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73 Fitted ẏmc coefficient for the 3rd measurement of QM13FF magnet . . . . . . . . . . . 107
74 Beam orbit jitter analysis for the CTF3 measurements . . . . . . . . . . . . . . . . . 107
75 Measured beam intensity along TBL . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
76 BPM orbit readings differences as a function of the QFR300 vertical position . . . . . 108
77 Phase space ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
78 Yoke profiles of a bending, quadrupole and sextupole magnets . . . . . . . . . . . . . 124
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Preface

The accelerator and particle physics communities are considering a lepton linear collider as the most
appropriate machine to carry out high precision particle physics research in the TeV energy regime.
The Compact Linear Collider (CLIC) and the International Linear Collider (ILC) are the two propos-
als for the future e+e− Linear Collider, which are both at the stage of intensive development by two
wide international collaborations with strong overlap between them. Both designs achieve a luminosity
L above 1034cm−2s−1 at the interaction point (IP), satisfying the particle physics requirements.

The e+e− Linear Collider consists of different systems. The Beam Delivery System (BDS) is the last
one before the beam arrives at the IP. It comprises of diagnostics, collimation and Final Focus System
(FFS) sections. The FFS designs of the CLIC and ILC projects are based on a new local chromaticity
correction scheme proposed by P. Raimondi and A. Seryi. This scheme has never been experimentally
tested before. In the FFS the beam is focused at the IP by means of two strong quadrupole magnets,
the so-called final doublet (FD). To reach the challenging luminosity it is necessary to reduce the
horizontal and vertical beam sizes at the IP, σ∗

x and σ∗
y respectively, achieving vertical spot sizes in

the order of the nanometres.
The test facilities play an important role in studying the feasibility issues of the e+e− Linear

Collider projects. For example, the Accelerator Test Facility (ATF) and its extension (ATF2) at
KEK (Japan) aim to experimentally verify that the ultra-low beam emittances can be obtained and
assess the feasibility of the FFS based on the novel local chromaticity correction scheme. The main
goal of the CLIC Test Facility (CTF3) at CERN (Switzerland) is to demonstrate the two beam
acceleration scheme in which CLIC is based on.

The present thesis is devoted to the design and high order optimisation of FFS for linear colliders
based on the local chromaticity correction scheme. The tuning study of the design lattice determines
its feasibility. By tuning we understand the process that brings the system to its design performance
in terms of L and σ∗

x,y under realistic error conditions. This problem is also one of the subjects of this
thesis.

One of the problems studied in this thesis is the optimisation of the crab cavity for the CLIC BDS
with L∗= 3.5 m design. The design luminosity is L0= 5.9·1034cm−2s−1. The beams cross each other
at the IP forming an angle of 20 mrad in order to provide safe extraction of the spent beams. Due to
this crossing scheme the geometric luminosity would be reduced by 90%. Crab cavities are dedicated
to tilt the bunches in order to provide head-on like collisions preserving the design L0. However this
solution does not fully recover the design luminosity for the CLIC BDS with L∗= 3.5 m design. In
this thesis the causes of the observed luminosity loss despite the implementation of the crab cavity
are identified, moreover several solutions to recover the CLIC nominal luminosity are proposed.

The ATF2 Nominal and the ATF2 Ultra-low β∗ lattices are designed to test the feasibility of the
FFS of ILC and to make experiments with a larger chromaticity lattice, comparable to the one of CLIC,
respectively. The design IP vertical beam sizes for these lattices are 38 nm and 23 nm respectively,
without including any field errors in the model. At this beam size regime the chromatic and geometric
aberrations of the beam line may preclude to focus the beam to the required spot sizes. The magnetic
field quality of FFS magnets is a concern. The vertical spot size at the IP with the measured multipole
components is well above the design value for both lattices. The study of the high order aberrations
performed in this thesis is crucial for identifying which multipole components are most relevant for
the emittance growth, and exceed their tolerances and for proposing possible solutions. Replacing the
FD by better field quality magnets would considerably improve the performance of the ATF2 facility.
However the impact of the multipole components of the remaining ATF2 magnets is still noticeable.
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Swapping the ATF2 quadrupole magnets according to their skew sextupole component provides some
further beam size reduction. Another complementary solution is to modify the lattice optics. The
strategy consists in designing a new lattice in which the value of the horizontal β-function at the IP
is increased, therefore the horizontal β-function along the beam line is decreased and consequently
the impact of the multipole components is minimized. In this thesis a new design ATF2 Bx2.5By1.0
lattice, that features a value of β∗

x= 10 mm is obtained. This lattice was used during the experimental
session of ATF2 in December 2010. The new ATF2 Ultra-low β∗

y lattice is proposed for experiments
with a vertical chromaticity comparable to that of the CLIC FFS. This new lattice includes a new
FD, swapping of the quadrupoles and a increase of the value of β∗

x up to 6 mm. Both new designs
effectively minimise the detrimental effect of the multipolar components of the ATF2 magnets reaching
a σ∗

y equal to 38 nm and 27 nm respectively.
The tuning studies for the alternative CLIC BDS design with L∗= 6 m and the new ATF2

Bx2.5By1.0 and ATF2 Ultra-low β∗
y lattices are also studied in this thesis. The tuning algorithm

applied in the case of CLIC comprises orbit correction, dispersion free steering and scanning a set of
pre-computed orthogonal knobs. The misalignment errors of the magnets, BPM resolution and the
effect of synchrotron radiation are included in the tuning simulations. From the results of the study
the critical impact of the quadrupole alignment on the tuning performance is derived. The motion
of the magnetic centre when shunting the quadrupole magnet might represent a limiting factor for
further improvement of the alignment of the quadrupole magnets. This issue is also addressed in the
present thesis. In particular simulations and experimental measurements at the test facilities ATF2
and CTF3 have been performed and their results are discussed.

To study the tuning convergence in case of the ATF2 lattices, a tuning algorithm based on a set of
pre-computed orthogonal knobs is used. The errors included in this study are misalignments, tilts and
miss-powering of the ATF2 FFS magnets. The simulated tuning results for the ATF2 Bx2.5By1.0
lattice are compared with experimental results obtained during the experimental tuning session of
ATF2 in December 2010.

At the present time the CLIC project has recently published its Conceptual Design Report which
will be followed by the preparation of the Technical Design Report. In the case of the ATF2 facility, the
regular operation of the machine was resumed by the end of 2011 after the big earthquake that occurred
in March 2011. Presently the ATF2 team works intensively in order to achieve the design values of
the ATF2 Nominal lattice in the near future. The CTF3 accelerator is continuing its operation with
the aim to demonstrate the two beam acceleration scheme under the CLIC specifications.

The results of the present thesis have been published in 7 articles in the Proceedings of PAC’09,
IPAC’10, IPAC’11, PAC’11 and IPAC’12, and were also presented in talks at 9 international confer-
ences.

11



12



Objectives and Structure of the thesis

The general goal of the studies presented in this thesis is to contribute to the development and final
demonstration of the Final Focus Systems based on the local chromaticity correction scheme. It is
expected that the results derived from this thesis will help to bring the CLIC project and the ATF2
and CTF3 facilities closer to their challenging objectives. To be more concrete, the objectives of the
studies carried out in the thesis are the following:

1. Optimization of the implementation of the CLIC crab cavity with the aim to recover the design
luminosity,

2. High order optimization of the ATF2 Nominal and Ultra-low β∗ lattices in order to minimize
the detrimental effect of the multipole components of the magnets,

3. Study of the tuning performance of the CLIC BDS with L∗= 6 m design and the ATF2 lattices,

4. Experimental study of the tuning of the ATF2 Bx2.5By1.0 lattice,

5. Study of effects limiting the precision of FFS quadrupole alignment, in particular the motion of
the magnetic centre.

In Chapter 1 an introduction to the main concepts of the future lepton linear colliders is given
and motivations and requirements provided by the particle physics community are discussed. A brief
description of the main components and principle of operation of the e+-e− LCs is given. Special
attention is paid to the baseline and alternative designs of the CLIC Beam Delivery System.

The main concepts of beam dynamics that will be used in the studies of the FFS are introduced
in Chapter 2. Limiting factors to be taken into account in the design of the FFS are discussed
and a description of the beam based alignment techniques for aligning quadrupoles is given. In the
final section of this chapter a definition of the FFS tuning process is introduced. In addition different
tuning algorithms are described in detail.

Chapter 3 is devoted to the description of the Final Focus Test Beam (FFTB), ATF2 and CTF3
test facilities. The FFTB achieved the smallest ever measured vertical beam size σ∗

y . The ATF2 and
CTF3 test facilities are of crucial importance to the future LC projects aimed to demonstrate the
performance of the novel FFS chromaticity correction scheme and the two beam acceleration concept
underlying the CLIC design, respectively.

In Chapter 4 we address the design and optimization of CLIC and ATF2 lattices. In the case of
CLIC, we study the effect of the loss of luminosity related to the crab crossing angle of the beams at
the IP and propose different solutions to the problem. This study was carried out using an extended
version of the MAPCLASS code developed in the thesis. In the case of ATF2 we analyse the effect of
high order aberrations on the IP beam size and present different solutions minimizing the detrimental
effect of multipole components of the ATF2 magnets. As a result new ATF2 Bx2.5By1.0 and ATF2
Ultra-low β∗

y lattices were proposed.
Chapter 5 is devoted to tuning simulations of the CLIC and ATF2 lattices. The results are

compared with previous studies performed by means of a different tuning algorithm. In the case of
CLIC BDS with L∗= 6 m a comparison with tuning of the CLIC BDS with L∗= 3.5 m is discussed.
The study also includes tuning simulations of the new ATF2 lattices using a tuning algorithm based on
orthogonal knobs. In the case of the ATF2 Bx2.5By1.0 lattice, experimental tuning results obtained
during the session carried out in December 2010 are reported and their detailed comparison to the
simulations are discussed.
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Chapter 6 is dedicated to the beam based alignment measurements performed at the ATF2 and
CTF3 test facilities. Results of two experimental studies of the magnetic centre position are reported.
These allow us to estimate the magnetic centre motion with magnet coil current. Results of beam
based alignment measurements conducted at ATF2 and CTF3 are given.

Chapter 7 contains a summary of results obtained in the thesis and the most relevant conclusions
and considerations.

In the Appendices, complementary information that may help to follow the content of the thesis is
given. Appendix A gives the definition of the beam emittance and its relation to the Twiss parameters.
In addition the description of the bending, quadrupole and sextupole magnets and their matrix
representation can be found. The full set of magnetic centre measurements carried out at ATF2 is
given in the Appendix B. It complements the measurements discussed in Section 6.3. In Appendix C
a comparison between the characteristics of the QFR300, QFR800 and PXMQMAHNAP35 magnets
is made. In addition the conversion from magnet coil current to normalised integrated strength for
the mentioned magnets is explained.
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1 The future generation of Linear Colliders

During the lasts decades, particle accelerators have become highly effective machines to discover
and study new particle physics. They have contributed to the formation and consolidation of the
Standard Model of particle physics [1]. However this model is not yet complete, to fill in the missing
knowledge experimental data is required. The Large Hadron Collider (LHC) [2] is the world’s largest
and highest-energy particle accelerator, designed to collide beams with a centre-of-mass energy ECM

of 14 TeV and delivering a luminosity L in the order of 1034 cm−2s−1. The luminosity is the parameter
that relates the rate of useful events dR

dT
with the cross section σp of the process, as it is indicated by

the following relation
dR

dT
= σp · L. (1)

The scope of the LHC [3] is to help the scientists to better understand the physics beyond the
Standard Model. Studies of special interest are: (i) to find the predicted Higgs boson, a key particle
that is essential for the Standard Model to work, (ii) to shed light into the understanding of the role of
dark matter [4] in the universe, (iii) to study the matter–antimatter imbalance present in the universe
and (iv) to seek for evidences of additional spatial dimensions [5].

The precision of the measurement in a hadron colliders is limited due to the fact that the initial
energy of the two colliding hadron partons cannot be known. In contrast, in a lepton collider each
particle has a well known energy and so precision measurements of interactions are possible. In
addition a lepton collider provides cleaner interactions between the beams than the hadron collider.

Among the two possibilities of building either a circular or a linear lepton collider, the circular
machines are limited in energy due to the synchrotron radiation emission in the required bending
magnets (see Appendix A.2) to close the loop. This energy loss increases the cost of running the
machine during its operation. The power emitted by a single particle is:

Pγ =
2
3

e2c

4πǫ0

β4γ4

ρ2
r

, (2)

where e is the electron charge, ǫ0 is the electric permittivity of vacuum, β is the relativistic velocity
defined as the ratio between the particle velocity v and the speed of light c, γ is the Lorentz factor
defined as the ratio between the particle energy and its rest energy (E/m0c

2) and ρr is the bending
radius of the particle trajectory. Therefore the emitted power in a circular machine scales as the
fourth power of γ and inversely proportional to the square of the machine radius.

The cost of construction and running a circular Ccirc and a linear accelerator Clin, assuming that
the cost of construction is equivalent for both accelerators and goes linearly with the length of the
machine lm by the scale factor a is given by:

Ccirc = a · 2πρr + b · Pγ (3)

Clin = a · lm, (4)

where b is a constant. Figure 1 shows that the energy frontier at which the cost of a linear and a
circular machine become comparable is about 200 GeV center-of-mass energy. For higher energies, a
lepton circular collider is economically less favourable than a lepton linear collider. Therefore a linear
lepton collider is the most efficient facility to study the particle physics at the TeV energy regime with
high precision.

The main challenges of a future linear collider are to deliver high beam energies with a single pass
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Figure 1: Qualitative illustration of the cost for linear and circular lepton colliders as a function of
the centre-of-mass collision energy.

and to achieve a luminosity larger than 1034 cm−2s−1. Furthermore the requirement from the physics
experiments is that the peak luminosity L1%, defined as the luminosity within 1% of the energy peak,
has to be larger than 1034 cm−2s−1 [6]. At the TeV energy regime the cross-section of many processes
of interest is extremely small. In Ref [7] it is shown that σp generally decreases quadratically with the
center-of-mass energy. Therefore in order to keep a good event rate large luminosities in the order of
1034 cm−2s−1 are required.

In general, the luminosity of two colliding beams can be expressed by

L =
N2

p nb frep

A
HD, (5)

where Np are the number of particles per bunch, nb is the number of bunches per train, frep is the
repetition frequency of the trains, the HD factor takes into account the luminosity enhancement that
eventually occurs when colliding bunches of opposite charge (see Ref. [8]) and A is the effective overlap
area between the colliding beams at the IP. Assuming Gaussian bunch distributions, head-on collisions
between the bunches and neglecting an eventual offset of the bunches, Eq. (5) can be written as

L =
N2

p nb frep

4π σ∗
x σ∗

y

HD, (6)

where σ∗
x and σ∗

y are the horizontal and vertical beam size of the bunch at the interaction point∗, thus
by reducing the transverse beam sizes at the interaction point the L is increased.

1.1 Future e+-e− Linear Colliders

There exists two proposals for an e+-e− linear collider, the International Linear Collider (ILC) [9]
promoted by a global International collaboration of laboratories and universities, and the Compact
Linear Collider (CLIC) led by CERN with an important collaboration with different laboratories and
universities worldwide presented in Section 1.2.

The main subsystems of an e+-e− linear collider are the following:

∗The asterisk over the σ indicates that it is evaluated at the IP
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Figure 2: Scheme of a linear collider. The red, orange, green and blue colours correspond to the
source, damping ring, main linac and BDS subsystems respectively (Figure taken from [12]).

Unit S DR ML BDS

Beam Energy E [GeV] 2.86 2.86 1500 1500
Horizontal beam size σx [nm] 3·105 3·104 4·103 45
Vertical beam size σy [nm] 4·105 3·103 4·102 1
Luminosity L [1034cm−2s−1] 10−9 10−6 10−4 5.9

Table 1: Approximative values of luminosity, beam energy and transverse beam size at the end of
each subsystem of the CLIC linear collider.

1. Source (S): Particles coming from a source are bunched, pre-accelerated and transported in such
a way that the beam fits into the dynamic aperture [10] of the Damping Ring.

2. Damping Ring (DR): Its function is to reduce the transverse emittance to the smallest possible
value in the shortest time. The emittance is the region occupied by the beam in the phase-
space u, u′ where u can be the x and y coordinates, a detailed description can be found in
Appendix A.1.

3. Main Linac (ML): It increases the energy of the particles up to the final energy keeping the
emittance at the lowest possible value.

4. Beam Delivery System (BDS): It is the responsible for performing the beam diagnostics, colli-
mation and transport the beam through the Final Focus System (FFS) towards the interaction
point (IP). More details are given in [11].

Figure 2 shows a scheme of an e+-e− linear collider where colours red, yellow, green and blue are used
to identify its main subsystems. To quantitatively estimate the function of each subsystem, Table 1
summarises the beam energy, beam sizes and luminosity evaluated if the beams would collide after
each subsystem. The L is evaluated considering the CLIC baseline design as the e+-e− linear collider
and assuming HD=1 into to Eq. (6). The BDS increases the luminosity by 4 orders of magnitude
becoming a key component of the machine to reach a value of L above 1034 cm−2s−1.
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Figure 3: General scheme of the CLIC 3 TeV machine (Figure taken from [14]).

1.2 CLIC Project

The Compact Linear Collider is a proposal of the future generation of linear collider that extends
over 48 km. Its goal is to collide e+-e− beams with a centre-of-mass energy of 3 TeV and delivering
a L above 1034 cm−2s−1. The physics potential of CLIC is reported in [6]. A detailed description of
the CLIC accelerator baseline design can be found in Refs. [13] and [14].

The two main linacs of CLIC accelerate the beam of electrons and positrons from an energy of
about 6 GeV up to 1.5 TeV in a single pass. A large accelerating gradient of 100 MV/m is foreseen to
confine the footprint of the machine within a reasonable scale. The accelerating cavities are made of
copper. CLIC proposes an innovative two-beam acceleration scheme (Main Beam and Drive Beam).
It consists of generating first a high intensity and low energy beam (Drive Beam) that runs parallel to
the main beam. The Power Extraction and Transfer Structure (PETS) extracts the radio-frequency
power of the Drive Beam to build up the high accelerating gradient at the normal-conducting cavities
of the main linac. The high current drive beam is obtained by recombining the bunches coming from
the drive beam accelerator. This recombination is done in the delay loop and the combiner rings
1 (CR1) and 2 (CR2). Figure 3 shows a general layout of CLIC and Table 2 summarises the main
parameters of CLIC. Each of the CLIC subsystems (S, DR, ML and BDS) is technically challenging
and all of them are of vital importance to reach the required luminosity. In this sense, the test
facilities are crucial to study the feasibility of the main linac and the beam delivery system. The
CLIC test facility (CTF3) [15] is an experimental test facility built at CERN (Switzerland) that aims
at demonstrating the feasibility of the two-beam acceleration scheme of CLIC, a detailed description
of CTF3 is given in Section 3.3. The Accelerator Test Facilities (ATF and ATF2) are experimental
test facilities built at KEK (Japan) meant to address the minimum transverse emittance that can
be extracted from the damping ring, and to test the performance of the FFS based on the local
chromaticity correction scheme [16].
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Parameter Symbol Value Unit
Centre of mass energy ECM 3.0 [TeV]

Luminosity L 5.9 [1034 cm−2s−1]
Peak Luminosity L1% 2.0 [1034 cm−2s−1]

Linac repetition rate frep 50 [Hz]
Number of particles / bunch Np 3.72 [109]
Number of bunches / pulse nb 312

Bunch separation ∆tb 0.5 [ns]
Bunch train length τtrain 156 [ns]

Main Linac RF Frequency fRF 12.0 [GHz]
Beam power / beam Pb 14 [MW]
Total site AC power Ptot 392 [MW]

Overall two linac length llinac 42.16 [km]
Proposed site length ltot 48.4 [km]

Table 2: The main parameters of CLIC.

1.2.1 CLIC BDS

The CLIC BDS consists of three sections: (i) diagnostics, (ii) collimation and (iii) Final Focus System.
The diagnostics section measures and corrects the beam characteristics at the exit of the linac in order
to avoid any mismatch between the ML and BDS subsystems and to properly transport the beam
towards the FFS. More details concerning the diagnostics section can be found in [17].

The function of the CLIC collimation section is to protect the down-stream beam line (FFS)
and the detector against miss-steered beams from the main linac and to remove the beam halo that
enhances the background level in the detector. A detailed description of the collimation section is
given in Ref. [17].

The lattice model of the CLIC beam delivery system can be found in [18].

1.2.1.1 CLIC Final Focus System

The Final Focus System is the last section of the BDS whose main function is to squeeze the horizontal
and vertical beam sizes at the IP to the required values. The final part of the FFS is usually formed
by a Final Doublet (FD) which is a pair of strong quadrupole magnets (see Appendix A.2) located
upstream the IP. They are responsible of focusing the transverse beam sizes at the IP. The length of
the drift space between the last magnet of the FD and the IP is called L∗.
The FD focuses the transverse beam size at the IP, moreover the insertion of an octupole and decapole
magnets as detailed in [19] is required to deliver beam sizes of 45 nm and 1 nm in the horizontal and
vertical planes respectively at the IP. Figure 5 shows the σx,y functions along the CLIC FFS. The
energy spread of the incoming beam leads to a noticeable IP beam size growth due to the fact that the
FD quadrupoles focus off-momentum particles to different longitudinal position, this effect is referred
as chromaticity [20] by analogy with optics. This chromatic effect is corrected by the insertion of
sextupole magnets (see Appendix A.2). In order to correct the chromaticity of the lattice two different
conceptual designs of FFS have been developed over the last decades. The non-local chromaticity
correction scheme corrects the transverse chromaticity by two dedicated chromatic sections, see upper
plot in Fig. 4, and afterwards the beam is transported to the final telescope section which demagnifies
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Figure 4: Scheme of the chromaticity correction with sextupoles located at regions of non zero dis-
persion due to the presence of dipole magnets (see Appendix A.2). Dash lines represent particle
trajectories without chromaticity correction, the red and blue continuous lines represent particle tra-
jectories with corrected chromaticity. The upper plot refers to the non-local chromaticity correction
scheme, the lower plot shows the local chromaticity correction scheme (Figure taken from Ref [23]).

the beam size. Such scheme was experimentally verified by the Stanford Linear Collider (SLC) [21]
and by the Final Focus Test Beam (FFTB) [22] at SLAC.
An alternative design is the local chromaticity correction proposed in [16] with interleaved sextupole
magnets in which the FD in order to locally correct the chromaticity. The definition of the chromaticity
and details of the local chromaticity correction scheme are given in Section 2.1.3. Figure 4 shows a
scheme of both FFS designs.
The e+ and e− beams cross at the IP at an angle of 20 mrad to allow the extraction of the beams
after collision. To preserve the luminosity obtained by head-on collision, the insertion of a crab cavity
is mandatory in order to rotate the bunches at the IP recovering the L. The optimisation of the crab
cavity is addressed in this thesis in Section 4.1.
In the baseline design of the CLIC BDS 3 TeV, L∗ is equal to 3.5 m. In this configuration the last
quadrupole magnet (QD0) is placed inside the detector. To avoid a significant luminosity loss due to
ground motion [24] and technical vibrations, the limit for the integrated root-mean-square (rms) [25]
vertical displacement was set at 0.2 nm at 4 Hz for the final doublet magnets.
This requirement is extremely challenging if the quadrupole is supported on the detector, therefore
it is foreseen to hold QD0 [26] by a cantilever that relies on a massive isolator located in the cavern
wall as Fig. 6 shows. With this configuration QD0 avoids the noise from the detector, and vibrates
within the tolerances [27].

1.2.1.2 CLIC BDS L∗ = 6 m

Increasing L∗, as suggested in [29], allows to place QD0 outside the CLIC detector leading to a
simpler, robust and stable solution of the interaction region. Different CLIC BDS designs according
to L∗ have been studied in [30]. Among the possible lattices, the CLIC BDS with L∗= 6 m is one
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Figure 5: The red and green curves show the horizontal and vertical beam sizes respectively, along
the FFS of the CLIC baseline design.

Figure 6: Machine detector interface view for CLIC BDS with L∗ = 3.5 m, QD0 magnet (brown) is
hold by the support tube (blue and violet) that isolates the magnet from the detector (white and red).
Complementary elements as the anti-solenoid, kicker, beamcal, pumping port, lumical and BPM are
required for other purposes (Figure taken from [28]).
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Figure 7: The horizontal (red) and vertical (green) beam sizes along the FFS of the CLIC BDS
L∗ = 6 m design.

of the most attractive solution in terms of performance. The design and optimisation processes of
the CLIC BDS with L∗= 6 m are reported in Ref. [31]. The lattice model is available at the web
repository of CLIC [32]. This design is an alternative BDS of the CLIC baseline design.
The obtained beam sizes at the IP for the CLIC BDS L∗ = 6 m design are 57 nm and 1.1 nm in the
horizontal and vertical planes, respectively, 26% and 10% larger than σ∗

x and σ∗
y for the CLIC BDS

with L∗= 3.5 m respectively. Figure 7 shows the beam sizes along the CLIC FFS with L∗= 6 m.
According to Eq. (6) the luminosity for the CLIC BDS L∗ = 6 m design is smaller than the baseline
design due to the larger IP beam sizes, however the peak luminosity still satisfies the requirements
from the physics experiments defined in [6]. Table 3 summarises the main parameters of the alternative
lattice.
The CLIC BDS L∗ = 6 m is kept as a fall-back solution of the CLIC BDS baseline design. The
feasibility performance of the alternative solution is addressed in Section 5.1.1 of the present thesis.
The luminosity for the CLIC BDS baseline design is 5.9·1034 cm−2s−1. Table 3 summarises the main
parameters of the CLIC BDS baseline.
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CLIC L∗= 3.5 m CLIC L∗= 6 m
Centre of mass energy Ecm [TeV] 3.0 3.0

Luminosity L 1034 cm−2s−1 5.9 5.0
Peak Luminosity L1% 1034 cm−2s−1 2.0 2.1

Diagnostic section length ldiag [km] 2 x 0.37 2 x 0.37
Collimation system length lcoll [km] 2 x 1.92 2 x 1.92
Final Focus system length lFFS [km] 2 x 0.46 2 x 0.67

Normalised horizontal emittance γǫx [nm rad] 660 660
Normalised vertical emittance γǫy [nm rad] 20 20

Horizontal IP beam size before pinch σ∗
x [nm] 45 57

Vertical IP beam size before pinch σ∗
y [nm] 1.0 1.1

Bunch length σz [µm] 44 44
RMS Energy spread ∆p [%] 0.29 0.29
Crossing angle at IP θc [mrad] 20 20

Table 3: The main parameters of the CLIC BDS baseline design and the alternative solution with
L∗ = 6 m.
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Figure 8: Illustration of the coordinate system used to describe the motion of an ensemble of particles.

2 Beam dynamics in a Final Focus System

2.1 Basic concepts of transverse beam optics

This section contains the main beam dynamics concepts which are extensively used throughout this
thesis. Figure 8 shows an illustration of the coordinate system. Each particle at any location along
a beam transport line is represented by a point in a six-dimensional phase space co-moving with the
reference particle with coordinates x, x′, y, y′, z and δp, where x, y and z coordinates refer to the
horizontal, vertical and the longitudinal coordinates respectively. The x′ and y′ coordinates are the
horizontal and vertical slopes defined as x′ = dx

ds
and y′ = dy

ds
respectively, being s the distance along

the reference trajectory. The relation between s and z is given by z = s − ∫
v(t)dt where v(t) is the

reference particle velocity. Hence z measures deviations on the longitudinal coordinate with respect
to the reference particle. Typically in a drift space, a quadrupole magnet or even a higher order
multipole magnet the z direction and the s coordinate coincide, but inside of a bending magnet the
coordinate s is curvilinear with a radius of curvature ρr, while the z coordinate is rectilinear and
tangent to the reference trajectory.
The δp coordinate refers to the particle momentum deviation normalised to the ideal momentum p0.
The reference particle is the particle with the ideal momentum and describes the reference trajectory.

2.1.1 Twiss functions

The motion of an ensemble of particles along the beam line is usually described by the Twiss functions
βx,y(s), αx,y(s), γx,y(s) and ϕx,y(s), the dispersion function, ηx,y(s), and its derivative η′

x,y(s) which
are defined in [10]. The horizontal and vertical emittances ǫx,y are defined as the area occupied by
the beam in the phase spaces (x, x′) and (y, y′) over π respectively. The normalised emittance ǫN is
defined as ǫN = γ · ǫ where γ is the Lorentz factor.
The βx,y(s) functions characterize the envelope of the beam, while αx,y(s) refers to the divergence of
the beam as described by equation (see [10]):

αx,y(s) = −1
2

dβx,y(s)
ds

, (7)

Appendix A.1 shows the relation between the Twiss functions, beam correlations and the emittances.
The dispersion takes into account the effect of different deflection of the particles with energy deviating
from the reference energy. The product δp ηx,y(s) determines the offset of the off-momentum particle
from the reference trajectory. The x and y coordinates of an off-momentum particle are related to
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the Twiss functions as (see [10]):

x(s)(p 6=p0) =
√

ǫ̂xβx(s)cos(ϕx(s) + φx) + δp ηx(s), (8)

y(s)(p 6=p0) =
√

ǫ̂yβy(s)cos(ϕy(s) + φy) + δp ηy(s), (9)

where ǫ̂x, ǫ̂y are the single particle emittance, φx and φy are the initial phases at s=0. The phase
function ϕx,y(s) is related to the βx,y(s) function as (see Ref. [10]):

ϕx,y(s) =
∫ s

0

dŝ

βx,y(ŝ)
. (10)

Neglecting the synchrotron radiation present in a FFS, more details are gjven in Section 2.1.4, the
particles travel under the influence of conservative forces. In this scenario Liouville’s theorem [33]
ensures that the density of the particles in the 6-dimensional phase space remains constant.

2.1.2 Beam size

If the particle distribution of the beam is represented by a Gaussian distribution in all 6 coordinates,
the contributions to the beam size from different sources add in quadrature. The expected beam size
σx,y from the Twiss parameters is given by

σx,y(s) =
√

ǫx,yβx,y(s) + ∆2
p η2

x,y(s), (11)

where ǫx,y are the emittances that contains 1σ of the Gaussian particle distribution of the beam and
∆p is the relative energy spread of the beam. Nevertheless different beam size definitions may be
of interest depending on the purpose of the study, in this sense the core of the beam is of special
interest when referring to linear colliders, since it is the part of the beam that largely contributes
to the luminosity. The Shintake beam size is used when referring to the vertical beam size at the
IP obtained by a laser-interferometer or Shintake monitor † [34], this monitor is based on a laser
interferometer [35] capable of measuring the transverse beam size by the modulation of the generated
Compton signal when the electron beam is scanned by the laser interference pattern, more details are
given in Section 2.1.2.1. The last beam size definition introduced in this thesis is the rms beam size
σrms defined as the root mean square of the particle distribution. In the following a description of
how the beam size is evaluated for the three definitions is given:

• CORE (σcore): Defined as the Gaussian σ obtained from the Gaussian distribution fitted to the
histogram of a bunch of particles. The beam size error is the given error by the fit.

• SHINTAKE (σShi): Defined from the convolution between the bunch of particles and the inter-
ference pattern of the laser. Details can be found in Section 2.1.2.1.

• RMS (σrms): It is evaluated as:

σrms =

√∫ ∞

−∞
(u − ū)2 ρ dν, (12)

where u stands for x, x′, y, y′ and ρ is the particle density distribution.

†A Shintake monitor is installed at the test facility ATF2 (see Section 3.2.1)
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The σcore is the smallest value of the three beam size definitions because it almost neglects the tails
of the bunch, while σrms is the largest beam size because it takes into account the tails of the bunch.
The three beam size are usually sorted as:

σcore ≤ σShi ≤ σrms, (13)

the equalities is satisfied when the beam can be represented by a Gaussian distribution, that occurs if
the beam size expected from the Twiss parameters equals the σrms. The presented beam size definitions
are widely used in this thesis. According to Eq. (11) the beam sizes at the IP are minimised by reducing
the β-functions at the IP, β∗

x,y. To this end, the FD is a combination of a focusing and a defocusing
quadrupole such that both β-functions are minimised at the IP. The behaviour of the β-function along
the drift space between the FD and the IP is described by the known formula (see Ref. [36]):

β(s) = β0 − 2α0s + γ0s
2, (14)

where β0, α0 and γ0 are the initial conditions of the Twiss functions at the entrance of the drift space.
The β-function is minimal, β∗

x,y, at the waist position (sw = α0

γ0
), where αx,y(s) is 0. Taking into

account that γ = 1+α2

β
is constant in a drift space, Eq. (14) can be written as:

βx,y(s) = β∗
x,y +

(s − sw)2

β∗
x,y

. (15)

The smaller the value of β∗
x,y is, the larger the value of βx,y(s) is at the final doublet. As an example,

the L∗ and β∗
y of the CLIC baseline design are 3.5 m and 0.07 mm respectively, therefore βy at the

FD is of the order of 100 km. Figure 9 shows the β-functions along the FFS of CLIC.
A limiting factor when reducing the β∗

y arises from the so-called Hourglass effect, see Ref. [37]. Beams
with a bunch length larger than β∗

y experience an increase of the effective transverse beam size due
the growth of the β-function near the waist as shown by Eq. (15) leading to a luminosity reduction.
Therefore it is important to satisfy the condition σz

β∗

y
≤ 1, as an example the CLIC BDS baseline

design σz

β∗

y
≈ 0.6.

Other limiting factors of a FFS are the Oide effect and the high order aberrations of the beam, which
are discussed in Section 2.1.3.

2.1.2.1 Shintake monitor algorithm

The vertical beam size at the IP is measured by a laser wire monitor at the ATF2 facility as described
in Section 3.2.1. The measurement depends on the beam and the laser profiles, and eventually may
differ from the σ∗

core and σ∗
rms values defined in 2.1.2. Developing and algorithm that reproduces as

close as possible the experimental measurement of the Shintake monitor allows to optimise the ATF2
FFS according to the Shintake monitor reading.
The principle behind the operation of the Shintake monitor can be found elsewhere [34] and [35]. It is
based on the modulation of the Compton signal MC generated by the interaction between the particle
beam and the interference pattern of photons. The laser beam of wavelength λls is split into two by
a mirror, both laser beams are transported and cross each other at an angle θls at the IP, forming an
interference pattern characterised by its fringe pitch dpp as the period between two consecutive peaks
or equivalently its wave number ky. Figure 10 shows the operation principle of the laser interferometer
monitor.
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Figure 9: Comparison between the β-functions along the FFS of CLIC which starts after the CLIC
collimation section (CLIC COLL) at position s= 2356 m. The read and green curves show the
horizontal and vertical β-function for the CLIC BDS L∗= 3.5 m scenario, while the blue and magenta
curves show the horizontal and vertical β-function for the CLIC BDS L∗= 6 m scenario.

Figure 10: Scheme of the operation principle of a laser wire monitor (Figure taken from [34]).
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The relation between dpp, ky, λls and θls is given by the following relation:

dpp =
π

ky

=
λls

2sin
(

θls

2

) . (16)

The intensity of the laser interference fringe at the IP can be written by (see Ref. [35]):

Ils(y) = 1 + cos (θls)cos(ky y). (17)

The experimental measurement consists of scanning the particle beam with the interference pattern
of photons by moving the vertical position of the interference pattern by changing the relative phase
between the two split laser beams. If the transverse particle beam size is smaller than the fringe
pitch, the number of scattered photons at the peak of fringe Nmax and that at the valley Nmin differ
significantly. However if the transverse beam size is larger than the fringe pitch, it interacts with
the the peak and valley at the same time, leading to almost no variation of the numbers of scattered
photons when scanning the beam (Nmax ≈ Nmin). The modulation depth of the Compton can be
calculated as:

MC =
Nmax − Nmin

Nmax + Nmin

. (18)

The electron beam size measured by the Shintake monitor σ∗
Shi can be obtained as a function of the

modulation depth, the wave number and the crossing angle of the laser beams according to (derived
in Ref. [35]):

σ∗
Shi =

1
ky

√√√√1
2

ln

(
|cos θls|

MC

)
. (19)

In the following a description of the developed Shintake algorithm is given. The algorithm is written
in Python and it requires two arguments, (i) the value of σ∗

y and (ii) a file containing the particles
position at the IP. σ∗

y is pre-computed by the MAPCLASS code [38] and it is used to select the
most appropriate θls to construct the interference pattern of photons that maximises the value of
MC , according to Fig. 11. The distribution of photons Ils is constructed according to Eq. (17). The
distribution of particles along the y coordinate is obtained from the file which contains the particles
positions. Both distributions are divided into bins of width bw = ∆y/nbins where ∆y is chosen as the
maximum width of the particle distribution. nbins is the number of bins used in the simulation. The
algorithm computes the convolution between the distribution of the interference pattern of photons
with the distribution of particles. The values of Nmax and Nmin are obtained from the convolution,
which leads to the evaluation of MC and σ∗

y according to Eqs. (18) and (19) respectively.
The Shintake monitor installed at ATF2 allows to continuously change the crossing angle of the lasers
from θls= 2 to 8 degree by fine motion of its mirrors. This capability allows a beam size measurement
that ranges from 6 µm to 360 nm considering a λls= 532 nm. Moreover there exists two additional
operation modes according to the crossing angle of the laser beams. An intermediate crossing angle
of θls= 30 degree permits the adjustment of the fringe pitch to the current beam size during the
process of tuning that goes from 360 nm down to 100 nm, for smaller beam sizes the θls= 174 degree
mode provides a suitable fringe pitch to measure beam sizes that range from 100 nm to 25 nm.
Table 4 summarises the beam size regime for each operation mode of the Shintake monitor, assuming
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Figure 11: Modulation depth of the Compton signal as a function of σ∗
y for 5 different operation

modes (θls=2, 4, 8, 30, 174 degrees) of the ATF2 Shintake monitor (Figure taken from [39]).

a resolution of 4 % (see Ref. [39]).

Crossing angle (θls) [degree] 174 30 8 2

Fringe pitch (dpp) [µm] 0.266 1.028 3.81 15.2
Upper limit (σ∗

larger) [nm] 100 360 1400 6000
Lower limit (σ∗

smaller) [nm] 25 100 360 1400

Table 4: Beam size measurement window for each operation mode of the Shintake monitor (assumed
resolution 4%).

The algorithm is cross-checked by comparing the vertical beam size computed by the Shintake al-
gorithm with the beam sizes obtained according to the core and RMS beam size definitions, given
in Section 2.1.2. In addition the parameter nbins is optimised regarding this comparison. Figure 12
shows the optimisation of nbins considering the ATF2 Nominal lattice as an example. The red curve
exhibits a flat region in the range in which the value of nbins goes from 200 to 1400. The variation of
the computed value of σ∗

Shi within this range indicates the error of the algorithm, which is less than
0.2%. The fact that the value of σ∗

Shi in this regime is in between the beam sizes according to the
Core and RMS definitions, as it is expected from Eq. (13), validates the design algorithm. A value of
nbins= 400 is assumed in the following calculations of σ∗

Shi.
Neither beam jitters nor instability of the interference pattern are simulated by the algorithm. Yet a
statistical study with 100 different distributions of 10000 particles is performed in order to determine
the error of the value obtained by the Shintake algorithm due to the finite number of particles used in
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the calculations. Figure 13 shows the histogram of the relative difference of the computed σ∗
Shi with

respect to the mean value over the 100 different beams. The width of the Gaussian fit at 1 sigma
represents an error less than 1%. The computation of σ∗

Shi is extensively used in the studies presented
in Sections 4.2 and 5.2.

2.1.3 Chromaticity

A quadrupole magnet focuses the particles at different longitudinal positions according to their mo-
mentum, as it is shown in Fig. 14. This effect is referred as chromaticity introduced in Section 1.2.1.1.
To quantitatively estimate this effect on the beam sizes consider a quadrupole characterised by its
normalised gradient K0, (see Appendix A.2). Particles with a relative momentum deviation δp = p−p0

p0

will see a quadrupole of normalised gradient:

K =
e

p

∂Bx

∂y
=

e

p0(1 + δp)
∂Bx

∂y
≈ K0(1 − δp). (20)

The integrated normalised gradient k of a quadrupole is defined by k = K lq. If the length of the
quadrupole lq satisfies the condition lq ≪ (Klq)−1 it is a good approximation to treat the quadrupole
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Figure 14: Scheme of the chromatic aberration induced by the final doublet which is approximate as
a unique thin lens of focal length (f∗) defined by f∗ = 1

K0lq
which coincides with L∗ (Figure is not to

scale). The red, blue and black lines show the trajectory of particles arriving at the FD with the same
y coordinate but with larger, smaller and equal momentum respectively than the reference one.

magnet as a thin lens of zero length while keeping finite its k.
The horizontal and vertical kicks ∆x′, ∆y′ received by an off-momentum particle into a focusing thin
lens quadrupole are derived in Appendix A.3 and are given by

∆x′ = −kx = −k0(1 − δp)x = −k0x + k0xδp, (21)

∆y′ = +ky = +k0(1 − δp)y = +k0y − k0yδp. (22)

Since y is typically of the order of millimetres and L∗ is of the order of meters, the IP angle θ ≈
y/f∗ = y/L∗ as Fig. 14 shows. Therefore the displacement at the IP can be expressed as ∆y∗ ≈ L∗∆θ.
Identifying the terms proportional to δp in Eqs. (21) and (22) as sources of ∆θ, it can be obtained
that

∆y∗ ≈ L∗k0yδp, (23)

assuming y ≈ L∗θ and considering that k0 = 1/L∗, the Eq. (23) becomes

∆y∗ ≈ L∗θδp. (24)

To estimate the impact of this aberration on the rms vertical beam size it is assumed that there is no
correlation between the energy and the angle, the Eq. (24) becomes

∆y∗
rms ≈ L∗θrms∆p (rms), (25)

where θrms is the rms angle or equivalently the divergence of the beam at the IP, ∆p (rms) is the energy
spread. The relative vertical beam size increase at the IP is related to the design IP vertical beam
size σ∗

y as

∆y∗
rms

σ∗
y

≈ L∗ θrms

σ∗
y

∆p (rms). (26)

Replacing θrms by the divergence
√

ǫ/β∗ and since η∗
x,y = 0 and σ∗

y is given by
√

ǫyβ∗
y therefore Eq. (26)
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Figure 15: Scheme of the chromaticity correction by sextupoles located at a region of non zero
dispersion. The dispersion generated by an upstream bending (brown colour) sorts the particles
according to their energy, the sextupole (green colour) provides an extra focusing to particles with
higher energy and vice-versa. Dash lines represent particle trajectories without chromaticity correction
while continuous lines represent particle trajectories taking into account the effect of the sextupole
field.

can be expressed as

∆y∗
rms

σ∗
y

≈ L∗

β∗
y

∆p (rms) ≈ ξy∆p (rms), (27)

where L∗/β∗
x,y is the leading term of the natural chromaticity ξx,y introduced by the FD, which in a

FFS it is the most important source of chromaticity.
A more general definition of the natural chromaticity is given by

(
σ∗

σ∗
0

)2

= 1 + ξ2∆2
p (rms) + O(≥ ∆4

p (rms)), (28)

where the natural chromaticity is identified as the coefficient of the quadratic term in the approxima-
tion.
Equation (27) can be used to estimate the effect of the chromaticity on the IP vertical beam size for
the CLIC BDS with L∗= 6 m. The CLIC energy spread is expected to be 1%, full width of a uniform
distribution ∆p (uniform). This amounts to ∆p (rms)=

∆p (uniform)√
12

≈ 0.3%, and the vertical β-function at
the IP is 0.12 mm, the relative vertical IP beam size amounts to 150. In the CLIC BDS baseline
design, the β∗

y is equal to 0.07 mm which increases ∆y∗
rms/σ∗

y by a factor of 145. In order to avoid this
detrimental effect due to the energy spread, the chromaticity needs to be corrected.

2.1.3.1 Chromaticity correction

To correct the chromaticity it is required to separate spatially particles with different energies. To
this end a bending magnet is inserted prior to the FD in order to generate a dispersion function ηx(s).
Once the particles are separated by energy, different focusing corrections are applied depending on
the energy of the particles by using sextupoles, whose field is non-linear in the transverse directions
as shown in Appendix A.2. Figure 15 explains schematically how the correction takes place.
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The normalised sextupole gradient (Ks) is given by

Ks =
e

p

∂2By

∂x2
, (29)

see Appendix A.2. The kick that a focusing thin sextupole magnet provides to a particle can be
written as:

∆x′
sext = −1

2
ks(x2 − y2), (30)

∆y′
sext = ks(x · y), (31)

where ks = Ks · ls is the integrated normalised gradient of a sextupole in the thin lens approximation
and ls is the length of the sextupole magnet. Considering the horizontal dispersion created by the
upstream dipole, the x coordinate can be decomposed in two contributions x = xβ + ηxδp while the
y coordinate is expressed by y = yβ assuming that ηy = 0 since there are no vertical dipoles in the
FFS. Equations (30) and (31) can be rewritten as:

∆x′
sext = −ks[xβηxδp +

1
2

η2
xδ2

p +
1
2

(x2
β − y2

β)] (32)

∆y′
sext = ks[yβxβ + yβηxδp], (33)

The horizontal and vertical kick received from a focusing quadrupole in a dispersion region is obtained
by rewriting Eqs. (21) and (22) taking into account the horizontal dispersion as:

∆x′
quad = −k0[xβ + ηxδp − xβδp − ηxδ2

p] (34)

∆y′
quad = k0(1 − δp)yβ = k0(yβ − yβδp). (35)

The first two terms of Eq. (34) provide the focusing for the particle at a distance x = xβ + ηxδ
from the centre of the quadrupole magnet. In the vertical plane, the first term of Eq. (35) provides
the focusing. The terms proportional to xβδp and yβδp of Eqs. (34) and (35) vanish with the terms
proportional to δp of Eqs. (32) and (33) respectively if the condition ksηx = k0 is satisfied ‡. However
the sextupole magnet introduce a chromatic aberration of second order given by the term proportional
to δ2

p of which just a half is compensated by the quadrupole magnet. In order to fully compensate this
term, the sextupole magnets run twice stronger, which leads to an over compensation of the natural
chromaticity of the lattice. For this reason the entire chromaticity of the FFS is generated once more
upstream of the FD in a non-dispersive region.
The geometrical aberration (δp-independent) introduced by the sextupole magnets, namely the hor-
izontal and vertical deflections proportional to x2 − y2 and xy of Eqs. (32) and (33) respectively
increase the IP beam size. As an example the geometric aberration xy increase the relative vertical
beam size approximate as (see Ref. [8]):

∆σ∗
y

σ∗
y

=

√
ǫxβFD

x L∗

β∗
xηFD

x

. (36)

Inserting the values of the CLIC L∗=6 m lattice in Eq. (36) the result ∆σ∗
y/σ∗

y ≈ 50 is obtained.
Hence while correcting the chromatic aberration, the sextupoles introduce a geometric aberration

‡Assuming that the variation of the β-functions between the FD quadrupoles and the nearby sextupoles is negligible
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Figure 16: Optical layout of the FFS based on the local chromaticity correction. QF and QD stand
for a focusing and a defocusing quadrupole magnets respectively. SF and SD stand for a focusing
and a defocusing sextupole magnet. The unlabelled elements refer to quadrupole magnets meant to
transport the beam.

which increases the beam size by a factor 50. The FFS with local chromaticity correction requires
an additional pair of upstream sextupoles at the same phase as the ones in the FD, with a -I trans-
formation between the pairs of sextupoles is needed in order to fully compensate these undesired
contributions. The complete layout of the local chromaticity correction scheme is shown in Fig. 16.
This local correction scheme is the adopted solution for the next generation of linear colliders as ILC
and CLIC described in Section 2.1.3. Its experimental verification is presently ongoing at the Acceler-
ator Test Facility (ATF2) introduced in Section 3.2.1. In terms of performance, the local chromaticity
correction scheme provides a wider bandwidth of δp and similar alignment tolerances compared to the
non-local scheme. In addition it is shorter and therefore a cheaper solution.

2.1.4 Synchrotron radiation emission

The power emitted by the Synchrotron radiation (SR) when a particle travels through a bend trajec-
tory is proportional to the 4th power of the particle energy and inversely proportional to the square of
its trajectory radius, as Eq. (2) shows. The emission of photons into SR occurs statistically, leading
to a quantum fluctuation of beam parameters as discussed in Ref. [40]. SR plays an important role in
the performance of a high energy linear collider, specially in the FFS. As discussed in Section 2.1.3 the
dispersion at the chromatic-correction sextupoles is generated by introducing the bending magnets,
therefore the presence of bending magnets at the highest energy of the linear collider is an undesirable
situation in terms of SR. If the energy loss occurs at a dispersive location, it causes a change in the
particle orbit, which leads to a statistical increase of the emittance as explained in Ref. [36]. In order
to detect a beam emittance growth, an emittance measurement station for CLIC is reported in [41].
As an example, Table 5 shows the IP beam size increase and luminosity loss due to the SR emitted in
the CLIC BDS with L∗= 3.5 m and L∗= 6 m designs according to the different magnets of the FFS. An
error-free lattice is assumed in these calculations. The FFS bending magnets are the most important
source of both total and peak luminosity losses. As an example, the total luminosity losses are 27%
and 45% for the CLIC BDS designs with L∗= 3.5 m and L∗= 6 m, respectively. The FD is the second
source of luminosity loss, but the observed peak luminosity loss is lower for the CLIC BDS L∗= 6 m
than for the CLIC BDS L∗= 3.5 m. The total luminosity loss taking into account the contributions
from all the magnets is more than 30% and almost 50% for the baseline and alternative designs,
respectively. It is worth mentioning that in both of the designs the total and the peak luminosities
are above the required threshold of 1034 cm−2s−1 when the effect of synchrotron radiation is taking
into account.
The larger focusing provided by the FD induces a larger synchrotron radiation emission [44], specially
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σ∗
x σ∗

y ∆L/L ∆L1%/L1%

[nm] [nm] [%] [%]
L∗=3.5 L∗=6 L∗=3.5 L∗=6 L∗=3.5 L∗=6 L∗=3.5 L∗=6

SR OFF 41.1 57.0 1.0 1.1 0 0 0 0
SR ONLY MULTS 41.1 57.1 1.0 1.1 0 -1 0 0
SR ONLY FD 42.8 57.2 1.6 1.8 -10 -7 -9 -6
SR ONLY QUADS 42.9 57.2 1.6 1.8 -10 -9 -9 -6
SR ONLY BENDS 48.1 82.5 1.9 2.3 -27 -45 -13 -25
SR ON 49.8 84.1 2.0 2.4 -31 -49 -20 -30

Table 5: The effect of synchrotron radiation on σ∗ and L is evaluated depending on the considered
magnets. In this sense the magnets are grouped as: bending (BENDS), quadrupole (QUADS) except
the FD, final doublet (FD) and higher order multipole (MULTS). The multipole magnets include the
sextupole, octupole and decapole magnets. The study is done for the CLIC BDS L∗= 3.5 m and the
alternative CLIC BDS L∗= 6 m designs. IP beam sizes are calculated as the standard deviation of
106 tracked particles by PLACET [42], and the luminosity is evaluated by GUINEA-PIG [43].
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by the last defocusing quadrupole QD0, which leads to a luminosity degradation as shown in Table 5.
The emitted synchrotron radiation by QD0 drives the focusing of the electron beams at the IP, hence
the minimum σ∗

y . This is known as the Oide effect [45]. Neglecting chromatic aberrations the IP
vertical beam size at the IP is given by (see Ref [45]):

σ∗
y =

√
ǫyβ∗

y + A(γ, kQD0, lQD0, L∗)
( ǫy

β∗
y

)5/2
, (37)

where the function A(γ, kFD, lFD, L∗) depends on the considered QD0 and its distance to the IP.
Figure 17 shows the Oide beam size regarding the CLIC BDS baseline design, the minimum β∗

y,Oide

given by the Oide relation and the design value of β∗
y of the CLIC design. This effect becomes more

important in the baseline design due to the stronger FD required to reduce the β∗
y .

The impact of the SR between the two CLIC FFS designs differs on the contribution from the bending
magnets due to the higher ηx-functions along the FFS for the CLIC BDS with L∗=6 m. Figures 9
and 18, shows the ηx-function along the FFS of CLIC for both designs.
During collisions the bunches are strongly deflected towards each other due to their opposite charges,
resulting into a reduction of the effective beam sizes and an increase of the luminosity. This effect
is known as the so-called pinch effect. The HD factor in Eq. (6) takes into account this effect. More
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discussion of the collision process is given in Ref [46]. Due to the high fields experienced by the opposite
beam, as a result of the extremely high charge densities of the beams at the IP, the particles describe
a bent trajectory which leads to a radiation emission referred to as beamstrahlung. The energy loss by
emission can be a significant fraction of the total beam energy, enlarging the luminosity spectrum [47].
The rms relative energy loss at the collision due to the beamstrahlung δp (B) is given by the following
relation (taken from [48]):

δp (B) ≈ 0.86
e r3

e

2m0c2

(Ecm

σz

) N2
b

(σ∗
x + σ∗

y)2
, (38)

where re = e2

4πǫ0m0c2 is the classical electron radius. If δp (B) increases considerably this would lead to
an energy reduction which would cause a luminosity loss in the 1% energy peak, see Ref. [49].
According to Eq. (6) the product (σx σy) must be small in order to enhance the luminosity. However
according to Eq. (38) the sum (σx +σy) must be maximised to reduce the relative energy loss. Taking
advantage of the natural flat beams coming out from the damping rings the next generation of linear
colliders are designed to collide flat beams with σy ≪ σx as a trade off of the pinch effect and the
maximisation of the luminosity. For example, in the case of CLIC baseline design the aspect ration
is σ∗

x

σ∗

y
≈ 40.

2.2 MAPS formalism

Excluding the sextupoles and even higher order multipole magnets the beam transport along the
machine is described by a product of the transport matrices R. The free field region or drift space,
bending and quadrupole magnets are represented by the matrices Rd, Rb and Rq respectively. In
Appendix A.3 the matrix representation of these elements is given. The global transport of a particle
through several magnets and drift spaces is uf = R u0 where R is the matrix product of the individual
matrices and u0 and uf are the initial and final state vectors. The R matrix maps the initial coordinates
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of the beam u0 = (x0, x′
0, y0, y′

0, δp) to the coordinates at the final position uf as:

uf = R u0 =




R11 R12 R13 R14 R15

R21 R22 R23 R24 R25

R31 R32 R33 R34 R35

R41 R42 R43 R44 R45

R51 R52 R53 R54 R55







x
x′

y
y′

δp




0

. (39)

This matrix formalism is effectively used to describe the linear system. The two dimensional transfer
matrix from two longitudinal locations s0 to sf in a transport beam line can be written as [50]:




√
βf,i

β0,i
(cos∆ϕi + α0,i sin∆ϕi)

√
β0,iβf,i sin∆ϕi

−1+α0,iαf,i√
β0,iβf,i

sin∆ϕi + α0,i−αf,i√
β0,iβf,i

cos∆ϕi

√
β0,i

βf,i
(cos∆ϕi − αf,i sin∆ϕi)


 , (40)

where i stands for the horizontal or vertical planes, β(s) and α(s) are the Twiss functions and ∆ϕi =
ϕi(sf)−ϕi(s0) is the phase advance between the final and initial locations, sf and s0 respectively. The
R12 and R34 coefficients are of special interest since they relate the initial angular kicks at the start
x′

0 and y′
0 with the change in final coordinates xf and yf , respectively.

However this matrix formalism cannot be applied to describe the higher order elements of the system
such as the sextupole magnets. In order to include the non-linear elements a new framework is
required. The map is extended by additional transfer matrices (T, U) [51] as suggested in [52]. The
coordinates at the final position uf,i are related to the initial ones u0,i by:

uf,i =
5∑

j=1

Ri,j u0,j +
5∑

j,k=1

Ti,jk u0,ju0,k +
5∑

j,k.l=1

Ui,jkl u0,ju0,ku0,l + O(≥ 4). (41)

This map can also be expressed in a more compact way as

uf,i =
∑

jklmn

Xi,jklmn xj
0 pk

x0
yl

0 pm
y0

δn
p , (42)

where the coordinates x′ and y′ are replaced by px and py respectively, being u1 = x, u2 = px,
u3 = y, u4 = py and u5 = δp. The Polymorphic Tracking Code (PTC) [53], [54] provides the
Xi,jklmn coefficients for a given beam line defined in the MAD-X [55] environment. The PTC models
the accelerator elements by the evaluation of their Hamiltonian [56]. The accuracy of the model
is determined by the user who defines the maximum order, Norder, used for the evaluation of the
Hamiltonians. The sum of the indices j, k, l, m and n in Eq. (42) is equal to Norder. For instance for
Norder=2 the map coefficients Xi,jklmn are evaluated including up to the sextupole components and
neglecting the higher multipole components of the beam line.
The MAPCLASS code profits from the calculation of the Xi,jklmn coefficients by the PTC module of
MAD-X to transport a distribution of particles ρ.
The distribution of particles is characterised by its moments 〈un

i 〉 which are calculated by:

〈un
i 〉 =

∫ ∞

−∞
un

i ρ dν. (43)
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The first moment defined by Eq. (43) can be rewritten as:

〈uf,i〉 =
∫ ∞

−∞
uf,i ρf dνf =

∫ ∞

−∞

Norder∑

jklmn

Xi,jklmn xj
0 pk

x0
yl

0 pm
y0

δn
p,0 ρ0dν0 =

=
Norder∑

jklmn

Xi,jklmn

∫ ∞

−∞
xj

0 pk
x0

yl
0 pm

y0
δn

p,0 ρ0dν0 (44)

where it has been assumed that the beam line transport is symplectic, this implies ρfdνf = ρ0dν0

along the BDS. The rms beam size is obtained from the quadratic standard deviation of the final
density distribution given by:

σ2
f,i = 〈u2

f,i〉 − 〈uf,i〉2 =
Norder∑

jklmn
j′k′l′m′n′

Xi,jklmnXi,j′k′l′m′n′

∫ ∞

−∞
xj+j′

0 pk+k′

x0
yl+l′

0 pm+m′

y0
δn+n′

p ρ0dν0

−



Norder∑

jklmn

Xi,jklmn

∫ ∞

−∞
xj

0 pk
x0

yl
0 pm

y0
δn

p ρ0 dν0




2

. (45)

The result in Eq. (45) is equivalent to the σrms definition given in Section 2.1.2. An example of beam
size calculation for CLIC is discussed in detail in Ref. [19].
According to Eq. (28) and considering only the purely chromatic contributions to ξy the natural
chromaticity can be re-written as

ξ2
y =

1
12 (σ∗

y)2

(
Xy,00101Xy,00101 σ2

y0 + Xy,00011Xy,00011 σ2
py0

)
=

=
1
12

(
Xy,00101Xy,00101

βy0

β∗
y

+ Xy,00011Xy,00011
1

β∗
yβy0

)
, (46)

a centred Gaussian beam in the coordinates x, px, y, py and a rectangular distribution in δp is assumed.
Eq (46) is used to evaluate the value of ξy for the CLIC FFS lattices. In the case of the ATF2 lattices,
a centred Gaussian beam in the coordinates x, px, y, py, δp is assumed. Again considering only the
purely chromatic contributions to ξy, the natural chromaticity is expressed as

ξ2
y =

1
(σ∗

y)2

(
Xy,00101Xy,00101 σ2

y0 + Xy,00011Xy,00011 σ2
py0

)
=

= Xy,00101Xy,00101
βy0

β∗
y

+ Xy,00011Xy,00011
1

β∗
yβy0

, (47)

where βy0 and β∗
y are the values of vertical β-function at the beginning and at the IP of the beam line

respectively.

2.3 Beam based alignment

For the CLIC FFS it is required to achieve a pre-alignment of its components down to 10 µm over
500 m sliding window, see Ref. [57]. Such a resolution can be reached by means of an active pre-
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alignment, as discussed in [57]. In this context the beam based alignment (BBA) method refers to
the approach that uses measurements of beam parameters to infer the offset between the beam and
the machine element. The problem of determining the alignment limiting factors that preclude to
improve the BBA resolution is in the scope of this thesis.
The residual misalignment of quadrupole and sextupole magnets has a non negligible impact on the
beam size as it is shown in the following. Section 6 presents the simulations and experimental results.

2.3.1 Off-axis magnetic fields

The magnetic fields (Bx, By) of a perfectly aligned quadrupole and sextupole magnets described in
Appendix A.2 are given by:

Quadrupole

{
Bx = B′y where B′ = ∂Bx

∂y
= ∂By

∂x

By = B′x
, (48)

Sextupole

{
Bx = B′′xy where B′′ = ∂2Bx

∂y∂x
= ∂2By

∂x2

By = 1
2
B′′(x2 − y2)

, (49)

B′ and B′′ represent the quadrupole and sextupole magnetic field gradients respectively. The magnetic
field of an offset quadrupole or sextupole (B̂x, B̂y) is obtained by replacing x or y in Eqs. (48) and (49)
by x + ∆x and y + ∆y, where ∆x and ∆y are the horizontal and vertical offsets, respectively. One
obtains the following magnetic fields:

Offset Quadrupole

{
B̂x = Bx + B′∆y

B̂y = By + B′∆x
(50)

Offset Sextupole

{
B̂x = Bx + (B′′∆x)y + (B′′∆y)x + B′′∆x∆y

B̂y = By + (B′′∆x)x − (B′′∆y)y + 1
2
B′′(∆x2 − ∆y2).

(51)

Equation (50) describes the magnetic field of an offset quadrupole which differs from the magnetic
field of a centred quadrupole by a constant term. This constant term is equivalent to a horizontal and
vertical dipole field. The terms linear in ∆x and ∆y on the right hand side of Eq. (51), are equivalent
to a normal and a skew quadrupole fields respectively. The B′′∆x∆y and B′′(∆x2 −∆y2) terms on the
right hand side of Eq. (51) represent dipole fields. Thus an offset quadrupole introduces a dipole field
and an offset sextupole introduces quadrupole and dipole fields. This is the so called feed-down effect
due to the misaligned magnet. The additional quadrupole field introduced by the offset sextupole
magnet generates a horizontal and vertical dispersion at the IP according to (see Ref. [58]):

∆η∗
x = Ksls∆x ηs

x

√
βs

xβ∗
x sin(∆ϕs

x) (52)

∆η∗
y = −Ksls∆y ηs

x

√
βs

yβ∗
y sin(∆ϕs

y), (53)

where Ks is the normalised gradient defined in Appendix A.2, ls is the length of the sextupole, βs
x,y

and β∗
x,y are the horizontal and vertical β-functions at the sextupole and the IP, respectively, ηs

x is
the dispersion function at the sextupole and ∆ϕs

x,y are the horizontal and vertical phase advanced
between the sextupole and the IP. The additional normal quadrupole field introduced by the offset
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sextupole generates a shift of the waist position (see Ref. [58]) given by:

∆sw (x,y) = Ksls∆xβs
x,yβ∗

x,y cos(2∆ϕx,y), (54)

leading to an increase of the β-functions at the IP according to Eq. (15). In accordance with Eq. (11)
the increase of both the β-functions and the dispersion leads to an IP beam size increase that degrades
the luminosity in the case of a collider.
The skew quadrupole fields created by a vertical offset sextupole generate a horizontal and vertical
deflection given by:

∆x′ = Kslsy∆y (55)

∆y′ = Kslsx∆y, (56)

hence the change in the vertical position at the IP is obtained by transporting ∆x′ and ∆y′ from the
sextupole magnet to the IP by means of the R32 and R34 matrix coefficients according to Eq. (39):

∆y∗ = ∆x′R32,s→IP (57)

∆y∗ = ∆y′R34,s→IP = Kslsx∆yR34,s→IP, (58)

a FFS satisfies the condition R32,s→IP=0 by design, the change in the vertical beam size at the IP due
to skew quadrupole field is obtained by integrating Eq. (58) over the x coordinate, it is given by the
following equations:

∆σ∗
y = Kslsσx∆y|R34,s→IP|. (59)

The coupling between the horizontal and vertical plane can also be introduced by tilted quadrupole
magnets. The ∆σ∗

y due to coupling between the x with the y coordinate given by Eq. (59), can be
compensated by vertically moving the sextupoles as suggested in [59].
In order to quantify the effect of a random misalignment of all the magnets in the CLIC BDS with
L∗= 6 m, 100 different machines with random misalignments of their magnets with respect to the ideal
positions are seeded. Different width of Gaussian distributions σoffset have been used for misaligning
the magnets. Figure 19 shows the average IP vertical beam size <σ∗

y> (red) and the average luminosity
(green) for different values of σoffset. For σoffset = 1 µm the average vertical spot size at the IP is more
than 4 orders of magnitude larger than the value by design. The obtained luminosity is almost 3
orders of magnitude smaller than the designed one. In these calculations 106 particles are tracked by
PLACET [42] throughout the entire CLIC BDS with L∗= 6 m, the beam size is obtained as the rms of
the final particle positions and the luminosity is calculated by the code GUINEA-PIG [43], frequently
used for simulation of the beam-beam interaction in an electron-positron linear colliders [60]. In
conclusion, the initial pre-alignment of the magnets is a critical parameter for CLIC. The goal of
this study is to improve the alignment resolution obtained by BBA techniques and to determine its
limiting factors.
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Figure 19: Average L/L0 and σ∗
y/σ∗

y0 for 100 different CLIC BDS L∗= 6 m machines versus transverse
misalignments. For each machine the magnets are randomly misaligned by following a Gaussian
distribution with sigma σoffset.

Figure 20: Principle of quadrupole shunting of BBA.

2.3.2 Theoretical model of the beam based alignment

A particle passing through a focusing quadrupole magnet with a horizontal offset x0 from its magnetic
centre experiences a kick given by:

∆x′ = −k x0 , (60)

where k is the normalised integrated strength of the quadrupole. If k is modified by ∆k the change
in the orbit reading of the ith downstream BPM is given by:

∆xorbit(i) = −x0 ∆k R12(i) , (61)

where R12(i) is the linear transport matrix element introduced in Section 2.2 that transport the x′

coordinate from the quadrupole to the ith downstream BPM. By varying the quadrupole current and
measuring the downstream deflection, the value of x0 can be inferred. This technique is known as
quadrupole shunting [61]. Figure 20 illustrates this method schematically.
Assuming a resolution of the BPMs given by σBPM, the strength of the quadrupole magnet is scanned
over j steps of current variation dk where ∆k refers to the maximum current excursion ∆k = jmaxdk.
The offset magnet x0 may be fitted with a statistical resolution related to the registered number of

41



pulses p as (derived in [61]):

σ2
x0

=
σ2

orbit

p
∑jmax

j=1 (jdk)2
∑

i R2
12(i)

. (62)

Thus, BPMs placed at locations with higher values of R12 are able to resolve the offset magnet with
a better resolution. ∆k is usually 20% but it is determined by the maximum acceptable distortion of
the orbit and size of the beam of the accelerator and the BPMs resolution. Since errors of the lattice
tend to accumulate the BPMs located further away from the offset magnet may not be considered as
fully reliable. The offset resolution improves when increasing the number of recorded pulses.
σorbit essentially depends on two contributions, the BPM resolution σBPM and the beam jitter σjitter.
The jitter refers to the incoming position and angle variation from pulse to pulse at the upstream face
of the quadrupole whose current is varied. Here it is assumed that σ2

orbit = σ2
BPM + σ2

jitter. By applying
techniques such as the singular value decomposition (SVD) [62] the jitter signal at the BPMs can be
reconstructed in such a way that the contributions from energy or position variations from pulse to
pulse to the orbit jitter are removed. It is worth noticing that the current excursion provided by ∆k
should be chosen so that the orbit remains in the high resolution dynamic range of the BPM.
The use of quadrupole shunting technique as a part of the BBA approach has several advantages
namely, it provides a local correction of the offset of the magnet and it is relatively insensitive to
small errors of the quadrupole current, BPM scale factors and transport matrices. However there are
several disadvantages as well, it is a quite invasive technique, therefore it requires dedicated beam time
to perform the measurements and the quadrupole centre position must be quite robust. The magnetic
centre motion of the quadrupole when its strength is varied represents an alignment resolution limiting
factor. Asymmetries due to mechanical construction, different thermal expansion or excitation of the
poles are sources of errors which may lead to a motion of the magnetic centre while changing its
current. This systematic error depends on each magnet construction and its nominal current. In
what follows, a procedure for detecting and quantifying this effect is developed. Assuming that the
magnetic centre moves a distance xmc when the normalised integrated strength is varied by ∆k, the
orbit reading at the downstream ith BPM is obtained by re-writing Eq. (61), as:

xorbit(i) = −(x0 + xmc)(k + ∆k)R12(i). (63)

Thus the difference in the orbit readings at the ith BPM between the orbit with ∆k and the one at
nominal strength is given by:

∆xorbit(i) = −[(x0 + xmc)∆k + xmck]R12(i). (64)

For small variations of the quadrupole strength, the motion of the magnetic centre is likely to be
linear. With this assumption xmc can be replaced by ẋmc∆k, where ẋmc characterises the magnetic
centre variation when changing the quadrupole strength. Then ∆xorbit is re-written as:

∆xorbit(i) = −R12(i)[(x0 + ẋmck)∆k + ẋmc∆k2] , (65)

and ∆xorbit depends linearly and quadratically on ∆k. The quadratic term permits to fit ẋmc and, in
addition, obtain x0. This method was used in the BBA measurement campaign performed in May
2010 at ATF2. The results are discussed in Section 6.3.1.
An alternative method to estimate ẋmc which does not rely on the knowledge of the linear optics
of the lattice is to determine the magnetic centre position for the same quadrupole magnet for two
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different currents k1 and k2. From the eventual different magnetic centre positions (x0,k1 6= x0,k2), ẋmc

is determined by:

ẋmc =
x0,k2 − x0,k1

k2 − k1
. (66)

This method was used in the BBA measurement campaign conducted in July 2011 at CTF3. The
results are presented in Section 6.3.2.

2.4 Tuning of a final focus system

The values of σ∗
x and σ∗

y discussed in Section 1.2 for both CLIC BDS baseline and alternative designs
are obtained without taking into account realistic errors present in the machine components. For
example, if the magnets of the CLIC BDS with L∗= 6 m design are randomly scattered in the
transverse position according to a Gaussian distribution of width σoffset= 1 µm, the obtained average
σ∗

y is more than 3 orders of magnitude larger than in the ideal case, as it is shown in Fig. 19.
Tuning is the procedure which brings the system to its design performance in the presence of realistic
imperfections by optimising the machine components. The tuning simulations of a FFS are used to
demonstrate its feasibility within realistic error conditions. Due to the presence of sextupole and even
higher order multipole magnets and a large number of variables, the CLIC FFS turns out to be a
non-linear and complex system.
Since the initial error conditions are known within a certain range, the tuning requires a statistical
study. Usually 100 machines are considered in computer simulations. The initial errors of each
machine are randomly assigned within the expected range.
The dynamic error conditions such as the ground motion are not considered in the tuning study
presented in Sections 5.1 and 5.2, since the long term performance of the system is beyond the scope
of this thesis.

2.4.1 Tuning algorithms

The tuning algorithm defines the machine components or variables to be optimised in order to achieve
the expected performance in terms of IP beam size or luminosity. The variables used for tuning, are
usually the displacements, tilts and the strength of the magnets. Three different tuning algorithms
are considered in this thesis, the Simplex-Nelder [63], beam based alignment and orthogonal knobs. A
short description of them follows below.

2.4.1.1 Simplex-Nelder Algorithm

The Simplex-Nelder algorithm is a numerical method commonly used for optimisation of non-linear
problems. This technique minimises an objective function in a many-dimensional space. In our study,
the objective function is usually the IP beam size or the luminosity while the dimensional space is
formed by the machine parameters. Due to the large number of variables to be tuned the tuning
convergence to the design beam size or luminosity is not guaranteed.

2.4.1.2 Beam based alignment

The beam based alignment (BBA) [61] refers to the classical method used to correct the beam trajectory
along the beam line. To implement BBA methods a set of BPMs and correctors are needed. Small
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dipole magnets are usually used as correctors, but displacement of the quadrupole magnets are valid
as well. Assuming that there are N BPMs available in the beam line, the orbit measured by the
monitors are represented by a vector ~bN , while a vector ~CM represents the strength of M correctors
present in the beam line.
The orbit correction and the dispersion free steering (DFS) are two examples of BBA techniques
explained in the following:

2.4.1.2.1 Orbit correction

The orbit correction technique [64] minimises the BPM readings seeking for a flat orbit through the
beam line. Activating each corrector one at a time and recording the orbit excitation at all BPMs,
the response (N ×M) matrix Rc of the correctors is determined. The orbit correction algorithm gives
optimum strength of the correctors, by solving:

~bN,0 + Rc · ~CM = 0, (67)

where ~bN,0 are the initial BPM readings before correction.

2.4.1.2.2 Dispersion free steering

The dispersion free steering (DFS) algorithm [65] intends to correct the orbit and to match the
measured dispersion η along the beam line to the nominal dispersion η0. The dispersion is measured
by sending two beams with energies that deviate from the nominal energy by ±∆E through the beam
line, obtaining two different orbit readings ~b∆E+ and ~b∆E−

. The measured dispersion is given by:

~η =
~b∆E+ −~b∆E−

2∆E
. (68)

The (N × M) matrix D describes the dispersion response of the system to the correctors, it is
obtained by activating each corrector one at a time and recording the dispersion deviation from the
design dispersion η0 at the N BPMs.
In the DFS algorithm the optimum strength of the correctors is obtained by solving the equation:

(
~bN

~η − ~η0

)
+

(
Rc

D

)
· ~CM = 0. (69)

2.4.1.3 Orthogonal Knobs

The orthogonal knobs are pre-computed combinations of sextupole displacements meant to control
a chosen set of beam aberrations. The knobs are constructed to be orthogonal in order to preserve
the correction provided by each knob when scanning the whole set of knobs. The expected beam
aberrations at the IP induced by quadrupole and sextupole displacements are variations in the β-
functions, waist shifts, dispersion and coupling.
The 5 sextupole magnets present in the FFS, namely SF6, SF5, SD4, SF1 and SD0, are used for
construction of the orthogonal knobs. Therefore up to 10 knobs can be obtained by horizontal and
vertical displacements. By moving a sextupole magnet in the horizontal plane, horizontal dispersion
and shift of the waist positions are introduced as given by Eqs. (52) and (54). Therefore α∗

x, α∗
y

and β∗
x depend on the horizontal position of the sextupole magnets denoted by xSF6, xSF5, xSD4,
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xSF1, and xSD0. The knobs denoted by α∗
x, α∗

y and η∗
x are constructed from horizontal displacements

of the sextupole magnets. For completeness two additional horizontal knobs denoted by β∗
x and β∗

y

are included in the calculations, but a good performance of these knobs is not expected since the
β-function at the IP varies quadratically versus the sextupole displacement as Eq. (15) shows.
By moving a sextupole magnet in the vertical plane, coupling and vertical dispersion are generated
according to Eq. (53) and (59). The knobs constructed from the vertical displacements are denoted
by: < x, y >, < px, y >, < px, py >, η∗

y and η∗′

y , here the brackets refer to the correlation between the
coordinates in between, which is defined as:

< ui, uj >=
∫ +∞

−∞
uiuj ρ dν, (70)

where u stands for x, px, y, py and δ. The horizontal and vertical response matrices, Mx and My, are
constructed as:

Mx =




∂β∗

x

∂xSF6

∂β∗

x

∂xSF5

∂β∗

x

∂xSD4

∂β∗

x

∂xSF1

∂β∗

x

∂xSD0

∂α∗

x

∂xSF6

∂α∗

x

∂xSF5

∂α∗

x

∂xSD4

∂α∗

x

∂xSF1

∂α∗

x

∂xSD0

∂β∗

y

∂xSF6

∂β∗

y

∂xSF5

∂β∗

y

∂xSD4

∂β∗

y

∂xSF1

∂β∗

y

∂xSD0

∂α∗

y

∂xSF6

∂α∗

y

∂xSF5

∂α∗

y

∂xSD4

∂α∗

y

∂xSF1

∂α∗

y

∂xSD0

∂η∗

x

∂xSF6

∂η∗

x

∂xSD0

∂η∗

x

∂xSD4

∂η∗

x

∂xSF1

∂η∗

x

∂xSD0




My =




∂<x,y>
∂ySF6

∂<x,y>
∂ySF5

∂<x,y>
∂ySD4

∂<x,y>
∂ySF1

∂<x,y>
∂ySD0

∂<px,y>
∂ySF6

∂<px,y>
∂ySF5

∂<px,y>
∂ySD4

∂<px,y>
∂ySF1

∂<px,y>
∂ySD0

∂<px,py>
∂ySF6

∂<px,py>
∂ySF5

∂<px,py>
∂ySD4

∂<px,py>
∂ySF1

∂<px,py>
∂ySD0

∂η∗

y

∂ySF6

∂η∗

y

∂ySF5

∂η∗

y

∂ySD4

∂η∗

y

∂ySF1

∂η∗

y

∂ySD0

∂η
∗′

y

∂ySF6

∂η
∗′

y

∂ySF5

∂η
∗′

y

∂ySD4

∂η
∗′

y

∂ySF1

∂η
∗′

y

∂ySD0




.

Each column of Mx,y is obtained by individually moving the corresponding sextupole by 0.1 µm,
assuming an ideal lattice. The values of β∗

x,y, α∗
x,y and η∗

x are obtained by the Twiss module of MAD-
X, whereas the values of < x, y >, < px, y >, < px, py >, η∗

y and η∗′

y are calculated by MAPCLASS
according to Eq. (70). By inverting Mx and My by means of the singular value decomposition method
(SVD), the orthogonal knobs are directly obtained as the columns of M−1

x and M−1
y . As an example,

the η∗
x-knob moves horizontally the five sextupole magnets in such a way that the following conditions

are satisfied:

α∗
x(xSF6, xSF5, xSD4, xSF1, xSD0) = constant (71)

α∗
y(xSF6, xSF5, xSD4, xSF1, xSD0) = constant (72)

η∗
x(xSF6, xSF5, xSD4, xSF1, xSD0) 6= constant (73)

As a result of the non-linear response of the lattice, the knobs might not be fully orthogonal. However
the IP beam size aberrations can be tuned out by applying the knobs iteratively.
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Parameter Symbol Value Unit
Length L 186.0 m
Energy E 46.6 GeV
Relative energy spread ∆p 0.3 %
Bunch population Np 1·1010

Normalised horizontal emittance γǫ∗
x 30·10−6 m

Normalised vertical emittance γǫ∗
y 2·10−6 m

Horizontal beta function at the FP β∗
x 2.5 mm

Vertical beta function at the FP β∗
y 0.1 mm

Horizontal beam size at the FP σ∗
x 1.0 µm

Vertical beam size at the FP σ∗
y 52 nm

Free distance before the FP L∗ 0.4 m
Vertical chromaticity ξy 10000

Table 6: Main design parameters of the Final Focus Test Beam.

3 State of the art and existing test facilities

The most prominent example of design, optimisation and tuning of a FFS is the Final Focus Test
Beam (FFTB) [22] at the Stanford Linear Accelerator (SLAC). The FFTB was a prototype of final
focus system of a linear collider based on the non-local chromaticity correction scheme discussed in
Section 1.2.1.1. A vertical spot size of about 70 nm was achieved [66] at the focal point (FP) which
still remains the world record.
Feasibility demonstration of conceptual designs and technical solutions are currently being imple-
mented at test facilities. In this chapter the Accelerator Test Facility (ATF) [67], and its extension
ATF2, at KEK (Japan) and the CLIC Test Facility (CTF3) at CERN (Switzerland) are described.

3.1 Final Focus Test Beam

The FFTB was located at the end of the SLAC linac (SLC) (see Fig. 21), which was delivering an
electron beam with an energy of about 46.6 GeV. At that time the SLC damping ring provided a
normalised vertical emittance of 7·10−7 m which however increases up to 2·10−6 m after the beam
reaches the end of the SLC linac. Table 6 summarises the most relevant parameters of the FFTB.
FFTB extended over 200 m and was formed by five optical sections. The first one was a beta

matching section (BM) for matching the optical functions at the end of the SLC to those of the
FFTB. It contained quadrupoles magnets able to fully adjust the transverse phase space of the beam.
The BM section was followed by two separated chromaticity correction sections, one for the horizontal
(CCX) and one for the vertical (CCY) plane. Each one comprises sextupole magnets located at high
dispersion regions in order to cancel the chromaticity introduced by the quadrupole magnets. The
geometric aberrations were controlled by pairs of sextupoles placed at points of equal dispersion but
spaced by a phase advance nπ, where n is an integer. The lattice included a β-exchanger (BX)
for matching the optics from one chromatic correction section to the other. The final doublet was
embedded in the final transformer section (FT), it demagnified the beam size at the focal point.
Figure 22 shows the structure of the FFTB beam line as an example of FFS based on the non-local
chromaticity correction described in Section 1.2.1.1. The optical functions of the FFTB are corrected
up to the third order [69] for the geometric and chromatic aberrations in which a relative energy
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very precise, and a detailed understanding of the beam-line optics exist.
 

 

The FFTB provides an ideal environment for calorimeter tests.� A secondary electron

Figure 21: General scheme of the SLC facility, (Figure taken from [68]).
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FIG. 2. Schematic of the FFS of the FFTB; from Ref. (FFTB Design Report, 1991).
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Figure 22: A scheme and optical functions of the final focus system of the FFTB (Figure taken
from [22]).
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spread of 0.3% was considered.

3.1.1 Performance of the FFTB

A stretched-wire [70] alignment system was used to align the magnet elements to the expected align-
ment of 100 and 60 µm in the horizontal and vertical planes respectively. Each quadrupole and
sextupole magnet in the beam line was placed on a remotely-controllable support [71]. The precision
of these movers allowed to implement beam based alignment procedures to improve the alignment of
the magnets down to 10 µm on average in the vertical plane [72]. Each quadrupole and sextupole
magnet was equipped with a strip-line Beam Position Monitor (BPM) capable to resolve the signal
generated by a pulse of 1010 electrons displaced by 1 µm from the BPM center [73]. The vertical
beam size measurement at the focal point of the FFTB was done by a Shintake monitor [34] with a
resolution of about 10%.
The tuning procedure implemented to reach the measured 70 nm at the focal point of the FFTB
consisted of the following 4 steps:

1. Beam based alignment: Each quadrupole and sextupole magnets were aligned by applying beam
based techniques.

2. Lattice diagnostics: The optics of the beam line were checked in order to detect any strength
error which would preclude to reach the design spot size.

3. Incoming beta match: In the matching section the βx,y, αx,y and the σx,y were measured.

4. Tuning by orthogonal knobs [74]: The tuning of the spot size was done by scanning several
orthogonal knobs and controlling the spot size measured by a spot-size monitor.

The orthogonal knobs which were found to be the most effective in tuning the FFTB were the
horizontal and vertical dispersion, the horizontal and vertical waist motion and the coupling term
<px,y>. These knobs were built by a combination of sextupole movers. Applying iteratively these
knob scans a vertical beam size at the focal point below 100 nm was rapidly achieved. Further beam
size reductions were obtained by scanning a set of non-linear knobs constructed as a combination of
two normal and two trim skew sextupoles [66]. In May 1994 by relaxing the horizontal focusing in
order to reduce the background signal, the smallest vertical spot size of 70 ± 7 nm was observed.
The beam position jitter during the measurement was around 40 nm, which represents a significant
contribution to the measured σ∗

y and it also represent a limiting factor for measuring smaller beam
sizes, as explained in Ref. [75]. The measured vertical spot size at the focal point of the FFTB still
remains as a world record.

3.2 Accelerator Test Facility

The Accelerator Test Facility consists of a linear accelerator (Linac) and a damping ring (DR). The
linac delivers an electron beam with an energy equal to 1.3 GeV to the damping ring that reduces
the ǫy to a value of 12 pm [76]. The ATF2 beam line was constructed in 2008 as an extension of the
ATF damping ring.
Figure 23 shows a general scheme of the whole facility.
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Figure 23: General scheme of the ATF and ATF2 facilities (Figure taken from [77]).
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Parameter Symbol Value Unit
Length L 90.5 m
Energy E 1.3 GeV
Relative energy spread ∆p 0.08 %
Normalised horizontal emittance γǫ∗

x 5·10−6 m
Normalised vertical emittance γǫ∗

y 3·10−8 m
Horizontal beta function at the IP β∗

x 4 mm
Vertical beta function at the IP β∗

y 0.1 mm
Horizontal beam size at the IP σ∗

x 2.8 µm
Vertical beam size at the IP σ∗

y 38.0 nm
Free distance before the IP L∗ 1.0 m
Vertical chromaticity ξy 10000

Table 7: Main design parameters of the ATF2 Nominal lattice.

3.2.1 ATF2

The ATF2 beam line extends over about 90 meters from the beam extraction point in the ATF DR
to the IP§. Figure 24 shows a scheme of the ATF2 beam line. The goals of the ATF2 experiments
are taking advantage of the small emittances produced at the ATF DR: focusing the beams to tens of
nanometres scale vertical beam size and providing a nanometre level stability. The first goal of ATF2
is to obtain a vertical spot size at the IP of about 38 nm by means of the ATF2 Nominal lattice which
is the scaled-down version of the ILC FFS [9]. A detailed description of the ATF2 beam line is given
in Refs. [77], [78]. Table 7summarises the most relevant parameters of the ATF2 Nominal lattice.
In addition to the ATF2 Nominal lattice, the ATF2 Ultra-low β∗ lattice is a proposal [79] to test the
feasibility for an even larger chromaticity lattice as the CLIC BDS. The ATF2 Ultra-low β∗ proposal
is an even more advanced optics with a value of β∗

y equal to 25 µm (see Ref. [80]), which represents a
quarter of that one of the ATF2 Nominal lattice. The expected vertical σ∗

y is about 23 nm.
Table 8 shows the relevant parameters of the FFTB, ATF2, CLIC and ILC designs, with special
attention to the vertical chromaticity defined by Eq. (28). The calculated values of the vertical
chromaticity of ATF2 Ultra-low β∗ lattice is almost 4 times that one of the ATF2 Nominal lattice. A
comparable value of ξy is obtained between the CLIC designs and the ATF2 Ultra-low β∗ one.
The ATF2 beam line can be divided into two sections, the extraction beam line (EXT) and the
final focus system (FFS). The EXT beam line extends over 52 m, it comprises an extraction and a
diagnostics section. The diagnostics section is used for measuring the emittance, Twiss functions,
dispersion and transverse coupling. The emittance and the Twiss functions are measured at one
location by a quadrupole scan or at several locations as described in [81] by means of five wire
scanners [82] namely MW0X, MW1X, MW2X, MW3X and MW4X or alternatively by four Optical
Transition Radiation (OTR) monitors [83] namely OTR0X, OTR1X, OTR2X, OTR3X. Knowing the
Twiss functions at the exit of the EXT beam line is crucial for matching them with the FFS beam
line by optimising the matching quadrupole magnets of the downstream beam line.
The dispersion is measured by the orbit displacement at the BPMs when changing the energy of the
beam by means of the radio-frequency cavity of the DR. The dispersion is corrected by the correctors
labelled as ZH and ZV or by changing the strength of the quadrupoles located at high dispersion

§Despite the fact that ATF2 is not a collider the focal point of the beam line is referred as the interaction point
(IP).
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Figure 24: Scheme of the ATF2. The beam line on the left represents the extraction beam line (EXT).
The beam line on the right represents the FFS as the continuation of the EXT line (Figure courtesy
of S. Boogert).
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Status Energy γǫ∗
y σ∗

y β∗
y L∗ ξy

[GeV] [nm] [nm] [mm] [m]
FFTB Designed 46.6 2000 52 0.1 0.4 17000
FFTB Measured 46.6 2000 60 0.167 0.4 10000
ATF2 Nominal Designed 1.3 30 38 0.1 1.0 6700
ATF2 Ultra-low β∗ Proposed 1.3 30 23 0.025 1.0 25000
CLIC L∗= 3.5 m Designed 1500 20 1 0.069 3.5 31000
CLIC L∗= 6 m Designed 1500 20 1.1 0.12 6.0 30000
ILC Designed 250 40 5.7 0.4 3.5 15000

Table 8: Relevant parameters of different projects. The last column gives the vertical natural chro-
maticity ξy which has been evaluated according to Eqs. (46) and (47) for the CLIC and ATF2 cases.
The ξy for the FFTB and ILC lattices have been obtained from Refs. [9] and [22], respectively.

regions, more details can be found in [84]. The transverse coupling is corrected by means of four skew
quadrupoles namely QK1X, QK2X, QK3X, QK4X. All the presented components can be identified
in Fig. 24. Figure 25 shows the β-functions and the dispersion along the EXT beam line.

3.2.1.1 ATF2 FFS

The ATF2 FFS beam line is the first constructed final focus system based on the novel local chro-
maticity correction scheme described in [16]. The ATF2 final focus system extends over 40 m, it goes
from the end of the EXT line up to the IP. It consists of a matching section composed of 6 quadrupole
magnets denoted by QM16FF, QM15FF, QM14FF, QM13FF, QM12FF and QM11FF whose function
is to match the β-functions measured at the exit of the EXT beam line, as described in Section 3.2.1.
In addition there are 14 quadrupole magnets which transport the beam to the final doublet that in-
clude one focusing quadrupole (QF1FF) and one defocusing (QD0FF) meant to focus the beam at the
IP. 3 bending magnets, namely B1FF, B2FF and B5FF, generate the required dispersion to correct
the chromaticity, as described in Section 2.1.3 by means of the 5 sextupoles, namely SF6FF, SF5FF,
SD4FF, SF1FF and SD0FF. An important feature of the FFS is that the phase advance between the
sextupoles and the IP satisfies the condition ∆ϕx,y = π/2 + nπ, where n is an integer. Figure 26
shows the βx,y and ηx-functions along the FFS beam line.
A Shintake monitor is installed at the IP for measuring the beam size, its design is described in [85].
It detects the Compton scattered photons coming from the interaction between the electron beam and
the interference fringe pattern created by two laser beams. This enables to obtain σ∗

y . In Section 2.1.2.1
a description of the Shintake monitor operation and its characteristics are given.
To reach small beam sizes at the IP of the ATF2 beam line, small emittances and strong focusing are
required, that imply tight constraints on the design and machining of the FFS magnets. Because of
this, the multipole components of the ATF2 FFS magnets have been measured independently by two
groups. The effect of the measured multipole components on the IP beam sizes is addressed in this
thesis. The FD quadrupole magnets require a dedicated treatment in terms of its integration, align-
ment, stability and field quality (see Refs. [86] and [87]). The tolerances of the FD quadrupole magnets
of the ATF2 Nominal and Ultra-low β∗ lattices are also obtained and discussed in Section 4.2.3.
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Figure 25: The βx,y-functions and the ηx-function throughout the ATF2 extraction line.
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Figure 27: Layout of the CLIC Test Facility 3. The Test Beam Line is in the CLEX area at the
bottom. (Picture taken from [90]).

3.3 CLIC Test Facility 3

The CLIC acceleration scheme is based on the two-beam acceleration concept as described in Sec-
tion 1.2. The CLIC Test Facility (CTF3) [88] was built to demonstrate (i) the generation of a high
intensity beam and (ii) the feasibility of this novel two-beam acceleration concept. In the CLIC
experimental area (CLEX) of CTF3 two main experiments are taking place, namely the two-beam
acceleration and the stable deceleration of the drive beam.
The source of the drive beam generator is a thermionic gun, which emits electrons in a continuous
stream. The bunch train is divided into 140 ns sub-trains, and after an acceleration in a linac half
of the sub-trains are sent into a delay loop (see Fig. 27). After one turn they are interleaved with
the rest of the sub-trains, thereby increasing the frequency and beam current by a factor of 2. This
beam is then sent into a combiner ring through the transfer line TL1, which performs a second
multiplication by interleaving four sub-trains. The final pulses have a high-frequency of 12 GHz, and
a high-current of 28 A. After the recombination, the beam enters the CLEX area through TL2 (see
Fig. 28). This area houses the two main experiments. One of them is performed at the Two-Beam
Test Stand (TBTS), and its aim is to demonstrate the two-beam acceleration by using the drive beam
to accelerate a probe beam. The second experiment takes place at the TBL, it is designed to show a
stable and efficient transport of a heavily decelerated beam (see Ref. [89]).

3.3.1 Test Beam Line

The TBL is located at the CLEX area of CTF3. A detail scheme of the CLEX area is shown in Fig. 28.
TBL is a periodic structure of 8 FODO cells. Each cell contains two Power Extraction and Transfer
Structures (PETS), two BPMs, one focusing quadrupole and one defocusing quadrupole magnet. The
magnets are mounted on mechanical movers. There are also 3 conventional orbit corrector magnets in
the lattice at the beginning of the TBL beam line. Figure 29 shows the scheme of the TBL components
and the β-functions along the TBL beam line.
The beam line was commissioned in 2010, its detailed description is given in [91]. The nominal
parameters of the TBL beam are summarised in Table 9.
The TBL is a prototype of the CLIC decelerator, though some of its parameters are different. For
instance, the CLIC drive beam current is 4 times higher than the TBL beam. However the CLIC
PETS length is roughly a quarter of the TBL PETS length, thus the power produced in each PETS
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Figure 28: Scheme of the CLEX area. TBL is located in the upper part of the figure while the TBTS
is located in the lower part of the figure. (Picture taken from [90])

Beam Parameter Value Unit
Initial Energy 150 MeV
Final Energy 67 MeV

Energy extraction efficiency 55 %
Bunch charge 2.3 nC
Bunch length 1.0 mm
Bunch spacing 83 ps
Pulse duration 140 ns
Pulse current 28 A

Normalised vertical emittance 150 µm

Table 9: Nominal parameters of the TBL.

is of the same order.
The TBL is designed to study and validate the drive beam stability during its deceleration. The
transport efficiency of the beam with a very high energy spread along the beam line without significant
beam losses is a concern. Simulations show that if the quadrupoles of the TBL are randomly misaligned
by more than 25 µm, significant beam losses occur when the beam is heavily decelerated by the PETS
as it can be seen in Fig. 30, see Ref. [92] for more details. This effect is due to the dispersion generated
by the offset quadrupoles according to Eq. (50) which in combination with the energy spread growth
due to the beam deceleration leads to beam size increase along the TBL beam line as it can be seen
in Fig. 31. The beam based alignment resolution of the TBL quadrupole magnets is studied in this
thesis with special attention to the resolution limitations.

55



�
�
�
�
�
�
�
�
�
�

�
�
	
�


�

�
�
�

�
�

�

�
�
�
�  0 5

 1
0

 1
5

 2
0

 2
5

 0
 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

QDD0820
QFD0840

QFL0910
QDL0920

QFM0110
QDM0120

QFR0200

QDR0240

QFR0300

QDR0340

QFR0400

QDR0440

QFR0500

QDR0540

QFR0600

QDR0640

QFR0700

QDR0740

QFR0800

QDR0840

QFR0900

QDR0940

QFP1010
QDP1020

BEAMDUMP

β [m]

s
 [
m

]

β
x

β
y

Figure 29: β-functions along the TBL. The legend on the left indicates the TBL components.

56



0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

σ  [mm]

B
e
a
m

 3
σ

 e
n
v
e
lo

p
e
 [

m
m

]

 

 

4 PETS

8 PETS

16 PETS

σoffset [µm]

Figure 30: 3 σx beam envelope at the TBL quadrupoles with the magnets displaced by different values
of σoffset. Three different scenarios (blue, red and black) depending on the numbers of PETS installed
at the TBL, are considered in simulations. The dash line represents the beam pipe aperture of TBL
(Figure courtesy of G. Sterbini).

0 5 10 15 20 25 30 35

0

5

10

15

20

25

B
e
a
m

 3
σ

−
e
n
v
e
lo

p
e
 [

m
m

]

Q

 

 

4 PETS

8 PETS

16 PETS

s[m]

Figure 31: 3 σx beam envelope along the TBL with the quadrupole magnets randomly misaligned by
25 µm. Three different scenarios (blue, red and black) depending on the numbers of PETS installed
at the TBL, are considered in simulations. The dash line represents the beam pipe aperture of TBL
(Figure courtesy of G. Sterbini).

57



4 FFS lattice design and optimisation

In this section the optimisation of the CLIC BDS baseline design and ATF2 lattices are described.
According to the CLIC BDS baseline design the crossing angle between the electron and positron
beams at the IP is 20 mrad. To prevent a luminosity loss due to the non-zero crossing angle a single
crab cavity per beam line is foreseen to provide the head-on collisions at the IP. However, it has
been recently found that the crab cavity only recovers up to 95% of the design luminosity [93] and in
addition the vertical beam size increases by about 1%. In this section different solutions to recover
the design luminosity are described.
The ATF2 IP beam sizes simulated with the measured multipole components of the ATF2 magnets
are well above the design beam sizes. From the analysis of the high order aberrations on the IP beam
sizes possible solutions that minimise the detrimental effect of the measured multipole components
are inferred. By combining different solutions new ATF2 Bx2.5By1.0 and ATF2 Ultra-low β∗

y lattices
are designed, which preserve the design vertical IP spot size for each of them.

4.1 CLIC BDS lattice optimisation

The CLIC BDS baseline design is described in Section 1.2. The luminosity given in Table 2 corresponds
to the CLIC BDS baseline design assuming head-on collisions L(head−on). In reality the electron and
positron beams cross at an angle of 20 mrad to allow the extraction of the spent beams. For such
crossing scheme the luminosity is reduced with respect to the head-on luminosity. For small crossing
angles and if the condition σ∗

x ≪ σ∗
z is satisfied, the reduction of the geometric luminosity is expressed

by the following relation [93]:

L = L(head−on)
1√

1 + Θ2
, (74)

where Θ is the Piwinski angle defined as:

Θ =
tan

(
θc

2

)
σ∗

z

σ∗
x

, (75)

where θc is the crossing angle of the beams and σ∗
x and σ∗

z are the horizontal and longitudinal beam
sizes at the IP. According to the CLIC BDS baseline design parameters shown in Table 2 a luminosity
loss about 90% is obtained. In order to preserve the required luminosity R. Palmer introduced the
concept of crab cavity [94]. This cavity deflects the head and the tail of the bunch horizontally in
opposite directions so that after flying the distance between the crab cavity and the collision point,
the bunches are perfectly aligned with respect to each other, as shown in Fig. 35.
For the CLIC BDS baseline design the insertion of one 2.6 MV crab cavity per beam line before the
FD is planned as Fig. 32 shows, more details can be found in Refs. [95] and [96]. In previous studies
with a single crab cavity located prior to the FD a luminosity loss of 5% with respect to L(head−on)

of the CLIC baseline design was obtained [93]. The goal of the study in the present thesis is to
understand this 5% luminosity loss and to look for solutions that allow to fully recover the design
luminosity.

4.1.1 MAPCLASS 6 coordinates

Part of the optimisation process is carried out by the MAPCLASS code [38]. As described in Sec-
tion 2.2 the PTC [54] module of MADX [55] can provide the map coefficients up to 6 coordinates,
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Figure 32: Scheme of the bunch rotation by the crab cavity prior to the collision at the IP according
to the CLIC BDS baseline design. Quadrupole, sextupole and the decapole magnets are in red, green
and yellow colours, respectively. (Figure not to scale).

namely x, px, y, py, z and δp. However the MAPCLASS code operates with 5 coordinates. In order
to optimise the higher order aberrations in the presence of the crab cavity it is required to extend
MAPCLASS to 6 coordinates (MAPCLASS-6C).
By analogy with the transfer map defined by Eq. (42) in Section 2.2, a map of 6 coordinates can be
written in the form:

uf,i =
∑

jklmnp

Xi,jklmnp xj
0 pk

x0
yl

0 pm
y0

δn
p zp

0 (76)

where uf,i represents any of the final coordinates (x, px, y, py, z) and δp=p−p0

p0
. The initial coordinates

are labelled with the zero sub-index. The Xi,jklmnp are the map coefficients provided by the PTC
module of MAD-X and the maximum order of the map is Norder=j + k + l + m + n + p. The standard
deviation of the final density distribution σ̂f

¶ for 6 coordinates is obtained by adding the longitudinal
coordinate to Eq. (45) as the following relation shows:

σ̂f
2 = 〈u2

f,i〉 − 〈uf,i〉2 =
∑

jklmnp
j′k′l′m′n′p′

Xi,jklmnpXi,j′k′l′m′n′p′

∫
xj+j′

0 pk+k′

x0
yl+l′

0 pm+m′

y0
δn+n′

p zp+p′

0 ρ0dν0 −


 ∑

jklmnp

Xi,jklmnp

∫
xj

0 pk
x0

yl
0 pm

y0
δn

p zp
0 ρ0 dν0




2

(77)

In order to validate the MAPCLASS-6C, it has been cross-checked with tracking simulations. Fig-
ure 33 shows the IP beam size calculated with the MAPCLASS-6C and the rms beam size obtained
by tracking 105 particles for different values of voltage of the crab cavity. The observed agreement
between the two methods is evident.
The crab cavity kicks the particles in the horizontal plane according to their longitudinal position,
for simplicity it is assumed that the crab cavity rotates the beam in the x-z plane by a certain angle
θc. Thus the following step consists in rotating the plane defined by the x, z coordinates in order to
evaluate the intrinsic beams size instead of the projected one. The coordinates in the rotated reference

¶It should be noticed that σ̂∗
x

is the projected beam size of a rotated bunch.
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Figure 33: Comparison of σ̂∗
x evaluated by MAPCLASS-6C (blue colour) and by tracking 105 particles

(red colour) for different voltages of the crab cavity.

system, denoted as xθc

f and zθc

f are related to xf and zf by the following formula:
(

xθc

f

zθc

f

)
=

(
cos θc − sin θc

sin θc cos θc

)(
xf

zf

)
(78)

Since σxf
≪ σzf

and θc is small enough, it is justified to assume zθc

f ≈ zf , hence xθc

f can be expressed
as:

xθc

f = cos θc

∑

jklmnp

Xx,jklmnp xj
0 pk

x0
yl

0 pm
y0

δn
p zp

0 − z0 sin θc (79)

4.1.2 Beam size analysis with MAPCLASS-6C

In the present study a Gaussian distribution of the spatial coordinates x, y, px, py, z and a uniform
distribution in relative momentum deviation δp are assumed. In fact, the particle bunch coming
from the main linac is likely to have a correlation between z and δp, however this is neglected in the
following analysis.
The obtained vertical IP spot size according to Eq. (76) is 1% larger than the one obtained by Eq. (42).
An analysis of the map coefficients by MAPCLASS-6C when switching on/off the crab cavity of the
CLIC BDS baseline design reveals which terms give the main contributions to the observed σ∗

y growth.
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Figure 34: The 10 most important variations of the MAPCLASS coeficients when switching on/off
the crab cavity.

Let us define the following quantities:

T̃y,yzT̃y,yz =

√∫
Xy,001001Xy,001001 y2

0 z2
0 ρ0 dy0 dz0, (80a)

Ũy,yzzT̃y,yz =

√∫
Xy,001002Xy,001001 y2

0 z3
0 ρ0 dy0 dz0, (80b)

Ũy,pyδzŨy,pyδz =

√∫
Xy,000111Xy,000111 p2

y0
δ2

p z2
0 ρ0 dpy0 dδp dz0, (80c)

T̃y,pyzT̃y,pyz =

√∫
Xy,000101Xy,000101 p2

y0
z2

0 ρ0 dpy0 dz0, (80d)

where ρ0 =
e−x2/2σ2

x e−p2
x/2σ2

px e−y2/2σ2
y e−p2

y/2σ2
py e−z2/2σ2

z Π( δp

∆p
)

(2π)2.5σxσpx
σyσpy

σz∆p

, (80e)

where Π

(
δp

∆p

)
=

{
1
2
∆p if |δp| ≤ ∆p

0 if |δp| > ∆p
(80f)

When switching on the crab cavity the variation of the coefficient T̃y,yz is larger than the others as
Ũy,yzz, Ũy,pyδz and T̃y,pyz as it is shown in Fig. 34. When the crab cavity is off all these coefficients
are equal to zero. These terms are related to the map coefficients Xy,jklmnp by Eqs. (80) and correlate
either the y or py with the z coordinate due to the quadrupole introduced by the feed-down of the
FD sextupoles located downstream the crab cavity when an off x-axis particle goes through.
The observed correlation between the y and py coordinates with z indicates the presence of a travelling
waist [97] at the IP.
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4.1.3 Possible Solutions

The travelling waist phenomenon refers to the change of the position of the betatron waist versus the
z coordinate. For the CLIC BDS baseline design the crab cavity is designed to kick the head of the
bunch in one direction, while the tail of the bunch is kicked in the opposite direction. Thus, from the
feed-down of a horizontal offset at the sextupoles, particles experience different focusing, as Eq. (54)
shows, that leads to a travelling waist at the IP. The overall picture is that the waist moves from the
tail to the head of the bunch, contrary to what it is desired during the beam collision. According to
the CLIC BDS baseline design the waist should move from the head to the tail of the bunch [98].
In the following discussion all the presented luminosity values are calculated by J. Barranco using
GUINEA-PIG, while I compute the beam sizes by the MAPCLASS-6C code.
Possible solutions to recover the observed 5% luminosity loss are the following:

• a scheme with 2 crab cavities per beam line [99],

• new crab cavity location,

• opposite crossing angle.

These solutions are described below:

4.1.3.1 2 crab cavities scheme

As suggested in [99], a second crab cavity might compensate the beam aberrations generated by
the downstream sextupole magnets of the first crab cavity. Keeping the original cavity at the same
location and inserting a second crab cavity 5 m upstream the first one with voltages of -2.4 MV and
5 MV respectively, enables to recover the luminosity up to 98.5% of L(head−on).

4.1.3.2 New crab cavity location

Placing the crab cavity at a different location might help to compensate the aberrations introduced
by the magnets between the crab cavity and the IP. In total 4 different locations have been analysed,
denoted here as P1, P2, P3, P4, whereas P0 represents the design location.
Locations P4 and P1 for which the crab cavity is placed before the SD4 and SD0 sextupole magnets,
respectively, fully recover the L(head−on), in terms of IP beam sizes there is a negligible increase in
both cases. This indicates an overall compensation of the tail-to-head travelling waist. Placing the
crab cavity at P2 which is in front of the decapole magnet 97.6% of the L(head−on) is achieved. The
obtained L when the crab cavity is placed at P3 which is in front of QF1 magnet is slightly better
than the one obtained placing the crab cavity at P0. Table 10 summarises the relative ∆σ∗

x, ∆σ∗
y and

L/L(head−on) for the crab cavity positions P0, P1, P2, P3, P4 with respect the design luminosity and
beam sizes.

4.1.3.3 Opposite crossing angle

Swapping the crossing angle of the CLIC BDS baseline design from 20 mrad to -20 mrad as shown
in Fig. 35 requires a change in the sign of the crab cavity kick, bringing the movement of the waist
from the head to the tail of the bunch, thus following the collision process as reported in [100]. In
this opposite crossing scheme scenario the obtained luminosity is 99.2% of L(head−on). Initially it
was thought that the sign of the crossing angle was a free parameter due to reasons of symmetry,
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Position Next magnet Distance to IP R12 V ∆σ∗
x/σ∗

x ∆σ∗
y/σ∗

y L/L(head−on)

after the CC [m] [m] [MV] [%] [%] [%]
P1 SD0 6.7 10.32 5.8 0.005 0.05 99.5
P2 DEC0 7.2 11.01 5.4 6.8 0.15 97.6
P3 QF1 11.8 24.12 -2.5 4.5 1.2 95.3

P0 (design) SF1 14.0 23.41 2.6 4.7 1.0 95.0
P4 SD4 268.6 -12.98 -4.6 0.3 0.04 100.0

Table 10: Luminosity and beam sizes at the IP for different positions of the crab cavity. P0 corresponds
to the position by design.

IP 10 mrad

-10 mrad

CLIC baseline

Proposed scheme

Figure 35: Crab crossing scheme for the CLIC baseline design (red colour) and the new proposed
crossing scheme with opposite angle (green colour). The red and green arrows indicate the propagation
of the particles in the horizontal plane. Blue elements represent the crab cavities.

nevertheless there is a preferred crossing angle imposed by the combination of the crab cavity voltage
with the downstream sextupole magnets.

4.1.4 Summary of the solutions

The 5% luminosity loss observed when crossing the beams at the IP by 20 mrad with a single crab
cavity is due to a motion of the waist from the tail to the head of the bunch during collision. This
phenomenon is produced by the offset sextupole magnets located downstream the crab cavity. Lo-
cating the crab cavity in front of the SD4 or SD0 magnets fully recovers the design luminosity, but
these locations are not considered due to the large distance between SD4 and the IP and space lim-
itations respectively. Inserting a second crab cavity partially recovers the luminosity with a residual
luminosity loss of 2.5%. Otherwise, keeping the single crab cavity scheme at the design position and
crossing the beams at an angle of -20 mrad recovers the luminosity up to 99.2%. In absence of civil
engineering constraints, the latter solution would be the preferred one because it does not require an
additional cost.

4.2 ATF2 lattice design

This section presents the results of the design and optimisation of the ATF2 lattices in the presence
of field quality measurements of the magnets. The analysis capabilities of the MAPCLASS‖ code
have been extensively used to mitigate the detrimental effect of the measured multipole components
of the ATF2 magnets on the vertical beam size at the IP. In accordance with previous field quality

‖In this study the MAPCLASS 5-coordinates described in Section 2.2 is the one used for the design and optimisation.
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measurements of the magnets performed at IHEP it was decided to insert a skew sextupole magnet to
compensate the skew sextupole component present in the ATF2 quadrupole magnets. However new
data on the multipole components of the magnets was obtained after a careful cross-check between
the results of the IHEP and the later KEK measurement campaign [101]. This analysis allows to
determine the ultimate multipole components of the ATF2 magnets. To mitigate the impact of these
multipole components on the performance of the ATF2 lattices the following solutions have been
studied:

• replacing the final doublet by better field quality quadrupoles,

• sorting the quadrupoles according to their field quality,

• modifying the lattice optics.

According to the possible cures mentioned above, for the ATF2 Nominal lattice two solutions are
proposed. It is sufficient to replace the FD and to sort the remaining quadrupole magnets according
to their skew sextupole component, or alternatively to increase by a factor 2.5 the nominal β∗

x. Both
solutions recover the design σ∗

y . The later solution is described in Section 4.2.5, this new design is
called ATF2 Bx2.5By1.0 lattice and it was used for the ATF2 experimental session in December 2010.
The MAD-X model of this new lattice is available at the ATF2 web repository [102].
Regarding the ATF2 Ultra-low β∗ lattice it is required to replace the FD, to sort the remaining
quadrupole magnets according to their skew sextupole component and to increase by a factor 3/2 the
design β∗

x. The new design is called the ATF2 Ultra-low β∗
y lattice, that reaches a vertical spot size at

the IP equal to 27 nm, 25.6±0.2 nm and 21.2±0.3 nm according to the rms, Shintake and core beam
size definitions, respectively. These definitions are given in Section 2.1.2 ∗∗. The MAD-X model of
this new lattice design is available at the ATF2 web repository [103].

4.2.1 Initial estimates of multipole components of the ATF2 magnets

The ATF2 beam line is composed of 7 bending, 43 quadrupole and 5 sextupole magnets, Fig. 24
shows the beam line. Thirty-four of the 43 quadrupole magnets are newly manufactured at IHEP
and named as QEA magnets [104]. All the quadrupole magnets that belong to the ATF2 FFS except
the FD are denoted as QEA magnets. A first measurement campaign of the ATF2 FFS magnets was
conducted at IHEP in 2006 during the manufacturing stage using the harmonic coil measurement
technique [105]. The rotating coil measurement provides the integrated strength and the tilt of each
multipole component present in the magnet. The strength of each multipole component is introduced
into the model by fixing its ratio relative to the strength of the magnet, so that a variation of the
magnet strength modifies the strength of its multipole components proportionally. It is assumed
here that the strength of the multipole component varies linearly with the magnet strength. Each
multipole component is modelled by thin elements at the edges and at the centre of the magnets. The
sum of the thin element strengths being equal to the measured integrated strength.
The evaluated beam sizes at the IP with all the IHEP measured multipole components included in
the simulations are 80 nm and 100 nm for the ATF2 Nominal and Ultra-low β∗ lattices, respectively.
The ATF2 lattices are described in Section 3.2.1. Taking advantage of the order-by-order analysis
capabilities of MAPCLASS, discussed in Section 2.2, σ∗

y from Norder= 1 to Norder= 10 is evaluated. The
maximum order is fixed by the maximum multipole component measurement included into the model.

∗∗In the following analysis, σ∗
y

always refers to the rms definition calculated by MAPCLASS according to Eq. (45).
The spot sizes according to Shintake and Core definitions are denoted as σ∗

shi
and σ∗

core
, respectively.
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Figure 36 shows the IP vertical beam size for those orders that increase σ∗
y significantly. From the

order-by-order analysis one can see that the second, third and fifth orders are the main contributors to
the observed vertical beam size growth. They correspond to the sextupole, octupole and dodecapole
components, respectively. This unexpected increase of σ∗

y led to a revision of the multipole component
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Figure 36: σ∗
y obtained in the simulations as a function of γǫx with the initial multipole components

measurements included into the model. The red arrow points to the typical value of the normalised
horizontal emittance during ATF operation. Each curve represents σ∗

y for a given order 1, 2, 3, 4 or
5 which corresponds to the transfer map with Norder=1, 2, 3, 4 and 5 respectively. The upper plot
refers to the ATF2 Nominal lattice whereas the lower plot refers to the ATF2 Ultra-low β∗ lattice.

measurements that were introduced into the model. In 2007 a second measurement campaign of the
QEA magnets was conducted at KEK, the results are reported in [106]. Significant discrepancies
between the IHEP and KEK measurements for some magnets were found, as it can be seen from
Fig. 37. Several magnets do not meet the specifications defined in [77], according to which the
amount of relative sextupole component tolerance is 4·10−4 at 1 cm radius from the magnetic center
of the magnet. Due to the uncertainty of the amount of relative sextupole component in the magnets
it was decided to study the correction of σ∗

y provided by tilting the ATF2 sextupole magnets.

4.2.1.1 Correction by tilting the sextupole magnets

Figure 37 shows the discrepancy between the IHEP and KEK field quality measurements of the
magnets. Due to this uncertainty, it was decided to study the impact of different values of strength and
tilt for the sextupole component of the QEA magnets within the range of the observed discrepancies
between the IHEP and KEK measurements. In this sense, the strength and tilt of the sextupole
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Figure 37: Comparison between KEK (red dots) and IHEP (green dots) measurements of the relative
sextupole component at a radius of 1 cm of those QEA magnets which are close or above the tolerance
of 10−4 (Data courtesy of G. White).

Magnet SF6FF SF5FF SD4FF SF1FF SD0FF
ks [m−2] 8.56 -0.79 14.91 -2.58 4.31
βx,sext [m] 1864 1864 300 5553 2019
βy,sext [m] 1906 1906 8469 2638 9942
Tilt [mrad] 9.5 20.0 -7.6 -4.0 2.8
σ∗

y [nm] 74 58 76 94 96

Table 11: Comparison between the strength, the value of the β-functions at the centre of the sextupole,
the tilt and the obtained values of the IP beam size when tilting the ATF2 sextupoles individually.

components of the QEA magnets are randomly varied, for each scenario the sextupole magnets are
tilted in order to minimise σ∗

y . The study refers to the ATF2 Nominal lattice including only the
sextupole components. The approach consists of increasing by 50% the sextupole components of the
QEA magnets, which increases the IP vertical spot size up to 140 nm. Figure 38 shows 5 curves that
represent the correction provided by each sextupole magnet. The green curve of Fig. 38 corresponds
to the SF5FF sextupole magnet which provides the wider and largest σ∗

y compensation, obtaining
a final σ∗

y < 60 nm. It is also worth noticing that a small correction of σ∗
y is provided by the final

doublet sextupole magnets (SF1FF and SD0FF). The SF5FF magnet operates at very low current as
shown in Table 11, this allows a large tilt to compensate the skew sextupole components present in
the quadrupole magnets.
The study was repeated for scale factors of 100% and 150%, for each factor 100 different machines are
simulated each machine having the sextupole components of the QEA magnets randomly increased.
Only the SF6FF, SF5FF and SD4FF sextupole magnets are considered. Figure 39 shows the results
for the studied cases. Again, SF5FF provides the largest correction to σ∗

y. Red, green and blue curves
show the results for the SF6FF, SF5FF and SD4FF sextupole magnets, respectively.

4.2.1.2 Correction by means of a dedicated skew sextupole magnet

The correction on the IP beam size provided by tilting the sextupole magnets is not a preferred solution
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y (2nd order) as a function of the sextupole tilt for the ATF2 Nominal lattice. Red, green,

blue, magenta and cyan colours represent the tilt of the SF6FF, SF5FF, SD4FF, SF1FF and SD0FF
sextupole magnets respectively.

since its correction range is rather small as shown in Fig. 38. In addition the coupling introduced by
a tilted sextupole may impact the orthogonality of the tuning knobs as explained in Section 2.4.1.3.
An alternative way to compensate the skew sextupole component of the magnets rather than tilting
the normal sextupole magnets is by using a dedicated skew sextupole magnet [107]. Such a magnet
provides the same correction in terms of σ∗

y . Taking into account the space constraints in the ATF2
FFS, the place chosen to insert the skew sextupole magnet (SK1) was in between the quadrupoles
QD6FF and QF5BFF, close to the sextupole magnet SF5FF. In order to reduce the required current
in the skew sextupole magnet, it is located close to magnet QF5BFF where the dispersion is 3 times
larger than in the vicinity of QD6FF. The σ∗

y obtained in this approach is equivalent to the one
obtained by tilting the sextupole magnet.
In January 2011 the dedicated skew sextupole magnet was installed at the ATF2 beam line. Figure 40
shows the installed skew sextupole magnet.
In the following calculations, the skew sextupole is included into the model and is considered in the
sextupole optimisation.

4.2.1.3 Ultimate multipole components

Detailed analysis of the field quality measurements at IHEP and KEK [101] revealed a wrong inter-
pretation of the tilt definition used for the IHEP measurements††. With the correct interpretation of
the tilt, the observed differences disappear except for a few magnets, as can be observed in Fig. 42.
The QD10BFF, QD6FF, QF7FF, QF5AFF, QF5BFF, QD4AFF, QF3FF, QD2AFF, QD4BFF and
QD2BFF magnets still show discrepancies concerning the sextupole and the octupole components, a
swap in the pick-up coil connection may be a possible explanation, as suggested in Ref. [101]. In the
following calculations the data of the KEK multipole measurements available at [108] is considered
in the ATF2 model.

††The cross-check between the IHEP and KEK field quality measurements was done by the ATF2 collaborators
M. Masuzawa and M. Woodley
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Figure 39: Average σ∗
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Each point is the average of 100 machines for which the multipole components have been randomly
increased by 50%, 100% and 150%. The error bars are obtained as the quadratic standard deviation
of the 100 simulated machines.

Figure 40: Scheme of the ATF2 FFS. The skew sextupole magnet SK1 (orange) is in between QF5BFF
and QD6FF quadrupole magnets (Figure courtesy of S. Boogert).

4.2.2 Impact of the ultimate multipole components of the ATF2 magnets

With all the KEK multipole components included into the model the beam size at the IP is found
to be larger than expected for both the ATF2 Nominal and Ultra-low β∗ lattices. Depending on
the beam size definition, this increase ranges from a few to hundreds of percent. As it is explained
in Section 2.1.2 three different beam size definitions, namely core, Shintake and rms, have been
considered in this study. Table 12 summarises the evaluated spot sizes at the IP when gradually
including the measured multipole components. Four different scenarios have been studied according
to the multipole component measurements included into the ATF2 model:

• without multipole components,

• only the QEA multipole components,

• only the FD multipole components,

• all the multipole components.
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Figure 41: Picture of the installed skew sextupole magnet (SK1) between the QF5BFF (left) and
QD6FF (right) quadrupole magnets (red) (Picture courtesy of N. Terunuma).
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Figure 42: Comparison between the IHEP (blue) and KEK (red) measurements of the multipole
components. T2 refers to the sextupole component angle and T3 refers to the octupole component
angle (Figure by courtesy of S. Bai).
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ATF2 Nominal Lattice
σ∗

x [µm] σ∗
y [nm]

RMS CORE SHINTAKE RMS
No mults 3.0 37.2 37.3 38.0
All QEA mults 3.5 (+17%) 37.3 (+0.3%) 38.8 (+4%) 43.2 (+14%)
Only FD mults 3.9 (+30%) 39.3 (+5.6%) 41.8 (+12%) 66.9 (+76%)
All mults 3.9 (+30%) 39.3 (+5.6%) 41.8 (+12%) 66.9 (+76%)

ATF2 Ultra-low β∗ lattice
No mults 3.0 20.4 22.8 23.1
All QEA mults 3.4 (+13%) 23.6 (+16%) 28.9 (+27%) 43.5 (+88%)
Only FD mults 3.7 (+23%) 30.0 (+47%) 42.3 (+86%) 80.1 (+247%)
All mults 3.7 (+23%) 30.0 (+47%) 42.3 (+86%) 80.1 (+247%)

Table 12: Comparison between the values of the IP beam size obtained according to 3 different
definitions for the ATF2 Nominal and Ultra-low β∗ lattices with and without multipole components.
The value shown inside the parenthesis refers to the percentage of beam size growth with respect to the
beam size for the case where no multipoles are included. The RMS value is obtained by MAPCLASS
with a value of Norder=5.

The effect of the multipole components turns out to be well above the expectations. For the ATF2
Ultra-low β∗ lattice the situation is much worse than for the ATF2 Nominal lattice. The comparison
between the ∆σ∗

y/σ∗
y0

of the different beam size definitions suggests that the tails of the bunch are
enhanced by the multipole components. From Table 12 it is inferred that the most important sources
of the evaluated beam size increase are the multipole errors of the Final Doublet quadrupoles. As
it is mentioned in Section 3.2.1 the IP beam size is extremely sensitive to the field quality of the
FD. Figure 43 shows the results of the MAPCLASS analysis for the ATF2 Ultra-low β∗ lattice. It
can be seen that the sextupole (2nd order) and the dodecapole (5th order) components are the main
sources of the observed vertical beam size increase. The 2nd order curve (green) in Fig. 43 shows
no dependence of σ∗

y on γǫx, thus the normal sextupole component is responsible for the observed
vertical beam size increase. Therefore the skew sextupole components have almost no relevance any
more. The dependence of σ∗

y on γǫx at the 5th order implies that a skew dodecapole component is an
important source of the observed σ∗

y increase.

4.2.3 Final Doublet Tolerances

The final doublet is the major source of vertical beam size increase at the IP, as it can be seen from
Table 12. The tolerances for the ATF2 Ultra-low β∗ lattice are evaluated by MAPCLASS in order to
be compared with the tolerances for the ATF2 Nominal lattice given in [77]. Since more restrictive
tolerances are expected for the Ultra-low β∗ lattice than for the Nominal lattice, replacing the present
FD by a better field quality FD that satisfies the ATF2 Ultra-low β∗ tolerances may represent a step
forward for the ATF2 facility.
The tolerances for the sextupole, octupole, decapole and dodecapole components of QF1FF and
QD0FF are determined assuming an error-free ATF2 Ultra-low β∗ lattice. The method for the evalu-
ation was the following: the value of the normal and skew multipole component is increased until σ∗

y

increases by 2%. Figure 44 shows the behaviour of the relative skew sextupole component of QF1FF
as an example, according to two different beam size definitions, rms and Shintake. The columns
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labelled as Tol.NL and Tol.UL of Table 13 summarise the obtained tolerances for QD0FF and QF1FF
magnets for the ATF2 Nominal and Ultra-low β∗ lattices, respectively. It is observed that tighter skew
tolerances for all multipole components are obtained for QF1FF due to the higher βx value at QF1FF.
Table 13 compares the evaluated tolerances of QF1FF and QD0FF for the ATF2 Ultra-low β∗ lattice
with the measured multipole components. The cases for which the magnetic measurement exceeds
the tolerance are marked in red. Table 13 shows that QF1FF exceeds the tolerances in almost all
normal and skew multipole components, whereas for QD0FF only the sextupole component exceeds
the tolerance. From the analysis of Fig. 43 and the comparison made in Table 13 it can be concluded
that in order to achieve the design IP spot size for both ATF2 lattices a new design of the FD should
be implemented, as considered in [109].
To this end, two projects to develop a new FD for ATF2 at BNL and CERN are on-going. At BNL,
a superconducting quadrupole prototype has been constructed [110]. The superconducting magnet
is a multilayer structure, hence after each coil winding, the multipole components are measured. If
any measured component is above the expected tolerance the following winding is adjusted in order
to compensate it. The final multipole component measurements are summarised in Table 14.
At CERN it has been proposed to design and construct a new quadrupole [111] based on permanent
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Component Sextupole [10−4]
Normal Skew

Tol.UL Measured Tol.NL Tol.UL Measured Tol.NL
QF1FF 0.37 2.7 1.2 0.07 0.28 0.09
QD0FF 0.2 1.84 0.8 0.18 1.76 0.3

Component Octupole [10−4]
Normal Skew

Tol.UL Measured Tol.NL Tol.UL Measured Tol.NL
QF1FF 0.15 0.57 0.7 0.07 0.04 0.1
QD0FF 1.8 0.44 6.0 0.8 0.28 1.2

Component Decapole [10−4]
Normal Skew

Tol.UL Measured Tol.NL Tol.UL Measured Tol.NL
QF1FF 0.43 1.2 0.9 0.08 0.19 0.11
QD0FF 3.15 0.65 10.1 2.9 0.32 4.3

Component Dodecapole [10−4]
Normal Skew

Tol.UL Measured Tol.NL Tol.UL Measured Tol.NL
QF1FF 0.17 3.4 0.4 0.09 0.76 0.11
QD0FF 15.0 3.5 50.0 9.0 0.22 12.3

Table 13: Comparison between the relative tolerances evaluated at a radius equal to 0.01 m for
the ATF2 Nominal and Ultra-low β∗ lattices and the measured multipole components of QF1FF
and QD0FF. The cases for which the measured multipole component does not meet the evaluated
tolerances for both ATF2 lattices are marked in red, when the measurements only meet the tolerance
for the ATF2 Nominal lattice orange is used and when the measurements satisfy both ATF2 Nominal
and Ultra-low β∗ tolerances green.
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Final Doublet Sextupole [10−4] Octupole [10−4] Decapole [10−4] Dodecapole [10−4]
Normal Skew Normal Skew Normal Skew Normal Skew

UL Tolerance 0.2 0.07 0.15 0.07 0.43 0.08 0.17 0.09
Normal conducting 1.84 0.28 0.44 0.04 0.65 0.19 3.4 0.22
Superconducting 0.49 -0.49 -0.2 -0.35 0.025 -0.016 0.000 0.001

Permanent 0.4 0.05 0.65 0.07 0.4 0.06 0.5 0.08

Table 14: Comparison between the tightest relative tolerance at a radius equal to 0.01 m of the FD
for the ATF2 Ultra-low β∗ lattice and the measured multipole components of the superconducting
magnet (SC) [112] and the expected components of the permanent magnet (PM) [111]. (The SC
and PM data are provided by B. Parker and A. Vorozhtsov respectively.). The smallest measured
multipole components of the current QF1 and QD0 are shown as an example of normal conducting
component.

magnet (PM) material. The expected multipole components from previous prototypes are summarised
in Table 14. The new FD designs based on superconducting and permanent magnet technology almost
satisfy the evaluated tolerances for the ATF2 Ultra-low β∗ lattice, yet the sextupole component toler-
ance is not satisfied by none of them, reflecting the difficulty for minimising the IP beam aberrations
for the pushed optics proposal.
When replacing the MAD-X model of the current normal conducting final doublet of ATF2 by the
super-conducting or permanent magnet ones, a significant reduction of ∆σ∗

y is obtained with respect
to the σ∗

y with normal conducting magnets. Yet the evaluated σ∗
y for the ATF2 Nominal lattice is

about 50 nm when considering the SC or the PM final doublet. Whereas for the ATF2 Ultra-low β∗

lattice it is obtained a σ∗
y= 48 nm, as Fig. 45 shows.

Despite this ∆σ∗
y reduction as a result of the new FD design, the impact of the remaining multipole

components of the ATF2 magnets on the IP beam sizes is still noticeable for the ATF2 lattices. The
designed σ∗

y in absence of multipole components given in Table 12 are 38 nm and 23 nm for the
ATF2 Nominal and Ultra-low β∗ lattices respectively. From the order-by-order analysis of the ATF2
Ultra-low β∗ with a PM final doublet, it is inferred that the sextupole and octupole components are
the most relevant sources of vertical beam size increase, see Fig. 45.
Therefore the multipole components present in the remaining quadrupoles (QEA) are partially re-
sponsible for the IP beam size increase. Sorting these quadrupoles according to their field quality is
a possible solution to further reduce ∆σ∗

y , as proposed in [113].

4.2.4 Swapping proposals for the QEA magnets

Sorting the quadrupoles according to their field quality and placing the best magnets in the more
sensitive locations might help to minimise the impact of multipole components present in the ATF2
beam line. This is the idea of the approach to reduce ∆σ∗

y in this section.
A sensitivity study for all the quadrupole magnets that belong to ATF2 FFS has been performed in
order to discern the most sensitive locations. Using an ideal (error-free) ATF2 Nominal lattice, the
skew sextupole component at each location is increased until σ∗

y increases by 2% and a similar study
is performed for the skew octupole component. The blue curve of Figs. 46 and 47 shows the amount
of relative skew sextupole and octupole components respectively producing a 2% growth of σ∗

y at each
location. Locations are sorted according to their sensitivity. Only the most important 11 locations are
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Figure 45: σ∗
y evaluated by MAPCLASS as a function of γǫx for the ATF2 Ultra-low β∗ considering

the expected PM tolerances for the FD and the measured multipole components of the remaining
magnets.

shown, for the rest of them the calculated tolerances are satisfied by the present quadrupole magnets.
In order to sort the best quadrupoles in terms of their field quality, all the quadrupole magnets,
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Figure 46: Relative amount of skew sextupole component that increases σ∗
y by 2%. The horizontal

axis shows the beam line location denoted by the name of the corresponding quadrupole name.

except the FD, have been sorted out according to their relative skew sextupole component. The upper
and lower plots of Fig. 48 show the best 9 QEA quadrupole magnets according to the skew sextupole
and octupole components, respectively.
Using the data shown in Figs. 46 and 47, two possible quadrupole orderings are proposed:

• Swap.1: quadrupole magnets are sorted according to their skew sextupole component. The
proposed swapping of the magnets is the following:

QF9BFF replaced by QM12FF
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QF5AFF replaced by QD2BFF
QF9AFF replaced by QM13FF
QF5BFF replaced by QF19XFF
QD4BFF replaced by QM15FF

QD10AFF replaced by QD10BFF
QD6FF replaced by QF17X

QD4AFF replaced by QM11FF
QD8FF replaced by QF7FF

• Swap.2: quadrupole magnets are sorted according to their skew octupole component, in case
two magnets satisfy the octupole tolerance they are sorted in order to satisfy the sextupole
tolerance as well. The proposed swapping of the magnets is the following:

QF5AFF replaced by QF17X
QF9BFF replaced by QM12FF
QF5BFF replaced by QM15FF
QF9AFF replaced by QM13FF
QD4BFF replaced by QF11X

QD10AFF replaced by QM16FF
QD10BFF replaced by QM11FF

QD8FF replaced by QD16X
QD6FF replaced by QM14FF

The data shown in Fig. 48 is translated into the relative components at R=0.01 m in order to
compare it with the calculated tolerances. The comparison is made in Figs. 46 and 47. The red curve
represents the current skew sextupole component. The green and magenta curves show the expected
skew sextupole component after swapping the magnets according to the swap.1, and swap.2 criteria
respectively. It was assumed that the multipole components remain proportional to the quadrupole
strength.
From the data shown in Fig. 46 it was concluded that the present skew sextupole component exceeds
the 2% tolerance in almost all evaluated locations. According to the swap.1 sorting all the skew
sextupole components are below tolerances and according to the swap.2 sorting only the first 6 high
sensitivity locations satisfy the tolerances.
As far as the skew octupole components are concerned, in general the situation is much better. The
current configuration and the swap.1 sorting satisfy the octupole tolerances at all locations except
2. When considering the swap.2 sorting, all octupole tolerances are satisfied. Figure 47 shows the
octupole tolerance and the amount of skew octupole component for the current configuration, the
swap.1 and swap.2 sorting.
The calculated σ∗

y for the ATF2 Nominal lattice with a PM final doublet according to the swap.1
and swap.2 options are 41 nm and 44 nm respectively. Regarding the ATF2 Ultra-low β∗ lattice with
a PM final doublet the calculated vertical beam size at the IP is 38 nm and 41 nm for swap.1 and
swap.2 options respectively.
Therefore, the obtained σ∗

y according to the swap.1 sorting is better than the one according to the
swap.2 sorting for the ATF2 lattices. It is also concluded that σ∗

y is very sensitive to the sextupole
component of the quadrupole magnets. Therefore, the swap 1 distribution of the quadrupole magnets
is recommended to avoid the demonstrated detrimental effects of the measured multipole components.
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Figure 49: Red and green curves represent the βx function for the ATF2 Nominal lattice with β∗
x

equal to 4 and 10 mm respectively, along the ATF2 FFS.

4.2.5 Optics modification

One more approach to minimise the detrimental impact of the multipole components is to modify the
optics by increasing β∗

x. Doing so, the horizontal beta function is lowered along the FFS according to
Eq. (15). Thus the impact of all the multipole components present in the ATF2 magnets is reduced
as well. Although, increasing β∗

x is not the preferred solution, since it is not foreseen in the final focus
system design of the future linear colliders, considering ILC as an example, increasing 2.5 times β∗

x

enlarges σ∗
x by a factor

√
2.5 according to Eq. (12) which reduces L by almost 40% according to Eq. (6).

Nevertheless this solution is considered in this study, because it may help to reduce the detrimental
effect of the multipole components enabling to test the local chromaticity correction scheme of FFS.
By using the matching quadrupoles QM16FF, QM15FF, QM14FF, QM13FF and QM12FF located
at the beginning of the final focus, β∗

x is increased from 4 mm to 10 mm. Afterwards the remaining
quadrupoles and sextupoles are optimised in order to compensate for the beam aberrations and reach
the design spot size at the IP. This optimisation process is done by the simplex algorithm [63] inserted
in MAD-X in combination with MAPCLASS code which evaluates σ∗.
Figure 49 shows the horizontal beta function along the FFS of ATF2 for the ATF2 Nominal lattice
with β∗

x=4 and β∗
x=10 mm. The horizontal beta function at QF1FF with β∗

x=10 mm is 2.5 times
smaller according to Eq. (15). The obtained σ∗

y when increasing β∗
x to 10 mm is equal to 41 nm

for the ATF2 Nominal lattice. The performance of this new lattice was cross-checked by the ATF2
collaborators G. White and M. Woodley, using the Lucretia code [114] and MAD-8 [115] respectively,
obtaining similar values of σ∗

y [116]. Indeed the impact of the FD is effectively minimised and so
are the multipole components present in the QEA quadrupole magnets. This new design is called
ATF2 Bx2.5By1.0 lattice, since β∗

x is 2.5 times larger than the nominal β∗
x, and it was used in ATF2

for the experimental tuning attempt in December 2010. Details of the simulated and experimental
tuning performance of this lattice can be found in Section 5.2.1. The MAD-X model of the new ATF2
Bx2.5By1.0 lattice can be found in [102].
For the ATF2 Ultra-low β∗ with β∗

x= 10 mm, the obtained vertical spot size at the IP is 51 nm, well
above the design value of 23 nm. Therefore in contrast to the ATF2 Nominal lattice the mitigation
obtained by increasing β∗

x is not enough for the Ultra-low β∗ lattice. The endpoints of the green
curve of Fig. 50 show the results for the ATF2 Nominal and Ultra-low β∗ lattices. The study of
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two intermediate lattices with β∗
y equal to 50 µm and 75 µm helps to understand the impact of the

multipole components when going to ultra-low values of β∗
y . For smaller values the beam aberrations

dominate the σ∗
y as shown by the red curve in the present ATF2. Regarding the swap.1 and swap.2
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Figure 50: Calculated beam size σ∗
y for different values of β∗

y (25, 50, 75, 100 µm) with β∗
x=10 mm.

Each curve refers to a different magnet sorting. The red curve corresponds to the current configuration.
The blue and magenta curves correspond to the sorting options swap.1 and swap.2 respectively. The
black curve represents σ∗

y without multipole components.

sorting, when increasing β∗
x to 10 mm the impact of the beam aberrations is not as severe as in the

current quadrupole configuration. For the swap.1 and swap.2 sorting, the obtained σ∗
y are 31 nm

and 35 nm respectively, as shown by the green and blue curves of Fig. 50. The measured multipole
components preclude from reaching the expected vertical beam size for the ATF2 Ultra-low β∗ lattice
just by increasing β∗

x. Although going to a larger value of β∗
y is not a preferred cure because in doing

so the vertical chromaticity decreases, and becomes no longer comparable to the vertical chromaticity
of CLIC, as shown in Table 8.

4.2.6 ATF2 Ultra-low β∗
y lattice

The effect of the multipole components on the IP beam size cannot be mitigated for the ATF2 Ultra-
low β∗ lattice when applying the studied solutions separately. However by combining all the studied
solutions a further reduction of ∆σ∗

y is achieved. Two solutions are considered. In the 1st solution

the value of β∗
x is increased up to 10 mm, in addition the QEA magnets are sorted according to

swap.1 proposal. This gives the results σ∗
y=31 nm and σ∗

Shi=29.1±0.3 nm. In the 2nd solution it is
required to replace the final doublet by the permanent quadrupole magnets developed at CERN, the
remaining ATF2 quadrupole magnets need to be sorted according to the swap.1 proposal and the β∗

x

has to be increased up to 6 mm for further mitigation of the effect of the measured components. The
obtained values of vertical IP spot size are 27 nm and 25.6±0.2 nm according to the rms and Shintake
beam size definitions. Since β∗

x is no longer the nominal value of 4 mm, this lattice is called ATF2
Ultra-low β∗

y lattice. The model of the new lattice design can be found at [103]. Table 15 summarizes
the calculated beam sizes when gradually adding the solutions presented in Section 4.2.2.
The adopted solutions presented in Table 15 are partially satisfactory. On one hand the vertical
chromaticity of the lattice is comparable to the CLIC 3 TeV but on the other hand the value of β∗

x
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Table 15: Calculated σ∗
x and σ∗

y according to the core, Shintake and rms beam size definitions. The rms
and σ∗

Shi values are obtained by MAPCLASS with Norder=5 and by the Shintake algorithm respectively.

σ∗
x [µm ] σ∗

y [nm]
RMS CORE SHINTAKE RMS

ATF2 UL β∗ 4.4 35±0.4 42.5±0.5 80
1st solution

β∗
x= 10 mm 4.5 30.2±0.4 40.4±0.4 51

+ swap.1 4.5 24.7±0.5 29.1±0.3 31
2nd solution

+ PM FD 3.5 26.8±0.5 35.4 ±0.4 48
+ swap.1 3.6 21.7±0.3 26.8±0.3 32
+ β∗

x= 6 mm 3.6 21.2±0.3 25.6±0.2 27

needs to be increased. A smaller σ∗
y is obtained for the 2nd solution due to better field quality of

the FD magnets. Despite the increase of the cost due to the fabrication of the magnets, it would be
the preferred solution because it would also allow to test the ATF2 Nominal lattice with the nominal
value of β∗

x.
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5 Final Focus Systems tuning results

The tuning of a final focus system consists of bringing the system to its design performance under
realistic error conditions as defined in Section 2.4. It is of special importance since it determines the
feasibility of a lattice.
Three tuning algorithms namely, (i) Simplex, (ii) Beam Based Alignment and (iii) orthogonal knobs
for tuning the CLIC and ATF2 final focus systems are considered.
In this section simulation results of the tuning of the CLIC BDS with L∗= 6 m by means of a tuning
procedure that combines a beam based alignment and orthogonal knobs algorithms are shown. The
results are compared to those reported in Ref. [31] in which the Simplex tuning algorithm for the
same lattice was used. In previous studies, the same tuning procedure was considered for tuning the
CLIC BDS with L∗= 3.5 m [117]. Comparison of the tuning results obtained with the same tuning
algorithm for both CLIC designs allows to analyse the tuning difficulties when increasing L∗.
Also results of tuning simulations of the ATF2Bx2.5By1.0 and ATF2 Ultra-low β∗

y lattices designed
in this thesis are discussed. Experimental tuning results obtained during the tuning session carried
out in December 2010 using the new ATF2Bx2.5By1.0 design are compared to the simulation results.
No comparison with experimental results for the ATF2 Ultra-low β∗

y lattice is made due to the long
interruption of the ATF2 operation caused by the big earthquake that shook Japan in March 2011.
Therefore there are not experimental studies of the tuning versus the β∗

y .

5.1 CLIC BDS tuning

The baseline design of the CLIC BDS and the alternative option with L∗= 6 m are described in
Section 1.2.1.2. The CLIC BDS consists of three main subsystems: (i) the diagnostics, (ii) the
collimation and (iii) the final focus system. Previous studies on tuning simulations have demonstrated
the tunability of the two first sections of the BDS against misalignments, when applying the standard
beam based correction techniques presented in Section 2.4 [118]. However for the FFS the number of
simulated machines that reach the tuning target using this tuning algorithm is not satisfactory.
The figure of merit of the tuning procedure of the CLIC FFS is the luminosity L. Since the effect
of ground motion is not included into the simulations the target luminosity is 110% of the design
luminosity L0 given in Section 1.2.1.2, so that 10% budget for the luminosity loss due to dynamic
imperfections is allowed. According to [17] the tuning goal for the CLIC BDS is that 90% of the
machines reach a final luminosity equal or higher than 1.1L0. The results of previous tuning studies
reported in Ref. [117] when applying the Simplex and the Simplex combined with orthogonal knobs
tuning algorithms to the CLIC BDS baseline design are summarised in Table 16. In previous studies
an alternative tuning algorithm, which combines beam based corrections and orthogonal knobs tuning
algorithm techniques, is considered for tuning the CLIC BDS baseline design, the obtained results [119]
are summarised in Table 16. The results given are obtained assuming that (i) the magnets of the
CLIC BDS L∗= 3.5 m are randomly misaligned with the Gaussian distribution of width σoffset= 10 µm,
(ii) a BPM resolution of 10 nm is assumed for the BBA tuning algorithm and (iii) the effect of
synchrotron radiation described in Section 2.1.4 is included in the simulation study. 90% of the
machines reach a final luminosity ≥90% of L0 when applying the (Simplex + orthogonal knobs)
algorithm, while only 60% of the machines reach a luminosity ≥80% of L0 when applying the (BBA
+ orthogonal knob) algorithm. Regarding the number of required iterations, clearly the (BBA +
orthogonal knobs) algorithm is 10 times faster than the other tuning algorithms. Each iteration
corresponds to a luminosity measurement that takes half a second as reported in Ref. [117].
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Tuning strategy Iterations Success ratio (80%L0)
[103] [%]

Simplex 15 80
Simplex + orthogonal knobs 16 90
BBA + orthogonal knobs 1.6 60

Table 16: Tuning results for the CLIC BDS with L∗ = 3.5 m using the Simplex, the Simplex with
orthogonal knobs and the BBA with orthogonal knobs as tuning algorithms (Table taken from [117]).

σoffset Iterations Success ratio
[µm] [103] 80% of L0 [%]

5 11 91
6 10 90
7 12 87
8 11 81

Table 17: Tuning results for the CLIC BDS with L∗= 6 m using the Simplex tuning algorithm.
Different scenarios according to the initial random misalignments σoffset of the magnets are considered.
(Data taken from Ref. [31]).

5.1.1 CLIC BDS with L∗= 6 m Tuning

In the CLIC BDS L∗= 6 m design L∗ is large enough to locate the last quadrupole QD0 outside the
detector, which leads to a simple solution as discussed in Section 1.2.1.2. Previous tuning studies to
the CLIC BDS L∗= 6 m design show promising results when applying the simplex tuning algorithm
(see Ref. [31]), the results are summarised in Table 17. As one can see for σoffset below 7 µm 90% of
the machines reach 80% of L0. It is worth noticing that in the order of 10000 iterations are required
in all these cases.
The idea of the following tuning study is to apply an alternative tuning algorithm based on beam
based alignment approach in combination with orthogonal knobs for the CLIC BDS L∗= 6 m. The
obtained results are compared with the ones presented in Table 17, that were obtained when applying
the simplex algorithm. Also, the tuning performance of the CLIC BDS with L∗= 3.5 m and L∗= 6 m
designs are compared in terms of number of tuning iterations and number of machines that reach the
tuning target.

5.1.1.1 Tuning algorithm

In the following a description of the (BBA + orthogonal knobs) tuning algorithm which is going
to be applied is given. Firstly it applies an orbit correction and dispersion free steering with the
FFS sextupole and higher order magnets switched off. Both techniques are described in Section 2.4.
Secondly the sextupole and high order multipoles are switched on and the whole BBA procedure is
applied again. At this stage the pre-computed orthogonal knobs are scanned iteratively in order to
maximise the luminosity. Further details about the algorithm are given in Ref. [119].
We have designed the following orthogonal knobs to be scanned at the final stage of the tuning
procedure, which are denoted as: β∗

x, α∗
x, β∗

y , α∗
y, η∗

x, <x, y>, <px, y>, <px, py>, η∗
y and η′∗

y . A short
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knob Horizontal displacements
SF6 SF5 SD4 SF1 SD0
[µm] [µm] [µm] [µm] [µm]

β∗
x -5.0 -8.3 -2.0 0.5 0.9

α∗
x 3.5 -2.6 -0.8 -8.9 -5.9

β∗
y 5.3 -0.1 -0.7 2.7 4.4

α∗
y 0.0 -0.5 5.4 -0.9 8.4

η∗
x -5.8 4.8 -4.8 -3.4 3.1

knob Vertical displacements
SF6 SF5 SD4 SF1 SD0
[µm] [µm] [µm] [µm] [µm]

<x, y> -1.8 32.4 9.6 -0.5 -0.2
<px, y> 0.1 -2.5 -0.7 0.0 0.0
<px, py> 52.4 453.0 125.0 150.0 57.2

η∗
y -0.2 3.3 0.8 0.0 0.0

η′∗
y 98.8 -401.4 1128.2 1345.3 512.9

Table 18: Coefficients of sextupole magnet displacements for each horizontal and vertical knob.

description of the function of each knob and their construction is given in Section 2.4. Table 18
summarises the obtained coefficients for each sextupole magnet and each knob. Figure 51 shows the
performance of the knobs when they are scanned individually on an error-free CLIC BDS with L∗=
6 m lattice. The scanning range of the knobs plotted there goes from -1 to 1 in arbitrary units, that
amounts to the displacement of the corresponding sextupole given in Table 18.
Left and right plots in Fig. 51 show the aberration responses when scanning the horizontal and vertical
knobs, respectively. In general the orthogonality between knobs is evident except for the β∗

x, β∗
y and

η′∗
y knobs which are entangled with the α∗

x, α∗
y and <x, y> knobs respectively. Yet when scanning

iteratively the η′∗
y and <x, y> knobs both aberrations are tuned-out since the <x, y> is orthogonal

to the η′∗
y knob. However this is not the case for the β∗

x,y knobs because none of the constructed
knobs modify the beta function at the IP, as expected from a sextupole magnet displacement (see
Section 2.4.1.3). Recall that these knobs were considered for completeness of the matrix used in their
construction. To conclude, the chosen beam aberrations are tuned-out except for the changes in the
beta functions at the IP when scanning iteratively this set of knobs.

5.1.1.2 Tuning results

We have performed tuning simulations for 5 different scenarios according to the initial magnet mis-
alignments. The magnets are randomly misaligned according to a Gaussian distribution of width
σoffset. The studied values of σoffset are 1, 3, 5, 7 and 10 µm. The errors considered in this study are
the same as for the simulation tuning results presented in Table 16 and Table 17. Figure 52 shows
the results in terms of the confidence level for all these scenarios. The confidence level represents
the curve that accommodates the number of machines that reached a L larger than L0 where L0 is
the design luminosity introduced in Table 3. The tuning target is only reached when the value of
σoffset= 1 µm, in which case 97% of the machines reach a L≥1.1L0. The number of machines that
reached 80% of L0 constantly decreases as the value of σoffset increases as summarised in Table 19,
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Figure 51: Left plots: Aberrations response when scanning the knobs β∗
x (red), α∗

x (green), β∗
y (blue),

α∗
y (purple) and η∗

x (cyan) obtained by moving the sextupole magnets in the horizontal plane. Right
plots: Aberrations response when scanning the knobs <x, y> (red), <px, y> (green), <px, py> (blue),
η∗

y (purple) and η′∗
y (cyan) obtained by moving the sextupole magnets in the vertical plane.

σoffset Iterations Success ratio
[µm] [103] 80% of L0 [%]

1 1.1 100
3 1.2 97
5 1.1 80
7 1.3 58
10 1.4 21

Table 19: Tuning results for the CLIC BDS with L∗= 6 m using the (BBA + orthogonal knobs) tuning
algorithm. Different scenarios according to the initial random misalignments σoffset of the magnets
are considered.
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being σoffset= 10 µm the worst scenario in which case only 21% of the simulated machines reach 80%
of L0. Therefore it is evident that the impact of the value σoffset on the tuning performance. The
number of required iterations when σoffset= 10 µm is on average 1425 ± 278.

5.1.2 Discussion of the simulations results

Regarding the different tuning algorithms considered to study the CLIC BDS L∗= 6 m, the Simplex
algorithm reaches better results than the (BBA + orthogonal knobs) algorithm in terms of number of
machines that reach 80% of the L0 for the cases when the value of σoffset ≥5 µm. However in terms of
number of iterations required for tuning a machine, the Simplex algorithm is almost 10 times slower
than the (BBA + orthogonal knobs) one. Similar results were observed in tuning studies of the CLIC
BDS L∗= 3.5 m.
Comparing the tuning performance between the CLIC BDS lattices, the tuning difficulties clearly
increase as L∗ increases, regardless of the considered tuning algorithm. For the CLIC baseline design,
90% of the machines reach a L≤90% of L0 for a value of σoffset=10 µm using the (Simplex + orthogonal
knobs) algorithm, while for the CLIC BDS L∗= 6 m lattice, 81% of machines are successfully tuned
to 80% of L0 if σoffset=8 µm. For σoffset= 10 µm the (BBA + orthogonal knobs) algorithm is capable
to recover 60% of CLIC BDS L∗=3.5 m machines with a L ≥ 80% of L0, whereas only of 21% of the
CLIC BDS L∗=6 m machines.
As a final conclusion, further improvements of the tuning algorithms are required in order to meet
the tuning target for both CLIC BDS designs for values of σoffset >1 µm.

5.2 ATF2 Tuning

We have also performed tuning simulations of the ATF2 FFS which results are presented in this
section. The ATF2 is described in detail in Section 3.2.1. The tuning study was done for the
new designs ATF2 Bx2.5By1.0 and ATF2 Ultra-low β∗

y lattices described in Sections 4.2.5 and 4.2.6
respectively.
The chromaticity of the ATF2 Ultra-low β∗

y is larger than that of the ATF2 Nominal lattice as
explained in Section 3.2.1. This is mainly due to the smaller value of β∗

y according to Eq. (27). In
previous tuning studies [79] in which the Simplex was considered as the tuning algorithm, serious
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β∗
y Tuning time Ratio of success

[µm] [days] [%]
100 5.5 100
50 8.0 90
25 10.0 80

Table 20: Tuning performance of the ATF2 lattice for different values of the IP vertical beta function.
The Simplex algorithm described in Section 2.4 was implemented in the tuning study (Data taken
from [79]).

tuning difficulties were observed as the chromaticity of the lattice increases, Table 20 summarises the
obtained results for that study.
The ATF2 beam line comprises the extraction and final focus system beam lines, as presented in
Section 3.2.1. The general tuning procedure of ATF2 reported in Ref. [120] consists of the following
basic steps:

1. Beam based alignment: to generate a good beam quality and maintain a low background signal
at the Shintake monitor.

2. Orbit response and jitter modelling: validation of the current online model by cross checking
with the orbit response at the BPMs.

3. Orbit steering: using the orbit correction algorithm, described in Section 2.4.1, the beam is
steered flat using the available EXT line correctors and the FFS magnet movers.

4. Dispersion and coupling correction: the dispersion and coupling generated in the EXT and FFS
is measured and corrected as described in Ref. [121] and [122] respectively.

5. Twiss parameters and emittance measurement: before entering into the IP beam tuning, the
measurement of the Twiss parameters is carried out as explained in Ref. [123] in order to
avoid any miss-match between the EXT beam line and the FFS. In addition the emittance
measurement [123] determines the minimum achievable IP spot size according to the given
Twiss parameters, as Eq. (11) shows.

After completing the above tuning procedure, residual aberrations still remain at the IP that cause
a vertical beam size significantly larger than the design value. The IP beam tuning procedure takes
place. The following tuning study assumes that the beam coming out from the extraction line is
properly tuned, so that the errors are only due to the FFS magnets. The tuning study includes 100
machines with different initial error distributions in order to determine the tuning feasibility.
The implemented tuning algorithm is based on pre-computed orthogonal knobs which are described
in Section 2.4, the set of knobs to be applied are denoted as: β∗

x, β∗
y , α∗

x, α∗
y, η∗

x, <x, y>, <px, y>,
<px, py>, η∗

y and η′∗
y , which are constructed as described in Section 2.4. These knobs are iteratively

scanned until the vertical beam size at the IP measured by the Shintake monitor converges to its
minimum value.
The errors considered in the tuning study of ATF2 are summarised in Table 21. They are assigned fol-
lowing a random Gaussian distribution of width σerror. The measured multipole components discussed
in Section 4.2.1.3 are included into the ATF2 tuning simulations.
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Error σerror

Transverse misalignments 30 µm
Transverse rotations 300 µrad

Relative magnet miss-powering 10−4

Beam size measurement 4%

Table 21: Considered errors in the ATF2 simulation tuning study obtained from [124]. σerror refers to
the width of the Gaussian distribution which is used to assign the errors.

knob Horizontal displacements
SF6 SF5 SD4 SF1 SD0
[µm] [µm] [µm] [µm] [µm]

β∗
x -5.6 -8.1 0.1 -1.7 -0.3

α∗
x 0.3 -1.7 -2.7 5.5 7.6

β∗
y -8.2 5.4 0.4 1.4 0.1

α∗
y -0.5 0.4 -9.7 -0.2 -3.1

η∗
x 0.0 1.5 -1.6 -8.0 5.5

knob Vertical displacements
SF6 SF5 SD4 SF1 SD0
[µm] [µm] [µm] [µm] [µm]

<x, y> 0.4 6.7 1.1 -6.6 -3.0
<px, y> -9.7 -0.5 2.1 -1.2 0.9
<px, py> -0.6 7.2 1.4 6.2 2.9

η∗
y -0.6 1.2 -7.1 -2.8 6.3

η′∗
y 2.4 -1.1 6.5 -2.8 6.5

Table 22: Coefficients for each sextupole magnet displacement according to the horizontal and vertical
knob.

It should be pointed out that the impact of ground motion as a dynamic error is not considered in
these tuning studies, because the long term performance of the system is not in the scope of this
thesis.

5.2.1 ATF2 Bx2.5By1.0 Tuning results

The ATF2 Bx2.5By1.0 lattice was the design lattice to be used for the ATF2 experimental tuning
session in December 2010. It is obtained by increasing the value of β∗

x from 4 mm of the ATF2
Nominal lattice to 10 mm, as described in Section 4.2.5.
Table 22 summarises the sextupole magnet coefficients corresponding to each knob for the ATF2
Bx2.5By1.0 lattice. Figure 53 shows the response of the knobs under consideration when they are
scanned individually using an error-free lattice. The orthogonality between all the pre-computed
knobs, except for the knob meant to vary the β∗

y function at the IP, is evident.
The tuning results are presented in terms of the confidence level which represents the curve that
accommodates the number of machines that reached an IP vertical beam size below the corresponding
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Figure 53: Left plots: Knobs obtained by horizontal sextupole displacements (β∗
x, β∗

y , α∗
x, α∗

y, η∗
x) are

represented by red, green, blue, magenta and cyan curves respectively. Right plots: Knobs obtained
by vertical sextupole displacements (<px, y>, η∗

y, η′∗
y , <px, py>, <x, y>) are represented by red, green,

blue, magenta and cyan curves respectively.
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σ∗
y/σ∗

y0 where σ∗
y0 is the design vertical beam size at the IP introduced in Section 4.2.5. The confidence

level is calculated from the final IP vertical beam size of each machine after scanning the following set
of orthogonal knobs: <px, y>, α∗

y, <x, y>, η′∗
y , <px, y>, η∗

y and η∗
x. Four different scenarios according

to the initial magnet misalignment σoffset are studied. Figure 54 shows the confidence level for the
cases when σoffset is equal to 10, 30, 50 and 100 µm, respectively. The most likely value of σoffset is
30 µm, as reported in Ref. [124].
The order in which the set of orthogonal knobs are applied is the following: <px, y>, α∗

y, <x, y>,
η′∗

y , <px, y>, η∗
y and η∗

x. This is the same order that the knobs were applied during the experimental
tuning session in December 2010.
Figure 55 compares the simulation results with the experimental data. Red dots represent the IP
vertical beam size averaged over the 100 simulated machines and green curves enclose ±1 standard
deviation after scanning each knob.
The initial σ∗

y measured by the Shintake monitor during the experimental session before applying the
orthogonal knobs was about 1.2 µm, 50% larger than expected from simulations. The blue dots of
Fig. 55 show the IP vertical spot sizes measured by the Shintake monitor [125] after scanning each
knob. The double blue dots at knob iterations 1 and 3 correspond to an optimisation of the Shintake
monitor. The minimum IP vertical beam size measured by the Shintake monitor is 304 ±40 nm, the
error corresponds to the quadratic sum of the systematic error of the Shintake monitor error (which
is 10%, see Ref. [125]) and the standard deviation of three different Shintake measurements that are
taken after each knob scan. No further minimisation of the IP beam size was made due to stability
problems in the laser of the Shintake monitor when switching from 8 to 30 degree mode, during the
experimental session of December 2010 as described in Ref. [126].
The smallest IP vertical beam size measured at the ATF2 beam line up to the time of writing this
thesis is 168±2 nm, the error corresponds to the rms value of 10 measurements using the 30 degree
mode of the Shintake monitor, more details are given in Ref. [127].
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Figure 55: The blue data points represent the experimental tuning results for the ATF2 Bx2.5By1.0
lattice. The red dots represent the simulation tuning results for the same lattice.

5.2.2 ATF2 Ultra-low β∗
y Tuning results

We have also performed the tuning simulation study for the new ATF2 Ultra-low β∗
y lattice which

is described in Section 4.2.6, the obtained results are presented in this section. 100 simulated ATF2
Ultra-low β∗

y machines with different initial error configurations are considered to study the tuning
feasibility of this lattice. The assumed errors are the same as the ones used for the tuning study of the
ATF2 Bx2.5By1.0 lattice, these are summarised in Table 21. The measured multipole components
are included in the tuning study.
The tuning study is based on pre-computed orthogonal knobs, the calculated knob coefficients for
this lattice are summarised in Table 23. The response of the aberrations when the knobs are scanned
using an error-free lattice is shown in Fig. 56. Almost all the knobs show a good orthogonality except
β∗

y , <px, py> and η′∗
y .

The order of application of the orthogonal knobs has been optimised for tuning the ATF2 Ultra-low
β∗

y lattice. In this sense the knobs are sorted according to their efficiency to minimise σ∗
y . To figure

out the best knob ordering, the whole set of knobs are applied individually to 50 different machines.
Figure 57 shows the ∆σ∗

y provided by each single knob at the first scan. The <px, y> knob turns
out to be the most efficient, as shown by the red curve in Fig. 57. The second iteration is formed by
applying the <px, y> knob to 50 different machines and afterwards all knobs are individually scanned
except the <px, y> knob. The green curve in Fig. 57 shows that the α∗

y knob is the most efficient
at this step. The third iteration consists of applying firstly the <px, y> and secondly the α∗

y knobs
to 50 different machines, at this stage all knobs are scanned except the αy knob. The blue curve of
Fig. 57 shows that the <η∗

y> knob is the most efficient at the third iteration. The last knob iteration
is performed by applying the <px, y>, α∗

y and η∗
y knobs to 50 different machines, at this stage all

the knobs are scanned except the η∗
y knob. Magenta curve of Fig. 57 shows that the <px, y> knob

is the most efficient at the fourth iteration. Therefore the order of the first 4 knobs in the tuning
algorithm for the ATF2 Ultra-low β∗

y lattice is chosen to be: <px, y>, α∗
y, <η∗

y> and <px, y>. No
further iterations are considered, since as it will be shown below, the first 4 iterations are the most
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Figure 56: Left plots: Knobs obtained by horizontal sextupole displacements (β∗
x, β∗

y , α∗
x, α∗

y, η∗
x)

represented by red, green, blue, magenta and cyan curves respectively. Right plots: Knobs obtained
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knob Horizontal displacements
SF6 SF5 SD4 SF1 SD0
[µm] [µm] [µm] [µm] [µm]

β∗
x -0.35 9.99 0.01 -0.14 0.01

α∗
x -7.18 -0.20 -0.83 3.92 5.70

β∗
y 6.85 0.29 -2.49 4.12 5.46

α∗
y -1.17 -0.03 -9.49 0.07 -2.91

η∗
x 0.01 -0.12 -1.72 -8.22 5.42

knob Vertical displacements
SF6 SF5 SD4 SF1 SD0
[µm] [µm] [µm] [µm] [µm]

η∗
y 0.68 0.09 6.76 3.15 -6.62

η′∗
y 3.15 -0.03 -9.49 0.07 -2.91

<x, y> 7.69 0.01 -3.23 5.52 0.12
<px, y> 4.51 0.10 6.35 -2.69 5.66
<px, py> 4.48 0.47 -1.87 -7.23 -4.89

Table 23: Coefficients for each sextupole magnet displacement for the horizontal and vertical knobs.

effective.
The statistical tuning study for the ATF2 Ultra-low β∗

y with the σoffset equal to 10, 30, 50 and 100 µm
is carried out.
The upper plot in Fig. 58 shows the mean IP vertical beam size calculated by the Shintake monitor
over 100 ATF2 Ultra-low β∗

y machines after scanning the pre-computed knobs for all cases of σoffset.
In all scenarios the convergence is mostly achieved after 4 knob iterations. For σoffset equal to 10 µm
and 30 µm the obtained < σ∗

Shi > values are 27 and 30 nm respectively. However when the value of
σoffset is equal to 50 µm and 100 µm the tuning algorithm is not able to reduce the final average value
of σ∗

Shi below 40 nm and 60 nm respectively. The lower plot in Fig. 58 shows the confidence level
evaluated according to the Shintake definition for σoffset= 10, 30, 50 µm. The set of knobs is applied
2 times. For cases when σoffset is equal to 50 and 100 µm the confidence level shows that the tuning
knobs are not able to minimise σ∗

y to the design vertical beam size σ∗
y0 discussed in Section 4.2.6.

5.2.3 Discussion of the results

From the results of the simulations for the ATF2 Bx2.5By1.0 lattice we conclude that tuning based
on the knobs presented is capable to recover the design IP vertical beam size under realistic error
conditions. The current σ∗

y is minimised to the level of 100 nm, for smaller vertical beam sizes the
system slowly converges to the design IP vertical beam size σ∗

y0. When comparing to the experimental
results over the range from 1 µm to 300 nm, both simulation and experimental results show a similar
behaviour, however it is also observed that the simulations converge much faster than the experiment.
In the case of the ATF2 Ultra-low β∗

y lattice the statistical tuning study based on knobs is capable to
recover the expected vertical beam size at the IP under realistic error imperfections. However when
σoffset ≥50 µm, which is an unlikely scenario, the tuning procedure does not reach satisfactory results.
When comparing the simulation tuning results for the ATF2 Bx2.5By1.0 and the ATF2 Ultra-low β∗

y

lattices, it can be concluded that larger tuning difficulties are expected for the ATF2 Ultra-low β∗
y
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Figure 57: The evolution of the IP vertical beam size from the deviation σ∗
y0 for tuning with the

pre-computed knobs β∗
x, β∗

y , α∗
x, α∗

y, η∗
x, <x, y> , <px, y>, <px, py>, η∗

y and η′∗
y , applied individually

at 4 different iterations represented by the red, green, blue and magenta curves respectively.

σoffset ATF2 Bx2.5By1.0 ATF2 Ultra-low β∗
y

[µm] ∆σ∗
y/σ∗

y0 [%] ∆σ∗
y/σ∗

y0 [%]
10 8 9
30 11 35
50 20 80
100 98 250

Table 24: Comparison between the simulation tuning results of the ATF2 Bx2.5By1.0 and the ATF2
Ultra-low βy lattices for different values of σoffset. ∆σ∗

y/σ∗
y0 refers to the percentage beam size increase

that accommodates 80% of the simulated machines for each lattice.

lattice. Table 24 summarises the obtained ∆σ∗
y/σ∗

y0 at the level of 80% of machines for different values
of σoffset for both lattices. Figure 59 shows the tuning performance between the ATF2 Bx2.5By1.0
and ATF2 Ultra-low β∗

y lattices when the value of σoffset=30 µm. The initial σ∗
y/σ∗

y0 before applying
the tuning algorithm is larger for the ATF2 Ultra-low β∗

y lattice than for the ATF2 Bx2.5By1.0 lattice.
The same is true after applying the tuning algorithm based on orthogonal knobs. As it follows from
the tuning difficulties observed in Table 24 and Fig. 59 it can be concluded that more experimental
measurements would be necessary to tune the ATF2 Ultra-low β∗

y . It should be noticed that these
lattices differ in the value of β∗

x, for the ATF2 Bx2.5By1.0 lattice β∗
x= 10 mm while β∗

x= 6 mm for
the ATF2 Ultra-low β∗

y lattice. The impact of this parameter on the tuning difficulties needs to be
analysed in further studies.
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6 Beam based alignment results

According to the tuning results presented in Section 5.1.1, the impact of random misalignment of
magnets by σoffset= 10 µm for the CLIC BDS with L∗ = 6 m is severe in terms of number of machines
that recover the design luminosity after the tuning process. In contrast, when the value of σoffset= 1 µm
is assumed the tuning results significantly improve, as shown in Fig. 52. With respect to the CLIC
BDS with L∗ = 3.5 m the impact of the value of σoffset is not as critical as in the CLIC BDS with
L∗ = 6 m design. Nevertheless reducing the value σoffset would also ease the tuning process.
The error of the beam based alignment arises from a limited resolution of the beam position monitors,
errors in magnet movers and power supplies, and the magnetic centre instability when changing the
current of a magnet. With the development of BPMs having sub-µm resolution, using the available
high stability power supplies for the magnets and implementing high precision magnet movers, the
magnetic centre instability becomes a potential limitation to improve the alignment resolution of the
quadrupoles in the micrometre regime. The motion of the magnetic centre due to a current variation
of the magnet, could be caused by many factors as explained in Ref. [61], being the thermal effect
one of the most relevant.
In this section, first two measurements of the magnetic centre position at different currents are dis-
cussed in order to illustrate the regime of motion of the magnetic centre. Second, the results of a
simulation study are given. This simulation study provides a method to detect and quantify this
effect and to determine the BPM resolution and beam orbit jitter, which should be satisfied in order
to be sensitive to a magnetic centre motion of the same order as shown in the two magnetic centre
measurements. Finally, experimental results obtained at ATF2 and CTF3 test facilities presented
in Sections 6.3.1 and 6.3.2 implementing two different beam based techniques are shown. The goal
of this section is to determine the limiting factors of the alignment resolution of a quadrupole, in
particular characterise the motion of its magnetic centre when changing the current of the magnet.

6.1 Examples of the motion of the magnetic centre

In the initial dedicated magnetic centre measurements of a quadrupole that were conducted by the
CERN group in October 2011 and February 2012 and reported in [128], the magnetic centre de-
pendence on the current was obtained for two quadrupole magnets, namely PXMQMAHNAP35 and
QFR800 (see Refs. [129] and [130] respectively for their characteristics). The PXMQMAHNAP35
quadrupole measurement consists of ramping up the current from 1 A to 10 A and then ramping it
down to 1 A in 12 steps. At each step the magnetic centre position of the magnet is measured by
a rotating coil [131]. Similar procedure is applied to the QFR800 quadrupole magnet. Its current is
ramped up from 1 A up to 8 A and back to 1 A in 16 steps. At each step the position of the magnetic
centre is measured using a vibrating wire [132]. Figures 60 and 61 show the obtained horizontal and
vertical magnet centre positions for the PXMQMAHNAP35 and QFR800 magnets, respectively, as a
function of the current or equivalently to the normalised integrated gradient. Details of conversion of
the magnet current into normalised gradient are given in Appendix C.1.
For the purpose of further comparison we have calculated magnetic centre displacement and its
sensitivity to strength variation characteristics for the above results. The obtained ẋmc and ẏmc

from the measurements of the PXMQMAHNAP35 quadrupole in between k1=0.17 m−1 (2 A) and
k2=0.25 m−1 (3 A) are:

95



 200

 250

 300

 350

 400

 450

 500

 550

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 60

 80

 100

 120

 140

H
o

ri
z
o

n
ta

l 
m

a
g

n
e

ti
c
 c

e
n

tr
e

 [
µ

m
]

V
e

rt
ic

a
l 
m

a
g

n
e

ti
c
 c

e
n

tr
e

 [
µ

m
] 

k [m
-1

]

xmc
ymc

decreasing k increasing

Figure 60: Horizontal (circles) and vertical (triangles) magnetic centre position as a function of the
integrated normalised gradient which goes from 0.084 m−1 to 0.84 m−1 (red) and back to 0.084 m−1

(blue). (Data courtesy of J. García Pérez [133]).
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Figure 61: Horizontal (circles) and vertical (triangles) magnetic centre position versus the integrated
normalised gradient which goes from 0.44 m−1 to 3.56 m−1 (red) and back to 0.44 m−1 (blue). (Data
courtesy of L. Fiscarelli [134]).

PXMQMAHNAP35





xk1 = 394 ± 4 µm , yk1 = 96 ± 3 µm

xk2 = 447 ± 2 µm , yk2 = 81 ± 2 µm

ẋmc = xk2
− xk1

k2−k1
= (663 ± 5) 10−6 m2

ẏmc = yk2
− yk1

k2−k1
= (−186 ± 4) 10−6 m2.

(81)

The obtained ẋmc and ẏmc for the QFR800 magnet in range between k1=0.89 m−1 (2 A) and k2=1.34 m−1

(3 A) are:
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QFR800





xk1 = 286.4 ± 0.2 µm , yk1 = 311.3 ± 0.6 µm

xk2 = 290.6 ± 0.2 µm , yk2 = 316.8 ± 0.3 µm

ẋmc = xk2
− xk1

k2−k1
= (9.3 ± 0.3) 10−6 m2

ẏmc = yk2
− yk1

k2−k1
= (12.2 ± 0.7) 10−6 m2.

(82)

6.2 ATF2 simulation results

In order to apply the BBA quadrupole shunting technique presented in Section 2.3.2 one has to
estimate the minimal magnetic centre displacement, which produces a trajectory deviation detectable
by the BPMs. With this aim we have performed a simulation study in which a magnetic centre
motion is imposed as a function of the current of the magnet. The aim of this study is to estimate
the maximum acceptable errors in terms of BPM resolution and beam position jitter that do not
preclude to detect the motion of the magnetic centre by the BPMs. The error free ATF2 Bx2.5By1.0
design discussed in 4.2.5 and the QM16FF quadrupole magnet are considered in this study. In the
simulation QM16FF quadrupole is moved by 50 µm in the horizontal plane, then the quadrupole
current is shunted from -40% to +40% in 9 steps. It is assumed that the magnetic centre of QM16FF
moves proportionally to the integrated strength variation j dk, where j is the step variation and dk
is the strength variation. Four different values of ẋmc have been considered (1, 10, 30, 50 µm·m).
Figure 62 shows an example of orbit reading by the downstream monitor MQD4AFF. The different
colours represent the 4 different values of ẋmc. Perfect BPM readings and no beam orbit jitter errors
are assumed in these calculations. For larger values of ẋmc the quadratic contribution (j dk)2 in
Eq. (65) is clearly distinguished from the BPM orbit readings, as Fig. 62 shows. The function f(j dk)
defined by

f(j dk) = c1 j dk + c2 j dk2, (83)

is used to fit to the orbit readings. The values of ẋmc and x0 are determined from the fitted coefficients
as follows:

ẋmc = c2/R12, (84)

x0 = c1/R12 − ẋmck, (85)

where the coefficient R12 is the matrix component that maps the x′-coordinate at the QM16FF
quadrupole to the x-coordinate at the BPM. The following step is to include BPM errors. A random
error with a Gaussian distribution of σorbit is assigned to all BPM orbit readings. 100 different pulses
are used for each configuration of position and current of the magnet. A value of σorbit= 10 µm is
assumed. Figure 63 shows the value of ẋmc for all BPMs obtained from the fitting coefficients. Each
colour represents a different value of ẋmc. A total of 37 cavity BPMs (CBPMs) are installed in the
ATF2 beam line, which are attached or close to a quadrupole magnet. The CBPMs are labelled
by a prefix M followed by the name of the nearby quadrupole. The BPMs located at positions
where the absolute value of R12 is larger than 20 m, namely MQM13FF, MQD10AFF, MQF9A/BFF,
MQF5A/BFF, MQD4BFF, MQD2AFF and MQF1FF, determine ẋmc with a good precision. This
is due to the fact that higher values of R12 amplify the effect on the beam position due to ẋmc,
hence, the fitted error is smaller than the orbit variation due to ∆k when ẋmc=0. On the contrary,
the BPMs located at positions where the absolute value of R12 is small, cannot determine ẋmc with
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sufficient precision because the contribution of ẋmc to the beam position is comparable to the orbit
determination error, hence the fitted quadratic coefficient c2 cannot be precisely measured. The
MQM11FF, MQF7FF and MQF3FF BPMs serve as examples since they have values of R12 close to
0. Different values of σorbit have been scanned in order to estimate the acceptable orbit reading error
to correctly fit ẋmc and x0. Figure 64 shows the average fitted coefficients using only those BPMs
that satisfy the condition |R12| ≥ 10 m. The upper plot shows the obtained average value of ẋmc over
the mentioned BPMs. The back reconstructed coefficient is consistent with the imposed value of ẋmc

within the error bars for all values of σorbit. The average x0 coefficient over the mentioned BPMs is
correctly determined in all the studied scenarios as the lower plot in Fig. 64 shows.

6.3 Experimental results

Two different measurement campaigns, one at ATF2 in May 2010 and another at CTF3 in July 2011,
were conducted with the purpose to study the magnetic centre stability when shunting the quadrupole
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Figure 65: Horizontal and vertical resolution for the ATF2 FFS BPMs, sub-micron resolution is
achieved in almost all BPMs for both planes. (Figure courtesy of S. Boogert)

magnet. The first method of determining the motion of the magnetic centre, described in Section 2.3.2,
is applied to the measurements at ATF2. The second method described in Section 2.3.2, is used in
the second measurement campaign at CTF3.

6.3.1 ATF2

During the measurements at ATF2 the sextupole magnets were switched off in order to avoid non
linear response of the beam orbit. The measurement consists of setting different beam orbits at
the quadrupole under consideration either by moving the magnet itself to different positions or by
shunting the nearest upstream quadrupole magnet. For each orbit the current of the considered
magnet is varied within ±20%. It is a nulling technique since no difference in the BPM orbit readings
is observed upon the quadrupole current change in case the beam passes through its magnetic centre.
Figure 65 shows a typical resolution of the ATF2 cavity BPMs. The average resolution for the 37
CBPMS is of the order of 200 nm, see Ref. [135].
The following three measurements were performed during the ATF2 experimental session in May
2010:

• 1st: QM16FF current is varied from -15% to +15% in 5 steps, to set 5 different orbits at
QM15FF. For each orbit the QM15FF current is shunted from -20% to +20% in 5 steps. 20
pulses are recorded for each configuration.

• 2nd: QM15FF is moved from -500 µm to +500 µm in steps of 250 µm, for each position the
quadrupole is shunted from -20% to +20% in 5 steps. 20 pulses are recorded for each configu-
ration.
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• 3rd: QM13FF is moved from -500 µm to +500 µm in steps of 250 µm, for each position the
quadrupole is shunted from -20% to +20% in 5 steps. 20 pulses are recorded for each configu-
ration.

The normalised integrated strength (k) of QM16FF, QM15FF and QM13FF during the measurements
are -0.447 m−1, 0.602 m−1 and 0.810 m−1 respectively. In all measurements 5 different orbits are set
either by changing the current of the previous quadrupole magnet (1st measurement) or by moving
the quadrupole magnet to 5 different positions (2nd and 3rd measurements) by means of its mover. A
description of the precision of the ATF2 quadrupole power supplies and the precision of the ATF2
magnet movers can be found in Refs [71] and [136], respectively.
Figure 66 shows the vertical beam orbit jitter of the beam along the ATF2 beam line for all measure-
ments. The upper plot shows the data of the 1st measurement, which show a larger beam orbit jitter
than the 2nd and the 3rd ones, shown in the centre and lower plot, respectively.
The Singular Value Decomposition (SVD) analysis [62] allows to filter out the jitter and enables
to reconstruct the orbit with a better precision. For example, in the 1st measurement the orbit
reconstruction is a factor 10 more precise, leading to a 10 µm of residual beam orbit jitter in almost
all BPMs. The residual orbit jitter for the 2nd measurement is below 10 µm after applying the
SVD analysis. The effectiveness of the SVD when applied to the 2nd and 3rd measurement is not so
beneficial because the original vertical orbit jitter is already below 10 µm.
In order to determine the value of ẏmc of a measurement the value of the R34 coefficient is required
as Eq. (84) shows. The MADX model of ATF2 can provide this coefficient, alternatively it can be
determined from the measurement if the offset of the magnet is a known quantity. To this end, the
recorded orbit differences ∆y of the BPMs when changing the strength of the considered magnet
for all five beam trajectories allows to determine the offset of the magnet y0, as it is explained in
Section 2.3.2. As an example Fig. 67 shows the ∆y measured by MQD0FF BPM as a function of the
mover position where QM13FF is mounted. Figure 68 shows the obtained y0 by all BPMs for the 3rd

measurement.
< χ > and δ< χ > are weighted mean and error defined by the following relations:

< χ > =
∑BPMs

i χiwi∑BPMs
i wi

(86)

δ< χ > =
√

< χ2 > − < χ >2, (87)

where χi is the quantity measured by the ith BPM.
The weighted mean of the offset of QM13FF < y0 >QM13FF and its error δ < y0 >QM13FF are obtained
according to Eqs. (86) and (87) respectively, identifying χi as the offset measured by a BPM and
using the weight given by

wi =
|R34|
(δy0)2

, (88)

The weight wi is inversely proportional to δy0 and proportional to the |R34| coefficient because the
large absolute value of R34 the better resolution is achieved by that BPM. The obtained value of
< y0 > for the 3rd measurement is

< y0 >QM13FF= 527 ± 1.3 µm.

Once the offset of the magnet is determined, the value of the R34 coefficient is obtained according to
Eq. (61).
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Figure 66: Vertical beam orbit jitter at the BPMs, red and green curves correspond to the data before
and after applying the SVD analysis respectively. The upper, centre and lower plots show the jitter
for the 1st, 2nd and 3rd measurements, respectively.
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Figure 67: Obtained vertical offset by the MQD0FF BPM for the 3rd measurement.
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Figure 68: Obtained vertical offset and its error of QM13FF along the beam line for the 3rd measure-
ment.
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3rd measurement.

The set of data composed of the five orbits which takes into account the evaluated magnet offset with
the BPM orbit reading differences observed at the maximum strength variation (∆k/dk = 2) of the
considered quadrupole, is used to fit the function f(y) defined by:

f(y) = c3 y, (89)

where y represent the five orbits and f(y) the BPM readings. The fitted coefficient c3 allows to
determine the value of R34 as

R34 =
c3

∆k
, (90)

where ∆k is the maximum strength variation of the magnet. As an example, Fig. 69 shows the
obtained value of R34 for the 3rd measurement along the ATF2 beam line.
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Figure 69: Obtained R34 coefficient of QM13FF which corresponds to the 3rd measurement.

Figures 71, 72 and 73 present the obtained ẏmc coefficients for the 1st, 2nd and 3rd measurements
respectively as presented in Section 6.2, but using the values of R34 obtained from the measurement
instead of using the ones from the model. Only the best orbit out of the 5 is shown, the results for
all five orbits for all measurements are given in Appendix B. As an example of fitted ẏmc coefficient,
Fig. 70 shows the parabolic fit of MQD0FF BPM, that corresponds to the best orbit of the 3rd

measurement.
Figures 71 and 72 show inconsistent results of the obtained ẏmc coefficients along the beam line, on
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Figure 71: Fitted ẏmc coefficients for the 1st measurement of QM15FF magnet.

Measurement Magnet < ẏmc > δ < ẏmc >
[10−6m2] [10−6m2]

1 QM15FF 1 7
2 QM15FF -1 1.2
3 QM13FF -1.6 0.8

Table 25: Weighted average of ẏmc for the 1st,
2nd and 3rd measurements.

the contrary Fig. 73 shows a consistent result along the beam line except the MQD2AFF BPM due
to the fact that R34 ≈ 0. The error bar of ẏmc considers two contributions, as Eq. (91) shows, the
error from the fit of Eq. (83) to the BPM data δy0 and the one obtained by the evaluation of the R34

coefficient δR from the measurement.

δẏmc =

√√√√
(

δy0

R34

)2

+

(
y0

R2
34

δR

)2

. (91)

The observed inconsistent results can be explained by the observed discrepancies between the obtained
R34 coefficient from the measurement with the one obtained from the model of ATF2, as it is shown
by the blue and magenta curves of Figs. 71, 72 and 73.
The mean value and its error is obtained according to Eq. (86) and (87) respectively identifying
χ = ẏi

mc and using as a weight wi:

wi =
|Ri

34|
(δẏi

mc)2
. (92)

Table 25 summarises the values of < ẏmc > and δ < ẏmc >, for all measurements. The error obtained
in the 1st measurement is almost an order of magnitude larger than the one of the 2nd and 3rd

measurements. In order to understand the impact of using an upstream quadrupole to set different
orbits when determining the value of ẏmc, further simulation studies and beam based alignment
measurements would be necessary.
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Figure 72: Fitted ẏmc coefficients for the 2nd measurement of QM15FF.

The value of ẏmc of the QM15FF magnet is equal to (0±7) · 10−6 m2 which is obtained as the mean
value of the 1st and 2nd measurements, and the error is the larger of both measurements. The ẏmc

coefficient for QM13FF is (-1.6±0.8) · 10−6 m2. This implies that the magnetic centres of QM15FF and
QM13FF move 0±0.9 µm and -0.26±0.12 µm respectively for a strength variation of 20% respectively.

6.3.2 CTF3

In this section the results of the magnetic centre measurements and magnetic centre motion character-
isation for the QFR300 quadrupole magnet [137] are presented. The QFR300 quadrupole belongs to
the Test Beam Line (TBL) located at the CTF3 facility presented in Section 3.3. The technique used
to measure and characterise the magnetic centre stability consists of moving the quadrupole to three
different positions by means of a mover on which the magnet is mounted. The mover characteristics
are detailed in Ref. [138]. At each position the current of the QFR300 quadrupole is initially shunted
by ±10%. 20 orbit readings are recorded for each setting of position and current. From the orbit
difference recorded by the downstream BPMs [139] the magnetic centre is inferred when the orbit
difference is null. The magnet position and the current variation are adjusted at each iteration in
order to avoid significant beam losses during the measurement and until the obtained BBA resolution
does not further improve. This procedure is applied to measure the position of the magnetic centre
at the nominal current of the QFR300 magnet and at a current increased by +20% from the nominal.
The coefficient ẏmc is obtained from the difference between the magnetic centre positions measured
at nominal current and the one measured at a current increased by +20%.
The beam intensity at the entrance of TBL during the experimental session of the 21st of July was
about 13 A as it is shown in Fig. 75. This intensity is produced by factor 4 pulse recombination as it
is described in Section 3.3. On one hand this high intensity produces a clear signal on the BPMs, but
on the other hand, beam losses may occur during its transport through the TBL, due to an increase
of the transverse beam size as a result of a non perfect recombination of the bunches.
The data recorded by 17 BPMs of TBL are used to perform the SVD analysis. The beam orbit jitter is
calculated as the standard deviation of the 20 orbit reading pulses that correspond to the same orbit.
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Figure 73: Fitted ẏmc coefficients of magnet QM13FF.
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Figure 74: Vertical orbit precision before and after applying the SVD.

Figure 74 shows the incoming vertical orbit jitter (red) and the reconstructed orbit jitter (green) after
applying the SVD analysis [62] along the entire TBL beam line. This approach allows to reconstruct
the orbit with on average factor 4 better precision comparing to the regular mean.
Measurement of the magnetic centre of QFR300 was done for two different currents, I1=2.56 A
and I2=2.95 A. For each current the position of the magnetic centre is determined by moving the
quadrupole magnet to 3 different positions, at each position the variation of the quadrupole strength
is set to ±20%. Figure 76 shows the BPMs reading variation ∆y between the orbit when the current
is -20% and 20% for the three positions. The value of ∆y and its error δ∆y are obtained as

∆y =< y+20% > − < y−20% >, (93)

δ∆y =
√

δ2
−20% + δ2

+20%, (94)

where < y−20% > and < y+20% > are obtained as the mean over 20 pulses for each orbit and the errors
δ−20% and δ+20% are evaluated as the rms of the 20 pulses. The magnetic centre position obtained for
some BPMs differ by more than 3 σ from the weighted mean defined in Eq. (86). This discrepancy
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could be explained by the beam losses that eventually occur during the measurement, as Fig. 75
shows. Those BPMs results are neglected in the analysis.
Using the weighted average definition in Eqs. (86) and (87) and the inverse of the quadratic fit error
as the weight, the following values of vertical magnetic centre position of the quadrupole QFR300 for
currents k1 and k2 are obtained:

< y0,k1 > = 531 ± 25 µm,
< y0,k2 > = 427 ± 47 µm.

(95)

One can see that the magnetic centre of QFR300 moves -104 ± 53 µm for a current variation of 0.39 A
that is equal to a ∆k of 1.8 m−1 as it is derived in Appendix C.1. The obtained ẏmc coefficient is:

ẏmc =
< y0,k2 > − < y0,k1 >

k2 − k1
= (−57 ± 29) 10−6m2. (96)

The results of the magnetic centre stability measurement of the PXMQMAHNAP35 quadrupole
magnet differs from that of the QFR300 quadrupole magnet measured at TBL because they differ in
many relevant properties such as gradient, length, aperture and lamination thickness, although there
are also some similarities such as weight, cooling system and the manufacturer. On the contrary,
the QFR800 quadrupole presented in Section 6.1 belongs to the same family of magnets that the
QFR300, so that they are equivalent in design. A detailed comparison of the three quadrupoles is
given in Appendix C.

6.3.3 Discussion of experimental results

The achieved resolution in the BBA measurements conducted at ATF2 is of the order of the µm.
These high resolution measurements allows us to conclude that the motion of the magnetic centre of
the ATF2 magnets is less than 1 µm when shunting the quadrupole magnet by ±20%. From both
measurement campaigns it can be concluded that FFS dedicated quadrupole magnets at the ATF2 in
comparison with the re-cycled CTF3 magnets, show a much better performance in terms of magnetic
centre stability.
When comparing the result ẏmc = (12.0 ± 1.2) 10−6 m2 obtained by using a wire to measure the
magnetic centre position of the QFR800 magnet, presented in Section 6.1 with the result ẏmc =
(−57 ± 29) 10−6m2 obtained at TBL with a magnet of similar characteristics QFR300, turn out to
be quite different. This discrepancy may be caused by the fact that the ẏmc coefficient varies from
magnet to magnet due to construction differences. However repetition of magnet measurements to
clarify the situation are necessary.
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7 Conclusions

In the thesis we have studied the design and optimization of Final Focus System lattice of future
lepton linear colliders (LC) and their test facilities. With the aim of achieving the nano-metric scale
vertical beam sizes at the IP envisaged in the conceptual designs. Also the convergence of tuning of
their FFSs, based on the new local chromaticity correction scheme has been studied, in particular
for the Nominal lattice of ATF2 the tuning simulations are compared with experiments. The studies
have been done in the framework of the CLIC and ILC projects and scientific programs of the ATF2
and CTF3.

The first problem that has been addressed is the reduction of the luminosity at the IP in the CLIC
baseline design. For a FFS with a single crab cavity and the beam crossing angle at the IP equal to
20 mrad the observed luminosity loss is about 5%. We have shown that it is caused by a travelling
waist phenomenon induced by the FD sextupoles. The following solutions allowing to recover the LC
luminosity have been proposed and analysed in detail:

• Optimization of the crab cavity location, namely placing it in front of the SD4 sextupole,

• Insertion of a second crab cavity 5 m upstream from the original one,

• Keeping the single crab cavity, foreseen in the baseline design, but changing the beam crossing
angle to -20 mrad.

These solutions allow an almost full recovery the design luminosity. For this study we have modified
the MAPCLASS code by extending it from 5 to 6 variables, so that the longitudinal coordinate can
also be included in the simulations and, for example, the travelling waist at the IP can be studied.

The second set of problems studied in the thesis is the design of new ATF2 lattices that minimize
the impact of the measured multipole components of the FFS magnets on the IP beam sizes. MAP-
CLASS with 5 variables has been extensively used together with a code that simulates the beam size
measurement with the Shintake monitor. This later code has been developed in the thesis. As a result
of the analysis of high order aberrations the following solutions have been proposed:

• Replacing the Final Doublet magnet by a new FD,

• Sorting the ATF2 quadrupole magnets according to their sextupole component,

• Optics modification by increasing the value of β∗
x.

We have shown that the vertical IP beam size of the ATF2 Nominal lattice is recovered by replacing
the FD quadrupoles by a new FD and sorting the remaining quadrupole magnets according to their
skew sextupole component. An alternative solution for the ATF2 Nominal lattice consists in increasing
the IP βx-function by a factor 2.5. This design, called the ATF2 Bx2.5By1.0 lattice, allows to achieve
the vertical IP beam size σ∗

y= 41 nm, however the horizontal one σ∗
x increases by a factor

√
2.5. We

conclude that this solution is not the preferred one because the horizontal beam size growth amounts
to a luminosity reduction of about 40% for the ILC. The ATF2 Bx2.5By1.0 lattice was used during
the ATF2 experimental tuning study that was carried out in December 2010.
In the case of the ATF2 Ultra-low β∗ lattice the vertical IP beam size is partially recovered by replacing
the FD magnets, sorting the quadrupole magnets according to their skew sextupole component and
increasing β∗

x by a factor 3/2 from its nominal value. We have shown that for this new lattice, called
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ATF2 Ultra-low β∗
y lattice, the Shintake vertical beam size at the IP is 25.6±0.2 nm. This solution is

of interest for the CLIC project because the vertical chromaticity of this lattice is comparable to that
of the CLIC 3 TeV design. Consequences of increasing β∗

x in terms of tuning convergence are still to
be analysed.

The third set of issues addressed in the present thesis have been the tuning study of the CLIC FFS
and ATF2 lattices. In the case of the CLIC the applied tuning algorithm combines a beam based
correction and the scan of pre-computed orthogonal knobs. The results obtained for the CLIC BDS
with L∗= 6 m show that 97% of the machines achieve 80% of the design luminosity L0 for the magnetic
centre offset value σoffset=3 µm. For larger values of σoffset, the percentage of tuned machines drops
dramatically, reaching only 21% for σoffset=10 µm. By comparison with the previous tuning studies
of the CLIC BDS baseline design, it has been observed that larger tuning difficulties are observed
when increasing the value of L∗. In order to reach the challenging tuning target for CLIC luminosity
L≥1.1L0 for 90% of the machines further improvements of the tuning algorithm are required.
In the case of the ATF2 lattices the studied tuning procedure is based on a set of orthogonal knobs.
We have shown that for the ATF2 Bx2.5By1.0 lattice 80% of the machines reach a final vertical beam
size at the IP σ∗

y ≤1.1σ∗
y0, where σ∗

y0 is the design vertical beam size at the IP. The result of simulations
has been compared to the experimental one obtained during the ATF2 experimental tuning session
in December 2010. The comparison shows that both results are in qualitative agreement within the
range that spans from 1.2 µm to 300 nm, however the speed of convergence in the tuning simulations
is faster than the experimental one. The tuning simulations in the case of the ATF2 Ultra-low β∗

y

lattice show that 80% of the machines reach a final σ∗
y ≤1.35σ∗

y0 with σ∗
y0= 25.6 nm. On the basis of

the comparison of the results of the tuning simulations for the ATF2 lattices we have concluded that a
slower tuning convergence takes place for lattices with larger chromaticity like the ATF2 Ultra-low β∗

y .
This result implies that more experimental measurements would be required for larger chromaticity
lattices.
With respect to the ATF2, two new lattices the ATF2 Bx2.5By1.0 and ATF2 Ultra-low β∗

y that
preserve the design spot sizes have been proposed. The tuning experimental verification of these
lattices would validate the feasibility of the FFS based on the local chromaticity correction scheme
and in addition the feasibility of higher chromaticity lattices. Presently intense work is ongoing at
ATF2, as a result of it in February 2010 it was measured a σ∗

y= 168±2 nm. We hope that in the near
future, the design and optimisation methods proposed and developed in the thesis will be used for
further reduction of the IP vertical spot size, down to values of 40 nm and even below 30 nm when
experiencing with the ultra-low βy lattice.
Finally, the problem of magnetic centre motion of quadrupoles when using shunting alignments tech-
niques has been addressed in the thesis. The achieved resolution in the BBA measurements conducted
at ATF2 is of the order of the µm. On the basis of these high resolution measurements we have con-
cluded that the motion of the magnetic centre of a dedicated FFS quadrupole is less than 1 µm when
the strength of the magnet is shunted by ±20%. In addition the beam based alignment measure-
ments carried out at the CTF3 facility have shown the importance of dedicated magnets to meet the
challenging magnetic centre motion requirements of a FFS.
However the tuning procedure of the CLIC lattices proposed in the thesis does not allow to reach the
envisioned tuning target in terms of percentage of machines nor in terms of the achieved luminosity
L for values of σoffset ≥3 µm. Further improvements of the tuning algorithm are still required, for
example the study of the 2nd order tuning knobs should be explored. Nevertheless according to the
experimental measurements at ATF2 the assumption of level of misalignment of the FFS magnets
by less than 1 µm is justified. This result in combination with possible improvements of the tuning
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algorithm may help to reach the challenging tuning goal of CLIC when performing a statistical tuning
study that includes the additional errors as tilts and miss-powering of the magnets.
As far as the new ATF2 lattices proposed in the thesis are concerned, it is planned to implement
the ATF2 Bx2.5By1.0 design to reach the 38 nm hopefully in the near future. The results on the
tolerance calculations for the FD of ATF2 are currently used as a basis for a new FD which is under
development at CERN. After replacing the FD at ATF2, the ATF2 Ultra-low β∗

y lattice could be
used for experiments with a larger chromaticity lattice. In addition the algorithm for simulating the
Shintake measurement developed in the thesis is currently used by the ATF2 collaborators for further
studies.
The results obtained in this thesis have been published in the following paper:

• R. Tomás, H. Braun, J.P. Delahaye, E. Marín, D. Schulte, F. Zimmermann, "ATF2 Ultra-Low
IP Betas Proposal", Proceedings of PAC’09, Vancouver, May 2009, pp. 2540-2542,
http://accelconf.web.cern.ch/AccelConf/PAC2009/papers/we6pfp024.pdf.

• G. White,..., E. Marín,..., et al. "Operational Experiences Tuning the ATF2 Final Focus Optics
Towards Obtaining a 37 nanometer Electron Beam IP Spot Size", Proceedings of IPAC’10,
Kyoto, May 2010, pp. 2383-2385,
http://accelconf.web.cern.ch/AccelConf/IPAC10/papers/weobmh01.pdf.

• R. Tomás,..., E. Marín,..., et al. "The CLIC BDS Towards the Conceptual Design Report".
Proceedings of IPAC’10, Kyoto, May 2010, pp. 3419-3421,
http://accelconf.web.cern.ch/AccelConf/IPAC10/papers/wepe030.pdf.

• B. Parker,..., E. Marín,..., et al, "A Superconducting Magnet Upgrade of the ATF2 Final Focus",
Proceedings of IPAC’10, Kyoto, May 2010, pp.3440-3442,
http://accelconf.web.cern.ch/AccelConf/IPAC10/papers/wepe041.pdf.

• E. Marin et al. "Scenarios for the ATF2 Ultra-Low Betas Proposal". Proceedings of IPAC’10,
Kyoto, May 2010, pp.4554-4556,
http://accelconf.web.cern.ch/AccelConf/IPAC10/papers/thpe020.pdf.

• Yu.A. Kubyshin,..., E. Marín,..., et al. "Simulations of Emittance Measurement at CLIC",
Proceedings of PAC’11, New York, March 2011, pp. 2270-2772,
http://accelconf.web.cern.ch/AccelConf/PAC2011/papers/thp073.pdf.

• E. Marin et al. "Status of the ATF2 lattices". Proceedings of IPAC’11, San Sebastián. Septem-
ber 2011. pp. 1027-1029,
http://accelconf.web.cern.ch/AccelConf/IPAC2011/papers/tupc016.pdf.

• G. Sterbini,..., E. Marín,..., et al. "Beam-Based Alignment in CTF3 Test Beam Line". (To be
CERN-ATS-2012-144. May 2012. p.4.

• B. Dalena, J. Barranco, A. Latina, E. Marin, J. Pfingstner, D. Schulte, J. Snuverink, R. Tomás
and G. Zamudio, "Beam delivery system tuning and luminosity monitoring in the Compact
Linear Collider". Phys. Rev. ST Accel. Beams, vol 15, no 5 (2012).

• J. Barranco, E. Marin and R. Tomás, "Luminosity studies in a crab cavity scheme in the CLIC
Final Focus." submitted to PRST-AB.
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Figure 77: Phase space ellipse. The axis (u, u′) correspond either to (x, x′) or (y, y′) or (z, z′). (Figure
taken from [140]).

A Beam dynamics

A.1 Beam emittance

The beam emittance ǫ is defined as A/π where A is the area of the region occupied by the particles
of a beam in the phase space which is usually enclosed by an ellipse, see Fig. 77. It is called phase
space ellipse and its equation is given by the following relation:

γu(s)u2 + 2αu(s)uu′ + βu(s)u′2 = ǫu (97)

where u=x, y or z coordinates. The β, α and γ are the ellipse parameters or Twiss parameters [10]
that determine the shape and orientation of the ellipse along the s coordinate. Figure 77 shows the
relation between the emittance and the Twiss functions at a given location in the machine.

A.2 Magnetic field of guiding magnets

Bending, quadrupole and sextupole magnets are extensively used accelerator components for trans-
porting the beam throughout a machine. The dipole, quadrupole and sextupole magnetic fields in
these magnets are described by the following formulas:
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Figure 78: Yoke profiles of a bending (upper
plot), normal quadrupole (middle plot) and nor-
mal sextupole (lower plot) magnets. (Figure taken
from [140]).

Bending magnet

Bx = 0 (98)

By = B0 where B0 =
µ0ncI

h
(99)

ρr =
B0

p/e
. (100)

There h is the gap between the poles and ρr is the
bending radius.
Normal quadrupole magnet

Bx = −gy (101)

By = −gx where g =
2µ0ncI

R2
c

(102)

K =
g

p/e
, (103)

Rc is the shortest distance from the quadrupole
center to the pole face, g and K are the gradient
and the normalised gradient of the quadrupole,
respectively.
Normal sextupole magnet

Bx = s · xy (104)

By = −s

2
· (x2 − y2) where s =

6µ0ncI

R3
s

(105)

Ks =
s

p/e
, (106)

Rs is the distance from the sextupole center to
the pole face, s and Ks are the gradient and the
normalised gradient of the sextupole, respectively.
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In the formulas above µ0 is the permeability, nc is the number of turns of the coils which transport
the current I, p is the particle momentum and e is the electron charge. The normalisation factor p/e
is usually referred to as the magnetic rigidity, in case of relativistic electrons it is equal to:

p/e = Bρr, (107)

where ρr is the bending radius.

A.3 Matrix representation of linear accelerator components

The transport matrix (R) of the linear elements of an accelerator are the following:

Drift space

The linear map of a drift space or field free region of length ld is given by the following Rd matrix:

(
u
u′

)

s+ld

= Rd

(
u
u′

)

s

=

(
1 ld
0 1

)(
u
u′

)

s

.

Bending magnet

The map of a bending magnet of length lb and bending radius ρc is given by Rb as follows:

(
u
u′

)

s+lb

= Rb

(
u
u′

)

s

=

(
cos( lb

ρc
) ρc sin( lb

ρc
)

− 1
ρc

sin( lb
ρc

) cos( lb
ρc

)

)(
u
u′

)

s

.

Normal quadrupole magnet

The maps of a focusing and defocusing quadrupole magnets of length lq and normalised gradient K
are given by Rq,f and Rq,d respectively, as:

(
u
u′

)

s+lq

= Rq,f

(
u
u′

)

s

=

(
cos(lq

√
K) 1√

K
sin(lq

√
K)

−
√

K sin(lq
√

K) cos(lq
√

K)

)(
u
u′

)

s

(
u
u′

)

s+lq

= Rq,d

(
u
u′

)

s

=

(
cosh(lq

√
K) 1√

K
sinh(lq

√
K)√

K sinh(lq
√

K) cosh(lq
√

K)

)
,

(
u
u′

)

s

.

In the thin lens approximation (lq → 0, Klq = k finite) the matrices Rq,f and Rq,d are given by:

Rl→0
q,f =

(
1 0

−k 1

)
and Rl→0

q,d =

(
1 0
k 1

)
.
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B Magnetic centre measurements at ATF2

In this section the plots of the obtained ẏmc coefficients for each orbit of the three measurements at
ATF2 discussed in Section 6.3.1 are shown. Each plot of Fig. 79 contains the values of ẏmc calculated
for the different trajectories obtained either by shunting the previous quadrupole magnet or by moving
the quadrupole magnet itself. The computed results are summarised in Table 25.
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Figure 79: Obtained ẏmc coefficients for the 1st, 2nd and 3rd measurements.
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Unit QFR300 QFR800 PXMQMAHNAP35
Function Normal Normal Normal

Cooling system air air air
Aperture width [mm] 38.0 38.0 58.0
Aperture height [mm] 38.0 38.0 58.0

Iron length [mm] 170.0 170.0 104.0
Magnetic length [mm] 193.3 193.3 120.0

Total width [mm] 317.0 317.0 274.0
Total height [mm] 236.0 236.0 274.0

Weigth [Kg] 50 50 51
Lamination thickness [mm] 0.65 0.65 1.5

Peak current [A] 8.0 8.0 10.0
RMS current [A] 8.0 8.0 10.0

Number of turns per pole 128 128 85
Resistance 20 ◦C [mΩ] 1000 1000 340

Gradient at peak current [T/m] 7.14 7.14 2.5
Integrated Gradient at peak current [T] 1.38 1.38 0.3

Table 26: Main characteristics of the QFR300, QFR800 and PXMQMAHNAP35 quadrupole magnets.

C Magnets characteristics

Table 26 compares the main characteristics of the QFR300, QFR800 and the PXMQMAHNAP35
quadrupole magnets used in the beam based alignment study discussed in Section 6.3.2.

C.1 Conversion from current to gradient

In order to compare the ẏmc coefficient for different magnets, it is necessary to convert the current
intensity of the magnet (I) into integrated normalised strength (k). The results of the measurements
of the magnetic field of the QFR300, QFR800 and PXMQMAHNAP35 quadrupole magnets for several
currents, discussed in Section 6.3.2, are reported in [129], [130] and [137] respectively. The integrated
gradient (g · lq) is the slope of the red, green and blue curves of Fig. 80. The results of the linear
interpolation of the data are the following:

QFR300 : glQFR300 = 0.1657 ± 0.0004 T (108)

QFR800 : glQFR800 = 0.1599 ± 0.0005 T (109)

HNAP35 : glHNAP35 = 0.03128 ± 0.00002 T (110)

Assuming that the TBL beam energy (E) is about 111 MeV the integrated normalised gradient is
obtained by using Eq. (103). One gets:

QFR300 : kQFR300 = 0.448 ± 0.001 m−1 (111)

QFR800 : kQFR800 = 0.432 ± 0.0013 m−1 (112)

HNAP35 : kHNAP35 = 0.08450 ± 0.00005 m−1 (113)
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Figure 80: Integrated gradient versus quadrupole current. Red, green and blue dots show the measure-
ment of the magnetic field of the QFR300, QFR800 and PXMQMAHNAP35 (HNAP35) quadrupole
magnets respectively as a function of the current of the magnet.
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