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Resumen

El objetivo principal de esta tesis fue la implementación dentro del

código SIESTA de dos métodos de primeros principios para el es-

tudio de excitaciones electrónicas en moléculas y sólidos extendidos.

Los métodos son la aproximación GW y el ’constrained’ DFT. Los

métodos fueron implementados usando bases de orbitales extricta-

mente localizados generadas por SIESTA. El uso de este tipo de or-

bitales abre la posibilidad de estudiar sistemas que contienen miles de

átomos.

La aproximación GW es un método derivado de la teoŕıa de pertur-

baciones de muchos cuerpos para la funcin de Green de una part́ıcula,

que se usa para el cálculo de las enerǵıas de excitación de quasi-

part́ıculas. En este trabajo, se implementó el método propuesto por F.

Giustino et al. [3], que solo requiere el uso de los estados electrónicos

ocupados para calcular los ingredientes de esta aproximación: la función

de Green y el potencial de Coulomb apantallado.

En método de ’constrained’ DFT se impone una ligadura sobre la den-

sidad electrnica del sistema a través de un potencial apropiado. En

esta tesis se implementó una versión modificada de la aproximación

propuesta por Q. Wu and T. Van Voorhis [4] para encontrar el poten-

cial de ’constraining’ de manera eficiente. El método se extendió para

el caso de sistemas periódicos. Como una aplicación del método, se

estudiaron procesos de transferencia de carga en el conductor oránico

TTF-TCNQ.

Una aplicación interesante de los métodos implementados es el estu-

dio de los procesos electrónicos que tienen lugar en las celdas solares

y dispositivos fotovoltaicos. El material ms ampliamente usado en

la fabriacin de estos dispositivos es el TiO2 en fase anatase dopada

con impurezas de nitrógeno o sensibilizada con colorantes orgánicos.

Como un paso previo al estudio de las excitaciones electrnicas de este

material, se caracterizaron sus propiedades electrónicas, estructurales,



termodinámicas y vibracionales usando la teoŕıa DFT. Además, se es-

tudiaroon las enerǵıas ’binding’ de los niveles de core de las diferentes

especies qúımicas.



Abstract

The main aim of this thesis is the implementation in the SIESTA code

(a widely used academic computational program based on the density

functional theory DFT for the simulation of materials) [1, 2] of two

powerful methods for the study of electronic excitations in molecules

and extended solids. The methods are the so-called constrained den-

sity functional theory (CDFT) and the GW approximation and they

are implemented within the strictly localized orbital formalism as de-

fined in SIESTA. The use of local bases opens the possibility of calcu-

lating electronic excitations in systems containing thousands of atoms.

The GW approximation is a powerful method derived from many-

body perturbation theory for the one-particle Green function to cal-

culate quasiparticle excitation energies. We implement the approach

proposed by F. Giustino et al. [3] that only requires the use of the oc-

cupied electronic states to compute the Green function and screened

Coulomb interaction, and from which one constructs the self-energy

operator, Σ. In this approach, the Green function is approximated to

that of a non-interacting electron system and calculated using a in-

homogeneous linear system, while the dynamically screened potential

is calculated through the self-consistent linear-response Sternheimer

equation. Since the original equations were stated within the plane

waves formalism, here we rewrite these equations for basis sets of

strictly localized orbitals. As an application of our approach for the

dynamically screened potential, we calculate the dielectric function

of several insulating and semiconducting materials: LiCl, diamond,

silicon and germanium, comparing our results with plane-waves cal-

culations.



In the constrained density functional theory, we impose a constraint

upon the electronic density of a system through an appropriate poten-

tial (called constraining potential) to obtain a neutral excitation. We

implement a modified version of the approach proposed by Q. Wu and

T. Van Voorhis [4, 5, 6] to find the constraining potential efficiently.

Moreover, we extend the method for the case of periodic solids. As

an application of our CDFT method, we study the charge transfer be-

tween the TTF and TCNQ molecules in the TTF-TCNQ conducting

organic salt, where it has been suggested from XPS experiments that

the charge transfer process is dynamic, leading to the coexistence of

TTF0-TCNQ0 and TTF1+-TCNQ1− charge states [7, 8].

An interesting potential application of our implemented methods is

the study of electronic excitations in semiconductor-based solar cells

and photovoltaic devices to the efficient design and fabrication of such

devices [9, 10, 11]. One of the most extensively used materials for the

fabrication of these devices is the anatase TiO2 whether doped with

nitrogen impurities or sensitized with dye molecules. Using the DFT

machinery we characterize this material as the first step before the

calculation of their electronic excitations. We study native defects:

oxygen vacancies and interstitial titanium, and nitrogen impurities at

interstitial or substitutional position in the anatase matrix. The elec-

tronic, structural and thermodynamic properties of all these point

defects with different charge states were calculated. Moreover, we

study the lattice dynamic of defective anatase in order to determine

how defects affect the vibrational modes of pristine anatase and what

are the new features arising from defects. We calculate the binding

energy shifts of the N 1s, O 1s and Ti 3p core levels to contribute to

the full characterization of the defects. Our results of lattice dynamic

and core level binding energy shifts are compared with experimental

data from Raman and XPS spectroscopy, respectively.
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Chapter 1

Introduction

In the last decades, the simulation of electronic excitations using first-principles

computational methods has been one of the most attractive challenges in the

field of condensed matter physics. In particular, optical spectra and photoemis-

sion processes, both in extended solids and in nanoscale systems, are the subject

of widespread interest, due to the need for accurate tools to help understand and

predict the experimental properties. In Quantum Chemistry, there is a plethora

of well developed methods to compute electronic excitations, based on approxi-

mations to the many-body wave function [13]. However, these methods are too

demanding computationally for systems with a large number of atoms, like in

most problems of interest in nanoscience, and they are typically not feasible for

the study of solids. These systems are only accessible to methods with a low com-

putational workload, such as Density Functional Theory (DFT), which is by far

the most widely used method for the simulation of materials and nanoscale sys-

tems. However, in principle DFT theory can only describe the properties related

to the electronic ground state, such as the total energy and charge density, and

the structural properties, such as the lattice parameters of the equilibrium crystal

structure, elastic constants and vibrational modes. Excited electronic states are

not accessible to DFT (except for a limited number of cases, such as first ioniza-

tion potentials and electron affinities [14], and the lowest lying excitations with

different spin symmetry than the ground state [15]). Being a ground state the-

ory, there is no theoretical justification for the use of DFT to calculate excitations

energies. However, although the Kohn-Sham orbitals and their eigenvalues are

1



only a mathematical tool to obtain the total ground-state energy of a system and

do not have any physical meaning, they are often identified with the electronic

excitations and used to construct the band structure and to estimate the band

gap. This procedure typically leads to a serious underestimation of the band gap

when compared with the experimental results, as it is shown in the Fig 1.1. As

an example, the band gap of silicon using the local density approximation (LDA)

is 0.63 eV smaller than the experimental value of 1.1 eV, while for GaAs there is

a difference of 1.1 eV between theory and experiment.

Figure 1.1: Band gaps of semiconductors and insulators from experiment and

theory (LDA) [12].

Describing properly electronic excitations is computationally demanding. The

increased computational resources and the development of new methods in the

last two decades have enabled to do it. One of the earliest methods proposed

to calculate the whole spectrum of excitation energies of a finite system, based

on density functional theory, was the time-depending DFT (TDDFT) [16]. This

method relies on the one-to-one mapping between the time-dependent density

and the external potential. Even using the crude adiabatic local density approx-

imation (ALDA) where the ground-state time-independent exchange correlation

2
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functional is used in place of the time-dependent exchange correlation action,

TDDFT calculations give excitation energies that in general agree well with ex-

periments. In the context of time-independent DFT, we have the constrained-

DFT (CDFT) method where, instead of calculating the whole set of excitations

energies, one aims at the estimation of a particular excitation for which informa-

tion on the electronic distribution is known a priori. The excitation energy (the

difference between the total energy of the excited and ground state) is then ob-

tained from the ground-state energy of the system with the appropriate constraint

on its density. This is done, in practice, by making an appropriate choice of the

external potential which leads to the desired constrained density distribution as

its ground state. Various strategies have been proposed to find the constraint

potential. Brute-force scanning on the potential until finding the value that sat-

isfies the constraint density is one of the strategies to follow, but this technique

is computationally inefficient and difficult in system with many independent con-

straints. Q. Wu and T. Van Voorhis [4, 5] have proposed an efficient method to

study finite systems with a constraint on their density, using the Lagrange multi-

pliers approach. This method has been applied successfully to the study of charge

transfer (CT) processes in organic and organometallic molecules, also including

long-range CT for which ALDA fails because of the local approximation in the

exchange-correlation kernel [17]. In this thesis a modified version of this method

was implemented and extended to periodic systems.

The GW approximation has emerged as one of the most powerful approaches

for describing quasiparticles energies in a great variety of systems, including ex-

tended solids and nanoscaled systems, and is also a suitable starting point for

Bethe-Salpeter calculations of two-particle neutral excitations, with a wide range

of applications, such as the calculation of optical response of nanostructures,

quantum transport in nanoscale junctions, pump-probe spectroscopy, and some

strongly correlated systems. The GW approximation has proven to be successful

in describing and predicting experimental photoemission and optical spectra with

a remarkable accuracy. The band gaps of the majority of semiconductor crystals

for which DFT fails are in good agreement with experimental values. The GW

approximation is derived systematically from many-body perturbation theory.

The method was first introduced by L. Hedin with his work on the electron-gas
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problem in 1965 [18]. He established the fundamentals of the method showing in

a systematic and rigorous way how the self-energy can be expanded in powers of

the dynamically screened Coulomb interaction, with the main ingredient of the

GW approximation being the first term of such a expansion. However, due to

computational limitations, the application of the GW method in real materials

was not possible until 1986, when M. S. Hybertsen and G. Louie published the

application of the GW approximation on semiconductor materials with encour-

aging results [19]. Since then, many efforts have focused to the implementation

of the method with plane waves or local bases, and to enhance its efficiency. On

the other hand, the number of publications on the application of the method

in a great variety a problems has increased considerably. Furthermore, the GW

approximation is a powerful first-principles method as it is reasonably accurate,

parameter-free, consistent across materials, not material-specific and a starting

point for ab-initio optics. The majority of the GW implementations are based on

a perturbative expansion based on Kohn-Sham orbitals, as we will see later. In the

original equations of the method, all unoccupied and occupied electronic states

are required to evaluated the self-energy operator Σ, which is the main ingredient

of this approximation. Σ is constructed from the Green function and the screened

Coulomb interaction. The drawback of using all the electronic states is that the

convergence of quasiparticle excitation energies with the number of unoccupied

states is rather slow. Hence, in the last years many efforts have been addressed

to explore alternative solutions to the use of unoccupied electronic states. In the

present thesis, we show the most recent progresses of the implementation of the

GW approximation in the SIESTA code using an efficient method proposed by F.

Giustino et al. [3], which only requires the use of occupied electronic states. This

work is being done as a part of an intensive collaboration between our group lead

by Prof. P. Ordejón and the group of Prof. F. Giustino at University of Oxford.

Both CDFT and GW approximation are powerful methods for the efficient design

and fabrication of photovoltaic devices and solar cells based on semiconductor ma-

terials, as these methods can be used for the rationalization and understanding

of the electronic processes occurring at nanoscale. The material most exten-

sively used for the fabrication of such devices is the titanium dioxide anatase

(from now we call it anatase for simplicity) due to its interesting chemical and
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physical properties. This materials is also applied in the degradation of organic

molecules because of its interesting photocatalytic properties. The main draw-

back of anatase that limits its efficiency in all the applications previously men-

tioned is its band gap that falls in the ultraviolet region of the electromagnetic

spectrum. To narrow its band gap two approaches has been explored in the last

two decades, 1) doping the material with nonmetallic impurities like nitrogen

and fluorine, and 2) sensitizing its surface with dye molecules. In the former ap-

proach, it has been experimentally found that doping the material with nitrogen

results in a enhancement of the photocatalytic properties of the material under

solar radiation. This effect is attributed to the reduction of the band gap by the

nitrogen impurities, however, the experimental characterization of the nitrogen

impurities is not straightforward. Hence, there is still questions related with the

role that the nitrogen impurities play in the reduction of the band gap. For in-

stance, there is no a consensus among experimentalist concerning the assignment

of the different XPS peaks observed in the N 1s signal of N-doped anatase. One

of the factor that contribute to this situation in that the features observed in the

XPS spectra depend on the preparation method. New features are also observed

in the Raman spectrum of N-doped anatase. Guillaume et al. have observed a

shift of the lowest frequency Raman active phonon mode when nitrogen in im-

planted in the anatase matrix by pulsed laser deposition (PLD), however, there

is not information about the role of the nitrogen impurities or native defects in

this phenomenon. As a preliminary step to the study of electronic excitations

of the N-doped anatase, in this thesis we proceed to characterize the electronic,

structural and dynamical properties and the core level binding energies of the

anatase with nitrogen impurities and native defects using the DFT machinery.

We compare our results with experimental data.

This thesis is organized as follows. In the chapter 2 we give a brief background

on the density functional theory as the final equations of both CDFT and GW

approximation are evaluated using Kohn-Sham orbitals. We also show the main

features of the SIESTA code, focusing on how SIESTA uses localized orbitals.

The chapters 3 and 4 are devoted to present the CDFT and GW approximation

methods, respectively, including their representation within the localized orbital

formalism. In the chapter 5 we present a theoretical study of the N-doped anatase
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using the DFT theory as implemented in the SIESTA code. We compare our re-

sults with experimental data. Finally, the chapter 6 is devoted for conclusions

and final remarks.

General goals

The main aims of this thesis are:

• To implement two ab initio methods for the study of electronic excitations

in molecules and extended solids in the SIESTA code using strictly local-

ized orbitals. These methods are the so-called GW approximation and the

constrained density functional theory.

• To apply these methods to the study of the dielectric properties of insu-

lating and semiconducting materials calculated from the screened Coulomb

potential, and the study of excited electronic states of the TTF-TCNQ

organic semiconductor material using the constrained DFT.

• To study the electronic, structural and thermodynamic properties and core

level binding energy shifts of point defects in TiO2 anatase, and compare

our results with experimental data.
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Chapter 2

Background

2.1 Density Functional Theory (DFT)

The study of the electronic properties of molecules and solids from theory has

been one of the most extensively explored topics in condensed matter since the

birth of the quantum theory. The starting equation for calculating electronic

properties is the time-independent Schrödinger equation, whose simplest form is

given by

ĤΨ = EΨ (2.1)

Here, Ĥ is the Hamiltonian operator for a system of electrons and nuclei, Ψ(ri,RI)

is an eigenstate that depends on both electron and nuclei positions, ri and RI ,

respectively (from now on, lower case indices run over electrons and upper case

indices over ions), and E is the corresponding eigenvalue (energy of the state).

The Hamiltonian operator has the form [20]:

Ĥ = − ~

2me

∑

i

∇2
i−

∑

I

~
2

2MI
∇2
I−

∑

i,I

ZIe
2

|ri − RI |
+
1

2

∑

i6=j

e2

|ri − rj |
+
1

2

∑

I 6=J

ZIZJe
2

|RI − RJ |
(2.2)

where the first term is the kinetic energy operator of the electrons, the second

term is the kinetic energy operator of the nuclei with mass MI and charge ZI ,

and the last three terms describe the Coulomb interactions between electrons and

nuclei, i.e., electron-nucleus, electron-electron and nucleus-nucleus, respectively.
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In what follows, we adopt the Born-Oppenheimer approximation, which estab-

lishes that one can represent each wave function Ψ(r,R) as a product of a nuclear

wave function χ(R) and an electron wave function ψ(r,R) that depends para-

metrically on the nuclear positions. Since the velocity of electrons is larger in

comparison with the nucleus velocity, their motions can be separated and one

can solve Ψ assuming R fixed (which is the adiabatic approximation). Addition-

ally, we make a classical approximation to the ionic dynamics assuming that they

follow Newton’s equations of motion. In that case, one obtains a Schrödinger

equation for the wave functions of the electrons, which reads:

[T̂e + V̂ext + V̂int + EII ]ψ(r,R) = Eψ(r,R). (2.3)

Here, T̂e is the kinetic energy of the electrons. The interaction between electrons

and ions (third term in the r.h.s. of Eq. 2.2) is denoted as V̂ext, since the ions

can now be considered as an external potential for the electrons. Other external

potentials (electric and magnetic fields, etc.), can be added to V̂ext. The electron-

electron interaction (forth term in the r.h.s. of Eq. 2.2 is denoted as V̂int. EII

is the (classical) Coulomb interaction between nuclei, and is a constant for fixed

nuclear positions. Using the Dirac notation, the expression of the total energy E

as the expectation value of the time-independent Hamiltonian operator defined

as Ĥ = T̂e + V̂ext + V̂int + EII is

E =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 = 〈Ĥ〉 = 〈T̂e〉+

∫

drVext(r)n(r) + 〈V̂int〉+ EII (2.4)

where n(r) = |ψ(r,R)|2 is the electronic density.

Solving Eq. 2.3 has been a major problem in condensed matter physics for cal-

culating both ground-state electronic properties and electronic excitations. How-

ever, two critical problems arise when solving this equation for relative large

systems. First, the many-body wave functions depend on a very large number of

spatial variables, 3Ne, which quickly results in a high demand of computational

resources. The second problem is the appropriate description of the electron-

electron Coulomb interaction term. Several methods have been developed using

different approaches to describe the electron-electron interaction and many-body
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wave functions. One of the earliest methods proposed for studying relative small

systems was the Hartree-Fock approximation, where the many-body wave func-

tion is approximated by a Slater determinant [21] made from spin-dependent

single-particle wave functions. In this approach the electron-electron interaction

is described through the Hartree and exchange potentials. The Hartree potential

(the classical Coulomb potential of the charge density) is local, while the exchange

potential is non-local. The minimization of the resulting Schrödinger equation

with respect to the single-particle states, under the orthonormality condition,

yields a set of single-particle equations, which must be solved self-consistently

because the Hartree and exchange potential depend on the contraventions.

All electron-electron interactions beyond the Hartree-Fock approximation are re-

ferred to as correlation. The correlation energy can be obtained by means of

improving systematically the approximation of the many-body wave function be-

yond the single Slater determinant. The Configuration Interaction (CI) method

[22] is the limit of that systematic expansion, in which the many-body wave

function is described as a complete linear combination of Slater determinants.

However, this method scales faster than exponentially with system size, so that

applications to large molecules or solids are not feasible.

Kohn-Sham method

One of the first attempts to introduce the effects of the interaction between elec-

trons in a simpler way to study large systems was made by Slater with his Xα

method [23, 24]. In this method, the exchange potential is modelled by a local

potential of the form Vx = αn1/3 (with n being the electronic density of the sys-

tem) and scaled by a constant α to simulate the correlation effects. Although

the Xα method is semi-empirical, it was the initial seed of the density functional

theory (DFT), a first-principles method derived from the many-body theory for

the charge density that incorporates exchange and correlation effects among the

electrons. The original formulation of the method is due to P. Hohenberg and

W. Kohn [25, 26]. They proved that ground-state energy of an interacting-N-

electron system obeying the Hamiltonian 2.3 is a unique functional of electronic
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density n and that the external potential Vext of the system is uniquely deter-

mined by the ground state density. They showed that the ground-state energy

can be obtained by minimizing the energy functional with respect to the elec-

tronic density. Therefore, to obtain the ground-state energy it is not necessary

to know the many-body wave function: the knowledge of the electron density

is sufficient. This is an enormous advantage, since the density is a much less

complicated object than the wave function (it depends only on three variables,

instead of 3Ne).

In 1965 Kohn and Sham [20, 27] proposed an approach to obtain the ground-

state total energy of the interacting many-body system obeying the Hamiltonian

2.3 within the DFT, that consists in using a fictitious system of non-interacting

particles (more easily to solve) with the same ground state density than the in-

teracting many-body system. This leads to independent-particle equations for

the non-interacting system that can be considered exactly soluble with all the

difficult many-body terms incorporated into an exchange-correlation functional

of the density, whose exact form is unknown. By solving the equations one finds

the ground state density and energy of the original interacting system with the

accuracy limited only by the approximations in the exchange-correlation func-

tional.

The Kohn-Sham energy functional is defined as

EKS = Ts[n] +

∫

drVext(r)n(r) + EHartree[n] + EII + Exc[n] (2.5)

where n is the electronic density of the system, Ts the independent-particle ki-

netic energy, Vext the external potential, EHartree the Hartree electron-electron

interaction energy, EII the nucleus-nucleus interaction energy, and Exc denoting

all effects beyond independent-particle kinetic energy and Hartree approximation.

Thus, Exc is defined as

Exc[n] = 〈T̂e〉 − Ts[n] + 〈V̂int〉 −EHartree[n] (2.6)
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The electronic density of an non-interacting system is given by the sum of squares

of the single-electron wave functions for each spin σ,

n(r) =
∑

σ

Nσ

∑

i=1

|ψσi (r)|2 (2.7)

The solution for the ground state energy of the auxiliary system is obtained by

minimizing Eq. 2.6 with respect to the single-electron wave functions (subject

to the orthonormality condition) as they are the basic ingredient of electronic

density, leading to the Kohn-Sham Schrödinger-like equations:

Hσ
KSψ

σ
i (r) = εσi ψ

σ
i (r) (2.8)

where εi are the eigenvalues, and HKS is the effective Hamiltonian (in atomic

units)

Hσ
KS(r) = −1

2
∇2 + V σ

KS(r) (2.9)

with

V σ
KS(r) = Vext(r) + VHartree[n(r)] + V σ

xc[n(r)] (2.10)

with VHartree and Vxc being the Hartree potential and the exchange-correlation

potential, respectively. V σ
KS is the effective potential that describes the indepen-

dent particle system with the same electron density as the real interacting-particle

system. The Kohn-Sham equations must be solved self-consistently with the re-

sulting electronic density, Eq. 2.7, leading to the Kohn-Sham total energy EKS,

Eq. 2.6. Since no approximation is used in the derivation of the Kohn-Sham

equations, one could access to the exact ground state density and total energy for

the interacting system if the exact functional Exc[n] was known. Unfortunately,

we have to approximate the Exc[n] functional, being a critical ingredient in the

Kohn-Sham theory.

Exchange-correlation potential Vxc

The most common approximations for the exchange-correlation functional are the

local density approximation (LDA) and the generalized gradient approximations
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(GGAs) [28]. In the former one, the exchange-correlation energy depends solely

on the value of electronic density at each point in space and is given by

ELDA
xc [n] =

∫

n(r)ǫxc(n(r))dr (2.11)

where ǫxc(n) is the exchange-correlation energy per particle of a uniform electron

gas of density n. Although one could think that this functional is only accurate

for systems with a nearly uniform electronic density, it has proved to be successful

in describing systems with large variations in the electronic density. In the GGAs,

the exchange-correlation functional includes the gradient of the density as well as

the value of the density at each point. A simple representation of this functional

is

EGGA
xc [n] =

∫

n(r)ǫxc(n(r),∇n(r))dr (2.12)

Among the most common GGA parametrizations we find PW91 (proposed by

Perdew, Burke and Wang [28]) and PBE (proposed by Perdew, Burke and Enz-

erhof [29]).

Basis

Usually the Kohn-Sham single-particle wave functions ψi are expanded as a com-

bination of basis functions φµ

ψi(r) =
∑

µ

ciµφµ(r) (2.13)

where the basis functions can be defined in many ways, with plane waves and

atomic-like orbitals (including functions such as Slater-type orbitals, Gaussian,

Bessels or strictly localized atomic orbitals) as the most common choices. Conse-

quently, the problem of solving the Schrödinger equation for the wave functions

becomes a tractable problem of solving linear equations for the coefficients c. By

projecting the basis function φµ on both sides of Eq. 2.8 we obtain the linear
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equation system in matrix representation

[H− εS]c = 0 (2.14)

where the elements of the Kohn-Sham Hamiltonian H and overlap S are defined

as

Hµν = 〈φµ|H|φν〉 (2.15)

Sµν = 〈φµ|φν〉 (2.16)

and c is the coefficient vector. The electronic density in the local basis is given

by

n(r) =
∑

µν

ρµνφµ(r)φ
∗
ν(r) (2.17)

with ρµν =
∑occ

i ciµc
∗
iν . By solving the determinant of Eq. 2.14 we get the

eigenvalues ε that are then used to obtain the coefficients of the wave functions.

Since SIESTA uses strictly localized numerical atomic orbitals as basis set, in

the next section we focus on describing the main features of this kind of orbitals

and on how SIESTA generates them. Then, we discuss the concept and use of

pseudopotentials (also used by SIESTA) because it allows to get rid of the core

electrons as they are essentially inert.

2.2 Local basis sets

In SIESTA, the expansion of the KS wave functions with a basis set is performed

as a linear combination of atomic orbitals (LCAO) [1]. The use of local bases

allows some of the operations involved in DFT calculations to scale linearly with

the number of atoms in the system because the Hamiltonian, overlap and density

matrices have a sparse form due to the locality of the orbitals. It allows to use

efficient computational techniques to store and process the matrices in such a way

that the zero matrix elements are not required explicitly, reducing considerably

the memory and CPU requirements. This is the main advantage of the local

orbitals against plane waves. However, using strictly localized orbitals has a cost.

The optimization of the local basis is not systematic as in the case of plane waves.

13



In spite of this, an efficient optimization of the local basis can yield results that

have the plane waves accuracy.

For efficiency, the most important aspects to consider are the number of basis

orbitals per atom, the range of localization of such orbitals and their shape [1,

30, 31]. The strictly localized numerical atomic orbitals used by SIESTA are

constructed as products of a numerical radial function, that is strictly zero beyond

a certain radius (cutoff radius), and a spherical harmonic

φIlmn(r) = φIln(rI)Ylm(r̂I) (2.18)

with rI = r − RI . Here RI stands for the position of the atom I. l and m

indicate the angular quantum numbers, which may be arbitrarily large, and de-

termine the type of orbital, whether s, px, py, pz... The index n denotes the

principal quantum number. Additionally, one can construct several orbitals with

the same angular momentum but with different radial functions. The possibility

of describing the local orbitals with a variety of both angular and radial functions

makes them very versatile.

Thus, one can construct bases with different sizes depending on the number of

radial functions used for each angular momentum of the valence orbitals of the

atoms in the system. The minimal basis, which is called single-ζ , contains one

radial function for each angular momentum. Subsequent bases are constructed

using two or more radial functions with the same angular momentum and called

multiple-ζ bases, namely double-ζ , triple-ζ and so on. These radial functions

are constructed with the split-norm procedure [32]. Such procedure consists of

supplementing each basis orbital, for instance each single-ζ of the minimal basis,

φ1ζ
l (r), with a new basis function φ2ζ

l (r) that reproduces exactly the tail of the

original basis orbital from a given matching radius rm outwards. The inner part

goes smoothly towards the origin as rl(al − blr
2), where a and b are chosen to

ensure continuity of the function and its derivative at rm. The radius rm is set by

fixing the norm of the original orbital, being usually of 0.15. The second-ζ is then

defined as φ1ζ
l − φ2ζ

l . The next radial functions are constructed in the same way.

This split-norm construction guarantees that the additional ζ ’s exhibit a smaller

cutoff radius with reference to original radius, keeping the energy strictly varia-
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tional. Also, one can include polarization orbitals that are the perturbed atomic

orbitals of the isolated-atom Hamiltonian for the orbital with angular momentum

l (so that l + 1 is not a valence orbital) when this Hamiltonian is in presence of

a small electric field. In such case, we name it as polarized multiple-ζ basis.

To build a minimal basis set, SIESTA calculates the radial function for each

angular momentum φl by numerically solving the Kohn-Sham Hamiltonian (in-

cluding the pseudopotential Vl(r)) of a isolated pseudo-atom within a spherical

box confined by a potential V (r). In SIESTA, two kind of potential V (r) can be

used. One of them has the following form

V (r) = Vo
e
−

rc−ri

r−ri

rc − r
(2.19)

where the parameters Vo, rc and ri are the amplitude of the confining potential,

the cutoff radius and the width of the cutting function, respectively. The pa-

rameters of the confining potential must be specified for any calculation. Such

potential, which was proposed by Junquera et al. [31], guarantees a continuous

derivative of the radial function at the cutoff radius. Using this potential, the KS

Hamiltonian of the isolated atom looks like

(− 1

2r

d2

dr2
r +

l(l + 1)

2r2
+ Vl(r) + V (r))φl(r) = εlφl(r) (2.20)

and it is solved to obtain the radial wave function φl and eigenvalues εl of the

isolated pseudo-atom. The other potential V (r) is the hard-confinement potential

proposed by Sankey et al. [33], V (r) = 0 for r < rc and ∞ for r > rc. If this

potential is used, SIESTA defines εl as εl + δεl and we have to specify the value

of δεl for any calculation. Then, the Eq. 2.20 is solved to obtain the radial wave

function φl and its cutoff radius. Using this potential we control the cutoff radius

for each of the orbitals of each species in a consistent manner by specifying a

single parameter, the so-called ”energy-shift” δεl [1]. The use of this confinement

potential is particularly useful when we study convergence of electronic properties

with basis orbitals because we reduce the number of parameters.

15



2.3 Pseudopotentials

The basic idea behind pseudopotentials is describing the strong Coulomb poten-

tial of the nucleus along with the screening effects of the core electrons as an

effective ionic potential acting on the valence electrons. This procedure is valid

since core states are associated to deep energy levels, so that they are chemical

inert. The use of pseudopotentials reduces the cost of a DFT calculation because

basis functions are not required to describe core states, and because the valence

pseudo-wave functions are much smoother than the true wave functions (since

they do not need to be orthogonal to the core wave functions, thus eliminating

the rapidly varying node structure near the core). Appropriate first-principle

pseudopotentials are generated form an all-electron calculation, usually with a

semilocal or nonlocal form. In both cases, one computes a pseudopotential for

each angular momentum l of the valence electrons. A semilocal pseudopotential

is the sum over angular momenta l of products between a radial component Vl(r)

(which is local, but angular-momentum dependent) and an angular (nonlocal)

component P̂l (which is just the projector on the angular momentum l),

V̂ PS
semilocal =

∑

l

V l
psP̂l, (2.21)

whereas a nonlocal pseudopotential is the sum of a radial component, which

is local and behaves as Zv/r for r → ∞, and angular components, which are

nonlocal and different for each lm,

V̂ PS
nonlocal = Vlocal(r) +

∑

lm

Dl|βlm〉〈βlm| = Vlocal(r) +
∑

lm

V̂ KB
lm (2.22)

In this case, |βlm〉〈βlm| are the so-called Kleinman-Bylander projectors. The basic

principles in the construction of pseudopotentials are well established. However,

with the objective of producing pseudopotentials with improved transferability

and computational efficiency, several schemes have been proposed in the past. In

this sense, norm-conserving pseudopotentials developed by Hamann et al. [34]

satisfy normalization condition and are suitable for transferability, which allow ac-

curate self-consistency calculations. This kind of pseudopotentials is constructed
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satisfying the following conditions:

• Real and pseudo valence eigenvalues are equal for a chosen reference atomic

configuration.

• Real and pseudo atomic wave functions agree beyond a chosen core radius

rc.

• The integrals from 0 to r of the real and pseudo charge densities agree for

r > rc for each valence state (norm conservation).

• The logarithmic derivatives of the real and pseudo wave function and their

first energy derivatives agree for r > rc.

SIESTA uses norm-conserving pseudopotentials, generated by the atomic pro-

gram ATOM in a semilocal form. Although several types of pseudopotentials can

be used, the prescription proposed by Troullier and Martins [35] is typically used

to optimize smoothness. Then, SIESTA transforms this semilocal form into a

fully nonlocal form proposed by Kleinman-Bylander [36]. Thus, the Kohn-Sham

Hamiltonian transforms into,

Hσ
KS(r) = −1

2
∇2 + Vlocal(r) +

∑

lm

V̂ KB
lm + VHartree[n(r)] + V σ

xc[n(r)] (2.23)

2.4 SIESTA Tools

2.4.1 Lattice dynamics

The phonon modes are calculated using the force constant matrix obtained with

the finite differences method [1, 20]. Using the force constant matrix, a secular

equation is solved to get the normal mode frequencies ω and eigenvectors v.

Formally, the elements of the force constant matrix are the variation in the force

on the atom I caused by an infinitesimal displacements of the atom J

CIJ = − dFI
dRJ

=
d2E

dRIdRJ
(2.24)
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where the force in the atom I is defined as

FI = − dE

dRI
(2.25)

with E being the total energy around the equilibrium configuration of the atomic

positions. The forces on the atoms for a given configuration can be obtained

through the well-known Hellmann-Feynman theorem, which establishes that the

force on a nucleus depends upon the electronic density n(r) as

FI = − ∂E

∂RI

= −
∫

d3rn(r)
∂Vext(r)

∂RI

− ∂EII
∂RI

(2.26)

where Vext and EII are the external potential and interaction between nuclei,

respectively.

In SIESTA, the forces are calculated by direct differentiation of the expression

for the Kohn-Sham total energy with respect to atomic positions, including the

Pulay corrections [37, 38]. Once the forces are obtained, the elements of the

force constant matrix are calculated by performing the numerical derivative of

Eq. (2.24),

CI,α;Jβ ≈ −∆FI,α
∆RJ,β

(2.27)

where α and β stand to indicate the cartesian components of the force and dis-

placement. In general, this direct approach for the force constant matrix allows

quantitative calculations without requiring additional computational algorithms.

The phonon frequencies are determined by solving the secular equation

det| 1√
MIMJ

CI,α;J,β − ω2| = 0 (2.28)

which is derived within the harmonic approximation. In this equation MI is the

mass of the atoms and ω is the vibrational frequency.

In polar materials, such as anatase, the force constant matrix needs a special

treatment due to the long range dipole-dipole interactions between the ionic ef-

fective charges, which yields a LO-TO splitting of the IR active modes. The

polarization caused by the effective charges leads to non-analytic terms in the
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force constant matrix, which has the form

Cs,α;s′,α′(k) = CN
s,α;s′,α′(k) +

4πe2

Ω

[

∑

γ

ˆkγZ∗
I,γα

]t
1

ǫ(k)

[

∑

γ

k̂γZ
∗
I,γβ

]

(2.29)

where CN is the normal analytic part of C and ǫ(k) is the low-frequency electronic

dielectric constant. Z∗
I,αβ is a component of the Born effective charge tensor, which

can be calculated using the finite difference method as in the case of the force

constant matrix:

Z∗
I,αβ|e| =

∆Pα

∆RI,β
(2.30)

where ∆Pα is the variation in the macroscopic polarization along the α direction

due to a displacement ∆RI,β of the atom I in the direction β. In SIESTA the

macroscopic polarization for periodic systems is calculated using the geometric

Berry phase approach.

2.4.2 Core level binding energy (CLBE)

The x-ray photoemission spectroscopy is a experimental technique used for the

characterization of the chemical species of materials. It measures core level bind-

ing energies (CLBE) of the different atoms in the sample. In this technique the

specimen under study is irradiated with a monochromatic beam of X-rays with

energy hν. Due to the high energy of the incident radiation, it can eject electrons

of core levels of the atoms in the specimen, ionizing them. A portion of the pho-

toemitted electrons is collected by a detector where their kinetic energy Ekin is

measured. Considering that energy is conserved in the whole process, the total

energy of the system before and after electron photoemission is written as

Eground(A) + hν = Eionized(A
+) + Ekin + eφdetector (2.31)

where Eground(A) is the total energy of the sample before an electron is photoemit-

ted, Eionized(A
+) is the total energy of the system with the atom A ionized, and

eφdetector is the potential energy of the electron at the detector (with φdetector be-

ing the work function of the detector, i.e., the potential difference between the
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Fermi level and the vacuum potential at the detector). Thus, CLBE is defined as

the difference between the ionized and ground state energy.

BE = Eionized(A
+)−Eground(A) (2.32)

Substituting this equation into Eq. (2.31), we can see that BE of core electrons

is accessible through measured quantities.

BE = hν −Ekin − eφdetector (2.33)

hν is a known initial parameter as well as eφdetector once the equipment is cali-

brated. The kinetic energy of the photoemitted electrons is measured by a de-

tector. Since the binding energies are strongly determined by the environment

around the atoms: bonds, spatial configuration and neighbouring atoms, the XPS

spectra are used as ”fingerprints” for local bond configuration of atoms in the ma-

terial.

To contribute to the understanding and description of experimental XPS spectra

of N-doped anatase, we calculate binding energies of the O 1s, N 1s and Ti 2p core

levels from first principles using two approximations: the so-called initial state

and the ∆SCF approximation, as implemented in the SIESTA code by S. Garćıa

et al. [39]. However, we can not obtain absolute binding energies directly, since

both initial and ∆SCF approximation use pseudopotentials. Hence, in both ap-

proximations we calculate the binding energies of a given core level for two atoms

of the same specie with different environments. If we consider the binding energy

of one of the atoms as the reference (BEref ), then the CLBE shift for the atom

of our interest (having a binding energy BEA) with respect to the reference will

be

∆(BE) = BE − BEref (2.34)

In the following lines we describe briefly the main theoretical basis behind these

approximations.
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Initial state approximation

In this approximation any relaxation effect on the valence states of the system

caused by the core hole created after electron emission, is neglected. Thus, the

binding energy will be the energy required to remove the core electron, which is

bound by the potential of the system in the core region. This energy is just minus

the energy of the core level, −εml , which is estimated using first-order of pertur-

bation theory from the all-electron core level wave functions ψlmn obtained from

an all-electron calculation and the potential V (r) obtained in a pseudopotential

calculation of the system (neglecting spin-orbit interactions), as

εml = 〈ψm,AEl (r)|V (r)|ψm,AEl (r)〉 (2.35)

Although the total potential from pseudopotentials does not have the atomic

component 1/r near the nuclei of the true all-electron potential, this deficiency

does not affect the final result as this contribution is very local and cancels out

when differences in energy between the system under study and the reference

system.

Thus, the shift within the initial approximation is given by

∆(BE)init = −
(

〈ψAE,ml (r)|V (r)|ψAE,ml (r)〉 − 〈ψAE,ml (r)|Vref(r)|ψAE,ml (r)〉
)

(2.36)

We can simply write,

∆(BE)init = −(ε− εref) (2.37)

where we omit the quantum number indexes for simplicity.

∆SCF approximation

The ∆SCF approximation lies on the assumption that the photoemission pro-

cess is slower than the response of valence electrons to the presence of the created

core hole. This assumption implies that all effects on the BE due to charge rear-

rangements must be included. To do that, S. Garćıa et al. follow the procedure

described in [40]. They calculate the difference between the total energy of a

given system with a hole core in the atom A, E(A+) and the total energy of the
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ground state, E0

BE∆SCF = E(A+)− E0 (2.38)

Here, E(A+) includes all effects due to electronic relaxations. In this approxi-

mation, one assumes there is no geometry changes due to the ionization. As in

the initial state approximation, we calculate the binding energies of a given core

level in two atoms of the same type under different environments, one of which

is taken as the reference. Thus, the shift is given by

∆(BE)∆SCF = [E(A+)− E0]− [E(A+)−E0]ref (2.39)

In SIESTA, to calculate the total energy of the system with the ionized atom, we

have to generate a pseudopotential for the ionized atom with a hole in the core

level we want to study. This is done using a new feature of the ATOM program.

When SIESTA reads the pseudopotential for the ionized atom, it computes the

local part as (Zv + 1)/r since one electrons has been removed. SIESTA does not

include explicitly the local part of the pseudopotentials (that in the general case is

Zv/r) in the Kohn-Sham Hamiltonian because of its long-range character. Instead

of that SIESTA introduces it implicitly through a short-range term, where the

local part of the pseudopotential is screened by a potential behaving as −Zv/r.
Hence, we have to ensure that the local part of the pseudopotential for the ionized

atom (where an electron has been removed) is screened correctly with a potential

(Zv + 1)/r. For a better understanding of how we introduce implicitly the local

part of the pseudopotential, let us write the Hamiltonian used by SIESTA,

H = T + δV H(r) + Vxc(r) +
∑

I

V NA
I (r) +

∑

I

V nl
I (2.40)

Here, T is the kinetic energy operator, δV H is the Hartree potential term that

contains the difference between the potential V H generated by self-consistency

charge density ρSCF (r) and the potential VI defined below, Vxc the exchange and

correlation potential, V NA
I is the neutral atom potential, which is the local part

of the pseudopotential V local
I screened by a charge distribution VI (which has the

same behaviour than the local potential but with opposite sign, −Zv/r and whose
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integral is equal to the valence charge of the atom I), that is,

∑

I

V NA
I =

∑

I

V local
I +

∑

I

VI (2.41)

V NA is strictly localized, being zero beyond a certain cutoff radius. Finally, V nl
I

the non local part of the pseudopotential with I being the atom index. The last

two terms are of short range.

To ensure that SIESTA computes a neutral atom potential strictly localized for

the atom with the core hole, one has to add an extra valence electron into this

atom. This is done by defining a new Z + 1 chemical species in the input file of

SIESTA. It makes the calculated energy not to be equal to E(A+), because the

simulation cell has one more electron that is at the Fermi level of the system.

The calculated energy is thus EZ+1(A+) = E(A+) + εF . Consequently, Eq. 2.39

transforms into

∆(BE)∆SCF = [EZ+1(A+)− εF − E0]− [EZ+1(A+)− εF −E0]ref (2.42)

The extra electron should be removed from the system or not depending on the

considered material. In the case of insulating systems and molecules in gas phase,

since there are no available electrons to screen the core hole, the extra electron

should be removed by imposing a net charge of +1.0 on the system. For metals,

an electron coming from the bulk of the sample screens the core hole, therefore

the extra electron should be left.

The reference level problem

To compare core level binding energies shifts obtained from theory with experi-

mental XPS data, we have to use the same reference potential than in the exper-

iments. This issue can be overcome in several ways depending on if the material

is metallic, semiconductor or insulator.

For metallic samples, in the XPS experiment the detector is connected to the

metallic sample and the ground, such that the Fermi energy levels of the different
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connected parts align yielding a common Fermi energy level, which is measured

through the work function of the detector φdetector and used as the reference po-

tential. Hence, combining Eqs. 2.33 and 2.34 the experimental core level binding

energy shift in metals is given by

∆(h′ν ′) = (h′ν ′)− (h′ν ′)ref = −BE +BEref = −∆(BE) (2.43)

Theoretically, in the initial approximation we align the Fermi energy levels of the

reference εrefF and the sample εF by inserting them into the Eq. 2.33, leading to

∆(BE)initF = −(ε− εF ) + (ε− εF )
ref (2.44)

This equation is applicable for the general case where the sample and reference

are computed using different cells. For the metallic systems we study in this

thesis, we calculate core level binding energy shifts for different and inequivalent

atoms contained in the same cells, which means that εrefF and εF have the same

value. Therefore, Eq. 2.44 becomes

∆(BE)initF = −ε+ εref . (2.45)

In the ∆SCF approximation, it is easy to see that Eq. 2.42 transforms into

∆(BE)F∆SCF = [EZ+1(A+)− E0]− [EZ+1(A+)− E0]ref (2.46)

where the calculation is reduced to the determination of the total energy of the

sample and reference systems without a net charge: the system before the ion-

ization (E0), and the system after the core hole is created and an extra electron

is added (EZ+1). As we study systems with the reference and sample atom being

in the same cell, the Eq. 2.46 is further reduced to

∆(BE)F∆SCF = EZ+1(A+)−EZ+1(A+)ref (2.47)

On the other hand, for semiconductor and insulator periodic systems, we can not

use the Fermi level as reference potential, because experimentally it is not easy

to determine it [39]. In the calculation, we have a similar problem since it can be
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laid anywhere in the gap and hence is ”ill-defined”.

Considering we calculate CLBE for different and inequivalent atoms contained in

the same cell (if other thing is done it will be specified), the reference potential

is always the same (whichever it is) and therefore it cancels itself if we perform

a CLBE shift. As a consequence, Eqs. 2.37 and 2.39 are valid to determine the

CLBE shifts within the initial and ∆SCF approximation, respectively. More-

over, Eq. 2.39 is reduced to a simpler expression because the terms E0 and Eref
0

are the same.
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Chapter 3

GW approximation

3.1 Introduction

Electronic excitations in molecules and solids are experimentally measured by

experimental techniques such as photoemission, optical absorption and electron-

energy loss spectroscopies. The electronic properties that can be obtained from

them are band gaps, density of states and absorption and optical spectra. They

all are essential in the characterization and further applications of the materials.

Among the theoretical methods developed for the study of electronic excitations in

molecules and extended solids, the GW approximation and Bethe-Salpeter equa-

tion have emerged as the state-of-the-art first-principles computational methods

[3, 41, 42, 43, 44]. They allow us to compute quasiparticle energies and two-

particles excitations. They can reproduce and predict experimental data with

remarkable accuracy.

To determine the band gap of a finite system containing N electrons, one per-

forms direct and inverse photoemission experiments to measure the ionization

potential and the electron affinity, respectively. The band gap is then defined as

the difference between the electron affinity and ionization potential. To be more

specific, in the direct photoemission the system is irradiated with a light beam

with energy ~ω along a certain direction k, so that an electron is ejected with

energy Ekin from the system (leaving it with N − 1 particles) to the vacuum.

Considering that the ejected electron is completely decoupled from the system,
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the total energy and momentum before and after the direct photoemission pro-

cess are the same as they satisfy the energy and momentum conservation laws.

Thus, the energy conservation equation is

E(N) + ~ω = E(N − 1) + Ekin (3.1)

where E(N) and E(N − 1) indicate the total energy of the system with N and

N − 1 particles, respectively. From this equation, the ionization potential (IP) is

defined as

IP = E(N)−E(N − 1) = Ekin − ~ω (3.2)

It is just the energy required to remove an electron from the system to the vacuum

(the lowest of which corresponds to the first ionization potential, in which the

system with N − 1 electrons is in its ground state). On the other hand, in the

inverse photoemission the system with N particles is irradiated with an electron

beam with kinetic energy Ekin at certain momentum k, such that an electron

falls into an unoccupied electronic state of the system, emitting a photon ~ω. As

in the previous case, due to the energy conservation law the whole photoemission

process satisfies the following equation

E(N) + Ekin = E(N + 1)− ~ω (3.3)

where E(N +1) is the total energy of the system with N +1 particles. Then, we

define the electron affinity (EA) as

EA = E(N + 1)− E(N) = Ekin + ~ω (3.4)

It gives the energy gained by a system when an electron is incorporated from the

vacuum. Using Eqs. 3.2 and 3.3, we can write the band gap energy in terms of

the total energies of the system with N(±1) particles,

εgap = (EN+1 − EN)− (EN − EN−1) (3.5)

where the energies correspond to the ground state of the system with the corre-

sponding number of electrons. Obtaining the gap energy from theory implies de-
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termining the total energy of the N -particle system before and after one electron

is added or removed from the system. It can be directly obtained by calculating

the ground-state total energy of the system containing N(±1) particles, since in

each calculation the electrons are allowed to be relaxed due to the addition or re-

moval of one electron. When the energies are computed by means of an effective,

selfconsistent one-electron theory (such as DFT or Hartree-Fock), this procedure

is known as the delta-self-consistent-field approach. The obtained band gap εgap

does not correspond to the Kohn-Sham band gap εKSgap of the N -particle system,

because the Koopman’s theorem establishes that one-electron orbitals are frozen

upon changing the number of electrons. The Kohn-Sham eigenvalues are only

the mathematical tool to obtain the total energy of the system, except for the

highest occupied eigenvalue, which is the first ionization potential, according to

the Janak’s theorem [14]. The εKSgap does not include the relaxation effects of the

lowest unoccupied Kohn-Sham eigenvalue arisen from addition of one electron to

the system. To include these effects, we add an energy correction term ∆, which

is the energy difference of the lowest unoccupied Kohn-Sham eigenvalue between

the excited and the neutral state, to the Kohn-Sham gap,

εgap = εKSgap +∆ (3.6)

The correction ∆ is related with the discontinuity in the exchange-correlation

potential that arises when there is an infinitesimal variation in the electronic

charge of a system with N -particles: ∆ = ∆xc = Vxc(N + 1)− Vxc(N).

The calculated band gaps through either Eq. 3.5 or Eq. 3.6 are in many cases in

good agreement with the experimental values for molecular systems. However,

they are not appropriate in the case of extended solids, where the addition or

removal of one single electron results in an infinitesimal change of the electronic

charge of the unit cell. Hence, there is the need of using a different physical model

derived from many-body theory that allows us to describe one-particle electronic

excitations originated by the addition or removal of electrons to or from a system.

In this sense, the most appropriate practical approach is the GW approximation

for the one-particle Green function [18, 19, 45]. This approximation is also the

starting point of Bethe-Salpeter equations for the study of two-particle excitations
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to simulate optical absorption spectra.

3.2 Derivation of the Green function method

We get back to the many-body Schrödinger equation defined by Eq. 2.3 with the

many-body wavefunction Ψ(r1, ..., rN), expressed as

[

∑

i

h(ri) +
1

2

∑

i6=j

v(ri, rj)

]

Ψ = EΨ (3.7)

with h(r) = T̂e+Vext(r), and v(r, r
′) = 1

|r−r′|
being the bare Coulomb potential. In

Eq. 3.7 we do not include the constant EII for simplicity. The second quantization

from of the many-body Hamiltonian in terms of field operators results in

H =

∫

drψ̂†(r)h(r)ψ̂(r) +
1

2

∫

drdr′ψ̂†(r)ψ̂†(r′)v(r, r′)ψ̂(r′)ψ̂(r) (3.8)

where ψ̂†(r) and ψ̂(r) are the creation and annihilation field operators, respec-

tively.

The many-body Schrödinger equations of the system with N(±1) particles are

HΨN
0 = EN

0 ΨN
0 (3.9)

HΨN+1
i = EN+1

i ΨN+1
i (3.10)

HΨN−1
i = EN−1

i ΨN−1
i (3.11)

In this set of equations, ΨN
0 is the groud-state many-body wavefunction of N -

particle system and Ψ
N(±1)
i represent the many-body wavefunction of excited

state i of the system with ±1 electrons. EN
0 and EN±1

i are the corresponding total

energies. Solving this set of equations is precisely solving the many-body problem.

We invoke the one-particle Green function, corresponding to the Hamiltonian of

a N -particle system, Eq. 3.8, which describes the propagation of one electron

(or one hole) in the system. The Green function contains all excited and ground

state properties of the system including excitation energies, excitation lifetimes,
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ground state density and expectation values of one-particle operators.

The one-particle Green function is defined as

G(rt, r′t′) = −i〈ΨN
0 |T [ψ̂(rt)ψ̂†(r′t′)]|ΨN

0 〉 (3.12)

where r and t indicate position and time, respectively. T is the time-ordering

operator and ψ̂(rt) is the annihilation time-dependent field operator, which is

defined (in the Heisemberg representation) as

ψ̂(r, t) = eiHtψ̂(r)e−iHt, (3.13)

and similarly for the creation operator. T rearranges a series of field operators in

order of ascending time arguments from right to left with a factor (-1) for each

permutation.

For the propagation of one electron in a N -particle system, t > t′, an electron

is created at r′t′ and propagated to rt where it is then annihilated. The Green

function describing this process is

Ge(rt, r′t′) = −i〈ΨN
0 |ψ̂(rt)ψ̂†(r′t′)|ΨN

0 〉θ(t− t′) (3.14)

where θ(t− t′) is the Heaviside step function defined by

θ(t− t′) =







1, if t > t′

0 if t < t′.
(3.15)

Similarly, for the hole propagation, t < t′, an hole is created at rt and then

propagated to r′t′ where it is then annihilated

Gh(r′t′, rt) = i〈ΨN
0 |ψ̂†(r′t′)ψ̂(rt)|ΨN

0 〉θ(t′ − t) (3.16)

Thus, Green function gives the probability amplitude to detect and electron (hole)

at rt (r′t′) when an electron (hole) has been added to the system at r′t′ (rt). Since

the whole Green function involves both the electron and hole propagation, we can
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rewrite it as

G(rt, r′t′) = Ge(rt, r′t′) +Gh(r′t′, rt) (3.17)

Now, using the definition of the field operator of Eq. 3.13 and τ = t − t′, the

Green function adopts the form

G(r, r′, τ) = −i〈ΨN
0 |ψ̂(r)ei(H−EN

0 )(τ)ψ̂†(r′)|ΨN
0 〉θ(τ)+

i〈ΨN
0 |ψ̂†(r′)e−i(H−EN

0
)(−τ)ψ̂(r)|ΨN

0 〉θ(−τ) (3.18)

If we insert the closure relations
∑

i |ΨN±1
i 〉〈ΨN±1

i | = 1 in the middle of each term

on the right side of the above equation and use the following definitions:

ψN−1
i (r) = 〈ΨN−1

i |ψ̂(r)|ΨN
0 〉 εN−1

i = EN
0 −EN−1

i (3.19)

ψN+1
i (r) = 〈ΨN

0 |ψ̂(r)|ΨN+1
i 〉 εN+1

i = EN+1
i − EN

0 , (3.20)

where εN±1
i are the electronic excitation energies and ψN±1

i the amplitudes of the

Green function, we get

G(r, r′, τ) = −i
∑

i

ψN+1
i (r)ψ∗N+1i(r′)e−iε

N+1

i
(τ)θ(τ)

+ i
∑

i

ψN−1
i (r)ψ∗N−1

i (r′)e−iε
N−1

i
(−τ)θ(τ) (3.21)

The sums run over the ground state and all excited states of the (N ± 1)-particle

system, respectively. The Fourier transformation of Eq. 3.21 to the frequency

domain using the Fourier transform of the Heaviside step function

θ(ω) =
1

2π

∫ ∞

−∞

θ(τ)eiωτ−η|τ |dτ =
i

2π(ω + iη)
(3.22)

yields the Lehmann representation of the Green function

G(r, r′, ω) =
∑

i

ψN+1
i (r)ψ∗N+1

i (r′)

ω − εN+1
i + iη

+
∑

i

ψN−1
i (r)ψ∗N−1

i (r′)

ω − εN−1
i − iη

(3.23)

31



with η being a small positive number. As we can observe, the Green function has

poles at the many-particle excitation energies, εN±1
i . These energies correspond

to the excitations of the (N ± 1)-particle system and hence to those processes

measured in direct and inverse photoemission processes.

Eq. 3.5 to calculate the band gap of a finite system can be rewritten in terms of

excitation energies as

εgap = min(εN+1
i )−min(εN−1

i ) (3.24)

In what follows, we omit the superscritps N ± 1, rewritting the Eq. 3.23 as

G(r, r′, ω) =
∑

i

ψi(r)ψ
∗
i (r

′)

ω − εi + iη
(3.25)

where η is positive for the electronic excitations of (N + 1)-particle system, and

negative for the excitations of (N − 1)-particle system.

An additional useful representation of the Green function is

G(r, r′, ω) =

∫ ∞

−∞

A(r, r′, ω′)

ω − ω′ + iη
dω′ (3.26)

where A is the spectral function defined as the imaginary part of the Green

function, that is,

A(r, r′, ω) =
1

π
|ImG(r, r′, ω)| (3.27)

The spectral function yields the density of states of the excited states that con-

tribute to the electron or hole propagation. For a finite system, it is represented

as a sum of delta functions weighted by the products of the excitation amplitudes,

A(r, r′, ω) =
∑

i

ψi(r)ψ
∗
i (r

′)δ(ω − εi) (3.28)

When we change from a finite to an extended system, the delta functions merge

and form a series of smooth peaks with finite width lines instead of delta reso-

nances. If the resulting spectral features are of the Lorentzian form, the repre-
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sentation of the spectral function is

A(r, r′, ω) =
∑

i

ψi(r)ψ
∗
i (r

′)
Γi

(ω − ξi)2 + Γ2
i

(3.29)

where ξi are the peak position, representing some average energy of a group of

excited states, and Γ are the corresponding peaks widths, describing the spread in

energy of exited states, which is related with lifetimes of the average excitations.

Let us now derive the equations from which we can obtain a practical solution

for the Green function. From the Heisenberg equation of motion for the field

operator

i
∂ψ̂(rt)

∂t
= [ψ̂(rt), H ] (3.30)

where Ĥ is the Hamiltonian given in Eq. 3.8, we can obtain the equation of

motion of the Green function:

[

i
∂

∂t
− h(r)

]

G(rt, r′t′)

+ i

∫

dr′′v(r′, r′′)〈N |T{ψ̂†(r′′t)ψ̂(r′′t)ψ̂(rt)ψ̂†(r′t′)}|N〉 = δ(rt, r′t′) (3.31)

where 〈N |T{ψ̂†(r′′t)ψ̂(r′′t)ψ̂(rt)ψ̂†(r′t′)}|N〉 is the two-particle Green function

G2, which describes the propagation of two particles like a hole-electron pair. For

simplicity, in the Fourier frequency space, Eq. 3.31 transforms into

[ω − h]G(ω)− i

∫

vG2(ω) = 1 (3.32)

As the next step, instead of dealing with the two-particle Green function, we use

the concepts of the perturbation theory to the one-particle Green function. We

express the Fourier transform of the inverse of the one-particle Green function

in terms of inverse of the one-particle Green function GH (corresponding to the

Hartree Hamiltonian HH which can be solved as it is a one-particle Hamiltonian)

and the perturbation Σ, which is called the ”self-energy operator” and assumed
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to include all exchange and correlations effects beyond the Hartree potential,

G−1(r, r′;ω) = δ(r, r′)[ω −HH(r)]− Σ(r, r′;ω) (3.33)

where G−1
H = ω − HH(r). From Eq. 3.33, the self-energy operator is given by

Σ = G−1
H −G−1. Inserting the definition of Σ into Eq. 3.32, we arrive to so-called

Dyson equation for the Green function:

[ω − h(r)− VH(r)]G(r, r
′;ω)−

∫

dr′′Σ(r, r′′;ω)G(r′′, r′;ω) = δ(r, r′) (3.34)

Here, VH is the Hartree potential. Σ(r, r′′;ω), is a nonlocal (it depends on two

spatial variables), non-hermitian and energy dependent operator. Alternatively,

we can rewrite the Dyson equation in the form of a geometrical series as

G = G0 +G0ΣG0 +G0ΣG0ΣG0 + ... (3.35)

which is completely equivalent to Eq. 3.34. G0 represents the Green function of

the one particle Hamiltonian h+VH . Now, if we insert the Lehman representation

of the Green function into Eq. 3.34, multiply both sides of the latter equation by

ω − εj and take the ω → εj limit, we get the Dyson equation for the electronic

excitations εj and amplitudes ψj :

[h(r) + VH(r)]ψj(r) +

∫

dr′Σ(r, r′; εj)ψj(r
′) = εjψj(r) (3.36)

Supposing we know the form of Σ, since energy is one of its arguments, the above

equation has to be solved self-consistently together with the Green function, Eq.

3.25, so that the εj’s from 3.36 must correspond to the poles of the Green function,

where the amplitudes ψj form, in general, a set of nonorthogonal functions.

To solve Eq. 3.36, we have to know the form of the self-energy operator or a

good approximation for it. In the simplest way, the self-energy operator can

be expanded in a power series the bare Coulomb potential v. However, it is

well known that such an expansion diverges for metals or that the convergence

becomes poor when the polarizabilty of the system increases. An alternative way

is expanding it in terms of the screened potential W introduced first by Hubbard
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[46],

W (12) = v(12) +

∫

d(34)v(42)P (34)W (13) (3.37)

where the kernel P can be expanded as

P (12) = −iG(12)G(21) +
∫

G(13)G(41)W (34)G(24)G(32)d(34) + ... (3.38)

Here, we adopt the compressed notation 1 ≡ (r, t, σ), 2 ≡ (r′, t′, σ), etc. W (12)

essentially gives the potential at point 1 due to the presence of a test charge

at point 2, including the effect of the polarization of the electrons. The physical

meaning of the kernel P (12) is that it is the polarization propagator that contains

the response of the system to the additional particle or hole. The first two terms

of the expansion of Σ are

Σ(12) = iG(12)W (1+2)−
∫

G(13)G(34)G(42)W (14)W (32)d(34) + ... (3.39)

In the used notation, 1+ means that t→ t+ δ where δ is a positive infinitesimal.

Now, we have to know how many terms of the expansions should be considered

for a good description of Σ and P , i.e. the Green function. With this purpose,

Hedin [18] rewrote the expansions of Σ, W and P as a set of exact self-consistent

equations for the Green function by means of demanding that total energy be

stationary with respect to variations in the Green function and introducing a

local time-dependent source term Γ (called vertex correction) in the Hamiltonian

which directly couples to the particle density. Thus, the Hedin’s equations are

Σ(12) = i

∫

d(34)G(14)W (1+3)Γ(432) (3.40)

W (12) = v(12) +

∫

d(34)v(42)P (34)W (13) (3.41)

P (12) = −i
∫

d(34)G(23)G(42)Γ(341) (3.42)

Γ(123) = δ(12)δ(13) +

∫

d(4567)
δΣ(12)

δG(45)
G(46)G(75)Γ(673) (3.43)
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These equations go together with the Dyson equation for the Green function, Eq.

3.35, which links G and Σ. The solution of this set of equations means that the

Green function used to calculate the self-energy operator must coincide with the

Green function from the Dyson equation with the same self-energy operator. As

it can be recognized, the self-consistent solution is difficult to obtain, so we have

to approximate it. Solving this set of equation iteratively generates essentially

perturbation terms in the screened potential. Hedin proposed to consider only

the first iteration to generate the first order perturbation term of W neglecting

further terms that are assumed not to be important. It is done by setting Γ(123) =

δ(12)δ(13), where vertex corrections are neglected. Thus, we get

Σ(12) = iG(12)W (1+2) (3.44)

W (12) = v(12) +

∫

d(34)v(42)P (34)W (13) (3.45)

P (12) = −iG(12+)G(21) (3.46)

Γ(123) = δ(12)δ(13) (3.47)

This is the so-called Hedin’s GW approximation, in which the self-energy oper-

ator is given as a direct product between the single-particle Green function and

the screened potential. Furthermore, usually the irreducible polarizability is re-

placed by the random-phase approximation (RPA) for the dielectric matrix. By

performing carefully the Fourier transform to the energy domain we get:

ΣGW (r, r′;ω) =
i

2π

∫

G(r, r′;ω + ω′)W (r, r′;ω)eiωηdω′ (3.48)

W (r, r′;ω) = v(r, r′) +

∫

dr′′W (r, r′;ω)

∫

dr′′′P (r′′, r′′′;ω)v(r′′′, r′) (3.49)

P (r, r′;ω) = 2
∑

ij

fi − fj
εi − εj − ω

ψi(r)ψ
∗
j (r)ψ

∗
i (r

′)ψj(r
′) (3.50)

G(r, r′, ω) =
∑

i

ψi(r)ψ
∗
i (r

′)

ω − εi + iη
(3.51)
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Here, the expression for the Green function has been included. The sums of the

polarization propagator P runs over the ground state and all excitations of the

system. fi indicates the occupation of the amplitudes.

The GW equations imply a self-consistent calculation of the many body Green

function G. However, in practice, most GW calculations use the non-interacting

Green functionG0 from the Kohn-Sham Hamiltonian, with the Kohn-Sham eigen-

states and eigenvalues representing the amplitudes and excitations energies. The

screened potential can be evaluated through its relation with bare Coulomb po-

tential,

W (r, r′;ω) =

∫

dr′′v(r, r′′)ǫ−1(r′′, r;ω) (3.52)

where ǫ−1 is the inverse of the dielectric matrix which is given by

ǫ(r, r′;ω) = δ(r, r′)−
∫

dr′′v(r, r′′)P (r′′, r′;ω) (3.53)

Within the RPA approximation, P is that of a noninteracting-particle system

defined from G0: P = P0 = G0(12)G0(21). Thus, to evaluate the inverse of the

dielectric function, first we evaluate all matrix elements of the dielectric matrix,

in real space, and then calculate the inverse of it. This procedure is usually re-

ferred to as Σ = G0W0 since both G and W are not obtained self-consistently

through their Dyson equations, but in general it gives acceptable results [19].

Additionally, we have the Σ = GW and Σ = G0W approximations where in the

first one both G and W are obtained self-consistently and in the last one only W

is obtained in this way.

Once the self-energy operator is calculated, the next step would be solving the

amplitudes ψi in Eq. 3.36 self-consistently. However, in practice, that is not nec-

essary: M. Hybertsen and S. Louie [19] found that, if we expand the amplitudes in

terms of the wavefunctions from a density functional theory calculation ψKSn and

project them on both sides of the self-consistent equation, the resulting ampli-

tudes surprisingly have an overlap 99.99 % with the corresponding one-particle

wavefunction from the density functional theory calculation. Also, they found

that matrix elements other than the diagonal of the self-energy operator 〈n|Σ|n〉
can be neglected, as the contribution of the non-diagonal matrix elements 〈n′|Σ|n〉
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results in errors of 0.01 eV in the excitation energies. The conclusions of the work

of S. Louie and M. Hybertsen show that these energies can be obtained by means

of correcting the Kohn-sham eigenvalues by the term 〈ψKSi |Σ(εi)−Vxc|ψKSi 〉, that
is

εi ≈ εKSi + 〈ψKSi |Σ(εi)− Vxc|ψKSi 〉 (3.54)

The exchange-correlation contribution is subtracted from the KS eigenvalues be-

cause the self-energy operator includes all effects beyond the Hartree approxima-

tion. It was stated above that the self-energy operator must be evaluated at the

excitation energy. To do this, the operator is expanded to first order in εi − εKSi

Σ(r, r′;ω) ≈ Σ(r, r′; εKSi ) + (εi − εKSi )
∂Σ(r, r′;ω)

∂ω
|εKS

(3.55)

Thus, the energy is then

εi ≈ εKSi + Zi〈ψKSi |Σ(εKSi )− Vxc|ψKSi 〉 (3.56)

where Z is a normalization factor

Zi =

(

1− 〈ψKSi |∂Σ(r, r
′;ω)

∂ω
|εKS

i
|ψKSi 〉

)−1

(3.57)

In the approximation of a noninteracting-particle system, we usually interpret the

amplitudes and electronic excitation energies as the wavefunctions and energies

of quasiparticles, respectively, which are created when an electron is added (or

removed) to (from) an N-particle system. If an electron is added to the system,

the strong Coulomb repulsion causes the formation of a hole (with positive charge)

around the added electron. These dressed electrons (what we call quasiparticles)

form an ensemble in which the N + 1 quasiparticles interact with each other

through the screened Coulomb potential. Similarity, we obtain an ensemble of

N − 1 quasiparticles when we remove an electron.
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3.3 Unoccupied electronic states

The evaluation of the irreducible polarizability P [47, 48] and Green function

through the Eqs. 3.50 and 3.51 has the disadvantage of having to compute sums

over all unoccupied as well as occupied electronic states. The use of all unoccu-

pied states for the evaluation of the polarizability makes the calculation of this

physical quantity scale as A×O(N4), N being the number of atoms in the system

and A a very large prefactor [3]. If such calculation is performed within the plane

waves formalism, the computational cost increases considerably because of the

large size of the basis sets, making intractable the study of quasiparticle excita-

tions in systems containing more than 100 atoms. Additionally, the convergence

of quasiparticle energies with the number of unoccupied states is found to be

slow. In order to make further progresses for improving the efficiency in GW

calculations, several methods have been explored with the purpose of removing

the need of the explicit use of unoccupied electronic states [3, 49]. The use of

only occupied states makes the prefactor be smaller than in the case of using all

electronic states. Moreover, the use of local orbital bases leads to a much smaller

prefactor when compared with planewaves. These facts are particularly relevant

when we consider large systems. In this work, we follow the method proposed by

F. Giustino et al. [3] which requires only computing the occupied electronic states

to evaluate the screened potential and the Green function. We adapt it to the

formalism of strictly localized basis orbitals since the equations were originally

implemented using plane waves and empirical pseudopotentials.

In this method, the screened potential W is solved self-consistency in the spirit of

density functional perturbation theory through the frequency-dependent Stern-

heimer equation, instead of iteratively as indicated in the original Hedin’s equa-

tions 3.49 and 3.50. The Sternheimer equation is derived from the time-dependent

Kohn-Sham equations

i
∂

∂t′
ψi(r

′t′) = HKS(r′t′)ψi(r
′t′) (3.58)
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Here, ψi(r
′t′) ≡ ψKSi (r′t′) and the time-dependent Kohn-Sham Hamiltonian is

represented as

HKS(r′t′) = −∇2

2
+ Vext(r

′t′) + VHartree(r
′t′) + Vxc(r

′t′) (3.59)

with the last two terms being time dependent as they are functionals of the

time-dependent density,

n(r′t′) =
occ
∑

v

|ψi(r′t′)|2 (3.60)

Considering that the external potential has two components: one of them created

by the nuclei and the other one by a monochromatic electric field Vfield(r
′t′) =

λr′cos(ωt′) with the magnitude λ being small, the time-dependent Kohn-Sham

wavefunctions can be expanded in power of λ by means of using the perturbation

theory as follows

ψi(r
′t′) = e−i(εi+λ∆εi)t

′{ψ(0)
i (r′)+

1

2
[λeiωt∆ψi(r

′, ω)+λe−iωt
′

∆ψi(r
′,−ω)]} (3.61)

where ψ
(0)
i (r′) and ε

(0)
i are wavefunctions and eigenvalues from the static Kohn-

Sham Hamiltonian. In what follows we use the notation ψ
(0)
i (r′) ≡ ψi(r

′) and

ε
(0)
i ≡ εi. ∆ψi(r

′, ω) and ∆εi are the first-order variations of the time-dependent

Kohn-Sham wavefunctions and eigenvalues, respectively. Thus, inserting Eq. 3.61

into Eq. 3.60, we get:

n(r′t′) = n(0)(r′) +
1

2
[λeiωt

′

∆n(r′, ω) + λe−iωt
′

∆n(r′,−ω)] (3.62)

with the following definition of the first order variation of the density:

∆n(r′, ω) =
∑

v

{ψ∗
v(r

′)∆ψv(r
′, ω) + ∆ψ∗

v(r
′,−ω)ψv(r′)} (3.63)

By replacing the expansion of the wave functions Eq. 3.61 in the time-dependent

Kohn-Sham equation, Eq. 3.58 and picking up the first order terms in λ, we
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arrive at a Sterheimer equation for the variations of the valence wavefunctions

[HKS(r′)− εv ± ω]∆ψ±
v (r

′, ω) = −[1 − P̂occ]∆V (r′, ω)ψv(r
′) (3.64)

Here, HKS(r′) is the static Hamiltonian, P̂occ =
∑

v |ψv〉〈ψv| is the projector on

the occupied states manifold and ∆V (r′, ω) is the first order variation of the

time-dependent Kohn-Sham Hamiltonian.

We aim at using the previous equation to describe the response of the occupied

wavefunctions of a system due to a perturbation given by the screened Coulomb

potentialW (r, r′, ω). In order to evaluate this response, we regardW as a function

of the second spatial variable r′, while the the first spatial variable r and the

frequency ω are kept as parameters, ∆V[r,ω](r
′) = W (r, r’;ω), so that Eq. 3.64

transforms into

[HKS − εv ± ω]∆ψ±
v[r,ω] = −[1− P̂occ]∆V[r,ω]ψv (3.65)

We use the notation f[r,ω](r
′) = f(r, r′;ω) to indicate the parametrization of the

frequency and the first spatial variable when required.

The first-order variation of the electronic density due to the variation on the

occupied wavefunctions can be rewrite as

∆n[r,ω] = 2
∑

vσ

ψv∆ψ
∗σ
v[r,ω] (3.66)

where σ = ± stands for the positive and negative components of the frequency

and the factor 2 is introduced to account for spin degeneracy. The screening

Hartree potential caused by the induced charge ∆n[r,ω] is calculated as usual

through

∆V H
[r,ω](r

′) =

∫

dr′′∆n[r,ω](r
′′)v(r′′, r′) (3.67)

Finally, the screened Coulomb interaction in the RPA is calculated as

W (r, r′;ω) = ∆V[r,ω](r
′) = v(r, r′) + ∆V H

[r,ω](r
′) (3.68)
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Eqs. (3.65-3.68) must be solved self-consistently and they are completely equiv-

alent to Eqs. (3.49-3.50), but the Sterheimer equation method does not require

computing the unoccupied electronic states. The self-consistency is started by

initializing W using only the bare Coulomb interaction v, Eq. 3.68.

Additionally, it is possible to modify the Eq. 3.65 to get directly the inverse di-

electric matrix ǫ−1(r, r′;ω). This is done by replacing W by ǫ−1, whose definition

in RPA is

ǫ−1
[r,ω](r

′) = δ(r, r′) + ∆V H
[r,ω](r

′) (3.69)

In this case the inverse dielectric matrix is initialized with the delta function δ.

This procedure is completely equivalent to obtaining ǫ−1 from the self-consistent

W using Fourier transform techniques.

For the Green function a similar procedure to the Sternheimer equation is followed

to solve it without requiring explicitly the unoccupied electronic states. Let us

recall the expression Green function given by equation 3.25

G(r, r′;ω) =
∑

n

ψn(r)ψ
∗
n(r

′)

ω − εn − iη
(3.70)

Approximating G to G0 (Kohn-Sham Green function), n runs over all unoccupied

as well as occupied electronic states, ψn are the single particle wavefunctions with

eigenvalues εn. The infinitesimal η is negative for occupied states and positive

otherwise. Although, this equation looks straightforward to evaluate, it contains

a sum over all electronic states. In order to get a more efficient procedure to

evaluate the Green function, we proceed breaking it into two terms according to

the values that η can take

G(r, r′;ω) =
∑

v

ψv(r)ψ
∗
v(r

′)

ω − εv − iη
+
∑

c

ψc(r)ψ
∗
c (r

′)

ω − εc + iη
(3.71)

where the first sum goes over the valence states and the second one over the

conduction states. Now, we add and subtract the term
∑

v ψvψ
∗
v/(ω− εv + iη) to

the latter equation, to obtain

G(r, r′;ω) =
∑

n

ψn(r)ψ
∗
n(r

′)

ω − εn + iη
+
∑

v

ψv(r)ψ
∗
v(r

′)

ω − εv − iη
−
∑

v

ψv(r)ψ
∗
v(r

′)

ω − εv + iη
(3.72)
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By performing the sum of the last two terms using the Lorentzian representation

of Dirac’s delta function for a small η, which is defined as πδ(x) = η/(x2 + η2),

we get

G(r, r′;ω) = GA(r, r′;ω) +GN(r, r′;ω) (3.73)

with

GA(r, r′;ω) =
∑

n

ψn(r)ψ
∗
n(r

′)

ω − εn + iη
(3.74)

GN(r, r′;ω) = 2iπ
∑

v

δ(ω − εv)ψv(r)ψ
∗
v(r

′) (3.75)

GA(r, r′;ω) is analytical in the upper half of the complex energy plane as its

poles lies below the real axis. GN(r, r′;ω) vanishes whenever the frequency ω

is above the chemical potential. For frequencies below the chemical potential, it

introduces the poles associated to the occupied electronic states. We should notice

that GN(r, r′;ω) has the desirable form as it only contains occupied states. That

does not happen with the analytical part because a sum over all states remains.

Following the same ideas of Sternheimer’s approach, GA(r, r′;ω) is regarded as

a function only of the first spatial variable r while the second one r′ and the

frequency ω are kept as parameters. Then, we project the operator [Ĥ + ω+ iη],

which depends on the variable r′, on both sides of Eq. 3.74 and use the closure

relation δ(r, r′) =
∑

n ψn(r)ψ
∗
n(r

′) to finally get an inhomogeneous linear system

for GA

[ĤKS(r′)− ω + iη]GA
[r,ω](r

′) = −δ[r](r′) (3.76)

This linear equation does not require explicitly the unoccupied electronic states,

but it is completely equivalent to Eq. 3.74.

In the next section we rewrite the equations to compute the screened Coulomb

potential and Green function using the method presented above within the strictly

localized orbital formalism.

3.4 GW approximation in local basis set

As discussed in chapter 2, in the formalism of local orbital bases, each Kohn-

Sham wavefunction ψi is expanded as a linear combination of the atomic orbitals
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in the basis

ψi(r
′) =

∑

µ

ciµφµ(r
′) (3.77)

where ciµ are the coefficients of the expansion. The Hilbert space defined by the

atomic orbital basis is a subspace of the complete Hilbert space. In that subspace

the resulting wavefunctions form a complete orthogonal set {ψi} that satisfies the

following closure relation
∑

i

|ψi〉〈ψi| = 1. (3.78)

Assuming that the wave functions of the system perturbed by the screened poten-

tial W can be well described with the same basis of local orbitals, the expansion

of the first-order variation of the wavefunctions is given by

∆ψv[r,ω](r
′) =

∑

i

∆cvi[r,ω]φi(r
′) (3.79)

with ∆cvi[r,ω] being the changes in the coefficients of the wavefunctions. Unless the

basis set is very complete, however, the perturbed wavefunctions will in general

have components outside of the Hilbert subspace defined by the basis set, and

therefore Eq. 3.79 will be an approximation to the true perturbed wavefunctions.

The approximation will be better as the basis set is more complete.

After we replace Eqs. 3.79 into the Eq. 3.65 and project both sides onto φj(r
′)

we obtain the Sternheimer equations in matrix representation

[H− (εv ± ω)S]∆c±v[r,ω] = −[1− SρT ]∆V[r,ω]cv (3.80)

where H, S and ρ are the Kohn-Sham Hamiltonian, overlap and density matrix,

respectively, which come from a standard DFT, ground state calculation. The

expressions of their corresponding matrix elements were given in chapter 2. The

vectors cν and ∆c±v[r,ω] contain the coefficients of the valence wavefunction ψν .

The matrix elements of ∆V[r,ω] are evaluated as

∆Vij[r,ω] = 〈φi|∆V[r,ω]|φj〉 (3.81)
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In our implementation of the present method in SIESTA, we evaluate the term

∆V[r,ω] defined by Eq. 3.68 on the real-space grid in order to avoid the expansion

of the bare Coulomb potential in the local orbital basis, which would require

the function products φi(r)φj(r
′) and result in the need of evaluating four-center

and three-center integrals in the Sternheimer equation. Thus, the solution of the

Eq. 3.80 yields ∆cvi[r,ω] which is then used to obtain the variation in the density

matrix

∆nij[r,ω] = 2
∑

v,σ=±

c∗vi∆c
∗
vi[r,ω] (3.82)

In order to evaluate the integral in Eq. 3.67 on the real-space grid, one has to

explicitly calculate ∆n(r, r′;ω) on such grid, that is

∆n[r,ω](r
′) =

∑

ij

∆nij[r,ω]φ
∗
i (r

′)φ∗
j(r

′) (3.83)

Then, the term ∆V H
[r,ω](r

′) is added to the bare Coulomb potential to update

the screened Coulomb potential. In the case of the inverse dielectric function,

∆V H
[r,ω](r

′) is added to the delta function in the Eq. 3.80. Finally, ∆V[r,ω] in Eq.

3.68 (or ǫ−1
[r,ω](r

′) in Eq. 3.69) is then replaced by the new value obtained previously

and the procedure is repeated again until the self-consistency is reached. Within

this scheme the self-consistency is performed independently for each value of the

parameters r and ω. This allows to use a rougher grid for the spatial variable

r than the one used for r′ and the real-space integrals. The optimal fineness of

the grid for operations in r′ is determined by the accuracy needed for describing

the Kohn-Sham Hamiltonian because H and S are included in the parametrized

Sterheimer equation. For r the fineness of the grid depends on the accuracy

required to represent the screened Coulomb potential.

In the case of the Green function, the expression of its non-analytical part is

straightforward to expand in the local atomic orbitals

GN (r, r′;ω) = 2πi
∑

vij

δ(ω − εv)cvic
∗
vjφi(r)φ

∗
j(r

′) (3.84)

The evaluation of the above equation does not require explicitly the parametriza-

tion of variables r and ω, but in order to hold the same accuracy as in the
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screened Coulomb potential, the spatial variables r and r′ of the components of

the Green function are calculateds on the same grids as those used for evaluating

the screened Coulomb interaction. For the analytic part, the parametrization of

variables r and ω gives

GA(r, r′;ω) =
∑

i

φi(r
′)GA

[r,ω]i (3.85)

with

GA
[r,ω]i =

∑

nj

cnic
∗
nj

ω − εn + iη
φ∗
j(r) (3.86)

Inserting the Eq. 3.85 into the inhomogeneous linear system, Eq. 3.76 and

projecting φ∗
j on both sides of this equation, we obtain the matrix representation

of the linear system

[H− (ω + iη)S]GA
[r,ω] = −φ∗

[r] (3.87)

where the closure relation Eq. 3.78 in r-representation has been used to operate

the right hand side of the linear system. The completeness of the closure relation

is ensured since the expansion of the wavefunctions is performed on a Hilbert

subspace. The demonstration of this fact is given in Appendix [**]. The vector

φ∗
[r] contains the values of the local orbitals at the parametrized r. The solu-

tion of the linear system yields the vector GA
[r,ω] which is then used to calculate

GA(r, r′;ω) through Eq. 3.85. With this procedure, we do not need to calculate

Eq. 3.74 where all electronic states are required, instead we solve a liner system

that does not require explicitly the electronic states.

With the purpose of verifying the results obtained from the linear system, we

perform the calculation of the analytical part of the Green function employing

all electronic states. Both calculations must give the same results. Another use-

ful test for the validation of the Green function is the calculation of the density

of states from the spectral function A(r, r;ω) defined by Eq. 3.27, where the

ψi’s correspond to the Kohn-Sham wavefunctions as we are employing the non-

interacting Green function. The density of states is obtained by integrating the
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diagonal elements of the spectral function over the spatial variable, that is,

D(ω) =

∫

drA(r, r;ω) =
1

π

∫

drIm|G(r, r;ω)| (3.88)

The maxima of the resonances of density of states calculated through the above

equation must be centred at the Kohn-Sham eigenvalues.

The equations we give above to calculate the ingredients of the self-energy op-

erator using localized orbitals are applicable only to finite systems. In order to

extend the method for periodic systems, we have to rewrite the equations consid-

ering the eigenfunctions ψnk(r) of the one-electron Hamiltonian with a periodic

potential. As dictated by Bloch’s theorem, such eigenfunctions are described as

a periodic function unk(r) (with the periodicity of the Bravais lattice) modulated

by a plane wave:

ψnk(r) =
1√
V
eik·runk(r) (3.89)

An alternative way of presenting this theorem is in terms of the relative phase of

the wavefuction at points separated by a vector R of the Bravais lattice, namely

ψnk(r+R) = eik·Rψnk(r) (3.90)

Thus, the one-particle Schrödinger equation can be rewritten as

e−ik·r
′

Ĥeir
′·kunk(r

′) = εnkunk(r
′) (3.91)

in terms of the periodic functions unk(r
′) where the Hamiltonian is defined as

e−ik·r
′

Ĥeir
′·k. This equation simplifies the problem of obtaining the wavefunctions

ψnk(r) and their corresponding eigenvalues since it can be solved considering only

the unit cell. In fact, this is what we do in a DFT calculation and even in the GW

approximation as we will see later. Now we move to the formalism of localized

orbitals.

In a localized orbital basis the periodic part of the Schrödinger wavefunctions is

expanded as a linear combination of cell-periodic functions φkµ(r)

unk(r
′) =

∑

µ

cknµφ
k
µ(r

′) (3.92)
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where cknµ are the coeficients of the expansion and the cell-periodic functions φkµ(r)

are given by

φkµ(r) =
∑

R

eik·(R−r)φµ(r−R) (3.93)

with φµ(r−R) being a localized orbitals of the unit cell traslated by the lattice

vector R. The sums in Eq. 3.92 and 3.93 run over the orbitals in the unit cell

and lattice vectors of the Bravais lattice, respectively. Here, we use the index

k to indicate a implicit dependence with respect to wavevector k. Inserting the

Eqs. 3.92 and 3.93 into Eq. 3.89, it is straightforward to demonstrate that

the resulting wavefunctions satisfy the Bloch theorem. The coefficients cknµ and

eigenvalues are obtained by solving the Schödinger equation for unk(r
′) in the

matrix representation for each k (which one can easily derive from Eq. 3.91 using

Eqs. 3.92 and 3.93)

[Hk − εkSk]ck = 0 (3.94)

where the matrix elements of the Hamiltonian and the overlap matrix depending

on k are defined as

Hk
ij =

∑

R

eik·R
∫

φ∗
i (r

′)Ĥφj(r
′ −R)dr′ (3.95)

Sk
ij =

∑

R

eik·R
∫

φ∗
i (r

′)φj(r
′ −R)dr′ (3.96)

The solution of Eq. 3.94 is obtained in a standard SIESTA calculation where the

integrals included in the matrix elements of the Hamiltonian and the overlap are

evaluated using a real-space grid.

In analogy with Eq. 3.79, the first-order variation of the periodic part of the

wavefunctions uvk(r
′) of the valence states is given by

∆uvk[q,r,ω](r
′) =

∑

i

∆cvk[q,r,ω]φik+q(r
′) (3.97)

where q is the wavevector of the perturbation, which is represented together

with k in the first Brillouin zone. In this case, the variables r, ω and q are

parametrized as indicated above except that the wavevector is parametrized in
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the first Brillouin zone. Now, we can write the Sternheimer equation for periodic

systems. For that, we use the k-Hamiltonian e−ik·r
′

Ĥeir
′·k, replace ψv(r

′) and

∆ψv(r
′) by uvk(r

′) and ∆uvk[q,r,ω](r
′), respectively, and project the cell-periodic

function φik(r
′) on both right sides of Sternheimer equation, to finally obtain

[Hk+q − (εvk ± ω)Sk+q]∆c±vk[q,r,ω] = −[1− Sk+qρ
T
k+q]∆Vk[q,r,ω]cvk (3.98)

Here, the matrix elements of Hk and Sk are calculated through Eqs. 3.95 and

3.96. The elements of the density matrix depending on k are given by

ρkij =
∑

n

c∗kinfkncknj (3.99)

with fkn being the occupations. The expression to calculated the elements of

perturbation matrix is

∆Vijk[q,r,ω] =
∑

R

eik·R
∫

dr′φi(r
′)∆v[q,r,ω](r

′)eiq·r
′

φj(r
′ −R), (3.100)

where ∆v[q,r,ω](r
′) is the cell-periodic component of the perturbation with wavevec-

tor q

∆V[r,ω](r
′) =

1

Nq

∑

q

eiq·(r−r′)∆v[q,r,ω](r
′) (3.101)

The integral in Eq. 3.100 is evaluated in the same way as the one included in the

Hamiltonian matrix elements (Eq.3.95) . For the calculation of the self-consistent

potential in Eq. 3.98 we analyze the density variation in Bloch components as

∆n[r,ω](r
′) =

1

Nq

∑

q

eiq·r∆n[q,r,ω](r
′) (3.102)

and calculate the periodic part ∆n[q,r,ω] on the real space grid through

∆n[q,r,ω](r
′) =

2

Nk

∑

vkσ=±

∑

ij

c∗vik∆c
σ
vjk[q,r,ω]

∑

RR′

e−ik·(R−R′)e−iq·R
′

e−iq·r
′

φi(r
′−R)φj(r

′−R′)

(3.103)
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In the case of the Green function, the cell-periodic part of its analytical and

non-analytical component are

GA
k (r, r

′;ω) =
∑

n

unk(r
′)u∗nk(r)

ω − εnk + iη
(3.104)

and

GN
k (r, r

′;ω) = 2πi
∑

v

δ(ω − εvk)uvk(r
′)u∗vk(r), (3.105)

respectively. They have to be evaluated for each k point. Expanding the functions

unk(r) in the second equation and their corresponding cell-periodic functions we

immediately obtain the following expression

Gk[r,ω](r
′) = 2πi

∑

vij

δ(ω − εk,v)c
∗
vikcvjke

−ikrφi(r)
∑

R

eik(R+r′)φj(r
′ −R) (3.106)

On the other hand, to obtain the linear system for the nonanalytical component

we follow the same procedure used for non-periodic systems. We first expand the

functions unk(r) in terms of the cell-periodic functions, then define all terms that

do not depend on r′ as GA
k[r,ω]i. Thus, we obtain

GA
k[r,ω](r

′) =
∑

i

φki(r
′)GA

k[r,ω]i (3.107)

Finally, we insert this equation into Eq. 3.76 and project both right hand sides

by the cell-periodic function φkj(r) to obtain the linear system

[Hk − ω+Sk]G
A
k[r,ω] = −φ∗

k[r] (3.108)

where φk[r] is a vector containing the values of all cell-periodic functios that are

nonvanishing at r. As for non-periodic systems, the solution of this equation

yields the vector GA
k[r,ω] which is then used to obtain GA

k (r, r
′;ω) through Eq.

3.107. Also, for testing purposes, we calculate the analytical part of the Green

function using both all electronic states and only occupied states, and compare

each other as a way of verifying our results.
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3.5 Real-space grid

In this section we describe how the ingredients of the GW approximation are eval-

uated in the real-space grid of SIESTA. The grid used in a standard calculation

with SIESTA is defined in the fundamental unit cell and its fineness is controlled

by the mesh-cutoff parameter (the maximum kinetic energy of the plane waves

that can be represented in that real space grid) which has energy units (Ecut)

and must be defined in the SIESTA input file. The optimal value for Ecut is

determined by convergence of the Kohn-Sham total energy with respect to this

parameter.

To evaluate the cell-periodic part of both the screened potential W and the Green

function G in which one of their spatial variables is parametrized (f[r](r
′) =

f(r, r′) with f being W or G or ε−1), we use two independent real-space grids.

Both of them defined in the fundamental unit cell. The first of these grids is

used to evaluate the integrals to obtain the matrix elements of the Hamiltonian,

overlap and density matrices, which appear in the corresponding equations to

evaluate W and G. This grid is the same than that used in a standard DFT

calculation. The second grid is used to define the points where W and G are

evaluated in the real space.The accuracy required for G and W in the real space

is usually obtained using a coarser sampling points for the second grid than the

one of the first grid.

3.6 Computational details

As a preliminary application of our approach, we calculate the dielectric function

and the macroscopic dielectric constant for different prototype materials, rang-

ing from insulators to semiconducting materials: lithium chloride (LiCl), silicon,

diamond and germanium. These quantities can be evaluated in two alternative

ways. The first one is using Eq. 3.68 to define the screened Coulomb potential,

which is calculated self-consistently from Eq. 3.65. The selfconsistent procedure

is started using as the initial perturbation the G component of the bare, static

Coulomb potential: ∆V[r,ω](r
′) = exp[i(q+G)·r′], and by taking the Fourier com-

ponent of the resulting self-consistent potential corresponding to the wavevector
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G’. The inverse of the dielectric matrix easily, using Eq. 3.52 transformed to

Fourier space. In the second method, we solve directly the inverse of the dielec-

tric matrix, by using Eq. 3.69 to define the potential entering in the Sternheimer

Equation 3.65, which has the advantage of the need of inverting Eq. 3.52. We

have used both method to compute the dielectric function and macroscopic di-

electric constant with the purpose of validating our results since these method

should be completely equivalent. As we, indeed, obtain the same results, we

will only show those obtained using the second method. The dielectric function

is obtained as ǫ(q, ω) = 1/ǫ−1
00 (q, ω) and the macroscopic dielectric constant as

ǫ0 = ǫ(q → 0, ω = 0).

Our calculations are performed within the local-density approximation (LDA)

to density-functional theory, and with norm-conserving pseudopotentials. The

inverse dielectric matrices are calculated by sampling the Brillouin zone using

a shifted 12 × 12 × 12 grid for diamond, silicon and germanium, and a shifted

10× 10× 10 grid for LiCl. The lattice parameters are 5.43, 3.56, 5.65 and 5.13 Å

for silicon, diamond, germanium and LiCl, respectively. Using a standard triple-ζ

polarized (TZP) basis we obtain direct band gaps of 2.55 eV (Si), 5.61 eV (di-

amond), 0.016 eV (Ge), and 6.08 eV (LiCl), in good agreement with standard

LDA results. In order to generate basis sets for silicon with a large number of

ζ ’s we use an energy-shift parameter of 10 meV. This shift leads to localization

radii of 4.9 Å (Si), 3.9 Å (C) and 5.0 Å (Ge), which is slightly larger that those

adopted in standard ground-state calculations in SIESTA. We compare our results

with plane-wave calculations performed using the ABINIT [50] and YAMBO [51]

software packages, with the same pseudopotentials and Brillouin-zone sampling

for consistency. In particular we adopt a pseudopotential format which allows

us to use identical local and nonlocal components as in ABINIT and YAMBO.

Plane-wave calculations are carried out using kinetic energy cutoffs of 20 Ry for

Si and Ge, and 60 Ry for diamond and LiCl. In the plane wave calculations, di-

electric matrices are obtained within the random-phase approximation using the

Adler-Wiser formulation [52, 53], and we use 92 conductions bands and kinetic

energy cutoffs of 6.9 Ry for silicon, germanium and LiCl, and 12 Ry for diamond.

Within SIESTA, the long-wavelength limit q → 0 is obtained by considering a

small but finite wavevector of q = 0.012π/a, a being the lattice parameter, while
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with plane-waves this limit is calculated analytically.

3.7 Results and Discussion

In this section, we present the results of the study of the convergence of the

macroscopic dielectric constant as a function of the basis set size, comparing

systematically this convergence with the results obtained from plane waves. We

follow the procedure showed in chapter 2 for the generation of the strictly localized

orbitals, including polarized orbitals, to increase the size of the basis set.

3.7.1 Dielectric constant

Silicon

Figure 3.1 (a) shows the variation of the calculated macroscopic dielectric con-

stant of silicon with the size of the basis set (given in terms of the number

of orbitals per atom), for an energy shift and split norm of 10 meV and 0.15,

respectively. The minimal basis set, which is the single-ζ basis, contains four

orbitals per atom (one 3s orbital and three 3p orbitals). Clearly, we can see that

the basis sets not including polarized orbitals converges to a value that is ≈ 10.0

% away from the plane-waves value indicated by the horizontal line. Including

polarized orbitals in the basis set improves considerably the quality of the basis

and the convergence. With the TZP basis (17 orbitals per atom), the value of

the dielectric constant is 12.02, which is within 2 % of our plane-waves results

(ǫ = 12.25). For comparison, the minimal polarized basis set SZP (9 orbitals per

atom) is within 10 % of the convergence value.

In the Fig. 3.1 (b), we present the convergence of the dielectric constant using

only polarized basis sets, for two values of the split norm parameter. By increas-

ing its value, the dielectric constant converges to the the plane-waves value more

rapidly. We assign this trend to the fact that a larger split norm leads to a wider

range of localization radii spanned by the additional basis functions, and hence

improves the completeness of the basis set.
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Diamond

Figure 3.2 (a) shows the macroscopic dielectric constant for diamond as a function

of the basis set size, for a energy shift and split norm of 10 meV and 0.15,

respectively. As in the case of Silicon, the convergence value with the basis set

size trends to two different values depending on whether polarized orbitals are

used or not. Increasing the basis size without including polarized orbitals results

in a slower convergence rate and a converged value slightly smaller than the value

from plane waves. With polarized orbitals convergence trends to the value from

plane-waves ǫ0 = 5.39. The converged value for the polarized basis set is ǫ0 = 5.45

for the 4Z4P basis, which includes 36 orbitals per atom. As in the case of silicon

a reasonably converged value of (ǫ0 = 5.40) is already obtained using the TZP

basis.

Figure 3.2 (b) shows the convergence of the dielectric constant with respect to

the polarized basis size for two different values of split norm. As for silicon, a

similar conclusion can be obtained: by increasing the split norm (i.e. by reducing

the cutoff radii of the subsequent ζ ’s beyond the first-ζ radius) the converged

value is reached more rapidly, which can be attributed to the fact that orbitals

are more compressed.

Germanium

Figure 3.3 (a) shows the calculated macroscopic dielectric constant of germanium

as a function of the basis set size, given in terms of orbitals per atom. As in

the previous cases, the basis sets with and without localized orbitals converge to

different asymptotic values. However, in both cases the converged value is larger

than the value from plane waves. Similarly to the case of silicon and diamond the

polarized basis sets converge to a higher dielectric constant ǫ0 = 19.23. This value

is 8 % larger than the reference plane waves result of ǫ0 = 17.71. Also, we find

that the TZP basis set gives a dielectric constant close to the full converged value

(ǫ0 = 18.9). Fig. 3.3 (b) shows the convergence of the dielectric constant with

respect to the basis set size for two different values of split norm. As observed in

the case of silicon and diamond, convergence is reached more rapidly when the

cutoff radii of the subsequent ζ ’s beyond the single-ζ are shorter.
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Figure 3.1: (a): Calculated macroscopic dielectric constant of silicon as a function

of basis size, given in terms of orbitals per atom. The reference planewaves

calculation is indicated by the horizontal line. The datapoints cluster around

two distinct curves: the upper curve corresponds to basis sets including polarized

orbitals, and the lower curve to basis sets which are not polarized. The number

of ζ functions included is indicated by the labels SZ, DZ, TZ etc. The number

of polarization orbitals for a given number of ζ functions increases towards the

right-hand side, has indicated for the case of the DZ basis. The energy shift is 10

meV and the split norm is 0.15. (b): Calculated macroscopic dielectric constant

of silicon as a function of basis size, for two different values of the split norm.
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Figure 3.2: (a): Calculated macroscopic dielectric constant of diamond as a func-

tion of basis size, given in terms of orbitals per atom. The reference planewaves

calculation is indicated by the horizontal line. The datapoints cluster around

two distinct curves: the upper curve corresponds to basis sets including polar-

ized orbitals, the lower curve to basis sets without polarization. The number

of ζ functions included is indicated by the labels SZ, DZ, TZ etc. The number

of polarization orbitals for a given number of ζ functions increases towards the

right-hand side, has indicated for the case of the DZ basis. The energy shift is 10

meV and the split norm is 0.15. (b): Calculated macroscopic dielectric constant

of silicon as a function of basis size, for two different values of the split norm.
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Figure 3.3: (a): Calculated macroscopic dielectric constant of germanium as

a function of basis size, given in terms of orbitals per atom. The reference

planewaves calculation is indicated by the horizontal line. The datapoints cluster

around two distinct curves: the upper curve corresponds to basis sets including

polarization orbitals, the lower curve to basis sets without polarization. The num-

ber of ζ functions included is indicated by the labels SZ, DZ, TZ etc. The number

of polarization orbitals for a given number of ζ functions increases towards the

right-hand side, has indicated for the case of the DZ basis. The energy shift is 10

meV and the split norm is 0.15. (b): Calculated macroscopic dielectric constant

of silicon as a function of basis size, for two different values of the split norm.

In order to demonstrate the generality of our approach we present in Table

3.1 our calculated dielectric constants for germanium, diamond, and LiCl. The

values shown in Table 3.1 are obtained by using the default SIESTA values for

the parameters defining the basis set. Table 3.1 provides further support to our
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previous finding by showing that the TZP basis provides results which lie within

1% − 5% of those of the reference plane-wave calculations. We expect further

improvement upon designing basis sets specifically optimized for the Sternheimer

scheme proposed in this work. In particular the use of numerical diffuse orbitals

deserves a systematic assessment.

Table 3.1: Dielectric constant of Si, Ge, diamond and LiCl calculated using our

Sternheimer approach and compared to the reference plane-wave calculations and

experimental data. We report our results obtained using both the minimal SZ

basis and the TZP basis, as generated using the default SIESTA values for the

basis set parameters (energy shift of 200 meV and split norm of 0.15)

SZ TZP PW Expt.

Si 8.32 12.12 12.25 11.9

Ge 15.52 18.74 17.71 16.2

Diamond 3.96 5.38 5.39 5.7

LiCl 1.69 2.71 2.83 2.8

Fig. 3.4 shows the frequency-dependent dielectric function of silicon ǫ(ω) for

the minimal SZ basis set, the TZP basis set, and the reference planewaves calcu-

lation. The SZ basis performs very poorly, the spectral weight being incorrectly

transferred from the main absorption peak to higher energy. This is consistent

with the small value of the macroscopic dielectric constant obtained with the SZ

basis in Fig. 3.1.
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Figure 3.4: Calculated dielectric function of silicon: calculations using the SZ

basis (dashed line), the TZP basis (solid line), and the reference planewaves

result (dotted line). A Gaussian smearing of width 0.1 eV is used.

The TZP basis yields results in very good agreement with our reference

planewaves result. The location and intensity of the main peaks and shoulders

are correctly reproduced. We note, however, a very slight blueshift of the hight-

energy peaks.

Figures 3.5 and 3.6 show frequency-dependent dielectric functions of diamond

and germanium, respectively. Also in these cases we compare the performance

of the SZ basis and the TZP basis with the reference planewaves calculation.

Conclusions similar to the case of silicon can be drawn: the SZ basis misses the

main peak and yields a blueshift of the other peaks, while the TZP basis is in

better agreement with the reference planewaves calculation.
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Figure 3.5: Calculated dielectric function of diamond: calculations using the SZ

basis (dashed line), the TZP basis (solid line), and the reference planewaves result

(dotted line). A Gaussian smearing of width 0.1 eV is used.
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Figure 3.6: Calculated dielectric function of germanium: calculations using the

SZ basis (dashed line), the TZP basis (solid line), and the reference planewaves

result (dotted line). A Gaussian smearing of width 0.1 eV is used.

Fig. 3.7 shows the wavevector dependence of the dielectric function ǫ(q, ω = 0)

for silicon, diamond, and germanium, comparing the performance of the SZ and

the TZP basis set. In all cases the wavevector dependence shows the correct

behaviour, although the SZ basis yields a smaller dielectric function across the

full range of wavevector.
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Figure 3.7: Wavevector dependence of the dielectric function of (a) silicon, (b) di-

amond, and (c) germanium. We compare the performance of the SZ and TZP ba-

sis sets. The upper horizontal line in each panel represents the static planewaves

value ǫ0 for q = 0, and the lower horizontal line indicates the vacuum dielectric

constant ǫvac
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3.7.2 Green function

We perform several tests with the purpose of verifying that we compute the calcu-

lation of the Green function correctly. These tests are performed for crystalline

silicon as a test system. Fig. 3.8 displays its band structure calculated with

SIESTA.
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Figure 3.8: Si band structure calculated with SIESTA using the LDA functional

and a DZP basis set. The direct and indirect band gap are 2.59 and 0.67 eV,

respectively.

We first show the periodicity of the module of the Green function for silicon

with r = r′ calculated for several k points, keeping ω constant. Fig. 3.9 depicts

the module of the Green function for Si (with r = r′) against r, computed for the

irreducible k points of the first Brillouin zone. We observe that for all k points

(labelled with a number) the Green function has the periodicity of the Si unit

cell.
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Figure 3.9: Module of Green function for silicon calculated using Eqs. 3.104 and

3.105 (only occupied electronic states required), against r. It is calculated for all

the irreducible k points of the first Brillouin zone of silicon, which are labelled

with a number. The module of the Green function was computed along the 〈001〉
direction of the Si unit cell, with r = r′ and ω = 1.0 eV (which is in the middle

of the Si band gap). η is 0.2 eV.

A second test consists in calculating the density of states D(ω) (DOS) of

silicon from the spectral function of the Green function,

D(ω) =

∫

drA(r, r;ω) =
1

π

∫

drIm|G(r, r;ω)| (3.109)

with r = r′. Since we approximate G as that of a noninteracting particle system

G = G0, D(ω) can be compared with the density of states from a standard DFT

calculation. The Fig. 3.10 we show a representative calculation of the spectral

function for Si at Γ point. We show that the projection of the spectral function on

the Kohn-Sham orbitals peaks exactly at the position of the Kohn-Sham energies,

indicating that the diagonal part of the Green function is calculated correctly.
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Figure 3.10: Spectral function for Si (solid-line curves) projected on the first

lowest energy Kohn-Sham eigenfunctions, at gamma point, that is, A(ω) =

〈n|A(r, r;ω)|n〉 = (1/π)〈n|ImG(r, r;ω)|n〉, with |n〉 being the Kohn-Sham eigen-

function. The Fermi level is set to zero. We use a value of 0.1 for η. The

Kohn-Sham eigenvalues are indicated by the red arrows.

As the previous test only allows to verify the diagonal elements of the Green

function, to verify all its elements we proceed to calculate the complete Green

function matrix using: (i) the equations of its analytical and nonanalytical com-

ponents (Eqs. 3.104 and 3.105, which only require the occupied electronic states),

and (ii) the standard equation that requires to compute over all electronic states

(Eq. 3.70), and then comparing both results.

Fig. 3.11 shows the result of comparing the module of the Green function for Si

calculated using both methods, where several k points are considered and with

r = r′. We obtain that both methods yield the same values for the module of the

Green function. This confirms that the Green function is correctly computed.
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Figure 3.11: Module of Green function for silicon calculated using: (i) all elec-

tronic states through Eq. 3.70 (red circles) and (ii) only occupied electronic states

through Eqs. 3.104 and 3.105 (blue dots), for the irreducible k points of the first

Brillouin zone of the silicon unit cell (however, the different k points are not dis-

tinguished to make the comparison clearer). The module is plotted as a function

of r. It was computed along the 〈001〉 direction of the Si unit cell, with r = r′

and ω = −1.0 eV (which is in the middle of the Si band gap). η is 0.2 eV.

Next, we compare the module of the Green function using r 6= r′ and k 6=
(0, 0, 0). Fig. 3.12 depicts a representative results where these conditions were

met. Both procedures give the same values for the Green function, confirm-

ing as in the previous case, that we compute Green function correctly. We also

performed several calculations (not shown) fixing r′ at different points and con-

sidering different k points.
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Figure 3.12: Module of the Green function for Si as a function of r calculated

using all electronic states (red circles) and only the occupied electronic states

(blue dots). It was calculated along the 〈001〉 direction of the Si unit cell, with

r′ fixed at (0,0,0), ω = 1.0 eV, k = (0.2,−0.2, 0.2) (in cartesian coordinates) and

η = 0.2 eV.

Finally, we investigate the locality of the frequency-dependent Green func-

tion in real space. One of the main problems we face with the application of

ab initio methods, like DFT or the GW approximation, to large system, is the

scaling of the number of operations with the system size. For the case of ap-

proaches based on DFT, using strictly local orbital basis sets has the advantage

that some variables, like the Hamiltonian and the overlap matrices, have a spar-

sity form (a form of locality), which makes the number of operations needed to

compute the approach scale linearly with the size of the system. This is one of

the most important features of the SIESTA code. The use of strictly local or-

bitals could also make the frequency-dependent one-particle Green function to be

local, which would enhance the scaling of the GW approximation implemented
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in SIESTA. Recently, A. Schindlmayr [54] investigated systematically the locality

of the imaginary-time-dependent one-particle Green function built from Wannier

orbitals for several system including insulators and metals. Here, we investigate

the decay properties of the frequency-space one-particle Green function. For this

purpose, we use a Si supercell with size 4× 4× 4 and a DZP basis set. Fig. 3.13

shows the decay of the module of the Green function along a symmetric direction

in the supercell. We observe that it gradually decays as |r−r′| increases, but not
sufficiently quickly to be able to neglect it beyond any distance from the origin.
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Figure 3.13: Decay of the module of the Green function for a silicon calculated

using the linear system, along the 〈001〉 direction of a Si 4 × 4 × 4 supercell,

as a function of |r − r′|. Here, r and r′ simultaneously run over this direction.

Parameters: k = 0, ω = 1.0 eV, and η = 0.2 eV. To compute the Kohn-Sham

eigenvalues and eigenfunction, a DZP basis set was used. The figure only shows

the left half of the whole graph (where |r − r′| goes from 0 to 40.2 Bohr). The

right half is the reflection of the left one.

Fig. 3.14 shows the logarithm of the module of the Green function calculated
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for several directions in the Si supercell. In all cases we observe that the Green

function decays with distance, but not exponentially.
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Figure 3.14: Log of the module of the Green function for silicon calculated using

the linear system, along the 〈001〉 (red dots), 〈110〉 (blue dots) and 〈111〉 (green
dots) directions of a Si 4 × 4 × 4 supercell, as a function of |r− r′|. Here, r and

r′ simultaneously run over each of these directions. Parameters: k = 0, ω = 1.0

eV, and η = 0.2 eV. We only show the values of the Log of the Green function

obtained with |r−r′| between zero and the middle of the length of each direction

in the supercell.

For future work, we will proceed to code the subroutine to compute the self-

energy operator and evaluate the quasiparticles energies.
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Chapter 4

Constrained Density Functional

Theory (CDFT)

4.1 Introduction

The two most important methods to study electronic excitations in molecules

and periodic systems that lie on density functional theory (DFT) are the time-

dependent and the constrained DFT, named TDDFT and CDFT, respectively.

In TDDFT, the electronic density and the external potential are time dependent,

which allows to reproduce, in principle, the whole electronic spectrum through

the linear response of the electronic density with respect to changes of the exter-

nal potential. Although the formalism of this method is exact, we do not know

the exact time-dependent exchange-correlation functional. This is the main draw-

back of TDDFT method. In practice, one often employs the time-independent

exchange-correlation kernel (i.e the adiabatic approximation), whether the lo-

cal density or the generalized gradient approximation. It has been found that

TDDFT calculations with this approximation gives excitation energies of low-

lying states that agree well with experiments. However, such approximation fails

for describing long-range charge-transfer (CT) states because of a self-interaction

error in the wave function energies [17]. On the other hand, CDFT has emerged

as a powerful method for studying excited electronic states in systems with a

constraint on their electronic density, using the basic machinery of Kohn-Sham
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self-consistent field procedure. Unlike TDDFT, CDFT is able to determine those

excited states that are ground state, i.e. the lowest energy, of an alternative

external potential, allowing to deal with problems of electronic excitations for

which TDDFT fails, including long-range charge transfers. Also, this method has

proven to be successful in describing charge and magnetization fluctuations in

solids, parametrizing model Hamiltonians based on DFT calculations and char-

acterizing electron transfer reactions in molecules [4, 5, 6].

To obtain the constrained state in CDFT, we have to find the external potential

that has the constrained density as its ground state. Finding this external poten-

tial in an efficient way is one of the major challenges in CDFT. One of the earliest

techniques was inspection, where one had to explore many potential values until

finding the potential that satisfies the constraint condition [4]. This technique is,

however, computationally intensive and becomes prohibitive for systems with sev-

eral constraints. Recently, T. Van Voorhis and Q. Wu [4, 5] have proposed a more

efficient method based on the Lagrange multipliers to find efficiently the potential

that satisfies the constraint condition. In their method a Lagrange functional is

constructed from the Kohn-Sham energy functional with a constraint, which is

then maximized. By determining the expressions of the first derivatives of such

functional, they found that the maximization can be performed only with respect

to Lagrange multiplier (called in what follows as constraining potential), since

the electronic density implicitly depends on this potential. They also found, by

evaluating the second derivative of the functional with respect to the constraining

potential, that the functional is concave, having one maximum. To obtain the

constraining potential that maximizes the functional, an optimization technique

like the Newton’s method should be used. In the present work, we implement

and employ the original equations of CDFT method proposed by Van Voorhis et

al., but following a different procedure for the maximization of the functional.

This chapter is organized as follows. In Sec. 4.2 the theory of the CDFT ap-

proach is given. Then, details of the implementation of this approach in the

SIESTA code are discussed in Sec. 4.3. Next, in Sec. 4.4 the qualitative and

quantitative tests to verify our approach are discussed along with the obtained

results. Finally, we apply our approach to a real problem. The description of the

studied system and our results are show and discussed in Sec. 4.5.
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4.2 Derivation of the constrained DFT method

Before deriving the equations of the method we implemented, let us derive the

standard Kohn-Sham equations as it is an interesting starting point to introduce

the concept of Lagrange multipliers within the density functional theory formal-

ism.

To obtain the ground-state total energy of a system with external potential Vext,

we minimize the Kohn-Sham energy functional with respect to the electronic

density n(r)

EKS = min
n

(

Ts +

∫

Vext(r)n(r)dr+ EHartree[n(r)] + Exc[n(r)]

)

(4.1)

This minimization is subjected to the orthonormality condition

∫

ψ
∗

i (r)ψj(r)dr = δij (4.2)

Thus, the Kohn-Sham energy is minimized using the Lagrange multiplier method,

where the Lagrange functional LKS is built, such that its final expression is

LKS = EKS[n(r)] +
∑

kj

εkj

(

δkj −
∫

ψ
∗

k(r)ψj(r)dr

)

(4.3)

with εkj being the Lagrange multipliers. The stationary equation of LKS with

respect to the orbitals ψ is obtained by variational differentiation (using the chain

rule):

δLKS

δψ
∗

i (r)
=

δTs

δψ
∗

i (r)
+

[

δEext
δn(r)

+
δEHartree
δn(r)

+
δExc
δn(r)

]

δn(r)

δψ
∗

i (r)
+
∑

j

εijψj(r) = 0 (4.4)

with
δn(r)

δψ
∗

i (r)
= ψi(r) (4.5)

δTs

δψ
∗

i (r)
= −1

2
∇2
iψi(r) (4.6)
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The three terms inside the squared brackets on the right hand side of Eq. 4.4 are

the external (Vext), Hartree (VHartree) and exchange-correlation (Vxc) potentials,

respectively. Inserting Eqs. 4.5 and 4.6 into Eq. 4.4, we get the expression,

[

−1

2
∇2 + Vext(r) + VHartree(r) + Vxc(r)

]

ψi(r) =
∑

j

εijψj(r) (4.7)

where the terms inside the squared brackets just correspond to the Kohn-Sham

Hamiltonian HKS. In principle, this is the equation we need to solve to obtain

the ground-state total energy of the system, but it is not directly solved due to

the sum over the Lagrange multipliers εij. To get a simpler equivalent expression

for the above equation that does not include a sum over the Lagrange multipliers

εij , we introduce an appropriate unitary matrix (called U), so that ψj =
∑

i U
+
jiψi

and ψi =
∑

j Uijψj (with U+ being the conjugate transpose of U). The result of

the basis change, in the matrix representation, is

UHU+ψ = UεU+ψ (4.8)

where ψ is a vector that contains the ψi. The matrix products UεU+ is diagonal.

Thus, for each i we can write

HKSψi = εiψi. (4.9)

These equations are just the well-known Kohn-Sham equations and they are to-

tally equivalent to the set of equations given by Eq.4.7, but easer to handle as

they do not include the sum over Lagrange multipliers. They should be solved

self-consistently because the terms of potential in the Kohn-Sham Hamiltonian

depend on the electronic density, which is constructed from the Kohn-Sham or-

bitals ψi.

In CDFT, additional constraints are imposed to the electronic density, for in-

stance, to confine the charge of the system within a certain group of atomic or

molecular orbitals, or within a certain spatial region of the system, such that the

integral of the electronic density n(r) over the constrained orbitals (or volume)

of the system must be equal to the desired confined charge. The CDFT method
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can be applied to the study of neutral electronic excitations, only if there is full

evidence proving that the constrained electronic state corresponds to the elec-

tronic excitation we want to describe. Other application of this method include

the study of charge and magnetization fluctuations in solids, parametrization of

model Hamiltonians based on DFT calculations and characterization of electron

transfer reactions. The main advantages of the CDFT method are that it does

not require a large amount of computational resources and that its implementa-

tion is simple and can be easily coded within any DFT code.

Many interesting problems can be handled using the CDFT method, including

charge transfer reactions, localization of charge on impurities including d and f

orbitals of metallic atoms, and description of magnetization properties. If we

confine a certain charge Nc within a given volume Ω of the system, then

∫

Ω

n(r)dr = Nc. (4.10)

The net magnetization constraint can be defined as

∫

Ω

m(r)dr =M (4.11)

where m(r) ≡ nα(r)−nβ(r), with α and β indicating the two components of spin.

All the above constraint conditions can be expressed in a more general way as

∑

σ

∫

wσ(r)nσ(r)dr = Nc (4.12)

where wσ(r) is a weight function that defines the region of constraint for each

spin of the electronic density, and can be define in several ways (for instance, can

be defined as 1 in the constrain region or 0 otherwise.). Nc is the charge in the

part of the system (whether a volume, or atomic or molecular orbitals) where the

electronic density has been constrained. The integral of the product of the weight

function and electronic density must give the constrained charge. The aim is to

find the electronic density that satisfies this condition. To achieve it, Q. Wu and

T. Van Voorhis [5] use the Lagrange multipliers to construct a new functional

from the Kohn-Sham energy functional, containing the constraint condition. To
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show the derivation of the method we consider a system with only one constraint,

although the method can be easily extended for systems with several constraints,

yielding a set of equation having the same form than for the case of using only

one constraint.

In the Q. Wu and T. Van Voorhis’ method the new functional W is defined as

W [n, Vc, εkj] = EKS[n(r)]−
∑

kj

εkj

(

δkj −
∫

ψ∗
k(r)ψj(r)dr

)

−Vc
(

Nc −
∫

w(r)n(r)

)

(4.13)

with Vc being the Lagrange multiplier for the constraint condition. In the above

equation we omit the spin dependence for simplicity. Following a similar proce-

dure to that used for the derivation of the Kohn-Sham Hamiltonian, including

the change of basis, the stationary equations of the energy functional W with

respect to the conjugated orbitals ψj
∗
are given by

[HKS + Vcwc(r)]ψi(r) = εiψi(r) (4.14)

This set of equation has the form of the Kohn-Sham equations except for the ad-

ditional term Vcwc(r) that resembles a perturbing potential on the unconstrained

system. The stationary equation with respect to the Lagrange multiplier Vc

(called in what follows constraining potential) is obtained from the total first

derivative of the functional with respect to constraining potential given by

dW

dVc
=

∑

i

(

δW

δψ∗
i

∂ψ∗
i

∂Vc
+ c.c.

)

+
∂W

∂Vc
= 0 (4.15)

where c.c. stands for the complex conjugate. Using the condition δW
δψ∗

iσ

= 0 of

Eq. 4.14 we finally obtain the stationary equation, which is just the constraint

condition,
dW

dVc
=

∫

wc(r)n(r)dr−Nc = 0. (4.16)

The constrained state will correspond to the solution of the stationary equations.

These equations (Eqs. 4.14 and 4.16) illustrate how the CDFT method operates

to find the constrained state. This is done by adding the appropriate constrain-

ing potential (which acts as a perturbation) to the Kohn-Sham Hamiltonian (Eq.
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4.14), so that the resulting self-consistent electronic density must satisfy the con-

straint condition (Eq. 4.16). Since the stationary equations are coupled through

the electronic density, they have to be solved iteratively using an optimization

technique. Note that for an certain value of the constraining potential, Eq. 4.14

gives a unique set of Kohn-Sham wave functions (electronic density) and eigen-

values once self-consistency is reached. This electronic density implicitly depends

on the constraint potential and therefore W is a function of the constraining po-

tential only, W (V c). To find the extrema of this function as a function of Vc, one

has to evaluate its second derivative,

d2W

dV 2
c

=
d

dVc

[
∫

wc(r)ρ(r)dr−Nc

]

(4.17)

Using the chain rule, it transforms into

d2W

dV 2
c

=
∑

σ

Nσ
∑

i

∫

wc(r)ψ
∗
i (r)

dψi(r)

dVc
dr+ c.c. (4.18)

The term dψi(r)/dVc can be evaluated using the first-order perturbation theory

with Vcwc being the perturbation of the Kohn-Sham Hamiltonian in Eq. 4.14.

Therefore we obtain

d2W

dV 2
c

= 2
∑

σ

Nσ
∑

i

∑

a>Nσ

|〈ψiσ|wσc |ψaσ〉|2
εiσ − εaσ

(4.19)

where the second and third sums go over the occupied and unoccupied Kohn-

Sham electronic states of the system, respectively. Analysing the components

of the right hand side of the second derivative, we observe that the numerator

is positive, but the denominator is negative because the eigenvalues are always

lower in energy for the occupied states than for the unoccupied states. Conse-

quently, the second derivative is negative, which means that the functional W

has one extrema point that is a maximum. Thus, to obtain the total energy Ect

of the constraint system, W should be maximized with respect to the constraint
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potential and simultaneously minimized with respect to the electronic density,

Ect(Nc) = max
Vc

min
n
W [n, Vc;Nc] (4.20)

In this thesis, we implement the CDFT method proposed by Van Voorhis et. al.

and test our implementation with the study of charge transfer reactions consid-

ering different systems, as this kind of processes has been extensively studied by

Van Voorhis et al. In such reactions, a certain charge NCT is transferred from a

group of atoms (or orbitals) of a system that acts as an electron donor, to another

group of atoms (or orbitals) of the same system that acts as an electron acceptor.

To describe the state of the system with the transferred charge NCT , we have to

constrain the charge in the donor and acceptor.

To define the NCT , first we have to define how to assign electrons to an atom or

group of atoms in a molecule or solid. This is not straightforward as electrons are

shared between atoms forming bonds, causing the fundamental problem of decid-

ing what is the extension of an atom in a molecule or solid. Moreover, the charge

on an atom is not an observable in quantum mechanism. In fact, there are many

prescriptions to partition electrons among the atoms in a system (all of them

physically or chemically motivated), including Mulliken and Löwdin populations,

Voronoi charges, and Becke’s multicenter integration scheme. While some of these

techniques are based on partitioning the charge between the orbitals (such as the

Mulliken and Löwdin schemes), others assign charge to spatial regions associated

to atoms or molecules in a system (this is the case of the Voronoi charges).

In the next section we will describe the charge assignment we use to study the

charge transfer reactions.

4.2.1 Mulliken and Löwdin charges and the weigh func-

tion

Although there are several prescriptions to perform the charge distribution be-

tween the orbitals, atoms or molecules in a system, none of them allows to assign

the charge unambiguously. Here, we focus on the Mulliken and Löwdin popula-
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tion schemes as we employ these to define the weight function. In these schemes,

the charge is partitioned between the atomic orbitals and therefore the charge

assigned to a particular group of atoms is the sum of charge contained in the

orbitals that belongs to this group. Within the formalism of local atomic orbitals

φµ, the total number of electrons N in a system can be obtained as the trace of

the product of the density ρ and overlap S matrices, that is,

N = Tr[ρS] =
∑

µν

ρµνSνµ. (4.21)

with ρµν =
∑

i ciµc
∗
iν and Sµν = 〈φµ|φν〉. This equation is easily derived from

N =
∫

ρ(r)dr using ρ(r) =
∑occ

i |ψi(r)|2 and expanding the Kohn-Sham wave

functions ψi in the local basis orbitals.

In the Mulliken population analysis, the number of electrons assigned to a par-

ticular orbital φµ is the value of the diagonal element (ρS)µµ. Consequently, the

Mulliken number of electrons NM associated to a group of atoms C in the system

is given by

NM
C =

∑

µ∈C

(ρS)µµ (4.22)

For the case of Löwdin populations, one starts from a different but equivalent

form to obtain the total number of electrons in the system, given in terms of

density matrix and the squared root of the overlap matrix, S1/2:

N = Tr[S1/2ρS1/2] (4.23)

From this equation, the Löwdin number of electrons NL associated to a particular

group of atoms C is

NL
C =

∑

µ∈C

(S1/2ρS1/2)µµ (4.24)

Similarly to the total number of electron or the charge over a group of atoms,

we can define the weight function w(r) within the formalism of the local atomic

orbitals (that is, its matrix representation w), using the Mulliken or Löwdin

scheme. We start by inserting the expression for the electronic density (n(r) =
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∑occ
i |ψi(r)|2) into the Eq. 4.12, obtaining

NC =

occ
∑

i

∫

w(r)ψ∗
i (r)ψi(r)dr (4.25)

then, we expand the Kohn-Sham wave functions ψi in the local orbital basis,

NC =
∑

i

∑

µ

∑

ν

c∗iµciν

∫

φ∗
µ(r)w(r)φν(r)dr (4.26)

where the integral is the definition of the matrix element wµν of the weight func-

tion w.

As a further step, rearranging the order of the sums in the latter equation we get

NC =
∑

µ

∑

ν

∑

i

c∗iµciνwµν . (4.27)

In this equation, for each pair of indexes µ and ν the sum over i gives the den-

sity matrix element ρµν , which is equivalent to ρνµ since the density matrix is

hermitian and real, leading to

NC =
∑

µ

∑

ν

ρνµwµν = Tr[ρw] (4.28)

This is just the definition of the constraint condition in the formalism of local

bases, that is given as the trace of the product of the density and weight function

matrix.

Now, we proceed to define the matrix elements of w within the Mulliken and

Löwdin population schemes. For the Mulliken scheme, each matrix element wMµν

associated to the orbitals µ and ν, adopts one of the three value given below

depending on whether the orbital is inside the constraint domain or not,

wMµν =



















Sµν , if µ ∈ C and ν ∈ C

1
2
Sµν if µ ∈ C or ν ∈ C

0 if µ ∋ C and ν ∋ C

(4.29)
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so that NM
c = Tr[ρwM ] =

∑

µ∈C(ρS)µµ.

In the case of Löwdin populations, by expanding the matrix product of Eq. 4.24

and rearranging the order of the components and sums, we obtain a expression

that contains the definition of the weight function implicitly,

NL
c =

∑

µ∈C

(S1/2ρS1/2)µµ (4.30)

=
∑

µ∈C

∑

νλ

S1/2
µν ρνλS

1/2
λµ (4.31)

=
∑

νλ

ρνλ
∑

µ∈C

S
1/2
λµ S

1/2
µν (4.32)

=Tr[ρwL] (4.33)

where the matrix elements of wL is given by

wLγν =
∑

µ∈C

S1/2
γµ S

1/2
µν (4.34)

The definitions given above for the weight function are only valid to study finite

systems or periodic systems at Γ point. In this thesis, we proceed to extend

the definition of the weight function using Mulliken scheme for k points. It is

performed using the overlap and density matrix in the real space where the total

number of electrons is obtained as

N =

u.c.
∑

µ

sc
∑

ν

ρµνSµν (4.35)

here, the first sum runs over all orbitals of the reference unit cell, while the second

sum runs over those orbitals that belong to the neighbouring cells that overlap

with the orbitals of the reference unit cell. From this definition and following

a similar procedure than that used with the Mulliken scheme at Γ point, the

constraint condition with k points is given by

NM
c =

u.c.
∑

µ

sc
∑

ν

ρµνwµν (4.36)
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where the matrix elements of the weight function are

wMµν(ν≡ν′) =



















Sµν , if µ ∈ C and ν ′ ∈ C

1
2
Sµν if µ ∈ C or ν ′ ∈ C

0 if µ ∋ C and ν ′ ∋ C

(4.37)

here, ν ≡ ν ′ stands to indicate that ν ′ is the equivalent orbital of ν in the

unitary cell, and C is the constraint domain. Instead of deriving the Eq. 4.37,

we demonstrate that it is totally equivalent to the definition of the Mulliken

population of a group of atoms C in the unit cell, which is given by

NM
c =

u.c.
∑

µ∈C

sc
∑

ν

ρµνSµν (4.38)

We start by splitting the first sum of Eq. 4.36 in two: one running over the

orbital inside the constraint domain C and the other one going over the orbitals

outside this domain.

NM
C =

u.c.
∑

µ∈C

sc
∑

ν

ρµνwµν +
u.c.
∑

µ∋C

sc
∑

ν

ρµνwµν (4.39)

Then, we divide the second sum of each term on the right hand side of the previous

equation, into two components: one of them containing all the elements ρµνwµν

where the equivalent orbital of ν in the unit cell, which is named as ν ′, is inside the

constraint region. Thus, the other term should contain all the elements ρµνwµν

for which the equivalent orbital of ν in the unit cell is outside the constraint

domain, this is,

NM
C =

u.c.
∑

µ∈C

{
u.c.
∑

ν′∈C

sc
∑

ν≡ν′

ρµνwµν+

u.c.
∑

ν′∋C

sc
∑

ν≡ν′

ρµνwµν}+
u.c.
∑

µ∋C

{
u.c.
∑

ν′∈C

sc
∑

ν≡ν′

ρµνwµν+

u.c.
∑

ν′∋C

sc
∑

ν≡ν′

ρµνwµν}

(4.40)
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Now, we insert the suitable definition for the weight function elements, according

to the Eq. 4.37, into each term of the previous equation, getting thus

NM
C =

u.c.
∑

µ∈C

u.c.
∑

ν′∈C

sc
∑

ν≡ν′

ρµνSµν + 1/2

u.c.
∑

µ∈C

u.c.
∑

ν′∋C

sc
∑

ν≡ν′

ρµνSµν + 1/2

u.c.
∑

µ∋C

u.c.
∑

ν′∈C

sc
∑

ν≡ν′

ρµνSµν

(4.41)

Since ρµν = ρ∗νµ and real (and similarly for Sµν), the third term on the right hand

side of the Eq. 4.41 (called β) can be transformed into

β = 1/2
u.c.
∑

µ∋C

u.c.
∑

ν′∈C

sc
∑

ν≡ν′

ρνµSνµ (4.42)

Using the following relation ρνµ ≡ ρν′′µ′ (with ’≡’ meaning ’equivalent by trans-

lation’) where ν ′′ is in the unit cell but out of the constraint region, and µ′ is an

orbital of the supercell so that its equivalent orbital within the unit cell is in the

constraint region, we get

β = 1/2

u.c.
∑

ν′′∈C

u.c.
∑

µ′′∋C

sc
∑

µ′≡µ′′

ρν′′µ′Sν′′µ′ (4.43)

Then, we perform a change of indexes, obtaining thus

β = 1/2
u.c.
∑

µ∈C

u.c.
∑

ν′∋C

sc
∑

ν≡ν′

ρµνSµν (4.44)

Finally, substituting the last term of the right hand side of Eq. 4.41 by the

expression of the Eq. 4.44 and adding all terms, we get that Eq. 4.36 is totally

equivalent to Eq. 4.38,

NM
c =

u.c.
∑

µ∈C

sc
∑

ν

ρµνSµν (4.45)

On the other hand, obtaining the expression for the matrix elements of the weight

function with k points within the Löwdin population scheme has some difficulties.

One of them is that computing the squared root of the overlap matrix in the real

or reciprocal space is not trivial.
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4.3 Methodology

To find the maximum of the functional W (V c) we use the Newton’s iterative

method. In this method, the maximization of any function with continuous

derivatives can be performed employing its first and second derivatives, with-

out evaluating the function itself. The analytical expressions for the first and

second derivatives of W (Vc) seem straightforward. However, the evaluation of

the second derivative could be computationally demanding as it contains a sum

over the unoccupied states. For efficiency, we evaluate numerically the second

derivative by calculating the first derivative for two values of the constraining

potential. To evaluate the derivatives of W (Vc) at a certain value of constraining

potential, we first solve the Eq. 4.14 self-consistently for this constraining poten-

tial. Then, the resulting electronic density is used to perform the evaluation of

the derivatives.

Unlike the computational algorithm implemented by Van Voorhis et al. to per-

form the maximization of function W (Vc), in this thesis we code an alternative

procedure that describes the physics of the CDFT method accurately. In Fig. 4.1,

we compare the algorithm coded by us, with the one followed by Van Voorhis et.

al. Basically, in our approach we employ two loops: an outer loop to make the

maximization of the function W (V c) using the Newton’s method, and an inner

loop to solve the Eq 4.14 self-consistently (for a particular value of constraining

potential). By contrast, in the T. Van Voorhis et al. approach these loops are

inverted, such that the maximization and the self-consistency are performed in

the inner and outer loop, respectively. In our algorithm (diagram on the left

in the Fig. 4.1), we first declare the initial CDFT variables (apart from those

required for a standard DFT calculation) in a input file, including the initial

constraint potential Vc, the orbital set of the acceptor and donor, the charge to

be transferred between the donor and acceptor (this is defined through Nc as

will be discussed in Sec. 4.2.1), the population scheme to compute the weight

function w, and the tolerance criteria for the first derivative of W . Optionally,

we can declare the step length for the constraint potential to estimate the second

derivative (its default value is of 1.0 × 10−4 Ry). Then, SIESTA computes the

elements of the weight function matrix wc. wc only depends on Sµν , so it can
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Figure 4.1: Comparing the algorithm implemented by us (A) with the one used
by T. Van Voorhis et al. (B). The standard self-consistency loop is indicated by
the blue arrow.

be calculated once and kept fixed during the whole CDFT calculation. Next,

the outer loop (the maximization of W (Vc)) is initialized by adding the elements

Vcwij (where Vc is the initial constraining potential) to the corresponding stan-

dard Kohn-Sham Hamiltonian matrix elements Hij calculated previously. The

resulting constrained Hamiltonian is solved self consistently (as usual in a stan-

dard DFT calculation) in the inner loop until the convergence of the electronic

density is reached. During self-consistency the constraining potential Vc remains

constant. Once self-consistency is reached, we leave the inner loop and go to

the next step of the outer loop that consists in evaluating the first and second

derivative of W using the converged electronic density. Then, we compare the

value obtained for the first derivative with the predefined tolerance value. If the

first derivative does not satisfy the convergence criteria, we estimate a new value

for the constraint potential by performing a step of the Newton’s method. The

new constraint potential together with the last converged density matrix are then
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used to reinitialize the outer loop (by constructing a new constrained Kohn-Sham

Hamiltonian) and perform the procedure again. We repeat the whole procedure

until the first derivative satisfies the convergence criteria, which would mean that

the maximum of W has been found. Once the maximum is found, SIESTA com-

putes the charge populations on the donor and acceptor using either the Mulliken

or Löwdin population scheme, and the other quantities of a standard DFT cal-

culation: forces, total energy, etc.

This is to be compared with the T. Van Voorhis et al. approach (diagram on

the right in the Fig. 4.1), where the loops are inverted and the function W (Vc)

is maximized in each step of the self consistency. To be specific, the outer loop

is initialized by constructing the constrained Hamiltonian (this is done, as in our

case, by adding elements Vcwij to the standard Kohn-Sham Hamiltonian). Then,

we move to the inner loop where this Hamiltonian is diagonalized and with the

resulting electronic density the first derivatives of W are evaluated. Next, we

test the convergence of the first derivative. If the first derivative does not satisfy

the convergence criteria a new value for the constraint potential is estimated.

Then, the Vc in the constrained Hamiltonian is replaced by the new estimated

value, while the terms of the Hamiltonian that depend on the density matrix

are maintained constant. As the next step, the resulting Hamiltonian is diago-

nalized again. This procedure is repeated several times until the first derivative

satisfies the convergence criteria. Once the convergence is reached, we leave the

inner loop and go to the next step of the outer loop consisting in testing the

convergence of the electronic density obtained in the last diagonalization. If the

electronic density does not satisfies the convergence criteria, we proceed to rebuild

the constrained Hamiltonian using this electronic density and the last value of

constraining potential calculated (in this step all the terms of the Hamiltonian are

updated). Then, we reinitialize the outer loop and repeat the procedure again.

This is done repeatedly until the convergence of the electronic density is reached.

Comparing both approaches, we observe that the algorithm implemented by T.

Van Voorhis et al. is not the most appropriate to perform the maximization of

the function W (Vc), because they employ a non-self-consistent solution of the

constrained Kohn-Sham Hamiltonian (which is not the correct solution of Eq.

4.14) to compute the derivatives of the function W . They make it in each step
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of the inner loop. As stated in the derivation of the method, for a certain value

of the constraint potential the correct solution of the stationary equation 4.14

(the constrained Kohn-Sham Hamiltonian) is obtained by self consistency and

this is just what we do within our approach. Although the procedure followed

by Van Voorhis et al. can lead to a reduction of the computational cost since in

each step of this loop they update the constraint potential in the Hamiltonian,

but not the terms depending on the electronic density (building these terms is

computationally expensive), there is no theoretical justification to do it.

Using our algorithm, the number of steps needed in the outer loop to converge

the first derivative of W (Vc) depends on whether or not the initial value of con-

straint potential is close to the value that gives the constrained state. Similarly,

for the inner loop the number of steps required for reaching self-consistency is

determined by the input density matrix. Among these critical quantities, the

input constraining potential is the most crucial because an initial value too far

from the value that gives the maximum yields large fluctuations not only in the

constraint potential but also in the electronic density during the maximization.

4.4 Validation of the method

In the present work, we study charge transfer reactions in several systems, ranging

from molecules to periodic solids. With the purpose of testing our method, we

take some systems studied by Van Voorhis et al. in Refs. [4, 5] where they

reported their approach. We compare our results with those obtained by them

from a qualitative as well as quantitative perspective.

To study this sort of reactions, instead of using two constraints: one to describe

the charge of the donor and the other one to represent the charge of the acceptor,

we define only one constraint as the charge difference between the donor and the

acceptor, NC , that is,

NC =
NA −ND

2
(4.46)

where NA and ND stand for the charge population of the acceptor and donor,

respectively.

The first system considered is a nitrogen molecule N2 where we study the charge
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transfer between the nitrogen atoms, using the Mulliken as well as Löwdin popu-

lation schemes to represent the weight function. One of the nitrogen atoms acts

as an electron donor and the other one as an electron acceptor. Initially, each

isolated nitrogen atom contributes with 5 valence electrons (with an electronic

configuration: 2s22p3) to form the molecular nitrogen. Analysing the electron

populations in the ground state from mean field in the nitrogen molecule using

either the Mulliken or Löwdin population, the distribution of the valence elec-

trons between the atoms is always balanced (that is, 5 electrons in each atom).

Starting with this distribution, we proceed to constrain the electronic density

to force the charge transfer, in the range of 0 to 1.0 electrons, from one of the

nitrogen atoms to the other one. Our results are presented on the left hand side

of Fig. 4.2, where we also compare them with those from T. Van Voorhis et al.,

shown on the hand right side of the same figure. To be able to compare both
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Figure 4.2: Charge transfer in a nitrogen molecule N2. We compare our results
with those obtained by Q. Wu and T. Van Voorhis [5]. The lower graphs shows the
constraint potential as a function of the charge transfer, which ranges from 0 to
1.0 electron. The upper graphs presents the energy difference between the charge
transfer and DFT ground state energy (∆E = ECDFT −EDFT ), as a function of
the charge transfer. Different population schemes to define the weight function
wc were used. Triangles: Mulliken population. Dots: Löwdin population. Q. Wu
and T. Van Voorhis additionally used the Becke weights population (squares).

methods, we consider total energy differences because in this way we do not have
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the problem of the reference potential. In the upper left panel, we plot the total

energy difference between the charge transfer and the ground state, versus the

transferred charge, and in the lower left panel we plot the constraining potential

that gives the corresponding charge-transfer state. We compute charge popula-

tions (either the Löwdin or Mulliken) to evaluate how the charge is distributed

between the atoms in the constrained state.

We notice that although our results have a similar behaviour to those obtained

by Van Voorhis et al., our values of energy are, in general, larger. This situation

is attributed to two aspects: 1) we use the standard PBE functional versus the

Becke’s hybrid functional employed by Van. Voorhis et al., and 2) our basis sets

are built from strictly localized atomic orbitals, whereas they use the basis sets

made from Gaussian functions.

We observe that the energy differences with the Mulliken populations do not

change too much as the amount of transferred charge increases in comparison

with the energy differences obtained using the Löwdin scheme. This unusual

behaviour of the Mulliken populations is explained by Van Voorhis et al. consid-

ering that they are not defined by a projection operator (sometimes the evaluation

of the Mulliken population gives negative values). Notice that the constraining

potential that gives the constrained state is too small (acting as a perturbation

in the Kohn-Sham Hamiltonian) and therefore it leads to small changes in the

excitation energies (defined as the difference between the constrained and ground-

state energies).

Using the Löwdin population scheme, we observe large variations in the total

energy differences against the fraction of transferred charge. This fact is also

reflected in the corresponding values of constraint potential. When one electron

is transferred, the energy difference is 9.5 eV (with the corresponding constraint

potential being of 9.52 eV), which is 2.5 eV larger than the value obtained by

Van Voorhis et al. Unlike Mulliken populations, Löwdin populations seem to give

larger excitation energies. This is in good agreement to what Van Voorhis et al.

obtained.

To have a picture of the electronic density of the nitrogen molecule with and

without the constraint, in Fig. 4.3 we show an isosurface for a) the ground state,

nDFT , and b) with the constraint corresponding to the transference of one elec-
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Figure 4.3: Isosurface of the ground and constrained states.

tron, nCT . In the ground state, the electronic density is symmetrically distributed,

whereas in the constrained state, the electronic density is displaced towards the

atom with the extra electron, indicating that the constraint is correctly imposed.

Additionally, we plot the difference between the electronic density of the ground

and constrained state, ∆n = nCT−nDFT , see Fig. 4.4, where the blue and red iso-

surfaces stand for positive and negative differences, respectively, indicating that

electron transfer occurs as these coloured isosurfaces are localized on different

nitrogen atoms. However, these coloured regions are not completely symmetric

to each other, which could seem contradictory at a first moment. The explana-

tion for this effect is that the total potential experienced by the electrons in the

constrained system varies from the nitrogen atom acting as electron acceptor to

the nitrogen one acting as electron donor because the electronic density in both

atoms is different.

To further test our approach, we proceed to consider a larger system, the

zincbacteriochlorin-bacteriochlorin (ZnBC-BC) complex, where we investigate

the charge transfer between ZnBC and BC parts of the complex, which are linked

through a benzene ring as depicted in Fig. 4.5, using again the Mulliken and

Lowdin population schemes. Considering that these parts are chemically dis-

tinct, we study the electron transfer not only from ZnBC to BC but also in the

opposite direction, defining N = 1.0 for (ZnBC)1+ − (BC)1− and N = −1.0

for (ZnBC)1− − (BC)1+, with N being the charge transfer. Our results are pre-
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Figure 4.4: Charge transfer in a nitrogen molecule N2. Difference between the
charge transfer (nCT ) and ground state (nDFT ) electronic density. The blue and
red isosurfaces indicate a negative and positive difference, respectively.

sented on the right side of Fig. 4.6, together with the results obtained by T. Van

Voorhis et al. (shown on the left side). Both results are quite similar, particularly

the values of the total energy differences, even though the functionals and kind of

basis sets used are also different (see figure caption for details). However, the con-

straining potential is not comparable. Strictly speaking, they are not expected to

be the same, since the Hamiltonians are built using different parameters. These

results are good qualitative signs regarding the performance of our approach.

Figure 4.5: ZnBCBC complex.
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Figure 4.6: Charge transfer in the ZnBC-BC molecule. We compare our results

with those obtained by Q. Wu and T. Van Voorhis [5]. The lower graphs shows

the constraint potential as a function of the charge transfer, which ranges from

0 to 1.0 electron. The upper graphs presents the energy difference between the

charge transfer and DFT ground state energy (∆E = ECDFT − EDFT ), as a

function of the charge transfer. We use different population schemes to define

the weight function wc: Mulliken (triangles) and Löwdin (circles) population.

Now, let us discuss some aspects related with the efficiency of our method

to find the maximum of the function W . We observe that in general a small

number of steps are needed in the outer loop to reach the convergence of the first

derivative (typically 4 steps are enough), even when the initial guess value of the

constraint potential is quite far from the correct value at which the functional

W has the maximum. In the inner loop, we found that the number of steps is

similar to that of a standard DFT calculation, even though this loop depends

on both the magnitude of the constraining potential added to the Kohn-Sham

Hamiltonian and initial electronic density.

The results shown until now prove that our approach can reproduce satisfactorily

the results reported by Van Voorhis et al. However, the need of a quantitative

test to proof unambiguously that our method works correctly, is still needed. For

this, we study the charge transfer between two nitrogen molecules separated by

a distance d, such that the N-N bond of the nitrogen molecules is perpendicular
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to the separation direction. We employ a tetragonal supercell with a = b = 20Å

and c = 30Å, in which the separation between the nitrogen molecules is along

the c direction. Thus, we compute the energy ECT (d) of the system with the

transferred charge (one electron) for different separation distances d. Then, the

resulting energies ECT (d) are adjusted to the following model equation describing

the total energy of two opposite charges separated by a distance d,

ECT (d) = −1

d
+ ECT (∞) (4.47)

where ECT (∞) is the energy of the charge-transfer state where the nitrogen

molecules are separated by an infinite distance. Alternatively, the ECT (∞) can

be calculated from a standard DFT calculation since it corresponds to the sum

of the total energies of a nitrogen molecule with positive and negative net charge:

ECT (∞) = EDFT
N+

2

+ EDFT
N−

2

. Hence, the quantitative test consists in calculating

ECT (∞) using the CDFT and DFT methods and comparing the obtained values

to each other.

To obtain ECT (∞), the total energy of charged molecules is calculated in SIESTA

using periodic boundary conditions (PBC) and the convergence of this energy

with the size of the cell has to be adequately described. We use a model to ob-

tain the total energy of the charged system in the limit of a infinitely large cell.

Basically, the convergence problem arises from the divergence of the Coulomb

potential for charged systems due to the pbc and from the resulting interaction

between the charged system and its periodic images. To deal with these situa-

tions, SIESTA introduces a neutralizing background charge to make the system

overall neutral (this procedure was initially introduced by Makov-Payne [55]),

however, there are still some interactions between the periodic charges and itself

that remains. These interactions become negligible at the limit of a infinitely large

cell, however, a fast convergence of the Coulomb energy with the cell dimension

L is not guaranteed. Hence, we employ the following equation

E(L) = E0 −
q2α

2εL
+O(L−3) (4.48)

which allows to obtain the DFT total energy of a charged system E0 in the limit

92



of an infinitely large supercell (L → ∞). The first correction term contains the

charge of the cell q, the Madelung constant α that is dependent of the cell size and

shape and the static dielectric constant of the medium ε. Calculations for several

system sizes (including the Madelung correction term) allow us to extrapolate to

the limit of large cell sizes by fitting the 1/L3 dependence, thus minimizing the

spurious effect of the neutralizing background.

We obtain E0 (≡ EDFT
N± ) for the negatively and positively charged nitrogen

molecule by making a fit of the DFT total energy E(L) of the charged nitro-

gen molecule (whether +1 or -1) for different cell dimensions L, to the above

equation. As our system is a molecule, we employ a cubic supercell, for which the

Madelung constant is well defined in SIESTA. Thus, the value of ECT (∞) from

the DFT is -1084.95 eV.

In the Fig. 4.7, we present the results from CDFT concerning the fit the total

energies ECT (d) of the final charge transfer state for different values of d to the

Eq. 4.47.
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Figure 4.7: Charge transfer of one electron between two nitrogen molecules N2

separated by a distance d. The total energy ECT (d) (blue circles) of the final

charge transfer state for different values of d are plotted against 1/d. The red

line is the fit of the ECT (d) to the Eq. 4.47, where ECT (∞) has a value of -1084.86

eV

Comparing the values of ECT (∞) obtained from DFT and CDFT method, we

find a difference between them of 0.1 eV. This difference is small enough to con-

clude that our approach has been well implemented and that it works correctly.

Additionally, we think this difference could be decreased for larger supercell in

the CFDT method to reduce the interaction between the electric dipoles formed

as result of the charge transfer.

4.5 Application: TTF-TCNQ

The good results obtained in the previous section encouraged us to apply our

method to a more practical problem. We study the organic charge-transfer salt

TTF-TCNQ (a prototypical one-dimensional conductor), which is formed from

94

Chapter3/Chapter3Figs/f-n2n2-02b.ps


segregated chains of stacking TTF and TCNQ molecules. The interesting prop-

erties of this material as a conductor are not of a molecular origin but arise from

the interaction of adjacent TTF and TCNQ chains in the crystal. Many theoret-

ical and experimental studies have focused in the understanding of the physics

behind its unidimensional metallic behaviour. The experimental characterization

of its surface with the x-ray photoemission and x-ray absorption near edge spec-

troscopes (XPS and XANES, respectively), have revealed several features whose

origin has not been totally understood [7, 8]. Claessen et al. [8] observed new in-

teresting characteristics in the XPS spectra of this material that were assigned to

two coexisting electronic states: the TTF0-TCNQ0 and TTF+1-TCNQ−1. They

suggest that these states are originated due to a charge transfer between the TTF

and TCNQ chains.

Fig. 4.8 shows the unit cell of the TTF-TCNQ crystal together with a repre-

sentation of the TTF (C6H4S4) and TCNQ (C12H4N4) molecules. TTF-TCNQ

crystallizes in a monoclinic structure (space group P21/c) with the experimental

lattice parameters being a = 12.298Å, b = 3.819Å, c = 18.468Å, and β = 104.46.

The unit cell contains two molecules of TTF and two molecules of TCNQ. In

the crystal phase the chains of TTF and TCNQ alternate along the a direction,

being b the stacking direction. The interaction between the TTF and TCNQ

chains leads to a partial electron transfer from the TTF to TCNQ molecules (of

about 0.49 electrons in mean field) that is observed in our calculated results for

the band structure shown in Fig. 4.9. Focusing on the high symmetric directions

going from Γ to Y of the first Brillouin zone, there are four bands (a and b in

Fig. 4.9) around the Fermi energy level and two of them cross at a certain point

along this direction. The character of the two bands (a) come mainly from the

TTF molecules, while the two bands (b) have a strong character from the TCNQ

molecules. Thus, the crossing point is due to the partial charge transfer between

the TTF and TCNQ molecules. The relation between the transferred charge and

the crossing point in the band structure is defined by the fact that each band can

be filled with a maximum of two electrons (two opposite spins). Since there is no

crossing bands at the Fermi energy level along the other symmetric directions of

the first Brillouin zone, this material is classified as an unidimensional conductor.

Figure 4.10 shows XPS spectra of S 2p and N 1s core levels of TTF-TCNQ
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Figure 4.8: Unit cell of the TTF-TCNQ crystal.

crystal measured by Claessen et al. The S and N atoms are specific of TTF and

TCNQ molecules, respectively, and therefore their corresponding XPS spectra

provide characteristic information concerning the physical and chemical proper-

ties for each of these molecules in the crystal. Among the main results obtained

by these authors, we mention that: 1) There are clearly two distinct S atoms

in the system with S 2p core level binding energies of 163.8 and 164.8 eV (each

of them with their corresponding spin-orbit splitting). 2) They also found two

types of N atoms with N 1s core level binding energies of 398.0 and 399.5 eV (and

they are accompanied by satellites appearing at higher binding energies). 3) The

intensity ratios between the lower- and the higher binding energy peaks for the S

2p and N 1s core levels are 0.44:0.56 and 0.65:0.35, respectively. Considering the

position of the binding energy peaks and the intensity ratios of the main features

observed in the S 2p and N 1s spectra, these authors suggest that charge fluctua-

tions happen in the system (which have smaller lifetimes than the photoemission

processes) leaving the TTF and TCNQ molecules in a mixed valence. Moreover,
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Figure 4.9: Band structure for the room temperature and ambient pressure struc-
ture of TTF-TCNQ, calculated using the GGA exchange-correlation functional
and the PBE flavour. The Fermi energy level is set to 0 eV. Γ = (0, 0, 0),
X = (1/2, 0, 0), Y = (0, 1/2, 0), and Z = (0, 0, 1/2) in units of the monoclinic
reciprocal lattice vector.

they propose that the charge fluctuations are due to the continuous transition

between the TTF 0 − TCNQ0 and TTF+ − TCNQ− states. Additionally, they

suggest that due to the less effective screening of the core potential, the TTF+

state should show up in the S 2p spectrum at higher binding energies compared

to the neutral chemical state, whereas for the TCNQ− state and the N 1s line

the reverse should happen.

In this thesis, we intend to contribute to the description and characterization

of the electronic properties observed at the surface of the TTF-TCNQ system.

For that, we use our CDFT approach to create the electronic states proposed by

Claessen et al. and study the core level binding energies
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Figure 4.10: XPS spectra of S 2p and N 1s core levels of TTF-TCNQ (dots).
The lines represent decompositions unto underlying components obtained by a
least-squared fit. For details see the text. Insets: XPS spectra of the S 2p and
N 1s core levels as a function of emission angle (NE, 40o off NE, 70o). Note that
the binding energy scale is the same as in the parent plot.

4.5.1 Results

To study the S 2p and N 1s CLBE shifts in TTF0-TCNQ0 and TTF+-TCNQ−,

we first apply our CDFT approach with the Mulliken scheme and k points to

create these states. Then we compute the CLBE shifts for these states with the

initial and ∆SCF approximation.

In the ground state calculation (where there is no constraint upon the system),

each TCNQ molecule has an extra charge of 0.49 electrons coming from the TTF

molecules. We use this state as starting point to obtain the TTF0-TCNQ0 and

TTF+-TCNQ− states. For the neutral state, we impose a constraint upon the

whole TTF-TCNQ unit cell (which contains four molecules: two of TTF and two

of TCNQ) to force the charge transfer (of 0.49 electrons) from each TCNQ to the

TTF molecules, so that in the constrained neutral state the Mulliken populations

of the TTF and TCNQ molecules are 52.0 and 72.0 electrons, respectively.

We consider three different models to describe the TTF+ and TCNQ− states in

the TTF-TCNQ unit cell, using the TTF0-TCNQ0 as the reference system. In
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the first model we impose a constraint such that one of the TTF molecules has

a positive charge of +1.0 (a Mulliken population of 51.0), and the rest of TTF

and TCNQ molecules get a total negative charge of -1.0. That is, we transfer one

electron from the TTF molecule to the rest of the system (neighbouring molecules

in the unit cell). This model is denoted as TTF+-(TTF-2TCNQ)−. In the second

model a constraint is imposed so that one of the TCNQ molecules of the unit cell

gets a extra charge of one electron from the rest of TCNQ and TTF molecules.

This model is labelled as TCNQ−-(TCNQ-2TTF)+. Finally, in the last model, a

constraint is applied to transfer a charge of one electron from each TTF molecule

to the TCNQ molecules in the unit cell, leading to TTF+-TCNQ− pairs in the

whole crystal. This model is denoted as (2TTF)+2-(2TCNQ)−2 since there are

four molecules per unit cell. Also we consider the neutral states: TTF0-(TTF-

2TCNQ)0, TCNQ0-(TCNQ-2TTF)0 and (2TTF)0-(2TCNQ)0.

Table 4.1 shows the Mulliken population analysis of the TTF and TCNQmolecules

in the different models considered. It also includes the Mulliken population of

the ground state and neutral states corresponding to each model. In the models

Table 4.1: Mulliken population analysis of the TTF and TCNQ molecules in the
TTF-TCNQ unit cell with different constraints on its electronic density. We use
the labels -a and -b to distinguish each of the TTF and TCNQ molecules in the
unit cell.

System TCNQ-a TCNQ-b TTF-a TTF-b
Ground state 72.492 72.492 51.516 51.516

TCNQ0-(TCNQ-2TTF)0 72.0 72.512 51.872 51.620
TCNQ−-(TCNQ-2TTF)+ 73.0 72.464 51.132 51.404
TTF0-(TTF-2TCNQ)0 72.308 72.432 52.004 51.259
TTF+-(TTF-2TCNQ)− 72.679 72.540 51.008 51.778
(2TTF)0-(2TCNQ)0 72.0 72.0 52.0 52.0

(2TTF)2+-(2TCNQ)2− 73.002 73.004 51.0 51.0

where we impose a constraint between a molecule of the unit cell, whether TTF

or TCNQ, and the rest of the system, the Mulliken population analysis of the

TTF or TCNQ molecule gives the correct charge for both the neutral and charge-

transfer state. For the rest of molecules the total Mulliken charge population is
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the right one, however, the distribution of charge between them follows the mean

field solution. We observe that in these molecules the charge populations of the

molecules of the same type are slightly different. These variations are due to their

proximity to the TTF or TCNQ molecule where we impose a charge of +1 or -1,

respectively. In the model where we impose a constraint to transfer charge be-

tween all the TTF and TCNQ molecules, the Mulliken population analysis gives

the correct charge for each molecule in the unit cell in both the neutral and the

charge transfer state. In all cases, the charge transfer occurs mainly between the

atoms of the donor and acceptor that are adjacent.

These results confirm that our CDFT approach with the Mulliken scheme per-

forms the constraint correctly as it gives the correct Mulliken populations in the

constrained system.

Figure 4.11 depicts the band structure of the TTF-TCNQ unit cell with a con-

straint on its electronic density such that all TTF and TCNQ molecules are

in the neutral state (panel on the left side), and with a constrained electronic

density that gives the charge transfer state TTF+-TCNQ− where an electron is

transferred from each TTF molecule to its closest neighbouring TCNQ molecule

(panel on the right side). Although the Mulliken population analysis gives correct

charges for the TTF and TCNQ molecules in the neutral and charged state, no

significant differences are observed between the band structures of these states.

Moreover, we do not see any charge transfer between the bands that cross the

Fermi energy level along the symmetric direction going from Γ to Y of the first

Brillouin zone (FBZ), which remain unchanged. Apparently, the transferred

charge between the TTF and TCNQ molecules does not lead to a transfer charge

from bands of the HOMO to bands of the LUMO molecular orbital in the system.

The constraining potentials that give the constrained and neutral state are found

to be quite small, as we also found with the nitrogen molecule. This is a typical

problem for the constraints using the Mulliken populations.
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Figure 4.11: Band structure of TTF-TCNQ in the ground (a) and constrained

(b) state.

To further ensure that the constrained states are calculated correctly with

k points, we impose a constraint on the electronic density of a simpler system

consisting of TTF and TCNQ chains separated by a large distance, such that the

interaction between the TTF and TCNQ molecules is negligible. For this model,

our a priori assumption is that in the mean field approximation the TTF and

TCNQ bands near the Fermi energy level and along the Γ-Y direction in the

FBZ, do not intersect each other. Figure 4.12 shows the band structure from

mean field calculation for this model. The Fermi energy level is at zero. Clearly,

along the Γ-Y direction of the FBZ a band appears above the Fermi energy level,

while another band is below this level. These bands touch at Γ point. We inves-

tigate the character of these bands, finding that the unoccupied band comes from

the LUMO of the TCNQ and the occupied band from the HOMO of the TTF

molecules. We then proceed to impose a constraint on this system to obtain the

charge transfer state where each TTF molecule donates one electron to the TCNQ

molecules, creating the charge state TTF+-TCNQ−. Figure 4.12 (b) shows the

band structure of the system with the constraint. We see that at the Fermi en-
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ergy level the TTF and TCNQ bands intercept just in the middle of the distance

between Γ and Y points of the FBZ. Considering that each band accommodates

two electrons (we are not considering spin polarization in the calculation), the

crossing point of these bands clearly indicates that one electron is transferred

from the HOMO band of the TTF molecules to the LUMO band of the TCNQ

molecules, resulting in the formation of the TTF+-TCNQ− constrained state. We

verify this results by calculating the Mulliken populations. This results confirms

that our CDFT approach with k points makes the charge separation correctly.

To understand why we do not observe a charge transfer between bands in the
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Figure 4.12: (A) Band structure from mean field for model of TTF and TCNQ
chains. In this model, the TTF and TCNQ chains alternates along the x-axis
(the separation distance between the chains is 20.0 Å), with the staking direction
being the y-axis. The separation distance along the z-axis is 25.0 Å. All bands
are relative to the Fermi energy level set to zero. (B) Band structure for the
model of TTF and TCNQ chains with a constraint on its electronic density that
gives the charge state TTF+-TCNQ−. All bands are relative to the Fermi energy
level set to zero.

band structure of the TTF-TCNQ crystal although the Mulliken population indi-

cates that the charge transfer occurs, we analyse the electronic density difference

between the neutral and charged state, comparing it with the HOMO and LUMO
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orbitals of the isolated TTF and TCNQ molecules, respectively. We make this

comparison assuming that the highest energy occupied molecular orbital of the

TTF-TCNQ crystal is somewhat similar to the highest molecular orbital of an

isolated TTF molecule, and that the lowest energy unoccupied molecular orbital

of the crystal is similar to the lowest energy unoccupied molecular orbital of an

isolated TCNQ molecule. The difference between the neutral and charged elec-

tronic density is displayed on Fig. 4.13.

We observe that the atoms of the TTF molecules closer to the neighbouring

TCNQ molecules are the donor of charge: the S atoms and two of the four hy-

drogen atoms of each TTF molecule. Furthermore, a small contribution comes

from the bond formed by two of the C atoms that connect the tiol rings in the

TTF molecule. The charge difference around the TTF molecules in the crystal

is similar to the charge distribution in the HOMO orbital of the isolated TTF

molecule, except for the contributions around the hydrogen atoms. Additionally,

there is charge in some C atoms of the HOMO orbital of the isolated molecule

that does not appear in the TTF molecules of the crystal.

In the case of charge accepted by the TCNQ molecules, this is mainly distributed

between the atoms that are closer to the neighbouring TTF molecules. The

atoms are all the hydrogen and nitrogen atoms of each TCNQ molecule (mostly

the charge is distributed between the N atoms), but also a fraction of the trans-

ferred charge is spread between two of the C atoms that are linked to the aromatic

ring and to the -C-N radicals. This charge distribution in the TCNQ molecules

is considerably different to the charge distribution in the LUMO orbital of the

isolated TCNQ molecule, as shown in the Fig. 4.14.
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Figure 4.13: Electronic density difference ∆ρ between the neutral (TTF0-TCNQ0)

and charged state (TTF+-TCNQ−): ∆ρ = ρ(TTF+ − TCNQ−) − ρ(TTF 0 −
TCNQ0). The picture shows isosurfaces with a positive (red) and negative (blue)

difference.

These results show that imposing the constraint on the electronic density

through the local basis set (the atomic orbitals of the atoms) leads to a charge

transfer between the TTF and TCNQ molecules. However, this charge transfer

does not take place from the highest occupied to lowest unoccupied band, because

these bands do not experience a noticeable change when the constraint is applied.

This is not what we expected. Our hypothesis to explain how the electronic state

are formed is that the charge transfer between the TTF and TCNQ molecules

occurs between the TTF and TCNQ bands next to the Fermi energy. Instead,

that there is a small variation in the character of the whole set of occupied

bands, so that this leads to the TTF+-TCNQ− state. Therefore, our approach
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Figure 4.14: Isosurface of the electronic density of the LUMO orbital of a isolated
TCNQ. Isosurface of the electronic density of the HOMO orbital of a isolated TTF
molecule.

consisting in imposing the constraint through the atomic orbitals to describe the

charge-transfer state is not the most adequate. A different approach to describe

the charge transfer based on imposing a constraint through the molecular wave

functions of the highest occupied and lowest unoccupied bands to force the direct

charge transfer between these bands could be needed.
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Chapter 5

Anatase

5.1 Introduction

In the last years (TiO2) anatase has been extensively studied both theoretically

and experimentally because of its promising applications in semiconductor-based

photocatalysis for the degradation of organic molecules in water and air purifica-

tion, and solar cells and photovoltaic devices [9, 10, 11, 56]. Its main advantages

over similar materials are its high resistance to photo- and chemical corrosion and

high oxidizing power. However, its main drawback is its large band gap of 3.0-3.2

eV which falls in the ultraviolet region of the electromagnetic spectrum. In order

to improve its electronic properties, a large number of attempts have been focused

to lower its band gap and turn it active under visible light (λ > 380 nm). The

reduction of the optical threshold energy is expected to have tremendous impli-

cations on the technological applications of this system. Doping TiO2 with tran-

sition metals results in thermal instability, an increase of carrier-recombination

centers and the requirement of an expensive ion-implantation facility [57]. In

2001 R. Asahi et al. [58] showed that a more successful approach can be obtained

by N, S and C doping. A large number of experimental works on nonmetallic

doping appeared, mostly regarding nitrogen doping [56, 59, 60]. Most of these

works show that nitrogen in the TiO2 matrix improves absorption in the visible

region and leads to increased photocatalytic activity. There are several chemical

and physical methods to implant nitrogen in the anatase matrix, among them
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we find the sol-gel synthesis, chemical treatment of the bare oxide, oxidation

of titanium nitride, ion implantation and magnetron sputtering [59, 61, 62, 63].

However, the role that nitrogen impurities and native defects such as oxygen va-

cancies, play in enhancement of photocatalytic properties is still under debate.

This situation arises because experimental characterization of these impurities

is not straightforward. While some groups propose the presence of NOx [64] or

NHx [65, 66, 67, 68] interstitial species and even interstitial N [58, 59, 67], others

attribute enhancement of the photocatalytic activity to substitutional nitrogen.

This variety of proposed species is due to the different methods used in the im-

plantation of N [59].

In order to manipulate the gap of this material while maintaining its beneficial

photocatalytic activity, one has to understand how impurities modify the TiO2

properties. The first requirement is characterizing the electronic, structural and

vibrational properties of these impurities experimental and theoretically. Al-

though it is well accepted that the optical absorption of anatase shifts to the

visible region when it is doped with N, there is no a consensus on the character

of the electronic states that leads to this shift [58, 59, 69]. While some authors

say that interstitial and substitutional nitrogen cause the formation of localized

electronic states just above the valence band border, others say that these elec-

tronic states overlap with the valence band, narrowing the gap. K. Yang et al.

[70] suggests that the overlap take place only at high doping concentrations. In

relation to the interaction of nitrogen impurities with point defects, Selloni et

al. [59] found that the presence of nitrogen impurities, specially substitutional

nitrogen, considerably decreases the formation energy of oxygen vacancies. They

also found that the formation of nitrogen clusters does not take place, even at

high nitrogen concentration.

Other aspect to be considered is the charge state of defects since it is well known

that charged defects form easily in metallic oxide semiconductors, affecting the

electrochemical properties of the material. There are few theoretical works on

the thermodynamic of native defects in anatase with different charge states as a

function of oxygen chemical potential. At present, it is well accepted that oxygen

vacancies and interstitial titanium with charges +2 and +4, respectively, are the

most easily formed defects in pristine anatase. However, there are few works on
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formation energies of charged nitrogen impurities [60]. Hence, additional studies

that contribute to complete the stability diagrams of these species and to the

understanding of the relation between the thermodynamic and photocatalytic

properties, are required.

One of the experimental techniques that is used for the characterization of the

N impurities is X-ray photoemission spectroscopy (XPS). This technique allows

to distinguish atoms embedded in different chemical environments by measuring

the binding energy of the core level electrons (CLBE). The surrounding of the

atom, that is, the structural configuration, charge state and hybridization, is one

of the factors that determines the binding energy of the core level. In N-doped

anatase, the assignment of the peaks observed in the N 1s XPS spectra is still

under debate. Two peaks usually appear, at 396 eV and 400 eV, but an addi-

tional peak at 402 eV emerges depending of the preparation method. While some

authors [58, 59, 61] suggest that the lowest binding energy peak corresponds to

substitutional nitrogen and the peak appearing at 400 eV to interstitial nitrogen,

other authors suggest the opposite [62]. The extra peak at 402 eV is usually as-

sociated to nitrogen species absorbed on the surface, such as N2 and NH4. Selloni

et al [59] calculated the relative position of the binding energies of interstitial and

substitutional nitrogen, and found that the binding energy of interstitial nitrogen

is larger than that of substitutional nitrogen, CLBE[N(i)] > CLBE[N(s)], the

difference being of ≈ 1.5 eV.

On the other hand, new features are observed for the O 1s XPS spectra in N-

doped anatase. In pristine anatase, the O 1s binding energy is measured at 530

eV. Some authors report a shoulder at 532 eV over the tail of O 1s peak when

nitrogen is incorporated. This new feature has not been characterized yet. This

scenario motivates the theoretical study of the core level binding energies of these

species, aiming at a better understanding and characterization of nitrogen impu-

rities in XPS experiments.

Other experimental methods that are frequently used for characterizing pristine

anatase as well as N-doped anatase are Raman and IR spectroscopies. IR spec-

troscopy has been mainly focused for characterization of organic molecules ab-

sorbed on anatase surfaces. Recently, Guillaume et al. [**] reported a blue shift

to higher frequencies, and spreading of the lowest-wave-number Raman mode E1g
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(145 cm−1) in N-doped polycrystalline anatase grown by pulsed laser deposition

(PLD) as a function of doping concentration. The experimental Raman spec-

tra of anatase with different concentrations of N impurities, 0-2.9 at.% (atomic

percent) are shown in Fig. 5.1. The concentration was measured by electron

photoemission spectroscopy (EPS). The maximum of the intensity of this Ra-

man peak moves to higher frequencies as N-doping concentration increases. The

implantation of nitrogen also spreads and decreases the intensity of the peak.

The largest shift observed is of 7 cm−1 and corresponds to 2.9 at.% of implanted

nitrogen. Such blue shift could be due to the implanted nitrogen impurities, but

also to native defects formed during doping, as a similar shift was reported in

non-stoichiometric anatase [71, 72]. To our knowledge, there is no theoretical re-

ports on the lattice dynamic of anatase with point defects and charge states. In

this work, we study the electronic and structural properties and thermodynamic

stability of the most stable native defects (oxygen vacancies and interstitial ti-

tanium) and nitrogen impurities (substitutional and interstitial nitrogen) with

several charge states in anatase TiO2. We perform phonon calculations to know

how the point defects affect the vibration modes of pristine anatase and what

new features associated to these defects appear. We also calculate the core level

binding energy shifts (CLBES) of 1s N, 1s O and 2p Ti core levels, as a way to

characterize the impurities as a function of its chemical environment.

We start presenting results of pristine anatase as it is our reference system, and

then we move to discuss results of point defects: first, oxygen vacancies and in-

terstitial titanium (the most relevant native defects), and then substitutional and

interstitial nitrogen impurities. We follow the next order: electronic properties,

geometrical aspects, thermodynamic stability, vibrational properties and binding

energy shifts.
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Figure 5.1: Experimental Raman spectrum of N-doped anatase obtained by Guil-
laume et al. The nitrogen content in the samples was measured by XPS spec-
troscopy. A shift of the Eg(1) phonon mode towards higher frequencies is observed
when nitrogen is incorporated in the sample. The maximum shift is of 7 cm−1

and corresponds to a nitrogen content of 2.9 % at. N.

5.2 Methodology

5.2.1 Defect energetics

The formation energy Eform of a defect in a charge state q is evaluated according

to the general formula:

Eform = Etot[D
q]− Etot[0] +

∑

∆nXµX + qµe (5.1)

where Etot[D
q] is the total energy of supercell with the defect D in the charge

state q; Etot[0] is the total energy of the defect-free supercell; ∆n is the number of
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atoms of the chemical specie X (=Ti,O,N) being either removed (∆n is positive)

or incorporated (∆n is negative) into the supercell from/to its respective reservoir

with chemical potential µX ; µe is the electronic chemical potential. The stability

condition of TiO2 is

µT i + 2µO = ∆Eform(T iO2) (5.2)

where ∆Eform(T iO2) is the formation energy of TiO2 from its constituent. If we

set µX = 0 for the respective natural phases of Ti and O, the limits of the values

of the chemical potential for O and Ti that cause the precipitation of the phase

anatase are

µT i ≤ 0 (5.3)

µO ≤ 0 (5.4)

Notice that from Eq. 5.2 the chemical potential of Ti and O are related, so that we

can write the chemical potential of Ti as a function of the chemical potential of the

oxygen, obtaining thus the values of chemical potential for which the precipitation

of the anatase phase is favoured. In this work we study the formation energy of

anatase with point defects as a function of the chemical potential of the oxygen.

We also study the formation energy of charged point defects as a function of the

electronic chemical potential taking the valence band edge of defect-free system

as reference,

µe = Ef + µe′ (5.5)

5.2.2 Computational details

All calculations are performed within the density functional theory (DFT) for-

malism as implemented in the SIESTA code. The main features of this code

have been discussed previously in the chapter 2. We use the generalized gradient

approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) parametrization

for the exchange-correlation functional. The Troullier-Martins pseudopotentials

with core correction are calculated with the ATOM program and DZP-type basis

set are optimized with the SIMPLEX algorithm under a fictitious basis pressure

of 0.1 GPa [30]. The real-grid mesh cut-off is set at 450 Ry and the k-point sam-

pling for Brillouin zone integration is defined through a 5×5×2 Monkhorst-Pack

111



block [73] for the anatase unit cell. All structures were relaxed using the conju-

gated gradient algorithm (CG) until the maximum force on any atom is smaller

than 0.01 eV/Å. Spin polarization is used to study possible magnetic effects.

Our calculated cell parameters of bulk anatase TiO2 are a = 3.83 Å and c = 9.72

Å, which are in good agreement with those reported by other theoretical groups

[59, 74, 75]. Using these relaxed lattice parameters and atomic coordinates, we

build a 2
√
2× 2

√
2× 1 supercell containing 96 atoms to study the point defects.

The Monkhorst-Pack block used for these defective supercells is 4× 4× 4.

Nitrogen impurities are placed either in substitutional positions (Nsubs) by replac-

ing oxygen atoms or in interstitial positions (Nint). In the case of native point

defects, oxygen atoms are removed from the supercell to create oxygen vacan-

cies (VO) and titanium atoms were placed in interstitial positions (T iint). For

the oxygen vacancies, ghost orbitals are used to give a better representation of

the electronic states of the vacancy. The point defects are studied with different

charge states. For the native defects we considered only positive charge states,

namely (0, 1+, 2+) and (0, 1+, 2+, 3+, 4+) for VO and T iint, respectively. For

nitrogen impurities we considerer positive as well negative charge estates, namely

(−3, ..., 0, ..., 3+) and (−2, ..., 0, ..., 3+) for Ns and Nint, respectively.

Since we do not observe large changes in the lattice parameters of the relaxed

defective supercells from those of the pristine supercell, for the phonon calcula-

tions we build again the defective supercells using the lattice parameters of the

relaxed pristine anatase unit cell, relaxing only their atomic coordinates (fixed

cell parameters). Then, we calculate the phonon modes for the resulting super-

cells. This allows us to compare phonon modes from different systems.

To calculate the phonon modes, a fine mesh cutoff of 450 Ry is used to ensure that

so-called egg-box effects are negligible. We compute the force constant matrix

and Born charge tensors using numerical derivatives with atomic displacements

of 0.02 Bohr. To obtain the phonon frequencies we use the VIBRA program. It

computes the phonon frequencies through solving the secular equation (2.28) for

Γ-point. For the LO-TO splitting we use the experimental dielectric constant

tensor of the anatase phase whose diagonal elements are 5.82, 5.82 and 5.41.

The non-diagonal elements are zero for the tetragonal Bravais lattice used in this

work. The sum upon the reciprocal lattice vector of Eq. (2.29) is done up to a

112



maximum radius of 20 Bohr.

To investigate the effects of the point defects on the lattice dynamic of pristine

anatase, we study how these point defects affect E1g Raman active phonon mode

and what new features appear in the IR spectrum. Experimentally, the Eg(1)

peak was observed to shift to higher frequencies under nitrogen doping. To un-

derstand the behaviour of the Eg(1) phonon mode when there is a point defect

in the anatase matrix, we follow the next methodology. First, we characterize

unambiguously the E1g phonon mode in pristine anatase unit cell by applying

the appropriate symmetry operations (indicated in the crystallographic table of

anatase, which is the No. 141, I41/amd), over the whole set of phonon modes,

and comparing the obtained elements with the character table associated to the

anatase symmetry (shown in the Table (5.1)).

Table 5.1: Character table of the point group D4h

D4h E 2C4 C2 2C ′
2 2C ′′

2 i 2S4 σh 2σv 2σd

A1g 1 1 1 1 1 1 1 1 1 1

A2g 1 1 1 -1 -1 1 1 1 -1 -1

B1g 1 -1 1 1 -1 1 -1 1 1 -1

B2g 1 -1 1 -1 1 1 -1 1 -1 1

Eg 2 0 -2 0 0 2 0 -2 0 0

A1u 1 1 1 1 1 -1 -1 -1 -1 -1

A2u 1 1 1 -1 -1 -1 -1 -1 1 1

B1u 1 -1 1 1 -1 -1 1 -1 -1 1

B2u 1 -1 1 -1 1 -1 1 -1 1 -1

Eu 2 0 -2 0 0 -2 0 2 0 0

Then, we identify the phonon mode equivalent to E1g in the supercell, which

is used to track phonon modes resembling E1g symmetry among the defective

anatase supercell vibrational modes. The evolution of the phonon mode Eg(1)

is followed by projecting the eigenvectors
−→
U per of the defective system on the
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pristine E1g eigenvector
−→
U ref , according to the simple equation

pw =

−→
U ref ·

−→
U per

|−→U ref |
(5.6)

where pw is the projection weight. As the original phonon modes are normalized,

large values for the pw indicate that the projected phonon is symmetrically sim-

ilar to E1g pristine phonon mode. For this study, the defective supercells have

only one point defect, because a high concentration of defects introduces strong

structural distortions and, as a consequence, we can not describe properly the

evolution of Eg(1) phonon mode.

To investigate new features arising from the point defects that could be IR active,

we identify the phonon modes strongly localized around the impurities. Then, we

calculate the IR intensity of those vibrational modes showing a symmetry that

could lead to the formation of an electric dipole. The intensity of the peaks is

scaled to the value of the TiO2 IR peak Eu(2).

We compute the core level binding energy shifts for N 1s, O 1s, and Ti 2p core

levels within the initial and final approximation discussed in chapter 2. In the

final state, we impose a net charge of +1.0 upon the anatase supercell containing

any defect, to remove the extra electron that is added to build the Kohn-Sham

Hamiltonian correctly (see chapter 2 for details). The electron must be removed

because the TiO2 anatase phase is a semiconductor material, and therefore there

is not free electrons in the system to screen the hole core created by the pho-

toemission process. We take the Ti 2p and O 1s core level binding energy of Ti

and O atoms, far enough from the point defect as references. For the nitrogen

impurities, we determine the relative shift of the N 1s core level binding energies

of the different nitrogen species: substitutional (Ns), interstitial (Ni) and molec-

ular nitrogen (N2). Since the cell used to study the isolated nitrogen molecule is

different to the cells used for the substitutional and interstitial nitrogen, we take

the total potential of the isolated nitrogen molecule at the vacuum as reference.

We compute the total potential at the vacuum for the pristine anatase using a

slab of this material perpendicular to the (101) direction of its tetragonal unit

cell (because the (101) surface is the most thermodynamically stable for anatase).
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We then align this potential with the reference potential. At the same time, we

align the value of total potential at the bulk of the slab, with the value of the total

potential of the cell with the defect, calculated at a point far from the impurity.

5.3 Results and discussion

This section is devoted to show and discuss our theoretical results. In the first

subsection, we show and discuss the electronic, structural and vibrational proper-

ties of pristine anatase. Then, we proceed to discuss the properties for the point

defects considered, comparing them with experimental data obtained from XPS

and Raman spectroscopies and with other theoretical works.

5.3.1 Features of pristine Anatase

Anatase T iO2 crystallizes in the tetragonal Bravais lattice with spatial symme-

try I41/amd (see Fig. 5.2), D19
4h. The optimized cell parameters are a = 3.83

Å and b = 9.72 Å, which are in good agreement with those calculated by other

groups using the same exchange-correlation functional [59]. In anatase structure,

each oxygen atom is connected to three titanium atoms through two equivalent

equatorial bonds and one axial bond, whose lengths are 1.73 and 1.90 Å, respec-

tively. On the other hand, each titanium atom is bonded to 6 oxygen atoms; with

four equatorial bonds and two axial bonds. The octahedron around the titanium

atoms are significantly distorted. Our theoretical result for the direct band gap

of this material is 2.1 eV to be compared to the experimental value of 3.2 eV. It

is well known that the band gap is underestimated within the density functional

theory formalism. Our result is comparable to those obtained by other groups

[59]. Figure 5.3.1 represents the anatase band structure using the tetragonal Bril-

louin zone [76], sketched at the top of the same figure. From now on, all band

structures will be shown setting the Fermi level at the top of the valence band.

The character of the valence bands are mainly O 2p, while the conduction bands

have a Ti 2p character.
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Figure 5.2: Anatase unit cell.
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Figure 5.3: Band structure of anatase calculated with SIESTA using the GGA

approximation (left side) and the tetragonal Brillouin zone (right side).

We calculate the diagonal Born effective charge tensors. These elements are

summarized in Table 5.2 and they are in good agreement with the values reported
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in Refs. [74, 75]. The effective charges of Ti are larger than the nominal ionic

charge of Ti (Z = +4). These anomalous effective charges that are also observed

in TiO2 rutile and perovskite Ti compounds, can be explained in view of mixed

ionic-covalent bonding [74]. On the other hand, the effective charges of oxygen

exhibit a strong anisotropy. The component along the a lattice vector is much

smaller than the nominal ionic charge (Z = −2). A similar trend is observed in

TiO2 rutile [77, 78], and perovskite Ti compounds [79].

Since there are six atoms in the anatase unit cell, there are fifteen optical and

Table 5.2: Born effective charge tensors of anatase phase. The directions i =
1, 2, 3 are along a, b, and c axis in the conventional unit cell, respectively. The
born effective charge tensors are diagonalized.

Anatase
This work Ref. [74]

i Z∗
i (T i) Z∗

i (O) Z∗
i (T i) Z∗

i (O)
1 +6.630 -1.218 +6.678 -1.161
2 +6.630 -5.414 +6.678 -5.517
3 +5.863 -2.923 +5.713 -2.856

three acoustic modes. The irreducible representation of the optical modes at Γ

point is

Γopt = A1g + A2u + 2B1g +B2u + 3Eg + 2Eu (5.7)

The modes A2u and Eu are IR active, whereas the modes A1g, B1g and Eg are

Raman active. The mode B2u is a silent mode. The E modes are doublets (doubly

degenerate) and perpendicular to the c axis of the conventional unit cell, along

either 〈110〉 or 〈110〉 direction, while the other modes are singlet and parallel to

the c axis. Table 5.3 summarizes our results of phonon frequencies and compares

them with theoretical results and experimental data reported in the literature,

including LO-TO splits of the IR active vibrational modes. For a quantitative

comparison of our results with the experimental data, we calculate the root-

square-mean deviation (RSMD), obtaining a value of 25.78 cm−1 and a normalized

RSMD of 3.52 %. Our results are comparable with the theoretical values reported

in Ref. [74], and included in the Table (5.3). In this work, we focus on the lowest-

frequency Eg(1) Raman active mode that was experimentally observed to shift
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towards higher frequencies and to spread and decrease in intensity when nitrogen

impurities are implanted in the anatase matrix. The calculated frequency of this

phonon mode Eg(1) is larger in comparison to the experimental value reported in

Ref. [80] and even with other theoretical values [74].

Table 5.3: The wave numbers of phonon eigenmodes for anatase at Γ (cm−1)

Theory Experiment

Mode This work Ref. [74] Ref. [81] Ref. [80] Ref. [81]

Raman

Eg(1) 162.8 145.6 152 144

Eg(2) 189.1 171.1 307 197

B1g(1) 401.3 398.4 400 399

B1g(2) 552.6 518.4 515 519

A1g 531.7 535.9 519 513

Eg(3) 664.7 662.1 640 639

Infrared

Eu(1) TO 259.8 248.6 329 262

LO 325.2 340.6 428 366

A2u(1) TO 383.7 375.3 566 367

LO 775.6 743.1 844 755

Eu(2) TO 492.7 479.9 644 435

LO 881.4 892.2 855 876

Silent

B2u 542.7 564.6 435

5.3.2 Point defects

Figure 5.4 shows the geometrical configuration of the most easily formed point

defects and Table 5.4 summarizes the values of the structural parameters. The

concentration of defects in the cell is of ∼ 1.03 at. %. This concentration is within

the range of values measured experimentally by Guillaume et al. and at the same

time it is sufficiently small for the electrostatic interaction between the charged

defect and its periodic images to be negligible. In all cases, we observe that cell
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parameters are unchanged due to the presence of the defect. Moreover, we obtain

the same result when we incorporate more than one defect per supercell, up to

∼ 3.0 and ∼ 2.1 at. %. of nitrogen (interstitial and substitutional) and oxygen

vacancies, respectively. We observe that structural changes are localized around

the defects.

Figure 5.4: structural configuration of the point defects.
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Table 5.4: Structural parameters of the point defects: bond lengths and angles.

Interstitial-Ti

charge Tiint-Oap Tiint-Oeq ∠(Oap-Tiint-Oeq) ∠(Oap-Tiint-Oeq)

0 1.98 2.07 92.9 87.1

+1 1.98 2.06 92.9 87.1

+2 1.97 2.05 92.6 87.4

+3 1.95 2.05 92.6 87.4

+4 1.90 2.01 92.0 88.0

Oxygen vacancy

charge

+2 2.23 2.21 153.73 103.13

+1 2.23 2.22 153.58 103.21

0 2.22 2.23 153.53 103.23

Substitutional-nitrogen

charge N-Tiax N-Tieq ∠(Tieq-N-Tieq) ∠(Tiax-N-Tieq)

-3 1.93 1.90 158.4 100.8

-2 1.93 1.90 157.7 101.1

-1 1.93 1.90 157.1 101.4

0 2.07 1.98 159.2 100.4

+1 2.51 2.05 169.7 95.2

+2 2.53 2.07 170.2 94.9

+3 2.55 2.14 171.7 94.1

Interstitial-nitrogen

charge N-O N-Ti(1) N-Ti(2)

-2 1.47 2.07 2.04

-1 1.46 2.07 2.04

0 1.37 2.38 2.09

+1 1.32 2.23 2.49

+2 1.42 2.85 2.63

+3 1.30 3.05 2.92
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Oxygen vacancy

When an oxygen vacancy is created, the neighbouring titanium atoms of the va-

cancy move slightly away from it. The largest displacement occurs for the vacancy

having a charge state +2. All these structural distortions are localized around

the vacancy.

We find that the formation energy of the neutral state (4.8 eV) under oxygen-rich

conditions is comparable to the value reported for the same state by Selloni et

al. [59] using plane waves and a hybrid functional (4.2 eV). We observe that new

electronic states associated to the vacancy appear in the conduction band for

all charge states. However, electron paramagnetic resonance (EPR) experiments

shows new electronic states associated to oxygen vacancies slightly below the con-

duction band edge (0.8 eV from the conduction band edge), and assigned to Ti+3

3d states [56, 67]. Several author suggest that a good description of these elec-

tronic states requires the use of hybrid functionals or DFT+U [59, 82]. Analysing

the formation energy diagram of the oxygen vacancies for several charge states

obtained using standard DFT (showed in Fig. 5.5), we observe that the charge

state with the lowest formation energy in the allowed electronic chemical potential

range is +2. In this charge state, the electronic levels associated to the oxygen

vacancy appearing in the conduction band are empty, which means that this

charge state could be correctly described using DFT with standard functionals

(LDA and GGA). The oxygen vacancy in this charge state is more easily formed

at low electronic chemical potentials. This result is in good agreement with pre-

vious theoretical reports [59, 83]. Figure 5.6 shows the projection weights of the

phonon modes of the anatase supercell containing an oxygen vacancy defect onto

one of the degenerate phonon modes Eg(1) of the pristine anatase against the

frequency of the phonon modes. It also shows the fit to a Lorentzian function

(red curve), yielding a media value of 135.4 cm−1 (a shift of -4.4 cm−1) and a

width of 7.5 cm−1. The main contribution to the peak comes from the phonon

with frequency of 133.5 cm−1 and weight of 0.7. The Lorentzian distribution is

used since our data points are much better described (the correlation coefficients

are closer to 1.0) than with the Gaussian distribution. A similar result is ob-

tained for the projection upon the other degenerate phonon mode. The average
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Figure 5.5: Formation energy Eform of the oxygen vacancies with charge m (m =
+2,+1, 0), as a function of the electronic chemical potential µ′

e relative to Fermi
energy level, which is set at the valence band edge.

shift value of the degenerate modes is -5.8 cm−1. Thus, the formation of oxygen

vacancies in the anatase matrix leads to a shift of the Eg(1) peak towards lower

frequencies and that this shift is followed by a small spread of the peak. This

result is in contradiction to what several authors have observed in nanostructured

nonstoichiometric TiO2, that the Eg(1) peak moves towards higher frequencies as

the concentration of oxygen vacancies increases [71, 72]. Our hypothesis is that

other factors apart from the concentration of oxygen vacancies, like the particle

size, are responsible for this shift. Using the DFT machinery to simulate clusters

containing thousands of atoms is extremely expensive and beyond the scope of

this work.
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Figure 5.6: Normalized weights (black circles) from the projection of the phonon

modes of the anatase supercell containing a oxygen vacancy onto one of the

doublet Eg(1) modes of the pristine anatase. The red curve indicates the resulting

fit of the normalized weights to a Lorentzian function: media = 135.4 cm−1,

weight = 0.99 and width = 7.5 cm−1 (corr. coeff. = 0.98).

Interstitial titanium

The interstitial titanium (Tiint) in the neutral charge state has a distorted-

octahedron configuration (slightly elongated along one of its axis) than those

in the anatase matrix. The four equatorial oxygen atoms are in the plane per-

pendicular to the apical axis (which is along the (110) direction), forming angles

of about 90o with the interstitial titanium and each of the apical oxygen atoms,

and the Tiint-O lengths are larger than in the pristine anatase: the equatorial

and axial Ti-O lengths are of 2.06 Å and 1.97 Å, respectively. These lengths do

not change noticeably for the positive charge states studied (the largest variation

is of 0.08 Å).

New electronic states associated to the interstitial titanium appear slightly above
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the conduction band edge as well as just below it, not showing a large disper-

sion. The occupation of these electronic levels depends on the net charge on the

system. Analysing the formation energy diagram for these systems, depicted in

Fig. 5.7, we observe that the interstitial titanium with a net charge of +4 has the

lowest formation energy in the whole range of allowed electronic chemical poten-

tial. In this charge state all electronic levels above the middle of the band gap

are empty, which means that, as in the case of the oxygen vacancy, the properties

of the system are correctly described with GGA. The electronic states below the

conduction band edge are mainly of Ti 3d character of Tiint.

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

0.0 0.4 0.8 1.2 1.6

E
fo

rm
 (

eV
)

µe

m =  0

m = +1

m = +2

m = +3

m = +4

Figure 5.7: Formation energy of interstitial titanium with charge m (m =

0,+1,+2,+3,+4), against the electronic chemical potential relative to the Fermi

energy level, which is set at the valence band edge.
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Next, we calculate the phonon modes of the anatase supercell containing an

interstitial titanium atom with a net charge of +4, and project them onto the

Eg(1) phonon mode of the pristine anatase. After an intensive review of the

literature concerning to anatase TiO2 with titanium native defects, we did not find

any previous theoretical or experimental report studying the lattice dynamics.

Fig. 5.8 shows the projection weights onto one of the degenerate Eg(1) phonon

modes of pristine anatase against the frequency (a similar behaviour is obtained

for the projection onto the other degenerate Eg(1) phonon mode). Fitting the

projection weight values from each of the degenerate Eg(1) phonon modes to

a Lorentzian function, we obtain an average value for the media of 157.5 cm−1.

Unlike the case of oxygen vacancies, the inclusion of titanium atoms in interstitial

positions leads to a shift of Eg(1) peak towards higher frequencies, with an average

shift of +17.8 cm−1. As in the case of oxygen vacancies, the interstitial titanium

does not give a significantly large spread of the peak (average width of 22 cm−1).

The shift obtained for the interstitial titanium is larger than the value measured

experimentally in N-doped anatase by Guillaume et al. (of about +5 cm−1). This

result suggests the experimental conditions used by Guillaume et al. do not result

in a significant concentration of interstitial titanium.

In order to investigate what new features arise from the interstitial titanium, we

determine the weight of this impurity for each phonon vector and plot it against

the phonon frequency as shown in the Fig. 5.9. We observe two low-frequency

phonon modes (with frequencies of 74.0 and 83.8 cm−1) that are localised around

the defect. However, their calculated IR intensities (0.001 and 0.002, respectively)

are too small relative to the largest theoretical IR intensity of pristine anatase

(intensity of 1.0), which corresponds to the longitudinal optical Eu(2) phonon

mode (881.4 cm−1).
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Figure 5.8: Normalized weight projections obtained from projecting the phonon
modes of the anatase supercell containing an interstitial titanium with a net
charge +4, onto the Eg(1) phonon modes of the pristine anatase. Statistical
results: media = 161.5, weight = 0.99 and width = 21.9 cm−1 (corr. coef. =
0.98).
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Figure 5.9: Normalized weight of the interstitial titanium for each phonon mode

vector against frequency.
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Nitrogen impurities

In the case of nitrogen impurities we studied both interstitial and substitutional

nitrogen, with negative and positive charge states. In the former case, an oxygen

atom of the anatase supercell is replaced by a nitrogen atom leading to nitro-

gen impurities having the same connectivity and configuration as the oxygen

removed. In the neutral charge state, the Ti-N bonds are slightly longer than the

Ti-O ones. When a net charge is imposed on the supercell, we observe that for

negative charge states, the Ti-N bonds become shorter than those of the neutral

state, while for positive charge states, the Ti-N bonds are longer. On the other

hand, neutral interstitial nitrogen forms a strong bond with an oxygen atom of

the anatase matrix, having a N-O length of 1.37 Å, in agreement with the value

reported in Ref. [59]. The lowest energy configuration of the N-O specie is shown

in Fig. 5.4. N-O interacts with the equatorial titanium atoms through π bonds

and with the axial titanium through a σp bond. In negatively charged configu-

rations, this σp bond is shorter than in the neutral state. This increases the π

bonds by 0.09 Å. Larger changes occurs for the interstitial-N configuration when

positive charges are imposed, specially in the charge state +3. Here, the nitrogen

impurity is bonded to two oxygen atoms in a configuration shown in Fig 5.4, with

N-O lengths of 1.30 Å.

When anatase is doped with nitrogen impurities (both interstitial and substitu-

tional), partially-occupied localized electronic states are induced slightly above

the valence band edge. For the lowest doping concentration studied (of about

1.03 at. %), the lowest edge of these states appear 0.14 and 0.73 eV above the

top valence band edge for substitutional and interstitial nitrogen, respectively.

The character of these electronic states is N 2p for substitutional and, N and O

2p for interstitial. As concentration of doping increases, these localized states

become closer to the valence band edge, overlapping with it in the case of substi-

tutional nitrogen. This overlap has also been observed by K. Yang et al. [70], who

characterized the electronic properties of anatase in terms of the substitutional-N

doping concentration. Thus, the band gap narrowing observed experimentally for

N-doped anatase could be attributed to the localized electronic levels of nitrogen

just above the valence band and overlapping with it.
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Figure 5.10: Formation energy curves of neutral nitrogen impurities and oxygen
vacancies against of the oxygen chemical potential that corresponds to a oxygen-
rich environment.

Figure 5.10 shows formation energies of the nitrogen impurities and oxygen

vacancy in the neutral state, as a function of oxygen chemical potential. For

oxygen-rich conditions (a high oxygen partial pressure), the calculated formation

energies of the impurities are 5.8 and 4.2 eV for substitutional and interstitial

nitrogen, respectively, indicating that for these conditions interstitial nitrogen is

most easily formed. These values are comparable to those obtained by Selloni

et al. [59], 5.8 and 4.3 eV, respectively. The formation energy of substitutional

nitrogen decreases when the oxygen chemical potential becomes smaller. For

oxygen chemical potentials lower than -1.65 eV, the formation energy is always

smaller for the substitutional nitrogen than for the interstitial one. On the other

hand, the formation of the oxygen vacancies is favoured for oxygen-poor condi-
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tions (low oxygen pressures).

The formation energy diagrams for charged substitutional and interstitial nitrogen

impurities are shown in the Figs. 5.11 and 5.12). These figures were calculated

with µO = 1/2EO2
and µN = 1/2EN2

(oxygen- and nitrogen-rich conditions). We

observe that positive as well as negative charge states are possible. Each of these

charge states dominate within a certain range of the electronic chemical potential.

These ranges are delimited by electron capture processes in which the defect traps

one or more electrons from the environment as the electronic chemical potential

increases.
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Figure 5.11: Formation energy diagram of substitutional nitrogen with a net

charge m (m = −3, ..., 0, ...,+3), as a function of the electronic chemical potential

measured from the Fermi energy level set at the valence band edge.
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The charge states +1, 0 and -1 are the most easily formed for substitutional

nitrogen, having always positive formation energies for the chemical potential

of nitrogen and oxygen considered. At 0.6 eV from the valence band edge the

substitutional nitrogen with charge +1 traps one electron from the environment,

reaching the neutral state. At 0.62 eV the neutral substitutional nitrogen traps

another electron, becoming negatively charged (-1). These transitions are not

followed by a drastic structural rearrangement, only small changes are found in

the bond lengths as indicated in Table 5.4. Note that the stability region of the

neutral state is quite narrow (of about 0.02 eV), but it enables a continuous tran-

sition between the different charge states allowed.
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Figure 5.12: Formation energy diagram of interstitial nitrogen with a net chargem

(m = −2, ..., 0, ...,+3), as a function of the electronic chemical potential measured

from the Fermi energy level set at the valence band edge.
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For interstitial nitrogen the formation energy diagram shows that the most

easily formed charge states are +3 and -1. In the transition point between these

charge states, at 1.4 eV from the valence band edge, the system with charge +3

traps four electrons, leading to a drastic change of the configuration around the

defect. While in the state -1 the configuration of nitrogen is similar to that of

the neutral state where the nitrogen is linked to an oxygen atom of the anatase

matrix, in the state +3 the nitrogen is significantly closer to two oxygen atoms,

adopting the configuration shown in Fig. 5.4. This charge state is most stable

for a broader range of electronic chemical potential.

Comparing the stability diagrams of substitutional and interstitial nitrogen, we

notice that for the chemical potential of the oxygen and nitrogen used (an oxygen-

and nitrogen-rich environment) the interstitial nitrogen is more easily formed than

substitutional. However, for low µO (that corresponds to oxygen-poor environ-

ment), the charged substitutional nitrogen (-1) becomes the most stable at high

and low electronic chemical potential, respectively. The formation of substitu-

tional nitrogen charged negatively would be favoured by the presence of oxygen

vacancies or interstitial titanium, because these defects are electron donors, shift-

ing µe to higher values close to the conduction band. Since each oxygen vacancy

donates two electrons, two interstitial nitrogens would be needed to compensate

each oxygen vacancy. For the interstitial titanium case, four nitrogen impurities

would be required.

Table 5.5 shows the results of the statistical analysis of the projection of the

phonon modes of the N-doped anatase (with the nitrogen impurities in either

interstitial or substitutional position), on the doubly degenerate phonon modes

Eg(1) of the pristine anatase. For both interstitial and substitutional nitrogen,

we consider the charge states with the lowest possible formation energies: -1, 0

and +1 for substitutional nitrogen, and -1 and +3 for interstitial nitrogen.

Let us start by discussing the results for substitutional nitrogen. In the neutral

charge state, although one of the phonon modes shows a relatively large width

their frequencies are unchanged with respect to the frequency of the Eg(1) phonon

in pristine anatase (139.8 cm−1). However, we observe that in both charge states

-1 and +1 one of the degenerate Eg(1) phonon modes shifts to higher frequencies

(+3.4 and +4.4 cm−1, respectively). For both +1 and -1 charge states the width
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Table 5.5: Results of the Lorentzian fitting of the phonon projection for N-doped
anatase TiO2. Phonon modes of the N-doped anatase are projected onto the
degenerate Eg(1) phonon mode of pristine anatase, whose frequency is 139.7
cm−1. We consider the charge states of the impurity with the lowest formation
energies within the allowed electronic chemical potential.

Charge state media projection weight width shift
(cm−1) (a.u.) (cm−1) (cm−1)

Substitutional-N

-1 143.2 0.68 30.2 +3.4
138.5 0.92 2.0 -1.3

0 138.9 0.48 25.3 -0.9
140.8 0.76 2.9 +1.0

+1 144.2 0.92 67.6 +4.4
139.5 0.76 14.6 -0.3

Interstitial-N

-1 110.2 0.64 10.6 -29.6
112.6 0.86 3.2 -27.2

0 108.5 0.63 50.8 -31.3
114.5 0.68 47.1 -25.3

+3 110.8 0.99 28.7 -29.0
111.3 0.54 3.4 -28.5

of the shifted phonon modes is larger than that of the phonon modes that remain

practically unshifted.

For the interstitial nitrogen, in both charge states with the lowest formation en-

ergy (-1 and +3) we observe a shift towards lower frequencies of the two compo-

nents of the degenerate Eg(1) phonon mode relative to their frequency in pristine

anatase, with one of its components showing a large spread. The average shift

is of about -28 cm−1. The phonon mode amplitudes for these charge states are

very similar. We additionally consider the neutral interstitial nitrogen, though

its formation energy is always larger in comparison with charge states +3 and -1.

We observe a similar shift towards lower frequencies of about -28 cm−1 for the

two components of the Eg(1) phonon mode, but showing a larger spread than in

the former cases.
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Comparing the results of the phonon projections obtained for the interstitial and

substitutional nitrogen with the experimental data from Guillaume et al. we

arrive at the conclusion that the shift of the Eg(1) Raman peak towards higher

frequencies under the nitrogen doping, could be due to the formation of nega-

tively or positively charged substitutional nitrogen. However, considering that in

the preparation method they use an oxygen-poor atmosphere to force the implan-

tation of nitrogen impurities, favouring also the formation of oxygen vacancies

(electron donors), the formation of the charged substitutional nitrogen (-1) is

likely more favoured. The substitutional nitrogen shows a shift toward higher

frequencies of the order of the experimentally measured shift, while interstitial

nitrogen shows a shift to the opposite direction.

As in the case of interstitial titanium, we look for new features that arise from

the nitrogen impurities and are IR active. Table 5.6 summarizes our results. For

the charged substitutional and interstitial nitrogen, we observe several features

that shows an IR activity. However, their IR intensities are found to be too small

relative to the intensity of the highest IR active lattice vibration (TO Eu(1)) of

the anatase matrix, except for the phonon mode with frequency 878.4 cm−1 in

the charge state -1, for which the calculated relative intensity is 0.14. Since the

frequency of this feature with high IR intensity is close to the TO Eu(1) peak, it

could lead to a broadening of this peak.

Several new features emerge for the interstitial nitrogen, but all with too small

IR intensities in comparison with the TO Eu(1) lattice vibration of the anatase

matrix. We think that the features appearing at a higher or lower frequency far

from the IR region of pristine anatase could be experimentally detected as they

do not overlap with the peaks coming from the pristine anatase, in particular the

stretching mode of the N-O bond with a high frequency of 1165.6 cm−1. The

experimental detection of these features could be used as a way to characterize

the interstitial nitrogen.

5.3.3 Core level binding energies (CLBE) of point defects

We proceed to discuss our results for the core level binding energies (CLBE)

shifts, which are summarized in the Table 5.7. For O 1s and Ti 2p core levels
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Table 5.6: IR active phonon modes arisen from the charged and neutral nitrogen
impurities, whether interstitial or substitutional, in the anatase matrix. We only
consider the charge states with the lowest formation energies within the allowable
electronic chemical potential discussed above. Normalized weight refers to the
contribution of the nitrogen impurity to the phonon mode.

Charge state Frequency Normalized weight IR intensity
(cm−1) (a.u.) (a.u.)

Interstitial-Ti

+4 74.0 0.55 0.09
83.8 0.60 0.14

Interstitial-N

-1 868.9 0.7 0.5 N-O stretching
710.0 0.4 0.0

+3 53.2 0.7 0.2
1165.6 0.8 0.2 N-O stretching
1208.1 0.8 0.1 N-O stretching

Substitutional-N

-1 298.4 0.4 0.4
878.4 0.8 11.2

0 276.4 0.4 0.1
+1 613.4 0.7 0.0

we calculate the shifts by computing the CLBE for two atoms of the same specie

(oxygen or titanium) in the anatase matrix, one of them localized near the point

defect or being the point defect itself (this is the case of having interstitial tita-

nium), and the other one being far away from the point defect to be considered

as the reference. We assume the CLBE calculated for the atom far from the point

defect is the expected CLBE for the same atom in the pristine anatase. In fact,

we perform some calculations using the pristine anatase cell and we obtain the

same results for the shifts. To do this, we align the total electrostatic potential of

the cells with and without the point defect as the reference potential. In the case

of the N 1s core level the shifts of the interstitial and isolated molecular nitrogen

are relative to the CLBE of the substitutional nitrogen (which is taken as the
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reference).

The CLBE shifts are calculated using the initial and ∆SCF state approxima-

tion, except for the case of the isolated molecular nitrogen where to perform the

∆SCF approximation we have to converge the total energy of the ionized system

E(N+
2 ) with respect to the size of the cell. We observe that both the initial and

final approximations give the same shift directions (except for the O 1s CLBE

shift of one of the oxygen atoms close to oxygen vacancy), and that, in general,

the final approximation gives smaller values than the initial approximation.

For the Ti 2p core level, the CLBE shifts obtained for the oxygen vacancy and

the substitutional and interstitial nitrogen are small and, in most cases, similar

to each other within each approximation. This makes difficult the differentiation

between these point defects. However, for the interstitial titanium we observe a

large shift of about -1.85 eV from the initial approximation (-1.10 from the final

approximation) that can be used to identify clearly the presence of interstitial

titanium.

For the O 1s core level, we observe a small CLBE shift for substitutional nitrogen

that goes towards the opposite direction (negative shift) in comparison to the

shifts obtained for the other defects. Among the defects with a positive shift,

the interstitial nitrogen shows the largest shift (of about 2.99 and 2.70 eV for the

initial and final approximation, respectively), which is ∼2.4 eV greater than the

shifts obtained for the native defects. This feature of interstitial nitrogen would

allow to identify it from substitutional nitrogen and native defects.

Finally, for the N 1s, the relative position of the CLBE for the interstitial and

substitutional nitrogen and the isolated molecular nitrogen (the latter is included

only in the initial approximation) is CLBE(N2) > CLBE(Nint) > CLBE(Nsubs).

The difference between the substitutional and interstitial nitrogen is of 2.51 eV

in the final approximation (and 1.96 in the initial approximation). In both ap-

proximations this difference is large enough to enable a distinction between these

species. However, from the initial approximation we observe that the difference

between the interstitial and isolated molecular nitrogen is very small (of about

0.1 eV).

Considering the results obtained from both approximations we can conclude that

substitutional nitrogen can be clearly distinguished from interstitial and molecu-
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lar nitrogen by determining the N 1s CLBE shift, while the interstitial nitrogen

can be fully distinguished from the substitutional and isolated molecular nitrogen

by characterizing the O 1s CLBE shift. Finally, the interstitial titanium is clearly

characterized by determined the Ti 2p CLBE shift.

We compare our results with XPS experimental data for N-doped anatase re-

Table 5.7: CLBE shifts for the oxygen vacancies, interstitial titanium (Tiint), and
substitutional (Nsubs) and interstitial (Nint) nitrogen. The shifts were calculated
within the initial and ∆SCF state approximation. For the Ti 2p core level we
compute the shifts for the axial and equatorial titanium atoms, namely Tiax and
Tieq, respectively. In the cases where we compute the shifts for the first and
second neighbours of the defect, they are indicated after the chemical symbol of
the atom by the labels (1) and (2).

System Reference Core level Sample Shift (eV)
atom Initial ∆SCF

Approx. Approx.

Nsubs-TiO2 pure-TiO2 Ti 2p Tieq-Nsubs -0.32 -0.35
Tiax-Nsubs -0.07 -0.19

pure-TiO2 O 1s O-Ti-Nsubs -0.17 -0.09
Nsubs N 1s N2 2.06

Nint-TiO2 pure-TiO2 Ti 2p Tieq-(Nint-O) -0.43 -0.24
Tiax-(Nint-O) -0.18 -0.13

pure-TiO2 O 1s O-Nint 2.99 2.70
Nint N 1s N2 0.10

Nint-TiO2 Nsubs-TiO2 N 1s Nint 1.96 2.51
[Ov-TiO2]

2+ pure-TiO2 Ti 2p Tieq-Ov -0.47 -0.03
Tiax-Ov -0.34 -0.02

pure-TiO2 O 1s O(1)-Ov -0.45 0.58
O(2)-Ov 0.66 0.10

Tiint-TiO2 pure-TiO2 Ti 2p Tiint -1.85 -1.10
Ti(1)-Tiint -0.78 -0.20

pure-TiO2 O 1s O(1)-Tiint 0.50 0.09
O(2)-Tiint 0.61 0.42

ported by different groups [58, 59, 62, 64, 84, 85, 86, 87]. Several new features

have been observed in the O 1s, N 1s and Ti 2p XPS spectra of N-doped anatase.

It has been found that the set of new features depends on the chemical or physical
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method used to dope the anatase. Figure 5.13 shows all the features observed in

the O 1s, N 1s and Ti 2p XPS spectra. The experimental O 1s and Ti 2p CLBE

peaks for pristine anatase appear at 530.0 and 459.0 eV, respectively. In N-doped

anatase it has been measured a small shift towards lower binding energies for the

Ti 2p core level (-0.8 eV), for which we compute a shift (whether for interstitial

or substitutional nitrogen) of -0.32 eV and -0.35 eV with the initial and ∆SCF

approximation, respectively.

For the same system, a new feature (a shoulder) appearing at higher energies in

457.0 457.5 458.0 458.5 459.0 459.5 460.0 

BE (eV)

Ti 2p
∆

528.0 529.0 530.0 531.0 532.0 533.0 534.0 

O 1s ∆

395.0 396.0 397.0 398.0 399.0 400.0 401.0 

N 1s
∆1

∆2

Figure 5.13: Experimental binding energies for the N 1s, O 1s and Ti 2p core levels
of N-doped anatase. The blue bars indicate the position of the core level binding
energies observed experimentally for the different species. Gaussian functions are
used to simulate the N 1s, O 1s and 2p Ti XPS signals. The theoretical FWHM
(the full at half maximum) used are 1.17, 1.67 and 1.17 eV for 2p Ti, O 1s and
N 1s.

the O 1s XPS signal (about 532.0 eV) have been measured (see Fig. 5.13). The

relative position of this feature with respect to the O 1s peak for pristine anatase

is in good agreement with our calculated O 1s CLBE shift for the case of having

interstitial nitrogen, which is of +3.0 eV (or +2.70 eV) using the initial (or ∆)
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approximation. The theoretical O 1s CLBE shift for substitutional nitrogen is

small and negative (-0.15 eV), which could result in a overlap of the experimental

XPS characteristic of this impurity with the O 1s peak of pristine anatase. Since

the theoretical O 1s CLBE shift for interstitial nitrogen is clearly larger than the

shifts for the oxygen vacancies and interstitial titanium, the new feature in the

O 1s signal can be assigned to the presence of interstitial nitrogen in the sample.

it would be great if the sample in those experiments were grown under oxygen-

rich conditions. Finally, three new features have been observed in the N 1s XPS

signal. They have been measured at about 396.5, 399.5 and 400.2 eV. If we take

the lowest binding energy as reference, the relative position of the other ones are

+3.0 (399.5 eV) and +3.7 eV (400.2 eV). Our results for the N 1s CLBE shifts for

the interstitial nitrogen and isolated molecular nitrogen, taking the substitutional

nitrogen as reference, are +1.96 and +2.06 eV, respectively, with the initial state

approximation. Our computed shift for the interstitial nitrogen is larger than the

value obtained by Selloni et al. [59] (+1.6 eV) using the same approximation.

In the ∆SCF approximation the shift between the interstitial and substitutional

nitrogen with the latter as reference is of +2.51 eV. Our theoretical result for the

shift of the interstitial nitrogen relative to the substitutional one is comparable

to the experimental shift between the peak with the lowest binding energy and

the peak appearing at 399.5 eV. Therefore we can assign the feature with low-

est binding energy to the formation of substitutional nitrogen and the other one

having a binding energy of 399.5 eV to the presence of interstitial nitrogen. The

peak with the highest binding energy observed experimentally is +0.7 eV from

the peak assigned to interstitial nitrogen. This shift is larger than the theoretical

shift for the isolated molecular nitrogen with respect to the interstitial nitrogen

(+0.1 eV). However, our result suggests that the feature of isolated molecular

nitrogen should appear at higher binding energies.

We can conclude that our theoretical CLBE shifts describes in good agreement

the XPS experimental data of N-doped anatase and therefore these results can

contribute to the full characterization of the nitrogen impurities, and to the un-

derstanding of the role that these impurities could play in the enhancement of

the photocatalytic activity of anatase.
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Chapter 6

Conclusions

We have introduced and implemented two ab initio methods for the study of elec-

tronic excitations in molecules and extended solids: the GW approximation and

the constrained density functional theory (CDFT). These methods were imple-

mented in the SIESTA code within the strictly localized basis formalism, opening

the possibility of studying systems containing thousands of atoms.

We coded the GW approximation following the approach proposed by F. Giustino

et al. [3], initially implemented with plane waves, that only requires the Kohn-

Sham occupied electronic states to compute both the screened Coulomb potential

and the one-particle Green function. The screened Coulomb potential is evalu-

ated using the self-consistent Sternheimer equation and the one-particle Green

function is calculated through an inhomogeneous linear system. To do this we

first rewrote carefully the set of equations of this approach within the local ba-

sis formalism as used in SIESTA, obtaining expressions that use only two-center

integrals. Using local basis sets the GW approach scales as O(N3) (where N

is the number of atoms in the system), which is smaller in comparison to plane

waves, where this approach scales as O(N4). Hence, the GW approach with

local bases would allow the study of larger and more complex systems than pos-

sible with plane waves. The dielectric screening of extended systems, including

silicon, diamond, LiCl and Germanium, from the screened Coulomb potential

evaluated through the self-consistent Sternheimer equation with local bases, was

investigated, comparing our results with plane waves calculations. The use of our

method does not require the explicit inversion of the dielectric matrix. We found
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that performing an efficient optimization of the local basis we can obtain an accu-

racy comparable to that of plane waves calculations. This accuracy as well as the

monotonic convergence with basis size are very encouraging in view of more effi-

cient excited-state calculations requiring the evaluation of the dielectric matrices.

Evaluating the one-particle Green function using either the occupied electronic

states only, with the inhomogeneous linear system, or all the electronic states

always gives the same results, proving that the Green function is calculated cor-

rectly because both procedures are totally equivalent. The maxima of the peaks

of the spectral function of the Green function for a particle system obeying the

Kohn-Sham Hamiltonian, appear at the Kohn-Sham eigenvalues, also indicating

that the Green function is well computed. As the final step in the implementation

of the GW approximation in SIESTA, we are now coding the subroutine to evalu-

ate the self-energy operator and quasiparticle excitation energies, and initializing

the parallelization of the code.

Our modified version of the CDFT approach proposed by Q. Wu and T. Van

Voorhis based on maximizing the energy functional W to efficiently find the po-

tential that gives the constrained state, was successfully implemented in SIESTA

with the Mulliken and Löwdin schemes to define the weight function, and ex-

tended to periodic solids with the Mulliken scheme. Our CDFT method does not

require more complexity than standard DFT, when the potential Vc that gives the

constrained state is found efficiently. This allows us the study of electronic exci-

tations in large systems with a low computational cost. In our implementation we

perform the maximization of the energy functionalW (Vc) to find the constraining

potential following a procedure that is different to that used by Q. Wu and T.

Van Voorhis, but that is fully theoretically justified. We use two loops to find the

constraining potential efficiently. An inner loop is used to solve the constrained

Kohn-Sham Hamiltonian self-consistently, while an outer loop is used to perform

the maximization of the energy functional W (Vc). Q. Wu and T. Van Voorhis

perform the maximization in each step of self consistency of the constrained Kohn-

Sham Hamiltonian, not using the correct solution of the constrained Hamiltonian

to evaluate the first derivatives of the energy functional W (Vc). The number of

steps required to compute the self-consistency of the constrained Hamiltonian us-

ing our implementation is similar to that required in a standard DFT calculation
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and to perform the maximization the number of steps needed is too small (usually

four steps). We applied our implementation to the study of the charge transfer

between the TTF and TCNQ molecules in TTF-TCNQ one-dimensional conduc-

tor. We found that imposing the constraint through the atomic orbitals of the

TTF and TCNQ molecules, using the Mulliken population schemes, do not lead

to a direct charge transfer between the lowest occupied and highest unoccupied

band associated to the TTF and TCNQ molecules, respectively, likely due to a

rehybridization of all the bands of the system. Hence, other approaches to define

the constraint domain should be explored. In this line, we believe that imposing

the constraint through the molecular orbitals of the highest unoccupied and low-

est occupied band is a better model to describe the charge transfer between the

TTF and TCNQ molecules. However, this idea will be studied in the future.

Our implemented methods can be use to rationalize and understand the elec-

tronic processes that take place in the solar cells and photovoltaic devices based

on semiconductor materials for the efficient design of such devices. The most

extensively used material in the fabrication of these devices is the TiO2 anatase

whether doped with nitrogen impurities or sensitized with dye molecules adsorbed

on its surface. We investigated the electronic, structural, thermodynamic and vi-

brational properties and core level binding energies shift of TiO2 anatase with

charged point defects, including native defects and nitrogen impurities, using the

DFT method. In the characterization of the point defects in the anatase matrix,

we determined the most easily formed charge states of the point defects in the

allowed electronic chemical potential and found that for the native defects the

oxygen vacancy +2 and interstitial titanium +4 have the lowest formation en-

ergies. The charge state with the lowest formation energy for the substitutional

nitrogen were -1, 0 and +1, while for the interstitial nitrogen, the charge state

-1 and +3 were the most easily formed. Of all these defects only the interstitial

nitrogen charged whether +3 or -1 change considerably the structural configura-

tion of its neighbouring atoms. New electronic states appear above the valence

band edge of the anatase for the interstitial and substitutional nitrogen, while for

the oxygen vacancy and interstitial titanium new electronic states appear below

the conduction band edge. These electronic state are empty or fully occupied

depending on the charge state of the system. We investigated the effect of the
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most easily formed point defects on the degenerate Eg(1) Raman active phonon

mode of the pristine anatase and found that oxygen vacancy makes Eg(1) shift to-

wards lower frequency (-5.0 cm−1), while the interstitial titanium shifts the Eg(1)

mode to higher frequencies (+17.8 cm−1). Similarly to the oxygen vacancies, for

interstitial nitrogen we observed a shift towards lower frequencies, but the mag-

nitude of the shift is larger (of about -29 cm−1). For the substitutional nitrogen

we observed that the degenerate Eg(1) modes shift in opposite directions, how-

ever, the shift to higher frequencies is larger than the one to lower frequencies,

and is closer to the shift observed experimentally in N-doped anatase samples,

particularly in the charge states -1 and +1. New vibrational features showing

a stretching symmetry associated to the interstitial and substitutional nitrogen

were found, however, their theoretical IR intensities are too small to be detected

experimentally. Our CLBE shift results show that both the initial and ∆SCF

approximation give similar shift values, not only in the order of magnitude of

the shifts but also in their direction. According to our CLBE shift results it is

be possible to distinguish between interstitial and substitutional nitrogen from

their N 1s and O 1s XPS signals. The N 1s binding energies of the interstitial

nitrogen and molecular nitrogen are at higher energies (1.96 and 2.06 eV, respec-

tively, within the initial approximation) relative to the position of the binding

energy associated to substitutional nitrogen, and a new feature appear at +2.70

eV from the O 1s binding energy of the pristine anatase for interstitial nitrogen

only. Comparing our results with experimental data we found that our results

describe satisfactorily the shifts observed experimentally in the N 1s, O 1s and Ti

2p XPS signals of N-doped anatase. Hence, we assign the peak observed at 396.5

eV to substitutional nitrogen, while the peaks observed at higher energies can be

assigned whether interstitial nitrogen or molecular nitrogen physically adsorbed

on the surface of the sample. The shoulder observed in the O 1s signal is assigned

to the presence of interstitial nitrogen in the sample.
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[35] N. Troullier and José Luriaas Martins. Efficient pseudopotentials for plane-

wave calculations. Physical Review B, 43(3):1993–2006, January 1991. 17

[36] Leonard Kleinman and D. M. Bylander. Efficacious form for model pseu-

dopotentials. Physical Review Letters, 48(20):1425–1428, May 1982. 17

146



REFERENCES

[37] P. Pulay. Improved SCF convergence acceleration. Journal of Computational

Chemistry, 3(4):556560, 1982. 18
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