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Introduction

This thesis is devoted to the study of dynamical phenomena related to the existence
of homoclinic orbits of conservative systems. We consider homoclinic (bi-asymptotic)
orbits either to saddle periodic orbits or to whiskered tori. Such type orbits, called
homoclinic by Poincaré, are of great interest in the theory of dynamical systems since
their presence implies complicated dynamics.

We deal with a range of problems in two quite different topics related to the homo-
clinic phenomena in conservative systems:

• Bifurcations of homoclinic tangencies in area-preserving maps (APMs)

• Exponentially small splitting of separatrices for whiskered tori with several fre-
quencies in Hamiltonian systems

The first topic is related to the study of the behavior of orbits near a given homoclinic
trajectory, while the second topic consists in the detection of homoclinic orbits arising
from a perturbation of a Hamiltonian system with a homoclinic connection (separa-
trix). Both topics are well known among specialists in dynamical systems, and any
result obtained is very relevant for theoretical aspects as well as for applications, but
many questions in these topics still remain unsolved. The problems of this thesis, on
the one hand, are new and in line with modern research of chaotic dynamics in con-
servative systems. On the other hand, their statements go back to classic problems by
H. Poincaré, J. Hadamard and other researchers of 19th century.

Before explaining the historical remarks and the main contributions to each topic,
let us give some basic definitions and properties. It is well known from the theory of
dynamical systems that an orbit or a trajectory is the ordered set of states determined
by the evolution rule of the system considered at time t. When the time t is contin-
uous, the evolution rule is the flow defined by an ordinary differential equation and
an orbit is a curve. In the case of discrete time, the evolution rule is a map (diffeo-
morphism) and an orbit is a sequence of iterations of the map. Let a system have a
hyperbolic invariant object (for instance, saddle equilibrium, saddle fixed point, hy-
perbolic periodic orbit, whiskered torus, normally hyperbolic invariant manifold, etc).
Then, as well-known, there are two invariant manifolds associated to this invariant
object: the stable one formed by all incoming orbits and the unstable one composed
of outgoing orbits. Sometimes the invariant manifolds coincide (see Figure 1a), then
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2 INTRODUCTION

Figure 1: Examples of homoclinic orbits to a saddle point: a) homoclinic connection, b) transverse

homoclinic orbit, c) nontransversal homoclinic orbit (homoclinic tangency)

we say that we have a homoclinic connection, also called separatrix or, in the case of
two-dimensional flow, separatrix loop and homoclinic loop. This configuration is usual
for integrable systems. In other cases, the stable and unstable invariant manifolds do
not coincide and can intersect along a homoclinic orbit. When the stable and unstable
invariant manifolds intersect transversally (at nonzero angle), the homoclinic orbit is
called transverse (Figure 1b). Otherwise, we deal with a homoclinic tangency (a non-
transversal homoclinic trajectory), see Figure 1c. Note that if the stable and unstable
invariant manifolds of different hyperbolic objects intersect, the corresponding points
and orbits are called heteroclinic.

Background and state of the art

The phenomenon of the transverse intersection of stable and unstable invariant man-
ifolds was first discovered by the French mathematician H. Poincaré in his celebrated
work [Poi90] while he was studying the problem on stability of the solar system. He
considered the restricted 3-body problem Sun-Earth-Moon with the Moon as a small
mass. Since without Moon the problem reduced to the Kepler problem, Poincaré de-
scribed the problem Sun-Earth-Moon by means of a Hamiltonian system with 2 degrees
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of freedom as a small perturbation of the Kepler problem with the mass of the Moon as
the perturbation parameter. In the memoir he introduced new different tools and ideas
that laid down to the foundations of the area and are still popular nowadays: Poincaré
(first return) maps, integral invariants, the Poincaré recurrence theorem, etc. He estab-
lished that indeed the stable and unstable invariant manifolds intersected (splitting of
separatrices) in the perturbed system and called the orbits passing through the inter-
section points as doubly-asymptotic (later in [Poi99] he gave them the name homoclinic
solutions). Poincaré said:

Que l’on cherche à se représenter la figure formée par ces deux courbes et
leurs intersections en nombre infini dont chacune correspond à une solution
doublement asymptotique, ces intersections forment une sorte de treillis, de
tissu, de réseau à mailles infiniment serrées ; chacune des deux courbes ne
doit jamais se recouper elle-même, mais elle doit se replier sur elle-même
d’une manière trés complexe pour venir recouper une infinité de fois toutes
les mailles du réseau. On sera frappé de la complexité de cette figure, que
je ne cherche même pas à tracer.

(in a free translation into English: If one attempts to represent the figure formed by
these two curves and their infinitely many intersections, each of which corresponds to
a doubly-asymptotic solution, these intersections form a kind of lattice or tissue or
web with infinitely tight loops. Each of these curves must never intersect itself, but it
must fold upon itself in a very complicated manner in order to intersect all the loops
of the web infinitely many times. One is struck by the complexity of this figure, which
I will not even attempt to draw). This can be considered as the first mathematical
description of chaotic motions. In [Poi99] he proved that the presence of at least
one transverse homoclinic point implied the existence of infinitely many homoclinic
points. He conjectured on the complexity of the dynamics near a transverse homoclinic
trajectory and noted also that in some cases the splitting should be exponentially small
with respect to the perturbation parameter. Also we would like to mention that to
find the intersection points of the invariant manifolds Poincaré developed a method,
known today as the Poincaré-Melnikov-Arnold method.

It is a curious fact that Poincaré considered the problem of description of homoclinic
structures as not very interesting, since, as he correctly assumed, the corresponding
orbits are all unstable.1 However, the problems connected with the splitting of sep-
aratrices, and, in a wide sense, with studying systems close to integrable ones, were
entitled by him as “the main problem of dynamics”.

After Poincaré, the investigations of homoclinic structures were continued by G.D.
Birkhoff. In his memoir of 1935 [Bir35], he proved that, in the case of two-dimensional

1Moreover, he knew well the paper [Had98] by another French mathematician J. Hadamard in
which similar problem on dynamics of systems on surfaces of negative curvature was studied and
the instability of geodesics was proved. Note that in this Hadamard’s work the methods of symbolic
dynamics were first applied.
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area-preserving and analytic diffeomorphisms, the set N of the orbits entirely lying in
a neighborhood of a transverse homoclinic trajectory contains infinitely many periodic
orbits. Moreover, he proposed an important idea about the possibility of the complete
description of the set N by means of the symbolic dynamics. This problem (on the
description of the set N ) is called the Poincaré-Birkhoff problem.

Later the next most significant result in the field was achieved by S. Smale [Sma65].
He had introduced his famous horseshoe map, nowadays widely known as Smale horse-
shoe, that was the first example of dynamical system which is structurally stable (or
rough in the terminology of Andronov and Pontryagin [AP37]) and had infinitely many
periodic orbits. As Smale wrote in [Sma63] it was the answer to the Andronov ques-
tion: “Can rough systems have infinitely many periodic orbits?” In [Sma65] the idea
of the horseshoe was used to study the complicated behavior of orbits near a transverse
homoclinic orbit of a multidimensional diffeomorphism T . He discovered a nontrivial
hyperbolic subset on which T is topologically conjugate to the Bernoulli shift (bi-
infinite sequences on two symbols) and showed that the Smale horseshoe is contained
in N . Naturally, the Smale horseshoe had the great influence on the theory of dynam-
ical systems and now its presence is considered as a landmark of the chaotic dynamics.
However, Smale imposed additional conditions on the linearization near the saddle that
are not always fulfilled in some resonant cases (for example, in a quite wide range of
systems as Hamiltonian systems and symplectic maps).

Two years later, L.P. Shilnikov [Shi67] used symbolic dynamics to give the complete
solution of the Poincaré-Birkhoff problem on the description of the set N of the orbits
entirely lying in a neighborhood of a transverse homoclinic trajectory to a saddle
equilibrium. To overcome the obstacles due to the Smale’s conditions on linearization,
Shilnikov employed a new technique consisting in the resolution of a boundary problem
near the saddle using cross-coordinates (also often called Shilnikov coordinates). He
proved that the set N is a locally maximal invariant hyperbolic set and described
N in terms of the Bernoulli shifts. Furthermore, this approach was improved by his
students and collaborators to solve other problems on transverse homoclinic orbits
[SSTC98, GS07].

One more work [Shi68] of Shilnikov on transverse homoclinic orbits is of great
importance for the theory of dynamical chaos. In this paper, Shilnikov considers ho-
moclinic trajectories to hyperbolic invariant tori and proves a result which is quite
analogous to the case of a saddle fixed point. Among other works on this topic we note
the famous works of V. M. Alekseev [Ale68, Ale69, Ale76] in which the Shilnikov’s re-
sults were generalized to hyperbolic sets described by topological Markov chains with
arbitrary (finite) number of states. Further, Alekseev used these tools and methods
to describe various hyperbolic sets (and to discover the new ones) in celestial mechan-
ics [Ale81]. Note also that L.M. Lerman and L.P. Shilnikov gave a solution of the
Poincaré-Birkhoff problem both for the infinite dimensional case [LS88] and for the
case of non-autonomous flows [LS92].
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Figure 2: Examples of homoclinic tangencies (a) and (b) of the first type; (c) of the second type;

(d) of the third type.

Bifurcations of nontransversal homoclinic orbits

Afterwards, it was natural to study nontransversal intersections of invariant manifolds
whose case is more intricate. The systematic study of bifurcations of homoclinic tan-
gencies was started by N.K. Gavrilov and L.P. Shilnikov [GS72, GS73] in the case of a
two-dimensional dissipative diffeomorphism f0 (three-dimensional flows) with a saddle
periodic orbit O whose stable and unstable invariant manifolds were quadratically tan-
gent along a homoclinic orbit Γ0. The saddle orbit O had the multipliers |λ| < 1, |γ| > 1
and the saddle value σ = |λγ| < 1. They considered a parameter-dependent family,
also called as general unfoldings, fµ, containing f0 at µ = 0. They discovered many
remarkable dynamical phenomena and below we give a short description of them.

Classification of homoclinic tangencies. The diffeomorphisms f0 with homoclinic
tangencies were subdivided into three types depending of the structure of the set N0 of
the orbits entirely lying in a neighborhood of Γ0, see Figure 2. The first type: N0 has
a trivial structure, N0 = {O,Γ0}; the second type: N0 has the complete description in
terms of the symbolic dynamics; the third type: N0 has a nontrivial (chaotic) structure.
Such classification was extended later to the multidimensional case [GS86] as well as
to the case σ = 1 [GS87] including the conservative one [GS01].

Existence of nontrivial hyperbolic subsets. Let Nµ be the set of orbits of fµ entirely
lying in a small neighborhood of Γ0. It was shown in [GS72] that Nµ contains a subset
Ñµ that is hyperbolic and has a nontrivial orbit structure (except for systems of the
first type). Moreover, a description of the subsets Ñµ in terms of the symbolic dynamics
was given in [GS72]

Homoclinic Ω-explosion. It was established in [GS73] that the system f0 with a
homoclinic tangency of the first type could belong to the boundary of Morse-Smale sys-
tems and, thus, separate systems with simple and chaotic dynamics. At the transition
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through this boundary (µ = 0), the complicated dynamics appears immediately, “by
explosion” (for that reason such bifurcations were called (homoclinic) Ω-explosion)2:
before the tangency (at µ < 0) the system has a simple dynamics: Nµ = {O}; there is
only one (nontransversal) homoclinic orbit N0 = {O ∪ Γ0} at the moment of the tan-
gency (µ = 0); and infinitely many Smale horseshoes appear just after the homoclinic
tangency splits (at µ > 0) into two transversal homoclinic orbits: Nµ is nontrivial. In
more detail, this phenomenon was later studied in papers of S. Newhouse and J. Palis
[NP76], J. Palis and F. Takens [PT85], L. Shilnikov and O. Stenkin [SS98] etc.

Theorem on cascade of periodic sinks. This theorem is one of the fundamental re-
sults in homoclinic dynamics and plays quite important rôle in the theory of dissipative
chaos. It states that, in the family fµ, there exist (nonintersecting) intervals of values
of µ accumulating to µ = 0 such that the corresponding diffeomorphism of the family
has an asymptotically stable periodic orbit (periodic sink). This result was extended
to the multidimensional case by S. Newhouse [New74] and S. Gonchenko [Gon83], and
general criteria for the existence of stable periodic orbits near a homoclinic tangency
were pointed out by S. Gonchenko, L. Shilnikov and D. Turaev in [GST93a, GST96a].

Theory of moduli of topological and Ω-conjugacy of diffeomorphisms with homoclinic
tangencies. The authors explained the importance of homoclinic tangencies of different
types for the global dynamics of systems. As we said before, systems with homoclinic
tangencies of the first type can belong to the boundary of Morse-Smale systems. In
[GS73] it was shown that systems with homoclinic tangencies of the second type can
belong to the boundary of hyperbolic systems. Also in [GS73] it was established that
diffeomorphisms with homoclinic tangencies of the third type possess Ω-moduli, i.e.
continuous invariants of topological conjugacy on the set of non-wandering orbits of
fµ. The main Ω-modulus θ = − ln |λ|/ ln |γ| was introduced in [GS73], where it was
shown that varying θ leads to bifurcations of periodic orbits of fµ. Further investiga-
tions of this topic (see e.g. [Gon89, GS90, GST91, GST93a, GST96a, GST99, Kal00,
DN05, GST08]) have laid to the creation of a very interesting and rich theory of ho-
moclinic bifurcations which provides a theoretical basis of the dynamical chaos.

Simultaneously, S. Newhouse obtained a series of fundamental results [New70,
New74, New79] related to the theory of homoclinic bifurcations in two-dimensional
nonconservative diffeomorphisms. He wanted to see what happens in a one-parameter
unfolding, when a homoclinic tangency splits, and discovered wild hyperbolic sets, i.e.
nontrivial, transitive and uniformly hyperbolic sets whose the stable and unstable in-
variant manifolds have an irremovable nondegenerate tangency (in the sense that al-

2The first example of the Ω-explosion was given by Shilnikov in the work [Shi69] where bifurcations
of a three-dimensional flow with several homoclinic loops to a saddle-saddle equilibrium were studied.
Recall that the saddle-saddle is an equilibrium with eigenvalues λ1 = 0, λ2 < 0, λ3 > 0 having
also nonzero the first Lyapunov value l1 (the simplest example is given by system ẋ1 = l1x

2
1, ẋ2 =

λ2x2, ẋ3 = λ3x3).
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though the given homoclinic tangency is removed by a small perturbation of the system,
one cannot avoid the appearance of new homoclinic tangencies). It is important to note
that the wild hyperbolic sets exist for diffeomorphisms close (in the C2-topology) to
any diffeomorphism with a homoclinic tangency, [New79], and, hence, there exist open
regions, the so-called Newhouse regions, where diffeomorphisms with homoclinic tan-
gencies are dense. Later, the existence of Newhouse regions near any system with a
homoclinic tangency was proved in [GST93b] for the general multidimensional case.

The dynamics in Newhouse regions for various kinds of systems was studied in a
series of papers by S. Gonchenko, L. Shilnikov and D. Turaev [GST93c, GST97, GST99,
GST07], who established the impossibility of providing a complete study of homoclinic
bifurcations within the framework of finite parameter families.

These results were obtained for general systems. However, some genericity condi-
tions exclude from considerations such very important classes of systems as conser-
vative, reversible, Hamiltonian ones etc. The study of such systems with additional
structures is of great interest and requires often special tools and methods. Some quite
important results on homoclinic bifurcations of such systems were also obtained. We
mention a series of papers [GG00, GG04, Gon02, GKM05, GOT12] related to bifurca-
tions of diffeomorphisms with quadratic homoclinic tangencies in the case σ = 1, where
very interesting homoclinic phenomena passing between the cases σ < 1 and σ > 1 were
studied; in [GMO06] bifurcations of three-dimensional diffeomorphisms with quadratic
homoclinic tangencies to a saddle-focus fixed point with Jacobian equal 1 was studied
and the birth of Lorenz-like strange attractors was proved (see also [GST09, GO10]
where analogous results were obtained).

Rather interesting results were obtained recently for two-dimensional reversible
maps with homoclinic and heteroclinic tangencies. Thus, J. Lamb and O. Stenkin
[LS04] proved the existence of Newhouse regions (in the class of reversible maps) in
which maps possessing simultaneously infinitely many asymptotically stable (attract-
ing), saddle, completely unstable (repelling) and elliptic periodic orbits are dense,
extending the results of [GST97]. They considered the case of reversible and a priori
nonconservative maps (i.e. maps having two symmetric saddle fixed points with the
Jacobian different to 1). Symmetry breaking bifurcations leading to the appearance
of attracting and repelling periodic orbits in reversible maps having a nontransversal
heteroclinic cycle containing two saddle fixed points on the symmetry line were stud-
ied in [DGL06]. This paper gave a method of detecting elements of nonconservative
dynamics in reversible systems.

Concerning the conservative case, we mention, first, the paper of Newhouse [New77],
where the appearance of 1-elliptic periodic points3 under bifurcation of homoclinic
tangency was proved for symplectic multidimensional maps. Area-preserving maps
(APMs) with homoclinic tangencies were studied by L. Mora, N. Romero [MR97] who
proved the existence of a cascade of generic elliptic points. Also in the papers of

3That is, points having exactly one pair of multipliers e±iϕ. Note that the birth of 2-elliptic points
in four-dimensional symplectic maps with homoclinic tangencies was established in [GST98, GST04].
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S.Gonchenko, L. Shilnikov [GS97, GS00], conditions of the coexistence of infinitely
many generic elliptic points were found for APMs with nontransversal heteroclinic
cycles and in [GS01, GS03] a phenomenon of global resonance was discovered when
an APM with a homoclinic tangency had infinitely many generic elliptic points of all
successive (sufficiently large) periods.

In this thesis (Part I) we continue these investigations for APMs with homoclinic
tangencies and give, in particular, in a sense a complete description for bifurcations
of single-round periodic orbits (read, fixed points of first return maps defined near a
homoclinic tangency) including construction of the corresponding bifurcation diagrams.
Moreover, non-orientable APMs with homoclinic tangencies are also considered.

The methods of the study of the orbit behavior near homoclinic and heteroclinic
tangencies are based, first of all, on the construction of return maps. In a series of
papers [TY86, BS89, GST93a, GG00, GS01, GGT02, GSS02, GST02, GS03, GG04]
it was shown that the corresponding rescaled first return maps are of the form of
Hénon-like maps (standard Hénon maps, generalized Hénon maps, cubic Hénon maps,
three-dimensional Hénon maps, etc).

Exponentially small splitting of separatrices in Hamiltonian
systems

In general, if a Hamiltonian system with an object having the coincident stable and
unstable invariant manifolds (separatrix) is perturbed, the invariant manifolds intersect
at points of homoclinic orbits without coincidence. This phenomenon has got the name
of splitting of separatrices and the problem of measuring the splitting has become classic
since the work by H. Poincaré [Poi90] where this phenomenon was discovered. Many
researchers devoted to finding estimates for the splitting in different settings both for
flows and maps. The splitting of separatrices can be measured by several quantities such
as: the maximal distance between the two invariant manifolds, the angle between the
invariant manifolds at a homoclinic point, the area of the lobe between two consecutive
homoclinic points, the homoclinic (Lazutkin) invariant as well as the width of the
chaotic zone.

The most popular tool to measure the splitting is the Poincaré-Melnikov pertur-
bative method, introduced by Poincaré in [Poi90] and rediscovered 70 years later by
Melnikov and Arnold [Mel63, Arn64] (also called shortly as Melnikov method). The dis-
tance between the invariant manifolds is given by a function called splitting function.
This method provides to it a first order approximation with respect to a perturba-
tion parameter given by an integral known as Melnikov function, whose simple zeros
give rise to transversal intersections between the stable and unstable perturbed man-
ifolds. For n-dimensional whiskered tori, it was established [Eli94, DG00] that the
splitting function and the Melnikov function, which are defined on n-dimensional tori,
are the gradients of scalar functions: the splitting potential and the Melnikov poten-
tial, respectively. This means that the transverse homoclinic orbits correspond to the
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nondegenerate critical points of the splitting potential.
In the case of exponentially small splitting, the error of the method may overcome

the main term and an additional study is required to ensure that the Poincaré-Melnikov
approximation dominates the error term.

The first exponentially small upper bound was obtained by Neishtadt [Nei84] in one
and a half degrees of freedom Hamiltonian systems. Later, similar estimates were found
in [HMS88, Fon93, Fon95] for the rapidly perturbed pendulum. Also Fontich and Simó
[FS90] obtained upper bounds for the splitting in the case of area-preserving maps close
to identity. In the case of whiskered tori with 2 or more frequencies, several authors
gave also exponentially small upper bounds [Sim94, Gal94, BCG97, BCF97, DGJS97].
In [DGS04] accurate upper bounds for the case of Diophantine n-dimensional whiskered
tori were obtained by introducing flow-box coordinates.

In general, establishing lower bounds is usually more difficult, but some results have
been obtained also by several methods.

First, the case of one-dimensional whiskered tori (periodic orbits) was considered
[Laz84, DS92, Gel97, Tre97, DS97, DR98]. Here, V.F.Lazutkin [Laz84] introduced new
tools studying splitting of separatrices in the Chirikov standard map. The invariant
manifolds are parameterized analytically in a complex strip whose size is defined by the
singularities of the unperturbed homoclinic orbit. Lazutkin used flow box coordinates
around one of the manifolds and obtained in the complex strip the splitting function,
an analytic periodic function. Using the analytic properties, one obtains, in the real
domain, exponentially small bounds for the splitting. The same technique was used to
justify the Poincaré-Melnikov method in a Hamiltonian with one and a half degrees of
freedom [DS92, DS97] and an area-preserving map [DR98].

When the dimension of the whiskered torus is greater than 1, it turns out that the
arithmetic properties of its frequencies play important rôle and influence on the expres-
sion of the quasiperiodic splitting function in which the small divisors are presented.
This was first detected by Simó [Sim94] and then rigorously proved by Delshams et al.
[DGJS97] in the quasi-periodically forced pendulum.

Later, several authors studied the splitting of separatrices for two-dimensional
whiskered tori in 3 degrees of freedom Hamiltonian systems. For instance, Simó and
Valls [SV01] studied the Arnold example (introduced by Arnold in [Arn64] to illustrate
the transition chain mechanism which is crucial in the study of the Arnold diffusion) and
also considered the homoclinic bifurcations that can occur. Lochak, Marco and Sauzin
[Sau01, LMS03], Rudnev and Wiggins [RW00] used a different technique, namely the
parametrization of the whiskers by two different solutions of Hamilton-Jacobi equation,
to study a generalized Arnold model and proved the exponential smallness of the split-
ting for some intervals of the perturbation parameter ε. Pronin and Treschev [PT00]
gave exponentially small bounds for a slow-fast system using another method called
continuous averaging.

In [DG03, DG04] Delshams and Gutiérrez studied a generalization of the Arnold’s
example, a Hamiltonian system with 3 degrees of freedom having a two-dimensional
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whiskered torus whose frequency ratio is the golden mean (
√

5 − 1)/2 or other few
quadratic number. They applied the theory of continued fractions to select primary
resonances related to the small divisors that appear in the dominant harmonics of
the Melnikov function. It was shown that the dominant harmonics of the splitting
function correspond to the dominant harmonics of the Melnikov function, providing
the asymptotic estimates (and, hence, lower bounds) for the splitting. With these
estimates they proved that in the case of the quadratic golden frequencies, there exist
exactly four transverse homoclinic orbits to the whiskered torus for all the sufficiently
small values of the perturbation parameter.

The asymptotic estimates were done for two-dimensional whiskered tori with few
quadratic frequencies [DG03, DG04], and one of the objectives in this thesis is to
generalize these results to other quadratic numbers in the two-dimensional case and
also to the three-dimensional case. It is worth mentioning that there is no standard
theory of continued fractions for the case of three or more frequency vectors. This is
the reason to consider a particular case of cubic frequency vector, just to be able to
provide some results on exponentially small splitting of separatrices for 3 frequencies
for the first time.

Notice that when the Poincaré-Melnikov approach cannot be validated, other tech-
niques can be applied to get exponentially small estimates. For example, the parametriza-
tion of the invariant manifolds by solutions of the so-called inner equation, introduced
by Lazutkin [Laz84], with the subsequent application of the complex matching tech-
nique [Bal06, OSS03, MSS11, MSS11b], and “beyond all orders” asymptotic methods
[Lom00]. Also in [Tre97] an asymptotic formula for the splitting was given in the case
of a “pendulum with a suspension point” using continuous averaging.

Structure and main results

This thesis is organized into two parts according to the topic considered, and each part
is subdivided into a number of chapters which contain the main results and appen-
dices with some complementary facts. Usually every chapter is devoted to a different
problem.

Bifurcations of homoclinic tangencies in area-preserving maps

In the first part we study area-preserving maps (whose Jacobian is ±1) with a ho-
moclinic tangency to a saddle fixed point (see, for example, Figure 3). In order to
know how trajectories behave in a neighborhood of a nontransversal homoclinic orbit,
we study their bifurcations, i.e. we consider parameter dependent families of maps
close to the initial one (which possesses the homoclinic tangency) and observe how the
behavior of nearby trajectories changes qualitatively as the maps approach to or move
away from the initial map (varying the parameters). Usually the initial map corre-
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Figure 3: An example of area-preserving map having a quadratic homoclinic tangency along of a

homoclinic orbit Γ0.

sponds to a bifurcation value of the parameters and divides the family into subfamilies
with qualitatively different phase portraits. In particular, we want to see what happens
with the so-called single-round periodic orbits, i.e. periodic orbits which entirely lie in
a neighborhood of the nontransversal homoclinic orbit and pass close to it only once.
To this end, we construct first return maps, for which we use finitely-smooth normal
forms of the saddle maps, containing only resonant monomials in nonlinearities up to
some order n ≥ 3, and introduce cross-coordinates (see details in Chapter 4). The fixed
points of the first return maps correspond to single-round periodic orbits of the maps
under consideration. Applying rescaling methods (see the Rescaling Lemmas in every
chapter) we derive the first return maps to the Hénon-like maps whose bifurcations are
well known. Thus, translating the results obtained for the fixed points of the return
maps to the periodic orbits, we prove the main results. We also study the phenomenon
of the coexistence of infinitely many single-round periodic orbits of different large pe-
riods (called global resonance) and prove a two parameter version of the theorem on
cascades of elliptic periodic points.

More precisely, we consider the following problems:

Chapter 1. We consider two-dimensional symplectic maps, i.e. area-preserving maps
which are also orientation-preserving (the Jacobian is equal to 1). The initial map
f0 has a saddle fixed point O with multipliers λ and λ−1 and possesses a quadratic
homoclinic tangency Γ0. Let Hs be a (codimension one) bifurcation surface composed
of symplectic Cr-maps close to f0 and such that every map of Hs has a nontransversal
homoclinic orbit close to Γ0. We consider one parameter general unfoldings fµ of sym-
plectic maps, where µ is the parameter of splitting of the homoclinic tangency, and we
require that family fµ is transverse to Hs at µ = 0.

Note that the initial map f0 possesses also a homoclinic invariant τ (introduced
in (1.15)) that is responsible for the presence of the chaotic dynamics. The point is
that the value τ = 0 can be “bifurcational”, even without splitting the initial tangency



12 INTRODUCTION

[GS01]: if τ > 0, f0 has infinitely many Smale horseshoes, while if τ < 0, then dynamics
of f0 is trivial: the set N0 of orbits entirely lying in a small neighborhood of Γ0 contains
only the saddle point O and the homoclinic orbit Γ0, i.e. N0 = O

⋃
Γ0.

By Rescaling Lemma 1.4, p. 48, we deduce the first return maps to the normal
forms which take the form of a conservative Hénon-like map (with a small cubic term)
and establish the one parameter theorem on cascade of elliptic periodic points (see
more details in Theorem 1.1, p. 37):

Theorem 0.1. Let f0 be a symplectic map with a homoclinic tangency to a saddle point
and fµ be a one parameter general unfolding as described above. Then the following
statements take place:

1. In any segment [−µ0, µ0] of values µ, there are infinitely many open intervals δk,
k = k̄, k̄ + 1, . . . (k̄ is some integer), such that δk → 0 as k → +∞ and the map
fµ has a single-round elliptic periodic orbit at µ ∈ δk;

2. At the border points µ = µ+
k and µ = µ−k of δk, fµ has a single-round parabolic

periodic orbit with double multipliers +1 and −1, respectively;

3. The elliptic orbit is generic (KAM-stable) for µ ∈ δk, except for exactly two values
corresponding to the strong resonances 1:3 and 1:4, i.e. when the multipliers are
e±i2π/3 and e±iπ/2;

4. When τ 6= 0, the intervals δi and δj do not intersect for sufficiently large integers
i 6= j.

Note that analogous results related to items 1, 2 and 3 of Theorem 0.1 were proved in
[Bir87], [BS89] and [MR97], but the coexistence of single-round elliptic periodic orbits
of different periods (the global resonance) was not considered. Item 4 of Theorem 0.1
shows that, in general (τ 6= 0), such elliptic orbits of different and large periods cannot
coexist.

The case τ = 0 is exceptional and requires a further study within the framework of
two-parameter unfoldings: fµ,τ . It turns out that the phenomenon of the global reso-
nance depends strongly on the geometry of the initial homoclinic tangency of f0. We
distinguish two cases: the case I with homoclinic tangencies similar to Figure 2(a),(c)
and the case II with homoclinic tangencies as in Figure 2(b),(d). Thus, we prove a
new two parameter version of the theorem on cascade of elliptic periodic points (The-
orem 1.2, p. 38):

Theorem 0.2. Let f0 be a symplectic map with a homoclinic tangency to a saddle point
and fµ,τ be a two parameter general unfolding as described above. Then the following
statements take place:

1. In any neighborhood of the origin in the (τ, µ)-plane, there are infinitely many
open domains ∆k, for k starting with some integer k̄, such that the map fµ,τ has
a single-round periodic elliptic orbit in ∆k;
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2. The domains ∆k accumulate to the axis µ = 0 as k →∞;

3. The boundaries of ∆k are two curves L+
k and L−k where the map fµ,τ has a

parabolic single-round periodic orbit with double multipliers either +1 and −1,
respectively;

4. The elliptic orbit is generic (KAM-stable) for all values of (τ, µ) ∈ ∆k, except for

those which belong to curves L
2π/3
k and L

π/2
k when resonances 1:3 and 1:4 occur,

respectively;

5. In the case I, the domains ∆i and ∆j do not intersect for any sufficiently large
and different integers i and j;

6. In the case II, the domains ∆i and ∆j are necessarily crossed and they intersect
the axis µ = 0; Moreover, all domains ∆k with sufficiently large k contain the
origin (τ = 0, µ = 0), provided some condition (1.16) is satisfied.

See Figure 4 for an illustration of Theorem 0.2 where the planar domains ∆k in the
cases I and II are represented.

Figure 4: Domains ∆k of Theorem 0.2 in the cases I and II

In case II, it follows from item 6 of Theorem 0.2 that at τ = 0 all domains ∆k, for
k starting with some integer k̄, intersect and, moreover, under certain conditions (see
Corollary 1.1) all the domains contain µ = 0 – this means that the map f0 has infinitely
many coexisting generic elliptic periodic points of all successive periods k = k̄, k̄+1, . . .
(the global resonance).

In the next theorem we describe the character of bifurcations when µ varies inside
the intervals δk of Theorem 0.1 and find the conditions under which the bifurcations
through the strong resonances 1:3 and 1:4 are non-degenerate (Theorem 1.3, p. 40).
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Theorem 0.3. The bifurcations of fixed points in the first return map of fµ follow the
same scenario as the one observed in the conservative generalized Hénon map

x̄ = y, ȳ = M − x− y2 + νky
3, (1)

where M ∼ λ−2k(µ − αk) and αk ∼ λk, νk ∼ λk are small coefficients. For this map
the resonance 1 : 3 is non-degenerate for all values of νk, while the resonance 1 : 4 is
non-degenerate if νk 6= 0

The reader is referred to equations (1.18) to see the exact formulae for M and νk
as well as to Figure 1.7 of Chapter 1 to see the corresponding bifurcations of the map
(1).

In this chapter we also provide a classification of quadratic homoclinic tangencies
in the symplectic case (see Section 1.2).

Chapter 2. We consider f0 an area-preserving map that does not preserve orientation
(the Jacobian is −1). It has a saddle fixed point O with multipliers 0 < |λ| < 1 < |γ|,
|λγ| = 1. The stable and unstable invariant manifolds of O have a homoclinic tangency
along a homoclinic orbit Γ0. We divide such APMs f0 into 2 groups:

• the globally non-orientable maps with an orientable saddle (the saddle value is
λγ = 1) on a non-orientable manifold (Möbius strip, Klein bottle, etc), see an
example of such a map in Figure5;

• the locally non-orientable maps with non-orientable saddles (the saddle value is
λγ = −1).

Figure 5: An example of non-orientable area-preserving map (on a Möbius strip) with a quadratic

homoclinic tangency along a homoclinic orbit Γ0.

We also consider one and two parameter families fµ, fµ,α and fµ,α̂, where µ is still the
parameter of splitting of the homoclinic tangency and α and α̂ (introduced in (2.6))
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are analogs of τ in the symplectic case, that is homoclinic invariants responsible for
the presence of the chaotic dynamics in f0.

It turns out that in the globally non-orientable case the first return maps do not
have elliptic fixed points, but a period two elliptic point appears which corresponds to
a double-round periodic orbit; whereas, in the locally non-orientable maps, there exist
intervals of the parameter µ where the first return maps have elliptic fixed points and
other intervals where the first return maps have period 2 points. Thus, we establish
the existence of cascades of elliptic points (see details in Theorem 2.1, p. 62):

Theorem 0.4. Let f0 be a non-orientable APM and fµ be a one parameter family of
close to f0 APMs as described above. For any interval (−µ0, µ0), there exists such a
positive integer k̄ such that the following holds:

1. (a). In the globally non-orientable case, the maps fµ have no single-round elliptic
periodic orbits, while there exist infinitely many intervals e2

k, k = k̄, k̄ + 1, . . . ,
where fµ has a double-round elliptic orbit.
(b) In the locally non-orientable case, there exist infinitely many alternating in-
tervals e2m and e2

2m+1 such that the map fµ has a single-round elliptic periodic
orbit at µ ∈ e2m and has a double-round elliptic periodic orbit at µ ∈ e2

2m+1.

2. The intervals ek as well as e2
k accumulate to µ = 0 as k →∞ and do not intersect

for sufficiently large and different integer k if α 6= 0 and α̂ 6= 0.

3. Any interval ek has border points µ = µ+
k and µ = µ−k where the map fµ has a

single-round periodic orbit with double multiplier +1 and with double multiplier
−1, respectively. Any interval e2

k has border points µ = µ2+
k and µ = µ2−

k where
the map fµ has a single-round periodic orbit with multipliers +1 and −1 at µ =
µ2+
k and a double-round periodic orbit with double multiplier −1 at µ = µ2−

k .

4. The elliptic orbit is generic (KAM-stable) in ek and e2
k, except for strong reso-

nances 1:3 and 1:4.

We also consider the question on the coexistence of elliptic periodic points by means
of two parameter families fµ,α and fµ,α̂.

Theorem 0.5. For two parameter families fµ,α and fµ,α̂ there exist infinitely many
open domains, E2

k in the globally non-orientable case and domains E2m and E2
2m+1 in

the locally non-orientable case, such that

1. The map fµ,α and fµ,α̂ have a single-round periodic elliptic orbit in Ek, and have
a double-round elliptic periodic orbit in E2

k;

2. The domains Ek and E2
k accumulate to the axis µ = 0 as k →∞;
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3. Any domain Ek has two boundaries, bifurcation curves L+
k and L−k , corresponding

to a single-round nondegenerate periodic orbit with double multipliers +1 and −1,
respectively;

4. Any domain E2
k has two boundaries, bifurcation curves L2+

k and L2−
k , corre-

sponding to a single-round nondegenerate periodic orbit with multipliers ±1 and
a double-round nondegenerate periodic orbit with double multipliers −1, respec-
tively;

5. In the globally non-orientable case, the domains E2
i and E2

j with sufficiently large
i 6= j are crossed in the (µ, α)-plane and they intersect the axis µ = 0.

6. In the locally non-orientable case, in the (µ, α)-plane, the domains E2i and E2j

are crossed for sufficiently large i 6= j and intersect all domains E2
2m+1 as well as

the axis µ = 0, but the domains E2
2i+1 and E2

2j+1 do not intersect for i 6= j.
Otherwise, in the (µ, α̂)-plane, the domains E2

2i+1 and E2
2j+1 are crossed and they

intersect all domains E2m as well as the axis µ = 0, but the domains E2i and E2j

do not intersect for i 6= j.

See Figure 6 for an illustration of the theorem.
From items 5 and 6 of Theorem 0.5, one can conclude that the domains of The-

orem 0.5 can intersect for different k (and, hence, elliptic periodic orbits of different
periods coexist) and all of them contain the origin (µ = α = 0 or µ = α̂ = 0. This
means that f0 has infinitely many elliptic orbits of different periods and, thus, the
global resonance is observed for non-orientable maps too. The conditions under which
the global resonance occurs, are pointed out in more details in the corresponding The-
orem 2.3, p. 65.

Chapter 3. We study bifurcations in two-dimensional symplectic maps f0 with a ho-
moclinic orbit Γ0 along which the stable and unstable invariant manifolds to a saddle
fixed point have a cubic homoclinic tangency. We distinguish two types of cubic ho-
moclinic tangencies: “incoming from above” and “incoming from below”, see Figure 7.

We consider a two-parameter family fµ1,µ2 , where µ1 and µ2 are the parameters of
splitting of the initial cubic tangency. The bifurcational diagram of the splitting is as
in Figure 8 and it turns out that in the parameter plane there is a curve B0 at which
fµ1,µ2 has a quadratic homoclinic tangency together with another transverse homoclinic
orbit. At passing through B0, one transverse homoclinic orbit (close to Γ0) breaks up
into three transverse homoclinic orbits

The “incoming from above” and “incoming from below” cases give different first
return maps derived by the cubic Rescaling lemma (see Lemma 3.8, p. 83) to diverse
cubic conservative Hénon maps with quite different bifurcation diagrams (see the cor-
responding bifurcational diagrams in Figures 3.4– 3.5). In this way, we prove the
following theorem:
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Figure 6: Domains Ek and E2
k of Theorem 0.5 (a) for globally non-orientable fµ,α; (b) for locally

non-orientable fµ,α; (c) for locally non-orientable fµ,α̂.

Theorem 0.6 (On the structure of the bifurcational diagram in fµ1,µ2). Let fµ1,µ2 be a
two parameter family of symplectic maps close to f0 with a cubic homoclinic tangency.
Then
1) In any neighborhood of the origin in the (µ1, µ2)-plane, there exist infinitely many
bifurcation curves L+

k and L−k as well as Ck+
1,2 and Ck−

1,2 that accumulate to the curve B0

as k →∞. The map fµ1,µ2 has a parabolic single-round periodic orbit with multipliers
ν1 = ν2 = +1 (respectively, ν1 = ν2 = −1) at µ ∈ L+

k (respectively, µ ∈ L−k ), a double-
round periodic orbit with multipliers ν1 = ν2 = +1 (respectively, ν1 = ν2 = −1) at
µ ∈ Ck+

1,2 (respectively, µ ∈ Ck−
1,2 ).

2) For any sufficiently large k, in the (µ1, µ2)-plane there is a domain Ek between
the curves L+

k and L−k where the map fµ1,µ2 has a single-round elliptic periodic orbit
at µ ∈ Ek. This point is generic (KAM-stable) for all such µ except for the ones
corresponding to strong resonances 1 : 3 and 1 : 4. ν1,2 = e±iπ/2 or ν1,2 = e±i2π/3.

See an illustration of Theorem 0.6 in Figure 9). Note that the results of this chapter
are a generalization to the conservative case of the results obtained for the dissipative
case in [Gon85].
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Figure 7: Two types of cubic homoclinic tangencies.

Figure 8: The bifurcation curve B0 in (a) “incoming from above” and (b) “incoming from below”

cases. Map fµ has only one transverse homoclinic orbit in I and three such orbits in II.

Chapter 4. This chapter is devoted to the proof of the technical results (Lemmas 1.1,
1.2 and 2.2) which allow us to derive the area-preserving maps from Chapters 1 and 2
to the finitely-smooth normal forms. These finitely-smooth normal forms are used to
construct the first return maps.

Appendix A. The structure of 1:4 resonance is analyzed for some conservative Hénon-
like maps. Namely, we study bifurcations of fixed points with multipliers e±iπ/2 for the
standard conservative Hénon map and both types of conservative cubic Hénon map.
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Figure 9: Main elements of bifurcation diagram for the families fµ1,µ2
in different cases.

Exponentially small splitting of separatrices for whiskered tori
with various frequencies in Hamiltonian systems

The second part of the thesis is dedicated to the study of splitting of separatrices arising
from a perturbation of a Hamiltonian system possessing a homoclinic connection. We
consider a perturbation of an integrable Hamiltonian system having whiskered tori
with coincident stable and unstable whiskers. Generally, in the perturbed system, the
whiskers do not coincide anymore and our goal is to detect the transverse homoclinic
orbits associated to the persistent whiskered tori. The perturbed system turns out to
be not integrable due to the presence of these homoclinic trajectories and, consequently,
there is chaotic dynamics near them. We give a suitable (Lazutkin) parametrization
to the whiskers to determine the distance between them (the splitting functionM(θ)),
and the simple zeros of the splitting function give rise to transverse homoclinic orbits.
We use the Poincaré-Melnikov approach to measure the splitting, although in the case
of exponential smallness we have to ensure that the first order approximation overcome
the error term.

Chapter 5. This is a preliminary chapter where we describe the nearly-integrable
Hamiltonian system under study and give the statement of the problems. In particular,
we consider an example of a singular or weakly hyperbolic (a priori stable) Hamiltonian
with n+ 1 degrees of freedom defined by4

H(x, y, ϕ, I) = H0(x, y, I) + µH1(x, ϕ), (x, y, ϕ, I) ∈ T× R× Tn × Rn

H0(x, y, I) = 〈ωε, I〉+ 1
2
〈ΛI, I〉+ y2/2 + cos x− 1, H1(x, ϕ) = h(x)f(ϕ),

(2)

with two parameters ε and µ linked by a relation of kind µ = εp(p > 0).

4We study the cases n = 2 and n = 3 in Chapters 6 and 7, respectively
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The unperturbed Hamiltonian H0 possesses whiskered (hyperbolic) invariant tori
with coincident stable and unstable invariant manifolds. We will focus our attention
on the torus, located at I = 0, whose frequency vector is ωε that is a vector of fast
frequencies given by a n-dimensional vector ω:

ωε = ω/
√
ε. (3)

We will consider vector ω and a symmetric n × n matrix Λ such that H0 satisfies the
Diophantine condition of constant type

|〈k, ω〉| ≥ γ

|k|τ
, ∀k ∈ Zn\{0}

with some γ > 0, and the condition of isoenergetic nondegeneracy

det

(
Λ ω
ω> 0

)
6= 0.

We denote W0 the homoclinic whisker associated to this torus and consider the
parameterization to it

W0 : (x0(s), y0(s), θ, 0), s ∈ R, θ ∈ T2,

where

x0(s) = 4 arctan es, y0(s) =
2

cosh s

When perturbing (µ 6= 0), the hyperbolic KAM theorem implies that, for µ small
enough, the whiskered torus persists, although the whiskers do not coincide anymore,
in general. The problem consists in the detection of this splitting. As in the famous ex-
ample by Arnold [Arn64], we choose the perturbation H1 having the form of a product:
H1(x, ϕ) = h(x)f(ϕ) with

h(x) = cos x−ν, with ν = 0 or ν = 1, f(ϕ) =
∑
k∈Zn

e−ρ|k| cos(〈k, ϕ〉−σk), with σk ∈ T,

(4)
where the constant ρ > 0 in the Fourier expansion of f(ϕ) gives the complex width
of analyticity of f(ϕ). The phases σk can be chosen arbitrarily, in principle, although
some conditions on these phases have to be fulfilled for the validity of our results.
The difference between two values of ν in (4) is the following: in the case ν = 0 the
whiskered torus persists with some shift and deformations, whereas in the case ν = 1
it remains fixed under the perturbation, though the whiskers deform.

In Chapter 5 we explain in detail the Poincaré-Melnikov method that gives the
first order in µ approximation for the splitting function M(θ) whose simple zeros
give rise to transverse homoclinic orbits. The point of the problem is that since this
approximation is exponentially small in ε, we have to justify the method in our case
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µ = εp and show that the remainder is smaller than the main term providing the
corresponding estimates.

Note that due to the form of f , the splitting function M as well as its Poincaré-
Melnikov approximation are readily represented in their Fourier series, and for each
value of ε only a finite number of dominant harmonics is relevant to find the simple
zeros.

Chapter 6. We study the splitting of whiskers for a two-dimensional (the case n = 2)
whiskered torus in the Hamiltonian system (2) with 3 degrees of freedom. We consider
the whiskered torus with frequencies (3) given by

ω = (1,Ω),

where Ω is a quadratic irrational number, i.e. a real root of a quadratic polynomial with
integer coefficients. We deal with numbers whose continued fractions satisfy certain
arithmetic properties (see (6.14)) which give us 24 cases for consideration:

Ω1,Ω2, . . . ,Ω13,Ω1,2, . . . ,Ω1,12, (5)

where we denote an irrational quadratic number by Ωa according to its periodic part in
the continued fraction, for instance, Ω1 = [1, 1, 1, . . .] = [1̄] = (

√
5− 1)/2 is the famous

golden number, Ω1,12 = [1, 12, 1, 12, . . .] = [1, 12] = 4
√

3− 6.
We show that the Poincaré-Melnikov method can be applied to detect the splitting

as long as we choose the exponent p > p∗, where p∗ depends on the value of ν in the
function h(x) in (4). First, we give an asymptotic estimate for the maximal distance
of the splitting by means of the maximum size in modulus of the splitting function
M(θ) (see details in Theorem 6.1, p. 125). We use the notation f ∼ g if we can bound
c1|g| ≤ |f | ≤ c2|g| with positive constant c1, c2 not depending on ε, µ.

Theorem 0.7 ((Maximal) splitting distance). For the Hamiltonian system (2-4) with
n = 2, assume that ε is small enough and µ = εp, p > p∗ with p∗ = 2 if ν = 1 and
p∗ = 3 if ν = 0. Then, for the 24 quadratic numbers (5), the following estimate holds

max
θ∈T2
|M(θ)| ∼ µ√

ε
exp

{
−C0h1(ε)

ε1/4

}
where C0 is a positive constant, given in (6.12), and the function h1(ε) is a periodic
function in ln ε which satisfies minh1(ε) = 1 and maxh1(ε) = A1 > 1.

We also find 4 simple zeros ofM and, hence, establish the existence of 4 homoclinic
orbits to the whiskered tori. To show the simplicity of these zeros we need 2 essential
dominant harmonics (see Definition 6.1 of essential dominant harmonics in p. 126). We
provide estimates for the dominant harmonics as well as for the remaining harmonics
and give also an asymptotic estimate for the minimal eigenvalue (in modulus) of the
splitting matrix ∂θM at each zero. This estimate provides a measure of transversality
of the homoclinic orbits. See also Theorem 6.2, p. 130.
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Theorem 0.8 (Transversality of the splitting). Under the hypotheses of Theorem 0.7,
one has:

• the Melnikov functionM(θ) has exactly 4 zeros θ∗, all simple, for all ε except for
some small neighborhood of some geometric sequences of ε (given in (6.13) and
(6.21)).

• The minimal eigenvalue of ∂θM(θ∗) satisfies

m∗ ∼ µε1/4 exp

{
−C0h2(ε)

ε1/4

}
where h2(ε) is a positive periodic in ln ε function.

In Figure 10 there is a schematic illustration of the functions h1(ε) and h2(ε) pre-
sented as exponents in the corresponding estimates of Theorem 0.7 and 0.8. It is worth
mentioning that the expression of h1 and h2 depends on the specific quadratic number
chosen from (5)

Notice that the geometric sequences mentioned in Theorem 0.8 are those where
the splitting function has more than 2 essential dominant harmonics because the
second essential dominant harmonic coincides with the third one, and this requires
a special study. As an illustration, we carry out this study for the silver number
Ω2 = [2, 2, 2, . . .] = [2] =

√
2− 1 and show (imposing some conditions on the phases σk

of f in (4)) the continuation (without bifurcations) of the 4 homoclinic orbits for all
values of ε→ 0, see also Theorem 6.3, p. 153.

Theorem 0.9 (Transversality of the splitting for Ω2). For the Hamiltonian system
(2-4) with n = 2 and Ω = Ω2 in (3), assume that ε > 0 is small enough and µ = εp,
p > p∗ with p∗ = 2 if ν = 1 and p∗ = 3 if ν = 0, then if σk = 0 for all k ∈ Z2\{0}, one
has:

• the Melnikov function M(θ) has exactly 4 zeros θ∗, all simple, for all ε;

• The minimal eigenvalue of ∂θM(θ∗) satisfies

m∗ ∼ µε1/4 exp

{
−C0h2(ε)

ε1/4

}
where h2(ε) is a positive periodic function in ln ε.

Chapter 7. We consider the case n = 3 of the Hamiltonian system (2-4) and gen-
eralize the results obtained for two-dimensional tori with quadratic frequencies to a
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Figure 10: Plots of the functions h1 and h2 for Ω2.

three-dimensional whiskered torus with cubic frequencies. To fix ideas, we consider a
frequency vector of the form

ω = (1,Ω,Ω2),

where Ω is a cubic irrational number, i.e. a real root of a cubic polynomial with
integer coefficients. We consider the so-called complex case, i.e. the components of
the frequency vector lie in a cubic field, generated by a cubic irrational number whose
two conjugates are not real, and show an oscillatory behavior of their principal small
divisors, that did not take place for the quadratic frequencies.

First, in Section 7.1 we study the arithmetic properties of the cubic frequencies and
give a classification of the associated resonances (k ∈ Z3\{0} such that γk := |〈k, ω〉||k|2
is small). The idea is to construct a unimodular matrix T with the cubic frequency
vector ω as one of its eigenvectors, and, thus, classify the resonances into primary and
secondary ones, see for more details Section 7.1. Unfortunately, for cubic irrational
numbers there is no standard theory of continued fractions like the one that was applied
for quadratic numbers (in the quadratic case the periodicity of the continued fractions
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is used to construct the matrix T ). Therefore, only some concrete cubic numbers can
be considered for which the matrix T is known, see for example [Cha02]. In particular,
we pay special attention to the cubic golden number, the real root of Ω3 + Ω = 1(Ω ≈
0.6823).

We prove that the Poincaré-Melnikov method can be applied choosing an appro-
priate p > p∗ and provide an asymptotic estimate for the maximal size of the splitting
function M(θ) (see also Theorem 7.1, p. 171):

Theorem 0.10 ((Maximal) splitting distance). For the Hamiltonian system (2-4) with
n = 3, assume that ε is small enough and µ = εp, p > p∗ with p∗ = 2 if ν = 1 and
p∗ = 3 if ν = 0, then the following asymptotic estimate holds

max
θ∈T3
|M(θ)| ∼ µ

3
√
ε

exp

{
−C0h1(ε)

ε1/6

}
,

where C0 is the constant given in (7.11) and the function h1(ε) satisfies the following
bounds:

• “Constant bound”: 0 < C−1 ≤ h1(ε) ≤ C+
2 with constants C−1 and C+

2 , defined in
(7.22);

• “Periodic bound”: 0 < h−1 (ε) ≤ h1(ε) ≤ h+
1 (ε), where h−(ε), h+(ε) are a 3 lnλ-

periodic functions in ln ε ; minh−1 = C−1 ,maxh−1 = C−2 ,minh+
1 = C+

1 ,maxh+
1 =

C+
2 , the constants C−2 , C

+
1 are defined in (7.22).

In contrast to the quadratic case, the function h1(ε) is not periodic and has a more
complicated form (see Figure 11 where one can suspect that h1(ε) is a quasiperiodic
function).

Also we establish the following numerical result about the existence and the transver-
sality of 8 homoclinic orbits to the whiskered torus. We prove that for ε small enough
the 8 simple zeros of the splitting function M are determined by its 3 dominant har-
monics if the vectors of indexes S1, S2, S3 corresponding to these terms are independent,
and, otherwise, by 4 dominant harmonics if not (see also Theorem 7.2, p. 173):

Theorem 0.11 (Transversality). Under the hypotheses of Theorem 0.10, one has:

• If det(S1, S2, S3) 6= 0, the Melnikov function M(θ) has exactly 8 zeros θ∗, all
simple, for all ε except for some small neighborhood of a discrete set of ε. The
minimal eigenvalue of ∂θM(θ∗) satisfies

m∗ ∼ µε1/2 exp

{
−C0h3(ε)

ε1/6

}
.
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obtained.

• If det(S1, S2, S3) = 0, but det(S1, S2, S4) 6= 0, the Melnikov function M(θ) has
exactly 8 zeros θ∗, all simple, for all ε except for some small neighborhood of a
discrete set of ε. The minimal eigenvalue of ∂θM(θ∗) satisfies

m∗ ∼ µε1/2 exp

{
−C0h4(ε)

ε1/6

}
.

The proof of this theorem is more difficult than the one of the quadratic case, since
the functions presented in the exponents of the estimates are not periodic in ln ε and,
actually, we cannot point out exactly (analytically) the discrete set where the theorem
fails.

It is worth mentioning that, as we know, these are the first asymptotic results for
the problem of splitting of separatrices for whiskered tori with 3 frequencies, and that
many open problems still remain.
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Appendix B. We prove some auxiliary lemmas related to the Fixed Point theorem.
These lemmas enable us to find the critical points of the splitting potential L(θ) and
the zeros of the splitting function M(θ).

Conclusions and future work

In this section we summarize the main achievements of the thesis and suggest some
open problems to investigate in the nearest future.

Bifurcations of homoclinic tangencies in area-preserving maps

• We have studied bifurcations of a quadratic homoclinic tangency for two-dimensional
symplectic (Chapter 1) and area-preserving non-orientable (Chapter 2) saddle
maps and proved the existence of cascades of elliptic periodic orbits near the
homoclinic orbit within the framework of one and two parameter general unfold-
ings.

• We have considered the question of the coexistence of elliptic periodic orbits
of different periods for the symplectic and area-preserving non-orientable saddle
maps and established the phenomenon of the global resonance.

• We have studied bifurcations of a cubic homoclinic tangency for two-dimensional
symplectic maps and discovered the structure of the bifurcational diagram in two
parameter general unfoldings (Chapter 3).

• We have constructed finitely-smooth normal forms for two-dimensional symplec-
tic and area-preserving non-orientable saddle maps (Chapter 4).

• We have established the structure of 1 : 4 resonance for some conservative Hénon-
like maps (Appendix A).

Exponentially small splitting of separatrices for whiskered tori with several
frequencies in Hamiltonian systems

• We have studied exponentially small splitting of separatrices for two-dimensional
whiskered tori with quadratic frequencies. We have found 23 new quadratic
numbers for which the Poincaré-Melnikov method can be applied and established
the existence of 4 transverse homoclinic orbits.

• We have studied the continuation of the homoclinic orbits for all ε → 0 in the
case of the silver number Ω2 =

√
2− 1.
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• We have established the existence of exponentially small splitting of separatri-
ces for three-dimensional whiskered tori with cubic golden frequency vector and
detected the transversality of 8 homoclinic orbits.

Future work

In the closest future we plan to continue investigations in these topics.
Regarding the first topic, we are going to translate the obtained results to the case

of reversible maps. Namely, we would like

• To study bifurcations of cubic tangencies in reversible maps, putting a special
emphasis on symmetry-breaking bifurcations.

• To adapt the results obtained for symplectic maps to the case of reversible maps.

• To understand which mechanisms of asymmetry are caused by a transverse ho-
moclinic trajectory.

• To analyze global bifurcations of area-preserving maps with a transverse homo-
clinic orbit to a parabolic fixed point.

For the second topic, we plan in the future

• In the two-dimensional case, to study the continuation of the homoclinic orbits
for all sufficiently small ε in the case of the quadratic numbers (5) introduced in
Chapter 6.

• To find new quadratic numbers for which the technique developed in Chapter 6
can be applied to detect splitting of separatrices.

• In the three-dimensional case, to consider other concrete cubic numbers in the
complex case and apply the technique of Chapter 7 to establish splitting of sep-
aratrices.

• To consider cubic numbers in the so-called real case, (i.e. the components of the
frequency vector lie in a cubic field, generated by a cubic irrational number whose
two conjugates are real). This study requires a different approach. In this case,
the behavior of the associated small divisors seems to be different to the complex
case considered in Chapter 7, and will require intensive numerical high-precision
simulations in order to establish the properties of such vectors, and then try to
obtain rigorous asymptotic estimates for the splitting.

• To consider noble numbers Ω = [a1, a2, . . . , am, 1, 1, 1, . . .] related to the golden
mean Ω1, to apply the results obtained in this thesis to establish the phenomenon
of Arnold diffusion.
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Part I

Bifurcations of homoclinic
tangencies in area-preserving maps
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Chapter 1

Bifurcations of quadratic
homoclinic tangencies for
two-dimensional symplectic maps

1.1 Statement of the problem and main results

Consider a Cr-smooth (r ≥ 3) symplectic map f0 satisfying the following conditions:

A. f0 has a saddle fixed point O with multipliers λ and λ−1, where |λ| < 1.

B. f0 has a homoclinic orbit Γ0 at whose points the stable and unstable invariant
manifolds of the saddle O have a quadratic tangency (see Figure 1).

Let Hs be a (codimension one) bifurcation surface composed of symplectic Cr-maps
close to f0 such that every map of Hs has a nontransversal homoclinic orbit close to
Γ0. Let fε be a family of symplectic Cr-maps that contains the map f0 at ε = 0. We
suppose that the family depends smoothly on parameters ε = (ε1, ..., εm) and satisfies
the following condition:

C. The family fε is transverse to Hs at ε = 0.

Let U be a small neighborhood of O ∪ Γ0. It consists of a small disk U0 containing
O and a number of small disks surrounding those points of Γ0 that do not lie in U0

(see Figure 1).

Definition 1.1. A periodic or homoclinic orbit entirely lying in U is called p-round if
it has exactly p intersection points with any disk of the set U\U0.

In this chapter we study bifurcations of single-round (p = 1) periodic orbits in
the families fε. Note that every point of such an orbit can be considered as a fixed
point of the corresponding first return map. Such a map is usually constructed as a

31
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Figure 1.1: An example of area-preserving planar map having a quadratic homoclinic tangency at

the points of a homoclinic orbit Γ0. Some of these homoclinic points are shown as grey circles. Also

a small neighborhood of the set O ∪ Γ0 is shown to be the union of the squares.

superposition Tk = T1T
k
0 of two maps T0 ≡ T0(ε) and T1 ≡ T1(ε), see Figure 1.2.

The map T0 is called local map and it is defined as the restriction of fε onto U0, i.e.
T0(ε) ≡ fε

∣∣
U0

. The map T1 is called global map and it is defined as T1 ≡ f qε and acts

from a small neighbourhood Π− ⊂ U0 of some point M− ∈ W u
loc(O) of the orbit Γ0 into

a neighbourhood Π+ ⊂ U0 of another point M+ ∈ W s
loc(O) of Γ0, where q is an integer

such that
f q0 (M−) = M+. (1.1)

Thus, any fixed point of Tk is a point of a single-round periodic orbit for fε with period
k + q. We will study maps Tk for all any sufficiently large integer k. Therefore, it is
very important to have “good” coordinate representations for both maps T0 and T1,
especially it relates to the local map T0 and its iterations T k0 for large k.

It is well known that one can introduce such symplectic coordinates (x, y) in U0

(with the origin at O) that the local map T0 takes the following form near O:

x̄ = λx+ h1(x, y, ε)x , ȳ = λ−1y + h2(x, y, ε)y , (1.2)

where hi(0, 0, ε) ≡ 0, i = 1, 2,. Thus, in these coordinates, the equations ofW s
loc∩U0 and

W u
loc ∩ U0 are y = 0 and x = 0, respectively. However, form (1.2) is very inconvenient

for calculations. The point is that the functions hi can contain too much non-resonant
terms that give a bad contribution into formulas for iterations of T0. Therefore, we
will use the so-called finitely smooth normal forms provided by the following lemma.

Lemma 1.1. For any given integer n (such that n < r/2 or n is arbitrary for r =∞
or r = ω–the real analytic case), there is a canonical change of coordinates, of class Cr
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Figure 1.2:

for n = 1 or Cr−2n for n ≥ 2, that brings T0 to the following form

x̄ = λx (1 + β1 · xy + · · ·+ βn · (xy)n) + xO (|xy|n(|x|+ |y|)) ,
ȳ = λ−1y

(
1 + β̂1 · xy + · · ·+ β̂n · (xy)n

)
+ yO (|xy|n(|x|+ |y|)) . (1.3)

The smoothness of these coordinate changes with respect to parameters can be less on
2 than that by coordinates, i.e. Cr−2 for n = 1 or Cr−2n−2 for n ≥ 2, respectively.

Remark 1.1. The normal form of the first order (n = 1) for T0

x̄ = λx (1 + β1 · xy) + xO (|xy|(|x|+ |y|)) ,
ȳ = λ−1y

(
1 + β̂1 · xy

)
+ yO (|xy|(|x|+ |y|)) (1.4)

is well known from [GS90, MR97] where it was proved the existence of normalizing
Cr−1-coordinates. The existence of Cr-smooth canonical changes of coordinates (which
are Cr−2-smooth with respect to parameters) bringing a symplectic saddle map to form
(1.4) was proved in [GST07].

The normal forms (1.3) are very suitable for effective calculation of maps T k0 :
(x0, y0)→ (xk, yk) with sufficiently large integer k. So, the following result is valid.

Lemma 1.2. Let T0 be given by (1.3), then the map T k0 can be written, for any integer
k, as follows

xk = λkx0 ·R(k)
n (x0yk, ε) + λ(n+1)kP

(k)
n (x0, yk, ε),

y0 = λkyk ·R(k)
n (x0yk, ε) + λ(n+1)kQ

(k)
n (x0, yk, ε),

(1.5)
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where

R
(k)
n ≡ 1 + β̃1(k)λkx0yk + · · ·+ β̃n(k)λnk(x0yk)

n, (1.6)

β̃i(k), i = 1, . . . , n, are some polynomials (of degree i) with respect to k with coefficients

depending on β1, . . . , βi, and the functions P
(k)
n , Q

(k)
n = o (xn0y

n
k ) are uniformly bounded

in k along with all derivatives by coordinates up to order either (r − 2) for n = 1 or
(r − 2n− 1) for n ≥ 2.

The proof of Lemmas 1.1 and 1.2 is referred to section 4.2 of Chapter 4.
Note that form (1.3) can be considered as a certain finitely smooth approximation

of the following analytical Moser normal form

x̄ = λ(ε)x ·B(xy, ε), ȳ = λ−1(ε)y ·B−1(xy, ε), (1.7)

taking place for λ > 0 [Mos56], where B(xy, ε) = 1 +β1 ·xy+ · · ·+βn · (xy)n + . . . . We
show that the approximations of form (1.3) take place also in the case λ < 0 (although,
it does not imply formally the existence of analytical form (1.7) for the case λ < 0).
Accordingly, relation (1.5) looks as a very good approximation for the corresponding
formula in the analytical case, [GS97],

xk = λkx0 ·R(k)(x0yk, ε), y0 = λkyk ·R(k)(x0yk, ε), (1.8)

where R(k) ≡ 1 + β̃1(k)λkx0yk + · · ·+ β̃n(k)λnk(x0yk)
n + . . . and

β̃1(k) = β1k, β̃2(k) = β2k −
1

2
β2

1k
2, . . . . (1.9)

In coordinates of Lemma 1.1, we have that M+ = (x+, 0),M− = (0, y−). Without loss
of generality, we assume that x+ > 0 and y− > 0. Let the neighborhoods Π+ and
Π− of the homoclinic points M+ and M−, respectively, be sufficiently small such that
T0(Π+)∩Π+ = ∅, T−1

0 (Π−)∩Π− = ∅. Then, as usually (see e.g. [GS73, SSTC98]), the
successor map from Π+ into Π− by orbits of T0 is defined, for all sufficiently small ε,
on the set consisting of infinitely many strips σ0

k ≡ Π+ ∩T−k0 Π−, k = k̄, k̄+ 1, . . . . The
image of σ0

k under T k0 is the strip σ1
k = T k0 (σ0

k) ≡ Π− ∩ T k0 Π+. As k →∞, the strips σ0
k

and σ1
k accumulate on W s

loc and W u
loc, respectively.

We write the global map T1(ε) : Π− → Π+ as follows (in the coordinates of
Lemma 1.1)

x− x+ = F (x, y − y−, ε), y = G(x, y − y−, ε), (1.10)

where F (0) = 0, G(0) = 0. Besides, we have that Gy(0) = 0, Gyy(0) = 2d 6= 0 which
follows from the fact (condition B) that at ε = 0 the curve T1(W u

loc) : {x − x+ =
F (0, y − y−, 0), y = G(0, y − y−, 0)} has a quadratic tangency with W s

loc : {ȳ = 0} at
M+. When parameters vary this tangency can split and, moreover, we can introduce
the corresponding splitting parameter as µ ≡ G(0, 0, ε). By condition C, the parameter
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µ must belong to the set of parameters ε; and, without loss of generality, we assume
that ε1 ≡ µ. Accordingly, we can write the following Taylor expansions for F and G

F (x, y − y−, ε) = ax+ b(y − y−) + e20x
2 + e11x(y − y−) + e02(y − y−)2 + h.o.t.,

G(x, y − y−, ε) = µ+ cx+ d(y − y−)2 + f20x
2 + f11x(y − y−) + f30x

3

+f21x
2(y − y−) + f12x(y − y−)2 + f03(y − y−)3 + h.o.t.,

(1.11)
where the coefficients a, b, . . . , f03 (as well as x+ and y−) depend smoothly on ε. Note
also that

det

(
Fx Fy
Gx Gy

)
≡ 1 (1.12)

since T1 is the symplectic map. In particular, we have

bc ≡ −1,

R̃ = (2a+ 2e02/bd− bf11/d) ≡ 0
(1.13)

Henceforth, the following coefficients will be very important for us:

c = Gx(0, 0, ε), d =
Gyy(0, 0, ε)

2
, (1.14)

since together with λ they define the character of geometry of the homoclinic tangen-
cies.

It is easy to see from (1.10), (1.11) that µ is the parameter of splitting of manifolds
W s(Oε) and W u(Oε) with respect to the homoclinic point M+. Indeed, the curve

lu = T1(W u
loc ∩ Π−) has the equation lu : ȳ = µ +

d

b2
(x̄ − x+)2(1 + O(x̄ − x+)).

Since the equation of W s
loc is y = 0 for all (small) ε, it implies that the manifolds

T1(W u
loc) and W s

loc do not intersect for µd > 0, intersect transversally at two points for
µd < 0, and have a quadratic tangency (at M+) for µ = 0. In turn, since the strips σ1

k

accumulate on the segment W u
loc∩Π− as k →∞, it follows that T1(σ1

k) has a horseshoe
form and, moreover, these horseshoes accumulate to lu as k →∞. Therefore, the first
return maps Tk = T1T

k
0 : σ0

k → σ0
k are, in fact, conservative horseshoe maps. When µ

varies near zero value infinitely many bifurcations of horseshoes creation (destruction)
occur. In this chapter we study these bifurcations and show that they include birth
(disappearance) of elliptic periodic points.

However, we can also see these horseshoe bifurcations must have different scenarios
depending on a type of the initial homoclinic tangency. Indeed, at µ = 0 a character
of reciprocal position of the strips σ0

k and their horseshoes T1(σ1
k) is essentially defined

by the signs of the parameters λ, c and d. Moreover, by this peculiarity, we can select
6 different cases of symplectic maps with quadratic homoclinic tangencies. The corre-
sponding examples are shown in Figures 1.3 and 1.4. Note that in the cases with λ < 0
we can always consider d to be positive: if d is negative for the given pair of homo-
clinic points, M+ and M−, we can take another pair of points, like {T0(M+),M−} or
{M+, T−1

0 (M−)}, for which the corresponding d′ becomes positive.



36 1. HOMOCLINIC BIFURCATIONS IN 2D SYMPLECTIC MAPS

Figure 1.3: Symplectic maps with a homoclinic tangency for c < 0.

Note that in the cases with c < 0, see Figure 1.3, a reciprocal position of all the
strips σ0

j and their horseshoes T1(σ1
j ) at µ = 0 is defined quite simply: σ0

j ∩T1(σ1
j ) = ∅ if

λ > 0, d < 0; the strips σ0
j and horseshoes T1(σ1

j ) have regular intersections if λ > 0, d >
0; the corresponding intersections are either regular for even j or empty for odd j if
λ < 0, d > 0. Recall that the regular intersection means (by [GS87] and [GST96b], see
also Definition 1.2) that the set σ0

j ∩T1(σ1
j ) consists of two connected components and,

moreover, the first return map Tj ≡ T1T
j
0 : σ0

j 7→ σ0
j is the Smale horseshoe map: its

nonwandering set Ωj is hyperbolic and Tj
∣∣
Ωj

is topologically conjugate to the Bernoulli

shift with two symbols (for more details see [GST96b] and section 1.2). Therefore, we
can say that every map f0 in the case c < 0, d > 0 has infinitely many horseshoes Ωj,
where j runs all sufficiently large positive integers (respectively, even positive integers)
in the case λ > 0 (respectively, in the case λ < 0). On the other hand, every map f0

with λ > 0, c < 0, d < 0 has no horseshoes at all (in a small neighborhood U).
In the cases of homoclinic tangencies with c > 0, see Figure 1.4, a reciprocal position

of the strips σ0
j and horseshoes T1(σ1

j ) depends also on other invariants of the homoclinic
structure. The principal such invariant is

τ = − 1

ln |λ|
ln

∣∣∣∣cx+

y−

∣∣∣∣ . (1.15)

Note that (see section 1.2 and [GS87], [GS01]) the sign of τ is very important here. For
example, in Figure 1.5 it is shown a reciprocal position of the strips σ0

j and horseshoes
T1(σ1

j ) (with sufficiently large j) for various values of τ for the case λ > 0, c > 0, d > 0.
Thus, we can see that if τ > 0, then f0 has infinitely many horseshoes Ωj; if τ < 0, then
there exists such a neighbourhood U(O ∩ Γ0) in which dynamics of f0 is trivial: only
orbits O and Γ0 do not leave U under iterations of f0. The case τ = 0 is “bifurcational”,
since infinitely many horseshoes appear (disappear) when varying τ near zero (even
without splitting the initial tangency).
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Figure 1.4: Symplectic maps with a homoclinic tangency for c > 0.

Figure 1.5: A horseshoe geometry of symplectic maps with a homoclinic tangency in the case

λ > 0, c > 0, d > 0 for different τ .

Thus, we can draw the following conclusions: 1) the cases of homoclinic tangencies
with c < 0 or with τ 6= 0 at c > 0 are “ordinary” and it is sufficient to study bifurcations
of single-round periodic orbits within framework of one parameter general families only
(with the parameter µ); 2) the cases of homoclinic tangencies with τ = 0 at c > 0 are
“special” and it is necessary to consider at least two parameter general unfoldings (for
example, with parameters µ and τ). In this chapter we adhere to this approach and
present three following theorems as our main results in the symplectic case.

Theorem 1.1 (On one parameter cascades of elliptic points). Let f0 be a symplectic
map satisfying conditions A and B and let fµ be a one parameter general unfolding
under condition C. Then the following statements take place:

1. In any segment [−µ0, µ0] of values of µ, there are infinitely many open intervals
δk, k = k̄, k̄ + 1, . . . (k̄ is some integer), such that δk → 0 as k → +∞ and the
map fµ has at µ ∈ δk a single-round elliptic periodic orbit (of period k+ q, where
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q is defined in (1.1));

2. At the border points µ = µ+
k and µ = µ−k of δk, fµ has a single-round parabolic

periodic orbit with double multipliers +1 or −1, respectively;

3. The elliptic orbit is generic for all values of µ from δk, except for exactly two
values corresponding to the strong resonances when the multipliers are e±iπ/2 and
e±i2π/3;

4. In the cases c < 0 or c > 0 and τ 6= 0 (c is given in (1.14)), the intervals δi and
δj do not intersect when integers i and j are different and sufficiently large.

Note that some analogs related to items 1, 2 and 3 of this theorem were proved
in [Bir87], [BS89] and [MR97]. However, problems on the coexistence of single-round
elliptic periodic orbits were not considered. The item 4 of Theorem 1.1 shows that, in
general, such orbits of different and large periods can not coexist.1 By “general” we
mean that the case τ = 0 is excluded. However, from the geometrical point of view,
this case looks to be quite interesting. Indeed, as one can extract from Figures 1.5 that
if τ varies near zero, the position of intervals δk can sharply change and, moreover, the
intervals δi and δj with different i and j can intersect and they can be even “nested”.
Therefore, in order to understand the corresponding phenomena we must include τ
into the set of parameters.

Theorem 1.2 (On two parameter cascades of elliptic points). Let f0 be a symplectic
map satisfying conditions A and B and fµ,τ be a two parameter family which unfolds
generally, under condition C, the given homoclinic tangency with τ = 0. Then the
following statements take place:

1. In any neighborhood of the origin in the (τ, µ)-plane, there are infinitely many
open domains ∆k, for k = k̄, k̄+1, . . . (k̄ is some integer), such that the map fµ,τ
has a single-round periodic (of period k + q, where q is defined in (1.1)) elliptic
orbit at (τ, µ) ∈ ∆k;

2. The domains ∆k accumulate to the axis µ = 0 as k →∞;

3. The boundaries of ∆k are two curves L+
k and L−k such that the map fµ,τ has a

parabolic single-round periodic orbit with double multipliers either +1 if (τ, µ) ∈
L+
k or −1 if (τ, µ) ∈ L−k ;

4. The elliptic orbit is generic for all values of (τ, µ) ∈ ∆k, except for those which

belong to curves L
π/2
k and L

2π/3
k when the multipliers of the orbit are equal to

e±iπ/2 and e±i2π/3, respectively;

1It is not the case for two-dimensional symplectic maps with nontransversal heteroclinic cycles: as
it was shown in [GS97] and [GS00], maps having simultaneously infinitely many single-round (generic)
elliptic periodic orbits are dense in a bifurcation codimension-one surface composed from maps with
nontransversal heteroclinic cycles.
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5. In the case c < 0 (c is given in (1.14)), the domains ∆i and ∆j do not intersect
for any sufficiently large and different integers i and j;

6. In the cases c > 0, the domains ∆i and ∆j are necessarily crossed and they
intersect the axis µ = 0; Moreover, if −3 < s0 < 1/4, where

s0 = dx+(ac+ f20x
+)− f11x

+(1− 1

4
f11x

+), (1.16)

where all the coefficients are given in (1.11) then all domains ∆k with sufficiently
large k contain the origin (τ = 0, µ = 0).

See Figure 1.6 for the illustration of the theorem. For example, you can see the
non-intersecting (in Figure 1.6(a)–(c)) as well as the crossed and intersecting µ = 0 (in
Figure 1.6 (d)–(f)) domains ∆i and ∆j, i 6= j, in the case c < 0 and c > 0, respectively.

Figure 1.6:
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Corollary 1.1. Let the following relations c > 0, τ = 0, −3 < s0 < 1/4 and
s0 6= {0;−5/4} take place for the map f0. Then there exists such k0 > 0 that f0

has a countable set of generic (KAM-stable) single-round elliptic periodic orbits of all
successive periods beginning with k0 + q.

In the following theorem we clarify both a disposition of the intervals δk from
Theorem 1.1 and a character of the corresponding bifurcations when µ varies inside
δk.

2

Theorem 1.3. The intervals δk from Theorem 1.1 have form δk = (µ+
k , µ

−
k ) if d < 0

(d is given in (1.14)) and δk = (µ−k , µ
+
k ) if d > 0. Bifurcations of fixed points in the

first return map Tk(µ) follow, in general, the scenario observed in the conservative
generalize Hénon map

x̄ = y, ȳ = M − x− y2 + νky
3, (1.17)

where

νk = f03

d2 λ
k,

M = −d(1 + ν1
k)λ−2k

(
µ+ λk(cx+ − y−)(1 + kβ1λ

kx+y−)
)
− s0 + ν2

k

(1.18)

being f03 the coefficient given in (1.11), s0 the coefficient given by (1.16) and ν1
k =

O(λk), ν2
k = O(kλk) some asymptotically small coefficients. See Figure 1.7 for d < 0

for general bifurcations of the map (1.17). The resonance 1 : 3 is non-degenerate for all
values of νk, while the resonance 1 : 4 is non-degenerate for νk 6= 0 (see Figure 1.7(b)
for νk > 0 and Figure 1.7(c) for νk < 0).

Note that if f03 6= 0, then both scenarios of Figure 1.7 (b) and (c) take place
for λ < 0: we have the case (b) for even k and the case (c) for odd k. Analogous
phenomenon was observed in [BS89] in bifurcations of appearance (disappearance) of
horseshoes in three-dimensional conservative systems with homoclinic loops to saddle-
foci.

The content of the rest part of this chapter is the following. In section 1.2 we study
the semi-local dynamics of symplectic maps with quadratic homoclinic tangencies: we
select three classes of such maps and describe the structure of orbits entirely lying in a
small neighbourhood U(O∪Γ0). In section 1.3 we prove our main technical result, the
Rescaling Lemma 1.4, which shows that one can reduce the study of bifurcations of the
first return maps to the quite standard analysis of bifurcations of two-dimensional con-
servative Hénon-like maps. Section 1.4 contains the proofs of our main Theorems 1.1,
1.2 and 1.3.

2Note that the intervals δk can be also viewed as intervals obtained on lines τ = const when
intersection with domains ∆k. Therefore, we can extract from Figure 1.6 a certain information on
disposition of these intervals.
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Figure 1.7: Bifurcations of fixed points in the first return map Tk(µ) for d < 0. (a) The main

scenario, here µ+
k < µ−k (if d > 0, then µ+

k > µ−k ). (b)–(c) Bifurcations near resonance 1 : 4 (β = 0

corresponds to µ = µ
π/2
k ) for the cases (b) νk > 0 (here the fixed point is always elliptic) and (c)

νk < 0 (for β = 0 the fixed point is a saddle with eight separatrices).

1.2 Three classes of symplectic maps with homo-

clinic tangencies.

Let f0 be a symplectic map satisfying conditions A and B. Evidently, any orbit of f0

entirely lying in U , except for O, must visit both neighborhoods Π− and Π+ (otherwise,
it wouldn’t be close to Γ0). Moreover, such orbits must have points belonging to the
intersections T1(σ1

j ) ∩ σ0
i for all possible integer i and j. Given a sufficiently large

integer k̄ > 0, we assume that Π+ and Π− contain the strips σ0
k and σ1

k, respectively,
only with numbers k ≥ k̄. In other words, we will consider only such entirely lying in
U orbits of f0 whose points from Π+ reach Π− for a number of iterations that is not
less than k̄. Denote the set of such orbits as Nk̄ ≡ Nk̄(f0).

In this section we study the structure of the set Nk̄(f0) and, thus, extend the results
of [GS87], [GS01] and [GS03] to the symplectic case. Recall the following definition
and result.

Definition 1.2. [GS87], [GST96b] We say that the horseshoe T1(σ1
j ) has a regular

intersection with the strip σ0
i if (see Figure 1.2)

(i) the set T1(σ1
j ) ∩ σ0

i consists of two connected components ∆1
ij and ∆2

ij ;

(ii) the map T1T
j
0 restricted to the preimage (T1T

j
0 )−1∆α

ij ⊂ σ0
j of the component ∆α

ij,
where α = 1, 2, is a saddle map (i.e., it is exponentially contracting along one of
the coordinates and expanding along another).
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Lemma 1.3. [GS87] There are a constant S1 > 0 and a sufficiently large integer k̄
such that, for any i, j ≥ k̄, the following assertions are valid.

(i) If
d(λiy− − cλjx+) > Sij(k̄) , (1.19)

where Sij = S1(|λ|i + |λ|j)|λ|k̄/2 , the horseshoe T1(σ1
j ) intersects regularly the strip σ0

i .
ii) If

d(λiy− − cλjx+) < −Sij(k̄) , (1.20)

then T1(σ1
j ) ∩ σ0

i = ∅.

The inequalities (1.19)–(1.20) have a rather simple geometrical sense. The strip
σ0
i is a narrow horizontal rectangle in Π+ having a central line y = λiy−, while, the

strip σ1
j is a narrow vertical rectangle in Π− having a central line x = λjx+. By

(1.10), the strip σ1
j is mapped under T1 into a horseshoe which contains a parabola

y = cλjx+ +d(x−x+)2/b2. The inequality d(λiy−−cλjx+) > 0 means that the straight
line y = λiy− and the parabola are crossed in two points, whereas, the inequality
d(λiy− − cλjx+) < 0 implies that these curves do not intersect. By coefficient Sij(k̄)
we take into account a non-zero thickness of the strips and horseshoes.

It is convenient to reformulate this lemma as follows: if the horseshoe T1(σ1
j ) has

an irregular intersection with the strip σ0
i , then the following inequalities must hold

|d||λiy− − cλjx+| ≤ Sij(k̄) , (1.21)

and if T1(σ1
j ) ∩ σ0

i 6= ∅, then

d(λiy− − cλjx+) ≥ −Sij(k̄) , (1.22)

It is evident that the character of integer solutions of inequalities (1.19)–(1.20)
depends essentially on the signs of the quantities λ, c and d. In turn, this means that
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the structure of Nk̄ depends essentially on the type of homoclinic tangency. By this
principle, the same as for the case of general diffeomorphisms (see [GS73]), we can
subdivide quadratic homoclinic tangencies in the symplectic case into three big classes
in the following way:

• The first class relates to the tangencies with λ > 0, c < 0 and d < 0 (see
Figure 1.3a).

• The second class relates to the tangencies with λ > 0, c < 0 and d > 0 (see
Figure 1.3b).

• The tangencies of all other types (with all other combinations of the signs of λ, c
and d) are related to the third class (see Figures 1.3c and 1.4).

We will say also that a given symplectic map is of the first, second or third class,
if it has the homoclinic tangency under consideration to be the first, second or third
class, respectively.

1.2.1 Maps of the first and second classes.

In the case of a map of the first class, since λ > 0, c < 0 and d < 0, the inequality
(1.20) holds for all i, j ≥ k̄. It follows, by Lemma 1.3, that T1(σ1

j ) ∩ σ0
i = ∅ for any

i, j ≥ k̄ which implies

Proposition 1.1. [GS87] Let f0 be a map of the first class. Then the set Nk̄ has the
trivial structure: Nk̄ = {O,Γ0}.

For a map of the second class, since λ > 0, c < 0 and d > 0, we have now that
inequality (1.19) holds for all i, j ≥ k̄. It means, in turn, that all the horseshoes T1(σ1

j )
and strips σ0

i (for any i, j ≥ k̄) have the regular intersections. Therefore the set Nk̄ has
a non-uniformly hyperbolic structure and all orbits from Nk̄, except for Γ0, are saddle
(see also [GS87]). Moreover, we can give the exact description of the set Nk̄ in this
case. Namely, let B3

k̄+q
be a subsystem of the topological Bernoulli scheme (shift) on

three symbols (0, 1, 2) consisting only of (bi-infinite) sequences of form

(..., 0, αs−1,

ks+q︷ ︸︸ ︷
0, ..., 0, αs,

ks+1+q︷ ︸︸ ︷
0, ..., 0, αs+1, 0, ...), (1.23)

where αs ∈ {1, 2}, ks ≥ k̄ for any s, and any sequence (1.23) does not contain two
successive nonzero symbols. Let B̃3

k̄+q
be the factor-system that is resulted from B3

k̄+q
if

to identify two homoclinic orbits (..., 0, ..., 0, 1, 0, ..., 0, ...) and (..., 0, ..., 0, 2, 0, ..., 0, ...).
Denote this identified orbit as ω̃.

Proposition 1.2. [GS87], [GS01] Let f0 be a map of the second class. Then the system
f0

∣∣
Nk̄

is topologically conjugate to B̃3
k̄+q

and all orbits from Nk̄\Γ0 are saddle.
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1.2.2 Maps of the third class

We have formally 6 different combinations of the signs of coefficients λ, c and d related
to the third class. However, if λ < 0 we can always choose such pairs of the homoclinic
points M+ and M− for which d is positive. Besides, since f0 is symplectic, there is no
necessity to distinguish f0 and f−1

0 . Therefore, the combinations λ > 0, c > 0, d > 0
and λ > 0, c > 0, d < 0 can be transformed one to another, if to consider f−1

0 instead
of f0.3 Thus, we can reduce the number of different types of homoclinic tangencies of
the third class to the following three ones.

1. maps with λ > 0, c > 0, d > 0 (see Figure 1.4b);

2. maps with λ < 0, c > 0, d > 0 (see Figure 1.4c);

3. maps with λ < 0, c < 0, d > 0 (see Figure 1.3c).

Denote by H i
3, i = 1, 2, 3, codimension-one bifurcation surfaces, in the space of Cr-

smooth symplectic maps, composed from maps with homoclinic tangencies of pointed
out types.

It is typical for maps of the third class that the structure of the set Nk̄ depends
essentially on the value of the invariant τ (defined in (1.15)). In particular, the following
result takes place for maps on H1

3 (it was announced in [GS01], we give here the proof).

Proposition 1.3. Let f0 ∈ H1
3 .

1) If τ < 0, then there exists such k̄1 = k̄1(τ) → ∞ as τ → 0 that the set Nk̄1
has the

trivial structure: Nk̄1
= {O,Γ0}.

2) If τ > 0, the set Nk̄, for any k̄, contains nontrivial hyperbolic subsets.
3) If τ > 0 and τ /∈ Z+ (where Z+ is the set of positive integer numbers), then there
exists k̄2 = k̄2(τ) → ∞ as dist{τ,Z+} → 0 such that the set Nk̄2

allows a complete
description in terms of the symbolic dynamics and all orbits of Nk̄2

, except for Γ0, are
saddle.

Proof. 1) Taking logarithm of the both hands of (1.20) we obtain the inequality

j − i+ τ < −S|λ|k̄/2, (1.24)

where S is a positive constant (independent of i, j and k̄). By lemma 1.3, if i ≥ k̄
and j ≥ k̄ satisfy (1.24), then the horseshoe T1(σ1

j ) has empty intersection with the
strip σ0

i . Note that in the case τ < 0, the inequality (1.24) has solutions only of form
j > i. In particular, it means that for all i ≥ k̄ the horseshoes T1σ

1
i lie above the own

strips σ0
i (see Figure 1.5a) and, therefore, all orbits, except for O and Γ0, leave U under

positive iterations of f0.

3It is easy to check that the following relations c̃ = c−1, d̃ = −d(cb2)−1 take place for the map
T̃1 = T−11 .
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2) The inequality (1.19) can be written in the form

j − i+ τ > S|λ|k̄/2. (1.25)

If τ is positive and k̄ is sufficiently large, inequality (1.25) has always infinitely many in-
teger solutions of form j ≤ i including solutions j = i. The latter means, by lemma 1.3,
that , for all sufficiently large i, the horseshoes T1σ

1
i have the regular intersections with

the own strips σ0
i , see Figure 1.5c. It implies that if τ > 0, the corresponding map

f0 ∈ H1
3 has infinitely many Smale horseshoes Ωi (i.e. for every sufficiently large i, the

first return map Ti ≡ T1T
i
0 : σ0

i → σ0
i has the nonwandering set which is conjugate to

the Smale horseshoe).
3) Consider the inequality (1.21). After taking logarithm, it is rewritten as

|j − i+ τ | ≤ S|λ|k̄/2. (1.26)

If τ > 0 is not integer, inequality (1.26) has no integer solutions when k̄ = k̄(τ) is
sufficiently large. Thus, all the strips and horseshoes have only either regular or empty
intersections. It allows to give the complete description for Nk̄. Namely, let Bτ (k̄) be
a subsystem of B̃3

k̄+q
such that

(i) Bτ (k̄) contains the orbits (. . . , 0, . . . , 0, . . . ) and ω̃;

(ii) in any sequence (1.23) the lengths (ks + q) and (ks+1 + q) of any two successive
strings composed from zero symbols satisfy inequality (1.25) with j = ks, i = ks+1.

Then f0

∣∣
Nk̄

is conjugate to Bτ (k̄).

Now we consider the cases with λ < 0, i.e. f0 ∈ H2
3 and f0 ∈ H3

3 (see Figure 1.8).

Proposition 1.4. Let f0 ∈ H2
3 ∪ H3

3 . Then the set Nk̄(f0), for any k̄, contains non-
trivial hyperbolic subsets always, except maybe for the “global resonance” case f0 ∈ H2

3

with τ = 0.

Proof. Let f0 ∈ H2
3 . Since λ < 0, c > 0, d > 0, inequality (1.19) for even i and j, can

be written as

j − i+ τ > S|λ|k̄/2, where i, j ≥ k̄ and i, j = 0(mod2),

If τ > 0, this inequality has infinitely many integer solutions of form j ≥ i including
solutions i = j. It implies that, if τ > 0, the map f0 ∈ H2

3 has infinitely many
horseshoes Ωi with even i.

On the other hand, inequality (1.19) for odd i and j is rewritten as

j − i+ τ < −S|λ|k̄/2, where i, j ≥ k̄ and i, j = 1(mod2).
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Figure 1.8:

If τ < 0, this inequality has infinitely many integer solutions of form i ≥ j. Thus,
when τ < 0 the map f0 ∈ H2

3 has infinitely many horseshoes Ωi with odd i.
Let f0 ∈ H3

3 . Since λ < 0, c < 0, d > 0, inequality (1.19) holds for any sufficiently
large even i and j. It means that all horseshoes T1(σ1

j ) intersect regularly with all
strips σ0

i when the numbers i and j are even (here, a certain analogy with maps of the
second class is observed). In any case, map f0 ∈ H3

3 has infinitely many horseshoes Ωi

where i runs all sufficiently large even integers.

Corollary 1.2. 1) Let f0 ∈ H2
3 . Then, if τ > 0 (resp., τ < 0), the map f0 has infinitely

many horseshoes Ωi with even i (resp., odd i) and has no horseshoes with odd i (resp.,
with even i).
2) Let f0 ∈ H3

3 . Then the map f0 has infinitely many horseshoes Ωi with even i and
has no horseshoes with odd i.

Proposition 1.5. Let f0 ∈ H2
3 (resp., f0 ∈ H3

3 ). If |τ | is not even integer (resp., odd
integer), then there exists such k̄3 that the set Nk̄3

allows the complete descriptions in
terms of the symbolic dynamics and all orbits of Nk̄, except for Γ0, are saddle.

Proof. Consider the case f0 ∈ H2
3 . Suppose that τ 6= 0. It is easy to see that, for

sufficiently large k̄ = k̄(τ) (k̄ →∞ as τ → 0), the set Nk̄ consists of orbits intersecting
strips σ0

j either with only even numbers when τ > 0 or with only odd numbers when
τ < 0. In the first case (τ > 0), see Figure 1.9a, forward iterations of any point from
σ0
j with odd j can not return on σ0

j . Indeed, the horseshoe T1(σ1
i ) can intersect only

strips with odd numbers such that j − i+ τ < 0, i.e. i > j + τ ; besides, any horseshoe
T1(σ1

l ) with even l does not intersect the strips with odd numbers. In the case τ < 0,
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see Figure 1.9b, any the horseshoe T1(σ1
j ) with even j can intersect only such strip σ0

i

for which i is even and j − i+ τ > 0, i.e. i < j because τ < 0.

Figure 1.9:

Now we can give a complete description of the set Nk̄ for f0 ∈ H2
3 when |τ | is not

even integer. We note only that numbers i and j such that T1(σ1
j ) has an irregular

intersection with σ0
i must satisfy the inequality (1.26). If |τ | is not even integer, the

inequality (1.26) has no integer solutions i and j of the same parity. Consider a
subsystem B2+

τ of B̃3
k̄+q

such that in any sequence (1.23) the numbers ks are even for

all s and satisfy inequality ks−ks+1 +τ > 0. Analogously, let B2−
τ be such a subsystem

of B̃3
k̄+q

that in any sequence (1.23) numbers ks are odd for all s and satisfy inequality

ks − ks+1 + τ < 0. Suppose that |τ | is not even integer. Then the system f0

∣∣
Nk̄

is

conjugate either to B2+
τ in the case τ > 0 or to B2−

τ in the case τ < 0.
For f0 ∈ H3

3 we have, due to the geometry, that irregular intersections of the
horseshoes T1(σ1

j ) and strips σ0
i can exist only in those cases where the numbers i and

j have opposite parities. Moreover, the inequality (1.26) can have such solutions only
for odd |τ |. Consider a subsystem B3

τ of B̃3
k̄+q

satisfying the following conditions:

(i) B3
τ contains all sequences of form (1.23) in which all numbers ks ≥ k̄(τ) are even;

(ii) B3
τ do not contain the sequences with ks and ks+1 to be both odd;

(iii) B3
τ contains all the sequences with even ks and odd ks+1 such that ks−ks+1 +τ < 0;

(iv) B3
τ contains all the sequences with odd ks and even ks+1 such that ks−ks+1 +τ > 0.

Then f0

∣∣
Nk̄

is conjugate to B3
τ when |τ | is not odd integer.

1.3 General unfoldings and Rescaling Lemma

In this section we calculate the first return maps Tk ≡ T1T
k
0 : σ0

k 7→ σ0
k for all sufficiently

large k and apply the results obtained (Lemma 1.4) for studying bifurcations of fixed
points. Moreover, we consider in this section, and what follows, one and two parameter
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families and we take, as parameters, either ε = µ or ε = (µ, τ), respectively. Recall
that µ is the parameter of splitting of manifolds W u(O) and W s(O) with respect to
the homoclinic point M+ and τ is an invariant of the homoclinic structure given by
(1.15).

The main technical result of this section is the following

Lemma 1.4. [Rescaling Lemma]
For every sufficiently large k the map Tk : σ0

k → σ0
k can be brought, by a linear trans-

formation of coordinates and parameters, to the following form

X̄ = Y + kλ2kε1
k,

Ȳ = M −X − Y 2 +
f03

d2
λkY 3 + kλ2kε2

k ,
(1.27)

where functions ε1,2
k (X, Y,M) are defined on a ball ‖(X, Y,M)‖ ≤ R with arbitrary

large R (when k are big) and are uniformly bounded in k along with all derivatives up
to order (r − 3). Besides,

M = −d(1 + ν1
k)λ−2k

(
µ+ λk(cx+ − y−)(1 + kβ1λ

kx+y−)
)
− s0 + ν2

k

where s0 is the coefficient given by (1.16) and ν1
k = O(λk), ν2

k = O(kλk) are some
asymptotically small coefficients.

Proof. We will use the representation of T0 in the “second normal form”, i.e. in form
(1.3) with n = 2. Then, by Lemma 1.2, the map T k0 : σ0

k → σ1
k, for all sufficiently large

k, can be written in the following form (taking into account relations (1.9))

xk = λkx0(1 + β1kλ
kx0yk) +O(k2λ3k), y0 = λkyk(1 + β1kλ

kx0yk) +O(k2λ3k).
(1.28)

We will use the notation x = x0, y = yk. Then, by virtue of (1.10), (1.11) and
(1.28), we can write the first return map Tk : σ0

k → σ0
k in the following form

x̄− x+ = aλkx+ b(y − y−) + e02(y − y−)2+
+O(k|λ|2k|x|+ |y − y−|3 + |λ|k|x||y − y−|),

λkȳ
(
1 + kλkβ1x̄ȳ

)
+ kλ3kO(|x̄|+ |ȳ|) =

= µ+ cλkx
(
1 + kλkβ1xy

)
+ d(y − y−)2 + λ2kf02 x

2+
+λkf11(1 + kλkβ1xy) x(y − y−) + λkf12 x(y − y−)2 + f03(y − y−)3+
+O

(
(y − y−)4 + λ2k|x||y − y−|+ k|λ|3k|x|+ kλ2k|x||y − y−|2

)
.

(1.29)
Below, we will denote by αik, i = 1, 2, ..., some asymptotically small in k coefficients

such that αik = O(kλk). Now we shift the coordinates, η = y − y−, ξ = x − x+ −
λkx+(a + α1

k), in order to nullify constant terms (independent of coordinates) in the
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first equation of (1.29). Thus, (1.29) recasts as follows

ξ̄ = aλkξ + bη + e02η
2 +O

(
kλ2k|ξ|+ |η|3 + |λ|kO(|ξ||η|)

)
,

η̄(1 + α2
k) + kλkO(|ξ̄|+ η̄2) + kλ2kO(|η̄|) = M1λ

−k +
+ cξ(1 + α3

k) + λ−kη2(d+ λkf12x
+) + η(f11x

+ + α4
k) + f11ξη + λ−kf03η

3+
+O

(
|λ|−kη4 + k|λ|2k|ξ|+ kλk(ξ2 + η2) + |ξ|η2

)
,

(1.30)
where M1 = µ+ λk(cx+ − y−)(1 + kλkβ1x

+y−) + λ2kx+(ac+ f02x
+) +O(kλ3k)

Now, we rescale the variables:

ξ = − b(1 + α2
k)

d+ λkf12x+
λku , η = − 1 + α2

k

d+ λkf12x+
λkv. (1.31)

Then system (1.30) in coordinates (u, v) is rewritten in the following form

ū = v + aλku− e02

bd
λkv2 +O(kλ2k),

v̄ = M2λ
−2k − u(1 + α5

k)− v2+

+v(f11x
+ + α6

k)−
f11b

d
λkuv +

f03

d2
λkv3 +O(kλ2k) ,

(1.32)

where M2 = −(d + λkf12x
+)(1 + α2

k)
−1M1. The following shift of coordinates, unew =

u− 1
2
(f11x

+ + α6
k), vnew = v − 1

2
(f11x

+ + α6
k), brings map (1.32) to the following form

ū = v + aλku− e02

bd
λkv2 +O(kλ2k),

v̄ = M3 − u− v2 − f11b

d
λkuv +

f03

d2
λkv3 +O(kλ2k) ,

(1.33)

where M3 = M2λ
−2k − f11x

+ +
(f11x

+)2

4
.

Now, we make the following linear change of coordinates x = u + ν̃1
kv , y =

v − ν̃2
ku , where ν̃1

k = −e02

bd
λk, ν̃2

k = −e02

bd
λk − aλk. Then system (1.33) is rewritten as

x̄ = y +M3ν̃
1
k +O(kλ2k),

ȳ = M3 − x− y2 + aλky − R̃λkxy +
f03

d2
λky3 +O(kλ2k) ,

(1.34)

where R̃ = (2a+ 2e02/bd− bf11/d) ≡ 0 by (1.13).

Finally, make one more shift of coordinates X = x− 1

2
aλk− ν̃1

kM3, Y = y− 1

2
aλk,

in order to nullify the constant term in the first equation and the linear in y term in
the second equation of (1.34). After this, we obtain the final form (1.27) of map Tk in
the rescaled coordinates where formula (1.18) takes place for the parameter M .
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Thus, the Rescaling Lemma shows that the unified limit form for the first return
maps Tk is the conservative Hénon map

x̄ = y, ȳ = M − x− y2. (1.35)

Bifurcations of fixed points in the conservative Hénon family are well known. There
exists a generic elliptic fixed point for every M ∈ (−1; 3) except for M = 0 when
ψ = π/2 and M = 5/4 when ψ = 2π/3.4 The latter cases correspond to the strong
resonances 1 : 4 and 1 : 3, respectively. The conservative resonance 1 : 3 is non-
degenerate, while 1 : 4 is degenerate (here the so-called case “A = 1” is realized).
However, in the “refined” map

x̄ = y, ȳ = M − x− y2 +
f03

d2
λky3, (1.36)

where the cubic term is non-zero, i.e. if f03 6= 0, the resonance 1 : 4 becomes non-
degenerate [Bir87], [Gon05], see also Appendix A. The conservative Hénon map has
also a fixed parabolic point: with multipliers ν1 = ν2 = +1) at M = −1 and with
multipliers ν1 = ν2 = −1 at M = 3. It follows that the bifurcation scenario in map
(1.27) looks like in Figure 1.7(a) accompanying with one of scenarios of of bifurcations
near ψ = π/2 for f03λ

k > 0 (Figure 1.7(b)) or f03λ
k < 0 (Figure 1.7(c)).

1.4 Proofs of Theorems 1.1, 1.2 and 1.3

We can easily deduce the theorems from the Rescaling Lemma. Indeed, since bifur-
cations in the conservative Hénon maps (1.35) and (1.36) are known, we can use the
corresponding facts directly for recovering bifurcations of single-round periodic orbits
in the families fµ and fµ,τ .

Proof of Theorem 1.1. Rewrite (1.18) in the following way

µ = −λky−α(1 + kβ1λ
kx+y−)− 1

d
(M + s0 + ρ̂k)λ

2k, (1.37)

where ρ̂k = O(kλk) is some small coefficient and

α =
cx+

y−
− 1. (1.38)

Since the Hénon map (1.35) has fixed parabolic points at M = −1 (with double
multiplier +1) and M = 3 (with double multiplier −1), we obtain, by (1.37), that the
first return map Tk has a fixed point with multipliers ν1 = ν2 = +1 for

µ = µ+
k ≡ −λ

ky−α(1 + kβ1λ
kx+y−)− 1

d
(s0 − 1 + ρ̂k)λ

2k, (1.39)

4Note that the fixed point of (1.35) with ψ = arccos(−1/4) is degenerate since it has local normal
form in which the first Birkhoff coefficient vanishes, however, its second Birkhoff coefficient is nonzero
[Bir87]. It means that this point is KAM-stable and, hence, generic.



1.5. INVARIANTS OF HOMOCLINIC TANGENCIES 51

and a fixed point with multipliers ν1 = ν2 = −1 for

µ = µ−k ≡ −λ
ky−α(1 + kβ1λ

kx+y−)− 1

d
(s0 + 3 + ρ̂k)λ

2k. (1.40)

As µ+
k and µ−k are border points of the interval δk, it follows that δk → 0 as k → ∞.

By (1.39) and (1.40), the intervals δk have length equal to 4|λ|2k(1 + . . . )/|d|; besides,
intervals δk and δk+1 and posed one from other in the distance of order |λ|k|α|(1−|λ|),
if α 6= 0 and k is sufficiently large. Thus, if α 6= 0, the intervals with different numbers
do not intersect. Evidently, condition α = 0 means, by (1.15), that c > 0 and τ = 0.
It completes the proof of Theorem 1.1.

Proof of Theorem 1.2. By (1.15) and (1.38), we can express α in terms of τ ; namely,
α = −1 − |λ|−τ if c < 0 and α = −1 + |λ|−τ if c > 0. Then we can rewrite equations
(1.39) and (1.40) as the corresponding equations of the bifurcation curves L+

k and L−k
on the (τ, µ)-plane.

In the case c < 0 we have that α < −1. It follows that the domains ∆i and ∆j

(defined on the (τ, µ)-plane) do not crossed for sufficiently large i 6= j, see Figure 1.6
(a)–(c).

However, in the case c > 0, the value α(τ) changes the sign: α(0) = 0, α(τ) > 0
at τ < 0 and α(τ) < 0 at τ > 0. We can rewrite equations (1.39) and (1.40) as the
corresponding equations of the bifurcation curves L+

k and L−k on the (τ, µ)-plane:

L+
k : µ = −λky−(|λ|−τ − 1)(1 + kβ1λ

kx+y−)− d−1(s0 − 1 + ρ̂k)λ
2k,

L−k : µ = −λky−(|λ|−τ − 1)(1 + kβ1λ
kx+y−)− d−1(s0 + 3 + ρ̂k)λ

2k.
(1.41)

Evidently, these curves near the origin (τ = 0, µ = 0) have a form showing in Figure 1.6
(d)–(f). If we put τ = 0 into (1.41), we obtain that curves L+

k and L−k intersect the
axis µ in points µ = −1

d
(s0 − 1 + ρ̂k)λ

2k and µ = −1
d
(s0 + 3 + ρ̂k)λ

2k, respectively. If
−3 < s0 < 1, the point µ = 0 lies between these border points and, thus, the origin
(τ = 0, µ = 0) belongs to all domains ∆k with sufficiently large k. It completes the
proof of Theorem 1.2 and gives Corollary 1.1.

Proof of Theorem 1.3. The theorem follows from the Rescaling Lemma which gives
the rescaled form (1.27) for first return maps. Since we know the bifurcation scenarios
observed in (1.27), see [Bir87] and [Gon05], and due to relations (1.39) and (1.40)
connecting M and µ, we can complete the theorem.

1.5 Invariants of homoclinic tangencies in symplec-

tic two-dimensional maps

We see that in the case of the global resonance τ = 0 the dynamics of area-preserving
maps of the third class (except for maps on H5

3 ) depends, in fact, on only one quantity
s0. In this section we prove the invariance of both τ and s0
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First, we recall the result from [GS87] that τ is an invariant of two-dimensional
diffeomorphisms with homoclinic tangencies to a saddle with σ ≡ |λγ| = 1 and prove
it in the case of area-preserving maps. Note that we prove the invariance of τ in
those Cr-coordinate which conserve the first order normal form (1.4) of the saddle map
T0. However, as it was shown in [AY05], τ is also invariant under C1-linearization
coordinates that allows to say about the existence/absence of (topological, of course)
Smale horseshoes near a homoclinic tangency in terms of τ .

After this, we prove the invariance of s0. However, it will be invariant only in those
Cr−2-coordinates which conserve the n-order normal form (1.3) for n ≥ 2. Naturally,
s0 “disappears” when C1-linearization is used, since it depends on the coefficients of
the quadratic terms of T1 which become indefinite at uncontrolled C1-changes.

The following lemma is an area-preserving variant of the corresponding result from
[GS87].

Lemma 1.5. In coordinates (1.4), the value of τ does not depend on the choice (in
W u
loc and W s

loc) of any pair of homoclinic points of the orbit Γ0.

Proof. We take a pair M+′ = T0(M+) and M− of points of Γ0. Then, by (1.4),
x+′ = λx+. The new global map T ′1 is defined as T ′1 = T0T1 : Π− → T0(Π+) and
written as

x̄′ = λ(x+ + F (x, y − y−) +O [(x+ + F (x, y − y−)2G(x, y − y−)] =
= λx+ + F ′(x, y − y−),

ȳ′ = λ−1G(x, y − y−) +O [(x+ + F (x, y − y−)G2(x, y − y−)] = G′(x, y − y−).

Since F (0, 0) = 0, G(0, 0) = 0, Gy(0, 0) = 0, we obtain that F ′(0, 0) = 0 and

c′ = G′x(0, 0) = λ−1Gx(0, 0) +O(G(x, y − y−))|x=0,y=y− = λ−1c

Finally, since also y−′ = y−, we have

τ ′ =
1

ln |λ|
ln

∣∣∣∣c′x+′

y−′

∣∣∣∣ =
1

ln |λ|
ln

∣∣∣∣cλ−1x+λ

y−

∣∣∣∣ = τ.

Take now a pair M+′ = M+ and M−′ = T−1
0 (M−). Then the new global map T ′1 is

defined as T ′1 = T1T0 : T−1
0 (Π−)→ Π+ and written as

x̄ = x++F (λx′+O(x′2y′), λ−1y′+O(x′y′2)−y−), ȳ = G(λx′+O(x′2y′), λ−1y′+O(x′y′2)−y−).

Since F (0, 0) = 0, we have x+′ = x+; since W u
loc has equation x = 0, we have y−′ = λy−;

finally, since

Gnew
x (0, 0) = λGx(0, 0) +

[
Gx ·O(x) +Gy ·O(y2)

]
x=0,y=y−

and Gx(0, 0) = c,Gy(0, 0) = 0, we have c′ = λc. Thus,

τ ′ =
1

ln |λ|
ln

∣∣∣∣c′x+′

y−′

∣∣∣∣ =
1

ln |λ|
ln

∣∣∣∣λcx+

λy−

∣∣∣∣ = τ.
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Any pair of points of Γ0 one of which is in W u
loc and the other is in W s

loc can be
evidently obtained by means of a finite series of elementary choices (like before) of
neighboring homoclinic points. Every such choice does not change value of τ , it follows
that the same relates to the resulting choice.

Note that τ does not also depend also on smooth changes of coordinates preserving
the main normal form (1.4) of T0, see [GS87].

Lemma 1.6. Let the local map T0 be given in the second normal form, i.e in the form
(1.3) for n = 2. If µ = 0 and τ = 0, then s0 does not depend on choice of pairs of the
points in W s

loc and W u
loc of orbit Γ0.

Proof. Take, first, a pair M+′ = T0(M+) and M− of points of Γ0. The new global map
T ′1 is defined as T ′1 = T0T1 : Π− → T0(Π+) and can be written in form

x̄′ = λx̄(1 + β1x̄ȳ) +O [x̄3ȳ2] , ȳ′ = λ−1ȳ(1− β1x̄ȳ) +O [x̄2ȳ3] , (1.42)

where x̄ = x+ + F (x, y − y−), ȳ = G(x, y − y−). We will calculate the corresponding
coefficients (that defines new s′0) at the homoclinic point x = 0, y = y− that gives also
that x̄ = x+, ȳ = 0. We use also that Gy(0, 0) = 0 and

∂ȳ′

∂x̄
= 0,

∂x̄′

∂x̄
= λ,

∂ȳ′

∂ȳ
= λ−1 at x̄ = x+, ȳ = 0.

It is evident also that O-terms in (1.42) vanish at ȳ = 0 together with all required
derivatives (note that the second derivatives with respect to ȳ′ are only needed). Thus,
we have

a′ =
∂x̄′

∂x
= λ

∂F

∂x
+ λβ1(x̄)2∂G

∂x
+O(ȳ), c′ =

∂ȳ′

∂x
= λ−1∂G

∂x
+O(ȳ),

d′ =
1

2

∂2ȳ′

∂y2
=

1

2
λ−1∂

2G

∂y2
+O(ȳ) +O(∂ȳ/∂y),

f ′02 =
1

2

∂2ȳ′

∂x2
=

1

2
λ−1

(
∂2G

∂x2
− 2β1x̄

(
∂G

∂x

)2
)

+O(ȳ),

f ′11 =
∂2ȳ′

∂x∂y
= λ−1 ∂

2G

∂x∂y
+O(ȳ) +O(∂ȳ/∂y)

and x+′ = λx+. Since we find these derivatives at a point where x = 0, y = y−,
x̄ = x+, ȳ = 0 and ∂ȳ/∂y ≡ Gy = 0, it gives

a′ = λa+λ(x+)2β1c, c′ = λ−1c, d′ = λ−1d, f ′02 = λ−1f02−λ−1c2β1x
+, f ′11 = λ−1f11.

(1.43)
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Then we have

d′x+′ = dx+, f ′11x
+′ = f11x

+,
a′c′ = ac+ (x+)2β1c

2 + f02x
+ − c2β1(x+)2 = ac+ f20x

+.

Thus, by (1.16), s0 = s′0.
Take now a pair M+′ = M+ and M−′ = T−1

0 (M−). Then the new global map T ′1 is
defined as T ′1 = T1T0 : T−1

0 (Π−)→ Π+ and, thus, it can be written as

x̄ = x+ + F (x′, y′ − y−), ȳ = G(x′, y′ − y−),

where x′ = λx(1+β1xy)+O(x3y2), y′ = λ−1y(1−β1xy)+O(x2y3) and (x, y) ∈ T−1
0 Π−.

Thus, we have that x+′ = x+, y−′ = λy−. Then we calculate other coefficients as the
corresponding derivatives at x = 0, y = λy−. We have

a′ =
∂F

∂x′
∂x′

∂x
+
∂F

∂y′
∂y′

∂x
, c′ =

∂G

∂x′
∂x′

∂x
+
∂G

∂y′
∂y′

∂x
,

f ′20 =
1

2

(
∂2G

(∂x′)2

(
∂x′

∂x

)2

+ 2
∂2G

∂x′∂y′
∂y′

∂x

∂x′

∂x
+
∂2G

∂y′2

(
∂y′

∂x

)2

+
∂G

∂x′
∂2x′

∂x2
+
∂G

∂y′
∂2y′

∂x2

)
,

f ′11 =
∂2G

(∂x′)2

∂x′

∂x

∂x′

∂y
+

∂2G

∂x′∂y′

(
∂y′

∂x

∂x′

∂y
+
∂x′

∂x

∂y′

∂y

)
+
∂2G

∂y′2
∂y′

∂x

∂y′

∂y
+
∂G

∂x′
∂2x′

∂x∂y

+
∂G

∂y′
∂2y′

∂x∂y
,

d′ =
1

2

(
∂2G

(∂x′)2

(
∂x′

∂y

)2

+ 2
∂2G

∂x′∂y′
∂y′

∂y

∂x′

∂y
+
∂2G

∂y′2

(
∂y′

∂y

)2

+
∂G

∂x′
∂2x′

∂y2
+
∂G

∂y′
∂2y′

∂y2

)
.

Since for x = 0, y = λy−

∂G

∂y′
= 0,

∂

∂y

(
x′,

∂x′

∂x
,
∂x′

∂y

)
= 0,

∂x′

∂x
= λ,

∂y′

∂y
= λ−1,

∂y′

∂x
= −λβ1(y−)2,

we obtain that

a′ = λa− bβ1λ(y−)2, c′ = λc, f ′11 = f11 − 2dβ1(y−)2, d′ = dλ−2,
f ′20 = f20λ

2 − f11λ
2β1(y−)2 + dλ2β2

1(y−)4 + cλ2β1y
−,

Thus, we have

d′x+′ = dx+λ−2,
a′c′ = λ2ac− bcβ1λ

2(y−)2 = λ2ac+ β1λ
2(y−)2 (since bc = −1,

f ′11x
+′ = f11x

+ − 2dβ1(y−)2x+,
d′ = dx+λ−2,
f ′20x

+′ = f20λ
2x+ − f11λ

2β1(y−)2x+ + dλ2β2
1(y−)4x+ + cλ2β1y

−x+.
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We obtain, by (1.16),

s′0 = dx+ [ac+ f20x
+]− β1d(y−)2x+ − df11β1(y−)2(x+)2 + d2β2

1(y−)4(x+)2

+dcβ1y
−(x+)2 + f11x

+ − 2dβ1(y−)2x+ − 1
4
(f11x

+)2 + dβ1(y−)2(x+)2

−d2β2
1(y−)4(x+)2 = s0 + dβ1x

+y−(cx+ − y−)

Since cx+ = y− for τ = 0, this completes the proof.
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Chapter 2

Dynamics and bifurcations of
non-orientable area-preserving
maps with quadratic homoclinic
tangencies

In this chapter we study bifurcations of area-preserving and non-orientable maps with
quadratic homoclinic tangencies. It seems that it is a quite new topic in homoclinic
bifurcations. Up to now, homoclinic tangencies of non-orientable maps were studied
only for general (dissipative) systems, see e.g. [GS73, GS86, PT87, GS07]. However,
this theme should be interesting for understanding dynamics of chaotic conservative
maps such as non-orientable planar maps like the Hénon maps with the Jacobian −1
and symplectic maps on two-dimensional non-orientable closed manifolds (like Klein
bottle).

2.1 Statement of the problem and preliminary con-

structions

In this chapter we consider non-orientable APMs close to the one with a quadratic
homoclinic tangency. Let f0 be such a map. As in Chapter 1 we denote by O the saddle
fixed point of f0, by U0 a small neighbourhood of O and by Γ0 the nontransversal to
O homoclinic orbit. We embed f0 into a parameter family fε. We assume that f0 and
fε satisfy the conditions B and C of Chapter 1 (Section 1.1).

However, due to non-orientability, instead of condition A we suppose the following
condition:

A′. f0 has a saddle fixed point O with multipliers λ and γ, where 0 < |λ| < 1 < |γ|
and |λγ| = 1 . Moreover, we will consider two different cases:

57
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A′.1 the saddle is orientable, i.e. λ = γ−1;

A′.2 the saddle is non-orientable, i.e. λ = −γ−1.

Note that in condition A′.1 we assume that the global map T1 defined in Chapter 1,
Section 1.1, is non-orientable, i.e. the Jacobian of T1 is equal to −1. This behavior of
orbits for return maps is typical for maps on two-dimensional non-orientable manifolds
(Möbius strip, Klein bottle, projective plane etc.), see an example of such a map in
Figure 2.1.

Figure 2.1: An example of non-orientable area-preserving map (on the Möbius band) having a

quadratic homoclinic tangency at the points of a homoclinic orbit Γ0. Some of these homoclinic

points are shown as grey circles. Also a small neighborhood of the set O∪Γ0 is shown to be the union

of a number of “squares”.

The main goal is the same: to study bifurcations of single-round periodic orbits (see
Def. inition 1.1) in the families fε. Every point of such an orbit is considered again
as a fixed point of the corresponding first return map Tk = T1T

k
0 , where T0 ≡ T0(ε)

is the local map and T1 ≡ T1(ε) is the global map whose definition is similar to the
symplectic case (see Chapter 1). In particular, the coordinate expression for T1 is the
same as in Chapter 1, formulas (1.10) and (1.11). Concerning the local map T0, its
normal form is symplectic (the same as in Lemma 1.1) in the case A′.1, while in the
case A′.1 we provide non-orientable normal forms in the next section.

2.1.1 Finite-smooth normal forms for non-orientable saddle
area-preserving maps

In the following lemma we give the main normal form (of the first order) for the local
map T0(ε) in the non-orientable case.
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Lemma 2.1. [GST07]. Let T0(ε) be a Cr-smooth, r ≥ 3, saddle area-preserving map
that has a fixed point O with multipliers λ and −λ−1, where |λ| < 1. Then there exists
such Cr-smooth local canonical coordinate change, which is Cr−2 with respect to the
parameters, that the map T0 takes the following form

x̄ = λ(ε)x+ o(x2y), ȳ = −λ−1(ε)y + o(xy2), (2.1)

The following lemma relates to the n-th order normal form.

Lemma 2.2. For any p = r − 2n + 1, where n ≥ 2 is an integer such that n < r/2
(if r =∞, then n is arbitrary), there exists such Cp-smooth local canonical coordinate
change, which is Cp−2 with respect to the parameters, that the map T0 takes the following
form

x̄ = λ(ε)x

(
1 +

n∑
2

βi(ε) · (xy)i
)

+ o(xn+1yn),

ȳ = −λ−1(ε)y

(
1 +

n∑
2

β̃i(ε) · (xy)i
)

+ o(xnyn+1),
(2.2)

where the coefficients βi and β̃i are invariants of smooth canonical changes of coor-
dinates preserving form (2.2), and, moreover, βi(ε) = β̃i(ε) ≡ 0 for all odd i ≤ n.

As in the symplectic case, see Lemma 1.2, the normal forms of Lemmas 2.1 and 2.2
allow to obtain a quite simple coordinate expression for iterations T k0 for all integer k.
Namely, let (xi, yi) ∈ U0 , i = 0, . . . , k− 1, be such points that (xi+1, yi+1) = T0(xi, yi),
then the following results hold.

Lemma 2.3. 1) If T0 takes the first order normal form (2.1), then T k0 can be written
as follows

xk = λkx0 + λ2kP1(x0, yk, ε), y0 = (−λ)kyk + λ2kQ1(x0, yk, ε), (2.3)

where the functions P1 and Q1 are uniformly bounded along with all derivatives up to
order (r − 2) and the following estimates takes place for the last derivatives

‖(xk, y0)‖Cr−1 = O(|λ|k), ‖(xk, y0)‖Cr = o(1)k→∞.

2) If T0 takes the n-th order normal form (2.2), then T k0 can be written as

xk = λkx0 ·R(k)
n (x0yk, ε) + λ(n+1)kP

(k)
n (x0, yk, ε),

y0 = (−λ)kyk ·R(k)
n (x0yk, ε) + λ(n+1)kQ

(k)
n (x0, yk, ε) ,

(2.4)

where R
(k)
n (x0yk, ε) is given by formula (1.6) in which β̃1(k) = 0, β̃2(k) = β2 k, . . . The

functions P
(k)
n = o(xn+1

0 ynk ), Q
(k)
n = o(xn0y

n+1
k ) are uniformly bounded in k along with

all their derivatives with respect to x0 and yk up to the order (r − 2n − 1), besides,
‖(xk, y0)‖Cr−2n = O(|λ|k), ‖(xk, y0)‖Cr−2n+1 = o(1)k→∞.
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Remark 2.1. In principle, we will use Lemma 2.3 only for the cases where T0 takes
the first and second order normal forms. In the latter case (for the second order normal
form) the iterations of T k0 can be written as

xk = λkx0 +O(kλ3k), y0 = (−λ)kyk +O(kλ3k), (2.5)

We prove Lemma 2.2 in Chapter 4. The proof of Lemma 2.3 is the same as for
Lemma 1.2 from Chapter 1 and, therefore, we omit it.

In what follows, we use in U0 the local normal form coordinates (x, y) introduced
in the Sections 1.1 and 2.1. In these coordinates both W s

loc and W u
loc are straightened

and, hence, we can put M+ = (x+, 0),M− = (0, y−), where x+ > 0 and y− > 0.
Without loss of generality, we assume that x+ > 0 and y− > 0. Then the global map
T1(ε) ≡ f q(ε) : Π− → Π+ can be written in the form (1.10), where relations (1.11)
hold.

In the area-preserving case, the Jacobian J(T1) of T1 is equal to ±1 identically for
all values of parameters ε. We note that APMs with homoclinic tangencies have various
numerical invariants. In particular, we introduce the following important quantities

α =
cx+

y−
− 1 and α̂ =

cx+

y−
+ 1 (2.6)

which are some analogous of the invariant τ for the symplectic case (α is the same as
in the symplectic case, see formula (1.38)).

2.1.2 Strips, horseshoes and return maps

We assume that the neighbourhoods Π+ and Π− are sufficiently small and fixed, so
that T0(ε)(Π+)∩Π+ = ∅ and T−1

0 (ε)(Π−)∩Π− = ∅ for all small ε. Then the domain of
definition of the successor map from Π+ to Π− under iterations of T0(ε) consists of in-
finitely many nonintersecting strips σ0

k belonging to Π+ and accumulating at W s
loc∩Π+

as k → ∞. Analogously, the range of this map consists of infinitely many (noninter-
secting) strips σ1

k = T k0 (σ0
k) belonging to Π− and accumulating at W u

loc∩Π− as k →∞.
See Figure 2.2 where a location of the strips is shown for various cases.

According to (1.10) and (1.11), the images T1(σ1
j ) of the strips σ1

j have a horse-shoe
shape form and accumulate to the curve lu = T1(W u

loc) as j →∞. Note that any orbit
staying entirely in U must intersect both the neighborhoods Π− and Π+ (otherwise, it
would not be close to Γ0). Thus, such orbits must have points belonging to intersections
of the horseshoes T1(σ1

j ) and the strips σ0
i for all possible integer i and j.

When µ varies the location of the horseshoes T1(σ1
j ) is changed: they move to-

gether with T1(W u
loc). It implies that a character of mutual intersections of the strips

and horseshoes can cardinally change. It relates, in particular, to the strips σ0
i and

horseshoes T1(σ1
i ) with the same numbers i. Thus, at varying µ bifurcations of cre-

ation/destruction Smale horseshoes will occur in the first return maps Tk(µ). We will
study the main accompanied bifurcations in Sections below.



2.2. MAIN RESULTS 61

Figure 2.2: The strips σ0
k and σ1

k for λ and γ of various signs.

2.2 Main results: on cascades of elliptic periodic

orbits

We divide non-orientable APMs under consideration into two groups:

(i) the globally non-orientable APMs when T0 is orientable and T1 is non-orientable
(λγ = +1 and bc = +1), i.e. the condition A′.1 holds;

(ii) the locally non-orientable APMs when T0 is non-orientable (λγ = −1), , i.e. the
condition A′.2 holds.

Note that in the locally non-orientable case the Jacobian of T1 equals +1 or −1
depending on choice of a pair of the homoclinic points. Indeed, if the Jacobian of T1

is equal to −1 (i.e. bc = +1) for a given pair M+ ∈ W s
loc and M− ∈ W u

loc of the points,
then, for the pair M̃+ = T0(M+) and M− of the homoclinic points, the Jacobian of
the new global map T̃1 = T0T1 will be equal +1, since J(T0) = −1. Therefore, in the
locally non-orientable case, we will assume, for more definiteness,
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• that the homoclinic points M+ ∈ W s
loc and M− ∈ W u

loc are such that J(T1) = +1.

Remark 2.2. It can show1 that the quantities α and α̂ from (2.6) do not depend on
choice of pairs of homoclinic points M+ ∈ W s

loc and M− ∈ W u
loc; conditionally that, in

the locally non-orientable case, the points are chosen in such a way that the sign of
J(T1) is not changed.

Theorem 2.1 (One parameter cascades of elliptic points in APMs). Let f0 be APM
satisfying conditions A′ and B and fµ be a one parameter family of close to f0 APMs
that unfolds generally (under condition C) at µ = 0 the quadratic homoclinic tangency.
For any interval I = (−µ0, µ0) values of µ, there exists such integer and positive k̄ that
the following holds:

1. (a) In the globally non-orientable case, the maps fµ have no single-round elliptic
periodic orbits, while there exist intervals e2

k ⊂ I, k = k̄, k̄ + 1, . . . , where fµ has a
double-round elliptic orbit, of period 2(k + q), which corresponds to a period two point
of the first return map Tk.

(b) In the locally non-orientable case, there exist intervals e2m and e2
2m+1 in I for

any integer m such that 2m ≥ k̄, where the map fµ has a single-round elliptic periodic
of (period 2m + q) orbit at µ ∈ e2m and has a double-round elliptic periodic orbit at
µ ∈ e2

2m+1.
2. The intervals ek as well as e2

k accumulate to µ = 0 as k →∞ and do not intersect
for sufficiently large and different integer k if α 6= 0 in the globally non-orientable case
as well as α 6= 0 and α̂ 6= 0 in the locally non-orientable case.

3. Any interval ek has border points µ = µ+
k and µ = µ−k such that the map fµ

has a single-round periodic orbit (of period k+ q) with double multiplier +1 at µ = µ+
k

and with double multiplier −1 at µ = µ−k . Any interval e2
k has border points µ = µ2+

k

and µ = µ2−
k such that the map fµ has a single-round periodic orbit (of period (k + q))

with multipliers +1 and −1 at µ = µ2+
k and a double-round periodic orbit (of period

2(k + q)) with double multiplier −1 at µ = µ2−
k . See Figure 2.3.

4. The angular argument ϕ of the multipliers e±iϕ of the elliptic points at µ ∈ ek
or µ ∈ e2

k depends monotonically on µ and the elliptic point is generic (KAM-stable)
for all such µ, except for those where ϕ(µ) = π

2
, 2π

3
.

Note that Theorem 2.1 does not give answer on the question on a mutual position of
the intervals ek and e2

k in the critical cases α = 0 and α̂ = 0. But this moment is quite
important, since relates to the coexistence of elliptic orbits of different periods. The
same as in the symplectic case, we consider this question by means of two parameter
families.

We assume now that f0 is a map satisfying conditions A′ and B with α = 0 in the
globally non-orientable case and with α = 0 (when c > 0) or α̂ = 0 (when c < 0) in the
locally non-orientable case. Denote byH0,0 and Ĥ0,0 codimension 2 bifurcation surfaces
from the space of APMs consisting of maps close to f0 and having a nontransversal

1the same as the invariance of τ in Lemma 1.5 from Chapter 1
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Figure 2.3: Bifurcation scenarios in the first return maps Tk according to item 3 of Theorem 2.1.

We show here that the birth of the elliptic point is happened when increasing µ, while for some types

of homoclinic tangencies it can occur at decreasing µ. (a) The map Tk is orientable, then the value

µ = µ+
k corresponds to the appearance of a fixed point of Tk that is a non-degenerate parabolic fixed

point with double multiplier +1. This point falls into two fixed points, saddle and elliptic ones, when

µ ∈ ek. The moment µ = µ−k corresponds to the period doubling bifurcation with the elliptic fixed

point. (b) If Tk is the non-orientable map, then the value µ = µ−k corresponds to the appearance of

a fixed point with multipliers +1 and −1. This point falls into four points, two saddle fixed ones and

other two points compose an elliptic cycle of period 2, when µ ∈ e2k. The moment µ = µ2−
k corresponds

to the period doubling bifurcation of this period 2 cycle.

homoclinic orbit close to Γ0 and such that the condition α = 0 and α̂ = 0 holds,
respectively. We will consider two parameter families {fµ,α} and {fµ,α̂} of APMs which

are transverse to H0,0 and Ĥ0,0 at µ = 0, α = 0 and µ = 0, α̂ = 0, respectively.

Let Dε and D̂ε be sufficiently small neighbourhoods (of diameter ε > 0) of the origin
in the parameter planes (µ, α) and (µ, α̂).

It follows from Theorem 2.1 that infinitely many such open domains, E2
k for the

globally non-orientable case and E2m and E2
2m+1 for the locally non-orientable case,

exist in Dε and D̂ε that the following holds.

• If (µ, α) ∈ Ek, then the map fµ,α or fµ,α̂ has a single-round elliptic orbit of period
(k + q) and if (µ, α) ∈ E2

k , then the map fµ,α or fµ,α̂ has a double-round elliptic
orbit of period 2(k + q).
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• The domains Ek and E2
k accumulate to the axis µ = 0 as k →∞.

• Any domain Ek has two boundaries, bifurcation curves L+
k and L−k , correspond

to the existence of a single-round nondegenerate periodic orbit with double mul-
tipliers +1 and −1, respectively.

• Any domain E2
k has two boundaries, bifurcation curves L2+

k and L2−
k , which

correspond, respectively, to the existence of a single-round nondegenerate periodic
orbit with double multipliers +1 and a double-round nondegenerate periodic orbit
with double multipliers −1.

In the following theorem we state that the domains Ek or E2
k can mutually intersect

for different large enough k.

Theorem 2.2. 1) In the globally non-orientable case, there exist domains E2
k either in

Dε for c > 0 or in D̂ε for c < 0. In Dε the domains E2
k intersect the axis µ and all of

them are mutually crossed for different and sufficiently large k. In D̂ε the domains E2
k

do not intersect the axis µ and are not crossed.
2) In the locally non-orientable case, there exist domains E2m and E2

2m+1 both in Dε

and D̂ε. In the case c > 0, the domains E2m are crossed in Dε and are not crossed in
D̂ε; the domains E2

2m+1 are crossed in D̂ε and are not crossed in Dε. In the case c < 0,

the domains E2m are crossed in D̂ε and are not crossed in Dε; the domains E2
2m+1 are

crossed in Dε and do not crossed in D̂ε.
In the case c > 0, the domain E2m intersects in Dε all domains E2

2j+1 with j ≥ m;

in the case c < 0, the domain E2
2m+1 intersects in D̂ε all domains E2j with j > m.

In Figure 2.7 some qualitative illustrations to Theorem 2.2 are shown for the cases
where λγ = +1 and the map T1 is non-orientable, (a) and (b), and λγ = −1, (c) and
(d).

We introduce now the following quantities

sor0 = dx+(ac+ f20x
+) + ef11x

+(1− 1

4
f11x

+) , (2.7)

and

snor0 = dx+(ac+ f20x
+)− 1

4
(f11x

+)2 , (2.8)

which are calculated by coefficients of the global map T1, see formula (1.11), and play
an important role in global dynamics of the map f0 with α = 0 or α̂ = 0.

Theorems 2.1 and 2.2 show that elliptic single-round or double-round periodic orbits
of different periods can coexist when values of µ and α or µ and α̂ close to zero.
Moreover, infinitely many such orbits can coexist, in principle, at the global resonance
µ = 0, α = 0 or µ = 0, α̂ = 0. The following theorem give us sufficient conditions for
this event.
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Figure 2.4: Elements of the bifurcation diagrams for the families fµ,α in the cases with λγ = +1,

where T1 is orientable, (a) and (b), and T1 is non-orientable, (c) and (d).

Theorem 2.3 (On infinitely many elliptic points in non-orientable APMs with homo-
clinic tangency). Let f0 be a non-orientable APM with a quadratic homoclinic tangency
(i.e., conditions A′ and B hold). We assume also that the resonant condition α = 0 or
α̂ = 0 takes place for f0.

1) Let f0 be a globally non-orientable map and α = 0. Then, if s = snor (see formula
(2.8)) is such that −1 < snor < 0, then f0 has infinitely many double-round elliptic
periodic orbits of all successive periods 2(k + q) (where k ≥ k̄).

2) Let f0 be a locally non-orientable map and the homoclinic points M+ and M−

be chosen such that T1 is orientable (by our arrangement), i.e. bc = −1. Then, if
c > 0, α = 0 and −1 < sor < 3, the map f0 has infinitely many single-round elliptic
periodic orbits of all successive periods 2m + q (where 2m ≥ k̄). If c < 0 , α̂ = 0 and
−1 < snor < 0, the map f0 has infinitely many double-round elliptic periodic orbits of
all successive periods of form 2(2m+ 1 + q) (where 2m ≥ k̄).

3) If sor 6= 0; 5
4

or snor 6= −1
2
;− 1√

2
;−5

8
, then all these elliptic orbits of sufficiently

large periods are generic (KAM-stable).
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In the rest part of this chapter we prove these and related results.

2.3 The rescaling lemmas in the non-orientable case

We embed f0 into a parametric family fε which unfolds generally the initial homoclinic
tangency. Moreover, our main attention will be paid to one and two parameter families
when the parameters ε = µ, ε = (µ, α) or ε = (µ, α̂), respectively, are considered as
governing ones. Recall that µ is the parameter of splitting manifolds W u(O) and
W s(O) with respect to the homoclinic point M+ (see formula (1.11)), and α is the
parameter given by formula (2.6).

The main goal of the rest part of the chapter is the study of bifurcations of single-
round periodic orbits. By definition (see Definition 1.1), every such an orbit has only
one intersection point with Π+ (or with Π−). In turn, this point can be considered
as a fixed point of the corresponding first return map Tk ≡ T1T

k
0 : σ0

k 7→ σ0
k with an

appropriate integer k ≥ k̄. Note that the integers k can run all values from the set
{k̄, k̄ + 1, . . . } where k̄ is some sufficiently large positive integer.

In principle, to study bifurcations, we can write the first return maps Tk in the initial
coordinates and with the initial parameters ε, using formula (1.11) for the global map
T1 and the corresponding formulas from Lemma 2.3 for maps T k0 . However, there is a
more effective way for studying bifurcations. Namely, we can bring maps Tk to some
unified form for all large k using the so-called rescaling method as it has been done in
many papers.2 After this, we can study (one time) bifurcations in the unified map and
“project” obtained results onto the first return maps Tk for various k.

First we consider the globally non-orientable maps, i.e. we assume that the map
T0 is symlectic (λ = γ−1) and the Jacobian of the global map T1 equals to −1 (i.e.
bc = +1). Then the following result holds.

Lemma 2.4. [Rescaling lemma in the globally non-orientable case]
In the globally non-orientable case, for every sufficiently large k, the first return map
Tk : σ0

k → σ0
k can be brought, by a linear transformation of coordinates and parameters,

to the following form

X̄ = Y + kλ2kε1
k,

Ȳ = M +X − Y 2 +
f03

d2
λkY 3 + kλ2kε2

k ,
(2.9)

where functions ε1,2
k (X, Y,M) are defined on some asymptotically big domain covering

in the limit k → +∞ all finite values of X, Y and M , and these functions are uniformly
bounded in k along with all derivatives up to order (r − 4); and the following formula
takes place for M :

M = −d(1 + ν1
k)λ−2k

(
µ+ λk(cx+ − y−)(1 + kβ1λ

kx+y−)
)
− snor0 + ν2

k ; (2.10)

2see, for example, papers [BS89, MR97, GS97, LS04, DGGLO13] in which the rescaling method
was applied for conservative and reversible cases
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where formulas (2.8) valid for snor0 and ν1,3
k = O(λk), ν2,4

k = O(kλk) are some asymp-
totically small coefficients.

Proof. We will use the representation of the symplectic map T0 in the “second normal
form”, i.e. in form (2.2) for n = 2.3 Then the map T k0 : σ0

k → σ1
k, for all sufficiently

large k, can be written in form (1.28).
Then, using formulae (1.11) and (1.28), we can write the first return map Tk : σ0

k →
σ0
k in the following form

x̄− x+ = aλkx+ b(y − y−) + e02(y − y−)2+
+O(k|λ|2k|x|+ |y − y−|3 + |λ|k|x||y − y−|),

λkȳ
(
1 + kλkβ1x̄ȳ

)
+ kλ3kO(|x̄|+ |ȳ|) =

= µ+ cλkx
(
1 + kλkβ1xy

)
+ d(y − y−)2 + λ2kf02 x

2+
+λkf11(1 + kλkβ1xy) x(y − y−) + λkf12 x(y − y−)2 + f03(y − y−)3+
+O

(
(y − y−)4 + λ2k|x||y − y−|+ k|λ|3k|x|+ kλ2k|x||y − y−|2

)
,

(2.11)
where x = x0, y = yk.

Below, we will denote by αik, i = 1, 2, ..., some asymptotically small in k coefficients
such that αik = O(kλk). Now we shift the coordinates

η = y − y−, ξ = x− x+ − λkx+(a+ α1
k),

in order to nullify the constant term (independent of coordinates) in the first equation
of (2.11). Thus, (2.11) is recast as follows

ξ̄ = aλkξ + bη + e02η
2 +O

(
kλ2k|ξ|+ |η|3 + |λ|kO(|ξ||η|)

)
,

λkη̄(1 + α2
k) + kλ2kO(|ξ̄|+ η̄2) + kλ3kO(|η̄|) =

= M1 + cλkξ(1 + α3
k) + η2(d+ λkf12x

+) + λkη(f11x
+ + α4

k) + λkf11ξη + f03η
3+

+O
(
η4 + k|λ|3k|ξ|+ kλ2k(ξ2 + η2) + λk|ξ|η2

)
,

(2.12)
where

M1 = µ+ λk(cx+ − y−)(1 + kλkβ1x
+y−) + λ2kx+(ac+ f02x

+) +O(kλ3k). (2.13)

Now, we rescale the variables:

ξ = − b(1 + α2
k)

d+ λkf12x+
λku , η = − 1 + α2

k

d+ λkf12x+
λkv. (2.14)

3Of course, we lose, a little, in a smoothness, since the second order normal form is Cr−2 only,
see Lemma 2.2. However, we get more principally important information on form of the first return
maps. On the other hand, our considerations cover also C∞ and real analytical cases.
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System (2.12) in coordinates (u, v) is rewritten in the following form

ū = v + aλku− e02

bd
λkv2 +O(kλ2k),

v̄ = M2 + u(1 + α5
k)− v2+

+v(f11x
+ + α6

k)−
f11b

d
λkuv +

f03

d2
λkv3 +O(kλ2k) ,

(2.15)

where

M2 = −d+ λkf12x
+

1 + α2
k

λ−2kM1.

The following shift of coordinates (we remove the linear in v terms from the second
equation)

unew = u− 1

2
(f11x

+ + α6
k), vnew = v − 1

2
(f11x

+ + α6
k),

brings map (2.15) to the following form

ū = v + aλku− e02

bd
λkv2 +O(kλ2k),

v̄ = M3 + u− v2 − f11b

d
λkuv +

f03

d2
λkv3 +O(kλ2k) ,

(2.16)

where

M3 = M2 +
(f11x

+)2

4
.

We make the following linear change of coordinates

x = u+ ν̃1
kv , y = v − ν̃2

ku , (2.17)

where
ν̃1
k = −e02

bd
λk, ν̃2

k = −e02

bd
λk − aλk. (2.18)

Then, system (2.16) is rewritten as

x̄ = y +M3ν̃
1
k +O(kλ2k),

ȳ = M3 + x− y2 + aλky − R̃λkxy +
f03

d2
λky3 +O(kλ2k) ,

(2.19)

where R̃ = (2a+ 2e02/bd− bf11/d) ≡ 0 by (1.13). Hence, map (2.19) has the following
form

x̄ = y +M3ν̃
1
k +O(kλ2k),

ȳ = M3 + x− y2 + aλky +
f03

d2
λky3 +O(kλ2k) ,

(2.20)
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Finally, make one more shift of coordinates

X = x− 1

2
aλk − ν̃1

kM3, Y = y − 1

2
aλk,

in order to nullify the constant term in the first equation and the linear in y term in
the second equation of (2.20). After this, we obtain the final form (2.9) of map Tk in
the rescale coordinates where formula (2.10) takes place for the parameter M .

Now we consider the locally non-orientable case. Thus, we assume that λ = −γ−1.
Moreover, as our agreement, we take the pairs M+ and M− of the homoclinic points
in such a way that the corresponding global map T1 becomes orientable (J(T1) = +1),
i.e. bc = −1.

Lemma 2.5. [Rescaling lemma in the locally non-orientable case]
1) Let a sufficiently large k be even. Then the first return map Tk : σ0

k → σ0
k can

be brought, by a linear transformation of coordinates and parameters, to the following
form

X̄ = Y + kλ2kε1
k,

Ȳ = M −X − Y 2 +
f03

d2
λkY 3 + kλ2kε2

k ,
(2.21)

where

M = −d(1 + ν1
k)λ−2k

(
µ+ λk(cx+ − y−

)
− sor0 + ν2

k ; (2.22)

2) Let a sufficiently large k be odd. Then the first return map Tk : σ0
k → σ0

k can
be brought, by a linear transformation of coordinates and parameters, to the following
form

X̄ = Y + kλ2kε1
k,

Ȳ = M +X − Y 2 − f03

d2
λkY 3 + kλ2kε2

k ,
(2.23)

where

M = −d(1 + ν1
k)λ−2k

(
µ+ λk(cx+ − y−

)
− snor0 + ν2

k ; (2.24)

3) Here functions ε1,2
k (X, Y,M) are defined on some asymptotically big domain

covering in the limit k → +∞ all finite values of X, Y and M , and these func-
tions are uniformly bounded in k along with all derivatives up to order (r − 4));
ν1,3
k = O(λk), ν2,4

k = O(kλk) are some asymptotically small coefficients.

Proof. We will again use the representation of the map T0 in the “second normal form”,
now in form (2.2). Then the map T k0 : σ0

k → σ1
k, for all sufficiently large k, can be

written in form (2.5).
Evidently, in the case 1) of the lemma, the proof does not differ from the symplectic

case, only β1 ≡ 0 here, which gives us the sought result.
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In the case 2) of the lemma, we proceed in the same way as at the beginning of
Lemma 2.4 and since γ−k = −λk, obtain the following formula, analogous to (2.12),

ξ̄ = aλkξ + bη + e02η
2 +O

(
kλ2k|ξ|+ |η|3 + |λ|kO(|ξ||η|)

)
,

−λkη̄(1 + α2
k) + kλ2kO(|ξ̄|+ η̄2) + kλ3kO(|η̄|) =

= M1 + cλkξ(1 + α3
k) + η2(d+ λkf12x

+) + λkη(f11x
+ + α4

k) + λkf11ξη + f03η
3+

+O
(
η4 + k|λ|3k|ξ|+ kλ2k(ξ2 + η2) + λk|ξ|η2

)
,

(2.25)
where

M1 = µ+ λk(cx+ + y−)(1 + kλkβ1x
+y−) + λ2kx+(ac+ f02x

+) +O(kλ3k). (2.26)

(the difference is only that the factor −λk stands in the left side of the second equation
and (cx+ + y−) is in formula for M1).

Now, we rescale the variables:

ξ =
b(1 + α2

k)

d+ λkf12x+
λku , η =

1 + α2
k

d+ λkf12x+
λkv. (2.27)

System (2.25) in coordinates (u, v) is rewritten in the following form

ū = v + aλku+
e02

bd
λkv2 +O(kλ2k),

v̄ = M2 + u(1 + α5
k)− v2+

−v(f11x
+ + α6

k)−
f11b

d
λkuv − f03

d2
λkv3 +O(kλ2k) ,

(2.28)

where

M2 = −d+ λkf12x
+

1 + α2
k

λ−2kM1.

The following shift of coordinates (we remove the linear in v terms from the second
equation)

unew = u+
1

2
(f11x

+ + α6
k), vnew = v +

1

2
(f11x

+ + α6
k),

brings map (2.28) to the following form

ū = v + aλku+
e02

bd
λkv2 +O(kλ2k),

v̄ = M3 + u− v2 − f11b

d
λkuv − f03

d2
λkv3 +O(kλ2k) ,

(2.29)

where

M3 = M2 +
(f11x

+)2

4
.
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We make the following linear change of coordinates

x = u+ ν̃1
kv , y = v − ν̃2

ku , (2.30)

where
ν̃1
k =

e02

bd
λk, ν̃2

k =
e02

bd
λk + aλk. (2.31)

Then, system (2.29) is rewritten as

x̄ = y −M3ν̃
1
k +O(kλ2k),

ȳ = M3 + x− y2 − aλky + R̂λkxy − f03

d2
λky3 +O(kλ2k) ,

(2.32)

where R̂ = (2a− 2e02/bd− bf11/d) ≡ 0.
Finally, make one more shift of coordinates

X = x+
1

2
aλk + ν̃1

kM3, Y = y +
1

2
aλk,

in order to nullify the constant term in the first equation and the linear in y term in
the second equation of (2.32). After this, we obtain the final form (2.23) of map Tk in
the rescaled coordinates where formula (2.24) takes place for the parameter M .

2.4 Proof of the main results

Theorems 2.1, 2.2 and 2.3 are proved translating the results on bifurcations of fixed
points of the first return maps Tk to single-round periodic orbits of fµ, fµ,α or fµ,α̂.
Bifurcations in first return maps Tk can be studied with using their normal forms
deduced by the rescaling lemmas 2.4 and 2.5. Since these normal forms coincide up
to asymptotically small as k → ∞ terms with the non-orientable conservative Hénon
map, we recall in the next section some necessary results on bifurcations of fixed points
in one parameter families of conservative Hénon map in non-orientable case.

2.4.1 On bifurcations of fixed points in the conservative Hénon
maps

Thus, the Rescaling Lemma 2.4 and 2.5 show that the unified limit form for the first
return maps Tk is the conservative Hénon map

x̄ = y, ȳ = M + νx− y2. (2.33)

(orientable, if ν = −1, and non-orientable, if ν = +1). Bifurcations of fixed points in
the conservative Hénon family are well known.
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In the case ν = −1, the Hénon map has a generic elliptic fixed point for every
M ∈ (−1; 3) except for s0 = 0 when ψ = π/2 and s0 = 5/4 when ψ = 2π/3. These
cases corresponds to the strong resonances 1 : 4 and 1 : 3, respectively. The conservative
resonance 1 : 3 is non-degenerate, while 1 : 4 is degenerate: the so-called case “A = 1”,
[Arn96, AAIS86], is realized here. However, it is important that in the first return
map (2.9), when the coefficients f03 is non-zero, the resonance 1 : 4 becomes non-
degenerate [Bir87, Gon05], see also Appendix A. The conservative Hénon map has also
fixed parabolic points, at M = −1 with multipliers ν1 = ν2 = +1 and at M = 3 with
multipliers ν1 = ν2 = −1. The corresponding bifurcations are nondegenerate. See
Figure 2.5 for an illustration.

Figure 2.5: Bifurcations of fixed points in the Hénon map: (a) the main scenario, here µ+
k < µ−k

(if d > 0, then µ+
k > µ−k ); (b)–(c) bifurcations near resonance 1 : 4 in map (2.9) for the cases (b)

νk = f03d
−2λk > 0 (here the fixed point is always elliptic) and (c) νk < 0 (for β = 0 the fixed point

is a saddle with eight separatrices); here β is a parameter characterizing a deviation of ψ from π/2.

In the case ν = +1, the Hénon map is non-orientable and, thus it does not have
elliptic fixed points. However, elliptic points of period 2 exist for M ∈ (0, 1). The
map has no fixed points for M < 0, it has one fixed point Ō(0, 0) with multipliers
ν1 = +1, ν2 = −1 at M = 0 and two saddle fixed points (Ō1(−

√
M,−

√
M) and

Ō2(
√
M,
√
M)) at M > 0. Besides, an elliptic orbit of period 2 exists for 0 < M < 1,

it consists of two points (p1(−
√
M,
√
M) and p2(

√
M,−

√
M)); the value M = +1

corresponds to the period doubling bifurcation of this orbit. See Figure 2.6 for an
illustration. Note that the elliptic orbit of period 2 is generic for all M ∈ (0, 1) except
for M = 1

2
, M = 1√

2
which correspond to the strong resonances 1 : 4 and 1 : 3,

respectively, and M = 5
8

which corresponds to the zero first Birkhoff coefficient at the
cycle {p1, p2}, see [DGGLO13].

It is also known (see, e.g., [DN78, AS82]) that, if M > 5 + 2
√

5 (this is only
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Figure 2.6: The main bifurcation scenario in the non-orientable conservative Hénon map.

a sufficient condition), then the nonwandering set of map (2.33) is Smale horseshoe
which is orientable for ν = −1 and non-orientable for ν = +1.

2.4.2 Proof of Theorem 2.1

The proof is deduced from the rescaling lemmas 2.4 and 2.5. Indeed, since bifurcations
of fixed points of the Hénon map are known, we can use this information directly for
recovering bifurcations of single-round periodic orbits in the family fµ. We need only
to know relations between the parameters of the rescaled map (2.9) and the initial
parameters (i.e., in fact, between M and µ).

In the globally non-orientable case, the relations between M and µ are given by
formula (2.10) from which we find µ as follows

µ = −λky−α(1 + kβ1λ
kx+y−)− 1

d
(M + snor0 + ρ̂1

k)λ
2k, (2.34)

where ρ̂1
k = O(kλk) is some small coefficient and α =

cx+

y−
− 1 (see formula (2.6)).

As it follows from Lemma 2.4, the conservative non-orientable Hénon map x̄ =
y, ȳ = M + x − y2, where M satisfies (2.10), is normal (rescaled) form for the
first return maps Tk with all sufficiently large k. This Hénon map has no elliptic fixed
points, however, period 2 elliptic points exists for 0 < M < 1. Thus, we obtain, by
(2.10), that the first return map Tk has a fixed point with multipliers ν1 = +1, ν2 = −1
(i.e. when M = 0) if

µ = µ±k = −λky−α(1 + kβ1λ
kx+y−)− 1

d
(snor0 + ρ̂k)λ

2k, (2.35)

and a period 2 point with multipliers ν1 = ν2 = −1 (i.e. when M = 1) if

µ = µ2−
k = −λky−α(1 + kβ1λ

kx+y−)− 1

d
(snor0 + 1 + ρ̂k)λ

2k, (2.36)
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Thus, the first return map Tk has in this case a period two elliptic periodic point when
µ ∈ e2

k, where e2
k is the interval of values of µ with the border points µ = µ±k and

µ = µ2−
k . Evidently, if α 6= 0, the intervals e2

k with sufficiently large and different k do
not intersect.

In the locally non-orientable case, as our agreement, we take such a pair of ho-
moclinic points M+ and M− that the global map T1 is orientable (i.e. J(T1) = 1).
Then, evidently, the first return maps Tk ≡ T1T

k
0 will be orientable for even k and

non-orientable for odd k (i.e. J(Tk) = (−1)k).
Consider first the case of even k. By Lemma 2.5, the normal rescaled form for Tk

is the Hénon map X̄ = Y, Ȳ = M −X − Y 2, where M satisfies (2.22). We find from
here that µ is given by the relation

µ = −λky−α− 1

d
(M + sor0 + ρ̂2

k)λ
2k, (2.37)

for even k, where ρ̂1
k = O(kλk), α is given by (2.6) and sor0 by (2.7). In this case, since

the Hénon map has parabolic fixed point for M = −1 and M = 3, we obtain that the
interval ek with even k has border points µ = µ+

k and µ = µ−k , where

µ+
k ≡ λky−α− 1

d
(sor0 − 1 + ρ̂2

k)λ
2k, (2.38)

µ−k ≡ λky−α− 1

d
(sor0 + 3 + ρ̂2

k)λ
2k. (2.39)

Here, the map Tk has a fixed point which is parabolic with multipliers ν1 = ν2 = +1
for µ = µ+

k and with multipliers ν1 = ν2 = −1 for µ = µ−k and elliptic for µ ∈ ek.
Note that here k runs all sufficiently large even integers and, evidently, if α 6= 0, the
intervals ek with different sufficiently large even k do not intersect.

Consider now the case of odd k. Then the map Tk is non-orientable and its normal
rescaled form is the non-orientable conservative Hénon map x̄ = y, ȳ = M + x − y2,
where M satisfies (2.24). Then we find that the interval e2

k has border points µ = µ−k
and µ = µ2−

k , where

µ±k ≡ −λ
kα̂− 1

d
(snor0 + ρ̂3

k)λ
2k, (2.40)

µ2−
k ≡ −λ

ky−α̂− 1

d
(snor0 + 1 + ρ̂3

k)λ
2k, (2.41)

where α̂ = cx+/y− + 1 and snor0 is given by (2.8). If α̂ 6= 0, the intervals e2
k with

sufficiently large and different (odd) numbers k do not intersect. It completes the
proof of Theorem 2.1.
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2.4.3 Proof of Theorems 2.2 and 2.3

Proof of Theorem 2.2. 1) In the globally non-orientable case, by (2.35) and (2.36) the
equations of bifurcation curves L2+

k and L2−
k , which are boundaries of the domain E2

k ,
can be written as follows

L2+
k : µ = −λky−

(
cx+

y−
− 1

)
(1 + kβ1λ

kx+y−)− snor0 + . . .

d
λ2k, (2.42)

L2−
k : µ− λky−

(
cx+

y−
− 1

)
(1 + kβ1λ

kx+y−)− 1 + snor0 + . . .

d
λ2k. (2.43)

Since λ2k � λk, it means that the domains E2
k with sufficiently large k are not mutually

crossed and do not intersect the axis µ = 0, if cx+ 6= y−. Thus, the domains do not
intersect always in the cases with c < 0 ((as in Figure 2.7 (a)–(c)). However, at the
global resonance α = (cx+/y−−1) = 0, as it follows from (2.42) and (2.43), all domains
E2
k with sufficiently large k are mutually crossed and all of them intersect the axis µ = 0

(as in Figure 2.7 (d) and (e)).
2) In the locally non-orientable case we have, by (2.38) and (2.39), that the domains

E2m have boundaries

L+
2m : µ = −λ2my−

(
cx+

y−
− 1

)
+

1− sor0 + . . .

d
λ4m, (2.44)

L−2m : µ = −λ2my−
(
cx+

y−
− 1

)
− 3 + sor0 + . . .

d
λ4m, (2.45)

corresponding to the existence of a parabolic single-round periodic orbit with double
multiplier +1 at (µ, α) ∈ L+

2m or with double multiplier −1 at (µ, α) ∈ L−2m. At the
same time, by (2.40) and (2.41), the domains E2

2m+1 have boundaries

L2+
2m+1 : µ = −λ2m+1y−

(
cx+

y−
+ 1

)
− snor0 + . . .

d
λ4m+2, (2.46)

L2−
2m+1 : µ = −λ2m+1y−

(
cx+

y−
+ 1

)
− 1 + snor0 + . . .

d
λ4m+2, (2.47)

corresponding to the existence of a single-round periodic orbit with multipliers +1 and
−1 at (µ, α̂) ∈ L2+

2m+1 or a double-round periodic orbit with double multiplier −1 at
(µ, α) ∈ L2−

2m+1.
Thus, for the diffeomorphisms under consideration with c > 0, the global resonance

occurs at α = 0. It corresponds to such situation when all the domains E2m (with
sufficiently large m) mutually intersect and intersect the axis µ = 0 near the origin
α = 0, µ = 0, whereas, the domains E2

2m+1 do not intersect for different and sufficiently
large m, accumulate to the axis µ = 0 as m→∞ but do not intersect it, see Figure 2.8
(a). Otherwise, for the case c < 0, the global resonance occurs at α̂ = cx+/y− + 1 =
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Figure 2.7: Elements of bifurcation diagrams for families fµ,α in the globally non-orientable case.

0 and correspond to the situation when the domains E2
2m+1 mutually intersect and

intersect the axis µ = 0 (near the origin α̂ = 0, µ = 0), whereas, the domains E2m do
not intersect for different and sufficiently large m, see Figure 2.8 (b). It completes the
proof.

Proof of Theorem 2.3. Assume, for more definiteness, that d > 0 for all cases under
consideration. The case d < 0 is treated in the same way.

1) Let f0 be a globally non-orientable map with α = 0. Then, for the one parameter
family fµ with fixed α = 0, the intervals e2

k have, by (2.35)–(2.36), a form

e2
k = (−1− snor0 ,−snor0 )

λ2k

d
.

Evidently, if −1 < snor0 < 0, these intervals will be nested and containing µ = 0. It
implies that the diffeomorphism f0 has infinitely many double-round elliptic periodic
orbits.
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Figure 2.8: Elements of bifurcation diagrams in the locally non-orientable case: (a) for a family

fµ,α; (b) for a family fµ,α̂.

2) In the locally non-orientable case, let f0 have cx+ = y− and bc = −1, i.e. α = 0
and the global map T1 is orientable. In the family fµ with fixed α = 0, by (2.44)–(2.45),
the intervals e2m have a form

e2m = (−3− sor , 1− sor)
λ4m

d
.

These intervals of values of µ will be nested and all contain µ = 0 for all sufficiently
large m if −3 < sor < 1. It implies that the diffeomorphism f0 has infinitely many
single-round elliptic periodic orbits.

In the locally non-orientable case, let now f0 be such a map that cx+ = −y− and
bc = −1, i.e. α̂ = 0 and the global map T1 is orientable again. Consider the one
parameter family fµ with fixed α̂ = 0. Then, by (2.46)–(2.47), the intervals e2

2m+1+
have a form

e2
2m+1 = (−1− sor , −sor)

λ4m+2

d
.

If −1 < snor < 0, these intervals are nested and all contain µ = 0. It implies that the
diffeomorphism f0 has infinitely many double-round elliptic periodic orbits.

3) For the globally non-orientable case with α = 0, as follows from Lemma 2.4, all
the first return maps Tk (with sufficiently large k) are reduced to the same rescaled
normal form – the non-orientable Hénon map x̄ = y, ȳ = −snor0 + x − y2. It is well
known that, for −1 < snor < 0, the period 2 elliptic point of this map is generic if
snor 6= −1

2
;− 1√

2
;−5

8
. The exceptional cases relates, respectively, to resonances 1 : 4,

1 : 3 and such elliptic point whose first Birkhoff coefficient is zero.
For the locally non-orientable case with α = 0, as follows from Lemma 2.4, all

maps T2m are reduced to the same rescaled normal form – the orientable Hénon map
x̄ = y, ȳ = −sor − x − y2. It is well known that, for −3 < snor < 1, this map has a
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fixed elliptic point which is generic (KAM-stable) if sor 6= {0;− 5√
4
}. The exceptional

cases relates, respectively, to the strong resonances ψ = π/2 and ψ = 2π/3.
For the locally non-orientable case with α̂ = 0, all the first return maps T2m+1 are

reduced, by Lemma 2.5, to the the non-orientable Hénon map x̄ = y, ȳ = −snor0 +x−y2

and, thus, if snor 6= −1
2
;− 1√

2
;−5

8
, the corresponding double round elliptic periodic

orbits are generic. It completes the proof.



Chapter 3

Bifurcations of cubic homoclinic
tangencies in area-preserving maps

In this chapter we study bifurcations of cubic homoclinic tangencies in two-dimensional
symplectic maps. We distinguish two types of cubic homoclinic tangencies, and each
type gives different first return maps derived to diverse cubic conservative Hénon maps
with quite different bifurcation diagrams. In this way, we establish the structure of
bifurcations of single-round periodic orbits in two parameter general unfoldings. Note
that the results of this chapter generalize to the conservative case the results of [Gon85]
obtained for the dissipative case.

3.1 Preambles

Bifurcations of cubic homoclinic tangencies in general setting were studied in [Gon85],
see also [GK88, Tat91, GST96a]. More precisely, in [Gon85] there were studied bifurca-
tions of a (m+ 2)-dimensional Cr-smooth flow X0, where m ≥ 1 and r ≥ 6, satisfying
the following conditions:

• X0 has a saddle periodic orbit L0 with multipliers λ1, . . . , λm and γ such that
|λm| ≤ · · · ≤ |λ1| < 1 < |γ| and either

λ1 is real and |λ1| > |λ2|; or

λ1 = λ̄2 = ρeiϕ, ϕ 6= 0, π, |λ1| > |λ3|;

• the saddle value σ = |λ1||γ| < 1;

• the stable W s
0 and unstable W u

0 invariant manifolds of L0 have a tangency of the
second order (i.e. the cubic homoclinic tangency) along a homoclinic curve Γ0.

In this chapter we consider the case σ = 1. Moreover, we restrict ourself to two-
dimensional symplectic diffeomorphisms whose bifurcations of cubic homoclinic tan-
gencies will be studied.

79
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Figure 3.1: Two types of cubic homoclinic tangencies: (a) “incoming from above” and (b) “incoming

from below”.

Let f0 be a Cr-smooth, r ≥ 5, two-dimensional symplectic diffeomorphism which
satisfies the following conditions:

(A) f0 has a saddle fixed point O with multipliers λ and λ−1, where |λ| < 1;

(B) the invariant manifolds W u(O) and W s(O) have a cubic homoclinic tangency at
the points of some homoclinic orbit Γ0.

We distinguish two types of cubic tangencies of W u(O) and W s(O) at a homoclinic
point: the tangency of the first type or “incoming from above” and the tangency of
the second type or “incoming from below”. Both these types are shown in Figure 3.1.
When the multiplier λ is positive the type of tangency will be the same for all points of
the homoclinic orbit. However, if λ is negative the tangencies “incoming from above”
and “incoming from below” will be alternated from point to point. Note also that
bifurcations in these two cases are quite different, compare bifurcation diagrams of
Figures 3.4 and 3.5 that are be typical for first return maps, respectively, for the case
of “incoming from above” and “incoming from below” homoclinic tangencies.

Let Hr
2 be a codimension two bifurcation surface composed of symplectic Cr-maps

close to f0 and such that every map of Hr
2 has a nontransversal – cubic tangency –

homoclinic orbit close to Γ0. Let fε be a family of symplectic Cr-maps that contains
the map f0 at ε = 0. We suppose that the family depends smoothly on the parameters
ε = (ε1, ..., εm) and satisfies the following condition:

(C) the family fε is transverse to Hr
2 at ε = 0.
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As in Chapter 1, let U be a small neighborhood of the contour {O,Γ0}. It consists
of a small disk U0 containing O and a number of small disks surrounding those points
of Γ0 that do not lie in U0, see Figure 3.2.

Figure 3.2: An example of planar map having a cubic homoclinic tangency along a homoclinic orbit

Γ0.

In this chapter we study bifurcations of single-round periodic orbits within the
families fε. Note that every point of such an orbit can be considered as a fixed point
of the corresponding first return map Tk = T1T

k
0 , where T0 ≡ T0(ε) is local map and

T1 ≡ T1(ε) is the global map that can be introduced in a similar way as in Chapter
1. For analytical constructions of T0 and T1, we use the local coordinates (x, y) ∈ U0

in which T0 takes the first order normal form given by Lemma 1.1 (for n = 1). We
choose a pair of points M+ = (x+, 0) ∈ W s

loc(O) and M− = (0, y−) ∈ W u
loc(O) of the

homoclinic orbit Γ0 (we assume that x+ > 0 and y− > 0) and their sufficiently small
neighbourhoods Π+ and Π−, respectively. We suppose that f q0 (M−) = M+ for some
integer q. Then the global map T1(ε) ≡ f qε : Π− → Π+ is written as follows

x− x+ = F (x, y − y−, ε), y = G(x, y − y−, ε), (3.1)

where F (0, 0, 0) = 0, G(0, 0, 0) = 0 and the following relations

∂G(0)

∂y
= 0,

∂2G(0)

∂y2
= 0,

∂3G(0)

∂y3
= 6d 6= 0 (3.2)

hold due to the condition B which means that at ε = 0 the curve T1(W u
loc) : {x− x+ =

F (0, y − y−, 0), y = G(0, y − y−, 0)} has a cubic tangency with W s
loc : {ȳ = 0} at M+.

When parameters vary this tangency can split and, by condition C, the family (3.1)
unfolds generally the initial cubic tangency. In this case the global map T1 can be
written in a certain normal form that the following lemma shows.
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Lemma 3.1. If the condition C holds, the map T1(ε) can be written in the form

x− x+ = ax+ b(y − y−) +O (x2 + (y − y−)2) ,
y = µ1 + µ2(y − y−) + cx+ d(y − y−)3 +O (x2 + |x||y − y−|+ (y − y−)4) ,

(3.3)

where the coefficients a, b, c, d as well as x+, y− depend smoothly (the smoothness is
the same as for the initial map (3.1)) on the new parameters ε such that µ1 = ε1 and
µ2 = ε2.

Proof. By virtue of (3.2), the equation ∂2G(x, y− y−, ε)/∂y2 = 0 for small x and ε can
be resolved with respect to y. This solution has the form y − y−(ε) = ϕ(x, ε) where
ϕ(0, ε) ≡ 0. Then, we can write the following Taylor expansion with the remainder
term for the function G near the curve y − y−(ε) = ϕ(x, ε):

G ≡ G(x, 0, ε)+
∂G(x, 0, ε)

∂y
(y−y−−ϕ)+

∂3G(x, 0, ε)

∂y3
(y−y−−ϕ)3+O

(
(y − y− − ϕ)4

)
.

Since ϕ ≡ ϕ(x, ε) = O(x), we can write

G ≡ E1(ε) + cx+ E2(ε)(y − y−) + d(y − y−)3+
+O (x2 + |x||y − y−|+ (y − y−)4) ,

where E1(ε) ≡ G(0, 0, ε), E2(ε) ≡ Gy(0, 0, ε) and, hence, Ei(0) = 0, i = 1, 2. Then the
map T1(ε) can be written in the following form

x− x+ = ax+ b(y − y−) +O (x2 + (y − y−)2) ,
y = E1(ε) + cx+ E2(ε)(y − y−) + d(y − y−)3+

+O (x2 + |x||y − y−|+ (y − y−)4) .
(3.4)

Putting x = 0 in (3.4) we find the equation of the curve T1(W u
loc) ⊂ Π+ in the following

parametric form

x− x+ = b(y − y−) +O ((y − y−)2) ,
y = E1(ε) + E2(ε)(y − y−) + d(y − y−)3 +O ((y − y−)4) ,

(3.5)

where (y − y−) is the parameter now. Since b 6= 0, we find from the first equation of
(3.5) that y − y− = (x̄ − x+)/b + O ((x̄− x+)2) and, thus, we can write the explicit
equation of the curve T1(W u

loc) ⊂ Π+ as follows

y = E1(ε) +
E2(ε)

b
(x− x+)

(
1 +O

(
x− x+

))
+
d

b3
(x− x+)3 +O

(
(x− x+)4

)
, (3.6)

Condition C means that Ei(0) = 0, E ′i(0) 6= 0 and the coefficients E1(ε) and E2(ε) can
take any values from the ball ‖ε‖ ≤ δ0, where δ0 > 0 is a small constant. Thus, the
system µ1 = E1(ε), µ2 = E2(ε) has always a solution and we can consider µ1 and µ2 as
new parameters.
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3.2 On bifurcations of periodic orbits

Due to Lemma 3.1, we can consider directly two parameter families fµ1,µ2 of symplectic
maps. By our construction, µ1 and µ2 are the parameters of splitting of the invariant
manifolds W s(Oε) and W u(Oε) with respect to the homoclinic point M+. Indeed, by
(3.6), the curve lu = T1(W u

loc ∩ Π−) has the equation

lu : y = µ1 +
µ2

b
(x− x+)

(
1 +O(x− x+)

)
+
d

b3
(x− x+)3 +O

(
(x− x+)4

)
. (3.7)

Thus, the family fµ1,µ2 is a general two parameter unfolding of the initial cubic tangency
which takes place at µ1 = µ2 = 0. For any such unfolding, the curves W s

loc and T1(W u
loc)

must have a quadratic tangency for certain values of µ1 and µ2. It is true for our family
for which the following result holds.

Theorem 3.1. On the (µ1, µ2)-parameter plane there exists a bifurcation curve B0:

µ1 = ±2d
[
−µ2

3d
(1 +O

(√
|µ2|
)

)
]3/2

(see Figure 3.3) such that at µ ∈ B0 the map fµ has a close to Γ0 homoclinic orbit of
a quadratic tangency of the manifolds W u(Oµ) and W s(Oµ).

Proof. Consider the curve lu given by the equation (3.7). If this curve has a tangency
with the line y = 0, the following system has solutions

µ1 +
µ2

b
ξ(1 +O(ξ)) +

d

b3
ξ3 +O

(
ξ4
)

= 0,

µ2(1 +O(ξ)) +
3d

b2
ξ2 +O

(
ξ3
)

= 0,

where ξ = x− x+. We solve the second equation for ξ as follows

ξ = ±b

√
−µ2(1 +O(

√
|µ2|))

3d

Putting this value into the first equation we find the equation of the curve B0.

Now we start studying bifurcations of single-round periodic orbits in the family
fµ1,µ2 . As well-known it is the same as to study bifurcations of fixed points in the first
return maps Tk = T1T

k
0 for every sufficiently large integer k (k = k0, k0 + 1, ...). We

again apply the rescaling method to find normal rescale forms for these maps. The
result is the following

Lemma 3.2. [Rescaling Lemma for cubic homoclinic tangencies]
For every sufficiently large k the first return map Tk can be brought, by a linear trans-
formation of coordinates and parameters, to the following form

x̄ = y +O(λk),
ȳ = M1 − x+M2y + νy3 +O(λk),

(3.8)
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Figure 3.3: The bifurcation curve B0 in (a) “incoming from above” (d > 0) and (b) “incoming from

below” (d < 0) cases. For µ ∈ I the map fµ has only one (single-round and transverse) homoclinic

orbit close to Γ0, whereas, three such orbits exist when µ ∈ II.

where
ν = sign (dλk), (3.9)

M1 =
√
|d|λ−3k/2

(
µ1 − λk(y− − cx+) +O

(
kλ2k

))
,

M2 = λ−k
(
µ2 + f11λ

kx+ +O
(
kλ2k

)) (3.10)

and f11 = Gxy(0).

Proof. By Lemma 1.2 and (3.3), the first return map Tk = T1T
k
0 can be written as

follows

x̄− x+ = aλk1x+ b(y − y−) +O
(
kλ2k|x|+ |λ|k|x||y − y−|+ (y − y−)2

)
,

λkȳ(1 + kλkO(x̄, ȳ)) = µ1 + µ2(y1 − y−) + d(y1 − y−)3 + cλkx+
+ O

(
kλ2k|x|+ |λ|k|x||y − y−|

)
+O ((y − y−)4)

(3.11)

We shift the coordinates, ξ = x−x++α1
k, η = y−y−+α2

k, where α1
k = −aλkx++O(kλ2k),

α2
k = −f12

3d
λkx+ + O(kλ2k) and f12 =

1

2
Gxy2(0). Then the system (3.11) is rewritten

as follows

ξ̄ = aλk1ξ + bη +O
(
kλ2k|ξ|+ |λ|k|ξ||η|+ η2

)
,

η̄ = λ−k
(
µ1 − λk(y− − cx+) +O(kλ2k)

)
+ λ−k

(
µ2 + f11λ

kx+ +O
(
kλ2k

))
η+

+dλ−kη3 + cx+O
(
kλk|ξ|+ |ξ||η|

)
+ λ−ko (η3) .

(3.12)
Here the first equation of (3.12) does not contain constant terms and the quadratic
term η2 vanishes in the second equation.
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Finally, by means of the coordinate rescaling

ξ = b
λk/2√
|d|

x, η =
λk/2√
|d|

y

we bring the map (3.12) to the form (3.8).

3.2.1 The description of bifurcations of fixed points in the
cubic Hénon maps

By Rescaling Lemma 3.2, the following conservative cubic Hénon maps

x̄ = y, ȳ = M1 − x+M2y + y3 (3.13)

and

x̄ = y, ȳ = M1 − x+M2y − y3 (3.14)

have to be considered as certain normal forms for the first return maps in the cases
dλk > 0 and dλk < 0, respectively. Thus, if λ > 0, the map (3.13) relates to the
cubic homoclinic tangency with d > 0, i.e. the tangency “incoming from below” (see
Figure 3.1 (b)), while the map (3.13) relates to the cubic homoclinic tangency with
d < 0, i.e. the tangency “incoming from above” (see Figure 3.1 (a)). In Figures 3.4 and
3.5, the main elements of the bifurcation diagrams for these cubic maps are presented.

The bifurcation curves in these figures are found analytically (see e.g. [GK88]) and
their equations are as follows (ν = +1 and ν = −1 relate to the map (3.13) and (3.14),
respectively):

L+ : M1 = ±2

(
2−M2

3ν

)3/2

L− : M1 = ±2

3

(
−2−M2

3ν

)1/2

(4−M2)

C+
1,2 : M1 = ±2

(
−M2 − 4

3

)3/2

in the case ν = +1

C+
1,2 : M1 = ±2

(
M2 + 4

3

)3/2

, M2 ≥ −
4

3
in the case ν = −1

C−1,2 : M2
1 =

1

216ν
[12 +M2 ± S]2 [−5M2 − 12± S] , where

S =
√

9M2
2 + 24M2.

(3.15)
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Figure 3.4: (a) The main elements of the bifurcation diagram for the map (3.13). The codimension

2 bifurcation points bi are as follows: b1 — a nonhyperbolic saddle fixed point with double multiplier

+1 exists; b2 — two period 2 cycles with double multiplier +1 exist; b1,23 – two parabolic period 2

cycles with double multipliers −1 and +1, respectively, coexist; b4 – two period 2 cycles with double

multiplier −1 coexist. Examples of (b) symmetric (M1 = 0) and (c) asymmetric (M1 6= 0) bifurcations

are shown.
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Figure 3.5: (a) The main elements of the bifurcation diagram for the the map (3.13). The codi-

mension 2 bifurcation points bi are as follows: b1 and b′1 correspond to the existence of a fixed point

with double multiplier −1, zero first Lyapunov value and nonzero second one; b2 – a triple (stable)

fixed point exists ; b3 and b′3 – two fixed points with multipliers (−1,−1) and (+1,+1) coexist; b4 –

two fixed points with multipliers (−1,−1) coexist; b5 – two period 2 points with multipliers (−1,−1)

coexist.
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Here the following bifurcation curves are indicated: L+ is the line of conservative fold
bifurcation (the birth of a parabolic fixed point with double multiplier +1); L− is the
line of conservative period doubling (connected with the appearance of a fixed point
with double multiplier −1); C+

1,2 is the line of conservative fold bifurcation for period 2
points; C−1,2 is the line of conservative period doubling bifurcation for period 2 points
(second period doubling).

For cubic Hénon maps of form x̄ = y, ȳ = M1 − bx+M2y ± y3, main bifurcations
were studied in [GK88]. However, the main attention in [GK88] was paid to the
dissipative case |b| < 1. Nevertheless, one can show that the bifurcation scenarios
in conservative case (b = 1), i.e. for maps (3.13) and (3.14), are quite similar, in
many aspects, to the case 0 < b < 1. But we need to remember that the maps under
consideration are area-preserving and, hence, a big specific presents here.1 Then the
main bifurcations (bifurcations related to fixed points) are as follows.

Bifurcation scenario in the map (3.13), see Figure 3.4. For (M1,M2) ∈ 1 the map
(3.13) has only one fixed point p1 which is a saddle-plus (with multipliers λ and λ−1,
where 0 < λ < 1). The transition 1⇒ 2 corresponds to the birth of a pair (saddle and
elliptic) of fixed points. When (M1,M2) = b1, the fixed point p1 is a non-hyperbolic
saddle with double multiplier +1, and this point falls in 2 onto 3 fixed points (two
saddle and one elliptic) under a conservative cusp-bifurcation. The transition 2 ⇒ 3
corresponds to a nondegenerate period-doubling bifurcation of the elliptic fixed point.
Thus, for region 3, the map (3.13) has 3 saddle fixed points (two saddle-plus and one
saddle-minus) and one period two elliptic orbit. Further primary bifurcations, when
crossing the curves L+

2 and L−2 , relate to points of period 2 and more and, therefore,
we do not observe them (see e.g. [GK88]).

Bifurcation scenario in the map (3.14), see Figure 3.5. For (M1,M2) ∈ 1 the map
(3.14) has only one fixed point p̂1 which is a saddle-minus (with multipliers λ and λ−1,
where −1 < λ < 0). The transition 1 ⇒ 2 through the segment (b1, b

′
1) of the curve

L− corresponds to the period-doubling bifurcation of the saddle point p̂1: the point
becomes elliptic fixed one and a saddle period two orbit is born in its neighbourhood.
A transition 1 ⇒ 2′ (as well as 1 ⇒ 2”) implies the birth (under conservative fold
bifurcation) a pair of saddle and elliptic period two points. A transition 2′ ⇒ 2
corresponds to a period-doubling bifurcation under which the period 2 elliptic orbit
merged with a saddle fixed point and becomes a fixed elliptic point. Thus, in the
region 2 the map (3.14) has an elliptic fixed point and a saddle period two orbit.
We also illustrate in Figure 3.6 bifurcations happened when a passage of (M1,M2)-
values around the point b1. Transitions cross the curve L+ (such as 2 ⇒ 3, 2′ ⇒ 3′

etc) correspond to the appearance of two new fixed points, saddle and elliptic ones,
under a conservative fold bifurcation. The elliptic fixed points undergo period-doubling
bifurcation at transitions 3⇒ 3′, 3⇒ 3”, 3′ ⇒ 4 etc. We note that at (M1,M2) = b2

a triple (stable) fixed point exists which falls in 3 onto 3 fixed points (two elliptic and

1for example, the presence of homoclinic and heteroclinic structures is quite usual phenomenon in
conservative dynamics even in the case of simple bifurcations...
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Figure 3.6: Bifurcations around the point b1 of the bifurcation diagram of Figure 3.5. Region HZ

(homo-heteroclinic zone) corresponds those values of (M1,M2) at which invariant manifolds of all

saddles are intersected. In a rough approximation, these bifurcations are similar bifurcations of two

dimensional Hamiltonian system whose potential function is symmetric and changes as in the figure.

one saddle).

3.2.2 Bifurcation Theorem

Due to the Rescaling Lemma 3.2, we can recover bifurcations of single-round periodic
orbits in the initial family fµ1,µ2 of symplectic maps. As result, we obtain the following

Theorem 3.2. 1) In any neighbourhood of the origin in the (µ1, µ2)-plane, there exist
infinitely many bifurcation curves L+

k and L−k as well as Ck+
1,2 and Ck−

1,2 (see formulas
(3.16)) which accumulate at the curve B0 from Th. 3.1 as k → ∞. The map Tk(µ)
has a parabolic fixed point with multipliers ν1 = ν2 = +1 at µ ∈ L+

k and a fixed point
with multipliers ν1 = ν2 = −1 at µ ∈ L−k . If µ ∈ Ck+

1,2 (resp., µ ∈ Ck−
1,2 ), then the map

Tk(µ) has a period two point with multipliers ν1 = ν2 = +1 (resp., ν1 = ν2 = −1).
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2) For any sufficiently large k, in the (µ1, µ2)-plane there is a domain Ek between
the curves L+

k and L−k (see Figure 3.8) such that the map Tk(µ) has a fixed elliptic
point at µ ∈ Ek. This point is generic for all such µ except those ones which belong to
the curves of strong resonances when the multipliers are ν1,2 = e±iπ/2 or ν1,2 = e±i2π/3.

Figure 3.7: Main elements of bifurcation diagram for the families fµ1,µ2 in different cases.

Proof. This theorem is a corollary of the Rescaling Lemma 3.2 and the translation of
the bifurcation scenarios for fixed points of first return maps (the conservative cubic
Hénon maps, see Section3.2.1) to the corresponding single-round periodic orbits of
fµ1,µ2 .

We find the equations of the curves L+
k , L−k and Ck+

1,2 on the (µ1, µ2) -plane using
formulas (3.15) and (3.10). We obtain the following formulae:

L+
k : µ1 = λk(y− − cx+ + . . . )± 2√

|d|

(
(2− f11x

+)λk − µ2

3ν̃

)3/2

(1 + . . . ),

L−k : µ1 = λk(y− − cx+ + . . . )± 2

3
√
|d|

(
−(2 + f11x

+)λk − µ2

3ν̃

)1/2

×

×
(
(4− f11x

+)λk − µ2

)
(1 + . . . ),

Ck+
1,2 : µ1 = λk(y− − cx+ . . . )± 2√

|d|

(
−(4 + f11x

+
1 )λk − µ2

3

)3/2

(1 + . . . )

in the case dλk > 0,

Ck+
1,2 : µ1 = λk(y− − cx+ . . . )± 2√

|d|

(
4 + f11x

+λk + µ2

3

)3/2

(1 + . . . ),

µ2λ
−k(1 + . . . ) ≥ −4

3
in the case dλk < 0,

(3.16)
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Figure 3.8: Bifurcation curves of the map Tk(µ): a) the case d > 0, λk > 0, b) the case
d < 0, λk > 0. The shaded region Ek with boundaries L+

k and L−k corresponds to those
values of µ at which the map Tk(µ) has an elliptic fixed point. The sizes of a specific
“spring-area” zone in Ek has an order λ3k/2 × λk in µ1 × µ2.

where ν̂ = sign(dλk). We do not write a formula for Ck−
1,2 because of its largeness.

Some elements of the bifurcation diagram for the family fµ1,µ2 are shown in Fig-
ure 3.7 for different cases. The domains Ek of stability for single-round elliptic periodic
orbits, with boundaries L+

k and L−k , are illustrated in Figure 3.8. Note that typical sizes
for stability “spring-area zones” (near the bifurcation point µ∗k) have order λ3k/2 × λk
and can be observed in numerical experiments, [GSV13], (whereas, such zones near
quadratic homoclinic tangencies are very narrow, with width ∼ λ2k).

Note also that local bifurcations at strong resonances (for fixed points of Tk with
multipliers ν1,2 = e±iπ/2 or ν1,2 = e±i2π/3) are not degenerate. Such bifurcations were
studied in [Gon05] for cubic Hénon maps and we can apply the corresponding results
to our case. See also Appendix A.
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Chapter 4

Finitely smooth normal forms for
saddle area-preserving maps

4.1 Preambles

In this chapter we prove the main technical results, Lemmas 1.1, 1.2 and 2.2. Note that
Lemma 2.3 is proved in the same way as Lemma 1.2 and we omit its proof. The proofs
of Lemmas 1.1 and 2.2 differ only in some details. However, due to the importance of
these results, we prove these lemmas independently.

Before proving the lemmas, we recall some necessary facts.
1) Consider a change of coordinates (x, y) 7→ (ξ, η) of the following form

ξ =
∂V (x, η, ε)

∂η
, y =

∂V (x, η, ε)

∂x

where the function V (x, η, ε) is some sufficiently smooth function of variables x, η and
parameters ε satisfying conditions

V (0, 0, 0) = 0,
∂2V (0, 0, 0)

∂x∂η
6= 0.

It is well-known that such a change is an area-preserving map (when x, η and ε are
small and V is sufficiently smooth, C2 at least) . It is called the canonical change of
coordinates and the function V is called the generating function.

In what follows, we will make only canonical changes of coordinates with canonical
functions of the form V = xη(1 + O(|x| + |y|). Thus, in fact, we consider close to
identical and symplectic changes, independently whether the orientation is preserved
or not.

2) Let Fε be a parameter family of two-dimensional area-preserving maps which is
Cr-smooth in both variables and coordinates. Let every map Fε have a saddle fixed
point Oε with eigenvalues λ(ε) and γ(ε) such that where |λ| < 1 and |λγ| = 1. We

93
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can always assume that, for all sufficiently small ε , the fixed point Oε is in the origin
and that the coordinates, x and y , are such that the axes x and y correspond to the
proper subspaces for eigenvalues λ and γ, respectively. Then the local map Tε ≡ Fε|U ,
where U is a small fixed neighbourhood of the origin, can be written in the form

x̄ = λ(ε)x+ φ(x, y, ε) , ȳ = γ(ε)y + ψ(x, y, ε) (4.1)

where functions φ and ψ and their first derivatives in coordinates vanish at x = y = 0
for all small ε. In this case the equations of the local stable and local unstable manifolds
can be written as y = hs(x, ε) and x = hu(y, ε) , respectively, where hs and hu are Cr

and such that

hs(0, ε) =
∂hs(0, ε)

∂x
= 0, hu(0, ε) =

∂hu(0, ε)

∂y
= 0.

If to make two consecutive changes of variables of the form ξ = x−hu(y, ε) , η = y
and ξ = x , η = y − hs(x, ε), then the map Tε is brought to the following form

x̄ = λ(ε)x+ f(x, y, ε)x , ȳ = γ(ε)−1y + g(x, y, ε)y (4.2)

where f(0, 0, ε) = 0, gs(0, 0, ε) = 0. Form (4.2) corresponds to the case where both the
local stable and local unstable invariant manifolds of the point Oε are straightened:
the equation of W s

loc(Os) and W u
loc(Os) are y = 0 and x = 0 , respectively (for all

sufficiently small ε). Note that both the changes are Cr-smooth and canonical with
generating functions V = xη −

∫
hu(η, ε) and V = xη +

∫
hs(x, ε), respectively.

3) Form (4.2) of the map Tε is more convenient than (4.1) but its use gives some
technical difficulties. This is connected, in particular, with the fact that ”too much”
resonance terms are in the right side of (4.2). Thus, there is very important the question
on a reduction of the map (4.2) to a more simple form by means sufficiently smooth
and area-preserving changes of coordinates. It is clear that the simplest form is the
linear form of Tε. But only C1-linearization is possible here.

On the other hand, for the analytical case, J.Moser [Mos56] has been established
that the map T0 may be reduced to the following normal form

x̄ = λB(xy)x , ȳ = λ−1B−1(xy)y , (4.3)

where
B(xy) ≡ 1 + β1 · xy + β2 · (xy)2 + ...+ βn · (xy)n + ...

and
B−1(xy) ≡ 1 + β̃1 · xy + β̃2 · (xy)2 + ...+ β̃n · (xy)n + ...

are series converging in some neighborhood of the origin. The Jacobian of (4.3) is equal
to one. Thus, coefficients βi and β̃i are connected by some relations. For example,
β1 = −β̃1 , β̃2 = β2

1 − β2 etc. Moreover, let

Bn(xy) ≡ 1 + β1 · xy + ...+ βn · (xy)n ,

B−1
n (xy) ≡ 1 + β̃1 · xy + ...+ β̃n · (xy)n

(4.4)
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be the segments of the series B and B−1 , respectively. Then

∂Bn
∂x
· ∂B

−1
n

∂y
− ∂Bn

∂y
· ∂B

−1
n

∂x
= 1 +O((xy)n+1) (4.5)

We will use these properties of the Birkhoff-Moser normal form.
4) Lemma 2.1 for n = 1 has been proved in [GST07] where the existence of

the corresponding Cr-smooth canonical changes were derived, variants with Cr−1-
changes were established in [GS90, MR97, GS00]. Finite smooth normal forms, as
the ones from Lemma 2.2, near saddle equilibria of two-dimensional flows were found
by E.A.Leontovich [Leo51, Leo88]. Here we use, in fact, the Leontovich method adapt-
ing to the discrete case. However, we combine the Leotovich method with the so-called
“Afraimovich method”, [Afr84], when the existence of the appropriate generating func-
tions is proved with using the normal hyperbolicity theory [HPS77], i.e. we find this
function as an equation of some strong stable (unstable) invariant manifold. In [Leo88]
these functions are found as solutions of some homological equations.

4.2 Finitely smooth normal forms for symplectic

saddle maps: the proof of Lemmas 1.1 and 1.2

Results of this section can be treated as an extension to the finitely smooth case of
the classical Moser’s theorems [Mos56] on the existence of analytical normal forms for
area-preserving saddle maps.

4.2.1 Proof of Lemma 1.1

Note first that the main normal form (n = 1) of Lemma 1.1 was found earlier: the
existence of a Cr−1-smooth normalized canonical change was proved in [GS00] and such
type Cr-change was found in [GST07]. Therefore we need to prove the existence of
normal forms with n ≥ 2. However, we start with the map T0 in the initial form (1.2).
This map is Cr and can be represented in the following “n-th order extended form”

x̄ = λ(ε)x{1 + α
(1)
0 (x, y, ε) + [β

(1)
1 + α

(1)
1 (x, y, ε)] · xy + . . .

+[β
(1)
n + α

(1)
n (x, y, ε)] · (xy)n}+O(xn+2yn+1),

ȳ = λ−1(ε)y{1 + α
(2)
0 (x, y, ε) + [β

(2)
1 + α

(2)
1 (x, y, ε)] · xy + . . .

+[β
(2)
n + α

(2)
n (x, y, ε)] · (xy)n}+O(xn+1yn+2),

(4.6)

where β
(ν)
1 , . . . , β

(ν)
n are some coefficients, α

(ν)
i ≡ [ϕ

(ν)
i (x, ε)+ψ

(ν)
i (y, ε)], i = 0, . . . , n, ν =

1, 2, are functions such that ϕ
(ν)
i (0, ε) ≡ 0, ψ

(ν)
i (0, ε) ≡ 0. Since T0 ∈ Cr , it follows

from (4.6) that α
(ν)
i ∈ Cr−2i−1 .

The lemma states that there exist canonical changes which annihilate functions
α

(1,2)
i for i = 0, 1, . . . , n. We will make these changes consequently, step by step. Then
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we will see that the change vanishing the term α
(1,2)
i is Cr−2i−2 , while the next term αi+1

is Cr−2(i+1)−1 = Cr−2i−3 . That is, such a change does not vary the smoothness of the
high order terms (in the sense of the decomposition in (4.6)). Thus, the final smoothness
will be equal to the smoothness of the last change (i.e. Cr−2(n−1)−2 = Cr−2n).

Suppose that for some i ≤ n the map T0 is brought to the following form (compare
with (1.3))

x̄ = λx{1 + β1 · xy + β2 · (xy)2 + ...+ βi−1 · (xy)i−1+

+[β
(1)
i + ϕ

(1)
i (x, ε) + ψ

(1)
i (y, ε)] · (xy)i}+O(xi+2yi+1) ,

ȳ = λ−1y{1 + β̂1 · xy + β̂2 · (xy)2 + ...+ β̂i−1 · (xy)i−1+

+[β
(2)
i + ϕ

(2)
i (x, ε) + ψ

(2)
i (y, ε)] · (xy)i}+O(xi+1yi+2),

(4.7)

where βi (and β̂i) are the Birkhoff coefficients. Note that all coefficients and functions
depend on ε, but we do not express explicitly this dependence in many places.

Let us show that there exists a canonical Cr−2i−2-change of coordinates that van-
ishes the functions α

(1)
i and α

(2)
i . Since the number “i” is arbitrary, it will imply the

lemma.
Make two consecutive canonical changes with the following generating functions

V
(i)

1 = xη + (xη)i+1v
(i)
1 (x, ε) and V

(i)
2 = xη + (xη)i+1v

(i)
2 (η, ε)

where v(i)(0, ε) = 0. By means of these changes, we vanish the functions ϕ
(1)
i and ψ

(2)
i

in (4.7). After this, we show that new functions ϕ̃
(2)
i and ψ̃

(1)
i vanish automatically

since the Jacobian J(T0) of the map T0 is equal to 1 identically.

First, we make the canonical change with the function V
(i)

1 . Thus, this change is

ξ = x+ (i+ 1)xi+1ηiv
(i)
1 (x, ε) , y = η + xiηi+1ṽ

(i)
1 (x, ε) (4.8)

where ṽ
(i)
1 (x, ε) = (i+ 1)v

(i)
1 (x, ε) + x · ∂v(i)

1 /∂x and ṽ
(i)
1 (0, ε) ≡ 0 .

The first equation of (4.7) is transformed as

ξ̄ = x̄+ (i+ 1)x̄i+1η̄iv
(i)
1 (x̄, ε) = λx{1 + β1 · xy + β2 · (xy)2 + ...

+βi−1 · (xy)i−1 + β
(1)
i · (xy)i + ϕ

(1)
i (x, ε) · (xy)i + ψ

(1)
i (y, ε) · (xy)i}+

+(i+ 1)λi+1xi+1λ−iyiv
(i)
1 (λx, ε) +O(ξi+2ηi+1) =

= λξ{β1 · ξη + β2 · (ξη)2 + ...+ βi−1 · (ξη)i−1 + β
(1)
i · (ξη)i}+

+xi+1yi
[
−(i+ 1)λv

(i)
1 (x, ε)) + (i+ 1)λv

(i)
1 (λx, ε) + λϕ

(1)
i (x, ε)

]
+

+λψ
(1)
i (η, ε) · ξ(ξη)i +O(ξi+2ηi+1).

(4.9)

We take the function v
(i)
1 (x, ε) to vanish the expression in the square brackets in (4.9),

i.e.,

v
(i)
1 (λx, ε) = v

(i)
1 (x, ε)− 1

i+ 1
ϕ

(1)
i (x, ε) (4.10)
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Equation (4.10) has a solution in the class of functions whose smoothness coincides

with the smoothness of function ϕ
(i)
1 (x, ε) (namely ϕ

(i)
1 ∈ Cr−2i−1) . Such a solution

is found as the graph of the strong stable invariant manifold containing a fixed point
(0, 0) of the following map

ū = u+
1

i+ 1
ϕ

(1)
i (x, ε) , x̄ = λ(ε)x

Note also, that the manifold is Cr−2i−1 and, thus, the change (4.8) is Cr−2i−2.
We can see from (4.8) that x = ξ + O(ξ2(ξη)i) , y = η + O((ξη)i+1). Then, in

the second equation of (4.7) such coordinate transformation does not change the func-

tion ψ
(2)
i and other functions which do not enter to O-terms, except for the function

ϕ
(2)
i (x, ε); let the latter be transformed as ϕ

(i)
2 ⇒ ϕ̃

(i)
2 . So, after change (4.8), the map

Tε has form (4.7) where

ϕ
(1)
i (x, ε) ≡ 0 , ϕ

(2)
i ⇒ ϕ̃

(2)
i (4.11)

and the other explicitly given functions are the same.
We make now the change with the second generating function V

(i)
2 = xη+(xη)i+1v

(i)
2 (η, ε)

where v
(i)
2 (0, ε) = 0 . Thus, this change is

ξ = x+ (i+ 1)xi+1ηiv
(i)
2 (η, ε) + (xη)i+1∂v

(i)
2
∂η

= x+O((xη)i+1) ,

y = η + (i+ 1)xiηi+1v
(i)
2 (η, ε)

(4.12)

The second equation of (4.7) (taking into account (4.11)) is transformed under
change (4.12) as

η̄ = ȳ − (i+ 1)x̄iη̄i+1v
(i)
2 (η̄, ε) = λ−1y{1 + β̂1 · xy + β̂2 · (xy)2 + ...

+β̂i−1 · (xy)i−1 + β
(2)
i · (xy)i + ϕ̃

(2)
i (x, ε) · (xy)i+

+ψ
(2)
i (y, ε) · (xy)i} − (i+ 1)λixiλ−i−1yi+1v

(i)
2 (λ−1y, ε) +O(ξi+1ηi+2) =

= λ−1η(1 + β̂1 · ξη + β̂2 · (ξη)2 + ...+ β̂i−1 · (ξη)i−1 + β
(2)
i · (ξη)i)+

+xiyi+1
[
λ−1(i+ 1)v

(i)
2 (y, ε) + λ−1ψ

(2)
i (y, ε)− λ−1(i+ 1)v

(i)
2 (λ−1y, ε)

]
+

+λ−1ϕ̃
(2)
i (x, ε)xiyi+1 +O(ξi+1ηi+2)

(4.13)

We find the function v
(i)
2 (y, ε) to vanish the expression in the square brackets in (4.13),

i.e.,

v
(i)
2 (λ−1y, ε) = v(i)(x, ε))− 1

i+1
ψ

(2)
i (y, ε) (4.14)

This equation can be considered as an equation for the strong unstable invariant man-
ifold of the following map of the plane

ū = u+
1

i+ 1
ψ

(2)
i (y, ε) , ȳ = λ−1(ε)y.



98 4. FINITELY SMOOTH NORMAL FORMS FOR SADDLE APMS

The sought manifold exists and is Cr−2i−1. It follows that change (4.12) is Cr−2i−2.
So, after the canonical changes (4.8) and (4.12), the map Tε takes the following

form

x̄ = λ(ε)x{1 + β1(ε) · xy + ...+ βi(ε) · (xy)i}+ ψ̃
(1)
i (y, ε) · xi+1yi +O(xi+2yi+1) ,

ȳ = λ−1(ε)y{1 + β̂1(ε) · xy + ...+ β̂i(ε) · (xy)i}+ ϕ̃
(2)
i (x, ε) · xiyi+1 +O(xi+1yi+2)

(4.15)

Let us show that the equality J(T0) ≡ 1 implies ψ̃
(i)
1 ≡ 0 and ϕ̃

(i)
2 ≡ 0 . Indeed, we

can represent map (4.15) as follows

x̄ = λ(ε)xBi(xy) + ψ̃
(i)
1 (y, ε) · xi+1yi +O(xi+2yi+1) ,

ȳ = λ−1(ε)yB−1
i (xy) + ϕ̃

(i)
2 (x, ε) · xiyi+1 +O(xi+1yi+2),

(4.16)

where Bi = 1 + β1xy + · · · + βi(xy)i. Then, by the properties of the Bikhoff-Moser
normal form (1.7), we obtain that the Jacobian of (4.16) is as follows

J = 1 + (i+ 1)
(
λϕ̃

(i)
2 (x, ε) + λ−1ψ̃

(i)
1 (y, ε)

)
· xiyi +O((xy)i+1).

Since J ≡ 1, it follows that ϕ̃
(i)
2 ≡ 0 and ψ̃

(i)
1 ≡ 0 . This completes the proof of

Lemma 1.1. �

4.2.2 Proof of Lemma 1.2

By Lemma 1.1, the map T0 (Cr−2n−2-smooth) can be written in the form

x̄ = λ(ε)x+ f̃(x, y, ε) ≡ λ(ε)xB(xy, ε) + F (x, y, ε)x(xy)n+1 ,
ȳ = λ(ε)−1y + g̃(x, y, ε) ≡ λ(ε)−1yB−1(xy, ε) +G(x, y, ε)y(xy)n+1,

(4.17)

where F (0, 0, ε) ≡ 0, G(0, 0, ε) ≡ 0. Note that if F and G are identical zeros, then form
(4.17) becomes exactly the Birkhoff-Moser normal form (1.7).

Consider the following operator Φ :

x̄j = λ(ε)jx0 +
j−1∑
s=0

λ(ε)j−s−1f̃(xs, ys, ε),

ȳj = λ(ε)k−jyk −
k−1∑
s=j

λ(ε)s−j+1g̃(xs, ys, ε),

(4.18)

(j = 0, 1, . . . , k) defined on the set R(δ) = {z = [(xj, yj)]
k
j=0, ‖z‖ ≤ δ}, where ‖z‖

means the maximum of the absolute value of components xj, yj of vector z and δ is a
positive small quantity. If z0 = [(x0

j , y
0
j )]

k
j=0 is a fixed point of Φ , then the following

diagram takes place

(x0
0, y

0
0)

T0−→ (x0
1, y

0
1)

T0−→ · · · T0−→ (x0
k, y

0
k)
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It was proved in [AS73] that, for all sufficiently small ε and δ = δ0 ‖x0‖ ≤ δ0/2,
|yk| ≤ δ0/2 , the operator Φ maps region R(δ0) into itself and is contracting. Thus,
the map (4.18) has a unique fixed point z0 = [(x0

j(x0, yk), y
0
j (x0, yk)]

k
j=0. Due to

contractibility, its coordinates x0
j and y0

j can be found, for example, by the method of
successive approximations. However, we know the solution in the case F ≡ 0 and G ≡ 0
(it is given by (1.8)). Thus, we can only check corrections to this solution due to the
presence of F - and G- terms in (4.17). Taking into account that xs ∼ λsx0, ys ∼ λk−syk
we can easily estimate contributions ξ̃k and η̃k of F - and G-terms into the final formulas
for x0

k and y0
0. Thus, we obtain for ξ̃k from (4.18) that

ξ̃k ∼
k−1∑
s=0

λk−s−1 (xn+3
s yn+1

s + xn+2
s yn+2

s ) ∼

∼ xn+2
0 yn+1

k λk−1
k−1∑
s=0

λ−s
(
λs(n+3)λ(k−s)(n+1)x0 + λs(n+2)λ(k−s)(n+2)yk

)
= O

(
λk(n+2)

)
.

The estimate η̃k = O
(
λk(n+2)

)
is deduced in the same way. It completes the proof. �

4.3 Finitely smooth normal forms for non-orientable

area preserving saddle maps

Proof of lemma 2.2. We start from the well-known fact that the local stable and un-
stable manifolds of O can be straightened by means of a certain Cr-symplectic change
of coordinates,1 i.e. the map T0 can be written in the following form

x̄ = λ(ε)x+ f(x, y, ε)x , ȳ = γ(ε)y + g(x, y, ε)y , (4.19)

where f(0, 0, ε) ≡ 0, g(0, 0, ε) ≡ 0. f(x, y, ε) ∈ Cr−1, g(x, y, ε) ∈ Cr−1. In these
coordinates, the fixed point Oε is in the origin and the equations of W s

loc and W u
loc are

y = 0 and x = 0, respectively, for all sufficiently small ε.
Consider the map Tε in the initial form (4.19). This map is Cr and can be repre-

1Let us recall some details of this. We can always write the local map in the form x̄ = λ(ε)x +
h1(x, y, ε) , ȳ = γ(ε)y + h2(x, y, ε), where |λγ| = 1, hi(0, 0, ε) = 0, h′i(0, 0, ε) = 0. Let y = ϕ(x, ε) be
the equation of W s

loc. Then, by the change ξ = x, η = y − ϕ(x, ε), we straighten W s
loc. Moreover, this

change is symplectic, since it is produced by the generating function V (x, η, ε) = xη +
∫
ϕ(x, ε). The

manifold Wu
loc is straightened analogously.



100 4. FINITELY SMOOTH NORMAL FORMS FOR SADDLE APMS

sented in the following “n-th order extended form”

x̄ = λ(ε)x{1 + [ϕ
(0)
1 (x, ε) + ψ

(0)
1 (y, ε)] + [β

(1)
1 + ϕ

(1)
1 (x, ε) + ψ

(1)
1 (y, ε)] · xy+

+[β
(2)
1 + ϕ

(2)
1 (x, ε) + ψ

(2)
1 (y, ε)] · (xy)2 + ...+

+[β
(n)
1 + ϕ

(n)
1 (x, ε) + ψ

(2)
1 (y, ε)] · (xy)n}+O(xn+2yn+1) ,

ȳ = γ(ε)y{1 + [ϕ
(0)
2 (x, ε) + ψ

(0)
2 (y, ε)]+

+[β
(1)
2 + ϕ

(1)
2 (x, ε) + ψ

(1)
2 (y, ε)] · xy + [β

(2)
2 + ϕ

(2)
2 (x, ε) + ψ

(2)
2 (y, ε)] · (xy)2 + ...+

+[β
(n)
2 + ϕ

(n)
2 (x, ε) + ψ

(2)
2 (y, ε)] · (xy)n}+O(xn+1yn+2)

(4.20)

where |λγ| = 1, β
(i)
1 and β

(i)
2 are number coefficients, i = 1, ..., n, ϕ

(i)
k (0, ε) = ψ

(i)
k (0, ε) ≡

0 , k = 1, 2 . Denote αki ≡ [ϕ
(i)
k (x, ε) +ψ

(i)
k (y, ε)] . Since Tε ∈ Cr , we have, due to the

decomposition in (4.20), that αki ∈ Cr−2i−1 .
The lemma states that there exist canonical changes which annihilate functions

αki and transform constants βi1 and βi2 into “Birkgoff-Moser coefficients” βi and β̃i ,
respectively. If to make these changes consequently, then one can see that the change
annihilating the term αki is Cr−2i−2 , while the next term αk,i+1 is Cr−2(i+1)−1 =
Cr−2i−3 . That is, such a change does not change the smoothness of the high order
terms (in the sense of the decomposition in (4.20). Thus, the final smoothness will be
equal to the smoothness of the last coordinate transformation.

Now we prove the lemma by induction on i . Note that Lemma 2.1 can be considered
here as “the first step of induction”.

Suppose that for some i ≤ n we have brought the map Tε to the form

x̄ = λ(ε)x{1 + β1(ε) · xy + β2(ε) · (xy)2 + ...+ βi−1(ε) · (xy)i−1+

+β
(i)
1 + [ϕ

(i)
1 (x, ε) + ψ

(i)
1 (y, ε)] · (xy)i}+O(xi+2yi+1) ,

ȳ = γ(ε)y{1 + β̃1(ε) · xy + β̃2(ε) · (xy)2 + ...+ β̃i−1(ε) · (xy)i−1+

+β̃
(i)
2 + [ϕ

(i)
2 (x, ε) + ψ

(i)
2 (y, ε)] · (xy)i}+O(xi+1yi+2)

(4.21)

Let us show that there exist a canonical change annihilating the terms α1i and α2i

and that smoothness of such a change is equal to the smoothness of functions αk,i
minus one. Then, the lemma will be proven.

For this goal we make two consecutive canonical changes with the following gener-
ating functions

V
(i)

1 = xη + (xη)i+1v
(i)
1 (x, ε) and V

(i)
2 = xη + (xη)i+1v

(i)
2 (η, ε), (4.22)

where v
(i)
k (0, ε) = 0 , k = 1, 2 . By means of these changes one can vanish functions

ϕ
(i)
1 and ψ

(i)
2 in (4.21), respectively. After this, we show that new functions ϕ̃

(i)
2 and

ψ̃
(i)
1 vanish due to equality to one of |J(Tε)| .

First, we make the change by means of the generating function V
(i)

1 where v
(i)
1 (0, ε) =

0 . Thus, this change is

ξ = x+ (i+ 1)xi+1ηiv
(i)
1 (x, ε) , y = η + xiηi+1ṽ

(i)
1 (x, ε) (4.23)
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where ṽ
(i)
1 (x, ε) = (i+ 1)v

(i)
1 (x, ε) + x · ∂v(i)

1 /∂x and ṽ
(i)
1 (0, ε) ≡ 0 .

The first equation of (4.21) is transformed as

ξ̄ = x̄+ (i+ 1)x̄i+1η̄iv
(i)
1 (x̄, ε) = λx{1 + β1 · xy + β2 · (xy)2 + ...

+βi−1 · (xy)i−1 + β
(i)
1 · (xy)i + ϕ

(i)
1 (x, ε) · (xy)i+

+ψ
(i)
1 (y, ε) · (xy)i}+ (i+ 1)λi+1xi+1γiyiv

(i)
1 (λx, ε) +O(ξi+2ηi+1) = λξ+

+xi+1yi
[
−(i+ 1)λv

(i)
1 (x, ε)) + (i+ 1)λδiv

(i)
1 (λx, ε) + λϕ

(i)
1 (x, ε)

]
+

+λξ{β1 · ξη + β2 · (ξη)2 + ...+ βi−1 · (ξη)i−1 + β
(i)
1 · (ξη)i)+

+ψ
(i)
1 (η, ε) · ξ(ξη)i}+O(ξi+2ηi+1),

(4.24)

where δi = sign (λγ)i. Now we take a function v
(i)
1 (x, ε) to vanish the expression from

the square brackets in (4.24), i.e.,

v
(i)
1 (λx, ε) = δiv

(i)
1 (x, ε))− 1

i+1
ϕ

(i)
1 (x, ε) (4.25)

Note that this equation has a solution in the class of functions (of variable x)

whose smoothness coincides with the smoothness of the function ϕ
(i)
1 (x, ε) (recall that

ϕ
(i)
1 ∈ Cr−2i−1). The sought solution, u = v

(i)
1 (x, ε), can be viewed as the equation of

the strong stable invariant manifold W ss
i containing the point (0, 0) of the following

planar map

ū = δiu− 1
i+1
ϕ

(i)
1 (x, ε) , x̄ = λ(ε)x (4.26)

(since W ss is invariant, its equation u = φss(x, ε) has to satisfy the following homo-

logical equation: φss(λx, ε) = δiφss(x, ε) − 1
i+1
ϕ

(i)
1 (x, ε) that is (4.25, in fact). Since

δi = ±1, such a manifold exists, it is Cr−2i−1 and, thus, the change (4.25) is Cr−2i−2.
We can see from (4.23) that the sought change is of form

x = ξ +O((ξη)i+1) , y = η +O((ξη)i+1)

This means that, in the second equation of (4.21), such a change can vary only the

function λ−1ϕ
(i)
2 (x, ε)xiyi+1 from the explicitly shown ones in (4.21): ϕ

(i)
2 ⇒ ϕ̃

(i)
2 .

Thus, after change (4.23), the map Tε have form (4.21) where

ϕ
(i)
1 (x, ε) ≡ 0 , ϕ

(i)
2 ≡ ϕ̃

(i)
2 (4.27)

and the other explicitly given functions are the same. Note especially, that function
ψ

(i)
2 (y, ε) does not vary.

It is evident that the second coordinate transformation, by means of the second
generating function V

(i)
2 = xη + (xη)i+1v

(i)
2 (η, ε) with v

(i)
2 (0, ε) = 0, is conducted quite

symmetrically, due to the condition |λγ| ≡ 1.2

2See also the paper [GG09] in which this change is explicitly conducted for the sympletic case.
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Thus, after the canonical changes with the generating functions V
(i)

1 and V
(i)

2 from
(4.22), the map Tε takes the following form

x̄ = λ(ε)x{1 + β1(ε) · xy + ...+ βi(ε) · (xy)i}+
+ψ̃

(i)
1 (y, ε) · xi+1yi +O(xi+2yi+1) ,

ȳ = γ(ε)y{1 + β̃1(ε) · xy + ...+ β̃i(ε) · (xy)i}+
+ϕ̃

(i)
2 (x, ε) · xiyi+1 +O(xi+1yi+2)

(4.28)

Let us show that the equality J(Tε) ≡ 1 implies ψ̃
(i)
1 ≡ 0 and ϕ̃

(i)
2 ≡ 0 . Really, we

may represent the map (4.28) as

x̄ = λ(ε)xBi(xy) + ψ̃
(i)
1 (y, ε) · xi+1yi +O(xi+2yi+1) ,

ȳ = γ(ε)yB−1
i (xy)ϕ̃

(i)
2 (x, ε) · xiyi+1 +O(xi+1yi+2)

(4.29)

where Bi and B−1
i are the segments of the Bikhoff-Moser normal form. Taking into

account the property (4.5), one can write Jacobian of (4.29) in the form

J = ±1 + (i+ 1)(λϕ̃
(i)
2 (x, ε) + γψ̃

(i)
1 (y, ε)) · xiyi +O((xy)i+1)

It follows from here that ϕ̃
(i)
2 ≡ 0 and ψ̃

(i)
1 ≡ 0.

In the nonorientable case λγ = −1, the monomials of (2.2) with βi, β̃i ≡ 0 for odd
i are not resonant. Therefore, they can be killed (inside of the every corresponding
step of the proof) by the canonical polynomial coordinate transformations with the
generating functions Ṽi = xη + νi(xη)i+1. One can check that if in (4.4) all terms βi
and β̃i vanish for odd i, except for the last ones βn and β̃n for odd n, then βn = −β̃n.
Then the change with the generating functions Ṽn kills both these terms simultaneously.

This completes the proof of the lemma.



Appendix A

On structure of 1:4 resonances in
conservative Hénon-like maps

We study bifurcations of fixed points with multipliers e±iπ/2 (the main 1:4 resonances)
in some conservative Hénon-like maps. We analyze the 1:4 resonance in the cases
of conservative generalized Hénon maps (GHMs) and cubic Hénon maps. We find
conditions of nondegeneracy of the corresponding resonances and give a description of
accompanying bifurcations.

Introduction

The Hénon map [Hen76]
x̄ = y, ȳ = 1− bx+ ay2, (A.1)

is one of the most popular artificial maps demonstrating a complicated chaotic dynam-
ics. In the coordinates xnew = −ax, ynew = −ay map (A.1) is written in the so-called
standard form

x̄ = y, ȳ = M1 −M2x− y2, (A.2)

where M1 = −a and M2 = b are new parameters. Both maps (A.1) and (A.2) have
the constant Jacobian, J = b, and, therefore, they are degenerate with respect to
(Andronov-Hopf) bifurcations of birth of invariant circles. Moreover, if we restrict our-
selves to the conservative case (J ≡ 1), then maps (A.1) and (A.2) are degenerate again
with respect to bifurcations of fixed points with multipliers e±iπ/2. However, it is well
known that the standard Hénon map has also ”homoclinic origination”. It appears
as a model map for rescaled first return maps near quadratic homoclinic tangencies
[GS73, GG04]. Thus, the degeneracy shows that map (A.2) is only ”first approxi-
mation” of the return map. The corresponding ”second approximations”, so-called
generalized Hénon maps of form

x̄ = y, ȳ = M1 −M2x− y2 +Rxy + Sy3, (A.3)
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where R and S are some coefficients, were derived in [GG00, GG04, GGT02, GSS02,
GST02] for various situations with quadratic homoclinic and heteroclinic tangencies.
Usually, the coefficients R and S (some invariants of the homoclinic or heteroclinic
structure) are small and depend on ”time of the return” k : if k is the number of
iterations of the diffeomorphism such that the image of an initial point is in its some
small neighbourhood, then R = Rk and S = Sk tend to 0 as k →∞.

When the initial homoclinic tangency is cubic, the cubic Hénon maps of form

x̄ = y, ȳ = M1 +M2y −Bx± y3 (A.4)

naturally appear [GST96a] as normal forms of rescaled first return maps. The signs
”+” and ”−” correspond to different maps which appear, in turn, near cubic tangencies
of different types (see Figure 3.1). Besides, the maps with ”+” and ”−” have a rather
different structure of bifurcations [Gon85].

Main bifurcations of GHMs were studied in [GG00, GG04, Gon02, GKM05] and
bifurcations of the cubic Hénon maps were considered in [Gon85, GK88]. In this
appendix we pay attention only to bifurcations of fixed points with multipliers e±iπ/2.
We explain a character of the conservative bifurcation in cases of the GHMs with
M2 = 1, R = 0 and the cubic Hénon maps with B = 1.

A.1 The resonance 1 : 4 in area-preserving maps

Let a planar area-preserving map have a fixed point with multipliers e±iπ/2. Then, it
is well known [Arn96], that the corresponding complex local normal form is written as

ζ̄ = i(1 + β)ζ +D′21ζ
2ζ∗ +D′03ζ

∗3 +O(|ζ|4), (A.5)

where β is a parameter which characterizes a deviation of the angle argument ϕ of
multipliers of the fixed points from π/2 (ϕ > π/2 at β > 0 and ϕ < π/2 at β < 0 ),
the coefficients D′21 and D′03 (depending on β) are real and, in general,

|D′21|+ |D′03| 6= 0. (A.6)

This condition implies that O(|ζ|4) terms in (A.5) do not influence on a character of
the local bifurcations. In this case, main details of reconstructions of phase portraits
can be described by means of the analysis of bifurcations in the following flow normal
form

ζ̇ = 4iβζ + Aζ|ζ|2 + ζ∗3, (A.7)

where

A = −i D
′
21

|D′03|
. (A.8)

Form (A.7) is a result of embedding fourth degree of map (A.5) into flow up to terms
of order O(|ζ|4). The nondegeneracy condition for the conservative 1 : 4 resonance
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is |A| 6= 1. In this case, bifurcations of the trivial equilibrium of the Hamiltonian
flow (A.7) under changing β look as in Figures 2 and 3 in the cases |A| > 1 and
|A| < 1, respectively.1 When |A| = 1 in the critical moment, possible bifurcations can
be described within two-parameter families

ζ̇ = 4iβζ + i(A+ µ)ζ|ζ|2 + ζ∗3 (A.9)

(where |A| ≡ 1) with parameters β and µ. The corresponding bifurcational diagram
for flow (A.9) is shown in Figure 4.

Thus, returning to the case of map (A.5), we can describe main reconstructions of
phase portrait in the following way:

1) In case |A| > 1, the fixed point O is always elliptic, but when β > 0 two period
4 cycles appear in its neighborhood: one cycle is saddle and the other is elliptic (see
Figure 2).

Figure A.1: Bifurcation of the trivial equilibrium for |A| > 1.

2) In case |A| < 1, the point O is a saddle with 8 separatrices when β = 0. Main
bifurcations are connected here with a reconstruction of period 4 saddle cycles (see
Figure 3).

M
1
< 0 M

1
> 0M

1
= 0

Figure A.2: Bifurcations of the trivial equilibrium for |A| < 1.

3) In case |A| = 1 there exist three bifurcation curves L1, L2 and L3 which divide
a neighbourhood of the origin of the parameter plane (β, µ) onto three regions with
different local phase portraits (see Fifure 4). Note that curve L3 corresponds to the
existence of period 4 parabolic point.

1Note that case D′03 = 0 is not special. In this case (if also D′21 6= 0), one can consider, instead of
(A.7), the flow of form ζ̇ = 4iβζ + iζ|ζ|2 + ε(β)ζ∗3 (where ε(0) = 0) whose bifurcations of the zero
equilibrium are the same as in Figure 2 (case |A| > 1).
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Figure A.3: Bifurcation diagram in case |A| = 1.

We can apply these theoretical results to our concrete conservative maps: the gen-
eralized Hénon map and cubic Hénon maps.

A.2 Conservative generalized Hénon maps

In the case of the conservative generalized Hénon map

x̄ = y; , ȳ = M1 − x− y2 + Sy3. (A.10)

we find that it has a fixed point with multipliers e±iπ/2 at M1 = 0. This point is in the
origin and the corresponding complex local normal form (A.5) has the coefficients (see
[GKM05]): 8D′21 = 1 + 3S, 8D′03 = −1 + S and, thus,

A = −i1 + 3S

1− S
and |A| = 1 +

4S

1− S
.

Therefore, |A| > 1 if S > 0 and |A| < 1 if S < 0 (recall that we consider case of small
S). In this case, local bifurcations can be described by means of flow normal forms
(A.7) or (A.9) where β = M1/2 +O(M2

1 ) and µ = 4S +O(S2).
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A.3 Conservative cubic Hénon maps

Consider now the conservative cubic Hénon map of form

x̄ = y, ȳ = M1 +M2y − x+ y3 (A.11)

It has one fixed point M∗ with multipliers e±iπ/2 at values of parameters M1 and M2

belonging to the curve L+
π/2 whose equation is

M1 = ±2

√
−M2

3

(
1− 1

3
M2

)
. (A.12)

The coefficients of the local complex normal form (A.5) are

8D′21 = 3− 3M2, 8D′03 = 1 + 3M2

and, thus,

A = −i 3− 3M2

|1 + 3M2|
.

Since M2 ≤ 0, it implies that |A| is always greater than 1 here. The main local
bifurcations which occur here at transition of the parameters cross the curve L+

π/2 are
shown in Figure 5.

Consider now the following cubic Hénon map

x̄ = y, ȳ = M1 +M2y − x− y3. (A.13)

It has a fixed point M∗∗ with multipliers e±iπ/2 when the parameters M1,M2 belong
to the following curve L−π/2

M1 = ±2

√
M2

3

(
1− M2

3

)
. (A.14)

Note that curve L−π/2 has a self-intersection point (M1 = 0,M2 = 3), and only in this

moment the map has simultaneously two fixed points with multipliers e±iπ/2. The
coefficients of the local complex normal form (A.5) are

8D′21 = −3 + 3M2, 8D′03 = −1− 3M2

and, thus

A = −i3− 3M2

1 + 3M2

. (A.15)

It implies that there are two points P+ and P− on L−π/2 (with M2 = 1
3

and M1 = 16/27

and M1 = −16/27, respectively,) where |A| = 1. Moreover, |A| < 1 if M2 >
1

3
and

|A| > 1 if 0 ≤M2 <
1

3
.
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Figure A.4: Local bifurcations at transition of the parameters cross the curve L+
π/2 in the case of

map (A.11).

Then, in accordance to the observation above of conservative bifurcations at 1:4
resonance, we can describe a character of these bifurcations in the case under consid-
eration. We explain this with the help of Figure 8 where three bifurcational curves
L−π/2, L3 and L+1 are shown. The curve L3 corresponds to the existence of a period 4
parabolic point near the fixed point. The curve L+1 corresponds to the appearance of
a parabolic fixed point, its equation is

M1 = ±2

3

(
M2 − 2

3

)3/2

.

Note that we restrict ourself by the consideration of a small neighbourhood of the curve
L−π/2, This neighbourhood is divided by the curves L−π/2, L3 and L1 into 16 domains
of values of parameters M1 and M2. We show in Figure 8 the corresponding phase
portraits.
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Figure A.5: Local bifurcations at transition of the parameters cross the curve L+
π/2 in the case of

map (A.11).
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Part II

Exponentially small splitting of
separatrices for whiskered tori in

Hamiltonian systems
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Chapter 5

Setup

In this chapter we describe the system under consideration. We study a singular
or weakly hyperbolic Hamiltonian with n + 1 degrees of freedom possessing an n-
dimensional whiskered tori with fast frequencies. This is a generalization of the Arnold
example that can be considered as a model for behavior of a near-integrable Hamil-
tonian system near a single resonance. In Chapters 6 and 7 we study the splitting of
separatrices in the cases n = 2 and n = 3, respectively.

5.1 A singular Hamiltonian with n + 1 degrees of

freedom

We consider a Hamiltonian system with n + 1 (n = 2 or n = 3) degrees of freedom
that is a perturbation of an integrable one. In the canonical coordinates (x, y, ϕ, I) ∈
T×R×Tn×Rn, with the symplectic form dx∧dy+dϕ∧dI, the Hamiltonian is defined
by

H(x, y, ϕ, I) = H0(x, y, I) + µH1(x, ϕ), (5.1)

H0(x, y, I) = 〈ωε, I〉+
1

2
〈ΛI, I〉+

y2

2
+ cosx− 1, (5.2)

H1(x, ϕ) = h(x)f(ϕ). (5.3)

Our system has two perturbation parameters ε and µ and we assume that ε > 0 and
µ > 0 with no loss of generality.

The vector ωε = ω/
√
ε in (5.2) is the vector of fast frequencies given by an n-

dimensional frequency vector ω satisfying a Diophantine condition of constant type

|〈k, ω〉| ≥ γ

|k|τ
, ∀k ∈ Zn\{0} (5.4)

with some γ > 0 and the exponent τ ≥ n.
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We also consider in (5.2) a symmetric n × n matrix Λ such that H0 satisfies the
condition of isoenergetic nondegeneracy

det

(
Λ ω
ω> 0

)
6= 0. (5.5)

For the perturbation (5.3), we deal with the following analytic periodic functions

h(x) = cos x− ν, with ν = 0 or ν = 1 (5.6)

f(ϕ) =
∑
k∈Z

e−ρ|k| cos(〈k, ϕ〉 − σk), with σk ∈ T, (5.7)

where we introduce the set Z in order to avoid repetitions in the Fourier series:

Z = {k = (k1, k2) ∈ Z2 : k2 > 0 or (k2 = 0, k1 ≥ 0)}, if n = 2,
or
Z = {k = (k1, k2, k3) ∈ Z3 : (k3 > 0, k1, k2 ∈ Z) or

(k3 = 0, k2 > 0, k1 ∈ Z) or (k2 = k3 = 0, k1 ≥ 0)}, if n = 3.

(5.8)

In the Fourier expansion of f(ϕ) the constant ρ > 0 gives the complex width of ana-
lyticity of f(ϕ). In principle, the phases σk can be chosen arbitrarily, although some
quite general condition on these phases will have to be fulfilled for the validity of our
results.

The two parameters ε and µ are not independent, but they are linked by a relation
of the type µ = εp (the smaller p the better), i.e we consider a singular problem for
ε→ 0. See [DG01] for discussion about singular and regular problems.

Notice that the unperturbed system H0 (that corresponds to µ = 0) consists of

the pendulum given by P (x, y) = y2

2
+ cosx − 1 and n rotors with fast frequencies:

İ = 0, ϕ̇ = ωε + ΛI. The pendulum has a hyperbolic equilibrium at the origin. The
hyperbolic point has separatrices that correspond to curves where P (x, y) = 0. We
parameterize the upper separatrix as (x0(s), y0(s)), s ∈ R, where

x0(s) = 4 arctan es, y0(s) =
2

cosh s
. (5.9)

The lower separatrix has the parametrization (x0(−s),−y0(−s)). The rotors system
(ϕ, I) has the solution I = I0, ϕ = (ωε + ΛI0)t+ ϕ0.

Then the Hamiltonian H0 has a family of n-dimensional whiskered tori given by
I = I0 = const, x = y = 0

ΛI0 = {(x = 0, y = 0, I = I0, ϕ) : ϕ ∈ Tn}

where the dynamics is ϕ̇ = ωε + ΛI The collection of the whiskered tori at each value
of I gives a 2n-dimensional normally hyperbolic invariant manifold (NHIM)

ΛI = {(x = 0, y = 0, I, ϕ) : I ∈ Rn, ϕ ∈ Tn}.
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The stable and unstable manifolds (whiskers) of the NHIM that coincide in the unper-
turbed system, are

W sΛI = W uΛI = {(x0(s), y0(s), I, ϕ) : P (x0(s), y0(s)) = 0, s ∈ R, I ∈ Rn, ϕ ∈ Tn},

they are of dimension 2n+ 1 and with the inner flow ϕ̇ = ωε + ΛI, İ = 0, ṡ = 1.
Without loss of generality we consider the torus located at I0 = 0

Λ0 = {(x = 0, y = 0, I = 0, ϕ) : ϕ ∈ Tn}

with the dynamics ϕ̇ = ωε and its coincident n+ 1-dimensional whiskers

W sΛ0 = W uΛ0 = W0 = {(x0(s), y0(s), I = 0, ϕ) : P (x0(s), y0(s)) = 0, s ∈ R, ϕ ∈ Tn}
(5.10)

We can check that the hypotheses (H1)-(H4) of [DGS04] hold in our case:

(H1) the isoenergetic condition (5.5);

(H2) the Diophantine condition (5.4);

(H3) the function h(x) is a trigonometric polynomial of degree l = 1;

(H4) the function f(ϕ) is analytic in a complex strip |Imϕ| < ρ and there exists α ≥ 0
and a constant c > 0 such that, for any 0 < δ < ρ, ‖f‖ρ−δ ≤ c/δα. (We denote
‖f‖ρ−δ the norm of f(ϕ) on the complex strip |Imϕ| ≤ ρ − δ). In our cases, we
have: α = 2 if n = 2 and α = 3 if n = 3.

Thus, when perturbing the problem (µ 6= 0), the hyperbolic KAM theorem [Eli94],[DGS04]
implies that, under non-degeneracy and non-resonance conditions (5.5) and (5.4), for µ
small enough, the whiskered torus Λ0 as well as its local whiskers persist. We explain
the difference between two values of ν in (5.6): the point is that in the case ν = 0 the
whiskered torus persists with some shift and deformations, whereas in the case ν = 1 it
remains fixed under the perturbation, though the whiskers deform. The Lyapunov ex-
ponent of the torus, which initially is 1, becomes a close amount b. Also the frequency
vector ωε becomes perturbed and proportional vector:

ω̃ε = b′ωε =
b′ω√
ε
.

The amounts b and b′ tend to 1 as µ → 0, and b′ = 1 in the case ν = 1. See a
precise statement of the hyperbolic KAM theorem with the corresponding estimates in
[DGS04, Th. 1].
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5.2 The Poincaré-Melnikov method

When the local whiskers are extended to global ones, one expects in general the ex-
istence of splitting between the stable and unstable whiskers (denoted W+ and W−),
since they do not coincide anymore. To study the splitting, the so-called flow-box co-
ordinates are introduced in [DGS04], in a neighbourhood containing a piece of both
whiskers and excluding the torus where such coordinates are not valid. Those coordi-
nates can be constructed in such a way that the stable whisker is given by a coordinate
plane

W+ : (s, 0, θ, 0), |s| ≤ s∗, θ ∈ Tn,
where the parameters (s, θ) are inherited from (5.10). Then the unstable whisker is
parameterized as

W− : (s, E(s, θ), θ,M(s, θ)) |s| ≤ s∗, θ ∈ Tn.

The inner flow on both whiskers in ṡ = b, θ̇ = ω̃ε. To study the splitting, it is sufficient
to consider the vector function M, called the splitting function, that measures the
distance between the stable and unstable whiskers (the function E is directly related
to M by the energy conservation).

The function M has two important properties that we will use. The first one is
that M is ω̂ε-quasiperiodic

M(s, θ) =M(0, θ − sω̂ε), where ω̂ε :=
ω̃ε
b

=
b′ω

b
√
ε
. (5.11)

The second property of M is that it is the gradient of a scalar function L, called the
splitting potential

M(s, θ) = ∂θL(s, θ).

Then we can consider the section s = 0 and the simple zeros ofM(0, θ) which give rise
to transverse homoclinic orbits are given by nondegenerate critical points by L(0, θ).

The Poincaré-Melnikov method gives us a first order approximation in µ for the
splitting in terms of the Melnikov potential L and the Melnikov function M defined as
follows

L(s, θ) = −
∞∫
−∞

[h(x0(s+ bt))− h(0)]f(θ + ω̃εt)dt+ const,

M(s, θ) = ∂θL(θ).
(5.12)

These functions are also ω̂ε-quasiperiodic, since they are defined in terms of the per-
turbed Lyapunov exponent b and the perturbed frequencies ω̃ε. Then, the error term
defined as

R(s, θ) =M(s, θ)− µM(s+ s(0), θ) (5.13)

is also ω̂ε-quasiperiodic. The amount s(0), not relevant, compensates a translation of
the parametrization of the perturbed whiskersW− andW+ : with respect to the initial
parametrization of W0.
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However, the approximations (5.12), given by the Poincaré-Melnikov approach, are
exponentially small in ε. Then in order to have the error term to be small, it is necessary
µ to be exponentially small (this condition was imposed in [Arn64] and [DG00]) that
it is not true in our case µ = εp (p > 0). In the last case, the problem becomes much
more complicated, since we may not guarantee that the main term (5.12) dominates
the error term and, thus, we must provide estimates to ensure it. The idea is to present
the Melnikov potential L in the Fourier series and then to find the dominant harmonics
Lk and give estimates to show that the selected harmonics dominate the error term.
These estimates have to be big enough to be valid for the dominant harmonics of L.
Then it is possible to prove the non-degeneracy of the critical points of L and, thus,
the simplicity of the zeros of M.

To obtain exponentially small estimates of the functions we go to the complex plane
and use the quasi-periodic properties of the splitting. We define the complex domain

Pκ,ν,ρ = {(s, θ) : |Res| < κ, |Ims| < ν,Reθ ∈ Tn, |Imθ| < ρ}.

Initially, the whiskers can be defined in the complex domain |Ims| < π
2
, |Imθ| < ρ. This

domain is restricted by the singularity of the pendulum separatrix parametrization (5.9)
at s = ±iπ/2 and the width of analyticity of the function f in (5.7), and it is reduced
along the successive steps leading to define the splitting function and potential. In
[DGS04] flow-box coordinates are constructed at which the loss of the complex domain
is controlled by a small parameter δ, δ � π

2
and δ � ρ. Choosing δ = εa, a > 0, and

using that our functions are analytic, quasiperiodic, and with the zero average, one
can get exponentially small estimates (see [DG03, DG04, DGS04] for more details).
Therefore, it is possible to obtain exponential small estimates for splitting function
M(s, θ) in the singular case µ = εp with some restriction p > p∗.

We give the results of [DGS04] (Theorems 1 and 10) applied to our cases: n =
2, τ = 1, α = 2 and n = 3, τ = 2, α = 3, to have an upper bound for the error term R.
We also provide bounds for |b− 1| and |b′ − 1|. The exponents q1, q2, q3, q4 are easily
computed by expressions given in [DGS04].

Throughout Part II we use the notation |f | � |g| if we can bound |f | ≤ c|g| with
some positive constant c not depending on ε, µ. Also we write f ∼ g if |g| � |f | � |g|.

Theorem 5.1. For a given δ > 0, assuming

ε � 1, µ � δq1 , µ � δq2+1
√
ε,

the splitting function M(θ) is analytic on Pκ,π/2−δ,ρ−δ(κ > 0), and ω̂ε-quasiperiodic.
For the amounts b and b′, one has bounds:

|b− 1|, |b′ − 1| � µ

δq2
.

The error term R(s, θ) is also ω̂ε-quasiperiodic and satisfies the bound:

|R|κ,π/2−δ,ρ−δ �
µ2

δq3
+
µ2

δq4
. (5.14)
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The exponents q1, q2, q3, q4 are given by:
in the case n = 2

q1 = 8, q2 = 4, q3 = 14, q4 = 12, if ν = 0,
q1 = 6, q2 = 2, q3 = 10, q4 = 8, if ν = 1,

and in the case n = 3

if ν = 0 : q1 = 12, q2 = 6, q3 = 20, q4 = 17;
if ν = 1 : q1 = 8, q2 = 3, q3 = 14, q4 = 11;

Note that in [DG04, DG03] a similar Hamiltonian with 3 degrees of freedom was con-
sidered. The most accurate results were obtained for ω = (1,Ω) with Ω = (

√
5− 1)/2,

the so-called quadratic golden number. and the existence of 4 transverse homoclinic
points to the whiskered torus was proved for all values ε→ 0.

Due to the quasiperiodicity (5.11) of M(s, θ) and the other functions involved we
can restrict ourselves into the section s = 0 and redefine the functions as:

M(θ) :=M(0, θ), L(θ) := L(0, θ), M(θ) := M(0, θ), L(θ) := L(0, θ),

and then extend the results obtained for s = 0 to any s ∈ R.



Chapter 6

Exponentially small splitting of
separatrices for whiskered tori with
quadratic frequencies

In this chapter we study the splitting of invariant manifolds of whiskered tori in a
nearly-integrable Hamiltonian system with 3 degrees of freedom. We consider two-
dimensional tori whose frequency ratios are quadratic irrational numbers. We deal
with numbers whose continued fractions satisfy certain arithmetic properties which
give us 24 cases for consideration. We show that the Poincaré-Melnikov method can
be applied to establish the existence of 4 homoclinic orbits to the whiskered tori and
prove that these homoclinic orbits are transverse. We also prove the continuation of
these homoclinic orbits for the silver number

√
2− 1.

We consider the Hamiltonian system (5.1-5.3) for n = 2. Here the frequency vector
ω is given by a quadratic vector

ω = (1,Ω), (6.1)

where the frequency ratio Ω is a quadratic irrational number, i.e. an irrational real
root of a quadratic polynomial with integer coefficients. It is well known that quadratic
frequency vectors satisfy the Diophantine condition (5.4) with the exponent τ = 1.

6.1 Quadratic frequencies

6.1.1 Continued fractions of quadratic numbers

It is well known that all the quadratic irrational numbers Ω ∈ (0, 1), i.e. the real roots
of quadratic polynomials with rational coefficients, have the continued fractions

Ω =
1

a1 +
1

a2 +
1

a3 + . . .

= [a1, a2, a3, . . .] (6.2)

119
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that are periodic starting with some element ai. We consider only the numbers with
the purely periodic continued fractions [a1, a2, a3, . . . , am] and denote them according
to their periodic part by Ωa1,a2,a3,...,am , where a1, a2, a3, . . . , am is the corresponding
periodic part of the continued fraction, and we say that this continued fraction is m-
periodic. For example, the famous golden number is Ω1 = [1] = (

√
5− 1)/2, the silver

number Ω2 = [2] =
√

2 − 1. Another interesting case is that of 2-periodic continued
fractions, as for example: Ω1,2 = [1, 2] =

√
3− 1.

Remark 6.1. The same results apply for periodic but not purely periodic continued
fractions, say Ω̂ = [b1, . . . , bn, a1, . . . , am], since for small enough ε, we only need to

consider the periodic part of the continued fraction of Ω̂. We will call these continued
fractions with the same periodic part as equivalent continued fractions. These numbers
have a relation of type

Ω̂ =
a+ bΩa1,...,am

c+ dΩa1,...,am

with det

(
a b
c d

)
= ±1.

6.1.2 Arithmetic properties

From the Diophantine condition (5.4) we define the quantity γk = |〈k, ω〉||k|. We aim
to find two-dimensional non-zero integer vectors k which give the smallest values γk,
we call these vectors k as primary resonances, and to study their separation from the
other vectors, secondary resonances.

We say that the integer vector k is admissible if |〈k, ω〉| < 1/2 and denote by A the
set of admissible vectors. We restrict ourselves to the set A, since for any k /∈ A we
have |〈k, ω〉| > 1/2 and γk ≥ |k|/2.

It is a well known fact that for frequency vectors there exists a unimodular matrix T
(with integer entries and determinant±1) having the frequency vector as an eigenvector
with the associated eigenvalue λ of modulus greater than 1. In the two-dimensional
case, such matrix T can be derived from the continued fraction of the number Ω. For
instance, for the silver number Ω2 the matrix T is

T =

(
2 1
1 0

)
(see Section 6.3).

We define the matrix U = (T−1)> that satisfies the following equality

〈Uk, ω〉 = 〈k, U>ω〉 =
1

λ
〈k, ω〉. (6.3)
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Thus, if k ∈ A, then also Uk ∈ A. We say that k is primitive if k ∈ A but U−1k /∈ A.
From (6.3) we deduce that k is primitive if and only if

1

2|λ|
< |〈k, ω〉| < 1

2
.

Admissible vectors can be presented in form

k0(j) = (−rint (jΩ), j),

where j = Z\{0} and rint (a) is the closest integer to a. We say that an integer j is
primitive if k0(j) is primitive. Let P be the set of primitive integers j.

For each primitive j, we define the following resonant sequences of integer vectors:

s(j, n) = Un−1k0(j), n ≥ 1. (6.4)

It turns out that such resonant sequences cover the whole set of admissible vectors.

Proposition 6.1 (DG03). For any primitive j, there exists the limit

γ∗j = lim
n→∞

γs(j,n) = |〈k0(j), ω〉|K(j), K(j) := |k0(j)− 〈k
0(j), ω〉
〈u, ω〉

u|,

and one has

(a) γs(j,n) = γj∗ +O(λ−2n), n ≥ 1;

(b) |s(j, n)| = K(j)|λ|n−1 +O(|λ|−n), n ≥ 1;

(c)
(1 + Ω)|j| − a

2|λ|
< γ∗j <

(1 + Ω)|j|+ a

2|λ|
, a =

1

2

(
1 +

|u|
|〈u, ω〉|

)
Provided the bounds (c) of γ∗j for each primitive j, we can select the minimal of

them, say γ∗j0 . We get
γ∗ = lim inf

|k|→∞
γk = min

j∈P
γ∗j = γ∗j0 . (6.5)

The corresponding sequence s(j0, n) gives us the primary resonances. Denote s0(n) =
s(j0, n). We call secondary resonances integer vectors belonging to any of the remaining
sequences s(j, n), j 6= j0. We normalize the limits γ∗j dividing by γ∗j0

γ̃∗j0 = 1, γ̃∗j =
γ∗j
γ∗j0

. (6.6)

and define a parameter γ̃∗∗ measuring the separation between the primary and sec-
ondary resonances

γ̃∗∗ = min
j∈P\{j0}

γ̃∗j

Remark 6.2. We implicitly assume the hypothesis that the primitive j0 is unique, and
hence γ̃∗∗ > 1. In fact, this happens for all the cases we have explored, provided we
choose the matrix T suitably.
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6.2 Asymptotic estimates

We need to show that the Poincaré-Melnikov method is applied in our singular case
µ = εp (p > 0). To do this we provide asymptotic estimates (or lower bounds) for the
dominant harmonics of the Melnikov potential L(θ) and prove that the corresponding
dominant harmonics of the splitting potential L(θ) overcome the remaining terms as
well as the error term of the Poicaré-Melnikov approach. It is convenient for us to
work with the scalar functions L and L, but we state our main results in terms of the
splitting function M (recall M(θ) = ∂θL(θ)) whose values coincide with the distance
between the invariant manifolds of the whiskered torus.

We put our functions f and h defined in (5.6) and (5.7) into the integral (5.12) and
get the Fourier expansion of the Melnikov potential

L(θ) =
∑

k∈Z\{0}

Lk cos(〈k, θ〉 − σk)

with the Fourier coefficients

Lk =
2π|〈k, ω̂ε〉|e−ρ|k|

b sinh |π
2
〈k, ω̂ε〉|

. (6.7)

Remark 6.3. Note that due to the presence of sinh | · | in (6.7) coefficients Lk turn
out to be exponentially small in ε.

Recall that

|〈k, ω̂ε〉| = |〈k,
b′ω

b
√
ε
〉| = b′γk

b|k|
√
ε
.

We present the coefficients Lk in the exponential form

Lk = αke
−βk , k ∈ Z2\{0}, (6.8)

where

αk =
4πb′γk

b2|k|
√
ε(1− e−{π

b′γk
b|k|
√
ε
}
)
, βk = ρ|k|+ πb′γk

2b|k|
√
ε
. (6.9)

Thus, the largest coefficients Lk are given by the smallest exponents βk. We can present
βk in more convenient form

βk =
Cµ
ε1/4

gk(ε), (6.10)

where we write the functions gk in the form

gk(ε) =

√
γ̃k
2

[(
ε

εk

)1/4

+
(εk
ε

)1/4
]
, ε

1/4
k =

Cµ
2ρ

√
γ̃k
|k|

, Cµ =

√
2πb′

b
ργ∗j0 , γ̃k =

γk
γ∗j0

.

(6.11)
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Here we denote Cµ to depend implicitly on µ, since b and b′ are µ-close to 1. Indeed,
Cµ is µ-close to the constant

C0 =
√

2πργ∗j0 (6.12)

with γ∗j0 given in (6.5). Notice that the functions gk contain the main information on
the size of βk.

For any ε fixed we have to find the dominant terms Lk and the corresponding
vectors k. Since Lk are exponentially small in ε, it is more convenient to work with
the functions gk whose smallest values correspond to to the largest Lk. To this aim we
represent the functions gk, k ∈ Z2\{0}, in a figure (see, for example, the Figure 6.1 for
Ω2) and for every ε fixed we find the vectors Si = Si(ε), i = 1, 2, . . . minimizing the
functions such that

gS1(ε) ≤ gS2(ε) ≤ gS3(ε) ≤ . . .

Hence the dominant harmonics of L(θ) will be LS1 , LS2 , LS3 , etc.

1

ε
n

ε
n+1

ε′
n+1

ε′
n

ε
n−1

A
2
 = B

0

A
1

Figure 6.1: Graphs of the functions gk(ε), k ∈ Z2\{0}, for Ω2 using a logarithmic scale for ε. The

ones with solid lines are primary functions ĝn(ε)

Note that the functions gk have their minimum at ε = εk and the corresponding
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minimal values are gk(εk) =
√
γ̃k. Recall (see the Section 6.1) that all the admissible

k can be subdivided into the sequences of vectors s(j, n) defined in (6.4) according
to their limit values γ̃∗j . The primary integer vectors k belonging to the sequence
s0(n) = s(j0, n) play an important rôle here, since γ̃∗j0 = 1, and, thus, they give the
smallest gk (at least near the minimum points εs0(n)). Denote the primary functions by

ĝn(ε) := gs0(n)(ε)

and also the minimum points of ĝn by εn and the intersection points between ĝn and
ĝn−1 by ε′n. Hence, we get the geometric sequences for the points

εn := εs0(n) =

(
C0

2ρK(j0)|λ|n−1

)4

=
ε1

λ4n
, ε′n :=

√
εnεn−1 =

ε1

λ4n−2
. (6.13)

Notice that the following scaling property is fulfilled:

ĝn(ε) = ĝn−1(λ4ε) = ĝ0(λ4nε).

This implies that as a function of ln ε, the graph of gn is simply the graph of g0 trans-
lated a distance 4n ln |λ|, thus, the representation in Figure 6.1 (that uses a logarithmic
scale for ε) is 4 ln |λ|-periodic. Thus, it is sufficient to draw figures for a width 4 ln |λ|
as in Figures 6.2-6.2.2.

We define the constants (the so-called levels)

Ai =
1

2
(|λ|i/2 + |λ|−i/2).

Note that A0 = ĝn(εn) = 1 is the minimal value of ĝn and, for i ≥ 1, Ai is the value of ĝn
at the intersections points of ĝn and ĝn+i, for example A1 = ĝn(ε′n). Denote by B0 the
minimal value of the secondary functions gs(j,n), j 6= j0. It is clear that B0 = γ̃∗∗ > 1.
We are interested in the frequencies Ω satisfying the condition

B0 ≥ A1, (6.14)

that ensures that the most dominant harmonic for all ε is found among the primary
resonances. Numerical explorations indicate that the condition (6.14) is satisfied only
by a finite number of 1 or 2-periodical continued fractions, namely, for the 24 quadratic
irrational numbers

Ω1, . . . ,Ω13,Ω1,2, . . . ,Ω1,12. (6.15)

Remark 6.4. It is clear that, for example, Ω2,1 also satisfies the condition (6.14), but
we can present it by means Ω1,2 as

Ω2,1 = [2, 1] = [2, 1, 2] =
Ω1,2

1 + 2Ω1,2

.

Thus, they are equivalent (see Remark 6.1) and, for ε small enough, the graphs of gk(ε)
in the case of Ω2,1 will be similar to the ones of Ω1,2.
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We introduce the parameter ind satisfying the equation

1

2
(|λ|ind/2 + |λ|−ind/2) = B0. (6.16)

Then the condition (6.14) may be expressed as ind ≥ 1.

6.2.1 Asymptotic estimates for the splitting distance

Under the condition (6.14), we can ensure that the function giving the values of the
minimum

h1(ε) = min
k
gk(ε) = gS1(ε)

is given by the primary vectors S1 = s(j0, ·) (see, for example, Figure 6.2 for Ω2) and
we find that j0 = 1 for the 24 numbers of (6.15). We can rewrite the function as (note
that γ̃∗j0 = 1)

h1(ε) = ĝn(ε) =
1

2

((
ε

εn

)1/4

+
(εn
ε

)1/4
)
, ε ∈ [ε′n+1, ε

′
n], n ≥ 1, (6.17)

extended as a 4 ln |λ|-periodic function of ln ε. This function is continuous for all
0 < ε < ε′1 and minh1(ε) = h1(εn) = 1 and maxh1(ε) = h1(ε′n) = A1 > 1. Note that
the vector S1 changes at the points ε′n from s(1, n+ 1) to s(1, n).

In the following theorem we provide an estimate for the maximal distance between
the stable and unstable invariant manifolds in terms of the maximum value of the
splitting function M(θ). The maximum value of M is given by the most dominant
harmonic having the function h1(ε) as exponent. The estimate obtained shows that
the splitting of separatrices exists. Note that we have introduced the notation of ’∼’
just before Theorem 5.1 in Chapter 5.

Theorem 6.1 ((Maximal) splitting distance). For the Hamiltonian system (5.1-5.7)
with n = 2, assume that ε � 1 and µ = εp, p > p∗ with p∗ = 2 if ν = 1 and p∗ = 3 if
ν = 0, then in the 24 quadratic numbers (6.15), the following estimate holds

max
θ∈T2
|M(θ)| ∼ µ√

ε
exp

{
−C0h1(ε)

ε1/4

}
where the constant C0 is defined in (6.12) and the function h1(ε) is the periodic function
in ln ε defined in (6.17) which satisfies minh1(ε) = 1 and maxh1(ε) = A1 > 1.

6.2.2 Asymptotic estimates for the transversality of the split-
ting

In order to show that L(θ) has nondegenerate critical points, we need to consider at
least 2 dominant harmonics of its Fourier expansion. However, for some values of ε it
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Figure 6.2: Graphs of the functions gk(ε) and h1(ε) defined in (6.17) for Ω2 (ind = 2 where parameter

ind is introduced in (6.16)).

is necessary to consider 3 and even more dominant harmonics if the second and some
consecutive harmonics are of the same magnitude. Also it can happen that the corre-
sponding vectors S1 and S2 of the 2 dominant harmonics are linearly dependent, thus,
to prove the nondegeneracity of the critical points we have to consider enough consec-
utive dominant terms LS1 , LS2 , . . . , LSm , LS′ to have 2 linearly independent vectors S1

and S ′, while S2, . . . , Sm are dependent with S1 (the number m ≥ 1 depends on ε).

Definition 6.1. We will call LS1 and LS′ essential dominant harmonics if they satisfy:
(i) LS1 is the most dominant harmonic,
(ii) S1 and S ′ are independent,
(iii) if there are harmonics LS2 , . . . , LSm such that LS1 ≤ LS2 ≤ . . . ≤ LSm ≤ LS′ , then

Si = ciS1, i = 2, . . . ,m (6.18)

with constants ci > 1.

We will define the number m (index of non-essentiality) as

m =

{
1, if there are no non-essential harmonics between LS1 and LS′
l + 1, if there are l non-essential harmonics between LS1 and LS′

(6.19)
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In the worst cases of 24 numbers (6.15), Ω13, Ω1,11, Ω1,12, m = 6 and ci = i for
i = 2, . . . , 6. As we show later, the terms LS2 , . . . , LSm are not relevant for the transver-
sality.

1

ε
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ε
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ε′
n+1

ε′
n

ε
n−1

A
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B
0

A
1

h
1
 (ε)

h
2
 (ε)

Figure 6.3: Functions h1 and h2 for Ω4 (ind = 1.8245) in the logarithmic scale of ε

Therefore, we define the function

h2(ε) = gS′(ε),

where S ′ is the first vector linearly independent with S1 minimizing the functions gk.
Thus, h2(ε) is defined by 2 vectors S1 and S ′. Note that S ′ = S ′(ε) changes if ε varies,
and later we will discuss these critical values of ε at which S ′ changes.

We stress that S1 is always a primary vector, whereas S ′ can be either a primary
vector or a secondary one. Such situations can be checked from the graphics corre-
sponding to the 24 numbers (6.15). We have found two different situations:

(a) Ω1,Ω2, . . . ,Ω13 – for all ε the vector S ′ is also a primary vector. More precisely,
S ′ = s(1, n± 1), and the critical values of ε when S ′ changes are ε′n+1, εn, ε

′
n (see,
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Figure 6.4: Graphs of the functions h1 and h2 for Ω1,2 (ind = 1.3385).

for example, the Figure 6.3 for the number Ω4). We can write h2(ε) in the form

h2(ε) =

{
ĝn+1(ε), ε ∈ [ε′n+1, εn]
ĝn−1(ε), ε ∈ [εn, ε

′
n]

(6.20)

Note that this function is continuous, 4 ln |λ|-periodic in ln ε and satisfies that
minh2(ε) = h2(ε′n) = A1 and maxh2(ε) = h2(εn) = A2.

(b) Ω1,2, . . . ,Ω1,12 – for some values of ε, S ′ = s(1, n±1) is one of the primary vectors,
while for other ε the vector S ′ = s(j′, n) is a secondary resonance(see, for example,
the Figure 6.4 for the number Ω1,2). We denote by ε′′n and ε′′′n the points at which
S ′ changes from a primary vector to a secondary one and viceversa

ε′′n =

(√
γ̃j′ε

1/4
s(j′,n) − ε

1/4
n+1

ε
1/4
s(j′,n) −

√
γ̃j′ε

1/4
n+1

)2

ε
1/2
n+1ε

1/2
s(j′,n),

ε′′′n =

(√
γ̃j′ε

1/4

s(j′,n−1)
−ε1/4n−1

ε
1/4

s(j′,n−1)
−
√
γ̃j′ε

1/4
n−1

)2

ε
1/2
n−1ε

1/2
s(j′,n−1).

(6.21)
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Figure 6.5: Graphs of functions h1 and h2 for Ω1,12 (ind = 1).
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Note that εs(j′,n) is the minimum point of the function gs(j′,n), one can obtain their
formulae from (6.11), putting k = s(j′, n). Also S ′ changes from a secondary
vector s(j′, n) to another secondary vector s(j′, n− 1) at εn, the minimum point
of the primary function ĝn given in (6.13). Hence, the critical values of ε are
ε′n+1, ε

′′
n, εn, ε

′′′
n , ε

′
n. In the case of these numbers h2(ε) takes form

h2(ε) =


ĝn+1(ε), ε ∈ [ε′n+1, ε

′′
n]

gs(j′,n)(ε), ε ∈ [ε′′n, εn]
gs(j′,n−1)(ε), ε ∈ [εn, ε

′′′
n ]

ĝn−1(ε), ε ∈ [ε′′′n , ε
′
n]

(6.22)

extended to all ε as a 4 ln |λ|-periodic of ln ε. It is also continuous and satisfies
minh2(ε) = h2(ε′n) = A1 > 1 and B0 < maxh2(ε) = h2(εn) < A2.

The function h2(ε) is relevant to establish the transversality of homoclinic orbits
associated to the whiskered torus considered. In the following theorem we prove the
existence of 4 transverse homoclinic orbits which correspond to simple zeros of the
splitting function M(θ). We also give an estimate for the minimal eigenvalue (in
modulus) of the splitting matrix ∂θM at each zero in terms of the function h2(ε). This
eigenvalue provides a measure of the transversality of the homoclinic orbits. Note that
the notation of ’∼’ has been introduced just before Theorem 5.1 in Chapter 5.

Theorem 6.2 (Transversality of the splitting). For the Hamiltonian system (5.1-5.7)
with n = 2, assume that 0 < ε� 1 and µ = εp, p > p∗ with p∗ = 2 if ν = 1 and p∗ = 3
if ν = 0, then one has:

• the Melnikov functionM(θ) has exactly 4 zeros θ∗, all simple, for all ε except for
some small neighbourhood of some geometric sequences of ε;

• The minimal eigenvalue of ∂θM(θ∗) satisfies

m∗ ∼ µε1/4 exp

{
−C0h2(ε)

ε1/4

}
where the constant C0 is defined in (6.12) and h2(ε) is the positive periodic in
ln ε function defined in (6.20) for the numbers Ω1,Ω2, . . . ,Ω13 and in (6.22) for
the numbers Ω1,2,Ω1,3, . . . ,Ω1,12.

Remark 6.5. The geometric sequences mentioned in the Theorem 6.2 are εn (given
in (6.13)), ε′′n and ε′′′n (given in (6.21)) where the Melnikov function has more than 2
essential dominant harmonics because the second essential harmonic coincides with the
third one, and this requires a special study (as an illustration, we carry out this study
for Ω2 =

√
2 − 1 in Section 6.3). We can conjecture that depending on the type of

perturbation (function f) some bifurcations are possible to occur at these points.



ASYMPTOTIC ESTIMATES 131

In the rest part of this section we give estimates for the dominant harmonics of the
Melnikov potential L and show that the sum of the remaining terms is much smaller
(Lemma 6.1, p. 132), then we translate these estimates to the splitting potential L
(Lemma 6.2, p. 138), and, finally, we find 4 nondegenerate critical points of L. All this
will allow us to prove our main results Theorems 6.1 and 6.2, taking into account that
M = ∂θL.

6.2.3 Dominant harmonics of the Melnikov potential

To show that the Melnikov potential L has nondegenerate critical points, we have to
consider at least the 2 essential dominant harmonics LS1 and LS′ (see Definition 6.1
of essential dominant harmonics) in its Fourier expansion and give estimates for them
to prove that they overcome the sum of the remaining terms. Also we have to take
into account that, for some intervals of ε, we can have non-essential dominant terms
LS2 , . . . , LSm between LS1 and LS′ such that LS1 ≥ LS2 ≥ . . . ≥ LSm ≥ LS′ and
S2, . . . , Sm (the number m ≥ 1 depends on ε) are dependent with S1 (recall that S1

and S ′ are independent). Since these vectors are linearly dependent with S1, they
satisfy the relations (6.18).

We fix a point ε, for any primitive j and N = N(j, ε) ≥ 1 let εs(j,N) defined in (6.11)
be the nearest point to ε. As a consequence of Proposition 6.1 we have estimates

|s(j,N)| ∼ K(j)|λ|N ,

and applying the definition of εk for k = s(j,N) in (6.11), one gets

ε ≈ εs(j,N) ∼

( √
γ̃∗j

|λ|NK(j)

)4

.

From this, one concludes

|s(j,N)| ∼
√
γ̃∗j ε
−1/4.

Note that the vectors S1, S2, . . . , Sm and S ′, if secondary, are dominant in their
sequences, i.e. S1 = s(j0, N), Si = s(ji, N), i = 2, . . . ,m, S ′ = s(j′, N) if j′ 6= j0. If S ′

is primary, then it is one of the vectors s(j0, N ± 1) depending on the side of εs(j0,N) to
which ε belongs: S ′ = s(j0, N − 1) if ε > εs(j0,N) and S ′ = s(j0, N + 1) if ε < εs(j0,N).
Then having that for primary vectors γ̃∗j0 = 1 and choosing, if necessary, from a finite
number of γ̃∗j2 , . . . , γ̃

∗
jm , γ̃

∗
j′ , we obtain the following estimates:

|S1| ∼ ε−1/4, |S ′| ∼ ε−1/4, |Si| = ci|S1| ∼ ε−1/4 (6.23)

In the next lemma we give estimates for LSi , i = 1, . . . ,m, and LS′ . Besides, we
provide an estimate for the sum of all the remaining terms Lk in terms of the first
neglected harmonics. Since we are interested in some derivatives of the Melnikov
potential, we consider the sum of (positive) amounts of the type |k|lLk
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Lemma 6.1. Assuming ε � 1, one has:

(a) LS1 ∼ 1
ε1/4

exp
{
−C0h1(ε)

ε1/4

}
,

LS′ ∼ 1
ε1/4

exp
{
−C0h2(ε)

ε1/4

}
,

LSi ∼ ci
ε1/4

exp
{
−ci C0h1(ε)

ε1/4

}
� LS1 , i = 2, . . . ,m;

(b) For any primitive j, if ε ≈ εs(j,N), N = N(j, ε), then∑
n≥1

|s(j, n)|lLs(j,n) � |s(j,N)|lLs(j,N);

(c)
∑

k 6=S1,S′,Si

|k|lLk � 1
εl/4

LSm+2 , i = 1, . . . ,m, l ≥ 0.

Proof. According to (6.8)-(6.9), the largest coefficients Lk are given essentially by the
smallest exponents βk. Due to (6.10) and to the fact the smallest value of gk for any ε
fixed is given by k = S1 and that this smallest value coincides with the function h1(ε),
we get that

βS1 =
C0h1(ε)

ε1/4
.

Analogously, by definition of the function h2(ε), we obtain

βS′ =
C0h2(ε)

ε1/4
.

For the non-essential dominant terms with the vectors S2, . . . , Sm, due to the relations
(6.18), we have

γSi = c2
i γS1 , εSi = εS1 , gSi(ε) = cigS1(ε), βSi = ciβS1 = ci

C0h1(ε)

ε1/4
.

Once we have found the smallest exponents βk, we show that the dominance in Lk
is not affected by the multiplicative term αk defined in (6.9). Indeed, in general if the
denominator [1− exp{. . .}] ∼ 1, we deduce

αk ∼
γk
|k|
√
ε

=
2b

πb′

(
ρ|k|+ πb′γk

2b|k|
√
ε

)
− 2b

πb′
ρ|k| � βk,

and hence | lnαk| � βk. The only exception can occur if [1 − exp{. . .}] is too small,
that only happens if |k| � γk√

ε
, and since x

1−exp{−x} → 1 as x→ 0, one can obtain that
αk � 1 in this case. For the dominant harmonics LS1 , LS′ , LSi , i = 2, . . . ,m, we see
that [1 − exp{. . .}] ∼ 1. Besides, S1 is always primary with γ̃j0 = 1 and, thus, using
(6.23), we deduce the following estimate: αS1 ∼ ε−1/4. If S ′ is primary (that it is true
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for Ω1, . . . ,Ω13), then the estimates are similar to the last one. In the case if S ′ is a
secondary vector (it can be for some ε in the case Ω1,2, . . . ,Ω1,12), we bound γ∗j′ by its

maximum value among all these 11 numbers and, hence, αS′ ∼ ε−1/4. Concerning to
the non-essential vectors, we get γSi = c2

i γS1 , |Si| = ci|S1|, and, thus, αSi ∼ ciε
−1/4,

i = 2, . . . ,m. These estimates imply part (a).
To prove (b), first we bound the sum of the terms Lk for k belonging to any fixed

resonant sequence s(j, ·) (we fix j) by its dominant term Ls(j,N) (recall that we have
fixed ε near to εs(j,N)). Consider other vectors s(j, n) of the same sequence with n 6= N .
For n > N , we have an infinite number of points εs(j,n) < εs(j,N) and we calculate (using
εs(j,n+1) = |λ|−4εs(j,n))

gs(j,n+1) − gs(j,n) =

√
γ̃∗j

2
(|λ| − 1)

[(
ε

εs(j,n)

)1/4

− 1
|λ|

( εs(j,n)

ε

)1/4
]

≈
√
γ̃∗j

2
(|λ| − 1)

[
|λ|n−N − 1

|λ| |λ|
N−n

]
≥


√
γ̃∗j

2
(|λ| − 1)(1− 1

|λ|) if ε > εs(j,N)√
γ̃∗j

2
(|λ| − 1)(|λ| − 1

λ2 ) if ε < εs(j,N)

≥
√
γ̃∗jCλ, Cλ =

(|λ| − 1)2

2|λ|
,

since the difference is growing and, thus, is greater than the minimal difference at
n−N = 0 if ε > εs(j,N) or n−N = 1 if ε < εs(j,N); also 1− 1

|λ| < |λ| −
1
λ2 for |λ| > 1.

Thus, we get that

gs(j,N+l1)(ε) ≥ gs(j,N)(ε) +
√
γ̃∗jCλl1, (6.24)

where l1 ≥ 0 if ε > εs(j,N) or l1 ≥ 1 if ε < εs(j,N).
For n < N , we have εs(j,n) > εs(j,N) that are a finite number of points, and we get

gs(j,n) − gs(j,n+1) ≈
√
γ̃∗j

2
(|λ| − 1)

[
1
|λ| |λ|

N−n − |λ|n−N
]

≥


√
γ̃∗j

2
(|λ| − 1)

[
1− 1

|λ|

]
if ε < εs(j,N)√

γ̃∗j
2

(|λ| − 1)(|λ| − 1
λ2 ) if ε > εs(j,N)

≥
√
γ̃∗jCλ,

and, therefore, we have

gs(j,N−l2)(ε) ≥ gs(j,N)(ε) +
√
γ̃∗jCλl2, (6.25)

where l2 = 0, . . . , N − 1 if ε < εs(j,N) or l2 = 1, . . . , N − 1 if ε > εs(j,N).
Recall ε is close to εs(j,N), and assume that ε > εs(j,N) (ε is on the right of εs(j,N);

for ε < εs(j,N) the proof is analogous). We divide the sum of the harmonics Ls(j,n) into
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the ones previous to s(j,N) (n ≥ N) and the ones after s(j,N) (n < N).

∑
k∈{s(j,n)}

|k|lLk =
∑
l1≥0

|s(j,N + l1)|lLs(j,N+l1) +
N−1∑
l2=1

|s(j,N − l2)|lLs(j,N−l2).

The first sum is

Σ1 =
∑
l1≥0

|s(j,N + l1)|lLs(j,N+l1) =
∑
l1≥1

|s(j,N + l1)|lαs(j,N+l1) exp
{
−C0gs(j,N+l1)

ε1/4

}
� |s(j,N)|l exp

{
− C0

ε1/4
gs(j,N)

} ∑
l1≥1

|λ|l1lαs(j,N+l1) exp
{
−C0Cλ

ε1/4

√
γ̃∗j l1

}
where we used the exponential form of Ls(j,n) (6.8), the inequality (6.24) and the fact
that |s(j,N + l1)| ∼ |λ|l1|s(j, n)|. Moreover, due to (6.9) we have

αs(j,N+l1) ∼
γ̃∗j

|λ|l1|s(j,N)|
√
ε(1− exp{− Cγ̃∗j

|λ|l1 |s(j,N)|
√
ε
})
.

If we consider the sequence al1 = |λ|l1lαs(j,N+l1), we obtain that

al1+1

al1
=
|λ|(l1+1)lαs(j,N+(l1+1))

|λ|l1lαs(j,N+l1)

∼ |λ|
(l1+1)l

|λ|l1l
|λ|l1(1− exp{− Cγ̃∗j

|λ|l1 |s(j,N)|
√
ε
})

|λ|l1+1(1− exp{− Cγ̃∗j
|λ|l1+1|s(j,N)|

√
ε
})
≤ |λ|l,

since 1−exp{−x}
1−exp{−x/|λ|} ≤ |λ| for x > 0. Therefore, al1+1 ≤ |λ|lal1 (or al1 ≤ |λ|l1la0, a0 =

αs(j,N)) and the sum is bounded above by a geometric series that can be estimated by
the first term

Σ1 � |s(j,N)|lαs(j,N) exp
{
−C0gs(j,N)

ε1/4

} ∑
l1≥0

|λ|l1l exp

{
−
C0Cλ
√
γ̃∗j

2ε1/4
l1

}
= |s(j,N)|lLs(j,n)

(
1− |λ|l exp

{
−
C0Cλ
√
γ̃∗j

2ε1/4

})−1

≤ 2|s(j,N)|lLs(j,N).

The inequality is true for ε small enough (ε1/4 < C0Cλ
√
γ̃∗j ln(2|λ|l)/2).

For the second sum we proceed analogously, using (6.25) and |s(j,N − l2)| ∼
|λ|−l2|s(j,N)|

Σ2 =
N−1∑
l2=1

|s(j,N − l2)|lLs(j,N−l2)

� |s(j,N)|l exp
{
− C0

ε1/4
gs(j,N)

}N−1∑
l2=0

|λ|−l2lαs(j,N−l2) exp
{
−C0Cλ

ε1/4

√
γ̃∗j l2

}
,

where

αs(j,N−l2) ∼
γ̃∗j |λ|l2

|s(j,N)|
√
ε
(

1− exp
{
− Cγ̃∗j
|λ|−l2 |s(j,N)|

√
ε

}) .
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Considering al2 = |λ|−l2lαs(j,N−l2) and having

al2+1

al2
= |λ|−l

αs(j,N−(l2+1))

αs(j,N−l2)

∼ |λ|−l
|λ|l2+1

(
1− exp

{
− Cγ̃∗j |λ|l2
|s(j,N)|

√
ε

})
|λ|l2

(
1− exp

{
−Cγ̃∗j |λ|l2+1

|s(j,N)|
√
ε

}) ≤ |λ|−l|λ|
= |λ|1−l ≤ |λ|,

since 1−exp{−x}
1−exp{−|λ|x} ≤ 1 for |λ| > 1, we deduce that al2+1 ≤ |λ|l2a0 = |λ|l2αs(j,N).

As before, we obtain

Σ2 � |s(j,N)|lLs(j,N)

N−1∑
l2=0

|λ|l2 exp
{
−C0Cλ

ε1/4

√
γ̃∗j l2

}
= |s(j,N)|lLs(j,n)

1

1−|λ| exp
{
−C0Cλ

√
γ̃∗j /(2ε

1/4)
} ≤ 2|s(j,N)|lLs(j,N).

The both sums complete the proof of (b).
To prove (c), we recall that for the 24 numbers from (6.15) the two essential domi-

nant terms are LS1 and LS′ where S1 is primary while S ′ can be primary or secondary.
Also there can be non-essential terms LSi between LS1 and LS′ . We consider 4 cases:
(1) S ′ is primary and no non-essential terms (numbers Ω1,Ω2,Ω3); (2) S ′ is primary
and there are non-essential terms (numbers Ω4, . . . ,Ω13); (3) S ′ is secondary and no
non-essential terms (number Ω1,2); (4) S ′ is secondary and there are non-essential terms
(numbers Ω1,3, . . . ,Ω1,12

Then in every case we consider the sums of Ls(j,n) for the sequences to which S1, S ′

and (in the case 2 and 4) Si belong to, i.e. s(j0, n), s(j′, n), s(ji, n), n ≥ 1. According
to (b) these sums are bounded by the dominant term Ls(j,N) where s(j,N) is S1 if
j = j0, S ′ if j = j′ (cases 3 and 4), Si if j = ji (cases 2 and 4), respectively. Then
excluding these dominant terms from the sums, the corresponding upper bounds are
estimated by the next dominant harmonic which is one of Ls(j,N−1) or Ls(j,N+1)∑

n≥1,n 6=N

|s(j0, n)|lLs(j0,n) � |s(j0, N ± 1)|lLs(j0,N±1)∑
n≥1,n 6=N

|s(j′, n)|lLs(j′,n) � |s(j′, N ± 1)|lLs(j′,N±1)∑
n≥1,n 6=N

|s(ji, n)|lLs(ji,n) � |s(ji, N ± 1)|lLs(ji,N±1)

One of these harmonics coincides with LSm+2 , while the other ones are smaller, and,
hence, ∑

k∈{s(j,n)}
j=j0,j′,ji

k 6=S1,S′,Si,i=1,...,m

|s(j, n)|lLs(j0,n) ∼
1

εl/4
LSm+2 (6.26)

Further, we calculate the sum of the remaining sequences s(j, n), j 6= j0, j
′, ji;n 6= 1.

Due to (b), for each j the sum of the coefficients Ls(j,n) of the same sequence is estimated
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essentially by Ls(j,N) (note that N = N(j, ε), and for different j the number N is
different).

Σ3 =
∑
j∈P

j 6=j0,j′,ji
n≥1

|s(j, n)|lLs(j,n) �
∑
j∈P

j 6=j0,j′,ji

|s(j,N)|lLs(j,N)

=
∑
j∈P

j 6=j0,j′,ji

|s(j,N)|lαs(j,N) exp

{
−
C0gs(j,N)(ε)

ε1/4

}
.

Recall that the set P is the set of primitive numbers j defined in Section 6.1. We
use the estimates |s(j,N)| ∼

√
γ̃∗j ε
−1/4, gs(j,N) ∼

√
γ̃∗j for ε ≈ εs(j,N), and, for ε small

enough (ε1/4 ≤ C
√
γ̃∗j / ln 2), αs(j,N) ≤

√
γ̃∗j

2ε1/4
. Also for primitive j we apply the bound

(6.1) for γj, we will have for γ̃∗j :

(A|j| −B)/|λ| ≤ γ̃∗j ≤ A|j|+B, where A =
1 + Ω

2γ∗j0
, B =

a

2γ∗j0
.

Hence, we get

Σ3 � ε(l−1)/4
∑
j∈P

j 6=j0,j′,ji

(√
γ̃∗j

)l+1

exp

{
−
C0

√
γ̃∗j

ε1/4

}

� ε(l−1)/4
∑
|j|≥j̄

(
√
A|j|+B)l+1 exp

{
−
C0

√
A|j| −B√
|λ|ε1/4

}
.

We denote ̄ = min
j∈P

j 6=j0,j′,ji

|j|. It turns out that it satisfy ̄ ≤ 2 (and ̄ > 2 for Ω 6= Ω3,Ω1,2)

We can bound A|j| + B ≤ χ(A|j| − B) with a constant χ satisfying 1 < χ ≤ A̄−A+B
A̄−A−B

for |j| ≥ ̄− 1, and, hence, the sum is estimated by the corresponding integral

Σ3 � ε(l−1)/4

∞∫
̄−1

(
√
Ax−B)l+1 exp

{
−C0

√
Ax−B√
|λ|ε1/4

}
dx

=
1

A
ε(l−1)/4

∞∫
A̄−A−B

(
√
u)l+1 exp

{
− C0

√
u√

|λ|ε1/4

}
du

=
2(
√
|λ|)l+3

AC l+3
0

ε(l+1)/2

∞∫
C0
√
A̄−A−B√
|λ|

ε−1/4

(z)l+2 exp{−z}du
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Thus, we get the following bounds

l = 0 Σ3 � (2ε1/2 + 2ε1/4 + 1) exp

{
C0

√
A̄− A−B√
|λ|

ε−1/4

}

l = 1 Σ3 � (6ε+ 5ε3/4 + 3ε1/2 + ε1/4) exp

{
C0

√
A̄− A−B√
|λ|

ε−1/4

}

l = 2 Σ3 � (24ε3/2 + 24ε5/4 + 12ε+ 4ε3/4 + ε1/2) exp

{
C0

√
A̄− A−B√
|λ|

ε−1/4

}
. . .

These decreasing bounds are smaller than (6.26).
Finally, we consider non-admissible vectors k for which γk ≥ |k|/2. Also we have

γk = |〈k, ω〉||k| ≤ |k|2|ω|. From (6.9), we obtain

αk ≤
|k||ω|√

ε(1− exp{−Cε−1/2})
, βk ≥ ρ|k|+ C

4ε1/2

Therefore,

∑
k/∈A

|k|lLk ≤
exp{−Cε−1/2/4}√
ε(1− exp{−Cε−1/2})

∑
k/∈A

|k|l+1 exp{−ρ|k|}.

This sum can be bounded from above by the sum of a geometric series which is smaller
than (6.26). This completes the proof of Lemma.

6.2.4 Dominant harmonics of the splitting potential

To study the nondegenerate critical points of the whole splitting potential L(θ) (the
simple zeros of the splitting function M(θ)) we can use as a first approximation the
estimates obtained in Lemma 6.1. We prove that assuming µ = εp, for a suitable p > 0,
the dominant harmonics don’t change essentially in L if we add the error term of order
O(µ2).

Recall that M = ∂θL and take into account that L is ω̂ε-quasiperiodic, we can
consider the following Fourier expansion:

L(s, θ) =
∑
k∈Z2

L∗kei〈k,θ−ω̂εs〉 =
∑
k∈Z

Lk cos(〈k, θ − ω̂εs〉 − τk),

where Lk, τk are real, Lk ≥ 0 and Z is defined in (5.8). For every k ∈ Z, the exponential
and the trigonometric forms are related by L∗k = 1

2
Lke−iτk . Then the corresponding

Fourier coefficients of the splitting functionM(s, θ) and the Melnikov function M(s, θ)
are (in the exponential form) M∗

k = ikL∗k and M∗
k = ikL∗k, respectively.
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Lemma 6.2. Assuming ε � 1, µ = εp with p > p∗, with p∗ = 2 if ν = 1 and p∗ = 3 if
ν = 0, one has:

(a) LS1 ∼ µ
ε1/4

exp{−C0h1(ε)

ε1/4
},

LS′ ∼ µ
ε1/4

exp{−C0h2(ε)

ε1/4
},

LSi ∼
ciµ
ε1/4

exp{−ci C0h1(ε)

ε1/4
}, i = 2, . . . ,m;

(b) |τk − σk − s(0)〈k, ω̂ε〉| � µ
εp∗
, k = S1, S2, . . . , Sm, S

′;

(c)
∑

k 6=S1,S′,Si

|k|lLk � 1
εl/4
LSm+2 , i = 1, . . . ,m, l ≥ 0.

Proof. The proof is similar to the one of Lemma 5 in [DG04], here we just adapt it to
the quadratic numbers from (6.15) The splitting function M(s, θ) can be defined on
a complex domain: |Im s| < π

2
− δ, |Im θ| < ρ, where δ is a small reduction (to be

chosen). On this domain, the upper bound (5.14), pointed out in Theorem 5.1 (for the
two-dimensional case), can be applied to the error term (5.13). Also we can deduce from

(5.13) that the Fourier coefficients for the error term areR∗k = ik(L∗k−µL∗ke−is
(0)〈k,ω̂ε〉),

k 6= 0. Taking modulus and argument, we get

|Lk − µLk| �
|R∗k|
|k|

, |τk − σk − s(0)〈k, ω̂ε〉| �
|R∗k|
|k|µLk

.

Since R is ω̂ε-quasiperiodic, a standard result (Lemma 11 of [DGS04]) can be applied
to it to get bounds for its Fourier coefficients:

|R∗k| �
(
µ2

δq3
+

µ2

δq4
√
ε

)
e−β̃k(ε), β̃k(ε) = (ρ− δ)|k|+ (π/2− δ)b′γk

b|k|
√
ε

.

We present the function β̃k as

β̃k(ε) =
Cµ,δ
√
γ̃k

2ε1/4

[(
ε

εk

)1/4

+
(εk
ε

)1/4
]
,

where

ε
1/4
k =

Cµ,δ
√
γ̃k

2(ρ− δ)|k|
, Cµ,δ =

√
4

(π/2− δ)b′
b

(ρ− δ)γ∗j0 = C0 +O(µδ−q2 , δ).

The difference with (6.10) is that for β̃k we write π/2− δ and ρ− δ instead of π/2 and
ρ in βk(ε). In fact, we consider β̃k as a perturbation of βk. Indeed, proceeding as in
the proof of Lemma 6.1, we get for the most dominant term:

β̃S1 =
C0h1(ε) +O(

√
ε, µδ−q2 , δ)

ε1/4
.
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We can neglect the perturbation term if µδ−q2 � ε1/4, δ � ε1/4. So we choose δ = ε1/4.
The smallness conditions on µ become µ � εq1/4 (the condition containing the exponent
q2 can be ignored, since q1 ≥ q2 + 3). Then using (6.23), we conclude

|LS1 − µLS1| �
µ2

ε(q3−1)/4
exp

{
−C0h1(ε)

ε1/4

}
.

Therefore, the term |µLS1| ∼ µ
ε1/4

exp{−C0h1(ε)

ε1/4
} (estimated in Lemma 6.1) dominates

if
µ

ε1/4
� µ2

ε(q3−1)/4
.

If one takes µ = εp, the last condition is fulfilled at p > (q3 − 2)/4. We get p∗ =
max{(q3 − 2)/4, q1/4} = (q3 − 2)/4, since q3 − 2 ≥ q1. In fact, for ν = 0 we have
q3 = 14 and hence p∗ = 3, and for ν = 1 we have q3 = 10 and p∗ = 2. The remaining
statements of (a) for the other dominant terms Si, i = 2, . . . ,m and S ′ as well as the
part (b) are proved in a similar way.

To prove (c), we bound the sum of |k|lLk, k 6= Si, S
′, i = 1, . . . ,m, by the sum of a

geometric series analogously as it was done in the proof of Lemma 6.1.

6.2.5 Nondegenerate critical points of L
To prove the nondegenericity of the critical points of L(θ) we need to consider at
least 2 essential dominant harmonics LS1 and LS′ (see Definition 6.1 of essential dom-
inant harmonics), also we have to take into account all the non-essential harmonics
LS2 , . . . ,LSm , if necessary, that LS1 ≥ LS2 ≥ . . . ≥ LSm ≥ LS′ and the corresponding
vectors S2, . . . , Sm are linearly dependent with S1 (recall that S1 and S ′ are indepen-
dent). Since these vectors are linearly dependent with S1, they satisfy the relations
(6.18).

First we consider the approximation of L by these m+ 1 harmonics

L(m+1)(θ) =
m∑
i=1

LSi cos(〈Si, θ〉 − σSi) + LS′ cos(〈S ′, θ〉 − σS′).

After the linear change

ψ1 = 〈S1, θ〉 − σS1 , ψ2 = 〈S ′, θ〉 − σS′ (6.27)

which can be written as

ψ = Anθ − b, where An =

(
S>1

(S ′)>

)
, b =

(
σS1

σS′

)
,

the function L(m+1) becomes

K(m+1)(ψ) = LS1 cosψ1 +
m∑
i=2

LSi cos(ciψ1 +4τi) + LS′ cosψ2,

where 4τi = σSi − ciσS1 , i = 2, . . . ,m.
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Lemma 6.3. 1. K(m+1)(ψ) has 4 nondegenerate critical points ψ(1) = (O(η), 0), ψ(2) =
(O(η), π), ψ(3) = (π +O(η), 0), ψ(4) = (π +O(η), π) , where

η =

{
0, if m = 1,
LS2/LS1 , if m > 1

(6.28)

and m is defined in (6.19).

2. detD2K(m+1)(ψ(j)) = LS1LS′(1 +O(η)).

Proof. The critical points of K(m+1) are the solutions of the system:

LS1 sinψ1 +
m∑
i=2

ciLSi sin(ciψ1 +4τi) = 0, LS′ sinψ2 = 0.

From the second equation we get ψ2 = 0 and ψ2 = π, while the first equation can be
written in the form

sinψ1 = −
m∑
i=2

ci
LSi
LS1

sin(ciψ1 +4τi) = ηf(ψ1),

where f(ψ1) is bounded with its derivative

|f(ψ1)| ≤M =
m∑
i=2

ciLSi/LS2 � 1, |f ′(ψ1)| ≤ N =
m∑
i=2

c2
iLSi/LS2 � 1. (6.29)

Hence, for η < 1√
M2+N2 small enough the condition η2(f ′)2 + η2f 2 < 1 is satisfied

and, therefore, by Lemma B.1 there exist two simple solutions of the equation near to
ψ1 = 0 and ψ1 = π.

These solutions give rise to the 4 critical points ψ(1), ψ(2), ψ(3), ψ(4) of K(m+1).
The determinant is easily computed. We have

detD2K(m+1)(ψ) = LS1LS′(cosψ1 − ηf ′(ψ1)) cosψ2

for any ψ ∈ T2. Hence, at the critical points we get

| detD2K(m+1)(ψ(i))| = LS1LS′(1 +O(η)).

Remark 6.6. Note that if there are no non-essential harmonics between LS1 and
LS′ , i.e. m = 1 and S ′ = S2, then we put η = 0 and the critical points are ψ(1) =
(0, 0), ψ(2) = (0, π), ψ(3) = (π, 0), ψ(4) = (π, π).
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After having studied the critical points of the approximation K(m+1) we have to
study their persistence if we add the remainder. Applying the linear change (6.27) to
the whole splitting potential L(θ), we get

K(ψ) = K(m+1) + LSm+2G(ψ1, ψ2),

where the term LSm+2G(ψ1, ψ2) corresponds to the sum of all the non-dominant terms
of L (it is bounded according to part (b) of Lemma 6.2) and LSm+2 (the next after
LS′) is the maximum of non-dominant harmonics. Note that function G is obtained
via the linear change (6.27) applied to the remaining terms of L. Taking into account
the bound (c) of Lemma 6.2 for the non-dominant terms, one gets the following bounds
for G:

|G| � 1, |∂ψ1G| � ε−1/2, |∂ψ2G| � ε−1/2,
|∂2
ψ1ψ1

G| � ε−1, |∂2
ψ1ψ2

G| � ε−1, |∂2
ψ2ψ2

G| � ε−1.
(6.30)

Lemma 6.4. If η = max
{
η,LSm+2/LS′

}
� ε2, η is given in (6.28), then the function

K(ψ) has 4 critical points, all nondegenerate: ψ
(j)
∗ = ψ(j),0 +O(η), j = 1, 2, 3, 4, where

ψ(1),0 = (0, 0), ψ(2),0 = (π, 0), ψ(3),0 = (0, π), ψ(4),0 = (π, π). At the critical points,

| detD2K(ψ(j)
∗ )| = LS1LS′

(
1 +O

(
η

ε

))
.

Proof. The critical points of K are the solutions of

sinψ1 = ηf(ψ1) + η′g1(ψ1, ψ2), sinψ2 = η′′g2(ψ1, ψ2), (6.31)

where ηf corresponds to non-essential dominant terms (the same as in the proof of

Lemma 6.3), η′ =
LSm+2

LS1
, η′′ =

LSm+2

LS′
are exponentially small (note that η′ < η′′ � 1)

and the functions g1(ψ) = ∂ψ1G(ψ) and g2(ψ) = ∂ψ2G(ψ) have bounds obtained from
(6.30)

|g1| ∼ ε−1/2, |∂ψ1g1| ∼ ε−1, |∂ψ2g1| ∼ ε−1,
|g2| ∼ ε−1/2, |∂ψ1g2| ∼ ε−1, |∂ψ2g2| ∼ ε−1.

Thus, η = max{η, η′′} and the conditions of Lemma B.2 becomes

(ηf(ψ1) + η′g1(ψ))2 + (|ηf ′(ψ1) + η′∂ψ1g1(ψ)|+ |η′∂ψ2g1(ψ)|)2 < 1
(ηf(ψ1) + η′′g2(ψ))2 + (|ηf ′(ψ1) + η′′∂ψ1g2(ψ)|+ |η′′∂ψ2g2(ψ)|)2 < 1

Due to η′ < η′′, the second inequality implies the first one. We recall also that |f | ≤M
and |f ′| ≤ N , M and N are the constants defined in (6.29). Then the conditions are
satisfied if

η <
ε√

ε(Mε1/2 + 1)2 + (Nε+ 2)2
,
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and this inequality is true for η � ε, thus, K(ψ) has 4 nondegenerate critical points.
Moreover, since the left parts of (6.31) are small in η, the critical points are a pertur-
bation of the points ψ(j),0, j = 1, 2, 3, 4.

The determinant is

det(D2K(ψ)) = (−LS1 cosψ1 + ηLS1f
′ + η′LS1∂ψ1g1)(−LS′ cosψ2 + η′′LS′∂ψ2g2)

−η′η′′LS1LS′∂ψ2g1∂ψ1g2 = LS1LS′ (cosψ1 cosψ2 +O (η/ε)) .
(6.32)

If we choose η � ε2, we have a small term O (η/ε) in (6.32). Thus, substituting the

critical points ψ
(j)
∗ , j = 1, 2, 3, 4, we will get the expected estimates and complete the

proof of Lemma.

Remark 6.7. In (6.32), we can choose η � εa with any a > 1 (for instance, η � ε1.01

or η � ε2013) for the validity of Lemma 6.4. Just for simplicity, we chose η � ε2. Note
that η is exponentially small in ε and, hence, can be bounded by a power of ε.

We translate the results of Lemma 6.4 from the function K(ψ) to the splitting
potential L(θ). It is well known that each critical point of K(ψ) gives rise to κ critical
points of L(θ), where κ := | detAn|. We have checked that for all the frequencies
(6.15), κ = 1. Thus, the linear change (6.27) is one-to-one, and applying the inverse
change of it, we obtain 4 nondegenerate critical points of L(m+1)

θ(j)
∗ = A−1

n (ψ(j)
∗ + b), j = 1, 2, 3, 4. (6.33)

We also find an estimate for the minimal eigenvalue (in modulus) m(j) of D2L(m+1) at
each critical point.

Lemma 6.5. Assume η = max
{
η,LSm+2/LS′

}
� ε2, η is given in (6.28). Then the

splitting potential L has exactly 4 critical points θ
(j)
∗ , given by (6.33), all nondegenerate

and satisfying m(j) ∼
√
εLS′ .

Proof. We can present the minimal (in modulus) eigenvalue of D2L(θ
(j)
∗ ) in form

m(j) =
2|D|

|T |+
√
T 2 − 4D

,

where D = detD2L(θ
(j)
∗ ) and T = trD2L(θ

(j)
∗ ). Thus, we need to find estimates for D

and T .

One can prove thatD2L(θ) = (An)>D2K(ψ)An. Therefore, ifD2K =

(
k11 k12

k12 k22

)
,

we see that

D2L = k11S1 · S>1 + k12[S1 · (S ′)> + S ′ · S>1 ] + k22S
′ · (S ′)>,

where
k11 = LS1(− cosψ1 + ηf ′ + η′∂ψ1g1),
k12 = LSm+2∂

2
ψ1ψ2

G = η′LS1∂ψ2g1 = η′′LS′∂ψ1g2,
k22 = LS′(− cosψ2 + η′′∂ψ2g2).
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At the critical points ψ
(j)
∗ , |k11| ∼ LS1 , |k12| ∼ LSm+2 � LS′ , k22 = LS′ � LS1 . We get

that
T = k11|S1|22 + 2k12〈S1, S

′〉+ k22|S ′|22,
here we use the 2-norm |x|2 =

√
(x1)2 + (x2)2, but since the 1-norm and 2-norm are

equivalent (|x|1/
√

2 ≤ |x|2 ≤ |x|1), we can apply the estimates (6.23) to obtain

|T | ∼ 1√
ε
LS1 .

Moreover, since | detAn| = 1, we get from Lemma 6.4

|D| = | detD2K(ψ(j)
∗ )| = LS1LS′ (1 +O (η/ε)) ∼ LS1LS′ .

Thus, having |D| � T 2, we conclude

m(j) ∼
|D|
|T |
∼
√
εLS′ .

6.2.6 Proof of Theorems 6.1 and 6.2

Theorem 6.1, p. 125, is a consequence of the fact thatM(θ) = ∂θL(θ) and the estimate
for the most dominant harmonic LS1 given in Lemma 6.2, p. 138. We consider the
approximation L(m+1) by 2 essential dominant harmonics and deduce the following
estimates:

|∂θL(m+1)| ∼ |S1|LS1 ∼
1

ε1/4
LS1 , |∂L − ∂θL(m+1)| ∼ 1

ε1/4
LSm+2 .

Since LSm+2 � LS1 , we get the estimate

|M| = |∂θL| ∼
µ√
ε

exp

{
−C0h1(ε)

ε1/4

}
.

Theorem 6.2, p. 130, follows from Lemma 6.5 and that the nondegenerate critical
points of L(θ) correspond to simple zeros of M(θ). Applying the estimate for the
second essential dominant harmonics LS′ from Lemma 6.2, we obtain the expected
estimate for the minimal (in modulus) eigenvalue of the splitting matrix ∂θM = D2L:

m∗ ∼
√
εLS′ .

Note that the result of Lemma 6.5 applies only for η = max
{
LS2/LS1 ,LSm+2/LS′

}
� ε,

and this condition excludes from consideration some (decreasing as n→∞) neighbor-
hoods of the points εn (given in (6.13)), ε′′n and ε′′′n (given in (6.21)), where the second
and the third essential dominant harmonics of M are of the same magnitude.
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6.3 Continuation of transverse homoclinic orbits in

the case Ω2

In this section we focus our attention on the case of the silver number Ω2 =
√

2 − 1.
Recall that in Theorem 6.1, p. 125, an asymptotic estimate of the maximum distance
between the stable and unstable invariant manifold in term of the maximum value (in
modulus) of M(θ) has been given and, thus, the splitting has been established for all
ε→ 0, while in Theorem 6.2, p. 130, the nondegeneracity of the critical points of the
splitting potential L(θ) and the transversality of the corresponding homoclinic orbits
of (5.1-5.7) with n = 2 has been proven for most values of ε where there are only two
essential dominant harmonics LS1 and LS′ . Here we study the critical points of L(0, θ)
for ε close to a critical value εn at which the second dominant harmonic coincides with
some other consecutive dominant harmonics. Notice that in the case Ω2 there is no non-
essential harmonics, and, thus, there is no points ε′′n and ε′′′n , defined in (6.21). Indeed,
we can see in Figure 6.1 that at ε = εn the primary function ĝn(ε) is the smallest, while
the primary functions ĝn−1(ε), ĝn+1(ε) and the secondary function gs(3,n−1)(ε) take the
same value. This means that for ε near to εn the most dominant term of L(θ) is Ls0(n),
and the next dominant terms Ls0(n−1), Ls0(n+1), Ls(3,n−1) are of the same magnitude
(recall that we denoted by s0(·) the sequence of primary resonances (see Section 6.1)).
Thus, the point εn requires the consideration of 4 dominant harmonics.

For the silver number Ω2 we have the following data of Section 6.1:

T =

(
2 1
1 0

)
, U =

(
0 1
1 −2

)
λ = 1 +

√
2, γ∗ = γ∗1 = 0.5, γ̃∗∗ = 2

j0 = 1, k0(1) = [0, 1], γ̃∗1 = 1;
j = 3, k0(3) = [−1, 3], γ̃∗3 = 2;
j = 4, k0(4) = [−2, 4], γ̃∗4 = 4;
j ≥ 6 γ̃∗j > 6.5723

We denote by s1(n) the sequence of secondary vectors generated by primitive k0(3) =
[−1, 3]. These are secondary vectors whose limit γ̃∗3 is the smallest among the secondary
γ̃∗j , j 6= j0, and coincides with the separation parameter γ̃∗∗ = 2 (γ̃∗∗ is defined at the
end of Section 6.1).

We have the relations for our vectors

s0(n+ 1) = s0(n− 1)− 2s0(n),
s1(n− 1) = s0(n− 1)− s0(n).

(6.34)

To prove the nondegenericity of the critical points of L near ε ≈ εn, we consider
the approximation by its 4 dominant terms

L(4)(θ) = Ls0(n) cos(〈s0(n), θ〉 − σs0(n)) + Ls0(n−1) cos(〈s0(n− 1), θ〉 − σs0(n−1))
+ Ls0(n+1) cos(〈s0(n+ 1), θ〉 − σs0(n+1)) + Ls1(n−1) cos(〈s1(n− 1), θ〉 − σs1(n−1))
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By a linear change

ψ1 = 〈s0(n− 1), θ〉 − σs0(n−1), ψ2 = 〈s0(n), θ〉 − σs0(n), (6.35)

that could be written as

ψ = Aθ − b, where A =

(
s0(n− 1)>

s0(n)>

)
, b =

(
σs0(n−1)

σs0(n)

)
,

the function L(4) is transformed into (taking into account (6.34))

K(4) = B cosψ2 +Bη(1−Q) cosψ1 +BηQ cos(ψ1−2ψ2−4τ)+BηQ̃ cos(ψ1−ψ2−4τ1),

where

B = Ls0(n), 4τ = σs0(n+1) − σs0(n−1) + 2σs0(n), 4τ1 = σs1(n−1) − σs0(n−1) + σs0(n),

Q =
Ls0(n+1)

Ls0(n−1) + Ls0(n+1)

, Q̃ =
Ls1(n−1)

Ls0(n−1) + Ls0(n+1)

, η =
Ls0(n−1) + Ls0(n+1)

Ls0(n)

.

Note that here η is exponentially small, 0 < Q < 1 and 0 < Q̃ ≤ 1/2. At Q = Q̃ = 1
2
,

the harmonics Ls0(n−1),Ls0(n+1) and Ls1(n−1) coincide.
We introduce the following important quantity

E∗ = min(E(+), E(−)), where

E(±) =

√[
1−Q+Q cos4τ ± Q̃ cos4τ1

]2

+
[
Q sin4τ ± Q̃ sin4τ1

]2

.
(6.36)

In the next lemma we prove the existence of 4 critical points of K(4) for η small enough,
provided E∗ > 0.

Lemma 6.6. Assume E∗ > 0 in (6.36). If 0 < η � E∗, the function K(4)(ψ) has 4
nondegenerate critical points: ψ(1) = (α(+), 0)+O(η), ψ(2) = (α(+) +π, 0)+O(η), ψ(3) =
(α(−), π) +O(η), ψ(4) = (α(−) + π, π) +O(η), where

cosα(±) =
1−Q+Q cos4τ ± Q̃ cos4τ1

E(±)
, sinα(±) =

Q sin4τ ± Q̃ sin4τ1

E(±)
. (6.37)

At the critical points,

| detD2K(4)(ψ(1,2))| = B2(ηE(+) +O(η2)),

| detD2K(4)(ψ(3,4))| = B2(ηE(−) +O(η2)).
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Proof. In order to find the critical points of K(4)(ψ), we study the equations

(1−Q) sinψ1 +Q sin(ψ1 − 2ψ2 −4τ) + Q̃ sin(ψ1 − ψ2 −4τ1) = 0

− sinψ2 + 2ηQ sin(ψ1 − 2ψ2 −4τ) + ηQ̃ sin(ψ1 − ψ2 −4τ1) = 0.
(6.38)

We want to deduce these equations to sinψ1 = G1(ψ1, ψ2), sinψ2 = G2(ψ1, ψ2), then
apply Lemma B.2 (the Fixed Point theorem, see Appendix B) to obtain 4 simple
solutions.

Indeed, from the second equation we conclude the equation with a small in η left
part

sinψ2 = ηf(ψ1, ψ2) = O(η),

where

f(ψ1, ψ2) = 2Q sin(ψ1 − 2ψ2 −4τ) + Q̃ sin(ψ1 − ψ2 −4τ1). (6.39)

The function f(ψ1, ψ2) and its derivatives are bounded: |f | ≤ 2Q + Q̃ = M̄ < 5/2,
|∂f/∂ψ1| ≤ M̄ , |∂f/∂ψ2| ≤ 4Q + Q̃ = N̄ < 9/2. Thus, by Lemma B.2 the equation
has solution if η2(M̄2 + (M̄ + N̄)2) < η[(5/2)2 + (14/2)2] < 1 or η < 2√

221
. We will find

first the solution ψ
(1)
2 ∈ [−π

2
, π

2
], and then ψ

(2)
2 ∈ [π

2
, 3π

2
].

For ψ
(1)
2 ∈ [−π

2
, π

2
], we have sinψ2 = ηf(ψ1, ψ2) and cosψ2 =

√
1− η2f(ψ1, ψ2) =

1 + η2f1(ψ1, ψ2; η), where for η small enough, for example η < 2√
221

, f1 is some func-

tion bounded with its derivatives: |f1| ≤ M̄2, |∂f1/∂ψ1| < 3M̄2, |∂f1/∂ψ2| ≤ 3M̄N̄ .

Putting this into the first equation of (6.38), we get the equation F
(+)
η (ψ1, ψ2) = 0,

with the function

F
(+)
η = (1−Q) sinψ1 +Q sin(ψ1 −4τ) + Q̃ sin(ψ1 −4τ1)− ηf2(ψ1, ψ2; η),

=
[
1−Q+Q cos4τ + Q̃ cos4τ1

]
sinψ1 +

[
Q sin4τ + Q̃ sin4τ1

]
cosψ1

−ηf2(ψ1, ψ2; η),= E(+) sin(ψ1 − α(+))− ηf2(ψ1, ψ2; η),

where E(+) and α(+) are the constants defined in (6.36) and (6.37), respectively, and
function f2 is also bounded with its derivatives: |f2| ≤ M1 < 9, |∂ψ1f2| ≤ M222.1,
|∂ψ2f2| ≤M3 < 30.3. Thus, if E(+) 6= 0 or provided one of the conditions

1−Q+Q cos4τ + Q̃ cos4τ1 6= 0 or Q sin4τ + Q̃ sin4τ1 6= 0 (6.40)

is satisfied, the equation F
(+)
η = 0 is derived to

sin(ψ1 − α(+)) = ηf2/E
(+).

By Lemma B.2 (the Fixed Point theorem in Appendix B), if( η

E(+)

)2

(M2
1 + (M2 +M3)2) <

η2

(E∗)2
2827 < 1⇒ η � E∗, (6.41)
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the equation has 2 solutions ψ
(1)
1 − α(+) ∈ [−π

2
, π

2
] and ψ

(2)
1 − α(+) ∈ [π

2
, 3π

2
].

We proceed analogously for ψ
(2)
2 ∈ [π

2
, 3π

2
]. Substitute sinψ2 = ηf(ψ1, ψ2) and

cosψ2 = −1− η2f1(ψ1, ψ2) into the first equation of (6.38), we find

F (−) =
[
1−Q+Q cos4τ − Q̃ cos4τ1

]
sinψ1 −

[
Q sin4τ − Q̃ sin4τ1

]
cosψ1

−ηf3(ψ1, ψ2) = E(−) sin(ψ1 − α(+))− ηf3(ψ1, ψ2) = 0,

where |f3| ≤ M1, |∂f3/∂ψ1| ≤ M2, |∂f3/∂ψ2| ≤ M3. This equation can have solution
only if E(−) 6= 0, i.e. if any of the conditions

1−Q+Q cos4τ − Q̃ cos4τ1 6= 0, or Q sin4τ − Q̃ sin4τ1 6= 0 (6.42)

holds. Under this condition, the equation is

sin(ψ1 − α(−)) = ηf3/E
(−).

which gives two solutions ψ
(3)
1 − α(−) ∈ [−π

2
, π

2
] and ψ

(4)
1 − α(−) ∈ [π

2
, 3π

2
] if additionally

the condition (6.41) is true.
To compute the determinant, we have

detD2K(4)(ψ) = B2(η cosψ2((1−Q) sinψ1 +Q sin(ψ1 − 2ψ2 −4τ)

+Q̃ sin(ψ1 − ψ2 −4τ1)) +O(η2))

for any ψ ∈ T2. At ψ(1), for example, we have

detD2K(4)(ψ(1)) = B2

η ∂F (+)
η

∂ψ1

∣∣∣∣∣
ψ(1)

cosψ
(1)
2 +O(η2)

 = B2(ηE(+) +O(η2)),

and similarly with ψ(2), ψ(3), ψ(4).

To find values of the parameters at which the conditions (6.40) and (6.42) fail, i.e.
the following equalities hold:

E(+) = 0 : 1−Q+Q cos4τ = −Q̃ cos4τ1 Q sin4τ = −Q̃ sin4τ1

E(−) = 0 : 1−Q+Q cos4τ = Q̃ cos4τ1 Q sin4τ = Q̃ sin4τ1,

we consider the points P1 = (1−Q+Q cos4τ,Q sin4τ), P2 = (Q̃ cos4τ1, Q̃ sin4τ1)
and P3 = (−Q̃ cos4τ1,−Q̃ sin4τ1). These points lie on the circles represented in
Figure 6.6. Hence, E(+) is the distance P1P3, while E(−) is P1P2. Checking all the
possible cases of the mutual location of the circles, we can see when the points P1

coincides with P2 and P3 (and, thus, E(−) = 0 and E(+) = 0, respectively). From
Figure 6.7 we get for E(−):

if 1− 2Q > Q̃, E(−) > 0 ∀4τ,4τ1,

if 1− 2Q = Q̃, E(−) = 0 when 4τ = π,4τ1 = 0,

if |1− 2Q| < Q̃, E(−) = 0 when cos(4τ) = −1−2Q+2Q2−Q̃2

2(1−Q)Q
, cos4τ1 = − Q̃2+1−2Q

2(1−Q)Q̃
,

if 1− 2Q = −Q̃, E(−) = 0 when 4τ = π,4τ1 = π,

if 1− 2Q < −Q̃, E(−) > 0 ∀4τ,4τ1,
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Figure 6.6: Geometrical representation of E(+) and E(−).

while for E(+) we have

if 1− 2Q > Q̃, E(+) > 0 ∀4τ,4τ1,

if 1− 2Q = Q̃, E(+) = 0 when 4τ = π,4τ1 = π,

if |1− 2Q| < Q̃, E(+) = 0 when cos(4τ) = −1−2Q+2Q2−Q̃2

2(1−Q)Q
, cos(4τ1) = Q̃2+1−2Q

2(1−Q)Q̃
,

if 1− 2Q = −Q̃, E(+) = 0 when 4τ = π,4τ1 = 0,

if 1− 2Q < −Q̃, E(+) > 0 ∀4τ,4τ1,

Also we can provide a sufficient condition for E∗ 6= 0 if we take into account that
0 < Q̃ ≤ 1/2. Thus, the critical value for Q̃ and the radius of the circle centered at
the origin is 1/2. In Figure 6.8 we consider two circles: C1 is with radius 1/2 and C2 is
the unit circle. The map Q→ (1−Q+Q cos4τ,Q sin4τ), for 0 ≤ Q ≤ 1, gives us a
family of straight lines connecting points (1, 0), at Q = 0, and (cos4τ, sin4τ) ∈ C2,
at Q = 1. We can see in Figure 6.8 that the straight lines don’t intersect the circle C1,
i.e. E∗ > 0, for the following values of the parameters:

|4τ | < τ ∗ =
2π

3
, ∀4τ1 ∈ T, 0 < Q1, 0 < Q̃ ≤ 1/2. (6.43)

It turns out that both conditions (6.40) and (6.42) are true for 4τ = 4τ1 = 0,
since 1 + Q̃ 6= 0 and 1− Q̃ 6= 0. Thus, E(±) = 1± Q̃, α(±) = 0. We get 4 critical points
ψ(1) = (0, 0) +O(η), ψ(2) = (π, 0) +O(η), ψ(3) = (0, π) +O(η), ψ(4) = (π, π) +O(η)).
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Figure 6.7: Cases of E(±) = 0.

We prove the persistence of the critical points ψ(j), j = 1, 2, 3, 4, of the approxima-
tion K(4)(ψ) in the whole function K(ψ) if we consider also non-dominant terms:

K(ψ) = K(4)(ψ) +Bηη′G̃(ψ),

where Bηη′G̃(ψ) correspond to the sum of all non-dominant harmonics and LS5 = Bηη′

is the largest among them. Thus, we have

η′ =
LS5

Ls0(n−1) + Ls0(n+1)

� Q, Q̃.

From Lemma 6.2 (c), one gets the following bounds for function G(ψ):

|G| � 1, |∂ψ1G| � ε−1/2, |∂ψ2G| � ε−1/2,
|∂2
ψ1ψ1

G| � ε−1 |∂2
ψ1ψ2

G| � ε−1 |∂2
ψ2ψ2

G| � ε−1 (6.44)

Lemma 6.7. Assume E∗ > 0 in (6.36). If η̄ = max(η, η′) � E∗ε2, then the function

K(ψ) has 4 critical points, all nondegenerate: ψ
(j)
∗ = ψ(j),0 +O(η̄), j = 1, 2, 3, 4, where
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Figure 6.8: E(±) > 0 (the straight lines don’t intersect the circle C1) if |4τ | < 2π
3 .

ψ(1),0 = (α(+), 0), ψ(2),0 = (α(+) + π, 0), ψ(3),0 = (α(−), π), ψ(4),0 = (α(−) + π, π). At the
critical points,

| detD2K(4)(ψ(1,2))| = B2η(E(+) +O(η̄/ε)),

| detD2K(4)(ψ(3,4))| = B2η(E(−) +O(η̄/ε)).

Proof. We proceed analogously as in the proof of Lemma 6.6 and get that the critical
points of K(ψ) are the solution of

F
(+)
η,η′ (ψ) = 0

sinψ2 = ηf(ψ1, ψ2) + ηη′g̃2(ψ1, ψ2), if ψ2 ∈ [−π
2
, π

2
]

and the solution of

F
(−)
η,η′ (ψ) = 0

sinψ2 = ηf(ψ1, ψ2) + ηη′g̃2(ψ1, ψ2), ifψ2 ∈ [−π
2
, π

2
]

(6.45)

with

F
(+)
η,η′ (ψ) = E(+) sin(ψ1 − α(+))− ηf2(ψ1, ψ2; η, η′) + η′g1(ψ1, ψ2)

F
(−)
η,η′ (ψ) = E(−) sin(ψ1 − α(−))− ηf3(ψ1, ψ2; η, η′) + η′g1(ψ1, ψ2)

(6.46)

In the last equations, E(±) and α(±) are the constants defined in (6.36) and (6.37),
respectively, the function f is defined in (6.39) and it is bounded |f | ≤ M̄ , |∂ψ1f | ≤ M̄ ,
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|∂ψ2f | ≤ N̄ , the functions f2, f3 are bounded: |f2| ≤ M̃1, |∂f2/∂ψ1| ≤ M̃2, |∂f2/∂ψ2| ≤
M̃3, |f3| ≤ M̃1, |∂f3/∂ψ1| ≤ M̃2, |∂f3/∂ψ2| ≤ M̃3 and the functions g̃1 = ∂ψ1G̃ and
g̃2 = ∂ψ2G̃ have bounds according to Lemma 6.2(c)

|g̃1| ∼ ε−1/2, |∂ψ1 g̃1| ∼ ε−1, |∂ψ2 g̃12| ∼ ε−1,
|g̃2| ∼ ε−1/2, |∂ψ1 g̃2| ∼ ε−1, |∂ψ2 g̃2| ∼ ε−1.

Therefore, the conditions (6.41) are refined as(
η̄

E(±)

)2
((M̃1 + ε−1/2)2 + (M̃2 + M̃3 + 2ε−1)2) < 1

η2((M̄ + η′ε−1/2)2 + (M̄ + N̄ + 2η′ε−1)2) < 1

These conditions are satisfied if the following inequalities are true, respectively,

η̄2

(E∗)2
· 1

ε2

[
ε(M̃1ε

1/2 + 1)2 + ((M̃2 + M̃3)ε+ 2)2
]
< 1

(this inequality is true for η̄ � E∗ε), and

η2

ε2
·
[
ε(M̄ε1/2 + η′)2 + ((M̄ + N̄)ε+ 2η′)2

]
< 1

(this inequality is fulfilled for ηη′ ≤ η̄2 � ε) We choose η̄ � min{E∗ε, ε1/2} = E∗ε, and,
under this condition, according to Lemma B.2 (the Fixed Point theorem in Appendix

B), the equations (6.45-6.46) have 4 simple solutions ψ
(j)
∗ , j = 1, 2, 3, 4.

The determinant is

detD2K(4)(ψ) = B2η(cosψ2((1−Q) sinψ1 +Q sin(ψ1 − 2ψ2 −4τ)

+Q̃ sin(ψ1 − ψ2 −4τ1)) +O(η̄/ε))

for any ψ ∈ T2. At the point ψ
(1)
∗ = (α(+), 0) +O(η̄), we have

detD2K(4)(ψ(1)
∗ ) = B2η

 ∂F
(+)
η,η′

∂ψ1

∣∣∣∣∣
ψ

(1)
∗

cosψ
(1)
∗2 +O(

η̄

ε
)

 = B2η(E(+) +O(η̄/ε)),

and the same with ψ
(2)
∗ , ψ

(3)
∗ , ψ

(4)
∗ .

Applying the inverse (one-to-one) linear change of (6.35), the critical points ψ(j), j =
1, 2, 3, 4, of K(4) give rise to 4 nondegenerate critical points of L(4):

θ(j)
∗ = A−1(ψ(j)

∗ + b), j = 1, 2, 3, 4. (6.47)

Lemma 6.8. Assume E∗ > 0 in (6.36). If η̄ = max(η, η′) � E∗ε2, the splitting

potential L has exactly 4 critical points θ
(j)
∗ , given by (6.33), all nondegenerate, and

the minimal eigenvalue (in modulus) m(j) of D2L(θ
(j)
∗ ) satisfies

E∗
√
εLS2 � m(j) �

√
εLS2 , j = 1, 2, 3, 4. (6.48)
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Proof. The proof is similar to the one of Lemma 6.5 and, thus, we give here only a
sketch of the proof. We have the following expression for the minimal (in modulus)
eigenvalue:

m(j) =
2|D|

|T |+
√
T 2 − 4D

,

where D = detD2L(θ
(j)
∗ ) and T = trD2L(θ

(j)
∗ ). Thus, we need to find estimates for D

and T .
It is clear that

D = detD2L(θ) = det((A)>D2K(ψ)A) = detD2K(ψ),

since | detA| = 1. Then

|D| = B2η(E(±) +O(η̄/ε)) ∼ L2
s0(n)ηE

(±) ∼ E(±)Ls0(n)(Ls0(n−1) + Ls0(n+1))

� E∗Ls0(n)(Ls0(n−1) + Ls0(n+1)) ∼ E∗LS1LS2 ,

taking into account the definition of η and the facts that B = LS1 , Ls0(n−1) ∼ Ls0(n+1) ∼
LS2 , E(±) ≥ E∗.

If D2K =

(
k11 k12

k12 k22

)
, then

D2L = k11s0(n−1)·s0(n−1)>+k12[s0(n−1)·s0(n)>+S ′ ·s0(n−1)>]+k22s0(n)·s0(n)>,

where the components of D2K at the critical points ψ
(j)
∗ are

|k11| = Bη(E(±) +O(η̄/ε)) � Bη ∼ LS2 ,

|k12| = Bη( ∂f
∂ψ1

+O(η̄/ε)) � Bη ∼ LS2 ,

|k22| = B +Bη( ∂f
∂ψ2

+O(η̄/ε)) ∼ LS1 .

We get that

T = k11|s0(n− 1)|22 + 2k12〈s0(n− 1), s0(n)〉+ k22|s0(n)|22,

here we use the 2-norm |x|2 =
√

(x1)2 + (x2)2, but since the 1-norm and 2-norm are

equivalent (|x|1/
√

2 ≤ |x|2 ≤ |x|1), we can apply the estimates (6.23) to obtain

|T | ∼ 1√
ε
LS1 .

Since |D| � T 2, we can deduce that m(j) = |D|
|T | , and we obtain the expected estimate.
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Therefore, recalling M(θ) = ∂θL(θ), it follows from Lemma 6.8 that the splitting
function M(θ) has 4 simple zeros θ∗, defined in (6.47), and the minimal eigenvalue of
the splitting matrix ∂M(θ∗) satisfies the estimate given in (6.48).

Recall also that E∗ > 0 is fulfilled under the condition (6.43), i.e. when

|σs0(n+1) − σs0(n−1) + 2σs0(n)| <
2π

3

holds. Thus, imposing the condition σk = 0 on the phases of f in (5.7), we prove the
continuation (without bifurcations) of the 4 transverse homoclinic orbits for all ε→ 0
in case of the silver frequency Ω = Ω2 =

√
2− 1 in (3). Note that we have introduced

the notation of ’∼’ just before Theorem 5.1 in Chapter 5.

Theorem 6.3 (Transversality of the splitting for Ω2). For the Hamiltonian system
(5.1-5.7) with n = 2 and Ω = Ω2 in (3), assume that 0 < ε � 1 and µ = εp, p > p∗

with p∗ = 2 if ν = 1 and p∗ = 3 if ν = 0, then if σk = 0 for all k ∈ Z2\{0}, one has:

• the Melnikov function M(θ) has exactly 4 zeros θ∗, all simple, for all ε;

• The minimal eigenvalue of ∂θM(θ∗) satisfies

m∗ ∼ µε1/4 exp

{
−C0h2(ε)

ε1/4

}
where the constant C0 is defined in (6.12) and h2(ε) is the positive periodic in
ln ε function defined in (6.20).

Remark 6.8. The continuation of the homoclinic orbits was also proved in the case
of the golden frequencies Ω = Ω1 = (

√
5− 1)/2 in [DG03, DG04].
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Chapter 7

Exponentially small splitting of
separatrices for whiskered tori with
cubic frequencies

In this chapter we study splitting of separatrices for a three-dimensional whiskered
torus with cubic frequencies, paying special attention to the frequencies given by the
cubic golden number. We prove that the Poincaré-Melnikov approach can be applied
and establish the existence of 8 transverse homoclinic orbits associated to the whiskered
torus.

We consider the Hamiltonian system, defined in (5.1-5.3), for n = 3 in which the
frequency vector ω is given by

ω = (1,Ω,Ω2), (7.1)

where Ω is an irrational cubic number (a real root of a polynomial of degree 3 with
integer coefficients). In this chapter we put special emphasis to the concrete cubic
number that is the real root of Ω3 + Ω− 1 = 0 (Ω ≈ 0.6823), the so-called cubic golden
number. It is well known that ω (7.1) satisfies a Diophantine condition of constant
type

|〈k, ω〉| ≥ γ

|k|τ
, ∀k ∈ Z3\{0} (7.2)

with τ = 2 (this is the least possible exponent for three-dimensional integer vectors,
see for instance [Cas65]) and some γ > 0.

By the Poincaré-Melnikov method the splitting function M(θ) and the splitting
potential L(θ) (recall M(θ) = ∂θL(θ)) are approximated in first order in µ by the
Melnikov function M(θ) and the Melnikov potential L(θ), given in (5.12), see details
in Chapter 5). In the case µ = εp, we have to justify the approach and ensure that the
Poincaré-Melnikov approximation overcomes the error term (5.13).

In this chapter we generalize the technic developed in [DG04, DG03] as well as in
Chapter 6 for two-dimensional quadratic frequency vectors to three-dimensional vectors
ω = (1,Ω,Ω2). It is worth mentioning that there is no standard theory of continued
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fractions in the case of three or more frequency vectors. This is the reason to consider
the particular cases of a cubic frequency vector, just to be able to provide some results
on exponentially small splitting of separatrices for 3 frequencies.

7.1 Cubic frequencies

Given a cubic frequency vector of form (7.1) with a cubic irrational number Ω. We want
to give a classification of all three-dimensional non-zero integer vectors k according to
the size of

γk = |〈k, ω〉||k|2, ∀k ∈ Z3 \ {0},
where we use the 2-norm | · | = | · |2. The goal is to construct the resonant sequences,
find the primary resonances (i.e. k’s for which γk is smaller and, hence, they fit
better the Diophantine condition (7.2)) and study their separation with respect to
the secondary ones. Delshams and Gutiérrez [DG03, DG04] gave a technic to do this
for the two-dimensional case with the quadratic golden number and for some other
quadratic frequencies, here we aim to generalize their results for three-dimensional
cubic frequencies. Note that the definition of γk is motivated by the fact that any
cubic frequency is Diophantine with τ = 2 [Cas65] satisfying (7.2).

We say that the integer vector k is admissible if |〈k, ω〉| < 1/2 and denote by A the
set of admissible vectors.

The components of ω are a basis of the cubic field Q(Ω) by Koch [Koc99], there
exists a unimodular matrix (a square matrix with integer entries and determinant ±1)
T having eigenvector ω with associated eigenvalue λ (|λ| > 1, other eigenvalues are less
than 1 in modulus). Let the eigenvalues of T be λT1 = λ, λT2 , λT3 and their associated
eigenvectors be v1 = ω, v2, v3. We know that λT1 · λT2 · λT3 = 1. We distinguish two
possible cases of the eigenvalues of T :

1. the complex case: the only one eigenvalue of T is real (that is λ) and the other
two ones are a pair of complex conjugate numbers;

2. the real case: all the eigenvalues of T are real.

In this section we consider cubic numbers in the complex case.

Remark 7.1. 1. The matrix T satisfying the conditions above is not unique;

2. We can assume that detT = 1, since if detT = −1, we can consider matrix −T
instead (hence, in the complex case we assume that λ > 0)

3. To study the real case requires a different approach. In this case, the behavior
of the associated small divisors seems to be different to the complex case con-
sidered here, and will require intensive numerical high-precision simulations in
order to establish the properties of such vectors, and then try to obtain rigorous
asymptotic estimates for the splitting.
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Consider the matrix U = (T−1)
>

. Its eigenvalues are λU1 = λ−1, λU2 = (λT2 )−1,
λU3 = (λT3 )−1 and denote their associated eigenvectors by u1, u2, u3.

In the complex case λT2 , λT3 as well as λU2 , λU3 are complex, and the same are
vectors v2, v3 = v̄2, u2, u3 = ū2. To avoid working with the complex vectors we
consider z1 = Re(v2), z2 = Im(v2), w1 = Re(u2), w2 = Im(u2) as well as a = Re(λT2 ),
b = Im(λT2 ). Let ϕ and r be the angle argument and modulus of λT2 , i.e. λT2 = reiϕ

(we have that r2 = 1/λ due to λλT2 λ
T
3 = λλT2 λ̄

T
2 = 1).

Proposition 7.1. If λT2 = a+ ib, the following is true:

(i) λU2 = λa− iλb;

(ii) Tz1 = az1 − bz2, T z2 = bz1 + az2;

(iii) Uw1 = λaw1 + λbw2, Uw2 = λaw2 − λbw1;

(iv) Unw1 = r−n[w1 cosnϕ+ w2 sinnϕ], Unw2 = r−n[w2 cosnϕ− w1 sinnϕ];

(v) U−1w1 = aw1 − bw2, U−1w2 = bw1 + aw2;

(vi) 〈z1, w2〉 = 〈z2, w1〉, 〈z1, w1〉 = −〈z2, w2〉;

(vii) 〈ω,w1〉 = 〈ω,w2〉 = 0.

Proof. (i) Since λλT2 λ
T
3 = λ|λT2 |2 = 1, we get

λU2 =
1

λT2
=

a− ib
a2 + b2

=
a− ib
|λT2 |2

= λ(a− ib);

(ii) Tv2 = λT2 v2, thus, Tz1 + iTz2 = (a+ ib)(z1 + iz2) = (az1 − bz2) + i(az2 + bz1);

(iii) Analogously to (ii), taking into account (i);

(iv) Unu2 = (λU2 )nu2 = (λT2 )−nu2 = r−ne−inϕu2 = r−n(cosnϕ− i sinnϕ)(w1 + iw2) =
Un(w1 + iw2).

(v) It follows from U−1 (w1 + iw2)︸ ︷︷ ︸
u2

= (λU2 )−1︸ ︷︷ ︸
λT2

u2 = (a+ ib)(w1 + iw2);

(vi) 〈Tz1, w1〉 = a〈z1, w1〉 − b〈z2, w1〉, on the other hand, 〈Tz1, w1〉 = 〈z1, U
−1w1〉 =

a〈z1, w1〉 − b〈z1, w2〉.
〈Tz1, w2〉 = a〈z1, w2〉 − b〈z2, w2〉, and 〈Tz1, w2〉 = 〈z1, U

−1w2〉 = a〈z1, w2〉 +
b〈z1, w1〉. From this we conclude (vi).
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(vii) 〈Tω,w1〉 = λ〈ω,w1〉 = 〈ω, U−1w1〉 = λa〈ω,w1〉+ λb〈ω,w2〉
〈Tω,w2〉 = λ〈ω,w2〉 = 〈ω, U−1w2〉 = λa〈ω,w2〉 − λb〈ω,w1〉
Thus, we get equations

(1− a)〈ω,w1〉+ b〈ω,w2〉 = 0, −b〈ω,w1〉+ (1− a)〈ω,w2〉 = 0

that have a unique solution (〈ω,w1〉 = 〈ω,w2〉 = 0) if (1 − a)2 + b2 6= 0 that is
true since λT2 6= 1.

The following is also true:

〈Uk, ω〉 = 〈k, U>ω〉 =
1

λ
〈k, ω〉.

It follows that if k ∈ A, then also Uk ∈ A. We say k is primitive if k ∈ A and U−1k is
not in A. We see that k is primitive if and only if

1

2|λ|
< |〈k, ω〉| < 1

2
. (7.3)

Admissible vectors can be presented in form

k0(j) = (−rint (j1Ω + j2Ω2), j1, j2),

where j = (j1, j2) 6= (0, 0) and rint (a) is the closest integer to a. We say that two-
dimensional integer vector j is primitive if k0(j) is primitive. Let P be the set of the
primitive integer vectors j.

For each j ∈ P , we define the resonant sequence

s(j, n) = Unk0(j), ∀n = 0, 1, 2 . . .

We prove the following result:

Proposition 7.2. For any primitive j, one has

(a) |s(j, n)|2 = λn[(cj2)2 + (cj3)2](K1 +K2 cos[2nϕ− 2ψj − θ]) +O(λ−n/2)

(b) γs(j,n) = |〈s(j, n), ω〉||s(j, n)|2 = Aj(K1 + K2 cos[2nϕ + 2ψj − θ]) + O(λ−3n/2),
where

� Aj = |〈k0(j), ω〉| [(cj2)2 + (cj3)2]

� K1 = 1
2
(|w1|2 + |w2|2);

� K2 = 1
2

√
(|w1|2 − |w2|2)2 + 4(〈w1, w2〉)2;

� cj2 = 〈z1,w1〉〈z1,k0(j)〉+〈z1,w2〉〈z2,k0(j)〉
(〈z1,w1〉)2+(〈z1,w2〉)2 , cj3 = 〈z1,w2〉〈z1,k0(j)〉−〈z1,w1〉〈z2,k0(j)〉

(〈z1,w1〉)2+(〈z1,w2〉)2 ;
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� ϕ = arg(λT2 );

� cosψj =
cj2√

(cj2)2+(cj3)2
, sinψj =

cj3√
(cj2)2+(cj3)2

;

� cos θ = |w1|2−|w2|2√
(|w1|2−|w2|2)2+4(〈w1,w2〉)2

, sin θ = 2〈w1,w2〉√
(|w1|2−|w2|2)2+4(〈w1,w2〉)2

;

(c) As n→∞, γs(j,·) oscillates between two values

γ−j = |〈k0(j), ω〉|[(cj2)2+(cj3)2](K1−K2), γ+
j = |〈k0(j), ω〉|[(cj2)2+(cj3)2](K1+K2);

(7.4)

(d) a lower bound for γ−j is

γ−j ≥
1

|λ||u2|2

[
|j| − |u1|

2|〈u1, ω〉|

]2

(K1 −K2) (7.5)

Proof. We present the vector k0(j) as a linear combination of u1, w1 and w2

k0(j) = cj1u1 + cj2w1 + cj3w2,

where taking a scalar product with ω, z1 and z2 one can obtain the values of the
coefficients cji , i = 1, 2, 3. Thus, one finds

cj1 =
〈k0(j), ω〉
〈u1, ω〉

, (7.6)

as well as c2
j and c3

j are the solution of

cj2〈z1, w1〉+ cj3〈z1, w2〉 = 〈z1, k
0(j)〉, cj2〈z2, w1〉+ cj3〈z2, w2〉 = 〈z2, k

0(j)〉,

given in (b). Using these formulae, we find

s(j, n) = Unk0(j) = cj1U
nu1 + cj2U

nw1 + cj3U
nw2

= cj1λ
−nu1 + cj2r

−n[w1 cos(nϕ) + w2 sin(nϕ)] + cj3r
−n[w2 cos(nϕ)− w1 sin(nϕ)]

= cj1λ
−nu1 + r−n[cj2 cos(nϕ)− cj3 sin(nϕ)]w1 + r−n[cj3 cos(nϕ) + cj2 sin(nϕ)]w2

= cj1λ
−nu1 + r−n

√
(cj2)2 + (cj3)2 cos(nϕ+ ψj)w1

+ r−n
√

(cj2)2 + (cj3)2 sin(nϕ+ ψj)w2,

where ψj is defined in (b).
We calculate further

|〈s(j, n), ω〉| = |〈k
0(j), ω〉|
λn

. (7.7)
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It remains to find |s(j, n)|2. We obtain

|s(j, n)|2 = 〈s(j, n), s(j, n)〉 = r−2n[(cj2)2 + (cj3)2] {|w1|2 cos2[nϕ+ ψj]
+ |w2|2 sin2[nϕ+ ψj] + 2〈w1, w2〉 sin[nϕ+ ψj] cos[nϕ+ ψj]}+O(λ−n/2)

= 1
2
λn[(cj2)2 + (cj3)2] {(|w1|2 + |w2|2) + (|w1|2 − |w2|2) cos[2nϕ+ 2ψj]

+ 2〈w1, w2〉 sin[2nϕ+ 2ψj]}+O(λ−n/2)

= λn[(cj2)2 + (cj3)2](K1 +K2 cos[2nϕ+ 2ψj − θ]) +O(λ−n/2)

where θ is defined in (b).
Therefore,

γs(j,n) = Aj(K1 +K2 cos[2nϕ+ 2ψj − θ]) +O(λ−3n/2).

Using (7.3), we obtain asymptotical bounds for n→∞

lim sup
n→∞

γs(j,n) ≤ 1
2
[(cj2)2 + (cj3)2](K1 +K2)

lim inf
n→∞

γs(j,n) ≥ 1
λ
[(cj2)2 + (cj3)2](K1 −K2)

We see that the sequence γs(j,n) oscillates between two values γ−j and γ+
j , defined in

(7.4) Also we have that

|k0(j)− cj1u1|2 = |cj2w1 + cj3w2|2 ≤ (cj2)2|w1|2 + (cj3)2|w2|2
≤ [(cj2)2 + (cj3)2]|w1|2 + [(cj2)2 + (cj3)2]|w2|2 = [(cj2)2 + (cj3)2](|w1|2 + |w2|2)

= [(cj2)2 + (cj3)2]|u2|2,

then due to (7.6) and (7.3), one gets

(cj2)2+(cj3)2 ≥
|k0(j)− c1

ju1|2

|u2|2
≥ 1

|u2|2

[
|k0(j)| − |u1|

2|〈u1, ω〉|

]2

≥ 1

|u2|2

[
|j| − |u1|

2|〈u1, ω〉|

]2

Applying this inequality and (7.3) again, one obtains the lower bound (7.5)

The sequence of integer vectors s(j, n) which gives the minimal lower γ−j and upper
γ+
j bounds are called primary resonances and we denote them by s0(n) = s(j0, n).

Integer vectors are called secondary resonances if they belong to any of the remaining
sequences s(j, n), j 6= j0. This can be defined if γ−j and γ+

j are simultaneously minimal
(as happens in the golden cubic case). Such primary resonances can easily be detected
thanks to Proposition 7.2(d): although γ±j are not increasing in general, we have
lim
|j|→∞

γ±j = ∞, and then one has to check only a finite number of primitive vectors

j in order to find the minimal γ−j and γ+
j and, hence, the primary resonances.
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7.1.1 The cubic golden number

Assume that in (7.1) Ω is the real root of equation x3 + x = 1 (Ω ≈ 0.6823). In this
case the matrix T can be written in the form

T =

 1 0 1
1 0 0
0 1 0

 .

and its eigenvalues (the roots of x3 − x2 = 1) and the associated eigenvectors are

λ1 = λ =
1

Ω
≈ 1.4656, ω = (1,Ω,Ω2)>

λ2 = −Ω2

2
+ iΩL, v2 =

(
1,−Ω

2
− iL,−1− Ω2

2
+ iΩL

)>
λ3 = −Ω2

2
− iΩL, v3 =

(
1,−Ω

2
+ iL,−1− Ω2

2
− iΩL

)>
,

where |λ1| > 1, |λ2| = |λ3| < 1 and

L =

√
3Ω2 + 4

4
=

6Ω2 + 9Ω + 4

2
√

31
≈ 1.1615.

The matrix U = (T−1)> is

U =

 0 0 1
1 0 −1
0 1 0

 .

The eigenvalues (the roots of x3 + x = 1) and the eigenvectors of matrix U are

λU1 = Ω ≈ 0.6823, u1 = (1,Ω2,Ω)>

λU2 = −Ω

2
− iL, u2 =

(
1,−1− Ω2

2
+ iΩL,−Ω

2
− iL

)>
λU3 = −Ω

2
+ iL, u3 =

(
1,−1− Ω2

2
− iΩL,−Ω

2
+ iL

)>
with |λU1 | < 1, |λU2 | = |λU3 | ≈ 1.2106 > 1.

Therefore, following the notation of this section, we have

z1 =

(
1,−Ω

2
,−1− Ω2

2

)>
, z2 = (0,−L,ΩL)>

w1 =

(
1,−1− Ω2

2
,−Ω

2

)>
, w2 = (0,ΩL,−L)> .
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Figure 7.1: The values of γs0(n) oscillate between two quantities.

It is easy to check the following data

〈z1, w1〉 = −〈z2, w2〉 =
3

2
+

Ω

2
, 〈z2, w1〉 = 〈z2, w2〉 = L,

〈w1, ω〉 = 〈w2, ω〉 = 0, 〈z1, u1〉 = 〈z2, u1〉 = 0
〈ω, u1〉 = 1 + 2Ω3 = 3− 2Ω,

|w1|2 = Ω2 +
Ω

4
+ 2 |w2|2 = Ω2 +

3Ω

4
+ 1

〈w1, w2〉 = −L
2
,

K1 = Ω2 +
Ω

2
+

3

2
, K2 =

1

2

√
Ω2 − Ω + 2.

Numerical experiments verify the statements of Proposition 7.2, namely, that for
each primitive j the values of γs(j,n) oscillate between two limit bounds γ−j and γ+

j . For
example, you can see in Figure 7.1 the graph γs(j,n) depending on integer numbers n
for the primitive vector j = [0, 1], the corresponding limit bounds are γ−[0,1] ≈ 0.3459

and γ+
[0,1] ≈ 0.6276.
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−ln|〈 k, ω〉| = 2 ln| k| − ln γ

Figure 7.2: Points (ln |k|,− ln |〈k, ω〉|).

Taking logarithm of the both hands of the Diophantine condition (7.2), we can
write it as

− ln |〈k, ω〉| ≤ 2 ln |k| − ln γ.

If we draw all the points with coordinates (ln |k|,− ln |〈k, ω〉|) (see the Figure 7.2),
we can see the sequence of the points laying closer to the straight line − ln |〈k, ω〉| =
2 ln |k|− ln γ. Such points correspond to integer vectors with minimal lower and upper
bounds which are the primary resonances s0(·).

In Table 7.3 we write down the values of the bounds γ−j and γ+
j for the resonant

sequences induced by different primitive k0(j). In turns, we compute also the quan-

tities cj2, cj3, (cj2)2 + (cj3)2, Aj = |〈k0(j), ω〉|[(cj2)2 + (cj3)2] and Bj =
Aj
A[0,1]

in Tables 7.1

and 7.1.1. The smallest ones correspond the first primitive vector k0([0, 1]) = [0, 0, 1]
(primary resonances). We can see a good separation of the primary resonances from
the secondary ones.

To complete the study we give the values of the remaining quantities of Proposi-
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k0(j) cj2 cj3 (cj2)2 + (cj3)2

[0, 0, 1] − 1
31

(6− 2Ω + 9Ω2) − 2
31
L(2 + 9Ω) 4

31
(1 + 3Ω + Ω2) ≈ 0.4532

[-1, 2, 0] − 2
31

(13 + 6Ω + 4Ω2) 8
31
L(3− 2Ω) 4

31
(7 + 4Ω + 8Ω2) ≈ 1.7360

[-2, 1, 2] − 1
31

(52− 7Ω + 16Ω2) − 2
31
L(7 + 16Ω) 12

31
(9 + 2Ω + 5Ω2) ≈ 4.9132

[-1, 0, 3] − 1
31

(36− 12Ω + 23Ω2) − 2
31
L(12 + 23Ω) 4

31
(24 + 19Ω + 18Ω2) ≈ 5.8509

[2, -3, 1] 1
31

(42 + 17Ω + Ω2) − 2
31
L(17− Ω) 4

31
(23 + 11Ω + 10Ω2) ≈ 4.5369

[-3, 3, 1] − 1
31

(72 + 7Ω + 15Ω2) 2
31
L(7− 15Ω) 4

31
(40 + 12Ω + 19Ω2) ≈ 7.3592

[0, -2, 2] − 1
31

(4− 22Ω + 6Ω2 − 4
31
L(11 + 3Ω) 16

31
(5 + Ω + Ω2) ≈ 3.8399

|j|1 > 5 ≥ 2.1977

Table 7.1: Computing data: quantities cj2, cj3, (cj2)2 + (cj3)2

k0(j) |〈k0(j), ω〉| Aj Bj

[0, 0, 1] Ω2 ≈ 0.4656 4(3− 2Ω)/31 ≈ 0.2110 1
[-1, 2, 0] −1 + 2Ω ≈ 0.3647 12(3− 2Ω)/31 ≈ 0.6330 3
[-2, 1, 2] 2− Ω− 2Ω2 ≈ 0.3866 36(3− 2Ω)/31 ≈ 1.8991 9
[-1, 0, 3] −1 + 3Ω2 ≈ 0.3967 44(3− 2Ω)/31 ≈ 2.3211 11
[2, -3, 1] 2− 3Ω + Ω2 ≈ 0.4186 36(3− 2Ω)/31 ≈ 1.8991 9
[-3, 3, 1] 3− 3Ω− Ω2 ≈ 0.4745 68(3− 2Ω)/31 ≈ 3.5872 17
[0, -2, 2] 2Ω− 2Ω2 ≈ 0.4335 32(3− 2Ω)/31 ≈ 1.6881 8
|j|1 > 5 ≥ 0.7498 ≥ 3.55

Table 7.2: Computation data: |〈k0(j), ω〉|, Aj, Bj

tion 7.2

ϕ = arg(−1
2
Ω2 + iΩL) = − arctan 2L

Ω
+ π ≈ 1.8565, π

2
< ϕ < π

θ = − arctan 2L
2−Ω
≈ −1.0548, −π

2
< θ < 0

ψ[0,1] = arctan 2L(2+9Ω)
6−2Ω+9Ω2 − π ≈ −2.0074, −π < ψ[0,1] < −π

2

Note that ϕ can be approximated by

ϕ ≈ 13π

22
.

7.2 Asymptotic estimates

To justify that the Poincaré-Melnikov approach predicts correctly the size of splitting
of separatrices, we need to provide asymptotic estimates for the dominant harmonics
of the Melnikov potential L together with bounds of the sum of the remaining terms
of L. These estimates have to be large enough such that the corresponding harmonics
of the splitting L overcome the error of the Poincaré-Melnikov method. We work with
functions L and L, since its nondegenerate critical points correspond to simple zeros of
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k0(j) γ±j γ−j γ+
j

[0, 0, 1] 2
31

(
5 + Ω + 4Ω2 ± (3− 2Ω)

√
2− Ω + Ω2

)
0.3459 0.6276

[-1, 2, 0] 6
31

(
5 + Ω + 4Ω2 ± (3− 2Ω)

√
2− Ω + Ω2

)
1.0376 1.8829

[-2, 1, 2] 18
31

(
5 + Ω + 4Ω2 ± (3− 2Ω)

√
2− Ω + Ω2

)
3.1127 5.6488

[-1, 0, 3] 22
31

(
5 + Ω + 4Ω2 ± (3− 2Ω)

√
2− Ω + Ω2

)
3.8044 6.904

[2, -3, 1] 18
31

(
5 + Ω + 4Ω2 ± (3− 2Ω)

√
2− Ω + Ω2

)
3.1127 5.6488

[-3, 3, 1] 34
31

(
5 + Ω + 4Ω2 ± (3− 2Ω)

√
2− Ω + Ω2

)
5.8796 10.6699

[0, -2, 2] 16
31

(
5 + Ω + 4Ω2 ± (3− 2Ω)

√
2− Ω + Ω2

)
2.7669 5.0211

|j|1 > 5 ≥ 1.2289 ≥ 2.2302

Table 7.3: Computation and numerical data: γ±j

M andM, respectively, and give rise to transverse homoclinic orbits to the whiskered
torus.

In order to find the dominant harmonics of the Melnikov potential L we proceed in
the same way as for quadratic frequencies in Chapter 6. Substituting functions f and
h from (5.6–5.7) into (5.12), we get the Fourier series of the Melnikov potential (in the
section s = const):

L(θ) =
∑
k

Lk cos(〈k, θ〉 − σk), (7.8)

where

Lk =
2π|〈k, ω̂ε〉|e−ρ|k|

b sinh |π
2
〈k, ω̂ε〉|

and ω̂ε =
ω̃ε
b

=
b′ω

b
√
ε
.

We can present the coefficients Lk in the exponential form as

Lk = αke
−βk ,

where

αk =
4πb′|〈k, ω〉|

b2
√
ε(1− e−{π|〈k,ω〉|

b′
b
√
ε
}
)
, βk = ρ|k|+ π

2
|〈k, ω〉| b

′

b
√
ε
. (7.9)

Therefore, the largest Lk corresponds to the smallest βk, and this depends strongly on
the quantity γk = |〈k, ω〉||k|2 studied in Section 7.1, p. 156.

We find the smallest βk in a similar way as in Chapter 6. We write the functions
βk of (7.9) in the form

βk(ε) = %|k|+π

2

γk
|k|2

b′

b
√
ε

=
Cµgk(ε)

ε1/6
, where gk(ε) = γ

1/3
k

(
ε1/6

ε
1/6
k

+
ε

1/3
k

2ε1/3

)
, k ∈ Z3\{0}

(7.10)
where

Cµ = ρ2/3

(
πb′

b

)1/3

, ε
1/2
k = Dµ

γk
|k|3

, Dµ =
πb′

bρ
.
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Here we denote Cµ and Dµ to depend implicitly on µ, since b and b′ are µ-close to 1.
Indeed, Cµ and Dµ are µ-close to the constants

C0 = 3
√
ρ2π and D0 = π/ρ. (7.11)

For all k we have

βk ≥
3Cµγ

1/3
k

2ε1/6
. (7.12)

which suggests that the size of βk is related to the sequence s(j, ·) to which k belongs,
due to the fact that γk oscillates between two values (see Proposition 7.2). If γk is
big, the corresponding Lk will not be dominant. We prove below that due to the fact
that the separation between the primary and secondary resonances is big enough for
the golden cubic number, at least 4 dominant harmonics of L are given by the primary
vectors k ∈ s(j0, n) = s0(·).

We consider the functions gk which contain the main information on the size of βk.
First, we consider the primary functions

gn(ε) := γ
1/3
s0(n)

(
ε1/6

ε
1/6
n

+
ε

1/3
n

2ε1/3

)
, ε1/2

n := D0

γs0(n)

|s0(n)|3
, (7.13)

where according to Proposition 7.2, we use the following approximations:

γs0(n) ' A+B cos(2ϕn+α), |s0(n)|2 ' λn
γs0(n)

|〈k0(j0), ω〉|
= λnΩ−2(A+B cos(2ϕn+α)),

(7.14)
where we denote A = AjK1 ≈ 0.4867, B = AjK2 ≈ 0.1408, α = 2ψj0 − θ (all the
constants are defined in Proposition 7.2). Then, we obtain

εn =
D2

0Ω6

λ3n(A+B cos(2ϕn+ α))
. (7.15)

We can see the functions gn depends on the value of cos(2ϕn+ α). Consider together
with gn(ε) also two auxiliary functions g−n (ε) and g+

n (ε) with the values cos(. . .) = −1
and cos(. . .) = 1, respectively:

g±n (ε) =
(
γ±n
)1/3

[
ε1/6

(ε±n )1/6
+

(ε±n )1/3

2ε1/3

]
, γ±n = A±B, ε±n =

D2Ω6

λ3n(A±B)
.

We prove the following proposition

Proposition 7.3 (Properties of gn). (a) The function gn(ε) has the minimum 3γ
1/3
s0(n)/2

at ε = εn. The points εn satisfy the formula

ε1/2
n = |λ|−n 1

|s0(n)|
ε

1/2
0 (7.16)

and they are decreasing, i.e. εn+1 ≤ εn for all n ≥ 0.
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(b) The intersection point of the functions gm(ε) and gn(ε), m 6= n, is

ε1/2
m,n =

1

2

ε
1/2
m |s0(m)| − ε1/2

n |s0(n)|
|s0(n)| − |s0(m)|

=
1

2
D0Ω2 λ−m − λ−n

|s0(n)| − |s0(m)|
.

Assume m > n, then one has

(b.1) The intersection point εm,n exists if |s0(m)| > |s0(n)|; moreover, εm,n < εn
for m ≥ n+ 3 and εm,n > εm for m ≥ n+ 2.

(b.2) The intersection point doesn’t exist if |s0(m)| ≤ |s0(n)| that may take place
if m− n = 1.

(c) The functions g−n (ε) and g+
n (ε) have minimums at ε−n and ε+

n , respectively. The
points ε±n are decreasing. The functions g±n (ε) and g±m(ε), m 6= n, intersect at

(ε±m,n)1/2 =
1

2
(ε±m)1/6(ε±n )1/6

[
(ε±m)1/6 + (ε±n )1/6

]
.

(d) The function gn(ε) is between g−n (ε) and g+
n (ε).

Proof. The first statement of part (a) is simple. For the remaining statement of (a),
we get by definition of γs0(n) (and using also (7.7)):

|s0(n)|2 =
|λ|nγs0(n)

|〈k0([0, 1]), ω〉|

Therefore, we have

ε
1/2
n+1

ε
1/2
n

=
Dγs0(n+1)

|s0(n+ 1)|2
× |s0(n)|2

Dγs0(n)

× |s0(n)|
|s0(n+ 1)|

=
1

|λ|
|s0(n)|
|s0(n+ 1)|

From the recurrent formula

ε
1/2
n+1 =

1

|λ|
|s0(n)|
|s0(n+ 1)|

ε1/2
n

we get

ε1/2
n = |λ|−n |s0(0)|

|s0(n)|
ε

1/2
0 = |λ|−n 1

|s0(n)|
ε

1/2
0 .

Here we use the fact that, in the golden cubic case, s0(0) = k0(j0) = [0, 0, 1]> and
|s0(0)| = 1.
Using (7.15), we obtain

εn+1

εn
≤ 1

|λ|3
A+B cos(2ϕn+ α)

A+B cos(2ϕn+ 2ϕ+ α)
≤ 1

|λ|3
A+B

A−B
≈ 0.5764 < 1
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Hence, the points are decreasing. Part (c) is proved in a similar way.
(b) Equating gn(ε) and gm(ε), we obtain the intersection point εm,n. Then if m < n,
we write the intersection point as

ε1/2
m,n =

1

2
λ−mDΩ2 λm−n − 1

|s0(m)| − |s0(n)|

The last expression makes sense if the fraction on the right hand is positive that is
true if |s0(m)| > |s0(n)|, since λ > 1, and, hence, the point εm,n exists. Otherwise, the
function gm(ε) and gn(ε) don’t intersect. The inequality |s0(m)| ≤ |s0(n)| is equivalent
to λm(A+B cos(2ϕm+ α)) ≤ λn(A+B cos(2ϕn+ α)) that is true when

λm−n ≤ A+B cos(2ϕn+ α)

A+B cos(2ϕm+ α)
(7.17)

The right hand of the inequality (7.17) can be bounded from above by (A+B)/(A−B).
In the case of the cubic golden number, we have λ ≤ A+B

A−B ≤ λ2, since λ ≈ 1.4656,
(A + B)/(A − B) ≈ 1.8147, λ2 ≈ 2.1480. Thus, the inequality (7.17) is satisfied only
for m = n+ 1.

In the case εm,n exists, |s0(m)| > |s0(n)| for m > n, this follows that

λm−n >
A+B cos(2ϕn+ α)

A+B cos(2ϕm+ α)
(7.18)

we get (using 7.14)

ε
1/2
m,n

ε
1/2
n

=
1

2

1− λ−(m−n)

|s0(m)|
|s0(n)| − 1

<
1

2

1− λ−(m−n)

λ
m−n

2

√
A−B
A+B
− 1

.

This quotient is smaller than 1 if

λ−(m−n) + 2λ
m−n

2

√
A−B
A+B

− 3 > 0.

The last inequality holds for m−n > 2, excluding the values m−n = 1 and m−n = 2.
Considering separately these 2 cases, we get for m− n = 1 that

ε
1/2
n+1,n

ε
1/2
n

=
1

2

1− λ−1

|s0(n+1)|
|s0(n)| − 1

<
1

2

1− λ−1

λ1/2

√
A+B cos(2ϕ(n+1)+α)
A+B cos(2ϕn+α)

− 1

is smaller than 1 when

A+B cos(2ϕ(n+ 1) + α)

A+B cos(2ϕn+ α)
>

(3− λ−1)2

4λ
≈ 0.9163.
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Also we can conclude from (7.18) that for the existing point εn+1,n the following is
fulfilled:

A+B cos(2ϕ(n+ 1) + α)

A+B cos(2ϕn+ α)
> λ−1 ≈ 0.6823.

Thus, there can exist intersection points εn+1,n that are on the right of εn if

λ−1 <
A+B cos(2ϕ(n+ 1) + α)

A+B cos(2ϕn+ α)
<

(3− λ−1)2

4λ
.

On the other hand, to have εn+2,n < εn, the inequality

A+B cos(2ϕ(n+ 2) + α)

A+B cos(2ϕn+ α)
>

(3− λ−2)2

4λ2
≈ 0.7476

should be true. But it is not the case for some n satisfying

λ−2 <
A+B cos(2ϕ(n+ 2) + α)

A+B cos(2ϕn+ α)
<

(3− λ−2)2

4λ2
.

In a similar way one can prove that εm,n > εm for m−n ≤ 2 and that there possible
points εn+1,n < εn if

A+B cos(2ϕ(n+ 1) + α)

A+B cos(2ϕn+ α)
>

4

λ(3− λ)2
≈ 1.1592.

To prove (d) we equate g−n (ε) and g+
n (ε) and get no intersection points.

Remark 7.2. It is important to know the location of the intersection point εm,n, if
exists, with respect to εm and εn (m > n), since εm < εm,n < εn implies that the
right branch of gm(ε) intersect the left branch of gn(ε) the fact that we will use later
in Lemma 7.1.

For secondary vectors k we have

gk = γ
1/3
k

(
ε1/6

ε
1/3
k

+
ε

1/3
k

2ε1/3

)
≥ 3

2
γ

1/3
k ≥ 3

2
(γ−[2,0])

1/3 ≈ 1.5186, k 6= s0(·). (7.19)

For each ε we find vectors Si = Si(ε), i = 1, 2, 3, 4, 5 giving the 5 smallest values of
gk(ε), k ∈ Z3\{0}. This means that

gS1(ε) ≤ gS2(ε) ≤ gS3(ε) ≤ gS4(ε) ≤ gS5(ε) ≤ gk(ε), k 6= S1, . . . , S5.

Then we define the function

h1(ε) = min
k∈Z3\{0}

gk(ε) = gS1(ε). (7.20)
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Figure 7.3: Graphs of the functions gn(ε) (solid), g±n (ε) (dashed), and h1(ε) (thick solid) using a

logarithmic scale for ε

See Figure 7.3 for an illustration of the function h1(ε). In a similar way we define the
functions h±1 (ε) for the functions g±n (ε) (dashed lines in Figure 7.3). The functions
h±1 (ε) are continuous and 3 lnλ-periodic in ln ε. One can write the following expression
for them

h−1 (ε) = min
n
g−n (ε), and h+

1 (ε) = min
n
g+
n (ε). (7.21)

One can show that

C−1 = minh−1 (ε) = 3
2
(A−B)1/3 ≈ 1.0529,

C−2 = maxh−1 (ε) =
(A−B)1/3(λ+

√
λ+1)

(2λ (
√
λ+1))

2/3 ≈ 1.0625,

C+
1 = minh+

1 (ε) = 3
2
(A+B)1/3 ≈ 1.2843,

C+
2 = maxh+

1 (ε) =
(A+B)1/3(λ+

√
λ+1)

(2λ (
√
λ+1))

2/3 ≈ 1.2960.

(7.22)

We prove the following result (note that we have introduced the notation of ’∼’ and
’�’ just before Theorem 5.1 in Chapter 5):
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Theorem 7.1 ((Maximal) splitting distance). For the Hamiltonian system (5.1-5.7)
with n = 3, assume that 0 < ε � 1 and µ = εp, p > p∗ with p∗ = 2 if ν = 1 and p∗ = 3
if ν = 0, then the following asymptotic estimate holds

max
θ∈T3
|M(θ)| ∼ µ

3
√
ε

exp

{
−C0h1(ε)

ε1/6

}
where C0 is the constant given in (7.11) and the function h1(ε), defined in (7.20),
satisfies the following bounds:

• “Constant bound”: 0 < C−1 ≤ h1(ε) ≤ C+
2 with constants C−1 and C+

2 , defined in
(7.22);

• “Periodic bound”: 0 < h−1 (ε) ≤ h1(ε) ≤ h+
1 (ε), where h−(ε), h+(ε) are the 3 lnλ-

periodic functions in ln ε defined in (7.21); minh−1 = C−1 ,maxh−1 = C−2 ,minh+
1 =

C+
1 ,maxh+

1 = C+
2 , the constants C−2 , C

+
1 are defined in (7.22).

See Figure 7.4 for an illustration of the bounds of the function h1(ε) from Theorem
7.1. Also looking at the form of h1(ε) in Figure 7.4, it seems plausible to make the
following

Conjecture 7.1. The function h1(ε) is quasi periodic in ln ε with periods T1 = 3 lnλ ≈
1.1467 and T2 = 3π lnλ/ϕ ≈ 1.9406 for all ε.

A heuristic argument is presented now. The first period T1 is the period of the
functions h+

1 (ε) and h−1 (ε), while T2 is related to the presence of cos(...) in the formulae
for γs0(n) and εn in (7.14) and (7.15). Therefore, for ε ≈ εn, we get applying logarithm
to (7.15)

ln ε ≈ 2 ln(D0Ω3)− 3n lnλ.

We solve the equation for n:

n ≈ 2 ln(D0Ω3)− ln ε

3 lnλ
.

Thus,

cos(2ϕn+ α) ≈ cos

(
−2ϕ ln ε

3 lnλ
+ α̃

)
,

and, hence, T2 ≈ 2π
/

2ϕ
3 lnλ

= 3π lnλ/ϕ.
The difficulty presented in numerical checking is due to the fact that h1(ε) is not

differentiable at some points.
We also define the functions hi, i = 2, 3, 4, 5 in a similar way as h1(ε):

h2(ε) = min
k 6=S1

gk = gS2(ε); h3(ε) = min
k 6=S1,S2

gk = gS3(ε);

h4(ε) = min
k 6=S1,S2,S3

gk = gS4(ε); h5(ε) = min
k 6=S1,S2,S3,S4

gk = gS5(ε);
(7.23)
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Figure 7.4: Graphs of the functions h1(ε) (thick solid) and h±1 (ε) (solid) using a logarithmic scale

for ε. Notice that the upper bound C+
2 is not sharp, but a numerical sharp upper bound Cnum can

be obtained

Numerical experiments suggest that if we consider only primary functions gn(ε) in
(7.20) and (7.23), the functions hi(ε) have following bounds:

h1(ε) ≤ 1.1888 ≤ h2(ε) ≤ 1.3037 ≤ h3(ε) ≤ 1.3255 ≤ h4(ε) ≤ 1.4234 ≤ h5(ε) ≤ 1.5459

Due to (7.19), the vectors Si, i = 1, . . . , 4 are given by primary resonances, instead S5

may be a secondary resonance for some intervals of ε.
We also define the following 2 discrete sets:

E1 = {ε : h3(ε) = h4(ε)}, E2 = {ε : h4(ε) = h5(ε)}. (7.24)

In the next theorem we find the simple zeros of the splitting function M(θ) which
give rise to transverse homoclinic orbits associated to the whiskered torus considered.
These zeros are determined essentially by 3 dominant harmonics if these dominant
harmonics are given by independent vectors of indexes S1, S2, S3, and by 4 dominant
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harmonics of indexes S1, S2, S3, S4 if det(S1, S2, S3) = 0, det(S1, S2, S4) 6= 0. Fortu-
nately, in intervals of ε where 4 dominant harmonics are required, the 5th dominant
harmonic is given by a primary vector S5 as it seems from the numerical experiments.
We also give an estimate for the minimal eigenvalue (in modulus) of the splitting ma-
trix ∂θM at each zero. This estimate provides a measure for the transversality of the
homoclinic orbits. Note that the notations of ’∼’ and ’�’ has been introduced just
before Theorem 5.1 in Chapter 5.

Theorem 7.2 (Transversality). For the Hamiltonian system (5.1-5.7) with n = 3,
assume that ε � 1 and µ = εp, p > p∗ with p∗ = 2 if ν = 1 and p∗ = 3 if ν = 0, then
one has:

• If the indexes of the first 3 dominant harmonics satisfy: det(S1, S2, S3) 6= 0, the
Melnikov function M(θ) has exactly 8 zeros θ∗, all simple, for all ε except of
some small neighbourhood of the discrete set E1;

The minimal eigenvalue of ∂θM(θ∗) satisfies

m∗ ∼ µε1/2 exp

{
−C0h3(ε)

ε1/6

}
.

• If det(S1, S2, S3) = 0, det(S1, S2, S4) 6= 0, the Melnikov functionM(θ) has exactly
8 zeros θ∗, all simple, for all ε except for some small neighbourhood of the discrete
set E2;

The minimal eigenvalue of ∂θM(θ∗) satisfies

m∗ ∼ µε1/2 exp

{
−C0h4(ε)

ε1/6

}
.

The rest of the chapter is devoted to the proof of the main results: Theorem 7.1 and
Theorem 7.2. We get estimates for the dominant harmonics of L (Lemma 7.1, p. 174)
and of L (Lemma 7.2, p. 178) as well as for the sums of the remaining terms in each
case. Then we find the critical points of L and give estimates for the minimal eigenvalue
of D2L in both cases det(S1, S2, S3) 6= 0 and det(S1, S2, S3) = 0, det(S1, S2, S4) 6= 0.
Theorems 7.1 and 7.2 follow from these lemmas, taking into account that M(θ) =
∂θL(θ).

7.3 Dominant harmonics of the Melnikov potential

In order to estimate the coefficients Lk of the Melnikov potential we use the following
approximations obtained from (7.14) and (7.15):

|s0(n)|2 ∼ λn, εn ∼ λ−3n



174 EXPONENTIALLY SMALL SPLITTING OF SEPARATRICES

Therefore, if we fix on the interval of ε where s0(n) is the dominant vector, i.e. ε ≈ εn,
we find

|s0(n)|2 ∼ ε−1/3.

Substituting (7.16) into (7.13) and using the definition of γs0(n) and (7.7), we present
the functions gn in form

gn(ε) = Ω2/3ε
−1/6
0 |s0(n)|ε1/6 +

1

2
ε

1/3
1 λ−nε−1/3,

where the first and the second summands correspond to the right and left branches
of gn(ε), respectively. Due to part (b.1) of Proposition 7.3, we ensure that at ε (fixed
near to εn) the value of gn+l1 , l1 ≥ 2, is estimated by its right branch, while gn−l2(ε),
l2 ≤ 1, is evaluated by its left branch, i.e.

for l1 > 1 : gn+l1(ε) ∼ |s0(n+ l1)|ε1/6 ∼ λl1/2|s0(n)|ε1/6 ∼ λl1/2

for l2 > 2 : gn−l2(ε) ∼ λl2−nε−1/3.
(7.25)

Note that the dominant vectors Si, i = 1, . . . , 5 get estimates

|Si|2 ∼ ε−1/3. (7.26)

We want to evaluate the sum (7.8) for all k ∈ Z. Our idea is to find the dominant
terms (that are among the primary resonances and correspond to minimal values of
gn(ε) for a fixed ε) and then to provide estimates for the sum of others terms. To this
end, we divide the sum (7.8) into three ones: the first sum is for the dominant terms
Si, the second one is for primary k excluding Si and the third sum is for secondary
vectors k. We prove the lemma

Lemma 7.1. Assuming ε � 1 and µ � δq2ε1/6, one has

1. LSi ∼ 1
ε1/6

exp
{
−Chi(ε)

ε1/6

}
, i = 1, . . . , 5;

2.
∑

k 6=S1,...,Sl,k=s0(·)
|k|mLk ∼ 1

εm/6
LSl+1

, 0 ≤ l ≤ 4, m ≥ 0;

3.
∑

k 6=s0(·)
|k|mLk � 1

εm/6
LSl+1

, m ≥ 0;

Proof. The largest coefficients Lk, defined in 7.9, are given by the smallest exponents
βk. Due to (7.10), the main information on the size of βk(ε) is contained in the functions
gk(ε) whose minimal values are given by the dominant vectors Si, i = 1, . . . , 5. By the
definitions of the functions hi(ε), i = 1, . . . , 5, we get for Si

βSi '
C0hi(ε)

ε1/6
.
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In fact, if we look at the true exponents βSi , the constant Cµ (that depends on b and
b′) is µδ−q2-close to C0 (see the corresponding estimates for b and b′ in Theorem 5.1,
p. 118, in Chapter 5). Also there is an error when we substitute the approximations
(7.14)-(7.15) into (7.13) and define the functions hi(ε). According to Proposition 7.2,
this error is O(λ−3n/2) for γs0(n) and O(λ−n/2) for |s0(n)|2. Having λ−3n/2 ∼

√
ε, we

get for the exponent

βSi =
C0hi(ε) +O(

√
ε, µδ−q2)

ε1/6
.

Since
√
ε � ε1/6 and µδ−q2 � ε1/6 under the smallness condition given in the lemma,

we can neglect the error.
We show that the factor αk in (7.9) does not influence the dominance in Lk. Indeed,

if we assume that [1− exp{. . .}] ∼ 1 in the denominator of αk, then we deduce from
(7.9) that αk � βk and, hence, | lnαk| � βk. If [1− exp {...}] is too small (that happens
when |k|2 � γk/

√
ε), we obtain αk � 1, since x

1−exp(−Cx)
∼ C for small x. Concerning

the dominant vectors, one can prove that for Si that [1− exp {...}] ∼ 1 and, reminding
(7.26) and the fact that γ−[0,1] ≤ γSi ≤ γ+

[0,1], we get

αSi ∼
γSi
|Si|2
√
ε
∼ 1

ε1/6
.

This estimate, together with the estimate for βSi , implies part (a).
Let us prove (b) for l = 1. Then to bound the sum of Lk for the primary vectors

k ∈ {s0(·)}, excluding the dominant vector S1, say S1 = s0(n), we fix ε ≈ εs0(n) and we
divide the vectors k into the ones previous to S1 and the ones after S1. For s0(n+ l1),
l1 > 1 (vectors after S1), we use (7.25) and get

βs0(n+l1) =
C0gn+l1(ε)

ε1/6
∼ λl1/2

ε1/6

Hence

Σ1 =
∑
l1>1

|s0(n+ l1)|mLs0(n+l1) ∼
∑
l1>1

λml1/2|s0(n)|mαs0(n+l1) exp{−C0λ
l1/2ε−1/6}

∼
∑
l1>1

ε−(m+1)/6 λ(m−2)l1/2

1− exp{−Cλ−l1ε−1/6}
exp

{
−C0λ

l1/2

ε1/6

}
=
∑
l1>1

al1 ,

where

al1+1

al1
= λm/2−1 1− exp{−Cλ−l1ε−1/6}

1− exp{−Cλ−l1ε−1/6/λ}
exp

{
−C0λ

l1/2(
√
λ− 1)

ε1/6

}

≤ λm/2 exp

{
−C0

√
λ(
√
λ− 1)

ε1/6

}
= r.
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We have bounded the quotient, since 1−exp(−x)
1−exp(−x/λ)

≤ λ for sufficiently small x > 0, and

λl1/2 ≥ λ1/2 for l1 ≥ 1. Thus, the sum is bounded by a geometric series that is estimated
essentially by the first term a2 if 0 < r < 1∑
l1>1

al1 = a2(1+
a3

a2

+
a4

a2

+. . .) = a2(1+
a3

a2

+
a4

a3

· a3

a2

+. . .) ≤ a2(1+r+r2+. . .) = a2
1

1− r

Taking ε1/6 < 2C0

√
λ(
√
λ−1)/(m lnλ) (to have r < 1), Σ1 is bounded by a convergent

geometric series and is determined by the first term (i.e. l1 = 2)

Σ1 ∼ |s0(n+ 2)|mLs0(n+2).

For s0(n− l2) with l2 > 2 (vectors previous to S1) we get by (7.25)

βs0(n−l2) ∼
λl2−n√
ε
.

Then, the sum is

Σ2 =
n∑

l2=3

|s0(n−l2)|mLs0(n−l2) ∼
n∑

l2=3

λ−(m/2−1)l2ε−(m+1)/6 exp{−C0λ
l2−nε−1/2}

1− exp{−Cλl2ε−1/6}
=

n∑
l2=3

bl2

can also be bounded by a geometric series, since

bl2+1

bl2
≤ λ1−m/2 exp

{
−C0λ(λ− 1)

λnε1/2

}
= r.

In this case r < 1 for any ε > 0 if m ≥ 2 and one has to take ε1/2 < C0λ
1−n(λ−1)/((1−

m/2) lnλ) if m = 0 and m = 1. Thus, sum is bounded by a convergent geometric series
and, thus, is estimated essentially by the first term b3:

n∑
l2=3

bl2 ≤
∞∑
l2=3

bl2 =
b3

1− r
.

Hence, we obtain the estimate

Σ2 ∼ |s0(n− 3)|mLs0(n−3).

Therefore, we conclude that the sum of the coefficients |s0(·)|Ls0(·) is estimated by
a finite number of terms (including also those that have not entered in Σ1 and Σ2):∑
i 6=n

|s0(i)|mLs0(i) ∼ Σ1+Σ2+|s0(n+1)|mLs0(n+1)+|s0(n−1)|mLs0(n−1)+|s0(n−2)|mLs0(n−2).



DOMINANT HARMONICS OF THE MELNIKOV POTENTIAL 177

The other dominant terms corresponding to the vectors Si are among those that are
presented in the last estimate. Thus, excluding a necessary number of dominant har-
monics, one obtains the expected estimate of part (b) in the case l 6= 1.

To bound the sum of secondary resonances (k /∈ {s0(·)}) in part (c), we divide
all such vectors into the cases |k|2 ≤ ε−1/6 and |k|2 ≥ ε−1/6. In the first case, we
have a finite number of vectors (bounded by a ball |k1|2 + |k2|2 + |k3|2 ≤ ε−1/6), this
number can be estimated by O(ε−1). Recall that for all k /∈ {s0(·)}, we have the bound
γk ≥ γ−[2,0] ≈ 1.0376 and, hence, by (7.12) one gets

βk ≥
3C0γ

1/3
[2,0]

2ε1/6
> βSl , 1 ≤ l ≤ 5.

Also we conclude that in this case [1− exp{. . .}] in the denominator of αk in (7.9) and,
hence,

αk ∼
γk
|k|2
√
ε

=
|〈k, ω〉|√

ε
≤ |k||ω|√

ε
� ε−7/12.

The sum for these vectors is∑
k 6=s0(·)
|k|2�ε−1/6

|k|mLk � ε−m/12ε−7/12 exp

{
−

3C0γ
1/3
[2,0]

2ε1/6

}
� ε−m/12−19/12 exp

{
−

3C0γ
1/3
[2,0]

2ε1/6

}
� |Sl+1|mLSl+1

.

In the case k /∈ {s0(·)} and |k|2 � ε−1/6 we can say that for large enough k the
functions βk in (7.9) behave as βk ∼ ρ|k|. Concerning αk, there are vectors satisfying
|k|2 � γk/

√
ε, then in this case αk � 1 and the sum is estimated as∑

|k|2�γk/
√
ε

|k|mLk ∼
∑

|k|2�γk/
√
ε

|k|m exp {−ρ|k|} �
∑

K2�ε−1/6

Km exp(ρK)

∼ ε−m/12 exp{−ρε−1/12} � |Sl+1|mLSl+1

Here we have bounded the sum by the sum of a geometric series that is assessed by its
first term. Otherwise, for ε−1/6 � |k2| � γk/

√
ε, we get

αk ∼
γk
|k|2
√
ε

=
|〈k, ω〉|√

ε
≤ |k||ω|√

ε
� |k|ε−1/2,

and we proceed analogously to estimate the sum∑
ε−1/6�|k|2�γk/

√
ε

|k|mLk � ε−1/6 �
∑

ε−1/2�|k|2�γk/
√
ε

|k|m+1e−ρ|k| = ε−1/2
∑

K2≥ε−1/6

Kme−ρK

∼ ε−1/2−m/12 exp{−ρε−1/12} � |Sl+1|mLSl+1

Finally, to complete the proof of Lemma, we consider the non-admissible vectors
k /∈ A, for which |〈k, ω〉| > 1/2 and, hence, γk ≥ |k|2/2. We find in (7.9) that

αk �
|k|√

ε(1− exp(−C/
√
ε))

and βk ≥ ρ|k|+ C/
√
ε
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and we again bound the sum by a geometric series∑
k/∈A
|k|mLk � ε−1/2 exp(−C/

√
ε)
∑
k/∈A
|k|m+1 exp(−ρ|k|) �

∑
K≥1

Km+1 exp(−ρK)

� ε−1/2 exp(−ρ− C/
√
ε).

The obtained upper bound is smaller than the one from part (b).

7.4 Dominant harmonics of the splitting potential

The estimates obtained for in Lemma 7.1 can be used as a first approximation for the
dominant harmonics of the splitting potential L(θ). We prove that assuming µ = εp,
for a suitable p > 0, the dominant harmonics don’t change essentially in L if we add
the error term of order O(µ2).

Lemma 7.2. Assuming ε � 1, µ = εp with p > p∗, with p∗ = 2 if ν = 1 and p∗ = 3 if
ν = 0, one has:

(a) LSi ∼
µ
ε1/6

exp{−C0hi(ε)

ε1/6
},

|τSi − σSi − s(0)〈Si, ω̂ε〉| � µ
εp∗

, i = 1, . . . , 5;

(b)
∑

k 6=S1,...,Sl

|k|mLk � 1
εm/6
LSl+1

, 0 ≤ l ≤ 4,m ≥ 0.

Proof. The proof is analogous to the quadratic case (Lemma 6.2 in Chapter 6), we
adapt it to the cubic case having only the difference in some exponents.

Taking into account that L is ω̂ε-quasiperiodic, we can consider the following Fourier
expansion:

L(s, θ) =
∑
k∈Z2

L∗kei〈k,θ−ω̂εs〉 =
∑
k∈Z

Lk cos(〈k, θ − ω̂εs〉 − τk),

where Lk, τk are real, Lk ≥ 0 and Z is defined in (5.8). For every k ∈ Z, the exponential
and the trigonometric forms are related by L∗k = 1

2
Lke−iτk . Then the corresponding

Fourier coefficients of the splitting function M(s, θ)∂θL and the Melnikov function
M(s, θ) are (in the exponential form) M∗

k = ikL∗k and M∗
k = ikL∗k, respectively.

By Theorem 5.1, the splitting functionM(s, θ) can be defined on a complex domain:
|Im s| < π

2
− δ, |Im θ| < ρ, where δ is a small reduction (to be chosen), and we have

the upper bound (5.14) for the error term. Due to ω̂ε-quasiperiodicity of R, we apply a
standard result (Lemma 11 of [DGS04]) to it to get bounds for its Fourier coefficients:

|R∗k| �
(
µ2

δq3
+

µ2

δq4
√
ε

)
e−β̃k(ε), β̃k(ε) = (ρ− δ)|k|+ (π/2− δ)b′γk

b|k|
√
ε

.
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From (5.13) we deduce that the Fourier coefficients of the error term satisfyR∗k = ik(L∗k−
µL∗ke

−is(0)〈k,ω̂ε〉), k 6= 0. Taking modulus and argument, we get

|Lk − µLk| �
|R∗k|
|k|

, |τk − σk − s(0)〈k, ω̂ε〉| �
|R∗k|
|k|µLk

.

We present the function β̃k as in (7.10), but with ρ − δ and π/2 − δ instead of ρ
and π/2

β̃k(ε) =
Cµ,δg̃k(ε)

ε1/6
, where g̃k = γ

1/3
k

[
ε1/6

ε̃
1/6
k

+
ε̃

1/3
k

2ε1/3

]
, ε̃

1/4
k =

Dµ,δ

√
γ̃k

|k|
,

now with

Cµ,δ = (ρ− δ)2/3

(
2(π/2− δ)b′

b

)1/3

= C0 +O(µδ−q2 , δ),

Dµ,δ =
2(π/2− δ)b′

b(ρ− δ)
= D0 +O(µδ−q2 , δ).

In fact, we consider β̃k as a perturbation of βk. Indeed, proceeding as in the proof of
Lemma 7.1, we get for the most dominant terms:

β̃Si =
C0hi(ε) +O(

√
ε, µδ−q2 , δ)

ε1/6
.

We can neglect the perturbation term if µδ−q2 � ε1/6, δ � ε1/6. So we choose δ =
ε1/6. The smallness conditions on µ in Theorem 5.1 become µ � εq1/6 (the condition
containing the exponent q2 can be ignored, since q1 ≥ q2 + 4). Then using (7.26), we
conclude

|LSi − µLSi | �
|R∗Si |
|Si|

� µ2

ε(q3−1)/6
exp

{
−C0hi(ε)

ε1/6

}
.

We have ignored the term containing q4, since q3 ≥ q4 + 3.
Therefore, the term |µLSi | ∼

µ
ε1/6

exp{−C0hi(ε)

ε1/6
} (estimated in Lemma 7.1) domi-

nates if
µ

ε1/6
� µ2

ε(q3−1)/6
.

If one takes µ = εp, the last condition is fulfilled at p > (q3 − 2)/6. We get p∗ =
max{(q3−2)/6, q1/6} = (q3−2)/6, since q3−2 ≥ q1. In fact, for ν = 0 we have q3 = 20
and hence p∗ = 3, and for ν = 1 we have q3 = 14 and p∗ = 2. The remaining statement
of (a) is proved similarly.

To prove (c), we bound the sum of |k|lLk, k 6= Si, S
′, i = 1, . . . ,m, by geometric

series analogously as it was done in the proof of Lemma 7.1.
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7.5 Critical points of the splitting potential

In this section we study the critical points of the splitting potential

L(θ) =
∞∑
i=1

LSi cos(〈Si, θ〉 − σSi),

where
LS1 ≥ LS2 ≥ LS3 ≥ . . . . (7.27)

The goal is (i) to show the nondegenericity of the critical points and (ii) to give estimates
for the minimal eigenvalue of D2L(θ). To these ends, we need at least 3 dominant
harmonics of L(θ). We consider two different cases: 1. when the only 3 dominant
harmonics LS1 ,LS2LS3 are sufficient (it the case when the corresponding vectors S1,
S2, S3 are linearly independent, i.e. ∆ = det(S1, S2, S3) 6= 0) and 2. when we need
4 dominant harmonics LS1 ,LS2LS3 and LS4 (the case ∆ = det(S1, S2, S3) = 0 and
∆1 = det(S1, S2, S4) 6= 0). Therefore, we consider, first, the approximations given by 3
or 4 dominant harmonics:

L(3)(θ) =
3∑
i=1

LSi cos(〈Si, θ〉 − σSi) and L(4)(θ) =
4∑
i=1

LSi cos(〈Si, θ〉 − σSi),

according to the case studied, and complete (i)-(ii). Afterwards, we apply Lemma B.3
(the Fixed Point Theorem from Appendix B) to validate these critical points in the
whole function L(θ).

Remark 7.3. Numerical explorations show that ∆ takes values 1,−1, 0, and if ∆ = 0,
∆1 is equal to 1 or −1.

7.5.1 The case ∆ = det(S1, S2, S3) 6= 0.

In the case of nonzero determinant det(S1, S2, S3) we consider the approximation L(3)

and carry out the linear change

ψi = 〈Si, θ〉 − σSi , i = 1, 2, 3, (7.28)

that can be written as

ψ = Anθ − bn, where An = (S1;S2;S3)>, bn = (σS1 , σS2 , σS3)>

and turns L(3)(θ) into

K(3)(ψ) = LS1 cosψ1 + LS2 cosψ2 + LS3 cosψ3.

It easy to see that K(3) has 8 nondegenerate critical points ψ
[3]
(1),0 = (0, 0, 0), ψ

[3]
(2),0 =

(0, 0, π), ψ
[3]
(3),0 = (0, π, 0), ψ

[3]
(4),0 = (0, π, π), ψ

[3]
(5),0 = (π, 0, 0), ψ

[3]
(6),0 = (π, π, 0), ψ

[3]
(7),0 =
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(π, 0, π), ψ
[3]
(8),0 = (π, π, π). Note that detAn = ∆ 6= 0 and, moreover, numerically

|∆| = 1 (if ∆ 6= 0, see Remark 7.3). Therefore, applying the inverse change of (7.28)
and the fact that | detA| = 1, we obtain 8 nondegenerate critical points of L(3)(θ):

θ
[3]
(j),0 = A−1

n (ψ
[3]
(j),0 + bn), j = 1, . . . , 8. (7.29)

To find the eigenvalues of D2L(3)(θ
[3]
(j),0) and give estimates for the minimal in modu-

lus of them, we note that the eigenvalues of the second derivative D2K(3)(ψ) of K(3)(ψ)

at the critical points ψ
[3]
(j),0, j = 1, . . . , 8, are λ1 = ±LS1 , λ2 = ±LS2 , λ3 = ±LS3 .

On the other hand, the second derivative of L(3) can be presented in terms of D2K(3)

as

D2L(3)(θ
[3]
(j),0) = A>nD2K(3)(ψ

[3]
(j),0)An = ±LS1S1 · S>1 ± LS2S2 · S>2 ± LS3S3 · S>3 .

By assumption (7.27), we write the eigenvalues of D2K(3) in form λ1 = ±LS1 = A,
λ2 = ±LS2 = Aδ1, λ3 = ±LS3 = Aδ1δ2 with δ1 and δ2 small. Note that A, δ1, δ2 can be
both positive and negative (depending on the sign of the corresponding eigenvalue).

Assume µ is an eigenvalue and v the associated eigenvector of D2L(3). Then the
following is true:

D2L(3)v = A>nD2K(3)Anv = µv.

Multiplying on the left by An and denoting w = Anv and B = AnA>n , we get
BD2K(3)w = µw. This means that µ is also an eigenvalue of BD2K(3) with a
new associated eigenvector w. Hence, instead of finding the eigenvalues of D2L(3) =
A>nD2K(3)An directly, we look for the eigenvalues of the matrix BD2K(3), since these
matrices have the same eigenvalues (but different eigenvectors). Note that B is a sym-
metric matrix with components bij = S>i Sj and the eigenvalues of D2K(3), as said
above, are A, Aδ1 and Aδ1δ2. We use the following lemma to find the eigenvalues of
the product of these matrices:

Lemma 7.3. Assume δ1, δ2 are small enough. Then the eigenvalues of the matrix
BK, where B is a symmetric 3 × 3-matrix with positive components bi,j and K =
diag(A1, A2δ1, A3δ1δ2) is a diagonal matrix with some constants A1, A2, A3, are:

µ
[3]
1 = A1b11 + A2

b212

b11
δ1 + A3

b213

b11
δ1δ2 +O(δ2

1) + δ1δ2O(δ1, δ2);

µ
[3]
2 = A2

b11b22−b212

b11
δ1 + A3

(
b33 − b213

b11

det(B)

b22b11−b212

)
δ1δ2 +O(δ2

1) + δ1δ2O(δ1, δ2);

µ
[3]
3 = det(B)

b22b11−b212
A3δ1δ2 +O(δ2

1) + δ1δ2O(δ1, δ2).

Proof. We write the product

BK =

 A1b11 A2b12δ1 A3b13δ1δ2

A1b12 A2b22δ1 A3b23δ1δ2

A1b13 A2b23δ1 A3b33δ1δ2


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1. In the easiest case δ1 = 0, the matrix has eigenvalues µ
[1]
1 = A1b11 and µ

[1]
2 =

µ
[1]
3 = 0.

2. Assume that δ2 = 0, but δ1 6= 0. In this case we perturb eigenvalues obtained in
the case 1 as

µ
[2]
1 = Ab11 + c

[2]
1 δ1 +O(δ2

1), µ
[2]
2 = c

[2]
2 δ1 +O(δ2

1), µ
[2]
3 = c

[2]
3 δ1 +O(δ2

1)

and try to find coefficients ci such that µ
[2]
i are eigenvalues of A1b11 A2b12δ1 0

A1b21 A2b22δ1 0
A1b31 A2b32δ1 0


We get equations for µ

[2]
i

µ
[2]
1 + µ

[2]
2 = A1b11 + A2b22δ1; µ

[2]
1 µ

[2]
2 = A1A2(b11b22 − b2

12)δ1; µ
[2]
3 = 0.

From the last equation we obtain c
[2]
3 = 0, while for the other coefficients we have

c
[2]
1 δ1 + c

[2]
2 δ2 = A2b22δ1; (A1b11 + c

[2]
1 δ1)c

[2]
2 δ1 = A1A2(b11b22 − b2

12)δ1.

Neglecting terms of order O(δ2
1), we conclude

c
[2]
1 + c

[2]
2 = b22A2; b11c

[2]
2 = A2(b11b22 − b2

12)

From this, it follows

c
[2]
1 = A2

b2
12

b11

; c
[2]
2 = A2

b11b22 − b2
12

b11

Thus, in the case δ2 = 0 and δ1 6= 0, the eigenvalues are

µ
[2]
1 = A1b11 +A2

b2
12

b11

δ1 +O(δ2
1); µ

[2]
2 = A2

b11b22 − b2
12

b11

δ1 +O(δ2
1); µ

[2]
3 = O(δ2

1).

3. In order to find the eigenvalues in the whole case δ1, δ2 6= 0 we perturb µ
[2]
i as

follows

µ
[3]
1 = Ab11 + A

b212

b11
δ1 + c

[3]
1 δ1δ2 +O(δ2

1) + δ1δ2O(δ1, δ2);

µ
[3]
2 = c

[2]
2 δ1 + c

[3]
2 δ1δ2 +O(δ2

1) + δ1δ2O(δ1, δ2);

µ
(3)
3 = c

[3]
3 δ1δ2 +O(δ2

1) + δ1δ2O(δ1, δ2).
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We have equations

µ
[3]
1 + µ

[3]
1 + µ

[3]
1 = T ;

µ
[3]
1 µ

[3]
2 + µ

[3]
1 µ

[3]
3 + µ

[3]
2 µ

[3]
3 = 1

2
[T 2 − T1];

µ
[3]
1 µ

[3]
2 µ

[3]
3 = D;

where

T = tr(BK) = A1b11 + A2b22α + A3b33β,
T1 = tr[(BK)2] = A2

1b
2
11 + 2A1A2b

2
12α + 2A1A3b

2
13β +O2(α, β),

D = det(BK) = det(B)A1A2A3αβ.

Substituting µ[3] into the last equation, we find

µ
[3]
3 =

det(B)A1A2A3δ
2
1δ2

µ
[3]
1 µ

[3]
2

=
det(B)A1A2A

3
3δ

2
1δ2

(A1b11 + A2
b212

b11
δ1 + c

[3]
1 δ1δ2 + . . .)(c

[2]
2 δ1 + c

[3]
2 δ1δ2 + . . .)

=
det(B)A1A2A3δ

2
1δ2

A1b11c
[2]
2 δ1

(
1− A2b

2
12

A1b2
11

δ1 −
c

[3]
1

A1b11

δ1δ2 + . . .

)(
1− c

[3]
2

c
[2]
2

δ2 + . . .

)
=

det(B)A3δ1δ2

b11b22 − b2
12

(1 +O(δ1, δ2)) .

Other equations becomes (neglecting the higher order terms)

c
[3]
1 +c

[3]
2 = A3b33−

A3 det(B)

b11b22 − b2
12

; A1b11c
[3]
2 +A1A3b11

det(B)

b11b22 − b2
12

= A1A3(b11b33−b2
13)

Thus, we get

c
[3]
1 = A3

b2
13

b11

; c
[3]
2 = A3

(
b33 −

b2
13

b11

det(B)

b22b11 − b2
12

)
; c

[3]
3 =

A3 det(B)

b22b11 − b2
12

,

that gives the expected values for the eigenvalues µ
[3]
i .

In our case, we have bij = S>i Sj, i, j = 1, 2, 3, and A1 = A2 = A2 = A. Then
according to the Lemma 7.3, then the minimum eigenvalue is

m
[3]
(j),0 = µ

[3]
3 ∼

det(B)

b11b22 − b2
12

Aδ1δ2 =
det(B)

b11b22 − b2
12

LS3 .

Note that the denominator b11b22 − b2
12 = |S1|2|S2|2 − (〈S1, S2〉)2 = |S1|2|S2|2 sinφ,

where φ is the angle between S1 and S2, is far from zero. It could be equal to 0, if the
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vector S1 and S2 were collinear, but it is not the case, since ∆ = det(S1, S2, S3) 6= 0.
Moreover, due to (7.26), we can estimate

b11b22 − b2
12 ∼ ε−2/3.

Therefore, taking into account also the numerical result that detB = 1, we get the
estimate for the minimum eigenvalue

m
[3]
(j),0 ∼ ε2/3LS3 . (7.30)

Thus, we have proven the following lemma:

Lemma 7.4 (Critical points of L3(θ)). The function L(3) has exactly 8 nondegener-

ate critical points θ
[3]
(j),0, j = 1, . . . , 8, given by (7.29), and the minimal eigenvalue of

D2L(θ
[3]
(j),0) satisfies the estimate (7.30).

To prove the persistence of the critical points θ
[3]
(j),0 with some small perturbations

in the whole splitting potential L(θ), we proceed as in the quadratic case in Chapter 6
(Section 6.2.5, p. 139). We consider the function

L(θ) = L(3)(θ) + LS4F (θ),

where the term LS4F (θ) stands for the remainder and, according to Lemma 7.2, func-
tion F satisfies: ∣∣∂ψjF ∣∣ ∼ 1

ε1/6
,
∣∣∣∂2
ψiψj

F
∣∣∣ ∼ 1

ε1/3
, i, j = 1, 2, 3.

By the linear change (7.28), L(θ) is transformed to

K(ψ) = K(3)(ψ) + LS4G(ψ),

where function G satisfies the bounds∣∣∂ψjG∣∣ ∼ ε−1/2,
∣∣∣∂2
ψiψj

G
∣∣∣ ∼ ε−1, i, j = 1, 2, 3. (7.31)

The critical points of K(ψ) are the solutions of

sinψ1 =
LS4

LS1

∂ψ1G(ψ), sinψ2 =
LS4

LS2

∂ψ2G(ψ), sinψ3 =
LS4

LS3

∂ψ3G(ψ).

We denote

η = max

{
LS4

LS1

,
LS4

LS2

,
LS4

LS3

}
=
LS4

LS3

Then by Lemma B.3 (the Fixed Point Theorem, see Appendix B) the equations have
nondegenerate solutions if ( η

ε1/6

)2

+

(
3η

ε1/3

)2

< 1
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is satisfied. The inequality is true for η � ε.
Under this condition, by Lemma B.3 there are 8 simple solutions:

ψ
[3]
(j) = ψ

[3]
(j,0) +O(η), j = 1, . . . , 8.

Executing the inverse change of (7.28), we get the critical points of L:

θ
[3]
(j) = A−1

n (ψ
[3]
(j) + b), j = 1, . . . , 8. (7.32)

Remark 7.4. By the inverse change, we obtain 8 critical points, since we suppose that
|A| = 1, the fact confirmed numerically.

Regarding the eigenvalues of D2L at each critical point, we have D2L(θ
[3]
(j)) =

A>nD2K(ψ
[3]
(j))An, where

D2K(ψ
[3]
(j)) = D2K(3)(ψ

[3]
(j)) +O(η) = D2K(3)(ψ

[3]
(j,0)) +O(η),

and, therefore, the eigenvalues of D2L are a perturbation of order O(η) of the eigen-
values of L(3). Hence, the minimal (in modulus) eigenvalue satisfies

m
[3]
(j) ∼ ε2/3LS3 . (7.33)

7.5.2 The case ∆ = 0, but ∆1 = det(S1, S2, S4) 6= 0.

Due to a peculiarity of the matrix U , the following equality takes place:

s(j, n+ 3) = s(j, n)− s(j, n+ 1) for any j ∈ P (7.34)

and, therefore, it can occur that the dominant vectors S1, S2, S3 satisfy this equality,
i.e. ∆ = 0. We assume that ∆1 = det(S1, S2, S4) 6= 0.

Remark 7.5. Numerical explorations show that both ∆ and ∆1 never vanish simul-
taneously, i.e. if ∆ = 0, then ∆1 6= 0 (in fact, ∆1 takes values −1 and 1).

In this case, we consider the approximation L(4)(θ) by 4 dominant harmonics. We
carry out the change

ψ1 = 〈S1, θ〉 − σS1 , ψ2 = 〈S2, θ〉 − σS2 , ψ3 = 〈S4, θ〉 − σS4 (7.35)

or ψ = A′nθ − b′n with A′n = (S1;S2;S4)>, b′n = (σS1 , σS2 , σS4)>. We suppose, due to
(7.34), S3 = τS1 + σS2, σ, τ = ±1. Then, under the change (7.35), L(4)(θ) turns into

K(4)(ψ) = LS1 cosψ1 + LS2 cosψ2 + LS3 cos(τψ1 + δψ2 −4σ) + LS4 cosψ3,

where 4σ = σ3 − τσ1 − δσ2.
The case of 4 dominant harmonics is more difficult than the previous one, since

the second derivative D2K(4) is not diagonal anymore (but it is diagonalizable) and
a special study is required to find the critical points of K(4). Thus, we divide this
problem in some parts where we find critical points of K(4), reduce D2K(4) to the
diagonal form (and, thus, we find eigenvalues of D2K(4)), and, finally, find estimates
for the eigenvalues of D2L(4) (using the Lemma 7.3 through the eigenvalues of matrix
Bdiag(D2K(4)) with a new B).
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Critical points of K(4)(ψ)

The critical points ψ ∈ T3 of K(4)(ψ) are the zeros of its gradient: LS1 sinψ1 + τLS3 sin(τψ1 + σψ2 −4σ)
LS2 sinψ2 + σLS3 sin(τψ1 + σψ2 −4σ)
LS4 sinψ3

 .

For the last component of ψ we have sinψ3 = 0 and simply find ψ
(1)
3 = 0 and

ψ
(2)
3 = π. To find the other components we work with equations

LS1 sinψ1 + τLS3 sin(τψ1 + σψ2 −4σ) = 0
LS2 sinψ2 + σLS3 sin(τψ1 + σψ2 −4σ) = 0

As in the case of 3 dominant harmonics, we denote again: LS1 = A, LS2 = Aδ1,
LS3 = Aδ1δ2 and, hence, get

sinψ1 = −δ1δ2τ sin(ψ1 − ψ2 −4σ),
sinψ2 = −δ2σ sin(ψ1 − ψ2 −4σ).

(7.36)

By Lemma B.2, these equations have 4 simple solutions if the following holds:

3(δ1δ2)2 < 1, 3δ2
2 < 1.

The second inequality implies the first one. Choosing η̃ = max{δ1δ2, δ2} = δ2. Thus, if
η̃ < 1/

√
3 (that is LS3 < LS2/

√
3), function K(4) has 8 nondegenerate critical points:

ψ
[4]
(1),η̃ = (O(η̃),O(η̃), 0), ψ

[4]
(2),η̃ = (π +O(η̃),O(η̃), 0),

ψ
[4]
(3),η̃ = (O(η̃), π +O(η̃), 0), ψ

[4]
(4),η̃ = (π +O(η̃), π +O(η̃), 0),

ψ
[4]
(5),η̃ = (O(η̃),O(η̃), π), ψ

[4]
(6),η̃ = (π +O(η̃),O(η̃), π),

ψ
[4]
(7),η̃ = (O(η̃), π +O(η̃), π), ψ

[4]
(8),η̃ = (π +O(η̃), π +O(η̃), π).

Thus, by the inverse change of (7.35), we get 8 critical points of L[4]

θ
[4]
(j),η̃ = (A′n)−1(ψ

[4]
(j),η̃ + b′n), j = 1, . . . , 8. (7.37)

Diagonal form of D2K(4).

The matrix D2K(4) in sot diagonal, but at critical points it has form

D2K(4)(ψ
[4]
(j),η̃) =

 a c 0
c b 0
0 0 d


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being
a = − (LS1 cosψ1 + LS3 cos(τψ1 + σψ2 −4σ))|

ψ
[4]
(j),η̃

,

b = − (LS2 cosψ2 + LS3 cos(τψ1 − σψ2 −4σ))|
ψ

[4]
(j),η̃

,

c = − τσLS3 cos(τψ1 + σψ2 −4σ)|
ψ

[4]
(j),η̃

d = ±LS4

We mention that D2K(4) is a symmetric real matrix and, hence, can be reduced to
a diagonal form, say, D, by an orthogonal matrix Q−1 = Q>, i.e.

D2K(4) = Q−1DQ = Q>DQ

Thus,

D2L(4) = (A′n)>D2K(4)A′n = (A′n)>Q>DQA′n = W>DW, with W = QA′n (7.38)

The eigenvalues of D2K(4) (and the diagonal elements of D) are

λ1,2 =
a+ b±

√
(a+ b)2 − 4ab+ 4c2

2
and λ3 = d.

For example, at the point ψ
[4]
(1),η̃, we have (we also denote here LS4 = Aδ1δ2δ3, where

δ3 = LS4/LS3 < 1):

a(ψ
[4]
(1),η̃) = −A(1 + δ1δ2 cos4σ +O(η̃2)), b(ψ

[4]
(1),η̃) = −Aδ1(1 + η̃ cos4σ +O(η̃2)),

c(ψ
[4]
(1),η̃) = −τσAδ1δ2 cos4σ +O(η̃2),

d(ψ
[4]
(1),η̃) = −Aδ1δ2δ3,

and the eigenvalues are

λ1(ψ
[4]
(1),η̃) = −A− Aδ1δ2 cos4σ +O(η̃2);

λ2(ψ
[4]
(1),η̃) = −Aδ1 − Aδ1δ2 cos4σ +O(η̃2);

λ3(ψ
[4]
(1),η̃) = −Aδ1δ2δ3.

We write the diagonal matrix

D =

 λ1 0 0
0 λ2 0
0 0 λ3

 =

 A′ 0 0
0 A′′δ1 0
0 0 A′′′δ1δ2

 ,

where A′ = −A− Aδ1δ2 cos4σ +O(η̃2), A′′ = −A− Aδ2 cos4σ +O(η̃), A′′′ = −Aδ3.
As in the case of 3 dominant harmonics, the matrix D2L(4) has the same eigenvalues

as the matrix BD, where B = WW> with W from (7.38). In fact, B = A′n(A′n)>. Then
according to Lemma 7.3, the minimum (in modulus) eigenvalue is

µ
[4]
(1),η̃ =

|A′′′| det(B)δ1δ2

b11b22 − b2
12

+ . . . ∼ A det(B)δ1δ2δ3

b11b22 − b2
12

∼ ε2/3LS4 ,
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where b11 = |S1|2, b22 = |S2|2, b12 = 〈S1, S2〉 are elements of B. Since ∆1 =
det(S1, S2, S4) 6= 0, the denominator b11b22 − b2

12 does not vanish, and, analogously
to the case of ∆ 6= 0, one give the estimate b11b22 − b2

12 ∼ ε−2/3.
Thus, we have proven the following lemma:

Lemma 7.5 (Critical points of L(4)(θ)). Assume η̃ = LS3/LS2 � ε. Then function

L(4) has exactly 8 nondegenerate critical points θ
[4]
(j),η̃, j = 1, . . . , 8, given by (7.37) ,

and the minimal eigenvalue of D2L[4](θ
[4]
(j),η̃) satisfies

µ
[4]
(j),η̃ ∼ ε2/3LS4 .

Critical points of L(θ) in the case ∆ = 0,∆1 6= 0.

Concerning the critical points in the whole splitting potential, in the case of the 4
dominant harmonics, we consider

L(θ) = L(4)(θ) + LS5F̃ (θ),

where we denote by LS5F̃ (θ) the sum of the non-dominant terms which satisfies by
Lemma 7.2: ∣∣∂ψjF ∣∣ ∼ 1

ε1/6
,
∣∣∣∂2
ψiψj

F
∣∣∣ ∼ 1

ε1/3
, i, j = 1, 2, 3.

After the change (7.35), the splitting potential becomes

K(ψ) = K(4)(ψ) + LS5G̃(ψ),

whose critical points are the solutions of

sinψ1 = −τδ1δ2 sin(τψ1 + σψ2 −4σ) +
LS5

LS1
∂ψ1G̃(ψ),

sinψ2 = −σδ2 sin(τψ1 + σψ2 −4σ) +
LS5

LS2
∂ψ2G̃(ψ),

sinψ3 =
LS5

LS4
∂ψ3G̃(ψ).

(7.39)

Note that function G̃ also satisfies the bounds (7.31). We denote

η̄ = max

{
LS5

LS1

,
LS5

LS2

,
LS5

LS4

}
=
LS5

LS4

Then in order to have nondegenerate solutions, it is required by Lemma B.3 of the
Appendix B that the following inequalities hold:(

δ1δ2 + η̄ε−1/2
)2

+ (δ1δ2 + 3η̄ε−1)
2
< 1,(

δ2 + η̄ε−1/2
)2

+ (δ2 + 3η̄ε−1)
2
< 1,(

η̄ε−1/2
)2

+ (3η̄ε−1)
2
< 1.
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We choose η = max{η̄, δ1δ2, δ2} = max{η̄, η̃} and it turns out the inequalities are true
for η � ε.

Under this condition, the equations (7.39) have 8 solutions ψ
[4]
(j) = ψ

[4]
(j,0) +O(η), j =

1, . . . , 8. Apply the inverse change of (7.35), we get the critical points of L:

θ
[4]
(j) = (A′n)−1(ψ

[4]
(j) + b′n), j = 1, . . . , 8. (7.40)

Remark 7.6. By the inverse change, we obtain 8 critical points, since we suppose that
|A′n| = 1, the fact confirmed numerically.

One can show that the eigenvalues of D2L are a perturbation of order O(η) of the
eigenvalues of L(4) (for the same reason as in the case of the 3 dominant harmonics).
Hence, the minimal (in modulus) eigenvalue satisfies

m
[4]
(j) ∼ ε2/3LS4 . (7.41)

In the end, we summarize the results of this section in the following lemma:

Lemma 7.6 (Critical points of L(θ)). Assume that ε � 1. Then one has:

• In the case that the indexes of the 3 dominant harmonics satisfy: det(S1, S2, S3) 6=
0, if η = LS4/LS3 � ε, then the splitting potential L(θ) has 8 critical points θ

[3]
(j),

j = 1, . . . , 8, defined in (7.32), all nondegenerate, and the minimal eigenvalue (in

modulus) m
[3]
(j) of D2L(θ

[3]
(j)) satisfies (7.33).

• In the case det(S1, S2, S3) = 0, det(S1, S2, S4) 6= 0, if η = max{LS5/LS4 ,LS3/LS2} �
ε, then the splitting potential L(θ) has 8 critical points θ

[4]
(j), j = 1, . . . , 8, defined

in (7.40), all nondegenerate, and the minimal eigenvalue (in modulus) m
[4]
(j) of

D2L(θ
[3]
(j)) satisfies (7.41).

Remark 7.7. In each case, the conditions η � ε and η =� ε exclude from consideration
some neighborhoods of the points ε where the last dominant harmonics, LS3 and LS4 ,
respectively, coincides with the next harmonic, LS4 and LS5 , respectively. These points
belong to the discrete sets E1 and E2, introduced in (7.24). The study of these points
still remains an open problem.

7.6 Proof of Theorems 7.1 and 7.2

Theorem 7.1, p. 171, follows from the estimate for the most dominant harmonic LS1

given in Lemma Lemma 7.2, p. 178, and the fact that M(θ) = ∂θL(θ). We consider
the approximation L(3) by 3 dominant harmonics and deduce the following estimates:

|∂θL(3)| ∼ |S1|LS1 ∼
1

ε1/6
LS1 , |∂L − ∂θL(3)| ∼ 1

ε1/6
LS4 .
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Since h4(ε) > h1(ε), we get the estimate

|M| = |∂θL| ∼
µ
3
√
ε

exp

{
−C0h1(ε)

ε1/6

}
.

Theorem 7.2, p. 173, is a consequence of Lemma 7.6 and that the nondegenerate
critical points of L(θ) correspond to simple zeros of M(θ). Applying the estimate for
LS3 or LS4 given in Lemma 7.2, one can obtain the expected estimate for the minimal
(in modulus) eigenvalue of the splitting matrix ∂θM = D2L.



Appendix B

The fixed point theorems

To find zeros of a function f(x) = 0, x ∈ R, we rewrite the equation in the form x = g(x)
and use the iteration method to define the sequence xn+1 = g(xn), n = 0, 1, 2, . . ., and
if this sequence converges, it converges to the solution of the equation. First, we state
the well-known theorems for the cases when the dimension of the variable x is 1 or
n, then we adapt them to solve specific equations of type sinX = F (X) (X ∈ Tm,
m = 1, 2 or 3). Note that the last equations appear often throughout Part II of this
thesis in finding the nondegenerate critical points of the splitting potential L.

Theorem B.1 (The 1-dimensional fixed point theorem). Let I = [a, b] and g : I → R
such that

(i) g(I) ⊂ I

(ii) g is a Lipschitz function with a Lipschitz constant 0 < L < 1, i.e. |g(x1)−g(x2)| ≤
L|x1 − x2|,∀x1, x2 ∈ I

Then for any starting point x0 ∈ I the sequence xn+1 = g(xn), n = 0, 1, 2, . . . converges
to the unique solution s ∈ I of x = g(x) and

|xn − s| ≤
Ln

1− L
|x1 − x0|

Remark B.1. By the Mean Value Theorem, |g′(x)| ≤ L < 1 implies (ii)

In the case of dimension 2, 3 or higher, we act in the analogous way, we rearrange
the equation F (z) = 0, z ∈ Rn, F ∈ Rn in the form z = G(z) and find the sequence
zn+1 = G(zn) with some starting point z0 ∈ Rn.

Theorem B.2 (The n-dimensional fixed point theorem). Let I = {z ∈ Rn : ai ≤ z ≤
bi} and G : I → Rn such that

(i) G(I) ⊂ I;

191
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(ii) There exists a constant 0 < L < 1 such that ‖G(z1) − G(z2)‖ ≤ L‖z1 − z2‖ for
all z1, z2 ∈ I;

Then

(a) the equation z = G(z) has a unique solution s ∈ I;

(b) for any z0 ∈ I the sequence zn+1 = G(zn), n = 0, 1, 2, . . . converges to s;

(c) for n = 1, 2, . . . the following inequality holds

‖zn − s‖ ≤
Ln

1− L
‖z1 − z0‖.

Remark B.2. By the Mean Value theorem (G : Rn → Rm differentiable, z, z̄ ∈ Rn,
then ∃y : yi = zi + ti(zi − z̄i), ti ∈ [0, 1] st G(z)−G(z̄) = DG(y)(z − z̄))

‖G(z)−G(z̄)‖ = ‖DG(y)(z − z̄)‖ ≤ ‖DG(y)‖‖z − z̄‖,

where we use the 1-norm ‖DG‖ = ‖DG‖1 = max
1≤i≤m

n∑
j=1

∣∣∣∂Gi∂zj

∣∣∣. Therefore, L = sup
y
‖DG(y)‖

and the condition 0 < L < 1 is equivalent to∣∣∣∣∂G1

∂z1

∣∣∣∣+

∣∣∣∣∂G1

∂z2

∣∣∣∣+ . . .+

∣∣∣∣∂G1

∂zn

∣∣∣∣ < 1

...∣∣∣∣∂Gm

∂z1

∣∣∣∣+

∣∣∣∣∂Gm

∂z2

∣∣∣∣+ . . .+

∣∣∣∣∂Gm

∂zn

∣∣∣∣ < 1

(B.1)

Now we apply these theorems to equations of type sinX = F (X), X ∈ Tm,m =
1, 2, 3. Note that we deal with equations of type f(x) = O(η) throughout Part II. In
the one-dimensional case, one gets:

Lemma B.1. If f : T→ R is differentiable and satisfies

(f ′)2 + f 2 < 1, (B.2)

then the equation

sinx = f(x) (B.3)

has exactly two solutions x∗ and x∗∗ which are simple.
If f(x) = O(η) for any x ∈ T with η sufficiently small, then the solutions of (B.3)

are x∗ = O(η) and x∗∗ = π +O(η).
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Proof. It is clear from (B.2) that |f(x)| < 1 for all x ∈ T, then the equation (B.3) can
be rewritten as

x = arcsin f(x) = g(x), x ∈
[
−π

2
,
π

2

]
and x = π − g(x), x ∈

[
π

2
,
3π

2

]
.

In the first case, for x ∈ [−π/2, π/2], the values of function g(x) lie in [−π/2, π/2] (the
first condition of Theorem B.1 is fulfilled) and, moreover, by (B.2)

|g′(x)| =

∣∣∣∣∣ f ′√
1− f 2

∣∣∣∣∣ < 1

is satisfied (the second condition of Theorem B.1 is fulfilled too), then by the Fixed
Point Theorem B.1 there exists a unique solution x∗ that is the limit of the sequence
xn = g(xn−1), n = 1, 2, . . . and |xn − x∗| ≤ Ln

1−L |x1 − x0| with

xn = arcsin(arcsin(. . . (arcsin f(x0)))).

In the second case, for x ∈ [π/2, 3π/2], we shift y = x − π and get the equation
y = g̃(y), where y ∈ [−π/2, π/2], g̃(y) = g(y + π) satisfies g̃(y) ∈ [−π/2, π/2] and
|g̃′(y)| < 1, then there exist a unique solution y∗, thus one gets x∗∗ = y∗ + π.

The solutions are simple, since if x∗ (or x∗∗) is a degenerate zero of F (x) = sinx−
f(x), i.e. it satisfies F (x∗) = 0 and F ′(x∗) = 0, then the following is true

sinx∗ = f(x∗), cosx∗ = f ′(x∗)

and one gets
1 = sin2 x∗ + cos2 x∗ = (f(x∗))2 + (f ′(x∗))2,

a contradiction to (B.2).

In the two-dimensional case, manipulating with equations

sinx = f(x, y), sin y = g(x, y) (B.4)

we get 4 systems

(a) x = arcsin f(x, y), y = arcsin g(x, y), x ∈ [−π
2
, π

2
], y ∈ [−π

2
, π

2
];

(b) x = π − arcsin f(x, y), y = arcsin g(x, y), x ∈ [π
2
, 3π

2
], y ∈ [−π

2
, π

2
];

(c) x = arcsin f(x, y), y = π − arcsin g(x, y), x ∈ [−π
2
, π

2
], y ∈ [π

2
, 3π

2
];

(d) x = π − arcsin f(x, y), y = π − arcsin g(x, y), x ∈ [π
2
, 3π

2
], y ∈ [π

2
, 3π

2
].

Consider, for example, the system (a). Here, in the notation of Theorem B.2, I =
[−π

2
, π

2
] × [−π

2
, π

2
], z = (x, y) and G = (arcsin f(x, y), arcsin g(x, y)). It is clear that

G(I) ⊂ I. Also the conditions (B.1) become∣∣∣∣∂(arcsin f)

∂x

∣∣∣∣+

∣∣∣∣∂(arcsin f)

∂y

∣∣∣∣ < 1 ↔ f 2 + (|f ′x|+ |f ′y|)2 < 1

∣∣∣∣∂(arcsin g)

∂x

∣∣∣∣+

∣∣∣∣∂(arcsin g)

∂y

∣∣∣∣ < 1 ↔ g2 + (|g′x|+ |g′y|)2 < 1.

(B.5)
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If these conditions are satisfied, then by the 2-dimensional Fixed Point Theorem B.2
(with n = 2), the system (a) has a unique solution z∗ = (x∗, y∗) ∈ I to which the
sequence zn = G(zn−1) converges for any initial point z0 = (x0, y0) ∈ I. The solution
z∗ is simple: if we consider the vector function

F = (sinx− f(x, y), sin y − g(x, y))> ,

the determinant of its Hessian matrix does not vanish at z∗ under conditions (B.5).
In the same way, we can prove (shifting variables, if necessary) that each system

(b)−(d) has a unique simple solution, and, therefore, the equations (B.4) have 4 simple
solutions. Thus, the following lemma is true.

Lemma B.2. If f, g : T2 → R are differentiable and satisfy

f 2 + (|f ′x|+ |f ′y|)2 < 1, g2 + (|g′x|+ |g′y|)2 < 1

the equations (B.4) have 4 solutions which are simple.
Moreover, if f(z) = O(η), g(z) = O(η) for any point z = (x, y) ∈ T2, then the

solutions are small perturbations z(j) = z
(j)
∗ +O(η), j = 1, 2, 3, 4 of

z(1)
∗ = (0, 0), z(2)

∗ = (π, 0), z(3)
∗ = (0, π), z(4)

∗ = (π, π).

We can proceed analogously in the three-dimensional case and prove that

Lemma B.3. If f, g, h : T3 → R are differentiable and satisfy

f 2 +(|f ′x|+ |f ′y|+ |f ′z|)2 < 1, g2 +(|g′x|+ |g′y|+ |g′z|)2 < 1, h2 +(|h′x|+ |h′y|+ |h′z|)2 < 1

the equations

sinx = f(x, y, z), sin y = g(x, y, z), sin z = h(x, y, z) (B.6)

have 8 simple solutions. Moreover, if f(u) = O(η), g(u) = O(η), h(u) = O(η) for any

point u = (x, y, z) ∈ T3, the solutions are u(j) = u
(j)
∗ +O(η), (j = 1, . . . , 8), where

u
(1)
∗ = (0, 0, 0), u

(2)
∗ = (π, 0, 0), u

(3)
∗ = (0, π, 0), u

(4)
∗ = (π, π, 0),

u
(5)
∗ = (0, 0, π), u

(6)
∗ = (π, 0, π), u

(7)
∗ = (0, π, π), u

(8)
∗ = (π, π, π).



Bibliography

[AAIS86] V. Arnold, V. Afraimovich, Y. Il’yashenko, L. Shilnikov. Bifurcation the-
ory, in V. Arnold, ed., ”Dynamical Systems V. Encyclopedia of Mathematical
Sciences”, Springer-Verlag, New-York, 1986

[Afr84] V.S. Afraimovich. On smooth changes of variables. Methods of the Qualitative
Theory and the Bifurcation Theory, (E.A.Leontovich-Andronova, ed.), (Gorky
State Univ.), pp.10-21, 1984 (Russian)

[Ale68] V. M. Alexeev. Quasirandom dynamical systems // I. Math. USSR-Sb., 5:73-
128, 1968 // II. Math. USSR-Sb., 6:505-560, 1968. // III. Math. USSR-Sb.,
7:1-43, 1969

[Ale69] Alexeev V.M. Perron sets and topological Markov chains. Uspehi mat. nauk.,
24(5):227-228, 1969

[Ale76] V. M. Alekseev. Symbolic dynamics. Eleventh Mathematical School (Summer
School, Kolomyya, 1973), Izdanie Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev,
5-210, 1976

[Ale81] V. M. Alexeev. Final motions in the three-body problem and symbolic dynam-
ics. Uspehi Mat. Nauk. 36(4):161-176, 1981

[AP37] A.A. Andronov, L.S. Pontryagin. Coarse systems. Doklady Akademii Nauk
SSSR, 14(5):247-250, 1937

[Arn64] V.I. Arnold. Instability of dynamical systems with several degrees of freedom.
Soviet Math. Dokl., 5(3):581-585, 1964.

[Arn96] V.I. Arnold. Geometrical Methods in the Theory of Ordinary Differential
Equations. Springer; 2nd edition, 1996

[AS73] V.S. Afraimovich, L.P. Shilnikov. On critical sets of Morse-Smale systems.
Trans. Moscow Math. Soc. 28:179-212, 1973

[AS82] V.S. Afraimovich, L.P. Shilnikov. Quasiattractors. Nonlinear Dynamics and
Turbulence, eds G.I.Barenblatt, G.Iooss, D.D.Joseph (Boston,Pitmen), 1-34,
1983

195



196 BIBLIOGRAPHY

[AY05] V. Afraimovich, T. Young. Multipliers of homoclinic tangencies and a theorem
of Gonchenko and Shilnikov on area preserving maps. Int. J. Bifurcation and
Chaos, 15(11):3589-3594, 2005
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Ann. Sci. École Norm. Sup. (4), 34(2):159-221, 2001
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