitosan. HA with three molecular weights (6 kDa, 

830 kDa and 2000 kDa) was used for building multilayered systems with TC5-2 (Figure 5.3a-b). 

Initially, the PEMs grew regularly for all experimental groups. However, the system containing HA 

with lowest Mw becomes unstable after the addition of the 8th layer; re-dissolution of the formed 

complex upon the contact with the following polyelectrolyte solution was observed. Similar effect has 

been previously observed for other weak PEMs [225]. Although the negative charge of HA with Mw 

of 6 kDa was similar to the one of CSU (Figure 5.1), in the latter case a stable complex with 

polycation was formed. 
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Figure 5. 3 Build-up assessments of 5½ bi-layers of TC5-2/HA using hyaluronic acid with different Mw: 6 kDa 

(light grey), 830 kDa (black) and 2000 kDa (dark grey). Signals for normalized a) frequency (f/) and b) 

dissipation (D) were obtained during QCM-D monitoring. Labelled arrows indicate polyelectrolyte injection (PC 
for polycation, PA for polyanion), whereas small arrows without labels indicate rinsing with 0.15M NaCl, pH 5.5. 

c) Thickness evolution of the obtained PEMs estimated using the Voigt model for three independent experiments. 

 

Efficient GAGs-biomolecules binding relies on multivalent interactions or so-called cluster effect 

[227]. Out of this, two are the possible reasons for the results observed with the low Mw HA: the 

unavailability of enough reaction centres (because of the lower Mw) or their inadequate distribution, 

i.e. their conformation does not allow effective binding through cluster effect. Thus, we can speculate 

that CSU takes a conformation favouring the interactions with TC which is not the case with low 

molecular weight HA. In addition, previous reports showed that Mw plays an important role for 

efficient immobilisation of sugars onto many surfaces, where oligosaccharides and monosaccharides 

cannot be densely and stably immobilised if they are not coupled to larger moieties, support this result 

[228, 229]. Thus, the Mw of 6 kDa is too low to allow for sufficient deposition onto the oppositely 

charged surface and when the amounts of the deposited polyelectrolytes increase (after 8th layer) re-

dissolution occurs. 

The PEM coatings containing HA of higher average molecular weight displayed higher stability and 

grew exponentially (Figure 5.3c); f/ and D shifts became more pronounced after the deposition of 

6th layer. Slightly larger increase was detected for HA of 830 kDa compared to 2000 kDa, due to the 

better diffusion of the HA with lower Mw into the coating, which is in a good agreement with the 

literature data for the exponentially growing PEM systems [230]. The calculated thicknesses were of 

32±2 nm, 113±5 nm and 100±4 nm for PEMs with HA of 6 kDa, 830 kDa and 2000 kDa, 

respectively. These results confirm the instability of the PEM system build up with low molecular 

weight HA. 
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5.3.2 XPS analysis 

XPS measurements were performed to confirm the successful deposition of the polyelectrolytes. Out 

of the measurements it was possible to estimate the surface coverage by analysing Au atomic 

concentrations at the different steps of deposition (Table 5.1). As could be expected, the XPS analysis 

showed a steady decrease in the intensity of the Au signal with increasing number of deposited layers.  

 

Table 5. 1 Au and S content (%) for various multilayered systems deposited onto gold covered microscopy slides 

System Au (4f) S (2p)  

Gold surface 99.99
* 

- 

TC5-2 16.19 1.37 

(TC5-2/HA830)1TC5-2 1.97 1.66 

(TC5-2/HA830)3TC5-2 0.18 1.42 

(TC5-2/HA830)5TC5-2 0.08 1.60 

(CS/HA830)5CS 0.12 - 

*According to the manufacturer 

 

 

The obtained value for Au signal (16.19 %) after the deposition of the first layer is in agreement with 

previously reported values for monolayers of thiolated polymers deposited onto gold surfaces [231]. 

After 5½ bi-layers deposition of TC/HA830 system only a negligible Au signal was detected (0.08 

%), the value lower than the one measured for CS/HA830 system for the same number of deposited 

bi-layers (0.12 %). This is in agreement with QCM-D results confirming better build-up and surface 

coverage for the PEMs containing thiolated compared to non-modified chitosan.  

The presence of S was also observed for all PEMs terminating with TC5-2, where the signal did not 

vary considerably between the experimental groups (Table 5.1). The binding energies and the possible 

oxidation states of S in the TC5-2 deposited on the gold were obtained from the high resolution XPS 

spectra of S2p core level. The S2p high resolution spectrum (not presented) showed two dominant 

peaks at 162.4 eV and 163.6 eV that are assigned to bound S atoms (S2p3/2 and S2p1/2) on the Au 

surface (thiols and disulphides). Two additional peaks appear in the spectrum of multilayered (5½ bi-

layers) TC5-2/HA830 system (Figure 5.4): an intensive peak at 164.3 eV corresponding to unbound 

thiols and a lower intensity peak at above 168 eV due to partial sulphur oxidation or presence of 

impurities in the sample [231]. These values were in agreement with literature data [222, 232]. 
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Figure 5. 4 S2p spectrum of TC5-2/HA830 multilayer system consisting of 5½ bi-layers adsorbed onto gold 

surface acquired by XPS. Polyelectrolytes were deposited onto gold from 0.15M NaCl, pH 5.5 solution, using 
concentrations of 0.5 mg/mL. The S peaks were fit using three S2p doublets with a 2:1 area ratio and a splitting 
of 1.2 eV. The positions of the S2p3/2 peaks assigned to bound thiolate, unbound thiol and oxidized S species 

are shown. 

 

5.3.3 Collagenase adsorption on PEM coatings 

Coating of surfaces through PEM deposition has been extensively investigated as a way to rule the 

protein attachment on such surfaces required for different applications and controlled attachment 

could be achieved by changing an ambient pH, system cross-linking and selection of the outermost 

layer [218, 233]. Moreover, the incorporation of the proteins can be further controlled by an 

appropriate functionalisation of the PEM components before or even after their construction [234]. As 

one of the efficient ways to inactivate the proteases in the wound environment is through the selective 

or non-selective protein adsorption [235, 236], the PEM coatings prepared in this study have been 

evaluated for their capacity to adsorb collagenase from solution. The effect of chitosan thiolation and 

the charge of the outermost layer have been considered as variables. 

The amount of collagenase adsorption onto PEMs with different terminate layer is showed in Figure 

5.5. The adsorption was performed at pH 5.5, the same as the one applied in the process of PEMs 

build-up. This pH was chosen to ensure the optimum protein adsorption since it is near to the 

isoelectric point of collagenase (pI in the range 5.35 - 6.20 [237]) and thus, minimal lateral 

interactions and compact conformation of protein onto surface occur [238]. The collagenase is 

negatively charged at these conditions (Figure 5.1) and has higher affinity to positively charged 

chitosan surfaces regardless of chitosan modification. These results confirmed the dominant role of 

the electrostatic interactions during protein adsorption [214, 239]. 
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Besides electrostatic interactions, the affinity of chitosan towards collagenase could be explained by 

the high content of amino groups that allows for the sorption of the Zn
2+

 coordinated in the active site 

of the enzyme. Further, collagenase adsorption onto TC10-1 outermost surface was significantly 

higher than in the case of chitosan (p<0.01). This was expected since inclusion of free thiols in the 

chitosan structure improves its Zn
2+ 

binding capacity [210] and thus the adsorption of collagenase. 

Surprisingly, collagenase adsorption was not higher on the TC5-2 surface in comparison with 

chitosan. Although with inclusion of higher amount of thiol groups improved collagenase adsorption 

was expected, this was not the case. One possible explanation may be that a highly cross-linked 

structure is formed in situ after TC5-2 deposition via intra- and inter-molecular disulphide cross-

linking which is promoted in the formulations with high percentages of free thiol groups due to their 

proximity [240]. The formation of such structure would impede the availability of the remaining free 

thiols and consequently the sorption capacity towards Zn
2+

. This result is consistent with the decrease 

in protein adsorption after cross-linking of the PEM systems [218]. 

On the other hand, adsorption of collagenase onto like-charged surfaces was different. Whereas the 

enzyme was not adsorbed onto HA outermost layer, adsorption onto CSU containing surface 

occurred. This result confirms that not only electrostatic interactions, but also other non-ionic factors 

can influence protein adsorption [241]. Again, GAGs-protein binding relies on multivalent 

interactions, some of them very difficult to measure experimentally [242], where, besides other 

factors, spatial distribution of negative charges in GAGs plays an important role [243]. Also, HA 

displays higher negative charge (Figure 5.1) which may be the explanation for stronger repulsion of 

the like-charged enzyme. Another factor that may influence the protein adsorption is the surface 

hydrophilicity. Normally, the protein attachment decreases with wettability [244]. The CSU-

Figure 5. 5 Variation of collagenase adsorption (0.1 mg/mL) onto PEMs with different outermost layer in terms of 

amount adsorbed by surface area. The results were obtained by extracting the data acquired with QCM-D and 
calculated using the Voigt model. PEM coatings comprised 10 layers in case of polyanion and 11 in case of 

polycation outermost layer. For the PEMs terminating with polycation CS was used, whereas for those terminating 
with polyanion TC5-2 served as a counter polyelectrolyte. Polyelectrolytes were deposited onto gold from 0.15 M 

NaCl, pH 5.5 solution, using concentrations of 0.5 mg/mL. **p<0.01 and ***p<0.001 
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terminated assemblies had contact angles of 54±4º, whereas HA-terminated exhibited 40±4º, being 

thus more hydrophilic. 

5.3.4 Cell culture studies 

Fibroblasts behaviour on the obtained PEM coatings was evaluated in terms of cell adhesion, 

morphology and cytoskeleton organisation. Bright-field images (Figure 5.6) showed that after 24 h the 

cells adhered better on GAG-terminated coatings (Figure 5.6A,C) than on thiolated chitosan (Figure 

5.6E,G). Moreover, the number of fibroblasts on CSU-terminated coatings (Figure 5.6A-B) was 

similar to the control, tissue culture polystyrene surface (TCPS) surfaces (Figure 5.6I-J).  

 

Figure 5. 6 Morphology of L929 cells cultured for 24 h and 7 d on (A-B) CSU-terminated; (C-D) HA830-

terminated, (E-F) TC terminated (TC5-2/CSU system, (G-H) TC terminated (TC/HA830 system) and (I-J) TCPS 
(scale bar=100 µm) . Insets show fluorescence microscopy images of DAPI and phalloidin staining 

 

Different cell morphology was also observed as a response to the terminal layer; after 24 h, cells 

cultured in contact with thiolated chitosan remain round and compact (Figure 5.6E,G). These results 
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are in agreement with previously reported data about the poor cellular adhesion on the chitosan [43, 

44]. On the other hand, when the outermost layer is GAG (HA or CSU), cells are elongated with a 

morphology more similar to the cells cultured on TCPS (Figure 5.6A,C,I). 

After one week of culture the cells tend to organise in clustered structures on the thiolated chitosan 

(Figure 5.6F,H; Figure 5.7C-D). This behaviour has been previously associated with defensive 

mechanisms by which cells are able to survive under unfavourable conditions [245]. 

 

 

 

Also, the formation of the spheroid structures has already been reported for cells cultured on chitosan 

membranes [43, 245]. Although not that pronounced, similar behaviour was observed for the 

fibroblasts cultured in contact with the GAGs-terminated coatings (Figure 5.6B,D, Figure 5.7A-B). 

This result is consistent with the diffusion of the polyelectrolytes layer estimated by the QCM-D. The 

diffusion of the layers and its influence on the cell behaviour is also obvious for the TC-terminated 

coatings where the GAG layer below induces fibroblasts morphology that is similar to the one 

observed for the respective GAG-terminated coatings (Figure 5.6 insets). 

  

Figure 5. 7 Morphology of L929 cells cultured for 7 d on (A) (TC-CS)5; (B) (TC-HA)5, (C) 
(TC-CS)5-TC and (D) (TC-HA)5-TC (scale bar=20 µm). 



 Functional nanocoatings based on thiolated chitosan 

101 
 

5.4 Conclusions 

Due to their cationic properties, the thiolated chitosan conjugates prepared in Chapter 4 were 

successfully combined with anionic glycosaminoglycans, chondroitin sulphate and hyaluronic acid, in 

a sequential multilayer fashion based on electrostatic interactions to build-up continuous multilayered 

assemblies onto gold surface. It was demonstrated that the fastness of the build-up process (with 

respect to the number of deposited layers) is promoted by the higher chitosan thiolation degree and 

molecular weight of glycosaminoglycans. Moreover, the proper selection of the outermost layer could 

be used to control the extent of collagenase adsorption onto the multilayered coatings. Chitosan-based 

surfaces were found to be more protein-adhesive than glycosaminoglycans ones. The extent of 

collagenase adsorption on thiolated chitosan surfaces also depends on the availability of free thiol 

groups able to bind the zinc in the active site of the enzyme. Finally, the multilayered structures 

terminating with thiolated chitosan were found to be fibroblast resistant, whereas glycosaminoglycans 

as outermost layer promoted the cell proliferation. Such tuneable inhibition/adsorption of the 

deleterious proteolytic enzymes and controlled cell proliferation applied in the wound site could bring 

restoration of the balance between tissue synthesis and degradation in chronic wounds necessary for 

healing.





 

 

 

 

 
 

Chapter 6  

6 Chapter 6: Thiolated chitosan nanoparticles 

Thiolated chitosan nanoparticles 
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6.1 Introduction 

Nano/micro-particles (NPs) are employed for protection of unstable active agents and ensure their 

sustained delivery to targeted tissue compartments [246], e.g. skin layers. When engineered in NPs, 

biopolymers display improved biological activities. If such systems are used as drug carriers, 

combined beneficial effects of biopolymer and loaded active agent for targeted application is 

expected. In order to combine this promising strategy with thiolated biopolymers, the aim of this 

study was to generate and characterise NPs based on thiolated chitosan. 

Particles generation from thiolated conjugates has been already reported by using various techniques 

for their generation such as emulsification-solvent evaporation [247], coacervation/precipitation 

[248], air jet milling [249], cross-linking with sodium tripolyphosphate [250] and ionotropic gelation 

[251]. Engineered in nano-structures, the thiolated conjugates display improved mucoadhesive, 

permeation enhancing and anti-inflammatory properties, and enhance transfection and delivery of 

various bioactive molecules into various cells/tissues. However, by using these techniques for NPs 

preparation the broad size distributions of the particles are usually obtained, thus limiting the 

predictability of their physical and chemical interactions with the targeted tissues. In addition, many 

of these techniques lead to the formation of the particle systems that display large sizes (up to several 

tens of microns). 

The generation of biopolymer-based NPs under sonication is recently gaining much of attention due 

to its simplicity and short processing time [252]. In this case the generation of biopolymer NPs is 

induced in a one-step environmentally friendly process. Moreover, some reports revealed the 

additional stabilisation of the NPs systems comprising thiol groups bearing biopolymers due to the 

ultrasound-induced oxidation of free thiols to disulphide bonds [31, 253]. 

Therefore, high power ultrasound was used to generate NPs from different thiolated chitosan 

conjugates and the resulting particles were evaluated regarding their size and cross-linking via -S-S- 

bonds formation, taking into account the pH of the ultrasonic bath and the chitosan thiolation degree. 

The effect of the particles cross-linking degree on the stability against lysozyme degradation and in 

vitro MPO inhibition efficacy was also assessed. 
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6.2 Materials and methods 

6.2.1 Thiolated chitosan and reagents 

Medical grade chitosan (~50 kDa, DDA 87 %) from Kitozyme (Belgium) was used for the thiolation 

as described in Chapter 4. Batches differing in thiolation degrees (TC10-1, TC5-1 and TC5-2) 

together with chitosan control were selected for NPs formation. These conjugates displayed 158±8, 

288±4 and 515±53 mol of free thiol groups per g of polymer, respectively, quantified 

spectrophotometrically in Chapter 4 (Table 4.3). Highly purified MPO from human leukocytes (1550 

U/mg solid, one unit will produce an increase in absorbance at 470 nm of 1.0 per min at pH 7.0 and 

25 °C, calculated from the initial rate of reaction using guaiacol substrate) was purchased from Planta 

Natural Products (Austria). Lysozyme from chicken egg white (111000 U/mg, 1 U corresponds to the 

amount of enzyme which decreases the absorbance at 450 nm by 0.001 per minute at pH 7.0 and 25°C 

using Micrococcus luteus as substrate) was supplied by Sigma-Aldrich. Edible grade sunflower oil 

was used as organic phase for the NPs preparation. Unless specified otherwise, all other reagents and 

buffers were of analytical grade purchased from Sigma-Aldrich and used as received. 

 

6.2.2 Nano/micro-parcticles preparation 

NPs were prepared by application of high-intensity ultrasound (17 W) using the method previously of 

Grinstaff and Suslick [254]. Briefly, two-phase mixtures containing 70 % of 1 mg/mL of chitosan or 

thiolated chitosan aqueous solution and 30 % of edible-grade sunflower oil were prepared. The high-

intensity ultrasonic horn was positioned at the aqueous-organic interface and the solution was 

sonicated for 3 min with the amplitude of 30 % at 5 (±1) ºC. The resulted emulsion was kept at +4 ºC 

for 24 h in order to complete the obtained phase separation after which the non-encapsulated oil was 

withdrawn before further analysis. The volume of the oil withdrawn was quantified in order to 

determine the NPs encapsulation efficiency. 

 

6.2.3 Determination of free thiol groups 

Determination of free thiol groups in NPs suspensions was determined spectrophotometrically using 

Ellman’s reagent. Aliquots of 500 L of nanoparticle suspensions were diluted with 500 L of 0.5 M 

PB (pH 8) containing Ellman’s reagent (3 mg of the reagent in 10 mL PB). Following 3 h incubation 

at room temperature in the dark, the suspensions were centrifuged (5000 rpm, 5 min) and filtered 

through Whatman
®
 0.2 m regenerated cellulose filters (Sigma-Aldrich). The absorbance of the 
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filtered solution was measured at 450 nm. L-cysteine standards were used to build the calibration 

curve. 

 

6.2.4 Dynamic light scattering 

Particle size and size distribution was measured by dynamic light scattering (DLS) using DL135 

Particle Size Analyzer (Cordouan Technologies, France). Three samples of each nanoparticle 

suspension were measured at room temperature, acquiring 5 measurement cycles with 1 % signal-to-

noise ratio. The data were analysed using NanoQ 1.2.1.1 software to calculate the mean particle 

diameter and polydispersity index (PDI). 

 

6.2.5 Biostability of nanoparticles  

The biostability of thiolated chitosan NPs was studied in a biodegradation test using lysosyme, a 

glycoside hydrolase enzyme. Nanoparticles formulations (1 mL) were incubated in 1 mL of 50 mM 

phosphate buffer, pH 6.6, in the presence of 10 g/L lysozyme at 37 °C for 24 h. Samples of 250 L 

were thereafter withdrawn and filtered through Whatman
®
 0.2 m regenerated cellulose filters in 

order to remove intact particles from the hydrolysed solutions. The degraded chitosan was determined 

in the filtrate using the ninhydrin test. The degradation of nanoparticles was determined as the amount 

of hydrolysed chitosan leached from the nanoparticles and expressed in mM of glycine equivalents, 

used as a standard to develop the calibration curve. 

 

6.2.6 Myeloperoxidase inhibition 

The inhibitory effects of thiolated chitosan nanoparticles on MPO activity was assayed using the same 

method applied in Sections B, 3.2.8.  
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6.3 Results and discussion 

6.3.1 Sonochemical generation of thiolated chitosan nanoparticles 

High intensity ultrasonic irradiation of liquids is well known to produce both emulsification and 

acoustic cavitation – the formation, growth and implosive collapse of micron-sized bubbles in two-

phased mixtures [255, 256]. Owing to the possibility of chemical reactions around the formed 

bubbles, this technique is successfully employed for generation of NPs from proteins and, lately, 

polysaccharides. If high intensity ultrasonic horn is positioned in the interface of biopolymer aqueous 

solution and organic phase (solvent), e.g. vegetable oil, biopolymer NPs will be formed (Scheme 6.1). 

 

In such cases the core of the particles is filled with oil, whereas the shell comprises the biopolymer 

[252]. In this study NPs from chitosan and thiolated chitosan with different modification degrees were 

produced in the fast (3 min) sonochemical process using sunflower oil as a cosolvent. Although the 

NPs generation occurred in the pH range from 3 to 6, differences in the oil encapsulation efficiency 

between the experimental groups have been found. In particular, higher chitosan thiolation degree and 

pH promoted the efficiency of oil encapsulation (Figure 6.1). This data can be of particular 

importance in the case of drug encapsulation, since the quantity of the oil encapsulated is the indirect 

measurement of the efficiency of the hydrophobic drug encapsulation. Moreover, optical microscopy 

images indicated the higher NPs density and smaller particles in the formulations obtained from 

thiolated conjugates compared to those obtained from chitosan (Figure 6.2).  

 

Scheme 6. 1 Sonochemical preparation of biopolymer NPs 
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Figure 6. 1 Efficiency of oil encapsulation by chitosan and thiolated chitosans NPs 

 

6.3.2 Degree of chitosan thiolation in nanoparticles 

Compared to the -SH content in thiolated chitosan conjugates (TC10-1, TC5-1 and TC5-2) before 

sonication, all corresponding NPs formulations displayed less free thiol groups per gram of the freeze-

dried polymer conjugate regardless of the process pH (Figure 6.3). Moreover, it has been found that 

the NPs processed at lower pH contained more -SH. Accordingly, all formulations sonicated at pH 6 

contained the lowest amounts of free thiol groups, especially when obtained from TC5-1 and TC5-2 

(the conjugates with higher degree of thiolation), where the -SH content was negligible (below 10 

mol/g of particles). These results indicated that an oxidation of free thiol groups into disulphide 

bridges, i.e. NPs cross-linking [247], takes place to different extents upon sonication. 

 

Figure 6. 2 Optical microscopy images of NPs obtained under sonication A) chitosan NPs, and 

B) thiolated chitosan (TC5-1) NPs 
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Figure 6. 3 Amount of free thiol groups in thiolated chitosan conjugates and the corresponding NPs formulations 

obtained at indicated pH values of the aqueous phase during the sonication process. 

 

The oxidation of cysteine moieties in proteins by superoxide radical (·HO2) produced during the 

ultrasonic irradiation to cross-link the polymer was suggested as crucial for the formation of protein 

microparticles [31]. Although later studies revealed that -S-S- are not required for the sonochemical 

formation of protein NPs [257], these bonds undoubtedly play an important role in the particles 

stabilisation. Furthermore, it is well known that the oxidation of free thiol groups to disulphide bonds 

is promoted on higher pH in the presence of oxygen. In addition, the -S-S- formation is faster in the 

systems with high percentages of -SH due to their proximity [240]. Based on the above, it is expected 

that the extent of cross-linking via -S-S- formation is higher in the NPs formulations obtained from 

the thiolated chitosan with higher modification degrees and processed on higher pH. Indeed, these 

formulations contained less free thiol groups per gram of NPs and accordingly higher content of -S-S- 

bonds (Table 6.1). 

 

Table 6. 1 Estimated percentage of disulphide bonds in the NPs formulations obtained from different thiolated 

chitosan conjugates at indicated pH values of the aqueous phase 

NPs formulation 
% of –SH oxidised 

pH 3 pH 4.5 pH 6 

TC10-1 52.7±9.4 73.0±3.5 89.4±1.1 

TC5-1 54.3±1.2 79.0±1.2 97.3±0.1 

TC5-2 72.2±0.6 97.5±0.1 98.9±0.1 

 

 

Cross-linking of biopolymer-based materials, e.g. through the formation of disulphide bonds, brings 

about the increased stability of these systems in physiological conditions. If such systems are used as 

carriers for the protection and delivery of unstable active compounds, sustained drug liberation 



 Thiolated chitosan nanoparticles 

111 
 

resulting in prolonged effect is guaranteed [258]. On the other hand, the presence of free thiol groups 

amplifies the functional properties of biomaterials, including improved mucoadhesion [110], 

permeation enhancement [259], or inhibition of targeted enzymes, the latter described in Chapters 4 

and 5. Therefore, the optimal thiol/disulphide content is driven by the specific application. In order to 

achieve the desired ratio, the oxidation of thiol groups during the preparation process has to be well 

controlled. In the present study it was demonstrated that the amount of -SH and -S-S- in the NPs 

formulation obtained from thiolated chitosan under sonication is easily adjustable by tuning the pH of 

the sonication bath and the conjugate thiolation degree.  

 

6.3.3 Particle size and size distribution 

DLS measurements revealed different influence of the sonication pH on the size of the chitosan and 

thiolated chitosan NPs. Whereas the mean particle size for the chitosan NPs increased with the pH 

from 3 to 6, the smaller particles were obtained after sonication of all thiolated conjugates on higher 

pH, especially when performed at pH 6 (Table 6.2). Accordingly, the NPs formulations obtained from 

the conjugate containing the highest amount of free thiol groups (TC5-2) exhibited the smallest 

particles of all experimental groups when processed at pH 4.5 and pH 6 (315±9 and 303±2 nm, 

respectively). Since the mean particle size decreases after the cross-linking through the formation of 

disulphide bonds [260], this finding is yet another indication of higher percentage of -S-S- in these 

samples and in agreement with the rapid oxidation of thiol groups on higher pH values [261]. It is also 

worthy to notice that regardless of the pH and conjugate used the mean particle sizes of all 

formulations were in the submicron range, probably owing to the low molecular weight (~50 kDa) of 

the chitosan used in the study [262]. 

 

Table 6. 2 Mean particle size of chitosan and thiolated chitosan NPs obtained at various pH values 

NPs formulation 
Mean particle size (nm) 

pH 3 pH 4.5 pH 6 

Chitosan 489±33 560±18 781±41 

TC10-1 520±13 571±16 357±21 

TC5-1 542±19 499±34 340±22 

TC5-2 546±36 315±9 303±2 

 

 

The mean particle sizes of the formulations obtained from thiolated chitosan conjugates did not 

change significantly after three months (Figure 6.4), revealing high physical stability of these systems. 

This finding is particularly important for the formulations displaying higher number of free thiol 

groups. In such cases the aggregation could be expected over prolonged periods due to inter-particle 

cross-linking via -S-S- formation. On the other hand, the average particle size of the chitosan NPs 
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systems increased for 152 nm, 355 nm and 288 nm in three months for the formulations obtained at 

pH 3, pH 4.5 and pH 6, respectively, thus display low stability against aggregation. 

 

Finally, the particle size distribution was similar to that observed for the mean particle size. When 

obtained at higher pH (4.5 and 6) the chitosan NPs displayed broader size distributions compared to 

the particles obtained at pH 3 (Figure 6.5). Conversely, the narrowest size distributions between the 

thiolated chitosan NPs exhibited the formulations obtained at pH 6. 

 

 

Figure 6. 4 Comparison of the mean particle sizes of chitosan NPs and NPs obtained from thiolated chitosan 

conjugates after one week (grey bars) and three months (black bars) storage 
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Figure 6. 5 Comparison of the Gaussian particles size distributions between the NPs formulations obtained at 

various pH values: pH 3 (solid line), pH 4.5 (dashed line) and pH 6 (dot line) 

 

 

6.3.4 Biostability of nanoparticles 

The degradation of thiolated chitosan NPs was tested in the presence of 10 g/mL of lysozyme, an 

enzyme able to degrade chitosan and chitosan NPs [263], and commonly present in body fluids and 

skin [264, 265]. The biostability of the NPs against lysozyme was found to be dependent on the pH of 

sonication process: at low pHs the resulting particles showed higher degradation yields than at pH 6, 

which were found to be remarkably stable (Figure 6.6). In addition, the degradation behaviour was 

also influenced by the biopolymer thiolation degree: chitosan with the highest thiolation grade (TC5-

2) developed particles extremely stable to lysozyme degradation regardless of pH of the sonication 

process. On the other hand, the NPs systems obtained from TC 10-1 and TC 5-1 at pH 3 and pH 4.5 

were more easily degraded by the enzyme. Therefore, the biostability of the NPs was found to be 

inversely proportional to the amount of free thiols groups in the formulation. These results are in a 

good agreement with the hypothesis of the larger extent of cross-linking in the NPs processed from 

highly thiolated chitosan at pH 6 to impart the highest stability to lysozyme degradation.  
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Figure 6. 6 Degradation of TC NPs by lysozyme 

 

6.3.5 Myeloperoxidase inhibition 

As expected, the amount of free thiol groups in the thiolated chitosan NPs (Figure 6.3) was directly 

proportional to their myeloperoxidase inhibition capacity (Figure 6.7). The NPs formulations obtained 

at pH 3 possessed the highest ability to inhibit enzymes regardless of the conjugate used for their 

preparation. The only two formulations able to inhibit more than 50 % of the enzymatic activity were 

those displaying more than 100 mol of -SH per gram of nanoparticles – TC5-1 and TC5-2 fabricated 

at pH 3. Thus, the targeted functional properties could be tuned by both biopolymer thiolation degree 

and the pH of the ultrasonic bath. 

 

Figure 6. 7 Inhibition of MPO activity by with thiolated chitosan nanoparticles 
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6.4 Conclusions 

Within this study the formation of the chitosan and various thiolated chitosan nanoparticle 

formulations was achieved in an ultrasonic process, and analysed regarding their size, bio- and 

physical stability and the capacity to inhibit myeloperoxidase activity. The applied strategy for the 

simultaneous nanoparticles generation, stability improvement and functionalisation was found to be 

feasible in a short (3 min) sonochemical process. In particular, chitosan thiolation degree and the pH 

of the sonication bath were crucial factors to achieve dimension and stability control as well as tuning 

of the enzyme inhibition ability of the nanoparticle formulations. However, a strong competition 

between the size and biodegradability of the nanoparticles on one, and their functional properties on 

another side was found due to the different ratios free/oxidised thiols obtained as a function of the 

processing conditions. The best compromise to achieve the combination of the exploitation and 

functional properties was found for the processing of the conjugate with the highest amount of free 

thiol groups (TC5-2) at low pH. 
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7.1 Conclusions 

A range of multifunctional materials aiming at chronic wounds healing applications were developed 

during the realisation of this thesis. These materials differentiate in design, biopolymer composition, 

nature of the loaded bioactive molecule and functionalisation approach used. Nonetheless, they all 

share a common feature: combined and controllable in vitro attenuation of the two main deleterious 

enzyme activities (collagenase and myeloperoxidase).  

In the first approach, various biopolymer-based dressing sponges were produced using freeze-drying 

technique and chemically cross-linked in order to improve their bulk properties and resistance to 

enzymatic degradation. Controllable improvement of their physico-mechanical properties and 

biodegradability could be achieved through the formation of additional cross-links by altering: i) the 

cross-linking agent concentration, and ii) the polymer composition of the sponges, e.g. after collagen 

blending with hyaluronic acid and chitosan. This means easily adjustable exploitation characteristics 

of the dressing materials prior to loading of active functions. Once impregnated with plant-derived 

polyphenols, the results for myeloperoxidase inhibition were proportional to the release behaviour of 

the active agents. Large part of the enzyme activity was reduced within a few hours, corresponding to 

the need for the initial stimulation of the chronic wound healing process. In addition, the following 

sustained release allowed for the prolonged up to several days inhibition effects, in line with the 

requirement for less frequent dressing changes during the treatment. 

In another approach two biopolymers bearing amino moieties were permanently modified using 

different thiolation protocols. The inhibitory effect of these conjugates against myeloperoxidase was 

dependent on the amount of thiol moieties immobilised onto biopolymers. Therefore, this parameter 

was used to achieve control of the enzyme activity in further studies. Thiolated conjugates were then 

used to obtain functional nanosized architectures in different designs. Multilayered surface 

nanocoatings were built using layer-by-layer technique based on electrostatic interactions between 

cationic thiolated chitosan and anionic glycosaminoglycans. This simple and convenient approach for 

surface modification was successfully applied to obtain functional coatings with specific bio-activity 

towards various bioentities. Indeed, the obtained materials were able to adsorb different amounts of 

collagenase or provide controllable interactions with skin fibroblasts depending on the nature of the 

outermost layer. On the other hand, thiolated chitosan nanoparticles were prepared by ultrasonic 

irradiation of the conjugates solutions. In this case, a simultaneous formation of functional 

nanoparticles and tuning of their exploitation and functional properties, i.e. size, biodegradability and 

myeloperoxidase inhibition capacity, was achieved.   
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7.2 Future perspectives 

The results obtained during the realisation of this thesis demonstrated the possibility to control the 

activities of major chronic wound enzymes in vitro by the fabricated materials/formulations. These 

functional properties coupled to the good exploitation characteristics suggest these materials 

potentially useful in chronic wound management. Progressing ambitiously towards their clinical use, 

the first step is to extend the investigation to enzymatic activities in “real samples”. Besides judging 

the potential to inhibit wound enzymes ex vivo, these studies are also employed to assess and compare 

the enzymatic activities in fluids collected from different wound types. The latter could serve as a 

base for the development of more accurate in vitro wound models by upgrading already existing ones 

with appropriate enzyme levels. Indeed, prior to in vivo assessment, single cell and models set-up 

around complex skin multicellular systems would allow more accurate investigation of fundamental 

processes such as cell-material interactions and protein synthesis in the presence of the dressing 

materials. To this end, wounds of varying depths and sizes could be performed on commercially 

available skin equivalents and parameters of wound healing (migration, proliferation and protein 

synthesis) monitored upon wound dressing applications in the environment with over-expressed 

enzymes. Such studies will be carried out during the realisation of EU project “Added value from high 

protein & high oil industrial co-streams” – APROPOS FP7-289170, where the GBMI group is a 

leader of WP3 “Up-grading intermediate products for end use applications”. This WP foresees the 

fabrication of active medical skin care formulations and dressings similar to those developed in this 

thesis and their assessment in wound models.  
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