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Universitat Politècnica De Catalunya

Barcelona – 08034

JULY 2012



:

hEr �F mhAgZpty� nm,।

aEv]nm-t� ॥



Acknowledgements

I would like to express my sincere gratitude towards Antonio for selecting me

as a PhD student to the ARCO research group. Further, Antonio arranged for

my scholarship, and always has had kind and motivating words. I am also very

grateful to Jordi, my thesis co-director, who has been an active contributor and a

patient listener in the course of this thesis. Back in 2007 and at the start of this

dissertation, I was a novice in the area of network security. Today, in 2012, I have

to admit that I have developed reasonable proficiency in this area. This clearly

would not have been possible without the trust and encouragement provided by

Antonio and Jordi. My heartfelt gratitude to both of them.

In the course of this thesis we deployed a Honeypot in the University. A note of

thanks to Prof Jordi Domingo Pascual, Albert Lopez, Marc Dacier, and Corrado

Leita for helping us to deploy the Honeypot. I would also like to thank Josep

Sole Pareta, Pere Barlet, and Josep Sanjuas for providing us access to the network

traces from the university. The system administrators in the DAC department

ii



have helped when required, so thanks to all the sys-ads. A PhD not only involves

research, there is also plenty of paper work. Thanks to the personnel in the

administration, and Trini in particular, for providing good administrative support

during these 5 years.

Barcelona is a beautiful Mediterranean city. But Barcelona is not just about

architecture, landscape and Catalan food, there is also this game called football.

I have been privileged to be a close witness in of the most glorious era of FC

Barcelona. A note of thanks to Guardiola and his band of footballers. Barcelona is

a very cosmopolitan city, and I had the opportunity to experience it at Prestigious

Speakers Barcelona (PSB). A role in PSB has always been a welcome challenge

and an opportunity, and to top it all with a very lively audience, has resulted in

so many fantastic, memorable, and fun-filled meetings. A big thank you to all

the members of PSB and the parent organization of PSB, namely, Toastmasters

International. During these years in my stay here in Barcelona, Sister Saveria of

Hospital Sant Joan de Deu has always provided ready and almost instant help.

Thank you Hermana.

Last, but not the least, I have to thank all the members of my family. I personally

am lost for words to the unflinching support and encouragement provided by my

father, mother, brother, and Hema during the course of this dissertation.

Architecture Support for Intrusion Detection Systems iii



To
My Family



Abstract

System security is a prerequisite for efficient day-to-day transactions. As a conse-

quence, Intrusion Detection Systems (IDS) are commonly used to provide an effective

security ring to systems in a network. An IDS operates by inspecting packets flowing in

the network for malicious content. To do so, an IDS like Snort[49] compares bytes in a

packet with a database of prior reported attacks. This functionality can also be viewed

as string matching of the packet bytes with the attack string database.

Snort commonly uses the Aho-Corasick algorithm[2] to detect attacks in a packet.

The Aho-Corasick algorithm works by first constructing a Finite State Machine (FSM)

using the attack string database. Later the FSM is traversed with the packet bytes. The

main advantage of this algorithm is that it provides a linear time search irrespective of

the number of strings in the database. The issue however lies in devising a practical

implementation. The FSM thus constructed gets very bloated in terms of the storage

size, and so is area inefficient. This also affects its performance efficiency as the memory

footprint also grows. Another issue is the limited scope for exploiting any parallelism

due to the inherent sequential nature in a FSM traversal.

This thesis explores hardware and software techniques to accelerate attack detec-

tion using the Aho-Corasick algorithm. In the first part of this thesis, we investigate

techniques to improve the area and performance efficiency of an IDS. Notable among

our contributions, includes a pipelined architecture that accelerates accesses to the most

frequently accessed node in the FSM. The second part of this thesis studies the resilience

of an IDS to evasion attempts. In an evasion attempt an adversary saturates the per-

formance of an IDS to disable it, and thereby gain access to the network. We explore



an evasion attempt that significantly degrades the performance of the Aho-Corasick al-

gorithm used in an IDS. As a counter measure, we propose a parallel architecture that

improves the resilience of an IDS to an evasion attempt. The final part of this thesis

explores techniques to exploit the network traffic characteristic. In our study, we observe

significant redundancy in the payload bytes. So we propose a mechanism to leverage

this redundancy in the FSM traversal of the Aho-Corasick algorithm. We have also

implemented our proposed redundancy-aware FSM traversal in Snort.
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CHAPTER 1. Introduction

viewed as attack strings. Hence, a misuse detection IDS performs pattern match-

ing of attack strings on the packet payload. This is computationally very intensive

due to the huge and growing attack database, and also the large packet size. So

an IDS like the popular Snort[49] uses the Aho-Corasick algorithm[2] to detect

attacks in a packet. This algorithm functions by first constructing a Finite State

Machine (FSM) using the attack string database, and later traversing the FSM

using the payload bytes. Further, we observe that the attack detection in Snort

using the Aho-Corasick algorithm consumes more than 60% of the execution time.

So clearly it is bottleneck, and numerous earlier works[6, 7, 9, 17, 25, 29, 32, 33,

43, 44, 45, 64, 66, 68, 70] have explored techniques to accelerate this algorithm.

The main advantage in using this algorithm is that it guarantees linear time

search, irrespective of the number of strings. However, the challenge lies in devis-

ing an efficient implementation. The base implementation is relatively inefficient

in terms of area, due to the large storage space needed for the FSM. This also

affects its performance as the memory footprint grows. Another issue with the

Aho-Corasick algorithm is that the bytes in a packet need to traverse the FSM

sequentially. Thus, the scope of exploiting any parallelism is limited.

1.1 Our Contributions

In this thesis we explore the following hardware and software techniques to accel-

erate attack detection using the Aho-Corasick algorithm.

Architecture Support for Intrusion Detection Systems 3



CHAPTER 1. Introduction

1.1.1 Improving the Efficiency of an IDS

In the first part of the thesis, we concentrate on improving the performance and

area efficiency for detecting attacks using the Aho-Corasick algorithm. The area

inefficiency in the base Aho-Corasick algorithm is due to the huge size of the FSM.

So we propose a compact and a hybrid FSM storage that is specifically tuned for

the Snort attack strings. We further explore techniques to improve the perfor-

mance efficiency. We observe that the root-node in the FSM is very frequently

accessed by the input bytes. Hence, we propose a pipelined FSM traversal that

accelerates accesses to the root-node. We compare our proposed architecture with

the popular BS-FSM based approaches[44, 45, 68]. The performance results indi-

cate that Our Proposal reduces the area required to store the FSM by a factor of

2.2X. Furthermore, on comparing the performance, Our Proposal outperforms

by up-to 73% the BS-FSM based approaches.

Our Proposal is a Deep Packet Inspection (DPI) architecture that uses spe-

cialized hardware to search for attacks in packets. We observe that the hardware

requirements of Our Proposal can be implemented with relatively simple chip

complexity. Furthermore, our proposed architecture is not restricted to attack de-

tection using the Aho-Corasick algorithm. It can also be adapted to detect attacks

specified as regular expressions1. Note that regular expressions are commonly con-

verted to Non-deterministic Finite Automata (NFA) or Deterministic Finite Au-

tomata (DFA), and the Aho-Corasick FSM resembles a Finite Automata. Hence

our proposed architecture is directly applicable to detecting attacks specified as

1As opposed to fixed strings in the Aho-Corasick algorithm.

4 Architecture Support for Intrusion Detection Systems
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regular expressions.

1.1.2 Improving the Resilience of an IDS

In the second part of the thesis, we focus on improving the resilience of an IDS to

an evasion attempt by an adversary. An adversary can throttle an IDS by carefully

crafting packets that severely drops its performance. Once the IDS is unable to

process packets at the line-rate, then in order to prevent a network breakdown,

the IDS gets disabled. In this manner, the network becomes vulnerable. Such

attempts by an adversary to circumvent an IDS are broadly referred to as evasion

attempts. So in these attacks, an adversary exploits weaknesses in some part of

the IDS processing.

We observe that a packet byte needs, on an average, to traverse 1 FSM state

in the Aho-Corasick algorithm. However, we also observe that there are packet

bytes that traverse up-to 31 FSM states for the processing of a single byte. This

clearly results in a drastic performance drop, and we observe a 22X performance

degradation. Hence, as a counter measure we propose a parallel architecture, with

one engine performing the regular FSM traversal, while other engine identifies the

candidate FSM state to traverse. Our evaluation shows that our proposed parallel

architecture provides over 3X improvement in the processing of these performance

throttling bytes.

As noted earlier, an IDS commonly specifies attacks using regular expressions,

and they are converted to Finite Automata. The Snort IDS converts regular ex-

pressions to NFA. Note that in an NFA multiple states can be active at any given

instance, and so a heuristic is used to accelerate NFA traversal. This heuristic

Architecture Support for Intrusion Detection Systems 5



CHAPTER 1. Introduction

in Snort is similar to the chain of FSM states traversed in the worst-case by the

Aho-Corasick algorithm. Hence, the hardware/software mechanisms proposed in

this thesis can be extended to accelerate detection of attacks specified as regular

expressions. Furthermore, note that our proposed parallel architecture can be im-

plemented in an application specific processor (ASIPs) like network processors[26].

A network processor typically has a high degree of parallelism with multiple pro-

cessors and multiple threads.

1.1.3 Exploiting the Network Traffic Characteristic

In the final part of the thesis, we explore techniques to accelerate IDS processing

by exploiting the network traffic characteristic. Redundancy in the packet header

is well known and well studied over the years. For instance, specialized caches for

packet forwarding are as a consequence of this redundancy. However, to the best

of our knowledge, there have been no significant studies exploring the redundancy

in the packet payload. In this thesis, we study and observe significant redundancy

(up-to over 80%) in the packet payload. So we investigate techniques to exploit

this redundancy in an IDS.

Packet bytes traverse the FSM, and so redundant packet bytes result in re-

dundant FSM traversal. This redundant processing can be skipped, if these

bytes are identified. So we propose a mechanism to identify the redundant bytes

and skip their FSM traversal. Furthermore, we have implemented our proposed

redundancy-aware FSM traversal in the Snort IDS, and evaluated it on an Intel

Core i3. We observe important performance benefits in using our redundancy-

aware FSM traversal, in comparison to the standard FSM traversal used in Snort.

6 Architecture Support for Intrusion Detection Systems



CHAPTER 1. Introduction

1.2 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2 provides a background on Intrusion Detection Systems, and

detecting attacks using the Aho-Corasick algorithm.

• Chapter 3 discusses our proposed mechanisms to improve the performance

efficiency of an IDS. This work has been published in IPDPS-2011[51].

• We explore hardware and software techniques to improve the resilience of an

IDS in Chapter 4. These mechanisms to improve the IDS resilience have

been published in STDN-2012[53] and SecureComm-2012[55].

• Chapter 5 discusses techniques to exploit the network traffic characteristics

to accelerate IDS processing. This work has been published in ISPASS-

2012[52] and MASCOTS-2012[54].

• Chapter 6 concludes this dissertation and provides future directions.

Architecture Support for Intrusion Detection Systems 7
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Background

2.1 Introduction

Intrusion Detection Systems (IDS) have emerged as one of the most promising

alternatives to secure the network. So in order to secure the network, an IDS

analyzes the network traffic. This analysis can be broadly classified into the two

following categories: anomaly-based detection and misuse detection. We provide

a brief overview of these systems.

An anomaly-based IDS, as the name indicates, detects anomalous system be-

haviour using the following general approach. It first classifies the system be-

haviour under observation into normal and abnormal system behaviour. Based on

this classification, the anomaly detector identifies deviation from the normal sys-

tem behaviour. Finally, it takes the needed action based on the system analysis.

For instance, Lee et al[30] explore an anomaly detector for the sendmail program.

They use the execution sequence of system calls as the system behaviour to be

analyzed. So a database of normal sequence of system calls is built using a set of

8



CHAPTER 2. Background

training sendmail execution traces. Then the evaluated sendmail execution traces

are compared with the database thus built. If in a sequence of calls, a system

call is not present in the database, then it is labeled as abnormal. However, there

may exist rarely invoked system calls that are part of normal sendmail execu-

tion. So in order to filter out such outliers, they examine a window of system

calls. If in case in the window more than a threshold number of calls are ab-

normal, then it is an anomaly. Thus in this manner, Lee et al classify sendmail

execution as either benign or malign. System calls need not be the only system be-

haviour to detect an anomaly. An anomaly detector can also use other control-flow

information[67, 73, 74].

The main advantage of an anomaly detector is its potential to adapt to system

dynamics. For instance, an anomaly detector can detect zero-day attacks. These

are attacks that are hitherto unknown. So it is important to thwart such attacks

due to the ease of spread of these attacks. A heuristic leveraging the observed

traffic anomaly on the zero-day[59] is an interesting defense mechanism to zero-

day attacks.

However, there are issues with effective anomaly detection. Anomaly detection

requires a wide variety of training data in order to accurately predict the system

behaviour. For example, Lee et al[30] observe that when the sendmail anomaly

detector heuristic is applied to network traffic, the strong temporal variations in

network traffic result in a very high error rate. So the anomaly detector needs

to keep pace with the system input and the system response. Sommer et al.[63]

discuss in depth the various issues to effective anomaly detection.

In this thesis we concentrate on misuse detection IDS. But it is important to

Architecture Support for Intrusion Detection Systems 9



CHAPTER 2. Background

stress that anomaly detection is important and very relevant to network security.

In contrast to an anomaly detector, a misuse detection IDS functions by using a

database of prior attacks. So a misuse detection IDS compares the packet bytes

with the attack database. In case the packet bytes match the database, then the

IDS flags it as an intrusion attempt. The database of prior attacks can also be

viewed as rules. An IDS like the popular Snort[49] uses these rules to accurately

model an attack. Below we provide an overview of the Snort IDS.

2.2 Snort IDS Overview

Snort is a misuse detection IDS created in 1999 by Martin Roesch. It is an open-

source software that is actively developed by a vast online community, and also has

a large user base. Snort is commonly deployed in production networks. It models

attacks using the Snort rules. Snort rules are specifications typically indicating

byte patterns within a class of traffic, for instance HTTP traffic. Over the years,

Snort has developed rules for different classes of traffic, and also different types of

attacks. For example, Snort has rules for detecting attacks in the web, streaming,

mail traffic and additionally a wide range of network traffic. It also has rules

to detect Denial-of Service (DoS) attacks, back-door entries, phishing attempts,

shell-code and other exploits. So Snort rules forms the core in the execution of

Snort IDS.

Figure 2.1 shows a sample Snort rule. This rule detects email attachments

sent from a host in the Snort protected network to an external web server. Below

we discuss the various fields in this rule. The field, HOME NET, represents
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alert tcp $HOME_NET any −> $EXTERNAL_NET $HTTP_PORTS (  

msg:"WEB−CLIENT access"; flow: from_client, established; 

content : ".eml"; http_uri; 

reference: nessus, 10767; sid:1233;rev:13

)

Figure 2.1: An Example of a Snort Rule.

the set of hosts in the network that is protected by the Snort IDS. Similarly,

EXTERNAL NET refers to any host outside the protected network. So this rule

checks for TCP packets between theHOME NET and the EXTERNAL NET.

Within the TCP packets, Snort checks if the session between the HOME NET

and the EXTERNAL NET is an HTTP session. To do so, it compares the

port number within the TCP header with the standard HTTP port numbers[27].

Furthermore, within the HTTP session it checks if the URI field in the HTTP

header contains an EML1 file extension. If Snort detects the email attachment

in a HTTP session, then it alerts the system administrator by writing into the

system log. The remaining fields provide the unique Snort identifier for this rule,

and further references on this exploit.

There are various execution stages involved in the operation of an IDS. So

below we provide an overview of the various stages in Snort execution.

1Microsoft Outlook internally saves email attachments in EML format.
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2.2.1 Snort Execution Overview

PACKETS

PACKET DECODE

PREPROCESS

DETECTION ENGINE

POST PROCESSING

SNORT EXECUTION STAGES

Figure 2.2: Snort Functioning Overview.

Figure 2.2 shows the various stages in the execution of Snort. Packets from

the network are read and decoded by the Packet Decoder. The Packet Decoder

extracts the various header fields in the packet. The decoder first extracts the

Ethernet header fields and then it reads the IP and the transport (TCP/UDP)

header. These header fields, that correspond to the various layers in the network

stack, and they are read into memory buffers.

Once the packet is decoded and the lower-layer protocols are identified, then the

high-level application needs to be identified. This is performed by the Preprocessor.

So for instance the HTTP Inspect preprocessor, used for HTTP packets, reads the

HTTP header. Further, it also checks for anomalies. The URI fields of a HTTP

request is heavily exploited by attackers. A common method used by attackers is
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to distort the URI field and trick the web-server to provide access to files in the

root/super-user privileges. Such attempts are referred to as Evasion attempts[48],

and an IDS normalizes[23] the HTTP traffic to thwart such attempts.

In addition, to the high level application header that is being read, this stage

also reassembles and re-fragments the packets. Packet can be fragmented in the

transmission when the packet size is greater than the maximum transmission unit

(MTU) of a link. Packets can also be purposefully fragmented by an adversary

to cleverly split the attack string into multiple packets. So to avoid this evasion,

Snort re-fragments the packets. The re-fragmentation is done for the IP layer in

the network stack. Packet re-assembly, is similar to packet re-fragmentation, and

an adversary cleverly spreads the attack string across various TCP/UDP packets in

order to evade the IDS. So Snort uses preprocessors to re-fragment and reassemble

packets before the check of attack strings is done. We refer to the reassembled and

re-fragmented packets as a datagram.

The Detection Engine forms the third stage in the Snort execution. In this

stage, the datagram is inspected and primarily checked for any attack strings from

the attack string database. If so, then an alert is generated in the Post-processing

stage, or it can also involve dropping the packet. These are policies that are site

specific and determined by the network administrator.

The Detection Engine forms the core of Snort execution, and the efficiency

and effectiveness of Snort is directly related to that of the Detection Engine. As

mentioned earlier, the main functionality of the Detection Engine is to check if

a datagram contains any attack strings. One way of specifying attack strings, is

with the content field in the Snort rule (refer to Figure 2.1). In this example, the
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URI in a HTTP packet is checked for the specified string. However, a rule can also

inspect the entire payload and check if it contains any attack strings. Furthermore,

with Snort using a datagram instead of packet, the payload can be up-to 64 KB2.

This is, clearly, computationally very intensive.

The comparison of the datagram bytes with the attack strings is done by a

pattern matching algorithm. Snort commonly uses the Aho-Corasick algorithm[2]

for pattern matching. Table 2.1 shows the percentage of execution time spent by

Data-sets % Time Spent
Week-1 64.64
Week-2 65.28
Week-3 65.11

Local Honeypot 61.44

Table 2.1: Time Spent in the Aho-Corasick Algorithm by Snort.

Snort in the Aho-Corasick algorithm. This is obtained using the GNU profiler

(gprof)[41], and for the IDS evaluation traces and a Honeypot trace. We clearly

observe that the string matching module dominates the execution time. So it is

a performance bottleneck. In this thesis we concentrate on accelerating the Aho-

Corasick algorithm used by Snort. We provide an overview of the Aho-Corasick

algorithm in the following section.

2The maximum datagram size in Snort.
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2.3 The Aho-Corasick Algorithm

Snort uses the Aho-Corasick algorithm for string matching [2]. This algorithm

works by constructing a finite state machine (FSM) based on the set of strings

that need to be matched. Once this FSM is constructed, incoming bytes from

packets are used to traverse through it. The main advantage using this algorithm,

in contrast to other string matching algorithms, is that it guarantees linear-time

search irrespective of number of strings. We provide a brief overview of the Aho-

Corasick algorithm with an example.

Consider the set of strings: ha, he, she, his, him shed. Figure 2.3 shows

the corresponding Aho-Corasick FSM constructed from these strings. The FSM
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Figure 2.3: Example of the Aho-Corasick State Machine.

is built in two stages. In the first stage, characters from strings are added to the
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FSM. This is done in a way that strings that share a common prefix also share the

same set of parents in the FSM. The edges corresponding to this stage are shown

as thick lines. Also note that nodes 3, 6, 7, 8, 9, 10 indicate a match for strings

he, his, she, him, ha, shed respectively. These nodes also store a pointer to

a list of matched strings. For example, node 7 stores a pointer to the list of its

matched strings namely he, she.

The second stage in building the FSM consists of inserting failure edges. When

a string match is not found, it is possible for the suffix of one string to match the

prefix of another, so failure edges need to be inserted. Failure edges are shown

with dotted lines. For figure clarity, only a few failure edges are shown. Once this

FSM is built, the algorithm traverses it with bytes from packet. In case the byte

does not correspond to any of the examined edges, then the traversal is restarted

from the root-node.

A few terminology clarifications. Henceforth, the number of outgoing edges

from a node is referred to as fan-out. For example, fan-out of node 5 is 3. Also,

any reference to database or string database refers to the Snort string database.

The main advantage of this algorithm is that it runs in linear time to the input

string, regardless of number of strings. However, the problem with this algorithm

lies in devising a practical implementation. This is again due to the large fan-out

of each and every node. Implementing this requires a great deal of next pointers,

256 for each and every node to be exact. This consequently increases the size

of the FSM. For example, the FSM built using the September-2007 Snort string

database contains more than 42,000 nodes and requires 44 MB of storage space. So

if a specialized hardware is used for attack inspection then the Aho-Corasick FSM
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is stored in a slower off-chip memory, rather than the faster on-chip memory. For

example, the Intel IXP 2400 network processor has an aggregate on-chip memory

less than 1 MB.

The large size of the FSM also results in a larger memory footprint, and so it

affects the cache hit rate. Additionally, with new attacks being created all the time,

the database needs to be regularly updated. This, in turn, results in a growing

string database. Thus the storage space requirements keeps growing. So one of

the implementation issues with Aho-Corasick algorithm is the growing memory

area required to store the FSM. Another implementation issue is the sequential

nature of traversal. The determination of the next state is strictly dependent on

the current state. So, multiple bytes from a packet can only be processed in a

strict sequential order.

2.4 Related Work

The literature in this field has focused either on reducing the FSM size or on

accelerating the FSM traversal. Furthermore, earlier works have also explored

specialized engines, often referred to as deep packet inspection engines, or alter-

natively used commodity CPUs. Below we discuss some of these works in detail.

Tuck et al [70] study different optimizations to reduce the size of each node in

the state machine. They use a 256 bit bitmap which is used in place of 256 next-

node pointers. A bit is set in the bitmap if the corresponding character has a valid

next-node. They also use path compression to compress the bitmap structure.

While they reduce the storage size, a disadvantage is the additional computational
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complexity due to compression.

Tan et al [68] reduce the high fan-out by maintaining a bit-level state machine

for every bit in the byte. These independent bit-level state machines are traversed

concurrently. A bit vector is used to synchronize the partial matches of the bit-

level state machines. The advantage is that it reduces the storage size, and also

provides parallelism - as these state machines can be traversed concurrently. The

use of parallelism together with a reduced storage size improves the performance

and area efficiency.

Piyachon et al (ANCS 2006) [43] exploit parallelism available in network pro-

cessors. For example, the Intel IXP-2800 network processor has 16 RISC cores,

with each core executing 8 threads. They partition the Snort database among

these cores. This approach provides an efficient way of utilizing on-chip memory

in a network processor. However, with the string database growing non-linearly,

and limited on-chip memory available in network processor, this approach may not

be scalable.

Piyachon et al (DAC 2007) [44] observe that a large percentage (>59%) of

states do not have any matched pattern. They further observe that in [68], the

bit-vector dominates the storage space. So they propose heuristics to store bit-

vectors only for states with matching pattern. Additionally, they also decouple

the storage of the state machine from the bit-vector.

Piyachon et al (DAC 2008) [45] extend [68] by using a translation table and

a CAM instead of bit-vectors. They propose a relabeling algorithm that assigns

identical state labels to various states that match the same pattern. Note that

these states are on different bit slices of the bit-split state machine in [68]. A
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translation table is used to obtain the matched pattern. If states with different

labels match a pattern, then a CAM is used. Both the CAM and the translation

table are indexed using the state labels.

Lin et al [32] observe that there are numerous equivalent nodes in the state

machine. Two nodes are defined as equivalent if they have identical incoming

edges, failure edges and outgoing edges. They propose merging these equivalent

nodes by adding a bit-vector to the base structure. Sourdis et al [66] propose

pre-filtering for string matching. They observe that it is very rare for a single

incoming packet to fully or partially match more than a few tens of strings. Based

on this observation, they select a small portion from each string to be used in the

pre-filtering step. The result of pre-filtering step is a reduced set of strings that

are candidates for a full match. Given this reduced set, the second stage is an

entire packet matching using the reduced set of strings. Pre-filtering improves the

throughput of IDS at no additional cost.

Some earlier works also use specialized hardware structures that accelerates

string matching. Dharmapurikar et al [17] use parallel bloom filters. They first

cluster the strings based on their length. Subsequently the bloom filter signature

is generated for each cluster. Yu et al [72] use TCAMs to perform the pattern

matching of attack strings. The TCAM pattern table is filled with attack strings.

Further, the input payload bytes are used to index into the TCAM pattern table.

The main advantage of this approach is the use of TCAMs that provides the ability

to search the attack strings in parallel.

Earlier works have also explored using FPGAs for string matching of attack
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strings. The primary advantage in using FPGAs is the feature of reconfigurabil-

ity. This is useful when updating the attack string database regularly. The FPGA

based approaches have explored heuristics to exploit the redundancy present in the

attack strings. Clark et al [13] observe that multiple attack strings use identical

characters. So they propose character encoding techniques to efficiently implement

the string matching algorithm in FPGAs. Sidhu et al [57] use FPGAs to efficiently

traverse the Non-deterministic Finite Automata (NFA). They propose specific cir-

cuit implementations that enables multiple NFAs to be traversed concurrently.

Intrusion Detection Systems also use regular expression for specifying attack

strings. Regular expressions are again converted either to Non-deterministic Finite

Automata (NFAs) or Deterministic Finite Automata (DFAs). Note that a DFA

is very similar to the Aho-Corasick FSM, and so the optimizations used in a

DFA is equally applicable. Earlier works on optimizing the DFA have focused on

compacting the automata or accelerating its traversal. Smith et al [61] propose

heuristics to compress redundant paths in DFAs. These redundant paths arise

due to interaction between different regular expressions[71]. In order to reduce

the impact of this interaction, [35, 50, 71] consider clustering regular expressions.

Kumar et al [29] remove redundant transitions in the DFA. Becchi et al [7] further

optimize the transitions in [29]. Luchaup et al [33] use speculation techniques to

accelerate the DFA traversal. Brodie et al [9] build the FSM so that multiple bytes

can be traversed at a time.
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Improving the Efficiency of an IDS

3.1 Introduction

Intrusion Detection Systems (IDS) have emerged as one of the most promising

ways to protect systems in a network against suspicious activities. An IDS com-

monly detects misuse by scanning packets for signatures. Signatures are byte

patterns that have commonly occurred in earlier reported attacks. Since attacks

are vast and diverse so there are plenty of signatures. For example, Snort[49] uses

a database of more than 40,000 signatures for detecting misuse. So to detect these

attack strings in the packet, Snort commonly uses the Aho-Corasick algorithm.

This algorithm first builds a Finite State Machine (FSM) from the database of

signatures. Later the FSM is traversed with bytes from the packet. The main

advantage in using this algorithm is that it provides a linear-time search irrespec-

tive of the number of signatures in the database. However, the challenge lies in

designing an efficient implementation.

So in this chapter, we investigate a novel architecture for the IDS. We propose
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a compact storage that leverages the characteristic of the Snort database. Fur-

thermore, we propose a hardware architecture that is suitable for IDS processing.

We evaluate the efficiency of our proposed approach.

The rest of this chapter is organized as follows. Section 3.2 briefly revisits

the Aho-Corasick Algorithm. We present our mechanisms to improve the area

efficiency in Section 3.3. In Section 3.4 we present various mechanisms to improve

the performance efficiency. The simulation methodology used in obtaining the

results is discussed in Section 3.5. Section 3.6 presents the performance results.

Section 3.7 concludes this work.

3.2 Background

Snort uses the Aho-Corasick algorithm[2] for string matching. This algorithm

works by constructing a state machine based on the set of attack strings. Once

the state machine is constructed, incoming bytes from the packet are used to

traverse the state machine. We have provided in Section 2.3 an example of string

matching using the Aho-Corasick algorithm. In the following discussion, we use

this FSM (Figure 2.3) as an example.

The main advantage of this algorithm is that it runs in linear time to the

input string. However, the problem with this algorithm lies in devising a practical

implementation. The base algorithm is relatively inefficient in terms of area, due

to the large storage space needed for the FSM. This also consequently degrades its

performance inefficiency. So broadly earlier works in this direction have focused on

compacting the FSM, and improving its performance efficiency. Earlier works in
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this direction can be classified either as hardware or software approaches. Software

approaches optimize the data-structure, thereby reducing the size of the state

machine. While, hardware approaches accelerate string matching with specialized

structures. In Section 2.4, we have discussed in detail the related work in this

area.

We first discuss our proposed techniques to improve the area efficiency. Later

we investigate techniques to improve the performance.

3.3 Improving Area Efficiency

The bloated size of the state machine is due to the large size of each node in the

FSM. We observe that the fan-out of nodes in the state machine varies widely.

Figure 3.1 shows the fan-out distribution of nodes in the FSM. We observe that

70% of the nodes have a fan-out less than 20, while the root-node has a fan-out

of 103. So clearly there is a wide variance in the fan-out of nodes. We propose

a novel hybrid storage with one type of storage for the root-node, and a different

storage for other-level nodes. We first explain the other-level node storage.

In our proposed storage, we store a node as the set of its outgoing edges. Each

outgoing edge has the following: the corresponding byte, the fan-out of next node,

the offset to the next node, and rule offset of next node. The size of each edge

using this storage is: 1 B for byte, 1 B for fan-out, 3 B each for next node and

rule offsets, thus making a total of 8 B per edge. A collection of all these outgoing

edges forms a node. We illustrate this more clearly with an example.

Figure 3.2 shows the next nodes of node 5. Figure 3.3(a) shows the storage of
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Figure 3.1: Fan-out Distribution.

e i a
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7 4 9

Figure 3.2: Node 5 Revisited.

this part of the state machine. The outgoing edges of this node are e, i, a. Consider

edge e. This edge points to node 7 and so its fan-out is stored. The next node

offset of e, NS Offset 7, points to node 7. The rule offset of e, Rule Offset 7,

points to a list of matched strings. In this manner, the entire state machine is
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stored contiguously in memory. So we use offsets instead of pointers.

Before we proceed, a terminology clarification. Hereafter, a reference to edge

information refers to the following: next node fan-out, next node offset and rule-

offset. For example, the edge information of edge e in the above example is 2,

NS Offset 7, Rule Offset 7. The string matching algorithm at node 5 is as

StorageNode 5

Mem_Addr_Node_5 + 8 Mem_Addr_Node_5 + 16

2e
Rule 

i 0
Rule 

aRule NS_Offset_4 NS_Offset_9

Offset_9

Mem_Addr_Node_5

2NS_Offset_7

Offset_7 Offset_4

(a)

Node 1 Storage

Mem_Addr_Node_1 + 8 Mem_Addr_Node_1 + 16

Rule 
e

Rule 
0

Rule 
aNS_Offset_3

Offset_3
i NS_Offset_9

Offset_9
0

Mem_Addr_Node_1

2 NS_Offset_4
Offset_4

(b)

Figure 3.3: Our Proposed Storage

follows. The incoming byte is compared with its edges namely, e, i, a. In case of

a match with any edge, the corresponding edge information is read.
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Note that node 5 is contiguously stored in memory. With contiguous storage,

edges of a node can be traversed with an 8 B stride. With cache lines spanning

multiples of 8 B, this storage can exploit locality across edges. Additionally, con-

tiguous allocation also opens up avenues for re-arrangement within a node.

This proposed storage is different from array based structures used in earlier

works[32, 43, 68, 70]. In an array based structure, the size of each node is fixed

irrespective of its fan-out. In contrast, in this storage, the node size is linearly

dependent on fan-out1. However, there is a drawback. There are 30% of nodes

with fan-out of 20 or greater, so clearly this is non-negligible. Hence we investigate

approaches to reduce this overhead.

3.3.1 Fan-out Reduction

We optimize the failure edges to reduce the fan-out of nodes. A failure edge, as

explained in Section 2.3, indicates a suffix in a string that matches the prefix of

another string. For example in Figure 2.3, edge i from node 5 to node 4 is due

to suffix “hi”. We observe for the Snort database that 93% of edges correspond to

failure edges. This consequently increases the state machine size.

Consider the storage of Node 5 and Node 1 (refer to Figure 3.3). In the

storage for node 5, i and a are failure edges that point to nodes 4, 9 respectively.

Furthermore, these edges are non-failure edges of node 1 with exactly the same

edge information. So edges of node 1 are replicated in node 5. So failure edges

are replicated across the FSM. If the fan-out of node 1 is high, then the impact

1Fan-out X 8 B
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of replication will be severe.

The failure edges of node 5 can also be traversed by jumping to node 1 from

node 5. So node 1 can be viewed as a failure-pointer of node 5. The advantage

with this traversal is that failure edges are not replicated in node 5. A unique

character, uchar, is used to indicate the presence of a failure-pointer in the node.

This unique character is not present in the Snort string database. Figure 3.4 shows

the modified storage for node 5. The edge information corresponding to uchar

is the edge information of node 1. Now the traversal is as follows. The incoming

e
Rule 

uchar2 NS

Offset_7 Offset_7
NS

Offset_1
Rule 

Offset_1

Mem_Addr

3

Mem_Addr + 8

Figure 3.4: Fan-out Reduction for Node 5.

byte is first compared with e and in case it doesn’t match, the existence of uchar

is checked in node 5. If a failure-pointer exists (and it does in this case), it is

traversed and the above outlined steps are again repeated for node 1 . Note that

each node has at most one failure-pointer.

3.3.2 Root-Node Storage

The very high fan-out (103) of the root-node together with its very high access

frequency motivates us to explore a different structure for root-node. We use
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an array structure for the root-node. Each element in the array stores the edge

information of the corresponding edge. In the example used, the edge, s, of the

root-node stores the edge information of node 2. Figure 3.5 shows the root-node

storage. So with this storage, the root-node needs 2 KB (256X8). The traversal

s
1 NS_Offset_2 Rule_offset_2

8 B

Figure 3.5: Root Node Storage.

using this root-node structure consists of indexing the incoming byte into the root-

node array structure Since the root-node is frequently accessed and it is only a few

KBs, we store it on-chip. The other-level nodes is stored in an off chip SRAM.

An interesting case arises with failure edges. Consider, for example the failure

edge, s, from node 7 to node 2. Note that the optimized storage stores failure-

pointers instead of failure edge, and in this case all these failure-pointers point to

the root-node. Hence, the failure-pointers to root-node themselves are replicated.

We remove these root-node failure-pointers, and directly index the root-node array

if there are no matching edges.
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3.3.3 Area Comparison

Figure 3.7 shows the area needed for storing the state machine for the various

schemes. The area results are obtained using CACTI [69] and for the SRAM

memory technology. Baseline refers to the state machine built using the base

implementation of 256 next node pointers. BS-FSM2 refers to the state machine

built using [68]. Note that both these schemes use an array structure for storing

struct fsm_node{

                                struct fsm_node * next_node[MAX_NUM_EDGES];

                                 struct rule * rule_list;

                              }

Figure 3.6: Data Structure Used for Comparison Schemes.

nodes in the FSM. Figure 3.6 shows the array structure used for these schemes.

While Baseline needs 256 next node pointers (MAX NUM EDGES = 256), BS-

FSM requires only 4 next node pointers.

We observe that the Baseline requires two order of magnitude of additional

area in comparison. So it is not relatively area efficient. In comparing BS-FSM

and Our Proposal, we observe a 2.2X reduction in area for Our Proposal. The

BS-FSM requires 6.33 mm2 (2435 KB) for storing the state machine, while our

proposed storage needs 2.86 mm2 (1034 KB).

2Bit-Split FSM - the name used in [68]
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Figure 3.7: Area Comparison for Various Proposals.

3.4 Improving the Performance Efficiency

Having investigated techniques to improve the area efficiency, we now present

mechanisms to improve the performance efficiency. In this section, we first present

enhancements for accelerating other-level nodes. Subsequently we investigate tech-

niques to accelerate the root-node access.

3.4.1 Rearranging Edges

The number of memory accesses to read all edges of a node is dependent on the

fan-out. For example in Figure 3.4, two memory accesses are needed for reading

all the edges (e, uchar) of node 5. This is again a performance penalty and we
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investigate ways to reduce this penalty.

The traversal of a node can be split into two phases namely, edge scanning,

comparing the incoming byte with all edges; and reading the edge information.

Edge scanning needs to be performed for all incoming bytes, and so this is a

potential performance penalty. We investigate a technique to reduce it. If all

e
Offset_1

Rule
3

Offset_7

Rule 
2

Mem_Addr Mem_Addr + 16

uchar NS_Offset_7

Mem_Addr + 8

NS_Offset_1

Figure 3.8: Fine Tuning for node 5.

edges of a node are stored contiguously, then fewer memory accesses are needed.

Consider node 5 (refer to Figure 3.4), we re-arrange this node so that edges are

grouped together (refer to Figure 3.8). With this re-arrangement, all edges of node

5 are read in just one memory access. In case the incoming byte matches any of

these edges, the corresponding edge information is obtained with another memory

access. In our simulations, we perform 8 B memory read operations, so only fan-

out MOD 8 memory accesses are needed. Additionally, note that comparison of

edges with the incoming byte proceeds first with e and then with uchar. This

operation can be parallelized with a vector comparator, which can further reduce

the computational overhead. We assume the support of an 8 B vector equal-

to comparison operation in our simulated architecture. An 8 B vector equal-to

comparator primarily consists of 64 AND gates.
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Note that this re-arrangement would not guarantee memory alignment for edge

information. So we pad the data-structure so that memory accesses are aligned to

the nearest 8 B boundary. The area results presented in Section 3.3 are obtained

with this aligned storage. Algorithm 1 summarizes the state machine traversal

using our proposed storage.

Algorithm 1 Traversal Using Our Proposed Storage.

1: j ← 0
2: while j < fanout do
3: Get Edges {8 B Memory Read}
4: if Edge exists in Incoming Byte {Edge scanning} then
5: Get Edge Info {Read the Edge Information}
6: if Rule Offset 6= 0 then
7: Alert {Signal System Alert}
8: end if
9: end if

10: j ← j + 8
11: end while
12: if Failure Ptr Exists then
13: Get Fail Node Edge Info {Read the Fail Node Info}
14: if Rule Offset 6= 0 then
15: Alert {Signal System Alert}
16: end if
17: else
18: Root Node Access
19: end if

3.4.2 Accelerating Root-Node Accesses

Figure 3.9 shows the mapping of incoming bytes to root-node and other-level

nodes for various traces. We observe that, for the various traces evaluated, up-to
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93% of incoming bytes access the root-node. The root-node can be accessed in

Figure 3.9: Mapping of Incoming Bytes

two ways. Let s, h, e, h be the incoming bytes to the state machine in Figure

5.5. The first byte, s, accesses the root-node directly. The subsequent 2 bytes

(h, e) result in going down the state machine and onto node 7. Now the final

byte, h, scans the edge of node 7 and on not finding a match jumps to node

3. Since there are no matches in the failure-pointer as well, then the root-node

is accessed. So the first byte, s, accesses the root-node directly. On the other

hand, the final byte, h, accesses the root-node indirectly. These indirect root-

node accesses can potentially be accelerated if it is possible to avoid unnecessary

accesses (unnecessary in hindsight) to node 7, node 3.

Figure 3.10 shows the split of root-node accesses as either: direct, indirectly
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from first-level nodes (nodes 1, 2), or indirectly from lower-level nodes (levels

lower than the first-level). A significant percentage (at least 50.14%) of the in-

coming bytes access the root-node indirectly. We observe that up-to 42% (UPC

trace) of root-node accesses, access the root-node indirectly from the first-level. So

we concentrate on accelerating indirect root-node accesses arising from first-level

nodes.

Figure 3.10: Root Node Access Split

As discussed in Section 3.3.2, the root-node is an array of edge information. In

addition to this edge information, we store a bit-vector of 256 bits alongside the

edge information. A bit in the bit-vector is set for all outgoing edges of that node.

Figure 3.11 shows the storage of the outgoing edge, h, of the root-node. The bits

in the bit vector are set for all outgoing edges of node 1, namely, a, e, i. The
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<256 Bit Vector>

32 B

Figure 3.11: Storage of the Outgoing Edge e.

traversal using this enhancement is as follows. Let h, a be incoming bytes. The

first byte, h, results in a direct root-node memory access. The second byte, a, also

reads the root-node memory and checks if the bit in the bit-vector of the edge h

(also the previous byte) is set. If it is set, then the other-level node structure is

accessed as previously. If the bit is not set, then this is a root-node access and

the corresponding edge information is read. In this way, we completely eliminate

indirect root-node accesses from the first-level. Note that in order to access the

bit-vector we only need the current and previous byte.

The edge information that is read on a root-node access is used to process the

next byte. This is root-node edge information. However, if the next byte also

accesses the root-node then the root-node edge information is not needed. We

observe that there are up-to 14 consecutive bytes that access in this manner. So

these bytes do not need the root-node edge information. For these bytes we only

need to check if the bit is set in the bit-vector. If the bit is not set then it is a

root-node access. We accelerate these consecutive root-node accesses by pipelining

them. Figure 3.12 shows the various steps in the root-node access. These are the

following:

• Address Generation. Compute the memory address of the bit-vector. The
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Figure 3.12: Pipelined Root-node Memory Access

current byte and the previous byte are used to compute this index.

• Root-Node Memory Read. Read the bit-vector from root-node memory.

• Bit-set Check. Check if the bit is set in the bit-vector for the current byte.

The pipeline latency is that of accessing the root-node memory and is 3 clock-cycles

(obtained from CACTI [69]). Thus, for consecutive bytes directly accessing the

root-node, the throughput will be 3 clock-cycles per byte. Note that the bit-vector

enhancement requires an additional 8 KB (32 B X 256) of root-node memory. The

pipeline is flushed in case the bit is set, then the other-level node structure needs

to be accessed.
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3.4.3 Hardware Architecture
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Root−node
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Figure 3.13: Proposed Hardware Architecture

The hardware is customized for traversal using our proposed storage. The hard-

ware architecture (refer to Figure 3.13) consists of a root-node processing engine,

an other-nodes processing engine, and the state machine memory. The flag, Other-

level-node-access, determines the engine to be used for processing the current byte.

If this flag is set, then the other-nodes processing engine processes the byte. This

flag is accordingly updated for every byte after completing its processing.

Incoming bytes from the network are buffered in the input queue and dequeued

after their processing is complete. The root-node processing engine processes a byte

if the other-level-node-access flag is not set. Figure 3.14 shows the processing flow-

chart for the root-node processing engine. This engine performs two functions,

namely, checking if the bit in the bit-vector is set, and reading the root-node edge
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Figure 3.14: Root-node Processing Engine

information. The bit set check is performed by the 3 staged pipeline unit as

discussed in the previous section (Section 3.4.2). Note that the first 3 steps of

root-node processing are also the 3 pipeline stages. The hardware logic needed for

this unit are: an 8 B Equal-to comparator and a shift-and-add logic block. In case

the bit in the vector is set, then the root-node edge information is read, and the

flag is also set.

The other-nodes processing engine traverses the state machine using the Algo-

rithm 1. The traversal operations consists of: scanning all the edges of a node,

and reading the associated edge information of the matching edge. So we split

this engine into these operations (refer to Figure 3.15). In edge scanning, all edges

of a node are read - 8 at a time - and compared (vector comparison) with the

current byte. This is iterated over all edges until a matching edge is obtained. If
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Figure 3.15: Processing Flow-charts

a matching edge or a failure-pointer exists, then the associated edge information

is read. Otherwise, the root-node is accessed and Other-level-node-access is re-set.

For edge scanning the hardware needed is: an 8 B vector equal-to comparator,

a shift-and-add, and a less-than-equal-to comparator. While for reading the edge

information, the hardware required is a shift-and-add and an equal-to comparator.

Note that identical steps (edge scanning and reading edge information) are also

followed for failure-pointers. We assume that each of the arithmetic processing

blocks need 1 clock-cycle, and if comparisons need 2 clock-cycles.
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3.5 Simulation Methodology

We evaluate the performance of our proposed architecture and compare it with

the base Aho-Corasick and BS-FSM[44, 45, 68]. We have used 5 network traces

in our evaluation. This includes 3 publicly available traces from Lincoln Labs[37],

an attack trace[16], and an in-house University trace. Table 3.1 summarizes the

traces used.

Data-sets Mean Packet Size (B) Num Packets (M)
Week 1 344.3 6.07
Week 2 160.51 13.18
Week 3 200.01 14.91
Defcon 71.9 15.64
UPC 535.87 15.89

Table 3.1: Summary of Traces used in Evaluation.

Week 1, 2 and 3 data-sets refers to the respective Lincoln Labs 1999 week traces,

and these are five day aggregates. The in-house traces (referred to as UPC) were

collected from the university router on November 7, 2007 at 18:00 hrs. This trace

was collected on a 1 Gbps link. The Defcon trace[16] is an attack trace captured

in the course of the Capture the Flag (CTF) game in Defcon conference[14]. The

objective of this game is to break in fellow competitors system, while at the same

time preventing others from doing so. We have inspected TCP, ICMP and UDP

packets from these traces. We have used the Snort database released on September-

2007, which contains 23,653 strings. We also later report results for the April-2010

Snort database containing 40,678 strings.

We use average number of clock-cycles per incoming byte as the metric
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for performance comparison. This is computed by dividing the total number of

clock-cycles by the total number of bytes. Total number of clock-cycles is the sum

of total processing time and total memory access time. Total process-

ing time comprises of: edge scanning, reading edge information and root-node

processing. Note that the processing times for edge scanning, edge information

and root-nodes processing are obtained as explained in Section 3.4.3. The to-

tal memory access time is obtained from the trace driven cache simulator[20],

which was modified to model cache access times and processing times. The cache

miss penalty is the other-level node memory access latency and is obtained from

CACTI[69]. The cache hit time is 2 clock-cycles (also from CACTI). The core

frequency is assumed to be 3 GHz. Figure 3.16 shows the architecture used for

Cache Cache Cache Cache

Core 1 Core 2 Core 4Core 3

Vector comparison unit

Off−chip

SRAM

Figure 3.16: Architecture of BS-FSM.

evaluating BS-FSM[68]. We have compared our proposed architecture with the
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Cache

Core

Figure 3.17: Architecture of Baseline.

base Aho-Corasick and with bit-split FSM (BS-FSM) based approaches[44, 45, 68].

BS-FSM uses state machines constructed from bits instead of bytes. There are mul-

tiple state machines, each constructed using a set of bits from the byte. Further,

they observe that 2 bits, and therefore 4 (8b/2b) state machines is the optimal

point. These state machines are traversed in parallel. We simulate using 4 in-

dividual cores for the 4 state machines. We assume that the 4 cores also have

their private caches, and the state machine memory has 4 memory banks. Each

of these cores emit partial string match vectors for every byte and an intersection

of these vectors indicates a string match. This intersection is a synchronization

operation across the cores and is done by another core. Further, this intersection

is done using a vector comparator of vector-length equal to the number of strings

in the Snort database. The four partial match vector intersection is performed us-

ing 3 vector AND operations each of 1 clock-cycle latency. Piyachon et al[44, 45]

propose memory-efficient storage for these bit vectors. However, these techniques
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need additional memory accesses. Hence, we have simulated and compared with

the upper bound of BS-FSM based approaches. Figure 3.17 shows the Baseline ar-

chitecture that executes the base Aho-Corasick algorithm. Note that the Baseline

traverses the FSM by indexing an array.

Algorithm 2 Traversal Using Baseline and BS-FSM

Baseline

1: cur node← cur node[inp byte]
2: if cur node→rule 6= NULL then
3: Alert {Signal System Alert}
4: end if

BS-FSM

1: shift amt[]← {192, 96, 48, 24}
2: slicei ← 1{V alues : 0, 1, 2, 3}
3: index ← (inp byte &

shift amt[slicei])
4: cur node← cur node[index]
5: if cur node→rule 6= NULL then
6: Alert {Signal System Alert}
7: end if

We obtain the total processing times for these comparison schemes by executing

their respective traversal algorithm on an in-order single-issue processor (processor

parameters in Table 3.2 ), and further simulated using Simplescalar[10]. Algorithm

2 provides the kernel to obtain these processing times. Additionally, we minimize

the impact of cold start misses by executing the kernel with an outer infinite

loop. Table 3.3 shows the processing clock-cycles needed per byte obtained in

this manner. In our evaluation, we have used SRAM memory double the state

machine memory size. This is driven by the fact that the SRAM needs to be

sufficiently provisioned for the exponentially growing database.
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Processor Frequency 3 GHz
fetch/issue/decode width 1

Branch Predictor 2048 entry, bimod
Functional Units 4 Int ALU, 1 Int Mult

Technology 45 nm
SRAM CACTI parameters LOP, semi-global wires,

conservative interconnect
cache hit time 2 cc

Our Proposal cache miss latency 7 cc
BS-FSM cache miss latency 11 cc
Baseline cache miss latency 37 cc

Table 3.2: Simulation Parameters.

Schemes Clock-cycles per B
Base Aho-Corasick 11.93

BS-FSM[68] 18.82

Table 3.3: Processing Clock-Cycles for Comparison Schemes.

3.6 Results

3.6.1 Cache Exploration Study

We vary the cache size and associativity for all the three considered schemes. The

cache size is varied from 16 KB to 64 KB, while the associativity is varied from

direct-mapped to a 4-way associative cache. Cache lines are 16B and an LRU

replacement is used. The Defcon trace is used for this study.

Figure 3.18 shows the cache exploration study for Our proposal, Baseline,

and BS-FSM. In case of Our proposal, we observe that the miss-rate with a
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(a) Our Proposal (b) BS-FSM

(c) Baseline

Figure 3.18: Cache Exploration Study
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16KB Direct-mapped cache is 10%. The miss-rate decreases with an increasing

cache-size and associativity, and for a 64 KB, 4-way cache the miss-rate is less

than 1%. The low miss-rate of a 16KB direct-mapped cache and its low circuit

complexity, motivates us to use this configuration. Further, we also observe that

for any given configuration, Our proposal incurs the least misses out of the three

schemes. This is due to the relatively smaller working set size of Our proposal

wrt Baseline and BS-FSM.

In BS-FSM there are four caches corresponding to the four cores. So in order

to capture the miss-rate of the four cores, we use the global miss-rate and define

it as follows. If one of the four cores incur a cache miss, then the processing of

the incoming byte is stalled. This stalls occurs as an intersection of partial match

vectors needs to be performed for every incoming byte. However, if multiple cores

incur cache misses, the byte processing is stalled only for a single cache miss. This

is due to multiple banks that simultaneously process misses from different cores.

Figure 3.18(b) shows the impact of cache exploration on the global miss-rate. We

observe a very high miss-rate for all configurations considered. For example, with

a 16 KB Direct-mapped cache the miss-rate is 78%. It reduces on increasing the

cache size and associativity. However, the miss-rate even with a 64 KB 4-way cache

is very high (40%). Since this configuration incurs the least number of misses, we

use it for the rest of our study. Note that in BS-FSM there are four caches with

the same configuration.

Figure 3.18(c) shows the cache exploration study for Baseline. We observe

that the miss-rate for 16 KB direct-mapped cache is 20%, and reduces to 4% for a

64 KB 4-way cache. So for Baseline we use a 64 KB 4-way cache for the remaining
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study.

3.6.2 Performance Comparison

Figure 3.19: Performance Comparison for September 2007 Snort database.

Figure 3.19 shows the performance of various proposals for all traces. We

observe that Our proposal outperforms other schemes in 4 of the 5 traces. For

the UPC trace, Our proposal needs only 6.88 clock-cycles per byte. On the

other hand, the Baseline and BS-FSM need 19.48 and 26.4 clock-cycles per

byte respectively. For this trace, we obtain a performance improvement of 73% in
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comparison to BS-FSM. A similar performance behaviour is observed in Defcon

trace with a 48% improvement over BS-FSM. For these traces, we observe that

more than 80% of bytes access the root-node. Furthermore, >80% result in direct

root-node accesses. Our proposed pipelined architecture accelerates these multiple

consecutive direct root-node accesses, thus providing the benefits.

It is interesting to note that the Week1 trace has a different performance be-

haviour. The Baseline performs better than Our proposal. This behaviour can

be explained as follows. Only 48% of bytes in week1 trace result in direct root-

node accesses. Additionally, more than 30% of the byte content in week1 trace is

0. There exists a string of 20 consecutive 0’s in the Snort database. This results in

the frequent traversal of this string’s node at level 20, and its predecessor at level

19. This node is the failure-pointer of the level 20 node. We observe that close to

30% of bytes in this trace access only these nodes. Since the failure-pointer traver-

sal needs additional processing, so it causes this performance degradation. We

also observe a similar, albeit less frequent, behaviour in week2 and week3 traces as

well. In these traces though Our proposal outperforms Baseline and BS-FSM.

Figure 3.20 shows the performance results for the April-2010 release. We

again observe a similar behaviour, Our Proposal outperforms both BS-FSM

and Baseline in 3 of the 4 traces. For example, in week2 trace Our Proposal

needs 17.55 cycles per B, while Baseline and BS-FSM need 20.85 and 26.12 cy-

cles per byte respectively. A similar performance behaviour is also observed in the

Defcon and week3 trace. However, for the week1 traceOur Proposal outperforms

BS-FSM, but there is a performance degradation wrt Baseline.

We have used the throughput metric as average number of clock-cycles
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Figure 3.20: Performance Comparison for the April-2010 Release.

per B (cpB). We can also obtain throughput in terms of byte processing rate

(Gbps) by a simple arithmetic (processor clock frequency/(cpB/8)). For example,

the throughput of Our proposal with the UPC trace is 3.4 Gbps.

It is interesting to observe that BS-FSM, even with additional hardware re-

sources (4 additional cores, 4 banked memory, and a 23653 long vector unit),

provides no performance improvement. The performance suffers due to the high

global miss rate of the caches in BS-FSM as explained in Section 3.6.1.

The hardware needed for traversal using our storage can be summarized to
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consists of: an 8-B vector EQUAL-TO comparator (64 AND gates), 3 shift-and-

add operators, 3 mask operations, an adder, and 2 less-than-equal-to comparators.

These are not complex logic blocks and can be incorporated without significantly

increasing the chip complexity. Note that our proposed state machine storage gives

43X area improvement in comparison to the baseline, and over 2x in comparison

to BS-FSM. Additionally, these schemes also need 64k 4-way assoc cache (in case of

BS-FSM there are 4 such caches), while Our proposal needs a 16k direct-mapped

cache. In case of BS-FSM, the on-chip area also consists that of 4 additional cores

and a very long vector comparison unit. Given the area savings obtained, the chip

area for our proposal will not be significant.

3.6.3 Sensitivity Analysis

We study the sensitivity of the results with respect to the processing time and the

cache miss latency. So we vary the cache miss latency and the arithmetic processing

time latency. The synthetic trace is used for this analysis. It is generated by

randomly selecting Snort strings and combining multiple such strings to create

minimum-sized packets (64 B). In this manner, more than 20,000 Snort strings

were added and this process is repeated 30 times.

Figure 3.21(a) shows the sensitivity of the arithmetic processing blocks. In

this analysis we scale the latency of the processing blocks. So a scale factor of 2

scales the edge scanning (refer to Figure 3.15(b)) to 12 cycles (from 6 cycles) plus

the memory access time. We have similarly applied scaling to Baseline and BS-

FSM. We observe that Our Proposal and Baseline scale better in comparison
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(a) Processing Engine Latency Sensitivity (b) Cache Miss Latency Sensitivity

Figure 3.21: Sensitivity Analysis

to BS-FSM. This is due to the larger per byte processing time needed by BS-

FSM in comparison to the other schemes. Additionally, Baseline provides the

best scaling in comparison.

Figure 3.21(b) shows the sensitivity of cache miss latency. We vary the cache

miss latency from 5 cycles to 100 cycles. We observe that Baseline and BS-

FSM scale better on increasing cache miss latencies. Furthermore, Baseline

scales the best with increasing cache miss latency. We observe in Our Proposal

a very high miss-rate (34%), and hence scaling the cache miss latency degrades

the performance. Note that the trace used for this study is generated by randomly
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selecting Snort strings and thus creating minimum-sized packets. Hence this trace

accesses a larger number of nodes, and consequently the dynamic working set size

is larger in comparison. This results in a higher miss-rate.

3.6.4 Scalability Analysis
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Figure 3.22: Scaling Nodes in the FSM

We analyze and compare the performance of our proposed mechanism for future

database releases. Since the database is constantly growing, so we model the future

database by scaling the nodes in the Aho-Corasick FSM. In particular we have

adopted the following methodology. We scale individual nodes in the FSM by

scaling the number of outgoing edges from each node. We illustrate this with an

example.

Consider the following set of nodes in the FSM (refer to Figure 3.22(a)). In

this example for a scale factor of 1, we linearly increase the outgoing edges (i.e.,

non failure edges) of every node. So after scaling, the fan-out of Node 5 is 4,
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(a) Storage Size Scaling (b) Performance Scaling

Figure 3.23: Scalability Analysis

and that of Node 7 is 2. The scaled edges are chosen randomly and added for

every node other than the root-node. Additionally, leaf nodes are not scaled since

there are no outgoing edges. Note that scaling done in this manner only fattens

the FSM, but it does not increase the height of the FSM. In our study we vary

the scale factor from 1 to 4. Furthermore, we use the synthetic trace.

Figure 3.23(a) shows the impact of scaling on the storage size. The storage

size needed for Baseline scales at a much higher rate than Our proposal and

BS-FSM. This is due to the data-structure used for a node in the FSM, which is

an array of 256 pointers. Furthermore, we observe that Our proposal needs the

least storage space in all the scale factors considered. Figure 3.23(b) shows the
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impact of scaling on performance. We observe that the performance of Baseline

degrades at a higher rate in comparison to the other schemes. Furthermore, we

observe that BS-FSM provides the best performance on scaling. This is due

to the lower miss-rate (global miss-rate) of BS-FSM in comparison to the other

schemes.

3.7 Summary and Future Directions

In this chapter we have investigated various mechanisms to improve the area and

performance efficiency of an IDS. In our proposal for improving the area efficiency,

we have investigated a novel type of storage for storing the state machine. Using

this novel storage, we reduce the area needed by 2X magnitude in comparison to

BS-FSM[68]. We investigate mechanisms to improve the performance efficiency

of the IDS. Most notably, we observe that consecutive bytes in the trace directly

access the root-node. Based on this observation, we propose a pipelined archi-

tecture for processing these multiple consecutive bytes. We compare the perfor-

mance of our proposed architecture with BS-FSM based approaches. Our perfor-

mance results indicate that our proposed architecture outperforms BS-FSM based

approaches[44, 45, 68].

One way to further improve the efficiency of our proposed architecture is to

dynamically determine frequently accessed nodes (similar to the root-node) and

modify the layout at run time. It will also be interesting to study the behaviour

of this architecture under performance attacks.
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Improving the Resilience of an IDS

4.1 Introduction

An IDS detects suspicious activities by monitoring the network traffic in real time.

So in order to be effective, an IDS must be able to inspect packets at wire speed.

The consequences of not doing so can result either in undetected malicious packets

or expensive packet drops. An adversary can also bring the IDS to this state of

not being able to process packets at wire speeds. Such attempts are commonly

referred to as evasion[15, 23, 48]. These attempts exploit weaknesses in some part

of IDS processing.

Evasion can come in various flavors. An example of evasion is clever packet frag-

mentation at “malicious content” boundaries, thus tricking the IDS from inspect-

ing malicious content. Other examples include deliberate packet header corruption

and stream re-assembly. The nature and ease of evasion makes it very appealing

for malicious hosts to bypass the IDS. Evasion can also occur by throttling the

performance of an IDS. Throttling the performance prevents the system to keep up
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with wire speed. So the IDS gets disabled, and thus the network is susceptible to

attacks. For this to occur, an adversary commonly exploits the wide performance

gap between average case and the worst-case processing time[15, 38, 60]. This can

also be viewed as a class of Denial-of-service (DoS) attacks that targets system re-

source utilization[36]. Earlier works in this direction investigate attack and defense

mechanisms for hash tables[15]. Additionally, other works exploit weaknesses due

to synctatics of signature specifications[60]. So in this chapter we investigate the

resilience of the Aho-Corasick algorithm used in an IDS. We present defense mech-

anisms to improve its resilience. Further, we evaluate our defense mechanisms, and

observe important benefits in deploying them.

The rest of this chapter is organized as follows. Section 4.2 provides the back-

ground. Section 4.3 presents the attack model. Section 4.4 details our proposed

counter-measure and our architecture. The simulation methodology used is dis-

cussed in Section 4.5, and Section 4.6 presents the performance results. Section

4.7 discusses the related work in this area. Section 4.8 provides possible future

directions in the context of this work.

4.2 Background

Snort[49] uses the Aho-Corasick algorithm for multiple string matching. This

algorithm works by constructing a FSM using the set of strings. Once this FSM

is constructed, incoming bytes from packets are used to traverse this FSM.

Figure 4.1 shows the Aho-Corasick FSM constructed from the following strings:

abcdee, bcdeg, cdeh, dei, ek. Failure edges are depicted in the figure with
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dotted lines. For figure clarity, only a few failure edges are shown.
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Figure 4.1: Example of the Aho-Corasick State Machine.

As observed in the previous chapter, an important issue with the FSM is the

need for a large storage space. So in the previous chapter, we reduced the FSM

storage space by optimizing the failure edges as follows. Consider node 6 and

its edge g. This is a failure edge and is identical to the edge from node 10 to

node 18. In fact, all failure edges reveal a similar characteristic, and thus they

increase the FSM storage space. Node 10 can also be viewed as a failure pointer

of node 6. So this traversal can also be done by jumping to node 10. In this way

all failure edges can be eliminated. We observe that 93% of the edges in a FSM

are failure edges. Hence, replacing the failure edges with failure pointers provides

important area benefits as we observed earlier in Section 3.3.3. Additionally, earlier

Architecture Support for Intrusion Detection Systems 57



CHAPTER 4. Improving the Resilience of an IDS

a

b

c

d

e

b

c

d

e

c

e

d

d

e

e 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

g

h

i

k

17

20

21

e

19

18

Figure 4.2: Storage Space Optimization using Failure Pointers.

works[6, 29, 61, 64, 70] have also optimized the failure edges in an identical manner.

Figure 4.2 shows the FSM built using failure pointers. For the rest of the paper,

we consider this optimized FSM, and specifically use the FSM storage proposed in

the previous chapter. Figure 4.3 shows the storage of node 6 as discussed in the

previous chapter. The FSM constructed using the Aho-Corasick algorithm is very

e uchar 0 NS_Offset_19 Rule_Offset_19 1 NS_Offset_10 Rule_Offset_10

Figure 4.3: Node 6 Storage Using Failure Pointers.

similar to a deterministic finite automata (DFA). In fact Snort and other IDSs[42]

increasingly use regular expressions mainly due to their rich expressive powers.
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These regular expressions are again normally converted to DFAs. So this work is

equally applicable to regular expressions and DFAs.

4.3 Motivation

The optimization of failure chains significantly compacts the data structure. How-

ever this has a drawback. A node with failure pointers may need additional pro-

cessing when there are no matching edges. In some cases we observe that this

additional processing is a significant overhead.

We illustrate this more clearly with an example. Let the input bytes to the

optimized FSM in Figure 4.2 be a, b, c, d, e, k. The first 5 bytes lead up-

to node 6. For the final byte, k, the failure pointer needs to be traversed as

there are no matching edges at node 6. Hence, node 10 - the failure pointer of

node 6- is accessed. Here again there are no matching edges, and so the failure

pointer of node 10 is accessed. This is repeated until a matching edge is found,

or the traversal is restarted from the root-node. Note that these chain of failure

pointers are accessed sequentially and sometimes wastefully as well. This can lead

to significant performance degradation when large such failure chains are visited.

We define failure chain length of a node as the maximum number of failure

pointers that can be traversed starting from that node. For example, the failure

chain length of node 6 is 4. Figure 4.4 shows the failure chain length distribu-

tion for Snort database releases. It is very interesting to observe that there are

nodes with failure chain lengths greater than 20 for all Snort releases. Thus for

bytes accessing failure edges of these nodes, the processing time can be high. We
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Figure 4.4: Impact of Failure chain

investigate the performance impact of traversing failure chains.

Figure 4.5 shows the CDF of processing time per byte. The processing time

per byte is measured as the total number of clock cycles (cc) needed to complete

the processing of an input byte. This CDF plot is for the Snort April-2010 release.

We see that 95% of input bytes need less than 31 cc, thus leading to an average

processing time of 23.5 cc/B. However it is interesting to note that there are

bytes that need up-to 516 cc. This clearly indicates that there is a wide variation

in processing time.

We investigate the cause of this wide variation, by examining the processing of

the ten most clock consuming bytes (refer to Figure 4.6(a)). This is also the tail
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Figure 4.5: CDF of Processing time per Byte

end (beyond 0.95 probability) of the CDF. As seen in Figure 4.6(a), we observe

that these bytes need at-least 495 cc. The cause of the enormous processing time

is unsurprisingly due to the traversal of a chain of failure pointers as observed in

Figure 4.6(b). In contrast, on examining of the relatively lesser clock consuming

bytes, we observe that these bytes traverse at most 3 failure pointers. This clearly

shows the significant impact of traversing a large chain of failure pointers. Note

that some bytes (in Figure 4.6(a)) traverse fewer failure pointers but incur a higher

processing time overhead. This is due to relatively fewer cache misses incurred in

these bytes.

The dependency of processing time on the failure chain length makes the IDS

vulnerable to algorithmic complexity attacks. Hence it is important to accelerate

failure pointer traversal and we study techniques to do the same.
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(a) (b)

Figure 4.6: Impact of Failure chains on Performance

4.4 Proposed Counter-measure

IDS are deployed in routers to secure systems in the network. Routers in turn

can use network processors that have a high degree of parallelism. For example,

the Intel IXP 2400[26] has a total of 64 threads (8 cores X 8 Threads per core).

We propose a hardware-based mechanism that uses 2 cores and it is suitable for

network processor deployment.

IDSs can also be deployed in end systems that use commodity general purpose

processors and in a non-parallel environment. So we also propose a software-based
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mechanism targeted for such an environment. We first present the hardware-based

mechanism.

4.4.1 Hardware-based Mechanism

The processing of a chain of failure pointers takes a performance hit due to the

sequential nature of its traversal. Our proposal performs a parallel traversal. One

engine performs the regular FSM traversal, while another engine concurrently

finds the candidate failure pointer. We first describe a mechanism to identify

the candidate failure pointer. Later, we present the parallel architecture used for

the traversal.

Candidate Failure Pointer Identification

The traversal of a chain of failure pointers can be viewed as a comparison of the

edges of a node to the input byte. Further, this process is repeated for the chain

of failure nodes. So we break this chain of traversal into a chain of comparing

outgoing edges.

We illustrate this more clearly with an example. Let the input bytes to the

FSM in Figure 4.2 be a, b, c, d, e, k. The first 5 bytes lead up-to node 6. For

the final byte, k, since there are no matching edges the failure pointer is traversed.

Node 10, the failure pointer of node 6, is accessed, and its outgoing edge (g) is

compared with the input byte (k). Since it is a mismatch, the failure pointer of

node 10 is accessed and it follows the failure chain until node 16.

So we see that the main operation that is performed is the comparison of the
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input byte with all outgoing edges of a node. This operation can also be viewed

as checking for membership in a set of outgoing edges. Each set corresponds to

a failure pointer. Bloom filters[8] offer a convenient and efficient way to check -

without incurring any false negatives - for set memberships. We use bloom filters

to do the membership check. We create a hash for each failure pointer by using

its set of outgoing edges. We term this a bloom filter signature. We illustrate

this with an example. Consider node 6 (from Figure 4.2), we create and store

bloom filter signatures for all its failure chains, namely, nodes 10, 13, 15, and

16. Each of these signatures are generated using outgoing edges of each node.

Node 10

Sig

Node 13

Sig

Node 15

Sig

Node 16

Sig

fn(g) fn(h) fn(i) fn(k)

Node 16Node 15Node 13Node 10

fan−out)

(offset,(offset,(offset,

fan−out) fan−out) fan−out)

(offset,

Figure 4.7: Node 6 Signature Storage.

Figure 4.7 shows the signature storage of node 6 generated using this way. In

addition to signatures, we also store offset and fan-out of the corresponding failure

pointer. This is done so that when a signature matches, we can directly jump to

the matching failure pointer.

The traversal using bloom filter signatures is as follows. Consider traversing

node 6 with input byte as k. Since there are no matching edges in node 6, we

check if there are any matching edges in the failure chain. A signature is generated

using k, and compared against all the failure chain signatures of node 6. Since

node 16 has a matching signature, we directly traverse to node 16 with k and
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obtain the pointer to node 17.

Note that in case of multiple matches, the matches are traversed sequentially

(from left to right in the Figure 4.7). This preserves traversal correctness, as the

signatures are stored in the way they are originally encountered.

Signature Storage

Node 6 Signature

Fail
conventional 
node 6 storage

signature

offset Chain

Num

Figure 4.8: Node 6 FSM Storage and Signature Access.

The failure chain signature matching can be performed independently and in

parallel with the conventional node processing. The failure chain is traversed

sequentially and only after checking for matching edges in a node. But it can be

accelerated by performing the failure pointer identification concurrently with the

conventional node processing. If there is no need to traverse the failure pointer,

then the failure pointer computation can be discarded.

The bloom filter signature database is stored in a separate memory bank. Our

memory architecture consists of two memory banks, with one containing the FSM

and the other containing signatures. This helps us in decoupling the FSM traversal

from the failure chain computation. Additionally, we also need to store a pointer
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to the node signature in the FSM data structure. So every node also stores a

pointer to the signature database and its failure chain length. Figure 4.8 shows

the storage for node 6. Note that in the figure, conventional node 6 storage refers

to Figure 4.3.

Hardware Architecture

Engine

Cache Cache

Storage Storage

State Machine Signature

Traversal

Signature

Engine
Matching

FSM

Figure 4.9: Hardware Architecture.

Figure 4.9 shows our proposed hardware architecture. The hardware consists

of a FSM traversal engine and a signature processing engine. The FSM traversal

engine performs the regular state-machine traversal and is identical to the FSM

traversal engine in Section 3.4.3. We summarize below the functionality of the FSM

traversal engine. The FSM traversal essentially consist of two operations. Firstly,

all edges of a node are scanned and compared with the input byte. If there is any

matching edge, the associated edge information is read. So we split this engine
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into these operations (refer to Figure 4.10(a), 4.10(b), 4.11). In edge scanning, the

set of edges are read and compared with the input byte. This is iterated over all

edges until a matching edge is obtained. If a matching edge or a failure pointer

exists, then the associated edge information is read. Otherwise, the traversal is

restarted from the root-node. Figure 4.11 shows the flow-chart for the signature
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Compute Mem_Address

Mem Read (Node Edges)

Yes

No

No

Edge−info

Reading Yes

Fanout
<=
Index

Edge Exists ?

Index = Index + 8

(a) Edge Scanning

Mem_Addr = fn (fanout, index)

Mem Read (Edge Info)

Update Next−node info

Signal Alert

Dequeue

Yes

No

Matches

If Rule

(b) Reading Edge Information

Figure 4.10: FSM Traversal Engine.

matching engine. This engine generates the bloom filter signature using the input

byte. Further, it compares the generated signature with the stored signatures.

Signatures are of length 4 B and are generated using two hash functions. Since

the signature comparison is an AND operation, so we use 16 B AND operators

for signature comparison. Thus allows us to compare four signatures at a time. If

a signature matches, then the matched failure pointer is traversed. In the figure,
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Figure 4.11: Signature Matching Engine

the signature comparison operations are shown in dark red text-boxes, while the

failure pointer traversal is shown in blue. In the design of bloom filters, false

positive rate is a critical parameter that affects the performance of the bloom-filer.

So we discuss below the hash function used for bloom filter generation, and the

various parameters affecting the design of a bloom filter.
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Bloom-filter Signature Generation

The bloom filter is on the critical path since a signature needs to be generated for

every input byte in the payload. So the bloom filter signature generation needs

to be computationally simple and efficient. Hence we select bits from the failure

edge for generating the bloom filter signature.

We select 5-bits from the failure edge and use it to index a 4B word. The bit

thus indexed is also set. This process is repeated with a different 5-bit patterns

for subsequent hashes. These steps are also similarly repeated for all the failure

edges in failure pointer. The 4B word thus created is the signature for the failure

pointer. Figure 4.12 outlines the steps in the signature generation for a failure edge.

b7b5b3b2b1b5b3b2b1b0

b4b3b2b1b0 b5 b6 b7

GENERATED

HASHES

b2b1b0 b3 b4 b31

1 1

BLOOM−FILTER SIGNATURE

...............................................................................................................

A FAILURE EDGE

Figure 4.12: Bloom-filter Signature Generation.

In order to check whether the input byte matches a failure edge, this signature

Architecture Support for Intrusion Detection Systems 69



CHAPTER 4. Improving the Resilience of an IDS

generation is repeated for the input byte. Further, the signature thus generated

is compared with the signature stored for the failure pointer. If the signature

matches, then the failure pointer is traversed.

The main advantage in using bloom filters is the absence of false negatives. So

if signatures do not match then no matching failure edge exists. However, bloom

filters do encounter false-positives. So we explore the impact of various parameters

on the false-positive rate of the bloom filter. We have varied the number of hashes

(1 to 6) and also the signature size (4B and 8B signatures). Further, we use

the Synthetic trace for this study. Figure 4.13 shows the impact on the false-

Figure 4.13: Impact of Parameters on the False-positive Rate.

positive rate. We observe that the false positive rate is consistently below 15%.

Furthermore, on examining the impact of the number of hashes, the false-positive

rate increases with the number of hashes (more than 2 hashes). We also observe
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that 8B wide signature has negligible impact on the false-positive rate. So these

reasons motivate us to use 2 hash functions and 4B wide signature in our study.

Our architecture concurrently performs signature comparison and the regular

FSM traversal. So if the input byte matches an edge, then the signature processing

is flushed. However, if there are no matching edges, then the candidate failure

pointer is obtained from the signature matching engine. Subsequently, this node

is traversed by the FSM traversal engine. Synchronization between the two engines

is performed after the processing of a payload byte. So if the FSM traversal engine

completes its processing and there are no matching edges. It waits for the signature

matching engine to identify the failure pointer. The processing of the next byte is

started only after the engines have completed their processing.

4.4.2 Software-based Mechanism

In this mechanism, the Aho-Corasick FSM is constructed so that there is an upper-

bound on the failure chain length. This upper-bound is as a threshold value. For

nodes with failure chain lengths equal to the threshold value, all its failure edges

are inserted. So there is no need to further traverse any failure pointers.

We illustrate this more clearly with an example. Consider the failure pointer

optimized FSM shown in Figure 4.2. If we use a threshold failure chain length

of 3, then failure edges are inserted for nodes with failure chain length of 3. So

with this scheme, failure edges are inserted for node 10 (as shown in Figure 4.14

with fine-dotted red lines). In this way we limit the failure chain traversal to a

threshold. In our simulations, we explore different values of the threshold in order

to find an optimal point.
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Figure 4.14: Software-based Mechanism.

4.5 Simulation Methodology

We evaluate the performance of our proposed mechanisms and compare it with

the conventional method of sequential failure pointer traversal. The conventional

method is the FSM traversal in the the previous chapter.

We have used three public traces, a synthetically generated trace, and a Hon-

eypot trace. The public traces are from the Lincoln labs [37] and Defcon[16]. For

the Lincoln labs we have used two weeks of traces (referred to by their respective

week) from 1999. In the Defcon trace, we use the trace captured for the Capture

the flag (CTF) game[16]. CTF is a hacking contest in the Defcon conference[14].

The objective of this contest is to break into computers of other teams, while at

the same time preventing others from doing so.

We have deployed a low-interaction Honeypot running in collaboration with
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the Leurrecom project[46]. This Honeypot has been running for 3 months, and

the logs indicate that there has been an interaction with the outside world for

at-least 61 days. We have used the traces collected from this Honeypot.

We also include a synthetically generated trace. The synthetic trace was gen-

erated by randomly selecting strings from the Snort rule database and further

combining multiple strings. This was done to ensure minimum-sized packet (64

B). Further, this process was repeated 30 times.

Table 4.1 summarizes the traces used. Note that we have inspected TCP, ICMP

and UDP packets from these traces. We have used the Snort database released on

April 2010 and containing 40,678 strings.

Data-sets Mean Packet Size (B) Num Packets (M)
Defcon 71.9 15.64
synthetic 73.64 0.120
Week 2 160.51 13.18
Week 3 200.01 14.91

Honeypot 205 0.46

Table 4.1: Summary of Traces used in Evaluation.

We use average number of clock cycles per incoming byte as the metric

for performance comparison. This is computed by dividing the total number of

clock-cycles by the total number of bytes. Total number of clock-cycles is the sum

of total processing time and total memory access time.

The total processing time comprises of: edge-scanning, reading edge-information,

signature comparison, and signature offset computation. These processing times

are obtained by assuming each of the arithmetic processing blocks need 1 cycle
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and branches need 2 cycles (refer to Figure 4.10(a), 4.10(b), 4.11). With this

assumption, edge scanning needs 6 cc plus the memory access latency.

The total memory access time is obtained from the trace-driven cache sim-

ulator [20], which was modified to model cache access times and processing times.

The cache miss penalty is obtained from CACTI [69] by plugging the FSM memory

size into the SRAM model of CACTI. We have used a 16k direct-mapped cache-

configuration for the caches. Note that in case of the hardware-based mechanism,

there are two caches each of 16k size. The cache hit time of 2 cc is used (also

obtained from CACTI). The core frequency is assumed to be 3 GHz.

4.6 Results

We compare the performance of our proposed architecture with the Baseline. The

Baseline performs traversal using the conventional way of sequentially following

failure pointers.

For the hardware-based mechanism, we have varied the minimal failure chain

length. So signatures are kept only for those nodes with a failure chain length

greater than threshold. We have used threshold values of 1, 3, 5. A threshold value

of 1 indicates that nodes with failure chain lengths >= 2 have stored signatures.

For the software-based mechanism, we have similarly varied the failure chain length

threshold. So in this scheme, nodes with a given threshold failure chain length will

have all its failure edges in place. We have used threshold values of 3, 5, 7.

In order to evaluate the worst-case performance, we compare the clock cycles

(cc) needed for the 10 most clock consuming bytes. Note that a byte that performs
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badly in one scheme may not do so in another scheme. Additionally, we compare

the average-case performance. We initially report results for the synthetic trace

to determine the optimal points for the hardware and software-based mechanism.

Later we report results for the remaining traces.

A few terminology clarifications. Sig-1 refers to the use of bloom filter signa-

tures of threshold value 1. Similarly, Sw-3 refers to the failure chain length of 3

used in the software-based mechanism.

(a) Worst-case performance (b) Average-case Performance

Figure 4.15: Synthetic Trace Comparison Result for Hardware-based Mechanism

We now present results for the synthetic trace. Figure 4.15(a) shows the 10

most clock consuming bytes for the hardware-based mechanism. While Baseline

needs at least 495 cc, in these bytes the use of signatures brings it down to at most

119 cc. Additionally, on a closer examination of various threshold values, we see

that Sig-1 gives the best performance. For Sig-1 we see a worst-case performance
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(a) Worst-case performance (b) Average-case Performance

Figure 4.16: Synthetic Trace Comparison Result for Software-based Mechanism

of 111 cc - a 4.33X improvement over the Baseline. Figure 4.15(b) shows the

average-case performance, and we see that it remains unaffected.

Figure 4.16 shows the comparison results for the software-based mechanism.

We again observe that keeping an upper-bound of failure chain lengths significantly

brings down the worst-case performance. While Baseline needs at least 495

cc in these bytes, the software-based mechanism reduces it to at most 219 cc.

Figure 4.16(b) shows the average-case performance and we again see that it remains

largely unaffected.

We also observe that Sig-1 performs the best for the hardware-based mecha-

nism. While Sw-3 performs best for the software-based mechanism. So for the

remaining traces we compare the performance of Sig-1, Sw-3 and Baseline. For

Defcon trace we observe a similar performance behaviour (refer to Figure 4.17).
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(a) Worst-case performance (b) Average-case Performance

Figure 4.17: Defcon Trace Comparison Results

(a) Worst-case performance (b) Average-case Performance

Figure 4.18: Comparison Results for Week2 Trace
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(a) Worst-case performance (b) Average-case Performance

Figure 4.19: Comparison Results for Week3 Trace

(a) Worst-case performance (b) Average-case Performance

Figure 4.20: Comparison Results for Honeypot Trace
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Comparing the worst-case performance, the hardware-based mechanism reduces

the worst-case performance to 139 cc - over 3X improvement over the Base-

line. On the other hand, the software-based mechanism reduces the worst-case

performance to 147 cc. On comparing the hardware-based and software-based

mechanisms, we observe that the hardware-based mechanism moderately outper-

forms the software-based mechanism.

Figures 4.18, 4.19 and 4.20 show the performance results for week2, week3,

and Honeypot respectively. We again observe a similar behaviour, with Sig-1

providing the best performance for the worst-case. Note however that there is a

mild average-case performance degradation (in comparison to the Baseline) for

the software-based mechanism.

(a) Worst-case performance (b) Average-case Performance

Figure 4.21: Comparison Results for the Hybrid Mechanism for Synthetic Trace

It is interesting to note that our proposed mechanisms - hardware based and

Architecture Support for Intrusion Detection Systems 79



CHAPTER 4. Improving the Resilience of an IDS

software based mechanisms - are orthogonal. These mechanisms can also be

combined using an FSM constructed with an upper bound failure chain length

(software-based mechanism), and a parallel FSM traversal (hardware-based mech-

anism). Figure 4.21 shows the performance of this hybrid mechanism. We observe

no significant performance improvement in comparison to both these mechanisms.

Further, the combined scheme also needs the combined storage space of both the

mechanisms. The worst-case performance of the hybrid mechanism almost over-

laps with Sig-1. Hence is not distinctly visible in the figure.

Figure 4.22: Storage Space Comparison (Normalized to Baseline).

Both the software and hardware based mechanisms incur additional storage

space in comparison to the Baseline. So we evaluate the additional storage

space needed (measured in KBs) for our proposal. Figure 4.22 shows the storage

space required for various schemes. The memory required has been normalized

to the Baseline(706 KB). In case of the hardware-based mechanism, the addi-

tional storage space is between 34% and 84% to that of the Baseline. In case of
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software-based mechanism, the additional storage space is between 1% to 140%

in comparison to the Baseline. This drastic increase in storage space in both

the mechanisms is due to the following reason. For both the mechanisms, as the

threshold failure chain length is reduced, the number of nodes that need failure

pointer also exponentially increases. So Sig-1 and Sw-3 need the maximum stor-

age space. Note that the hybrid mechanism needs the maximum storage space as

it incurs the combined storage space overhead.

4.6.1 Sensitivity Analysis

We study the sensitivity of our results to the cache miss latency and processing

time latency. So the following configurations have been considered: Sig-1,Sw-3,

and Baseline. The worst-case performance reported in this study is the most

clock consuming byte. Further, we use the synthetic trace for this study.

Figure 4.23 shows the impact of varying cache miss latency. The worst-case

performance of Baseline degrades at a very high rate with increasing cache miss

latency. Note that the worst-case performance of Sw-3 and Sig-1 almost overlap

and so are not visible distinctly. In case of average-case performance we see that

with increasing cache miss latency, the performance of Sw-3 degrades slightly. For

example for a miss latency of 100 cc, the performance of Sw-3 is 92.94 cc/B. In

contrast that of Baseline and Sig-1 are 87.49 and 86.35 cc/B respectively. Since

Sw-3 has the largest working set size, and so it results in more misses. Thus

the average-case performance of Sw-3 degrades faster on scaling the cache miss

latency.

As explained in the simulation methodology, each of the arithmetic processing
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(a) Worst-case performance (b) Average-case Performance

Figure 4.23: Cache Miss Latency Sensitivity

blocks need 1 cycle and branches requires 2 cycles. We have studied the sensitivity

of these processing blocks by using a scaling factor. The scaling factor scales all the

processing latencies. For example, a scale factor of 2 indicates that edge scanning

needs 12 cc. This scaling is similarly done for all processing blocks.

Figure 4.24 shows the sensitivity of processing latencies. We observe that

the worst-case performance for the Baseline degrades at a higher rate with an

increasing processing latency. This is because the Baseline traverses a chain of

30 nodes. Thus it requires 30 edge scanning and 30 edge information processing

latencies. In contrast, Sig-1 and Sw-3 incur much lesser processing latencies. We
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(a) Worst-case performance (b) Average-case Performance

Figure 4.24: Processing Engine Latency Sensitivity

also see that the average-case performance for Sig-1 and Sw-3 is unaffected with

respect to the Baseline.

4.6.2 Scalability Analysis

We use the Scalability analysis methodology discussed in Section 3.6.4 in this

study. Further, we have considered the following configurations: Sig-1,Sw-3,

and Baseline. We report the maximum clock consuming byte as the worst-case

performance for each configuration. We use the synthetic trace for this study.
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Figure 4.25 shows the scalability comparison results.

We clearly observe that the performance of the Baseline, Hardware-based, and

Software-based mechanism scales (degrades) linearly with the scale factor. The

worst-case performance of both Baseline and the Hardware-based mechanism (Sig-

1) scales at a similar rate. In comparison, however, we observe that the worst-case

performance of Sw-3 degrades at a higher rate. This is due to the larger working

set size of Sw-3 which results in larger number of cache misses. The larger working

set size of Sw-3 is again due to the high degree of replication of high fan-out nodes

(nodes close to the root-node). For this configuration, these high fan-out nodes

are replicated at intervals of failure chain length equal to 3.

In case of the average-case performance, we again observe a similar behaviour.

Figure 4.25(c) shows the scalability of the storage size for the configurations con-

sidered. We again observe a similar behaviour with memory requirements for Sw-3

scaling at a higher rate than both Baseline and Sig-1.

4.7 Related Work

To the best of our knowledge, Crosby et al[15] were the first to introduce attacks

exploiting the algorithmic complexity. They exploited weaknesses in hash tables

used for port scanning in Bro IDS[42]. A hash table needs O(n) time for insertion

on an average and O(n2) in the worst-case. They carefully construct packets that

cause collisions in the hash table, and thereby approaching the worst-case perfor-

mance. As a counter-measure, they proposed the use of universal hash functions

which significantly reduces collisions.
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(a) Worst-case Performance (b) Average-case Performance

(c) Storage Size

Figure 4.25: Scalability Comparison for Improving the Worst-case
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Smith et al[60] present algorithmic complexity attacks that exploit syntactics

of rule specification. There are rules in Snort that are dependent on the relative

position of bytes in the packet. They exploited this dependency to create pack-

ets that lead to multiple repeated and often redundant processing of the same

byte. They observed that the performance degrades significantly. They propose a

memoization based technique to prevent such redundant processing of bytes.

Earlier works on FSM for IDS have focused on compacting the FSM and also

on improving the system performance. To compact the FSM, Kumar et al[29] used

a Delayed input DFA (D2FA). A DFA is very similar to the FSM studied in this

thesis. They observed that a DFA typically has numerous states with identical

outgoing transitions. So they removed this redundancy using a default transition.

This transition is very similar to the failure pointer studied in this paper. So

our proposed architecture and traversal complements the D2FA in improving its

worst-case performance.

Tuck et al[70] studied different optimizations to reduce the size of each node

in the FSM. They used a 256 bit bitmap for each node in the FSM. A bit is set

in the bitmap if the corresponding character is an outgoing edge. They further

compact the FSM using the failure pointer optimization as discussed earlier. So

our proposed traversal and architecture is directly applicable to this work.

Becchi et al[6] propose state merging for reducing the storage space. Two

states are similar if they have multiple common output states. They combine

such states to form a compact FSM. Interestingly, they use the bit mapped based

implementation of Tuck et al (that used failure pointers) for representing states.

So, again, our work directly complements this compact FSM.
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Song et al[64] propose using a cached DFA (CDFA) for efficient traversal. In a

CDFA, a cached state is used to eliminate 1-step transitions. Among the mecha-

nisms they investigate for compacting the FSM, also includes failure pointer opti-

mization as discussed earlier.

In addition, there have been numerous works that study a rich variety of DoS

attacks. We list a few, a taxonomy of DoS attacks is given in[36].

Moscibroda et al[38] study DoS attacks against DRAM scheduling in multi-

cores. They observe that a malicious application can starve other benign appli-

cations, thus leading to significant performance degradation. They identify the

reason being due to the inherently unfair scheduling policy of the DRAM. So they

propose a memory architecture that provides fairness to all executing applications.

Cai et al[11] study algorithmic complexity attacks against the Unix file system. A

malicious process can trick the operating system to access system files that are not

in its access privileges. They propose a defense mechanism that is provably secure.

Hasan et al[24] study DoS attacks that forcefully heats up certain resources in a

SMT. In this attack, a malicious thread creates a hot spot in a shared resource by

repeatedly accessing it. Since the resource is shared, this can affect all threads in

the chip. They study several mechanisms to mitigate it by selectively throttling

the hot thread.

4.8 Summary and Future Directions

In this chapter, we have presented a counter-measure for an algorithmic complex-

ity attack against the string matching algorithm in an IDS. Our study reveals

Architecture Support for Intrusion Detection Systems 87



CHAPTER 4. Improving the Resilience of an IDS

that with certain input bytes, the algorithm can end up traversing a chain of up-

to 30 pointers. Our results indicate a massive performance degradation, a 22X

fall in comparison to the average case performance. We investigate two mecha-

nisms for countering this performance degradation - hardware-based mechanism

and software-based mechanism.

In the hardware-based mechanism we identify the candidate pointer from the

chain of pointers and directly jump to it. We propose a parallel architecture for

FSM traversal. The signature matching engine identifies the pointer to jump to,

while the FSM engine performs the regular FSM traversal. In the software-based

mechanism, we propose a modified FSM that restricts this chain of sequential

pointer traversal to a fixed upper bound. Both these schemes result in over 3X

improvement in worst-case performance.

A potential applicability of this work is in detecting tampering of the Snort

signature database. If an adversary corrupts the memory stack of the IDS using

buffer overflow attempts, then the pattern matching module can be compromised.

In order to detect such tampering, the hardware-based mechanism needs to be

extended for detecting FSM traversal violations. A potential issue could be the

increased synchronization time required between the FSM traversal and Signature

matching engine.

Algorithmic complexity attack is an example of an evasion attempt, there are

other ways of evasion including packet re-assembly and packet fragmentation. In

both of these attacks, the adversary can force the IDS to maintain an infinite

number of states (TCP connections) that exhausts the memory. Under this cir-

cumstance, even benign packets suffer massively. It will be interesting to study
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defense mechanisms against such attacks.
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5
Exploiting Redundancy in Network Traffic

5.1 Introduction

Network-layer applications like packet forwarding are computationally very inten-

sive. At the network-layer, packets can be operated on independently and, hence

packet level parallelism is a unique and common feature among network-layer

applications. This feature is aggressively exploited in network processors with

multi-cores and multiple threads. For example, Intel IXP 2400 has eight cores and

eight threads per cores. Network-layer applications also exhibit temporal locality

in packet headers. This locality is well exploited using application specific caches

like for IP-Lookups and packet classification [5, 12, 39].

While locality in header fields is intuitive and well studied, to the best of our

knowledge there have not been studies on locality in packet payload. In fact, the

first generation of Intel network processor (Intel IXP 2400) only use caches tar-

geted for lookups in packet headers. Recently, however, there have been works [1, 4]
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investigating temporal locality in the packet payload. They observe significant lo-

cality and use it for efficient data transmission. Temporal locality can also be

viewed as redundancy, and they propose mechanisms to compress the transmis-

sion of these redundant bytes. In contrast, in this thesis we focus on exploiting

redundancy to accelerate the processing time. The possibility of significant redun-

dancy in payload along with the criticality of pattern matching of payload bytes,

has motivated this work.

This chapter is organized as follows. Section 5.2 discusses possible ways to

characterize the redundancy in the network. We discuss the simulation method-

ology adopted in Section 5.3. Section 5.4 characterizes and reports the payload

redundancy in the traces evaluated. Section 5.5 provides the background to ex-

ploit the payload redundancy. We discuss our proposed redundancy-aware FSM

traversal in Section 5.6. Section 5.7 provides a detailed evaluation of our proposal.

We review the related work in this area, and place our work in the overall context

in Section 5.8. Section 5.9 concludes this chapter.

5.2 Capturing the Redundancy

Redundancy in network traffic is a common and an intuitive characteristic. An

example is when a web page (or any web object) is accessed by multiple users.

Redundancy is not just restricted to web objects, other high-level applications

also display redundancy. For example, multiple data or file transfers between hosts

also contribute to redundancy. These are instances of redundancy at higher-layer

applications, and observed at the end points (hosts). However, the focus of this
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thesis is at the network-layer where the router operates, so we study redundancy

at the packet level granularity.

Redundancy at the packet-level granularity is different from the application

level redundancy. The application level redundancy is a characteristic of the ap-

plication like in web page retrieval. In contrast, at the packet level it maybe due to

different applications. So for example string of bytes may be present in a web-page

and FTP file transfer. So in this thesis, we initially study the extent of redundancy

present at the network-layer.

The broad approach we use in our study is as follows. We use a redundancy

table to capture the redundant payload bytes. This table is looked-up using a

chunk of payload bytes. If the table look-up is successful, then the payload chunk

that is examined is redundant. Further, the table is continuously updated using

payload bytes.

Network traffic typically contains several giga-bytes of payload. So for a de-

tailed exploration, we use only a subset of the payload bytes in the network traf-

fic. Hence we sample the payload bytes with the following sampling techniques.

Winnowing[56] is a sampling technique that samples based on the content in the

payload. It is also a commonly used technique in network traffic studies[1, 4, 25].

On the other hand, Systematic Sampling samples based on the byte position in

the payload, and is independent of the payload content. Below we provide brief

overview of these techniques.
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5.2.1 Winnowing

Winnowing was originally developed to detect plagiarism in documents. So to

detect plagiarism, Winnowing first creates a fingerprint of the document. Finger-

prints are hash values and they can be viewed as encoding the document. Next

these fingerprints are checked with a database of fingerprints, which were again

created from other documents. If the fingerprint matches entries in the database,

then the document is reported to be plagiarized1. The main feature of Winnowing

is that the fingerprints are created in manner that they compactly and efficiently

encode the document.

It is very interesting to note that plagiarism detection involves searching for

redundant set of strings in a document. Additionally, the fingerprint database

is identical to the redundancy table as discussed earlier. So earlier works[1, 4]

have used Winnowing for analyzing the redundancy in network traffic, and also

for string matching in IDS[25].

Figure 5.1 shows the various steps in Winnowing for the payload: s h i a b

c s h i i. Initially the hash values are computed for chunk of payload bytes in

the payload. Note that chunk of payload bytes is the unit of redundancy, and we

term the chunk length as the redundancy length (RL). We have chosen RL = 3

in this example. Afterwards, a minimum hash value is chosen from a window of

hashes. In the example, we have used a window size of 4. The window is a sliding

window, and so it is likely that the same hash value is chosen across multiple

windows (as is the case in the example). The final sampled hash values are the

1False Positives theoretically are present in Winnowing, though [56] reports it in their studies
to be non-existent.
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Figure 5.1: An Example of Winnowing.

fingerprints that encode the payload bytes. These fingerprints are looked-up in the

redundancy table, and since there is no matching entry they are inserted into the

table. In this manner, we winnow the payload bytes to a smaller subset of bytes.

Winnowing provides the following advantages. Since Winnowing selects from

a window of hashes, so it guarantees that a window is represented in the final

fingerprint. This is an important property in plagiarism detection, and Schleimer

et al. [56] refer to it as the local property. Additionally, the minimum hash value

criteria helps Winnowing to reduce the final fingerprint size. This is because the

minimum hash value changes less frequently between adjacent windows, and so

minimum hash value gets carried over across multiple windows. So in the example

considered (refer to Figure 5.1), though there are 5 windows, but only 2 hash
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values are selected in the final fingerprint.

5.2.2 Systematic Sampling

Systematic Sampling is a standard statistical sampling technique in the litera-

ture. In this sampling an element at regular intervals. This interval length is the

sampling frequency. We illustrate it more clearly with an example.

Consider the payload: s h i a b c s h i i. Figure 5.2 shows the systematic

sampling of this payload with the sampling interval set to 3. Initially a hash

value is computed over the sampling interval. Further, this hash value is used

to perform a look-up in the redundancy table. If no matching entry exists, then

the redundancy table is subsequently updated. In this example the bytes, s h i,

when encountered the second time are redundant. So it is detected by Systematic

Sampling.

a sh cbi hs ii

REDUNDANCY

TABLE

{Bytes} Stat Info {Frequency}

1

{ s  h  i } 2

PACKET

PAYLOAD

SAMPLED

HASH

VALUES

{ a  b  c }

297270297

Figure 5.2: An Example of Systematic Sampling.

Architecture Support for Intrusion Detection Systems 95



CHAPTER 5. Exploiting Redundancy in Network Traffic

In contrast to Winnowing, Systematic Sampling is independent of the content.

The sampling is solely dependent on the byte position in the payload. So the

advantage of Systematic Sampling is that its computational complexity is very

minimal. However, note that Systematic Sampling detects redundancy only when

the redundant bytes are aligned at regular intervals in the payload. If the redun-

dant bytes are not aligned, then it cannot detect the redundancy.

In order to characterize the payload redundancy we have adopted the following

methodology.

5.3 Evaluation Methodology

We use Percentage of Redundancy (PoR) to characterize the redundancy. As

the name implies, PoR is the percentage of redundant bytes captured. For example,

the PoR captured by Systematic Sampling (refer to Figure 5.2) is (3/10) ∗ 100 =

30%, and it is due to s h i bytes. Note that the inherent redundancy present can

be higher than the captured redundancy, as is also the case in this example with

an inherent redundancy of 40%.

5.3.1 Data-Sets

We have used 4 traces in our evaluation. These traces can be classified into a

Honeypot trace and IDS evaluation traces.

We have deployed a low-interaction Honeypot in collaboration with the Leur-

recom project[46]. This Honeypot is in the De-Militarized-Zone (DMZ) of our uni-

versity LAN. An issue with low-interaction honeypots is that there is hardly any
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interaction, and we have first-hand experience of it with Honeyd[47]. However,

our experience with the Leurrecom Honeypot indicates that it regular interacts

with the outside world. In the Honeypot logs, we observe that there has been an

interaction for at-least 61 days (out of the 3 months it has been deployed). We

use this Local Honeypot trace in our evaluation.

The IDS evaluation traces are from MIT Lincoln labs[37] 1999 week-1, week-2,

and week-2 traces. Though these are provided by MIT as daily traces for 5 days,

but we have aggregated the daily traces into a week. We refer to these traces by

their respective week.

Data-sets Num Packets Mean Payload Size (B)
Local Honeypot 373,339 252.66

Week-1 771,116 313.47
Week-2 5,016,115 291.62
Week-3 6,073,650 344.28

Table 5.1: Trace Used.

Table 5.1 summarizes the traces used in our evaluation. For each trace we also

report the average payload size and the number of packets.

5.4 Characterizing the Redundancy

Figure 5.3 shows the redundancy results for various traces and sampling techniques.

Note that RL refers to the chunk length of the payload. We have varied RL from 8

to 1024. Additionally in the case of Winnowing, we have also varied the Window

Size (WS) from 8 to 128. We use a table size of one million entries.
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Figure 5.3: PoR for Various Traces and for Various Sampling Techniques
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We observe that all traces interestingly have moderate to significant redun-

dancy. For example in the Local Honeypot trace, we see that for RL = 8 almost

96% of the payload bytes are redundant. Further in all traces, an increase in RL

has varied impact depending on the sampling technique. While in the case of

Winnowing, an increase in RL captures more redundancy up-to RL = 128. On

the other hand, in Systematic Sampling we observe that the redundancy drops

consistently for increasing RLs. The reason for this varied behaviour is due to

the following. We observe for small RLs (RL ≤ 128) that Winnowing has more

samples (2X) than Systematic Sampling. So Winnowing updates the redundancy

table more frequently, and hence there are more table evictions. So these highly

frequent table evictions leads to the redundancy loss in Winnowing.

Further, we observe in all traces that moderate redundancy is present for RL ≤

128. On increasing RL beyond 128, we observe that the redundancy drops steadily.

Finally, for RL = 1024 the redundancy is negligible. This is also an expected

behaviour that of decreasing redundancy with an increase in RL.

We also observe that Systematic Sampling captures more redundancy than

Winnowing. Additionally, note that the computational complexity in Systematic

Sampling is minimal. So these reasons motivate us to prefer Systematic Sampling

over Winnowing. Figure 5.4 shows the impact of table size on the redundancy.

Here we use Systematic Sampling and RL = 128. We observe that the redundancy

is largely unaffected on using larger table sizes. So this clearly motivates us to use

smaller table sizes. Further, a table with fewer entries also significantly speeds up

the execution time.

Our redundancy results clearly indicates the presence of significant redundancy
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Figure 5.4: Table Size Variation for Various Traces.

in all traces. This motivates us to explore mechanisms to exploit redundancy in the

processing of packet payload. Intrusion Detection Systems (IDS) are an obvious

example of payload processing applications and is the focus of this thesis. So we

focus on accelerating stages of IDS processing by exploiting the redundancy in

payload.

5.5 Exploiting Redundancy

An IDS detects malicious activities by inspecting packet payload for attack strings.

This can also be viewed as pattern matching of attack strings on payload bytes. As

observed and reported in Chapter 2, the pattern matching module dominates the

execution time in the Snort IDS. So we concentrate on accelerating this module in
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Figure 5.5: Example of the Aho-Corasick State Machine.

Snort uses the Aho-Corasick algorithm for pattern matching of attack strings

on the packet payload [2]. Chapter 2 provides the background on pattern matching

in IDS using the Aho-Corasick algorithm, and the various issues associated with it.

To summarize the algorithm, it builds a FSM using attack strings. Next, this FSM

is traversed using bytes from the payload. Figure 5.5 shows the Aho-Corasick FSM

built using the following strings: ha, he, she, his, him shed. For figure clarity,

we only show failure transitions from the second-level (states 3, 4, 5, 9) onwards.

Additionally note that states 3, 6, 7, 8, 9 , and 10 also correspond to string matches

of their respective strings. Once this FSM is built, then it is traversed with bytes

from the payload.
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Our aim is to eliminate the redundant processing of datagram bytes. In par-

ticular we attempt to eliminate the FSM traversal due to redundant bytes. We

illustrate this more clearly with an example. Consider the following bytes: s h i a

b c s h i i as input to the FSM in Figure 5.5. Datagram bytes traverse the FSM

from an input state to its output state. Figure 5.6 shows the input and output

states for traversing these bytes.

2 5 4 0 0 0 2 5 4 0

0 2 5 4 0 0 0 2 5 4

s h i a b c s h i i
DATAGRAM

STATES

INPUT

BYTES

OUTPUT

STATES

Figure 5.6: FSM Traversal with Datagram Bytes.

We observe in the figure that s h i are redundant bytes and they lead to

redundant FSM traversal. Our goal is to eliminate this redundant processing in

the FSM traversal.

Note that attack strings in IDS are also written as regular expressions. This is

in contrast to fixed strings like in the Aho-Corasick algorithm. In order to traverse

these regular expressions, they need to be converted to Finite Automatas (NFA

or DFA). These automatas are again very similar to the Aho-Corasick FSM. In

fact, the Aho-Corasick FSM can even be viewed as a DFA. We have concentrated

on the Aho-Corasick algorithm since it dominates the execution time in the Snort

IDS. However, it is important to stress that the mechanism we have developed in
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this chapter is directly applicable to regular expressions.

The pattern-matching module in Snort operates not on the packet payload,

but on a larger granularity of datagram. This is due to the following reason. The

execution flow of packets in Snort consists of many stages, and pattern matching

is the final stage. In the prior stages to pattern matching, among the many steps

Snort performs also includes packet re-assembly [18]. Re-assembly is needed as

attack strings may be cleverly spread across packets by an adversary to evade an

IDS. So IDSs commonly reassembles a packet and then performs pattern matching

on the reassembled chunk. We term this reassembled chunk of payload used by the

pattern matching module as a datagram. Table 5.2 reports the average datagram

size in the traces used in our evaluation.

Data-sets Avg Datagram(B) Num Datagrams(M)
Local Honeypot 197 0.69

Week-1 421 2.04
Week-2 433 12.31
Week-3 479 22.96

Table 5.2: Datagram Characteristic of Traces.

5.6 Our Contribution

Our goal is to eliminate the redundant FSM traversal arising out of redundant

bytes. In order to do so, we first need to identify the redundant bytes in a data-

gram. Once we identify these redundant bytes, then we can skip past the FSM

traversal. So our proposal consists of the following:
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• Dynamically identifying redundant bytes

• Accelerating their processing

We first present a mechanism to dynamically identify redundant bytes.

5.6.1 Redundancy Identification

We skip the redundant FSM traversal using the redundancy table. The redundancy

table is indexed using a chunk of datagram bytes. A chunk of bytes is the unit of

redundancy, and Redundancy Length (RL) is the length of this chunk. RL is

a key design factor and significantly affects the performance. A higher RL results

in larger strides when we traverse the FSM, and this translates into performance

gains. On the contrary, it also capture fewer redundant bytes.

Redundant bytes alone are not sufficient for eliminating redundant processing,

the input state is also important. If the input states are different, then there is no

guarantee in FSM traversal correctness when we skip the intermediate states. So

the table is indexed using a combination of redundant bytes and the input state.

Table entries store the final state of redundant bytes and match states if any.

Figure 5.7 shows an example of the redundancy-aware FSM traversal. In this

example, the FSM built in Figure 5.5 is traversed with datagram bytes. At the

first datagram byte, we look-up the table using the datagram bytes (s h i) and the

initial state (0). Since there is no matching entry, we continue with the regular

FSM traversal of the next byte. The redundancy table is updated subsequently

for this entry: {(s h i), (0)}. Since the FSM traversal of datagram bytes s h i,

leads to the output state 4. Hence we store this output state corresponding to the
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Figure 5.7: Redundancy Identification

entry ({(s h i), (0)}) in the table.

The FSM traversal proceeds for the remaining bytes. Note that when the data-

gram bytes s h i are encountered the second time, the table look-up is successful.

The output state (4) is retrieved from the table, and so the intermediate bytes

are skipped. Thus the FSM is traversed with the final byte, i, and with the input

state set to 4. This way we try to eliminate the redundant FSM traversal.

The redundancy table is implemented in software using standard libraries. In

our evaluation we notice that table operations (look-ups and updates) significantly

impact the performance. Hence, table operations i.e., look-ups and updates, are

performed not for every byte but at regular intervals. This is Systematic Sampling

of datagram bytes. We use it due to the benefits observed earlier in Section 5.4.
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5.6.2 Accelerating Processing of Redundant Bytes

In our redundancy-aware FSM traversal, table look-ups and updates are performed

in tandem with the regular FSM traversal. So in Figure 5.7, there are three

table look-ups and updates performed along with the FSM traversal. These are

overheads that add to the execution time of the regular FSM traversal. So we

investigate mechanisms to minimize these overheads.

If we examine table operations a bit more closer, we observe the following. The

aim of table updates is to identify and capture redundancy, while table look-ups

exploits redundancy. So only table look-ups are needed with the regular FSM

traversal. We can delay table updates after the FSM traversal.

Further, notice that updating the redundancy table is completely independent

of any IDS processing. So table updates can be performed simultaneously with

other IDS functionalities. This can also be viewed as two parallel threads. The

Snort thread which is also the main thread, performs the regular IDS processing,

while the Redundancy thread identifies and captures redundancy.

We explain briefly the functionalities and interactions of these threads with

an example. Figure 5.8 shows the execution of Snort and Redundancy threads.

When a packet arrives to the system, Snort decodes and reassembles the packet.

These are standard functionalities performed by Snort in order to improve the

effectiveness of IDS. Subsequently, the pattern matching module is called where

the FSM is traversed using the datagram bytes. Note that the redundancy-aware

FSM traversal is performed, with table look-ups at regular intervals. Once pattern

matching is complete for the datagram, a signal is sent to the Redundancy thread.

On receiving this signal, the Redundancy thread starts updating the redundancy
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Packet Decode

Other Stages (Reassembly etc)
Table Update (Redundancy Identification)

Signal Snort Thread

Wait for Signal (Redundancy Thread)

Pattern Matching with redundancy info

Signal Redundancy Thread

Post Processing (Generate Alerts/Drops)

Wait for Signal (Snort Thread)

Snort Thread Redundancy Thread

Figure 5.8: Thread Functionalities and Interactions

table.

The Snort thread meanwhile continues with its regular functionalities. This

is the post pattern matching phase where action needs to be taken depending on

the pattern matching outcome. Actions are site specific and can include alerting

the system administrator or dropping packets. This completes the processing of a

packet by Snort and it moves to the next packet. In the meantime, the Redundancy

thread may still be updating the redundancy table using the, now, previous packet.
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So a packet lag in processing can occur between the two threads.

The two threads need thread synchronization as there are data structures

shared between them. The redundancy table is the obvious example used by

both the threads. The Snort thread uses it for FSM traversal while the Redun-

dancy thread uses it for table updates. These table operations need to be atomic

and hence thread synchronization is needed. So the Snort thread only enters the

pattern matching module, only when the Redundancy thread signals it. The re-

dundancy thread only signals the Snort thread after completing the table update.

Similarly, the reverse also holds w.r.t signaling by the Snort thread.

The Redundancy thread also requires the datagram buffer and output states

for performing table updates. The output state array is generated with the FSM

traversal by the Snort thread. Subsequently, this array is used by the Redundancy

thread. The datagram buffer cannot be shared in a similar manner, as it can result

in sharing violation. Consider the scenario when the Snort thread is reassembling

a packet. So it overwrites the datagram buffer which contained the reassembled

packet. At the same time, the Redundancy thread may be updating the redun-

dancy table with the now previously reassembled packet. So it results in a sharing

violation of the datagram buffer. In order to avoid this scenario, we make the

datagram buffer private for each thread. Hence a copy of the datagram buffer is

created by the Snort thread just before it signals the Redundancy thread.

We have implemented the redundancy table in software using Unordered Maps

of the Boost Library [31]. Boost Unordered Maps have O(1) complexity for ta-

ble look-ups. It is in contrast to C++ Standard STL map which has O(log n)

complexity. This further motivates us to use Boost Unordered maps.
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5.7 Results

We have evaluated our proposal and measured the benefit of skipping the redun-

dant processing. We outline the performance metrics used in our evaluation.

5.7.1 Performance Metric

We have used the metric, Percentage of FSM Traversals Skipped, to measure

the redundant processing. It is the number of redundant bytes skipped in the

FSM traversal, and is normalized to the total number of datagram bytes in the

trace. For instance, the Percentage of FSM traversals skipped in Figure 5.7 is

(2/10)*100=20%. The FSM traversal of s h are skipped due to the redundant s

h i bytes.

We have measured the performance as the time taken for the FSM traver-

sal by the pattern matching module. In order to measure it we use the POSIX

clock gettime() [40]. It has a resolution of 1 nano-second. We report the execution

time on a per byte basis. This is obtained by dividing the total execution time by

the total number of datagram bytes. We have compared our redundancy-aware

FSM traversal with that implemented in the Snort Version 2.9.0.5, March 2011

release. For the evaluation, we have used a Fujitsu Notebook running Ubuntu

11.04 (Linux kernel version 2.6.38-11). It is an Intel Core i3 with 4 cores and 4 GB

RAM. Additionally, all configurations are simulated three times and we report the

average of three runs.
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Figure 5.9: Execution Time Comparison for Various Traces

5.7.2 Performance Results

Figure 5.9 shows the execution time of the redundancy-aware mechanism for vary-

ing RL and table sizes. The table size has been varied from 40K entries to 120K

entries. In this Figure we also compare the performance of our proposal with the

base Snort implementation (referred to as Baseline).

The execution time results for all traces shows an interesting trend, namely,
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Figure 5.10: Redundancy Results for Various Traces

that an increase in RL speeds up the pattern matching. For example in the Week-

1 trace, RL = 8 requires 32.84 cycles per Byte while RL=2048 needs only 10.28

cycles. In all traces, RL = 8 is the most clock consuming configuration. It is also

interesting to note that RL = 8 also captures a very high redundancy (refer to

Figure 5.10). For example in the above considered trace RL = 8 skips 52% of

datagram bytes in the FSM traversal. This very unusual behaviour of a very high

redundancy with a very low performance is due to the overhead in table look-up.

Architecture Support for Intrusion Detection Systems 111



CHAPTER 5. Exploiting Redundancy in Network Traffic

Note that in our redundancy-aware FSM traversal, table look-ups are performed

in addition to the regular FSM traversal.

We investigate the table look-up operation in more detail. Internally the table

look-up in the Boost library is performed in the following manner. Consider the

example in Figure 5.7, when {(s h i),(0)} is encountered the second time. For

a table look-up, first a hash value of {(s h i),(0)} is computed using the in-built

Boost Hash library. Next this hash value is indexed into the table, and since there

is a matching entry, it is retrieved. Further, this entry is checked for hash collisions

(false positives). To do so, {(s h i),(0)} are compared with their equivalents in

the table entry. Since they match, the table look-up is successful. The steps out-

lined above are clearly non-trivial in performance. For example, the hash collision

checking is a memory comparison operation (memcmp in C String Library).

We now study the overhead due to table look-ups. In order to meaningfully

compare the look-up overhead for different RLs, we report it on a per indexed byte

basis. We explain it clearly with an example. Consider the datagram in Figure

5.7 with RL = 3 and RL = 6 and table look-up time of T3 and T6 respectively.

We report the look-up overhead incurred for these RLs as T3/9 (due to 3 look-

ups) and T6/6 respectively. Figure 5.11 shows the look-up overhead for different

RLs. We clearly see that the table look-up overhead is high for low RL values

and the highest for RL=8. Since RL = 8 incurs the maximum overhead, its

performance is relatively the worst. However, it reduces on increasing the RL, so

the table look-up overheads gets amortized with large RL values. We have used

this indirect method of inferring the table look-up overhead due to the following

reason. If a direct break-down of various operations (like table look-up, thread

112 Architecture Support for Intrusion Detection Systems



CHAPTER 5. Exploiting Redundancy in Network Traffic

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 8  64  256  512  1024  1280  1664  2048

C
lo

c
k
-C

y
c
le

s
 p

e
r 

B
y
te

 RL  

Week-1
Week-2
Week-3

Local Honeypot

Figure 5.11: Table Look-up Overhead

synchronization etc) in the FSM traversal is attempted, then we observe that the

clocks thus inserted significantly dominate the performance. So it does not provide

a realistic impact of various operations in the FSM traversal.

The table look-up overhead results clearly indicate that larger RLs incur rel-

atively lesser overhead, and so provide better performance. Additionally on an-

alyzing the redundancy results (refer to Figure 5.10), we observe that moderate

to significant redundancy exists at large RLs. For instance in the Week-2 trace,

RL = 1280 skips 46% of the datagram bytes in the FSM traversal. For this trace,
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we also observe for 256 ≤ RL ≤ 1280, the redundancy-aware FSM traversal out-

performs the Baseline (refer to Figure 5.9). This performance gain is due to the

large fraction of bytes being skipped with relatively lesser table look-up overhead.

Note that for RL > 1280 very few bytes are skipped of FSM traversal, and so

there is no performance gain. The performance of the Week-1 and Week-3 trace

also shows a similar behaviour as the Week-2 trace. However, note that in case

of the Week-1 trace the redundancy at large RLs is not as significant as Week-2

and Week-3 traces. So the performance improvement in the Week-1 trace is not

as noticeable as the other traces.

In case of the Local Honeypot trace, 64 ≤ RL ≤ 512 outperforms the Base-

line. But for RL > 512, there is a drop in performance due to fewer table

look-ups. This is due to the relatively smaller datagrams in the Local Hon-

eypot trace. For such datagrams, large RLs results in fewer table look-ups,

Numlook−ups = ⌈(Datagram Size−RL+ 1)/RL⌉. So for this trace at RL = 512,

68% of datagram bytes are looked-up. However for RL = 1024 only 14% of data-

gram bytes are looked-up. So large RL values do not provide any performance

benefit for the Local Honeypot trace.

In our results we have also varied the table size from 40K entries to 120K

entries. As can be noticed from the results, there is no significant gain in using

larger sized redundancy table.

Our results can be summarized as follows. The redundancy-aware mechanism

provides performance benefits when moderate to significant redundancy is present

in a trace at large RL values. Furthermore, performance improvement is obtained

when the overhead in the table look-up is not high. So the trace characteristic
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governs the redundancy and hence the performance. Hence, we explore a scheme

to dynamically adapt the RL value depending on the trace characteristic.

Dynamic Heuristic

Algorithm 3 Dynamic Algorithm to Set the RL.

1: if Total Num Datagram Bytes mod 107 then
2: if PerfCur RL − PerfPrev RL < 1 then
3: if RL Increased then
4: RL = RL - DEC STRIDE {Perf↑ when RL↓}
5: RL Increased = 0
6: else
7: RL = RL + INC STRIDE {Perf↑ when RL↑}
8: RL Increased = 1
9: end if

10: PerfCur RL = PerfPrev RL

11: end if
12: else
13: if PerfPrev RL − PerfCur RL < 1 then
14: if RL Increased then
15: RL = RL + INC STRIDE {Perf↑ when RL↑}
16: RL Increased = 1
17: else
18: RL = RL - DEC STRIDE {Perf↑ when RL↓}
19: RL Increased = 0
20: end if
21: end if
22: PerfCur RL = PerfPrev RL

23: end if

Our earlier results indicate that the best performing RL is dependent on the

trace characteristic. For instance, 256 ≤ RL ≤ 512 provides performance gains

in the Local honeypot trace. On the other hand, 256 ≤ RL ≤ 1280 provides
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performance improvement for the remaining traces. So the dynamic heuristic must

be able to dynamically identify these RL ranges and set the RL value accordingly.

Algorithm 3 outlines the steps of our proposed dynamic heuristic. The dynamic

heuristic analyzes the performance of the FSM traversal at every 10M datagram

bytes. It compares the performance of the current RL(PerfCur RL) with the pre-

viously set RL(PerfPrev RL). The performance is measured as the average number

of clock-cycles for the FSM traversal of a datagram byte. If the dynamic heuris-

tic observes a performance drop then the RL is accordingly modified. So if at

the last epoch, RL was increased then RL needs to be decreased and vice-versa.

The RL value is also set in a similar manner on a performance gain. In our

evaluation, we have varied the stride for increasing (INC STRIDE) and decreas-

ing (DEC STRIDE) the RL. Our study shows that INC STRIDE = 256 and

DEC STRIDE = 128 provides the best performance. We have also explored the

interval for invoking the dynamic algorithm. We observe that polling at every 107

datagram bytes provides the best performance. The dynamic heuristic is executed

by the Redundancy thread, and the table is also cleared if the RL value is modified.

Figure 5.12 shows the performance of our dynamic heuristic with respect to the

Baseline and the Static scheme. Note that the static scheme uses a fixed RL value

and is identical to the redundancy-aware mechanism previously discussed. Our

results shows that our proposed dynamic heuristic is able to dynamically adapt to

the trace. So in case of Week-2 and Week-3 traces, the dynamic heuristic provides

11% and 16% performance improvement over the baseline respectively. Addition-

ally, the Local Honeypot trace provides 13% performance improvement over the
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Figure 5.12: Execution Time Comparison for the Dynamic Heuristic

baseline. However, the Week-1 trace shows a mild performance degradation of 5%.

This degradation is due to the relatively lesser redundancy present in the Week-1

trace. The performance gains thus obtained by the dynamic heuristic is due to the

detection of the optimal RL ranges for the traces. Thus for the Local Honeypot

trace, the RL value lies between 256 and 512, and is only changed less than 3 times

in the entire run. A similar behaviour is also observed for the Week traces, with

the RL varying between 256 and 1280.
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As mentioned earlier, the redundancy table is implemented using the Unordered

map in the Boost library. The redundancy table can also be implemented as a

specialized logic for accelerating the IDS processing. Earlier works have explored

dedicated hardware logic for accelerating the FSM traversal in an IDS[9, 13, 17, 25,

43, 44, 51, 64, 68, 72]. Thus the table can be viewed as a dedicated redundancy

cache, and the table look-up operations can also be viewed in terms of cache

accesses. The hash computation in our table look-up implementation is equivalent

to indexing the sets of a cache. Further, the memory comparison operation in our

table look-up implementation is a tag comparison operation in a cache. Since a

specialized hardware structure will not incur the software overheads as discussed

earlier. So deploying such a specialized structure will help to even further improve

the performance.

It is very interesting to compare the redundancy present in the datagram (refer

to Figure 5.10) to the redundancy in the packet payload (refer to Figure 5.3). In

the datagram, we observe a moderate to significant redundancy is present even

for large RLs (RL = 1280). However, interestingly the redundancy in the payload

at large RLs is not as significant in comparison. This divergent behaviour is due

to the much bigger size of the datagram. The datagram, which is created after

packet re-assembly, can be up-to 64 KB. In contrast, the maximum payload size

in the Ethernet is 1.4 KB. So in the case of the payload redundancy, fewer packets

are as large as the RL (for large RLs). Thus the payload redundancy consequently

also clearly drops for large RLs. Note also the subtle difference in the datagram

redundancy and payload redundancy. The datagram redundancy is due to the

redundant processing, while the payload redundancy is due to the redundant bytes.
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5.8 Related Work

The literature related to this work falls broadly under two categories:

• Temporal locality studies in network traffic

• Performance optimizations in IDS.

We briefly summarize the prior work done in each of these areas.

Redundancy in payload has been studied recently [1, 4]. Anand at al. [4] study

the redundancy in payload in a variety of enterprise traces. They further investi-

gate various sampling techniques for detecting and exploiting redundancy. Their

goal is to maximize bandwidth saving in payload. Similarly Aggarwal et al [1] have

proposed and evaluated a performance efficient sampling technique for bandwidth

saving. In contrast, our work concentrates on eliminating redundant processing

in payload processing applications. Further, we have focussed on datagram bytes

(reassembled packets), while [1, 4] study for packet payloads. So packet sizes are

typically less than 1500 B (in case of Ethernet), while reassembled packets can

be up-to 64 KB. This difference in granularity is also reflected in the redundancy

results, and is very similar to our earlier observation in the previous section.

Redundancy has also been studied and exploited in packet headers. Notably,

packet forwarding (look-ups) exhibits redundancy in destination IP addresses.

So [5, 28, 39] have studied memory architectures for efficient packet look-ups.

Similarly, other packet header fields also exhibit redundancy, and it is exploited in

packet classification [34, 58].

Redundancy in HTTP requests sent to web servers has been extensively stud-

ied. Web caches are as a consequence of this redundancy. There have been several
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interesting studies in this area for at-least the last fifteen years. Notably Almeida

et al. [3] comprehensively characterize the redundancy in web requests.

Earlier works on FSM in IDS have either investigated mechanisms to com-

pactly store the FSM, and/or accelerate its traversal. The FSM built using the

base Aho-Corasick algorithm can get very bloated. So Tuck et al [70] propose

using a bitmap structure for states in the FSM. They further investigate various

mechanisms including eliminating failure edges from the FSM. Becchi et al [6] in-

vestigate merging similar states in the FSM. Kumar et al. [29] propose a compact

FSM storage that eliminates failure edges. Randy et al [62] propose various FSM

enhancements for eliminating duplicate states in the FSM.

There have also been works on accelerating the FSM traversal. Brodie et al

[9] propose traversing the FSM with multiple bytes (instead of a byte at a time).

Tan et al [68] have investigated parallelizing the FSM traversal. So they propose

a bit-wise traversal instead of the standard byte-wise traversal. Luchaup et al [33]

speculate the FSM traversal, speculation is used since there are only few unique

states traversed by the FSM. Hua et al. [25] investigate using a variable stride FSM

and so the FSM is also built accordingly. They tune their traversal specifically

for TCAMs. Anirban et al. [35] study clustering regular expressions based on

their popularity. They dynamically build the FSM (DFA) only for frequently used

regular expressions. On the other hand, the remaining regular expressions are

stored as NFAs. Note that NFAs, unlike DFAs, are compact. However, NFAs

incur severe traversal overhead due to their inherent non-determinism.

It is very interesting to note that these techniques either compact the FSM,

and/or accelerate the FSM traversal. In contrast, our redundancy-aware FSM
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traversal, identifies and skips the redundant FSM traversal. So it is orthogonal

and complements all these techniques in accelerating the FSM traversal.

5.9 Summary and Future Directions

In this chapter we have investigated the temporal locality of packet payload. We

observe significant locality in all traces analyzed, and so study mechanisms to

exploit it. IDS is an example of payload processing application which is critically

dependent on processing of payload bytes. So we take IDS as a case study to

exploit the temporal locality.

We observe that the string matching module in IDS is the critical module for

performance in Snort IDS. This module inspects packet payload for attack strings

from a database of attack strings. Snort IDS commonly uses the Aho-Corasick

algorithm for string matching, where it builds an FSM from the attack strings.

Subsequently, the FSM is traversed using payload bytes.

We propose a redundancy-aware FSM traversal that dynamically identifies

redundant payload bytes. So it enables us to skip their redundant processing.

We further parallelize our mechanism by performing the redundancy identifica-

tion concurrently with stages in Snort packet processing. We have implemented

our redundancy-aware pattern matching in Snort, and evaluate on an Intel Core

i3. Our performance results indicate that all traces without exception have sig-

nificant redundancy. Unfortunately, the look-up overhead cancels out any gains

thus obtained. But the overhead also get amortized on increasing the redundant

chunk length (RL). An increase in RL also means lesser redundancy. So it is a
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performance-redundancy trade-off. We observe performance gain when the look-

up overhead is minimal and for large RLs (RL > 256). We propose a dynamic

heuristic that dynamically modulated the RL depending on the performance. Our

results indicate that the dynamic heuristic provides up-to 16% performance im-

provement over the base Snort FSM traversal.

An extension of this work is to study a redundancy-aware mechanism in the

IPSec algorithms used by VPNs. A potential issue, however, could be the possibil-

ity of compromising the confidentiality/integrity of data. So the redundancy-aware

mechanism will have to take into consideration this potentially sticky issue. A key

insight of our study is the presence of significant redundant processing in all traces.

This points to the possibility of predicting the processing (header or payload) of

packet. Packet processing prediction can be useful during packet bursts, when

congestion may force the router to drop packets.
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Conclusions

System security is a prerequisite for efficient day-to-day transactions. Security can

be provided either at the host-level, or for the entire network. Security at the

network, also referred to as network security, has the advantage of monitoring the

entire network. Firewalls and Intrusion Detection Systems (IDS) are examples

of network security. A firewall inspects the packet header, and depending on

the configured policy, allows or denies network services to the LAN. An IDS, in

contrast, examines the entire packet including the payload, and analyzes for prior

reported attacks. So an IDS like Snort[49] detects attacks by comparing bytes in

a packet with a database of prior reported attacks.

Snort uses the Aho-Corasick algorithm[2] to detect attacks in a packet. This

algorithm functions by first constructing a Finite State Machine (FSM) using the

attack strings. Later bytes in a packet are used to traverse the FSM, and thus

detect an attack. The main advantage in using the Aho-Corasick algorithm is that

it guarantees a linear-time search, and is independent of the number of strings.

The issue, however, lies in devising a practical implementation. The FSM thus
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constructed gets bloated in terms of storage space. This also affects its performance

efficiency due to the huge memory footprint. Another issue with this algorithm is

the limited scope for parallelism, due to the sequential nature of FSM traversal.

In this thesis we explore hardware and software techniques to accelerate the

attack detection using the Aho-Corasick algorithm. The first part of the thesis

focusses on improving the performance and area efficiency of an IDS. We propose

a hybrid and a compact storage for the FSM. It leverages the characteristics of the

attack strings used to build the FSM. We also observe that the root-node in the

FSM is very frequently accessed. So we explore techniques to accelerate accesses to

the root-node. Notable among our contributions, includes a pipelined architecture

that accelerates successive root-node accesses. We further evaluate our proposed

architecture and compare it with the popular BS-FSM based approaches[44, 45,

68]. We observe that Our Proposal significantly reduces the area required to

store the FSM by a factor of 2.2X. Furthermore, the performance results indicate

that Our Proposal outperforms by up-to 73% the BS-FSM based approaches.

In the second part of this thesis, we study the resilience of an IDS. An adver-

sary can throttle an IDS by crafting performance throttling packets to saturate its

performance. Once the IDS is unable to process packets at the incoming rate, then

it can get disabled to prevent a network breakdown. Such attempts to circumvent

an IDS are broadly referred to as evasion attempts. In this thesis we study an eva-

sion attempt against the Aho-Corasick algorithm used by an IDS. We observe that

packet bytes, on an average, traverse 1 FSM state. However, we also observe that

there are packet bytes that need to traverse up-to 31 FSM states for the process-

ing of a single byte. The processing of these bytes results in a severe performance
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drop, and we observe a 22X performance degradation. We investigate hardware

and software mechanisms to counter this performance drop. Notable among our

contributions includes a parallel architecture that directly identifies the candidate

FSM state to traverse. We evaluate our proposal and observe a 3X performance

improvement in the processing of these performance throttling bytes.

In the final part of this thesis, we explore techniques to accelerate IDS pro-

cessing by leveraging the network traffic characteristic. Redundancy in the packet

header is well known and well studied over the years. A routing cache is a conse-

quence of this redundancy. However, there has not been any significant study on

redundancy in the payload. In this thesis, we observe significant redundancy in the

payload bytes in all the evaluated traces. This motivates us to explore mechanisms

to skip their redundant processing. We propose a redundancy-aware FSM traver-

sal that skips the redundant FSM traversal. For this purpose, a redundancy table

is used to identify and capture the redundancy. We further accelerate the redun-

dancy identification by performing it in parallel with the regular IDS processing

by Snort. We have implemented our proposal in Snort, and compared with the

standard Snort FSM traversal. Our results indicate that our redundancy-aware

FSM traversal outperforms by up-to 16% the standard Snort FSM traversal.

6.1 Future Directions

We discuss below a few future directions in the context of this thesis.

• In our proposed techniques to improve the efficiency of an IDS, we observe

that the root-node is the most frequently accessed node in the FSM. So we
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propose a distinct structure for the root-node, and additionally also place

it in an on-chip memory. There exists a possibility of nodes in the FSM

being frequently accessed in selective phases or epochs. Hence, it will be

interesting to study a dynamic heuristic that identifies these hot nodes, and

dynamically places them in an on-chip memory similar to the root-node

memory. An orthogonal study can explore speculation heuristics, based on

the traversal pattern in the FSM, to accelerate the FSM traversal.

• An IDS uses regular expressions to specify attack strings. Regular expres-

sions are converted to Non-Deterministic Finite Automata (NFA) or Deter-

ministic Finite Automata (DFA), and later these automatas are traversed

using the bytes from a packet. Snort uses NFA and a backtracking heuris-

tic to traverse the NFA. Note that in a NFA, multiple states can be active,

and so NFA traversal heuristics are needed for performance efficiency. The

backtracking heuristic is similar1 to failure pointer. A next step could study

heuristics, similar to accelerating the traversal of a failure pointer chain, for

NFA traversal.

• An IDS like Bro[42] dynamically infers the high-level application (like a

HTTP GET request) by examining the application header. So Bro uses

a Dynamic Protocol Detection Heuristic (DPD)[19] to predict the high-level

application. This prediction can be accelerated by augmenting the analysis

with the payload redundancy. Furthermore, Bro dynamically invokes high-

level application analyzers for a packet. These analyzers can be pre-fetched,

1Note that it is similar but not identical
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using a redundancy heuristic, to speed up the execution of Bro.

• Intrusion Detection System is an example of a payload processing applica-

tion. There are other payload processing applications like a Virtual Private

Network (VPN). A VPN encrypts a packet using the IPSec algorithm[22] and

transmits it to a remote host. The packet encryption by the IPSec algorithm

can be accelerated by exploiting the redundancy in the payload bytes.
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Architecture for Intrusion Detection Systems. In Proceedings of the 25th IEEE

International Conference on Parallel and Distributed Processing Symposium

(IPDPS), 2011.

[52] G. S. Shenoy, J. Tubella, and A. González. Exploiting Temporal Locality
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