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Abstract 
 
This dissertation examines how people aggregate quantitative advices to reach their own 

estimates. Each chapter explores a different situation that could affect how advices are 

evaluated, and consequentially how advices will be combined. The first chapter 

demonstrates that people measure advices' extremity degrees by anhoring upon the 

advice set's median. It also shows that, unlike multiplicative scaling, additive scaling of 

advices affects how outliers are perceived. The second chapter deals with advices that 

are obtained serially. The results reveals that whether people execute the aggregation 

sequentially or only once at the end of the series affects how an outlier in the series is 

detected and combined. The third chapter studies how people revise their own estimates 

with advices of others, and finds that people revise more if they appear a dissensus. 

Consequentially having multiple advices can attenuate of the effect of egocentricity and 

improve accuracy of revisions compared to having only a single advice. 
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Resum 
 
Aquesta tesi estudia com les persones agreguen consells quantitatius per arribar a les 

seves pròpies estimacions. Cada capítol explora una situació diferent que podria afectar 

com s'avaluen els consells, i en conseqüència com es combinen aquests consells. El 

primer capítol demostra que les persones mesuren els graus extrems dels consells per 

ancoratge a la mediana del conjunt de consells. També es mostra que, en comptes d’una 

escala multiplicadora,l’ escala additiva dels consells afecta a com es perceben els valors 

atípics. El segon capítol tracta de consells que s'obtenen en sèrie. Els resultats revelen 

que si les persones executen l'agregació seqüencialment o només una vegada al final de 

la sèrie, afecta a com es detecten i es combinen els valors atípics en la sèrie. El tercer 

capítol estudia com les persones revisen les seves estimacions a partir consells dels 

altres, i es troba que les persones revisen més si es troben en un dissens. 

Conseqüentment, tenir consells múltiples pot atenuar l'efecte d'egocentrisme i millorar 

la precisió de les revisions si es compara en tenir només un únic consell. 
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Foreword 
 

 
We all solicit advices and opinions to aid our decision making, but can those advices 

help us improve our decisions? Do different environments and contexts that advices are 

presented result in different decisions? Or do we even use those advices at all? This 

dissertation consists of three self-contained chapters, each examining the same issue of 

how decision makers aggregate quantitative advices, such as sales estimates or market 

forecasts, but each under different decisional contexts that could affect how advices are 

evaluated and combined. After receiving an estimate, the first question one might ask is 

"Is it believable?" Obviously, if the answer is no then one would discard it or at least 

reduce its weight in the aggregate. However this significantly depends on one's ability 

to identify the believability degree of a received estimate. Two chapters in this 

dissertation deal with the topic of extreme estimates, or outliers, specifically whether 

people could detect it; the first chapter examines the differential effect of data scaling in 

how outliers are perceived, and the second chapters examines how task processes could 

intervene in outlier detection when estimates are presented sequentially. But it is not just 

extreme estimates that one would be likely to ignore. We are often so egocentric that we 

use advices just to confirm, rather than correct or revise our initial ideas. The last 

chapter in this dissertation examines whether with multiple advices, one's egocentricity 

could be reduced, so one would take advices and revise one's own initial opinion 

accordingly. 

 The first chapter titled "The Outlier Identification, Scaling Effects, and Forecast 

Aggregation" presents the results from two laboratory experiments that examine how 

people define and detect outliers, which demonstrate that experimental participants 

based their judgments of outlier extremity on comparative distance from the median of 

the forecasts to be aggregated. Perceptions of experimental participants with regard to 

outliers were also affected by additive scaling (where a constant is added to all 

forecasts) but not by multiplicative scaling (where the data are multiplied by a constant). 

At the end, participants’ aggregation strategies were generally heavily anchored on the 

median of data observed, which readily reduced the impact of outliers in aggregations.  

 The second chapter titled "Effects of outlier appearance order in aggregation of 

short forecast sequences" shows that, from the results of two laboratory experiments, 

aggregation processing modes also plays a role in whether people could detect outliers. 

Specifically when participants produced and updated their estimates with each new 



 x 

forecast along a sequence, they missed an outlier if it appeared early but their final 

estimates showed no influence of that outlier, but an outlier that appeared last got 

detected but still ended up with a substantial weight in the final aggregation; and when 

participants were made to recall earlier forecasts in a sequence and to produce only one 

single estimate at the end of each sequence, they duly realized forecast extremity, but 

outliers still exerted a weighty influence over the final aggregation regardless of order 

of appearance. 

 The third and final chapter titled "Estimate revision with multiple advices" 

explores egocentricity in opinion revision. Results from the laboratory experiment 

demonstrate that people will choose to revise more when they find their opinions to be 

outside a consensus. In fact, further analyses show that this consensus-dissensus 

category is a valid cue for an accuracy judgment. The second laboratory experiment in 

this chapter looks at whether concerns for rankings would make people make even more 

use of advices as previous research argues, an the results did not support this hypothesis. 

A simulation study using the data collected from two experiments suggests that having 

multiple advices, and its consequential revise-if-dissensus heuristic, can improve 

accuracy of revisions that decision makers may choose compared to having only a 

single advice, especially that a single advice is often egocentrically ignored. 
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1. Outlier Identification, Scaling Effects, and Forecast 
Aggregation 
 

Abstract. 

Faced with several forecasts, how do people define and detect outliers? 

Moreover, how do they take account of identified outliers when aggregating 

such forecasts? Two experiments examine these questions and suggest that 

experimental participants based their judgments of outlier extremity on 

comparative distance from the median of the forecasts to be aggregated. 

Participants’ perceptions of outliers were also affected by additive scaling 

(where a constant is added to all forecasts) but not by multiplicative scaling 

(where the data are multiplied by a constant). In general, participants’ 

aggregation strategies were heavily anchored on the median of data observed. 

 

 

1.1  Introduction 

 Rarely is an important decision taken without asking for a second opinion 

(Harvey & Fischer, 1997). However, any expert can be biased, misinformed or under-

informed (Hogarth & Makridakis, 1981; Goodwin & Wright, 1994; Webby & 

O'Connor, 1996); in these situations additional opinions can reduce or offset such 

biases. Research has shown that combining forecasts from multiple sources results in 

improved accuracy (Einhorn, 1972; Dawes & Corrigan, 1974; Doyle & Fenwick, 1976; 

Libby & Blashfield, 1978; Makridakis et al., 1982; Yaniv & Hogarth, 1993; Armstrong, 

2001, Winkler & Clemen, 2004). In particular, unit weighting is an efficient aggregation 

scheme (Winkler, 1971; Newbold & Granger, 1974; Einhorn & Hogarth, 1975; 

Hogarth, 1978; Libby & Blashfield, 1978; Clemen & Winkler, 1986; Lawrence et al., 

1986; de Menezes et al., 2000), significantly improving forecast accuracy without 

requiring additional information.  

 But the use of a simple average is often underestimated (Sniezek & Henry, 1989; 

Larrick & Soll, 2006). Instead, with multiple forecasts at hand decision makers (DMs) 

often attempt to evaluate advisors based on certain characteristics and to aggregate their 

forecasts accordingly. For example, Maines (1996) showed that experimental 

participants put more weight on forecasts by advisors whose past forecasts had been 

more accurate. They also adjusted their estimates according to their views of advisors' 
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biases, that is, whether they were optimistic, neutral or pessimistic. Experiments by 

Budescu et al. (2003) demonstrated that participants weighted advisors’ opinions 

according to the accuracies of their previous forecasts as well as the amount of 

information they might have used. Yaniv and Foster (1995) allowed advisors to be 

imprecise in their opinions and found that experimental participants gave greater weight 

to more precise opinions. In fact, when the information about advisors is accurately 

perceived, subjective weighting can improve aggregation beyond simple averaging 

(Ashton & Ashton, 1985; Flores & White, 1989; Fischer & Harvey, 1999). However 

there is also a possibility that DMs might misuse such information, and as a 

consequence produce biased aggregations (Soll, 1999; Larrick & Soll, 2006).  

 In many situations, however, and particularly in the one-shot case, the only 

information available is the forecasts or opinions themselves. Here, a simple average 

seems to be a sensible choice as forecast evaluation is not possible. Even so, given the 

human penchant for pattern and order, a DM could try to construct a pattern just from 

the forecasts, such as consensus and outlier, and evaluate each accordingly. When 

confronted with outlying opinions, some research has shown that DMs tend to take the 

median as the aggregate (Yaniv, 1997; Harries et al., 2004). However, a “knee-jerk” 

dismissal of an extreme forecast could be an overreaction. A forecast could seem like an 

outlier because its provider does not participate in so-called “herding”. In this case, an 

outlier can provide additional information and be a good hedge in aggregation. It has 

been shown, for example, that bold forecasts often come from experienced analysts who 

incorporate more information in their forecasts, whilst young and inexperienced 

analysts try to avoid the negative consequences of forecast errors and revise their 

forecasts to conform to a consensus (Chevalier & Ellison, 1999; Hong et al, 2000; 

Clement & Tse, 2005). On the other hand, a bold forecast could also result from 

manipulation that is not information-based (Lamont, 2002).  

 In this chapter, I first asked how a DM confronted with several forecasts judges 

one to be an outlier. Results from two laboratory experiments indicated that participants 

were sensitive to the comparative distance between an extreme forecast and the other 

data points. At the same time, participants’ perceptions were differentially affected by 

additive and multiplicative transformations (i.e., rescaling) of the data. Specifically, 

they were seen to be sensitive to additive (adding a constant to all opinions, e.g. a 

company’s revenue increase versus a company’s total revenue) but not multiplicative 

changes (multiplying everything by a constant, e.g. a company’s revenue in different 



 

 3 

currencies). This means DMs’ views on the likelihood distribution of a true value that 

was being forecast could be altered by using a different scaling in a presentation of data. 

Second, I investigated how outliers were treated in aggregating forecasts and found that 

the extent to which an outlier was perceived as deviant generally had no significant 

impact on how it was weighted. Instead, participants seemed to anchor their estimates 

around the sample median. The distribution of the estimates also suggested that the level 

of the data (additive scaling) played a role in attenuating subjective forecast variability. 

 

 

1.2  Outlier perception 

1.2.1  Measuring outlying degrees 

 Essentially identifying an outlier is to find a data point that is either “too large” 

or “too small” relative to those with which it is grouped, a data point that is “distant” 

from the other data points in the set. This implies that the degree of outlier extremity, 

i.e. the likelihood that a data point is a true outlier, can be evaluated by the distance 

between that data point and an anchor that is representative of the rest of the data in the 

set. Denote this distance as Absolute Distance (AD) which is expressed as following: in 

the forecast set j , 1{ , ..., , ... }n N

j j j j
X x x x= , AD of n

j
x  is 

 

  ( ) | ( ) |n n

j j j
AD x x Xα= −  (1.1) 

 

where ( )α ⋅  is the anchor against which a data point is measured. But the definition also 

implies that a “true” outlier will lie at a greater distance away in comparison with other 

data points. That is, an outlier expectedly has anAD larger than theADs of all the other 

data points in the set. Hence, the degree of outlier extremity depends on Comparative 

Distance (CD), where CD of n

j
x  is defined as 

 

 
 

( )
( )

1
( )

n

jn

j
N n

jk

AD x
CD x

AD x
N

=

∑
 (1.2) 

 

As the distance AD measures how far a data point is from the rest, the anchor should 

represent the other data in the set. I consider three candidates for anchor that a DM 

might use: (1) the median, as discussed above, DMs often use the median as a choice for 



 

 4 

aggregation when facing an outlier and thus may also use the median as an anchor in 

deciding whether there is an outlier; (2) the trimmed mean, i.e. the mean of the other 

forecasts; and (3) the nearest neighbor (NN), i.e. the distance to another datum whose 

value is the closest.  

 Among the three candidates for anchor, the trimmed mean requires the most 

computation and so is not readily accessible by a DM. On the other hand, both the 

median and NN, requiring only data sorting, are more likely candidates, especially if the 

sample size is large. In fact, using a sample size of 10, Collett and Lewis (1976) 

examined if either the trimmed mean or NN was used as an anchor, and found the 

impact of the latter to be significant but not that of the former.1 

 Still, the extent to which a DM perceives an outlier as extreme can depend on 

perspective. The same distance might seem normal to a DM under one set of   

circumstances but look inordinate otherwise. Essentially, outlier identification relies on 

a DM's presumption of the variability of the forecasts in consideration. But people’s 

intuitive inferences about variance are not infallible (Peterson & Beach, 1967). 

Specifically, people generally presume that larger numbers imply larger variance. As a 

consequence, increasing the level ( L ) of the data, i.e. the overall magnitude of the data 

set such as sample mean or median, can attenuate a DM's perception about the size of 

the variance of the forecasts, despite the fact that the statistical variance does not change 

at all. For example, in experiments by Lathrop (1967), participants ranked cards with 

separated lines from high to low in variability. He found that the ranking was inversely 

proportional to the square root of the mean length of lines in the cards. Beach and Solak 

(1969) had experimental participants estimate a percentage of a certain number, and 

state the interval of acceptable estimated errors. They found that the widths of the 

intervals were proportional to the magnitude of the correct answers. In Lawrence and 

Makridakis’s (1989) experiment, participants were asked to provide estimates and 

confidence intervals for time series data. It turned out that participants widened their 

confidence intervals when the data series demonstrated a trend, i.e. a change in the data 

level, both upward and downward. So the data level, which affects the perception of 

variability, might also be expected to affect the perception of outliers. 

 

1.2.2  Differential effects of scaling 

                                                
1
 The regression models compared in Collett and Lewis (1976) included NN divided by the data range, 

and trimmed mean divided by the standard deviation of non-outlier predictions. 
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 From the discussion above, it is expected that adding a large number (constant) 

to the forecast set could affect outlier identification and consequently a DM's aggregate. 

I call this additive- or A-scaling. This type of scaling is not uncommon, for example, 

yearly sales forecasts could be communicated as the total sales of the coming year or as 

the year-to-year sales increase. Thus, two DMs receiving the same sales information but 

with different scaling could reach different aggregates. One might discard one forecast 

for being extreme and therefore take the median, while the other might consider all 

forecasts as equally valid and use the mean.    

 A forecast can also be defined using different units, for example yearly sales 

versus quarterly sales, sales per store versus sales per square foot. Neither is such 

multiplicative- or M-scaling rare. As an example, contrast the case of forecasts being 

expressed in terms of, say, Japanese yen as opposed to US dollars.2 One might expect 

that since smaller units result in larger numbers (i.e., accounting in yen as opposed to 

dollars), larger absolute distances regardless of anchors could amplify the extent of 

perceived outlier extremity. And because of this, the final aggregate of the DM might 

de-emphasize the role of that data point. Conversely, the smaller unit implies a higher 

data “level” (i.e., larger numbers) and, as a consequence, a DM could also include a 

“true” outlier in the aggregate. Thus, the outcome of M-scaling depends on which of 

these two opposing effects is stronger. 

 To study the impact of scaling, I will compare DMs’ perceptions of a data point 

regarding its likelihood to be an outlier before and after that data point is transformed by 

each of the two scaling types. Furthermore I will examine how the above hypothesized 

factors – AD,CD and L  – affect outlier perception, in similar fashion to Collett and 

Lewis (1976), using the following two logistic models,  

 

Model 1: ( ) ( ) ( )
n n n

j j j
x CD x AD x Lλ α β γ δ= + ⋅ + ⋅ + ⋅  (1.3.1) 

Model 2: 
( )

( ) ( )

n

jn n

j j

AD x
x CD x

L
λ α β γ= + ⋅ + ⋅  (1.3.2) 

 

where ( )n
j

xλ  are the log-odds that n

j
x  is seen as an outlier. One important difference 

between the two models is that Model 2 does not assume an independent effect of data 

                                                
2
 The yen-dollar exchange rate is approximately 77 to 1 (Jan, 3, 2012).   
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level ( L ); instead it enters the equation as a ratio involving the absolute distance, i.e. 

/AD L . Thus, if Model 2 is valid, there should be no M-scale effect. 

 

 

1.3  A-scale experiment 

1.3.1  Methods 

 Procedures. The experiment was conducted in a laboratory in Barcelona in 

Spanish on personal computers. Participants were given the instruction sheets which 

were also read out loud to them. The instructions stated that the experiment was about 

sales forecasting of one supermarket chain which operated stores of various sizes across 

the southeastern United States. This supermarket held annual meetings where senior 

managers and executives from different departments gathered. At these meetings, the 

executives gave the forecasts for the sales of the following year of the stores they 

supervised. The instructions further specified that the data came from the 2002 annual 

meeting hence the real sales were known and exact evaluations of the forecast 

accuracies were possible. Participants were informed that the experiment contained 18 

rounds concerning sales of 18 different stores, 1 store per round. In each round they 

would be given a set of four forecasts about monthly sales in units of thousand U.S. 

dollars of one particular store randomly selected from a pool of forecasts given at the 

company's annual meeting. And there would be two tasks to perform per round. 

 In the first task, each participant was asked to bet on the accuracies of the four 

forecasts presented in that round, by distributing 100 tokens among forecasts. The 

payoffs followed a proper scoring rule: a bet of T tokens on a forecast incurred a cost 

of 2
/ 100T  points; if that forecast turned out to be the most accurate of all four, the 

participant would win 2T  points. The proper scoring rule implies that the optimal 

distribution of bets follows the subjective comparative probabilities that each forecast 

will be the most accurate. Hence the amount bet on an outlier was assumed to reflect its 

perceived outlier extremity (inversely), i.e., the lower the amount bet on a forecast, the 

more likely it was assumed to be an outlier. Participants were told explicitly that they 

should distribute tokens on forecasts according to the likelihood to be the most accurate, 

and that a forecast they deemed more likely to be the most accurate should receive more 

tokens. The maximum net gain for this task was 100 points.  
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 In the second task, participants estimated the sales themselves where they could 

base it on the four forecasts in any way they liked. The payoff depended on the accuracy 

of their estimates. Specifically, if their answer deviated below 1 unit from the realized 

(i.e. true) value they would win 100 points, if the deviation was at least 1 but below 3 

units they would receive 60 points, and if the deviation was at least 3 but below 10 units 

the winning was 10 points. Deviations of 10 or more units earned them no points. With 

this payoff structure, the best strategy was to give the most accurate estimate possible. 

 The two tasks and the payoff schemes described above were explained to 

participants. The instructions contained one example of a hypothetical round with four 

forecasts, hypothetical bets and a hypothetical estimate, and where the calculations of 

the payoffs were shown in detail. Participants were also told explicitly that the amount 

bet on each forecast should correspond to the likelihood that it would be the most 

accurate of all four, to match the proper scoring rule. The experiment started with two 

practice rounds to familiarize participants with the interface of the experiment. For these 

two practice rounds, they received feedback that included realized sales and detailed 

calculations of the payoffs based on their bets and estimates. The exchange rate for 

payoffs was 200 points for 1 Euro. 

 Stimuli. First the non-outlier forecasts were randomly generated following a 

normal distribution with a mean of 85 and a standard deviation of 17. This would be the 

base, i.e. pre-scaled, forecasts. They were limited to lie within two standard deviations 

from the mean to assure that later-planted outliers would be the most extreme forecasts. 

These forecasts were divided into 20 sets of three forecasts. 

 

 

Table 1.1. Matching matrix of forecast sets and participants in each round 
 

 Participant 1 Participant 2 ... Participant 19 Participant 20 

Round 1 set 1 set 2 ... set 19 set 20 

Round 2 set 2 set 3 ... set 20 set 1 

: : : : : : 

Round 18 set 18 set 19 ... set 16 set 17 

 

 

The number of sets matched the number of participants in the experiment. The matching 

between participants and forecast sets was as shown in Table 1.1 so that (1) for any 
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single participant no two rounds used the same set, (2) for any single round, no two 

participants used the same set, and (3) the same 20 sets were used in all rounds. There 

were three levels of outlier, i.e. 2, 3 or 4 standard deviations (s.d.’s) and outliers were 

either left (-) or right (+) of the population mean. One outlier was included in the 

forecast set of each round, as shown in Table 1.2. The order in which the outliers 

appeared on screen (in a vertical row of four forecasts) was random. 

 

 

Table 1.2. Types of forecast outlier in each round 

Rounds Outlier type 
 

Rounds Outlier type 

1,   7,  and  13 - 2 s.d. 
 

4,  10, and  16 + 2 s.d. 

2,   8,  and  14 - 3 s.d. 
 

5,  11  and  17 + 3 s.d. 

3,   9,  and  15 - 4 s.d. 
 

6,  12, and  18 + 4 s.d. 

 

 

I considered three levels of scaling manipulation, as described in Table 1.3. For the 

Base level the pre-scaled forecasts were used; for the A1 level I increased the data level 

3 times that of the Base while maintaining the same spread and variation by adding 170 

to all stimuli (both outliers and non-outliers); for the A2 level I raised the data level to 7 

times that of the Base but kept the same spread and variation by adding 510 to all 

forecasts. The order of rounds was randomized for each individual participant. 

 

 

Table 1.3. Forecast manipulation in each round and its key statistical properties  

 
Scaling level Manipulation 

Statistical properties 

 Mean Std. var. 

  Rounds   1  -  6  Base n/a 85 17 

  Rounds  7  - 12 A1 adding 170 255 17 

  Rounds 13 - 18 A2 adding 510 595 17 

  

 

 Participants. Twenty participants aged between 18 and 22 years took part in this 

experiment. Twelve were female, 8 were male. They were recruited via emails from the 

pool of undergraduate students at Universitat Pompeu Fabra registered with the 
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experimental laboratory. Participants received a participation fee of 3 Euros plus a 

performance-based reward.  The mean remuneration was 10.50 Euros. 

 

1.3.2  Results 

1.3.2.1  Outlier perception 

 Scaling and outlier perception. The median bets for different levels of scaling 

are depicted in Figure 1.1. In the Base level (see Panel A), as expected, more extreme 

outliers received higher bets (Medians = 20, 10, and 10 for outliers of 2, 3, and 4 s.d. 

respectively), this effect of outlier degrees was significant (p<.05, Kruskal-Wallis test), 

especially that outliers at 2 s.d. received significantly lower bets than outliers of 3 and 4 

s.d. (p<.01, Wilcoxon test).  

 

 

Figure 1.1. Median bets placed on outliers (A-scale) 

 

 

While in the A1 level (see Panel B), the similar trend did not prevail (Medians=20, 10, 

and 17.5 for outliers of 2, 3, and 4 s.d. respectively), and the difference of bets the three 
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outlier degrees received was not significant (p≈.11, Kruskal-Wallis test). Although in 

the A2 level (see Panel C) we can see that participants placed higher bets on less 

extreme outliers (Medians=20, 20, and 12.5 for outliers of 2, 3, and 4 s.d. respectively), 

the effect of outlier degrees was not significant (p≈.22, Kruskal-Wallis test). Even the 

difference between bets for outliers at 4 s.d. versus bets for outliers at 2 and 3 s.d. only 

approached significance (p<.10, Wilcoxon test). 

 Overall (see Panel D) higher scaling levels resulted in higher bets placed on 

outliers (Medians=11, 19, and 20 for the Base, A1, and A2 levels respectively). While 

the effect of outlier levels only approached significance (p<.10, Kruskal-Wallis test), 

outliers at the Base level received significantly lower bets than those at the A1 and A2 

levels (p<.05, Wilcoxon test). 

 Factors affecting outlier perception. The analysis followed the two models 

described in Equations 1.3.1 and 1.3.2 and was only applied to the planted outliers. 

Since the quantity of tokens placed as a bet was used as a proxy for outlier perception, I 

considered that a participant saw an outlier as an outlier if the bet placed on it was 

below a certain threshold. The median bet (on planted outliers) of 15 was chosen as this 

threshold. Sample medians were used as the data levels because they represented the 

central values of the forecast sets without including the effect from the size of planted 

outliers, and because, as we will see later, participants tended to anchor their judgments 

in the experiment on sample medians. The design of the experiment was that each 

participant gave responses to multiple rounds of tasks. Due to these correlated 

responses, the method of Generalized Estimating Equations (GEE) was used. The 

results of the regressions are shown in Table 1.4.  

 

 

Table 1.4. Logistic regressions of outlier identification likelihood (A-scale) 
 

 Trimmed-mean anchor Median anchor NN anchor 

 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

Intercept - 3.114* - 3.687**   - 2.655*** - 2.806*** - 2.456*** - 2.633*** 

CD  0.465  1.030
*
 0.258  0.445** 0.336  0.427** 

AD   0.024' n/a  0.093' n/a 0.011 n/a 

L - 0.000  n/a  - 0.000 n/a  - 0.000 n/a 

AD/L ratio n/a  1.037** n/a 1.177* n/a 1.181* 

Significant codes: ' p-value<.1, * p-value <.05, ** p-value<.01, *** p-value<.001 
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The coefficients show the expected signs, that is, the larger distances and the lower data 

levels increased the likelihood of the extreme value being seen as an outlier. With 

Model 1, only the coefficient of the absolute distances approached significance, while 

the data levels had no effect, contrary to what the findings in previous research would 

have suggested (Lathrop, 1967; Beach & Solak, 1969; Lawrence & Makridakis, 1989). 

To compare overall fits of these two models, because of their being non-nested 

and because of within-participant dependence of responses, I used the nonparametric 

test suggested by Clarke (2003, 2007). The tests confirmed that Model 2 fitted 

significantly better across all anchors (p<.01 with trimmed mean, p<.001 with medians, 

and p<.001 with NN).3 These suggest that the data level entered participants' 

consideration together with the absolute distance as a single ratio. This outcome 

anticipated the absence of M-scale bias, which I will examine in the next experiment. 

Clarke's test was also used to compare the fits under different anchors. I found that the 

trimmed-mean anchor performed the worst (p<.01 when compared to either median or 

NN). NN fitted slightly better than median but not significantly (p≈.40).  

 

 

Figure 1.2. Median predicted probabilities of outlier identification (A-scale) 

 
 

 

Figure 1.2 plots the median predicted likelihoods of outlier identification by Model 2 

with NN as an anchor under different scaling and outlier levels. We can clearly see an 
                                                
3
 I also performed regressions using a modified Model 1 with no absolute distance as a variable. The 

results were again that the data level was not significant in any of the anchor choices. In addition, 

from Clarke's tests, Model 2 fitted significantly better (p<.001 in all anchor choices).  
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A-scale effect from the apparent separation between Base and the other two scaling 

levels, where the gap widens as the outlier becomes more extreme. 

 

1.3.2.2  Outlier perception and forecast aggregation 

Aggregate anchor. Prior research has argued that “take-the-median” is a likely 

heuristic when a DM faces an outlier. But we have shown that A-scaling can affect 

what people perceive as being an outlier. The principal interest in this section was to 

examine whether the effect of A-scaling extended to how a DM chose an aggregate. As 

the main concern was in the judgmental weight accorded to outliers in aggregation, 

participants' estimates were framed as departures from the median towards an outlier. 

Since the forecast sets in the experiment were all different, some standardization 

was required. I chose to measure deviations in units of the (outlier-excluded) mean 

deviation from the (outlier-included) median.4 If an estimate had incorporated an 

outlier, this measurement of distance would not dilute the footprint of that outlier. The 

figures of the standardized departures from the median (SDM) in Table 1.5 show that 

participants' estimates were anchored around the median. The location tests (Wilcoxon 

tests) could not reject that the median was the center of aggregation in any of scaling 

levels and outlier degrees. 

 

 

Table 1.5. Median standardized departures from the median (A-scale) 
 

 Base scale A1 scale A2 scale 

2 s.d.   0.13 - 0.01   0.05 

3 s.d. - 0.05 - 0.30 0.25 

4 s.d.   0.14   0.58 - 0.29 

overall   0.13 0.00   0.04 

 

 

Outlier’s aggregation weight. To examine the relation between outlier 

perception and aggregation, I performed median regressions (quantile regressions with 

                                                
4
 For example, if the forecast set is {1, 4, 6, 25}, the median of the whole set that includes the outlier 

{25} is 5, and the deviations from the medians for each forecast are 4, 1, 1, and 20 respectively. 

Hence, the outlier-excluded mean is (4+1+1)/3 = 2. If the estimate from a participant is 8, then SDM 

is calculated as (8-5)/2 = +1.5. If the estimate is 3, then SDM is (3-5)/2 = -1. 
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τ=0.5) of SDM on bets that outliers received. Regression coefficients were obtained 

assuming working independence among responses both between- and within-

participant, while for statistical inference within-participant correlations were simulated 

via block bootstrapping. The results (Table 1.6) showed that the coefficients of outlier 

aggregation weights were greater in higher scaling levels, but only significant at A2. 

Thus we could conclude that when a DM sees an outlier as an outlier, the heuristic is to 

take the median. But when an outlier is not identified, the DM is more comfortable 

including all forecasts in the combination, weighting them according to their perceived 

chances of being accurate. 

 

 

Table 1.6. Median regressions of aggregation scheme on outlier perception (A-scale) 
 

 Base A1 A2 

Intercept - 0.135 - 0.430        - 0.312* 

Bet 0.018'  0.028' 0.027* 

   

     Significant codes: ' p-value<.10, * p-value <.05 

 

 

Subjective variability. Assume that, to produce an aggregate forecast a DM 

starts by considering the sample median. But then how much should the ensuing 

estimate deviate, either towards or away, from an extreme forecast? It is not unlikely 

that the DM's estimate will deviate far from the median if the forecasts are seen to 

involve high variability, and the opposite when low variability is perceived. Since high 

data level has been shown to attenuate the perception of variability (Lathrop, 1967; 

Beach & Solak, 1969; Lawrence & Makridakis, 1989), I expected that a higher A-scale 

level, seen earlier to obscure the extremeness of outliers, would result in a larger 

absolute SDM. 

Figure 1.3 Panel A depicts median absolute SDMs which did not exhibit the 

expected trend (Median=1.03, 2.35, and 1.42 for the Base, A1, and A3 levels 

respectively). But SDMs from the Base level were significantly lower than both those 

from the A1 level (p<.01, Brunner-Munzel tests), and those from the A2 level (p<.05, 

Brunner-Munzel tests). While in Panel B, we can see that SDM ranges, which 

represented the span of participants’ wandering away from the medians when 

computing the estimates, expanded upward with higher levels of A-scaling. After 
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adjusting for median locations, dispersion tests could not reject either that the A1 level 

had a larger span than the Base level (p<.001, Ansari-Bradley test), or that the span of 

A2 level exceeded that of the A1 level (p=.05, Ansari-Bradley test). 

 

 

Figure 1.3. Medians and ranges of standardized departures from the median (A-scale) 

 

Note: In Panel B, rectangular bars cover the middle-quintile, and lines cover the middle-quartile ranges. 

 

 

1.3.2.3  Discussion 

We have seen from this experiment that additive scaling led to attenuation in 

participants’ perception of forecasts’ extremeness, and consequently participants 

became more likely to deem an outlier as normal. The regression analyses revealed that 

when participants evaluated the extremity of a forecast by the distance between that 

forecast and others in the same set, it was done in a direct comparison to the overall 

level of forecasts. Since additive scaling raises the forecast level but keeps the distance 

between forecasts intact, a forecast in a set that is additively scaled up will look less 

distant, thus more likely. This also implies that multiplicative scaling will have no effect 

on outlier detection, which I will examine in the next experiment. In terms of 

aggregation, while prior research has argued that “take-the-median” is a likely heuristic 

when a DM faces an outlier, this experiment demonstrated that, regardless of whether 

outliers were detected or not, participants anchored their aggregation around medians. 

Furthermore, the examination of distributions of estimates from participants suggested 

that the additive-scaling might have raised subjective impressions of variability. 
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1.4  M-scale experiment 

 The previous section has demonstrated the effects in outlier perception caused 

by different levels of data. However the data levels were also used to benchmark the 

overall spread of forecasts, such that if we had scaled the data multiplicatively the same 

effects would not occur. To test this prediction, I conducted another experiment using 

the M-scaling manipulation. 

 

1.4.1  Methods 

 Procedures. The same as in the A-scale experiment. 

 Stimuli. Stimuli in rounds 1 – 6 were maintained at the Base level. In rounds 7 – 

12 all stimuli were multiplied by 3 (M1), and in rounds 13 – 18 by 7 (M2). So the data 

levels were comparable to those in the A-scale experiment (M1 with A1, and M2 with 

A2), and the only difference was the spread (Table 1.7). 

 

 

Table 1.7. Forecast manipulation in each round and its key statistical properties  

 
Scaling Manipulation 

Statistical properties 

 Mean Std. var. 

  Rounds   1  -   6  Base n/a 85 17 

  Rounds   7  - 12 M1 Multiplying by 3 255 51 

  Rounds 13  - 18 M2 Multiplying by7 595 119 

  

 

 Participants. Twenty participants aged between 18 – 22 years took part in this 

experiment. Fourteen were female, 6 were male. They were recruited via emails from 

the pool of undergraduate students at Universitat Pompeu Fabra registered with the 

experimental laboratory. Participants received a participation fee of 3 Euros plus a 

performance-based reward. The mean remuneration was 10.40 Euros. 

 

1.4.2  Results 

1.4.2.1  Outlier perception 
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Scaling and outlier perception. Figure 1.4 shows the results of bets placed on different 

outliers under different scaling levels. Overall, we can see the pattern that more extreme 

outliers received lower bets. However in the Base level (see Panel A), the effect of 

outlier degrees only approached significance (Medians=20, 20 and 10 for outliers at 2, 3 

and 4 s.d. respectively; p<.10, Kruskal-Wallis test),even though bets that outliers at 4 

s.d. received were significantly lower than bets that outliers at 2 and 3 s.d. received 

(p<.05, Wilcoxon test).  

 
 

Figure 1.4. Median bets placed on outliers (M-scale) 

 

 

 

 

In the M1 level (see Panel B), the effect of outlier degrees was not significant 

(Medians=20, 12.5 and 15 for outliers at 2, 3 and 4 s.d. respectively; p≈.40, Kruskal-

Wallis test), and bets that outliers at 2 s.d. received were not significantly lower than 

bets that outliers at 3 and 4 s.d. received (p≈.20, Wilcoxon test). Similarly, in the M2 

level (see Panel C) the outlier degree did not affect the levels of bets significantly 
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(Medians=20, 15 and 15 for outliers at 2, 3 and 4 s.d. respectively; p≈.18, Kruskal-

Wallis test), but the difference between bets distributed to outliers at 2.s.d. versus to 

outliers at 3 and 4 s.d. approached significance (p<.10, Wilcoxon test). Overall (see 

Panel D) the effect of scaling level was not significant (p≈.18, Kruskal-Wallis test).In 

fact, on average all three scaling levels received the same bets (Median=15). 

 Factors affecting outlier perception. To examine the impacts of various factors 

on outlier perception involving the M-scale, I employed regression analysis based on 

Models 1 and 2 as above. The median bet used as a threshold for outlier perception was 

also 15. As shown in Table 1.8, the coefficients had the expected signs, that is, the 

likelihood of being seen as an outlier was higher with the larger distances and the lower 

data levels. The comparative distance was significant in both models and for all 

anchors; however the effect of the data levels and the absolute distances in both models 

were not significant. 

 

 

Table 1.8. Logistic regressions of outlier identification likelihood (M-scale) 

 Trimmed-mean anchor Median anchor NN anchor 

 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

Intercept    - 2.006*        - 2.259*       - 1.052*         - 1.120*      - 0.672               - 0.716'      

CD      1.146*          1.343*       0.514*          0.577*        0.379'           0.423*    

AD 0.001 n/a 0.001 n/a 0.001 n/a 

L - 0.000      n/a    - 0.000             n/a    - 0.000        n/a 

AD/L ratio n/a 0.014 n/a     0.103      n/a 0.243 

 

Significant codes: ' p-value<.1, * p-value <.05, ** p-value<.01, *** p-value<.001 

 

 

Clarke's tests showed that Model 2 fit significantly better across the anchor choices 

(p<.05, p<.01, and p<.001 for trimmed-mean-, median-, and NN-anchor respectively). 

However the coefficient of the distance-level ratio was insignificant. Thus, this variable 

was excluded and a re-analysis was done on the model below. 

 

Model 3: ( ) ( )n n

j j
x CD xλ α β= + ⋅  (4) 

 



 

 Table 1.9 shows regression results of Model 3. The differences in the sizes of the 

remaining coefficient and the intercept between Models 2 and 3 were hardly discernible. 

Clarke's test significantly favored Model 3 over Model 2 (p<.001 with any anchor).  

 

 

Table 1.9. Logistic regressions of outlier identification likelihood (M-scale) 

 Anchor 

 Trimmed-mean Median NN 

Intercept - 2.261* - 1.116* - 0.713' 

CD   1.347*   0.587*    0.447* 

 

 Significant codes: ' p-value<.1, * p-value <.05, ** p-value<.01, *** p-value<.001 

 

 

I compared the fits of anchors using Model 3. By Clarke's tests, NN turned out to be 

significantly worse than the median (p<.05). It was also worse than the trimmed-mean 

but not significantly (p≈.34). The median fitted only slightly better than the trimmed-

mean but not significantly (p≈.91). These results suggested that the median was the 

anchor. The plot (Figure 1.5) of the median predicted likelihoods of outlier 

identification by Models 2 and 3 using the median as an anchor shows no meaningful 

M-scale effects.  

 

 

Figure 1.5. Median predicted probabilities of outlier identification (M-scale) 
   

            (A)  Model 2            (B) Model 3 

 

 

 

 

 

 

 

 

1.4.2.2  Outlier perception and forecast aggregation 

 Aggregate anchor. From this experiment also, SDMs centered around the  
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1.4.2.2  Outlier perception and forecast aggregation 

 Aggregate anchor. From this experiment also, SDMs centered around the 

median (Table 1.10), and the location tests (Wilcoxon tests) could not reject the median 

as the center of aggregation for all scaling and outlier levels. 

 

 

Table 1.10. Median standardized departures from the median (M-scale) 
 

 Base scale A1 scale A2 scale 

2 s.d.   0.03 - 0.03   0.19 

3 s.d. 0.06 0.04 0.06 

4 s.d. - 0.15   0.08 0.21 

overall   0.00 0.01   0.12 

 

 

The results from quantile regressions examining the relation between perception and 

aggregation schemes (Table 1.11) showed low and insignificant effects of outlier 

weights to amounts bet in all scaling manipulations, in fact even lower than results from 

the Base level in the A-scale experiment. Again, participants chose to be conservative 

by focusing on medians regardless of how the data had been scaled. 

 

 

Table 1.11. Median regressions of aggregation scheme on outlier perception (M-scale) 

 Base A1 A2 

Intercept     - 0.172 0.269   0.184 

Bet 0.011     - 0.019 - 0.002  

   

  None of the coefficients were significant 

 

 

 Subjective variability and forecast aggregation. As shown in Figure 1.6, SDMs 

were not dissimilar among different scaling levels (Median=0.96, 1.02 and 0.88 for 

outlier levels of 2, 3 and 4 s.d. respectively).In fact none of the pair-wise Brunner-

Menzel tests were significant. Similarly, in terms of dispersion of SDMs, all three 

scaling levels possessed comparable ranges, and Mood’s test showed no significance in 

either of the scaling pairings.  
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Figure 1.6. Medians and ranges of standardized departures from the median(M-scale) 

 

 

 

1.4.2.3  Discussion 

 Although participants in this experiment did exhibit differential placements in 

bets, that more extreme outliers received lower bets, the effect was not significant even 

at the Base level. So it was not entirely clear how multiplication scaling might have 

impacted how participants compared outliers among different degrees. However as 

among all scaling levels the median bets were exactly equal, and the distributions of 

bets largely covered a similar range, the results of this experiment suggested that 

multiplicative scaling did not impact participants’ detection of outliers. As in the earlier 

experiment, participants here also anchored their aggregation around the medians of 

forecasts sets, regardless of how likely outliers seemed to them. 

 

 

1.5  General discussion 

 People have a tendency to assign believability values to opinions, and these 

values are reflected in how opinions are combined. However in a one-shot situation, 

usually with no external information, they have to rely on their presumption of the 

natural distribution of opinions, often derived merely from the handful of opinions that 

happen to be available. However, this habit is beneficial only if their believability 

evaluations are fairly accurate.  

 This chapter focuses on DMs’ treatment of outliers in aggregation, the issue that 

only a few studies have investigated. I started by examining how people judge a forecast 
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to be extreme. The results of two experiments suggested that participants judged the 

extremity of a forecast by comparing its distance from the others to the similarly judged 

distances of the other forecasts. This in fact closely follows the definition of an outlier. 

However this comparative distance index cannot guarantee the accurate identification of 

an outlier. Results of the simulation showed that the relation between the index and the 

true extremity of a forecast was unclear. 

 Moreover people's perspective on forecasts can be affected by mere scaling 

which is not an uncommon occurrence. As information is passed around, forecasts are 

scaled to suit the decision environments, interests, or preferences of the receivers. 

Operation directors might be more interested in overall performance of the business as 

they are concerned with total revenues, while sales directors might focus on year-on-

year changes in their company's earnings. Managers of a Tokyo subsidiary make 

forecasts using information based in Japanese yen but will need to transform them into 

U.S. Dollars when reporting to headquarters in New York. An increase in the data level 

or A-scaling, as in the former example, has been found to attenuate subjective 

variability inference (which the examination of participants' aggregates in the current 

study also indirectly corroborated), so it is natural to assume that it will also affect 

outlier perception. I not only tested the impact of the data level on outlier identification, 

but also investigated how it affected the judgment process. Experimental results 

confirmed the effect of A-scaling where it was found that participants used a data level 

as the base of the ratio for the distance that a potential outlier lies away from the rest of 

the forecasts. However, the latter result anticipated that if the scaling was multiplicative, 

i.e. M-scaling, as in the yen-to-dollars example, there would be no impact. Indeed, 

results of the second experiment demonstrated no M-scaling effect. 

 But probably the more important question is how people use an outlier when 

aggregating forecasts. Unlike previous research, which assumed that participants 

correctly recognized outliers, this study innovates by examining the relation between 

subjective believability of an outlier and its weight in aggregation. In general, I found 

no correlation between the two; participants anchored their estimates around sample 

medians. However the results suggested that participants were more willing to include 

the planted outlier in their aggregates, albeit only slightly, if they perceived large 

forecast variability such as when the data are under a high level of A-scaling. 

 Despite the results of experiment in this study, we cannot conclude that take-a-

median is DMs’ definite invariant aggregation strategy. Participants might have felt that 
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they had too few forecasts to risk including the extreme one. But, when facing a 

potential outlier, take-the-median is still a risky strategy as outlier identification proves 

to be an error-prone task (see Appendix 1.1). Instead, even when an extreme forecast is 

present, and especially when a larger number of forecasts are at hand, unit weighting 

remains a prefer aggregation strategy, as much research has suggested(see also 

Appendix 1.2). Future research should explore aggregation strategies as a function of 

the number of forecasts, maybe controlling for subjective perceptions of variability. If 

the shift in an aggregation heuristic towards take-the-mean when there are more 

forecasts is observed, it is still not clear that DMs understand the benefit of unit 

weighting in conjunction with the value of additional forecasts. It will be interesting to 

see if DMs will actively acquire or are willing to pay for extra forecasts (and employ 

take-the-mean), or they rather resort to take-the-median as Sir Francis Galton would 

have recommended (Galton, 1907a; Galton, 1907b). 

 

 

Appendix 1.1 

 To compare the 3 anchors (trimmed mean, median, and nearest neighbor) in 

term of their accuracies in evaluating an outlying degree of a forecast, I calculated the 

correlations between comparative distances based on each anchor choice as defined by 

Equation 1.2 in the section 1.2.1 of the chapter and the distances to the true mean, using 

the simulated forecast sets. In the case of 3 forecasts I simulated 10,000 sets of 3 

numbers using a standard normal distribution (� = 0, � = 1). To examine the case of 4 

forecasts, I added 1 extra forecast simulated following the same distribution to each set 

produced for the 3-forecast case. Generally, the forecast sets used in the following case 

with n forecasts proceeded in the similar manner, i.e. by adding 1 extra forecast to the 

sets used in the previous case with n-1 forecasts. Since the interest was in identification 

of the extreme forecast, only the most extreme forecast in each set was taken into 

calculation of the correlations. The most extreme forecast under the chosen anchor had 

to satisfy two criteria, 1) it must be the highest or the lowest forecast of its set, and 2) 

from the 2 forecasts satisfying the first criterion, it must be the one having the largest 

comparative distance based on that anchor.  

 The results are shown in Figure 1.7. We can see that each anchor choice did not 

yield substantially different performances. However, trimmed mean gained more 
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advantage as the more forecasts were added to the set, while median was its comparable 

alternative for an anchor especially if the forecast set was not too large. 

 

 

Figure 1.7. Correlations between comparative distances and distances to the true mean 

 

 

 

Appendix 1.2 

 The forecast sets examined here were those simulated for Appendix 1.1. From 

each set, the take-the-mean and take-the-median aggregates could be directly 

derived..Figure 1.8 shows the mean absolute deviations (MADs) from the true mean (�) 

by both aggregation strategies confirms that the taking the mean is on average more 

accurate than taking the median, but not by much. (Take-the-median results in MADs 

9.7% - 22.0% larger than take-the-mean.). One interesting result here is that the 

accuracy of the take-the-median strategy using the even number of forecasts is not 

discernibly different from the accuracy of the same strategy using 1 few forecast. In 

fact, a take-the-median aggregate of the set with even-number forecasts partially 

includes a take-the-mean strategy since it is an average of the middle 2 forecasts. So 

assuming each forecast incurs a cost, and one has already obtained an even number of 

forecasts, it might be advisable not to do seek more forecasts if one’s budget permits an 

acquisition of only one additional forecast. 
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Figure 1.8. Mean absolute deviations from the true mean under take-the-mean and 

take-the-median aggregation strategies. 

 

 Note: Grey bars cover the middle quintile of the deviations 
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2. Effects of outlier appearance order in aggregation of 
short forecast sequences 
 

Abstract. 

Experts’ forecasts are often obtained serially. This has been demonstrated to 

affect people’s ability to detect outliers, and consequently their choices of 

aggregation. Results from two experiments with short forecast sequences (length 

= 4) showed that aggregation processing modes also played a role. When 

participants produced and updated their estimates with each new forecast along a 

sequence, they missed an outlier if it appeared early and their final estimates 

showed no influence of that outlier; on the contrary, an outlier that appeared last 

got detected and ended up with a substantial weight in the final aggregation. 

When participants were made to recall earlier forecasts in a sequence and to 

produce only one single estimate at the end of each sequence, they duly realized 

forecast extremity, in spite of which outliers still exerted a weighty influence over 

the final aggregation regardless of order of appearance. 

 

 

2.1  Introduction 

 When seeking opinions, one will not always summon several experts at once. 

Rather, one may only get to meet them separately and solicit their opinions one at a 

time. Such piecemeal nature of information acquisition could impact how a decision 

maker (DM) processes the inputs, and as a consequence results in a final decision 

different than if the same set of information were laid out in front of a DM in its 

entirety. Research has demonstrated that information obtained last appears to be more 

influential towards final judgments and decisions than those obtained first. This recency 

effect has been found in various fields such as finance (Reneau & Blanthorne, 2001; 

Guiral-Contreras et al., 2007), consumer choice (O’Brien & Ellsworth, 2012), 

medicine  (Chapman  et  al.,  1996), and law (Furnham, 1986;  Kerstholt & Jackson, 

1998; Dahl et al., 2009). In some situations, however, research has revealed the opposite 

effect, called primacy, where earlier information exerts a stronger impact (Carlson et al., 

2006; Xu & Kim, 2008). Moreover, information used in earlier decisions has been 

found to influence later decisions despite its irrelevance (Curley et al., 1988; O'Reilly et 
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al., 2004). Even preference formation of consumers is subject to the order in which 

choices are presented (Matonakis et al., 2009; Carney & Banaji, 2012).Researchers have 

explored a variety of mechanisms and reasons why such order effects arise, including 

the direction that information is evaluated (Mantel & Kardes, 1999; de Bruin & Keren, 

2003), the decrease of attention as DMs process information (Yates & Curley, 1986; Xu 

& Kim, 2008), range-frequency theory (O'Reilly et al., 2004), predecisional distortion 

(Russo et al., 1998; Carlson et al., 2006), initial information-processing goal (Kardes & 

Herr, 1990), complexity of the task characteristics (Marsh & Ahn, 2006), and how 

information is encoded (Hogarth & Einhorn, 1992).  

 While most research on order effects in decision-making has focused on 

evaluation and contingency judgment, order effects have also been encountered in 

forecast aggregation. Participants in experiments by Levin (1976) who were asked to 

compute means of nine-forecast sequences were affected by the nature of the 

aggregation task, i.e. whether participants were asked to respond with a single estimate 

at the end of each sequence, or whether they needed to revise their prior estimates every 

time they received a new forecast, as well as by their expectations about the sequences, 

i.e. the likelihood that the sequences could contain outliers. When it was made explicit 

that every sequence had an outlier, participants’ estimates duly discarded outliers 

regardless of the aggregation task. In fact their responses were comparable to estimates 

of the control group in which nine forecasts were shown simultaneously. But when there 

was no explicit information about the possibility of an outlier, weights given to outliers 

were not discounted. In addition, there was a stronger discount on an outlier from 

participants who received an implicit hint that each sequence might contain an outlier 

compared to those who received no information. However, this disparity disappeared 

when the task demanded sequential estimate revisions rather than a single end-of-

sequence estimate. That is, participants incorporated an outlier into their final estimates 

with weights that were based on how much they would expect to see an outlier. When 

the likelihood was short of certainty, and the task involved sequential updating of 

estimates, participants acted as if they disregarded information on outlier likelihood. In 

addition Levin (1976) also found that participants’ responses were subject to a recency 

effect, especially when the task demanded sequential updates. 

 Building on the work of Levin (1976), the aim of this chapter is to explain the 

processes of sequential forecast aggregation and why an order effect might occur, 

particularly when a sequence contains an outlier. The framework I use is adapted from 
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Hogarth and Einhorn’s (1992) belief adjustment model. I argue that when DMs are 

asked to evaluate comparative likelihood of forecasts and make only a single estimate at 

the end of a forecast sequence, all forecasts are likely to be recalled. This facilitates 

outlier detection, and consequently the final estimate will result from anchoring on the 

sequence's median with a small adjustment towards the outlier regardless of the order in 

which an outlier appears. However, when DMs initially produce estimates using the first 

few forecasts and then serially update their estimates as each new forecast is acquired, 

they tend to rely heavily on the compressed information in the form of the last revised 

estimates, rather than recall the full set of forecasts. This incomplete recollection results 

in giving an excessive weight to an outlier. So when an outlier appears last, its 

contribution to the final estimate ends up being significant. 

 I conducted two experiments to study these hypotheses, each with task 

environments designed to invoke the use of the different aggregation processes. In the 

first experiment participants gave and updated their estimates as each new forecast was 

presented. Their estimates fitted the sequential update process, and outlier aggregation 

weight displayed recency, that is, when outliers appeared last they would be 

incorporated into estimates substantially, resulting in estimates that deviated from 

medians significantly towards outliers. In the second experiment participants gave 

comparative accuracy ratings to forecasts, and made estimates only at the end of each 

sequence. Participants appeared to be cognizant of the extremity of forecasts, and their 

responses fitted a median-anchoring process. Estimates showed no significant order 

effect, but deviated significantly albeit slightly from medians. 

 

 

2.2  Theoretical framework 

In belief updating, DMs adjust their own perceived probability that a certain 

hypothesis is correct based on each new piece of evidence. In sequential forecast 

aggregation, DMs update their numerical estimates of a certain quantity using a new 

piece of forecast of the same quantity. With this general similarity, I see that the 

estimate-updating process can be modeled in the same fashion as the belief adjustment 

model (Hogarth & Einhorn, 1992). 

 

2.2.1  Belief adjustment model 
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 Hogarth and Einhorn (1992) propose that decision-makers update their belief in 

an anchoring-and-adjustment process, described generally as 
 

  [ ]( )
k k k

S A w s x R= + ⋅ −  (2.1) 

where 

 k
x = kth piece of evidence 

 
k
S = degree of belief after evaluating k pieces of evidence 

 A  = anchor, or prior belief before receiving the kth piece of evidence (i.e. 
1k

S
−

) 

 ( )
k

s x  = subjective evaluation of the kth piece of evidence 

 R  = reference point against which evidence is evaluated 

 

The characteristics of the reference point, the anchor, and the weight function depend on 

how the information is processed, which can largely be put into two categories, the step-

by-step (SbS) mode and the end-of-sequence (EoS) mode. 

 

2.2.1.1  The SbS processing mode 

 This mode refers to when the current belief is adjusted, or re-estimated, each 

time the new piece of evidence 
k
x  is obtained. The weight function depends on whether 

the new evidence is confirming or disconfirming compared to the reference point, that is 

whether the impact of the evidence, i.e. [ ]( )
k

s x R− , is negative or positive, and the 

weight is proportional to the level of adjustment allowed on the direction of the 

evidence impact. The belief adjustment for this process can be expressed as   
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where 

 α  =sensitivity towards negative evidence 

 β = sensitivity towards positive evidence 
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If DMs evaluate the new evidence against the current belief, i.e. 
1k

R S
−

= , the process 

will leads to moving-average like results, and recency is predicted when the information 

contains both confirming and disconfirming evidence. 

 

2.2.1.2  The EoS processing mode 

 This mode refers to when DMs encode information by evaluating the impact of 

each piece of evidence in relation with other piece in the set, i.e. [ ]1
( ,..., )

k
s x x R− , to 

make a single judgment at the end of the evidence sequence. Thus the belief adjustment 

under this process can be described as 
 

  
0 1

( ,..., )
k k k

S S w s x x R= + ⋅ −  (2.3) 

 

With no prior belief 
0
S , DMs might just adopt the evaluation given to the first piece of 

evidence 
1

( )s x as an the anchor yielding some degree of primacy. 

 Which mode of encoding is at work depends on the mode of response, and the 

characteristics of the evidence. If the task asks DMs to explicitly produce or update a 

judgment with every new piece of evidence, i.e. the SbS response mode, it is likely that 

the processing mode will be SbS in that that the task demands the estimation mode of 

information encoding. But if the task requires only a single final judgment after the 

sequence ends, i.e. the EoS response mode, EoS processing is not always guaranteed 

since the task does not lead DMs to any specific mode of information encoding. One 

noted difference between two encoding modes is the demand on memory and 

information-processing load. When the evidence is complex and/or the sequence is 

long, DMs may opt for the less demanding estimation encoding mode, hence they use 

the SbS processing mode even when the task only calls for the EoS response mode. 

 

2.2.2  Estimate update model 

 How DMs give aggregation weights to forecasts could be based on their 

perception of the level of variability in the forecasts. The experimental result of Yaniv 

and Foster (1995) in which participants’ use of a forecast depended on the level of its 

precision maybe an indirect support for this argument, as precision transmits the image 

of high confidence, and the accompanying narrow variance. So I assume that a 

forecast’s aggregation weight is affected by DMs’ perception of variability. I adapt the 
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belief adjustment model for a sequential forecast aggregation task by integrating the 

impact of subjective variability. 

 

2.2.2.1 Weighting an outlier in the SbS processing mode 

When forecasts 
n

F appear one at a time, it is likely that DMs initially produce 

estimates early on, and then update their estimates when a new forecast is obtained. 

These estimates are basically what DMs believe to be the correct value that forecasts are 

aiming for. As in the belief update model, DMs update their estimates by anchoring 

their judgments on the preceding estimate (i.e. current belief) and adjusting that estimate 

towards the latest forecast (i.e. new information) they have just received. The level of 

adjustment depends on how accurate that new forecast is perceived to be. This 

sequential updating process can be expressed by 
 

  ( )1 1n n n n n
E E u F E

− −

= + ⋅ −  (2.4) 

where 

n
E = estimate updated with nth forecast 

n
u = update weight for 

n
F   based on its perceived accuracy likelihood 

 

Equation 2.4 can be rearranged into a form that implies that the new updated estimate is 

just a weighted average between the current estimate and the new piece of forecast, or 

1
(1 )

n n n n n
E u E u F

−

= − ⋅ + ⋅ . Practically, aggregation under this process can also be 

thought of as weighted averaging of all forecasts in a sequence, or  
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where the (final) aggregation weight 
n

w  for each forecast can be calculated using its 

own update weight together with weights of other succeeding forecasts as 
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 In order to economize their memory load, it is likely that DMs will treat their 

current inference of variability along with their inference of mean (i.e. current 

estimates) as a summary of all forecasts acquired so far. However, to correctly update 

the two inferences, DMs would need to recall all previous forecasts. The implication of 

the incomplete recollection of forecasts is particularly important when a sequence 

contains an outlier. The result is outlier-recency, that is an excessive combination 

weight given to an outlier when it appears last in a sequence.  

 When an outlier appears early, before its extremity can be realized, it is obvious 

that DMs will fully incorporate an outlier in their estimates, and the sample from which 

DMs infer variability will include an outlier. As a sequence continues and a new 

forecast appears, if all previous forecasts are not recalled, an outlier will remain 

undetected. Consequently variability will not be attenuated and current estimates not 

corrected. However aggregation of succeeding regular forecasts will discount the 

original weight of an outlier, and eventually the influence of an outlier will fade away. 

 When an outlier appears last, DMs’ ability to detect that outlier depends on how 

much of the sequence they can recall. If the recollection is complete, an outlier’s 

extremity will be recognized in its full extent, and one can expect it to be appropriately 

discarded. If the recollection is short of perfect, DMs might be aware of an outlier’s 

extremity only partially, and they will give a generous weight to an outlier when 

updating their estimates. Eventually the final estimates will feature a substantial 

aggregation footprint from an outlier. 

The cause of the failure to correct inferences of a forecast sample might be more 

than just the incomplete recollection of the sample. DMs tend to uni-directionally 

evaluate information (Houston, Sherman & Baker, 1989; Mantel & Kardes, 1999), 

meaning a piece of information is judged based on information that precedes it, but a 

judgment already made is often not re-evaluated in light of the new information. So it is 

unlikely that an outlier already misjudged as regular will be re-evaluated. This implies 

that DMs will not correct or adjust their current estimates before combining the new 

forecast, even though the new forecast might indicate in retrospect how erroneous those 

estimates have been.  

 

2.2.2.2  Weighting an outlier in the EoS processing mode 

 When DMs produce estimates only at the end of a sequence, there is no 

inference of a forecast set to rely on, so they will resort to recalling all forecasts 
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{ }1 2
, ,...,

N
F F F F= . The complete recollection is equivalent to a simultaneous forecast 

presentation, with all forecasts being shown together in DMs’ mind rather than before 

DMs’ eyes. And as a consequence it should provoke a similar aggregation process that 

the final estimate is a weighted average of forecasts around the sequence's (subjective) 

central value with a weighting scheme based on accuracy likelihood of each forecast, or 

 

 
 

1

N

N i i

i

E C w F C

=

= + ⋅ −∑  (2.6) 

where 

N
E = estimate after receiving Nforecasts 

C = central value of the sequence 

n
w = adjusting weight for 

n
F   based on its accuracy likelihood, and 

1

1

N

i

i

w

=

=∑  

 

The right side of Equation 2.4 can be reduced to a formula for a weighted average of all 

forecasts 
1

N

N i i

i

E w F

=

= ⋅∑ , hence the adjusting weights are in practice equivalent to the 

aggregation weights. 

However when DMs encounter an extreme forecast, they tend to focus their 

aggregates on the median (Yaniv, 1997; Harries et al., 2004; see also Chapter 1).So 

under EoS processing where full-sample recollection facilitates detection of an outlier 

(any distant forecast can be seen more clearly when contrasting with multiple regular 

forecasts), I expect DMs to arrive at the aggregate by anchoring on a sequence's median, 

and any departure from there towards an outlier should be only to an insignificant 

extent. In this sense, final aggregates can be expressed as 

 

  ( )
N

E Md d Ol Md= + ⋅ −  (2.7) 

or  (1 )
N

E d Md d Ol= − ⋅ + ⋅  (2.7a) 

 

where d is a deviation weight, Md  is the median of the sequence, and Ol  is an outlier. 

To summarize, when a task demands a sequential update of estimates, DMs are 

likely to under-discount an outlier, and give it an excessive update weight. However, the 

impact of that outlier becomes lower as more and more forecasts appear and get 
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combined into the newly revised estimate. On the other hand, when a task demands only 

a final estimate at the end of a forecast sequence and DMs evaluate each new forecast 

against those that come before, an outlier is likely to be detected and DMs’ final 

estimates will be close to the medians of the sequences. 

 

 

2.3  SbS-response experiment 

 This experiment required participants to explicitly produce intermediate 

estimates mid-sequence. However the design could not rule out the possibility that 

participants would try to recall the whole sequence when calculating a final estimate as 

the end of a forecast sequence. 

 

2.3.1  Methods 

 Procedures. The experiment was conducted in a laboratory in Barcelona in 

Spanish on personal computers. Participants were given the instruction sheets which 

were also read out loud to them. The instructions stated that the experiment was about 

sales forecasting of one supermarket chain which operated stores across the 

southeastern United States. This supermarket held annual meetings where senior 

managers and executives from different departments gathered. At these meetings, the 

executives gave the forecasts for the sales of the following year of the stores under their 

supervision. The instructions further specified that the data came from the 2002 annual 

meeting hence the real sales were known. Participants were informed that the 

experiment contained 18 rounds concerning sales of 18 different stores, one store per 

round. In each round they would be given a set of four forecasts of monthly sales in 

units of thousand U.S. dollars of one particular store randomly selected from a pool of 

forecasts given at the company's annual meeting. 

 In the first stage of each round two forecasts,
1

F and 
2

F , appeared on screen (

1
F  was positioned above 

2
F ). Participants then were asked to give their own monthly-

sales estimates of that supermarket based on the information they had received, and they 

would be rewarded according to the accuracies of their estimates. Estimates were 

allowed up to one decimal. Next, in the second stage where the third forecast, 
3

F , 

appeared on screen, participants were asked to revise their previous estimates based on 

all forecasts they had seen in any way they liked. They would also be rewarded 
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according to the accuracies of the revised estimates. In the third and final stage where 

the fourth forecasts,
4

F , appeared, participants were again asked to revise their own 

estimates based on four forecasts any way they liked. Rewards would be given 

according to the accuracies of the newly revised estimates. The reward scheme in all 

three stages was that, an estimate that deviated from the realized (i.e. true) sales figure 

below 1 unit would earn 120 points, an estimate that deviated at least 1 but below 3 

units would earn 60 points, and an estimate that deviated at least 3 but below 10 units 

would earn 20 points. Deviations of 10 or more units earned no points. With this payoff 

structure, the best strategy was to give the most accurate estimate possible. The 

exchange rate for payoffs was 50 points for 1 Euro. 

Stimuli. Forecasts were chosen to follow a normal distribution with a mean of 85 

and a standard deviation of 17. In each round, a participant encountered a sequence of 

four forecasts in one of the 18 outlier conditions. An outlier was either of 2, 3, or 4 

standard deviations (s.d.), was either to the left or to the right of the population mean, 

and appeared either as the second forecast 
2

F , third forecast 
3

F , or fourth forecast 
4

F

(let’s call these appearance orders as OF2, OF3, and OF4 respectively). Non-outlier 

forecasts were randomly generated and rounded to the nearest integer. They were 

restricted to lie within 2 s.d. from the mean to avoid being extreme.  

 

 

Table 2.1. Rotation of non-outlier forecast sets and conditions for each participant. 
 

 Participant 1 Participant 2 ... Participant 19 Participant 20 

Condition 1 set 1 set 2 ... set 19 set 20 

Condition 2 set 2 set 3 ... set 20 set 1 

Condition 3 set 3 set 4 ... set 1 set 2 

: : : : : : 

Condition 18 set 18 set 19 ... set 16 set 17 

 

 

Only twenty sets of three non-outlier forecasts were simulated and used in 

rotation among all participants and all conditions (Table 2.1), and the three forecasts in 
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each set appeared in a fixed order of comparative appearance.5 Since for any single 

participant each outlier would appear three times, the forecast sets needed to be level-

adjusted to avoid the detection of the stimuli pattern by adding a fixed integer to all 

forecasts in each sequence. The level-adjusting integer for each sequence was randomly 

and independently selected from a uniform distribution ranging from -3 to +3. In which 

round experimental participant encountered each condition was randomly selected 

individually and independently. 

 

Participants. Twenty participants aged between 18 and 22 years took part in this 

experiment. Twelve were female, eight were male. They were recruited via emails from 

the pool of undergraduate students at Universitat Pompeu Fabra registered with the 

experimental laboratory. Participants received a participation fee of 3 Euros plus a 

performance-based reward.  The mean remuneration was 10.11 Euros. 

 

2.3.2  Results 

2.3.2.1  Aggregation process 

To test that the task of the experiment prodded participants to encode 

information and then process the final aggregation as designed or not, I compared the fit 

of estimates to each process’s model. The comparison was made for each outlier 

appearance order separately, which allowed the tests to focus on the fittings of both 

processes independent of the outlier orders. Also, since different outlier degrees could 

affect differentially variability inference which in turn influenced how a new forecast 

would be incorporated during an update, average combining weights were not restricted 

to be the same across all outlier degrees. As the main concern was about how 

participants came to their final estimates, the analyses focused on final estimates,
4

E . 

For the SbS process the regressions were based on Equation 2.4 involving updating 

intermediate estimates 
3

E to final estimates 
4

E  using the fourth forecasts 
4

F . For the 

EoS process,  regressions were based on Equation 2.7a involving the values of final 

estimates
4

E  in term of deviations towards outliers from medians. Taking into account 

that each participant gave multiple responses, I used linear mixed models to capture 

                                                
5
 Call the three non-outlying forecasts in a sequence

1
X , 

2
X , and

3
X . Under OF2 condition, the order 

of appearance would be {
1

X , O l , 
2

X ,
3

X }; under OF3 condition, {
1

X , 
2

X , O l ,
3

X }; and under 

OF4 condition, {
1

X ,
2

X ,
3

X , O l }. 
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within-subject correlations.6 And since the two linear mixed models were non-nested, 

Clarke's test (Clarke, 2003 and 2007) became the method of choice for model 

selections. Samples whose responses lay outside the range of forecasts were excluded 

from the tests.7 Results are in Table 2.2. Although in all orders of outlier appearance the 

test results favored the SbS process, only when outliers appeared early on that the result 

was significant. It was possible that the late appearance of an outlier prompted some 

participants to question the regularity of a sequence, and consequently to revisit the 

whole sequence when calculating the final estimates. In this case, one could say that 

outliers that appeared early on remained undetected even at the end of their sequences, 

so participants continued with the SbS process to derive final estimates.   

 

 

Table 2.2. Comparing fits of models under SbS and EoS processes, SbS experiment 
 

 MAE from regressions  
Clark’s model 

selections 
 SbS EoS  

OF2   6.16 7.57  SbS* 

OF3 6.62 5.85  SbS 

OF4 10.00 9.81  indifferent 

   

  Significant codes: * p-value <.05 

 

 

2.3.2.2  Forecast combination weights 

 Update weights.8 From Figure 2.1 Panel A, we can see that outliers that 

appeared later received lower update weights than those that appeared earlier. This at 

                                                
6
 Since all responses from experiments in this chapter was affected by within-subject correlations, all 

analyses were based on linear mixed models. 
 
7
 At the first stage it was clear that estimates that lay outside the range of the two forecasts should be 

discarded. However at the later stages, estimates outside the range of the forecasts shown so far could 

be due to imperfect memory rather than merely be input mistakes. But to be on a conservative side, I 

decided to consider them irregular and to exclude them as well. Moreover, since the calculation of 

update weights depended on estimates in the previous stage, any analysis specific to one stage would 

ignore sample whose responses from one earlier stage were deemed irregular. That is, an analysis of 

responses from the sencond stage would exclude samples considered irregular in the first and second 

stages; an analysis of responses from the third stage would exclude samples considered irregular in the 

second and third stages. A total of 10, 16, and 22 samples were discarded in this analysis. 
 
8
 Due to the formula for calculating update weights, samples whose intermediate aggregates were equal 

to the new forecasts to be combined in were discarded. There were a total of 4 of such samples, all of 

which happened with 
2

E and 
3

F in the OF2 condition. 
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first might look like a sign of participants’ becoming more aware of outliers’ extremity 

when there were more non-outlying forecasts that came before. If this was true, the 

more extreme forecast should have received a lower update weights, as a high level of 

extremity is associated with low accuracy likelihood. But Panel B suggests that such 

was the case only among 
4

F outliers, i.e. when outliers came last (F(1,79)=14.57, 

p<.0001).  

For 
2

F  outliers, the lack of a linear effect from outlier degrees on received 

weights was trivial, as detection was impossible in a sample of two forecasts. Hence we 

can see weights between outlying 
2

F  and non-outlying counterparts did not differ 

significantly (M=0.500 vs. 0.527, F(1,284)=1.49, p≈.22). We can also see the lack of 

such a linear effect on update weights given to 
3

F . This could mean that participants 

did not detect those 
3

F  outliers either. The fact that 
3

F  outliers received less weight 

than 
2

F  outliers (M=0.407 vs. 0.500, F(1,120)=6.08, p<.05) outliers might be merely 

due to the sample size effect, i.e. forecasts from a large sample should individually 

contribute on average less to the aggregate than forecasts from a small sample should. 

As we can see, a similar pattern existed between 
2

F  and 
3

F  non-outliers as well. 

 

 

Figure 2.1. Mean update weights given to new forecasts of different appearance orders 
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The order that outliers appeared could also affect how non-outliers were 

incorporated into updated estimates. DMs could try to compensate for high update 

weights given erroneously to outliers earlier by giving even higher update weights to 

succeeding non-outliers. Experimental participants indeed gave higher update weights 

to non-outlying 
4

F  than to non-outlying 
3

F  (M=0.509 vs. 0.416, F(1,387)=1.63, 

p≈.20)9 contrary to what one would expect due to sample size. 

Figure 2.2 shows how update weights of non-outliers were impacted by the 

appearance orders of outliers. As shown in Panel A, the update weights 
3

U  for non-

outliers 
3

F  were not dissimilar between under the OF2 (when they were preceded by 

an outlier) and under the OF4 (when they were not preceded by an outlier) conditions 

(M=0.414 vs. 0.418, F(1,174)=0.00, p≈.95). That is the levels of extremity of 
2

F  

update did not influence the update weights given to
3

F . This was expected as the 

analyses shown earlier suggested that an outlier was not detected when a sample 

contained only three forecasts 

 

 

Figure 2.2. Impacts of outlier appearance order on update weights of non-outliers 

 

                                                
9
 As the experiment had no data about how DMs would weight non-outlying 

4
F when they were not 

preceded with an outlier, this comparison was only a proxy, especially if one assumes the sample size 

effect, which might be the reason that the difference did not reach significance. If a sample size four 

forecasts was expected to reduce update weights by 0.026 from weights given to a sample of three, the 

compensating raise of update weight of the fourth forecasts here would approach significance (p<.10); 

if the expected reduction was 0.048, the raise would be significant (p<.05). 
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As shown in Panel B, 
3

U  for non-outliers 
3

F  under the OF2 condition declined with 

along the increase of outlier degrees, that is the more extreme the outliers were, the less 

likely a succeeding forecast on average seemed to be. When a sample is expected to 

have wide variability the same spot forecast is less likely to be the true value than when 

the same sample is expected to have narrow variability as there are more spot forecasts 

that share a total likelihood to be accurate.10 So these results suggest that 
2

F  outliers 

were not discarded when participants made variability inference. However, this effect 

was not significant (F(1,179)=1.67, p≈.20). 

But with a sample size of four, update weights for non-outliers 
4

F  were 

discernibly impacted by the timing of outliers. As seen in Panel A for Figure 2.2, non-

outliers 
4

F  under the OF3 condition, i.e. that were immediately preceded by an outlier, 

received higher weights than those under the OF2 condition, i.e. that were one stage 

removed from an outlier. However the difference was not significant (M=0.562 vs. 

0.460, F(1,172)=0.77, p≈.38). If participants indeed tried to correct high update weights 

for non-outliers, the urge to do so became weaker when preceding outliers were further 

in the past. In fact, declining update weights 
4

U  of non-outliers 
4

F  under the OF2 

condition as shown in Panel B of Figure 2.2 suggested that outliers that appeared too 

early were not fully recognized and not entirely excluded from variability inference for 

the same reason that 
3

U  for non-outliers 
3

F  declined under the OF2 condition. But 

also this effect of outlier degrees was not significant (F(1,179)=1.67, p≈.20). There was 

no similar trend with weights 
4

U  of non-outliers under the OF3 condition that just saw 

an outlier recently. 

Aggregation weights. As we can see in Figure 2.3, the SbS aggregation task 

resulted in recency. Forecasts that appeared last in the sequence were aggregated with 

significantly higher weights than those that appeared earlier whether among non-outliers 

(M=0.510 vs. 0.206, F(1,549)=30.35, p<.001) or among outliers (M=0.314 vs. 0.140, 

F(1,264)=30.79, p<.001). Even though participants gave lower update weights to 
4

F

outliers, the impacts they had over final estimates were still stronger than those of 

outliers that appeared earlier as 
2

F  and 
3

F . This is significant when outlying degrees 

                                                
10

 Consider sample A whose range that contains a true mean with 80% confidence level is from 35 to 40, 

and sample B whose range that contains a true mean with 80% confidence level is from 5 to 70. The 

likelihood that, for example, 35, 36, or 37 is a true mean of a sample is higher in sample A than in 

sample B. 
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were 2 s.d. (M=0.376 vs. 0.121, F(1,272)=19.42, p<.001), and 3 s.d. (M=0.319 vs. 

0.135, F(1,77)=15.19, p<.001). Only the most extreme 4-s.d.outliers that participants 

discounted enough in the final updates that the eventual impacts did not differ 

significantly (M=0.240 vs. 0.162, F(1,76)=2.09, p≈.15). Notably, in the opposite 

direction of 
4

F  outliers, when appearing as 
2

F or 
3

F , outliers of higher degrees ended 

up with higher aggregation weights. As explained earlier, this was due to the fact that 

outliers of those appearance orders were not discarded when making variability 

inference, so succeeding forecasts, as individual spot forecasts, seemed less likely when 

outliers were more extreme. Consequently they received lower update weights that 

would not eventually discount less aggregation weights of outliers. But the trends were 

not significant (F(1,79)=0.56, p≈.46 for 
2

F  outliers; F(1,73)=0.34, p≈.56 for 
3

F  

outliers).  

 

 

Figure 2.3. Aggregation weights that forecasts had in final estimates, SbS experiment 
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non-outliers from medians of their respective samples (similar to SDM in Chapter 1), so 

the deviations could be directly compared to the normative case that discards outliers. 

Also, unlike the deviation weights that are calculated straightforwardly as in Equation 

2.7 which were practically in the unit of a distance between an outlier and a median, the 

unit of deviation measurement in this type of standardization allows comparisons across 

different levels of outliers’ extremity. This measurement can be regarded as a 

standardized deviation weight (SDW). SDWs from final estimates were shown in Figure 

2.4. 

 

 

Figure 2.4. Deviations of final estimates from medians towards outliers, 

SbS experiment 
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diluted less. At the end, under the OF2 condition only 2-s.d. outliers did not induce 

significant deviations (F(1,19)=1.80, p≈.20), unlike 3-s.d. (F(1,20)=5.61, p<.05), and 4-

s.d. outliers (F(1,20)=6.53, p<.05). While under the OF3 condition, both 2-

s.d.(F(1,19)=0.49, p≈.49), and 3-s.d. (F(1,19)=2.44, p≈.14) outliers did not result in 

significant deviations; deviations from 4-s.d. outliers only approached significance 

(F(1,20)=3.45, p<.10). That 
3

F  outliers did not cause significant deviations might be 

due to, as mentioned earlier, corrective weight compensation given to non-outliers that 

followed them. 

Overall, in terms of deviation from medians towards outliers, we can also see 

outlier-recency, that is, when outliers appeared last the standardized deviation weights 

(SDWs) were much higher than otherwise (M=1.22 vs. 0.36, F(1,306)=17.45, p<.001). 

 

2.3.2.3  Discussion 

 In this experiment which involved making an initial estimate and revising it each 

time a new forecast appeared, invoking the step-by-step information encoding, 

participants seemed to process information in the intended step-by-step fashion, 

although not significantly so in all cases. At the end of forecast sequences, estimates 

from this aggregation process exhibited outlier-recency. Despite the fact that 

participants appeared to recognize outliers when they showed up last as the fourth 

forecasts and discounted their weights accordingly, this discount was not sufficient 

thereby resulting in final estimates that deviated significantly from medians towards 

outliers. 

On the other hand, when outliers appeared as the third forecasts, participants did 

not seem to recognize their extremity at the time of their appearance, and as a result 

those outliers were mistakenly given large update weights. But by the end of the 

sequences, i.e. samples reached the size of four forecasts, participants seemed to realize 

the mistake and tried to compensate for overweighting of earlier outliers by raising the 

update weights of the following fourth non-outlying forecasts in order to dilute 

aggregation weights of outliers in final estimates. This neutralized the influence of 

outliers, from which we can see that participants’ final estimates did not deviate 

significantly away from medians. 

However, outliers that appeared first as the second forecasts, which expectedly 

received weights equal to non-outlying first forecasts, remained undetected until the end 
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of sequences when generally the sample size was sufficiently large to facilitate outlier 

detection. Participants did not exhibit any attempt to dilute weights given earlier to 

outliers, suggesting that participants’ retrospective detection reached back only one 

stage. While aggregation weights of these outliers ended up low thanks to dilution from 

update weights of succeeding forecasts, final estimates in many cases remained 

significantly distant from medians. 

 In the next experiment I will explore if outlier-recency will disappear when DMs 

are tasked to make only a single estimate at the end of each sequence. 

 

 

2.4  EoS-response experiment 

 This experiment was designed to encourage a recollection of earlier forecasts in 

a sequence and avoid intermediate (mid-sequence) estimation by having participants 

evaluate each forecast when it appeared in comparison to other forecasts and asking 

them to give estimates only at the end of each sequence. However, the design could not 

rule out the possibility that participants would produce intermediate estimates which 

their final estimates would rely on. 

 

2.4.1  Methods 

 Procedures. The same as in the SBS-response experiment. The only difference 

was the tasks that participants had to perform. 

 In the first stage of each round, only two forecasts (
1

F and 
2

F ) appeared on 

screen. When experimental participants were ready, they moved on to the next stage 

where the third forecast (
3

F ) appeared. In this stage participants would be asked to rate 

the likelihood that this third forecast was the most accurate, i.e. closest to the real sales 

figure of that supermarket compared to the first two forecasts (
1

F and 
2

F ) on 7-level 

Likert scale, from “0” being not at all likely to “6” being most likely. At their own pace, 

they then moved to the third and last stage where the fourth forecast (
4

F ) appeared to 

which they would be asked to give the accuracy likelihood rating in comparison to the 

first three forecasts (
1

F , 2
F ,and 

3
F ). 

 In this last stage, experimental participants were also asked to give their own 

estimate regarding the sales of that supermarket which they could base it on the four 

forecasts in any way they liked. Participants were allowed to answer up to the first 
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decimal. They would receive rewards depending on the accuracy of their estimates. The 

reward scheme was the same as in the SbS experiment. The exchange rate for payoffs 

was 150 points for 1 Euro. 

Stimuli. This experiment used the same set of simulated forecasts as the SbS 

experiment. 

Participants. Twenty participants aged between 18 and 22 years took part in this 

experiment. Twelve were female, 8 were male. They were recruited via emails from the 

pool of undergraduate students at Universitat Pompeu Fabra registered with the 

experimental laboratory. Participants received a participation fee of 3 Euros plus a 

performance-based reward.  The mean remuneration was 10.29 Euros. 

 

2.4.2  Results 

2.4.2.1  Outlier perception 

 Generally, the more extreme a forecast is considered to be, DMs will perceive 

it as less accurate. Hence we could test if the experimental participants were aware of 

outliers by examining ratings they gave to forecasts. As shown in Figure 2.5 Panel A, 

non-outliers received significantly higher ratings than outliers11, whether among the 

third forecasts
3

F  (M=2.94 versus 1.45, F(1,339)=88.68, p<.001), or among the fourth 

forecasts
4

F  (M=3.17 versus 1.30, F(1,339)=130.52, p<.001). And as Panel B depicts, 

even within the non-outliers, those that lay closer to the center of the sequence, or 

centric forecasts, received higher ratings than those that lay at the boundary of the 

sequence, or peripheral forecasts12, whether among 
3

F  (M=3.98 versus 2.33, 

F(1,219)=84.75, p<.001), or among 
4

F  (M=3.81 versus 2.09, F(1,219)=89.64, p<.001). 

We can also see significant linear declines in ratings from the peripherals to outliers of 

2, 3, and 4 standard deviations, both among 
3

F  (F(1,250)=41.80, p<.001), and among 

4
F  (F(1,188)=37.27, p<.001). Moreover, the ratings for 

3
F  tracked the ratings for 

4
F  

                                                
11 Taking into account that each participant contributed more than one responses, linear mixed models 

were used through out this study. 
 
12 A centric forecast is a forecast that is neither the highest nor the lowest among all forecasts having 

appeared so far; a peripheral forecast is a forecast that is either the highest or the lowest among all 

forecasts having appeared so far. For example, let the non-outlying forecasts be {1, 5, 13} and the 

planted outlier is {20}. If the appearance order is {1, 5, 13, 20}, at the second stage where a 

participant has seen only the first three forecasts, {5} is centric, while {1} and {13} are peripheral. 

However at the third stage where a participant has seen all forecasts, {5} remains a centric forecast, 

and {1} remains peripheral, but {13} is now centric. 
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closely, being only slightly lower but not to a significant degree (M=2.44 vs. 2.55, 

F(1,219)=1.16, p≈.28). These results demonstrated that participants were cognizant of 

forecasts’ comparative extremity from the second stage when the sample size was three. 

 

 

Figure 2.5. Mean accuracy ratings given to forecasts, EoS experiment 
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whose aggregates lay outside the range that forecasts from their respective sequences 

covered.13 Results are in Table 2.3.  

 

 

Table 2.3. Comparing fits of models under SbS and EoS processes, EoS experiment 
 

 MAE from regressions  
Clark’s model 

selections 
 EoS SbS  

OF2   5.42 5.02  EoS ** 

OF3 5.71 5.65  EoS* 

OF4 6.28 6.29  EoS ** 

   

  Significant codes: * p-value <.01, ** p-value <.001   

 

 

Overall both models gave a similar fit by the account of mean absolute errors 

(MAE), however in general SbS was likely to produce lower MAE for it contained more 

regressors. But the results of Clarke's tests, which feature the correction of such bias in 

the same fashion as the Schwartz information criterion, significantly favored the EoS 

process in all outlier appearance orders.  

 

2.4.2.3  Forecast combination weights 

The results above strongly pointed towards EoS as the participant’s operating 

process. Thus one would not expect to find an order effect, and that final estimates from 

participants in this experiment would anchor around sequences’ medians and would not 

deviate far from there in any of the appearance orders. Figure 2.6 depicts deviations 

from medians towards outliers that final estimates exhibited, in a standardized form 

(SDW) as explained in analyses of the SbS experiment. 

While under the OF2 condition the deviations showed some linearity along 

outlier degrees, the effect was not significant (F(1,97)=2.43, p≈.12). No similar trend 

was found in the other conditions. In fact, there was no significant difference in 

deviations among different degrees of outlier whether under the OF3 condition 

(F(1,96)=0.23, p≈.79), and the difference only approached significance under the OF4 

condition (F(1,94)=2.90, p<.10). In most cases final estimates deviated significantly 

                                                
13

 There were 2, 2, and 4 of such samples in OF2, OF3, and OF4 conditions respectively from a total of 

120 samples in each condition. 
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away from medians. Under the OF2 condition, while deviations of 2-s.d. outliers only 

approached significance (F(1,20)=3.74, p<.10), those of 3-s.d. outliers (F(1,20)=4.56, 

p<.05), and 4-s.d. outliers (F(1,20)=10.06, p<.01) were significant. Under the OF3 

condition, only 2-s.d. outliers did not depart significantly from medians (F(1,20)=1.71, 

p≈.21), unlike 3-s.d. outliers (F(1,20)=5.30, p<.05), and 4-s.d. outliers (F(1,20)=4.61, 

p<.05). Similarly, under the OF4 condition, 2-s.d. outliers’ deviations were not 

significant (F(1,20)=0.76, p≈.39), while 3-s.d. outliers (F(1,20)=6.99, p<.05), and 4-s.d. 

outliers (F(1,20)=7.70, p<.05) deviated significantly from medians. Overall, the 

deviations were equal across all appearance orders with no order effect (M=0.68, 0.45, 

and 0.48 under the OF2, OF3, and OF4 respectively, F(1,330)=0.07, p≈.94). 

 

 

Figure 2.6. Deviations of final estimates from medians towards outliers,  

EoS experiment 
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 Expectedly, final estimates exhibited neither recency nor primacy. However, in 

the majority of cases, final estimates still deviated away from medians towards outliers 

to a significant degree, especially when outliers were more distant. So aggregates 

appeared as if participants had substantially included outliers despite the fact that they 

recognized the extremities. However the deviations were of the same level regardless of 

the outliers’ levels of extremity. 

 

 

2.5  General discussion 

 Normally when people search for forecasts, they will initially consult a few 

experts, and will continue to seek more opinions if time and other resources permit. 

People do not know with certainty how many forecasts they will finally obtain, or 

whether they will encounter an additional forecast before making a final decision. With 

such serial and indefinite nature of acquisition, it is natural to summarize forecasts into 

a decision-ready single estimate that can be updated later when additional forecasts 

become available. And in this situation, the timing that forecasts, especially outliers, 

appear can impact how they contribute to the final estimate crucial to decision-making. 

From the results of this study’s first experiment, the step-by-step estimation-and-update 

mode can obscure an outlier from being detected especially when it appears early. 

Fortunately, as DMs obtain more forecasts, the significance of this outlier gets diluted 

further, and eventually aggregation will appear as if an outlier had been discarded. The 

problem, however, arises when an outlier appears last. In this case, despite detection, an 

outlier remains a weighty forecast within the final estimate. 

 As recency of an outlier’s impact seems to stem from sequential updates of 

forecasts, when DMs instead aggregate all forecasts only at the end of a sequence, the 

timing when an outlier appears becomes irrelevant, which the results of the second 

experiment corroborated. Even though in this processing mode DMs can judge 

forecasts’ extremity appropriately, the outlier detection is largely ineffective as it is not 

translated into a sufficient exclusion of outliers from aggregation. In this experiment, 

final estimates deviated significantly, albeit slightly, from the medians. 

 As we can see, each processing mode has its own advantage and disadvantage. 

The end-of-sequence mode obviates recency but is mentally taxing. The mental-load 

economizing step-by-step estimation-and-update mode is sufficient unless the search for 

information ends with an outlier; although that situation is statistically, and behaviorally 
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unlikely. In this study, the sequences of forecasts had fixed length, while in the real 

world DMs can continue to search for more forecasts. When evidence accumulation 

stops may depend on costs and benefit of extra information (Gilliland, Schmitt & Woo, 

1993; Hulland & Kleinmuntz, 1994; Saad & Russo, 1996), on time pressure (Hulland & 

Kleinmuntz, 1994), as well as whether DMs reach the preferred level of confidence in 

their decisions (Hausmann & Läge, 2008). The appearance of an outlier can reduce a 

DM’s confidence inability of acquired information to produce an accurate estimate. And 

this can trigger a search for additional expert forecasts. As a result the final aggregation 

weight of an outlier will be diminished by updating of the estimate update using new 

forecasts. A similar benefit from further evidence accumulation is not certain when 

DMs produce an estimate only at the end of a forecast sequence uture research should 

explore whether an outlier will encourage DMs to extend information search, and if the 

search will result in greater accuracy, both when the estimation is done step-by-step or 

at the end of a sequence. In the mean time, the results of this study recommend we 

simply write down all forecasts, and take a look at them simultaneously before making a 

decision. 
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3. Estimate revision with multiple advices 

 

Abstract. 

 People, being egocentric, tend to make little use of an advice in order to 

revise their initial opinions. But with multiple advices, as results from the first 

experiment demonstrate, people will choose to revise more when they find their 

opinions to be outside a consensus. Analyses show that this consensus-dissensus 

category is a valid cue for an accuracy judgment. The second experiment 

examines whether concerns for rankings will make people make even more use of 

advices as previous research argues. The results do not support this hypothesis. 

Using data collected from two experiments, a simulation study suggests that 

having multiple advices, and its consequential revise-if-dissensus heuristic, can 

improve accuracy of revisions that decision makers may choose compared to 

having only a single advice. 

 

 

3.1  Introduction 

 

 Often times decision makers (DMs) solicit advices from another person in order 

to confirm their initial opinions. Sometimes a received advice leads DMs to revise their 

initial position aggregating their own's and adviser's opinions. Combining estimates 

from multiple experts is shown to result in improved accuracy (Einhorn, 1972; Dawes & 

Corrigan, 1974; Doyle & Fenwick, 1976; Libby & Blashfield, 1978; Makridakis et al., 

1982; Yaniv & Hogarth, 1993; Armstrong, 2001; Johnson et al., 2001; Budescu & Yu, 

2007; Winkler & Clemen, 2004), and although giving all estimates an equal aggregation 

weight is shown to be the best combination scheme (Winkler, 1971; Newbold& 

Granger, 1974; Einhorn & Hogarth, 1975; Hogarth, 1978; Libby & Blashfield, 1978; 

Clemen & Winkler, 1986; Lawrence et al., 1986; de Menezes et al., 2000), this strategy 

is often ignored (Sniezek & Henry, 1989; Larrick & Soll, 2006). DMs are often 

judgmental, and how they combine their own estimates and advisors’ depends on their 

subjective evaluation of those advices. This evaluation sometimes takes into account 

informative factors like advisors’ reputation (Maines, 1996; Budescu et al., 2003), but 

sometimes it is biased by just the formats in which opinions are stated (Yaniv & Foster, 

1995; also see Chapter 1). 
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 Moreover, DMs are not estimator-agnostic. Research shows that DMs often give 

higher weights to their own estimates (for review see Bonaccio & Dalal, 2006) than to 

others. Even when assuming that DMs choose combination weights based on accuracy 

likelihood of estimates, over-weighting their own estimates is not unexpected, as DMs 

are generally found to be overconfident (Alpert & Raiffa, 1982; Brenner et al., 1996; 

Klayman et al., 1999; Soll & Klayman, 2004; Alicke & Govorun, 2005; Larrick et al, 

2007; Soll, 2007) and confident DMs usually believe that their own opinions are 

superior to advisors’ (Harvey & Fischer, 1997; Sniezek & Van Swol, 2001; Krueger, 

2003; Gino & Moore, 2007; Soll & Larrick, 2009; Minson & Mueller, 2012). Such 

egocentric weighting has also been attributed to differential information regarding the 

access to the process that advisors use to produce estimates (Yaniv & Kleinberger, 

2000; Yaniv, 2004a; Yaniv, 2004b), to the anchoring effect (Tversky & Kahnemann, 

1974) where DMs do not technically combine estimates, but adjust their own initial 

estimates using information from advices (Lim & O’Connor, 1995; Harvey & Fischer, 

1997). Producing estimates is not costless, it takes time, effort, and other resources. 

Such sunk cost (Arkes & Blummer, 1985) can make DMs reluctant to depart much from 

their own estimates, unless advices incur costs as well (Sniezek et al., 2004; Patt et al., 

2006; Gino, 2008). When taking a closer look, DMs' egocentric revision is not a result 

of simply choosing higher weights to apply to their own opinions. Soll and Larrick 

(2009) found that when given another opinion, DMs choose between three revision 

choices of either to maintain their initial estimates, to switch completely to an estimate 

of an advisor, or to merely average the two estimates. The general egocentric 

overweighting is just a result of DMs’ tendency to stick with their initial estimates. 

Studies on revision self-weights mostly involve the case that DMs receive only a 

single advice, but it is not unusual that DMs consult two or more advisors. An 

economist might compare her GDP forecast with forecasts of multiple other economists. 

A mutual fund manager could read reports from a few analysts about the price of the 

stock she has just projected. Yaniv and Milyavsky (2007) found that DMs remained 

egocentric with their revisions as well after receiving multiple advices. In their studies, 

to produce revisions experimental participants seemed to discard an advice farthest from 

their initial estimates, and aggregate the rest. While Yaniv and Milyavsky (2007) 

consider that DMs revise by aggregating advices into their initial estimates with weights 

that are based on an egocentric distance, studies in this chapter will analyze DMs' 

revision rules when receiving multiple, specifically four, advices, based on the concept 
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proposed by Soll and Larrick (2009) but adapted to allow a treatment of multiple 

advices. Principally I argue that in the first stage of revision DMs first make a decision 

whether or not to revise, and this decision is subject to a pressure to conform to a 

group's opinion, and when DMs have decided to revise, in the second stage they will 

choose self-weights to combine their initial estimates with, as a less cognitively taxing 

strategy, a single advice representative of all advices. 

The results from the first experiment supported the hypothesis that participants 

tended to revise more if their estimates did not conform to the consensus. That is when 

estimates appeared to be a dissensus lying outside the range that advices covered, 

participants were more likely to revise them; when estimates appeared to be a 

consensus, participants were more likely to retain their initial estimates. But the 

consensus-dissensus factor did not affect the level of self-weights they chose when they 

decided to revise. Furthermore, participants' revision decisions were largely not 

significantly affected by other factors examined here, which were an uncertainty level 

of the quantity to be estimated, and the information regarding their estimate ability 

relative to advisors. Analyses of accuracies revealed that dissensus estimates were 

inferior to advices; while consensus estimates were as accurate as advices so taking in 

advice would not result in significant accuracy improvement. This implied that 

participants' revision rule, particularly for the first stage of revision, was ecologically 

valid. This rule could be simplified as revise-if-dissensus (RiD) heuristic. 

 As researches in the field of finance have suggested that reputation concerns 

would increase the level of revision (Chavalier & Ellison, 1999; Hong et al., 2000; 

Clement & Tse, 2005), next I examined if a different reward scheme could nudge DMs 

to utilize advices more. Unlike the scheme of the first experiment whose rewards for 

revisions depended only on the accuracy of each independent revised estimate, the 

second experiment gave rewards based on accuracy rankings of revised estimates 

relative to other revisions. The results showed that participants remained sensitive to 

group conformity, and while the effect of rankings were significant for the first stage of 

revision decisions, participants did not retain their initial estimates less or apply higher 

self-weights to their revisions. 

It is clear that for estimator-agnostic revision strategy like take-the-median, the 

more advices there are, the more accurate the revisions will be. However DMs show 

time and time again their resistance to using this strategy. Using estimates that 

participants from both experiments produced, I conducted a simulation study to 
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compare accuracies from different revision strategies. The results showed that, 

compared to the case of a single advice, when multiple advices were available so DMs 

could categorize their estimates as either a consensus or a dissensus and consequentially 

allowed the use of the RiD heuristic, one could expect DMs to arrive at a more accurate 

revision, especially if there were not overly egocentric in choosing self-weights. 

 

 

3.2  Estimate revision 

3.2.1  Revision process 

3.2.1.1  Benefit of advice taking 

 Let Q  be the quantity that a judge tries to estimate. This quantity cannot be 

predicted with a perfect accuracy, even when having all available information I  and 

knowing the true information-processing model ˆ ( )M I , due to a random component ε  

with a zero mean and a variance of 2

ε
σ , in other words ˆ ( )Q M I ε= + . Based on past 

experiences, a judge J  has developed her own model to process information in order to 

produce 
J

E  for the purpose of estimating Q , or ( )
J J

E M I= . The judge is not perfect, 

her model does not always match that of the true model, missing it by 
J

m , that is

ˆ ( ) ( )
J J

M I M I m= + . We can further assume that the judge is good enough at estimating 

Q , that is she is not biased, and over a large number of trials the judge's model on 

average matches the true model, that is 
J

m  follows a zero-mean distribution. How good 

she is depends on the level of dispersion of her model's misses, indicated by 2

J
s  ,the 

variance of 
J

m . So for each estimate, one can expect the (in)accuracy of the judge's 

estimate measured by a mean absolute deviation (MAD) from the correct value as the 

sum of the effects of the environment's randomness and of her model's miss, i.e. 

2 2
( )·2

J
MAD s

ε
σ π= + .14 If a judge combines her own estimate with that of an advisor 

(whose model's misses has a variance of 2

A
s ) by using a self-weight w , her revised 

estimate will have an expected deviation of 2 2 2 2 2 2
( (2 2 1) )·2(1 )

J A
w s s w ww

ε
σ π+ − ++ − . The 

MAD of the revision is smaller than that of her initial estimate as long as w  is greater 

than 2 2 2 2 2)( / ( )
A J A J
s s s s

ε
σ− + +  which is always smaller than 1. So there exists a self-

                                                
14

 Assuming both environment's errors and models' misses to be normally distributed.   
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weight below 1 with which a judge can use to combine her estimate and the advice 

together to produce a more accurate, i.e. with smaller MAD, estimate than her 
J

E . 

 

3.2.1.2 Egocentric estimate revision 

 Previous research suggests that a judge gives a preferential consideration to her 

own estimate resulting in an under-adjustment with an average self-weight of 

approximately 0.7 (Lim & O'Conner, 1995; Harvey & Fischer, 1997; Yaniv & 

Kleinberger, 2000; Yaniv, 2004a; Yaniv, 2004b). However this is based on the 

conventional approach in analyses of self-weights that assumes that DMs revise their 

estimates by choosing a level of self-weight along the 0-1 spectrum. Taking clues from 

the study of a two-cue prediction task by Lees and Triggs (1997) whose results showed 

a bimodal cue-weight distribution, Soll and Larrick (2009) argued that rather than 

choosing a self-weight, DMs instead would either choose to retain their initial estimates 

(w=1.0), to adopt a given advice (w=0.0), or to take an average of their estimates and 

an advice (w=0.5). The data from their experiments matched their argument, showing a 

W-shaped self-weight distribution with peaks at 0.0, 0.5, and 1.0. On average, 

participants were found to be egocentric not by choosing high self-weights but by 

choosing to retain their initial estimates at a high proportion, that is they were resistant 

to cognitive change (Greenwald, 1980). In fact this resulted in the average self-weight 

of 0.7, similar to other studies.   

 

 

Figure 3.1. Diagram of estimate revision processes 
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 Soll and Larrick (2009) did not necessarily argue that DMs consider the three 

revision choices at once. But if we are to apply further the egocentricity of DMs in the 

estimate revision process, it can be assumed that in the first step DMs choose to 

maintain their own estimates or not, that is choose between “self” (not to revise) or “not 

self” (to revise), and if they choose “not self” the next step is to choose a revision level, 

or a level of self-weight. This self-as-the-focus (Greenwald, 1980) nature means the 

process contains at least two steps rather than just one three-pronged step (Figure 3.1). 

 

3.2.1.3  The case of multiple advices  

 When more than one advice is available, a judge could evaluate and decide how 

to use each advice in revision one-by-one, as assumed in the analyses by Yaniv and 

Milyavsky (2007). As DMs have generally been found to employ strategies that require 

less cognitive effort (Einhorn, 1971; Payne et al., 1988; Payne et al., 1993; Todd & 

Benbasat, 1994), it is likely that a judge will construct a single estimate that is 

representative of all advices, i.e. other estimates, and use that in revision processes 

instead. In fact research has demonstrated that DMs see themselves as being drawn from 

a different population from others (Harris & Guten, 1979; Weinstein, 1980; Perloff, 

1982; Lehman & Nisbett, 1985; Perloff & Farbisz, 1985); moreover, as in stereotyping 

of an out-group (Boldry et al., 2007), a judge may also instinctively make a 

representative inference of the advisors' estimates. With that a judge considers only the 

single-other estimate(SO), the process in Figure 3.1 can be readily extended to deal with 

multiple advices. But from where is this SO approximated? Naturally, this will be the 

central value of the advice set, and the median is the likely inference for the central 

value (Yaniv, 1997; also see Chapter 1). So in this chapter, all analyses will consider the 

median advice as the SO of an advice set. 

 

3.2.2  Decision factors in revision choice 

3.2.2.1  Consensus-dissensus categorization   

 DMs seek advices to lower the uncertainty of, or to confirm, i.e. reduce some 

sort of internal conflict regarding, their initial thoughts (Festinger, 1954).However, with 

only a single advice and the egocentric tendency, rather than using that advice to re-

evaluate their own initial thoughts, DMs seem to evaluate advice based on their own 

estimate instead. Researchers have found that a judge gives a higher weight to advices 
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that are consistent with their own estimates (Yaniv 2004a; Yaniv 2004b; Yaniv & 

Milyasky, 2009),which implied a distance effect, i.e. the greater distance between an 

advice and a judge's estimate is seen as an indicator of the advice's inaccuracy compared 

to her estimate but not of her estimate's inaccuracy compared to the advice. 

 But the situation is likely to be different if a judge receives more than one 

advice. Multiple advisors could create a greater pressure for a judge to reconsider her 

initial estimate, as DMs also have a penchant to conform to a group's majority opinion 

(Asch, 1951). Multiple advices give a context that a judge could directly perceive how 

much her estimate conforms to the group; for example, with a few advices, a judge's 

estimate can be clearly categorized as either a consensus, i.e. that lies outside inside an 

advice set, or a dissensus, i.e. an estimate that lies outside an advice set.15 When her 

estimate appears to be a dissensus, the deviation from an advice set accentuates the 

conflict, and consequently urges the judge to revise; while this urge is likely to be 

absent when her estimate is a consensus. Also due to preference for consonant 

information (Frey, 1981), that is DMs utilize advices more if they are agreeing to one 

another (Yaniv et al., 2009), when her estimate is a dissensus, an advice set could be 

seen as more cohesive, and when her estimate is a consensus the advice set could be 

seen as more disagreeing. As a dissensus estimate is farther from the SO than a 

consensus estimate, given the same advice set, this hypothesis in a sense implies that a 

judge will incorporate advices more if they lie further away from her own estimate, 

opposite of the distance effect. 

 

3.2.2.2  Uncertainty of the estimation environment 

 As demonstrated by Larrick and Soll (2009)'s study, under-revision of an 

estimate is a result of a judge's disproportionately high tendency to choose self. 

Generally DMs in many situations are reluctant to take even an advantageous action, 

due to the status quo bias (Samuelson & Zeckhauser, 1988), the omission bias (Ritov & 

Baron, 1992), or conservatism (Harvey & Harries, 2004). Although inaction can be an 

optimal strategy if the expected benefit of an action does not exceed its cost (Beach & 

Mitchell, 1978; Christensen-Szalanski, 1978; Payne, et al. 1993). Similarly a judge will 

not be compelled to revise if she does not expect that incorporating an advice into a 

                                                
15

 In this chapter an estimate is considered to lie outside an advice set if it is either lower than the lowest 

advice or higher than the highest advice. For example, let an advice set be {5, 8, 10}, if the judge's 

estimate is 3, then it is a dissensus. The estimate of 12 is also a dissensus. If her estimate is 7, it is a 

consensus. So is it if her estimate is 10 or 5.  
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revision will result in a sufficient benefit that is accuracy improvement, compared to 

costs associated with revision, such as a cognitive cost from re-calculating an estimate, 

or a psychological cost of diverting from egocentric confidence. If a judge expects that 

the revised estimate has a variance of 2

R
s  (where 2 2

R J
s s< , or else a judge would not 

revise), the revision's MAD is 2 2
( )·2

R
s

ε
σ π+ ; while the no-revision's MAD is 2 2

( )·2
J
s

ε
σ π+ . 

The relative benefit of the revision depends on the ratio of two MADs or 

2 2 2 2
( ) / ( )

R J
s s

ε ε
σ σ+ + . Since 2 2

R J
s s< , this relative benefit decreases as the environmental 

uncertainty increases. So one could expect that a judge is less likely to revise her initial 

thought if she thinks it is not likely that she will make an accurate estimation. 

 

3.2.2.3  Confidence of a judge 

 As the aim of advice taking is to improve accuracy by reducing the expected 

deviation from the true value, normatively a judge should give combination weights to 

each estimate proportionate to expected accuracies of their estimators. A judge who 

believes that she is better at the estimate task than advisors will then apply a higher self-

weight to her own estimate when taking and combining advices than a judge who 

believes otherwise. In fact, in the experiment by Yaniv (2004), participants that 

assumed to be more knowledgeable about the topic questioned chose higher self-

weights than less knowledgeable participants. 

 

 

3.3  Experiment 1 

 In order to test the effects of the above hypothesized factors, I conducted the 

following experiment, in which participants were tasked to produce estimates of a house 

price in two simulated markets, one with a high and the other with a low uncertainty (or 

price-variance) level. For each estimation participants would be given a set of three 

advices, from which participants could clearly separate their initial estimates into either 

a consensus or a dissensus with regard to the advice set. Participants would also be 

primed with information of their performance compared to other participants whose 

initial estimates would be in the pool that advices would be drawn from. 

 

3.3.1  Method 
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 Procedures. The experiment was conducted in a laboratory in Barcelona in 

Spanish on personal computers. Participants were told that they would participate in two 

consecutive rounds of similar experiments. Their task was to predict a sale price of a 

series of houses, in a unit of one thousand U.S. dollars, based on the following four 

characteristics: 1) the number of bedrooms, 2) the distance between a house and the city 

center, 3) whether a house has a swimming pool, and 4) the year that a house was 

constructed or received a major renovation. They were told that the data were from the 

actual houses that were sold during the year 2000, and that all houses in the series in the 

same round were from the same city (i.e. the same housing market). Each round 

contained four phases. 1) In the first phase, participants learned by observing the 

relationship between prices and the four characteristics of 15 houses, shown in 3 blocks 

with 5 houses per block, each block was on screen for 25 seconds. 2) In the second 

phase, participants practiced by producing price estimates of 7 houses, one at a time, 

based on the given four characteristics of a house. After the four characteristics 

appeared on screen they had 20 seconds to give an estimate, after which the correct 

price would appear as a feedback. 3) In the third phase, the procedure was similar to the 

second phase but without the correct-price feedbacks. At the end of the phase they were 

shown how they had performed in a form of a percentile compared to other participants 

in the laboratory. A brief description of how to interpret their percentiles was also on 

screen, (they were also told how the percentile would be calculated, and of the meaning 

of the percentile data in the instructions). The participants were told that rewards would 

be given in this phase based on the accuracy of each individual estimate: when the 

difference between an estimate and the real price was 2 units or fewer, they would be 

rewarded 10 Euro cents; when the difference was higher than 2 but lower or equal to 7, 

the reward was 5 Euro cents; when the difference was higher than 7 but lower or equal 

to 15, the reward was Euro 2 cents; and when the difference was more than 15, they 

would get no rewards. 4) The fourth phase was the estimation-then-revision phase with 

a series of 10 houses. In the first half of each estimation, participants were shown the 

four characteristics of a house and asked to produce the estimate of its sale price within 

20 seconds (a counting-down clock was on the top right corner of the screen, but the 

time limit was not enforced). In the second half, each participant received three advices 

randomly selected from the estimates to the same house produced by other participants, 

as stated in the instructions. The advices were shown on the screen in a vertical row 

under the participant's own estimate. Participants were asked to give a revision within 
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20 seconds (the time limit was not enforced). Participants were told that rewards would 

be given for each individual initial estimate and revision. The instruction gave details of 

the reward scheme which was the same as the third phase's, but with the reward 

amounts five times higher in all steps. Upon finishing the first round before the second 

round started, participants were told that that data for the following round came from 

the same year as in the first round but from a different city (different housing market). 

 Stimuli. There were two parts in each item: 1) the base data, contained the house 

characteristics and the base house prices, 2) the random component, to be added to the 

base price to produce the real price. The set of four characteristics were simulated 

individually and independently. That a house had a pool or not was simulated using a 

binomial distribution, with the likelihood of having a pool at 0.7. The other three 

characteristics were simulated following a uniform distribution rounded to the nearest 

integers. The numbers of bedrooms were between 3 and 6, the distance to the city center 

between 1 to 30 kilometers, the year of the house’s construction or major renovation 

between 1970 and 1990. The basic house prices were calculated by the following “true 

model” which yielded the variance of 1618.2, 

 

200 (6 ) ( 1 ) (12 ) ( 1970)House price Bedroom Distance Pool Year= + ⋅ + − ⋅ + ⋅ + −  

 

The random error components for the high-uncertainty condition were selected from a 

normal distribution with a variance of 1078.8, so that the true model captured 60% of 

the price variation. Those for the low-uncertainty condition were set to let the true 

model capture 85% of the price variation by being selected from a normal distribution 

with a variance of 286.6. 

 For the base data, six data sets were generated: set 1 and 2 contained the data of 

29 houses, and set 3 to 6 contained the data of 10 houses each. Two sets of high-

uncertainty error components were generated: set 1 with 29 data points, set 2 with 10 

data points; the same amount of data points were also generated from low-uncertainty 

error components. The matching of the stimuli sets and participant groups in each round 

and each phase was shown in Table 3.1. 
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Table 3.1. Matching of stimuli sets and participant groups 

 
 

Participant  

group 1 

Participant  

group 2 

Participant  

group 3 

Participant  

group 4 

Round 1 

Phase 1-3 
Base data set 1 

High-error set 1 

Base data set 1 

High-error set 1 

Base data set 1 

Low-error set 1 

Base data set 1 

Low-error set 1 

Phase 4 
Base data set 3 

High-error set 2 

Base data set 4 

High-error set 2 

Base data set 5 

Low-error set 2 

Base data set 6 

Low-error set 2 

Round 2 

Phase 1-3 
Base data set 2 
Low-error set 1 

Base data set 2 
Low-error set 1 

Base data set 2 
High-error set 1 

Base data set 2 
High-error set 1 

Phase 4 
Base data set 5 
Low-error set 2 

Base data set 6 
Low-error set 2 

Base data set 3 
High-error set 2 

Base data set 4 
High-error set 2 

 

 

 Participants. Sixteen participants aged between 19 and 23 years took part in this 

experiment, recruited via emails from the pool of undergraduate students at Universitat 

Pompeu Fabra registered with the experimental laboratory. Ten were female, six were 

male. They were randomly separated into four groups of equal size for the matching 

with stimuli as described in Table 3.1. Participants received a participation fee of 3 

Euros plus a performance-based reward. The mean remuneration was 10.20 Euros. 

 

3.3.2  Results 

 Prior to the analyses, some of the response items were discarded due to various 

reasons. First were items that contained extreme outlying initial estimates, there were 

probably typing errors caused by time-limit pressure.16 Next are those whose revisions 

were based on an advice set that had at least one extreme outlying advice since they 

could affect revision choices differently than the rest.17 As participants were permitted 

to answer only in integer, I included only response items whose gaps between the initial 

estimates and the advices' medians were 2 or larger, to allow only revisions whose 

choices included a combination between advices and participants' own estimate.18 In 

addition, I excluded response items whose revisions were outside the ranges that initial 

estimates of both judges and advisors together covered.19 Such revisions could be 

                                                
16

 These were 4 items all from the high-variance condition, and none from the low-variance condition. 
 
17

 There were 9 items, all from the high-variance condition. 
18

 8 and 22 items in the high- and low-variance conditions respectively were discarded. 
 
19

 There were 7 and 5 items in the high- and low-variance conditions respectively. 
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thought of as not taking advices, or in some case even participants' own initial 

estimates, into account. Among data items that remained for the analyses, under the 

high-variance condition there were 64 whose initial responses from the judges were 

consensus estimates, and 70 whose initial responses were dissensus estimates; under the 

low-variance condition there were 60 items with a consensus initial estimate, and 

73with a dissensus initial estimate. Participants were also labeled as one of the two 

categories based on the information of comparative performance during the test phase of 

each round. Those with a percentile over 50 were top performers for that round, and 

those with a percentile below 50 were bottom performers for that round. 

 

3.3.2.1  Revision patterns 

 Self-weight distributions. Distributions of revision self-weights, computed by

( ) / ( )w R C E C= − − ,20 displayed multiple peaks resembling the results found by Soll and 

Larrick (2009) (Figure 3.2).  

 

 

Figure 3.2. Distribution of self-weights by variance levels, Experiment 

 

 

 

These distributions suggested that participants might have considered at least initially 

between maintaining their initial estimates (self-choosers) or incorporating advisors' 

opinions (revisers). When examining the distributions of self-weight by types of initial 

                                                                                                                                          
 
20

 Strictly, this is not a real self-weight since the true SOs are unknown. Since the SOs are likely to 

center around the advices' medians, this type of self-weights is the “expected” self-weights.    
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estimates (Figure 3.3), it is clear that the participants felt more compelled to revise when 

their initial estimates were dissensus. The following analyses will concern two revisions 

choices: to choose self or not, and if choose to revise, what level of self-weight to use. 

 

 

Figure 3.3. Distribution of self-weights by variance levels and types of initial estimates, 

Experiment 1 

 

 

 

 Choosing self. The generalized estimating equations (GEE) were used in the 

analyses due to the fact that each one participant contributed multiple responses. The 

results of logit regression revealed that only the main effect of the consensus-dissensus 

categorization of initial estimates was significant (p<.01), but not the effects of the 

market uncertainty (p≈.32) or of comparative performance information (p≈.67); none of 

the interaction effects among the three factors was significant either.  
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 Figure 3.4 shows, as in Figure 3, that participants were significantly more likely 

to choose-self when their initial estimates were consensus than when they were 

dissensus (M=0.48 vs. 0.13, p<.01), in fact this is true in both the high- (M=0.44 vs. 

0.16, p<.001) and the low-variance conditions (M=0.52 vs. 0.11; p<.001). While they 

were equally likely to choose-self when the price variance was high than when it was 

low (M=0.29 vs. 0.29, p≈.32), participants were less likely to choose-self in the high- 

than in the low-variance market if their initial estimates were of consensus (M=0.44 vs. 

0.52, p≈.36); but among dissensus estimates, participants were more likely to choose-

self in the high- than in the low-variance market (M=0.16 vs. 0.11, p≈.29). 

 

  

Figure 3.4. Proportions of choose-self revisions, Experiment 1 
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As expected, top performers were more, but not significantly, likely to choose-self than 

bottom performers (M=0.59 vs. 0.42, p≈.67). But in all sub-conditions, this pattern did 

not always show, and the effect was not significant (M=0.47 vs. 0.41, p≈.66 in the high-

variance consensus-estimate; M=0.16 vs. 0.16, p≈.37 in the high-variance dissensus-

estimate; M=0.48 vs. 0.52, p≈.61 in the low-variance consensus-estimate; M=0.11 vs. 

0.11, p≈.95 in the low-variance dissensus-estimate conditions). 

 Revisers' self-weights. The results from the GEE regression of self-weights 

showed that past performance information was the only significant main effect (p<.05), 
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but not a consensus-dissensus nature of initial estimates (p≈.88) or the market's 

uncertainty levels (p≈.35); none of the interaction effects among the three factors was 

significant either. 

 As shown in Figure 3.5, overall consensus estimates received lower revising 

self-weights than dissensus estimates did, but not significantly (M=0.47 vs. 0.53, 

p≈.13). The same pattern was found in the high-uncertainty condition (M=0.42 vs. 0.53, 

p≈.18), but in the low-uncertainty condition the pattern was the opposite (M=0.53 vs. 

0.52, p≈.32). Participants applied lower self-weights when the uncertainty of the market 

was high than when it was low (M=0.49 vs. 0.53, p≈.48). The pattern was found when 

analyzing only consensus estimates (M=0.49 vs. 0.53, p≈.16), however with dissensus 

estimates, the high-variance condition saw discernibly higher self-weights than the low-

variance condition did (M=0.53 vs. 0.52, p≈.87).  

 

 

Figure 3.5. Mean self-weight in revisions among revisers' responses, Experiment 1 

 

 

 

Overall top performers revised their initial estimates with significantly higher self-

weights than bottom performers (M=0.59 vs. 0.43, p<.01).While the pattern was 

consistent in all four conditions, none was significant (M=0.52 vs. 0.35, p≈.15 in the 

high-variance consensus-estimate; M=0.60 vs. 0.46, p≈.11 in the high-variance 

dissensus-estimate; M=0.60 vs. 0.46, p≈.89 in the low-variance consensus-estimate; 

M=0.61 vs. 0.44, p<.10 in the low-variance dissensus-estimate conditions). 
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3.3.2.2  Revision cue validity and revision accuracy 

 Revision cues. The results above that participants decided whether to revise their 

initial estimates at all depended on whether those estimates were consensus or 

dissensus, implying that participants perceived such category as a signal of accuracy, 

particularly in comparison to the SO of the advice sets. This accuracy cue was indeed 

valid as we can see in Table 3.2 that lists inaccuracy of estimates measured by the mean 

absolute deviations (MADs) between estimates and the true-model values M̂ . The 

reason that I did not use “correct” sales prices because the judge is supposed to predict 

the true model's quantity rather than to attempt to capture also the random component of 

a market included in the sales prices. 

 

 

Table 3.2. Mean absolute deviations of initial estimates, and advices 

 High variance  Low variance 

 
Initial 

estimate 
SO  

Initial 

estimate 
SO 

Consensus      

Top  6.17 8.23  6.45 7.55 

Bottom  9.41 7.88  8.83 7.93 

All 7.89 8.05  7.60 7.73 

      

Dissensus      

Top  14.34 8.97  9.42 8.64 

Bottom  19.00 8.00  16.08 6.05 

All 16.47 8.53  12.79 7.33 

      

 

 

MADs of consensus estimates were significantly lower than MADs of disensus 

estimates in both the high- (MAD=7.89 vs. 16.47, p<.001, Mann-Whitney test), and 

low-variance conditions (M=7.60 vs. 12.79, p<.01, Mann-Whitney test). And more 

importantly, dissensus estimates deviated significantly further from the true-model 

prices than the SOs did in both the high- (MAD=16.47 vs.8.53, p<.01, Wilcoxon test), 

and low-variance conditions (MAD=12.79 vs.7.33, p<.001, Wilcoxon test); while the 

accuracy advantage of consensus estimates over their respective SOs was only slight 



 

 69 

(MAD=7.89 vs.8.05, p≈.95 in the high-variance condition, Wilcoxon test; MAD=7.60 

vs.7.73, p≈.96 in the low-variance condition, Wilcoxon test). 

 According to the results of the experiment, participants also took into 

consideration their performance during the test phase that top performers decided on 

higher self-weights when revising estimates than bottom performers. This implied that 

top performers were more confident in their own estimates over advices than bottom 

performers were. I compared accuracies of estimates versus accuracies of the SOs using 

the mean differences in absolute deviations from the true-model prices of estimates and 

of their respective SOs (or MDADs, which in this case is basically MADs of the 

estimates minus MADs of the SOs). Among consensus estimates, top performers was 

superior with lower MDAD than bottom performers, but not significantly (MDAD=-

2.07 vs. 1.53, p≈.25 in the high-variance condition, Mann-Whitney test; MDAD=-1.10 

vs. 0.90,p≈.57in the low-variance condition, Mann-Whitney test).Among dissensus 

estimates, the accuracy advantage of top performers was also greater than bottom 

performers but not always significantly (MDAD=5.37 vs. 11.00, p<.10 in the high-

variance condition, Mann-Whitney test; MDAD=7.78 vs. 10.03,p<.001 in the low-

variance condition, Mann-Whitney test). 

 Revision accuracies. While being a consensus signaled a superior accuracy, and 

almost half of the times experimental participants' decided to retain their consensus 

estimates, it did not mean that no significant improvement could be had from revisions. 

To explore this, I compared accuracies in terms of MADs of estimates and revisions 

with a non-egocentric take-the-median (TTM) that has been shown to be an often used 

aggregation strategy that can produce a fairly accurate estimate (Yaniv, 1997; Harries et 

al., 2004; also see Chapter 1). 

 As seen in Table 3.3, among consensus initial estimates, the accuracies of those 

that participants decided not to revise were better than those that participants revise, but 

not to a significant degree (MAD=6.61 vs. 8.89, p≈.11 in the high-variance condition, 

Mann-Whitney test; MAD=7.39 vs. 7.83, p≈.92 in the low-variance condition, Mann-

Whitney test). Moreover, both self-choosers and revisers were only slightly less 

accurate when compared to TTM in both high- (MAD=6.61 vs. 6.43, p≈.84 for self-

choosers, Mann-Whitney test; MAD=8.89 vs. 7.33, p≈.27 for revisers, Mann-Whitney 

test), and low-variance conditions (MAD=7.39 vs. 6.55, p≈.57 for self-choosers, Mann-

Whitney test; MAD=7.83 vs. 5.69, p≈.13 for revisers, Mann-Whitney test). As with not 

much room for improvement, revisers' final estimates showed only small gains in 
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accuracies, not significantly different from initial estimates (MAD=8.53 vs. 8.88, p≈.56 

in the high-variance conditions, Mann-Whitney test; MAD=5.72 vs. 7.83, p≈.12 in the 

low-variance conditions, Mann-Whitney test). 

 

 

Table 3.3. Mean absolute deviations of estimates, advices, and revision strategies. 

 

 

Among dissensus estimates, the levels of accuracy did not differ between self-choosers 

and revisers in the high-variance condition (MAD=14.36 vs.16.86, p≈.67, Mann-

Whitney test),but in the low-variance condition self-choosers exhibited significantly 

better accuracy (MAD=6.38 vs.13.58, p<.05, Mann-Whitney test). Comparing to TTM, 

participants' initial estimates were significantly less accurate in both high- (MAD=14.36 

vs. 5.95, p<.05 for self-choosers, Mann-Whitney test; MAD=16.86 vs. 7.82, p<.01 for 

revisers, Mann-Whitney test), and low-variance conditions (MAD=16.86 vs. 7.82, 

p<.01 for self-choosers, Mann-Whitney test; MAD=13.58 vs. 6.29, p<.001 for revisers, 

Mann-Whitney test). Those dissensus estimates that were revised, accuracies of 

revisions improved significantly from their initial figures (MAD=8.64 vs. 16.86, p<.01 

in the high-variance condition, Mann-Whitney test; MAD=7.95 vs. 13.58, p<.001 in the 

low-variance condition, Mann-Whitney test.). In fact, while accuracies of revisions were 

worse than TTM, the differences were not significant (MAD=8.64 vs. 7.82, p≈.68 in the 

high-variance condition, Mann-Whitney test; MAD=7.95 vs. 6.29, p<.10 in the low-

variance condition, Mann-Whitney test). 

 

3.3.2.3  Discussion 

 High variance  Low variance 

 
Initial 

estimate 
Revision TTM  

Initial 

estimate 
Revision TTM 

Consensus        

Self-chooser 6.61 n/a 6.43  7.39 n/a 6.55 

Reviser 8.89 8.53 7.33  7.83 5.72 5.69 

        

Dissensus        

Self-chooser 14.36 n/a 5.95  6.38 n/a 4.88 

Reviser 16.86 8.64 7.82  13.58 7.95 6.29 
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 The results from this experiment clearly suggested that having multiple advices 

could pressure DMs into incorporating others' opinions more, specifically, when DMs' 

own initial estimates appear as a dissensus.21 Indeed from this experiment, being a 

dissensus appeared to be a valid reason to revise, as such estimates proved to be 

significantly inaccurate when compared to estimates from advisors. On the other hand 

multiple advices could also adversely give DMs the reason to favor a non-revision if an 

initial estimate is a concensus.22 But analyses also showed that such estimates were 

already as accurate as advices, in fact the accuracies were not significantly different 

than if participants had decided to take the non-egocentric medians. 

 While a consensus-dissensus category mattered significantly at the first stage, it 

did not at the second stage where self-weights were chosen for revisers. In fact, among 

dissensus initial estimates that were adjusted only 52.5% and 40.0% of in the high- and 

low-variance conditions respectively were revised enough to become consensus to given 

advices. That is not being a consensus was a reason to revise but being a consensus was 

not a revision goal. For revisers, participants might have just combined estimates as in 

the model proposed by Soll and Larrick (2009).  

 Additional two factors, information about comparative estimate ability, and 

levels of price uncertainty, were also examined. From the results, participants who were 

aware of their higher expected accuracy appeared to use higher self-weights than others. 

But I did not find a low level of revision when an uncertainty level was high as I 

hypothesized. However it was possible that the difference in uncertainty levels was too 

narrow to generate a significant impact.  

 Overall, the strategy used by participants in this experiment could be 

summarized as a revise-if-dissensus (RiD) heuristic, where DMs adhere to their initial 

estimates if they are a consensus, and combine their initial estimates and the SOs using 

some level of self-weight when those initial estimates are a dissensus. 

 

 

3.4  Reputation competition and herding 

                                                
21

 Revisions in this case featured self-weights (self-choosers and revisers together) significantly lower 

than 0.7 (M=0.61, p<.05 in the high-variance condition, Mann-Whitney one-sided test for a mean of 

0.7; M=0.58, p<.001 in the low-variance condition, Mann-Whitney one-sided test for a mean of 0.7). 
 
22 Revisions for consensus estimates featured self-weights (self-choosers and revisers together) as high 

as 0.7 (M=0.67, p≈.19 in the high-variance condition, Mann-Whitney one-sided test for a mean of 0.7; 

M=0.77, p<.01 in the low-variance condition, Mann-Whitney one-sided test for a mean of 0.7). 
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 The normative analysis by Froot et al. (1992) showed that in speculative 

trading when the investment time horizon was short, herding (i.e. adopting a 

consensus opinion) was the equilibrium, as traders tried to infer information from 

trades that other had made. This, the authors argued, would lead to inefficiencies as 

the market as a whole used too much of some types of information and too little, or 

even none, of others. The decision to herd might be different between DMs of 

different competence. In the model by Trueman (1994), two analysts made and 

announced earnings forecasts based on private information. However, when the more 

competent analyst made the announcement first, in which the forecast was optimistic, 

the less competent analyst would be more likely to adjust the forecast in line with 

that first announcement.  

DMs’ concern for their reputations has also been suggested as a reason for 

herding, and indeed financial analysts surveyed by Brown et al. (2013) claimed that 

their standings in analyst rankings were much more importation than the accuracy of 

their forecasts. Scharfstein and Stein (2001) developed a model with two managers 

making decisions on a corporate investment using a market signal and each other’s 

decision. When the sole objective was a return on investment, one manager’s 

investment decision would be based on information inferred from the other 

manager’s decision as well as the information from the market signal. But when the 

concern about the reputation (“smart” versus “dumb”) was in the equation, the 

equilibrium dictated that each manager always mimicked investment decision of the 

other manager. Studies of the field data concerning decisions made by financial 

professionals showed herding as a result of a career concern, i.e. a practical form of a 

reputation concern. Chevalier and Ellison (1999) analyzed the portfolio choices of 

mutual fund managers during the years 1992-1994 and found that younger managers 

were more likely to avoid unsystematic risk by constructing their portfolios in a more 

conventional manner, i.e. following the mean industry sector weighting beta. They 

suggested that such herding among younger managers were the result of a career 

concern, since after controlling for the fund performances, young managers whose 

choices deviated more from the unsystematic risk level in their objective group were 

more likely to lose their employment. Hong et al. (2000) also found that analysts 

faced a grimmer probability in their career prospect if they had had a poor forecast 

performance in the past especially when that forecast deviated widely from the 

consensus. As a result, inexperienced analysts were less likely to be the first to issue 
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a forecast, more likely to revise their forecast multiple times, and their forecasts 

tended not to deviate from the consensus. However when Clement and Tse (2005) 

examined financial analysts’ annual earnings forecasts during the years 1989 to 

1998, they found the motivation for a bold forecast revision in factors other than a 

career concern. Factors associated with boldness, e.g. a size of an analyst's brokerage 

firm, did not predict the job termination after making a bold forecast, while factors 

that predicted the job termination had an opposite effect, e.g. analysts who followed 

a large number of firms or industries were often safe after making a bold forecast, 

but these analysts were also more likely to make a forecast close to a consensus. 

 

 

3.5  Experiment 2 

This experiment investigates if reputation competition will encourage DMs to 

revise more, i.e. to choose-self less or to apply lower self-weights to revisers, 

compared to results from Experiment 1. While DMs' reputation regarding estimate 

ability is complex involving both independent, i.e. accuracy of a judge herself, and 

comparative, i.e. accuracy ranking among other estimators. In this experiment I will 

focus only on the effect of a concern on ranking on revision decisions. 

 

3.5.1  Method 

 Procedures and stimuli. This experiment followed the procedures exactly as 

those of Experiment 1, with the same data sets for house prices and house 

characteristics. The only difference was that in this experiment participants were told 

that the rewards for the revisions in the estimation phase would depend on the 

rankings of how accurate their revisions were compared to the group of those four 

participants with whom they exchanged the estimates. For revisions, the reward of 40 

Euro cents would be given to a participant who produced the most accurate estimates 

among the group; the second most accurate participant would receive 20 cents; the 

third most accurate participants would receive 10 cents; the least accurate 

participants would receive no reward. 

 Participants. Sixteen participants aged between 18 and 28 years took part in this 

experiment, recruited via emails from the pool of undergraduate students at Universitat 

Pompeu Fabra registered with the experimental laboratory. Eight were female, eight 
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were male. Participants received a participation fee of 3 Euros plus a performance-based 

reward. The mean remuneration was 12.28 Euros. 

 

3.5.2  Results 

 Some responses items were discarded according to the same criteria as in the 

first experiment,23 after which in the high-variance condition there were 68 consensus 

initial estimates, and 77 dissensus initial estimates left; in the low-variance condition 

there were 62 consensus initial estimates, and 71 dissensus initial estimates left. 

 

3.5.2.1  Revision patterns 

 Self-weight distributions. The revision patterns were largely similar to those in 

the previous experiment. Revision choices depicted in Figure 3.6 also suggested that in 

this experiment revision decisions similarly appeared to be a two-step process of 

choosing whether to revise or not, and then if choosing to do so, how much to revise.  

 

 

Figure 3.6. Distribution of self-weights by variance levels, Experiment 2 

 

 

 

                                                
23

   There was no apparent outlier. I discarded 13 and 19 items from the high- and low-variance conditions 

that had initial estimates with a distance of less than 2 from the SO. Additional 2 and 8 items were 

discarded from the high- and low-variance conditions respectively due to that their revisions lay 

outside the range covered by all of the item's estimates. Lastly, 4 and 6 items were discarded from the 

high- and low-variance conditions respectively as their self-weights were higher than 1. 
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Figure 3.7 demonstrated that that an estimate was a consensus or a dissensus mattered in 

whether participants would choose to maintain their initial judgment. 

 

 

Figure 3.7. Distribution of self-weights by variance levels and types of initial estimates, 

Experiment 2 

 

 

 

 Choosing self. The results of GEE logit regression revealed that only the main 

effect of initial estimates' consensus-dissensus category was significant (p<.001), but 

not the effects of the market uncertainty (p≈.62) or of information of past comparative 

performance (p≈.73); none of the interaction effects among the three factors was 

significant either. Figure 3.8 shows, as in Figure 3.7, that participants were significantly 

more likely to choose-self when their initial estimates were consensus than when they 

were dissensus (M=0.52 vs. 0.24, p<.001), in fact this is true in both the high- (M=0.49 
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(B)  Dissensus estimates,  high variance
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(C)  Consensus estimates,  low variance
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(D)  Dissensus estimates,  low variance
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vs. 0.29, p<.01) and the low-variance conditions (M=0.57 vs. 0.20; p<.001). The 

difference of likelihoods to choose-self when the price variance was high and when it 

was low was negligible (M=0.38 vs. 0.37, p≈.91). When their initial estimates were 

consensus participants were less likely to choose-self in the high- than in the low-

variance (M=0.49 vs. 0.57, p≈.54), but among dissensus estimates, the result was the 

opposite (M=0.29 vs. 0.20, p≈.27). The effects were not significant in either case. 

 

 

Figure 3.8. Proportions of choose-self revisions, Experiment 
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than dissensus estimates did (M=0.62 vs. 0.54, p≈.29).This was also the case for both 

the high-(M=0.66 vs. 0.56, p≈.37), and the low-uncertainty conditions (M=0.56 vs. 

0.51, p≈.68). Participants used higher, albeit not significantly, self-weights in the high- 

than in the low-variance conditions (M=0.60 vs. 0.53, p≈.98). The same pattern was 

present both when considering only consensus estimates, (M=0.66 vs. 0.56, p≈.88), and 

when considering only dissensus estimates participants (M=0.56 vs. 0.51, p≈.57). 

 

 

Figure 3.9. Mean self-weight in revisions among revisers' responses, Experiment 2 
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experiment (Figure 3.10) whether when initial estimates were consensus (M=0.49 vs. 

0.44, p≈.56 in the high-variance condition; M=0.57 vs. 0.52, p≈.82 in the low-variance 

condition), or dissensus (M=0.29 vs. 0.16, p≈.14 in the high-variance condition; 

M=0.20 vs. 0.11, p≈.25 in the low-variance condition). 

 

 

Figure 3.10. Proportions of choose-self revisions, Experiment 1 & 2 

 

 

 

Figure 3.11. Mean self-weight in revisions among revisers' responses, Experiment 1 & 2 
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Also, as depicted in Figure 3.11, contrary to what expected this experiment saw 

significantly higher self-weights applied to consensus initial estimates than the first 

experiment (M=0.66 vs. 0.42, p<.05 in the high-variance condition; M=0.56 vs. 0.53, 

p<.05 in the low-variance condition). But with dissensus initial estimates, the 

differences in self-weights between two experiments were small and not significant 

(M=0.56 vs. 0.53, p≈.57 in the high-variance condition; M=0.51 vs. 0.52, p≈.83 in the 

low-variance condition).  

 Effect of rankings. From the results above, the design of the rank-based reward 

scheme in this experiment did not produce any significantly higher revision levels than 

those from Experiment 1 as expected. Reasons could include that participants in this 

experiment did not take ranking into consideration as intended. But expected ranking 

depended on how participants perceived the likelihood that their own estimates were 

the most accurate, in which case then ranking is clearly 1, compared to the likelihood 

that the SOs were the most accurate, in which case the ranking depends on how many 

advices were closer to the SO's than their own estimates. Since I did not collect the 

information on such perceived accuracy likelihoods, only the SO-based ranking was 

featured in the following analyses. Figure 3.12 shows the proportions of choosing-self 

under different rankings. 

 Among consensus estimates (whose rankings could be either 2nd or 3rd), the 

results from the GEE logit regressions revealed that the difference in the proportions of 

choosing-self between ranking 2nd or 3rd was not significant in either the first 

experiment with an individual-based reward scheme (M=0.52 vs. 0.36, p≈.16 in the 

high-variance condition; M=0.48 vs. 0.55, p≈.22 in the low-variance condition), or the 

second experiment with an rank-based reward scheme (M=0.54 vs. 0.65, p≈.55 in the 

high-variance condition; M=0.19 vs. 0.21, p≈.87 in the low-variance condition). This is 

not unexpected as participants were likely to perceive their consensus estimates to be at 

least equally accurate compared to the SOs, making the rankings used in the regressions 

here irrelevant. For dissensus estimates (whose rankings could be either 3rd or 4th) 

from which participants should expect accuracies inferior to the SOs, making rankings 

more relevant, indeed in the rank-based second experiment, ranking better at 3rd 

resulted in lower proportions of choosing-self than ranking worse at 4th as expected, 

and the difference approached significant in the high-variance condition (M=0.44 vs. 

0.25, p<.10), and it was significant in the low-variance condition (M=0.35 vs. 0.14, 

p<.05). While the same patterns were also found in the first experiment 1, the 
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difference was not significant (M=0.20 vs. 0.14, p≈.56 in the high-variance condition; 

M=0.18 vs. 0.08, p≈.34 in the low-variance condition). 

 

  

 Figure 3.12. Proportions of choose-self revisions by rankings, variance levels, 

and types of initial estimates, Experiment 1 & 2 
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Experiment 1, the results of this experiment did not exhibit significantly higher levels 

of advice-taking. However ranking was not totally a non-issue for experimental 

participants. Further analyses did reveal that there were times, specifically when an 

initial estimate was a dissensus, that the concern that ranking of participants' initial 

estimates significantly affected first-stage decisions whether to revise. The pattern 

between choosing self and rankings was similar in Experiment 1, but it was probably 

due to the fact that worse-ranking estimates were on average farther from the given 

advices, making them look more dissenting than better-ranking ones. In the first 

experiment, ranking per se (or if interpreting the distance from the SO in terms of 

ranking) was not a significant factor.  

 That a level of advice taking found in Experiment 2 was not higher than what 

found in Experiment 1 maybe due to that participants in Experiment 2 did not consider 

ranking as an important factor, or that being worse ranked did not come with a reward 

level low enough to trigger herding. Compared to the real-world setting, this 

experiment's design could not create continuous and cumulative pressure that social 

comparison usually exerts, such that a current ranking can have implication on future 

rewards. Moreover, researches in estimators' herding are principally from the field of 

finance. The high revision level when reputation is of a concern might be due to 

idiosyncratic nature of the industry that the design of Experiment 2 did not capture. 

Also, as mentioned earlier, ranking is only a part of what a reputation consists of. 

  

 

3.6  Benefit of multiple advices: revise-if-dissensus heuristic 

 Results from Experiment 1 showed that participants decided whether to revise 

their estimates based on how they appeared in comparison to advices. A consensus 

estimate was likely to be retained, while a dissensus estimate was likely to receive a 

revision. In fact, analyses of estimates' accuracies revealed that this categorization was a 

reliable tool to gauge an expected accuracy of an estimate, that is dissensus estimates 

were less accurate than advices while consensus estimates were as good as advices, 

even as good as a recommended revision heuristic such as TTM. This way of 

categorizing an estimate is only possible when a judge receives more than one advice.  

 To more completely explore the benefit of having multiple  advices I conducted 

a simulation study using estimates collected from  both Experiments 1 and 2, which 
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totaled to 317 estimates, outliers excluded, from the high-variance market, and 320 

estimates from the low-variance market. Estimates for the same house of the same 

market were grouped together, and within each group I constructed exhaustive 

permutations of four-estimates sample set. There were a total of 1,004,646 and 

1,048,326 sets in the high- and low-variance markets respectively. The first estimate in 

each set was assigned to be of a judge, the second estimate of the first advisor, the third 

estimate of the second advisor, and the fourth estimate of the third advisor. Four types 

of revision strategies were computed for each set. Two assumed that a judge received 

three advices: 1) revise-if-dissensus heuristic revision, or RiD, where a judge retained 

her estimate when it is a consensus, and revised her estimate only when it was a 

dissensus by combining her estimate with the median advice using a certain level self-

weight, and 2) take-the-median of all four estimates, or 4E-TTM, where a judge always 

took the median of the four estimates as her revision. The other two assumed that a 

judge received only an advice, i.e an estimate from the first advisor: 3) one-advice 

combination, or 1A, where a judge combined her initial estimate with an advice using a 

certain level self-weight, and 4) 1-advice take-the-median, or 1A-TTM, where a judge 

used a middle value between her estimate and an advice. Accuracy of each revision was 

measured by MAD from the true-model price of the house that each estimate targeted. 

The results are shown in Figure 3.13. 

 

 

Figure 3.13. Mean absolute deviations from true-model prices,by estimate revision 

strategies 
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 The benefit of multiple advices is clear. It is obvious that accuracies of TTM 

improve with the number of estimates in a set, 4E-TTM has lower MADs than 1A-

TTM in both levels of variance. However DMs does not often choose the median as 

a revision. For that, having multiple advices can improve accuracies of revisions 

especial when there is a high level of market uncertainty. RiD of four advices, itself a 

sub-optimal strategy when there are multiple advices, outperforms 1A-TTM, that is 

the best strategy when having only one advice, when DMs choose a self-weight 

below 0.8, which is a high threshold comparing to the average self-weights below 0.5 

that participants in this study decided to use. When the variance is low, RiD yields a 

similarly good level of accuracy at a self-weight of 0.5 or below which was 

approximately what experimental participants applied to revise their estimates. 

  

 

3.7  General discussion 

 Time and time again, studies have shown that people are likely to adhere to their 

own initial opinions, and tend to see opinions of others through the subjective lens that 

their own opinions shape. This results in under-utilization of information that other 

opinions can contribute. Explanations for such bias include that people are generally 

over-confident, that they know how their own opinions are formed but not how others 

are, that they do not want their efforts and other resources that they have spent to arrive 

at certain opinions to go to waste, or just that people are generally reluctant to change. 

However, most of the studies on advice-taking concern the case where DMs receive 

only one other opinion, while it is not unusual that DMs would seek at least a few 

advices before making final decisions. The main purpose of this chapter is to examine 

whether people, being social animals that are subject to a peerpressure, would choose 

utilize advices more to conform to a group consensus. 

 Results from the first experiment demonstrate that people are much more willing 

to adjust their opinions, in this case numerical estimates of uncertain quantity, if they 

appear to be an odd-man-out dissensus. On the other hand people are also more satisfied 

with opinions if theyare already close to a group’s consensus. This fast and frugal 

(Goldstein & Gigerenzer, 2004) heuristic of revise-if-dissensus appears to be 

ecologically valid as dissensus opinions indeed prove to be in need of a revision, unlike 

consensus opinions. The following experiment tests if adding a reward-compatible 
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pressure of social comparison will encourage a higher degree of advice taking as 

previous research has proposed. The results of the second experiment also show that 

people's penchant to conform is translated into opinion revision. However the new 

ranking-based reward scheme does not reduce further either the tendency to retain 

original estimates or the level of self-weight used to combine estimates. 

 Soll and Larrick (2009) argue that once DMs decide to revise, they are non-

egocentric taking a simple average between their estimates and an advice they receive. 

The model used in this chapter assumes that combine their estimates with one single 

estimate, the SO, that represents all advices that DMs receive. As largely all factors 

explored here do not have significant effect over the level of self-weights used for 

estimate combination, so it is possible that in the set-up of this study DMs also simply 

take the average between their estimates and the SOs. But distributions of self-weights 

here do not feature a peak around 0.5 like what is exhibited in the study by Soll and 

Larrick (2009). That the peaks of distributions are located above 0.5 suggests that the 

SOs skew towards DMs' estimates, which in turn indicates that DMs anchor at their own 

estimates when choosing a representative of each advice set. In doing so, they exert an 

egocentric bias indirectly over revision choices. While this bias adversely affects 

accuracy improvement in revisions, it is not likely to be so large that it nullifies the 

advantage of multiple advices over a single advice.  

 One factor unexamined here that future research can extend from this study is 

the effect of a group size. Groups with different numbers of members exert 

differentially a pressure to conform (Asch, 1951, Gerard et al., 1968), and one could 

expect that the larger an advice set, the more likely DMs will revise. However with four 

advices or more, for example, DMs estimates could be falling into a space between 

advices but not adjacent to a median of an advice set, making it neither a clear 

consensus nor a definite dissensus. When that happens, it is possible that DMs, subject 

to a confirmation bias, will interpret surrounding advices supportive of their own 

opinions as close to a consensus than they objective are (Gilovich, 1990), and the 

situation could simply obviate revision. Also, as estimate aggregation is affected by the 

skew of an estimate set (see Chapter 1), more advices means any single outlying advice 

will not be so weighty over inference of the SO. More advices might even reduce the 

degree that egocentricity biases how DMs infer a representative opinion. 
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