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Resumen

El problema de la contratación es un modelo simple para la toma de decisiones secuencial en
condiciones de incertidumbre, recientemente introducido en la literatura. Este tipo de problemas
se presenta en diversas campos, como las Ciencias de la Computación y la Economı́a. El problema
fue introducido explı́citamente por primera vez por Broder et al. [15] en 2008 como una extensión
natural del bien conocido problema de la secretaria (véase [38] y las referencias citadas por éste).
Poco después, Archibald y Martı́nez [5] en 2009 introdujeron un modelo discreto combinatorio
del problema de la contratación, donde los candidatos vistos hasta un momento dado podrı́an ser
clasificados de mejor a peor sin la necesidad de conocer sus puntuacı́ones de calidad en términos
absolutos. En esta tesis se presenta un extenso estudio para el problema de la contratación bajo la
formulación propuesta por Archibald y Martı́nez, se exploran las conexiones con otros procesos
de selección secuenciales, y se desarrolla un aplicación interesante de nuestros resultados en el
campo de los algoritmos sobre flujos de datos.

En el modelo combinatorio del problema de la contratación [5], la secuencia de candidatos se
puede modelar como una permutación aleatoria. Más precisamente, los candidatos están repre-
sentados por rangos relativos de acuerdo con la siguiente clasificación o esquema: el mejor tiene
rango n, mientras que el peor es de rango 1, entre los n candidatos. Una decisión debe ser tomada
inmediatamente ya sea para contratar o descartar el actual candidato sobre la base de su rango
relativo a todos los candidatos vistos hasta el momento.

En el problema de la contratación, estamos interesados en el diseño y análisis de las estrategias de
la contratación. Estudiamos en detalle dos estrategias, a saber, “la contratación por encima de la
mediana” y “contratar por encima delm-ésimo mejor”. En “Contratar por encima de la mediana”:
se contrata al primer candidato entrevistado y a partir de entonces cualquier candidato que viene
es contratado si su rango relativo es mayor que la mediana de los rangos de los candidatos previ-
amente contratados, en caso contrario se descarta a dicho candidato. “Contratar por encima del
m-ésimo mejor” contrata a los primeros m candidatos en la secuencia, y acontinuación cualquier
candidato que viene es contratado si su rango relativo es mayor que elm-ésima mejor entre todos
candidatos contratado, en caso contrario se descarta al candidato.

Para ambas estrategias, hemos sido capaces de obtener resultados exactos y la distribución de
probabilidad asintótica para varios cantidades de interés (lo que llamamos los parámetros de la
contratación). Nuestra parámetro fundamental es el número de candidatos contratados. Otros
parámetros incluyen el tiempo de espera, el ı́ndice de último candidato contratado y la distancia
entre las dos últimas contrataciones. Estos cuatro parámetros nos dan una idea clara del ritmo de
la contratación o la dinámica de el proceso de la contratación para la estrategia particular que se
estudia. Hay otro grupo de parámetros como la puntuación del último candidato contratado, la
puntuación del mejor candidato descartado y el número de sustituciones (al acoplar un mecan-
ismo de reemplazo a la estrategia estudiada) nos dan una indicador de la calidad del grupo con-
tratado. Para la estrategia de “contratar por encima de la mediana”, se estudian más cantidades
como el número de candidatos contratados condicionado al rango del primer candidato y la prob-
abilidad de que el candidato con puntuación q sea contratado.

También estudiamos la regla de selección del “12 -percentil” introducida por Krieger et al. [59] en
2007, y la distribucin de comensales en el proceso del restaurante chino (CRP) con el plan (12 , 0)



vi

introducido por Pitman [77]. Ambos procesos estocásticos son muy similares a “contratar por
encima de la mediana”. Las conexiones entre “la contratación por encima del m-ésimo mejor” y
la noción de m-records (máximos de izquierda a derecha.) [6], y el plan (0,m) de CRP se inves-
tiguan también.

También presentamos los resultados preliminares para el número de candidatos contratados por la
generalización de “contratar por encima la mediana” llamada “contratar por encima del α-cuantil
(del los candidatos contratados)”, que se introduce en [5]. Nuestros resultados sobre la distribu-
ticin de probabilidad se aplican al caso α = 1

d , donde d ∈ N. Para el caso general, 0 < α < 1,
hemos sido capaces de dar el orden de crecimiento de la nmero medio de candidatos contratados,
el rango medio del último candidato contratado, y el número medio de sustituciones.

Los resultados explı́citos para el número de candidatos contratados nos han permitido diseñar un
estimador, llamado RECORDINALITY, para el número de elementos distintos que hay en una gran
secuencia de datos que pueden contener repeticiones; este problema se conoce en la literatura
como “el problema de estimación de la cardinalidad” (ver [33]). RECORDINALITY tiene varias
propiedades interesantes, por ejemplo es el primer algoritmo de estimación de la cardinalidad
—por lo que sabemos—que, en el modelo de orden aleatorio, no necesita ni muestreo (sampling)
ni usar funciones de hashing. El algoritmo propuesto también proporciona una muestra aleato-
ria de elementos distintos de la secuencia. Se demuestra que otro parámetro de contratación, la
puntuación del mejor candidato descartado, también se puede utilizar para diseñar un estimador
de cardinalidad, al que llamamos DISCARDINALITY. En la práctica, DISCARDINALITY no es tan
interesante como RECORDINALITY, pero este nuevo parámetro puede resultar útil para abordar
otros problemas tales como la “estimación del ı́ndice de la similitud” [14] entre dos documentos o
conjuntos de datos.

La mayorı́a de los resultados presentados aquı́ han sido publicados o presentados para su pub-
licación. Nuestros resultados sobre la estrategia de “contratar por encima de la mediana” en el
capı́tulo 4 aparecen en [51, 52]. El capı́tulo 6 se refiere a los resultados de [48, 50] para la estrategia
de “contratar por encima del m-ésimo mejor”. El capı́tulo 7 contiene nuestras aplicaciones a los
algoritmos sobre flujos de datos, publicados en [47]. Nuestros resultados en “contratar por encima
de la α-cuantil” en el capı́tulo 5 son aún un trabajo en curso: el informe técnico [49] contiene nue-
stros resultados hasta el momento.

La tesis deja algunas preguntas abiertas, ası́ como muchas ideas prometedoras para el trabajo
futuro. Por ejemplo, una pregunta interesante es cómo comparar dos estrategias diferentes, que
requiere de una definición adecuada de la noción de “optimalidad”; tal definición parece muy
compleja en el contexto de la problema de la contratación. Además de los resultados actuales de
“contratar por encima de la α-cuantil”, estamos tratando de ampliar nuestro resultados al caso
de cualquier valor de α racional. Esta clase de estrategias junto con “la contratación por encima
delm-ésimo mejor” puede ser útil para desarrollar algoritmos de muestreo que generan muestras
aleatorias de elementos distintos, muestras cuyo tamaño depende del número (desconocido) de
elementos distintos en el flujo de datos. También queremos completar el análisis del parámetro
número de sustituciones, del que hasta ahora sólo hemos obtenido su valor esperado para varias
estrategias de la contratación. Estamos también interesados en la investigación de otras variantes
del problema como podrı́an ser las “estrategias probabilistas de la contratación”, es decir, cuando
el criterio de la contratación no es determinista.
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Resum

El problema de la contractació és un model simple per a la presa de decisions seqüencial en condi-
cions d’incertesa, recentment introduı̈t a la literatura. Aquest tipus de problemes es presenta en
diverses camps, com les Ciències de la Computació i l’Economia. El problema va ser introduı̈t
explı́citament per primera vegada per Broder et al. [15] al 2008, com una extensió natural del bén
conegut problema de la secretària (vegeu [38] i les referències citades per aquest). Poc després,
Archibald i Martı́nez [5] el 2009 van introduir un model discret combinatori del problema de la
contractació, on els candidats vistos fins un moment donat podrien ser classificats de millor a
pitjor sense la necessitat de conèixer les seves puntuacions de qualitat en termes absoluts. En
aquesta tesi es presenta un extens estudi per al problema de la contractació sota la formulació
proposada per Archibald i Martı́nez, s’exploren les connexions amb altres processos de selecci
on seqüencials, i es desenvolupa una aplicació interessant dels nostres resultats en el camp dels
algorismes sobre fluxos de dades.

En el model combinatori del problema de la contractació [5], la seqüència de candidats es pot
modelar com una permutació aleatòria. Més precisament, els candidats estan representats per
rangs relatius d’acord amb la següent classificació o esquema: el millor té rang n, mentre que el
pitjor és de rang 1 entre els primers n candidats. Una decisió ha de ser presa immediatament
ja sigui per contractar o descartar l’actual candidat sobre la base del seu rang relatiu a tots els
candidats vistos fins ara.

Al problema de la contractació, estem interessats en el disseny i l’anàlisi de les estratègies de
contractació. Estudiem en detall dues estratègies, a saber, la “contractar per sobre de la mitjana”
i “contractar per sobre del m-èsim millor”. En la estratègia“contractar per sobre de la mitjana” es
contracta el primer candidat entrevistat i a partir de llavors qualsevol candidat que ve és contractat
si el seu rang relatiu és major que la mitjana dels rangs dels candidats prèviament contractats, en
cas contrari es descarta a aquest candidat. “Contractar per sobre del m-èsim millor” contracta els
primers m candidats de la seqüència, i a continuació qualsevol candidat que ve és contractat si
el seu rang relatiu és més gran que el m-èsim millor entre tots els candidats contractats, en cas
contrari es descarta el candidat.

Per ambdues estratègies, hem estat capaços d’obtenir resultats exactes i la distribució de prob-
abilitat asimptòtica per diverses quantitats d’interès (el que anomenem els paràmetres de la con-
tractació). El nostre paràmetre fonamental és el nombre de candidats contractats. Altres paràmetres
inclouen el temps d’espera, l’ı́ndex de lúltim candidat contractat i la distància entre les dues
últimes contractacions. Aquests quatre paràmetres ens donen una idea clara del ritme de la con-
tractació o dinàmica del procés de la contractació per l’estratégia particular que s’estudia. Hi ha
un altre grup de paràmetres com ara el rang de l’últim candidat contractat, el rang del millor
candidat descartat i el nombre de substitucions (aquest paràmetre s’estudia al acoblar un mecan-
isme de reemplaçament amb l’estratègia del nostre interès) ens donen indicadors de la qualitat
del grup contractat. Per l’estratègia “contractar per sobre de la mitjana”, estudiem altres quanti-
tats addicionals: el nombre de candidats contractats condicionat al rang del primer candidat, i la
probabilitat que el candidat amb rang q sigui contractat.

També estudiem la regla de selecció del “12 -percentil” introduı̈da per Krieger et al. [59] al 2007,
i la distribuci de comensals en el procés del restaurant xinès (CRP), introduı̈t per Pitman [77], amb
el pla (12 , 0). Tots dos processos estocàstics són molt similars a“contractar per sobre de la mitjana”.
Les connexions entre “contractar per sobre del m-èsim millor” i la noció de m-records (màxims
d’esquerra a dreta.) [6], i el pla (0,m) de CRP s’investiguen també.

També presentem els resultats preliminars per al nombre de candidats contractats per la gen-
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eralització de “contractar per sobre la mitjana” anomenada “contractar per sobre de l’α-quantil
(dels candidats contractats)”, que s’introdueix en [5]. Els nostres resultats sobre la distributicin de
probabilitat s’apliquen al cas α = 1

d , on d ∈ N. Per al cas general, 0 < α < 1, hem estat capaços de
donar l’ordre de creixement del nombre mitjà de candidats contractats, del rang mitjà de l’últim
candidat contractat, i del nombre mitjà de substitucions.

Els resultats explı́cits per al nombre de candidats contractats ens han permés dissenyar un es-
timador, anomenat RECORDINALITY, per al nombre d’elements diferents que hi ha en una gran
seqüència de dades que pot contenir repeticions; aquest problema es coneix a la literatura com
“el problema de l’estimació de la cardinalitat” (veure [33]). RECORDINALITY té diverses propi-
etats interessants, per exemple és el primer algorisme d’estimació de la cardinalitat—pel que
sabem—que, en el model d’ordre aleatori, no necessita ni mostreig (sampling) ni utilitzar funcions
de hashing. L’algorisme proposat també proporciona una mostra aleatòria d’m elements diferents
de la seqüència. Es demostra que un altre paràmetre de contractació, el rang del millor candi-
dat descartat, també es pot utilitzar per dissenyar un estimador de cardinalitat, que anomenem
DISCARDINALITY. A la pràctica, DISCARDINALITY no és tan interessant com RECORDINALITY,
però aquest nou parémetre pot ser útil per abordar altres problemes com ara l’estimació de l’ı́ndex
de similitud [14] entre dos documents o conjunts de dades.

La majoria dels resultats presentats aquı́ han estat publicats o presentats per a la seva publi-
cació. Els nostres resultats sobre l’estratègia de “contractar per sobre de la mitjana” del capı́tol
4 apareixen a [51, 52]. El capı́tol 6 conté els resultats publicats a [48, 50] per a l’estratègia de
“contractar per sobre del m-èsim millor”. El capı́tol 7 està dedicat a les nostres aplicacions als
algorismes sobre fluxos de dades; bona part dels resultats van ser publicats en [47]. Els nostres
resultats per a l’estratègia “contractar per sobre de l’α-quantil” del capı́tol 5 són encara un treball
en curs presentat en l’informe tècnic [49].

La tesi deixa algunes preguntes obertes, aixı́ com moltes idees prometedores per al treball fu-
tur. Per exemple, una pregunta interessant és com comparar dues estratègies diferents, la qual
cosa portaria a una noció adequada d’“optimalitat”; tal definició sembla molt complexa en el
context del problema de la contractació. A més dels resultats actuals de “contractar per so-
bre de l’α-quantil”, estem tractant d’ampliar els nostres resultats al cas de qualsevol valor d’α
racional. Aquesta classe d’estratègies juntament amb “contractar per sobre del m-èsim millor”
pot ser útil per desenvolupar algorismes de mostreig que generin mostres aleatòries de talla vari-
able d’elements diferents, és a dir, mostres la talla de les quals depén del nombre (desconegut)
d’elements diferents en el flux de dades. També volem completar l’anàlisi del paràmetre nombre
de substitucions, del qual fins ara només hem obtingut el valor esperat per diverses estratègies
de contractació. Estem també interessats en la investigació d’altres variants del problema, com
podrien ser les estratègies probabilistes de contractació, és a dir, quan el criteri de contractació no
és determinista.
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Abstract

The hiring problem is a simple model for on-line decision-making under uncertainty, recently
introduced in the literature. Despite some related work dates back to 2000, the name and the
first extensive studies were written in 2007 and 2008. This kind of problems arises in various
fields, like Computer Science and Economics. The problem has been introduced explicitly first by
Broder et al. [15] in 2008 as a natural extension to the well-known secretary problem (see [38] and
references therein). Soon afterwards, Archibald and Martı́nez [5] in 2009 introduced a discrete
(combinatorial) model of the hiring problem, where the candidates seen so far could be ranked
from best to worst without the need to know their absolute quality scores. This thesis introduces
an extensive study for the hiring problem under the formulation given by Archibald and Martı́nez,
explores the connections with other on-line selection processes in the literature, and develops one
interesting application of our results to the field of data streaming algorithms.

In the combinatorial model of the hiring problem [5], there is a potentially infinite sequence of can-
didates that arrive sequentially. It is assumed that we can rank all candidates from best to worst
without ties and all orders are equally likely. Then the sequence of candidates is modeled as a
random permutation. More precisely, candidates are represented by relative ranks according to the
following ranking scheme: the best has rank n while the worst has rank 1, among n candidates.
A decision must be taken immediately either to hire or discard the current candidate based on
his relative rank among all candidates previously seen. In this context, the goals for a reasonable
hiring strategy are to hire candidates at some reasonable rate and to improve the average quality
of the hired staff.

In the hiring problem we are interested in the design and analysis of hiring strategies. We study
in detail two hiring strategies, namely “hiring above the median” and “hiring above the m-th
best”. Hiring above the median was introduced originally by Broder et al. [15] and processes the
sequence of candidates as follows: hire the first interviewed candidate then any coming candidate
is hired if and only if his relative rank is better than the median rank of the already hired staff,
and others are discarded. Hiring above the m-th best was introduced by Archibald and Martı́nez
[5] and hires the first m candidates in the sequence whatever their relative ranks, then any com-
ing candidate is hired if and only if his relative rank is larger than the m-th best among all hired
candidates, and others are discarded.

For both strategies, we were able to obtain exact and asymptotic distributional results for various
quantities of interest (which we call hiring parameters). Our fundamental parameter is the number
of hired candidates, together with other parameters like waiting time, index of last hired candidate and
distance between the last two hirings give us a clear picture of the hiring rate or the dynamics of the
hiring process for the particular strategy under study. There is another group of parameters like
score of last hired candidate, score of best discarded candidate and number of replacements that give us an
indicator of the quality of the hired staff. For the strategy “hiring above the median”, we study
more quantities like number of hired candidates conditioned on the first one and probability that the can-
didate with score q is getting hired.

We study the selection rule “12 -percentile rule” introduced by Krieger et al. [59], in 2007, and
the seating plan (12 , 1) of the Chinese restaurant process (CRP) introduced by Pitman [77], which are
very similar to “hiring above the median”. The connections between “hiring above them-th best”
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and the notion of m-records [6], and the seating plan (0,m) of the CRP are also investigated here.
Moreover, we obtain the explicit and asymptotic distributions of the parameter number of retained
items of the “12 -percentile rule”, that completes some results already given in [59]. For both men-
tioned seating plans, as well as the 1

2 -percentile rule, we analyze a new parameter which is the
waiting time where we characterize its probability distribution and expectation.

We report preliminary results for the number of hired candidates for a generalization of “hiring above
the median”; called “hiring above the α-quantile (of the hired staff)”, which is introduced in [5].
Our distributional and asymptotic results apply for α = 1

d , d ∈ N. For the general case, 0 < α < 1,
we were able to give the order of growth of the expectation for the number of hired candidates, the
gap of last hired candidate, and the number of replacements.

We also introduce one application of the results obtained for the strategy “hiring above the m-th
best” to the field of data streaming. The explicit results for the number of hired candidates enable
us to design an estimator, called RECORDINALITY, for the number of distinct elements in a large
sequence of data which may contain repetitions; this problem is known in the literature as “cardi-
nality estimation problem” (see [33]). RECORDINALITY has several interesting properties, namely,
it is the first cardinality estimation algorithm—as far as we know— which, in the random-order-
model, would not need neither sampling nor hashing. It also provides a random sample of dis-
tinct elements in the stream. We show that another hiring parameter, the score of best discarded
candidate, can also be used to design a new cardinality estimator, which we call DISCARDINALITY.
DISCARDINALITY is not as interesting as RECORDINALITY from a practical point of view, but the
idea may help to investigate other problems such as the “similarity index estimation” [14] between
two documents or data sets.

Most of the results presented here have been published or submitted for publication. Our results
on the strategy “hiring above the median” in Chapter 4 appear in [51, 52]. Chapter 6 covers the
results of [48, 50] for the strategy “hiring above the m-th best”. Chapter 7 contains the results on
applications to data streaming algorithms published in [47]. Our results on “hiring above the α-
quantile” in Chapter 5 are still on-going work; the technical report [49] contains our findings so far.

The thesis leaves some open questions, as well as many promising ideas for future work. For
instance, one interesting question is how to compare two different strategies; that requires a suit-
able definition of the notion of “optimality”, which is still missing in the context of the hiring
problem. Besides the current results on “hiring above the α-quantile”, we are trying to extend our
results to the case of any rational α. This class of strategies together with “hiring above the m-th
best” may be helpful to develop sampling algorithms that generate random samples of distinct
elements, whose size (of the sample) depends on the actual, but unknown, number of distinct
elements in the data stream. We also wish to complete the analysis of the novel hiring parameter
number of replacements; so far we have only obtained its expectation for several hiring strategies.
Least but not last, we are interested in investigating other variants of the problem like “probabilis-
tic hiring strategies”, that is when the hiring criteria is not deterministic, unlike all the studied
strategies here.
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On-line decision-making under uncertainty is a rich area of research. It arises in diverse
fields such as Computer Science and Economics. In this area, we consider processes where the
input is a sequence of instances and a decision must be taken for each instance depending on the
subsequence examined so far, while nothing is known about the future. The goal is often to design
an algorithm or a strategy that meets the requirements of the decision maker. There are many real
world and theoretical situations where decision-making under uncertainty arises. One simple
such situation is selecting the maximum of a sequence where the instances of this sequence are
serviced sequentially and a decision must be taken to select or discard the current instance. This
model was first introduced in the early sixties as the secretary problem [38].
The secretary problem involves many of the main features of decision-making under uncertainty.
In the secretary problem, the employer is looking for only one candidate to fill one secretarial
position under the following conditions: the number n of applicants is known, the applicants are
interviewed sequentially in random order, each order being equally likely, it is assumed that one
can rank all the applicants from best to worst without ties, the decision to accept or to reject an
applicant must be based only on the relative ranks of those applicants interviewed so far, decisions
are taken on-line and are irrevocable, an applicant once rejected cannot later be recalled, and
the employer will be satisfied with nothing but the very best. Thus the goal is to maximize the
probability of choosing the best candidate in the sequence.

In the problem addressed here, the hiring problem, we are looking for selecting many good
candidates from the input sequence instead of only one. The hiring problem has the same spirit
as the secretary problem but with some major differences. One difference is that the number of
candidates is unknown in the hiring problem, whereas this number is known in advance in the
secretary problem. Another important difference is the measure of quality of the selection rule or
strategy; this measure is clear in the secretary problem where the optimal strategy should maxi-
mize the probability of hiring the best applicant, as mentioned before. On the other hand, there are
two main goals in the hiring problem: to hire candidates at some reasonable rate and to improve
the mean quality of the hired staff. Due to the trade-off between these two goals (i.e., the more
candidates are hired, the worse is the staff’s average quality and vice-versa), the notion of opti-
mality is not clear. But various quantities of interest (hiring parameters) can help to characterize the
behaviour of hiring strategies. These quantities measure the hiring rate and the average quality
of the hired staff. It is important to emphasize that the hiring problem cannot be regarded as an
extension of the secretary problem; but rather it represents an independent and different class of
sequential multiple selection, despite that it is inspired by the secretary problem and shares some
common features.

History of the hiring problem. To the best of our knowledge, Preater [82] introduced in 2000,
for the first time, a selection rule in the context of sequential multiple selection, namely “better-
than-average rule” and considered the setup of the hiring problem, despite he did not formalize it
nor give it a name. Seven years later, Krieger, Pollak and Samuel-Cahn [59] introduced a general
class of selection rules called “p-percentile rules”, 0 < p ≤ 1, that consider only relative ranks
between candidates, thus those rules work in the random permutation model of the sequential mul-
tiple selection problem. Krieger et al. studied also other incarnations of the problem (see [60, 61])
where they considered different distributions of the absolute scores of candidates, introducing the
“β-better-than-average rule”, β > 0, a generalization of the rule given by Preater.

Soon after that, in 2008, Broder, Kirsch, Kumar, Mitzenmacher, Upfal and Vassilvitskii [15]
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introduced explicitly the notion of the hiring problem, motivated by the secretary problem, and
independently of the work of Krieger et al. and Preater. Broder et al. considered the absolute
scores of candidates as uniformly distributed independent random variables (r.v.’s) in (0, 1). They
introduced a reasonable class of hiring strategies; namely “Lake Wobegon strategies” which in-
clude “hiring above the mean” and “hiring above the median” strategies. Hiring above the mean
behaves exactly like the better-than-average rule given by Preater, where it hires the first candidate
in the sequence, then any next candidate is hired if his quality measure (absolute score) is better
than the average score of all hired candidates so far. Hiring above the median cares only about the
rank of the current candidate among all those seen so far, regardless of his absolute score; it hires
candidates who are better than the current median of the hired staff.

Archibald and Martı́nez, in 2009, introduced in [5] the random permutation model of the hiring
problem motivated by the work of Broder et al. [15], while the former work of Krieger et al. [59]
went also unnoticed in [5]. They introduced a framework to analyze rank-based hiring strategies
which are working in the random permutation model. They studied two hiring strategies: “hiring
above the m-th best candidate” and “hiring above the α-quantile of the hired staff”, 0 < α < 1.
The strategy hiring above the m-th best is a selection rule closely related to records in permu-
tations, where it hires the best m − 1 candidates together with the m-records (see [6]) from the
input sequence. The strategy hiring above the α-quantile is a generalization of “hiring above the
median” (when α = 1

2 ) introduced by Broder et al.

Goals of the thesis. This thesis builds upon the combinatorial formulation of the hiring prob-
lem given by Archibald and Martı́nez [5], in order to fully analyze rank-based hiring strategies. A
hiring strategy is simply an algorithm that: i) receives as input a sequence of values which repre-
sent the quality measures of candidates, ii) defines a selection criterion that determines whether
an incoming candidate gets hired or discarded; the decisions can only take into account the can-
didates seen so far. A special class of such strategies is the so-called “pragmatic hiring strategies,”
in which the selection criteria is defined by what we call a threshold candidate: candidates who are
above this threshold get hired, and others are discarded. The threshold candidate may change
along the hiring process, always to increasingly better candidates.

Concerning the modeling of the sequence of candidates, then we find that there are two general
models. In the first model, we have the sequence of the absolute quality measures or simply absolute
scores of candidates; that requires knowing the distribution of those scores, e.g., Uniform, Normal,
Exponential, etc. The second model considers the relative ranks of candidates without the need to
have their actual absolute scores. In the later model, assuming that we can rank candidates from
best to worst without ties leads to the random permutation model. Then, among n candidates,
the best candidate is given rank 1 while the worst is given rank n, as in the secretary problems
and the model of Krieger et al. [59].

Archibald and Martı́nez considered the dual (and equivalent) ranking scheme where the best
candidate has rank n and the worst has rank 1, after n interviews. More formally, the input
of candidates is represented by a sequence S of their initial ranks, S = s1, s2, . . . , si, . . . , with
1 ≤ si ≤ i. The rank si of the i-th coming candidate is uniformly distributed on {1, 2, . . . , i} and
independent of sj, j 6= i. Then the initial prefix of length n of S represents a random permuta-

tion σ(n) =
(
σ

(n)
1 , σ

(n)
2 , . . . , σ

(n)
n

)
of {1, 2, . . . , n}. Notice that the initial rank of any candidate may

remain the same or increase later depending on the ranks of the subsequent candidates. So we
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say that, after processing n candidates, σ(n) represents the “final scores” (or just “scores”) of can-
didates. More precisely, σ(n) can be obtained recursively as follows: given a permutation σ(n−1)

(of size n − 1) and a rank j, 1 ≤ j ≤ n, σ(n) = σ(n−1) ◦ j denotes the resulting permutation after
relabelling j, j + 1, . . . , n − 1 in σ(n−1) as j + 1, j + 2, . . . , n, and appending j to the end. For ex-
ample, let S = 1, 2, 1, 4, 1, 5, 4, 6 be the input sequence of ranks of the candidates. Then σ(1) = 1,
σ(2) = σ(1) ◦ 2 = 12, σ(3) = σ(2) ◦ 1 = 231 and so on, until σ(8) = 35281746.

We study here in detail two rank-based hiring strategies: “hiring above the median” and “hiring
above them-th best”. Hiring above the median processes the sequence of candidates as follows: i)
hire the first coming candidate, ii) hire any candidate after that if and only if his rank is better than
the current median in the set of scores hired candidates, and discard otherwise. Hired candidates
are represented by the hiring set, H(σ) which is the set of their indices (arrival times), and Q(σ)

which is the associated set of their scores. Since we are talking about the median of a set, then
we have to be precise about how we define the median. In case of odd size of the hiring set, it is
clear that there is one median (that is the median score in Q(σ)) and it is the threshold candidate
for this strategy. But if the hiring set has an even size, we can say that there are two medians and
“hiring above the median” takes the lower one as its threshold candidate. Formally speaking, the
median of a set of k (distinct) elements x1 < x2 < · · · < xk is the `-th largest element, i.e., xk+1−`,
with ` = dk+12 e, where dxe = min {j ∈ Z : j ≥ x} denotes the ceiling function. As an example, if
we apply this strategy to the sequence σ(8) = 3 5 2 8 1 7 4 6, thenH(σ(8)) = {1, 2, 4, 6, 8} and Q(σ(8))

contains the underlined scores in σ(8). “Hiring above the α-quantile”, which is a generalization of
“hiring above the median” (corresponds to α = 1

2 ), is also considered in the thesis.

Hiring above the m-th best processes the sequence of candidates as follows: i) hire the first
coming m candidates, ii) hire any next candidate if and only if his rank is larger than the m-th
largest hired one, and discard otherwise. For example, let m = 3, then, processing the sequence
σ(8) = 4 6 1 7 3 5 2 8 using this strategy results in H(σ(8)) = {1, 2, 3, 4, 6, 8} and Q(σ(8)) contains
the underlined scores in σ(8). Thus the threshold candidate for this strategy is what is known in
the literature as a Type2 m-record [6] (which has been studied several times under the name m-
record, see for example [13, 83]), and Q(σ) consists of the m − 1 largest scores together with the
set ofm-records in the input sequence.

Each hiring strategy has its unique hiring criteria which determines its potential of hiring can-
didates. For hiring above the median, as the size of the hiring set grows, the choices of hiring the
next candidate increase. This is the case also for the class of hiring above the α-quantile strategies
and the p-percentile rules in [59]. But for hiring above the m-th best, there are always m choices
for hiring a new candidate at any step, after the first m interviews, regardless of the number of
hired candidates so far. However, in all these strategies, the hiring threshold rises all the time and
never goes down, that is, the score of the threshold candidate always increases during the hiring
process. In fact, this property holds also for other hiring strategies like hiring above the mean and
the β-better-than-average rules in general (which are non rank-based strategies). The strategies
that have such property were called “locally subdiagonal” (LsD) by Krieger et al. [59] and, later,
“pragmatic” by Archibald and Martı́nez [5].

When analyzing some hiring strategy we care about the behaviour of the strategy from the point
of view of the hiring rate and the quality of the hired staff. So that we introduce several hiring
parameters that describe the hiring process. The most important and fundamental parameter is
the number of hired candidates or size of the hiring set, denoted by the r.v. hn, which characterizes
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the hiring rate of the applied strategy. The hiring rate can be studied also from the dual point of
view; that is, the number of interviewed candidates in order to hire exactly N candidates, which
we call the waiting time, WN. This group of dynamics indicators contains also the index of last hired
candidate or time of last hiring, Ln, and the distance between last the two hirings, ∆n, which denotes
the number of interviews between the last two hirings.

Another group of hiring parameters relates to the quality of the hired staff, thus we call them
quality indicators. The score of last hired candidate, Rn, is the score of the last hired candidate after
processing n candidates. This parameter is directly related to the gap of last hired candidate param-
eter, gn = 1 − Rn

n , a normalization of Rn which is convenient for the case when we assume the
random permutation model. The score of best discarded candidate, Mn, denotes the maximum score
that is not contained in Q(σ(n)) after processing the whole sequence of candidates. This quantity
describes how selective the hiring strategy is (thus yielding a quality measure for the hired staff).
Another parameter is the number of replacements, fn, a quantity naturally arising when we consider
one interesting variant of the hiring problem, namely hiring with replacements, that is, when can-
didates can be hired directly using the applied strategy, hired to replace some previously hired
candidate, or discarded. fn combines the dynamical and quality aspects of the hiring process,
because a good hiring strategy should use fewer replacements to gather exactly the hn best can-
didates.

As mentioned in our short review of the literature related to the hiring problem, Krieger et al.
introduced a similar work to ours here. Moreover, there is an another process which has a simi-
lar setup as the hiring problem: the Chinese restaurant process (CRP) introduced by Pitman [77].
In the CRP, a class of probabilistic rules that work in the so-called two-parameter model, called
“seating plans”, are analyzed. We find that the seating plan (0,m) is equivalent to the strategy
“hiring above the m-th best”, while the seating plan (12 , 1) is very close to the strategy “hiring
above the median” although not equivalent. We have used our methods to obtain new results for
both seating plans (0,m) and (12 , 1).

We have also been interested in applications of the hiring problem. As a first result, the algo-
rithmic ideas and the results obtained for “hiring above the m-th best” have been very useful in
the design and analysis of algorithms to estimate the cardinality of a stream and other common
tasks in data streaming analysis.

Overview of our approach. As mentioned before, Archibald and Martı́nez [5] introduced a combi-
natorial framework to analyze rank-based hiring strategies. Their choice was reasonable because
sequences are the fundamental structures in on-line decision-making. Then many techniques from
Analytic Combinatorics [37] are useful here. It turned out that treating the quantities of interest
directly using the framework in [5] is a bit complicated for either hiring above the m-th best or
hiring above the median strategies. For hiring above the m-th best, simple reasonings from the
definition of the studied parameters are enough in some cases to carry out the distributional anal-
ysis, while for other parameters like score of best discarded candidate we need to define auxiliary
quantities to obtain the results.

For hiring above the median, the key solution is to keep track of the median of Q(σ) during the
hiring process. Then we make use of a simple but quite useful observation in [5], that, when
applying hiring above the median (and any pragmatic hiring strategy), at each time of the hiring
process all candidates seen so far with a score larger than the current threshold candidate must be
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part of the hiring set (this has also been proven by Krieger et al. in [59]). Thus there is a simple
relation between the score of the threshold candidate and the size of the hiring set. And this yields
the basis of the recursive approach used, where we thus have to distinguish cases according to the
parity of the size of hiring set and to take into account the score of the threshold candidate.

We setup an automaton that describes the underlying Markov chain of the transition probabil-
ities during the hiring process and switching from odd to even number of hired candidates and
vice-versa. Then we can write down easily the recurrences for two fundamental quantities: a[1]

n,`

and a[2]
n,`, which give the probabilities that, after interviewing n candidates, the threshold candi-

date has the `-th largest score amongst all candidates seen so far and an odd or even number of
candidates has been hired, respectively. Then the results for the number of hired candidates follow
directly, and the remaining parameters are obtained by studying extensions of this approach. It is
natural that those recurrences can be translated into systems of linear partial differential equations
(PDEs) for the corresponding generating functions, but it seems very complicated to get a closed
form solution. To avoid this, we use a trick (introduced originally in [54]) which is finding suitable
normalization factors of the studied recursive sequences, such that the system of differential equa-
tions reduces to a first order linear PDE. Finally adapting the initial conditions carefully gives us
the desired results. We still make use of this approach in studying the general case, hiring above
the α-quantile. In case of α = 1

d , d ∈ N, the results follow easily, but for α = p
q with gcd(p, q) = 1,

it becomes more complicated. We have used the systematic approach given in [5] to obtain some
useful information for general α, 0 < α < 1, in particular the order of growth of the expectation of
many hiring parameters.

We have explicit results for the probability distributions of many parameters for the studied hiring
strategies. Basic techniques like Stirling’s formula, Euler-Maclaurin formula and Curtiss’ theorem
[22] for the weak convergence of random variables, are enough to study the asymptotic regime for
many parameters when n→∞. In the case of hiring above the m-th best, we have the additional
parameter, m which we call “rigidity” of hiring. Thus, the asymptotic behaviour of the studied
parameters depends on the relation between n and m. We study different regimes: m is fixed
(i.e., m = Θ(1)) and n → ∞, and other cases in which we might stop the hiring process after
some number of interviews n, where n depends on m. For example, m = dlogne, m = d

√
n e, or

m = dαnewith fixed 0 < α < 1. Herem→∞ (and thus also n→∞).

Contributions of the thesis

This dissertation is devoted to the analysis and applications of the hiring problem. We give a
detailed study for “hiring above the median strategy” introduced originally in [15] and “hiring
above them-th best candidate strategy” introduced in [5]. We give also interesting applications of
some results obtained for hiring above them-th best in the field of data streaming algorithms.

We give explicit distributional results for many hiring parameters like number of hired candi-
dates, waiting time to hire N candidates, index of last hired candidate, distance between the last
two hirings, score of best discarded candidate and number of replacements, for both strategies.
For example, we show that the number of hired candidates under hiring above the median, has
the expectation: E{hn} =

√
πn +O(1), and a suitable normalization of hn has a limit distribution

which is a Rayleigh distribution with parameter
√
2, i.e.,

hn√
n

(d)−−→ R̂ ∼ Rayleigh
(√
2
)
,
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where R̂ has density:

f̂(x) =
x

2
e−x

2

4 , for x > 0.

For hiring above them-th best, the expectation of the number of hired candidates is

E{hn,m} = m(Hn −Hm + 1) = m
(

logn− logm+ 1
)

+O(1),

where Hn denotes the n-th harmonic number of first order and the asymptotic estimate holds
uniformly for 1 ≤ m ≤ n and n → ∞. In the main region n −m �

√
n; a suitably normalization

of hn,m is asymptotically standard Normal (d refers to weak convergence):

hn,m −m
(

logn− logm+ 1
)√

m
(

logn− logm
) (d)−−→ N (0, 1).

More results are obtained for hiring above the median like the number of hired candidates conditioned
on the first one, this r.v. is interesting since this strategy is sensitive to the first candidate in the se-
quence, and the probability that the candidate with score q is getting hired which gives some indication
of the quality of the hired staff. In most cases we were able to give also the corresponding limiting
distributions of those parameters.

We have been successful to obtain the distributional and the asymptotic results for hn for the
strategy “hiring above the α-quantile” with rational α = 1

d , d ∈ N, together with the order of
growth of the expectation of hn, gn and fn for the general case, 0 < α < 1.

As a fruit of our recursive approach for the study of the strategy “hiring above the median”,
we were able to complete a previous work in [59] where we characterize explicitly the distribution
of the main quantity there, which is the number of selected items for the “12 -percentile rule”. Results
for other quantities, like the waiting time, also become in hand.

Moreover, we explore the relationship between hiring above the median and the seating plan
(12 , 1). We add some results to those in [77] related to the main parameter studied there, which is
the number of occupied tables after receiving n customers, Kn. A normalization of Kn converges, as
n→∞, to a Maxwell-Boltzmann distribution with parameter

√
2. We give also novel results for the

waiting time parameter for the seating plan (12 , 1): its explicit distribution, expectation and limiting
distribution.

The hiring set (and thus the set of scores of hired candidates) under the strategy “hiring above
the m-th best” is closely related to m-records. The results obtained for this strategy are of interest
in the context of statistics of m-records and vice-versa. The connection between this strategy and
the seating plan (0,m) of the CRP is also presented, as well as some novel results for the seating
plan (0,m), namely, the explicit distribution and the expectation for the waiting time.

Another set of contributions are the applications of some of our results to data stream algorithms.
We were able to make use of the explicit probability distribution of the number of hired candidates for
“hiring above the m-th best” to derive a new cardinality estimator of the number of distinct ele-
ments in a large data sequence that may contain repetitions. This is known as “cardinality estima-
tion problem” (see [33]). Our approach to study this problem is novel, as our estimator is the first
one that exploits the random-order model. The new cardinality estimator, called RECORDINALITY
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does not need neither the use of hash functions nor sampling. 1 We show also that our results
for other hiring parameters might be useful in this context. We introduce another cardinality
estimator, called DISCARDINALITY, that is built upon the parameter score of best discarded candi-
date, again using hiring above the m-th best. In practice, DISCARDINALITY is less interesting than
RECORDINALITY, but the ideas behind its design might be useful for the similarity index estimation
(or “Jaccard similarity”) [14] of two data sets, which is another interesting problem in the data
streaming field.

In the conclusions we discuss some promising lines of research that we have left open, and others
which are still on-going work. One interesting question is how to compare two different hiring
strategies; that requires a suitable definition of the notion of optimality, which is still missing in
the context of the hiring problem. Besides the preliminary results obtained for the strategy “hir-
ing above the α-quantile” for rational α = 1

d , d ∈ N, we wish to continue studying more general
cases of this strategy, e.g., rational α = p

q where gcd(p,q)=1. The general most case, with irrational
α is a more challenging problem, and our combinatorial approach breaks down. We aim also to
complete the analysis of the important parameter number of replacements; we could only derive its
expectation for the studied strategies. In the context of applications, we are investigating sam-
pling algorithms that generate random samples of distinct elements, whose size (of the sample)
depends on the actual, but unknown, number of distinct elements in the data stream.

Other natural variants or extensions of the hiring problem might be worth studying, like “proba-
bilistic hiring”, in which the hiring strategy uses randomness to make decisions, i.e., determining
the threshold candidate probabilistically (in contrast to all previously studied strategies here). One
important challenge is that most probabilistic strategies are not pragmatic. Other extensions that
might be worth being analyzed include “hiring with sliding-window”, in which the final decision
to hire or discard some candidate is delayed until the nextw− 1 candidates are interviewed. Also
“multicriteria hiring”, in which each candidate has more than one quality measure.

Organization of this document

This dissertation is structured into three main parts: Part II reviews all necessary mathematical
techniques and the previous work on the hiring problem and related problems. Part III contains
the main contributions of this thesis. Part IV presents the conclusions of the work done and dis-
cusses the open problems and future work.

Part II includes two chapters: Chapter 1 introduces some mathematical background covering
the main ingredients of the analysis of combinatorial structures, i.e., the symbolic method, gen-
erating functions and singularity analysis. Chapter 2 reviews in some depth the history of the
hiring problem in the literature. We summarize there the work of Krieger et al., Broder et al., and
Archibald and Martı́nez, where we highlight the formulation of the problem in each work, the
approach used in the analysis and their main results. We devote a section also to define the Chi-
nese restaurant process, explain the similarities with the hiring problem, and recall the important
results for this problem.

Part III starts with Chapter 3, where we formally define the model of the hiring problem that
we will focus on, and the various hiring parameters analyzed in this work. Chapter 4 is devoted

1It can benefit from the use of hash functions. In particular, by using hash functions, we need not assume the
random-order model.
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to the analysis and results of the strategy hiring above the median. It presents the distributional
results for the studied parameters, a detailed explanation of the recursive approach used in the
analysis, and the proofs of all results, ending with a thoroughly discussion of the relationship of
hiring above the median with the 12 -percentile rule of Krieger et al. and with the seating plan (12 , 1)

of the CRP. It presents some new results for both the 1
2 -percentile rule and the seating plan (12 , 1).

Most of the results in Chapter 4 appear in the following publications,

• [52] A. Helmi and A. Panholzer. Analysis of “hiring above median” selection strategy for
the hiring problem. Algorithmica, pages 1-42, 2012.

• [51] A. Helmi and A. Panholzer. Analysis of “hiring above the median”: a “Lake Wobe-
gon” strategy for the hiring problem. In Proceedings of the ACM-SIAM Meeting on Analytic
Algorithmics and Combinatorics (ANALCO’12), 75-83, 2012.

Chapter 5 is devoted to our study of the strategy hiring above the α-quantile. The following
technical report contains the current results and the analysis of this strategy:

• [49] A. Helmi, C. Martı́nez, and A. Panholzer. Analysis of the “hiring above the α-quantile”
strategy. Technical report, LSI-12-15-R, 2012.

Chapter 6 is dedicated to the analysis of the strategy hiring above the m-th best. It shows the
relationship between this strategy and m-records, contains our results for the studied hiring pa-
rameters, and discusses the equivalence of this strategy and the seating plan (0,m) of the CRP. It
also gives some novel results for the seating plan (0,m). The following two publications contain
the main results that appear in Chapter 6:

• [50] A. Helmi, C. Martı́nez, and A. Panholzer. Hiring above the m-th best candidate: a
generalization of records in permutations. In D. Fernndez-Baca, editor, Proceedings of the 10th

Latin American Symposium on Theoretical Informatics (LATIN’12), volume 7256 of LNCS, pages
470-481. Springer, Berlin, Heidelberg, 2012.

• [48] A. Helmi, C. Martı́nez, and A. Panholzer. Analysis of “hiring above the m-th best can-
didate strategy”, 2012. Submitted to Algorithmica.

Finally, Chapter 7 is devoted to the applications of the results obtained in Chapter 6 to the field of
data streaming algorithms. In particular we concentrate in the cardinality estimation problem. We
describe the estimator, RECORDINALITY, and give its precise analysis, showing that it is unbiased
and quantify its accuracy. We also report experimental results for this estimator. This chapter also
presents the other estimator, DISCARDINALITY, and its full analysis. We also give preliminary
results on how the same underlying hiring parameter (score of best discarded candidate) can be used
for the estimation of the similarity index of two data sets. The following publication contains the
main results about RECORDINALITY:

• [47] A. Helmi, J. Lumbroso, C. Martı́nez, and A. Viola. Data Streams as Random Permu-
tations: the Distinct Element Problem. In DMTCS Proceedings, the 23rd International Meeting
on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA’12),
number 1, 2012.

Part IV ends the thesis with the conclusions of the work done, as well as our preliminary results
and on-going work for some extensions and generalizations related to the hiring problem; we
would like to investigate these problems in the future. Part IV also discusses some interesting
open problems in connection with the hiring problem.
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Chapter 1

Mathematical preliminaries

In this chapter we review briefly the main ingredients of Analytic Combinatorics, as our study of
the hiring problem is essentially combinatorial. We discuss the symbolic method and the princi-
ples of generating functions in Section 1.3. Generating functions are the main tool of the analysis
in the framework given later in Section 2.4. We will use them also in the context of the recursive
approach used in Chapter 4 to translate the obtained recurrences for the quantities of interest into
differential equations. We rely on the generating functions again in Chapter 5 when we discuss
the strategy “hiring above the α-quantile”. We will use also singularity analysis in Chapter 5 to ex-
tract the desired information like the expectation of the parameters studied, so the main theorems
of this technique are discussed in Section 1.4. We start with the following section that reviews
some mathematical background necessary for our analysis.

1.1 Background and notation

The material of this section can be found in [28, 29, 57] and others.

1.1.1 Probability distributions

Table 1.1 shows the notation used for many distributions and their density functions.

Distribution Notation pdf

Beta Beta(α,β) Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1, 0 ≤ x ≤ 1

Exponential Exp(λ) λe−λx, x ≥ 0
Geometric Geom(p) (1− p)x−1p, x = 1, 2, . . .

Normal N (µ, σ2) 1
σ
√
2π
e

−1
2

(x−µ
σ

)2 , x ∈ R

Poisson Poisson(λ) λxe−λ

x! , x = 0, 1, 2, . . .

Rayleigh Rayleigh(α) x
α2
e

− −x2

2α2 , x > 0

Uniform Unif(a,b) 1
b−a , x ∈ (a, b)

Table 1.1: Notation used for different distributions. “pdf” refers to probability density function.
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1.1.2 Curtiss’ theorem

We use the following theorem [22] in the proof of the convergence of random variables (r.v.’s)
using the moment generating function approach,

Theorem 1.1 (Curtiss, 1942) Let Fn(x) and Gn(α) be respectively the pdf and the MGF of a variate Xn.
If Gn(α) exists for |α| < α1 and for all n = no, and if there exists a finite-valued function G(α) defined
for |α| 5 α2 < α1, α2 > 0, such that limn→∞Gn(α) = G(α), |α| 5 α2, then there exists a variate X with
pdf F(x) such that limn→∞ Fn(x) = F(x) at each continuity point and uniformly in each finite or infinite
interval of continuity of F(x). The MGF of X exists for |α| 5 α2 and is equal to G(α) in that interval.

1.1.3 Convergence of random variables

There are three cases of convergence of r.v.’s (see [12]). For a sequence of r.v.’s Xn and a r.v. X:

• If limn→∞ P{Xn ≤ t} = P{X ≤ t}, for all points of continuity t ∈ R, then it is said that Xn
converges in distribution (or converges in distribution, or converges in law) to X, and we

write Xn
(d)−−→ X to denote it.

• If limn→∞ P{|Xn − X| ≥ ε} = 0, for all ε > 0, then it is said that Xn converges in probability to

X and we write Xn
(P)−−→ X to denote it.

• If P{limn→∞ Xn = X} = 1, then it is said that Xn converges almost surely (or almost every-

where) to X and we write Xn
(a.s.)−−−→ X to denote it.

Moreover, suppose that g : R→ R is a continuous function, then it is true that

Xn
(d)−−→ X ⇒ g(Xn)

(d)−−→ g(X), (1.1)

and for other cases above also.

1.1.4 Stirling’s formula for the factorials

This formula is our main tool in the asymptotic analysis:

log x! =
(
x+

1

2

)
log x− x+

1

2
log(2π) +O

(
1

x

)
, (1.2)

used together with the asymptotic expansion of the logarithmic function for small values of x,

log(1+ x) = x−
x2

2
+
x3

3
+O

(
x4
)
, as x→ 0. (1.3)

1.1.5 Euler-Maclaurin formula

The most useful form of this formula, since we use it to obtain asymptotic expansions of sums, is
the following:

b∑
k=a

f(k) ∼

∫b
a
f(x)dx+

f(a) + f(b)

2
+

∞∑
k=1

B2k

2k!

(
f(2k−1)

′
(b) − f(2k−1)

′
(a)
)
, (1.4)

where f(k) is a smooth function (i.e., continuously differentiable), a and b are integers, and Bk are
Bernoulli numbers.
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1.1.6 Unsigned Stirling numbers of the first kind

These special numbers are denoted by
[
n
k

]
and count the number of permutations of size n with

exactly k cycles. The following recurrence holds for n > 0:[
n+ 1

k

]
= n

[
n

k

]
+

[
n

k− 1

]
, (1.5)

with the initial conditions:
[
n
n

]
=
[
n
0

]
=
[
0
n

]
= 1 and

[
n
k

]
= 0 for k > n. It turned out that

[
n
k

]
also

count the number of permutations of size n with exactly k left-to-right maxima. Those numbers
have the following useful identity:

N∑
j=0

[
N

j

]
zj = z(z+ 1) . . . (z+N− 1) = zN, (1.6)

where zN denotes the rising factorial (defined later in Subsection 1.1.9).

1.1.7 Stirling numbers of the second kind

These numbers are denoted by
{
n
k

}
and count the number of ways to partition a set of n objects

into k non-empty subsets. They obey the following recurrence for n > 0:{
n+ 1

k

}
= k

{
n

k

}
+

{
n

k− 1

}
,

with the initial conditions:
{
0
0

}
= 1 and

{
n
0

}
=
{
0
n

}
= 0 for n > 0. For k > n,

{
n
k

}
= 0. They can

also be computed using this explicit formula:

{
n

k

}
=
1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jn. (1.7)

1.1.8 Special functions

Complete and Incomplete Gamma functions are defined as

Γ(s) =

∫∞
0
ts−1e−tdt and Γ(s, x) =

∫∞
x
ts−1e−tdt, respectively.

The ceiling function is defined as

dxe = min {j ∈ Z : j ≥ x},

that is the smallest integer greater than or equal to x. The floor function is defined as

bxc = max {j ∈ Z : j ≤ x},

that is the greatest integer smaller than or equal to x.
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1.1.9 Other notation

Harmonic numbers are denoted byHn =
∑n
k=1

1
k andH(r)

n =
∑n
k=1

1
kr denotes the r-th order harmonic

numbers. Natural logarithm (with base e) is always denoted by logn. The r-th falling factorial, for
r ≥ 0, is denoted by xr = x(x − 1) . . . (x − r + 1). The rising factorial, for r ≥ 0, is denoted by
xr = x(x+ 1) . . . (x+ r− 1). The multifactorial of x is denoted by x!(r), defined as

x!(r) =

{
1, if 0 ≤ x < r,
x ·
(
(x− r)!(r)

)
, if x ≥ r. (1.8)

The greatest common divisor of two integers p and q, is denoted by gcd(p, q). Iverson’s bracket
notation is defined as JPK, and JPK evaluates to 1 if the predicate P is true and to 0 otherwise.

1.2 Analytic Combinatorics

Analytic Combinatorics [37] studies combinatorial (finite) structures using methods from complex
and asymptotic analysis. It involves two main fields. The first is combinatorial enumeration which
is concerned with the enumeration of combinatorial structures (the number of structures of some
given size n). The corner stone of this field is the symbolic method and generating functions. The
second field is complex analysis which presents the mathematical tools, like singularity analysis,
required to extract the asymptotic behaviour of the coefficients of generating functions. Complex
analysis helps also to obtain asymptotic estimates of complex quantities in terms of elementary
functions, the most famous example is Stirling’s formula

n! ∼ nne−n
√
2πn.

We introduce the following example to show the interplay between combinatorics and analysis.
Suppose we are interested in Cn, the number of binary trees that have n internal nodes, hence
n + 1 external nodes. First, we write the combinatorial equation for the class of binary trees as
follows

C = {�} ] C × {•}× C, where ] is disjoint union. (1.9)

which reflects the definition of a binary tree: any binary tree is the empty tree or two binary trees
attached to one root.
The next step is to define the following generating function,

C(z) =
∑
n≥0

Cnz
n =

∑
t∈C

z|t|.

The symbolic method allows us to translate the combinatorial equation (1.9) into a functional
equation

C(z) = 1 + zC(z)2,

whose solution is

C(z) =
1−
√
1− 4z

2z
.

Then, by means of Newton’s theorem, one finds easily the closed form expression

Cn =
1

n+ 1

(
2n

n

)
.
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Now, Stirling’s asymptotic formula gives us the following approximation

Cn ∼ C?
n where C?

n =
4n√
πn3

.

It is worth mentioning that Cn are the most famous numbers in Combinatorics. They are known
as Catalan numbers and there are about 66 different types of combinatorial structures that are
enumerated by the Catalan numbers [87].

1.3 Symbolic method

We can think of the symbolic method [37] as a general approach to translate the set-theoretic and
algorithmic operations on the combinatorial structures into functional equations over generating
functions. The derivation of such equations is made by applications of translation rules that es-
tablish a “one-to-one” correspondence between algorithmic and set-theoretic constructions and
operators over generating functions. The coefficients of the generating functions represent the
quantities that we want to analyze.

Definition 1.1 The counting sequence of a combinatorial class (An) is the sequence of integers (An)n≥0
where An = card (An) is the number of objects in the class A that have size n.

Definition 1.2 The ordinary generating function (OGF) of a sequence (An) is the formal power series

A(z) =
∑
n≥0

Anz
n.

The variable z is purely formal; A(z) is also a formal object which can be manipulated alge-
braically; we will not be concerned about convergence at this step.
This generating function is called ordinary generating function, to distinguish it from the expo-
nential generating function, the Dirichlet generating function, etc. Ordinary generating functions
usually enumerate unlabelled structures, while exponential generating functions enumerate la-
belled structures. Also, the OGF of class A admits the following combinatorial form

A(z) =
∑
α∈A

z|α|.

Definition 1.3 The exponential generating function (EGF) of a sequence (An) is the formal power series

A(z) =
∑
n≥0

An
zn

n!
.

But the full power of generating functions comes when we consider their dual nature. First they
are considered as a formal power series. Second, when we see them as functions of complex vari-
able in the complex plane, analytic in a disk around the origin.

Then-th coefficient of a generating function F(z) will be denoted by [zn]F(z). Thus, F(z) =
∑
n≥0 fnz

n

implies [zn]F(z) = fn. We can expand a generating function using Taylor’s expansion theorem. Ex-
panding here means finding the associated sequence.
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We show also that elementary operations over sequences translate to operations over the corre-
sponding generating functions. For example, letA(z), B(z) andC(z) be theOGFs for the sequences
an, bn and cn respectively, then

i) cn = an ± bn =⇒ C(z) = A(z)± B(z).

ii) cn =
∑n
k=0 akbn−k =⇒ C(z) = A(z) · B(z).

iii) cn = an−1 =⇒ C(z) = zA(z).

iv) cn = an+1 =⇒ C(z) = (A(z) −A(0))/z.

v) cn = nan =⇒ C(z) = z ddzA(z).

vi) cn = an−1/n =⇒ C(z) =
∫z
0A(t)dt.

Operations i), iii) and iv) are known as sum, backward shift and forward shift; (ii) is called the
convolution of sequences. Differentiation and integration are specified by (v) and (vi).

Generating functions are also useful to study many interesting constructions of combinatorial
classes, such as Cartesian product, disjoint union, sequences, multisets and powersets. These
different constructions translate to operators over generating functions. Now, we need to define
what is a class of combinatorial structures and an admissible combinatorial construction.

Definition 1.4 A combinatorial class is a finite or denumerable set on which a size function is defined,
satisfying the following conditions:

i) the size of an element is a non-negative integer;

ii) the number of elements of any given size is finite.

Definition 1.5 A combinatorial constructionΦ is admissible if there exists an operator Ψ over generating
functions such that:

A = Φ(C1, C2, . . . , Ck) =⇒ A(z) = Ψ(C1(z), C2(z), . . . , Ck(z)),

whereA(z), C1(z), . . . , Ck(z) are the counting generating functions corresponding to the classesA, C1, . . . , Ck.

We are not going to define all of the admissible constructions, but we give only two of them in the
following definitions, by a way of example.

Definition 1.6 A class C is the Cartesian product of A and B, denoted C = A× B if

1. C = A× B (in the set-theoretic sense)

2. |(a, b)|C = |a|A + |b|B.

Definition 1.7 A class C is the sequence class of A, denoted C = A? if

C = {ε} +A+ (A×A) + (A×A×A) + · · ·

where ε is the empty structure (of size 0), in other words

C =
{
(β1, . . . , β`) | ` ≥ 0, βj ∈ A

}
.
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Then, the following theorem introduces the basic admissible combinatorial constructions and the
corresponding operators on OGFs.

Theorem 1.2 For unlabelled structures, these are the basic admissible constructions and the associated op-
erators over generating functions:

Disjoint union: A = B ] C =⇒ A(z) = B(z) + C(z),

Cartesian product: A = B × C =⇒ A(z) = B(z) · C(z),

Sequence: A = SEQ(B) =⇒ A(z) = 1
1−B(z) ,

Powerset: A = PSET(B) =⇒ A(z) = exp
(∑

k≥1
(−1)k−1

k B(zk)
)

,

Multiset: A = MSET(B) =⇒ A(z) = exp
(∑

k≥1
1
kB(zk)

)
.

A simple application to the SEQ construction is binary words. Let B = {0, 1}, then its OGF is
B(z) = 2z, since it has two objects each of size 1. Now, if we define a class A as the class of binary
words, then A(z) = 1/(1− 2z) which gives us the number of binary words of length n, 2n.

The symbolic method can also be applied to study random structures. We are interested in the
probability that a certain measure X has a value k for a random structure of size n. A new type
of generating function, the multivariate generating functions (MGFs) is useful here. MGFs keep
track of a collection of parameters defined over combinatorial structures. MGFs allows us to de-
rive results about probability distribution or, at least, mean and variance.

BGF (bivariate generating function) are a particularly important instance ofMGFs, when we have
two formal variables. They are defined as follows

Definition 1.8 Given a doubly indexed sequence {ank}, the function

A(z, u) =
∑
n≥0

∑
k≥0

anku
kzn

is called the bivariate generating function (BGF) of the sequence. We use the notation [ukzn]A(z, u) to
refer to ank; [zn]A(z, u) to refer to

∑
k≥0 anku

k; and [uk]A(z, u) to refer to
∑
n≥0 ankz

n.

If ank denotes the number of combinatorial objects of An such that some parameter or cost mea-
sure is k, then we can write

A(z, u) =
∑
α∈A

ucost(α)z|α|.

Thus we say that variable z marks the problem size, while variable u marks the value of the
parameter being analyzed.
Now we can use BGF to compute moments and the average cost.

Definition 1.9 Let P be a class of combinatorial structures with BGF P(z, u). Then the function

p(z) =
∂P(z, u)

∂u

∣∣∣
u=1

=
∑
p∈P

cost(p)z|p|
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is defined as the cumulative generating function (CGF) for the cost measure. Also, let Pn denote the class
of all the structures of size n in P . Then the sum∑

p∈Pn

cost(p) = [zn]p(z)

is defined to be the cumulated cost for the structures of size n.

Theorem 1.3 (BGFs and average costs) Given a BGF P(z, u) for a class of combinatorial structures, the
average cost of all the structures of a given size is given by the cumulated cost divided by the number of
structures, or

[zn]
∂P(z,u)
∂u

∣∣∣
u=1

[zn]P(1, z)
=
p ′n(1)

pn(1)
=

[zn]p(z)

pn(1)
,

where pn(u) = [zn]P(z, u). Also, the variance is

p ′′n(1)

pn(1)
+
p ′n(1)

pn(1)
−

(
p ′n(1)

pn(1)

)2
.

Analogous definitions and results hold for EGFs, which we shall use when dealing with labelled
structures.
For permutations (which are labelled objects), we can analyze their properties using the following
systematic method:

• Define an exponential CGF of the form B(z) =
∑
p∈P cost(p)z|p|/|p|! or the bivariate EGF

B(z, u) =
∑
p∈P u

cost(p)z|p|/|p|!.

• Derive a functional equation for B(z) (or B(z, u)) using the symbolic method.

• Solve the equation and use analytic techniques to find [zn]B(z), [znuk]B(z, u), etc.

Now we are giving an example from the hiring problem (following [5]), that follows the men-
tioned method.

Size of hiring set. Let σ denote the permutation of scores of the incoming candidates. Then,
h(σ) is the size of the hiring set H(σ), or the number of hired candidates in σ. Then we have
h(σ) = 0 if σ is the empty permutation and h(σ ◦ j) = h(σ) + Xj(σ), where

Xj(σ) =

{
1, if the last candidate of σ ◦ j is hired,
0, otherwise.

and we can obtain the following result, which applies to any rank-based strategy.

Theorem 1.4 (Archibald and Martı́nez, 2009) Let H(z, u) be the generating function

H(z, u) =
∑
σ∈P

z|σ|

|σ|!
uh(σ),

where h(σ) is the size of the hiring set in σ and P is the class of all permutations.
Then

(1− z)
∂

∂z
H(z, u) −H(z, u) = (u− 1)

∑
σ∈P

X(σ)
z|σ|

|σ|!
uh(σ).
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Proof: Let Pn denote the set of permutations of size n. We can write thus

H(z, u) =
∑
σ∈P

z|σ|

|σ|!
uh(σ)

= 1+
∑
n>0

∑
σ∈Pn

z|σ|

|σ|!
uh(σ)

= 1+
∑
n>0

∑
1≤j≤n

∑
σ∈Pn−1

z|σ◦j|

|σ ◦ j|!
uh(σ◦j),

where we have used the decomposition of any permutation σ ′ of size n > 0 as the product of a
permutation σ of size n− 1 times a value j between 1 and n (see Section 2.4). Hence

H(z, u) = 1+
∑
n>0

∑
1≤j≤n

∑
σ∈Pn−1

z|σ|+1

(|σ| + 1)!
uh(σ)+Xj(σ)

= 1+
∑
n>0

∑
σ∈Pn−1

z|σ|+1

(|σ| + 1)!
uh(σ)

∑
1≤j≤n

uXj(σ).

Since Xj(σ) is either 0 or 1 for all j and all σ, we have∑
1≤j≤n

uXj(σ) =
(
|σ| + 1− X(σ)

)
+ uX(σ),

where X(σ) =
∑
1≤j≤|σ|+1 Xj(σ). Note that X(σ) is the number of relative ranks such that a candi-

date with such a rank would be hired right after processing σ.
Hence,

H(z, u) = 1+
∑
n>0

∑
σ∈Pn−1

z|σ|+1

(|σ| + 1)!
uh(σ)

((
|σ| + 1− X(σ)

)
+ uX(σ)

)
.

Taking derivatives w.r.t. z, we obtain

∂

∂z
H(z, u) =

∑
n>0

∑
σ∈Pn−1

z|σ|

|σ|!
uh(σ)

((
|σ| + 1− X(σ)

)
+ uX(σ)

)
=
∑
n>0

∑
σ∈Pn−1

z ddzz
|σ|

|σ|!
uh(σ) +

∑
n>0

∑
σ∈Pn−1

z|σ|

|σ|!
uh(σ)

+ (u− 1)
∑
n>0

∑
σ∈Pn−1

z|σ|

|σ|!
uh(σ)X(σ)

= z
∂

∂z
H(z, u) +H(z, u) + (u− 1)

∑
n>0

∑
σ∈Pn−1

z|σ|

|σ|!
uh(σ)X(σ).

After reorganizing the terms in the equation above and simplifying, we obtain the statement
of the theorem.

Once we have the solution (i.e., a closed form) forH(z, u), then P{hn = k} = [ukzn]H(z, u). We can
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also obtain the generating functions of the moments of hn; we have to take successive derivatives
of H(z, u) w.r.t. u and set u = 1.

hr(z) =
∂r

∂ur
H(z, u)

∣∣∣
u=1

=
∑
σ∈P

E{h
r
n}zn ,

The first moment gives us the expected value of the number of hired candidates as follows

h(z) =
∂

∂u
H(z, u)

∣∣∣
u=1

=
∑
σ∈P

h(σ)
z|σ|

|σ|!
,

that is, E{hn} = [zn]h(z).

1.4 Singularity analysis

The other fundamental component in Analytic Combinatorics is the use of complex analysis tech-
niques to extract information about the coefficients of generating functions. One of the most im-
portant techniques is singularity analysis [37].

Definition 1.10 Given a function f : C → C defined in the region interior to a simple closed curve γ,
a point z0 on the boundary (γ) of the region is a singular point (a singularity) if f is not analytically
continuable at z0.

We can summarize the singularity analysis process for the simple case where there is only a single
dominant singularity: Let f(z) be a function analytic at 0 whose coefficients are to be asymptoti-
cally analyzed.

i) Locate singularities. Determine the dominant singularities of f(z). Check that f(z) has a single
singularity ζ on its circle of radius of convergence.

ii) Check continuation. Establish that f(z) is analytic in some domain, larger than the disk of
convergence.

iii) Singular expansion. Analyze the function f(z) as z → ζ in its domain of analyticity and deter-
mine in that domain an expansion of the form

f(z) =
z→ζw(z/ζ) + o

(
w(z/ζ)

)
.

For the method to succeed, the functions w and τ should belong to the standard scale of
functions S = {(1− z)−αλβ}, with λ = z−1 log(1− z)−1, α /∈ Z≤0.

iv) Transfer. Translate the main term w(z) and the error term using Theorems 1.8 and 1.7 below.
Conclude that

[zn]f(z) =
n→+∞ ζ−nwn +O

(
ζ−nτ?

n

)
,

where wn = [zn]w(z) and τ? = [zn]τ(z).
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In the case of multiple singularities, the separate contribution from each of the singularities, as
given by the basic singularity analysis process, are to be added up. For this case, there are some
theorems like those that we have illustrated here for the case where there is only a single dominant
singularity.

The method of singularity analysis applies to functions the behaviour of which around its sin-
gularities involves fractional powers and logarithms—one times refers to such singularities as
“algebraic-logarithmic”. The technology of singularity analysis is based on Cauchy’s Coefficients
formula, used in conjunction with special contours of integration known as Hankel contours.

Now, we are looking for the coefficients asymptotics. We can express the n-th coefficients of f(z)
as Anθ(n), where An is called the exponential growth rate and θ(n) is called the subexponential
one. It follows two principles of coefficient asymptotics.

First Principle of Coefficient Asymptotic. The location of a function’s singularities dictates the
exponential growth (An) of its coefficients.
Second Principle of Coefficient Asymptotic. The nature of a function’s singularities determines
the associate exponential factor (θn).

Hence, the most appropriate tool to investigate the asymptotic behaviour of the function near
its dominant singularity is Cauchy’s Integral Formula or Cauchy’s Coefficient Formula as stated
in the following theorem,

Theorem 1.5 (Cauchy’s Coefficient Formula). Let f(z) be analytic in a regionΩ containing 0 and let λ be
a simple loop around 0 in Ω that is positively oriented. Then, the coefficients [zn]f(z) admits the integral
representation

fn ≡ [zn]f(z) =
1

2iπ

∫
λ
f(z)

dz

zn+1
.

It follows also Cauchy’s Residue Theorem.

Theorem 1.6 (Cauchy’s Residue Theorem). Let z0 be an isolated singularity of f(z) and let C be a circle
centered at z0 such that f(z) is analytic in C and its interior, except possibly at z0. Then,∫

C
f(z)dz = 2iπRes[f(z); z = z0],

where Res[f(z); z = z0] denotes the residue of f(z) at z0.

The coefficient formula allows us to deduce information about the coefficients from the function
itself, using suitable chosen contours of integration. It becomes possible to estimate the coeffi-
cients [zn]f(z) in the expansion of f(z) near 0 by using information on f(z) away from 0.

Now, suppose we have the generating function f(z) of a certain sequence. Since the power se-
ries of the function is analytic in the largest disk centered at the origin containing no singularities,
one can look for singularities of the function that are nearest to the origin. The distance from the
origin to the the nearest singularity is called radius of convergence of the power series and such
singularity is called dominant.
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Singularity analysis theory considers functions whose expansion at a singularity ζ behaves like(
1−

z

ζ

)−α(
log

1

1− z
ζ

)β
.

Under suitable conditions, we can show that such a singularity contributes a term of the form

ζ−nnα−1(logn)β, where α and β can be arbitrary complex numbers.

Singularity analysis theory considers also some Transfer Theorems which help to translate the
asymptotic behaviour of a function near a singularity into an asymptotic approximation of its
coefficients. The notation of such “Transfer” process is given in the following definition and the-
orem.

Definition 1.11 Given two numbers φ, R with R > 1 and 0 < φ < π
2 , then the open domain ∆(φ, R) is

defined as
∆(φ, R) = {z | |z| < R, z 6= 1, |arg(z− 1)| > φ}.

A domain is a ∆–domain at 1 if it is a ∆(φ, R) for some R and φ. For a complex number ζ 6= 0, a ∆–domain
at ζ is the image by the mapping z 7→ ζz of a ∆–domain at 1. A function is ∆–analytic if it is analytic in
some ∆–domain.

Theorem 1.7 (Transfer, Big-Oh and little-oh). Let α, β be arbitrary real numbers, α, β ∈ R and let f(z)
be a function that is analytic in the disk {z : |z| < 1},

i) Assume that f(z) satisfies in the intersection of a neighborhood of z = 1 with ∆–domain the condition

f(z) = O

(
(1− z)−α

(
log

1

1− z

)β)
.

Then one has [zn]f(z) = O
(
nα−1(logn)β

)
.

ii) Assume that f(z) satisfies in the intersection of a neighborhood of z = 1 with ∆–domain the condition

f(z) = o

(
(1− z)−α

(
log

1

1− z

)β)
.

Then one has [zn]f(z) = o
(
nα−1(logn)β

)
.

iii) Assume that f(z) satisfies in the intersection of a neighborhood of z = 1 with ∆–domain the condition

f(z) ∼ (1− z)−α
(

log
1

1− z

)β
.

Then one has [zn]f(z) ∼ nα−1(logn)β.

Together with Theorem 1.7, the following theorem gives us a very powerful tool to obtain very
precise asymptotic estimates of the coefficients of the generating functions we are interested in.
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Theorem 1.8 (Standard function scale, logarithms). Let α be an arbitrary complex number in C \ Z≤0.
The coefficient of zn in the function

f(z) = (1− z)−α

(
1

z
log

1

1− z

)β
admits for large n a full asymptotic expansion in descending power of logn,

fn = [zn]f(z) ∼
nα−1

Γ(α)
(logn)β

[
1+

C1

logn
+

C2

log2 n
+ . . .

]
,

where Ck =
(
β
k

)
dk

dsk
1
Γ(s)

∣∣∣
s=α

.

As an example, if we go back to the binary trees mentioned in Section 1.2, then the OGF for the
binary trees is

C(z) =
1−
√
1− 4z

2z
.

Hence, C(z) has a singularity at z = 1
4 , then the exponential growth for Cn isAn = 4n. That means

that, for some n0 ∈ N, for all n ≥ n0 and for all ε > 0,

(4− ε)n ≤ Cn ≤ (4+ ε)n

After that we can see that
C(z) ∼ −2

√
1− 4z as z→ 1

4
.

Thus the nature of this singularity is square-root type which gives us the subexponential or the
polynomial factor, θ(n) = n−3/2. In particular

Cn = [zn]C(z) ∼ 4n · (−2)[zn]
√
1− z

∼ 4n · (−2) n
−1
2
−1

Γ
(

− 1
2

)
∼

4n√
πn3

.
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Chapter 2

A review of the hiring problem and
related problems

In this chapter we review the work done in the hiring problem in the past twelve years. We briefly
review the antecedents of the hiring problem, then we move on to discussion of the few papers on
the hiring problem. In particular, we devote three sections, to discuss the articles of Preater [82],
Krieger et al. [59, 60, 61], Broder at al. [15], and of Archibald and Martı́nez [5], respectively. We
show each point of view and review their results on the analysis of various hiring strategies. We
give also a brief discussion of the Chinese restaurant process [77] pinpointing its relation to the
hiring problem. Along this chapter, we try to use the same notation and names as they appear in
the original papers.

2.1 History of the hiring problem

The sequential multiple selection problem has been introduced several times, in particular in the
probabilistic and Computer Science related literature. This section gives a short overview about
this class of problems and the former studies of the hiring problem.

Literature related to on-line decision-making under uncertainty starts in the early sixties when
Gardner [41] introduced the secretary problem, which has been solved first by Gilbert and Mosteller
[43]. In the sequel a lot of papers addressed and studied extensions and variations of the secre-
tary problem. One such natural and important extension is to choose many candidates and not
only one. Such extensions have been studied extensively under various formulations with differ-
ent goals and thus bear different titles in the literature, e.g., multiple-choice secretary problems
[55, 72, 81], multiple optimal stopping rules [58, 75, 80], d-choice secretary problem [45], knapsack
secretary problem [7], a generalization of the secretary problem [2, 10, 78] and others. Beside these
extensions of the secretary problem, the hiring problem has received recently special interest as a
close relative of the secretary problem but with major changes and different goals.

To the best of our knowledge, the name of the “hiring problem” has appeared for the first time in
Chen et al. [19] in 1984. In fact, the authors introduced the following novel extension of the secre-
tary problem, namely, a sequential multiple selection problem with constraints: suppose that one
wants to hireN secretaries, where the secretary’s salary demands are independent and identically
distributed (i.i.d.) random variables (r.v.’s) with a known distribution, under the condition that
their total salary must not exceed some value C. The question addressed and solved in that work

27
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is how to set the thresholds (which “decide”, whether a new secretary with salary demand X will
be hired, if alreadyN−m secretaries are hired requiring together a salary SN−m) in the sequential
selection procedure to minimize the expected number of secretaries to be interviewed. However,
this problem bears little resemblance with the “hiring problem” we study here.

In 2000, Preater [82] addressed the sequential selection problem and introduced for the first time
a “hiring strategy” which is “better-than-average rule”. In fact, the problem studied by Preater
is exactly the hiring problem, although, he did not use the name. He assumed that the absolute
scores of the candidates are forming a sequence of exponentially i.i.d. r.v.’s less than 1. The pro-
posed rule works as follows: i) the first candidate will be hired anyway, ii) then a new candidate
will be hired only if the average score of hired candidates will be increased (i.e., if the score of the
new candidate is higher than the average score of the already hired staff).

Seven years later, Krieger, Pollak and Samuel-Cahn [59] introduced the random permutation model
of the sequential multiple selection problem, under the name select sets. They gave a general class
of selection rules called “p-percentile rules” that consider only relative ranks for the input se-
quence of items in analogy to the secretary problem. In this general strategy, fix p, 0 < p ≤ 1; then
a new item will be selected, if it is amongst the best 100 · p percent of those items that have been
already retained.

After that, in a couple of publications [60, 61] Krieger et al. studied other configurations of
the problem where they considered the absolute scores model under different distributions (i.e.,
Exponential, Pareto, Beta, Normal, Lognormal and Gamma) and a generalization of the selection
rule given in [82]; namely “β-better-than-average rule” with β > 0.

Broder, Kirsch, Kumar, Mitzenmacher, Upfal and Vassilvitskii [15] introduced explicitly the name
“hiring problem” in 2008; independently and unaware of the previous work of Preater [82] and
Krieger et al. [59]. Broder et al. dealt with the absolute scores of candidates as uniform i.i.d. r.v.’s in
(0, 1). They introduced a natural and reasonable class of hiring strategies; namely “Lake Wobegon
strategies” which includes “hiring above the mean” and “hiring above the median” strategies.
Hiring above the mean processes the sequence of candidates exactly like the better-than-average
rule in [82]. For hiring above the median, after hiring the first candidate, if the next candidate
ranks better than the median score of all those hired before, then gets hired, and others are dis-
carded. They discussed also the strategy called “max strategy” which hires only the records (i.e.,
left-to-right maxima) of the sequence of candidates.

Archibald and Martı́nez [5] introduced, in 2009, the discrete (combinatorial) model of the hiring
problem, inspired by the work of Broder et al. [15]. Again they did so independently of the work
of Preater and Krieger et al. They introduced in [5] two general hiring strategies, “hiring above the
m-th best candidate” and “hiring above the α-quantile of hired candidates”. Notice that the max
strategy given in [15] is a special case of hiring above the m-th best when m = 1; that is, “hiring
above the best”. The strategy hiring above the α-quantile, with 0 < α < 1, is also a generalization
for hiring above the median (α = 1

2 ) introduced in [15].

The various studies of the hiring problem might be classified according to two main features.
First, the model of the sequence of candidates:

(i) Random permutation model: Krieger et al. [59] considered the relative ranks of candidates
where the best one is given rank 1 while the worst is given rank n. Archibald and Martı́nez
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[5] model the sequence of candidates as a random permutation also, but they considered the
opposite ranking scheme where the best candidate has rank n while the worst one has rank
1. At any given moment, after i interviews, we can rank the i candidates seen so far from
worst to best without ties.

(ii) Absolute quality scores model: Here, the input is a sequence of real numbers, say in (0, 1)

representing the actual scores of candidates. Preater [82] studied the case where the scores
are given by an Exponential distribution. Broder et al. [15] considered a Uniform distribu-
tion of the scores in (0, 1). Krieger et al. [60, 61] studied different distributions of the scores
of candidates, namely, Exponential, Pareto, Beta, Normal, Lognormal and Gamma distribu-
tions.

The second feature is the type of hiring strategies: we have two main types of strategies.

(i) Rank-based strategies: these strategies take decisions based only on the ranks of candidates
whether the actual quality scores are available or not. This category includes the p-percentile
rules introduced by Krieger et al. [59], hiring above the median introduced by Broder et al.
[15], and hiring above the α-quantile and hiring above the m-th best studied by Archibald
and Martı́nez [5].

(ii) Score-based strategies: those take into account the absolute scores of candidates. They in-
clude the better-than-average rule introduced by Preater [82], the β-better-than-average rule
(under different models of the sequence of candidates) studied by Krieger et al. [60, 61]. Also
hiring above the mean introduced by Broder et al. in [15].

In the different studies of the problem, the main quantity of interest is the number of selected/hired
items for a sequence of size n, or a closely related quantity, the number of observations to select k
items. We call the latter one the waiting time. Such quantities help to study the hiring rate of the
applied strategy, while other quantities are used to indicate the quality of the selected/hired items like
the average rank (score) of selected items and others. In the following sections we give precise ex-
planations for all the hiring strategies mentioned above and show the results obtained for various
quantities of interest in each model of the problem.

2.2 Select sets

Krieger et al. have introduced a pioneering work in the sequential multiple selection problem,
under the name select sets. That was an important departure from all previous attempts inher-
ited from the secretary problem. No doubt that they got inspired by the secretary problem but
they introduced a different setup for one variant of the secretary problem; that is, selecting many
candidates instead of only one. As we have seen in the previous historical review, the main goal
of secretary problems is to maximize the probability of selecting the best candidate(s) from the
input sequence. But Krieger et al. care about different issues like designing “reasonable” selection
rules and characterizing their behaviour according to the speed of selection and the quality of the
retained group.

Krieger et al. introduced an equivalent formulation of the hiring problem covering more as-
pects of the problem; the most important is the formal definition of “reasonable” selection rules.
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They have studied both models of the problem; the random permutation model that is investi-
gated using the “p-percentile rules” [59], and the absolute quality scores model under different
distributions of the scores, and using the class of “β-better-than-average rules” [60, 61].

We discuss here the main aspects of the framework of Krieger et al. in [59] to design and ana-
lyze selection rules based on ranks, and review the main results obtained. We also highlight their
rich study of the “β-better-than-average rule” under different distributions of the quality scores
of items. Their results characterize the asymptotic behaviour of various quantities of interest.

2.2.1 Percentile rules

In this class of selection rules, the decision of selecting or discarding an item depends only on the
number of retained items so far and the rank of the current item among all interviewed items.
Krieger et al. considered the following ranking scheme for the input sequence: the better is equiv-
alent to smaller rank so the best item is given rank 1while the worst one is given n among n items,
in analogy to the secretary problem.
Let us define some notations used here: Rni denotes the rank of the i-th item in a sequence of size
n and Ln is a r.v. that denotes the number of retained items or the size of retained group after observing
n items.
Then they discuss that reasonable selection rules should fulfill the conditions of being locally sub-
diagonal according to the following definition:

Definition 2.1 A locally subdiagonal rank selection scheme (LsD) is a rule determined by an integer-
valued function r(·) with the following properties:

i) r is nondecreasing.

ii) r(0) = 1 and L0 = 0.

iii) r(k+ 1) ≤ r(k) + 1, where k is the number of retained items so far.

iv) The first item is retained, then the n-th item is retained if and only if Rnn ≤ r(Ln−1).

This class contains many selection rules that make sense; two main families of them are: “p-
percentile rules” and “m-record rules”. The latter one, with r(k) = min(k+1,m), has been studied
extensively—as Krieger et al. put it—. In fact, there are numerous publications related to m-
records (i.e., [3, 13, 26, 63, 74, 85]) concerning some statistics like their values and times (positions)
under different distributions. But the first time that m-records were considered in the context of
the hiring problem was by Archibald and Martı́nez when they introduced the strategy “hiring
above them-th best” (see Section 2.4). The p-percentile rules are defined as follows:

Definition 2.2 A “p-percentile rule”, 0 < p ≤ 1, is a LsD rule with r(k) = dpke for k ≥ 1, then the n-th
item is retained if Rnn ≤ dpLn−1e.

The most important instance of this family is the “12 -percentile rule” or the median rule, where
r(1) = r(2) = 1 and generally r(2j − 1) = r(2j) = j for odd and even sizes of retained group. In
this class of rules, there is a cutoff (or threshold) rank, that is jn ≡ dpLne, where the (n + 1)-th item
is retained if its rank is less than or equal to jn, and others are discarded.

Krieger at al. went through a purely probabilistic approach, using the theory of martingales,
and were able to study two main quantities: the number of retained items Ln and the average rank of
retained group An. The results of the order of Ln, as well as the limiting behaviour is given in the
following theorem:
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Theorem 2.1 (Krieger et al., 2007) For the “p-percentile rules”, 0 < p ≤ 1, let Ln denote the number of
retained items after n observations, then as n→∞

E{Ln}

np
→ cp,

lim
n→∞E

{
L2n
n2p

}
and lim

n→∞V
{
Ln

np

}
exist and are finite,

Ln

(n+ 1)p
(a.s.)−−−→ nondegenrate finite r.v. Λ such that:

lim
n→∞E

{
Ln

(n+ 1)p

}
= E{Λ} = cp, with 0 < cp <∞.

That means that Ln for p-percentile rules is of order np which is a very important result. However
the leading factor and the explicit limiting distribution are missing for even some particular rules
like 1

2 -percentile rule. They have said “It seems impossible to determine cp analytically, except for
p = 1”, which is debatable as we will see in Chapter 4 when we discuss the strategy “hiring above
the median” showing the results for c1/2. There is also one recent result by Gaither and Ward [40]
for general p:

Theorem 2.2 (Gaither and Ward, 2012) For the “p-percentile rules”, 0 < p ≤ 1, let Ln denote the
number of retained items after n observations. Then, as n→∞, we have E{Ln}

np → cp, where

cp =

1+
∑
k≥1

dpke−pk
dpke

∏k
j=1

1
1+ p
dpje

(p+ 1)Γ(p+ 1)
.

The first result regarding the quality of the set of selections follows for LsD rules by definition (but
also proved in [59]):

Theorem 2.3 (Krieger et al., 2007) Consider an LsD rule defined by r(·). Let Ln denote the number of
selected items after n observations, then the set of selections contains the best r(Ln) items.

For example, almost half of the set of selected items are the very best seen using the 1
2 -percentile

rule. Krieger et al. introduced another quantitative measure of the quality of retained items, that is
An = Qn

Ln
, where Qn is the sum of the ranks of retained items. The following theorem introduces

the order of growth of An for different families of rules:

Theorem 2.4 (Krieger et al., 2007) For the “p-percentile rules”, 0 < p ≤ 1, let An denote the average
rank of retained group after n observations, then

E{An}

an(p)
→ bp, as n→∞,

where

an(p) =


n1−p, if p < 1

2 ,

√
n · logn, if p = 1

2 ,

np, if p > 1
2 .



32 CHAPTER 2. A REVIEW OF THE HIRING PROBLEM AND RELATED PROBLEMS

The limiting behaviour of An suitably normalized, depends on p and is characterized in the fol-
lowing theorem:

Theorem 2.5 (Krieger et al., 2007) For the “p-percentile rules”, 0 < p ≤ 1, let An denote the average
rank of retained group after n observations, then as n→∞

• If 0 < p < 1
2 , then

An

n1−p
(a.s.)−−−→ nondegenerate r.v.,

• If 12 < p ≤ 1, then

An

Ln

(a.s.)−−−→ qp, and E
{
An

Ln

} → qp, with qp =
p2

2(2p− 1)
,

• If p = 1
2 , then

An

Ln · logn
(a.s.)−−−→ 1

8
, and E

{
An

Ln · logn

} → 1

8
.

Moreover, Krieger at al. have pointed out to other useful quantities like the number of observations
made from the instance that the size of retained group became i − 1 until its size became i, called Zn, and
the waiting time, called Nn that is the number of observations made until n items have been retained. Zn
is simply the distance between the last two retained items after n observations. ForNn, they have
mentioned that for 0 < p ≤ 1, and n ≥ 1, then E{Nn} =∞ since E{Z2} =∞, which is true for well
understood reasons.

2.2.2 Better-than-average rules

The most important instance in this class of rules is the “better-than-average rule”, which was
introduced first by Preater [82] but generalized and studied widely by Krieger et al. [60, 61]. We
start defining the general case.

Definition 2.3 For β > 0, “β-better-than average rule” selects the first item in the sequence, then any
further item is selected if and only if its score is better than β times the present average of the retained
group.

The selection criteria are based on the absolute quality scores (scores, for short), of the present item
and the corresponding average score of the retained group.

In their paper [60], Krieger at al. have studied three distributions of the scores: Exponential,
Pareto and Beta. Four quantities were considered,

• Tk: the waiting time, that is the number of observations until the size of retained group is k,

• Mn: the number of selected items after n observations,

• An: the average score of selected items after n observations, and

• Yk: the average score of the first k selected items.

They made use of the Martingale Convergence Theorem and show many interesting results for
different distributions of the scores. We review the main results related to the limiting behaviour
of the studied quantities in the following theorems:
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Theorem 2.6 (Krieger et al., 2008) For the “better-than-average rule”, assume that the observations are
i.i.d. r.v.’s from an Exponential distribution with mean 1. Let Tk, Mn, An and Yk be defined as above,
and G denote a r.v. that has the Gumbel distribution, with cumulative function (c.f.) exp(−e−x), then as
n, k→∞

i) Tk
k2

(a.s.)−−−→ eG/2,

ii) Mn√
n

(a.s.)−−−→ √2e−G/2,

iii) An − (logn)/2
(a.s.)−−−→ (G+ log 2)/2,

iv) Yk − logk
(a.s.)−−−→ G.

Preater was the first to give the result for Yk in [82]. Theorem 2.6 extends Preater’s results for the
Exponential distribution of scores.

Theorem 2.7 (Krieger et al., 2008) For the “β-better-than-average rule”, assume that the observations
are i.i.d. r.v.’s from Pareto(α) distribution with α > 1. Let Tk, Mn, An and Yk be defined as above, then
for β > α−1

α and as n, k→∞
Tk

k
(β−1)α2+2α−1

α−1

,
Mn

n
α−1

(β−1)α2+2α−1

,
An

n
(β−1)α+1

(β−1)α2+2α−1

and
Yk

k
(β−1)α+1
α−1

converge a.s. to a positive finite r.v.

Pareto distribution with parameter α has a c.f. Fα(x) = 1− x−α, x ≥ 1.

Theorem 2.8 (Krieger et al., 2008) For the “β-better-than-average rule”, β > 0, assume that the obser-
vations are i.i.d. r.v.’s from Pareto(α) distribution. Let Yk denote the average score of the first k selected
items, then as k→∞

i) If 0 < α < 1 then

log Yk
k1−α

converges a.s.

ii) If α = 1 then

log Yk
(logk)2

converges a.s.

The corresponding results for the other quantities Tk,Mn and An were complicated.

Theorem 2.9 (Krieger et al., 2008) For the “β-better-than-average rule”, assume that the observations
are i.i.d. r.v.’s from Beta(α, 1) distribution. Let Tk, Mn, An and Yk be defined as above, then for β < α+1

α
and as n, k→∞

Tk

k
(α+1)2−α2β

α+1

,
Mn

n
α+1

(α+1)2−α2β

, An · n
α+1−αβ

(α+1)2−α2β and Yk · k1−
αβ
α+1

converge a.s.
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Beta distribution with parameters (α, 1) has a c.f. Fα(x) = xα for 0 ≤ x ≤ 1 and Fα(x) = 1 for 1 ≤ x,
with α > 0.

Krieger et al. continued studying the β-better-than-average rule in [61] but considering different
class of distributions for the scores, namely the Gumbel domain of attraction of extreme value
distribution with c.f. exp(−e−x). In particular, they presented many results for a specific subset
of the Gumbel family, which is called “stretch exponential” distributions. The later class contains
many interesting distributions, i.e. Normal, Lognormal, Gamma and Weibull.

Definition 2.4 Consider the class of distributions Gα defined by:

Gα(x) = 1− exp
(

−H(x)
)
, H(x) = c · xα + h(x),

where

• h ′′(x) exists, and c, α > 0 are constants.

• lim
x→∞ h(x)

xα
= 0.

• lim
x→∞ h

′(x)

xα−1
= 0.

When c = 1, we have the “stretch exponential” distributions, that contains the Normal (that is G2
with h(x) = log x) and Gamma distributions as particular cases.

They considered here two quantities: Tk that is the waiting time for selecting k items and Yk is the
average score of the first k selected items. We review first the main results for Yk.

Theorem 2.10 (Krieger et al., 2010) For the “better-than-average rule”, assume that the underlying dis-
tribution of the scores of items belongs to the stretch exponential family. Let Yk denote the average score
of the first k selected items and G denote a r.v. that has a Gumbel distribution, then as k→∞

Yk −G−1(logk)
(a.s.)−−−→ a finite r.v.,

under the conditions

• E{Z2(a)} < aγ for some 0 < γ <∞ and all a > a0, and

• f ′(a) ≤ 0 for all a ≥ a0, for some a0 <∞.

Here Zk = Yk − Yk−1, is the “overshoot” over Yk−1 after having the retained group size is equal to
k. Then Z(a) is distributed like X− a|X > a, and f(a) = E{Z(a)}.

Theorem 2.11 (Krieger et al., 2010) For the “β-better-than-average rule”, β > 1, assume that the un-
derlying distribution of the scores of items belongs to the stretch exponential family. Consider the normal-
ized r.v. Yk

kβ−1 , where Yk denotes the average score of the first k selected items, and f(x) = E{X − x|X > x},
then

i) If f(x) < cx
(log x)1+ε , where c, ε > 0, then

Yk

kβ−1

(a.s.)−−−→ a nondegenerate positive r.v.,
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ii) If Yk
kβ−1 converges a.s., f is monotone and lim

k→∞E
{
Yk

kβ−1

}
<∞ then for some constant x0 > 0

∫∞
x0

f(x)

x2
dx <∞.

Moreover, in general for Gα distribution of scores (Definition 2.4), α > 0, then

E
{
Yk

kβ−1

}
and V

{
Yk

kβ−1

}
(a.s.)−−−→ nondegenerate positive r.v.’s.

Now we move to the other quantity, Tk, and show the main results for its asymptotic behaviour.
For the general rule, β > 1, no general results are available for Tk, but for a standardized version
which is

T∗k =
Tk∑k−1

j=1 (1− F(βYj))−1
. (2.1)

Here they considered only F ∈ Gα, α > 0with h(x) ≡ 0 andH(x) = xα. Then it is nice to show that
the asymptotic behaviour of T∗k depends on β as shown in the following theorems:

Theorem 2.12 (Krieger et al., 2010) For the “β-better-than-average rule”, consider F as the distribution
of scores where F(x) = 1 − e−xα with α > 0. Let T∗k be defined as in (2.1) and Yk denote the average score
of the first k selected items , then as k→∞

i) If 1 < β < 1+ 1
2α then T∗k

(a.s.)−−−→ 1,

ii) If 1+ 1
2α < β < 1+ 1

α then T∗k
(P)−−→ 1,

iii) If 1+ 1
α < β then T∗k

(d)−−→ Exp(1), and Tk
Wk

(d)−−→ Exp(1) whereWk = eβαY
α
k−1 .

Theorem 2.13 (Krieger et al., 2010) For the “β-better-than-average rule”, consider F as the distribution

of scores where F(x) = 1 − e−xα with α > 0 and β = 1 + 1
α . Let W = lim

k→∞ Yk

k1/α
, where Yk denotes the

average score of the first k selected items and T∗k is defined as in (2.1), then as k→∞
T∗k

(d)−−→ ∞∑
j=1

Rj,

where, conditionally onW = w, the Rj are independent, exponentially distributed with mean µj, where

µj =
e(βw)α − 1

ej(βw)α
.
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2.3 Lake Wobegon strategies

Broder et al. [15] introduced explicitly for the first time the terminology of the “hiring problem”
in 2008. They got motivated by the secretary problem considering the extension of hiring many
employees instead of hiring only one. They considered the absolute scores of candidates as uni-
formly distributed on the interval (0, 1); each candidate has a quality scoreQi. Thus theseQi’s are
i.i.d. r.v.’s with common distribution Unif(0, 1).

In this model they introduced some hiring strategies, the most interesting are what they called
“Lake Wobegon strategies”1. Broder et al. have borrowed this colorful name from Peter Norvig
[76] who claimed that Google actually uses such kind of strategies to hire new employees. Lake
Wobegon strategies hire candidates that are better than the “average” candidate already hired, where
the average may refer to either mean or median.

Thus, this class of strategies includes “hiring above the mean” and “hiring above the median”.
They also considered briefly the max strategy or hiring above the best and hiring above a fixed
threshold. We review in this section the results obtained in [15] for two quantities: the waiting time
in terms of the number of interviews until n candidates are getting hired, and the gap between the
average score of hired candidates and the maximum score (i.e., 1).

Hiring above the mean

This strategy behaves exactly like the “better-than-average rule” introduced first by Preater [82].
It is also one member in the class of “β-better-than average rule” when β = 1 (Subsection 2.2.2).
We define it anew before showing the results,

Definition 2.5 The strategy “hiring above the mean” hires the first candidate in the sequence, then any
further candidate is hired if and only if his score is larger than the current average score of all hired candi-
dates so far.

In this strategy, let Ai denote the average quality after i hirings, with A0 = q being the quality
of the initial candidate, so that Ai refers to the average quality of i + 1 hired candidates. Then, at
any step, this strategy will hire only scores that are above the mean quality of the hired staff. We
summarize the results obtained for this strategy in the following theorem:

Theorem 2.14 (Broder et al., 2008) For the strategy “hiring above the mean”, assume that the scores of
candidates are i.i.d. r.v.’s from Unif(0, 1) distribution.

• Let Ai denote the average quality of i + 1 hired candidates, then with probability 1, infinitely many
candidates will be hired and limi→∞Ai = 1.

• The expected gap after n hirings, where gap is defined as Gn = 1−An, is

E{Gn} = Θ
( 1√

n

)
.

• Let Tn be the number of candidates that have been interviewed when the number of hired candidates
reaches n, then

E{Tn} = Θ
(
n3/2

)
.

1As pointed out in [15], Lake Wobegon is a fictional town, where “the women are strong, the men are good looking,
and all the children are above average”. The considered strategies match this term in the sense that each recruited
candidate, at least at the time when he is hired, is above “average”.
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• The distribution of the gap (under suitable initial conditions) weakly converges to a Lognormal
distribution, that means that the body of the distribution converges to a lognormal distribution, but
there may be larger error at the tails.

Thus Broder et al. have shown that the quality of the hired staff is improved all the time and also
the hiring rate will be reasonable. The quantity Gi gives us an indicator of the quality of hired
staff. So, for large values of n, the quality will be close to 1 (the maximum quality). Following
the derivation in their paper, we find that the initial starting gap has a multiplicative effect on the
expected gap and the expected number of hired candidates. And this is true also when starting
with more than one employee.

Hiring above the median

This strategy has the same flavor as the “12 -percentile rule” (Subsection 2.2.1) , but with a small
change in the hiring criteria as we shall explain soon. The following definition clarifies well the
behaviour of this strategy

Definition 2.6 The strategy “hiring above the median” hires the first candidate in the sequence, then any
further candidate is hired if and only if his score is larger than the current median score of the hired staff.
The median of a set of k (distinct) elements x1 < x2 < · · · < xk is the `-th largest element, i.e., xk+1−`,
with ` = dk+12 e.

Thus when the number of hired candidates is odd, there is only one unique median and this is the
threshold candidate for both hiring above the median and the 1

2 -percentile rule. But when the
number of hired candidates is even, then we say that there are two medians, then hiring above the
median considers the lowest median as the threshold, while the 1

2 -percentile rule takes the highest
median to be its threshold.

The set of hired candidates here starts with one candidate with quality q ∈ (0, 1) and whenever
we have 2k + 1 hired candidates, the next two hired candidates must have at least the median
score Mk of the 2k + 1 candidates. The results of this strategy are summarized in the following
theorem:

Theorem 2.15 (Broder et al., 2008) For the strategy “hiring above the median”, assume that the scores
of candidates are i.i.d. r.v.’s from Unif(0, 1) distribution.

• Let Mk denote the median score of 2k + 1 hired candidates, then with probability 1, infinitely many
candidates will be hired and limk→∞Mk = 1.

• The gap is defined as G ′k = 1−Mk, hence it converges to 0 as k→∞. The gap expectation is

E{G ′k} = Θ
(1
k

)
.

• Let T ′k be the number of interviews until there are 2k+ 1 hired candidates. Then

E{T ′k} =
k(k+ 1)

g
,

where g = 1− q, the initial starting gap.
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• Let A ′n denote the mean quality score of the first n hired candidates. Then

E{A ′n} = 1−Θ
( logn
n

)
.

• The distribution of the gap also converges weakly to a Lognormal distribution as in hiring above the
mean.

Thus it is also true for this strategy that the quality of the hired staff is improved all the time —as
G ′k and A ′n say—and also the hiring rate will be reasonable. Moreover, hiring above the median
leads to smaller gap (higher quality) than hiring above the mean, but with fewer hirings (slower rate
of growth) because the number of interviews between hirings is much larger.
Finally, Broder et al. claim that both strategies (hiring above the mean and hiring above the me-
dian) are within a constant factor of optimal. However, they do not explicitly state what do they
mean by “optimal” in this context, and there seems not to be an obvious notion of optimality.

Broder et al. proposed some generalization of the strategy hiring above the median that is, for two
integers a and b, “hire a candidates, then move up the threshold b candidates in the rank order”.
So hiring above the median strategy is “hire 2, move up 1”. They have shown in the appendix of
[15] the following results for two quantities: G∗k which denotes the quality at the threshold candidate
after ka hirings. And T∗k which denotes the total number of interviews before there are ak + 1 hirings.
They show that:

E{G∗k} = Θ
(
k− b

a−b
)
, and E{T∗k } = Θ

(
k

a
a−b
)
.

2.4 The hiring problem and permutations

Archibald and Martı́nez [5] proposed the random permutation model for the hiring problem as an
alternative to the model used by Broder et al. in [15]. Krieger et al. had worked in the random per-
mutation model of the problem (review Subsection 2.2.1), but the independent study by Archibald
and Martı́nez is purely discrete and opens the door to obtain various interesting results for the hir-
ing problem as we will see in the rest of this section.

Archibald and Martı́nez considered a class of hiring strategies that work in the random permuta-
tion model, so such strategies are rank-based. Considering relative ranks is one similarity between
this model and the secretary problem, which does not hold for the absolute scores model. “Hiring
above the median” strategy (introduced originally by Broder et al.) is one member in this class, as
well as its generalization, introduced here, “hiring above the α-quantile of the hired staff”, with
0α < 1. They proposed also another rank-based strategy, namely “hiring above them-th best can-
didate”. As we shall see, the later strategy is closely linked tom-records [6] in permutations. Two
quantities of interest were studied in [5]: hn, that denotes the number of hired candidates after receiv-
ing n candidates or the size of the hiring set, and gn which represents the gap of last hired candidate
after receiving n candidates.

We review in this section the framework given by Archibald and Martı́nez showing how they were
able to use basic techniques of Analytic Combinatorics [37] in order to analyze rank-based hiring
strategies. We discuss their important definition of the notion of “pragmatic” hiring strategies,
together with the results for hn and gn under the studied hiring strategies.
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Random permutation model

Here, the interviewed candidate is given a rank which is relative to the ranks of the previous candi-
dates. The ranking scheme considers the larger rank as better than lower one, that is the contrary to
ranking scheme in secretary problems and the p-percentile rules. But of course both ways are to-
tally equivalent and lead to the random permutation model for the sequence of candidates. Thus,
for a sequence S = s1, . . . , si, . . . of candidates, si denotes the relative rank of the i-th candidate
among all interviewed ones, where the best candidate seen so far among the n gets a rank n,
while the worst one gets rank 1. Then the n ranks (or scores) of the n candidates form finally a
permutation σ(n) = {1, . . . , n}. Then any permutation σ representing the scores is equally likely.
In this context, the hiring set of a permutation σ is the set of indices (arrival times) of candidates
that would be hired by applying a specific strategy to σ.

General framework

Before introducing the main tool used in this model, it is better to be familiar with the meaning
of some terms. Given a permutation σ(n−1) of length n − 1 and a value (relative rank) j, 1 ≤ j ≤
n, then σ(n−1) ◦ j denotes the resulting permutation of size n after relabelling j, j + 1, . . . , n and
appending j to the end. For example, if we have this sequence of relative ranks: S = 1, 1, 3, 2, 2

then the corresponding permutations are σ(1) = 1, σ(2) = σ(1) ◦ 1 = 21, σ(3) = σ(2) ◦ 3 = 213,
σ(4) = σ(3) ◦ 2 = 3142 and σ(5) = σ(4) ◦ 2 = 41532. The notation H(σ) will denote the set of
indices of the hired candidates or the hiring set of the permutation σ. This hiring set has some
parameters to be studied w.r.t. a given hiring strategy such as its size h(σ), the gap of last hired
candidate g(σ), the index of last hired candidate L(σ) and other useful parameters as we will see later.
The letters hn, gn, Ln, . . . will denote the corresponding r.v.’s of these parameters. The gap of last
hired candidate is defined as g(σ) = 1−

R(σ)
|σ| where R(σ) is the score of last hired candidate.

The main tool in this framework is the generating functions which are essential for analyzing com-
binatorial structures as permutations. For each hiring parameter, they define a bivariate exponen-
tial generating function (BEGF) of the form B(z, u) =

∑
p∈P u

cost(p)z|p|/|p|!, with P the family of
permutations and cost(·) a certain cost function. Then using the symbolic method, they derive
a PDE for B(z, u) by combining the corresponding recurrence of that parameter with the BEGF.
Solving the PDE and using some analytic techniques often leads to a closed form for B(z, u), from
which one gets the probability distribution and (factorial) moments of the studied parameter by
extracting the coefficients [znuk]B(z, u) or [zn] ∂r

∂urB(z, u)
∣∣
u=1

, respectively.

There is an important r.v. indicator called Xj(σ) which is defined as

Xj(σ) =

{
1, if a candidate with score j is hired after σ,
0, otherwise.

and the quantity
X(σ) =

∑
1≤j≤|σ|+1

Xj(σ),

tells us how many candidates from the |σ| + 1 possible ones, would be hired after processing the
permutation σ under the applied strategy. Each hiring strategy is characterized by its correspond-
ing X(σ). So, for each parameter, we will obtain a differential equation in the function representing
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this parameter involving X(σ). Then, for a particular hiring strategy, one has to use its character-
istic X(σ) and solve.
Archibald and Martı́nez introduced the concept of “pragmatic” strategies which is equivalent to
the LsD rules by Krieger et al. (Definition 2.1).

Definition 2.7 A rank-based strategy is pragmatic if the following two conditions are met:

1. For all σ and all j, Xj(σ) = 1 implies Xj ′(σ) = 1 for all j ′ ≥ j.

2. For all σ and all j, X(σ ◦ j) ≤ X(σ) + Xj(σ)

The first condition states that whenever a pragmatic strategy hires a candidate with score j, it
would hire a candidate with a higher score. The second condition bounds the hiring rate and guar-
antees that the potential of hiring X(·) does not change if no new candidate is hired. Archibald and
Martı́nez proved the following result, which applies for all pragmatic strategies, and is completely
equivalent to Theorem 2.3:

Theorem 2.16 (Archibald and Martı́nez, 2009) For any pragmatic hiring strategy and any permuta-
tion σ,H(σ) contains at least the X(σ) best candidates of σ, that is, the candidates with scores |σ|, |σ|−1,. . . ,
|σ| + 1− X(σ).

We have also the following general result:

Theorem 2.17 (Archibald and Martı́nez, 2009) For any pragmatic hiring strategy, let gn denote the
gap of last hired candidate, then

E{gn} =
1

2n
(E{Xn} − 1),

where E{Xn} = [zn]
∑
σ∈P X(σ)z

|σ|

|σ|! .

Now we can show the results of Archibald and Martı́nez for hiring above them-th best, and hiring
above the α-quantile strategies.

Hiring above them-th best candidate

The following definition explains the behaviour of this strategy,

Definition 2.8 The strategy “hiring above the m-th best” hires the first m candidates in the sequence
regardless of their relative ranks, then any further candidate is hired if and only if his relative rank is larger
than the currentm-th largest one between all previously hired candidates.

Thus X(σ) for this strategy is defined as follows

X(σ) =

{
|σ| + 1, if |σ| < m,

m, if |σ| ≥ m.

Notice that the value m is fixed along the hiring process and it might be some fixed integer or
being determined according to some function of the number of candidates n, i.e. m = d

√
ne,

m = dlogne, . . .. The subscript notation {n,m} is used with the studied parameters here to refer
to the strategy.
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Theorem 2.18 (Archibald and Martı́nez, 2009) For the strategy “hiring above them-th best”, let hn,m
denote the size of the hiring set after n interviews. Then for 1 ≤ m ≤ n, the expectation is

E{hn,m} = m(Hn −Hm + 1) = m ln
(
n

m

)
+m+O(1),

where the asymptotic expansion holds uniformly for 1 ≤ m ≤ n. The variance for fixed m (m = Θ(1))

is asymptotically V{hn,m} = m lnn + O(1). Moreover, the following central limit holds for fixed m and
n→∞,

hn,m −m lnn√
m lnn

(d)−−→ N (0, 1).

With m = 1, hiring above the best, E{hn} = ln n + O(1) and P{hn = k} is given by the unsigned

Stirling numbers of the first kind
[
n

k

]
which coincides with the number of permutations of size

n that have exactly k left-to-right maxima [57]. That is because hiring above the best hires only
the left-to-right maxima ranks. It is worth to mention here that they were able to proof the central
limit theorem for hn,m directly from the closed form of the generating function using Hwang’s
quasi-powers theorem [37]. Prodinger [83] studied the number of m-records for n independent
r.v.’s drawn from a Geometric distributed with P{X = x} = pqx−1 and p + q = 1. He obtained
same results for E{hn,m} and V{hn,m}, as given in Theorem 2.18, where the random permutation
model results by considering the limit q→ 1.

Theorem 2.19 (Archibald and Martı́nez, 2009) For the strategy “hiring above them-th best”, let gn,m
denote the gap of last hired candidate after n interviews. Then, for 1 ≤ m ≤ n,

P
{
gn,m =

k

n

}
=
1

m
, for k ∈ {0, 1, . . . ,m− 1}.

As an immediate consequence, we have that E{gn,m} = m−1
2n .

It follows that g(σ) = 0 for hiring above the best as the hiring set contains the best candidate seen
ever, and goes quickly to 0 as n grows form ≥ 1.

Hiring above the α-quantile of the hired staff

Archibald and Martı́nez introduced a generalization of “hiring above the median” as defined here

Definition 2.9 The strategy “hiring above the α-quantile” hires the first candidate in the sequence, then
any further candidate is hired if and only if his relative rank is larger than the α-quantile, 0 < α < 1, of the
already hired staff. The α-quantile of a sequence x1 < x2 < · · · < xk of k elements is the element xj with
j = dαke.

ThusX(σ) = k−dαh(σ)e+1, |σ| ≥ 1. The results given in [5] for this general strategy are mentioned
as follows:

Theorem 2.20 (Archibald and Martı́nez, 2009) For the strategy “hiring above theα-quantile”, 0 < α < 1,
let hn and gn denote the size of the hiring set and the gap of last hired candidate after n interviews, respec-
tively. Then the exact growth order of the r-th integer moments of hn:

E{h
r
n} = Θ

(
n(1−α)r

)
.
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The exact growth order for the expectation of gn is

E{gn} = Θ(n−α).

In particular, when specializing to the “hiring above the median”, i.e. α = 1
2 , then E{h

r
n} = Θ

(
n
r
2

)
.

Archibald and Martı́nez also mentioned another parameter, the index of last hired candidate. This
parameter helps us to study the dynamics of the hiring problem. They gave only the differential
equation that describes the behaviour of this parameter.

Theorem 2.21 (Archibald and Martı́nez, 2009) Let L(z, u) be the generating function

L(z, u) =
∑
σ∈P

z|σ|

|σ|!
uL(σ),

where L(σ) is the index of last hired candidate in σ.
Then

(1− z)
∂L(z, u)

∂z
− L(z, u) = u

∑
σ∈P

X(σ)
(zu)|σ|

|σ|!
−
∑
σ∈P

X(σ)
z|σ|

|σ|!
uL(σ).

The proof of this theorem is similar to that one of Theorem 1.4.

2.5 The Chinese restaurant process

Here we review a similar process to those having on-line decision-making fashion, so it is of inter-
est when discussing the hiring problem. Pitman introduced, in his notes: Combinatorial Stochastic
Processes [77], the Chinese restaurant process (CRP) under the so-called two-parameter model (α, θ).
In fact, these notes [77] give a rich study of the properties of some combinatorial models of ran-
dom partitions and random trees and their relations with stochastic processes with independent
increments. Let us focus on the formulation of the CRP and its distributional and asymptotic re-
sults related to the main studied quantity: the number of blocks, or this consistent name: the number
of occupied tables after receiving n customers, Kn.

Definition 2.10 Suppose that initially (time 0) there is an empty restaurant with an infinite number of
unlimited circular tables. Customers arrive at discrete time events. Let the first customer (arriving at
time 1) be seated at table #1. Assume that after time n, we have n customers seated at k tables. Then
the (n + 1)-th customer is seated according to the following probabilistic rule, that is called “seating plan
(α, θ)”:

• he is placed at an unoccupied table with probability kα+θ
n+θ ,

• he is placed at the occupied table #i with probability ni−α
n+θ , if table #i has ni customers (note that∑k

i=1 ni = n).

According to this rule, there are three possible classes (that satisfy the conditions of probability)
of seating plans can be induced:

• Case #1: α = −κ < 0 and θ = mκ form = 1, 2, . . .



2.5. THE CHINESE RESTAURANT PROCESS 43

• Case #2: α = 0 and θ > 0.

• Case #3: 0 < α < 1 and θ > −α.

Thus under any particular seating plan, the sequence (Kn)n≥1 is a Markov chain, with initial value
K1 = 1 and increments in {0, 1}, and inhomogeneous transition probabilities

P{Kn+1 = k+ 1|K1, . . . , Kn = k} =
kα+ θ

n+ θ
,

P{Kn+1 = k|K1, . . . , Kn = k} =
n− kα

n+ θ
.

The distribution of the r.v. K(α,θ)
n , under a seating plan (α, θ), is given by:

P
{
K

(α,θ)
n = k

}
= αk−1

Γ(k+ θ
α)Γ(θ+ 1)

Γ(n+ θ)Γ( θα + 1)
S−1,−α
n,k , (2.2)

where S−1,−α
n,k represents a generalization of Stirling numbers of the first kind (i.e., S−1,0

n,k is the
unsigned Stirling numbers of the first kind, refer to [77] for more details), and it can be computed
after extracting the coefficients of the generating function below:

S−1,−α
n,k =

n!

k!
[ζn]

(
w−1,−α(ζ)

)k
,

where

w−1,−α(ζ) =


1
α

(
1− (1− ζ)α

)
, if α 6= 0,

log 1
1−ζ , if α = 0.

The expected value of K(α,θ)
n is given as follows:

E
{
K

(α,θ)
n

}
=


n∑
i=1

θ

θ+ i− 1
, if α = 0,

Γ(n+θ+α)Γ(θ+1)
αΓ(n+θ)Γ(θ+α) − θ

α , if α 6= 0.

(2.3)

Pitman introduced also the asymptotic properties of Kn for different cases as follows:

• Case #1: α < 0. Then θ = −mα, and for large n, Kn
(a.s.)−−−→ m.

• Case #2: α = 0. If we consider r.v. indicators Xi at the i-th arriving customer, then Xi are
Bernoulli

(
θ

θ+i−1

)
variables, hence the following theorem characterizes the limit distribution

of K(0,θ)
n in this case:

Theorem 2.22 (Pitman, 2006) For the seating plan (0, θ), let K(0,θ)
n denote the number of occupied

tables after receiving n customers, then as n→∞:

K
(0,θ)
n − θ logn√

θ logn
(a.s.)−−−→ N (0, 1).
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• Case #3: 0 < α < 1. The expectation of Kn follows from (2.3):

E{Kn} ∼
Γ(θ+ 1)

αΓ(θ+ α)
nα,

which indicates the suitable normalization for a limit law as stated in the following theorem:

Theorem 2.23 (Pitman, 2006) For the seating plan (α, θ), with 0 < α < 1 and θ > −α, let Kn
denote number of occupied tables after receiving n customers, then as n→∞:

Kn

nα
(a.s.)−−−→ Sα,

with continuous distribution, for s > 0:

d

ds
P{Sα ∈ ds} = gα,θ(s) =

Γ(θ+ 1)

Γ( θα + 1)
sθ/αgα(s),

where gα = gα,0 is the Mittage-Leffler density defined as follows:

gα(s) =
1

πα

∞∑
k=0

(−1)k+1

k!
Γ(αk+ 1)sk−1 sin(παk).

In this sense, it is said that the normalized r.v. Knnα is a “variant” of the Mittage-Leffler distri-
bution.

We emphasize that a seating plan (α, θ) is not an ordinary selection rule or hiring strategy but
rather an on-line decision-making procedure which is defined by the transition probabilities of in-
crement of the parameter Kn. Thus Kn and the number of hired candidates in the hiring problem, hn,
are two Markovian r.v.’s with increments in {0, 1}. According to Definition 2.10, since the probabil-
ity of opening a new table depends directly on the number of open tables so far, then it is obvious
to check similarity between some seating plans and the corresponding “rank-based” hiring strate-
gies. In some cases like the seating plan (0,m) and the strategy “hiring above them-th best”, both
K

(0,m)
n and hn,m are equivalent. In other cases like the seating plan (12 , 1) and the strategy “hiring

above the median” (also the “12 -percentile rule”), K
(1
2
,1)

n and hn are very similar but not equivalent
in neither the distribution nor their asymptotic behaviour. We will investigate such relationships
in detail in the next chapters.

Some simple Pólya’s urn schemes [67] share similar aspects with the hiring problem. For example
(see [77]), let U denote an urn and we have the following scheme:

1. Initially U contains two balls with two distinct colors c1 and c2.

2. Draw one ball from U, call it b then:

• The color of b is noted then it is placed back in U.

• If the color of b was never drawn before, then place two balls with new distinct colors
c+, c++ in U.
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• Otherwise, place two balls of the same color of b in U.

3. Repeat step # 2.

Thus under this probabilistic model, one quantity of interest is the number of distinct colors in the
urn, Cn. If we stop this process after drawing n balls from the urn, then Cn behaves exactly like

K
(1
2
,0)

n in the CRP. It is, in turn, close to hn for hiring above the median.

In the same context, some schemes in the balls and bins problem are closely related to both CRP
and the hiring problem. Consider the following process involving balls and bins:

• Initially there arem bins, for a positive integerm > 1, each contains one ball.

• Balls arrive one at a time. For each new ball:

– With probability p, create a new bin and place the ball in it.

– Place the ball in the i-th bin with probability 1 − p, which is proportional to nγi , γ ∈ R
where ni is the number of balls in the i-th bin.

This process involves a generalization for Pólya’s urn problem (see [20] for more details). For the
particular setting γ = 1 and p = m

n+m , the n-th ball has probability ni
n+m to be placed in the i-th

bin. Now if we consider the parameter: number of bins after placing n balls, Bn under this special
process, then Bn is equivalent to K(0,m)

n the number of tables of the CRP with seating plan (0,m)

and hn,m the number of hired candidates for hiring above them-th best.

2.6 General discussion

In this section we give some important conclusions and remarks concerning all the studies of
the hiring problem so far. All analyzed hiring strategies in the context of the hiring problem are
“pragmatic”. The notion of pragmaticity (not under that name) was introduced by Krieger et al.
[59], as stated in Definition 2.1, where a rank-based strategy is pragmatic if it satisfies the LsD
scheme. Archibald and Martı́nez introduced explicitly an equivalent definition for pragmaticity
(Definition 2.7). For pragmatic rank-based strategies, the threshold candidate at any time of the
hiring process should be one candidate in the hiring set, the score of this threshold always goes
up (its quality is improving all the time), and the number of choices to hire the next candidate
is an integer for any finite sequence of candidates. Score-based strategies like the “β-better-than-
average” family studied in [15, 60, 61] are also pragmatic, although a slightly different technical
definition of pragmaticity is needed. The hiring threshold for such strategies cannot decrease during
the hiring process, but this threshold (which is essentially a real number in (0, 1)) may be a score
of one hired candidate before or not. The “potential of hiring” for score-based strategies is the
length of the gap between the threshold score and the maximum score (say, 1).

On the other hand, similar on-line decision-making procedures like the seating plans (α, θ) of the
CRP are defined by the transition probabilities of increment for the quantities of interest. Thus one
feasible or valid seating plan should obey the general conditions of probability, i.e., the probabili-
ties of all taken decisions at some moment sum up to 1.
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We point out that, for rank-based strategies, the absolute scores model when the scores are i.i.d.
r.v.’s from a continuous distribution, and the random permutation model are equivalent. The
behaviour of any rank-based hiring strategy, in terms of the number of hired candidates, waiting
time, etc., is “distribution-free” when only ranks of candidates are considered. This remark was
already given by Krieger et al. [60] and also has been discussed by others, e.g. [5]. As we have
seen, the number of hired candidates under the “12 -percentile rule” (also for “hiring above the
median”) is Θ(

√
n) regardless of the distribution. For “better-than-average rule ”, which is not a

rank-based strategy, the number of hired candidates grows with order Θ(
√
n) for the Exponential

distribution, but with order Θ(n2/3) if the scores follow a Uniform distribution (Theorem 2.9,
where the Uniform distribution is exactly Beta(1, 1) distribution).

We gave some examples showing the connections between related sequential selection processes
like the hiring problem, the CRP, Polya’s urn schemes, and balls and bins models. Establishing
such connections is useful where the results obtained for some problem may give new insights
for another related one and vice-versa, as we will see in next chapters. We have seen various ap-
proaches to analyze those processes, but since there are many instances of isomorphism between
particular cases of them regarding the main parameter the number of hired/selected/distinct/... items,
then it is worth to think of a “unified” framework which can analyze similar selection rules. This
point will be discussed in Chapter 5.
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This part contains the main contributions of the thesis. Chapter 4 introduces a detailed study
of the strategy “hiring above the median”. Definition 2.9 explains the behaviour of this strategy
which is a special case of “hiring above the α-quantile” when α = 1

2 . We investigate this hiring
strategy under the setup of Archibald and Martı́nez, but we use a direct approach to obtain our re-
sults, rather than relying on more general techniques of Analytic Combinatorics. We consider the
relation between the score of the threshold candidate (current median) and the number of hired can-
didates (the size of the hiring set), then our recursive approach depends on distinguishing between
two cases according to the parity of the size of the hiring set, whether it is odd or even. Thus we
obtain two fundamental quantities, namely a[1]

n,` and a[2]
n,`, the probabilities that, after interviewing

n candidates, the threshold candidate has the `-th largest score amongst all candidates seen so
far and an odd or an even number of candidates has been hired, respectively. Many quantities
studied for this strategy can be expressed easily in terms of a[1]

n,` and a[2]
n,`, while other quantities

are obtained by appropriate generalization of them.

We obtain many results for this strategy involving the exact and limiting probability distributions
of many hiring parameters that give us a precise characterization of the strategy. The connections
between hiring above the median, and similar on-line selection processes like the “12 -percentile
rule” (see Subsection 2.2.1) and the seating plan (12 , 1) of the Chinese restaurant process (CRP)
(see Section 2.5) are also investigated.

Moreover, our approach proves useful to obtain explicitly the exact and limiting probability
distributions of the number of retained items for the 1

2 -percentile rule, which are slightly different
from those of hiring above the median. We also obtain the results of an interesting quantity that is
the waiting time for both the 1

2 -percentile rule and the seating plan (12 , 1). The main contributions
and results of hiring above the median have been published in [51], and a journal version of that
paper in [52].

Chapter 5 contains our study of the strategy “hiring above the α-quantile”, see Definition 2.9.
For the general case, 0 < α < 1, we show that the framework given in Section 2.4 can give us at
least the order of growth of several basic quantities, namely the expectation of many parameters
like the number of hired candidates, the gap of last hired candidate, and the number of replacements.
Using the recursive approach, used in Chapter 4, leads to explicit results for the number of hired
candidates for rational α, where α = 1

d , d ∈ N. The work on this strategy is still on-going, where
we try to obtain similar results for other particular cases, i.e., α = 2

3 ,
3
4 , . . ., that might give us

some intuition of the case of rational α, where α = p
q , with gcd(p, q) = 1. The current results and

contributions of hiring above the α-quantile are available in the technical report [49].

Chapter 6 is dedicated to the analysis of “hiring above the m-th best” strategy, which is defined
in Definition 2.8. The behaviour of this strategy is quite simple, so that in most cases starting
from the definition of each studied parameter leads in a straightforward manner to the desired
analysis. The contributions of this chapter include the distributional results for many parameters,
clarifying the connections with m-records, the relationship between this strategy and the seating
plan (0,m) of the CRP, and the results of the waiting time parameter for the seating plan (0,m).
We have published our preliminary results of hiring above the m-th best in [50], and submitted a
journal version, [48] containing all the details and additional results.

Chapter 7 introduces one application of the results obtained for “hiring above the m-th best” to
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the design and analysis of data streaming algorithms. More specifically, the explicit distributional
results for the number of hired candidates when the strategy hiring above them-th best is used to pro-
cess the sequence of candidates lead us to the design of a novel estimator, called RECORDINALITY,
of the number of distinct elements in a very large sequence which may contain repetitions; this
problem is known in the literature as “cardinality estimation”. We prove that RECORDINALITY

is an unbiased cardinality estimator and quantify precisely its accuracy, in terms of the standard
error. The estimator needs Θ(m logn) bits of memory and we show how the accuracy improves
as we make the parameter m larger. We provide also some experimental results that support our
theoretical findings, compare the estimator with other existing ones and show its reliability. More-
over, we discuss some promising ideas around RECORDINALITY and our new approach to data
streaming analysis. The contributions related to RECORDINALITY have been published in [47].

Besides RECORDINALITY, we show that other hiring parameters can be useful also in such
applications; we introduce another cardinality estimator called DISCARDINALITY which is based
upon the best discarded candidate, again using hiring above the m-th best. We give the analysis
of DISCARDINALITY and compute its standard error. DISCARDINALITY is not as interesting as
RECORDINALITY from a practical point of view, but we think that it might be useful as a basis for
the estimation of the similarity index of two data sets.

Chapter 3 contains the necessary introductory material before discussing the analysis of the stud-
ied hiring strategies. All strategies studied in this thesis are rank-based, and we assume the ran-
dom permutation model. We review the combinatorial model of the hiring problem in Section 3.1.
We give the formal definition of all hiring parameters (the random variables of interest) in Sec-
tion 3.2. These parameters can be defined for any rank-based hiring strategy not only the studied
strategies here. For the strategy hiring above the median we study two more quantities: the num-
ber of hired candidates conditioned on the first one, as hiring above the α-quantile strategy is sensitive
to the first hired candidate; and the probability that the candidate with score q is getting hired with
1 ≤ q ≤ n. Those two quantities are explained in Chapter 4.

Since improving the average quality of the hired staff is one essential goal for any hiring strategy
then we introduce in Section 3.3, “hiring with replacements” which combines a basis hiring strat-
egy with a replacement mechanism. Hiring with replacements yields the ultimate best quality of
the hired staff. For each new candidate, we use the basis strategy to decide if he is to be hired
or not. However, if the candidate does not rank well enough to be hired but he is better than the
worst hired one then this new candidate replaces the worst hired one. The quantity of interest in
hiring with replacements is obviously the number of replacements done, so we analyze this param-
eter also for the studied strategies. The number of replacements depends on the number of hired
candidates, thus it also gives implicitly some indication of the dynamics of the hiring process.
Hiring with replacements opens the door for simple and efficient distinct sampling algorithms in
data streaming analysis, with added benefit that the size of the generated sample smoothly adapts
to the (unknown) number of distinct elements.



Chapter 3

Preliminaries

3.1 Formal statement of the problem

As mentioned in Section 2.4, Archibald and Martı́nez introduced the combinatorial or discrete
model of the hiring problem. This formulation of the problem opens the door to study many useful
hiring parameters that characterize the hiring process when applying a certain hiring strategy. We
specify here the mathematical formulation of the hiring problem.

i) Input: a sequence of relative ranks S = s1, s2, . . . , si, . . . of the candidates. For a candidate
with rank si, exactly si − 1 previous candidates rank worse than that candidate.

ii) The rank of the i-th candidate, 1 ≤ si ≤ i, is uniformly distributed.

iii) Each finite sequence s1, . . . , sn represents a random permutation σ(n) of length n.

iv) A decision must be taken whether to hire the i-th candidate or not at step i.

v) Decisions are irrevocable.

vi) We have no information about the future.

Recall from Section 2.4 that the indices (arrival times) of the hired candidates are forming the
hiring set denoted by H(σ). We use Q(σ) to denote the set of scores of hired candidates after
processing the permutation σ of candidates using a specific hiring strategy. There is always a
trade-off between two demands: hiring candidates at some reasonable rate and improving the
“average” quality of the hired staff (i.e., the more candidates are hired, the worse could be the
quality of the hired staff and vice-versa). We focus here on studying the behaviour of the hiring
strategies via several hiring parameters.

3.2 Hiring parameters

There are two groups of parameters to investigate the two corresponding general aspects of the
hiring process, namely, the hiring rate (the dynamics of the hiring process), and the quality of the
hired staff. We have already seen some parameters like the waiting time, the number of hired candi-
dates and the gap of last hired candidate in Chapter 2. Here we introduce more parameters, giving
formal definitions of all of them. For each introduced parameter, we review related quantities
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that were studied previously. We begin with the parameters related to the dynamics of the hiring
process, we call them dynamics indicators.

Number of hired candidates. Our basic quantity is the random variable (r.v.) hn, which gives the
number of hired candidates (i.e., the size of the hiring set) for an input sequence of length n. We
use the same notation, hn, as Archibald and Martı́nez (see Section 2.4). This quantity was studied
by Krieger et al. as Ln in the analysis of the p-percentile rules, (Subsection 2.2.1). Also, they used
the r.v. Mn to denote the number of retained items for the β-better-than average rule, (Subsection
2.2.2).

Waiting time. Here we use the r.v. WN to give the waiting time in terms of the number of in-
terviews required to hire exactlyN candidates. One might say that hn andWn are two faces of the
same coin. Krieger et al. used the r.v. Tk to denote the waiting time for the β-better-than average
rule. Broder et al. used also Tk to represent the number of interviews to hire k candidates for Lake
Wobegon strategies (Section 2.3).

Index of last hired candidate. The r.v. Ln denotes the index of last hired candidate of a sequence
s1, . . . , sn of length n, where Ln = i if the i-th candidate is recruited, and no subsequent candidate
j, j > i, is recruited. In other words, Ln represents the maximum index in H

(
σ(n)

)
. If H = ∅ then

Ln = 0 by convention. Again we use same notation, Ln, as Archibald and Martı́nez.

Distance between the last two hirings. The r.v. ∆n gives the distance (i.e., difference) between the
indices of the last two recruited candidates in the input sequence. If we look at the hiring set
after scanning the input sequence then ∆n is the difference between the two maximum indices in
H
(
σ(n)

)
. By convention, if hn ≤ 1 then ∆n = 0.

Next we give a description of the quantities that measure the quality of the hired staff, we call
them quality indicators.

Score of last hired candidate. The r.v. Rn gives the score of last hired candidate for a sequence of n
candidates (i.e., the last “score” inQ

(
σ(n)

)
which corresponds to the maximum index inH

(
σ(n)

)
).

Directly related is the gap gn = 1 − Rn
n (introduced by Archibald and Martı́nez), which helps to

measure how close the quality of the last hired candidate is compared to the topmost one. Krieger
et al. have considered a related quantity An; the average rank/score of retained group, after n
observations, for both the p-percentile rules and β-better-than average rule. Also the r.v. Yk the
average score of the first k selected items, was analyzed for the β-better-than average rule. Broder
et al. analyzed the gap Gi = 1 − Ai, where Ai is the average quality of i hirings, for hiring above
the mean. For hiring above the median, they defined the gap as Gk = 1 −Mk, where Mk is the
median score of 2k+ 1 selected candidates.

Score of best discarded candidate. The r.v. Mn gives, for a sequence of n candidates, the score of
best discarded candidate. After scanning the sequence of candidates, the strategy generates two
sets of candidates: the set of selections (defined by H

(
σ(n)

)
and its related set of scores Q

(
σ(n)

)
)

and the rest of the sequence which forms the discarded set; thus Mn represents the maximum
score of the discarded set. This parameter describes also how selective the hiring process is: a
high value (close to n) ofMn means that the hiring strategy is very selective, whereas a low value



3.3. HIRING WITH REPLACEMENTS 53

ofMn means that the strategy is hiring too many candidates.

3.3 Hiring with replacements

One interesting extension of the hiring problem is “hiring with replacements”. This extension
violates one condition of the problem statement, namely the restriction that “decisions are irrevo-
cable”. Briefly, it might happen that, at some step, a good candidate is discarded (because his rank
is not good enough to become selected by the standard strategy), but he is better than the worst
already hired candidate. Then the hiring set is missing such a good candidate. To resolve this sit-
uation we extend the hiring strategy as follows: each candidate has two possibilities to get hired,
namely either the standard strategy will hire him, or he replaces the worst candidate amongst all
hired ones. Thus, after interviewing a new candidate, the following three cases may appear:

i) we hire the candidate by a direct application of the underlying standard strategy;

ii) we hire the candidate despite the standard strategy would not, because he is better than the
worst already hired candidate, but in this case the new candidate replaces the worst candidate
of the hiring set (thus the number of hired candidates remains the same);

iii) we discard the new candidate, because his rank is worse than the score of the worst hired
one.

We have the notation H(σ) and Q(σ) that denote the hiring set and the set of scores of hired
candidates, respectively, for the standard strategy. Let HR(σ), QR(σ) and h(R)

n denote the hiring
set, the set of scores of hired candidates and its size when we combine the standard strategy with
the replacement mechanism. As noticed above, for case ii) above, the size of the hiring set does
not change (we hire a candidate, but we fire another one), which implies h(R)

n = hn (although, of
course, in general HR(σ) 6= H(σ) and QR(σ) 6= Q(σ)). A direct result of hiring with replacements
is stated as follows:

Theorem 3.1 For any pragmatic strategy hiring hn candidates, its combinations with the proposed re-
placement mechanism will hire exactly the best hn candidates in the sequence. If σ(n) represents the scores
of n candidates and hn = k, then

QR
(
σ(n)

)
= {n− k+ 1, n− k+ 2, . . . , n− 1, n}.

We introduce now the r.v. fn, which measures the number of replacements done (i.e., the number
of applications of case ii) above) using the replacement mechanism together with some hiring
strategy. fn gives a measure about the “quality” of the standard strategy, since, if the hiring set
obtained contains good candidates then we do not need many replacements to obtain the set of
the best candidates and vice-versa. fn also gives an implicit indication of the dynamics of the
hiring process, where it depends directly on hn. So that this quantity combines the dynamical and
quality aspects of the hiring process.

Comment

As already hinted out in Section 2.6, the random permutation model and the absolute quality
scores model of the input sequence of candidates, are equivalent if we take only into consideration
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the relative ranks between candidates. Thus the dynamics indicators and the number of replacements
associated to any applied rank-based hiring strategy are “distribution-free”, regardless of the un-
derlying distribution of scores. On the other hand, it is clear that the values of the quality indicators
depend directly on the probability distribution from which the scores are drawn.



Chapter 4

Hiring above the median

4.1 Introduction

This chapter is devoted to the detailed study of the rank-based strategy “hiring above the median”.
The strategy was introduced originally by Broder et al. [15], but we study it under the combinato-
rial model of the hiring problem introduced by Archibald and Martı́nez in [5] (explained in Section
2.4). Given a sequence of candidates of length n that is modeled as a random permutation (best
candidate has a rank n whereas the worst one has 1), then, according to Definition 2.9, the strat-
egy hires the first candidate in the sequence and thereafter any coming candidate is hired if and
only if his rank is better than the median score of all previously hired candidates. We use here the
convention (refer to Section 2.3) that the median of a set of k (distinct) elements x1 < x2 < · · · < xk
is xdk

2
e.

As an example, if we process the sequence of scores σ(8) = 3 5 2 8 1 7 4 6 using “hiring above
the median” thenH

(
σ(8)

)
= {1, 2, 4, 6, 8} and Q

(
σ(8)

)
=
(
the underlined scores in σ(8)

)
, since each

of these candidates has, at the time of hiring, a rank better than the median of the previously hired
candidates. The number of hired candidates h8 = 5, the index of last hired candidate L8 = 8, the
distance between the last two hirings ∆8 = 2, the score of last hired candidate R8 = 6, and the
score of best discarded candidates M8 = 4. If we apply the proposed replacement mechanism in
Section 3.3, then we have σ(8) = 3 5 2 8 1 7 4 6 and the underlined scores represent QR

(
σ(8)

)
with

hiring set HR
(
σ(8)

)
= {2, 4, 6, 7, 8}. In this example we have the number of replacements f8 = 1,

since the candidate with score 4 replaces the one with score 3 during the hiring process.

Besides those hiring parameters explained in Sections 3.2 and 3.3, we study the following quanti-
ties for hiring above the median:

1) Probability pn that the n-th candidate in a sequence of candidates is getting hired. This quantity is
closely related to the number of hired candidates, hn, and gives also some insight about the
hiring rate of this strategy.

2) Size of the hiring set conditioned on the first candidate. It has been noticed in [15] that the hiring
process is quite sensitive to the score of the first candidate (and thus the first hired candidate)
in the sequence. To get a quantitative result in this direction we also study the r.v. hn,q, which
gives the number of hired candidates hn conditioned on the event that the candidate with score
q (i.e., the q-th smallest candidate), in a sequence of n candidates, appears at the first position.

55
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Of course, if we denote by Un the score of the first candidate, it holds hn,Un = hn, where, for
the considered random permutation model, Un is uniformly distributed on {1, 2, . . . , n}.

3) Probability that the candidate with score q is getting hired. We introduce the probabilities pn,q,
which give the probability that the candidate with score q in a sequence of n candidates is
getting hired. Notice that trivially 1

n = pn,1 ≤ pn,2 ≤ · · · ≤ pn,n = 1 by considering the
probabilities conditioned on the event that the candidate with score q appears at first position,
second position, etc., in the sequence. These probabilities can also be used to give a first result
for the r.v. Sn measuring the total score of the set of hired candidates, i.e., the sum of the scores of
Q(σ) (a quantity, which seems difficult to treat directly via the proposed recursive approach),
since E{Sn} =

∑n
q=1 q · pn,q.

The sequel of this chapter is organized as follows: Section 4.2 introduces the results of many
studied parameters under this strategy. Section 4.3 gives the analysis and proofs of all theorems,
starting with the explanation of the used recursive approach. Section 4.4 explains in detail the
relationship between hiring above the median strategy and two similar selection processes: the
1
2 -percentile rule and the seating plan (12 , 1) of the CRP; it also contains new results for both men-
tioned processes. The chapter ends with some conclusions and future work in Section 4.5. The
results of this chapter have appeared in [51, 52].

4.2 Results

Theorem 4.1 Let hn denote the size of the hiring set after n interviews. Then the exact distribution of hn
is given as follows, with 1 ≤ k ≤ n:

P{hn = k} =

(n−1−bk
2
c

dk
2
e−1

)
( n
dk
2
e
) =


(n−`
`−1)
(n`)

, for k = 2`− 1 odd,

(n−`
`−2)

( n
`−1)

, for k = 2`− 2 even.

Asymptotically, as n→∞, hn√
n

(d)−−→ R̂, where R̂ is Rayleigh distributed with parameter σ =
√
2. Further-

more, the expectation of hn satisfies: E{hn} =
√
πn+O(1).

Corollary 4.1 Let pn denote the probability that the n-th interviewed candidate is getting hired. Then the
probability pn is given by the following exact formula (valid for n ≥ 2, whereas p1 = 1), for which the
stated asymptotic expansion holds (for n→∞):

pn =

n−1∑
`=1

(2`− 1)n+ `(2− 3`)

(n− `)2

(
n−`
`−1

)(
n
`

) =

√
π

2
√
n
·
(
1+O

( 1√
n

))
.

Theorem 4.2 Let WN denote the “time” (i.e., the number of candidates that have to be interviewed) until
exactly N candidates are hired, thenWN is distributed as follows:

P{WN = t} =


`
t ·

(t−1−`
`−2 )

(t−1`−1)
, for N = 2`− 1 odd and N ≥ 3,

`
t ·

(t−1−`
`−1 )

(t−1` )
, for N = 2` even and N ≥ 2,



4.2. RESULTS 57

with P{W1 = 1} = 1.

Asymptotically, as N→∞, WN
N2

(d)−−→ Ŵ, where Ŵ has the following density function:

fW(x) =
1

4x2
· e− 1

4x , for x > 0.

(Note that the moments of Ŵ do not exist.)

Theorem 4.3 Let Ln denote the index of last hired candidate after n interviews. Then the exact distribution
of Ln is given as follows:

P{Ln = m} =

m−1∑
`=1

(
m−1−`
`−2

)(
n
`

) +

m∑
`=1

`− 1

`
·
(
m−`
`−2

)(
n
`

) , for 1 < m ≤ n,

and P{Ln = 1} = 1
n .

Asymptotically, as n→∞, n−Ln√
n

(d)−−→ L̂, where L̂ has the following density function

fL(x) = 2

∫∞
0
t2e−t(x+t)dt, for x > 0.

(Note that the moments of L̂ do not exist for r ≥ 2.)
Furthermore, the expectation of Ln satisfies: E{Ln} = n−

√
πn+O(logn).

Theorem 4.4 Let ∆n denote the distance between the last two hirings after n interviews. Then the exact
distribution of ∆n is given as follows:

P{∆n = d} =


1
n , for d = 0,

n−d−1∑
m=1

m∑̀
=1

(m−`
`−1 )

( n
`+1)

· `
m+d−` +

n−d−1∑
m=1

m∑̀
=1

(m−`
`−2 )

( n
`+1)

· `
`+1 + 1

n(n−1) , for 1 ≤ d ≤ n− 1

and n ≥ 2.

Asymptotically, as n→∞, ∆n√
n

(d)−−→ ∆̂, where ∆̂ has the following density function

f∆(x) = 2

∫∞
0
t2e−t(x+t)dt, for x > 0.

Theorem 4.5 Let hn,q denote the size of the hiring set after n interviews, conditioned on the event that the
score of the first candidate is q. Then the exact distribution of hn,q is given as follows, with 1 ≤ k, q ≤ n:

P{hn,q = k} =


(`− 1) · (

n−q−`
`−2 )

(n−q
` )

, for k = 2`− 1 odd,

(`−1)(`−2)
` · (

n−q−`+1
`−2 )

(n−q
` )

, for k = 2`− 2 even.

Asymptotically, as n → ∞, and provided that n − q → ∞, hn,q√
n−q

(d)−−→ ĥ, where ĥ has the following
density function

fh(x) =
x3

8
e−x

2

4 , for x > 0.
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Theorem 4.6 Let Rn denote the score of last hired candidate after n interviews. Then the exact distribution
of Rn is given as follows:

P{Rn = r} =

n−1∑
`=n+1−r

(
n−`
`

)(
n
`+1

) · 1

`+ 1
+

n−1∑
`=n+1−r

(
n−`
`−1

)(
n
`

) · 1
`
, for 1 ≤ r ≤ n.

Asymptotically, as n→∞, n−Rn√
n

(d)−−→ R̂, where R̂ has the following density function

fR(x) = 2

∫∞
0
e−(x+t)2dt, for x > 0.

Theorem 4.7 Let Mn denote the score of best discarded candidate after n interviews. Then the exact
distribution ofMn is given as follows, for 1 ≤ r ≤ n− 1:

P{Mn = r} =

n−r∑
`=1

(
`−1
n−`−r

)(
2n−2`−r
n−r−1

)(
n−r
`

)(
n
r

) ·
(
1+

(n− 2`− r+ 1)(2n− 2`− r+ 1)

r(n− r)

)

+

n−r∑
`=1

(
`−1

n−`−r+1

)(
2n−2`−r+1
n−r−1

)(
n−r
`−1

)(
n
r

) ·
(
1+

(n− 2`− r+ 2)(2n− 2`− r+ 2)

r(n− r)

)
,

and further P{Mn = 0} = 1

( n
dn
2
e)

.

Asymptotically, for n→∞, n−Mn√
n

(d)−−→ M̂, where M̂ is Rayleigh distributed with parameter σ = 1√
2

.

Theorem 4.8 Let pn,q denote the probability that the candidate with score q of n interviewed candidates
is getting hired. Then the probabilities pn,q are, for 1 ≤ q ≤ n, given as follows:

pn,q =

n−q∑
`=1

[
(`− 1)

n
(
n−1
`

)(
n−`−1
n−`−q

) · `−2∑
k=0

(
`− 2

k

)(
n− `− q+ k

`− 2

)(
n− `+ 1

n− `− q+ k+ 2

)

+
(`− 1)

n
(
n−1
`−1

)(
n−`

n−`−q+1

) · `−2∑
k=0

(
`− 2

k

)(
n− `− q+ k

`− 3

)(
n− `+ 1

n− `− q+ k+ 2

)]

+

n∑
`=n−q+1

[(
n−`
`−1

)(
n
`

) +

(
n−`
`−2

)(
n
`−1

) ] .
Theorem 4.9 Let fn denote the number of replacements done after processing n candidates using the mech-
anism “hiring with replacements”. Then asymptotically, as n → ∞, the expectation of fn is given as
follows:

E{fn} =
√
πn+O(logn).

4.3 Analysis

Here we give the detailed calculations leading to the results stated in Section 4.2. Due to the ex-
plicit nature of the obtained exact formulas, the stated asymptotic results follow by applying Stir-
ling’s formula for the factorials (1.2) in connection with standard techniques as Euler-Maclaurin
formula (1.4).
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It is also worth to mention that we have made a few “sanity checks” of our theoretical findings
on the one hand with the exact probabilities if the number n of candidates is small and in the other
hand by carrying out experimental studies for n large and they match well [46].

4.3.1 Outline of the analytical approach

As explained previously in Section 4.1, the median (i.e., the “lower” median) of a set of k (distinct)
elements is the `-th largest element with ` = dk+12 e = bk+22 c. In this strategy, each of the selected
candidates has, at the time of hiring, a rank better than the median score of the previously hired
candidates. Thus, during the hiring process, the median of the current set of scores of hired can-
didates could be considered as the threshold candidate, who is actually used to make the decision,
whether a new candidate is recruited (if he has a rank larger than the score of the threshold can-
didate) or not (otherwise).

It is a simple but quite useful observation that, when applying “hiring above the median”, at each
time of the hiring process all candidates seen so far with a score larger than the current threshold
candidate are contained in the hiring set (Theorem 2.16). Thus there is a simple relation between
the score of the threshold candidate and the size of the hiring set.

Let us assume that in a sequence of n candidates k candidates are eventually recruited and let
us further assume that the threshold candidate has the `-th largest score amongst all candidates
in this sequence. It follows then that ` = k+1

2 if k is odd and ` = k
2 + 1 if k is even, i.e., ` = dk+12 e.

And this yields the basis of the recursive approach used here, where we thus have to distinguish
according to the parity of the size of the hiring set and to take into account the score of the thresh-
old candidate.

Many of the parameters considered here can be expressed using the following two sequences
of numbers:

• a
[1]
n,`: the probability that, after n interviews, the threshold candidate has the `-th largest

score amongst all candidates seen so far and an odd number of candidates has been hired.

• a
[2]
n,`: the probability that, after n interviews, the threshold candidate has the `-th largest

score amongst all candidates seen so far and an even number of candidates has been hired.

Moreover, the remaining parameters are obtained by studying extensions of this approach (as we
will see later, e.g.,Mn in Subsection 4.3.8).

Evolution of the median. During the hiring process, after the first hiring, every candidate be-
comes the median of all hired candidates remains as the threshold of this strategy for two consec-
utive hirings, then the next best one in the rank order becomes the threshold. The following table
shows the evolution of the median (the `-th largest) against the first few values of the size of the
hiring set k.

k 1 2 3 4 5 6 7 · · ·
` 1 2 2 3 3 4 4 · · ·

Thus, if a new candidate (better than the threshold) is hired and the size of the hiring set is odd,
then the threshold candidate remains the same, and his rank has to be increased (because there
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is one more hired candidate better than him). While for even size of the hiring set, hiring a new
candidate leads to change the current threshold candidate to be the next best one in the rank or-
der, that means the rank of the threshold candidate is the same but the candidate himself has
been changed. This is simply explained in Figure 4.1. The “automaton” stated in Figure 4.2 de-
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` ` `

k = 3

{
discarded

Figure 4.1: A “snapshot” of the hiring process under hiring above the median. We start after hiring
three candidates (k = 3); then two consecutive hirings occurred. The threshold candidate (i.e., the
median) is marked in gray. “`” represents the rank of each candidate.

scribes then the “transition probabilities”, when at time n + 1 a new candidate appears, whose
rank will be compared with the score of the threshold candidate, which is the `-th largest amongst
the first n candidates. Note that, of course, the hiring process is not described by a finite two-
state automaton, but it shall give a simplified picture of the underlying Markov chain with two
states; here states 1 and 2 correspond to an odd and even number of hired candidates, respectively.

For the fundamental quantities studied in this work, this naturally leads to systems of two double-
or triple-indexed linear recurrences, which can be translated into systems of linear partial differ-
ential equations (PDEs) for the corresponding generating functions.

However, here a second aspect of the present approach comes into play: a direct treatment of
the recurrences obtained via generating functions always leads to pairs of first order PDEs, which
then yield second order linear PDEs for each of the generating functions corresponding to an odd
or even number of hired candidates, respectively.

Since it seems quite involved to get the desired solutions of these second order PDEs in a
systematic way, we used a “trick” similar to one applied (in a slightly different context) in a PDE
approach for the study of diminishing urn models in [54].

Namely, we were successful in finding suitable normalization factors of the studied recursive
sequences, such that one of the corresponding generating functions itself reduces to a first order
linear PDE (or even to an ordinary differential equation).

The explicit solutions of these differential equations also lead to explicit results for the exact
distribution of the fundamental quantities considered, from which the limiting distribution results
can be obtained in a rather straightforward way.

4.3.2 Size of the hiring set

As follows from the remarks given in Subsection 4.3.1, the defined sequences a[1]
n,` and a[2]

n,`, fully
determine the probability distribution of the r.v. hn measuring the number of hired candidates
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21
1− `

n+1

a
[1]
n,` 7→ a

[1]
n+1,`

1− `
n+1

a
[2]
n,` 7→ a

[2]
n+1,`

`
n+1

a
[1]
n,` 7→ a

[2]
n+1,`+1

`
n+1

a
[2]
n,` 7→ a

[1]
n+1,`

Figure 4.2: The “automaton” describing the transition probabilities of the underlying Markov
chain for the numbers a[1]

n,` (state 1: odd size of the hiring set) and a[2]
n,` (state 2: even size of the

hiring set). For example, moving from state 1 to state 2: at time n, the size of the hiring set is odd
and the threshold candidate is the `-th best hired, then the probability of increment (new hiring)
at time n + 1 (thus the size of the hiring set becomes even) is `

n+1 and the rank of the threshold
candidate will increase (`→ `+ 1).

according to

P{hn = k} =


a

[1]

n,k+1
2

, for k odd,

a
[2]

n,k
2

+1
, for k even.

(4.1)

From the description of the hiring process via the transition probabilities of the automaton given
in Figure 4.2, the following recurrences for the probabilities a[1]

n,` and a[2]
n,` are deduced immediately

(with initial values a[1]
1,1 = 1 and a[2]

1,1 = 0, and where we define a[1]
n,` = a

[2]
n,` = 0 outside the range

1 ≤ ` ≤ n):

a
[1]
n,` =

`

n
· a[2]
n−1,` +

(
1−

`

n

)
· a[1]
n−1,`, n ≥ 2, 1 ≤ ` ≤ n, (4.2a)

a
[2]
n,` =

`− 1

n
· a[1]
n−1,`−1 +

(
1−

`

n

)
· a[2]
n−1,`, n ≥ 2, 1 ≤ ` ≤ n. (4.2b)

Since introducing (ordinary) generating functions for the numbers a[1]
n,` and a[2]

n,` would lead to
systems of PDEs, for which a treatment seems to be rather involved, we proceed as follows. Either
via algebraic manipulations or, alternatively, by considering the automaton given in Figure 4.2
(i.e., by considering the “time” when we changed from state 1 to state 2 until we are back again
in state 1), we find that a[2]

n,` can be eliminated from the system of recurrences (4.2a)-(4.2b). This
yields

a
[1]
n,` =

(
1−

`

n

)
a

[1]
n−1,` +

n−2∑
m=1

a
[1]
m,`−1 ·

`− 1

m+ 1
· `
n

n−2∏
j=m+1

(
1−

`

j+ 1

)
,

and after simple manipulations we obtain the following recurrence for a[1]
n,`:

(n− `) ·
(
n

`

)
a

[1]
n,` = (n− `) ·

(
n− 1

`

)
a

[1]
n−1,` +

n−2∑
m=1

(`− 1) ·
(
m

`− 1

)
a

[1]
m,`−1. (4.3)
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The form of this recurrence for a[1]
n,` suggests to introduce suitable “normalizations” of these num-

bers via

b
[1]
n,` =

(
n

`

)
a

[1]
n,` (4.4)

and to consider the corresponding generating function

B[1](z, u) =
∑
n≥1

∑
1≤`≤n

b
[1]
n,` · z

nu`. (4.5)

It is a routine task to show that the recurrence (4.3) yields the following linear first order PDE for
B[1](z, u):

z(1− z)
∂

∂z
B[1](z, u) +

(
zu− u−

u2z2

1− z

)
∂

∂u
B[1](z, u) − zB[1](z, u) = 0. (4.6)

To get the general solution of a linear first order PDE one can apply the so-called “method of
characteristics” (see, e.g., [90] for a description of this method), which also is a standard tool in
computer algebra systems. One obtains that the general solution of (4.6) is given by

B[1](z, u) =
1

1− z
· F
(
1− z− zu

zu(1− z)

)
, (4.7)

with an arbitrary differentiable function F(x). To characterize the unknown function F(x) in (4.7)
we have to adapt the general solution to the initial conditions, which is not always trivial for PDEs.
We are successful by introducing

B̃(z, u) = B[1]

(
zu,

1

u

)
=
∑
n≥1

∑
0≤`≤n−1

b
[1]
n,n−` · z

nu`, (4.8)

and considering the “diagonal” of the sequence b[1]
n,`. Due to the combinatorial description of a[1]

n,`

it follows that a[1]
n,n = 0, for n ≥ 2, which, together with the initial value a[1]

1,1 = 1, yields

b
[1]
n,n =

{
1, n = 1,

0, n ≥ 2.

The latter values yield thus the useful initial condition B̃(z, 0) = z for B̃(z, u), which, due to (4.7)
and (4.8), can be written as follows:

B̃(z, u) =
1

1− zu
· F
(
1− zu− z

z(1− zu)

)
. (4.9)

Plugging u = 0 into (4.9) gives

z = B̃(z, 0) = F

(
1

z
− 1

)
,

and thus characterizes the function F(x) = 1
x+1 occurring in (4.7). Therefore, we obtain from (4.7)

the following astonishing simple solution for the generating function of the sequence b[1]
n,`:

B[1](z, u) =
1

1− z
· 1

1+ 1−z−zu
zu(1−z)

=
zu

1− z− z2u
. (4.10)
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Extracting coefficients from the solution given in (4.10) is an easy task:

b
[1]
n,` = [znu`]B[1](z, u)

= [znu`]
zu

(1− z)
(
1− z2

1−zu
)

= [zn]
z

1− z
[u`−1]

1

1− z2

1−zu

= [zn]
z

1− z

(
z2

1− z

)`−1
= [zn−2`+1]

1

(1− z)`
=

(
n− `

`− 1

)
.

Using (4.4), this immediately yields the following explicit formula for the numbers a[1]
n,`:

a
[1]
n,` =

b
[1]
n,`(
n
`

) =

(
n−`
`−1

)(
n
`

) . (4.11)

Furthermore, by using the recurrence (4.2a) and plugging (4.11) into it, we also get an explicit
expression for the numbers a[2]

n,`:

a
[2]
n,` =

n+ 1

`

(
a

[1]
n+1,` − a

[1]
n,` ·

(
1−

`

n+ 1

))
=
n+ 1

`

((
n+1−`
`−1

)(
n+1
`

) −
(n+ 1− `)

n+ 1
·
(
n−`
`−1

)(
n
`

) ) ,
which, after simple manipulations that are omitted here, yields

a
[2]
n,` =

(
n−`
`−2

)(
n
`−1

) . (4.12)

Combining the results of (4.11) and (4.12) leads to the exact probability distribution of hn as stated
in Theorem 4.1.

Limit distribution. To characterize the limiting distribution of hn we use the exact formulas for
a

[1]
n,` and a[2]

n,` given in (4.11) and (4.12) and show suitable asymptotic expansions. To get them we
require the following expansion, which can be obtained easily by applying Stirling’s formula:

c(n, `) =

(
n−`
`

)(
n
`

) = e− `
2

n ·
(
1+O

( `
n

)
+O

( `3
n2

))
, (4.13)

uniformly for 1 ≤ ` ≤ n
1
2
+ε, whereas these numbers are exponentially small for ` ≥ n

1
2
+ε. Since

a
[1]
n,` =

`

n+ 1− 2`
· c(n, `) and a

[2]
n,` =

(`− 1)(n− `+ 1)

(n+ 1− 2`)(n+ 2− 2`)
· c(n, `),
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we furthermore get from (4.13) the following asymptotic expansions:

a
[1]
n,` ∼ a

[2]
n,` =

`

n
e− `

2

n ·
(
1+O

(1
`

)
+O

( `
n

)
+O

( `3
n2

))
, (4.14)

uniformly for 1 ≤ ` ≤ n
1
2
+ε, whereas these numbers are exponentially small for ` ≥ n

1
2
+ε. There-

fore, using (4.1), one obtains the following asymptotic equivalent of the probabilities P{hn = k}

valid, in particular, for k ∈ [n
1
2
−ε, n

1
2
+ε]:

P{hn = k} ∼
k

2n
e−k

2

4n . (4.15)

Setting k = x
√
n implies that hn√

n
converges, as n → ∞, in distribution to a limiting r.v. R̂ with

density

f̂(x) =
x

2
e−x

2

4 , for x > 0, (4.16)

i.e., to a Rayleigh distributed r.v. with parameter σ =
√
2.

The asymptotic result for the expectation

E{hn} =

n∑
k=1

kP{hn = k}

=

n∑
`=1

(
(2`− 1)a

[1]
n,` + (2`− 2)a

[2]
n,`

)
, (4.17)

given in Theorem 4.1 follows from the uniform asymptotic expansion (4.14) for a[1]
n,` and a[2]

n,` via

E{hn} =

n
1
2

+ε∑
`=1

4`2

n
e− `

2

n ·
(
1+O

(1
`

)
+O

( `
n

)
+O

( `3
n2

))
= 4
√
n

∫∞
0
x2e−x2dx ·

(
1+O

( 1√
n

))
=
√
πn+O(1).

We remark that plugging (4.11) and (4.12) into (4.17) leads, after simple manipulations, to the
following exact formula for E{hn}:

E{hn} =

n∑
`=1

(
`(2`− 1)(n+ 2− 2`) + 2(`− 1)2(n+ 1− `)

)
`(n+ 1− `)

(
n−`+1
`−1

)(
n
`

) . (4.18)

We state as an immediate consequence of the preceding studies exact and asymptotic results for
the quantity pn, which gives the probability that the n-th coming candidate in the sequence is getting
hired. Namely, since there are ` possibilities (out of n) for the n-th candidate being hired, if the
threshold candidate has the `-th largest score after n− 1 interviews, we obtain

pn =

n−1∑
`=1

(
`

n
· a[1]
n−1,` +

`

n
· a[2]
n−1,`

)
, for n ≥ 2 and p1 = 1. (4.19)



4.3. ANALYSIS 65

Thus, using (4.11) and (4.12), we get from (4.19) after simple manipulations the exact formula for
pn stated in Corollary 4.1. Furthermore, by using the asymptotic expansion (4.14), one can easily
evaluate pn asymptotically, for n → ∞, and also obtains the corresponding asymptotic result of
Corollary 4.1.

4.3.3 Waiting time

Of course, the distribution of the quantity WN, which measures the number of candidates that
have to be interviewed until exactly N candidates are hired, is closely related to the distribution
of hn studied in Subsection 4.3.2. By considering the probability that exactly N − 1 candidates
amongst the first t − 1 interviewed candidates are recruited and that the t-th candidate is also
recruited (if he ranks better than the threshold candidate with the `-th largest score; this happens
with probability `

t ), one immediately gets:

P{WN = t} = P{ht−1 = N− 1} · `
t

=

a
[2]
t−1,` ·

`
t , for N = 2`− 1 and N ≥ 3,

a
[1]
t−1,` ·

`
t , for N = 2` and N ≥ 2,

(4.20)

with P{W1 = 1} = 1, and where the quantities a[1]
n,` and a[2]

n,` are given in Subsection 4.3.2. Plugging
(4.11) and (4.12) into (4.20) yields the explicit formula for the probability distribution stated in
Theorem 4.2. Furthermore, by using the asymptotic expansion (4.13) we obtain the following
expansion:

P{WN = t} =
N2

4t2
e−N

2

4t ·
(
1+O

( 1
N

)
+O

(N
t

)
+O

(N2
t3

))
, (4.21)

which leads, by setting t = xN2, x > 0, to the limiting distribution result stated in Theorem 4.2.

4.3.4 Index of last hired candidate

Another quantity, where the results for a[1]
n,` and a[2]

n,` are of importance, is the index (i.e., the time)
Ln of the last hired candidate. Namely, using simple reasoning, we can see that the probability
that them-th interviewed candidate is the last one hired satisfies:

P{Ln = m} = P{We hire at positionm} · P{No hirings from position (m+ 1) till n}

=

m∑
`=1

a
[1]
m−1,`−1 ·

`− 1

m

n−1∏
j=m

(
1−

`

j+ 1

)
+

m−1∑
`=1

a
[2]
m−1,` ·

`

m

n−1∏
j=m

(
1−

`

j+ 1

)
, (4.22)

for 1 < m ≤ n, whereas P{Ln = 1} = 1
n . Thus plugging the formulas (4.11) and (4.12) into (4.22)

yields, after simple manipulations, the exact result stated in Theorem 4.3.
To characterize the limiting distribution of Ln we use the following asymptotic expansion that

holds uniformly for k, ` = O(n
1
2
+ε), which is obtained by applying Stirling’s formula:(

n−k−1−`
`−2

)(
n
`

) =
`2

n2
e−

`(k+`)
n ·

(
1+O

(1
`

)
+O

(k+ `

n

)
+O

((k+ `)3

n2

))
. (4.23)

Furthermore this expression is exponentially small for ` ≥ n
1
2
+ε and arbitrary k. Thus, by setting

m = n − k in the exact formula for the probabilities P{Ln = m} given in Theorem 4.3 and using
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(4.23), we get the following local approximation valid for k = O(n
1
2
+ε):

P{Ln = n− k} ∼ 2
∑
`≥1

`2

n2
e−

`(k+`)
n . (4.24)

Setting k = x
√
n and considering (4.24) as a Riemann sum of the corresponding integral we easily

get the following asymptotic equivalent of the probabilities studied:

P{Ln = n− k} ∼
2√
n

∫∞
0
t2e−t(x+t)dt, with k = x

√
n and x > 0. (4.25)

The limiting distribution result stated in Theorem 4.3 immediately follows from (4.25).
To get an asymptotic expansion of the expectation E{Ln} it is advantageous to start with the explicit
formula:

E{Ln} =

n∑
m=1

m(
n
`

) (m−1∑
`=1

(
m− 1− `

`− 2

)
+

m∑
`=1

`− 1

`
·
(
m− `

`− 2

))

=

n∑
`=1

(2`2 − 3`+ 1)n2 − (3`3 − 11`2 + 10`− 3)n− 6`3 + 12`2 − 8`+ 2

`2(n− `+ 1)
·
(
n−`+1
`−1

)(
n
`

) , (4.26)

which can be obtained by first changing the order of summations, then applying standard com-
binatorial identities based on

n∑
j=0

(
j

`

)
=

(
n+ 1

`+ 1

)
. (4.27)

Applying Stirling’s formula to the summand in (4.26) yields

E{Ln} =
∑
`≥1

e− `
2

n ·
(
2`− 3+

5`2

n
−
2`4

n2

)
·
(
1+O

( 1
`2

)
+O

( `6
n4

))
. (4.28)

Then we can evaluate the occurring sums asymptotically, as n→∞, as follows:∑
`≥1

`je− `
2

n =
nj+1/2

2

∫∞
0
e−ttj−1/2dt

=
1

2
Γ
( j+ 1
2

)
n
j+1
2 +O(1), for integers j ≥ 0, (4.29)

and ∑
`≥1

1

`
e− `

2

n =
1

2

∫n
1/n

e−t

t
dt

∼
1

2
E1
( 1
n

)
, as n→∞,

=
1

2
logn+O(1), (4.30)

where E1 is the exponential integral. Using (4.29) and (4.30) we obtain from (4.28), after collecting
all contributions, the following asymptotic result for the expectation E{Ln} stated in Theorem 4.3:

E{Ln} = n−
√
πn+O(logn).
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4.3.5 Distance between the last two hirings

For the distance∆n between the last two hirings we can use a similar reasoning like we did in Sub-
section 4.3.4 for the index Ln of the last hired candidate. Considering the transition probabilities
in the automaton given in Figure 4.2 and taking into account the “times” of the last two hirings
yields then the desired description of the probabilities P{∆n = d}.

Assume that at time m the size of the hiring set is odd which happens with probability a[1]
m,`, then

the last two hirings in a sequence of n candidates have occurred at positionsm+ 1with probabil-
ity `

m+1 (notice that now the size of the hiring set becomes even), and m + d + 1 with probability
`+1

m+d+1 (where we moved from odd to even size of the hiring set, then the rank ` has increased).

In between those two positions all candidates got discarded, with probability
∏m+d−1
j=m+1

(
1− `+1

j+1

)
,

also afterm+d+1 no more hirings until the last candidate, with probability
∏n−1
j=m+d+1

(
1− `+1

j+1

)
;

thus we have ∆n = d (see Figure 4.3). Since the decisions of hiring and discarding candidates are

index: 1 m + 1 m + d + 1 n

. . .

No hirings No hirings

Figure 4.3: A plot shows the “times” of the last two consecutive hirings.

independent, then we can multiply all previously mentioned probabilities and summing over all
positions from 1 to n− d− 1 gives P{∆n = d} in case of odd size of the hiring set.

Similar derivation follows for even size of the hiring set. It is left to consider the case when only
the first candidate and the (d+ 1)-th coming candidate are hired, then we add the three quantities
to obtain P{∆n = d}, for 1 ≤ d ≤ n − 1 and n ≥ 2, with a[1]

n,` and a[2]
n,` given in Subsection 4.3.2, as

follows:

P{∆n = d} =

n−d−1∑
m=1

m∑
`=1

a
[1]
m,` ·

`

m+ 1

m+d−1∏
j=m+1

(
1−

`+ 1

j+ 1

)
· `+ 1

m+ d+ 1

n−1∏
j=m+d+1

(
1−

`+ 1

j+ 1

)

+

n−d−1∑
m=1

m∑
`=1

a
[2]
m,` ·

`

m+ 1

m+d−1∏
j=m+1

(
1−

`

j+ 1

)
· `

m+ d+ 1

n−1∏
j=m+d+1

(
1−

`+ 1

j+ 1

)
(4.31)

+ a
[1]
1,1 ·

d−1∏
j=1

(
1−

1

j+ 1

)
· 1

d+ 1

n−1∏
j=d+1

(
1−

2

j+ 1

)
.

Furthermore, we define ∆n = 0 if only one candidate is getting hired, which occurs if and only if
the sequence starts with the maximum score and this, of course, happens with probability 1

n (this
also covers the case when n = 1). Plugging the results (4.11) and (4.12) into (4.31) yields, after
some simplifications, to the result stated in Theorem 4.4.

We will here only sketch very briefly the somewhat lengthy computations characterizing the
limiting distribution of ∆n. First, we remark that for asymptotic considerations it is advantageous
to start with the following formula for the probabilities (valid for 1 ≤ d ≤ n− 2 and n ≥ 3), which
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can be deduced from Theorem 4.4 by applying basic combinatorial identities:

P{∆n = d} =

n−d−1∑
`=2

(
n−d−`
`−1

)(
n
`+1

) · `

`+ 1
+

n−d−2∑
`=2

(
n−d−`−1
`−1

)(
n
`+1

) · `

`− 1
+ R(n, d), (4.32)

with

R(n, d) =
2

n(n− 1)

(
Hn−2 −Hd−1

)
+

1

n(n− 1)
−

n−d−1∑
m=3

m−1∑
`=2

`d

(m+ d− `)(m− `)
·
(
m−`
`−1

)(
n
`−1

) .
It turns out that, for d = O(n

1
2
+ε), R(n, d) is asymptotically negligible, i.e., R(n, d) = O

(
d

n
3
2

)
,

whereas the two sums of (4.32) contain the main contribution yielding the asymptotic equivalent

P{∆n = d} ∼
2√
n

∫∞
0
t2e−t(x+t)dt, with d = x

√
n and x > 0. (4.33)

Thus, (4.33) characterizes the limiting distribution of ∆n√
n

, which is the same one occurring in The-
orem 4.3 for the parameter Ln.

4.3.6 Size of the hiring set conditioned on the score of first candidate

We study here the r.v. hn,q measuring the number of hired candidates conditioned on the event
that the scoreUn of the first candidate in the sequence of n candidates is q. To do this we introduce
the numbers

an,k,q = P{hn = k and Un = q}, (4.34)

which give the joint probability that the first candidate has score q and k candidates are hired in
total. We mention that it is not difficult to extend the approach presented in Subsections 4.3.1-4.3.2
for computing the probabilities

an,k = P{hn = k},

by adapting the automaton of Figure 4.2 to obtain recurrences for the quantities

a
[1]
n,`,q = an,2`−1,q and a

[2]
n,`,q = an,2`−2,q.

However, it turns out that the task of determining the probabilities an,k,q can be reduced by
elementary considerations to the unconditioned probabilities an,k computed already in Subsec-
tion 4.3.2, yielding thus the required results.

We do this in a two-step procedure. First we show that the probabilities an,k,1 (the first can-
didate is the one with smallest score) fully determines an,k,q, for general q ≤ n. To do this, we
introduce In,k,q, which denotes the set of n-permutations, where the first element is q and k el-
ements are hired. It is immediate from the definition of the hiring strategy that, if the sequence
starts with score q, then none of the lower q − 1 scores in the sequence can get hired. Thus if
we eliminate all these q − 1 candidates from the original sequence and apply the hiring strategy
to this “reduced” sequence the number of recruited candidates will be the same. In particular,
if we eliminate in any permutation π ∈ In,k,q all elements less than q we get, after relabelling
q, q+ 1, . . . , n by 1, 2, . . . , n− q+ 1, a permutation π ′ ∈ In−q+1,k,1.
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If we take into account the number of possibilities of eliminating subpermutations from the set
In,k,q to get the set In−q+1,k,1, then we can state the following useful relation:

|In,k,q| = |In−q+1,k,1| ·
(
n− 1

q− 1

)
· (q− 1)!. (4.35)

Since

an,k,q =
|In,k,q|

n!
,

then (4.35) yields

an,k,q =
|In−q+1,k,1| ·

(
n−1
q−1

)
· (q− 1)!

n!
=
n− q+ 1

n
· an−q+1,k,1. (4.36)

Second we show that the sequences an,k,1 and an,k determine each other. We start with the obvi-
ous fact:

an,k =

n∑
q=1

an,k,q,

which, by plugging (4.36) into it, yields

an,k =
1

n

n∑
q=1

(n− q+ 1)an−q+1,k,1 =
1

n

n∑
q=1

q · aq,k,1. (4.37)

Multiplying (4.37) by n and taking differences gives then

an,k,1 =
nan,k − (n− 1)an−1,k

n
. (4.38)

By combining (4.36) and (4.38), we can link an,k,q with an,k:

an,k,q =
1

n

(
(n− q+ 1)an−q+1,k − (n− q)an−q,k

)
. (4.39)

Of course, the distribution of hn,q can be obtained from (4.39) as follows:

P{hn,q = k} =
P{hn = k and Un = q}

P{Un = q}
= nan,k,q = (n− q+ 1)an−q+1,k − (n− q)an−q,k, (4.40)

which, after plugging the exact formulas for an,k = P{hn = k} obtained in Theorem 4.1 into (4.40),
lead to the exact results stated in Theorem 4.5.
Due to the explicit nature of the exact results for the distribution of hn,q, the limiting behaviour
can be deduced from them quite easily: an application of Stirling’s formula gives

P{hn,q = k} =
k3

8(n− q)2
e

− k2

4(n−q) ·
(
1+O

(1
k

)
+O

( k

n− q

)
+O

( k3

(n− q)2

))
, (4.41)

uniformly for k = O
(
(n − q)

1
2
+ε
)
, whereas the probabilities are exponentially small for k larger.

This characterizes the limiting distribution of hn,q as stated in Theorem 4.5, by considering the
r.v. hn,q√

n−q
, and thus setting x = k√

n−q
in (4.41).
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4.3.7 Score of last hired candidate

To show results for the score Rn of the last recruited candidate after n interviews, we study the
r.v. R̃n = n + 1 − Rn (that is the rank of last hired candidate according to the ranking scheme:
rank 1 is better than rank n). By considering the automaton given in Figure 4.2 and distinguishing
according to the index of the last hired candidate, we obtain the following expression for the
probability that the last recruited candidate has the r-th largest rank, with 1 ≤ r ≤ n, amongst all
n interviewed candidates:

P{R̃n = r} =

n−1∑
m=1

m∑
`=r

a
[1]
m,` ·

1

m+ 1

n−1∏
j=m+1

(
1−

`+ 1

j+ 1

)
(4.42)

+

n−1∑
m=1

m∑
`=r

a
[2]
m,` ·

1

m+ 1

n−1∏
j=m+1

(
1−

`

j+ 1

)
+ a

[1]
1,1 ·

n−1∏
j=1

(
1−

1

j+ 1

)
· Jr = 1K.

Plugging the exact formulas (4.11) and (4.12) into (4.42) we get, after some simplifications by
changing the order of summations and applying identity (4.27), the following result for the exact
distribution of R̃n:

P{R̃n = r} =

n−1∑
`=r

1

`+ 1
·
(
n−`
`

)(
n
`+1

) +

n−1∑
`=r

1

`
·
(
n−`
`−1

)(
n
`

) . (4.43)

Of course, (4.43) also characterizes the distribution of Rn = n+ 1− R̃n as stated in Theorem 4.6.
The limiting distribution result given in Theorem 4.6 follows easily from (4.43) by applying Stir-
ling’s formula, which yields

P{n+ 1− Rn = r} = P{R̃n = r} =

n
1
2+ε∑
`=r

2

n
e− `

2

n ·
(
1+O

(1
`

)
+O

( `
n

)
+O

( `3
n2

))
.

Namely, setting r = x
√
n, shows that n−Rn√

n
converges in distribution to a r.v. Y, which has the

density function

fR(x) = 2

∫∞
x
e−t2dt = 2

∫∞
0
e−(x+t)2dt, for x > 0.

We further mention that the s-th integer moments of Y are given as follows:

E(Ys) =

∫∞
0
xsfR(x)dx

= 2

∫∞
0
e−t2 t

s+1

s+ 1
dt

=
2

s+ 1
Γ
(s
2

+ 1
)
.

4.3.8 Score of best discarded candidate

A direct recursive study of the r.v. Mn, which measures the score of the best discarded candi-
date after n interviews, seems to be involved (e.g., a PDE approach leads to equations where the
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unknown boundary values explicitly appear). We resolve the problem by considering auxiliary
quantities, namely

â
[1]
n,`,q and â

[2]
n,`,q, for 0 ≤ q ≤ n− `, (4.44)

which give the probabilities that, for n interviewed candidates, the threshold candidate has the
`-th largest score in the sequence, that an odd or even number of candidates, respectively, has been
recruited and that all of the `+ q highest ranked candidates are hired (and maybe others).

But the probability that the best discarded candidate has score r is simply given by the difference
between the probability that all candidates with a score higher than r are recruited and the prob-
ability that all candidates with a score higher than r − 1 are recruited, which yields the following
relation eventually characterizing the distribution ofMn:

P{Mn = r} =

n−r∑
`=1

(
â

[1]
n,`,n−`−r − â

[1]
n,`,n−`−r+1

)
+

n−r∑
`=1

(
â

[2]
n,`,n−`−r − â

[2]
n,`,n−`−r+1

)
. (4.45)

Of course, â[·]
n,`,0 = a

[·]
n,`, where the latter numbers are defined in Subsection 4.3.1 and given by

(4.11) and (4.12), since the ` highest ranked candidates are always hired if the threshold candidate
has the `-th largest score.
By an extension of the automaton for the transition probabilities as given in Figure 4.2 one gets
that the quantities â[·]

n,`,q satisfy, for n ≥ 2, 1 ≤ ` ≤ n and 1 ≤ q ≤ n − `, the following system of
recurrences:

â
[1]
n,`,q =

`

n
· â[2]
n−1,`,q−1 +

(
1−

`+ q

n

)
· â[1]
n−1,`,q, (4.46a)

â
[2]
n,`,q =

`− 1

n
· â[1]
n−1,`−1,q +

(
1−

`+ q

n

)
· â[2]
n−1,`,q. (4.46b)

To reduce the system of PDEs for the corresponding generating functions we consider the nor-
malized quantities

b̂
[·]
n,`,q =

n!

`!(n− q− `)!
· â[·]
n,`,q, (4.47)

which yields, from (4.46a)-(4.46b), the following system of recurrences:

b̂
[1]
n,`,q = ` · b̂[2]

n−1,`,q−1 + b̂
[1]
n−1,`,q, (4.48a)

` · b̂[2]
n,`,q = (`− 1) · b̂[1]

n−1,`−1,q + ` · b̂[2]
n−1,`,q. (4.48b)

To solve this system of recurrences (4.48a)-(4.48b) we introduce the generating functions

B̂[·](z, u, v) =
∑
n≥1

∑
1≤`≤n

∑
1≤q≤n−`

b̂
[·]
n,`,q · z

nu`vq. (4.49)

Due to the second recurrence (4.48b) we can express

∂

∂u
B̂[2](z, u, v) =

zu

1− z
· ∂
∂u
B̂[1](z, u, v)

and obtain eventually from (4.48a) the following PDE:

∂

∂z
B̂[1](z, u, v) −

(1− z)2

z2u2v
B̂[1](z, u, v) +

z(1− z)

(1− z− z2u)2
= 0. (4.50)
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It is not difficult to give an integral representation of the general solution of (4.50); however, it
seems quite involved to extract coefficients from the particular solution of (4.50), which satisfies
the initial condition B̂[1]

u (z, 0, v) = 0. Thus we choose another way to overcome this problem.
We introduce the functions

b
[1]
` (z, v) = [u`]B̂[1](z, u, v) =

∑
n≥`

∑
1≤q≤n−`

b
[1]
n,`,q · z

nvq (4.51)

and extract coefficients [u`] from (4.50); this gives the following recurrence:

b
[1]
` (z, v) =

z2v

(1− z)2
· (`− 1) · b[1]

`−1(z, v) +
z3v

(1− z)3
· (`− 1) ·

(
z2

1− z

)`−2
. (4.52)

The form of (4.52) suggests to introduce a further normalization via

ϑ` = ϑ`(z, v) =
b

[1]
`

(`− 1)!
(

z2v
(1−z)2

)` . (4.53)

Recurrence (4.52) can then be written as follows:

ϑ` = ϑ`−1 +
1

z(`− 2)!

(
1− z

v

)`−1
, (4.54)

and (4.54) can be solved easily by iterating it. Taking into account the initial value ϑ0 = 0we get

ϑ` =
1

z

∑̀
j=1

1

(j− 2)!

(
1− z

v

)j−1
, ` ≥ 0. (4.55)

Combining (4.53) and (4.55) leads to the following formula for the functions b[1]
` (z, v):

b
[1]
` (z, v) = z2`−1

∑̀
j=2

v`−j+1

(1− z)2`−j+1
· (`− 1)!

(j− 2)!
. (4.56)

Extracting coefficients from (4.56) and taking into consideration (4.51) yields then the following
exact formula for the numbers b̂[1]

n,`,q:

b̂
[1]
n,`,q = [znvq]b

[1]
` (z, v)

= [zn]z2`−1 · (`− 1)!

(`− q− 1)!
· 1

(1− z)`+q

=
(`− 1)!

(`− q− 1)!

(
n− `+ q

`+ q− 1

)
,

which, according to (4.47), leads to the following formula for â[1]
n,`,q:

â
[1]
n,`,q =

(
`−1
q

)(
n−`+q
`+q−1

)(
n
q

)(
n−q
`

) , 0 ≤ q ≤ n− `. (4.57)
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An exact formula for â[2]
n,`,q can be obtained from (4.57) via recurrence (4.46a):

â
[2]
n,`,q =

n+ 1

`

(
â

[1]
n+1,`,q+1 −

(
1−

`+ q+ 1

n+ 1

)
· â[1]
n,`,q+1

)
=

(
`−1
q+1

)(
n−`+q+1
`+q−1

)(
n
q+1

)(
n−q−1
`−1

) . (4.58)

Plugging (4.57) and (4.58) into (4.45) yields, after some manipulations, the exact formula for the
probabilities P{Mn = r} stated in Theorem 4.7.

For the derivation of the asymptotic behaviour of Mn we consider the r.v. M̃n = n −Mn. With
the exact formula for the distribution ofMn given in Theorem 4.7 we obtain, for 1 ≤ r ≤ n− 1:

P{M̃n = r} =

r−1∑
`=0

(
1+

(2`− r+ 1)(n+ 2`− r+ 1)

r(n− r)

) (r−`−1
`

)(
n+2`−r
r−1

)(
r
`

)(
n
r

)
+

r−1∑
`=0

(
1+

(2`− r+ 2)(n+ 2`− r+ 2)

r(n− r)

) (r−`−1
`+1

)(
n+2`−r+1
r−1

)(
r
`+1

)(
n
r

) .

For r = 0 (i.e., hiring everybody in the sequence): P{Mn = 0} = P{hn = n}. An application of
Stirling’s formula gives

P{M̃n = r} =

r
1
2

+ε∑
`=0

4`

n
e− `

2

r
− r
2

n ·
(
1+O

(1
`

)
+O

( `
r

)
+O

(`r
n

)
+O

( r3
n2

))
, (4.59)

for r = O
(
n
1
2
+ε
)
. Considering the sum occurring in (4.59) as a Riemann sum of the corresponding

integral and setting r = x
√
nwe get that

√
nP{M̃n = x} ∼ 2xe−x2 , for x > 0, (4.60)

and thus that n−Mn√
n

= M̃n√
n

converges in distribution to a Rayleigh distributed r.v. M̂ with param-

eter σ = 1√
2

as stated in Theorem 4.7.

4.3.9 Probability that a candidate with score q is getting hired

To compute the probability pn,q that the candidate with score q is getting hired in a sequence of n
candidates, we introduce the numbers ã[1]

n,`,q and ã[2]
n,`,q, which give the the probabilities that, for

n interviewed candidates, the threshold candidate has the `-th largest score in the sequence, that
an odd or even number of candidates, respectively, has been recruited and that the candidate with
the (`+ q)-th largest score amongst all candidates is hired.

Note further that each candidate in the sequence with a score q larger or equal to the threshold
candidate is getting hired anyway; thus in order to fully describe pn,q we further require the num-
bers a[1]

n,` and a[2]
n,` as defined in Subsection 4.3.1, since they give the probabilities that the threshold
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candidate has the `-th largest score in the sequence. It is immediate to see that the probabilities
pn,q can then be obtained from these numbers via the following relation:

pn,q =

n−q∑
`=1

(
ã

[1]
n,`,n−`−q+1 + ã

[2]
n,`,n−`−q+1

)
+

n∑
`=n−q+1

(
a

[1]
n,` + a

[2]
n,`

)
. (4.61)

But the probabilities ã[1]
n,`,q and ã[2]

n,`,q satisfy, for n ≥ 2, 1 ≤ ` ≤ n and 1 ≤ q ≤ n− `, the following
system of recurrences, which can be obtained by an extension of the automaton for the transition
probabilities given in Figure 4.2:

ã
[1]
n,`,q =

`

n
· ã[2]
n−1,`,q−1 +

q− 1

n
· ã[1]
n−1,`,q−1 +

(
1−

`+ q

n

)
· ã[1]
n−1,`,q, (4.62a)

ã
[2]
n,`,q =

`− 1

n
· ã[1]
n−1,`−1,q +

q− 1

n
· ã[2]
n−1,`,q−1 +

(
1−

`+ q

n

)
· ã[2]
n−1,`,q, (4.62b)

with initial values ã[1]
n,`,0 = ã

[1]
n,` and a[2]

n,`,0 = a
[2]
n,`.

It turns out that the normalization factor

n!

(`− 1)!(q− 1)!(n− `− q)!

yields a reduction of the system of PDEs for the corresponding generating functions. Thus we
introduce the numbers

b
[·]
n,`,q =

n!

(`− 1)!(q− 1)!(n− `− q)!
· ã[·]
n,`,q, (4.63)

leading, for n ≥ 2, 1 ≤ ` ≤ n and 1 ≤ q ≤ n− `, to the recurrences

b
[1]
n,`,q =

`

q− 1
· b[2]
n−1,`,q−1 + b

[1]
n−1,`,q−1 + b

[1]
n−1,`,q, (4.64a)

b
[2]
n,`,q = b

[1]
n−1,`−1,q + b

[2]
n−1,`,q−1 + b

[2]
n−1,`,q, (4.64b)

with b[·]
n,`,q = 0, if q = 0 or ` = 0. To treat the system of recurrences (4.64a)-(4.64b) we introduce

the trivariate generating functions

B[·](z, u, v) =
∑
n≥1

∑
1≤`≤n

∑
1≤q≤n−`

b
[·]
n,`,q · z

nu`vq. (4.65)

From (4.64b) we can express B[2](z, u, v) = zu
1−z−zv · B

[1](z, u, v) and eventually obtain from (4.64a)
the PDE

v(1− z− zv)
∂

∂v
B[1](z, u, v) −

z2u2v

1− z− zv

∂

∂u
B[1](z, u, v) −

(
1− z+

z2uv

1− z− zv

)
B[1](z, u, v) = 0.

(4.66)

However, it seems to be rather involved to adapt the general solution of (4.66) to the boundary
values, i.e., to find the proper solution to our problem; thus we proceed as follows.
We introduce

B̂(z, u,w) = B[1]

(
z, u,

(1− z)w

1+ zw

)
, (4.67)
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so that the PDE (4.66) translates into the following one:

(1− z)w
∂

∂w
B̂(z, u,w) − z2u2w

∂

∂u
B̂(z, u,w) − (1− z+ z2uw)B̂(z, u,w) = 0. (4.68)

We introduce now the functions

b̂`(w) = b̂`(w, z) = [u`]B̂(z, u,w) (4.69)

and extract coefficients [u`] from (4.68). This leads to the recurrence

w
∂

∂w
b̂`(w) − b̂`(w) =

`z2w

1− z
b̂`−1(w). (4.70)

To solve (4.70) we introduce the numbers

b`(w) =
b̂`(w)

`!
(
z2

1−z

)` , (4.71)

and the corresponding generating function

B(z, u,w) =
∑
`≥1

b`(w)u`. (4.72)

We get then from (4.70) the PDE

w
∂

∂w
B(z, u,w) − (1+ uw)B(z, u,w) = 0, (4.73)

whose general solution is given by

B(z, u,w) = w · C(z, u) · euw, (4.74)

with an arbitrary function C(z, u). To characterize the unknown function C(z, u) we have to com-
pute ∂

∂w B̂(z, u, 0), since we will use (4.74) yielding

∂

∂w
B(z, u,w)

∣∣∣
w=0

= C(z, u). (4.75)

According to (4.65), (4.67), (4.69), (4.71) and (4.72) we have

B(z, u,w) =
∑
n≥1

∑
1≤`≤n

∑
1≤q≤n−`

b
[1]
n,`,q

`!
· zn ·

(
u(1− z)

z2

)`(
(1− z)w

1+ zw

)q
,

which gives

∂

∂w
B(z, u,w)

∣∣∣
w=0

= (1− z)
∑
n≥1

∑
1≤`≤n

b
[1]
n,`,1

`!
· zn ·

(
u(1− z)

z2

)`
, (4.76)

where only the term of q = 1 survives. But the numbers ã[1]
n,`,1 defined in the beginning of this

subsection coincide with the numbers â[1]
n,`,1 defined in Subsection 4.3.8 during the computations
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of the parameterMn (as it is obvious from the corresponding definitions). Thus, using the explicit
formula for â[1]

n,`,1 as given in (4.57) and taking into account (4.63), gives an explicit formula for
b

[1]
n,`,1:

b
[1]
n,`,1 = `(`− 1)

(
n− `+ 1

`

)
. (4.77)

Plugging (4.77) into (4.76) we obtain then

∂

∂w
B(z, u,w)

∣∣∣
w=0

=
∑
n≥1

∑
1≤`≤n

1

(`− 2)!

(
n− `+ 1

`

)
zn−2`(1− z)`+1u`. (4.78)

According to (4.75), equation (4.78) also characterizes the unknown functions C(z, u) occurring in
(4.74) and we obtain the following solution for B(z, u,w):

B(z, u,w) =

∑
`≥2

1

(`− 2)!
(1− z)`+1u`

∑
n≥`

(
n− `+ 1

`

)
zn−2`

weuw. (4.79)

When going through all the transformations (4.65), (4.67), (4.69), (4.71) and (4.72) and simplifying
the explicit formula (4.79), it is not difficult to see that

b
[1]
n,`,q

`!
= [znu`vq]B

(
z,
uz2

1− z
,

v

1− z− zv

)
= [znu`vq]

z3u2v

(1− z)2(1− z− zv)
· e

uz2(1+v)
1−z−zv

=
[
zn−3vq−1

] 1

(1− z)2(1− z− zv)(`− 2)!
·
(
z2(1+ v)

1− z− zv

)`−2
=

`−2∑
k=0

(
`− 2

k

)[
zn−2`+1vq−1−k

] 1

(1− z)2(1− z− zv)`−1

=

`−2∑
k=0

(
`− 2

k

)(
q− 1+ k

`− 2

)
·
[
zn−`−q−k

] 1

(1− z)q+k+2

=

`−2∑
k=0

(
`− 2

k

)(
q− 1+ k

`− 2

)(
n− `+ 1

q+ k+ 1

)
. (4.80)

Taking into account (4.63) and (4.80), we obtain the following explicit formula for the numbers
ã

[1]
n,`,q, valid for 1 ≤ ` ≤ n and 1 ≤ q ≤ n− `:

ã
[1]
n,`,q =

(`− 1)

n
(
n−1
`

)(
n−`−1
q−1

) `−2∑
k=0

(
`− 2

k

)(
q+ k− 1

`− 2

)(
n− `+ 1

q+ k+ 1

)
. (4.81)

Furthermore, by using recurrence (4.62a), we obtain from (4.81) an explicit formula for ã[2]
n,`,q, also

valid for 1 ≤ ` ≤ n and 1 ≤ q ≤ n− `:

ã
[2]
n,`,q =

(`− 1)

n
(
n−1
`−1

)(
n−`
q

) `−2∑
k=0

(
`− 2

k

)(
q+ k− 1

`− 3

)(
n− `+ 1

q+ k+ 1

)
. (4.82)

Plugging (4.81) and (4.82) as well as (4.11) and (4.12) into (4.61) yields the exact formula for the
probabilities pn,q as stated in Theorem 4.8.
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4.3.10 Number of replacements

We study the number of replacements fn when combining “hiring above the median” with the
proposed replacement mechanism in Section 3.3.
To do this we express fn as a sum of indicator r.v.’s Xj, where Xj denotes the event that the j-th
candidate in the sequence replaces the worst candidate hired so far:

fn = X1 + X2 + . . .+ Xn.

It is not difficult to see that the probability of success of the r.v.’s Xj can be obtained as follows:

P{Xj = 1} =

j−1∑
`=1

`− 1

j
· a[1]
j−1,` +

j−1∑
`=1

`− 2

j
· a[2]
j−1,`,

where the numbers a[1]
n,` and a[2]

n,` are given by (4.11) and (4.12). Hence, the expectation E{fn} can
be computed as follows:

E{fn} =

n∑
j=1

E(Xj) =

n∑
j=1

j−1∑
`=1

`− 1

j
·
(
j−1−`
`−1

)(
j−1
`

) +

n∑
j=1

j−1∑
`=2

`− 2

j
·
(
j−1−`
`−2

)(
j−1
`−1

) . (4.83)

Applying Stirling’s formula to (4.83) and carrying out the inner summation yields the following
asymptotic expansion, which holds uniformly for 1 ≤ j ≤ n:

j−1∑
`=2

(
`− 1

j
·
(
j−1−`
`−1

)(
j−1
`

) +
`− 2

j
·
(
j−1−`
`−2

)(
j−1
`−1

) ) =

√
π

2
√
j
+O

(1
j

)
. (4.84)

Plugging (4.84) into (4.83) easily gives the asymptotic result for the expectation of fn stated in
Theorem 4.9.

4.4 Relationship with other on-line processes

In this section we consider the relationship between “hiring above the median” and two similar
problems occurring in the literature. Subsection 4.4.1 explains the differences between our strat-
egy and the “12 -percentile rule” presented in Subsection 2.2.1. We get, using our approach, the
explicit and limit distribution of the the number of selected items for the later process. Consequently,
the distributional results for the waiting time are easily obtained for the 1

2 -percentile rule.

In Subsection 4.4.2, we similarly focus on the similarities (and differences) between the number
of hired candidates under our strategy, and the number of open tables for the seating plan (12 , 1) of the
CRP (Section 2.5). The results for the waiting time for this seating plan are also given.

4.4.1 The 1
2
-percentile rule

According to Definition 2.2, the p-percentile selection rule, with 0 < p ≤ 1, selects the first can-
didate in the sequence, and then each new candidate is selected exactly if he has a better rank
than the dpke-th best quantile of the already selected candidates (with k denoting the number of
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already selected candidates).
Let us consider now the special instance p = 1

2 . We can also formulate those selection rules by us-
ing the terminology of the hiring problem and assuming that better candidates have better scores.
This hiring strategy, “12 -percentile rule”, reads then as follows:
“ The first candidate is hired, and then a new candidate is hired if and only if his score is better than rk−j+1,
with j = dk2e, where r1 < r2 < · · · < rk denote the (ordered) sequence of scores of the k already hired
candidates.”

Thus, as explained before in Section 2.3, the 1
2 -percentile rule is very closely related to “hiring

above the median”; the difference is simply that the latter uses the “lower” median as the thresh-
old candidate, whereas the former uses the “upper” median (of course, a difference between both
selection rules only appears when the size of the already recruited staff is even).
This can also be noticed by considering the quantity X(σ) introduced in Section 2.4, which gives
the number of choices to hire the next candidate right after σ. After k hirings, then, hiring above
the median has Xmed(σ) = bk+22 c = dk+12 e, while the 1

2 -percentile rule has X[1/2](σ) = dk2e.

The 1
2 -percentile rule is thus more restrictive than “hiring above the median” and it will hold, for

each sequence of candidates, that the number of selected candidates by applying this strategy is
not larger than for hiring above the median.
In particular, when considering the r.v. L[1/2]

n , which measures the number of selected candidates after
n interviews when applying the 1

2 -percentile rule, it must hold E
{
L

[1/2]
n

}
≤ E{hn}.

It turns out to be an interesting question to describe the influence of this small change (taking
as threshold candidate the “upper” median instead of the “lower” median) to the behaviour of
the number of selected candidates. As an addition to Theorem 2.1 by Krieger et al., we report new
results concerning L[1/2]

n . First we get E
{
L

[1/2]
n

}
∼ 2
3

√
πn, whereas E{hn} ∼

√
πn, thus taking the

“upper” median instead of the “lower” median rules out about 13 of the candidates on average.
Second, it holds that the limiting behaviour of L[1/2]

n changes, i.e., the limiting distribution is no
more a Rayleigh-distribution (as it is the case for hn).

Moreover, we report the results for a new parameter for this selection rule, namely, the waiting
time, and also complete some results given in Theorem 2.5 regarding the average rank of the retained
group as shown next.

4.4.1.1 Results

Theorem 4.10 For the 12 -percentile rule, let L[1/2]
n denote the number of selected candidates after n obser-

vations. Then the exact distribution of L[1/2]
n is given as follows:

P
{
L

[1/2]
n = k

}
=


`−1
n (Hn−1 −H`−1) + 1

n −
∑`−1
j=1

1
j ·

(n−1−j
`−2 )

( n
`−1)

, for k = 2`− 1 odd,

`
n (Hn−1 −H`−1) −

∑`−1
j=1

1
j ·

(n−1−j
`−1 )
(n`)

, for k = 2` even.
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Asymptotically, as n→∞, L
[1/2]
n√
n

(d)−−→ Λ, where Λ is characterized by its density function f(x):

f(x) =
x

2

∫∞
1

e− tx
2

4

t
dt, for x > 0.

Furthermore, the expectation of L[1/2]
n has the following asymptotic behaviour:

E
{
L

[1/2]
n

}
=
2

3

√
πn+O(logn).

Thus
E
{
L

[1/2]
n

}
√
n

→ c1
2

, with c1
2

= 2
3

√
π.

Theorem 4.11 For the 12 -percentile rule, let W[1/2]
N denote the “waiting time” (i.e., the number of candi-

dates that have to be interviewed) until exactlyN candidates are selected. Then asymptotically, asN→∞,
W

[1/2]
N

N2
(d)−−→ Ŵ[1/2], where Ŵ[1/2] has the following density function:

g(x) =
1

4x2
·
∫∞
1

e− t
4x

t
dt, for x > 0.

(Note that the moments of Ŵ[1/2] do not exist.)

Corollary 4.2 For the 12 -percentile rule, let A[1/2]
n denote average rank of the retained group after n obser-

vations. Then we have
E
{
A

[1/2]
n

}
√
n logn → √

π
12 .

4.4.1.2 Analysis

We consider the sequences a[1]
n,` and a[2]

n,`, which give now when applying the 1
2 -percentile rule, the

probability that, after n interviews, the threshold candidate has rank ` and an odd number of can-
didates (k = 2` − 1) has been selected, whereas a[2]

n,` gives the probability that, after n interviews,
the threshold candidate has rank ` and an even number of candidates (k = 2`) has been selected.
Of course, the probabilities P

{
L

[1/2]
n = k

}
are then determined by

P
{
L

[1/2]
n = k

}
=


a

[1]

n,k+1
2

, for k = 2`− 1 odd,

a
[2]

n,k
2

, for k = 2` even.
(4.85)
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It is not difficult to set up the following recurrences for the numbers a[1]
n,` and a[2]

n,` (we omit here
stating the “automaton” of the Markov chain and the transition probabilities since it is typical to
that one in Figure 4.2 for “hiring above the median”):

a
[1]
n,` =

`− 1

n
· a[2]
n−1,`−1 +

(
1−

`

n

)
· a[1]
n−1,`, n ≥ 2, 1 ≤ ` ≤ n, (4.86a)

a
[2]
n,` =

`

n
· a[1]
n−1,` +

(
1−

`

n

)
· a[2]
n−1,`, n ≥ 2, 1 ≤ ` ≤ n, (4.86b)

with initial values a[1]
1,1 = 1 and a[2]

1,1 = 0. Outside the range 1 ≤ ` ≤ nwe define a[1]
n,` = a

[2]
n,` = 0.

To simplify this system of recurrences (4.86a)-(4.86b) we introduce the numbers

b
[·]
n,` =

(
n

`

)
a

[·]
n,`, (4.87)

and obtain, after some manipulations eliminating a[1]
n,`, the following recurrence for b[2]

n,`:

(n− `)b
[2]
n,` = (n− `)b

[2]
n−1,` + J` = 1K +

n−2∑
m=1

(`− 1)b
[2]
m,`−1, 1 ≤ ` ≤ n− 1. (4.88)

Introducing the generating function

B(z, u) =
∑
n≥2

∑
1≤`≤n−1

b
[2]
n,` · z

nu`, (4.89)

we obtain from recurrence (4.88) the following first order linear PDE:

z(1− z)
∂

∂z
B(z, u) +

(
zu− u−

u2z2

1− z

)
∂

∂u
B(z, u) − zB(z, u) =

z2u

1− z
. (4.90)

Proceeding similar as we did for the numbers a[·]
n,` in Subsection 4.3.2, i.e., adapting the (easily

obtained) general solution of (4.90) to the initial conditions, leads to the following solution for the
generating function B(z, u):

B(z, u) =
zu

1− z− zu
log
(
1− z− z2u

(1− z)2

)
. (4.91)

Extracting coefficients of (4.91) is quite a routine task and yields:

b
[2]
n,` =

(
n− 1

`− 1

)
(Hn−1 −H`−1) −

`−1∑
j=1

1

j

(
n− j− 1

`− 1

)
, (4.92)

and due to (4.87) the following exact formula for a[2]
n,`:

a
[2]
n,` =

`

n

(
Hn−1 −H`−1

)
−

`−1∑
j=1

1

j
·
(
n−1−j
`−1

)(
n
`

) . (4.93)
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Plugging (4.93) into (4.86b) yields after some routine calculations also an exact formula for a[1]
n,`:

a
[1]
n,` =

n+ 1

`

(
a

[2]
n+1,` −

n+ 1− `

n+ 1
· a[2]
n,`

)
=
`− 1

n
(Hn−1 −H`−1) +

1

n
−

`−1∑
j=1

1

j
·
(
n−1−j
`−2

)(
n
`−1

) . (4.94)

Combining (4.93) and (4.94) yields, due to (4.85), the exact probability distribution of L[1/2]
n stated

in Theorem 4.10.

To obtain the limiting distribution of L[1/2]
n we will use the exact formulas for a[·]

n,` given in (4.93)
and (4.94) and apply Stirling’s formula; additionally we require the well-known asymptotic ex-
pansion of the harmonic numbers Hn:

Hn = logn+ γ+O
( 1
n

)
, (4.95)

where γ denotes the Euler-Mascheroni constant. This yields, for ` = O
(
n
1
2
+ε
)
, the uniform asymp-

totic expansion

a
[1]
n,` ∼ a

[2]
n,` =

`

n

(
− γ− log

(`2
n

)
+

∫ `2
n

0

1− e−t

t
dt
)
·
(
1+O

(1
`

)
+O

( `
n

)
+O

( `3
n2

))
. (4.96)

After setting ` = x
√
n, expansion (4.96) leads to

√
na

[1]
n,` ∼

√
na

[2]
n,` ∼ x

(
−γ− log(x2) +

∫x2
0

1− e−t

t
dt

)
= x

∫∞
1

e−tx2

t
dt, (4.97)

where the latter identity follows after partial integration and using the well-known integral eval-
uation ∫∞

0
log(t) e−tdt = −γ. (4.98)

The limiting distribution result stated in Theorem 4.10 follows then from (4.85) and (4.97).
An exact result for the expectation E

{
L

[1/2]
n

}
can be obtained by plugging (4.93) and (4.94) into

E
{
L

[1/2]
n

}
=

n∑
`=1

(
(2`− 1) · a[1]

n,` + 2` · a[2]
n,`

)
. (4.99)
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We remark that, after applying identity (4.27) and some basic identities involving harmonic num-
bers, one obtains from (4.99) the following explicit formula:

E
{
L

[1/2]
n

}
=
4

9
n2 +

7

12
n+

5

36
−
1

6n
−

n−1∑
j=1

2j+ 1

n− j
·
(
n−j
j

)(
n
j

)
−

n−1∑
j=1

4j4 + 13j3 + 24j2 + 12j+ 7+ 8j2n+ 5jn+ 15+ 8n2

j(j+ 1)(j+ 2)(j+ 3)
·
(
n−1−j
j

)(
n
j

) . (4.100)

An asymptotic evaluation of the expression (4.100) can be carried out following the tracks used
in Section 4.3, but requires (due to cancellations occurring) some care. First, by using partial
fraction expansion, the asymptotic expansion (4.13) and evaluating sums asymptotically by the
corresponding Riemann integral, one can easily rule out negligible terms yielding

E
{
L

[1/2]
n

}
=
4

9
n2 +

7

12
n−

n−1∑
j=1

8n2

j4

(
n−1−j
j

)(
n
j

) −

n−1∑
j=1

(8j2 + 5j+ 15)n

j4

(
n−1−j
j

)(
n
j

)
− 4

n−1∑
j=1

(
n−1−j
j

)(
n
j

) +O(logn). (4.101)

We comment on evaluating the first of the sums appearing in (4.101) asymptotically: basically
we will applying Stirling’s formula. However, to apply these asymptotic expansions one has to
bring the summands into a suitable form. We do this by applying partial fraction expansion and
shifting the range of summation to easily get

∑
j≥1

8

j4
F(j) =

4

9
−

8

3(n+ 3)
+
∑
j≥1

1

j

(
4

3
F(j) − 4F(j− 1) + 4F(j− 2) −

4

3
F(j− 3)

)
, (4.102)

with F(j) =
(n−1−j

j )
(nj)

. This and expanding the summand obtained eventually yields

n−1∑
j=1

8n2

j4

(
n−1−j
j

)(
n
j

) = n2
(
4

9
−

8

3(n+ 3)

)

+
∑
j≥1

(
n−j
j

)(
n
j

) (8(2j− 3)
j

−
8(4j3 − 51j2 + 116j− 75)

3jn
+O

( j3
n2

))

=
4

9
n2 −

8n

3
+ 16

∑
j≥1

(
n−j
j

)(
n
j

) −
32

3n

∑
j≥1

j2

(
n−j
j

)(
n
j

) +O(logn)

=
4

9
n2 −

8n

3
+
16

3

√
πn+O(logn). (4.103)

The second sum of (4.101) can be treated in a similar way leading to

n−1∑
j=1

(8j2 + 5j+ 15)n

j4

(
n−1−j
j

)(
n
j

) =
13

4
n− 8

√
πn+O(logn), (4.104)
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whereas the asymptotic behaviour of the third sum is a routine calculation yielding

4

n−1∑
j=1

(
n−1−j
j

)(
n
j

) = 2
√
πn+O(1). (4.105)

Combining (4.101), (4.103), (4.104) and (4.105) gives then the asymptotic result for E
{
L

[1/2]
n

}
stated

in Theorem 4.10.

Waiting time. Of course, the exact results for the probabilities P
{
L

[1/2]
n = k

}
as given in The-

orem 4.10 could be used to obtain the exact and asymptotic behaviour of further quantities of
interest. We just state the result concerning the limiting distribution of the waiting timeW[1/2]

N (i.e.,
the number of interviewed candidates required) to select N candidates, which follows easily as
before (i.e., for hn), we start with

P
{
W

[1/2]
N = t

}
=

a
[2]
t−1,` ·

`
t , for N = 2` and N ≥ 2,

a
[1]
t−1,` ·

`
t , for N = 2`+ 1 and N ≥ 3.

Then, we make use of the asymptotic expansion in (4.97) for a[1]
n,` and a[2]

n,`, to state the result in
Theorem 4.11.

Average rank of the retained group. As a consequence of the characterization of the constant
c1
2

in Theorem 4.10, we can continue the work of Krieger et al. in Theorem 2.5, describing the

asymptotic behaviour of the average rank of the retained group A[1/2]
n for the 1

2 -percentile rule. Recall
from Theorem 2.5 that

E
{
A

[1/2]
n

}
√
n logn

→ c1
2

8
, with c1

2
= lim
n→∞

E
{
L

[1/2]
n

}
√
n

.

Thus we obtain Corollary 4.2 from Theorems 4.10 and 2.5.

4.4.2 The seating plan (1
2
, 1)

We have introduced the Chinese restaurant process (CRP) in Section 2.5, where probabilistic selection
rules called seating plans (α, θ) are used to process a sequence of customers visiting the restau-
rant. As discussed before, the relationship between seating plans of the CRP and hiring strategies
could be explored by considering the transition probabilities of two equivalent events: opening
new table and hiring new candidate for seating plans and hiring strategies, respectively.

Let us consider the r.v. Kn, that denotes number of occupied tables after n customers have arrived in
the restaurant. Assume θ = 1 and 0 < α < 1 for the seating plan (α, θ); then the number of hired
candidates hn for the general strategy “hiring above the α-quantile” (see Definition 2.9) and Kn are
both Markov chains with increments in {0, 1}.

Referring to Definition 2.10, we find that the seating plan (12 , 1) is very close to “hiring above
the median”, though they are not equivalent. This is clearly explained via the inhomogeneous
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transition probabilities in the respective Markov chains as follows:

P
{
K

(1
2
,1)

n+1 = k+ 1|K
(1
2
,1)

n = k

}
=

k
2 + 1

n+ 1
and P

{
K

(1
2
,1)

n+1 = k|K
(1
2
,1)

n = k

}
=
n− k

2

n+ 1
,

P{hn+1 = k+ 1|hn = k} =
bk2 + 1c
n+ 1

and P{hn+1 = k|hn = k} =
dn− k

2e
n+ 1

.

Thus, we obtain that, for k = 2` − 2 even, both r.v.’s have the same probability `
n+1 to be incre-

mented by 1 at time n + 1, whereas, for k = 2` − 1 odd, K
(1
2
,1)

n+1 has probability `+1
2

n+1 , but hn+1 still
has probability `

n+1 to be incremented by 1.
The behaviour of Kn for the two-parameter model has been studied precisely as given in Sec-

tion 2.5. For the matter of comparison, we state here the corresponding results for K
(1
2
,1)

n , which
are obtained by specializing θ = 1 and α = 1

2 in the general formulas (2.2) and (2.3), and carrying
out some simplifications.

Theorem 4.12 (Pitman) For the seating plan (12 , 1), let K
(1
2
,1)

n denote the number of occupied tables after

n customers have arrived in the restaurant. Then the exact probability distribution of K
(1
2
,1)

n is given as
follows:

P
{
K

(1
2
,1)

n = k

}
=
k(k+ 1)

n22n−k

(
2n− k− 1

n− k

)
, 1 ≤ k ≤ n.

Asymptotically, as n→∞, K
(1
2
,1)

n√
n

(a.s.)−−−→ K, where K has the density function

f(x) =
x2

2
√
π
e−x

2

4 , for x > 0.

Moreover, the expectation E
{
K

(1
2
,1)

n

}
is given by the following exact and asymptotic formulas:

E
{
K

(1
2
,1)

n

}
=
2(2n+ 1)

4n

(
2n

n

)
− 2

=
4√
π

√
n+O(1).

It is further given in Theorem 2.23, that the limiting distribution K occurring is a “variant” of a
Mittag-Leffler distribution, since K has the density function f(x) = x2

2 · g1/2(x), where g1/2(x) is

the Mittag-Leffler distribution with parameter 12 . We also observed that K = K
(1
2
,1)

n√
n

has a Maxwell-

Boltzmann distribution with parameter
√
2.

Waiting time. A main difference in the behaviour of the CRP with seating plan (12 , 1) and the
hiring process using “hiring above the median” occurs when studying the waiting time until N

tables are occupied, i.e., the r.v. T
(1
2
,1)

N which counts the number of customers arrived in the restaurant
until the N-th table is opened, thus N tables are occupied for the first time. As a consequence of the

exact result for the distribution of K
(1
2
,1)

n stated in Theorem 4.12, it holds that

P
{
T

(1
2
,1)

N = t

}
=
N+ 1

2t
· P{Kt−1 = N− 1}.
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Then, it is not difficult to show the following exact and asymptotic behaviour of T
(1
2
,1)

N :

Theorem 4.13 For the seating plan (12 , 1), let T
(1
2
,1)

N denote the waiting time until N tables are occupied

in the restaurant. Then the exact distribution of T
(1
2
,1)

N is given as follows:

P
{
T

(1
2
,1)

N = t

}
=

(N+ 1)N(N− 1)

t(t− 1) 22t−N

(
2t−N− 2

t−N

)
, t ≥ N ≥ 2,

and P
{
T

(1
2
,1)

1 = 1

}
= 1.

Asymptotically, as N→∞, T
(1
2
,1)

N

N2
(d)−−→ T , where T has the density function

g(x) =
1

4
√
πx

5
2

e− 1
4x , for x > 0.

Moreover, the expectation of TN is given as follows:

E
{
T

(1
2
,1)

N

}
=
N(N+ 1)

2
.

4.5 Conclusions

We provided a rather detailed study of various hiring parameters related to the hiring process
when applying the “hiring above the median” strategy. The analysis occurred in this chapter is
based on a recursive approach, where we always took into account the rank of the threshold can-
didate. We have reported the results for “hiring above the median” in Section 4.2. We also gave a
detailed explanation for our approach together with complete analysis in Section 4.3.
This approach proves useful again for the analysis of the “12 -percentile rule”, where we introduced
new results for this selection rule in Theorems 4.10 and 4.11, and Corollary 4.2. The connections
between “hiring above the median” and the seating plan (12 , 1) of the CRP has also been consid-
ered, indeed, new results for this seating plan are given in Theorem 4.13.

In the same way, it is also noticed that the seating plan (12 , 0) is very closely related to the 1
2 -

percentile rule, where as usual we have to consider the transition probabilities of increment of the

r.v.’s K
(1
2
,0)

n and L[1/2]
n as follows:

P
{
K

(1
2
,0)

n+1 = k+ 1|K
(1
2
,0)

n = k

}
=
k

2n
,

P
{
L

[1/2]
n+1 = k+ 1|L

[1/2]
n = k

}
=
dk2e
n+ 1

.

Thus we can state the following relationship regarding the r.v. number of selections under these
related selection rules: seating plan (12 , 0),

1
2 -percentile rule, hiring above the median, and seating

plan (12 , 1), that is

K
(1
2
,0)

n ≤ L[1/2]
n ≤ hn ≤ K

(1
2
,1)

n ,
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which is obviously true since the size of the sample of selections increases (in probability) if we
increase the probability of selecting elements.

As a consequence of Theorems 4.1, 4.12 and 4.10 we obtain again that a slight modification of
the transition probabilities in the Markov chain yields a different limiting distribution as well as a
different asymptotic behaviour of the expectation. This indicates once more that for such kind of
problems a detailed analysis is required to precisely describe the asymptotic behaviour.

From another point of view, for the CRP, the expected waiting time untilN tables are occupied
is finite, whereas the corresponding quantityWN for the hiring process, i.e., the number of candi-
dates that have to be interviewed until N candidates are recruited, is infinity, for N ≥ 2.

The present analysis approach will be useful again in the analysis of the class of “hiring above
the α-quantile” for α = 1

d , d ∈ N; this is explained in detail in Chapter 5.
This study of “hiring above the median” gives new insights in the context of the CRP, as well

as the p-percentile rules. For instance, the results for the time of last occupied table and the time
between opening the last two occupied tables in the restaurant can be easily obtained for many classes
of seating plans, i.e., (12 , 1), (12 , 0), (13 , 1), and others. Of course, all parameters studied for hiring
above the α-quantile in general can be also defined for the p-percentile rules.

In particular, for the “12 -percentile rule”, since we already have the quantities a[1]
n,` and a[2]

n,`,
then the distributional results for the index of last hired candidate and the distance between the last
two hirings follow directly with a little effort, while the limiting behaviour may be more involved.
As the case of hiring above the median, other parameters for this percentile rule like the rank of
best discarded candidate and others, will require considering auxiliary quantities. However, it is a
matter of carrying out the computations, we leave them to a further work in the future.



Chapter 5

Hiring above the α-quantile

5.1 Introduction

We discuss in this chapter the general strategy, “hiring above the α-quantile of the hired staff”,
with 0 < α < 1, introduced first by Archibald and Martı́nez [5]. This strategy is a generalization
of “hiring above the median” (with α = 1

2 ) discussed in Chapter 4. According to Definition 2.9,
the α-quantile, with 0 < α < 1, of a sequence x1 < x2 < · · · < xk of k elements is the element
xj with j = dαke. This strategy hires the first candidate, then any further candidate is hired if he
ranks better than the α-quantile of the hired staff so far. We discuss here using the framework
of Archibald and Martı́nez (refer to Section 2.4) to analyze hiring above the α-quantile. This ap-
proach can give “lower” and “upper” bounds on the studied parameters, giving us at least the
order of growth of the expectation for those parameters, for general α. Since those bounds are not
tight then we cannot deduce more than the order of growth.

We give first a summary of the main results for the bounds on three parameters: the size of the
hiring set, hn, the gap of last hired candidate, gn and the number of replacements, fn. The introduced
theorems quantify precisely the order of growth of the expectation of the mentioned parameters,
while similar results for other parameters are quite involved.

Moreover, we show that the framework of Archibald and Martı́nez can be used to analyze
other probabilistic selection rules other than hiring strategies in a systematic analytic way. One
example (given also in Chapter 4) is the seating plan (12 , 1) of the CRP (Section 2.5) which is exactly
the upper bound of “hiring above the median”, then we can obtain similar results for particular
classes of seating plans like (α, 1) and (α, 0), 0 < α < 1.

After that, we show that a suitable extension of our recursive approach used to analyze hiring
above the median (see Section 4.3), works well to obtain explicit results for hn for “hiring above
the α-quantile”, when α = 1

d , d ∈ N.

The sequel of this chapter is organized as follows: Section 5.2 contains the main theorems of
the lower and upper bounds on three parameters: hn, gn and fn for the general case 0 < α < 1,
followed by the proofs. Then, Section 5.3 gives the main result of the asymptotic distribution of
hn when α = 1

d with d ∈ N, together with the analysis. The results of this chapter appear in the
technical report [49].

87
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5.2 Lower and upper bounds

We follow here the framework introduced in Section 2.4 which uses directly the generating func-
tions to perform the analysis. The first step is always to characterize the quantity X(σ) of the
strategy under study, which specifies how many candidates can be hired in the next step right
after σ. This quantity is a unique value for each unique hiring strategy. For hiring above the α-
quantile, X(σ) = h(σ) − dαh(σ)e+ 1 = b(1− α)h(σ) + 1c, with 0 < α < 1. For simplicity, we write
X(σ) = bah(σ) + 1c, where a = 1− α. Rather than dealing with the ceilings, we shall consider the
lower and upper bounds X`(σ) = ah`(σ) + 1− a and Xu(σ) = ahu(σ) + 1, when |σ| > 0, and for the
empty permutation, we set X`(ε) = Xu(ε) = 1.

The lower and upper bounds X` and Xu will yield lower and upper bounds on several hiring
parameters, i.e., h(α,α)

n ≤ hn ≤ h(α,1)
n where h(α,α)

n and h(α,1)
n represent the corresponding sizes of

the hiring set under the strategies defined by X`(σ) = (1−α)h`(σ)+α and Xu(σ) = (1−α)hu(σ)+1,
respectively, while hn is the size of the hiring set under hiring above the α-quantile. We make use
of the following proposition to establish such relationships for bounds on the parameters consid-
ered,

Proposition 5.1 Let A and B be two pragmatic hiring strategies such that, for all σ with |σ| = n,
XA(σ) ≤ XB(σ). Since both strategies are pragmatic, that means that if strategy A hires a candidate with
score j, then the candidate will be also hired by strategy B. Then

i) h(A)
n ≤st h(B)

n .

ii) W(A)
N ≥st W(B)

N .

iii) L(A)
n ≤st L(B)

n .

iv) g(A)
n ≤st g(B)

n .

v) M(A)
n ≥st M(B)

n .

vi) f(A)
n ≤st f(B)

n .

For any two positive random variables (r.v.’s) Y and Z, Y ≤st Z (reads: “Y is stochastically smaller than or
equal to Z”) means that P{Y > t} ≤ P{Z > t}, for all t ≥ 0. Moreover, Y ≤st Z implies E{Y} ≤ E{Z}.

Proof:

i) It follows directly, since XA(σ) ≤ XB(σ), any candidate hired by Awill be hired by B too.

ii) B has more choices thanA to hire the next candidate, so Bwill have to wait less thanA to hire
another candidate.

iii) B hires at least the same candidates as A and possibly more.

iv) The reason is that Bmight hire a candidate worse than the last candidate hired byA, but not a
candidate that is better; in that case A would hire that candidate too. Then, as X(σ) increases
the gap increases and vice-versa.
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v) B cannot discard any candidate that A has hired, but A might discard a candidate that B
would hire.

vi) We know that the number of choices to make a replacement right after processing a permu-
tation σ is equal to h(σ) − X(σ). Let say that XB(σ) = XA(σ) + x(σ), assuming that x(σ) is a
monotone function. Since, for most pragmatic strategies, when X(σ) is incremented by ε ≤ 1
(due to hiring a new candidate), then h(σ) has been already incremented by 1. So that, during
the hiring process, when |σ| ≥ |σo|, h(σ) should grow faster than X(σ), hence

h(B) ≥ h(A) + x(σ) ⇒ h(B) − h(A) ≥ x(σ) ⇒ h(B) − h(A) ≥ XB − XA⇒ h(B) − XB ≥ h(A) − XA⇒ f(A) ≤ f(B).

It is important to clarify that both selection rules defined by X` and Xu are “pragmatic” but do not
correspond to actual hiring strategies. Pragmaticity conditions (Definition 2.7) hold here but since
we are dealing with rank-based strategies, then the function X(σ) should give an integer value (as
pointed out also by Krieger et al., Subsection 2.2.1) that is the number of choices to hire the next
candidate. When X(σ) is not always integer-valued then we cannot always specify the threshold
candidate during hiring; in other terms the threshold candidate does not always exist in the hiring
set.
For example, let us assume that there are k hired candidates so far by three strategies: hiring above
the median with Xmed = bk+22 c, and the strategies defined by X` = 1

2k+ 1
2 and Xu = 1

2k+ 1. Then
we can say that the two later strategies represent lower and upper bounds of hiring above the
median, respectively. For odd k = 2t− 1, we have Xmed = t, X` = t and Xu = t+ 1

2 , while for even
k = 2t− 2, we have Xmed = t, X` = t− 1

2 and Xu = t.
In general, this can be proved by induction as follows: initially we have XA(ε) = 1 and

XB(ε) = 1, then assuming that XA(σ) ≤ XB(σ) for all σ, |σ| = n leads to get h(A)
n ≤ h(A)

n . Now,
since for almost all pragmatic strategies X(σ) = f(h(σ)) is a monotone function, then h(A)

n ≤ h(A)
n

implies that XA(σ) ≤ XB(σ) and so on.

Notice that the strategy defined by Xu is equivalent to the seating plan (12 , 1)—discussed in Subsec-
tion 4.4.2. The distributional and asymptotic results for the number of selections parameter for this
rule have been characterized elsewhere, but it will be interesting to obtain similar results using
the framework here.
We conclude that X` and Xu define two probabilistic selection rules in terms of the probabilities of
selection (similar to the seating plans (α, 1) and (α, 0)).

5.2.1 Results

Theorem 5.1 For “hiring above the α-quantile”, with 0 < α < 1, let hn denote the size of the hiring set,
then

E
{
h

(α,α)
n

}
≤ E{hn} ≤ E

{
h

(α,1)
n

}
,
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where asymptotically as n→∞,

E
{
h

(α,α)
n

}
=

1

(1− α)(2− α)
· n1−α

Γ(2− α)
·
(
1+O

( 1
n

))
,

E
{
h

(α,1)
n

}
=

1

1− α
· n1−α

Γ(2− α)
·
(
1+O

( 1
n

))
.

Theorem 5.2 For “hiring above the α-quantile”, with 0 < α < 1, let gn denote the gap of last hired
candidate, then

E
{
g

(α,α)
n

}
≤ E{gn} ≤ E

{
g

(α,1)
n

}
,

where asymptotically as n→∞,

E
{
g

(α,α)
n

}
=

1

2(2− α)
· n−α

Γ(2− α)
+O

( 1
n

)
,

E
{
g

(α,1)
n

}
=
1

2
· n−α

Γ(2− α)
+O

( 1
n

)
.

Theorem 5.3 For “hiring above the α-quantile”, with 0 < α < 1, let fn denote the number of replace-
ments, then

E
{
f
(α,α)
n

}
≤ E{fn} ≤ E

{
f
(α,1)
n

}
,

where asymptotically as n→∞,

E
{
f
(α,α)
n

}
=

α

(1− α)2(2− α)
· n1−α

Γ(2− α)
−

α

1− α
lnn+O(1),

E
{
f
(α,1)
n

}
=

α

(1− α)2
· n1−α

Γ(2− α)
−

1

1− α
lnn+O(1).

Theorem 5.4 Let h
(1
2
,1
2
)

n and h
(1
2
,1)

n , denote the sizes of the hiring sets for the selection rules defined by
X`(σ) = 1

2h(σ) + 1
2 and Xu(σ) = 1

2h(σ) + 1 respectively, then these rules bound hiring above the median.

The explicit distributions of h
(1
2
,1
2
)

n and h
(1
2
,1)

n are given as follows:

P
{
h

(1
2
,1
2
)

n = k

}
=
k

n
2k+1−2n

n−k∑
j=0

2j
(
2n− k− j− 1

n− 1

)
,

P
{
h

(1
2
,1)

n = k

}
= (k+ 1)2k−2n

k

n

(
2n− k− 1

n− 1

)
.

Asymptotically as n→∞:

The normalized r.v. h
(1
2
, 1
2

)
n√
n

(d)−−→ Y, where Y has the probability density function:

f(y) =
y√
π

∫∞
t=y

e− t
2

4 dt,

similarly, h
(1
2
,1)

n√
2n

(d)−−→ Z, where Z has a Maxwell-Boltzmann distribution with parameter
√
2.
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5.2.2 Analysis

5.2.2.1 Size of the hiring set

We have to apply Theorem 1.4 that describes the PDE of the size of hiring set. Also we need to
define X(σ) which is ah(σ)+b as mentioned above. Remember that we use a = 1−α for simplicity.
Thus, the PDE of H(z, u) takes the following form

(1− z)
∂Ha,b

∂z
− au(u− 1)

∂Ha,b

∂u
− (1+ b(u− 1))Ha,b(z, u) = (u− 1)(1− b). (5.1)

It is difficult to obtain a closed form of H(z, u) from (5.1), so we will go directly to the next step by
differentiating w.r.t. u and setting u = 1. Then

(1− z)
∂

∂z
ha,b(z) − (1+ a)ha,b(z) −

b

1− z
= 1− b.

The solution turns out to be

ha,b(z) =
−1

(1− z)1+a

(
(1− z)a(az(b− 1) + a+ b)

a(1+ a)
+ C

)
,

with the initial condition h(0) = 0; we get thus C = − b+a
a(1+a) . From singularity analysis (review

Section 1.4), we have then

[zn]ha,b(z) =
na

Γ(1+ a)
· b+ a

a(1+ a)
·
(
1+O

( 1
n

))
, (5.2)

where Γ(·) is the Gamma function. Then replacing b by 1− a in (5.2) we have a lower bound

[zn]ha,a(z) =
1

a(a+ 1)
· na

Γ(1+ a)
·
(
1+O

( 1
n

))
. (5.3)

Replacing b by 1 in (5.2), we have the upper bound

[zn]ha,1(z) =
1

a
· na

Γ(1+ a)
·
(
1+O

( 1
n

))
. (5.4)

We replace a by 1− α in (5.3) and (5.4) to obtain the results for E
{
h

(α,α)
n

}
and E

{
h

(α,1)
n

}
, respec-

tively, in Theorem 5.1. We get the same result as Theorem 2.20, for hiring above the α-quantile,
we have E{hn} = Θ

(
n1−α

)
.

5.2.2.2 Gap of last hired candidate

Following Theorem 2.17 for the gap. Let

X(z) =
∑
σ∈P

X(σ)
z|σ|

|σ|!
.
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Then for X(σ) = ah(σ) + b, we have

∑
σ∈P

X(σ)
z|σ|

|σ|!
=
∑
σ∈P

(
ah(σ) + b

)z|σ|

|σ|!

= a ·
∑
σ∈P

h(σ)
z|σ|

|σ|!
+ b ·

∑
σ∈P

z|σ|

|σ|!

= a · ha,b(z) + b.

We have the value of [zn]ha,b(z) from (5.2) hence,

1

2

(
[zn]Xa,b(z) − 1

)
=

b+ a

2(1+ a)
· na−1

Γ(1+ a)
+O

( 1
n

)
. (5.5)

The lower bound is
1

2(1+ a)
· na−1

Γ(1+ a)
+O

( 1
n

)
, (5.6)

while the upper bound is
1

2
· na−1

Γ(1+ a)
+O

( 1
n

)
. (5.7)

In general, as given before in Theorem 2.20, for hiring above theα-quantile, we get E{gn} = Θ(n−α).
Observe that for any α < 1, gn → 0 as n→∞. We substitute a = 1− α in (5.6) and (5.7) to get the
results stated in Theorem 5.2.

5.2.2.3 Number of replacements

We begin with the following trivariate generating function

F(z, u, v) =
∑
σ∈P

z|σ|

|σ|!
uf(σ)vh(σ), (5.8)

where f(σ) is the number of replacements made to process the permutation σ. Again, we use the
catalytic variable v to be able to proceed in the analysis of strategies that have X(σ) = f(h(σ)).

Referring to the discussion of hiring with replacements in Section 3.3, of the |σ| + 1 possible rank-
ings coming after σ, |σ| + 1 − h(σ) will be discarded, X(σ) will be hired without replacement and
h(σ) − X(σ) will be hired with replacement. So that the recurrence of f(σ) will take the following
form:

f(σ ◦ j) =


f(σ), if 1 ≤ j ≤ |σ| + 1− h(σ) (j is discarded),

f(σ) + 1, if |σ| + 2− h(σ) ≤ j ≤ |σ| + 1− X(σ) (replaces worst),

f(σ), if |σ| + 2− X(σ) ≤ j ≤ |σ| + 1 (j is hired).

This yields the next theorem, whose proof we omit as it closely follows that one of Theorem 1.4.
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Theorem 5.5 Let F(z, u, v) be the generating function defined in (5.8). Let X(σ) denote the number of
ranks j, 1 ≤ j ≤ |σ| + 1, such that a candidate with score j will be hired without replacing anyone, if
interviewed right after σ.

Then

(1− z)
∂

∂z
F(z, u, v) − F(z, u, v) = v(u− 1)

∂

∂v
F(z, u, v) + (v− u)

∑
σ∈P

X(σ)
z|σ|

|σ|!
uf(σ)vh(σ).

In order to compute the expected number of replacements for a random permutation of size n,
we can differentiate F(z, u, v) w.r.t. u and set u = 1. Then the differential equation given in
Theorem 5.5 transforms into

(1− z)
∂

∂z
f(z, v) − f(z, v) = v

∂

∂v
F(z, 1, v) + (v− 1)

∑
σ∈P

X(σ)f(σ)
z|σ|

|σ|!
vh(σ)

−
∑
σ∈P

X(σ)
z|σ|

|σ|!
vh(σ), (5.9)

with

f(z, v) =
∂

∂u
F(z, u, v)

∣∣∣∣
u=1

.

Now, F(z, 1, v) = H(z, v), and we have to set v = 1 in (5.9) to get rid of the catalytic variable v and
thus obtain the generating function f(z) for the expected values fn:

(1− z)
d

dz
f(z) − f(z) = h(z) −

∑
σ∈P

X(σ)
z|σ|

|σ|!
, (5.10)

where

h(z) =
∂

∂v
H(z, v)

∣∣∣∣
v=1

is the generating function for E{hn}, and the initial condition is f(0) = 0.
Now, we set X(σ) = a · h(σ) + b in (5.10), thus we have

(1− z)
d

dz
fa,b(z) − fa,b(z) = (1− a)ha,b(z) −

bz

1− z
,

where

ha,b(z) =
−1

(1− z)a+1

(
(1− z)a(az(b− 1) + a+ b)

a(a+ 1)
−

b+ a

a(1+ a)

)
,

as explained above in this subsection. The solution for fa,b(z) is

fa,b(z) =
(a+ b)(1− a)

a2(1+ a)
· 1

(1− z)1+a
−
b

a
· 1

1− z
ln
( 1

1− z

)
+
C+ z(2b+ a− 1)

1− z
, (5.11)
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where C is a constant, that can be computed using the initial condition f(0) = 0. However, the
value of C is irrelevant, as the last term in (5.11) can be ignored as it is not dominant. Using
again singularity analysis to obtain the asymptotic of the nth coefficient of both the lower bound
(b = 1− a) and upper bound (b = 1), we get

[zn]fa,1−a(z) =
1− a

a2(1+ a)
· na

Γ(1+ a)
−
1− a

a
lnn+O(1), (5.12)

[zn]fa,1(z) =
(1− a)

a2
· na

Γ(1+ a)
−
1

a
lnn+O(1). (5.13)

Thus, for hiring above the α-quantile, E{fn} = Θ
(
n1−α

)
. In particular, E{fn} = Θ

(
E{hn}

)
. As

usual, we replace a by 1− α to get the results in Theorem 5.3.

5.2.2.4 Bounds on hiring above the median

As we mentioned before, hiring above the median is a special case of hiring above the α-quantile
when α = 1

2 . So that we set a = 1
2 in the general case equations to obtain the bounds of the

parameters of this strategy.
Substituting a = 1

2 in (5.3) and (5.4), we have the following bounds

E
{
h

(1
2
,1
2
)

n

}
=
8
√
n

3
√
π

(
1+O

( 1
n

))
, (5.14)

E
{
h

(1
2
,1)

n

}
=
4
√
n√
π

(
1+O

( 1
n

))
. (5.15)

This implies that, for hiring above the median, E{hn} = Θ
(√
n
)

as mentioned in Chapter 4.
The solution of the PDE for Ha,b(z) is difficult in general, but not to when a = 1

2 and b ∈
{
1
2 , 1
}

,
which give us lower and upper bounds on the probability distribution of hn. So, substituting
a = 1

2 and b = 1
2 in (5.1) and using the initial condition H(0, u) = 1, we find the solution as

H1
2
,1
2
(z, u) =

1− u2

(1− u)2
−

2u

(1− u)(1− u+ u
√
1− z)

+
2u

(1− u)2

(
1

2
ln
(

1

1− z

)
− ln

(
1

1− u+ u
√
1− z

))
.

For the upper bound, we set a = 1
2 and b = 1, then

H1
2
,1(z, u) =

1

(1− u+ u
√
1− z)2

·
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Since we have these closed forms, then we can obtain the following useful information. First we
can give the factorial moments of each r.v. there:

E
{
h

(1
2
,1
2
)r

n

}
= Θ

(
nr/2

)
,

E
{
h

(1
2
,1)r

n

}
= [zn]

(r+ 1)!
(
1−
√
1− z

)r
(1− z)r/2+1

= (−1)r(r+ 1)!

r∑
k=0

(−1)k
(
r

k

)(
n+ k/2

n

)
= Θ

(
nr/2

)
.

A more precise asymptotic estimation of E
{
h

(1
2
,1)r

n

}
is given later in (5.17).

Now, extracting the coefficients of [ukzn]H1
2
,1(z, u) gives us the probability mass functions as fol-

lows

P
{
h

(1
2
,1
2
)

n = k
}

=
k

n
2k+1−2n

n−k∑
j=0

2j
(
2n− k− j− 1

n− 1

)
,

P
{
h

(1
2
,1)

n = k
}

= (k+ 1)2k−2n
k

n

(
2n− k− 1

n− 1

)
. (5.16)

The result in (5.16) is exactly what we obtain before in Theorem 4.12 for the number of occupied
tables in restaurant under the seating plan (12 , 1).
We can obtain the limiting distribution in both cases. However, it is known for the case of upper
bound as given in Theorem 4.12, but it will be interesting also to obtain it here in a different way,
namely, using the method of moments.
In case of lower bound, first we use the following absolute approximation given in [37](

2n− k− 1

n− 1

)
∼ 22n−k n

2n− k

e−k2/4n

√
πn

.

Then

P
{
h

(1
2
,1
2
)

n = k

}
∼

k√
πn3/2

n−k∑
j=0

e−
(k+j)2

4n

∼
k√
πn

(∫√n
t= k√

n

e− t
2

4 dt+O
(
1√
n

))

∼
k√
πn

∫∞
t= k√

n

e− t
4

4 dt, as n→∞.
So that the normalized r.v. h

(1
2
, 1
2

)
n√
n

(d)−−→ Y, where Y has the probability density function:

f(y) =
y√
π

∫∞
t=y

e− t
2

4 dt
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Moreover, we can compute the moments as follows:

E{Yr} =

∫∞
0
yr · f(y)dy

=
1√
π

∫∞
0

yr+2

r+ 2
e−y

2

4 dy

=
2r+2√
π(r+ 2)

· Γ
(r+ 3

2

)
.

For the upper bound, we start with following exact closed form of the moment generating func-
tion

E
{
h

(1
2
,1)r

n

}
= [zn]

(r+ 1)!
(
1−
√
1− z

)r
(1− z)r/2+1

= [zn]
(r+ 1)!

1− z

( 1√
1− z

− 1
)r
.

Then using the singularity analysis, one can write

E
{
h

(1
2
,1)r

n

}
∼ [zn]

(r+ 1)!

(1− z)1+r/2

= (r+ 1)!

(
n+ r/2

n

)
= (r+ 1)!

(n+ r
2)(n+ r

2 − 1)(n+ r
2 − 2) . . . (n+ 1)

( r2)!

= nr/2
(r+ 1) · r!
Γ( r2 + 1)

·
(
1+O

(
nr/2−1

))
. (5.17)

Now we can use the following property of Gamma function:

Γ
( r
2

+
1

2

)
=

√
π 2−r r!

Γ( r2 + 1)
,

thus

E
{
h

(1
2
,1)r

n

}
∼ nr/2 2r

(r+ 1)Γ( r2 + 1
2)√

π
.

If we consider this normalized r.v. h
′
n = h

(1
2
,1)

n√
2n

, then

E
{
h
′r
n

}
∼ 2r/2

(r+ 1)Γ( r2 + 1
2)√

π
, (5.18)

since the moment generating function of the Chi distribution with parameter k = 3 is given as

Mr =
2r/2 Γ( r+32 )

Γ(3/2)
=
2r/2 ( r+12 ) Γ( r+12 )

1
2 Γ(1/2)

=
2r/2 (r+ 1) Γ( r+12 )

√
π

. (5.19)

Using the method of moments, from (5.18) and (5.19) we can proof that asymptotically as n→∞,
h

(1
2
,1)

n√
2n

(d)−−→ Z, where Z follows a Chi distribution with k = 3, namely Maxwell-Boltzmann distri-

bution with parameter
√
2.
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5.3 Hiring above the 1
d

-quantile

Our approach to the study of hiring above the median in Chapter 4 enables us to understand
well the hiring process under such strategy, but we are not able to find a suitable combinatorial
explanation for the probability distribution of hn. This reflects that we have to investigate other
special cases of α in order to generalize our results if possible. For example, hiring above the
1
3 -quantile: in this case we have three different states for the automaton according to the number
of hired candidates k; where k is congruent to 0,1, or 2 modulo 3. We can write the recurrences
of the quantities a[1]

n,`, a
[2]
n,` and a[3]

n,`, which are the probabilities that after receiving n candidates,
the threshold candidate has the `-th largest score in the hiring set and k is 1(mod 3), 2(mod 3) and
0(mod 3) respectively. We give the main result for hiring above the 1

d -quantile, then we discuss the
analysis of the special case α = 1

3 , followed by the proof of our theorem.

Theorem 5.6 For “hiring above the 1
d -quantile”, d ∈ N, let hn denote the size of the hiring set after n

interviews. Then the normalized r.v. hn

n1− 1
d

(d)−−→ X, where X has the density function:

f(x) =
1

d
1
d−1
(
1
d−1

)
!
· x

1
d−1 · exp

(
−

(d− 1)d−1

dd
· xd
)
, x > 0.

Moreover,

E{X} =
d
(
1
d−1 + 1

d − 1
)
!

(d− 1)2−
1
d

(
1
d−1

)
!
.

5.3.1 Analysis

In general, the α-quantile of a sequence r1 < r2 < · · · < rk of k elements is the element rj with
j = dαke, hence it is the (k − j + 1)-th largest one. For α = 1

3 we can track the evolution of the
threshold candidate which is the `-th largest one in the hiring set via the following table:

k 1 2 3 4 5 6 7 · · ·
` 1 2 3 3 4 5 5 · · ·

Notice that when we move from the state a[3]
n,` to a[1]

n,`, ` is still the same while ` is incremented
when moving from a

[1]
n,` to a[2]

n,` or from a
[2]
n,` to a[3]

n,`. Thus for n ≥ 2 and 1 ≤ ` ≤ n:

a
[1]
n,` =

(
1−

`

n

)
· a[1]
n−1,` +

`

n
· a[3]
n−1,`

a
[2]
n,` =

(
1−

`

n

)
· a[2]
n−1,` +

`− 1

n
· a[1]
n−1,`−1

a
[3]
n,` =

(
1−

`

n

)
· a[3]
n−1,` +

`− 1

n
· a[2]
n−1,`−1,

with the initial conditions: a[1]
1,1 = 1, a[2]

1,1 = a
[3]
1,1 = 0.

We simplify those recurrences by introducing a suitable normalization:

c
[i]
n,` =

n!

(n− `)! · (`− 1)!
· a[i]
n,`, i = 1, 2, 3. (5.20)
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which leads us to the following relations:

(n− `) · c[1]n,` = (n− `) · c[1]n−1,` + ` · c[3]n−1,`

c
[2]
n,` = c

[2]
n−1,` + c

[1]
n−1,`−1

c
[3]
n,` = c

[3]
n−1,` + c

[2]
n−1,`−1,

Now we introduce the following generating function:

C[i](z, u) =
∑
n≥1

∑
1≤`≤n

c
[i]
n,` · z

n−`u`, i = 1, 2, 3,

which when applied to the above system of recurrences gives:

∂

∂z

(
(1− z)C[1](z, u)

)
= u · ∂

∂u
C[3](z, u)

C[2](z, u) =
u

1− z
· C[1](z, u)

C[3](z, u) =
u

1− z
· C[2](z, u),

It is easy to infer that C[3](z, u) = u2

(1−z)2
· C[1](z, u) to obtain the following PDE:

(1− z)2
∂

∂z

(
(1− z)C[1](z, u)

)
= u · ∂

∂u

(
u2C[1](z, u)

)
,

whose explicit solution contains some arbitrary function F(·) as follows:

C[1](z, u) =
1

(1− z)u2
· F
(
u2 − (1− z)2

u2(1− z)2

)
.

But the initial condition a[1]
1,1 = 1 implies that C[1](0, u) =

∑
n≥1 c

[1]
n,nu

n = u; this shows that:

F(x) =
1

(1− x)3/2
.
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Then we get:

C[1](z, u) =
1

(1− z)u2
1(

1−
u2−(1−z)2

u2(1−z)2

)3/2
=

u

(1− z)
(
1−

(
1−(1−z)2

(1−z)2

)
u2
)3/2 .

Now we can extract the coefficients of c[1]n,` as follows:

c
[1]
n,` = [zn−`u`]C[1](z, u) = [zn−`u`−1]

1

(1− z)
(
1−

(
1−(1−z)2

(1−z)2

)
u2
)3/2

= [zn−`(u2)(`−1)/2]
1

(1− z)
(
1−

(
1−(1−z)2

(1−z)2

)
u2
)3/2

=

( `
2
`−1
2

)
· [zn−`]

1

1− z

(
1− (1− z)2

(1− z)2

)(`−1)/2

=

( `
2
`−1
2

)
· [zn−3`

2
+1
2 ]

(1+ (1− z))(`−1)/2

(1− z)`

=

( `
2
`−1
2

)
· [zn−3`

2
+1
2 ]

`−1
2∑
j=0

( `−1
2

j

)
· 1

(1− z)`−j

=

( `
2
`−1
2

) `−1
2∑
j=0

( `−1
2

j

)
·
(
n− `

2 − j− 1
2

`− j− 1

)
.

Remember the normalization used in (5.22), then we have:

a
[1]
n,` =


1
`(n`)
·
( `
2
`−1
2

) `−12∑
j=0

( `−1
2

j

)
·
(
n− `

2 − j− 1
2

`− j− 1

)
, if k = 1(mod 3).

0, otherwise.

(5.21)

For the other cases of a[·]
n,`, which turn out to be easier, we proceed as above: we obtain the corre-

sponding generating function C[·](z, u) first, then we extract the coefficients.
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5.3.1.1 Proof of Theorem 5.6

The approach used for the analysis still prove useful and as we have seen, the computations for
α = 1

3 to obtain the fundamental quantities a[·]
n,` were relatively easy and we got the desired results.

This encourages us to investigate some generalization in this class of hiring strategies when α = 1
d ;

namely hiring above the 1
d -quantile, d ∈ N. We know that for α = 1

d , we have d recurrences that
describe the relationships between the quantities a[·]

n,`, but the trick is always to find some suitable
normalization to reduce the resulting system of differential equations into only one PDE in one
function, after that we expect that the computations will be a routine task. We start writing the
following recurrence relations for n ≥ 2, 1 ≤ ` ≤ n and 2 ≤ i ≤ d:

a
[1]
n,` =

(
1−

`

n

)
· a[1]
n−1,` +

`

n
· a[d]
n−1,`,

a
[i]
n,` =

(
1−

`

n

)
· a[i]
n−1,` +

`− 1

n
· a[i−1]
n−1,`−1.

We need again this normalization:

c
[i]
n,` =

n!

(n− `)! · (`− 1)!
· a[i]
n,`, 1 ≤ i ≤ d, (5.22)

together with the generating function:

C[i](z, u) =
∑
n≥1

∑
1≤`≤n

c
[i]
n,` · z

n−`u`, 1 ≤ i ≤ d.

As before we obtain a system of PDEs:

∂

∂z

(
(1− z)C[1](z, u)

)
= u · ∂

∂u
C[d](z, u)

C[i](z, u) =
u

1− z
· C[i−1](z, u).

Thus we have C[d](z, u) = ud−1

(1−z)d−1 · C[1](z, u), and we can write the following PDE:

(1− z)d−1 ∂

∂z

(
(1− z)C[1](z, u)

)
= u · ∂

∂u

(
ud−1C[1](z, u)

)
. (5.23)

A direct solution for this PDE will be too complicated, so we transform it into a simpler form. If
we consider the function:

C
[·]
` (z) = [u`]C[·](z, u) =

∑
n≥`

c
[·]
n,`z

n,

Then treating (5.23) gives:

(1− z)d−1 ∂

∂z

(
(1− z)C

[1]
` (z)

)
= ` · C[1]

`−d+1(z). (5.24)

We need again to introduce another normalization in order to obtain the last PDE in a useful form.
First, we have

Ĉ
[·]
` (z) =

C
[·]
` (z)

`!(d−1)
,
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where X!(r) denotes the multifactorial of X (1.8); it also has following alternative definition, which
is suitable when X = 1(mod r):

X!(r) = r
X−1
r
Γ(Xr + 1)

Γ(1r + 1)
. (5.25)

Thus (5.24) becomes:

(1− z)d−1 ∂

∂z

(
(1− z)Ĉ

[1]
` (z)

)
= Ĉ

[1]
`−d+1(z),

multiplying both sides by u` and summing over ` ≥ d− 1 yields:

(1− z)d−1 ∂

∂z

(
(1− z)Ĉ[1](z, u)

)
= ud−1Ĉ[1](z, u),

whose solution is the following:

Ĉ[1](z, u) =
1

1− z
· F(u) · exp

(
ud−1

(d− 1)(1− z)d−1

)
,

using the initial condition Ĉ[1](0, u) = u gives us

F(u) = u · exp
(
−
ud−1

d− 1

)
.

Thus we get finally the solution

Ĉ[1](z, u) =
u

1− z
· exp

(
ud−1

d− 1

(
1

(1− z)d−1
− 1

))
.

Now extracting the coefficients is going as follows:

ĉ
[1]
n,` = [zn−`u`]Ĉ[1](z, u)

= [zn−`(ud−1)
`−1
d−1 ]

1

1− z
· exp

(
ud−1

d− 1

(
1

(1− z)d−1
− 1

))

= [zn−`]
1

1− z
· 1

(d− 1)
`−1
d−1 · ( `−1d−1)!

·
(

1

(1− z)d−1 − 1

) `−1
d−1

=
1

(d− 1)
`−1
d−1 · ( `−1d−1)!

`−1
d−1∑
j=0

( `−1
d−1

j

)
(−1)j

(
n− j(d− 1) − 1

`− j(d− 1) − 1

)
, for ` = 1(mod (d− 1)).

The result for the quantity which we are interested in follows easily,

a
[1]
n,` =

`!(d−1)

` ·
(
n
`

) · ĉ[1]n,`
=

`!(d−1)

`
(
n
`

)
(d− 1)

`−1
d−1 · ( `−1d−1)!

`−1
d−1∑
j=0

( `−1
d−1

j

)
(−1)j

(
n− j(d− 1) − 1

`− j(d− 1) − 1

)
, for ` = 1(mod (d− 1)).
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Limit distribution. First, we have from (5.25) that

`!(d−1) =
(d− 1)

`−1
d−1 · ( `

d−1)!

( 1
d−1)!

, for ` = 1(mod (d− 1)),

so that

`!(d−1)

(d− 1)
`−1
d−1 · ( `−1d−1)!

=
( `
d−1)!

( `−1d−1)! · (
1
d−1)!

=
( `
d−1)

1
d−1

( 1
d−1)!

·
(
1+O

(1
`

))
, as d is fixed.

Then we use Stirling’s formula (1.2) as usual to do the asymptotic analysis. We have a sum of
terms

Tj =
1(
n−1
`−1

) · ( `−1d−1

j

)(
n− j(d− 1) − 1

`− j(d− 1) − 1

)
,

so

log(Tj) = log

(
( `−1d−1)!(n− j(d− 1) − 1)!(`− 1)!

( `−1d−1 − j)!(`− j(d− 1) − 1)!(n− 1)!

)

= − j · log(d− 1) + d · j · log `− j(d− 1) logn−
j2(d− 1)

2(`− 1)
+
j2(d− 1)2

2n
−
j2(d− 1)2

2`

+O
( j
`

)
+O

( j3
`2

)
+O

(1
`

)
.

After that we recover an asymptotic estimate for Tj:

Tj =
1

j!

(
`d

(d− 1)nd−1

)j
· exp

(
−
j2(d− 1)

2(`− 1)
+
j2(d− 1)2

2n
−
j2(d− 1)2

2`

)
·
(
1+O

( j
`

)
+O

( j3
`2

)
+O

(1
`

))
.

Asymptotically as n→∞, `d

nd−1 = O(1) and `� d, thus we have

Tj =
(−1)j

j!

(
`d

(d− 1)nd−1

)j
·
(
1+O

( j2
`

))
,

and its summation can be approximated as follows:
`−1
d−1∑
j=0

Tj =

∞∑
j=0

Tj −

∞∑
j= `−1
d−1

Tj.

Since ∞∑
j= `−1
d−1

Tj = O

(
exp

(
−(`− 1)

2(d− 1)
· log

( `− 1

d− 1

)))
,

∞∑
j=0

Tj ∼ exp
(

−`d

(d− 1)nd−1

)
,

we can show the limit distribution for the sequence a[1]
n,`, for ` = O

(
n1−

1
d

)
, is asymptotically

a
[1]
n,` ∼

1

(d− 1)1/(d−1)( 1
d−1)!

· `
1
d−1

n
· exp

(
−`d

(d− 1)nd−1

)
.



5.4. CONCLUSIONS 103

Since a[1]
n,` represents the case when k is 1(mod d) then we can state the results for the size of the

hiring set as follows:

P{hn = k} = a
[1]

n,k·d−1
d

+ 1
d

∼
1

d
1
d−1 ( 1

d−1)!
· k

1
d−1

n
· exp

(
−

(d− 1)d−1

dd
· k

d

nd−1

)
.

If we consider the normalized r.v. hn

n1− 1
d

, then we have

P
{
hn

n1−
1
d

=
k

n1−
1
d

}
∼

1

n1−
1
dd

1
d−1 ( 1

d−1)!
·
(

k

n1−
1
d

) 1
d−1

· exp

(
−

(d− 1)d−1

dd
·
(

k

n1−
1
d

)d)
.

Thus Theorem 5.6 follows easily.

5.4 Conclusions

We have seen in this chapter that the framework given by Archibald and Martı́nez can give useful
information of many parameters related to the hiring process when “hiring above the α-quantile”
is applied. The introduced theorems in Subsection 5.2.1 give the order of growth of the expecta-
tion of many hiring parameters via upper and lower “bounds”. We clarify again that those bounds
represent pragmatic selection rules but do not correspond to actual rank-based hiring strategies.

On the other hand, an extension of the recursive approach used to analyze “hiring above the
median” was very helpful to get the distributional results of the size of the hiring set under hiring
above the α-quantile, with α = 1

d , d ∈ N, as characterized in Theorem 5.6. As usual, since we have
the quantities a[i]

n,`, i = 1, . . . , d, for the later strategy, then the results for other parameters like
the index of last hired candidate, the distance between last two hirings, and others are possible,
however the computations become more involved.

Moreover, the explicit and distributional results of the number of selections for the class of p-
percentile rules, with p = 1

d , d ∈ N are also in hand with a suitable extension of the recursive
approach.

We think that for other particular cases of “hiring above the α-quantile”, as well as the corre-
sponding p-percentile rules, like α = 2

3 ,
3
4 , . . .; our approach will do the job and we can obtain, at

least, the distribution of the size of the hiring set.
For more general case of rational α, i.e., α = p

q where gcd(p, q) = 1, there are a system of
q recurrences and finding suitable normalization factors to treat the corresponding generating
functions seems challenging. On the other hand this recursive approach will break down in case
of irrational α.
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Chapter 6

Hiring above them-th best

6.1 Introduction

This chapter is devoted to study “hiring above the m-th best candidate strategy”; the rank-based
hiring strategy introduced originally by Archibald and Martı́nez in [5]. Since the goal of hiring
strategies is to hire many good candidates then it is reasonable that we select the extremes or the
records of the sequence. This of course gives us a set of hired candidates with a very good quality
but very few candidates (very slow hiring rate), i.e., the size of the hiring set is Θ(logn), for a
sequence of n candidates. But we can expand the base of selections by hiring any of the best m
candidates seen so far in the sequence instead of only the best one.

According to Definition 2.8, our hiring strategy processes the sequence of candidates in two
phases. In the initial phase, the firstm interviewed candidates are hired regardless of their relative
ranks. After that, there comes a selection phase, in which any coming candidate will be hired if
and only if he ranks better than the m-th best already hired candidate. So the m-th best hired
candidate is the threshold for this strategy and at any time step n there are m choices for hiring a
new candidate which must have one of the ranks (or scores) {n,n− 1, . . . , n−m+ 1}.

In the sequel of this chapter, we use the subscript m in the notation of the studied parameters to
stress their dependence on the rigiditym of this strategy, i.e., hn,m, Ln,m, etc.

For example, let m = 3 and we have the following permutation of seven interviewed candidates,
σ(7) = 4 6 1 7 3 52. Then processing those candidates using hiring above the m-th best results in
hiring setH

(
σ(7)

)
= {1, 2, 3, 4, 6} where the underlined scores of σ(7) form the set of scores of hired

candidatesQ
(
σ(7)

)
, whereas the ones with scores {3, 2} are discarded. Thus we have the number of

hired candidates h7,3 = 5, the gap of last hired candidate g7,3 = 1− 5
7 = 2

7 , the index of last hired
candidate L7,3 = 6, the distance between the last two hirings ∆7,3 = 2, the score of best discarded
candidate M7,3 = 3. If we apply the proposed hiring with replacement technique in Section 3.3,
then we have the number of replacements f7,3 = 1 since the candidate with score 3 replaces the
candidate with score 1, and HR

(
σ(7)

)
= {1, 2, 4, 5, 6} with QR

(
σ(7)

)
= {4, 6, 7, 3, 5}. Moreover, a

candidate coming after σ7 gets hired if he has a rank in the set {8, 7, 6}, whereas he gets discarded
otherwise.

As a pragmatic hiring strategy, it holds for this strategy that, for any n ≥ m,Q(σ) always contains
the m best candidates seen so far (and maybe others), as stated in Theorem 2.16. To be more pre-
cise,Q(σ) under this strategy can be described as the set of left-to-right (≤ m)-maxima; of course,
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the particular case m = 1 (hiring above the best strategy) coincides with the usual notion of records
in a permutation (see Section 2.4). The connections between the hiring set (and the corresponding
set of scores) under this hiring strategy and the two types of m-records are discussed in more
detail in the next subsection.

6.1.1 Records

A good hiring strategy should hire good candidates, in particular those that stand out among the
others. This is obviously related to the notion of records in a sequence or a permutation.

There is a vast literature on the subject of records in sequences and permutations, and several
generalizations, e.g., for d-dimensional data. Here we discuss the two common definitions of m-
records found in the literature (see, for instance, the book of Arnold et al. [6]), because of their
close connection to Q(σ) under “hiring above the m-th best”. We shall slightly adapt the general
definition of the two types of records to stress the similarities.

Definition 6.1 Given a permutation σ(n) =
(
σ

(n)
1 , . . . , σ

(n)
n

)
, then we say that σ(n)

i (the i-th element in a
permutation σ of size n) is a Type1m-record if σ(n)

i is them-th largest element in
{
σ

(n)
1 , . . . , σ

(n)
i

}
.

Quite clearly, the union of the sets of Type1 i-records of σ, for i = 1, 2, . . . ,m represents Q(σ)

if we apply “hiring above the m-th best”. If r[1]n,i is the number of Type1 i-records in a random
permutation of size n and hn,m denotes the number of hired candidates then

hn,m = r
[1]
n,1 + r

[1]
n,2 + . . .+ r

[1]
n,m.

Type2m-records are defined similarly as follows.

Definition 6.2 Given a permutation σ(n) =
(
σ

(n)
1 , . . . , σ

(n)
n

)
, then an element σ(n)

i is a Type2 m-record
if there exists j ≥ i such that σ(n)

i is them-th largest in
{
σ

(n)
1 , . . . , σ

(n)
j

}
.

Suppose that σ(n)
i is not any of the largest m − 1 ranks, that is, σ(n)

i 6∈ {n,n − 1, . . . , n −m + 2}.
Then if σ(n)

i is a Type2 m-record then “hiring above the m-th best” hires the i-th candidate σ(n)
i ,

because σ(n)
i ranked them-th best or larger, with eventual later candidates making the rank of this

i-th candidate drop to the m-th largest rank at some moment. And vice-versa: the rank of a hired
candidate which is not in {n,n−1, . . . , n−m+2} is a Type2m-record. Thus, if we denote by r[2]n,m
the number of Type2m-records in a random permutation of size n then

hn,m = r
[2]
n,m +m− 1, (6.1)

because the m − 1 candidates with ranks {n − m + 2, . . . , n} get hired, but they are not Type2
m-records. We give an example in Table 6.1, form = 1, 2, and we have a sequence of length eight,
to show the relationships explained in this subsection. As mentioned before, Type2m-records are
often calledm-records, for simplicity.

It is also useful to examine these notions of records and of “hiring above the m-th best” from
an algorithmic point of view. To carry out the hiring process, we would setup a table T with m
entries to contain the m largest ranks seen so far. The first m elements will fill the table, then for
each subsequent element, if it is larger than the smallest in T then it enters into the table T and
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i 1 2 3 4 5 6 7 8
si 1 2 2 4 4 4 7 7
σ(n) 1 3 2 6 5 4 8 7

m = 1 Type1 X X X X
Type2 X X X X
Q X X X X

m = 2 Type1 X X X
Type2 X(2) X(4) X(3) X(7) X(5) X(8)
Q X X X X X X X

Table 6.1: An illustrative example of the two types of m-records, for m = 1, 2, and the corre-
sponding set of scores of hired candidates, Q, of “hiring above the m-th best”. si represents the
initial (relative) rank of the i-th element. σ(n) denotes the resulting permutation of eight elements
(n = 8). For Type2 2-records, we put the number i next to the check mark to denote the “time”
when the element σ(n)

i becomes a Type2 2-record.

the former smallest element in T is removed from T (we can keep it somewhere else if we need to
collect the hired candidates). If the element is smaller than the minimum in T then it is discarded.
Then the number of hired candidates hn,m is the number of times that the table T is updated. If we
think in similar terms for the determination of m-records, we proceed as above, but an element
is an m-record if and only if it occupies the m-th entry in T somewhen along the execution of the
algorithm. Thus the number of m-records is the number of times that the m-th entry of T is up-
dated. Once T already containsm− 1 elements, each addition to T implies that itsm-th entry will
be updated. Either because the new element is the m-th largest seen so far (a Type1 m-record) or
because the previous m-th leaves the table and the previous (m− 1)-th becomes the m-th largest.
Except for the firstm−1 additions to fill up the first, second, . . . , (m− 1)-th entries in T , all hirings
imply a new m-record. This algorithmic formulation (number of updates of the m-th entry) was
used by Prodinger [83] in his investigation of m-records in sequences of i.i.d. geometric r.v.’s (as
mentioned in Section 2.4).

The sequel of this chapter is organized as follows: Section 6.2 contains our results for “hiring
above the m-th best”. We give complete proofs of all presented theorems in Section 6.3. The rela-
tionship between this hiring strategy and the seating plan (0,m) of the CRP is discussed, together
with the results for a new parameter for the mentioned seating plan in Section 6.4. This chapter
ends with the conclusions in Section 6.5. The results of this chapter appear in [48, 50].

6.2 Results

Theorem 6.1 Let hn,m denote the size of the hiring set after n interviews. Then the exact distribution of
hn,m is given as follows:

P{hn,m = j} =

Jn = jK, ifm > n,

m!mj−m

n! ·
[
n−m+1
j−m+1

]
, ifm ≤ j ≤ n.
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For 1 ≤ m ≤ n the expectation and the variance of hn,m are given as follows, where the asymptotic
expansions hold uniformly for 1 ≤ m ≤ n and n→∞:

E{hn,m} = m(Hn −Hm + 1) = m
(

logn− logm+ 1
)

+O(1),

V{hn,m} = m(Hn −Hm) −m2
(
H

(2)
n −H

(2)
m

)
= m

(
logn− logm− 1+

m

n

)
+O(1).

The limiting distribution of hn,m is, for n → ∞ and depending on the size relation between m and n,
characterized as follows:

i) n−m�
√
n: Suitably normalized, hn,m is asymptotically standard Normal distributed, i.e.,

hn,m −m
(

logn− logm+ 1
)√

m
(

logn− logm
) (d)−−→ N (0, 1).

ii) n−m ∼ α
√
n, with α > 0: n− hn,m is asymptotically Poisson distributed with parameter α

2

2 , i.e.,

n− hn,m
(d)−−→ Poisson

(
α2

2

)
.

iii) n−m = o
(√
n
)
: n− hn,m converges in distribution to 0, i.e., n− hn,m

(d)−−→ 0.

Theorem 6.2 LetWN,m denote the waiting time (# interviews) for the strategy to hireN candidates. Then
the exact distribution ofWN,m is given as follows:

P{WN,m = t} =

JN = tK, if N ≤ m,

m!mN−m

t! ·
[
t−m
N−m

]
, ifm < N ≤ t.

For m ≤ N the expectation of WN,m is E{WN,m} = m ·
(
m
m−1

)N−m
. Asymptotically as m → ∞,

E{WN,m} ∼ m · e
N
m

−1.

Theorem 6.3 Let Ln,m denote the index of last hired candidate after n interviews. Then the exact distri-
bution of Ln,m is given as follows:

P{Ln,m = j} =


Jj = nK, ifm > n,

( j−1m−1)
(nm)

, ifm ≤ n and 1 ≤ j ≤ n.

Form ≤ n the expectation of Ln,m is E{Ln,m} =
m(n+1)
m+1 .

The limiting distribution of Ln,m is, for n → ∞ and depending on the size relation between m and n,
characterized as follows:

i) m fixed: Suitably normalized, Ln,m is asymptotically Beta distributed with parametersm and 1, i.e.,

Ln,m

n

(d)−−→ Beta(m, 1).
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ii) m → ∞, but m = o(n): Suitably normalized, n − Ln,m is asymptotically Exponential distributed
with parameter 1, i.e.,

m

n
(n− Ln,m)

(d)−−→ Exp(1).

iii) m ∼ αn, with 0 < α < 1: n − Ln,m is asymptotically geometrically distributed with success
probability α, i.e.,

n− Ln,m
(d)−−→ Geom(α).

iv) n−m = o(n): n− Ln,m converges in distribution to 0, i.e., n− Ln,m
(d)−−→ 0.

Theorem 6.4 Let ∆n,m denote the distance between the last two hirings after n interviews. Then the exact
distribution of ∆n,m is given as follows (for all other values of the parameters the probabilities are zero):

i) m > n: P{∆n,m = 1} = 1 if (d = 1 and n > 1) or (d = 0 and n = 0).

ii) m = 1 ≤ n:

P{∆n,1 = d} =


1
n , if d = 0,

1
n

(
Hn−1 −Hd−1

)
, if 1 ≤ d ≤ n− 1.

iii) 2 ≤ m ≤ n:

P{∆n,m = d} =


1

m−1

(
m2

n − 1

(nm)

)
, if d = 1,

m

(nm)

n∑
j=m+d

1

j−m

(
j− d− 1

m− 1

)
, if 2 ≤ d ≤ n−m.

For 2 ≤ m ≤ n the expectation of ∆n,m is given as follows, where the asymptotic equivalent holds for
m = o(n) and n→∞:

E{∆n,m} =
m(n+ 1)

(m+ 1)2
+

1

(m+ 1)
(
n
m

) ∼
m(n+ 1)

(m+ 1)2
+ o
( 1
n

)
.

The limiting distribution of ∆n,m is, for n→∞ and depending on the size relation between m and n,
characterized as follows:

i) m fixed: Suitably normalized, ∆n,m converges in distribution to a continuous r.v., which is character-

ized by its density function: ∆n,mn
(d)−−→ Xm, where Xm has the density function

fm(x) = m2

(
(−1)mxm−1 log x+ (−1)m−1Hm−1x

m−1 +

m−2∑
`=0

(−1)`

m− 1− `

(
m− 1

`

)
x`

)
, 0 < x < 1.

ii) m → ∞, but m = o(n): Suitably normalized, ∆n,m is asymptotically Exponential distributed with
parameter 1, i.e.,

m

n
∆n,m

(d)−−→ Exp(1).
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iii) m ∼ αn, with 0 < α < 1: ∆n,m − 1 is asymptotically geometrically distributed with success
probability α, i.e.,

∆n,m − 1
(d)−−→ Geom(α).

iv) n−m = o(n): ∆n,m − 1 converges in distribution to 0, i.e., ∆n,m − 1
(d)−−→ 0.

Theorem 6.5 Let Mn,m denote the score of best discarded after n interviews. Then the exact distribution
ofMn,m is given as follows:

P{Mn,m = b} =


Jb = 0K, if n > m,

m!
n!m

n−m, if b = 0 and 1 ≤ m ≤ n,

m!
(n−b+1)! · (n−m− b+ 1) ·mn−m−b, if 1 ≤ b ≤ n−m and 1 ≤ m ≤ n.

For 1 ≤ m ≤ n, the expectation ofMn,m is

E{Mn,m} = n−m−
(n−m)m!mn−m+1

(n+ 1)!
−

n−m∑
j=0

j (j+ 1)mjm!

(m+ j+ 1)!
= n−m+O

(√
m
)
,

where the asymptotic expansion holds uniformly for 1 ≤ m ≤ n and n→∞.
The limiting distribution ofMn,m is, for n→∞ and depending on the size relation betweenm and n,

characterized as follows:

i) m fixed: n − m − Mn,m converges in distribution to a discrete r.v., which is characterized by its

probability function: n−m−Mn,m
(d)−−→ Ym, where Ym has the probability function

P{Ym = j} =
(j+ 1)mjm!

(m+ j+ 1)!
, j ∈ N.

ii) m → ∞, but n − m �
√
m: Suitably normalized, n − m − Mn,m is asymptotically Rayleigh

distributed with parameter 1, i.e.,

n−m−Mn,m√
m

(d)−−→ Rayleigh(1).

iii) n −m ∼ α
√
m, with α > 0: Suitably normalized, n −m −Mn,m converges in distribution to the

minimum between α and a Rayleigh distributed r.v., i.e.,

n−m−Mn,m√
m

(d)−−→ min
(
α,Rayleigh(1)

)
.

iv) n−m = o(
√
m): Mn,m converges in distribution to 0, i.e.,Mn,m

(d)−−→ 0.

Theorem 6.6 Let fn,m denote the number of replacements done after processing n candidates using the
mechanism “hiring with replacements”. Then, for 1 ≤ m ≤ n, the expectation of fn,m is given as follows:

E{fn,m} =
m

2

(
H2n −H

(2)
n +H2m +H

(2)
m

)
−mHnHm.
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6.3 Analysis

We give here detailed analytical proofs of the theorems in Section 6.2. We show here the deriva-
tions of the explicit results characterizing the exact probability distributions of the considered
hiring parameters. Then due to the explicit nature of these exact formulas, the asymptotic re-
sults follow from them essentially by applying Stirling’s formula for the factorials (1.2), together
with standard techniques, i.e. the asymptotic expansion of the logarithmic function for small val-
ues (1.3).

We have also checked our results for small values of m and n against the exact probabilities,
and we have further tested them for large values ofm and n by doing some experiments and they
match very well [46].

6.3.1 Size of the hiring set

Probability distribution

Since the instance m > n is trivial (all candidates are hired), we can focus on the case 1 ≤ m ≤ n.
From the definition of this hiring strategy it follows immediately that

hn,m = χ1 + χ2 + · · ·+ χn,

where the indicator variables χj, which are 1 if the j-th candidate in the sequence is hired, and 0
otherwise, are mutually independent with distribution

P{χj = 1} =

{
1, for 1 ≤ j ≤ m,
m
j , form < j ≤ n.

Thus, the probability generating function is given as follows:

hn,m(v) =
∑
`≥0

P{hn,m = `}v`

= vm
n∏

j=m+1

mv+ (j−m)

j

= vm
(mv+ n−m)! ·m!

(mv)! · n!

= vm
(
n+m(v−1)

n

)(
mv
m

) . (6.2)

We point out that the corresponding probability generating function for Type2 m-records [6] in
permutations already appeared in [71] and later in [83], that is

G
[2]
n,m(v) =

n∏
j=m

mv+ (j−m)

j
, (6.3)

it is noticed again from (6.2) and (6.3) that initially the hiring set under our strategy contains
(m − 1) more candidates than the set of Type2 m-records for the same input sequence. To get an
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explicit result for the probabilities and thus the connection to unsigned Stirling numbers of first
kind we introduce the generating function:

hm(z, v) =
∑
n≥m

(
n

m

)
hn,m(v)zn.

A simple computation shows then

hm(z, v) =
(zv)m

(1− z)mv+1
.

Using the well-known generating function [57] of the Stirling numbers

∑
n,k

[
n

k

]
zn

n!
vk =

1

(1− z)v
,

the explicit result for the distribution of hn,m easily follows.

We can also give a “combinatorial” explanation for the nice formula of the distribution of hn,m
as follows: let us consider the number of n-permutations that have exactly j hirings; that is∣∣∣P [m]

n,j

∣∣∣ = (m− 1)! ·mj−m+1 ·
[
n−m+ 1

j−m+ 1

]
,

if we look at this class of permutations, then we say that the first (m − 1) candidates are always
hired and there are (m− 1)! different arrangements of those (m− 1) starting candidates. Then the
rest of the j hirings (in (n−m+ 1) candidates) is counted by the unsigned Stirling numbers of the
first kind. Finally if we consider the positions from the m-th coming candidate until the last one
in the sequence, then at any position of the j −m + 1 hiring ones there are m choices to make a
hiring there; that gives a factor ofmj−m+1.
Formally speaking we consider permutations via their “rank-table”, i.e., an n-permutation π is
described uniquely via

~r = (r1, r2, . . . , rn), 1 ≤ ri ≤ i,

with ri the relative rank of the element π(i) amongst {π(1), π(2), . . . , π(i)}. Then this set can be
characterized as follows via their corresponding rank-tables:

P [m]
n,j =

{
(r1, r2, . . . , rn) : 1 ≤ ri ≤ i and |{i : ri ≤ m}| = j

}
.

Now we can give a bijection between the family of permutations P [m]
n,j and all ordered triples of

“rank-tables” ~s,~t and ~r ′, satisfying the following restrictions:

~s = (s1, s2, . . . , sm−1), with 1 ≤ si ≤ i,
~t = (t1, t2, . . . , tj−m+1), with 1 ≤ ti ≤ m,
~r ′ = (r ′1, r

′
2, . . . , r

′
n−m+1), with 1 ≤ r ′i ≤ i,

i.e., we will show that
P [m]
n,j

∼= {(~s,~t, ~r ′)}.
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Since the unsigned Stirling numbers of the first kind count permutations with respect to left-to-
right minima, i.e., [

n

j

]
=
∣∣{(r1, r2, . . . , rn) : 1 ≤ ri ≤ i and |{i : ri = 1}| = j}

∣∣,
we have then shown in a bijective way that

∣∣∣P [m]
n,j

∣∣∣ = (m− 1)! ·mj−m+1 ·
[
n−m+1
j−m+1

]
.

But the tables ~s, ~t and ~r ′ are related to the rank-table ~r = (r1, r2, . . . , rn) of a permutation in P [m]
n,j

in a straightforward way:

• ~s = (s1, . . . , sm−1): it is the rank-table of the firstm−1 candidates (which are hired anyway):

si = ri, 1 ≤ i ≤ m− 1.

• ~t = (t1, t2, . . . , tj−m+1): it stores the ranks of the remaining hired candidates. Let us define
the set H∗ of indices of these j−m+ 1 hired candidates:

H∗ = {` ≥ k : r` ≤ m} = `1 < `2 < · · · < `j−m+1.

It holds then:
ti = r`i , 1 ≤ i ≤ j−m+ 1.

• ~r ′ = (r ′1, r
′
2, . . . , r

′
n−m+1): it is the “reduced” rank table (of the m-th, (m + 1)-th, . . . , n-th

candidate):

r ′i =

{
1, if ri+m−1 ≤ m,
ri+m−1 −m+ 1, if ri+m−1 > m.

So it is easy to see that this indeed gives a “one-to-one”-correspondence of these objects by show-
ing that each permutation of P [m]

n,j yields a different triple (~s,~t,~r ′) and all such triples indeed occur.

Expectation and variance

The explicit result for hm(z, v) easily gives, via differentiating r times with respect to v, evaluating
at v = 1 and extracting coefficients, explicit results for the r-th factorial moments of hn,m and,
as a consequence, the formulas for the expectation and the variance stated in Theorem [?]. The
corresponding asymptotic results follow from the asymptotic expansion of the first and second
order harmonic numbers, Hn = logn+ γ+O

(
1
n

)
and H(2)

n = π2

6 − n−1 +O
(
1
n2

)
.

Limiting distribution

To show the limiting distribution results as n→∞, we compute the moment generating function
(m.g.f.) E

{
eh
∗
n,ms
}

of a suitably normalized version h∗n,m of hn,m (depending on the region of
interest) which converges pointwise for each real s to the m.g.f. E

{
eXs
}

of a certain r.v. X. Then,
an application of the theorem of Curtiss (1.1) shows the weak convergence of h∗n,m to X.

We start with the closed form of the probability generating function hn,m(v) in (6.2), then using
Stirling’s formula gives us the following useful asymptotic expansion:

loghn,m(v) = m(v−1)(logn−logm)+
(
n+m(v−1)

)
log
(
1+

m(v− 1)

n

)
+O(1−v)+O

( 1
m

)
(6.4)
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i) The main region n−m�
√
n:

We consider here the normalized r.v.

h∗n,m =
hn,m − µ

σ
,

with µ = µn,m = m(logn− logm+ 1) and σ2 = σ2n,m = m
(
logn− logm− 1+ m

n

)
,

yielding thus the m.g.f.
E
{
eh
∗
n,ms
}

= e−µ
σ
s · hn,m

(
e
s
σ

)
.

Since form is fixed, the central limit theorem has been shown already in [5], then we consider
here onlym→∞. Now we substitute in (6.4), doing some computations, to get the following
asymptotic expansion (which holds for any fixed real s):

log
(
E
{
eh
∗
n,ms
})

=
s2

2
+O

(
m
(
1− m

n

)2
σ3

)
+O

( 1
σ

)
+O

( 1
m

)
,

which implies that E
{
eh
∗
n,ms
} → e

s2

2 , pointwise for each real s, provided that n −m �
√
n.

Since e
s2

2 is the moment generating function of a standard Normal distribution, the theorem
of Curtiss yields the stated central limit theorem. We can simplify σn,m by neglecting the term
m
n − 1 as n→∞ and n� m.

ii) n−m = O
(√
n
)
:

We consider the r.v. hn,m = n − hn,m, then there are two ways to show the convergence to
Poisson distribution:
(1) The method of moments: the moment generating function of the r.v. hn,m is

E
{
eh
s
n,m

}
= ens · hn,m(e−s).

Hence we substitute in (6.4) to get the expansion

E
{
eh
s
n,m

}
= e

(n−m)2

2n
(es−1) ·

(
1+O

(n−m

n

)
+O

(
(n−m)3

n2

))
.

Since eλ(e
s−1) is the m.g.f. of a Poisson distributed r.v. with parameter λ =

(n−m)2

2n , then the
limiting distribution result for n−m ∼ α

√
n follows.

(2) From the explicit form of the probability distribution: let us recall it again, form ≤ j ≤ n:

P{hn,m = j} =
m!mj−m

n!
·
[
n−m+ 1

j−m+ 1

]
.

For simplicity we set k = n−m and ` = n− j, so that

P{n− hn,m = n− j} = P{hn,m = `} =
(n− k)!(n− k)k−`

n!
·
[
k+ 1

k− `+ 1

]
. (6.5)

First we have [
k+ 1

k− `+ 1

]
=
k2`

`!2`
·
(
1+O

(1
k

))
, as k→∞ and fixed `, (6.6)
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where identity (1.6) for the unsigned Stirling numbers of the first kind tells us that[
k

`

]
= [z`] zk = [z`]z(z+ 1) . . . (z+ k− 1).

Thus [
k

k− `

]
= [z`]

(
1

z

)k
= [z`]

k∏
i=1

(
1+ (i− 1)z

)
= [z`]

zkΓ
(
k+ 1

z

)
Γ
(
1
z

) .

Applying Stirling’s formula yields:[
k

k− `

]
∼ [z`]e−k(1+ kz)k+

1
z
+1
2 ,

then expanding this form using some computer algebra system shows that

(1+ kz)k+
1
z
+1
2 = ek

(
1+

k2

2

(
1+O(k−1)

)
z+

k4

8

(
1+O(k−1)

)
z2

+
k6

48

(
1+O(k−1)

)
z3 +

k8

384

(
1+O(k−1)

)
z4 + . . .

)
.

The main term is z
`k2`

c`
, where c` = `!2`. Thus, we get the asymptotic approximation in (6.6).

The asymptotic approximation of the other multiplied factor in (6.5) is as follows:

(n− k)!(n− k)k−`

n!
∼ n−`e

−k2

2n , (6.7)

after applying Stirling’s formula as usual. Now, considering (6.6) and (6.7) gives us the
asymptotic expansion for (6.5), which is valid for k = O

(√
n
)
:

P{hn,m = `} ∼
1

`!

( k2
2n

)`
e−k

2

2n ,

that is the probability density function of a Poisson distribution with parameter λ = k2

2n =
(n−m)2

2n .

iii) n−m = o
(√
n
)
:

The strategy is expected to hire many candidates then we consider the r.v. h̃n,m = n − hn,m.
It is easy to see that the m.g.f. of h̃n,m converges to 0, or P{hn,m = n} = 1− o(1), which shows
the stated theorem for this region also.

6.3.2 Waiting time

The result for this parameter follows easily from the explicit form of the distribution of hn,m.
When we consider the moment that the size of the hiring set is exactly N, we see

P{WN,m = t} =
m

t
· P{ht−1,m = N− 1}, form < N ≤ t.
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Then using Theorem 6.1 we get directly the result. For the expectation, we make use of the fol-
lowing interesting identity given by Kuba and Prodinger [62] for s, d ∈ N:

∑
j≥1

[
j
d

]
j!
(
s+j
j

) =
1

sd
,

together with a useful identity for the unsigned Stirling numbers of the first kind (1.5), thus we
have:

E{WN,m} =
∑
t≥N

t · m!mN−m

t!

[
t−m

N−m

]

= m!mN−m

 ∑
t≥N−m

[
t

N−m

]
(t+m− 1)!

−
∑

t≥N−m−1

[
t

N−m−1

]
(t+m)!


= m ·

( m

m− 1

)N−m
.

Asymptotically asm becomes large,

E{WN,m} = m lim
m→∞

(
1−

1

m

)m(1−N
m

)
∼ m · e

N
m

−1,

which is fully consistent with E{hn,m}.

6.3.3 Index of last hired candidate

Trivially, for n > m one gets P{Ln,m = n} = 1, thus we only have to consider the range 1 ≤ m ≤ n.
It is immediate from the definition of “hiring above them-th best” (see also Subsect. 6.3.1) that the
probability of hiring at any position j > m equals m

j . Thus we get the stated exact result for the
probability distribution of Ln,m:

P{Ln,m = j} = P{We hire at position j} · P{No hirings from position (j+ 1) till n}

=
m

j
·

n∏
`=j+1

(
1−

m

`

)
=

(
j−1
m−1

)(
n
m

) .
The results for the expectation and the variance can be obtained easily as follows:

E{Ln,m} =
1(
n
m

) n∑
j=m

j

(
j− 1

m− 1

)
=
m(n+ 1)

m+ 1
,

V{Ln,m} =
1(
n
m

) n∑
j=m

j2
(
j− 1

m− 1

)
−

(
m(n+ 1)

m+ 1

)2
=

m

(m+ 2)(m+ 1)2
n2 +

2m2 +m

(m+ 2)(m+ 1)
n+

m2

(m+ 2)(m+ 1)
.

The limiting distribution results, for n → ∞, can be obtained by applying Stirling’s formula to
the exact formula for the probabilities.
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i) The main region: m→∞ butm = o(n) and let j = n− kwhere k = o(n) then

P{Ln,m = n− k} = P{n− Ln,m = k} =
m

n
e−km

n ·
(
1+O

(k2m
n2

)
+O

(km2
n2

))
,

from which one immediately gets that mn (n− Ln,m)
(d)−−→ L, L has density function f(x) = ex.

ii) m is fixed, i.e.,m = Θ(1):

P{Ln,m = j} =
mj!(n−m)!

j(j−m)!n!
=
m

n

(
j

n

)m−1

·
(
1+O

(1
j

))
,

so that Ln,mn
(d)−−→ L, where L has density function f(x) = m · xm−1, 0 < x < 1, which is Beta

distribution with parameters α = m and β = 1.

iii) m ∼ αnwith 0 < α < 1: let j = n− k and k = o(n),

P{Ln,m = n− k} =
m(n−m)!(n− k− 1)!

n!(n− k−m)!

=
m(n−m)k

(
1+O

(
1

n−m

))
(n− k)nk

(
1+O

(
1
n

))
=
m

n
·
(
1−

m

n

)k
·
(
1+O

( 1
n

))
,

for k ∈ N we can say that asymptotically (n−Ln,m) is geometrically distributed with success
probability p = α.

iv) n−m = o(n): it is very likely that the strategy recruits almost everybody, so that

P{Ln,m = n} =
m

n
= 1+ o

( 1
n

)
, then (n− Ln,m)

(d)−−→ 0.
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6.3.4 Distance between the last two hirings

We only comment on the non-trivial case 1 ≤ m ≤ n. Let us first consider the generic instance
2 ≤ m ≤ n and d ≥ 2. By considering the position j ≥ m+d of the last hiring we immediately get
the following formula:

P{∆n,m = d} =

n∑
j=m+d

[
P{We hire at position (j− d)} · P{No hirings from position (j− d+ 1) till (j− 1)}

· P{We hire at position j} · P{No hirings from position (j+ 1) till n}
]

=

n∑
j=m+d

m

j− d
·
j−1∏
`=j−d

(
1−

m

`

)
· m
j
·

n∏
`=j+1

(
1−

m

`

)
=
m(
n
m

) n∑
j=m+d

1

j−m

(
j− d− 1

m− 1

)
.

(6.8)

The other cases can be obtained from this generic instance by simple modifications. For 2 ≤ m ≤ n
and d = 1 one has to add the contribution of the event that the last hiring occurs at position j = m,
thus

P{∆n,m = 1} =
m(
n
m

) n∑
j=m+1

1

j−m

(
j− 2

m− 1

)
+ P{Ln,m = m}

=
m(
n
m

) n∑
j=m+1

1

j−m

(
j− 2

m− 1

)
+

1(
n
m

)
=

1

m− 1

(
m2

n
−

1(
n
m

)) ,
where the last simplification follows from a summation formula. Finally, for the instance m = 1

the formula (6.8) holds for d ≥ 1, but simplifies to the result stated in the theorem; additionally
one has to consider here the case d = 0, i.e., there is only one hired candidate, namely the one with
highest rank, which thus has to appear at the first position, yielding P{∆n,1 = 0} = 1

n .
The expectation and variance are computed as follows for 2 ≤ m ≤ n:

E{∆n,m} =
m(
n
m

) n−m∑
d=2

d

n∑
j=m+d

1

j−m

(
j− d− 1

m− 1

)
+

1

m− 1

(
m2

n
−

1(
n
m

))

=
m(
n
m

) n∑
j=m+2

1

j−m

j−m∑
d=2

d

(
j− d− 1

m− 1

)
+

1

m− 1

(
m2

n
−

1(
n
m

))

=
m(n+ 1)

(m+ 1)2
+

1

(m+ 1)
(
n
m

) ,
V{∆n,m} =

m(
n
m

) n−m∑
d=2

d2
n∑

j=m+d

1

j−m

(
j− d− 1

m− 1

)
+

1

m− 1

(
m2

n
−

1(
n
m

))− E{∆n}2

=
m4 + 2m3 + 2m2 + 2m

(m+ 2)2(m+ 1)4
· n2

(
1+O

( 1
n

))
, form = o(n).

The asymptotic results for ∆n,m are also a direct consequence of Stirling’s formula applied to the
exact probabilities, but, due to the summation occurring in the formula, they require slightly more



6.3. ANALYSIS 119

care. For 2 ≤ m ≤ n and n→∞:

i) The main regionm→∞, butm = o(n): doing some simplifications to the formula (6.8) gives
us

P{∆n,m = d} = m2
n−m∑
j=d

1

(n−m− j+ d)
· (n− j− 1)!(n−m)!

(n− j−m)!n!

= m2
n−m∑
j=d

1

(n−m− j+ d)
· 1
n
e

−jm
n ·

(
1+O

( j2m
n2

)
+O

( jm2
n2

))
∼
m

n
·
∫∞
dm
n

e−tdt =
m

n
· e

−md
n ,

where the main contribution for this local approximation is for d = O
(
n
m

)
. Thus the random

variable m
n∆n,m

(d)−−→ X, where X has density function f(x) = ex, x > 0.

ii) m is fixed: starting with formula (6.8),

P{∆n,m = d} =
m ·m!

nm ·
(
1+O

(
1
n

)) n∑
j=m+d

1

j−m
· (j− d)

m−1

(m− 1)!
·
(
1+O

( 1

j− d

))

∼
m2

n
·
∫1
d
n

1

t
·
(
t−

d

n

)m−1
dt,

which implies that ∆n,mn
(d)−−→ X, where X has the following density function,

fm(x) = m2
∫1
x

1

t
(t− x)m−1dt, 0 < x < 1.

We can express fm(x) also in the more explicit form stated in the theorem as follows:

fm(x) = m2
∫x
1

1

t

m−1∑
l=0

(
m− 1

l

)
(−1)lxltm−1−ldt

= m2

(
m−2∑
l=0

(
m− 1

l

)
(−1)lxl

m− 1− l
(1− xm−1−l) + (−1)mxm−1 log(x)

)

= m2

m−2∑
j=0

(−1)lxl

m− 1− l

j∑
l=0

(
m− 2− l

m− 2− j

)
(−1)jxj + (−1)mxm−1 log(x)


= m2

m−2∑
j=0

xj(−1)j

m− 1− l

(
m− 1

j

)
+

m−2∑
l=0

(−1)m−1xm−1

m− 1− l
+ (−1)mxm−1 log(x)

 ,
A couple of simple additional computations yield the result.
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iii) m ∼ αn:

P{∆n,m = d} = m2
n−m∑
j=d

1

(n−m− j+ d)
· (n− j− 1)!(n−m)!

(n− j−m)!n!

= m2
∑
j≥d

1

n−m

(n−m)j

nj+1
·
(
1+O

( 1

n−m

))
, for fixed j,

∼
m

n

(
1−

m

n

)d−1
,

which says that asymptotically (∆n,m − 1) is geometrically distributed with probability of
success p = α.

iv) n−m = o(n): we expect that the strategy will recruit many candidates, then ∆n,m takes small
values, so that for d = 1we have

P{∆n,m = 1} =
m2

(m− 1)n
+O

( 1
n

)
= 1+ o(1),

that is enough to show that ∆n,m converges to 1 as n−m = o(n).

6.3.5 Score of best discarded candidate

To show the explicit result for the exact distribution ofMn,m on the case 1 ≤ m ≤ n and 1 ≤ b ≤ n−m,
we proceed as we did in Subsection 4.3.8. We have to consider an auxiliary quantity, namely the
probability an,m,j, with 0 ≤ j ≤ n −m, that all of the m + j highest ranked candidates are hired (and
maybe others). Thus the probability that the best discarded candidate has rank 1 ≤ b ≤ n −m is
simply given by the difference between the probability that all candidates with a rank higher than
b are recruited and the probability that all candidates with a rank higher than b− 1 are recruited,
i.e.,

P{Mn,m = b} = an,m,n−m−b − an,m,n+1−m−b. (6.9)

The corresponding recurrence of the sequence an,m,j can be stated as follows for 1 ≤ j ≤ n−m:

an,m,j =
m

n
· an−1,m,j−1 +

(
1−

j+m

n

)
· an−1,m,j, (6.10)

with an,m,0 = 1where the bestm candidates are always hired as we know.
To solve this recurrence let us introduce the normalization:

bn,m,j =
n!

m!(n−m− j)!
· an,m,j.

Hence the recurrence equation (6.10) becomes,

bn,m,j = m · bn−1,m,j−1 + ·bn−1,m,j, (6.11)

Now we can introduce the generating function

B(z, u, v) =
∑
n≥1

∑
1≤m≤n

∑
1≤j≤n−m

bn,m,jz
numvj.
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Applying the generating function to (6.11) yields the following PDE:

(1− z)B(z, u, v) = zuvBu(z, u, v) +
z2uv

(1− z(1+ u))2
.

A simple trick to extract the required coefficients without explicitly solving the PDE is to deal with
[um]B(z, u, v) = bm(z, v), so that the PDE is reduced to

(1− z)bm(z, v) = mzvbm(z, v) +m
z2v

(1− z)2

(
z

1− z

)m−1

,

which gives directly

bm(z, v) =
mvzm+1

(1− z−mzv)(1+ z)m+1
.

Now it is easy to extract the coefficients to get the result for our quantity:

an,m,j =
m!(n−m− j)!

n!
· bn,m,j

=
m!(n−m− j)!

n!
·mj

(
n

m+ j

)
=

m!mj

(m+ j)!
, for 0 ≤ j ≤ n−m (6.12)

If we plus this answer in (6.9) then we get the result stated in the theorem. We can explain the
result obtained in (6.12) as follows: since the candidate with the (m+ `)-th highest rank, 1 ≤ ` ≤ j,
is hired exactly when at most m − 1 (i.e., 0, 1, . . . , m − 1) of the (in total m + ` − 1) higher ranked
candidates occur earlier in the sequence, the probability that this happens is thus given by m

m+` ,
and these events are independent, we get

an,m,j =

j∏
`=1

m

m+ `
=

m!mj

(m+ j)!
, 0 ≤ j ≤ n−m.

Additionally, we have

P{Mn,m = 0} = P{hn,m = n} =
m!mn−m

n!
,
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thus completing the results for the whole distribution ofMn,m.

The expectation ofMn,m is computed as follows:

E{Mn,m} =

n−m∑
b=1

b · m!(n−m− b+ 1)mn−m−b

(n− b+ 1)!

= n−m+ 1−m!m−m
n∑
j=m

mj

j!
,

and the term Sm = m!m−m
∑n
j=m

mj

j! is exactly the following function introduced by Knuth in
[56]:

R(m) =
∑
j≥0

m!mj

(m+ j)!

=

√
πm

2
+
1

3
+
1

12

√
π

2m
+

4

135m
+

1

288

√
π

2m3
+O

(
1

m2

)
.

Thus asymptotically as n→∞ and uniformly for 1 ≤ m ≤ n,

E{Mn,m} = n−m−

√
πm

2
+O(1),

The variance ofMn,m can be obtained via similar computations as follows

V{Mn,m} =

n−m∑
b=1

b2 · m!(n−m− b+ 1)mn−m−b

(n− b+ 1)!
− E{Mn,m}2

= 2m− S2m + Sm

=
(
2−

π

2

)
·m+

√
2πm

6
+O(1), as n→∞.

The limiting behaviour ofMn,m is characterized depending on the size relation between n andm
as previous parameters. For fixed m it is trivially derived from the exact formula of the distribu-
tion. We give here the details for other regions of interest:

i) The main regionm→∞, but n−m�
√
m: we get the following local expansion

P{Mn,m = n−m− j} = P{n−m−Mn,m = j} =
j

m
e− j2

2m ·
(
1+O

( j
m

)
+O

( j3
m2

))
,

which immediately entails that n−m−Mn,m√
m

(d)−−→ Y, where Y has the density function f(y) = ye−y
2

2 ,
y > 0, thus Y is Rayleigh distributed r.v. with parameter 1. We notice that the asymptotic re-
sult for the expectation follows also from the local expansion obtained here.

ii) n−m = o
(√
m
)
: that means that m is very close to n so that almost all candidates are hired

andMn,m tends to 0,

P{Mn,m = 0} =
m!mn−m

n!
∼ 1+ o(1).
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iii) n−m ∼ α
√
m, α > 0: we consider the r.v. M̃n,m = n−m−Mn,m and compute the distribution

function P{M̃n,m ≤ `}. For 0 ≤ ` ≤ n−m− 1we get

P{M̃n,m ≤ `} =
∑̀
j=0

P{M̃n,m = j}

=
∑̀
j=0

(j+ 1)m!mj

(m+ j+ 1)!

= 1−
m!m`+1

(m+ `+ 1)!
,

since the sum telescopes. Together with P{M̃n,m ≤ n−m} = 1we get

P{M̃n,m ≤ `} =

{
1− m!m`+1

(m+`+1)! , 0 ≤ ` ≤ n−m− 1,

1, ` ≥ n−m.

We consider now the region n−m ∼ α
√
m, α > 0, we set ` = x

√
m.

Since
m!m`+1

(m+ `+ 1)!
= e− `2

2m ·
(
1+O

( `
m

)
+O

( `3
m2

))
,

we get

P
{
M̃n,m√
m
≤ x
} → 1− e−x

2

2 , for 0 ≤ x < α.

Moreover, it holds P
{
M̃n,m√
m
≤ x
} → 1, for x ≥ α. This shows that

M̃n,m√
m

(d)−−→ Yα,

where the r.v. Yα has the cumulative density function

Fα(x) =

{
1− e−x

2

2 , 0 ≤ x < α,
1, x ≥ α.

Note that F(x) = 1 − e−x
2

2 , x ≥ 0 is the cumulative function of a Rayleigh(1) distributed r.v.
Thus Fα(x) is the distribution function of min

(
Rayleigh(1), α

)
as stated in the theorem.

6.3.6 Number of replacements

Let us consider the indicator r.v. Yj,m which takes the value 1 if a replacement occurs at step j
(after receiving j candidates) and 0 otherwise. Since the number of replacements fn,m depends on
the size of the hiring set hn,m but the contrary is not true (where the size of the hiring set is not
affected by using the replacement mechanism), then the conditional probability of Yj,m is given as
follows:

P{Yj,m = 1|hj−1,m = k} =

{
0, if j ≤ m,
k−m
j , if j > m and k ≤ j− 1,
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where we have to condition on the size of the hiring set in the previous step, j − 1. Let the size
of the hiring set be k after j − 1 interviews. There are m possible scores which would be directly
hired at step j and those candidates who are worse than them-th best hired candidate at step j− 1
AND better than the worst hired one, get hired substituting the worst hired. So that there are
k− (m− 1) − 1 = k−m possibilities at step j to replace the worst candidate in the hiring set with
a better one.

Since we have the exact distribution of hn,m (Theorem 6.1) then we can proceed in the compu-
tations as follows:

P{Yj,m = 1} =

j−1∑
k=m

P{Yj,m = 1|hj−1,m = k} · P{hj−1,m = k}

=
(m− 1)!

j!

j−m∑
t=1

(t− 1)

[
j−m

t

]
mt

=
m

j

(
Hj−1 −Hm

)
.

Now we can compute the expectation easily:

E{fn,m} =

n∑
j=m+1

P{Yj,m = 1}

=
m

2

(
H2n −H

(2)
n +H2m +H

(2)
m

)
−mHnHm

=
m

2
· log2

( n
m

)
+O(m), uniformly form ≤ n.

6.4 The seating plan (0,m)

We have already discussed, in Subsection 4.4.2, the connections between the hiring process when
“hiring above the median” is used to process the sequence of candidates, and the Chinese Restau-
rant Process (CRP) (Section 2.5) when the seating plan (12 , 1) is applied for a bunch of customers.

We go here similarly, where we consider the quantity number of occupied tables after receiving n
customers, call it Kn. Thus, as pointed out before, both Kn and the size of the hiring set under any
natural hiring strategy represent the same Markov chain with increments in {0, 1} and inhomoge-
neous transition probabilities.

In particular, let m be positive integer and 1 ≤ m ≤ n then the seating plan (0,m) processes the
sequence of customers exactly like “hiring above the m-th best” during the selection phase (re-
view Section 6.1). The major difference is that the initial phase (where candidates get hired with
probability 1) for our hiring strategy which takes (m − 1) time intervals more than the seating
plan (0,m). Let K(0,m)

n denote the number of occupied tables in the restaurant if the seating plan
(0,m) is applied for n customers. Then the following table shows the probabilities of increment
for K(0,m)

n and hn,m:
n 1 2 3 . . . m m+ 1 m+ 2 . . .

K
(0,m)
n 1 m

m+1
m
m+2 . . . m

2m−1
m
2m

m
2m+1 . . .

hn,m 1 1 1 . . . 1 m
m+1

m
m+2 . . .
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So that for 1 ≤ m ≤ nwe can state the following relationship:

P{hn,m = k} = P
{
K

(0,m)
n−m+1 = k−m+ 1

}
. (6.13)

A simple derivation, after specializing θ = m and α = 0 in the general formulas (2.2) and (2.3),
shows the following theorem for the distribution and expectation of K(0,m)

n :

Theorem 6.7 (Pitman [77]) For the seating plan (0,m), let K(0,m)
n denote the number of occupied tables

after n customers have arrived in the restaurant. Then the exact probability distribution of K(0,m)
n is given

as follows:

P
{
K

(0,m)
n = k

}
=
mkΓ(m)

Γ(n+m)

[
n

k

]
, (6.14)

and the expectation is E
{
K

(0,m)
n

}
= m

(
log(n+m− 1) − log(m− 1)

)
+O(1).

This result of the expectation coincides with Theorem 6.1 according to (6.13). As a consequence,
for the special casem = 1: hn,1 for hiring above the best strategy and K(0,1)

n for the seating plan (0, 1)

are identical.

Moreover, some hiring parameters studied here for “hiring above the m-th best” can make sense
also for CRP under the seating plan (0,m). We mean that results for new quantities associated
to seating plan (0,m) like the time of last occupied table, L(0,m)

n , the time between opening the last two
occupied tables, ∆(0,m)

n , and the waiting time until N tables are occupied in the restaurant, T (0,m)
N , are

in hand, depending on the corresponding introduced results in Theorems 6.3, 6.4 and 6.2, respec-
tively.

Thus, the following relationships (similar to (6.13)) hold for 1 ≤ m ≤ n:

P
{
L

(0,m)
n = j

}
= P{Ln+m−1,m = j+m− 1}, (6.15)

P
{
∆

(0,m)
n = d

}
= P{∆n+m−1,m = d+m− 1}, (6.16)

P
{
T

(0,m)
N = t

}
= P{WN+m−1,m = t+m− 1}, m ≤ N ≤ t. (6.17)

For instance, we mention here only the results for the waiting time.

Theorem 6.8 (CRP) For the seating plan (0,m), let T (0,m)
N denote the waiting time until N tables are

occupied in the restaurant. Then the distribution of T (0,m)
N is given as follow

P
{
T

(0,m)
N = t

}
=
mNΓ(m)

Γ(t+m)

[
t− 1

N− 1

]
,

and the expectation is E
{
T

(0,m)
N

}
= m

(
m
m−1

)N−1
−m+ 1.

A small check shows that the result for E
{
T

(0,m)
N

}
matches exactly the results for E

{
K

(0,m)
n

}
in

Theorem 6.7 as expected. The proof of the last theorem is omitted since it is similar to that one of
Theorem 6.2 in Subsection 6.3.2.
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6.5 Conclusions

We have presented various theorems, in Section 6.2 that describe the properties of the hiring pro-
cess when applying “hiring above them-th best candidate”. These results provide a very detailed
picture of this natural hiring strategy.

The connections between the strategy and the two types of m-records have been studied in
Subsection 6.1.1, in particular, showing that the hired candidates are those Type2 m-records in
the sequence together with the bestm− 1 ones.
Moreover, the results for new statistics related to m-records can be deduced directly from the re-
sults of the corresponding hiring parameters. As already explained in Subsection 6.1.1, after the
first m − 1 elements in the sequence, whenever we hire a new candidate, a new m-record is en-
countered. Then, the index of last m-record, that is the “time” when the last m-record has been
encountered, is exactly Ln,m, Theorem 6.3.
Also, the distance between the last two m-records, i.e., the number of elements (which are non m-
records) between the last twom-records in the sequence, is exactly ∆n,m, Theorem 6.4.
Finally, the lastm-record, also the largestm-record, is, trivially, that element with rank n−m+ 1 in
a sequence of n elements. Studying the number of replacements makes little sense in the context of
m-records.

We have also discussed the relationship between this hiring strategy and the seating plan (0,m)

of the CRP, showing that both are equivalent (after a time shift). Moreover, new interesting quanti-
ties in the context of the CRP have been introduced, where the results for the seating plan (0,m)

related to the index of last open table and the time between opening the last two occupied tables can be
easily obtained from (6.15) and (6.16) respectively. The explicit results for the waiting time are also
given in Theorem 6.8.

It is obvious from Theorem 2.19 that the quality of the hiring set improves along time, as the
gap of the last hired candidate goes to zero as n becomes large. The hiring rate is relatively slow,
with the index of last hiring satisfying Ln,m

n < 1 (Theorem 6.3). Also Theorem 6.2 for the waiting
time WN,m shows that it is expected for the strategy to take an exponential number of interviews
to hire N candidates.



Chapter 7

Applications to data streaming
algorithms

7.1 Introduction

The sequential selection processes have proved very useful in diverse fields. For example, the Chi-
nese restaurant process (Section 2.5) was the main tool in a model-based Bayesian approach used
for clustering microarray gene expression data [84], and the asymptotic results of some Polya’s
urn models were used to obtain an estimation of the Computer memory requirements of the 2-3
trees, a well-known Computer data structure for storage organization [8]. We show in this chapter
a new application of the hiring problem in the analysis of data streaming algorithms.

The problem addressed here is the so-called “cardinality estimation problem”. We are given a
very large multiset S = (s1, s2, . . .) which has a total number of elements N = |S| and may contain
repetitions. Then we are interested in extracting the number of distinct elements n that represents
the cardinality of the underlying set of S. Data streaming algorithms typically require processing a
huge data set sequentially, very quickly in a single pass (or few passes at most) over all elements,
using a limited memory and giving answers of the queries within a small percentage of error is
sufficient. Due to these restrictions, a deterministic solution (imagine that N is far beyond the
RAM capacity) becomes rather too expensive, and does not meet the requirements. The idea of
designing probabilistic algorithms to estimate the cardinality of a huge data set become then a rea-
sonable and feasible alternative.

This problem is one of the first to be framed in terms of streaming algorithms. It has arisen in
the early 1980s in the database community when IBM’s researchers were trying to optimize some
intermediate algorithmic operations on data bases. After the pioneering work of Flajolet and Mar-
tin [36] in 1985, the problem has received a lot of attention in many other fields like data mining
and network security. For example, estimating the distinct number of flows (sequence of packets
identified by a source address and a destination address) is of interest and has many applications
in network monitoring and network security (see [27, 39]).

127
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7.1.1 Prior work on cardinality estimation problem

Since the first algorithm solving the problem, PROBABILISTIC COUNTING by Flajolet and Martin,
new proposals have appeared bearing new algorithms that improve the efficiency or introduce
new point of views to attack the problem. Flajolet himself payed a special interest to this particular
problem and has visited it in a score of publications, i.e., [25, 31, 32, 33, 34]. Almost all available
approximate counting algorithms apply a hash function to every element in the sequence S, in
order to get rid of repetitions (since any distinct element and its copies will be hashed into the
same hash value). Furthermore, the hashed values can be seen as uniformly distributed random
variables (r.v.’s) in (0, 1). Then there are two main points of view for handling the hash values (see
[34, 66]):

• Bit-pattern model: the hash values are considered as binary strings. Then observing the
longest run of zeros in the hash values is used to set an estimator. Techniques using this
principle were investigated by Flajolet in several papers, i.e., [25, 34, 36].

• Order statistic model: here, the hash values are considered as real numbers in (0, 1). Then
the k-th order statistic of the set, i.e., the k-th smallest value seen in the sequence of data
is used to set an estimator. Cardinality estimators proposed by Bar-Yossef et al. [9], Giroire
[44], Lumbroso [66] and others are build upon this idea.

In this context, we have to prove that the proposed estimator is unbiased or at least asymptotically
unbiased (as n → ∞): its expectation (asymptotically) be n. Next, we need to characterize the
standard error of the estimator; that is the common accuracy measure. Providing the limiting
distribution of the estimator completes the picture but this is often too complicated and only few
limit distributions are known for such algorithms; one of them is given by Lumbroso in [66].

From the practical point of view, the best obtained algorithm is the HYPERLOGLOG [34] by
Flajolet et al.: it is very fast, simple to implement and it has an accuracy 1.03/

√
m using m words

of 5 bytes to estimate cardinalities up to 240.

Notation. In Chapter 6 we were using the letter m to refer to the strategy “hiring above the
m-th best”. Here, we are using k instead of m, to refer to the mentioned strategy, because when
speaking about data streaming algorithms we find that m is often used to denote the number of
substreams m in the so-called “stochastic averaging” technique. We have seen in Subsection 6.1.1
that there are two types of k-records but when mentioning “k-records” here alone we mean Type2
k-records.

7.1.2 Data streams as random permutations

Here we introduce a different technique to process the hash values that represent the input data
stream. If we take into consideration only the hash values of the first occurrence of each distinct
element then these constitute a random permutation as long as we assume that the (distinct) hash
values are i.i.d. random numbers in (0, 1). Hence considering the input data stream as a random
permutation opens the door to make use of the properties of random permutations. It is easy to
notice that k-records are insensitive to repetitions in the input sequence. Hence, we can adapt the
explicit distributional results for the hiring parameter number of hired candidates to design our first
unbiased cardinality estimator, which we call RECORDINALITY. The mathematical computations
are very simple and elegant. The probability distribution of RECORDINALITY and its limit are also
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easy to compute.

To implement the strategy “hiring above the k-th best”, the data sequence is processed in a simple
way: it uses only kmemory units plus one counter to report the number of k-records, requires few
operations per element and of course needs only one single pass over all elements. Hiring above
the k-th best considers only the relative ranks of the hash values (not the values themselves) as
explained in Chapter 6. Thus, we argue that RECORDINALITY is a practical estimator that can be
implemented without hash functions, but rather works assuming that the data streams satisfies
the random-order model.

We introduce another estimator, called DISCARDINALITY, based on the hiring parameter best dis-
carded candidate that is the largest non k-record after processing the input data sequence using “hir-
ing above the k-th best”. From a practical point of view, implementing DISCARDINALITY requires
more memory than RECORDINALITY, takes more processing time for the same input stream, and
using hash functions is essential.

There were previous proposals to use records to estimate the number of distinct elements in a
sample by Moreno-Rebollo et al. [70] in 1996. Later in 2000, Moreno-Rebollo et al. [71] revisited
the problem and presented cardinality estimators based on k-records (both types of k-records). In
particular, they obtained similar results to our estimator RECORDINALITY using a purely proba-
bilistic approach. The work of Moreno-Rebollo et al. [70, 71] was not cast in the framework of data
stream analysis nor did it touch the most algorithmic aspects. Thus, it went largely unnoticed in
the data stream community. In particular, we become a ware of [70, 71] after [47] was published.
The main results of Moreno-Rebollo et al. and ours are equivalent (thought different techniques
were used); in other aspects, they complement and give alternative viewpoints.

The sequel of this chapter is organized as follows: we review the main results of Moreno-Rebollo
et al. in Section 7.2. Section 7.3 introduces our main results, analysis and experimental work for
RECORDINALITY. The extensions and discussion of RECORDINALITY are presented in Section 7.4.
The second estimator DISCARDINALITY is introduced in Section 7.5, where we give the main re-
sults, analysis and experimental work. In Section 7.6, we discuss using the largest non k-record
for another problem: similarity index estimation. The chapter ends with the conclusions of the
presented work and a discussion about the preliminary ideas left for future.

7.2 Related work on the random-order model

In their first work [70], Moreno-Rebollo, Blázquez, Chamorro and Acosta have considered the
number of lower records (i.e., left-to-right minima), or just records since upper records have identical
distribution as lower records, in a random sample of unknonw size n from a continuous distri-
bution, to estimate n. They introduced two unbiased estimators as characterized in the following
theorems.

Theorem 7.1 (Moreno-Rebollo et al., 1996) Let r1 be the observed number of records (1-records) in a
sample with unknown size n, then

T1 = 2r1 − 1
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is an unbiased estimator of n (i.e., E{T } = n) and

V{T1} =
(n+ 3)(n+ 2)(n+ 1)

6
− (n+ 1)2.

Using the probability generating function of r1 (that is, hn,1(v) in (6.2)) directly proves the unbi-
asedness of T1.

Theorem 7.2 (Moreno-Rebollo et al., 1996) Let r1 be the observed number of records in a sample with
unknown size n, then the maximum likelihood estimator (m.l.e.) of n is given by

T (m.l.e.) = min {n : Mo(Nn) = r1},

where Nn is the r.v. that represents the number of records of a sample of size n, and Mo is the
mode of Nn. Moreno-Rebollo, Chamorro, Blázquez and Gómez have proposed also estimators
suggested by the method of moments approach, that was the motivation of their work in [71].
Recall Definitions 6.1 and 6.2 for Type1 and Type2 k-records, then the following theorems show
the results of the estimators given in [71]:

Theorem 7.3 (Moreno-Rebollo et al., 2000) Let r[1]k denote the observed number of Type1 k-records in
a sample with unknown size n, then

T (1)
k,λ = k2r

[1]
k − 1+ λ(1− k)r

[1]
k , λ ∈ R,

is an unbiased estimator of n for any λ, and

V{T (1)
k,λ } = k2G

[1]
n,k(4) − (n+ 1)2 + λ2G

[1]
n,k((1− k)2) + 2λkG

[1]
n,k(2(1− k)),

where G[1]
n,k(k) is the probability generating function of Type1 k-records.

Theorem 7.4 (Moreno-Rebollo et al., 2000) Let r[2]k denote the observed number of Type2 k-records in
a sample with unknown size n, then the unique unbiased estimator of n, based on r[2]k is

T (2)
k = k

(
k+ 1

k

)r[2]
k

− 1,

and

V{T (2)
k } = k2G

[2]
n,k

((r+ 1

r

)2)
− (n+ 1)2,

where G[2]
n,k(k) is the probability generating function of Type2 k-records (given in (6.3)).

Moreover, Cramer [21] has studied the asymptotic properties of those estimators; in particular he
established bounds for the m.l.e. given in Theorem 7.2.
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7.3 RECORDINALITY: a cardinality estimator based on k-records

In the hiring problem, we assume that we can rank all candidates from best to worst without
ties which leads to the random permutation model—as mentioned in Subsection 3.1. Then, the
considered k-records (refers always to Type2 k-records) over permutations are strict. According
to Definition6.2, even if the sequence of data contains repetitions then only the first occurrence
of a value may be considered a k-record. Thus the statistic number of k-records is insensitive to
repetitions while other statistics like number of descents and number of inversions are affected
by repetitions. Other hiring parameters like index of last hired candidate and distance between
the last two hirings cannot be used to design a useful estimator because they are also sensitive to
repetitions.

Moreover, as already mentioned before, we use a hash function that map every element in the
sequence into a random value in (0, 1); then replications of the same element are mapped into same
hash value. This enables us to consider the data stream as a random permutation1.

We give a pseudo-code for RECORDINALITY and the main theorems in Subsection 7.3.1. In Subsec-
tion 7.3.2 we show the analysis of our theorems. Preliminary results for the limiting distribution of
RECORDINALITY is given in Subsection 7.3.3. We report many experimental results that validate
our theoretical findings and compare RECORDINALITY with other existing algorithms in Subsec-
tion 7.3.4.

7.3.1 Results

RECORDINALITY simply implements the strategy “hiring above the k-th best” and reports the
number of selected values, call it rk, over the hash values that represent the input data stream.

In Algorithm 1, at every step, RECORDINALITY keeps in H the k largest values seen so far on
the generated sequence of hash values. Once H is full with the first k distinct values, the second
phase of the algorithm starts. If the hash value y of the current element is smaller than the k-th
largest value seen so far, we are sure that y is a non-k-record, whether this is its first apparition in
the stream or not. Otherwise, we check if y is already in H —then y would be simply discarded
because it is a repetition, and if not, we remove the smallest in H and add y to H, incrementing
the counter rk of distinct “hired” or selected elements.

It might happen that there are less than k distinct elements in the stream, thus the number rk in
this case is the cardinality of the stream. When the input stream S is exhausted, RECORDINALITY

produces an estimation of the unknown cardinality n according to the following theorem:

Theorem 7.5 Let rk ∈ N be the empirically observed number of selections of the strategy “hiring above the
k-th best” after processing a sequence with unknown the number of distinct elements n; then the estimator
Rk, is defined by

Rk =

{
k ·
(
1+ 1

k

)rk−k+1
− 1, if rk ≥ k,

rk, if rk < k.

is an unbiased estimator of n, in the sense that E{Rk} = n.

1We can disregard collusions of the hash values; by a proper choice of the hash function we can make the probability
of collisions (different elements with the same hash value) virtually 0.
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Algorithm 1 Using the number of k-records to estimate cardinality
procedure RECORDINALITY(S,k)
. S = s1, . . . , sN; N� k

. H: the k largest values seen so far in S

. rk: the number of k-records in S plus k− 1

H← (∅, . . . , ∅); rk ← 0;
i← 1;
while i 6 N do
y← HASH(si);
if |H| < k then

if y 6∈ H then
H← H ∪ {y}; rk ← rk + 1;

end if
else if y > min(H) ∧ y 6∈ H then
H← H− min(H) ∪ {y}; rk ← rk + 1;

end if
i← i+ 1;

end while
if rk 6 k then

return rk;
else

return k ·
(
1+ 1

k

)rk−k+1
− 1;

end if
end procedure
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Moreover, the standard error, defined as
√

V{Rk}

n , gives the accuracy ofRk according to the follow-
ing theorem:

Theorem 7.6 The exact accuracy of the estimatorRk, expressed in terms of standard error,

SE{Rk} =

√
kΓ(k+ 1)

Γ(k+ 2+ 1
k)
·
Γ(n+ 3+ 1

k)

n2 · Γ(n+ 1)
− 1−

2

n
−
1

n2
,

Asymptotically as n→∞ and k is large, the accuracy satisfies

SE{Rk} ∼

√( n
ke

) 1
k

− 1.

Theorem 7.6 tells us that this estimator loses accuracy as n becomes very big. For all practical
applications, a memory of 1KB plus one counter is enough to estimate the cardinality of a huge
data stream that contains several millions of distinct elements, with accuracy less that 10%.

7.3.2 Analysis

Our starting point is the exact formula of the probability distribution of the number of updates of
the counter rk, that is given in Theorem 6.1, we recall it here

P{rk = j} =


Jn = jK, if k > n,

k!·kj−k
n! ·

[
n−k+1
j−k+1

]
, if k ≤ j ≤ n.

Since the expectation of rk holds uniformly for 1 ≤ k ≤ n and n→∞; that is

E{rk} = k(logn− logk+ 1) +O(1),

which suggests that the following Zk is a rough estimator of the unknown n, where

Zk = exp(αk · rk),

with αk some corrective factor to be determined later. For k < n, the expected value of Zk can be
computed as follows,

E{Zk} =

n∑
j=k

exp(αk · j) ·
k! · kj−k

n!

[
n− k+ 1

j− k+ 1

]

=
k! exp((k− 1)αk)

kn!

n−k+1∑
j=1

[
n− k+ 1

j

]
(k exp(αk))

j.

By applying identity (1.6) for the unsigned Stirling numbers of the first kind, we get

E{Zk} =
k! exp((k− 1)αk)

kn!
·
(
k exp(αk)

)n−k+1
. (7.1)



134 CHAPTER 7. APPLICATIONS TO DATA STREAMING ALGORITHMS

Since we have n! in the denominator, then we need to choose αk such that n! is canceled but some
linear factor of n remains. Thus taking αk = log(1+ 1

k) leads to

(
k exp(αk)

)n−k+1
=

(n+ 1)!

k!
.

Substituting in 7.1 gives us:

E{Zk} =
k! exp((k− 1)αk)

kn!

∣∣∣
αk=log(1+1/k)

· (n+ 1)!

k!

= (n+ 1) · 1
k
·
(
1+

1

k

)k−1
.

Now we can set the following unbiased estimator,

Rk = k
(
1+

1

k

)1−k
· Zk

∣∣∣
αk=log(1+1/k)

− 1

= k ·
(
1+

1

k

)rk−k+1
− 1.

Indeed,

E{Rk} = k(1+
1

k
)−k+1

n∑
j=k

(1+
1

k
)j · k!k

j−k

n!

[
n− k+ 1

j− k+ 1

]
− 1

=
k!

n!

n−k+1∑
j=1

[
n− k+ 1

j

]
(k+ 1)j

= n.

Thus RECORDINALITY is an unbiased estimator of the unknown number of distinct elements n. In
particular, RECORDINALITY works for the whole range of cardinalities n > k, and is not only
asymptotically unbiased, as it is the case for many other existing estimators.

Standard error computations: As we know, the standard error of an estimator Z is defined as
follows:

SE{Z} =
1

n

√
V{Z}.
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To compute the variance of RECORDINALITY, first we compute the second moment:

E{R2k} = E
{(
k ·
(
1+

1

k

)rk−k+1
− 1
)2}

= φ2k · E{λ
2·rk
k } − 2n− 1,

with φk = k ·
(
1 + 1

k

)−k+1
and λk = 1 + 1

k . Using the explicit formula of the distribution of rk
again to get,

E{R2k} = φ2k

n∑
j=k

λ
2j
k ·

k!kj−k

n!

[
n− k+ 1

j− k+ 1

]

=
φ2kλ

2(k−1)
k k!k−1

n!

n−k+1∑
j=1

[
n− k+ 1

j

]
(kλ2k)

j

= fk ·
Γ(n− k+ kλ2k + 1)

Γ(n+ 1)
,

with

fk =
φ2kλ

2(k−1)
k k!k−1

(kλ2k − 1)!
.

After doing a couple of simplifications, we get

fk =
kΓ(k+ 1)

Γ(k+ 2+ 1
k)
,

kλ2k − k = 2+
1

k
.

Finally, we can obtain the exact formula for the standard error of RECORDINALITY:

SE{Rk} =
1

n

√
fk ·

Γ(n+ 3+ 1
k)

Γ(n+ 1)
− 2n− 1− n2

=

√
fk ·

Γ(n+ 3+ 1
k)

n2 · Γ(n+ 1)
− 1−

2

n
−
1

n2
.

Asymptotically as n→∞, we can use Stirling’s formula (1.2) to get:

SE{Rk} =

√
fk · n

1
k

(
1+O

( 1
n

))
− 1.

We can obtain a more simpler formula for larger k; we apply Stirling’s formula again to fk. Then

SE{Rk} =

√( 1
ke

) 1
k
(
1+O

( 1
k2

))
· n

1
k

(
1+O

( 1
n

))
− 1

∼

√( n
ke

) 1
k

− 1.
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7.3.3 Limit distribution

As Theorem 6.1 tells us, the r.v. rk converges to a Normal distribution. Since the estimator Rk is
based on rk, then it is natural to expect Rk to have a Log-normal distribution according to the
following theorem:

Theorem 7.7 For any 1 ≤ k ≤ n, the estimatorRk satisfies

1

σ
· log1+1/k

(Rk + 1

k+ 1

)
− σ

(d)−−→ N (0, 1),

where

σ =
√
k (logn− logk).

Proof: we do a direct application of the continuous mapping theorem (1.1) to get this rough re-
sult (while it still requires more enhancements). We start with the mathematical formula of the
estimator

Rk =

(
1+

1

k

)rk−k+1

− 1,

thus

log1+1/k
(Rk
k

)
+ k− 1 = rk,

but Theorem 6.1 tells us that
rk − µ

σ

(d)−−→ N (0, 1),

with
µ = k

(
logn− logk+ 1

)
, σ =

√
k
(

logn− logk
)
.

Then we can write
1

σ

(
log1+1/k

(Rk
k

)
+ k− 1− µ

)
(d)−−→ N (0, 1),

doing some simplifications leads to the result stated in Theorem 7.7.

This distributional result allows us to provide this corollary which, while not rigorous, restates
the properties of the distribution in more immediate terms.

Corollary 7.1 Let σ be the standard deviation of the distribution for some large k; the algorithm RECORDINALITY

is expected to provide estimates within σ, 2σ, 3σ of the exact count in respectively at least 68%, 95% and
99% of all cases.

When k is smaller, the estimates may be significantly more concentrated. For instance, for k = 10, the
estimates are within σ, 2σ, 3σ of the exact count in respectively 91%, 96% and 99% of all cases.

7.3.4 Experimental results

We focus here on two aims: first, to show that our theoretical results are validated by practical sim-
ulations; second, to give some idea of how RECORDINALITY compares against similar cardinality
estimation algorithms.
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Figure 7.1: Two plots showing the accuracy of 500 estimates of the number of distinct elements
contained in Shakespeare’s A Midsummer Night’s Dream, on the left for k = 64 and on the right for
k = 256. Above the top and below the bottom lines lie 5% of the estimates; contained in between
the two centermost lines is 70% of the estimates. As a reference, the gray rectangle delimits the
area within one standard deviation from the mean.

Unbiasedness and standard error. In both plots of Figure 7.1, we have plotted the accuracy of
500 estimates of the number of distinct elements contained in Shakespeare’s A Midsummer Night’s
Dream, each made with a new random hash function2; the accuracy is expressed on the y-axis as
the ratio of the estimate to the actual number of distinct elements, which is n = 3031.

As stated by Theorem 7.5, RECORDINALITY is an unbiased estimator, which can be seen from
the fact that the points on the plot are concentrated around 1.0. The gray rectangle delimits the
area where estimates are within one standard deviation from the mean, as stated by Theorem 7.6;
this mostly coincides with the area between the second and third (empirically placed) level lines
containing 70% of the estimates, in accordance with Corollary 7.1.
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Figure 7.2: Each curve is the empirical distribution of 10 000 estimates made by RECORDINALITY

of some random text containing n = 1000 distinct elements, for k = 1, 5, 10, . . . , 50. This val-
idates theoretical calculations showing that estimates made by the algorithm are log-normally
distributed.

2We use an affine transformation of a base hash function, using large prime parameters.
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Distribution. Figure 7.2 displays the empirical distribution made from 10 000 estimates on some
random text using RECORDINALITY, for values of k = 1, 5, 10, . . . , 50. It convincingly shows that
the estimates are log-normally distributed.

Comparative performances. Tables 7.1, 7.2 and 7.3 compare the outcome of several thousand
simulations using four different algorithms, on various types of data. For Shakespeare’s play,
where n = 3031, and where we required hashing, we would proceed as follow: for each simu-
lation, we would draw a random hash function, apply it to the words of the stream, then feed
the same hashed stream to each of the four algorithms. For the two random streams, containing
respectively n = 6000 and n = 50 000 distinct elements, we directly generated random uniform
variables and used them as input for the four algorithms.

The algorithms we chose to compare RECORDINALITY to, were picked for the following rea-
sons: Adaptive Sampling [31] is the only other cardinality estimation algorithm which, in addition,
provides a random sample of the underlying set of the stream (see Subsection 7.4.4), so it seemed
pertinent to compare its performance with that of our algorithm; the algorithm based on the k-th
order statistic [9] functions maintaining the same data structure as RECORDINALITY and practi-
cally the same information; finally, HYPERLOGLOG [34] is the optimal algorithm used in practice.

7.4 Extensions and discussion

We have presented RECORDINALITY in the light of a new approach of treating the cardinality es-
timation problem. Besides the simple and elegant mathematical analysis of RECORDINALITY, we
believe that RECORDINALITY (and our approach in general) still have other specific interesting
features. In this section we discuss some promising ideas related to RECORDINALITY involving
switching totally toward the random-order model, combining RECORDINALITY with other esti-
mators and using RECORDINALITY as a sampling algorithm. We also discuss using the stochastic
averaging technique with RECORDINALITY.

7.4.1 RECORDINALITY without hash functions

Most cardinality estimation algorithms are based on hash functions. As previously expounded,
these have a number of beneficial features, but in this subsection we will only focus on two: first,
hash functions chop up and mix the data until it looks quasi-random; second, hash functions re-
duce arbitrary data into computable values—either random (0, 1) reals, integers, or random bits.
Estimators are then typically just functions which take these values, and output an estimate of the
unknown number of distinct elements.

It is noteworthy that these algorithms do not just rely on hash functions for pseudo-randomness,
but also for converting the input data to a useful form. Hash functions are thus central, and indeed
it is a well-known fact (see for instance [34]) that, in these applications, they generally account for
roughly 80% of the run time3.

On the other hand, the algorithms we describe here, such as RECORDINALITY, never use the
values provided by hash functions; instead, because only the relative ranks of the hash values are
taken into account, the hash functions serve merely to, in a sense, randomly permute the input data.
But what if the data is already a random permutation?

3Though in theory hash functions can be calculated extremely fast using hardware, this is, in practice, seldom done.
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k RECORDINALITY Adaptive Sampling k-th Order Statistic HYPERLOGLOG

Avg. Error Avg. Error Avg. Error Avg. Error

4 2737 1.04 3047 0.70 4050 0.89 2926 0.61
8 2811 0.73 3014 0.41 3495 0.44 3147 0.42

16 3040 0.54 3012 0.31 3219 0.28 2981 0.26
32 3010 0.34 3078 0.20 3159 0.18 3001 0.18
64 3020 0.22 3020 0.15 3071 0.12 3011 0.13

128 3042 0.14 3032 0.11 3070 0.10 3031 0.09
256 3044 0.08 3027 0.07 3037 0.06 3025 0.06
512 3043 0.04 3043 0.05 3046 0.04 2975 0.08

Table 7.1: Estimating the number of distinct elements in Shakespeare’s A Midsummer Night’s Dream
(n = 3031). “Avg.” represents the average estimate and “Error” is the empirical standard devia-
tion divided by n, both calculated over 10 000 simulations.

k RECORDINALITY Adaptive Sampling k-th Order Statistic HYPERLOGLOG

Avg. Error Avg. Error Avg. Error Avg. Error

4 5569 1.35 5826 0.67 7715 0.86 6148 0.70
8 6162 1.06 5899 0.42 6677 0.43 5938 0.40

16 6278 0.64 6008 0.31 6381 0.28 6131 0.31
32 6172 0.39 5930 0.21 6172 0.19 6058 0.19
64 6009 0.23 5974 0.15 6104 0.13 5949 0.13

128 5993 0.14 5974 0.10 6050 0.09 5996 0.09

Table 7.2: Similar experiments for a random stream containing n = 6000 distinct elements.

k RECORDINALITY Adaptive Sampling k-th Order Statistic HYPERLOGLOG

Avg. Error Avg. Error Avg. Error Avg. Error

4 43658 1.19 59474 0.94 81724 1.30 44302 0.42
8 35230 0.52 47432 0.38 57028 0.41 52905 0.39

16 57723 0.98 49889 0.29 52990 0.23 51522 0.27
32 48686 0.45 49480 0.23 50556 0.18 48009 0.16
64 47617 0.34 50524 0.14 51146 0.13 49345 0.14

128 50097 0.17 50452 0.09 50947 0.08 51531 0.10
256 51742 0.11 50857 0.06 50348 0.06 49287 0.06
512 49496 0.09 49920 0.06 50084 0.04 49016 0.04

Table 7.3: Experiments for a random stream containing n = 50 000 distinct elements—here 25 000
simulations were run.
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Figure 7.3: Here, we determine the accuracy of estimating the number of distinct words (expressed
as the ratio of the estimate to the actual number of distinct words) using a straightforward version
of RECORDINALITY which forsakes the use of hash function, as a function of k the memory usage.
(a) Left: each curve corresponds to one of Shakespeare’s tragedies, unmodified and processed as is;
the thickness of the curve is proportional to the number of distinct elements contained in the text,
which ranges from 2884 to 4725. (b) Right: as a control experiment, we also tried using random
permutations of the texts.

Random-order model. In 1980, Munro and Paterson [73], in the context of selecting the median
from a list of unsorted elements, were the first to consider the advantages of assuming all or-
derings of the stream to be equally likely—in other words, to consider that the input stream is a
random permutation.

Initially, the idea did not gain much traction, presumably because this assumption seems even
more theoretically unjustifiable than considering hashed values as nearly uniform r.v.’s. In 2007,
McGregor, in his PhD thesis [68] and related articles, provided the first extensive discussion on the
topic and some arguments as to when data streams may be considered random (enough), see [68,
§3.1.2]. This allows us to state the following theorem.

Theorem 7.8 In the random-order model, the algorithm derived from RECORDINALITY by removing the
hash function and ranking input elements in lexicographical order, is an unbiased estimator of the number
of distinct elements, exhibiting the previously demonstrated properties.

Initial simulations. Determining the practical applicability of this result would require some
serious experimentation and, in all likelihood, would certainly result in algorithms which are not
universal: for instance, perhaps the generic algorithm given in Theorem 7.8 can be tweaked to
give accurate estimation for literary English texts, or for some other class of input streams.

Out of sheer curiosity, we ran this version of RECORDINALITY on Shakespeare’s tragedies for
varying values of k. The results of these simulations are plotted in Figure 7.3.

Several points are striking. First of all, given the fact that Shakespeare’s plays cannot reason-
ably be considered to be random-order streams, it is quite remarkable that the estimates are so
accurate: starting around k = 50, most estimates fall within a 25% accuracy. As a matter of fact,
the algorithm seems to consistently underestimate the number of distinct elements, to such an
extent that it might be possible to compensate for this and obtain a better accuracy. The smaller
cardinalities (indicated by the thinner lines) might be better estimated than larger cardinalities,
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but this is far from obvious (this behaviour is perhaps according to the standard error formula of
RECORDINALITY. For same k, small cardinalities are better estimated than larger ones). Finally, it
seems notable that accuracy increases proportionally to the memory used, up until k = 50, past
which any additional memory seems to be wasted.

A second plot, on the right, gives a second set of experimental results, when instead of the orig-
inal texts, we use a random permutations of these. Interestingly, the initial gross over-estimations
of the previous simulations (which are truncated on the plot) do not seem to occur; while the cut-
off in accuracy still seems to be around k = 50.

It remains of course—related to experimental validation—to see whether the overhead introduced
by comparing strings (instead of the integers computed by the hash function) compensates any
gain in speed from avoiding hash functions—one possible avenue would be to store the largest
elements in a ternary search tree.

7.4.2 Stochastic averaging and RECORDINALITY

Stochastic averaging technique has been introduced by Flajolet and Martin [36], which simulates
taking many different estimates of a same stream at a fraction of the computational cost. Using
this technique, the values of the data stream are uniformly split into m substreams, estimations
for n/m are made separately in each substream, then averaged and scaled up: the expected gain
in accuracy is of order

√
m for a memory usage that is multiplied bym.

This technique is not pertinent to algorithms based on the k-th order statistic, such as [9] or our
algorithm RECORDINALITY, because taking the k-th order statistic (as opposed to the minimum,
which is the first order statistic) is essentially the same as averaging k minima. In other terms,
coupling stochastic averaging with an algorithm based the k-th order statistic is redundant.

Even so, we can calculate the accuracy of RECORDINALITY in which we split the stream in m
substreams using stochastic averaging (see any of [25, 34, 36, 66] for details), and combined them
using an arithmetic mean.

Consider the repartition vector n = [n1, . . . , nm] with n1+ . . .+nm = n, where ni is the number of
distinct elements which are hashed into the i-th substream, and let X(i) be the r.v. for the estimated
number of distinct elements in corresponding substream. We make no assumptions here on the
estimator which is used, other than it is unbiased, i.e. E{X(i)} = ni.

Conditioned on some fixed repartition n, the X(i) are independent. Thus, if X = X(1)+. . .+X(m)

is the sum of them independent r.v., then,

E{X} = E{X(1)} + . . .+ E{X(m)} = n1 + . . .+ nm = n.

Using the multinomial theorem, we show that the actual expected value (no longer conditioned
on a particular repartition) is equal to n. But more importantly,

V{X} =
∑

n1,...,nm

1

mn

(
n

n1, . . . , nm

)(
V{X(1)} + . . .+ V{X(m)}

)
,

in particular, when all variances are equal

V{X} = mV{X(i)}
∑

n1,...,nm

1

mn

(
n

n1, . . . , nm

)
= mV{X(i)}.

Hence, we can establish the following theorem:
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m k Avg. sd./n SE{Rk}
1 500 0.013 8.85 9.72
2 250 0.029 9.04 9.74
5 100 0.196 9.90 9.80

10 50 0.702 9.67 9.91
20 25 0.855 9.80 10.13
50 10 2.352 10.70 10.82

100 5 2.820 12.88 12.12
250 2 3.418 17.62 17.29
500 1 5.928 31.79 31.62

Table 7.4: This table summarizes the empirical results of running 100 trials of RECORDINALITY on
a data set Random which contains 150 000 pseudo-randomly drawn reals in (0, 1) and using total
memory M = mk = 500. The algorithm behaves exactly the same way on each trial; only the
choice of the hash function will change from one run to the other. The columns show the variation
of several parameters as we change the number of substreamsm (or for that matter the value of k).
“Avg.” gives the relative error of the corresponding average estimate (|n − avg. estimate|/n), ex-
pressed in percents. “sd./n” reports the normalized sample standard deviation, also in percents.
“SE” represents the exact mathematical standard error.

Theorem 7.9 When using stochastic averaging to split the stream into m substreams, the accuracy of the
estimatorRk, expressed in terms of standard error, asymptotically as n→∞, satisfies

SE{Rk} ∼
1√
m

√( n

mke

) 1
k

− 1.

Theorem 7.9 makes it clear that, if memory is to be spent, it is always better to increase k than m
(and since the total memory usage is km, there is no reason not to favor the former).

This conclusion is strongly supported also by a small experiment which we report its results
in Table 7.4.

7.4.3 Hybrid estimators

It is often the case that estimators for the number of distinct elements are asymptotically unbiased.
This usually means that they get more accurate as the cardinality to estimate is large; but con-
versely, they suffer from nonlinear distortions for smaller cardinalities.

For instance, using stochastic averaging delays the asymptotic regime of an algorithm for
well-understood reasons. Several methods have been devised to circumvent this issue. In [66],
Lumbroso characterized the initial distortion introduced by stochastic averaging using a Poisson
model, and was able to reverse it. In the LOGLOG family of articles [25, 34], among several others
(with an extensive discussion in [24]), the idea has been to switch to an auxiliary algorithm, Linear
Counting [92], when it is detected that the number of distinct elements is small.

This second solution is algorithmically pertinent: stochastic averaging uses an array of buck-
ets, and is distorted when too many buckets are empty; Linear Counting uses the number of empty
buckets to make its estimate. The data structure and computations are shared by both estimators,
and thus no overhead is required to make use of them both.
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Figure 7.4: This plot compares the theoretical dispersion of the estimator based on the k-th order
statistic (in red) against that of RECORDINALITY using k-records (in green), as a function of the car-
dinality expressed as a multiple of k. For cardinalities up to about n = 6k, RECORDINALITY is less
dispersed (and thus leads to more accurate estimates). The y-axis is rescaled to be independent of
k.

Algorithms based on order statistics. But combining an algorithm with Linear Counting does
not make sense in all cases. Consider Bar-Yossef et al.’s first algorithm in [9]: it keeps track of mk,
the k-th minimum of the hashed values, and then estimates that n ∼ (k− 1)/mk.

The data structure maintained for this algorithm is some kind of a balanced binary tree. Linear
Counting would in addition require maintaining a separate array. Although this would not change
the order of the space and time complexities, it would significantly increase the storage used,
doubling it.

On the other hand, Bar-Yossef et al.’s order statistic algorithm uses the exact same data struc-
ture as RECORDINALITY, and would only require a small extra O(log logn)-sized counter to track
the number of times the k minima are changed. Figure 7.4 suggests it would be useful to use
RECORDINALITY in conjunction with the estimator based on the k-th order statistics, and to switch
to the former for cardinalities n that are smaller than 6k (where k is the number of minima stored).

Hybridization. A complementary idea comes from the observation that the values of the k small-
est elements of a stream are independent from their position in the stream and thus, from the
number of times the data structure maintaining the current k smallest elements is updated while
scanning the stream.

In other words, the statistic behind Bar-Yossef et al.’s first algorithm (the k-th order statistic)
and that behind RECORDINALITY (essentially, the number of k-records) are independent. What if,
instead of using one or the either, we used both?

We expect the accuracy to improve, if for no other reason than because the standard deviation
is sub-additive. If we note Bar-Yossef et al.’s first algorithm and RECORDINALITY respectively as
Ok andRk, we define the hybrid algorithmHλ,k as

Hλ,k = λOk + (1− λ)Rk with λ ∈ (0, 1).

Because of the aforementioned independence,

V{Hλ,k} =

√
λ2V{Ok} + (1− λ)2V{Rk}. (7.2)
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A suitable value for parameter λ is to be determined, either empirically through simulations, or
by plugging in the theoretical variances of the algorithms in (7.2) and maximizing the resulting
function (or some approximation of it).

Finally it is worthwhile to mention that RECORDINALITY can be thus hybridized with any
existing cardinality estimation algorithm as, to the best of our knowledge, the statistic it uses is
likewise independent with all those previously considered (although, as we have said, it does not
always make algorithmic sense).

7.4.4 Distinct sampling

We discuss a different usage of the algorithm RECORDINALITY; that is producing a random sample
from the underlying set of the input data stream. Of course, in such application hash functions
are essential for RECORDINALITY. It is well known that sampling has a rich history in different
fields like Statistics and Computer Science. If we restrict ourselves in the context related to data
streaming, we find that the challenges facing sampling algorithms are not far from cardinality
estimation algorithms (as discussed in this chapter). There are also many sampling algorithms;
we mention for example Adaptive Sampling which is introduced by Mark Wegman and analyzed
by Flajolet [31, 32].

This algorithm was subsequently rediscovered by several authors: by Bar-Yossef et al. in [9],
but also, and perhaps most famously, by Gibbons [42], who most pertinently renamed it Distinct
Sampling. More recently, Monemizadeh and Woodruff [69] introduced some generalization of its
basic idea.

The crucial feature of Adaptive Sampling is that at any point during the course of its execution,
the algorithm (parameterized to use m words of memory) stores a uniform sample of between
m/2 and m distinct elements from the set underlying the stream. Hence in these algorithms, the
size of the sample is a random variable.

While for RECORDINALITY, the table of the k largest elements maintained is a uniform sample
of exactly k elements of the set underlying the stream. This is easy to see: the presence of an ele-
ment in RECORDINALITY’s cache depends only on its hashed value, which is considered uniformly
random (in other words, without hash functions, the elements in the cache of RECORDINALITY no
longer are a random sample).

Moreover, we think of developing algorithms that can generate distinct samples with tunable
size, where the sample size is not constant but rather depends on the unknown number of distinct
elements in the stream n. For instance, the set of selected values by hiring above the k-th best
has on average O(k logn) out of n distinct elements. But the behaviour of this strategy shows
some bias in the selection process which makes the selected sample is not totally random. That
is because the first k elements in the stream are always contained in the set of selections. After
that, the position of an element is crucial where if this element is locally among the best k values
seen so far (i.e., if at most there are k − 1 larger values preceded this element in the stream), then
it is selected. In order to compensate this situation, we have to combine the strategy with the re-
placement mechanism introduced in Section 3.3. With applying hiring with replacement, neither
of the first k elements entering the sample nor next selected elements will remain there except it
is among the best hn elements, where the basis strategy would select hn elements, as Theorem 3.1
states. Again, the largest O(k logn) elements are position-free, and thus the generated sample is
totally random and in the same time its size is a r.v. which depends on the unknown cardinality
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n.
Also other strategies, combined with the replacement mechanism, like hiring above the α-

quantile (Chapter 5), with 0 < α < 1, and p-percentile rules (Subsection 2.2.1), with 0 < p ≤ 1, can
be used for the same purpose. The sample of selected values in both cases will have on average
O
(
n1−α

)
and O

(
np
)
, respectively. That is quite good because we know the leading factors in case

of p-percentile rules for general p, as well as for hiring above the α-quantile for α = 1
d , d ∈ N.

Of course, while using any strategy to do the job, we have to keep a pair of the hash value and
the actual element in order to recover those elements after processing the whole sequence.

7.5 DISCARDINALITY: a cardinality estimator based on largest non-k-
record

Here, we introduce another cardinality estimator; called DISCARDINALITY which also exploits the
strategy “hiring above the k-th best” and retrieves the largest discarded value from the generated
hash values of the input data stream to report the estimation. Remember that after scanning the
input sequence using hiring above the k-th best, then there are the set of selections represented
by the hiring set and its related set of scores—as explained in Chapter 6, and the discarded ele-
ments because any of those discarded has arrived after at least k larger elements than it. So that
the largest discarded value is indeed the largest non-k-record in the particular permutation of the
underlying set of the generated hash values.

By definition, the largest k values (among n distinct ones) are always contained in the set of selec-
tions and may be others, but any of the values with ranks (scores) {n − k, n − k − 1, . . . , 1} can be
the largest non-k-record. Thus DISCARDINALITY depends on the value of the largest non-k-record.
Therefore it is similar to estimators based on order statistics but it will depend on the order (the po-
sition) of the element in the data stream unlike the order statistics estimators (see for example, [9]).

We give in Subsection 7.5.1 a pseudo-code for DISCARDINALITY and the main theorems. Sub-
section 7.5.2 contains the details of the analysis. In Subsection 7.5.3, we discuss using stochastic
averaging with DISCARDINALITY. We report many experimental results for DISCARDINALITY in
Subsection 7.5.4.

7.5.1 Results

Algorithm 2 introduces a pseudo-code for DISCARDINALITY. It has similar behaviour like RECORDINALITY

but we need now to keep the k-records that are smaller than those in H but larger than the largest
non-k-record, call it dk. When a hash value y is added to the k largest values in H, the mini-
mum of H is moved to G. If y < min(H) then y might be a non-k-record or a repetition of a
previously seen k-record. If it is larger than dk and it is not a repetition of some previous k-
record then we update dk accordingly. While RECORDINALITY needs to keep k elements plus one
counter, DISCARDINALITY might need more space, because of the auxiliary space for G. Since
E{|G|} = O

(√
k
)

(see Theorem 6.5), then the expected memory space for our second algorithm is
k+O

(√
k
)

elements plus one memory location for dk.

As explained before, DISCARDINALITY takes into consideration the order of the first occurrence of
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each distinct hash value, in contras to all other estimators based on order statistics that are inde-
pendent of the order.

Moreover, it might happen that dk is never being updated (still zero) during scanning the stream
using DISCARDINALITY; however the probability of this event is very small (almost negligible);
it is k!kn−k

n! for n distinct elements in the stream, but in this case DISCARDINALITY can report the
exact number of distinct elements n that is the number of k-records plus k-1 also. Referring to
Subsection 6.3.5 that gives the analysis of the parameter score of best discarded candidate, then
this parameter takes the value zero in case of hiring everybody from the input sequence. That
means that the number of selections rk, in this case, is exactly the permutation size n. Thus, if we let
DISCARDINALITY count rk, and we do check if dk = 0 (assuming that 0 < dk < 1) at the end of
the algorithm then, in this case we can decide that the cardinality of the stream is the value of the
counter rk with probability 1.

Thus DISCARDINALITY uses dk to give an estimation of the unknown cardinality n according
to the following theorem:

Theorem 7.10 Let dk ∈ (0, 1) be the empirically observed largest value which is a non-k-record and
assume dk > 0, after processing a sequence with unknown number of distinct elements n, using “hiring
above the k-th best”. Then the estimator Dk defined as

Dk =
γk

1− dk
,

is an asymptotically unbiased estimator of n, in the sense that E{Dk} ∼ n, where γk is a corrective factor
given as follows:

γk =

n−k∑
j=1

1

n− j
P{dk = j}

−1

∼ k+

√
πk

2
+
π

4
−
8

3
, as n→∞.

We give next the standard error of the estimator Dk.

Theorem 7.11 The accuracy of the estimator Dk, expressed in terms of standard error, asymptotically as
n→∞, satisfies

SE{Dk} ∼
1.19√
k

(
1+O

( 1√
k

))
.

7.5.2 Analysis

Let us recall the distribution of the parameter best discarded candidate, Mn,k, under the strategy
hiring above the k-th best (Theorem 6.5):

P{Mn,k = b} =


Jb = 0K, if n > k,

k!
n!k

n−k, if b = 0 and 1 ≤ k ≤ n,

k!
(n−b+1)! · (n− k− b+ 1) · kn−k−b, if 1 ≤ b ≤ n− k and 1 ≤ k ≤ n.
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Algorithm 2 Using the largest non-k-record to estimate cardinality
procedure DISCARDINALITY(S,k)
. S = s1, . . . , sN; N� k

. H: the k largest values seen so far in S

. dk: the largest non-k-record in S

. G: H ∪G are the values seen so far larger than dk

. rk: number of k-records in S plus k− 1

H← (∅, . . . , ∅); G← (∅, . . . , ∅);
dk ← 0; rk ← 0;
i← 1;
while i 6 N do
y← HASH(si);
if |H| < k then

if y 6∈ H then
H← H ∪ {y}; rk ← rk + 1;

end if
else if y > min(H) then

if y 6∈ H then
G← G ∪min(H); H← H− min(H) ∪ {y}; rk ← rk + 1;

end if
else

. |H| > k∧ y < min(H)

if y > dk ∧ y 6∈ G then
dk ← y; G← G \ {x ∈ G | x < dk};

end if
end if
i← i+ 1;

end while
if dk = 0 then

return rk;
else

return
k+
√
πk
2

+π
4

−8
3

1−dk
;

end if
end procedure
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And the expectation holds uniformly for 1 ≤ k ≤ n:

E{Mn,k} = n−
(
k+O

(√
k
))
.

Since the input to DISCARDINALITY is a sequence of real numbers which can be considered i.i.d.
r.v.’s fromUnif(0, 1) distribution, then after processing the whole stream, the largest non-k-record
value dk has the following distribution:

fdk(x) =

n−k∑
j=1

fj(x) · P{Mn,k = j},

where the density function of the j-th order statistic of n i.i.d. r.v.’s from Unif(0, 1) is

fj(x) = j

(
n

j

)
xj−1(1− x)n−j.

The expectation of dk is then

E{dk} =

∫1
0
x ·

n−k∑
j=1

fj(x) · P{Mn,k = j}dx

=
1

n+ 1

n−k∑
j=1

j · P{Mn,k = j} =
E{Mn,k}

n+ 1
.

This suggests the following estimator for the number of distinct elements n:

I =
γk

1− dk
,

where γk is some correcting factor to be determined:

E{I} = E
{

γk

1− dk

}
= γk

∫1
0

1

1− x
fdk(x)dx

= γk · n ·
n−k∑
j=1

1

n− j
P{Mn,k = j}.

Thus it is clear that we should choose

γk =

n−k∑
j=1

1

n− j
P{Mn,k = j}

−1

,
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in order to obtain an unbiased estimator, that is E{I} = n.
Now we are looking for some asymptotic approximation for γk in the main region n → ∞ and
n� k, that is the case here as we are processing very large sequences with finite memory. First let
us find an asymptotic approximation for the summation:

Sk =

n−k∑
j=1

1

n− j
P{Mn,k = j}

=

n−k∑
b=1

k!kn−k−b

(n− b+ 1)!
−

n−k∑
b=1

k!(k− 1)kn−k−b

(n− b)(n− b+ 1)!

= k

n−k∑
b=1

k!kn−k−b

(n− b+ 1)!
− (k− 1)

n−k∑
b=1

k!kn−k−b

(n− b)(n− b)!

= T1(k) − T2(k),

As n → ∞, T1(k) can be expressed in terms of R(k) below whose asymptotic approximation is
given by Knuth [56].

R(k) =
∑
j≥0

k!kj

(k+ j)!

=

√
πk

2
+
1

3
+
1

12

√
π

2k
+

4

135k
+

1

288

√
π

2k3
+O

( 1
k2

)
. (7.3)

Thus

T1(k) = R(k) − 1+O
(
k!kn+1−k

(n+ 1)!

)
, as n→∞ and n� k.

T2(k) can be approximated as follows:

T2(k) = (k− 1)
∑
j≥0

k!kj

(j+ k)(j+ k)!
+O

(
k!kn−k

n · n!

)
, as n→∞ and n� k.

∼ (k− 1)
∑
j≥0

k!kj

(j+ k)!
·
(
1

k
−
j

k2
+
j2

k3
−
j3

k4
+
j4

k5
−
j5

k6
+ . . .

)
.

Now, considering the first few terms of the expansion of 1
j+k , then evaluating the sum is enough

to obtain the significant main order terms of T2(k), in terms of R(k) too. We have as n → ∞ and
n� k,

T2(k) =

(
1+

1

k2
+
4

k3
+O

( 1
k4

))
R(k) − 1−

1

k
−
3

k2
−
12

k3
+O

( 1
k4

)
.

Doing the necessary simplifications gives us:

Sk =
1

k
−

√
π/2

k
√
k

+
8

3k2
−

√
π/2

12k2
√
k

+O
( 1
k3

)
. (7.4)
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As γk = S−1
k , then we do the following trick to find the asymptotic estimate for γk:

γk =
k

1−
√

π
2k + 8

3k +O
(

1
k3/2

)
∼ k · exp

(
− log

(
1−

√
π

2k
+
8

3k

))
= k+

√
πk

2
+
π

4
−
8

3
+O

( 1√
k

)
.

Finally, considering the main order terms, we take γk ∼ k +
√
πk
2 + π

4 − 8
3 , as n→∞ and n� k;

we can derive more lower order terms if necessary.

Standard error computations: As we did before, we start with computing the second moment
of DISCARDINALITY,

E{D2k} =
1

S2k
· E
{( 1

1− dk

)2}

=
1

S2k

∫1
0

1

(1− x)2

n−k∑
j=1

fj(x)P{Mn,k = j}dx

= n(n− 1)
1

S2k

n−k∑
j=0

jk!kj−1

(j+ k− 2)(j+ k− 1)(j+ k)!
,

and thus we have to compute an asymptotic expansion of the new summation. We will treat it
as T2(k) where we expand the two multiplied factors in the denominator, then the summation can
be expressed in terms of R(k) in (7.3). Finally we obtain the following approximation , as n → ∞
and k is large enough but n� k:

n−k∑
j=0

jk!kj−1

(j+ k− 2)(j+ k− 1)(j+ k)!
=
∑
j≥0

jk!kj−1

(j+ k− 2)(j+ k− 1)(j+ k)!
+O

(
(n− k+ 1)k!kn−k

n(n− 1)(n+ 1)!

)

=
1

k2
−

√
2π

k5/2
+
25

3k3
−
109
√
2π

12k7/2
+O

( 1
k4

)
.

Using the asymptotic expansions of Sk which is obtained in (7.4), after carrying out the necessary
calculations, we get (as n→∞):

SE{Dk} =
1

n

√
E{D2k} − n2

=

√√√√√ 1
k2

−
√
2π

k5/2
+ 25
3k3

− 109
√
2π

12k7/2
+O

(
1
k4

)
1
k2

−
√
2π

k5/2
+
(
16
3 + π

2

)
1
k3

− 8
√
2π

3k7/2
+O

(
1
k4

) − 1

=
1.19√
k

(
1+O

( 1√
k

))
.
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7.5.3 Stochastic averaging and DISCARDINALITY

In this case, stochastic averaging has a double effect on the accuracy and speed-up of DISCARDINALITY.
If we combine the results for dk of m substreams using the arithmetic mean (as we did in Sub-
section 7.4.2), then the standard error of DISCARDINALITY is given according to the following
theorem:

Theorem 7.12 When using stochastic averaging to split the stream intom substreams, the accuracy of the
estimator Dk, expressed in terms of standard error, asymptotically satisfies

SE{Dk} =
1.19√
mk

(
1+O

( 1√
k

))
.

The proof of this theorems is omitted as it is analogous of that for Theorem 7.9.

7.5.4 Experimental results

We study here the practical behaviour of DISCARDINALITY combined with stochastic averaging,
in order to check our analytic results. Another interesting goal is to report the amount of addi-
tional memory used by DISCARDINALITY to keep those values that are larger than the largest non
k-record in the input hashes; hence we can make a good conjecture for the exact amount, since
theoretically, there are, on average, O

(√
k
)

elements larger than the largest non k-record for hir-
ing above the k-th best. So, the total memory necessary for DISCARDINALITY usingm substreams
isM ≈ m

(
k+O

(√
k
))

, with two locations for dr and rk.

We report the results of two experiments; in Table 7.5 we give the empirical results for the stan-
dard error of DISCARDINALITY when processing three different data sets: 1) the celebrated novel
Hamlet by Shakespeare, with N ≈ 33 000 total words and a vocabulary of n = 5 316 distinct
words; 2) an English text book, Book, withN ≈ 200 000 and n = 19 918; and 3) a multiset Random
which is a sequence of 150 000 pseudo-randomly drawn reals in (0, 1) (and of which the number of
distinct elements has been measured as well). For each data set, we have repeated the estimation
100 times, using a new random hash function. These results show clearly the trade-off between
memory and accuracy.

In Table 7.6 we test different combinations, for the memory available, between k and m. We
report the average (over the 100 trials) number of additional elements per substream: recall that
the algorithm needs to store, on average, O

(√
k
)

additional elements per substream. Indeed, the
values given in that last column of Table 7.6 agree with the theoretical analysis, growing roughly
as 3.5

√
k.

Since a larger number of substreams yields a better execution time (more substreams means
smaller tables to cope with), the best choice is probably to combine a moderate number of sub-
streams (e.g., m = 4) with a relatively large k. The tables also show that large values of k lead to
better, more accurate estimates, in accordance with the theoretical analysis in Theorem 7.12.

7.6 Other applications

We discuss here a preliminary idea of another algorithmic application of the strategy “hiring above
the k-th best”. The addressed problem in this section is what called “similarity index estimation”
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m k Hamlet Book Random

5 10 16.09 15.07 14.94
5 20 11.81 10.91 10.15

10 50 4.52 4.43 4.49

Table 7.5: Empirical sample standard deviation divided by n (in percents) for 100 estimates of
the cardinality for different data sets using DISCARDINALITY, and with different memory sizes.
The data sets are Shakespeare’s Hamlet (N ≈ 33 000 and n = 5 316), an English text book, Book
(N ≈ 200 000 and n = 19 918), and a multiset Random (N ≈ 150 000 and n is measured).

m k Avg. sd./n Aux./m

1 128 0.14 10.47 39.59
2 64 0.29 10.59 27.64
4 32 0.40 10.32 19.05
8 16 0.46 9.73 12.98

16 8 0.56 9.87 8.78
32 4 0.86 10.18 5.93
64 2 1.27 12.06 3.93

128 1 1.96 17.54 2.53

Table 7.6: Empirical results for 100 estimates of the cardinality of a data set, with N ≈ 100 000

and n is measured, using DISCARDINALITY. The main memory M = mk = 128. “Avg.” gives the
relative error of the corresponding average estimate (|n − avg. estimate|/n), in percents. “sd./n”
reports the normalized sample standard deviation, also in percents. The mathematical standard
error is approximately 10%. “Aux./m” gives the average (over the 100 trials) number of additional
elements—rather than the table of size k—per substream.

or “Jaccard similarity” estimation (see for example [14]) of two data sets; that is another interesting
problem in the context of data streaming algorithms and has diverse applications in Networks,
Databases and others.

Similarity index estimation

Due to the huge increment of the dimensions of static or on-line databases, it becomes very
likely that some document is almost identical to another one. Then many applications related to
database clustering and management require computing the similarity index between two huge
data sets. In many real-life situations, the storage and computational requirements for computing
exactly the similarity between two datasets are so expensive, consume a lot of time or prohibitive
totally. This motivates us to move toward approximate techniques to find feasible solutions (with
accepted accuracy to be useful). In stead of processing the whole document, a representative
sample which is called a sketch of the document is randomly chosen then only those sketches are
processed to obtain the required information; that is an index 0 ≤ R ≤ 1. If R exceeds some pre-
determined threshold value then the two processed documents are similar or belong to the same
cluster; otherwise they do not.
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There are various techniques to attack this problem; the major aspect of each is the way of
using hash functions. For example, minwise hashing by Broder in [14], Locality sensitive hashing
by Andoni and Indyk [4], b-bit minwise hashing introduced by Li and König in [65] and many
others.

In the similarity index estimation problem: each document is associated with a set of shingles
which is a string of w consecutive words in the document, i.e. w = 5 in several studies (see [65]
and references therein). Then given two data sets: A with cardinality nA and B with cardinality
nB, then the similarity index can be defined as follows:

ρ =
|A ∩ B|

|A ∪ B|
=
nA + nB − nA∪B

nA∪B
=
nA + nB
nA∪B

− 1,

where

ρ =


1, if A and B are identical (nA◦B = nA = nB),
0, if A and B are totally distinct (nA◦B = nA + nB),
R, 0 ≤ R ≤ 1, if A and B have some similarity.

Our proposed approach. We can cast the problem of similarity index estimation in the frame of
cardinality estimation. Notice that set A contains nA distinct shingles; same thing for B, but if we
merge both sets into one set C then the number of distinct shingles in C is nC = nA +nB − jwhere
j = 0means thatA and B are disjoint (all shingles in C are distinct), j = nB means thatA and B are
identical (all shingles of second part of C are repetitions of first one), while 1 ≤ j < nB reflects the
amount of duplication between B and A.

The common tool that helps here is of course hash functions. We apply one random hash func-
tion to A and B (assuming that the probability of collisions is negligible), then we try to compute
the cardinality of A ◦ B where “◦” refers to the concatenation of A followed by B.

It is quite clear that deterministic solutions are out of scope here, imagine that to represent one
document of 105 distinct English words, we need total number of 5-shingles equals (105)5 = O(1025) [65];
that means that we have the same restrictions as cardinality estimation problem.

Using the score of best discarded. To estimate ρ we have to compute nA∪B, assuming that nA
and nB are given. To do that in an efficient way, we do not have to merge the two sets A and B
but rather we can apply hiring above the k-th best to the concatenation of two smaller sets. First, A
is processed using the strategy and we extract the set G{A} that is the set of all values larger than
or equal to the largest non-k-record in A (i.e., G = H ∪ G in Algorithm 2), called MA. We do the
same for B to extract the set G{B}. Then we process the set G{A} ◦ G{B}, where sets G{A} and G{B}

contain all necessary values to compute the largest non-k-recordMA◦B of the set A ◦ B.
Notice that the k-th largest value in G{A} is the initial threshold when we start applying the

strategy to G{A} ◦ G{B} and MA◦B is initially set to MA. Thus, at the end, either MA◦B = MA
which means B is identical to A, then the estimation based on MA◦B shows that nA◦B = nA, or
MA◦B 6= MA then if the cardinality estimation shows that nA◦B = nA + nB, that means B and A
are disjoint, otherwise nA < nA◦B < nA + nB; in this case B has some duplicated shingles in A.

The sketch of each document is G whose size is k+O
(√
k
)
—on average as previously shown

in Subsection 7.5.4. From Algorithm 2, G is computed very fast using only one single pass over
the shingles of the processed document.
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We have pointed out in Subsection 7.5.1 that the parameter score of best discarded is sensitive to
the “position” of elements in the stream. Such property is not provided by any other estimator—
as far as we know. Given two documents that have same set of shingles but one of them is a
permutation of the other, then other estimators will decide that the similarity is 100% which does
not mean much more than one document is an arbitrary permutation of the other (also pointed
out by Broder [14]), while this estimator, in most cases, will report the similarity as less than one,
which is more accurate.

We argue that nA◦B gives us the value of nA∪B. Our next mission is to use MA◦B to estimate
the cardinality nA◦B, then to calculate the accuracy of the estimate; this should be relatively easy
after the experience we got from the analysis of DISCARDINALITY.

The empirical work is very helpful here. We have to develop some experiments that will help
us to investigate the properties of the proposed algorithm, other than comparing to other existing
algorithms that use same resources (i.e., hash functions, memory, etc.). Also it will be interesting to
investigate this property of the algorithm regarding the order of the vocabularies in the document.

Using the size of the hiring set. We can still make use of considering a data stream as a random
permutation of its underlying set. Hence, there is possibility to avoid using hash functions (as ex-
plained before in Subsection 7.4.1) especially as the processed documents are often textual. Again
we use “hiring above the k-th best”, then computing the size of the hiring set can help to estimate
the set similarity index. Given two setsA and B (representing two documents), then we apply the
strategy to both sets separately to draw a sketch of A that is EA the largest k values in A, and for
B to obtain HB which is the hiring set (notice that EB ⊃ HB). We also keep the size of the hiring
set in both sets rA and rB. Now we have to compute the size of the hiring set of A ◦ B which goes
according to one of three cases. Let max(A) and k-th(A) represent the largest and k-th largest
elements in A, respectively, then

i) If k-th(A) ≥max(B), then rA◦B = rA, where no more k-records will be encountered in B.

ii) If k-th(B) < k-th(A) < max(B), i.e., there are x, 1 ≤ x < k, distinct values in EB larger than
k-th(A), then rA◦B = rA + x.

iii) If k-th(A) ≤ k-th(B), then we have to process the set EA ◦ HB to obtain rA◦B.

After that, rA◦B is used to estimate nA◦B which we argue that gives the value of nA∪B. Of course
the size of the sketch in this case isO(k logn) which consumes more memory than all other estima-
tors (in most cases only kmemory units are necessary), but we gain two important advantageous:
first, hashing is not necessary any more, that saves a lot of the processing time, other than saving
the effort to implement very good independent hash functions. Second, the order of shingles in
the document is taken into consideration as the size of hiring set parameter is sensitive to elements
positions in the sequence.

It is left to perform the necessary calculations to obtain an unbiased estimator, which is expected
to be doable. Moreover, we have to check imperially the gain in the processing time against the
consumed memory, and comparing this algorithm with other known ones that depend essentially
on hashing.
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Another common related task is clustering a huge set of documents into smaller subsets of similar
documents. In this case, we generate the sketch of the first document, call it the “kernel” then we
process on-line (without generating a sketch) the shingles of the next document using the sketch
of the kernel and compute the similarity index ρ. If ρ exceeds some predetermined threshold (i.e.,
ρ ≥ 0.5) then the later document will be classified into the same cluster of the kernel. The same
steps are repeated if there are other clusters, otherwise, we have to generate a sketch of the new
document as it starts a new cluster. This procedure is also efficient, fast and it will save a lot of
memory as we need not to generate a sketch for each processed document.

7.7 Conclusions

We have seen in this chapter how can we investment some results obtained in the hiring problem
in order to develop useful applications in the data streaming field. Two estimators of the number
of distinct elements n in a data stream that may contain repetitions were established. First one is
RECORDINALITY that uses the number of k-records in the stream to give an estimate of n. While
our results related to RECORDINALITY are independent, this estimator has been introduced once
before as given in Theorem 7.4.

We gave a pseudo-code for RECORDINALITY in Algorithm 1, the mathematical formula in The-
orem 7.5, and characterized its accuracy in Theorem 7.6, as well as a preliminary result of the lim-
iting distribution in Theorem 7.7. We were able to give full analysis of our results with the help of
the rich distributional and asymptotic results obtained for the parameter number of hired candidate
under the strategy “hiring above the k-th best”. Moreover, we have shown many advantageous
and useful extensions such as this estimator is unbiased (not only asymptotically unbiased, as
the case for most known estimators), combining it with other estimators to improve the estimates
since small cardinalities are well estimated by RECORDINALITY while other estimators are do-
ing better for large cardinalities, it can work in the random-order model (see Theorem 7.8) and
avoid using hash functions, with few modifications, by depending only on the Lexicographical
order among elements especially when processing text documents, and it could be used to gen-
erate random samples (of the underlying stream) whose size depends on n in an efficient way.
We have also discussed combining RECORDINALITY with the stochastic averaging technique (see
Theorem 7.9), showing that this will not improve the accuracy as required; it is always useful
to dedicate the whole available memory to one RECORDINALITY’s cash. Thus, there are many
promising ideas related to RECORDINALITY, which are worth to be investigated in the future.

Our second estimator is DISCARDINALITY, that uses the value of the largest non-k-record in
the hash values of the input stream to give an estimate of n. We gave for a pseudo-code for
DISCARDINALITY in Algorithm 2, the mathematical formula in Theorem 7.10, and reported the
accuracy in Theorem 7.11. We were able to give the analysis of this estimator depending one the
distributional results obtained for the parameter score of best discarded under the strategy “hiring
above the k-th best”, while the limiting distribution seems to be complicated. We have shown
that using stochastic averaging with DISCARDINALITY is very useful as the accuracy improves as
stated in Theorem 7.12.

In practice, DISCARDINALITY is not as efficient as RECORDINALITY because it consumes a
lot of memory compared to other estimators. However, the algorithmic idea of both looks very
useful for studying another interesting problem, that is estimating the similarity between two data
sets, and its associated task: clustering a huge set of documents into smaller subsets with similar
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documents. We have introduced two proposed algorithms to study the later problem, pinpointing
the positive features of this approach, and this is also left as a future work.
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IV.1 Overview

We have shown in this thesis several results for various hiring parameters and their usefulness
in particular applications. Those parameters give us a very precise picture on the behaviour of
two hiring strategies, namely, “hiring above the median” and “hiring above the m-th best”. We
have also discussed the relationship between those strategies and other selection rules like the
p-percentile rules (Subsection 2.2.1) and the seating plans of the Chinese restaurant process (Sec-
tion 2.5). Besides the conclusions given by the end of each chapter, we introduce in this section
a recap of the obtained results in the thesis for the studied hiring strategies and related selection
rules. We will highlight again the open problems and the work left for the future.

The class of “pragmatic rank-based selection rules” has two main categories according to the way
in which decisions are taken. Let us talk using the terminology of the “hiring problem”, then
we can easily switch to other related problems. In a direct way, the number of choices to hire the
next candidate might be fixed along the hiring process, such as “hiring above the m-th best”, or it
depends on a random variable that is the number of hired candidates so far, such as “hiring above
the α-quantile”. In Tables IV.7 and IV.8, we show the obtained results (with references), so far, for
many quantities of interest under different selection rules.

parameter Hiring above the α-quantile p-percentile rules seating plan (α, θ)

dy
na

m
ic

s

# selections hn 0 < α < 1: [5], Ch. 5 Ln 0 < p ≤ 1: [40, 59] Kn (α, θ): [77]
α = 1

d : Ch. 5 p = 1
2 : Ch. 4 (α, 1): Ch. 5

α = 1
2 : Ch. 4 (12 , 1): Ch. 4

waiting time WN α = 1
2 : [15], Ch. 4 TN p = 1

2 : Ch. 4 TN (12 , 1): Ch. 4

index Ln α = 1
2 : Ch. 4 open open

distance ∆n α = 1
2 : Ch. 4 open open

qu
al

it
y

last score Rn α = 1
2 : Ch. 4 open ND

gap gn 0 < α < 1: [5], Ch. 5 open ND
avg. score open An 0 < p ≤ 1: [59] ND
best discarded Mn α = 1

2 : Ch. 4 open ND

# replacements
fn 0 < α < 1: Ch. 5 open ND

α = 1
2 : Ch. 4

Table IV.7: Results of “hiring above theα-quantile”, “hiring above the median” (α = 1
2 ) and related

problems. The parameters shown here are: first, the dynamics indicators: “# selections” the number
of selections, “waiting time” the number of observations until N items are selected, “index” the index
of last selected item, and “distance” the distance between the last two selections. Second, the quality
indicators: “last score” the score (rank) of last selected item, “gap” the gap of last selected item, “avg.
score” the average score (rank) of selections, “best discarded” the score (rank) of best discarded item,
and “# replacements” the number of replacements. “ND” means that this parameter is not defined
in that context. “open” refers to that no results for the parameter are known yet.
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parameter Hiring above them-th best m-records seating plan (0,m)

dy
na

m
ic

s

# selections hn,m [5], Ch. 6 [83], Ch. 6 Kn [77], Ch. 6
m = 1: [6]

waiting time WN,m Ch. 6 Ch. 6 TN Ch. 6
index Ln,m Ch. 6 Ch. 6 Ch. 6

m = 1: [6]
distance ∆n,m Ch. 6 Ch. 6 Ch. 6

m = 1: [6]

qu
al

it
y gap gn,m [5], Ch. 6 trivial ND

best discarded Mn,m Ch. 6 Ch. 6 ND
# replacements fn,m Ch. 6 ND ND

Table IV.8: Results of “hiring above the m-th best” (m = Θ(1) or m = f(n)) and related problems.
We use same conventions as in Table IV.7.

We point out that the results for some parameters (put as “open” in Table IV.7) can be obtained
easily, i.e., the index of last selected item and distance between the last two selections for the “12 -percentile
rule” and particular instances of the seating plans such as (12 , 1) and (12 , 0). More results about the
rank of last selected item and rank of best discarded item are also in hand for the 12 -percentile rule, while
such parameters make a little sense in the context of the CRP. Also, the expectation of the number
of replacements for the 1

2 -percentile rule can be obtained similarly as we did for hiring above the
median.

Moreover, for the p-percentile rules, with p = 1
d , d ∈ N, the distributional and asymptotic

results for the number of selected items can be obtained similarly as done in Chapter 5 for hiring
above the α-quantile, with α = 1

d .
We argue that the expectations of the parameters, number of selected items, gap of last selected

item and number of replacements for the p-percentile rules, with 0 < p ≤ 1, have the same order
of growth like the corresponding parameters for hiring above the α-quantile (in Chapter 5). Of
course, this can be formally proved using the framework of Archibald and Martı́nez (Section 2.4).

The parameter average score (rank) of selections, which has been studied for the p-percentile rules,
can also be analyzed for hiring above theα-quantile, following the probabilistic analysis of Krieger
et al. in [59]. However, we think that this parameter is not natural for rank-based strategies. On the
other hand, such parameter is more informative for score-based strategies (as already discussed
by Krieger et al. in [60, 61] for different distributions) as it depends directly on the distribution of
the scores.

For the number of replacements, fn, computing the probability distribution is a challenging prob-
lem. The difficulty stems from the dependency on the number of hired candidates, hn. Thus the
starting point here is to compute the joint probability of fn and hn; that seems extremely com-
plicated. Besides its own interest, knowing the probability distribution of fn would be helpful to
develop new sampling algorithms. We hope that we can go further on the knowledge of fn under
different hiring strategies.

Moreover, we discuss here some ideas and open problems that we would like to investigate in
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the future. One important question is how to compare two hiring strategies, which requires a
suitable definition of the notion of “optimality”.

As already pointed out by Broder et al. [15] and Archibald and Martı́nez [5], non-degenerate
hiring strategies4 always exhibit trade-offs between the quality of the hired staff and the rate at
which they hire. “Hiring above the m-th best” provides an excellent example. By playing around
with the value ofm, we can give priority to a faster hiring rate or to a more selective process. If we
makem bigger, then the distance between consecutive hirings ∆n,m decreases (better hiring rate),
but the gap of last hired candidate gn,m gets bigger too (worse staff quality). Similar trade-offs
show up if we consider other combinations of the parameters that we have studied, like the size
of the hiring set hn,m and the score of best discarded candidateMn,m.
Despite these trade-offs arise very naturally, it seems very difficult to define a natural yardstick
with which to compare different hiring strategies, and thus to come up with a clear notion of op-
timality. For instance, one can say that an “optimal” hiring strategy should achieve the perfect
balance between the quality of the hired staff and the rate of hiring, but quantifying this balance
remains as an elusive open problem.

We discuss in Section IV.2 “probabilistic hiring strategies”. In Section IV.3 we introduce “multicri-
teria hiring” as a practical extension of the hiring problem. We have followed the framework of
Archibald and Martı́nez and obtained a generic PDE for the number of hired candidates for general r,
where r is the number of attributes that each candidate has. We also propose other variants of the
hiring problem in Section IV.4 like “batch hiring”, “hiring with sliding-window” and “hybrid hiring”.

IV.2 Probabilistic hiring strategies

Another approach in getting further insight into the “hiring above the α-quantile” strategies
(Chapter 5), but which might be interesting in its own, is to consider a “probabilistic relaxation” of
the hiring process in the following sense. Let us consider a hiring strategy of the following type.

• The firstM candidates are recruited.

• Then one of these candidates is selected (by a certain rule) as the first threshold candidate.

• Each time a new candidate is “examined” his rank will be compared with the rank or score
of the threshold candidate.

– If the new candidate does not have a larger rank, then he will not be hired and the
threshold candidate remains the same.

– If the new candidate has a rank larger than the threshold candidate, then he will be
hired and furthermore with a certain probability 1− p (which might depend on certain
quantities) the threshold candidate remains the same, but with probability p the thresh-
old candidate changes to the recruited candidate with the lowest score larger than the
actual threshold candidate, i.e., the “next better candidate” will be the new threshold
candidate.

“Hiring above the median” (generalized for “hiring above the α-quantile”) is falling into this class
of strategies, where, of course, the probabilities p are given deterministically as 1 or 0 depending

4here, by a non-degenerate hiring strategy, we mean a hiring strategy that is not hiring everybody nor discarding
everybody.
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on the parity of the size of the hiring set. However, e.g., one could consider this probabilistic
strategy for a fixed probability 0 < p < 1 (thus yielding a “relaxed hiring above the α-quantile”
strategy), for which a PDE approach seems to be feasible.

IV.3 Multicriteria hiring problem

“Multicriteria hiring” is a practical extension of the standard hiring problem. In multicriteria hir-
ing, the preference between candidates is based on r attributes. Every candidate is given r quality
ranks relative to the candidates seen so far. As a simple real-life example, these attributes might
correspond to some characteristics of candidates for a job, such as education, work experience, in-
ternational skills, etc. The sequence of ranks of incoming candidates is now modeled by r random
permutations; every permutation represents the sequence of ranks for one attribute.

We follow the framework of Archibald and Martı́nez (review Section 2.4) to do the analysis here.
We have presented also an example of using the symbolic method in Section 1.3 to derive a gen-
eral PDE for the number of hired candidate. Let us consider that the attributes are uncorrelated or
independent. That means that, at any stage n we have a tuple of ~σ = (σ1, . . . , σr) of random per-
mutations each of size n with probability of occurrence 1/n!r. So, the generating function of the
size of hiring set will be

Hr(z, u) =
∑

~σ∈Pr

z|~σ|

|~σ|!r
uh(~σ), (IV.5)

where Pr = {~σ = (σ1, . . . , σr)|σi ∈ P, |~σ| = |σ1| = . . . = |σr|}. The subscript r in Hr(z, u) corre-
sponds to multiattribute or multicriteria hiring, with H1(z, u) ≡ H(z, u) corresponding the stan-
dard hiring problem. The recurrence of the size of hiring set is the same as before where

h(~σ ◦~j) = h(~σ) + X~j
(~σ),

with h(~σ) = 0 if |~σ| = 0 and ~j = (j1, j2, . . . , jr), 1 ≤ ji ≤ |~σ| + 1; ~j is the vector of ranks of the
incoming candidate. The indicator r.v. X~j

(~σ) is defined as follows

X~j
(~σ) =

{
1, if a candidate with a vector of ranks~j is hired right after ~σ,
0, otherwise.

And the crucial quantity X(~σ) has a similar definition as before,

X(~σ) =
∑

~j∈(1... ~|σ|+1)r

X~j
(~σ),

which tells us how many “vectors” of ranks among the (|~σ| + 1)r possible ones, could be hired
after ~σ, under the applied strategy. Doing a simple derivation, we have the following theorem

Theorem IV.13 Let Hr(z, u) be the generating function defined in (IV.5). Let X(~σ) denote the number of
vectors~j, (1, . . . , 1) ≤ ~j ≤ ( ~|σ| + 1, . . . , ~|σ| + 1), such that a candidate with vector of ranks~j will be hired
if interviewed right after ~σ, that is, X(~σ) is the number of vectors~j such that hr(~σ ◦~j) = hr(~σ) + 1. Then

r+1∑
j=1

zj−1
{
r+ 1

j

}
∂j−1

∂zj−1
Hr(z, u) = (1− u)

∑
~σ∈Pr

X(~σ)
z|~σ|

|~σ|!r
uh(~σ).
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The derivation of this theorem is straightforward, with the help of identity (1.7) for Stirling num-
bers of the second kind, and very similar to that one of Theorem 1.4.

One simple strategy in this class is “hiring above the best in any attribute”. For example, let
r = 2, then

X(~σ) = 2 · |~σ| + 1.

Here, the threshold level is defined by the set of candidates with maximum scores in all attributes,
or it is just one candidate who is the best in all attributes. So that further candidates should rank
better than the threshold level to get hired.

Another proposed strategy is “hiring above the Pareto optima”, where Pareto optima is the set
of candidates which are not dominated by any other candidate. In this case, determining X(~σ)

seems to be more tricky.
For example, let r = 2 and the following table shows the scores of eight interviewed candidates,
each one has two scores r1 and r2,

n 1 2 3 4 5 6 7 8

r1 2 1 6 5 7 3 4 8
r2 6 5 2 4 1 8 7 3

The situation after processing the last candidate using “hiring above the best in any attribute”
and “hiring above the Pareto optima” is as explained in Figure IV.1. By definition, the set of
Pareto optima contains the best candidate in any attribute, together with candidates who are not
dominated by others. Then, it is true that the hiring set under “hiring above the best in any
attribute” is a subset of the corresponding hiring set of “hiring above the Pareto optima” for the
same sequence of candidates.

IV.4 Other variants of the hiring problem

“Batch hiring”. Candidates come in blocks or batches of size b, and decisions for all the candidates
in the block are simultaneously taken.

“Sliding-window”. We can change our mind and hire some candidate who we already interviewed
and provisionally discarded if we have not interviewed more than w − 1 candidates afterwards.
In other words, for a window size w we take a decision for the n-th candidate at time n +w − 1;
the decision is made with knowledge of the scores or ranks of the n+w−1 candidates seen so far.

“Hybrid hiring”. In order to improve the quality of the hired staff, we might try to use a mix-
ture of hiring strategies. For instance, we could start applying hiring above the best for the initial
K candidates, then apply hiring above the median for the rest of the sequence. We conjecture that
the hiring set may shrink compared to using hiring above the median alone, but the quality of the
hiring set will be improved.
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(a) “Hiring above the best in any attribute”. r1 and r2 axes
represent the scores of candidates according to the first and
the second attribute after receiving eight candidates, respec-
tively. The number inside the circle denotes the arrival time of
that candidate. Hired candidates are in black, while discarded
ones are in gray. If the 9-th coming candidate ranks above
the threshold level, i.e., the incoming candidate attributes corre-
spond to one of the coordinates marked as ×, then gets hired,
and discarded otherwise.
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(b) “Hiring above the Pareto optima”. Same conventions are
used as in the previous subfigure. If the 9-th coming candi-
date ranks above the threshold level (in any of the coordinates
marked as ×), then he is hired, and discarded otherwise. No-
tice that the 4-th and 7-th candidates are not dominated by
any other candidate, hence they belong to the current Pareto
optima level.

Figure IV.1: Example of multicriteria hiring.
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