
On the Complexity of
Resolution-based Proof Systems

by
Sergi Oliva

PhD Thesis submitted to the
Departament de Llenguatges i Sistemes Informàtics

Universitat Politècnica de Catalunya

Directed by
Albert Atserias

March 2013

Abstract

Propositional Proof Complexity is the area of Computational Complexity that studies
the length of proofs in propositional logic. One of its main questions is to determine which
particular propositional formulas have short proofs in a given propositional proof system. In
this thesis we present several results related to this question, all on proof systems that are
extensions of the well-known resolution proof system.

The first result of this thesis is that TQBF, the problem of determining if a fully-quantified
propositional CNF-formula is true, is PSPACE-complete even when restricted to instances
of bounded tree-width, i.e. a parameter of structures that measures their similarity to a tree.
Instances of bounded tree-width of many NP-complete problems are tractable, e.g. SAT,
the boolean satisfiability problem. We show that this does not scale up to TQBF. We also
consider Q-resolution, a quantifier-aware version of resolution. On the negative side, our
first result implies that, unless NP = PSPACE, the class of fully-quantified CNF-formulas
of bounded tree-width does not have short proofs in any proof system (and in particular in
Q-resolution). On the positive side, we show that instances with bounded respectful tree-
width, a more restrictive condition, do have short proofs in Q-resolution. We also give a
natural family of formulas with this property that have real-world applications.

The second result concerns interpretability. Informally, we say that a first-order formula
can be interpreted in another if the first one can be expressed using the vocabulary of the
second, plus some extra features. We show that first-order formulas whose propositional
translations have short R(const)-proofs, i.e. a generalized version of resolution with DNF-
formulas of constant-size terms, are closed under a weaker form of interpretability (that with
no extra features), called definability. Our main result is a similar result on interpretability.
Also, we show some examples of interpretations and show a systematic technique to transform
some Σ1-definitions into quantifier-free interpretations.

The third and final result is about a relativized weak pigeonhole principle. This says that
if at least 2n out of n2 pigeons decide to fly into n holes, then some hole must be doubly
occupied. We prove that the CNF encoding of this principle does not have polynomial-size
DNF-refutations, i.e. refutations in the generalized version of resolution with unbounded
DNF-formulas. For this proof we discuss the existence of unbalanced low-degree bipartite
expanders satisfying a certain robustness condition.

Acknowledgements

First and foremost, I would like to thank my advisor, Albert, for his guidance and support
at all times. Working with him has been, no doubt, the most challenging experience of my
life. Even though he has tirelessly introduced me into lots of different topics and taught me
hundreds of interesting things, the most profound influence he has had on me has come from
seeing him work day by day. The way I think and act now, not only as a researcher, but
as a person, has undoubtely changed due to my experience with him: the rigorous thinking,
the attention to detail, and the will to do things the right way, are all proofs of his imprint.
Sitting together in front of a blackboard, we have shared some moments of inspiration and
enthusiasm, some moments of laughs and fun, but also some really tough moments of failure
and disappointment. In those, he has always been a steady hand pointing to the light at the
end of the tunnel when I was not sure there was such a thing. Even in those difficult times
he has not stopped believing in me, and I am thankful for that.

I would also like to thank Moritz Müller for being so patient and kind in our work to-
gether. It has been a pleasure getting to know him. I thank my office mates at UPC for
their unwavering support and their always fun but mostly off-topic conversation. Specially,
I would like to thank Marc Galceran: starting at undergraduate, we have made the whole
journey together, and it has been a good one. Furthermore, I would like to thank Jordi
Cortadella for encouraging me to get into research, and Rafel Cases, whose Theory course
in my second year at the university opened a new and fascinating world for me. Probably,
without his initial spark, none of this would have been a reality.

Finally, I would like to thank my friends, my family and Cristina. They’ve been supportive
at all times: encouraging me in the toughest moments, sharing my joy in the good ones, and
patiently listening to my long and boring explanations way too many times. Their support
has been key.

i

ii

Contents

1 Introduction 1

1.1 Logic expressions . 1
1.2 Propositional Proof Complexity . 4
1.3 Our results . 5

2 Preliminaries and auxiliary lemmas 13

2.1 Basic definitions . 13
2.2 Graphs . 13
2.3 Propositional logic . 14
2.4 First-order logic . 15
2.5 Restrictions and decision trees . 18
2.6 Auxiliary lemmas . 19

3 Bounded tree-width QBFs and Q-resolution 31

3.1 Tree-width and path-width . 31
3.2 Quantified boolean formulas . 32
3.3 Leveled formulas . 32
3.4 Bounded-width TQBF . 44
3.5 The Q-resolution proof system . 46
3.6 Respectful tree-width . 49
3.7 Formulas with bounded respectful tree-width 53

4 Definability and interpretability 59

4.1 Quantifier-free definitions . 59
4.2 Quantifier-free interpretations . 65
4.3 Further examples . 69

iii

5 Lower bounds for DNF-refutations 77
5.1 Resilient expanders . 78
5.2 Killing large conjunctions . 82
5.3 Restriction to a graph and binary encoding 84
5.4 Killing large disjunctions . 85
5.5 Switching lemma . 88
5.6 Matching game . 88
5.7 Adversary argument . 90
5.8 Proof size lower bound . 91

6 Conclusions 95
6.1 Open problems . 95
6.2 Publications related to this thesis . 97

Bibliography 99

iv

Chapter 1

Introduction

Since ancient times, one of the main philosophical struggles of humanity has been to dis-
tinguish truth from falsehood. In 1685, in an effort to approach this problem from a math-
ematical point of view, Gottfried Leibniz suggested to develop a universal language, or
characteristica universalis, able to express every sentence in some sort of formal, universal
way, together with a universal calculation framework, or calculus ratiocinator, a formal in-
ference system that would allow to reason about general statements with the formality with
which matemathicians reason about their own. Thus, a group of philosophers disputing the
truth of a statement could simply say calculemus! (let’s calculate) and use the system to
determine who is right.

Later developments by Hilbert, Boole, Frege and others seemed to point to mathematical
logic as the prime candidate for this role. However, in 1931, Gödel’s incompleteness theorem
showed that the task at hand was, indeed, impossible. Nonetheless, the spirit of Leibniz’
dream did not die and, even with its known limitations, logic has been at the heart of
the technological revolution of the last decades as the universal language and reasoning
framework that Leibniz envisioned.

1.1 Logic expressions

One of the frameworks provided by logic to express and reason about statements is first-
order logic. In first-order logic, we have a universe with relations and functions on it, along
with variables to represent elements of the universe, logical connectives for negation (¬),
conjunction (∧) and disjunction (∨), and existential and universal quantification (∃,∀) over
these variables.

1

For instance, given a graph H = (V,E) where V is a set of vertices and E is a binary
relation indicating whether two vertices are an edge inH, we can express thatH is 3-colorable
as the fact that the first-order formula

∀x (R(x) ∨G(x) ∨B(x)) ∧

∀x∀y (E(x, y) =⇒ ¬R(x) ∨ ¬R(y)) ∧

∀x∀y (E(x, y) =⇒ ¬G(x) ∨ ¬G(y)) ∧

∀x∀y (E(x, y) =⇒ ¬B(x) ∨ ¬B(y))

is satisfiable in H; i.e. there are sets of vertices R, G and B that make the formula true
when it is evaluated on H.

The same statement can also be expressed using propositional logic, that is, by means of
(boolean) propositional variables and logical connectives only. To do that, we can translate
the previous first-order formula into propositional logic using variables Ru, Gu and Bu for
every vertex u. The statement is now expressed as the fact that the formula for H

Ru ∨Gu ∨Bu for every vertex u,
¬Ru ∨ ¬Rv for every edge (u, v),

¬Gu ∨ ¬Gv for every edge (u, v),

¬Bu ∨ ¬Bv for every edge (u, v)

is satisfiable; i.e. there is a boolean assignment to the propositional variables that makes
the formula true. This translation step is of great significance in this thesis, as expressing
our statements in propositional logic allows to reason about them syntactically by using
propositional proof systems, as we will introduce later.

As witnessed by 3-colorability, combinatorics is a good source of examples of math-
ematical statements that can be logically expressed. Another of these examples is the
(non-)existence of a perfect matching in a bipartite graph. The particular case in which
the graph is the complete bipartite graph with vertex sets of cardinalities n + 1 and n is,
precisely, the so-called pigeonhole principle. More graphically, the pigeonhole principle states
that if n + 1 pigeons fly into n holes, at least one hole will be doubly occupied. We can
express this principle using propositional logic. To do that, we use boolean variables Pu,v
that indicate whether pigeon u flies to hole v, for all u ∈ {0, . . . , n} and v ∈ {1, . . . , n}. The

2

principle is expressed by the fact that the following set of clauses is contradictory:

Pu,1 ∨ Pu,2 ∨ . . . ∨ Pu,n for every pigeon u,
¬Pu,v ∨ ¬Pu′,v for all different pigeons u, u′ and hole v.

Note that the first set of clauses forces every pigeon to fly to some hole and the second ensures
that no hole will be doubly occupied. Therefore, refuting these clauses, that is, proving that
they are contradictory, would prove the principle true. Observe that the principle is not
expressed by the fact that the first-order formula

∀x∃y (y 6= 0 ∧ P (x, y)) ∧

∀x∀y∀z (x 6= y =⇒ ¬P (x, z) ∨ ¬P (y, z)).

is contradictory, since it is not: it is satisfiable when the universe is infinite. The principle
is expressed by the fact that the formula has no finite models of cardinality n+ 1.

Other well-known examples of combinatorial principles that can be expressed in propo-
sitional and first-order logic include the Ramsey principle, that states that every graph with
22n vertices contains either a complete subgraph or an independent set of size n. Also, the
least number principle, which states that every finite linear order has a minimum, or the
dense linear order principle, which states that no finite linear order is dense, i.e. every pair
of elements has another inbetween.

The ability to express and reason about logical statements is also relevant in multiple
areas of computer science. Logic is at the heart of programming languages, artificial intelli-
gence and security protocols; even queries on relational databases are no more than first-order
formulas. Constraint satisfaction problems coming from a broad range of scientific and in-
dustrial applications are expressed as propositional formulas (or extensions of those) to take
advantage of the powerful technology for determining satisfiability (SAT solvers). Also, the
computational complexity of determining a property is intimately related to the difficulty of
formally expressing it in logic [32]. Furthermore, the verification of complex systems, be they
software or hardware, is based on model checking by verifying logic statements about the
structure or the behaviour of those systems. For example, these statements can be invariants
that guarantee that a given system does not reach an undesired state.

A particular sort of systems that we may want to verify are those in which there is an
interaction between two or more parties, for example between the system itself and an exter-
nal user. In this case, our invariants are required to take into account this interaction. To do

3

so, it is useful to consider an extension of propositional logic to state propositional formulas
compactly by using existential and universal quantification of propositional variables. These
formulas are called quantified boolean formulas (QBFs). A QBF takes the form

∀x1∃x2∃x3∀x4 . . . ∀xk(φ)

where φ is a propositional formula on the variables x1, . . . , xk. Note that, even if they look
like first order formulas, QBFs are no more than propositional formulas stated in abbreviated,
compact form. Given a QBF, one can easily obtain an equivalent propositional formula, but
its size may be exponential in the number of quantifiers. QBFs are a good fit to model ad-
versarial games like the user-system interaction mentioned earlier, as well as other examples
from Game Theory.

1.2 Propositional Proof Complexity

The main reason for using propositional logic to express statements is to reason in a purely
syntactical way by means of propositional proof systems. Specifically, we want to refute
propositional formulas, i.e. proving that they are a contradiction. Note that refuting a
formula is equivalent to proving that its negation is a tautology, i.e. true for all boolean
assignments.

The best-known proof system to refute propositional formulas is resolution. This is a
rule-based system with a single rule that reads

C ∨ x D ∨ ¬x
C ∨D

,

where C and D are clauses and x is a variable. Note that the rule is sound, in the sense that
every assignment that satisfies both hypotheses, also satisfies the conclusion. Resolution
is complete for sets of clauses (also known as CNF-formulas), i.e. every contradictory set
of clauses has a resolution refutation. Note that the examples in the previous section are
precisely sets of clauses.

Proof systems used in this thesis are extensions of resolution. The first one is DNF-
resolution, that generalizes resolution by allowing x to be a term, that is, a conjunction of
literals, and C and D to be DNF-formulas, that is, disjunctions of terms. Note that the rule
is still sound in this case. Additional rules are introduced to make this proof system complete
for all contradictory sets of DNF-formulas. We make special attention to the specific case

4

in which the size of the conjuctions is bounded by a natural k. This system is sometimes
called k-DNF resolution, or R(k) for short [34]. The second resolution-based proof system
used in this thesis is Q-resolution [13], a quantifier-aware version of resolution for refuting
QBFs. This is a proof system with rules similar to those of resolution but that take into
account the quantification of the variables, which is ignored in plain resolution.

Consider the satisfiability problem of propositional formulas (SAT). Given a formula, we
can use a satisfying boolean assignment to its variables as a certificate of its satisfiability.
On the other hand, a refutation in a particular proof system certifies that the formula is
contradictory. Note that a satisfying assignment is not only a certificate, but a short one: its
length is exactly the number of variables of the formula, and this puts SAT in NP. However,
refutations of contradictory formulas need not be short, i.e. of length polynomial with respect
to the size of the formula.

Propositional Proof Complexity is the area of Computational Complexity that studies
the length of proofs. Its main question is to determine if there is a short proof of a given
propositional formula in a given proof system. Results in this area have impact in areas
that range from efficiency improvements of SAT solvers [37], up to fundamental questions in
Computational Complexity, in particular the P vs. NP problem [19].

1.3 Our results

In this section we present the main contributions of this thesis and put them in the context
of previous related work.

1.3.1 Bounded tree-width QBFs and Q-resolution

Tree-width is a well-known parameter that measures how close a structure is to being a
tree. Many NP-complete problems have polynomial-time algorithms on inputs of bounded
tree-width. In particular, SAT can be solved in polynomial time when the constraint graph
of the input CNF-formula has bounded tree-width (cf. [25], [27]).

Tractability of TQBF A natural question suggested by this result is whether TQBF,
the problem of determining if a QBF whose quantifier-free part is a CNF is true or false,
can also be solved in polynomial time when restricted to formulas whose CNF-formula has
bounded tree-width. In [16], Chen concludes that the problem stays tractable if the number
of quantifier alternations, as well as the tree-width, is bounded. On the negative side,

5

Gottlob, Greco and Scarcello [30] proved that the problem stays PSPACE-complete when
the number of alternations is unbounded even if the constraint graph of the CNF-formula has
logarithmic tree-width (and indeed, its incidence graph is even a tree). By different methods,
and improving upon [30], Pan and Vardi [40] show that, unless P = NP, the dependence of the
running time of Chen’s algorithm on the number of alternations must be non-elementary,
and that the TQBF problem restricted to instances of tree-width log∗ in the size of the
input is PSPACE-complete. All these negative results hold also for path-width, which is a
parameter that measures the similarity to a path and is in general smaller than tree-width.
However, they leave open whether TQBF is tractable for instances whose constraint graph
has constant path-width, or even constant tree-width.

Main result and proof techniques We resolve this question by showing that, even for
inputs of constant path-width, TQBF is PSPACE-complete. Our construction builds on the
techniques from [40] with two essential differences. The first difference is that instead of
reducing from the so-called tiling-game and producing a quantified Boolean formula of log∗-
smaller path-width, our reduction starts at TQBF itself and produces a quantified Boolean
formula whose path-width is only logarithmically smaller. Although this looks like backward
progress, it leaves us in a position where iterating the reduction makes sense. However, in
order to do so, we need to analyze which properties of the output of the reduction can be
exploited by the next iteration. Here comes the second main difference: we observe that
the output of the reduction has not only smaller path-width, but also smaller window-size,
which means that any two occurences of the same variable appear close to each other in some
ordering of the clauses. We call such formulas n-leveled, where n is a bound related to the
window-size. Our main lemma exploits this structural restriction in a technical way to show
that the TQBF problem for n-leveled formulas reduces to the TQBF problem for O(log n)-
leveled formulas. Iterating this reduction until we reach O(1)-leveled formulas yields the
result.

A few more words on the differences between our methods and those in [40] and [30] are
in order. The technical tool from [40] that is used to achieve n-variable formulas of O(log∗ n)

path-width builds on the tools from [38] and [29] that were used for showing non-elementary
lower-bounds for some problems related to second-order logic. These tools are based on an
encoding of natural numbers that allows the comparison of two n-bit numbers by means
of an extremely smaller formula; one of size O(log∗ n). It is interesting that, by explicitely
avoiding this technique, our iteration-based methods take us further: beyond O(log∗ n) path-

6

width down to constant path-width. For the same reason our proof can stay purely at the
level of propositional logic without the need to resort to second-order logic. Along the same
lines, our method also shows that the TQBF problem for n-variable formulas of constant
path-width and O(log∗ n) quantifier alternations is NP-hard (and ΣiP-hard for any i ≥ 1),
while the methods from [40] could only show this for O(log∗ n) path-width and O(log∗ n)

alternations. It is worth noting that, in view of the results in [16], these hardness results are
tight up to the hidden constants in the asymptotic notation.

QCSP and respectful tree-width Structural restrictions on the generalization of TQBF
to unbounded domains, sometimes called QCSP, have also been studied. Gottlob et al.
[30] proved that QCSP restricted to trees is already PSPACE-complete. Their hardness
result for QBFs of logarithmic tree-width follows from this by booleanization. They also
identify some new tractable fragments, and some other hardness conditions. Finally, Chen
and Dalmau [18] introduced a general framework for studying structural restrictions on
QCSP, and characterized the restrictions that make the problem tractable under complexity-
theoretic assumptions.

One of the restrictions of QCSP that Chen and Dalmau showed tractable is that the
constraint graph of the instance has bounded respectful tree-width. Note that the tree-width
of the constraint graph is independent of the quantification of the instance. Respectful tree-
width is precisely a quantifier-aware parameter, that considers only tree-decompositions that
are respectful with the quantification, in the sense that bottom-up algorithms can be run on
these tree-decompositions without violating precedence of quantifiers.

QBFs of bounded respectful tree-width In this thesis we observe that QBFs of bounded
respectful tree-width are not only tractable but also have short Q-resolution proofs. We start
by presenting different forms of quantifier-aware resolution introduced by Büning, Flögel and
Karpinski [13] and Pan and Vardi [39] and show how they relate to each other. Next, we
show that respectful tree-width is equivalent to respectful induced width. Here induced width
refers to a measure equivalent to tree-width introduced in [24]. Finally, we show that false
QBFs with bounded respectful induced width have short Q-resolution refutations, which
yields our result.

As an application of this result, we show that a family of formulas inspired by one
introduced by Dalmau, Kolaitis and Vardi [20], has bounded respectful tree-width. We give
practical examples of how these formulas are useful.

7

1.3.2 Definability and interpretability

As mentioned earlier, Propositional Proof Complexity studies the length of refutations of
propositional contradictions. We would like to compare contradictions in terms of how hard
they are for a specific proof system, that is, determine if one has a (significantly) shorter
refutation than the other.

One trivial way to determine if a formula is harder than another is to prove explicit
bounds on the length of the refutations of the formulas that we want to compare. However,
this requires solving a problem much bigger than the one we are interested in. A simpler,
syntactical way to proceed would be the following: given two contradictions F and G and
a proof system P , if there is a short proof of F from G in P , then it is clear that G is no
harder than F in P , or equivalently, that F is at least as hard as G in P . This solution
looks easier than the previous, but it still requires building a syntactical proof of one of the
formulas from another, which may not be an easy task. We would like to compare formulas
by a simpler, semantical argument. For a fixed proof system, this would be, in some sense,
analogous to reducing one problem into another in the theory of NP-completeness in classic
complexity. It is in the search of this semantical argument that we focus our interest on
interpretability.

Interpretability Interpretability is a classic concept of model theory. Informally, inter-
preting a model M in a model N is expressing M in the vocabulary of N . Interpretability
of formulas is as expected: given two first-order formulas φ and ψ, interpreting φ in ψ is to
express the functions and relations of φ as formulas in the vocabulary of ψ ensuring that, for
all models of ψ, the interpretation of φ is also satisfied, among other requirements. In this
thesis, we also consider the concept of definability, a particular form of interpretability. The
expressive power needed for the formulas that express functions and relations determines the
complexity of a specific interpretation (or definition).

In [21], Dantchev and Martin showed that if the relativization of the aforementioned least
number principle, that is, the sentence expressing the principle for all non-empty subsets of
the universe, can be interpreted in a first-order formula without finite models, then there are
short R(const)-refutations of the propositional translations of that formula. The interpreta-
tions allowed are those in which relations and functions are expressed as Σ1-formulas except
for the relativization relation, that is necessarily expressed as a quantifier-free formula.

8

Our result In this thesis we systematize Dantchev and Martin’s idea for all formulas.
First we show that the set of first-order formulas whose propositional unary translations
have polynomial-size R(const)-refutations is closed under quantifier-free definitions. Here,
unary translation corresponds to the translation from first-order to propositional formulas
that has been used throughout this introduction. Our main theorem is a similar version
of this result on interpretability. We also prove similar results for binary translations, that
is, propositional translations that encode the first-order functions by their bit-graph, for
quasipolynomial proofs in R(log).

Finally, as an application of our results, we give some examples of definitions and in-
terpretations among those principles that have been introduced, specially among different
forms of the pigeonhole principle.

Proof techniques To prove these results, we first show a generalization of the upper
bound of Riis’ Gap Theorem [47] for tree-like resolution. Riis’ result is on purely universal
formulas, and we generalize it to Σ2-formulas, as required by our application. Furthermore,
we use a distributivity lemma that allows us to convert depth-3-refutations of the form
"disjunction-conjunction-disjunction" into DNF-refutations without considerably increasing
its size, provided that the innermost disjunctions are of bounded size. Finally, in the ex-
amples, we show a systematic technique to convert some Σ1-definitions into quantifier-free
interpretations.

1.3.3 Lower bounds for DNF-refutations

A generalized version of the classical pigeonhole principle, namely PHPm
n , expresses the fact

that there is no injection from m pigeons into n holes whenever m is bigger than n. As
usual, we formulate PHPm

n as a contradictory CNF in the propositional variables Pu,v with
u ranging over an m-element set [m] of pigeons and v ranging over an n-element set [n] of
holes. The formula has clauses ¬Pu,v ∨ ¬Pu′,v for u, u′ ∈ [m] with u 6= u′ and v ∈ [n] forcing
different pigeons to fly to different holes, and

∨
v∈[n] Pu,v for u ∈ [m] forcing every pigeon to

fly to some hole. Estimating the refutation-complexity of this set of clauses in various proof
systems has a long history in proof complexity dating back to Cook and Reckhow’s seminal
article [19].

Weak pigeonhole principles One of the most quoted results of Propositional Proof
Complexity is that PHPn+1

n , the particular case shown in section 1.1, does not have small

9

proofs in the standard propositional proof systems that “lack the ability to count”. This is
confirmed by the seminal results of Haken [31] for resolution, and Ajtai [1] for standard proof
systems manipulating formulas of bounded depth (i.e. AC0-Frege), followed by the great
quantitative improvements by Beame, Impagliazzo and Pitassi [9] and Krajíček, Pudlák
and Woods [35] on Ajtai’s result. In contrast, short polynomial-size proofs exist as soon
as the proof system is allowed formulas that express counting properties, such as arbitrary
propositional formulas [14] (i.e. NC1-Frege), or even threshold formulas of bounded depth
(i.e. TC0-Frege).

From the above, the ability to count looks like an essential ingredient for proving PHPn+1
n .

On the other hand, since approximate counting is available in AC0 via explicit polynomial-
size formulas [2], one may speculate that weaker pigeonhole principles with a much bigger
gap between the number of pigeons and the number of holes, such as PHPn2

n or PHP2n
n , may

have polynomial-size bounded-depth proofs. However, this is a notorious 25-year old open
problem [42], the main obstacle being that although the known AC0-formulas for approximate
counting are explicit, their correctness seems hard to prove. The only known superpolynomial
lower bounds are for resolution in the case of PHPn2

n [44, 46], and for proofs manipulating
k-DNFs with k ≤ ε log n/ log log n for some ε > 0 in the case of PHP2n

n [8, 50, 45].

Indeed for those weaker pigeonhole principles, some positive results are known: Paris,
Wilkie andWoods [42] proved that PHPn2

n and PHP2n
n do have quasipolynomial-size bounded-

depth proofs. Their proof does not rely on approximate counting and is basically an am-
plification argument that reduces proving PHP2n

n to proving an instance of PHPnn

n which is
then proved by a diagonalization argument. This was later improved by Maciel, Pitassi and
Woods [36] who gave direct nO(logn)-size proofs of PHPn2

n and PHP2n
n by depth-2 formulas

(indeed, by k-DNF formulas with k ≤ (log n)c for a constant c).

The question whether PHPn2

n or PHP2n
n have polynomial-size bounded-depth proofs re-

mains open. A positive answer could have consequences for bounded arithmetic [42], and a
negative answer could have consequences for our understanding of approximate counting as
a computational problem.

The result Consider the following modified weak pigeonhole principle: if at least 2n out
of n2 pigeons fly into n holes, then some hole must be doubly occupied. We call PHPn2,2n

n a
propositional formula whose contradiction expresses this relativized weak pigeonhole princi-
ple in the mold of those shown in section 1.1.

The main result of this chapter is that every DNF-refutation of PHPn2,2n
n has superpolyno-

10

mial size. By a DNF-refutation we mean a refutation in the aforementioned DNF-resolution
proof system.

Proof outline and comparison to previous work Our proof follows the random restric-
tion method, so successfully used in previous works in Propositional Proof Complexity, with
some additional ideas. The typical skeleton of a proof by the random restriction method
goes as follows: Assume a short proof of F is given. Apply a random restriction from a
suitable distribution in such a way that, with high probability, every formula in the proof
simplifies significantly, but the proved formula F remains hard. Finally argue directly that
the restricted F cannot have a short proof with such simple formulas.

For an example, suppose PHP2n
n has polynomial-size resolution refutations. For the

random restriction we choose an assignment that describes a 1-1 mapping from n/2 randomly
chosen pigeons onto n/2 randomly chosen holes, and leaves all the other variables unset. With
these parameters, the restricted PHP2n

n becomes PHP1.5·n
0.5·n, and each complex clause of the

proof has been made true with high probability. Now a direct prover-adversary argument
shows that a proof of PHP1.5·n

0.5·n with non-complex clauses only is impossible.

Trying to apply this argument to DNF-refutations hits several difficulties. First, a random
matching restriction as above is not likely to simplify an arbitrary DNF formula, even if this
formula is small. Indeed, the DNF could be the negation of PHP2n

n itself, and the point of the
argument above was precisely that this formula does not simplify much. Here is where our
modified version PHPn2,2n

n enters the picture. By choosing 2n out of n2 pigeons at random
and setting all the variables about the other pigeons completely at random, it is very likely
that each DNF in the proof simplifies into one all whose terms mention very few of the
2n chosen pigeons. This sort of restriction comes inspired by the so-called Dantchev-Riis
restrictions [22], and its analysis for our case requires arguments of the type Furst, Saxe, and
Sipser introduced in their seminal work on bounded-depth circuits [28].

Continuing with the sketch of the proof, the application of the Dantchev-Riis restriction
to PHPn2,2n

n leaves an instance of PHP2n
n . Unfortunately, a term mentioning very few pigeons

need not be short itself, which means that we are not yet at a contradiction with the known
lower bounds for PHP2n

n in k-DNF resolution for k ≤
√

log n/ log log n from [50] which were
later improved to k ≤ ε log n/ log log n for some ε > 0 [45]. Following the ideas in [11], as
adapted to k-DNF proofs in [8, 50], this suggests that we restrict the principle further to a
low-degree bipartite expander G to get a short proof of PHP(G). The low-degree condition
on G guarantees that whenever a term mentions very few pigeons we can also assume that

11

the term is short, resulting in a k-DNF refutation of PHP(G) for small k. This would seem
to open the door to using the methods in [50].

Unfortunately, the sort of bipartite expanders that are needed for the rest of the argument
require degree at least as large as log n, leaving k well above the quantity that a direct
application of the methods in [50] can afford. Here comes the second main idea in our proof:
we use a logarithmic degree expander G, but reduce our problem to proving lower bounds
for a related formula BPHP(G) in which the flights of the pigeons along the edges of the
graph are encoded in binary. This takes us from k = Ω(log n) in the unary encoding to
k = O(log log n) in the binary encoding (at least in the case that we start with polynomial-
size proofs), well below the critical

√
log n/ log log n.

12

Chapter 2

Preliminaries and auxiliary lemmas

In this chapter we introduce the main definitions and terminology that will be used through-
out this thesis. In the last section, we prove several auxiliary lemmas of technical nature.
Some standard terminology from Computational Complexity is used throughout. For that,
see [5] and [41].

2.1 Basic definitions

For a natural n ∈ N, we write [n] := {0, . . . , n−1} and |n| := dlog(n+ 1)e. All our logarithms
are base two. Note that, for n > 0, the natural |n| is the length of the binary representation
of n without leading zeros. We define log(0) n := n and log(i) n := log(log(i−1) n) for i > 0.
Also, we use log∗ n as the least integer i such that log(i) n ≤ 1. If ā is a k-tuple, its i-th
component is ai. For b ∈ N we write bit(b, n) for the (b + 1)-th least significant bit in the
binary representation of n; formally, bit(b, n) := bn/2bc mod 2. Note that if b ≥ |n|, then
bit(b, n) = 0.

2.2 Graphs

A graph is a pair G = (V,E) where V is a set of vertices and E is a set of edges, that is,
pairs of vertices. All graphs in this thesis are undirected, and therefore we use both (u, v)

and (v, u) to refer to an edge between vertices u and v. Even though bipartite graphs are
graphs and can be fit in this definition, we use a slightly modified definition for them, that
will be handy for their use throughout this thesis.

13

Bipartite graphs Let G = (U, V,E) with E ⊆ U × V be a bipartite graph. For a vertex
u ∈ U ∪ V let NG(u) be the set of neighbors of u in G and for a set of vertices A ⊆ U ∪ V ,
let NG(A) :=

⋃
u∈ANG(u). A set M ⊆ E is a matching (in G) if no two edges in M share

an endpoint. Note that matchings M are bijections and thus have an image Im(M) and a
domain Dom(M).

We say G is a (U, V, dL, dR)-graph if for every u ∈ U we have that |NG(u)| ≤ dL and for
every v ∈ V we have that |NG(v)| ≤ dR. With such a graph we associate a bijection φG

with Dom(φG) ⊆ U × [dL] such that for every u ∈ U and every v ∈ NG(u) there is (exactly
one) i ∈ [dL] such that (u, i) ∈ Dom(φG) and φG(u, i) = v. For a subset C ⊆ U ∪ V we let
G∩C denote the subgraph of G induced by the vertices of C; if φG is associated to G, then
G∩C is a (U ∩C, V ∩C, dL, dR)-graph and the map associated to G∩C is (as a set of pairs)
φG∩C := φG ∩ ((C × [dL])× C). We also write G \ C for G ∩ ((U ∪ V) \ C).

2.3 Propositional logic

Atoms, literals, formulas Propositional variables are also called atoms. A literal is an
atom X or its negation ¬X. A formula is built from literals by means of ∨ and ∧. Note that
we allow the negation symbol only in front of atoms. The negation ¬F of a formula F is
defined as the formula obtained from F by interchanging ∧ and ∨, and replacing every literal
by its complementary literal (i.e. X by ¬X and ¬X by X). We use X for the negation
of an atom X. Also, we use the notation X(1) and X(0) to denote X and X, respectively.
Note that the notation is chosen so that X(a) is made true by the assignment X = a. The
underlying variable of X(a) is X, and its sign is a. We use var(φ) to denote the set of
variables occurring in a formula φ. If Γ is a set of formulas, we write

∧
Γ for the iterated

conjunction of the formulas in Γ; the elements in Γ are the conjuncts. Similarly, we write
∨

Γ

for the iterated disjunction, and the elements of Γ are the disjuncts. We omit parenthesis
in iterated conjuntions and disjunctions. We allow the empty disjunction 0 and the empty
conjunction 1, and refer to them as constants. Note ¬1 = 0 and ¬0 = 1. Sometimes we use
2 for the empty disjunction. A (k-)term is a conjunction of (at most k many) literals; and a
(k-)clause is a disjunction of (at most k many) literals. Both k-terms and k-clauses are said
to have width k. A (k-)CNF is a conjunction of (k-)clauses, and, analogously, a (k-)DNF is
a disjunction of (k-)terms. By CNF, sometimes we also refer to sets of clauses or even sets
of conjunctions of clauses.

14

Proof system We define the proof system. A structural inference allows to pass from F

to G whenever F is a disjunction (or a conjunction) and G has the same set of disjuncts
(respectively, conjuncts) as F . Furthermore 0 (respectively, 1) may be freely added or
deleted. The system has four further rules of inference, namely axiom (AXM), weakening
(WKG), introduction of conjunction (IOC), and cut (CUT):

F ∨ ¬F
H

H ∨ F
H ∨ F H ′ ∨G
H ∨H ′ ∨ (F ∧G)

H ∨ F H ′ ∨ ¬F
H ∨H ′

,

where F , G, are formulas. Note that the common rules
1
and 2

F
(ex falso quodlibet) follow

from (AXM) respectively (WKG) plus a structural inference.

A proof (of G from F1, . . . , Fm) takes assumptions F1, . . . , Fm and produces a conclusion
G through the application of these rules. A refutation of F1, . . . , Fm is a proof of 2 from
F1, . . . , Fm. A (k-)DNF-proof is one where all formulas are (k-)DNFs. We specifically call
the previous system R(k) when all formulas are k-DNFs. Consequently, we refer to a k-DNF-
proof also as an R(k)-proof. Note that the resolution proof system is precisely R(1).

By |F | we denote the size of the formula F : literals and constants have size 1, and
|(F ∧G)| = |(F ∨G)| = 1 + |F |+ |G|. Note that |F | = |¬F |. The size of a proof is the sum
of the sizes of the formulas it contains.

We write F1, . . . , Fm `sk G if there is a R(k)-proof of size s that takes the assump-
tions F1, . . . , Fm and produces G. We write `sk,∗ for tree-like such proofs. Observe that
F1, . . . , Fm `s1 G (resp. `s1,∗) if and only if there is a (resp. tree-like) resolution proof of G
from F1, . . . , Fm of size s. An R(log)-proof is one in which all formulas are (log s)-DNFs,
where s is the size of the proof.

2.4 First-order logic

First order vocabularies Fix a first-order vocabulary σ split into σR and σF , where
σR is the set of relation symbols and σF is the set of function symbols. We view constant
symbols as 0-ary function symbols. It will be convenient to assume that every vocabulary
has at least one constant symbol that we denote by 0. For each symbol S in σ, let rS denote
its arity. If r̄ and s̄ are k-tuples of first-order terms, sometimes we write r̄ = s̄ instead of
r1 = s1 ∧ · · · ∧ rk = sk. Similarly, we write ∀x̄ and ∃x̄ instead of ∀x1 · · · ∀xk and ∃x1 · · · ∃xk,
and ψ[x̄/ā] instead of ψ[x1/a1, . . . , xk/ak].

15

Universal, flattened, function-negative formulas Let φ be a first-order formula over
σ, which by standard manipulation we may assume to have all atomic formulas of one of the
following forms:

1. xi = xj for i, j ∈ {1, . . . , k},

2. R(xi1 , . . . , xirR) for R in σR and i1, . . . , irR ∈ {1, . . . , k},

3. F (xi1 , . . . , xirF) = xi0 for F in σF and i0, i1, . . . , irF ∈ {1, . . . , k}.

In other words we do not allow nested terms. This is no loss of generality since nested terms
can be flattened. To see this, note that ψ(t) is logically equivalent to both ∀z(t = z → ψ(z))

and ∃z(t = z ∧ ψ(z)). By repeatedly replacing ψ(t) by one of these formulas, we flatten the
formula. If we apply this transformation to an already flattened clause we end up with all
the atoms of the form F (x̄) = y occurring negatively. If all terms in φ are flattened, we call
it a flattened formula. If in addition atoms of the form F (x̄) = y occur only negatively, we
call it a flattened function-negative formula. We want our formulas to be conjunctions of
formulas of the form

∀x1 · · · ∀xk∃y1 · · · ∃y`(C) (2.1)

where C is a clause with variables within x1, . . . , xk and y1, . . . , y`. We use the term standard-
ized universal-existential formula for flattened function-negative formulas of the form (2.1).
We use standardized universal formula when there are no existentially quantified variables.

Note finally that, by standard Skolemization, every first-order sentence can be brought
into a conjunction of standardized universal sentences while preserving the satisfiability at
each cardinality. Formally:

Fact 1. For every first-order sentence φ there is a conjunction of standardized universal
sentences φ′ that has the same spectrum; that is, for every finite or infinite cardinal κ the
sentence φ has a model of cardinality κ if and only if φ′ does.

Propositional encodings Let φ be a flattened sentence and let n ≥ 1 be a natural
number. We will define two propositional formulas 〈φ〉un and 〈φ〉bn. In both cases the satisfying
assigments of the propositional formula will be in one-to-one correspondence to the models
of φ with universe [n]. We start with 〈φ〉un (the u stands for unary). The variables are the
following:

1. Rā for each R ∈ σR and each ā ∈ [n]rR ,

16

2. Fā;a for each F ∈ σF , each ā ∈ [n]rF , and a ∈ [n].

These variables correspond in an obvious way to the ground first-order atoms of φ through
the translation 〈R(ā)〉n := Rā and 〈F (ā) = a〉n := Fā;a. First-order equality atoms a = b are
translated by their truth values.

Once the translation is defined for atoms it extends to arbitrary formulas through the
usual recurrence:

1. 〈¬ψ〉n := ¬〈ψ〉n,

2. 〈ψ ∧ θ〉n := 〈ψ〉n ∧ 〈θ〉n,

3. 〈ψ ∨ θ〉n := 〈ψ〉n ∨ 〈θ〉n,

4. 〈∀xψ〉n :=
∧
a∈[n]〈ψ[x/a]〉n,

5. 〈∃xψ〉n :=
∨
a∈[n]〈ψ[x/a]〉n.

Now, the translation 〈φ〉un is the conjunction of:

1. 〈φ〉n,

2. Fā;1 ∨ · · · ∨ Fā;n for each F ∈ σF and each ā ∈ [n]rF ,

3. Fā;b ∨ Fā;c for each F ∈ σF , and each ā ∈ [n]rF and b, c ∈ [n] with b 6= c.

In the particular case that φ is a conjunction of standardized sentences, φ1∧. . .∧φm, where
φi = ∀x̄i∃ȳi(Ci), the translation 〈φ〉un particularizes to a CNF-formula with the following
clauses:

1.
∨
b̄∈[n]`〈Ci[x̄/ā, ȳ/b̄]〉n for each i ∈ {1, . . . ,m} and each ā ∈ [n]k,

2. Fā;1 ∨ · · · ∨ Fā;n for each F ∈ σF and each ā ∈ [n]rF ,

3. Fā;b ∨ Fā;c for each F ∈ σF , and each ā ∈ [n]rF and b, c ∈ [n] with b 6= c.

Clauses of type 1 are calledmatrix clauses, clauses of type 2 are called long functional clauses,
and those of type 3 are called short functional clauses. Note that the size and the number
of variables of 〈φ〉un are bounded by a polynomial in n that depends only on φ.

Next we define 〈φ〉bn (the b stands for binary). The variables are:

1. Rā for each R ∈ σR and each ā ∈ [n]rR ,

2. Fā;b for each F ∈ σF , ā ∈ [n]rF and 0 ≤ b ≤ |n| − 1.

17

The Rā still have an obvious correspondence with the relational ground atoms. However,
the intended meaning of Fā;b is different. Its meaning is that the b-th less significant bit in
the binary encoding of F (ā) is 1. Thus, in this case the base cases of the translation are
〈R(ā)〉′n := Rā and

〈F (ā) = a〉′n :=
∧|n|−1
b=0 F

(bit(b,a))
ā;b .

The translation 〈φ〉bn is the conjunction of:

1. 〈φ〉′n,

2.
∨|n|−1
b=0 F

(1−bit(b,a))
ā;b for each F ∈ σF , ā ∈ [n]rF and a ∈ [2|n|] \ [n].

The second type of clauses forbid elements outside [n] from being in the range of F . Note
that the long and short functional clauses for F are morally implicit.

In the particular case that φ is a conjunction of standardized sentences, φ1∧. . .∧φm, where
φi = ∀x̄i∃ȳi(Ci), the translation 〈φ〉bn particularizes to a CNF-formula with the following
clauses:

1.
∨
b̄∈[n]`〈Ci[x̄/ā, ȳ/b̄]〉′n for each i ∈ {1, . . . ,m} and each ā ∈ [n]k,

2.
∨|n|−1
b=0 F

(1−bit(b,a))
ā;b for each F ∈ σF , ā ∈ [n]rF and a ∈ [2|n|] \ [n].

Note that these are clauses since if C is a ground clause in which all function atoms F (x̄) = y

appear negatively, the translation 〈C〉′n is still a clause, since we identify ¬
∧
i Fi with

∨
i ¬Fi.

2.5 Restrictions and decision trees

A restriction ρ is a partial assignment, i.e. a function mapping some atoms into {0, 1}. For
a formula F we let F � ρ denote the formula obtained from F by first replacing every atom
in the domain of ρ by its value under ρ and then eliminating constants: repeatedly replace
subformulas G∨1 by 1 and G∧1 by G; similarly for 0. Note that if the assignment ρ satisfies
a literal in clause C, then C � ρ = 1. If ρ falsifies a literal in a term T , then T � ρ = 0.

A decision tree is a finite, rooted, ordered tree whose inner vertices are labeled by atoms,
whose leafs are labeled by 0 or 1, and such that no atom occurs twice in a branch (i.e. a
path from the root to some leaf). Each inner vertex has two successors (i.e. immediate
successors on a branch). Since the tree is ordered we can distinguish between a left and a
right successor of an inner vertex. By a 0-branch (1-branch) we mean a branch leading to

18

a leaf labeled 0 (labeled 1). Every path π from the root to some vertex corresponds to the
following restriction that we also denote by π: if an atom occurs as a label of a vertex p in
the path π, then the restriction sets this atom to 0 if the left successor of p is in π and to
1 if the right successor of p is in π; if π contains no successor of p, then the restriction does
not evaluate the atom.

A decision tree T (strongly) represents F if F � π ≡ b (resp. F � π = b) for every
b ∈ {0, 1} and every b-branch π of T . Here, ≡ denotes logical equivalence of formulas. We
say F evaluates to b under π if F � π ≡ b. Note that x ∨ ¬x � ∅ ≡ 1 but x ∨ ¬x � ∅ 6= 1.
Also, observe that if T represents F and F ≡ G, then T also represents G. The minimal
height of a decision tree that represents F is denoted h(F).

A decision tree T represents a formula F if F � π ≡ b for every b ∈ {0, 1} and every b-
branch π of T . Here, ≡ denotes logical equivalence of formulas. Observe that if T represents
F and F ≡ G, then T also represents G. The minimal height of a decision tree that represents
F is denoted h(F).

Remark 1. The more common definition of representation is stronger than the notion used
here in that one demands F � π = b for every b-branch π. The choice of the notion of
representation is a subtle point; our use of it in the arguments relies on the choice we did,
while e.g. some arguments in [50] rely on the stronger notion. �

The following lemma is easy to verify.

Lemma 1. Let F and G be formulas and let TF and TG be decision trees of height sF and sG
that represent F and G, respectively. Then there exists a decision tree T of height at most
sF + sG that represents (F ∧ G) and such that every 0-branch of T extends some 0-branch
of TF or some 0-branch of TG.

Of course, saying that a 0-branch of T extends some 0-branch of TF means that this
holds for the corresponding restrictions.

2.6 Auxiliary lemmas

This section contains some auxiliary lemmas that will be used throughout the thesis.

2.6.1 Completeness, tree-likeness and deduction

The first proof is the following quantitative version of completeness:

19

Lemma 2. Let s and n be naturals such that s ≥ n ≥ 1 and let Γ ∪ {F} be a set of
propositional formulas each of size at most s and mentioning n variables in total. If Γ |= F ,
then F has a proof from Γ of size at most 27 · s2 · 2n. Moreover, the proof is a k-DNF proof
if each formula in Γ ∪ {F} is a k-DNF.

Proof. Fix a set of n variables. For an assignment α to these variables let Cα be the dis-
junction of all literals falsified by α. Let G be a formula in the fixed variables and α an
assignment. We claim that there is a cut-free proof of G ∨ Cα or ¬G ∨ Cα depending on
whether α |= G or not, with at most 4|G| inferences. This can be verified by a straightfor-
ward induction on G: e.g. assume that G = H1 ∧H2 and that the claim holds for H1 and
H2. If α 6|= G choose i ∈ {1, 2} such that α 6|= Hi. Then there is a proof as desired for
¬Hi ∨ Cα; weakening and a structural inference gives ¬G ∨ Cα. If otherwise α |= G, then
there are proofs as desired of H1 ∨ Cα and H2 ∨ Cα. From these derive ¬G ∨ Cα in 4 steps
by an application of (IOC) and structural inferences on premisses and conclusion to bring
the formulas into the right form. The case G = H1 ∨H2 is dual.

Now assume Γ |= F . For all assignments α that satisfy all G ∈ Γ, and hence F , prove
F ∨ Cα. For all assignments α that falsify some G ∈ Γ, prove F ∨ Cα from Γ by deriving
¬G ∨ Cα, cutting on G after a structural inference, and finally adding F by (WKG) and
a structural inference. In both cases these are at most 4(s + 1) many inferences. Take a
resolution refutation of the set of clauses Cα, where α ranges over all assignments, with∑n−1

i=0 2i < 2n applications of (CUT). Adding F to all formulas occurring in this refutation
gives a proof of F from the already derived F ∨ Cα.

To make it a k-DNF-proof when all formulas in Γ ∪ {F} are k-DNFs argue as follows.
In the preceeding paragraph, instead of deriving ¬G ∨ Cα, derive C ∨ Cα in 4|C| steps for
every clause C of ¬G. Let m be the number of such clauses. If m = 1 we continue as before.
Assume then that m > 1. With a structural inference, write G associated to the left, and
successively cut all terms with the C ∨ Cα (brought into the right form with a structural
inference). These are 2m+ 1 inferences to get Cα, hence 2m+ 3 ≤ 4m (as m > 1) inferences
to get F ∨Cα. So this formula is derived with at most

∑
C 4|C|+ 4m = 4(|G|+ 1) inferences

where C ranges over the clauses of ¬G.
In total, the proof has at most 2n · 4(s+ 1) + 2n many inferences, and all formulas have

size at most 3s: note |Cα| = n+ (n− 1) and |G∨Cα| ≤ s+ 2n. This implies the lemma.

The following clarifies the relationship between the tree-like and the dag-like versions. It
goes back to [33] and appears in the form stated here in [26, Theorem 16].

20

Theorem 1. Let Γ be a set of clauses. If Γ `sk,∗ �, then Γ `2s
1 �.

The next lemma states the Deduction Theorem for R(k):

Lemma 3. Let Γ ∪ {F} be a set of k-DNFs and let C1, . . . , Cn be clauses with at most k
literals each. If Γ, C1, . . . , Cn `sk F , then Γ `s′k ¬C1 ∨ · · · ∨ ¬Cn ∨F for s′ = O(s ·

∑n
i=1 |Ci|).

Proof. Let Γ = {F1, . . . , Fm}, assume Γ, C1, . . . , Cn `sk F , and let Π be the proof witnessing
it. Let H := ¬C1 ∨ · · · ∨ ¬Cn. Add H to every formula in the proof to get a proof of H ∨ F
from axioms Fi∨H and Ci∨H. Observe that Fi∨H can be obtained from Fi by weakening
and H ∨ Ci is a weakening of an axiom Ci ∨ ¬Ci.

2.6.2 Distributivity lemmas

In this section we show that we can replace small formulas for variables in proofs and
distribute out to obtain either CNFs or DNFs as lines of the proof.

LetD be the distributivity operator on propositional formulas that recursively distributes
conjunctions over disjunctions. In other words, the operator converts an arbitrary propo-
sitional formula into a DNF by the naive method. The operator is defined inductively by
cases on the outermost connective of the formula. Formally:

1. If A is a literal or a conjunction of literals, then D(A) := A,

2. If A =
∨r
i=1 Ai where each Ai is not a disjunction, then D(A) :=

∨r
i=1D(Ai),

3. If A =
∧r
i=1

∨si
j=1Ai,j where each Ai,j is not a disjunction, then

D(A) :=

s1∨
j1=1

· · ·
sr∨
jr=1

D

(
r∧
i=1

Ai,ji

)
.

Lemma 4 (Distributivity). Let Γ∪{F} be a set of k-DNFs. For every variable x, let Gx and
Hx be equivalent t-term-c-DNF and t-clause-c-CNF formulas, respectively, with v variables.
For every formula A let A′ be the result of replacing each positive occurrence of a variable x
by Gx and each negative occurrence of a variable x by Hx. If Γ `sk F , then D(Γ′) `s′k′ D(F ′)

where s′ = O(s(kctk)2 2kv) and k′ = kc.

Proof. We may assume that the given proof applies AXM only to atoms since every axiom
A ∨ A has a short derivation from its underlying atom-axioms. It suffices to show that,

21

whenever C is derived from A and B by a single R(k)-rule, there is a short R(k′)-proof of
D(C ′) from D(A′) and D(B′). We distinguish by cases on the type of rule.

(AXM): We want a proof of D(x′∨x′), which is Gx∨Hx. Since Gx and Hx are equivalent,
this is a tautology, and by completeness it has a proof. Since it is a c-DNF of size at most
ct on at most v variables, by Lemma 2 the proof is in R(c) and has size at most O((ct)2 2v)

times larger than the size of x ∨ x.
(WKG): Suppose A∨B is derived from A by weakening. From D(A′) we derive D(A′)∨

D(B′) = D(A′ ∨B′) in one weakening step. The derived formula is a kc-DNF and its size is
at most kctk times larger than the size of A ∨B.

(CUT): Suppose A∨B is derived through the cut rule on A∨T and B ∨T , where T is a
term of at most k literals.We want to obtain D(A′∨B′) from D(A′∨T ′) and D(A′∨T ′). To
that end it suffices to derive the empty clause from D(T ′) and D(T

′
), which are contradictory

since Gx and Hx are equivalent. By completeness, such a refutation exists. Since both are
kc-DNFs of size at most kctk on at most kv variables, by Lemma 2 the refutation is in R(kc)

and has size O((kctk)2 2kv). Overall the corresponding proof of D(A′ ∨B′) is also this many
times larger than the size of A ∨B.

(IOC): Suppose A ∨ B ∨ (S ∧ T) is derived by introduction of conjunction from A ∨ S
and B ∨ T , where S ∧ T has at most k literals. We want to derive D(A′ ∨ B′ ∨ (S ∧ T)′)

from D(A′ ∨ S ′) and D(B′ ∨ T ′). To that end, it suffices to derive D((S ∧ T)′) from D(S ′)

and D(T ′), which can be done by completeness. These formulas are kc-DNFs of size at most
kctk on at most kv variables. Therefore, by Lemma 2, the proof is in R(kc) and has size
O((kctk)2 2kv). Overall the corresponding proof of D(A′ ∨ B′ ∨ (S ∧ T)′) is also this many
times larger than the size of A ∨B ∨ (S ∧ T).

To complete the proof, note that each simulation step is a proof in R(kc) and that its
size is at most O((kctk)2 2kv) times larger than the corresponding formula in the original
proof.

Similarly, we introduce a distributivity operator C, which distributes disjunctions over
conjunctions. The operator defined inductively by cases on the outermost connective of the
formula. Formally:

1. If A is a literal or a disjunction of literals, then C(A) := A,

2. If A =
∧r
i=1 Ai where each Ai is not a conjunction, then C(A) :=

∧r
i=1C(Ai),

22

3. If A =
∨r
i=1

∧si
j=1 Ai,j where each Ai,j is not a conjunction, then

C(A) :=

s1∧
j1=1

· · ·
sr∧
jr=1

C

(
r∨
i=1

Ai,ji

)
.

Note that, in 3, if there exists an integer s such that si = s for every i ∈ [r], then C(A) can
also be written as

C(A) :=
∧
f∈F

C

(
r∨
i=1

Ai,f(i)

)
.

where F = {f | f : [r] → [s]}. Depending on the context, we identify C(A) either as a
conjunction of clauses or a set of clauses.

We show that, given a resolution-refutation, we can substitute a variable by a depth-2
formula, and still obtain a refutation of the substituted formula thanks to the C-operator.

Lemma 5 (C-Distributivity). Let Γ be a set of clauses. For every variable x, let Gx and Hx

be equivalent t-term-c-DNF and t-clause-c-CNF formulas respectively, both with v variables.
For every formula A let A′ be the result of replacing each positive occurrence of a variable
x by Gx and each negative occurrence of a variable x by Hx. If Γ `s,w1 2, then C(Γ′) `s′1 2

where s′ = O(s2vwtctw).

Proof. Note that we can assume that the given refutation A1, A2, . . . ,2 uses only cuts. For
this proof only, let a resolution-proof of C(A′i) from C(Γ′) be a sequence of clauses, such that
every clause is either in C(Γ′) or is the result of applying a resolution-rule to the previous
clauses, and such that all clauses in C(A′i) occur in the sequence.

Now, we prove by induction on i that there is a resolution-proof of C(A′1, . . . , C(A′i) from
C(Γ′). If Ai is a clause of Γ, then C(A′i) ⊆ C(Γ′) and we are done. Otherwise, Ai is obtained
by a cut on Aj and Ak with 1 ≤ j, k < i. Let Aj = A ∨ x and let Ak = B ∨ x, so that x is
the cut variable. Then, by induction hypothesis, the clauses of C((A ∨ x)′) and C((B ∨ x)′)

are already in the sequence, and we want to obtain a proof of the clauses of C((A ∨ B)′).
Before showing how to do so, it will be useful to prove the following claim.

Claim 1. Let F , G be clauses. Then, C((F ∨G)′) = C(C(F ′) ∨ C(G′)).

Proof. Note that F ′ ∨G′ is of the form

F ′ ∨G′ =
∨

i∈[wF]

∨
j∈[t]

∧
k∈[c]

`i,j,k ∨
∨

i′∈[wG]

∨
j′∈[t]

∧
k′∈[c]

`i′,j′,k′

23

where wF and wG is the width of clauses F and G respectively. Then,

C(F ′ ∨G′) =
∧

fF∈FF

∧
fG∈FG

 ∨
i′∈[wG]

∨
j′∈[t]

`i,j,fF (i,j) ∨
∨

i∈[wF]

∨
j∈[t]

`i′,j′,fG(i′,j′)


where FF = {f | f : [wF]× [t]→ [c]} and the same for FG. Also, note that

C(F ′) =
∧

fF∈FF

∨
i∈[wF]

∨
j∈[t]

`i,j,fF (i,j)

and the same for C(G′). Therefore,

C((F ∨G)′) = C(F ′ ∨G′)

=
∧

fF∈FF

∧
fG∈FG

 ∨
i′∈[wG]

∨
j′∈[t]

`i,j,fF (i,j) ∨
∨

i∈[wF]

∨
j∈[t]

`i′,j′,fG(i′,j′)


= C

 ∧
fF∈FF

∨
i∈[wF]

∨
j∈[t]

`i,j,fF (i,j)

 ∨
 ∧
fG∈FG

∨
i′∈[wG]

∨
j′∈[t]

`i′,j′,fG(i′,j′)


= C (C(F ′) ∨ C(G′))

Now, we show how to obtain the clauses of C((A ∨ B)′) from the clauses of C((A ∨ x)′)

and the clauses of C((B ∨ x)′). By Claim 1, this is the same as obtaining the clauses of
C(C(A′) ∨ C(B′)) from the clauses of C(C(A′) ∨ C(x′)) and the clauses C(C(B′) ∨ C(x′)).

Let D be an arbitrary clause of C(C(A′) ∨C(B′)). Note that D is of the form DA ∨DB

where DA is a clause of C(A′) and DB is a clause of C(B′). We show that D can be obtained
from the clauses of C(DA ∨ C(x′)) and the clauses of C(DB ∨ C(x′)), which occur in the
sequence since C(DA ∨C(x′)) ⊆ C(C(A′)∨C(x′)) and C(DB ∨C(x′)) ⊆ C(C(B′)∨C(x′)).
Each clause of C(DA ∨C(x′)) is a disjunction of a clause of C(x′) with DA and the same for
DB and C(x′). Therefore, it is enough to show that the empty clause can be derived from
C(x′) and C(x′).

Since C(x′) and C(x′) are contradictory, by completeness of resolution, there is a resolu-
tion refutation of size O(2v). This size is O(2vwt) when we add a disjunction with DA and
DB appropriately to the initial clauses of this refutation. The size of the whole step will be
the size of the proof of each clause D times the number of clauses we need to obtain, this is

24

O(2vwtctw). Finally, the produced refutation will have this size for every step of the original
one, this is O(s2vwtctw).

2.6.3 Proof translations

Applying the D-distributivity lemma, we show how to translate refutations of the unary
encoding to the binary encoding. To do so, we need the following claim.

Claim 2. Let x1, . . . xn be variables. The formula

φ(n) :=
∨

S∈P([n])

∧
i∈S

xi ∧
∧

j∈[n]\S

xj

 (2.2)

has a tree-like R(n) proof of size polynomial in n · 2n.

Proof. We prove the claim by induction on n. Note that φ(1) is exactly the axiom x1 ∨ x1.
If n > 1, by induction hypothesis we have a tree-like R(n − 1) proof of the (n − 1)-DNF
formula φ(n−1) and we want to obtain a R(n) proof of the n-DNF formula φ(n). The terms
of φ(n) are precisely the terms of φ(n− 1) conjuncted with either xn or xn. Let φ0(n) be the
n-DNF with the terms of φ(n) that contain xn and let φ1(n) be the one with the terms of
φ(n) that contain xn. Note that φ(n) = φ0(n)∨ φ1(n). Then, the proof of φ(n) is as follows:
first, repeatedly apply introduction of conjunction to φ(n− 1) and the axiom xn ∨ xn on xn
to obtain φ0(n)∨ xn. Second, do the same with a different copy of φ(n− 1), this time on xn
to obtain φ1(n) ∨ xn. Finally, cut those two on xn to obtain φ0(n) ∨ φ1(n) = φ(n).

The obtained proof is obviously R(n) and it is also tree-like, since we used different copies
of φ(n − 1) for each of its occurrences. We show now that the size is polynomial in n · 2n.
Let sn be the size of the proof of φ(n). At every step, it uses two copies of the proof of
φ(n− 1). It also uses 2n−1 axioms and 2n−1 intermediate steps to obtain each of φ0(n) ∨ xn
and φ1(n) ∨ xn and finally performs a cut. This is:

sn = 2 · sn−1 + 4 · 2n−1 + 1 = 2n−1 + (n− 1) · 2n+1 + n− 1,

this is, size polynomial in n · 2n.

Now we are ready to prove the unary-to-binary translation lemma.

Lemma 6. Let φ be a standardized universal formula. For every n, if 〈φ〉un `s1,∗ 2, then
〈φ〉bn `s

′

logn,∗ 2 for s′ polynomial in s and n.

25

Proof. For a formula G let G′ be obtained by replacing every atom Fā;a by
∧|n|−1
b=0 F

(bit(b,a))
ā;b .

It suffices to show how to prove from the clauses of 〈φ〉bn, the |n|-DNF’s of the primed axioms
of 〈φ〉un. The matrix clauses of 〈φ〉bn are exactly the primed matrix clauses of 〈φ〉un. We show
how to derive the primed functional clauses of 〈φ〉un.

The primed long functional clauses of 〈φ〉un read
∨
a∈[n]

∧|n|−1
b=0 F

(bit(b,a))
ā;b for F ∈ σ and

ā ∈ [n]rF . If n is a power of 2, note that this has the form of (2.2) with log n variables.
Therefore, by Claim 2, there is a tree-like R(log n)-proof of it of size polynomial in n. If n is
not a power of 2, then first give a proof of the formula for 2|n| and then obtain the formula
for n by cuts with the axioms

∨|n|−1
b=0 F

1−bit(b,a)
ā;b for a ∈ [2|n|] \ [n]. Note that this proof is also

tree-like R(log).
Primed short functional clauses of 〈φ〉un read

∨|n|−1
b=0

(
F

(1−bit(b,a))
ā;b ∨F (1−bit(b,a′))

ā;b

)
for F ∈ σ,

ā ∈ [n]rF and a, a′ ∈ [n] with a 6= a′. But such a formula is a weakening of an axiom since
the binary representations of a and a′ differ in some bit.

Remark 2. Note that the proof of the substitution instances of the long functional clauses is
tree-like R(log). �

It will turn out to be useful to have also the opposite result, a translation from refutations
of the binary encoding to refutations of the unary encoding. We show the following:

Lemma 7. Let k ≥ 1 and φ be a standardized universal formula. For every n, if 〈φ〉bn `sk 2,
then 〈φ〉un `s

′

k 2 for s′ polynomial in s and n.

Proof. We show how to transform a refutation of 〈φ〉bn into a refutation of 〈φ〉un. We define
an operator Q on terms. Consider a term T of the form

T =
∧

(F,ā)∈D

 ∧
b∈B0(F,ā)

Fā,b ∧
∧

b∈B1(F,ā)

Fā,b

 ∧R (2.3)

where D ⊆ {(F, ā) | F ∈ σF ∧ ā ∈ [n]rF } and B0(F, ā), B1(F, ā) are disjoint subsets of [n]

for every (F, ā) ∈ D and R is a term only containing relational atoms. Then we define

Q(T) :=
∨
g∈G

∧
(F,ā)∈D

Fā,g(F,ā) ∧R. (2.4)

where G = {g : D → [n] | ∀(F, ā) ∈ D ∀x ∈ {0, 1} ∀b ∈ Bx(F, ā) bit(b, g(F, ā)) = x}. To
extend the operator Q to DNF formulas, let ψ be a DNF of the form

∨
i∈I Ti where each Ti

26

is a term. We set Q(ψ) :=
∨
i∈I Q(Ti). We claim that applying Q on each of the lines of the

refutation of 〈φ〉bn we can obtain a refutation of 〈φ〉un by adding of some intermediate steps.
First, let C be a matrix-clause of 〈φ〉bn. Note that C has the form

C =
∨

(F,ā)∈D

∨
a∈A(F,ā)

|n|−1∨
b=0

F
(1−bit(b,a))
ā,b ∨R,

where D ⊆ {(F, ā)|F ∈ σF ∧ ā ∈ [n]rF }, A(F, ā) ⊆ [n] and R is a clause on relational atoms.
Now,

Q(C) =
∨

(F,ā)∈D

∨
a∈A(F,ā)

∨
c∈[n]
c 6=a

Fā,c ∨R.

On the other hand, the corresponding clause in the unary encoding is of the form∨
(F,ā)∈D

∨
a∈A(F,ā)

Fā,a ∨R. (2.5)

To obtain Q(C) from the clauses of 〈φ〉un, we just cut (2.5) with the corresponding long
functional clauses of the unary encoding. Second, consider the clauses of 〈φ〉bn of the form

|n|−1∨
b=0

F
(1−bit(b,c))
ā,b

with F ∈ σF , ā ∈ [n]rF and c > n. The Q-transformation of these is∨
a∈[n]
a6=c

Fā,a

which is exactly the long functional clause of 〈φ〉un for F and ā, since c > n.
Next, let us look at the inference steps of the refutation of 〈φ〉bn one at a time. As usual,

we may assume that axioms are applied over atoms only. Axioms of the type Fā,b ∨ Fā,b,
after the Q-transformation, become of the form

∨
a∈[n] Fā,a, that is, instances of the long

functional clauses of 〈φ〉un. Formulas obtained by weakening are identically obtained in the
refutation of 〈φ〉un, since Q(A ∨B) = Q(A) ∨Q(B).

Suppose now that A ∨B is obtained from a cut between A ∨ T and B ∨ T , where T is a
term of at most k literals. It would suffice to derive 2 from Q(T) and Q(T). We know T is

27

of the form (2.3) and therefore its negation will be of the form,

T =
∨

(F,ā)∈D

 ∨
b∈B0(F,ā)

Fā,b ∨
∨

b∈B1(F,ā)

Fā,b

 ∨R.
Then, its Q-transformation is

Q(T) =
∨

(F,ā)∈D

 ∨
b∈B0(F,ā)

∨
a∈N1

b

Fā,a ∨
∨

b∈B1(F,ā)

∨
a∈N0

b

Fā,a

 ∨R,
where Nx

b = {a | bit(b, a) = x}. Note that this last formula is the same as∨
(F,ā)∈D

∨
a∈N(F,ā)

Fā,a ∨R (2.6)

where N(F, ā) = {a | ∃x ∈ {0, 1} ∃b ∈ Bx(F, ā) bit(b, a) = 1− x}.

Let g ∈ G. Then, g(F, ā) /∈ N(F, ā) and therefore 〈φ〉un contains the short functional
clause Fā,g(F,ā) ∨ Fā,a for every a ∈ N(F, ā). Repeatedly cutting these clauses with (2.6)
yields ∨

(F,ā)∈D

Fā,g(F,ā) ∨R.

We can cut these clauses with (2.4) to obtain the empty clause.

Suppose now that A∨B∨(S∧T) is obtained from an introduction of conjunction between
A∨ S and B ∨ T . In this case, it suffices to show that Q(S ∧ T) can be obtained from Q(S)

and Q(T). Recall the that both S and T are of the form (2.3) and that

Q(S) =
∨
g∈GS

∧
(F,ā)∈DS

Fā,g(F,ā) ∧RS, (2.7)

where DS ⊆ {(F, ā) | F ∈ σF ∧ ā ∈ [n]rF } and GS = {g : DS → [n] | ∀(F, ā) ∈ DS ∀x ∈
{0, 1} ∀b ∈ Bx

S(F, ā) bit(b, g(F, ā)) = x}, and analogously for Q(T). From this, we want to
obtain

Q(S ∧ T) =
∨
g∈G

∧
(F,ā)∈D

Fā,g(F,ā) ∧R, (2.8)

28

where G = {g : D → [n] | ∀(F, ā) ∈ D ∀x ∈ {0, 1} ∀b ∈ Bx(F, ā) bit(b, g(F, ā)) = x} with
D = DS ∪DT and Bx(F, ā) = Bx

S(F, ā) ∪ Bx
T (F, ā) for every (F, ā) ∈ D, and R = RS ∧ RT .

To obtain (2.8) we need some steps. First, we would like to obtain

∨
g∈GS

∨
g′∈GT

 ∧
(F,ā)∈DS

Fā,g(F,ā) ∧
∧

(F ′,ā′)∈DT

F ′ā′,g′(F ′,ā′) ∧RS ∧RT

 . (2.9)

Note that Q(S) and Q(T) are of the form
∨
i∈I Si and

∨
j∈J Tj respectively, where Si and Tj

are terms, and that we want to obtain
∨
i∈I
∨
j∈J(Si∧Tj). To do so, we proceed the following

way: take
∨
i∈I Si and introduce conjunction repeatedly with the axiom Tj ∨ Tj to obtain∨

i∈I(Si ∧ Tj) ∨ Tj for every j ∈ J . Successive cuts of these with
∨
j∈J Tj yield (2.9).

Note now that the terms of (2.8) are exactly the terms of (2.9) such that g and g′ are
consistent for every (F, ā) ∈ D. Therefore, to obtain (2.8) we only need to get rid of those
terms that contain Fā,g(F,ā) and Fā,g′(F,ā) with g(F, ā) 6= g′(F, ā). But each of this terms is
the negation of a weakening of a short functional clause Fā,g(F,ā) ∨ Fā,g′(F,ā). Cutting (2.9)
with those gives us (2.8).

It is left to the reader to check that the refutation constructed is polynomial in the size
of the original one and n, and that the terms of the constructed refutation are never larger
than those of the original one.

29

30

Chapter 3

Bounded tree-width QBFs and
Q-resolution

In this chapter we show that the TQBF problem is PSPACE-complete even when restricted
to input formulas whose constraint graph is of bounded tree-width. Later, we introduce
the Q-resolution proof system and note lower bounds on this system implied by our result.
Finally, we introduce the concept of bounded respectful tree-width as a particular case of
bounded tree-width and show an upper bound in this case.

3.1 Tree-width and path-width

Let φ be a CNF-formula with variables X1, . . . , Xn and clauses C1, . . . , Cm. The constraint
graph of φ has one vertex for every variable of φ and two variables are connected by an edge
if and only if there is a clause which contains them both. We identify the variables of a
formula with the vertices of its constraint graph.

For a given a graph G = (V,E), a tree decomposition of G is a pair (T, L), where T is a
tree and L is a function L : V (T)→ P(V), that satisfies the following properties:

1.
⋃
t∈V (T) L(t) = V ,

2. for every (u, v) ∈ E, there is a t ∈ V (T) such that u, v ∈ L(t),

3. for every v ∈ V , the subgraph of T induced by {t ∈ V (T) | v ∈ L(t)} is a connected
subtree.

For later convenience we assume that T is a rooted tree. Note that a graph has multiple
tree-decompositions.

31

Given a tree-decomposition, its width is defined as

max
t∈V (T)

L(t)− 1.

The tree-width of a graph is the minimum among the widths of its tree-decompositions.
The tree-width of a formula is defined as the tree-width of its constraint graph.

Claim 3. Let G be a graph and let (T, L) be a tree-decomposition of G. Then, for every
S ⊆ V (G) that induces a clique, there is a t ∈ V (T) such that S ⊆ L(t).

A path decomposition of a graph G is a tree-decomposition (T, L) such that T is a path.
The path-width of a graph is the minimum among the widths of its path decompositions.

3.2 Quantified boolean formulas

A Quantified boolean formula (QBF) is a formula of the form

φ = Q1x1 . . . Qqxq(φ
′) (3.1)

where x1, . . . , xq are propositional variables, the matrix φ′ is a CNF-formula and Qi is either
∀ or ∃ for every i ∈ [q]. The size of a QBF as in (3.1) is defined as the size of its matrix φ′.
The tree-width (path-width) of a QBF is the tree-width (path-width) of its matrix. We say
that Q1x1 . . . Qqxq is the prefix of φ.

3.3 Leveled formulas

In this section we state and prove the main lemma. This lemma is a reduction from n-leveled
QBFs to O(log n)-leveled QBFs, which is progress in our iterative argument. Before stating
the lemma, we formalize the concept of leveled-QBF.

For the rest of the chapter, think of a clause as a sequence of literals, and of a CNF-
formula as a sequence of clauses. Then, for a CNF-formula φ, we can write `1(φ), . . . , `s(φ)

for the s literals of φ in the left-to-right order in which they appear in φ. Note that this
sequence can contain repeated literals. For example, in

φ = ((x1, x2), (x2, x3, x4), (x4))

we have `4(φ) = x3. When φ is clear from the context we write `i instead of `i(φ).

32

3.3.1 Definition of leveled QBF

Let n be a positive integer. An n-leveled CNF-formula is a CNF-formula φ in which its
sequence of clauses is partitioned into blocks B1, . . . , B`, where each block is a consecutive
subsequence of clauses of φ, and its set of variables is partitioned into the same number
of groups G1, . . . , G`, each containing at most n variables, and such that for every j ∈
{1, . . . , `− 1} we have that every clause C in Bj has all its variables in Gj ∪Gj+1, and every
clause C in B` has all its variables in G`. An n-leveled QBF is a quantified Boolean formula
whose matrix is an n-leveled CNF-formula.

Observe that every QBF with n variables is an n-leveled QBF: put all clauses in a single
block and all variables in a single group. However, when the sizes of the groups are limited,
we get a nice structure:

Lemma 8. Let n be a positive integer. Every n-leveled QBF has path-width at most 2n− 1.

Proof. Let φ be an n-leveled QBF with groups G1, . . . , G`. Define (T, L) as the path decom-
position of the matrix of φ where T is a path on vertices t1, . . . , t`, and L(ti) := Gi ∪ Gi+1

for i ∈ {1, . . . , ` − 1} and L(t`) := G`. Since each Gi has cardinality at most n, the claim
follows.

Now, we can formalize the statement of the main lemma.

Lemma 9. There exist c, d ≥ 1 and a polynomial-time algorithm that, for every n, s ≥ 1,
given an n-leveled QBF φ of size s, computes a c · |n|-leveled QBF ψ of size d · s · |n| such
that φ↔ ψ.

We devote the rest of the section to the proof of this lemma. In order to improve the
readability of Boolean formulas, we use + for disjunction and · for conjunction.

3.3.2 Definition of θ

Let φ be a n-leveled QBF as in (3.1) whose matrix φ′ is an n-leveled CNF-formula of size s
with groups G1, . . . , G` and blocks B1, . . . , B`. As a first step towards building ψ we define
an intermediate formula θ. The formula θ contains variables τ1, . . . , τs, one for each literal
in φ′, and is defined as

θ := Q1τ 1 · · ·Qqτ q(ncons∀ + (cons∃ · sat))

where

33

1. each τ j, for j ∈ {1, . . . , q}, is the tuple of τ -variables corresponding to all the occur-
rences of the variable xj in φ′,

2. consQ, for Q ∈ {∀,∃}, is a QBF to be defined later that is satisfied by an assignment
to τ1, . . . , τs if and only if all the variables from the same τ j with Qj = Q are given
the same truth value,

3. nconsQ for Q ∈ {∀,∃} is a QBF that is equivalent to the negation of consQ,

4. sat is a QBF to be defined later that is satisfied by an assignment to τ1, . . . , τs if and
only if every clause of φ′ contains at least one literal `k = x(a) such that τk is given
value a.

This information about the constituents of θ is enough to prove the following claim.

Claim 4. φ↔ θ

Proof. We need to prove both implications. In both cases we use a game in which two
players, the existential player and the universal player, take rounds following the order of
quantification of the formula to choose values for the variables quantified their way. The aim
of the existential player is to show that the matrix of the formula can be made true while
the aim of the universal player is to show him wrong.

In the following, for j ∈ {1, . . . , q}, we say that an assignment to the variables of τ j is
consistent if they are given the same truth value, say a ∈ {0, 1}. In case the assignment is
consistent, we say that a is the corresponding assignment for the variable xj. Conversely, if a
is an assignment to the variable xj, the corresponding consistent assignment for the tuple τ j
is the assignment that sets each variable in τ j to a. If an assignment to τ j is not consistent
we call it inconsistent.

(→): Assume φ is true and let α be a winning strategy for the existential player in φ.
We build another strategy β that guarantees him a win in θ. The construction of β will be
based on the observation that, in the course of the game on θ, if the assignment given by the
universal player to some τ j with Qj = ∀ is inconsistent, then ncons∀ is true irrespective
of all other variables, and hence the matrix of θ is true. With this observation in hand,
the strategy β is defined as follows: at round j with Qj = ∃, if all τ 1, . . . , τ j−1 have been
given consistent assignments up to this point and a1, . . . , aj−1 ∈ {0, 1} are the corresponding
assignments to the variables x1, . . . , xj−1, let aj be the assignment given to xj by the strategy
α in this position of the game on φ, and let the existential player assign value aj to every

34

variable in τ j. If on the other hand some τ k with k < j has been given an inconsistent
assignment, let the existential player assign an arbitrary value (say 0) to every variable in
τ j. Using the observation above and the assumption that α is a winning strategy, it is not
hard to see that β is a winning strategy.

(←): Assume θ is true and let β be a winning strategy for the existential player in θ.
We build a strategy α for the existential player in φ. In this case the construction of α will
be based on the observation that, in the course of the game on θ, as long as the universal
player assigns consistent values to every τ j with Qj = ∀, the assignment given by β to each
new τ j with Qj = ∃ must be consistent. To see this note that, if not, the universal player
would have the option of staying consistent all the way until the end of the game in which
case both ncons∀ and cons∃ would become false, thus making the matrix of θ false. With
this observation in hand, the strategy α is defined as follows: at round j with Qj = ∃, let
a1, . . . , aj−1 ∈ {0, 1} be the assignment given to x1, . . . , xj−1 up to this point, let a1, . . . , aj−1

be the corresponding consistent assignments for τ 1, . . . , τ j−1, and let aj be the assignment
given by β to τ j in this position of the game on θ. By the observation above, since each ak

with k < j and Qk = ∀ is consistent by definition and each ak with k < j and Qj = ∃ has
been assigned according to the strategy β, the assignment aj must also be consistent. Thus
the existential player can set xj to its corresponding value aj and continue with the game.

We need to show that α is a winning strategy for the existential player on φ. First, if the
existential player plays according to α, then the final assignment a1, . . . , aq that is reached
in the game on φ is such that the corresponding assignment a1, . . . , aq in the game on ψ

satisfies the matrix of θ. Since each aj is consistent this means that sat must be made true
by a1, . . . , aq, thus the matrix of φ is made true by a1, . . . , aq. This shows that the existential
player wins.

Now, we show how to construct the QBF-formulas sat, cons∃ and ncons∀. These
formulas have the τ -variables as free variables and a new set of quantified variables for each
literal in φ′. Recall that the τ -variables assign a truth value to each variable-ocurrence in φ′.
The formula sat will verify that these assignments satisfy all clauses of φ′, the formula cons∃
will verify that each existentially quantified variable is assigned consistently, and the formula
ncons∀ will verify that at least one universally quantified variable is assigned inconsistently.

35

3.3.3 Definition of sat

For every i ∈ {1, . . . , s+1}, we have variables µi and νi. By scanning its literals left-to-right,
the formula checks that every clause of φ′ contains at least one literal `k = x(a) such that τk
is given value a. To do so, µi and νi indicate the status of this process when exactly i − 1

literals have been scanned. The intended meaning of the variables is the following:

• µi = “just before scanning `i, the clauses already completely scanned are satisfied, and
the current clause is not satisfied yet”.

• νi = “just before scanning `i, the clauses already completely scanned are satisfied, and
the current clause is satisfied as well”.

Note that `s+1 is not a literal. Therefore, “just before scanning `s+1” means “just after
scanning the last literal” in this case. Also, variables µ1 and ν1 are initialized to true and
false, respectively. We want to make sure that at position i = s + 1, i.e. after scanning the
last literal, µs+1 is true. Later, we will axiomatize the transition between positions i and
i + 1. That will define µi+1 and νi+1 depending on µi, νi and `i according to its intended
meaning. We will axiomatize this into the formula sat(i). Then, sat is defined as

sat := ∃µ∃ν

(
µ1 · ν1 ·

s∏
i=1

sat(i) · µs+1

)

where µ = (µ1, . . . , µs+1) and ν = (ν1, . . . , νs+1).
Next, we formalize sat(i). For every i ∈ {1, . . . , s}, let ai ∈ {0, 1} denote the sign of `i,

the i-th literal of φ′, and let ki ∈ {0, 1} be the predicate that indicates whether `i is the last
in literal its clause. Then, sat(i) is the conjunction of the following formulas:

µi+1 ↔ ki µi ai τi + ki µi ai τi + ki µi ai τi + ki µi ai τi + ki νi,

νi+1 ↔ ki µi ai τi + ki µi ai τi + ki νi.

In words, the axiomatization states that µi+1 holds in one of three cases: 1) if `i is the
last literal in its clause and the clause has been satisfied by a previous literal (kiνi), or 2) if
`i is the last literal in its clause, this clause is not yet satisfied by a previous literal, but the
truth assignment satisfies the current one (kiµiaiτi+kiµiaiτi), or 3) if `i is not the last literal
in its clause, this clause is not yet satisfied by a previous literal, and the truth assignment
does not satisfy the current one either (kiµiaiτi + kiµiaiτi).

36

In the case of ν, the axiomatization states that νi+1 holds in one of two cases: 1) if `i is
not the last literal in its clause and the clause has been satisfied by a previous literal (kiνi),
or 2) if `i is not the last literal in its clause, this clause is not yet satisfied by a previous
literal, but the truth assignment satisfies the current one (kiµiaiτi + kiµiaiτi). Note that if
`i is the last literal in its clause, then νi+1 is always false, as it refers to a clause that cannot
be satisfied yet.

Note that these two formulas can be written in CNF by writing↔ in terms of conjunctions
and disjunctions and by distributing disjunctions over conjunctions. We call i-link a clause
that contains variables only with indices i and i + 1. Observe for later use that all clauses
in the resulting CNF-formulas for sat(i) are i-links. Also, the size of sat written in CNF is
c · s for some constant c ≥ 1.

3.3.4 Definition of cons∃

The construction of cons∃ is a bit more complicated. It uses universally quantified variables
{π1, . . . , πs} as pointers to the literals of φ′, in one-to-one correspondance with {τ1, . . . , τs}.
We say that pointer πi points to literal `i. If x is the underlying variable of `i, we say that πi
points to x. Pointers that are set to true are called activated. We say that a pointer has been
scanned if its pointed literal has been scanned. The formula checks the following: whenever
exactly two pointers are activated and they point to occurrences of the same existentially
quantified variable, then the truth values assigned to the pointed literals are consistent. To
refer to a variable, we do not encode its identifier directly. Instead, we encode the parity of
its group and its index inside this group. This is enough information to distinguish between
different variables in the same or neighbouring blocks. This fact is key to our argument and
will be proved later in Claim 5. The point is that this compact encoding uses only |n|+1 bits
per occurrence, where n is the number of variables per group, which may be much smaller
than the total number of variables.

The formula uses the following variables for i ∈ {1, . . . , s+ 1}:

• ξi = “just before scanning `i, all the activated pointers already scanned point to an
existentially quantified variable”.

• σi,k = “just before scanning `i, exactly k activated pointers have been scanned”.

• χi,k = “just before scanning `i, exactly one activated pointer has been scanned and there
have been k changes of block between the pointed literal and position i, or exactly two

37

have been scanned and there have been exactly k changes of block between the pointed
literals”.

• ωi = “just before scanning `i, exactly one activated pointer has been scanned and the
parity of the group of the pointed variable is equal to the parity of the block of the
clause of the pointed literal, or exactly two have been scanned and the groups of the
pointed variables are the same”.

• κi = “just before scanning `i, exactly one activated pointer has been scanned and the
τ -variable at the pointed position is true, or exactly two have been scanned and the
truth values of the τ -variables at the pointed positions are the same”.

• λi,b = “just before scanning `i, exactly one activated pointer has been scanned and
the b-th bit of the index of the pointed variable in its group is 1, or exactly two have
been scanned and the b-th bit of the indices of the pointed variables in their respective
groups are the same”.

The variables at step i + 1 will be axiomatized in terms of the variables at step i and
`i in the formula cons∃(i). The formula cons∃ also requires a consistency condition for all
possible combinations of activated pointers. For a given combination of these pointers, the
consistency condition holds if: either there is a problem with the pointers (there are not
exactly two pointers activated or one is not pointing to an existentially quantified variable),
or the pointed variables are not comparable (are not of the same group or do not have the
same index in the group) or, they are comparable and both receive the same truth value.
This consistency condition will be encoded in the formula consacc

∃ . Also, the value of the
variables at position i = 1 will be encoded in the formula consini

∃ . Now,

cons∃ := ∀π∃ξ∃σ∃χ∃ω∃κ∃λ

(
consini

∃ ·
s∏
i=1

cons∃(i) · consacc
∃

)

where π = (πi | 1 ≤ i ≤ s), ξ = (ξi | 1 ≤ i ≤ s + 1), σ = (σi,k | 1 ≤ i ≤ s + 1, 0 ≤ k ≤ 2),
χ = (χi,k | 1 ≤ i ≤ s + 1, 0 ≤ k ≤ 1), ω = (ωi | 1 ≤ i ≤ s + 1), κ = (κi | 1 ≤ i ≤ s + 1) and
λ = (λi,b | 1 ≤ i ≤ s+ 1, 1 ≤ b ≤ |n|).

Next we axiomatize the introduced variables, but before that we need to introduce some
notation.

Let gi ∈ {1, . . . , `} be the group-number of the variable underlying literal `i, let ni ∈
{1, . . . , |Ggi |} be the index of this variable within Ggi , and recall ai ∈ {0, 1} denotes the sign

38

of `i. For every i ∈ {1, . . . , s}, let hi ∈ {0, 1} be the predicate that indicates whether the i-th
literal `i is the last in its block or not (recall that the blocks are subsequences of consecutive
clauses that partition the sequence of clauses), and recall that ki ∈ {0, 1} is the predicate
that indicates whether the i-th literal `i is the last in its clause or not. Next we encode the
quantification of φ in a way that the type of quantification of each variable can be recovered
from each of its occurrences: for every i ∈ {1, . . . , s}, let qi ∈ {0, 1} be the predicate that
indicates whether the variable that underlies the i-th literal `i is universally or existentially
quantified in φ.

Finally, observe that the definition of leveled formula implies that if bi ∈ {1, . . . , `} is
the number of the block that contains the clause to which the i-th literal belongs, then the
group-number gi is either bi or bi + 1 whenever 1 ≤ bi ≤ ` − 1, and is equal to ` if bi = `.
Accordingly, let ei ∈ {0, 1} be such that gi = bi − ei + 1 for every i ∈ {1, . . . , s}. In other
words, ei indicates whether the parities of gi and bi agree or not.

The following claim shows that, although the number ` of groups is in general unbounded,
a constant number of bits of information are enough to tell if the underlying variables of two
literals belong to the same group:

Claim 5. Let i, j be such that 1 ≤ i < j ≤ s. Then, the underlying variables of `i and `j
belong to the same group if and only if one of the following conditions holds:

1. ei = ej and bi = bj, or

2. ei = 0, ej = 1, and bi = bj − 1.

Proof. For the only if side, we have gi = gj. Then, bi − ei = bj − ej and also bi is either bj
or bj − 1. If bi = bj, then ei = ej. If bi = bj − 1, then necessarily ei = 0 and ej = 1.

For the if side, in the first case, gi = bi − ei + 1 = bj − ej + 1 = gj. In the second case,
gi = bi − ei + 1 = bj − 1 + 1 = bj − ej + 1 = gj. Therefore, gi = gj.

Using this claim, we axiomatize cons∃(i) as the conjunction of the following formulas on
the previously introduced variables:

ξi+1 ↔ ξi (πi + πi qi)

This is, ξi+1 holds only when the activated pointers already scanned point to existentially
quantified variables (ξi) and, either the pointer on position i is not activated (πi) or it is

39

activated and the underlying variable of `i is quantified existentially (πiqi).

σi+1,0 ↔ σi,0 πi

σi+1,1 ↔ σi,0 πi + σi,1 πi

σi+1,2 ↔ σi,1 πi + σi,2 πi

This is, σi+1,k holds in one of two cases: 1) if k activated pointers were already scanned and
the pointer to `i is not activated (σi,kπi), or 2) if k > 1, there were k − 1 activated pointers
scanned up to position i, and the pointer to `i is activated (σi,k−1πi). Note that, since the
consistency of the assigned truth values is checked for every pair of occurrences of a variable,
it makes no sense that more than two pointers are activated, and therefore, there is no need
to keep counting beyond two.

χi+1,0 ↔ σi,0 πi hi + σi,1 πi χi,0 hi + σi,1 πi χi,0 + σi,2 χi,0

χi+1,1 ↔ σi,0 πi hi + σi,1 πi χi,0 hi + σi,1 πi χi,1 hi + σi,1 πi χi,1 + σi,2 χi,1

This is, χi+1,0 holds in one of two cases: 1) if, including the current literal, exactly one
activated pointer has been scanned, no change of block has been found after the activated
pointer and `i is not the last literal of its block (σi,0πihi +σi,0πiχi,0hi), 2) or if, including the
current literal, exactly two activated pointer have been scanned, and no changes of block
have been found inbetween (σi,1πiχi,0 + σi,2χi,0).

Also, χi+1,1 holds in one of three cases: 1) if, including the current literal, exactly one
activated pointer has been scanned, no change of block had been found after the first acti-
vated pointer and `i is the last literal of its block (σi,0πihi + σi,0πiχi,0hi), or 2) if exactly one
activated pointer has been scanned, the current one is not activated, there has been exactly
one change of block since the first activated pointer, and `i is not the last literal of its block
(σi,0πiχi,1hi), or 3) if, including the current literal, exactly two activated pointers have been
scanned and exactly one change of block has been found between them (σi,1πiχi,1 + σi,2χi,1).

ωi+1 ↔ σi,0 πi ei + σi,1 πi ωi + σi,1 πi (χi,0 ωi ei + χi,0 ωi ei + χi,1 ωi ei) + σi,2 ωi

This is, ωi+1 holds in one of four cases: 1) if no activated pointer has been scanned yet, the
current one is activated and the parity of the group and the block of `i agree (σi,0πiei), or
2) if exactly one activated pointer has been scanned, the current one is not activated and ωi
holds, to propagate tha value of ωi (σi,1πiωi), or 3) if exactly one activated pointer has been

40

scanned, the current one is activated and the groups of the pointed variables are the same
(σi,1πi(χi,0ωiei + χi,0ωiei + χi,1ωiei)), or 4) if exactly two pointers have been scanned and ωi
holds, again to propagate the value of ωi in these conditions. Note that in 4) the groups of
the pointed variable are the same since the second of the pointed variables is either in the
same block as the first one, or the following.

κi+1 ↔ σi,0 πi τi + σi,1 πi κi + σi,1 πi κi τi + σi,1 πi κi τi + σi,2 κi

This is, κi+1 holds in one of four cases: 1) if no activated pointer has been scanned yet,
the current pointer is activated and `i has been assigned truth-value true, that is, we store
the truth value assigned to `i (σi,0πiτi), or 2) if exactly one activated pointer has been
scanned, the current pointer is not activated and κi holds, this is, we propagate the value of
κi (σi,1 πi κi), or 3) if exactly one activated pointer has been scanned, the current pointer is
activated and the value of κi agrees with the truth-value assigned to `i (σi,1πiκiτi+σi,1πiκiτi),
or 4) if exactly two activated pointers have been scanned and κi holds, that is again, we
propagate the value of κi (σi,2κi).

Let ni,b be the b-th bit of the binary encoding of ni. For all b ∈ {1, . . . , |n|},

λi+1,b ↔ σi,0 πi ni,b + σi,1 πi λi,b + σi,1 πi λi,b ni,b + σi,1 πi λi,b ni,b + σi,2 λi,b

This is, λi+1,b holds in one of four cases: 1) if no activated pointer has been scanned yet,
the current pointer is activated and the b-th bit of the binary encoding of ni is 1, that is,
we store the value of this bit (σi,0πini,b), or 2) if exactly one activated pointer has been
scanned, the current pointer is not activated and λi,b holds, this is, we propagate the value
of λi,b (σi,1 πi λi,b), or 3) if exactly one activated pointer has been scanned, the current
pointer is activated and the value of λi,b agrees with b-th bit of the binary encoding of ni
(σi,1πiλi,bni,b + σi,1πiλi,bni,b), or 4) if exactly two activated pointers have been scanned and
λi,b holds, that is again, we propagate the value of κi (σi,2λi,b). Note that the conjunction of
these variables for all bits check that the ni’s of the pointed variables are equal.

Also, we define consini
∃ as the conjunction of the following unit clauses:

ξ1, σ1,0, σ1,1, σ1,2, χ1,0, χ1,1, ω1, κ1, λ1,1, . . . , λ1,|n|.

Note that this inizialization is consistent with the intended meaning of the variables just
before scanning the first literal.

41

Furthermore, we define consacc
∃ as the following clause:

ξs+1 + σs+1,2 + ωs+1 +

|n|∑
b=1

λs+1,b + κs+1.

This is, after reading the last literal, if every activated pointer points to an existentially
quantified variable, and exactly two activated pointers have been scanned, and the two
pointed literals belong to the same group, and their ni inside the group is the same, then
their assigned truth-value is also the same.

Again, note that each of these formulas can be written in CNF just by writing ↔ in
terms of conjunctions and disjunctions and by distributing disjunctions over conjunctions,
and that the clauses in the resulting CNF-formulas for cons∃(i) are i-links: the (first) index
of the variables they contain is either i or i + 1. Also, the size of cons∃ written in CNF is
c · s · |n| for some constant c ≥ 1.

3.3.5 Definition of ncons∀

The formula ncons∀ is very similar to cons∃, since it verifies for universally quantified
variables exactly the opposite of what cons∃ verifies for existentially quantified variables.
For this reason, we proceed to its axiomatization directly.

The formula ncons∀ is defined as

ncons∀ := ∃π∃ξ∃σ∃χ∃ω∃κ∃λ

(
nconsini

∀ ·
s∏
i=1

ncons∀(i) · nconsacc
∀

)

where π, ξ, σ, χ, ω, κ, λ are defined as before, nconsini
∀ := consini

∃ , the formula ncons∀(i)

is axiomatized identically to cons∃(i) except by replacing every occurrence of qi by qi for
every i ∈ {1, . . . , s}, and the formula nconsacc

∀ is the negation of consacc
∃ , i.e. the following

set of unit clauses:

ξs+1, σs+1,2, ωs+1, λs+1,1, . . . , λs+1,|n|, κs+1.

In CNF, the formula ncons∀(i) is again a set of i-links, and its size is c · s · |n| for some
c ≥ 1.

42

3.3.6 Converting θ to leveled-QBF

Recall that θ was defined as Q1τ 1 · · ·Qqτ q(ncons∀+(cons∃ ·sat)). By writing this formula
in prenex form, we obtain the equivalent formula

Qz (ncons′∀ + (cons′∃ · sat′))

where Qz is the appropriate prefix of quantified variables and the primed formulas are the
matrices of the corresponding non-primed QBFs. We would like to write it as a leveled-QBF.

Let a and b be two new variables and let ϑ be the conjunction of the following formulas:

a+ ncons′∀
b+ ncons′∀
ā+ cons′∃
b̄+ sat′

It is easy to see that
∃a∃b(ϑ)↔ ncons′∀ + (cons′∃ · sat′).

We write ϑ in CNF. For the first disjunction a+ ncons′∀, it is enough to add a to every
clause of ncons′∀, and similarly for the others. Note that, except for the variables a and b,
the result is a conjunction of i-links.

In order to make them proper i-links, we introduce new variables {a1, . . . , as+1} and
{b1, . . . , bs+1}, and clauses ai ↔ ai+1 and bi ↔ bi+1 for every i ∈ {1, . . . , s} to mantain
consistency between the introduced variables. Now, we replace each occurrence of a and b
in an improper i-link by ai and bi respectively. Let ψ′ be the resulting formula.

Finally, define
ψ := Qz∃a∃b(ψ′)

where a = (a1, . . . , as+1) and b = (b1, . . . , bs+1). Note that the construction guarantees
ψ ↔ θ, and by Claim 4, ψ ↔ φ.

We partition the variables of ψ in groups H1, . . . , Hs+1 where group Hi is the set of
variables with (first) index i. We also partition the clauses of ψ in blocks C1, . . . , Cs+1 where
block Ci is the set of i-links of ψ. Note that, by the definition of i-link, all variables in Ci are
contained in Hi ∪Hi+1. Therefore, ψ is a leveled-QBF with groups H1, . . . , Hs+1 and blocks
C1, . . . , Cs+1.

Now, for every i ∈ {1, . . . , s + 1}, the size of Hi is the number of variables with index i

43

in ψ, namely c · |n| for some constant c ≥ 1. Also, the size of ψ is d · s · |n| for some constant
d ≥ 1. Therefore, ψ is a c · |n|-leveled QBF of size d · s · |n| such that φ↔ ψ.

Finally, it is clear that all the steps to produce ψ from φ can be performed in time
polynomial in s, thus finishing the proof.

3.4 Bounded-width TQBF

In this section we prove the main result of the chapter.

Theorem 2. There exists an integer w ≥ 1 such that TQBF on inputs of path-width at most
w is PSPACE-complete.

Proof. We show that there exists a constant n0 ≥ 1 and a polynomial-time reduction from
the canonical PSPACE-complete problem TQBF to the restriction of TQBF itself to n0-
leveled QBFs. Then the result will follow by setting the path-width to w = 2n0 − 1 and
applying Lemma 8.

Let c and d be the constants from the end of section 3.3. We choose the constant n0 large
enough so that whenever N ≥ n0 the following conditions are satisfied:

1. c · |N | < N ,

2. c · |c · |N || ≤ logN ,

3. (2 log∗N)(log |N |) ≤ logN ,

4. d2 log∗N ≤ logN .

All these conditions can be met simultaneously. The idea of the reduction is to start with
an arbitrary QBF formula φ0 with N0 variables and size S0, view it as an N0-leveled QBF,
and apply Lemma 9 repeatedly until we get a n0-leveled QBF for the large fixed constant
n0. Since the final formula will be equivalent to φ0, we just need to make sure that this
process terminates in a small number of iterations and that the size of the resulting formula
is polynomial in S0. We formalize this below.

Let φ0 be an arbitrary QBF formula with N0 variables and size S0. In particular φ0 is an
N0-leveled QBF of size S0. If N0 ≤ n0 then φ0 is already n0-leveled and there is nothing to
do. Assume then N0 > n0. We apply Lemma 9 to get an N1-leveled QBF of size S1 where
N1 = c · |N0| and S1 = d · S0 · |N0|. By condition 1 on n0 we get N1 < N0, which is progress.
Repeating this we get a sequence of formulas φ0, φ1, . . . , φt, where φi is an Ni-leveled QBF
of size Si with

44

1. Ni = c · |Ni−1|, and

2. Si = di · S0 ·
∏i−1

j=0 |Nj|,

for i ≥ 1. We stop the process at the first i = t such that Nt ≤ n0. We claim that
t ≤ 2 log∗N0 and that St ≤ S0 · N0 · logN0. This will be enough, since then the algorithm
that computes φt from φ0 is the required reduction as it runs in time polynomial in the size
of the formula, and φ0 ↔ φt.

Claim 6. It holds that t ≤ 2 log∗N0.

Proof. First, by conditions 1 and 2 on n0 we have

1. Ni = c · |Ni−1| < Ni−1, and

2. Ni+1 = c · |Ni| = c · |c · |Ni−1|| ≤ logNi−1

for every i ≥ 1 such that Ni−1 > n0. In particular, this means that the process terminates
and t exists. Unfolding the second inequality gives

Nt−1 ≤ log(b(t−1)/2c) N0.

However, by the choice of t we have Nt−1 > n0 ≥ 1, which means that b(t− 1)/2c < log∗N0

and therefore t ≤ 2 log∗N0.

Given this bound on t, we bound St. We have

St = dt · S0 ·
t−1∏
j=0

|Nj| ≤ dt · S0 · |N0|t,

where in the inequality we used the fact that Ni ≤ Ni−1 for every i ≥ 1 such that Ni−1 > n0,
by condition 1 on n0. Now:

|N0|t ≤ 2(2 log∗N0)(log |N0|) ≤ 2logN0 = N0.

In the first inequality we used the bound on t, and in the second we used the assumption
that N0 ≥ n0 and condition 3 on n0. Altogether, this gives

St ≤ d2 log∗N0 · S0 ·N0 ≤ S0 ·N0 · logN0,

which concludes the proof. Again, we used the assumption that N0 ≥ n0 and condition 4 on
n0.

45

3.5 The Q-resolution proof system

In this section we define and compare some proof systems for QBFs. In order to state their
rules, it is useful to note that a QBF can be written as

φ = Q1X1 · · ·QqXq(φ
′) (3.2)

where X1, . . . , Xq are disjoint sequences of propositional variables, and Qi 6= Qi+1 for 1 ≤
i < q. Of course QiXi means Qix

i
1 . . . Qix

i
` for Xi := (xi1, . . . , x

i
`). Also, we say that Xi is

a quantifier block of φ. Note that logical equivalence is preserved upon reordering of the
variables within the same quantifier block. To establish an order between the variables in
the prefix of a QBF that accounts for the quantifier blocks, we say that x is after y in φ for
x, y ∈ var(φ) if x and y belong to quantifier blocks Xi and Xj, respectively, with i > j. For
the rest of the chapter, all the literals in a clause have different underlying variables and, in
particular, all clauses are non-tautological.

In [13], in an attempt to generalize resolution to QBFs, Büning et al. introduced the
Q-resolution proof system, consisting of the following rules:

1.
C

2
, if every x ∈ var(C) is quantified universally.

2.
C ∨ x D ∨ x

(C ′ ∨D′)′′
, if x is quantified existentially, where

(a) C ′ (resp. D′) is equal to C (resp. D) except for the literals whose underlying
variable is quantified universally and is after every existentially quantified variable
y in var(C) (resp. var(D)) in φ, and

(b) (C ′ ∨ D′)′′ is 1 if (C ′ ∨ D′) is tautological and, otherwise, is equal to (C ′ ∨ D′)
except for the literals whose underlying variable is quantified universally and is
after every existentially quantified variable y in var(C ′) ∪ var(D′) in φ.

Later, Pan and Vardi [39] extended the symbolic quantifier elimination approach from
CNF formulas to QBFs. They introduce a QBF solver that produces multi-resolution [15]
refutations. Even though they use OBDDs to represent the clauses, the proof system that
is implicit in their algorithm has the following two rules:

1.
C ∨ x
C

, if x is quantified universally and no y ∈ var(C) is after x in φ.

2.
C ∨ x D ∨ x

C ∨D
, if x is quantified existentially and no y ∈ var(C)∪var(D) is after x in φ.

46

In this work, we will call this proof system weak Q-resolution.
We introduce a simpler proof system, in the mold of weak Q-resolution, with the following

rules:

1.
C ∨ x
C

, if x is quantified universally and no y ∈ var(C) is after x in φ.

2.
C ∨ x D ∨ x

C ∨D
, if x is quantified existentially.

For the moment, let us call this system Q*-resolution. Note that it is stronger than weak Q-
resolution, since their only difference is that Q*-resolution weakens the restrictions to apply
its second rule.

We say that a proof system P ′ p-simulates a proof system P if, whenever a contradiction
has a P -refutation size s, it also has a P ′-refutation of size polynomial in s. Also, we say that
two proof systems are p-equivalent if they p-simulate each other. We show that Q*-resolution
is, in fact, p-equivalent to Q-resolution:

Lemma 10. The proof systems Q-resolution and Q*-resolution are p-equivalent.

Proof. Let R1 and R2 be rules 1. and 2. of Q-resolution, and let R∗1 and R∗2 be rules 1.
and 2. of Q*-resolution. First, we show that Q*-resolution p-simulates Q-resolution. To do
so, we show that every Q-resolution step can be simulated by several Q*-resolution steps.
To simulate R1, if C is a purely universal clause, we obtain a Q*-resolution refutation of C
by applying R∗1 repeatedly |C| times, always on the literal whose underlying variable is the
right-most in the prefix. To simulate R2 on clauses C and D, again, repeatedly apply R∗1 on
the universally quantified variables of C and D that are after every existentially quantified
variable in its clause in right-to-left order, then apply R∗2 on the resulting clauses, and
finally, repeteadly apply R∗1 on the universally quantified variables of the resulting clause
that are after every existentially quantified variable, in right-to-left order. These are, at
most, |C|+ |D| steps.

Second, we show that Q-resolution p-simulates Q*-resolution. Let C∗1 , . . . , C∗` be a Q*-
resolution refutation. For i ∈ {1, . . . , `} let

Ci :=


C∗i if C∗i is an initial clause,
Cj if C∗i = R∗1(C∗j) for some j < i,

R2(Cj, Ck) if C∗i = R∗2(C∗j , C
∗
k) with j, k < i.

First we want to see that C1, . . . , C` is a valid Q-resolution derivation. It is clear by definition
that every Ci is either an initial clause or the result of applying R2, since in the second case

47

Ci is already in the refutation. It remains to be seen that 2 can be derived from C1, . . . , C`

in one more step. For that, it is enough to show that, for every i ∈ {1, . . . , `}, we have that
Ci = C∗i if C∗i is an initial clause and that, otherwise, Ci subsumes C∗i ∨ Ai for some purely
universal clause Ai whose literals are after every existentially quantified variable of C∗i in the
prefix. If we suceed, just note that C` subsumes (C∗` ∨ A`) = (2 ∨ A`) = A`, and, since A`
is a purely universal clause, we apply R1 to C` to obtain 2. We are left to prove the claim.
We will proceed by cases according to the definition of C∗i . First, it is clear by definition
that Ci = C∗i if C∗i is an initial clause. Second, if C∗i = R∗1(C∗j) for some j < i, let li be
the universally quantified literal that is in C∗j and not in C∗i and let Ai := Aj ∨ li. Since Cj
subsumed C∗j ∨ Aj, it is clear that Ci subsumes C∗i ∨ Ai. Third, we have that Cj subsumes
C∗j ∨ Aj and Ck subsumes C∗k ∨ Ak. By the definition of the rule and the conditions on Aj
and Ak, we have that R2(Cj, Ck) = R2(C∗j ∨ Aj, C∗k ∨ Ak). Therefore, R2(Cj, Ck) subsumes
R∗2(C∗j ∨ Aj, C∗k ∨ Ak), this is, Ci subsumes C∗i and, therefore, C∗i ∨ Ai for Ai := ∅.

Since both proof systems are p-equivalent, to simplify notation, we will refer to both as
Q-resolution for the rest of the chapter.

Now, for a QBF φ with matrix φ′ and for variables x, y quantified existentially and
universally respectively in φ, we define

φ′(∃x) := {C ∨D | C ∨ x ∈ φ′ and D ∨ x ∈ φ′} ∪ {C ∈ φ′ | x /∈ var(C)}, and

φ′(∀x) := {C | C ∨ x ∈ φ′ or C ∨ x ∈ φ′} ∪ {C ∈ φ′ | x /∈ var(C)}.

We write φ′(Q1x1,Q2x2) instead of (φ′(Q2x2))
(Q1x1). Note that x /∈ var(φ(Qx)). We prove the

following lemma:

Lemma 11. Let ψ be a CNF formula and let Q be any prefix. Then,

1. Qψ(∃x) |= Q∃xψ, and

2. Qψ(∀x) |= Q∀xψ.

Proof. For the first claim, letA be an assignment that satisfies ψ(∃x). LetA0, A1 be extensions
of A that assign x := 0 and x := 1 respectively. If neither satisfies ψ, then ψ contains at
least a pair of clauses C ∨ x and D ∨ x such that A0(C) = 0 and A1(D) = 0. But then,
C ∨D belongs to ψ(∃x) and A(C ∨D) = 0 causing a contradiction. Therefore, since at least
one of A0 and A1 satisfies ψ, we have that A satisfies ∃xψ. For the second claim, just note
that ψ(∀x) |= ψ.

48

Note that completeness of weak Q-resolution (and therefore, also Q-resolution) is proved
by repeated applications of this lemma: let Q be the prefix of φ. Then, φ′(Q) is either empty,
and therefore the formula is true, or contains just 2, and therefore the formula is false.

Various efforts have been directed to determine families of QBFs for which the Q-
resolution proof system is polynomially bounded. Aspvall et al. [6] showed that (weak)
Q-resolution is polynomially bounded for bijunctive-QBFs, that is, formulas with at most
two literal per clause. Later, Büning et al. [13] showed the same for Horn-QBFs. They also
proved that extended-Horn QBFs, that is, QBFs in which the existentially quantified part of
each clause is Horn and the universal part is arbitrary, require exponential-size Q-resolution
refutations.

Observe that Theorem 2 implies that, unless NP=PSPACE, no proof-system is polyno-
mially bounded for QBFs of bounded tree-width (and even path-width), as otherwise one
could guess a polynomial-size refutation and check it in polynomial time. However, some
families of QBFs with bounded tree-width have polynomial-size Q-resolution refutations. For
example, if we allow only existential quantifiers, the problem becomes equivalent to boolean
satisfiability of CNFs (CNF-SAT), and Alekhnovich and Razborov [3] showed that CNFs of
bounded branch-width (which is equivalent to bounded tree-width) have polynomial-size res-
olution (and therefore, (weak) Q-resolution) refutations. We devote the rest of the chapter
to describe a larger family of QBFs with bounded tree-width for which (weak) Q-resolution
is polynomially bounded.

3.6 Respectful tree-width

As defined in section 3.2, the tree-width of a QBF is the tree-width of its matrix, and
therefore, it is independent of its prefix. Multiple algorithms on CNFs that are tractable on
instances with bounded tree-width are not applicable to QBFs, since the tree decompositions
that they use do not mesh well with the quantification of the variables. To tackle this
problem, Chen and Dalmau [17] introduced what we call here respectful tree-width, a concept
analogous to tree-width, but on tree decompositions that are, in some sense, respectful with
the prefix of the formula, so that the algorithms for CNFs make sense.

Let φ be a QBF and let (T, L) be a tree decomposition of its matrix. Let r be the root
of T . Define tx as the closest vertex to r in T such that x ∈ L(tx). For a pair of variables
x, y ∈ var(φ), we say that x is under y if tx 6= ty and ty is in the (unique) path from r to
tx in T . We say that (T, L) is respectful with the prefix of φ if, for every pair of variables

49

x, y ∈ var(φ), if x is under y, then y is not after x. A respectful tree decomposition of φ is
one that is respectful with its prefix. The respectful tree-width of φ is the minimum width
among its respectful tree decompositions.

The main result of this section is that Q-resolution is polynomially bounded on QBFs
of bounded respectful tree-width. The proof of this lemma makes use of a construction on
graphs defined by Dechter and Pearl [24] named induced graph.

A pair (H,≺) is an induced graph of G if ≺ defines a strict total order on the vertices of
G, and H is the closure of G under the following operation: for every x, y, z ∈ V (H) such
that x ≺ z and y ≺ z, if (x, z) and (y, z) are edges, add (x, y) as an edge. The width of an
induced graph is maxx∈V (H) |{(x, y) ∈ E(H) | y ≺ x}|. The induced width of a graph is the
minimum among the widths of its induced graphs.

Given G and ≺, the usual way to obtain H, as proposed by Dechter and Pearl, is through
the following process: one vertex of V (H) at the time and in order opposite to ≺, add edges
(x, y) for every pair x, y of neighbors of the current vertex z such that x ≺ z and y ≺ z.

Let φ be a QBF and let (H,≺) be an induced graph of its matrix. We say that (H,≺)

is respectful with the prefix of φ if, for every pair of variables x, y ∈ var(φ), if x ≺ y then x
is not after y. A respectful induced graph of φ is one that is respectful with its prefix. The
respectful induced width of φ is the minimum width among its respectful induced graphs.

Observe the following claim:

Claim 7. Let φ be a QBF as in (3.2) and let (H,≺) be a respectful induced graph of φ. Let
S be the sequence of variables in φ in the order defined by ≺. Then, S = Y1, . . . , Yq, where
Yi is a permutation of Xi for every i ∈ {1, . . . , q}. Moreover, Q1Y1 . . . QqYq(φ

′) is logically
equivalent to φ.

In [4], Arnborg et al. show that a QBF has a tree decomposition of width w if and only
if its constraint graph is a partial w-tree. Along the same lines, Freuder [27] shows that a
QBF has an induced graph of width w if and only if its constraint graph is a partial w-tree.
By composing these theorems, we obtain that a QBF has a tree decomposition of width w
if and only if it has an induced graph of width w. In [23], Dechter gives a direct proof of the
if side of this statement in terms of bucket elimination. Using the construction by Decther,
we present a direct proof of the whole statement in graph-theoretic terms and show that our
constructions preserve respectfulness.

Lemma 12. Let φ be a QBF. Then φ has a respectful tree decomposition of width w if and
only if it has a respectful induced graph of width w.

50

Proof. Let G be the constraint graph of φ. First, let (T, L) be a respectful tree decomposition
of φ of width w. We will construct a respectful induced graph of φ of the same width. Define
≺ as x ≺ y if y is under x in (T, L) and arbitrarily if neither is under the other. Let H be
such that (H,≺) is an induced graph of G. We show that (T, L) is also a tree decomposition
of H by induction on the number of edges of H. If |E(H)| = |E(G)|, then H = G and we
are done. If |E(H)| > |E(G)|, let (x, y) be an edge of E(H) \ E(G). By definition of H,
there is a z ∈ V (H) such that x ≺ z and y ≺ z and both (x, z) and (y, z) belong to E(H).
By induction hypothesis (T, L) is a tree decomposition of H − (x, y). We have to show that
x, y ∈ L(t) for some t ∈ V (T). Let Tz be the connected subtree of T induced by the vertices
t ∈ V (T) such that z ∈ L(t) and let tz be the root of Tz. We will show that, in fact, both x
and y belong to tz. Let T xz := {t ∈ V (Tz) | x ∈ L(t)}. Since (T, L) is a tree decomposition
of H − (x, y) and (x, z) ∈ E(H), we have that T xz is non-empty. Let txz ∈ T xz be the closest
vertex to tz among them. If txz 6= tz, then x is under z and, by the definition of ≺, we have
that z ≺ x, which is a contradiction. Therefore, txz = tz, which implies x ∈ L(tz). The same
argument can be made to show that y ∈ L(tz), proving the claim. Define ≺R as x ≺R y if y
is under x in (T, L) and x ≺R y if x occurs before y in the prefix of φ and neither is under
the other. Let HR be such that (HR,≺R) is an induced graph of G. Note that, since ≺R is
a particular case of ≺, we have that (T, L) is also a tree decomposition of HR. To see that
(HR,≺R) is respectful we show that, if x ≺R y, then x is not after y. We have two cases:
first, if y is under x, then, since (T, L) is respectful, we have that x is not after y; and second,
if x occurs before y in the prefix, of course x is not after y. Finally, for every x ∈ V (HR), by
definition of HR, the vertices of Vx := {x} ∪ {y | y ≺ x and (x, y) ∈ E(HR)} form a clique.
By Claim 3, for every x ∈ V (HR) there is a t ∈ V (T) such that Vx ⊆ L(t). Therefore,

max
x∈V (HR)

|{(x, y) ∈ E(HR) | y ≺ x}| ≤ max
x∈V (HR)

|Vx| − 1 ≤ max
t∈V (T)

|L(t)| − 1 ≤ w.

Second, let (H,≺) be a respectful induced graph of φ of width w. We will construct a
respectful tree decomposition of the same width. Let T be a graph with one vertex tx for
every x ∈ V (H) and one edge (ty, tx) where y is the biggest (with respect to ≺) neighbor
of x in H such that y ≺ x. Note that T is acyclic, since for every x ∈ V (H), we have
that tx is connected to at most one vertex ty such that y ≺ x. As defined, T is not rooted
and may not be connected, but we will fix this at the end of the proof. Let L be defined by
L(tx) := {x}∪{y | (y, x) ∈ E(H) and y ≺ x} for every x ∈ V (H). Next, we show that (T, L)

is a respectful tree decomposition of G of width w. First, we have that
⋃
t∈V (T) L(t) = V (G)

51

since V (G) = V (H) and, for every x ∈ V (H), we have that x ∈ L(tx). Second, for every
(x, y) ∈ E(G), we have x, y ∈ L(tx) if y ≺ x and x, y ∈ L(ty) if x ≺ y. Third, we have
to show that for every x ∈ V (G), the subgraph of T induced by {t ∈ V (T) | x ∈ L(t)} is
a connected subtree. Recall that H has the property that, for every x, y, z ∈ V (H) such
that x ≺ z and y ≺ z, if (x, z) and (y, z) are in E(H), also (x, y) is in E(H). It is enough
to see that, if x ∈ L(t), the unique shortest path t1, . . . , t` with t1 = t and t` = tx is such
that x ∈ L(ti) for every i ∈ {1, . . . , `}. We prove this by induction on i. If i = 1, by
hypothesis we have x ∈ L(t1). Now, let i > 1 and, as induction hypothesis, assume x
belongs to L(t1), . . . , L(ti−1). We want to show that x belongs to L(ti) also. Let y, z ∈ V (H)

be such that ti−1 = tz and ti = ty. Since, by induction hypothesis, x ∈ L(tz), we have
that x ≺ z and that (x, z) is in E(H). Also, since (ty, tz) ∈ E(T), we have that (y, z) is in
E(H). Now, we show that x ≺ y by cases: if z ≺ y, then x ≺ y, since x ≺ z. If y ≺ z,
then also x ≺ y, since otherwise y would not have been the biggest (with respect to ≺)
neighbour of z such that y ≺ z (x would satisfy the conditions and would be bigger than y).
Note that, by the construction of T , every vertex tu ∈ V (T) has at most one neighbour in
Vu(T) := {tv ∈ V (T) | v ≺ u}. Suppose, for the sake of contradiction, that z ≺ y. Then,
(y, z) is the single edge that connects y to Vy(T). But since the path does not repeat edges,
it cannot lead to any other vertex in Vy(T). Since tx is in Vy(T), this is a contradiction.
Therefore, we have that y ≺ z. Finally, since x ≺ z and y ≺ z and (x, z) and (y, z) both
belong to E(H) and (H,≺) is an induced graph, also (x, y) belongs to E(H). And then, since
x ≺ y, we have that x ∈ L(ti). We make sure now that the graph that we built is rooted and
connected. Let T1, . . . , Tk be the connected components of T . For i ∈ {1, . . . , k}, let ri be
the unique vertex of Ti such that |L(ri)| = 1. Let r be a fresh vertex and let TC = (VC , EC)

with VC := V (T)∪ {r} and EC := V (E)∪
⋃
i∈[k]{(r, ri)} be a rooted tree with r in the root.

Note that TC is connected. Also, let LC be the extension of L to VC such that LC(r) = ∅.
Note that (TC , LC) is respectful, since if x is under y, by construction of TC surely y ≺ x,
and, since (H,≺) is respectful, y is not after x. Finally, (TC , LC) has width

max
t∈V (TC)

|LC(t)| − 1 = max
t∈V (T)

|L(t)| − 1 = max
x∈V (H)

|{y | (x, y) ∈ E(H) and y ≺ x}| ≤ w.

Corollary 1. Let φ be a QBF. Then φ has respectful tree-width w if and only if it has
respectful induced width w.

In a different setting, Chen and Dalmau [17] show that quantified constraint satisfac-

52

tion problems, which generalize QBFs to unbounded domains, are tractable if they have
bounded respectful tree-width. We show here the corresponding result for Q-resolution: it
is polynomially bounded for QBFs of bounded respectful tree-width.

Lemma 13. Let φ be a false QBF sentence with n variables, m clauses and respectful tree-
width w. Then, there is a weak Q-resolution refutation of φ of size O(m+ n · 3w).

Proof. By Lemma 12, we have that φ has respectful induced width w. Let (H,≺) be a
respectful induced graph of φ of width w. Let Y := (R1y1, . . . , Rnyn) be the sequence
of variables of φ in order ≺ together with its quantifier in φ, and, for i ∈ {1, . . . , n}, let
Yi := (Riyi, . . . , Rnyn) be the i-th suffix of Y .

Since (H,≺) is respectful with the prefix of φ, by Claim 7 we have that R1y1 . . . Rnyn (φ′)

is equivalent to φ. Moreover, since φ ≡ 2, by Lemma 11 we have that φ′(Y) |= 2 and also that
2 ∈ φ′(Y). Then, the sequence (φ′, φ′(Yn), . . . , φ′(Y1)) makes a valid Q-resolution refutation of
φ.

Finally, note that every φ′(Yi) has at most 3w clauses not already in the sequence, since
every variable is connected to at most w variables of φ′(Yi−1), and there are a total of 3w

possible clauses that can be formed with w variables. Therefore, the size of the refutation is
O(m+ n · 3w).

3.7 Formulas with bounded respectful tree-width

In the previous section we have shown that false QBFs with bounded respectful tree-width
have short Q-resolution refutations. In this section we introduce a family of formulas with
this property and show some formulas that belong to this family and may have real-world
applications.

3.7.1 QBFs with bounded number of variables

Let x1, . . . , xk be propositional variables. A k-QBF is defined recursively as follows:

1. any clause on variables x1, . . . , xk is a k-QBF,

2. if φ and ψ are k-QBFs, then φ ∧ ψ is a k-QBF,

3. if φ is a k-QBF, then ∃xi is a k-QBF, where i ∈ {1, . . . , k}, and

4. if φ is a k-QBF, then ∀xi is a k-QBF, where i ∈ {1, . . . , k}.

53

Notice that we allow a variable to be quantified more than once. The recursive construc-
tion of a k-QBF defines a (rooted) labeled tree, whose leaves are labeled with the clauses of
the formula and whose internal vertices are either labeled with a ∧ and have two children,
or labeled with ∃ or ∀ and have a single child. For a k-QBF φ, we say that (Tφ, Kφ) is its
associated tree in the sense described above, where Tφ is a tree of the indicated form and
Kφ : V (Tφ) → C ∪ {∧,∃x1, . . . ,∃xs,∀x1, . . . ,∀xs} where C is the set of all clauses on the
variables x1, . . . , xk. We say φ is the associated formula of the pair (Tφ, Kφ).

This family of formulas is the propositional version of one introduced by Dalmau et al.
in [20], extended by allowing universal quantification. Their framework allows, given a QBF,
to rewrite it as a logically equivalent k-QBF. Here we want to achieve exactly the opposite:
given a k-QBF, rewrite it as a logically equivalent QBF. To do so, given a k-QBF φ, consider
the following rewriting rules:

1. A-Rule: Associativity of conjunction is applied to subformulas of φ.

2. C-Rule: Commutativity of conjunction is applied to subformulas of φ.

3. ∃-Rule: a subformula of φ of the form (ψ∧(∃xθ)) is replaced by the formula (∃x(ψ∧θ)),
provided the variable x does not occur in ψ.

4. ∀-Rule: a subformula of φ of the form (ψ∧(∀xθ)) is replaced by the formula (∀x(ψ∧θ)),
provided the variable x does not occur in ψ.

5. R-∃-Rule: a subformula of φ of the form (∃xψ) is replaced by the formula (∃y)ψ[x/y],
where y does not occur in ψ and ψ[x/y] is obtained from ψ by replacing all free
occurrences of x in ψ by y.

6. R-∀-Rule: a subformula of φ of the form (∀xψ) is replaced by the formula (∀y)ψ[x/y],
where y does not occur in ψ and ψ[x/y] is obtained from ψ by replacing all free
occurrences of x in ψ by y.

It is clear that the application of these rules preserves logical equivalence.
Note that every k-QBF of size s can be rewritten as a QBF as in (3.1) by the following

steps: first, repeatedly apply the R-Rules with fresh variables xk+1, . . . , xs until no variable in
the formula occurs quantified more than once. Second, repeatedly apply ∃-Rule and ∀-Rule,
always on the outermost possible quantifier (and A-Rule and C-Rule, as necessary, to reorder
the conjunctions in order to apply the other rules) until we obtain the form (3.1). It is clear
that this can be done in a number of steps polynomial in s and that the resulting formula φR

will be over the variables x1, . . . , xs. Also, let KR
φ be equal to Kφ but appropiately applying

the renaming performed by the R-Rules on the clauses at the leaves.

54

For a tree T and t ∈ V (T), let T t be the subtree of T rooted at t. Let φt be the
associated formula of (T tφ, Kφ) and let φRt be the associated formula of (T tφ, K

R
φ). Now, define

Lφ : V (Tφ)→ P({x1, . . . , xs}) as

Lφ(t) := {x | x is free in the formula φRt }

for every t ∈ V (Tφ).
We prove the following claim:

Claim 8. The pair (Tφ, Lφ) is a respectful tree decomposition of φR of width k − 1.

Proof. First, note that every clause of φR is precisely KR
φ (t) for some leaf t of Tφ. Since

t = T tφ, the associated formula of (t,KR
φ) is precisely the clause KR

φ (t), and therefore, all of
its variables are free in it. Therefore, for every clause C of φR, there is a leaf t of Tφ for
which L(t) = var(C), and also,

⋃
t∈V (Tφ) L(t) = var(φ′R). Second, for x ∈ var(φR), let tx

be the (unique) child of the (unique) vertex of t of Tφ such that KR
φ (t) is of the form Qx

for Q ∈ {∃,∀}, and the root of T if there is none. Note that x ∈ L(t) if and only if both
t ∈ V (T tx) and for some leaf t′ of T t, we have x ∈ L(t′). Then, the subgraph of Tφ induced
by {t ∈ var(φR) | x ∈ L(t)} is precisely the union of the (unique) paths from tx to a leaf t′ of
Tφ such that x ∈ L(t′). Since all of these paths have their beginning at tx, this is a connected
subtree. Finally, note that for every t ∈ Tφ, we have |L(t)| ≤ k since, in case |L(t)| > k for
some t ∈ Tφ, that would imply that φRt has more than k free variables, which is not possible,
since, before renaming, φ (and therefore, φt) has only k variables in total.

Corollary 2. Every k-QBF is logically equivalent to a QBF with respectful tree-width k− 1.

Note that, together with Lemma 13, this gives that, as long as k ≤ c · log n for some
constant c, for every false k-QBF we can obtain a logically equivalent QBF and a short
Q-resolution refutation of the second. Next, we see examples of k-QBFs for which this result
may be useful.

3.7.2 Bounded model checking

An alternating finite state machine is a nondeterministic state machine whose states are of
two types: ∃-states or ∀-states. On a given input, the machine accepts if there is at least
one transition leaving every ∃-state such that for every transition leaving every ∀-state, the
machine ends up reaching an accepting state. Consider an alternating finite state machine

55

with n states and with m transitions leaving each state, in which every transition leaving an
∃-state leads to a ∀-state and viceversa. States and transitions leaving each state are labeled
with a number encoded in binary as x̄ = x1, . . . , x|n| and ȳ = y1, . . . , y|m|, respectively. Also,
define the ternary relation R as R(x̄, ȳ, x̄′) if, from state x̄, using transition ȳ, we can reach
state x̄′ in a single step. Let I(x̄) indicate that x̄ is an initial state, and let Z(x̄) indicate
that x̄ is a Z-state.

We want to obtain a proof of the following statement, common in the context of bounded
model checking: no Z-state is accessible from an I-state in at most ` steps. We call this
statement P≤`. Note that this problem can be reduced to obtaining a proof of Pt for every
0 ≤ t ≤ `. We focus on this last problem, which is equivalent to finding a refutation of ¬Pt,
which is equal to ∃x̄(I(x̄) ∧ ψt(x̄)) where

ψ0(x̄) = Z(x̄),

ψi+1(x̄) = ∃ȳ∃x̄′(R(x̄, ȳ, x̄′) ∧ ψi(x̄′)) for odd i ≥ 0,

ψi+1(x̄′) = ∀ȳ∃x̄(R(x̄′, ȳ, x̄) ∧ ψi(x̄)) for even i ≥ 0.

Observe that, by writing I(x̄), Z(x̄) and R(x̄, ȳ, x̄′) as CNFs, the formula ¬Pt that we obtain
is a (2|n| + |m|)-QBF. Therefore, if Pt is true, we can obtain a Q-resolution refutation of a
QBF expressing ¬Pt of size exponential in 2|n| + |m|, that is, polynomial in the number of
states and the size of the formula.

By defining the formulas encoding I(x̄), Z(x̄) and R(x̄, ȳ, x̄′) appropiately, we can use
this to model multiple real-world situations. We present a couple of examples:

Verification of software with human interaction In this case, the alternating finite
state machine models the interaction between a user and a computer interface: ∃-states are
those waiting for a response of the system and ∀-states are those waiting for a response from
the user. The initial state is the initial configuration of the software, the Z-states are those
in which the software crashes or reaches an undesired point. Finally, the relation R is defined
by the work-flow of the program. We want to make sure that, from the initial state of the
program, for every input of the user into the interface, there is a possible response of the
program in such a way that the user cannot crash the system before ` interactions.

Two-player games by turns In this case, the alternating finite state machine models
the strategies of the players: the ∃-states model the positions in which the first player has
to move and the ∀-states model the positions in which his adversary has to move. The

56

initial state is the initial configuration of the game and the Z-state is a winning or losing
configuration, depending on what we want to prove. The relation R defines the legal moves
of the players. What we can prove here is that, starting with the initial configuration of
the game, the first player cannot win the game (or lose it) before ` + 1 rounds have been
played.

57

58

Chapter 4

Definability and interpretability

In this chapter we show that the class of first-order principles whose propositional encoding
has short R(const)-refutations is closed under definability. Using this result, we obtain a
similar result for interpretability, for both the unary and the binary propositional encod-
ings. As examples, we add several definitions and interpretations of well-known first-order
principles into others and show a systematic technique to convert some Σ1-definitions into
quantifier-free interpretations.

4.1 Quantifier-free definitions

Let σ and τ be first-order vocabularies, split into σR and σF (τR and τF , respectively) for
relation and function symbols, respectively. Recall that we assume that both vocabularies
have at least one constant symbol denoted by 0.

Let Θ be a collection of flattened first-order formulas. A Θ-translation from σ to τ

consists of Θ-formulas θR(x1, . . . , xrR ; p̄) and θF (x1, . . . , xrF , y; p̄), where R and F range over
σR and σF respectively. The variables in p̄ are called parameters. We often omit writing
down the parameters.

Let φ be a flattened formula over σ and let D be a translation from σ to τ . The
translation of φ through D, denoted by D(φ), is the formula over τ that is obtained from φ

as follows: replace every atom R(x1, . . . , xrR) for R ∈ σR by θR(x1, . . . , xrR) and every atom
F (x1, . . . , xrF) = y for F ∈ σF by θF (x1, . . . , xrF , y). Note that this is well-defined because
φ is flattened.

Let φ and ψ be flattened sentences over σ and τ , respectively. We say that D defines φ
in ψ if the following conditions are satisfied. Let δ = δ(p̄) be the formula

∧
i 6=j pi 6= pj.

59

Then:

1. ψ |= δ =⇒ ∀x̄∃y(θF (x̄, y)),

2. ψ |= δ =⇒ ∀x̄∀y∀z(θF (x̄, y) ∧ θF (x̄, z) =⇒ y = z),

3. ψ |= δ =⇒ D(φ).

for every F ∈ σF . The first two conditions ensure that θF is functional in the structures
where ψ and δ are true (for any particular choice of parameters). Say that φ is Θ-definable
in ψ, or that ψ Θ-defines φ, if there is a Θ-translation that defines φ in ψ.

Here we show an example of definability:

Example 1. The functional pigeonhole principle (FPHPm
n) says that there is no injective

function from [m] to [n] whenever m > n. In first order logic, FPHPn2

n is expressed by the
fact that the sentence

∀x∀x′∀y∀y′∀t(F (x, y) = t ∧ F (x′, y′) = t =⇒ x = x′ ∧ y = y′).

has no models of cardinality n. Note that in order to represent n2 in a universe of size n we
use a binary function F ,since then Dom(F) = [n]2, and therefore, |Dom(F)| = n2.

Similarly, FPHPn3

n can be expressed by the fact that

∀x∀x′∀y∀y′∀z∀z′∀t(G(x, y, z) = t ∧G(x′, y′, z′) = t =⇒ x = x′ ∧ y = y′ ∧ z = z′).

has no models of cardinality n. Note that these two sentences are not standardized, but can
be easily expressed as a standardized sentence by distributing over the conjunction at the
right-hand side of the implication. From now on, to simplify, we will treat sentences like this
as standardized sentences, even though they are not strictly of the appropiate form.

Define
θF (x, y, t) := (G(x, y, y) = t),

and let D be the quantifier-free translation with no parameters defined by this θ-formula.
Since G is a function in FPHPn3

n , it is clear that θF is functional. Also, it is clear that
D(FPHPn2

n), which reads

∀x∀x′∀y∀y′∀t(θF (x, y, t) ∧ θF (x′, y′, t) =⇒ x = x′ ∧ y = y′)

60

and is equal to

∀x∀x′∀y∀y′∀t(G(x, y, y) = t ∧G(x′, y′, y′) = t =⇒ x = x′ ∧ y = y′)

is implied by FPHPn3

n . Therefore, D defines PHPn2

n in PHPn3

n .
Note that the translation D lacks a definition of θ0(y). In our examples, we will un-

derstand that θ0 is defined trivially as θ0(y) := (y = 0) if it is not explicitly defined. To
do the converse, we use a Σ1-definition, i.e. a definition that allows existentially quantified
θ-formulas. Let D be the following Σ1-definition:

θG(x, y, z, t) = ∃w(F (x, y) = w ∧ F (z, w) = t).

To see that this is a valid definition of FPHPn3

n into FPHPn2

n , first note that θG is functional
since F is functional and w is uniquely determined by F in the definition of θG. Moreover,
D(FPHPn3

n), which is equivalent to

∀x∀x′∀y∀y′∀z∀z′∀t∀w∀w′(F (x, y) = w ∧ F (z, w) = t ∧

F (x′, y′) = w′ ∧ F (z′, w′) = t =⇒ x = x′ ∧ y = y′ ∧ z = z′)

is implied by FPHPn2

n . In section 4.3.1 we will show how to avoid the use of these Σ1-formulas
by using the power of quantifier-free interpretations. �

We now show that, under the unary encoding, short refutations in R(const) transfer
through quantifier-free definability. We will make use of the upper-bound half of Riis’ Gap
Theorem [47] for tree-like resolution as stated below:

Theorem 3 (Riis, 2001). Let φ1(x̄), . . . , φt(x̄) be standardized universal formulas with r free
variables x̄. If

∧t
i=1 φi(x̄) is unsatisfiable, then for every natural n and every ā ∈ [n]r we

have 〈φ1[x̄/ā]〉un, . . . , 〈φt[x̄/ā]〉un `s1,∗ 2 for s polynomial in n.

The following consequence of this result will be used several times:

Lemma 14. Let ψ be a conjunction of standardized universal sentences and let φ(x̄, ȳ)

be a flattened quantifier-free DNF-formula, where x̄ has length r and ȳ has length t. If
ψ |= ∀x̄∃ȳφ(x̄, ȳ), then for every natural n and every ā ∈ [n]r there is a natural k such that
〈ψ〉un `sk

∨
b̄∈[n]t〈φ[x̄/ā, ȳ/b̄]〉n for s polynomial in n.

61

Proof. Write φ as
∨
i∈[`] ti where each ti is a term. Then, ψ ∧

∧
i∈[`] ∀ȳ(¬ti) is unsatisfiable.

Note that x̄ is free in this unsatisfiable formula. Since ψ is a conjunction of standardized
universal sentences and

∧
i ∀ȳ(¬ti) is a conjunction of standardized universal formulas with

free variables, we apply Theorem 3. We get

〈ψ〉un, 〈∀ȳ(¬t1[x̄/ā])〉un, . . . , 〈∀ȳ(¬t`[x̄/ā])〉un `
poly
1 2

for every ā ∈ [n]r. Here, `poly refers to size polynomial in n. Now, since the vocabulary
of both premises is the same, the functional clauses of both encoded formulas are already
present in 〈ψ〉un. We get

〈ψ〉un, {〈¬t1[x̄/ā, ȳ/b̄]〉n | b̄ ∈ [n]t}, . . . , {〈¬t`[x̄/ā, ȳ/b̄]〉n | b̄ ∈ [n]t} `poly
1 2

Now, by Lemma 3 we obtain

〈ψ〉un `
poly
k

∨
b̄∈[n]t

∨
i∈[`]

〈ti[x̄/ā, ȳ/b̄]〉n =
∨
b̄∈[n]t

〈φ[x̄/ā, ȳ/b̄]〉n

for some natural k.

We now prove our main lemma concerning definability.

Lemma 15. Let φ be a conjunction of standardized universal-existential sentences and ψ

be a conjunction of standardized universal sentences. For all naturals t, n ≥ t, s and k, if
φ is quantifier-free definable in ψ with t parameters and 〈φ〉un `sk 2, then 〈ψ〉un `s

′

k′ 2 for s′

polynomial in s, n and 2k and k′ linear in k.

Proof. Let σ be the vocabulary of φ split into σR and σF as usual. Let τ be the vocabulary
of ψ. Let T be a quantifier-free translation that defines φ in ψ.

By the definition of definability we have ψ |= T (φ). The underlying idea of the proof
is simple: from the short propositional refutation of the encoding of φ, get a propositional
refutation of the encoding of T (φ), and combine it with a propositional proof of ψ |= T (φ)

to get a propositional refutation of the encoding of ψ. However the details are not so easy
because T (φ) does not have the right form and cannot be converted directly into sets of
clauses. We need to do more work.

The conditions 1., 2. and 3. of the definition of definability hold for ψ and φ and the
θ-formulas that compose T . The formulas for conditions 1. and 2. on the right of δ have the
form ∀x̄∃ȳγ, where γ is a single clause on the θ-formulas. For 3. the formula is a conjunction

62

of formulas of such a form. Since the θ-formulas are flattened quantifier-free, each can be
written equivalently as a flattened quantifier-free DNF and a flattened quantifier-free CNF. If
we replace each positive occurrence of a θ-formula by its DNF and each negative occurrence
of a θ-formula by its CNF, what we obtain is a collection of formulas of the form ∀x̄∃ȳγ
where γ is a quantifier-free flattened DNF formula. Note that ȳ is trivial in 2.

For q ∈ {1, 2} and F ∈ σF , let γq,F be the quantifier-free part in the formula for condi-
tion q. Also, let γ3,i be the quantifier-free part of the i-th conjunct of φ. By Lemma 14,

1. 〈ψ〉un `
poly
const

∨
b∈[n]〈γ1,F [x̄/ā, y/b]〉n for every F ∈ σF and ā ∈ [n]rF ,

2. 〈ψ〉un `
poly
const 〈γ2,F [x̄/ā, y/b, z/c]〉n for every F ∈ σF , ā ∈ [n]rF , and b, c ∈ [n] with b 6= c,

3. 〈ψ〉un `
poly
const

∨
b̄∈[n]`〈γ3,i[x̄/ā, ȳ/b̄]〉n for every i and ā ∈ [n]k.

Here, we omit mentioning a tuple c̄ of pairwise distinct elements substituted for the param-
eters p̄. Note that 〈δ(p̄/c̄)〉n evaluates to true for such a tuple c̄ and to false for any tuple c̄
with some components that are equal. Further, with `poly

const we refer to a polynomial size (in
n) R(k) proof for some constant k.

Let Γ := 〈φ〉un. Our next goal is to show that there is a substitution into Γ that takes
every clause in Γ into one of the DNF formulas on the right-hand sides above. The clauses
in Γ can be split into four types; namely:

1. C1,F (ā): long functional clause for F ∈ σF and ā ∈ [n]rF ,

2. C2,F (ā, b, c): short functional clause for F ∈ σF , ā ∈ [n]rF , and b, c ∈ [n] with b 6= c,

3. C3,i(ā): clause encoding the i-th conjunct of φ for tuple ā ∈ [n]k.

For each clause C ∈ Γ, let C ′ be the result of replacing each positive occurrence of an atom
by the propositional translation of the DNF formula of the corresponding θ-formula, and
each negative occurrence of an atom by the propositional translation of the CNF formula of
the corresponding θ-formula. Direct inspection shows that:

1. if C = C1,F (ā), then C ′ =
∨
b∈[n]〈γ1,F [x̄/ā, y/b]〉n,

2. if C = C2,F (ā, b, c), then C ′ = 〈γ2,F [x̄/ā, y/b, z/c]〉n.

3. if C = C3,i(ā), then C ′ =
∨
b̄∈[n]`〈γ3,i[x̄/ā, ȳ/b̄]〉n.

This covers all cases. Let Γ′ := {C ′ | C ∈ Γ} and note that since each C ′ is a DNF we have
D(Γ′) = Γ′. Therefore, applying Lemma 4 to the hypothesis that Γ `sk 2 we get

Γ′ = D(Γ′) `s′′k′′ D(2) = 2

63

for s′′ polynomial in s, n and 2k and for k′′ linear in k. Composing proofs we get 〈ψ〉un `s
′

k′ 2

for s′ and k′ as claimed.

Remark 3. The previous lemma fails if one requires the implication 3. in the definition of
definability to hold only with respect to finite structures. Indeed, with this weaker notion
of definability φ = ⊥ would become quantifier-free definable in any ψ without finite models.
Then 2 ∈ 〈φ〉un, but the clauses 〈ψ〉un may not admit polynomial size R(const) refutations
(e.g. ψ could be the pigeonhole principle). �

Remark 4. One might be tempted to try to prove Lemma 15 by the following sort of
argument. Assume that φ has no finite models and has a quantifier-free definition T in
ψ, say for simplicity, with empty parameter tuple p̄. Further assume that Γ := 〈φ〉un has
short R(k)-refutations. Then, using the refutation as a strategy, a prover playing against
an adversary must be able to construct a partial assignment falsifying a clause of Γ by
querying only some few k-terms on the atoms of Γ. If instead of querying these terms,
prover’s queries were about the truth value of the formulas in which the atoms are replaced
by their definitions through T , then the position reached by the prover would hold a partial
assignment falsifying a DNF from Γ′, where Γ′ is the propositional translation of T (φ) written
as a set of DNF formulas. Now, since ψ |= T (φ), we have 〈ψ〉un |= Γ′, so some clause of 〈ψ〉un
must be false under any assignment extending the partial one constructed by the prover. It
is thus tempting to define prover’s position as winning in the game for 〈ψ〉un. The problem
this has is that the falsified clause in 〈ψ〉un may vary with the extension chosen. In other
words, the partial assignment constructed has no need to falsify a particular clause of 〈ψ〉un.
To find such a clause one would like to use a short proof of 〈ψ〉un |= Γ′ but that might not be
available.

Note that the wrong argument above needs ψ |= T (φ) to hold only in the finite, and the
previous remark showed that this cannot work. What makes our argument work is that it
exploits the fact that ψ |= T (φ) is much stronger than 〈ψ〉un |= Γ′, which is equivalent to
ψ |= T (φ) holding in the finite; so much stronger that the latter becomes provable through
short proofs. �

The following is a corollary of Lemma 15:

Corollary 3. The class of conjunctions of standardized universal sentences whose unary
encoding has polynomial-size R(const)-refutations is downward closed under quantifier-free
definitions.

64

That the unary encoding of φ has polynomial-size R(const)-refutations means that there
is an R(k)-refutation of 〈φ〉un of size nc for every n, for constants k and c.

Using the proof translations between encodings of section 2.6.3, we can also obtain the
result analogous to Lemma 15 in the case of binary encoding. However, note that k′ is no
longer independent of n.

Lemma 16. Let φ a be conjunction of standardized universal-existential sentences and ψ

be a conjunction of standardized universal sentences. For all naturals t, n ≥ t, s and k, if
φ is quantifier-free definable in ψ with t parameters and 〈φ〉bn `sk 2, then 〈ψ〉bn `s

′

k′ 2 for s′

polynomial in s and nk and k′ linear in k log n.

Proof. Since 〈φ〉bn `sk 2, by Lemma 7, 〈φ〉un `s
′′′

k 2 for s′′′ polynomial in s and n. Then, by
Lemma 15, 〈ψ〉un `s

′′

k′′ 2 for s′′ polynomial in s, n and 2k and for k′′ linear in k. Finally, by
Lemma 6, 〈ψ〉bn `s

′

k′ 2 for s′ polynomial in s and nk and k′ linear in k log n.

Just as before, from Lemma 16 we obtain the following corollary:

Corollary 4. The class of conjunctions of standardized universal sentences whose binary
encoding has quasipolynomial-size R(log)-refutations is downward closed under quantifier-
free definitions.

Here, that the binary encoding of φ has quasipolynomial-size R(log)-refutations means
that there is an R(c · (log n)2)-refutation of 〈φ〉bn of size nc·logn for every n, for a constant c.

4.2 Quantifier-free interpretations

Let φ be a flattened first-order formula over σ and let r be a natural with r ≥ 1. Let σr
be the vocabulary that includes a r-ary relation symbol U , a 2r-ary relation symbol E, a
(r · rR)-ary relation symbol R̄ for every R ∈ σR and a (r · (rF + 1))-ary relation symbol F̄
for every F ∈ σF . By φTr we denote the result of fixing for every variable x a new r-tuple
x̄ = (x1, . . . , xr), and simultaneously replacing in φ the following:

F (x1, . . . , xrF) = y 7→ F̄ (x̄1, . . . , x̄rF , ȳ),

R(x1, . . . , xrR) 7→ R̄(x̄1, . . . , x̄rR),

x = y 7→ E(x̄, ȳ),

∀x(· · ·) 7→ ∀x̄(U(x̄) =⇒ · · ·),
∃x(· · ·) 7→ ∃x̄(U(x̄) ∧ · · ·)

65

for every R in σR and F ∈ σF . Note that F̄ is now a relation symbol (not function) and
that we need φ to be flattened.

Remark 5. Note that, if φ is a conjunction of standardized universal formulas, then φTr also
is. However, if φ is a conjunction of standardized universal-existential formulas, then φTr is
not necessarily one, since ∃x(C) becomes ∃x(U(x) ∧ C) and U(x) ∧ C is no longer a clause.
Note that if the unary relation U is the trivial true relation, then U(x) ∧ C is a clause and
φTr is a conjunction of standardized universal-existential formulas. �

Let I be a Θ-translation from σr to τ and let φ and ψ be flattened sentences over σ and
τ , respectively. We say that I interprets φ in ψ if the following conditions are satisfied. Let
δ = δ(p̄) be the formula

∧
i 6=j pi 6= pj. Then:

1. ψ |= δ =⇒ ∀¯̄x∃ȳ(θF̄ (¯̄x, ȳ)),

2. ψ |= δ =⇒ ∀¯̄x∀ȳ∀z̄(θF̄ (¯̄x, ȳ) ∧ θF̄ (¯̄x, z̄) =⇒ θE(ȳ, z̄)),

3. ψ |= δ =⇒ ∀¯̄x∀ȳ∀z̄(θU(x̄1) ∧ · · · ∧ θU(x̄rF) ∧ θF̄ (¯̄x, ȳ) =⇒ θU(z̄)),

4. ψ |= δ =⇒ ∀x̄(θE(x̄, x̄)),

5. ψ |= δ =⇒ ∀x̄∀ȳ(θE(x̄, ȳ) =⇒ θE(ȳ, x̄)),

6. ψ |= δ =⇒ ∀x̄∀ȳ∀z̄(θE(x̄, ȳ) ∧ θE(ȳ, z̄) =⇒ θE(x̄, z̄)),

7. ψ |= δ =⇒ ∀¯̄x∀¯̄y(θR̄(¯̄x) ∧ θE(x̄1, ȳ1) ∧ . . . ∧ θE(x̄rR , ȳrR) =⇒ θR̄(¯̄y)),

8. ψ |= δ =⇒ ∀¯̄x∀¯̄y∀z̄∀t̄(θF̄ (¯̄x, z̄)∧θF̄ (¯̄y, t̄)∧θE(x̄1, ȳ1)∧ . . .∧θE(x̄rF , ȳrF) =⇒ θE(z̄, t̄)).

9. ψ |= δ =⇒ I(φTr),

for every R ∈ σR ∪ {U}, F ∈ σF . Say that φ is Θ-(r-)interpretable in ψ, or that ψ Θ-
(r-)interprets φ, if there is a Θ-translation from σr to τ that interprets φ in ψ for some
r ≥ 1.

We would like to have a result similar to Lemma 15 also in this case. To do that, we
define the following operation on formulas: Let φ be a flattened formula over σ. By φIr , we
denote the conjunction of φTr with the following formulas:

1. ∀¯̄x∃ȳ(F̄ (¯̄x, ȳ)),

2. ∀¯̄x∀ȳ∀z̄(F̄ (¯̄x, ȳ) ∧ F̄ (¯̄x, z̄) =⇒ E(ȳ, z̄)),

3. ∀¯̄x∀ȳ∀z̄(U(x̄1) ∧ · · · ∧ U(x̄rF) ∧ F̄ (¯̄x, ȳ) =⇒ U(z̄)),

4. ∀x̄(E(x̄, x̄)),

66

5. ∀x̄∀ȳ(E(x̄, ȳ) =⇒ E(ȳ, x̄)),

6. ∀x̄∀ȳ∀z̄(E(x̄, ȳ) ∧ E(ȳ, z̄) =⇒ E(x̄, z̄)),

7. ∀¯̄x∀¯̄y(R̄(¯̄x) ∧ E(x̄1, ȳ1) ∧ . . . ∧ E(x̄rR , ȳrR) =⇒ R̄(¯̄y)),

8. ∀¯̄x∀¯̄y∀z̄∀t̄(F̄ (¯̄x, z̄) ∧ F̄ (¯̄y, t̄) ∧ E(x̄1, ȳ1) ∧ . . . ∧ E(x̄rF , ȳrF) =⇒ E(z̄, t̄)).

for every R ∈ σR ∪ {U}, F ∈ σF .
By the previous definition, the following fact is clear:

Fact 2. Let φ and ψ be flattened formulas. Then, φ is quantifier-free interpretable in ψ if
and only if φIr is quantifier-free definable in ψ for some r.

By Lemma 15 and the previous fact, we have the following result:

Theorem 4. Let φ and ψ be conjunctions of standardized universal sentences. For all
naturals r, t, n ≥ t, s and k, if φ is quantifier-free r-interpretable in ψ with t parameters
and 〈φIr〉un `sk 2, then 〈ψ〉un `s

′

k′ 2 for s′ polynomial in s, n and 2k and k′ linear in k.

Note that, to apply Lemma 15, we need φIr to be a conjunction of standardized universal-
existential sentences. By Remark 5, that forces us to require φ to be a conjunction of
standardized universal sentences, whereas in Lemma 15, we could have a conjunction of
standardized universal-existential sentences. Again by Remark 5 note that, if in the inter-
pretation of φ in ψ the formula θU is the trivial true relation, then the result is valid also
when φ is a conjunction of standardized universal-existential sentences.

Finally, by the same proof as in the definability case, we have the following result in the
case of binary encoding:

Corollary 5. Let φ and ψ be conjunctions of standardized universal sentences. For all
naturals r, t and n ≥ t, if φ is quantifier-free r-interpretable in ψ with t parameters and
there is a R(log)-refutation of 〈φIr〉bn of size quasipolynomial in n, then there is also a R(log)-
refutation of 〈ψ〉bn of size quasipolynomial in n.

Next, we show two examples of interpretations. First, we show one in which the flexibility
offered by the parameters is key:

Example 2. Recall that the least number principle (LNP) is the sentence saying that < is a
strict partial order and that F is a function mapping each element x to some y with y < x.
Also recall that the dense linear order principle (DLOP) is the sentence saying that < is a
strict linear order, and that G is a function mapping any two different elements x and y to

67

some z that lies strictly between x and y. Both LNP and DLOP are written as conjunctions
of standardized universal sentences. We show that LNP is quantifier-free interpretable in
DLOP. The interpretation has arity 1 and uses two parameter variables p and q. Define:

1. θU(x) := (p < q ∧ p < x ≤ q) ∨ (q < p ∧ q < x ≤ p),

2. θE(x, y) := x = y,

3. θ<̄(x, y) := x < y,

4. θ0̄(y) := (p < q ∧ y = q) ∨ (q < p ∧ y = p),

5. θF̄ (x, y) := (p < q ∧G(p, x) = y) ∨ (q < p ∧G(q, x) = y.

The correctness relies on the fact that the interpretation is required to work only when p 6= q.
Note that this formula is flattened. �

The second example is about relativized formulas. The relativization of a formula φ,
written φR is a formula that is satisfiable in a domain D if and only if φ is satisfiable in some
non-empty subdomain of D. The formula φR is defined as the particular case of φIr in which
r = 1 and the binary relation E is the equality relation.

Example 3. Let φ be a conjunction of standardized universal formulas. We show that φ and
φR are mutually interpretable by quantifier-free translations.

Let σ be the vocabulary of φ split into σR and σF as usual. Recall that we assume
that 0 ∈ σF . Define θU(x) := U(x), θE(x, y) := x = y, θR̄(x̄) := R(x̄) for every R ∈ σR,
and θF̄ (x̄, y) := F (x̄) = y for every F ∈ σF . It is straightforward to check that this is an
interpretation of φ in φR.

In the reverse direction, let us first rename the relativizing predicate from φR to V to avoid
the overloading of names. Then define θU(x) := x = x, θE(x, y) := x = y, θV̄ (x) := x = x,
θR̄(x̄) := R(x̄) for every R ∈ σR, and θF̄ (x̄, y) := F (x̄) = y for every F ∈ σF . It is
straightforward to check that this is an interpretation of φR in φ. �

Using the previous example and as an application of Theorem 4, we show that the class
of relativized formulas whose propositional translations have short R(const) refutations is
closed under quantifier-free interpretations.

Theorem 5. Let φR and ψR be conjunctions of relativized, standardized universal sentences.
For all naturals t, n ≥ t, s and k, if φR is quantifier-free interpretable in ψR with t parameters
and 〈φR〉un `sk 2, then 〈ψR〉un `s

′

k′ 2 for s′ polynomial in s, n and 2k and k′ linear in k.

68

Proof. Assume 〈φR〉un `sk 2. First note that, by the interpretation in the previous example
and transitivity of interpretability, φ is quantifier-free interpretable in φRR. Therefore, by
Theorem 4, we have 〈φRR〉un `s

′′

k′′ 2 for s′′ polynomial in s, n and 2k and for k′′ linear in k.
Now, if φR is quantifier-free interpretable in ψR, then again by Theorem 4 we get 〈ψR〉un `s

′

k′ 2

for s′ and k′ as claimed.

4.3 Further examples

In example 1 we showed that FPHPn2

n is quantifier-free definable in FPHPn3

n and that FPHPn3

n

is Σ1-definable FPHPn2

n . However, we do not have results in this thesis for Σ1-definability.
In this section we demonstrate the power of interpretations by proving that FPHPn3

n is
interpretable FPHPn2

n through a quantifier-free translation. Then, we express other stronger
versions of the functional pigeonhole principle and show they are mutually quantifier-free
interpretable by using this same technique.

4.3.1 FPHPn2

n vs. FPHPn3

n

Recall the first-order sentences used to express FPHPn2

n and FPHPn3

n and the Σ1-definition
of FPHPn3

n in FPHPn2

n of example 1. Here we use a quantifier-free binary interpretation that
simulates the role of the existential quantification in the Σ1-formulas. In all interpretations
used in this section we will have that θU is the trivial true relation. From now on, we omit
it from the definitions.

Let I be the binary interpretation defined by the translation

θE(x̄, ȳ) := (x1 = y1), and

θḠ(x̄, ȳ, z̄, t̄) := (F (x1, y1) = t2 ∧ F (z1, t2) = t1).

Of course, x̄ = (x1, x2) and ȳ = (y1, y2). First, θḠ is functional since both t1 and t2 are
uniquely determined by F , which is a function. Second, it is clear that θE is an equivalence
relation. Third, it is easy to see that θE is a congruence of the function with graph θḠ, since
two sets of E-equivalent arguments have the same first components, and thus, the same t1
and t2. Finally, we check that I((FPHPn3

n)
T2

), which reads

∀x̄∀x̄′∀ȳ∀ȳ′∀z̄∀z̄′∀t̄(¬θḠ(x̄, ȳ, z̄, t̄) ∨ ¬θḠ(x̄′, ȳ′, z̄′, t̄) ∨ (θE(x̄, x̄′) ∧ θE(ȳ, ȳ′) ∧ θE(z̄, z̄′)))

69

which is equal to

∀x̄∀x̄′∀ȳ∀ȳ′∀z̄∀z̄′∀t̄(F (x1, y1) 6= t2 ∨ F (z1, t2) 6= t1 ∨ F (x′1,y
′
1) 6= t2 ∨ F (z′1, t2) 6= t1∨

(x1 = x′1 ∧ y1 = y′1 ∧ z1 = z′1))

is implied by FPHPn2

n . To argue why this is correct, assume PHPn2

n and let x̄, x̄′, ȳ, ȳ′, z̄,
z̄′, t̄ be such that F (x1, y1) = t2, F (z1, t2) = t1, F (x′1, y

′
1) = t2, F (z′1, t2) = t1. We have to

see that x1 = x′1, y1 = y′1 and z1 = z′1. By the first and third equalities we have that x1 = x′1

and that y1 = y′1, and by the second and fourth we have that z1 = z′1, as claimed. Therefore,
I is a quantifier-free interpretation of PHPn3

n in PHPn2

n .

4.3.2 FPHP2n
n vs. FPHP3n

n

FPHP2n
n is expressed by the fact that the conjunction of the sentences

∀x∀x′∀y(F (x) = y ∧ F (x′) = y =⇒ x = x′),

∀x∀x′∀y(G(x) = y ∧G(x′) = y =⇒ x = x′), and

∀x∀x′∀y(F (x) 6= y ∨G(x′) 6= y).

has no models of cardinality n. Note that the first two equations ensure that F and G are
injective functions, and the last one ensures that their ranges are disjoint. Also, note how 2n

is represented in a universe of size n by tagging each x ∈ [n] with one of two labels F and G.
Similarly, FPHP3n

n is expressed by the fact that the conjunction of the following sentences
has no models of cardinality n.

∀x∀x′∀y(F ′(x) = y ∧ F ′(x′) = y =⇒ x = x′),

∀x∀x′∀y(G′(x) = y ∧G′(x′) = y =⇒ x = x′),

∀x∀x′∀y(H ′(x) = y ∧H ′(x′) = y =⇒ x = x′),

∀x∀x′∀y(F ′(x) 6= y ∨G′(x′) 6= y),

∀x∀x′∀y(F ′(x) 6= y ∨H ′(x′) 6= y), and

∀x∀x′∀y(G′(x) 6= y ∨H ′(x′) 6= y).

The following translation is a quantifier-free definition of FPHP2n
n in FPHP3n

n :

θF (x, y) := (F ′(x) = y),

70

θG(x, y) := (G′(x) = y).

For the converse, one could consider the following Σ1-translation D:

θF ′(x, y) := ∃w(F (x) = w ∧ F (w) = y),

θG′(x, y) := ∃w(F (x) = w ∧G(w) = y), and

θH′(x, y) := ∃w(G(x) = w ∧G(w) = y).

This is a Σ1-definition of FPHP3n
n in FPHP2n

n : all the θ-formulas are functional, in the
sense that, first w and then y are uniquely determined by x (since F and G are functions).
Also D(FPHP3n

n), which is equivalent to

∀x∀x′∀y∀w∀w′(F (x) = w ∧ F (w) = y ∧ F (x′) = w′ ∧ F (w′) = y =⇒ x = x′),

∀x∀x′∀y∀w∀w′(F (x) = w ∧G(w) = y ∧ F (x′) = w′ ∧G(w′) = y =⇒ x = x′),

∀x∀x′∀y∀w∀w′(G(x) = w ∧G(w) = y ∧G(x′) = w′ ∧G(w′) = y =⇒ x = x′),

∀x∀x′∀y∀w∀w′(F (x) 6= w ∨ F (w) 6= y ∨ F (x′) 6= w′ ∨G(w′) 6= y),

∀x∀x′∀y∀w∀w′(F (x) 6= w ∨ F (w) 6= y ∨G(x′) 6= w′ ∨G(w′) 6= y), and

∀x∀x′∀y∀w∀w′(F (x) 6= w ∨G(w) 6= y ∨G(x′) 6= w′ ∨G(w′) 6= y).

is implied by FPHP2n
n , as it is easy to see.

Using the same technique as before, we show how to use a quantifier-free interpretation
to reach the same goal. Let I be the binary interpretation defined by the translation:

θE(x̄, ȳ) := (x1 = y1),

θF̄ ′(x̄, ȳ) := (F (x1) = y2 ∧ F (y2) = y1),

θḠ′(x̄, ȳ) := (F (x1) = y2 ∧G(y2) = y1), and

θH̄′(x̄, ȳ) := (G(x1) = y2 ∧G(y2) = y1).

We show that I is an interpretation of FPHP3n
n in FPHP2n

n . First, all of θF̄ ′ , θḠ′ and θH̄′ are
functional since both y2 and y1 are uniquely determined by F and G, which are functions.
Second, it is clear that θE is an equivalence relation. Third, it is easy to see that θE is a
congruence of the functions with graphs θF̄ ′ , θḠ′ and θH̄′ , since E-equivalent arguments will
have the same first component, and thus, the same y2 and y1, as F and G are functions.

71

Finally, it is easy to check that I((FPHP3n
n)

T2), which is the conjunction of

∀x̄∀x̄′∀ȳ(F (x1) 6= y2 ∨ F (y2) 6= y1 ∨ F (x′1) 6= y2 ∨ F (y2) 6= y1 ∨ x1 = x′1),

∀x̄∀x̄′∀ȳ(F (x1) 6= y2 ∨G(y2) 6= y1 ∨ F (x′1) 6= y2 ∨G(y2) 6= y1 ∨ x1 = x′1),

∀x̄∀x̄′∀ȳ(G(x1) 6= y2 ∨G(y2) 6= y1 ∨G(x′1) 6= y2 ∨G(y2) 6= y1 ∨ x1 = x′1),

∀x̄∀x̄′∀ȳ(F (x1) 6= y2 ∨ F (y2) 6= y1 ∨ F (x1) 6= y2 ∨G(y2) 6= y1),

∀x̄∀x̄′∀ȳ(F (x1) 6= y2 ∨ F (y2) 6= y1 ∨G(x1) 6= y2 ∨G(y2) 6= y1), and

∀x̄∀x̄′∀ȳ(F (x1) 6= y2 ∨G(y2) 6= y1,∨G(x1) 6= y2 ∨G(y2) 6= y1).

is implied by FPHP2n
n . Therefore, I is a quantifier-free interpretation of FPHP 3n

n in FPHP2n
n .

4.3.3 FPHPn+1
n vs. FPHPn+2

n

We can express FPHPn+1
n as the fact that the conjunction of sentences

∀x∀x′∀y(F (x) = y ∧ F (x′) = y =⇒ x = x′), and

∀x∀y(F (x) = y =⇒ 0 6= y).

has no models of cardinality n + 1. Note that the first sentence ensures that F is injective
and the second ensures that the range of F does not contain one of the elements of the
universe.

Similarly, FPHPn+2
n is expressed by the fact that the conjunction of

∀x∀x′∀y(G(x) = y ∧G(x′) = y =⇒ x = x′),

∀x∀y(G(x) = y =⇒ 0 6= y),

∀x∀y(G(x) = y =⇒ 1 6= y), and

∀x(0 = x =⇒ 1 6= x).

has no models of cardinality n+ 2. It is easy to see that the translation

θF (x, y) := (G(x) = y),

θ0(y) := (0 = y)

is a quantifier-free definition of FPHPn+1
n in FPHPn+2

n . For the converse, consider the fol-

72

lowing Σ1-translation D:

θG(x, y) := ∃z(F (x) = z ∧ F (z) = y),

θ0(y) := (0 = y),

θ1(y) := ∃z(0 = z ∧ F (z) = y).

It is clear that all of the θ-formulas are functional. Also, it is easy to see that D(FPHPn+2
n),

which is equivalent to

∀x∀x′∀y∀z∀z′(F (x) = z ∧ F (z) = y ∧ F (x′) = z′ ∧ F (z′) = y =⇒ x = x′),

∀x∀y∀z(F (x) = z ∧ F (z) = y =⇒ 0 6= y),

∀x∀y∀z∀z′(F (x) = z ∧ F (z) = y =⇒ (0 6= z′ ∨ F (z′) 6= y)),

∀x∀z(0 = x =⇒ (0 6= z ∨ F (z) 6= x)).

is implied by FPHPn+1
n . Therefore D is a Σ1-definition of FPHPn+2

n in FPHPn+1
n .

Again, we turn this definition into a quantifier-free interpretation using the same tech-
nique as before. Let I be the quantifier-free binary interpretation defined by the translation

θE(x̄, ȳ) := (x1 = y1),

θḠ(x̄, ȳ) := (F (x1) = y2 ∧ F (y2) = y1),

θ0̄(ȳ) := (0 = y1),

θ1̄(ȳ) := (0 = y2 ∧ F (y2) = y1).

It is easy to see that all of them are functional and that θE is an equivalent relation. Also,
θE is a congruence of the functions with graph θḠ, θ0̄ and θ1̄. Moreover, I((FPHPn+2

n)
T2),

which reads

∀x̄∀x̄′∀ȳ(F (x1) 6= y2 ∨ F (y2) 6= y1 ∨ F (x′1) 6= y2 ∨ F (y2) 6= y1 ∨ x1 = x′1),

∀x̄∀ȳ(F (x1) 6= y2 ∨ F (y2) 6= y1 ∨ 0 6= y1),

∀x̄∀ȳ(F (x1) 6= y2 ∨ F (y2) 6= y1 ∨ 0 6= y2 ∨ F (y2) 6= y1),

∀x̄(0 6= x1 ∨ 0 6= x2 ∨ F (x2) 6= x1).

is implied by FPHPn+1
n .

Remark 6. Note that the three examples on FPHPm
n that have been presented (n2 vs. n3,

73

2n vs. 3n and n + 1 vs. n + 2) can be easily generalized to nr vs. ns, rn vs. sn and n + r

vs. n+ s for all naturals r, s with r < s by the same sort of arguments. �

4.3.4 FPHP2n
n vs. FPHPn2,2n

n

In a previous example we already introduced a first-order sentence that expresses FPHP2n
n

by the fact that it has no models of cardinality n. The principle FPHPn2,2n
n says that there

is no injective function from R to [n], where R is a subset of [n2] of size at least 2n. The
conjunction of the following sentences expresses FPHPn2,2n

n by the fact that it has no models
of cardinality n.

∀x∀x′∀y∀z(A0(x) = y ∧ A1(x) = z ∧ A0(x′) = y ∧ A1(x′) = z =⇒ x = x′),

∀x∀x′∀y∀z(B0(x) = y ∧B1(x) = z ∧B0(x′) = z ∧B1(x′) = y =⇒ x = x′),

∀x∀x′∀y∀z(A0(x) 6= y ∨ A1(x) 6= z ∨B0(x′) 6= y ∨B1(x′) 6= z),

∀x∀y∀z(A0(x) = y ∧ A1(x) = z =⇒ R(y, z)),

∀x∀y∀z(B0(x) = y ∧B1(x) = z =⇒ R(y, z)),

∀x∀y∀x′∀y′∀z(R(x, y) ∧R(x′, y′) ∧ P (x, y) = z ∧ P (x′, y′) = z =⇒ x = x′ ∧ y = y′).

Note that the first three formulas ensure that the functions x 7→ (A0(x), A1(x)) and x 7→
(B0(x), B1(x)) are injective and have disjoint ranges. We are interested in this specific
principle, as it is central to the main result of Chapter 5.

We start by showing that there is a Σ1-definition of FPHP2n
n in FPHPn2,2n

n . Consider the
following Σ1-translation D:

θF (x, y) := ∃w∃z(A0(x) = w ∧ A1(x) = z ∧ P (w, z) = y),

θG(x, y) := ∃w∃z(B0(x) = w ∧B1(x) = z ∧ P (w, z) = y).

Since A0, A1, etc. are functions, w and z are uniquely determined by x, and y is uniquely
determined by w and z. Therefore, both θ-formulas are functional. Also, D(FPHP2n

n), which
is equivalent to

∀x∀x′∀y∀w∀z∀w′∀z′(A0(x) = w ∧ A1(x) = z ∧ P (w, z) = y ∧

A0(x′) = w′ ∧ A1(x′) = z′ ∧ P (w′, z′) = y =⇒ x = x′),

∀x∀x′∀y∀w∀z∀w′∀z′(B0(x) = w ∧B1(x) = z ∧ P (w, z) = y ∧

74

B0(x′) = w′ ∧B1(x′) = z′ ∧ P (w′, z′) = y =⇒ x = x′),

∀x∀x′∀y∀w∀z∀w′∀z′(A0(x) 6= w ∨ A1(x) 6= z ∨ P (w, z) 6= y ∨

B0(x′) 6= w′ ∨B1(x′) 6= z′ ∨ P (w′, z′))

is implied by FPHPn2,2n
n .

Again, we can turn this into a quantifier-free interpretation. Let I be a quantifier-free
ternary interpretation defined by the following translation:

θE(x̄, ȳ) := (x1 = y1),

θF̄ (x̄, ȳ) := (A0(x1) = y2 ∧ A1(x1) = y3 ∧ P (y2, y3) = y1),

θḠ(x̄, ȳ) := (B0(x1) = y2 ∧B1(x1) = y3 ∧ P (y2, y3) = y1).

It is clear that all of the θ-formulas are functional and that θE is an equivalence relation.
Also, θE is a congruence of the functions with graphs θF̄ and θḠ. Moreover, I((FPHP2n

n)
T3)

reads

∀x̄∀x̄′∀ȳ(A0(x1) 6= y2 ∨ A1(x1) 6= y3 ∨ P (y2, y3) 6= y1 ∨

A0(x′1) 6= y2 ∨ A1(x′1) 6= y3 ∨ P (y2, y3) 6= y1 ∨ x1 = x′1),

∀x̄∀x̄′∀ȳ(B0(x1) 6= y2 ∨B1(x1) 6= y3 ∨ P (y2, y3) 6= y1 ∨

B0(x′1) 6= y2 ∨B1(x′1) 6= y3 ∨ P (y2, y3) 6= y1 ∨ x1 = x′1),

∀x̄∀x̄′∀ȳ(A0(x1) 6= y2 ∨ A1(x1) 6= y3 ∨ P (y2, y3) 6= y1 ∨

B0(x′1) 6= y2 ∨B1(x′1) 6= y3 ∨ P (y2, y3) 6= y1).

and is implied by FPHPn2,2n
n . Therefore, I is a quantifier-free definition through quotients

of FPHP2n
n in FPHPn2,2n

n .

4.3.5 Non-functional pigeonhole principles

All the examples in this section have been about functional pigeonhole principles, in which
pigeons cannot split into multiple holes. In the first three cases we could obtain their non-
functional counterparts just by substituting every function atom F (x̄) = y by a relation
atom F (x̄, y) and adding only one of the two functional clauses for F , namely

∀x̄∃y(F (x̄, y))

75

for every pigeon function F .
In the case of FPHPn2,2n

n , we can obtain its non-functional counterpart PHPn2,2n
n by

substituting every atom P (x, y) = z by a relation atom P (x, y, z) and adding a relativized
long functional clause. This is:

∀x∀x′∀y∀z(A0(x) = y ∧ A1(x) = z ∧ A0(x′) = y ∧ A1(x′) = z =⇒ x = x′),

∀x∀x′∀y∀z(B0(x) = y ∧B1(x) = z ∧B0(x′) = z ∧B1(x′) = y =⇒ x = x′),

∀x∀x′∀y∀z(A0(x) 6= y ∨ A1(x) 6= z ∨B0(x′) 6= y ∨B1(x′) 6= z),

∀x∀y∀z(A0(x) = y ∧ A1(x) = z =⇒ R(y, z)),

∀x∀y∀z(B0(x) = y ∧B1(x) = z =⇒ R(y, z)),

∀x∀y∀x′∀y′∀z(R(x, y) ∧R(x′, y′) ∧ P (x, y, z) ∧ P (x′, y′, z) =⇒ x = x′ ∧ y = y′),

∀x∀y∃z(R(x, y) =⇒ P (x, y, z)).

76

Chapter 5

Lower bounds for DNF-refutations

In this chapter we prove a lower-bound on the refutations of the unary translation of
PHPn2,2n

n , the first-order principle introduced in section 4.3.5. This translation has vari-
ables Pu,v to encode the flights of the pigeons and additional propositional variables Ru for
u ∈ [n2] intended to express that pigeon u decides to fly. It also has clauses

¬Ru ∨ ¬Ru′ ∨ ¬Pu,v ∨ ¬Pu′,v for u, u′ ∈ [n2] with u 6= u′ and v ∈ [n]

¬Ru ∨
∨
v∈[n] Pu,v for u ∈ [n2],

together with a set of threshold clauses that encode the rest of the first-order formula. For
the purposes of this chapter we do not need to make them explicit. We call the conjunction
of these clauses

TH2n(R̄, X̄),

a CNF-formula in the Ru-variables R̄ and some auxiliary variables X̄ that expresses that at
least 2n pigeons decide to fly. More precisely, TH2n(R̄, X̄) is a polynomial-size (in n) set of
clauses such that for every assignment α to the variables R̄ the following holds: there exists
an assignment ξ to the auxiliary variables X̄ such that α∪ ξ satisfies TH2n(R̄, X̄) if and only
if α sets at least 2n many variables in R̄ to true. The following is the main result of this
chapter:

Theorem 6. For every real ε > 0 and every sufficiently large n, every DNF-refutation of
PHPn2,2n

n has size at least 2(logn)3/2−ε.

To prove this theorem we use a special class of expander bipartite graphs. First, we will
define these graphs and prove their existence, and later we will prove the desired lower-bound
by using them.

77

5.1 Resilient expanders

In this section we discuss the sort of expander graphs that we need. In short, these are
unbalanced low-degree bipartite expanders that satisfy an additional robustness condition:
for at least half the subsets of vertices of some fixed size on the right-hand side, the graph
remains an expander if these vertices are removed. Let us note that a similar definition was
implicit in [8] which was later revisited in [50]. However, both these concepts were very tied
to their specific application to Proof Complexity. Here we provide a more systematic and
general treatment.

5.1.1 Definition and some basic properties

Let G = (U, V,E) be a bipartite graph with |U | = t and |V | = n where t ≥ n. Let b be
a positive real and let q and r be naturals such that 0 ≤ q ≤ n/(1 + b) and 0 ≤ r ≤ n.
Recall that G is a (q, b)-expander if |NG(S)| ≥ (1 + b)|S| for every q-element subset S ⊆ U .
We say that G is a (q, b, r)-resilient expander if for a random r-element subset B ⊆ V we
have that G \ B is a (q, b)-expander with probability bigger than 1/2. The choice of 1/2

here is arbitrary; any constant in the open interval (0, 1) would do. However, observe that
if we were to require that G \B is a (q, b)-expander with probability 1 over the choice of B,
then the minimum degree of G would have to exceed r. Later we will see that for the less
demanding requirement of probability strictly smaller than 1 we can afford a much smaller
degree.

A first property to note is that if G is a (q, b, r)-resilient expander, then G ∩ C is also a
(q, b, r)-resilient expander for every C ⊆ U . In other words, the property is hereditary under
taking subsets of the left-hand side. Similarly, if it is a (q, b, r)-resilient expander then it also
is a (q′, b′, r′)-resilient expander for all q′ ≤ q, all positive b′ ≤ b, and all r′ ≤ r. The next
lemma proves the only non-trivial case of this statement.

Lemma 17. If G is a (q, b, r)-resilient expander, then G is a (q, b, s)-resilient expander for
all s ≤ r.

Proof. Fix s ≤ r. Call a set B ⊆ V good if G \ B is a (q, b)-expander. Observe that any
subset of a good set is good. Assume at least half the r-element subsets of V are good. Each
good r-element set contains exactly

(
r
s

)
many good s-element sets, and each such s-element

set appears in at most
(
n−s
r−s

)
many good r-element sets. Therefore, the number of good

s-element sets is at least 1
2

(
n
r

)(
r
s

)
/
(
n−s
r−s

)
. Expanding the binomials, one sees this is precisely

1
2

(
n
s

)
.

78

5.1.2 Existence

We prove that random bipartite graphs with the appropriate parameters are resilient ex-
panders. For naturals t, n and d, let G = G(t, n, d) be the random bipartite graph (U, V,E)

with U = [t] and V = [n] defined by the following random experiment: for each u ∈ U

choose a d-element subset Nu of V uniformly and independently at random, and declare
each v ∈ Nu a neighbor of u.

Lemma 18. Let ε and b be positive reals, let t, n, q, r and d be naturals such that t ≥ n > 1+

2/ε, q ≤ n/12(1+b), r ≤ n/12, and n ≥ d ≥ (log t+(3+b) log n)/(log n−log(3(1+b)q+3r)),
and let G = G(t, n, d). Then

Pr[G is a (q, b, r)-resilient expander] > 1− ε.

Before we prove this, let us look at some special cases to illustrate the complicated
expressions in the hypothesis. Think of ε and b as positive constants and think of all other
parameters as functions of n. If t = O(n), q = Ω(n) and r = Ω(n), then the required lower
bound on the degree d is O(log n). On the other hand, if still t = O(n) but q = n1−Ω(1) and
r = n1−Ω(1), then the required lower bound on the degree is only O(1). For our application
we will have t = 2n, q = n1−Ω(1) and r = Θ(n/ log n), in which case the required lower bound
on the degree is O(log n/ log log n).

To prove Lemma 18 we rely on the following probabilistic fact. Let X be a random
variable that takes all of its values x with positive probability. Given an event E , recall that
Pr[E | X] is the random variable f ◦X where f is the function defined by f(x) = Pr[E |
X = x] for every value x of X.

Lemma 19. Let p be a real such that 0 < p < 1, let E be an event and let X be a random
variable. Then

Pr[Pr[E | X] > p] ≥ 1

1− p
· (Pr[E]− p) .

Proof. Since Pr[E | X] takes values in [0, 1] we have

E[Pr[E | X]] ≤ Pr[Pr[E | X] > p] · 1 + (1− Pr[Pr[E | X] > p]) · p.

On the other hand, direct calculation shows E[Pr[E | X]] = Pr[E]. This implies the
lemma.

79

Proof of Lemma 18. Let B be an r-element subset of V chosen uniformly at random and
independently from G. In the following we let B range over values of B. Let E be the event
that G \B is a (q, b)-expander. By Lemma 19 it suffices to show that

Pr[E] > 1− ε

2
. (5.1)

Fix B and let EB denote the event that G \ B is a (q, b)-expander. Further, fix two sets
S ⊆ U and T ⊆ V \B of cardinalities i ≤ q and j < (1 + b)i respectively. Recall that NG(S)

denotes the neighbors of S in the random graph G. Then

Pr[NG(S) ⊆ T ∪B] ≤

((
j+r
d

)(
n
d

))i

≤
(

(j + r)e

n

)di
;

here we use
(
j+r
d

)
≤ ((j + r)e/d)d and

(
n
d

)
≥ (n/d)d. By the union bound over (non-empty)

S ⊆ U and T ⊆ V \B of the appropriate cardinalities we have

Pr[EB] ≤
q∑
i=1

(
t

i

) b(1+b)ic∑
j=1

(
n

j

)
·
(

(j + r)e

n

)di
. (5.2)

The term
(
n
j

)
· ((j + r)e/n)di in the internal sum in (5.2) is bounded by nj · ((j + r)e/n)di,

which is an increasing function of j. Plugging in the largest possible j and multiplying by
the number of terms, the internal sum in (5.2) is at most

(1 + b)i · n(1+b)i ·
(

(1+b)ie+re
n

)di
≤
(
n2+b ·

(
3(1+b)q+3r

n

)d)i
.

Here we use 1 ≤ i ≤ q and q ≤ n/12(1 + b) so that (1 + b)i ≤ n and (1 + b)i ·n(1+b)i ≤ n(2+b)i.
Crudely bounding

(
t
i

)
by ti, we conclude that (5.2) is bounded by

q∑
i=1

(
t · n2+b ·

(
3(1 + b)q + 3r

n

)d)i

.

From q ≤ n/12(1 + b) and r ≤ n/12 we conclude that the fraction is bounded by 1/2 and
hence is strictly smaller than 1. From d ≥ (log t+ (3 + b) log n)/(log n− log(3(1 + b)q+ 3r))

80

we conclude that (5.2) is bounded by

∞∑
i=1

(
1

n

)i
=

1

n− 1
.

At this point we proved that Pr[EB] ≤ 1/(n− 1) for every B. This implies (5.1), because

Pr[E] =
∑
B

Pr[EB and B = B] =
∑
B

Pr[EB] · Pr[B = B] ≤ 1

n− 1
<
ε

2
.

Here, the second displayed equality is due to the independence of the events EB and B = B,
and the last inequality is due to n > 1 + 2/ε.

5.1.3 Left and right degrees

Besides being a resilient-expander, we often need our graph to have low right-degree. This
is guaranteed in a random graph by the following easy calculation:

Lemma 20. Let ε be a positive real, let t, n, d and d′ be naturals satisfying t ≥ n ≥ d and
n(tde/nd′)d

′
< ε, and let G = G(t, n, d). Then

Pr[G has right-degree smaller than d′] > 1− ε.

Proof. For fixed vertices u ∈ U and v ∈ V , the probability that (u, v) is an edge in G is(
n−1
d−1

)
/
(
n
d

)
= d/n. Moreover, for fixed v ∈ V , these events are mutually independent as u

ranges over U . By the union bound over all d′-element subsets of U , this means that the
probability that the degree of v is at least d′ is bounded by

(
t
d′

)
(d/n)d

′ . By the union bound
over v, the probability that the right-degree is at least d′ is bounded by n

(
t
d′

)
(d/n)d

′ . The
lemma follows from the bound

(
t
d′

)
≤ (te/d′)d

′ and the hypothesis that n(tde/nd′)d
′
< ε.

As mentioned earlier, in our application of Lemma 18 we will have b = O(1), t =

2n, q = n1−Ω(1) and r = Θ(n/ log n), in which case the required lower bound on d is
O(log n/ log log n). Setting d = dlog ne satisfies this lower bound and Lemma 20 gives right-
degree d′ = O(log n). Therefore, for the setting of parameters b, t, q and r of our interest,
there exists a (q, b, r)-resilient expander with left-degree O(log n) and right-degree O(log n).
Let us argue now that having a (q, b, r)-resilient expander with right-degree O(log n) but
left-degree o(log n/ log log n) is impossible.

81

Suppose G is an (t, n, dL, dR)-graph that is a (q, b, r)-resilient expander where b, t, q
and r are as above and dR = O(log n). Then there exist at least t/(dL · dR) vertices in U

with pairwise disjoint neighborhoods in V . Let B̃ be a random subset of V obtained by
placing each vertex in it independently with probability r/n. For a fixed vertex u ∈ U , the
probability that B̃ contains all the neighbors of u is at least (r/n)dL . Moreover, these events
are mutually independent for vertices from U that have pairwise disjoint neighborhoods in
V . Therefore, the probability that B̃ does not contain all the neighbors of any vertex in U
is bounded by (

1−
(r
n

)dL) t
dL·dR

≤ exp
(
−
(r
n

)dL
· t

dL · dR

)
.

The probability of this event for a random r-element subset B ⊆ V is at most a multiplicative
factor 3

√
r bigger (see equation (5.5) in Section 5.4). Since G is a (q, b, r)-resilient expander,

the probability of this event for B is at least 1/2. But since t ≥ n, r = Ω(n/ log n) and
dR = O(log n), this is possible only if dL is Ω(log n/ log log n).

Now we are ready to prove Theorem 6 as outlined in the introduction.

5.2 Killing large conjunctions

Let t be a natural such that n < t < m. Let ρ = ρ(t) be the random restriction1 on the
variables of PHPm,t

n defined by the following random experiment:

1. choose a subset A ⊆ [m] uniformly at random among all t-element subsets of [m].

2. let ρ be the restriction that, for every u ∈ [m], sets Ru to 1 if u ∈ A and to 0 otherwise;

3. extend ρ to set the auxiliary variables X̄ such that THt(R̄, X̄) is satisfied;

4. extend ρ to set every Pu,v with u ∈ [m] \ A and v ∈ [n] to 1 independently with
probability 1/2 and to 0 otherwise.

Here, by a pigeon variable we mean a variable Pu,v for u ∈ [m] and v ∈ [n]; we say Pu,v

mentions pigeon u; a formula mentions a pigeon if so does some variable occuring in it. For
later use, note that if ρ is a realization of ρ and A is the corresponding realization of A,
then PHPm,t

n � ρ and PHPt
n are the same formula up to renaming of pigeons.

1Of course, by a random restriction we mean a random variable whose values are restrictions.

82

Lemma 21. Let p be a natural such that p < t and p < m−t, and T be a term that mentions
at least p many pigeons. Then

Pr
[
T � ρ 6= 0

]
≤
(

1

2
+

t

m− p

)p
.

Proof. Choose p literals in T mentioning pairwise different pigeons. Let P be the set of
pigeons mentioned by these literals, and for every u ∈ P let `u be the literal chosen for
pigeon u. Consider the events E := “ρ(`u) 6= 0 for all u ∈ P \A”, and Fi := “|P \A| = i”,
where i ∈ {0, . . . , p}. Note that Pr[T � ρ 6= 0] ≤ Pr[E] and

Pr[E] =

p∑
i=0

Pr[E | Fi] · Pr[Fi] =

p∑
i=0

1

2i
·
(
p
i

)(
m−p
t−p+i

)(
m
t

) .

For naturals m ≥ k we write mk for the falling factorial mk := m · (m− 1) · · · (m− k + 1).
Note that our assumptions on p ensure m− p > t− p + i > 0. Using 0 ≤ i ≤ p and noting
mp = mi · (m− i)p−i, we have(

m−p
t−p+i

)(
m
t

) =
(m− t)i

mi
· tp−i

(m− i)p−i
≤ tp−i

(m− i)p−i
≤
(

t

m− p

)p−i
.

Replacing, and using the binomial formula, the probability we want is bounded by

p∑
i=0

(
p

i

)
·
(

1

2

)i
·
(

t

m− p

)p−i
=

(
1

2
+

t

m− p

)p
.

Lemma 22. Let p and s be naturals such that s < p < t, and T be a term that mentions at
most p many pigeons. Then

Pr
[
T � ρ mentions more than s many pigeons

]
≤
(

p

s+ 1

)(
t

m

)s+1

.

Proof. For any s + 1 pigeon variables in T mentioning pairwise different pigeons, the prob-
ability that they all remain unset by ρ is(

m−s−1
t−s−1

)(
m
t

) =
ts+1

ms+1
≤
(
t

m

)s+1

.

83

The claim thus follows by the union bound.

5.3 Restriction to a graph and binary encoding

Let t be a natural such that n < t < m and let G = (U, V,E) be a bipartite graph with
U = [t] and V = [n]. Consider the following restriction θG: it sets every variable Pu,v to 0 if
(u, v) /∈ E and is undefined on all other variables. Then PHPt

n � θG is the CNF with clauses
(1 and)

Pu,v1 ∨ · · · ∨ Pu,vd for u ∈ U with NG(u) = {v1, . . . , vd},
¬Pu,v ∨ ¬Pu′,v for (u, v), (u′, v) ∈ E with u 6= u′.

This formula is commonly denoted by PHP(G) (cf. [11, 49]).
Now assume that G is a (U, V, dL, dR)-graph with associated function φG. Write ` :=

|dL−1| for the length of the binary representation of the largest number in [dL]. We introduce
binary pigeon variables Pu;b for u ∈ U and b ∈ [`]. Again, we say that Pu;b mentions pigeon
u, and that a formula mentions the pigeons mentioned by some atom occuring in it. The
intuitive meaning of a truth assignment to the binary pigeon variables is that pigeon u flies
to hole φG(u, j), where j is the number whose binary representation is given by the truth
values Pu;`−1, . . . , Pu;0. The formula BPHP(G) has domain clauses and collision clauses:

∨
b∈[`] ¬bit(b,j)Pu;b for (u, j) ∈ U × [2`] s.t. (u, j) 6∈ Dom(φG),∨
b∈[`] ¬bit(b,j)Pu;b ∨

∨
b∈[`] ¬bit(b,j′)Pu′;b for (u, j) ∈ Dom(φG) and (u′, j′) ∈ Dom(φG)

such that u 6= u′ and φG(u, j) = φG(u′, j′).

Here, for a variable X we write ¬0X := X and ¬1X := ¬X. The unary encoding PHP(G)

and the binary encoding BPHP(G) are closely related. Indeed, the formula obtained from
PHP(G) by substituting every variable Pu,v by the term

∧
b∈[`] ¬1−bit(b,j)Pu;b, where j ∈ [2`]

is such that φ(u, j) = v, is the conjunction of the collision clauses of BPHP(G) and sporadic
axioms:

∨
j∈JG(u)

∧
b∈[`] ¬1−bit(b,j)Pu;b for u ∈ U with JG(u) := {j ∈ [2`] | (u, j) ∈ Dom(φG)}.

The following lemma states that these sporadic axioms are redundant.

Lemma 23. Every sporadic axiom has a DNF-proof from the domain clauses of BPHP(G)

of size at most 112 · `2 · 8` and such that every term appearing in the proof mentions one
pigeon.

84

Proof. Observe that for u ∈ U the formula

∨
j∈[2`]

∧
b∈[`] ¬1−bit(b,j)Pu;b

is a tautology in the ` variables that mention pigeon u and has size 2` ·(`+(`−1))+(2`−1) ≤
` · 2`+1. By Lemma 2 it has a DNF-proof of size at most 27 · `2 · 23`+2. The sporadic axiom is
obtained from this tautology, written appropriately via one structural inference, by at most
2` many cuts with domain clauses of size at most 2` each. This adds a factor of at most
(1 + 2`) · ` · 2`+1 · 2` ≤ `2 · 22`+3 in size. In total, the proof has size at most 28 · `2 · 23`+2.

5.4 Killing large disjunctions

Let t be a natural such that n < t < m and let G = (U, V,E) be a (t, n, dL, dR)-graph
with associated function φG. Let r be a natural such that 1 ≤ r ≤ n. We define a random
restriction µ = µ(G, r) on the variables of BPHP(G) by the following random experiment:

1. independently for every v ∈ V , choose a pigeon Qv ∈ NG(v) uniformly at random;

2. independently, choose a subset B ⊆ V uniformly at random among all r-element
subsets of V ;

3. let M := {(Qv, v) | v ∈ B and Qv 6= Qv′ for all v′ ∈ B \ {v}};

4. let µ be the partial assignment associated with the matching M.

Here, the partial assignment µ associated with a matchingM of G is the assignment that, for
every (u, v) ∈M , sets Pu;b to bit(b, j) for every b ∈ [`], where j is such that φG(u, j) = v, and
leaves the other variables unset. Call a formula F matching-satisfiable (in G) if F � µ = 1 for
some such partial assignment µ. Two formulas F and F ′ are very disjoint (in G) if NG(P)

and NG(P ′) are disjoint, where P ⊆ U and P ′ ⊆ U are the sets of pigeons mentioned by F
and F ′ respectively.

Lemma 24. Let s and w be naturals such that r ≥ s ≥ 1 and w ≥ 1. Further, let F =∨
Γ where Γ contains at least w matching-satisfiable, pairwise very disjoint formulas each

mentioning at most s pigeons. Then

Pr
[
F � µ 6= 1

]
≤ 3
√
r · exp

(
−w ·

(
r

dR · n

)s
·
(

1− r

n

)dL·s)
.

85

Proof. Define the random variables B̃, (Q̃v)v∈V , M̃, µ̃ similarly as above but letting B̃ be
the random subset of V that contains every v ∈ V independently with probability r/n. Let
B̃v denote the indicator variable for the event that v ∈ B̃; note that the indicator variables
are independent.

Fix a matching-satisfiable formula F ′ ∈ Γ mentioning at most s pigeons. Choose a
minimal matching M such that F ′ � µ = 1 where µ is the partial assignment associated
with M . Write M0 := Dom(M) and M1 := Im(M). Then, by minimality of M , the domain
M0 is included in the set of pigeons P ⊆ U mentioned by F ′. Observe that the event that
F ′ � µ̃ = 1 is implied by the event that M ⊆ M̃. The latter event is implied by the
intersection of

E1 := “B̃v = 1 for every v ∈M1”, and

E2 := “Q̃v = M−1(v) for every v ∈M1”

and the event that Q̃v /∈M0 for every v ∈ B̃ \M1. Thus it is implied by the intersection of
E1, E2 and

E3 := “B̃v = 0 for every v ∈ NG(M0) \M1”.

Now, the probability of E1 is at least (r/n)s, the probability of E2 is at least (1/dR)s, and
the probability of E3 is at least (1− r/n)dL·s, the last because |NG(M0) \M1| ≤ dL · s. These
three events are independent. Hence

Pr[E1 ∩ E2 ∩ E3] ≥
(r
n

)s
·
(

1

dR

)s
·
(

1− r

n

)dL·s
=: p.

The event E1 ∩ E2 ∩ E3 depends only on the variables Q̃v and B̃v with v ∈ NG(M0) ⊆
NG(P). Thus, for a family of pairwise very disjoint formulas in Γ, the events are independent.
Using the assumption of the lemma,

Pr[F � µ̃ 6= 1] ≤ (1− p)w ≤ exp(−wp). (5.3)

Writing B(m, q)(k) =
(
m
k

)
qk(1− q)m−k for the binomial distribution, we have

Pr[F � µ̃ 6= 1] ≥ Pr[|B̃| = r] ·Pr[F � µ̃ 6= 1 | |B̃| = r] = B
(
n,
r

n

)
(r) ·Pr[F � µ]. (5.4)

Using Robbins’ [48] version of Stirling’s formula, one can derive the following bound (see

86

also [12, p.4, Eq. (1.5)]):

B
(
n,
r

n

)
(r) ≥ 1

e1/6
· 1√

2π
·
(

n

r(n− r)

)1/2

≥ 1

3

1√
r
. (5.5)

Combining (5.3), (5.4) and (5.5) yields the lemma.

Again, we write ` := |dL − 1|.

Lemma 25. Let s, s0 and s1 be naturals such that s ≥ 1 and s0 ≥ s1 ≥ 2`. If BPHP(G)

has a refutation of size at most s0 such that every formula in it has the form
∨

Γ for some
set2 Γ of `-CNFs each of which has size at most s1 and mentions at most s pigeons, then
BPHP(G) has a refutation of size at most s0 · 729 · s4

1 · 4s·` such that every formula in it has
the form

∨
Γ for some set Γ of `-CNFs each of which mentions at most s pigeons and is

matching-satisfiable.

Proof. Consider an (IOC)-application that introduces a `-CNF F which is not matching-
satisfiable. Let ∆ be the set of clauses from BPHP(G) that mention exactly the at most
s many pigeons mentioned by F . Then ∆ |= ¬F because any assignment to the pigeon
variables appearing in ∆ satisfies every clause in ∆ only if it is associated to some matching.
Since there are at most s · ` variables mentioning the s many pigeons in F , by Lemma 2
there is a proof of ¬F from ∆ of size at most 27 · s2

1 · 2s·`. Add this proof to the refutation; a
structural inference on ¬F and two cuts with the premisses of the (IOC) application derives
the formula without F ; this formula can be used to continue the proof. Proceed like this for
all (IOC)-applications in the original proof. For each F eliminated in this way we added a
proof of the `-DNF ¬F and this proof may contain new formulas which are not matching-
satisfiable. But this proof can be chosen as an `-DNF-proof where each `-term mentions at
most s many pigeons. As above, eliminate all the new `-terms T which are not matching-
satisfiable. The required proofs of the clause ¬T can now be chosen as resolution proofs of
size at most 27 · (`+ (`− 1))2 · 2`. In these resolution proofs all formulas are disjunctions of
literals and every literal is matching-satisfiable – at least if every pigeon u has at least one
neighbor in G. This we can assume because otherwise already the domain clauses for u are
contradictory and have a resolution refutation of size at most 27 · (`+ (`− 1))2 · 2`.

2We allow Γ to be a singleton and understand that
∨
{F} = F .

87

5.5 Switching lemma

Associate with a DNF F the hypergraph H(F) which has as universe the set of variables of
F and which has for each term T in F a hyperedge consisting in the variables of T . The
covering number cv(F) of F is the size of the smallest hitting set of H(F).

Lemma 26. Let F be a k-DNF in the binary pigeon variables. Then F contains at least
cv(F)

`·k·dL·dR
many pairwise very disjoint terms.

Proof. Let T be a maximal family of very disjoint terms in F . Let P be the set of pigeons
mentioned by

∨
T . Then the set of all pigeon variables mentioning pigeons in NG(NG(P))

is a hitting set of H(F). Noting that NG(NG(P)) has cardinality at most |T | · dL · dR we get

cv(F) ≤ |NG(NG(P))| ≤ |T | · ` · k · dL · dR

and the lemma follows.

Interest in the covering number stems from the following lemma proved in by Segerlind,
Buss and Impagliazzo [50] (see also the survey [49, Corollary 9.3]).

Lemma 27 ([50]). Let k, h, c > 0 be naturals and γ > 0 a real. Let Γ be a set of k-
DNFs that is closed under restrictions and assume that σ is a random restriction such that
Pr[F � σ 6= 1] ≤ c · 2−γ·cv(F) for every F ∈ Γ. Then for every F ∈ Γ we have

Pr
[
h(F � σ) > h

]
≤ c · k · 2−(γ/4)k·h.

Recall, h(F) denotes the minimal height of a decision tree representing the formula F .

5.6 Matching game

In the next section we show that if G is a good expander, then all the refutations of BPHP(G)

involve some formula that cannot be represented by a shallow decision tree. For its proof
we use the matching games from [10] later simplified in [7]. Here we provide even cleaner
proofs.

Let G be a (U, V, dL, dR)-graph. For S ⊆ U and T ⊆ V , we say that S is matchable
into T if there exists a matching M of G with S ⊆ Dom(M) and Im(M) ⊆ T . If S is not
matchable into T but every proper subset of S is, we call it minimally non-matchable. For a

88

matching M and a natural q > 0, we say that M is q-extendible if every S ⊆ U \ Dom(M)

of cardinality at most q is matchable into V \ Im(M).

Lemma 28. Let q > 0 be a natural. If M is a q-extendible matching and (u, v) is an edge
in M , then M \ {(u, v)} is a q-extendible matching.

Proof. Write M0 := Dom(M) and M1 := Im(M) and note that u ∈ M0 and v ∈ M1. Let S ′

be a subset of U \ (M0 \ {u}) of cardinality at most q. We need to show that S ′ is matchable
into V \ (M1 \ {v}). We consider two cases: u ∈ S ′ and u 6∈ S ′. In case u ∈ S ′, using that
u ∈ M0, we have that S ′ \ {u} is a subset of U \M0 of cardinality at most q. Since M is
q-extendible, S ′ \ {u} is matchable into V \M1. But then, using that v ∈ M1, the set S ′ is
also matchable into V \ (M1 \ {v}) by adding (u, v) to the matching that witnesses this. In
case u 6∈ S ′ then S ′ is a subset of U \M0 of cardinality at most q. Since M is q-extendible
we conclude that S ′ is matchable into V \M1, and hence into V \ (M1 \ {v}).

For a natural q > 0 and a real b > 0, the graphG is a (q, b)-expander if |NG(S)| ≥ (1+b)|S|
for every S ⊆ U of cardinality at most q.

Lemma 29. Let q > 0 be a natural and b > 0 a real. If G is a (q, b)-expander, M is
a q-extendible matching with |M | < bqb/dLc and u ∈ U \ Dom(M), then there exists v ∈
NG(u) \ Im(M) such that M ∪ {(u, v)} is a q-extendible matching.

Proof. Again write M0 := Dom(M) and M1 := Im(M). Let v1, . . . , vl be an enumeration
of NG(u) \ M1. Since M is q-extendible and q ≥ 1, we have that {u} is matchable into
V \M1, so l ≥ 1. Clearly, M ∪ {(u, vi)} is a matching for every i ∈ {1, . . . , l}. Assume
for contradiction that M ∪ {(u, vi)} is not q-extendible for any i ∈ {1, . . . , l}. For every
i ∈ {1, . . . , l} let Si be a subset of U \ (M0 ∪ {u}) of cardinality at most q that is minimally
non-matchable into V \ (M1 ∪ {vi}). By Hall’s Theorem and the minimality of Si we have
|NG(Si) \ (M1 ∪ {vi})| < |Si|, and hence |NG(Si)| < |Si| + (qb/dL − 1) + 1. On the other
hand |Si| ≤ q, and hence |NG(Si)| ≥ (1 + b)|Si| by expansion of G. These together imply
|Si| < q/dL and hence |Si| < q/l because 1 ≤ l ≤ dL. Since this holds for every i ∈ {1, . . . , l}
we get |S| ≤ q for S :=

⋃l
i=1 Si ∪ {u}. Since M is q-extendible and S ⊆ U \M0 we conclude

that S is matchable into V \M1. A matching M ′ witnessing this matches u to vi for some
i ∈ {1, . . . , l}. As M ′ matches Si into V \M1 while Si is non-matchable into V \ (M1∪{vi}),
necessarilyM ′ matches some ui ∈ Si to vi. But this contradictsM ′ to be a matching because
ui 6= u as u /∈ Si.

89

5.7 Adversary argument

Let G be a (U, V, dL, dR)-graph. We derive a lower bound on the height of formulas in a
refutation of BPHP(G) provided G is suitably expanding. This is done by an adversary
argument (cf. [43]) based on Lemma 29.

Lemma 30. Let q > 0 be a natural and b > 0 a real. If G is a (q, b)-expander, then every
refutation of BPHP(G) contains a formula F with

h(F) > 1
3
bqb/dLc.

Proof. For the sake of contradiction assume F0, . . . , Fs−1 is a refutation of BPHP(G) such
that h(Fi) ≤ 1

3
bqb/dLc for all i ∈ [s]; let Ti be a decision tree of height ≤ 1

3
bqb/dLc represent-

ing Fi and assume Ts−1 is the tree with one node labeled 0. We can assume that every Fi
contains only variables occurring in BPHP(G): otherwise substitute 0 for all other variables
and “answer” in Ti all queries on these variables by 0.

For a matching M let µM denote the restriction associated with it (cf. Section 5.4).

Claim. Let M be a matching and i ∈ [s]. Then

1. if Fi is a clause in BPHP(G) or an axiom, then Fi � µM 6≡ 0,

2. if M is q-extendible and such that |M | ≤ 1
3
bqb/dLc and Fi � µM ≡ 0, then there

exists 1 ≤ i′ < i and a q-extendible matching M ′ such that |M ′| ≤ 1
3
bqb/dLc and

Fi′ � µM ′ ≡ 0.

Proof of Claim. The first item is trivial if Fi is an axiom. Assume Fi is a domain clause
for (u, j) /∈ Dom(φG). If u /∈ Dom(M), then Fi is untouched by µM . Otherwise there is j′

such that φ(u, j′) = M(u). Then j 6= j′ and there is a b ∈ [`] such that bit(b, j) 6= bit(b, j′).
Then µM evaluates Pu;b to bit(b, j′), and hence ¬bit(b,j)Pu;b � µM = 1. Then Fi � µM = 1, so
Fi � µM 6≡ 0.

Assume Fi is a collision clause for u, u′, j, j′ with u 6= u′ and φG(u, j) = φG(u, j′). If
not both u and u′ are in Dom(M), then clearly Fi � µM 6≡ 0. Otherwise, as M is a
matching, M(u) 6= φG(u, j) or M(u′) 6= φG(u′, j′). Assume the first and choose j′′ such that
M(u) = φG(u, j′′). Then j 6= j′′, so bit(b, j) 6= bit(b, j′′) for some b ∈ [`]. As above, this
implies ¬bit(b,j)Pu;b � µM = 1, so Fi � µM = 1 and Fi � µM 6≡ 0.

We now prove the second item. Let i and M accord its assumption. By the first item, Fi
is not a clause in BPHP(G) nor an axiom. Then there are i0, i1 < i such that Fi is logically

90

implied by (Fi0 ∧ Fi1). By Lemma 1 there is a decision tree T of height ≤ 2
3
bqb/dLc that

represents (Fi0 ∧ Fi1).
We call a matching appropriate for a path π in T if it is q-extendible, contains M ,

its associated restriction extends π (as a restriction, cf. Section 2.5), and its domain is
Dom(M)∪U(π), where U(π) is the set of pigeons mentioned by some variable queried in π.

Subclaim. There exists a branch π of T and a matching Mπ appropriate for π.

The subclaim implies the Claim: if π were a 1-branch, then (Fi0 ∧ Fi1) � µMπ ≡ 1 (since
µMπ extends π), so Fi � µMπ ≡ 1 and this contradicts M ⊆ Mπ and Fi � µM ≡ 0. Hence π
is a 0-branch and thus extends a 0-branch π′ of Ti0 or Ti1 . Choose accordingly i′ := i0 or
i′ := i1 and letM ′ be the restriction ofMπ to U(π′). ThenM ′ is q-extendible (by Lemma 28),
|M ′| ≤ 1

3
bqb/dLc (since |U(π′)| ≤ 1

3
bqb/dc) and Fi′ � µM ′ ≡ 0 (since µM ′ extends π′).

Observe that M is an appropriate matching for the path π consisting only in the root of
T . To prove the subclaim it thus suffices to show that if we have a path π with appropriate
matching Mπ such that π that does not lead to a leaf of T then we can extend π by one
node t such that there is an appropriate matching Mπt for πt.

So let π and Mπ be as stated, say, π leads to an inner node t of T querying the variable
Pu;b. We distinguish two cases. In case u ∈ Dom(Mπ) then µMπ evaluates Pu;b; in this case we
prolongue π by the corresponding successor t′ of t and letMπt′ := Mπ. In case u /∈ Dom(Mπ)

we look for some v such thatMπ∪{(u, v)} is a q-extendible matching and then proceed as in
the first case. Such a v can be found because Dom(Mπ) = Dom(M) ∪ U(π) has cardinality
at most

|Dom(M)|+ |U(π)| ≤ 1
3
bqb/dLc+ 2

3
bqb/dLc − 1 < bqb/dLc,

and Lemma 29 applies. Here we use that |U(π)| is bounded by the length of π, and this
is at most 2

3
bqb/dLc − 1 because π leads to an internal node of T , whose height is at most

2
3
bqb/dLc. a

The Claim implies that there are no i and M that satisfy the assumption of the second
item. But i := s − 1 and M := ∅ do: using Hall’s Theorem it is easy to see that ∅ is
q-extendible, and obviously 0 ≤ 1

3
bqb/dLc and Fs−1 � ∅ ≡ 0 hold because Fs−1 = 0.

5.8 Proof size lower bound

We prove Theorem 6. Let ε > 0 be arbitrary and write

m := n2, t := 2n, s := (log n)1/2−ε.

91

Assume for the sake of contradiction that there exists infinitely many n such that PHPm,t
n

has a DNF-refutation R = Rn of size at most ns. For the next claim recall the random
restriction ρ = ρ(t) from Section 5.2.

Claim 1. There exists a realization ρ of ρ such that every term in every DNF in R � ρ

mentions at most s pigeons.

Proof of Claim 1: Call a term long if it mentions more than p := 2s log(n) pigeons, and short
otherwise. By Lemma 21, a long term T does not restrict to 0 (under ρ) with probability at
most (

1

2
+

t

m− p

)p
≤ 1

2p
· e

tp
2(m−p) .

But this is smaller than n−s · 1/2 noting tp
2(m−p) ≈ 0 for large enough n. By the union bound,

with probability bigger than 1/2 every long term of R restricts under ρ to 0.
By Lemma 22, a short term restricts to one mentioning more than s many pigeons with

probability at most (
p

s+ 1

)
·
(
t

m

)s+1

≤
(
pt

m

)s+1

.

But this is smaller than n−s ·1/2 for sufficiently large n. By the union bound, with probability
bigger than 1/2 every short term of R restricts to one mentioning at most s pigeons. The
claim follows. a

Choose ρ according Claim 1. We already observed in Section 5.2 that, up to some
renaming of pigeons, R � ρ is a DNF-refutation of PHPt

n size at most ns.
Set

b := 1, q := d
√
ne, r := dn/ log ne, dL := dlog ne, dR := 7dlog ne.

Recall for later use that ` := |dL−1| and therefore ` is O(log log n). Assuming n is sufficiently
large the hypotheses of Lemmas 18 and 20 are satisfied for ε := 1/2 and imply the existence
of a (U, V, dL, dR)-graph G that is a (q, b, r)-resilient expander where U = [t] and V = [n].

Recall the restriction θG from Section 5.3. There we observed that PHPt
n � θG is PHP(G),

so (R � ρ) � θG is a refutation of PHP(G) of size at most ns. Let φG be a map associated
with G as in Section 2.2. All over the refutation substitute the variable Pu,v by the `-term∧
b∈[`] ¬1−bit(b,j)Pu;b, where j is such that φG(u, j) = v. Of course, the result is again a

refutation. By the discussion just before Lemma 23 it refutes sporadic axioms and collision
clauses of BPHP(G). By Lemma 23 we can add proofs of the sporadic axioms from the

92

domain clauses of BPHP(G); this way we get a refutation R′ of BPHP(G) of size nc1·s for
some constant c1.

Every term in every DNF in (R � ρ) � θG mentions at most s pigeons and becomes after
the substitution an `-CNF mentioning at most s pigeons. The additional proofs added for
the sporadic axioms mention only one pigeon. Hence, R′ is a refutation of BPHP(G) all of
whose formulas are disjunctions of `-CNFs each mentioning at most s pigeons. Applying
Lemma 25 we move to a refutation R′′ of size nc2·s for some constant c2, where additionally
all these `-CNFs are matching-satisfiable.

For the next claim, let B and µ be random variables defined for G as in Section 5.4.

Claim 2. There exists a realization (B, µ) of (B,µ) such that

(a) h(F � µ) ≤ 1
3
bqb/dLc for all F in R′′, and

(b) G \B is a (q, 1)-expander.

Proof of Claim 2. Note a random B satisfies (b) with probability bigger than 1/2 because G is
(q, b, r)-resilient. Hence it suffices to show that for any disjunction F of matching-satisfiable
`-CNFs each mentioning at most s pigeons

nc2·s · Pr[h(F � µ) > 1
3
bqb/dLc] ≤ 1

2
. (5.6)

A matching-satisfiable `-CNF mentioning at most s pigeons is logically equivalent to a DNF
with matching-satisfiable terms each mentioning at most s pigeons. Since there are at most
s ·` binary pigeon variables mentioning some fixed set of bsc pigeons, this DNF can be chosen
as an bs · `c-DNF. Thus, a formula F as above is logically equivalent to a bs · `c-DNF F ′

where each term mentions at most s pigeons and is matching-satisfiable. In (5.6) we can
equivalently replace3 F by F ′.

To bound the probability in (5.6) we intend to apply Lemma 27. By Lemmas 24 and 26,
the random restriction µ satisfies the assumptions of Lemma 27 with

k := bs · `c, h := b1
3
qb/dLc, c := d3

√
re,

and
γ :=

(
r

dR · n

)s
·
(

1− r

n

)dL·s
· log(e)

` · k · dL · dR
.

By Lemma 27 we have Pr[h(F � µ) > 1
3
bqb/dLc] is at most c · k · 2−(γ/4)k·h. Note that if n

is sufficiently large, then (1 − r/n)dL·s ≥ (1/e)c3·s for some constant c3 > 0. It is then easy
3Thanks to our weaker notion of representation – cf. Remark 1.

93

to see that γ/4 ≥ (1/ log n)c4·s, and hence (γ/4)k ≥ (1/ log n)c4·s
2·` ≥ n−1/(logn)ε for some

other constant c4 > 0. As h ≥ n1/3 we get (γ/4)k · h ≥ n1/4 for sufficiently large n. Noting
c · k ≤ n, then (5.6) follows. a

Choose (B, µ) according to Claim 2, say, µ is associated with the matching M of G.
Recall that R′′ refutes BPHP(G). We claim R′′ � µ is a refutation of BPHP(G′) for

G′ := G \ (Dom(M) ∪ Im(M)).

We have to show that every clause C of BPHP(G) restricts under µ to 1 or to a clause of
BPHP(G′). If C does not mention a pigeon in Dom(M), then C is a clause of BPHP(G′)

and C � µ = C. If C mentions only pigeons in Dom(M), then C � µ = 1. Finally,
assume C is a collision clause for (u, j) ∈ Dom(φG) and (u′, j′) ∈ Dom(φG) with u 6= u′

and φG(u, j) = φG(u′, j′), and exactly one pigeon, say u, in Dom(M). If j is such that
φG(u, j) 6= M(u), then C � µ = 1; otherwise, C � µ =

∨
b∈[`] ¬bit(b,j′)Pu′;b and this is a domain

clause of BPHP(G′): note φG(u, j) = φG(u′, j′) = M(u) ∈ Im(M), so (u′, j′) /∈ Dom(φG′).
This is ensured by definition of the map associated to a restricted graph (see Section 2.2).

Since Im(M) ⊆ B, Claim 2 (b) implies that G′ is a (q, 1)-expander. Hence R′′ � µ

contradicts Lemma 30 by Claim 2 (a).

94

Chapter 6

Conclusions

In this chapter we present several open problems that we consider as the next steps in the
research lines presented in this thesis. At the end of the chapter, we include a brief note on
the publication status of the presented results.

6.1 Open problems

6.1.1 A characterization of QBFs with short refutations

In Chapter 3 we have shown that false QBFs with bounded respectful tree-width have
polynomial-size Q-resolution refutations. Also, we mentioned some classes of QBFs that
have short Q-resolution refutations, e.g. 2-QBFs and Horn-QBFs. Additionally, purely-
existential QBFs with bounded tree-width and QBFs with bounded respectful tree-width
also have short Q-resolution refutations.

It would be nice to find other classes of QBFs with short Q-resolution refutations. In
particular, we would like to identify other classes of QBFs with bounded tree-width that
have short Q-resolution refutations and, ultimately, characterize these kind of formulas.

6.1.2 A stronger interpretability result

Corollary 3 states that the class of standardized universal sentences with short R(const)-
refutations is closed under quantifier-free definitions. We would like to have the same result
for quantifier-free interpretations. To do so, we would need a stronger version of Theorem 4
similar to the following:

95

Statement 1. Let φ and ψ be conjunctions of standardized universal sentences. For all
naturals r, t, n ≥ t, s and k, if φ is quantifier-free interpretable in ψ with t parameters and
〈φ〉un `sk 2, then 〈ψ〉un `s

′

k′ 2 for s′ polynomial in s, n and 2k and k′ linear in k.

Note that this statement has been obtained by weakening the second hypothesis of The-
orem 4. We find this statement hard to believe. However, we identify some intermediate
results that look more attainable and can be of independent interest. On one side, we may
strengthen the second hypothesis of Statement 1 so that it is still weaker than in Theorem 4.
This hypothesis may be a natural, particular case of φIr . One of these is the aforementioned
φR. Another is the quotient of φ, called φQ, which is the particular case of φIr in which r = 1

and U is the trivial true relation.
On the other side, we may strengthen the first hypothesis of Statement 1 by adding

requirements on the θ-translation that must interpret φ in ψ. One way to do that is to fix
some of the θ-formulas. For example, we may require that θE(x̄, ȳ) = (x1 = y1), as in some
of our examples. Note that these two ways of strengthening the hypotheses in Statement 1
may be combined to obtain different intermediate results.

One of those is of special interest to us. This is the one that strengthens the first
hypothesis by requiring, that φ is interpretable in ψ through a translation in which θU(x̄) =

(x1 = x1) and θE(x̄, ȳ) = (x1 = y1), and leaves the second hypothesis as is. Such a theorem,
together with our quantifier-free interpretation of FPHP2n

n in FPHPn2,2n
n in section 4.3.4,

could be used to show that known upper-bounds on the size of the R(k)-refutations of
FPHP2n

n are also true for FPHPn2,2n
n . By slightly modifying our quantifier-free interpretation,

we could show these same upper-bounds for its non-functional version, PHP2n
n , for which we

also show lower-bounds in Chapter 5.

6.1.3 Complete principles for R(const)

In Chapter 4, inspired by the concept of reducibility among computational problems, we
proposed quantifier-free definability as a way to determine if a principle is as hard to prove
as another in a given proof system. Taking this analogy further, we can say that a principle
P is hard for a class of principles C if every principle in C defines P through a quantifier-free
translation. Further, we can say that P is complete for C if it is hard for C and P ∈ C.

We would be interested in determining the existence of a complete principle for the class
of those whose propositional translations have polynomial-size R(const) refutations. In [21],
Dantchev and Martin suggest that the relativization of the Least Number Principle could
be a candidate for this role.

96

6.1.4 Super-polynomial lower bounds for PHP2n
n

In Chapter 5 we have shown super-polynomial lower bounds on the size of the DNF-
refutations of the relativized principle PHPn2,2n

n . We would be interested in extending this
result to the more classical PHP2n

n . As mentioned in the introduction, determining if this
principle has bounded-depth polynomial-size proofs is a longstanding open problem. Ex-
tending our result would answer the question for depth two.

Even more: our current technique, using random restrictions, could possibly be iterated
to yield results for higher depths. One impediment for doing so is that the formula is
relativized. Therefore, extending our result to the unrelativized PHP2n

n could be a step
towards proving super-polynomial lower-bounds for all bounded-depth proof systems.

6.2 Publications related to this thesis

Each of the technical chapters of this thesis is based on a paper as detailed in the following:

• The main result of Chapter 3 is from the paper Bounded-width QBF is PSPACE-
complete, a joint work with A. Atserias. This paper has been accepted at the 30th
Symposium on Theoretical Aspects of Computer Science (STACS 2013) in Kiel, Ger-
many, February 2013.

• The result in Chapter 5 is contained in the paper Lower Bounds for DNF-refutations of
a Relativized Weak Pigeonhole Principle, a joint work with A. Atserias and M. Müller.
This paper has been accepted at the 27th Annual IEEE Conference on Computational
Complexity (CCC 2013) in Palo Alto, USA, June 2013.

• The definability and interpretability results in Chapter 4, as well as their auxiliary
lemmas from Chapter 2, will be part of the paper Reducibility Among First-order
Principles, a joint work with A. Atserias and M. Müller. This paper is currently in
preparation.

97

98

Bibliography

[1] M. Ajtai. The complexity of the pigeonhole principle. Proceedings of the 29th Sym-
posium on the Foundations of Computer Science (FOCS), 346-355, 1988.

[2] M. Ajtai. Approximate counting with uniform constant-depth circuits. Advances
in Computational Complexity Theory, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science 13:1-20, 1993.

[3] M. Alekhnovich and A.A. Razborov. Satisfiability, branch-width and Tseitin tautolo-
gies. Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS),
593-603, 2002.

[4] S. Arnborg, D.G. Corneil and A. Proskurowski. Complexity of finding embeddings in
a k-tree. SIAM Journal on Algebraic Discrete Methods 8(2):277-284, 1987.

[5] S. Arora and B. Barak. Computational Complexity: a modern approach. Cambridge
University Press, 2009.

[6] B. Aspvall, M.F. Plass and R.E. Tarjan. A linear-time algorithm for testing the truth
of certain quantified boolean formulas. Information Processing Letters 8(3):121-123,
1979.

[7] A. Atserias. On sufficient conditions for unsatisfiability of random formulas. Journal
of the ACM 51(2):281-311, 2004.

[8] A. Atserias, M.L. Bonet and J.L. Esteban. Lower bounds for the weak pigeonhole
principle and random formulas beyond resolution. Information and Computation
176(2):136-152, 2002.

[9] P. Beame, R. Impagliazzo and T. Pitassi. Exponential lower bounds for the pigeonhole
principle. Computational Complexity 3(2):97-140, 1993.

99

[10] E. Ben-Sasson and N. Galesi. Space complexity of random formulae in resolution.
Random Structures and Algorithms 23(1):92-109, 2003.

[11] E. Ben-Sasson and A. Wigderson. Short proofs are narrow – resolution made simple.
Journal of the ACM 48(2):149-169, 2001.

[12] B. Bollobás. Random graphs. 2nd edition, Cambridge University Press, 2001.

[13] H.K. Büning, A. Flögel and M. Karpinski. Resolution for quantified Boolean formulas.
Information and Computation 117(1):12-18, 1995.

[14] S. R. Buss. Polynomial size proofs of the propositional pigeonhole principle. Journal
of Symbolic Logic 52(4):916-927, 1987.

[15] P. Chatalic and L. Simon. Multi-resolution on compressed sets of clauses. Proceed-
ings of the 12th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI), 2-10, 2000

[16] H. Chen. Quantified constraint satisfaction and bounded treewidth. Proceedings of
the 16th European Conference on Artificial Intelligence (ECAI), 161-165, 2004.

[17] H. Chen and V. Dalmau. From pebble games to tractability: An ambidextrous con-
sistency algorithm for quantified constraint satisfaction. Proceedings of the 19th Con-
ference on Computer Science Logic (CLS). 232-247, 2005.

[18] H. Chen and V. Dalmau. Decomposing quantified conjunctive (or disjunctive) formulas.
Proceedings of the 27th Symposium on Logic in Computer Science (LICS), 205-214,
2012.

[19] S. A. Cook, R. A. Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic 44(1):36-50, 1979.

[20] V. Dalmau, P. Kolaitis and M.Y. Vardi. Constraint satisfaction, bounded treewidth
and finite-variable logics. Proceedings of the 8th International Conference in Principles
and Practice of Constraint Programming (CP), 223-254, 2006.

[21] S. Dantchev and B. Martin. The limits of tractability in resolution-based propositional
proof systems. 6th Conference on Computability in Europe. Lecture Notes in Computer
Science 6158:98-107, 2010.

100

[22] S. Dantchev and S. Riis. On relativization and complexity gap for resolution-based
proof systems. 17th Annual Conference of the European Association for Computer
Science Logic (CSL), Lecture Notes in Computer Science 2803:142-154, 2003.

[23] R. Dechter. Constraint processing. Morgan Kaufmann, 2003.

[24] R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction problems.
Artificial Intelligence 34(1):1-38, 1987.

[25] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelligence
38:353-366, 1989.

[26] J. L. Esteban, N. Galesi and J. Messner. On the complexity of resolution with bounded
conjunctions. Theoretical Computer Science, 321:347-370, 2004.

[27] E. Freuder. Complexity of k-tree structured constraint satisfaction problems. Proceed-
ings of the 8th National Conference on Artificial Intelligence (AAAI) 1:4-9, 1990.

[28] M. Furst, J. B. Saxe and M. Sipser. Parity, circuits, and the polynomial-time hierarchy.
Theory of Computing Systems 17(1):13-27, 1984.

[29] M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic
revisited. Proceedings of the 17th Symposium on Logic in Computer Science (LICS),
215-224, 2002.

[30] G. Gottlob, G. Greco, and F. Scarcello. The complexity of quantified constraint sat-
isfaction problems under structural restrictions. Proceedings of the 19th International
Joint Conference on Artificial Intelligence (IJCAI), 150-155, 2005.

[31] A. Haken. The intractability of resolution, Theoretical Computer Science 39(2-3):297-
308, 1985.

[32] N. Immerman. Descriptive complexity. Springer Verlag, 1999.

[33] J. Krajíc̆ek. Lower bounds to the size of constant-depth propositional proofs. Journal
of Symbolic Logic 59(1):73-86, 1994.

[34] J. Krajíc̆ek. On the weak pigeonhole principle. Fundamenta Mathematicae 170:123-
140, 2001.

101

[35] J. Krajíček, P. Pudlák and A. Woods. An exponential lower bound to the size of
bounded depth Frege proofs of the pigeonhole principle. Random Structures & Algo-
rithms 7(1):15-39, 1995.

[36] A. Maciel, T. Pitassi and A. R. Woods. A new proof of the weak pigeonhole principle.
Journal of Computer and System Sciences 64(4):843-872, 2002.

[37] J. Marques-Silva and J. Planes. Algorithms for maximum satisfiability using unsatis-
fiable cores. Proceedings of the 11th Conference on Design, Automation and Test in
Europe (DATE), 408-413, 2008.

[38] A. Meyer. Weak monadic second order theory of succesor is not elementary recursive.
Logic Colloquium. Lecture Notes in Mathematics 453:132-154, 1975.

[39] G. Pan and M.Y. Vardi. Symbolic decision procedures for QBF. Proceedings of the
10th International Conference on Principles and Practice of Constraint Programming
(CP), 453-467, 2004.

[40] G. Pan and M.Y. Vardi. Fixed-parameter hierarchies inside PSPACE. Proceedings of
the 21th Symposium on Logic in Computer Science (LICS), 27-36, 2006.

[41] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[42] J.B. Paris, A.J. Wilkie and A.R. Woods. Provability of the pigeonhole principle and
the existence of infinitely many primes. Journal of Symbolic Logic 53(4):1235-1244,
1988.

[43] P. Pudlák. Proofs as games. American Mathematical Monthly 107(6):541-550, 2000.

[44] R. Raz. Resolution lower bounds for the weak pigeonhole principle. Journal of the
ACM 51(2): 115-138, 2004.

[45] A. A. Razborov. Pseudorandom generators hard for k-DNF resolution and polynomial
calculus. Unpublished, 2003.

[46] A. A. Razborov. Resolution lower bounds for the weak functional pigeonhole principle.
Theoretical Computer Science 1(303):233-243, 2003.

[47] S. Riis. A complexity gap for tree-resolution. Comp. Complexity, 10:179-209, 2001.

102

[48] H. Robbins. A remark on Stirling’s formula. The American Mathematical Monthly
62(1):26-29, 1955.

[49] N. Segerlind. The complexity of propositional proofs. The Bulletin of Symbolic Logic
13(4):417-481, 2007.

[50] N. Segerlind, S. Buss and R. Impagliazzo. A switching lemma for small restrictions
and lower bounds for k-DNF resolution. Journal on Computing 33(5):1171-1200, 2004.

103

