
A FILTERING ENGINE FOR LARGE CONCEPTUAL SCHEMAS



Author: Antonio Villegas Niño

Address: Department of Service and Information System Engineering

Building Omega, S206

C. Jordi Girona 29, 1-3

08034 Barcelona, Spain

Email: avillegas@essi.upc.edu

Telephone: +34 93 413 71 74

Fax: +34 93 413 78 33



Doctoral Thesis
– December 11, 2012 –

A FILTERING ENGINE FOR LARGE

CONCEPTUAL SCHEMAS

Antonio Villegas Niño

Advisors

Antoni Olivé Ramon

Maria-Ribera Sancho Samsó



This thesis was written in LATEX.

Figures were drawn using Inkscape.



A thesis presented by Antonio Villegas Niño in partial fulfillment of the requirements

for the degree of Doctor per la Universitat Politècnica de Catalunya





In loving memory of my sister,

Laura





Acknowledgements

At the end of my thesis I would like to thank all those people who made this thesis possible

and an unforgettable experience for me. I would like to express my sincere gratitude to all who

have supported and contributed the achievement of this goal.

At this moment of accomplishment, first of all I would like to thank my advisors, Dr. Antoni

Olivé and Dr. Maria-Ribera Sancho. Working with them has indeed been a great pleasure.

They have taught me how to enjoy researching. This work would not have been possible without

their guidance, support, and encouragement.

Thanks to my colleagues in the Grup de Recerca en Modelització Conceptual and the Depart-

ment of Service and Information System Engineering for their interesting and useful comments

on my research work and for giving me their utmost support. I would also thank to all the

reviewers that have contributed with their comments in different stages of this research.

I am particularly grateful to Josep Vilalta, owner of Vico Open Modeling and my mentor in

the HL7 world, for providing necessary infrastructure and resources to accomplish my research

work in the healthcare domain. Under his guidance I successfully overcame many difficulties

and learned a lot. I owe gratitude to Diego Kaminker and Alberto Saez, HL7 technical experts,

who willingly devoted so much time in giving guidance to me.

I expand my thanks to David Ortiz and Jose Maria Gomez, final year students who helped me

in making really interesting research ideas come true through their final career projects. I wish

them a great future.

I am indebted to my many colleagues for providing a stimulating and fun filled working en-

vironment at the office. My special appreciation to David Aguilera, Nikolaos Galanis, Jordi

Piguillem, and David Sancho for being there all these years. I take this opportunity to say

heartful thanks to Raimon Lapuente, Miquel Camprodon, Marc Rodriguez, and Oscar Mar-

tinez, with whom I had the opportunity to share great moments during this journey. I would

like to offer my special thanks to Noël and Laura. And I also want to thank Ruth for her truly

support. Thank you doesn’t seem sufficient but it is said with appreciation and respect to all

of them for their support, encouragement, care, understanding, and precious friendship.

It’s my fortune to gratefully acknowledge the support of Montse. During the inevitable ups and

downs of conducting my research she often reminded me life’s true priorities. She was always

beside me during the happy and hard moments to push me and motivate me. I doubt that I

will ever be able to convey my appreciation fully, but I owe her my eternal gratitude.



My special acknowledgements go to my parents Antonio and Victorina for their sincere encour-

agement and inspiration throughout my research work and lifting me uphill this phase of life.

Together we have experienced difficult times during the last years but they were always there

to make me look further and find the motivation to continue. Words are short to express my

deep sense of gratitude towards them.

This work has been partly supported by the

Ministerio de Ciencia y Tecnoloǵıa under

TIN2008-00444 project, Grupo Consolidado.

This work has been partly supported by the

Universitat Politècnica de Catalunya, under

FPI-UPC program.



Abstract

Nowadays, the need for representation and conceptualization of real world information has

dramatically increased. Organizations evolution and diversification require the management

and maintenance of large amounts of knowledge from their domains of interest. That growth

also has an impact in the size of conceptual schemas of information systems, making them larger.

The sheer size of those schemas transforms them into very useful artifacts for the communities

and organizations for which they are developed. However, the size of the schemas and their

overall structure and organization make it difficult to manually extract knowledge from them,

to understand their characteristics, and to change them.

There are many information system development activities in which people needs to get a

piece of the knowledge contained in the conceptual schema. For example, a conceptual modeler

needs to check with a domain expert that the knowledge is correct, a database designer needs

to implement that knowledge into a relational database, a software tester needs to write tests

checking that the knowledge has been correctly implemented in the system components, or a

member of the maintenance team needs to change that knowledge.

Dealing with large conceptual schemas is one of the most challenging and long-standing

goals in conceptual modeling. The purpose of this thesis is to formally define a new infor-

mation filtering methodology to help users of very large conceptual schemas to understand

the characteristics and knowledge these schemas contain. This thesis analyzes and describes

the different phases of an information filtering engine, identifies and studies several properties

of relevance for elements of large conceptual schemas, provides a catalog of specific filtering

requests to explore a schema in several filtering scenarios, and implements and evaluates the

efficiency and effectiveness of a filtering engine prototype with several real case studies.

The filtering methodology studies the characteristics of the knowledge contained within a

large conceptual schema, and proposes ways to select and represent the user interest in order

to specialize the results of a filtering engine. Consequently, a user focus on a fragment of the

large schema of interest to her and our methodology automatically obtains a reduced conceptual

schema extracted from the large schema and focused on the knowledge that has a closer relation

with the focus of the user. Such filtered conceptual schema is a subset of the original one, and

because of its reduced size it is more comprehensible to the user.

The filtering approach provides knowledge extraction techniques aligned with the user in-

terest representation, and presents such knowledge in an appropriate way to simplify its under-

standing. Furthermore, using this filtering approach the large conceptual schemas are navigated

more quickly, increasing their usability and reducing the user effort.





Contents

1 Introduction 1

1.1 Motivation and antecedents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 General Filtering Method for Large Conceptual Schemas . . . . . . . . . . . . 8

1.3.2 Catalog of Specific Filtering Requests for Large Conceptual Schemas . . . . . . 9

1.3.3 Filtering Engine for Large Conceptual Schemas . . . . . . . . . . . . . . . . . 9

1.3.4 Relevance Metrics for Large Conceptual Schemas . . . . . . . . . . . . . . . . 10

1.3.5 Adaptation of the Filtering Methodology to HL7 V3 schemas . . . . . . . . . . 10

1.4 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Conceptual Schemas of Information Systems 15

2.1 Conceptual Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Conceptual Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Structural Subschema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Behavioral Subschema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Modeling Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 The Entity-Relationship Model . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 The Unified Modeling Language . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 The Object Constraint Language . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Conceptual Modeling in the Large 27

3.1 Dealing with Large Conceptual Schemas . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Human Capacity for Processing Information . . . . . . . . . . . . . . . . . . 30

3.1.2 Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Requests for Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Relevance Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.3 Summarization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.4 Visualization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 The Filtering Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Comparison between Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 53

i



CONTENTS

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Relevance Metrics for Large Conceptual Schemas 57

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Topological Measures of Conceptual Schemas . . . . . . . . . . . . . . . . . . 59

4.2.1 Basic Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Extended Characteristics of Conceptual Schemas . . . . . . . . . . . . . . . . 61

4.2.3 Complex Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Importance-Computing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Importance-computing Principles . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Basic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.3 Extended Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.4 Comparison between Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.6 Extending the Target of Importance-Computing Methods . . . . . . . . . . . . 91

4.4 A User-centered View of Relevance . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Closeness-Computing Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6 Interest-Computing Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Filtering Method for Large Conceptual Schemas 97

5.1 The Filtering Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1.1 Initiative of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.2 Location of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.3 Filtering Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.4 Method of Acquiring Knowledge on Users . . . . . . . . . . . . . . . . . . . . 100

5.2 General Structure of the Filtering Method . . . . . . . . . . . . . . . . . . . 101

5.2.1 Common Input of the Filtering Method . . . . . . . . . . . . . . . . . . . . . 102

5.2.2 Common Output of the Filtering Method . . . . . . . . . . . . . . . . . . . . 103

5.3 Filtered Conceptual Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.1 Structural Subschema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.2 Behavioral Subschema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 The 7 Stages of the Filtering Method . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.1 Stage 1: Metrics Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4.2 Stage 2: Entity and Event Types Processing . . . . . . . . . . . . . . . . . . 112

5.4.3 Stage 3: Relationship Types Processing . . . . . . . . . . . . . . . . . . . . . 114

5.4.4 Stage 4: Generalizations Processing . . . . . . . . . . . . . . . . . . . . . . . 124

5.4.5 Stage 5: Schema Rules Processing . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4.6 Stage 6: Data Types Processing . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4.7 Stage 7: Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

ii



CONTENTS

6 Catalog of Filtering Requests for Large Conceptual Schemas 145

6.1 Filtering Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.1.1 The Need for Specific Filtering Requests . . . . . . . . . . . . . . . . . . . . 147

6.2 General Structure of a Filtering Request . . . . . . . . . . . . . . . . . . . . 149

6.2.1 Specific Input of a Filtering Request . . . . . . . . . . . . . . . . . . . . . . . 150

6.2.2 Specific Output of a Filtering Request . . . . . . . . . . . . . . . . . . . . . . 150

6.2.3 The 7 Stages of a Filtering Request . . . . . . . . . . . . . . . . . . . . . . . 151

6.3 Catalog of Filtering Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3.1 F1: Filtering Request for Entity and Relationship Types . . . . . . . . . . . . 153

6.3.2 F2: Filtering Request for Schema Rules . . . . . . . . . . . . . . . . . . . . . 161

6.3.3 F3: Filtering Request for Event Types . . . . . . . . . . . . . . . . . . . . . 172

6.3.4 F4: Filtering Request for a Conceptual Schema . . . . . . . . . . . . . . . . . 179

6.3.5 F5: Filtering Request for Context Behavior of Entity Types . . . . . . . . . . 186

6.3.6 F6: Filtering Request for Contextualized Types . . . . . . . . . . . . . . . . . 193

6.4 Combination of Filtering Requests . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7 Application of the Filtering Methodology 205

7.1 Case Studies Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.1.1 The osCommerce e-Commerce System . . . . . . . . . . . . . . . . . . . . . . 207

7.1.2 The Magento e-Commerce System . . . . . . . . . . . . . . . . . . . . . . . . 208

7.1.3 The EU-Rent Car Rental System . . . . . . . . . . . . . . . . . . . . . . . . 209

7.1.4 The UML Metaschema Formal Specification . . . . . . . . . . . . . . . . . . 210

7.2 The e-Commerce Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.2.1 Filtering Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.2.2 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7.3 The EU-Rent Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

7.3.1 Filtering Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

7.3.2 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7.4 The UML Metaschema Case Study . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.4.1 Filtering Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.4.2 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

7.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7.5.1 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7.5.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

8 Web-based Filtering Engine for Large Conceptual Schemas 231

8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

8.2 Service-Oriented Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

8.2.1 Web Services Description Language (WSDL) . . . . . . . . . . . . . . . . . . 233

8.2.2 Simple Object Access Protocol (SOAP) . . . . . . . . . . . . . . . . . . . . . 234

8.2.3 Web Service Invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

iii



CONTENTS

8.3 Web Architecture of the Filtering Engine . . . . . . . . . . . . . . . . . . . . 236

8.3.1 Schema Manager Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

8.3.2 Relevance-Computing Service . . . . . . . . . . . . . . . . . . . . . . . . . . 238

8.3.3 Filtering Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

8.3.4 Schema Visualization Service . . . . . . . . . . . . . . . . . . . . . . . . . . 240

8.4 User Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

8.4.1 Filtering Request F1 – Interaction Pattern . . . . . . . . . . . . . . . . . . . 242

8.4.2 Filtering Request F2 – Interaction Pattern . . . . . . . . . . . . . . . . . . . 243

8.4.3 Filtering Request F3 – Interaction Pattern . . . . . . . . . . . . . . . . . . . 244

8.4.4 Filtering Request F4 – Interaction Pattern . . . . . . . . . . . . . . . . . . . 245

8.4.5 Filtering Request F5 – Interaction Pattern . . . . . . . . . . . . . . . . . . . 246

8.4.6 Filtering Request F6 – Interaction Pattern . . . . . . . . . . . . . . . . . . . 247

8.5 Web-based Filtering Prototype Tool . . . . . . . . . . . . . . . . . . . . . . . 248

8.5.1 Filtering Request F1 – Prototype . . . . . . . . . . . . . . . . . . . . . . . . 249

8.5.2 Filtering Request F2 – Prototype . . . . . . . . . . . . . . . . . . . . . . . . 251

8.5.3 Filtering Request F3 – Prototype . . . . . . . . . . . . . . . . . . . . . . . . 253

8.5.4 Filtering Request F4 – Prototype . . . . . . . . . . . . . . . . . . . . . . . . 255

8.5.5 Filtering Request F5 – Prototype . . . . . . . . . . . . . . . . . . . . . . . . 257

8.5.6 Filtering Request F6 – Prototype . . . . . . . . . . . . . . . . . . . . . . . . 259

8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

9 Adaptation of the Filtering Methodology to HL7 V3 Schemas 263

9.1 Healthcare Interoperability Standards . . . . . . . . . . . . . . . . . . . . . . 264

9.2 Health Level 7 Version 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

9.2.1 The HL7 V3 Development Framework . . . . . . . . . . . . . . . . . . . . . . 266

9.3 Improving the HL7 V3 Standard . . . . . . . . . . . . . . . . . . . . . . . . . . 268

9.4 Transformation from HL7 V3 to UML . . . . . . . . . . . . . . . . . . . . . . . 269

9.4.1 A Metamodel of HL7 V3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

9.4.2 Transformation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

9.4.3 Transformation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

9.5 The Filtering Methodology for HL7 V3 . . . . . . . . . . . . . . . . . . . . . . 278

9.5.1 Structure of the Filtering Method for HL7 V3 . . . . . . . . . . . . . . . . . . 278

9.5.2 Relevance Metrics for HL7 V3 . . . . . . . . . . . . . . . . . . . . . . . . . . 280

9.5.3 Catalog of Filtering Requests for HL7 V3 . . . . . . . . . . . . . . . . . . . . 282

9.5.4 Example of Application of a Filtering Request to HL7 V3 . . . . . . . . . . . 283

9.6 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

9.6.1 Precision Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

9.6.2 Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

10 Conclusions and Future work 289

10.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

10.1.1 The problem of conceptual modeling in the large . . . . . . . . . . . . . . . . 290

10.1.2 Analysis of relevance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 291

iv



CONTENTS

10.1.3 The filtering approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

10.1.4 The catalog of filtering requests . . . . . . . . . . . . . . . . . . . . . . . . . 292

10.1.5 Experimentation with real case studies . . . . . . . . . . . . . . . . . . . . . 293

10.1.6 Implementation of the proposal . . . . . . . . . . . . . . . . . . . . . . . . . 294

10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

10.2.1 Extend the filtering catalog . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

10.2.2 Extend the relevance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 295

10.2.3 Validation with real users . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

10.2.4 Combine the filtering methodology with existing approaches from the literature 296

10.2.5 Automatic refactor of schema rules after contextualization . . . . . . . . . . . 296

10.3 Thesis Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

10.3.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

10.3.2 Degree Final Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Bibliography 299

Index 309

v



CONTENTS

vi



List of Figures

1.1 Reasoning on Design Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Design Research in this Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Structure of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Structure of a conceptual schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Representation of domain concepts as entity types. . . . . . . . . . . . . . . . . . 18

2.3 Redefinition notation in UML. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Structure of a large hierarchical schema with redefinitions. . . . . . . . . . . . . . 20

2.5 Example of event types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Entity-Relationship diagram about customers. . . . . . . . . . . . . . . . . . . . . 23

2.7 Example of conceptual schema specified in UML. . . . . . . . . . . . . . . . . . . 24

2.8 Example of schema rules specified in OCL. . . . . . . . . . . . . . . . . . . . . . 24

3.1 Conceptual Schema of the osCommerce system. . . . . . . . . . . . . . . . . . . . 28

3.2 Conceptual Schema of the OpenCyc ontology. . . . . . . . . . . . . . . . . . . . . 29

3.3 Human information processing. Extracted from [66]. . . . . . . . . . . . . . . . . 30

3.4 Tag cloud of the superstructure specification of the UML 2 [84]. . . . . . . . . . . 32

3.5 Three levels of abstraction diagramming. Inspired by [43]. . . . . . . . . . . . . . 34

3.6 Example of Entity Cluster Levels. Extracted from [116]. . . . . . . . . . . . . . . 36

3.7 Application of clustering algorithm of Tavana et al.. Extracted from [115]. . . . . 39

3.8 Representative elements of a conceptual schema. Extracted from [25]. . . . . . . 41

3.9 Example of PageRank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.10 EntityRank application. Extracted from [120]. . . . . . . . . . . . . . . . . . . . 45

3.11 Example of summarization of a diagram. Extracted from [40]. . . . . . . . . . . . 46

3.12 3D mesh representing a plane at four different levels of detail. Extracted from

[112]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.13 A generic model of information filtering systems. Extracted from [55]. . . . . . . 51

3.14 Information filtering in the context of large conceptual schemas. . . . . . . . . . . 54

3.15 Existing families of methods in the literature. . . . . . . . . . . . . . . . . . . . . 54

4.1 General structure of the filtering process. . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Example of basic metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Implicit reification of a binary relationship with association class. . . . . . . . . . 62

4.4 Implicit reification of a n-ary (n>2) relationship with association class. . . . . . 63

4.5 Implicit reification of a ternary relationship with association class. . . . . . . . . 64

vii



LIST OF FIGURES

4.6 Fragment of the OCL metamodel including and overview of the expressions.

Extracted from [85]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7 Fragment of the OCL metamodel including navigation expressions. Extracted

from [85]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Example of uncovered links extracted from the OCL. . . . . . . . . . . . . . . . . 67

4.9 Example of navigations of minSalaryRule. Dashed lines (a), (b) and (c) represent

the elements in navcontext(minSalaryRule) while (d) and (a) are the connections

through navigation expressions (see navexpr(minSalaryRule)). . . . . . . . . . . . 70

4.10 Example of schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.11 Extension of the schema in Fig.4.10 with some OCL invariants. . . . . . . . . . . 78

4.12 Comparison between base and extended methods applied to the osCommerce. . . 88

4.13 A fragment of conceptual schema (up) and its version with reifications (down). . 92

4.14 Comparison between common relevance (left) and user-centered relevance (right)

in a large conceptual schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Classification of information filtering systems (adapted from [55]). . . . . . . . . 98

5.2 General structure of the filtering method. . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Input of the filtering method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Output of the filtering method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Structure of a filtered conceptual schema. . . . . . . . . . . . . . . . . . . . . . . 104

5.6 The 7 stages of the filtering method. . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.7 Conceptual schema of the Magento e-commerce system. . . . . . . . . . . . . . . 107

5.8 Stage 1: Metrics Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.9 Geometrical foundation of the concept of Interest of entity and event types Φ(e). 110

5.10 Stage 2: Entity and Event Types Processing. . . . . . . . . . . . . . . . . . . . . 112

5.11 Venn diagram of the entity and event types in the filtered conceptual schema. . . 113

5.12 Stage 3: Relationship Types Processing. . . . . . . . . . . . . . . . . . . . . . . . 114

5.13 Classification of relationship types. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.14 Projection of a referentially-partial relationship type. . . . . . . . . . . . . . . . . 117

5.15 Subsumed redefinitions projected to the same set of participants. . . . . . . . . . 118

5.16 Combination of a projected relationship and its projected redefinition. . . . . . . 119

5.17 Projection of a relationship type that produces repeated relationship types. . . . 123

5.18 Projection of a relationship type to the lowest common ancestor of LogIn and

LogOut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.19 Stage 4: Generalizations Processing. . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.20 Process to filter generalization relationships. . . . . . . . . . . . . . . . . . . . . . 125

5.21 Stage 5: Schema Rules Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.22 Example of integrity constraint (ic1) and derivation rule (dr1). . . . . . . . . . . 130

5.23 Stage 6: Data Types Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.24 Stage 7: Presentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.25 Example of filtered conceptual schema without presentation enhancement. . . . . 136

5.26 Example of filtered conceptual schema highlighting elements of focus. . . . . . . 137

5.27 Example of filtered conceptual schema de-emphasizing auxiliary elements. . . . . 138

5.28 Example of filtered conceptual schema following presentation guidelines. . . . . . 138

5.29 Presentation of the filtered conceptual schema for the example of Magento (I). . 140

viii



LIST OF FIGURES

5.30 Presentation of the filtered conceptual schema for the example of Magento (II). . 141

5.31 Presentation of the filtered conceptual schema for the example of Magento (sim-

plified). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.1 Structure of the Filtering Activity. . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2 Fragment of a conceptual schema of Magento [94] to add products into a wish list.147

6.3 Relationship between the filtering methodology and the specific filtering requests. 149

6.4 The input and output of a filtering request. . . . . . . . . . . . . . . . . . . . . . 150

6.5 The 7 stages of a filtering request. . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.6 Catalog of Filtering Requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.7 F1: Filtering request for entity and relationship types. . . . . . . . . . . . . . . . 153

6.8 Activity diagram for the filtering request F1. . . . . . . . . . . . . . . . . . . . . 157

6.9 Filtered schema for the entity PriceAttribute and association AttributeInStore-

View (I). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.10 Filtered schema for the entity PriceAttribute and association AttributeInStore-

View (II). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.11 F2: Filtering request for schema rules. . . . . . . . . . . . . . . . . . . . . . . . . 161

6.12 Activity diagram for the filtering request F2 when the scope is local. . . . . . . . 166

6.13 Activity diagram for the filtering request F2 when the scope is global. . . . . . . 167

6.14 Filtered schema for the schema rule of ShoppingCartItem obtained by applying

F2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.15 Filtered schema for the schema rule of ShoppingCartItem when the scope is global

(I). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.16 Filtered schema for the schema rule of ShoppingCartItem when the scope is global

(II). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.17 F3: Filtering request for event types. . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.18 Activity diagram for the filtering request F3. . . . . . . . . . . . . . . . . . . . . 176

6.19 Filtered schema for the event type ApplyCouponCode. . . . . . . . . . . . . . . . 177

6.20 F4: Filtering request for a conceptual schema. . . . . . . . . . . . . . . . . . . . . 179

6.21 Activity diagram for the filtering request F4. . . . . . . . . . . . . . . . . . . . . 183

6.22 Example of input for the filtering request F4. . . . . . . . . . . . . . . . . . . . . 184

6.23 Filtered schema for the schema fragment of Fig 6.22. . . . . . . . . . . . . . . . . 185

6.24 F5: Filtering request for context behavior of entity types. . . . . . . . . . . . . . 186

6.25 Activity diagram for the filtering request F5. . . . . . . . . . . . . . . . . . . . . 189

6.26 Filtered schema for the entity type Product (I). . . . . . . . . . . . . . . . . . . . 191

6.27 Filtered schema for the entity type Product (II). . . . . . . . . . . . . . . . . . . 192

6.28 F6: Filtering request for contextualized types. . . . . . . . . . . . . . . . . . . . . 193

6.29 Example of application of a contextualization function Y. . . . . . . . . . . . . . 194

6.30 Activity diagram for the filtering request F6. . . . . . . . . . . . . . . . . . . . . 198

6.31 Filtered schema for the filtering request F6 (I). . . . . . . . . . . . . . . . . . . . 200

6.32 Filtered schema for the filtering request F6 (II). . . . . . . . . . . . . . . . . . . . 201

6.33 Representation of the iterative process to extract knowledge from a large con-

ceptual schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.34 Combination of filtered requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.1 Screenshot of the osCommerce system. . . . . . . . . . . . . . . . . . . . . . . . . 207

ix



LIST OF FIGURES

7.2 Screenshot of the Magento system. . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7.3 Conceptual schema of the EU-Rent car rental system. . . . . . . . . . . . . . . . 209

7.4 Metaschema of the UML Superstructure specification. . . . . . . . . . . . . . . . 210

7.5 Entity type CreditCard in Magento (left) and osCommerce (right) through F1

(K = 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.6 Event type CancelOrder in Magento (left) and osCommerce (right) through F3

(K = 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

7.7 Related events to ShoppingCart in Magento (left) and osCommerce (right) through

F5 (K = 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

7.8 Effect of event type AddProductToShoppingCart in Magento (top) and osCom-

merce (bottom) through F2 (scope=local). . . . . . . . . . . . . . . . . . . . . . . 215

7.9 Related events to Car in EU-Rent through F5 (K = 20). . . . . . . . . . . . . . . 217

7.10 Event type MakeRental in EU-Rent through F3 (K = 7). . . . . . . . . . . . . . 218

7.11 Effect of event type MakeRental in EU-Rent through F2 (scope=local). . . . . . 218

7.12 Contextualization for the effect of the event type MakeRental in EU-Rent through

F6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7.13 Entity type Property in the UML metaschema through F1 (K = 5). . . . . . . . 221

7.14 Entity type Property in the UML metaschema formal specification (see [84]). . . 222

7.15 Derivation rule of Property::opposite in the UML metaschema specification (see

[84]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7.16 Derivation rule of Property::opposite in the UML metaschema through F2 (scope=local).223

7.17 Effectiveness analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

7.18 Efficiency analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

8.1 Structure of WSDL specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

8.2 Example of SOAP message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

8.3 Example of typical web service invocation. . . . . . . . . . . . . . . . . . . . . . . 235

8.4 Web architecture of the filtering engine. . . . . . . . . . . . . . . . . . . . . . . . 236

8.5 Internal structure of the schema manager service. . . . . . . . . . . . . . . . . . . 237

8.6 Internal structure of the relevance-computing service. . . . . . . . . . . . . . . . . 238

8.7 Internal structure of the filtering service. . . . . . . . . . . . . . . . . . . . . . . . 239

8.8 Internal structure of the schema visualization service. . . . . . . . . . . . . . . . 240

8.9 General structure of the filtering web client and interaction with client views. . . 241

8.10 Interaction pattern of the filtering request for entity and relationship types (F1). 242

8.11 Interaction pattern of the filtering request for schema rules (F2). . . . . . . . . . 243

8.12 Interaction pattern of the filtering request for event types (F3). . . . . . . . . . . 244

8.13 Interaction pattern of the filtering request for a conceptual schema (F4). . . . . . 245

8.14 Interaction pattern of the filtering request for context behavior of entity types

(F5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

8.15 Interaction pattern of the filtering request for contextualized types (F6). . . . . . 247

8.16 Screenshot of the main view of the filtering engine prototype tool. . . . . . . . . 248

8.17 Screenshot of F1 (request) in the filtering engine prototype tool . . . . . . . . . . 249

8.18 Screenshot of F1 (response) in the filtering engine prototype tool . . . . . . . . . 250

8.19 Screenshot of F2 (request) in the filtering engine prototype tool . . . . . . . . . . 251

8.20 Screenshot of F2 (response) in the filtering engine prototype tool . . . . . . . . . 252

x



LIST OF FIGURES

8.21 Screenshot of F3 (request) in the filtering engine prototype tool . . . . . . . . . . 253

8.22 Screenshot of F3 (response) in the filtering engine prototype tool . . . . . . . . . 254

8.23 Screenshot of F4 (request) in the filtering engine prototype tool . . . . . . . . . . 255

8.24 Screenshot of F4 (response) in the filtering engine prototype tool . . . . . . . . . 256

8.25 Screenshot of F5 (request) in the filtering engine prototype tool . . . . . . . . . . 257

8.26 Screenshot of F5 (response) in the filtering engine prototype tool . . . . . . . . . 258

8.27 Screenshot of F6 (request) in the filtering engine prototype tool . . . . . . . . . . 259

8.28 Screenshot of F6 (response) in the filtering engine prototype tool . . . . . . . . . 260

9.1 HL7 Reference Information Model (RIM). . . . . . . . . . . . . . . . . . . . . . . 266

9.2 HL7 V3 Development Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . 267

9.3 Patient Billing Account Event R-MIM (FIAB RM010000UV02). . . . . . . . . . 267

9.4 Overview of the automatic transformation process. . . . . . . . . . . . . . . . . . 270

9.5 Simplified version of the HL7 V3 metamodel. . . . . . . . . . . . . . . . . . . . . 271

9.6 UML translation for the HL7 V3 entry point Account Management. . . . . . . . . 273

9.7 UML translation for HL7 V3 classes and associations. . . . . . . . . . . . . . . . 274

9.8 UML translation for the HL7 V3 choice GuarantorChoice. . . . . . . . . . . . . . 275

9.9 UML translation for the HL7 V3 CMET PersonUniversal. . . . . . . . . . . . . . 275

9.10 UML transformation of Patient Billing Account Domain Model (Fig. 9.3). . . . . 276

9.11 Conceptual Schema of the HL7 V3. . . . . . . . . . . . . . . . . . . . . . . . . . . 277

9.12 Comparison between general filtering method (top) and filtering method for HL7

V3 (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

9.13 Relevance metrics processing when applied to HL7 V3. . . . . . . . . . . . . . . . 280

9.14 HL7 V3 models that contain the entity types Patient and Appointment. . . . . . 283

9.15 Filtered conceptual schema for FS = {Patient, Appointment}. . . . . . . . . . . 284

9.16 Precision analysis for a set of four significant HL7 V3 domains. . . . . . . . . . . 286

9.17 Time analysis for different sizes of FS. . . . . . . . . . . . . . . . . . . . . . . . . 286

xi



LIST OF FIGURES

xii



List of Tables

1.1 Design-Science Research Guidelines [59]. . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The Outputs of Design Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Summary of clustering-based contributions. . . . . . . . . . . . . . . . . . . . . . 39

3.2 Summary of relevance-based contributions. . . . . . . . . . . . . . . . . . . . . . 43

3.3 Summary of summarization-based contributions. . . . . . . . . . . . . . . . . . . 46

3.4 Summary of visualization contributions. . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Summary of filtering contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Comparison of methods to deal with large conceptual schemas. . . . . . . . . . . 55

4.1 Definition of basic metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Definition of extended metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Results for CC applied to example of Fig 4.10. . . . . . . . . . . . . . . . . . . . 73

4.4 Results for SM applied to example of Fig 4.10. . . . . . . . . . . . . . . . . . . . 73

4.5 Results for WSM applied to example of Fig 4.10. . . . . . . . . . . . . . . . . . . 74

4.6 Results for TIM applied to example of Fig 4.10. . . . . . . . . . . . . . . . . . . . 74

4.7 Results for ER applied to example of Fig 4.10. . . . . . . . . . . . . . . . . . . . 75

4.8 Results for BER applied to example of Fig 4.10. . . . . . . . . . . . . . . . . . . 76

4.9 Results for CER applied to example of Fig 4.10. . . . . . . . . . . . . . . . . . . 77

4.10 Results for CC+ applied to example of Fig 4.11. . . . . . . . . . . . . . . . . . . 79

4.11 Results for SM+ applied to example of Fig 4.11. . . . . . . . . . . . . . . . . . . 80

4.12 Results for WSM+ applied to example of Fig 4.11. . . . . . . . . . . . . . . . . . 81

4.13 Results for TIM+ applied to example of Fig 4.11. . . . . . . . . . . . . . . . . . . 82

4.14 Results for ER+ applied to example of Fig 4.11. . . . . . . . . . . . . . . . . . . 82

4.15 Results for BER+ applied to example of Fig 4.11. . . . . . . . . . . . . . . . . . 83

4.16 Results for CER+ applied to example of Fig 4.11. . . . . . . . . . . . . . . . . . 84

4.17 Classification of selected methods according to their approach. . . . . . . . . . . 84

4.18 Comparison of knowledge used between both base and extended versions of the

selected methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.19 Schema contents of the case studies. . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.20 Correlation coefficients between original and extended methods. . . . . . . . . . . 89

4.21 Correlation coefficients between results of original and extended methods for the

UML metaschema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.22 Correlation coefficients between results of original and extended methods for the

osCommerce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xiii



LIST OF TABLES

4.23 Correlation coefficients between results of original and extended methods for the

EU-Rent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.24 Top-8 entity types of interest with regard to FS = {TaxRate, TaxClass} in

osCommerce [118]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Top-10 entity and event types of interest with regard to FS = {LogIn, LogOut,

Customer}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.1 Most Interesting classes with regard to FS = {Patient, Appointment}. . . . . . . 284

xiv



List of Algorithms

5.1 Compute Importance Ψ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Compute Closeness Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Compute Interest Φ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Compute ordered list L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 Compute interest set EΦ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.6 Compute entity types of CSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7 Compute event types of CSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.8 Classification of candidate relationship types. . . . . . . . . . . . . . . . . . . . . 114

5.9 Process referentially-complete relationship types. . . . . . . . . . . . . . . . . . . 115

5.10 Project referentially-partial relationship types. . . . . . . . . . . . . . . . . . . . 116

5.11 Function projectionOf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.12 Function LCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.13 Task 1: Delete subsumed redefinitions. . . . . . . . . . . . . . . . . . . . . . . . . 118

5.14 Task 2: Combine redefinition with its redefined relationship. . . . . . . . . . . . . 118

5.15 Function combinationOf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.16 Task 3: Add auxiliary entity and event types. . . . . . . . . . . . . . . . . . . . . 120

5.17 Compute direct generalizations of GF . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.18 Compute direct generalizations of GbF . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.19 Compute indirect generalizations of GF . . . . . . . . . . . . . . . . . . . . . . . . 126

5.20 Function fixGeneralizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.21 Compute indirect generalizations of GbF . . . . . . . . . . . . . . . . . . . . . . . . 127

5.22 Compute candidate schema rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.23 Compute referentially-complete schema rules. . . . . . . . . . . . . . . . . . . . . 129

5.24 Compute referentially-incomplete constraints. . . . . . . . . . . . . . . . . . . . . 129

5.25 Compute referentially-incomplete derivation rules. . . . . . . . . . . . . . . . . . 130

5.26 Compute data types of CSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.1 ATL transformation rule for Entry Points. . . . . . . . . . . . . . . . . . . . . . . 272

9.2 ATL transformation rule for HL7 V3 classes. . . . . . . . . . . . . . . . . . . . . 273

9.3 ATL transformation rule for HL7 V3 choices. . . . . . . . . . . . . . . . . . . . . 274

9.4 Compute Importance Ψ for HL7 V3. . . . . . . . . . . . . . . . . . . . . . . . . . 281

9.5 Compute Closeness Ω for HL7 V3. . . . . . . . . . . . . . . . . . . . . . . . . . . 281

9.6 Compute Interest Φ for HL7 V3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

xv



LIST OF ALGORITHMS

xvi



Anyone who has never made a mistake

has never tried something new.

Albert Einstein (1879-1955)

1
Introduction

This thesis provides a filtering methodology and engine to automatically extract relevant in-

formation from a very large conceptual schema in order to help users to understand and deal

with such kind of schemas. Through the different chapters, we formally construct and describe

the components that conform our filtering methodology and the artifacts of a filtering engine

prototype that proves the effectiveness and efficiency of our research contributions. This chap-

ter introduces our work, details our research approaches, and presents the structure of our

dissertation.

The chapter starts with a brief explanation about the motivation of this thesis and the

antecedents in the history of conceptual modeling and software engineering in Sect. 1.1. Along

the development of this thesis we have followed the design-science research methodology. Sec-

tion 1.2 presents the fundamental characteristics of this research paradigm and associates them

with the research stages in this thesis. Section 1.3 enumerates and describes the main research

contributions of the thesis and presents our main objective of providing a filtering engine for very

large conceptual schemas. Finally, the overview of the structure of this document, including a

description of its chapters and a reading guide is presented in Sect. 1.4.

1



CHAPTER 1. INTRODUCTION

1.1 Motivation and antecedents

Software engineering is constantly evolving. In the last years, the different processes and

methodologies that take part in this field have become more flexible and easy to change and

reuse. The development of software artifacts has begun to focus its activities on the usage of

conceptual schemas and the abstraction and conceptualization of information domains, in the

same way as other branches of engineering do.

A conceptual schema provides an abstraction layer between the real-world knowledge and

the portion of that knowledge that is really useful in the development of an information system.

This abstraction provides simplification to describe real concepts as general ones without taking

into account the development technology of the final stages in the software engineering process.

Conceptual modeling can be defined as the software engineering activity that must be done

to obtain the conceptual schema of an information system [87]. We define information system

as a designed system that collects, stores, processes and distributes information about the state

of a domain. The conceptual schema of an information system contains a representation of the

knowledge that results from the process of gathering, classifying, structuring and maintaining

all relevant characteristics appearing in a domain that are useful about the information system.

The development process of information systems always includes a conceptual schema.

Sometimes, such schema can be explicitly reproduced as a piece of documentation and, some-

times, the schema is shared in the minds of the stakeholders. In any case, the conceptual schema

of an information system exists, although obviously to have the schema explicitly is always the

best choice. Note that if shared in the stakeholders minds it may take differences due to the

inherent differences of thought we have as human beings.

Traditionally, conceptual modeling has been seen as a supporting activity in the software

engineering process. Conceptual schemas have been defined in the initial stages of such process

as documentation artifacts, rarely maintained up to date after the design phase. Fortunately,

that situation is really changing. The emergence of model-driven approaches [101, 4, 68] in-

creases the importance of conceptual schemas and their participation as key artifacts in the

software development activities. Model-driven software engineering aims to generate software

(including both code and documentation) from a specified information model, which may be

a conceptual schema of an organization domain. This new role given to conceptual schemas

implies that the specification and comprehension of conceptual schemas are main tasks for all

the stakeholders of an information system.

There are many information system development activities in which people needs to get a

piece of the knowledge contained in the conceptual schema. For example, a conceptual modeler

needs to check with a domain expert that the knowledge is correct, a database designer needs

to implement that knowledge into a relational database, a software tester needs to write tests

checking that the knowledge has been correctly implemented in the system components, or a

member of the maintenance team needs to change that knowledge.

One of the most challenging and long-standing goals in conceptual modeling, and therefore

in software engineering, is to understand, comprehend and work with very large conceptual

2



1.1. MOTIVATION AND ANTECEDENTS

schemas [88, 72]. Nowadays, the need for representation and conceptualization of real world

information has dramatically increased. Organizations evolution and diversification require the

management and maintenance of large amounts of knowledge from their domains of interest.

Furthermore, data mining and knowledge extraction are becoming trending topics in business

processes.

That growth also has an impact in the size of conceptual schemas of information systems,

making them larger. The sheer size of those schemas transforms them into very useful arti-

facts for the communities and organizations for which they are developed. They are not only

becoming a key artifact in software engineering, but also a conceptual representation of the

whole know-how of the organization and information system they represent. However, the size

of the schemas and their overall structure and organization make it difficult to manually extract

knowledge from them, to understand their characteristics, and to change them. It is clear that

to be useful, large containers of information, as large conceptual schemas are, need tools that

can extract the portion of knowledge of interest to a particular user at a time.

That situation already happened with the World Wide Web. Until the uprising of web

search engines [21], the knowledge that the web contained was only partially accessible due to

its huge size and difficulty of finding what was sought. After them, the web has become into

something useful and really easy to use due to the existing tool support that allows automatic

information filtering. Nowadays not only experts can search the web, but also everybody with

a computer and an information need is capable of that.

The aim of information filtering is to expose users to only information that is relevant to

them. There are many filtering systems of widely varying philosophies [55], but all share the

goal of automatically directing the most valuable information to users in accordance with their

needs, and of helping them using their limited time and information processing capacity most

optimally.

The purpose of this thesis is to define a new information filtering methodology to help users

of very large conceptual schemas to understand the characteristics and knowledge these schemas

contain. This thesis analyzes and defines the different phases of an information filtering engine.

The method studies the characteristics of the knowledge contained within a large conceptual

schema, and proposes techniques to select and represent the user interest in order to specialize

the results of a filtering engine. Our approach provides knowledge extraction techniques aligned

with the user interest representation, and presents such knowledge in an appropriate way to

simplify its understanding. Furthermore, using this filtering engine the conceptual schemas are

navigated more quickly, increasing its usability and reducing the user effort.

Therefore, the general problems addressed in this thesis are:

• Automating the extraction of knowledge of interest to the user from a large conceptual

schema.

• Using inherent properties of large conceptual schemas to analyze the importance and

interest of the elements in the schema.

• Introducing a request/response flow to the user interaction with a large conceptual schema

• Reducing the time and effort a user requires to understand a large conceptual schema.

3



CHAPTER 1. INTRODUCTION

1.2 Research approach

Along the development of this thesis we have followed the design-science research methodology.

The design-science paradigm has its roots in engineering and the sciences of the artificial. It is

fundamentally a problem-solving paradigm that consists of activities aimed at constructing and

evaluating artifacts addressed to fulfill the requirements of organizations as well as developing

their associated research theories. Table 1.1 summarizes the seven guidelines of design-research.

According to Hevner et al. in [59] the fundamental principle of design-science research is

that knowledge and understanding of a design problem and its solution are acquired in the

building and application of an artifact. That is, design-science research requires the creation

of an innovative, purposeful artifact for a specified problem domain. Because the artifact is

purposeful, it must yield utility for the specified problem. Hence, thorough evaluation of the

artifact is crucial. Novelty is similarly crucial since the artifact must be innovative, solving a

heretofore unsolved problem or solving a known problem in a more effective or efficient manner.

Guideline Description
Guideline 1: Design as an Artifact Design-science research must produce a viable

artifact in the form of a construct, a model, a
method, or an instantiation.

Guideline 2: Problem Relevance The objective of design-science research is to
develop technology-based solutions to impor-
tant and relevant business problems.

Guideline 3: Design Evaluation The utility, quality, and efficacy of a design
artifact must be rigorously demonstrated via
well-executed evaluation methods.

Guideline 4: Research Contributions Effective design-science research must provide
clear and verifiable contributions in the areas of
the design artifact, design foundations, and/or
design methodologies.

Guideline 5: Research Rigor Design-science research relies upon the applica-
tion of rigorous methods in both the construc-
tion and evaluation of the design artifact.

Guideline 6: Design as a Search Process The search for an effective artifact requires
the usage of available means to reach de-
sired ends while satisfying laws in the problem
environment.

Guideline 7: Communication of Research Design-science research must be presented ef-
fectively both to technology-oriented as well as
management-oriented audiences.

Table 1.1. Design-Science Research Guidelines [59].

Thus, design-science research is differentiated from the practice of design. The produced

artifact itself must be rigorously defined, formally represented, coherent, and internally consis-

tent. The process by which it is created, and often the artifact itself, incorporates or enables

a search process whereby a problem space is constructed and a mechanism posed or enacted

4



1.2. RESEARCH APPROACH

to find an effective solution. The results of the design-science research must be communicated

effectively both to a technical audience (researchers who will extend them and practitioners who

will implement them) and to a managerial audience (researchers who will study them in context

and practitioners who will decide if they should be implemented within their organizations).

Figure 1.1. Reasoning on Design Cycle.

Fig. 1.1 illustrates the course of a general design cycle, as Takeda et al. analyzed in [114]. In

this model all design begins with Awareness of a problem. Suggestions for a problem solution

are abductively drawn from the existing knowledge/theory base for the problem area. An

attempt at implementing an artifact according to the suggested solution is performed next. This

stage is shown as Development in the diagram. Partially or fully successful implementations

are then under Evaluation (according to the functional specification implicit or explicit in

the suggestion). Development, Evaluation and further Suggestion are frequently iteratively

performed in the course of the research (design) effort. The basis of the iteration, the flow

from partial completion of the cycle back to Awareness of the Problem, is indicated by the

Circumscription arrow. Conclusion indicates termination of a specific design project or solution.

Output Description
Constructs The conceptual vocabulary of a domain

Models A set of propositions or statements expressing relation-
ships between constructs

Methods A set of steps used to perform a task

Instantiations The operationalization of constructs, models and me-
thods

Better theories Artifact construction as analogous to experimental natu-
ral science

Table 1.2. The Outputs of Design Research.

Table 1.2 summarizes the outputs that can be obtained from a design research effort [122].

March and Smith propose in [74] four general outputs for design research: constructs, models,

methods, and instantiations. Constructs arise during the conceptualization of the problem and

are refined throughout the design cycle. Models are proposals for how things are. Methods are

goal directed plans for manipulating constructs so that the solution statement model is realized.

Instantiations are the realization of the artifact in an environment. Finally, the overall process

of design-science research can contribute to have better theories as output.

5



CHAPTER 1. INTRODUCTION

Figure 1.2. Design Research in this Thesis.

The characteristics of our research have a clear relationship with the guidelines of design-

science research. The first stage in design research is the awareness of the problem. In our

case, we found that there is a lack of a real filtering method for large conceptual schemas. As

stated in Sec. 1.1, nowadays large schemas are difficult to understand. Existing techniques to

reduce the complexity of large schemas provide static solutions, but do not include a possible

request/response interaction flow between the user and the schema based on the user’s informa-

tion needs. We followed the suggestions-development-evaluation cycle until the achievement of

a complete information filtering engine that fulfilled the goals of the thesis. During the research

iterations, we continually searched and studied the proposals from the existing literature on

conceptual modeling in the large in order to be aware of techniques and methods to deal with

large conceptual schemas that could be adapted or integrated on our work.

Figure 1.2 shows how design research was applied to this thesis following the guidelines of

Tab. 1.1. The problem of extracting knowledge from large conceptual schemas is qualified as

relevant from the perspectives of conceptual modeling, usability and information retrieval. The

importance of providing a solution to this problem justifies the design of a filtering engine for

large conceptual schemas and, consequently, the existence of this thesis.

6



1.3. RESEARCH CONTRIBUTIONS

1.3 Research contributions

The main objective of this thesis is to provide a filtering engine of very large conceptual

schemas to help users to easily extract from them the most relevant knowledge for a

particular purpose.

As we mentioned in the previous sections, the usability of large schemas improves due to the

emergence of specific tools and methods that make easier the tasks of querying, modifying,

updating and constructing such schemas by simplifying their required comprehension effort.

What is needed is to study and define the different phases of an information filtering engine, in

the context of very large conceptual schemas. Also, it is mandatory to study the characteristics

of the knowledge contained within them, and propose methods to select and represent the user

interest in order to specialize the results of the filtering engine. Furthermore, it is mandatory

to provide knowledge extraction techniques aligned with the user interest representation, and

to present such knowledge in an appropriate way to simplify its understanding.

The information filtering methodology for large conceptual schemas presented in this thesis

can be outlined in the following sub-goals:

◦ Identify, study and describe several properties of relevance for elements of

large conceptual schemas. The properties that we address are structural properties,

based on the elements of the schema and the characteristics defined about them.

◦ Present useful feedback to the user. Most of the existing methods in the literature

do not take advantage of the available graphical possibilities when presenting conceptual

schemas. The use of different colors, sizes and shapes to highlight the elements of a schema

will reduce the understanding effort of the user.

◦ Evaluate the usability of the filtering engine. A goal and a mandatory requirement

for a filtering engine is to study and adapt existing techniques of evaluation in order to

reinforce and clarify its contribution. Experimentation with real conceptual schemas is

also a related goal to provide quality assurance.

These goals are the principal requirements that our thesis must accomplish. To this end,

the main contributions of this thesis are:

• A general filtering method for large conceptual schemas.

• A catalog of specific filtering requests to explore large conceptual schemas.

• A web-based filtering engine for large conceptual schemas.

• A study of metrics of relevance for elements of large conceptual schemas.

• An adaptation of the filtering methodology to complex schemas from the healthcare do-

main.

All these contributions are introduced in the following subsections.

7



CHAPTER 1. INTRODUCTION

1.3.1 General Filtering Method for Large Conceptual Schemas

As aforementioned, this thesis presents a method that filters large conceptual schemas to extract

the knowledge of interest to the user according to the user’s information need. The problem

appears in many information systems development activities in which people needs to operate for

some purpose with a piece of the knowledge contained in that schema. The method automates

the process and reduces the time and effort a user requires to understand a large conceptual

schema. A user focus on a fragment of the large schema of interest to her and the method

automatically obtains a reduced conceptual schema extracted from the large schema and focused

on the knowledge that has a closer relation with the focus of the user. Such filtered conceptual

schema is a subset of the original one, and because of its reduced size it is more comprehensible

to the user. The user may then start another interaction with a different focus, until she has

obtained all knowledge of interest. The different stages of the filtering method are:

1. Metrics Processing The first stage applies relevance metrics to the elements of the

original large schema in order to discover which are the most relevant ones for the user.

2. Entity and Event Types Processing The second stage selects the entity and event

types from the large schema that will appear in the resulting filtered schema.

3. Relationship Types Processing This stage selects the relationship types from the

large schema that will appear in the resulting filtered schema. This process makes use of

projection and redefinition to align the relationships with the user’s interest.

4. Generalizations Processing This stage selects the generalization relationships whose

members belong to the filtered schema, processes them to avoid redundancies, and includes

them in the output.

5. Schema Rules Processing This stage processes the schema rules of the original schema

in order to include into the output those that affect elements of interest to the user.

6. Data Types Processing This stage selects those data types referenced by elements of

the filtered schema in order to add them into it.

7. Presentation The last stage deals with the representation of the filtered schema to the

user in order to maximize its understandability.

The filtering method is general and can be directly adopted for any tool or technique that

deals with large schemas or ontologies specified on several modeling languages. Despite that, we

centered our explanation on large conceptual schemas written in UML/OCL [84, 85]. Nowadays,

this pair of languages are the de-facto standard in conceptual modeling and most of the users

of conceptual schemas are familiar with them.

8



1.3. RESEARCH CONTRIBUTIONS

1.3.2 Catalog of Specific Filtering Requests for Large Conceptual Schemas

Based on the characteristics introduced in our general method to filter large conceptual schemas,

we define a set of specific filtering requests a user is capable of employ to interact with a target

schema. Each of these filtering requests are instantiations of the general method with specific

characteristics that provide concrete value to the user. We distinguish between filtering requests

according to their input parameters, which represent the user’s information need and modifies

the kind of obtained output. Our catalog contains the specification of the following filtering

requests:

• F1: Filtering request for entity and relationship types, described in Sect 6.3.1 of Ch. 6.

• F2: Filtering request for schema rules, described in Sect 6.3.2 of Ch. 6.

• F3: Filtering request for event types, described in Sect 6.3.3 of Ch. 6.

• F4: Filtering request for a conceptual schema, described in Sect 6.3.4 of Ch. 6.

• F5: Filtering request for behavioral entity types, described in Sect 6.3.5 of Ch. 6.

• F6: Filtering request for contextualized types, described in Sect 6.3.6 of Ch. 6.

The usage of specific filtering requests allows the user to navigate through a large schema

following and iterative and dynamic request/response cycle. To our knowledge, none of the

existing approaches in the literature allow dynamism, or at least little interaction with their

produced output, which mainly consists of a static reorganization of the structure of the large

schema.

1.3.3 Filtering Engine for Large Conceptual Schemas

Following the guidelines of the design-science research discussed in Sect. 1.2, we have developed

an artifact to evaluate the benefits of our research approach. Our artifact consists of a filtering

engine that implements the specific filtering requests in a web-based environment.

Our engine contains a core that is responsible for maintaining and access the characteristics

of a large conceptual schema. In addition, the core is under control of the filtering requests that

require querying the schema in order to serve the information needs of the user. The conjunction

of the specific information filtering requests and the core of the engine is implemented as a web

service. This architectural decision allows an easy interaction with web clients and increase the

technology independence, and therefore, the usability of the overall system.

9



CHAPTER 1. INTRODUCTION

1.3.4 Relevance Metrics for Large Conceptual Schemas

There are several techniques and associated tools for the visualization and comprehension of

large conceptual schemas or ontologies. The group of techniques we see more appropriate for our

purposes is the one called focus+context. In this techniques, the user focus on a single element

(node), which becomes the central one, and the rest of the nodes are presented around it,

reduced in size until they reach a point that they are no longer visible. However, the techniques

do not distinguish between the nodes presented around the central one: all nodes and edges are

assumed to be equally relevant to the user.

The general method for filtering large schemas requires to know the structure and relevance

of the schema elements that conform a large conceptual schema to align them with the user’s

information need. The thesis formalizes several metrics over the schema elements with relation

to their relevance in the schema to be used in the filtering process. There are several contri-

butions in the literature about schema metrics that have been adapted and extended in this

thesis to cover a larger amount of knowledge about schema elements. The thesis also include

some comparisons between relevance metrics that indicate in which situations it is preferable

to use ones among others.

1.3.5 Adaptation of the Filtering Methodology to HL7 V3 schemas

The Health Level Seven International (HL7) is an standards developing organization dedicated

to providing a comprehensive framework and related standards for the exchange, integration,

sharing, and retrieval of electronic health information that supports clinical practice and the

management, delivery and evaluation of health services. HL7 V3 [9, 18] is one of the most

widely used HL7 standards that enables disparate healthcare applications to exchange clinical

and administrative data through messages or documents whose structure is based on a large set

of conceptual schemas. The amount of knowledge represented in the HL7 V3 schemas is very

large and the sheer size of those models makes them very useful to the healthcare communities

for which they were developed. However, the size of HL7 V3 schemas and their organization

make it very difficult for those communities to manually extract knowledge from them.

The HL7 V3 consists of a set of conceptual schemas that together conform a large conceptual

schema of the healthcare domain. Those schemas are interconnected, and the knowledge of some

the concepts defined within is spread through different schemas. Furthermore, some of the HL7

V3 schemas are refinements of other HL7 V3 schemas, which indicates the existence of some kind

of hierarchy between schemas. Our information filtering methodology is able to directly work

with the union of the HL7 V3 schemas, but it is possible to take advantage of their particular

structure and different characteristics with some adaptations in our filtering engine. This thesis

shows how to deal with HL7 V3 schemas to improve the quality of the output obtained by our

filtering methodology.

10



1.4. OVERVIEW OF THE THESIS

1.4 Overview of the thesis

1. Introduc�on
Part 1: General Informa�on

and Document Structure

2. Conceptual Schemas
of Informa�on Systems

3. Large Conceptual Schemas 
state of the art

5. A General Filtering Method 
for Large Conceptual Schemas

4. Relevance Metrics for     
Large Conceptual Schemas

6. Catalog of Filtering Requests
for Large Conceptual Schemas

8. Web‐based Filtering Engine
for Large Conceptual Schemas

7. Applica�on of the    
Filtering Methodology

9. Adapta�on of the Filtering        
Methodology to HL7 v3 Schemas

10. Conclusions    
and Future Work

Part 2: Conceptual Modeling

in the large and related work

Part 3: Informa�on Filtering     

Methodology: basis, metrics,   

method, and specific requests   

Part 4: Informa�on 

Filtering Applica�ons

Figure 1.3. Structure of the thesis.

The thesis is structured in 10 chapters. This chapter introduces the structure of the docu-

ment, describes its contents and the topics it addresses, and helps the user in the reading of the

thesis. The document is structured in four parts well differentiated as we can see in Fig. 1.3:

Part 1. Structure of the thesis. It is composed of Ch. 1, which helps the reader in the

identification of parts of the thesis that may be relevant to him/her, including the research

approach, thesis goals and main contributions.

Part 2. Conceptual modeling. It is composed of Chapters 2 and 3. It formally describes

the structure and characteristics of conceptual schemas, presents the problem of working

with large schemas, and explains a general overview of different approaches on this field

with the same purpose that ours: simplify the knowledge extraction from large schemas

and increase their understandability.

Part 3. Information filtering methodology. It is composed of Chapters 4, 5, and 6. It

deals with the description of a general information filtering methodology to apply to large

conceptual schemas, why this method is necessary, and which are the most important

components of this method. These chapters show the set of relevance metrics of schema

elements that are the core of the methodology, and a catalog of specific filtering requests

to extract knowledge from a schema.

11



CHAPTER 1. INTRODUCTION

Part 4. Information filtering application. It is composed of Chapters 7, 8, 9 and 10.

These chapters show the application of the filtering methodology introduced in the third

part to a real-case example consisting in a large schema from the e-commerce domain, and

a web-based implementation of the methodology as a filtering engine. In addition, Ch. 9

presents the characteristics of a very different large schema from the healthcare domain.

This schema is composed of a set of interrelated subschemas with repeated elements. We

describe the adaptation of our methodology to deal with this kind of schemas, and the

corresponding results. Finally, we expose our conclusions and the future work related to

the activity of information filtering of large conceptual schemas.

The reader may go directly to part 3 if he/she is familiarized with conceptual modeling and con-

ceptual schemas, their use in software engineering, and the difficulties of knowledge extraction

when the schemas are of large size.

In the following we comment the content covered in each chapter of this thesis.

Chapter 2: Conceptual Schemas of Information Systems

This chapter defines the concept of conceptual schema and explains its key role in the field

of conceptual modeling of information systems. We formally present the different components

and schema elements that are included within a conceptual schema defined in UML and OCL.

This formalization is referenced along the chapters of this thesis. We use it in the definition

of several concepts within the information filtering methodology such as relevance metrics or

specific filtering requests.

Chapter 3: Conceptual Modeling in the Large

This chapter presents the problem of extracting knowledge from large conceptual schemas.

We show some examples that illustrate the need for methods to simplify the required effort a

user has to dedicate to entirely understand a large schema. The chapter includes an overview

of existing tools, methods and techniques in the literature that address the problem of large

conceptual schemas in several ways. Finally, we discuss the necessity of new methods based on

information filtering to contribute to this working area.

Chapter 4: Relevance Metrics for Large Conceptual Schemas

This chapter formally presents metrics over large conceptual schemas specified in UML/OCL

to compute the importance of schema elements and the closeness between them, among other

relevance metrics. The metrics described in the chapter are a core element of the general filtering

method. They are the power engine that allows to discover the schema elements that are of

interest to the user according to his/her information needs at a given moment. We compare

the metrics with different schemas in order to explore different behaviors and propose some

guidelines of use depending on the structure of the schema the user wants to explore.

12



1.4. OVERVIEW OF THE THESIS

Chapter 5: A General Filtering Method for Large Conceptual Schemas

This chapter formalizes our general method for filtering large conceptual schemas and presents

its requirements. In particular, we describe the different components that conform the filtering

methodology and its expected input, with the relationship with the user’s information needs.

Finally, the chapter presents the concept of filtered conceptual schema and its characteristics

as the output of our proposed filtering method.

Chapter 6: Catalog of Filtering Requests for Large Conceptual Schemas

This chapter formally introduces the different specific filtering requests a user can manipulate

to iteratively extract knowledge from a large conceptual schema. A filtering request is an

instantiation of the general information filtering method with specific behavior and particular

requirements. These filtering requests are the main component of the user interaction with a

large schema due to their request/response flow. The chapter explains the particularities of each

of these specific filtering requests, including their different input parameters, their similarities

and differences and the changing characteristics of their produced output.

Chapter 7: Application of the Filtering Methodology

This chapter describes the application of our filtering methodology to four different real-case

large conceptual schemas from several domains. The chapter presents the main characteristics

of the four schemas, the problems a user faces when working with them, and the facilities

provided by our method. We experimentally evaluate the effectiveness and efficiency of our

filtering approach with respect to these conceptual schemas and report the main results from

the experimentation in order to demonstrate the benefits of using information filtering.

Chapter 8: Web-based Filtering Engine for Large Conceptual Schemas

This chapter explains the details of the filtering engine we have implemented in a web-based

environment. We present the main components of the architecture of the filtering engine to-

gether with their intended functionality. The chapter describes the client side and server side

of the filtering engine as a web service and demonstrates the requirements and benefits of this

architectural decision. Finally, the chapter clarifies the web-based interaction with users by

presenting the expected way of using the filtering engine itself.

Chapter 9: Adaptation of the Filtering Methodology to HL7 V3 Schemas

This chapter describes the application of our filtering methodology to a real-case large concep-

tual schema from the healthcare domain: the HL7 V3. Such schema is defined in a non-standard

modeling language and is conformed by several interconnected subschemas that contain re-

13



CHAPTER 1. INTRODUCTION

peated concepts and special constructions that are worth explaining. We translate the HL7

V3 schemas into UML/OCL and propose modifications to our general information filtering

methodology in order to take advantage of the particular aspects of HL7 V3 to improve the

quality of the produced results.

Chapter 10: Conclusions and Future work

The final chapter presents the conclusions of the information filtering methodology and points

out future work that may continue our research line to improve the usability of large conceptual

schemas.

14



First, solve the problem.

Then, write the code.

John Johnson

2
Conceptual Schemas

of Information Systems

The main objective of this thesis is to provide an information filtering engine and methodology

to help users of very large conceptual schemas to understand the characteristics and knowledge

these schemas contain. What is needed is an automatic extraction methodology following the

characteristics of the specific information request a user indicates. To this end, our first task

consist of introducing the basic concepts about conceptual schemas in order to clarify our vision

and present general aspects about conceptual modeling that are used through several chapters

of this document. We formally indicate which are the components of a conceptual schema, and

present examples of conceptualization to understand these components and their function in

the different stages of the software engineering and software development processes.

This chapter starts with a description about conceptual modeling in Sect. 2.1. Then,

Sect. 2.2 presents the contents of complete conceptual schemas taking into account both struc-

tural and behavioral (sub)schemas. The second part of the chapter continues in Section 2.3 with

an introduction to the modeling languages used to represent conceptual schemas. Concretely

the aim of such section is centered in the UML and OCL as the modeling languages selected in

this thesis. In addition to it, we include a mention to the entity-relationship model, which is the

precursor of modern object-oriented approaches to model data. Finally, Section 2.4 summarizes

the chapter.

15



CHAPTER 2. CONCEPTUAL SCHEMAS OF INFORMATION SYSTEMS

2.1 Conceptual Modeling

Conceptual modeling can be defined as the activity that must be done to obtain the conceptual

schema of an information system. We define information system as a designed system that

collects, stores, processes and distributes information about the state of a domain of interest

to an organization. Thus, conceptual modeling is one of the initial activities in the software

engineering process that gathers, classifies, structures and maintains knowledge about a real-

world domain. The main goal of conceptual modeling is to construct a conceptual model from

the knowledge about the domain.

Conceptual schemas are the central unit of knowledge in the development process of infor-

mation systems. A conceptual schema must include the definition of all relevant characteristics

appearing in an organization that are useful in the task of representation (also know as concep-

tualization) of the information system. Such task consists of abstracting real-world knowledge

into categories of concepts that may be related to other concepts.

Usually, conceptual schemas have been seen as documentation items in the software engi-

neering process. However, since the initial stages of model-driven approaches [68] came out

many years ago, conceptual schemas have increased its importance and participation as key

artifacts in the software development activities. Model-driven approaches try to generate fi-

nal software (including both code and documentation) from a specified model, which may be

a conceptual schema of an organization domain. This new role given to conceptual schemas

implies that the specification and comprehension of conceptual schemas are main tasks for the

stakeholders of an information system.

A conceptual schema provides an abstraction layer between the real-world knowledge and

the portion of that knowledge that is really useful in the development of an information system.

This abstraction provides simplification to describe real concepts as general ones without taking

into account the development technology of the final stages in the software engineering process.

In early stages of the software development activity, having a conceptualized vision of the

domain of interest for a particular information system by means of its conceptual schema helps

stakeholders in order to successfully understand the structure and behavior of such domain of

knowledge.

The development process of information systems always include a conceptual schema. Some-

times, such schema can be explicitly reproduced as a piece of documentation and, sometimes,

the schema is shared in the minds of the stakeholders. In any case, the conceptual schema of

an information system exists, although obviously to explicitly have the schema as an existing

artifact available for all the stakeholders is always the best choice. Note that if it only exists

scattered over the stakeholders minds it may produce development problems due to the inherent

differences of thought we have as human beings.

Comprehension and understandability of conceptual schemas and their components are the

main object of research of this thesis. To this end, we formally define the characteristics of

complete conceptual schemas in the following sections of the chapter.

16



2.2. CONCEPTUAL SCHEMA

Conceptual Schema CS
Structural Subschema SS Behavioral Subschema BS

Entity Types

Relationship Types

Data Types

Generalization Relationships

Integrity Constraints

Derivation Rules

Event Types

Relationship Types

Generalization Relationships

Schema Rules

E

R

T

G

C

D

E

R

G

C

b

b

b

b

datatype

context 
 inv:
 pre:
 post:

context 
 derive:

event

eventevent

eventevent

context 
 inv:
 pre:
 post:

Figure 2.1. Structure of a conceptual schema.

2.2 Conceptual Schema

As aforementioned, conceptual schemas are one of the key artifacts in the software engineering

and software development processes. To be complete, a conceptual schema should specify two

subschemas: the structural schema, which deals with the static scope of the information system,

and the behavioral schema, which indicates the dynamic component of the same system.

The structural schema is the part of the conceptual schema that consists on the set of

entity and relationship types, as well as other elements that will be mentioned in the following

section, used to observe the state of a domain in an specific moment. This part is also known

as the static component of the whole knowledge of the information system because defines

the concepts of interest to an information system plus the specific information about them,

including associations, inheritance, and structural attributes.

On the other hand, the behavioral schema represents the valid changes in the domain state,

as well as the actions that the system can perform. Changes in the domain state are domain

events, and a request to perform an action is an action request event. We represent such events

as special entity types following the same approach as in [89]. In the UML, we use for this

purpose a new stereotype, that we call �event�. A type with this stereotype defines an event

type. The characteristics of events should be modeled like those of ordinary entities. We define

a particular operation in each event type, whose purpose is to specify the event effect. To this

end, we use the operation effect. The pre- and postconditions of this operation will be exactly

the pre- and postconditions of the corresponding event.

Formally, we define a conceptual schema as a tuple CS = 〈SS,BS〉, where SS = 〈E , R, T ,

G, C, D〉 is the structural subschema, and BS = 〈Eb, Rb, Gb, Cb〉 is the behavioral subschema.

Figure 2.1 depicts the structure of a conceptual schema with all the components of the struc-

tural and behavioral subschemas. Next sections present the details about the components that

conform the structural and behavioral subschemas.

17



CHAPTER 2. CONCEPTUAL SCHEMAS OF INFORMATION SYSTEMS

2.2.1 Structural Subschema

The structural subschema of a conceptual schema contains the concepts of a concrete real-world

domain. More precisely, each concept that has an important role in an organization and it is

worth to be included in the information system is represented as an entity type. Imagine we

need to conceptualize the domain of an organization that manages information about customers.

This way, the concept customer which is important for the organization is represented in the

information system by the entity type Customer. Real-world customers are represented by

instances of the Customer entity type in the information system of the organization. Figure 2.2

presents this example.

Concept Entity Type

Domain Information System

Customer A

Customer B

Customer C

B:Customer

A:Customer
C:Customer

Customer

representation

ab
st

ra
ct

io
n

Customer

instantiation

Figure 2.2. Representation of domain concepts as entity types.

Entity types can be interconnected. It is possible to have generalization/specialization

relationships between any pair of them. In the previous example, the organization may have

a special kind of customers, say gold customers. To denote this situation in the conceptual

schema, it is possible to indicate that exists another entity type called GoldCustomer such that

Customer IsA GoldCustomer. It means that GoldCustomer is an specialization of the entity

type Customer, and that Customer is a generalization of GoldCustomer. Each information

about Customer in the information system is inherited by the GoldCustomer entity type.

Furthermore, relationship types are basic elements in conceptual schemas. Each relationship

type represents a connection or association between two or more entity types. In the previous

example, imagine that it is important to maintain information about the parents of a customer

to offer them special discounts. The conceptual schema should contain a new relationship type

IsParentOf(parent:Customer, child:Customer). It means that exists a reflexive relationship in

Customer to denote the parents/children of an instance of Customer. The tags before the

names of the entity types in the relationship represent the role names of such entity types as

participants in the relationship.

18



2.2. CONCEPTUAL SCHEMA

The relationship types also have cardinalities. In the relationship IsParentOf, the cardinal-

ities should be something like Card(IsParentOf; parent, child) = (0,∞) and Card(IsParentOf;

child, parent) = (0,2). This way, an instance of Customer can have zero or more instances

of Customer as its children; and an instance of Customer can have at most two instances of

Customer as its parents.

Another important characteristic to explain are attributes. An attribute is a property of

an entity type that contains information about it. Concretely, an attribute can be seen as a

special relationship with two participants: an entity type and a data type. If the organization

of our example wants to maintain the name of the customers in its information system, it is

possible to declare an attribute in the form of HasName(Customer, name : String). It means

that an instance of Customer is related to an instance of the data type String (e.g. the word

’John Smith’) that is the name of the customer. Data types are basic types and there exists

some predefined like String, Integer, Real or Boolean.

A structural schema may also contain schema rules. A schema rule is a property about

a subset of the conceptual schema that must be always satisfied. In our example about the

management of customers, an instance of the entity type Customer could be related to itself

through the association IsParentOf. This way, we could have that a customer is one of its

parents. Obviously, this behavior is not allowed and to denote it, we can specify a schema rule

like:

Rule(NotParentOfItself : IsParentOf(c1, c2)⇒ c1 6= c2)

In following sections we will present the formal specification of schema rules by means of

the OCL textual modeling language, which is the de-facto standard to define object-oriented

constraints.

The structural subschema SS = 〈E , R, T , G, C, D〉 of a conceptual schema CS is formally

defined as a tuple that contains the following components:

◦ E is a set of entity types. Entity types may define a set of owned attributes A.

◦ R is a set of relationship types. We denote by r(p1:e1, ..., pn:en) a relationship type r

with participant entity types e1, ..., en ∈ E playing roles p1, ..., pn respectively. Note that

the number of participants k in r ∈ R is the degree of r and k > 1. We see attributes as

binary relationship types. We denote by attr(e,t) an attribute owned by an entity type

t ∈ E , named attr, and whose type is t ∈ T .

◦ T is a set of data types and enumerations.

◦ G is a set of generalization relationships. Each g ∈ G represents a directed relationship

between a pair of entity types (ei → ej) where ei, ej ∈ E indicating that ei is a direct

descendant of ej and ej is a direct ascendant of ei.

◦ C is a set of integrity constraints.

◦ D is a set of derivation rules.

19



CHAPTER 2. CONCEPTUAL SCHEMAS OF INFORMATION SYSTEMS

Redefinition of Relationship Types

Relationships are central structural elements in UML. The concept of redefinition allows en-

hancing the definition of a relationship by means of another relationship that defines it more

specifically in a particular context [84].

The concrete syntax {redefines end name} placed near an association end (the redefining

end) indicates that this end redefines the one named end name (the redefined end) [32, 83].

Figure 2.3 depicts a binary association Participates with an end project that is redefined by a

redefining end projectOfJunior. In Fig 2.3(left) the redefining end projectOfJunior is connected

to the same class as the redefined end project whereas in Fig 2.3(right) the redefining end

projectOfJunior is connected to one of the descendants of that class.

Employee

JuniorEmployee

Project1..*Participates
project

1..3
{redefines project}
projectOfJunior

Employee

JuniorEmployee

Project1..*Participates
project

   projectOfJunior 
{redefines project} JuniorProject

Figure 2.3. Redefinition notation in UML.

A redefinition is a name redefinition when the redefining end has a name different from that

of the redefined end. The effect is to give a new name to the property at the redefined end

for the affected instances of the redefinition. Figure 2.3 shows a name redefinition. The name

project is redefined by the end projectOfJunior.

Also, a redefinition is a type redefinition when the redefining end is connected to a descendant

of the class at the redefined end. Figure 2.3(right) shows a type redefinition. The effect is that

junior employees can only participate in junior projects.

Finally, a redefinition is a multiplicity redefinition when a multiplicity is specified at the

redefining end and it is more restrictive than that of the redefined end. Figure 2.3(left) shows a

multiplicity redefinition. The end projectOfJunior redefines the multiplicity of the end project.

The effect is that junior employees can not participate in more than three projects.

A B
R

... ...

descendants 
of A

descendants 
of B

top-level elements

A B
R

... ...
R'

R''
Rn

Figure 2.4. Structure of a large hierarchical schema with redefinitions.

Large conceptual schemas or ontologies may have the structure depicted in Fig. 2.4(left)

where the relationships are defined between a subset of top-level elements. The rest of rela-

tionships are redefinitions of the core relationships of the top, as shown in Fig. 2.4(right). Not

providing support for redefinitions may lead to poor results when extracting portions of a large

schema in a filtering environment. Redefinitions include semantics that must be considered. In

this thesis we include redefinitions in the set R of the structural subschema SS.

20



2.2. CONCEPTUAL SCHEMA

2.2.2 Behavioral Subschema

The behavioral subschema of a conceptual schema contains the abstraction of the allowed

changes of the state represented by the structural subschema through the definition of event

types. Those events are the conceptualization of the common actions and functions of the

information system represented by the complete conceptual schema.

An example of action request event type can be the action of sending a mail to customers

once a new product is included in the information system. Also, an example of domain event

type can be the registration of a new customer in the knowledge base of the information system

as a new instance of the entity type Customer. Figure 2.5 presents the conceptualization of

these entity types.

The effect of an event type must be defined with pre- and postconditions included in the

schema rules component of the behavioral schema. At bottom part of Fig. 2.5 there is an

example of definition in natural language of the effect and postcondition for the domain event

type NewCustomer.

Actions and Changes Event Entity Types

Domain Information System

X: Customer 

Send a Mail

representation

ab
st

ra
ct

io
n

SendMail

subscriber

NewCustomer
event

Customer

produces

Register a new
 Customer

ab
st

ra
ct

io
n

effect effect
mail sent to all 

suscribed customers
new instance of 

Customer in the system

precondition
the new customer was not 

previously registered

event

Figure 2.5. Example of event types.

The behavioral schema can contain relationship types whose participants include entity

types from the structural schema related with event types from the behavioral schema. Never-

theless, definition of entity types and relationship types between entity types are only placed

in the structural schema. Inheritance is also supported by event types by the definition of

generalization relationships that specify binary specializations between pairs of event types —a

subtype and a supertype.

21



CHAPTER 2. CONCEPTUAL SCHEMAS OF INFORMATION SYSTEMS

The behavioral subschema BS = 〈Eb, Rb, Gb, Cb〉 of a conceptual schema CS is formally

defined as a tuple that contains the following components:

◦ Eb is a set of event types. Event types may define a set of owned attributes Ab.

◦ Rb is a set of relationship types. We denote by r(p1:s1, ..., pn:sn) a relationship type r

with participant entity or event types s1, ..., sn ∈ E∪Eb playing roles p1, ..., pn respectively.

Note that the number of participants k in r ∈ Rb is the degree of r and k > 1. We see

attributes as binary relationship types. We denote by attr(e,b) an attribute owned by an

event type b ∈ Eb, named attr, and whose type is t ∈ T .

◦ Gb is a set of generalization relationships. Each g ∈ Gb represents a directed relation-

ship between a pair of event types (bi → bj) where bi, bj ∈ Eb indicating that bi is a direct

descendant of bj and bj is a direct ascendant of bi.

◦ Cb is a set of schema rules including invariants, and pre- and postconditions of the effect

of event types of Eb.

2.3 Modeling Languages

A modeling language is a formal language used to express information or knowledge about a

domain. Modeling languages can be graphical or textual. Usually, graphical modeling languages

are used to define the structure of concepts and its relationships using symbols and lines, while

textual modeling languages are used to express what is not possible to express graphically like

schema rules.

In the following subsections we briefly describe the de-facto standard modeling languages:

the Unified Modeling Language (UML) [84] —which is a graphical modeling language— and

the Object Constraint Language (OCL) [85] —which is a textual modeling language. Such

languages are used to describe the conceptual schemas in the rest of this thesis.

Before the introduction of such languages, we make a short description about the entity-

relationship model, which is the precursor of modern object-oriented approaches to model data

and is broadly used in the literature about the topic of this thesis.

2.3.1 The Entity-Relationship Model

The Entity-Relationship (ER) model was firstly introduced by Chen in [29]. It defines a con-

ceptual representation of data, formerly used for graphical database modeling, and introduces

the concept of entity as an abstraction of some aspect of the real world that can be distin-

guished from other aspects of the real world. Furthermore it represents entities as rectangles

and the relationships between them as diamonds, connected by lines to each of the entities in

the relationship. Entities can be thought as nouns while relationships can be thought as verbs

connecting two or more nouns. Finally, attributes are represented as ellipses connected to the

entity or relationship that owns them.

22



2.3. MODELING LANGUAGES

Customer

GoldCustomer

name IsParentOf

n

0:2parent

child

d

Figure 2.6. Entity-Relationship diagram about customers.

The graphical diagram containing entities, relationships and attributes is known as Entity-

Relationship Diagram (or simply ERD). An example of ERD about customers explained in

previous sections of the chapter can be found at Fig. 2.6.

The ER diagram notation has many variants and has evolved in the course of time. As we will

see in the next chapter, many contributions in the literature about construct reduced, focused

or filtered conceptual schemas are based on the ER notation and work with ER diagrams.

Although our thesis focus on UML/OCL schemas, it is important to note that in the basis,

both UML/OCL and ER schemas follow the same ideas and, therefore, the solutions to the

problem of dealing with large and complex schemas for one of these modeling languages are

valid solutions to the other type of modeling language.

2.3.2 The Unified Modeling Language

The Unified Modeling Language (UML) is a standardized general-purpose modeling language

maintained by the Object Management Group(OMG).

The UML is a graphical language that contains several diagrams to specify a conceptual

schema. In this thesis we will only use the class diagram of the UML, which in fact is the

most used diagram, to define both the structural and behavioral subschemas of the conceptual

schema. Entity and relationship types can be defined as UML classes and associations. In

the case of the event types of the behavioral schema, since we model them as events it is no

necessary to use a special diagram other than the class diagram to specify them.

Modeling entity types as boxes and relationship types as links between them, the example

of the conceptual schema about the management of customers is shown in Fig 2.7. Note that

the attributes of each entity type is placed inside the attributes compartment of the related

UML class. The cardinalities and roles of the relationship types are explicitly shown in the

ends of each UML association between classes.

23



CHAPTER 2. CONCEPTUAL SCHEMAS OF INFORMATION SYSTEMS

Figure 2.7. Example of conceptual schema specified in UML.

2.3.3 The Object Constraint Language

The Object Constraint Language (OCL) is a declarative language to formally describe rules in

object-oriented models. The OCL is a widely accepted standard firstly introduced by IBM and

now included in the UML and maintained by the Object Management Group (OMG).

The UML language provides a graphical notation based on diagrams to specify conceptual

schemas as explained before. Nevertheless, invariants, derivation rules and pre- and postcondi-

tions may be expressed in natural language as comments in the diagrams of the schema. Thus,

UML alone does not provide support for specifying schema rules. Since the adoption of the

OCL as part of the UML, it is possible to express schema rules using formal notation through

OCL expressions, constructions and statements. A full explanation (a little bit outdated) about

the syntax and semantics can be found in [134]. Another (more complex) source is [85], and a

review of tools supporting OCL is described in [95].

Figure 2.8. Example of schema rules specified in OCL.

24



2.4. SUMMARY

Figure 2.8 presents the schema rules of our previous example about customers, including

the invariants and pre- and postconditions of both structural and behavioral subschemas. We

assume that the operation send of SendMail returns a boolean value according to if the message

was sent successfully or not, because the body of the forAll construction requires a boolean

expression.

2.4 Summary

This chapter presented a brief introduction to the basic concepts used about conceptual model-

ing, conceptual schemas, and modeling languages that will be deeply studied in the next chap-

ters. The formal definition about the two subschemas —the structural and the behavioral—

contained in a complete conceptual schema and the enumeration of all of their components is

the cornerstone to understand the input of our filtering methodology and the resulting output,

which consists of a subset of a very large conceptual schema.

In addition to it, we present several examples of conceptual schemas and filtered schemas

through the following chapters. In fact, the next chapter reviews the existing methodologies and

tools to deal with large conceptual schemas. This study points out that most of the approaches

in the literature work with entity-relationship diagrams. Nowadays, most of the modeling

activities that are meant to construct conceptual schemas use the UML/OCL as the de-facto

standard modeling languages. Consequently, we believe that our filtering approach, which is

truly based on UML/OCL schemas —although it can be easily adapted to other schemas—

faces a relevant topic that needs of further research.

25



CHAPTER 2. CONCEPTUAL SCHEMAS OF INFORMATION SYSTEMS

26



640K ought to be enough

for anybody

Bill Gates (1981)

3
Conceptual Modeling in the Large

A conceptual schema defines the general knowledge about the domain that an information

system needs to know to perform its functions. The conceptual schema of many real-world

information systems and the ontologies of broad or general domains are too large to be easily

managed or understood. In general, those conceptual schemas include several kinds of elements

such as entity and relationship types, attributes, generalization relationships, event types, and

many formal constraint expressions (also called schema rules), which are used for defining

static or dynamic integrity constraints, derivation rules, default values, pre and postconditions

of events and operations, or results of operations.

There are many information system development activities in which people needs to get a

piece of the knowledge contained in the conceptual schema. For example, a conceptual modeler

needs to check with a domain expert that the knowledge is correct, a database designer needs

to implement that knowledge into a relational database, a software tester needs to write tests

checking that the knowledge has been correctly implemented in the system components, or a

member of the maintenance team needs to change that knowledge.

The largeness of conceptual schemas makes it difficult for a user to get the knowledge of inter-

est to her. This chapter studies the different approaches and methods in the literature that deal

with large conceptual schemas. Section 3.1 introduces the problem of manually extracting in-

formation from large schemas and its relation to the human capacity for processing information.

Section 3.2 presents several requests for contributions in this area, and Sect. 3.3 enumerates and

describes the existing proposals to improve end-user understanding of large schemas. Finally,

Sect. 3.4 describes the filtering approach as an alternative to existing approaches, Sect. 3.5

compares the aforementioned proposals, and Sect. 3.6 summarizes the chapter.

27



CHAPTER 3. CONCEPTUAL MODELING IN THE LARGE

3.1 Dealing with Large Conceptual Schemas

Nowadays, the need for representation and conceptualization of real world information has

dramatically increased. Organizations evolution and diversification require the management

and maintenance of large amounts of knowledge from their domains of interest. Also, data

mining and knowledge extraction are becoming trending topics in business processes.

Real information systems often have extremely complex conceptual schemas. The visual-

ization and understanding of these schemas require the use of specific methods, which are not

needed in small schemas. That complexity also has an impact in the size of conceptual schemas

of information systems, making them larger. The sheer size of those schemas transforms them

into very useful artifacts for the communities and organizations for which they are developed.

They are not only becoming a key artifact in software engineering, but also a conceptual rep-

resentation of the whole know-how of the organization and information system they represent.

However, the size of the schemas and their overall structure and organization make it difficult

to manually extract knowledge from them, to understand their characteristics, and to change

them.

To provide a conceptual schema of reduced size with the most relevant knowledge highlighted

implies a rise of knowledge accessibility that benefits the understandability of the schema.

Otherwise we have a case of information overload.

Figure 3.1. Conceptual Schema of the osCommerce system.

Figure 3.1 shows the conceptual schema of the osCommerce1, an online shop e-commerce

solution that offers a wide range of out-of-the-box features that allows online stores to be setup

fairly quickly with ease, and is available for free as an Open Source based solution released

1http://www.oscommerce.com

28

http://www.oscommerce.com


3.1. DEALING WITH LARGE CONCEPTUAL SCHEMAS

under the GNU General Public License. In the same way, Fig. 3.2 presents the conceptual

schema of the OpenCyc2 ontology, the open source version of the Cyc technology, one of the

largest and most complete general knowledge base. The osCommerce schema [118] contains

over 350 entity types and 200 relationship types, including the specification of 260 event types

that deal with the behavioral aspects of online stores. On the other hand, the OpenCyc [31]

includes over 3000 entity types and 2700 relationship types.

Figure 3.2. Conceptual Schema of the OpenCyc ontology.

Both are examples of large conceptual schemas containing a huge amount of information

about a domain, that can be general as in the case of the OpenCyc. The required user effort to

understand and work with this kind of schemas is unacceptable, and consequently a contribution

in this field is absolutely necessary.

It is clear that to be useful, large containers of information, as large conceptual schemas

are, need of tools that can extract the contained portion of knowledge of interest to a particular

user at a time. That situation already happened with the World Wide Web. Until the uprising

of web search engines, the knowledge that the web contained was only partially accessible due

to its huge size and difficulty of finding what was sought. After that, the web has become into

something useful and really easy to use due to the existing tool support. Nowadays not only

experts can search the web, but also everybody with a computer and an information need is

capable of that.

At present, conceptual schemas are gaining more presence in the software engineering field

and beyond. Our proposal aims to contribute to the expansion of conceptual schemas by the

study of its characteristics and the description of the structure and components of a filtering

engine for large conceptual schemas. With our work, we expect to facilitate the use of conceptual

schemas to those interested in their knowledge.

2http://www.cyc.com/opencyc

29

http://www.cyc.com/opencyc


CHAPTER 3. CONCEPTUAL MODELING IN THE LARGE

3.1.1 Human Capacity for Processing Information

The human brain is one of the most complex tools we have. As Marois and Ivanoff indicates in

[75], its hundred billion neurons and several hundred trillion synaptic connections can process

and exchange prodigious amounts of information over a distributed neural network in the matter

of milliseconds.

However, the human capacity for processing unknown information (see Fig. 3.3) is very

limited. It contains bottlenecks in visual short-term memory and causes problems to identify

and held stimuli. Miller in [77] states that the limit on our capacity for processing information

is contained in a range of seven, plus or minus two, items or chunks of information. Of course,

a differentiation must be done between short- and long-term memory. Cowan explains in [33]

that such memories differs in properties like timing of memory activation, coding and control,

and storage capacity. Although long-term memory has a large storage capacity, its activation

is slower and requires more attention time than short-term memory.

Figure 3.3. Human information processing. Extracted from [66].

We can say that human capacity for processing information has similar characteristics than

a computer. To have a little number of stimuli is like to have a little amount of instructions

to process. On the other hand, to deal with big amounts of stimuli saturates our brain as big

amounts of instructions do with a computer processor. Of course, there exists some techniques

to solve these problems, like parallel computing or to have several replications of core processors.

Unfortunately, such solutions are not directly applicable to human beings.

As we cannot replicate our brains or (generally) parallelize tasks, our purpose is to cut down

the amount of information to process. Some solutions in this are are presented to reduce bot-

tlenecks in human capacity for information processing, like clustering, that consists on group

items according to some sort of similarity, or filtering, that hides irrelevant information, increas-

30



3.1. DEALING WITH LARGE CONCEPTUAL SCHEMAS

ing the attention to important items. Such methods are highly recommendable in conceptual

modeling to improve accessibility and comprehension of large conceptual schemas by reducing

or changing the structure of their information.

3.1.2 Information Extraction

Nowadays information retrieval and, in a broader sense data mining, have become two of the

most important disciplines to deal with large amounts of information. These subjects provide a

set of different methods to extract knowledge from data. In-deep information about such topics

can be found in [97] and [98]. More recent sources about information retrieval and data mining

are [5] and [54], respectively.

Information retrieval was initially centered in searching information within documents until

the birth of the web. As the information located in the Internet became bigger, increasingly

diffuse, and complex to manage, information retrieval got a major prominence. One of the main

contributions of information retrieval was the appearance of the web searchers.

On the other hand, data mining has a broader scope of application. Some of its methods

are used in statistics, programming, and specially in data bases. As we will study in the fol-

lowing, literature contributions about reducing and filtering schemas have principally centered

on database schemas. Along this thesis, some of the main techniques in this area will be used

to compute the importance of schema elements (mainly entity types). Principally, link analysis

and occurrence counting are the focus of the work described in Ch. 4. The relevance of schema

elements is the basis of our filtering engine.

Link analysis studies the edges of a connected graph to provide a ranking of those nodes that

are more important according to its inner and outer connections through edges. This method

is recursively defined and needs iterative algorithms to solve the problem. That is because

the importance of a node comes from the other nodes that point to it and, therefore, such

importance flows to the nodes pointed by the node in question. This importance propagation

must be computed in an equilibrium point where the graph nodes are balanced. Principally,

such approach was introduced by Brin and Page in [21] as the foundation of Google’s PageRank

algorithm to compute the relevance of web pages.

Alternatively, occurrence counting is a basic technique that consists on counting how many

times an element appears on a situation. It was centered on word occurrences in texts to

discover the most/less used words or to state similarities between documents. As we will see

in the next chapters, we apply this idea to conceptual schemas by counting the number of

occurrences of schema elements in different contexts.

Figure 3.4 presents an example of occurrence counting that contains a tag cloud with the

top-150 words included in the superstructure specification document of the UML 2 modeling

language (see [84]). As the reader can see, a tag cloud is a cloud of words where the words

with a greater number of occurrences have a greater size than the others. Without reading

the UML 2 specification document, it is possible to say that probably such document contains

information about an specification, a superstructure, states, actions, elements, types, objects,

31



CHAPTER 3. CONCEPTUAL MODELING IN THE LARGE

Figure 3.4. Tag cloud of the superstructure specification of the UML 2 [84].

classifiers, attributes, associations, constraints and, specially, about the UML. This way, to

decide whether two documents are similar or not is simpler and more efficient than to read

them. Following the same idea, we can affirm that the words with more occurrences are the

most important. This approach will be the main we follow in the application of occurrence

counting to compute the importance of schema elements for our filtering engine.

3.2 Requests for Contributions

In 1975, DeRemer and Kron [36] distinguished the activity of writing large programs from that

of writing small ones. By large programs they meant systems consisting of many small programs

(modules), possibly written by different people. They were aware of the need for knitting those

modules together into an integrated whole and for providing an overview that formally records

the intent of the programmer(s) and that can be checked for consistency by a compiler. That

was what they called programming in the large.

Following the ideas of the previous work, Bézivin et al. [15, 14] believe that the situation

in the modeling area today is quite similar to the situation described at that time in the

programming area. Starting from this similarity, they distinguish the two related activities of

modeling in the large and modeling in the small. Both activities are different and require of a

differentiated analysis and tool-support.

In their research agenda for Conceptual Schema-Centric Development (CSCD) [88], Olivé

and Cabot describe that we need methods, techniques and tools to support designers and

users in the development, reuse, evolution, and understanding of large schemas. They dedicate

a section of their agenda to explain that the development of large conceptual schemas pose

specific problems not found in small conceptual schemas. They also indicate that work on

this topic has focused mainly on conceptual schemas for databases and, as a conclusion, it is

32



3.3. MAJOR CONTRIBUTIONS

important to deal with modelizations of information systems and to take into account both the

structural and behavioral schemas (including constraints and derivation rules). As explained

in previous chapters, our work will follow these indications in order to compute some measures

about schema elements.

Another request for contributions in this area is found in the study of Lindland, Sindre and

Sølvberg about quality in conceptual modeling [72]. They classify filtering as a modeling activity

to improve the comprehension goal and model properties like structuredness, executability and

expressive economy. Concretely, they view filtering as a necessary activity because a person

cannot grasp the entire schema at once and must concentrate on specific parts or aspects at a

time. They claim that filtering may also include aspects of translation because a large schema

may have a rather diverse audience. Therefore, different languages will be preferred by various

groups. While end users may want to see business rules in natural language, analysts may want

to see them in logic. This way, in addition to filtering they indicate that different views using

different languages should be made in order to simplify the understandability of all kind of

users of the conceptual schema.

Finally, Papazoglou indicates in [92] that to improve the utility of large and complex infor-

mation systems, we need to make schema interfaces more perceptive, responsive, and efficient

for all categories of users including casual users. The author also requests the use of schema

semantics instead of only the structure of the schema to reach this goal.

3.3 Major Contributions

There exists some alternative methods to process raw conceptual schemas and produce the

desired output consisting in a simpler version of the input. These methods generate indexed,

clustered, filtered, summarized or focused schemas that are easier to visualize and to understand.

In this section we will review some solutions proposed to solve the problem of dealing with the

knowledge of large conceptual schemas in the conceptual modeling area.

3.3.1 Clustering Methods

Clustering can be defined as the activity of grouping elements according to a similarity function.

Therefore, similar elements will be put together in the same group, or cluster.

There exists a huge amount of contributions in the literature about clustering of schemas,

ontologies or, definitely, graphs. Estivill-Castro wonders in [42] why the existence of so many

clustering algorithms. The answer here is clear: there are many clustering algorithms because

there are many algorithms for each inductive principle and there are many inductive principles to

solve the same problem. The author explains that clustering is in part in the eye of the beholder,

meaning that every researcher can propose his own similarity function to approximate a solution.

Because clustering is an optimization problem, the number of approximated solutions closer to

the best solution is huge. In this section we will review some solutions proposed to solve the

problem of clustering the elements of large conceptual schemas.

33



CHAPTER 3. CONCEPTUAL MODELING IN THE LARGE

The paper from Feldman and Miller [43] is one of the foundational papers in the area. They

explain the technique called entity model clustering and state that entity relationship diagrams

can be manipulated in various ways to be more easily understood.

One of the problems the authors define is that the usefulness of any diagram is inversely pro-

portional to the size of the model depicted. They consider any diagram with more than about

30 entity types to be reaching the limits of easy comprehension, depending on the number of

relationships –the more relationships, the less comprehension is possible due to the accompany-

ing increase in complexity. Therefore, it is possible to say that the two main problems of large

conceptual schemas are about size and complexity.

The entity model clustering technique proposed by Feldman and Miller results in a decom-

position of the diagram in a tree with three levels of abstraction. Some entity types are allowed

to be duplicate in some branches of the tree according to the authors’ experience. Although

the number of levels is determined by the diversity and complexity of an organization, they

state that in practice three levels of diagram have been found to be useful. The hierarchy of

successively more detailed entity relationship diagrams is shown in Fig. 3.5.

High-level diagram

Subject area diagram

Information area diagram

Subject
area

Information 
area

Contains base entity 
and relationship types

Figure 3.5. Three levels of abstraction diagramming. Inspired by [43].

First step consists on finding the major entity types. Occurrences of a major entity type

should be uniquely identifiable from any related entity types. Furthermore, a major entity type

should be of fundamental importance to more than one functional area of organization, i.e.

should appear in more than one information area. The aforementioned concept of occurrence

counting is also present in this approach.

Next step is to detect subject areas of the higher level. Subject areas and their information

areas can be thought of as decompositions of the relationships between major entity types.

Information areas are formed by first abstracting minor entities into a logical horizon and then

successively abstracting the logical horizons and majority entity types. This process actually

results in more than one information area relating to the same group of major entity types.

These similar information areas are then abstracted to form a subject area, which is placed in

the highest level.

34



3.3. MAJOR CONTRIBUTIONS

Finally, Feldman and Miller classify the benefits of entity model clustering in:

• Organizational benefits: levels of diagrams are similar to levels in the organization.

• End-user computing benefits: they do not need to have to know of the existence of

an entity type, but can be led to it through the succeeding levels of detail of the clustered

entity model.

• Information system development benefits: development activities can be built with-

out the complexity associated to large models.

• Entity modeling benefits: very large models become easy to communicate, validate

and maintain.

Another foundational paper is the one from Teorey et al. [116]. Their approach is similar to

that of Feldman and Miller’s, but it contains some differences. The clustering method does not

allow duplicate entities in different levels of the clustering hierarchy and the number of levels

is not predefined. Roughly, the clustering technique from Teorey et al. follows the next steps:

1. Define points of grouping within functional areas: locate the dominant entities in

a functional area, either through the natural relationships as obtained from the system

requirements document, local n-ary relationships, integrity constraints, abstractions, or

by just being the central focus of many simple relationships.

2. Form entity clusters: use basic grouping operations on elementary entities and their

relationships to form higher-level objects, entity clusters.

3. Form higher-level entity clusters: apply the grouping operations recursively to any

combination of elementary entities and entity clusters to form new levels of entity clusters

(higher level objects).

4. Validate the cluster diagram: check for consistency of the interfaces (relationships)

between objects at each level diagram. Verify the meaning of each level with the end

users.

The result of applying the previous steps to a large entity-relationship diagram is shown

in Fig. 3.6. The method of Teorey et al. may be adapted to other modeling languages such

as UML. Shoval, Danoch and Balabam in [104, 105] proposed a revision of the approach of

Teorey et al., previously defined. They call their new solution HERD (Hierarchical Entity-

Relationship Diagrams) and basically includes minimum changes in grouping operations and

their application.

Another different contribution was made by Jaeschke, Oberweis and Stucky [61]. The au-

thors propose an approach to entity model clustering to allow top-down design. The main idea

is to determine the major entity types and the coarse relationship types between them. Then

these relationship types are refined iteratively by complex and simple relationship clustering,

also involving entity clustering. After determining the major entity types, the detailed design of

35



CHAPTER 3. CONCEPTUAL MODELING IN THE LARGE

Publishing Application
Root Entity Cluster 4.1

Standing Order
Entity Cluster 3.1

Individual 
Entity
Cluster  2.1

Journal
Entity
Cluster  2.3

Source
Entity
Cluster  2.2

Reviewer
Entity
Cluster 1.5

Author
Entity
Cluster 1.4

Book
Entity
Cluster 1.1

Series
Entity
Cluster 1.7

Publisher
Entity
Cluster 1.2

Issue
Entity
Cluster 1.6

Exch
Entity
Cluster 1.8

Paper
Entity
Cluster 1.3

Elementary entitiesPublisher
Assertion
Primitives

Book
Assertion
Primitives

Figure 3.6. Example of Entity Cluster Levels. Extracted from [116].

the different relationship clusters can be realized simultaneously and independently by different

project groups. This approach also supports database re-engineering. The clusters can be built

bottom-up based on already existing database schemes while the redesign is realized top down.

Roughly, the process consists on define high-level objects at first and, after that, redefine the

relationships between them to complete the schema.

Francalanci and Pernici in [46] discuss the problem of the semi-automatic construction of

abstract entity-relationship schemas and propose and algorithm for schema clustering, mainly

based on the structure of the schema. Furthermore, they define affinity and closeness between

concepts and coupling and cohesion between clusters as the operating criteria for clustering.

Affinity captures semantic closeness among concepts, closeness corresponds to a quantitative

evaluation of the links among concepts, cohesion corresponds to a value indicating how well

internally connected are the concepts within clusters, and coupling corresponds to a value

indicating the amount of connections between different clusters.

Next contribution that deserves a mention is Akoka and Comyn-Wattiau’s paper [1] on

entity-relationship and object-oriented automatic clustering. There, the authors propose a

common clustering algorithm and a set of similarity functions that they call distances between

elements. They define such distances and apply them in their algorithm. A short review of the

distances, including object-oriented distances, is shown in the following list:

36



3.3. MAJOR CONTRIBUTIONS

• Visual distance: two entities are said to be close if they are involved in the same

relationship.

• Hierarchical distance: the distance between two entities is measured by the shortest

relationship path between entities. The cardinalities of relationships are included in the

computation of such distance.

• Cohesive distance: as with the preceding distance, the cohesive distance is measured

by the shortest path between those entities. However, it is considered a different segment

length and weight on such paths.

• Structural-connective distance: two elements are close if they are neighbors in a

hierarchy (aggregation, generalization, whole-part structure). They are close if they are

linked by an instance connection or a message connection. Otherwise the distance between

two objects is the length of the shortest path between them.

• Category distance: two elements are considered to be very close if there exists a gen-

eralization relationship between them.

• Communicative distance: the communication between two objects expresses a seman-

tic link between these objects. Therefore the communicative distance is based on message

flowing.

• Frequent communicative distance: the message frequency is the number of times a

message is flowing between objects for a given period of time. As a consequence, two

objects are considered to be close when this frequency is high.

For their part, Campbell, Halpin and Proper formalize in [24] a method for the strictly

automatic selection of major entity (or object) types. Their approach sets apart from others

because it considers the detailed conceptual semantics hidden in the constraints and also the

manner in which the facts within the domain are verbalized. In particular, their approach uti-

lizes the detailed constraint specifications and verbalizations provided by Object Role Modeling

(a modeling technique that allows a variety of data constraints to be specified on the conceptual

schema).

The semantics of these constraints allow to make the selection of major objects. The authors

claim that their approach more accurately imitates human intuition than previous methods.

As a second goal, the paper utilize the selected major object types in an algorithm to derive

abstractions for a flat conceptual schema.

Moody and Flitman in [80, 78] introduce the concept of Levelled Data Model, i.e. a data

model organized into any number of levels, depending on the size. They propose a clustering

algorithm to be applied to ER models. The authors also collects the major deficiencies identified

in the existing literature:

• Lack of cognitive justification: to be truly effective in improving human understand-

ing, clustering approaches need to be soundly based on principles of human information

processing.

37



CHAPTER 3. CONCEPTUAL MODELING IN THE LARGE

• Lack of size constraints: the aim of all existing methods is to reduce the model to

parts of manageable size, but none of them define what this is.

• Lack of automation: only some approaches provide automated solutions to the problem.

• Levels of decomposition: most of the approaches proposed are limited to a fixed

number of levels of decomposition.

• Lack of empirical testing: it is stated and argued by the authors that their methods

provide an effective solution to the problem, but these claims are unsubstantiated.

Such deficiencies are not exclusive from clustering. They are shared between other kind of

methods in the literature.

Another good contribution by Moody and Flitman is the definition of formal rules or prin-

ciples for evaluating the quality of decompositions and choosing between alternatives. These

principles are briefly reviewed in the following list:

• Completeness: each entity type must be assigned to at least one subject area. The

union of the subject areas cover all the entities in the underlying model.

• Non-Redundancy: each entity type must be assigned to at most one subject area. This

ensures that subject areas are disjoint.

• Integration: each subject area forms a fully connected subgraph of the original model.

• Unity: each subject area should be named after one of the entities on the subject area,

called the central entity. The central entity forms the core of the subject area.

• Cognitively Manageable: each subject are must be of cognitively manageable size. It

means a maximum of nine concepts.

• Flexibility: the partitioning of the data model into subject areas should allow adequate

capacity for growth. A data model which consists of subject areas that are all of the

size of nine will have to be repartitioned if even a single entity is added. To solve this

situation, it is required that the average size of subject areas is as close as possible to

seven entities.

• Equal abstraction: all subject areas should be similar in size.

• Coupling: the number of relationships between entities from different subject areas

should be minimum.

• Cohesion: the number of relationships between entities on the same subject area should

be maximum.

To conclude, Tavana et al. study in [115] the decomposition principles of Moody and Flitman

previously described. The authors introduce a clustering algorithm that adopts some concepts

and metrics from machine-part clustering in cellular manufacturing while exploiting some of the

38



3.3. MAJOR CONTRIBUTIONS

characteristics of ER diagrams. The aim of the algorithm is to follow the principles of Moody

and Flitman and, mainly, to reduce coupling and increase cohesion. In fact, the authors made

a comparison between their algorithm and the solutions proposed by Feldman and Miller [43],

and Moody and Flitman [80, 78]. In both cases, they claim that the results obtained by their

algorithm are better than others. An example of resulting clustered entity relationship diagram

from the application of such algorithm is shown in Fig. 3.7.

Figure 3.7. Application of clustering algorithm of Tavana et al.. Extracted from [115].

Table 3.1 summarizes the previous clustering contributions.

Table 3.1. Summary of clustering-based contributions.

Contribution Characteristics

Feldman and Miller [43] 3-level hierarchichal clustering of entities of ER diagrams.

Group entities in subject areas (bottom-up approach).

Form higher-level entity clusters grouping subject areas.

Duplication of entities in different subject areas is allowed.

Teorey et al. [116] n-level hierarchichal clustering of entities of ER diagrams.

Group entities in functional areas (bottom-up approach).

Form higher-level entity clusters grouping functional areas.

Duplication of entities in different subject areas is not allowed.

Shoval et al. [104, 105] HERD: Hierarchical Entity-Relationship Diagrams.

n-level hierarchichal clustering of entities of ER diagrams.

Group entities through dominance grouping, accumulation, and

abstraction grouping (bottom-up approach).

Duplication of entities in different clusters is not allowed.

Experimental comparison of HERD diagrams and ER diagrams.

39



CHAPTER 3. CONCEPTUAL MODELING IN THE LARGE

Table 3.1. Summary of clustering-based contributions (continued).

Contribution Characteristics

Jaeschke et al. [61] Clustering of entities and relationships in ER diagrams.

Focus on relationship clustering.

Define high-level entities and relationships at first, then redefine

them iteratively (top-down approach).

Francalanci and Pernici

[46]

Semi-automatic construction of clustered ER diagrams.

Clustering based on metrics over the structure of the diagram.

Definition of affinity and closeness between entities.

Definition of coupling and cohesion between clusters.

Akoka and Comyn-

Wattiau [1]

Automatization of conceptual schema clustering leading to a

unification of past approaches.

Definition of three different distances (visual, hierarchical and

cohesive) depending on the semantic richness of the schema.

Object model clustering is based on structural, semantic and

communication characteristics of objects.

Campbell et al. [24] A method for the strictly automatic selection of major entity

(or object) types.

Considers the detailed conceptual semantics hidden in con-

straints.

Utilize the selected major object types in an algorithm to derive

clusters.

Moody and Flitman

[80, 78]

Levelled Data Model (n-level hierachichal clustering of ER mod-

els).

Collection and classification of the major deficiencies identified

in the existing literature.

Definition of formal rules or principles for evaluating the quality

of decompositions and choosing between alternatives.

Tavana [115] Application of some concepts and metrics from machine-part

clustering in cellular manufacturing to ER diagrams.

The aim is to follow the principles of Moody and Flitman and

to reduce coupling and increase cohesion.

3.3.2 Relevance Methods

In contrast to clustering of conceptual schemas, the number of research contributions on rel-

evance (also known as scoring or ranking) methods applied to conceptual schemas have been

clearly lower. In this section we review some of the most important approaches in this area.

One of the first works on conceptual schema analysis was done by Castano, de Antonellis,

Fugini and Pernici in [25]. Castano et al. state that the representative elements of a schema are

its most relevant elements, that is, describing the purpose of the schema and its basic character-

istics. Representative elements are determined on the basis of a relevance measure within the

40



3.3. MAJOR CONTRIBUTIONS

schema. To compute the relevance of an element, they take into account the properties of the

element and the links in which it participates. The rationale is that the number of properties

and links in which the element participates can be used as a (heuristic) measure of its relevance

within the schema. The greater this measure, the higher the relevance of the element, since

this means that the element is characterized by several properties and is referred to by several

other elements of the schema.

The method of Castano et al. only considers a small part of the structural subschema of a

conceptual schema containing the entity types, their attributes, and the relationships between

entity types (both association and generalization relationships). Roughly, for each entity type,

its relevance is computed as the addition of the number of owned attributes plus the number

of relationships in which the entity participates. In fact, each kind of characteristic (attribute,

association, generalization) is weighted with a strength factor to denote a difference of the

contribution of such kind in the final relevance value. The authors choose to give a higher

strength to attributes, then generalizations and then association relationships. This is due to

the fact that generalization/specialization links between entities in a hierarchy express a high

connection between entity and its specializations, whereas relationships represent a weaker link,

from the semantic point of view.

Fig. 3.8 presents an example of schema where the bold squares are the representative ele-

ments computed according to the previous method.

Supplier

SCode
Name
Address

Part

PCode

Invoice

ICode
Date
Amount

Order

OCode
Priority
Date

Customer

CCode
Name
Address
Situation

Person

SSN

Company

CSSN

Offer

OfCode
Deadline
Date

receives makes

supplier offer

provides

fulfills

refers torefers to

refers to

receives

order
invoice

Figure 3.8. Representative elements of a conceptual schema. Extracted from [25].

Also, Geerts, Mannila and Terzi adapt in [48] link analysis algorithms to relational databases.

In analogy to Web-search engines, which use the Web graph to rank web pages, they use the

database graph to rank partial tuples. To obtain rankings for partial tuples they mimic the

principles of link analysis algorithms.

The well-studied algorithms for the Web show that the structure of the interconnections

of web pages has lots of valuable information. For example, Kleinberg’s HITS algorithm [67]

suggests that each page should have a separate authority rating (based on the links going to

the page) and hub rating (based on the links going from the page). The intuition behind the

algorithm is that important hubs have links to important authorities and important authorities

are linked by important hubs.

41



CHAPTER 3. CONCEPTUAL MODELING IN THE LARGE

Brin and Page’s PageRank algorithm [21], on the other hand, globally calculates the PageR-

ank of a web page by considering a random walk on the Web graph and computing its stationary

distribution. The PageRank algorithm can also be seen as a model of a user’s behavior where a

hypothetical web surfer clicks on hyperlinks at random with no regard towards content. More

specifically, when the random surfer is on a web page, the probability that he clicks on one

hyperlink of the page depends solely on the number of outgoing links the latter has. However,

sometimes the surfer gets bored and jumps to a random web page on the Web. The PageRank

of a web page is the expected number of times the random surfer visits that page if he would

click infinitely many times. Important web pages are ones which are visited very often by the

random surfer.

Figure 3.9. Example of PageRank.

For instance, in Fig. 3.9 size means relevance. It is easy to see that bigger (most relevant)

circle is the most pointed (or linked) one, and that the circles linked by it get part of its

importance becoming also big. That is due to the relevance flowing that link analysis algorithms

produce according to their recursive definition: the relevance of an element is the addition of

a proportional portion of the relevance of the elements that point to it. It is important to

note that to execute such link analysis algorithms an iterative method is needed because of the

recursive definition.

The same approach can be used to rank entity types in a conceptual schema. Concretely,

Tzitzikas and Hainaut propose in [120] two PageRank-style algorithms, called EntityRank and

BEntityRank, to obtain a rank of entity types according to their relevance in entity-relationship

diagrams. The same algorithms, among others, are also included in the paper by Tzitzikas,

Kotzinos and Theoaris [121], but applied to RDF schemas. Hsi et al. present a similar set of

methods in [60].

42



3.3. MAJOR CONTRIBUTIONS

These two variants take into account only some structural elements of the conceptual schema.

Concretely, to calculate the relevance of an entity type they use the relationships (without make

a differentiation between generalization or association relationships). BEntityRank algorithm

also assumes that the initial relevance of entity types is the number of attributes they own. After

every iteration of the algorithms, the relevance gets closer to the real one due to the relevance

transfers the algorithms produce through the relationships between entities. EntityRank and

BEntityRank are used to obtain the top-k entities in entity-relationship diagrams. Concretely,

such algorithms produce a ranking that then is processed to filter those entities that are not

the k most important ones. The example of Fig. 3.10 shows a complete entity-relationship

diagram (Fig. 3.10(a)) and the top-5 diagram (Fig. 3.10(b)) after the application of one of

these algorithms.

Table 3.2 summarizes the previous relevance-based contributions.

Table 3.2. Summary of relevance-based contributions.

Contribution Characteristics

Castano et al. [25] The representative elements of a UML schema are its most rel-

evant elements.

The relevance of an entity type is computed as the addition of

the number of owned attributes plus the number of relationships

in which the entity participates

Each kind of characteristic (attribute, association, generaliza-

tion) is weighted with a strength factor.

Higher strength to attributes, then generalizations and then as-

sociation relationships.

Geerts et al. [48] Adaptation of link analysis algorithms to relational databases.

Use the database graph to rank partial tuples of a database.

Kleinberg [67] Definition of authority rating (based on the links going to the

page) and hub rating (based on the links going from the page)

for web pages.

Intuition: hubs have links to important authorities and impor-

tant authorities are linked by important hubs.

Brin and Page [21] PageRank algorithm to web pages.

The PageRank of a web page is the expected number of times

the random surfer visits that page if he would click infinitely

many times.

The relevance of an element is the addition of a proportional

portion of the relevance of the elements that point to it.

Tzitzikas et al. [120,

121]

2 PageRank-style algorithms (EntityRank and BEntityRank) to

obtain a rank of entity types according to their relevance in ER

diagrams.

Use the relationships as links (without make a differentiation

between generalizations or associations).

BEntityRank algorithm assumes that the initial relevance of en-

tity types is the number of attributes they own.

43



CHAPTER 3. CONCEPTUAL MODELING IN THE LARGE

Table 3.2. Summary of relevance-based contributions (continued).

Contribution Characteristics

Hsi et al. [60] Definition of 5 metrics to compute the core concepts of an on-

tology.

Structural metrics based on the number of attributes and rela-

tionships of a concept.

Distance metrics based on the closeness of concepts.

Link analysis metrics based on computing the relevance of a

concept as the addition of a portion of the relevance of its sur-

rounding concepts.

3.3.3 Summarization Methods

A schema summary uses abstract elements and abstract links to summarize a complex schema

and provide the users with a concise overview for better understanding. While schema sum-

maries are useful, creating a good summary is a non-trivial task. A schema summary should

be concise enough for users to comprehend, yet it needs to convey enough information for users

to obtain a decent understanding of the underlying schema and data.

Yu and Jagadish [140] formally defines the concept of schema summary and present two

desirable properties (in addition to minimizing size) of a summary: present important schema

elements and achieve broad information coverage. Their method to obtain schema summaries

is applied to database schemas. Each abstract element in the summary corresponds to a cluster

of original schema elements (and other lower level abstract elements in the case of a multi-level

summary), and each abstract link represents one or more links between the schema elements

within those abstract elements.

Therefore, the importance of a schema element the authors define is reflected in two aspects

—its connectivity in the schema and its cardinality in the database. The connectivity of an

element in the schema graph provides a count of the number of other elements that are directly

connected to it (via either relationship links). An important element is likely to be one from

which many other elements can be reached easily. The cardinality of a schema element is the

number of data nodes (database tuples) it corresponds to. If there are many data nodes of a

schema element in the database, then that element is likely to be of greater importance than

another one with very few data nodes.

Alternatively, Yang et al. [139] continue the previous work of Yu and Jagadish by defining

the importance of each table in the database as its stable state value in a random walk over

the database schema graph, where the transition probabilities depend on the entropy of table

attributes. This ensures that the importance of a table depends both on its information content,

and on how that content relates to the content of other tables in the database. They propose

an algorithm under an importance function to cluster all tables in the database around the

most relevant tables, and return the result as the summary. The authors conduct an extensive

experimental study on a benchmark database, comparing their approach with the one by Yu

44



3.3. MAJOR CONTRIBUTIONS

(a) Full ER diagram

(b) Top-5 entity types

Figure 3.10. EntityRank application. Extracted from [120].

and Jagadish, as well as with several hybrid models. They state that their approach not only

achieves significantly higher accuracy than the previous state of the art, but is also faster and

scales linearly with the size of the schema graph.

Finally, the work of Egyed [40] on automated abstraction of class diagrams provides a

summary or simplification of the schema by removing details not necessary on a higher, more

abstract level. This abstraction technique uses abstraction rules that have input and result

patterns. Abstraction rules define the semantics of how a set of model elements can be replaced

by a less complex, more-abstract model element. The proposed abstraction algorithm then

45



CHAPTER 3. CONCEPTUAL MODELING IN THE LARGE

Figure 3.11. Example of summarization of a diagram. Extracted from [40].

performs syntactic matching of the abstraction rules on the model. Whenever an input pattern

of a rule is encountered in the model, then that pattern is replaced by the result pattern of that

rule. It follows that every application of a rule simplifies a given model. As an example, the

higher-level diagram in Fig. 3.11 (top) summarizes the lower-level one (bottom) by omitting

information considered less relevant.

Table 3.3 summarizes the previous summarization-based contributions.

Table 3.3. Summary of summarization-based contributions.

Contribution Characteristics

Yu and Jagadish [140] Definition of the concept of schema summary (applied to

database schemas).

Goals: present important schema elements and achieve broad

information coverage.

Importance of a schema element based on its connectivity in the

schema and its cardinality in the database.

46



3.3. MAJOR CONTRIBUTIONS

Table 3.3. Summary of summarization-based contributions (continued).

Contribution Characteristics

Yang et al. [139] Schema summary computation by using the entropy of ta-

ble attributes in a link-analysis approach (applied to database

schemas).

Comparison with the approach of Yu and Jagadish through a

benchmark database.

Egyed [40] Automated abstraction of class diagrams (in UML).

Bottom-up approach based on abstraction rules (every applica-

tion of a rule simplifies a given model).

Abstraction rules define the semantics of how a set of model el-

ements can be replaced by a less complex, more-abstract model

element.

3.3.4 Visualization Methods

The visualization of large-sized conceptual schemas to their final users is also in the scope of this

thesis. The application of clustering or filtering methods must be followed by the application

of visualization solutions in order to increase even more the understandability of schemas and

provide a correct feedback.

Moody states in [79] that visual notations form an integral part of the language of software

engineering, and have dominated research and practice since its earliest beginnings. They play

a particularly critical role in communicating with end users and customers as they are believed

to convey information more effectively to nontechnical people than text. Moody defines a

theory of how visual notations communicate and based on this, a set of principles for designing

cognitively effective visual notations, that must be taken into account. Moody also aims to

raise awareness about the importance of visual representation issues in notation design, which

has historically received very little attention.

Tzitzikas and Hainaut explain in [119] that diagram drawing is not a panacea. It has been

recognized long ago that the usefulness of conceptual diagrams degrades rapidly as they grow

in size. Although the article focus on visualization of ontologies, it could be translated to

database or conceptual modeling schemas written in UML/OCL. The authors include filtering

and clustering as visualization techniques. That is a good classification because such techniques

improve the graphical understandability of schemas. Furthermore, context-based browsing is

also introduced. It consists on showing only a short part of the whole schema so that the

user could start browsing the diagram starting from any node of the schema. At each point in

time, the neighborhood of the selected node is displayed. The user is then able to click on any

other displayed node to change the focus. This way, the understanding of the schema is done

gradually.

Another approach is presented by Streit et al. in [112] to manage large business process

specifications. Such specifications can be seen as graphs and, therefore, the application of the

47



CHAPTER 3. CONCEPTUAL MODELING IN THE LARGE

solution proposed can be extended to conceptual schemas. The solution here is adopted from the

discipline of 3D computer graphics. It is possible to compare a large and complex diagram with a

3D representation of a full scale model. The authors explain that the purpose of simplification is

to maintain a representation of the 3D model that is recognizable while reducing the processing

and data requirements of the system. Similarly, in the case of conceptual schemas our purpose

is to reduce the schema maintaining the relevant elements and a recognizable version of the

whole, while reducing the understandability effort users should make. Figure 3.12 shows the

structure of a 3D model of a plane. It is clear that the model continues looking as a plane

although its level of detail (complexity and size) is lower in the left side than in the right.

views of the specification that exclude less relevant information. This filtering
of information produces a model with lower complexity, but introduces a degree
of uncertainty. This uncertainty reflects the lower resolution model’s potential
for representing variations of the original model. This use of uncertainty mimics
human reasoning [3], where decisions are made on relevant information instead
of relying upon a detailed and precise model.

The discipline of 3D computer graphics has conducted extensive research
into level of detail algorithms [4]. These algorithms construct simplified repre-
sentations of a full scale model. The purpose of simplification is to maintain a
representation of the model that is recognisable while reducing the processing
and data requirements of the system (see Figure 1). Typically, lower level detail
versions of a model are substituted for the object when it is further away from
the observer, where the change is indiscernible.

Fig. 1. The structure of the 3D model of a plane is evident, even at four different levels
of detail. (from [5])

The approach in this paper is motivated by the success of level of detail
methods in the 3D graphics field. The proposal is a simplification approach for
business process specifications by constructing a reduced graph that captures
the most relevant information of the original graph. This technique avoids the
intuitiveness issue mentioned previously by using the same graphical notation as
the original graph. However, the reduced graph must also preserve the semantics
of the original graph to avoid being misleading.

This reduction process presents an opportunity to not only preserve the
overview of structure, but to actually provide different views of the same graph
according to different interests of the user. Reduction should therefore be di-
rected by criteria that represent the interest of the user, which is governed by
the task of the user. For example, the user may wish to see only those processes
that are involved in a possible dead-lock situation, or alternatively the user may
wish to see nodes that are relevant to a text search term. A graphical search
engine can be constructed by creating reduced views of business process models
according to search terms. This effectively allows the user to browse the business
process much like using a web search engine.

Figure 3.12. 3D mesh representing a plane at four different levels of detail. Extracted from [112].

The proposal of Streit et al. consists of calculating the relevance of each node according to

a criterion function. The second step is to reduce the graph (or schema in our case) by collapse

or decimation methods. Finally, the graph is displayed for the user inspection. We can affirm

that such solution is close to filtering methods.

Focus+Context [81] is another visualization technique that worth a mention here. Kosara,

Miksch and Hauser in [69] explain how to use focus+context techniques in information visual-

ization to point out relevant information to a user. They present a method for doing this which

uses selective blur to direct the user’s attention. The main idea is to blur objects based on

their relevance. As human perception divides our field of view into foreground and background,

most relevant objects must be placed closer (in the foreground) than less important ones (in

the background).

Another contribution in the literature is the review of Cockburn et al. [30]. It contains a

summary of the different works and contributions in the visualization area and, in particular,

those techniques classified in Overview+Detail, Zooming, or Focus+Context methods.

Overview+Detail techniques are characterized by the simultaneous display of both an overview

and a detailed view of an information space, each in a distinct presentation space. The second

category supporting both focused and contextual views is based on Zooming, which involves

a temporal separation between views. User magnify (zoom in) or demagnify (zoom out) a

fragment of the information in the visualization area to focus on desired elements. Finally, Fo-

cus+Context integrates a relevant focused view and the context into a single display where all

parts are concurrently visible. The focus is displayed seamlessly within its surrounding context.

48



3.3. MAJOR CONTRIBUTIONS

To finish this section, we also take into account the survey about ontology visualization

methods of Katifori et al. [64]. Ontologies are sets of concepts with their relationships, so

that we can apply the methods explained in such survey to conceptual schemas. The methods

described in the survey are grouped in several categories, according to their visualization type.

The Zoomable and Focus+Context categories are the same as in the survey of Cockburn

et al. [30]. On the other hand, the authors define Indented List techniques as lists where the

elements of an ontology are hierarchically placed like in a directory tree view of file systems

in common operating systems. The next category is Node-link and tree, which represents

ontologies as a set of interconnected nodes, presenting the taxonomy with a top-down or left-

to-right layout. The user is generally allowed to expand and retract nodes and their subtrees,

in order to adjust the detail of the information shown and avoid display clutter. Finally, Space-

filling techniques are based on the concept of using the whole of the screen space by subdividing

the space available for a node among its children. The size of each subdivision corresponds to

a property of the node assigned to it (its size, number of contained nodes, and so on).

Table 3.4 summarizes the previous visualization contributions.

Table 3.4. Summary of visualization contributions.

Contribution Characteristics

Moody [79] Principles for designing cognitively effective visual notations.

Focuses on the physical (perceptual) properties of notations

rather than their logical (semantic) properties.

Identifies serious design flaws in some of the leading software

engineering notations, together with practical suggestions for

improving them.

Tzitzikas and Hainaut

[119]

Focuses on the visualization requirements of large-sized ontology

diagrams.

Describes the main factors that determine whether an ontology

diagram layout is satisfying or not.

Streit et al. [112] A visualization technique to support the modelling and man-

agement of large business process specifications.

Uses a set of criteria to produce views of the specification that

exclude less relevant features.

3-step method: assessing the relevance of nodes, reducing the

specification, and presenting the results.

Musial and Jacobs [81] Application of focus+context visualization techniques to an in-

teractive UML browser.

Displaying software components at varying levels of detail ac-

cording to a dynamic degree of interest function.

Kosara et al. [69] Focus+context method that blurs objects based on their rele-

vance (rather than distance) to direct the user’s attention.

Povides both detailed information of the currently most relevant

objects, as well as giving users an idea of the context.

49



CHAPTER 3. CONCEPTUAL MODELING IN THE LARGE

Table 3.4. Summary of visualization contributions (continued).

Contribution Characteristics

Cockburn et al. [30] Review and categorization of interface schemes that allow users

to work at, and move between, focused and contextual views of

a dataset.

Four approaches: overview+detail, zooming, focus+context,

and cue-based techniques.

Katifori et al. [64] Present ontology visualization methods and categorize their

characteristics and features in order to assist method selection

and promote future research in the area of ontology visualiza-

tion.

3.4 The Filtering Approach

Information filtering is a name used to describe a variety of processes involving the delivery of

information to people who need it. As far as we know, there is no research study or contribution

in the present literature about the application of specific information filtering methods and

techniques to conceptual schemas. Nevertheless, we present close and relevant research related

to our topic.

Belkin et al. consider in [10] the relationship between information filtering and information

retrieval. They state that there is relatively little difference between the two, at an abstract

level. First of all, their underlying goals are essentially equivalent. That is, both are concerned

with getting information to people who need it, and both are concerned with more-or-less the

same kind of context. Furthermore, most of the issues which appear at first to be unique to

information filtering are, really, specializations of information retrieval problems. The conclu-

sion they draw from this is that much of information retrieval research experience is directly

relevant to filtering.

Researchers studying filtering also need to do a great deal of research on the dimensions of

users information interests: what they might be, how to identify them, how to represent them,

and how to modify them. This is especially the case because filtering is considering new classes

of users, uses, and data, for which information retrieval does not, in general, have relevant

results. For the case of filtering applied to large conceptual schemas, the study of the users and

their needs is mandatory, in order to provide the right information to the correct user.

Hanani et al. explain in [55] that information filtering is one of the methods that is rapidly

evolving to manage large information flows. The aim of information filtering is to expose users

to only information that is relevant to them. Many information filtering systems have been de-

veloped in recent years for various application domains. Some examples of filtering applications

are: filters for search results on the web that are employed in the Internet software, custom

e-mail filters based on personal profiles, browser filters that block non-valuable information, fil-

ters designed to give children access only to suitable pages, filters for e-commerce applications

50



3.4. THE FILTERING APPROACH

that address products and promotions to potential customers only, and many more.

(d)
Learning

Component
User

Information
Provider

(c)
User-Model
Component

(b)
Filtering

Component

(a)
Data Analyser
Component

updates

feedback

data items

represented
data items

relevant
data items

user profile

perso
nal details

Figure 3.13. A generic model of information filtering systems. Extracted from [55].

The different systems use various methods, concepts, and techniques from diverse research

areas like: Information Retrieval, Artificial Intelligence, or Behavioral Science. There are many

systems of widely varying philosophies, but they all share the goal of automatically directing

the most valuable information to users in accordance with their need, and of helping them use

their limited reading time most optimally. The authors define a generic model of information

filtering systems that includes four components (see also Fig. 3.13):

• The data-analyzer component: obtains or collects data items from several information

providers.

• The user-model component: explicitly or implicitly gathers information about the

users and their information needs.

• The filtering component: matches the user needs with the represented data items and

decides if a data item is relevant to the user.

• The learning component: detects changes in the information or user needs to improve

further filtering.

Kuflik and Shoval [71] present the representation of the user’s need with user profiles. The

quality of a user profile has a major impact on the performance of information filtering systems.

Kuflik and Shoval focus on the study of user profile generation and update. Some of such

methods are:

• User-created profile: the user specifies her area(s) of interest by a list of (possibly

weighted) terms.

• System-created profile by Automatic Indexing: a set of data items, which have

already been judged by the user as relevant, are analyzed in order to identify the most

frequent and meaningful items. Those items are weighted and constitute the user profile.

• System- plus user-created profile: first, an initial profile is created automatically.

Then, the user reviews the proposed profile and updates it.

51



CHAPTER 3. CONCEPTUAL MODELING IN THE LARGE

• System-created profile based on learning by artificial neural-network (ANN):

an ANN is trained with the data items selected by the user to serve as the user profile

for future filterings. Extended studies about the usage of ANN in information filtering

systems are presented in [20, 70].

• User-profile inherited from a user-stereotype: this method assumes that the in-

formation filtering system has pre-defined user-stereotypes. A new user is attached to

a predefined stereotype to which she is close with respect to demographic and social

attributes.

• Rule-based filtering: consists of a set of filtering rules. Questioning the user on her

information usage and filtering behavior can generate such rules.

Shapira et al. [103, 102] suggest an advanced model for information filtering which is based

on a two-phase filtering process and the use of stereotypes. The user profiling in the filtering

method is constructed on the basis of the user areas of interest and on sociological parameters

about her that are known to the system. The first phase is cognitive filtering, i.e., a correlation

between the contents of the information to be filtered with a predefined weighted vector that

represents the areas of interest to the user. The second phase implements a sociological filtering

process. Each user profile contains personal sociological parameters (such as employment,

affiliation, education, etc.). These parameters relate the user to one or more stereotypes known

to the system, which maintains a database of known stereotypes that includes rules on their

information retrieval needs and habits. During the filtering process, the system relates the user

to one or more stereotypes and operates the appropriate stereotypical rules.

Finally, Maidel et al. [73] present a new ontological-content-based method for ranking the

relevance of items in the electronic newspapers domain. The method is being implemented

in a personalized electronic newspaper research project. The content-based part of the filter-

ing method uses a hierarchical ontology of news items. The method considers common and

close ontology concepts appearing in the user’s profile and in the item’s profile, measuring the

hierarchical distance between concepts in the two profiles. Based on the number of common

and related concepts, and their distances from each other, the filtering algorithm computes the

similarity between items and users, and rank-orders the news items according to their relevancy

to each user, thus providing a personalized newspaper. The relevant contribution here is the

use of an ontology to define the profile similarity.

Table 3.5 summarizes the previous filtering contributions.

Table 3.5. Summary of filtering contributions.

Contribution Characteristics

Belkin et al. [10] Comparison between information retrieval and information fil-

tering.

Conclusion: much of information retrieval research experience

is directly relevant to filtering.

52



3.5. COMPARISON BETWEEN APPROACHES

Table 3.5. Summary of filtering contributions (continued).

Contribution Characteristics

Hanani et al. [55] A framework to classify information filtering systems according

to several parameters.

Discusses methods and measurements that are used for eval-

uation of information filtering systems and limitations of the

current systems.

Kuflik and Shoval [71] Focus on the study of user profile generation and update.

Introduces methods for user profile generation, and proposes a

research agenda for their comparison and evaluation.

Shapira et al. [103, 102] Advanced model for information filtering which isbased on a

two-phase filtering process.

The first phase is cognitive filtering, i.e., a correlation between

the contents of the information to be filtered with the areas of

interest to the user.

The second phase implements a sociological filtering process,

where user characteristics are related to one or more stereotypes

known to the system.

Maidel et al. [73] Describes a new ontological content-based filtering method for

ranking the relevance of items for readers of news items, and its

evaluation.

Computes the similarity between item and user profiles and

ranks the news items according to their relevance to each user.

3.5 Comparison between Approaches

The previous sections explained the problem that very large conceptual schemas entail and

reviewed the most popular approaches in the literature that deal with it. This section describes

in more detail what we consider by information filtering and compares it with other similar

approaches from the literature.

As aforementioned, there are many filtering systems of widely varying philosophies, but all

share the goal of automatically directing the most valuable information to users in accordance

with their needs, and of helping them use their limited time and information processing capacity

most optimally.

Figure 3.14 shows an schematic overview of the information filtering process and steps

applied to large conceptual schemas. Apart from the schema itself, information filtering methods

require as input a representation of the user information need or interest in form of knowledge

request. That way, the method adapts to the specific request and produces varying outputs.

After the request processing and the analysis of the large schema, the filtering method selects

which are the elements from the original large schema to include in the resulting schema of

small size, which represents the feedback the user obtains.

53



CHAPTER 3. CONCEPTUAL MODELING IN THE LARGE

Figure 3.14. Information filtering in the context of large conceptual schemas.

We have seen that there exist several methods and techniques in the literature with the

same purpose as information filtering. All of these families of proposed solutions to face the

problem introduced by very large conceptual schemas have their own particular characteristics.

Figure 3.15 shows an overview of the most popular families of methods:

• Clustering methods: classify the elements of the schema into groups, or clusters, ac-

cording to a similarity function. For example, left of Fig. 3.15 describes 7 clusters.

• Relevance methods: apply a ranking function to the elements of the schema in order to

obtain an ordered list (also called ranking of them according to their general relevance).

• Summarization methods: compute a reduced general schema from the large original

one with the elements that are more relevant but also with a a high degree of coverage of

the schema.

Clustering Relevance

Summarization

C1 C2 C3

C4

C7C6

C5

Figure 3.15. Existing families of methods in the literature.

54



3.5. COMPARISON BETWEEN APPROACHES

Table 3.6 shows a comparison between the previous methods and the information filtering.

First characteristics to study are the input and output of the methods. Generally, clustering,

relevance, and summarization methods only need the conceptual schema as their input. Their

output depends only on the input schema.

Clustering methods return a classification of the elements in clusters. Relevance methods

return a ranking of the elements according to importance in the schema. And finally, summa-

rization methods return a reduced schema that is called summary. Consequently, the retrieved

knowledge by all those families of methods is general, i.e., it is always the same —it does not

change unless the schema changes— and it is not affected by specific user interests.

Alternatively, the family of filtering methods also need a representation of the user need or

interest in order to derive a specific output from the general one. That is why the retrieved

knowledge in this case is marked as specific in Tab. 3.6 while it is denoted as general for the

other alternatives.

Clustering Relevance Summarization Filtering

Input schema schema schema
schema and

user request

Output
clustered

ranking
schema filtered

schema summary schema

Retrieved
general general general specific

Knowledge

User static static static dynamic

Interaction exploration exploration exploration request/response

Table 3.6. Comparison of methods to deal with large conceptual schemas.

Finally, the filtering-based family of methods provides users with a dynamic request/re-

sponse interaction that simplifies the knowledge extraction process. Other alternatives provide

static access to their output, which in many cases contain only a fragment of the whole knowl-

edge that may be out of the scope of interest to the user. Therefore, the development of a

filtering approach to deal with large conceptual schemas covers a relatively unexplored area in

the literature and helps to providing a more dynamic and flexible solution in comparison to the

existing methodologies that contribute to this topic.

55



CHAPTER 3. CONCEPTUAL MODELING IN THE LARGE

3.6 Summary

The analysis presented in the previous sections can be summarized in two main conclusions.

On one hand, it is clear that the major contributions in the literature dealing with the prob-

lems of conceptual modeling in the large are mainly applied to database or entity-relationship

schemas. As seen earlier in the chapter, although nowadays UML/OCL are the de-facto stan-

dard modeling languages, the number of methods to reduce or restructure conceptual schemas

defined using UML/OCL is very small. Furthermore, the amount of contributions in the filter-

ing area is also minimal. Most of the existing methods do not support user queries or a valuable

interaction.

The existing literature denotes a lack in the proposal of contributions from the field of

information retrieval and, particularly, information filtering, to the problem of dealing with

the huge amount of information and the complex structure large conceptual schemas entail.

Conceptual modeling and recent model-driven approaches require an extensive use of those

large schemas to carry out their activities.

What is needed is to study and define the different phases of an information filtering engine,

in the context of very large conceptual schemas. Also, it is mandatory to detect the main issues

in the study of the characteristics of the knowledge large schemas contain and propose methods

to select and represent the user interest in order to specialize the results of the filtering engine.

Furthermore, it is mandatory to provide knowledge extraction techniques aligned with the user

interest representation, and to present such knowledge in an appropriate way to simplify its

understanding.

On the other hand, most of the contributions do not take into account the whole knowledge

provided by the conceptual schema. Concepts like constraints, derivation rules, definition of

actions and events are commonly avoided. However, there exists the thought of the more

knowledge used, the more complete the results will be.

Regarding these trends, we notice that a new approach to solve the problem of large concep-

tual schemas should be provided by a filtering engine applied to UML/OCL schemas. Such an

engine should include in their computation new measures, which could enclose the knowledge

that schemas contain. To this end, Ch. 4 presents specific metrics to compute the relevance of

schema elements that take into account knowledge from the structural and behavioral compo-

nents of a large conceptual schema. These metrics are the core element of the filtering method

for large conceptual schemas that we present in Ch. 5 as one of the main contributions of this

thesis.

56



Controlling complexity is

the essence of computer programming

Brian Kernigan

4
Relevance Metrics

for Large Conceptual Schemas

The methods for understanding of large conceptual schemas require computing the importance

of each entity and event type in a large UML conceptual schema. Each method is defined by

means of a set of one or more atomic metrics. Such metrics gather the particularities of a

conceptual schema and define its characteristics. In principle, the totality of knowledge defined

in the schema could be relevant for the computation of that metrics but existing methods only

take into account a small part of the knowledge represented in a schema. In this chapter,

we complete those methods with additional knowledge, and construct the basis for the core

component of our filtering engine.

Section 4.1 describes the motivation of the chapter in the context of the filtering engine for

large conceptual schemas. Section 4.2 presents the details about basic measures to structure

and characterize a large schema, and our proposed extensions to such measures in order to take

into account additional knowledge that must be included in the computation of the relevance

of schema elements. Section 4.3 introduces the set of importance-computing methods used

by our filtering engine, and compares them. Section 4.4 describes the need to develop new

metrics to obtain a user-centered approach of the definition of relevance. Section 4.5 completes

the importance methods with the analysis of a simple closeness-computing method adapted to

UML schemas. The combination of importance and closeness methods produces the interest-

computing method specified in Section 4.6. Our method computes the interest of each entity

and event type in the schema with respect to the specific user information needs, and allows to

construct the filtering method of this thesis. Finally, Sect. 4.7 summarizes the chapter.

57



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

4.1 Motivation

In this section we describe how a large conceptual schema can be filtered using the relevance

metrics described in this chapter. The main idea of the overall process is to extract a reduced

and self-contained view from the large schema, that is, a filtered conceptual schema with the

knowledge of interest to the user. Figure 4.1 presents the three steps of our filtering methodol-

ogy. The full details about this process are presented in Ch. 5

The first step consists in preparing the required information to filter the large schema

according to the specific needs of a user. Basically, the user focus on a set of schema elements she

is interested in, which is a subset of the large conceptual schema, and our method complements

them with additional schema knowledge highly relevant to user selection. Therefore, it is

mandatory for the user to select a non-empty initial focus set of elements of interest in order

to avoid empty requests.

The relevance metrics are the main tool to structure and analyze the whole knowledge

represented within a large conceptual schema. Such metrics allow our filtering methodology to

transform an information need of a particular user into an specific feedback of interest to her.

Opposite to clustering or summarization methodologies, the resulting filtered conceptual schema

our method obtains changes and adapts according to the concrete input of the user. To achieve

this goal, we combine importance-computing metrics that calculate the general relevance of the

elements of a large schema, with a closeness-computing metric that selects those elements that

are relevant and have a high relation with the elements of the user input.

Large
Conceptual

Schema

Information 
Need

Select
Focus Set

Compute
Filtered
Schema

Filtering Process Filtered 
Schema

1

Compute
Relevance
Metrics

2

3

Figure 4.1. General structure of the filtering process.

During the second step our method computes the required metrics to automatically select

the most interesting schema elements to extend the knowledge selected in the focus set of the

first step. The main goal of these metrics is to discover those elements that are relevant in the

schema but also that are close (in terms of structural distance over schema) to the elements of

the focus set. A detailed definition of such metrics is described in the following sections.

Finally, the last step receives the set of most interesting schema elements selected in the

previous step and puts them together with the elements of the focus set in order to create a

filtered conceptual schema with the elements of both sets. The main goal of this step consists

in filtering information from the original schema involving elements in the filtered schema. To

achieve this goal, the method explores the attributes, schema rules, relationships, and general-

izations/specializations in the original schema that are defined between those filtered elements

and includes them in the filtered schema to obtain a connected schema.

58



4.2. TOPOLOGICAL MEASURES OF CONCEPTUAL SCHEMAS

4.2 Topological Measures of Conceptual Schemas

Network topology is the layout pattern of interconnections of the various elements (links, nodes,

etc.) of a computer or biological network. Conceptual schemas can be seen as networks or

graphs whose entity and relationship types are the nodes and link of the network, respectively.

Therefore, we can specify several topological measures over the graph structure of a large

conceptual schema. In the following, we study a set of basic topological measures and we

propose extensions to them taking into account additional knowledge in order to define complex

measures of interest to our filtering methodology.

4.2.1 Basic Measures

Discussing about the relevance of schema elements has a point of ambiguity since there are a

lot of types of elements in a conceptual schema including entity, event, and relationship types,

schema rules, attributes, and generalizations. Although computing the relevance of attributes,

associations or constraints could be a research topic of interest, our approach, similarly as major

contributions in the literature, has the computation of the relevance of entity types as the main

goal of the thesis. Furthermore, since we define event types as particular entity types [89], we

can also compute their relevance with the same methods than entity types.

The most important kind of single elements in a conceptual schema are entity types, be-

cause they are the representation of concepts of the real world. Therefore, the application of

methods for focusing on the most relevant ones must contribute in a higher degree to increase

understandability and usability. In this section we go over the main concepts and the notation

we have used to define the knowledge of conceptual schemas, as explained in Ch. 2. In this

thesis we deal with schemas written in the UML[84]/OCL[85], although our method can be

directly adapted to schemas defined in other modeling languages. Table 4.1 summarizes the

notation (inspired by [121, 6]) used in the rest of the document.

As aforementioned, conceptual schemas contain a structural subschema and a behavioral

subschema. The structural schema consists of a taxonomy of entity types (a set of entity

types with their generalization/specialization relationships and the taxonomic constraints), a

set of relationship types (either attributes or associations), the cardinality constraints of the

relationship types, and a set of other static constraints formally defined in OCL.

We denote by E the set of entity types defined in the schema. For a given e ∈ E we

denote by par(e) and chi(e) the set of directly connected ascendants (parent entity types) and

descendants (children entity types) of e, respectively, and by gen(e) the union of both sets. The

set of attributes defined in the schema is denoted by A. If a ∈ A then entity(a) denotes the

entity type where a is defined. The set of attributes of an entity type e is denoted by attr(e).

The set of associations (relationship types) defined in the schema is denoted by R. If r ∈ R
then members(r) denotes the set of entity types that participate in association r, and assoc(e),

where e ∈ E , the set of associations in which e participates. Note that an entity type e may

participate more than once in the same association, and therefore members(r) and assoc(e)

are multisets (may contain duplicate elements).

59



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

Notation Definition

par(e) = {e′ ∈ E | e IsA e′}
chi(e) = {e′ ∈ E | e′ IsA e}
gen(e) = par(e) ∪ chi(e)
attr(e) = {a ∈ A | entity(a) = e}

members(r) = {e ∈ E | e is a participant of r}
assoc(e) = {r ∈ R | e ∈ members(r)}
conn(e) = ]r∈assoc(e){members(r)\{e}}1

parinh(e) = par(e) ∪ {parinh(e′) | e′ ∈ par(e)}
chiinh(e) = chi(e) ∪ {chiinh(e′) | e′ ∈ chi(e)}
attrinh(e) = attr(e) ∪ {attrinh(e′) | e′ ∈ par(e)}
associnh(e) = assoc(e) ] {assoc(e′) | e′ ∈ parinh(e)}
conninh(e) = conn(e) ] {conn(e′) | e′ ∈ parinh(e)}

Table 4.1. Definition of basic metrics.

Moreover, conn(e) denotes the multiset of entity types connected to a particular entity type e

through associations. For example, if r is the association HasComponent(assembly:Part, compo-

nent:Part), then members(r)={Part, Part}, assoc(Part)={HasComponent, HasComponent}
and conn(Part)={Part}. Figure 4.2 depicts this example.

Part
id: Integer
name: String

assembly

component *
0..1

Item
par(Item) = Ø               attr(Item) = Ø
chi(Item) = {Part}        assoc(Item) = Ø
gen(Item) = {Part}       conn(Item) = Ø

par(Part) = {Item}
chi(Part) = Ø
gen(Part) = {Part}
attr(Part) = {id, name}
assoc(Part) = {HasComponent, HasComponent}
conn(Part) = {Part}

members(HasComponent) = {Part, Part}HasComponent

Figure 4.2. Example of basic metrics.

1Note that “\” denotes the difference operation of multisets as in {a, a, b}\{a} = {a, b} and “]” denotes the multiset
(or bag) union that produces a multiset as in {a, b} ] {a} = {a, a, b}

60



4.2. TOPOLOGICAL MEASURES OF CONCEPTUAL SCHEMAS

The last row section in Table 4.1 defines the notation we use to take into account the

inherited properties from the ancestors of entity types. As a special case, chiinh(e) is the set

that includes all the descendants of e. The other metrics capture the entire hierarchy of each

entity type (e.g., associnh(e) collects all the associations where e ∈ E and its parents —and the

parents of them, recursively— participates). Since assoc(e) is a multiset, associnh(e) can also

contain repeated elements.

The set of basic metrics of Table 4.1 does not include metrics to gather the knowledge

contained in the behavioral schema nor the schema rules of the structural schema. The reason

is that the relevance methods we have selected to study (described in Section 4.3.2) do not use

such information. The notation for these extended metrics is introduced in Section 4.2.3 before

the description of the extended versions of the basic methods.

4.2.2 Extended Characteristics of Conceptual Schemas

This section presents some of the new approaches introduced in this thesis to gather the knowl-

edge of the additional components of the conceptual schema schema. First of all, we introduce

how to deal with complex relationship types, including relationships whose degree is n > 2 and

reified relationships.

Next step consists in describing the power OCL brings us to take into account the knowledge

provided by the schema rules (C) of the conceptual schema. Our research here allows to uncover

existing relationships between entity types placed in OCL expressions that are useful in the

relevance computation process.

Finally, we mix the previous techniques to introduce new metrics to squeeze the knowledge

previously extracted, mainly from the behavioral schema and the schema rules of the structural

schema. Such metrics will be the keystone in the extension of the base versions of the selected

methods from the literature introduced in Section 4.3.2.

Complex Relationship Types

The Unified Modeling Language (UML) allows to specify a special kind of relationship type

that can have the same behaviour as entity types: the association classes. Thus, the concept of

reification is introduced as viewing a relationship as an entity. Reification can easily be defined

in UML, as shown in left sides of Fig. 4.3 and Fig 4.4 for binary (entity C) and n-ary (entity

AC) relationship types.

Since current methods in the literature are applied to schemas defined with entity-relationship

diagrams but not with UML/OCL, the problem of how to take into account association classes

is not explored in this field. To solve this, we propose to follow the same approach than Olivé

in [87]. It consists in implicitly reifying the current association class into another entity type

associated through new binary relationships with its previous participants. Figure 4.3 depicts

the reification process.

61



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

It is important to maintain the same semantics as before the explicit reification. Thus, the

modeler has to take care of cardinality constraints. In the case of a binary reified relationship

(left side of Fig. 4.3), the cardinality constraints after the explicit reification are interchanged

between the ends of the relationship and the association class. This way, the cardinality con-

straints of a relationship end go to the new relationship between the other end and the new

entity representing the previous association class, in the side of the new entity type. In the side

of the previous ends the cardinality equals 1.

Figure 4.3. Implicit reification of a binary relationship with association class.

Furthermore, to maintain the semantics we also need a new uniqueness constraint for the

new entity type after the implicit reification. Such constraint cannot be defined graphically,

so the modeler requires the use of OCL. Such constraint can be written as shown in Fig. 4.3.

Basically, we need and invariant to check that the same pair of instances of both ends (A and B

in the image) cannot be linked with the same instance of the new entity type (C in the example)

more than once.

After this process, it is possible to use the same metrics previously defined because the

conceptual schema only contain common relationship types —the association classes have been

converted into a group of binary relationships connecting a new entity type that represents the

original association class.

To sum up, in the case of binary relationships with association class the steps are as follows:

1. Define the explicit entity type representing the association class.

2. Define the new binary relationship types with its cardinality constraints.

3. Define the uniqueness constraint to maintain the original semantics.

Association classes in n-ary relationships need a different conversion process to be trans-

formed into explicit reifications. First step follows the same rules as in the case of binary

association classes. Figure 4.4 indicates that the association class (AC in the figure) is changed

by a common entity type with new relationships reaching each of the initial ends.

After that, the new cardinality constraints (see right side of Fig. 4.4) are 1..1 for the

association end in the side of each participant entity type in the original n-ary association, and

0..* for the association end in the side of the entity type representing the association class. All

the cardinality constraints are equal. To maintain the original semantics, we need schema rules

to control any original cardinality constraint in the reified schema.

62



4.2. TOPOLOGICAL MEASURES OF CONCEPTUAL SCHEMAS

Figure 4.4. Implicit reification of a n-ary (n>2) relationship with association class.

As before, in the case of binary relationships with association class the steps are as follows:

1. Define the explicit entity type representing the association class.

2. Define the new binary relationship types with its cardinality constraints.

3. Define the uniqueness constraint to maintain the original semantics.

4. Define as many constraints as needed to maintain the same cardinality constraints as

before.

In this case a uniqueness constraint is also needed and follows the same idea as in the case

of binary relationships although this time the Tuple inside the OCL expression has as many

members as the degree of the current reified association —each one of the members is one of

the ends. Furthermore, for each original cardinality constraint (left side of Fig. 4.4) a new

schema rule has to be introduced to maintain the semantics. Such rule must be defined in OCL

following the same pattern as the one shown in Fig. 4.4.

63



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

Another example of an implicit reification is shown in Fig. 4.5. We have a ternary associ-

ation connecting the entity types Table, Customer, and Date, reified into the association class

Reservation. Following the previous steps, the association class Reservation is transformed into

a new entity type with three relationships types connecting it with its original ends. Each of

these relationships have the same cardinality constraints. Concretely, 1..1 in the side of the en-

tity types Table, Customer and Date, and 0..* in the side of the entity type Reservation. After

constructing the new structure, we need to specify the uniqueness constraint which consists on

the uniqueness of a tuple with three elements as shown in Fig. 4.5.

Figure 4.5. Implicit reification of a ternary relationship with association class.

Finally, the upper cardinality constraint 0..1 in the end of Customer have to be maintained.

To do that, another schema rule taking into account the semantics of such cardinality constraint

is also shown in Fig. 4.5. The schema rule controls that given an specific date and an specific

table, only a unique reservation is allowed to the same client.

The implicit reification of association classes solves the problem of how to use the metrics

with association classes. However, a new doubt appears about whether the relevance of the new

entity types representing the reified association classes should be computed or not. After some

evaluations, we decide to include such entities in the importance computation process because,

since they are entity types, the concepts they represent really matter.

64



4.2. TOPOLOGICAL MEASURES OF CONCEPTUAL SCHEMAS

The Power of OCL

The schema rules defined in a conceptual schema are now taken into account. In this section

we present a new approach to include the knowledge provided by such rules.

One of the most important type of elements in conceptual schemas are the relationship

types. Such relationships are the key in relevance-computing methods based on link analysis.

Our main goal here is to extract additional links between entity types from the navigations and

elements that appear in schema rules.

As has been said, the Object Constraint Language provides a powerful textual notation to

specify schema rules in a declarative way. The notation of the OCL includes a set of expressions

(see Fig 4.6), some of them are used to describe navigations between elements of the schema

(e.g., access to attributes and navigation to association ends with PropertyCallExp expression

of Fig. 4.7).

Figure 4.6. Fragment of the OCL metamodel including and overview of the expressions. Extracted
from [85].

Furthermore, the body of a schema rule specified in OCL may contain several navigations

to the association ends owned by entity types that participate in relationship types. It also

may indicate navigations to a set of attributes defined in the context of other entity types, call

to operations, usages of other schema elements, and so on. Such set of references can be used

in the relevance computation process.

65



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

Figure 4.7. Fragment of the OCL metamodel including navigation expressions. Extracted from [85].

Each schema rule is defined in the context of an entity type. If we go through the schema

rules defined in a conceptual schema we note that the first part of each rule is a context

environment where to declare the entity that owns the rule. If we want to specify an invariant

to constraint the values of an attribute, it is clear that the context of such rule will be the

entity type that owns the attribute. Thus, if we mix the references with the concept of context

we obtain a set of links joining the context entity type with each of the referenced (let’s say

participants) entity types in the body of the rule. The new uncovered links act as virtual edges

in the graph of entities and relationships types that conforms the conceptual schema. Such

edges must be included in the computation process in order to take into account the knowledge

added by invariants, derivation rules, and pre- and postconditions, all of them written in OCL.

To understand our approach we show an example in Fig. 4.8 with a simple schema containing

three entity types and two relationships. The top of the figure describes a schema rule that

checks the number of seats of a room. Concretely, such number must be greater or equal than

the number of attendants (the audience) of the related meeting. Furthermore, in the right side

of the top of the figure there is a breakdown of the different sections of the OCL expressions

to show the referenced entity types. It is possible to distinguish between the entity types

that participate in the body of this schema rule (indicated with dashed lines) and the context

entity type (indicated with a dotted line). Also, bold arrows indicate the structural navigations

through relationship types in the schema rule (from self, i.e. Room, to Meeting, and from

Meeting to Person using the rolename audience).

On one side, our approach consists in creating new links between the context entity type

and each one of the participants of the schema rule. We name these kind of links Context-

Participant Non-Structural links (CPNS). Although an entity type may participate more than

once in the same body of a schema rule, only one CPNS link is created between the context

entity type an such entity type. It is possible to see the CPNS links of the example in the right

side of the bottom part of Fig. 4.8 (and with dotted lines in the schema).

66



4.2. TOPOLOGICAL MEASURES OF CONCEPTUAL SCHEMAS

Figure 4.8. Example of uncovered links extracted from the OCL.

On the other hand, we also create links between the participants that appear as source and

target in a navigation expression of the OCL. In the example of Fig. 4.8, the bold arrows of the

top indicate two structural navigations. We mean structural navigations as such navigations

through relationship types. In this case we have the OCL expression self.meeting, which

indicates a navigation through the relationship between Room and Meeting (self references

the context of the schema rule, in this case, Room). Also we have meeting.audience that

shows the navigation through the relationship between Meeting and Person.

Then, our approach consists in creating new special links to note the use of navigations

through relationships in the body of a schema rule. We name these kind of links Participant-

Participant Structural links (PPS). It is possible to see them in the bottom part of Fig. 4.8,

with dashed lines.

Finally, once we have extracted the CPNS and PPS links from the schema rule, next step

consists in avoiding repetitions of links. Therefore, the final set of uncovered links from a schema

67



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

rule is the union of both sets. This way, the repeated link Room-Meeting in the example will

appear only once.

To sum up, the steps we have to follow to obtain new links between entity types from a

schema rule are:

1. Detect the context entity type of the schema rule.

2. Detect the referenced entity types in the body of the schema rule.

3. Construct links between the context and the referenced entity types (CPNS links).

4. Construct links between the entity types that participate in navigation expressions of the

OCL (PPS links).

5. Apply the union operation with the previous sets to delete repetition of links.

6. The result of the previous step is the set of uncovered links of the schema rule.

Next, we will introduce new metrics that will take into account the extracted links from

each one of the schema rules of the conceptual schema.

Another knowledge in the schema that has not been considered before is the information

provided by cardinality constraints in association ends of relationship types. Such information

can be added to the relevance computation process of entity types using the OCL. Cardinality

constraints can be converted into schema rules specified in OCL. The way to do it is quite simple.

It only consists in creating an invariant whose context will be the entity type in the opposite side

of the cardinality constraint, for each cardinality constraint with a lower multiplicity greater

than zero. The same has to be done with cardinality constraints with an upper multiplicity

distinct than the asterisk (*).

As an example, if we go back to the Fig. 4.8, there is a cardinality constraint whose upper

multiplicity is 1 (the one in the side of Meeting). Therefore, the new schema rule is as follows:

context Room inv: self.meeting->size()<=1

Thus, this schema rule will be processed according to the steps explained before and the

obtained links will be added into the computation of the values for the complex measures of

the next section.

4.2.3 Complex Measures

The behavioral schema contains a set of event types. We adopt the view that events can

be modeled as particular entity types [89]. Event types have characteristics, constraints, and

effects. The characteristics of an event are its attributes and the associations in which it

participates. The constraints are the conditions that events must satisfy to occur.

68



4.2. TOPOLOGICAL MEASURES OF CONCEPTUAL SCHEMAS

Each event type has an operation called effect() that gives the effect of an event occurrence.

The effect is declaratively defined by the postcondition of the operation, which is specified in

OCL (see chp. 11 of [87]).

We denote by C (Schema Rules) the set of constraints, derivation rules and pre- and post-

conditions. Each rule c ∈ C is defined in the context of an entity type, denoted by context(c). In

OCL, each rule c consists of a set of OCL expressions (see OCL [85]) which we denote by expr(c).

An expression exp may refer to several entity types which are denoted by members(exp). The

set of entity types that are referred to in one or more expressions of a rule c is denoted by

ref(c).

We also include in C the schema rules corresponding to the equivalent OCL invariants of the

graphical cardinality constraints in UML. For example, in Fig. 4.9 the cardinality 1..* between

Company and Employee is transformed into the invariant:

context Company inv: self.employee->size()>=1

A special kind of OCL expression is the navigation expression that define a schema navigation

from an entity type to another through an association (see NavigationCallExp of OCL in [85]).

We use exprnav(c) to indicate the navigation expressions inside a rule c ∈ C. Such expressions

only contain two entity types as its participants, i.e. the source entity type and the target

one (see the example in Fig. 4.9). The navigation from the source to the target is specified

in OCL with a dot expression, which connects the source and the target with a dot symbol:

source.target.

Notation Definition

context(c) = e ∈ E | c ∈ C ∧ c DefinedIn e
members(exp) = {e ∈ E | e is a participant of exp}
expr(c) = {expr | expr is contained in c}
ref(c) = ∪exp∈expr(c){members(exp)}
exprnav(c) = {expr ∈ expr(c) | expr is a navigation expression}
navexpr(c) = ∪exp∈exprnav(c){{e, e′} ⊂ E | {e, e′} = members(exp)})
navcontext(c) = {{e, e′} ⊂ E | e = context(c) ∧ e′ ∈ ref(c)}
nav(c) = navcontext(c) ∪ navexpr(c)

rconn(e) = ]sr∈C{e′ ∈ E | {e, e′} ⊂ nav(c)}2

rconninh(e) = rconn(e) ] {rconninh(e′) | e′ ∈ par(e)}

Table 4.2. Definition of extended metrics.

2Note that “]” denotes the multiset (or bag) union that produces a multiset as in {a, b} ] {a} = {a, a, b}. Apart
from it, we also force that rconn(e) = ∅ (empty set) if conninh(e) = ∅.

69



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

We denote by navexpr(c) the set of pairs that participate in the navigation expressions of

c ∈ C. We also denote by navcontext(c) the sets of pairs of entity types composed by the context

of the rule c and every one of the participant entity types of such rule (e ∈ ref(c)). Finally,

we define nav(c) as the union of navcontext(c) with navexpr(c) and, rconn(e) as the multiset

of entity types that compose a pair with e in nav(c). Note that since we use ], rconn(e) may

contain duplicates because it takes into account each rule c and an entity type e can be related

to another one e′ in two or more different rules. Intuitively, rconn(e) is the multiset of entity

types to which an entity type e is connected through schema rules.

context(minSalaryRule) = Industry
exprnav(minSalaryRule) = {self.company,

company.employee}
ref(minSalaryRule) = {Industry, Company,

Employee}
navcontext(minSalaryRule) = {

{Industry, Industry},
{Industry, Company},
{Industry, Employee}}

navexpr(minSalaryRule) = {
{Industry, Company},
{Company, Employee}}

nav(minSalaryRule) = {{Industry, Industry},
{Industry, Company},
{Company, Employee},
{Industry, Employee}}

Figure 4.9. Example of navigations of minSalaryRule. Dashed lines (a), (b) and (c) represent
the elements in navcontext(minSalaryRule) while (d) and (a) are the connections through navigation
expressions (see navexpr(minSalaryRule)).

4.3 Importance-Computing Methods

The measures that allow to structure and index large conceptual schemas are the backbone

that allows constructing methods to compute the importance of the elements of such schemas.

This section presents a set of importance-computing methods to obtain the specific relevance of

entity and event types according to their definition in the schema. These methods were deeply

studied in [125]. The adaption of these methods to compute the importance of relationship

types is fully detailed in [129].

4.3.1 Importance-computing Principles

According to the experience obtained after the review of relevance-computing methods in Ch. 3,

it is possible to say that most of the methods in the literature are based on subjective approaches.

A big number of solutions are evaluated comparing the results obtained by them and the

solutions provided by an expert (or a set of them) in the information area where the conceptual

schema defines the concepts of an information system. Such expert, also known as oracle,

indicates the major elements in the schema, sometimes in a ranked list, according to his or her

own experience.

This kind of evaluation that we can name as subjective similarity tends to a deviation

70



4.3. IMPORTANCE-COMPUTING METHODS

produced by the inherent subjectivity of the validation. Roughly speaking, two oracles in the

same area can have different points of view even if they work or have experience in the same

aspects of the elements of a conceptual schema. Furthermore, to have the possibility of relying

on an oracle that collaborate in the process of the application of a method to compute the most

important schema elements is not possible in many situations.

Thus, there exists the need of objective evaluations that do not change according to the

influence of external factors like stakeholders of the information system. To reach this goal we

present a set of objective metrics that only take into account the information represented in

the conceptual schema. This way, the figure of the oracle can be avoided. The first point is the

definition of an axiom we follow along this thesis, and that has been studied in other research

areas like text searching or document indexing in information retrieval or data mining. We call

it the principle of high appearance of elements in a scope, which is defined as follows:

Definition 4.3.1. (Principle of High Appearance)

The more occurrences an item/element has in an scope, the more important such item becomes.

According to the definition, the importance of an element has a proportional relation to the

frequency with which such element appears in a scope. In the scope of conceptual schemas we

redefine such principle for entity and event types:

Definition 4.3.2. (Principle of High Appearance in Conceptual Schemas)

The most important entity and event types of a conceptual schema are those that have the

greater number of attributes, participate in a major number of associations, have more ascen-

dants and descendants, appear in the structure of schema rules, and definitely, have a bigger

participation in the conceptual schema than others.

From the other point of view, the most important entity types are those that the designer

of the conceptual schema requires a bigger effort and produces more information in the schema

to define them.

Since the principle of high appearance induces that the most important elements are those

that the conceptual schema has more information about, the relevance of such elements directly

depends on the requirements. This way we have an objective approach based on schema metrics

to denote the relevant elements, which has a component of subjectivity according to the infor-

mation added by modelers and requirements engineers. Therefore, our approach is sufficiently

objective to avoid deviations, but includes the required subjectivity to be useful.

4.3.2 Basic Methods

This section presents the methods from the literature that were selected to be included in the

study of this thesis. These methods are based on occurrence counting and on link analysis. A

brief description was done at Ch. 3 about the state of the art in the field of dealing with large

conceptual schemas.

71



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

As such methods were principally applied to entity-relationship schemas, the definitions here

have been adapted with minor changes to accomplish the needs of the UML modeling language.

The knowledge provided by OCL will be included in the extended versions of the methods in

next sections.

Our purpose here is to formally describe a subset of methods in order to extend them in next

sections. Thus, the next are the base versions of the methods, using the information gathered

into the previously mentioned metrics —a subset of the structural schema including entity and

relationship types, attributes and generalizations.

The Connectivity Counter (CC)

The first method we present was firstly introduced by Moody and Flitman in [80]. They suggest

that central entities should be chosen as the entities of highest business importance —the core

business concepts in the model. Of course, business importance is quite a subjective concept,

and requires human judgment. However a useful heuristic for identifying central entities is to

identify entities with the most relationships. Usually the most highly connected entities are

also the most important entities from a business viewpoint.

Following these indications we define the Connectivity Counter method as the method that

computes the importance of each entity type as the number of relationships it participates in.

Formally:

ICC(e) = |assoc(e)|

The schema shown in Fig. 4.10 contains six entity types representing information about a simple

store with products, customers and more. The application of this method results in the values

shown at Table 4.3 for the importance of the entity types presented in Fig. 4.10. Then, the

most relevant entities are Customer and Product.

Figure 4.10. Example of schema.

72



4.3. IMPORTANCE-COMPUTING METHODS

e ICC(e)

CreditCard 1

Customer 2

GoldCustomer 0

Person 0

Product 2

Supplier 1

Table 4.3. Results for CC applied to example of Fig 4.10.

The Simple Method (SM)

This method was introduced in [121] (called m0) and takes into account only the number of

directly connected characteristics of each entity type. Formally, the importance ISM (e) of an

entity type e is defined as:

ISM (e) = |par(e)|+ |chi(e)|+ |attr(e)|+ |assoc(e)|

Therefore, the importance of an entity type directly depends on the number of directly

connected ascendants and descendants it has, the number of attributes it owns, and the number

of participations in relationship types it does.

The values obtained after the application of the Simple Method to the previous schema are

indicated in Table 4.4. There, it is possible to check that the most important entity type is

Customer followed by Product.

e |par(e)| |chi(e)| |attr(e)| |assoc(e)| ISM(e)

CreditCard 0 0 1 1 2

Customer 1 1 2 2 6

GoldCustomer 1 0 1 0 2

Person 0 2 1 0 3

Product 0 0 3 2 5

Supplier 1 0 1 1 3

Table 4.4. Results for SM applied to example of Fig 4.10.

The Weighted Simple Method (WSM)

This is a variation to the simple method that assigns a strength to each kind of component of

knowledge in the equation, such that the higher the strength, the greater the importance of

such component [25]. The definition of importance here is:

IWSM (e) = qinh(|par(e)|+ |chi(e)|) + qattr|attr(e)|+ qassoc|assoc(e)|

73



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

where qattr is the strength for attributes, qinh is the strength for generalization/specialization

relationships, and qassoc is the strength for associations. Each of them with values in the interval

[0,1 ]. Concretely, we have selected the same strengths than the originals in [25]: qattr = 1,

qinh = 0.6, and qassoc = 0.4.

The results of the application of the weighted simple method to the previous example are

shown in Table 4.5. Again, the most relevant entity type is Customer, followed by Product.

e qinh(|par(e)|+ |chi(e)|) qattr|attr(e)| qassoc|assoc(e)| IWSM (e)

CreditCard 0.6x0 1x1 0.4x1 1.4

Customer 0.6x2 1x2 0.4x2 4

GoldCustomer 0.6x1 1x1 0.4x0 1.6

Person 0.6x2 1x1 0.4x0 2.2

Product 0.6x0 1x3 0.4x2 3.8

Supplier 0.6x1 1x1 0.4x1 2

Table 4.5. Results for WSM applied to example of Fig 4.10.

The Transitive inheritance Method (TIM)

This is a variation of the simple method taking into account both directly defined features and

inherited ones (see m5 in [121]). For each entity type the method computes the number of

ascendants and descendants and all specified attributes and accessible associations from it or

any of its ascendants. Formally:

ITIM (e) = |parinh(e)|+ |chiinh(e)|+ |attrinh(e)|+ |associnh(e)|

As before, the results of the application of the TIM method to the previous example are

shown in Table 4.6. Here, the most important entity type is GoldCustomer, followed by Cus-

tomer and Product.

One of the problems of this method is that it gives more relevance to those entity types

deeper in a hierarchy because such entities obtain the value (e.g., inherited attributes and

participations in relationships) of their parents. That’s why GoldCustomer is more relevant

than Customer.

e |parinh(e)| |chiinh(e)| |attrinh(e)| |associnh(e)| ITIM (e)

CreditCard 0 0 1 1 2

Customer 1 1 3 2 7

GoldCustomer 2 0 4 2 8

Person 0 3 1 0 4

Product 0 0 3 2 5

Supplier 1 0 2 1 4

Table 4.6. Results for TIM applied to example of Fig 4.10.

74



4.3. IMPORTANCE-COMPUTING METHODS

EntityRank (ER)

The EntityRank method [120, 121] is based on link analysis following the same approach than

Google’s PageRank [21]. Roughly, each entity type is viewed as a state and each association

between entity types as a bidirectional transition between them.

The importance of an entity type is the probability that a random surfer is at that entity type

with random jumps (q component) or by navigation through relationships (1− q component).

Therefore, the resulting importance of the entity types correspond to the stationary probabilities

of the Markov chain, given by:

IER(e) =
q

|E| + (1− q)
∑

e′∈conn(e)

IER(e′)

|conn(e′)|

Such formulation produces a system of equations. Concretely, for the example of Fig. 4.10

the equation system would be as follows:

IER(CreditCard) = q
6 + (1− q)

(
IER(Customer)

2

)
IER(Customer) = q

6 + (1− q)
(
IER(CreditCard) + IER(Product)

2 )
)

IER(GoldCustomer) = q
6

IER(Person) = q
6

IER(Product) = q
6 + (1− q)

(
IER(Customer)

2 + IER(Supplier)
)

IER(Supplier) = q
6 + (1− q)

(
IER(Product)

2

)
It is important to note that the relevance of an entity comes from the relevance of the

entities connected to it. The relevance flows through associations. For the case of Customer, its

relevance come from CreditCard and from Product. As Product is connected with two entity

types, a fragment of its relevance (the middle) goes to each of its connected entities (Customer

and Supplier).

To compute the importance of the entity types we need to solve this equation system. If we

fix that
∑
e∈E IER(e) = 1 then the results obtained are shown in Table 4.7. We have chosen a

q = 0.15, which is a common value in the literature.

e IER(e)

CreditCard 0.16

Customer 0.30

GoldCustomer 0.04

Person 0.04

Product 0.30

Supplier 0.16

Table 4.7. Results for ER applied to example of Fig 4.10.

75



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

BEntityRank (BER)

This is a variation of the previous method specifying that the probability of randomly jumping

to each entity type is not the same for each entity type, but it depends on the number of

its attributes [120, 121]. The higher the number of attributes, the higher the probability to

randomly jump to that entity type. That is:

IBER(e) = q
attr(e)

|A| + (1− q)
∑

e′∈conn(e)

IBER(e′)

|conn(e′)|

As in the case of EntityRank, the formulation produces a system of equations. In this case

the system would be as follows:

IBER(CreditCard) = q 1
9 + (1− q)

(
IBER(Customer)

2

)
IBER(Customer) = q 2

9 + (1− q)
(
IBER(CreditCard) + IBER(Product)

2 )
)

IBER(GoldCustomer) = q 1
9

IBER(Person) = q 1
9

IBER(Product) = q 3
9 + (1− q)

(
IBER(Customer)

2 + IBER(Supplier)
)

IBER(Supplier) = q 1
9 + (1− q)

(
IBER(Product)

2

)
It is important to note that if an entity type is not connected to others through associations,

its relevance only consists on its percentage of attributes multiplied by the coefficient of random

jumps (q).

Similarly than with EntityRank, to compute the importance of the entity types we need to

solve this equation system. We fix that
∑
e∈E IBER(e) = 1 then the results obtained are shown

in Table 4.8. We have already chosen a q = 0.15, which is a common value in the literature.

One more time, the most important pair of entity types are Product and Customer. There-

fore a focused view of the schema shown in Fig 4.10 could contain such two entities and the

relationship type Buys placed between them.

e IBER(e)

CreditCard 0.15

Customer 0.31

GoldCustomer 0.02

Person 0.02

Product 0.33

Supplier 0.16

Table 4.8. Results for BER applied to example of Fig 4.10.

76



4.3. IMPORTANCE-COMPUTING METHODS

CEntityRank (CER)

Finally, the method that we call CEntityRank (m4 in [121]) follows the same idea than Enti-

tyRank and BEntityRank, but including the generalization relationships. Each generalization

between ascendants and descendants is viewed as a bidirectional transition, as in the case of

associations. Formally:

ICER(e) = q1
attr(e)

|A| + q2

∑
e′∈gen(e)

ICER(e′)

|gen(e′)| + (1− q1 − q2)
∑

e′′∈conn(e)

ICER(e′′)

|conn(e′′)|

The formulation produces a system of equations as in the other two methods based on link

analysis. In this case the system would be as follows:

ICER(CreditCard) = q1
1
9 + (1− q1 − q2)

(
ICER(Customer)

2

)
ICER(Customer) = q1

2
9 + q2

(
ICER(Person)

2 + ICER(GoldCustomer)
)

+(1− q1 − q2)
(
ICER(CreditCard) + ICER(Product)

2 )
)

ICER(GoldCustomer) = q1
1
9 + q2

(
ICER(Customer)

2

)
ICER(Person) = q1

1
9 + q2

(
ICER(Customer)

2 + ICER(Supplier)
)

ICER(Product) = q1
3
9 + (1− q1 − q2)

(
IBER(Customer)

2 + IBER(Supplier)
)

ICER(Supplier) = q1
1
9 + q2

(
ICER(Person)

2

)
+ (1− q1 − q2)

(
IBER(Product)

2

)
Similarly than with EntityRank and BEntityRank, to compute the importance of the entity

types we need to solve this equation system. We require that
∑
e∈E ICER(e) = 1, and then the

results obtained are shown in Table 4.9. We have chosen q1 = 0.1 and q2 = 0.2, which are some

good values as indicated in [121].

As in the previous methods the most important pair of entity types are Product and Cus-

tomer. However, we have obtained the similar rankings because the schema shown in Fig 4.10

is very small. The methods presented here must be tested with large schemas to bring out the

differences between them.

e ICER(e)

CreditCard 0.13

Customer 0.32

GoldCustomer 0.05

Person 0.08

Product 0.27

Supplier 0.16

Table 4.9. Results for CER applied to example of Fig 4.10.

77



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

4.3.3 Extended Methods

This section presents our approach to extend the methods introduced in Section 4.3.2. Such

extensions take into account the schema rules, including the conversion of cardinality constraints

into OCL invariants, as we introduced in Sect. 4.2.2.

We formally define the new components of each method and use a extended schema with

a set of schema rules to increase the understandability of the methods. Such example is a

reformulation of the one in Fig. 4.10, shown at Fig. 4.11.

Customer

GoldCustomer

name : String
age : Integer

Buys

*

buyer

*

discount : Real

CreditCard

id: Integer

Person

id : Integer

* 1

owner Product

pid : Integer
pname : String
price : Real

1

Supplier

phone : String

*

Supplies

context Person inv:
  Person.allInstances->isUnique(id)

context Product inv:
  Product.allInstances->isUnique(pid)

context CreditCard inv:
  CreditCard.allInstances->isUnique(id)

context GoldCustomer inv:
  self.discount >= self.product->size()*0.01

context Product inv:
  self.buyer.id->excludes(self.supplier.id)

context Customer inv:
  self.creditCard->notEmpty() implies
  self.age >= 18

Figure 4.11. Extension of the schema in Fig.4.10 with some OCL invariants.

The conversion of the cardinality constraints of the schema in Fig. 4.11 is as follows:

context Product inv: self.supplier->size()>=1

context Product inv: self.supplier->size()<=1

context CreditCard inv: self.employee->size()>=1

context CreditCard inv: self.customer->size()<=1

It is important to note that we create a new schema rule defined in OCL for each cardinality

constraint. A possible change here could be were the lower an upper values of a multiplicity

have the same value, as in the previous example where the value is 1. Thus, the conversion will

result in:

context Product inv: self.supplier->size()=1

context CreditCard inv: self.employee->size()=1

However, we select to convert as in the first case because if we would have a lower value

greater than zero and an upper value distinct than asterisk, and such values were different, then

the conversion in this case will produce a pair of schema rules, while if the values of the upper

and the lower values are equal it produces only one schema rule. To be consistent, we prefer to

create a schema rule for each upper or lower value.

78



4.3. IMPORTANCE-COMPUTING METHODS

The Connectivity Counter Extended (CC+)

Our extension to this method follows the same idea than the base version but also including

the number of participations of each entity type in the navigation relationships extracted from

the schema rules specification, i.e., derivation rules, invariants and pre- and postconditions

(and cardinality constraints). On the other hand, we now take into account (in |assoc(e)|) the

associations of each entity type e with the event types of the behavioral schema (in case of such

events were defined). Formally:

I+
CC(e) = |assoc(e)|+ |rconn(e)|

Table 4.10 presents the obtained results once this method has been applied to example of

Fig 4.11. One more time, we conclude that Product and Customer are the most relevant entity

types.

e |assoc(e)| |rconn(e)| I+
CC(e)

CreditCard 1 6 7

Customer 2 10 12

GoldCustomer 0 4 4

Person 0 0 0

Product 2 14 16

Supplier 1 4 5

Table 4.10. Results for CC+ applied to example of Fig 4.11.

Note that although the value of |rconn(Person)| is not zero, there is a condition into

the extended metrics to be consistent. Such condition states that the entity types that are

not directly or indirectly (with inherited associations from their parents) connected through

relationships with other entities (conninh(e) = ∅), must have a rconn equal to the empty set.

The cause of it is to avoid give importance to entity types from virtual connections (that should

enforce real connections) when such entities are really unconnected.

The Simple Method Extended (SM+)

As in the extended version of the Connectivity Counter, the Simple Method has been extended

including the number of participations of each entity type in the navigation relationships ex-

tracted from the schema rules specification (and cardinality constraints). We also take into

account (in |assoc(e)|) the associations of each entity type e with the event types of the behav-

ioral schema (in case of such events were defined). Formally:

I+
SM (e) = |par(e)|+ |chi(e)|+ |attr(e)|+ |assoc(e)|+ |rconn(e)|

For instance, if both the extended version of the simple method, and also the simple

method, were applied into the schema shown in Fig. 4.9, we would have ISM (Company)=2

79



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

and I+
SM (Company)=8, because |par(Company)|=|chi(Com-pany)|=|attr(Company)| =0, also

|assoc (Company)|=2, and |rconn(Company)|=6, of which two come for the invariant (min-

SalaryRule) and the other four from the OCL equivalent to the cardinality constraints of mul-

tiplicity 1..* in its relationships with Industry and Employee.

The values obtained after the application of the extended version of the simple method to

the previous schema shown at Fig 4.11 are indicated in Table 4.11. There, it is possible to check

that the most important entity type is Customer followed by Product.

e |par(e)| |chi(e)| |attr(e)| |assoc(e)| |rconn(e)| I+
SM(e)

CreditCard 0 0 1 1 6 8

Customer 1 1 2 2 10 16

GoldCustomer 1 0 1 0 4 6

Person 0 2 1 0 0 3

Product 0 0 3 2 14 19

Supplier 1 0 1 1 4 7

Table 4.11. Results for SM+ applied to example of Fig 4.11.

As the reader can observe, it is possible to say that the Simple Method is also a extended

version of the Connectivity Counter (in both base and extended cases).

The Weighted Simple Method Extended (WSM+)

Our extension to this method consists on adding the schema rules navigation component to

the importance computation. In the same way as the other components, we selected a strength

(qrule) to specify the weight of navigation relationships in the schema rules. The definition is

now:

I+
WSM (e) = qinh(|par(e)|+ |chi(e)|) + qattr|attr(e)|+ qassoc|assoc(e)|+ qrule|rconn(e)|

We use the same strengths than in the base version of the method. Concretely qattr = 1,

qinh = 0.6, and qassoc = 0.4. Furthermore, we use for qrule the same strength as qassoc.

Although it is possible to use a different strength for qrule, since the behaviour of |rconn(e)|
is similar than for |assoc(e)| due to both represent participations of entities, we decided to use

the same strength.

The results of the application of the weighted simple method to the example in Fig 4.11 are

shown in Table 4.12. The most relevant entity type is already Product, followed by Customer.

As the reader can observe, this pair of entities are selected by all the methods presented here

as the most important ones. The littleness of the example is the main cause of this behaviour.

80



4.3. IMPORTANCE-COMPUTING METHODS

e qinh(|par(e)|+ |chi(e)|) qattr|attr(e)| qassoc|assoc(e)|
CreditCard 0.6x0 1x1 0.4x1

Customer 0.6x2 1x2 0.4x2

GoldCustomer 0.6x1 1x1 0.4x0

Person 0.6x2 1x1 0.4x0

Product 0.6x0 1x3 0.4x2

Supplier 0.6x1 1x1 0.4x

e qrule|rconn(e)| I+
WSM(e)

CreditCard 0.4x6 3.8

Customer 0.4x10 8

GoldCustomer 0.4x4 3.2

Person 0.4x0 2.2

Product 0.4x14 9.4

Supplier 0.4x4 3.6

Table 4.12. Results for WSM+ applied to example of Fig 4.11.

The Transitive Inheritance Method Extended (TIM+)

In the same way as with the previous methods, we extend it with the schema rules navigation

component. This time the computation of such component also takes into account the rconn

measure of the ancestors:

I+
TIM (e) = |parinh(e)|+ |chiinh(e)|+ |attrinh(e)|+ |associnh(e)|+ |rconninh(e)|

The results of the application of the TIM+ method to the previous example are shown

in Table 4.13. Here, the most important entity type is GoldCustomer, followed by Product

and Customer. Note that since GoldCustomer is a descendant of Customer, its values for

the measures of inherited ascendants and connections through associations and schema rules

are the ones from Customer plus the ones related to GoldCustomer itself. As a consequence,

GoldCustomer becomes the most relevant entity type.

81



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

e |parinh(e)| |chiinh(e)| |attrinh(e)|
CreditCard 0 0 1

Customer 1 1 3

GoldCustomer 2 0 4

Person 0 3 1

Product 0 0 3

Supplier 1 0 2

e |associnh(e)| |rconninh(e)| I+
TIM(e)

CreditCard 1 6 8

Customer 2 10 17

GoldCustomer 2 14 22

Person 0 0 4

Product 2 14 19

Supplier 1 4 8

Table 4.13. Results for TIM+ applied to example of Fig 4.11.

EntityRank Extended (ER+)

In our extension to the EntityRank method we add a new component to the formula in order

to jump not only to the connected entity types but also to the virtually connected ones through

the navigation relationships uncovered in the schema rules. The definition is now:

I+
ER(e) =

q

|E| + (1− q)

 ∑
e′∈conn(e)

I+
ER(e′)

|conn(e′)| +
∑

e′′∈rconn(e)

I+
ER(e′′)

|rconn(e′′)|


If we fix that

∑
e∈E I

+
ER(e) = 1 then the results obtained are shown in Table 4.14. Remember

that we have chosen a q = 0.15, which is a common value in the literature.

e I+
ER(e)

CreditCard 0.15

Customer 0.25

GoldCustomer 0.11

Person 0.03

Product 0.34

Supplier 0.12

Table 4.14. Results for ER+ applied to example of Fig 4.11.

82



4.3. IMPORTANCE-COMPUTING METHODS

BEntityRank Extended (BER+)

Our extension for the BEntityRank method is in the same way as in ER+. The difference

between the formula of ER+ and BER+ is that BER+ takes into account the values of the

attribute measure of BEntityRank. The definition is:

I+
BER(e) = q

attr(e)

|A| + (1− q)

 ∑
e′∈conn(e)

I+
BER(e′)

|conn(e′)| +
∑

e′′∈rconn(e)

I+
BER(e′′)

|rconn(e′′)|


Similarly than other methods based on link analysis, to compute the importance of the

entity types we need to solve an equation system (the same as in BER but including the new

components provided by rconn measure). We fix that
∑
e∈E I

+
BER(e) = 1 then the results

obtained are shown in Table 4.15. We have already chosen a q = 0.15, which is a common value

in the literature.

e I+
BER(e)

CreditCard 0.15

Customer 0.26

GoldCustomer 0.10

Person 0.02

Product 0.36

Supplier 0.11

Table 4.15. Results for BER+ applied to example of Fig 4.11.

CEntityRank Extended (CER+)

One more time, our extension includes the uncovered navigations of the schema rules as bidi-

rectional transitions for the random surfer. The new definition is the same as for CER but

including the measure of the knowledge provided by the schema rules:

I+
CER(e) = q1

attr(e)

|A| + q2

∑
e′∈gen(e)

I+
CER(e′)

|gen(e′)|

+ (1− q1 − q2)

 ∑
e′′∈conn(e)

I+
CER(e′′)

|conn(e′′)| +
∑

e′′′∈rconn(e)

I+
CER(e′′′)

|rconn(e′′′)|


We already fix that

∑
e∈E I

+
CER(e) = 1 then the results obtained are shown in Table 4.16.

We have chosen q1 = 0.1 and q2 = 0.2, which are some good values as indicated in [121].

As in the previous methods the most important pair of entity types are Product and Cus-

tomer, and we have obtained similar rankings because the schema shown in Fig 4.11 is very

83



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

small. The methods presented here must be tested with large schemas to bring out the differ-

ences between them.

e I+
CER(e)

CreditCard 0.12

Customer 0.27

GoldCustomer 0.12

Person 0.06

Product 0.31

Supplier 0.12

Table 4.16. Results for CER+ applied to example of Fig 4.11.

4.3.4 Comparison between Methods

In the previous sections the algorithms that conform a sample of the existing methods in the

literature about how to compute the importance of conceptual schema’s entity types have been

explained. Here we want to discover some differences between them.

After the study of each method and measure, it is possible to detect two main characteristics.

On one hand, there are two types of methods —those based on occurrence counting and those

that follow the link analysis approach. Take a look at Table 4.17 to see this classification.

Occurrence Counting Link Analysis

CC ER

SM BER

WSM CER

TIM

CC+ ER+

SM+ BER+

WSM+ CER+

TIM+

Table 4.17. Classification of selected methods according to their approach.

Methods based on occurrence counting are similar to those methods in the field of text

searching that count the frequency of words to select the most important ones. These methods

count for each entity type the number of related elements to it (or owned by it, as in the

case of attributes), plus the number of occurrences of such entity type in schema rules and

in the conversion of cardinality constraints to rules. This way, we follow the principle of high

appearance —the more occurrences an item has in an scope, the more important such item

becomes.

84



4.3. IMPORTANCE-COMPUTING METHODS

Methods based on link analysis take into account the importance of the other related ele-

ments to the current one because the importance of the current is an addition of fragments of

the importance of the others. Remember the example in Fig 3.9 of Ch. 3. Thus, methods based

on link analysis approach need special iterative algorithms to solve the importance computation

based on a system of equations.

Such iterative methods attempt to solve a problem by finding successive approximations to

the solution starting from an initial point. These iterative solvers, like the Jacobi algorithm,

the power method or the inverse power method (see [124]), are computationally expensive and

slower than the methods based on occurrence counting. However, solutions obtained from these

methods have better results taking into account lower amounts of knowledge, as we will see in

next sections.

On the other hand, there exists another difference between base methods and extended

ones: the amount of knowledge taken into account in the computation process of the relevance

of entity types. As explained before, methods to calculate the relevant entity types of a concep-

tual schema use some metrics whose values are gathered from the structural subschema. Our

approach introduces some new measures to convert the knowledge within the whole conceptual

schema (including the behavioral subschema) into meters for relevance. Table 4.18 shows the

different elements of knowledge of the conceptual schema taken into account for each of the

(base and extended) methods. Cells marked with an x indicate that the algorithm in that row

uses the information of the column.

First four columns include entity and relationship types, generalization/specialization re-

lationships and attributes in the structural schema. In the base versions, the methods only

use the knowledge of such columns depicted in the structural schema. Extended versions also

use the entity and relationship types, attributes and generalizations included in the behav-

ioral schema, and therefore the schema rules and elements of the complete conceptual schema.

Last columns of Table 4.18 represent the knowledge extracted from the schema rules, including

derivation rules, invariants, pre- and postconditions and, of course, the conversion of cardinality

constraints into schema rules.

First rows in the table shows the base versions of the methods. Such methods only use

information from the structural schema. As the event types are part of the behavioral schema,

they are not applicable in this part of the table. Finally, last rows are the extended versions of

the algorithms in the first rows. The gap in the rows of CC, ER and BER methods referencing

the use of generalization relationships and attributes is maintained in the extended versions

CC+, ER+ and BER+ to follow the same approach than in the base versions. In the case of

ER+ and BER+, the complete link analysis-based method that takes into account the whole

knowledge is the extension of the CEntityRank (CER+).

It is clear that the extended versions of the selected methods from the literature take into

account more knowledge from the conceptual schema than the base versions. Therefore, accord-

ing to the Principle of High Appearance in Conceptual Schemas, the results obtained with the

extended versions are more realistic because there is more amount of knowledge that contributes

to calculate the importance of entity types.

85



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

Knowledge

Base
Methods
(Structural Schema)

E
n
ti

ty
T

y
p

es

R
el

at
io

n
sh

ip
T

y
p

es

G
en

er
al

iz
at

io
n

R
el

at
io

n
sh

ip
s

A
tt

ri
b

u
te

s

C
ar

d
in

al
it

y
C

on
st

ra
in

ts

D
er

iv
at

io
n

R
u

le
s

In
va

ri
an

ts

P
re

-
an

d
P

os
tc

on
d

it
io

n
s

E
ve

n
t

T
y
p

es

CC x x n/a

SM x x x x n/a

WSM x x x x n/a

TIM x x x x n/a

ER x x n/a

BER x x x n/a

CER x x x x n/a

Extended
Methods
(Complete Schema)

CC+ x x x x x x x

SM+ x x x x x x x x x

WSM+ x x x x x x x x x

TIM+ x x x x x x x x x

ER+ x x x x x x x

BER+ x x x x x x x x

CER+ x x x x x x x x x

Table 4.18. Comparison of knowledge used between both base and extended versions of the selected
methods.

4.3.5 Experimental Evaluation

We have implemented the seven methods described in the previous section, both the original and

our extended versions. We have then evaluated the methods using three distinct case studies:

osCommerce [118], the UML metaschema [84, 8], and EU-Rent [47]. The original methods have

been evaluated with the input knowledge they are able to process: entity types, attributes,

associations, and generalization/specialization relationships of the structural schemas.

86



4.3. IMPORTANCE-COMPUTING METHODS

osCommerce UML Metaschema EU-Rent schema

Entity Types 84 293 65

Event Types 262 - 120

Attributes 209 93 85

Associations 183 377 152

General Constraints
204 161 117

and Derivation Rules

Pre- and
220 - 166

Post conditions

Table 4.19. Schema contents of the case studies.

For osCommerce and EU-Rent, the extended methods have been evaluated with the com-

plete structural schema and the complete behavioral schema (including event types and their

pre/post conditions). The schema of osCommerce comprises 84 entity types and 262 event

types, 209 attributes, 183 associations, 204 general constraints and derivation rules, and 220

pre- and post conditions. The schema of EU-Rent contains 65 entity types and 120 event types,

85 attributes, 152 associations, 117 general constraints, and 166 pre- and post conditions.

For the UML metaschema there is no behavioral schema and therefore we have only used

the complete structural schema. The version of the UML metaschema we have used comprises

293 entity types, 93 attributes, 377 associations, and 161 general constraints. Tab. 4.19 sum-

marizes the characteristics of the three case studies. The OCL constraints corresponding to

the cardinalities, taxonomies, and association classes are not included in the information of

Tab. 4.19.

In case of two or more entity types get the same importance, our implementation is non-

deterministic: it might rank first any of those. Some enhancements can be done to try to

avoid ranking equally-important entity types in a random manner, like prioritizing those with

a higher amount of attributes or relationships (or any other measure) in case of ties. However,

this does not have an impact to our experimentation.

In the following, we summarize the two main conclusions we have drawn from the study of

the result data.

Correlation Between the Original and the Extended Versions

We study the correlation between the original and the extended version for the previously

described methods. Our research aims to know which methods give similar results in both

versions.

Fig. 4.12 shows, for each method, the results obtained in the original and the extended ver-

sions for the osCommerce. The horizontal axis has a point for each of the 85 entity types of the

structural schema, in descending order of their importance in the original version. The vertical

axis shows the importance computed in both versions. The importance has been normalized

such that the sum of the importances of all entity types in each method is 100.

87



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.12. Comparison between base and extended methods applied to the osCommerce.

As shown in Fig. 4.12(g) the highest correlation between the results of both versions is

for the CEntityRank (r=0.931), closely followed by the BEntityRank (r=0.929). The lowest

correlation is for the Weighted Simple Method (r=0.61). Similar results are obtained for the

UML metamodel. In this case the correlation between the two versions of the Weighted Simple

88



4.3. IMPORTANCE-COMPUTING METHODS

Method is 0.84 and that of the CEntityRank is 0.96. Table 4.20 summarizes the correlation

results for the three case studies.

Our conclusion from this result is that the methods that produce more similar results in

both versions are the BEntityRank and the CEntityRank. If this conclusion were confirmed

by further experiments, the practical implication would be that, if we only have the fragment

of the structural schema comprising the entity and relationship types, their attributes, and the

specialization/generalization relationships, then CEntityRank and BEntityRank are the meth-

ods of choice. The reason is that using only those elements, the BEntityRank and CEntityRank

methods give results more similar to those that would be obtained taking into account the more

of the schema. That is, the more knowledge we take into account the better, but if we only

have that fragment of the structural schema then the methods of choice are the CEntityRank

and BEntityRank.

Methods osCommerce UML Metaschema EU-Rent

CC - CC+ 0.92 0.87 0.93

SM - SM+ 0.71 0.85 0.89

WSM - WSM+ 0.61 0.84 0.77

TIM - TIM+ 0.64 0.94 0.71

ER - ER+ 0.9 0.94 0.91

BER - BER+ 0.93 0.95 0.94

CER - CER+ 0.93 0.96 0.93

Table 4.20. Correlation coefficients between original and extended methods.

On the other hand, the methods based on link analysis (ER, BER and CER) are more

constant than those based on occurrence counting (CC, SM, WSM and TIM). The main reason

for this behavior is the recursive definition of its formulas. The link analysis methods need

the importance of other entity types in order to compute the importance of an entity type.

This dependency implies an iterative computation to achieve the convergence to a state where

the importance flows are in equilibrium. In the case of occurrence counting methods, the

computation of the relevance for an entity is totally independent from the other entity types.

This conclusion contrasts with the results reported in the previous work of [121], which,

based on subjective evaluations given by evaluators, concludes that the method that gives the

best results is the Simple Method. However, Fig. 4.12(b) shows that the result given by that

method considerably changes when more schema knowledge is taken into account.

Variability of the Original and the Extended Versions

The second experimentation consists of the study of the correlation between original and ex-

tended versions separately. Our aim is to know whether it is possible to compare the results

of the importance methods and to search for a common behavior. We analyze if the methods

take into account the complete conceptual schema (extended version of methods) or only the

structural schema (original methods).

89



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

Table 4.21, Tab. 4.22 and Tab. 4.23 show the correlation between each pair of methods (sep-

arately, originals and extended versions), in all case studies. It can be seen that, if we exclude

the Transitive Inheritance Method (TIM) because it gives the worst results, the correlation in

the original versions of the methods ranges from 0.59 to 0.99, while in the extended versions

the range is from 0.81 to 0.99.

ISM IWSM ITIM IER IBER ICER

ICC 0.87 0.79 0.06 0.96 0.85 0.86

ISM 0.98 0.15 0.82 0.79 0.92

IWSM 0.16 0.73 0.77 0.90

ITIM 0.06 0.07 0.11

IER 0.82 0.83

IBER 0.91

I+
SM I+

WSM I+
TIM I+

ER I+
BER I+

CER

I+
CC 0.99 0.97 0.23 0.93 0.82 0.81

I+
SM 0.99 0.26 0.93 0.83 0.86

I+
WSM 0.27 0.91 0.85 0.89

I+
TIM 0.25 0.24 0.30

I+
ER 0.84 0.84

I+
BER 0.91

Table 4.21. Correlation coefficients between results of original and extended methods for the UML
metaschema.

ISM IWSM ITIM IER IBER ICER

ICC 0.76 0.61 0.43 0.98 0.94 0.94

ISM 0.97 0.79 0.74 0.87 0.88

IWSM 0.79 0.59 0.78 0.76

ITIM 0.40 0.54 0.61

IER 0.94 0.94

IBER 0.97

I+
SM I+

WSM I+
TIM I+

ER I+
BER I+

CER

I+
CC 0.99 0.99 0.78 0.98 0.92 0.92

I+
SM 0.99 0.79 0.98 0.93 0.93

I+
WSM 0.79 0.98 0.94 0.94

I+
TIM 0.78 0.73 0.83

I+
ER 0.94 0.93

I+
BER 0.97

Table 4.22. Correlation coefficients between results of original and extended methods for the osCom-
merce.

90



4.3. IMPORTANCE-COMPUTING METHODS

ISM IWSM ITIM IER IBER ICER

ICC 0.88 0.71 0.06 0.99 0.97 0.97

ISM 0.95 0.24 0.87 0.92 0.95

IWSM 0.24 0.71 0.81 0.84

ITIM 0.05 0.06 0.13

IER 0.97 0.97

IBER 0.99

I+
SM I+

WSM I+
TIM I+

ER I+
BER I+

CER

I+
CC 0.99 0.98 0.65 0.99 0.97 0.95

I+
SM 0.99 0.66 0.99 0.97 0.98

I+
WSM 0.66 0.97 0.96 0.98

I+
TIM 0.66 0.61 0.69

I+
ER 0.98 0.96

I+
BER 0.96

Table 4.23. Correlation coefficients between results of original and extended methods for the EU-Rent.

The conclusion from this result is that the extended versions of the methods, excluding

TIM, produce remarkably similar results, which does not happen in the original version. That

is, the results obtained by extended versions have a lower degree of variance. This conclusion is

also significant because it assures that the use of the Simple Method (extended version) whose

computational cost is very low, and on the other hand it allows the incremental recalculation

of the importance of entity types when the schema changes, produces good-enough results.

4.3.6 Extending the Target of Importance-Computing Methods

The visualization and the understanding of large conceptual schemas require the use of specific

methods. These methods generate indexed, clustered, summarized or focused schemas that

are easier to visualize and understand. Almost all of these methods require computing the

importance of each element in the schema but, up to now, only the importance of entity types

has been studied in the literature.

The computed importance induces an ordering of the elements, which plays a key role in

the steps and result of the methods that deals with large schemas. In the previous sections,

we have studied several methods to compute the importance of entity and event types because

in this thesis we focus on the relevance of entity and event types. However, there exist other

schema elements worthy of being studied because they play a key role in the specification of

conceptual schemas. Fortunately, we can adapt the methods from Sect. 4.3.2 and Sect. 4.3.2 to

be able to process those additional elements, as we presented in [129].

As an example, we can analyze the existing methods for measuring the importance of entity

and event types, and then to adapt them to be able to work with relationship types. Our

approach takes into account the knowledge defined in the schema about relationships, including

91



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

their participant entity or event types, the cardinality constraints of those participations, the

general constraints of the schema, and the specification of behavioral events. All of them

contribute to measure the importance of relationship types. Our approach transforms the

schema by reifying the relationship types into entity types, es explained in Sect. 4.2.2.

Figure 4.13. A fragment of conceptual schema (up) and its version with reifications (down).

Figure 4.13 (top) shows an example of conceptual schema with 6 associations (one of them,

an association class of degree 3) and two OCL constraints that describe a fragment of an

information system for reservations in restaurants. Figure 4.13 (bottom) shows the same schema

with reifications (marked with bold rectangles). Note that the two constraints include the new

navigations (bold text) to match with the new schema. Basically, a navigation e→ e′ has to be

changed by including the navigation to the entity type that reifies the association in the middle

of the expression, producing a navigation like e → er → e′. The reification of the schema

produces 6 additional uniqueness constraints and a constraint to preserve the cardinality 0..2

in Table. These 7 constraints are not shown in Fig. 4.13 for the sake of simplicity.

As a result, we use the existing importance-computing methods from the literature to com-

pute the importance of the entity and event types from the schema with reifications. Therefore,

we compute the importance of the entity types er that are reifications of relationship types.

Then, such importance is directly the importance of each relationship type r ∈ R of the original

schema because each er is the representation of a relationship r in the schema with reifications.

92



4.4. A USER-CENTERED VIEW OF RELEVANCE

4.4 A User-centered View of Relevance

The relevance methods to compute the importance of entity and event types (and, possibly,

other elements in the schema) produce a general ranking of elements that does not change unless

the definition of the schema itself changes. Therefore, all the users interested in exploring a

large conceptual schema will obtain the same ranking regardless of their specific knowledge

requirements. Figure 4.14 (left) presents an example of this situation where any user obtains

the same top set of important elements.

What is needed is a more user-centered view of the relevance of elements in a large conceptual

schema. To achieve this goal, the filtering methodology introduced in this thesis allows users to

focus on fragments of interest from the large schema of small size, and then adapts the general

concept of relevance in order to obtain feedback of high relevance with respect to the user

focus. Figure 4.14 (right) shows a demonstration of this user-based perspective. Basically, a

user focus on two concepts from the large schema and she obtains those elements with a higher

degree of relevance and that are also close in distance with the elements of focus. Therefore,

the feedback the user obtains changes whenever the user focus changes, providing a useful

interaction between the user and the large schema.

In the following sections, we introduce the concepts of closeness and interest, and their

formal definition, in order to achieve this goal.

Figure 4.14. Comparison between common relevance (left) and user-centered relevance (right) in a
large conceptual schema.

4.5 Closeness-Computing Method

Apart from importance-computing methods, our filtering process uses the closeness between

entity types. Concretely, the closeness between each candidate entity type in the schema and a

set of entity types of focus to the user FS, denoted by Ω(e,FS). We say that e is a candidate

entity type if e /∈ FS.

93



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

There may be several ways to compute the closeness Ω(e,FS) of a candidate entity type e

with respect to the entity types of FS. Intuitively, the closeness of e should be directly related

to the inverse of the distance of e to the focus set FS. For this reason, we formally define:

Ω(e,FS) =
|FS|∑

e′∈FS
d(e, e′)

,

where |FS| is the number of entity types of FS and d(e, e′) is the minimum distance between a

candidate entity type e and an entity type e′ belonging to the focus set FS. Intuitively, those

entity types that are closer to more entity types of FS will have a greater closeness Ω(e,FS).

We assume that a pair of entity types e, e′ are directly connected to each other if there is a

direct relationship r(e,e′) ∈ R between them or if one entity type is a direct specialization of

the other (e IsA e′ or e′ IsA e). For these cases, d(e, e′) = 1.

Otherwise, when e, e′ are not directly connected, d(e, e′) is defined as the length of the

shortest path between them traversing relationship types and/or ascending/descending through

IsA relationships. In these cases, d(e, e′) > 1.

Note that
∑
e′∈FS d(e, e′) = |FS| when e is directly connected to all entity types of FS. If

e and e′ are not connected (because at least one of them does not participate in relationship

types nor IsA relationships, or both belong to different connected components of the graph

denoted by the schema), then we define d(e, e′) = |E|.

4.6 Interest-Computing Method

The importance metric is useful when a user wants to know which are the most important

entity types, but it is of little use when the user is interested in a specific subset of entity

types, independently from their importance. What is needed then is a metric that measures

the interest of a candidate entity type e with respect to a focus set FS. This metric should take

into account both the absolute importance of e (as explained in Section 4.3) and the closeness

measure of e with regard to the entity types in FS. For this reason, we formally define:

Φ(e,FS) = α×Ψ(e) + (1− α)× Ω(e,FS),

where Φ(e,FS) is the interest of a candidate entity type e with respect to FS, Ψ(e) the

importance of e, and Ω(e, FS) is the closeness of e with respect to FS. Note that α is a

balancing parameter in the range [0,1] to set the preference between closeness and importance

for the retrieved knowledge. An α > 0.5 benefits importance against closeness while an α < 0.5

does the opposite. The default α value is set to 0.5 and can be modified by the user.

The computation of the interest Φ(e,FS) for candidate entity types returns a ranking which

is used by our filtering method to select the K−|FS| top candidate entity types. As an example,

Table 4.24 shows the top-8 entity types with a greater value of interest when the user defines

94



4.7. SUMMARY

FS = {TaxRate, TaxClass} and α = 0.5 in the osCommerce conceptual schema [118]. Within

the top of interest there may be entity types directly connected to all members of the focus set

as in the case of TaxZone (Ω(TaxZone,FS) = 1.0) but also entity types that are not directly

connected to any entity type of FS (although they are closer/important).

Rank
Entity Importance Distance Distance Closeness Interest
Type (e) Ψ(e) d(e, TR) d(e, TC ) Ω(e,FS) Φ(e,FS)

1 TaxZone 0.57 1 1 1.0 0.785

2 Product 0.84 2 1 0.66 0.75

3 Language 1.0 3 2 0.4 0.7

4 Customer 0.62 3 2 0.4 0.51

5 Zone 0.35 2 2 0.5 0.425

6 Order 0.41 3 2 0.4 0.405

7 Special 0.29 3 2 0.4 0.345

8 Currency 0.4 4 3 0.28 0.34

(TR = TaxRate, TC = TaxClass)

Table 4.24. Top-8 entity types of interest with regard to FS = {TaxRate, TaxClass} in osCom-
merce [118].

4.7 Summary

The visualization and the understanding of large conceptual schemas require the use of specific

methods. These methods generate indexed, clustered, summarized or focused schemas that are

easier to visualize and understand, as explained in Ch. 3. Almost all of these methods require

computing the importance of each entity type in the schema. We have argued that the objective

importance of an entity type in a schema should be related to the amount of knowledge that

the schema defines about it. There are several proposals of metrics for entity type importance.

All of them are mainly based on the amount of knowledge defined in the schema, but they

only take into account the fragment of that knowledge consisting in the number of attributes,

associations and specialization/generalization relationships. A complete conceptual schema also

includes cardinalities, general constraints, derivation rules and the specification of events, all of

which contribute to the knowledge of entity types.

We have analyzed the influence of that additional knowledge on a representative set of seven

existing importance methods. We have developed extended versions of those methods by taking

into account additional measures from the schema. We have evaluated original and extended

versions of those methods in three large real-world schemas. The two main conclusions are:

(1) among the original versions of the methods, the methods of choice are those based on the

link-analysis approach; and (2) The extended versions of most methods produce remarkably

similar results, which does not happen in the original version.

Finally, we have specified a closeness-computing method, and an interest-computing method

that makes use of the concepts of importance and closeness. The interest method is the key

measure for our filtering methodology. Chapter 5 includes a detailed explanation of the usage

of this method to filter large conceptual schemas according to the needs of an specific user to

obtain the appropriate feedback.

95



CHAPTER 4. RELEVANCE METRICS FOR LARGE CONCEPTUAL SCHEMAS

96



Quality is more important than quantity.

One home run is much better than two doubles.

Steve Jobs (1955-2011)

5
Filtering Method

for Large Conceptual Schemas

Information filtering [55] is a rapidly evolving field to handle large information flows. The

aim of information filtering is to expose users only to information that is relevant to them.

We present an interactive method in which the user specifies one or more concepts of interest

and the method automatically provides a (smaller) subset of the knowledge contained in the

conceptual schema that is likely to be relevant. The user may then start another interaction with

different concepts, until she has obtained all knowledge of interest. We present the theoretical

background behind this methodology throughout this chapter.

The chapter is structured as follows. Section 5.1 introduces the proposed filtering method-

ology and describes its application to large conceptual schemas. In Sect. 5.2 we describe the

general structure of the filtering method. It presents the required input and the resulting output

of the filtering process, and introduces the concept of filtered conceptual schema, which is deeply

analyzed in Sect. 5.3 showing the elements within its structural and behavioral components,

and its relation with the large conceptual schema the user needs to explore. Finally, Sect. 5.4

introduces the seven filtering stages that are the backbone of the filtering methodology. Each

filtering stage contains a detailed explanation of its steps and their sequential order of appli-

cation, the characteristics of its inputs and output, and formal descriptions of the algorithms

behind the different phases to filter a large conceptual schema and their intended interaction

to satisfy a user’s information need.

97



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

5.1 The Filtering Methodology

The aim of information filtering is to expose users to only information that is relevant to

them. There are many filtering systems of widely varying philosophies, but all share the goal of

automatically directing the most valuable information to users in accordance with their needs,

and of helping them use their limited time and information processing capacity most optimally.

At present, conceptual schemas are gaining more presence in the software engineering field

and beyond. Our proposal aims to contribute to the expansion of conceptual schemas by the

study of its characteristics and the description of the structure and components of a filtering

methodology for large conceptual schemas. With our work, we expect to facilitate the use of

conceptual schemas to those interested in the knowledge represented within them.

Information Filtering
Systems

Filtering 
Approach

Methods of Acquiring
Knowledge on Users

Initiative of 
Operation

Location of
Operation

Active Information
Filtering Systems At Information

Source

At Filtering
Server

At User Site

Pasive Information
Filtering Systems

Cognitive
(Content-Based)

Sociological
(Collaborative)

Explicit

Explicit &
Implicit

Implicit

Figure 5.1. Classification of information filtering systems (adapted from [55]).

Hanani et al. introduced in [55] a comprehensive framework that define and classify informa-

tion filtering systems, in accordance to a multi-layer model. They classify information filtering

systems according to four parameters, that we use in order to place our filtering methodology

proposal in context and introduce its main characteristics. The parameters of the classification

are:

◦ Initiative of operation distinguishing between active and passive information filtering

systems.

◦ Location of operation distinguishing between systems located at the information source,

filtering servers, and user sites.

◦ Filtering approach distinguishing between cognitive and social filtering.

◦ Method for acquiring knowledge on users distinguishing between explicit, implicit,

and combined methods.

Figure 5.1 represents the taxonomy of Hanani et al. with the aforementioned parameters to

classify information filtering systems. The following subsections describe each parameter and

discuss the classification of our filtering methodology according to the proposed model.

98



5.1. THE FILTERING METHODOLOGY

5.1.1 Initiative of Operation

This aspect of the filtering methodology concerns who initiates the filtering process. Hanani et

al. distinguish between two types:

◦ Active information filtering systems: Systems that actively seek relevant information

for their users. The system is provided with the user’s profile, and it searches the space

in order to collect and send relevant information to the user. The system pushes relevant

information to the user.

◦ Passive information filtering systems: Systems that omit irrelevant information from

incoming streams of data items. The role of the filtering system is to determine the

relevance of data items to the user, according to the user’s profile. Some filtering systems

filter out irrelevant data items, while other provide the user with all available data items,

rank-ordered by their relevance.

The filtering method we propose requires the user intervention to start the filtering process.

The user focus on a set of elements from the large schema. The user is aware of those elements

or she has accessed them via previous interactions with the large schema. Then our filtering

system seeks for additional elements in the large schema of high relevance in order to surround

the elements of focus with more knowledge about the schema. Therefore, our filtering system

is passive because do not pushes results without the direct intervention of the user.

5.1.2 Location of Operation

Hanani et al. indicate that the filtering process can take place in three possible locations:

◦ At the information source: In this approach, a user posts his/her profile to an in-

formation provider. In return, the user is supplied with information that matches the

profile.

◦ At a filtering server: Some filtering systems are implemented at special intermediate

servers. On the one hand, users post their profiles to the servers, and on the other hand,

information providers send data items to these servers, which filter and distribute relevant

items to respective users.

◦ At the user site: This is the most popular location of filtering operation. Each incoming

stream of data items is evaluated by a local filtering system, which removes the irrelevant

items, or rank-orders them by their relevance. Filtering at the user site implements passive

filtering, as the data items flow in automatically, and only then are they evaluated.

Our proposed filtering methodology is located at the information source. As Ch. 8

explains, we develop the filtering engine that supports our filtering method as a web service.

Therefore, the server side of the filtering engine keeps the knowledge from the large schema

an accepts the specific filtering requests of clients that indicate a focus set and want a small

schema as the filtering result.

99



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

5.1.3 Filtering Approach

This aspect of the filtering methodology distinguishes two main filtering approaches:

◦ Cognitive filtering: Systems based on the correlation between the content of the data

items and the user model that represents the user’s cognitive style and personality, user

goals and plans.

◦ Sociological filtering: Systems that automate the process of human recommendations.

A data item is recommended to a user on the basis of its being relevant to other users

having similar habits.

The proposed filtering method takes a focus set of selected schema elements that represents

the interest point of a user and indexes the large conceptual schema in order to extract a small

fragment with those additional elements that have a higher relation with the elements of focus.

This interest-based approach uses the relevance metrics of Ch. 4 to construct the different stages

of a cognitive filtering process.

5.1.4 Method of Acquiring Knowledge on Users

Different information filtering systems use different methods to acquire knowledge about their

users. Hanani et al. indicate that the methods for acquiring knowledge about users include an

explicit approach, which is based on user interrogation, an implicit approach, which infers the

user model automatically by recording user behavior, and a mixed approach.

◦ Explicit: Systems utilizing this method usually require their users to fill out a form

describing their areas of interest or other relevant parameters; provide the user with a

set of terms that represent each domain, from which she can construct a personal profile;

or allow users to determine terms and their weights of importance, or to choose a search

strategy.

◦ Implicit: Systems that do not require active user involvement in the knowledge acquisi-

tion task. Instead, the user’s reaction to each incoming data item is recorded, in order to

learn from it about the actual relevancy of the data item to the user.

◦ Explicit & implicit: Systems that lie between the explicit and the implicit approaches,

as they require minimum user involvement. The users are asked to provide explicit in-

formation about themselves to enable the start of the system. Then, the filtering system

infers user profiles. Any new incoming data item is tested for its similarity to the profiles.

If similarity of the new data item is above a certain relevance threshold, it is considered

relevant.

Our filtering methodology follows an explicit process of acquiring knowledge on users based

on user interrogation. The method expects the intervention of the user to obtain the filtering

preferences that conform the input of the filtering process, which contains as core element the

focus set of schema elements of interest.

100



5.2. GENERAL STRUCTURE OF THE FILTERING METHOD

5.2 General Structure of the Filtering Method

In this section we describe how a large conceptual schema can be filtered using the methodology

that we propose, which corresponds to the main contribution of this thesis. The main idea is to

extract a reduced and self-contained view from the large schema, that is, a filtered conceptual

schema with the knowledge of interest to the user. Figure 5.2 presents the three phases of our

filtering process.

Figure 5.2. General structure of the filtering method.

The first phase consists in preparing the required information to filter the large schema

according to the specific needs of the user. Basically, the user focus on a set of schema elements

she is interested in and our method surrounds them with additional related knowledge from the

large schema. Therefore, it is mandatory for the user to select a non-empty initial focus set of

schema elements of interest.

During the second phase our method computes the required metrics to automatically select

the most interesting schema elements to extend the knowledge selected in the focus set of the

first phase. The main goal of these metrics is to discover those schema elements that are

relevant in the schema but also that are close (in terms of structural distance over schema) to

the elements of the focus set. We presented a detailed definition of such metrics in Ch. 4.

Finally, the last phase receives the set of most interesting elements selected in the previous

phase and puts it together with the schema elements of the focus set in order to create a

filtered conceptual schema with the elements of both sets. The main goal of this step consists

in filtering information from the original schema involving the elements in the filtered schema.

To achieve this goal, the method explores the relationships and generalizations/specializations

in the original schema that are defined between those elements and includes them in the filtered

schema to obtain a connected schema.

Apart from the schema itself, the information filtering method requires as input a represen-

tation of the user’s information need through a request of knowledge. Thus, the method adapts

itself to the specific request and produces different results every interaction. After processing

the request and analyzing the whole schema, the filtering method selects which elements of the

original schema have to be included into a resulting reduced schema, which is shown to the

user. The process is repeated until the user needs are satisfied.

The following sections of the chapter present the characteristics of the required input and

resulting output of the filtering method, as well as the details of the different stages of the

filtering process within it.

101



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

Importance Method

Filtering Method

Size Threshold

Rejec�on Set

Focus Set

Large Conceptual Schema

Figure 5.3. Input of the filtering method.

5.2.1 Common Input of the Filtering Method

As aforementioned, the filtering method needs a specific input to filter a large conceptual

schema. The output of our filtering method strongly depends on the particular characteristics

of its input. The main components of the input for the filtering method (Fig. 5.3) are:

Large Conceptual Schema It is the backbone of the input and the reference to compute

the relevance metrics presented in Ch. 4. The large schema consists of a structural and a

behavioral subschemas, as introduced in Ch. 2. The different schema elements included

within them conform the knowledge represented in the schema about a specific domain

of interest.

Focus Set It includes the schema elements the user wants to focus on, and works as the

conceptual schema viewpoint of the user. Therefore, a focus set is an initial point that

should be extended with more knowledge from the schema. The filtering method allows

different kinds of elements to be included in the focus set. It means that the behavior

of the filtering method and, therefore, the obtained output from its application to the

conceptual schema, will both depend on the specific elements in the input. In Ch. 6 we

present a catalog of filtering requests that the user may apply according to the different

kind of elements within the focus set and her filtering requirements.

Rejection Set It specifies the schema elements the user denotes as not interesting for her

knowledge request. Our filtering method ignores those elements and will not provide

knowledge about them to the user. The filtering method allows different kinds of elements

to be included in the rejection set. An element in the rejection set cannot appear in the

focus set nor in the filtered conceptual schema.

Size Threshold It denotes how much knowledge in form of schema elements the user wants

to obtain from the original large schema into the filtered conceptual schema. The value

of the size threshold limits the size of the output according to the user requirements. An

inexpert user may select a small filtered conceptual schema while a more experienced one

may want a larger and more detailed output.

Importance Method It denotes which method to compute the importance of entity, event,

and relationship types among those defined in Ch. 4 has to be used in the filtering method.

102



5.2. GENERAL STRUCTURE OF THE FILTERING METHOD

Filtered Conceptual SchemaFiltering Method

Figure 5.4. Output of the filtering method.

5.2.2 Common Output of the Filtering Method

The filtering method produces a filtered conceptual schema as output of its filtering process

(Fig. 5.4). The characteristics of such filtered schema depend on the particular user information

needs represented in the input of the filtering method. The common characteristics of the

resulting filtered conceptual schema are:

Knowledge Subsetting The knowledge contained in the filtered conceptual schema is a sub-

set of the knowledge of the original large conceptual schema. It means that the filtering

process does not create new knowledge apart from the knowledge of the original schema.

Therefore, the schema elements that appear in the resulting filtered conceptual schema

come from the original large schema through a process of knowledge extraction based on

the user interest. The resulting schema is a focused view over the general schema.

Valid Instantiation The filtered conceptual schema is a valid instance of the UML meta-

model. It means that the elements included within the filtered conceptual schema are

concrete instances of the metaclasses of the UML metamodel, and also that the filtered

conceptual schema is syntactically and semantically correct according to the UML meta-

model. Only common and standard constructors from the UML are used to create the

resulting schema of the output.

Interest-driven Approach There is a relationship of consequence between the user’s interest

and the knowledge in the filtered conceptual schema. It means that the filtered conceptual

schema changes in the same way that the user’s information need does. Since the user

selects the specific filtering input to use in the filtering process, and also focus on a

particular set of elements of interest, the resulting filtered conceptual schema will contain

the knowledge with a highest relation with the user’s selection. Therefore, if such selection

changes, the filtering process changes and, as a result, the output of the filtering method

will also change.

Size Reduction The size of the filtered conceptual schema is smaller than the size of the

original large conceptual schema. It is clear that in order to reduce the cost in both time

and effort to understand the knowledge represented in the resulting schema, it must be

of reasonable size. It is specially mandatory when who has to work with the schema has

not enough knowledge about the information domain that such schema represents.

A detailed description of the different components that are part of a filtered conceptual

schema is presented in the next section of the chapter.

103



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

Conceptual Schema CS
Structural Subschema SS

Behavioral Subschema BS

Entity Types

Relationship Types

Data Types

Generalization Relationships

Integrity Constraints

Derivation Rules

Event Types

Relationship Types

Generalization Relationships

Schema Rules

E

R

T

G

C

D

E

R

G

C

b

b

b

b

Filtered Conceptual Schema CSF

Structural Subschema SSF

Behavioral Subschema BSF

EF

RF

TF

GF

CF

DF

Filtered Entity Types

Filtered Relationship
Types

Filtered Generalization
Relationships

Filtered Data Types

Filtered Integrity 
Constraints

Filtered Derivation Rules

Filtered Event Types

Filtered Behavioral 
Relationship Types

Filtered Behavioral
Generalizations

Filtered Schema Rules

Eb

Rb

Gb

Cb

F

F

F

F

Figure 5.5. Structure of a filtered conceptual schema.

5.3 Filtered Conceptual Schema

A filtered conceptual schema is a conceptual schema with the same characteristics as presented

in Ch. 2, but with a portion of the knowledge contained in the original large conceptual schema.

The main task of our filtering method consists in constructing a filtered conceptual schema CSF
including the elements of a focus set selected by the user and the more relevant elements com-

puted in the filtering process that represent additional knowledge of interest from the original

schema CS.

Formally, we define a filtered conceptual schema as a tuple CSF = 〈SSF ,BSF 〉, where

SSF = 〈EF , RF , TF , GF , CF , DF 〉 is the structural subschema, and BSF = 〈EbF , RbF ,

GbF , CbF 〉 is the behavioral subschema. Figure 5.5 depicts the structure of a filtered conceptual

schema with all the components of the structural and behavioral subschemas, and their relation

with the large conceptual schema from which they are filtered. It is important to note that

the construction of a filtered conceptual schema does not produce a unique result. A user may

obtain different filtered schemas by using different inputs on several execution of the method.

104



5.3. FILTERED CONCEPTUAL SCHEMA

5.3.1 Structural Subschema

The structural subschema SSF of a filtered conceptual schema CSF that has been filtered from

a large conceptual schema CS contains the following components:

◦ EF is a set of entity types filtered from E of the original schema CS. Formally, EF ⊂ E .

Sections 5.4.1 and 5.4.2 present the general details about the construction of EF .

◦ RF is a set of relationship types filtered from R of the original schema CS. Formally,

RF @ R, which means that the relationship types of RF belong to R or are projections of

relationship types of R. Section 5.4.3 presents the general details about the construction

of RF .

◦ TF is a set of data types filtered from T of the original schema CS. Formally, TF ⊂ T .

Section 5.4.6 presents the general details about the construction of TF .

◦ GF is a set of generalization relationships filtered from G of the original schema CS.

Formally, GF @ G, which means that the generalization relationships of GF belong to

G or are artificial direct generalizations that represent a path of generalizations of G.

Section 5.4.4 presents the general details about the construction of GF .

◦ CF is a set of integrity constraints filtered from C of the original schema CS. Formally,

CF ⊂ C. Section 5.4.5 presents the general details about the construction of CF .

◦ DF is a set of derivation rules filtered from D of the original schema CS. Formally,

DF ⊂ D. Section 5.4.5 presents the general details about the construction of DF .

5.3.2 Behavioral Subschema

The behavioral subschema BSF of a filtered conceptual schema CSF that has been filtered from

a large conceptual schema CS contains the following components:

◦ EbF is a set of event types filtered from Eb of the original schema CS. Formally, EbF ⊂ Eb.
Sections 5.4.1 and 5.4.2 present the general details about the construction of EbF .

◦ RbF is a set of relationship types filtered from Rb of the original schema CS. Formally,

RbF @ Rb, which means that the relationship types of RbF belong to Rb or are pro-

jections of relationship types of Rb. Section 5.4.3 presents the general details about the

construction of RbF .

◦ GbF is a set of generalization relationships filtered from Gb of the original schema CS.

Formally, GbF @ Gb, which means that the generalization relationships of GbF belong to

Gb or are artificial direct generalizations that represent a path of generalizations of Gb.
Section 5.4.4 presents the general details about the construction of GbF .

◦ CbF is a set of invariants, pre- and postconditions filtered from Cb of the original schema

CS. Formally, CbF ⊂ Cb. Section 5.4.5 presents the general details about the construction

of CbF .

105



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

5.4 The 7 Stages of the Filtering Method

Input Output

Filtering Method

Metrics Processing1

En�ty and Event Types Processing2

Rela�onship Types Processing3

Generaliza�ons Processing4

Schema Rules Processing5

Data Types Processing6

Presenta�on7

Figure 5.6. The 7 stages of the filtering method.

The filtering method is divided into seven ordered stages that sequentially process the input

specified by a user in order to obtain a particular output. Figure 5.6 presents the different

stages of the filtering method.

1. Metrics Processing The first stage applies the metrics of Ch. 4 to the elements of the

original large schema out of the focus set in order to discover which are the most relevant

ones for the user.

2. Entity and Event Types Processing The second stage selects the entity and event

types from the large schema that will appear in the resulting filtered schema. Such set

will contain at least the entity and event types included in the user’s focus set.

3. Relationship Types Processing This stage selects the relationship types from the

large schema that will appear in the resulting filtered schema. This process makes use of

projection and redefinition to align the relationships with the user’s interest.

4. Generalizations Processing This stage selects the generalization relationships whose

members belong to the filtered schema, processes them to avoid redundancies, and includes

them in the output.

5. Schema Rules Processing This stage processes the schema rules of the original schema

in order to include into the output those that affect elements of interest to the user.

6. Data Types Processing This stage selects those data types referenced by elements of

the filtered schema in order to add them into it.

7. Presentation The last stage deals with the representation of the filtered schema to the

user in order to maximize its understandability.

Next subsections present a detailed description of the main characteristics of each stage of

the filtering method.

106



5.4. THE 7 STAGES OF THE FILTERING METHOD

A running example: Magento

We illustrate the different stages of the filtering methodology by using a simple example to

be extended in later sections. We use the conceptual schema of the Magento e-commerce system

[94]. According to its website1, Magento is a feature-rich e-commerce platform built on open-

source technology that provides online merchants with unprecedented flexibility and control over

the look, content, and functionality of their e-commerce store. Magento e-commerce system

provides two different components: an e-commerce site or online store, to which customers

interact to make their purchases; and the administration of the store, designed for the internal

management of the site.

Figure 5.7. Conceptual schema of the Magento e-commerce system.

Magento’s conceptual schema (see Fig. 5.7) has been specified in UML/OCL. The structural

schema consists of a taxonomy of 218 entity types (with their generalization/specialization

relationships and the taxonomic constraints), a set of relationship types (either attributes or

associations), the cardinality constraints of the relationship types, and a set of other constraints

formally defined in OCL. The behavioral schema consists of a set of 187 event types modelized

as UML classes with the �event� stereotype. Magento’s schema has a total of 983 attributes,

165 generalizations, 319 associations, 893 general constraints, and 69 pre- and postconditions.

Therefore, it can be considered a large schema.

1Magento official site http://www.magentocommerce.com

107

http://www.magentocommerce.com


CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

5.4.1 Stage 1: Metrics Processing

Importance Method

Size Threshold

Rejec�on Set

Focus Set

Large Conceptual Schema Filtering Method

Stage 1: Metrics Processing

Input Processing

Importance Compu�ng

Closeness Compu�ng

Interest Compu�ng

Sor�ng Process
1

2

3

4

5

Figure 5.8. Stage 1: Metrics Processing.

As aforementioned, the proposed filtering method starts by processing the necessary metrics

from Ch. 4 that enable the extraction of those elements that are of interest to the user who

constructs the input. The metrics-processing stage contains five mandatory steps to perform

its function. Figure 5.8 shows the steps and their sequential order of application.

Input processing

First step consists of processing the different components of the input. As seen in Sec. 5.2.1

the input includes the focus and rejection sets, the size threshold, the importance method, and

the large conceptual schema:

CS : Large Conceptual Schema

FS : Focus Set

RS : Rejection Set

K : Size Threshold

I : Importance Method

Next, some sets of elements are extracted from the focus set FS in order to prepare the

process to compute the relevance metrics. These sets gather the entity, event and relationship

types that are present in FS:

EFS = {e ∈ E | e ∈ FS ∨ e
 FS}2
EbFS = {ev ∈ Eb | ev ∈ FS ∨ ev 
 FS}
RFS = {r ∈ R | r ∈ FS ∨ r 
 FS}
SFS = EFS ∪ EbFS ∪RFS

EFS contains the entity types of focus, EbFS the corresponding event types, and RFS the

relationship types. Finally, SFS is the union of all the previous elements of user focus. Note

that a single element to be included in EFS , EbFS , or RFS must belong to the focus set FS, or

it must be referenced in at least one of the schema rules included in FS.
2If s is an entity, event or relationship type and A is a set containing schema rules, we say that s
 A if and

only if s is referenced by any of the schema rules of A

108



5.4. THE 7 STAGES OF THE FILTERING METHOD

Importance computing

Our approach is based on the concept of importance. Second step consists in computing the

importance of the entity and event types from the input schema with the importance method

I selected in the input. Our approach can be used in connection with any of the existing

importance-computing methods from Ch. 4.

Algorithm 5.1. Compute Importance Ψ.

1 for each e ∈ {E ∪ Eb} do

2 Ψ(e) = I(e)

3 end

As indicated in Alg. 5.1, the filtering method computes the global importance Ψ of any

entity or event type of the large schema CS. The most relevant entity and event types will be

the basis of the resulting filtered conceptual schema, in conjunction to the elements in the focus

set FS.

Closeness computing

The importance metric is useful when a user wants to know which are the most important

entity and event types, but it is of little use when the user is interested in a specific subset

of elements of focus, independently from their importance. This step computes the measure

of closeness of the entity and event types of the original schema CS that are candidates to be

included in the resulting filtered schema, with respect to the elements of the focus set FS. A

candidate entity or event type belongs to the original schema and is neither in the focus set nor

in the rejection set.

Algorithm 5.2. Compute Closeness Ω.

1 for each e ∈ {{E ∪ Eb} \ {SFS ∪RS}} do

2 Ω(e,SFS) = |SFS | /
∑

s∈SFS δ(e, s)

3 end

Intuitively, the closeness of e should be directly related to the inverse of the distance δ of e

to the elements of the focus set, which are in SFS . Those entity and event types that are closer

to more elements of SFS will have a greater closeness Ω(e,SFS).

Interest computing

Our method requires a metric that measures the interest of a candidate entity or event type

e with respect to the focus set FS. This metric should take into account both the absolute

importance of e and the closeness measure of e with regard to the elements in FS (as explained

in Ch. 4). For this reason, the filtering method computes such measure as shown in Alg. 5.3.

Algorithm 5.3. Compute Interest Φ.

1 for each e ∈ {{E ∪ Eb} \ {SFS ∪RS}} do

2 Φ(e) = α×Ψ(e) + (1− α)× Ω(e,SFS)

3 end

109



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

Note that α is a balancing parameter in the range [0,1] to set the preference between closeness

and importance for the retrieved knowledge. An α > 0.5 benefits importance against closeness

while an α < 0.5 does the opposite. The default α value is set to 0.5 and can be modified by

the user.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Importance Ψ

C
lo

se
n
es

s
Ω

r

r′

(a) Movement of r to obtain r′.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
P1

P2

P3P4

P5

P6P7

P8

Importance Ψ

C
lo

se
n
es

s
Ω

r′

di
st
(P

6
, r

′ )
di
st
(P

2
, r

′ )

(b) Distances to the interest indicator r′.

Figure 5.9. Geometrical foundation of the concept of Interest of entity and event types Φ(e).

Each candidate entity type or event type e of the conceptual schema CS can be seen, in a

geometrically sense, as a point in a bidimensional space with the axis being the measures of

importance Ψ(e) and closeness Ω(e,FS). Figure 5.9(a) shows such bidimensional space with

the corresponding axis. Let r be a straight line between the points (0,Ωmax) and (Ψmax, 0)

of the maximum values of closeness and importance (Ωmax = Ψmax = 1 in Fig. 5.9(a)). We

choose r in order to maintain the same proportion between closeness and importance (α = 0.5).

A straight line r′ parallel to r traversing the point (Ψmax,Ωmax) indicates the interest line to

the user (see Fig. 5.9(b)).

Taking the importance and the closeness measures to a set of entity and event types, we ob-

tain the coordinates to place them as bidimensional points in the plane, as shown in Fig. 5.9(b).

The distance between each point in the plane and the straight line r′ is inversely proportional

to the interest of the entity or event type the point represents. Figure 5.9(b) shows that the

element placed at point P2=(0.84, 0.66) is of more interest than the element at point P6=(0.41,

0.4) due to its smaller distance to r′. Note that the balancing parameter α in can be seen as a

modifier of the slope of the straight line r′ of Fig. 5.9(b), in order to prioritize the closeness or

importance components. In particular, if we choose α = 1 then we only take into account the

importance Ψ(e), and the element at point P3 would be ranked the first.

Sorting process

The last step sorts the entity and event types e that are candidates to be included into

the final filtered conceptual schema according to their interest Φ(e) obtained from the previous

steps. Next stage will start straight afterwards this sorting process.

Algorithm 5.4. Compute ordered list L.

1 L = sort e ∈ {{E ∪ Eb} \ {SFS ∪RS}} with Φ(e)

110



5.4. THE 7 STAGES OF THE FILTERING METHOD

Example: Magento - Stage 1

In order to show an example of the first stage of the filtering methodology, we propose the

following scenario where a user of the conceptual schema of the Magento e-commerce system

wants to explore the knowledge about a particular portion of the schema. Concretely, the user

is interested in the functionalities related to the log in and log out of customers within an online

store developed with the Magento system. The user may construct the input of our proposed

method as follows:

CS = Magento

FS = {LogIn, LogOut, Customer}
RS = ∅
K = 6

I = CEntityRank Extended

The focus set of interest contains the event types LogIn and LogOut, and the entity type

Customer, all of them defined within the schema of Magento. Also, the user indicates that

the resulting filtered conceptual schema may contain at most 6 entity/event types, and that

the algorithm to compute the relevance of the elements in the schema must be the extended

version of the CEntityRank introduced in Ch. 4. We can assume that the user has no previous

experience with the conceptual schema of Magento and, therefore, she maintains the rejection

set empty.

With this information, our method process the input as aforementioned and computes the

importance, closeness, and interest metrics. The candidate entity types are sorted according to

their final value of the interest metric, as shown in Tab. 5.1. Note that the ranking contains

elements of high importance (as the entity type Product, which is the most important element

in the schema), and also elements that are close to all the elements within the selected focus set

(as in the case of the event type ExistingCustomerEvent, which is directly connected to LogIn,

LogOut, and Customer).

Table 5.1. Top-10 entity and event types of interest with regard to FS = {LogIn, LogOut, Customer}.

Rank Element Type (e)
Importance Closeness Interest

Ψ(e) Ω(e,FS) Φ(e,FS)

1 Entity StoreView 0.972 0.375 0.673

2 Entity Website 0.915 0.429 0.672

3 Entity Product 1 0.333 0.667

4 Event ExistingCustomerEvent 0.172 1 0.586

5 Entity ProductInStoreView 0.691 0.273 0.482

6 Entity Order 0.571 0.333 0.452

7 Entity Session 0.37 0.429 0.399

8 Entity Store 0.414 0.3 0.357

9 Entity Address 0.267 0.429 0.348

10 Entity CustomerSession 0.193 0.5 0.346

FS =(LogIn, LogOut, Customer)

111



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

5.4.2 Stage 2: Entity and Event Types Processing

Filtering Method

Stage 2: En�ty and Event Types Processing

Select Top Elements

Process En�ty Types

Process Event Types

2

1

3

Figure 5.10. Stage 2: Entity and Event Types Processing.

The second stage of the filtering method deals with the process of selecting the entity and

event types that are included in the resulting filtered conceptual schema. This stage contains

three steps to perform that function. Figure 5.10 shows the steps and their sequential order of

application.

Select Top Elements

The last step of the previous stage constructed a list L with the candidate entity and event

types e to be included in the filtered schema in order of decreasing interest value Φ(e). This

step selects the top entity and event types from L until reaching the size threshold K of the

input. Such selected schema elements are included in EΦ as shown in Alg 5.5.

Algorithm 5.5. Compute interest set EΦ.

1 EΦ = ∅
2 k = |{EFS ∪ EbFS}|
3 while k < K do

4 e = top(L)3

5 EΦ = EΦ ∪ {e}
6 k = k + 1

7 end

Since the resulting filtered conceptual schema must always contain the entity and event

types —EFS and EbFS— from the focus set FS, the amount of elements of interest |EΦ| that

are selected equals to K − |{EFS ∪ EbFS}|. Figure 5.11 presents a Venn diagram of the entity

and event types that are included in the filtered conceptual schema. The set EFS of filtered

entity types contains the entity types EFS from the focus set, the entity types from the interest

set EΦ, and a set Eaux of auxiliary entity types that help with the projection of relationship

types (see Sect. 5.4.3). The case of the filtered event types is analogous to the entity types.

Note that the size threshold K from the user input does not take into account the auxiliary sets

Eaux and Ebaux.

3If A is an ordered list s.t. A = [a, b, c], we assume that top(A) = a, and after that A = [b, c].

112



5.4. THE 7 STAGES OF THE FILTERING METHOD

K
EF EbF

EΦEFS EbFSEaux Ebaux

Figure 5.11. Venn diagram of the entity and event types in the filtered conceptual schema.

Process Entity Types

Next, the following step constructs the set of entity types EF of the filtered conceptual

schema CSF . This set includes both the entity types EFS from the focus set FS and the entity

types of interest from the set EΦ.

Algorithm 5.6. Compute entity types of CSF .

1 EF = ∅
2 for each e ∈ {EFS ∪ {E ∩ EΦ}} do

3 EF = EF ∪ {e}
4 end

Process Event Types

Correspondingly, this step constructs the set of event types EbFS of the filtered conceptual

schema CSF . This set includes both the event types EbFS from the focus set FS and the event

types of interest from the set EΦ.

Algorithm 5.7. Compute event types of CSF .

1 EbF = ∅
2 for each ev ∈ {EbFS ∪ {Eb ∩ EΦ}} do

3 EbF = EbF ∪ {ev}
4 end

Example: Magento - Stage 2

To continue with our example, we need to select the top elements from the previous ranking

shown in Tab. 5.1. Concretely, since the user selected the event types LogIn and LogOut, and

the entity type Customer, and she indicated that the size of the output schema may be of 6

elements, the method completes it with three more elements. The selected elements are the

ones in the top-3 of Tab. 5.1, i.e., the entity types StoreView, Website, and Product. Therefore,

the filtered conceptual schema will contain the following elements:

EF = {Customer , StoreV iew,Website, Product} -- Filtered Entity Types

EbF = {LogIn, LogOut} -- Filtered Event Types

113



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

5.4.3 Stage 3: Relationship Types Processing

Filtering Method

Stage 3: Rela�onship Types Processing

Select Candidate
1

Process Referen�ally‐Complete 
Rela�onship Types

2

Rela�onship Types

Project Referen�ally‐Par�al 
Rela�onship Types

3

Process Projected 
Rela�onship Types

4

Figure 5.12. Stage 3: Relationship Types Processing.

The third stage of the filtering method deals with the process of selecting the relationship

types that are included in the resulting filtered conceptual schema. This stage contains three

steps to perform that function. Figure 5.12 shows the steps and their sequential order of

application.

Select Candidate Relationship Types

The first step in this stage selects those relationship types from the original schema that

can be included in the filtered schema and classifies them according to their participants. As a

result of this process, the relationship types are divided into referentially-complete (Rrc) and

referentially-partial (Rrp) relationships as shown in Alg. 5.8.

Algorithm 5.8. Classification of candidate relationship types.

1 Rrc = ∅ -- set of referentially -complete relationships

2 Rrp = ∅ -- set of referentially -partial relationships

3 Rd = ∅ -- set of selected redefinition relationships

4 partial = false

5 incomplete = false

6 for each r ∈ {{R ∪Rb} \ RS} do

7 for each e ∈participants(r) do

8 if e /∈ CSF then

9 if ∃e′ s.t. e′ ∈descendants(e) and e′ ∈ CSF then

10 partial = true

11 else

12 incomplete = true

13 break

14 endif

15 endif

16 end

17 if not incomplete then

18 if partial then Rrp = Rrp ∪ {r} else Rrc = Rrc ∪ {r} endif

19 if isRedefinition(r) then Rd = Rd ∪ {r} endif

20 endif

21 end

114



5.4. THE 7 STAGES OF THE FILTERING METHOD

A referentially-complete relationship is a relationship type whose participant entity or event

types are all included in the filtered conceptual schema CSF . On the other hand, a referentially-

partial relationship is a relationship type with some participants inside of CSF and others

outside, but all of those who are outside have descendants that are included in the filtered

schema. Finally, those relationships with none of its participants nor its descendants inside of

CSF are identified as referentially-incomplete relationship types and, therefore, all of them are

not processed in the next steps.

The process iterates over all the participants of a relationship. When it founds a participant

outside of the filtered schema (line 8 of Alg. refalg:candidate), the process marks the relationship

as partial if such participant have at least one descendant inside CSF (lines 9-10). Alternatively,

if the participant does not have descendants in the filtered schema, the process marks the

relationship as incomplete and finishes the analysis of its participants (lines 11-13).

Finally, the process classifies the relationship types according to the previous explanation

(lines 17-20). It also includes the relationship types that are redefinitions of other relationship

types in another set in order to use it in further steps. Note that the isRedefinition operation

returns true or false depending on whether a relationship type redefines another relationship

or not.

e1

e2

R1
a

a1 {redefines   a}
e3

e4

e5

e6
R1
 '

e0
R0 Referentially-complete

Referentially-incomplete

Referentially-partial redefinition

e

e

e∈CSF

e∉CSF

Figure 5.13. Classification of relationship types.

Figure 5.13 shows an example of classification of relationship types. The relationship R0

is a referentially-incomplete relationship because e0 does not belong to the filtered concep-

tual schema. On the other hand, R1 is a referentially-complete relationship type that must

be included into Rrc since all its participants (e1 and e5) belong to CSF . Finally, R′1 is a

referentially-partial relationship given that e6 is a member of CSF , and e3 has e4 as a descen-

dant. Note that R′1 must be included into Rrp and also into the set Rd of selected redefinitions.

Process Referentially-Complete Relationship Types

After the previous classification, the set of referentially-complete relationship types must be

included in the filtered conceptual schema since all its participants were already included in the

previous stage of the filtering method (see Sect. 5.4.2).

Algorithm 5.9. Process referentially-complete relationship types.

1 for each r s.t. r ∈ Rrc and r /∈ Rd do

2 if r ∈ R then RF = RF ∪ {r} endif

3 if r ∈ Rb then RbF = RbF ∪ {r} endif

4 end

115



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

Note that the process does not include those referentially-complete relationships that re-

define another relationship. The inclusion of a redefinition depends on the inclusion of the

relationship that it redefines. Consequently, those redefinitions are processed in next steps.

Project Referentially-Partial Relationship Types

The next step projects the referentially-partial relationship types according to the entity

and event types of the filtered conceptual schema in order to convert those relationships to

referentially-complete ones.

Algorithm 5.10. Project referentially-partial relationship types.

1 R′ = ∅ -- set of projected relationships

2 for each r ∈ Rrp do

3 r′ = projectionOf(r)

4 R′ = R′ ∪ {r′}
5 end

As aforementioned, a referentially-partial relationship contains participants in its relation-

ship ends that are not included in CSF . However, the filtered conceptual schema contains at

least one descendant of each of these participants. The projectionOf operation descends each

relationship end whose owner entity or event type does not belong to CSF to its descendants

that are in CSF . Concretely, the relationship descends up to the lowest common ancestor (LCA)

of all the descendants of the owner of the relationship end.

Algorithm 5.11. Function projectionOf.

1 function projectionOf(Relationship r)

2 r′ = new Relationship

3 r′.name = name(r)

4 for each re ∈relationshipEnds(r) do

5 re′ =copy(re)

6 e = owner(re)

7 if e /∈ CSF then

8 e′ = LCA(e, CSF )
9 owner(re′) = e′

10 endif

11 relationshipEnds(r′) = relationshipEnds(r′) ∪ {re′}
12 end

13 return r′

14 end

Note that relationshipEnds(r) returns the set of relationship ends of a relationship type

r. Each relationship end contains its owner participant entity or event type, its multiplicity,

and a role name of the end in the relationship.

The lowest common ancestor (LCA) is a well-known concept in graph theory and computer

science [11]. Let T be a tree with n nodes. The lowest common ancestor is defined between a

set of nodes v1, ..., vn as the lowest node in T that has v1, ..., vn as descendants (where we allow

a node to be a descendant of itself). We define the LCA function as shown in Alg. 5.12.

116



5.4. THE 7 STAGES OF THE FILTERING METHOD

Algorithm 5.12. Function LCA.

1 function LCA(e, CSF )
2 eLCA = e

3 C = descendants(e) ∩ CSF
4 if size(C)= 1 then eLCA = first(C)
5 else

6 V = directDescendants(e) -- V is an ordered set

7 while size(V) > 0 do

8 e′ = first(V)
9 if {C \ {e′}} ⊆ descendants(e′) then

10 if e′ /∈ RS then eLCA = e′ endif

11 V = V ∪ directDescendants(e′)

12 endif

13 V = V \ {e′}
14 end

15 endif

16 return eLCA

17 end

Figure 5.14 shows an example of referentially-partial relationship type and its required

projection. Since e1 is not a member of the filtered conceptual schema, we need to project

the relationship type R1 to the selected descendants of e1 in order to transform R1 into a

referentially-complete relationship type. To do so, we compute the lowest common ancestor

of e5 and e6, which are the descendants of e1. Therefore, the LCS for that pair of elements

is e3, which is not a member of the filtered schema. Consequently, R1 is projected to e3. If

such projected relationship type is finally included in CSF , e3 must be also added to it as an

auxiliary entity or event type.

Note that the generalization relationships between e3 and the pair e5 and e6 will be processed

in the next stage of the filtering method (see Sect. 5.4.4).

e1

e2

R1a

e3

e4

e7

e6

Lowest Common
Ancestor 

e5

e1

e2

R1a

e3

e4

e7

e6

e5

e1

e2

R1a

e3

e4

e7

e6

e5

a R1

Projected
Relationship 

Figure 5.14. Projection of a referentially-partial relationship type.

Process Projected Relationship Types

The last step of this stage processes the projected relationship types and the redefinition

relationships in order to include them in the filtered conceptual schema. This step is divided

into three tasks. Firstly, we need to delete those redefinitions that are subsumed by others

when projected, from the set of relationship types to include in CSF .

117



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

a3 {redefines a}

e1
R1a

e6

e5

e7

e8

e2

e3

e4

a2 {redefines a}

a3 {redefines a}

e1
R1a

e6

e5

e7

e8

e2

e3

e4

a2 {redefines a}

a3 {redefines a}

a2 {rede
fines a}

a3 {redefines a}

e1
R1a

e6

e5

e7

e8

e2

e3

e4

a2 {redefines a}

a3 {redefines a}

Figure 5.15. Subsumed redefinitions projected to the same set of participants.

The example in Fig. 5.15 presents two redefinitions of the same relationship type R1. Both

redefinitions are projected to the same set of participants —their projections match. In this sit-

uation the projection of the deeper redefinition subsumes the projections of other redefinitions.

Formally, we proceed as shown in Alg. 5.13.

Algorithm 5.13. Task 1: Delete subsumed redefinitions.

1 Rrcd = {Rd ∩Rrc} -- set of referentially -complete redefinitions

2 R′ = R′ ∪Rrcd -- set of resulting relationships

3 R′d = {Rd ∩R′} -- set of projected redefinitions

4

5 -- Task 1: delete subsumed redefinitions

6 for each ri, rj ∈ {Rrcd ∪R′d} do

7 if match(ri, rj) then

8 if ri isDeeperThan rj then R′ = R′ \ {rj} endif

9 if rj isDeeperThan ri then R′ = R′ \ {ri} endif

10 endif

11 end

Note that the isDeeperThan boolean operator returns true whenever the second operand

is a redefinition closer to the redefined relationship than the first operand. For the case of the

example in Fig. 5.15 we have that the redefinition of R1 between e3 and e7 isDeeperThan the

one between e2 and e6. Consequently, we delete the projection of the redefinition between e2

and e6 because it is subsumed by the projection of the redefinition between e3 and e7.

The second task we need to do is the combination of a relationship type with its redefinition

relationship whenever both were referentially-partial relationships and are projected to the same

set of participants. In this case, we are in the situation represented by the example in Fig. 5.16.

Formally, we combine the two projected relationships as shown in Alg. 5.14.

Algorithm 5.14. Task 2: Combine redefinition with its redefined relationship.

1 for each rd ∈ {{Rrcd ∪R′d} ∩ R′} do

2 r =redefinedRelationshipOf(rd)

3 if r ∈ R′ and match(rd, r) then

4 r′ = combinationOf(r, rd)

5 R′ = R′ \ {rd, r}
6 R′ = R′ ∪ {r′}
7 endif

8 end

118



5.4. THE 7 STAGES OF THE FILTERING METHOD

a3 

e1
R1a

e6

e5

e7

e8

e2

e3

e4

a2 {redefines a}

e1
R1a

e6

e5

e7

e8

e2

e3

e4

a2 {redefines a}

e6

e7

e8

e2

e3

e4

a2 {redefines a}

a3 {redefines a}

a2 {redefines a}
a

R1

e1
R1a e5

R1

Figure 5.16. Combination of a projected relationship and its projected redefinition.

The process iterates over all the redefinition relationships that belong to the set R′ of

resulting relationships —those that were not deleted in previous steps. We obtain the redefined

relationship for each of those redefinition relationships through the redefinedRelationshipOf

operation. Then, we create a new relationship that substitutes the redefinition and redefined

relationships when both share the same participants. The match operation checks whether the

pair of relationships are defined with the same relationship ends under the same participants.

The combinationOf operation returns the substitute relationship type as shown in Alg. 5.15.

Algorithm 5.15. Function combinationOf.

1 function combinationOf(r, rd)

2 r′ = new Relationship

3 r′.name = name(r)

4 for each re, red s.t. re ∈relationshipEnds(r) and

5 red ∈relationshipEnds(rd) and match(re, red)

6 do

7 re′ = new RelationshipEnd

8 re′.owner =owner(red)

9 re′.rolename =rolename(red)

10 re′.multiplicity =multiplicity(red)

11 relationshipEnds(r′) = relationshipEnds(r′) ∪ {re′}
12 end

13 return r′

14 end

The relationshipEnds operation returns the set of relationship ends of a relationship

type. The owner operation returns the entity or event type that participates in the relationship

type under a relationship end. The rolename operation returns the role name a relationship

end plays in a relationship type. And the multiplicity operation returns the minimum and

maximum number of instances of the owner type that participate in the relationship type where

the relationship end belongs.

Basically, each relationship end of the new substitute relationship the process creates has the

same characteristics than the equivalent relationship end of the actual redefinition relationship.

The unique exception to this is the name of the substitute relationship, which takes the name

of the redefined relationship.

119



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

For the case depicted in Fig. 5.16 we have a redefinition relationship between e3 and e7 that

redefines the R1 relationship type between e1 and e5 —R1 is the redefined relationship. Since

e4 and e8 are the unique participants that belong to the filtered schema, R1 and its redefinition

relationship are both projected to the same set of participants. As explained, to avoid collision

conflicts like this one, we combine the redefinition and the redefined relationships into a new

relationship that substitutes them. In the case of Fig. 5.16, the new relationship type takes the

name of the redefined relationship. The relationship ends of the substitute relationship are the

same as the ones of the redefinition relationship (without the redefines keyword that indicates

the redefinition of a relationship).

Finally, when we apply a projection to a relationship type, it is possible to require the

inclusion of the entity or event types that were computed as lowest common ascendants into

the filtered conceptual schema. To this end, we go through all the final relationships and before

including them in CSF we include those participants that were auxiliary for the projection of

referentially-partial relationship types. We proceed as shown in Alg. 5.16.

Algorithm 5.16. Task 3: Add auxiliary entity and event types.

1 for each r ∈ R′ do

2 for each e ∈participants(r) do

3 if e /∈ CSF then

4 if e ∈ E then Eaux = Eaux ∪ {e} endif

5 if e ∈ Eb then Ebaux = Ebaux ∪ {e} endif

6 endif

7 end

8 -- add filtered relationships

9 if r ∈ R then RF = RF ∪ {r} endif

10 if r ∈ Rb then RbF = RbF ∪ {r} endif

11 end

It is important to note that the set of auxiliary entity types Eaux is contained in EF and

the set of auxiliary event types Ebaux is contained in EbF (see Sect. 5.4.2). For the case of

Fig. 5.14, the lowest common ascendant e3 needs to be included in CSF as an auxiliary element

that allows the connection of the elements in the filtered conceptual schema. Alternatively, the

examples of Fig. 5.15 and Fig. 5.16 show projections of relationships to the elements e4 and

e8, which are lowest common ascendants of themselves. In this case, since both e4 and e8 are

already included in CSF , no further actions are required. Note that the size threshold K of the

input does not take into account those auxiliary elements.

Example: Magento - Stage 3

In the previous stage, our methodology selected the entity and event types that are in-

cluded into the resulting filtered conceptual schema. Concretely, we obtained the entity types

Customer, StoreView, Website, and Product, and the event types LogIn and LogOut.

Then, our method explores the relationship types in the conceptual schema of the Magento

e-commerce system, and selects the referentially-complete ones to be part of the filtered schema.

Those relationships have as participants, the previously selected entity or event types. In our

120



5.4. THE 7 STAGES OF THE FILTERING METHOD

running example, the method obtained 16 referentially-complete relationships types. Of these,

4 are association classes. These relationships types are:

association IsCreatedInTheWebsite between

Customer[∗] role associatedCustomer

Website[1] role websiteWhereIsAssociated

association accountV isibleInWebsite between

Website[1..∗] role websiteWhereIsV isible

Customer[∗] role visibleCustomer

association crossSellProductReflective between

Product[∗] role crossSellProduct

Product[∗] role productOfCrossSell

association isCreatedIn between

StoreV iew[0..1] role storeV iewWhereIsCreated

Customer[∗]

association relatedProductReflective between

Product[∗] role relatedProduct

Product[∗] role productOfRelated

association upSellProductReflective between

Product[∗] role upSellProduct

Product[∗] role productOfUpSell

associationclass ActivityInfoOfCustomerInStoreV iew between

Customer[∗] role customerWithInfoAbout

StoreV iew[∗] role storeV iewWithInfoAbout

associationclass ActivityInfoOfCustomerInWebsite between

Customer[∗] role customerWithInfoAbout

Website[∗] role websiteWithInfoAbout

associationclass ProductInStoreV iew between

Product[∗]
StoreV iew[∗]

associationclass ProductInWebsite between

Product[∗]
Website[∗]

association CustomerWebsiteDefinesReadyToCompare between

ActivityInfoOfCustomerInWebsite[∗] role

activityInfoOfCustomerInWebsiteOfReadyToCompareProduct

Product[∗] role readyToCompareProduct

121



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

association CustomerWebsiteDefinesRecentlyCompared between

ActivityInfoOfCustomerInWebsite[∗] role

activityInfoOfCustomerInWebsiteOfRecentlyComparedProduct

Product[∗] role recentlyComparedProduct

association CustomerWebsiteDefinesRecentlyV iewed between

ActivityInfoOfCustomerInWebsite[∗] role

activityInfoOfCustomerInWebsiteOfRecentlyV iewedProduct

Product[∗] role recentlyV iewedProduct

association CustomerStoreV iewDefinesReadyToCompare between

ActivityInfoOfCustomerInStoreV iew[∗] role

activityInfoOfCustomerInStoreV iewOfReadyToCompareProduct

Product[∗] role readyToCompareProduct

association CustomerStoreV iewDefinesRecentlyCompared between

ActivityInfoOfCustomerInStoreV iew[∗] role

activityInfoOfCustomerInStoreV iewOfRecentlyComparedProduct

Product[∗] role recentlyComparedProduct

association CustomerStoreV iewDefinesRecentlyV iewed between

ActivityInfoOfCustomerInStoreV iew[∗] role

activityInfoOfCustomerInStoreV iewOfRecentlyV iewedProduct

Product[∗] role recentlyV iewedProduct

Since the conceptual schema of the Magento does not contain redefinitions of relationship

types, the previous relationships are all included in the filtered conceptual schema.

In addition to it, our filtering method obtains a referentially-partial relationship type that

must be projected in order to be included inside the filtered schema. This referentially-partial

relationship type connects the entity type Customer with the event type ExistingCustomerEvent

as follows:

association CustomerExistingCustomerEvent between

Customer[1] role customer

ExistingCustomerEvent[∗] role existingCustomerEvent

Since ExistingCustomerEvent was not selected in the second stage, but LogIn and LogOut

are event types that are descendants of it, our method projects this relationship to such de-

scendants in order to be included inside the filtered conceptual schema.

Figure 5.17 presents the projection of the aforementioned relationship to the descendants

repeating the relationship type. Therefore, the original projection is transformed into two rela-

tionship types connecting Customer directly with LogIn and LogOut. However, the repetition

of relationships may confuse the user, and decreases the direct traceability with the original

schema.

To solve this situation, our methodology computes the lowest common ancestor of the pro-

122



5.4. THE 7 STAGES OF THE FILTERING METHOD

ExistingCustomerEvent

LogIn LogOut

Customer
1

ExistingCustomerEvent

LogIn LogOut

Customer
1

1
1

*
*

Figure 5.17. Projection of a relationship type that produces repeated relationship types.

jected participants in order to avoid repetition of relationship types. Figure 5.18 indicates

that the lowest common ancestor of LogIn and LogOut for the relationship type that connects

with Customer is the event type ExistingCustomerEvent. Therefore, we include ExistingCus-

tomerEvent inside the filtered schema as an auxiliary event type and project the relationship

type to it. In this example, the projection does not changes the relationship because lowest

common ancestor ExistingCustomerEvent is the original participant.

ExistingCustomerEvent

LogIn LogOut

Customer
1* ExistingCustomerEvent

LogIn LogOut

Customer
1*

Lowest Common
Ancestor 

Figure 5.18. Projection of a relationship type to the lowest common ancestor of LogIn and LogOut.

Then, the relationship type is transformed into a referentially-complete relationship and is

included inside the filtered conceptual schema:

association CustomerExistingCustomerEvent between

Customer[1] role customer

ExistingCustomerEvent[∗] role existingCustomerEvent -- auxiliary event

123



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

5.4.4 Stage 4: Generalizations Processing

Filtering Method

Stage 4: Generaliza�ons Processing

Process Indirect 
Structural Generaliza�ons

Process Indirect
Behavioral Generaliza�ons

3

4

Process Direct Structural 
Generaliza�ons

Process Direct Behavioral
Generaliza�ons

1

2

Figure 5.19. Stage 4: Generalizations Processing.

The fourth stage of the filtering method deals with the process of selecting the generalization

relationships from the original schema that must be part of the resulting filtered schema. The

inclusion of generalization relationships will help in the task of maintaining the semantics of

the original schema in the filtered one.

This stage contains four steps to perform that function according to whether the generaliza-

tion relationships are direct or indirect, or belong to the structural or behavioral subschemas

of a large conceptual schema. Figure 5.19 shows the four steps and their sequential order of

application.

Process Direct Structural Generalizations

At this point of the filtering process, the resulting filtered schema contains its entity, event,

and relationship types. To keep the original semantics, a filtering method also needs to include

the generalization relationships into the output schema. The first step in this stage deals with

those generalizations whose general and specific elements are entity types included in the filtered

schema. This process constructs the set GF of CSF as shown in Alg. 5.17.

Algorithm 5.17. Compute direct generalizations of GF .

1 GF = ∅
2 for each g ∈ G do

3 if general(g)∈ EF and specific(g)∈ EF then

4 GF = GF ∪ {g}
5 endif

6 end

The general and specific operations return the general and specific elements of a gen-

eralization relationship, respectively. Note that if ei, ej are entity types and we have a gener-

alization relationship g so that ej is a descendant of ei (ei ← ej), then general(g)= ei and

specific(g)= ej . Basically, we add into the set GF of filtered generalization relationships of

the structural subschema those generalizations whose general and specific elements are entity

types that belong to the filtered schema CSF .

124



5.4. THE 7 STAGES OF THE FILTERING METHOD

Process Direct Behavioral Generalizations

The following step deals with those generalizations whose general and specific elements are

event types included in the filtered schema. This process constructs the set GbF of CSF in

the same way the method did with the generalization relationships between entity types of the

structural subschema. Note that the general and specific operations have the same behavior

and return the direct ascendant or descendant event type in a generalization relationship,

respectively.

Algorithm 5.18. Compute direct generalizations of GbF .

1 GbF = ∅
2 for each g ∈ G do

3 if general(g)∈ EbF and specific(g)∈ EbF then

4 GbF = GbF ∪ {g}
5 endif

6 end

Process Indirect Structural Generalizations

The previous steps add into the filtered schema those generalization relationships of the

original schema whose members are already included into the filtered schema. However, it is

possible to have a pair of entity types ei, ej of EF so that ei is an indirect ascendant of ej in

CS but they are not connected through generalization relationships g ∈ GF of CSF .

The projection of relationship types from the third stage of the filtering method (see

Sect. 5.4.3) is an operation that connects distant entity and event types in order to obtain

a fully-connected schema. However, at this point of the method there are pairs of schema ele-

ments in the filtered schema that were members of the same hierarchy in the original schema

but need to be directly connected through generalization relationships that are direct in CSF
but a path of generalizations in CS.

e1

e2

e3

e

e

4

5

e1

e2

e3

e5

e1

e2

e3

e5

e1

e2

e3

e5

e1

e2

e3

e5

CS
CSF

2

3

1

Compute indirect 
generalizations of GF

Compute direct 
generalizations of GF

Fix Generalizations

Figure 5.20. Process to filter generalization relationships.

Figure 5.20 presents an example of the overall process to filter the generalization relation-

ships. It shows five entity types in the original schema CS, and four of them —e1, e2, e3 and e5—

are selected to be part of the filtered schema. The first step computes all direct generalization

125



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

relationships that apply to the selected entity types and adds them into GF . As a result, the en-

tity type e5 that was a descendant in the hierarchy of generalizations e1 ← e2 ← e3 ← e4 ← e5

of the original schema, it is now an isolated entity type in the filtered schema, which also con-

tains e1, e2, and e3. To avoid this inconsistency, we create indirect generalizations as shown in

Alg. 5.19.
Algorithm 5.19. Compute indirect generalizations of GF .

1 for each ei, ej ∈ EF do

2 if (@ gF ∈ GF s.t. general(gF )= ei and specific(gF )= ej)

3 and

4 ei ∈ ascendants(ej , G)
5 then

6 gij = new Generalization ei ← ej
7 GF = GF ∪ {gij}
8 endif

9 end

10 GF = fixGeneralizations(GF )

It is necessary to check each pair of entity types from the filtered schema. The method creates

a new generalization between those entity types and adds it into the filtered schema whenever

there is no generalization relationship between them in the filtered schema but one of the entity

types was an ascendant of the other in the original schema. Note that the ascendants(e, G)
operation returns the set of all the entity types that are upper-level members in a hierarchy of

generalizations from G with respect to the entity type e.

Following this process, Fig. 5.20 shows that there are three new generalization relationships

connecting e5 to e1, e2, and e3 because these three entity types are ascendants of e5 in the

original schema —in fact, the process also creates a generalization relationship connecting e3

with e1, but it has been skipped for the sake of simplicity. However, only one of the three new

generalizations is necessary to maintain the original semantics in the filtered schema. The gener-

alization e1 ← e3 subsumes the generalizations e1 ← e5 and e2 ← e5. The fixGeneralizations

operation deletes all the generalization relationships that are not necessary.

Algorithm 5.20. Function fixGeneralizations.

1 function fixGeneralizations(G)
2 G′ =copy(G)
3 for each gi, gj ∈ G do

4 if specific(gi)=specific(gj) then

5 if general(gi)∈ ascendants(general(gj , G)) then

6 G′ = G′ \ {gi}
7 endif

8 if general(gj)∈ ascendants(general(gi, G)) then

9 G′ = G′ \ {gj}
10 endif

11 endif

12 end

13 return G′
14 end

126



5.4. THE 7 STAGES OF THE FILTERING METHOD

Basically, a generalization g is unnecessary —and therefore, we delete it— whenever exists

another generalization g′ that share the same specific entity type with g but the general entity

type of g is an ascendant of the general entity type of g′. For the case of Fig. 5.20, the

fixGeneralizations operation deletes the generalizations e1 ← e5 and e2 ← e5 because the

generalization e3 ← e5 shares the specific entity type e5 with the two others and then the general

entity types e1 and e2 are ascendants of e3. At the end of the process we have a consistent

filtered conceptual schema CSF as indicated in the right side of Fig. 5.20.

Process Indirect Behavioral Generalizations

The last step to complete the process of filtering generalization relationships deals with the

indirect generalizations between event types. The methodology we follow is the same as we

presented for the case of entity types. It is possible to have a pair of event types evi, evj
of EbF so that evi is an indirect ascendant of evj in CS but they are not connected through

generalization relationships g ∈ GbF of CSF . To avoid this inconsistency, we create indirect

generalizations.

Algorithm 5.21. Compute indirect generalizations of GbF .

1 for each evi, evj ∈ EbF do

2 if (@ gF ∈ GbF s.t. general(gF )= evi and specific(gF )= evj)

3 and

4 evi ∈ ascendants(evj , Gb)
5 then

6 gij = new Generalization evi ← evj
7 GbF = GbF ∪ {gij}
8 endif

9 end

10 GbF = fixGeneralizations(GbF )

It is necessary to check each pair of event types from the filtered schema. The method creates

a new generalization between those event types and adds it into the filtered schema whenever

there is no generalization relationship between them in the filtered schema but one of the event

types was an ascendant of the other in the original schema. Similarly to the case of entity types,

this process generates unnecessary generalization relationships that the fixGeneralizations

operation deletes.

Example: Magento - Stage 4

To continue with the example of Magento, our filtering method explores the schema and

obtains two direct behavioral generalization relationships:

LogIn directly inherits from ExistingCustomerEvent

LogOut directly inherits from ExistingCustomerEvent

Since the entity types selected in the second stage are not members of the same hierarchy,

there are no more indirect generalization relationships to process.

127



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

5.4.5 Stage 5: Schema Rules Processing

Filtering Method

Stage 5: Schema Rules Processing

Select Candidate
1

Process Referen�ally‐Complete Schema Rules
2

Schema Rules
Process Referen�ally‐Incomplete Constraints

3

Process Referen�ally‐Incomplete Deriva�on Rules
4

Figure 5.21. Stage 5: Schema Rules Processing.

The fifth stage of the filtering method deals with the process of selecting the schema rules

from the original schema that must be part of the resulting filtered schema. This stage contains

four steps to perform that function. Figure 5.21 shows the steps and their sequential order of

application.

Select Candidate Schema Rules

The first step of this stage selects those schema rules that will be part of the output of

the method. Concretely, we are interested in integrity constraints and derivations rules whose

context is an element that belongs to the filtered schema. To this end, the process puts the

candidate schema rules into the set S as shown in Alg. 5.22.

Algorithm 5.22. Compute candidate schema rules.

1 S = ∅
2 for each r ∈ {C ∪ D ∪ Cb} do

3 if context(r)∈ CSF then S = S ∪ {r}
4 end

Note that the context operation returns the attribute, operation, entity, event, or relation-

ship type where the constraint or derivation rule is defined. If that element was included in

CSF then the associated rule is a candidate rule.

Process Referentially-Complete Schema Rules

We say that a schema rule is referentially-complete whether all its participants belong to

the filtered conceptual schema. The participants of a schema rule are the set of attributes,

operations, relationship types, and entity and event types that are referenced in the expressions

that conform the rule.

This step of the filtering method explores every candidate schema rule from the previous step

in order to check whether all its participants are members of the filtered conceptual schema CSF .

In that case, each referentially-complete schema rule is included into CF , DF , or CbF according

to its category —constraint, derivation rule, or constraint from the behavioral subschema.

128



5.4. THE 7 STAGES OF THE FILTERING METHOD

On the other side, if any of the participants of a candidate rule does not belong to the

filtered schema, the process includes the rule into the set Sri of referentially-incomplete rules.

These rules are analyzed in the next two steps inside this stage.

Algorithm 5.23. Compute referentially-complete schema rules.

1 CF = ∅
2 DF = ∅
3 CbF = ∅
4 Sri = ∅ -- set of referentially -incomplete rules

5 for each r ∈ S do

6 for each e ∈participants(r) do

7 if e /∈ CSF
8 then

9 Sri = Sri ∪ {r}
10 break

11 endif

12 end

13 if r /∈ Sri then

14 if r ∈ C then CF = CF ∪ {r} endif

15 if r ∈ D then DF = DF ∪ {r} endif

16 if r ∈ Cb then CbF = CbF ∪ {r} endif

17 endif

18 end

Process Referentially-Incomplete Constraints

This step deals with the integrity constraints from the structural and behavioral subschemas

that are referentially-incomplete. These constraints cannot be directly included into the filtered

conceptual schema in order to maintain the semantics —they contain participants which are not

in CSF . Consequently, we propose to indicate their existence by including an empty constraint

into the filtered conceptual schema for each of these constraints, maintaining its original name

and context element. We believe that the header of a constraint serves as the indicator of

its semantics, and may be used as starting point for a new execution of the filtering method

whenever the user has interest in it.

Algorithm 5.24. Compute referentially-incomplete constraints.

1 for each r ∈ Sri do

2 r′ = new Constraint

3 r′.context = context(r)

4 r′.name = name(r)

5 r′.expression = empty

6 if r ∈ C then CF = CF ∪ {r′} endif

7 if r ∈ Cb then CbF = CbF ∪ {r′} endif

8 end

129



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

An entity or event type can be referenced by means of its attributes, its participations in

relationship types or by referencing the type itself. As an example, the integrity constraint ic1

in Fig. 5.22 has A and B as its participants. A is referenced as the context of the constraint

and by means of its attribute a1 in the OCL expression self.a1. Also, B is referenced by

means of its attribute b1 in the OCL expression self.b.b1. Our method only includes ic1

into CF or CbF if both A and B are entity or event types in EF . In case that only A, which is

the context of ic1, belongs to the filtered schema then we include the header of the constraint

in the output as “context A inv ic1”.

Figure 5.22. Example of integrity constraint (ic1) and derivation rule (dr1).

Process Referentially-Incomplete Derivation Rules

Finally, the last step processes the derivation rules that were selected as referentially-

incomplete. As in the case of those constraints with participants out of the filtered schema,

we cannot directly include these derivation rules in the output of the method. Rather than

that, we propose to mark as materialized the context element of each referentially-incomplete

derivation rule as shown in Alg. 5.25. The context element may be an entity type, an event

type, a relationship type, an attribute, or an association end of a relationship type.

Algorithm 5.25. Compute referentially-incomplete derivation rules.

1 for each r ∈ Sri do

2 c = context(r)

3 markAsMaterilized(c in CSF )
4 end

The operation markAsMaterialized takes the context of a derivation rule as a parameter

and indicates that such element is not derived in CSF because the derivation rule is not included

in the final output due to it references elements that are not included to be part of the filtered

conceptual schema.

The derivation rule dr1 in Fig. 5.22 is included in DF if both A and B are entity or event

types in CSF . If only B ∈ CSF , our method marks the derived attribute b2 as materialized

(hiding the “/” symbol that precedes the attribute definition in B) and does not include dr1 in

DF because that derivation rule also references A which is not included in the filtered schema.

130



5.4. THE 7 STAGES OF THE FILTERING METHOD

Example: Magento - Stage 5

To continue with the example of Magento, our filtering method obtains the schema rules

that are referentially-complete and includes them into the filtered conceptual schema. Those

referentially-complete rules only reference entity, event, and relationship types (including as-

sociation classes) that were selected to be part of the filtered schema, and are defined in the

context of any of these schema elements. Concretely, the method selects those rules that are

referentially-complete and are defined in the context of the entity types Customer, StoreView,

Website, and Product; the event types LogIn, LogOut, and ExistingCustomerEvent; and the as-

sociation classes ActivityInfoOfCustomerInStoreView, ActivityInfoOfCustomerInWebsite, Pro-

ductInStoreView, and ProductInWebsite. The selected schema rules for this example are:

context ActivityInfoOfCustomerInStoreV iew

inv hasNotMatchingComparedAndRecentlyComparedProducts:

self.recentlyComparedProduct

->excludesAll(self.readyToCompareProduct)

context ActivityInfoOfCustomerInWebsite

inv hasNotMatchingComparedAndRecentlyComparedProducts:

self.recentlyComparedProduct

->excludesAll (self.readyToCompareProduct)

context Product

inv isIdentifiedBySku:

Product.allInstances ()->isUnique(sku)

inv isSpecifiedInAllStoreV iews:

self.storeView ->includesAll(StoreView.allInstances ())

inv isSpecifiedInAllWebsites:

self.website ->includesAll(Website.allInstances ())

Additionally, the filtering method selects all the schema rules defined in the context of

schema elements included in the filtered conceptual schema that reference other elements out of

the filtered schema. These rules are referentially-partial schema rules, and our method includes

their context and name into the filtered schema in order to inform the user of their existence in

the original schema. The contexts and names selected for the referentially-partial rules in this

example are:

context ActivityInfoOfCustomerInStoreV iew

inv hasNotUsedTellToAFriendTooMuch

context ActivityInfoOfCustomerInWebsite

inv definesWishedProductsOnlyIfAllowed

context Customer

inv isCreatedInACorrectStoreV iew

inv isIdentifiedByItsEmailAndTheWebsitesWhereIsV isible

inv isNotSubscribedTwiceInAStoreV iew

131



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

context LogIn

inv CustomerIsNotLoggedIn

inv CustomerIsV isibleInWebsite

context Product

inv globallyRatedAttributeSubsetsAbleToRateAttribute

inv hasAGlobalWebsiteAndStoreV iewRatingForAllAbleToRateProducts

inv hasARatingForAllRequiredAttributes

inv hasInventoryPropertiesOnlyIfNeeded

inv hasOptionsOnlyIfNeeded

inv hasQuantityPropertyWhenNeeded

inv isOnlyRatedForItsAbleToRateProducts

context ProductInStoreV iew

inv baseImagePathIsDefinedOnlyForAssociatedProductTypes

inv baseImagePathIsMandatoryIfDefined

inv descriptionIsDefinedOnlyForAssociatedProductTypes

inv descriptionIsMandatoryIfDefined

inv giftMessageAllowedIsDefinedOnlyForAssociatedProductTypes

inv giftMessageAllowedIsMandatoryIfDefined

inv imageGalleryPathIsDefinedOnlyForAssociatedProductTypes

inv imageGalleryPathIsMandatoryIfDefined

inv isAvailableForGoogleCheckoutIsDefinedOnlyForAssociatedProductTypes

inv isAvailableForGoogleCheckoutIsMandatoryIfDefined

inv isNewFromIsDefinedOnlyForAssociatedProductTypes

inv isNewFromIsMandatoryIfDefined

inv isNewUntilIsDefinedOnlyForAssociatedProductTypes

inv isNewUntilIsMandatoryIfDefined

inv metaDescriptionIsDefinedOnlyForAssociatedProductTypes

inv metaDescriptionIsMandatoryIfDefined

inv metaKeywordIsDefinedOnlyForAssociatedProductTypes

inv metaKeywordIsMandatoryIfDefined

inv metaT itleIsDefinedOnlyForAssociatedProductTypes

inv metaT itleIsMandatoryIfDefined

inv shortDescriptionIsDefinedOnlyForAssociatedProductTypes

inv shortDescriptionIsMandatoryIfDefined

inv smallImagePathIsDefinedOnlyForAssociatedProductTypes

inv smallImagePathIsMandatoryIfDefined

inv specialNetPriceFromIsDefinedOnlyForAssociatedProductTypes

inv specialNetPriceFromIsMandatoryIfDefined

inv specialNetPriceUntilIsDefinedOnlyForAssociatedProductTypes

inv specialNetPriceUntilIsMandatoryIfDefined

inv thumbnailPathIsDefinedOnlyForAssociatedProductTypes

inv thumbnailPathIsMandatoryIfDefined

inv urlKeyIsDefinedOnlyForAssociatedProductTypes

inv urlKeyIsMandatoryIfDefined

inv visibleOnCatalogIsDefinedOnlyForAssociatedProductTypes

inv visibleOnCatalogIsMandatoryIfDefined

132



5.4. THE 7 STAGES OF THE FILTERING METHOD

inv visibleOnSearchIsDefinedOnlyForAssociatedProductTypes

inv visibleOnSearchIsMandatoryIfDefined

inv weightIsDefinedOnlyForAssociatedProductTypes

context ProductInWebsite

inv netPriceIsDefinedOnlyForAssociatedProductTypes

inv specialNetPriceIsDefinedOnlyForAssociatedProductTypes

inv specialNetPriceIsMandatoryIfDefined

context StoreV iew

inv doesNotHaveTwoCategoriesWithTheSameRedefinedName

inv doesNotHaveTwoPaymentMethodsWithTheSameRedefinedName

context Website

inv hasOnePaymentMethodEnabledAtLeast

inv hasOneShippingMethodEnabledAtLeast

context LogIn :: effect() post

context LogOut :: effect() post

Note that the previous referentially-incomplete schema rules help to realize the complexity

of each element in the filtered schema. In this example, it is easy to see that the association class

ProductInStoreView is a complex schema element because there are 37 referentially-incomplete

integrity constraints defined in its context. With this information, a user interested in Pro-

ductInStoreView may start a new iteration of the filtering method focusing in that element.

133



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

5.4.6 Stage 6: Data Types Processing

Filtering Method

Stage 6: Data Types Processing

Process Data Types
1

Figure 5.23. Stage 6: Data Types Processing.

The next stage of the filtering method deals with the process of selecting the data types

that are included in the resulting filtered conceptual schema. The main step inside this stage

performs the selection of such data types from the original schema that are referenced by the

specific elements already included in the filtered schema.

Process Data Types

At this point of the filtering process, the resulting filtered schema contains its entity, event,

and relationship types, as well as its generalizations and schema rules. To complete the overall

process, it is mandatory to include in the result all the required data types referenced by those

schema elements in order to maintain the consistency of the filtered schema. Formally, we

proceed as shown in Alg. 5.26.

Algorithm 5.26. Compute data types of CSF .

1 TF = ∅
2 for each t ∈ T do

3 if t
 CSF 4 then TF = TF ∪ {t} endif

4 end

The data types included within the set of data types TF of the filtered schema CSF are a

subset of the original data types T of CS. Concretely, we include inside TF all those data types

that define the types of attributes of entity or event types of CSF , and also those data types

that are used and referenced in integrity constraints or derivation rules of CSF . Note that a

data type may be a primitive type (e.g. Integer, Boolean, String), or an enumeration with

enumeration literals (e.g. Gender{Male, Female, Unknown}).

It is important to include into the filtered conceptual schema those data types that are not

primitive in order to help the user to understand the semantics of the different attributes of

entity and event types.

4If t is a data type and C is a conceptual schema, we say that t 
 C if and only if t is used in or referenced
by any of the schema elements (e.g. attributes, schema rules) of C.

134



5.4. THE 7 STAGES OF THE FILTERING METHOD

Example: Magento - Stage 6

Taking into account the elements selected in the previous stages of our filtering method, the

data types that are referenced by them, and need to be included in the filtered schema are:

enumeration WeekDay

{Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}

enumeration Status

{Enabled, Disabled}

enumeration BackOrderPolicy

{NoBackorders, AllowQtyBelowZero, AllowQtyBelowZeroAndNotifyCustomer}

enumeration ProductStatus

{InStock, OutOfStock}

enumeration ProductType

{Simple, Grouped, Configurable, Downloadable, V irtual, Bundle}

datatype PhoneNumber

datatype DateT ime

attributes

date: Date

time: Time

datatype Date

attributes

day: Integer

month: Integer

year: Integer

datatype T ime

attributes

hour: Integer

min: Integer

sec: Integer

datatype Address

attributes

firstName: String [1]

middleName: String [0..1]

lastName: String [1]

namePrefix: String [0..1]

nameSuffix: String [0..1]

company: String [0..1]

streetAddress: String [1]

telephone: String [1]

fax: String [0..1]

135



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

5.4.7 Stage 7: Presentation

Filtering Method

Stage 7: Presenta�on

Present 
1

CSF
Filtered 

Conceptual 
Schema

G1: Highlight elements of focus

G2: De‐emphasize auxiliary elements

G3: Separate textual and graphical elements

Figure 5.24. Stage 7: Presentation.

The next stage of the filtering method deals with the process of graphically presenting to the

user the elements included in the resulting filtered conceptual schema. The main step inside this

stage indicates some guidelines that must be followed in order to increase the understandability

of the filtered schema by its intended user.

Present Filtered Conceptual Schema CSF

The last step of the filtering method post-processes the filtered conceptual schema obtained

through the previous steps in order to make it more attractive to the end user. The modification

of the visual aspect must follow a set of guidelines to highlight those elements in the schema that

are more interesting to the user and to help to reduce the comprehension effort. Figure 5.25

shows an example of a filtered conceptual schema. We can assume that such schema was

obtained by the execution of the filtering method over a large conceptual schema. We will

use this plain schema to explain the required modifications we introduce by following the next

presentation guidelines.

E

D

A

R1

e

B{redefines e}F

G
C

R2

R3H
I

J
R4

R5

R6
sex:Gender

K
Gender
male
female
unknown

«enumeration»

R7 num:Integer context A inv ic1:
  self.f.k.num < self.b->size() 

context B inv ic2

context G inv ic4:
  self.sex = Gender::unknown 
  implies self.g.isEmpty() 

context J inv ic6

Figure 5.25. Example of filtered conceptual schema without presentation enhancement.

136



5.4. THE 7 STAGES OF THE FILTERING METHOD

Guideline 1: Highlight elements of focus

The conceptual schema that the filtering method produces contains the elements in the user

focus. Therefore, it is of great importance to highlight those elements in order to help the user

to quickly identify them. Consequently, we draw them with a darker color or thicker shape as

indicated in Fig. 5.26 where the entity types A, D, F, and I conformed an hypothetical focus

set. In case of a focus set containing schema rules, the proposed guideline to highlight them

consists of putting the schema rules of interest inside of an square box filled with a darker color.

E

D

A

R1

e

B{redefines e}F

G
C

R2

R3H
I

J
R4

R5

R6
sex:Gender

K
Gender
male
female
unknown

«enumeration»

R7 num:Integer context A inv ic1:
  self.f.k.num < self.b->size() 

context B inv ic2

context G inv ic4:
  self.sex = Gender::unknown 
  implies self.g.isEmpty() 

context J inv ic6

Figure 5.26. Example of filtered conceptual schema highlighting elements of focus.

Comparing this schema with the one in Fig. 5.25, it is easier to focus on the highlighted

elements and therefore keep the user in context. By highlighting the elements in the focus set,

we maintain the traceability between the input and the output of the filtering method.

Guideline 2: De-emphasize auxiliary elements

In addition to the previous highlighting of important elements in the schema we need to do

the inverse operation to those elements that are of less relevance to the user according to the

filtering method. We should de-emphasize the auxiliary entity and event types introduced

when projecting relationship types, the relationships between them, and the generalization

relationships that indicate indirect generalizations between a pair of elements. Thus, we draw

those elements with a lighter color to reduce their presence in the final schema.

Figure 5.27 shows that E and B are auxiliary entity types, and that the generalizations

between E and A, A and C, and B and I are indirect in the original schema. Additionally, the

relationship type R1 is de-emphasized because both E and B, which are its participants, are

auxiliary entity types —they belong to Eaux.

The auxiliary elements in the filtered conceptual schema help the user by connecting the

resulting elements that are not directly connected in the original schema. The indirect general-

ization relationships are key constructions that allow the user to figure out the knowledge that

the schema contain. By following the principles of focus+context techniques, we simplify the

required understandability effort and increase the manageability of the schema.

137



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

E

D

A

R1

e

B{redefines e}F

G
C

R2

R3H
I

J
R4

R5

R6
sex:Gender

K
Gender
male
female
unknown

«enumeration»

R7 num:Integer context A inv ic1:
  self.f.k.num < self.b->size() 

context B inv ic2

context G inv ic4:
  self.sex = Gender::unknown 
  implies self.g.isEmpty() 

context J inv ic6

Figure 5.27. Example of filtered conceptual schema de-emphasizing auxiliary elements.

Guideline 3: Separate textual and graphical elements

Finally, it is also important to divide the resulting schema in two parts. The first one contains

the graphical elements, whereas the second one presents the schema rules that are written in

OCL. Such division helps the user to focus on the semantics of the graphical part at first, and

then complete the information with additional semantics from the textual rules that depend on

the previous understandability of the schema. Figure 5.28 shows that division.

E

D

A

R1

e

B{redefines e}F

G
C

R2

R3H
I

J
R4

R5

R6
sex:Gender

K
Gender
male
female
unknown

«enumeration»

R7 num:Integer

context A inv ic1:
  self.f.k.num < self.b->size() 

context B inv ic2

context G inv ic4:
  self.sex = Gender::unknown 
  implies self.g.isEmpty() 

context J inv ic6

Figure 5.28. Example of filtered conceptual schema following presentation guidelines.

In addition, it may be possible to obtain a long list of referentially-incomplete schema rules

to show in the graphical representation of the schema. In situations like this one, a filtering

system that implements our filtering methodology may hide such list of context and names of

integrity constraints and derivation rules. A better interactive user interface may provide the

list of referentially-incomplete schema rules of each schema element when clicking on it, in a

separate view. This focus+context alternative helps the user on his task of understanding the

filtered conceptual schema.

Example: Magento - Stage 7

The last step of our example takes all the schema elements previously selected to be part

of the result and constructs a graphical representation of the filtered conceptual schema that

includes them. Going back to the first stage, the filtering scenario proposed in this example

describes a user of the conceptual schema of the Magento e-commerce system that wanted

138



5.4. THE 7 STAGES OF THE FILTERING METHOD

to explore the knowledge about a particular portion of the schema. Concretely, the user was

interested in the functionalities related to the log in and log out of customers within an online

store developed with the Magento system. The user constructed the input of the method as

follows:

CS = Magento

FS = {LogIn, LogOut, Customer}
RS = ∅
K = 6

I = CEntityRank Extended

Through the different stages of the filtering method, we have explored the elements that were

filtered from the large schema to be included in the resulting filtered schema. Figures 5.29 and

5.30 presents the graphical representation of the filtered conceptual schema that corresponds

to the user requirements of the previous input.

The user obtains a filtered schema of small size in comparison to the original schema but with

knowledge of interest with regard to the functionalities that the user wanted to explore. It is

easy to see the event types LogIn and LogOut, and the entity type Customer, as the elements of

focus. These event types are both direct descendants of the ExistingCustomerEvent, which is an

auxiliary event type selected by the filtering method to avoid the repetition of the relationship

type that connects with Customer.

Exploring the filtered schema, the user realizes that both LogIn and LogOut are related

to a Customer, which may be defined in the context of a store view, and is associated to a

website, although its account can be visible in several websites. Also, there are two associ-

ation classes that keep the activity information of the customer in store views and websites

within the Magento system. These association classes —ActivityInfoOfCustomerInStoreView

and ActivityInfoOfCustomerInWebsite— are in charge of maintaining the interaction of the

Customer with Products. Concretely, these association classes are connected to the recently

viewed products, the recently compared ones, and the products that are ready to be compared.

Finally, there are two more association classes —ProductInWebsite and ProductInStoreView,

in Fig. 5.30— that connect the different store views and websites with the products that they

contain.

Figure 5.30(right) includes the different datatypes and enumeration types that are necessary

to keep the semantics of the attributes of the elements in the filtered conceptual schema. Note

that the schema shows the attributes of the datatypes and the enumeration literals of the

enumeration types. The last part of this figure indicates the referentially-complete schema

rules for the filtered schema. The user can review them and realize that the set of recently

compared products and the products that are ready to be compared by a particular customer

must be disjoint. Also, the user may discover additional business rules for the entity type

Product, which is identified by its stock-keeping unit (SKU) code and must be specified in all

store views and websites. All these knowledge allows the user to understand the fragments of

interest of the schema without requiring to explore all the elements specified within it.

139



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

«event»
ExistingCustomerEvent
effect()

«event»
LogOut

Now():DateTime
effect()

«event»
LogIn

Now():DateTime
effect()

Customer

namePrefix: String [0..1]
middleName: String [0..1]
nameSuffix: String [0..1]
dateOfBirth: Date [0..1]
taxVatNumber: String [0..1]
createdAt: DateTime [1]
lastLoggedIn: DateTime [0..1]
accountConfirmed: Boolean [1]
online: Boolean [1]

Website
code:String
name:String

1*

ActivityInfoOfCustomerInWebsite

*

*

customerWithInfoAbout websiteWithInfoAbout

IsCreatedInTheWebsite

visibleCustomer

websiteWhereIsAssociated

1*

AccountVisibleInTheWebsite
websiteWhereIsVisible

associatedCustomer

1..*
*

Product
sku: String [1]
genericName: String [1]
genericNetPrice: Real [0..1]
genericWeight: Real [0..1]
genericStatus: Status [1]
genericIsVisibleOnCatalog: Boolean [0..1]
genericIsNewFrom: Date [0..1]
genericIsNewUntil: Date [0..1]
genericSpecialNetPrice: Real [0..1]
genericSpecialNetPriceFrom: Date [0..1]
genericSpecialNetPriceUntil: Date [0..1]
genericDescription: String [0..1]
genericShortDescription: String [0..1]
genericMetaDescription: String [0..1]
genericMetaTitle: String [0..1]
genericMetaKeyword: String [*]
genericImageGalleryPath: String [0..1]
genericBaseImagePath: String [0..1]
genericSmallImagePath: String [0..1]
genericThumbnailPath: String [0..1]
genericIsAvailableForGoogleCheckout: Boolean [0..1]
genericIsGiftMessageAllowed: Boolean [0..1]
genericIsVisibleOnSearch: Boolean [0..1]
stockStatus: ProductStatus [1]
quantity: Real [0..1]
qtyToBecomeOutOfStock: Real [0..1]
minQtyAllowedInShoppingCart: Real [0..1]
maxQtyAllowedInShoppingCart: Integer [0..1]
notifyForQuantityBelow: Real [0..1]
genericUrlKey: String [0..1]
backOrderPolicy: BackOrderPolicy [0..1]
productType: ProductType

StoreView
code: String [1]
name: String [1]
status: Status [1]
shopName: String [0..1]
contactPhone: PhoneNumber [0..1]
contactAdress: Address [0..1]
firstDayOfWeek: WeekDay [1]
weekend: WeekDay [1..*]

ActivityInfoOfCustomerInStoreView
usesOfTellToAFriendInLastHour:Integer

customerWithInfoAbout

storeWithInfoAbout

*

* storeViewWhereIsCreated0..1

*

IsCreatedIn

*

*

*

*

crossSellProductReflective

relatedProductReflective

upSellProductReflective

*

*

*

*

*

*

crossSellProduct

productOfCrossSell

upSellProduct

productOfUpSell

relatedProduct

productOfRelated

C
us

to
m

er
W

eb
si
te

D
efi

ne
sR

ea
dy

T
oC

om
pa

re

C
us

to
m

er
W

eb
si
te

D
efi

ne
sR

ec
en

tl
yC

om
pa

re
d

C
us

to
m

er
W

eb
si
te

D
efi

ne
sR

ec
en

tl
yV

ie
w
ed

* * *

*

*

*

ac
ti
vi

ty
In

fo
O

fC
us

to
m

er
In

W
eb

si
te

O
fR

ea
dy

T
oC

om
pa

re
P
ro

du
ct

re
ad

yT
oC

om
pa

re
P
ro

du
ct

ac
ti
vi

ty
In

fo
O

fC
us

to
m

er
In

W
eb

si
te

O
fR

ec
en

tl
yC

om
pa

re
dP

ro
du

ct

ac
ti
vi

ty
In

fo
O

fC
us

to
m

er
In

W
eb

si
te

O
fR

ec
en

tl
yV

ie
w
ed

P
ro

du
ct

re
ce

nt
ly

C
om

pa
re

dP
ro

du
ct

re
ce

nt
ly

V
ie

w
ed

P
ro

du
ct

C
us

to
m

er
St

or
eV

ie
w

D
efi

ne
sR

ea
dy

T
oC

om
pa

re

C
us

to
m

er
St

or
eV

ie
w

D
efi

ne
sR

ec
en

tl
yC

om
pa

re
d

C
us

to
m

er
St

or
eV

ie
w

D
efi

ne
sR

ec
en

tl
yV

ie
w
ed

* * *

*

*

*

readyToCompareProduct

recentlyComparedProduct

recentlyViewedProduct

ac
ti
vi

ty
In

fo
O

fC
us

to
m

er
In

St
or

eV
ie

w
O

fR
ea

dy
T
oC

om
pa

re
P
ro

du
ct

ac
ti
vi

ty
In

fo
O

fC
us

to
m

er
In

St
or

eV
ie

w
O

fR
ec

en
tl
yC

om
pa

re
dP

ro
du

ct

ac
ti
vi

ty
In

fo
O

fC
us

to
m

er
In

St
or

eV
ie

w
O

fR
ec

en
tl
yV

ie
w
ed

P
ro

du
ct

Figure 5.29. Presentation of the filtered conceptual schema for the example of Magento (I).

140



5.4. THE 7 STAGES OF THE FILTERING METHOD

context ActivityInfoOfCustomerInStoreView
  inv hasNotMatchingComparedAndRecentlyComparedProducts:
   self.recentlyComparedProduct
   ->excludesAll(self.readyToCompareProduct)

context ActivityInfoOfCustomerInWebsite
  inv hasNotMatchingComparedAndRecentlyComparedProducts:
   self.recentlyComparedProduct
   ->excludesAll (self.readyToCompareProduct)

context Product
  inv isIdentifiedBySku: 
   Product.allInstances()->isUnique(sku)

  inv isSpecifiedInAllStoreViews: 
   self.storeView->includesAll(StoreView.allInstances())

  inv isSpecifiedInAllWebsites: 
   self.website->includesAll(Website.allInstances()) 

ProductInWebsite
redefinedName: String [0..1]
redefinedNetPrice: Real [0..1]
netPrice: Real [1]
redefinedWeight: Real [0..1]
redefinedStatus: Status [0..1]
redefinedIsNewFrom: Date [0..1]
redefinedIsNewUntil: Date [0..1]
redefinedSpecialNetPrice: Real [0..1]
specialNetPrice: Real [1]
redefinedSpecialNetPriceFrom: Date [0..1]
redefinedSpecialNetPriceUntil: Date [0..1]
redefinedDescription: String [0..1]
redefinedShortDescription: String [0..1]
redefinedMetaDescription: String [0..1]
redefinedMetaKeyword: String [*]
redefinedMetaTitle: String [0..1]
redefinedImageGalleryPath: String [0..1]
redefinedBaseImagePath: String [0..1]
redefinedSmallImagePath: String [0..1]
redefinedThumbnailPath: String [0..1]
redefinedUrlKey: String [0..1]
redefinedIsAvailableForGoogleCheckout: Boolean [0..1]
redefinedIsGiftMessageAllowed: Boolean [0..1]
redefinedIsVisibleOnCatalog: Boolean [0..1]
redefinedIsVisibleOnSearch: Boolean [0..1]
isAvailable: Boolean [1]

ProductInStoreView
redefinedName: String [0..1]
redefinedWeight: Real [0..1]
redefinedStatus: Status [0..1]
redefinedIsNewFrom: Date [0..1]
redefinedIsNewUntil: Date [0..1]
redefinedSpecialNetPriceFrom: Date [0..1]
redefinedSpecialNetPriceUntil: Date [0..1]
redefinedDescription: String [0..1]
redefinedShortDescription: String [0..1]
redefinedMetaDescription: String [0..1]
redefinedMetaKeyword: String [*]
redefinedMetaTitle: String [0..1]
redefinedImageGalleryPath: String [0..1]
redefinedBaseImagePath: String [0..1]
redefinedSmallImagePath: String [0..1]
redefinedThumbnailPath: String [0..1]
redefinedUrlKey: String [0..1]
redefinedIsAvailableForGoogleCheckout: Boolean [0..1]
redefinedIsGiftMessageAllowed: Boolean [0..1]
redefinedIsVisibleOnCatalog: Boolean [0..1]
redefinedIsVisibleOnSearch: Boolean [0..1]
name: String [0..1]
weight: Real [0..1]
status: Status [0..1]
isNewFrom: Date [0..1]
isNewUntil: Date [0..1]
specialNetPriceFrom: Date [0..1]
specialNetPriceUntil: Date [0..1]
aDescription: String [0..1]
shortDescription: String [0..1]
metaDescription: String [0..1]
metaKeyword: String [0..1]
metaTitle: String [0..1]
imageGalleryPath: String [0..1]
baseImagePath: String [0..1]
smallImagePath: String [0..1]
thumbnailPath: String [0..1]
urlKey: String [0..1]
isAvailableForGoogleCheckout: Boolean [0..1]
giftMessageAllowed: Boolean [0..1]
visibleOnCatalog: Boolean [0..1]
visibleOnSearch: Boolean [0..1]

PhoneNumber
«datatype»

Time
hour:Integer
min:Integer
sec:Integer

«datatype»

DateTime
date: Date
time: Time

«datatype»

Date
day:Integer
month:Integer
year:Integer

«datatype»

Address
firstName: String[1]
middleName: String[0..1]
lastName: String[1]
namePrefix: String [0..1]
nameSuffix: String[0..1]
company: String[0..1]
streetAddress: String[1]
telephone: String[1]
fax: String[0..1]

«datatype»

ProductStatus
InStock
OutOfStock

«enumeration» BackOrderPolicy
NoBackorders
AllowQtyBelowZero
AllowQtyBelowZeroAndNotifyCustomer

«enumeration»

Status
Enabled
Disabled

«enumeration»

WeekDay
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

«enumeration»

ProductType

Simple
Grouped
Configurable
Downloadable
Virtual
Bundle

«enumeration»

Figure 5.30. Presentation of the filtered conceptual schema for the example of Magento (II).

141



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

From the perspective of a conceptual modeler that is interested in the fragment of the

Magento concerning LogIn, LogOut, and Customer, the output of our method shows some

characteristics about this schema that are worth to mention. There is a large amount of at-

tributes and relationships that extend the knowledge about concepts and interconnect them.

By using our method the modeler realizes that there is some kind of relation between the at-

tributes of entity type Product whose name starts with generic and the attributes of association

classes ProductInWebsite and ProductInStoreView whose name starts with redefined.

«event»
ExistingCustomerEvent
effect()

«event»
LogOut

Now():DateTime
effect()

«event»
LogIn

Now():DateTime
effect()

Customer

Website

1*

ActivityInfoOfCustomerInWebsite

*
*

customerWithInfoAbout websiteWithInfoAbout

IsCreatedInTheWebsite

visibleCustomer

websiteWhereIsAssociated
1

*

AccountVisibleInTheWebsite
websiteWhereIsVisible

associatedCustomer
1..*

*

Product

ProductInWebsite

ProductInStoreView

StoreView

ActivityInfoOfCustomerInStoreView

customerWithInfoAbout

storeWithInfoAbout

*

* st
or
eV
ie
w
W
he
re
Is
C
re
at
ed

0.
.1

*

Is
C
re
at
ed
In

*

* *

*

crossSellProductReflective

relatedProductReflective

upSellProductReflective
*

*

*
***

crossSellProduct

productOfCrossSell

upSellProduct

productOfUpSell

re
la
te
dP
ro
du
ct

pr
od
uc
tO
fR
el
at
ed

C
us
to
m
er
W
eb
sit
eD
ef
in
es
R
ea
dy
T
oC
om
pa
re

C
us
to
m
er
W
eb
sit
eD
ef
in
es
R
ec
en
tly
C
om
pa
re
d

C
us
to
m
er
W
eb
sit
eD
ef
in
es
R
ec
en
tly
V
ie
w
ed

* * *

** *

ac
tiv
ity
In
fo
O
fC
us
to
m
er
In
W
eb
sit
eO
fR
ea
dy
T
oC
om
pa
re
Pr
od
uc
t

re
ad
yT
oC
om
pa
re
Pr
od
uc
t

ac
tiv
ity
In
fo
O
fC
us
to
m
er
In
W
eb
sit
eO
fR
ec
en
tly
C
om
pa
re
dP
ro
du
ct

ac
tiv
ity
In
fo
O
fC
us
to
m
er
In
W
eb
sit
eO
fR
ec
en
tly
V
ie
w
ed
Pr
od
uc
t

re
ce
nt
ly
C
om
pa
re
dP
ro
du
ct

re
ce
nt
ly
V
ie
w
ed
Pr
od
uc
t

C
us
to
m
er
St
or
eV
ie
w
D
ef
in
es
R
ea
dy
T
oC
om
pa
re

C
us
to
m
er
St
or
eV
ie
w
D
ef
in
es
R
ec
en
tly
C
om
pa
re
d

C
us
to
m
er
St
or
eV
ie
w
D
ef
in
es
R
ec
en
tly
V
ie
w
ed

* * *

**

*

readyToCompareProduct

recentlyComparedProduct
recentlyViewedProduct

ac
tiv
ity
In
fo
O
fC
us
to
m
er
In
St
or
eV
ie
w
O
fR
ea
dy
T
oC
om
pa
re
Pr
od
uc
t

ac
tiv
ity
In
fo
O
fC
us
to
m
er
In
St
or
eV
ie
w
O
fR
ec
en
tly
C
om
pa
re
dP
ro
du
ct

ac
tiv
ity
In
fo
O
fC
us
to
m
er
In
St
or
eV
ie
w
O
fR
ec
en
tly
V
ie
w
ed
Pr
od
uc
t

Figure 5.31. Presentation of the filtered conceptual schema for the example of Magento (simplified).

142



5.5. SUMMARY

The modeler may check with a domain expert whether this situation is correctly modeled

or not, or even suggest a new nomenclature for the attributes of ProductInWebsite and Pro-

ductInStoreView to change the redefined particle in the names with specific in order to avoid any

further confusion with the formal UML redefinition of attributes, which uses the tag {redefines}
as explained in [84].

Nowadays, there are several tools [69, 30] to visualize conceptual schemas that allow users to

hide the declaration of attributes inside entity types in order to focus on the general structure

at first, and then explore the different details on demand. Figure 5.31 presents a simplified

version of the filtered schema depicted in Fig. 5.29 and Fig. 5.30. In such schema the attributes

are hidden and the datatypes and enumerations are not shown. The final complexity of the

simplified schema is cleary reduced in comparison to the filtered schema with all the details.

5.5 Summary

The chapter has presented a methodology to automatically extract knowledge of interest from

a large conceptual schema. For this purpose, we have defined the characteristics of a filtering

method. Our proposal is a passive filtering system that determines the relevance of schema

elements according to the user preferences. Our filtering method operates at the information

source. It maintains the knowledge about the large conceptual schema and filters it whenever

the user posts the specific input of a filtering request. We follow a cognitive process based on

the relevance of the content of the schema with respect to the user preferences, user goals and

needs. The proposed method performs an explicit process of acquiring knowledge on users based

on user interrogation. The method expects the intervention of the user to obtain the filtering

preferences that conform the input of the filtering process, which contains as core element the

focus set of schema elements of interest.

By means of the input described in Sect. 5.2.1, the filtering method produces a filtered

conceptual schema as output of its filtering process. The characteristics of such filtered schema

depend on the particular user information needs represented in the input of the filtering method.

Such input contains a focus set with the schema elements the user wants to focus on, a rejection

set that specifies the schema elements the user denotes as not interesting for her knowledge

request, a size threshold to limit the final size of the filtered schema, the importance method

to compute the relevance of the schema elements, and the large conceptual schema to filter.

The filtered conceptual schema presented in Sect. 5.3 contains a subset of the knowledge in the

large schema, being a valid instance of the UML metaschema of reduced size with respect to

the original schema, and with an interest-driven approach which implies that its contents are

of high relevance to the user.

The filtering method is divided into seven ordered stages that sequentially process the input

specified by a user in order to obtain a particular output. Section 5.4.1 presents the first stage,

which processes the necessary metrics from Ch. 4 which enable the extraction of those elements

that are of interest to the user who constructs the input. Section 5.4.2 describes the second

stage which deals with the process of selecting the entity and event types that are included in

the resulting filtered conceptual schema. Section 5.4.3 explains the characteristics of the third

143



CHAPTER 5. FILTERING METHOD FOR LARGE CONCEPTUAL SCHEMAS

stage, which processes the relationship types of the filtered schema by selecting and projecting

those candidate relationship types from the large schema. Section 5.4.4 shows the fourth stage,

which performs the analysis and filtering of generalization relationships. Section 5.4.5 reviews

the fifth stage, which extracts the schema rules that must be part of the resulting schema. The

data types in the output are processed in sixth stage, as described in Sect. 5.4.6. Finally, the

last stage deals with the graphical representation of the filtered conceptual schema in Sect. 5.4.7

and presents the output to the user of the filtering method.

Chapter 6 continues the explanation of the filtering method when applied to specific filtering

circumstances. We present a set of particular filtering requests with differences in the input that

will produce differences in the filtered conceptual schema that results from their application.

The distinct approaches will benefit different information needs of a broad number of users,

which may have several expertise degrees when dealing with large conceptual schemas.

144



But what is it good for?

Engineer at the Advanced Computing Systems Division

of IBM, commenting on the microchip (1968)

6
Catalog of Filtering Requests

for Large Conceptual Schemas

A methodology without one or more real implementations that instantiate it to solve the spe-

cific problems of a particular situation is worthless. This chapter studies the requirements of

users that need to extract knowledge from large conceptual schemas, and the schema elements

within them that may be the focus of these users to start specific filtering requests. The main

contribution on this part is a catalog of filtering requests as well as the rationale behind their

existence. According to the precise information needs of a concrete user, the filtering request

to use may be one or another, just like its produced output. Our proposed catalog of filtering

requests covers all major knowledge extraction requirements a common user that works with

large schemas may need for performing his/her tasks.

The chapter is structured as follows. Section 6.1 summarizes our filtering activity and

describes the need for specific filtering requests. In Sect. 6.2 the structure of a general filtering

request is introduced. It presents the input, the output, and the different stages of the filtering

process that each specific filtering request requires to achieve its purpose. Section 6.3 presents

a catalog of six specific filtering requests based on the filtering methodology presented in Ch. 5.

Each filtering request contains its application scenario, the characteristics of its inputs and

output, and a detailed description of its different phases to filter a large conceptual schema.

Finally, Sect. 6.4 describes the relationships between these filtering requests and their intended

interaction to satisfy a user’s information need over a large conceptual schema.

145



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

Output

Schema Analysis1

Large Conceptual
Schema

User

Filtered

Informa�on Need2 Analysis

Select Interes�ng3
Elements

Create Filtered4
Schema

Filtering Conceptual
Schema

Figure 6.1. Structure of the Filtering Activity.

6.1 Filtering Activity

Large conceptual schemas contain an abundant amount of knowledge about a domain of interest.

The main goal of the filtering activity is the management of that information overload to expose

users to only information that is relevant to them. Following the filtering methodology of Ch. 5,

users of large conceptual schemas obtain a conceptual schema of small size with a structure

containing elements that include the knowledge they are interested in.

The activity of filtering large conceptual schemas is represented in Fig. 6.1. On one side, it

is necessary to explore the original large schema to know the structure and knowledge contained

within it. Usually, such exploration has been done manually by all the users working on the

schema. This task is a time-consuming process that sometimes may worsen the impression one

gets from the large schema, rather than to improve it. Our methodology presents an automatic

approach to explore and analyze large conceptual schemas using relevance metrics.

On the other side, the activity of filtering schemas requires the identification and proper

representation of the information need of a user. In general, the requirements of a user evolve

as the knowledge she has about the schema increases. Therefore, the analysis of the user’s need

is a key task in the extraction of the relevant fragments of the schema that match with the user

requirements.

Once both the schema and the user information are analyzed, the filtering starts. What

is needed is an automatic process to align the knowledge gained from the schema with the

representation of the needs of the user, and therefore select the most interesting elements from

the large schema correspondingly. That selection has to follow some size limitations according

to the user’s demand.

The last step of the process binds the selected elements in order to create a valid conceptual

schema of reduced size and maximum interest to the user. This task requires the original

large schema in order to search for links between elements, and also the analysis of the user

to correctly present the resulting filtered conceptual schema. It is important to note that the

overall process requires to be executed each time a user makes a specific request. Also, the

expected time of each response must be acceptable to allow the process to be dynamic.

146



6.1. FILTERING ACTIVITY

Figure 6.2. Fragment of a conceptual schema of Magento [94] to add products into a wish list.

6.1.1 The Need for Specific Filtering Requests

One of the main problems of using filtering techniques is to deal with and represent the infor-

mation need of a particular user. Different filtering approaches use different methods to acquire

knowledge about the users. This knowledge forms a user representation, which is usually kept

in the form of user profiles or rules. According to Hanani et al. in [55], the kind of methods

for acquiring knowledge about users include an explicit approach, which is based on user inter-

rogation, an implicit approach, which infers the user representation automatically by recording

user behavior, or a mixed approach.

User interrogation is the most popular technique of the explicit approach. Systems utilizing

this method usually require their users to fill out a form describing their areas of interest or

other relevant parameters. On the other hand, recording user behavior is an implicit approach

that does not require active user involvement in the knowledge acquisition task. Instead, the

user’s reaction to each incoming interaction is recorded, in order to learn from it about the

actual relevancy of elements to the user. Finally, the element space approach lies between the

explicit and the implicit approaches, as it requires minimum user involvement. This method

creates a field of elements that the user has previously judged as relevant. Any new element is

tested for its similarity to the elements existing in that space. If similarity of the new element

is above a certain relevance threshold, it is considered relevant.

Our approach follows the guidelines of the filtering methodology presented in Ch. 5. It is an

explicit approach where the user selects the elements in the large schema that she is interested

in and wants to obtain more information about. That selection is called focus set and may

contain several kinds of elements inside. Our filtering approach automatically selects the most

interesting fragment of the schema according to the user selection and creates a small and

well-formed schema with it, as aforementioned.

Since different kinds of elements must be part of the focus set, it is necessary to have specific

filtering requests to provide different filtering behaviors. As an example, Fig. 6.2 presents a

small fragment of a conceptual schema of the Magento [94] e-commerce system. The fragment

describes the structure and behavior that provides the functionality of adding products into a

wish list to customers of an on-line store. It contains the entity types Product, Customer, and

147



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

User, which is the superclass of Customer. The isIdentifiedBySku invariant indicates that

each product is identified by its stock-keeping unit code. There is a relationship type between

Product and Customer with the WishListItem association class to represent the items within

the wish list of a customer. Finally, the event type AddProductToWishList represents the

creation event of a particular instance of WishListItem between a pair of specific product

and customer, as indicated in the precondition and postcondition of the effect() operation of

AddProductToWishList. All of these elements may be the focus of a specific filtering request of

a user that wants to obtain more knowledge from the schema about any of them. We summarize

those elements as follows:

Entity Types They are one of the most important elements in conceptual schemas. Entity

types play a fundamental role defining the concepts that are relevant to a particular

information system. A user that wants to know a conceptual schema, needs to know

the entity types that are defined within it. As an example, a user that does not have

experience with an e-commerce system like Magento (Fig. 6.2) may select a focus set

containing the entity types Product and Customer in an initial filtering request. As a

result, the user will obtain a filtered conceptual schema with attributes, relationship types,

generalizations, event types and schema rules of interest to him and with a higher relation

to Product and Customer. Consequently, the user is able to manage such reduced amount

of information and obtains knowledge about the semantics of the schema.

Relationship Types They represent how two or more entity or event types are related to

one another. To focus on relationship types is specially useful when the participants in a

relationship are subtypes or supertypes of other entity or event types. In that case, the

relationship type in the filtered schema may be the original, a redefinition, or a projection

of it, according to the other elements of the focus set. As a result, a user may discover

other aspects of a relationship while she incrementally obtains knowledge from the schema.

Event Types They represent the changes in the information base of a conceptual schema

that are permissible. Are similar to entity types but in the behavioral part. A user that

wants to know the participants in an event type may select the event as the focus set of

a specific filtering request. In the example of Magento (Fig. 6.2) a focus set containing

AddProductToWishList will produce a filtered schema with such event as main element.

Schema Rules They represent the constraints, invariants, derivation rules, and pre- and post-

conditions that affect the schema, like the ones in Fig. 6.2. A user may focus on a schema

rule in order to obtain a filtered schema with the schema elements that are affected by

such rule.

Fragment of a Conceptual Schema An entire fragment of a large schema as the one in

Fig. 6.2 may also be a selected focus set for a user that wants to surround such fragment

with additional knowledge.

We believe that the filtering requests that are described in Sec. 6.3 are sufficient for most of

the users that need to explore the knowledge represented in a large conceptual schema.

148



6.2. GENERAL STRUCTURE OF A FILTERING REQUEST

6.2 General Structure of a Filtering Request

In order to fulfill the present requirements of the filtering activity, we need a filtering method-

ology, as the one presented in Ch. 5. However, our filtering methodology describes the general

characteristics of a regular and systematic way of accomplishing the user-driven process to ex-

tract knowledge from a large conceptual schema. What is needed is to define a set of concrete

filtering requests that inherit the guidelines and main organization proposed by the previous

methodology but adapting it to the particular filtering needs a user may have when working

with a large schema. A filtering request for a large conceptual schema is a specific knowledge

extraction request that automatically obtains a portion of the entire knowledge of small size

and high relevance to the user in relation to the schema elements in the user focus of interest.

The specific output depends on the input and the specific filtering request.

Input Output

Filtering MethodInput Output

Filtering Request

Instan�a�on

Abstract 
Context

Specific
Context

Figure 6.3. Relationship between the filtering methodology and the specific filtering requests.

As depicted in Fig. 6.3, we consider each filtering request as a concrete instantiation of

our filtering method to be effectively used under certain filtering circumstances. A user that

wants to extract knowledge from a large conceptual schema may focus on an entity type and

then obtain the most interesting entity types with relation to that one. Or maybe the user

wants to obtain the event types where the entity type of focus participates. Or its schema

rules containing integrity constraints and derivation rules. Or even the user prefers to focus

on a relationship type of interest. Or, instead of a relationship, the user wants to focus on a

small subset of the large schema. It is clear that the filtering activity has many faces, and to

effectively provide help on all of these situations is not an easy task. Accordingly, we define

the filtering method as a general template or abstract representation from which the concrete

filtering requests to cover all the particular filtering situations are derived.

The filtering method and the specific filtering requests that conform our proposed catalog

are processes that require an input to produce their output. The structure of a specific filtering

request follows the same template defined by the filtering method in Ch. 5. There are common

characteristics shared by the input and output of all the specific filtering requests that are worth

to mention in relation to the general input and output of the filtering method. The following

subsections review the elements that conform the input, the output, and the different stages

that are part of the internal composition of the filtering requests.

149



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

Importance	Method

Filtering	
RequestSize	Threshold

Rejec�on	Set

Focus	Set

Large	Conceptual	Schema

Filtered	
Conceptual
Schema

Filtering
Method

Figure 6.4. The input and output of a filtering request.

6.2.1 Specific Input of a Filtering Request

The input for a filtering request contains the same elements as in the filtering method of Ch. 5.

Concretely, the common characteristics of a specific input are:

◦ Large conceptual schema: the source schema CS = 〈SS,BS〉 where SS = 〈E , R, T , G,

C, D〉 is the structural subschema, and BS = 〈Eb, Rb, Gb, Cb〉 is the behavioral subschema,

as described in Ch. 2.

◦ Focus Set: the conceptual schema viewpoint of the user. Formally, the focus set FS
contains a small subset of schema elements from the large schema, from which the user

wants to know more about.

◦ Size threshold: the maximum expected number of schema elements in the output. It

ensures that the size of the output does not exceed the requirements of the user.

◦ Rejection Set: the set with schema elements from the large schema that the user does

not want to obtain in the output. Note that it is disjoint with the focus set.

◦ Importance method: the algorithm to compute the importance of schema elements as

described in Ch. 4.

Figure 6.4 depicts the previous elements as the input of a filtering request. It is important

to note that these elements conform the minimum input for a filtering request. It is possible

to add new elements in order to describe new filtering behaviors, as in the case of the filtering

request for contextualized event types in the catalog of Sect. 6.3.1.

6.2.2 Specific Output of a Filtering Request

The output for a filtering request is a filtered conceptual schema CSF = 〈SSF ,BSF 〉, where

SSF = 〈EF , RF , TF , GF , CF , DF 〉 is the structural subschema, and BSF = 〈EbF , RbF , GbF ,

CbF 〉 is the behavioral subschema, as described in Sect. 5.3 of Ch. 2.

The filtered conceptual schema fulfills the requirements of the user as indicated in the input

of the filtering request and contains a fragment of knowledge of high interest and small size

from the large conceptual schema. Figure 6.4 depicts the filtered conceptual schema as the

output of a filtering request.

150



6.2. GENERAL STRUCTURE OF A FILTERING REQUEST

6.2.3 The 7 Stages of a Filtering Request

Input Output

Filtering Request

Metrics Processing1

En�ty and Event Types Processing2

Rela�onship Types Processing3

Generaliza�ons Processing4

Schema Rules Processing5

Data Types Processing6

Presenta�on7

Filtering Method

Figure 6.5. The 7 stages of a filtering request.

A specific filtering request is divided into seven ordered stages that sequentially process the

input specified by a user in order to obtain a particular output. Figure 6.5 presents the different

stages of a filtering request.

1. Metrics Processing The first stage applies the metrics of Ch. 4 to the elements of the

original large schema out of the focus set in order to discover which are the most relevant

ones for the user. This stage follows the same steps as presented in Sect. 5.4.1 of Ch. 5.

2. Entity and Event Types Processing The second stage selects the entity and event

types from the large schema that will appear in the resulting filtered schema. This stage

follows the same steps as presented in Sect. 5.4.2 of Ch. 5.

3. Relationship Types Processing This stage selects the relationship types from the large

schema that will appear in the resulting filtered schema. This stage follows the same steps

as presented in Sect. 5.4.3 of Ch. 5.

4. Generalizations Processing This stage selects the generalization relationships that will

appear in the resulting filtered schema. This stage follows the same steps as presented in

Sect. 5.4.4 of Ch. 5.

5. Schema Rules Processing This stage processes the schema rules of the original schema

that will appear in the resulting filtered schema. This stage follows the same steps as

presented in Sect. 5.4.5 of Ch. 5.

6. Data Types Processing This stage selects the data types that belong to the resulting

filtered schema. This stage follows the same steps as presented in Sect. 5.4.6 of Ch. 5.

7. Presentation The last stage deals with the presentation of the filtered schema to the

user. This stage follows the same steps as presented in Sect. 5.4.7 of Ch. 5.

151



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

6.3 Catalog of Filtering Requests

Filtering Method

Instan�a�on

Abstract 
Context

Specific
Context Filtering Request

Filtering Request forF1 En�ty and Rela�onship Types
Filtering Request forF3 Event Types

Filtering Request forF5 Context Behavior of En�ty Types

Filtering Request forF2 Schema Rules
Filtering Request for aF4 Conceptual Schema

Filtering Request forF6 Contextualized Types

Figure 6.6. Catalog of Filtering Requests.

This section presents a catalog of filtering requests applicable to large conceptual schemas

specified in UML/OCL. This catalog presents six filtering requests and describes the charac-

teristics of each of them in comparison to the general stages presented along Sec. 5.4 of Ch. 5.

Figure 6.6 depicts the taxonomy of the catalog of filtering requests.

• Filtering Request F1: The user focuses on a set of entity and relationship types from

a large schema. The request obtains a filtered conceptual schema that includes the com-

bination of the initial entity and relationship types with the elements of interest.

• Filtering Request F2: The user focuses on a set of schema rules from a large schema.

As output, the user obtains a filtered conceptual schema that includes the combination

of the elements referenced by the selected schema rules with the elements of interest.

• Filtering Request F3: The user focuses on a set of event types from a large schema.

The request produces a reduced conceptual schema that includes the combination of the

selected event types with the elements of interest.

• Filtering Request F4: The user focuses on a small fragment from the large schema.

The user is aware of the elements that conform such fragment or she has accessed them

via previous requests. As output, the user obtains a filtered schema that includes the

combination of the elements of the fragment surrounded with elements of interest.

• Filtering Request F5: The user focuses on a set of entity types from a large schema.

The request obtains those event types of interest that reference the selected entity types.

The resulting schema includes the combination of those entity and event types.

• Filtering Request F6: The user focuses on a set of entity and event types. The user

contextualize them by means of a function to reduce or limit the characteristics defined

over such types. As output, the user obtains a filtered schema with the selected entity

and event types and the elements of interest taking into account the contextualization.

Next subsections present a detailed description of the characteristics of each filtering request.

152



6.3. CATALOG OF FILTERING REQUESTS

6.3.1 F1: Filtering Request for Entity and Relationship Types

Input

Filtering Request

Metrics Processing1

En�ty and Event Types Processing2

Rela�onship Types Processing3

Generaliza�ons Processing4

Schema Rules Processing5

Data Types Processing6

Presenta�on7

F1

Output

Rela�onship Type

En�ty Type

En�ty Type

En�ty Type

context inv ...
context derive ...
context post ...

Figure 6.7. F1: Filtering request for entity and relationship types.

The first filtering request deals with a filtering interaction centered on the entity and rela-

tionship types from a large schema. In the following we describe this filtering request according

to its application scenario, the specific inputs and outputs, the particularities within its filtering

stages, and the correctness of the overall process.

Application Scenario

F1: P≥1(E ∪ R) 1→ CSF

The user focuses on a set of entity and relationship types from a large conceptual schema.

The user is aware of those types or she has accessed them via previous filtering requests. The

information need consists in obtaining more knowledge from the schema with relation to the

entity and relationship types in the user focus. The method obtains the elements of interest

to the user according to the initial selection and the characteristics represented in the large

schema. As output, the user obtains a small-size filtered conceptual schema that includes

the combination of the initial elements of focus with the elements of interest gathered by our

methodology.

Specific Input

The input for the filtering request F1 contains the same elements as indicated in Sect. 6.2. In

addition, we present here a detailed description of the particularities of such elements for the

specific input of F1.

1P(S) denotes the power set of a set S. If S = {a, b} Then P(S) = {∅, {a}, {b}, {a, b}} and P≥1(S) =
{{a}, {b}, {a, b}}.

153



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

◦ Large conceptual schema: the source schema CS = 〈SS,BS〉 where SS = 〈E , R, T , G,

C, D〉 is the structural subschema, and BS = 〈Eb, Rb, Gb, Cb〉 is the behavioral subschema.

The amount of knowledge represented in CS is large and makes it very difficult to manually

extract fragments of interest to a user.

◦ Focus Set: it works as the conceptual schema viewpoint of the user. Therefore, a focus

set is an initial point that should be extended with more knowledge. Formally, the focus

set FS contains a small subset of the entity types of E and the relationship types of

R, from which the user wants to know more about. Note that the size of the focus set

is reduced with respect to the amount of entity and relationship types from the large

schema (|FS| � |E ∪ R|). Also, it is mandatory for the user to select a non-empty focus

set (FS 6= ∅).

◦ Size threshold: it denotes the maximum expected number K of entity and event types

in the output. Note that |EFS | ≤ K ≤ |E ∪ Eb|, where EFS is the set that includes the

entity types in the focus set FS. Note that EFS also contains those entity types that

participate in relationship types within the focus set.

◦ Rejection Set: the set RS with entity types of E and event types of Eb that the user does

not want to obtain in the output. Note that it is disjoint with the focus set (RS∩FS = ∅).
By default, the rejection set is empty (|RS| ≥ 0).

◦ Importance method: the algorithm I to compute the importance of entity types from

E and event types from Eb. By default I = ISM , the Simple Method described in Chap. 4.

Specific Output

The output of this filtering request is a filtered conceptual schema CSF = 〈SSF ,BSF 〉, where

SSF = 〈EF , RF , TF , GF , CF , DF 〉 is the structural subschema, and BSF = 〈EbF , RbF , GbF ,

CbF 〉 is the behavioral subschema. The specific constraints that CSF must satisfy are described

as follows:

[C1] EF contains the entity types EFS from the focus set FS.

[C2] EF does not contain the entity types from the rejection set RS.

[C3] RF contains the relationship types RFS from the focus set FS.

[C4] RF does not contain the relationship types from the rejection set RS.

[C5] GF contains direct generalization relationships between entity types of EF .

[C6] GbF contains direct generalization relationships between event types of EbF .

[C7] If c is an integrity constraint or derivation rule of C, D or Cb defined in the context

of an schema element of CSF and any of the schema elements referenced by c belong to

CSF , then c is included in CF , DF or CbF .

154



6.3. CATALOG OF FILTERING REQUESTS

[C8] If r is a relationship type of R and its participant entity types belong to EF , or are

ascendants of entity types of EF (in which case a projection is needed), then r is included

in RF . The same behavior applies to relationship types of Rb to be included in RbF .

[C9] If d is a data type of T and it is used by attributes of entity types of EF , event types

of EbF , or schema rules of CF , CbF or DF , then d is included in TF of CSF .

[C10] If e1 and e2 are entity types of EF and does not exist a direct generalization between

them in GF nor a path of direct generalizations of GF traversing entity types ei of EF ,

but both e1 and e2 belong to different levels of the same hierarchy in G of CS, a direct

generalization g′ is included between e1 and e2 in GF but is marked as derived. The same

behavior applies to pairs of event types of EbF .

[C11] If c is a constraint of C or Cb defined in the context of an schema element of CSF
and references schema elements out of CSF only the header of such constraint is included

in CF or CbF . If d is a derivation rule of D whose context belongs to CSF and references

schema elements out of CSF , the context element of the rule is marked as materialized in

CSF and d is not included in DF .

Filtering Stages

The filtering request for entity and relationship types follows the specific methodology presented

in Sect. 5.4 of Ch. 5. In the following, we present a brief summary of the different stages and

steps (see Fig. 6.8) that belong to this filtering request.

◦ Stage 1: Metrics. The first step in this stage (see Activity 1.1 in Fig. 6.8) processes

the input of the filtering request. It creates some auxiliary sets to gather the entity,

relationship, and event types from the focus set. In this particular case, the auxiliary

set EFS contains the union between the entity types from the focus set, and the entity

types that are participants of the relationship types selected in the focus set. Also, the

set EbFS that contains event types from the focus set is empty since this filtering request

focus on the structural part to construct the input. The rest of the steps follow the

same indications presented in Sect. 5.4.1 of Ch. 5. The method computes the importance,

closeness, and interest metrics, and sorts the entity and event types in a ranking.

◦ Stage 2: Entity and Event Types. This stage follows the same steps as presented

in Sect. 5.4.2 of Ch. 5. The method selects the top entity and event types from the

interest ranking taking into account the size threshold of the input and includes them in

the resulting filtered conceptual schema.

◦ Stage 3: Relationship Types. This stage follows the same steps as presented in

Sect. 5.4.3 of Ch. 5. The method classifies the relationship types according to their par-

ticipants as referentially-complete or referentially-partial relationship types. Note that

those relationship types in the focus set are always referentially-complete since their par-

ticipants are members on the set of entity types EFS from the focus set. Then, the

method projects and selects the final relationship types that are part of the resulting

filtered conceptual schema.

155



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

◦ Stage 4: Generalizations. This stage follows the same steps as presented in Sect. 5.4.4

of Ch. 5. The method processes the direct and creates indirect generalizations to construct

the hierarchies of the resulting filtered conceptual schema.

◦ Stage 5: Schema Rules. This stage follows the same steps as presented in Sect. 5.4.5

of Ch. 5. The method selects the schema rules defined in the context of elements from

the filtered schema and processes the referentially-incomplete ones in order to construct

the rules of the resulting filtered conceptual schema.

◦ Stage 6: Data Types. This stage follows the same steps as presented in Sect. 5.4.6 of

Ch. 5. The method includes in the filtered schema those data types referenced or used by

other elements within such schema.

◦ Stage 7: Presentation. This stage follows the same steps as presented in Sect. 5.4.7 of

Ch. 5. The method presents the filtered schema to the user. The elements to highlight

are the entity types and relationship types from the focus set FS.

Method Correctness

The proposed activities in the stages of the filtering request transform the input into a valid

output in the form of a filtered conceptual schema that satisfies a set constraints over such

schema. In the following we verify the correctness of the method according to those constraints

and the activities that satisfy each of them:

• Constraint [C1] is satisfied by the activity 2.2 of the filtering request.

• Constraint [C2] is satisfied by the activity 2.2 of the filtering request.

• Constraint [C3] is satisfied by the activities 3.1, 3.2, and 3.4 of the filtering request.

• Constraint [C4] is satisfied by the activity 3.1 of the filtering request.

• Constraint [C5] is satisfied by the activity 4.1 of the filtering request.

• Constraint [C6] is satisfied by the activity 4.2 of the filtering request.

• Constraint [C7] is satisfied by the activities 5.1 and 5.2 of the filtering request.

• Constraint [C8] is satisfied by the activities 3.1, 3.3, and 3.4 of the filtering request.

• Constraint [C9] is satisfied by the activity 6.1 of filtering request method.

• Constraint [C10] is satisfied by the activities 4.3 and 4.4 of the filtering request.

• Constraint [C11] is satisfied by the activities 5.1, 5.3, and 5.4 of the filtering request.

The activities 1.1, 1.2, 1.3, 1.5, and 1.5 of the filtering request process the input and deal

with the computation of relevance metrics to filter the large schema. The activity 2.1 selects

the additional entity and event types to complete the knowledge from the focus set, and the

activity 2.3 includes the event types from 2.1 into the filtered schema. The activity 7.1 presents

the resulting filtered conceptual schema to the user.

156



6.3. CATALOG OF FILTERING REQUESTS

M
et
ric
s	
Pr
oc
es
si
ng

1
En
�t
y	
an
d	
Ev
en
t	T
yp
es
	P
ro
ce
ss
in
g

2
Re
la
�o

ns
hi
p	
Ty
pe
s	
Pr
oc
es
si
ng

3
G
en
er
al
iz
a�
on
s	
Pr
oc
es
si
ng

4
Sc
he
m
a	
Ru

le
s	
Pr
oc
es
si
ng

5
D
at
a	
Ty
pe
s	
Pr
oc
es
si
ng

6
Pr
es
en
ta
�o

n
7

Input	Processing

Importance	Compu�ng

Closeness	Compu�ng

Interest	Compu�ng

Sor�ng	Process

Select	Top	Elements

Process	En�ty	Types

Process	Event	Types

Select	Candidate	
Rela�onship	Types

Process	Referen�ally-Complete
Rela�onship	Types

Project	Referen�ally-Par�al
Rela�onship	Types

Process	Projected
Rela�onship	Types

Process	Direct	
Structural	Generaliza�ons

Process	Direct	
Behavioral	Generaliza�ons

Process	Indirect	
Structural	Generaliza�ons

Process	Indirect	
Behavioral	Generaliza�ons

Select	Candidate	
Schema	Rules

Process	Referen�ally-Complete	Schema	Rules

Process	Referen�ally-Incomplete	Constraints

Process	Referen�ally-Incomplete	Deriva�on	Rules

Process	Data	Types

Present	Filtered	Conceptual	Schema

The	focus	set	contains	en�ty	
and	rela�onship	types	from	
the	structural	subschema

The	rela�onship	types	of	the	focus	set	
are	all	referen�ally-complete	rela�onships

It	only	includes	in	the	filtered	schema	event	
types	from	the	interest	ranking	because	the	
focus	set	does	not	contain	any	event	type

1.1

1.2

1.3

1.4

1.5

2.1

2.2

2.3

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

6.1

7.1

Figure 6.8. Activity diagram for the filtering request F1.

157



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

Example of F1

The filtering scenario proposed in this example describes a user of the conceptual schema of

the Magento e-commerce system that wants to know the schema elements of interest with

respect to a set of entity and relationship types. Concretely, the user focuses in the entity

type PriceAttribute, and the relationship type AttributeInStoreView. The input of the filtering

request is as follows:

CS = Magento

FS = {PriceAttribute, AttributeInStoreView}
RS = ∅
K = 5

I = CEntityRank Extended

Figure 6.9 and Fig. 6.10 depict the resulting filtered conceptual schema our method pro-

duces for the previous request. Note that the first important feedback the user obtains is the

definition of the relationship type of focus AttributeInStoreView as an association class between

PriceAttribute and StoreView. Such relationship type was originally specified in the context of

the entity type Attribute and has been projected to PriceAttribute, which is a descendant of

Attribute. The projection of this relationship is transparent for the user who focus on PriceAt-

tribute since our filtering method maintains the semantics of the original schema. The rest

of relationship types from the filtered schema in which PriceAttribute participates are also

projected relationships from the context of Attribute.

From the filtered schema of Fig. 6.9, the user discovers that products are related to attributes

that can be rated (globally or not) in a store view or a website inside the Magento system.

There may be an instance of the association class StoreViewAttributeRating for each tuple

of PriceAttribute, StoreView, and Product. In the same way, there may be an instance of

the association class WebsiteAttributeRating for each tuple of PriceAttribute, Website, and

Product. Also, there is a lot of information about products in the context of a website or a

store view where the product is located. Such information is defined as a set of attributes of

the association classes ProductInWebsite and ProductInStoreView. These attributes redefine

specific properties about the general definition of product where it is presented in a store view

or website.

The fragment of the filtered schema depicted in Fig. 6.10 contains the graphical representa-

tion of the data types and enumeration types that are necessary to understand the semantics

of the result. The attributes contactPhone, contactAddress, and firstDayOfWeek of the en-

tity type StoreView are of type PhoneNumber, Address, and WeekDay, respectively. Also, the

attributes genericStatus, stockStatus, backOrderPolicy, and productType are of type Status,

ProductStatus, BackOrderPolicy, and ProductType, respectively. Furthermore, we include in

the filtered schema those schema rules that are referentially complete. Concretely, we show in

Fig. 6.10 the OCL specification to indicate that products are identified by their SKU (stock-

keeping unit) value, and that products must be specified in all the websites and store views

of the system. Additionally, there are two more schema rules to indicate that store views are

identified by their code and name, and that websites are identified by their code.

158



6.3. CATALOG OF FILTERING REQUESTS

Website
code:String
name:String

A
bl

eT
oR

at
eA

tt
rib

ut
e

Product
sku: String [1]
genericName: String [1]
genericNetPrice: Real [0..1]
genericWeight: Real [0..1]
genericStatus: Status [1]
genericIsVisibleOnCatalog: Boolean [0..1]
genericIsNewFrom: Date [0..1]
genericIsNewUntil: Date [0..1]
genericSpecialNetPrice: Real [0..1]
genericSpecialNetPriceFrom: Date [0..1]
genericSpecialNetPriceUntil: Date [0..1]
genericDescription: String [0..1]
genericShortDescription: String [0..1]
genericMetaDescription: String [0..1]
genericMetaTitle: String [0..1]
genericMetaKeyword: String [*]
genericImageGalleryPath: String [0..1]
genericBaseImagePath: String [0..1]
genericSmallImagePath: String [0..1]
genericThumbnailPath: String [0..1]
genericIsAvailableForGoogleCheckout: Boolean [0..1]
genericIsGiftMessageAllowed: Boolean [0..1]
genericIsVisibleOnSearch: Boolean [0..1]
stockStatus: ProductStatus [1]
quantity: Real [0..1]
qtyToBecomeOutOfStock: Real [0..1]
minQtyAllowedInShoppingCart: Real [0..1]
maxQtyAllowedInShoppingCart: Integer [0..1]
notifyForQuantityBelow: Real [0..1]
genericUrlKey: String [0..1]
backOrderPolicy: BackOrderPolicy [0..1]
productType: ProductType

StoreView
code: String [1]
name: String [1]
status: Status [1]
shopName: String [0..1]
contactPhone: PhoneNumber [0..1]
contactAdress: Address [0..1]
firstDayOfWeek: WeekDay [1]
weekend: WeekDay [1..*]

*

*

*

*

crossSellProductReflective

relatedProductReflective

upSellProductReflective

*

*

*

*

*

*

crossSellProduct

productOfCrossSell

upSellProduct

productOfUpSell

relatedProduct

productOfRelated

PriceAttribute

AttributeInStoreView
name: String [0..1]
redefinedName: String [0..1]

ab
le

T
oR

at
eA

tt
rib

ut
e

*

* *

*

gl
ob

al
ly

R
at

ed
A

tt
rib

ut
e

productOfGloballyRatedAttribute

GlobalAttributeRating

StoreViewAttributeRating WebsiteAttributeRating

* *st
or

eV
ie

w
R

at
ed

A
tt

rib
ut

e

websiteRatedAttribute
* websiteWhereIsRated

* storeViewWhereIsRated

* websiteRatedProduct

storeViewRatedProduct
*

*

*

attribute

Figure 6.9. Filtered schema for the entity PriceAttribute and association AttributeInStoreView (I).

159



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

context Product
  inv isIdentifiedBySku: 
   Product.allInstances()->isUnique(sku)

  inv isSpecifiedInAllStoreViews: 
   self.storeView->includesAll(
             StoreView.allInstances())

  inv isSpecifiedInAllWebsites: 
   self.website->includesAll(
             Website.allInstances())

context StoreView 
  inv isIdentifiedByItsCodeAndName:
   StoreView.allInstances()->isUnique(code) and
   StoreView.allInstances()->isUnique(name)

context Website 
  inv isIdentifiedByItsCode:
   Website.allInstances()->isUnique(code) 

ProductInStoreView
redefinedName: String [0..1]
redefinedWeight: Real [0..1]
redefinedStatus: Status [0..1]
redefinedIsNewFrom: Date [0..1]
redefinedIsNewUntil: Date [0..1]
redefinedSpecialNetPriceFrom: Date [0..1]
redefinedSpecialNetPriceUntil: Date [0..1]
redefinedDescription: String [0..1]
redefinedShortDescription: String [0..1]
redefinedMetaDescription: String [0..1]
redefinedMetaKeyword: String [*]
redefinedMetaTitle: String [0..1]
redefinedImageGalleryPath: String [0..1]
redefinedBaseImagePath: String [0..1]
redefinedSmallImagePath: String [0..1]
redefinedThumbnailPath: String [0..1]
redefinedUrlKey: String [0..1]
redefinedIsAvailableForGoogleCheckout: Boolean [0..1]
redefinedIsGiftMessageAllowed: Boolean [0..1]
redefinedIsVisibleOnCatalog: Boolean [0..1]
redefinedIsVisibleOnSearch: Boolean [0..1]
name: String [0..1]
weight: Real [0..1]
status: Status [0..1]
isNewFrom: Date [0..1]
isNewUntil: Date [0..1]
specialNetPriceFrom: Date [0..1]
specialNetPriceUntil: Date [0..1]
aDescription: String [0..1]
shortDescription: String [0..1]
metaDescription: String [0..1]
metaKeyword: String [0..1]
metaTitle: String [0..1]
imageGalleryPath: String [0..1]
baseImagePath: String [0..1]
smallImagePath: String [0..1]
thumbnailPath: String [0..1]
urlKey: String [0..1]
isAvailableForGoogleCheckout: Boolean [0..1]
giftMessageAllowed: Boolean [0..1]
visibleOnCatalog: Boolean [0..1]
visibleOnSearch: Boolean [0..1]

ProductInWebsite
redefinedName: String [0..1]
redefinedNetPrice: Real [0..1]
netPrice: Real [1]
redefinedWeight: Real [0..1]
redefinedStatus: Status [0..1]
redefinedIsNewFrom: Date [0..1]
redefinedIsNewUntil: Date [0..1]
redefinedSpecialNetPrice: Real [0..1]
specialNetPrice: Real [1]
redefinedSpecialNetPriceFrom: Date [0..1]
redefinedSpecialNetPriceUntil: Date [0..1]
redefinedDescription: String [0..1]
redefinedShortDescription: String [0..1]
redefinedMetaDescription: String [0..1]
redefinedMetaKeyword: String [*]
redefinedMetaTitle: String [0..1]
redefinedImageGalleryPath: String [0..1]
redefinedBaseImagePath: String [0..1]
redefinedSmallImagePath: String [0..1]
redefinedThumbnailPath: String [0..1]
redefinedUrlKey: String [0..1]
redefinedIsAvailableForGoogleCheckout: Boolean [0..1]
redefinedIsGiftMessageAllowed: Boolean [0..1]
redefinedIsVisibleOnCatalog: Boolean [0..1]
redefinedIsVisibleOnSearch: Boolean [0..1]
isAvailable: Boolean [1]

PhoneNumber
«datatype»

ProductStatus
InStock
OutOfStock

«enumeration»
BackOrderPolicy

NoBackorders
AllowQtyBelowZero
AllowQtyBelowZeroAndNotifyCustomer

«enumeration»

Status
Enabled
Disabled

«enumeration»

WeekDay
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

«enumeration»

ProductType
Simple
Grouped
Configurable
Downloadable
Virtual
Bundle

«enumeration»

Date
day:Integer
month:Integer
year:Integer

«datatype»

Address
firstName: String[1]
middleName: String[0..1]
lastName: String[1]
namePrefix: String [0..1]
nameSuffix: String[0..1]
company: String[0..1]
streetAddress: String[1]
telephone: String[1]
fax: String[0..1]

«datatype»

Figure 6.10. Filtered schema for the entity PriceAttribute and association AttributeInStoreView (II).

160



6.3. CATALOG OF FILTERING REQUESTS

6.3.2 F2: Filtering Request for Schema Rules

Input

Filtering Request

Metrics Processing1

En�ty and Event Types Processing2

Rela�onship Types Processing3

Generaliza�ons Processing4

Schema Rules Processing5

Data Types Processing6

Presenta�on7

F2

Output

Integrity Constraints

context inv ...
context derive ...
context post ...

context inv ...

context derive ...

context post ...

Deriva�on Rules

Figure 6.11. F2: Filtering request for schema rules.

Application Scenario

F2: P≥1(C ∪ D ∪ Cb)→ CSF

The user focuses on a set of integrity constraints and derivation rules from a large conceptual

schema. The user is aware of those schema rules or she has accessed them via previous filtering

requests. The information need consists in obtaining knowledge from the schema with relation

to the schema rules in the user focus. The method obtains the elements of interest to the user

according to the initial selection and the characteristics represented in the large schema. As

output, the user obtains a small-sized filtered conceptual schema that includes the combination

of the initial schema rules of focus with the elements of interest gathered by our methodology.

Specific Input

The input for the filtering request F2 contains the same elements as indicated in Sect. 6.2 with

an extra element to indicate the scope of the results. In addition, we present here a detailed

description of the particularities of such elements for the specific input of F2.

◦ Large conceptual schema: the source schema CS = 〈SS,BS〉 where SS = 〈E , R, T , G,

C, D〉 is the structural subschema, and BS = 〈Eb, Rb, Gb, Cb〉 is the behavioral subschema.

The amount of knowledge represented in CS is large and makes it very difficult to manually

extract fragments of interest to a user.

◦ Focus Set: it works as the conceptual schema viewpoint of the user. Therefore, a focus

set is an initial point that should be extended with more knowledge. Formally, the focus

set FS contains a small subset of the integrity constraints of C and Cb, and the derivation

161



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

rules of D, from which the user wants to know more about. Note that the size of the

focus set is reduced with respect to the amount of schema rules from the large schema

(|FS| � |C ∪ D ∪ Cb|). Also, it is mandatory for the user to select a non-empty focus set

(FS 6= ∅).

◦ Size threshold: it denotes the maximum expected number K of entity and event types

in the output. Note that |EFS ∪ EbFS | ≤ K ≤ |E ∪ Eb|, where EFS and EbFS are the set

that include the entity and event types in the focus set FS, respectively. Since the focus

set contains schema rules, EFS and EbFS contain the entity and event types used and

referenced inside the expressions within those rules.

◦ Scope: it indicates the kind of filtered schema the user wants to obtain. A local value

for the scope implies that the filtered conceptual schema will only contain those elements

referenced by the schema rules of focus. The local value of the scope forces K = |EFS |+
|EbFS |, in order to limit the size of the filtered conceptual schema to the referenced

elements of the input schema rules. Any other value for the size threshold will be ignored.

On the other hand, a global value for the scope will include additional knowledge of

interest to the user until reaching the size threshold K. In this case, the size threshold

must satisfy K >= |EFS |+ |EbFS |.

◦ Rejection Set: the set RS with entity types of E and event types of Eb that the user does

not want to obtain in the output. Note that it is disjoint with the focus set (RS∩FS = ∅).
Therefore, the rejection set must contain only elements that are not referenced by the

schema rules of the focus set. By default, the rejection set is empty (|RS| ≥ 0). The

rejection set is ignored when the scope of the request is set to local.

◦ Importance method: the algorithm I to compute the importance of entity types from

E and event types from Eb. By default I = ISM , the Simple Method described in Chap. 4.

Specific Output

The output of this filtering request is a filtered conceptual schema CSF = 〈SSF ,BSF 〉, where

SSF = 〈EF , RF , TF , GF , CF , DF 〉 is the structural subschema, and BSF = 〈EbF , RbF , GbF ,

CbF 〉 is the behavioral subschema. The specific constraints that CSF must satisfy are described

as follows:

[C1] EF contains the entity types EFS referenced by schema rules from the focus set FS.

If the scope is set to local, the entity types of EF only contain the projection of those

attributes referenced by schema rules from the focus set.

[C2] If the scope is set to global, EF does not contain the entity types from the rejection

set RS.

[C3] GF contains direct generalization relationships between entity types of EF .

[C4] GbF contains direct generalization relationships between event types of EbF .

162



6.3. CATALOG OF FILTERING REQUESTS

[C5] EbF contains the event types EbFS referenced by schema rules from the focus set FS.

If the scope is set to local, the event types of EbFS only contain the projection of those

attributes referenced by schema rules from the focus set.

[C6] If the scope is set to global, EbF does not contain the event types from the rejection

set RS.

[C7] CF , DF , and CbF contain the integrity constraints and derivation rules from the focus

set FS.

[C8] If c is an integrity constraint or derivation rule of C, D or Cb out of the focus set

but defined in the context of an schema element of CSF and all of the schema elements

referenced by c belong to CSF , then c is included in CF , DF or CbF .

[C9] If r is a relationship type of R and its participant entity types belong to EF , or are

ascendants of entity types of EF (in which case a projection is needed), then r is included

in RF . The same behavior applies to relationship types of Rb to be included in RbF . If

the scope was set to local, only those relationship types referenced by schema rules from

the focus set are included into RF and RbF .

[C10] If d is a data type of T and it is used by attributes of entity types of EF , event types

of EbF , or schema rules of CF , CbF or DF , then d is included in TF of CSF . If the scope

was set to local, only those data types referenced by schema rules from the focus set are

included into TF .

[C11] If e1 and e2 are entity types of EF and does not exist a direct generalization between

them in GF nor a path of direct generalizations of GF traversing entity types ei of EF ,

but both e1 and e2 belong to different levels of the same hierarchy in G of CS, a direct

generalization g′ is included between e1 and e2 in GF but is marked as derived. The same

behavior applies to pairs of event types of EbF .

[C12] If the scope is set to global and c is a constraint of C or Cb defined in the context of

an schema element of CSF and references schema elements out of CSF only the header of

such constraint is included in CF or CbF .

[C13] If the scope is set to global and d is a derivation rule of D whose context belongs

to CSF and references schema elements out of CSF , the context element of the rule is

marked as materialized in CSF and d is not included in DF .

Filtering Stages

The filtering request for schema rules follows the specific methodology presented in Sect. 5.4

of Ch. 5. In the following, we present a brief summary of the different stages and steps that

belong to this filtering request. Figure 6.12 indicates the steps when the scope is local while

Fig. 6.13 shows the steps when the scope is global.

◦ Stage 1: Metrics. The first step in this stage (see Activity 1.1 in Fig. 6.13) processes

the input of the filtering request. It creates some auxiliary sets to gather the entity and

163



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

event types referenced by the schema rules from the focus set. In this particular case, the

auxiliary set EFS and EbFS contains the entity and event types referenced by the schema

rules from the focus set. Also, the set RFS that contains relationship types from the

focus set is empty since this filtering request focus on schema rules to construct the input.

In addition to it, if the scope is set to local the method creates an auxiliary set with the

attributes of entity and event types referenced by the schema rules from the focus set,

and ignores the values of the rejection set RS and size threshold K. The rest of the steps

follow the same indications presented in Sect. 5.4.1 of Ch. 5. If the scope is set to global,

the method computes the importance, closeness, and interest metrics, and sorts the entity

and event types in a ranking. Otherwise, the method only requires the entity, event, and

relationship types referenced by schema rules from the focus set.

◦ Stage 2: Entity and Event Types. This stage follows the same steps as presented in

Sect. 5.4.2 of Ch. 5. If the scope is set to global, the method selects the top entity and

event types from the interest ranking taking into account the size threshold of the input

and includes them in the resulting filtered conceptual schema. Otherwise, if the scope

is set to local the method selects the entity and event types referenced by the schema

rules of focus and includes them in the resulting filtered conceptual schema only with the

projection of those attributes that also were referenced in the schema rules of focus. Note

that since we see attributes as binary relationship types between an entity or event type

and a datatype, the projection of attributes is similar than the projection of relationship

types presented in Sect. 5.4.3 of Ch. 5

◦ Stage 3: Relationship Types. This stage follows the same steps as presented in

Sect. 5.4.3 of Ch. 5. The method classifies the relationship types according to their

participants as referentially-complete or referentially-partial relationship types. Note that

those relationship types used in expressions of the schema rules from the focus set are

always referentially-complete since their participants are members of the sets of entity

and event types EFS and EbFS referenced from the focus set. Therefore, such relationship

types will be part of the filtered schema. Finally, the method projects and selects the

final relationship types that are part of the resulting filtered conceptual schema. If the

scope is set to local, the method only includes into the filtered schema those relationship

types that are referenced by the schema rules from the focus set.

◦ Stage 4: Generalizations. This stage follows the same steps as presented in Sect. 5.4.4

of Ch. 5. The method processes the direct and creates indirect generalizations to construct

the hierarchies of the resulting filtered conceptual schema.

◦ Stage 5: Schema Rules. This stage follows the same steps as presented in Sect. 5.4.5

of Ch. 5. The method selects the schema rules defined in the context of elements from

the filtered schema and processes the referentially-incomplete ones in order to construct

the rules of the resulting filtered conceptual schema. The schema rules from the focus set

are all referentially-complete since the entity and event types they reference are included

in the filtered conceptual schema.

◦ Stage 6: Data Types. This stage follows the same steps as presented in Sect. 5.4.6 of

Ch. 5. The method includes in the filtered schema those data types referenced or used by

other elements within such schema.

164



6.3. CATALOG OF FILTERING REQUESTS

◦ Stage 7: Presentation. This stage follows the same steps as presented in Sect. 5.4.7 of

Ch. 5. The method presents the filtered schema to the user. The elements to highlight

are the schema rules from the focus set FS.

Method Correctness

The proposed activities in the stages of the filtering request transform the input into a valid

output in the form of a filtered conceptual schema that satisfies a set constraints over such

schema. In the following we verify the correctness of the method according to those constraints

and the activities that satisfy each of them:

• Constraint [C1] is satisfied by the activity 2.2 of the filtering request.

• Constraint [C2] is satisfied by the activity 2.2 of the filtering request.

• Constraint [C3] is satisfied by the activity 4.1 of the filtering request.

• Constraint [C4] is satisfied by the activity 4.2 of the filtering request.

• Constraint [C5] is satisfied by the activity 2.3 of the filtering request.

• Constraint [C6] is satisfied by the activity 2.3 of the filtering request.

• Constraint [C7] is satisfied by the activities 5.1 and 5.2 of the filtering request.

• Constraint [C8] is satisfied by the activities 5.1 and 5.2 of the filtering request.

• Constraint [C9] is satisfied by the activities 3.1, 3.2, 3.3, and 3.4 of filtering request.

• Constraint [C10] is satisfied by the activity 6.1 of the filtering request.

• Constraint [C11] is satisfied by the activities 4.3 and 4.4 of the filtering request.

• Constraint [C12] is satisfied by the activities 5.1 and 5.3 of the filtering request.

• Constraint [C13] is satisfied by the activities 5.1 and 5.4 of the filtering request.

The activities 1.1, 1.2, 1.3, 1.5, and 1.5 of the filtering request process the input and deal

with the computation of relevance metrics to filter the large schema. The activity 2.1 selects the

additional entity and event types to complete the knowledge from the focus set. The activity

7.1 presents the resulting filtered conceptual schema to the user.

165



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

M
et
ric
s	
Pr
oc
es
si
ng

1
En
�t
y	
an
d	
Ev
en
t	T
yp
es
	P
ro
ce
ss
in
g

2
Re
la
�o

ns
hi
p	
Ty
pe
s	
Pr
oc
es
si
ng

3
G
en
er
al
iz
a�
on
s	
Pr
oc
es
si
ng

4
Sc
he
m
a	
Ru

le
s	
Pr
oc
es
si
ng

5
D
at
a	
Ty
pe
s	
Pr
oc
es
si
ng

6
Pr
es
en
ta
�o

n
7

Input	Processing

Process	En�ty	Types

Process	Event	Types

Select	Candidate	
Rela�onship	Types

Process	Referen�ally-Complete
Rela�onship	Types

Project	Referen�ally-Par�al
Rela�onship	Types

Process	Projected
Rela�onship	Types

Process	Direct	
Structural	Generaliza�ons

Process	Direct	
Behavioral	Generaliza�ons

Process	Indirect	
Structural	Generaliza�ons

Process	Indirect	
Behavioral	Generaliza�ons

Select	Candidate	
Schema	Rules

Process	Referen�ally-Complete	Schema	Rules

Process	Referen�ally-Incomplete	Constraints

Process	Referen�ally-Incomplete	Deriva�on	Rules

Process	Data	Types

Present	Filtered	Conceptual	Schema

The	focus	set	contains	
schema	rules	from	
the	large	schema

The	rela�onship	types	used	in	the	
schema	rules	of	the	focus	set	are	all	

referen�ally-complete	rela�onship	types

1.1

2.1

2.2

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

6.1

7.1

The	en�ty	and	event	types	used	in	the	
schema	rules	of	the	focus	set	are	all	
included	into	the	filtered	schema

The	schema	rules	of	the	focus	set	are	
all	referen�ally-complete	and	are	

all	included	into	the	filtered	schema

Only	processes	rela�onship	
types	referenced	by	schema
rules	from	the	large	schema

Only	includes	into	the	filtered	schema
those	data	types	referenced	by	the
schema	rules	from	the	focus	set

The	filtered	schema	only	contains
those	a�ributes	referenced	by	the
schema	rules	from	the	focus	set

scope	=	local Note	that	the	selected	a�ributes	are
projected	in	the	same	manner	as

rela�onship	types.	This	is	the	only	one
filtering	request	where	filtered	

a�ributes	are	projected.

Figure 6.12. Activity diagram for the filtering request F2 when the scope is local.

166



6.3. CATALOG OF FILTERING REQUESTS

M
et

ri
cs

 P
ro

ce
ss

in
g

1
En

�
ty

 a
n

d
 E

ve
n

t 
Ty

p
es

 P
ro

ce
ss

in
g

2
R

el
a�

o
n

sh
ip

 T
yp

es
 P

ro
ce

ss
in

g
3

G
en

er
al

iz
a�

o
n

s 
P

ro
ce

ss
in

g
4

Sc
h

em
a 

R
u

le
s 

P
ro

ce
ss

in
g

5
D

at
a 

Ty
p

es
 P

ro
ce

ss
in

g
6

P
re

se
n

ta
�

o
n

7

Input Processing

Importance Compu�ng

Closeness Compu�ng

Interest Compu�ng

Sor�ng Process

Select Top Elements

Process En�ty Types

Process Event Types

Select Candidate 
Rela�onship Types

Process Referen�ally‐Complete
Rela�onship Types

Project Referen�ally‐Par�al
Rela�onship Types

Process Projected
Rela�onship Types

Process Direct 
Structural Generaliza�ons

Process Direct 
Behavioral Generaliza�ons

Process Indirect 
Structural Generaliza�ons

Process Indirect 
Behavioral Generaliza�ons

Select Candidate 
Schema Rules

Process Referen�ally‐Complete Schema Rules

Process Referen�ally‐Incomplete Constraints

Process Referen�ally‐Incomplete Deriva�on Rules

Process Data Types

Present Filtered Conceptual Schema

The focus set contains 
schema rules from 
the large schema

The rela�onship types used in the 
schema rules of the focus set are all 

referen�ally‐complete rela�onship types

1.1
scope = global

1.2

1.3

1.4

1.5

2.1

2.2

2.3

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

6.1

7.1

The en�ty and event types used in the 
schema rules of the focus set are all 

included into the filtered schema

The schema rules of the focus set are 
all referen�ally‐complete and are 
included into the filtered schema

Figure 6.13. Activity diagram for the filtering request F2 when the scope is global.

167



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

Example of F2

The filtering scenario proposed in this example describes a user of the conceptual schema of

the Magento e-commerce system that wants to know the schema elements that participate in

the specification of a schema rule defined in the schema of Magento. Concretely, the user is

interested in the schema rule isIdentifiedByItsProductItsCartAndItsOptions defined in

the context of the entity type ShoppingCartItem:

context ShoppingCartItem inv isIdentifiedByItsProductItsCartAndItsOptions:

let textOp: Bag(Tuple(o:TextOption ,v:String)) =

self.textOptionRating ->collect(t|

Tuple{o=t.textOption ,v=t.value})

in

let dateOp: Bag(Tuple(o:DateOption ,v:Date)) =

self.dateOptionRating ->collect(t|

Tuple{o=t.dateOption ,v=t.value})

in

ShoppingCartItem.allInstances ()

->isUnique(Tuple{s=shoppingCart ,

p=product ,

t=textOp ,

d=dateOp ,

v=optionValueInOption })

Therefore, the user constructs the input of the method as follows:

CS = Magento

FS = {isIdentifiedByItsProductItsCartAndItsOptions}
RS = ∅
scope = local

I = CEntityRank Extended

As a result of the application of the filtering request for schema rules, the user obtains the

filtered conceptual schema depicted in Fig. 6.14. It presents only those schema elements that

are referenced by the schema rule (the scope is local), including entity types and relationship

types. Basically, a ShoppingCartItem is connected with a Product, a ShoppingCart, and several

options, including text options, date options, and value options. The schema rule of focus

indicates that an instance of ShoppingCartItem is identified by its ShoppingCart, its Product,

a tuple with the instances of TextOption connected to it and TextOptionRating values, a

tuple with the instances of DateOption connected to it and DateOptionRating values, and a

set of instance of OptionValueInOption connected to it. Therefore, two different instances of

ShoppingCartItem must have different instances of the elements that identify them.

168



6.3. CATALOG OF FILTERING REQUESTS

Product

ShoppingCartItem

TextOptionRating

value:String [1]

*

*

1

SCItemSavesAPurchaseOfTheProduct

OptionValueInOption

OptionValue

OptionWithPredefinedContent

ShoppingCart

TextOption

DateOption

DateOptionRating

value:Date [1]

*
*

* *

1

SCItemIsPartOfShoppingCart

1..*

1..*

* *

O
rd

e
rL

in
e
C

h
o
o
se

sO
p

ti
o
n
V
a
lu

e
In

O
p

ti
o
n

s

context ShoppingCartItem 
 inv isIdentifiedByItsProductItsCartAndItsOptions:
  let textOp: Bag(Tuple(o:TextOption,v:String)) = 
   self.textOptionRating->collect(t|
      Tuple{o=t.textOption,v=t.value})  
  in
   let dateOp: Bag(Tuple(o:DateOption,v:Date)) = 
    self.dateOptionRating->collect(t|
     Tuple{o=t.dateOption,v=t.value})
   in
    ShoppingCartItem.allInstances()
    ->isUnique(Tuple{s=shoppingCart,
                     p=product,
                     t=textOp,
                     d=dateOp,
                     v=optionValueInOption})

Date

day:Integer
month:Integer
year:Integer

«datatype»

Figure 6.14. Filtered schema for the schema rule of ShoppingCartItem obtained by applying F2.

On the other hand, the user can construct the same input of the method but setting the

scope to global :

CS = Magento

FS = {isIdentifiedByItsProductItsCartAndItsOptions}
RS = ∅
scope = global

K = 10

I = CEntityRank Extended

Figure 6.15 and Fig. 6.16 present the results for the new request. It is important to note

that we also show additional integrity constraints that are referentially complete taking into

account the schema elements that appear in the filtered schema our method provides for this

filtering request.

169



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

Product
sku: String [1]
genericName: String [1]
genericNetPrice: Real [0..1]
genericWeight: Real [0..1]
genericStatus: Status [1]
genericIsVisibleOnCatalog: Boolean [0..1]
genericIsNewFrom: Date [0..1]
genericIsNewUntil: Date [0..1]
genericSpecialNetPrice: Real [0..1]
genericSpecialNetPriceFrom: Date [0..1]
genericSpecialNetPriceUntil: Date [0..1]
genericDescription: String [0..1]
genericShortDescription: String [0..1]
genericMetaDescription: String [0..1]
genericMetaTitle: String [0..1]
genericMetaKeyword: String [*]
genericImageGalleryPath: String [0..1]
genericBaseImagePath: String [0..1]
genericSmallImagePath: String [0..1]
genericThumbnailPath: String [0..1]
genericIsAvailableForGoogleCheckout: Boolean [0..1]
genericIsGiftMessageAllowed: Boolean [0..1]
genericIsVisibleOnSearch: Boolean [0..1]
stockStatus: ProductStatus [1]
quantity: Real [0..1]
qtyToBecomeOutOfStock: Real [0..1]
minQtyAllowedInShoppingCart: Real [0..1]
maxQtyAllowedInShoppingCart: Integer [0..1]
notifyForQuantityBelow: Real [0..1]
genericUrlKey: String [0..1]
backOrderPolicy: BackOrderPolicy [0..1]
productType: ProductType

ShoppingCartItem
quantity: Integer [1]
giftMessage: GiftMessage [0..1]
basePrice: Real [0..1]
calculatedPrice: Real [1]
customPrice: Real [0..1]
price: Real [1]
discount: Real [1]
total: Real [1]

TextOptionRating
value:String [1]

*

*

1

SCItemSavesAPurchaseOfTheProduct

OptionValueInOption
sign: Sign [1]
fixedIncrement: Real [0..1]
relativeIncrement: Real [0..1]

OptionValue
genericName: String [1]
skuAppendix: String [0..1]

OptionWithPredefinedContent

selectionType: SelectionType [1]

ShoppingCart

giftMessage: GiftMessage[0..1]
couponCode: String [0..1]
total: Real [1]

TextOption

DateOption

DateOptionRating
value:Date [1]

* *

* *

1

SCItemIsPartOfShoppingCart

1..*

1..*

* *

O
rd

er
Li

ne
C
ho

os
es

O
pt

io
nV

al
ue

In
O

pt
io

ns

Figure 6.15. Filtered schema for the schema rule of ShoppingCartItem when the scope is global (I).

170



6.3. CATALOG OF FILTERING REQUESTS

context ShoppingCartItem 
 inv isIdentifiedByItsProductItsCartAndItsOptions:
  let textOp: Bag(Tuple(o:TextOption,v:String)) = 
   self.textOptionRating->collect(t|
      Tuple{o=t.textOption,v=t.value})  
  in
   let dateOp: Bag(Tuple(o:DateOption,v:Date)) = 
    self.dateOptionRating->collect(t|
     Tuple{o=t.dateOption,v=t.value})
   in
    ShoppingCartItem.allInstances()
    ->isUnique(Tuple{s=shoppingCart,
                     p=product,
                     t=textOp,
                     d=dateOp,
                     v=optionValueInOption})

context ShoppingCartItem 
 inv ratesOnlyOptionsOfItsProduct:
  self.textOption->forAll(to|to.product=self.product)
  and
  self.dateOption->forAll(dop|dop.product=self.product)
  and
  self.optionValueInOption->forAll(ovio|
   ovio.optionWithPredefinedContent.product
   = 
   self.product)

context OptionValue  
  inv isIdentifiedByItsGenericName:
   OptionValue.allInstances()->isUnique(genericName)

context OptionValueInOption 
  inv definesRelativeOrFixedIncrementButNotAll:
   self.fixedIncrement.isUndefined() 
   <> 
   self.relativeIncrement.isUndefined()

context OptionWithPredefinedContent 
  inv isRatedWithOnlyOneValueWhenItIsNeeded:
   self.selectionType = SelectionType::Single 
   implies 
   self.optionValueInOption->forAll(ov1,ov2 |
    ov1 <> ov2 
    implies
    ov1.shoppingCartItem <> ov2.shoppingCartItem
   )

context Product 
 inv isIdentifiedBySku:
  Product.allInstances()->isUnique(sku)

Date
day:Integer
month:Integer
year:Integer

«datatype»

ProductStatus
InStock
OutOfStock

«enumeration»

BackOrderPolicy
NoBackorders
AllowQtyBelowZero
AllowQtyBelowZeroAndNotifyCustomer

«enumeration»

Status
Enabled
Disabled

«enumeration»

ProductType

Simple
Grouped
Configurable
Downloadable
Virtual
Bundle

«enumeration»

SelectionType
Multiple
Single

«enumeration»
Sign

Plus
Minus

«enumeration»

GiftMessage

sendBy: String
sendTo: String
text: String

«datatype»

Figure 6.16. Filtered schema for the schema rule of ShoppingCartItem when the scope is global (II).

171



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

6.3.3 F3: Filtering Request for Event Types

Input

Filtering Request

Metrics Processing1

En�ty and Event Types Processing2

Rela�onship Types Processing3

Generaliza�ons Processing4

Schema Rules Processing5

Data Types Processing6

Presenta�on7

F3

Output

Event Type

context inv ...
context derive ...
context post ...

«event»

Event Type
«event»

Event Type
«event»

«event»

«event» «event»

Figure 6.17. F3: Filtering request for event types.

Application Scenario

F3 : P≥1(Eb)→ CSF

The user focuses on a set of event types from a large conceptual schema. The user is aware

of those event types or she has accessed them via previous filtering requests. The information

need consists in obtaining more knowledge from the schema with relation to the event types in

the user focus. The method obtains the elements of interest to the user according to the initial

selection and the characteristics represented in the large schema. As output, the user obtains a

small-sized filtered conceptual schema that includes the combination of the initial event types

of focus with the elements of interest gathered by our methodology.

Specific Input

The input for the filtering request F3 contains the same elements as indicated in Sect. 6.2. In

addition, we present here a detailed description of the particularities of such elements for the

specific input of F3.

◦ Large conceptual schema: the source schema CS = 〈SS,BS〉 where SS = 〈E , R, T , G,

C, D〉 is the structural subschema, and BS = 〈Eb, Rb, Gb, Cb〉 is the behavioral subschema.

The amount of knowledge represented in CS is large and makes it very difficult to manually

extract fragments of interest to a user.

◦ Focus Set: it works as the conceptual schema viewpoint of the user. Therefore, a focus

set is an initial point that should be extended with more knowledge. Formally, the focus

set FS contains a small subset of the event types of Eb from which the user wants to know

172



6.3. CATALOG OF FILTERING REQUESTS

more about. Note that the size of the focus set is reduced with respect to the amount of

event types from the large schema (|FS| � |Eb|). Also, it is mandatory for the user to

select a non-empty focus set (FS 6= ∅).

◦ Size threshold: it denotes the maximum expected number K of entity and event types

in the output. Note that |EbFS | ≤ K ≤ |E ∪ Eb|, where EbFS is the set that includes

the event types in the focus set FS. Thus, EbFS equals to the focus set, since FS only

contains event types.

◦ Rejection Set: the set RS with entity types of E and event types of Eb that the user does

not want to obtain in the output. Note that it is disjoint with the focus set (RS∩FS = ∅).
By default, the rejection set is empty (|RS| ≥ 0).

◦ Importance method: the algorithm I to compute the importance of entity types from

E and event types from Eb. By default I = ISM , the Simple Method described in Chap. 4.

Specific Output

The output of this filtering request is a filtered conceptual schema CSF = 〈SSF ,BSF 〉, where

SSF = 〈EF , RF , TF , GF , CF , DF 〉 is the structural subschema, and BSF = 〈EbF , RbF , GbF ,

CbF 〉 is the behavioral subschema. The specific constraints that CSF must satisfy are described

as follows:

[C1] EF does not contain the entity types from the rejection set RS.

[C2] EbF contains the event types EbFS from the focus set FS.

[C3] EbF does not contain the event types from the rejection set RS.

[C4] GbF contains direct generalization relationships between event types of EbF .

[C5] GF contains direct generalization relationships between entity types of EF .

[C6] If c is an integrity constraint or derivation rule of C, D or Cb defined in the context

of an schema element of CSF and any of the schema elements referenced by c belong to

CSF , then c is included in CF , DF or CbF .

[C7] If r is a relationship type of R and its participant entity types belong to EF , or are

ascendants of entity types of EF (in which case a projection is needed), then r is included

in RF . The same behavior applies to relationship types of Rb to be included in RbF .

[C8] If d is a data type of T and it is used by attributes of entity types of EF , event types

of EbF , or schema rules of CF , CbF or DF , then d is included in TF of CSF .

[C9] If e1 and e2 are entity types of EF and does not exist a direct generalization between

them in GF nor a path of direct generalizations of GF traversing entity types ei of EF ,

but both e1 and e2 belong to different levels of the same hierarchy in G of CS, a direct

generalization g′ is included between e1 and e2 in GF but is marked as derived. The same

behavior applies to pairs of event types of EbF .

173



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

[C10] If c is a constraint of C or Cb defined in the context of an schema element of CSF
and references schema elements out of CSF only the header of such constraint is included

in CF or CbF . If d is a derivation rule of D whose context belongs to CSF and references

schema elements out of CSF , the context element of the rule is marked as materialized in

CSF and d is not included in DF .

Filtering Stages

The filtering request for event types follows the specific methodology presented in Sect. 5.4

of Ch. 5. In the following, we present a brief summary of the different stages and steps (see

Fig. 6.18) that belong to this filtering request.

◦ Stage 1: Metrics. The first step in this stage (see Activity 1.1 in Fig. 6.18) processes

the input of the filtering request. It creates some auxiliary sets to gather the event types

from the focus set. In this particular case, the auxiliary set EbFS contains the event types

from the focus set. Also, the set EFS that contains entity types from the focus set and

the set RFS that contains relationship types from the focus set are both empty since

this filtering request focus on the event types to construct the input. The rest of the

steps follow the same indications presented in Sect. 5.4.1 of Ch. 5. The method computes

the importance, closeness, and interest metrics, and sorts the entity and event types in a

ranking.

◦ Stage 2: Entity and Event Types. This stage follows the same steps as presented

in Sect. 5.4.2 of Ch. 5. The method selects the top entity and event types from the

interest ranking taking into account the size threshold of the input and includes them in

the resulting filtered conceptual schema. The event types of the focus set are all included

in the filtered schema.

◦ Stage 3: Relationship Types. This stage follows the same steps as presented in

Sect. 5.4.3 of Ch. 5. The method classifies the relationship types according to their

participants as referentially-complete or referentially-partial relationship types. Then,

the method projects and selects the final relationship types that are part of the resulting

filtered conceptual schema.

◦ Stage 4: Generalizations. This stage follows the same steps as presented in Sect. 5.4.4

of Ch. 5. The method processes the direct and creates indirect generalizations to construct

the hierarchies of the resulting filtered conceptual schema.

◦ Stage 5: Schema Rules. This stage follows the same steps as presented in Sect. 5.4.5

of Ch. 5. The method selects the schema rules defined in the context of elements from

the filtered schema and processes the referentially-incomplete ones in order to construct

the rules of the resulting filtered conceptual schema.

◦ Stage 6: Data Types. This stage follows the same steps as presented in Sect. 5.4.6 of

Ch. 5. The method includes in the filtered schema those data types referenced or used by

other elements within such schema.

174



6.3. CATALOG OF FILTERING REQUESTS

◦ Stage 7: Presentation. This stage follows the same steps as presented in Sect. 5.4.7 of

Ch. 5. The method presents the filtered schema to the user. The elements to highlight

are the event types from the focus set FS.

Method Correctness

The proposed activities in the stages of the filtering request transform the input into a valid

output in the form of a filtered conceptual schema that satisfies a set constraints over such

schema. In the following we verify the correctness of the method according to those constraints

and the activities that satisfy each of them:

• Constraint [C1] is satisfied by the activity 2.2 of the filtering request.

• Constraint [C2] is satisfied by the activity 2.3 of the filtering request.

• Constraint [C3] is satisfied by the activity 2.3 of the filtering request.

• Constraint [C4] is satisfied by the activity 4.2 of the filtering request.

• Constraint [C5] is satisfied by the activity 4.1 of the filtering request.

• Constraint [C6] is satisfied by the activities 5.1 and 5.2 of the filtering request.

• Constraint [C7] is satisfied by the activities 3.1, 3.2, 3.3, and 3.4 of the filtering request.

• Constraint [C8] is satisfied by the activity 6.1 of the filtering request.

• Constraint [C9] is satisfied by the activities 4.3 and 4.4 of filtering request method.

• Constraint [C10] is satisfied by the activities 5.1, 5.3, and 5.4 of the filtering request.

The activities 1.1, 1.2, 1.3, 1.5, and 1.5 of the filtering request process the input and deal

with the computation of relevance metrics to filter the large schema. The activity 2.1 selects the

additional entity and event types to complete the knowledge from the focus set. The activity

7.1 presents the resulting filtered conceptual schema to the user.

175



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

M
et
ric
s	
Pr
oc
es
si
ng

1
En
�t
y	
an
d	
Ev
en
t	T
yp
es
	P
ro
ce
ss
in
g

2
Re
la
�o

ns
hi
p	
Ty
pe
s	
Pr
oc
es
si
ng

3
G
en
er
al
iz
a�
on
s	
Pr
oc
es
si
ng

4
Sc
he
m
a	
Ru

le
s	
Pr
oc
es
si
ng

5
D
at
a	
Ty
pe
s	
Pr
oc
es
si
ng

6
Pr
es
en
ta
�o

n
7

Input	Processing

Importance	Compu�ng

Closeness	Compu�ng

Interest	Compu�ng

Sor�ng	Process

Select	Top	Elements

Process	En�ty	Types

Process	Event	Types

Select	Candidate	
Rela�onship	Types

Process	Referen�ally-Complete
Rela�onship	Types

Project	Referen�ally-Par�al
Rela�onship	Types

Process	Projected
Rela�onship	Types

Process	Direct	
Structural	Generaliza�ons

Process	Direct	
Behavioral	Generaliza�ons

Process	Indirect	
Structural	Generaliza�ons

Process	Indirect	
Behavioral	Generaliza�ons

Select	Candidate	
Schema	Rules

Process	Referen�ally-Complete	Schema	Rules

Process	Referen�ally-Incomplete	Constraints

Process	Referen�ally-Incomplete	Deriva�on	Rules

Process	Data	Types

Present	Filtered	Conceptual	Schema

The	focus	set	contains	
event	types	from	the	
behavioral	subschema

1.1

1.2

1.3

1.4

1.5

2.1

2.2

2.3

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

6.1

7.1

The	event	types	from	the	
focus	set	are	all	included	
into	the	filtered	schema

The	schema	rules	defined	in	the	context	
of	the	event	types	from	the	focus	set	are	
selected	in	order	to	help	the	user	to	

understand	the	seman�cs	of	these	events	

Figure 6.18. Activity diagram for the filtering request F3.

176



6.3. CATALOG OF FILTERING REQUESTS

Example of F3

The filtering scenario proposed in this example describes a user of the conceptual schema of the

Magento e-commerce system that wants to know the schema elements of interest with respect

to a set of event types. Concretely, the user focuses in the event type ApplyGrouponCode. The

user constructs an input to the filtering request as follows:

CS = Magento

FS = {ApplyGrouponCode}
RS = {Product, StoreView, Website}
K = 6

I = CEntityRank Extended

Figure 6.19 shows the graphical representation of the filtered schema our method obtains

taking into account the previous input. Note that the user specifies a nonempty rejection set

including the entity types Product, StoreView, and Website. Since these entities are of high

importance and are close to most of the other concepts in the schema, a good way to hide them

is to use the rejection set of the input.

context Country 
  inv isIdentifiedByItsName:
   Country.allInstances() -> isUnique(name)

context ApplyCouponCode::effect()
  post :
   self.shoppingCart.couponCode = self.newCouponCode

context ShoppingCart::total:Real
  derive : self.shoppingCartItem.total->sum()

context ShoppingCartItem::price:Real
  derive : if not self.customPrice.oclIsUndefined() 
           then self.customPrice
           else self.calculatedPrice 
           endif 

context ShoppingCartItem::total:Real
  derive : if self.applyDiscount 
           then self.price * self.quantity - self.discount 
           else self.price * self.quantity
           endif

paymentMethodOfGenericAllowedCountry

Status
Enabled
Disabled

«enumeration»

OrderStatus
Pending
Processing
Complete
Closed
Cancelled
Hold

«enumeration»

GiftMessage
sendBy: String
sendTo: String
text: String

«datatype»

ApplyCouponCode
newCouponCode: String [1]

effect():Boolean

«event»

ExistingShoppingCartEvent
«event» ShoppingCart

couponCode:String
giftMessage:GiftMessage
/total:Real[1]

PaymentMethod
genericStatus: Status [1] 
genericTitle: String [1]
genericNewOrderStatus: OrderStatus [1]
genericMinimumAllowed: Real
genericMaximumAllowed: Real

Country
name: String [1]
postalCodeIsMandatory: Boolean [1]

ShoppingCartItem
quantity: Integer [1]
giftMessage: GiftMessage [0..1]
basePrice: Real [0..1]
calculatedPrice: Real [1]
customPrice: Real [0..1]
/price: Real [1] 
discount: Real [1]
applyDiscount: Boolean [1]
/total: Real [1]

*
1..*genericAllowedCountry

PaymentMethodDefinesGenericAllowedCountry

*

1
1 *

IsPartOf

Figure 6.19. Filtered schema for the event type ApplyCouponCode.

177



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

The resulting schema indicates that the event type of focus ApplyCouponCode is a descen-

dant of the event type ExistingShoppingCartEvent, which is related to a ShoppingCart. The

effect of this event type is specified in OCL and describes that the value of the couponCode

attribute of the ShoppingCart that is connected to the event takes the new vale described in

the newCouponCode attribute of ApplyCouponCode.

Note that we include derivation rules for the attributes price and total of ShoppingCartItem

and total of ShoppingCart, because the OCL expressions within these rules are referentially-

complete according to the filtered schema.

The filtered schema also shows that an instance of ShoppingCart is related to several in-

stances of ShoppingCartItem through the relationship type IsPartOf. In addition to it, we

observe that payment methods in Magento can define a set of countries where the payment is

allowed. We obtain information about payment methods since the entity type PaymentMethod

is close to the event type of focus that deals with shopping carts. Although in this case the

filtered conceptual schema is unconnected –it contains two connected components– the knowl-

edge we retrieve is meaningful and we may start a new interaction in order to know more about

the existing elements that are between ShoppingCart and PaymentMethod. Additionally, we

can increase the value of K to achieve a connected schema.

178



6.3. CATALOG OF FILTERING REQUESTS

6.3.4 F4: Filtering Request for a Conceptual Schema

Input

Filtering Request

Metrics Processing1

En�ty and Event Types Processing2

Rela�onship Types Processing3

Generaliza�ons Processing4

Schema Rules Processing5

Data Types Processing6

Presenta�on7

F4

Output

context inv ...
context derive ...
context post ...

context inv ...
context post ...

«event» «event»

«event» «event»

context inv ...

Figure 6.20. F4: Filtering request for a conceptual schema.

Application Scenario

F4 : CS → CSF

The user focuses on a small conceptual schema from the large one. The user is aware of the

elements that conform the schema or she has accessed them via previous filtering requests. The

information need consists in obtaining more knowledge from the large schema with relation

to the elements in the user focus. The method obtains the elements of interest to the user

according to the initial selection and the characteristics represented in the large schema. As

output, the user obtains a conceptual schema that includes the combination of the elements of

the selected schema with the elements of interest gathered by our methodology.

Specific Input

The input for the filtering request F4 contains the same elements as indicated in Sect. 6.2. In

addition, we present here a detailed description of the particularities of such elements for the

specific input of F4.

◦ Large conceptual schema: the source schema CS = 〈SS,BS〉 where SS = 〈E , R, T , G,

C, D〉 is the structural subschema, and BS = 〈Eb, Rb, Gb, Cb〉 is the behavioral subschema.

The amount of knowledge represented in CS is large and makes it very difficult to manually

extract fragments of interest to a user.

◦ Focus Set: it works as the conceptual schema viewpoint of the user. Therefore, a focus

set is an initial point that should be extended with more knowledge. Formally, the focus

set FS contains a small conceptual schema CS ′ = 〈SS ′,BS ′〉 of interest to the user where

179



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

SS ′ = 〈E ′, R′, T ′, G′, C′, D′〉 is the structural subschema and BS ′ = 〈E ′b, R′b, G′b, C′b〉
is the behavioral subschema, from which the user wants to know more about. Note that

the size of the focus set is smaller than the size of the large schema. It is mandatory for

the user to select a non-empty focus set (FS 6= ∅).

◦ Size threshold: it denotes the maximum expected number K of entity and event types

in the output. Note that |EFS ∪ EbFS | ≤ K ≤ |E ∪ Eb|, where EFS is the set that includes

the entity types in the focus set FS and EbFS the set that includes the event types in

the focus set. Note that EFS and EbFS also contains those entity and event types that

participate in relationship types or are referenced by schema rules from the focus set.

◦ Rejection Set: the set RS with entity types of E and event types of Eb that the user does

not want to obtain in the output. Note that it is disjoint with the focus set (RS∩FS = ∅).
By default, the rejection set is empty (|RS| ≥ 0).

◦ Importance method: the algorithm I to compute the importance of entity types from

E and event types from Eb. By default I = ISM , the Simple Method described in Chap. 4.

Specific Output

The output of this filtering request is a filtered conceptual schema CSF = 〈SSF ,BSF 〉, where

SSF = 〈EF , RF , TF , GF , CF , DF 〉 is the structural subschema, and BSF = 〈EbF , RbF , GbF ,

CbF 〉 is the behavioral subschema. The specific constraints that CSF must satisfy are described

as follows:

[C1] EF contains the entity types E ′ from the schema of focus.

[C2] EF does not contain the entity types from the rejection set RS.

[C3] RF contains the relationship types R′ from the schema of focus.

[C4] TF contains the data types T ′ from the schema of focus.

[C5] GF contains the generalization relationships G′ from the schema of focus.

[C6] CF contains the integrity constraints C′ from the schema of focus.

[C7] DF contains the derivation rules D′ from the schema of focus.

[C8] EbF contains the event types E ′b from the schema of focus.

[C9] EbF does not contain the event types from the rejection set RS.

[C10] RbF contains the relationship types R′b from the schema of focus.

[C11] GbF contains the generalization relationships G′b from the schema of focus.

[C12] CbF contains the integrity constraints C′b from the schema of focus.

180



6.3. CATALOG OF FILTERING REQUESTS

[C13] If r is a relationship type of R and its participant entity types belong to EF , or are

ascendants of entity types of EF (in which case a projection is needed), then r is included

in RF . The same behavior applies to relationships of Rb to be included in RbF .

[C14] GF contains direct generalization relationships between entity types of EF .

[C15] GbF contains direct generalization relationships between event types of EbF .

[C16] If c is an integrity constraint or derivation rule of C, D or Cb defined in the context

of an schema element of CSF and any of the schema elements referenced by c belong to

CSF , then c is included in CF , DF or CbF .

[C17] If d is a data type of T and it is used by attributes of entity types of EF , event types

of EbF , or schema rules of CF , CbF or DF , then d is included in TF of CSF .

[C18] If e1 and e2 are entity types of EF and does not exist a direct generalization between

them in GF nor a path of direct generalizations of GF traversing entity types ei of EF ,

but both e1 and e2 belong to different levels of the same hierarchy in G of CS, a direct

generalization g′ is included between e1 and e2 in GF but is marked as derived. The same

behavior applies to pairs of event types of EbF .

[C19] If c is a constraint of C or Cb defined in the context of an schema element of CSF
and references schema elements out of CSF only the header of such constraint is included

in CF or CbF . If d is a derivation rule of D whose context belongs to CSF and references

schema elements out of CSF , the context element of the rule is marked as materialized in

CSF and d is not included in DF .

Filtering Stages

The filtering request for a conceptual schema follows the specific methodology presented in

Sect. 5.4 of Ch. 5. In the following, we present a brief summary of the different stages and steps

(see Fig. 6.21) that belong to this filtering request.

◦ Stage 1: Metrics. The first step in this stage (see Activity 1.1 in Fig. 6.21) processes

the input of the filtering request. It creates some auxiliary sets to gather the entity,

relationship, and event types from the small schema that conforms the focus set. In this

particular case, the auxiliary set EFS contains the union between the entity types from

the focus set, and the entity types that are participants of the relationship types from the

focus set. Also, the auxiliary set EbFS contains the union between the event types from

the focus set, and the event types that are participants of the relationship types from the

focus set. Finally, the auxiliary setRFS contains the relationship types from the focus set.

These three auxiliary sets are the basis of the filtering request in order to construct a new

filtered schema with the elements of the small schema of input and additional knowledge

of interest. The rest of the steps follow the same indications presented in Sect. 5.4.1 of

Ch. 5. The method computes the importance, closeness, and interest metrics, and sorts

the entity and event types in a ranking.

181



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

◦ Stage 2: Entity and Event Types. This stage follows the same steps as presented in

Sect. 5.4.2 of Ch. 5. The method selects the top entity and event types from the interest

ranking taking into account the size threshold of the input and includes them in the

resulting filtered conceptual schema. The entity and event types from the small schema

of focus are also included in such schema.

◦ Stage 3: Relationship Types. This stage follows the same steps as presented in

Sect. 5.4.3 of Ch. 5. The method classifies the relationship types according to their

participants as referentially-complete or referentially-partial relationship types. Note that

those relationship types in the small schema of focus are always referentially-complete

since their participants are members on the set EFS of entity types or on the set EbFS of

event types from the focus set. Then, the method projects and selects the final relationship

types that are part of the resulting filtered conceptual schema.

◦ Stage 4: Generalizations. This stage follows the same steps as presented in Sect. 5.4.4

of Ch. 5. The method processes the direct and creates indirect generalizations to construct

the hierarchies of the resulting filtered conceptual schema. The generalizations in the small

schema of focus are also included in the filtered schema because their general and specific

participants are all entity and event types already included in that schema.

◦ Stage 5: Schema Rules. This stage follows the same steps as presented in Sect. 5.4.5

of Ch. 5. The method selects the schema rules defined in the context of elements from

the filtered schema and processes the referentially-incomplete ones in order to construct

the rules of the resulting filtered conceptual schema. The schema rules from the small

schema of focus are also included in the filtered schema.

◦ Stage 6: Data Types. This stage follows the same steps as presented in Sect. 5.4.6 of

Ch. 5. The method includes in the filtered schema those data types referenced or used by

other elements within such schema.

◦ Stage 7: Presentation. This stage follows the same steps as presented in Sect. 5.4.7 of

Ch. 5. The method presents the filtered schema to the user. The elements to highlight

are the elements of the small schema from the focus set FS.

Method Correctness

The proposed activities in the stages of the filtering request transform the input into a valid

output in the form of a filtered conceptual schema that satisfies a set constraints over such

schema. In the following we verify the correctness of the method according to those constraints

and the activities that satisfy each of them:

• Constraint [C1] is satisfied by the activity 2.2 of the filtering request.

• Constraint [C2] is satisfied by the activity 2.2 of the filtering request.

• Constraint [C3] is satisfied by the activities 3.1, 3.2, and 3.4 of the filtering request.

182



6.3. CATALOG OF FILTERING REQUESTS

M
et
ric
s	
Pr
oc
es
si
ng

1
En
�t
y	
an
d	
Ev
en
t	T
yp
es
	P
ro
ce
ss
in
g

2
Re
la
�o

ns
hi
p	
Ty
pe
s	
Pr
oc
es
si
ng

3
G
en
er
al
iz
a�
on
s	
Pr
oc
es
si
ng

4
Sc
he
m
a	
Ru

le
s	
Pr
oc
es
si
ng

5
D
at
a	
Ty
pe
s	
Pr
oc
es
si
ng

6
Pr
es
en
ta
�o

n
7

Input	Processing

Importance	Compu�ng

Closeness	Compu�ng

Interest	Compu�ng

Sor�ng	Process

Select	Top	Elements

Process	En�ty	Types

Process	Event	Types

Select	Candidate	
Rela�onship	Types

Process	Referen�ally-Complete
Rela�onship	Types

Project	Referen�ally-Par�al
Rela�onship	Types

Process	Projected
Rela�onship	Types

Process	Direct	
Structural	Generaliza�ons

Process	Direct	
Behavioral	Generaliza�ons

Process	Indirect	
Structural	Generaliza�ons

Process	Indirect	
Behavioral	Generaliza�ons

Select	Candidate	
Schema	Rules

Process	Referen�ally-Complete	Schema	Rules

Process	Referen�ally-Incomplete	Constraints

Process	Referen�ally-Incomplete	Deriva�on	Rules

Process	Data	Types

Present	Filtered	Conceptual	Schema

The	focus	set	contains	a	
small	conceptual	schema

1.1

1.2

1.3

1.4

1.5

2.1

2.2

2.3

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

6.1

7.1

The	en�ty	and	event	types	from	the	
small	schema	of		focus	set	are	all	
included	into	the	filtered	schema

The	schema	rules	defined	in	the	small
schema	of	focus	set	are	all	included

into	the	filtered	schema.	

The	rela�onship	types	from	the	small	schema	
of	focus	are	all	referen�ally-complete	since	
their	par�cipants	where	included	into	the	
filtered	schema	in	Stage	1	of	this	process.

The	generaliza�ons	from	the	
small	schema	of		focus	set	are	all	
included	into	the	filtered	schema

The	data	types	from	the	
small	schema	of		focus	set	are	all	
included	into	the	filtered	schema

The	schema	elements	from	the	small	
schema	of	focus	set	are	all	highlighted	
to	benefit	a	rapid	iden�fica�on	of	them

Figure 6.21. Activity diagram for the filtering request F4.

183



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

• Constraint [C4] is satisfied by the activity 6.1 of the filtering request.

• Constraint [C5] is satisfied by the activity 4.1 of the filtering request.

• Constraint [C6] is satisfied by the activities 5.1, 5.2, and 5.3 of the filtering request.

• Constraint [C7] is satisfied by the activities 5.1, 5.2, and 5.4 of the filtering request.

• Constraint [C8] is satisfied by the activity 2.3 of the filtering request.

• Constraint [C9] is satisfied by the activity 2.3 of the filtering request.

• Constraint [C10] is satisfied by the activities 3.1, 3.2, and 3.4 of the filtering request.

• Constraint [C11] is satisfied by the activity 4.2 of the filtering request.

• Constraint [C12] is satisfied by the activities 5.1, 5.2, 5.3, and 5.4 of the filtering request.

• Constraint [C13] is satisfied by the activities 3.1, 3.2, 3.3, and 3.4 of the filtering request.

• Constraint [C14] is satisfied by the activity 4.1 of the filtering request.

• Constraint [C15] is satisfied by the activity 4.2 of the filtering request.

• Constraint [C16] is satisfied by the activities 5.1 and 5.2 of the filtering request.

• Constraint [C17] is satisfied by the activity 6.1 of the filtering request.

• Constraint [C18] is satisfied by the activities 4.3 and 4.4 of the filtering request.

• Constraint [C19] is satisfied by the activities 5.1, 5.3 and 5.4 of the filtering request.

The activities 1.1, 1.2, 1.3, 1.5, and 1.5 of the filtering request process the input and deal

with the computation of relevance metrics to filter the large schema. The activity 2.1 selects the

additional entity and event types to complete the knowledge from the focus set. The activity

7.1 presents the resulting filtered conceptual schema to the user.

Example of F4

The filtering scenario proposed in this example describes a user of the conceptual schema of the

Magento e-commerce system that wants to know the schema elements of interest with respect

to a small fragment of the large schema. Concretely, the user focuses in the conceptual schema

shown in Fig. 6.22. Our method takes this schema as the input of the filtering request.

SessionDefinesCurrentCurrency

*

context SetCurrentCurrency::effect()
  post :
   self.session.currentCurrency = self.currency

SetCurrentCurrency
«event»

Currency

Session

1

1
*

existingSessionEvent

1

*sessionWhereIsCurrent

currentCurrency

Figure 6.22. Example of input for the filtering request F4.

184



6.3. CATALOG OF FILTERING REQUESTS

context SetCurrentCurrency::effect()
  post :
   self.session.currentCurrency = self.currency

context Currency 
 inv isIdentifiedByItsName:
  Currency.allInstances()->isUnique(name)

context StoreView 
 inv isIdentifiedByItsCodeAndName:
  StoreView.allInstances()->isUnique(code) and 
  StoreView.allInstances()->isUnique(name)

context Website 
 inv isIdentifiedByItsCode:
  Website.allInstances()->isUnique(code)

Website
code:String
name:String

StoreView
code: String [1]
name: String [1]
status: Status [1]
shopName: String [0..1]
contactPhone: PhoneNumber [0..1]
contactAdress: Address [0..1]
firstDayOfWeek: WeekDay [1]
weekend: WeekDay [1..*]

PhoneNumber
«datatype»

Status
Enabled
Disabled

«enumeration»

WeekDay
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

«enumeration»

SessionDefinesCurrentCurrency

*

SetCurrentCurrency
«event»

1

1
*

existingSessionEvent

1

*sessionWhereIsCurrent
currentCurrency

Session
createdAt:DateTime[1]
ipAddress:String[1]
lastActivityAt:DateTime[1]

DateTime
«datatype»

Currency
name: String[1]
symbol: String [1]
status: Status [1]

CurrencyRate
rate: Real [1] ActivityInfoOfSessionInStoreView

usesOfTellToAFriendInLastHour:Integer

ActivityInfoOfSessionInWebsite

*
*sessionWithInfoAbout

websiteWithInfoAbout

*

*

sessionWithInfoAbout

storeViewWithInfoAbout
baseCurrency
*

*

Figure 6.23. Filtered schema for the schema fragment of Fig 6.22.

As a result, the user obtains the filtered schema depicted in Fig. 6.23. The filtering request

completes the information from the input schema with additional elements of interest from the

large schema. Concretely, the schema of input contains the minimum set of schema elements

that are referenced by the effect postcondition of the event type SetCurrentCurrency. This

event sets the currency that must be used for the current session in Magento.

The resulting schema our method obtains includes the knowledge about websites and store

views, and their relation with the Session entity type. Furthermore, it also shows a reflexive

binary relationship type between two instances of Currency, with an association class that

indicates the CurrencyRate. This filtered schema provides useful feedback for a modeler that

has to modify the definition of the postcondition of SetCurrentCurrency.

185



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

6.3.5 F5: Filtering Request for Context Behavior of Entity Types

Input

Filtering Request

Metrics Processing1

En�ty and Event Types Processing2

Rela�onship Types Processing3

Generaliza�ons Processing4

Schema Rules Processing5

Data Types Processing6

Presenta�on7

F5

Output

En�ty Type

En�ty Type

En�ty Type

context inv ...
context derive ...
context post ...

«event»

«event» «event»

Figure 6.24. F5: Filtering request for context behavior of entity types.

Application Scenario

The user focuses on a set of entity types from a large conceptual schema. The user is aware

of those entity types or she has accessed them via previous filtering requests. The information

need consists in obtaining the event types from the schema with relation to the entity types in

the user focus. The method obtains those event types of interest to the user according to the

initial selection and the characteristics represented in the large schema. As output, the user

obtains a small-sized filtered conceptual schema that includes the combination of the selected

entity types with the event types of interest gathered by our methodology.

Specific Input

The input for the filtering request F5 contains the same elements as indicated in Sect. 6.2. In

addition, we present here a detailed description of the particularities of such elements for the

specific input of F5.

◦ Large conceptual schema: the source schema CS = 〈SS,BS〉 where SS = 〈E , R, T , G,

C, D〉 is the structural subschema, and BS = 〈Eb, Rb, Gb, Cb〉 is the behavioral subschema.

The amount of knowledge represented in CS is large and makes it very difficult to manually

extract fragments of interest to a user.

◦ Focus Set: it works as the conceptual schema viewpoint of the user. Therefore, a focus

set is an initial point that should be extended with more knowledge. Formally, the focus

set FS contains a small subset of the entity types of E from which the user wants to

know more about with respect to their relation with the event types from the behavioral

subschema BS. Note that the size of the focus set is reduced with respect to the amount

186



6.3. CATALOG OF FILTERING REQUESTS

of entity and relationship types from the large schema (|FS| � |E|). Also, it is mandatory

for the user to select a non-empty focus set (FS 6= ∅).

◦ Size threshold: it denotes the maximum expected number K of entity and event types

in the output. Note that |EFS | ≤ K ≤ |E ∪ Eb|, where EFS is the set that includes the

entity types in the focus set FS.

◦ Rejection Set: the set RS with event types of Eb that the user does not want to obtain

in the output. By default, the rejection set is empty (|RS| ≥ 0).

◦ Importance method: the algorithm I to compute the importance of entity types from

E and event types from Eb. By default I = ISM , the Simple Method described in Chap. 4.

Specific Output

The output of this filtering request is a filtered conceptual schema CSF = 〈SSF ,BSF 〉, where

SSF = 〈EF , RF , TF , GF , CF , DF 〉 is the structural subschema, and BSF = 〈EbF , RbF , GbF ,

CbF 〉 is the behavioral subschema. The specific constraints that CSF must satisfy are described

as follows:

[C1] EF contains the entity types EFS from the focus set FS.

[C2] EbF does not contain the event types from the rejection set RS.

[C3] GF contains direct generalization relationships between entity types of EF .

[C4] GbF contains direct generalization relationships between event types of EbF .

[C5] If c is an integrity constraint or derivation rule of C, D or Cb defined in the context

of an schema element of CSF and any of the schema elements referenced by c belong to

CSF , then c is included in CF , DF or CbF .

[C6] If r is a relationship type of R and its participant entity types belong to EF , or are

ascendants of entity types of EF (in which case a projection is needed), then r is included

in RF . The same behavior applies to relationship types of Rb to be included in RbF .

[C7] If d is a data type of T and it is used by attributes of entity types of EF , event types

of EbF , or schema rules of CF , CbF or DF , then d is included in TF of CSF .

[C8] If e1 and e2 are entity types of EF and does not exist a direct generalization between

them in GF nor a path of direct generalizations of GF traversing entity types ei of EF ,

but both e1 and e2 belong to different levels of the same hierarchy in G of CS, a direct

generalization g′ is included between e1 and e2 in GF but is marked as derived. The same

behavior applies to pairs of event types of EbF .

[C9] If c is a constraint of C or Cb defined in the context of an schema element of CSF and

references schema elements out of CSF only the header of such constraint is included in

CF or CbF . If d is a derivation rule of D whose context belongs to CSF and references

schema elements out of CSF , the context element of the rule is marked as materialized in

CSF and d is not included in DF .

187



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

Filtering Stages

The filtering request for context behavior of entity types follows the specific methodology pre-

sented in Sect. 5.4 of Ch. 5. In the following, we present a brief summary of the different stages

and steps (see Fig. 6.25) that belong to this filtering request.

◦ Stage 1: Metrics. The first step in this stage (see Activity 1.1 in Fig. 6.25) processes

the input of the filtering request. It creates an auxiliary set to gather the entity types from

the focus set. The rest of the steps follow the same indications presented in Sect. 5.4.1 of

Ch. 5. The method computes the importance, closeness, and interest metrics, and sorts

the entity and event types in a ranking.

◦ Stage 2: Entity and Event Types. This stage follows the same steps as presented in

Sect. 5.4.2 of Ch. 5. However, for this particular filtering request the method selects only

event types from the interest ranking of top entity and event types taking into account the

size threshold of the input, and includes them in the resulting filtered conceptual schema.

Concretely, we select only those event types that are connected with at least one of the

entity types from the focus set. Therefore, the filtered conceptual schema will contain the

entity types from the focus set and the top event types of interest with connection to the

focus set.

◦ Stage 3: Relationship Types. This stage follows the same steps as presented in

Sect. 5.4.3 of Ch. 5. The method classifies the relationship types according to their

participants as referentially-complete or referentially-partial relationship types. Then,

the method projects and selects the final relationship types that are part of the resulting

filtered conceptual schema.

◦ Stage 4: Generalizations. This stage follows the same steps as presented in Sect. 5.4.4

of Ch. 5. The method processes the direct and creates indirect generalizations to construct

the hierarchies of the resulting filtered conceptual schema.

◦ Stage 5: Schema Rules. This stage follows the same steps as presented in Sect. 5.4.5

of Ch. 5. The method selects the schema rules defined in the context of elements from

the filtered schema and processes the referentially-incomplete ones in order to construct

the rules of the resulting filtered conceptual schema.

◦ Stage 6: Data Types. This stage follows the same steps as presented in Sect. 5.4.6 of

Ch. 5. The method includes in the filtered schema those data types referenced or used by

other elements within such schema.

◦ Stage 7: Presentation. This stage follows the same steps as presented in Sect. 5.4.7 of

Ch. 5. The method presents the filtered schema to the user. The elements to highlight

are the entity types from the focus set FS.

188



6.3. CATALOG OF FILTERING REQUESTS

M
et
ric
s	
Pr
oc
es
si
ng

1
En
�t
y	
an
d	
Ev
en
t	T
yp
es
	P
ro
ce
ss
in
g

2
Re
la
�o

ns
hi
p	
Ty
pe
s	
Pr
oc
es
si
ng

3
G
en
er
al
iz
a�
on
s	
Pr
oc
es
si
ng

4
Sc
he
m
a	
Ru

le
s	
Pr
oc
es
si
ng

5
D
at
a	
Ty
pe
s	
Pr
oc
es
si
ng

6
Pr
es
en
ta
�o

n
7

Input	Processing

Importance	Compu�ng

Closeness	Compu�ng

Interest	Compu�ng

Sor�ng	Process

Select	Top	Elements

Process	En�ty	Types

Process	Event	Types

Select	Candidate	
Rela�onship	Types

Process	Referen�ally-Complete
Rela�onship	Types

Project	Referen�ally-Par�al
Rela�onship	Types

Process	Projected
Rela�onship	Types

Process	Direct	
Structural	Generaliza�ons

Process	Direct	
Behavioral	Generaliza�ons

Process	Indirect	
Structural	Generaliza�ons

Process	Indirect	
Behavioral	Generaliza�ons

Select	Candidate	
Schema	Rules

Process	Referen�ally-Complete	Schema	Rules

Process	Referen�ally-Incomplete	Constraints

Process	Referen�ally-Incomplete	Deriva�on	Rules

Process	Data	Types

Present	Filtered	Conceptual	Schema

The	focus	set	contains	a	
set	of	en�ty	types

1.1

1.2

1.3

1.4

1.5

2.1

2.2

2.3

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

6.1

7.1

The	filtered	conceptual	schema	
only	includes	the	en�ty	
types	from	the	focus	set

The	method	only	selects	the	event	types
of	higher	interest	that	are	associated	
with	at	least	an	en�ty	type	of	the	
focus	set	through	rela�onship	types

Figure 6.25. Activity diagram for the filtering request F5.

189



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

Method Correctness

The proposed activities in the stages of the filtering request transform the input into a valid

output in the form of a filtered conceptual schema that satisfies a set constraints over such

schema. In the following we verify the correctness of the method according to those constraints

and the activities that satisfy each of them:

• Constraint [C1] is satisfied by the activity 2.2 of the filtering request.

• Constraint [C2] is satisfied by the activity 2.3 of the filtering request.

• Constraint [C3] is satisfied by the activity 4.1 of the filtering request.

• Constraint [C4] is satisfied by the activity 4.2 of the filtering request.

• Constraint [C5] is satisfied by the activities 5.1 and 5.2 of the filtering request.

• Constraint [C6] is satisfied by the activities 3.1, 3.2, 3.3, and 3.4 of the filtering request.

• Constraint [C7] is satisfied by the activity 6.1 of the filtering request.

• Constraint [C8] is satisfied by the activities 4.3 and 4.4 of the filtering request.

• Constraint [C9] is satisfied by the activities 5.1, 5.3, and 5.4 of the filtering request.

The activities 1.1, 1.2, 1.3, 1.5, and 1.5 of the filtering request process the input and deal

with the computation of relevance metrics to filter the large schema. The activity 2.1 selects the

additional event types to complete the knowledge from the focus set. The activity 7.1 presents

the resulting filtered conceptual schema to the user.

Example of F5

The filtering scenario proposed in this example describes a user of the conceptual schema of

the Magento e-commerce system that wants to obtain the related event types of interest with

respect to a set of entity types. Concretely, the user focuses in the entity type Product, which

is one of the more relevant entity types in the Magento system. The user constructs an input

to the filtering request as follows:

CS = Magento

FS = {Product}
RS = ∅
K = 4

I = Simple Method Extended

Figure 6.26 and Fig. 6.27 depict the resulting filtered schema our method obtains. The

entity type Product is related to the event types EditProduct and NewProduct. These are the

two event types of greater interest with respect to products in the Magento e-commerce system.

190



6.3. CATALOG OF FILTERING REQUESTS

Product
sku: String [1]
genericName: String [1]
genericNetPrice: Real [0..1]
genericWeight: Real [0..1]
genericStatus: Status [1]
genericIsVisibleOnCatalog: Boolean [0..1]
genericIsNewFrom: Date [0..1]
genericIsNewUntil: Date [0..1]
genericSpecialNetPrice: Real [0..1]
genericSpecialNetPriceFrom: Date [0..1]
genericSpecialNetPriceUntil: Date [0..1]
genericDescription: String [0..1]
genericShortDescription: String [0..1]
genericMetaDescription: String [0..1]
genericMetaTitle: String [0..1]
genericMetaKeyword: String [*]
genericImageGalleryPath: String [0..1]
genericBaseImagePath: String [0..1]
genericSmallImagePath: String [0..1]
genericThumbnailPath: String [0..1]
genericIsAvailableForGoogleCheckout: Boolean [0..1]
genericIsGiftMessageAllowed: Boolean [0..1]
genericIsVisibleOnSearch: Boolean [0..1]
stockStatus: ProductStatus [1]
quantity: Real [0..1]
qtyToBecomeOutOfStock: Real [0..1]
minQtyAllowedInShoppingCart: Real [0..1]
maxQtyAllowedInShoppingCart: Integer [0..1]
notifyForQuantityBelow: Real [0..1]
genericUrlKey: String [0..1]
backOrderPolicy: BackOrderPolicy [0..1]
productType: ProductType

crossSellProductReflective relatedProductReflective

upSellProductReflective

*

*

*

*

*

*

crossSellProduct

productOfCrossSell

upSellProduct

productOfUpSell

relatedProduct

productOfRelated

EditProduct
values : Tuple (a: Attribute, v: AttributeValue) [1..*]
sku : String [1]
name : String [1]
netPrice : Real [1]
weight : Real [0..1]
status : Status [1]
isNewFrom : Date [0..1]
isNewUntil : Date [0..1]
specialNetPrice : Real [0..1]
specialNetPriceFrom : Date [0..1]
specialNetPriceUntil : Date [0..1]
description : String [0..1]
shortDescription : String [0..1]
metaDescription : String [0..1]
metaKeyword : String [*]
metaTitle : String [0..1]
imageGalleryPath : String [0..1]
baseImagePath : String [0..1]
smallImagePath : String [0..1]
thumbnailPath : String [0..1]
urlKey : String [0..1]
isAvailableForGoogleCheckout : Boolean [0..1]
giftMessageAllowed : Boolean [0..1]
visibleOnCatalog : Boolean [0..1]
visibleOnSearch : Boolean [0..1]
stockStatus : ProductStatus [1]
quantity : Integer [0..1]
qtyToBecomeOutOfStock : Integer [0..1]
minQtyAllowedInShoppingCart : Integer [0..1]
maxQtyAllowedInShoppingCart : Integer [0..1]
notifyForQuantityBelow : Integer [0..1]
backOrderPolicy : BackOrderPolicy [0..1]
productType : ProductType [1]

«event»
NewProduct

values : Tuple (a: Attribute, v: AttributeValue) [1..*]
productType : ProductType [1]
sku : String [1]
name : String [1]
netPrice : Real [1]
weight : Real [0..1]
status : Status [1]
isNewFrom : Date [0..1]
isNewUntil : Date [0..1]
specialNetPrice : Real [0..1]
specialNetPriceFrom : Date [0..1]
specialNetPriceUntil : Date [0..1]
description : String [0..1]
shortDescription : String [0..1]
metaDescription : String [0..1]
metaKeyword : String [*]
metaTitle : String [0..1]
imageGalleryPath : String [0..1]
baseImagePath : String [0..1]
smallImagePath : String [0..1]
thumbnailPath : String [0..1]
urlKey : String [0..1]
isAvailableForGoogleCheckout : Boolean [0..1]
giftMessageAllowed : Boolean [0..1]
visibleOnCatalog : Boolean [0..1]
visibleOnSearch : Boolean [0..1]
stockStatus : ProductStatus [1]
quantity : Integer [0..1]
qtyToBecomeOutOfStock : Integer [0..1]
minQtyAllowedInShoppingCart : Integer [0..1]
maxQtyAllowedInShoppingCart : Integer [0..1]
notifyForQuantityBelow : Integer [0..1]
backOrderPolicy : BackOrderPolicy [0..1]
createdProduct : Product[0..1]

«event»

ExistingProductEvent
«event»

*

1

crossSellProduct

*

*

*

relatedProduct

upSellProduct
*

*

*

upSellProduct

relatedProduct

crossSellProduct

Figure 6.26. Filtered schema for the entity type Product (I).

191



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

context EditProduct 
 inv stockOptionsAreRatedOnlyForTheCorrectProductTypes:
  ( self.productType = ProductType::Grouped or 
    self.productType = ProductType::Configurable or 
    self.productType = ProductType::Bundle ) 
  implies (
    self.quantity.oclIsUndefined() and
    self.qtyToBecomeOutOfStock.oclIsUndefined() and
    self.minQtyAllowedInShoppingCart.oclIsUndefined() and
    self.maxQtyAllowedInShoppingCart.oclIsUndefined() and
    self.notifyForQuantityBelow.oclIsUndefined() and
    self.backOrderPolicy.oclIsUndefined()
  )

context NewProduct 
 inv stockOptionsAreRatedOnlyForTheCorrectProductTypes:
  ( self.productType = ProductType::Grouped or 
    self.productType = ProductType::Configurable or 
    self.productType = ProductType::Bundle ) 
  implies (
    self.quantity.oclIsUndefined() and
    self.qtyToBecomeOutOfStock.oclIsUndefined() and
    self.minQtyAllowedInShoppingCart.oclIsUndefined() and
    self.maxQtyAllowedInShoppingCart.oclIsUndefined() and
    self.notifyForQuantityBelow.oclIsUndefined() and
    self.backOrderPolicy.oclIsUndefined()
  )

context NewProduct
 inv skuDoesNotExist:
  not Product.allInstances()->exists(p | p.sku = self.sku )

context Product
  inv isIdentifiedBySku: 
   Product.allInstances()->isUnique(sku)es()) 

ProductStatus
InStock
OutOfStock

«enumeration»

BackOrderPolicy
NoBackorders
AllowQtyBelowZero
AllowQtyBelowZeroAndNotifyCustomer

«enumeration»

Status
Enabled
Disabled

«enumeration»

ProductType
Simple
Grouped
Configurable
Downloadable
Virtual
Bundle

«enumeration»

Figure 6.27. Filtered schema for the entity type Product (II).

The effects of these events allow to create and modify the products in the store. The

EditProduct event is a descendant of ExistingProductEvent. Note that both EditProduct and

NewProduct contain attributes to specify the characteristics that are needed to modify an

instance of Product, or the values for creating a new one.

192



6.3. CATALOG OF FILTERING REQUESTS

6.3.6 F6: Filtering Request for Contextualized Types

Input

Filtering Request

Metrics Processing1

En�ty and Event Types Processing2

Rela�onship Types Processing3

Generaliza�ons Processing4

Schema Rules Processing5

Data Types Processing6

Presenta�on7

F6

Output

context inv ...
context derive ...
context post ...

En�ty Type

Y: Contextualiza�on Func�on

Y ( (
Event Type

«event»Y ( (

«event»

Figure 6.28. F6: Filtering request for contextualized types.

Application Scenario

The user focuses on a set of entity and event types from a large conceptual schema. The

user is aware of those types or she has accessed them via previous filtering requests. The user

contextualize the entity and event types by means of a defined function to reduce or limit the

characteristics defined over such type taking into account the user interest. The information

need consists in obtaining more knowledge from the schema with relation to the entity and

event types in the user focus and the applied contextualization function. The method obtains

the elements of interest to the user according to the initial selection and the characteristics

represented in the large schema. As output, the user obtains a small-sized filtered conceptual

schema that includes the combination of the selected entity and event types with the elements

of interest gathered by our methodology.

Specific Input

The input for the filtering request F6 contains the same elements as indicated in Sect. 6.2

plus a contextualization function. In addition, we present here a detailed description of the

particularities of such elements for the specific input of F6.

◦ Large conceptual schema: the source schema CS = 〈SS,BS〉 where SS = 〈E , R, T , G,

C, D〉 is the structural subschema, and BS = 〈Eb, Rb, Gb, Cb〉 is the behavioral subschema.

The amount of knowledge represented in CS is large and makes it very difficult to manually

extract fragments of interest to a user.

◦ Focus Set: it works as the conceptual schema viewpoint of the user. Therefore, a focus

set is an initial point that should be extended with more knowledge. Formally, the focus

set FS contains a small subset of entity types of E and event types of Eb from which the

193



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

user wants to know more about. Note that the size of the focus set is reduced with respect

to the amount of entity and event types from the large schema (|FS| � |Eb ∪ E|). Also,

it is mandatory for the user to select a non-empty focus set (FS 6= ∅).

◦ Size threshold: it denotes the maximum expected number K of entity and event types

in the output. Note that |FS| ≤ K ≤ |E ∪ Eb|.

◦ Rejection Set: the set RS with entity types of E and event types of Eb that the user does

not want to obtain in the output. Note that it is disjoint with the focus set (RS∩FS = ∅).
By default, the rejection set is empty (|RS| ≥ 0).

◦ Importance method: the algorithm I to compute the importance of entity types from

E and event types from Eb. By default I = ISM , the Simple Method described in Chap. 4.

◦ Contextualization function: the function Y applied to an entity or event type e, Y(e),

produces a contextualized entity or event type e′. This function allows to:

– select a default literal value for attributes of e in e′ whose type is an enumeration.

– delete a defined attribute of e in e′, whenever the minimum multiplicity of such

attribute equals to zero.

– redefine the multiplicity of an attribute of e in e′.

– delete a relationship type between e and another schema element in e′ whenever the

minimum multiplicity in the opposite relationship end of e equals zero.

– redefine the multiplicity of the opposite relationship end of e in e′, in a relationship

type between e and another schema element.

Event	Type
«event»

Contextualiza�on	

( (
Func�on

Event	Type
«event»

a1:	Integer[0..*]
a2:	Gender[0..1]
a3:	Integer[0..1]
a4:	String[0..1]

En�ty	1
e1
1..*

En�ty	2

En�ty	3

En�ty	4

e2

e3
e4 0..1

0..*

0..*

Event	Type
«event»

a1:	Integer[1]
a2:	Gender[0..1]	=	Gender::female

En�ty	1
e1
1..*

En�ty	3

En�ty	4e3
e4 0..1

0..5

Gender
«enumera�on»

male
female
unknown

Gender
«enumera�on»

male
female
unknown

Figure 6.29. Example of application of a contextualization function Y.

Figure 6.29 presents an example of application of the contextualization function to an event

type. On the left there is an event type with four attributes and the same number of relationship

types where it participates. A user may define its own contextualization function to obtain

the contextualized event type depicted on the right side of Fig. 6.29. The multiplicity of the

attribute a1 is redefined to 1..1 in the contextualized event type. The attribute a2, whose type

is the Gender enumeration has the default value female. Also, the attributes a3 and a4, whose

minimum multiplicity is zero, do not appear on the contextualized event type on the right.

The relationship type between the event type and the entity type Entity 2, whose minimum

multiplicity on the side of Entity 2 is zero, does not appear on the contextualized event type

on the right. Finally, the multiplicity of the relationship end of Entity 3 is redefined from

0..* to 0..5 in the contextualized event type. Note that to redefine a multiplicity n..m to

x..y, then n ≤ x ≤ y ≤ m.

194



6.3. CATALOG OF FILTERING REQUESTS

Specific Output

The output of this filtering request is a filtered conceptual schema CSF = 〈SSF ,BSF 〉, where

SSF = 〈EF , RF , TF , GF , CF , DF 〉 is the structural subschema, and BSF = 〈EbF , RbF , GbF ,

CbF 〉 is the behavioral subschema. The specific constraints that CSF must satisfy are described

as follows:

[C1] EF contains the entity types EFS from the focus set FS.

[C2] EF does not contain the entity types from the rejection set RS.

[C3] EbF contains the event types EbFS from the focus set FS.

[C4] EbF does not contain the event types from the rejection set RS.

[C5] GbF contains direct generalization relationships between event types of EbF .

[C6] GF contains direct generalization relationships between entity types of EF .

[C7] If c is an integrity constraint or derivation rule of C, D or Cb defined in the context

of an schema element of CSF and any of the schema elements referenced by c belong to

CSF , then c is included in CF , DF or CbF .

[C8] If an attribute a of an entity or event type e whose type is an enumeration is con-

textualized by applying the function Y, which selects a default literal value for a, then

the attribute appears with its default value in CSF . If the multiplicity of the attribute

is redefined by applying the function Y, then the redefined multiplicity appears as the

multiplicity of the attribute in CSF . If the attribute is deleted in the contextualization,

it does not appear in CSF nor counts in the importance method I.

[C9] If a relationship type r in which an entity or event type e participates is deleted by

applying the contextualization function Y, then r does not appear in RbF . Also, r does

not count in the importance method I nor in the closeness computation.

[C10] If r is a relationship type of R and its participant entity types belong to EF , or are

ascendants of entity types of EF (in which case a projection is needed), then r is included

in RF . The same behavior applies to relationship types of Rb to be included in RbF . If

the multiplicity of a relationship end is redefined by applying the function Y, then the

redefined multiplicity appears as the multiplicity of the relationship end in CSF .

[C11] If d is a data type of T and it is used by attributes of entity types of EF , event types

of EbF , or schema rules of CF , CbF or DF , then d is included in TF of CSF .

[C12] If e1 and e2 are entity types of EF and does not exist a direct generalization between

them in GF nor a path of direct generalizations of GF traversing entity types ei of EF ,

but both e1 and e2 belong to different levels of the same hierarchy in G of CS, a direct

generalization g′ is included between e1 and e2 in GF but is marked as derived. The same

behavior applies to pairs of event types of EbF .

195



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

[C13] If c is a constraint of C or Cb defined in the context of an schema element of CSF
and references schema elements out of CSF only the header of such constraint is included

in CF or CbF . If d is a derivation rule of D whose context belongs to CSF and references

schema elements out of CSF , the context element of the rule is marked as materialized in

CSF and d is not included in DF .

Filtering Stages

The filtering request for contextualized types follows the specific methodology presented in

Sect. 5.4 of Ch. 5. In the following, we present a brief summary of the different stages and steps

(see Fig. 6.30) that belong to this filtering request.

◦ Stage 1: Metrics. The first step in this stage (see Activity 1.1 in Fig. 6.30) processes

the input of the filtering request. It creates some auxiliary sets to gather the entity and

event types from the focus set. In this particular case, the auxiliary sets EFS and EbFS
contain the entity and event types from the focus set, respectively. Also, the set RFS that

contains relationship types from the focus set is empty since this filtering request focus

on the entity and event types to construct the input. The second step (see Activity 1.1.1

in Fig. 6.30) applies the contextualization function to the entity and event types of the

focus set. The deleted attributes and relationship types from the contextualization do not

participate in the importance and closeness computing. The rest of the steps follow the

same indications presented in Sect. 5.4.1 of Ch. 5. The method computes the importance,

closeness, and interest metrics, and sorts the entity and event types in a ranking.

◦ Stage 2: Entity and Event Types. This stage follows the same steps as presented in

Sect. 5.4.2 of Ch. 5. The method selects the top entity and event types from the interest

ranking taking into account the size threshold of the input and includes them in the

resulting filtered conceptual schema. The entity and event types of the focus set are all

included in the filtered schema. The contextualized attributes with an enumeration type

are included in the filtered schema with the default value selected by the contextualization

function.

◦ Stage 3: Relationship Types. This stage follows the same steps as presented in

Sect. 5.4.3 of Ch. 5. The method classifies the relationship types according to their

participants as referentially-complete or referentially-partial relationship types. Then,

the method projects and selects the final relationship types that are part of the resulting

filtered conceptual schema. The relationship types deleted in the contextualization are

not selected as candidate relationships and, therefore, they will not appear in the filtered

schema.

◦ Stage 4: Generalizations. This stage follows the same steps as presented in Sect. 5.4.4

of Ch. 5. The method processes the direct and creates indirect generalizations to construct

the hierarchies of the resulting filtered conceptual schema.

◦ Stage 5: Schema Rules. This stage follows the same steps as presented in Sect. 5.4.5

of Ch. 5. The method selects the schema rules defined in the context of elements from

196



6.3. CATALOG OF FILTERING REQUESTS

the filtered schema and processes the referentially-incomplete ones in order to construct

the rules of the resulting filtered conceptual schema.

◦ Stage 6: Data Types. This stage follows the same steps as presented in Sect. 5.4.6 of

Ch. 5. The method includes in the filtered schema those data types referenced or used by

other elements within such schema.

◦ Stage 7: Presentation. This stage follows the same steps as presented in Sect. 5.4.7 of

Ch. 5. The method presents the filtered schema to the user. The elements to highlight

are the entity and event types from the focus set FS.

Method Correctness

The proposed activities in the stages of the filtering request transform the input into a valid

output in the form of a filtered conceptual schema that satisfies a set constraints over such

schema. In the following we verify the correctness of the method according to those constraints

and the activities that satisfy each of them:

• Constraint [C1] is satisfied by the activity 2.2 of the filtering request.

• Constraint [C2] is satisfied by the activity 2.2 of the filtering request.

• Constraint [C3] is satisfied by the activity 2.3 of the filtering request.

• Constraint [C4] is satisfied by the activity 2.3 of the filtering request.

• Constraint [C5] is satisfied by the activity 4.2 of the filtering request.

• Constraint [C6] is satisfied by the activity 4.1 of the filtering request.

• Constraint [C7] is satisfied by the activities 5.1 and 5.2 of the filtering request.

• Constraint [C8] is satisfied by the activities 1.1.1 and 1.2 of the filtering request.

• Constraint [C9] is satisfied by the activities 1.1.1, 1.2, 1.3, and 3.1 of the filtering request.

• Constraint [C10] is satisfied by the activities 3.1, 3.2, 3.3, and 3.4 of the filtering request.

• Constraint [C11] is satisfied by the activity 6.1 of the filtering request.

• Constraint [C12] is satisfied by the activities 4.3 and 4.4 of filtering request method.

• Constraint [C13] is satisfied by the activities 5.1, 5.3, and 5.4 of the filtering request.

The activities 1.1, 1.2, 1.3, 1.5, and 1.5 of the filtering request process the input and deal

with the computation of relevance metrics to filter the large schema. The activity 1.1.1 applies

the contextualization function Y to the entity and event types of the focus set FS. The activity

2.1 selects the additional entity and event types to complete the knowledge from the focus set.

The activity 7.1 presents the resulting filtered conceptual schema to the user.

197



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

M
et

ri
cs

 P
ro

ce
ss

in
g

1
En

�
ty

 a
n

d
 E

ve
n

t 
Ty

p
es

 P
ro

ce
ss

in
g

2
R

el
a�

o
n

sh
ip

 T
yp

es
 P

ro
ce

ss
in

g
3

G
en

er
al

iz
a�

o
n

s 
P

ro
ce

ss
in

g
4

Sc
h

em
a 

R
u

le
s 

P
ro

ce
ss

in
g

5
D

at
a 

Ty
p

es
 P

ro
ce

ss
in

g
6

P
re

se
n

ta
�

o
n

7

Input Processing Importance Compu�ng

Interest Compu�ng

Sor�ng Process

Select Top Elements

Process En�ty Types

Process Event Types

Select Candidate 
Rela�onship Types

Process Referen�ally‐Complete
Rela�onship Types

Project Referen�ally‐Par�al
Rela�onship Types

Process Projected
Rela�onship Types

Process Direct 
Structural Generaliza�ons

Process Direct 
Behavioral Generaliza�ons

Process Indirect 
Structural Generaliza�ons

Process Indirect 
Behavioral Generaliza�ons

Select Candidate 
Schema Rules

Process Referen�ally‐Complete Schema Rules

Process Referen�ally‐Incomplete Constraints

Process Referen�ally‐Incomplete Deriva�on Rules

Process Data Types

Present Filtered Conceptual Schema

The focus set contains en�ty 
and event types from the 

behavioral subschema

1.1 1.2

1.4

1.5

2.1

2.2

2.3

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

6.1

7.1

Contextualize
1.1.1

Applies the contextualiza�on
func�on to the en�ty and 

event types of the focus set

These tasks do not take into account 
the deleted a�ributes and rela�onship 

types from the contextualiza�on

Closeness Compu�ng
1.3

The en�ty and event types from 
the focus set are all included 

into the filtered schema

The rela�onship types deleted
in the contextualiza�on are not
included in the filtered schema

The contextualized enumera�on 
a�ributes of en�ty and event types

appear with their default value 

The redefined mul�plici�es of a�ributes
appear in the final a�ributes of the en�ty

and event types in the filtered schema

The redefined mul�plici�es of
rela�onship ends are included 

in the filtered schema 

Figure 6.30. Activity diagram for the filtering request F6.

198



6.3. CATALOG OF FILTERING REQUESTS

Example of F6

The filtering scenario proposed in this example describes a user of the conceptual schema of

the Magento e-commerce system that wants to contextualize the characteristics of interest with

respect to a set of entity and event types. Concretely, the user focuses in the event type

NewProduct, which is one of the more relevant event types in the Magento system. The user

constructs an input to the filtering request as follows:

CS = Magento

FS = {NewProduct}
RS = ∅
K = 3

Y = { NewProduct::status = Status::Disabled,

NewProduct::stockStatus = ProductStatus::InStock,

NewProduct::minQtyAllowedInShoppingCart -> 0..0,

NewProduct::maxQtyAllowedInShoppingCart -> 0..0,

NewProduct::notifyForQuantityBelow -> 0..0,

NewProduct::backOrderPolicy -> 0..0,

NewProduct::qtyToBecomeOutOfStock -> 0..0,

NewProduct::createdProduct -> 0..0,

NewProduct::metaKeyword -> 1..10,

NewProduct::description -> 1..1,

NewProduct::upsellProduct -> 0..0,

NewProduct::crossSellProduct -> 0..0,

NewProduct::relatedProduct -> 1..* }
I = Simple Method Extended

Figure 6.31 and Fig. 6.32 present the filtered schema our method obtains with respect to

the previous input. Note that the contextualization function Y contains several statements to

change the original characteristics of the event type NewProduct. The first two statements

set a default value for the enumeration attributes status and stockStatus. Therefore, the new

instance of Product that the event NewProduct creates will have a disabled status and its

default stock status will indicate that the product is in stock.

In addition to it, the last three statements of the contextualization function redefine the

multiplicity of the relationship types between NewProduct and Product. In the example, the

multiplicities of the association ends with rolenames upsellProduct and crossSellProduct are

set to 0..0, which indicates that the relationship type will not be part of the resulting schema.

Note that Fig. 6.31 does not include the aforementioned relationships. On the contrary, the

multiplicity of the association end relatedProduct is redefined to 1..* in order to indicate that

at least a product must be related to the new instance of product that NewProduct constructs.

The other statements redefine the multiplicity of some attributes of the NewProduct event.

Concretely, the attributes that are set to a 0..0 multiplicity do not appear in the filtered schema.

Furthermore, the multiplicity of the attribute metaKeyword is set to 1..10, to indicate that the

new product must contain at least one value, and at most 10 –originally, it was set to 0..*. And

the optional attribute description (0..1) is mandatory (1..1) after the contextualization.

199



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

Product
sku: String [1]
genericName: String [1]
genericNetPrice: Real [0..1]
genericWeight: Real [0..1]
genericStatus: Status [1]
genericIsVisibleOnCatalog: Boolean [0..1]
genericIsNewFrom: Date [0..1]
genericIsNewUntil: Date [0..1]
genericSpecialNetPrice: Real [0..1]
genericSpecialNetPriceFrom: Date [0..1]
genericSpecialNetPriceUntil: Date [0..1]
genericDescription: String [0..1]
genericShortDescription: String [0..1]
genericMetaDescription: String [0..1]
genericMetaTitle: String [0..1]
genericMetaKeyword: String [*]
genericImageGalleryPath: String [0..1]
genericBaseImagePath: String [0..1]
genericSmallImagePath: String [0..1]
genericThumbnailPath: String [0..1]
genericIsAvailableForGoogleCheckout: Boolean [0..1]
genericIsGiftMessageAllowed: Boolean [0..1]
genericIsVisibleOnSearch: Boolean [0..1]
stockStatus: ProductStatus [1]
quantity: Real [0..1]
qtyToBecomeOutOfStock: Real [0..1]
minQtyAllowedInShoppingCart: Real [0..1]
maxQtyAllowedInShoppingCart: Integer [0..1]
notifyForQuantityBelow: Real [0..1]
genericUrlKey: String [0..1]
backOrderPolicy: BackOrderPolicy [0..1]
productType: ProductType

crossSellProductReflective relatedProductReflective

upSellProductReflective

*

*

*

*

*

*

crossSellProduct

productOfCrossSell

upSellProduct

productOfUpSell

relatedProduct

productOfRelated

NewProduct
values : Tuple (a: Attribute, v: AttributeValue) [1..*]
productType : ProductType [1]
sku : String [1]
name : String [1]
netPrice : Real [1]
weight : Real [0..1]
status : Status [1] = Disabled
isNewFrom : Date [0..1]
isNewUntil : Date [0..1]
specialNetPrice : Real [0..1]
specialNetPriceFrom : Date [0..1]
specialNetPriceUntil : Date [0..1]
description : String [1]
shortDescription : String [0..1]
metaDescription : String [0..1]
metaKeyword : String [1..10]
metaTitle : String [0..1]
imageGalleryPath : String [0..1]
baseImagePath : String [0..1]
smallImagePath : String [0..1]
thumbnailPath : String [0..1]
urlKey : String [0..1]
isAvailableForGoogleCheckout : Boolean [0..1]
giftMessageAllowed : Boolean [0..1]
visibleOnCatalog : Boolean [0..1]
visibleOnSearch : Boolean [0..1]
stockStatus : ProductStatus [1] = InStock
quantity : Integer [0..1]

«event»

1..*

relatedProduct

Website
code:String
name:String

ProductInWebsite
redefinedName: String [0..1]
redefinedNetPrice: Real [0..1]
netPrice: Real [1]
redefinedWeight: Real [0..1]
redefinedStatus: Status [0..1]
redefinedIsNewFrom: Date [0..1]
redefinedIsNewUntil: Date [0..1]
redefinedSpecialNetPrice: Real [0..1]
specialNetPrice: Real [1]
redefinedSpecialNetPriceFrom: Date [0..1]
redefinedSpecialNetPriceUntil: Date [0..1]
redefinedDescription: String [0..1]
redefinedShortDescription: String [0..1]
redefinedMetaDescription: String [0..1]
redefinedMetaKeyword: String [*]
redefinedMetaTitle: String [0..1]
redefinedImageGalleryPath: String [0..1]
redefinedBaseImagePath: String [0..1]
redefinedSmallImagePath: String [0..1]
redefinedThumbnailPath: String [0..1]
redefinedUrlKey: String [0..1]
redefinedIsAvailableForGoogleCheckout: Boolean [0..1]
redefinedIsGiftMessageAllowed: Boolean [0..1]
redefinedIsVisibleOnCatalog: Boolean [0..1]
redefinedIsVisibleOnSearch: Boolean [0..1]
isAvailable: Boolean [1]

*

*

*
1..*

*

Figure 6.31. Filtered schema for the filtering request F6 (I).

200



6.3. CATALOG OF FILTERING REQUESTS

context NewProduct
 inv skuDoesNotExist:
  not Product.allInstances()->exists(p | p.sku = self.sku )

context Product
  inv isIdentifiedBySku: 
   Product.allInstances()->isUnique(sku)es())

context Website 
  inv isIdentifiedByItsCode:
   Website.allInstances()->isUnique(code)

context Product 
 inv isSpecifiedInAllWebsites:
  self.website-> ncludesAll( Website.allInstances() ) 

ProductStatus
InStock
OutOfStock

«enumeration»

BackOrderPolicy
NoBackorders
AllowQtyBelowZero
AllowQtyBelowZeroAndNotifyCustomer

«enumeration»

Status
Enabled
Disabled

«enumeration»

ProductType
Simple
Grouped
Configurable
Downloadable
Virtual
Bundle

«enumeration»

Figure 6.32. Filtered schema for the filtering request F6 (II).

201



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

6.4 Combination of Filtering Requests

As aforementioned, our filtering methodology satisfies a user’s information need over a large

conceptual schema providing a catalog of filtering requests. The interaction between the user

and our proposed mechanism to gather the knowledge of interest is an iterative process that

must be applied as many times as required.

Output

Large	Conceptual
Schema

User

Filtered
Conceptual
Schema

Input Filtering	Request

Metrics	Processing1

En�ty	and	Event	Types	Processing2

Rela�onship	Types	Processing3

Generaliza�ons	Processing4

Schema	Rules	Processing5

Data	Types	Processing6

Presenta�on7

Iterative
Process

Figure 6.33. Representation of the iterative process to extract knowledge from a large conceptual
schema.

Figure 6.33 presents this iterative process. The user wants to know more about a fragment

or subset of the large conceptual schema, and therefore uses the filtering request from the

catalog that covers a specific need of information. The filtering request follows the seven stages

as presented in previous sections in order to construct a filtered conceptual schema centered on

the knowledge in the user focus. The user obtains the filtered schema and may continue with a

new iteration of the process using a different filtering request if necessary. Finally, the process

ends when the user believes that she has obtained enough knowledge from the large schema

to cover the specific information need. By applying the filtering requests from our proposed

catalog, the user reduces the effort of traversing the whole large schema, making a more-efficient

exploration based on the relevance of the knowledge within it and saving time.

A key point about the catalog of filtering requests presented in Sect. 6.3 relates to the

sequence of application to combine filtering requests in the scope of the iterative process of

Fig. 6.33. The usage of each of the six filtering requests requires a specific input in order to

be able to apply the stages that conform the request. To this end, we say that two filtering

requests can be directly combined whenever the output that results from the application of the

first filtering request always contains a valid input for the second filtering request. On the other

hand, two filtering requests can be conditionally combined whenever the output that results

from the application of the first filtering request may in some cases contain a valid input for

the second filtering request.

Figure 6.34 describes the existing relations between the filtering requests of the catalog and

their intended interaction to satisfy a user’s information need over a large conceptual schema

202



6.5. SUMMARY

by combining them. As an example, we can start by selecting a set of entity and relationship

types from the large schema to conform the focus set for the filtering request F1. The filtered

conceptual schema that we obtain from the application of F1 contains the selected entity and

relationship types of focus plus a set of additional schema elements of high interest. Then,

we can start a new iteration with any of the six filtering requests as indicated in the graph of

Fig. 6.34. However, we can only combine F1 with the filtering requests F2 or F6. In the same

way, we can combine F1 with F3 only if the filtered conceptual schema that we obtained from

F1 contains schema rules. On the other hand, we can always combine F1 with F4 or F5 since

the filtered conceptual schema that we obtained from F1 is a small conceptual schema that can

be the input for F4, and contains the entity types of focus that can be the required input for

F5. This way, we can combine sequences of filtering requests and, therefore, navigate through

filtered conceptual schemas of small size instead of traversing the whole large conceptual schema.

1 2

6 3

5 4

Filtering	Request	for	
En�ty	and	Rela�onship	Types

Filtering	Request	for	
Event	Types

Filtering	Request	for	
Schema	Rules

Filtering	Request	for	
a	Conceptual	Schema

Filtering	Request	for	
Context	Behavior	of	En�ty	Types

Filtering	Request	for	
Contextualized	Types

Condi�oned	Combina�on
Direct	Combina�on

Figure 6.34. Combination of filtered requests.

6.5 Summary

In Ch. 5, a general methodology to extract knowledge of interest from a large conceptual schema

has been presented. Such methodology provides users with an automatic process that requires

of an specific filtering input in order to obtain a reduced filtered conceptual schema with the

knowledge of high relevance according to the user preferences. Chapter 4, introduces several

techniques to compute the relevance of the elements of a large conceptual schema, which are

used in Ch. 5 to support the filtering methodology.

Chapter 6 deals with the particular requirements of users to apply the proposed filtering

method under several filtering circumstances such as the need to specify different kinds of inputs

that will produce many differences in the resulting filtered conceptual schema, according to the

initial input specification and the user expertise when working with large conceptual schemas.

By means of these requirements, we have undertaken the description and formalization of a

catalog of specific filtering requests that instantiate the previous filtering methodology and

make use of the relevance metrics to filter a large schema in different situations according to

203



CHAPTER 6. CATALOG OF FILTERING REQUESTS FOR LARGE CONCEPTUAL SCHEMAS

their particular input. Our main contribution here is the definition of six filtering requests in

Sect. 6.3, their specific input and output, and the different activities that process the input

and a large schema in order to obtain a small-sized filtered conceptual schema as output.

Section 6.3.1 introduces the first filtering request of the catalog, which deals with a filtering

interaction centered on the entity and relationship types from a large schema. Section 6.3.2

presents the second request where the user focuses on a set of integrity constraints and derivation

rules from the large schema and wants to obtain more knowledge from the schema with relation

to the schema rules in the user focus. Section 6.3.3 describes the third specific request that focus

on a set of event types from the large conceptual schema to construct the core of the resulting

filtered schema. The fourth filtering request takes as main input a small conceptual schema,

which may be a filtered schema of a previous request, and produces a new filtered schema from

it as detailed in Sect. 6.3.4. Section 6.3.5 deals with the fifth request that focuses on a set

of entity types from a large conceptual schema in order to obtain the event types from the

schema with relation to the entity types in the user focus. The last specific filtering request is

analyzed in Sect. 6.3.6 and focuses on a set of entity and event types that the user contextualize

by means of a defined contextualization function to reduce or limit the characteristics defined

over such types taking into account the user interest. As output, the user obtains a small-

sized filtered conceptual schema that includes the combination of the selected entity and event

types with the elements of interest gathered by our methodology taking into account the user

contextualization. Finally, Sect. 6.4 presents the sequence of application to combine filtering

requests in the scope of the iterative process to filter a large schema.

In Ch. 7 we describe the application of our filtering methodology to a set of four real-case

large conceptual schemas from several domains. In Ch. 8, we present a web-based filtering

engine that implements the filtering requests.

204



The difference between theory and practice is that in theory,

there is no difference between theory and practice.”

Richard Moore

7
Application of the Filtering Methodology

The relevance-computing methods provided us a way to discover the core concepts described in

a large conceptual schema. With that in mind, we extended these methods and created a more

accurate one in order to obtain the most interesting concepts of the schema with respect to an

specific user request of knowledge. Then, we adapted the general filtering method to several

filtering scenarios and constructed a catalog of filtering requests that provides different ways to

explore a large conceptual schema. In this chapter, we apply these filtering requests to a set

of real-world large conceptual schemas in different scenarios, and analyze the results from this

experimentation.

The chapter starts with an overview of three different case studies in Sect. 7.1. Section 7.2 in-

troduces the first case study that deals with two large conceptual schemas from the e-commerce

domain. Section 7.3 describes the second case study, which explores the conceptual schema of a

car rental system. The last case study processes the conceptual schema of the formal specifica-

tion of the UML metaschema in Sect. 7.4. For each case study, we detail the characteristics of

the large conceptual schemas where we apply the filtering methodology explained in Ch. 5. Also,

we show a common filtering application scenario in order to describe the benefits our methodol-

ogy provides by using the filtering requests from the catalog presented in Ch. 6. Consequently,

Sect. 7.5 experimentally evaluates the effectiveness and efficiency of our filtering approach with

respect to the conceptual schemas from the previous case studies and reports the main results

from the experimentation. Finally, Sect. 7.6 summarizes the chapter.

205



CHAPTER 7. APPLICATION OF THE FILTERING METHODOLOGY

7.1 Case Studies Overview

Case study research consists of a detailed investigation of phenomena, within their context.

The aim is to provide an analysis of the context and processes which illuminate the theoretical

issues being studied. The phenomenon is not isolated from its context (as in, say, laboratory

research) but is of interest precisely because the aim is to understand how behavior and/or

processes are influenced by an influence context. The case study research design is also useful

for testing whether scientific theories and models actually work in the real world [56].

In the design-science paradigm, knowledge and understanding of a problem domain and its

solution are achieved in the building and application of the designed artifact [59]. As afore-

mentioned in Ch. 1, design science addresses research through the building and evaluation of

artifacts designed to meet the identified business need. Research assessment via the justify/e-

valuate activities can result in the identification of weaknesses in the theory or artifact and the

need to refine and reassess.

Evaluation is a crucial component of the research process. The evaluation phase provides

essential feedback to the construction phase as to the quality of the design process and the

design product under development. A design artifact is complete and effective when it satisfies

the requirements and constraints of the problem it was meant to solve. In this chapter, we

report the application of the filtering methodology in the following experimental case studies:

• A comparison between two large conceptual schemas representing the knowledge of two

frameworks for e-commerce applications, the osCommerce and the Magento.

• An exploration of the behavioral components of a large conceptual schema for a car rental

system, the EU-Rent, in order to understand the specific functionality of the system.

• An exploration of the metaschema of the Unified Modeling Language, which is guided by

the contents of the UML Superstructure specification document.

The overall goals of these case studies are: (1) analyzing the viability of using our filtering

methodology to compare the specification of several concepts from the e-commerce domain

in two different conceptual schemas, (2) characterizing the functionalities of a real conceptual

schema through the application of filtering request to its behavioral subschema, (3) identifying

filtering patterns in a formal exploration following the contents of a normative specification of

a model-based standard, and (4) using the lessons learned to improve and refine the filtering

method and filtering requests.

These case studies are representative of different kinds of user interaction with large con-

ceptual schemas and they correspond to different filtering scenarios. We covered the whole set

of filtering requests from the catalog of Ch. 6 and we obtained information about the utility of

the filtering method when applied to specific situations.

In the following, we briefly present the characteristics of the large conceptual schemas that

participate on the case studies.

206



7.1. CASE STUDIES OVERVIEW

7.1.1 The osCommerce e-Commerce System

Figure 7.1. Screenshot of the osCommerce system.

osCommerce is an online shop e-commerce solution that offers a wide range of out-of-the-box

features that allows online stores to be setup fairly quickly with ease, and is available for free

as an open source based solution released under the GNU General Public License. osCommerce

was started in March 2000 and has since matured to a solution that is currently powering 12,666

registered live shops around the world1.

Today, osCommerce has been taken to the next level, moving towards an e-commerce frame-

work solution that not only remains easy to setup and maintain, but also making it easier for

store administrators to present their stores to their customers with their own unique require-

ments. The success of osCommerce is secured by a great and active community where members

help one another out and participate in development issues reflecting upon the current state of

the project. Figure 7.1 presents a screenshot of the osCommerce system.

The conceptual schema of the osCommerce is specified using standard UML and OCL,

and was obtained as a result of a reverse engineering process from the source code of the

osCommerce system [118]. The structural subschema of the osCommerce contains 84 entity

types and 209 attributes. On the other hand, the behavioral subschema contains 262 event types

and 220 pre- and postconditions specifying the effect of the events. Furthermore, the conceptual

schema connects its elements through a set of 183 relationship types and 393 generalization

relationships, and includes 204 integrity constraints and 17 enumeration types. Figure 3.1

graphically shows this conceptual schema.

1www.oscommerce.com

207

www.oscommerce.com


CHAPTER 7. APPLICATION OF THE FILTERING METHODOLOGY

7.1.2 The Magento e-Commerce System

Figure 7.2. Screenshot of the Magento system.

Magento is a full-fledged, open source e-commerce platform aimed at web site designers,

developers, and business owners who are looking for a complete e-commerce web site solution.

The Magento system provides the scalability, flexibility and features for business growth. Ma-

gento enables feature-rich e-commerce platforms that offer merchants complete flexibility and

control over the presentation, content, and functionality of their online channel. It was launched

on March 2008, and with more than 750,000 downloads, Magento is the fastest-growing open

source e-commerce solution2.

The conceptual schema of Magento was already used in this thesis to illustrate the seven

stages of the filtering method introduced in Ch. 5, and the six filtering requests from the catalog

of Ch. 6. It is specified using standard UML and OCL, and was obtained as a result of a reverse

engineering process from the source code of the Magento system [94]. The structural subschema

of the Magento contains 218 entity types and 983 attributes. On the other hand, the behavioral

subschema contains 187 event types and 69 pre- and postconditions specifying the effect of

the events. Furthermore, the conceptual schema connects its elements through a set of 319

relationship types and 165 generalization relationships, and includes 386 integrity constraints,

185 derivation rules, 15 data types, and 46 enumeration types. Figure 5.7 graphically shows

this conceptual schema.

2www.magentocommerce.com

208

www.magentocommerce.com


7.1. CASE STUDIES OVERVIEW

7.1.3 The EU-Rent Car Rental System

Figure 7.3. Conceptual schema of the EU-Rent car rental system.

EU-Rent is a case study being promoted as a basis for demonstration of product capabilities

which originally was developed by Model Systems, Ltd [57]. It presents EU-Rent, a car rental

company owned by EU-Corporation. It is one of three businesses –the other two being hotels

and an airline– that each has its own business and IT systems, but with a shared customer

base. Many of the car rental customers also fly with EU-Fly and stay at EU-Stay hotels.

EU-Rent has 1000 branches in towns in several countries. At each branch, cars –classified

by car group– are available for rental. Each branch has a manager and booking clerks who

handle rentals. Most rentals are by advance reservation; the rental period and the car group

are specified at the time of reservation. EU-Rent will also accept immediate rentals, if cars are

available. At the end of each day cars are assigned to reservations for the following day. If

more cars have been requested than are available in a group at a branch, the branch manager

may ask other branches if they have cars they can transfer to him/her. Apart from collecting

information about cars, branches, etc., effort is done to capture information about customers

(if they are good clients or had had bad experiences otherwise).

The conceptual schema of the EU-Rent car rental system (see Fig. 7.3) described in [47]

was already used in this thesis for the experimental evaluation of the importance-computing

methods introduced in Ch. 4. It is specified using standard UML and OCL. The structural

subschema of the EU-Rent contains 65 entity types and 85 attributes. On the other hand,

the behavioral subschema contains 120 event types and 166 pre- and postconditions specifying

the effect of the events. Furthermore, the conceptual schema connects its elements through a

set of 152 relationship types and 207 generalization relationships, and includes 107 integrity

constraints and 7 enumeration types.

209



CHAPTER 7. APPLICATION OF THE FILTERING METHODOLOGY

7.1.4 The UML Metaschema Formal Specification

Figure 7.4. Metaschema of the UML Superstructure specification.

The Unified Modeling Language (UML) is managed, and was created, by the Object Man-

agement Group. It was first added to the list of OMG adopted technologies in 1997, and has

since become the industry standard for modeling software-intensive systems3. The objective of

UML is to provide system architects, software engineers, and software developers with tools for

analysis, design, and implementation of software-based systems as well as for modeling business

and similar processes.

The UML metaschema is like the grammar for UML models. In the same way that the Java

grammar defines the structure of Java programs, the UML metaschema defines the concepts

(i.e. modeling primitives) that you can use when defining UML models and the possible ways

to relate them. Formally, the UML metaschema indicates a specification of the human-readable

notation elements for representing the individual UML modeling concepts as well as rules for

combining them into a variety of different diagram types.

The conceptual schema of the UML metaschema (see Fig. 7.4) was already used in this

thesis for the experimental evaluation of the importance-computing methods introduced in

Ch. 4. It is described using standard UML and OCL in a normative specification [84]. The

UML metaschema contains 293 entity types and 93 attributes. It also specifies 9 pre- and

postconditions, and 107 integrity constraints. Furthermore, the conceptual schema connects its

elements through a set of 377 relationship types and 355 generalization relationships, and 13

enumeration types.

3www.uml.org

210

www.uml.org


7.2. THE E-COMMERCE CASE STUDY

7.2 The e-Commerce Case Study

In this section, we describe the application of our filtering methodology in the comparison of

the conceptual schemas of the osCommerce and Magento e-commerce systems introduced in

Sect. 7.1.1 and Sect. 7.1.2. We describe the filtering scenario and show examples of usage of

several filtering requests that help users to explore large conceptual schemas with the purpose

of comparing the knowledge they contain.

7.2.1 Filtering Scenario

Nowadays, there is a wide range of tools and systems that provide similar functionalities for the

particular domains for with they are developed. The selection of the most appropriate solution

for a concrete problem is a central task in every organization.

As aforementioned, the osCommerce and the Magento are both valid frameworks that al-

low commercial organizations to enhance their business and start their activities through the

e-commerce domain. Since the conceptual schema of an information system describes the

knowledge an organization needs to know to perform its functions, the aim of this case study

is to perform a conceptual schema comparison between osCommerce and Magento in order to

support the process of selecting one of them.

Previous research papers have proposed many techniques to achieve a partial automation

of schema matching operations [93]. Furthermore, there are generic comparison approaches

with the ability to see the differences in a model when compared to another one [22, 107]. Our

purpose here is to show that our filtering methodology can assist users through the comparison

between two large conceptual schemas. To this end, we propose the use of the following filtering

requests in this filtering scenario:

• F1 – Filtering request for entity and relationship types: the execution of this

request for the same concept specified in osCommerce and Magento allows to explore the

particularities and the level of detail specified within each conceptual schema.

• F2 – Filtering request for schema rules: the application of this request to the pre-

and postconditions of the same event type specified in osCommerce and Magento allows

to understand the differences in event effects.

• F3 – Filtering request for event types: the application of this request to event

types specified in osCommerce and Magento allows to understand the differences in the

structural definition of event types.

• F5 – Filtering request for context behavior of entity types: the usage of this

request allows to obtain the different sets of event types that affect the same entity type

in osCommerce and Magento.

The osCommerce conceptual schema contains 262 event types and 84 entity types. On

the other hand, the conceptual schema of Magento defines 187 event types and 218 entity

211



CHAPTER 7. APPLICATION OF THE FILTERING METHODOLOGY

types. There are 40 event types (≈15% of osCommerce’s total and ≈21% of Magento’s) and 36

entity types (≈43% of osCommerce’s total and ≈16% of Magento’s) that are specified in both

conceptual schemas with different characteristics but sharing the same name.

A user that wants to compare both schemas can make use of filtering requests F1 and F3 to

directly obtain the filtered schema with respect to a shared entity or event type. For instance,

Fig. 7.5 presents the filtered schemas a user may obtain focusing on the entity type CreditCard.

The knowledge we obtain from Magento is quite different from the knowledge we obtain from the

osCommerce. It is possible to observe that the CreditCard concept in both schemas descends

from the more general concept PaymentMethod. However, the filtered conceptual schema we

obtain from Magento (see Fig. 7.5 (left)) contains a more precise level of detail about credit

cards, including general attributes inherited from PaymentMethod and specific characteristics

when related to a website (see the CreditCardInWebsite association class). On the other side,

the filtered schema from osCommerce (see Fig. 7.5 (right) is simpler, specifying less information

than Magento’s.

Website
code:String
name:String

CreditCardInWebsite
allowedCard:Set(CreditCardType)
cardValidation:Boolean
maximumAllowed:Real
minimumAllowed:Real
newOrderStatus:OrderStatus
redefinedMaximumAllowed:Real
redefinedMinimumAllowed:Real
redefinedNewOrderStatus:OrderStatus
redefinedStatus:Status
redefinedTitle:String
security3dCardValidation:Boolean
status:Status

CreditCard

PaymentMethod
genericMaximumAllowed:Real
genericMinimumAllowed:Real
genericNewOrderStatus:OrderStatus
genericStatus:Status
genericTitle:String

websiteOfCreditCard*
*

splitCreditCardToEmail:Email
CreditCard

PaymentMethod
status:Status

TaxZone
description:String
name:String

Order
billing:Address
delivery:Address

*

1 *

0..1

Figure 7.5. Entity type CreditCard in Magento (left) and osCommerce (right) through F1 (K = 4).

Similarly, Fig. 7.6 presents the filtered schemas a user may obtain focusing on the event

type CancelOrder. We observe that CancelOrder descends from ExistingOrderEvent in both

schemas, which is directly related to the entity type Order. From the filtered schema of Magento

(see Fig. 7.6 (left)), the user obtains additional information about the event type of focus.

Concretely, it contains the specification of the event types AddInvoice and AddRefund, which

both are semantically related to orders and relevant siblings of CancelOrder. On the other side,

the filtered schema from osCommerce (see Fig. 7.6 (right)) only includes the event type of focus

CancelOrder, its generalization relationship with ExistingOrderEvent, and the relationship type

that connects it with Order. Also, the entity type Order only defines the billing and delivery

address of the order as attributes of the entity. By contrast, in Magento the same entity type

Order contains a set of 16 attributes, including information about shipping costs, coupon code

(for discounts), e-mail address where to send information about the order, total amount of the

order (indicating how much has been paid, invoiced, or refund), or purchase date. Furthermore,

Magento allows versioning of orders through the relationship type OrdersVersion, which provides

information about previous and new versions of a particular instance of Order. We can observe

that this functionality is not supported in the osCommerce system.
Apart from directly comparing the filtered conceptual schemas of the shared entity and

212



7.2. THE E-COMMERCE CASE STUDY

Order
couponCode:String
eMail:EMail
eMailSent:Boolean
giftMessage:GiftMessage
name:String
nonReInvoiceableTotal:Real
purchased:DateTime
shippingCosts:Real
status:OrderStatus
storeName:String
storeViewName:String
total:Real
totalInvoiced:Real
totalPaid:Real
totalRefunded:Real
websiteName:String

ExistingOrderEvent

AddInvoice
capturingMethod:InvoiceCapturingMethod
eMailSent:Boolean
line:Set(Tuple(product:Product, quantity:Integer))

AddRefund
additionalAmount:Real
eMailSent:Boolean
fee:Real
line:Set(Tuple(product:Product, quantity:Integer))
refundIsAlreadyReturned:Boolean
shippingAmount:Real

CancelOrder

1
*

previousVersion

newVersion
0..1

0..1

OrdersVersion

ExistingOrderEvent

CancelOrder

Order
billing:Address
delivery:Address

1

*

«event»

«event»

«event»

«event»

«event»

«event»

Figure 7.6. Event type CancelOrder in Magento (left) and osCommerce (right) through F3 (K = 5).

event types, a user with interest in exploring the behavioral aspects of both schemas can use

the filtering request F5 to obtain the specific event types that are related to a concrete entity

type. As an example, Fig. 7.7 presents the filtered schemas a user may obtain through F5

focusing on the entity type ShoppingCart, which is one of the most relevant entity types in

both schemas and represents a common metaphor (from the original grocery store shopping

cart) for the catalog or other pages of the e-store where a user makes selections. Typically,

the user checks off any products or services that are being ordered and then, when finished

ordering, indicates that and proceeds to a page where the total order is placed and confirmed.

ShoppingCart
couponCode:String
giftMessage:GiftMessage
total:Real

OrderConfirmation
comments:Set(Tuple(notifyCustomer:Boolean,text:String))
createdOrder:Order
creditCardInfo:Tuple(expires:Date,
                             number:String,
                             owner:String,
                             type:String,
                             verification:String)
eMailSent:Boolean

«event»

AddProductToShoppingCart
dateOption:Set(Tuple(date:Date,o:DateOption))
quantity:Integer
textOption:Set(Tuple(o:TextOption,text:String))

«event»

UpdateShoppingCart
lineChange:Set(Tuple(applyDiscount:Boolean,
                             customPrice:Real,
                             item:ShoppingCartItem,
                             quantity:Integer,
                             remove:Boolean))

«event»

1ExistingShoppingCartEvent
«event»

ShoppingCart

1

*

*

Figure 7.7. Related events to ShoppingCart in Magento (left) and osCommerce (right) through F5

(K = 5).

Figure 7.7 (left) shows that in Magento, the entity type ShoppingCart is related to the event

types OrderConfirmation, which requires the shopping cart of the user in order to confirm the

products within it in a new instance of Order, and ExistingShoppingCartEvent, which is a

general abstract event that generalizes the event types UpdateShoppingCart and AddProduct-

ToShoppingCart. Surprisingly, the osCommerce schema does not define any event type directly

connected to the entity type ShoppingCart (see Fig. 7.7 (right)).

213



CHAPTER 7. APPLICATION OF THE FILTERING METHODOLOGY

In order to deeply explore the event types that affect the state of the instances of the entity

type ShoppingCart, the user can use the filtering request F2 to explore the pre- and postcondi-

tions that define the effect of one of the event types in Fig. 7.7. For instance, Fig. 7.8 presents

the filtered schema affected by the effect postcondition of the event type AddProductToShop-

pingCart. We observe that in Magento, the effect of AddProductToShoppingCart (see Fig. 7.8

(top)) creates a new instance of ShoppingCartItem and connects it with the specific Shopping-

Cart and Product that is connected to the event itself. Also, the postcondition completes the

information of the new instance about options of the product in the shopping cart (date and

text options, with their ratings), and the quantity.

On the other side, we observe that the same event type in the osCommerce also creates

a new instance of ShoppingCartItem with the instance of Product connected to AddProduct-

ToShoppingCart. Furthermore, the quantity of the new item of the shopping cart is specified in

the event type (in the same manner as in Magento), and the Attributes of the selected product

(which were the options in Magento) are connected to the new ShoppingCartItem. It is impor-

tant to note that the ShoppingCart where the new ShoppingCartItem has to be connected is

associated with the instance of Session in osCommerce. That is the reason why the event type

AddProductToShoppingCart did not appear in the filtered schema of Fig. 7.7 (right). In addi-

tion to it, if the Session does not contain a ShoppingCart, the event creates a new instance to

place the new item, which could be an AnonymousShoppingCart or a CustomerShoppingCart

depending on whether the current session contains a logged customer or not.

7.2.2 Lessons Learned

The analysis of the previous study indicates that our filtering method and, specially the catalog

of filtering requests, are useful and provide adequate feedback to the user in the task of com-

paring the knowledge contained within two large conceptual schemas from the same domain

of interest. Among the different filtering requests in our catalog, we believe that the filtering

request for entity and relationship types (F1), and the filtering request for event types (F3) are

the requests of choice for those users that start exploring and comparing large schemas.

A more experienced user shall use the filtering request for context behavior of entity types

(F5) in order to know which are the event types that play a key role creating, updating and

deleting instances of a particular entity type of interest. Furthermore, that user shall obtain

the definition of the event pre- and postconditions and the fragment of the schema affected by

the event effect by using the filtering request for schema rules (F2). We recommend the usage

of this filtering request to users with experience with the syntax and semantics of OCL.

The results of the e-commerce comparison from this case study indicate that the Magento

framework provides a more detailed approach to the e-commerce business than the one proposed

by osCommerce. The entity and event types specified in the Magento contain a higher number of

attributes and are associated through more relationship types that in osCommerce. However,

the configuration of the osCommerce environment is easier than Magento’s. Therefore, we

believe that osCommerce is the option of choice for small-to-medium organizations that want to

start sharing their business through a basic e-commerce system. On the contrary, those medium-

214



7.2. THE E-COMMERCE CASE STUDY

to-large organizations with experience in the e-commerce domain should select Magento as the

best e-commerce solution.

value:Date
DateOptionRating

context AddProductToShoppingCart::effect()
post addProduct:
  let existingItem:ShoppingCartItem 
    = self.shoppingCart@pre.shoppingCartItem@pre
       ->any(i|i.product=self.product)
  in let productExists:Boolean=not existingItem.oclIsUndefined() and 
        existingItem.optionValueInOption=self.optionValue and 
        existingItem.textOptionRating
         ->collect(r| Tuple{o=r.textOption,text=r.value})->asSet() 
         = self.textOption and existingItem.dateOptionRating
         ->collect(r| Tuple{o=r.dateOption,date=r.value})->asSet()
         = self.dateOption
  in if productExists then
    let i=self.shoppingCart.shoppingCartItem->any(i|i.product=self.product)
    in i.quantity = i@pre.quantity + self.quantity
  else
    (ShoppingCartItem.allInstances()-ShoppingCartItem.allInstances@pre())
      ->one(i:ShoppingCartItem | 
        i.oclIsNew() and i.oclIsTypeOf(ShoppingCartItem) and 
        i.shoppingCart = self.shoppingCart and i.product = self.product and
        i.quantity = self.quantity and i.applyDiscount = true and 
        (self.textOption->notEmpty() implies
     self.textOption ->forAll(tupleOpt |
    (TextOptionRating.allInstances()-TextOptionRating.allInstances@pre())
          ->exists(r:TextOptionRating | 
           r.oclIsNew() and r.oclIsTypeOf(TextOptionRating) and 
           r.textOption = tupleOpt.o and r.value = tupleOpt.text and 
           r.shoppingCartItem = i
     ) ) ) and (self.dateOption->notEmpty() implies
      self.dateOption->forAll(tupleOpt|
      (DateOptionRating.allInstances()-DateOptionRating.allInstances@pre())
        ->exists(r:DateOptionRating | 
        r.oclIsNew() and r.oclIsTypeOf(DateOptionRating) and
        r.dateOption = tupleOpt.o and r.value = tupleOpt.date and
        r.shoppingCartItem = i
   ) ) ) and i.optionValueInOption = self.optionValue )
  endif

Product
quantity:Real[0..1]

quantity:Integer
textOption:Set(Tuple(o:TextOption, text:String))
dateOption:Set(Tuple(o:DateOption, date:Date))

AddProductToShoppingCart

quantity:Integer[0..1]
applyDiscount:Boolean

ShoppingCartItem

ShoppingCart

OptionValueInOption

TextOption DateOption

value:String
TextOptionRating

**

**

*

*

C
ho

os
es

* *

1

Is
A

P
ur

ch
as

eO
fA

1

1
1

* *

event

*

*optionValue

context AddProductToShoppingCart::effect()
post ShoppingCartItemIsCreated:  
   (ShoppingCartItem.allInstances()-ShoppingCartItem.allInstances@pre())
     ->one(sci:ShoppingCartItem |
       sci.oclIsNew and  sci.oclIsTypeOf(ShoppingCartItem) and
       sci.quantity = self.quantity and sci.product = self.product and
       sci.attribute = self.attribute and
      if self.session.shoppingCart->notEmpty() then
          self.session.shoppingCart.shoppingCartItem->includes(sci)  
      else if self.session.customer->isEmpty() then
          (AnonymousShoppingCart.allInstances() - 
           AnonymousShoppingCart.allInstances@pre())
             ->one(sc:AnonymousShoppingCart |
             sc.oclIsNew() and oclIsTypeOf(AnonymousShoppingCart) and
             self.session.shoppingCart = sc and             
             sc.shoppingCartItem->includes(sci))
      else if self.session.customer.customerShoppingCart->notEmpty() then          
           self.session.shoppingCart = self.session.customer
                                                        .customerShoppingCart and
           self.session.shoppingCart.shoppingCartItem->includes(sci)
      else (CustomerShoppingCart.allInstances() -
               CustomerShoppingCart.allInstances@pre())
                 ->one(csc:CustomerShoppingCart |             
                     csc.oclIsNew() and 
                     csc.oclIsTypeOf(CustomerShoppingCart)  and
                     self.session.shoppingCart = csc and             
                     csc.shoppingCartItem->includes(sci))
      endif endif endif )

Product

quantity:Integer
ShoppingCartItem

ShoppingCart

quantity:Integer

AddProductToShoppingCart
event

Session

Customer

AnonymousShoppingCart

CustomerShoppingCart

Attribute 1
1

*

* *

* 1

*

*

*

0..1

0..1

0..1

0..1
0..1

1..*

0..1

1

Figure 7.8. Effect of event type AddProductToShoppingCart in Magento (top) and osCommerce
(bottom) through F2 (scope=local).

215



CHAPTER 7. APPLICATION OF THE FILTERING METHODOLOGY

7.3 The EU-Rent Case Study

In this section, we describe the application of our filtering methodology in the exploration

of the conceptual schema of the EU-Rent car rental system introduced in Sect. 7.1.3. We

describe the filtering scenario and show examples of usage of several filtering requests that help

users to explore the behavioral subschema of this large conceptual schema with the purpose

of understanding the specific knowledge it contains and the way event types affect it through

their pre- and postconditions.

7.3.1 Filtering Scenario

Modelers need to understand the knowledge contained in the behavioral subschema of a large

conceptual schema. In the development of information systems, modelers need eventually to

check with a domain expert that the behavioral part of the schema is correct, database designers

need to implement that behavior into a relational database, software testers need to write tests

checking that the behavior has been correctly implemented in the system components, and the

members of the maintenance team need to change the behavior of a set of event types.

In large conceptual schemas, human understanding of the semantics of the behavioral sub-

schema is difficult due to the pre- and postconditions the effect of event types contain. The

problem is not the formal language in which they are written (the OCL in UML [85]), but the

fact that the elements (entity types, attributes, relationship types) involved in an expression

are defined in different places in the schema, which may be very distant from each other and

embedded in an intricate web of irrelevant elements for the purpose at hand. The problem is

insignificant when the schema is small, but very significant when it is large.

Our purpose here is to show that our filtering methodology can assist users through the

exploration of the behavioral subschema of a given conceptual schema. To this end, we propose

the use of the following filtering requests in this filtering scenario:

• F2 – Filtering request for schema rules: the application of this request to the pre-

and postconditions of an event type specified in EU-Rent allows to understand the effect

of the event and the structural schema that is affected by such effect.

• F3 – Filtering request for event types: the application of this request to event types

specified in EU-Rent allows to understand the structural definition of event types in the

schema.

• F5 – Filtering request for context behavior of entity types: the usage of this

request allows to obtain the different sets of event types that affect an entity type in

EU-Rent.

• F6 – Filtering request for contextualized types: the execution of this request allows

to derive a specific view of interest from a set of entity and event types of focus taking

into account a contextualization function.

216



7.3. THE EU-RENT CASE STUDY

The behavioral subschema of the EU-Rent conceptual schema contains 120 event types and

166 pre- and postconditions. It almost doubles the number of entity types from the structural

subschema (65), which denotes the relevance of the behavioral subschema.

A user that wants to explore the behavioral subschema may start using the filtering request

for context behavior of entity types (F5) to directly obtain a filtered schema with the most

interesting event types with respect to an entity type of focus. For instance, Fig. 7.9 presents

the filtered schema a user may obtain focusing on the entity type Car, which is the most relevant

one in EU-Rent according to the importance-computing methods presented in Ch. 4.

answerCar

Event
time:DateTime

«event»

RecordDamages
answerToBeBlacklisted:Boolean
cost:Money
damageDegree:Level

«event»

Car
registrationNumber:String

ExistingCarEvent
regNumber:String

«event»

DamagesEvaluation
answerOwnCar:Boolean
damagesDetected:Boolean

«event»

MakeRental
beginning:DateTime
ending:DateTime
countries:String[0..*]

«event»

EndOfRepairs
answerSellCar:Boolean

«event»

EndOfMaintenance
answerSellCar:Boolean

«event»

ExistingRental
beginning:DateTime

«event»
ExistingCarGroupEvent
carGroup:String

«event»

ScheduleMaintenance
beginning:Date

«event»

MakeWalkInRental
«event»

SellCar
«event»

ConfirmCarSale
«event»

GetCarsToBePrepared
«event»

TransferOwnership
«event»

MakeWalkInRentalWithCarModel
«event»

CheckTodayResWithoutCarDerived
«event»

ExternalQueryEvent
«event»

ExternalDomainEvent
«event»

*

11

*

1

*
answerCar 1

*

1..*

*

*

1
candidateCars

*

* an
sw
er
C
ar

Figure 7.9. Related events to Car in EU-Rent through F5 (K = 20).

This filtered conceptual schema contains a hierarchy of event types with relation to Car.

Analyzing the name of the events is enough to obtain a first view of the functionalities EU-Rent

provides. It is possible to observe that there are events to create a car rental (MakeRental),

schedule some maintenance of a car, transfer the ownership of a car, or event evaluate its

damages, and record them in a rental. This filtering request provides us with a summary of the

behavioral schema that serves as starting point and makes possible to continue the exploration

with additional filtering requests.

The user may select one the event types in the filtered schema of Fig. 7.9 and explore in detail

the fragment of the large schema with higher relation to that event. As an example, Fig. 7.10

shows the filtered conceptual schema our filtering request for event types (F3) provides when

the user focus on the event type MakeRental.

There are two types of event types to create rentals: MakeRental and MakeWalkInRental,

which is a descendant of MakeRental. The event type MakeRental contains information about

the rental period (that is, pick-up time and day of drop-off), the pick-up and drop-off branches

217



CHAPTER 7. APPLICATION OF THE FILTERING METHODOLOGY

where to get and return the car of the rental, and the instance of EU-RentPerson that indicates

the person who makes the rental. Recording the moment in which the rental is made will be also

useful for defining a priority criteria to allocate cars. On the other hand, the MakeWalkInRental

event creates walk-in rentals, which are immediate and depend on the availability of cars.

MakeRental
beginning:DateTime
ending:DateTime
countries:String[0..*]

«event»

ExistingCarGroupEvent
carGroup:String

«event»

MakeWalkInRental
«event»

*
transferor

RentalAgreement
basicPrice:Money
bestPrice:Money
lastModification:DateTime
onRentInterval:Duration
initEnding:DateTime
beginning:DateTime

Branch
name:String

EU-RentPerson
address:String
birthDate:Date
id:String
name:String
telephone:Integer

TransferAgreement
distance:Integer
expectedTime:Real

receiver
*

* 1answerRental

br
an

ch
C
us
to
m
er

BelongsTo1

*

Drive
1..*1..*

driver

DropOff

PickUp

1 *

*
1

1
1

*
*

*

1

pickUpBranch
dropOffBranch

pickUpBranch
dropOffBranch

Figure 7.10. Event type MakeRental in EU-Rent through F3 (K = 7).

In order to analyze the details of the MakeRental effect, the user may use the filtering

request for schema rules (F2) applied to the postcondition of this event type. Figure 7.11

presents the filtered schema that results from the application of F2 to the postcondition of

the effect of MakeRental. Note that it only includes the elements that are referenced by that

postcondition, which indicates that the effect of MakeRental consists of the creation of a new

instance of RentalAgreement.

Then, the postcondition sets the characteristics of the new instance, including the beginning

and ending dates of the rental (which are attributes of MakeRental), the customer who makes

the rental (the renter associated with MakeRental), and the pick-up and drop-off branches of the

rental (also associated to MakeRental). We assume that countries through which the customer

is going to travel are also given in the countries attribute of MakeRental, and transferred to

the instance of RentalAgreement that represents the new rental in the EU-Rent system.

MakeRental
beginning:DateTime
ending:DateTime
countries:String[0..*]

«event» RentalAgreement
initEnding:DateTime
beginning:DateTime

Branch

EU-RentPerson 1..*

answerRental

DropOff
PickUp

1

1

context MakeRental::effect():Boolean
post:
 let getCountries:Set(Country)= Country.allInstances()->select(c| 
        self.countries->includes(c.name))
 in (RentalAgreement.allInstances() - RentalAgreement.allInstances@pre())
     ->one(rent:RentalAgreement |  renter.oclIsTypeOf(Customer) and  
         rent.oclIsNew() and  rent.oclIsTypeOf(RentalAgreement) and    
         rent.beginning=self.beginning and rent.renter=self.renter and   
         rent.initEnding=self.ending and rent.pickUpBranch=self.pickUpBranch and  
         rent.dropOffBranch=self.dropOffBranch and rent.country=getCountries and   
         self.answerRental=rent )

Country
name:string

Customer

1
renter*

pickUpBranch

dropOffBranch

*
*

pickUpBranch
1 1 dr

op
O
ffB
ra
nc
h

*

*

Visits
*

1
*

Figure 7.11. Effect of event type MakeRental in EU-Rent through F2 (scope=local).

218



7.3. THE EU-RENT CASE STUDY

Once the user understands the effect of the event type, she may need to modify its specified

behavior in order to update the definition of the schema according to new business requirements

of the EU-Rent organization. Then, the user should use the filtering request for contextualized

types (F6) and construct a contextualization function that matches the new business context.

As an example, Fig. 7.12 presents the filtered conceptual schema that results from the

application of the filtering request F6 with a focus set containing the entity and event types

from the schema of Fig. 7.11 and a contextualization function. Concretely, the contextualization

function modifies the multiplicity of the attribute countries of MakeRental from 0..* to 1..1, and

the multiplicity of the association Visits in the side of Country from 0..* to 1..1. With these

modifications, we can simulate an alternative event type MakeRental in which only one country

is allowed in a rental agreement. It means that the customer cannot drive across countries with

the car rented through this event type. Note that the postcondition effect in Fig. 7.12 has been

manually modified according to the contextualization.

MakeRental
beginning:DateTime
ending:DateTime
countries:String

«event» RentalAgreement
initEnding:DateTime
beginning:DateTime

Branch

EU-RentPerson 1

answerRental

DropOff
PickUp

1

1

context MakeRental::effect():Boolean
post:
 let getCountry:Country=Country.allInstances()->select(c| c.name=self.country)->any(true)
 in (RentalAgreement.allInstances() - RentalAgreement.allInstances@pre())
     ->one(rent:RentalAgreement |  renter.oclIsTypeOf(Customer) and  
         rent.oclIsNew() and  rent.oclIsTypeOf(RentalAgreement) and    
         rent.beginning=self.beginning and rent.renter=self.renter and   
         rent.initEnding=self.ending and rent.pickUpBranch=self.pickUpBranch and  
         rent.dropOffBranch=self.dropOffBranch and rent.country=getCountry and   
         self.answerRental=rent )

Country
name:string

Customer

1
renter*

pickUpBranch

dropOffBranch

*
*

pickUpBranch
1 1 dr
op
O
ffB
ra
nc
h

*

*

Visits
*

1
*

Figure 7.12. Contextualization for the effect of the event type MakeRental in EU-Rent through F6.

7.3.2 Lessons Learned

The analysis of the previous study indicates that our filtering method and, specially the catalog

of filtering requests, are useful and provide adequate feedback to the user in the task of exploring

the behavioral subschema within a large conceptual schemas. Among the different filtering

requests in our catalog, we believe that the filtering request for context behavior of entity types

(F5), and the filtering request for event types (F3) are the requests of choice for those users

that start exploring the event types from behavioral subschemas.

A more experienced user shall use the filtering request for schema rules (F2) in order to

know the details about the pre- and postconditions and the fragment of the schema affected

by an event effect. We recommend the usage of this filtering request to users with experience

with the syntax and semantics of OCL. Also, the user interested in obtaining a contextualized

filtered schema shall make use of the filtering request for contextualized types (F6). We have

identified a need of future work to automatically refactor schema rules after the application of

a contextualization function that changes multiplicities of elements referenced by those rules.

219



CHAPTER 7. APPLICATION OF THE FILTERING METHODOLOGY

7.4 The UML Metaschema Case Study

In this section, we describe the application of our filtering methodology in the exploration of

the UML metaschema introduced in Sect. 7.1.4. We describe the filtering scenario and show

examples of usage of several filtering requests that help users to explore this large conceptual

schema. Since the UML metaschema is currently described through a formal specification

document provided by the Object Management Group (OMG, see [84]), we compare the contents

of this document with the results of applying a set of filtering requests.

7.4.1 Filtering Scenario

The Unified Modeling Language (UML) provides system architects, software engineers, and

software developers with tools for analysis, design, and implementation of software-based sys-

tems as well as for modeling business and similar processes. The OMG maintains and supports

the specification of the UML metaschema and provides a full document with its formal definition

in [84].

The document with the UML metaschema definition includes more than 700 pages with the

technical aspects of this formal specification. It defines the static, structural constructs (e.g.,

classes, components, node artifacts) used in various structural diagrams provided by the UML

graphical modeling language, such as class diagrams, component diagrams, and deployment

diagrams. Also, the document specifies the dynamic, behavioral constructs (e.g., activities,

interactions, state machines) used in various behavioral diagrams, such as activity diagrams,

sequence diagrams, and state machine diagrams. Finally, it defines auxiliary constructs (e.g.,

information flows, models, templates, primitive types) and the profiles used to customize UML

for various domains, platforms, and methods.

Although the clauses of the UML metaschema document are organized in a logical manner

and can be read sequentially, it is a reference specification and is intended to be read in a non-

sequential manner. Consequently, extensive cross-references are provided to facilitate browsing

and search.

Our purpose here is to show that our filtering methodology can also be useful even when

there is a good-enough documentation with the formal specification of a given large conceptual

schema a user wants to explore. To this end, we propose the use of the following filtering

requests in this filtering scenario:

• F1 – Filtering request for entity and relationship types: the execution of this

request with a set of entity and relationship types of focus allows to explore the particu-

larities and the level of detail specified about these elements within the UML metaschema.

• F2 – Filtering request for schema rules: the application of this request to the in-

tegrity constraints, derivation rules, and pre- and postconditions specified in the UML

metaschema allows to understand the structural schema that is affected by the definition

of each of these schema rules.

220



7.4. THE UML METASCHEMA CASE STUDY

A user that wants to explore the UML metaschema may start using the filtering request for

entity and relationship types (F1) to directly obtain a filtered schema with the most interesting

elements with respect to a focus set of entity and/or relationship types. For instance, Fig. 7.13

presents the filtered schema a user may obtain focusing on the entity type Property, which is

one of the most relevant entity types in the UML metaschema according to the importance-

computing methods presented in Ch. 4.

/ownedElement

*
0..1

/general
1..*

Property
aggregation:AggregationKind
default:String
isComposite:Boolean
isDerived:Boolean
isDerivedUnion:Boolean

Classifier
isAbstract:Boolean

Association
isDerived:Boolean

StructuralFeature
isReadOnly:Boolean

NamedElement
name:String
qualifiedName:String
visibility:VisibilityKind

Feature
isAStatic:Boolean

MultiplicityElement
isOrdered:Boolean
isUnique:Boolean
lower:Integer
upper:UnlimitedNatural

RedefinableElement
isLeaf:Boolean

TypedElement Namespace Type

ValueSpecification

*

*

/opposite
0..1

*

subsettedProperty

*
*

redefinedProperty

*
*

redefinedClassifier
*

*

defaultValue 0..1

0..1

0..10..1

ownedEnd*

owningAssociation

memberEnd2..*

0..1

/attribute

*

/owner

owningProperty

0..10..*

/featuringClassifier*
/feature

*

/inheritedMember
*

0..1

*

ow
ne dM

em
ber

/m
e m

ber *

*

/relatedElement

1..*

*

/endT
ype

1..*

*

0..10..1

0..10..1
upperValuelowerValue

/imported
Member

*
*

/redefinitionContext

*

*

/redefinableElement

*
* namespace

Figure 7.13. Entity type Property in the UML metaschema through F1 (K = 5).

Alternatively, the user may explore the UML metaschema documentation and find a similar

fragment of the whole large schema that focus on the entity types Property, Class and Associa-

tion, as shown in Fig. 7.14. The UML metaschema document contains several figures that show

fragments of the large metaschema. We can see these fragments as static schema summaries or

clusters of elements. As stated in the review of techniques and approaches to deal with large

conceptual schemas of Ch. 3, clustering and summarization methods provide good feedback to

users that want to obtain a general view of a given large conceptual schema. However, these

techniques are of little use to those users that want to explore particular aspects of the schema

or sets of elements whose information is spread out in several summaries or clusters.

In the previous example of Fig. 7.13, we observe that a Property is a descendant of the

entity type StructuralFeature, which also descends from the more general entity types Feature,

MultiplicityElement, and TypedElement. The entity types that are marked in gray are auxiliary

and the relationships that are also gray are projected relationship types from the original

schema, as explained in Ch. 5. It is important to note that the filtered schema obtained

through the application of the filtering request for entity and relationship types (F1) explicitly

indicates the inheritance paths of interest for Property, which are specially useful to observe

221



CHAPTER 7. APPLICATION OF THE FILTERING METHODOLOGY

that a Property is a MultiplicityElement that has a lower and an upper value. This knowledge is

of high relevance for the user of UML, but it does not appear in the fragment of the specification

shown in Fig. 7.14. A user that wants to explore the same hierarchy of the entity type Property

that appears in Fig. 7.13 must traverse a set of 7 fragments of schemas in the UML metaschema

specification document.

Figure 7.14. Entity type Property in the UML metaschema formal specification (see [84]).

Once the user has obtained the filtered conceptual schema of interest, she can continue

exploring the schema rules defined in the context of the elements that appear in that filtered

schema. For instance, Fig. 7.13 shows that an association end with rolename opposite in the

reflexive binary relationship type between two instances of Property is derived. Therefore, the

user may be interested in understanding the semantics of the derivation rule of opposite. To this

purpose, the user can explore the UML metaschema document and then find the definition of the

derivation rule of interest, which is shown in Fig. 7.15. Therefore, the user must simultaneously

study that OCL expression defining the derivation rule and the schema summary of Fig. 7.14

in order to understand the semantics of the rule and discover the elements that are involved in

the derivation.

Figure 7.15. Derivation rule of Property::opposite in the UML metaschema specification (see [84]).

222



7.4. THE UML METASCHEMA CASE STUDY

Alternatively, the user can make use of the filtering request for schema rules (F2) and locally

focus on the derivation rule of the opposite association end. As a result, the user automatically

obtains the minimum filtered conceptual schema with the elements that are referenced by that

derivation rule. Figure 7.16 presents the corresponding filtered schema and the specification

of the derivation rule for the association end opposite. It is possible to observe that only the

entity types Property and Association take part in the derivation rule.

Analyzing the filtered schema it is easy to understand that the opposite Property p′ of a

given Property p is the member end property that participates in a binary association with p

and that it is not owned by an association. Concretely, if we have the binary relationship type

r(p, p′), then p = opposite(p′) and p′ = opposite(p).

Property Association

/opposite

0..1

* 0..1

0..1
ownedEnd* owningAssociation

memberEnd

2..*

context Property::opposite:Property
derive:
   if owningAssociation->isEmpty() and association.memberEnd->size() = 2 
   then 
     let otherEnd = (association.memberEnd - self)->any() 
     in 
       if otherEnd.owningAssociation->isEmpty() 
       then otherEnd 
       else Set{} 
       endif 
   else Set{} 
   endif

Figure 7.16. Derivation rule of Property::opposite in the UML metaschema through F2 (scope=local).

7.4.2 Lessons Learned

The analysis of the previous study indicates that our filtering method and, specially the catalog

of filtering requests, are useful and provide adequate feedback to the user in the task of explor-

ing a large conceptual schema that also includes a good-enough documentation that formally

specifies the contents of the schema and its semantics. Among the different filtering requests

in our catalog, we believe that the filtering request for entity and relationship types (F1), and

the filtering request for schema rules (F2) are the requests of choice for those users that start

exploring the characteristics of a documented conceptual schema.

The results of analyzing this case study indicate that having a good documentation for

a large conceptual schema is useful to inexperienced users that have interest on exploring the

characteristics of the schema. However, there are situations where a user is interested on several

aspects from a large schema that are defined in different places of the documentation, which may

be very distant from each other and embedded in an intricate web of other irrelevant elements

for the purpose at hand. The application of the filtering requests to a large schema like the

UML metaschema provides a more dynamic exploration approach that saves time and reduces

the searching effort a user must dedicate to find the specific portions of the whole schema of

interest to satisfy a particular need of information.

223



CHAPTER 7. APPLICATION OF THE FILTERING METHODOLOGY

7.5 Experimental Evaluation

Finding a measure that reflects the ability of our filtering methodology to satisfy the user is

a complicated task in the field of information retrieval [10]. Usually, the distinction is made

between the evaluation of the effectiveness and the efficiency of a retrieval method. While the

effectiveness measures the benefits obtained from the application of the filtering method, the

efficiency indicates the time interval between the request being made and the answer being

given.

We have implemented all the filtering requests of our filtering method (see the details in

Ch. 8) and we have then evaluated the efficiency and effectiveness of these filtering requests

by using the conceptual schemas of the previous case studies: the schema of Magento [94], the

UML metaschema [84, 8], the schema of osCommerce [118], and the EU-Rent car rental schema

[47]. In the following, we present the results we have obtained from the analysis of the resulting

data.

7.5.1 Effectiveness

The two most frequent and basic measures for information retrieval effectiveness are precision

and recall [10]. Precision is the fraction of retrieved elements that are relevant, while recall is the

fraction of relevant elements that are retrieved. The measures of precision and recall concentrate

the evaluation on the return of true positives, asking what percentage of the relevant elements

have been found and how many false positives have also been returned. Unfortunately, there

is a wide range of information retrieval situations in which precision and recall are not directly

applicable.

The main reason why we cannot apply precision and recall to our filtering methodology

evaluation is that we do not have an oracle or expert that could help us to mark the elements of

a very large schema as relevant or irrelevant due to the size of the schema itself. Furthermore,

we cannot have an expert capable of marking the relevance of elements according to the needs of

a particular user. Therefore, our effectiveness evaluation computes the benefits of our method

with respect to the user effort when manually exploring a large conceptual schema with the

purpose of obtaining a fragment of interest.

The application of the filtering requests of our method produces a filtered conceptual schema

of small size that helps understanding the elements defined in a large schema. We compare the

final size of a filtered schema with the size of its contextual schema, i.e, the portion of the large

schema the user needs to manually explore in order to cover the elements referenced by the

filtered schema starting from the elements of focus from the input of a filtered request.

As stated in the first part of this thesis, we formally define a conceptual schema as a tuple

CS = 〈SS,BS〉, where SS = 〈E , R, T , G, C, D〉 is the structural subschema, and BS = 〈Eb, Rb,
Gb, Cb〉 is the behavioral subschema. Similarly, we formally define a filtered conceptual schema

as a tuple CSF = 〈SSF ,BSF 〉, where SSF = 〈EF , RF , TF , GF , CF , DF 〉 is the structural

subschema, and BSF = 〈EbF , RbF , GbF , CbF 〉 is the behavioral subschema.

224



7.5. EXPERIMENTAL EVALUATION

Consequently, we formally define the components of the contextual schema CSC = 〈EC , EbC ,
RC , AC , GC〉 as:

EC = EF ∪ EG ∪ ER,
EbC = EbF ∪ EbG ∪ EbR,
RC = {R(p1:C1, ..., pn:Cn) ∈ R | ∃Ci, pi (Ci ∈ {EC ∪ EbC} ∧ pi:Ci ∈ R)},
AC = {a ∈ {A ∪ Ab} | ∃C, T (C ∈ {EC ∪ EbC} ∧ T ∈ T ∧ a(C, T ))},
GC = {g ∈ {G ∪ Gb} | ∃Ci, Cj (Ci, Cj ∈ {EC ∪ EbC} ∧ g:(Ci IsA Cj))},

where EF and EbF are the entity and event types from the filtered schema. EG and EbG con-

tain the entity and event types that are intermediate members of the paths of generalization

relationships between members of EF and EbF , respectively. As a very simple example, con-

sider a schema with the 2 -level specialization hierarchy e′′ IsA e′ IsA e of entity types. If only

e′′, e ∈ EF of the filtered schema, then the filtering method creates an indirect generalization

relationship g:(e′′ IsA e) between them s.t. g ∈ GF . In that case, the set EG from the contextual

schema contains e′ (EG = {e′}).

In the same way, ER and EbR are the participant entity and event types in relationship types

and attributes of the filtered schema before applying projection. As a very simple example,

consider a schema with the 1 -level specialization hierarchy e′ IsA e of entity types, and the

relationship type R(r1:e, r2:e′′)∈ R. If only e′′, e′ ∈ EF of the filtered schema, then the filtering

method projects the relationship type R to these entity types as in R(r1:e′, r2:e′′)∈ RF . In

that case, the set ER from the contextual schema contains e and e′′ (ER = {e, e′′}).

Finally, the set RC contains the relationship types whose participants belong to EC or EbC .
The set AC contains the attributes defined in the context of entity types of EC or event types

of EbC . And the set GC contains the generalization relationships types between entity types of

EC or event types of EbC .

Therefore, we define the filtering utility factor ∆ between the size of a given filtered schema

CSF and the size of its respective contextual schema CSC as follows:

Filtering Utility Factor: ∆ = 1− Σ(CSF )

Σ(CSC)
, where

Σ(CSF ) = |EF |+ |EbF |+ |RF |+ |RbF |+ |AF |+ |AbF |+ |GF |+ |GbF |,
and Σ(CSC) = |EC |+ |EbC |+ |RC |+ |AC |+ |GC |.

As a result, Fig. 7.17 presents a set of box plots with the resulting values for the filtering

utility factor applied to each of the previous case studies. For each schema, the plot indicates

the smallest observation (sample minimum), lower quartile (Q1), median (Q2), upper quartile

(Q3), and largest observation (sample maximum). Also, the black diamonds indicate the mean

of each sample. The bottom and top of each box (Q1 and Q3) are the 5th and 95th percentiles,

which means that the box contains the 90% of the samples.

Figure 7.17(a) indicates the results of the filtering request for entity and relationship types

(F1) when applied to each of the 660 entity types and of the 1,031 relationship types specified

in the four schemas from the case studies.

225



CHAPTER 7. APPLICATION OF THE FILTERING METHODOLOGY

Figure 7.17(b) indicates the results of the filtering request for schema rules (F2) when applied

to each of the 1,453 integrity constraints, derivation rules, pre- and postconditions specified in

the four schemas from the case studies setting the scope of the request to local. Figure 7.17(c)

presents similar results when the scope is set to global.

Figure 7.17(d) indicates the results of the filtering request for event types (F3) when applied

to each of the 569 event types specified in three of the four schemas from the case studies. Note

that the UML metaschema does not contain a behavioral subschema with event types.

Figure 7.17(e) indicates the results of the filtering request for a conceptual schema (F4)

when applied to each of the 569 filtered conceptual schemas obtained from the application of

each of the filtering requests used on the other box plots. Note that we executed this request

demanding a resulting filtered schema with a 10% more of elements than the one from the

input. It was achieved by properly setting the size threshold K.

Figure 7.17(f) indicates the results of the filtering request for context behavior of entity types

(F5) when applied to each of the 367 entity types specified in three of the four schemas from the

case studies. Note that the UML metaschema does not contain a behavioral subschema with

event types. Since none of the entity types are related to event types, Fig. 7.17(g) presents the

same results as in Fig. 7.17(f) but without the results where the filtering utility factor was zero,

which indicates that situation of entity types that are not related to event types. Concretely,

there were 74 entity types without direct relationships with event types.

It is important to note that there is no box plot for the analysis of the effectiveness of

the filtering request for contextualized types (F6) because the definition of a contextualization

function requires a specific user intervention. However, we can assume the results from this

request to be similar than those of F1, F3, and F4 because the filtering approach is the same.

We observe that the mean value of the filtering utility factor exceeds 0.7 in the box plots

for F1, F2, and F4, which indicates a size reduction greater than 70% using filtered schemas

instead of exploring the whole schema manually. The results of the F3 are quite similar,

showing a reduction in the filtering utility factor of the osCommerce with a mean value of 0.63,

which is good enough to continue using that request. The results from the previous box plots

indicate a significant reduction of the cognitive effort a user has to face when understanding

the characteristics of a large schema.

The smallest observations of the filtering utility factor in the box plot of F2 (∆ = 0) indicate

that the size of the filtered schema equals the size of the contextual schema (Σ(CSF ) = Σ(CSC)).
This situation occurs whenever a schema rule of focus only references all the attributes of a

single entity or event type without relationships to other elements, as in the case of primary key

constraints of isolated types. In our experimentation, the schema rules that cause this represent

less than a 2% of the total schema rules analyzed by this study.

Also, the results from F5 in Fig. 7.17(f) and Fig. 7.17(g) are slightly smaller than the other

results because a substantial portion of the 367 entity types that were analyzed are only related

to one event type, which reduces the overall filtering utility factor of the box plots. However,

the normalized results from Fig. 7.17(g) indicates a size reduction greater than 50% using our

method, which is good enough in comparison to manually exploring the whole schema.

226



7.5. EXPERIMENTAL EVALUATION

Filtering Utility Factor ∆ [0,1] for F1

0

0.2

0.4

0.6

0.8

1

0.84

0.71 0.73

0.79

Magento UML osCommerce EU Rent

(a) Filtering utility factor for F1.

Filtering Utility Factor ∆ [0,1] for F2 (local)

0

0.2

0.4

0.6

0.8

1

0.85
0.79

0.72 0.74

Magento UML osCommerce EU Rent

(b) Filtering utility factor for F2 (local).

Filtering Utility Factor ∆ [0,1] for F2 (global)

0

0.2

0.4

0.6

0.8

1

0.89

0.71

0.82 0.78

Magento UML osCommerce EU Rent

(c) Filtering utility factor for F2 (global).

Filtering Utility Factor ∆ [0,1] for F3

0

0.2

0.4

0.6

0.8

1

0.88

0.63 0.77

Magento osCommerce EU Rent

(d) Filtering utility factor for F3.

Filtering Utility Factor ∆ [0,1] for F4

0

0.2

0.4

0.6

0.8

1

0.81 0.79
0.76

0.83

Magento UML osCommerce EU Rent

(e) Filtering utility factor for F4.

Filtering Utility Factor ∆ [0,1] for F5

0

0.2

0.4

0.6

0.8

1

0.46

0.34
0.28

Magento osCommerce EU Rent

(f) Filtering utility factor for F5.

Filtering Utility Factor ∆ [0,1] for F5 (normalized)

0

0.2

0.4

0.6

0.8

1

0.64
0.58 0.56

Magento osCommerce EU Rent

(g) Filtering utility factor for F5 (normalized).

Figure 7.17. Effectiveness analysis.

227



CHAPTER 7. APPLICATION OF THE FILTERING METHODOLOGY

7.5.2 Efficiency

It is clear that a good method does not only need to be useful, but it also needs to obtain the

results in an acceptable time according to the user’s expectations. To find the time spent by

our method it is only necessary to record the time lapse between the request of knowledge, i.e.

once a filtering request is executed with the user focus and the rest of components that conform

the input of or method, and the obtainment of the filtered schema.

Figure 7.18 presents a set of box plots with the resulting values for the response time (in

milliseconds) obtained by an Intel Core 2 Duo 3GHz processor with 4GB of DDR2 RAM after

applying the aforementioned filtering requests shown in Fig. 7.18 to the conceptual schemas of

the case studies.

The mean value of the response time for the case studies is less than 45 milliseconds, which

indicates that the time a user expends waiting for the resulting filtered schema is negligible.

Furthermore, the largest observations of the response time in any schema are below 150 mil-

liseconds. It is expected that as the number of projections of relationship types and subsumed

generalization relationships to process increases, the response time will increase linearly. How-

ever, the resulting times for all the filtering requests of the case studies are short enough for

our purpose.

The case of the filtering request for schema rules (F2) when the scope value is set to local

is slightly different, as shown in Fig. 7.18(b). The process behind this filtering request does not

need to compute the interest measure for the entity and event types of the large schema. In

fact, it only requires to explore the OCL specification of a schema rule in order to extract its

referenced elements, and then construct a filtered schema from them. That is the reason why

the resulting values for the response time in this filtering request are below 25 milliseconds,

with mean values under 5 milliseconds.

7.6 Summary

In this thesis, we have focused on the problem of understanding the knowledge defined in large

conceptual schemas, in which the elements of interest to a user that are specified within the

schema may be very distant from each other and embedded in an intricate web of irrelevant

elements for her purpose.

In Ch. 5, we have proposed a filtering method in which a user focuses on a set of elements

of focus and the method obtains a filtered schema that includes them and additional elements

of high interest to the user. We have implemented our method in a prototype tool and we have

evaluated it by means of its application to four large conceptual schemas. The results show

that in most cases our method achieves a size reduction greater than 70% in the number of

schema elements to explore when using filtered schemas instead of manually exploring the large

schema, with an average time per request that is short enough for the purpose at hand.

In the following chapter we present the details about the implementation of our filtering

method, including the filtering requests and a web-based infrastructure of components that

support users that need to explore a large conceptual schema through our filtering approach.

228



7.6. SUMMARY

Response Time (ms) for F1

0

50

100

150

40.3 38.9
30.5

17.9

Magento UML osCommerce EU Rent

(a) Response time for F1.

Response Time (ms) for F2 (local)

0

5

10

15

20

25

3.25
4.08 4.21

2.69

Magento UML osCommerce EU Rent

(b) Response time for F2 (local).

Response Time (ms) for F2 (global)

0

50

100

150

19.4

38.9

18.4 17.2

Magento UML osCommerce EU Rent

(c) Response time for F2 (global).

Response Time (ms) for F3

0

20

40

60

80

100

120

140

41.3 29.9
25.4

Magento osCommerce EU Rent

(d) Response time for F3.

Response Time (ms) for F4

0

50

100

150

40.1
32.3 30.5

19.9

Magento UML osCommerce EU Rent

(e) Response time for F4.

Response Time (ms) for F5

0

50

100

150

38.9

43.1

28.1

Magento osCommerce EU Rent

(f) Response time for F5.

Figure 7.18. Efficiency analysis.

229



CHAPTER 7. APPLICATION OF THE FILTERING METHODOLOGY

230



The Web does not just connect machines,

it connects people.

Tim Berners-Lee

8
Web-based Filtering Engine

for Large Conceptual Schemas

The chapter focuses on the design and development of a web-based and service-oriented imple-

mentation of the filtering methodology introduced in this thesis.

Section 8.1 presents a brief explanation about the motivation of providing a web-based

implementation of the filtering engine. Section 8.2 introduces basic concepts about a service-

oriented architecture and development. Concretely, we explore the Simple Object Access Pro-

tocol (SOAP) and Web Services Description Language (WSDL). The combination of these web

technologies and the prominent use of existing development frameworks allows us to easily

transform a desktop-oriented application into a web service. Section 8.3 describes the details

about our web-based filtering engine, including its web architecture and available filtering com-

ponents. An important component of the filtering engine is the set of web services that deal

with the different activities of the filtering process. We provide an explanation of these ser-

vices, including the schema manager, the service that computes the relevance methods, the

service that filters the schema, and the service that provides schema visualization in order to

produce the resulting feedback to the user. Section 8.4 presents a set of interaction patterns

that a user must follow in order to use our filtering engine. Section 8.5 describes a web-based

implementation for our six filtering requests presented in Ch. 6. Finally, Sect. 8.6 summarizes

the chapter.

231



CHAPTER 8. WEB-BASED FILTERING ENGINE FOR LARGE CONCEPTUAL SCHEMAS

8.1 Motivation

The World Wide Web is growing and its value and utilization as a powerful tool has become

evident to all kind of users. In our field, users of large conceptual schemas usually need to

extract a portion of interest of the schema and to share it with other stakeholders in order

to check and validate that the knowledge it specifies is correct, and make changes whenever

necessary. The development of a web-service oriented implementation of our filtering engine

provides several benefits to users over traditional desktop-based solutions. Following is a list of

these benefits:

• Interoperability: This is the most important benefit of a web-service based tool. Typi-

cally, web services work outside of private networks, offering developers a non-proprietary

route to their solutions. In addition, the use of standard-based communications methods

implies that web services are virtually platform-independent. Therefore, developers can

use their preferred programming languages to interact with them.

• Reusability: Web services allow the business logic of many different systems to be ex-

posed over the web. This gives your applications the freedom to chose the web services

that they need to complete their functionality instead of re-inventing the wheel. Web

services are self-describing software modules which encapsulates discrete functionality.

Therefore, web services are loosely coupled applications and can be used by other appli-

cations developed in any technologies.

• Ubiquity: Desktop applications are confined to a physical location and hence have us-

ability constraints. On the other hand, web-based development makes it convenient for

the users to access the application from any location —computers and mobile devices—

using the internet.

• Maintainability: Web based applications are directly accessed through internet, whereas

desktop applications require to be installed separately on each computer. Also updating

the application is cumbersome with desktop applications as it needs to be done on every

single computer which is not the case with web applications.

• Accessibility: Web services can be set up to be accessible from anywhere in the world

which allows subscribers of the service the freedom of choosing how and when they would

like to utilize the functionalities provided by the service. Not only does having web-

enabled services allow you to reach a broader audience, it also gives you the freedom of

allowing your users access to relevant, up-to-date information on demand. Every person

with an internet connection and a web-browser is a potential user of your service.

With all these benefits in mind, we believe that the design and development of a web-based

and service-oriented implementation of the filtering methodology increases the usability of our

filtering engine to the users that want to understand the specific characteristics included in a

large conceptual schema. In the following, we describe the details of our development approach

to achieve this goal.

232



8.2. SERVICE-ORIENTED ARCHITECTURE

8.2 Service-Oriented Architecture

In software engineering, a Service-Oriented Architecture (SOA) is a set of principles and

methodologies for designing and developing software in the form of interoperable services. These

services are well-defined functionalities that are built as software components (discrete pieces

of code and/or data structures) that can be reused for different purposes [41].

The W3C defines a web service as a software system designed to support interoperable

machine-to-machine interaction over a network [136]. In essence, a web service is an application

functionality packaged as a single unit and exposed to the network [34]. It provides a technology

for application integration and interoperability based on open standards [27]. The web services

framework is divided into four areas:

• Service Processes: This part of the architecture generally involves more than one web

service. For example, discovery belongs in this part of the architecture, since it allows us

to locate one particular service from among a collection of web services.

• Service Description: One of the most interesting features of web services is that they

are self-describing. This means that, once you’ve located a web service, you can ask it

to ’describe itself’ and tell you what operations it supports and how to invoke it. This is

handled by the Web Services Description Language (WSDL).

• Service Invocation: Invoking a web service involves passing messages between the client

and the server. The Simple Object Access Protocol (SOAP) specifies how we should

format requests to the server, and how the server should format its responses. In theory,

we could use other service invocation languages (such as XML-RPC). However, SOAP is

by far the most popular choice for web services.

• Transport: Finally, all these messages must be transmitted somehow between the server

and the client. The protocol of choice for this part of the architecture is the HyperText

Transfer Protocol (HTTP) [44], the same protocol used to access conventional web pages

on the internet. Again, in theory we could be able to use other protocols, but HTTP is

currently the most used one.

8.2.1 Web Services Description Language (WSDL)

As communications protocols and message formats are standardized in the web community,

it becomes increasingly possible and important to be able to describe the communications in

some structured way. The Web Services Description Language (WSDL) addresses this need

by defining an XML grammar for describing network services as collections of communication

endpoints capable of exchanging messages. WSDL service definitions provide documentation

for distributed systems and serve as a recipe for automating the details involved in applications

communication [135].

A WSDL document defines services as collections of network endpoints, or ports. In WSDL,

the abstract definition of endpoints and messages is separated from their concrete network

233



CHAPTER 8. WEB-BASED FILTERING ENGINE FOR LARGE CONCEPTUAL SCHEMAS

deployment or data format bindings. This allows the reuse of abstract definitions: messages,

which are abstract descriptions of the data being exchanged, and port types which are abstract

collections of operations. The concrete protocol and data format specifications for a particular

port type constitutes a reusable binding. A port is defined by associating a network address

with a reusable binding, and a collection of ports define a service. Figure 8.1 summarizes the

structure of a WSDL specification file.

definitions

types

messages

A
bs

tr
ac

t S
ec

tio
n

portType

operation
input

output

C
on

cr
et

e 
S

ec
tio

n

binding

service

port

Root WSDL element

What datatypes will be transmitted?

What messages will be transmitted?

What operations (functions) will be supported?

How will the messages be transmitted on the wire?
What SOAP-specific details are there?

Where is the service located?

Figure 8.1. Structure of WSDL specification.

8.2.2 Simple Object Access Protocol (SOAP)

The Simple Object Access Protocol (SOAP) is a lightweight protocol intended for exchanging

structured information in a decentralized, distributed environment. It uses XML technologies to

define an extensible messaging framework providing a message construct that can be exchanged

over a variety of underlying protocols. The framework has been designed to be independent

of any particular programming model and other implementation specific semantics. Figure 8.2

shows an example of SOAP message [137].

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
  <soap:Header></soap:Header>
  <soap:Body>
    <m:GetStockPrice xmlns:m="http://www.example.org/stock">
      <m:StockName>AAPL</m:StockName>
    </m:GetStockPrice>
  </soap:Body>
</soap:Envelope>

Figure 8.2. Example of SOAP message.

234



8.2. SERVICE-ORIENTED ARCHITECTURE

Where can I find a
stock price service?

Client

Server A

Discovery
Service

Server B

Web
Service

1

2

3

4

6
5

There is a stock price 
service in Server B

How exactly should 
I invoke you?

Take a look at this: WSDL

Invoke getStockPrice()
with parameter 'APPL'

SOAP request:

636.23
SOAP response:

Figure 8.3. Example of typical web service invocation.

8.2.3 Web Service Invocation

Figure 8.3 depicts the steps involved in a complete web Service invocation. The details of these

steps are as follows:

1. As aforementioned, a client may have no knowledge of what web service it is going to

invoke. The first step is to discover a web service that meets the requirements of the

client. For instance, a client might be interested in locating a public web service which

can give the stock price of an organization in the NASDAQ stock market. It is possible

to do this by contacting a discovery service (which is itself a web service).

2. The discovery service will reply, telling the client what servers can provide the service

it requires.

3. Now, the client knows the location of a web service, but it has no idea of how to actually in-

voke it. The client knows the service can give it the stock price for an organization accord-

ing to the NASDAQ market, but ignores how to perform the actual service invocation. The

method the client has to invoke might be called getNasdaqPrice(String name, Date

time):String, but it could also be called getStockPrice(String stockName):Real.

The client has to ask the web service to describe itself (i.e. tell the client how exactly it

should invoke the functionalities of the service).

4. The web service replies to the client with the specification in WSDL format of the

available operations it provides.

5. The client finally knows where the web service is located and how to invoke it. The

invocation itself is done in through the SOAP protocol. Therefore, the client will first

send a SOAP request asking for the stock price of a certain organization.

6. The web service will kindly reply with a SOAP response which includes the stock price

the client asked for, or maybe an error message if the SOAP request was incorrect.

235



CHAPTER 8. WEB-BASED FILTERING ENGINE FOR LARGE CONCEPTUAL SCHEMAS

Back-end

Web ServerFront-end

Web Service Container

Schema Manager Service

Relevance-Computing Service

Filtering Service

Schema Visualization Service

Web Browser

Filtering 
Web Client

WSDL

Public
API

Discover

Describe

SOAP Request

SOAP Response

Figure 8.4. Web architecture of the filtering engine.

8.3 Web Architecture of the Filtering Engine

The architecture of our filtering engine follows the principles of a basic service-oriented ar-

chitecture. Figure 8.4 illustrates the components of the engine. It shows a service consumer

at the left sending a service request message to a service provider at the right. The service

provider returns a response message to any request of the service consumer. The request and

subsequent response connections are defined in SOAP, which is understandable to both the

service consumer and service provider.

The service consumer works as the front-end of our filtering engine. It is a filtering web

client that runs on a web browser and receives the user interaction. The client accesses the

available operations our filtering engine provides in its back-end component. The details about

the interaction patterns the web client allows to a user that wants to explore a large conceptual

schema by using our filtering methodology are described in Sect. 8.4.

On the other side, the back-end of our filtering engine consists of a web server that contains

a web service container, which hosts the core services of the engine. In our prototype, we use

Apache Axis 2 [2] as the web service container, which runs on an Apache Tomcat [3] application

web server. We provide a WSDL specification of the available operations of the core web services

that allow to filter a large conceptual schema. These operations conform the public application

programming interface (API) of the engine, which can be used by any service consumer (or web

client). In this case, the filtering API is addressed to fulfill the requirements of the filtering web

client in the front-end of the engine, although any web client with interest on filtering a large

schema could benefit from it.

The backbone of our filtering engine comprises four web services that are responsible for

performing the different tasks that are part of the filtering methodology introduced in Ch. 5

and Ch. 6. The implementation of these core web services follows a bottom-up approach,

as explained in [99]. By using the web service development assistant provided by the Web

Tools Platform project [39] inside the Eclipse development framework [38], we easily obtain

a complete web service, including runtime components and WSDL specification, from a Java

class that contains the implementation of the public operations of the filtering engine API. The

details of these core services are presented in the following sections.

236



8.3. WEB ARCHITECTURE OF THE FILTERING ENGINE

Schema Manager Service

Internal
API

UML-based Specification Environment
(USE tool)

UML-based Specification 
Environment Extended 

(USEx tool)

UML-based 
Specification File

UML OCL

Schema 
Loaded

in Memory

Request

Response

Conceptual Schema
describes

Request

Response

Loaded by

Request

Response

Figure 8.5. Internal structure of the schema manager service.

8.3.1 Schema Manager Service

The schema manager service is one of the most critical web services that provides functionality

to our filtering engine. Figure 8.5 presents the internal structure of this service. In order to

extract a portion of the knowledge contained in a large conceptual schema of interest to a user,

our engine needs an intermediate component to deal with the representation of the schema

of context. To achieve this goal, we have extended an existing tool that manages conceptual

schemas expressed in UML/OCL and provides access to the elements they contain: the USE

(UML-based Specification Environment) tool [49].

The USE system supports developers in analyzing the structure (classes, associations, at-

tributes, and invariants) and the behavior (operations and pre- and postconditions) of a concep-

tual schema by generating typical snapshots (system states) and by executing typical operation

sequences (scenarios). Developers can formally check constraints (invariants and pre- and post-

conditions) against their expectations and can, to a certain extent, derive formal properties

about the schema. A UML/OCL conceptual schema is given to USE in textual form by a

USE specification file (see Fig. 8.5). Then, USE compiles the textual specification and creates

a tree-hierarchy representation of the corresponding schema elements, which are allocated in

memory and can be accessed by using the USE available operations.

Since USE only supports a subset of the UML, we have extended it in order to be able to

process additional constructions that are used in this thesis. Concretely, we have developed a

project fork named USEx (UML-based Specification Environment Extended) that allows the

specification of default expressions in OCL for attributes and binary associations, derivation

rules for attributes and binary association ends, the declaration of event types in the same way

as entity types, and the inclusion of custom data types. Additionally, USEx provides ways

to specify generalization sets (with disjointness and completeness constraints), and to indicate

specific multiplicities of attributes.

In order to open the access to the extended UML constructions we have extended the op-

erations of USE and we have implemented new operations in USEx to query the conceptual

schema. The schema manager service provides its own internal API that contains these opera-

tions, which are required by the other core services of the web-based filtering engine.

237



CHAPTER 8. WEB-BASED FILTERING ENGINE FOR LARGE CONCEPTUAL SCHEMAS

Relevance-Computing Service

Internal
API

Basic Methods

Importance-Computing Methods
Request

Response Extended Methods

Closeness-Computing Method

Distance-Computing Algorithm

Interest-Computing Method

Request

Response

Request

Response

Schema Manager
Service

API

Request

Response

Figure 8.6. Internal structure of the relevance-computing service.

8.3.2 Relevance-Computing Service

Once the engine contains a loaded conceptual schema that can be accessed by other services, it is

time to work with it. The relevance-computing service assists the filtering engine on computing

the metrics and methods introduced in Ch. 4. Figure 8.6 presents the internal structure of this

core web service.

The first component of the service deals with the implementation and analysis of the

importance-computing methods presented in Sect. 4.3 of Ch. 4. This component includes the

basic methods adapted from the existing literature to be used with UML/OCL schemas, and also

the extension of these methods to incorporate the analysis of additional knowledge extracted

from the analysis of OCL expressions, reification of association classes, and multiplicities of

schema elements. To support the extended methods, we have developed OCL crawlers to tra-

verse and explore the explicit OCL expressions included in the large conceptual schema, and

the implicit OCL expressions obtained by reification and conversion of graphical constraints

(multiplicities, disjointness and completeness of generalization sets).

The second component of the service deals with the implementation and analysis of the

closeness-computing method presented in Sect. 4.5 of Ch. 4. This component includes a

distance-computing algorithm that incrementally obtains the topological distance between a

pair of entity types through relationship types and generalization relationships.

The last component of the service deals with the implementation and analysis of the interest-

computing method presented in Sect. 4.6 of Ch. 4. This component combines the resulting values

of the aforementioned importance- and closeness-computing components in order to obtain the

interest of an entity or event type with respect to a set of schema elements of focus, as presented

in Ch. 5.

All three components extensively use the API provided by the schema manager service

in order to obtain the elements included in the loaded conceptual schema, the relationships

and information described between them, the schema rules in order to go through their tree

structure of OCL expressions, among others. With all the functionality provided by this service,

the three components can retrieve the required knowledge to compute the metrics that are the

backbone of our filtering methodology

238



8.3. WEB ARCHITECTURE OF THE FILTERING ENGINE

Filtering Service

Internal
API

Filtering Request for
Entity and Relationship Types

Filtering Requests

Request

Response

Schema Manager
Service

API

Request

Response

F1

F2

F3

F4

F5

F6

Filtering Request for
Schema Rules

Filtering Request for
Event Types

Filtering Request for a
Conceptual Schema

Filtering Request for
Behavioral Entity Types

Filtering Request for
Contextualized Event Types

Relevance-Computing
Service

API

Schema Visualization
Service

API

Figure 8.7. Internal structure of the filtering service.

8.3.3 Filtering Service

The filtering service deals with the guidance of the main filtering process to automatically

extract the fragment of interest to the user of the large conceptual schema. Figure 8.7 presents

the internal structure of this core web service. It contains the implementation of the catalog of

filtering requests we studied in Ch. 6:

• F1: Filtering request for entity and relationship types, as described in Sect 6.3.1 of Ch. 6.

• F2: Filtering request for schema rules, as described in Sect 6.3.2 of Ch. 6.

• F3: Filtering request for event types, as described in Sect 6.3.3 of Ch. 6.

• F4: Filtering request for a conceptual schema, as described in Sect 6.3.4 of Ch. 6.

• F5: Filtering request for context behavior of entity types, as described in Sect 6.3.5 of

Ch. 6.

• F6: Filtering request for contextualized types, as described in Sect 6.3.6 of Ch. 6.

Once a user requests to filter a large conceptual schema, the filtering service processes the

request and passes the user input to the specific filtering request that must be used to obtain the

desired knowledge that will be part of the resulting filtered conceptual schema, which conforms

the expected feedback for the user. To produce the output, the filtering service makes use of

the internal APIs of the other core web services.

The filtering service connects with the schema manager service in order to access and explore

the elements of the large conceptual schema that may be part of the result. In addition to it,

the relevance-computing service provides the necessary measures to complete the knowledge in

the user input with additional knowledge with high importance and that is close to the user

focus on the large schema. Finally, once the filtered conceptual schema is constructed, the

filtering service makes use of the schema visualization service in order to graphically present it

to the user.

239



CHAPTER 8. WEB-BASED FILTERING ENGINE FOR LARGE CONCEPTUAL SCHEMAS

Schema Visualization Service

Internal
API

Filtered Conceptual Schema
Processor

Visualization Framework

Request

Response
Schema Manager

Service
API

Request

Response

Force-directed
Auto-layout Algorithm

HTML5 + Javascript
Drawing Tool for UML

Figure 8.8. Internal structure of the schema visualization service.

8.3.4 Schema Visualization Service

The last web service that conforms the core of the filtering engine is the schema visualization

service. Figure 8.8 presents the internal structure of this specific web service. It deals with the

graphical representation of the filtered conceptual schema that results from the application of

our filtering methodology to a large conceptual schema.

The visualization framework within the schema visualization service contains three compo-

nents. First one processes the filtered conceptual schema in order to analyze how to present it

to the user in a pleasant way to increase its understandability. The main idea is to reduce the

effort a user needs to identify the elements of focus and explore the additional knowledge that

complements them.

Then, the second component is a lightweight HTML5/Javascript library for UML 2 dia-

gramming. It allows the developer to easily embed UML diagrams in web applications, just

invoking a few javascript methods [96]. We have extended this library with additional features

to cover a wide range of UML constructions and increased the documentation of the drawing

tool [50]. Since UML has become a de-facto standard for modeling, many tools are available to

allow the modeler to draw the structural and behavioral constructs that UML provides. How-

ever, these tools are mostly implemented to be run on your own computer. Our drawing tool

however provides an online visualization of the filtered schema that can be remotely shown by

freely accessing the filtering engine in a web browser.

The last component deals with the correct placement of the elements of the filtered schema.

We see the schema as a graph whose entity and event types are the nodes, while the edges are

the relationships between them. We use a force-directed auto-layout algorithm that computes

the position of the set of edges and nodes [7]. The algorithm assigns forces as if the edges were

springs and the nodes were electrically charged particles. The entire graph is then simulated as

if it were a physical system. The forces are applied to the nodes, pulling them closer together

or pushing them further apart (according to Hooke’s attraction law and Coulomb’s repulsion

law [52]). This is repeated iteratively until the system comes to an equilibrium state, i.e. their

relative positions do not change anymore from one iteration to the next. At that moment, the

graphical representation of the filtered schema is ready.

240



8.4. USER INTERACTION

CV0

CV2

Filtering Engine for Large Conceptual Schemas

Filtering Request for Entity and Relationship Types

Filtering Request for Schema Rules

Filtering Request for Event Types

Filtering Request for Context Behavior of Entity Types

Filtering Request for Contextualized Types

CV1

CV3

CV5

CV6

CV7

CV4

Filtering Web Client

IP

Figure 8.9. General structure of the filtering web client and interaction with client views.

8.4 User Interaction

The interaction of the user with our web-based filtering engine is performed through a web

client that uses the corresponding API of the core web services within the filtering engine. As

aforementioned, the user only requires a web browser to make use of the filtering client and

then explore the knowledge specified in a large conceptual schema.

Our filtering web client provides a minimal consumer of the API provided by the back-end

part of the filtering engine. Figure 8.9 presents the different views that are part of the client and

the navigation relationships between them. It contains eight client views. Each one contains

interaction points that change the behavior of the view in order to construct a focus set or to

request the execution of a specific filtering request. We name CV to each client view contained

in the filtering web client, and IP to each interaction point included within each of the CVs.

A user of our service starts with CV0 and selects one of the five alternatives to start the

filtering process with a large conceptual schema. Each of the filtering proposals lead the user

to the corresponding view —CV1, CV3, CV5, CV6, or CV7. These views are responsible of

constructing the focus set and execute the filtering requests F1, F2, F3, F5 and F6, respectively.

Then, each view shows the resulting filtered conceptual schema in CV2, which can also start a

new iteration of the filtering method by executing the filtering request F4. Additionally, CV4

shows the details of a specific schema rule selected in CV3.

In the following, we detail the user interface of each CV and the expected interaction pattern

of a user of the web client. Section 8.4.1 presents the interaction of a user that focus on entity

and relationship types. Section 8.4.2 deals with the interaction that focus on schema rules and

Sect. 8.4.3 indicates the interaction centered on event types. In addition, Sect. 8.4.4 explains

the functionality to filter from a conceptual schema of small size. Finally, Sect. 8.4.5 presents

the interaction with the filtering request for context behavior of entity types, and Sect. 8.4.6

describes the interaction to contextualize types.

241



CHAPTER 8. WEB-BASED FILTERING ENGINE FOR LARGE CONCEPTUAL SCHEMAS

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Entity T1

CV1 CV2

Entity 
EntityEntity

Entity

Entity

Entity

Entity

Entity

Entity

Entity

Entity

EntityEntity
EntityEntity

Entity

Entity

Entity

FilterK
Entity
Entity
Entity
Entity

Relationship T1

Entity T2

Entity, Entity, Enti
1

2

3

FilterKEntity, Entity, Entity

Entity

Entity

EntityEntity
Entity

Entity

Filtered Conceptual Schema

context Entity inv: ...
context Entity inv: ...
context Entity inv: ...

5

4

Figure 8.10. Interaction pattern of the filtering request for entity and relationship types (F1).

8.4.1 Filtering Request F1 – Interaction Pattern

The first filtering request deals with a filtering interaction centered on the entity and relationship

types from a large schema. The method obtains a small-size filtered conceptual schema that

includes the combination of the entity and relationship types in the user focus with the elements

of interest gathered by our filtering methodology.

A user interested in using this request starts the interaction in CV1, as shown in Fig. 8.10.

CV1 provides a word cloud [106] of the entity types of the large schema. A word cloud of entity

types is a visual representation where more relevant entity types are depicted in a larger font.

This format is useful for quickly perceiving the most prominent entity types by inexperienced

users. IP1 indicates that selecting a single entity type name within the word cloud, includes

such entity type in the focus set. The names of the entity and relationship types of focus are

shown in the search bar of CV1.

Alternatively, the user may type the name of the desired entity or relationship types of focus

in the search bar, which provides an auto-completing functionality that helps discovering the

names of the existing types of the schema of context in IP2. In addition to it, CV1 provides

an alphabetical list to explore the types of the schema. According to IP3, the user can select

a single letter of the English alphabet from the list and then obtains an enumeration of those

entity and relationship types whose name starts with such selected letter. The user may select

the entity or relationship types of interest, which are then included in the search bar.

Also, the user may change the expected size K of the resulting filtered schema through the

spin box widget of IP4. Note that the minimum value of K equals to the size of the set of

selected entity types (including those entity types that are participants of selected relationship

types). Therefore, this value changes whenever the user selects/deselects elements. Finally, once

the user has selected the elements of focus, she presses the filter button (IP5) that completes

the interaction and starts the request to the specific operation of the web service that imple-

ments this filtering request. The response is presented in CV2, which includes the graphical

representation of the filtered conceptual schema.

242



8.4. USER INTERACTION

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Event T1

CV3 CV4

Filter

Event T3

Entity T2

context T1 pre: nameOfPre

context T1 post: nameOfPost1

context T1 post: nameOfPost2

context T3 post: nameOfPost3

context T2 inv: nameOfInv
2

1

Local Global

3

context T1 pre: nameOfPre

  ... 

  
CV2

FilterK

T2 Entity

Filtered Conceptual Schema

context T2 inv: ...
context Entity inv: ...
context Entity inv: ...

Entity

1

5

K

54

Figure 8.11. Interaction pattern of the filtering request for schema rules (F2).

8.4.2 Filtering Request F2 – Interaction Pattern

The second filtering request deals with a filtering interaction centered on the schema rules from

a large schema. The method obtains a small-size filtered conceptual schema that includes the

combination of the elements referenced by the schema rules in the user focus with the elements

of interest gathered by our filtering methodology.

A user interested in using this request starts the interaction in CV3, as shown in Fig. 8.11.

CV3 provides an alphabetical list to explore the schema rules of the schema. The user can

select a single letter of the English alphabet from the list and then obtains an enumeration of

those entity, event, and relationship types whose name starts with such selected letter. The

schema rules defined in the context of each of these types are also enumerated. According to

IP1, by clicking on the name of a specific rule our client provides its entire OCL specification

shown in CV4. In addition to it, each schema rule can be selected to be part of the focus set,

as indicated in IP2.

As indicated in Sect. 6.3.2 of Ch. 6, the scope of the filtering request for schema rules can be

set to local or global. A local value for the scope implies that the resulting filtered conceptual

schema will only contain those elements referenced by the schema rules of focus. On the other

hand, A global value for the scope will include additional knowledge of interest to the user until

reaching the size threshold K. The user may change the scope through the switch indicated in

IP4.

Also, the user may change the expected size K of the resulting filtered schema when the

scope is set to global through the spin box widget of IP4. Note that the minimum value of

K equals to the size of the set of referenced entity and event types by the schema rules of

focus. Therefore, this value changes whenever the user selects/deselects schema rules. Finally,

once the user has selected all the schema rules of focus, she presses the filter button (IP5) that

completes the interaction and starts the request to the specific operation of the web service

that implements this filtering request. The response is presented in CV2, which includes the

graphical representation of the filtered conceptual schema.

243



CHAPTER 8. WEB-BASED FILTERING ENGINE FOR LARGE CONCEPTUAL SCHEMAS

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Event T1

CV5 CV2

Event 
EventEvent

Event

Event

Event

Event

Event

Event

Event

Event

EventEvent
EventEvent

Event

Event

Event

FilterK
Event
Event
Event
Event

Event T3

Event T2

Event, Event, Eve
1

2

5

3

FilterKEvent, Event, Event

Event

Event

EventEntity
Event

Entity

Filtered Conceptual Schema

context Event inv: ...
context Event inv: ...
context Event inv: ...

4

Figure 8.12. Interaction pattern of the filtering request for event types (F3).

8.4.3 Filtering Request F3 – Interaction Pattern

The third filtering request deals with a filtering interaction centered on the event types from

a large schema. The method obtains a small-size filtered conceptual schema that includes the

combination of the event types in the user focus with the elements of interest gathered by our

filtering methodology.

A user interested in using this request starts the interaction in CV5, as shown in Fig. 8.12.

CV5 provides a word cloud [106] of the event types of the large schema. A word cloud of event

types is a visual representation where more relevant event types are depicted in a larger font.

This format is useful for quickly perceiving the most prominent event types by inexperienced

users. IP1 indicates that selecting a single event type name within the word cloud, includes

such event type in the focus set. The names of the event types of focus are shown in the search

bar of CV5.

Alternatively, the user may type the name of the desired event types of focus in the search

bar, which provides an auto-completing functionality that helps discovering the names of the

existing event types of the schema of context in IP2. In addition to it, CV5 provides an

alphabetical list to explore the event types of the schema. According to IP3, the user can select

a single letter of the English alphabet from the list and then obtains an enumeration of those

event types whose name starts with such selected letter. The user may select the event types

of focus, which are then included in the search bar.

Also, the user may change the expected size K of the resulting filtered schema through the

spin box widget of IP4. Note that the minimum value of K equals to the size of the set of

selected event types. Therefore, this value changes whenever the user selects/deselects events.

Finally, once the user has selected all the event types of focus, she presses the filter button

(IP5) that completes the interaction and starts the request to the specific operation of the web

service that implements this filtering request. The response is presented in CV2, which includes

the graphical representation of the filtered conceptual schema.

244



8.4. USER INTERACTION

CV2

FilterKEntity, Entity

Entity

EntityEntity
Entity

Entity

Filtered Conceptual Schema

context Entity inv: ...
context Entity inv: ...
context Entity inv: ...

CV2

FilterKEntity, Entity, Entity, Entity

Entity

Entity

EntityEntity
Entity

Filtered Conceptual Schema

context Entity inv: ...
context Entity inv: ...
context Entity inv: ...
context Event post: ...

3

4

Entity

Event

Rejected: Entity

Reject

1

2

Figure 8.13. Interaction pattern of the filtering request for a conceptual schema (F4).

8.4.4 Filtering Request F4 – Interaction Pattern

The fourth filtering request deals with a filtering interaction centered on a small conceptual

schema extracted from the large one. The method obtains more knowledge from the large

schema with relation to the elements in the user focus. As output, the user obtains a small-size

filtered conceptual schema that includes the combination of the small schema in the user focus

with the elements of interest gathered by our filtering methodology.

A user interested in using this request starts the interaction with the filtering requests of

CV1, CV3, CV5, CV6 or CV7 and obtains a filtered conceptual schema in CV2, as shown in

Fig. 8.13. CV2 provides the graphical representation of the conceptual schema, including the

OCL specification of schema rules. Then, the user may start a new iteration based on this

schema. She can select an element of the filtered schema and include it into the rejection set for

the new filtering request, as indicated in IP1. Therefore, the rejected element will not appear

in the filtered conceptual schema of the response. To cancel this behavior, the user can delete

the rejection of the element by clicking on its name below the search bar, as shown in IP2.

Alternatively, the user may type the name of the desired entity and event types of focus

in the search bar, which provides an auto-completing functionality that helps discovering the

names of the existing elements of the large schema in IP3. Note that if the user does not include

the name of an entity or event type that appears in the current schema, it may appear in the

resulting filtered schema according to our method —it does not mean that it is rejected.

Also, the user may change the expected size K of the resulting filtered schema through the

spin box widget of IP4. Note that the minimum value of K equals to the size of the set of entity

and event types that appear in the current schema minus the size of those entity or event types

in the rejection set. Therefore, this value changes whenever the user rejects/selects elements.

Finally, once the user has selected the elements of focus, she presses the filter button (IP5) that

completes the interaction and starts the request to the specific operation of the web service

that implements this filtering request. The response is also presented in CV2, which includes

the graphical representation of the new filtered conceptual schema.

245



CHAPTER 8. WEB-BASED FILTERING ENGINE FOR LARGE CONCEPTUAL SCHEMAS

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Entity T1

CV6 CV2

Entity 
EntityEntity

Entity

Entity

Entity

Entity

Entity

Entity

Entity

Entity

EntityEntity
EntityEntity

Entity

Entity

Entity

FilterK
Entity
Entity
Entity
Entity

Entity T3

Entity T2

Entity, Entity, Enti
1

2

3

FilterKEntity, Entity, Entity

Entity

Entity

EntityEvent
Event

Event

Filtered Conceptual Schema

context Entity inv: ...
context Entity inv: ...
context Entity inv: ...

5

4

Figure 8.14. Interaction pattern of the filtering request for context behavior of entity types (F5).

8.4.5 Filtering Request F5 – Interaction Pattern

The fifth filtering request deals with a filtering interaction centered on the retrieval of the event

types related to a subset of the entity types from a large schema. The method obtains a small-

size filtered conceptual schema that includes the combination of the entity types in the user

focus with the event types of interest gathered by our filtering methodology.

A user interested in using this request starts the interaction in CV6, as shown in Fig. 8.14.

CV6 provides a word cloud [106] of the entity types of the large schema. A word cloud of entity

types is a visual representation where more relevant entity types are depicted in a larger font.

This format is useful for quickly perceiving the most prominent entity types by inexperienced

users. IP1 indicates that selecting a single entity type name within the word cloud, includes

such entity type in the focus set. The names of the entity types of focus are shown in the search

bar of CV6.

Alternatively, the user may type the name of the desired entity types of focus in the search

bar, which provides an auto-completing functionality that helps discovering the names of the

existing entity types of the schema of context in IP2. In addition to it, CV6 provides an

alphabetical list to explore the entity types of the schema. According to IP3, the user can

select a single letter of the English alphabet from the list and then obtains an enumeration of

those entity types whose name starts with such selected letter. The user may select the entity

types of interest, which are then included in the search bar.

Also, the user may change the expected size K of the resulting filtered schema through the

spin box widget of IP4. Note that the minimum value of K equals to the size of the set of

selected entity types. Therefore, this value changes whenever the user selects/deselects entity

types. Finally, once the user has selected the entity types of focus, she presses the filter button

(IP5) that completes the interaction and starts the request to the specific operation of the web

service that implements this filtering request. The response is presented in CV2, which includes

the graphical representation of the filtered conceptual schema that shows the most interesting

the event types according to the entity types of focus.

246



8.4. USER INTERACTION

CV2

FilterKEvent, Event

Event

EntityEntity
Event

Entity

Filtered Conceptual Schema

context Event inv: ...
context Entity inv: ...
context Entity inv: ...

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Event T1

CV7

Filter

Entity T3

Event T2

attr1:Enum

attr2:DataType

assoc1:End1

assoc3:End3

assoc2:End2

1

K

65

0 1
1 *

0 *

0 *

0 1

default: value min: max:

min: max:

min: max:

min: max:

min: max:

2

3 4

Figure 8.15. Interaction pattern of the filtering request for contextualized types (F6).

8.4.6 Filtering Request F6 – Interaction Pattern

The last filtering request deals with a filtering interaction centered on the entity and event types

from a large schema. The user contextualizes the entity and event types of focus by means of

reducing the characteristics defined over such types.The method obtains a small-size filtered

conceptual schema that includes the combination of the entity and event types in the user focus

with the elements of interest gathered by our filtering methodology taking into account the

contextualization.

A user interested in using this request starts the interaction in CV7, as shown in Fig. 8.15.

CV7 provides an alphabetical list to explore the entity and event types of the schema. The user

can select a single letter of the English alphabet from the list and then obtains an enumeration

of those entity and event types whose name starts with such selected letter. The attributes and

relationship types defined in the context of each of these entities and events are also enumerated.

According to IP1, the user can select which attributes and relationships are included in the

filtering process. The user can delete a defined attribute, whenever the minimum multiplicity

of such attribute equals to zero, by not marking the attribute in IP1. In the same way, The user

can delete a relationship type whenever the minimum multiplicity in the opposite relationship

end equals to zero. In addition to it, the user can select a default literal value for attributes with

an enumeration type, as indicated in IP2. Consequently, the user can redefine the multiplicity

of an attribute or redefine the multiplicity of the opposite relationship end of an entity or event

type, in a relationship type between it and another schema element. To achieve this, the user

may change the values of the spin boxes of IP3 and IP4.

Also, the user may change the expected size K of the resulting filtered schema through the

spin box widget of IP5. Note that the minimum value of K equals to the size of the set of

selected entity and event types. Finally, once the user has selected all the types of focus and

performed the appropriate contextualization, she presses the filter button (IP6) that completes

the interaction and starts the request to the specific operation of the web service. The response

is presented in CV2, which includes the graphical representation of the filtered conceptual

schema and takes into account the previous contextualization.

247



CHAPTER 8. WEB-BASED FILTERING ENGINE FOR LARGE CONCEPTUAL SCHEMAS

Figure 8.16. Screenshot of the main view of the filtering engine prototype tool.

8.5 Web-based Filtering Prototype Tool

We have developed a web-based filtering prototype tool following the guidelines presented in

Sect. 8.4. The prototype includes the implementation of the filtering requests from the filtering

catalog introduced in Ch. 6 with the aforementioned interaction patterns and a web-service ori-

ented architecture. Our prototype provides functionality to extract a portion of the knowledge

of the Magento conceptual schema [94], which is pre-loaded in the schema manager service.

The interaction of the user with our web-based prototype is performed through a web client

that works as the entry point to our filtering engine. Figure 8.16 contains links to the five

alternatives to start the filtering process with a large conceptual schema. Each alternative lead

the user to the corresponding view to construct a focus set and execute the filtering requests

F1, F2, F3, F5 and F6, respectively. Note that in our prototype F4 only applies to filtered

schemas obtained after the execution of any of the other filtering requests.

In the following we describe the details about the filtering prototype by showing examples of

request/response interactions for any of the filtering requests that conform our filtering catalog.

248



8.5. WEB-BASED FILTERING PROTOTYPE TOOL

Figure 8.17. Screenshot of F1 (request) in the filtering engine prototype tool

8.5.1 Filtering Request F1 – Prototype

The first filtering request focuses on a set of (one or more) entity and relationship types from a

large conceptual schema and returns the corresponding filtered schema with the knowledge of

interest to the user.

In our implementation we provide users with a web-based interface to ease the construction

of the focus set. To this end we follow the interaction pattern described in Sect. 8.4.1 where the

user is able to include entity and relationship types into the focus set through three different

components. Figure 8.17 shows the web-based interface of our prototype tool for F1.

First of all, we construct a word cloud with the top-25 most relevant entity types of Magento

where more relevant ones are depicted in a larger font size. To compute the word cloud we

make use of the importance-computing algorithms presented in Sect. 4.3 of Ch. 4. This format is

useful for quickly perceiving the most prominent entity types by inexperienced users. Selecting

a single entity type name within the word cloud, includes such entity type in the focus set.

Alternatively, the interface contains a search bar, which provides an auto-completing func-

249



CHAPTER 8. WEB-BASED FILTERING ENGINE FOR LARGE CONCEPTUAL SCHEMAS

Figure 8.18. Screenshot of F1 (response) in the filtering engine prototype tool

tionality that helps discovering the names of the existing entity and relationship types of Ma-

gento. The names of the selected entity and relationship types are shown in the search bar.

In addition to it, we include an alphabetical list to explore all the entity and relationship

types of Magento. The user selects a single letter of the English alphabet from the list and

then obtains an enumeration of those entity and relationship types whose name starts with that

letter. The user may select the entity or relationship types of interest, which are then included

in the search bar. Note that we preceded each item in the alphabetical list with an icon showing

the type of the schema element (entity type, relationship type, or association class).

The user may also select the final size of the filtered schema in order to indicate the amount

of knowledge she wants to obtain as a result. As an example, Fig. 8.17 shows the filtering

prototype when the user selects the association class ActivityInfoOfCustomerInStoreView as

the input focus set. By using our prototype (see Fig. 8.18), the user discovers that such

association class is a binary association, whose aparticipants are Customer and StoreView.

Also, she obtains the rolenames (customerWithInfoAbout and storeViewWithInfoAbout) that

may allow her construct additional OCL navigations, the multiplicities (0..* in both sides), the

attributes of each element, and a referentially-complete invariant in the context of StoreView.

250



8.5. WEB-BASED FILTERING PROTOTYPE TOOL

Figure 8.19. Screenshot of F2 (request) in the filtering engine prototype tool

8.5.2 Filtering Request F2 – Prototype

The second filtering request focuses on a set of (one or more) schema rules from a large con-

ceptual schema and returns the corresponding filtered schema with the knowledge of interest

to the user.

In our implementation we provide users with a web-based interface to ease the construction

of the focus set. To this end we follow the interaction pattern described in Sect. 8.4.2 where

the user is able to include schema rules into the focus set through three different components.

Figure 8.19 shows the web-based interface of our prototype tool for F2.

First of all, we construct a word cloud with the top-25 most relevant entity types of Magento

where more relevant ones are depicted in a larger font size. This format is useful for quickly

perceiving the most prominent entity types by inexperienced users. Selecting a single entity

type name within the word cloud, includes all the schema rules defined in the context of such

entity type in the focus set.

Alternatively, the interface contains a search bar, which provides an auto-completing func-

251



CHAPTER 8. WEB-BASED FILTERING ENGINE FOR LARGE CONCEPTUAL SCHEMAS

Figure 8.20. Screenshot of F2 (response) in the filtering engine prototype tool

tionality that helps discovering the names of the existing entity and event types of Magento.

The names of the selected entity and event types are shown in the search bar, and all their

schema rules are included in the focus set.

In addition to it, we include an alphabetical list to explore all the entity, event, and re-

lationship types of Magento that define schema rules. The user selects a single letter of the

English alphabet from the list and then obtains an enumeration of those entity and relationship

types whose name starts with that letter. Note that we preceded each item in the alphabetical

list with an icon showing the type of the schema element (entity type, event type, relationship

type, or association class).

The user may also select the final size of the filtered schema in order to indicate the amount

of knowledge she wants to obtain as a result, or alternatively, set the scope of the request to local

in order to only obtain those elements referenced by the rules of focus. As an example, Fig. 8.19

shows the filtering prototype when the user selects the post-condition createInvoice of the

effect() operation of the event type AddInvoice. By using our prototype (see Fig. 8.20),

the user discovers the elements referenced by that schema rule taking into account that the

scope was set to local. Concretely, the user may discover that the post-condition describes

the behavior to generate a new instance of Invoice, including the way to set the values of the

attributes of the new Invoice, and how to relate it with new instances of InvoiceLine that match

the instances of OrderLine of the current Order of that event.

252



8.5. WEB-BASED FILTERING PROTOTYPE TOOL

Figure 8.21. Screenshot of F3 (request) in the filtering engine prototype tool

8.5.3 Filtering Request F3 – Prototype

The third filtering request focuses on a set of (one or more) event types from a large schema

and returns the corresponding filtered schema with the knowledge of interest to the user.

In our implementation we provide users with a web-based interface to ease the construction

of the focus set. To this end we follow the interaction pattern described in Sect. 8.4.3 where

the user is able to include event types into the focus set through three different components.

Figure 8.21 shows the web-based interface of our prototype tool for F3.

First of all, we construct a word cloud with the top-25 most relevant event types of Magento

where more relevant ones are depicted in a larger font size. This format is useful for quickly

perceiving the most prominent event types by inexperienced users. Selecting a single event type

name within the word cloud, includes such event type in the focus set.

Alternatively, the interface contains a search bar, which provides an auto-completing func-

tionality that helps discovering the names of the existing event types of Magento. The names

of the selected event types are shown in the search bar.

253



CHAPTER 8. WEB-BASED FILTERING ENGINE FOR LARGE CONCEPTUAL SCHEMAS

Figure 8.22. Screenshot of F3 (response) in the filtering engine prototype tool

In addition to it, we include an alphabetical list to explore all the event types of Magento.

The user selects a single letter of the English alphabet from the list and then obtains an

enumeration of those event types whose name starts with that letter. The user may select the

event types of interest, which are then included in the search bar.

The user may also select the final size of the filtered schema in order to indicate the amount of

knowledge she wants to obtain as a result. As an example, Fig. 8.21 shows the filtering prototype

when the user selects the event type AddProductToWishlist as the input focus set. By using

our prototype (see Fig. 8.22), the user discovers that such event type is a descendant from

the abstract event types ExistingProductEvent and ExistingCustomerEvent, which indicates

that AddProductToWishlist is an event type that deals with products and customers. In fact,

the filtered schema shows that ExistingProductEvent is associated to an instance of the entity

type Product, and that therefore AddProductToWishlist inherits that association. Also, the

user obtains a referentially-complete invariant which states that each instance of Product is

identified by the value of the attribute sku.

254



8.5. WEB-BASED FILTERING PROTOTYPE TOOL

Figure 8.23. Screenshot of F4 (request) in the filtering engine prototype tool

8.5.4 Filtering Request F4 – Prototype

The fourth filtering request focuses on a small schema obtained through the application of any

of the other filtering requests from the catalog. That small schema is a filtered conceptual

schema that the user wants to extend in order to obtain additional knowledge from the original

large schema with higher relation to the schema elements contained in the filtered schema.

In our implementation we provide users with a web-based interface to ease the construction

of the focus set. To this end we follow the interaction pattern described in Sect. 8.4.4 where the

user is able to include elements from a filtered schema into the focus set through two different

components. Figure 8.23 shows the web-based interface of our prototype tool for F4.

First of all, we provide users with an interactive graphical visualization of the filtered con-

ceptual schema through a HTML5/Javascript library. Users are able to directly interact with

the filtered schema by changing the position of elements (drag & drop). Also, users may select

a set of (one or more) schema elements from the filtered schema and include them into the focus

set for the application of the fourth filtering request.

Alternatively, the user may type the name of the desired entity or event types of focus in

the search bar, which provides an auto-completing functionality. Therefore, the user can refine

255



CHAPTER 8. WEB-BASED FILTERING ENGINE FOR LARGE CONCEPTUAL SCHEMAS

Figure 8.24. Screenshot of F4 (response) in the filtering engine prototype tool

the focus set in order to combine the selection of elements from the filtered schema with the

selection of additional elements from the large schema according to specific information needs.

Once the focus set is complete, the user clicks the Explore button to start the new filtering

request and obtains the corresponding filtered schema. In the example of Fig. 8.23, the interface

shows a filtered schema where the focus was on the entity type Refund. The schema presents

a Refund as a descendant of the abstract entity type Commentable, associated to instances of

RefundLine, and that a Refund belongs to the Order to which it is related, which is also a

descendant of Commentable. In addition to it, the filtered schema shows three invariants.

On the other hand, Fig. 8.24 shows the filtered conceptual schema that results when the

user includes the four entity types from the filtered schema of Fig. 8.23 into the focus set of a

new filtering request. That schema includes the same elements as in Fig. 8.23 (marked with a

darker color) and two additional entity types of high relevance to them: Website and StoreView.

Also, that schema contains two additional referentially-complete invariants.

Therefore, the interaction between the user and our proposed prototype results in an itera-

tive process that must be applied as many times as required. The process ends when the user

believes that she has obtained enough knowledge from the large schema to cover the specific

information need, or wants to apply a different filtering request.

256



8.5. WEB-BASED FILTERING PROTOTYPE TOOL

Figure 8.25. Screenshot of F5 (request) in the filtering engine prototype tool

8.5.5 Filtering Request F5 – Prototype

The fifth filtering request focuses on a set of (one or more) entity types from a large schema

and returns the corresponding filtered schema with the event types of interest to the user.

In our implementation we provide users with a web-based interface to ease the construction

of the focus set. To this end we follow the interaction pattern described in Sect. 8.4.5 where

the user is able to include entity types into the focus set through three different components.

Figure 8.25 shows the web-based interface of our prototype tool for F5.

First of all, we construct a word cloud with the top-25 most relevant entity types of Magento

where more relevant ones are depicted in a larger font size. This format is useful for quickly

perceiving the most prominent entity types by inexperienced users. Selecting a single entity

type name within the word cloud, includes such entity type in the focus set.

Alternatively, the interface contains a search bar, which provides an auto-completing func-

tionality that helps discovering the names of the existing entity types of Magento. The names

of the selected entity types are shown in the search bar.

257



CHAPTER 8. WEB-BASED FILTERING ENGINE FOR LARGE CONCEPTUAL SCHEMAS

Figure 8.26. Screenshot of F5 (response) in the filtering engine prototype tool

In addition to it, we include an alphabetical list to explore all the entity types of Magento.

The user selects a single letter of the English alphabet from the list and then obtains an

enumeration of those entity types whose name starts with that letter. The user may select the

entity types of interest, which are then included in the search bar.

The user may also select the final size of the filtered schema in order to indicate the amount

of knowledge she wants to obtain as a result. As an example, Fig. 8.25 shows the filtering

prototype when the user selects the entity type Address as the input focus set. By using our

prototype (see Fig. 8.26), the user discovers the set of event types that are related to such entity

type.

Therefore, we observe in the resulting filtered schema that the event types DeleteCustomer-

Address and EditCustomerAddress make use of the entity type Address for their specification.

Also, the event type OrderConfirmation is related to two instances of Address for the roles of

billing and delivery, which indicates that in Magento orders of products require a billing address

and a delivery address.

258



8.5. WEB-BASED FILTERING PROTOTYPE TOOL

Figure 8.27. Screenshot of F6 (request) in the filtering engine prototype tool

8.5.6 Filtering Request F6 – Prototype

The sixth filtering request focuses on a set of (one or more) entity and event types from a large

conceptual schema and returns the corresponding filtered schema with the knowledge of interest

to the user when applying a contextualization function.

In our implementation we provide users with a web-based interface to ease the construction

of the focus set. To this end we follow the interaction pattern described in Sect. 8.4.6 where the

user is able to include entity and relationship types into the focus set through three different

components. Figure 8.27 shows the web-based interface of our prototype tool for F6.

First of all, we construct a word cloud with the top-25 most relevant entity and event

types of Magento where more relevant ones are depicted in a larger font size. To compute

the word cloud we make use of the importance-computing algorithms presented in Sect. 4.3 of

Ch. 4. This format is useful for quickly perceiving the most prominent entity and event types

by inexperienced users. Selecting a single entity or event type name within the word cloud,

includes such entity or event type in the focus set.

259



CHAPTER 8. WEB-BASED FILTERING ENGINE FOR LARGE CONCEPTUAL SCHEMAS

Figure 8.28. Screenshot of F6 (response) in the filtering engine prototype tool

Alternatively, the interface contains a search bar, which provides an auto-completing func-

tionality that helps discovering the names of the existing entity and event types of Magento.

The names of the selected entity and event types are shown in the search bar.

In addition to it, we include an alphabetical list to explore all the entity and event types of

Magento. The user selects a single letter of the English alphabet from the list and then obtains

an enumeration of those entity and event types whose name starts with that letter. Each item

in the list shows also its attributes and participations in relationships. The user may select the

entity or event types of interest, which are then included in the search bar, and additionally

change the multiplicities of (some of) their attributes or participations in relationships, or even

select default values for those attributes whose type is an enumeration. Note that we preceded

each item in the alphabetical list with an icon showing the type of the schema element (entity

type, event type, participation in relationship type, or owned attribute). By changing multi-

plicities of selecting default values the user applies a contextualization function, as indicated in

Sect. 6.3.6 of Ch. 6 where we introduced the filtering request for contextualized types (F6).

The user may also select the final size of the filtered schema in order to indicate the amount of

knowledge she wants to obtain as a result. As an example, Fig. 8.27 shows the filtering prototype

260



8.6. SUMMARY

when the user selects the entity type BundleProduct as the input focus set and selects a default

value for its owned attribute priceMethod. By using our prototype (see Fig. 8.28), the user

discovers that such entity type descends from the entity type Product, and that is related to

the entity types Website and SCItemOfBundleProduct. Note that the attribute priceMethod

of BundleProduct shows its default value as Static.

8.6 Summary

In this chapter we have presented an implementation of the filtering methodology introduced

in Ch. 5, including the development of a filtering web client and a set of core web services that

deal with the management of the user interaction and the execution of the iterative process to

filter a large conceptual schema by using the filtering requests of Ch. 6.

The implementation of our filtering methodology is not unique. There are several ways of

designing and coding a filtering system following our catalog of filtering requests. However, our

proposal provides a minimum working application that helps the user on her task of extracting

fragments of knowledge from a large schema taking into account the specific point of view and

interest of the user.

We based the development of our filtering system on a web-service approach due to the

benefits of interoperability it provides. Any user interested in making use of our tool only

requires a web browser to access it. Therefore, our web-based filtering engine allows us to reach

a broader audience of users that can use the tool from any location and device. Furthermore,

the component-based development we propose simplifies the maintenability and reusability of

internal and external services that are part of our web architecture.

Finally, our service-oriented approach provides ways to easily extend the functionalities of

the filtering engine (e.g., implement a new filtering request to fulfill specific needs of a particular

domain, design a new client view that allows the user to explore additional knowledge of the

schema, include a new interaction point to extend the user interaction with a particular view)

without changing the existing implementation.

261



CHAPTER 8. WEB-BASED FILTERING ENGINE FOR LARGE CONCEPTUAL SCHEMAS

262



Computers are good at following instructions,

but not at reading your mind.

Donald Knuth

9
Adaptation of the Filtering Methodology

to HL7 V3 Schemas

The ability to share information across systems and between care organizations is one of the

major challenges in the healthcare business progress towards efficiency and cost-effectiveness.

Healthcare standards play a key role in this area. We focus on the broadly used Health Level

7 Version 3 standard. It provides information models that define the structure and contents of

clinical documents and messages for the exchange, integration, and retrieval of electronic health

information on clinical information systems. These models, which are subsets of a large con-

ceptual schema, contain huge amounts of knowledge, and are specified in a non UML-compliant

modeling language, which difficults the understanding of the standard and its practical appli-

cation by software engineering experts.

The chapter starts with an introduction to healthcare interoperability standards in Sect. 9.1.

Section 9.2 presents the particularities of the HL7 V3 model-based healthcare standard, includ-

ing its structure and development framework. Section 9.3 enumerates several approaches to

improve the usability of the standard. In Sect. 9.4 we propose a transformation process to

automatically translate the information models within HL7 V3 to the UML in order to benefit

from collaboration, contributions, and existing tool-support in the software engineering area.

We adapt our filtering method to be able to process the resulting set of UML schemas from

the transformation as a large conceptual schema and, therefore, provide ways to explore the

knowledge within them. Section 9.5 describes the details about this approach. Finally, Sect. 9.6

presents the results of the application of the filtering methodology to HL7 V3, and Sect. 9.7

summarizes the chapter.

263



CHAPTER 9. ADAPTATION OF THE FILTERING METHODOLOGY TO HL7 V3 SCHEMAS

9.1 Healthcare Interoperability Standards

Information systems play a key role in managing and exchanging clinical information. There is

a growing need to connect complex applications from different vendors that handle and operate

with large amounts of data from a wide range of healthcare domains. These applications aim

to reduce the cost, save time, and eliminate redundancies and errors on transferring healthcare

data—such as patient records, pharmacy orders, laboratory requests, or clinical reports. As a

consequence, the design, implementation, and interoperability of clinical information systems

becomes a challenge that has to be addressed [51].

Healthcare semantic interoperability is defined as the ability to exchange, understand, and

act on clinical information among linguistically and culturally disparate health professionals,

patients, and other actors and organizations —within and across healthcare jurisdictions—

in a collaborative manner [28, 19]. The information transferred may be at the level of indi-

vidual patients, but also aggregated information for quality assurance, policy, remuneration,

or research [63]. Understandability of such information is one of the key aspects in semantic

interoperability.

The inability to share information across systems and between care organizations is one

of the major impediments in the health care business progress toward efficiency and cost-

effectiveness. Using healthcare standards is a precondition for achieving semantic interoperabil-

ity [86]. Healthcare standards play a key role in the battle against paper records, independent

and autonomous systems, and manual interoperability. Also, there is a wide range of standards

available for the integration and interoperability of applications and information systems, both

on domain-specific and domain-neutral levels [82]. However, there exists a slow adoption of

those standards in real industrial contexts.

The catalog of healthcare interoperability standards includes standards for the interchange

and visualization in medical imaging —DICOM standard [16]; definition of healthcare codes

and medical terminology in the electronic exchange and gathering of clinical results (such as

laboratory tests, clinical observations, outcomes management and research) —LOINC stan-

dard [45]; sharing of comprehensive computerized clinical terminology covering clinical data for

diseases, clinical findings, and procedures —SNOMED standard [110]; the representation and

transmission of almost all medical data in form of clinical artifacts such as messages and doc-

uments between healthcare providers —HL7 V3 standard [9]; and additional areas of concern

or interest of medical information [53].

All these healthcare interoperability standards are essential to progress toward shared health-

care knowledge, balancing quality of care with cost containment, improved care delivered to

patients, and a more business process view of healthcare delivery. Their potential usefulness

lies in the fact that they contain a huge amount of information of a wide range of clinical

domains. However, this complexity makes difficult to integrate them and to train software

engineering professionals to be able to master them. Doing so requires a thorough analysis and

understanding of existing healthcare standards by software experts.

We focus on the HL7 V3 standard for exchanging messages and documents among infor-

mation systems that implement healthcare applications. Information models are the backbone

264



9.2. HEALTH LEVEL 7 VERSION 3

of HL7 V3-based information systems. These models, which are considered in this thesis as

subsets of a large conceptual schema, are artifacts provided by the standard that play a key role

in the integration of heterogeneous databases and medical information systems in the health-

care domain [113]. We propose an adaptation of our filtering methodology to deal with the

particular characteristics of HL7 V3 information models.

9.2 Health Level 7 Version 3

The Health Level Seven International (HL7)1 is a not-for-profit, ANSI-accredited standards de-

veloping organization dedicated to providing standards for the exchange, integration, sharing,

and retrieval of electronic health information that supports clinical practice and the manage-

ment, delivery, and evaluation of health services. HL7 standards enable semantic interoperabil-

ity between almost all institutions, domains, and fields of healthcare. With HL7, all important

communication tasks of a healthcare provider (hospitals, clinics, primary care centers, and other

service delivery points) can be handled and the efficiency of communications can be improved.

HL7 Version 3 is an specific healthcare interoperability standard within HL7 designed to

handle most if not all healthcare communications, using a relatively small set of constructs

[12, 108, 17]. The standard specifies storyboards, trigger events, and interactions between

clinical applications to maintain a common representation of healthcare messaging tasks such

as the update of a patient billing account, the registration of a new observation in a diagnosis,

or the submission of a blood test request to a laboratory.

The V3 standard presents a model-based specification and a development framework cover-

ing the whole life cycle from design through adaptation and maintenance up to implementation,

use, and testing of clinical messages and documents on the basis of a Reference Information

Model (RIM) [100]. The standard indicates the information each kind of clinical message or

document must contain and how it is structured through the definition of information models

based on the RIM. An information model is a structured specification of the information within

a specific domain of interest. It expresses the concepts of information required and the proper-

ties of these concepts, including attributes, relationships, constraints, and states. The standard

defines different types of information models to represent documents and messages to exchange

in several healthcare domains.

HL7 V3 and its model-based development framework enable semantic interoperability be-

tween different applications that adopt the same healthcare information models. Despite that, a

successful integration of the HL7 V3 standard in an interoperability project to semantically in-

terconnect clinical information systems truly depends on the expertise and knowledge of all the

participants, including analysts, designers and developers, when aligning the specific project re-

quirements with the information models defined in the standard. This problem has been widely

explored and studied by many researchers in the field of software engineering and, specially,

the area of conceptual modeling [141, 26]. The adoption of contributions from this field may

increase the quality of the standard and its development framework.

1Health Level 7 International http://www.hl7.org

265

http://www.hl7.org


CHAPTER 9. ADAPTATION OF THE FILTERING METHODOLOGY TO HL7 V3 SCHEMAS

9.2.1 The HL7 V3 Development Framework

The HL7 V3 standard is based on a comprehensive development methodology where first tech-

niques of modern software engineering have been deployed within a standard development

process such as object-oriented analysis and object-oriented design as well as formal conceptual

modeling. It presents a model-based specification and a development framework covering the

whole life cycle from design through adaptation and maintenance up to implementation, use,

and testing of clinical messages and documents on the basis of a top-level reference information

model.

The HL7 Reference Information Model (RIM) [100] describes the core classes for the health-

care subject areas, the attributes for each of these classes as well as their associations. Figure 9.1

presents a summary with the six most important classes of the RIM. According to it, health-

care consists of a series of clinical Acts performed to, by, on behalf of, utilizing, or in some way

involving, one or more instances of a Participating Entity-in-a-Role. For instance, the entity

John Smith in the role of Patient participates as the Subject of an act of ClinicalObservation.

Entity
classCode:CS
determinerCode:CS
id:Set(II)
code:CD
quantity:Set(PQ)
name:Bag(EN)
desc:ED
statusCode:CS
existenceTime:IVL_TS
telecom:Bag(TEL)
riskCode:EntityRisk
handlingCode:Set(CD)

Role
classCode:CS
id:Set(II)
code:CE
negationInd:BL
name:Bag(EN)
addr:Bag(AD)
telecom:Bag(TEL)
statusCode:CS
effectiveTime:IVL_TS
certificateText:ED
quantity:RTO
positionNumber:Set(INT)

RoleLink
typeCode:CS
priorityNumber:INT
effectiveTime:IVL_TS

Participation
typeCode:CS
functionCode:CD
contextControlCode:CE
sequenceNumber:INT
negationInd:BL
noteText:ED
time:IVL_TS
awarenessCode:CE
signatureCode:CE
signatureText:ED
performInd:BL
subsetCode:CS

Act
classCode:CS
moodCode:CS
id:Set(II)
code:CD
negationInd:BL
derivationExpr:ST
title:ED
text:ED
effectiveTime:GTS
activityTime:GTS
availabilityTime:TS
priorityCode:Set(CE)
repeatNumber:IVL_INT
interruptibleInd:BL
levelCode:CE
independentInd:BL
uncertaintyCode:CE
reasonCode:Set(CE)
languageCode:CE

ActRelationship
typeCode:CS
inversionInd:BL
contextControlCode:CS
contextConductionInd:BL
sequenceNumber:INT
priorityNumber:REAL
pauseQuantity:PQ
checkpointCode:CS
splitCode:CS
joinCode:CS
negationInd:BL
conjunctionCode:CS
localVariableName:ST
seperatableInd:BL
subsetCode:CS
uncertaintyCode:CE

outboundLink
0..*

source1 target 1
inboundLink 0..*

0..1 0..*

player

playedRole

0..1
scoper

scopedRole
0..*

1
0..*

1
0..*

0..*source
1

outboundRelationship

target
1 0..*
inboundRelationship

HL7 RIM

Figure 9.1. HL7 Reference Information Model (RIM).

Figure 9.2 shows an overview of the HL7 V3 development framework. Each V3 message

or document specification is a view derived from the RIM (condensed in Fig. 9.2 A). Every

particular healthcare domain defines their own Domain Message Information Model (D-MIM),

which is a derived specialization of the RIM that includes a set of concepts, attributes, and

relationships that can be used to create messages and structured clinical documents for a

particular topic of interest in the domain (Fig. 9.2 B). For instance, the set of concepts that are

used by the laboratory domain –observation, specimen, device– is quite different from that used

by the accounting and billing domain –account, insurance policy. As a consequence, the D-MIMs

for these two domains are quite different, although both contain classes that are specializations

from the classes of the RIM, and follow the Act-Participation-Role-Entity structure.

Then, every single interaction –exchange of message or document– between healthcare appli-

cations implementing HL7 V3 (Fig. 9.2 D) is defined by a Refined Message Information Model

(R-MIM). An R-MIM is a subset of the specific D-MIM for the domain in which the R-MIM

is used (Fig. 9.2 C). The R-MIM contains only those classes, attributes, and associations of a

D-MIM required to model specific case scenarios for a set of messages or documents.

266



9.2. HEALTH LEVEL 7 VERSION 3

Entity 0..1
Role

RoleLink

0..*

1
0..*

1

0..*

0..*0..*

source target

source target

1player

scoper

1 1

HL7 RIM

Participation

Act

1
0..*

0..*

D-MIM

D-MIM

D-MIM

ActRelationship

R-MIM R-MIM

R-MIM R-MIM

R-MIM R-MIM

Healthcare
Information 

System

Healthcare
Information 

System

HL7 V3
message

HL7 V3
document

S
p
ec

ia
li
za

ti
on

S
u
b
se

t

Im
p
le

m
en

ta
ti
on

A B C D

Figure 9.2. HL7 V3 Development Framework.

The HL7 V3 development framework requires that all information structures in derived

models be traceable back to the RIM. Their semantic and related business rules should not

conflict with those specified in the RIM. The RIM therefore is the ultimate source for all

information content in HL7 V3. Each R-MIM is a subset of a D-MIM, and a D-MIM is a

specialization of the RIM.

coverage
typeCode:CS=COVBY

0..* insurancePolicy

beneficiary
typeCode:CS=BEN

0..1 patientRole

holder
typeCode:CS=HLD

Account
classCode:CS=ACCT
moodCode:CS=EVN
id:SET<II>[1..*]
code:CD[0..1]
title:ST[0..1]
statusCode:CS
balanceAmt:MO[0..1]
currencyCode:CE[0..1]
interestRateQuantity:
  RTO<MO,PQ>[0..1]
allowedBalanceQuantity:
  IVL<MO>[0..1]

OldAccount
classCode:CS=ACCT
moodCode:CS=EVN
id:SET<II>[0..*] 
statusCode:CS[0..1]
allowedBalance-
  Quantity:IVL<MO>[0..1]

Account Management
(FIAB_RM010000UV) Entry point for account management messages

InsurancePolicy
classCode:CS=COV
moodCode:CS=EVN
id:SET<II>[0..*]
code:CD[0..1]

effectiveTime:IVL<TS>[0..1]
statusCode:CS[0..1]

GuarantorRole
classCode:CS=GUAR
id:SET<II>[0..*]

addr:AD[0..1]
telecom:TEL[0..1]
effectiveTime:IVL<TS>[0..1]

negationInd:BL[0..1]

0..1 guarantorRole

component
typeCode:CS=COMP

0..*
account

predecessor
typeCode:CS=SUCC

0..1 oldAccount

GuarantorPerson
classCode:CS=PSN
determinerCode:CS=INSTANCE
id:SET<II>[0..*]
name:BAG<PN>[1..*]
addr:AD[0..1]

GuarantorChoice

GuarantorOrganization
classCode:CS=ORG
determinerCode:CS=INSTANCE
id:SET<II>[0..*]

name:ON[0..1]
code:CE[0..1]

GuarantorLanguage
languageCode:CS=HumanLanguage
modeCode:CS=RWR
preferenceInd:BL

0..*guarantorLanguage

guarantorChoice
0..1

PatientRole
classCode:CS=PAT
id:SET<II>[0..*]
confidentialityCode:CD[0..1]
veryImportantPerson-
  Code:CE[0..1]

sequenceNumber:INT[0..1] 

CMET: (PSN)

(COCT_MT030200UV)

E_Person
[universal]

CarrierRole
classCode:
  CS=UNDWRT
id: II

author
typeCode:
  CS=AUT

1..1 carrierRole *

CarrierOrganization
classCode:CS=ORG
determinerCode:CS=INSTANCE
name: EN

0..1  
underwriting-
CarrierOrganization *

subjectOf
typeCode:CS=SBJ

0..* encounter

CMET: (ENC)

(COCT_MT010000UV)

A_Encounter
[universal]

pertainsTo
typeCode:CS=PERT
0..* encounter

subject
typeCode:CS=SBJ

1..1 patientRole

0..1    patientPerson

0..1 
promisorPerson

Note:
Guarantor is scoped by the 
pa�ent. Pa�ent is also the 
subject of the account

Note:
Guarantor takes financial
responsibility over the account

Note:
Used to 
reference
sub‐accounts

Note:
The named party for the account. For a 
pa�ent billing account, this is the pa�ent.

Figure 9.3. Patient Billing Account Event R-MIM (FIAB RM010000UV02).

The HL7 V3 2010 normative edition of the standard contains 22 D-MIMs and 870 R-MIMs.

Figure 9.3 presents the Patient Billing Account Event R-MIM, which serves as our running

example. According to the standard, this message model includes the required concepts for the

creation and management of patient billing accounts specified in a non UML-compliant model-

ing language. Central to the model of Fig. 9.3 is the concept of Account, with attributes such

as identifier, code, balance, and the currency of the account. An account is an accumulator of

financial and administrative information for the main purpose of supporting claims and reim-

267



CHAPTER 9. ADAPTATION OF THE FILTERING METHODOLOGY TO HL7 V3 SCHEMAS

bursement. Associations to the account include patient identification (subject of the account),

insurance policy, encounter, and the optional specification of a guarantor for any outstanding

balance in the account.

An HL7 V3 expert that wants to implement the message to create an account in a particular

healthcare system starts exploring the RIM. Then, she selects the specific healthcare domain

within the standard that describes the knowledge of interest for the message, and explores its

D-MIM model. The last step consists in selecting the appropriate subset of the D-MIM content

in order to obtain an R-MIM with the structure of the message for the purpose at hand.

The structure and contents of the specific message to create an account is defined by the

Patient Billing Account Event R-MIM in Fig. 9.3, which is a subset of the Patient Billing

Account D-MIM of the accounting and billing healthcare domain, which is a derived model from

the HL7 RIM. This sequence of model derivation and model subsetting operations increases the

complexity of the overall process to obtain and understand a particular information model from

the HL7 V3 standard.

9.3 Improving the HL7 V3 Standard

Based on our previous contributions [132], our collaboration with HL7 members in projects

related to the usability and learnability of the standard, and our experience with the information

models and documentation from the HL7 V3 standard, we believe that even though the potential

of HL7 V3 to enable semantic interoperability in the healthcare domain has been clearly stated,

several difficulties emerge in its practice and functionality when used by software engineers and

information systems developers.

In our opinion, the HL7 V3 standard is ideally suited to represent all the knowledge of

interest for healthcare professionals in a wide range of domains such as care provision, phar-

macy, medical records, laboratory, scheduling, account and billing, or public health reporting.

However, software professionals that have to deal with the standard in real developments find it

difficult to explore its documentation and to effectively construct and maintain HL7 V3-based

applications.

The adequate management of the healthcare information models of the standard and the

complexity to implement them in an interoperability scenario are central aspects for the success

of HL7 V3. In the software engineering literature, most of the aspects related to information

models have been extensively studied over the years [117]. Consequently, several existing tools

and methodologies from this field may be applied and adapted to obtain, refine, understand,

and use information models from the healthcare domain.

In real interoperability scenarios, software professionals are in charge of connect several

clinical information systems in order to exchange, understand, and act on healthcare data. To

do this, software analysts, designers and developers must know the structure of the HL7 V3

documentation, select from all the domains in the standard those that are closer to the re-

quirements of the scenario, explore their storyboards and specifications to select the specific

268



9.4. TRANSFORMATION FROM HL7 V3 TO UML

messages or documents, understand their information models and the elements within them,

including descriptions of classes, attributes, and relationships, and adapt them to a particu-

lar context. Moreover, professionals must complete this task manually — with no additional

assistance apart from their own experience.

An information model is useless unless its purpose is properly understood by the specialists

that have to work with it. We have identified a need to broaden the audience of the HL7 V3

models by providing a UML version to experts on model-driven development. The main benefits

of providing a standard UML version of the healthcare information models within HL7 V3 are

related to understandability, tool-support, and analyzability of the standard. The usage of UML

as the modeling language of the HL7 V3 models allows all members of the software engineering

community to understand the standard without requiring further training. Furthermore, the

healthcare community can benefit from existing modeling tools and methodologies.

Nowadays, there is a wide range of methods and applications that support UML. There are

assistants to generate most of the final code of a software system from its UML information

model, or even interpret this model and make it executable [76]. It is possible to check the

consistency of UML models in order to solve many issues in the software development process

[13]. We can translate a UML model into a narrative description that must enable non-experts

or business people to understand its semantics [23]. There is a large amount of tools to visualize

and filter UML models that integrate other functions and help users to deal with them [132].

Also, there is a wide community of UML experts that may collaborate and contribute to the

improvement of HL7 V3 models.

There exist several attempts to introduce UML for the specification of HL7 V3 models

[90, 58] but up to now only the RIM (see Fig. 9.1) appears to be a consolidated UML-compliant

model due to its simplicity and its reduced size. In the following section we propose a method to

automatically obtain a UML version of the healthcare information models provided by HL7 V3

without requiring to change the current specification and modeling languages of these models.

In Sect. 9.5 we use the resulting UML schemas from the transformation as the input of an

adapted version of the filtering methodology described in Ch. 5 to increase the usability and

understandability of the knowledge within the HL7 V3 standard.

9.4 Transformation from HL7 V3 to UML

As aforementioned, a present challenge of HL7 V3 is to provide a more abstract, formal, and

consistent specification of its information models. These models contain special constructions

specified in a non UML-compliant modeling language, which makes it difficult to learn the

particularities of the standard by software engineering experts. In addition, there are few tools

that support V3 models, and their maturity level is low.

In the context of Model-Driven Engineering [65, 37], information models (conceptual schemas)

are the main development artifacts, and model transformations are among the most important

operations applied to models. Model-to-model (M2M) transformations transform source models

into target models. There exist different model transformation approaches [35, 138].

269



CHAPTER 9. ADAPTATION OF THE FILTERING METHODOLOGY TO HL7 V3 SCHEMAS

Transformation
Rules

ATL

Equivalence

HL7 V3 
Metamodel

HL7 
Models

V3

UML 
Metamodel

UML 
Models

MIFs

conformsTo conformsTo

1

3

2

4

Representation
XML

Equivalence

Representation
Graphical

Ready to 
Use

UML 
Tools

Soft. Eng.
Community

co
de

 li
br

ar
y

Figure 9.4. Overview of the automatic transformation process.

Figure 9.4 presents an overview of our transformation, which is based on the ATL frame-

work [62], a model transformation language and toolkit developed on top of the Eclipse [38]

platform that provides ways to produce a set of target models from a set of source models.

ATL transformations are unidirectional, operating on read-only source models and producing

write-only target models. In other words, during the execution of a transformation the source

model may be navigated but changes are not allowed to it.

The transformation starts with the Model Interchange Format (MIF) [109] files of the HL7

V3 that contain the most detailed XML representation of the graphical information models

within the HL7 V3 standard. The MIF files are a set of XML files used to support the storage

and exchange of models as part of the the HL7 version 3 development process, as well as to

support tooling and to provide documentation of HL7 methodology. The HL7 V3 editions of

the standard are generated from the MIF files.

Those MIF files are processed and converted into instances of an HL7 V3 metamodel, i.e.,

into formal HL7 V3 models. For instance, an HL7 V3 model may describe the roles of Guarantor

or Patient while the HL7 V3 metamodel describes the concept of Role and that it must be played

by an Entity that has a Participation in an Act. Section 9.4.1 presents our HL7 V3 metamodel.

Next, the ATL engine executes a set of transformation rules to convert a HL7 V3 model to

its UML equivalent. An ATL rule takes an element from the source model and transforms it

into one or more elements of the target model. These transformation rules are defined at the

metamodel level, i.e., they are specified in the context of the HL7 V3 metamodel and describe

the translation to the UML metamodel. Therefore, whenever a HL7 V3 model changes, it can

be translated to its UML equivalent as long as it conforms to the HL7 V3 metamodel, which

means that there is no need to change the transformation rules unless we have to change the

HL7 V3 metamodel. Section 9.4.2 presents the details of the transformation rules.

As a result, the transformation automatically produces a UML model, which is a valid

instance of the UML metamodel, for each HL7 V3 model. The resulting UML models are ready

to be used in existing UML tools by experts of the software engineering community.

Consequently, the overall M2M transformation process requires the specification of two

metamodels —HL7 V3 and UML— and a set of transformation rules to translate the elements

of the first metamodel into elements of the second one. We have developed a new HL7 V3

metamodel and the ATL transformation rules to translate between HL7 V3 to UML. The UML

metamodel is already implemented in the Eclipse platform.

270



9.4. TRANSFORMATION FROM HL7 V3 TO UML

9.4.1 A Metamodel of HL7 V3

The HL7 V3 standard specification does not contain a formal metamodel, i.e., an information

model that describes the characteristics and semantics of all the elements that are present in V3

models. We need a HL7 V3 metamodel because it is required for the ATL infrastructure to be

the source of the transformation rules that translate to the target UML metamodel. We have

constructed a HL7 V3 metamodel that defines the elements present in the HL7 V3 models.

We have studied the HL7 V3 documentation and performed a reverse-engineering study

through all the V3 models in the standard in order to extract the general characteristics those

models share. Since we want to translate V3 models into the standard UML our primary goal

was to develop a HL7 V3 metamodel as conceptually close as possible to the UML metamodel.

This will simplify the specification of the transformation rules of the overall process.

A simplified version of our HL7 V3 metamodel is presented in Fig. 9.5 (see [91] for the com-

plete version). Those elements marked in gray are directly extracted from the UML metamodel,

with minor changes. For instance, the metamodel shows that only two properties participate

in any association since the HL7 V3 standard allows only binary associations. The hierarchy of

Class represents the core element types of the RIM, including Entity, Role, Participation, and

Act. Also, there are elements like Choice, CMET or EntryPoint that are specific constructs

which only appear in HL7 V3 models and, therefore, they need to be transformed into standard

constructs of the UML. As a consequence, our HL7 V3 metamodel indicates that in the HL7

V3 information models, a Choice must be associated with at least two ChoosableElement, and

that a ChoosableElement must be a Class, a CMET, or another Choice. These are common

rules in the standard.

ElementNamedElement

TypedElementType

Class Property

Association0..1
0..*

0..1 0..*
ownedAttribute

ChoosableElement

Choice

EntryPoint

2..*

0..*

0..*

owner

1..*

0..*

0..1

EntityType

RoleLinkType

RoleType
ParticipationType

ActType

ActRelationshipType

InfraestructureType

1

0..*

2

0..1

CMET

mainElement

Comment0..*
0..*annotatedElement

Figure 9.5. Simplified version of the HL7 V3 metamodel.

The effort to develop a HL7 V3 metamodel allows to easily process the MIF files from the

standard and transform them into HL7 V3 models that satisfy our HL7 V3 metamodel. We have

implemented the HL7 V3 metamodel as an Ecore model in the Eclipse Modeling Framework

[111] . It allows to easily define the HL7 V3 meta-elements shown in Fig. 9.5 and automatically

generates a complete Java code library to create instances of these meta-elements matching

the characteristics defined in the HL7 V3 metamodel. We have processed the MIF files and

created the corresponding HL7 V3 models through the generated code library. As a result, we

can assure that the HL7 V3 models we obtain are a valid instance of the HL7 V3 metamodel

and that each one contains the same knowledge as its source MIF file from the standard. The

HL7 V3 models from the MIF files are the required input of the ATL transformation depicted

in Fig. 9.4.

271



CHAPTER 9. ADAPTATION OF THE FILTERING METHODOLOGY TO HL7 V3 SCHEMAS

9.4.2 Transformation Rules

In the scope of the ATL framework, the generation of target model elements is achieved through

the execution of transformation rules. Each rule is defined in the context of the source meta-

model, deals with an element from it, and describes its equivalence in the target metamodel.

In the following, we describe the effect of the transformation rules for the main elements of our

HL7 V3 metamodel that are specific from the HL7 V3 standard and require a translation to

common UML constructs.

Entry Points

An entry point indicates the central element of a particular HL7 V3 information model. Each

D-MIM model will have at least one entry point. Since the D-MIM encompasses an entire

domain, there may be several entry points, one for each R-MIM contained in the D-MIM of the

domain. Entry points are represented on the D-MIM model as clear boxes with black borders

(see Fig. 9.6 left). A black arrow originates from the entry point box and points to a class

which is considered the root, or focal class in the model. Each entry point has a name, carries

the identifier of the R-MIM which originates from it, and contains a brief description.

Algorithm 9.1. ATL transformation rule for Entry Points.

1 module HL7ToUML;

2 create OUT : UML2 from IN : HL7;

3

4 rule EntryPoint {

5 from ep: HL7!EntryPoint

6 to m: UML2!Model( name <-ep.identifier ),

7 c: UML2!Class( name <-ep.name , ownedAttribute <-desc , isAbstract <-true ),

8 desc: UML2!Property( name <-’description ’, default <-ep.description ,

9 type <-String )

10 e1: UML2!Property( lower <-0, upper <-1, type <-c )

11 e2: UML2!Property( lower <-0, upper <-* )

12 a: UML2!Association( ownedEnd <-Set{e1 ,e2} )

13 do {

14 m.packagedElement.add(c);

15 c.applyStereotype(c.getApplicableStereotype(’EntryPoint ’));

16 for (cl in HL7!Class.allInstancesFrom(’IN ’))

17 { thisModule.Class(m, cl); }

18 for (cm in HL7!CMET.allInstancesFrom(’IN ’))

19 { thisModule.CMET(m, cm); }

20 for (ch in HL7!Choice.allInstancesFrom(’IN ’))

21 { thisModule.Choice(m, ch); }

22 for (a in HL7!Association.allInstancesFrom(’IN ’))

23 { thisModule.Association(m, a); }

24 e2.type <-UML2!Class.allInstancesFrom(’OUT ’)

25 ->select(c|c.name = ep.choosableElement.name).first ();

26 }}

We transform each entry point element into an abstract UML class with the stereotype
�EntryPoint� and an attribute named description with the original information of the entry

point. The ATL rule 9.1 shows a simplified declaration of this transformation that starts the

process. The header of the transformation (line 2) defines the source and target metamodels to

be used in order to reference schema element types. The EntryPoint rule matches the entry point

272



9.4. TRANSFORMATION FROM HL7 V3 TO UML

of the source model (line 5) and creates a UML model whose name is the identifier of the entry

point (line 6). It also creates the representation of the entry point as an abstract UML class with

the same name, and a description attribute with the description of the entry point (lines 7-9).

This class is included into the new model (line 14) with the �EntryPoint� stereotype (lines

15). The last part of the rule (lines 15-23) calls the appropriate rules for the transformation of

the other elements within the source model. Note that the arrow that connects the entry point

with the element of focus is transformed into an association (lines 10-12 and 24-25). Figure 9.6

graphically presents the transformation of the entry point Account Management of Fig. 9.3.

HL7 V3 UML

Account Management
(FIAB_RM010000UV)
Entry point for account
management messages

Account
classCode:CS=ACCT
moodCode:CS=EVN
id:SET<II>[1..*]
code:CD[0..1]
title:ST[0..1]
statusCode:CS
balanceAmt:MO[0..1]
currencyCode:CE[0..1]
interestRateQuantity:RTO<MO,PQ>[0..1]
allowedBalanceQuantity:IVL<MO>[0..1]

Account Management
description: String = "Entry point 
 for account management messages"

«EntryPoint»

Account
classCode:CS=ACCT
moodCode:CS=EVN
id:II[1..*]
code:CD[0..1]
title:ST[0..1]
statusCode:CS
balanceAmt:MO[0..1]
currencyCode:CE[0..1]
interestRateQuantity:RTO_MO_PQ[0..1]
allowedBalanceQuantity:IVL_MO[0..1]

«Act»

0..1
0..*

Figure 9.6. UML translation for the HL7 V3 entry point Account Management.

Classes, Associations, and Attributes

A class represents a concept of a particular domain and an association specifies a semantic

relationship between classes. A HL7 V3 class can be classified as an Act, ActRelationship,

Participation, Role, RoleLink, or Entity class —as defined in the RIM and in our HL7 V3

metamodel. We transform each HL7 V3 class into a UML class with the same name and

attributes as the original but with an stereotype with the name of its kind of class derived from

the RIM, as specified in the ATL rule 9.2. As aforementioned, this rule is invoked by the ATL

rule 9.1. The first part of the rule creates a new UML class from the HL7 V3 one with the

same name (line 2). Then, the rule applies the required stereotype to the UML class according

to the type of the source HL7 V3 class (lines 5-11). Finally, we invoke a new rule to transform

the attributes of the HL7 V3 class into UML attributes of the new class (line 12). The details

of this rule can be found in [91].

Algorithm 9.2. ATL transformation rule for HL7 V3 classes.

1 rule Class(m: UML2!Model , hc: HL7!Class) {

2 to uc: UML2!Class( name <-hc.name )

3 do {

4 m.packagedElement.add(uc);

5 if (hc.oclIsTypeOf(HL7!ActType)) {

6 uc.applyStereotype( uc.getApplicableStereotype(’Act ’) );

7 }

8 else if (hc.oclIsTypeOf(HL7!RoleType)) {

9 uc.applyStereotype( uc.getApplicableStereotype(’Role ’));

10 }

11 ... -- same behavior for other class types

12 for (a in hc.ownedAttribute) { thisModule.Attribute(uc , a); }

13 }}

273



CHAPTER 9. ADAPTATION OF THE FILTERING METHODOLOGY TO HL7 V3 SCHEMAS

Similarly, a HL7 V3 association is transformed into a UML association with the same par-

ticipants, role names, and multiplicities as the original one. Figure 9.7 graphically presents the

transformation of the associations between three classes from the information model of Fig. 9.3.

HL7 V3 UML
InsurancePolicy
classCode:CS=COV
moodCode:CS=EVN
id:SET<II>[0..*]
code:CD[0..1]

effectiveTime:IVL<TS>[0..1]
statusCode:CS[0..1]

beneficiary
typeCode:
  CS=BEN

0..1 patientRole *
InsurancePolicy

classCode:CS=COV
moodCode:CS=EVN
id:II[0..*]
code:CD[0..1]
statusCode:CS[0..1]
effectiveTime:IVL_TS[0..1]

«Act»1
0..1

1
0..*PatientRole

classCode:CS=PAT
id:SET<II>[0..*]
confidentialityCode:CD[0..1]
veryImportantPerson-
  Code:CE[0..1]

PatientRole
classCode:CS=PAT
id:II[0..*]
confidentialityCode:CE[0..1]
veryImportantPersonCode:CE[0..1]

«Role»

Beneficiary
typeCode:CS=BEN

«Par�cipa�on»

Figure 9.7. UML translation for HL7 V3 classes and associations.

The stereotype that represents the kind of class according to the RIM can be viewed as an

implicit generalization relationship that connects a UML class with its parent class in the RIM.

For instance, the InsurancePolicy class in left side of Fig. 9.7 is a descendant of the Act class

in the RIM. In our transformation, we used stereotypes instead of generalization relationships

as a way to reducing clutter in the resulting information models.

Choices

HL7 V3 information models may also contain choice boxes. These boxes are bordered by a

dashed line and enclose two or more classes that are part of an inheritance hierarchy (e.g.

two or more Roles, two or more Entities, etc.). It is important to note that any association

connected to the choice box apply to all classes within it. Associations connected to a specific

class within the choice box apply only to that class.

We transform each choice into an abstract class with the same name as the choice and the

stereotype �Choice�. The classes within the choice are transformed into regular UML classes

sharing a generalization relationship with the choice class. Any association connected to the

choice is now connected to the abstract class representing the choice in UML.

Algorithm 9.3. ATL transformation rule for HL7 V3 choices.

1 rule Choice(m: UML2!Model , ch: HL7!Choice) {

2 to c1: UML2!Class ( name <- ch.name , isAbstract <- true )

3 do {

4 m.packagedElement.add(c1);

5 c1.applyStereotype( c1.getApplicableStereotype(’Choice ’));

6 for (oe in ch.ownedElement) {

7 thisModule.createChoiceHierarchy(c1,

8 UML2!Class.allInstancesFrom(’OUT ’)

9 ->select(c | c.name = oe.name).first());

10 }} }

The first part of the the ATL rule 9.3 creates the UML class that represents the choice with

the name of the choice and makes it abstract (line 2). Then the rule applies the stereotype
�Choice� (line 5) and creates the hierarchy of the choice with generalization relationships to

connect it with its owned elements, which are instances of ChoosableElement according to the

HL7 V3 metamodel (see Fig. 9.5).

274



9.4. TRANSFORMATION FROM HL7 V3 TO UML

Figure 9.8 depicts the transformation of the choice of Fig. 9.3, which consists in the abstract

class GuarantorChoice representing the source choice, and two generalization relationships con-

necting it with its descendants GuarantorPerson and GuarantorOrganization.

HL7 V3 UML
GuarantorPerson
classCode:CS=PSN
determinerCode:CS=INSTANCE
id:SET<II>[0..*]
name:BAG<PN>[1..*]
addr:AD[0..1]

GuarantorChoice

GuarantorOrganization
classCode:CS=ORG
determinerCode:CS=INSTANCE
id:SET<II>[0..*]

name:ON[0..1]
code:CE[0..1]

GuarantorRole
classCode:CS=GUAR
id:SET<II>[0..*]

addr:AD[0..1]
telecom:TEL[0..1]
effectiveTime:IVL<TS>[0..1]

negationInd:BL[0..1]

GuarantorPerson
classCode:CS=PSN
determinerCode:CS=INSTANCE
id:II[0..*]
name:PN[1..*]
addr:AD[0..1]

«En�ty»

GuarantorOrganization
classCode:CS=ORG
determinerCode:CS=INSTANCE
id:II[0..*]
name:EN

«En�ty»

GuarantorChoice
«Choice»

0..1

GuarantorRole
classCode:CS=GUAR
id:II[0..*]
negationInd:BL[0..1]
addr:AD[0..1]
telecom:TEL[0..1]
statusCode:CS[0..1]
effectiveTime:IVL_TS[0..1]

«Role»

0..*
guarantorChoice

0..1

Figure 9.8. UML translation for the HL7 V3 choice GuarantorChoice.

CMETs

A Common Message Element Type (CMET) is a predefined container of common HL7 V3

elements that is re-used for several information models in order to avoid repetitions and simplify

the model. CMETs can be seen as a hyperlinks to other models and are graphically denoted

as boxes with a dashed border. The CMET box contains a name, the base class type, and

the identifier of its own corresponding R-MIM where the contents wrapped by the CMET are

defined. We transform each CMET into a UML class with the name of the CMET and a

read-only attribute named identifier whose value is the original identifier of the R-MIM of the

CMET. Also, this class is marked with the stereotype �CMET�, and the stereotype of the base

class type of the CMET. The details of the ATL rule for CMETs are similar to ATL rule 9.2

and can be found in [91].

HL7 V3 UML

CMET: (PSN)

(COCT_MT030200UV)

E_Person
[universal]

0..1  patientPerson
PatientRole
classCode:CS=PAT
id:SET<II>[0..*]
confidentialityCode:CD[0..1]
veryImportantPersonCode:CE[0..1] PersonUniversal

identifier:String="COCT_MT030200UV01"

«CMET»«En�ty»

PatientRole
classCode:CS=PAT
id:II[0..*]
confidentialityCode:CE[0..1]
veryImportantPersonCode:CE[0..1]

«Role»
0..1  patientPerson

0..*

Figure 9.9. UML translation for the HL7 V3 CMET PersonUniversal.

Figure 9.9 depicts the HL7 V3 CMET of Fig. 9.3 named E Person[universal] (left) and its

representation as an abstract class in UML (right). It contains the identifier COCT MT030200UV01

of the model were the contents referenced by the CMET are defined, as an attribute named

identifier. The stereotypes �CMET� and �Entity� represent that the base class type of the

information model referenced by the CMET is an Entity. In this case, the focal class of the

R-MIM referenced by this CMET is the entity Person.

275



CHAPTER 9. ADAPTATION OF THE FILTERING METHODOLOGY TO HL7 V3 SCHEMAS

9.4.3 Transformation Results

We have tested our automatic transformation process with the HL7 V3 2010 normative edition,

which contains 870 MIF files. The overall process took around 3 minutes in a computer with

a 2.8GHz Intel Core i7 processor with 8GB of DDR3 RAM. The full details can be found in

[91]. Since new HL7 V3 normative editions appear once a year, and preliminary versions appear

every four months, the execution time of our transformation is acceptable. The 870 resulting

UML schemas contain 19815 classes, 55234 attributes, and 19053 associations. These models

are UML-compliant, semantically identical to the original MIFs, and immediately available

after the transformation process.

Guarantor	is	scoped	by	
the	pa�ent.	Pa�ent	is	also	
the	subject	of	the	account

Guarantor	takes	financial
responsibility	over	the	account

Used	to	
reference	
sub-accounts

The	named	party	for	the
account.	For	a	pa�ent	billing
account,	this	is	the	pa�ent.

Account Management
description: String = "Entry point for account management messages"

«EntryPoint»
Predecessor

typeCode:CS=SUCC

«ActRela�onship»

Account
classCode:CS=ACCT
moodCode:CS=EVN
id:II[1..*]
code:CD[0..1]
title:ST [0..1]
statusCode:CS
balanceAmt:MO [0..1]
currencyCode:CE[0..1]
interestRateQuantity:RTO_MO_PQ[0..1]
allowedBalanceQuantity:IVL_MO[0..1]

«Act»
OldAccount

classCode:CS=ACCT
moodCode:CS=EVN
id: II[0..*] 
statusCode:CS[0..1]
allowedBalanceQuantity:IVL_MO[0..1]

«Act»

InsurancePolicy
classCode:CS=COV
moodCode:CS=EVN
id:II[0..*]
code:CD[0..1]
statusCode:CS[0..1]
effectiveTime:IVL_TS[0..1]

«Act»

Coverage
typeCode:CS=COVBY
sequenceNumber:INT[0..1]

«ActRela�onship»

Component
typeCode:CS=COMP

«ActRela�onship»

PertinentInformation
typeCode:CS=PERT

«ActRela�onship»

EncounterUniversal
Identifier:String="COCT_MT010000UV01"

«CMET»«Act»

Subject
typeCode:CS=SBJ

«Par�cipa�on»

Holder
typeCode:CS=HLD

«Par�cipa�on»

Beneficiary
typeCode:CS=BEN

«Par�cipa�on»

PolicyUnderwriter
typeCode:CS=AUT

«Par�cipa�on»

Subject2
typeCode:CS=SBJ

«Par�cipa�on»

PatientRole
classCode:CS=PAT
id:II[0..*]
confidentialityCode:CE[0..1]
veryImportantPersonCode:CE[0..1]

«Role»

GuarantorRole
classCode:CS=GUAR
id:II[0..*]
negationInd:BL[0..1]
addr:AD[0..1]
telecom:TEL[0..1]
statusCode:CS[0..1]
effectiveTime:IVL_TS[0..1]

«Role»

CarrierRole
classCode:CS=UNDWRT
id: II

«Role»

GuarantorOrganization
classCode:CS=ORG
determinerCode:CS=INSTANCE
id:II[0..*]
name:EN

«En�ty»

GuarantorChoice
«Choice»

PersonUniversal
identifier:String="COCT_MT030200UV01"

«CMET»«En�ty»

GuarantorLanguage
languageCode:CS=HumanLanguage
modeCode:CS=RWR
preferenceInd:BL

«Infraestructure»
CarrierOrganization

classCode:CS=ORG
determinerCode:CS=INSTANCE
name: EN

«En�ty»

0..1

1

1
0..*

0..1
0..*

1

1

0..*

0..*

1 0..1

0..*

1

0..1

0..* 0..*

0..*

1
0..*

10..*

1
1author

1

0..1

10..*

1

1

1

0..*

1

0..*pertainsTo

1

0..*

encounter

1
encounter
0..*

1
0..*subjectOf

0..*

0..1 underwritingCarrierOrganization

0..*

0..*0..10..1
promisor
Person

patientPerson

0..*

1 GuarantorPerson
classCode:CS=PSN
determinerCode:CS=INSTANCE
id:II[0..*]
name:PN[1..*]
addr:AD[0..1]

«En�ty»

Figure 9.10. UML transformation of Patient Billing Account Domain Model (Fig. 9.3).

Figure 9.10 shows the complete UML version of the information model of Fig. 9.3 that

holds the same original contents but using standard constructs. Note that the participations

and act relationships of the HL7 V3 that were represented graphically as arrowed boxes are

now common UML classes connected to other classes with binary associations.

Also, the choices and CMETs are processed following the aforementioned transformation

rules. In the HL7 V3 version (see Fig. 9.3) there is a choice construction named Guarantor-

Choice that includes the entities GuarantorPerson and GuarantorOrganization. In addition

to it, there are two relationships with GuarantorChoice connecting it with GuarantorRole and

276



9.4. TRANSFORMATION FROM HL7 V3 TO UML

GuarantorLanguage. In the UML version (see Fig. 9.10) we have the same contents. The HL7

V3 choice is represented by an abstract class with two subclasses —the GuarantorPerson and

the GuarantorOrganization. The GuarantorRole role is connected to the abstract class of the

choice and the relationship with GuarantorLanguage is maintained. Consequently, the UML

version holds the same contents but using standard constructs.

The analysis of the UML schemas that result from the transformation points out several

modeling problems that should be addressed to improve the quality of the standard. By ana-

lyzing the resulting UML schemas, we have found modeling flaws with the names of concepts

used in the HL7 V3 standard. For instance, the Participation named author of InsurancePolicy

of Fig. 9.3 is named PolicyUnderwriter in Fig. 9.10. Similarly, there are two Participation

classes, named Subject and Subject2, which indicate the same subject role of both Account and

EncounterUniversal acts in Fig. 9.10. Since these participations are identical, only one of them

should appear in the schema.

The adoption of common UML schemas benefits the usage of HL7 V3 with existing modeling

tools2 compatible with our proposed UML schemas —there is no need to invest on specific tools.

Finally, there are lots of UML experts that may increase the final quality of the standard and

solve the existing modeling flaws by analyzing the UML schemas and proposing improvements

on their specification and development framework.

Figure 9.11. Conceptual Schema of the HL7 V3.

2Eclipse UML2 Compatibility List http://wiki.eclipse.org/MDT-UML2-Tool-Compatibility

277

http://wiki.eclipse.org/MDT-UML2-Tool-Compatibility


CHAPTER 9. ADAPTATION OF THE FILTERING METHODOLOGY TO HL7 V3 SCHEMAS

9.5 The Filtering Methodology for HL7 V3

In this section we describe the changes our filtering methodology requires in order to be applied

to the set of healthcare information models from the HL7 V3 standard. We review the charac-

teristics of the new structure of the filtering method for HL7 V3, and analyze the definition of

adapted metrics of relevance in order to compute the most interesting elements from HL7 V3

given a particular focus set. We also enumerate the filtering requests from our catalog that can

be used to deal with these schemas, and show an example of application of one of the requests.

9.5.1 Structure of the Filtering Method for HL7 V3

As aforementioned in previous chapters, the main goal of the filtering methodology is to extract

a reduced and self-contained view from the large schema, that is, a filtered conceptual schema

with the knowledge of interest to the user. Figure 9.12 presents a comparison between the

general structure of the filtering method —as explained in Ch. 5— and the structure of the

filtering method when adapted to HL7 V3.

Filtering Method for HL7 V3
Metrics Processing1

En�ty Types Processing2

Rela�onship Types Processing3

Data Types Processing

4 Generaliza�ons Processing

5

Large Set of
Conceptual
Schemas

Filtered
Conceptual

Schema
Importance Method

Size Threshold

Rejection Set

Focus Set

General Filtering Method
Metrics Processing1

En�ty and Event Types Processing2

Rela�onship Types Processing3

Schema Rules Processing

4 Generaliza�ons Processing

5

Large
Conceptual

Schema

Filtered
Conceptual

Schema
Importance Method

Size Threshold

Rejection Set

Focus Set

Presenta�on6

Presenta�on

6 Data Types Processing

7

context ...
context ...

Figure 9.12. Comparison between general filtering method (top) and filtering method for HL7 V3
(bottom).

The main reason to adapt our filtering methodology to HL7 V3 is the topological structure

of the conceptual schema of HL7 V3. Our general method is able to process a large conceptual

schema, which is a single-file schema with large amounts of information including, among others,

278



9.5. THE FILTERING METHODOLOGY FOR HL7 V3

entities, events, and relationship types. By contrast, the structure of the HL7 V3 is based on

a large set of small-to-medium R-MIMs (Refined Message Information Model) that define the

structure of healthcare messages and documents, and whose union creates a large conceptual

schema.

These R-MIM models contain special constructions specified in a non UML-compliant mod-

eling language, which difficults the learnability of the standard to software engineering experts,

which are the ones that design and develop HL7 V3-based information systems. In addition,

there are few tools that support V3 models, and their maturity level is low. Section 9.4 de-

scribes an automatic transformation to obtain UML schemas from each of the HL7 V3 R-MIMs

of the standard (starting from their MIF representation). The union of the 870 transformed

UML schemas results in a large conceptual schema, as shown in Fig. 9.11.

Consequently, we provide a UML version of the R-MIMs from the standard to broaden the

audience of HL7 V3 and be able to load the UML schemas with existing tools. In addition,

by using the UML version of the healthcare schemas we reduce the required changes in our

filtering methodology and engine.

Therefore, we apply our filtering methodology to the resulting set of 870 UML schemas

that are transformed from the HL7 V3 R-MIMs of the standard. The main issue here is to

deal with a large set of small-to-medium schemas instead of working with a large one. Our

filtering method needs to compute several relevance metrics in order to select and filter the

most interesting elements from the set of transformed HL7 V3 schemas. The huge size of the

union of 870 schemas makes it difficult to compute these metrics in an acceptable response

time for a dynamic request/response environment. Since we want to construct an interactive

filtering tool, computing the general importance of schema elements and their closeness to the

focus set requires some special tuning in order to keep the efficiency and effectiveness levels of

our proposal. To this end, Sect. 9.5.2 presents the definition of relevance metrics for the case

of the UML schemas transformed from the HL7 V3 standard.

Additionally, Fig. 9.12 indicates that the number of filtering stages in the filtering method

for HL7 V3 is lower than the number of stages in the general filtering method of Ch. 5. The

R-MIMs behind HL7 V3 only define the structural subschema of a conceptual schema. Thus,

the standard does not include the specification of event types in a behavioral subschema, and

as a result, the second stage in the filtering method for HL7 V3 only deals with entity types

from the structural subschema.

Also, HL7 V3 defines schema rules over the R-MIMs in order to constraint the graphical

representation of entity and relationship types with additional textual conditions. The main

problem here is that such schema rules are specified in an heterogeneous way. Exploring the

R-MIMs it is possible to find schema rules defined in an OCL-like formal constraint language,

and additional comments expressed in a non-processable natural language. Such schema rules

should be corrected, normalized and rewritten in a standard constraint language in order to be

easily included in our model transformation process. Since this task is out of the scope of this

thesis, our HL7 V3-to-UML transformation does not take into account the schema rules, and

as a result, the filtering stage number 5 in the general filtering method does not appear in the

filtering method for HL7 V3 (bottom of Fig. 9.12).

279



CHAPTER 9. ADAPTATION OF THE FILTERING METHODOLOGY TO HL7 V3 SCHEMAS

In the following, we detail the internal modifications in our general filtering approach in

order to take into account the specific characteristics of the large set of conceptual schemas

obtained from the R-MIMs of HL7 V3.

9.5.2 Relevance Metrics for HL7 V3

As aforementioned in Sect. 9.4.3, the conceptual schema of the HL7 V3 standard is constructed

as the union of a large set of small-to-medium schemas. Formally,

CSHL7 =
n⊎
i=1

CSi.

The 870 schemas (n = 870) that belong to HL7 V3 contain 19815 entity types, 55234

attributes, and 19053 relationship types. Furthermore, the specification of an entity type and

their interrelationships with other entity types is spread out through several schemas, which

means that there are entity types that are shared by more than one schema —that is the reason

to use the multiset union ].

The large size of the HL7 V3 schema CSHL7 makes it difficult to compute in real time

the relevance metrics our filtering methodology requires. A common solution to this problem

consists of pre-calculating the importance of all the entity types in the schema and all the

minimum distances between each pair of entity types. However, if we are in a dynamic scenario

where the schema evolves, this solution is not acceptable.

We propose the relevance computing approach depicted in Fig. 9.13, where the user selects a

set of entity types of focus and our method automatically selects a subset of conceptual schemas

of reduced size (pre-filtering). Concretely, the method selects those schemas CSi from HL7 V3

that contain at least one entity type from the focus set. Thus, it is expected that the selected

fragment CSS ⊂ CSHL7 of the whole HL7 V3 is small enough to apply the relevance metrics in

real time, and big enough to produce a good result.

Importance Method

Size Threshold

Rejec�on Set

Focus Set

Large Set of 
Conceptual Schemas

Filtering Method

Importance Compu�ng

Closeness Compu�ng

Interest Compu�ng

Final Selec�on

2

3

4

5

K

I

Select Conceptual

Schemas of Focus

1

Figure 9.13. Relevance metrics processing when applied to HL7 V3.

In the following, we describe the changes in the relevance metrics in order to adapt them to

the special case of HL7 V3. The rest of the method behaves as indicated in Sect. 9.5.1.

280



9.5. THE FILTERING METHODOLOGY FOR HL7 V3

Importance computing

Our approach is based on the concept of importance. Second step consists of computing

the importance of the entity types from the selected conceptual schemas of focus CSS with the

importance method I selected in the input as shown in Alg. 9.4.

Algorithm 9.4. Compute Importance Ψ for HL7 V3.

1 for each e ∈ Ei ⊂ CSS do

2 ΨHL7(e) = I(e)

3 end

In the general method introduced in Ch. 5 we compute the global importance Ψ of any

entity of the large schema. Note that for the case of HL7 V3 the importance method I only

takes into account the knowledge defined in the selected fragment CSS of CSHL7, as shown in

Fig. 9.13.

Closeness computing

The importance metric is useful when a user wants to know which are the most important

entity and event types, but it is of little use when the user is interested in a specific subset

of elements of focus, independently from their importance. This step computes the measure

of closeness of the entity types of the selected set of schemas CSS that are candidates to be

included in the resulting filtered schema, with respect to the elements of the focus set FS. A

candidate entity type belongs to CSS and is neither in the focus set nor in the rejection set.

Algorithm 9.5. Compute Closeness Ω for HL7 V3.

1 for each e ∈ {{Ei ⊂ CSS} \ {FS ∪RS}} do

2 ΩHL7(e,FS) = |FS| / ∑
e′∈FS δ(e, e

′)

3 end

Intuitively, the closeness of e should be directly related to the inverse of the distance δ of

e to the entities of the focus set. Those entity types that are closer to more elements of FS
will have a greater closeness. Note that the distance δ computes to the minimum topological

distance between two entity types in CSS . Given two entity types ei, ej , if there is no path in

CSS between them, then we define δ(ei, ej) =
∑
Ei⊂CSS |Ei|.

Interest computing

What is needed then is a metric that measures the interest of a candidate entity type e

with respect to the focus set FS. This metric should take into account both the adapted

importance ΨHL7(e) and the adapted closeness measure of ΩHL7(e,FS). For this reason, the

filtering method computes such measure as shown in Alg. 9.6.

Algorithm 9.6. Compute Interest Φ for HL7 V3.

1 for each e ∈ {{Ei ⊂ CSS} \ {FS ∪RS}} do

2 ΦHL7(e) = α×Ψ(e) + (1− α)× Ω(e,FS)

3 end

281



CHAPTER 9. ADAPTATION OF THE FILTERING METHODOLOGY TO HL7 V3 SCHEMAS

9.5.3 Catalog of Filtering Requests for HL7 V3

Chapter 6 presents a catalog of filtering requests applicable to large conceptual schemas specified

in UML/OCL. The catalog presents six filtering requests and describes the characteristics of

each of them. The adaptation of the filtering methodology to the case of the conceptual schemas

that belong to the HL7 V3 standard produces changes in the aforementioned catalog. The

resulting set of filtering requests that belong to the adapted catalog of filtering requests for

HL7 V3 contains the following:

• Filtering Request for Entity Types (F1): The user focuses on a set of entity types

from a large schema. The request obtains a filtered conceptual schema that includes the

combination of the initial entity types with the elements of interest. The original request

also focuses on relationship types, but since relationships in HL7 V3 schemas are purely

defined as binary connectors between two concepts, without a specific semantic, we do

not take them into account as members of the focus set. The rest of the request behaves

identically as the original one, defined in Sect. 6.3.1 of Ch. 6.

• Filtering Request for a Conceptual Schema (F4): The user focuses on a small

fragment from the large schema. The user is aware of the elements that conform such

fragment or she has accessed them via previous requests. As output, the user obtains a

filtered schema that includes the combination of the elements of the fragment surrounded

with elements of interest. The request behaves identically as the original one, defined in

Sect. 6.3.4 of Ch. 6.

• Filtering Request for Contextualized Entity Types (F6): The user focuses on a

set of entity types. The user contextualize them by means of a function to reduce or

limit the characteristics defined over such types. As output, the user obtains a filtered

schema with the selected entity types and the elements of interest taking into account

the contextualization. The original request also focuses on event types, but since HL7 V3

schemas are purely defined as structural schemas —there is no behavioral subschema—,

there are no events specified in the schemas of the HL7 V3 standard. The rest of the

request behaves identically as the original one, defined in Sect. 6.3.6 of Ch. 6.

The filtering request for schema rules (F2), which is defined in Sect. 6.3.2 of Ch. 6, is not

useful to HL7 V3. The reason is that since the schema rules are specified in an heterogeneous

way in HL7 V3 information models, they should be corrected, normalized and rewritten in a

standard constraint language in order to be easily included in our model transformation process.

Therefore, the UML conceptual schemas obtained from the HL7 V3 R-MIMs does not contain

schema rules, and thus, the user cannot focus on them.

The filtering request for event types (F3), and the filtering request for context behavior of

entity types (F5), which are correspondingly defined in Sect. 6.3.3 and Sect. 6.3.5 of Ch. 6, are

not useful to the large set of conceptual schemas of the HL7 V3. The reason is that there is

no event specification within the HL7 V3 R-MIMs, and thus, the user cannot focus on them

using F3 nor obtain the set of event types of interest taking into account a set of entity types

of focus using F5.

282



9.5. THE FILTERING METHODOLOGY FOR HL7 V3

9.5.4 Example of Application of a Filtering Request to HL7 V3

The first step of our filtering method consists in preparing the required information to filter the

HL7 V3 schemas according to the user preferences. Basically, the user focus on a set of entity

types (focus set) she is interested in and our method surrounds them with additional knowledge

from the HL7 V3 schemas. Therefore, it is mandatory for the user to select a non-empty initial

focus set FS.

In this section we show an example where the user wants to see what is the knowledge

the HL7 V3 schemas have about the entity types Patient and Appointment. Therefore, the

user defines FS = {Patient, Appointment}. Starting from this focus set, our filtering method

retrieves the knowledge represented in the schemas about Patient and Appointment that is

likely to be of more interest to the user.

For the sake of efficiency, our method selects a subset of conceptual schemas of reduced size

(pre-filtering) containing at least one entity type from the focus set. Concretely, for the case of

FS = {Patient, Appointment} our method retrieves the following 151 HL7 V3 schemas, which

represent a 17% of the total amount of schemas in the standard:

Patient

COCT MT010000UV01
COCT MT010004UV02
COCT MT050004UV01
COCT MT060000UV01
COCT MT080000UV
COCT MT080100UV
COCT MT220300UV
COCT MT230100UV
COCT MT260003UV
COCT MT290000UV06
COCT MT290002UV06
COCT MT290004UV06
COCT MT300000UV04
COCT MT300001UV04
COCT MT510000UV06
COCT MT510005UV06
COCT MT530000UV
COCT MT610000UV06
COCT MT830120UV05
COCT MT910000UV
COCT MT930000UV
COCT MT970000UV
FIAB MT010101UV02
FIAB MT010102UV02
FIAB MT010103UV02
FIAB MT010104UV02
FIAB MT010105UV02
FIAB MT020101UV02
MCAI MT700201UV01

MCAI MT705201UV01
MCAI MT900001UV01
MFMI MT700701UV01
MFMI MT700702UV01
MFMI MT700711UV01
MFMI MT700712UV01
MFMI MT700721UV01
MFMI MT700722UV01
POCG MT000010UV01
POCG MT000040UV01
PORP MT050032UV03
PORR MT040002UV01
PORR MT040003UV01
PORR MT040004UV01
PORR MT040005UV01
PORR MT040011UV01
PORR MT040012UV01
PORR MT040061UV01
PORR MT040062UV01
PORR MT049006UV01
PORR MT049007UV01
PORR MT049008UV01
PORR MT049009UV01
PORR MT049010UV01
PORR MT049011UV01
PORR MT049012UV01
PORR MT100001UV01
PORR MT150101UV01
PORT MT020001UV01
PORT MT020002UV01
PORT MT030001UV01

PORT MT090001UV01
PORT MT090002UV01
POTD MT000001UV02
PRPA MT101301UV02
PRPA MT101302UV02
PRPA MT101303UV02
PRPA MT101305UV02
PRPA MT101310UV02
PRPA MT201301UV02
PRPA MT201302UV02
PRPA MT201303UV02
PRPA MT201304UV02
PRPA MT201305UV02
PRPA MT201310UV02
PRPA MT202301UV02
PRPA MT202302UV02
PRPA MT202303UV02
PRPA MT202310UV02
PRPA MT301011UV02
PRPA MT302011UV02
PRPA MT303011UV02
PRPA MT401001UV02
PRPA MT401002UV02
PRPA MT401003UV02
PRPA MT401004UV02
PRPA MT401005UV02
PRPA MT402001UV02
PRPA MT402002UV02
PRPA MT402003UV02
PRPA MT402004UV02
PRPA MT402008UV02

PRPA MT402009UV02
PRPA MT403001UV02
PRPA MT403002UV02
PRPA MT403003UV02
PRPA MT403004UV02
PRPA MT403005UV02
PRPA MT404001UV02
PRPA MT404002UV02
PRPA MT404003UV02
PRPA MT404004UV02
PRPA MT404005UV02
PRPA MT411001UV02
PRPA MT411002UV02
PRPA MT411003UV02
PRPA MT411004UV02
PRPA MT412001UV02
PRPA MT414001UV02
PRPA MT414002UV02
PRPA MT414003UV02
PRPA MT414004UV02
PRPA MT900101UV02
PRPA MT900102UV02
PRPA MT900350UV02
PRPM MT301010UV01
PRPM MT303010UV01
PRPM MT306110UV01
PRPM MT309000UV01
PRPM MT401010UV01
PRPM MT403010UV01
PRPM MT406110UV01
PRPM MT409000UV01

PRSC MT010101UV01
PRSC MT010201UV01
QUQI MT120001UV01
RCMR MT000001UV02
RCMR MT000002UV02
RCMR MT010001UV01
RCMR MT010002UV01
REPC MT000100UV01
REPC MT000120UV01
REPC MT000130UV01
REPC MT000200UV
REPC MT000300UV01
REPC MT000301UV
REPC MT000322UV01
REPC MT000323UV01
REPC MT000324UV01
REPC MT002000UV01
REPC MT002600UV01
REPC MT003000UV01
REPC MT004000UV01
REPC MT004005UV01
REPC MT004009UV01
REPC MT610001UV01
REPC MT610002UV01

Appointment

COCT MT020000UV01
PRSC MT010101UV01
PRSC MT010201UV01
PRSC MT020101UV01
PRSC MT020201UV01

Figure 9.14. HL7 V3 models that contain the entity types Patient and Appointment.

Consequently, our method computes the relevance metrics from Sect. 9.5.2 to the previous

subset of HL7 V3 schemas. Once the method obtains the metrics of importance and closeness,

the next step consists of computing the interest (Φ) for each entity type from the subset of

schemas out of the focus set FS. As previously shown, the interest Φ(e) of a candidate entity

type e to be included in the resulting filtered schema is a linear combination of the importance

Ψ(e) and the closeness Ω(e,FS) taking into account the balancing parameter α.

Given that the user does not include any entity type in the rejection set (RS = ∅) and she

selects a size threshold K = 12, Tab. 9.1 shows the top-10 entity types with a greater value of

interest when the user defines FS = {Patient, Appointment} and α = 0.5.

283



CHAPTER 9. ADAPTATION OF THE FILTERING METHODOLOGY TO HL7 V3 SCHEMAS

Results in Tab. 9.1 indicate that included within the top-10 there are entity types that are

directly connected to all members of the focus set FS = {Patient, Appointment} as in the case

of Subject (Ω(Subject ,FS) = 1.0) but also entity types that are not directly connected to any

entity type of FS (although they are closer).

Rank Entity Type (e)
Importance Distance Distance Closeness Interest

Ψ(e) d(e, Patient) δ(e, Appointment) Ω(e,FS) Φ(e,FS)

1 Organization 1.72 1 3 0.5 1.11

2 Person 1.22 1 3 0.5 0.86

3 ServiceDeliveryLocation 0.79 2 2 0.5 0.65

4 AssignedPerson 0.72 2 2 0.5 0.61

5 Subject 0.11 1 1 1.0 0.56

6 ManufacturedDevice 0.55 2 2 0.5 0.53

7 Location 0.26 3 1 0.5 0.38

8 ReusableDevice 0.19 3 1 0.5 0.35

9 Performer 0.13 3 1 0.5 0.32

10 Author 0.12 3 1 0.5 0.31

Table 9.1. Most Interesting classes with regard to FS = {Patient, Appointment}.

Finally, the last step of the method receives the top-interest set of entity types from the

previous step and puts it together with the entity types of the focus set FS in order to create

a filtered conceptual schema with the entities of both sets. The main goal of this step consists

in filtering information from the HL7 V3 schemas involving entity types in the filtered schema.

To achieve this goal, the method explores the associations, and generalization/specialization

relationships in the HL7 V3 schemas that are defined between those selected entity types and

includes them in the filtered conceptual schema to obtain a connected schema.

AssignedPerson

ReusableDevice

 patientEntityChoiceSubject

Appointment

Subject

Author

Location

Patient

ServiceDeliveryLocation

ManufacturedDevice

Person

Organization

 manufacturerOrganization
0..1

0..1  serviceProviderOrganization

Performer

 1

 1

 1

 1

 1

1..*

0..*
0..*

0..*

0..*

 1

providerOrganization   0..1

representedOrganization
0..1

0..1  assignedPrincipalChoiceList

0..*
0..*

0..*

0..*0..*
0..*

0..* 0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

«act»

«participation»

«participation»

«participation»

«participation»

«participation»

«role»

«role»

«role»

«role»

«entity»

«entity»

Figure 9.15. Filtered conceptual schema for FS = {Patient, Appointment}.

The filtered schema for FS = {Patient, Appointment} is shown in Figure 9.15 (attributes

are hidden for the sake of simplicity). This schema represents the arguments of a scheduling

service. It has a central focus on the Appointment entity type, which represents the activity

being scheduled. The subject (usually the patient) participates in the appointment. Note that

the cardinality is 1..* in the side of patient to allow for group appointments. The performer,

location, and reusable device entity types associate the resources being reserved in the appoint-

ment. Also, the author is the person who originated the appointment and who must confirm

changes or substitutions.

284



9.6. EXPERIMENTATION

9.6 Experimentation

Our filtering method and prototype tool provide support to the task of extracting knowledge

from the HL7 models, which has been done manually or with little computer support.

Finding a measure that reflects the ability of our method to satisfy the user is a complicated

task. However, there exists related work [5, 123] about some measurable quantities in the field

of information retrieval that can be applied to our context:

• The ability of the method to withhold non-relevant knowledge (precision).

• The interval between the request being made and the answer being given (time).

9.6.1 Precision Analysis

A correct method must retrieve the relevant knowledge according to the user preferences. The

precision of a method is defined as the percentage of relevant knowledge presented to the user.

In our context, we use the concept of precision applied to HL7 universal domains (specified

with D-MIM’s). Each domain contains a main entity which is the central point of knowledge

to the users interested in such domain. The other entities presented in the domain conform the

relevant knowledge related to the main entity.

HL7 professionals interested in a particular domain decide about the knowledge to incor-

porate in it through ballots. Thus, a common situation for a user is to focus on the main

entity of a healthcare domain and to navigate through the D-MIM to understand its related

knowledge. To know the precision of our method, we simulate the generation of a D-MIM from

its main entity. We define a single-entity focus set with such entity and set K with the size of

the domain. This way, we will obtain a filtered conceptual schema with the same number of

entities as such domain.

In one iteration of our method, we obtain two groups of entities within the resulting filtered

conceptual schema: the relevant entities to the user, that is, the ones that were originally

defined in the D-MIM by experts, and the non-relevant ones. The precision of the result is

defined as the fraction of the relevant entities over the total K.

To refine the obtained result, the non-relevant entities are included in a rejection set RS
and the method is executed again taking into account RS. It is expected that the filtered

conceptual schema that results from this step will have a greater precision. This manner, at

each iteration non-relevant entities to the user are rejected, and we know that in a finite number

of steps our filtering method will obtain all the entities of the original domain. The smaller the

number of required iterations until getting such domain, the better the method.

Figure 9.16 shows the number of iterations needed to reach the maximum precision for four

of the HL7 V3 normative domains. Note that right side of Figure 9.16 zooms in the first five

iterations. The test reveals that to reach more than 80% of the relevant entities of a domain,

only three iterations are required. The results are significant and extensible to other domains.

285



CHAPTER 9. ADAPTATION OF THE FILTERING METHODOLOGY TO HL7 V3 SCHEMAS

●

●

●

● ● ● ● ● ●

● ● ● ●

● ● ●

●

0 5 10 15 20 25 30

40
50

60
70

80
90

10
0

Precision

Iterations

P
re

ci
si

on
 (

%
)

●

Medical Records
Scheduling
Account and Billing
Laboratory

●

●

●

● ●

1 2 3 4 5

40
50

60
70

80
90

10
0

Precision (Zoom Iterations 1−5)

Iterations

P
re

ci
si

on
 (

%
)

●

Medical Records
Scheduling
Account and Billing
Laboratory

Figure 9.16. Precision analysis for a set of four significant HL7 V3 domains.

9.6.2 Time Analysis

It is clear that a good method does not only require precision, but it also needs to present the

results in an acceptable time according to the user. To find the time spent by our method it is

only necessary to record the time lapse between the request of knowledge, i.e. once a focus set

FS has been indicated by the user, and the receipt of the filtered conceptual schema.

It is expected that as we increase the size of the focus set, the time will increase linearly. Our

method computes the distances from each entity in the focus set to all the rest of entities. This

computation requires the same time (in average) for each entity in the focus set. Therefore, the

more entities we have in a focus set, the more time our method spends in computing distances.

In our experimentation, we set our prototype tool to apply the filtering method several

times with an increasing number of entities in the focus set. The average results for sizes from

a single-entity focus set up to a 40-entities focus set are presented in Figure 9.17. According to

the expected use of our method, having a focus set FS of 40 entities is not a common situation

(although possible). Sizes of focus set up to 10 entities are more realistic, in which case the

average time does not exceed one second.

● ●

● ● ●
● ●

●
●

●
●

●
●

● ●

●
●

●
● ●

●

● ●
●

● ●
●

● ●
●

●
● ●

● ●
●

●
●

●
●

Average Time

Focus Set Size

T
im

e 
(s

)

0 5 10 15 20 25 30 35 40

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 9.17. Time analysis for different sizes of FS.

286



9.7. SUMMARY

9.7 Summary

In Ch. 5 we introduced the filtering method that is the central contribution of this thesis.

Furthermore, we presented a catalog of filtering requests to deal with large conceptual schemas

in several filtering scenarios in Ch. 6, and we also showed their utility when applied to a set

of real-world conceptual schemas, as described in Ch. 7. Consequently, in this chapter we have

described a way our tool can be adapted to fulfill the requirements of HL7 V3, the well-known

model-based standard from the healthcare domain.

HL7 V3 information models are very large. The wealth of knowledge they contain makes

them very useful to their potential target audience. However, the size and the organization of

these models make it difficult to manually extract knowledge from them. This task is basic for

the improvement of services provided by HL7 affiliates, vendors and other organizations that

use those models for the development of health systems.

What is needed is a tool that improves the usability of HL7 models for that task. We have

adapted our filtering method from Ch. 5 in order to accept a large set of UML schemas as

filtering target. We have also proposed an automatic transformation approach to convert the

schemas from the HL7 V3 standard into equivalent UML schemas on order to benefit from

contributions from the software engineering area.

Our method makes it easier to automatically extract knowledge from the UML version of

the HL7 V3 models. Input to our method is the set of entity types the user is interested

in. The method computes the interest of each entity type in the HL7 models with respect

to that set taking into account its importance and closeness. Finally the method selects the

most interesting entity types from those models, including their defined knowledge in the large

schema (e.g. associations, attributes, generalization relationships).

The main question here is Is it required to transform HL7 V3 R-MIMs into UML in order

to be able to apply our filtering methodology? The answer is clear: no, it is not. Our filtering

approach can be applied to any object-oriented model based on a graph structure with a set of

nodes connected through a set of edges. Since the HL7 V3 graphical modeling language follows

these guidelines, our approach can be directly used (with minor adaptations in the filtering

engine). However, we propose a transformation from HL7 V3 R-MIMs to equivalent UML

schemas in order to improve the understandability of the standard for those interested on it, and

the usability of the HL7 V3 information models with a wide range of existing UML tools that

provide additional support and functionalities to adopt model-driven engineering techniques

into the healthcare domain. Moreover, we have found modeling flaws in the standard that

conceptual modelers can solve in the UML version and, therefore, help in the final development

of HL7 V3.

The experiments we have done clearly show that the proposed method and its associated tool

provides an easier way to extract knowledge from the models. Concretely, our filtering engine

recovers more than 80% of the knowledge of a D-MIM in three iterations, with an average time

per iteration that for common uses does not exceed one second. The conclusion we extract from

the previous experimentation is that our filtering methodology helps users when exploring the

large amount of schemas HL7 V3 contains.

287



CHAPTER 9. ADAPTATION OF THE FILTERING METHODOLOGY TO HL7 V3 SCHEMAS

288



I think and think for months and years.

Ninety-nine times, the conclusion is false.

The hundredth time I am right.

Albert Einstein (1879-1955)

10
Conclusions and Future work

The usability and understandability of large conceptual schemas has become a relevant issue in

the field of conceptual modeling. Since organizations, and the information systems that support

them, require an increasing amount of information processing and knowledge analysis, the size

of their conceptual schemas has grown until reaching complexity levels that make it difficult

to users to manage them. Throughout the different chapters of this thesis, we have provided

methods and tools to help reduce the impact of this problem.

The chapter starts with a summary of the results of the thesis. Section 10.1.1 aligns our

research with the problem of conceptual modeling in the large. Section 10.1.2 reviews the

contribution on the analysis of relevance metrics defined in the context of large conceptual

schemas. Section 10.1.3 indicates the benefits of the filtering approach and Sect. 10.1.4 describes

the advantages our catalog of filtering requests provides to users that need to explore portions of

the knowledge within a large schema. Section 10.1.5 reviews the results of the experimentation

with three real filtering scenarios where a user may use our approach, and Sect. 10.1.6 shows the

consequences of using a prototype to validate our research. Since our work opens new research

directions, Sect. 10.2 enumerates extension points to our current research approach and further

work that could provide additional benefits to the users of large conceptual schemas. Finally,

Section 10.3 lists the publications and research impact of the thesis.

289



CHAPTER 10. CONCLUSIONS AND FUTURE WORK

10.1 Summary of Results

This thesis presents a new approach to help and guide users on exploring the knowledge defined

in both structural and behavioral components of large conceptual schemas by filtering. This

section summarizes the main contributions and results of the research and approach presented

in the previous chapters of this document.

10.1.1 The problem of conceptual modeling in the large

In Ch. 1 we stated that the main objective of this thesis is to provide a filtering engine of

very large conceptual schemas to help users to easily extract from them the most relevant

knowledge for a particular purpose. Also, we included the sub-goals of identifying, studying and

describing several properties of relevance for elements of large conceptual schemas, presenting

useful feedback to the user, and evaluating the usability of the filtering engine.

Following the guidelines of the design-science research paradigm, we studied the relevance of

the problem of conceptual modeling in the large by analyzing (Ch. 3) the different approaches

and contributions in the existing literature. Also, we found several requests for contributions

in this area (see Sect. 3.2) that justify the existence of our work.

The major contributions in the scope of large conceptual schemas consist of classifying the

elements of the schema into groups, or clusters, according to a similarity function (see Custering

in Sect. 3.3.1). There are also methods that apply a ranking function to the elements of the

schema in order to obtain an ordered list, also called ranking, according to the general relevance

of the schema elements (see Relevance in Sect. 3.3.2). And the last family of methods compute

a reduced general schema from the large original one with the elements that are more relevant

but also with a a high degree of coverage of the schema (see Summarization in Sect. 3.3.3). The

retrieved knowledge by all these families of methods is general, i.e., it is always the same —it

does not change unless the schema changes— and it is not affected by specific user interests.

This thesis explores a new approach based on information filtering. As far as we know, there

is no research study or contribution in the present literature about the application of specific

information filtering methods and techniques to conceptual schemas. The aim of information

filtering is to expose users to only information that is relevant to them. Apart from the schema

itself, information filtering methods require as input a representation of the user information

need or interest in form of knowledge request.

The filtering-based family of methods provides users with a dynamic request/response in-

teraction that simplifies the knowledge extraction process. Other alternatives provide static

access to their output, which in many cases contain only a fragment of the whole knowledge

that may be out of the scope of interest to the user. Therefore, the development of a filtering

approach to deal with large conceptual schemas covers a relatively unexplored area in the liter-

ature and helps to providing a more dynamic and flexible solution in comparison to the existing

methodologies that contribute to this topic.

290



10.1. SUMMARY OF RESULTS

10.1.2 Analysis of relevance metrics

The filtering methodology of the thesis uses a core of relevance metrics to select the most

interesting elements from the schema with respect to a set of user-selected elements of focus.

In this thesis we focus on objective metrics, which are independent from subjective evaluations

of users and modelers.

Intuitively, it seems that an objective metric of the importance of an element in a given

schema should be related to the amount of knowledge that the schema defines about it. The

more (less) knowledge a schema defines about an element, the more (less) important should be

that element in the schema. Adding more knowledge about an element should increase (or at

least not decrease) the relative importance of that element with respect to the others.

As far as we know, the existing metrics in the literature for entity and event type importance

are mainly based on the amount of knowledge defined in the schema, but only take into account

the number of attributes, relationship types and specialization/generalization relationships.

Surprisingly, none of the methods we are aware of take into account additional knowledge

about entity and event types defined in a schema that, according to the intuition, could have

an effect on their relevance. A complete schema includes also cardinalities, general constraints,

derivation rules and the specification of event effects, all of which contribute to the knowledge

about entity and event types.

Our approach extends the definition of a set of seven existing methods from the litera-

ture with that additional knowledge (mostly obtained by reification of association classes and

processing OCL expressions). We have implemented the seven methods described in Ch. 4,

both the original and the extended versions. We have then evaluated the methods using three

distinct case studies: osCommerce, the UML metaschema, and EU-Rent. The two main con-

clusions are: (1) among the original versions of the methods, the methods of choice are those

based on the link analysis following the same approach than Google’s PageRank; and (2) the

extended versions of most methods produce remarkably similar results, which does not happen

in the original version. In addition to it, we adapted these methods to be able to work with

relationship types.

The relevance methods to compute the importance of entity and event types (and, possibly,

other elements in the schema) produce a general ranking of elements that does not change unless

the definition of the schema itself changes. Therefore, all the users interested in exploring a

large conceptual schema will obtain the same ranking regardless of their specific knowledge

requirements. The importance metric is useful when a user wants to know which are the most

important entity or event types, but it is of little use when the user is interested in a specific

subset of entity or event types, independently from their importance. What is needed then

is a metric that measures the interest of a candidate entity or event type with respect to a

user-selected set of elements of focus. Our approach defines this metric as a combination of any

of the general relevance of an entity or event type in the schema, and its closeness to the set

of focus. The interest metric is the key measure for our filtering methodology, which provides

users with good-enough feedback without requiring the intervention of a domain expert.

291



CHAPTER 10. CONCLUSIONS AND FUTURE WORK

10.1.3 The filtering approach

At present, conceptual schemas are gaining more presence in the software engineering field and

beyond. Our proposal contributes to the expansion of conceptual schemas by the study of its

characteristics and the description of the structure and components of a filtering methodology

for large conceptual schemas. Even though various authors proposed similar solutions to the

field of complex networks and graphs, the approach of using information filtering to explore

large conceptual schemas has not been previously explicitly formulated as in this thesis.

According to the multi-layer model of Hanani et. al [102] to define and classify information

filtering approaches, the characteristics of our method are:

• Initiative of Operation: our filtering method is passive because do not pushes results

without the direct intervention of the user, who has to focus on a set of elements from

the large schema to start the interaction.

• Location of Operation: our proposed filtering methodology is located at the informa-

tion source. The server side of the filtering engine keeps the knowledge from the large

schema an accepts the specific filtering requests of clients that indicate a focus set and

want a small schema as the filtering result.

• Filtering Approach: the proposed filtering method takes a focus set of selected schema

elements that represents the interest point of a user and indexes the large conceptual

schema in order to extract a small fragment of interest. This interest-based approach

uses the relevance metrics of Ch. 4 to construct the different stages of a cognitive filtering

process, based on the correlation between the content of the data items and the user.

• Method of Acquiring Knowledge on Users: our filtering methodology follows an

explicit process of acquiring knowledge on users based on user interrogation. The method

expects the intervention of the user to obtain the filtering preferences that conform the

input of the filtering process.

We formally define in Ch. 5 the inputs and output of a general filtering method for large

conceptual schemas, and each of the seven stages the methods follows to obtain a filtered

conceptual schema. We describe the particularities of projection of relationship types and

indirect generalization relationships in order to reduce the final size of the resulting schema.

The details of the different algorithms used are also provided in order to be able to replicate

our results.

10.1.4 The catalog of filtering requests

The generic approach of our filtering methodology requires the definition of a focus set as

input of the filtering process. Since different kinds of elements must be part of the focus set,

it is necessary to have specific filtering requests to provide different filtering behaviors. Our

filtering methodology describes the general characteristics of a regular and systematic way of

accomplishing the user-driven process to extract knowledge from a large conceptual schema.

292



10.1. SUMMARY OF RESULTS

What is needed is to define a set of concrete filtering requests that inherit the guidelines

and main organization proposed by the previous methodology but adapting it to the particular

filtering needs a user may have when working with a large schema. A filtering request for a

large conceptual schema is a specific knowledge extraction request that automatically obtains

a portion of the entire knowledge of small size and high relevance to the user in relation to the

schema elements in the user focus of interest. We consider each filtering request a user may take

advantage of, as a concrete instantiation of our filtering method to be effectively used under

certain filtering circumstances.

A catalog of filtering requests has not been previously explicitly formulated as in this thesis.

Our catalog provides requests for the most common filtering situations a user may face when

dealing with a large conceptual schema. A user that wants to extract knowledge from a large

conceptual schema may focus on entity, event or relationship types and then obtain the most

interesting fragment of the large schema with relation to the selection. Or maybe the user wants

to obtain the event types where a set of entity type of focus participates. Or the user focuses

on a set of schema rules in order to obtain the elements affected by their definition (in OCL).

Or, even the user may want to focus on a small fragment of the large schema and then obtain

additional elements of interest to know more about that fragment. Or, finally, the user may

want to focus on a set of entity and event types and obtain a contextualized schema with the

elements of interest taking into account some contextualization constraints. All these situations

are covered through our catalog (Ch. 6).

10.1.5 Experimentation with real case studies

A design artifact is complete and effective when it satisfies the requirements and constraints of

the problem it was meant to solve. We have experimented each of the filtering requests from

the catalog in the following experimental case studies (Ch. 7):

• A comparison between two large conceptual schemas representing the knowledge of two

frameworks for e-commerce applications, the osCommerce and the Magento.

• An exploration of the behavioral components of a large conceptual schema for a car rental

system, the EU-Rent, in order to understand the specific functionality of the system.

• An exploration of the metaschema of the Unified Modeling Language, which is guided by

the contents of the UML Superstructure specification document.

The overall goals of these case studies are: (1) analyzing the viability of using our filtering

methodology to compare the specification of several concepts from the e-commerce domain

in two different conceptual schemas, (2) characterizing the functionalities of a real conceptual

schema through the application of filtering request to its behavioral subschema, (3) identifying

filtering patterns in a formal exploration following the contents of a normative specification of

a model-based standard, and (4) using the lessons learned to improve and refine the filtering

method and filtering requests.

293



CHAPTER 10. CONCLUSIONS AND FUTURE WORK

We have then evaluated the efficiency and effectiveness of these filtering requests by using

the conceptual schemas of the previous case studies. The results show that in most cases our

method achieves a size reduction greater than 70% in the number of schema elements to explore

when using filtered schemas instead of manually exploring the large schema, with an average

time per request that is short enough (milliseconds) for the purpose at hand.

In addition to it, we have adapted our filtering methodology to a real-case large concep-

tual schema from the healthcare domain: the HL7 V3 (Ch. 9). We have translated the HL7

V3 schemas into UML/OCL and propose modifications to our general information filtering

methodology in order to take advantage of the particular aspects of HL7 V3 to improve the

quality of the produced results.

The experimentation and evaluation of our filtering methodology ensures the benefits pro-

vided to users that use filtering instead of other existing techniques to deal with large conceptual

schemas.

10.1.6 Implementation of the proposal

Throughout this thesis we have followed the design-science research methodology. The fun-

damental principle of design-science research is that knowledge and understanding of a design

problem and its solution are acquired in the building and application of an artifact. Con-

sequently, we have developed an artifact to evaluate the benefits of our research approach.

Our artifact consists of a filtering engine that implements the specific filtering requests in a

web-based environment (Ch. 8.

Our engine contains a core that is responsible for maintaining and access the characteristics

of a large conceptual schema. In addition, the core is under control of the filtering requests that

require querying the schema in order to serve the information needs of the user. The conjunction

of the specific information filtering requests and the core of the engine is implemented as a web

service. This architectural decision allows an easy interaction with web clients and increase the

technology independence, and therefore, the usability of the overall system.

The implementation of our filtering methodology is not unique. There are several ways of

designing and coding a filtering system following our catalog of filtering requests. However, our

proposal provides a minimum working application that helps the user on her task of extracting

fragments of knowledge from a large schema taking into account the specific point of view

and interest of the user. In order to communicate the benefits of our filtering engine, we have

demonstrated its functions in international conferences [133, 131].

Finally, our service-oriented approach provides ways to easily extend the functionalities of

the filtering engine (e.g., implement a new filtering request to fulfill specific needs of a particular

domain, design a new client view that allows the user to explore additional knowledge of the

schema, include a new interaction point to extend the user interaction with a particular view)

without changing the existing implementation.

294



10.2. FUTURE WORK

10.2 Future Work

There are different questions arising from the results of this thesis and that can be treated as

future work. Here we point out the most interesting ones.

10.2.1 Extend the filtering catalog

Our filtering catalog contains six filtering requests that cover a wide range of filtering scenarios

where our approach can help users on dealing with the size and complexity of large conceptual

schemas. However there could be situations in which a user requires a specific filtering request

that is not part of our catalog. As an example, a user may want to explore the elements in the

schema that reference or use a particular data type to analyze the impact of modifying it. In

the same way, a user may want to obtain the list of schema rules that use a specific attribute of

an entity or event type, in order to know whether the attribute is of high relevance or not. The

formal definition of each of the stages that conform a filtering request allows to easily extend

the catalog with new filtering requests that can extend the behavior of the existing ones. We

plan to analyze additional filtering scenarios, prioritize them, and extract new filtering requests

from that analysis.

10.2.2 Extend the relevance metrics

In this thesis, we have based the core of our filtering methodology on relevance metrics to obtain

those elements that are of interest to the user at a given point in time. The relevance metrics

we have studied are extracted from the existing literature. We have extended the knowledge

from the large schema they take into account in their process, by using reification and analyzing

the OCL expressions that specify schema rules.

Even though we have improved the definition of relevance metrics by covering a big amount of

knowledge from the schema, it is possible to complete that definition with additional components

that some large schemas contain. There are large conceptual schemas that define, apart from

the structural and behavioral subschemas, a third component that contains the instances of

the entity, relationship, and event types the large schema has at a given time. Such instances

conform the information base of the large schema and could be used in the relevance process.

It is possible to think that if a schema element that has a big amount of instantiations, it will

be of high relevance. We plan to study the effect of instances in the general relevance of schema

elements.

10.2.3 Validation with real users

Even though we have demonstrated that our filtering methodology is a valid approach when

dealing with large conceptual schemas in a set of filtering scenarios, only real users can say

whether it is useful or in the contrary if it is unusable for their purpose. The main question we

295



CHAPTER 10. CONCLUSIONS AND FUTURE WORK

would like to address to users is do you feel more confident using our method? or do you prefer

another approach from the literature?. We plan to carry out experimentation with several group

of users. The task of users will be to explore the knowledge defined within a large conceptual

schema, some of them will do so using our filtering approach and the others using other methods.

Other experimentations with different conceptual schemas of several sizes are planned in order

to identify the threshold from which the users may not explore the schemas properly because

of their size.

10.2.4 Combine the filtering methodology with existing approaches from
the literature

As aforementioned in several parts of this thesis, there are several approaches to deal with

large conceptual schemas in the literature. Even though our filtering approach provides more

dynamism to the user and allows a request/response interaction that produces different results

according to the specific user requirements, it should be interesting to combine the filtering

methodology with clustering or summarization techniques.

One of the weakest points of our filtering methodology is the initial request a user needs

to construct in order to start the iterative process of filtering. An inexperienced user needs to

know which are the elements from the schema she wants to focus on. At this point, it could

be difficult to the user to obtain those elements. To reduce the complexity, we plan to explore

the effect of providing a clustered or summarized schema to the user in order to point out

which are the main components or elements that cover or summarize the contents of a large

conceptual schema, and therefore, help the user to obtain a first general view of the semantics

in the schema.

10.2.5 Automatic refactor of schema rules after contextualization

Our filtering methodology provides a filtering request to focus on a set of entity and event

types of focus, and then construct a contextualization function that modifies multiplicities of

attributes and relationship ends. As an example, a user can set the multiplicity of one of

these elements to 0..0, and therefore the filtering method will not show that element in the

resulting filtered schema. We have identified a need of future work to automatically refactor

schema rules after the application of a contextualization function that changes multiplicities of

elements referenced by those rules. In that context, we plan to study ways to modify the OCL

expressions that conform a schema rule taking into account the contextualization function, in

order to make the rule semantically correct in the filtered schema.

296



10.3. THESIS IMPACT

10.3 Thesis Impact

The impact of this thesis is argumented in this section on the basis of these criteria: the scientific

publications that are related to the thesis (see Sect. 10.3.1), and the degree final projects in

which I have participated (see Sect. 10.3.2).

10.3.1 Publications

The results in this thesis are documented in the following publications:

General Filtering Method for Large Conceptual Schemas

A Method for Filtering Large Conceptual Schemas [128]

Antonio Villegas and Antoni Olivé

Conceptual Modeling - ER (2010), vol. 6412 of Lecture Notes in Computer Science,

Springer, pp. 247–260.

Catalog of Specific Filtering Requests for Large Conceptual Schemas

Understanding Constraint Expressions in Large Conceptual Schemas by Automatic Filter-

ing [130]

Antonio Villegas, Antoni Olivé, and Maria-Ribera Sancho

Conceptual Modeling - ER (2012), vol. 7532 of Lecture Notes in Computer Science,

Springer, pp. 50–63.

Filtering Engine for Large Conceptual Schemas

A Tool for Filtering Large Conceptual Schemas [133]

Antonio Villegas, Maria-Ribera Sancho, and Antoni Olivé

Advances in Conceptual Modeling - Challenging Perspectives, ER Workshops (2011), vol.

6999 of Lecture Notes in Computer Science, Springer, pp. 353–356.

A Web-based Filtering Engine for Understanding Event Specifications in Large Conceptual

Schemas [131]

Antonio Villegas, Antoni Olivé, and Maria-Ribera Sancho

Advances in Conceptual Modeling, ER Workshops (2012), vol. 7518 of Lecture Notes in

Computer Science, Springer, pp. 383–386.

Relevance Metrics for Large Conceptual Schemas

On Computing the Importance of Entity Types in Large Conceptual Schemas [126]

Antonio Villegas and Antoni Olivé

Advances in Conceptual Modeling - Challenging Perspectives, ER Workshops (2009), vol.

5833 of Lecture Notes in Computer Science, Springer, pp. 22–32.

297



CHAPTER 10. CONCLUSIONS AND FUTURE WORK

Extending the Methods for Computing the Importance of Entity Types in Large Conceptual

Schemas [127]

Antonio Villegas and Antoni Olivé

Journal of Universal Computer Science, J.UCS (2010), vol. 16, num. 20, pp. 3138–3162.

On Computing the Importance of Associations in Large Conceptual Schemas [129]

Antonio Villegas, Antoni Olivé, and Maria-Ribera Sancho

Conceptual Modelling and Its Theoretical Foundations (2012), vol. 7260 of Lecture Notes

in Computer Science, Springer, pp. 216–230.

Adaptation of the Filtering Methodology to HL7 V3 schemas

Improving the Usability of HL7 Information Models by Automatic Filtering [132]

Antonio Villegas, Antoni Olivé, and Josep Vilalta

6th IEEE World Congress on Services, SERVICES (2010), IEEE Computer Society, pp.

16–23.

10.3.2 Degree Final Projects

I have co-directed two Degree Final Projects that are closely related to the work in my PhD

thesis:

Transformación de modelos del estándar de salud HL7 a UML/OCL — Transformation of

standard healthcare models from HL7 to UML [91]

David Ortiz — co-directed by Antoni Olivé and Antonio Villegas

Facultat d’Informàtica de Barcelona, Universitat Politècnica de Catalunya.

Visualización de esquemas UML con HTML5 — Visualization of UML schemas with

HTML5 [50]

Jose Maria Gomez — co-directed by Maria-Ribera Sancho and Antonio Villegas

Facultat d’Informàtica de Barcelona, Universitat Politècnica de Catalunya.

298



Bibliography

[1] Akoka, J., and Comyn-Wattiau, I. Entity-relationship and object-oriented model

automatic clustering. Data & Knowledge Engineering 20, 2 (1996), 87–117.

[2] Apache Software Foundation. Apache axis. http://axis.apache.org/.

[3] Apache Software Foundation. Apache tomcat. http://tomcat.apache.org/.

[4] Atkinson, C., and Kuhne, T. Model-driven development: a metamodeling foundation.

IEEE software 20, 5 (2003), 36–41.

[5] Baeza-Yates, R., Ribeiro-Neto, B., et al. Modern information retrieval. Addison-

Wesley Harlow, England, 1999.

[6] Baroni, A. L. Formal definition of object-oriented design metrics. Master’s thesis, Vrije

Universiteit Brussel, 2002.

[7] Battista, G., Eades, P., Tamassia, R., and Tollis, I. Graph drawing: algorithms

for the visualization of graphs. Prentice Hall, 1998.

[8] Bauerdick, H., Gogolla, M., and Gutsche, F. Detecting OCL traps in the UML 2.0

Superstructure: An experience report. In UML 2004 – The Unified Modeling Language.

Modelling Languages and Applications, vol. 3273 of Lecture Notes in Computer Science.

Springer, 2004, pp. 188–196.

[9] Beeler, G. HL7 Version 3–An object-oriented methodology for collaborative standards

development. International Journal of Medical Informatics 48, 1-3 (1998), 151–161.

[10] Belkin, N. J., and Croft, W. B. Information filtering and information retrieval: two

sides of the same coin? Communications of the ACM 35, 12 (1992), 29–38.

[11] Bender, M. A., Farach-Colton, M., Pemmasani, G., Skiena, S., and Sumazin,

P. Lowest common ancestors in trees and directed acyclic graphs. Journal of Algorithms

57, 2 (2005), 75–94.

[12] Benson, T. Principles of health interoperability – HL7 and SNOMED. Springer Verlag,

2010.

[13] Berrabah, D., and Boufarès, F. Constraints checking in UML class diagrams: SQL

vs OCL. In DEXA’07, vol. 4653 of LNCS. Springer Berlin, 2007, pp. 593–602.

299

http://axis.apache.org/
http://tomcat.apache.org/


BIBLIOGRAPHY

[14] Bézivin, J., Jouault, F., Rosenthal, P., and Valduriez, P. Modeling in the Large

and Modeling in the Small. Model Driven Architecture (2005), 33–46.

[15] Bézivin, J., Jouault, F., and Valduriez, P. On the need for megamodels. In Pro-

ceedings of the OOPSLA/GPCE: Best Practices for Model-Driven Software Development

workshop, 19th Annual ACM Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications (2004).

[16] Bidgood, W., Horii, S., Prior, F., and Van Syckle, D. Understanding and using

DICOM, the data interchange standard for biomedical imaging. Journal of the American

Medical Informatics Association 4, 3 (1997), 199.

[17] Blazona, B., and Koncar, M. HL7 and DICOM based integration of radiology depart-

ments with healthcare enterprise information systems. International Journal of Medical

Informatics 76 (2007), S425–S432.

[18] Blobel, B., Engel, K., and Pharow, P. Semantic interoperability–HL7 Version 3

compared to advanced architecture standards. Methods of Information in Medicine 45, 4

(2006), 343.

[19] Blobel, B., Engel, K., and Pharow, P. Semantic interoperability–HL7 Version 3

compared to advanced architecture standards. Methods of Information in Medicine 45, 4

(2006), 343–353.

[20] Boger, Z., Kuflik, T., Shoval, P., and Shapira, B. Automatic keyword identifica-

tion by artificial neural networks compared to manual identification by users of filtering

systems. Information Processing & Management 37, 2 (2001), 187–198.

[21] Brin, S., and Page, L. The anatomy of a large-scale hypertextual web search engine.

Computer Networks and ISDN Systems 30, 1-7 (1998), 107 – 117. Proceedings of the

Seventh International World Wide Web Conference.

[22] Brun, C., and Pierantonio, A. Model differences in the eclipse modelling framework.

UPGRADE, The European Journal for the Informatics Professional (2008).

[23] Cabot, J., Pau, R., and Raventós, R. From UML/OCL to SBVR specifications: A

challenging transformation. Information Systems 35, 4 (2010), 417–440.

[24] Campbell, L., Halpin, T., and Proper, H. Conceptual schemas with abstractions

making flat conceptual schemas more comprehensible. Data & Knowledge Engineering

20, 1 (1996), 39–85.

[25] Castano, S., De Antonellis, V., Fugini, M. G., and Pernici, B. Conceptual

schema analysis: techniques and applications. ACM Transactions on Database Systems

23, 3 (1998), 286–333.

[26] Castro, J., Kolp, M., and Mylopoulos, J. Towards requirements-driven information

systems engineering: the Tropos project. Information Systems 27, 6 (2002), 365–389.

[27] Cerami, E., and St Laurent, S. Web services essentials. O’Reilly & Associates, Inc.,

2002.

300



BIBLIOGRAPHY

[28] Ceusters, W., and Smith, B. Semantic interoperability in healthcare. Transatlantic

Observatory for Meeting Global Health Policy Challenges through ICT-Enabled Solutions.

Argos eHealth Project (November 2010), Published by the EUROREC Institute, http:

// argos. eurorec. org (2010).

[29] Chen, P. The entity-relationship model–toward a unified view of data. ACM Transac-

tions on Database Systems (TODS) 1, 1 (1976), 9–36.

[30] Cockburn, A., Karlson, A., and Bederson, B. A review of overview+detail, zoom-

ing, and focus+context interfaces. ACM Computing Surveys 41, 1 (2008).

[31] Conesa, J., Storey, V. C., and Sugumaran, V. Usability of upper level ontologies:

The case of researchcyc. Data & Knowledge Engineering 69, 4 (2010), 343–356.

[32] Costal, D., and Gómez, C. On the use of association redefinition in UML class dia-

grams. In Conceptual Modeling - ER 2006, 25th International Conference on Conceptual

Modeling (2006), vol. 4215 of Lecture Notes in Computer Science, Springer, pp. 513–527.

[33] Cowan, N. Evolving conceptions of memory storage, selective attention, and their mutual

constraints within the human information processing system. Psychological Bulletin 104,

2 (1988), 163–191.

[34] Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., and Weer-

awarana, S. Unraveling the web services web: an introduction to soap, wsdl, and uddi.

IEEE Internet Computing 6, 2 (2002), 86–93.

[35] Czarnecki, K., and Helsen, S. Classification of model transformation approaches. In

Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context of

the Model Driven Architecture (2003), pp. 1–17.

[36] DeRemer, F., and Kron, H. Programming-in-the large versus programming-in-the-

small. In Proceedings of the international conference on Reliable Software (1975), ACM,

pp. 114–121.

[37] Doḿınguez, E., Lloret, J., Rubio, A., and Zapata, M. Model-driven, view-based

evolution of relational databases. In DEXA’08, vol. 5181 of LNCS. Springer Berlin, 2008,

pp. 822–836.

[38] Eclipse Foundation. Eclipse project. http://www.eclipse.org.

[39] Eclipse Foundation. Eclipse web tools platform project. http://www.eclipse.org/

webtools/.

[40] Egyed, A. Automated abstraction of class diagrams. ACM Transactions on Software

Engineering and Methodology 11, 4 (2002), 449–491.

[41] Erl, T. Service-oriented architecture: a field guide to integrating XML and web services.

Prentice Hall, 2004.

[42] Estivill-Castro, V. Why so many clustering algorithms: a position paper. ACM

SIGKDD Explorations Newsletter 4, 1 (2002), 65–75.

301

http://argos.eurorec.org
http://argos.eurorec.org
http://www.eclipse.org
http://www.eclipse.org/webtools/
http://www.eclipse.org/webtools/


BIBLIOGRAPHY

[43] Feldman, P., and Miller, D. Entity model clustering: Structuring a data model by

abstraction. The Computer Journal 29, 4 (1986), 348–360.

[44] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P.,

and Berners-Lee, T. Hypertext transfer protocol — http/1.1, 1999.

[45] Forrey, A., McDonald, C., DeMoor, G., Huff, S., Leavelle, D., Leland, D.,

Fiers, T., Charles, L., Griffin, B., Stalling, F., Tullis, A., Hutchins, K.,

and Baenziger, J. Logical observation identifier names and codes (LOINC) database:

a public use set of codes and names for electronic reporting of clinical laboratory test

results. Clinical Chemistry 42, 1 (1996), 81–90.

[46] Francalanci, C., and Pernici, B. Abstraction levels for entity-relationship schemas.

In Entity-Relationship Approach - ER’94, Business Modelling and Re-Engineering, 13th

International Conference on the Entity-Relationship Approach (1994), vol. 881 of Lecture

Notes in Computer Science, Springer, pp. 456–473.

[47] Frias, L., Queralt, A., and Olivé, A. EU-Rent car rentals specification.

Tech. rep., Universitat Politècnica de Catalunya, http://www.lsi.upc.edu/~techreps/

files/R03-59.zip, 2003.

[48] Geerts, F., Mannila, H., and Terzi, E. Relational link-based ranking. In VLDB

’04: Proceedings of the Thirtieth international conference on Very large data bases (2004),

VLDB Endowment, pp. 552–563.

[49] Gogolla, M., Büttner, F., and Richters, M. Use: A uml-based specification

environment for validating uml and ocl. Science of Computer Programming 69, 1-3 (2007),

27–34.

[50] Gomez, J. M. Visualización de esquemas UML con HTML5. Tech. rep., Universitat

Politècnica de Catalunya, 2012.

[51] Grimson, J., Grimson, W., and Hasselbring, W. The SI challenge in healthcare.

Communications of the ACM 43 (2000), 48–55.

[52] Halliday, D. Fundamentals of Physics. Wiley, 2010.

[53] Hammond, W. The status of healthcare standards in the United States. International

Journal of Bio-Medical Computing 39, 1 (1995), 87–92.

[54] Han, J., and Kamber, M. Data mining: concepts and techniques. Morgan Kaufmann,

2006.

[55] Hanani, U., Shapira, B., and Shoval, P. Information filtering: Overview of issues,

research and systems. User Modeling and User-Adapted Interaction 11, 3 (2001), 203–259.

[56] Hartley, J. Case study research. Essential guide to qualitative methods in organizational

research (2004), 323–333.

[57] Hay, D., and Healy, K. Defining business rules – what are they really? Tech. rep., Busi-

ness Rules Group, http://www.businessrulesgroup.org/first_paper/br01c0.htm,

2000.

302

http://www.lsi.upc.edu/~techreps/files/R03-59.zip
http://www.lsi.upc.edu/~techreps/files/R03-59.zip
http://www.businessrulesgroup.org/first_paper/br01c0.htm


BIBLIOGRAPHY

[58] Health Level Seven International. R-MIM diagram representation. http://wiki.

hl7.org/index.php?title=RMIM_Diagram_Representation.

[59] Hevner, A., March, S., Park, J., and Ram, S. Design science in information systems

research. Mis Quarterly (2004), 75–105.

[60] Hsi, I., Potts, C., and Moore, M. Ontological excavation: Unearthing the core

concepts of the application. In Proceedings of the 10th Working Conference on Reverse

Engineering (2003), WCRE’03, IEEE Computer Society, pp. 345–352.

[61] Jaeschke, P., Oberweis, A., and Stucky, W. Extending ER model clustering

by relationship clustering. In Entity-Relationship Approach - ER’93, 12th International

Conference on the Entity-Relationship Approach (1994), vol. 823 of Lecture Notes in

Computer Science, Springer, pp. 451–462.

[62] Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. ATL: A model transfor-

mation tool. Science of Computer Programming 72, 1-2 (2008), 31–39.

[63] Kalra, D., Lewalle, P., Rector, A., Rodrigues, J., Stroetmann, K., Sur-

jan, G., Ustun, B., Virtanen, M., and Zanstra, P. Semantic interoperability for

better health and safer healthcare. Research and Deployment Roadmap for Europe. Se-

manticHEALTH Project Report (January 2009), Published by the European Commission,

http: // ec. europa. eu/ information_ society/ ehealth (2009).

[64] Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., and Giannopoulou,

E. Ontology visualization methods–a survey. ACM Computing Surveys 39, 4 (2007).

[65] Kent, S. Model driven engineering. In Integrated Formal Methods, M. Butler, L. Petre,

and K. Sere, Eds., vol. 2335 of LNCS. Springer Berlin, 2002, pp. 286–298.

[66] Kiencke, U., Majjad, R., and Kramer, S. Modeling and performance analysis of a

hybrid driver model. Control Engineering Practice 7, 8 (1999), 985–991.

[67] Kleinberg, J. Authoritative sources in a hyperlinked environment. Journal of the ACM

46, 5 (1999), 604–632.

[68] Kleppe, A. G., Warmer, J., and Bast, W. MDA Explained: The Model Driven

Architecture: Practice and Promise. Addison-Wesley Longman Publishing, 2003.

[69] Kosara, R., Miksch, S., and Hauser, H. Focus+context taken literally. IEEE

Computer Graphics and Applications 22, 1 (2002), 22–29.

[70] Kuflik, T., Boger, Z., and Shoval, P. Filtering search results using an optimal set

of terms identified by an artificial neural network. Information Processing & Management

42, 2 (2006), 469–483.

[71] Kuflik, T., and Shoval, P. Generation of user profiles for information filtering –

research agenda. In SIGIR ’00: Proceedings of the 23rd annual international ACM SIGIR

conference on Research and development in information retrieval (2000), ACM, pp. 313–

315.

303

http://wiki.hl7.org/index.php?title=RMIM_Diagram_Representation
http://wiki.hl7.org/index.php?title=RMIM_Diagram_Representation
http://ec.europa.eu/information_society/ehealth


BIBLIOGRAPHY

[72] Lindland, O. I., Sindre, G., and Sølvberg, A. Understanding quality in conceptual

modeling. IEEE Software 11 (1994), 42–49.

[73] Maidel, V., Shoval, P., Shapira, B., and Taieb-Maimon, M. Evaluation of an

ontology-content based filtering method for a personalized newspaper. In RecSys ’08:

Proceedings of the 2008 ACM conference on Recommender systems (2008), ACM, pp. 91–

98.

[74] March, S., and Smith, G. Design and natural science research on information tech-

nology. Decision support systems 15, 4 (1995), 251–266.

[75] Marois, R., and Ivanoff, J. Capacity limits of information processing in the brain.

Trends in Cognitive Sciences 9, 6 (2005), 296–305.

[76] Mellor, S. J., and Balcer, M. Executable UML: A foundation for Model-Driven

Architectures. Addison-Wesley Longman, 2002.

[77] Miller, G. The Magical Number Seven, Plus or Minus Two: Some Limits on Our

Capacity for Processing Information. Psychol. Rev 63 (1956), 81–97.

[78] Moody, D. L. A decomposition method for entity relationship models: A systems theo-

retic approach. In ICSTM, International Conference on Systems Thinking in Management

(2000), vol. 72 of CEUR Workshop Proceedings, CEUR-WS.org.

[79] Moody, D. L. The “physics” of notations: Toward a scientific basis for constructing

visual notations in software engineering. IEEE Transactions on Software Engineering 35

(2009), 756–779.

[80] Moody, D. L., and Flitman, A. A methodology for clustering entity relationship

models - a human information processing approach. In Conceptual Modeling - ER 1999,

18th International Conference on Conceptual Modeling (1999), vol. 1728 of Lecture Notes

in Computer Science, Springer, pp. 114–130.

[81] Musial, B., and Jacobs, T. Application of focus + context to UML. In APVis ’03: Pro-

ceedings of the Asia-Pacific symposium on Information visualisation (2003), Australian

Computer Society, Inc., pp. 75–80.

[82] Mykkänen, J., and Tuomainen, M. An evaluation and selection framework for inter-

operability standards. Information and Software Technology 50, 3 (2008), 176–197.

[83] Nieto, P., Costal, D., and Gómez, C. Enhancing the semantics of UML association

redefinition. Data & Knowledge Engineering 70, 2 (2011), 182–207.

[84] Object Management Group (OMG). Unified Modeling Language (UML) Superstruc-

ture Specification, version 2.2, February 2009.

[85] Object Management Group (OMG). Object Constraint Language Specification

(OCL), version 2.0, February 2010.

[86] Oemig, F., and Blobel, B. Semantic interoperability adheres to proper models and

code systems. Methods of Information in Medicine 45, 4 (2010), 343–353.

304



BIBLIOGRAPHY

[87] Olivé, A. Conceptual Modeling of Information Systems. Springer, 2007.

[88] Olivé, A., and Cabot, J. A research agenda for conceptual schema-centric develop-

ment. Conceptual Modelling in Information Systems Engineering (2007), 319–334.

[89] Olivé, A., and Raventós, R. Modeling events as entities in object-oriented conceptual

modeling languages. Data & Knowledge Engineering 58, 3 (2006), 243–262.

[90] Open Health Tools. Model-Driven Health Tools (MDHT) Project. https://www.

projects.openhealthtools.org/sf/projects/mdht.

[91] Ortiz, D. Transformación de modelos del estándar de salud HL7 a UML/OCL. Tech.

rep., Universitat Politècnica de Catalunya, http://hdl.handle.net/2099.1/12477,

2011.

[92] Papazoglou, M. P. Unraveling the semantics of conceptual schemas. Communications

of the ACM 38, 9 (1995), 80–94.

[93] Rahm, E., and Bernstein, P. A. A survey of approaches to automatic schema match-

ing. The VLDB Journal 10 (2001), 334–350.

[94] Ramirez, A. Esquema conceptual de Magento, un sistema de comerç electrònic. Tech.

rep., Universitat Politècnica de Catalunya, http://hdl.handle.net/2099.1/12294,

2011.

[95] Richters, M., and Gogolla, M. OCL: Syntax, semantics, and tools. Lecture Notes

in Computer Science 2263 (2002), 42–68.

[96] Romero, J. jsUML2 - A lightweight HTML5/javascript library for UML 2 diagramming.

Tech. rep., Universidad de Córdoba, http://code.google.com/p/jsuml2/, 2011.

[97] Salton, G. Automatic text processing. Addison-Wesley Series In Computer Science

(1988), 450.

[98] Salton, G., and McGill, M. Introduction to modern information retrieval. McGraw-

Hill, Inc. New York, NY, USA, 1986.

[99] Sandakith, L. Eclipse WTP Tutorials – Creating Bottom Up Web Service via Apache

Axis2. Eclipse Foundation http://wiki.eclipse.org/Creating_a_bottom-up_Axis2_

Web_service, June 2007.

[100] Schadow, G., Mead, C., and Walker, D. The HL7 Reference Information Model

under scrutiny. Studies in Health Technology and Informatics 124 (2006), 151–156.

[101] Selic, B. The pragmatics of model-driven development. IEEE software 20, 5 (2003),

19–25.

[102] Shapira, B., Hanani, U., Raveh, A., and Shoval, P. Information filtering: A

new two-phase model using stereotypic user profiling. Journal of Intelligent Information

Systems 8, 2 (1997), 155–165.

305

https://www.projects.openhealthtools.org/sf/projects/mdht
https://www.projects.openhealthtools.org/sf/projects/mdht
http://hdl.handle.net/2099.1/12477
http://hdl.handle.net/2099.1/12294
http://code.google.com/p/jsuml2/
http://wiki.eclipse.org/Creating_a_bottom-up_Axis2_Web_service
http://wiki.eclipse.org/Creating_a_bottom-up_Axis2_Web_service


BIBLIOGRAPHY

[103] Shapira, B., Shoval, P., and Hanani, U. Stereotypes in information filtering systems.

Information Processing & Management 33, 3 (1997), 273–287.

[104] Shoval, P., Danoch, R., and Balaban, M. Hierarchical ER Diagrams (HERD)-The

Method and Experimental Evaluation. In Advanced Conceptual Modeling Techniques - ER

Workshops (2002), vol. 2503 of Lecture Notes in Computer Science, Springer, pp. 264–274.

[105] Shoval, P., Danoch, R., and Balaban, M. Hierarchical entity-relationship diagrams:

the model, method of creation and experimental evaluation. Requirements Engineering

9, 4 (2004), 217–228.

[106] Sinclair, J., and Cardew-Hall, M. The folksonomy tag cloud: when is it useful?

Journal of Information Science 34, 1 (2008), 15–29.

[107] Sotoodeh, M., Pottinger, R., and Kruchten, P. Towards supporting users in

semantic exploration of large distributed schemas. Procedia Computer Science 5, 0 (2011),

570–577.

[108] Spahni, S., Lovis, C., Mercille, R., Verdel, H., Cotten, M., and Geissbühler,

A. Implementing a new ADT based on the HL7 version 3 RIM. International Journal of

Medical Informatics 76, 2-3 (2007), 190–194.

[109] Spronk, R. The HL7 MIF - Model Interchange Format. http://www.ringholm.de/

docs/03060_en_HL7_MIF.htm, February 2010.

[110] Stearns, M., Price, C., Spackman, K., and Wang, A. SNOMED clinical terms:

overview of the development process and project status. In Proceedings of the AMIA

Symposium (2001), American Medical Informatics Association, p. 662.

[111] Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M. EMF: Eclipse

Modeling Framework. Addison-Wesley, 2008.

[112] Streit, A., Pham, B., and Brown, R. Visualization support for managing large

business process specifications. Lecture Notes in Computer Science 3649 (2005), 205.

[113] Sujansky, W. Heterogeneous database integration in biomedicine. Journal of Biomedical

Informatics 34, 4 (2001), 285–298.

[114] Takeda, H., Veerkamp, P., and Yoshikawa, H. Modeling design process. AI mag-

azine 11, 4 (1990), 37.

[115] Tavana, M., Joglekar, P., and Redmond, M. An automated entity–relationship

clustering algorithm for conceptual database design. Information Systems 32, 5 (2007),

773–792.

[116] Teorey, T. J., Wei, G., Bolton, D. L., and Koenig, J. A. ER model clustering as

an aid for user communication and documentation in database design. Commununications

of the ACM 32, 8 (1989), 975–987.

[117] Thalheim, B. The science of conceptual modelling. In DEXA’11, vol. 6860 of LNCS.

Springer Berlin, 2011, pp. 12–26.

306

http://www.ringholm.de/docs/03060_en_HL7_MIF.htm
http://www.ringholm.de/docs/03060_en_HL7_MIF.htm


BIBLIOGRAPHY

[118] Tort, A., and Olivé, A. The osCommerce conceptual schema. Tech. rep., Universitat

Politècnica de Catalunya, http://hdl.handle.net/2099.1/5301, 2007.

[119] Tzitzikas, Y., and Hainaut, J. On the visualization of large-sized ontologies. In Pro-

ceedings of the working conference on Advanced Visual Interfaces (2006), ACM, pp. 99–

102.

[120] Tzitzikas, Y., and Hainaut, J.-L. How to tame a very large er diagram (using link

analysis and force-directed drawing algorithms). In Conceptual Modeling - ER 2005, 24th

International Conference on Conceptual Modeling (2005), vol. 3716 of Lecture Notes in

Computer Science, Springer, pp. 144–159.

[121] Tzitzikas, Y., Kotzinos, D., and Theoharis, Y. On Ranking RDF Schema Elements

(and its Application in Visualization). Journal of Universal Computer Science 13, 12

(2007), 1854–1880.

[122] Vaishnavi, V., and Kuechler, W. Design research in information systems. Order A

Journal On The Theory Of Ordered Sets And Its Applications 48, 2 (2007), 133–140.

[123] Van Rijsbergen, C. Information Retrieval. Cataloging & Classification Quarterly 22,

3 (1996).

[124] Varga, R. Matrix iterative analysis. Springer, 2000.

[125] Villegas, A. Computing the importance of schema elements taking into account

the whole schema. http://hdl.handle.net/2099.1/11296. Master’s thesis, Univeritat

Politècnica de Catalunya, 2009.

[126] Villegas, A., and Olivé, A. On computing the importance of entity types in large

conceptual schemas. In Advances in Conceptual Modeling - Challenging Perspectives, ER

Workshops (2009), vol. 5833 of Lecture Notes in Computer Science, Springer, pp. 22–32.

[127] Villegas, A., and Olivé, A. Extending the methods for computing the importance of

entity types in large conceptual schemas. Journal of Universal Computer Science 16, 20

(2010), 3138–3162.

[128] Villegas, A., and Olivé, A. A method for filtering large conceptual schemas. In

Conceptual Modeling – ER 2010 (2010), vol. 6412 of Lecture Notes in Computer Science,

Springer, pp. 247–260.

[129] Villegas, A., Olivé, A., and Sancho, M.-R. On computing the importance of

associations in large conceptual schemas. In Conceptual Modelling and Its Theoretical

Foundations (2012), vol. 7260 of Lecture Notes in Computer Science, Springer, pp. 216–

230.

[130] Villegas, A., Olivé, A., and Sancho, M.-R. Understanding constraint expressions

in large conceptual schemas by automatic filtering. In Conceptual Modeling – ER 2012

(2012), vol. 7532 of Lecture Notes in Computer Science, Springer, pp. 50–63.

307

http://hdl.handle.net/2099.1/5301
http://hdl.handle.net/2099.1/11296


BIBLIOGRAPHY

[131] Villegas, A., Olivé, A., and Sancho, M.-R. A web-based filtering engine for un-

derstanding event specifications in large conceptual schemas. In Advances in Conceptual

Modeling - Challenging Perspectives, ER Workshops (2012), vol. 7518 of Lecture Notes

in Computer Science, Springer, pp. 383–386.

[132] Villegas, A., Olivé, A., and Vilalta, J. Improving the usability of HL7 information

models by automatic filtering. 6th IEEE World Congress on Services 0 (2010), 16–23.

[133] Villegas, A., Sancho, M.-R., and Olivé, A. A tool for filtering large conceptual

schemas. In Advances in Conceptual Modeling - Challenging Perspectives, ER Workshops

(2011), vol. 6999 of Lecture Notes in Computer Science, Springer, pp. 353–356.

[134] Warmer, J., and Kleppe, A. The object constraint language: precise modeling with

UML. Addison-Wesley Longman Publishing, 1998.

[135] World Wide Web Consortium (W3C). Web Services Description Language (WSDL)

1.1, March 2001.

[136] World Wide Web Consortium (W3C). Web Services Activity, 2002.

[137] World Wide Web Consortium (W3C). Simple Object Access Protocol (SOAP) Ver-

sion 1.2 Part 1: Messaging Framework (Second Edition), April 2007.

[138] Xiao, R., Dillon, T., Chang, E., and Feng, L. Modeling and transformation of

object-oriented conceptual models into XML schema. In DEXA’01, vol. 2113 of LNCS.

Springer Berlin, 2001, pp. 795–804.

[139] Yang, X., Procopiuc, C. M., and Srivastava, D. Summarizing relational databases.

In VLDB 2009, 35th International Conference on Very Large Data Bases (2009), pp. 634–

645.

[140] Yu, C., and Jagadish, H. V. Schema summarization. In VLDB 2006, 32nd Interna-

tional Conference on Very Large Data Bases (2006), pp. 319–330.

[141] Yu, E. Towards modeling and reasoning support for early-phase requirements engineer-

ing. In Proceedings of the 3rd IEEE International Symposium on Requirements Engineer-

ing (1997), pp. 226–235.

308



Index

A

abstraction, 16, 34, 45

accessibility, 232

active information filtering system, 99

affinity, 36

association class, 61, 64

ATL, 270

attribute, 19, 22, 41, 65

authority, 41

B

back-end, 236

basic relevance metrics, 61

behavioral subschema, 21, 22, 68, 105

BEntityRank, 76, 83

C

cardinality, 44

cardinality constraint, 68

case-study research, 206

catalog of filtering requests, 152

CEntityRank, 77, 83

Choice, 271, 274

client view, 241

closeness, 36, 37, 93, 109, 281

clustering, 33, 35, 37, 38, 47, 54

CMET, 271, 275

cognitive filtering, 100

Common Message Element Type, see CMET

conceptual modeling, 16

conceptual schema, 16, 17, 148

connectivity, 44

Connectivity Counter Method, 72, 79

Context-Participant Non-Structural links, 66

contextualization function, 194

correlation, 87

Coulomb’s repulsion law, 240

coverage, 44

CPNS, see Context-Participant Non-Structural

links

D

D-MIM, see Domain Message Information Model

data mining, 31

data type, 19, 105, 106, 134, 151

decomposition, 38

derivation rule, 19, 105

design-research, 4, 206

DICOM, 264

direct generalization relationship, 124

distance, 36

Domain Message Information Model, 266

E

Eclipse Modeling Framework, 271

Ecore, 271

effectiveness, 224

efficiency, 228

EMF, see Eclipse Modeling Framework

entity model clustering, 34

Entity Relationship, 22, 36, 37, 39

entity type, 18, 19, 34, 41, 59, 66, 105, 106,

113, 148, 151

EntityRank, 75, 82

entropy, 44

EntryPoint, 271, 272

enumeration, 19

ER, see Entity-Relationship

evaluation, 224

event effect, 21

event type, 21, 22, 68, 105, 106, 113, 148, 151

F

filtered conceptual schema, 104, 150, 154, 162,

173, 180, 187, 195

309



INDEX

filtering, 33, 50, 52, 53, 58, 98, 146

API, 236

engine, 236, 241

methodology, 98

metric, 106, 108, 151

request, 149

request for a conceptual schema, 152, 179,

245

request for context behavior of entity types,

152, 186, 246

request for contextualized types, 152, 193,

247

request for entity and relationship types,

152, 153, 242

request for event types, 152, 172, 244

request for schema rules, 152, 161, 243

scenario, 153, 161, 172, 179, 186, 193, 211,

216, 220

service, 239

utility factor, 225

focus set, 58, 102, 150, 154, 161, 173, 179, 186,

193

focus+context, 48

G

generalization relationship, 19, 22, 41, 105, 106,

124, 151

graph structure, 59

H

Health Level Seven, 10

Health Level Seven International, see HL7

healthcare interoperability standard, 263

healthcare interoperability standards, 264

HERD, see Hierarchical Entity-Relationship Di-

agrams

Hierarchical Entity-Relationship Diagrams, 35

HITS algorithm, 41

HL7, see Health Level Seven

HL7 V3, 264, 265, 268–271, 283

Hooke’s attraction law, 240

hub, 41

human capacity, 30

I

importance, 70, 71, 102, 109, 150, 154, 162,

173, 180, 187, 194, 281

indirect generalization relationship, 125

information retrieval, 31, 50

information system, 16, 28

integrity constraint, 19, 105

interest, 94, 103, 109, 281

interoperability, 232

invocation, 235

K

knowledge subsetting, 103

L

large conceptual schema, 28, 58, 102, 150, 153,

161, 172, 179, 186, 193

Levelled Data Model, 37

link analysis, 31, 41

LOINC, 264

M

M2M, see model-to-model transformation

maintainability, 232

memory, 30

metamodel, 271

MIF, see model interchange format

model interchange format, 270

model-to-model transformation, 269

modeling in the large, 32

N

n-ary relationship type, 62

navigation, 65, 67

O

Object Constraint Language, 19, 24, 65

occurrence counting, 31, 41

OCL, see Object Constraint Language

oracle, 70

P

PageRank algorithm, 42

Participant-Participant Structural links, 67

passive information filtering system, 99

postcondition, 21

PPS, see Participant-Participant Structural links

310



INDEX

precision, 285

precondition, 21

principle of high appearance, 71

projection, 116

R

R-MIM, see Refined Message Information Model

ranking, see relevance

redefinition relationship, 117

Reference Information Model, 265

referentially-complete relationship type, 115

referentially-complete schema rule, 128

referentially-incomplete constraint, 129

referentially-incomplete deriation rule, 130

referentially-partial relationship type, 116

Refined Message Information Model, 266

reification, 61, 62, 64

rejection set, 102, 150, 154, 162, 173, 180, 187,

194

relationship

clustering, 35

type, 18, 19, 22, 35, 41, 61, 105, 106, 114,

148, 151

type importance, 92

relevance, 40, 42, 44, 48, 52, 54, 58, 59, 93, 205

relevance-computing service, 238

request combination, 202

response time, 228

reusability, 232

RIM, see Reference Information Model

S

schema

manager service, 237

rule, 19, 22, 25, 65, 66, 68, 105, 106, 128,

148, 151

summary, 44, 46

visualization service, 240

scoring, see relevance

semantic interoperability, 264

service consumer, 236

Service-Oriented Architecture, 233

similarity, 33

Simple Method, 73, 79

Simple Object Access Protocol, 234

size threshold, 102, 150, 154, 162, 173, 180,

187, 194

SNOMED, 264

SOA, see Service-Oriented Architecture

SOAP, see Simple Object Access Protocol

sociological filtering, 100

software engineering, 17, 47

structural subschema, 18, 105

subject area, 34, 38

subjective similarity, 70

summarization, 44, 54

T

topology, 59

Transitive Inheritance Method, 74, 81

U

ubiquity, 232

UML, see Unified Modeling Language

Unified Modeling Language, 23, 31, 61

uniqueness constraint, 62, 63

user profile, 51

V

valid instantiation, 103

variability, 89

visualization, 47, 48, 106, 136, 151

W

web architecture, 236

Web Services Description Language, 233

web-service, 232

Weighted Simple Method, 80

Wighted Simple Method, 73

WSDL, see Web Services Description Language

Z

zooming, 48

311



INDEX

312




	Cover
	Acknowledgements
	Abstract
	Contents
	Introduction
	Motivation and antecedents
	Research approach
	Research contributions
	General Filtering Method for Large Conceptual Schemas
	Catalog of Specific Filtering Requests for Large Conceptual Schemas
	Filtering Engine for Large Conceptual Schemas
	Relevance Metrics for Large Conceptual Schemas
	Adaptation of the Filtering Methodology to HL7 V3 schemas

	Overview of the thesis

	Conceptual Schemas of Information Systems
	Conceptual Modeling
	Conceptual Schema
	Structural Subschema
	Behavioral Subschema

	Modeling Languages
	The Entity-Relationship Model
	The Unified Modeling Language
	The Object Constraint Language

	Summary

	Conceptual Modeling in the Large
	Dealing with Large Conceptual Schemas
	Human Capacity for Processing Information
	Information Extraction

	Requests for Contributions
	Major Contributions
	Clustering Methods
	Relevance Methods
	Summarization Methods
	Visualization Methods

	The Filtering Approach
	Comparison between Approaches
	Summary

	Relevance Metrics for Large Conceptual Schemas
	Motivation
	Topological Measures of Conceptual Schemas
	Basic Measures
	Extended Characteristics of Conceptual Schemas
	Complex Measures

	Importance-Computing Methods
	Importance-computing Principles
	Basic Methods
	Extended Methods
	Comparison between Methods
	Experimental Evaluation
	Extending the Target of Importance-Computing Methods

	A User-centered View of Relevance
	Closeness-Computing Method
	Interest-Computing Method
	Summary

	Filtering Method for Large Conceptual Schemas
	The Filtering Methodology
	Initiative of Operation
	Location of Operation
	Filtering Approach
	Method of Acquiring Knowledge on Users

	General Structure of the Filtering Method
	Common Input of the Filtering Method
	Common Output of the Filtering Method

	Filtered Conceptual Schema
	Structural Subschema
	Behavioral Subschema

	The 7 Stages of the Filtering Method
	Stage 1: Metrics Processing
	Stage 2: Entity and Event Types Processing
	Stage 3: Relationship Types Processing
	Stage 4: Generalizations Processing
	Stage 5: Schema Rules Processing
	Stage 6: Data Types Processing
	Stage 7: Presentation

	Summary

	Catalog of Filtering Requests for Large Conceptual Schemas
	Filtering Activity
	The Need for Specific Filtering Requests

	General Structure of a Filtering Request
	Specific Input of a Filtering Request
	Specific Output of a Filtering Request
	The 7 Stages of a Filtering Request

	Catalog of Filtering Requests
	F1: Filtering Request for Entity and Relationship Types
	F2: Filtering Request for Schema Rules
	F3: Filtering Request for Event Types
	F4: Filtering Request for a Conceptual Schema
	F5: Filtering Request for Context Behavior of Entity Types
	F6: Filtering Request for Contextualized Types

	Combination of Filtering Requests
	Summary

	Application of the Filtering Methodology
	Case Studies Overview
	The osCommerce e-Commerce System
	The Magento e-Commerce System
	The EU-Rent Car Rental System
	The UML Metaschema Formal Specification

	The e-Commerce Case Study
	Filtering Scenario
	Lessons Learned

	The EU-Rent Case Study
	Filtering Scenario
	Lessons Learned

	The UML Metaschema Case Study
	Filtering Scenario
	Lessons Learned

	Experimental Evaluation
	Effectiveness
	Efficiency

	Summary

	Web-based Filtering Engine for Large Conceptual Schemas
	Motivation
	Service-Oriented Architecture
	Web Services Description Language (WSDL)
	Simple Object Access Protocol (SOAP)
	Web Service Invocation

	Web Architecture of the Filtering Engine
	Schema Manager Service
	Relevance-Computing Service
	Filtering Service
	Schema Visualization Service

	User Interaction
	Filtering Request F1 – Interaction Pattern
	Filtering Request F2 – Interaction Pattern
	Filtering Request F3 – Interaction Pattern
	Filtering Request F4 – Interaction Pattern
	Filtering Request F5 – Interaction Pattern
	Filtering Request F6 – Interaction Pattern

	Web-based Filtering Prototype Tool
	Filtering Request F1 – Prototype
	Filtering Request F2 – Prototype
	Filtering Request F3 – Prototype
	Filtering Request F4 – Prototype
	Filtering Request F5 – Prototype
	Filtering Request F6 – Prototype

	Summary

	Adaptation of the Filtering Methodology to HL7 V3 Schemas
	Healthcare Interoperability Standards
	Health Level 7 Version 3
	The HL7 V3 Development Framework

	Improving the HL7 V3 Standard
	Transformation from HL7 V3 to UML
	A Metamodel of HL7 V3
	Transformation Rules
	Transformation Results

	The Filtering Methodology for HL7 V3
	Structure of the Filtering Method for HL7 V3
	Relevance Metrics for HL7 V3
	Catalog of Filtering Requests for HL7 V3
	Example of Application of a Filtering Request to HL7 V3

	Experimentation
	Precision Analysis
	Time Analysis

	Summary

	Conclusions and Future work
	Summary of Results
	The problem of conceptual modeling in the large
	Analysis of relevance metrics
	The filtering approach
	The catalog of filtering requests
	Experimentation with real case studies
	Implementation of the proposal

	Future Work
	Extend the filtering catalog
	Extend the relevance metrics
	Validation with real users
	Combine the filtering methodology with existing approaches from the literature
	Automatic refactor of schema rules after contextualization

	Thesis Impact
	Publications
	Degree Final Projects


	Bibliography
	Index

