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INTRODUCTION

Given a map g : C → D and a fibration p : E → B with fibers of the homotopy
type of F , it is well known that we can always obtain a fibrewise localization
of p under the localization functor Lg; although the same result is not true in
general for the A-cellularization functor CWA of pointed topological spaces. So
our initial interest was to find conditions over the base space B of p and over its
fibers, in order to determine when p admits a fiberwise cellularization, that is, a
commutative diagram like the following

CWAF //

cF
��

E
q //

b
��

B

F // E p
// B

where cF : CWA → F is the augmentation map for F , q is a fibration and b is a
map that induce the A-cellularization of homotopy fibers of p. Another natural
question around this situation is: if p admits a diagram like this, is it unique as
it happens in the fibrewise localization of p?.

The second question suggested us that a previous step to solve this problem
has to do with the homotopy classification of the above diagrams of fibrations
in terms of its fiber, that is, we should be able to find a universal diagram of
fibrations, with fiber cF : CWAF → F , that allow us to obtain the above dia-
grams as pullbacks of the universal one, as it happens in the classical case. By
following the classical way we can define aut(cF ) as the topological submonoid of
aut(CWAF ) × aut(F ) that consists of pairs (α, β), such that βcF ≃ cFα, where
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aut(CWAF ) and aut(F ) are the monoids of self homotopy equivalences of CWAF
and F , respectively.

The monoid aut(cF ) acts on the right of the universal contractible space
Eaut(cF ), and on the left of the spaces CWAF and F . Then we can consider the
following Borel construction [2]:

CWAF
cF //

��

F

��
Eaut(cF )×aut(cF ) CWAF //

��

Eaut(cF )×aut(cF ) F

��
Baut(cF ) Baut(cF )

So by pulling-back this diagram with a map B → Baut(cF ), we obtain di-
agrams with fiber cF : CWAF → F . Thus, the next step is to proof that this
diagram is universal and classifies all the diagrams of fibrations with fiber cF .

We considered that the proper context to get this is the simplicial one, fur-
thermore, this classification problem is independent of the functor CWA and is
part of a general classification problem, that is, if S is the category of simplicial
sets and C is a small category, what we want is to classify fibrations in the cat-
egory SC of functors from C to S (or the category of C-diagrams in S). In this
case we fix a C-diagram F and consider fibrations p : E → B with fiber of the
homotopy type of F and base space the constant C-diagram to the space B of S.

The classical case that corresponds to the category C with one object and no
non-identity morphisms was solved by Barrat [1] around 1958. In this situation
to classify fibrations p : E → B with fiber F , the firs step is to replace p by a
deformation retract of it which is a minimal fibration, and then to show that a
minimal fibration is a fibre bundle. Next, each fiber bundle can be considered
a twisted cartesian product of its base B and its fiber F , and each of them is
determined by a twisting function t : B → aut(F ). Finally they show that the
equivalence classes of such twisted products is in one to one correspondence with
the homotopy classes of maps from B to Waut(F ).

What we do in this memory is to complete this classical sequence followed to
classify fibrations in S in order to classify C-diagrams of fibrations in SC. In this
case the classification theorem can be established as follows:
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Theorem. Let C be a small EI-category with a finite number of objects, and
F and B, C-diagrams, where B is the constant diagram to the connected sim-
plicial set B. Then the set [B,Whaut(F)] of homotopy classes of maps from B
to Whaut(F ) is in bijective correspondence with the set of equivalence classes of
C-diagrams of fibrations with base space B and fibers with the homotopy type of F.

By using this result we are able to express the existence and uniqueness of
the fibrewise cellularization, for a given fibration p, in terms of the obstructions
to the existence of a lifting of certain map.

Below we summarize briefly the work done in this memory, and we refer the
reader to each chapter for further details on a specific subject.

In the Chapter 0 we exposed the basic definitions and results about simpli-
cial sets. Some proofs about fiber bundles and twisted cartesian products are
included, since the comprehension of the combinatorial calculations involved to
the level of spaces was fundamental to understand the behavior of the situation in
which we have many spaces connected by arrows between them. Although some
proofs are briefly commented in the literature, mainly in [21] and [1], we made
the exercise to complete them in a detailed way, as for example, the Propositions
0.1.28 and 0.1.29.

We also introduce some basic language about model categories, simplicial
model categories and cofibrantly generated model categories. By exploiting the
cofibrantly generated model structure over SC we are able to generalize the clas-
sical concepts about minimal fibrations, fibre bundles, or structural group, to the
case of C-diagrams of fibrations over a constant base space. We finish the chapter
by introducing the localization functor Lg and the cellularization functor CWA.

The first chapter introduces the notion of free diagram, as is defined by Philip
Hirschhorn in [16], and its properties are given in terms of adjoint pairs of func-
tors. The free diagrams on the standard n-simplex △[n] will be the basic pieces
through we will study the C-diagrams, since as we have shown in Proposition
1.1.8, any diagram can be recover through a colimit process by these objects.
The structure of cofibrantly generated model category over SC is also introduced
and the C-fibre bundles and C-twisted cartesian products are introduced as a nat-
ural generalization of the classical ones in S.
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We also establish a classification result for C-fiber bundles an hence for C-
twisted cartesian products in Theorem 1.4.12. Finally we describe the automor-
phism group aut(F) by using free diagrams and also by taking the description
given by Dwyer and Kan in [7]. With the first description given we are able to
find an equivalent definition of C-fiber bundle in terms of free diagrams, as it is
shown in Appendix C.

The Chapter 2 starts with preliminary concepts and properties about the ho-
motopy relation in SC. In the second section we define the sub-homotopy relation
between n-simplices, which is used to compare homotopycally different pieces of
orbits of simplices. By using these relation in free cell complexes we are able
to fit (homotopically) whole orbits of n-simplices into another orbits, thus the
concept of free cell complex is quite important, since it is the one for which we
can formulate the definition of minimal diagram.

At this point the Quillen’s small object argument exposed in Appendix B is
also important. This argument is the first additional steep added to the classical
sequence followed to classify fibrations, since it allow us to obtain from a fibration
p with fiber F an equivalent one whose total space is a free cell complex. For
fibrations whose total space is a free cell complex the well known results about
minimal fibrations are proved.

Joining the previous arguments with the ones given in the Chapter 1 we can
establish a classification theorem in terms of the fiber F ′ obtained from the min-
imal fibrations constructed. The second step added to finish the classification
consists in to connect the homotopy type of the monoid aut(F ) with the one of
aut(F ′), by using [7].

It is important to remark that in order to obtain a minimal fibrations some
restrictions over the category C are necessary, it becomes clear in Proposition
2.2.6 and the Appendix A.

In Chapter 3 we back again to the fibrewise cellularization problem for a
given fibration p : E → B. As we already know, the fibration p is classified by a
map h : B → Baut(F ), then by our classification theorem it holds that p has a
fiberwise cellularization, if in the following diagram h has a lift
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Baut(cF )

��
B h //

h̃
::

Baut(F )

It holds that the obstructions to the existence and uniqueness of this lifting
lies in H i+1(B, πi(L)) and H i(B, πi(L)), respectively. So in the first part of this
chapter we strive to characterize the homotopy fiber of Baut(cX) → Baut(X),
and in the last section we give some examples where it is possible to obtain a
fiberwise cellularization.

With respect to the classification problem it is important to remark that
recently, Blomgren and Chachólski [Martin Blomgren, Wojciech Chachólski. On
the Classification of Fibrations, Preprint, 2012] have independently obtained a
classification theorem for fibrations in general model categoriesM using different
methods.
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CHAPTER 0

PRELIMINARY NOTIONS ABOUT
SPACES

In this chapter we introduce the category of Simplicial Sets S, or the category
of Spaces, and its properties as a closed model category. Some definitions and
properties about simplicial sets are necessary to deal with diagrams of spaces,
since many of them will be generalized, for example those concerning n-simplices,
locally trivial maps, twisted cartesian products and fibre bundles among others.

In this chapter after introduce the category of simplicial sets, in which the
concept of Kan fibration is central, we define what a fibre bundle is, and follow-
ing the classical approach we show how the transformation elements for a given
atlas of a bundle are obtained (basically we followed Barrat’s paper [1] and the
one of Curtis [4]). We proceed in this way because the classical reasonings admit
a natural generalization in the case of C-diagrams of fibre bundles, as for example
the Proposition 0.1.19 that allow us to find regular atlasses. In a similar way the
twisted cartesian products are studied.

The section 2 consists of a battery of definitions and main results about model
categories. In particular we are interested in the different ways to obtain a struc-
ture of cofibrantly generated model categories for a given category M, since in the
case of spaces it allow us to determine the form of trivial cofibrations in SC, and
hence the one of fibrations, by knowing how cofibrations and trivial cofibrations
are in S. Not less important are the results about simplicial model categories
from which we can have the valuable covering homotopy property for fibrations.
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0.1. Simplicial Sets

Finally we introduce two homotopy idempotent functors: the localization
functor Lf with respect to a map f : A → B in S between cofibrant spaces,
and the cellularization functor CWA with respect to a pointed and connected
space A. The concepts of fibrewise localization and fibrewise cellularization are
also introduced.

0.1 Simplicial Sets
Let ∆ be the category whose objects are finite, non-empty, totally ordered sets
[n] = {0, 1, ..., n} and whose morphisms are the order preserving functions. If
Sets is the category of sets, the category of contravariant functors Sets∆

op

from
∆ to Sets is called the category of Simplicial Sets , also known as the Category of
Spaces . To shorten notation this category will be denoted by S, and for a given
simplicial set X ∈ S, Xn will stand for the set X[n] (its elements will be called
n-simplices).

Notice that in ∆ for every n and i = 0, 1, ..., n there exists a unique injective
morphism εi : [n − 1] → [n] whose image misses i and a unique surjective map
σi : [n + 1] → [n] with two elements mapping to i. It is not difficult to show
that every morphism β : [n] → [m] in ∆ has a unique epi-monic factorization
β = εσ, where the monic ε can be uniquely expressed as a composition of maps
ε = εks ...εk1 with 0 ≤ k1 < ... < ks ≤ m and the epi σ is uniquely a composition
of maps σ = σj1 ...σjt with 0 ≤ j1 < ... < jt ≤ n (see [23, Chapter 8] for further
details of this factorization).

Exploiting this property we can prove that in order to define a simplicial set,
it is necessary and sufficient to give a sequence of sets X0, X1,X2,... together with
operators di : Xn → Xn−1 and si : Xn → Xn+1 for i = 0, 1, ..., n, which satisfy
the following identities

{
didj = dj−1di if i < j
sisj = sij+1si if i ≤ j

disj =


sj−1di if i < j
id if i = j, i = j + 1
sjdi−1 if i > j + 1

The operators di and si are called faces and degeneracies respectively, and
the above identities are known as simplicial identities. A subset Y of a simplicial
set X forms or is a simplicial subset of X if it is closed under these operators. A
simplex x ∈ Xn will be called degenerate if it is the image of some degeneracy
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Chapter 0. Preliminary notions about spaces

map si and non-degenerate otherwise. The set of degenerate simplices of X will
be denoted by X♭.

Definition 0.1.1 ([21]) A simplicial map f : X → Y between the simplicial sets
X and Y is a collection of set maps fn : Xn → Yn, n ≥ 0, which commutes with
the face and degeneracy operators, that is, fn◦di = di◦fn+1 and fn◦si = si◦fn−1.

As a consequence of the epi-monic factorization of morphisms in ∆, every
composition of faces and degeneracies can be expressed as follows.

Lemma 0.1.2 ([15], Lemma 1)
Every operator which is composition of d′is and s′js can be written uniquely in
the form

sjt ...sj1dk1 ...dks

where j1 < ... < jt and k1 < ... < ks (the cases t=0 and s=0 are included).

Such operators are called semisimplicial operators and after re-expressing
these by using the lemma, the difference (t− s) is called the height.

Example 0.1.3 The simplest examples of simplicial sets are the well known stan-
dard n-simplices △[n]. For [n] ∈ ∆, △[n] is the represented functor ∆(−, [n]) :
∆op → Sets that takes an object [p] ∈ ∆ to ∆([p], [n]) and a morphism α : [q]→
[p] to the precomposition arrow α∗ : ∆([p], [n]) → ∆([q], [n]). So the set of k-
simplices of △[n] is ∆([k], [n]) and its face and degeneracy maps di and si are
given by precomposition in ∆ with εi and σi, respectively.

Identifying β ∈ ∆([k], [n]) with its image β([k]), a k-simplex of △[n] can be
seen as a sequence of integers (a0, ..., ak) with 0 ≤ a0 ≤ a1 ≤ ... ≤ ak ≤ n. Thus
the semisimplicial operators are defined by di(a0, ..., ak) = (a0, ..., ai−1, âi, ..., ak),
and si(a0, ..., ak) = (a0, ..., ai, ai, ai+1, ..., ak), where âi means that we skip the i-th
element. We let ιn denote (0, 1, 2, ..., n) ∈ △[n].

For our purposes one alternative way to define △[n] is as follows: let ιn be a
symbol, then △[n]k is the set of all elements φιn, where φ is any semisimplicial
operator with domain n and height k − n; its faces and degeneracies are defined
by di(φιn) = (diφ)ιn and si(φιn) = (siφ)ιn. The complex △[n] contains subcom-
plexes △̇[n] (boundary of △[n]) and Λk[n], 0 ≤ k ≤ n (kth-horn), where △̇[n] is
the smallest subcomplex of △[n] containing the faces diιn, 0 ≤ i ≤ n, and the

3



0.1. Simplicial Sets

kth-horn ( n ≥ 1) is the subcomplex of △[n] generated by all faces diιn, except
for the face dkιn.

One version of Yoneda’s Lemma [20, Chapter III.2] tells us that the set of
maps [n] → [m] in ∆ corresponds bijectively with the set of morphisms △[n] →
△[m]. Therefore the maps εi and σi in ∆ correspond to maps εi : △[n−1]→△[n]
and σi : △[n + 1] → △[n] in S, and these morphisms are defined explicitly by
the formulas εi(φιn−1) = φdiιn and σi(φιn+1) = φsiιn. For any simplicial set X
a stronger version of Yoneda’s Lemma also permits to give a natural bijective
correpondence between Xn and the set of morphisms △[n]→ X in S. Thus, for
x ∈ Xn its corresponding map x : △[n]→ X is called the representing map for x
and is defined by x(φιn) = φx.

Example 0.1.4 Given two simplicial sets X and Y we can define with them other
simplicial sets. The product X × Y is the simplicial set whose set of n-simplices
is the cartesian product Xn × Yn, and for all (x, y) ∈ (X × Y )n the faces and
degeneracies are defined by di(x, y) = (dix, diy) and si(x, y) = (six, siy), repec-
tively. The function complex hom(X,Y ) has as set of n-simplices hom(X, Y )n
the simplicial maps HomS(△[n] × X, Y ). If g ∈ HomS(△[n] × X,Y ), then
the faces dig and the degeneracies sig are given by the following compositions

△[n− 1]×X εi×1 //△[n]×X g // Y and △[n+ 1]×X σi×1 //△[n]×X g // Y ,
that is, dig = g(εi × 1) and sig = g(σi × 1) for 0 ≤ i ≤ n.

Sometimes it is convenient to replace a map g : △[n] × X → Y by the map
g̃ : △[n] × X → △[n] × Y defined by g̃(t, x) = (t, g(t, x)), where t ∈ △[n] and
x ∈ X. Thus given g ∈ hom(Z, Y ) and f ∈ hom(Y,X), fg ∈ hom(Z,X) is
defined by f̃g = f̃ ◦ g̃. Under this operation the complex hom(X,X) is a monoid
and it operates on the left of X by f.x = f(ιn, x), for f ∈ hom(X,X) and x ∈ X
(see Definition 0.1.23 ). The group of automorphisms aut(X) of X is the maximal
subgroup aut(X) ⊆ hom(X,X), so f ∈ hom(X,X) belongs to aut(X) if and only
if f̃ has an inverse.

From a homotopical viewpoint it is technically convenient to focus on certain
simplicial sets that satisfies the extension condition.

Definition 0.1.5 ([21]) A simplicial set X is said to satisfy the extension con-
dition if for every colletion of n+1 n-simplices x0, x1, ..., xk−1, xk+1, ..., xn+1 which
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Chapter 0. Preliminary notions about spaces

satisfy dixj = dj−1xi, i < j, i ̸= k, j ̸= k, there exists an (n + 1)-simplex x such
that dix = xi for i ̸= k.

Equivalently X satisfies the extension condition if for every simplicial map
f : Λk[n]→ X there is a map f̂ : △[n]→ X such that f̂ |Λk[n] = f . If X satisfies
the extension condition, it is called a Kan complex or fibrant object of S. As in
[21] the word ‘complex’ will always mean simplicial set.

If X is a fibrant simplicial set, it holds that hom(Z,X) is fibrant as well [15],
and if G is a simplicial group, that is, a simplicial set where every Gn is a group
being its faces and degeneracies homomorphisms of groups, then G is fibrant [21].

Example 0.1.6 If G is a simplicial group the simplicial set WG is defined by
WG0 = {∗} and WGn = Gn−1 × Gn−2 × ... × G0 if n ≥ 1, where the simplicial
operators are given by s0(∗) = e0 and di(g0) = ∗ if i = 0, 1. If n > 1, then
the face operators are defined by d0(gn−1, ..., g0) = (gn−2, ..., g0), di(gn−1, ..., g0) =
(di−1gn−1, di−2gn−2, di−3gn−3, ..., d0gn−ign−i−1, gn−i−2, ..., g0), and the degeneracies
by s0(gn−1, ..., g0) = (en, gn−1..., g0). The Kan complex WG is known as the bar
construction of G and is called the classifying complex of G (it classifies principal
fibrations with fiber G, see Theorem 0.1.32).

Example 0.1.7 If X is a topological space, it is possible to construct func-
torially an associated simplicial set Sing(X) by letting the set of n-simplices
Sing(X)n be the set of all continuous maps △n → X (where △n is the topo-
logical standard n-simplex). If f ∈ Sing(X)n its faces and degeneracies are
defined by (dif)(t0, ..., tn−1) = f(t0, ..., ti−1, 0, ti, ..., tn−1) and (sif)(t0, ..., tn) =
f(t0, ..., ti−1, ti + ti+1, ti+2, ..., tn), for 1 ≤ i ≤ n. The Kan simplicial set Sing(X)
will be called the singular complex of X and the functor Sing : Top → S will be
known as the singular functor.

Definition 0.1.8 ([21]) Let X be a simplicial set. Two n-simplices x and w of
X are said to be homotopic x ≃ w, if dix = diw for 0 ≤ i ≤ n, and if there exists
an (n+1)-simplex z such that dn(z) = x, dn+1z = w with diz = sn−1dix = sn−1w
for 0 ≤ i < n. The simplex z is said to be a homotopy between x and w (z : x ≃
w).

The homotopy relation may fail to be an equivalence relation in general. Con-
sider the maps ι0, ι1 : △[0] → △[n], n ≥ 1, which classify the vertices 0 and 1,
respectively. The 1-simplex (0, 1) is a homotopy between ι0 and ι1, but there
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0.1. Simplicial Sets

is not a 1-simplex which could give a homotopy ι1
≃ // ι0 , since 0 ≤ 1. Al-

though if X is a fibrant simplicial set the homotopy relation between the set of
its n-simplices is an equivalence relation [14].

Definition 0.1.9 ([21]) A Kan complex X is said to be minimal if x ≃ y implies
that x = y.

Proposition 0.1.10 ([21])
Let x and w be simplices in a complex X. Suppose that both x and w are
degenerate and that dix = diw for all i, then x = w.

Definition 0.1.11 ([4]) A simplicial map p : X → B is called a fibre map or a
Kan fibration if for every commutative diagram

Λk[n] //
� _

��

X

p

��
△[n] //

=={
{

{
{

{
B

the dotted arrow exists and makes the diagram commutative.

Definition 0.1.12 ([21]) Let p : X → B be a simplicial map and let x,w ∈ X.
x is said to be p-homotopic to w if a there is a homotopy z : x ≃ w, such that
pz = psnx.

To shorten the notation the p-homotopy relation between n-simplices x and
w will be denoted by x ≃p w.

Definition 0.1.13 ([21]) Let f, g : X → Y be simplicial maps. Then f is
homotopic to g, f ≃ g, if there exist functions hi : Xn → Yn+1, 0 ≤ i ≤ n, which
satisfy

d0h0 = f, dn+1hn = g dihj = hj−1di if i < j
sihj = hj+1si if i ≤ j dj+1hj+1 = dj+1hj
sihj = hjsi−1 if i > j dihj = hjdi−1 if i > j + 1

Two complexes X and Y are said to be of the same homotopy type if there
exists maps f : X → Y and g : Y → X which satisfy gf ≃ 1X and fg ≃ 1Y . The
homotopy relation between maps f, g : X → Y is not in general an equivalence
relation, although if Y is a Kan complex it becomes an equivalence relation.

Lemma 0.1.14 ([21])
△[n] is contractible for all n.

6
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Proof. Define h0(ιn) = s0ιn, h1(ιn) = s0ιn and hi(ιn) = si−1...s0d1...di−1ιn,
1 < i ≤ n. Then if j : △[n]→ (0) ⊆ △[n] it holds that h : 1 ≃ j.

0.1.1 Fibre bundles

Given an 0-simplex v ∈ B, we say that the fiber of p : X → B over v, Fp(v), is
the complex obtained from the following pullback

△[0]×B X //

��

X

p

��
Fp(v)=△[0]×BX

△[0] v
// B
y

where △[0] is the standard 0-simplex. Notice that △[0] ×B X is the simplicial
subset of B that in dimension n has only the simplex sn0v. If v is an n-simplex
we define the fiber over v as Fp(ε0v), where ε0v = d̂0d1d2...dnv (d̂0 means that we
skip the face d0).

Definition 0.1.15 ([11]) A map p : X → B in S is said to be locally trivial, if
for every n-simplex v ∈ B there is an isomorphism αp(v) from △[n]× Fp(ε0v) to
△[n]×B X, such that the following diagram commutes

△[n]× Fp(ε0v)
αp(v)

∼=
//

pr

��

△[n]×B X //

pr

��

X

p

��
△[n] −

//△[n] v
// B
y

Lemma 0.1.16 ([11], Proposition 4.2.2)
Let p : X → B be a locally trivial map. If v and w are simplices in B with
w = αv for some operator α, then the fibers over v and w are isomorphic.

Proof. Assume that v ∈ Xc,n and w ∈ Xc,m. From the local triviality of p we
obtain an isomorphism αp(v) : △[n]×Fp(ε0v)→△[n]×BX, and considering the
0-simplex ε0αιn of △[n] we have the following diagram of pullbacks

7
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△[0]× Fp(ε0v) //

pr

��

△[n]× Fp(ε0v)
αp(v)

∼=
//

pr

��

△[n]×B X //

pr

��

X

p

��
△[0] ε0αιn

//△[n] −
//

y
△[n] v

// B
y

Note that the composite of the lower row is equal to ε0w, then there is an
isomorphism αp(ε0w) : △[0]×Fp(ε0w)→△[0]×Fp(ε0v) since p is locally trivial.

Definition 0.1.17 ([1]) Let F be a simplicial set. A map p : X → B will be
called a fibre bundle with fibre F if p is onto and for every n-simplex v ∈ B there
exists an isomorphism αp(v) : △[n] × F → △[n] ×B X such that the following
diagram commutes.

△[n]× F αp(v)

∼=
//

pr

��

△[n]×B X v̂ //

pr

��

X

p

��
△[n] −

//△[n] v
// B
y

The set of isomorphisms {αp(v)} will be called an atlas of the bundle and if
F is fibrant p will be called a Kan fibre bundle. Notice that given two atlases
{αp(v)}, {α̃p(v)} of p, then αp(v)

−1α̃p(v) ∈ aut(F )n and conversely if for every
v ∈ Bn we choose γ(v) ∈ aut(F )n, then {αp(v)γ(v)} is another atlas. If for every
v we define βp(v) = v̂αp(v), then the atlas {αp(v)} and the set of maps {βp(v)}
will determine each other.

Definition 0.1.18 ([1], Definition 2.4) Let G ⊆ aut(F ) be a simplicial sub-
group. An atlas {αp(v)} of a fiber bundle p all of whose transformation elements
lie in G is called a G-atlas; two G-atlases {αp(v)}, {α̃p(v)} are said to be equiva-
lent if there exists γ(v) ∈ G such that α̃p(v) = αp(v)γ(v). A fiber bundle together
with a given G-equivalence class of G-atlases will be called a G-bundle; thus any
bundle with fibre F is an aut(F )-bundle.

Given an atlas {αp(v)} of p, in general it is not true that βp(siv) = siβp(v),
that is, the top square of the following diagram does not commute

8
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△[n]× F αp(v)

∼=
//△[n]×B X //

��

X

p

��
△[n+ 1]× F

σi×1
66lllllllllllll αp(siv)

∼=
//△[n+ 1]×B X

σ̃i×1
66mmmmmmmmmmmmm

33ggggggggggggggggggggggggg

��

△[n] v // B

△[n+ 1]

σi

66mmmmmmmmmmmmmm
siv

33ggggggggggggggggggggggggggg

An atlas for which βp(siv) = siβp(v) is called a normalized atlas. By redefining
the atlas over the non-degenerate simplices v ∈ B, for all i and v, as follows

(∗) β′p(v) := βp(v) and β′p(siv) := siβp(v)

we can replace βp by the normalized atlas β′p.

The same analysis can be done for faces operators, and again it is not true in
general that βp(div) = diβp(v)

△[n]× F αp(v)

∼=
//△[n]×B X //

��

X

p

��
△[n− 1]× F

εi×1
66lllllllllllll αp(div)

∼=
//△[n− 1]×B X

ε̃i×1
66mmmmmmmmmmmmm

33ggggggggggggggggggggggggg

��

△[n] v // B

△[n− 1]

εi
66mmmmmmmmmmmmmm div

33ggggggggggggggggggggggggggg

Notice that εi is injective and for every v ∈ Bn the isomorphism αp(v) sends
(εi × 1)(△[n− 1]× F ) isomorphically to the part of △[n]×B X over diιn. Since
εi × 1 is one-to-one and αp(v)[(ε

i × 1)(△[n − 1] × F )] = Im(ε̃i × 1) we can
define the isomorphism θp(v) : diαp(v)[△[n − 1] × F ] → △[n − 1] ×B X by
θp(v)(φdiιn, z) = (φιn−1, z). Then for every v ∈ Bn the following composition is
an isomorphism

(†) ξip(v) := αp(div)
−1θp(v)diαp(v) ∈ aut(F )n−1

We refer to {ξip(v)} as the set of transformation elements associated to the
atlas {αp(v)}. An atlas {αp(v)} of a fibre bundle p : X → B is said to be regular
if for every v ∈ Bn, n ≥ 1, it holds that ξip(v) = en−1, if i > 0, where en−1 is the
identity element of aut(F )n−1. Notice that ξip(v) = en−1 implies βp(div) = diβp(v)
and viceversa, for i > 0.

9
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Proposition 0.1.19 ([4], Theorem 6.6)
In every G-equivalence class of atlases there is one regular G-atlas.

Proof. In (†) we can omit the isomorphism θp(v) and keep in mind the relation
ξip(v) = αp(div)

−1diαp(v). So let us specify a new atlas on the non-degenerate
elements.

If v ∈ B0, then let α′p(v) = αp(v). Let now v ∈ B1 be non-degenerate, since G
is a simplicial group, it satisfies the extension condition. Therefore there exists
γ(v) ∈ G1 with d1γ(v) = ξ1p(v). We replace αp(v) by α′p(v) = αp(v)γ(v)

−1:

d1α
′
p(v) = d1αp(v)d1γ(v)

−1 = αp(d1v)ξ
1
p(v)ξ

1
p(v)

−1 = αp(d1v) = α′p(d1v)

Next, suppose inductively that {αp(v)} satisfies ξip(v) = 1 for i > 0 and for all
v of dimension less or equal than n−1, and let v ∈ Bn a non-degenerate simplex.
From the induction hypothesis we have that

diξ
j
p(v) = dj−1ξ

i
p(v) for 0 < i < j

Hence there exists γ(v) ∈ Gn with diγ(v) = ξip(v) for i > 0, since G is a
Kan complex. Replacing αp(v) by α′p(v) = αp(v)γ(v)

−1, we have the following
equalities for for i > 0

diα
′
p(v) = diαp(v)diγ(v)

−1 = αp(div)ξ
i
p(v)ξ

i
p(v)

−1 = αp(div) = α′p(div)

This way, we have construct a new atlas {α′p(v)} which is both regular and
G-equivalent to {αp(v)}.

Notice that, once a regular atlas {αp(v)} of a bundle p is specified, the nor-
malizing process takes care of the degenerate simplices. That is, if v ∈ B is a
non-degenerate simplex, then after normalizing (using the formula (∗)) we have:
dkβ

′
p(siv) = dksiβp(v) = s∗d⋄βp(v) = s∗βp(d⋄v) = β′p(s∗d⋄v) = β′p(dksiv).

Definition 0.1.20 ([21]) If p : X → B and p′ : X ′ → B are G-bundles with
fibre F , a map h : X → X ′ will be called a G-map if for every n-simplex v ∈ B
and any G-atlases {αp(v)}, {αp′(v)} in the given G-equivalence classes of atlases,
there exists γ(v) ∈ Gn such that the following diagram commutes

10
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△[n]× F
αp′ (v)//

��

△[n]×B X ′

~~

v̂′ // X ′

p′

{{ww
ww
ww
ww
ww
ww
ww
ww
ww
ww
ww
ww

△[n]× F

γ(v)
77ooooooooooo

��

αp(v)//△[n]×B X v̂ //

��

X

p

��

h

55kkkkkkkkkkkkkkkkkkkk

△[n] −
//△[n] v

// B hβp(v) = βp′(v)γ(v)

If h is an isomorphism we’ll say that p and p′ are G-equivalent . The concept
of aut(F )-equivalence is identical with that of isomorphism of fibre bundles with
a given fibre.

Lemma 0.1.21 ([21])
Let p : X → B be a G-fibre bundle with fibre F . If F is fibrant, then p is a
fibration.

0.1.2 Twisting Cartesian Products

A twisting cartesian product is a combinatorial model for fibrations based on
the notion of a twisting function. They are constructed by starting with a base
complex B and a fibre F and trying to ‘deform’ the simplicial product B×F to get
some non-trivial fibred object B×tF . This deformation will involve the simplicial
group of automorphisms aut(F ) of the fibre F and the resulting twisting function
‘t’, going from the base B to aut(F ), will be forced by the simplicial identities to
obey certain relations in order that B ×t F be a simplicial set.

Definition 0.1.22 ([21]) Given a simplicial set B and a simplicial group G,
a twisting map t : B → G is a collection of functions {tn : Bn → Gn−1}n≥1
satisfying

ditn+1(v) = tn(di+1v), i > 0

sitn(v) = tn+1(si+1v), i ≥ 0

d0tn+1(v) = [tn(d0v)]
−1tn(d1v)

tn+1(s0v) = en

where en is the identity of Gn.

11



0.1.2. Twisting Cartesian Products

Definition 0.1.23 ([21]) A group complex G is said to operate (or to act) from
the left on a complex F if there exists a simplicial map µ : G× F → F such that
µ(en, z) = z and µ(ģ1, µ(ģ2, z)) = µ(ģ1ģ2, z) for all ģ1, ģ2 ∈ Gn and all z ∈ Fn.
The simplex µ(ģ, z) will be denoted by ģ.z or simply by ģz.

We will say that G operates effectively if ģ.z = z for all z ∈ Fn implies that
ģ = en; the action is said to be principal or free if ģ.z = z for some z ∈ Fn
implies that ģ = en. Note that an action µ : G × F → F induce a group
homomorphism θ : G → aut(F ) by setting θ(ģ)(φιn, z) = φģ.z, for ģ ∈ Gn and
any k-simplex (φιn, z) in △[n]×F . Clearly there is an equality ģ.z = θ(ģ).z. The
homomorphism θ is a monomorphism if and only if G operates effectively over
F ; although, by replacing G by G/ker(θ) we can always assume that operations
by groups are effective.

Definition 0.1.24 ([21]) Let B and Y be simplicial sets, G a simplicial group
acting on F by the left and t : B → G a twisting map. The twisted cartesian
product, or TCP for short with base B, fibre F and group G is the simplicial set
B ×t F defined by

(B ×t F )n = Bn × Fn
di(v, z) = (div, diz), i ≥ 1

si(v, z) = (siv, siz), i ≥ 0

d0(v, z) = (d0v, tn(v)d0z)

for every v ∈ Bn and every z ∈ Fn

If F = G, then B ×t G is called a principal twisted cartesian product (PTCP for
short. The term TCP also stands for the projection map pr : B ×t F → B.

Proposition 0.1.25 ([21])
Let pr : B ×t F → B be a TCP with group G. If F is a Kan complex, then pr
is a Kan fibration.

Definition 0.1.26 ([21]) Let B ×t F and B′ ×l F be twisted cartesian products
with group G. A simplicial map h : B ×t F → B′ ×l F is said to be a map of
TCP ′s if h(v, z) = (g(v), γ(v).z), where g : B → B′ is a simplicial map and
γ : B → G is a dimension preserving function. If B = B′ and g = idB we say
that t and l are equivalent twisting functions, t ∼ l, or that B ×t F and B′ ×l F
are equivalent TCP ′s.

12
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Note that given equivalent TCP ′s, B ×t F and B′ ×l F , h is an isomorphism
and the requirement that h be simplicial is equivalent to the following identities
on γ for all v ∈ Bn

ln(v)d0γn(v) = γn−1(d0v)tn(v)
diγn(v) = γn−1(div), i ≥ 1
siγn(v) = γn+1(siv), i ≥ 0

Proposition 0.1.27 ([19], Proposition 4.1.5.36)
Let pr : B ×t F → B be a TCP with fibre F and group G, then p is a G-bundle
with fibre F .

Proof. In the following diagram

△[n]× F αt(v)//

��

△[n]×t◦v F
v×1 //

��

B ×t F

��
△[n] △[n] v

// B

let αt(b) be the map defined by αt(v)(φιn, z) = (φιn, ψ
v
t (φιn).z), where the map

ψvt : △[n] → G is a grading preserving and is defined by ψvt (φιn) = s′t(d′v) if
φ = s′d0d

′, and ψvt (φιn) = e if φ = s′d′ (that is, if φ does not contain the operator
d0), where e is the identity of G. Since ψvt satisfies the above identities, it holds
that αt(b) is an isomorphism.

The following Lemma says that the corresponding notion of equivalence for
TCP ′s with group G corresponds exactly to that of G-equivalence of bundles.

Proposition 0.1.28 ([1])
The TCP ′s, B ×t F and B ×l F with group G are equivalents if there is an
isomorphism h : B ×t F → B ×l F , such that for every v ∈ Bn there exists
γ(v) ∈ Gn that makes the following diagram commutative

13



0.1.2. Twisting Cartesian Products

△[n]× F αl(v) //

��

△[n]×l◦v F
v×1 //

~~

B ×l F

yysss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss

△[n]× F

��

αt(v)//

γ(v)
77ooooooooooo

△[n]×t◦v F
v×1 //

��

B ×t F

��

h

44iiiiiiiiiiiiiiiiiii

△[n] //△[n] v
// B h(v × 1)αt(v) = (v × 1)αl(v)γ(v)

Proof. Let us see that γ : B → G defined by the above diagram, which
is dimension preserving, defines an equivalence of TCP ′s. Take an n-simplex
(v, z) of the twisted cartesian product B×tF and evaluate (ιn, z) in the diagram:
h(v × 1)αt(v)(ιn, z) = h(v × 1)(ιn, z) = h(v, z) and (v × 1)αl(v)γ(v)(ιn, z) =
(v×1)αl(v)(ιn, γ(v).z) = (v×1)(ιn, γ(v).z) = (v, γ(v).z), since the diagram com-
mutes we have that h(v, z) = (v, γ(v).z), then the isomorphism h and the function
γ defines an equivalence of TCP ′s.

Now suppose that we have an equivalence between B ×t F and B ×l F given
by a simplicial map h and a dimension preserving function γ : B → G. Then
let us see that for every v ∈ Bn the simplex γ(v) makes the above diagram
commutative. Take a k-simplex (φιn, z) of △[n] × F and evaluate it in the
above diagram: on one side h(v × 1)αt(v)(φιn, z) = h(v × 1)(φιn, ψ

v
t (φιn).z) =

h(φιn, ψ
v
t (φιn).z) = (φv, γ(φv).ψvt (φιn).z) and on the other side we have the

following sequence (v × 1)αl(v)γ(v)(φιn, z) = (v × 1)αl(v)(φιn, γ(v)(φιn, z)) =
(v × 1)(φιn, ψ

v
l (φιn).γ(v).(φιn, z)) = (φv, ψvl (φιn).φγ(v).z). Then we must show

that γ(φv).ψvt (φιn) = ψvl (φιn).φγ(v).

To check that, first let us suppose that φ = s′d′: applying the equalities given
after definition 0.1.26 it holds γ(s′d′v).ψvt (s′d′ιn) = s′d′γ(v).e = e.s′d′γ(v) =
ψvl (s

′d′ιn).s
′d′γ(v). Now suppose that φ = s′d0d

′ and apply again the same
equalities: γ(s′d0d

′v).ψvt (s
′d0d

′ιn) = s′[γ(d0d
′v).t(d′v)] = s′[l(d′v)d0γ(d

′v)] =
s′l(d′v).s′d0d

′γ(v) = ψvl (s
′d0d

′ιn).s
′d0d

′γ(v).

Proposition 0.1.29 ([4])
Let p : X → B a G-bundle with fibre F and a regular atlas {αp(v)}. Then the
transformation elements {ξ0p(v)} determine a twisting function ξ0p : Bn → Gn−1
and thereby B ×ξ0p F becomes a TCP with fibre F and group G. Furthermore,
there is an isomorphism of fibre bundles h : B ×ξ0p F → X.
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Proof. The map h is given by h(v, z) = βp(v)(ιn, z) for every n-simplex
(v, z) in B ×ξ0p F , then the G-equivalence is defined by the composition γ(v) =

αp(v)
−1h∗αξ0p(v) of the following diagram, where h∗(φιn, z) = (φιn, h(φv, z)) for

every k-simplex (φιn, z) in △[n]×ξ0p◦v F

△[n]× F αp(v) //

��

△[n]×B X

~~

v̂ // X

p

����
��
��
��
��
��
��
��
��

△[n]× F

γ(v)
77oooooooooooo

��

α
ξ0p

(v)
//△[n]×ξ0p◦v F

v×1 //

��

h∗
77nnnnnnnnnnnn
B ×ξ0p F

��

h

::uuuuuuuuuuu

△[n] −
//△[n] v

// B

In the above G-equivalence let us see that γ(v) is the identity map. Take a
k-simplex (φιn, z) in △[n] × F and consider the cases φ = s′d′ and φ = s′d0d

′.
If φ = s′d′ we have that αp(v)−1h∗αξ0p(v)(φιn, z) = αp(v)

−1h∗(φιn, ψ
v
ξ0p
(φιn).z) =

αp(v)
−1(φιn, h(φv, z)) = αp(v)

−1(φιn, βp(φv)(ιk, z)), since {αp(v)} is a normal-
ized and regular atlas αp(v)−1(φιn, βp(φv)(ιk, z)) = αp(v)

−1(φιn, φβp(v)(ιk, z)) =
αp(v)

−1(φιn, βp(v)(φιn, z)) = (φιn, z).

If φ = s′d0d
′, then αp(v)

−1h∗αξ0p(v)(φιn, z) = αp(v)
−1h∗(φιn, ψ

v
ξ0p
(φιn).z) =

αp(v)
−1(φιn, h(φv, ψ

v
ξ0p
(φιn).z)) = αp(v)

−1(φιn, βp(φv)(ιk, ψ
v
ξ0p
(φιn).z)). From the

last term of the equation consider the second factor βp(φv)(ιk, ψvξ0p(φιn).z)), so
βp(φv)(ιk, ψ

v
ξ0p
(φιn).z)) = s′βp(d0d

′v)(ιk, ψ
v
ξ0p
(φιn).z)) applying the degeneracies

s′βp(d0d
′v)(ιk, ψ

v
ξ0p
(φιn).z)) = βp(d0d

′v)(σ′ × 1)(ιk, ψ
v
ξ0p
(φιn).z)), from (†) it holds

that βp(d0d′v)(σ′×1)(ιk, ψvξ0p(φιn).z) = d0βp(d
′v)ξ0p(d

′v)−1(σ′×1)(ιk, ψvξ0p(φιn).z) =
d0βp(d

′v)s′ξ0p(d
′v)−1(ιk, ψ

v
ξ0p
(φιn).z)) = d0βp(d

′v)ψvξ0p(φιn)
−1(ιk, ψ

v
ξ0p
(φιn).z)) that

is, d0βp(d′v)ψvξ0p(φιn)
−1(ιk, ψ

v
ξ0p
(φιn).z)) = d0βp(d

′v)(s′ιm, z) = d0d
′βp(v)(s

′ιm, z) =

βp(v)(φιn, z). Joining again we have that αp(v)−1(φιn, βp(φv)(ιk, ψvξ0p(φιn).z)) =
αp(v)

−1(φιn, βp(v)(φιn, z)) = (φιn, z).

Proposition 0.1.30 ([21], Lemma 20.2)
Let p : X → B and p′ : X ′ → B G-bundles with fibre F . Then p and p′ are
G-equivalent if and only if t and t′ are equivalent, where t and t′ are any twisting
functions of p and p′.
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Proof. If p and p′ are G-equivalent there exists and isomorphism h : X → X ′

such that p′h = p and hβp(v) = βp′(v)γ(v) for any v ∈ Bn, where γ(v) ∈ G and
{αp(v)}, {αp′(v)} are any G-atlases of p and p′ respectively. If t and t′ are twisting
functions defined by {αp(v)} and {αp′(v)}, from Propositions 0.1.29 and 0.1.28 it
holds that γ defines the equivalence between t and t′. Conversely if t and t′ are
equivalents, from proposition 0.1.29 we can define an isomorphism between X
and X ′ by composing, and again from Proposition 0.1.29 and Proposition 0.1.28
it holds that p and p′ are G-equivalents.

Definition 0.1.31 ([21]) If G is a complex group that acts on the right of a
complex X and on the left of a complex F , then X ×G F is defined to be the
quotient of X × F obtained by identifying (x, ģ.z) with (x.ģ, z) for all x ∈ X,
z ∈ F and ģ ∈ G.

Notice that given a twisting cartesian product B ×t F there is an associated
PTCP by considering the left action of G over itself and using the same twisting
function t : Bn → Gn−1. Conversely given a principal twisted cartesian product
B ×t G and a left action of G over a complex F the complex (B ×t G)×G F can
be identified with B ×t F and is called the twisting cartesian product with fibre
F associated to B ×t G.

Proposition 0.1.32 ([1], Theorem 5.6)
Let G be a simplicial group and B any complex. Then the set of homotopy
classes of maps [B,WG] from B to WG are in bijective correspondence with the
equivalence classes of principal twisted cartesian products with base complex B
and fibre G.

0.2 Model Categories
A structure of model category over a categoryM provides a suitable environment
to do homotopy theory inM. The notion of homotopy inM carry out the con-
struction of a homotopy category Ho(M), which is equivalent to the localization
of M with respect to a class of morphisms in M called ‘weak equivalences’. In
the localized category, the class of weak equivalences will be considered to be
isomorphisms when they are not by formally inverting them.

Although there is a foundational problem with inverting the weak equiva-
lences, since the class of maps between two objects in the localized category may
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Chapter 0. Preliminary notions about spaces

not be a set. In a model category besides weak equivalences there is additional
structure (other classes of maps called cofibrations and fibrations) that allow one
to get a precise control of the maps in the homotopy category.

Cofibrations and fibrations will enable us to do homotopy theory, because
while many of the homotopy notions involved can be defined in terms of the weak
equivalences, the verification of many of their properties requires the cofibrations
and/or the fibrations.

Definition 0.2.1 ([16]) A model category is a category M together with three
classes of maps, called the weak equivalences, the cofibrations and the fibrations,
satisfying the following five axioms:

M1. (Limit axiom) The category M is complete and cocomplete.

M2. (Two out of three axiom) If f and g are maps inM such that gf is defined
and two of f , g and fg are weak equivalences, then so is the third.

M3. (Retract axiom) If f and g are maps inM such that f is a retract of g (in
the category of maps of M) and g is a weak equivalence, a cofibration or a
fibration, then so is f .

M4. (Lifting axiom) Given the commutative solid arrow diagram in M

A //

i
��

X

p
��

B //

>>

Y

the dotted arrow exists if either

1) i is a cofibration and p a trivial fibration (i.e., a fibration that is also a
weak equivalence), or

2) i is a trivial cofibration (i.e., a cofibration that is also a weak equivalence)
and p is a fibration.

M5. (Factorization axiom) Every map g ∈M has two functorial factorizations

1) g = qi, where i is a cofibration and q a trivial fibration, and

2) g = pj, where j is a trivial cofibration and p a fibration.
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0.2. Model Categories

Proposition 0.2.2 ([16], Proposition 7.17)
If S is a set and for every element s of S we have a model categoryMs, then the
category Π

s∈S
Ms is a model category in which a map is a cofibration, a fibration

or a weak equivalence if each of its components is, respectively, a cofibration, a
fibration, or a weak equivalence.

Note that a model category always has initial and final objects. An object
for which the unique map from the initial object is a cofibration is said to be
cofibrant and an object for which the unique map to the final object is a fibration
is said to be fibrant .

The main problem in verifying the model category axioms is in constructing
the required functorial factorizations and this is overcome by a so-called small
object argument which involves the idea of an infinitely long sequence of maps,
and the composition of such sequence (see Apendix B). This argument also will
be used to define cofibrantly generated model categories which requires the notion
of transfinite composition and smallness.

Example 0.2.3 The category Top of compactly generated topological spaces can
be given the structure of a model category by defining f : X → Y to be a weak
equivalence if f is a weak homotopy equivalence, a cofibration if f is a retract of
a map X → Y ′ in which Y ′ is obtained from X by attaching cells, and a fibration
if f is a Serre fibration.

With respect to this model category structure the homotopy category Ho(Top)
(its localized category w.r.t. weak equivalences) is equivalent to the usual homo-
topy category of CW -complexes. Every object is fibrant, and the cofibrant objects
are exactly the spaces which are retracts of generalized CW -complexes (where a
generalized CW -complex is a space built up from cells, without the requirement
that the cells be attached in order by dimension).

Identifying the elements [n] of the category ∆ with the vertices v0 = (1, 0, ..., 0),
v1 = (0, 1, ..., 0),...,vn = (0, 0, ..., 1) of △n, a map α : [q]→ [p] ∈ ∆ sends the ver-
tices of △q to the vertices of △p by the rule α(vi) = vα(i), by extending linearly
we obtain a map α∗ : △q → △p. So to every simplicial set X we can associate
functorially a space |X| called the geometric realization of X, which is defined by
|X| = colim

∆↓X
△n. The singular functor Sing : Top → S defined in example 0.1.7

becomes a right adjoint of the geometric realization functor.
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Chapter 0. Preliminary notions about spaces

Example 0.2.4 In the category S call a map f : X → Y a weak equivalence
if |f | is a weak homotopy equivalence between topological spaces, a cofibration if
each morphism fn : Xn → Yn (n > 0) is a monomorphism, and a fibration if
f is a Kan fibration. With these choices S is a model category, and since the
injections in S are the cofibrations all objects are cofibrant. Fibrant objects will
be those that satisfy the extension condition (that is, the Kan complexes).

Definition 0.2.5 ([16]) If i : A → B and p : X → Y are maps for which the
dotted arrow exists in every solid arrow diagram of the form

A //

i
��

X

p
��

B //

>>

Y

then

i) i is said to have the left lifting property (LLP ) with respect to p, and

ii) p is said to have the right lifting property (RLP ) with respect to i.

Axiom (M4) of 0.2.1 says that cofibrations has the LLP with respect to trivial
fibrations and that fibrations have the right lifting property with respect to trivial
cofibrations.

Proposition 0.2.6 ([16], Proposition 7.2.3)
LetM be a model category

1) The map i : A→ B is a cofibration iff has the LLP w.r.t. all trivial fibrations.

2) The map i : A→ B is a trivial cofibration iff has the LLP w.r.t. all fibrations.

3) The map p : X → Y is a fibration iff has the LLP w.r.t. all trivial cofibrations.

4) The map p : X → Y is a trivial fibration iff has the LLP w.r.t. all cofibrations.

From the above proposition we can see that any two of the three distin-
guished classes of maps, weak equivalences, fibrations and cofibrations determine
the third. Although these can also be described by using cofibrations, since weak
equivalences are the maps that can be written as the composition of a trivial cofi-
bration followed by a trivial fibration and trivial fibrations are the maps with the
right lifting property with respect to all cofibrations. So the class of cofibrations
and of trivial cofibrations enterely determine the model category structure ofM.
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0.2. Model Categories

Example 0.2.7 In S the model category structure can be described as follows:

• A map is a cofibration if it is a retract of a transfinite composition of
pushouts of the maps △̇[n] → △[n] for all n ≥ 0, and it is a trivial fi-
bration if it has the RLP w.r.t. the maps △̇[n]→△[n] for all n ≥ 0.

• A map is a trivial cofibration if it is a retract of a transfinite composition
of pushouts of the maps Λk[n] → △[n] for all n ≥ 1, 0 ≤ k ≤ n, and it is
a fibration if it has the RLP w.r.t. the maps Λk[n] → △[n] for all n ≥ 1,
0 ≤ k ≤ n.

• A map is a weak equivalence if it is the composition of a trivial cofibration
followed by a trivial fibration.

Definition 0.2.8 ([16], Definition 11.1.2) A cofibrantly generated model cate-
gory is a model category M such that

1) There exists a set I of maps (called a set of generating cofibrations) that
permits the small object argument (see Definition B.0.27) and such that a
map is a trivial fibration if and only if it has the RLP with respect to every
element of I, and

2) There exists a set J of maps (called a set of trivial generating cofibrations)
that permits the small object argument and such that a map is fibration if
and only if it has the RLP with respect to every element of J

Proposition 0.2.9 ([16], Proposition 11.1.10)
If S is a set and for every element s of S we have a cofibrantly generated model
categoryMs with generating cofibrations Is and generating trivial cofibrations Js,
then the model category structure on Π

s∈S
Ms of Proposition 0.2.2 is cofibrantly

generated with generating cofibrations I and generating trivial cofibrations J ,
where

I = ∪
s∈S

(Is × ∪
t̸=s

1∅t) and J = ∪
s∈S

(Js × ∪
t̸=s

1∅t)

and where 1∅t is the identity map of the initial object inMt.

The category S is cofibrantly generated. The generating cofibrations are the
inclusions △̇[n] → △[n] for n ≥ 0, and the generating trivial cofibrations are
the inclusions Λk[n] → △[n] for n > 0 and 0 ≤ k ≤ n. The model category
Top is also cofibrantly generated, the generating cofibrations are the inclusions
|△̇[n]| → |△[n]| for n ≥ 0, and the generating trivial cofibrations are the inclu-
sions |△k[n]| → |△[n]| for n > 0 and 0 ≤ k ≤ n.
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Chapter 0. Preliminary notions about spaces

Definition 0.2.10 ([16]) Let M be a cofibrantly generated model category with
generating cofibrations I. A relative I-cell complex (see Definition B.0.24) will be
called a relative cell complex, and an I-cell complex will be called a cell complex.

Proposition 0.2.11 ([16], Proposition 11.2.1)
LetM be a cofibrantly generated model category with generating cofibrations I.
Then the class of cofibrations of M equals the class of retracts of relative I-cell
complexes, which equals the class of I-cofibrations (see Propositions B.0.25 and
B.0.29).

Proof. This follows from Definition 0.2.8 and the first item of Proposition 0.2.6.

In the context of cofibrantly generated model categories the small object ar-
gument is also useful to show that for every small category C the cofibrantly
generated model structures over Top and S induce cofibrantly generated model
structures on the diagram categories TopC and SC, in which the weak equivalences
and the fibrations are the objectwise ones. It is done by lifting the cofibrantly
generated model category structure from SC

o to SC via a pair of Quillen functors
(Theorem 0.2.14).

Quillen functors are pairs of adjoint functors that will provide a good notion
of morphism between model categories, in the sense that each of them is com-
patible with one half of the model category structures. That means that the
left adjoint preserves cofibrations and trivial cofibrations and the right adjoint
preserves fibrations and trivial fibrations. Then there is a corresponding notion
of equivalences between model categories (called Quillen equivalences) given by
Quillen functors that induce equivalences of homotopy theories.

Definition 0.2.12 ([16]) LetM and N be model categories and let F :M // N : Uoo

a pair of adjoint functors. We will say that

1) F is a left Quillen functor,

2) U is a right Quillen functor, and

3) (F,U) is a Quillen pair,

if

1) the left adjoint F preserves both cofibrations and trivial cofibration and
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0.2. Model Categories

2) the right adjoint U preserves both fibrations and trivial fibration.

For example, | − | : S → Top : Sing are an adjoint Quillen pair that induce
an equivalence between the homotopy categories Ho(S) and Ho(Top) [22]. This
equivalence gives us a powerful tool to study the homotopy properties of topo-
logical spaces, since the category of simplicial sets is a good category of algebraic
and combinatorial models.

Theorem 0.2.13 ([6], Proposition 6.11)
For every small category C the geometric realization and the singular functor
induce an adjoint pair of Quillen equivalences

| − |C : SC oo // TopC : SingC

Theorem 0.2.14 (D.M. Kan, [16] Proposition 11.3.2)
LetM be a cofibrantly generated model category with generating cofibrations I
and generating trivial cofibrations J . Let N be a category that is closed under
small limits and colimits, and let F :M // N : Uoo be a pair of adjoint functors.
If we let FI = {Fu : u ∈ I} and FJ = {Fv : v ∈ J} and if

1) both of the sets FI and FJ permit the small object argument, and

2) U takes relative FJ-cell complexes to weak equivalences,

then there is a cofibrantly generated model category structure on N in which FI
is a set of generating cofibrations, FJ is a set of generating trivial cofibrations,
and the weak equivalences are the maps that U takes into weak equivalences
in M. Furthermore, with respect to this model category structure, (F,U) is a
Quillen pair.

All the categories that we have mentioned in this section besides being cofi-
bratly generated are simplicial categories too, that is categories endowed with a
simplicial set ‘function complex’ for every pair of objects in the category. If the
simplicial structure is compatible related with the closed model structure we will
have a closed simplicial model category.

Definition 0.2.15 ([22]) A simplicial category M is a category endowed with
the following structure:

i) A functor X, Y → hom(X, Y ) from Mop × M to S. The simplicial set
hom(X, Y ) is called the simplicial mapping space or the function complex
from X to Y .
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ii) for every three objects X, Y and Z in M a morphism of simplicial sets
hom(X,Y )× hom(Y, Z)→ hom(X,Z), (f, g) 7→ g ◦ f called the composite
rule.

iii) for every two objects X, Y ∈M an isomorphism hom(X, Y )0 ≡ homM(X, Y )
that commutes with the composite rule.

This structure is subject to the following two conditions

1) If f ∈ hom(X, Y )n, g ∈ hom(Y, Z)n and h ∈ hom(Z,W )n, then (h ◦ g) ◦ f =
h ◦ (g ◦ f).

2) If u ∈ homM(X, Y ) and f ∈ hom(Y, Z)n, then f ◦sn0u = hom(u, Z)n(f). Also
sn0u ◦ g = hom(W,u)n(g) if g ∈ hom(W,X)n.

Given two maps p : X → B and g : A→ B inM the pullback of p along g is
denoted by pg : A×BX → A and it is a fibration whenever p so is. So if i : A→ B
and p : X → Y are maps inM the pullback of i∗ : hom(B, Y )→ hom(A, Y ) and
p∗ : hom(A,X) → hom(A, Y ) is denoted by hom(A,X) ×hom(A,Y ) hom(B, Y ).
If f : L → K is a map in S, the pushout of 1 ⊗ f : A ⊗ L → A ⊗ K and
i⊗ 1 : A⊗ L→ B ⊗ L is denoted by A⊗K ⨿

A⊗L
B⊗.

Definition 0.2.16 ([16]) A simplicial model category is a model category M
that is also a simplicial category, such that the following two axioms hold:

M6. For every two objects X and Y of M and every simplicial set K there are
objects X⊗K and Y K ofM such that there are isomorphisms of simplicial
sets hom(X⊗K,Y ) ≡ hom(K,hom(X, Y )) ≡ hom(X,Y K) that are natural
in X, Y and K.

M7. If i : A → B is a cofibration in M and p : X → Y is a fibration in M,
then the map of simplicial sets

(i∗, p∗) : hom(B,X)→ hom(A,X)×hom(A,Y ) hom(B, Y )

is a fibration that is a trivial fibration if either i or p is a weak equivalence.

The category of simplicial sets S is a simplicial model category, the complex
function hom(X, Y ) defined in Example 0.1.4 is the simplicial set that in degree
n is the set homS(X × △[n], Y ), for K ∈ S, let X ⊗ K be X × K and XK
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be hom(K,X). The category Top is also a simplicial model category by defin-
ing the complex function hom(X,Y ) in degree n, for X,Y ∈ Top, as the set of
continuous maps from X × |△[n]| to Y , for K ∈ S, X × K by X × |K| and
XK = homTop(|K|, X).

Example 0.2.17 Let C be a small category and SC the category of functors from
C to S, or the category of C-diagrams of simplicial sets . For every C-diagram X,
Xc will denote the evaluation X(c) of X in c, for every c ∈ C. SC is a simplicial
model category, where its model structure is given by defining weak equivalences,
fibrations and cofibrations in the following way for f : X → Y ∈ SC:

• the natural transformation f is a weak equivalence if for every c ∈ C, fc :
Xc → Yc is a weak equivalence in S. Two objects will be called weakly
equivalents if they can be connected by a finite string of weak equivalences.

• f is a fibration if for every c ∈ C, fc : Xc → Yc is a fibration in S. In
particular an object X ∈ SC is fibrant if for every c ∈ C, Xc ∈ S is fibrant.

• f is a cofibration if it has the L.L.P. w.r.t. the class of trivial fibrations.

Given a diagram X ∈ SC and a simplicial set K a simplicial model structure
over SC holds by defining X⊗K as the functor that makes correspond to c ∈ C the
simplicial set Xc×K, and if c→ d ∈ C, X ⊗K(f) = Xf × 1. For X,Y ∈ SC the
function complex hom(X,Y ) is the simplicial set that in degree n has as simplices
the set homSC(X ⊗△[n], Y ), and XK is defined by hom(K,X) taking K as the
constant diagram.

To short notation, the diagram X ⊗ △[n] will be denoted by X × △[n] or
equivalently by △[n]×X. Notice that hom(X,Y )n can be seen as the set formed
by the following commutative diagrams of SC

△[n]×X //

pr
%%KK

KKK
KKK

KK
△[n]× Y

pr
yysss

ss
ss
ss

△[n]

The monoid of self weak equivalences of a diagram X is the submonoid
we(X) ⊆ hom(X,X) consisting of the above commutative triangles (taking
X = Y ) where the horizontal arrow is a weak equivalence. The group of au-
tomorphisms of the C-diagram X is the maximal subgroup aut(X) ⊆ we(X),
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where the horizontal arrows are isomorphisms.

Given two maps i : A→ B and p : X → Y inM and a map f : L→ K in S,
the map of Definition 0.2.16 in M7. is called the pullback corner map of i and p,
and the map A⊗K ⨿

A⊗L
B⊗L→ B⊗K is called pushout corner map of i and f .

Lemma 0.2.18 ([16], Lemma 9.3.6)
LetM be a simplicial model category. If i : A→ B and p : X → Y are maps in
M and f : L→ K is a map of simplicial sets, then the following are equivalents:

1) The dotted arrow exists in every solid arrow diagram of the form

L

��

// hom(B,X)

��
K

44

// hom(A,X)×hom(A,Y ) hom(B, Y )

2) The dotted arrow exists in every solid arrow diagram of the form

A⊗K ⨿
A⊗L

B ⊗ L

��

// X

��
B ⊗K

55

// Y

0.3 Idempotent Functors

Localized model category structures originated in Bousfield’s work on localization
with respect to homology, given a homology theory h∗. Bousfield established a
model category structure on the category of simplicial sets in which the weak
equivalences where the maps that induced isomorphisms of all the homology
groups. The problem that led to Bousfiled’s model category structure was that
of constructing a localization functor for a homology theory, that is, given a ho-
mology theory h∗, the problem was to define for each space X a local space Lh∗X
and a natural homology equivalence X → Lh∗X.

Some years later, Bousfield and Dror Farjoun independently considered the
notion of localizing spaces with respect to an arbitrary map f : A → B in S
(or in Top). A map g : X → Y is defined to be a f -local equivalence if for
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every f -local space W the induced map g♯ : hom(Y,W ) → hom(X,W ) is a
weak equivalence. An f -localization of a space is then an f -local space LfX
together with an f -local equivalence X → LfX. Given any map f it is possible
to construct a model category structure on the category of spaces in which the
weak equivalences are the f -local equivalences, and in which an f -localization
functor is a fibrant approximation functor for the f -local model category [16].

0.3.1 Localization

Definition 0.3.1 ([9]) Let f : A → B be a map between cofibrant spaces. The
simplicial set X is said to be f -local if X is fibrant and the map f induces a weak
homotopy equivalence on function complexes

hom(f,X) = f ♯ : hom(B,X) ≃ // hom(A,X)

In what follows the word ‘equivalence’ stands for weak homotopy equivalence.
One also defines this concept in the pointed category of spaces, so by using the
fibration hom∗(V, Z) → hom(V, Z) → Z over any connected space Z, and the
Dold’s theorem about fibrewise homotopy it holds that hom(f,X) is an equiva-
lence if and only if the map hom∗(f,X) is an equivalence. So a connected space
X is f -local in S if and only if it is f -local in S∗.

If the map is simply f : ∗ → A one refers to an f -local space X as an A-null
space, this means that the natural map hom(A,X) ≃ // Y is an equivalence, or
equivalently that hom∗(A,X) ≃ ∗ is weakly contractible.

Definition 0.3.2 ([9]) Let f : A → B be a map between cofibrant spaces. A
map g : X → Y is called an f -local equivalence if for all f -local space W the
induced map

g♯ : hom(Y,W ) ≃ // hom(X,W )

is an equivalence.

Definition 0.3.3 ([9]) A functor L : S → S is called coaugmented if it comes
with a natural transformation l : Id → L. A coaugmented functor L is said to
be homotopically idempotent if for every X ∈ S both natural maps LX ⇒ LLX,
namely both lLX and L(lX), are weak equivalences and are homotopic to each
other.
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Theorem 0.3.4 ([9], Theorem A.3)
For any map f : A → B in S there exists a functor Lf : S → S, called the f -
localization functor, which is coaugmented and homotopically idempotent. Any
two of such functors are naturally weakly equivalent to each other. For any
space X its coaugmentation lX : X → LfX is initial up to homotopy among all
maps from X to f -local spaces, and it is final up to homotopy among all f -local
equivalences X → Y . Moreover Lf can be chosen to be a simplicial functor.

The coaugmentation map lX : X → LfX is determined up to equivalence by
three basic properties:

• lX is an f -local equivalence

• LfX is f -local, and

• lX : X → LfX is a weak equivalence when it is applied to an f -local space

For the map ∗ → A or A → ∗, L∗→A = LA→∗ is denoted by PA and is called
the A-nullification functor. For example, if A = Sn+1, then PSn+1 is the n-th
Postnikov section Xn which can be characterized by Ωn+1Xn ≃ ∗.

Since Lf is a homotopy functor (that is, it preserves weak equivalences) it
can be applied to fibre sequences E → B by applying Lf to each fibre. It is not
difficult to get a functorial construction of a fibrewise application in the homotopy
category, that is, a homotopy commutative diagram

F //

��

E
p //

��

B

LfF // E q
// B

where q is a fibration. Although it is also possible to construct a rigid fibrewise
localization that will have universal properties in the category of spaces over B
similar to those of Lf in the category of spaces (see theorem 0.3.7).

Definition 0.3.5 ([16], Definition 6.1.1) Let f : A → B be a map between
cofibrant spaces. A fiberwise f -localization of a fibre map p : E → B is a factor-
ization E

a // E
q // B of p such that:

1) q is a fibration
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2) for every point v ∈ B the induced map hFibp(v) → hFibq(v) of homotopy
fibers is the f -localization of hFibp(v).

Theorem 0.3.6 ([9], Theorems F.3 and F.4)
Let p : E → B a fibre map. Then there is a commutative diagram over B

F //

lF
��

E
p //

a
��

B

LfF // E q
// B

where q is a fibre map, F is the homotopy fiber over any component of B and LfF
the corresponding homotopy fibre of q. Moreover, the map a : E → E obtained
by applying Lf fibrewise is an f -local equivalence.

Theorem 0.3.7 ([16], Theorem 6.1.3)
Let p : E → B a fibre map. If E

a // E
q // B is a fiberwise f -localization of

p, then for every solid arrow diagram

E

p
��>

>>
>>

>>
>

a //

a

''
E

q

��

k // E

r
����
��
��
��

B

in which a : E → E is another fiberwise f -localization of p, there exists a map
k : E → E unique up to simplicial homotopy in E ↓ S ↓ B, such that, k is a weak
equivalence and ka = a.

0.3.2 Cellularization

For many applications it is often useful to approximate a given topological space
by simpler ones. In the case of pointed simplicial sets an important example is the
cellularization functor CWA : S∗ → S∗, which associates to each pointed space
a space built through the process of attaching copies of a fixed space A. This
general concept of cellularization was developed systematically for the category
of topological spaces and simplicial sets by Dror Farjoun [9] building upon the
general foundational work on homotopy localization of Bousfield.
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Definition 0.3.8 ([9]) Let A be a cofibrant space. A map g : X → Y in S∗
between fibrant spaces is called an A-equivalence if the map g induces a weak
homotopy equivalence on function complexes

hom(A, g) = g♯ : hom∗(A,X) ≃ // hom∗(A, Y )

Notice that in the unpointed case if A ̸= ∅, then a one point space is a retract
of A, and so every space X is retract of hom(A,X). This implies that an A-local
equivalence of unpointed spaces must be a weak equivalence, since g is a retract
of g♯. Thus, consider the notion of A-equivalence of unpointed spaces would be
pointless.

Definition 0.3.9 ([24], Definition 5.1) A connected simplicial set Z is called
A-cellular if for any choice of the base point z ∈ Z and for any map of pointed
Kan complexes g : X → Y , for which g♯ is an A-equivalence, the map g♯ :
hom∗(Z,X)→ hom∗(Z, Y ) is a weak equivalence.

It can be proved that this is equivalent to saying that X can be built as an
iterated pointed homotopy colimit of copies of A.

Definition 0.3.10 ([9]) A functor C : S∗ → S is called augmented if it comes
with a natural transformation c : Id → C. A augmented functor C is said to be
homotopically idempotent if for every X ∈ S∗ both natural maps CCX ⇒ CX,
namely both cCX and C(cX), are weak equivalences and are homotopic to each
other.

In the construction of the functor CWA (see the Chapter 2 of [9], numerals
E.2 and E.3) the half smash Σ̃nA is the basic building block, this is defined by

Σ̃nA = (Sn × A) ∪ (Dn+1 × {x0}) ⊂ Dn+1 × A

with the base point {∗} × {∗}.

If λ is the first limit ordinal bigger than the cardinality of the set of simplices
of A and X is a pointed simplicial set, then a functor C : λ→ S∗ and a pointed
map c : C → X is constructed, where λ is the category whose objects are all
ordinal numbers smaller than λ and for any two ordinal numbers i ≤ j, there is
only one arrow i→ j.

The space C0 and the map C0
c0 // X are defined by
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0.3.2. Cellularization

C0 =
∨
i≥0

h∈hom∗(Σ̃iA,X)

Σ̃iA and
∨
i≥0

h∈hom∗(Σ̃iA,X)

h

Notice that any element h : Σ̃iA→ X representing a homotopy class of [A,X]∗
in the component h|{∗}×A : A→ X is null homotopic in that component if and
only if h can be extended along the map Σ̃iA ↪→ Dn+1 × A. So let k0 the wedge
of all the maps g : Σ̃iA → C0 with a given extension of c0g, the map D0 → C0

is given by g. The space C1 is defined as the pushout along the extension to
Dn+1 × A ∨

K0

Σ̃iA //

��

p

∨
K0

Dn+1 × A

��
C0

// C1

Proceeding by induction it holds the following

∨
K0

Σ̃iA //

��

p

∨
K0
Di+1 × A

''OO
OOO

OOO
OOO

OO

∨
K1

Σ̃iA //

��

p

∨
K1
Di+1 × A

$$JJ
JJJ

JJJ
JJJ

J

C0
// C1

// ...

...
∨
Kβ

Σ̃iA //

��

p

∨
Kβ
Di+1 × A ...

// Cβ ... (β ≤ λ)

With this construction CWA : S∗ → S∗ is a functor defined as CWA(X) =
colim

λ
C and the augmentation cX : CWA(X)→ X is the natural transformation

defined as the map cX = colim
λ

(p).

Proposition 0.3.11
If A is Z-acyclic, then CWAX is Z-acyclic

Proof. Since ΣiA is weakly equivalent to the homotopy cofiber of the map
A→ Σ̃iA we have the following exact sequence

1→ H̃n(A)→ H̃n(Σ̃iA)→ H̃n(Σ
iA)→ 1
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Chapter 0. Preliminary notions about spaces

The space A is Z-acyclic, that is, H̃n(A) = 0 for every n, therefore H̃n(Σ
iA) ∼=

H̃n−i(A) ∼= 0, thus H̃n(Σ̃iA) ∼= 0. We also know that H̃n(
∨

Λ Σ̃
iA) ∼=

⊕
Λ H̃n(Σ̃iA)

for every index set Λ, then H̃n(
∨

Λ Σ̃
iA) ∼= 0 and the contractibility of Dn+1 im-

plies that the homology group H̃n(D
i+1 × A) is also trivial.

Applying the Mayer-Vietoris sequence to the first pushout of the above dia-
gram used to define CWA

...→ H̃n(
∨
I0

Σ̃iA)
⊕

H̃n(
∨
K0

Dn+1 × A)→ H̃n(C1)→ H̃n−1(
∨
K0

Σ̃iA)→ ...

we have that H̃n(C1) ∼= 0. Since it happens for every ordinal β ≤ λ it holds that
colimβ≤λH̃n(Cβ) ∼= 0, and therefore CWAX is Z-acyclic.

In general we have that pointed homotopy colimits of acyclic spaces with re-
spect to any generalized homology theory are again acyclic [9], [D.2.5].

Theorem 0.3.12 ([9], 2.E.8)
The functor CWA : S∗ → S∗ is a homotopy idempotent, augmented simplicial
functor, with the aumentation map cX : CWAX → X final up to homotopy
among all maps from A-cellular spaces to X, and it is initial up to homotopy
among all A-equivalences Y → X.

By computational reasons we will also work with another construction of CWA

given by Wojciech [24].

Theorem 0.3.13 ([24])
If A is a pointed and 0-connected space, the A-cellularization of X has the ho-
motopy type of the homotopy fibre of the map η : X → PΣACev, where η is the
composition of the inclusion X � � // Cev into the homotopy cofibre of the eval-
uation map ev :

∨
[A,X]∗

A→ X with the coaugmentation lCev : Cev → PΣACev.

For every X in S∗, the augmentation cX : CWAX → X is characterized up to
equivalence by three properties:

• cX is an A-cellular equivalence

• CWAX is A-cellular
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• hom∗(CWAX, g) is a weak equivalence whenever g is an A-cellular equiva-
lence

A well known example of an augmented functor is the universal cover X̂ → X.
More generally for X ∈ S∗, if A = Sn+1 then CWSn+1X is the connected n-cover
X⟨n⟩ of X.

As in Section 0.3.1 the concept of fibrewise localization as its counterpart in
the cellularization context.

Definition 0.3.14 Let A be a pointed and connected space. A fiberwise cellular-
ization of a fibration p : E → B is a fibration q : E → B such that

1) there exists a map b : E → E such that pb = q, and

2) for every point v ∈ B the induced map hFibq(v) → hFibp(v) of homotopy
fibers is the A-cellularization of hFibp(v).



CHAPTER 1

DIAGRAMS OF SPACES

We are interested in the structure of S as a cofibrantly generated model category
and how it passes to the category of functors SC, from a small category C to S (or,
category of C-diagrams of spaces). This structure will be studied by using free
diagrams [16] over the standard n-simplex △[n], which are C-diagrams that lie in
a full subcategory Γ of SC. In the first section we show that these diagrams are
the basic pieces through which we may cover a given C-diagram X, by proving
that Γ is a dense subcategory of SC. Thus these objects will play the role of
simplices in SC as it is done by the well known n-simplices in S.

In section 2 the sets of cofibrations and trivial cofibrations in SC are explicitly
describe and we closed the section by characterizing the free cell complexes, which
play the central role in the construction of minimal C-diagrams. As we will see
in Chapter 2 the notion of base for a free cell complex will allow us to identify
homotopically zig-zags of simplices.

By understanding the automorphisms group aut(F ), for a given C-diagram F
we are able to generalize the notions of fibre bundle and twisted cartesian prod-
ucts to the context of C-diagrams (it is done in sections 3 and 4). Generalize
the properties concerning to fiber bundles is quite natural and technically it is
not so difficult; although less obvious is the equivalent definition of C-fiber bundle
given in the appendix C, since it allow us to express the local triviality property of
bundles in terms of its n-C-simplices, which are not necessarily constant diagrams.

Given a twisting function t : Bn → aut(F )n−1 it is easy to define a C-diagram
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1.1. Free objects in the category of diagrams of simplicial sets

of twisted cartesian products, in this situation the technical difficulty is to obtain
the reciprocal way, as it is shown in Proposition 1.4.3. After showing this we
proof that any C-fiber bundle over B is a C-TCP and viceversa, as it happens in
the simplicial case, thus we are able to classify both of them in terms of the set
of homotopy classes of maps [B,Waut(F )] from B to Waut(F ).

In section 5 we characterize the function complex hom(F, F ).

1.1 Free objects in the category of diagrams of
simplicial sets

Let C and M be categories. If C is a small category, then the category MC of
C-diagrams in M is the category whose class of objects is the class of functors
from C to M and whose set of morphisms between two functors are the natural
transformations between them. If F : N → M is a functor and m ∈ M, the
category F ↓ m of objects F-over m has as objects the arrows α : F (n) → m
in M and as morphisms between α : F (n) → m and β : F (n′) → m the maps
g : n → n′ in N , such that βF (g) = α. This construction comes with a natural
projection functor θm defined by θm(g : α→ β) = g : n→ n′.

Definition 1.1.1 ([20]) A functor F : N → M is dense if for each m ∈ M,
m = colim

F↓m
Fθm.

In the sequel for a given category M, the set MorM(m,m′) will be denoted
byM(m,m′) or [m,m′] if the context category is clear.

Lemma 1.1.2 ([20])
A functor F : N → M is dense iff the functor M → SetsN

op

defined by the
assignation rule m 7→ M(F (−),m) is faithful and full.

Example 1.1.3 In the category ∆ every morphism β : [n] → [m] defines a
natural transformation β∗ : △[n] → △[m] given pointwise by postcomposition
with β (see Example 0.1.3), then we can define a functor △[−] : ∆ → Sets∆

op

,
where △[−]([n]) = △[n]. It is an immediate consequence from Yoneda’s Lemma
[20] that the functor Sets∆

op → Sets∆
op

defined by X 7→ S(△[−], X) is full and
faithfull, then by Lemma 1.1.2 every object X ∈ S can be expressed as a colimit.
The category △[−] ↓ X or for short ∆ ↓ X will be called the simplex category of
X, so X = colim

∆↓X
(△[n]→ X).
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Chapter 1. Diagrams of spaces

Viewing a simplex x ∈ Xn as a map x : △[n] → X between simplicial sets
becomes a good tool to understand some properties of maps in S, specially when
we are dealing with lifting properties since purely combinatorial simplicial proofs
can be quite technical. So the spirit of this section in what follows is to define
the objects that will allow us to see a diagram X ∈ SC in terms of blocks (as
it happens for simplicial sets with their representing maps), through which we
could recover X by a colimit process. That is why we introduce the notion of free
object.

Definition 1.1.4 ([16], Definition 11.5.25) Let M be a cocomplete category,
C a small category, fix c ∈ C, take X ∈ M and denote the set MorC(c, a) by
[c, a]. The functor X ⊗ [c,−] : C →M defined by

X ⊗ [c,−](f : a→ b) = ⨿
[c,a]

1X : ⨿
[c,a]

X → ⨿
[c,b]
X

for every arrow f : a→ b ∈ C, is called the free diagram on X generated at c .

For example if C = ∆op and {∗} is the singleton set, the free diagram on {∗}
generated at [n] is the standard n-simplex△[n]. LetM = S, △[n] ∈ S and c ∈ C,
since the free diagram △[n]⊗ [c,−] on △[n] generated at c will appear repeatedly
in what follows we will denote it by δcn, and the free diagrams △̇[n] ⊗ [c,−],
△k[n] ⊗ [c,−] by δ̇cn and δcn,k, respectively. For a C-diagram X a map δcn → X
will be called an n-C-simplex of X at c

Proposition 1.1.5 ([16], Proposition 11.5.26)
Let C be a small category and c ∈ C. Then the functor (−) ⊗ [c,−] : S → SC is
left adjoint to the functor evc : SC → S that evaluates at c, i.e., for every object
Y ∈ S and every diagram X ∈ SC there’s a natural isomorphism S(Y,Xc) ∼=
SC(Y ⊗ [c,−], X), where Xc = evc(X).

Sketch. The proof of this lemma is given in [16, proposition 11.5.26] for any
cocomplete categoryM, but for the sake of completeness of these notes we make
the sketch in the simplicial case by considering the simplicial set △[n].

If X ∈ SC and w is the representing map for a given n-simplex w ∈ Xc, then
the bijection ψcn : S(△[n], Xc)→ SC(δcn, X) is given by

w : △[n]→ Xc ⇒ △[n]
i
[c,d]
g //

w
##G

GG
GG

GG
GG

G
⨿
[c,d]
△[n]

ψc
n(w)d // Xd

(1) Xc

Xg

77pppppppppppppppp
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1.1. Free objects in the category of diagrams of simplicial sets

Where for every g ∈ [c, d], i[c,d]g symbolize the inclusion map from△[n]g = △[n]
into the coproduct ⨿

[c,d]
△[n] = δcn(d), and for every d ∈ C the map ψcn(w)d is the

one given by the universal property of the coproduct. If η : ⨿
[c,−]
△[n] → X ∈

SC(δcn, X), then (ψcn)
−1(η) is given by the composite △[n]

i
[c,c]
1c // ⨿

[c,c]
△[n]

ηc // Xc

Definition 1.1.6 Let Γ be the subcategory of SC whose set of objects is formed
by the diagrams δcn, for every c ∈ C and n ≥ 0, and whose morphisms is given by
the composition of the following ones

σi : δcn+1 → δcn , 0 ≤ i ≤ n
εi : δcn → δcn+1 , 0 ≤ i ≤ n+ 1
jf : δ

b
n → δan for f : a→ b ∈ C

where σi = ⨿
[c,−]

σi and εi = ⨿
[c,−]

εi. Remember that σi : △[n + 1] → △[n] and

εi : △[n] → △[n + 1] are the induced arrows by σi : [n + 1] → [n] and the
map εi : [n] → [n + 1] in ∆, respectively (see Section 0.1). Given a morphism
f : a → b ∈ C, the map jf,c : ⨿

[b,c]
△[n] → ⨿

[a,c]
△[n] is defined as follows, for every

c ∈ C: if z ∈ △[n]h for a given h ∈ [b, c], then jf,c(z) = z ∈ △[n]hf .

Proposition 1.1.7
Γ is a full subcategory of SC.

Proof. Take a morphism η : δcn → δdm and apply the Proposition 1.1.5 with
X = δdm in the diagram (1). Then η = ψcn(w

g), where wg is the representing

map △[n] w //△[m]
i
[d,c]
g // ⨿

[d,c]
△[m] of some simplex w ∈ ⨿

[d,c]
△[m]. Therefore

ηe = ⨿
[c,e]
w : ⨿

h∈[c,e]
△[n]h → ⨿

h∈[c,e]
△[m]hg ⊆ ⨿

[d,e]
△[m] , for every e ∈ C. According

to the Lemma 0.1.2 the n-simplex w can be expressed as sjt ...sj1dk1 ...dksιm; hence
for every h ∈ [c, e], w has a factorization:

△[n]h △[n]hg
σjt //△[n− 1] σ

jt−1 // ...
εks−1 //△[m− 1] εks //△[m]hg

that is, ηe = εks ...εk1σj1 ...σjtjg,e.
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Proposition 1.1.8
The inclusion functor i : Γ ↪→ SC is dense.

Proof. We have to check that SC(i(−),−) : SC → SetsΓ
op

is a faithful and full
functor (see Lemma 1.1.2).

i) SC(i(−),−) is faithful: Suppose that η, ρ : X → Y ∈ SC are natural transfor-
mations, such that their images η∗ and ρ∗ by SC(i(−),−) are equal, that
is, SC(i(−), η) = SC(i(−), ρ). Let c be an object of C, w ∈ S(△[n], Xc) and
ψcn(w) : δ

c
n → X its corresponding natural transformation (diagram (1)).

Since η∗ = ρ∗ we have that [η∗ψ
c
n(w)]d = [ρ∗ψ

c
n(w)]d for every d ∈ C, in

particular if c ∈ C and 1c ∈ [c, c] the equality ηcψcn(w)ci
[c,c]
1c = ρcψ

c
n(w)ci

[c,c]
1c

holds. Then ηc(w) = ρc(w), since (1) commutes for every d ∈ C and every
g ∈ [c, d].

ii) SC(i(−),−) is full: Take a map τ : SC(i(−), X) → SC(i(−), Y ) ∈ SetsΓ
op

and
define the map ρcn : Xc,n → Yc,n by ρcn := (ϕcn)

−1τ cnψ
c
n for every c ∈ C and

every n ≥ 0, where ψ and ϕ are the bijections given in (1) for X and Y .
Then let us show that ρ is a natural transformation from X into Y and
that SC(i(−), ρ) = τ . To see that ρ is natural it is enough to check that the
following square commutes for every arrow g : c→ d in C.

S(△[n], Xc)
Xg,∗ //

ψc
n ��

S(△[n], Xd)

ψd
n

��
SC(δcn, X)

j∗g,n // SC(δdn, X)

Note that for every n-simplex w in S(△[n], Xc) the down diagram commutes

△[n]
i
[d,e]
f //

w

++WWWW
WWWWW

WWWWW
WWWWW

WWWWW
WWWWW

WWWWW

Xg(w)

((PP
PPP

PPP
PPP

PPP
PPP

PPP
PPP

PPP
PPP

PPP
PPP

P ⨿
f∈[d,e]

△[n]f
jg,n // ⨿

f∈[d,e]
△[n]fg ⊆ ⨿

[c,e]
△[n]

ψn
c (w)e // Xe

Xc

Xg

��

Xfg

55kkkkkkkkkkkkkkkkkkkkkkk

Xd

Xf

::uuuuuuuuuuuuuuuuuuuuuuuuuu
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1.1. Free objects in the category of diagrams of simplicial sets

Then ψcn(w)ejg,n = ψdn(Xg(w))e for every e ∈ C and every f : d → e ∈ C,
and therefore j∗g,nψcn(w) = ψcn(w)jg,n = ψdn(Xg(w)) = ψdnXg,∗(w). It only
remains to show that SC(i(−), ρ) = τ , that is, τ cn = ϕc,−1n τ cnψ

c
n for every

δcn ∈ Γ, but this is a consequence from commutativity of the following
diagram

S(△[n], Xc)

ϕc,−1
n τcnψ

c
n

��

SC(δcn, X)

τcn
��

ψc,−1
noo

S(△[n], Yc) SC(δcn, Y )
ϕc,−1
n

oo

The density of the functor i : Γ ↪→ SC says us that every C-diagram X can be
expressed as a colimit of its n-C-simplices, that is, X = colim

Γ↓X
δn.

Corollary 1.1.9
SC(i(−),−) : SC → SetsΓ

op

is an equivalence of categories.

Proof. From Proposition 1.1.8 we have that SC(i(−),−) is faithful and full,
then it only remains to show that SC(i(−),−) is representative, that is, we have to
show that for every A ∈ SetsΓ

op

there exists a C-diagram Â, such that SC(i(−), Â)
is isomorphic to A.

Take A ∈ SetsΓ
op

and define Â ∈ SC by Âc,n := A(δcn), Â(g)n := A(jg,n),
si := A(σi) and di := A(εi), for every c ∈ C and every g : c → d ∈ C. Then
SC(i(−), Â) ∼= A, since SC(δcn, Â)

∼= S(△[n], Âc) ∼= Âc,n = A(δcn) for every δcn ∈ Γ.

The notion of free diagram generated at c ∈ C (Definition 1.1.4) can be ex-
tended to the whole category C by considering the discrete category Co of C, whose
objects are the same as C and with no non-identity morphisms.

Definition 1.1.10 ([16], Definition 11.5.27) If C is a small category, M is a
cocomplete category and X ∈ MCo, then the free C-diagram in M generated by
X is the functor ⨿

c∈C
((−)c ⊗ [c,− ]) : MCo → MC, which is defined over objects

by ⨿
c∈C

(−c ⊗ [c,− ])(X) = ⨿
c∈C

(Xc ⊗ [c,− ]) for every X ∈ MCo, and over arrows by

⨿
c∈C

((−)c ⊗ [c,− ])(η) = ⨿
c∈C

(ηc ⊗ [c,− ]) for every η : X→ Y in MCo.
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Proposition 1.1.11 ([16], Theorem 11.5.28)
Under the above assumptions, if U : MC → MCo is the forgetful functor, then
⨿
c∈C

((−)c ⊗ [c,− ]) is left adjoint to U , that is, If Y ∈ MCo and X ∈ MC, then
there’s a natural isomorphism

MC(⨿
c∈C

(Yc ⊗ [c,− ]), X) ∼=MCo(Y, U(X))

Notice that MCo(Y, U(X)) = Π
c∈C
M(Yc, Xc), since in MCo the only arrows

are the identity morphisms.

1.2 Cofibrantly generated model structure over SC

In the Section 0.3 we saw that S is a simplicial model category and we showed
how this structure induced a model structure over the category of C-diagrams
of simplicial sets (see Example 0.2.17); although we also saw that S has a cofi-
brantly generated model structure. In this section we will see how the cofibrantly
generated structure of S can be lifted to SC via a pair of adjoint functors, in
particular we are interested in determining explicitly how the cofibrations and
trivial cofibrations are in SC.

In the previous section, the free diagrams were introduced, since the cofibrant
objects in this model category will be the free cell complexes and their retracts.
The relative free cell complexes will be the analogues for diagrams of topological
spaces of relative cell complexes for topological spaces.

Definition 1.2.1 ([16]) Let C be a small category and let c be an object of C. If
M is a model category and I is a set of maps in M, then a free I-cell generated
at c in MC is a map of the form

⨿
[c,−]

A→ ⨿
[c,−]

B

where A→ B is an element of I.

A free cell generated at c in TopC is a map of the form ⨿
[c,−]
|△̇[n]| → ⨿

[c,−]
|△[n]|

and a free cell generated at c in SC has the form δ̇cn → δcn.

Definition 1.2.2 ([16]) If M is a cofibrantly generated model category and C
is a small category, then a relative free cell complex in MC is a map that is a
transfinite composition (see Appendix B) of pushouts of free cells, and a free cell

39



1.2. Cofibrantly generated model structure over SC

complex in MC is a diagram X such that the map from the initial object of MC

to X is a relative free cell complex.

In the following theorem we can see that the relative free cell complexes and
their retracts will be the cofibrations in the model category of C-diagrams in a
cofibrantly generated model categoryM.

Theorem 1.2.3 ([16], Theorem 11.6.1)
If C is a small category and M is a cofibrantly generated model category with
generating cofibrations I and generating trivial cofibrations J , then the category
MC of C-diagrams inM is a cofibrantly generated model category with generating
cofibrations IC = ∪

c∈C
Ic where

Ic = { Xi ⊗ [c,− ]
fi⊗[c,−] // Yi ⊗ [c,− ] : fi : Xi → Yi ∈ I}

and generating trivial cofibrations JC = ∪
c∈C
Jc where

Jc = { Xj ⊗ [c,− ]
fj⊗[c,−] // Yj ⊗ [c,− ] : fj : Xj → Yj ∈ J}

In this model category structure, a map X → Y ∈ SC is

• a weak equivalence if Xc → Yc is a weak equivalence inM for every c ∈ C,

• a fibration if Xc → Yc is a fibration inM for every c ∈ C, and

• a cofibration if it is a retract of a transfinite composition of pushouts of
elements of IC.

For our purposes we will make a sketch of the proof forM = S (the detailed
proof can be found in [16, Theorem 11.6.1]).

Sketch. If Co is the discrete category with objects equal to the objects of C, then
SC

o
= Π

c∈Obj(C)
S is a cofibrantly generated model category, by Proposition 0.2.9,

with the sets of generating cofibrations IΠ and generating trivial cofibrations JΠ
given by

IΠ = ∪
c∈Obj(C)

(Ic × Π
t̸=c

1∅t)

JΠ = ∪
c∈Obj(C)

(Jc × Π
t̸=c

1∅t)
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Chapter 1. Diagrams of spaces

where 1∅t is the identity map of the initial object of S, and Ic = I, Jc = J for
every c ∈ C. The adjoint pair ⨿

c∈C
((−)c ⊗ [c,− ]) : S

Cdisc // SC : Uoo of Proposi-

tion 1.1.11 satisfy the conditions of Theorem 0.2.14, and therefore there exists
a cofibrantly generated model structure over SC in which ⨿

c∈C
((−)c ⊗ [c,− ])(IΠ)

is a set of generating cofibrations, ⨿
c∈C

((−)c ⊗ [c,− ])(JΠ) is a set of generating
trivial cofibrations, and the weak equivalences are the maps that U takes into
weak equivalences in M. It also holds that with respect to this model category
structure (⨿

c∈C
((−)c ⊗ [c,− ]), U) is a Quillen pair.

Remember that in S the set of generating cofibrations is formed by the in-
clusions △̇[n] ↪→ △[n] for n ≥ 0, and the generating trivial cofibrations are the
inclusions △k[n] ↪→ △[n] for n > 0 and 0 ≤ k ≤ n. So from the above sketch we
see the set of generating cofibrations in SC is formed by the inclusions δ̇cn ↪→ δcn
for every c ∈ C, and every n ≥ 0, and the set of generating trivial cofibrations is
given by the inclusions δcn,k ↪→ δcn for every c ∈ C, n > 0 and 0 ≤ k ≤ n.

It also holds that X → Y ∈ SC is a fibration if Xc → Yc is a fibration in
S for every c ∈ C, or equivalently if it has the RLP with respect to the set of
generating trivial cofibrations, that is, if for every commutative diagram as the
following, the dotted arrow exists

δcn,k
//

��

X

��
δcn //

>>

Y

Note that with this cofibrantly generated structure over SC their relative free
cell complexes are the relative cell complexes and their free cell complexes are the
cell complexes (see Definitions 0.2.10 and 1.2.2). Then from Proposition 0.2.11
it holds that the class of cofibrations equals the class of retracts of relative free
cell complexes, and therefore the class of I-injectives corresponds to the class of
trivial fibrations (see item 4 of Proposition 0.2.6).

The following proposition characterizes those diagrams of simplicial sets that
are free cell complexes. This characterization will be central to define and con-
struct minimal models of C-diagrams.
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Proposition 1.2.4 ([16], Proposition 14.8.1)
If C is a small category and X is a C-diagram of simplicial sets, then X is a free
cell complex if and only if there is a sequence {Σ0,Σ1,Σ2, ...} of Co-diagrams of
sets such that

a) For every n ≥ 0 and c an object of C, the set Σc,n := Σn(c) is a subset of Xc,n.

b) For 0 ≤ i ≤ n and c an object of C, we have si(Σc,n) ⊆ Σc,(n+1), that is Σ is
closed under degeneracies.

c) If n ≥ 0, d is an object of C and z is an n-simplex of Xc, then there exists
an object c in C, an element w ∈ Σc,n and a map f : c → d ∈ C such that
Xf (w) = z, and such a triple is unique.

The sequence {Σ0,Σ1,Σ2, ...} of the proposition will be called a basis for X,
and an element of Σc,n will be called a generator of the free cell complex X.
We will let Σ♭ ⊆ Σ be the subset of degenerate simplices, and we will call an
element of Σ♭ a degenerate generator of X. An element of Σ − Σ♭ will be called
a nondegenerate generator.

1.3 C-Fiber bundles

Our aim in this section is to extend the definition of fiber bundle given in Section
0.1.1 to the context of C-diagramas of simplicial sets. In particular we are inter-
ested in maps p : X → B of SC, where B is a constant diagram to the simplicial
set B; for p the concepts about local triviality, atlases and structural group are
reformulated in such way that we can recover again the theory of twisted cartesian
products.

Definition 1.3.1 Let F be a C-diagram and B a simplical set. A map p : X → B
in SC, where B is the constant diagram, will be called a C- fibre bundle with fibre F
if p is an epimorphism and for every n-simplex v ∈ B there exists an isomorphism
αp(v) : △[n]× F →△[n]×B X such that the following diagram commutes.

△[n]× F αp(v)

∼=
//

pr

��

△[n]×B X v̂ //

pr

��

X

p

��
△[n] −

//△[n] v
// B
y
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Chapter 1. Diagrams of spaces

The set of isomorphisms {αp(v)} will be called a C-atlas of the C-bundle and if
F is fibrant p will be called a Kan C-fibre bundle or for short a CK-bundle . Given
two atlases {αp(v)} and {α̃p(v)} of p, αp(v)−1α̃p(v) ∈ aut(F )n and conversely if for
every v ∈ Bn we choose (γ(v)) ∈ aut(F )n, then {αp(v)γ(v)} is another atlas. If for
every v we define βp(v) as the composition v̂αp(v) : △[n]×F →△[n]×BX → X,
then the atlas {αp(v)} and the set of maps {βp(v)} determine each other.

Given an arrow f : c→ d in C a C-fibre bundle p : X → B with fibre F looks
locally as follows

△[n]× Fc
αpc(v)

∼=
//

1×Ff

��

△[n]×Xc
v̂c //

X∗
f

��

Xc

Xf

��
(2) △[n]× Fd

αpd
(v)

∼=
//

��

△[n]×Xd
v̂d //

��

Xd

pd

��
△[n] △[n] v

// B

So for every c ∈ C, pc is a fibre bundle with fibre Fc and atlas {αpc(v)}. Like
in the classic theory for fibre bundles we could ask if given a C-atlas {αp(v)} of p
it is normal and regular, that is, if {αpc(v)} is normal and regular for every c ∈ C.

To get a normal C-atlas we can redefine {αpc(v)} for every c ∈ C over the
non-degenerate simplices v ∈ B, as we did in Section 0.1.1 with the formula (∗).
After doing that we just have to verify that the commutativity of the diagram (2)
is preserved, that is, we have to see if the frontal square of the following diagram
commutes for every arrow f : c→ d ∈ C:

△[n]× Fc
β′
pc

(v)
//

1×Ff

��

Xc

Xf

��
△[n+ 1]× Fc

σi×1
66

β′
pc

(siv)

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

1×Ff

��

△[n]× Fd
β′
pd

(v)
// Xd

△[n+ 1]× Fd

σi×1
66

β′
pd

(siv)

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Given a non-degenerate simplex v ∈ B we define β′pc(v) := βpc(v) and β′pc(siv) :=
siβpc(v) for every c ∈ C. So the following sequence of equalities holdsXfβ

′
pc(siv) =

Xfsiβpc(v) = Xfβpc(v)(σ
i×1) = βpd(v)(1×Ff )(σi×1) = βpd(v)(σ

i×1)(1×Ff ) =
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siβpd(v)(1× Ff ) = β′pd(siv)(1× Ff ).

Note that it is also possible to define a set of transformation elements {ξip(v)}
for a given C-bundle p by doing a parallel treatment over the faces div of a given
n-simplex v ∈ B, as it was done in Section 0.1.1. In the present situation ξip(v)
is defined over every c ∈ C by ξipc(v) := αpc(div)

−1θpc(v)diαpc(v) and it is easy
to see that ξip(v) ∈ aut(F )n−1, since (2) is commutative. Following the same
reasoning of Proposition 0.1.19 we can obtain a regular atlas {α′p(v)} of p, and
as in the normalization process we must prove that the new atlas makes that (2)
commutes, that is, if Xfβ

′
pc(v) = β′pd(1× Ff ) holds for every f : c→ d ∈ C.

In the induction process of Proposition 0.1.19 we can see that αp(v) is rede-
fined by α′p(v) = αp(v)γ(v)

−1 for every non-degenerate n-simplex v in B, where
γ(v) ∈ aut(F )n. Since γ(v) ∈ aut(F )n, for every f : c → d ∈ C it holds that
(1 × Ff )γc(v) = γd(v)(1 × Ff ), then it follows that Xfβ

′
pc(v) = Xf v̂cα

′
pc(v) =

Xf v̂cαpc(v)γc(v)
−1 = v̂dαpd(v)(1 × Ff )γc(v)−1 = v̂dα

′
pd
(v)γd(v)(1 × Ff )γc(v)−1 =

β′pd(v)γd(v)γd(v)
−1(1× Ff ) = β′pd(v)(1× Ff ).

From now on, given any C-bundle with group G we may suppose that we are
dealing with regular and normalized atlases. Notice that the concept of G-map
and G-equivalence of Definition 0.1.20 is similar in the context of C-bundles.

Definition 1.3.2 If p : X → B and p′ : X ′ → B are C-bundles with fibre F
and group G, a G-map from p to p′ is a map of C-diagrams h : X → X ′ such
that for every n-simplex v ∈ B and any G-atlases {αp(v)}, {αp′(v)} in the given
G-equivalence classes of atlases, there exists γ(v) ∈ Gn such that the following
diagram commutes

△[n]× F
αp′ (v)//

��

△[n]×B X ′

~~

v̂′ // X ′

p′

{{ww
ww
ww
ww
ww
ww
ww
ww
ww
ww
ww
ww

△[n]× F

γ(v)
77ooooooooooo

��

αp(v)//△[n]×B X v̂ //

��

X

p

��

h

55kkkkkkkkkkkkkkkkkkkk

△[n] −
//△[n] v

// B hβp(v) = βp′(v)γ(v)

If h is a natural isomorphism we’ll say that p and p′ are G-equivalent .
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Lemma 1.3.3
If p : X → B is a CK-bundle with fibre F , then p is a fibration.

Proof. The map pc : Xc → B is a fibre bundle with fibre Fc for every c ∈ C,
and since F is fibrant by Lemma 0.1.21 pc is a fibration for every c ∈ C.

1.4 C-Twisted cartesian products
According to the example 0.2.17 of Section 0.3, if F is a C-diagram the group
aut(F ) of automorphisms of F consists in dimension n of tuples (εc)c∈C that
satisfies:

1. εc ∈ aut(Fc)n, for every c ∈ C

2. the following diagram commutes, for every morphism f : c→ d in C

△[n]× Fc
1×Ff //

εc

��

△[n]× Fd
εd
��

Fc Ff

// Fd

or equivalently the following one

△[n]× Fc
1×Ff //

ε̃c
��

��

△[n]× Fd
ε̃d
��

��

△[n]× Fc
1×Ff //

%%KK
KKK

KKK
KK

△[n]× Fd

yysss
sss

sss
s

△[n]

where ε̃c(τ, z) = (τ, εc(τ, z)), for every k-simplex (τ, z) in △[n] × Fc and
every c ∈ C.

Since many of the properties of aut(F ) are a consequence of commutativ-
ity of the above square, we will see how it can be expressed in combinato-
rial terms, that is, consider (φιn, z) ∈ (△[n] × Fc)k and evaluate this sim-
plex in the diagram: εd(1 × Ff )(φιn, z) = εd(φιn, Ff (z)) = φεd(ιk, Ff (z)) and
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Ffεc(φιn, z) = Ff [φεc(ιk, z)], therefore φεd(ιk, Ff (z)) = Ff [φεc(ιk, z)] or equiva-
lently

(‡) φεd.Ff (z) = Ff [φεc.z]

Given a subgroupG of aut(F ) the subgroup of aut(Fc) whose set of n-simplices
consists of the elements εc such that (εc) ∈ Gn will be denoted by Gc, and in what
follows (εc) will denote the tuple (εc)c∈C. The following definition will be justified
by Proposition 1.4.2 and Proposition 1.4.3.

Definition 1.4.1 Let B be a simplicial set, F a C-diagram, G a simplicial group
acting effectively on the left of F and t : B → G a twisting map. Then the
C-Twisted cartesian product with base B, fibre F and group G is the C-diagram
B ×t F defined by B ×t F (c) = B ×tc Fc for every c ∈ C, and by B ×t F (c)(f) =
1×Ff for every morphism f ∈ C. The term C-TCP will also refer to the projection
map pr : B ×t F → B.

In the definition by an effective left action of G over F we mean an injective
group homomorphism θ : G → aut(F ). Note that θ is given by a tuple (θc) of
group homomorphisms θc : G → aut(Fc) such that (θc(ģ)) ∈ aut(F ), or equiva-
lently by a left action of G over Fc for every c ∈ C, such that φģ.Ff (z) = Ff [φģ.z]
for every arrow f : c → d ∈ C, every k-simplex z of Fc and every semisimplicial
operator φ of length (n − k). Since θ is injective we can assume that G is a
subgroup of aut(F ).

Notice that a C-twisting map t = {tn : Bn → Gn−1}n≥1 has the following
form: If v ∈ Bn, t(v) = (t(v)c). Then for every c ∈ C we can obtain a map
tc : Bn → Gc,n−1, by defining tc(v) := t(v)c, since t is a twisting map it is easy
to see that tc is also a twisting map. Then B ×tc Fc is a TCP with fibre Fc and
group Gc, for every c ∈ C.

Proposition 1.4.2
Let B be a simplicial set, F a C-diagram, G ≤ aut(F ) and t : B → G a twisting
map. Then for every arrow f : c→ d ∈ C the map 1× Ff : B ×tc Fc → B ×td Fd
is a simplicial map.

Proof. To show that 1×Ff is simplicial is enough with checking the commutativ-
ity of 1×Ff with the face operator d0. Let us take an n-simplex (v, z) of B×tcFc:
d0(1×Ff )(v, z) = d0(v, Ff (z)) = (d0v, td(v).d0Ff (z)) = (d0v, td(v).Ff (d0z)), since
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t(v) ∈ Gn−1 from (‡) it holds that (d0b, td(v).Ff (d0z)) = (d0b, Ff [tc(v).d0z]) =
(1× Ff )(d0v, tc(v).d0z) = (1× Ff )d0(v, z).

The above proposition says that from every twisting map t : B → G, where
G ≤ aut(F ), we can obtain a well behaved C-diagram of TCP ′s. Although
it is also possible to show that every C-diagram of well behaved TCP ′s comes
from a C-twisting map, that is, if for a given diagram F ∈ SC and a given
simplicial set B there is a C-diagram X such that for every f : c → d in

C, X(a
f // b) = B ×tc Fc

1×Ff // B ×td Fd , then it is fully characterized by a C-
twisting map t : B → G for some G ≤ aut(F ).

Proposition 1.4.3
Let F be a C-diagram and B a simplicial set. If X is a C-diagram such that for

every f : c → d in C, X(c
f // d) = B ×tc Fc

1×Ff // B ×td Fd , then t = (tc) is a
twisting map.

Proof. To prove that t : B → aut(F ) defined by t = (tc) is a twisting map we
must show that t(v) ∈ aut(F )n−1 is well defined for every v ∈ Bn (that is, (tc)
satisfies the relation (‡)) and that t is a twisting map. Since 1×Ff is a simplicial
map it commutes with the face operator d0, then from a straightforward calculus
we can see that

(⋄) td(v).Ff (z) = Ff [tc(v).z]

for every f : c → d in C, v ∈ Bn and z ∈ Fc,(n−1). Using this relation we will
show that φtd(v).Ff (z) = Ff [φtc(v).z] by considering the following two cases:

i) φ = d0. Check the equation d0td(b).Ff (z) = Ff [d0tc(b).z] is equivalent to check
that td(d0b)−1.td(d1b).Ff (z) = Ff [tc(d0b)

−1.tc(d1b).z], or equivalently that
td(d1b).Ff (z) = td(d0b).Ff [tc(d0b)

−1.tc(d1b).z], since the twisting maps (tc)
satisfy the relations with the face operator d0 given in Definition 0.1.22.
Starting with the right part of the last equation we obtain the follow-
ing equality td(d0b).Ff [tc(d0b)

−1.tc(d1b).z] = Ff [tc(d0b).tc(d0b)
−1.tc(d1b).z]

by using (⋄), and again by the equation (⋄) it holds that Ff [tc(d1b).z] =
td(d1b).Ff (z).

ii) φ = s′d0d
′. Every step of the following sequence holds by using the equations

given in Definition 0.1.22 for TCP ′s: φtd(v).Ff (z) = s′d0d
′td(v).Ff (z) =
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d0s
′′d′td(v).Ff (z) = d0td(s

′′′d′′v).Ff (z), by using the equality of the part i)
we have that d0td(s′′′d′′v).Ff (z) = Ff [d0tc(s

′′′d′′v).z], and using again the re-
lations of Definition 0.1.22 we obtain the following equalities Ff [d0tc(s′′′d′′v).z] =
Ff [d0s

′′d′tc(v).z] = Ff [s
′d0d

′tc(v).z] = Ff [φtc(b).z].

Therefore t : B → aut(F ) is well defined. Since tc is a twisting map for every
c ∈ C, it is easy to check that t is a twisting map.

Lemma 1.4.4
Let pr : B ×t F → B a C-TCP . If F is fibrant, then pr is a fibration.

Definition 1.4.5 Let B×tF and B′×lF be C-TCP ′s with fibre F and group G.
A morphism of C-diagrams h : B×tF → B′×lF is said to be a map of C−TCP ′s
if hc(v, z) = (g(v), γ(v)c.z) for every c ∈ C, v ∈ Bn and every z ∈ Fc,n, where
g : B → B′ is a simplicial map and γ : B → G is a dimension preserving function.
If B = B′ and g = idB we say that t and l are twisting maps equivalents, t ∼C l,
or that B ×t F and B′ ×l F are C-TCP ′s equivalents.

Remark 1.4.6 If we want a map between C-TCP ′s it is enough with defining a
map of C-diagrams h : B ×t F → B′ ×l F , such that hc is a map of TCP ′s for
every c ∈ C. That is if hc(v, z) = (g(v), γc(v).z) for a given n-simplex (v, z) of
B ×tc Fc, then we can define γ : B → G by γ(v) = (γc(v)), and we just have to
see that (γc(v)) ∈ G.

To check that (γc(v)) ∈ G let us remember that given an n-simplex (v, z) of
B ×tc Fc the following equalities hold for every c ∈ C and every arrow f : c → d
in C:

(i) td(v).Ff (z) = Ff [tc(v).z]
(ii) γd(v).Ff (z) = Ff [γc(v).z]
(iii) lc(v)d0γc(v) = γc(d0v)tc(v)

The first one holds since 1 × Ff : B ×tc Fc → B ×td Fd is a simplicial map
(see Proposition 1.4.3), the second one holds since h is a map of C-diagrams and
the third one holds because hc is a map of TCP ′s (see the equalities given after
Definition 0.1.26. So to see that (γc(v)) ∈ G we have to verify that γc(v)) satisfies
the equality (‡), that is, φγd(v).Ff (z) = Ff [φγc(v).z].

We are going to consider first the case in which φ = d0: d0γd(v).Ff (z) =(iii)

ld(v)
−1.γd(d0v).td(v).Ff (z) =

(i) ld(v)
−1.γd(d0v).Ff [tc(v).z] using (ii) it holds that
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ld(v)
−1.γd(d0v).Ff [tc(v).z] = ld(b)

−1.Ff [γc(d0v).tc(v).z] , applying (iii) we have
that ld(b)−1.Ff [γc(d0v).tc(v).z] = ld(v)

−1.Ff [lc(v).d0γc(v).z] , and from the equa-
tion (i), ld(v)−1.Ff [lc(v).d0γc(v).z] = ld(v)

−1ld(v)Ff [d0γc(v).z] = Ff [d0γc(v).z].
Therefore: d0γd(b).Ff (z) = Ff [d0γc(b).z]

Now let us suppose that φ = s′d0d
′: φγd(v).Ff (z) = s′d0d

′γd(v).Ff (z) =
d0s
′′d′γd(v).Ff (z) = d0γd(s

′′d′v).Ff (z), by the last equation of the above para-
graph we have that d0γd(s′′d′v).Ff (z) = Ff [d0γc(v)(s

′′d′v).z] = Ff [d0s
′′d′γc(v).z] =

Ff [s
′d0d

′γc(v).z] = Ff [φγc(v).z].

Proposition 1.4.7
Let pr : B ×t F → B a C-twisted cartesian product with base B, fibre F and
group G. Then pr is a C-bundle with fibre F and group G.

Proof. Given v ∈ Bn let us define the map αt(v) : △[n] × F → △[n] ×t◦v F
by αtc(v)(φιn, z) = (φιn, ψ

v
t (φιn).z), for every c ∈ C, where ψvt (φιn) = s′t(d′v) if

φ = s′d0d
′, and ψvt (φιn) = e if φ = s′d′. From Proposition 0.1.27 it holds that

αtc(v) is an isomorphism for every c ∈ C, so it remains to show that for every
f : c→ d ∈ C the following square is commutative

△[n]× Fc
αtc (v)//

1×Ff

��

△[n]×tc◦v Fc
F ∗
f

��
△[n]× Fd

αtd
(v)
//△[n]×td◦v Fd

where F ∗f (τ, z) = (τ, Ff (z)).

Take a simplex (φιn, z) ∈ △[n] × Fc and consider its evaluations in the
above square: F ∗f αtc(v)(φιn, z) = F ∗f (φιn, ψ

v
tc(φιn).z) = (φιn, Ff [ψ

v
tc(φιn).z]) and

αtd(v)(1 × Ff )(φιn, z) = αtd(v)(φιn, Ff (z)) = (φιn, ψ
v
td
(φιn).Ff (z)), then the

above diagram commutes if Ff [ψvtc(φιn).z] = ψvtd(φιn).Ff (z). To show that con-
sider the following two casses:

i) φ = s′d′. Ff [ψvtc(φιn).z] = Ff [e.z] = Ff (z) = e.Ff (z) = ψvtd(φιn).Ff (z).

ii) φ = s′d0d
′. Ff [ψvtc(φιn).z] = Ff [s

′tc(d
′v).z] = Ff [tc(s

′′d′v).z], since (tc) satis-
fies the equation (‡) (because t(v) ∈ aut(F )) it holds that Ff [tc(s′′d′v).z] =
td(s

′′d′v).Ff (z) = s′td(d
′v).Ff (z) = ψvtd(φιn).Ff (z).
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Proposition 1.4.8
Let p : X → B a C-fibre bundle with fibre F and a regular G-atlas {αp(v)}. Then
the transformation elements {ξ0p(v)} define a C-twisting map ξ0p : Bn → Gn−1 and
thereby B×ξ0p F becomes a C-TCP with fibre F and group G. Furthermore there
is an isomorphism h : B ×ξ0p F → X of C-fibre bundles with group G.

Proof. First notice that ξ0p(v) ∈ Gn−1 for every v ∈ Bn, since p is a G-bundle.
By Proposition 0.1.29 it holds that ξ0pc : Bn → Gc,n−1 defined by ξ0pc(v) = (ξ0p(v))c
is a twisting map for every c ∈ C, then ξ0p is a twisting map.

The map h is defined by hc(v, z) = βpc(v)(ιn, z), for every c ∈ C, where (v, z)
is an n-simplex of B×ξ0pc Fc. Applying the Proposition 0.1.29 it holds that hc is an
isomorphism for every c ∈ C, then it remains to show that for every f : c→ d ∈ C
the following square commutes

B ×ξ0pc Fc
hc //

1×Ff

��

Xc

Xf

��
B ×ξ0pd Fd hd

// Xd

Take an n-simplex (v, z) in B ×ξ0pc Fc and evaluate it in the above square,
that is, Xfhc(v, z) = Xfβpc(v)(ιn, z) and hd(1 × Ff )(v, z) = hd(v, Ff (z)) =
βpd(v)(ιn, Ff (z)). Since p is a C-fibre bundle it looks locally as the diagram
(2), which is commutative, then Xfβpc(v)(ιn, z) = βpd(v)(1 × Ff )(ιn, z), where
βpd(v)(1× Ff )(ιn, z) = βpd(v)(ιn, Ff (z)).

As in Proposition 0.1.28 of Section 0.1.2 the following lemma says that the cor-
responding notion of equivalence for C-TCP ′s with group G corresponds exactly
to that of G-equivalence of C-bundles.

Proposition 1.4.9
The C-TCP ′s, B ×t F and B ×l F with group G are equivalents if there exists
an isomorphism h : B ×t F → B ×l F , such that for every v ∈ Bn there exists
γ(v) ∈ G that makes the following diagram commutative
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Chapter 1. Diagrams of spaces

△[n]× F αl(v) //

��

△[n]×l◦v F
v×1 //

~~

B ×l F

yysss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss

△[n]× F

��

αt(v)//

γ(v)
77ooooooooooo

△[n]×t◦v F
v×1 //

��

B ×t F

��

h

44iiiiiiiiiiiiiiiiiii

△[n] //△[n] v
// B h(v × 1)αt(v) = (v × 1)αl(v)γ(v)

From the analogue of Proposition 0.1.30 in the context of C-bundles and C-
TCP ′s we can formulate the following one.

Proposition 1.4.10
The equivalence classes of C-bundles with fibre F and group G are in bijective
correspondence with the equivalence classes of C-TCP ′s with fibre F and group
G.

The next result is a straightforward consequence of definitions 0.1.26 and 1.4.5.

Proposition 1.4.11
Let F be a C-diagram andG a subgroup of aut(F ). Then the equivalence classes of
principal twisted cartesian products with group G are in bijective correspondence
with the equivalence classes of C-TCP ′s with fibre F and group G.

From Propositions 1.4.10, 1.4.11 and Theorem 0.1.32 we have that any C-fibre
bundle with fibre F , group G and base diagram B can be obtained from a map
with domain B and codomain WG, and conversely that any map from B into
WG defines a C-fibre bundles with fibre F and group G.

Theorem 1.4.12
Let F be a C-diagram, G a subgroup of aut(F ) and B a connected simplicial set.
Then the set of homotopy classes of maps [B,WG] from B to WG are in bijective
correspondence with the set of equivalence classes of C-fibre bundles with fibre F
and group G.

1.5 aut(F)
Given two C-diagrams X and Y let us define a new C-diagram Hom(X, Y )
in SetsΓ

op

(remember that SC and SetsΓ
op

are equivalents as categories, see
Corollary 1.1.9), for the arrow α : δbn → δek in Γ define the functor as follows
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1.5. aut(F)

Hom(X,Y )(α : δbn → δek) = (α × 1)♯ : SC(δek × X, Y ) → SC(δbn × X,Y ). Now
for every n consider the restriction of Hom(X, Y ) to the full subcategory Γn of
Γ, whose set of objects is given by {δcn : c ∈ C} and denote the restriction by
Hom(X,Y )n : Γopn → Sets.

For every n take the inverse limit hom(X,Y )n = lim
←
Hom(X,Y )n. Notice

that hom(X, Y )n is the set formed by the set of tuples (ϵc)c∈C such that for every
arrow g : b→ c in C the following diagram commutates

δbn ×X
ϵb //

""

δbn × Y

||yy
yy
yy
yy
y

δcn ×X

jg×1
55lllllllllllllll

""F
FF

FF
FF

FF
ϵc // δcn × Y

jg×1
55lllllllllllllll

||xx
xx
xx
xx
x

δbn

δcn

jg

55llllllllllllllllllll

So we can define the simplicial set hom(X, Y ), whose set of n-simplices is
given by hom(X, Y )n and with operators faces and degeneracies given by com-
posing with 1 × εi and 1 × σi, respectively. If F is a C-diagram, then we(F )
will be the simplicial set whose set of n-simplices is formed by the above com-
mutative diagrams where the horizontal arrows are weak equivalences (in that
case X = Y = F ), and aut(F ) is the simplicial subset of we(F ) in which the
horizontal arrows are isomorphisms for every c ∈ C.

Proposition 1.5.1
Let X and Y be C-diagrams. Then the simplicial sets hom(X,Y ) and hom(X,Y )
are isomorphic.

Proof. Notice that for every a ∈ C the commutativity of the triangles in
the above diagram tell us that every arrow ϵc of one tuple (ϵc), evaluated in a,
has the form ϵc(a) = (ϵac,g)g∈[c,a], where ϵac,g : △[n]g ×Xa → △[n]g × Ya. Then let
us see that for every c ∈ C, ϵcc,1c = ϵcb,g = ϵcc,f for every g ∈ [b, c] and every f ∈ [c, c].

If we take an arrow g ∈ [b, c] and consider the composite b
g // c

1c // c , the
following diagram holds
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Chapter 1. Diagrams of spaces

△[n]g ×Xc

ϵcb,g //△[n]g × Yc

△[n]1c ×Xc

|

OO

ϵcc,1c //△[n]1c × Yc

|

OO

That is, ϵcc,1c = ϵcb,g for every g ∈ [b, c]. Now take an arrow f ∈ [c, c] and an
arrow h ∈ [b, c], as before we can conclude that ϵcc,f = ϵcb,fh. Since fh ∈ [b, c] by
the first part holds that ϵcc,1c = ϵcc,f . Thus every tuple (ϵc) ∈ hom(X,Y ) defines a
unique natural transformation ε ∈ hom(X, Y ) given by εc = ϵcc,1c , for every c ∈ C.

If Cat stands for the category of all small categories and H : C → Cat is
a functor, then the Grotendieck construction GrCH is the category whose set
of objects are the pairs (c, x), where c ∈ C and x ∈ H(c), and a morphism
(α, h) : (a, x)→ (b, y) is a pair (α, h) consisting of a morphism α : a→ b in C and
a morphism h : H(α)(x) → y in H(b). The composite of (α, h) : (a, x) → (b, y)
and (β, g) : (b, y)→ (c, z) is defined to be (βα, gH(β)(h)).

For a given c ∈ C consider the under category c ↓ C whose set of objects
consists of arrows f : c→ d in C, and whose set of morphisms between f : c→ d
and g : c → e is the set of morphisms h ∈ C such that hf = g. Let us define
the functor H : Cop → Cat by H(c) = c ↓ C, for which H(f op) = (f ♯) for
f op : c → d ∈ Cop. It is easy to see that the Grotendieck construction GrCopH
for H is the twisted arrow category aC of C, that is, the category which has as
objects the arrows f : a→ b in C, and as maps between f : a→ b and g : c→ d
the pairs of arrows (α, β) of C × C that makes the following square commutative

a
f // b

β
��

c g
//

α

OO

d

If X and Y are C-diagrams let us consider the functor homa(X, Y ) : aC → S
defined over objects by homa(X, Y )(a → b) = hom(Xa, Yb) and over arrows by
homa(X,Y )(α, β)(h) = Yβh(1 × Xα), for every h ∈ hom(Xa, Yb) (see the above
square). It is not difficult to see that hom(X, Y ) is isomorphic to lim

←
homa(X, Y ).

53



Proposition 1.5.2 ([7])
Let X and Y be C-diagrams. If X is cofibrant and Y is fibrant, then the natural
map

hom(X, Y )→ holim
aC

homa(X,Y )

is a weak equivalence.

For a given C-diagram F , in what follows haut(F ) will denote the components
of holim

aC
homa(F, F ) that are weakly equivalents to aut(F ).

Example 1.5.3 If C consists only of the arrow f : a→ b, then haut(F ) is given
by the homotopy pullback of the following diagram

haut(F ) //

�� y

Fb

F ♯
f

��
aut(Fa) Ff,♯

// hom(Fa, Fb)

and aut(F ) corresponds to the strict pullback, although if the diagram F is fibrant
and cofibrant, then haut(F ) ≃ aut(F ). Given a group G and denoting by BG =
{oG} the category determined by G, it holds that haut(F ) = aut(FoG)

hG and
aut(F ) = aut(FoG)

G.



CHAPTER 2

MINIMAL MODELS IN SC

In the category of simplicial sets the problem of classification of spaces up to
homotopy equivalence admits an attractive formulation in terms of the theory of
minimal Kan complexes (or more generally minimal Kan fibrations). Every Kan
complex X has a strong deformation retract X ′, which is a minimal Kan complex
and a map X → Y between minimal Kan complexes is a homotopy equivalence if
and only if it is an isomorphism. So the classification of Kan complexes up to ho-
motopy equivalence is equivalent to the classification of minimal Kan complexes
up to isomorphism.

In this chapter our aim is to generalize the theory of minimal complexes in the
setting of C-diagrams of spaces, on one hand by defining a convenient homotopy
relation over the set of n-C-simplices of a C-diagram X, and on the other hand
by using the theory of free cell complexes exposed in the previous chapter.

We start the section 1 by defining the homotopy relation in SC and the fi-
brewise homotopy relation, which is the one used in this memory to classify
fibrations. In the section 2 we define the sub-homotopy relation between n-C-
simplices, which is used to identify pieces of zig-zag’s of n-simplices, by using
the well known homotopy relation between them. The usefulness of this relation
becomes clear by working with free cell complexes, since the generators permit
us to identify the orbits of the diagram that are in excess (in homotopy).

Taking C as a small EI-category with a finite number of objects we can
generalize the classical results concerning to minimal simplicial sets and minimal
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2.1. Homotopy in SC

fibrations to the category of C-diagrams of spaces. It is important to remark that
it can also be done in some categories with non necessarily a finite number of
objects, and it depends on the existence of certain maximal orbits (see Appendix
A). We finish the chapter with the classification Theorem of fibrations in SC up
to fibrewise homotopy, by using the results of Chapter 1 and the first two sections
of the present chapter too.

2.1 Homotopy in SC

Let △[1] be the standard 1-simplex in S. If X belongs to SC the C-diagram
X ×△[1] is defined by X ×△[1](a) = Xa ×△[1] for a ∈ C, and over arrows by
X × △[1](f) = Xf × 1, for any morphism f : a → b ∈ C. Thus if, X and Y
are diagrams in SC a homotopy from X to Y will be a natural transformation
H : X ×△[1]→ Y ∈ SC.

Definition 2.1.1 Let 0 stand for the vertex (0) ∈ △[1]0 and for any of its de-
generacies sn0 (0) and 1 for the vertex (1) and its degeneracies sn0 (1). Two maps
f, g : X → Y ∈ SC are said to be homotopic (f ≃ g) if there exists a map
H : X ×△[1] → Y ∈ SC, such that for every c ∈ C and every simplex x ∈ Xc,n,
Hc(x, 0) = fc(x) and Hc(x, 1) = gc(x).

Proposition 2.1.2 ([22], II.2 Proposition 2.5)
If X is cofibrant and Y is fibrant, then the homotopy relation between maps from
X to Y is an equivalence relation.

Definition 2.1.3 Let D be a subdiagram of X, f, g : X → Y and p : Y → Z
arrows in SC, and H a homotopy from f to g. We will say that

1) f is homotopic to g relative to D , f ≃ g (relD), if f |D = g|D and there is a
homotopy H from f to g such that the following diagram commutes

D ×△[1]
pr //

� _

��

D

f |D
��

X ×△[1]
H

// X

2) f is fibrewise homotopic to g (or f is homotopic to g over Z), f ≃Z g, if
pf = pg and there is a homotopy H from f to g such that the diagram
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Chapter 2. Minimal models in SC

X ×△[1] H //

pr

��

Y

p

��
X

pf
// Z

commutes

3) f is homotopic to g over Z relative to D, f ≃Z g, rel(D), if f |D = g|D,
pf = pg and there is a homotopy H from f to g such that the following
diagram commutes

D ×△[1]
pr //

� _

��

D

f |D
��

X ×△[1] H //

pr ��

Y

p

��
X

pf
// Z

The following proposition is a consequence of Proposition 6.2 of [18]

Proposition 2.1.4
Let p : Z → Y be a fibration between C-diagrams. If the inclusion D ↪→ X is a
cofibration, then homotopy rel(D) over Z is an equivalence relation on SC(X,Z).

The following definition corresponds to the Definition 13.4.1 of [16]

Definition 2.1.5 Let X be an object in SC, g : Z → X a map between C-
diagrams and ∗ the terminal object in SC. By a point in X we will mean a map x :

∗ → X and by the fiber of g over x the pullback of the diagram * x // X Zoo

A map f : X → Y ∈ SC is called a homotopy equivalence if there is a map
g : Y → X such that gf is homotopic to 1X and fg is homotopic to 1Y . If
p : Y → Z is a map SC, f is said to be a fibrewise homotopy equivalence if there
is a map g : Y → X such that gf ≃Z 1X and fg ≃Z 1Y ; in particular we have
the notion of homotopy retract and strong homotopy retract. A diagram is called
contractible to the point x : ∗ → X if there is either a homotopy from 1X to the
constant map X → ∗ → X, or a homotopy from X → ∗ → X to 1X .
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2.1. Homotopy in SC

In SC we can define a cocylinder hom(△[1],−) on SC (see Definition 3.1 of
[18]) in the following way: If X is a C-diagram, then the C-diagram hom(△[1], X)
is defined by hom(△[1], X)(a) := △[1]×Xa for every a ∈ C, and if f : a→ b ∈ C,
hom(△[1], X)(f) := Xf,♯. Thus, as a consequence of the Theorem I.6.3 of [18]
the following result holds in SC.

Proposition 2.1.6 (Dold’s Theorem)
Let p : X → B and p′ : X ′ → B be fibrations in SC and g : X → X ′ a homotopy
equivalence such that p′g = g, then g is a homotopy equivalence over B.

The following result is an immediate consequence of Proposition 13.4.7 of [16]
in the category SC.

Proposition 2.1.7
Let g : Z → X be a fibration in SC. If x : ∗ → X and z : ∗ → X are homotopic
points in X, then the fiber of g over x is weakly equivalent to the fiber of g over
z.

The proof of the following Lemma is analogous to Lemma 10.6 of [14] by
considering the structure of closed simplicial model category over SC. The lifting
properties of the fibrations involved in this proof can be obtained for SC by using
the Axioms (M7) and (M6) of Definition 9.1.6 in [16].

Lemma 2.1.8
Let p : X → B and g : A → B be maps in SC. If f0, f1 : A → B are homotopic
maps and p is a fibration, then pf0 and pf1 are fibrewise homotopy equivalents.

The following result which is a particular case of Lemma 0.2.18 shows how
the combinatorial structure of S is reflected over SC. It has to do with the
theory of anodyne extensions of Gabriel-Zisman [12], which encodes the difficult
calculations based on the standard subdivision of a prism in Top, by means of
combinatorial manipulations in simplicial sets. This theory suppresses or engulfs
most of the old combinatorial arguments. We will prove the Lemma 2.1.9 by
using the theory of anodyne extensions and Theorems 0.2.14, 1.2.3.

Lemma 2.1.9
If p : X → B is a fibration in SC, then in every commutative square as the
following, the dotted arrow exists

δ̇cn ×△[m] ∪ δcn × Λk[m] //
� _

��

X

��
δcn ×△[m] //

66

B
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Chapter 2. Minimal models in SC

Proof. In the category of simplicial sets Λk[n] ↪→△[n] is an anodyne extension
and △̇[n] is a subsimplicial set of △[n], so the inclusion

[(△̇[n]×△[m]) ∪ (△[n]× Λk[m])] ↪→ [△[n]×△[m]]

is an anodyne extension [11, Proposition 4.5.8] and hence a trivial cofibration.

Applying the functor ⨿
c∈C

(−c ⊗ [c,− ]) given in the sketch of Theorem 1.2.3 to
this trivial cofibration we obtain the following map

(4) ⨿
[c,−]

[(△̇[n]×△[m]) ∪ (△[n]× Λk[m])] ↪→ ⨿
[c,−]

[△[n]×△[m]]

Which is a trivial cofibration, since ⨿
c∈C

(−c ⊗ [c,− ]) is a left Quillen functor

(see Definition 0.2.12 and Theorem 0.2.14).

Now note that the followings equalities hold:

⨿
[c,−]

[(△̇[n]×△[m]) ∪ (△[n]× Λk[m])] = ⨿
[c,−]

(△̇[n]×△[m]) ∪ ⨿
[c,−]

(△[n]× Λk[m])

= ( ⨿
[c,−]
△̇[n])×△[m] ∪ ( ⨿

[c,−]
△[n])× Λk[m] = (δ̇cn ×△[m]) ∪ (δcn × Λk[n])

and ⨿
[c,−]
△[n] ×△[m] = δcn ×△[m]. Therefore (4) is the inclusion morphism

δ̇cn×△[m]∪ δcn×Λk[n] ↪→ δcn×△[m]. Hence the doted arrow of the above square
exists, since X → Y is a fibration (Definition 0.2.8(2)).

In Proposition 1.1.5 we showed that SC(δcn, X) ∼= S(△[n], Xc) for every di-
agram X and every c ∈ C, and since S(△[n], Xc) ∼= Xc,n, each n-C-simplex
δcn → X ∈ SC(δcn, X) will be denoted by its correspondient simplex xc ∈ Xc,n by
adding to x the upper index c. Then by abuse of notation we won’t make any
distinction between x as n-simplex or xc as n-C-simplex.

Note that X ∈ SC can be seen as a simplicial set by defining the set of n-
simplices as Xn = {xc ∈ Xc,n : c ∈ Obj(C)} and faces and degeneracies for a
given xc ∈ Xc,n by dix

c = xc ◦ εi and six
c = xc ◦ σi, where εi and σi belongs

to Γ (Definition 1.1.6). Therefore combinatorial definitions about homotopy of
simplices in the category S have an immediate translation to SC when we deal
with the homotopy relation between n-C-simplices. As in simplicial sets X♭, will
denote the set of degenerate n-C-simplices of X.
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2.2 Minimal C-Diagrams

Definition 2.2.1 Let X be a C-diagram and xd, wc ∈ X two n-C-simplices.

• the simplex xd is said to be sub-homotopic to wc, xd  wc, if there exists
an arrow f : c → d ∈ C such that Xf (w

c) ≃ xd rel(δ̇dn). If c = d and f is
the identity map, then x and w are said to be homotopic, xc ≃ wc.

• given a map p : X → B, xd is said to be sub-p-homotopic to wc ,xd  p w
c,

if Xf (w
c) ≃B xd rel(δ̇dn), for some arrow f : c → d ∈ C. If c = d and f is

the identity map, then x and w are said to be p-homotopic, xc ≃p wc.

Given a fibration p : X → B in SC we can suppose that X is a free cell
complex. That is, we can factorize the map ∅ → X as ∅ ↪→ X ′ � X by applying
the small object argument (see Proposition B.0.28), where ∅ → X is a I-cell
complex and X ′ � X is an I-injective. But in Section 1.2 we conclude that
the class of I-cell complexes equals the class free cell complexes and the class of
I-injectives equals the class of trivial fibrations (see Proposition 1.2.3).

Remark 2.2.2 Given a free cell complex X ∈ SC, a basis Σ for X may not be
unique (see Proposition 1.2.4), then when we use the notation Σ, we are under
the assumption of having fixed one of them. If X and Y are free cell complex
and we have to specify bases for both of them, we will denote the chosen ones by
Σ(X) and Σ(Y ), respectively. Although a basis is not unique, according with the
item c) of Proposition 1.2.4 the following definitions do not depend of the chosen
basis.

Definition 2.2.3 Let X be a C-diagram. Two n-simplices w ∈ Xc,n and x ∈ Xd,n

are said to be joined , w → x, if there exists a map f : c→ d such that Xf (w) = x.
A zig-zag from w to x is a finite sequence {zk}k=nk=1 of simplices of X, such that
w → z1 ← z2 ← z3 → ...→ zn ← x.

If X is a free cell complex we can see that every zig-zag of simplices has at
most one element of Σ. Thus, if xd and wc are non equal n-C-simplices in Σ such
that xd  wc it holds that the orbit generated by x can be identified in homotopy
with one part of the orbit generated by w.

Definition 2.2.4 Let X be a free cell complex. A fibration X → B in SC is said
to be minimal if every pair of non-equal generators of X are not sub-p-homotopic.
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Chapter 2. Minimal models in SC

In what follows we will consider the category C as in Appendix A, that is, a
small EI-category with a finite number of objects (maybe with an infinite number
of objects, see 3 in Example A.0.17 of Appendix A).

Proposition 2.2.5
Let X be a free cell complex and p : X → B a fibration. Then p is minimal if
and only if no proper fibration q : D → B of p (that is, D ( X and q = p|D) is a
strong deformation retract of p over B.

Proof. Take p minimal. Let us suppose that there exists a fibration q : D → B
such that D is a subdiagram strictly contained in X, q = p|D and q is a strong
deformation retract of p over B. Let i : D ↪→ X the inclusion map and
h : X × △[1] → X the homotopy from 1X to ir, where r : X → D is the
respective retraction.

• SinceD ( X it is possible to choose one C-simplex ue of mínimum dimension
,say n, such that u ∈ Xe,n−De,n. Since X is a free cell complex there exists
a generator zd of X and a map f : d → e such that Xf (z) = u (see
Proposition 1.2.4). If z ∈ Dd,n it must hold that u ∈ De,n since D is a
subdiagram of X, therefore z /∈ Dd,n. Then all faces dkz of z belong to
Dd,n−1, for 0 ≤ k ≤ n, hence we can consider the following diagram

δ̇dn ×△[1]� _

��

ż×1 // D ×△[1] //
� _

��

D� _

i

��
q

��

δdn ×△[1]

��

z×1 // X ×△[1] h //

��

X

p

��
δdn z

// X p
// B

That is, z ≃p rd(z). If rd(z) is generator of X it must hold that z = rd(z),
since p is minimal, and therefore u ∈ De,n which is not possible. Hence there
exists a generator w of X and a map g : c → d such that Xg(w) = rd(z),
then zd  p wc. Since p is minimal it must hold that c = d and z = w,
therefore u ∈ De,n which is a contradiction since u /∈ Dd,n.

• The reciprocal way of the theorem is consequence of Proposition 2.2.6.
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Since Λk[n] is the subcomplex of △[n] generated by all the faces diιn of
△[n], except by the face dkιn, we will denote a given map f : Λk[n] → X
by (x0, , ..., xk−1,−, xk+1, ..., xn), where xi = f(diιn). The complex △[1] can
be seen as a subcomplex of △[2] by defining the three possible inclusion maps
△[1] ↪→ △[2] by ι1 7→ diι2, where i is equal to 0, 1 or 2. Thus, given two maps
f : Z ×△[1]→ X and g : Z ×△[1]→ X, the map (f, g,−) : Z ×Λ2[2]→ X will
denote the one defined by (f, g,−)(z, φd0ι2) = fc(z, φι1) and (f, g,−)(z, φd1ι2) =
gc(z, φι1), for every c ∈ C and every z ∈ Zc (similar for (f,−, g) and (−, f, g),
whose domains are Z × Λ1[2] and Z × Λ0[2], respectively).

Proposition 2.2.6
Let p : X → B a fibration for which X is a free cell complex. Then p has a strong
fibrewise deformation retract q : X̂ → B which is a minimal fibration.

Proof. Consider a basis Σ of X. Let Σ′ the set formed by taking from Σ a
minimal number of elements such that:

For every xd ∈ Σ there exists some wc ∈ Σ′ such that xd  p w
c

and such that we choose the degenerate ones whenever it is possible. The set
Σ′ exists, since C is a small EI-category with a finite number of objects (see
Appendix A, Example A.0.17).

Notice that if xd and wc are degenerate simplices in Σ, such that xd  p w
c,

then they must be equal. Since xd  p wc, there exists a map f : c → d in C
such that Xf (w

c) ≃p xd, and hence Xf (w
c) = xd (see Proposition 0.1.10). But

wc and xd are generators of X, then xd = wc. Thus, in the above choice we can
always take the degenerate one.

Claim: Σ′ is closed under degeneracy operators. Note that given xd ∈ Σ′n its
degeneracies skx belongs to Σn, for 0 ≤ k ≤ n, since Σ is closed under degeneracy
operators (Proposition 1.2.4). Then there exists a simplex wc ∈ Σ′n+1 such that
skx

d  p wc. If wc is degenerate, then skx
d = wc, otherwise we must consider

the following cases:

• c = d. It is easy to see that wc  p skx
d, since every endomorphism in C

has a left inverse. Therefore skxd ∈ Σ′n+1, since in our choice we prefer the
degenerate ones.
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• c ̸= d. Since skx
d  p wc, there exists a map f : c → d such that

Xf (w
c) ≃p skxd and hence dkXf (w

c) = xd, so Xf (dkw
c) = xd. Then

by item c) of Proposition 1.2.4 there exists a map g : d → c such that
Xg(x

d) = dkw
c.

In the category C every endomorphism has a left inverse, then there exists
α : c → c such that αgf = 1c. We have that Xf (w

c) ≃p skx
d, then

Xgf (w
c) ≃p Xg(skx

d), and hence wc ≃p Xαg(skx
d). That is, it holds that

wc  p skx
d, and therefore skxd ∈ Σ′n+1.

Then if xd ∈ Σ′, it holds that skxd ∈ Σ′n+1 as we wanted to show.

Now we define A as follows:

A = {X̃ ∈ SC : X̃ ≤ X,which is free cell complex, such that Σ(X̃) ⊆ Σ′}

Let us see that A admits maximal elements:

Since Σ′ is closed under degeneracy operators, ⟨Σ′0⟩ the smallest subdiagram
of X containing Σ′0 is a free cell complex whose basis is contained in Σ′, then
⟨Σ′0⟩ ∈ A and therefore A ̸= ∅. If we take a chain of A its union is an upper
bound of the chain that belongs to A, then by Zorn’s Lemma we can find a free
subdiagram X̂ of X which is maximal with respect to the property of having all
its generators in Σ′.

Fix a maximal element X̂ of A. Then any simplex of X, whose faces are in
X̂ and whose generator belongs to Σ′, belongs to X̂:

Take some simplex xd ∈ Xd,n such that dkxd ∈ X̂ for 0 ≤ k ≤ n, and for which
there exists wc ∈ Σ′ and a map f : c → d ∈ C such that Xf (w

c) = xd. Since
dkx

d ∈ X̂, there exists zb ∈ Σ(X̂) (and therefore in X̂) and a map g : b→ d ∈ C
such that Xg(z

b) = dkx
d, which means that dkwc and zb are joined by a zig-zag

( dkwc
Xf // dkx

d zb
Xgoo ), since Xf (dkw

c) = dkx
d. Then by item c) of Proposi-

tion 1.2.4 there exists a map h : b → c ∈ C, such that Xh(z
b) = dkw

c and since
zb ∈ X̂ it holds that dkwc ∈ X̂. Then the subdiagram X̂∪⟨wc⟩ of X generated by
X̂ and wc belongs to A, but X̂ is maximal with respect to the property of having
all its generators in Σ′, therefore X̂∪⟨wc⟩ = X̂. Thus, x ∈ X̂, since Xf (w

c) = xd.
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2.2. Minimal C-Diagrams

Let B be the set that consists of all the pairs (Y,H), where Y is a subdiagram
of X containing X̂ and H : Y × △[1] → X is a homotopy such that H maps
Y × {0} into X̂, is the inclusion on Y × {1}, H is constant on X̂ ×△[1] and pH
is the constant homotopy restricted to Y .

The set B has maximal elements:

We can define a partial order ‘≼’ over B as follows: (Y,H) ≼ (Y ′, H ′) if
Y ⊂ Y ′ and H ′|Y = H. The diagram X̂ with the constant homotopy belongs to
B, then B ̸= ∅. Moreover, if we take a chain of B its colimit will be an upper
bound of the chain in B, then applying the Zorn’s lemma we get a maximal ele-
ment (Ŷ , H) in B.

Take a maximal diagram Ŷ of B, and let us see that Ŷ = X:

Assume that Ŷ ̸= X and choose a C-simplex zd1 ∈ X of lowest dimension such
that zd1 ∈ X − Ŷ , say zd1 : δdn :→ X. It is non degenerate (otherwise it would
belong to Ŷ ) and its faces belong to Ŷ . So we want to extend H to Ŷ ∪ ⟨zd1⟩ the
subdiagram of X generated by Ŷ ∪{zd1}. First consider the following commutative
diagram

δ̇dn ×△[1]� _

��

ż1
d×1 //

� v

))RRR
RRRR

RRRR
RRR

Ŷ ×△[1] H // X

p

��

δ̇dn ×△[1] ∪ δdn × Λ1[1]

77oooooooooooooo

H h

uullll
lll

lll
lll

l

δdn ×△[1] pr
//
H′

??

δdn
pzd1

// B

where the homotopy H ′ is obtained from Lemma 2.1.9, and is such that H ′1 = zd1 .
For H ′0 = zd there exists wc ∈ Σ and a map f : c→ d such that Xf (w

c) = z (by
Proposition 1.2.4), then there exists mb ∈ Σ′ ⊂ X ′ such that wc  p m

b, that is,
Xg(m

b) ≃p wc for some arrow g : b→ c ∈ C. From the above diagram we can see
that zd has its faces in X̂ and then Xfg(m

b) := xd as well, since z ≃p Xfg(m
b).

Therefore x ∈ X̂, since x has its faces in X̂ and its generator mb belongs to Σ′.

If r : Ŷ → X̂ is the retraction from Ŷ to X̂ let us extend it to r′ : Ŷ ∪⟨zd1⟩ → X̂
by defining r′(zd1) = xd. Then using H ′ and r′ we can define one homotopy
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Ĥ : δdn ×△[1]→ X such that Ĥ is zd1 on δdn × {1}, pĤ is the constant homotopy
to pzd1 , Ĥ extends H on δ̇dn × △[1] and Ĥ(δdn × {0}) belongs to X̂; that is, we
have an extension of H to Ŷ ∪ ⟨zd1⟩ × △[1]. Then the pair (Ŷ ∪ ⟨zd1⟩, Ĥ) is a
contradiction with the maximality of (Ŷ , H) and therefore Ŷ = X.

The restriction q = p|X̂ is a minimal fibration:

Since p|X̂ is a retraction of p, it is a fibration (retraction axiom for model
categories, see Definition 0.2.1). By construction X̂ is a free cell complex and if
w is a generators of X̂, then it is also a generator of X that belongs to Σ′, so none
of such simplices can be sub-p-homotopic, otherwise the minimality condition that
satisfies Σ′ would be contradicted. Therefore q is a minimal fibration.

Lemma 2.2.7
Let p : X → B be a map of diagrams, where X is a free cell complex and
h : A → B a map with domain the constant diagram A. Then the pullback
diagram A×B X is a free cell complex.

Proof. Let Σ be a base for X. Let us show that Σ⊓
= {(u, x) ∈ A×BX : x ∈ Σ}

is a base for A ×B X (see Proposition 1.2.4). First take a pair of n-simplices
(u, x) ∈ Σ

⊓ and show that Σ⊓ is closed under degeneracies. Since (u, x) ∈ A×BX
it holds that h(u) = p(x), hence for every degeneracy operator sk it holds that
h(sku) = p(skx), for 0 ≤ k ≤ n. Σ is closed under degeneracies, that is, skx ∈ Σ,
therefore sk(u, x) = (sku, skx) ∈ Σ

⊓ .

If (v, z)d ∈ Σ
⊓ there exists a unique map α : c → d ∈ C and a unique

xc ∈ Σ such that Xα(x) = z, since Σ is a base for X. For the pair (v, x)c let
us calculate pc(x): pc(x) = pdXα(x) = pd(z) = h(v), then (v, x)c ∈ Σ

⊓ and
A ×B X(α)(v, x) = X∗α(v, x) = (v,Xα(x)) = (v, z). If there exists an arrow
β : b→ d ∈ C and an n-simplex (w, y) ∈ Σ

⊓ such that X∗β(w, y) = (v, z) it holds
that (w,Xβ(y)) = (v, z) = (v,Xα(x)), then w = v and since Σ is a fundamental
domain it must hold that β = α and y = z.

Lemma 2.2.8
Let p : X → B a minimal fibration and h : A→ B a map in SC, where A and B
are constant diagrams. Then the fibration pr : A×B X → A is minimal.
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Proof. If Σ is a base for X, then from Lemma 2.2.7 it holds that A ×B X
is a free cell complex with base Σ

⊓
= {(u, x) ∈ A ×B X : x ∈ Σ}. Take two

generators (v, z)d and (w, x)c of A ×B X and suppose that (v, z)d  pr (w, x)c.
Then there exists a map α : c→ d ∈ C such that X∗α(w, x)c ≃pr (v, z)d, so w = v
since pr-homotopic simplices are in the same fiber. Applying the projection map
pr : A×B X → X we have that xc ≃p zd, but from minimality of p it must hold
that c = d and x = z, that is, (v, z) = (w, x).

The following proof is an extension of sublemma 10.5 from [14].

Proposition 2.2.9
Let p : X → B and q : Z → B be fibrations in SC and f, g : Z → X fibre-
wise homotopic maps, where g is an isomorphism and p minimal. Then f is an
isomorphism.

Proof. We will show that f is an isomorphim by induction over the dimension
of the C-simplices. Suppose that f is an isomorphism on k-simplices for all k < n,
and take h : Z ×△[1]→ X the homotopy from g to f .

1) f is surjective:

Let Σ be base for X. Then to prove that f is surjective it is enough with
showing that f is surjective over Σ. Given xd a generator of X we have
that for every face dixd of xd there exists a unique (n− 1)-simplex zdi such
that f(zi) = dix

d (by the induction hypothesis), that is, the composite

δ̇dn
(z0,...,zn) // Z

f // X is equal to (d0x
d, ..., dnx

d). Then we obtain the
following commutative diagram

δ̇dn ×△[1] ∪ δdn × Λ1[1]
(h|(z0,...,zn),x

d)
//

� _

��

X

p

��
δdn ×△[1] pr

// δdn
pxd

// B

Since p is a fibration, there is a lift G : δdn × △[1] → X (see Lemma

2.1.9). Then there is an n-C-simplex wd : δdn ×△[0]
1×ε1 // δdn ×△[1] G // X

homotopic to xd and such that g(zi) = diw. By surjectivity of g there exists
a C-simplex zd ∈ Z, such that g(z) = w. Then g(zi) = g(diz), which implies
that zi = diz since g is injective. Therefore there is a commutative diagram
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δ̇dn ×△[2] ∪ δdn × Λ0[2]
(s1h|(z0,...,zn),(−,G,hz)) //

� _

��

X

p

��
δdn ×△[2] pr

// δdn
pxd

// B

where hz = h(zd × 1); by Lemma 2.1.9 there is a lift F from δdn ×△[2] to

X. Notice that the composite δdn ×△[1]
1×ε0 // δdn ×△[2] F // X is a sub-

p-homotopy from xd to f(z)d.

If f(z)d ∈ Σ it must hold that f(z)d = xd, since p is minimal. But if
f(z)d /∈ Σ by Proposition 1.2.4 there exists mc ∈ Σ and a map α : c → d
such that Xα(m

c) = f(zd); therefore xd  p m
c, but p is a minimal fibration

and any two different generators can not be sub-p-homotopic, therefore
c = d and x = m. Since C is an EI-category there exists α−1 : d→ d such
that α−1α = 1d and therefore xd = Xα−1f(zd) = f [Zα−1(zd)].

2) f is injective:

i) First let us show that if zc and wc are two n-C-simplices from Z, such
that fzc = fwc, then we can construct a p-homotopy from g(z) to
g(w).

If fzc = fwc we have that f(dizc) = f(diw
c) and inductively it holds

that dizc = diw
c, for 0 ≤ i ≤ n. Then the composites

δ̇cn ×△[1] �
� i×1 // δcn ×△[1]

zc×1 --

wc×1
11 Z ×△[1] h // X

are both equal to a map l. Taking hz = h(zc × 1) and hw = h(wc × 1)
we can construct the following commutative diagram

δcn × Λ2[2] ∪ δ̇cn ×△[2]� _

��

((hz ,hw,−),s0l) // X

p

��
δcn ×△[2] pr

// δcn pzc=pwc
// B
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By Lemma 2.1.9 there exists a lift H : δcn × △[2] → X that makes
the above diagram commutative, since p is a fibration. The composite
H(1× ε2) gives us a p-homotopy from gzc to gwc.

ii) Let us show that given two n-simplices of Z whose images by f are
equal, must be equal. Since g : Z → X is an isomorphism we can
assume that Z is a free cell complex, for which there is a bijection
Σ(Z) ∼= Σ(X) between bases, given by g.

Take xe and ye n-C-simplices of Z such that f(x) = f(y). By Propo-
sition 1.2.4 there exists x1

d ∈ Σ(Z) and a map α : d → e in C such
that Zα(x1

d) = x, and it holds for ye as well, say Zβ(y1
c) = ye. Since

Xαf(x1
d) = f(x) and Xβf(y1

c) = f(x), there exists mb ∈ Σ(X) and
maps θ : b → d, τ : b → c in C such that Xθ(m

b) = f(x1
d) and

Xτ (m
b) = f(y1

c).

We showed in 1) that f is surjective, then there exists nb ∈ Zb,n such
that f(n) = mb, so for g(nb) there exists za ∈ Σ(X) and a map
ε : a→ b in C such thatXε(z

s) = g(n). Note that fZθ(n) = f(x1
d) and

fZτ (n) = f(y1
c), then by item i) it holds that g(x1

d) ≃p gZθ(n) and
g(y1

c) ≃p gZτ (n), but XθXε(z
a) = Xθg(n) = gZθ(n) and XτXε(z

a) =
Xτg(n) = gZτ (n), therefore g(x1

d)  p za and g(y1
c)  p za. Since

g(x1
d), g(y1

c) ∈ Σ(X) and p is minimal it must hold that a = c = d
and z = g(x1) = g(y1). That is, a = c = d and x1 = y1, since g is
injective.

Since mb ∈ Σ(X) and Xθ(m
b) = f(x1) = Xτ (m

b), then θ = τ ; anal-
ogously it must hold that αθ = βθ (see Proposition 1.2.4). Then
αθε = βθε, so α = β, since θε is invertible ( θε is an endomorphism
in the EI-category C). Since Zα(x1) = x, Zβ(y1) = y and x1 = y1 we
have that x = y.

Corollary 2.2.10
Let p : X → B be a minimal fibration in SC and f, g : A → B homotopic maps,
where A and B are constant diagrams. Then the fibrations pf and pg from A×BX
to A are isomorphic.
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Proof. It follows from Lemmas 2.1.8, 2.2.8 and Proposition 2.2.9.

Corollary 2.2.11
Let p : X → B be a minimal fibration, where B is a constant diagram to the
connected simplicial set B. Suppose that F is the fibre of p over a base point ∗
of B. Then p is a C-fibre bundle with fibre F .

Proof. First let us show that p is locally trivial. Take an n-simplex v in B
and make the composite of its representing map v : △[n] → B with the maps
1, j : △[n]→△[n], where 1 is the identity map and j is the composite of the map
△[0] → △[n] that picks out the vertex (0) of △[n] with the map △[n] → △[0].
By considering the pullback of p along this composites, the following diagram
holds

△[n]× Fp(ε0v) h //

((QQ
QQQ

QQQ
QQQ

QQQ
△[n]×B X 1 //

��

△[n]×B X //

��

X

p

��
△[n]

1 //
j

//△[n] v
// B
y

since 1 and j are homotopic maps (see Lemma 0.1.14). The induced pullbacks
over △[n] are minimal fibrations since p is minimal (see Lemma 2.2.8), then by
Corollary 2.2.10 it holds that h is an isomorphism. The Lemma 0.1.16 of Section
0.1 admits a natural generalization in the case of C-diagrams, so Fp(ε0v) ∼= F ,
since B is connected.

2.3 Classification of C-Fibrations
Consider two C-diagrams F and B, where B is the constant diagram to the
connected simplicial set B. The objective of this section is to classify fibrations
p : X → B in SC whose fiber is homotopically equivalent to F . The relation used
to classify them is that of fiberwise homotopy equivalence (See Definition 2.1.3
part (2) and Proposition 2.1.6).

Theorem 2.3.1
Let C be a small EI-category with a finite number of objects and F , B, C-
diagrams, where B is the constant diagram to the connected simplicial set B.
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Then the set [B,Whaut(F )] of homotopy classes of maps from B to Whaut(F )
is in bijective correspondence with the set of equivalence classes of C-diagrams of
fibrations with base space B and fibers with the homotopy type of F .

Proof. In view of Proposition B.0.28 every fibration p is equivalent to a fibra-
tion p′ whose total space is a free cell complex. By Proposition 2.2.6 the fibration
p′ is equivalent to a minimal one p′′, and from Proposition 2.2.9 it holds that
any two minimal fibrations which are equivalents are isomorphic. So if F ′′ is the
fiber of p′′, then p determines a unique element in π0hom(B,Waut(F ′′)), since
any minimal fibration is a fiber bundle (See Corollary 2.2.11 and Theorem 1.4.12).

From Proposition 1.5.2 we have that aut(F ′′) ≃ haut(F ′′), and since F ′′ ≃ F
it holds that aut(F ′′) ≃ haut(F ). Then Waut(F ′′) ≃ Whaut(F ), so p determines
a unique element in π0hom(B,Whaut(F )).
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CHAPTER 3

APPLICATIONS

We present some applications of the classification theorem 2.3.1 for C-diagrams
of fibrations over a connected base space B, when the category C has the shape
{• → •}. Some classical results can be deduced from it, as for example, those
related with the fiberwise localization of a fibration p and the one related with
the homotopy type of certain Gauge group. We also use it to state the existence
and uniqueness of the fiberwise cellularization for a fibration p in terms of the
obstructions to the existence and uniqueness of a certain lifting.

In what follows we will use either topological techniques, or simplicial tech-
niques to proof some facts. Thus, given a monoid M , BM will denote its clas-
sifying space, and if F is a topological space aut(F ) will denote the topological
monoid of self-homotopy equivalences of F . Since in the simplicial context we use
to work with minimal simplicial sets F , then aut(F ) will denote the simplicial
monoid of sel-fhomotopy equivalences of F , or the simplicial group of automor-
phisms of F .

3.1 Fiberwise Localization

Given a cofibration f : A → B in S and a fibre map p : E → B with fibre F ,
we reprove the Theorems 0.3.6 and 0.3.7 of Section 0.3.1. To do this consider
the cofibrant f -localization lF : F → LfF of F , and then all the C-diagrams
of fibrations over the connected space B, where C = {• → •}, whose fibers are
homotopy equivalent to lF .
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In this case we can consider the following pullback diagram given in the Ex-
ample 1.5.3

aut(lX)
s
LfF

//

s
F

�� y

aut(LfF )Φ′′

(lF )♯

��
aut(F )

(lF )♯

//Map(F,LfF )Φ

where Map(F,LfF )Φ are the components of maps in Map(F,LfF ) that factorize
well, that is, g belongs to hom(F,LfF )Φ if there exists self-homotopy equiva-
lences α ∈ aut(F ) and β ∈ aut(LfF ), such that g ≃ lFα ≃ βlF . aut(LfF )Φ′′

are the components of aut(LfF ) that are in correspondence with the ones of
hom(F,LfF )Φ, and since Lf is a coaugmented functor all the components of the
monoid aut(F ) are in correspondence with the components of Map(F,LfF )Φ.

Since lF is an f -local equivalence and LfF is an f -local space, we have a weak
equivalence Map(LfF,LfF ) ≃ Map(F,LfF ) (See section 0.3.1), and therefore
aut(LfF )Φ′ and Map(F,LfF )Φ are weakly equivalent. Since the above diagram
is a pullback it holds that aut(lX) ≃ aut(F ). So applying the classifying space
functor to s

F
: aut(lF )→ aut(F ), which is a map of topological monoids, we have

that

Baut(lF )
Bs

F

≃
// Baut(F )

If p is classified by a map h : B → Baut(X), then there is a unique lifting
h̃ : B → Baut(lF ) of h up to homotopy. Therefore (E, p,B) admits up to
homotopy a unique fiberwise f -localization

F //

lF
��

E
p //

a
��

B

LfF // E q
// B

where a is an f -local equivalence (by Example D.8 of [9]).
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3.2 Fibrewise cellularization

We are interested in the study of the existence of fiberwise cellularizations (see
Definition 0.3.14) for a given fibre sequence F → E → B. A fibration together
with a fibrewise cellularization form a diagram

CWAF
cF //

��

F

��
E

b //

q

��

E

p

��
B B

where the homotopy fiber of the diagram is determined by the augmentation map
cF : CWAF → F .

To deal with these diagrams we replace in the diagram of the Example 1.5.3
the map Ff by the fibration cX : CWAF → F

aut(cF )
s
F //_______

s
CWAF

��

aut(F )

(cF )♯

��
aut(CWAF )

(cF )♯

//Map(CWAF, F )

and as in the previous section we apply the classifying space functor to the upper
row

L // Baut(cF )
Bs

F // Baut(F )

in which the space L will denote the homotopy fibre of Bs
F
. Since p : E → B is

classified by a map h : B → Baut(F ), p has a fiberwise cellularization if h has a
lift

Baut(cF )

Bs
F

��
B h //

h̃
::

Baut(F )

Thus, the obstructions to the existence and uniqueness of this lifting lies in
H i+1(B, πi(L)) and H i(B, πi(L)) respectively. So we will characterize the fiber
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L of the fibration BsX : Baut(cX) → Baut(X) in order to determine these
cohomology groups.

3.2.1 Homotopy Fibers

Given a fibration f : X → Y we are interested in determining the homotopy
groups of the homotopy fiber of BsY : Baut(f) → Baut(Y ), which is obtained
from the pullback diagram

aut(f)
sY //

sX
���
�
�

aut(Y )

f♯

��
aut(X)

f♯
//Map(X,Y )

Theorem 3.2.1
Let X

f // Y
p // Z be a fibre sequence with the space Z pointed, 0-connected

and ΣX-null (that is, Map∗(ΣX,Z) ≃ ∗). Then πiL ∼= πiZ for i ≥ 1, where L is
the fiber of the fibration Baut(f)→ Baut(Y ).

Proof. By considering the fibre sequence X
f // Y

p // Z we can enlarge the
above diagram as follows

aut(f)
sY //

sX
��

aut(Y )ϕ′′

f♯

��
(I) aut(X)ϕ′ f♯

//Map(X,Y )ϕ
p′♯

//Map(X,Z)c

where Map(X,Z)c is the component of the constant map in Map(X,Z). Notice
that given g ∈ Map(X,Y )ϕ, it can be written as g ≃ fα ≃ βf where (α, β) ∈
aut(X) × aut(Y ), hence p♯(g) = pg is nullhomotopic, since pf is nullhomotopic
(pg ≃ pfα). Therefore p′♯ is the restriction of p♯ : Map(X,Y ) → Map(X,Z) to
Map(X, Y )ϕ.

Taking loops in the lower row of the above diagram we obtain the sequence

ΩMap(X,Z)c // aut(X)ϕ′ f♯
//Map(X, Y )ϕ p♯

//Map(X,Z)c
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Since the square (I) is a homotopy pull-back, we can construct a homotopy
equivalence from ΩMap(X,Z)c to the homotopy fibre of sY , and hence the fol-
lowing is a fibre sequence

ΩMap(X,Z)c // aut(f)
sY // aut(Y )

From L→ Baut(f)→ Baut(Y ) we can consider the fibre sequence

ΩL // aut(f)
SY // aut(Y ) // L // Baut(f)

BsY // Baut(Y )

and therefore ΩL ≃ ΩMap(X,Z)c, although not necessarily as loop spaces.

By hypothesis Map∗(ΣX,Z) ≃ ∗, that is, πiMap∗(ΣX,Z) = 0, so the ho-
motopy groups πi+1Map∗(X,Z) are equal to zero for i ≥ 0 (by the adjunction
property of mapping spaces).

Applying the long exact sequence in homotopy groups for the following fibre
sequence

Map∗(X,Z)c̃ //Map(X,Z)c
ev // Z

we have that πiMap(X,Z)c ∼= πiZ for i ≥ 0, since Z and Map(X,Z)c are 0-
connected (we have chosen only one component), and πiMap∗(X,Z) = 0 for
i ≥ 1. Since ΩL ≃ ΩMap(X,Z)c, it holds that πiL ∼= πiZ for i ≥ 1.

The following result is a straightforward consequence of this Theorem, by
using the sequence CWAF → F → PΣACev, given by Chachólski in the Theorem
0.3.13.

Corollary 3.2.2
Let p : E → B a fibration with fiber F . Then the obstructions to the existence
and uniqueness of a fiberwise cellularization for p lies in H i+1(B, πi(PΣACev)) and
H i(B, πi(PΣACev)), respectively.

The following fibration was suggested by Chachólski

Theorem 3.2.3
Let (X, f, Y ) be a fibration with fiber F , classified by a map cl : Y → Baut(F ).
Then the following is a fibre sequence
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Map(Y,Baut(F ))cl
� � // Baut(f)

BsY // Baut(Y )

In order to proof this theorem let us first consider the following result

Theorem 3.2.4 ([5], Theorem 1.2(ii))
Let p : E → B a principal fibration with group G, classified by the map cl. If
autG(p) is the simplicial group which has as set of n-simplices the commutative
diagrams

△[n]× E //

1×p &&NN
NNN

NNN
NNN

△[n]× E

1×pxxppp
ppp

ppp
pp

△[n]×B

in which the horizontal map is compatible with the action of G (an therefore an
isomorphism). Then WautG(p) has the homotopy type of hom(B,WG)cl, that
is, it has the homotopy type of the connected component of hom(B,WG) which
corresponds to cl.

Proof. Note that autG(p) acts from the left of E and from the right of
WautG(p) = WautG(p) ×τ autG(p). Since (1 × p) : WautG(p) ×autG(p) E →
WautG(p) × B is principal and with group G, it is classified by a map g :
WautG(p) × B → WG, so by using the adjointness property of function com-
plexes we obtain a map ĝ : WautG(p)→ hom(B,WG)cl, since (1× p) restricted
to every vertex of WautG(p) is the fibration p. To show that ĝ is an homotopy
equivalence let us see that WautG(p) and hom(B,WG)cl classifies the same prin-
cipal fibrations.

Notice that at every map h : Y → hom(B,WG)cl corresponds to a map
ĥ : Y ×B →WG, such that its restriction ĥ|y : B →WG to the first component
over any vertex y of Y is homotopic to cl (that is, ĥ|y ≃ cl). So by pulling-back
ĥ with the map π : WG → WG we obtain up to homotopy a unique twisting
cartesian product of the form Y ×t E → Y ×B.

From proposition 1.4.11 it holds thatWaut(p) classifies the following diagrams
of fibrations
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E
p //

��

B

��
Y ×t1 E

1×p //

$$H
HH

HH
HH

HH
Y ×t2 B

zzvv
vv
vv
vv
v

Y

Since a twisting map t : Yn → autG(p)n−1 has the form (t1, id), where t1(y) :
△[n] × E → △[n] × E is equivariant, for any y ∈ Yn, it hods that WautG(p)
classifies principal fibrations Y ×t E → Y ×B.

The group autG(p) is known as the Gauge group of p.

Theorem 3.2.5 ([5], Theorem 1.4(ii))
Let F be a minimal simplicial set, f : X → Y a fibration with all the fibres of
the homotopy type of F , and let autid(f) be the simplicial monoid which has as
set of n-simplices the commutative diagrams

△[n]×X //

1×f &&NN
NNN

NNN
NNN

△[n]×X

1×fxxppp
ppp

ppp
pp

△[n]× Y

in which the horizontal map is a self-homotopy equivalence of X. If f is classified
by a map cl : Y →Waut(F ), then Wautid(f) ≃ hom(Y,Waut(F ))cl.

Proof. This Theorem can be reduced to Theorem 3.2.4.

Proof. [Theorem 3.2.3] Consider the fibration FidY (sY )
� � // aut(f)

s
Y // aut(Y ) ,

where FidY (sY ) is the fiber of s
Y

over the identity map idY . By Applying W to
s
Y
, we obtain the fibre sequence WFidY (sY ) ↪→Waut(f)→Waut(Y ).

Let f ′ : X ′ → Y a minimal subfibration of f (which is a strong deformation
retract of f). Notice that for s′

Y
: aut(f ′)→ aut(Y ), its fiber FidY (s′Y ) consists of

the following commutative triangles
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△[n]×X ′ α //

1×f ′ ''NN
NNN

NNN
NNN

△[n]×X ′

1×f ′wwppp
ppp

ppp
pp

△[n]× Y

where α is an automorphism of X ′. Thus, by Theorem 3.2.5 it holds that
WFidY (s

′
Y
) ≃ hom(Y,Waut(F ))cl, and since WFidY (s

′
Y
) ≃ WFidY (sY ) it holds

that WFidY (sY ) ≃ hom(Y,Waut(F ))cl.

Proposition 3.2.6
Let X

f // Y
p // Z be a fibre sequence. If the map cl : Y → Baut(ΩZ)

classifies f , then Map(Y,Baut(ΩZ))cl ≃ Map(X,Y )c, where Map(X, Y )c is the
component of the constant map in Map(X,Y ).

Proof. Taking loops in the fibre sequence of Theorem 3.2.3 and using the
diagram (I) given in the proof of Theorem 3.2.1, we can consider the following
diagram

aut(f)
sY //

sX
��

I

aut(Y )ϕ′′

f♯

��

cl♯ //Map(Y,Baut(ΩZ))cl

aut(X)ϕ′ f♯
//Map(X,Y )ϕ

p′♯

//Map(X,Z)c

Let us see that the map cl♯ is well defined, that is, given β ∈ aut(Y )ϕ′′ we
must see that the induced fibration f̂ : β∗(X) → Y given by he pullback of f
along β is fiberwise homotopic to f . To check this consider the following sequence
of homotopy commutative diagrams

β∗(X)

f̂ ""F
FF

FF
FF

FF

β̂ // X

β−f����
��
��
��

β∗(X)

f̂ ""F
FF

FF
FF

FF
≃ // X

fα−

��

≃ // Pfα−

q
}}zz
zz
zz
zz

Pfα−

q
!!D

DD
DD

DD
D
≃ // X

α−
≃ // X

f����
��
��
��

Y Y Y

in the first triangle we compose f with the homotopy inverse β− of β and since
βf ≃ fα− we can pass to the second triangle, where q is the fibration that
factorize fα−. By using the third triangle we can conclude that f̂ is fiberwise
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homotopic to f .

Now consider the following pullback diagram

ΩZ

��

ΩZ

��
aut(Y )ϕ′′ ×X

p♯f
♯×1

//

id×f
��

Map(X,Z)c ×X
1×f
��

aut(Y )ϕ′′ × Y
p♯f

♯×1
//Map(X,Z)c × Y
y

Notice that these two fibrations are classified by maps θ and η that make the
following diagram homotopy commutative, because the above square is a pullback

aut(Y )ϕ′′ × Y
p♯f

♯×1
//

θ **UUU
UUUU

UUUU
UUUU

UU
MapX, Y )c × Y

η

��
Baut(ΩZ)

By using the adjunction property of mapping spaces we can obtain a homotopy
commutative diagram

aut(Y )ϕ′′
p♯f

♯

//

θ̃ ((RR
RRR

RRR
RRR

RR
Map(X,Y )c

η̃
��

Map(Y,Baut(ΩZ))

Since the restriction of the fibration (1 × f) and (id × f) over any vertex of
Map(X, Y )c and aut(Y )ϕ′′ respectively, are fibre wise homotopic to f , then the
codomain of θ̃ and η̃ is Map(Y,Baut(ΩZ))cl. Thus the map θ̃(β) is homotopic to
cl for any β ∈ aut(Y )ϕ′′ , but clβ ≃ cl for any β ∈ aut(Y )ϕ′′ , and hence θ̃ ≃ cl♯.

Now consider the following diagram
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(II) aut(X)ϕ′ ×f♯ Pf♯
π //

zz

Pf♯

q

����
��
��
��
��
��
��
��
��
�

aut(X)ϕ′ ×f♯ aut(Y )ϕ′′ //

��

1×υ
44jjjjjjjjjjjjjjjj
aut(Y )ϕ′′

υ

88pppppppppppp

f♯

��

cl♯ //Map(Y,Baut(ΩZ))cl

aut(X)ϕ′ f♯
//Map(X, Y )ϕ p♯

//Map(X, Y )c

η̃

OO

where aut(X)ϕ′ ×f♯ aut(BF )ϕ′′ = aut(f) and Pf♯ is the path space of the map f ♯,
that is, Pf♯ = {(β, θ) ∈ aut(Y )ϕ′′ × hom(X, Y )Iϕ : f ♯(β) = θ(0)}. The map q is
the fibration that factorizes f ♯ and υ is the correspondent homotopy equivalence.

aut(X)ϕ′ ×f♯ Pf♯ denotes the pullback of .
f♯ // . .

qoo .

From the above diagram take the following one

aut(X)ϕ′ ×f♯ aut(Y )ϕ′′ //

��
1×υ
��

aut(Y )ϕ′

υ

��

cl♯ //Map(Y,Baut(ΩZ))cl

aut(X)ϕ′ ×f♯ Pf♯ π
// Pf♯ p♯q

//Map(X, Y )c

η̃

OO

Since p♯ and q are fibrations we have that Fib(p♯q) ≃ aut(X)ϕ′ ×f♯ Pf♯ and by
Theorem 3.2.3 the upper row is a fibre sequence by . Note that the upper square
of diagram II is a pullback square, and hence (1×υ) is an homotopy equivalence
since υ is so too. Taking the long exact sequences of homotopy groups for these
two fibrations we have that Map(Y,Baut(ΩZ))cl ≃Map(X, Y )c.

As an illustration of this Proposition let us consider the following examples

Example 3.2.7 Consider the fibre sequence K(Z, 1) // X
f // K(Z, 2) where

X ≃ ∗. Since f is classified by a map p : K(Z, 2)→ BK(Z, 1) it holds that

Map(X,BK(Z, 1))c ≃Map(∗, K(Z, 2))c ≃ K(Z, 2)
but f is also classified by a map cl : K(Z, 2)→ BweK(Z, 1) and in that case

Map(K(Z, 2), BweK(Z, 1))cl ≃Map(K(Z, 2), BK(Z, 1))cl
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≃Map(K(Z, 2), K(Z, 2))cl ≃ K(Z, 2)

Example 3.2.8 Let us take the principal fibration G � � // EG
f // BG where

G is a finite group. If f is classified by p : BG→ BG, then

Map(EG,BG)c ≃Map(∗, BG)c ≃ BG

Remember the inclusion map G � � i // ΣG , where ΣG is the symmetric group
of |G| letters. i gives rise a group homomorphism CΣG

(i(G)) × G → ΣG for
which we can apply the classifying space functor BCΣG

(i(G)) × BG → BΣG

and take the adjoint map BCΣG
(G) → Map(BG,BΣG)i, which is a homotopy

equivalence. Since BweG ≃ BΣG and Map(BG,ΣG)h ≃Map(BG,BΣG)i, where
h ∈ Rep(G,ΣG) we have that

Map(BG,BweG)cl ≃Map(BG,BΣG)i

where cl : BG→ Bwe(G) is the classifying map of f . Then

Map(BG,BweG)cl ≃ BCΣG
(G)

but CΣG
(G) ∼= G′ ≤ ΣG with G ∼= G′, therefore

Map(BG,BweG)cl ≃ BCΣG
(G) ≃ BG

3.2.2 Examples

As we saw in Section 0.3.1 given a cofibration f : A→ B and a fibration E → B
it is always possible to obtain a fibrewise Lf -localization of g, but it is not true in
general for the cellularization functor CWA. For example, for A = BZ/2 consider
the fibre sequence S2 ↪→ RP 2 → BZ/2 and suppose that it has a fibrewise
cellularization

S2 // RP 2 // BZ/2

CWBZ/2S
2 //

OO

E //

OO

BZ/2

The sphere is a finite CW -complex and hence hom∗(BZ/2, S2) ≃ ∗. So it
holds that CWBZ/2S

2 ≃ ∗, and therefore E ≃ BZ/2; but hom∗(BZ/2,RP 2) ≃ ∗,
since RP 2 is also a finite CW -complex. Thus, there is not nontrivial maps from
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BZ/2 to RP 2 and hence the above diagram cannot be commutative.

Given a finite group G and a fibration BG � � // E
g // B , we may assume

some conditions over G and the base space B in order to known when it is possible
to obtain a BZ/p-fibrewise cellularization for g. Before that let us remember some
results related with CWABG and the p-completion X∧p of a space X.

Definition 3.2.9 ([10]) Let G be a finite group and H a subgroup of some Sylow
p-subgroup S of G. Then H is strongly closed in G if whenever h ∈ H and g ∈ G
are such that ghg−1 ∈ S, then ghg−1 ∈ H.

Remember that given two elements x and y in a subgroup H of G, they are
said to be fused in G if they are conjugate in G, but not in H. If S is a Sylow
p-subgroup S of G, let us denote the smallest strongly closed subgroup of S
containing all elements of order p in S by Cl(S).

Definition 3.2.10 ([10]) Let G be a finite group and S a Sylow psubgroup. The
normalizer NG(S) of the Sylow p-subgroup controls fusion if, whenever P < G
is a p-subgroup and gPg−1 < NG(S), we have g = hc, with h ∈ NG(S) and
c ∈ CG(P ).

The following theorem is a consequence of the Theorem 5.6 of [10]

Proposition 3.2.11
Let G be a finite group generated by elements of order p and S a Sylow p-subgroup
of G. If G is not a p-group, NG(S) the normalizer of S in G controls the fusion
in G and S = Cl(S), it holds that CWBZ/pBG fits in a fibration

CWBZ/pBG
� � // BG //

∏
q ̸=pBG

∧
q

where the product is taken over all primes q dividing the order of G.

It is important to remark that in the above fibration
∏

q ̸=pBG
∧
q ≃ PΣBZpCev,

where Cev is the cofiber given in Theorem 0.3.13.

Theorem 3.2.12 ([3], Proposition V II.4.3(i))
Let X be a pointed connected space such that πi(X) is finite for every i ≥ 1,
then πi(X∧p ) is a finite p-group for all i and prime p.

Theorem 3.2.13
Let G be a finite group generated by elements of order p and S a Sylow p-
subgroup of G. If G is not a p-group, NG(S) the normalizer of S in G controls
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the fusion in G and S = Cl(S) and B is BZ/p-cellular, then any fibre sequence
BG � � // E

g // B admits a unique BZ/p-fibrewise cellularization.

Proof. By Theorem 3.2.11 CWZ/pBG is the fibre of BG→
∏

q ̸=pBG
∧
q , thus by

Corollary 3.2.2 the obstruction to the existence of a fibrewise-cellularization of g
lie in the cohomology groups

H i+1(B, πi(
∏
q ̸=p

BG∧q ))

Taking |G| = prq1...qs we have that

H i+1(B, πi(
∏
q ̸=p

BG∧q )) = H i+1(B,
∏

1≤k≤s

πi(BG
∧
qk
))

The homotopy groups of BG∧qk are qk groups (Theorem 3.2.12),then these
cohomology groups can be expressed as a finite product of cohomology groups
H i+1(B,Z/qnk

k ) with coefficients in Z/qnk
k . We also know that B is BZ/p-cellular

(that is, B ≃ CWBZ/pB), then it is constructed by assembling several copies of
BZ/p together along some hocolimit scheme (see Section 0.3.2). Therefore we can
studyH i+1(B,Z/qnk

k ) in terms of the simpler cohomology groupsH i+1(BZ/p,Z/qnk
k ),

or what is the same the groups H i+1(Z/p,Z/qnk
k ).

Since H i+1(Z/p,Z/qnk
k ) ∼= 0, it holds that

∏
1≤k≤s

H i+1(B, πi(BG
∧
qk
)) ∼= 0 and∏

1≤k≤s
H i(B, πi(BG

∧
qk
)) ∼= 0, therefore g admits a unique CWBZ/p-fibrewise cellu-

larization.

In the following proposition LZ[ 1
p
] denotes the homological localization with

respect to the homology theory with coefficients in Z[1
p
].

Theorem 3.2.14 ([13])
Let X be an 1-connected infinite loop space of finite type, p a prime number and
r a positive integer. If π2X is a torsion group, then PΣBZ/prCev ≃ LZ[ 1

p
]X.

Theorem 3.2.15
Let X be an 1-connected infinite loop space of finite type, p a prime number and
r a positive integer. If π2X is a torsion group and B a BZ/pr-cellular space, then
any fibre sequence E

g // B with fiber X admits a unique BZ/pr-fibrewise-
cellularization.
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Proof. If πi(X) is a q-torsion group, then πi(X)⊗Z[1
p
] ∼= πi(X) and if πi(X) is

a p-torsion group it holds that πi(X)⊗Z[1
p
] ∼= 0. Since B is BZ/pr-cellular space

we can proceed as in proof of Proposition 3.2.13.

In Section 0.3.1 we saw that given a fibration p : E → B for which its
fibrewise localization is the factorization E

a // E
q // B , it holds that a is a

local equivalence. In the case of fibrewise cellularization it might happen that the
map between the total spaces is not an A-equivalence, for example, if A = BZ/2
the following diagram is a fibrewise cellularization of the fiber sequence BZ/3 ↪→
BΣ3 → BZ/2

BZ/3 // BΣ3
// BZ/2

∗ //

OO

BZ/2 //

b

OO

BZ/2

we have that Map∗(BZ/2, BZ/2) ≃ Z/2, while Map∗(BZ/2, BΣ3) consists of
three morphisms. Therefore b is not an BZ/3-equivalence.
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APPENDIX A

PREORDERED SETS

Let A be a set and ‘ ’ a preorder relation over A, that is, a reflexive and transitive
relation. Consider the following subset A′ from A

1. A′ is the set formed by taking the minimum number of elements of A such
that: for all x ∈ A there exists w ∈ A′ with x w

A natural question around this situation is: Does A’ always exist?.

Example A.0.16 Consider the following infinite sequence of sets connected by

injective maps ... // An
fn // ... // A1

f1 // A0 and define ‘ ’ over ∪
i≥0
Ai for

a ∈ Aj and a′ ∈ Ak as follows

a a′ if there exists a map f : Ak → Aj such that f(a′) = a

In this case A′ = ∅, since in the set ∪
i≥0
Ai we can consider infinite chains

ai1  ai2  ...  aik  ... of non-equal elements (here  is in particular an
order relation).

To solve our question we will reformulate it by defining an order relation over
A, that is, consider the preorder set (A, ) and define the following relation:

a. x ∼ w if x w and w  x

Note that ‘∼’ is and equivalence relation over A. Now in A/ ∼ consider the
relation:
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b. given [x], [w] ∈ A/ ∼, we say that [x] ≤ [w] if x w

With the above relations (A/ ∼,≤) is an ordered set. So the existence of A′
depends on the existence of maximal elements in A/ ∼, that is, A′ will be the set
formed by taking from every maximal class in (A/ ∼,≤) one representant.

Let us consider the following situation:

Take a functor X : C → Sets between one category C and the category of sets.
Suppose that for every c ∈ C there is one equivalence relation ‘ ∼′c defined over
Xc, such that if x ∼c w and f : c → d is an arrow in C then Xf (x) ∼d Xf (w).
Consider the set A = ∪

c∈C
Xc; if x is an element ∈ Xd denote this element by xd.

With this notation over the set A let us define the following relation:

• given xd, wc ∈ A, we’ll say that xd  wc if there exists an arrow f : c→ d
such that Xf (w) ∼d x.

Since (A, ) is a preordered set we can also start to seek the set A′ described
in (1). To do that we will consider the relations given in (a) and (b) over A as
before, although additionally we will need to impose some conditions over the
category C to find some positive examples where A′ exists.

Example A.0.17 Let C be a small EI-category (that is, a category where all its
endomorphisms are isomorphisms).

1) Take C in such a way that Obj(C) < + ∝. Consider a chain {[xcii ]}i∈I in
A/ ∼ and suppose that there is a subsequence [xcii ] ≤ [xckk ] ≤ [x

cj
j ] of the

chain, with ci = cj = c. Then there are arrows c
f // ck

h // c in C,
such that Xf (xj)

ck ∼ck x
ck
k and Xh(xk)

c ∼c xci . Notice that xci ∼c Xhf (xj)
c

and since C is an EI-category there exists an arrow α : c → c ∈ C such
that αhf = 1c, therefore applying α we have that Xα(xi)

c ≃p xcj and then
[xcii ] = [x

cj
j ].

This means that any chain in (A/ ∼,≤) is finite and hence it has an upper
bound. Then A′ ̸= ∅.

2) Let G be a group (may be infinite) and let C be the category with only one
object and morphisms given by the elements of G. Note that ‘ ’ is already
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an equivalence relation, since arrows in C are invertibles and have the same
domain and codomain. Moreover every chain in A/  has length 1 and
therefore A′ is formed by taking from every class in A/ one representant
(indeed this example is a particular case of 1)).

3) Let C be a small category for which there is a map n : Obj(C) → Z≥0 such
that for every morphism f : c→ d of C with nc ̸= nd it holds that nc < nd.
If c ∈ C the number n(c) = nc will be called the degree of c.

Take a chain {[xnci
i ]}i∈I in A/ ∼ and suppose that there is a subsequence

[x
nci
i ] ≤ [x

ncj

j ] of the chain, with nci = ncj = nc. As in example 1) we can
conclude that [x

nci
i ] = [x

ncj

j ] and therefore we consider only chains where
nci ̸= ncj , whenever i ̸= j. So if [x

nci
i ] ≤ [x

ncj

j ] there must be a map
f : cj → ci, such that Xf (cj) ∼ci xi and since nc ̸= nd it holds that
ncj < nci. Therefore [x

nci
i ] ≤ [x

ncτ
τ ], for every i ∈ I, where cτ is such that

ncτ = min{nci}i∈I . Thus by Zorn’s Lemma it holds that A′ ̸= ∅.

The category C will be called direct category if every endomorphism is triv-
ial.
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APPENDIX B

THE SMALL OBJECT ARGUMENT

The small object argument due to Quillen [22] is a tool that permits us to con-
struct functorial factorizations with lifting properties. In order to develop this
argument some results about transfinite compositions in categories are needed.
Before introducing this machinery we will start with the exposition given by
Dwyer and Spalinski in [8], which follows a sequence of very understandable rea-
sonings that captures the essence of such argument.

Assume that M is a cocomplete category. Given a functor X : Z+ → M
and an object A in M, the morphisms in : Xn → colim

→
Xk induce natural maps

in,♯ : M(A,Xn) → M(A, colim
→

Xk) defined by in,♯(f) = inf , which give the
canonical map ψ : colim

→
M(A,Xn)→M(A, colim

→
Xk).

Definition B.0.18 ([8]) An object A in M is said to be sequentially small if
for every functor X : Z+ → M the canonical map ψ : colim

→
M(A,Xn) →

M(A, colim
→

Xk) is a bijection.

Note that this bijection allows us to factorize any map g in M(A, colim
→

Xk)

as ing′ = g, where g′ : A→ Xn for some n ∈ Z+.

Take a set of maps F = {fi : Ai → Bi}i∈I inM and suppose that p : X → Y
is a map in M for which we want to factor p as a composite X → X ′ → Y in
such a way that the map X ′ → Y has the RLP (see Definition 0.2.5) with respect
to all of the maps in F . We can proceed as follows: for each i ∈ I consider the
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set S(1) formed by all the pairs of maps (g, h), such that the following diagram
commutes

Ai

fi
��

g // X

p

��
Bi h

// Y

The Gluing construction G1(F , p) is defined by the following pushout diagram

⨿
i∈I

⨿
(g,h)∈S(1)

Ai

⨿fi
��

+i+(g,h)g //

p

X

j1

��
⨿
i∈I

⨿
(g,h)∈S(1)

Bi
ĵ1

// G1(F , p)

By the universal property of colimits there is a map p1 : G1(F , p) → Y such
that p1j1 = p. Now repeat the process inductively for n > 1, that is, for each
i ∈ I consider the set S(n − 1) which contains all the pairs of maps (g, h), such
that the following diagram commutes

Ai

fi
��

g // Gn−1(F , p)
pn−1

��
Bi h

// Y

and as before define the map pn : Gn(F , p)→ Y . What results is a commutative
diagram

X

p

��

j1 // G1(F , p)
p1

��

j2 // G2(F , p)
p2

��

j3 // ...
jk // Gn(F , p)

pn

��

// ...

Y −
// Y −

// Y −
// ... −

// Y −
// ...

Let G∞(F , p) the colimit of the upper row of the above diagram. There are
natural maps j∞ : X → G∞(F , p) and p∞ : G∞(F , p)→ Y such that p∞j∞ = p.

Proposition B.0.19 ([8], Proposition 7.17)
In the above situation, suppose that for every i ∈ I the object Ai of M is
sequentially small. Then the map p∞ has the RLP with respect to each of the
maps in the family F .
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Appendix B. The small object argument

Proof. Consider the following commutative diagram

Ai

fi
��

g // G∞(F , p)
p∞

��
Bi h

// Y

Since Ai is sequentially small, there exists an integer n such that the map g is
the composite of a map g′ : Ai → Gn(F , p) with the map Gn(F , p)→ G∞(F , p).
Therefore the above commutative diagram can be enlarged as follows

Ai

ιAi

��

fi // Bi

ιBi

��
⨿
I
⨿
S(n)

Ai

+i+S(k)g

��

⨿fi //
p

⨿
I
⨿
S(n)

Bi

ĵn+1

��
Ai

fi
��

g′ // Gn(F , p)
pn

��

jn+1 // Gn+1(F , p)
pn+1

��

l // G∞(F , p)
p∞

��
Bi h

//
ĵn+1ιBi

33

Y −
// Y −

// Y

in which the composite of ljn+1g
′ is g. However the pair (g′, h) contributes itself

as an index in the construction of Gn+1(F , p) from Gn(F , p). Then by con-
struction there exists a map Bi → Gn+1(F , p) which makes the appropriate
diagram commutative (that is, the map ĵn+1ιBi

). Composing with the arrow
l : Gn+1(F , p)→ G∞(F , p) gives a lifting in the original square.

It is possible to generalize the definition of smallness by considering sequences
indexed by an ordinal, rather than just positive integers. Recall that an ordinal
is the well-ordered set of all smaller ordinals. Every ordinal λ has a successor
ordinal λ+ 1 and an ordinal is said to be a limit ordinal if it is neither zero nor
a successor ordinal.

Definition B.0.20 ([17], Definition 2.1.1) Let M be a category closed under
small colimits. If λ is an ordinal, then a λ-sequence in M is a functor X : λ→
M, that is, a diagram in M

X0
// X1

// X2
// ... // Xβ

// ... β < λ
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such that for every limit ordinal γ < λ the induced map colim
β<λ

Xβ → Xγ is an

isomorphism.

We refer to the map X0 → colim
β<λ

Xβ as the composition of the λ-sequence,

though the composition is not unique, but only unique up to isomorphism under
X, since the colimit is not unique. If N is a collection of morphisms of M and
every map Xβ → Xβ+1 for β + 1 < λ is in N , we refer to the composition
X0 → colim

β<λ
Xβ as a transfinite composition of maps of N .

Definition B.0.21 ([16]) A cardinal γ is regular if, whenever A is a set whose
cardinal is less than γ and for every a ∈ A there exists a set Sa whose cardinal is
less than γ, the cardinal of the set ∪

a∈A
Sa is less than γ.

Definition B.0.22 ([16]) LetM be a cocomplete category and N a subcategory
of M .

1) If κ is a cardinal, then an object W in M is κ-small relative to N if, for
every regular cardinal λ ≥ κ and every λ-sequence

X0
// X1

// X2
// ... // Xβ

// ... β < λ

in M such that the map Xβ → Xβ+1 is in N for every ordinal β such
that β + 1 < λ, the map of sets colim

β<λ
M(W,Xβ) →M(W, colim

β<λ
Xβ) is an

isomorphism.

2) An object is small relative to N if it is κ-small relative to N for some
cardinal κ, and it is small if it is small relative to M.

If X is an object in S∗ and κ is the first infinite cardinal greater than the
cardinal of the set of nondegenerate simplices of X, then X is κ-small relative to
the subcategory of inclusions. Thus, every simplicial set is small relative to the
subcategory of inclusions.

Definition B.0.23 ([16], Definition 10.5.2) Let M be a category and I a set
of maps in M.

1) The subcategory of I-injectives is the subcategory of maps that have the right
lifting property (see Definition 0.2.5) with respect to every element of I.
element
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Appendix B. The small object argument

2) The subcategory of I-cofibrations is the subcategory of maps that have the left
lifting property with respect to every I-injective. An object is I-cofibrant if
the map to it from the initial object of M is an I-cofibration.

For example if I is the set of inclusions △̇[n]→△[n] in S, then the injectives
are the trivial fibrations and the I-cofibrations are the inclusions of simplicial sets
(see Example 0.2.7). If J is the set of inclusions Λk[n]→ △[n] in S, then the J-
injectives are the Kan fibrations, and the J-cofibrations are the trivial cofibrations
(see Proposition 0.2.6).

Definition B.0.24 ([16]) Let M be a cocomplete category and I a set of maps
in M. The subcategory of relative I-cell complexes is the subcategory of maps
that can be constructed as a transfinite composition of pushouts of elements of I.
That is, if f : A→ B is a relative I-cell complex, then there is an ordinal λ and
a λ-sequence X : λ→M such that f is the composition of X and such that, for
every β for which β + 1 < λ, there is a pushout square as follows

⨿
j∈J
Cj

⨿
j∈J

gj
//

��

p
⨿
j∈J
Dj

��
Xβ

// Xβ+1

where gj ∈ I for every j ∈ J . An object is an I-cell complex if the map to it from
the initial object of M is a relative I-cell complex.

Note that the identity map at A is the transfinite composition of the trivial
1-sequence A, so identity maps are relative I-cell complexes. If f : A → B is
an isomorphism, then f is also the composition of the 1-sequence A, so f is a
relative I-cell complex.

Proposition B.0.25 ([16], Proposition 10.5.10)
LetM be a cocomplete category and I a set of maps inM. Then every relative
I-cell complex is an I-cofibration.

Proposition B.0.26 ([16], Proposition 10.5.11)
LetM be a cocomplete category and I a set of maps inM. Then a retract of a
relative I-cell complex is an I-cofibration.

The reason for considering the theory of transfinite compositions and relative
I-cell complexes is the small object argument, due to Quillen [22], though in fact
we could get away with countable compositions in the examples that we have
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considered in this memory, we must not restrict ourselves to categories where
countable composition will suffice. Furthermore, the localization process (the
one discussed in [16]) will almost always require transfinite compositions. Using
transfinite composition just means replacing ordinary induction arguments with
transfinite induction arguments.

Definition B.0.27 ([16]) IfM is a category and I is a set of maps inM, then
we say that I permits the small object argument if the domains of the elements
of I are small relative to I.

Proposition B.0.28 (The small object argument, [16] Proposition 10.5.16)
Let M be a cocomplete category and I a set of maps in M that permits the
small object argument, then there is a functorial factorization of every map in
M into a relative I-cell complex followed by an I-injective.

Proposition B.0.29 ([16])
Let M be a cocomplete category, I a set of maps in M that permits the small
object argument and i : A→ B an I-cofibration, then i is a retract of a relative
I-cell complex.

Proof. We apply the factorization Proposition B.0.28 to factorize i as a compo-

sition A
j // A′

p // B , where j is a relative I-cell complex and p and I-njective.
Since i is an I-cofibration the doted arrow in the following diagrams exists

A

i
��

j // A′

p

��
B −

//

g
>>

B

therefore the pair (1A, g) is a retraction from i to j.

94



APPENDIX C

EQUIVALENT DEFINITION OF
C-FIBRE BUNDLE

As in Section 1.3 we will study the maps p : X → B ∈ SC, where B is the
constant diagram to the simplicial set B ∈ S.

Definition C.0.30 Let F be a C-diagram. A map p : X → B is said to be a
C-fibre bundle with fibre F if

• p is onto.

• For every n-C-simplex vc in B there is an isomorphism αp(v
c) from δcn × F

into δcn ×B X, such that the following diagram commutates

δcn × F
αp(vc)

∼=
//

pr

��

δcn ×B X //

pr

��

X

p

��
δcn −

// δcn vc
// B
y

• There exists a set of isomorphisms {αp(vc)} such that if f : a → b is an
arrow in C, then the following diagram commutes
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δan × F

��

αp(va)// δan ×B X

��

// X

p

��

δbn × F

jf×1
99rrrrrrrrr

αp(vb)//

��

δbn ×B X

j̃f×1
88qqqqqqqqqq

88qqqqqqqqqq

��

44iiiiiiiiiiiiiiiiiiiii

(1) δan
1 // δan

va // B
y

δbn
1 //

jf

99sssssssssssss
δbn

jf

88qqqqqqqqqqqqqq
vb

44iiiiiiiiiiiiiiiiiiiiiiii

The set of isomorphisms {α(vc)} is called an atlas of the C-bundle. If F is
fibrant, p will be called CK-fibre bundle. Notice that given two atlases {αp(vc)},
{α̃p(vc)} of p, then αp(v

c)−1α̃p(v
c) ∈ aut(F )n (see Section 1.5) and conversely if

for every v ∈ Bn we choose (γ(vc)) ∈ aut(F )n, then {αp(vc)γ(vc)} is another atlas.

Proposition C.0.31
Let p : X → B be a CK-bundle with fibre F . Then p is a fibration.

As in Section 0.1.1 it is possible to define normalized and regular atlases in
such a way that we can associate ceratin transformation elements to a given atlas.
From Proposition 1.5.1 it holds that Definition 1.3.1 and Definition C.0.30 are
equivalents.
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A-equivalence, 29
A-null

space, 26
G-map

of C-bundles, 44
of bundles, 10

I-cell complex, 93
I-cofibrant, 93
I-cofibration, 93
I-injective, 92
PTCP , principal twisted cartesian prod-

uct, 12
TCP , twisted cartesian product, 12
C-Atlas

normalized, 43
C-Twisting cartesian product, 46
C-fibre bundle, 42
CK-bundle, 43
f -local

equivalence, 26, 72
space, 26, 72

n-Simplex, 2
p-Homotopic

simplices, 6
p-Homotopy

between n-C-simplices, 60

Action
effective, 12
of a group over a complex, 12
principal, 12

Associated TCP , 16
Atlas

for a C-bundle, 43
for a bundle, 8
normalized, 9

Aumentation
map, 31

Bar construction, 5
Basis

for a free cell complex, 42

Category
of simplicial sets, 2
of diagrams, 24
of spaces, 2
of topological spaces, 18

cell complex, 21
Classifying complex, 5
Coaugmentation
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map, 27
Cofibrant object, 18
Complex, 5
contractible, 57

Direct category, 87
Discret category, 38

Equivalence
between C-TCP ′s, 48
between TCP ′s, 12
of C-bundles, 44
of G-bundles, 11

Extension condition, 4

Factorization
epi-monic, 2

Fiber
of a map, 57
over a simplex, 7

Fibrant object, 5, 18
Fibre bundle, 8
Fibre map, 6
Fibrewise

f -localization, 27
cellularization, 32
homotopy, 56
homotopy equivalence, 57

Free
C-diagram, 38
diagram, 35

Free I-cell, 39
Free cell complex, 40
Function complex, 4, 22
Functor

augmented, 29
coaugmented, 26
dense, 34
idempotent, 26, 29
of A-nullification, 27

Generator
degenerate, 42
nondegenerate, 42
of a free cell complex, 42

Gluing construction, 90
Grotendieck construction, 53

Height
of a semisimplicial operator, 3

Homotopy, 56
between n-C-simplices, 60
between simplices, 5
equivalence, 57
of simplicial maps, 6
over a space, 57
relative, 56

Joined simplices, 60

Kan
complex, 5
fibration, 6

Left lifting property, LLP , 19

Map
locally trivial, 7
of C-TCP ′s, 48
of TCP ’s, 12

Minimal
complex, 6

Model category, 17
cofibrantly generated, 20

n-C-simplex, 35
n-C-simplices

sub-p-homotopic, 60
sub-homotopic, 60

Object
sequentially small, 89
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small, 92
Objects

weakly equivalents, 24
Operator

degeneracy, 2
face, 2
semisimplicial, 3

Pullback, 23
corner map, 25

Pushout, 23
corner map, 25

Quillen functor, 21

Regular cardinal, 92
Relative I-cell complex, 93
Relative cell complex, 21
Relative free cell complex, 39
Representing map, 4
Right lifting property, RLP , 19

Simplex
degenerate, 2
non-degenerate, 3

Simplex category, 34
Simplicial

category, 22
map, 3
mapping space, 22
model category, 23
set, 2
subset, 2

Singular
complex, 5
functor, 5, 18

Standard
n-simplex, 3

Transfinite composition, 92
Transformation elements, 9

Twisting map, 11

Under category, 53

Zig-zag between simplices, 60
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