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Introduction

The last four decades of the twentieth century saw the planning and realization of sev-

eral particle colliders. They all were mainly constructed to gain introspection into the

“particle zoo” up to then observed and to refine and test that highly predictive theory that

is the Standard Model (SM). Their design allowed for lepton-lepton (as LEP at CERN),

lepton-hadron (as HERA at DESY), and hadron-hadron (as Tevatron at FermiLab) col-

lisions. The huge information collected along the years brought to an extremely precise

determination of many Standard Model parameters and to the assessment of perturbative

Quantum ChromoDynamics (QCD). The priceless experience earned during those years

is the basis that made possible the construction of the largest and by far more precise

working machine that humanity ever built: the Large Hadron Collider (LHC) at CERN,

near Geneva.

The two proton beams that cross each other in four points of the 27 kilometers-long

ring previously occupied by LEP are bended by more than 1600 superconductive magnets,

each positioned with a displacement resolution of 50 micrometers. Many features of the

LHC and of the experiments connected to it are achieved usingthe latest technology.

The correct and harmonic functioning of all the components involved implies a huge,

challenging effort of thousands of experts.

The large amount of data produced each year (∼25 petabytes) needs to be analyzed

into detail in order to test new theories and to look for possible hints of new physics.

Indeed, an increased accuracy on experimental measurements calls for a much stricter

control over theoretical uncertainties. The results of thepresent work go in that direction.

At hadron colliders, even if the beams contain protons as it is the case for LHC,

what really interact during a collision are proton’s constituents: quarks and gluons. As

a consequence, all the measured hadronic observables depend on the behaviour of these

constituents, that cannot be isolated and accelerated up toa known energy before their

collision because of quark confinement. The strong couplingconstant has an opposite

behaviour if compared to the coupling of Quantum ElectroDynamics (QED), i.e. it has

large values for low energy scales, breaking the perturbative regime: large couplings

imply strong interactions that no more can be considered as perturbations.
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However, one of the consequences of the non-Abelian nature of QCD, asymptotic

freedom, allows for a perturbative treatment of the strong interaction for sufficiently high

energy scales. In fact, increasing the resolution theαS value gets smaller. The observ-

ables factorize into a non-perturbative part, Parton Distribution Functions (PDFs), and

hard-scattering matrix elements that can instead be determined from perturbation theory.

Parton sets must be extracted from data, and are then used to compute theoretical predic-

tions and to perform phenomenological studies.

These theoretical considerations, preceded by a brief historical introduction, are pre-

sented into more detail in Chapter 1. There, the main featuresof perturbative QCD are

discussed. Special attention is paid to that features and tools on which mostly rely the

results here discussed, as are the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

evolution equations or the treatment of heavy quark effects. It is very important, in or-

der to deliver a competitive parton set for precision LHC phenomenology, to address all

theoretical and procedural issues that may introduce non-negligible uncertainties on top

of the experimental ones. Indeed, these would affect all theanalyses that relies on such a

PDF set. All the efforts of the groups that produce PDF fits from available data attempt

to address these issues.

The various procedures followed to this extent by the various groups are discussed in

Chapter 2. The work presented in this thesis is realized within the Neural Network Parton

Distribution Functions (NNPDF) collaboration and its methodology is presented in Chap-

ter 3. As it is not known which functional form may be suitablefor the correct description

of a set of parton distributions, the parametrization used must be very flexible. Commonly,

a polynomial functional form is used, but in this way the fit islikely to be biased because

of lack of flexibility. In NNPDF methodology, a combination of Monte Carlo sampling

in the space of data with a non-linear parametrization givenby neural networks is used.

In this way it is possible to use a much larger parameter set (∼ ten times), minimized

through a properly tuned Genetic Algorithm (GA). To correctly determine the best set of

parameters, the fit needs to stop its minimization before theminimum possibleχ2 value

is reached. This is done using dynamical stopping based on a cross-validation method.

This avoids to enter the overlearning regime, i.e. the fitting of statistical fluctuations of

datapoints.

In Chapter 4, at first are discussed results relative to the NNPDF2.1 NLO release,

and then also the LO and NNLO determinations. For the energies and the performance

reached at the LHC, heavy quark effects must be included and the impact of the neglected

higher perturbative orders must be kept under control. Thisis done through the compari-

son with results from the same NNPDF collaboration, using previous releases orad hoc

modifications of them made to assess the impact of each singlenew feature introduced,

2



but also through the comparison with parton sets from other groups. This benchmark is

also performed computing predictions for a set of LHC standard candles in Chapter 5. It

is important to check consistency of the results computed with different parton sets, both

among them and with the first available LHC measurements.

As one of the major sources of theoretical uncertainty is included in the dependence on

αS, an estimate ofαS(MZ) using NNPDF methodology is finally presented. A parabolic

fit of theχ2 profile given by a set of PDF sets with varyingαS(MZ) values is performed.

The profile is composed by the values for totalχ2 on the global fit for each different

αS(MZ) value and their errors. Also, the same kind of fit is performedon subsets of the

main global data as on single experiments. Hence, not only the best value forαS(MZ) is

determined but is also performed a complete study of the rolethat each single set plays

inside the fit.

3
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Chapter 1

Perturbative Quantum

Chromodynamics

In this Chapter, I will discuss the main properties of quantumchromodynamics. In the

first part the evidences that first hinted at and then confirmedthe existence of quarks and

gluons are presented. Then, the properties of asymptotic freedom and confinement are

introduced. In the second part of the Chapter, a general discussion on Deep-Inelastic

Scattering (DIS) is used to gain insight on parton model and its improvements, DGLAP

equations, and heavy quarks treatment. The discussion heredeveloped follows mainly

the arguments presented in Refs. [1–3], along with the cited references throughout the

Sections.

1.1 Quarks and Gluons

The second half of last century was characterized by the discovery of an astonishing num-

ber of new particles. This fact, together with the peculiar structure emerged in organizing

these particles (hadrons) into groups, suggested that theywere not elementary: on the

contrary, they were composed by other more fundamental constituents. A scheme that

grouped together particles with the same spin, the SU(3) symmetry, was introduced in

1961 by Gell-Mann [4] and Ne’eman [5]. Two groups of mesons, with spin-0 and spin-1

respectively, and two of baryons, with spin-1/2 and spin-3/2 respectively. The feeling that

this symmetry was the correct one was enhanced by the discovery of new particles, pre-

dicted by this model. Gell-Mann [6] and Zweig [7] in 1964 firstproposed the existence

of smaller, three-flavored particles inside hadrons: the quarks. But still the∆++ baryon,

that accordingly to the quark model is composed of three up quarks with parallel spins,

showed that another ingredient was missing. Three identical quarks cannot form an an-

tisymmetric state, as is the case for a fermion. A year later Han, Nambu, and Greenberg

5



6 Perturbative Quantum Chromodynamics

Figure 1.1: Left: ratioσ/σMott vs q2 for constant values of the invariant mass of the
recoiling target systemW = 2, 3, and3.5 GeV. Also shown is the elastice− p scattering
cross-section divided byσMott [9]. Right: 2MW1 andνW2 for the proton as functions of
ω for W > 2.6 GeV,q2 > 1 (GeV/c)2 andR = 0.18 [10].

solved this problem by proposing that quarks possess an additional SU(3) gauge degree

of freedom: the color charge.

It took several years to experimentally prove the real existence of these approximately

point-like components of the hadrons. Deep-inelastic scattering experiments performed

at SLAC [8] showed that electrons were hitting some kind of hard core inside the target

protons. As discussed in Ref. [9] and summarized in Ref. [10], two unexpected hints of

this were the weakq2 dependence of the ratioσ/σMott for that process and scaling, where

q2 = 2EE ′(1 − cos θ) is the momentum transfer of the proton withE the energy of the

incident electron,E ′ the energy of the scattered electron, andθ the scattering angle.

It was clear thatσ/σMott, with

σMott =
e4

4E2

cos2 θ
2

sin4 θ
2

, (1.1)

decreased much more slowly withq2 than the same quantity for elastic scattering (Fig. 1.1).

This was a similar situation to the one that brought Ernest Rutherford to the discovery of

the atomic nucleus [11], where the probability of large-angle alpha particles scattering

from gold atoms was found to be far larger than anticipated byJ.J. Thompson’s model.



1.1 Quarks and Gluons 7

Figure 1.2: Di-jets event detected inside the ATLAS experiment [13].

Moreover, introducing the general expression for the differential cross-section for unpo-

larized electrons scattering from unpolarized nucleons [12] as

d2σ

dΩdE ′
= σMott

[
W2 + 2W1 tan

2 θ

2

]
, (1.2)

whereW1 andW2 are the structure functions of the target, these two expressions are ex-

pected to be functions of bothq2 andν, where the latter is the energy loss of the scattered

electron,E − E ′. Bjorken suggested in a private communication that the quantities νW2

and2MPW1 become functions only of the ratioω = 2MPν/q
2 in the limit of highq2 and

ν, that is:

2MPW1(ν, q
2) → F1(ω) (1.3)

νW2(ν, q
2) → F2(ω) (1.4)

whereMP is the proton mass (M from now on). In later contributions theω variable was

replaced by its inverse,x. The scaling behaviour of the structure functions is shown in

Fig. 1.1.

Another important result is related to sum rules: it is possible to write

F p
2 (x) = νW p

2 (x) (1.5)

= x
[
Q2

u

(
up(x) + ūp(x)

)
+Q2

d

(
dp(x) + d̄p(x)

)]
(1.6)

where functionsu, d, ū, andd̄ are the momentum distributions of the up and down quarks

and the respectively antiquark distributions (more details on these distributions will be
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discussed in the next Chapter), andQu,Qd are their electrical charges.

Considering the sum rule for neutrons and protons

I1 =

∫ ∞

1

νW2(ω)
dω

ω
(1.7)

using charge symmetry it reads:

1

2

∫ 1

0

[F p
2 (x) + F n

2 (x)]dx =
Q2

u +Q2
d

2

∫ 1

0

x[up(x) + ūp(x) + dp(x) + d̄p(x)]dx. (1.8)

If quarks and antiquarks carries the nucleon’s total momentum, the integral on the right

hand side of Eq. (1.8) should equal 1. So, assuming this, it should be

1

2

∫ 1

0

[F p
2 (x) + F n

2 (x)]dx =
Q2

u +Q2
d

2
=

1

2

[
4

9
+

1

9

]
=

5

18
= 0.28 . (1.9)

The evaluations of the experimental sum from proton and neutron results over the entire

kinematic range studied yielded

1

2

∫ 1

0

[F p
2 (x) + F n

2 (x)]dx = 0.14± 0.005 , (1.10)

thus suggesting that half of the nucleon’s momentum is carried by neutral constituents,

the gluons, which do not interact with the electron. To identify the constituents of the

nucleon as quarks, some electron scattering results playeda crucial role during the mid

70s. Mainly, measurements of the ratio between longitudinal and transversal components

R = σL/σT (determining the spin 1/2 of the constituents), measurements of σn/σp ratio

between neutron and proton results (excluding purely diffractive models and discarding

identical momentum distributions for the constituents), and evaluations of sum rules (that

confirms that the constituents has fractional electric charge and, as anticipated, that half

of the nucleon’s momentum is carried by neutral gluons).

In that same period, among the facts that definitely convinced physics community that

quarks and gluons really existed it is worth citing the discovery ofJ/Ψ particles in 1974

at Brookhaven National Laboratory [14], that cannot be explained without adding to the

up, down and strange quarks also a fourthcharmquark (c), the observation in 1975 of

hadron jets [15] from high energy electron-positron collisions (detailed analysis indicated

that these jets were the footprints of individual spin-1/2 particles), the discovery in 1977

at Fermilab [16] of thebottomquark (b), and the observation of additional jets emerg-

ing from electron-positron collisions at DESY in 1979 [17],that gave visible evidence of

gluons existence. In particular, the production and observation of multi-jets events has
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Figure 1.3: A three-jets event detected inside the ATLAS experiment [13].

nowadays become a frequent and usual fact into LHC detectors(Figs. 1.2-1.3).

1.2 Asymptotic Freedom and Confinement

As introduced in the previous Section, the 70s have been crucial years for the develop-

ment of QCD. That years paved the way for high energy collider physics of today. As a

matter of fact, without a precise and complete description of strong interaction it would be

impossible today to study complex events as, for example, a Higgs boson decay. A turn-

ing point in understanding and describing strong interaction was reached in 1973. Up to

that moment, one of the unanswered questions was about the possibility of observing free

partons, as R.P. Feynman called nucleon’s constituents. Whatever theenergy of collision

in the experiments, these particles were never directly observed.

In the summer of 1973, D.J. Gross and F. Wilczek [18] and H.D. Politzer [19] demon-

strated asymptotic freedom for QCD. The coupling of strong interaction gets smaller in-

creasing the energy scale of the interaction and it is clear that asymptotic freedom and

quark confinement are two different consequences ofαs behaviour. The strong interac-

tion, among the fundamental forces, has the peculiarity of increasing its strength with

the distance between partons. This explains why all the attempts of tearing apart a free

parton from a nucleon failed. As soon as the energy of the interaction grows enough,

a quark-antiquark pair is generated. This mechanism also explains the phenomenon of

hadronization, and jets are its detectable manifestation. If quark confinement makes it

impossible to have free partons, asymptotic freedom guarantees the possibility of a per-
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turbative approach to QCD for sufficiently largeQ scales.

In the following, asymptotic freedom is approached in a moredetailed way. QCD is

a renormalizable Lagrangian field theory of the strong interaction. It is the study of the

SU(3) Yang-Mills theory of color-charged fermions (quarks) and of a set of spin 1 gauge

fields (gluons) which mediate the interaction among quarks as well as among themselves.

The four-spinor describing the quark (antiquark) field is denoted byqaj (q̄aj ). The index

j refers to flavor while indexa to the three color degrees. A vector gauge fieldAa
µ,

which transforms under the adjoint representation of SU(3), is introduced to describe the

flavorless colored octet of gluons. The indexa is again a color index but this time it runs

over eight values instead of only three. The Feynman rules required for a perturbative

analysis of QCD can be derived from a Lagrangian density whichis given by

L = Lclassical + Lgauge−fixing + Lghost. (1.11)

The minimal locally gauge invariant Lagrangian density implied by this SU(3) symmetry

is

Lclassical = −1

4
Ga

µνG
µν
a +

∑

j

q̄aj (iγ
µDµ −mj)abq

b
j . (1.12)

These terms describe the interaction of spin-1/2 quarks of massm and massless spin-1

gluons, where

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfa

bcA
b
µA

c
ν (1.13)

is the field strength tensor derived from the gluon fieldAa
µ, with fabc the structure constants

of the SU(3) color group, and

Dµ = ∂µ − ig
1

2
λaA

a
µ (1.14)

is the covariant derivative, withg the coupling constant of the interaction, that is unique

and universal, and withλa the SU(3) color matrices:

[λa, λb] = ifabcλc . (1.15)

It is impossible to define a gluon field propagator without choosing a gauge. For this

reason is needed a gauge-fixing termLgauge−fixing that allows, for a specific value of the

gauge parameterα, to fix the class of covariant gauges:

Lgauge−fixing = − 1

2α
(∂µAa

µ)
2. (1.16)

To avoid that unphysical degrees of freedom propagate in covariant gauges, a non-Abelian
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theory such as QCD must be supplemented by a ghost Lagrangian,which is given by

Lghost = ∂µη
a†(Dµ

abη
b), (1.17)

whereηa are massless fields that obey to Fermi statistics.

This is a renormalizable theory. As a consequence, a physical observable perturba-

tively computed also depends on the scaleµ at which the divergences of the perturbative

series are subtracted. Considering as an example a dimensionless physical observableF

which depends on a single energy scaleQ, when this is calculated as a perturbative ex-

pansion in the couplingαs = g2/4π the perturbative series requires renormalization to

remove ultraviolet divergences. So, in general, the observableF also depends on the ratio

Q2/µ2. Another consequence of this procedure is that also the renormalized couplingαs

depends on the choice made for the subtraction pointµ. Physical observables must give a

description of the phenomenology independent of the methodused to obtain them. This

means that they cannot depend on the choice of the renormalization scale. It is possible to

express this condition in a mathematical way: given thatF is dimensionless, it can only

depend on the ratioQ2/µ2 andαs, so it must be

µ2 d

dµ2
F (Q2/µ2, αs) =

[
µ2 ∂

∂µ2
+ µ2∂αs

∂µ2

∂

∂αs

]
F = 0 . (1.18)

To solve this differential equation, the running coupling constantαs(Q
2) is introduced.

As a first step, Eq. (1.18) is rewritten in a more compact way as

[
− ∂

∂t
+ β(αs)

∂

∂αs

]
F (et, αs) = 0 (1.19)

defining

t ≡ ln

(
Q2

µ2

)
, β(αs) ≡ µ2∂αs

∂µ2
. (1.20)

Starting from Eq. (1.20), the running couplingαs(Q
2) is implicitly defined as

t =

∫ αs(Q2)

αs

dx

β(x)
, αs = αs(µ

2) (1.21)

and differentiating with respect tot andαs the first part of Eq. (1.21) it follows

∂αs(Q
2)

∂t
= β(αs(Q

2)) ,
∂αs(Q

2)

∂αs

=
β(αs(Q

2))

β(αs)
. (1.22)
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Computing the observableF in µ2 = Q2 it gives

F (et, αs)|µ2=Q2 = F (1, αs(Q
2)) , (1.23)

and taking into account the expressions of Eq. (1.22) it is easy to see that this last expres-

sion ofF , with all the scale dependence included in the running coupling, is a solution of

Eq. (1.19).

In QCD, a way to determine the running of the coupling constantis to expand pertur-

batively theβ function as [18,20]

Q2 ∂αs

∂Q2
= β(αs) = −bα2

s(1 + b′αs + b′′α2
s +O(α3

s)) , (1.24)

where

b =
11CA − 2nf

12π
=

33− 2nf

12π
(1.25)

b′ =
17C2

A − 5CAnf − 3CFnf

2π(11CA − 2nf )
=

153− 19nf

2π(33− 2nf )
(1.26)

b′′ =
2857C3

A + (54C2
F − 615CFCA − 1415C2

A)nf + (66CF + 79CA)n
2
f

288π2(11CA − 2nf )
(1.27)

=
77139− 15099nf + 325n2

f

288π2(33− 2nf )
(1.28)

with

CF =
4

3
, CA = 3 (1.29)

as is the case for SU(3), andnf the number of active light flavors.

Contrary to what happens in the case of QED, in QCD the first coefficient of theβ function

is negative fornf < 16, thanks to the gluon-gluon interaction of this non-Abeliantheory.

As briefly discussed here below, this is a crucial feature of the theory.

If both αs(µ
2) andαs(Q

2) are in the perturbative region, it is possible to truncate the

expansion in Eq. (1.24) and solve Eq. (1.21):

t =

∫ αs(Q2)

αs

dx

−bx2 =

[
1

bαs(Q2)
− 1

bαs(µ2)

]
. (1.30)

Recalling thatt = ln(Q2/µ2) it can be written

αs(Q
2) =

αs(µ
2)

1 + αs(µ2)bt
. (1.31)

For largeQ2, t also grows and so this expression tells us thatαs(Q
2) decreases. This
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property is calledasymptotic freedomand it depends on the sign of theb coefficient. In

QED the sign is the opposite and soαQED’s behaviour is also the opposite. This means

that to a largeQ2 corresponds a large coupling, thus leading outside the perturbative

region. Then, of course, are smallQ2 that in QCD leads outside perturbative region.

The threshold at which the perturbative approach is spoiledout is easily introduced

with the parameterΛ2. When the termαs(µ
2)bt ≃ 1 thenαs(Q

2) is no more as small as

required by perturbation theory.

The parameterΛ2 is defined as

Λ2 = µ2e1/αs(µ2)b (1.32)

and it follows

αs(Q
2) =

αs(µ
2)

1 + αs(µ2)b(ln Q2

Λ2 + ln Λ2

µ2 )

∣∣∣∣∣
µ2=Λ2

=
αs(Λ

2)

1 + αs(Λ2)b ln Q2

Λ2

. (1.33)

The value ofΛ2 refers to the energy scale at which partons cannot be considered as

free particles, and are strongly bound to each other forminga hadronic state. There are

several possible approximate solutions for the renormalization group Eq. (1.24) and an

alternative to the use of such approximated expressions is to exactly solve Eq. (1.24) in

a numerical way. In these casesΛ2 is not defined and in determinations of the strong

coupling it is a common practice to quoteαs at a given scale rather than fixing aΛ2

parameter. The typical scale forαs is the mass of theZ bosonMZ . Asymptotic freedom

is a fundamental property that allows for precision QCD phenomenology. In the next

Section the case of deep-inelastic scattering will be considered and discussed to illustrate

the main features of the parton model and perturbative QCD.

1.3 The Parton Model

The parton model can be considered as the leading order approximation of perturbative

QCD. As represented in Fig. 1.4, the DIS process here considered is a lepton-hadron

scattering. The incoming and outgoing four-momenta of the lepton are labeled bykµ and

k′µ respectively. As a consequence, the momentum transfer isqµ = kµ − k′µ. Assuming

to have as hadronic target a proton, its momentum is labeled by P µ. The process here

considered is a high-energy scattering, and so lepton masses can be neglected.
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q

k
k′

P
X

Figure 1.4:Diagram of a DIS process.

The standard deep inelastic variables are defined by

Q2 ≡ −q2 (1.34)

ν ≡ P · q
M

(1.35)

and also

x =
1

ω
=

Q2

2Mν
(1.36)

y =
q · P
k · P = 1− E ′

E
. (1.37)

Notice that only two variables amongx, y, andQ2 are independent of each other as the

center of mass energy of the lepton-nucleon system iss = Q2/(xy) +M2.

It is possible to determine a general expression for the cross-section of such a process

paying attention to some peculiarity. To write down a Feynman diagram and compute the

matrix element in this case is nontrivial as the interactionhere is not between two point-

like particles as is the case for example in an electron-muonscattering. Here, instead of a

muon, a more complicated hadronic object has to be considered.

In general it is still possible to write

dσ ∼ LµνW
µν , (1.38)

whereLµν represents the lepton tensor whileW µν parametrizes the unknown form of the

current relative to the proton system in the matrix element.As Lµν is symmetric, the

hadronic tensor must also be symmetric. Moreover, the most general form ofW µν must

include terms constructed out ofgµν and the independent momentaP andq.
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It is possible to write

W µν = −F1g
µν +

F2

M2
P µP ν +

F4

M2
qµqν +

F5

M2
(P µqν + qµP ν) , (1.39)

and as at the hadronic vertex must be verified, as for the leptonic part, current conserva-

tion, that is

qµW
µν = qνW

µν = qµLµν = qνLµν = 0 , (1.40)

imposing these conditions onW µν allows to expressF4 andF5 in terms ofF1 andF2,

obtaining

W µν = F1

(
− gµν +

qµqν

q2

)
+

F2

P · q

(
P µ − P · q

q2
qµ

)(
P ν − P · q

q2
qν

)
. (1.41)

In this expression theF3 contribution is not considered: this term appears as a parity-

violating structure function, in the case in which the electron is substituted by a neutrino.

In the present treatment electroweak contribution will notbe considered, as the result can

be easily generalized. Including the phase space factor forthe outgoing electron and the

flux factor, the inclusive differential cross-section for this process is obtained as

dσ =
1

4(k · P )

[
4πe4

q4
LµνW

µν

]
d3k′

2E ′(2π)3
, (1.42)

where the leptonic tensor is easy to compute and it gives

Lµν = 2
[
kµk

′
ν + k′µkν −

Q2

2
gµν

]
. (1.43)

As for the hadronic tensor, terms associated with parity violation are neglected.

The4π factor that multiplies the electric charge appears becauseof the normalization of

W µν :

W µν =
1

2

1

4π

∑

X

〈h|J†µ|X〉〈X|Jν |h〉(2π)4δ(PX − k − P ) . (1.44)

For small-wavelength virtual photons (large momentum transfer) the nucleon internal

structure is resolved. A simple model is considered, in which the virtual photon scatters

off a point-like quark constituent inside the proton carrying a fractionξ of the proton

momentum, so that:pµ = ξP µ. If an e+e− → qq̄ process is now considered, crossing

symmetry relates it to the partonic processe−q → e−q, so that is possible to easily write

the spin- and color-averaged squared matrix element summedover the final colors and
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P
X

k

k′

q

p

Figure 1.5:Diagram of a DIS partonic process.

spins in terms of the Mandelstamm1 invariants

∑
|M|2 = 2e2qe

4 ŝ
2 + û2

t̂2
(1.45)

with

ŝ = (k + p)2 = ξQ2/xy (1.46)

t̂ = (k − k′)2 = −Q2 (1.47)

û = (p− k′)2 = ŝ(y − 1) (1.48)

that substituted into the standard result for the massless2 → 2 scattering gives

dσ̂

dQ2
=

2πα2e2q
Q4

[1 + (1− y)2] . (1.49)

An important consequence comes out of the mass-shell constraint for the outgoing quark,

in fact

p′2 = (p+ q)2 = q2 + 2p · q = −2P · q(x− ξ) = 0 , (1.50)

from which it follows necessarily thatx = ξ.

In other words, the fraction of the momentum carried by the struck parton is equal to the

1The ^symbol is used for variables and observables that refers to the partonic level of the process.
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Bjorken-x. Finally, it is possible to write

d2σ̂

dxdQ2
=

4πα2

Q4
[1 + (1− y)2]

1

2
e2qδ(x− ξ) . (1.51)

Going back to Eq. (1.42), this expression can be rewritten using the results for lep-

ton and hadron tensors Eqs. (1.41)-(1.43) and introducing standard variables defined in

Eqs. (1.34)-(1.37).

It reads

d2σ

dxdQ2
=

y

Q2

d2σ

dxdy
=

e4

4πQ4

[
y2F1(x,Q

2) + (1− y)
F2(x,Q

2)

x

]

=
4πα2

Q4

[
[1 + (1− y)2]F1 +

1− y

x
(F2 − 2xF1)

]
(1.52)

and by comparison with Eq. (1.51) it follows that

F̂1(x) =
1

2
e2qδ(x− ξ) , (1.53)

F̂2(x)− 2xF̂1(x) = 0 . (1.54)

Partons inside the nucleon not always bring the same fraction of the nucleon momen-

tum. This fact is observed looking at experimental results:structure functions appear to

be distributions inx rather than a delta function. To take this into account

2xF1(x) = F2(x) =
∑

i

∫ 1

0

dξfi(ξ)F̂2(ξ)

=
∑

i

∫ 1

0

dξfi(ξ)xe
2
i δ(x− ξ) =

∑

i

e2ixfi(x) , (1.55)

wherefi(ξ) are probability distributions that give a weight to the quark structure func-

tions. The fact thatF2 = 2xF1 is directly related to the spin-1/2 property of the quarks

and is called Callan-Gross relation. It confirms that the longitudinal structure function is

zero, as a spin-1/2 quark cannot absorb a longitudinally polarized vector boson. A spin-0

quark would not absorb transversely polarized vector bosons, giving as a consequence

thatF1 = 0 andFL = F2 .
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1.4 Perturbative Corrections to Parton Model

As already said, the parton model is a leading order approximation of QCD. Taking into

account next to leading order effects, gluons start playinga fundamental role. In fact,

while in the parton modelpT is zero, if gluon radiation is considered this is no more true.

In this case it can be thatpT ∼ Q2, as the transverse momentum is not restricted to be

small. This is a direct consequence of a real gluon emission from the quark, before or after

its interaction with the virtual boson (Fig. 1.6). Another consequence of the inclusion of

next to leading order contributions is that structure functions lose their scaling property.

This feature here described for parton model is broken in QCD by logarithms ofQ2. This

means that structure functions are functions of bothx andQ2. Let us reconsider the

expression of Eq. (1.55): this relates the structure functions defined in the proton frame

with the ones defined in the parton frame.

Introducing

z =
Q2

2pi · q
=
x

y
(1.56)

as a new variable for the parton frame, it is possible to rewrite the relation between the

structure functions in a more general way as

F2(x,Q
2) =

∑

i

∫ 1

0

dz

∫ 1

0

dyfi(y)δ(x− zy)F̂2(z,Q
2) , (1.57)

whereF2 andF̂2 are used as an example,x is fixed,z andy obey the constrainx = zy,

andfi(y) are the parton distribution functions for a parton of momentumpi.

Integrating overz gives

F2(x,Q
2) =

∑

i

∫ 1

x

dy

y
fi(y)F̂2(x/y,Q

2) , (1.58)

from which it is easy to recover the result of Eq. (1.55) whenF̂ is computed at leading

order.

In this Section theO(αs) corrections to the parton model are considered. The contri-

butions that need to be taken into account are represented inFigs. 1.6-1.7. The tree-level

contribution, the one-loop correction, the real gluon emission, and the gluon-boson fusion

need to be considered. Divergences may appear due to soft gluons (i.e. almost zero en-

ergy gluons) and collinear gluons (i.e. gluons emitted parallel to the incoming or outgoing

quark). The main aim of this Section and of the following one is to show how it is pos-

sible to “cure” these singularities. Dimensional regularization is a standard method used

to perform ultraviolet regularization in the context of renormalization, and is the same
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γ∗
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γ∗

q

q

q

q

q

q q

q

g
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g(a) (b)

(c) (d)

Figure 1.6:The Feynman diagrams for the tree-level (a), the one-loop (b), and the gluon emission
(c-d) processes.

method applied in this case. Looking at the loop contribution, the gluon is simultaneously

soft and collinear. An effective vertex [1] can be written, describing both the tree-level

qγ∗ → q and the one-loop diagrams as

iΓµ = −ieeq
[
1− αs

4π
CF

(4πµ2

Q2

)ǫ Γ(1− ǫ)

Γ(1− 2ǫ)

( 2

ǫ2
+

3

ǫ
+ 8 +

π2

3
+O(ǫ)

)]
, (1.59)

whered = (4 − 2ε). It is possible to explicitly check that soft and collinear singularities

at the origin of the double pole inε are removed by the real gluon contribution (Fig. 1.6).

To do this, the hadronic tensor is considered in the form

Wµν(P, q) =
∑

i

∫ 1

0

dy

y
fi(y)Ŵ

(i)
µν (yP, q) , (1.60)

whereŴ (i)
µν is the partonic tensor for the partoni. This expression can be written thanks to

the factorization theorem [21,22]. It is useful to split thehadronic tensor in its longitudinal
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and transverse components, writing

WT =
∑

i

∫ 1

0

dy

y
fi(y)Ŵ

(i)
T (yP, q) (1.61)

WL =
∑

i

∫ 1

0

dy

y3
fi(y)Ŵ

(i)
L (yP, q) . (1.62)

Using these expressions, the structure functions are

F2(x,Q)

x
=

1

1− ε
WT +

3− 2ε

1− ε

4x2

Q2
WL

F1(x,Q) − F2(x,Q)

2x
= −4x2

Q2
WL . (1.63)

For massless fermions the longitudinal projection vanishes and the Callan-Gross relation

is recovered. The transverse component for the virtual contribution is easily determined

from the expression of the effective vertex, and it is

ŴT,virt = e2q(1−ε)δ(1−ξ)
{
1− αs

2π
CF

(4πµ2

Q2

)ǫ Γ(1− ǫ)

Γ(1− 2ǫ)

(
2

ǫ2
+
3

ǫ
+8+

π2

3

)
δ(1−ξ)

}

(1.64)

while, to obtain the real contribution for the transverse component, the square amplitude

of the sum between the s- and t-channels of the processγ∗q → q′g (Fig. 1.6) needs to be

computed. The result is

ŴT,real = e2q
αs

2π
CF

(4πµ2

Q2

)ǫ
(1− ε)

Γ(1− ǫ)

Γ(1− 2ǫ){(
2

ǫ2
+

3

2ǫ
+

7

2

)
δ(1− ξ)− 1

ε

1 + ξ2

(1− ξ)+
+ (1 + ξ2)

(
log(1− ξ)

1− ξ

)

+

−1 + ξ2

1− ξ
log ξ − 3

2

1

(1− ξ)+
+ 3− ξ +O(ε)

}
. (1.65)

The plus-prescription is a distribution defined as

[f(z)]+ = f(z)− δ(1− z)

∫ 1

0

dξf(ξ). (1.66)

The double pole of the virtual contribution (that corresponds to a soft and collinear singu-

larity) is exactly cancelled by an identical negative double pole from the real contribution.

This fact is not accidental: suitably defined inclusive observables are free of singulari-

ties in the massless limit [23–25]. As can be seen immediately by a comparison between
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Eq. (1.64) and Eq. (1.65), a single pole is still present. This is due to the emission of a

collinear gluon. Before discussing how to get rid of this kindof singularities, it is better

to look in a more detailed way at their physical origin.

A quark radiates a gluon before interacting with a virtual photon. The region of in-

terest is the collinear kinematic one. In this region it can be used the Weizsäker-Williams

approximation [26] [27]. The fermionic propagator has momentum (p − k). Let’s call

this quantityp′. Then it is possible to write

/p′

p′2
=
u(p′)ū(p′)

p′2

(
1 +O(|kT |2)

)
. (1.67)

Because of the collinearity of the gluon the fermionic propagator can be approximated

with an on-shell fermion. Using the Sudakov kinematics thisfact is obvious: a four-

vector can be written on a basis composed by the momentump, a four-vectorn, and a

transverse vectorkT so that

p2 = n2 = n · kT = p · kT = 0 , 2p · n = 1 (1.68)

with

pµ = (P, 0, 0, P ) (1.69)

nµ = (
1

2P
, 0, 0,− 1

2P
). (1.70)

So thekµ four-vector can be written as

k = p(1− z) + yn− kT . (1.71)

Reminding thatk2 = 0, from the previous expression it follows

y =
|kT |2
1− z

. (1.72)

For |kT |2 → 0, then, alsoy → 0 and as

p− k = zp− yn+ kT (1.73)

(p− k)2 = −zy − |kT |2 = − |kT |2
1− z

(1.74)

it is clear from the last expression thatp′ → 0.
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Thanks to this approximation the matrix element factorizeslike this:

|M|2 = |Mqg|2
1

p′4
|Mγq|2

(
1 +O(|kT |2)

)
. (1.75)

Focusing on the partonic cross-section for this process, itcan be computed

σ̂(γ∗q → q′g) =
1

K

∫
dΦ

|Mqg|2 |Mγq|2
p′4

(1.76)

whereK is the flux factor anddΦ the one body phase space that can be written as

dΦ =
d3k

(2π)32Ek

=
πdz

2(2π)3(1− z)
d|kT |2. (1.77)

The factorized matrix elements are easy to compute, and gathering the results finally gives

σ̂(γ∗q → q′g) =
αs

2π

∫ ŝ/4

m2

d|kT |2
|kT |2

∫ 1

0

dz

(
Pqq(z)e

2
qδ(z − x) +O(|kT |2)

)

= e2q
αs

2π
Pqq(x) log

(Q2

m2

)
+ . . . (1.78)

wherePij(x) is a splitting function that can be considered as the probability of finding

a partonj with momentumxp inside a partoni with momentump. This contribution is

not subject to the theorems already cited in this Section that eliminate the double pole

singularity of the one loop diagram. The limit|kT |2 → 0 corresponds to a long-range part

of the strong interaction which is not calculable in perturbation theory. After applying the

Weizsäker-Williams approximation, the divergent part is isolated into theMqg term and

going back to the expression of Eq. (1.58) for the structure functions follows

F2(x,Q
2) = x

∑

q,q̄

e2q

{
q0(x) +

αs

2π

∫ 1

0

dz

z
q0

(x
z

)[
P (z) log

(Q2

m2

)
+ C(z)

]
+ . . .

}
,

(1.79)

where the parton distribution functionq0 is considered as a “bare” distribution, that can

now be used to absorb collinear singularities at a factorization scaleµ writing

q(x, µ) = q0(x) +
αs

2π

∫ 1

x

dz

z
q0

(x
z

)[
P (z) log

( µ2

m2

)
+ C(z)

]
+ . . . (1.80)

The factorization scaleµ is introduced by simply splitting the logarithm in Eq. (1.78) as

log
Q2

m2
= log

Q2

µ2
+ log

µ2

m2
. (1.81)
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γ∗

q

q

g

Figure 1.7:The Feynman diagram forγg → qq process.

It is possible then to write Eq. (1.79) as

F2(x,Q
2) = x

∑

q,q̄

e2q

{
q(x, µ2) +

αs

2π

∫ 1

0

dz

z
q0

(x
z

)[
P (z) log

(Q2

µ2

)
+ C(z)

]
+ . . .

}
.

(1.82)

Looking at the result, it is clear that the unphysical scalem2 has been pushed inside the

PDF and now the structure function only presents the factorization scaleµ2 in its right

hand part. In the next Section will be explicitly discussedF2 independence from this

scale.

The last contribution that needs to be considered is the gluon initiated processgγ∗ → qq̄.

To obtain the corresponding result, the procedure is prettymuch the same, and so for gluon

F̂ g
2 (x,Q

2) = x
∑

qq̄

e2q
αs

2π

(
Pqg(x) log

Q2

m2
+ Cg(x)

)
. (1.83)

Using the same arguments as before, the structure functionsin theMS scheme can be

written as

F2(x,Q
2) = x

∑

qq̄

e2q

∫ 1

x

dz

z
q(
x

z
,Q2)

[
δ(1− z) +

αs

2π
CMS

q (z) + . . .

]

+x
∑

qq̄

e2q

∫ 1

x

dz

z
g(
x

z
,Q2)

[
αs

2π
CMS

g (z) + . . .

]
(1.84)

FL(x,Q
2) = x

∑

qq̄

e2q

∫ 1

x

dz

z
q(
x

z
,Q2)

[
αs

2π
2CF z + . . .

]

+x
∑

qq̄

e2q

∫ 1

x

dz

z
g(
x

z
,Q2)

[
αs

2π
4TRz(1− z) + . . .

]
(1.85)
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with

CMS
q (z) = CF

[
2
( log(1− z)

1− z

)
+
− 3

2

( 1

1− z

)
+
− (1 + z) log(1− z)

−1 + z2

1− z
log z + 3 + 2z −

(π2

3
+

9

2

)
δ(1− z)

]
(1.86)

CMS
g (z) = TR

[(
(1− z)2 + z2

)
log
(1− z

z

)
− 8z2 + 8z − 1

]
. (1.87)

Gathering the results obtained up to now and generalizing tothe case of the exchange

of any vector boson, the structure functionsFj with j = 1, 2, 3 at NLO can be written as

Fj(x,Q
2)

x
=

∫ 1

x

dξ

ξ

∑

i=q,q̄

g2V if
MS
i

(x
ξ
, µ2
)[
δ(1− ξ) +

αs

2π

(
Pqq(ξ) log

Q2

µ2
+ CV i,MS

j (ξ)
)]

+ gMS
(x
ξ
, µ2
)αs

2π

[
Pqg log

Q2

µ2
+ CV g,MS

j (ξ)
]
, (1.88)

wheregV i is the coupling between the vector boson and the quark.

1.5 DGLAP Equations

A collinear emission of the kind treated in the previous Section can occur repeatedly

n times before the parton interacts with the virtual boson. Because of the non-Abelian

nature of QCD, the parton that finally participate in the interaction may be the result

of a great number of previous splittings. The parton here probed with a DIS process

seems point-like at low energy but as a short-range energy isreached, the parton appears

itself surrounded by a cloud of other partons. These partonsindeed share the proton’s

momentum and so, as rising the scale causes the number of elements inside the proton

to increase, a scale dependence arouses not only in structure functions but also in PDFs.

Inside the evolution of these non-perturbative objects allof these collinear singularities are

absorbed, order by order, using the well-known DGLAP equations. Even if perturbation

theory cannot be applied for PDFs determination, dependence on the factorization scale

µ2 can be calculated perturbatively through these equations.Looking at Eq. (1.88) it is

clear that the structure function must be independent from the factorization scaleµ2, and

so taking the logarithmic derivative∂/∂(log µ2) of both sides of that equation gives a

differential equation for theµ2 dependence ofq(x, µ2) that reads

µ2 ∂

∂µ2
q(x, µ2) =

αs

2π

∫ 1

x

dξ

ξ

(
Pqq(ξ, µ

2)q
(x
ξ
, µ2
)
+ Pqg(ξ, µ

2)g
(x
ξ
, µ2
))

. (1.89)



1.5 DGLAP Equations 25

A more exact treatment based on the operator product expansion [28] and the renormal-

ization group equation [29] gives

∂

∂ log µ2

(
qi

g

)
(x, µ2) =

αs

2π

∫ 1

x

∑

j=q,q̄

dξ

ξ


 Pij

(
x
ξ
, αs

)
Pig

(
x
ξ
, αs

)

Pgj

(
x
ξ
, αs

)
Pgg

(
x
ξ
, αs

)


(
qj

g

)
(ξ, µ2) ,

(1.90)

whereαs ≡ αs(µ
2), qi is the generic quark distribution function,Pij are the Altarelli-

Parisi kernels. Equations (1.90) represent a system of2nf +1 coupled integro-differential

equations, withnf the number of active flavors. It is the generalization of Eq. (1.89) to

higher orders in perturbation theory. The splitting functions only depend on the scale

through the strong coupling constant, as it can be seen from their NmLO approximation.

In fact, definingas ≡ αs/2π, it gives for the splitting functionsPij(x, µ
2)

PNmLO
ij (x, µ2) =

m∑

k=0

ak+1
s (µ2)P

(k)
ij (x). (1.91)

In the case here considered, the splitting functions are known up to NNLO and their

explicit expressions are found in Refs. [30–32].

In the following, to describe the solution to the DGLAP evolution equations the dis-

cussion will refer to the treatment given in Ref. [33]. The Mellin space is considered. A

theorem in fact states that given a functionf = g ⊗ h, where the symbol⊗ refers to a

convolution as the one considered in Eq. (1.90) between hardcoefficient functions and

PDFs, it follows that the Mellin transform off

M [f ](N) =

∫ 1

0

dξξN−1f(ξ) (1.92)

is given by the product of the Mellin transform ofg andh as

M [f ] =M [g]M [h] . (1.93)

From considerations based on charge conjugation and flavor symmetry it is possible

to rewrite the system of equations (1.90) as2nf − 1 equations

µ2 ∂

∂µ2
q±,v
NS (x, µ

2) = P±,v
NS ⊗ q±,v

NS (x, µ
2) (1.94)
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describing the independent evolution of the non-singlet quark asymmetries

q±NS,ij = qi ± qi − (qj ± qj)

qvNS =

nf∑

i=1

(qi − qi) (1.95)

and a system of 2 equations describing the coupled evolutionof the singlet and gluon

parton distributions

µ2 ∂

∂µ2

(
Σ

g

)
(x, µ2) =

(
Pqq Pqg

Pgq Pgg

)
⊗
(
Σ

g

)
(x, µ2) , (1.96)

where the singlet combination,Σ, is defined as

Σ =

nf∑

i=1

(qi + qi) . (1.97)

At LO P
(0),+
NS = P

(0),−
NS = P

(0),v
NS = P

(0)
qq . At NLO P

(0),−
NS = P

(0),v
NS while all the other

splitting functions are different. Starting fromO(α2
s) all splitting functions are different

from each other.

The evolution of the individual quark distributions with the scale can be computed by

introducing the following set of non-singlet distributions:

V = u− + d− + s− + c− + b− + t−

V3 = u− − d−

V8 = u− + d− − 2s−

V15 = u− + d− + s− − 3c−

V24 = u− + d− + s− + c− − 4b−

V35 = u− + d− + s− + c− + b− − 5t−

T3 = u+ − d+

T8 = u+ + d+ − 2s+

T15 = u+ + d+ + s+ − 3c+

T24 = u+ + d+ + s+ + c+ − 4b+

T35 = u+ + d+ + s+ + c+ + b+ − 5t+ (1.98)

whereq±i = qi ± qi, andu, d, s, c, b, t are the various flavor distributions.

The combinationsVj andTj evolve according to Eq. (1.96) withP−
NS andP+

NS respec-



1.5 DGLAP Equations 27

tively, while the total valenceV evolves with theP v
NS kernel.

To find the solution of the DGLAP equations for the coupled singlet-gluon equations

and for the non-singlet ones, the structure of

qi(x,Q
2) =

∑

j

Γij(x, as, a0)⊗ qj(x,Q
2
0) , (1.99)

is exploited, introducing the Mellin transforms for the functionsΓ andP as

Γij(N, as, a0) =

∫ 1

0

dxxN−1Γij(x, as, a0) (1.100)

γij(N, as) =

∫ 1

0

dxxN−1asxPij(x, as) , (1.101)

whereγij are the anomalous dimensions that can be written in a series of as as follows:

γij(N, as) =
∞∑

n=0

ansγ
(n)
ij . (1.102)

It has been pointed out before that the splitting functions (and therefore the anomalous

dimensions) depend on the scale only through the coupling constant. It is then natural

to chooseas as evolution variable and rewrite the DGLAP evolution equation for the

evolution kernelsΓ, in Mellin-N space, as

as
∂

∂as
Γij(N, as, a0) = −

∑

k

RikΓkj(N, as, a0) , (1.103)

where the matrixR has the following perturbative expansion

R = R0 + asR1 + asR2 + . . . (1.104)

with

R0 ≡
γ
(0)

β0
Rk ≡

γ
(k)

β0
−

k∑

i=1

βi
β0

Rk−i , (1.105)

where theγ stands for the matrix of anomalous dimensions.

The solution of the singlet evolution equation at leading order is then

qLO(x,Q
2) = L(as, a0, N)qLO(x,Q

2
0) . (1.106)

The leading order evolution operatorL is written in terms of the eigenvalues of the leading

order anomalous dimension matrix



28 Perturbative Quantum Chromodynamics

λ± =
1

2β0

[
γ0qq + γ0gg ±

√(
γ0qq − γ0gg

)2
+ 4γ0qgγ

0
gq

]
(1.107)

and the corresponding projector matrices

e± =
±1

λ+ − λ−
(R(0) − λ∓I) , (1.108)

in the following form:

L(as, a0, N) = e−

(
as
a0

)−λ−(N)

+ e+

(
as
a0

)−λ+(N)

. (1.109)

The solution of the evolution Eq. (1.103) is expressed as a perturbative expansion

around the LO solutionL(as, a0, N)

(
Σ

g

)
(N, as) =

[
I+

∞∑

k=1

aksUk(N)

]
L(as, a0, N)

[
I+

∞∑

k=1

ak0Uk(N)

]−1(
Σ

g

)
(N, a0)

≡ ΓS(N, as, a0)

(
Σ

g

)
(N, a0) .

(1.110)

TheU matrices introduced in the previous equation are defined by the following com-

mutation relations

[
U1,R0

]
= R1 +U1

[
U2,R0

]
= R2 +R1U1 + 2U2 (1.111)
...

[
Uk,R0

]
= Rk +

k−1∑

i=1

Rk−iUi + kUk ≡ R̃k + kUk

as

Uk = −1

k

[
e+R̃ke+ + e−R̃ke−

]
+

e+R̃ke−
λ− − λ+ − k

+
e−R̃ke+

λ+ − λ− − k
(1.112)

where

R̃k = Rk +
k−1∑

i=1

Rk−iUi . (1.113)

Solving recursively Eqs. (1.112)-(1.113) and the NLO approximation of Eq. (1.105)

gives

R0 ≡
γ
(0)

β0
Rk ≡ −b1Rk−1 +O(NNLO) (1.114)
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and the NLO exact solution for the evolution factor in the singlet case can be linearized

as

ΓS(N) =
[
L+ asU1L− a0LU1 + a2sU2L− asa0U1LU1 + a20L(U

2
1 −U2)

]
. (1.115)

Looking at the non-singlet combinations for the distributions of quarks, it can be seen

that Eq. (1.111) also holds in this case of a scalar evolution, but as the involved objects

are no more matrices the right-hand sides vanish. Consequently, it is possible to write at

LO the solution for the evolution factor as

Γ±,v
NS,LO(N, as, a0) =

(
as
a0

)−R ns
0

, (1.116)

and at NLO non-singlet solutions can be written down in a compact closed form both as

an iterated solution

Γ±,v
NS,NLO(N, as, a0) = exp

{
U ±,v
1

b1
ln

(
1 + b1as
1 + b1a0

)}(
as
a0

)−Rns
0

(1.117)

or a truncated solution

Γ±,v
NS,NLO(N, as, a0) =

(
1− U ±,v

1 (as − a0)
)(as

a0

)−Rns
0

. (1.118)

Thex-space parton distributions are obtained by taking the inverse Mellin transforms

of the solutions obtained in Eq. (1.110) which, making use ofthe convolution theorem,

can be written as

q±,v
NS (x,Q

2) =

∫ 1

x

dy

y
Γqq(y, as, a0) q

±,v
NS

(
x

y
,Q2

0

)
(1.119)

(
Σ

g

)
(x,Q2) =

∫ 1

x

dy

y
ΓS(y, as, a0)

(
Σ

g

)(
x

y
,Q2

0

)
. (1.120)

The evolution kernelsΓ(x) are defined as the inverse Mellin transforms of the evolu-

tion factors introduced in Eq. (1.110)

ΓS(x, as, a0) =

∫ c+i∞

c−i∞

dN

2πi
x−NΓS(N, as, a0) . (1.121)

Note however that all splitting functions, except the off-diagonal entries of the singlet

matrix, diverge whenx = 1. This implies that the evolution kernelsΓ(x) will likewise be

divergent inx = 1.

In the following is shown that, like the splitting functions, the evolution factors can be
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defined as distributions. To this purpose consider the generic evolution factorΓ such that

(omitting the explicit dependence ofΓ on the couplingas)

f(x,Q2) =

∫ 1

x

dy

y
Γ(y)f

(
x

y
,Q2

0

)
. (1.122)

Defining the distribution

Γ+(x) = Γ(x)− γδ(1− x) , where γ =

∫ 1

0

dxΓ(x) , (1.123)

Eq. (1.122) can then be rewritten as

f(x,Q2) = γf(x,Q2
0) +

∫ 1

x

dy

y
Γ+(y)f

(
x

y
,Q2

0

)

= γf(x,Q2
0) +

∫ 1

x

dy

y
Γ(y)

[
f

(
x

y
,Q2

0

)
− yf

(
x,Q2

0

)]
− f(x,Q2

0)

∫ x

0

dyΓ(y) .

(1.124)

Due to the subtraction Eq. (1.123), all integrals on the r.h.s of Eq. (1.124) converge

and can be evaluated numerically. This expression, then, can be used to compute the

parton distribution functions inx-space, determiningΓ numerically from Eq. (1.121) and

γ as

γ =

∫ 1

0

dx

∫ c+i∞

c−i∞

dN

2πi
x−NΓ(N) =

∫ c+i∞

c−i∞

dN

2πi

Γ(N)

1−N
. (1.125)

In this singlet case, however, this prescription has been slightly modified because

Γ(N)

∣∣∣∣
N=1

is indeed infinite. So Eq. (1.124) is rewritten in another equivalent form. Let

us define

f (1)(x,Q2) = x f(x,Q2) Γ(1)(x,Q2
0, Q

2) = xΓ(x,Q2
0, Q

2) .



1.6 Heavy Quarks: the FONLL Scheme 31

Thus

f (1)(x,Q2) = x f(x,Q2) =

∫ 1

x

dy

y
Γ(y,Q2

0, Q
2) x f

(
x

y
,Q2

0

)

=

∫ 1

x

dy

y
Γ(1)(y,Q2

0, Q
2) f (1)

(
x

y
,Q2

0

)

=

∫ 1

x

dy

y
Γ(1)(y,Q2

0, Q
2)

(
f (1)

(
x

y
,Q2

0

)
− yf (1)(x,Q2

0)

)

+

∫ 1

x

dy

y
yΓ(1)(y,Q2

0, Q
2) f (1)(x,Q2

0)

=

∫ 1

x

dy

y
Γ(1)(y,Q2

0, Q
2)

(
f (1)

(
x

y
,Q2

0

)
− yf (1)(x,Q2

0)

)

+ f (1)(x,Q2
0)

[∫ 1

0

dy yΓ(y,Q2
0, Q

2)−
∫ x

0

yΓ(y)

]

⇒ f(x,Q2) =

∫ 1

x

dy

y
yΓ(y,Q2

0, Q
2)

(
1

y
f

(
x

y
,Q2

0

)
− yf(x,Q2

0)

)

+ f(x,Q2
0)

[
Γ(N,Q2

0, Q
2)

∣∣∣∣
N=2

−
∫ x

0

yΓ(y,Q2
0, Q

2)

]
(1.126)

that is, finally, a regularized expression free of infinite contributions.

1.6 Heavy Quarks: the FONLL Scheme

In this Section the FONLL scheme is introduced, paying particular attention, as in previ-

ous Sections, to DIS structure functions and the impact thatthe inclusion of heavy quark

effects has on them. The case of neutral current (NC) interactions will be considered first,

and subsequently the case of charged ones will be discussed at NLO. Then, the LO and

NNLO treatment of heavy quark mass effects is also discussed.

1.6.1 Neutral Current Structure Functions

The idea behind the FONLL general-mass scheme is simple and allows for a consistent

combination of terms from different schemes. The name of this method comes from the

original work [34], where a fixed order calculation (second order) is combined with a

next-to-leading log one. But the method is general and a significant feature is that it can

be used consistently to combine a fixed order with a resummed calculation to any order

of either. The FONLL method only relies on standard QCD factorization and calculations

with massive quarks in the CWZ [35] decoupling scheme in which the heavy quark is

subtracted at zero momentum (it decouples for scales much below its mass) and massless

quarks in theMS scheme in which the heavy flavor is treated as another massless parton
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and so it is included in the all-order resummation of collinear logarithms up to a suitable

chosen logarithmic order. The method was generalized in [36] to deep-inelastic structure

functions.

In this specific case here studied, a Fixed-Flavor Number (FFN) scheme massive term

up to orderαs is combined with a NLO Zero-Mass (ZM) computation. This scheme is

called FONLL-A in [36] and it is equivalent to the S-ACOT scheme [37]. As shown in

Ref. [38], this turns out to be identical to the S-ACOT [37] scheme. A near-threshold

suppression is also adopted for the subleading terms as in [36, 39] through a damping

factor. A benchmark of this method against theχ-scaling method is performed in [38].

The explicit expression for theF2,h heavy quark structure function2 in the FONLL-A

scheme is given by the sum of two terms:

FFONLL
2,h (x,Q2) = F

(nl)
2,h (x,Q2) + θ

(
Q2 −m2

h

)(
1− m2

h

Q2

)2

F
(d)
2,h (x,Q

2) . (1.127)

The first contribution on the right-hand side of Eq. (1.127) is the massive-scheme heavy

quark structure function atO (αs)

F
(nl)
2,h (x,Q2) = x

∫ 1

x

dy

y
C

(nl)
2,g

(
x

y
,
Q2

m2
h

, αs(Q
2)

)
g(nl+1)(y,Q2) . (1.128)

The heavy quark gluon coefficient function is given by

C
(nl)
2,g

(
z,
Q2

m2
h

, αs(Q
2)

)
=
αs(Q

2)

2π
2e2hC

(nl),1
2,g

(
z,
Q2

m2
h

)
+O

(
α2
s

)
. (1.129)

TheO (αs) coefficient is

C
(nl),1
2,g

(
z,
Q2

m2
h

)
= θ

(
W 2 − 4m2

h

)
× TR[(z

2 + (1− z)2 + 4ǫz(1− 3z)− 8ǫ2z2) log
1 + v

1− v

+(8z(1− z)− 1− 4ǫz(1− z))v ] , (1.130)

where

ǫ ≡ m2
h/Q

2, v ≡
√

1− 4m2
h/W

2, (1.131)

and the partonic center of mass energyW 2 = Q2(1− z)/z.

2See Ref. [36] for the discussion on the FONLL expressions forthe longitudinal structure functions.
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The second term on the right-hand side of Eq. (1.127) is the “difference” contribution

F
(d)
2,h (x,Q

2) = x

∫ 1

x

dy

y

[
C

(nl+1)
2,q

(
x

y
, αs(Q

2)

)[
h(nl+1)(y,Q2) + h̄(nl+1)(y,Q2)

]

+

(
C

(nl+1)
2,g

(
x

y
, αs(Q

2)

)
−B

(0)
g, h

(
x

y
,
Q2

m2
h

, αs(Q
2)

))
g(nl+1)(y,Q2)

]
,

(1.132)

whereh, h̄ are the heavy quark parton distributions. At first-order inαs,B
(0)
g, h is given by

B
(0), 1
g, h

(
z,
Q2

m2
h

)
= 2e2hC

(nl,0),1
2,g

(
z,
Q2

m2
h

)
, (1.133)

and the massless limit of the massive coefficient function is

C
(nl,0),1
2,g

(
z,
Q2

m2
h

)
= TR

[
(z2 + (1− z)2) log

Q2(1− z)

m2
hz

+ (8z(1− z)− 1)

]
, (1.134)

which in the limitQ2 = m2
h reproduces as required the usual massless scheme coefficient

function.

It is possible to suppress the difference term Eq. (1.132) because it is of higher order

near the threshold of the heavy quark and it is possible to check it easily as all terms in

Eq. (1.127) PDFs andαs are expressed in the samenf = 3 decoupling scheme.

The expression in Eq. (1.127) interpolates smoothly between the massive scheme at

smallQ2 and the massless scheme suitable at largeQ2. As an illustration of the differences

between various schemes for the heavy quark structure functions, in Fig. 1.8 theF2,c and

theFL,c charm structure functions are compared for various schemes: ZM, FONLL-A and

the FFN scheme as a function ofQ2 for different values ofx. It is clear that FONLL-A

interpolates smoothly between the FFN scheme near threshold and the massless scheme at

largeQ2 (also thanks to the use of a damping factor in Eq. (1.127)). For this comparison,

PDFs and other settings, like the value ofmc, are identical to those of the Les Houches

heavy quark benchmark comparison [38]. The comparison for the longitudinal structure

functionFL,c shows that mass effects are much larger than inF2,c, so the ZM computation

is completely unreliable.

Further quantifications of the impact of heavy quark mass effects in DIS structure

functions are performed in [40]: for the phenomenologically more relevant case ofF p
2 ,

heavy quark mass effects can be as large as∼ 10%, decreasing fast for increasingx and

Q2. As in the case of Fig. 1.8, the Les Houches heavy quark benchmark settings have

been used.

TheO (αs) massive scheme heavy quark coefficient function, Eq. (1.130), was first
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Figure 1.8:The charm structure functionsF2,c(x,Q
2) andFL,c(x,Q

2) as a function ofQ2 for
different values ofx from x = 10−5 to x = 10−2 in various heavy quark schemes, computed
using the FastKernel method: FONLL-A, ZM-VFN and the FFN scheme. ThePDFs and settings
are identical to those of the Les Houches heavy quark benchmark comparison.

computed in Refs. [41–43], while its Mellin transform is presented in Appendix A. The

accuracy of the FONLL implementation has been assessed computing the Les Houches

heavy quark benchmark tables [38], showing that the accuracy is sufficient for precision
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PDF determination.

1.6.2 Charged Current Structure Functions

The case of charged current (CC) structure functions is treated according to the FONLL-

A scheme. The coefficient functions needed are known up toO(αS) and so other schemes

that need higher order computations cannot be implemented.

This treatment is necessary especially to describe neutrino DIS charm production.

In fact, in this case data lie in a region where the scaleQ2 is close to the charm mass

threshold.

The analytic computation of the Mellin transforms of theO (αs) charged current

heavy quark coefficient functions [44] is given into detail in Appendix A. For simplicity,

the assumption that|Vcs| = 1 is made, and the rest of the CKM matrix elements are set

to zero. The generalization to realistic CKM elements is straightforward. A single heavy

quark, the charm quark with massmc, is also assumed. The factorization scale is set to

be equal toµ2
F = Q2. Finally, only neutrino induced charm production is considered, as

the antineutrino case is again straightforward.

In the FFN massive scheme, the charged current charm production FCC
2,c structure

function for neutrino induced scattering has been computedin x-space in [44,45] as

F
(nl),CC
2,c (x,Q2) = 2ξs

(
ξ,Q2

)

+ 2ξ
αs (Q

2)

2π

{ 1∫

ξ

dz

z

[
C

(nl),1
2,h (z,Q2, λ)s

(
ξ

z
,Q2

)

+ C
(nl),1
2,g (z,Q2, λ)g

(
ξ

z
,Q2

)]}
, (1.135)

where

ξ = x

(
1 +

m2
c

Q2

)
, λ ≡ Q2

Q2 +m2
c

. (1.136)

In Eq. (1.135),C(nl),1
2,g includes the contributions in which the gluon splits into as and a

c̄ quark, both of which contribute toF (nl),CC
2,c at NLO. The Feynman diagrams for the LO

and NLO gluon-induced subprocesses are shown in Figs. 1.9-1.10.

Thex-space expressions for theO (αs) charged current coefficient functions in Eq. (1.135)

are given in Refs. [44, 45]. The quark coefficient function canbe separated into a delta

function piece, a regular piece, and a singular piece regulated with the usual plus prescrip-

tion,

C
(nl),1
2,h (z,Q2, λ) = C

(nl)
h,δ (λ) δ (1− z) + C

(nl)
h,r (λ, z) +

[
C

(nl)
h,s

(
λ, z,Q2

)]
+
. (1.137)
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W+

s

c

Figure 1.9:Feynman diagram for the LO contribution toF (nl),CC
2,c in the FFNS scheme. Thick

solid lines indicate a heavy quark (charm) and thin solid lines a light quark (strange).
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c

s̄

g g

c̄
c

s̄

W+

Figure 1.10:Feynman diagrams for the NLO (O (αs)) gluon-induced contribution toF (nl),CC
2,c in

the FFNS scheme.

It is possible to write the explicit expressions for the different pieces contained in Eq. (1.137).

For the delta term

C
(nl)
h,δ (λ) = −CF

(
4 +

1

2λ
+
π2

3
+

1 + λ

2λ
KA

)
, (1.138)

KA = (1− λ) ln (1− λ) /λ . (1.139)

The regular piece can be written as

C
(nl)
h,r (λ, z) = CF

[
− (1 + z) (2 ln (1− z)− ln (1− λz))− (1 + z2) ln z

1− z

+

(
2z + 2− 2

z

)
+

(
2

z
− 1− z

)
1

1− λz

]
, (1.140)
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and finally the singular piece reads

C
(nl)
h,s

(
λ, z,Q2

)
= CF

[
− 1 + z2

1− z
ln
Q2 +m2

c

Q2
+ 2

2 ln (1− z)− ln (1− λz)

1− z

− 2

1− z
+

1

2

1− z

(1− λz)2

]
, (1.141)

where the first term is the contribution that depends on the factorization scale and is pro-

portional to theqq splitting function. Separating the massive quark coefficient functions

into the various contributions is important to properly evaluate their Mellin transforms, as

will be discussed below.

Finally, the expression for the FFN gluon coefficient function is given. In this case

there are no singular terms and it reads

C
(nl),1
2,g (z,Q2, λ) =

[
Tf
(
z2 + (1− z)2

)(
ln

1− λz

(1− λ)z
+ ln

Q2 +m2
c

Q2

)

+ Tf
(
z2 + (1− z)2

)
(2 ln (1− z)− ln (1− λz)− ln z)

+
(
8− 18 (1− λ) + 12 (1 + λ)2

)
z(1− z) +

(
1− λ

1− λz
− 1

)

+ (1− λ) z ln
1− λz

(1− λ)z

(
6λ− 12λ2z

)
]
. (1.142)

Again, the last term in the first line is the scale-dependent contribution and is propor-

tional toP (0)
qg . Note that both diagrams shown in Fig. 1.10 contribute [44].Analogous

expressions for the charged currentF3,c andFL,c structure functions can be found in

Refs. [44,45].

As in the case of neutral currents, the massless limit of the FFN structure functions is

easily obtained. For the massiveFCC
2,c structure function it has the structure

F
(nl,0),CC
2,c (x,Q2) = 2xs

(
x,Q2

)

+ 2x
αs (Q

2)

2π

{ 1∫

x

dz

z

[
C

(nl,0),1
2,h (z,Q2, λ)s

(x
z
,Q2

)

+ C
(nl,0),1
2,g (z,Q2, λ)g

(x
z
,Q2

)]}
, (1.143)

where

C
(nl,0),1
2,h (z,Q2, λ) = C

(nl,0)
h,δ δ (1− z) + C

(nl,0)
h,r (z) +

[
C

(nl,0)
h,s (z)

]
+
, (1.144)



38 Perturbative Quantum Chromodynamics

with

C
(nl,0)
h,δ = −CF

(
9

2
+
π2

3

)
, (1.145)

C
(nl,0)
h,r (z) = CF

[
− (1 + z) ln (1− z)− (1 + z2) ln z

1− z
+ 3 + 2z

]
, (1.146)

C
(nl,0)
h,s (z) = CF

[
2

(
ln (1− z)

1− z

)
− 3

2

(
1

1− z

)]
, (1.147)

and for the gluon

C
(nl,0),1
2,g (z,Q2) = 2Tf

[(
z2 + (1− z)2

)
ln

1− z

z
+ 8z (1− z)− 1

]

+ Tf
(
z2 + (1− z)2

)
ln
Q2

m2
c

. (1.148)

For completeness, the ZM Variable Flavor Number (ZM-VFN) scheme quark coeffi-

cient functions for quarks and gluons is also provided,

C
(nl+1),1
2,h (z) = CF

[
2

(
ln (1− z)

1− z

)

+

− 3

2

(
1

1− z

)

+

− (1 + z) ln (1− z)

−(1 + z2) ln z

1− z
+ 3 + 2z + δ (1− z)

(
−π

2

3
− 9

2

)]
, (1.149)

C
(nl+1),1
2,g (z) = TF

[
(
z2 + (1− z)2

)
ln

1− z

z
+ (8z(1− z)− 1)

]
. (1.150)

Note that the above gluon coefficient function, Eq. (1.150),is defined according to the

notation of [46], that is, it corresponds to the production of a single quark or antiquark.

Comparing the FFNS0 and ZM-VFN coefficient functions it follows that for the gluon

piece holds the relation

C
(nl,0),1
2,g (z,Q2) = 2C

(nl+1),1
2,g (z) + Tf

(
z2 + (1− z)2

)
ln
Q2

m2
c

, (1.151)

where the overall factor 2 is due to the fact that the ZM coefficient function, Eq. (1.150),

has been defined for a single quark, while in Eq. (1.142) the gluon coefficient function

accounts for the production of two quarks (s andc̄). Note also the presence of the usual

collinear logarithm. For the quark piece

C
(nl,0),1
2,h (z) = C

(nl+1),1
2,h (z) , (1.152)
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c

c̄

s̄
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Figure 1.11:Feynman diagrams that contribute toF (nl+1),CC
2,c in the ZM-VFN scheme at leading

order. The NLO diagrams are the same as in the FFNS scheme.

without any collinear logarithm.

The definition of the heavy CC structure function in the ZM scheme is not unique:

here it is defined as the contribution to the structure function which includes all con-

tributions to the inclusive structure function which survive when all CKM elements but

|Vcs| are set to zero. With this definition, both the leading-orderprocessescW+→s and

c̄W+→s̄ contribute to it (see Fig. 1.11). This definition coincides with the experimental

one because the struck charm antiquark must be accompanied by an (observed) charm

quark, and it is free of mass singularities. The gluon initiated NLO contributions remain

those shown in Fig. 1.10. The structure function in the massless scheme above charm

threshold is then given by

F
(nl+1),CC
2,c (x,Q2) = 2x

(
s
(
x,Q2

)
+ c̄
(
x,Q2

))

+ 2x
αs (Q

2)

2π

{ 1∫

x

dz

z

[
C

(nl+1),1
2,h (z,Q2, λ)

(
s
(x
z
,Q2

)
+ c̄
(x
z
,Q2

))

+ 2C
(nl+1),1
2,g (z,Q2, λ)g

(
ξ

z
,Q2

)]}
. (1.153)

The ZM-VFN massless coefficient functions have been defined in Eqs. (1.149)-(1.150).

Note the factor two in front of the gluon coefficient function, to account for the production

of two quarks in the two NLO subprocesses of Fig. 1.10.

Finally, the various schemes can be combined to construct the FONLL-A structure

functions. As in the NC case, the FONLL structure function isdefined as

F
(FONLL),CC
2,c (x,Q2) ≡ F

(nl),CC
2,c (x,Q2) + θ

(
Q2 −m2

c

)(
1− m2

c

Q2

)2

F
(d),CC
2,c (x,Q2)

(1.154)

F
(d),CC
2,c (x,Q2) = F

(nl+1),CC
2,c (x,Q2)− F

(nl,0),CC
2,c (x,Q2) , (1.155)

where the damping factor is used as default threshold prescription.
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Using the explicit expressions derived in the previous Section for the difference be-

tween the ZM and FFNS0 coefficient functions, Eqs. (1.152) and (1.151), the difference

term can be written as

F
(d),CC
2,c = 2xc̄

(
x,Q2

)
− 2x

αs

2π
ln
Q2

m2
c

∫ 1

x

dz

z
Tf
(
z2 + (1− z)2

)
g
(x
z
,Q2

)
+O(α2

s) ,

(1.156)

where the fact that the heavy quark distribution isO(αs) has been used. Now, it is easy

to see explicitly that, in the region whereL ≡ lnQ2/m2
c is not large, the difference

term is of orderO(α2
s): to first order inαs the FONLL expression coincides with the

massive-scheme one also for charged current scattering. The use of the leading-order

QCD evolution equations immediately leads to

c(x,Q2) = c̄(x,Q2) =
αs(Q

2)

2π
ln
Q2

m2
c

∫ 1

x

dz

z
Tf (z

2 + (1− z)2)g
(x
z
,Q2

)
+O(α2

s) .

(1.157)

Inserting this expansion in Eq. (1.156), it is trivial to check the explicit cancellation of

theO(αs) terms, that is, near the heavy quark threshold the difference term is of order

F
(d),CC
2,c = O(α2

s).

The final FONLL-A expression for the charged current charm production structure

functionFCC
2,c is given by

F
(FONLL),CC
2,c (x,Q2) = 2ξs

(
ξ,Q2

)
+ θ

(
Q2 −m2

c

)(
1− m2

c

Q2

)2

2xc̄
(
x,Q2

)

+ 2ξ
αs (Q

2)

2π

{ 1∫

ξ

dz

z

[
C

(nl),1
2,h (z,Q2, λ)

(
s

(
ξ

z
,Q2

)
+ θ

(
Q2 −m2

c

)(
1− m2

c

Q2

)2

2xc̄

(
ξ

z
,Q2

))

+C
(nl),1
2,g (z,Q2, λ)g

(
ξ

z
,Q2

)]}
(1.158)

− θ
(
Q2 −m2

c

)(
1− m2

c

Q2

)2

2x
αs (Q

2)

2π

∫ 1

x

dz

z
Tf (z

2 + (1− z)2)g
(x
z
,Q2

)
.

It can be easily verified that Eq. (1.158) reduces to the FFN scheme Eq. (1.135) at

the heavy quark thresholdQ2 = m2
c , and to the ZM-VFN expression Eq. (1.153) in the

asymptotic regionQ2 ≫ m2
c .

The above derivation generalizes straightforwardly to theother relevant charged cur-

rent structure functionsxFCC
3,c andFCC

L,c , as well as to the case with a general CKM quark

mixing matrix. Note that in all the results shown below the standard CKM mixing has

been assumed, with the CKM matrix elements set to their PDG values [47].

Now that the FONLL-A General Mass (GM) scheme has been definedfor charged
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current structure functions, it is possible to compare the various schemes (ZM, FFNS,

FONLL-A) in the kinematic region that is most relevant in theglobal PDF analysis,

namely the region covered by the NuTeV dimuon measurements [48]. In Fig. 1.12 the

results of such a comparison between various schemes for charm production in neutrino-

induced charged current scattering are shown. Results are compared at the level of the

phenomenologically relevant charm production reduced cross-section, defined as [49]

σ̃ν(ν̄),c(x, y,Q2) ≡ 1

Eν

d2σν(ν̄),c

dx dy
(x, y,Q2)

=
G2

FMN

2π(1 +Q2/M2
W )2

[((
Y+ − 2M2

Nx
2y2

Q2
− y2

)
+ y2

)
F

ν(ν̄)
2,c (x,Q2)

−y2F ν(ν̄)
L,c (x,Q2)± Y− xF

ν(ν̄)
3,c (x,Q2)

]
(1.159)

with Q2 = 2MNEνxy andY± = 1 ± (1 − y)2. This expression for the NuTeV dimuon

cross-section has been corrected with respect to Eq. (33) ofRef. [40]. A spurious factor

of (1 + m2
c/Q

2) was present there, and it was pointed out by S. Alekhin. The impact

of this correction was studied in Ref. [50] and found to be not relevant. In Fig. 1.12 the

various schemes are compared in some representative bins ofthe NuTeV dimuon kine-

matics [48]. Parton distribution functions and other settings are those of the Les Houches

heavy quark benchmark comparison [38]. It is observed that in the kinematic region of

neutrino data (both inclusive CHORUS data and dimuon NuTeV data), the FONLL-A

result is very close to the FFN scheme computation, and it only begins to differ from it

at the highest energies, where resummation of charm mass collinear logarithms begins to

become relevant.

Even if the differences between the FFN and FONLL-A schemes for charged current

scattering in the NuTeV kinematic region are moderate, as shown in Fig. 1.12, they be-

come rather more important at small-x and medium-largeQ2, where the charm and gluon

PDFs become larger. To illustrate this, in Fig. 1.13 the charged current charm structure

functionFCC
2,c as a function ofQ2 is compared for two different values ofx. Notice in

particular that at very small-x the FONLL-A expression is essentially the massless result.

However, producing dimuons atx ∼ 10−3 andQ2 ∼ 10 GeV2, where differences are

larger, requires a fixed target neutrino experiment with a neutrino beam with energy in the

multi-TeV range, which is not foreseen in the near future. Therefore one can conclude

that any reasonable general-mass scheme for charged current scattering will be very close

to the FFNS in the region of experimental data.

The FONLL-A calculation of charged current structure functions has been imple-

mented in ax-space code, FONLLdisCC, that will be used for benchmarking purposes.
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Figure 1.12:Comparison of different schemes for charm production in neutrino-induced DIS.
The kinematic range is representative of the NuTeV dimuon data range. TheZM-VFN, FFN
and FONLL-A schemes are compared at the level of the neutrino induced charm production cross-
section, Eq. (1.159). The settings are the same as those of the Les Houches heavy quark benchmark
comparison [38].
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Figure 1.13:Comparison of different schemes for charm production in neutrino-induced DIS.
TheFCC

2,c structure function in the massless, massive and FONLL-A schemes is shown; in this
case the FONLL-A expression is given by Eq. (1.158). The settings arethe same as those of the
Les Houches heavy quark benchmark comparison [38].

This is the analogue of the FONLLdis code for neutral currents [51], however is rather

simpler since the unknownO (α2
s) massive coefficient functions do not have to be imple-

mented. The NNPDF implementation of the FFNS calculations has been benchmarked

with the corresponding results of the MSTW08 code [52], finding perfect agreement.
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The FONLL-A and MSTW08 general-mass schemes for charged currents have been also

compared, finding qualitative agreement but some quantitative difference.

In Ref. [53], where a LO and a NNLO PDFs sets are presented, the heavy quark mass

effects are included using the so-called FONLL-C GM-VFN scheme of Ref. [36]. The

main idea is the same of FONLL-A but combining NNLO massless perturbative evolu-

tion with theO(α2
s) massive coefficient functions. The FONLL-C scheme interpolates

smoothly between theO (α2
s) massive scheme (FFN) near the heavy quark threshold, and

theO (α2
s) massless scheme (ZM-VFN) at largeQ2. Mass effects are much larger for

the longitudinal structure functionFL,c than forF2,c, as shown in Ref. [53], so there the

ZM-VFN computation is completely unreliable. A benchmark against different GM-VFN

schemes was performed in Ref. [38] for DIS structure functions, with common input toy

PDFs and common choices of all other settings. This treatment is applied to neutral cur-

rent structure functions, while in the case of charged current DIS a full implementation of

this scheme cannot be performed because only the asymptoticQ2→∞ limit is known [54]

for the massiveO(α2
s) heavy quark coefficient functions. For this reason in the charged

sector of FONLL-C GM-VFN scheme theO(α2
s) massive contribution is set to zero and

the other components (PDFs, ZM structure functions, andαs) are evaluated at NNLO.

The computation of the neutral current massive coefficient functions in the Mellin space

atO(α2
s) is given in Appendix B, while benchmarking of the numerical accuracy of the

FONLL-C implementation is discussed in Appendix C. In that Appendix, also a compar-

ison with the FONLL-B scheme (that combinesO(α2
s) massive contribution with a NLO

massless perturbative evolution) is performed.

The case of LO QCD is much simpler as here both neutral and charged current massive

coefficient functions for DIS vanish and the only differencewith a standard ZM scheme

is the presence of the damping factor. The only massive contribution present in this case

is for a heavy quark produced from a struck light quark. Then the FONLL expression is

reduced to the parton-model (O(α0
s)) massive coefficient function.
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Chapter 2

Determination of

Parton Distribution Functions

The introduction of parton distribution functions was needed since the first steps in the

formulation of the parton model and modern QCD, as seen in the previous Chapter. The

inclusion of a PDF set in a specific analysis is necessary for the study and prediction of all

that observables based on some hadronic initial state as also to have reliable results from

the Monte Carlo event generators commonly used for experimental simulations.

Looking at the last forty years before the Large Hadron Collider (LHC) of Geneva was

operative, it is possible to distinguish three main “seasons” for parton fitting: the first one

was intended to demonstrate the compatibility of the partonic interpretation of first QCD

processes with experimental data [55–57], the second was dedicated to the extraction of

parton sets from the first hadron colliders data available, allowing for qualitative QCD and

slowly progressing towards the third stage, which mainly thanks to DIS NMC [58,59] and

HERA [60] data has permitted QCD precision physics. Nowadays we are facing a new

era, strictly related to new physics [61,62] at the LHC.

In this Chapter the main elements needed for a PDF set determination are sketched.

After introducing the general strategy for extracting a parton set from data, the error deter-

mination technique is discussed focusing in particular on the treatment of multiplicative

uncertainties as for example normalization uncertainties. Finally, the main fitting strategy

is analyzed.

45
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Figure 2.1:A gluon PDF estimate of 1984 [63](left) and a comparison between gluon PDFs from
NNPDF2.3 [50] and NNPDF2.1 [40] analyses (right).

2.1 General Strategy

Parton distribution functions, as already stated, are non-perturbative, universal quantities,

because of their general independence on the specific process. In order to release a PDF

set, experimental data involving hadronic initial states are needed, as these quantities

only may be extracted from data. Thanks to their universality, it is possible to use data

from different processes to better determine PDF’s behaviour. Only in recent years these

quantities started to be released together with an estimation of the experimental error they

may be affected by. Before then, the determination of the solecentral value was enough

for the level of precision of the first QCD analyses (Fig. 2.1).In fact the impact of PDF’s

errors was widely considered to be negligible in comparisonto the uncertainty due to

contributions from other theoretical and experimental sources.

The determination of a set of parton distribution functionsis a rather delicate exercise.

Several theoretical, experimental, and statistical issues need to be addressed in order to

provide reasonable results. From a theoretical point of view, precision physics of modern

colliders as Tevatron and LHC requires the implementation of hard scattering matrix ele-

ments and evolution kernels for DGLAP evolution equations computed at the appropriate

perturbative order. Heavy quark mass effects has to be considered and also the choice

of the parametrization used in the fit may affect the final result. On the experimental

side, even if a wide number of different experiments are included in a global analysis,

some distributions may be poorly constrained because of lack of experimental informa-

tion and also cuts must be performed on some kinematic regions. In fact, where theory

loses reliability it is not possible to compare predictionswith data. Moreover, a proper

use of the uncertainties and correlations delivered by experimental groups together with

the development and application of refined statistical tools are necessary.
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Figure 2.2:The upper figure schematically represents how each calculation with a set number
of flavorsNF has a region of applicability. The transition from theNF − 1 scheme to theNF

scheme should be in the vicinity of themNF
mass, but need not occur exactly atµ = mNF

. The
lower figure illustrates that multiple PDFs can coexist forµ ≥ mNF

with matching performed at
µ = mNF

. Image taken from Ref. [64].

The general strategy for extracting PDFs from data it is almost the same for all col-

laborations involved in parton fitting: thanks to factorization theorem, the observables are

computed theoretically at a certain initial scaleQ2
0 as the convolution between coefficient

functions and PDFs. The coefficient functions are perturbative objects computed directly

from partonic Feynman diagrams. For all relevant processesthey are available at LO,

NLO, and in some cases also at NNLO perturbative orders. On the contrary, PDFs are

parametrized and randomly initialized. Each observable has its own definition in terms of

a linear combination of partonic distributions and for thisreason a specific observable can

constrain or disentangle some distributions and not all of them. Several different observ-

ables are needed to determine all the2nf + 1 independent parton components inside the

nucleon. This lack of information forced for a long time to make general assumptions on

the unconstrained PDFs.

As each data point is measured at a physical scaleQ2, to compute the error function

that then will be minimized in the fit it is necessary to evolvethe observables to that scale

solving the DGLAP evolution equations. Again, the solutionof these equations can be

performed with different methods and at different perturbative orders of the evolutive ker-

nels. Also, the error function, that contains the covariance matrices, the measured observ-

ables and the same observables computed as explained above,is minimized accordingly

to different techniques (mainly log-likelihood minimization but also genetic algorithms).

On top of the general fitting strategy described above, otherissues has to be consid-

ered. One of these is related to nuclear corrections: even ifit can be assumed that the
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scattering with individual partons inside the nucleus is incoherent, corrections may be

needed for different targets in some experiments. These corrections are model-dependent

and may affect theoretical calculations. Another issue is the implementation of heavy

quark mass effects. Different schemes may be used to take them into account. In the

following I briefly describe the main characteristics of each scheme.

The theoretical framework proposed by Collins-Wilczek and Zee [35, 65] is the basis

for the schemes considered here. Due to kinematic and dynamical issues it translates in

different schemes. The simplest one is the fixed flavor numberscheme: the heavy quarks

are considered in the massive coefficient functions with a fixed number of light flavorsnl.

All the flavors below the heavy quark mass are treated as massless. This scheme becomes

increasingly unreliable for scales larger than the heavy quark mass threshold and so the

most reliable results are: fornl = 3 whenQ ∼ mc, for nl = 4 whenmc ≤ Q ≤ mb,

for nl = 5 whenmb ≤ Q ≤ mt, and fornl = 5 whenQ ≥ mt. On this basis it is ide-

ally straight-forward to define a variable flavor number scheme by matching the previous

schemes in their respective regions of validity, but as thismatching can be performed in

slightly different ways there are several possible equivalent schemes deriving from this

one. Since a few years ago the most commonly implemented VFNSwas the ZM-VFNS.

All quarks are massless and the heavy quarks are radiativelygenerated only above the

mH threshold. The number of light flavorsnl changes going through thresholds, chang-

ing as a consequence the anomalous dimensions and the QCDβ function. The ZM-VFNS

lose accuracy near threshold because it neglects terms proportional to powers ofm2
H/Q

2

and also the approximate treatment of phase space introduces inconsistencies. A solution

is proposed in Ref. [39] with the Improved-ZM-VFNS (I-ZM-VFNS) by defining a new

lower integration limit in PDF convolution with hard scattering matrix elements as:

χ(x,Q2) = x(1 +M2
f /Q

2), (2.1)

whereM2
f is the total mass of the final state.

Schemes as the ACOT, the Thorne Robert (TR), and the FONLL (already introduced

in the previous Chapter) are also called general mass VFNS (GM-VFNS) as they all ex-

ploit the accuracy of the FFNS near threshold and of the ZM-VFNS at largeQ2. They

combine the two schemes going smoothly from a FFNS treatmentto a ZM-VFNS one

as the scaleQ2 is increased. The ACOT scheme [66] introduces the subtraction term to

remove double counting due to LO and NLO contributions overlap, giving an inclusion

of mass effects at all energy scales. On this are based variants as the S-ACOT [37] and

the ACOT-χ [67,68] schemes. The TR scheme [69] is similar to ACOT (a comparison is

performed between the two schemes in Ref. [64]) with more emphasis on matching con-

ditions treatment. A generalization is represented by TR’ [70]. For details on the FONLL
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Figure 2.3:Calculation of DIS heavy quark production for a variety of schemes. Image taken
from Ref. [64].

scheme see Section 1.6.

Among the collaborations that actively produce global partonic sets of distributions it

is worth citing the CTEQ-TEA [71–76], MRST-MSTW [77–82], NNPDF [83–88] [40],

and Alekhin-ABKM [89–92] groups. The CTEQ collaboration useda ZM-VFNS for

several analyses and the ACOT scheme [66] for specific studieswith heavy quarks [93]

and also in [73]. The MRST global analysis used the Thorne Roberts (TR) scheme [69]

up to MRST 2004 [79], then the TR’ scheme [70] began to be used in the MRST 2006

release [80] and in all the MSTW analyses. The ABKM collaboration uses a FFNS with

nf = 3, 4, 5 [94]. Finally, the NNPDF collaboration uses the FONLL GM-VFN scheme

[34,36] already introduced in the previous Chapter since theNNPDF2.1 release [40].

2.2 Statistical and Systematic Errors

Monte Carlo Sampling

To determine PDFs error from experimental information contained in covariance matrices

nontrivial. The attempt here is to extract from a finite number of data points the necessary

information to describe the error on a set of functions, thatare infinite dimensional objects.

A way to solve this difficulty was proposed in Ref. [95] and developed in Ref. [96]. It

is necessary to build a probability density in the space of functions, in order to give an

estimation of a generic observableF that depends on a PDF set{f} as

〈
F{f}

〉
=

∫
F{f}P [{f}]D[f ] (2.2)

whereP [{f}]D[f ] is the density probability measure in PDFs space. Of course,the set

{f} depends on a set of parametersa ≡ (a1, a2, . . . , an) with n the number of parameters
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that determine{f} given the fixed functional form used in the fit. The main idea isto

reduce Eq. (2.2) to a sum over a number of replicas generated by Monte Carlo (MC)

sampling of the parameter space obtaining a random set{a}(k) of sets of parameters. To

this numberNrep of random parameter sets corresponds an equal number of parton sets

{f}(k), with k = 1, 2, . . . , Nrep and it is possible to write

〈
F{f}

〉
≃ 1

Nrep

Nrep∑

i=1

F{f}(i) . (2.3)

A problem with this approach is that in several directions inparameter space there are flat

regions, thus a problem when generating MC replicas rises: shallow directions are related

to almost unconstrained parameters, and this results in very large values in the samples of

replicas. The NNPDF collaboration also uses the MC samplingtechnique, but at the level

of experimental data, avoiding this problem (Sect. 3.2).

Hessian Approach

The Hessian formalism [77, 97], among the PDF-fitter collaborations, is the most com-

monly used method for PDF error determination. Theχ2 function is quadratically ex-

panded about its global minimum1. It can be written as

∆χ2 = χ2 − χ2
0 =

d∑

i=1

d∑

j=1

Hij(ai − a0i )(aj − a0j) (2.4)

with χ2
0 = χ2(S0), {a0} respectively theχ2 and the set of parameters corresponding to

the best estimateS0 for the PDFs set{f}. The valueHij is the Hessian matrix element

defined as:

Hij =
∂2χ2(a)

∂ai∂aj
. (2.5)

Moving the parameters around their best value, a shift is observed in theχ2 function,

∆χ2, and can be defined

∆χ2 ≤ T 2 (2.6)

as the region of “acceptable fits”, withT the tolerance parameter: all uncertainties are pro-

portional to this parameter. Going back to the Hessian introduced in Eq. (2.5), this matrix

1To avoid the quadratic approximation the Lagrange multiplier method can be applied [98,99].
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Figure 2.4:Distribution of eigenvalues defined in Eq. (2.7) of the Hessian matrix, taken from
Ref. [97].

has a complete set ofNpar orthonormal eigenvectorsvik with eigenvaluesεk defined by

d∑

j=1

Hijvjk = εkvik (2.7)

d∑

i=1

vilvjk = δlk. (2.8)

Each eigenvector determines a direction in parameter spacealong which theχ2 variation

can be quick or slow, and as a direction can be far quicker thananother a consequence

is that the eigenvaluesεk are distributed over a wide range that covers many orders of

magnitude (Fig. 2.4).

The eigenvectors can be related directly to the variation into the space of parameters

by

ai − a0i =
d∑

k=1

vikskzk. (2.9)

The normalization ofzk such that∆χ2 =
∑d

k=1 z
2
k is obtained through the introduction of

sk factors. Thanks to the transformation of Eq. (2.9), graphically illustrated in Fig. 2.5, it

is possible to notice that the region of acceptable fits around the global minimum is con-
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(a)

Original parameter basis

(b)

Orthonormal eigenvector basis

zk

T
diagonalization and

rescaling by

the iterative method

ul

ai

2-dim (i,j) rendition of d-dim (~16) PDF parameter space

Hessian eigenvector basis sets


aj
ul

p(i)

s0
s0

contours of constant c2
global 

ul: eigenvector in the l-direction

 p(i): point of largest ai with tolerance T

s0: global minimum
p(i)

zl

Figure 2.5:Representation of the transformation of Eq. (2.9) from the original parameter basis to
the orthonormal eigenvector basis, taken from Ref. [97]. To each point in the graph corresponds a
set ofNpar parameters associated to a PDFs set.

tained inside a hypersphere of radius
√

∆χ2 and in case of an ideal quadratic behaviour

of theχ2 function the scale factorsεk would be equal to
√

1/εk.

Coming back to the generic observableF , the error on it and on the PDFs on which it

depends can be estimated using the formula

∆F =
∑

i

(F(S+
i )−F(S−

i ))
2 (2.10)

whereS±
i are the2Nrep sets of PDFs computed at the two points defined by

z±i = ±T
2

(2.11)

on the edge of theNrep-dimensional hypersphere in thez parameter space. Together with

S0 they form a set of2Nrep + 1 sets of PDFs, that are the ones needed to compute PDFs

errors onS0, besides observables error from Eq. (2.10).

However, the tolerance criteria forT 2 > 1 lose a statistically rigorous interpretation

and together with the assumption of the validity for linearized approximation in error

propagation introduce weaknesses in the error treatment through the Hessian method.

2.3 Normalization Errors

In this Section the normalization uncertainties introduced in Eq. (2.43) are discussed. Af-

ter a first introductory part which briefly explains the Hessian and Monte Carlo methods,

the discussion moves towards the issues at the origin of the biases [100–102] associated
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with overall multiplicative uncertainties as normalization errors in global fits. Finally two

methods for the definition of the covariance matrix are presented: thepenalty trickand

thet0 method.

Hessian and Monte Carlo Methods

Given a numbern of experimental measurementsmi, one may want to extract from them

the expectation value and the variance of a theoretical quantity t. Information about exper-

imental uncertainties is contained into a covariance matrix (cov)ij that takes the common

form

(cov)ij = δijσ
2
i +

n∑

k=1

σ̄ikσ̄kj. (2.12)

The uncertainties are supposed to be Gaussian. The valuesσi andσ̄ik are referred respec-

tively to the uncorrelated and correlated uncertainties. It follows that, using a Hessian

approach, the best value fort after the minimization of theχ2 function is

t =

∑n
i,j=1(cov

−1)ijmj∑n
i,j=1(cov

−1)ij
(2.13)

and its varianceVtt is

Vtt =
(

1
2

∂2χ2

∂t2

)−1

=
1∑n

i,j=1(cov
−1)ij

, (2.14)

for aχ2 function defined as

χ2(t) =
n∑

i,j=1

(t−mi)(cov
−1)ij(t−mj). (2.15)

An equivalent method, that is particularly useful in the case in which thet quantity is con-

nected to another underlying theoretical quantity like PDFs, is the Monte Carlo method.

Each data point is related to a random variableMi that gives a Gaussian distribution cen-

tered inmi and spread around this value according to the covariance matrix (cov)ij. From

thesen random variables it is possible to generateNrep replicas of the original set ofn

data points. Calling{T} the ensemble of replicas generated in this way, it is possible

to determine for each of them the best value minimizing the sameχ2 function given in

Eq. (2.15) forT and obtain

T =

∑n
i,j=1(cov

−1)ijMj∑n
i,j=1(cov

−1)ij
, (2.16)
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and given that

E[t] = 〈T 〉, Var[t] = 〈T 2〉 − 〈T 〉2 (2.17)

it follows

E[t] =

∑n
i,j=1(cov

−1)ijmj∑n
i,j=1(cov

−1)ij
(2.18)

Var[t] =

∑n
i,j,k,l=1(cov

−1)ij(cov
−1)kl(〈MjMl〉 − 〈Mj〉〈Ml〉)

(∑n
i,j=1(cov

−1)ij

)2

=
1∑n

i,j=1(cov
−1)ij

. (2.19)

This is the same result found with the Hessian approach givenin Eqs. (2.13)-(2.14) Of

course the results depend on the choice of the error functionto minimize.

D’Agostini Bias

As studied into detail in Ref. [103], normalization uncertainties can be added to the simple

case considered above to illustrate the Hessian and Monte Carlo methods. Considering

the MC method, it follows that the results for a single experiment read

E[t] =

∑n
i,j=1(cov

−1)ijmj∑n
i,j=1(cov

−1)ij
(2.20)

Var[t] =
1 + s2∑n

i,j=1(cov
−1)ij

+ s2E[t]2 (2.21)

as expected, wheres is the overall normalization uncertainty of this single experiment. On

the contrary, considering a case in which each measurementmi comes from a different

experiment along with its independent normalization uncertainty si, gives the results

E[t] = Σ2

n∑

i=1

mi

σ2
i

(2.22)

Var[t] = Σ2 +Σ4

n∑

i=1

s2i (m
2
i + σ2

i )/σ
4
i (2.23)

with
1

Σ2
=

n∑

i=1

1

σ2
i

. (2.24)

It is clear that the result of Eq. (2.22) cannot be correct: this result does not depend on

the normalization uncertaintys, and if is imagined a single data pointmi having a huge

value ofsi its effect would not be taken into account by the expression here determined.
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Here the realistic situation in which correlations betweendifferent measurements from

independent experiments are not available is assumed. However their inclusion does not

affect the result.

Considering now the Hessian method, things goes still worse:again, an error function

that includes normalization uncertainties is used, with the simple choice

χ2
m(t) =

n∑

i,j=1

(t−mi)(cov
−1
m )ij(t−mj) (2.25)

where

(covm)ij = (cov)ij + s2mimj. (2.26)

For the simple case of a single experiment with only two data points the covariance matrix

is

(covm)ij =

(
σ2
1 + s2m2

1 s2m1m2

s2m1m2 σ2
2 + s2m2

2

)
(2.27)

and as a consequence theχ2 Eq. (2.25) is

χ2
m(t) =

(t−m1)
2(σ2

2 +m2
2s

2) + (t−m2)
2(σ2

1 +m2
1s

2)− 2(t−m1)(t−m2)m1m2s
2

σ2
1σ

2
2 + (m2

1σ
2
2 +m2

2σ
2
1)s

2
.

(2.28)

The result of the minimization of this expression with respect to t is

t =
m1/σ

2
1 +m2/σ

2
2

1/σ2
1 + 1/σ2

2 + (m1 −m2)2s2/σ2
1σ

2
2

. (2.29)

That this expression is biased can be better seen by assumingthe simple caseσ1 = σ2 =

σ. Then, definingm̄ ≡ 1
2
(m1 +m2) andr ≡ m1−m2

m1+m2
, the above expression fort reduces

to

t =
m̄

1 + 2r2s2m̄2/σ2
= m̄(1− 2r2s2m̄2/σ2 +O(r4)). (2.30)

It is possible to notice a downward bias, also present in the variance fort

Vtt =
Σ2 + s2w2(1 + r2)

1 + r2s2w2/Σ2
, (2.31)

where

w ≡ Σ2

n∑

i=1

mi

σ2
i

. (2.32)

It is common to refer to this as thed’Agostini bias, from the name of the author of

Ref. [100,102].
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Penalty Trick and to Method

As already seen, to use the most intuitive error function containing normalization uncer-

tainties leads to biased results. A new function to be minimized that could at the same

time take into account multiplicative errors and produce unbiased results has to be de-

fined. Considering the Hessian method, a standard way of (partially) solving the problem

is to include as parameters into the fit also the normalizations of the data,ni, and to add

penalty terms in the error function to fix the estimated valueof these parameters close to

one and their variance close tos2i .

In the simple case of a single experiment withs2 the variance of its overall normaliza-

tion uncertainty, the error function in the penalty trick approach is defined as

EHess(t, n) =
n∑

i=1

(t/n−mi)
2

σ2
i

+
(n− 1)2

s2
. (2.33)

The last term is the penalty term: minimizing with respect tot givest = nw, wherew is

defined in Eq. (2.32), while minimizing with respect ton givesn = 1 and inverting the

respective Hessian matrix it follows that the covariance matrix

Vtt = Σ2 + s2w2 (2.34)

is the same as the result easily obtained from Eq. (2.21) in the Monte Carlo approach by

considering uncorrelated uncertaintiesσi (apart from a negligible term of cross-correlation

between variances). The result for a single experiment is unbiased, but considering the

case of more data points from different experiments with independent normalizations

ni = 1± s2i things again goes wrong. In this case

EHess(t, ni) =
n∑

i=1

(t/ni −mi)
2

σ2
i

+
n∑

i=1

(ni − 1)2

s2i
, (2.35)

and the minimum for this more complex error function is determined byn+ 1 equations

for t andni:

t =

∑n
i=1

mi

niσ2
i∑n

i=1
1

n2
i σ

2
i

, (2.36)

ni = 1 +
s2i t

n2
iσ

2
i

(
t

ni

−mi

)
. (2.37)

These equations cannot be solved easily because of their complexity and non-linearity. In

certain special cases, solutions can be found [103]. It is clear from these special cases that
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Figure 2.6:Dependence of the central valuet on the ratio of normalization uncertaintiess1 and
s2 for a pair of measurements with central valuesm1 = 0.9,m2 = 1.1 and negligible uncertainties
σi. The unbiased result must be symmetric about the pointL = 0 (i.e. s1 = s2): only thet0 curve
is unbiased. The image is taken from Ref. [103].

both the central value and the variance are again biased. In summary, with the penalty

trick the problem is only solved for the case of a single experiment.

In Ref. [100] d’Agostini proposed an alternative method but in Ref. [103] it is shown

that also this method, in the case of more than one experiment, is biased. There this

method is called self-consistent covariance matrix method, and relies on a definition of

the covariance matrix that reads

(covt)ij = (cov)ij + s2t2 . (2.38)

As for the penalty trick, for a single experiment everythingworks fine, but for several

experiments biased results and also multiple solutions arefound.

The main problem is that including at dependence inside the covariance matrix or

anyway adding terms that make the error function no more quadratic in t brings as a

consequence that the distribution exp[−1
2
χ2
t (t)] is not a Gaussian. Also the self-consistent

covariance matrix method, while thet parameters inside the covariance matrix varies,

present this problem. Considering here once again the Hessian approach, in Ref. [103]

the so-calledt0-method is discussed for both the Hessian and the MC methods.The idea

is to fix the covariance matrix by fixing itst dependence to an arbitrary valuet0

(covt0)ij = (cov)ij + t20s
2, (2.39)

in the case of a single experiment or

(covt)ij = (σ2
i + s2i t

2
0)δij, (2.40)



58
Determination of

Parton Distribution Functions

for several ones and then to determine iteratively the rightvalue oft0 that gives stability

over subsequent iterations. In this way the problem is solved both for a single experiment

and for more experiments. In all cases the results are unbiased for t and for its variance.

The procedure converges quite quickly: in a couple of iterations, as shown in Ref. [103],

stability is achieved. The dependence ont0 is quite weak (it determines uncertainties and

so a variation of it can be considered a second order effect) and so even with a bad first

choice of its value the impact is mild. In the same reference above this is quantitatively

proven. In Fig. 2.6 an interesting comparison among the penalty, self-consistent matrix,

andt0 methods is shown.

2.4 PDFs Fitting

A first difficulty in performing a fit is represented by the total ignorance on the shape each

PDF has. When fitting a set of data points that obeys a known physical law, the problem of

determining the best function that goes through the points is reduced to the determination

of a finite set of parameters. In the present case it shouldn’tbe decideda priori a fixed

functional form, because actually which is the best form fora parton distribution is not

known. For this reason parton distributions need to be described with a sufficiently loose

parametrization, in order to reduce as much as possible the bias on results introduced by

fixing a functional form. Practical reasons don’t allow for atoo large set of parameters,

and so what almost all the parton-fitter collaborations do toapproach this problem is to

exploit some well-known property a parton set must satisfy.

The usual parametrization for a single parton distributionhas the form

fi(x,Q
2
0) = axb(1− x)cP (d1, d2, . . . , x) (2.41)

whereQ2
0 is the initial scale at which PDFs are determined. The desired scaleQ2 at

which PDFs are convoluted with coefficient functions to compute theoretical predictions

is reached using DGLAP evolution equations, as already treated. The parametersa, b, c

are somehow constrained respectively by imposing momentumand valence sum rules,

by Regge interpretation at small-x, and by constraining to zero parton distributions at

x = 1. In general, a Padé expansion [104] is used to derive Eq. (2.41). Through this

technique it is often possible to approximate a function with a rational function with a

better precision than with a truncated Taylor expansion. The P (~d, x) expression above

is a smooth polynomial and the number ofd parameters in the fit must be high enough

to avoid any possible functional tension but at the same timeit cannot be too high for

practical reasons. A radically different approach to this problem has been developed
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inside the NNPDF collaboration. More details on this are presented in the next Chapter.

A figure of merit is defined to determine the best set of parameters assuming that all

the uncertainties are Gaussian. The quality of the fit can be described using aχ2 function

χ2 =

Ndat∑

i,j=1

(F (exp)

i − F (th)
i )[cov−1]ij(F

(exp)

j − F (th)
i ). (2.42)

This function is minimized during the fitting procedure, andits dependence on the set

of parameters is all contained into the theoretical predictionsF (th)
i . The indicesi andj

run over theNdat number of experimental points in the fit,F (exp)

i are the measured central

values of the observables. If in the case of a polynomial parametrization to a smallerχ2

corresponds a better fit, in the case of a parametrization through artificial neural networks,

as for NNPDF analyses, things are different. The best fit doesnot corresponds to the

smaller possibleχ2, and as discussed in Sect. 3.6 a stopping criterion must be defined to

determine the best set of parameters. The covariance matrixis generally defined as

[cov]ij =
( Nc∑

i,j=1

σi,lσj,l +
Na∑

i,j=1

σi,nσj,n +
Nr∑

i,j=1

σi,nσj,n + δijσ
2
i,s

)
F (exp)

i F (exp)

j (2.43)

whereσi,l are theNc correlated systematic uncertainties,σi,n theNa (Nr) absolute (rel-

ative) normalization uncertainties, andσi,s are the statistical uncertainties. In Sect. 2.2

the treatment of normalization and in general of multiplicative uncertainties was already

discussed. A proper inclusion of these contributions that avoids systematic biases is in

fact nontrivial.

The lack of experimental data that could constrain and disentangle the various partonic

components may call for the introduction of some assumptions. The number of indepen-

dent components is(2nf + 1), to be extracted from experimental data involving linear

combinations of PDFs. However, in several nowadays obsolete analysis the assumption

ū = d̄ was used, due to the impossibility of disentangle the two distributions for lack of

information. Also, not so long ago, the assumption of setting to zero the strange valence

distribution was commonly imposed in parton fits. Nowadays all the (2nf + 1) compo-

nents can be determined separately, with different degreesof constraint depending on the

considered PDF. This is achieved thanks to the universalityof PDFs: this feature allows

for a global QCD analysis where, as anticipated in Sect. 2.1, the results proceeding from

many different experiments are combined into a same analysis as described in a more

detailed way in Sect. 3.1.

A very important role in PDF determination is played by benchmarks against results

obtained using different techniques and methods. To this extent there is a constant effort
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Figure 2.7:Cross-section predictions at 7 TeV for a Higgs boson (gg fusion) for aHiggs mass of
120 GeV (left) and 180 GeV(right). Plot by G. Watt [112], PDF4LHC.

within the scientific community that was translated in the series of HERALHC [105]

workshops between years 2004-2008 and nowadays in the ongoing PDF4LHC series

[106, 107] that since 2008 is intended not only to perform benchmark exercises but also

to provide guidance on PDFs to LHC experiments and phenomenology.

Another important contribution to the development in parton fitting is represented

by the Les Houches Accord PDFs (LHAPDF), first conceived in 2001 [108–110], that

provides a library with all the main and most recent PDF sets from all the delivering

collaborations [111], along with precise instructions on the usage of each set, and which

has favoured useful discussion among different groups to establish baseline standards to

PDF determinations (data inclusion, methodology, theoretical issues).

More details regarding the NNPDF approach to parton fitting and specifically on PDFs

determination are extensively given in the next Chapter.

2.5 Summary of Available PDF Sets

Several parton sets have been delivered during the years, superseding obsolete ones. New

sets are usually updated with the inclusion of new data, theoretical or statistical features.

In this Section, the main characteristics and the status of the most commonly used PDF

sets are discussed and compared to each other, leaving the discussion around NNPDF sets

for the next Chapters.

ABM11

The ABM11 PDF set [113] is based on a dataset composed by a series of DIS inclusive

data (HERA [114, 115], BCDMS [116, 117], NMC [58], SLAC [118–122]), Drell-Yan
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data (E605 and E866 [123, 124]), and DIS dimuonic data (NuTeVand CCFR [115]).

The parton set is determined both at NLO and at NNLO QCD perturbative orders for

six independent PDFs. The parametrization is obtained through a polynomial function.

The whole set of PDFs is determined fitting 25 parameters, among which theαs coupling

constant is also fitted. Several sets are delivered withαs variations: the strong coupling

is varied betweenαs = 0.110 andαs = 0.130 over 21 members (steps of∆αs = 0.001).

The heavy quark mass effects are treated in a fixed flavor number scheme, delivering

sets corresponding tonf = 3, 4, 5 for both NLO and NNLO. Theαs variations are instead

performed only fornf = 5. To determine the errors over PDFs, experimental uncertainties

are treated through the Hessian method, setting a toleranceT 2 = ∆χ2 = 1.

These sets are publicly available, and for each ABM11 set 29 replicas are delivered:

the central value plus 28 replicas to compute the errors. In the case ofαS variations the

delivered replicas are respectively 21 (20+1) at NLO and 17 (16+1) at NNLO.

CJ12

The CJ12 PDF set [125] is based on a global dataset composed by DIS data (BCDMS [116],

NMC [58, 59], SLAC [126], JLab [127], HERA [128]), Drell-Yan data (E866 [129]), W

asymmetry (CDF [130–132], D0 [133, 134]) and Z rapidity (CDF [135, 136]) data, jets

(CDF [137, 138], D0 [139, 142]) and photon-jet (D0 [143]) data. The CJ12 parton set

is only available at NLO. The parametrization is given using27 parameters for the fit-

ting of 5 independent PDFs through a polynomial parametrization. The value forαS is

fixed from an external fit atαS = 0.118. The heavy quark effects are not treated, as the

implemented scheme is a zero-mass variable flavor number scheme. The masses of the

heavy quarks only have a role in defining the thresholds at which the number of active

flavors is increased. The errors on PDFs are determined usingthe Hessian method with

T 2 = ∆χ2 = 100. The analysis includes target mass and higher twist corrections needed

for the description of deep-inelastic scattering data at large-x and lowQ2, and nuclear

corrections for deuterium targets.

Three different parton sets are delivered, determined respectively with three different

methods for implementing nuclear corrections. Each set hasa central value replica and

38 replicas for the computation of errors.

CT10

The CT10 PDF set [76, 144] is based on a global dataset that is almost equivalent to

the one on which is based the CJ12 set. The main differences arethat CJ12 doesn’t

include NuTeV data, while CT10 doesn’t include SLAC, JLab, andphoton-jet data. This

parton set is available at three different perturbative orders: LO, NLO, and NNLO. Six
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independent PDFs are fitted using 26 parameters that fix a polynomial functional form

used to parametrize the parton functions. The heavy quark mass effects are treated through

the implementation of the S-ACOT [37] general mass scheme, introduced in Sect. 2.1.

The propagation of experimental uncertainties from data toPDFs is performed using the

Hessian method with toleranceT 2 = ∆χ2 = 100. The value ofαS is fixed from an

external fit to the valueαS = 0.118. A series of sets is delivered both at NLO and

NNLO, including or excluding the W asymmetry data, and varying the value of the strong

coupling constant, with0.112 < αS < 0.127 for the NLO analysis and with0.110 <

αS < 0.130 for the NNLO analysis and step∆αS = 0.001 in both cases. Also, sets with

nf = 3, 4 are produced. Each set is fitted using the standard CTEQ PDF evolution but

using the HOPPETαs running solution.

The CT10 sets are delivered to the user as a 52 eigenvector sets(two eigenvectors for

each fitted parameter) plus the central value in the standardanalysis, as a single member

in the varyingαS studies, and as a two-members set in the cases of fixednf .

HERAPDF1.5

The HERAPDF1.5 PDF set [145] is based on preliminary HERA I+II [146] combined

dataset. Both NLO and NNLO sets are available, as the result ofa polynomial parametriza-

tion of 5 independent PDFs. The set of parameters fixed to their best-fit values is com-

posed by 14 elements. Uncertainties from experimental dataare propagated to parton

functions through the Hessian method with a toleranceT 2 = ∆χ2 = 1. Heavy quark

mass effects are treated using the Thorne Roberts (TR) [69] general mass scheme intro-

duced in Sect. 2.1. TheαS value is fixed from an external fit to the valueαS = 0.1176.

Also a series of sets with varyingαS is produced: variations are produced over 12 val-

ues ofαs, betweenαS = 0.114 andαS = 0.122 with step∆αS = 0.001 and then for

αS = 0.1156, 0.1176, 0.1196 both at NLO and NNLO. An analysis is also performed for

varying parameters, as for example heavy quarks mass values.

While the standard sets are delivered for NLO and NNLO as eigenvector sets of re-

spectively 20+1 and 28+1 members, for parameter variation sets the members are 12+1 at

NLO and 10+1 at NNLO. For varyingαS the eigenvector sets have 12 members, both for

NLO and NNLO.

JR09

The JR09 PDF set [147,148] is based on the HERA electron-protonmeasurements [149–

153], fixed target SLAC data [126], BCDMS [116,117], E665 [154,155], NMC [58,59],

and Drell-Yan dimuon data E866/NuSea [124, 156]. The partonset is available both at
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NLO and at NNLO. Its parametrization is obtained using 15 parameter to fix a polyno-

mial functional form for the 5 independent PDFs fitted in the analysis. TheαS coupling

constant is also fitted. The errors for PDFs are determined using the Hessian method with

toleranceT 2 = ∆χ2 = 1. While the NLO parton set is obtained only in the FFN scheme

with nf = 3, the NNLO parton set is obtained both in the FFN scheme and in the VFN

scheme.

The JR09 parton sets are delivered as a central value plus 26 eigenvector sets for error

computation both at NLO and at NNLO.

MSTW08

The MSTW08 PDF set [81,82] is based on a global dataset composed by DIS data, Drell-

Yan data, W asymmetry and Z rapidity data, and jets data. A description of each compo-

nent of the dataset is given in Ref. [81]. This parton set is available at LO, NLO and at

NNLO. To determine the best fit a polynomial functional form is used for each PDF. The

independent PDFs that are fitted are 7, with a total of 20 free parameters to be determined

during the fit. TheαS coupling constant is also fitted and sets withαS variations are

delivered. The errors are determined through the Hessian method, imposing a tolerance

T 2 = ∆χ2 ∼ 25. The heavy quark mass effects are introduced using the TR general mass

variable flavor number scheme.

The MSTW08 parton sets are available as 40 eigenvector sets (aset for each mini-

mized parameter for each direction of variation) plus a central value set. theαS variation

sets are instead given as a best-fit central set withαS = 0.12018 plus 21 sets withαS

varying between 0.110 and 0.130, with step∆αS = 0.001.
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DIS NLO 6 indep. PDFs Fitted Hessian
ABM11 [113] DY NNLO Polynomial FFN Mult. αs T 2 = 1

Npar = 25 values
5 indep. PDFs Hessian

CJ12 [125] Global NLO Polynomial ZM-VFNS External T 2 = 100
Npar = 27

LO 6 indep. PDFs External Hessian
CT10 [76] Global NLO Polynomial S-ACOT Mult. αs T 2 = 100

[144] NNLO Npar = 26 values
DIS NLO 5 indep. PDFs External Hessian

HERAPDF1.5 [145] (HERA) NNLO Polynomial TR Mult. αs T 2 = 1
Npar = 14 values

DIS NLO 5 indep. PDFs FFN Hessian
JR09 [147] DY NNLO Polynomial VFN Fitted T 2 = 1

[148] Npar = 15
LO 7 indep. PDFs Fitted Hessian

MSTW08 [81] Global NLO Polynomial TR Mult. αs T 2 ∼ 25
[82] NNLO Npar = 20 values
[40] LO 7 indep. PDFs External

NNPDF2.1/2.3 [87] Global NLO Neural Nets FONLL Mult. αs MC
[50] NNLO Npar = 259 values



Chapter 3

NNPDF Methodology

In this Chapter the strategy followed by the NNPDF collaboration is described. While the

general strategy has already been discussed in Sect. 2.1, here the discussion will treat the

radically different ingredients developed and implemented within the NNPDF framework.

An alternative to standard methods in error determination is Monte Carlo sampling in

data space. This method was presented in Ref. [157]. It was successfully combined with

an artificial neural network parametrization in Ref. [158]. Neural networks are universal

unbiased interpolators and can be trained on each set of datareplicas generated through

MC sampling. The flexibility and robustness of this approachhas been developed and

tested in a series of different cases (structure functions [159], spectral functions forτ

decays [160], energy spectra of B decays [161], and cosmic ray neutrino fluxes [162])

and is at the basis of all NNPDF parton releases. To go from thedata to the parton

parametrization firstNrep pseudo-data replicas are generated for each data point in the fit.

In this wayNrep replicas of the original dataset (that is identified with replica irep = 0)

are created.

The construction of physical observables to compare to the corresponding data point

is a nontrivial step: it implies to parametrize PDFs with neural nets at a reference scale

Q2
0, evolve at the physical scaleQ2 and convolute the result with hard partonic cross-

sections. The physical observable obtained is then used to compute the error function

to be minimized. Minimization is obtained through a geneticalgorithm that acts in the

selection of the best set of parameters that determine the neurons of the networks iteration

by iteration during the training. The optimal fit is obtainedby dynamical stopping using

a cross-validation method.

For each PDF and for each replicairep = 1, . . . , Nrep of the original dataset a neural

network is trained, so that at the end are producedNrep sets of PDFs that are a Monte

Carlo representation of probability density in the space of parton distributions. From this

representation it is straightforward to determine centralvalues, errors, and correlations of

65
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Figure 3.1:Schematic representation of the NNPDF approach.

any function depending on PDFs.

In this Chapter the experimental data and Monte Carlo samplingare at first discussed

(Sect. 3.1, 3.2). The central part of the Chapter is dedicatedto the minimization process

and some related features including the structure and features of the neural networks used

for the parametrization, the genetic algorithm and the dynamical stopping (Sect. 3.3).

The FastKernel framework is then introduced (Sect. 3.7) andfinally an important feature

to include new datasets is discussed: the reweighting method (Sect. 3.8).

3.1 Experimental Data

In this Section, a detailed discussion of kinematic cuts, with their respective motivation,

and the kinematic coverage of the dataset used for the NNPDF2.1 LO, NLO and NNLO

parton distribution function analyses is performed. Particular emphasis is given to the

inclusion of new charm structure function data in the globalfit, as to correctly fit this

observable a general mass scheme is needed. The original datasets are the basis for the

Monte Carlo sampling method used to generate pseudo-data replicas. The second part

of the Section reports and briefly illustrates the detailed analyses of data performed in

Ref. [84, 87]. Finally, also positivity constraints are discussed, paying attention to the

different methods used for different perturbative approximations.
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NNPDF2.1 dataset

Figure 3.2: Experimental datasets which enter the NNPDF2.1 analysis. The kinematical cover-
age of each dataset is summarized in Table 3.1.

Kinematic Cuts

First is considered the NNPDF2.1 NLO dataset. The kinematiccuts are performed in

variablesQ2 andW 2 = Q2(1 − x)/x. While the cut inW 2 is the same as in previous

NNPDF analyses and set toW 2
min = 12.5 GeV2, the one inQ2 is now slightly higher,

going fromQ2
min = 2 GeV2 for DIS data [87] in NNPDF2.0 toQ2

min = 3 GeV2 in the

present NNPDF2.1 NLO analysis [40].

The cuts here discussed are motivated by the fact that close to heavy quark threshold

F c
2 predictions from the general mass scheme here implemented might be affected by

instabilities. The cause can be found in having data points crossing the heavy quark mass

threshold while varying its value in different fits. This suggests to use a value ofQ2
min at

least as large as the maximum value of the charm mass that can be considered acceptable.

Then,Q2
min = 3 GeV2 is a reasonable choice since thenmmax

c ∼ 1.7 GeV. Another

motivation can be found in Ref. [163, 164]. Possible deviations from NLO DGLAP in

the small-x andQ2 HERA data can affect theoretical uncertainty in the PDFs and LHC

observables related to their inclusion in the global fit in a moderate way compared to

PDF errors and other uncertainties, but removing the HERA points belowQ2
min reduces
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these theoretical uncertainties even further. The price topay for this reduced theoretical

uncertainty is an increase in statistical uncertainty.

While the kinematic cuts discussed above apply to all DIS experiments included in

the global fit, on HERAF c
2 data additional cuts are performed. Concretely, HERAF c

2

data withQ2 ≤ 4 GeV2 and data withQ2 ≤ 10 GeV2 for x ≤ 10−3 are removed from the

fit. The motivation for this is that the FONLL-A general mass scheme for heavy quarks,

as discussed in [36], provides a poor description of the datain the smallestx andQ2

bins due to missing largeO (α2
s) corrections. This is true for any heavy quark scheme

that does not include theO (α2
s) corrections, like for example the S-ACOT-χ used in the

CTEQ/CT family of PDF sets. Only the FONLL-B scheme can cure this problem since

it includes consistentlyO (α2
s) corrections inF c

2 into a NLO fit, as can be seen in [36].

These cuts ensure that allF c
2 experimental data included in the fit are well described by

O (αs) theory.

Kinematic cuts on the invariant massW 2 and the scaleQ2 of the DIS final state

W 2
min > 12.5 GeV2 andQ2 > 3 GeV2 are the same for NNPDF2.1 LO, NLO and NNLO

datasets, while theF c
2 data are subject to the further cutsQ2 > 4 GeV2 andQ2 > 10

GeV2 if x < 10−3 only in the LO and NLO analyses, due to the fact that in this region

NNLO massive corrections are so large that a NLO approximation is not acceptable (and

consequently at LO). These cuts will be removed for the NNLO fit, in which theF c
2 data

will only be subject to the cuts which are common to all other DIS data. The charm struc-

ture function data included in the NNLO fit are listed in Table3.2 all other data are the

same as in the NLO fit, Table 3.1. The total numbers of datapoints used at LO, NLO and

NNLO are also given in Table 3.2.

NNPDF2.1 Dataset

The NNPDF2.1 NLO dataset includes NMC [165,166], BCDMS [116,117] and SLAC [126]

deep-inelastic scattering fixed target data; the combined HERA-I DIS dataset [114], HERA

FL [167] andF c
2 structure function data [168–174], ZEUS HERA-II DIS cross-sections [175,

176], CHORUS [177] inclusive neutrino DIS, and NuTeV [115, 178] dimuon produc-

tion data; fixed-target E605 [123] and E866 [124, 156, 179] Drell-Yan production data;

CDF [132]W asymmetry and CDF [135] and D0 [136]Z rapidity distributions; and

CDF [138] and D0 [142] Run-II one-jet inclusive cross-sections. A scatter plot of this

data in thex,Q2 plane is displayed in Fig. 3.2, with the values ofx determined using LO

kinematics.

The dataset is slightly different in the case of LO and NNLO fits. At LO theFL struc-

ture function data are removed, since this observable vanishes at this perturbative order.

At NNLO two modifications are present: first, the E866 data, published asxF distribu-
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tions, have been converted into rapidity distributions following the procedure discussed in

Ref. [180], since the use of rapidity as kinematic variable makes the inclusion of NNLO

corrections simpler. Second, instead of including the NMC proton data as data for struc-

ture functions they now are included as data for reduced cross-sections. This decision

was taken after that in Ref. [181] was shown that the impact of this different treatment

is almost negligible at NLO. The use of cross-section data isin principle preferable, as

they are closer to what is actually measured. In Ref. [182] it was claimed that the treat-

ment of this data may have a significant impact on NNLO PDFs, though this claim is not

supported by investigations with NNPDF2.1 NNLO [183], or with MSTW08 [184] PDFs.

All the relevant data from H1 and ZEUS experiments at HERA for the charm structure

functionF c
2 (x,Q

2) is included [168–174]. This inclusion of new data points in NNPDF

analyses introduces more information that helps constraining the small-x gluon PDF and

moreover the included datasets are sensitive to the value ofthe charm massmc. The

kinematic coverage of all the datasets included in NNPDF2.1is summarized in Table 3.1

and in Fig. 3.2.

Now in turn the features of the variousF c
2 (x,Q

2) datasets included in the fit are de-

scribed:

• The ZEUS 96-97D∗± analysis [168].

In this analysisF c
2 is extracted from the measurement ofD∗± mesons reconstructed

via their hadronic decays using data collected in the 1996 and 1997 running periods.

• The ZEUS 98-00D∗ analysis [169].

As in the previous case,F c
2 is extracted from the measurement ofD∗± mesons re-

constructed via their hadronic decays, and uses data collected in the running period

between 1998 and 2000.

• The 04-05 ZEUSD±, D0 analysis [170].

In this analysis, based on the HERA-II running period of 2004 and 2005,D mesons

are reconstructed via their hadronic decays. An improved precision is obtained

reducing the combinatorial background to theD meson signals by using the ZEUS

micro-vertex detector to reconstruct displaced secondaryvertices.

• The 2005 ZEUS muon analysis [171].

This dataset is based on the measurement of muons that are generated in charm

production from their semileptonic decays. Data was collected during the 2005

HERA-II running period.

• The H1 96-97D∗± analysis [172].

This analysis, based on the 1996-1997 running period, used similar reconstruc-
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Deep-inelastic scattering
Experiment Set Ref. Ndat xmin xmax Q2

min [GeV2] Q2
max [GeV2 ]

NMC-pd 260 (132)
NMC-pd [165] 260 (132) 0.0015 (0.008) 0.68 0.2 (3.5) 99.0

NMC 288 (221)
NMC [166] 288 (221) 0.0035 (0.009) 0.47 0.8 (3.2) 61.2

SLAC 422 (74)
SLACp [126] 211 (37) 0.07 (0.1) 0.85 (0.55) 0.58 (3.0) 29.2
SLACd [126] 211 (37) 0.07 (0.1) 0.85 (0.55) 0.58 (3.2) 29.1

BCDMS 605 (581)
BCDMSp [116] 351 (333) 0.07 0.75 7.5 230.0
BCDMSd [117] 254 (248) 0.07 0.75 8.8 230.0

HERAI-AV 741 (592)
HERA1-NCep [114] 528 (379) 6.2 10−7 (4.3 10−5) 0.65 0.045 (3.5) 30000
HERA1-NCem [114] 145 1.3 10−3 0.65 90.000 30000
HERA1-CCep [114] 34 0.008 0.4 300.0 15000
HERA1-CCem [114] 34 0.013 0.4 300.0 30000

CHORUS 1214 (862)
CHORUSnu [177] 607 (431) 0.02 (0.045) 0.65 0.3 (3.0) 95.2
CHORUSnb [177] 607 (431) 0.02 (0.045) 0.65 0.3 (3.0) 95.2

FLH108 8
FLH108 [167] 8 0.00028 0.0036 12.0 90.000

NTVDMN 90 (79)
NTVnuDMN [115,178] 45 (41) 0.027 0.36 1.1 (3.1) 116.5
NTVnbDMN [115,178] 45 (38) 0.021 0.25 0.8 (3.1) 68.3

ZEUS-H2 127
Z06NC [175] 90 5 10−3 0.65 200 3 105

Z06CC [176] 37 0.015 0.65 280 3 105

HERA charm structure function data
ZEUSF2C 69 (50)

ZEUSF2C99 [168] 21 (14) 5 10−5 (3 10−4) 0.02 1.8 (7.0) 130
ZEUSF2C03 [169] 31 (21) 3 10−5 (1.8 10−5) 0.03 2.0 (7.0) 500
ZEUSF2C08 [170] 9 (7) 2.2 10−4 ( 6.5 10−4) 0.032 7.0 112
ZEUSF2C09 [171] 8 8 10−4 0.03 30 1000

H1F2C 47 (38)
H1F2C01 [172] 12 (6) 5 10−4 3.2 10−3 1.5 (12) 60
H1F2C09 [173] 6 2.4 10−4 0.025 120 400
H1F2C10 [174] 26 2 10−4 (3.2 10−4) 0.05 5.0 (12) 2000

Fixed Target Drell-Yan production

Experiment Set Ref. Ndat

[

y/xF
min, y/x

F
max

]

[xmin, xmax] M2
min [GeV2] M2

max [GeV2]

DYE605 119
DYE605 [123] 119 [−0.20, 0.40] [0.14, 0.65] 50.5 286

DYE866 390
DYE866p [156,179] 184 [0.0, 0.78] [0.017, 0.87] 19.8 251.2
DYE866r [124] 15 [0.05, 0.53] [0.025, 0.56] 21.2 166.4

Collider vector boson production
Experiment Set Ref. Ndat [ymin, ymax] [xmin, xmax] M2

min [GeV2] M2
max [GeV2]

CDFWASY 13

CDFWASY [132] 13 [0.10, 2.63]
[

2.9 10−3, 0.56
]

6463 6463

CDFZRAP 29

CDFZRAP [136] 29 [0.05, 2.85]
[

2.9 10−3, 0.80
]

8315 8315

D0ZRAP 28

D0ZRAP [140] 28 [0.05, 2.75]
[

2.9 10−3, 0.72
]

8315 8315

Collider inclusive jet production
Experiment Set Ref. Ndat [ymin, ymax] [xmin, xmax] p2T,min [GeV2] p2T,max [GeV2]
CDFR2KT 76

CDFR2KT [141] 76 [0.05, 1.85]
[

4.6 10−3, 0.90
]

3364 3.7 105

D0R2CON 110

D0R2CON [142] 110 [0.20, 2.20]
[

3.1 10−3, 0.97
]

3000 3.4 105

Total
Experiment Ndat xmin xmax Q2

min [GeV2] Q2
max [GeV2 ]

TOTAL 4520 (3415) 3.1 10−5 0.97 2.0 3.7 105

Table 3.1:Experimental datasets included in the NNPDF2.1 global analysis. For DIS experiments
in each case the number of data points and the ranges of the kinematical variables are provided
before and after (in parenthesis) kinematical cuts. For hadronic data theranges of partonx covered
for each set determined using leading order parton kinematics are shown.Note that hadronic data
are unaffected by kinematic cuts. The values ofxmin andQ2

min for the total dataset hold after
imposing kinematic cuts.
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Experiment Set Ref. Ndat xmin xmax Q2
min Q2

max

ZEUSF2C 69 (62)
ZEUSF2C99 [168] 21 (18) 5 10−5 (1.3 10−4) 0.02 1.8 (4) 130
ZEUSF2C03 [169] 31 (27) 3 10−5 (7 10−5) 0.03 2.0 (4.0) 500
ZEUSF2C08 [170] 9 2.2 10−4 0.032 7.0 112
ZEUSF2C09 [171] 8 8 10−4 0.03 30 1000

H1F2C 47 (45)
H1F2C01 [172] 12 (10) 5 10−5 (1.3 10−4) 3.2 10−3 1.5 (3.5) 60
H1F2C09 [173] 6 2.4 10−4 0.025 120 400
H1F2C10 [174] 29 2 10−4 0.05 5.0 2000

LO Total 3330
NLO Total 3338

NNLO Total 3357

Table 3.2: Charm structure function datasets included in the NNPDF2.1 NNLO analysis.All
other data are the same as in the NNPDF2.1 NLO analysis, given in Table 3.1. The number of
data points after kinematic cuts are shown in parentheses. In the last three lines is given the total
number of datapoints included in the NNPDF2.1 LO, NLO and NNLO fits.

tion strategies as the corresponding ZEUS analysis, namelythe reconstruction of

D∗±→D0π+ using theD∗ −D0 mass difference method.

• The H1 largeQ2 04-07D∗± analysis [173].

This analysis determinesF c
2 via identifiedD mesons produced at large virtualities

Q2 ≥ 100 GeV2, and is based on data collected in the HERA-II running period

2004 and 2007.

• The H1 low-Q2 06-07D∗± analysis [174].

This is analogous to the previous measurement, but now covering the small and

mediumQ2 region. It is based on data obtained in the HERA-II 2006-2007 running

period. Events containing heavy quarks are distinguished from those containing

only light quarks using variables that are sensitive to the longer lifetimes of heavy

flavor hadrons, like the transverse displacement of tracks from the primary vertex.

The datasets here above described are not all the publishedF c
2 HERA datasets. The

reason to exclude all the other ones is that in comparison with the ones included they are

obsolete and, moreover, the measurements used in the fit are the basis for the combined

HERA F c
2 dataset.

In several analyses for the determination of PDF sets,F c
2 data are excluded for the

fact that the wayF c
2 is usually defined experimentally is affected by mass singularities.

UsuallyF c
2 is defined as the contribution toF2 with at least one charmed quark in the

final state, and the result is not finite in the limit in whichmc→0. Here a definition of

F c
2 as the contribution toF c

2 when only the charm electric charge is nonzero is adopted,

which is free of mass singularities. The deviation between this definition and that which

is used to define the experimental observable is estimated inRef. [36] by means of a

suitable resummation method, and shown to be negligible in the region of the HERA
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FNS
2 (x,Q2)

Nrep 10 100 1000〈
PE

[〈
F (art)

〉
rep

]〉
20% 6.4% 1.3%

r
[
F (art)

]
0.97 0.99 0.99〈

V
[
σ(art)

]〉
dat

6.1 10−5 1.9 10−5 6.7 10−6
〈
PE

[
σ(art)

]〉
dat

33% 11% 3%〈
σ(art)

〉
dat

0.011 0.011 0.011
r
[
σ(art)

]
0.94 0.99 0.99〈

V
[
ρ(art)

]〉
dat

0.10 9.4 10−3 1.0 10−3
〈
ρ(art)

〉
dat

0.182 0.097 0.100
r
[
ρ(art)

]
0.47 0.79 0.97〈

V
[
cov(art)

]〉
dat

5.5 10−9 1.7 10−10 5.7 10−11
〈
cov(art)

〉
dat

1.3 10−5 7.6 10−6 8.1 10−6

r
[
cov(art)

]
0.41 0.81 0.98

Table 3.3:Comparison between experimental and Monte Carlo data. The experimental data have〈
σ(exp)

〉
dat

= 0.011,
〈
ρ(exp)

〉
dat

= 0.107 and
〈
cov(exp)

〉
dat

= 8.6 10−6.
Table taken from Ref. [83].

data. Also,F c
2 is affected by theoretical uncertainties related to the extrapolation from

the experimentally accessible region (restricted inpT andη) to the full phase space. This

theoretical uncertainty is estimated using QCD exclusive partonic calculations and added

as an extra source of systematic uncertainty in the experimental analysis.

3.2 Monte Carlo Generation

Through Monte Carlo generation, starting from the orginal dataset composed by theNdat

central values measured in the various experiments considered,Nrep sets of pseudo-data

are produced. ConsideringF (exp)
i as a general individual measurement, it follows:

F
(art)(k)
i = S

(k)
i,NF

(exp)
i

(
1 +

Nc∑

p=1

r
(k)
i,l σi,l + r

(k)
i σi,s

)
, (3.1)

with

S
(k)
i,N =

Na∏

n=1

(
1 + r

(k)
i,Nσi,N

) Nr∏

n=1

√(
1 + r

(k)
i,Nσi,N

)
(3.2)

k = 1, . . . , Nrep , i = 1, . . . , Ndat .

Independent univariate Gaussian random numbersr(k) are used for each independent

error source. These sources of error are the same introducedin the definition of covari-

ance matrix in Eq. (2.43). Each Monte Carlo replica of the original experimental data is
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generated according to a multi-Gaussian distribution centered in the original point (and so

with expectation value equal to the data point value) and error and covariance equal to the

corresponding experimental quantities. In this way it is possible to generate a sampling

of the probability measure for each experimental data point. As the number of replicas

Nrep is arbitrary, can be decided with which accuracy the generated pseudo-data would

reproduce the original statistical properties of the dataset.

In order to correctly determine a set of replicas, the definition of some statistical es-

timator is needed: a set of them is defined in the Appendix of Ref. [83]. It is possible to

check that averages, variance and covariance of the pseudo-data reproduce central values

and covariance matrix elements of the original data. Resultsfor a single observable were

determined in Ref. [83] and are presented in Table 3.3. It follows that withNrep = 1000 it

is possible to ensure average scatter correlations of 99% and accuracies of a few percent

on central values, errors and correlations.

3.3 Neural Network Parametrization

The parametrization used in all NNPDF analyses is given in terms of neural networks.

This choice allows for an unbiased fit with a very large and redundant set of parameters.

The fitting strategy is very important, as the dependence of the observables on PDFs is

nontrivial. To minimize the error function for each neural network a genetic algorithm

is used. The redundancy of the parametrization implies a subtle problem: surely the

underlyingtruedistribution given by data can be much better determined, but there is the

possibility of minimizing the figure of merit beyond the bestfit point. In this case would

be fitted not only the physical law, but also statistical fluctuation of data. The solution to

this problem is given using a cross-validation method to stop the fit before entering this

overtrainingregion. These three ingredients (neural networks, geneticalgorithm as fitting

tool and cross-validation) are discussed respectively in this Section, in Sect. 3.5, and in

Sect. 3.6.

The flexibility of a neural network depends on its size. An infinite size, as a limit

case, corresponds to a neural network that can reproduce anycontinuous function. Of

course, it is not possible to deal with such an infinite-sizedneural network and a structure

needs to be fixed. A neural network is a nonlinear map between input ξ(1)i and output

ξ
(L)
i variables. For a correctly chosen structure, they can give aresult free of functional

biases. The standard methods, by fixing a functional form (for example polynomials of

fixed degree) are likely to be affected by this kind of bias.

The structure of the neural networks used in NNPDF’s fits is fixed in a 2-5-3-1 ar-

chitecture. This result is achived through a series of stability tests: as is not knowna
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Figure 3.3:Schematic diagram of a feed-forward neural network.

priori which complexity is needed to correctly describe a PDF set, the size of the net is

increased until independence of the results upon its variation is reached. Then the ar-

chitecture is fixed slightly above the critical size that gives stability. A detailed study is

performed in [83]. The neural networks used are multi-layerfeed-forward neural net-

works. A schematic representation is given in Fig. 3.3. Neurons are disposed inL layers,

each one withnl neurons. The number of neurons changes with the layers, as isclear

looking at the 2-5-3-1 architecture implemented. Each neuron receives input from the

neurons of the previous layer and feeds output to the ones in the subsequent layer. These

inputs are combined linearly with a weight each and a global threshold, generating the

outputξ(l)j (j-th neuron of thel-th layer) given by a nonlinear activation functiong(x)

ξ
(l)
i = g

(
h
(l)
i

)
, i = 1, . . . , nl , l = 2, . . . , L, (3.3)

which has as argument the linear combination

h
(l)
i =

nl−1∑

j=1

ω
(l)
ij ξ

(l−1)
j − θi , (3.4)

whereωij (weights) andθi (thresholds) are free parameters to be determined by the fitting

procedure, andg(x) is taken to be a sigmoid in the inner layers,

g(x) =
1

1 + exp(−x) , (3.5)

and linearg(x) = x for the last layer.

In order not to have the neural network defined by weights thatspan many orders of

magnitude, it is a common practice to rescale both the input and the output of the neural

network between0 and1. Independence with respect to variations of this rescalinghave

been checked in [83].
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The neural network outputs the valuesξ(L)j as a function of the input valuesξ(1)j and

the parametersωij, θi. The training of the neural network consists in the determination

of the best-fit values of these parameters given a set of input-output patterns (data). As

the same 2-5-3-1 architecture for all the neural networks present in the analysis is given,

the number of parameters that need to be determined is of 37 parameters for each PDF,

that means a total of 259 parameters. A standard fixed functional form fit has usually

less than 30 parameters. In Sect. 3.5 the genetic algorithm needed for the training will be

discussed.

Preprocessing

To speed up the fitting procedure, a preprocessing of the datais performed. As already

said, a neural network can accomodate any functional form, provided that it has a large

enough size and that it is trained for enough time. However, it is common to factorize

with preprocessing the asymptotic behaviour that the parton distributions may have for

x → 0 and forx → 1. The parametrization of the basis of PDFs implemented in thefit

reads

Σ(x,Q2
0) = (1− x)mΣx−nΣNNΣ(x) ,

V (x,Q2
0) = AV (1− x)mV x−nV NNV (x) ,

T3(x,Q
2
0) = (1− x)mT3x−nT3NNT3(x) , (3.6)

∆S(x,Q
2
0) = A∆S

(1− x)m∆Sx−n∆SNN∆S
(x) ,

g(x,Q2
0) = Ag(1− x)mgx−ngNNg(x) ,

s+(x,Q2
0) = (1− x)ms+ x−ns+NNs+(x) ,

s−(x,Q2
0) = (1− x)ms− x−ns−NNs−(x)− saux(x,Q

2
0),

where

saux(x,Q
2
0) = As−

[
xrs− (1− x)ts−

]
. (3.7)

TheNN(x) functions represent the neural networks that are trained during the fit. The

preprocessing exponentsm, n, are randomly variated on a range given in Table 3.4. The

normalization factorsAV ,A∆S
, andAg are constrained by the sum rules and are discussed

in Sect. 3.4. A simple test to check that preprocessing is notintroducing a bias is to

remove it. For a sufficiently long training the results must be stable. A more sofisticated

tool is given in Ref. [87] by the computation of the correlation between a preprocessing

coefficient and theχ2 of the relative PDF computed between thek-th net (trained on
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PDF [mmin,mmax] [nmin, nmax] r [χ2,m] r [χ2, n]

Σ(x,Q2
0) [2.55, 3.45] [1.05, 1.35] -0.018 0.131

g(x,Q2
0) [1.05, 1.35] [1.05, 1.35] -0.002 0.050

T3(x,Q
2
0) [2.55, 3.45] [0, 0.5] -0.023 -0.130

VT (x,Q
2
0) [2.55, 3.45] [0, 0.5] 0.003 -0.068

∆S(x,Q
2
0) [12, 14] [−0.95,−0.65] 0.000 -0.069

s+(x,Q2
0) [2.55, 3.45] [1.05, 1.35] 0.021 -0.055

s−(x,Q2
0) [2.55, 3.45] [0, 0.5] -0.027 -0.015

Table 3.4:The range of random variation of the large-x and small-x preprocessing exponents
m andn used in the present analysis (the precise form of these exponents is given in Sect. 3.1
of Ref. [49]). The last two columns give the correlation coefficient Eq.(3.8) between theχ2 and
respectively the large- and small-x preprocessing exponents.

replicak) and experimental data, defined as

r
[
χ2,mΣ

]
≡

〈χ2mΣ〉rep − 〈χ2〉rep 〈mΣ〉rep
σ2
mΣ

. (3.8)

The results of this test are given in the last column of Tab. 3.4.

3.4 Sum Rules and Positivity Constraints

While performing a parton fit, it is important to guarantee that only the subspace of ac-

ceptable physical solutions is explored by the fitting procedure. It is possible to constrain

the space of acceptable solutions by implementing some general features, as for example

sum rules and positivity.

Sum rules follow from conservation laws, and read

∫ 1

0

dx x [Σ(x) + g(x)] = 1 (3.9)

for the momentum sum rule, and

∫ 1

0

dx (u(x)− ū(x)) = 2 ,

∫ 1

0

dx (d(x)− d̄(x)) = 1 (3.10)

for the valence sum rules. The momentum sum rule Eq. (3.9) fixes the factorAg as

Ag =
1−

∫ 1

0
dx x [(1− x)mΣNNΣ(x)/x

nΣ ]
∫ 1

0
dx x [(1− x)mgNNg(x)/xng ]

, (3.11)
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while the valence sum rules Eq. (3.10) fix the factorsAV andA∆S
as

AV =
3

∫ 1

0
dx [(1− x)mV NNV (x)/xnV ]

,

A∆S
=

1−
∫ 1

0
dx [(1− x)mT3NNT3(x)/x

nT3 ]

2
∫ 1

0
dx [(1− x)m∆SNN∆S

(x)/xn∆S ]
. (3.12)

These rules are satisfied at the initial evolution scaleQ2
0 as an imposed condition. Evolu-

tion will preserve this condition at each value ofQ2.

This is almost the same strategy adopted for positivity constraints. Of course all phys-

ical cross-sections has to be positive. Positivity needs tobe imposed only on hadronic

cross-sections and not on partonic quantities (only at LO subsists a probabilistic inter-

pretation for PDFs) [185]. For the NLO case, additional pseudo-datasets are defined for

physical cross-sections with extremely small uncertainties in such a way that negative

cross-sections would lead to a very large contribution to the χ2 (Lagrangian multipli-

ers method). All the positivity constraints are implemented at a low scaleQ2
pos chosen

to beQ2
pos = 2 GeV2, in the rangex ∈ [10−6, xmax], wherexmax is the corresponding

kinematical boundary,xmax ∼ 0.1 for NC scattering andxmax ∼ 0.5 for CC scattering.

The evolution (DGLAP) then takes care of preserving the positivity properties for higher

scales, as for sum rules.

In NNPDF2.1 NLO, positivity of the longitudinal structure functionFL(x,Q
2) is im-

posed, which constrains the gluon positivity at small-x, of the charm production cross-

section in neutrino DIS, (d2σν,c/dxdy [49]), which constrains the strange PDFs both at

large and at small-x, beyond the reach of existing data, and of the neutral current DIS

charm structure functionF c
2 (x,Q

2), useful to impose the positivity of the gluon at very

large-x, where it is not constrained by any experimental dataset.

The physical observables for the pseudo-data that implement the positivity constraints

are computed consistently at the same perturbative order asall other physical observables,

in the present case next–to–leading order perturbative QCD.

The same procedure with Lagrangian multipliers is applied in the case of NNPDF2.1

NNLO. The same could be done at LO, where as already said PDFs have a probabilistic

interpretation and it is possible to impose the positivity constraints directly on PDFs.

Instead of using the same method with the generation of pseudo-data explained above,

it is possible to obtain the same result with a consequent reduction of the fitting time

just implementing a minor modification in the PDF parametrization. Within the neural

network PDF parametrization which is adopted, this can be done as follows. Recall that
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in the architecure that is adopted for neural networks, the response function is a sigmoid

ξ
(l)
i = g

(∑

j

ω
(l)
ij ξ

(l−1)
j − θ

(l)
i

)
, g(x) =

1

1 + e−x
, (3.13)

for hidden layer, but it is linear in the last layer. For the LOfits, instead, for the last layer

a quadratic response function

ξ
(nl)
i =

(∑

j

ω
(nl)
ij ξ

(nl−1)
j − θ

(nl)
i

)2
(3.14)

is adopted. The output of the neural network, and thus the PDF, is then guaranteed to be

non-negative.

The basis of PDFs that are parametrized by neural networks inNNPDF fits (Sect. 1.5)

includes the gluon, quark singlet, and various other linearcombinations of quark PDFs.

Of these, only the gluon and singlet must be positive, since all other combinations contain

differences of PDFs. However, in practice also the total valence and isospin triplet com-

bination are positive definite. Hence the parametrization Eqs. (3.13)-(3.14) for simplicity

is adopted for all PDFs: partonic functions other than singlet, gluon, valence and triplet

are allowed to change sign by simply adding to the above form aconstant shift. It turns

out that with the constraints from the data, this is sufficient in practice to ensure positivity

of all PDFs: has been checked a posteriori that for every replica the gluon and all indi-

vidual quark and antiquark flavors are positive for all values of x andQ2 for which the

NNPDF2.1 LO PDFs are provided.

3.5 Genetic Algorithm Minimization

A reasonable minimum in a very large parameter space and witha figure of merit that is a

nonlocal functional of the set of functions that are being determined in the minimization

needs to be find. This problem can be efficiently solved using agenetic algorithm.

Starting from a randomly chosen set of parameters, the genetic algorithm generates a

pool of possible new sets by mutation of one or more parameters at a time. Each new set

that has undergone mutation is amutant. To each set of parameters corresponds a value of

the error function that is being minimized, and so those configurations that fall far away

from the minimum can be discarded. This procedure is iterated over a sufficiently large

number of generations.
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The error function to be minimized has the form [84]

E(k) =
1

Ndat

Ndat∑

I,J=1

(
F

(art)(k)
I − F

(net)(k)
I

) (
(covt0)

−1)
IJ

(
F

(art)(k)
J − F

(net)(k)
J

)
, (3.15)

whereF (art)(k)
I is the value of the observableFI at the kinematic pointI corresponding to

the Monte Carlo replicak, andF (net)(k)
I is the same observable computed from the neural

network PDFs, and where thet0 covariance matrixcovt0 has been defined in Eq. (2.40).

For a more detailed explanation on the application of genetic algorithm minimization to

PDFs fitting see Ref. [84]. Recent NNPDF analyses have to deal with many different

experimental datasets. In the following some more sofisticated features needed in this

case with respect to a standard one are discussed.

Targeted Weighted Training

Due to the fact that several different datasets are present in the fit, often with very different

chatacteristics, it is likely that during a standard fit the minimization over a specific dataset

is much faster than over the other datasets. Of course it may happen also the opposite

situation, in which the training of a specific dataset is muchslower than all the others.

In short, the training of more datasets at a time can well be disomogeneous. This results

not only in a very inefficient training, but also in a final uneven figure of meritE(k). A

possible solution is to introduce a dynamical weighted fitting technique.

The main idea is to define a weight for each dataset that gets updated during the fit. In

a first epoch of the training the error function is modified like this:

E
(k)
wt =

1

Ndat

Nsets∑

j=1

p
(k)
j Ndat,jE

(k)
j , (3.16)

whereE(k)
j is the error function in Eq. (3.15) restricted to the datasetj, Ndat,j is the

number of points of this dataset andp(k)j are weights associated to this dataset which are

adjusted dynamically. These weights are defined in relationto target valuesEtarg
i for the

figure of merit, chosen for each single experiment. Then for each set the weights are

defined as

p
(k)
i =

(
E

(k)
i /Etarg

i

)2
if E

(k)
i ≥ Etarg

i , (3.17)

while are set to zero (p(k)i = 0) if E(k)
i < Etarg

i . This procedure has the effect of giving

a larger weight to that datasets that are far above their target value, so that the training

on them is more intense, and to remove from the training that datasets that already have

reached a good minimization. This avoids to waste training resources on datasets that are
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already well trained.

The target valuesEtarg
i are determined for all sets with an iterative procedure starting

with all Etarg
i = 1 and going through a first very long fit. The resulting outcome of the fit

is used for a first set ofEtarg
i values. This procedure is iterated until convergence. More

details are given in Ref. [87].

The dynamical targeted weighted training only lasts a fixed number of generations

Nwt
gen. Only if the error function of a specific replica is above a thresholdE(k) ≥ Esw then

the weighted training is not turned off untilE(k) goes below the threshold. The last part of

the training then is without weights and the unweighted error function is again Eq. (3.15),

computed on experiments (the weighted one was computed on single datasets). This

last epoch is important to eliminate any possible residual bias introduced by theEtarg
i

weighted minimization. Using this procedure the fit is faster and much more uniform.
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Figure 3.4:Illustration of the weighted training in one particular replica. Individual weights for
each dataset converge to a value ofpi which is close to 1 as the training progresses. Only the
behaviour of representative datasets is shown.

3.6 Dynamical Stopping

To determine the best fit, the training has to be stopped at a point in which the fit repro-

duces the underlying physical law contained in the information given by the data with

sufficient precision but not the statistical fluctuations ofthe same data. To this extent, it

is necessary to define a dynamical stopping criterion. A series of tests over the conditions

for dynamical stopping is turned on only after weighted training has instead turned off,
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that is afterNwt
gen generations. The stopping is applied on the training of eachreplica, and

it is based on the cross-validation method, widely used in the context of neural network

training [186]. This method consists in dividing the dataset in two subsets: over one of

them the fit is regularly performed (training subset), whilethe other (validation subset)

is used only to compute the error function and validate the result given by the training

subset. While the error function computed over the trained points is by definition mono-

tonically non-increasing, the same quantity computed overthe validation points would

increase when the overlearning regime sets in. The application of the cross-validation

method to this case has been described into detail in Refs. [83,84,87].

The conditions for dynamical stopping are three:

• the fit must be, as already said, out of the targeted weighted training epoch

• all experiments must have an error function below some reasonable thresholdEthres

• a moving average for training (rtr) and for validation (rval), defined below, must

satisfy

rtr > 1− δtr , rval > 1 + δval . (3.18)

In this last condition, the moving averages are defined as

rtr ≡
〈Etr(i)〉

〈Etr(i−∆smear)〉
, (3.19)

rval ≡
〈Eval(i)〉

〈Eval(i−∆smear)〉
, (3.20)

where the∆smear functions are given by

〈Etr,val(i)〉 ≡
1

Nsmear

i∑

l=i−Nsmear+1

Etr,val(l) , (3.21)

with Etr,val(l) the value of the error function Eq. (3.15) evaluated for the iterationl of the

genetic algorithm and over the training and validation subsets. In practice, for a variation

between an iteration and another of the valuesrtr andrval such that the first is decreased

and the second is enhanced by a quantity that exceeds the respective sensitivitiesδtr and

δval, if the first two conditions are satisfied then the fit stops. The two parametersδtr
and δval set the accuracy to which the increase and decrease is required in order to be

significant (in order not to confuse a fluctuation with a real increase in validation error

function). The tuning of the dynamical stopping parametersis performed into detail in

Ref. [87].
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Nsmear ∆smear δtr δval Ethres Nmax
gen

200 200 10−4 3 10−4 6 30000

Table 3.5:Parameter values for the stopping criterion.

The final values of the determined parameters are listed in Table 3.5. In order to

avoid unacceptably long fits, when a very large number of iterationsNmax
gen is reached

(see Table 3.6) training is stopped anyway. This leads to a small loss of accuracy of the

corresponding fits, which is acceptable provided it only happens for a small fraction of

replicas.

Genetic Algorithm Parameters

As in the case discussed above for dynamical stopping, also the genetic algorithm is

characterized by a certain number of parameters that need tobe tuned in order to improve

its efficiency and, as a consequence, that of the whole training.

A mutant as a set of parameters associated to the neural network that is being trained

has already been introduced. More mutants are obtained fromanother set of parameters

by introducing mutations on them. As can be seen in Table 3.6,each PDF has a fixed

number of mutationsNmut that can modify its set of parameters at each generation. To

each mutation it is associated a mutation rate, that is dynamically adjusted as a function

of the iterationsNite in this way:

ηi,j = η
(0)
i,j /N

rη
ite , (3.22)

whereη(0)i,j is the initial mutation rate of the PDFi and the mutationj, Nite is the number

of iterations already cycled, andrη is an exponent randomly initialized at each iteration

between0 and1 that allows to span the range of all possible beneficial mutations. Looking

iteration by iteration which is the value of this exponent for the accepted mutations reveals

that the size of the mutation doesn’t depend on the stage of the training. Both large and

small mutations are accepted with the same frequency independently ofNite.

At each iteration, a certain number of mutants is produced tohave a pool of parameter

configurations from which it is possible to choose the best individual. Before a certain it-

erationNmut
gen , the number of generated mutants corresponds toNa

mut ≫ 1, in order to have

a large population in the pool and better explore a parameterspace as large as possible.

In a more advanced stage of the training it is more useful to reduce this number so that

N b
mut ≪ Na

mut to help with a reduced population to propagate the beneficialmutations.

The final choices of parameters of the genetic algorithm which have been adopted in

the NNPDF2.1 parton determination are summarized in Table 3.6. While at NLO they
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Nwt
gen Nmut

gen Nmax
gen Esw Na

mut N b
mut

LO & NLO 10000 2500 30000 2.6 80 10
NNLO 10000 2500 30000 2.3 80 30

LO & NLO NNLO
PDF Nmut ηk Nmut ηk

Σ(x) 2 10,1 2 10,1
g(x) 2 10,1 3 10,3,0.4
T3(x) 2 1,0.1 2 1,0.1
V (x) 2 1,0.1 3 8,1,0.1
∆S(x) 2 1,0.1 3 5,1,0.1
s+(x) 2 5,0.5 2 5,0.5
s−(x) 2 1,0.1 2 1,0.1

Table 3.6:Parameter values for the genetic algorithm for the NNLO fits compared to thoseof
the LO and NLO fits (top). The number of mutations and the values of the mutation rates for the
individual PDFs in the NNLO fit as compared to the values of the LO and NLO fits are also given
(bottom).

are the same as in Ref. [49, 84, 87], the poorer quality of the LOfit on the one hand, and

the greater complexity of NNLO coefficient functions on the other hand, require some

retuning of the parameters of the minimization algorithm inthese two cases.

At leading order, the best-fit value of the figure of meritE(k) which is being minimized

for each replica (which is essentially theχ2 of the fit of each PDF replica to the given data

replica) is on average rather larger than in an NLO fit, because of the poorer accuracy of

the LO theory. This is particularly true for the Drell-Yan observables, which have large

NLO corrections with aK-factor of order two. As a consequence, the minimum value that

E(k) must reach for each experiment in order for the fit to stop has been increased from

Eth = 6 to EDY
th = 12 for all Drell-Yan experiments. Furthermore, the cross-validation

method that is used to determine the optimal fit stops the minimization when the moving

average (over iterations of the genetic algorithm) ofE(k) increases more than a fixed

percentage threshold valuerv, larger than a typical random fluctuation. Because the size

of fluctuations ofE(k) remains fixed, while its value at best fit has increased, the typical

values ofrv are smaller at LO, and thus it turns out to be necessary to reduce the value of

rv required for stopping torv − 1 = 2 · 10−4, from rv − 1 = 3 · 10−4 used at NLO.

Even with these adjustments, for a sizable fraction of replicas the cross-validation

algorithm fails to stop dynamically the minimization even after a large number of gen-

erations of the genetic algorithm. This reflects the poor accuracy of LO theory, and it

could only be obviated by letting the genetic minimization run much longer. In view of

the large theoretical uncertainties inherent to any LO PDF determination, as a practical
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compromise replicas that do not stop dynamically after 50000 iterations of the genetic al-

gorithm are discarded, retaining only those replicas for which the stopping criterion was

fulfilled. It has been checked that this leads to no significant statistical bias.

At next-to-next-to-leading order the partonic cross-sections have rather more structure

than at lower orders, both because of the opening of new partonic channels and because of

the appearance of new transcendental functions in the perturbative results (such as higher

order harmonic sums). This results in somewhat more complexPDF shapes. As a conse-

quence, it turns out to be necessary to increase the number ofmutants and mutations per

PDF in the genetic minimization in order to fully explore this more complex space of min-

ima. The NNLO settings for the genetic algorithm used for minimization are summarized

in Table 3.6 and compared to those used at LO and NLO.

3.7 The FastKernel Method

In this Section the FastKernel method is briefly described. The main idea is presented in

the case of PDFs evolution. A detailed description and benchmark of the method for the

construction of the observables is developed in Ref. [87].

The computation of physical observables requires both the computation of PDFs at

the initial scale and solving DGLAP evolution equations. Inparticular, this second step

implies the computation of convolutions between PDFs and hard scattering cross-sections.

To compute convolutions is a time consuming procedure, and in the case of hadronic

observables, where two PDFs are involved - one from each colliding nucleon - a double

convolution need to be computed. As developed in Refs. [83,84] and recalled in Sect. 1.5,

to solve DGLAP equations it is possible to pre-compute a Green function that can be

determined in theN space and that takes a PDF from its initial scale to the scale of

physical measurements. This function can be also pre-combined with the hard scattering

cross-sections into the definition of an appropriate evolution kernel. This method allows

to reduce the computation of any observable to performing a convolution (or two, for

hadronic observables).

However, despite this simplification, to compute physical observables is a lengthy

process, due to these convolutions. For this reason, in several global PDF fits the com-

putation of Drell-Yan processes is treated using NLO and NNLO K-factor approxima-

tion [81, 187]. A method to exactly compute Drell-Yan and collider weak boson produc-

tion was first proposed in Ref. [87], and is based on analogous ideas as the ones on which

are based tools like FastNLO [188] for the case of jet production, APPLGRID [189], or

the fastx-space DGLAP evolution code HOPPET [190]. The original ideaon which all

these tools are based was proposed in Ref. [191].
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In Sect. 1.5 has been already introduced a basis in terms of which PDFs can be written:

fj = {Σ, g, V, V3, V8, V15, V24, V35, T3, T8, T15, T24, T35}. (3.23)

The independent contributions are only seven because heavyintrinsic flavors are not being

considered. In this case only the six lightest quark-antiquark contributions and the gluon

need to be parametrized.

Equation (1.99) gives

fj(xI , Q
2
I) =

Npdf∑

k=1

∫ 1

xI

dy

y
Γjk

(
xI
y
,Q2

0, Q
2
I

)
fk(y,Q

2
0), (3.24)

whereΓjk is the matrix of DGLAP evolution kernels and(xI , Q2
I) defines the kinemat-

ics of a given experimental point. The indexI refers both to the kinematic variables

which define an experimental point(x,Q2) and the type of observable. The expression in

Eq. (3.24) describes the evolution of a PDF from an initial scaleQ2
0 to the physical scale

Q2
I . The integration in Eq. (3.24) was performed in Ref. [84] by means of Gaussian inte-

gration. Here the FastKernel method is first introduced in a simpler (but slower and less

accurate) case that relies on triangular basis functions and then is generalized to Hermite

cubic functions.

A grid in x that is independent of the experimental pointxI is considered. The grid is

defined by a set of points

xmin ≡ x1 < x2 < ... < xNx−1 < xNx ≡ 1 ,

that is labeled asxα with α = 1, ..., Nx. It is now possible to define a basis of interpolating

functionsI(α) such that

I(α)(xα) = 1

I(α)(xβ) = 0 , β 6= α
Nx∑

α=1

I(α)(y) = 1 , ∀y. (3.25)

An example for such a basis is represented by the triangular functions plotted in Fig. 3.5

where, for anyy, only two triangular functions are non zero and their sum is always equal

to one. A triangular functionE(α) is centered inxα, where its value is equal to one, and

is zero outside the interval(xα−1, xα+1).
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Figure 3.5: Set of interpolating triangular basis functions.

At the initial scale a PDF can be rewritten using the approximation

fk(y,Q
2
0) ≡ f 0

k (y) =
Nx∑

α=1

f 0
k (xα) I(α)(y) +O[(xα+1 − xα)

p] , (3.26)

given by the general set introduced above. Herep is the lowest order neglected in the

interpolation. As triangular functions are linear, in thiscasep = 2. It is possible to write

in a more explicit way Eq. (3.24) like

fj(xI , Q
2
I) ≡ fj(xI) =

Npdf∑

k=1

Nx∑

α=1

f 0
k (xα)

∫ 1

xI

dy

y
Γjk

(
xI
y

)
I(α)(y) +O[(xα+1 − xα)

p]

fj(xI) =

Npdf∑

k=1

Nx∑

α=1

σ̂Ij
αk f

0
k (xα) +O[(xα+1 − xα)

p], (3.27)

where

σ̂j
αk(xI , Q

2
0, Q

2
I) ≡ σ̂Ij

αk =

∫ 1

xI

dy

y
Γjk

(
xI
y

)
I(α)(y). (3.28)

The dependence onQ has been dropped on the right hand part of the equations. The inde-

cesj, k, run over the PDFs,α runs over thex-grid points andI refers, as already said, to

the experimental point. It is visible from Eq. (3.27) the convenience of this approach: the

σ̂Ij
αk coefficients can be precomputed for each pointI and stored. Then the computation of

the integral in Eq. (3.24) can be performed by only evaluateNx times the PDFs, indepen-

dently of the point at which the evolved PDFs are needed. Thisreduces the computational

effort, but things gets still better by using a more sofisticated basis.
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Figure 3.6: Set of interpolating Hermite cubic functions inthe [0,1] interval.

In Ref. [87] a basis of cubic Hermite interpolating functionsis introduced, defined as

h00(t) = 2t3 − 3t2 + 1 = (1 + 2t)(1− t)2 (3.29)

h10(t) = t3 − 2t2 + t = t(t− 1)2

h01(t) = −2t3 + 3t2 = t2(3− 2t)

h11(t) = t3 − t2 = t2(t− 1)

and represented in Fig. 3.6.

Using this new basis, it is possible to rewrite a PDF as

f 0
k (y) = h00(t)f

0
k (xα) + h10(t)hαmα + h01(t)f

0
k (xα+1) + h11(t)hαmα+1

+O[(xα+1 − xα)
4],

where

hα = g(xα+1)− g(xα), t =
g(y)− g(xα)

hα
, (3.30)

with g(y) a monotonic function in [0,1] which determines the distribution of points in the

interval (linear, logarithmic, etc.). Moreover,

mα =





f0
k (xα)−f0

k (xα−1)

2hα−1
+

f0
k (xα+1)−f0

k (xα)

2hα
, for 2 ≤ α ≤ Nx − 1

f0
k (xα+1)−f0

k (xα)

hα
, for α = 1

f0
k (xα)−f0

k (xα−1)

hα−1
, for α = Nx

(3.31)

are derivatives of the interpolated function, at the right hand side of the interval (mα) or
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at the left hand side (mα+1). It is convenient to rewrite the expression in Eq. (3.30) like

f 0
k (y) = f 0

k (xα−1)A
(α)(y) + f 0

k (xα)B
(α)(y) + f 0

k (xα+1)C
(α)(y) (3.32)

+f 0
k (xα+2)D

(α)(y) +O[(xα+1 − xα)
4] ,

where

A(α)(y) =




0, for α = 1

−h10(t) hα

hα−1
, for α 6= 1

(3.33)

B(α)(y) =





h00(t)− h10(t)− h11(t)
2
, for α = 1

h00(t)− h10(t)
2

(
1− hα

hα+1

)
− h11(t), for α = Nx − 1

h00(t)− h10(t)
2

(
1− hα

hα+1

)
− h11(t)

2
, for α 6= 1, Nx − 1

C(α)(y) =





h01(t) +
h11(t)

2

(
1− hα

hα+1

)
+ h10(t), for α = 1

h01(t) + h11(t) +
h10(t)

2
, for α = Nx − 1

h01(t) +
h11(t)

2

(
1− hα

hα+1

)
+ h10(t)

2
, for α 6= 1, Nx − 1

D(α)(y) =




0, for α = Nx − 1

h11(t)
hα

2hα+1
, for α 6= Nx − 1 .

Gathering all the parts defined up to now in Eq. (3.24), the following contributions

from theσ̂ coefficients can be written:

σ̂Ij
αk =





∫ xc+1

xI

dy
y
Γjk

(
xI

y

)
A(c)(y), for α = c,

∫ xc+1

xI

dy
y
Γjk

(
xI

y

)
B(c)(y)

+θ(Nx − (c+ 2))
∫ xc+2

xc+1

dy
y
Γjk

(
xI

y

)
A(c+1)(y), for α = c+ 1,

∫ xc+1

xI

dy
y
Γjk

(
xI

y

)
C(c)(y)

+θ(Nx − (c+ 2))
∫ xc+2

xc+1

dy
y
Γjk

(
xI

y

)
B(c+1)(y)

+θ(Nx − (c+ 3))
∫ xc+3

xc+2

dy
y
Γjk

(
xI

y

)
A(c+2)(y), for α = c+ 2,

θ(Nx − (I − 1))
∫ xα−1

xα−2

dy
y
Γjk

(
xI

y

)
D(α−1)(y)

+θ(Nx − α)
∫ xα

xα−1

dy
y
Γjk

(
xI

y

)
C(α−1)(y)

+θ(Nx − (α + 1))
∫ xα+1

xα

dy
y
Γjk

(
xI

y

)
B(α)(y)

+θ(Nx − (α + 2))
∫ xα+2

xα+1

dy
y
Γjk

(
xI

y

)
A(α+1)(y), for c+ 3 ≤ α ≤ Nx + 1,

0 for α < c,

(3.34)
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with c the index such that

xc ≤ xI < xc+1.

Even if at first sight these expressions seem more complicated, they are simpler to

pre-compute. It can be observed that while in the previous case for each pointy the

computation of only two contributions from the interpolating basis was needed, in the

present case is needed the computation of four contribution. The gain in accuracy (now

terms of the fourth order are neglected and not just of the second as before) allows for a

much less dense grid, that corresponds to a sensible speed upin computations.

A last issue needs to be addressed: wheny ∼ xI the precomputed coefficients need to

be regularized, using the same subtraction used in Ref. [84]:considering the case of the

first integral ofA(α)(y), it can be written

∫ xc+1

xI

dy
y
Γjk

(
xI

y

)
A(c)(y)

=
∫ xc+1

xI

dy
y
Γjk

(
xI

y

) (
A(c)(y) − xI

y
A(c)(xI)

)
+ A(c)(xI)

∫ xc+1

xI

dy
y2
Γjk

(
xI

y

)

=
∫ xc+1

xI

dy
y
Γjk

(
xI

y

) (
A(c)(y)− xI

y
A(c)(xI)

)
+ A(c)(xI)

∫ 1

xI/xc+1
dz Γjk(z)

=
∫ xc+1

xI

dy
y
Γjk

(
xI

y

) (
A(c)(y)− xI

y
A(c)(xI)

)

+A(c)(xI)
[
Γjk(N)

∣∣
N=2

−
∫ xI/xc+1

0
dz Γjk(z)

]
. (3.35)

In this way all theσ̂ coefficients can be regularized and stored, so that their computation

is only needed once for each experimental point, thanks to the fact that they do not depend

on PDFs at the initial scale.

The accuracy of a 50 point grid results in aO(10−5) discrepancy in a benchmark

against the Les Houches tables given in Ref. [192], that is beyond the accuracy needed for

precision phenomenology at LHC. This is the main result of a more detailed study given

in Ref. [87].

3.8 New Data Inclusion by Reweighting

The features of the NNPDF approach discussed in this Chapter allow for an interesting

exploitation of Bayesian inference to determine the impact of new datasets.

How an existing probability distribution in the space of PDFs may be updated with

information from new data shall be discussed. To include thenew data, one can of course

perform a fit with the new, enlarged dataset. However this is atime consuming task,

particularly for observables where no fast code is available. It is therefore desirable to

have a faster method of including new data in order to assess it’s impact rapidly without
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the need for a full refit. NNPDF parton sets are supplied as an ensemble ofN = Nrep

parton distribution replicasE , representing the probability density in PDFsP(f) based

upon the data in the existing fit. It is therefore possible to include new data by weighting

each replicafk in the ensemble by an associated weightwk. If the replica weights are

computed correctly, then reweighting is completely equivalent to a refit.

In order to illustrate the reweighting method, the computation of the expected value of

a PDF-dependent observableF [f ] is considered. As the NNPDF Monte Carlo ensemble

is a good representation of the probability densityP(f), the expectation value〈F [f ]〉 can

be calculated as a simple average,

〈F〉 =
∫

F [f ]P(f)Df = 1
N

N∑

k=1

F [fk] .

New data can be included into the existing ensemble by assigning each replica a unique

weightw. This weight assesses the agreement between the replica andnew data. The

reweighted ensemble now forms a representation of the probability distribution of PDFs

Pnew(f) conditional on both the existing and new data. The mean valueof the observable

F taking account of the new data is then given by the weighted average

〈F〉new =

∫
F [f ]Pnew(f)Df = 1

N

N∑

k=1

wkF [fk],

where the weights are given in terms of the individual replicaχ2 to new data by

wk =
(χ2

k)
(n−1)/2e−

1
2
χ2
k

1
N

∑N
k=1(χ

2
k)

(n−1)/2e−
1
2
χ2
k

= NχP(χ2|fk) .

Note that after reweighting a given ensemble ofN PDF replicas the efficiency in describ-

ing the distribution of PDFs is no longer the same. The reweighting procedure will often

assign replicas very small weights, therefore these replicas no longer contribute to the en-

semble. The efficiency of the representation of the underlying distributionPnew(f) will

therefore be less than it would be in a new fit. The loss of information due to reweighting

can be quantified using the Shannon entropy to determine the effective number of replicas

in the reweighted set:

Neff ≡ exp{ 1
N

N∑

k=1

wk ln(N/wk)}.
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Figure 3.7:The gluon distribution (left) and its uncertainty (right) of the NNPDF2.0(DIS+DY)
fit before and after reweighting with the inclusive jet data compared to the refitted gluon from
NNPDF2.0.

Unweighting

Once a reweighted PDF set has been determined, it would be interesting to be able to pro-

duce a new PDF ensemble with the same probability distribution as a reweighted set, but

without the need to include the weight information. A methodof unweightinghas there-

fore been developed, whereby the new set is constructed by deterministically sampling

with replacement the weighted probability distribution. This means that replicas with a

very small weight will no longer appear in the final unweighted set while replicas with

large weight will occur repeatedly.

If the probability for each replica and the probability cumulants are defined as

pk =
wk

Nrep

Pk ≡ Pk−1 + pk =
k∑

j=0

pj ,

it is possible to quantitatively describe the unweighting procedure. Starting withNrep

replicas with weightswk,Nrep new weightsw′
k are determined:

w′
k =

N ′

rep∑

j=1

θ
( j

N ′
rep

− Pk−1

)
θ
(
Pk −

j

N ′
rep

)
.

These weights are therefore either zero or a positive integer. By construction they satisfy

N ′
rep ≡

Nrep∑

k=1

w′
k ,

i.e. the new unweighted set consists ofN ′
rep replicas, simply constructed by takingw′

k

copies of thek-th replica, for allk = 1, . . . , Nrep . This procedure is illustrated graphically

in Figure 3.8.
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Figure 3.8:Graphical representation of the construction of a set ofN ′
rep unweighted replicas from

a set ofNrep = 20 weighted ones. Each segment is in one-to-one correspondence to a replica,
and its length is proportional to the weight of the replica. The cases ofN ′

rep ≫ Nrep (top) and
N ′

rep = 10 (bottom) are shown.

3.9 Closure Test

To verify the effectiveness of the reweighting procedure, here below will be shown that in-

cluding datasets by reweighting produces an ensemble of PDFreplicas statistically equiv-

alent to a full refit. This test is calledclosure test. At first, a new NNPDF2.0 fit including

only DIS and Drell-Yan data is produced. The data left out of the fit (Tevatron Run II in-

clusive jet data) is then reintroduced by reweighting. The resulting reweighted ensemble

is then compared to the full NNPDF2.0 fit.

In Figure 3.7 is shown the gluon PDF for the three sets; the prior fit NNPDF2.0(DIS+DY),

the reweighted set NNPDF2.0(DIS+DY) with jet data included, and the refitted full set

NNPDF2.0. The figure shows excellent agreement between the reweighted set and the

full fit. Differences stay well below statistical fluctuations.

To obtain a more precise estimation of the statistical equivalence of the refitted and

reweighted parton sets, and also to test the unweighting procedure, it is useful to ex-

amine the statistical distances between the new unweighteddistributions and the refitted

set. The distance formulae are defined in Appendix A of Ref. [87]. If two sets give a
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description of the same underlying probability distribution and so are statistically equiv-

alent, the distance between them will fluctuate around a value of one. Atd ∼ 7 the

discrepancy between the two sets is at the one-sigma level. In the case of the Tevatron

jets reweighting exercise, can be seen in Figure 3.9 that these distances oscillate around

one. The reweighted set is therefore equivalent to the refit and there is no significant loss

of accuracy in the unweighting procedure.
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Having developed the unweighting procedure, it is possibleto perform another check

on the consistency of the reweighting method. When adding more than one set of data by

reweighting, this method must satisfy combination and commutation properties. Reweight-

ing with both sets must be equivalent to reweighting with one, unweighting then reweight-

ing with the other. Of course switching the order in which thereweighting is performed

must produce an equivalent distribution.
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Figure 3.10: Multiple reweighting demonstration. Plots ofgluon PDF(left) and valence
PDF (right).

To check that the procedure satisfies these properties, a test is performed using the

Tevatron jet data as the first dataset and E605 fixed target Drell-Yan data as the second one.
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Figure 3.11: Comparison of light quark and antiquark distributions at the scaleQ2 =
M2

W from the global NNPDF2.1 and NNPDF2.2 global fits. Parton densities are plotted
normalized to the NNPDF2.1 central value.

In Figure 3.10 are compared the inclusion of the combined setwith the inclusion of one

set after the other. The result is clearly independent from the order in which the inclusion

of single datasets is performed. A distance analysis on the three produced sets confirms

that the reweighting method satisfies the combination and commutation requirements.

NNPDF2.2

The Bayesian reweighting method has been used to construct a new NNPDF parton set:

NNPDF2.2 [193]. In this set is taken as a prior ensemble the NNPDF2.1 fit and the W-

lepton charge asymmetry measurements of the ATLAS, CMS and D0collaborations are

inclueded by reweighting.

The NNPDF2.1 set provides a reasonable description of the new measurements, with

χ2
tot/Ndat = 2.22. After reweighting with the new data this improves to an excellent

level of agreement withχ2
tot/Ndat = 0.81. Having reweighted a prior set withNrep =

1000 initial replicas,181 remain, indicating that the data provides a substantial constraint.

Using the unweighting procedure outlined above, the new PDFset withNrep = 100 has

been produced.

Figure 3.11 demonstrates the impact of the new data on the light quark and antiquark

PDFs. The uncertainties are significantly constrained by the data in two main regions, is
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observed a reduction of around20% at x ∼ 10−3 and30% in the regionx ∼ 10−2 to

x ∼ 10−1. The overall fit quality improves slightly, from a totalχ2
tot/Ndat of 1.165 with

NNPDF2.1 to1.157. The constraints demonstrated here are the first such constraints upon

parton distributions from LHC data.

Such constraints are particularly important given the discrepancies between global

parton distribution fits in flavor separation at medium to large x. The W-lepton charge

asymmetry data included here may prove useful in resolving some of these discrepancies.
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Chapter 4

Impact of Heavy Quark Masses on

PDFs

After introducing and discussing the theoretical issues related to parton distribution de-

termination and after discussing the main features of a general NNPDF fit, explaining all

the related theoretical and experimental aspects, in this Chapter are presented the results

of the NNPDF2.1 analysis. At first the NLO results are presented and compared both to

the previous NNPDF2.0 release and to parton sets from other groups. The dependence of

this set on the value of heavy quark masses is also discussed.In the central part of the

Chapter the LO and NNLO NNPDF2.1 parton sets are presented, and finally perturbative

stability of the sets going from LO to NNLO is verified.

4.1 Next-to-Leading Order Results

4.1.1 Statistical Features

The results of the global fit performed to determine the NNPDF2.1 NLO parton set are

briefly compared to NNPDF2.0 release and to other PDF sets: CT10 and MSTW08. A

first comparison between the two NNPDF sets can be done by computing a set of sta-

tistical estimators for NNPDF2.1, that here are shown in Tab. 4.1 for the global fit and

in Tab. 4.2 for individual experiments. A direct comparisonwith NNPDF2.0χ2 is given

in Tab. 4.2, where the shown valuesχ2
2.0 has been computed including the normalization

uncertainties through the samet0 prescription as for the NNPDF2.1 case.

The set of estimators shown in Tab. 4.1 are the same as the onesalready used in

Ref. [87]:χ2
tot is computed comparing the central (average) NNPDF2.1 fit to the original

experimental data,
〈
χ2(k)

〉
is computed comparing to the data each NNPDF2.1 replica and

averaging over replicas, while〈E〉 is the quantity which is minimized, i.e. it coincides

97



98 Impact of Heavy Quark Masses on PDFs

χ2
tot 1.16

〈E〉 ± σE 2.24± 0.09
〈Etr〉 ± σEtr 2.22± 0.11
〈Eval〉 ± σEval

2.28± 0.12
〈TL〉 ± σTL (1.6± 0.6) 104〈
χ2(k)

〉
± σχ2 1.25± 0.09〈

σ(exp)
〉
dat

(%) 11.3〈
σ(net)

〉
dat

(%) 4.4〈
ρ(exp)

〉
dat

0.18〈
ρ(net)

〉
dat

0.56

Table 4.1:Table of statistical estimators for NNPDF2.1 NLO withNrep = 1000 replicas. The
total average uncertainty is given in percentage. All theχ2 andE values have been computed
using the samet0 covariance matrix [103] used for minimization.

Experiment χ2 χ2
2.0 〈E〉

〈
σ(exp)

〉
dat

(%)
〈
σ(net)

〉
dat

(%)
〈
ρ(exp)

〉
dat

〈
ρ(net)

〉
dat

NMC-pd 0.97 1.04 2.04 1.9% 0.5% 0.03 0.37
NMC 1.73 1.73 2.79 5.0% 1.5% 0.16 0.71
SLAC 1.27 1.42 2.34 4.4% 1.6% 0.31 0.79

BCDMS 1.28 1.30 2.33 5.7% 2.3% 0.47 0.60
HERAI-AV 1.07 1.15 2.15 2.5% 1.2% 0.06 0.35
CHORUS 1.15 1.24 2.23 15.1% 4.7% 0.08 0.32
FLH108 1.37 1.50 2.36 72.0% 4.0% 0.64 0.67

NTVDMN 0.76 0.73 1.77 21.1% 14.1% 0.04 0.62
ZEUS-H2 1.29 1.33 2.32 13.4% 1.2% 0.27 0.51
ZEUSF2C 0.78 - 1.80 23.3% 3.1% 0.08 0.41

H1F2C 1.50 - 2.52 17.3% 3.0% 0.30 0.40
DYE605 0.84 0.87 1.92 22.3% 7.9% 0.47 0.76
DYE866 1.27 1.29 2.37 20.1% 9.2% 0.20 0.52

CDFWASY 1.86 1.84 3.08 6.0% 4.4% 0.51 0.75
CDFZRAP 1.65 1.85 2.80 11.5% 3.6% 0.82 0.72
D0ZRAP 0.60 0.60 1.62 10.2% 3.1% 0.53 0.76

CDFR2KT 0.97 1.01 2.10 22.2% 4.0% 0.78 0.57
D0R2CON 0.84 0.86 1.92 16.8% 4.5% 0.77 0.59

Table 4.2:Same as Table 4.1 for individual experiments. All estimators have been obtained with
Nrep = 1000 replicas. Note that experimental uncertainties are always given in percentage. In the
second and third column the NNPDF2.1 and NNPDF2.0 set [87]χ2 have been computed with the
t0 prescription.
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Figure 4.1:Distribution ofχ2(k) (left) andE(k)
tr (right), over the sample ofNrep = 1000 replicas.

with theχ2 computed comparing each NNPDF2.1 replica to the data replica it is fitted to,

with the three values given corresponding to the total, training, and validation datasets.

The value ofχ2
tot for the NNPDF2.0 global fit computed using thet0 method, to be

compared to the NNPDF2.1 value of Tab. 4.1, isχ2
tot = 1.23 (very close to the value

χ2
tot = 1.21 of Tab. 9 in Ref. [87], computed with the “standard” covariance matrix).

The valueχ2
tot = 1.16 for the NNPDF2.1 NLO fit is rather better than for the NNPDF2.0

analysis, where heavy quark mass effects are not included. It is possible to notice, looking

at Tab. 4.2, that with respect to that analysis all datasets improves or remain similar: the

improvement is particularly evident for the HERA-I average dataset (in consequence of

the more tight kinematic cuts along with the implementationof heavy quark mass effects)

but also for CHORUS dataset description.

It can happen that a replica never satisfies the conditions that activate dynamical stop-

ping (Sect. 3.6), reaching the maximum number of possible iterationsNmax
gen fixed in the

genetic algorithm. This can affect the quality of the fit. Looking at Fig. 4.28 it is clear

that while most of the replicas fulfill the stopping criterion, a fraction (∼ 12%) of them

stops atNgen = Nmax
gen . By performing a series of fits in which the training length is raised

more and more, it has been checked that these replicas stop athigher lengths and that the

loss of accuracy due to the choice ofNmax
gen is reasonably small, in that the features of the

global fit change very little ifNmax
gen is raised.

If now the NNPDF2.1 NLO set and the CT10 analysis are compared,it can be noticed

the effect of different kinematic cuts over the respective common datasets by looking at

the number of datapoint for each set in Tab. 4.3. Moreover, theχ2 is defined in a somewhat

different way by the CTEQ/CT group, specifically, but not only,in what concerns the

treatment of normalization errors (see Ref. [76]): hence this comparison should be taken

with care. From this comparison, it is clear that the two setshave a comparable fit quality

to fixed target DIS, CT10 being somewhat better for BCDMS proton and NNPDF2.1
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Figure 4.2:Distribution of training lengths over the sample ofNrep = 1000 replicas.

NLO rather better for NMC deuteron/proton ratio. The fit to HERA-I and Tevatron jet

data is rather better in NNPDF2.1 NLO. Comparable fit quality to the Drell-Yan and

vector boson production data is obtained in the two cases, with somewhat smallerχ2 in

the CT10 fit. No comparison is attempted for the HERAF c
2 data because of the very

different kinematic cuts used in the two fits. A similar comparison to MSTW08 would be

less significant because in the MSTW08 fit correlated systematics are not included in the

covariance matrix for some datasets.

4.1.2 Parton Distributions

A comparison between NNPDF2.1 NLO and NNPDF2.0 deliveries is shown for the sin-

glet and non-singlet sector respectively in Figs. 4.3-4.4.

The main differences can be found at medium and small-x in the singlet, where for

NNPDF2.1 the PDF is slightly larger, at small-x the gluon is also larger than in NNPDF2.0

as its medium- and small-x uncertainty, that again is slightly larger in the 2.1 delivery.

Below will be shown that the gluon central value shift with respect to NNPDF2.0 is a

consequence of the general mass scheme treatment, while thewider uncertainty is due

to the different kinematic cut. The valence PDF is poorly affected by these changes, but

is equally subject to minor modifications in consequence of cross-talk induced by sum

rules and other constraints. It is possible to better understand this effect due to sum rules

by looking at the strange PDF in NNPDF2.1: including heavy quark mass effects, an

enhancement with respect to NNPDF2.0 of the strange distribution would be expected. In

the NNPDF2.0 set an Improved-ZM scheme is implemented for the dimuon data, which

mainly constrain the strangeness. This scheme overestimates heavy quark mass effects,

thus generating a charm distribution lower than the one a GM implementation would
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NNPDF2.1NLO CT10
Experiment Ndat χ2 Ndat χ2

NMC-pd 132 0.97 121 1.28
NMC 221 1.73 196 1.71

BCDMSp 333 1.28 337 1.14
BCDMSd 248 1.15 250 1.12

HERAI-AV 592 1.07 579 1.17
NTVnuDMN 41 0.50 38 0.94
NTVnbDMN 38 0.42 33 0.91

DYE605 119 0.85 119 0.81
DYE866p 184 1.31 184 1.21
DYE866r 15 0.77 15 0.64

CDFZRAT 29 1.62 29 1.44
D0ZRAP 28 0.59 28 0.54

CDFR2KT 76 0.97 76 1.55
D0R2CON 110 0.84 110 1.13

Table 4.3:Comparison ofχ2 per data point for experiments which are common to the NNPDF2.1
NLO and CT10 PDF determinations. For each PDF set the number of data points after kinematic
cuts is given.
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Figure 4.3: Comparison of NNPDF2.1 and NNPDF2.0 singlet sector PDFs, computed using
Nrep = 1000 replicas from both sets. All error bands shown correspond to one sigma.
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generate, and as a consequence all other PDFs are enhanced. In the following will be

shown that comparing the NNPDF2.1 result for strangeness with a pure ZM fit reveals the

expected behaviour: the GM fit for strangeness will be somewhat enhanced with respect

to the ZM case.
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Figure 4.4:Same as Fig. 4.29 for the non-singlet sector PDFs.

As defined in Appendix A of Ref. [87], the distance between two sets of PDFs can

be computed in order to quantify the differences. This statistical tool allows to establish

whether two sets are a representation of the same underlyingprobability distribution or

not. Ford ∼ 1 the two sets come from the same distribution while ford ∼ 7, in the

case ofNrep = 100 replicas, a one-sigma difference is observed. The differences between

NNPDF2.1 NLO and NNPDF2.0 are mainly present in the medium-x strangeness and to
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Figure 4.5: Distance between the NNPDF2.0 and NNPDF2.1 parton sets. All distances are
computed from sets ofNrep = 100 replicas.

a lesser extent in the medium and small-x gluon. In general, the two sets are clearly not

describing the same underlying distribution but all PDFs are consistent at the one-sigma

level. Only the strangeness is consistent at the90% confidence level.

These differences that have been discussed for the PDF sets at the initial scale are

propagated through evolution also to theW andZ scale: atQ2 = 104 GeV2 differences in

gluon and light sea quark distributions up to the one-sigma level at small-x are observed.

4.1.3 Comparison to NNPDF2.0 Parton Set

It is an interesting exercise to consider one by one the main differences introduced in

the NNPDF2.1 analysis with respect to the NNPDF2.0 fit and check the corresponding

impact on PDFs.

With respect to NNPDF2.0, with the inclusion of heavy quark mass effects mainly a

newQ2
min kinematic cut is applied, the FONLL-A general mass scheme isimplemented,

HERAF c
2 data are included, and a threshold prescription in the GM scheme is introduced.

In Fig. 4.6 is shown the distance between NNPDF2.0 PDFs and a fit with the same

dataset but with the new cutQ2
cut = 3 GeV2, denoted by NNPDF2.0RED (reduced). Also,

in order to ease the subsequent discussion on the impact of heavy quark mass effects,

in NNPDF2.0RED a pure ZM scheme is used for all observables, rather than the I-ZM



104 Impact of Heavy Quark Masses on PDFs

 0

 2

 4

 6

 8

 10

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

d[
 q

(x
,Q

02 ) 
]

x

Distance between central values

NNPDF2.0 vs NNPDF2.0 RED
Σ
g

T3
V

∆S
s+
s-

 0

 2

 4

 6

 8

 10

 1e-05  0.0001  0.001  0.01  0.1  1

d[
 q

(x
,Q

02 ) 
]

x

Distance between central values

NNPDF2.0 vs NNPDF2.0 RED
Σ
g

T3
V

∆S
s+
s-

 0

 1

 2

 3

 4

 5

 6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

d[
 σ

q(
x,

Q
02 ) 

]

x

Distance between PDF uncertainties

NNPDF2.0 vs NNPDF2.0 RED
Σ
g

T3
V

∆S
s+
s-

 0

 1

 2

 3

 4

 5

 6

 1e-05  0.0001  0.001  0.01  0.1  1

d[
 σ

q(
x,

Q
02 ) 

]

x

Distance between PDF uncertainties

NNPDF2.0 vs NNPDF2.0 RED
Σ
g

T3
V

∆S
s+
s-

Figure 4.6:Distance between the NNPDF2.0 PDF set and a fit to the same data but withQ2
cut = 3

GeV2 and the ZM-VFN scheme for all observables (NNPDF2.0 RED). All distances are computed
from sets ofNrep = 100 replicas.
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Figure 4.7: Comparison of the small-x total strangeness and gluon in NNPDF2.0 and in
NNPDF2.0RED (the distances are shown in Fig. 4.6).

scheme [39] used for dimuon data in Ref. [87].

The two mainly affected PDFs are the medium-x strange and the small-x gluon PDFs,

as can be seen by looking at Fig. 4.7 and at distances in Fig. 4.6. The strange is rather

smaller in the ZM as compared to the I-ZM scheme, where it was enhanced due to the

approximate inclusion of charm suppression. Its modification can be checked to be the

responsible for the singlet deviation visible in the distance plot. The strange PDF con-

tributes in fact to the singlet. The gluon is somewhat smaller at small-x and with rather

larger uncertainties, due to the reduction in dataset at small-x caused by the new kinematic
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Figure 4.8:Distance between the NNPDF2.1 PDF sets in the GM and in the ZM schemes, in
both cases without HERAF c

2 data. All distances are computed from sets ofNrep = 100 replicas.
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Figure 4.9: Comparison of the small-x total strangeness and gluon in NNPDF2.0RED and
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2 data (distances are shown in Fig. 4.8).

cut.

Considering now the NNPDF2.1 fit withoutF c
2 data, it is compared to the above in-

troduced fit NNPDF2.0RED. In this way exactly the same datasetis used and the only

difference is in the implemented scheme: the FONLL-A GM scheme versus a pure ZM

scheme.

It is possible to verify that the interpretation previouslygiven of the strange PDF

behaviour was correct: as in the previous case, the only PDFswhich undergo a change

worth mentioning are the strange and gluon PDFs. The singletis instead unaffected.

These PDFs and the corresponding distances are presented inFig. 4.9 and in Fig. 4.8
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Figure 4.10:Distance between NNPDF2.1 PDF sets with and without HERAF c
2 (x,Q

2) data.
Distances have been computed from sets ofNrep = 100 replicas.

respectively. The GM scheme leads to a larger gluon forx <∼ 2 · 10−3, as well as to a

somewhat medium-x larger strangeness. This confirms what previously stated about the

I-ZM approximation for dimuon data in NNPDF2.0, which overestimates charm mass

effects.

The impact of HERAF c
2 data is quite low. It is possible to see this by looking at

distances between NNPDF2.1 with or without the inclusion ofthis dataset, represented

in Fig. 4.10. Almost all distances lay aroundd ∼ 1, due in part to the relatively large

uncertainties on currentF c
2 data and in part to the kinematic cuts. In fact, lowx andQ2

data, which are most sensitive to the gluon PDF, are excludedby cuts. Inclusion ofO(α2
s)

heavy quark mass effects (e.g. by means of the FONLL-B scheme) is necessary in order

to take advantage of these data.

Regarding the last issue concerning heavy quark mass effectsimplementation, a NNPDF2.1

fit with a pure FONLL-A scheme (i.e. without the threshold damping factor) is com-

pared to the standard NNPDF2.1 fit. The difference between these cases should provide

a reasonable estimate of the spread of results obtained by including heavy quark masses

according to different prescriptions, as suggested in Ref. [38]. Looking at distances in

Fig. 4.11 is easy to see that the singlet and gluon PDFs at medium-x, shown in Fig. 4.12,

are the most affected. Without damping factor, theF c
2 structure function is closer to the

massless result even at moderateQ2, and this explains why the singlet PDF is somewhat
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Figure 4.11:Distance between the NNPDF2.1 reference set and the same set obtained without
threshold damping factor in the computation of the FONLL-A structure functions. .
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smaller at medium-x.

4.1.4 Comparison to CT10 and MSTW08 Parton Sets

As already done in Ref. [87] among NNPDF2.0, CTEQ6.6 and MSTW08 PDF sets

(Figs. 18-19 of that reference), here NNPDF2.1 NLO PDFs are compared to other global

PDF sets, CT10 [76] and MSTW08 [81], in Figs. 4.13-4.14. It is interesting here to refer

to that previous comparison.
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• It is likely that the medium-x singlet marginal agreement is a consequence of the

poor agreement in strangeness.

• While the large-x gluon PDF is in marginal agreement with the other sets, in the

medium-/small-x region the agreement is improved. The inclusion of heavy quark

mass effects brings the NNPDF central value nearer to MSTW08 value. Moreover,

the CT10 parametrization is more flexible than the one used forthe CTEQ6.6 set,

generating a central value and an error band in much better agreement with the

wider NNPDF and MSTW uncertainties.

• The small changes in valence and triplet distributions between NNPDF2.0 and

NNPDF2.1 go anyway in the direction of improving the agreement with the other

global sets.

• The strange PDFs are quite different, presumably due to the fact that a much less

flexible parametrization is adopted by CT/CTEQ and MSTW in comparison to

NNPDF.

In the next Chapter, the differences analyzed above regarding PDF sets are translated

to the observable level, focusing on LHC observables: will be shown that on the whole

a reasonable agreement holds between global sets. The main significant differences are

mostly related to the rather different large-x gluon in CT10 as shown in Fig. 4.13.

4.2 Heavy Quark Mass Dependence

The MSTW collaboration performed in Ref. [194] a study of the dependence of PDFs on

the values of heavy quark massesmc andmb, using MSTW08 release as a basis for this

study. In this Section a similar analysis is performed usingNNPDF2.1 NLO as baseline fit

and following the lines of that reference. At first, how different features of the NNPDF2.1

PDFs depend on the values ofmc andmb is discussed. Then some LHC observables are

considered and their dependence onmc is studied, along with the correct treatment of

heavy quark mass uncertainties in the Monte Carlo approach.

In order to quantify the dependence of PDFs on heavy quark masses, several fits are

performed, shifting the default value for charm and bottom heavy quarks to various dif-

ferent values. The default masses are shown in Table 4.4, summarized and compared to

those of other PDF sets, while the values for the different fits are 1.5, 1.6 and 1.7 GeV for

the charm massmc and 4.25, 4.5, 5.0 and 5.25 GeV for the bottom massmb. All the other

settings are left unchanged and equal to the reference fit with standard mass values. It is

important to observe that at the order at which the analysis is performed, the perturbative
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mc [GeV] mb [GeV]

NNPDF2.1 1.414 4.75
NNPDF2.0 [87]

√
2 4.3

CT10 [76] 1.30 4.75
MSTW2008 [194] 1.40 4.75

ABKM09 [94] 1.50 4.50
HERAPDF1.0 [114] 1.40 4.75

Table 4.4:The default values of the heavy quark masses used in NNPDF2.1 and in several recent
PDF sets.

definition of the heavy quark mass is immaterial: indeed different definitions (such as, for

example, the pole andMS mass definitions) differ by terms ofO(αs). However, heavy

quark mass corrections are included up toO(αs) only, so the difference is subleading (it

becomes relevant onceO(α2
s) heavy quark corrections are included, for example using

the FONLL-B scheme). This implies that the value consideredfor the quark mass in the

NNPDF analysis and in analogous determinations which are based on an NLO ACOT

treatment of heavy quarks can be read as a pole mass or anMS mass, equivalently. The
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Figure 4.13:The NNPDF2.1 singlet sector PDFs, compared with the CT10 and MSTW08 PDFs.
The results for NNPDF2.1 have been obtained withNrep = 1000 replicas. All PDF errors are
given as one-sigma uncertainties.
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Figure 4.14:Same as Fig. 4.13 for the non-singlet sector PDFs.

MS mass is better known, and it has been shown [195] to lead to perturbatively more

stable results for deep-inelastic structure functions.

The central value of PDF sets with heavy quark mass variations is shifted accordingly

to the value of the heavy quark mass: for larger values of the mass, smaller PDFs are ob-

tained. This can be seen in Figs. 4.15-4.16, where the ratio of PDFs for different values of

mc andmb to the reference NNPDF2.1 fit is plotted as a function ofx forQ2 = 104 GeV2.

This effect can be explained recalling that heavy flavors aregenerated radiatively and their

PDFs vanish when the energy scale reaches the value of the heavy quark mass. Hence to

a smaller value of the mass corresponds a longer evolution length and so a larger PDF.

Because of the momentum sum rule, if the charm PDF becomes larger, other PDFs are ac-
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Figure 4.15:Ratio of NNPDF2.1 PDFs obtained for different values of the charm quark mass to
the reference NNPDF2.1 set atQ2 = 104 GeV2. Top left: gluon; top right: charm; bottom left:
up; bottom right: down.

cordingly smaller (and conversely), as anticipated in Sect. 4.1.2. For bottom in principle

the same mechanism is at work, but in practice the effect on all other PDFs is negligible.

4.2.1 Mass Uncertainties and LHC Observables

A more detailed analysis of the phenomenological consequences due to the computation

of LHC observables using NNPDF2.1 NLO parton set will be given in the next Chapter.

Here the impact on LHC standard candles of charm and bottom mass values is considered.

The dependence of light quark distributions and the gluon onthe charm mass displayed

in Fig. 4.15 is strong enough to affect these observables at the percent level or more, as

observed in Ref. [187]. Instead, the bottom mass value affects all PDFs (except the same

b distribution) in a much weaker way, below the percent level,so that only the observables

that directly depend on theb distribution are significantly affected.

A sample of LHC standard candles is computed using each time adifferent PDF set,

corresponding to the values of the charm mass of Fig. 4.15. The results of this computa-

tion are collected in Table 4.5, and are graphically represented in Fig. 4.17. It can be seen

that to a variation of themc charm mass of the order of 10% corresponds a variation of
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Figure 4.16:Ratio of NNPDF2.1 PDFs obtained for different values of the bottom quarkmass to
the reference NNPDF2.1 set atQ2 = 104 GeV2. Top left: gluon; top right: bottom; bottom left:
up; bottom right: down.

the LHC standard candle values around the percent level.

Combined PDF+mh Uncertainties and Correlations

The various sets obtained with heavy quark mass variations can be used to combine the

uncertainty over PDFs with the heavy quark mass dependence.The Monte Carlo approach

developed within the NNPDF collaboration makes the determination of this combined

uncertainty much easier. The notation PDF(kij ,i,j) is introduced to refer to a precise replica

kij of a precise set with definedm(i)
c andm(j)

b heavy quark mass values. It follows that

the mean value of any observableF can be written as

〈F〉rep =
1

Nrep

Nmc∑

i=1

Nmb∑

j=1

N
(i,j)
rep∑

kij=1

F
(
PDF(kij ,i,j),m(i)

c ,m
(j)
b

)
, (4.1)

whereNrep is the total number of replicas given by

Nrep =

Nmc∑

i=1

Nmb∑

j=1

N (i,j)
rep , (4.2)
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LHC 7 TeV W+Blν [nb] W−Blν [nb] Z0Bll̄ [nb] tt̄ [pb] gg→H [pb]

mc = 1.414 GeV 5.99± 0.14 4.09± 0.09 0.932± 0.020 170± 5 11.64± 0.17
mc = 1.5 GeV 6.06± 0.17 4.14± 0.12 0.943± 0.024 169± 6 11.65± 0.25
mc = 1.6 GeV 6.11± 0.14 4.17± 0.10 0.951± 0.020 167± 6 11.70± 0.21
mc = 1.7 GeV 6.14± 0.14 4.19± 0.09 0.956± 0.019 166± 5 11.71± 0.22
ρ [σ,mc] 0.44 0.41 0.48 -0.31 0.16

LHC 14 TeV W+Blν [nb] W−Blν [nb] Z0Bll̄ [nb] tt̄ [pb ] gg→H [pb]

mc = 1.414 GeV 12.00± 0.27 8.84± 0.17 1.99± 0.036 946± 19 37.50± 0.40
mc = 1.5 GeV 12.01± 0.31 8.94± 0.22 2.01± 0.04 942± 24 37.62± 0.62
mc = 1.6 GeV 12.24± 0.28 9.02± 0.20 2.03± 0.04 939± 22 37.90± 0.55
mc = 1.7 GeV 12.37± 0.28 9.10± 0.18 2.05± 0.04 935± 19 38.15± 0.58
ρ [σ,mc] 0.48 0.50 0.56 -0.19 0.41

Table 4.5:LHC standard candles at
√
s = 7 TeV (upper table) and 14 TeV (lower table) obtained

using NNPDF2.1 fits with different values of the charm massmc. The bottom line of each table
gives the correlation coefficient between the observable and the mass.

with N (i,j)
rep distributed according to a two dimensional Gaussian

N (i,j)
rep ∝ exp


−

(
m

(i)
c −m

(0)
c

)2

2δ2mc

−

(
m

(j)
b −m

(0)
b

)2

2δ2mb


 (4.3)

with mean(m(0)
c ,m

(0)
b ) and width(δmc, δmb) and making the assumption that the values

of charm and bottom masses are uncorrelated. Of course, a different probability dis-

tribution (possibly including a correlation between heavyquark mass values) could be

assumed. It is consequently possible to compute the combined PDF+mh uncertainty as

the standard deviation of the observable over the replica sample as

δPDF+mh
F =

√
〈F2〉 − 〈F〉2 , (4.4)

where to determine averages over replicas Eq. (4.1) must be used.

The correlation between PDFs and heavy flavor massesmh can be easily computed:

ρ
[
mh,PDF

(
x,Q2

)]
=

〈mhPDF (x,Q2)〉rep − 〈mh〉rep 〈PDF (x,Q2)〉rep
σmh

σPDF(x,Q2)

, (4.5)

where averages over replicas are to be understood in the sense of Eq. (4.1). The correlation

Eq. (4.5), computed assumingmc = 1.55 ± 0.15 GeV andmb = 4.75 ± 0.25 GeV, is

displayed in Fig. 4.18, as a function ofx for Q2 = 104 GeV2. Again, it can be seen how,

as the mass is increased, the corresponding heavy quark PDF is reduced. This implies
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Figure 4.17:Graphical representation of the results of Table 4.5.
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Figure 4.18: Correlation between PDFs and the heavy quark masses at a typical LHC scale
Q2 = 104 GeV2: charm mass variations (left plot) and bottom mass variations (right plot). These
correlations quantify the qualitative behaviour observed in Figs. 4.15-4.16.

that the PDF is strongly anticorrelated with its mass. As already discussed, because of the

sum rules this effect have repercussions on the other PDFs: to the heavy quark suppression

corresponds an enhancement of other PDFs, that is translated in a positive correlation in

Fig. 4.18. For the bottom quark the effect is negligible.

4.3 Leading Order Results

The main reasons for producing a LO PDFs set are that they are mostly used with lead-

ing order Monte Carlo event generators, and are also of interest for comparison of QCD

calculations at different perturbative orders. Even if theuse of LO PDFs for calculations

which has LO accuracy is not mandatory, using for example NLOPDFs, as suggested in
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Ref. [196], with LO matrix elements may lead to a poorly behaved perturbative expansion

and to bad phenomenology. On the other hand, to use a full LO standard PDF set, even

if it is the simplest choice, may not be the best one. The problem is to determine which

is the best PDF definition to match with a LO Monte Carlo event generator. The simplest

and more consistent choice seems to be the standard full-LO PDF determination, but such

a fit over a global dataset may give unacceptably low quality in the description of some

sets. Several different “recipes” were proposed as possible modifications to the standard

LO determination and are discussed below.

As expected, an optimal LO parton set lies typically at a rather large distance outside

the experimental error band of a standard NLO PDF determination, and it is possible to

argue from this fact that in a LO analysis theoretical uncertainties are predominant. The

solution proposed in [196] to just use NLO PDFs within the LO Monte Carlo can be

supported by the fact that the difference between LO and NLO determinations is mostly

due to the difference between LO and NLO DIS hard scattering matrix elements used in

the fit for the global PDF analyses. In hadronic collider’s processes the difference between

matrix elements in the two perturbative approximations is much lower and so NLO PDFs

combined with LO collider matrix elements within a Monte Carlo generator of events

may give a good approximation. This is the case for example ofPYTHIA, or equivalently

of HERWIG: the main problem here is the substantial retuning of the parameters in the

event generator needed for the inclusion of a NLO PDFs set.

Another possible set of PDFs can be defined including some dominant NLO correc-

tions to the LO matrix elements. This is actually what the MSTW collaboration did when

producing the MSTW08LO PDFs (see Ref. [81]): a sizable fraction of the large NLO and

NNLO K factor for Drell-Yan comes from contributions which have the same kinematics

as the LO. This allows for a simple rescaling of the LO cross-section for the Drell-Yan

data, giving an intermediate solution between the two analyzed up to now.

In Ref. [197] other ideas on how to modify standard LO determinations were pro-

posed. These ideas arise after better focusing on the main problem with LO PDFs. In the

cited reference the observation that the LO fit quality mostly deteriorates because of the

faster gluon evolution at small-x and the slower quark density evolution at large-x brings

to the determination of a PDFs set, MRST2007lomod: in this setthe NLO value for the

strong coupling constant together with its two-loop running is used. This leads to smaller

values ofαs in the lowQ2 region where the small-x data are concentrated, and thus to

slower PDF evolution. Another choice can be made to avoid another consequence of the

faster small-x gluon evolution: this leads through the momentum sum rule todepletion

of the gluon content at medium-/large-x, which may cause a poor description of large-x

fixed-target data. A possible way out is to relax the momentumsum rule, justifying this
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NLO LO αs =0.119 LO* αs =0.119 LO αs =0.130 LO* αs =0.130

Totalχ2 1.16 1.74 1.76 1.68 1.74〈
χ2 (k)

〉
1.25± 0.07 1.95± 0.21 1.89± 0.22 1.95± 0.19 1.94± 0.18

NMC-pd 0.97 1.43 1.13 1.18 1.12
NMC 1.72 2.05 1.68 1.74 1.72
SLAC 1.29 3.77 3.00 2.91 2.70

BCDMS 1.24 1.87 1.82 1.76 1.75
HERAI-AV 1.07 1.70 1.55 1.58 1.59
CHORUS 1.15 1.51 1.67 1.53 1.67
NTVDMN 0.45 0.69 0.71 0.71 0.78
ZEUS-H2 1.29 1.51 1.42 1.43 1.44
ZEUSF2C 0.78 1.75 1.26 1.56 1.34

H1F2C 1.51 1.77 2.00 1.81 2.02
DYE605 0.85 1.86 2.02 1.70 1.83
DYE886 1.26 1.99 2.52 2.59 3.11

CDFWASY 1.83 1.80 2.50 2.16 2.29
CDFZRAP 1.64 2.88 3.89 2.08 2.58
D0ZRAP 0.59 1.07 1.29 0.87 1.02

CDFR2KT 0.96 2.60 3.22 2.45 2.76
D0R2CON 0.83 1.18 1.56 1.17 1.35

[M ] 1 1 1.16± 0.03 1 1.09± 0.03

Table 4.6: Fit quality for the global fit and for all experiments included in it for each ofthe
NNPDF2.1 LO PDF sets. The corresponding values for the NNPDF2.1 NLOset of Ref. [103] are
given for comparison. The value of the momentum integral[M ] Eq. (4.6) is also shown. All the
fits haveNrep = 100 replicas.

choice as anad hocphenomenological patch.

A last strategy that is worth discussing is depicted in Ref. [198] and is the basis for

CT09MC1/MC2 PDF analysis. The main idea is that, as these LO parton sets are con-

ceived to be used as a combination with Monte Carlo event generators, they should be

determined by optimizing the agreement with the data of the predictions obtained by

using them already in such a combination. This involves considering all the various mod-

ifications of the minimal LO framework discussed above, and also introducing suitable

pseudodata to optimize the agreement with Monte Carlo generators.

4.3.1 Quality of the Fit

Four PDF sets are produced as a result of the variation between a standard LO fit and a

LO* fit (in which the momentum sum rule is not imposed) on one side and of the value of

αS between 0.119 and 0.130 on the other. The combination of these variations produce a

set of four different PDF sets. The running ofαS is always computed at LO in each single

case.

Theχ2 of the four LO NNPDF2.1 sets, both for the global fit and for individual ex-

periments, are collected in Table 4.6 and compared to the corresponding results of the

NNPDF2.1 NLO set. The first line shows the totalχ2 and then also theχ2 experiment by
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experiment computed between the experimental data and the predictions obtained using

the central value of the PDF set (replica 0, i.e. the mean overall other replicas) are shown

for each case. The mean value over replicas of the totalχ2, computed replica by replica,

is shown in the second line, while in the last one is given the value of the momentum inte-

gral. All these quantities, as described in Sect. 2.3, are computed including normalization

uncertainties.

Comparing the four PDF sets, it is possible to say that varyingtheαS value all theχ2

are poorly affected, so that the case of a NLO running ofαS is not investigated. Relaxing

the momentum sum rule instead on one side doesn’t affect muchthe totalχ2, but on the

other affects the experiment by experiment result: the description is improved for several

DIS experiments, especially for HERA data, but at the same time hadronic data quality

lowers significantly. On the whole, the fit quality of the fourfits is almost unchanged: the

values of〈χ2 (k)〉 differ from each other by less than a standard deviation.

Contrary to what previously discussed in the case of MSTW08LO (Ref. [81]), here

can be seen that Drell-Yan data and DIS data are simultaneously fitted without the need

for rescale of DY data. Surely an optimization of the LO determination here performed

would bring to a better fit quality of these datasets, also in view of a possible combination

with an event generator, but the purpose here is to built a PDFs set based on pure LO

theory.

In Table 4.6 the value of the momentum integral

[M ] ≡
∫ 1

0

dx xΣ
(
x,Q2

)
+

∫ 1

0

dx xg
(
x,Q2

)
, (4.6)

is also given for each LO PDF sets. These are determined at thestarting scaleQ2
0 =

2 GeV2, but note that the momentum integral[M ] does not depend on scale. A discussion

of the behaviour of the momentum integral at LO, NLO and NNLO will be given in the

next Chapter.

The conclusion is that analyzing the four sets produced and comparing them with

the NLO PDF set previously introduced, a marked worsening inthe fit quality is indeed

observed with respect to the NLO case. Considering one by one the modifications intro-

duced in the various LO cases no significant improvement is observed. A curious effect is

found by relaxing positivity constraint on PDFs: theχ2 of the LO fit then becomes only

about10% higher than in the NLO case. Of course, as at LO PDFs are subject to the prob-

abilistic interpretation, the imposition of this constraint cannot be avoided. If relaxed, it

leads to a negative gluon PDF at large-x, that also may give negative cross-sections.
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Figure 4.19:Distances between the reference LO and NLO NNPDF2.1 sets. Here and insub-
sequent figures in this Section, the left plot shows the distance between central values, while the
right plot shows the distance between the uncertainties. Both haveαs(Mz) = 0.119.

4.3.2 Parton Distributions

It is interesting to make a detailed comparison between PDF sets introduced above, ex-

tending the comparison also to parton distributions determined within other groups than

the NNPDF collaboration. Again, the distances introduced in Appendix A of Ref. [87],

and already used in Sect. 4.1.2 are computed. Descriptions of an identical underlying

probability distribution haved ∼ 1 while for statistically nonequivalent but consistent

descriptions at then-sigma level distances are of the order ofd ∼ 7n.

As a first comparison the standard NNPDF2.1 LO set (withαs=0.119) is analyzed

versus the NNPDF2.1 NLO set introduced and described in Sect. 4.1. This LO fit can

be considered as the reference for the LO determination. It can be seen, looking at the

distance plot represented in Fig. 4.19, that while the uncertainties are consistent within

one sigma, the central values are separated by several sigmas. This tells us that the un-

certainties are equivalent in the two cases, reflecting the fact that the two fits have been

performed over the same data. The difference of many sigmas documented for central val-

ues reflects the fact that theoretical uncertainties are much larger for the LO case than the

experimental error bands of either determinations, due to the lack of inclusion of higher

order corrections.

Looking now into detail at single parton functions, the gluon is the one that present the

largest difference: in the range of medium- small-x (10−4 ≤ x ≤ 0.05) is in fact possible

to see a difference of more than five sigmas. This is consistent with the fact that the gluon

decouples from LO observables. Also, in the same range ofx but slightly shifted towards

largerx values, the singlet and valence PDFs are lower than the NLO respective parton

functions by more than three sigmas as can be seen in Fig. 4.20. In the same set of plots

it is clear that the LO gluon is instead larger than the NLO determination. The onlyx
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Figure 4.20:Comparison of the quark singlet, valence and gluon distributions for the pairof PDF
fits whose distances are plotted in Fig. 4.19.

regions where consistency is found are at small-x, i.e. for x ≤ 10−4, because of the

lack of information to constrain gluon PDFs there with the consequent blow up of error

bands, and at large-x. The LO quark is rather smaller (by more than one sigma) than the

NLO one for large-x (x > 0.1), but it becomes compatible with it at the one-sigma level

for smallerx. Finally, the light sea and strangeness asymmetries are minimally affected

and quite close at LO and NLO. The fact that the quark LO distributions are smaller

or comparable to the NLO ones tells us that the Drell-Yan dataactually have relatively

little effect on the LO fit, other than through the determination of theū − d̄ light flavor

asymmetry. The missing large NLOK-factors in Drell-Yan data should enhance the LO

quark distributions in comparison to the NLO ones.

Looking again at Tab. 4.6, the reference LO set withαs(MZ) = 0.119 is now com-

pared with the other pure LO set withαs(MZ) = 0.130. It can be seen the effect of

evolving a larger value ofαs down to a scaleQ2 ∼ 10 GeV2 using LO evolution: in this

way a value forαs that is preferred by data in this region is reached. The larger value

leads to a better description of scaling violations at low scale, and conversely.

It is interesting to look at Fig. 4.21 and Fig. 4.22: it can be seen that again uncertainties

are not affected, because mostly driven by experimental uncertainties. Among central

value distances, the gluon present the higher shift at medium- small-x, being smaller
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Figure 4.21:Distances between the NNPDF2.1 LO sets withαs=0.119 andαs=0.130.
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Figure 4.22:Comparison of the quark singlet, and gluon distributions for the pair of PDF fits
whose distances are plotted in Fig. 4.21.

for the higherαS value. The momentum sum rule instead constrains the gluon tolarger

values at large-x. The difference between the two gluon distributions is however at most

of the same order of their uncertainty. Even if the gluon PDF is the only one significantly

affected, also has to be noticed that the large-x singlet and valence quark PDFs increase

somewhat whenαs is raised, especially at large-x (x ∼ 0.3), where a shift of about two

sigma is observed.

The comparison between the reference LO set and the set with sameαs(MZ) = 0.119

value but relaxed momentum sum rule condition (LO∗) is given in Fig. 4.23. The main

difference is seen in the medium-x gluon, as shown in Fig. 4.24: the LO* gluon is rather

larger than the LO one. However, the central values for all quark PDFs are very close to

the standard LO ones.

Next, the NNPDF LO sets are compared with PDF sets from other groups. A first com-

parison is made among NNPDF2.1 LO withαs = 0.130, MSTW08 LO [81] (αs = 0.139)

and CTEQ6L1 [71] (αs = 0.130). In Fig. 4.25 the comparison of the three determinations

for the singlet, isospin triplet and gluon distributions isshown. The comparison between
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Figure 4.23:Distances between the NNPDF2.1 LO and LO∗ sets withαs=0.119.
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Figure 4.24:Comparison of the valence and gluon distributions for the pair of PDF fits whose
distances are plotted in Fig. 4.23.

CTEQ6L1 and the other sets is somehow less precise for the lackof error bands of this

delivery. Between the NNPDF analysis and MSTW08 LO again differences are espe-

cially large for the gluon distribution, both at small and large-x, and for the isospin triplet

at large-x. However NNPDF and MSTW08 LO determinations are mostly compatible

within the large error bands.

As a last comparison, are considered the modified LO PDF sets MRST2007lomod [197],

obtained relaxing the momentum sum rule and using two-loop running ofαs, withαs(Mz) =

0.121, and the dedicated Monte Carlo sets of the CTEQ/TEA collaboration [198], CT09MC1,

CT09MC2 and CT09MCS, based on an LO QCD analysis framework of data which, on

top of the standard global dataset used for the NLO PDF determination, also includes

a set of LHC pseudo-data generated using NLO PDFs. The CT09MC1 and CT09MC2

are performed without imposing the momentum sum rule and using respectively a one-

and two-loop expressions forαs. The CT09MCS is instead extracted from an analysis

in which the two-loop strong coupling is used and the momentum sum rule is imposed

during the fit. All these sets are compared to the reference NNPDF2.1 LO (αs = 0.119)
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Figure 4.25:Comparison of LO PDFs: the quark singlet, triplet and gluon PDFs are shown for
the NNPDF2.1, MSTW08 and CTEQ6L1 sets.

in Fig. 4.26. It is possible to argue that differences among these sets are due to the various

different methodologies and assumptions on which is based each of them, being larger

than the typical difference between the NNPDF2.1 LO and LO∗ sets.

4.4 Next-to-Next-to-Leading Order Results

In this Section NNLO PDFs are presented and compared to NNLO results from other

groups and also to previous LO and NLO results discussed above. Parton sets at this

perturbative order are mainly used for the computation of hadron colliders standard candle

processes such asW , Z, top and Higgs production. Phenomenological consequences

deriving from the use of the NNPDF2.1 NNLO set for LHC standard candles computation

are discussed in the next Chapter.

The statistical features of the NNPDF2.1 NNLO fit are determined through the same

statistical estimators used in previous Sections to analyze the NLO and LO cases. Here

their values are given in Table 4.7 for the global fit and in Table 4.8 for individual exper-

iments. In this second case, also theχ2 for the NLO parton set is presented, to ease the

comparison between the two fits as was done for the LO set.

It is observed a general similarity of the fit quality betweenNLO and NNLO results, as
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χ2
tot 1.16

〈E〉 ± σE 2.22± 0.07
〈Etr〉 ± σEtr 2.19± 0.09
〈Eval〉 ± σEval

2.27± 0.10
〈TL〉 ± σTL (17± 7) 103〈
χ2(k)

〉
± σχ2 1.23± 0.05〈

σ(exp)
〉
dat

(%) 11.9〈
σ(net)

〉
dat

(%) 3.2〈
ρ(exp)

〉
dat

0.18〈
ρ(net)

〉
dat

0.53

Table 4.7:Table of statistical estimators for the NNPDF2.1 NNLO fit withNrep = 1000 replicas.

Experiment χ2 χ2
nlo 〈E〉

〈
σ(exp)

〉
dat

(%)
〈
σ(net)

〉
dat

(%)
〈
ρ(exp)

〉
dat

〈
ρ(net)

〉
dat

NMC-pd 0.93 0.97 1.98 1.8 0.5 0.03 0.34
NMC 1.63 1.73 2.67 5.0 1.8 0.16 0.75
SLAC 1.01 1.27 2.05 4.4 1.8 0.31 0.78

BCDMS 1.32 1.24 2.38 5.7 2.6 0.47 0.58
HERAI-AV 1.10 1.07 2.16 7.6 1.3 0.06 0.44
CHORUS 1.12 1.15 2.18 15.0 3.5 0.08 0.37
FLH108 1.26 1.37 2.25 72.1 4.8 0.65 0.68

NTVDMN 0.49 0.47 1.74 21.0 14.0 0.04 0.64
ZEUS-H2 1.31 1.29 2.33 14.0 1.3 0.28 0.55
ZEUSF2C 0.88 0.78 1.89 23.0 3.7 0.07 0.40

H1F2C 1.46 1.50 2.48 18.0 3.5 0.27 0.36
DYE605 0.81 0.84 1.88 25.0 7.2 0.55 0.76
DYE866 1.32 1.27 2.40 21.0 8.7 0.23 0.48

CDFWASY 1.65 1.86 2.80 6.0 4.3 0.52 0.61
CDFZRAP 2.12 1.65 3.21 12.0 3.6 0.82 0.67
D0ZRAP 0.67 0.60 1.69 10.0 3.0 0.54 0.70

CDFR2KT 0.74 0.97 1.84 23.0 4.8 0.77 0.61
D0R2CON 0.82 0.84 1.89 17.0 5.5 0.78 0.62

Table 4.8:Same as Table 4.7 for individual experiments. All estimators have been obtained with
Nrep = 1000 replicas. Note that experimental uncertainties are always given in percentage. For
reference the NNPDF2.1 NLOχ2 for the various experiments is also provided.
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Figure 4.26: Comparison of the NNPDF2.1 LO PDF to modified LO PDF sets:
MRST2007lomod, CT09MC1, CT09MC2 and CT09MCS.

also between all the other statistical estimators. Lookinginto the detail of the experiment

by experimentχ2 of Table 4.8 the difference is less then 10% for each experiment. Only

SLAC,W asymmetry and CDF jet data differ more than that (because the NNLO fit gives

a better quality), and theZ rapidity distribution (for which the quality instead is worse at

NNLO). It is also interesting to notice that the descriptionof H1F2C (the HERAF c
2 data)

is almost the same and slightly better than at NLO: while at NLO an optimized cut and

a tuning of the treatment of heavy quarks was needed to give a proper description of this

set, here the FONLL-C general mass scheme is introduced (described in Sect. 1.6) that

permits to release the kinematic cut, obtaining a larger dataset.

The distribution ofχ2(k),E(k)
tr , and training lengths among theNrep = 1000NNPDF2.1

NNLO replicas are shown in Fig. 4.27 and Fig. 4.28 respectively. In the latter histogram

it is visible that not all the replicas stop dynamically and acospicuous fraction of replicas

(∼ 20%) stops at the maximum training lengthNmax
gen . This fraction is not too higher than

the one in the NLO fit. As was done in the NLO analysis, also hereis checked that the

impact of these replicas is negligible: in fact, discardingall replicas that do not stop dy-

namically the PDFs change by an amount which is smaller than astatistical fluctuation.

Raising the training length reduces also in this case the fraction of unstopped replicas,

proving that the problem is only of computational efficiency.
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Figure 4.27:Distribution ofχ2(k) (left) andE(k)
tr (right), over the sample ofNrep = 1000 replicas.
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Figure 4.28:Distribution of training lengths over the sample ofNrep = 1000 replicas.

4.4.1 Parton Distributions

The parton distributions presented here, the NNPDF2.1 NNLOset, is plotted in the ba-

sis in which the set is parametrized and directly compared tothe NLO fit in Figs. 4.29

and 4.30 at the input scaleQ2
0 = 2 GeV2.

Observing the distances between these two sets plotted in Fig. 4.31, it can be seen that

the central values are almost everywhere within one sigma from each other, showing the

stability of PDFs while going from NLO to NNLO. The largest variations are observed

for quarks atx ∼ 0.1, while the small-x PDFs (gluon and light quark sea) are very

similar to their NLO counterparts. The fact that theoretical uncertainties are not included

in PDF error bands and the quite similar quality of the NLO andNNLO fits explain the

particularly small distances shown in Fig. 4.31 for PDF uncertainties.

One of the useful exercises that can be done using the NNLO release is to assess

the impact of NNLO corrections on physical observables. This is easier if PDFs are
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Figure 4.29:Comparison of NNPDF2.1 NLO and NNLO singlet sector PDFs, computed using
Nrep = 1000 replicas from both sets. All error bands shown correspond to one sigma.

represented in the flavor basis at a typical hard scale as in Fig. 4.32, where the ratio

between NNLO and NLO parton functions is plotted as a function of x at Q2 = 104

GeV2. The most noticeable difference is atx ∼ 10−3 for the light quark sea, where

the two plotted bands almost don’t overlap. Other changes are visible at small-x in the

quark distributions, that are larger in that region, and also smaller large-x quarks. As a

consequence of evolution is also observed a larger small-x gluon.

Another interesting comparison is performed between NNPDF2.1 NNLO PDFs to

those from the MSTW08 NNLO set. A more precise estimate of likeness and difference

is made using the sameαs (MZ)=0.119 value. The two PDF sets are plotted in Figs. 4.33

and 4.34. The MSTW08 NNLO gluon, unlike its NNPDF2.1 counterpart, is unstable at

small-x, where it becomes very negative. Unusually small uncertainty bands are observed

for MSTW determination and in general the two sets show reasonable agreement for cen-

tral values. The only significant difference is found in the strange distribution, probably

due to the extremely restrictive parametrization given forthes + s̄ ands − s̄ MSTW08

PDFs.

A last comparison is made in Figs. 4.35 and 4.36 with the ABKM09NNLO set (with

fixed flavor numbernf = 3) [94]. A NNPDF2.1 NNLO PDF set withαs = 0.114 is

chosen, as the ABKM set is only provided forαs (MZ) = 0.1135 ± 0.0014. Further-
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Figure 4.30:Same as Fig. 4.29 for the non-singlet sector PDFs.

more for this set (and its NLO counterpart) only combined PDF+αs uncertainties can be

determined, unlike other sets for which PDF uncertainties with fixedαs may also be com-

puted. The energy scale is fixed atQ2
0 = 2 GeV2 and in general is observed a somewhat

bad agreement.

4.5 Perturbative Stability

It can be exploited the fact that to determine LO, NLO, and NNLO PDF sets the same

data and the same methodology are used in the three cases: because of this can be ad-

dressed issues of perturbative stability by comparing individual PDFs but also looking at

the behaviour of the total momentum fraction carried by partons.
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as ratios to the central NNPDF2.1 NNLO result.

The LO, NLO, and NNLO parton functions are plotted together to assess the pertur-

bative stability of NNPDF determination, as can be seen in Figs. 4.37 and 4.38 at the

starting scaleQ2
0=2 GeV2 in the basis in which they are independently parametrized by

neural networks. In Figs. 4.39 and 4.40 a similar comparisonis provided but this time at

the scaleQ2=(100 GeV)2 in the basis of individual flavors. All the error bands take into
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Figure 4.33:The NNPDF2.1 NNLO singlet sector PDFs, compared to MSTW08 PDFs. The
results for NNPDF2.1 NNLO have been obtained withNrep = 1000 replicas. All PDF errors are
given as one sigma uncertainties. In the comparison a common value ofαs (MZ)=0.119 has been
used.

account also possible deviations from Gaussianity, as theyare defined as 68% confidence

levels, rather than as standard deviations.

These comparisons manifest the excellent convergence of the perturbative expan-

sion within the kinematic region covered by the experimental data. Also, in the kine-

matic region where resummation is supposed to affect the result (small- and large-x re-

gions) [199, 200] and the perturbative stability should start to be compromised, no ev-

idence of instability is seen in the PDFs, thus suggesting that resummation corrections

are smaller than current PDF uncertainties (at small-x, this is borne out by the dedicated

study of Refs. [163,164]).

Focusing on the differences between NNLO and NLO parton functions, it is possible

to see that in almost all cases there is agreement within uncertainties. This is true at the

initial scale (Figs. 4.37-4.38), where the NNLO central value is within (or just outside)

the NLO uncertainty band, and it is still better at higher scales (Figs. 4.39-4.40) The only

noticeable differences are atQ2
0 = 2GeV2 for the isospin triplet distribution around the

valence peakx ∼ 0.3, where the NLO and NNLO bands overlap, but the NNLO central

value is clearly outside the NLO band, and at higher scale again is observed as in Fig. 4.32
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Figure 4.34:Same as Fig. 4.33 for the non-singlet sector PDFs.

a small discrepancy in light quark distributions forx >∼ 10−3.

It can be concluded that effectively PDF uncertainties onlyreflect the data uncertainty.

Theoretical uncertainties due to higher orders in perturbative QCD excluded in the analy-

sis are not taken into account in the shown error bands. Thesekind of uncertainty can be

estimated by varying the renormalization and factorization scale during the PDF fit, and

at NLO by a direct comparison with the NNLO results. Thanks tothis comparison it can

be safely said that at present the size of the uncertainty dueto theoretical inaccuracy is

reasonably smaller than the PDF uncertainties, derived exclusively from data.

The same cannot be said for the LO PDFs. Here in fact it is clearthat central values

differ by several standard deviations from NLO parton functions. The situation improves
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Figure 4.35: The NNPDF2.1 NNLO singlet sector PDFs, compared to the ABKM09 three-
flavor set. The results for NNPDF2.1 NNLO have been obtained withNrep = 100 replicas. The
NNPDF2.1 set withαs = 0.114 is shown because ABKM PDFs are only available for this value
of αs. Note that for ABKM uncertainties also include the uncertainty onαs while for NNPDF
they are pure PDF uncertainties.

somewhat at high scale (Figs. 4.39-4.40), but the difference between LO and NLO re-

mains large for the gluon. Hence, it can be concluded that in this case the theoretical

uncertainty is dominant, and the error represented by the plotted bands is only a fraction

of the effective total error. These conclusions are true forNNPDF sets as for PDFs from

other groups.

The value of the total momentum carried by quarks and gluons and its dependence

on the perturbative order provide a strong consistency check of the perturbative QCD

framework. The momentum fraction carried by a parton distribution is

[q]
(
Q2
)
≡
∫ 1

0

dx xq
(
x,Q2

)
. (4.7)

Using the LO*, NLO* and NNLO* PDF sets, where the∗ indicates that the momentum
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Figure 4.36:Same as Fig. 4.35 for the non-singlet sector PDFs.

sum rule has been relaxed, the total momentum[M ] = [Σ] + [g] carried by partons is

[M ]LO = 1.161± 0.032 ,

[M ]NLO = 1.011± 0.018 , (4.8)

[M ]NNLO = 1.002± 0.014 .

where the uncertainty is only from PDFs (and thus does not include any theoretical un-

certainty).

Estimating the theoretical uncertainty as the difference between results at two subse-

quent perturbative orders, is seen that at LO the theoretical uncertainty is dominant, as
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Figure 4.37:Comparison of NNPDF2.1 LO, NLO and NNLO singlet sector PDFs atQ2
0=2 GeV2.

All uncertainty bands are defined as 68% confidence levels.

already concluded from the PDF plots Figs. 4.37-4.38 above.On the other hand already

at NLO the theoretical uncertainty is half of the PDF uncertainty, ∆th [M ]NLO = 0.01,

and thus at NNLO the theoretical uncertainty is likely to be negligible.

It is also interesting to determine the momentum fraction carried by individual PDFs.

These are tabulated in Tables 4.9-4.10 at a low scaleQ2
0 = 2 GeV2 and at a high scale

Q2 = 104 GeV2, both before (Table 4.9, * PDF sets) and after (Table 4.10, standard PDF

sets) imposing the momentum sum rule.
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Figure 4.38:Same as Fig. 4.37 for the non-singlet sector PDFs.
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Figure 4.39:Comparison of NNPDF2.1 LO, NLO and NNLO PDFs in the flavor basis atQ2 =
104 GeV2: light quarks and gluon.
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Figure 4.40:Comparison of NNPDF2.1 LO, NLO and NNLO PDFs in the flavor basis atQ2 =
104 GeV2: strange and heavy quarks.
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PDF combination LO* NLO* NNLO*

[Σ + g] 1.161± 0.032 1.011± 0.018 1.002± 0.014

Q2
0 = 2 GeV2

[Σ] (Q2
0) 0.550± 0.025 0.591± 0.010 0.602± 0.010

[g] (Q2
0) 0.612± 0.028 0.421± 0.021 0.400± 0.018

[(u+ ū)] (Q2
0) 0.346± 0.015 0.371± 0.005 0.376± 0.005[(

d+ d̄
)]

(Q2
0) 0.192± 0.011 0.206± 0.005 0.209± 0.003

[(s+ s̄)] (Q2
0) 0.012± 0.004 0.014± 0.006 0.017± 0.006

Q2 = 104 GeV2

[Σ] (Q2) 0.546± 0.017 0.528± 0.009 0.527± 0.005
[g] (Q2) 0.615± 0.020 0.486± 0.018 0.475± 0.011

[(u+ ū)] (Q2) 0.264± 0.009 0.256± 0.003 0.255± 0.002[(
d+ d̄

)]
(Q2) 0.165± 0.007 0.160± 0.002 0.159± 0.001

[(s+ s̄)] (Q2) 0.048± 0.003 0.047± 0.004 0.048± 0.004
[(c+ c̄)] (Q2) 0.041± 0.002 0.039± 0.002 0.039± 0.001[(
b+ b̄

)]
(Q2) 0.027± 0.001 0.025± 0.001 0.025± 0.001

Table 4.9:Momentum fractions of various PDF combinations at low scaleQ2
0 = 2 GeV2 and high

scaleQ2 = 104 GeV2 when the momentum sum rule is not imposed (LO*, NLO* and NNLO*
PDF sets). All results are obtained withNrep = 100 replicas.

PDF combination LO NLO NNLO

[Σ + g] 1 1 1

Q2
0 = 2 GeV2

[Σ] (Q2
0) 0.521± 0.023 0.590± 0.009 0.609± 0.013

[g] (Q2
0) 0.479± 0.022 0.411± 0.009 0.391± 0.012

[(u+ ū)] (Q2
0) 0.328± 0.012 0.371± 0.005 0.381± 0.007[(

d+ d̄
)]

(Q2
0) 0.181± 0.010 0.206± 0.004 0.211± 0.005

[(s+ s̄)] (Q2
0) 0.012± 0.005 0.013± 0.006 0.017± 0.005

Q2 = 104 GeV2

[Σ] (Q2) 0.492± 0.010 0.523± 0.003 0.529± 0.004
[g] (Q2) 0.509± 0.010 0.477± 0.003 0.471± 0.005

[(u+ ū)] (Q2) 0.245± 0.007 0.255± 0.003 0.257± 0.004[(
d+ d̄

)]
(Q2) 0.150± 0.006 0.159± 0.002 0.159± 0.002

[(s+ s̄)] (Q2) 0.041± 0.003 0.046± 0.003 0.048± 0.002
[(c+ c̄)] (Q2) 0.033± 0.001 0.0383± 0.0004 0.0393± 0.0006[(
b+ b̄

)]
(Q2) 0.021± 0.001 0.0245± 0.0002 0.0249± 0.0003

Table 4.10:Same as Table 4.9, but when the momentum sum rule is imposed (LO, NLO and
NNLO PDF sets).



138 Impact of Heavy Quark Masses on PDFs



Chapter 5

LHC Phenomenology

This Chapter is dedicated to the study of phenomenology at theLHC. The target of mod-

ern parton fits is to provide a reliable description of the various components inside the

nucleon. For this reason is of primary importance to computepredictions at LHC, bench-

mark the results against other groups predictions and physical measurements of the con-

sidered observables.

After a brief discussion on parton luminosities (Sect. 5.1), the main topic of the Chap-

ter is treated in Sect. 5.2. Then other minor but not less important issues are discussed:

NuTeV anomaly (Sect. 5.3), accuracy of NNLO PDFs (Sect. 5.4)and finally an interesting

and surprizingly precise estimate of theαS strong coupling constant is given in Sect. 5.5.

5.1 Parton Luminosities

Once more the factorization properties can be exploited: considering hadronic observ-

ables, it is known that in this case a PDF for each colliding hadron is involved in observ-

ables computation. Following Ref. [196], then parton luminosity can be defined as

Φij

(
M2

X

)
=

1

s

∫ 1

τ

dx1
x1

fi
(
x1,M

2
X

)
fj
(
τ/x1,M

2
X

)
, (5.1)

wherefi(x,M2) is a PDF andτ ≡ M2
X/s. The behaviour of parton luminosity is strictly

related to factorized observables behaviour, and the dependence of hadronic observables

on PDFs can be mostly read by looking at parton luminosity. Asa matter of fact, parton

luminosities correspond to individual parton subprocesses. In particular, the gluon-gluon

luminosity, the total quark-gluon and quark-antiquark luminosities are considered, defined

as

Φqg ≡
nf∑

i=1

Φqig , Φqq̄ ≡
nf∑

i=1

Φqiq̄i . (5.2)
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and the charm and beauty quark-antiquark luminosities.
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Figure 5.1:Comparison of the parton luminosities Eqs. (5.1)-(5.2) for LHC at 7 TeV, computed
using the NNPDF2.1 NLO and NNLO PDFs, usingNrep = 100 replicas from both sets. From
left to right are shownΦgg, Φqg, (top)Φqq̄, Φcc̄, (middle)Φbb̄, Φbg (bottom). All luminosities are
plotted as ratios to the NNPDF2.1 NNLO central value. All uncertainties shownare one sigma.

Another test for perturbative stability is to look at the comparison between parton lu-

minosities computed from NNPDF2.1 NLO and NNLO parton sets.This comparison is

given in Fig. 5.1 for all luminosities normalized to the NNPDF2.1 NNLO central value.

The compatibility, and thus the perturbative stability, isgood for all luminosities, as ex-

pected from PDFs comparison of Figs. 4.29-4.31. It is interesting to look at the gluon-

gluon luminosity, that is the relevant one for Higgs production at the LHC, and observe

that the result is quite stable especially in the region where recently a Higgs candidate

has been observed at ATLAS [61] and CMS [62] (MX = 125 − 126 GeV,
√
s = 7 − 8
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TeV). The value for the NNLO luminosity however gets quite smaller for higher values

of the invariant mass. Focusing now on quark-antiquark luminosity and going back to

Fig. 4.32, the differences noticed there in light quark distributions are here reflected and

enhanced because of the square dependence of parton luminosities on PDFs. As a con-

sequence, non-negligible differences are seen for this luminosity, which is significantly

larger at NNLO in the region relevant forW andZ production. Similar but somewhat

smaller differences are seen in the quark-gluon channel. The heavy quark PDFs follow

the behaviour of the gluon, from which they are generated dynamically via perturbative

evolution.
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Figure 5.2:Same as Fig. 5.1, but for NNPDF2.1 NNLO and MSTW2008 NNLO PDFs. For both
sets PDFs corresponding to the same valueαs = 0.119 have been used for consistency.

Indeed a useful exercise is to compare NNPDF results with theones from other
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σ(W+)Blν [nb] σ(W−)Blν [nb] σ(Z0)Bll [nb]

NNPDF2.0 5.84± 0.14 3.97± 0.09 0.91± 0.02
NNPDF2.1 5.99± 0.14 4.09± 0.09 0.93± 0.02

CT10 -αs = 0.118 6.00± 0.13 4.10± 0.09 0.94± 0.02
CT10 -αs = 0.119 6.04± 0.13 4.13± 0.09 0.95± 0.02

MSTW08 -αs = 0.119 5.91± 0.11 4.16± 0.08 0.94± 0.02
MSTW08 -αs = 0.120 5.95± 0.11 4.19± 0.08 0.95± 0.02

σ(tt̄) [pb] σ(H,mH = 120GeV) [pb]

NNPDF2.0 168± 7 11.59± 0.22
NNPDF2.1 170± 5 11.64± 0.17

CT10 -αs = 0.118 158± 7 10.99± 0.21
CT10 -αs = 0.119 161± 7 11.17± 0.21

MSTW08 -αs = 0.119 164± 5 11.48± 0.18
MSTW08 -αs = 0.120 168± 5 11.69± 0.18

Table 5.1:Cross-sections for W, Z,tt̄ and Higgs production at the LHC at
√
s = 7 TeV and the

associated PDF uncertainties. All quantities have been computed at NLO using MCFM for the
NNPDF2.1, NNPDF2.0, CT10 and MSTW08 PDF sets. All uncertainties shown are one sigma.

groups: in Fig. 5.2 the NNPDF2.1 NNLO luminosities are compared to MSTW08 NNLO

(at a common value ofαs = 0.119), again as a ratio to NNPDF2.1 NNLO central value.

A clear worsening of the agreement is observed for low and especially high values of

MX : this is mainly a consequence of the small-x discrepancy seen in Fig. 4.33 for singlet

and especially for gluon distribution, related to the unstable behaviour of the MSTW08

NNLO gluon. In general, in the region ofM2
X/s which is relevant for typical electroweak

final state massesMX at the LHC, the agreement is good.

5.2 Predictions and Benchmarks at the LHC

In this Section predictions are computed and benchmarks areproduced between both NLO

and NNLO observables at LHC and the results obtained from other groups. In the first

part of the Section predictions for a set of LHC standard candles are computed using the

NNPDF2.1, NNPDF2.0, CT10 and MSTW08 sets. Results are presented and compared

for W±, Z0, tt̄ and Higgs production via gluon fusion withmH = 120 GeV both at
√
s =7 TeV and

√
s =14 TeV. These predictions, presented in Tables 5.1 and 5.2, and

in the corresponding Figs. 5.3 and 5.5, are all computed using MCFM [201,202] code at

NLO QCD. In this comparison the value ofαs in the case of CT10 and MSTW08 sets is

fixed both at the respective default value and at the common value ofαs(MZ) = 0.119,

obtained using the PDF sets of Refs. [82,203].

At first the comparison between NNPDF2.0 and NNPDF2.1 PDF sets is discussed:

differences are driven mainly by the heavy quark mass effects but also by different kine-

matic cuts. ForW± andZ production at 7 TeV differences are below or equal to one
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Figure 5.3:Graphical representation of the results of Table 5.1.

sigma and fortt̄ and Higgs are essentially unchanged, as can be seen from Fig.5.3 and

Table 5.1. It can be concluded that these LHC observables areonly marginally affected

by the implementation of heavy quark treatment.

Coming now to the comparison among NNPDF2.1, MSTW08, and CT10 isvisible a

rather good agreement between NNPDF2.1 and MSTW08 observables and slightly larger

differences with CT10, especially for Higgs andtt̄ production, observables which are

most sensible to the behaviour of gluon distribution already analyzed in Fig. 4.13. Things

goes towards better agreement by using a common value of the strong couplingαs. This

effect is stronger for observables as Higgs production in gluon fusion [204], because of

the characteristic dependence onαs already at leading order of this observable. The first

measurements released by the ATLAS and CMS experiments [205,206] forW±, Z, and

tt̄ production at 7 TeV are compared to the presented predictions: unfortunately, on that

measurements luminosity uncertainty still dominated (O(11%)), so that their constraining

power on PDFs is spoiled out.

If now the energy of the center of mass is increased from
√
s =7 TeV to 14 TeV,

the impact of heavy quark treatment should be larger. By looking at the results collected

in Fig. 5.5 and Table 5.2, it can be seen that theW± andZ cross-sections, going from

NNPDF2.0 to NNPDF2.1, are subject to an enhancement of slightly more than one sigma.

The Higgs andtt̄ production are instead almost unchanged. The comparison with CT10

and MSTW08 is similar as before, but with the agreement somewhat better for the Higgs

and somewhat worse for top production.

A widely used technique to reduce experimental uncertainties is to consider the ratio

between cross-sections, as for example theW+/W− andW/Z cross-section ratios at the
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Figure 5.4: LHC measurements of theW±, Z and tt̄ cross-sections at
√
s =7 TeV from the

ATLAS [206] and CMS experiments [205] compared to the predictions of Fig. 5.3.
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Figure 5.5:Graphical representation of the results of Table 5.2.

LHC. Here normalization uncertainties cancel out. Predictions for these ratios are given

in Fig. 5.6 for NNPDF2.1, CT10, and MSTW08 both at 7 and 14 TeV. Itcan be observed

that forW+/W− ratio CT10 and NNPDF2.1 are in good agreement but MSTW08 is

lower by more than two sigmas, so that in general it seems in better agreement the result

for total cross-sections. Also for theW/Z ratio at 7 TeV the agreement is only marginal,

while at 14 TeV a better result is found. For these observables the dependence onαs is

negligible.
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σ(W+)Blν [nb] σ(W−)Blν [nb] σ(Z0)Bll [nb]

NNPDF2.0 11.59± 0.27 8.56± 0.17 1.94± 0.04
NNPDF2.1 12.00± 0.27 8.84± 0.17 1.99± 0.04

CT10 -αs = 0.118 12.20± 0.30 9.00± 0.22 2.03± 0.05
CT10 -αs = 0.119 12.31± 0.30 9.07± 0.22 2.05± 0.05

MSTW08 -αs = 0.119 11.95± 0.22 9.03± 0.17 2.01± 0.04
MSTW08 -αs = 0.120 12.06± 0.22 9.10± 0.17 2.03± 0.04

σ(tt̄) [pb] σ(H,mH = 120GeV) [pb]

NNPDF2.0 942± 21 37.3± 0.50
NNPDF2.1 946± 19 37.5± 0.40

CT10 -αs = 0.118 880± 21 36.32± 0.80
CT10 -αs = 0.119 895± 21 36.90± 0.80

MSTW08 -αs = 0.119 917± 18 37.78± 0.50
MSTW08 -αs = 0.120 934± 18 38.43± 0.50

Table 5.2:Same as Table 5.1 for the LHC at
√
s = 14 TeV.

Another interesting exercise to understand the relations between PDFs and observ-

ables is to compute their correlation. This is a way to quantify the relevance of each

PDF for different physical observables [187, 207]. In Fig. 5.7 is shown the correlation

coefficient between PDFs andW+, Z total cross-sections,W+/W−, W/Z cross-section

ratios at 7 TeV for the LHC. Knowing the dependence of totalW andZ cross-sections,

a dominant correlation with theu andd sea quarks and an anticorrelation of similar size

in modulus with the strange quarks is observed as expected. Instead, the gluon and heavy

quarks that are dynamically generated from it are less correlated with these observables.

Looking now at the cross-section ratios, it is interesting to notice that, for theW/Z cross-

section ratio, correlations are only slightly suppressed in comparison to the previous an-

alyzed cases, while for theW+/W− ratio the suppression is much more intense. This

observation suggests that the latter ratio should be less sensitive to PDF uncertainties.

In the treatment of heavy quark mass effects theoretical ambiguities due to subleading

terms are present. Here is given a partial study of this theoretical uncertainty related

to heavy quark inclusion toO(αs) by comparing results obtained from the three sets

discussed in Sect. 4.1.3: NNPDF2.0 RED (without heavy quark mass terms, but the same

kinematic cuts as NNPDF2.1), the default NNPDF2.1, and NNPDF2.1 without damping

terms in the FONLL-A method. As can be seen in Fig. 5.8 and in the associated Table 5.3,

the results for the NNPDF2.1 “plain" FONLL-A (i.e. without damping terms) are always

half way between the ZM-VFN treatment (NNPDF2.0 RED) and the standard NNPDF2.1

global fit at 7 TeV. At the higher energy of 14 TeV the NNPDF2.1 “plain" FONLL-A

results sit nearer to the standard NNPDF2.1 set results. As discussed in Sect. 4.1.3, the

difference between the NNPDF2.1 results with and without damping terms can be taken

as a conservative estimate of the theoretical uncertainty associated to the uncertainty in

the inclusion of heavy quark mass effects toO(αs).
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Figure 5.6:Comparison between predictions from different PDF sets for theW+/W− andW/Z
ratios at the LHC

√
s =7 TeV (upper plots) and

√
s =14 TeV (lower plots).

In this second part of the Section a similar set of LHC standard candles are com-

puted using NNPDF2.1 NNLO. The physical observables that here will be considered are

the total cross-section for Higgs, weak vector bosons production, approximate NNLOtt̄

production and the(W+ +W−)/Z0 andW+/W− cross-section ratios.

As already seen in the case of NLO observables, their dependence onαs at hadron

colliders is nontrivial: the hard matrix elements depend onthe strong coupling and PDFs

are correlated with the value ofαs [82,208,209], especially in the case of the gluon PDF.

A very important issue that needs to be considered when comparing predictions trying

to understand their dependence on PDFs and their associateduncertainty is related to the

mixing between uncertainties due to PDFs with uncertainties due to the choice of external

parameters [210]. This mixing should be avoided. A detailedquantitative comparison is

performed between NNPDF2.1 and MSTW08, both at NLO and NNLO QCD. For sake

of illustration also the comparison with ABKM09 NNLO will be performed, even if these

PDFs are provided forαs(MZ) = 0.1135±0.0014, and their uncertainties always include

also the contribution due to the variation ofαs in this range.

The first comparison that needs to be discussed is related to Higgs production from

gluon-gluon fusion. The total inclusive cross-section forthis gluon-gluon channel has

attracted considerable attention: in Ref. [211] was claimedthat the determination of un-

certainties due to PDFs through the so-called PDF4LHC prescription [106] might suffer

of a substantial underestimation. More details on this discussion are given in Ref. [181]

and especially in Ref. [184]. In Fig. 5.9 the results for the total inclusive cross-section for
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Figure 5.7:The correlation between PDFs and vector boson production total cross-sections (up-
per plots) and their ratios (lower plots) for LHC 7 TeV. Correlations forW− (not shown) are very
similar.

Higgs production from gluon fusion are compared as a ratio toNNPDF2.1 NNLO with

αs(MZ) = 0.119. The code of Refs. [212, 213] is used to compute this physical observ-

able for NNPDF2.1, MSTW08, and ABKM09 PDF sets at the respective default value of

αs (in the order:αs(MZ) = 0.119, αs(MZ) = 0.1171, andαs(MZ) = 0.1135 ± 0.0014)

as a function of the Higgs massmH . All uncertainties are one-sigma error bands. As

already said, ABKM determination includes also the uncertainty onαs. The shown ob-

servable is also computed using NNPDF2.1 withαs(MZ) = 0.117 to have a more precise

comparison with MSTW08 prediction. The NNPDF result for thislast computation and

MSTW default result are in excellent agreement. The same cannot be said for ABKM:

surely part of the several sigmas difference between NNPDF2.1 and ABKM is due to the

different value ofαS used for the computation, but looking at Fig. 5.16 below it isclear

that even adopting the same value for the strong coupling constant the difference would

persist.

The results for top production are shown in Fig. 5.10 where the totaltt̄ cross-section

determined at NLO and NNLO at the LHC 7 TeV withmt =172 GeV (pole mass) is

compared with NNPDF2.1, MSTW08, and ABKM. The ABKM prediction is given only

at NNLO withαs(MZ) = 0.1135± 0.0014 as in the previous case, while for NNPDF2.1

NLO and NNLOαs(MZ) = 0.119 and for MSTW08αs(MZ) = 0.1202, 0.1171 re-

spectively for NLO and NNLO predictions. To ease the comparison between NNPDF2.1

and each of the other predictions from MSTW08 and ABKM, the NNPDF results with
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7 TeV σ(W+)Blν [nb] σ(W−)Blν [nb] σ(Z0)Bll [nb]

NNPDF2.1 5.99± 0.14 4.09± 0.09 0.93± 0.02
NNPDF2.0 RED 5.81± 0.13 3.98± 0.08 0.91± 0.02

NNPDF2.1 FONLL-A plain 5.90± 0.12 4.03± 0.08 0.92± 0.02

14 TeV σ(W+)Blν [nb] σ(W−)Blν [nb] σ(Z0)Bll [nb]

NNPDF2.1 12.00± 0.27 8.84± 0.17 1.99± 0.04
NNPDF2.0 RED 11.57± 0.25 8.57± 0.17 1.93± 0.04

NNPDF2.1 FONLL-A plain 11.82± 0.22 8.72± 0.15 1.96± 0.03

Table 5.3:Cross-sections for W, Z,tt̄ and Higgs production at the LHC at
√
s = 7 TeV and the

associated PDF uncertainties for the reference NNPDF2.1 set comparedto those obtained using
sets with different treatment of heavy quarks: NNPDF2.0RED, without heavy quark mass effects,
and NNPDF2.1 FONLL-A plain with heavy quark mass effects but without threshold damping
terms.
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Figure 5.8:Graphical representation of the results of Table 5.3.

αs(MZ) = 0.120 (NLO) and αs(MZ) = 0.114, 0.117 (NNLO) are also computed.

To determine all predictions for this observable, approximate NNLO expressions based

on threshold resummation have been constructed [214] and implemented in the public

HATHOR code [215]. These theoretical predictions can be compared to the average of

the first measurements from CMS [216, 217],σ (tt̄) = 158 ± 19 pb, and ATLAS [218],

σ (tt̄) = 180 ± 19 pb. Averaging the most accurate results, which have been obtained

with a luminosity of∼ 36 pb−1, and assuming that the two measurements are indepen-

dent, yieldsσ (tt̄) = 169± 13 pb (shown in Fig. 5.10 as a dashed band).

Figure 5.10 shows that the NNPDF2.1 and MSTW08 predictions are in good agree-

ment both at NLO and NNLO: however, once again, it is important to use a common value

of αs. Also, of course, one should remember that the uncertainties shown in Fig. 5.10 are

only PDF uncertainties. In particular theoretical uncertainties, such as may be estimated
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Figure 5.9:The total cross-section for Higgs boson production via gluon fusion at NNLO as a
function ofmH . Results are shown for NNPDF2.1 withαs(MZ) = 0.119 andαs(MZ) = 0.117,
MSTW08 withαs(MZ) = 0.1171, and ABKM09 withαs(MZ) = 0.1135±0.0014, all displayed
as ratios to the central NNPDF2.1 curve. The NNPDF result is obtained usingNrep = 100 replicas.
All uncertainties shown are one sigma; for NNPDF and MSTW they are purePDF uncertainties,
while for ABKM they also include theαS uncertainty corresponding to their given range.

by scale variation, and uncertainties due to the dependenceon the top mass, are not shown

and might also be significant. Again, the ABKM09 prediction issignificantly lower, and

the disagreement persists even when a common value ofαs is adopted: already the LHC

data are starting to discriminate between PDF sets.

A closely related recent measurement by CMS [216] is the ratioof tt̄ andZ cross-

sections. Predictions has been computed for this observable using the VRAP code [219]

together with HATHOR, for the same PDF sets and settings. At NNLO this ratio is only

weakly dependent on the value ofαs. Results are also shown in Fig. 5.10 and compared

to the CMS measurement, again shown as a dashed band. The conclusions are similar.

As a last case, the electroweak vector boson production total cross-sections and their

ratios at the LHC are considered. In Fig. 5.11, as for the caseof top production, is

shown NNPDF2.1 with the same values forαs used there (NNPDF preferred value and

the MSTW and ABKM default one). These observables has been computed with the

VRAP code [219], within the narrow-width approximation (including theγ∗ contribution

to gauge boson production). For cross-section ratios errorbands are determined as a 68%

confidence level instead of a standard deviation, because has been verified that the dis-

tribution of results can be markedly non-Gaussian. Again, these theoretical predictions

are compared to the first ATLAS [220] and CMS [221] results for this observable, cor-

responding to an integrated luminosity of36 pb−1, averaged together. The results are

shown as dashed bands on the plots. The single results and their averages are summarized
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in Table 5.4.

As these processes are quark-dominated, their dependence on αs is weaker than the

ones previously considered. This is also due to the fact thatthe Born level is indepen-

dent of the strong coupling and because they are affected by smaller NNLO corrections

(though not negligible, as can be seen from the plots in Fig. 5.11). Differences between

PDF sets are also less significant, except for theW+/W− cross-section ratio which is a

very sensitive probe of the quark flavor decomposition. It can be concluded that the LHC

data used here, and particularly theW cross-section ratio, can already provide some dis-

crimination between PDFs. Also, from the comparison between LHC data and theoretical

predictions for some of the standard candles here analyzed adiscrimination between NLO

ATLAS CMS Average

σ (W+)B (l+ν) (nb) 6.26± 0.32 6.02± 0.26 6.11± 0.20

σ (W−)B (l−ν) (nb) 4.15± 0.21 4.26± 0.19 4.21± 0.14

σ
(
Z0
)
B (l+l−) (nb) 0.945± 0.051 0.975± 0.044 0.962± 0.033

σ (W+ +W−)B (lν) /σ
(
Z0
)
B (l+l−) 10.91± 0.28 10.54± 0.19 10.65± 0.16

σ (W+) /σ (W−) - 1.421± 0.034 1.421± 0.034

Table 5.4:Recent results from CMS at ATLAS for the total cross-sections forW+, W− andZ0

production and their ratios, obtained with an integrated luminosity of∼ 36 pb−1, together with
their average. The average has been obtained assuming the two measurements to be completely
uncorrelated.
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and NNLO sets may be drawn.

 5.8

 6

 6.2

 6.4

 6.6

σ(
W

+
)B

(W
+
 -

>
 l+

ν)
 [n

b]
 

LHC 7 TeV, VRAP

NNPDF2.1
MSTW08

NNPDF2.1
MSTW08

ABKM09

NLO NNLO

αs= 0.119,0.120 αs= 0.119, 0.117, 0.114

CMS + ATLAS average, 36 pb-1  3.9

 4

 4.1

 4.2

 4.3

 4.4

 4.5

 4.6

σ(
W

- )B
(W

-  -
>

 l- ν)
 [n

b]

LHC 7 TeV, VRAP

NNPDF2.1
MSTW08

NNPDF2.1
MSTW08

ABKM09

NLO NNLO

αs= 0.119,0.120 αs= 0.119, 0.117, 0.114

CMS + ATLAS average, 36 pb-1

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

σ(
Z

0 )B
(Z

0  -
>

 l+
l- ) 

[n
b]

LHC 7 TeV, VRAP

NNPDF2.1
MSTW08

NNPDF2.1
MSTW08

ABKM09

NLO NNLO

αs= 0.119,0.120 αs= 0.119, 0.117,0.114

CMS + ATLAS average, 36 pb-1

 10.4

 10.5

 10.6

 10.7

 10.8

 10.9

 11

( 
σ(

W
+
) 

+
 σ

(W
- ) 

) 
/ σ

(Z
0 )

LHC 7 TeV, VRAP

NNPDF2.1
MSTW08

NNPDF2.1
MSTW08

ABKM09

NLO NNLO

αs= 0.119,0.120 αs= 0.119, 0.117,0.114

CMS + ATLAS average, 36 pb-1
 1.35

 1.4

 1.45

 1.5

 1.55

σ(
W

+
) 

/ σ
(W

- )

LHC 7 TeV, VRAP

NNPDF2.1
MSTW08

NNPDF2.1
MSTW08

ABKM09

NLO NNLO

αs= 0.119,0.120 αs= 0.119, 0.117,0.114

CMS measurement, 36 pb-1

Figure 5.11:The total cross-sections forW+,W− andZ0 production at the LHC 7 TeV and their
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5.3 The NuTeV Anomaly

In Ref. [222] the estimated value forsin2 θW extracted from the NuTeV data was found

to be three standard deviations above the value given by the Standard Model predic-

tion. In previous NNPDF releases [49, 87] the implications that the determination of

the strangeness asymmetrys−(x,Q2) has on the so-called NuTeV anomaly [223] were

studied. By looking at the updated plot in Fig. 5.12, it is clear that the values

sin2 θW
∣∣
NuTeV = 0.2277± 0.0017 , sin2 θW

∣∣
EWfit = 0.2223± 0.0003 (5.3)

are effectively significantly different, but looking at thedeterminations of the Weinberg

angle [48] corrected for the strangeness asymmetry using the values from previous [49,87]

and current NNPDF2.1 sets it can be observed how the one-sigma error bar gets bigger

using NNPDF1.2, where a more reliable uncertainty determination for strange flavor is

given, and in particular for NNPDF2.1

RS(Q
2) ≡ 2

∫ 1

0
dxxs−(x,Q2)

∫ 1

0
dxx (u−(x,Q2) + d−(x,Q2))

= 2
[S−]

[U− +D−]
= (1.37± 0.77) 10−2.

(5.4)

This result, that includes heavy quark mass effects, is quite near to the NNPDF2.0 result

that does not include them, thereby showing that the impact of heavy quark mass effects

on the determination of the strangeness asymmetry is very small, and can also be seen

that the three corrected values are in excellent agreement with the electroweak fit and

with each other.
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Figure 5.12:Determination of the Weinberg angle from the uncorrected NuTeV data [48], with
[S−] correction determined from NNPDF1.2, NNPDF2.0 and NNPDF2.1. The uncertainty shown
on NNPDF2.0 and NNPDF2.1 is the one-sigma PDF uncertainty only.
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Figure 5.13:Comparison of NNPDF2.1 NNLO sets with different values of the strong coupling,
shown as ratios to reference set withαs = 0.119 atQ2 = 104 GeV2: gluon at small and large-x
(top), triplet at large-x and singlet at small-x (bottom). To improve readability PDF uncertainties
are only shown for theαs = 0.119 set.

5.4 Accuracy of the NNLO PDF Determination

The aim of this Section is to discuss the main sources of uncertainty that affects NNPDF

results and their influence on them. The main contribution toPDF uncertainties comes

from the underlying dataset (more details are given in Ref. [87,224]). Of course, another

factor that plays an important role is the choice of QCD parameters used in the partonic

fit, as the value of the strong couplingαs, but also of the quark masses. The variation of

these parameters allows for an estimation of the related uncertainties on PDFs and can be

shown that in some cases their impact is comparable to that ofdata [38,40,204,209]. In the

following are discussed the results obtained generating various fits with different values

of αS both at NLO and NNLO and also by repeating NNPDF2.1 NNLO determination

with various subsets of the global dataset. Theoretical uncertainties will not be studied

here: as argued in Sect. 4.5, at NNLO the uncertainty relatedto higher order corrections

(as might be estimated by renormalization and factorization scale variation) is usually

subdominant, as are those related to the treatment of heavy quarks [38].



154 LHC Phenomenology

x
-310 -210 -110

)2
xg

 (
x,

 Q

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 = 2 GeV2=0.119, QsαRatio to NNPDF2.1 

=0.119sα
=0.114sα
=0.116sα
=0.118sα
=0.120sα
=0.122sα
=0.124sα

2 = 2 GeV2=0.119, QsαRatio to NNPDF2.1 

x
0.1 0.2 0.3 0.4 0.5 0.6 0.7

)2
xg

 (
x,

 Q

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 = 2 GeV2=0.119, QsαRatio to NNPDF2.1 

=0.119sα
=0.114sα
=0.116sα
=0.118sα
=0.120sα
=0.122sα
=0.124sα

2 = 2 GeV2=0.119, QsαRatio to NNPDF2.1 

x
0.1 0.2 0.3 0.4 0.5 0.6 0.7

) 
2

 (
x,

 Q
3

xT

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

2 = 2 GeV2=0.119, QsαRatio to NNPDF2.1 

=0.119sα
=0.114sα
=0.116sα
=0.118sα
=0.120sα
=0.122sα
=0.124sα

2 = 2 GeV2=0.119, QsαRatio to NNPDF2.1 

x
-310 -210 -110

)2
 (

x,
 Q

Σx

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

2 = 2 GeV2=0.119, QsαRatio to NNPDF2.1 

=0.119sα
=0.114sα
=0.116sα
=0.118sα
=0.120sα
=0.122sα
=0.124sα

2 = 2 GeV2=0.119, QsαRatio to NNPDF2.1 

Figure 5.14:Comparison between NNPDF2.1 NLO sets with different values of the strongcou-
pling, shown as ratios with respect the reference fit withαs = 0.119. The PDFs shown are the
gluon at small and large-x (upper plots), the triplet at large-x and the singlet at small-x (lower
plots).

Dependence onαs (MZ)

First, the NNPDF2.1 NLO PDFs set is analyzed. Several sets with αs (MZ) in the range

from 0.114 to 0.124 in steps of 0.001 are generated and the correlations between the

αs (MZ) values and each PDF are computed as defined in Eq. (82) of Ref. [209]. The re-

sults are shown in Fig. 5.15 as a function ofx, both atQ2 = 2 GeV2 andQ2 = 104 GeV2.

As expected, the most sensitive PDF is the gluon, and indeed correlations gets weaker

increasing the scale because of asymptotic freedom. In thisdetermination the uncertainty

onαs at the 68% confidence level is considered as∆αs = 0.0012.

To determine the combined uncertainty on observables, due both to PDF andαs un-

certainties, can be followed the procedure described in Ref.[204], that combines sets with

different values ofαs. The method there described suggests to pack together a new set of

replicas choosing in a proper way a certain number of replicas from each of the delivered

sets with variedαs values. The suggested proper way is to construct a Gaussian distribu-

tion with the assumed central value and uncertainty forαs and then select according to

this distributionNrep replicas from the original generated sets. In this way are produced

prepacked sets containing a number of replicas for each value ofαs which corresponds to

a Gaussian distribution with given mean and standard deviation. Of course the accuracy
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Figure 5.15:Correlation coefficient between PDFs andαs(MZ) computed assumingαs(MZ) =
0.119 ± 0.0012 at 68% C.L. Results are shown at low scale (Q2 = 2 GeV2, left) and high scale
(Q2 = 100 GeV2, right).

of the prediction using a combined PDF+αs set depends on the number of replicasNrep.

Following the PDF4LHC recommendation [106] for the combination of PDF+αs un-

certainties, two prepacked PDF+αs uncertainty sets withαs (Mz) = 0.119 and uncer-

taintiesδαs = 0.0012 and∆αs = 0.002 as one-sigma errors are delivered. It is enough

to follow the procedure explained above to produce sets withany other values. Below

Nrep ∼ 100 is observed a somewhat less accurate result for Higgs production in gluon

fusion at LHC 7 TeV, while above this number of replicas in theprepacked set the result

looks independent ofNrep. In conclusion,Nrep =100 is recommended.

The same range ofαs values is covered also with the NNPDF2.1 NNLO treatment.

Results for the gluon, the quark singlet and isospin triplet are displayed in Fig. 5.13, where

the ratio of the central PDFs for each value ofαs to the defaultαs (MZ) = 0.119 set is

shown, and compared to the PDF uncertainty on the central set. Again, the gluon PDF

is the most sensitive toαs variations. In particular, looking at Fig. 5.16 where the Higgs

cross-section from gluon-gluon fusion is computed using the NNLO sets with different

values ofαs and normalized to the central value, can be seen that its dependence on the

value ofαS is remarkable: the factors discussed above that make the gluon distribution

dependent on theαS value affect the result through a quadratic gluon PDF dependence.

Moreover, the Higgs cross-section from gluon-gluon fusionundergoes NLO corrections

which are as large as the LO contribution, and NNLO corrections which are about half

of the LO (see Ref. [184, 204] for detailed studies of the relative size of PDF andαs

uncertainties on this process).

The values of heavy quark masses are varied in the same way as already done for

the NNPDF2.1 NLO fit:mc = 1.5, 1.6 and1.7 GeV (in addition to the defaultmc =√
2 GeV), and withmb = 4.25, 4.5, 5.0 and5.25 GeV (in addition to the defaultmb =
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Figure 5.16:Same as Fig. 5.9, but for NNPDF2.1 NNLO sets with different values ofαs(MZ).
Results are shown as ratios to the NNPDF2.1 NNLO reference withαs(MZ) = 0.119.

4.75 GeV). The dependence of PDFs on these variations is similar to that observed for the

NLO case.

Dependence on the Dataset

The focus is now set on the dependence of PDFs and their uncertainties on the dataset

they are extracted from. It is important to study into detailthis dependence because if on

one side it is true that a wider dataset always carries more information, on the other side

it is also true that smaller datasets may be more consistent and more reliable.

To better understand which are the consequences of reducingthe dataset to gain more

consistency of the fitted data, four different parton sets are produced on a smaller dataset,

that is a subset of the full NNPDF2.1 NNLO global dataset:

• HERA data only. This set is fitted on the smaller dataset of the four subsets con-

sidered, and at the same time is the most consistent. It includes: the combined

HERA-I inclusive data, the H1 and ZEUSF c
2 data and the ZEUS HERA-II data.

Parton distribution functions based on this dataset have also been determined and

published by the HERAPDF group [114].

• Deep-inelastic scattering (DIS) only. From the global dataset are excluded all

hadron-hadron data, i.e. DY and jets, which one may perhaps consider theoreti-

cally or experimentally less clean than lepton-hadron data.

• Deep-inelastic scattering and Drell-Yan (DIS+DY) only. This determination is in
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Experiment Global HERA–only DIS–only DIS+DY Collider–only

Ndat 3357 834 2783 3171 1090

Total 1.16 1.07 1.15 1.18 1.02

NMC-pd 0.93 [13.15] 0.88 0.94 [3.43]
NMC 1.63 [1.91] 1.69 1.69 [2.06]
SLAC 1.01 [3.17] 0.97 1.03 [1.23]

BCDMS 1.32 [2.15] 1.28 1.30 [2.22]
HERAI-AV 1.10 1.05 1.09 1.09 1.06
CHORUS 1.12 [2.63] 1.08 1.13 [1.74]
FLH108 1.26 1.32 1.27 1.26 1.26

NTVDMN 0.49 [60.51] 0.45 0.54 [23.02]
ZEUS-H2 1.31 1.21 1.26 1.28 1.30
ZEUSF2C 0.88 0.77 0.86 0.88 0.75

H1F2C 1.46 1.30 1.47 1.50 1.24
DYE605 0.81 [9.06] [6.86] 0.82 [1.34]
DYE866 1.32 [12.41] [2.70] 1.32 [5.76]

CDFWASY 1.65 [7.71] [13.94] 1.64 1.07
CDFZRAP 2.12 [3.74] [2.15] 1.91 1.22
D0ZRAP 0.67 [1.11] [0.67] 0.65 0.61

CDFR2KT 0.74 [1.15] [0.99] [1.25] 0.64
D0R2CON 0.82 [1.28] [0.88] [1.03] 0.83

Table 5.5:Quality of the fit for NNLO PDF sets based on datasets of varying size. Thetotal
number of data points is given in the first row, followed by theχ2 normalized to the number of
data points both for the total fitted set and for each of the individual experiments. Theχ2 values
for experiments which are not fitted are also shown in square brackets.

principle the only truly NNLO one, as it excludes jet data, for which only approxi-

mate NNLO matrix elements are known.

• Collider data only (lepton and hadron collider). In this caseall the fixed-target data

are excluded. They are considered less clean because of the low energy range at

which they are determined and also because of the nuclear targets used for example

in the case of neutrino DIS data. This determination is of greater complexity than

DIS+DY, despite having a smaller number of datapoints, because it also includes

jet data.

In each case, a set ofNrep = 100 PDF replicas has been constructed. The NLO coun-

terparts of the DIS and DIS+DY PDF determinations were discussed in Ref. [87] and

are available from LHAPDF both for NNPDF2.0 and NNPDF2.1; the HERA-only NLO

PDFs were briefly discussed in Ref. [225]; collider-only PDFsare presented here for the

first time.

The possibility of obtaining reliable PDFs from datasets ofwidely varying size (more

than a factor three, in this case) without having to modify any aspect of the methodol-



158 LHC Phenomenology

 0

 2

 4

 6

 8

 10

 12

 1e-05  0.0001  0.001  0.01  0.1  1

d[
 q

(x
,Q

02 ) 
]

x

Distance between central values, Nrep=100

NNPDF2.1 NNLO REF vs. HERA-only
Σ
g

T3
V

∆S
s+
s-

 0

 2

 4

 6

 8

 10

 12

 1e-05  0.0001  0.001  0.01  0.1  1

d[
 σ

q(
x,

Q
02 ) 

]

x

Distance between PDF uncertainties, Nrep=100

NNPDF2.1 NNLO REF vs. HERA-only
Σ
g

T3
V

∆S
s+
s-

Figure 5.17:Distances between central values (left) and uncertainties (right) for PDFs in the
HERA-only and default NNPDF2.1 NNLO fits. All distances are computed from sets ofNrep =
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Figure 5.18:Comparison of NNPDF2.1 NNLO singlet, total strangeness and isotriplet PDFs in
the global and in the HERA-only fits.

ogy (and in particular without having to change the parametrization, see Ref. [85]) is an

advantage of the NNPDF approach, since it allows a meaningful comparison of uncertain-

ties. Each of these PDF sets is made available through the standard LHAPDF interface,

and each so far as it goes is as good as the default one, the onlydifference between them

being the smaller amount of experimental information that goes into them.

In Table 5.5 the totalχ2 and that of the individual experiments of the fits presented

above are shown, together with the global NNPDF2.1 NNLO fit and the respective number

of points included in the fit. The columns of Table 5.5 are sorted by decreasing complexity

of the fitted data and theχ2 values shown in square brackets correspond to the experiments

excluded from the corresponding fit.

To quantify the comparison between each of these PDF sets, again are used the dis-

tances introduced in Appendix A of Ref. [87] and already used in previous Chapters. In

order to assess the impact of individual data each of the reduced-data fits, the default

NNPDF2.1, and the fit with immediately greater complexity are compared in turn. Some

of the pairs of PDFs with the largest distances will also be compared directly. In this way
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Figure 5.19:Distances between central values (left) and uncertainties (right) for PDFs in the
DIS-only and default NNPDF2.1 NNLO fits. All distances are computed from sets ofNrep = 100
replicas.
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Figure 5.20:Distances between central values (left) and uncertainties (right) for PDFs in the
HERA-only and DIS-only NNPDF2.1 NNLO fits. All distances are computed from sets ofNrep =
100 replicas.

the impact of individual data on PDFs is assessed.

Considering the first, smaller reduced dataset with only HERA data included, rises the

problem that charged current DIS data are enough to determine at most four independent

linear combinations of quark PDFs (see e.g. Ref. [226]). Thisimplies that strangeness is

completely unconstrained: in the HERAPDF [114] set an independent parametrization is

only provided for the combinationsd+ s andd̄+ s̄, but not separately for strangeness. As

can be noticed from Table 5.5, the fit quality to NuTeV data is extremely poor, as also poor

is the description for all datasets which are sensitive to the singlet-triplet separation (such

as fixed-target DIS and DY data) to the light sea decomposition (such asW production

data) and, to a lesser extent, the valence-sea separation (such as neutrino data). Of the

excluded datasets, jet data are the best described but stillmarginal quality is found.
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Figure 5.21:Comparison of NNPDF2.1 NNLO singlet, total strangeness and total valencePDFs
in the DIS-only and in the HERA-only fits.

The distances for the HERA-only fit compared to the default oneare shown in Fig. 5.17.

Triplet, strangeness, sea asymmetry, and valence distributions have the largest distances

between uncertainties, and triplet and strangeness central values have also large distances.

For singlet and gluon are observed even larger distances: the large shifts in strangeness

and triplet are accompanied by a corresponding increase in their uncertainty, while the

increase in the uncertainty of the singlet and gluon is more moderate, so the change in

central value ends up being statistically more significant,as can be clearly seen in the

direct PDF comparison of Fig. 5.18. It can be clearly seen that the singlet and gluon have

a distance from the NNPDF2.1 NNLO global fit that is more than one sigma, while all

other PDFs stay around the 90% C.L. IfW andZ production at the LHC is considered,

the strange contribution is of order 15-25% of the total cross-section [227]. Using HERA-

only PDF sets to compute cross-sections which depends on strangeness gives a theoretical

uncertainty of that same order. This implies a very uncertain phenomenology for this kind

of predictions. This uncertainty is not due to inaccuracy ofHERA data from which this

PDFs set is extracted, but to lack of information necessary to disentangle and constrain

each flavor contribution.

Flavor decomposition considerably improves by including in the fit data with neutrino

beams or deuterium targets, as is the case for DIS-only PDF determination. Gluon and

singlet distances (Fig. 5.19) show almost perfect agreement with the global fit, with only

a deviation around the half-sigma level in the large-x region of the gluon distribution.

Instead, distances between strangeness, valence and lightsea asymmetry determined in

this fit and those of the global fit, are rather smaller than onesigma (though uncertainties

are still significantly larger). A direct comparison of thisfit with the HERA-only fit is

shown in Fig. 5.21: the most remarkable improvement is observed in singlet, strangeness,

and valence PDFs. The triplet distribution also shows a significant decrease in uncertainty,

but around the valence peak it only agrees with that of the global fit at the 90% confidence

level. This may suggest some tension between deuterium DIS and hadron collider data (as

has been discussed elsewhere [76, 228]), though it could also be a statistical fluctuation.
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Figure 5.22:Distances between central values (left) and uncertainties (right) for PDFs in the
DIS+DY and default NNPDF2.1 NNLO fits. All distances are computed fromsets ofNrep = 100
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Figure 5.23:Distances between central values (left) and uncertainties (right) for PDFs in the DIS-
only and DIS+DY NNPDF2.1 NNLO fits. All distances are computed from setsof Nrep = 100
replicas.

Another interesting comparison can be made by looking at thedrastic improvement in

uncertainty distances going from Fig. 5.20 to Fig. 5.19.

Despite all the improvements commented above in comparisonto the HERA-only fit,

looking at Table 5.5 a poor description of all DY data is given, especially forW andZ

production, thus showing that a DIS-only PDF fit is not adequate for precision hadron

collider phenomenology. It is anyway remarkable that the quality of jet data description

is pretty near to the one given by the global fit. The gluon distribution determined by

DIS scaling violations is in good agreement with that of the global fit, even in the large-x

region where jet data have an impact on its uncertainty. Other PDF fits based on reduced

datasets (such as HERAPDF or ABKM) do not seem [184] to provide an equally good fit

to jet data, presumably because of their less flexible PDF parametrization.
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Figure 5.24:Comparison of NNPDF2.1 NNLO isotriplet, total valence and sea asymmetry PDFs
in the DIS-only and in the DIS+DY fits.
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Figure 5.25:Distances between central values (left) and uncertainties (right) for PDFs in the
collider-only and default NNPDF2.1 NNLO fits. All distances are computed from sets ofNrep =
100 replicas.

It is natural then to consider the DIS+DY fit. Observing the plot of distances with

respect to the global fit represented in Fig. 5.22, it can be seen that almost all PDFs are

statistically equivalent. If the distances with respect tothe DIS-only fit are also computed,

as shown in Fig. 5.23, it is clear that the inclusion of Drell-Yan data provides information

that helps flavor separation: the uncertainties of the flavordecomposition are strongly

reduced, as can also be seen by directly comparing PDFs (Fig.5.24).

The gluon presents a shift of about half a sigma of its centralvalue at large-x. This

shows explicitly that jet data has an impact on gluon PDF, constraining it at large-x where

no other dataset among the ones used in the global fit include the needed information.

Also a related slight shift of the singlet and valence distributions is observed.

Finally, the case of a collider-only fit is analyzed: the samedatasets as in the HERA-

only fits supplemented by the Tevatron weak-boson production and inclusive jet produc-

tion data are used. Comparing from Table 5.5 the values of the total χ2 for this fit and

the global one, a significant improvement fromχ2 =1.16 of the latter toχ2 =1.02 of the

former is noticed. This fact supports the idea that a collider-only dataset might be more
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Figure 5.26:Comparison of NNPDF2.1 NNLO gluon, singlet and triplet PDFs in the collider-
only and reference fits.

consistent than one which also includes fixed-target data.

In spite of this improvement, checking the distances with respect to the global fit

(Fig. 5.25) reveals that almost all PDFs undergo a shift at the one-sigma level, with uncer-

tainties significantly larger in the collider-only fit. The description that this set gives

of fixed-target data is generally poor, especially for deuterium data (such as NMCpd

or DYE866), which control the up-down separation, and the dimuon data (which con-

trol strangeness). These increased uncertainties end up contaminating also the singlet

and gluon PDFs, as shown by the distance computation and by direct PDF comparison

(Fig. 5.26). The extremely poor determination of strangeness and light quark asymmetry

PDFs and the slightly better but still rather poor determination of valence, triplet and even

singlet PDFs show that a collider-only fit at present does notprovide competitive accuracy

for phenomenology.

5.5 Determination ofαS(Mz) Using NNPDF2.1 NLO

The value of the strong coupling constant is a fundamental ingredient for collider phe-

nomenology [229]. If for example the gluon fusion channel for Higgs production is con-

sidered, the dominant source of uncertainty is due to the value ofαs (MZ) [204]. The

PDG [47] value is determined by a combination of results obtained by different processes

as theτ decay rate and the totale+e−→ hadrons cross-section, which are independent of

PDFs, but also DIS data, which indeed depends on them. The value given in Ref. [229] is

αs (MZ) = 0.1184± 0.0007 (5.5)

and as the uncertainty in this result may seem too optimisticgiven the spread of value

on which is based and the significant dependence on the perturbative order of some of

them, the use of a somewhat more conservative estimate of theuncertainty has been rec-

ommended [204, 230], such as∆αs = 0.0012 at 68% confidence level for LHC phe-
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nomenology.

To exploit the same data used for PDFs determination to determine a value ofαs (MZ)

is interesting in that it is possible at the same time to take advantage of the dependence

on the coupling of scaling violations as well as that on individual hard matrix elements

of the various processes under consideration. A quite accurate determination is therefore

expected. However, in such a determination the value ofαs is necessarily correlated to

the best-fit form of the PDFs, and thus subject to potential sources of bias, such as for

example an insufficiently flexible PDF parametrization.

An example of the possible pitfalls of a simultaneous determination of PDFs andαs

is highlighted by the analysis of Ref. [231], in which the extraction ofαs from BCDMS

and NMC deep-inelastic scattering data was performed usinga methodology (scaling

violations of truncated moments) which avoids completely the use of parton distribu-

tions. The result found,αs (MZ) = 0.124+0.005
−0.008, had rather different central value and

uncertainties than those obtained by direct analysis of thesame BCDMS (αs (MZ) =

0.113± 0.005 [232]) and NMC (αs (MZ) = 0.117+0.011
−0.016 [233]) data by the respective col-

laborations. This suggests that the latter results, obtained using a PDF parametrization,

were biased by it.

The fit toαs that will be discussed in this Section is determined using the previously

presented NNPDF2.1 NLO parton set (an analog determinationusing the NNLO set is

given in [234]). The NNPDF methodology, as widely commented, is intended to mini-

mize the parametrization bias through the use of a Monte Carloapproach combined with

neural networks as underlying unbiased interpolating functions. Moreover, the use of the

NNPDF approach allows for the analysis of different datasets without having to retune

the fitting procedure (such as, for instance, the form of parton parametrization) according

to the size of the dataset. This enables a direct comparison of values ofαs obtained from

different subsets of data which enter the global fit, and alsoan analysis of the correlation

between individual datasets, individual PDFs, and the value ofαs. In this way, it will also

be possible to check if DIS data systematically settle on lower values ofαs than hadron

or e+e− collider data.

The quality of the fit as it is delivered by the NNPDF collaboration, i.e. as a Monte

Carlo sample, is a random variable which tends to a constant value for an infinite number

of replicas. The size of the fluctuations of theχ2 is of the order of the square root of the

number of data points included in the fitNdat, while the size of fluctuations of the average

over a sample ofNrep replicas decreases as1/N1/2
rep . The value of theχ2 for a typical

NNPDF fit (withNdat = 3338) is shown as a function ofNrep in Fig. 5.27. To reduce

fluctuations in order to be sensitive to variations of the total χ2 by a few units one needs

for each value ofαs a number of replicas of the same order of magnitude as the number
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Figure 5.27: Left: The χ2 as a function of the number of replicasNrep for NNPDF2.0; the
horizontal line shows the value forNrep = 500. Right: The uncertaintyσχ2 Eq. (5.6) as a function

of Nrep , averaged over all values ofαs. A fit of the formAN
−1/2
rep is also shown.

of independent data points. This implies a quite large number of replicas to determineαs

and thus a rather computationally intensive effort.

The uncertainty on the value of theχ2 due to the finite size of the replica sample may

be computed using the so-called bootstrap method. Namely, the sample ofNrep replicas is

divided intoNpart disjoint partitions withÑrep = Nrep/Npart replicas each. The variance

of theχ2 for the full Nrep replica sample is then found from the variance of theNpart

valuesχ̃2 of each replica subsample according to

(σχ2)2 ≡ 1

Npart


 1

Npart

Npart∑

k=1

(
χ̃2
k

)2 −
(

1

Npart

Npart∑

k=1

χ̃2
k

)2

 . (5.6)

The value ofσχ2 , averaged over all the (eleven) values ofαs to be considered, is displayed

in Fig. 5.27. A fit of the formAN−1/2
rep , also shown in Fig. 5.27, shows that the expected

decrease of the fluctuations with1/N1/2
rep is borne out by the data.

The procedure for theαs determination is quite simple: once a sufficiently large setof

PDF replicas has been produced forNαs fixed values ofαs, for each of these values the

correspondingχ2 and their uncertaintyσχ2 Eq. (5.6) are computed. Then, a parabolic fit

is performed on theseχ2 values, seen as a function ofαs. The quality of the parabolic fit

is then determined by evaluating the correspondingχ2
par/Ndof , with Ndof = Nαs − 3. A

reasonable value ofχ2
par/Ndof may be used to confirm that the parabolic approximation

to χ2(αs) is adequate in the range ofαs under investigation. The best value for the strong

coupling constant is then given by the minimum of the parabola and the∆χ2 = 1 range

gives the uncertainty on it at a 68% confidence level. The further uncertainty due to the

finite size of the replica sample is determined by error propagation ofσχ2 Eq. (5.6) on the

position of the minimum of the parabola.
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Figure 5.28: The χ2 as a function ofαs(MZ) for the NNPDF2.1 global fit. The statistical
uncertainties in theχ2 for each value ofαs have been determined from Eq. (5.6). The solid line is
the result of a parabolic fit.

The number of replicas used for each value ofαS isNrep = 500, with equally-spaced

larger sets withNrep = 1000 meant to increase accuracy. Together with the global

NNPDF2.1 NLO fit, the two reduced sets over HERA- and DIS-only data are also con-

sidered, along with the NNPDF2.0 global and DIS-only sets. Considering the HERA data

only fit, the sensitivity toαs is weaker due to the much smaller size of the data sample,

and so the range ofαs values is enlarged as shown in Table 5.6 to ensure that the location

of the minimum is more or less at the center of that range. In Table 5.6 are also gath-

ered theαS values and their respective number of replicas for the NNPDF2.1 global and

DIS-only fits.

In Fig. 5.28 the parabolic profile ofχ2 as a function ofαs(MZ) is shown for the

NNPDF2.1 global fit. The results for the DIS-only and HERA-only data fits are presented

in Fig. 5.29. The numerical values of each fit are summarized in Table 5.7, where the

values and uncertainties ofαs (MZ) are shown, with theexp experimental uncertainty

determined from the∆χ2 = 1 range and with theprocpropagated procedural uncertainty,

due to the finite size of the replica sample. The quality of theparabolic fit is also shown

in each case through theχ2
par/Ndof value. The fits denoted by thered. label are simply

equal to the respective standard fits but withNrep = 500 for eachαS value considered in

the procedure.

The fact that a further increase in the number of replicas used is not needed can be

seen by looking at the procedural uncertainty: its value is in general very small and with

Nrep = 500 for all αS values almost no fluctuation at all is observed on the uncertainty,
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Figure 5.29:Same as Fig. 5.28 but for a fit to DIS data only (left) and to HERA data only (right).

2.1 global
αs (MZ) Nrep

0.114 500
0.115 500
0.116 1000
0.117 500
0.118 500
0.119 1000
0.120 500
0.121 500
0.122 1000
0.123 500
0.124 500

2.1 DIS–only
αs (MZ) Nrep

0.114 500
0.115 500
0.116 1000
0.117 500
0.118 500
0.119 1000
0.120 500
0.121 500
0.122 1000
0.123 500
0.124 500

2.1 HERA–only
αs (MZ) Nrep

0.100 1000
0.102 500
0.104 500
0.106 1000
0.108 500
0.110 500
0.112 1000
0.114 500
0.115 500
0.116 1000
0.117 500
0.118 500
0.119 1000
0.120 500
0.121 500
0.122 1000
0.123 500
0.124 500

Table 5.6:The values ofαs (MZ) and the number of replicasNrep used in each case for various
determinations ofαs (MZ).

thus confirming the reliable determination of the finite-size uncertainty. Also, the change

in value ofαs is always smaller than the procedural uncertainty as the number of replicas

is decreased. Theχ2 values of the parabolic fit are expected to follow aχ2 distribution

with Ndof = 8 degrees of freedom for the global and DIS fits, andNdof = 12 for the

HERA only fit. The standard deviation ofχ2
par/Ndof is thus expected to be of order0.5,

as indeed observed. Another check that has been performed isto exclude the points at the

edge of the fit, adding extra parameters: it follows that results are almost unaffected and

no improvement in fit quality is observed.

In Fig. 5.30 the results for various best-fitαS values are shown. It is interesting to

notice the correct behaviour of uncertainties, that increase when reducing the size of the

dataset, and in particular the good agreement between the NNPDF2.1 best-fit value and

the published PDF value. Moreover, the found experimental uncertainty is surprisingly

small. Interestingly, the value found using HERA data only ismuch smaller, even though,

because of the considerable (almost sixfold) increase in statistical uncertainty it is still less
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αs (MZ) χ2
par/Ndof

NNPDF2.1 0.1191± 0.0006exp ± 0.0001proc 1.6
NNPDF2.1 DIS–only 0.1178± 0.0009exp ± 0.0002proc 0.7

NNPDF2.1 HERA–only 0.1101± 0.0033exp ± 0.0003proc 0.7
NNPDF2.1red. 0.1191± 0.0006exp ± 0.0001proc 1.5

NNPDF2.1 DIS–onlyred. 0.1177± 0.0009exp ± 0.0002proc 0.5
NNPDF2.1 HERA–onlyred. 0.1103± 0.0032exp ± 0.0004proc 1.1

NNPDF2.0 0.1168± 0.0007exp ± 0.0001proc 0.4
NNPDF2.0 DIS–only 0.1145± 0.0010exp ± 0.0003proc 1.4.

Table 5.7: Values ofαs (MZ) and associated uncertainties. All uncertainties shown are 68%
confidence levels, with the experimental uncertainty obtained by requiring∆χ2 = 1 about the
minimum, and the procedural uncertainty from propagation ofσχ2 Eq. (5.6) due to finite size of
the replica sample. The quality of the parabolic fit as measured byχ2

par/Ndof is also shown in
each case. For the global, DIS-only and HERA-only fits (first three rows), the maximum number
of replicas, given in Tab. 5.6, has been used. The three reduced replica fits (subsequent three rows)
only differ from these because of the use ofNrep = 500 for all αs values. The NNPDF2.0 fits of
the last two rows also haveNrep = 500 always.

than threeσ from the global fit. The fact that HERA data prefer a lower valueof αs may

be related to the deviations between HERA data and the predicted NLO scaling violations

which was observed in Refs. [163, 164] for the smallestx andQ2 HERA data. These

may be affected by small-x resummation or saturation effects. As shown there, scaling

violations in this region are weaker than predicted from thebehaviour observed in other

kinematic regions, and thus would tend to bias the value ofαs downwards. A dedicated

analysis would be required to prove conclusively that this is the case. Focusing on the

DIS-only result, there is no evidence that a lower value ofαS is preferred: the results

found in this case are perfectly compatible with the global fit at the one-sigma level.

It is possible to briefly comment on theoretical uncertainties in NNPDF fit, without the

intention of giving to this issue an exhaustive and detaileddescription. A possible source

of theoretical uncertainty could be introduced by inefficiencies of the global PDF fit (such

as, for example, any residual bias related to parton distributions). This kind of uncertainty

should show up in the behaviour of theχ2 as a function ofαs, either as point-to-point fluc-

tuations or as a systematic deviation from the underlying unbiased quadratic behaviour (if

they are correlated to the value ofαs). The good quality of the parabolic fit suggests that

these uncertainties are small, and thus that NNPDF uncertainty is an accurate assessment

of the total uncertainty due to the statistical and systematic uncertainties in the experimen-

tal data. Indeed, the uncertainties due to NNLO and higher orders in perturbative QCD

introduced in the computation of the several different processes included in the analysis

still need to be assessed and surely affect up to some extent the results here presented.

Other possible sources of theoretical uncertainty may be due to the lack of resummation
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Figure 5.31:Same as Fig. 5.28 but for the NNPDF2.0 global fit (left) and NNPDF2.0 DIS only
fit (right).

of higher order QCD corrections in some kinematic regions andto the treatment of heavy

quark mass effects. In cases in which both NLO and NNLO determinations are available,

such as Refs. [82, 94], a sizable downward shift of the best-fitvalue, of order of several

percentage points, has been observed when going from NLO to NNLO. Looking at the

more recent result obtained using NNPDF2.1 NNLO in Ref. [234]good stability is found:

the shift is around 1.5%.

In order to give an approximated estimate of the impact of heavy quark masses treat-

ment, theαS fit has been also performed using the NNPDF2.0 [87] PDF set, both with

global and DIS-only dataset, which is based on a zero-mass variable flavor number scheme

in which all heavy quark masses are neglected. In these fits, all αS values considered in

the procedure have a number of replicasNrep = 500. Considering again Table 5.7 and

Fig. 5.30, a remarkable downwards shift is observed for boththe NNPDF2.0 determina-
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tions here considered: if one were to conservatively estimate the uncertainty due to heavy

quark mass effects as the difference between the NNPDF2.1 and NNPDF2.0 results one

would get, for the global fit,∆αhq
s ≈ 0.002. In the DIS-only case a still larger shift is

observed, because hadronic data is unaffected by the treatment of heavy quark mass ef-

fects. The theoretical uncertainty due to neglected perturbative higher order corrections

is expected to be of the same order of magnitude, being thus the dominant uncertainty for

these fits but also for the ones from other groups.

The result obtained from the global NNPDF2.1 NLO set is compared with the ones

determined using PDF sets from other groups: MSTW [82], CTEQ [203] and ABKM [94]

PDF sets. The CTEQ collaboration is the only one among the groups here considered that

to determine the best fit value and its uncertainty studies the dependence of the fit quality

onαs as is done here. The other two, ABKM and MSTW, fit theαs value introducing it

as a free parameter in the parton fit performed to determine the PDF set. In this way they

obtain a correlated Hessian matrix which mixes the PDF parameters withαs. The equiva-

lence of theαs uncertainty obtained from either methods is explicitly shown in Ref. [203].

Observing the plot in Fig. 5.30, the agreement among the various different results is clear.

It can be seen that CTEQ and MSTW [82,203] have a quite larger statistical uncertainty.

This is due to the tolerance [97] criterion, that is based on asubstantial rescaling of the un-

certainty ranges in parameter space. In NNPDF procedure this is not needed because the

χ2 fluctuations are kept under control by a suitable choice of the size of the Monte Carlo

sample, as discussed above. The dataset used in the ABKM determination is smaller than

the other ones because it does not include collider jet and vector boson production data.

The CTEQ and MSTW collaborations instead use almost the same dataset as done in the

NNPDF analysis (see Sect. 2.5).

As a cross-check, the Gaussianity of the distribution of results obtained performing

a fit experiment by experiment is verified, applying a variantof the method proposed in

Ref. [235]. The results are displayed in Fig. 5.32 together with the uncertainties due to

the finite size of the replica sample, determined as above. For each experiment that is

included in the global fit already performed, a dedicated parabolic fit to theχ2 profile

is operated. The results for each of them (among the ones thathave a minimum in the

investigated range) are shown in Table 5.8. Only NMCratio, SLAC, CHORUS, H1F2C

and FLH108 data have no minimum in the fitted range.

The distribution of results can be studied defining the pull

Pi ≡
αi
s (MZ)− αtot

s (MZ)√
σi,2
αs + σtot,2

αs

, (5.7)

whereαi
s (MZ) is the best fit value for thei-th experiment andσi

αs
the associated statisti-
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Figure 5.32:Theχ2 profiles for the individual experiments in the NNPDF2.1 global fit together
with the results of the corresponding parabolic fits toαs. The uncertainties due to the finite size of
the replica sample are shown on each value.

cal uncertainty, obtained from the∆χ2 = 1 rule. The pulls are summarized in Table 5.8

and displayed graphically in Fig. 5.33. A Gaussian fit to the distribution of pulls is per-

formed and also displayed in Fig. 5.33. The Gaussian fit is in good agreement with the

histogram data with mean〈P 〉 = 0.04 and standard deviationσP = 1.3. The standard

deviation would be further reduced somewhat if finite-size uncertainties were included.

This however would require a lengthy correlation analysis.The conclusion is that the

value of the tolerance required to get a perfectly Gaussian distribution of pulls is smaller

than1.3 — a value which is clearly compatible with a statistical fluctuation.

Thanks to the particular procedure used, that is the same fordatasets of different size,

the issue of whether and why different datasets may prefer different values ofαs can

be addressed. In Fig. 5.34 theχ2 profiles for the global NNPDF2.1 fit, already shown in

Fig. 5.32, are compared to the same quantities determined for the fit to DIS data only. The

interesting behaviour of the BCDMS dataset is discussed: as already observed in several

other studies [82, 232, 236], this dataset seem to prefer a lower value ofαS, in particular

lower than Eq. (5.5). There is a clear difference in Fig. 5.34between theχ2 profile for

global or DIS-only fits. This seems to suggest that, using a lower value ofαS, the parton

fit would show a better quality because of this allowed direction in DIS data, but in the

global fit the quality that in DIS sector improves would worsen somewhere else.

A clearer picture of the situation can be gained by studying the correlation [40] be-

tween parton distributions and the value of theχ2 for individual experiments. Looking

at the best-fit results, if nonvanishing correlations are present means that the fit for that
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Figure 5.33: Distribution of pulls, Eq. (5.7), for the value ofαs preferred by the individual
experiments included in the global fit. These pulls have been summarized in Table 5.32).

specific dataset can be improved by changing the given PDF. Correlations of opposite sign

denote a “tension” between different datasets: the PDF is pulled in opposite directions.

As an example, here the gluon PDF is considered, and the correlation coefficient for a

pair of values ofx as a function ofαs is computed and the result is shown in Fig. 5.35 (all

from a set ofNrep = 500 replicas). While for large values ofαS all correlations have the

same sign, near the best-fit value of the strong coupling HERA and BCDMS data on one

side and jet data on the other pull the gluon in opposite directions. Hence, a determination

of αs including DIS data only can easily be biased. The fact that BCDMS data prefer a

lower value ofαs in a DIS-only fit, but not if the gluon is constrained by jet data was also

found recently in Ref. [236], in the context of the MSTW08 parton determination. How-

ever, in that case the BCDMS data was also found to significantlybias downwards the

value ofαs for the DIS fit, perhaps due to the fact that the MSTW gluon parametrization,

though more flexible than that of other groups, is still less flexible than that of the present

analysis.

The fact that runaway directions for theχ2 may appear in the jointαs-gluon space can

be understood by noting that in DIS the gluon is determined byscaling violations, hence

a smaller value ofαs can be partially compensated by a larger gluon and conversely.

However, the jet cross-section pins down the size of the gluon (at the rather larger scale

of the jet data) thereby quenching this potential instability. Hence, can be concluded that

even though in this fit the DIS-only value ofαs is not significantly smaller than that for

the global fit (possibly due to the great flexibility of the functional form of these PDFs), a

fit to DIS data, and specifically to BCDMS data, has a potential instability in the direction

of lower values ofαs which is only kept under control by the inclusion of jet data.
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Experiment αi
s ± σi

αs
Pi

NMCp 0.1192± 0.0018 -0.05
BCDMS 0.1204± 0.0015 -0.78
HERA-I 0.1223± 0.0018 -1.65

ZEUS-H2 0.1170± 0.0027 0.75
NuTeV 0.1252± 0.0068 -0.89

ZEUSF2C 0.1144± 0.0060 0.77
E605 0.1168± 0.0100 0.22
E866 0.1135± 0.0029 1.87

CDFWASY 0.1181± 0.006 0.16
CDFZRAP 0.1150± 0.0034 1.18
D0ZRAP 0.1227± 0.0067 -0.53

CDFR2KT 0.1228± 0.0021 -1.67
D0R2CON 0.1141± 0.0031 1.57

Table 5.8:The pullsPi Eq. (5.7) for individual experiment included in the NNPDF2.1 global fit
case, computed for each experiment which has a minimum in the range considered.
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Figure 5.34:Comparison of theχ2 profiles for the global NNPDF2.1 fit (same as in Fig. 5.32;
red, solid curves) to those determined for the DIS-only NNPDF2.1 fit (green, dashed curves).
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Figure 5.35:Correlation between theχ2 and the input gluon as a function ofαs (MZ) for x =
0.05 (left) andx = 0.1 (right) for the NNPDF2.1 global PDF set.

Summarizing the results discussed in this Section, the strong couplingαs has been

determined from a next-to-leading order analysis of processes used for the NNPDF2.1

global parton determination. A valueαs (MZ) = 0.1191 ± 0.0006exp has been found,

where the uncertainty includes all statistical and systematic experimental uncertainties,

but not purely theoretical uncertainties, which are expected to be rather larger. A detailed

study of the dependence of results on the dataset has been performed, analyzing each

single experiment included in the global fit. Finally, has been provided evidence that

individual data subsets can have runaway directions due to poorly determined PDFs, thus

suggesting that a global dataset is necessary for a reliabledetermination.



Conclusions and Outlook

In this thesis the main problematics related to the determination of a set of parton distribu-

tion functions have been presented and, after a brief discussion on the strategies adopted

by other groups to address them, the focus has been set on NNPDF methodology.

The fit performed on a global dataset using the combined implementation of Monte

Carlo sampling in the space of data, neural network parametrization, and genetic algo-

rithm minimization allows the NNPDF collaboration to deliver PDF sets which behave in

a statistically consistent way and minimize parametrization bias.

Three PDF sets are presented and analyzed: NNPDF2.1 LO, NLO,and NNLO. Heavy

quark mass effects are taken into account through the implementation of the FONLL-

A GM-VFN scheme for the NNPDF2.1 NLO parton set and using FONLL-C for the

NNPDF2.1 NNLO delivery. At LO heavy quark mass effects intervene to a much minor

extent. The NLO PDF set has been compared to the previous NNPDF2.0 release, which

does not include HQ mass effects, and also with parton sets from other groups as CT10

and MSTW08, which instead include them but through differenttreatments. The leading

order determination has been compared both with the NLO one and with the LO PDF

sets from other groups as MSTW and CTEQ. The NNPDF2.1 NNLO parton set, after the

usual comparison to the NLO release, has been instead compared to MSTW08 NNLO

and ABKM09 NNLO. In general, has been verified consistency at the one-sigma level

among NNPDF releases (with the only exception of LO determination, where theoretical

uncertainties are relevant) while rather significant shifts have been observed in specific

cases in the comparison with results from other groups, especially in the NNLO analysis.

Several sets of PDFs have been determined with varying values ofαS and of the heavy

quark massesmc,mb, to allow the computation of the respective uncertainties.

Theoretical predictions for a set of LHC observables (inclusive vector boson, top

and Higgs production) have been computed for benchmarking against results from other

groups and against first LHC available measurements. The change in this kind of inclu-

sive cross-sections has been found to be rather small when including heavy quark mass

effects. The change is instead substantial when looking at observables that directly probe

heavy quark distributions.
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Also, has been shown that an estimate of theαS value is possible exploiting the simul-

taneous dependence of the global dataset on PDFs andαS value. It has been determined

αS(MZ) = 0.1191± 0.0006exp, with a surprisingly low statistical uncertainty.

Having determined LO, NLO, and NNLO PDF sets using the very same methodology

and the same data, allows for the assessment of perturbativestability. Excellent conver-

gence of the perturbative expansion within the kinematic region covered by the experi-

mental data has been shown. Moreover, has been shown that theprovided uncertainty on

PDFs at LO is only a fraction of the theoretical uncertainty (that is not included). Looking

at the NLO fit it can be estimated as dominant in this case. The PDF sets produced by the

NNPDF collaboration as well as the ones delivered by other groups only include data’s

experimental uncertainties. A similar estimate of theoretical uncertainty can be given

also for the NLO determination by looking at the following perturbative order (NNLO):

in this case the size of theoretical uncertainty is smaller than that of experimental one,

thus at NLO and beyond it is reasonable to neglect theoretical uncertainty. The theoreti-

cal uncertainty could be evaluated in a more precise way for each single perturbative order

determination by varying the renormalization and factorization scale during the PDF fit.

The inclusion of the amazing amount of new data that the LHC isdelivering will be

the main target in the next years. The NNPDF2.2 PDF set, that has been briefly presented

in this thesis, already includes a part of LHC data through the reweighting technique. The

NNPDF2.3 parton set [50] includes sistematically all the relevant LHC data. The presence

of these data will be more and more important in parton fits, leading to much better

constrained PDFs. Also, new processes will be available at the energies at which the LHC

operates, hopefully allowing for a competitive PDF determination using collider data, for

exclusion of the less cleaner fixed-target data and in general of low energy measurements.
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Appendix A

Heavy Quark Coefficient Functions to

O (αs) in Mellin Space

Neutral Current Coefficient Functions

In this first part of Appendix A the analytic Mellin transformof thex-spaceO (αs) heavy

quark neutral current coefficient functions is computed andis discussed the implementa-

tion and benchmarking of FONLL neutral current structure functions in the FastKernel

framework. The corresponding results for charged current structure functions follow be-

low.

Thex-space gluonO (αs) heavy quark coefficient function is given by Eq. (1.130).

Its Mellin transform is defined in the standard way as

C
(nl),1
2,g

(
N,

Q2

m2
h

)
=

∫ (1+4m2
h/Q

2)−1

0

dzzN−1C
(nl),1
2,g

(
z,
Q2

m2
h

)
. (A.1)

It is easy to see that the integral Eq. (A.1) can be written in the following way

C
(nl),1
2,g (N, ǫ) = TRa

N

∫ 1

0

dt tN−1
{[

1 + 2a(2ǫ− 1)t+ 2a2(1− 6ǫ− 4ǫ2)t2
]
ln

1 + v

1− v

−
[
1 + 4a(ǫ− 2)t− 4a2(ǫ− 2)t2

]
v
}

(A.2)

= TRa
N

∫ 1

0

dt tN−1
{[

1 + (1− 3a)t− 1
2
(1 + 4a− 9a2)t2

]
ln

1 + v

1− v

−
[
1 + (1− 9a)t− a(1− 9a)t2

]
v
}
, (A.3)

wherea (ǫ) ≡ (1 + 4ǫ)−1 is defined to simplify the coefficients. The needed integralsare
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thus

J1(N) ≡
∫ 1

0

dt tN−1 ln
1 + v

1− v
, J2(N) ≡

∫ 1

0

dt tN−1v, (A.4)

since extra powers oft can be accommodated by a shift inN by an integer. Here as usual

v = (1− t)1/2/(1− at)1/2.

The two integrals are related by an integration by parts. To show this, is needed

d

dt
ln

1 + v

1− v
=

dv

dt

d

dv
ln

1 + v

1− v

=
(
− 1

2

1− a

(1− t)1/2(1− at)3/2

)(2(1− at)

(1− a)t

)

= −1

t

1

(1− t)1/2(1− at)3/2
. (A.5)

Thus

J1(N) = − 1

N

∫ 1

0

dt tN
d

dt
ln

1 + v

1− v
=

1

N
I(N), (A.6)

where

I(N) ≡
∫ 1

0

dt tN−1(1− t)−1/2(1− at)−1/2. (A.7)

Note that the boundary term in the integration by parts vanishes for allReN > 0, and

thus its analytic continuation vanishes for allN , so it can be safely ignored. Trivially

J2(N) = I(N) − I(N + 1). The integralI(N) may be evaluated in the usual way in

terms of a standard hypergeometric function:

I(N) =
Γ(N)Γ(1

2
)

Γ
(
N + 1

2

) 2F1(
1
2
, N,N + 1

2
; a). (A.8)

Note that whena = 0, this reduces toB(N, 1
2
), as it should.

Thus it is obtained

C
(nl),1
2,g (N, ǫ) = TRa

N
{[

1
N
I(N) + 1−3a

N+1
I(N + 1)− 1

2
1+6a−9a2

N+2
I(N + 2)

]

−
[
I(N)− I(N + 1) + (1− 9a)(I(N + 1)− I(N + 2))

−a(1− 9a)(I(N + 2)− I(N + 3))
]}

= TRa
N
{
( 1
N
− 1)I(N) + (1−3a

N+1
+ 9a)I(N + 1)

−(1
2
1+4a−9a2

N+2
− (1 + a)(1− 9a))I(N + 2)− a(1− 9a)I(N + 3)

}
. (A.9)

This result is the required ingredient to implement the FONLL-A neutral current structure

functions in the FastKernel framework.

A cross-check of the Mellin transform of the massive coefficient function Eq. (A.9)



is provided by the fact that its massless limit coincides with the Mellin transform of the

x-space massive asymptotic(nl, 0) coefficient function, Eq. (1.134). To this purposes,

Eq. (A.9) needs to be expanded neara = 1. Neara = 1, i.e. ǫ = 0, the asymptotic

expansion

F (1
2
, N,N + 1

2
; a) =

Γ(N + 1
2
)

Γ(1
2
)2Γ(N)2

∞∑

n=0

Γ(n+ 1
2
)Γ(N + n)

(n!)2
×

[2ψ(n+ 1)− ψ(n+ 1
2
)− ψ(N + n)− ln(1− a)](1− a)n, (A.10)

is needed, so that

I(N) =
1

Γ(1
2
)Γ(N)

∞∑

n=0

Γ(n+ 1
2
)Γ(N + n)

(n!)2
×

[2ψ(n+ 1)− ψ(n+ 1
2
)− ψ(N + n)− ln(1− a)](1− a)n. (A.11)

Then = 0 term then gives theln ǫ collinear divergence, which is subtracted by the mass-

less coefficient function: asǫ→0

I(N) = − ln(4ǫ)− 2γE − ψ(1
2
)− ψ(N) +O(ǫ). (A.12)

Substituting in Eq. (A.9) the result

C(nl),1
g (N, ǫ) = TR

[−N3 + 3N2 −N(2 +N +N2) (ln ǫ+ γE + ψ (N))]

N2(1 +N)(2 +N)
+O(ǫ) ,

(A.13)

is obtained, as expected: the coefficient of the singularityis precisely the LO anomalous

dimensionγ(0)qg (N). Therefore it has been checked that the massless limit is properly

reproduced,

C(nl),1
g (N, ǫ) +O(ǫ) = C(nl,0),1

g (N, ǫ) , (A.14)

with the massive asymptotic coefficient function given by the Mellin transform of Eq. (1.134),

as desired.

For completeness, the correponding expressions for theO (αs) heavy quark coeffi-

cient function for the longitudinal structure functionFL,c is also provided, which is im-

plicitly contained in Eq. (A.9) sinceF2,c = FT,c + FL,c. Thex-space expression for the

longitudinal heavy quark coefficient function is

C
(nl),1
L,g

(
z,
Q2

m2

)
= θ

(
W 2 − 4m2

)
× TR

[
−8ǫz2 log

1 + v

1− v
+ 4vz(1− z)

]
. (A.15)



Its Mellin transform can be computed using the integrals discussed above, with the result

C
(nl),1
L,g

(
N,

Q2

m2

)
= TRa

N+1
[
−8ǫa

I(N + 2)

N + 2
+4 (I(N + 1)− I(N + 2)(1 + a) + I(N + 2))

]
.

The massless limits of thex- andN -space results are straightforwardly computed and

checked to be related by Mellin transformation as they oughtto.

Now the implementation and benchmarking of these results inthe FastKernel frame-

work is considered. The major improvement in the FastKernelframework as compared to

Ref. [87] is the inclusion of heavy quark mass effects in deep-inelastic scattering structure

functions, following the FONLL-A general-mass scheme [36]. As discussed in Ref. [87],

FastKernel requires to write down all the DIS observables inMellin space and precom-

puting all the associated x-space Green’s functions. Therefore, to extend FastKernel with

FONLL structure functions a formulation of FONLL in Mellin space is needed.

Thex-space expression for the FONLL-A heavy quark structure functions, Eq. (1.127),

can be easily written down inN -space as follows:

FFONLL
2,h (N,Q2) = F

(nl)
2,h (N,Q2) (A.16)

− θ
(
Q2 −m2

)(
1− m2

Q2

)2 [
F

(nl,0)
2,h (N,Q2)− F

(nl+1)
2,h (N,Q2)

]
,

with the default damping factor as threshold prescription.In order to implement Eq. (A.16)

in the FastKernel framework, the Mellin space expressions of the heavy quark coefficient

function in the(nl), (nl, 0) and (nl + 1) schemes are needed. While the last two are

known, the former was not available in a closed form suitablefor analytical continua-

tion. The details of the computation have been presented above, and the desired result is

Eq. (A.9).

With all the Mellin space heavy quark coefficient functions available, it becomes pos-

sible to implement the FONLL-A heavy quark structure functions, Eq. (A.16) into the

FastKernel framework. To show that theN -space implementation has the required ac-

curacy, in Table A.1 forF2,c and in Table A.2 forFL,c, the results for the Les Houches

Heavy Quark benchmarks [38] for FONLL-A obtained with the FONLLdis code [36,51]

and with the FastKernel framework for various relevant values ofQ2 are compared. The

benchmark settings for the PDFs andαs are used for this comparison. What can be seen is

that the accuracy on the FONLL heavy quark structure functions is essentially always be-

low the percent level, enough for precision phenomenological studies. For completeness

the analogous results for the case of the massive scheme results, where similar accuracies

are obtained, are also shown.



FONLL-A FFN
x FONLLdis FastKernel Accuracy FONLLdis FastKernel Accuracy

Q2 = 4 GeV2

10−5 0.1507 0.1501 0.4% 0.1088 0.1091 0.3%
10−4 0.0936 0.0931 0.5% 0.0697 0.0698 0.1%
10−3 0.0506 0.0504 0.4% 0.0392 0.391 0.2%
10−2 0.0174 0.0177 1.5% 0.0136 0.0137 0.7%

Q2 = 10 GeV2

10−5 0.563 0.561 0.4% 0.3598 0.3602 0.1%
10−4 0.312 0.311 0.3% 0.2007 0.2011 0.2%
10−3 0.1499 0.1495 0.3% 0.0981 0.0982 0.1%
10−2 0.05056 0.05052 0.1% 0.0328 0.0327 0.3%

Q2 = 100 GeV2

10−5 2.28636 2.28577 0.02% 1.9779 1.9877 0.5%
10−4 1.12186 1.12082 0.1% 0.9161 0.9184 0.3%
10−3 0.48008 0.47919 0.2% 0.3644 0.3647 0.1%
10−2 0.15207 0.15200 0.04% 0.1037 0.1038 0.1%

Table A.1: Results of the benchmark comparison for theF2c(x,Q
2) structure function in the

FONLL-A scheme for the FONLLdis code [36] and for the FastKernel code. Results are provided
at the benchmark kinematical points inx,Q2. Results for the massive (FFN) scheme are also given
for completeness.

FONLL-A FFN
x FONLLdis FastKernel Accuracy FONLLdis FastKernel Accuracy

Q2 = 4 GeV2

10−5 0.0130174 0.013094 0.6% 0.009077 0.009081 0.04%
10−4 0.008347 0.008316 0.4% 0.005913 0.005910 0.05%
10−3 0.004795 0.004778 0.3% 0.003511 0.003509 0.06%
10−2 0.001910 0.001907 0.2% 0.001403 0.001406 0.2%

Q2 = 10 GeV2

10−5 0.073235 0.073022 0.3% 0.049856 0.049982 0.2%
10−4 0.041392 0.041251 0.3% 0.028402 0.028423 0.07%
10−3 0.020754 0.020707 0.2% 0.014463 0.014456 0.05%
10−2 0.007616 0.007595 0.3% 0.005350 0.005346 0.07%

Q2 = 100 GeV2

10−5 0.471889 0.4729 0.2% 0.3955 0.397855 0.6%
10−4 0.2236 0.2235 0.1% 0.18656 0.186914 0.2%
10−3 0.0920 0.09188 0.1% 0.0765 0.076393 0.1%
10−2 0.027822 0.02782 0.1% 0.023079 0.023100 0.1%

Table A.2:Same as Table A.1 for theFLc(x,Q
2) structure function.

Charged Current Coefficient Functions

In this second part of Appendix A the analysis of the previouspart is repeated for charged

current structure functions.



TheF c
2 charm structure functions in charged current DIS is given byEq. (1.135). The

expression for structure functions in neutrino-induced charged current scattering in the

FFN scheme is

F c
i (x,Q

2) =
1

2
s′(ξ, µ2) +

1

2

αs(µ
2)

2π

{ 1∫

ξ

dξ′

ξ′

[
C

(nl)
i,q (ξ′, µ2, λ)s′

(
ξ

ξ′
, µ2

)
+

+ C
(nl)
i,g (ξ′, µ2, λ)g

(
ξ

ξ′
, µ2

)]}
, (A.17)

with i = 1, 2, 3. In Eq. (A.17) have used the following definitions:

s′ = 2|Vcs|2s+ 2|Vcd|2[f d+ (1− f)u]; f =
Np

Np +Nn

;

ξ = x

(
1 +

m2
c

Q2

)
; λ =

Q2

Q2 +m2
c

.

(A.18)

The explicitx-space expressions of theO (αs) contributionsC(nl)
i,q(g) to the coefficient func-

tions are given in Refs. [44, 45]. The standard structure functions are related to those

defined in Eq. (A.17) through

F c
1 ≡ F c

1 ; F c
2 ≡ 2ξF c

2 = x
2

λ
F c

2 ; F c
3 ≡ 2F c

3 , (A.19)

so that

F c
L ≡ F c

2 − 2xF c
1 = 2ξ (F c

2 − λF c
1) . (A.20)

Before Mellin- transforming thex-space quark coefficient functions of Refs. [44, 45]

they are all rewritten in the form

C
(nl)
i,q (x) = Kδ(1− x) + f(x) + [g(x)]+,

whereK is a constant andf(x) is regular function inx ∈ [0, 1] (so in generalg(x) is not



regular inx = 1). It gives

C
(nl)
1,q (z) = −CF

(
4 +

1

2λ
+
π2

3
+

1 + 3λ

2λ
KA

)
δ(1− z)

+ CF

[
−(1 + z2) ln z

1− z
− 2(1 + z) ln(1− z) + (1 + z) ln(1− λz) + (3− z) +

z − z2

1− λz

]

+ CF

[
4
ln(1− z)

1− z
− 2

ln(1− λz)

1− z
− 2

1

1− z
+

1

2

1− z

(1− λz)2
− 1 + z2

1− z
lnλ

]

+

;

(A.21)

C
(nl)
2,q (z) = −CF

(
4 +

1

2λ
+
π2

3
+

1 + λ

2λ
KA

)
δ(1− z)

+ CF

[
−(1 + z2) ln z

1− z
− 2(1 + z) ln(1− z) + (1 + z) ln(1− λz)

+
(
2z + 2− 2

z

)
+

2
z
−1−z

1−λz

]

+ CF

[
4
ln(1− z)

1− z
− 2

ln(1− λz)

1− z
− 2

1

1− z
+

1

2

1− z

(1− λz)2
− 1 + z2

1− z
lnλ

]

+

;

(A.22)

C
(nl)
3,q (z) = −CF

(
4 +

1

2λ
+
π2

3
+

1 + 3λ

2λ
KA

)
δ(1− z)

+ CF

[
−(1 + z2) ln z

1− z
− 2(1 + z) ln(1− z) + (1 + z) ln(1− λz) + (1 + z) +

1− z

1− λz

]

+ CF

[
4
ln(1− z)

1− z
− 2

ln(1− λz)

1− z
− 2

1

1− z
+

1

2

1− z

(1− λz)2
− 1 + z2

1− z
lnλ

]

+

;

(A.23)

with KA = (1− λ) ln(1− λ)/λ.

The gluon coefficient functions do not need any further work and are given by

C
(nl)
1,g (z) = Tf (2z

2 − 2z + 1) {2 ln(1− z)− 2 ln z − ln[λ(1− λ)]}+

[4− 4(1− λ)]z(1− z) + (1− λ)
z

1− λz
+ (A.24)

2(1− λ)

[
z ln

1− λz

(1− λ)z
− 2λz2 ln

1− λz

(1− λ)z

]
− 1;



C
(nl)
2,g (z) = Tf (2z

2 − 2z + 1) {2 ln(1− z)− 2 ln z − ln[λ(1− λ)]}+

[8− 18(1− λ) + 12(1− λ)2]z(1− z) + (1− λ)
1

1− λz
+ (A.25)

6λ(1− λ)

[
z ln

1− λz

(1− λ)z
− 2λz2 ln

1− λz

(1− λ)z

]
− 1;

C
(nl)
3,g (z) = Tf (2z

2 − 2z + 1)

{
2 ln(1− z)− 2 ln(1− λz) + ln

(
1− λ

λ

)}
+

(A.26)

2(1− λ)z(1− z) + 2(1− λ)

[
(1 + λ)z2 ln

1− λz

(1− λ)z
− z ln

1− λz

(1− λ)z

]
.

In order to transform to theN -space the abovex-space expressions, in Tables A.3

and A.4 are tabulated the Mellin transforms of all terms involved. In these tables the

analytic continuation of the harmonic sum

Sl ≡ Sl(N) =
N∑

k=1

1

kl
= ζ(l)− (−1)l

(l − 1)!
ψ(l−1)(N + 1),

is used, whereζ(l) is the Riemannζ-function, with ζ(1) = γEM , ψ((l − 1)) is the

polygamma, and2F1(a, b, c;N) is the Gauss hypergeometric function .

As an example of use of Tables A.3-A.4, here is presented the completeN -space

quark and gluon coefficient functions forF c
2

C
(nl)
2,q (N) = CF

[
−
(
4 +

1

2λ
+
π2

3
+

1 + λ

2λ
KA

)
− 2(S2 − ζ2) +

1

N2

− 1

(N + 1)2
+ 2

(
S1

N
+

S1

N + 1
+

1

(N + 1)2

)
+ λ

2F1(1, N + 1, N + 2;λ)

N(N + 1)

+
ln(1− λ)

N
+ λ

2F1(1, N + 2, N + 3;λ)

(N + 1)(N + 2)
+

ln(1− λ)

N + 1
+

2

N + 1
+

2

N

− 2

N − 1
+ 2

2F1(1, N − 1, N, λ)

N − 1
− 2F1(1, N,N + 1, λ)

N
(A.27)

− 2F1(1, N + 1, N + 2, λ)

N + 1
+ 2

(
S2
1 + S2 − 2

S1

N

)
− 2Jλ(N)− 2

(
1

N
− S1

)

+
1

2

(
2F1(2, N,N + 2, λ)

N(N + 1)
+
λ+ ln(1− λ)

λ2

)
−
(

1

N
− 1

N + 1
− 2S1 +

3

2

)
lnλ

]
;



f(z) M[f ](N)

δ(1− z) 1

zl
1

N + l

(1 + z2) ln z

1− z
2(S2 − ζ2)−

1

N2
+

1

(N + 1)2

(1 + z) ln(1− z) −S1

N
− S1

N + 1
− 1

(N + 1)2

(1 + z) ln(1− λz) λ
2F1(1, N + 1, N + 2;λ)

N(N + 1)
+

ln(1− λ)

N
+

λ
2F1(1, N + 2, N + 3;λ)

(N + 1)(N + 2)
+

ln(1− λ)

N + 1

z − z2

1− λz
2F1(1, N + 1, N + 2, λ)

N + 1
− 2F1(1, N + 2, N + 3, λ)

N + 2
2
z
− 1− z

1− λz
2
2F1(1, N − 1, N, λ)

N − 1
− 2F1(1, N,N + 1, λ)

N

−2F1(1, N + 1, N + 2, λ)

N + 1

1− z

1− λz
2F1(1, N,N + 1, λ)

N
− 2F1(1, N + 1, N + 2, λ)

N + 1
[
ln(1− z)

1− z

]

+

1

2

(
S2
1 + S2 − 2

S1

N

)

[
ln(1− λz)

1− z

]

+

Jλ(N) =
∞∑

k=1

λk

k

[
S1(N + k)− S1(k)−

1

N + k

]

[
1

1− z

]

+

1

N
− S1

[
1− z

(1− λz)2

]

+

2F1(2, N,N + 2, λ)

N(N + 1)
+
λ+ ln(1− λ)

λ2
[
1 + z2

1− z

]

+

1

N
− 1

N + 1
− 2S1 +

3

2

Table A.3: Mellin transforms of the terms involved in the NLOcharged current quark
coefficient functions.



f(z) M[f ](N)

[z2 + (1− z)2]× 4− 2N(N − 3)−N(N2 +N + 2){2S1 + ln[λ(1− λ)]}
N2(N + 1)(N + 2)

{
2 ln

(
1− z

z

)
− ln[λ(1− λ)]

}

[z2 + (1− z)2)]× −2

λ

(
λ2

N
− 2λ

N + 1
+

2

N + 2

)
2F1(1, N + 1, N + 2, λ)

N + 1
{
2 ln

(
1− z

1− λz

)
+ ln

(
1− λ

λ

)}
− 4(λ− 1)

λ(N + 1)(N + 2)
− (N2 +N + 2)

{
2S1 − ln

(
1−λ
λ

)}

N(N + 1)(N + 2)

z ln
1− λz

(1− λ)z
2F1(1, N + 1, N + 2;λ)

(N + 1)2

z2 ln
1− λz

(1− λ)z
2F1(1, N + 1, N + 2;λ)− 1

λ(N + 1)(N + 2)

1

1− λz
2F1(1, N,N + 1;λ)

N

z

1− λz
2F1(1, N + 1, N + 2;λ)

N + 1

Table A.4: Mellin transforms of the terms involved in the NLOcharged current gluon
coefficient functions.

C
(nl)
2,g (N) = Tf

4− 2N(N − 3)−N(N2 +N + 2){S1 + ln[λ(1− λ)]}
2N2(N + 1)(N + 2)

+

8− 18(1− λ) + 12(1− λ)2

(N + 1)(N + 2)
+

(1− λ)2F1(1, N,N + 1;λ)

N
+ (A.28)

6λ(1− λ)

[
2F1(1, N + 1, N + 2;λ)

(N + 1)2
− 22F1(1, N + 1, N + 2;λ)− 1

(N + 1)(N + 2)

]
− 1

N
.

As a cross-check of the Mellin space results, it is possible to compute the asymp-

totic limit λ→1 of these expressions. The asymptotic expansion of the hypergeometric

functions is needed, Eq. (A.10) up toO (λ− 1) terms. In particular,

2F1(1, N + 1, N + 2;λ) = −(1 +N)
(
ln (1− λ) + γE + ψ(0)(N + 1)

)
+O ((λ− 1)) ,

(A.29)

2F1(2, N,N+2;λ) = −N(1+N)
(
ln (1− λ) + γE + ψ(0)(N)

)
+O ((λ− 1)) . (A.30)



Substituting in Eq. (A.27), one can see that all collinear heavy quark logarithms and

that the massless limit of the massive charged current heavyquark coefficient functions

reduces to the usual ZM-VFN result, as known fromx-space.

Now the implementation and benchmarking of the above results into the FastKernel

framework is discussed. Analogously to the neutral currentsector, the FONLL-A charged

current structure functions in Mellin space can be written as

FCC,FONLL
i,h (N,Q2) = F

CC(nl)
i,h (N,Q2) (A.31)

− θ
(
Q2 −m2

)(
1− m2

Q2

)2 [
F

CC(nl,0)
i,h (N,Q2)− F

CC(nl+1)
2,h (N,Q2)

]
.

with i = 1, 2, 3. The Mellin space expressions of the massive heavy quark coefficient

functions have been computed above, and the other ingredients of Eq. (A.31) are their

massless limits and the standard Mellin transform of the ZM-VFN coefficient functions.

With these results, the FONLL-A charged current structure functions Eq. (A.31) have

been implemented into the FastKernel framework. As it has been done in for neutral cur-

rents, here the accuracy of this FONLL scheme implementation is benchmarked. Again

the same settings of the Les Houches heavy quarks benchmark study are used. The

benchmarking of the FONLL-A CC structure function implementation in FastKernel is

performed for the charm production cross-section in neutrino induced DIS, defined by

Eq. (1.159), that combines all three charged current structure functions. It has been

checked that the comparison of individual structure functions has a similar level of ac-

curacy.

Results for the benchmark comparison are shown in Table A.5. As discussed above,

the FONLL-A calculation of charged current structure functions has been implemented in

ax-space code, FONLLdisCC, that will be used for the benchmarking with the FastKernel

implementation. Results are shown for various values ofQ2 relevant for the analysis

of experimental data. The accuracy is similar to the one achieved for neutral current

structure functions (see Tables A.1-A.2), at the per mil level, suitable for precision PDF

determinations.



FONLL-A FFN
x FONLLdisCC FastKernel Accuracy FONLLdisCC FastKernel Accuracy

Q2 = 4 GeV2

10−5 163.14 164.06 0.6% 158.70 158.15 0.3%
10−4 109.48 109.55 0.1% 106.81 106.64 0.2%
10−3 69.24 69.35 0.2% 67.86 67.88 0.1%
10−2 37.75 37.87 0.3% 37.27 37.30 0.1%
10−1 13.56 13.57 0.1% 13.53 13.51 0.1%

Q2 = 10 GeV2

10−5 279.31 278.71 0.2% 261.49 261.55 0.02%
10−4 167.02 166.85 0.1% 157.27 157.11 0.1%
10−3 92.90 92.87 0.03% 88.33 88.12 0.2%
10−2 44.92 44.93 0.02% 43.36 43.23 0.3%
10−1 14.50 14.48 0.1% 14.26 14.28 0.1%

Q2 = 100 GeV2

10−5 674.55 674.53 0.02% 651.21 645.94 0.1%
10−4 345.73 345.81 0.02% 331.17 329.14 0.5%
10−3 161.70 161.78 0.05% 153.94 152.36 0.1%
10−2 64.20 64.26 0.1% 61.11 61.06 0.1%
10−1 15.79 15.83 0.2% 15.33 15.42 0.1%

Table A.5:Results of the benchmark comparison for the dimuon charm production cross-section
Eq. (1.159), in the FONLL-A scheme for the FONLLdisCC charged current code and for the
FastKernel framework. Results are provided at the benchmark kinematical points inx,Q2. Results
for the massive (FFN) scheme are also given for completeness. The inelasticity variable in the
dimuon cross-section for this benchmark table has been taken to bey = 0.5. The Les Houches
Heavy Quark benchmark settings [38] have been used for the comparison.



Appendix B

Heavy Quark Coefficient Functions to

O
(
α2s
)

in Mellin Space

In this Appendix expressions for the Mellin transforms of theO (α2
s) massive heavy quark

coefficient functions in theQ2→∞ limit are provided. These asymptotic coefficient func-

tions were first computed long in Ref. [237] inx-space. Their Mellin transforms have

been given in Refs. [238, 239], and will be rederived here in a form which is suitable for

the purposes of the present analysis.

In order to perform the Mellin transform of thex-space FFN heavy quark coefficient

functions of Ref. [237] it is convenient to rewrite them in terms of independent Mellin

integrals, which can be then tabulated.

Following the notation introduced in Ref. [237], first the gluon coefficient function for

FL is considered. The corresponding Mellin transform can be written as

H
(2)
L,g

(
N,

Q2

m2
,
µ2

m2

)
= 4Tf

[
Cconst

L,g (N) + CQ
L,g(N) ln

Q2

m2
− Cµ

L,g(N) ln
µ2

m2

]
. (B.1)

The coefficient function has been separated into three terms: a Q2-independent term

Cconst(N), a collinear log termCQ(N), and a scale variation termCµ(N). A similar

decomposition will be performed for all coefficient functions.

193



The individual terms are:

Cconst
L,g = CF

[
16
15
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(−2)
10 − 16

3
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(1)
10 + 32

5
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(3)
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3
A

(1)
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5
A

(3)
3

−ζ(2)
(
16
3
A

(1)
1 − 32

5
A

(3)
1

)
+ 4A

(0)
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4 − 16A
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15
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2
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15
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5
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+CA
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16A
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(2)
6

+8A
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,

(B.2a)
CQ

L,g = CF [8A
(1)
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(0)
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1 − 8A

(2)
1 ]

+CA
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Cµ
L,g = CA

[
16A

(1)
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]
, (B.2c)

where theA(l)
N are the independent Mellin integrals

A(l)
n ≡ An(N + l). (B.3)

Those for which closed-form analytic expressions will be used are collected in Tables B.1

and B.2. Some of these Mellin transforms were already computed in Ref. [240] and are

repeated here for completeness. The remainder, for which numerical approximations will

be used, are evaluated at the end of this Appendix.

The quark coefficient function forFL can be similarly written as

H
(2)
L,q

(
N,

Q2

m2
,
µ2

m2

)
= 4Tf

[
Cconst

L,q (N) + CQ
L,q(N) ln

Q2

m2
− Cµ

L,q(N) ln
µ2

m2

]
, (B.4)

where

Cconst
L,q = CF
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(B.5a)
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. (B.5b)

Finally, the gluon radiation coefficient function forFL can be written as

H
(2)
L,GR

(
N,

Q2

m2
,
µ2

m2

)
= 4Tf

[
Cconst

L,GR(N) + CQ
L,GR(N) ln

Q2

m2

]
, (B.6)

where
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, (B.7a)
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L,GR = CF

4
3
A

(1)
1 . (B.7b)



Let us now turn to theF2 heavy quark coefficient functions. In comparison to the

longitudinal structure function, there are extra piecesC2Q(N) andCµQ(N) arising from

the double collinear logarithm. The gluon coefficient function for F2 can be written as

H
(2)
2,g

(
N,

Q2

m2
,
µ2

m2

)
= 4Tf

[
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]
,

(B.8)
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2 − 178

15
A

(0)
2 + 34

5
A

(1)
2

−168
5
A

(2)
2 + 4

15
A

(−1)
1 − 226

15
A

(0)
1 + 17

5
A

(1)
1 + 82

5
A

(2)
1

}

+CA

{
4
[
C24 − C25 − C26 +

3
4
C21 +

3
2
C20

]

+2
[
5(A

(0)
15 + 2A

(1)
15 ) + (A

(0)
16 + 2A

(1)
16 )− 3(A

(0)
19 + 2A

(1)
19 ) + ζ(2)(A

(0)
17 + 2A

(1)
17 )
]

+8(2A
(1)
15 + A

(1)
23 )− 16A

(1)
22 + 2A

(2)
21 − 4A

(2)
20 + 12A

(1)
14 − 4A

(2)
14

−2A
(0)
12 − 16A

(1)
12 + 4A

(2)
12 + 4A

(0)
13 + 16A

(1)
13 − ζ(2)(10A

(0)
4 − 12A

(1)
4

+16A
(2)
4 ) + 4

3
A

(0)
11 + 4A

(1)
11 − ζ(2)(4A

(0)
2 + 40A

(1)
2 − 8A

(2)
2 )

−ζ(3)(3A(0)
1 + 14A

(1)
1 + 2A

(2)
1 )− 8

3
A

(−1)
10 − 12A

(0)
10 + 4A

(1)
10

+52
3
A

(2)
10 + 16

3
A

(−1)
8 + 5A

(0)
8 − 16A

(1)
8 + 20

3
A

(2)
8

−ζ(2)
(
8A

(−1)
1 + A

(0)
1 + 52A

(1)
1 − 199

3
A

(2)
1

)
+ 4A

(0)
6

−72A
(1)
6 + 73A

(2)
6 + 4

3
A

(−1)
5 − 3

2
A

(0)
5 + 16A

(1)
5 − 107

6
A

(2)
5

+46A
(1)
3 − 57

2
A

(2)
3 + 52

9
A

(−1)
4 − 28

3
A

(0)
4 − 215

3
A

(1)
4 + 749

9
A

(2)
4 + 73

3
A

(0)
2

+83A
(1)
2 − 1445

9
A

(2)
2 + 20

9
A

(−1)
1 + 233

18
A

(0)
1 + 65

9
A

(1)
1 − 439

18
A

(2)
1

}
,

C2Q
2,g = CF

[
2A

(0)
4 − 4A

(1)
4 + 4A

(2)
4 − A

(0)
2 + 2A

(1)
2 − 4A

(2)
2 − 1

2
A

(0)
1 + 2A

(1)
1

]

+CA

[
2A

(0)
4 − 4A

(1)
4 + 4A

(2)
4 + 2A

(0)
2 + 8A

(1)
2 + 4

3
A

(−1)
1 + A

(0)
1 + 8A

(1)
1

−31
3
A

(2)
1

]
,

(B.9a)



CQ
2,g = CF [2A

(0)
8 − 4A

(1)
8 − (8A

(0)
1 − 16A

(1)
1 + 16A

(2)
1 )ζ(2)− 6A

(0)
6

+12A
(1)
6 − 16A

(2)
6 + 4A

(0)
5 − 8A

(1)
5 + 8A

(2)
5 + 2A

(0)
3 − 4A

(1)
3

+8A
(2)
3 − 7A

(0)
4 + 24A

(1)
4 − 20A

(2)
4 + 2A

(0)
2 − 12A

(1)
2 + 20A

(2)
2

+9A
(0)
1 − 17A

(1)
1 + 4A

(2)
1 ]

+CA

[
− 4A

(0)
10 − 8A

(1)
10 − 8A

(2)
10 + 4A

(0)
8 + 16A

(1)
8

−(4A
(0)
1 + 8A

(2)
1 )ζ(2) + 24A

(1)
6 − 8A

(2)
6 + 2A

(0)
5 − 4A

(1)
5

+4A
(2)
5 − 4A

(0)
3 − 12A

(1)
3 + 8

3
A

(−1)
4 − 2A

(0)
4 + 40A

(1)
4 − 134

3
A

(2)
4

−48A
(1)
2 + 50A

(2)
2 + 52

9
A

(−1)
1 − 55

3
A

(0)
1 − 92

3
A

(1)
1 + 407

9
A

(2)
1

]
,

(B.9b)
Cµ

2,g = CA

{
4A

(0)
8 + 16A

(1)
8 − (4A

(0)
1 − 8A

(1)
1 + 8A

(2)
1 )ζ(2) + 24A

(1)
6

−8A
(2)
6 + 4A

(0)
5 − 8A

(1)
5 + 8A

(2)
5 − 2A

(0)
3 − 8A

(1)
3 + 8

3
A

(−1)
4

−2A
(0)
4 + 48A

(1)
4 − 158

3
A

(2)
4 − 2A

(0)
2 − 64A

(1)
2

+62
3
A

(2)
2 + 4

3
A

(−1)
1 − 43

3
A

(0)
1 − 242

3
A

(1)
1 + 281

3
A

(2)
1

}
,

(B.9c)

CµQ
2,g = CA

[
4A

(0)
4 − 8A

(1)
4 + 8A

(2)
4 + 4A

(0)
2 + 16A

(1)
2 + 8

3
A

(−1)
1 + 2A

(0)
1

+16A
(1)
1 − 62

3
A

(2)
1

]
,

(B.9d)

where

B±
n ≡ A(0)

n ± 2A(1)
n + A(2)

n , Cn ≡ A(0)
n + 2A(1)

n + 2A(2)
n . (B.10)

The quark coefficient function forF2 can be written similarly as

H
(2)
2,q

(
N,

Q2

m2
,
µ2

m2

)
= 4Tf

[
Cconst

2,q (N) + C2Q
2,q (N) ln2 Q

2

m2
+ CQ

2,q(N) ln
Q2

m2

−Cµ
2,q(N) ln

µ2

m2
− CµQ

2,q (N) ln
µ2

m2
ln
Q2

m2

]
,

(B.11)

where

Cconst
2,q = CF

[
8(A

(0)
15 + A

(1)
15 ) + 4(A

(0)
13 + A

(1)
13 ) + 2(A

(0)
14 + A

(1)
14 )− 4(A

(0)
12 + A

(1)
12 )

−8ζ(2)(A
(0)
2 + A

(1)
2 ) + 4

3
(A

(0)
11 + A

(1)
11 )− 8

3
A

(−1)
10 − 8A

(0)
10 − 8A

(1)
10

−8
3
A

(2)
10 + 16

3
A

(−1)
8 + 4A

(0)
8 − 4A

(1)
8 + 8

3
A

(2)
8 − ζ(2)

(
8A

(−1)
1 + 4A

(0)
1

+4A
(1)
1 − 16

3
A

(2)
1

)
+ 8A

(2)
6 + 4

3
A

(−1)
5 + A

(0)
5 − A

(1)
5 − 4

3
A

(2)
5

+10A
(1)
3 − 4A

(2)
3 + 52

9
A

(−1)
4 − 52

3
A

(0)
4 + 40

3
A

(1)
4 − 16

9
A

(2)
4 + 70

3
A

(0)
2

−22A
(1)
2 − 176

9
A

(2)
2 + 20

9
A

(−1)
1 + 76

9
A

(0)
1 − 304

9
A

(1)
1 + 208

9
A

(2)
1

]
,

(B.12a)

C2Q
2,q = CF

[
2A

(0)
2 + 2A

(1)
2 + 4

3
A

(−1)
1 + A

(0)
1 − A

(1)
1 − 4

3
A

(2)
1

]
, (B.12b)

CQ
2,q = CF

[
4A

(0)
8 + 4A

(1)
8 + 4A

(0)
6 + 4A

(1)
6 − 4A

(0)
3 − 4A

(1)
3 + 8

3
A

(−1)
4

+2A
(0)
4 − 2A

(1)
4 − 8

3
A

(2)
4 + 8A

(2)
2 + 52

9
A

(−1)
1 − 52

3
A

(0)
1

+40
3
A

(1)
1 − 16

9
A

(2)
1

]
,

(B.12c)



Cµ
2,q = CF

{
4A

(0)
8 + 4A

(1)
8 + 4A

(0)
6 + 4A

(1)
6 − 2A

(0)
3 − 2A

(1)
3 + 8

3
A

(−1)
4

+2A
(0)
4 − 2A

(1)
4 − 8

3
A

(2)
4 − 2A

(0)
2 − 10A

(1)
2 + 8

3
A

(2)
2 + 4

3
A

(−1)
1

−40
3
A

(0)
1 + 4

3
A

(1)
1 + 32

3
A

(2)
1

}
,

(B.12d)

CµQ
2,q = CF

[
4A

(0)
2 + 4A

(1)
2 + 8

3
A

(−1)
1 + 2A

(0)
1 − 2A

(1)
1 − 8

3
A

(2)
1

]
. (B.12e)

The gluon radiation coefficient function forF2 can be written as

H
(2)
2,GR

(
N,

Q2

m2
,
µ2

m2

)
= 4Tf

[
Cconst

2,GR(N) + C2Q
2,GR(N) ln2 Q

2

m2
+ CQ

2,GR(N) ln
Q2

m2

]
,

(B.13)

where

Cconst
2,GR = CF

[
− 2

3
(A

(0)
33 + A

(2)
33 )− 2ζ(2)

3
(2A

(0)
27 − A

(0)
1 − A

(1)
1 )− 4

3
(A

(0)
32 + A

(2)
32 )

+1
3
(2A

(0)
30 − A

(0)
5 − A

(1)
5 ) + A

(0)
31 + A

(2)
31 − 29

18
(2A

(0)
28 − A

(0)
4 − A

(1)
4 )

+67
18
(A

(0)
29 + A

(2)
29 ) +

359
108

(2A
(0)
27 − A

(0)
1 − A

(1)
1 ) + 1

6
A

(0)
4 + 13

6
A

(1)
4

−1
2
A

(0)
2 − 23

6
A

(1)
2 + 29

36
A

(0)
1 − 295

36
A

(1)
1 + 134ζ(2)

18
+ 265

36

]
,

(B.14a)

C2Q
2,GR = CF

[
1
3
(2A

(0)
27 − A

(0)
1 − A

(1)
1 ) + 1

2

]
, (B.14b)

CQ
2,GR = CF

[
2
3
(2A

(0)
28 − A

(0)
4 − A

(1)
4 )− 29

18
(2A

(0)
27 − A

(0)
1 − A

(1)
1 )

−4
3
(A

(0)
29 + A

(2)
29 ) +

1
6
A

(0)
1 + 13

6
A

(1)
1 − 8ζ(2)

3
− 19

6

]
.

(B.14c)

In addition to the elementary Mellin transforms listed in Tables B.1-B.2, the coef-

ficient functions contain terms whose Mellin transform is known in closed form, but is

expressed in terms of generalized harmonic sumsSi1,...,in(N). The Mellin transform of

these functions has been evaluated through suitable numerical approximations. Thex-

space expression whose Mellin transform will be evaluated in this way are the following:

f16(z) = 2Li 2(−z) ln(1 + z) + ln(z) ln2(1 + z) + 2S1,2(−z), (B.15a)

f22(z) = Li 3(1− z), (B.15b)

f24(z) = Li 3

(
1− z

1 + z

)
− Li 3

(
−1− z

1 + z

)
, (B.15c)

f25(z) = ln(z) ln(1− z) ln(1 + z), (B.15d)

f26(z) = ln(1− z)Li 2(−z), (B.15e)

f33(z) =
Li 2(1− z)

1− z
. (B.15f)

Each of these functions will now be considered in turn.

In order to determine the Mellin transform of Eq. (B.15a), Eq.(32) of Ref. [240] is



n fn(z) An(N) = M[fn(z)](N)

1 1
1

N

2 ln(z) − 1

N2

3 ln2(z)
2

N3

4 ln(1− z) −S1(N)

N

5 ln2(1− z)
S2
1(N) + S2(N)

N

6 ln(z) ln(1− z)
S1(N)

N2
+

S2(N)− ζ(2)

N

8 Li2(1− z) −S2(N)− ζ(2)

N

10 Li2(−z) + ln(z) ln(1 + z) −ζ(2)

2N
− 1

4N

[
S2

(
N − 1

2

)
− S2

(
N

2

)]

11 ln3(z) − 6

N4

12 ln2(z) ln(1− z)
2

N

[
ζ(3) +

ζ(2)

N
− S1(N)

N2
− S2(N)

N
− S3(N)

]

13 ln(1− z)Li2(1− z)− Li3(1− z)
S1(N)S2(N)− ζ(2)S1(N) + S3(N)− ζ(3)

N

14 ln(z) ln2(1− z)

2

N

{
ζ(3) + ζ(2)S1(N)− 1

2N

[
S2
1(N) + S2(N)

]

−S1(N)S2(N)− S3(N)

}

15 S1,2(1− z) − 1

N
[S3(N)− ζ(3)]

17 ln(1 + z)
ln(2)

N
+

1

2N

[
S1

(
N − 1

2

)
− S1

(
N

2

)]

18 ln3(1− z) −S3
1(N) + 3S1(N)S2(N) + 2S3(N)

N

19 Li3(−z) −3ζ(3)

4N
+

ζ(2)

2N2
− ln(2)

N3
− 1

2N3

[
S1

(
N − 1

2

)
− S1

(
N

2

)]

Table B.1:Elementary Mellin transforms.



n fn(z) An(N) = M[f(z)](N)

20 ln(z)Li2(−z)
− 1

2N2

[
2

N
S1

(
N − 1

2

)
+

1

2
S2

(
N − 1

2

)
+

4 ln(2)

N

]

+
1

2N2

[
2

N
S1

(
N

2

)
+

1

2
S2

(
N

2

)
+ ζ(2)

]

21 ln2(z) ln(1 + z)

1

2N

[
2

N2
S1

(
N − 1

2

)
+

1

N
S2

(
N − 1

2

)
+

1

2
S3

(
N − 1

2

)
+

4 ln(2)

N2

]

− 1

2N

[
2

N2
S1

(
N

2

)
+

1

N
S2

(
N

2

)
+

1

2
S3

(
N

2

)]

23 ln(z)Li2(1− z)
1

N2
[S2(N)− ζ(2)] +

2

N
[S3(N)− ζ(3)]

27

(
1

1− z

)

+

−S1(N − 1)

28

(
ln(1− z)

1− z

)

+

1

2
S2
1(N − 1) +

1

2
S2(N − 1)

29
ln(z)

1− z
S2(N − 1)− ζ(2)

30

(
ln2(1− z)

1− z

)

+

−1

3
S2
1(N − 1)− S1(N − 1)S2(N − 1)− 2

3
S3(N − 1)

31
ln2(z)

1− z
−2[S3(N − 1)− ζ(3)]

32
ln(z) ln(1− z)

1− z
ζ(3) + ζ(2)S1(N − 1)− S1(N − 1)S2(N − 1)− S3(N + l − 1)

Table B.2: Continuation of Table B.1.



used, which can be written as

A16(N) = M[f16(z)](N) =
1

N
M

[
zΦ̃(z)

1 + z

]
− 1

2N
M

[
z ln2(z)

1 + z

]

+
ζ(2)

N
M

[
z

1 + z

]
− ζ(2) ln(2)

N
+
ζ(3)

4N
.

(B.16)

The last two Mellin transforms are respectively1:

M

[
z ln2(z)

1 + z

]
= −1

4

[
S3

(
N − 1

2

)
− S3

(
N

2

)]
, (B.18)

and

M

[
z

1 + z

]
= −1

2

[
S1

(
N − 1

2

)
− S1

(
N

2

)]
. (B.19)

The Mellin transform of the term involving the special function Φ̃(z) is given in Ref. [240]

in terms of the generalized harmonic sumS1,2(N). To avoid evaluating this directly for

complexN , it can be rewritten as

zΦ̃(z)

1 + z
∼=

10∑

k=1

akz
kΦ̃(z), (B.20)

where the values of the coefficientsak are determined by fitting the polynomial
∑10

k=1 akz
k

to the functionz/(1 + z) on the unit interval. One can then use the Mellin transform of

the functionzkΦ̃(z), which reads

M[zkΦ̃(z)] =
1

(N + k)3
+

1

2(N + k)

[
S2

(
N + k − 1

2

)
− S2

(
N + k

2

)]
. (B.21)

The desired Mellin transformA16(N) is immediately found combining Eqs. (B.18),

(B.19), (B.20) and (B.21).

1In general

M

[
z lnn(z)

1 + z

]
=

(−1)n+1n!

2n+1

[
Sn+1

(
N − 1

2

)
− Sn+1

(
N

2

)]
. (B.17)

This Mellin transform is superficially different from the Mellin transform number 15 in the Appendix of
Ref. [240], but they turn out to be equivalent after suitablesimplification. This apparent difference is also
responsible for the mismatch between entries 13, 28, 43, and62 in the Table in the Appendix of Ref. [240]
and entries 17, 21, 20 and 19 in Tables B.1 and B.2, respectively. For the same reason entries number 4 and
57 of [240] look different from Eqs. (B.18)-(B.21).



In order to determine the Mellin transform of Eq. (B.15b) the expansion

Li 3(z) =
∞∑

k=1

zk

k3
(B.22)

is used. It follows that

A22(N) = M[f22(z)](N) =
∞∑

k=1

1

k3

∫ 1

0

zN−1(1− z)kdz, (B.23)

but

∫ 1

0

zN−1(1− z)kdz =
Γ(N)Γ(k + 1)

Γ(N + k + 1)
=

k!

(N + k) . . . (N + 1)N
, (B.24)

so that

A22(N) =
∞∑

k=1

k!

k3(N + k) . . . (N + 1)N
. (B.25)

In the NNPDF implementation this series has been truncated at k = 30.

Next, the Mellin transform of Eq. (B.15c) is discussed. In this case the function

g(z) = (1− z)b−1

10∑

k=0

ckz
k (B.26)

is fitted to the functionf24(z). However, one can show that

f24(0) = Li 3(1)− Li 3(−1) = 7
4
ζ(3) = c0, (B.27)

so thatc0 is fixed, and needs to be fitted only

g(z) = (1− z)b−1
[
7
4
ζ(3) +

10∑

k=1

ckz
k
]
. (B.28)

The Mellin transform of Eq. (B.15c) follows immediately, because

A24(N) = M[f24(z)](N) =
∑10

k=0 ck
∫ 1

0
zN+k−1(1− z)b−1dz

=
Γ(N)Γ(b)

Γ(N + b)

10∑

k=0

ck
(N + k) . . . (N + 1)N

(N + b+ l + k) . . . (N + b+ l)
.

(B.29)

In order to determine the Mellin transform of Eq. (B.15d), therepresentation given

as Eq. (21) of Ref. [241] is used, in which the functionln(1 + z) is approximated by the



polynomial

ln(1 + z) ∼=
8∑

k=1

dkz
k. (B.30)

Using also Table B.1, it then gives

A25(N) = M[f25(z)](N) =
8∑

k=1

dkM[zk ln(z) ln(1− z)] =

8∑

k=1

dk

[
S1(N + k)

(N + k)2
+
S2(N + k)− ζ(2)

N + k

]
.

(B.31)

In order to determine the Mellin transform of Eq. (B.15e) the expansion

Li 2(−z) =
∞∑

k=1

(−1)kzk

k2
(B.32)

is used, so

A26(N) = M[f26(z)](N) =
∞∑

k=1

(−1)k

k2
M[zk ln(1− z)] =

∞∑

k=1

(−1)k+1

k2
S1(N + k)

N + k
.

(B.33)

In this case has been decided to truncate the series atk = 100.

Finally, the Mellin transform of Eq. (B.15f) is determined. In this case the geometric

series for1/(1− z) is used so that

A33(N)M [f33(z)] (N) =
∞∑

k=0

M[zkLi 2(1− z)] = −
∞∑

k=0

S2(N + k)− ζ(2)

N + k
. (B.34)

As in the case above, the series is truncated atk = 100.

Note that the Mellin transform of thex-space coefficient functions involve terms of the

form zlfn(z). The Mellin transformM[zlfn(z)](N) can be obtained fromM[fn(z)](N)

using the identityM[zlfn(z)](N) = M[fn(z)](N + l). Thus the Mellin transform of any

of the terms in Tables B.1-B.2 and also any of the terms Eqs.(B.15a)-(B.15f) multiplied

by a factorzl can be obtained replacingN with N + l.

In conclusion, this calculation has been checked by comparing the inverse Mellin

transform of theN -space coefficients with the originalx-space results. In Table B.3 the

accuracy of this comparison is shown for the various coefficient functions. Excellent

accuracy is found for all coefficients and all values ofx.



x ǫrel

(
C

(nl,0),2
2,g

)
ǫrel

(
C

(nl,0),2
2,q

)
ǫrel

(
C

(nl,0),2
L,g

)
ǫrel

(
C

(nl,0),2
L,q

)

10−7 7× 10−12 4× 10−11 2× 10−10 7× 10−12

10−6 3× 10−11 1× 10−11 4× 10−11 3× 10−12

10−5 2× 10−12 3× 10−11 4× 10−13 2× 10−12

10−4 6× 10−10 1× 10−11 3× 10−11 4× 10−12

10−3 6× 10−9 2× 10−12 1× 10−10 2× 10−11

10−2 7× 10−8 7× 10−12 2× 10−10 1× 10−11

10−1 1× 10−7 4× 10−11 1× 10−11 5× 10−13

3× 10−1 9× 10−7 1× 10−11 1× 10−11 5× 10−13

5× 10−1 4× 10−6 3× 10−11 8× 10−12 1× 10−13

7× 10−1 1× 10−5 9× 10−11 6× 10−12 5× 10−13

9× 10−1 1× 10−5 6× 10−8 7× 10−8 1× 10−8

Table B.3:Comparison of the inverse Mellin transforms of coefficient functions computed here
to the originalx-space expressions of Ref. [237]: the percentage difference between the original
expression and the numerical Mellin inverse is shown in each case.





Appendix C

FastKernel Implementation of

FONLL-C

In this Appendix the implementation and benchmarking of theFONLL-C neutral current

structure functions in the FastKernel framework is discussed. At the same time has been

implemented and benchmarked FONLL-B.

The implementation of FONLL-B and FONLL-C structure functions in FastKernel

requires theO (α2
s) massive heavy quark coefficient functions as well as their asymptotic

Q2→∞ limit in Mellin space. In Ref. [40] analytic results for the Mellin spaceO (αs)

heavy quark coefficient functions for neutral current and charged current scattering are

presented (see also Ref. [242] for the latter). For theO (α2
s) heavy quark coefficient

functions in Mellin space the parametrization of Ref. [244] is used. The Mellin transforms

in the asymptotic limit asQ2→∞ have been determined as in Appendix B.

TheO (α2
s) massless coefficient functions were first computed in Refs. [46,245–247].

For the implementation in the FastKernel framework the fastMellin space parametriza-

tions of the exact coefficient functions as given in Refs. [248,249] has been used.

The gluon radiation terms, namely contributions with heavyquarks in the final state

but where the struck quark is light, have to be treated with care. As discussed in Ref. [36],

the gluon radiation contribution (which first appears atO (α2
s)) is part of the light quark

structure functions. It has been checked (see Fig. C.1) that the size of these terms is very

small both for theF2 andFL structure functions, typically below 1%.

Now the implementation and benchmarking of these results inthe FastKernel frame-

work are discussed. Benchmarking has been performed by comparing the FastKernel re-

sults with the FONLLdis code [36], anx-space code that implements all FONLL schemes.

In Table C.1 are shown the results of the benchmark comparisonfor theF2c(x,Q
2) and

FLc(x,Q
2) structure functions in the massive fixed flavor number schemeat O (α2

s) for

the FONLLdis code and for the FastKernel code. Results are provided at the reference

205



 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-05  0.0001  0.001  0.01  0.1

P
er

ce
nt

ag
e 

D
iff

er
en

ce

x

Impact of gluon radiation in F2light FONLL-C

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-05  0.0001  0.001  0.01

P
er

ce
nt

ag
e 

D
iff

er
en

ce

x

Impact of gluon radiation in FLlight FONLL-C

Figure C.1:Percentage difference between the NNLO light quark structure functions F2 (left)
andFL (right) with and without gluon radiation contributions. From bottom to top the points
correspond to scales ofQ2=4, 10 and 100 GeV2 respectively.

points in the(x,Q2) plane and with the settings of the Les Houches heavy quark bench-

marks [38]. The accuracy is given as the percentage difference between the FastKernel

and FONLLdis calculations. The accuracy is never worse than1%, which is amply suffi-

cient for the purposes of the present analysis. The accuracyof Table C.1 is a little worse

than that of itsO (αs) counterpart, shown as Tables 14-15 of Ref. [40]. This may be due

to the fact that the Mellin space parametrizations of the heavy quark coefficient functions

that are used [244] are in turn based on a parametrization of the exactx-space coefficient

functions, while FONLLdis uses the original exact coefficient functions of Ref [250]. This

loss of accuracy is negligible for the needs of current phenomenology, but more detailed

studies of this issue may be needed in the future when final combined HERA heavy quark

structure function data become available.

The same comparisons for the FONLL-B and FONLL-C are presented in Tables C.2

and C.3 respectively. Comparable accuracy is achieved for these two GM-VFN schemes,

again sufficient for the purposes of the present analysis.



F2c FFNS FLc FFNS
x FONLLdis FastKernel Accuracy (%) FONLLdis FastKernel Accuracy (%)

Q2 = 4 GeV2

10−5 0.24591 0.24244 1.43 0.02215 0.02184 1.41
10−4 0.13658 0.13481 1.31 0.01306 0.01283 1.75
10−3 0.06384 0.06308 1.20 0.00662 0.00653 1.41
10−2 0.02025 0.02007 0.92 0.00238 0.00237 0.38

Q2 = 10 GeV2

10−5 0.53701 0.53904 0.38 0.08031 0.08105 0.91
10−4 0.29558 0.29550 0.03 0.04611 0.04579 0.71
10−3 0.13909 0.13852 0.24 0.02273 0.02254 0.86
10−2 0.04689 0.04664 0.10 0.00832 0.00826 0.70

Q2 = 100 GeV2

10−5 1.99594 2.00744 0.57 0.44200 0.43976 0.51
10−4 1.00912 1.01479 0.56 0.22148 0.21880 1.22
10−3 0.43527 0.43410 0.27 0.09487 0.09380 1.14
10−2 0.13574 0.13492 0.61 0.03019 0.03002 0.57

Table C.1:Benchmark comparisons for theF2c(x,Q
2) andFLc(x,Q

2) structure functions in the
FFN scheme at O(α2

s) obtained using the FONLLdis code [36] and the FastKernel code. Results
are provided at the benchmark kinematic points inx,Q2 and with the settings of the Les Houches
heavy quark benchmarks [38]. The accuracy is given as the percentage difference between the
FastKernel and FONLLdis [36] calculations.

F2c FONLL-B FLc FONLL-B
x FONLLdis FastKernel Accuracy (%) FONLLdis FastKernel Accuracy (%)

Q2 = 4 GeV2

10−5 0.24787 0.24858 0.29 0.02519 0.02524 0.21
10−4 0.13556 0.13598 0.31 0.01435 0.01435 0.01
10−3 0.06360 0.06350 0.15 0.00718 0.00715 0.34
10−2 0.02062 0.02051 0.52 0.00258 0.00258 0.08

Q2 = 10 GeV2

10−5 0.55100 0.55088 0.02 0.09637 0.09679 0.43
10−4 0.30114 0.30150 0.14 0.05229 0.05222 0.14
10−3 0.14371 0.14375 0.02 0.02507 0.02499 0.32
10−2 0.05012 0.05015 0.01 0.00908 0.00907 0.06

Q2 = 100 GeV2

10−5 2.10034 2.08834 0.57 0.48769 0.48716 0.11
10−4 1.04510 1.05096 0.56 0.23569 0.23418 0.65
10−3 0.45879 0.45916 0.08 0.09923 0.09888 0.35
10−2 0.15039 0.15030 0.06 0.03170 0.03174 0.15

Table C.2:Same as Table C.1 for the FONLL-B GM-VFN scheme.



F2c FONLL-C FLc FONLL-C
x FONLLdis FastKernel Accuracy (%) FONLLdis FastKernel Accuracy (%)

Q2 = 4 GeV2

10−5 0.27830 0.28163 1.18 0.02468 0.02500 1.30
10−4 0.14709 0.14858 1.00 0.01423 0.01441 1.23
10−3 0.06556 0.06591 0.52 0.00733 0.00735 0.24
10−2 0.02034 0.02034 0.00 0.00281 0.00283 0.74

Q2 = 10 GeV2

10−5 0.69412 0.69873 0.66 0.09909 0.10062 1.52
10−4 0.34662 0.34911 0.88 0.05520 0.05550 0.52
10−3 0.15025 0.15114 0.32 0.02682 0.02699 0.63
10−2 0.04986 0.05022 0.13 0.01002 0.01008 0.58

Q2 = 100 GeV2

10−5 2.36920 2.37887 0.41 0.47822 0.47994 0.36
10−4 1.12695 1.13870 1.03 0.23916 0.23914 0.01
10−3 0.47058 0.47317 0.55 0.10262 0.10293 0.30
10−2 0.15175 0.15236 0.40 0.03312 0.03327 0.47

Table C.3:Same as Table C.1 for the FONLL-C GM-VFN scheme.



Appendix D

Distribuciones Partónicas para

Fenomenología de Precisión del GCH

Los desarrollos de la física de colisionadores de los últimos cincuenta años han permi-

tido alcanzar resultados fundamentales a nivel experimental y consecuentemente a nivel

teórico. El descubrimiento de nuevas partículas, los quarks y los gluones, fue una sólida

confirmación de la teoría de la cromodinámica cuántica (QCD),se enmarca en el modelo

estándar de las partículas elementales. Los parámetros de este modelo han sido medi-

dos con elevada precisión, confirmando las teorías y confiriendoles gran poder predictivo.

Toda la física de los colisionadores de hadrones, en particular la del Gran Colisionador de

Hadrones (GCH), activo al CERN de Ginebra, se apoya en la cromodinámica cuántica y

en general en el modelo estándar.

Cromodinámica Cuántica Perturbativa

La cromodinámica cuántica describe la física de los hadrones basandose en la dinámica

y en las interacciones fundamentales de quarks y gluones. Alser la QCD una teoría

no-Abeliana, los gluones (bosones responsables de la interacción entre quarks) pueden

interactuar entre ellos, al contrario de lo que ocurre para los fotones en el caso de la

electrodinámica cuántica (QED). Esta característica de auto-interacción de los gluones

provoca un comportamiento de la constante de acoplamientoαS de la teoría diferente re-

specto a la análoga constante de acoplamiento de la electrodinámicaαQED. En el caso de

la QCD a bajas energías el valor deαS no permite el uso de la teoría perturbativa, siendo

la interacción fuerte. Esta propiedad se traduce enconfinamiento: los quarks no pueden

ser aislados. Fueron D.J. Gross, F. Wilczek, y H.D. Politzerquienes demonstraron lalib-

ertad asintóticade la QCD, mereciendo el Nobel en el año 2004. Al subir en la escala

de energía la constanteαS se vuelve más pequeña, permitiendo así la aproximación per-
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turbativa. Gracias a la libertad asintótica y a las propiedades delteorema de factorización

la QCD perturbativa se vuelve una teoría de precisión. Los estados iniciales y finales de

cualquier proceso que involucre hadrones están constituidos por quarks y gluones fuera

del régimen perturbativo. En el cálculo de los observables una parte no-perturbativa puede

factorizarse de la parte puramente perturbativa, la cual puede ser calculada con la teoría.

Considérese en el caso de un proceso dedeep inelastic scattering(DIS) el ejemplo de

la función de estructuraF2 medida en un punto cinemático(x,Q2) dado. Es posible

escribir este observable como la convolución de una distribución partónicafi (parte no-

perturbativa) con la parte calculable perturbativamente (observable partónicâF2). Gracias

a las ecuaciones de evolución DGLAP es posible calcular perturbativamente la dependen-

cia de las distribuciones partónicas con la escala de factorización. En el marco de la

teoría perturbativa los efectos debidos a las masas de los quarks pesados son tenidos en

cuenta gracias al uso del esquema FONLL. Los términos masivos son incluidos al or-

denαS (FONLL-A) o α2
S (FONLL-C) para determinar respectivamente las distribuciones

NNPDF2.1 NLO y NNPDF2.1 NNLO.

Determinación de Distribuciones Partónicas

Las distribuciones partónicas (PDFs) son extraidas a partir de datos de diferentes experi-

mentos. Determinar una densidad de probabilidad en el espacio de las funciones a partir

de un número finito de puntos experimentales es un problema dedificil solución y además

la forma funcional de las distribuciones no es conocida.

Varios grupos se dedican a la determinación de las PDFs. La mayoría de ellos fija una

forma funcional (generalmente una polinomial) y reduce asíel problema a la determi-

nación de un conjunto finito de parámetros. Los errores experimentales son transferidos

a las PDFs utilizando el método del Hessiano. De este modo, esintroducida fácilmente

una desviación sistemática en la determinación de los resultados debida a la rigidez de la

parametrización escogida y una sub-estimación de los errores, parcialmente corregida a

traves del uso de tolerancias más grandes que uno.

La colaboración NNPDF utiliza una parametrización de redesneuronales cuyo entre-

namiento es efectuado utilizando algoritmos genéticos. Deesta manera, la desviación

debida a la parametrización es minimizada. También se utiliza el método Monte Carlo

para generarNrep réplicas de los datos experimentales y poder así determinarNrep con-

juntos de PDFs en lugar de uno solo. De esta forma, es posible determinar bandas de

error para las PDFs que mantienen una interpretación estadística rigurosa. El uso de re-

des neuronales permite una parametrización muy flexible y redundante. A consecuencia

de esto es necesario parar el entrenamiento antes de alcanzar el mínimoχ2 posible que

correspondería a un régimen de sobre-entrenamiento. Para no caer en esta situación un



método decross-validationes utilizado para determinar el mejor ajuste.

Resultados

En este trabajo, realizado en el ámbito de la colaboración NNPDF, los conjuntos de dis-

tribuciones partónicas determinados incluyen los efectosde masa debidos a los quarks

pesados. Se han determinado tres conjuntos: NNPDF2.1 LO, NLO y NNLO. En el caso

NLO, las PDFs se han comparado con el conjunto NNPDF2.0, el cual no incluye efectos

de masa, y también con distribuciones de otros grupos como CT10 y MSTW08, que los

incluyen usando métodos diferentes del FONLL. Las distribuciones LO se han comparado

tanto con las NLO como con las distribuciones de las colaboraciones MSTW y CTEQ,

mientras que las distribuciones NNLO se han comparado con las MSTW08 NNLO y

ABKM09 NNLO (además de compararlas con NNPDF2.1 NLO). Se ha verificado que

en general las distribuciones de la colaboración NNPDF son consistentes dentro de una

sigma (solo en el caso LO esto no es verdad, debido a la importancia de la incertidumbre

teórica en este caso). En comparación con los resultados de los demás grupos se han ob-

servado diferencias de alguna forma significativas en ciertos casos específicos, sobretodo

en el caso NNLO. Comparando los tres conjuntos LO, NLO y NNLO esposible estu-

diar la estabilidad estadística, siendo los tres determinados según la misma metodología y

usando los mismos datos. Se observa una excelente convergencia de la expansión pertur-

bativa en la región cinemática de los datos. De la comparación de un orden perturbativo

con el siguiente es posible dar una estimación de la incertidumbre teórica que afecta al

orden más bajo. En el caso de la determinación a LO, se ve claramente que el error exper-

imental solo es una fracción del error teórico (que no está aquí incluido). En cambio, para

el conjunto NLO (y plausiblemente NNLO) la incertidumbre teórica resulta despreciable

en comparación a la experimental.

Han sido también producidos varios conjuntos de PDFs con diferentes valores tanto de

αS como demc ymb. De esta forma, es posible determinar las incertidumbres combinadas

para las PDFs y para el parámetro que varía.

Se han calculado las predicciones para un conjunto de observables del GCH (pro-

ducción de bosones vectores, top quarks y bosones de Higgs) usando las distribuciones

partónicas NNPDF2.1 NLO y NNLO. Estas predicciones han sidocomparadas entre ellas

y también con predicciones obtenidas usando las PDFs de otros grupos. Ha sido posible

comparar también estos resultados con los primeros datos delas colaboraciones ATLAS

y CMS. Al incluir los efectos debidos a las masas de los quarks pesados se observa una

modificación bastante pequeña en estas observables. En cambio, la diferencia es substan-

cial si se consideran observables que sondean directamentelas distribuciones partónicas

de los quarks pesados.



La metodología usada por la colaboración NNPDF ha sido aprovechada también para

la determinación de la constante de acoplamiento fuerteαS(MZ). Esto es posible gracias a

que las predicciones teóricas para el conjunto global de datos dependen simultaneamente

tanto de las PDFs como deαS. El valor así determinado ha sidoαS(MZ) = 0.1191 ±
0.0006exp. En la determinación de este parámetro la incertidumbre teórica es dominante y

significativa, y no está incluida en el error aquí determinado que en cambio solo representa

la incertidumbre estadística.
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