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Abstract

In this thesis we present the results of our research on duality theory for non-

classical logics under the point of view of Abstract Algebraic Logic. Firstly, we

propose an abstract Spectral-like duality and an abstract Priestley-style duality for

every filter distributive finitary congruential logic with theorems. This proposal

aims to unify the various dualities for concrete logics that we find in the literature,

by showing the abstract template in which all of them fit. Secondly, the dual

correspondence of some logical properties is examined. This serves to reveal the

connection between our abstract dualities and the concrete dualities related to

concrete logics. We apply those results to get new dualities for suitable expansions

of a well-known logic: the implicative fragment of intuitionistic logic. Finally, we

develop a new technique that can be modularly applied to simplify some of the

obtained dualities.

Resumen

En esta tesis presentamos los resultados de nuestra investigación acerca de la

teoŕıa de la dualidad para lógicas no clásicas desde el punto de vista de la Lógica

Algebráica Abstracta. En primer lugar, proponemos una dualidad abstracta de

tipo espectral y otra dualidad abstracta de tipo Priestley para cada lógica congru-

encial, filtro distributiva, finitaria y con teoremas. Esta propuesta pretende unificar

las distintas dualidades para lógicas no clásicas que encontramos en la literatura,

mostrando el esquema abstracto en el que todas ellas encajan. En segundo lugar,

la correspondencia dual de algunas propiedades lógicas es examinada. Esto sirve

para revelar la conexión que existe entre nuestras dualidades abstractas y las du-

alidades concretas relacionadas con lógicas concretas. Aplicamos estos resultados

para obtener nuevas dualidades para expansiones apropiadas de una lógica bien

conocida: el fragmento implicativo de la lógica intuicionista. Finalmente, desarrol-

lamos una nueva técnica que puede ser aplicada de forma modular para simplificar

algunas de las dualidades obtenidas.
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mı́ y me han ayudado a alcanzar mis metas. Y finalmente, a Juan, que ha sido mi

bote salvavidas en esta traveśıa por el mar del saber.
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teléfono y marcar los tres números de urgencias: polićıa, bomberos y ambulancia. Pero
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Introduction and Summary of Contents

The main goal of this dissertation is to show that Abstract Algebraic Logic pro-

vides the appropriate theoretical framework for developing a uniform and abstract

duality theory for non-classical logics.

Algebraic Logic can be seen as the study of logics through the study of different

sorts of algebra related mathematical structures. The basic point is the study of

how algebra-based structures can be associated to a given logic, so they provide, in

a broad sense, algebraic semantics for the logic. The notion of algebraic semantics

is very natural under a mathematical point of view, as it is usually very close to

the syntactic presentation of the logics. However, other semantic approaches such

as Kripke-style semantics have traditionally led to more intuitive comprehension

of the nature of non-classical logics. These two semantic approaches are, in many

cases, two sides of the same coin. And this can be shown through the powerful

tools that category theory provides us with.

Duality Theory

Duality theory usually refers to the study of categorical dualities in math-

ematics. Category theory is commonly considered an appropriate mathematical

framework for the study of the relations between mathematical objects of different

nature. One of the basic points of this theory is that not only the objects are taken

into account, but also the morphisms that transform an object into another. For

example, for an arbitrary logic, we might define a category by considering as objects

the algebra related structures that are associated with the logic, and as morphisms

the homomorphisms between the underlying algebras (perhaps requiring some addi-

tional conditions). A (categorical) duality is a special relation between two different

categories. We should say, to be more precise, a dual equivalence of categories. This

is a precise formulation of two related correspondences: one between the objects of

the two categories, and the other between the morphisms between two objects of

one of the categories, and the morphisms between the corresponding objects of the

other category. The key point of a duality is that within these correspondences,

morphisms are reversed. And this is precisely what makes a dual equivalence of

categories such an interesting phenomenon under a mathematical point of view.

In relation to (mathematical) logic, the work by Stone on representation of

Boolean algebras [69] is usually taken as the pioneering work of a fruitful field

of study, that we refer to simply as Stone/Priestley duality. Stone studied how

Boolean algebras, that are the algebraic counterpart of classical logic, can be du-

ally described in terms of compact totally disconnected Hausdorff spaces, that are

called Stone spaces (a. k. a. Boolean spaces). This yields to a dual equivalence of

categories, one having algebras as objects, and the other having topological spaces

as objects. And it also results in an elegant proof of completeness of classical logic

with respect to truth table semantics. What makes Stone duality a powerful math-

ematical tool is precisely the fact that it is a dual equivalence of categories. This

1



2 Introduction and Summary of Contents

implies, for instance, that dual of injectivity is surjectivity (and vice versa), or duals

of homomorphic images are closed sets.

Further generalizations of Stone’s approach yield to Spectral-like and Priestley-

style dualities for distributive lattices. Throughout these and other related dua-

lities, we can build bridges between algebraic and Kripke-style semantics of some

non-classical logics. For example, we can use extended Stone duality for Boolean

algebras with operators [58] to prove completeness of the local and the global

consequences of normal modal logics with respect to Kripke frames. Or we can

use Esakia duality for Heyting algebras [30] to prove completeness of intuitionistic

propositional logic with respect to intuitionistic Kripke frames.

One of the strengths of Stone/Priestley duality is precisely that it allows us

to use topological tools in the study of logic. Of particular interest is the theory

of extended Priestley duality. Within this theory, a modular account of a wide

range of dualities for suitable expansions of distributive lattices is carried out.

More precisely, Priestley duality for distributive lattices is used to get the basic

building blocks over which the dualities for the expansions are built. A suitable

expansion of a distributive lattice is dually represented by a suitable expansion of

the dual Priestley space of the underlying distributive lattice. This theory accounts

uniformly for a wide range of dualities for non-classical logics, such as the already

mentioned dualities for Boolean algebras with operators.

A closely related topic that also yields to bridges between algebraic and Kripke-

style semantics of non-classical logics, is the theory of canonical extensions. This

theory consists of the study of how a given algebraic structure (that is usually

lattice-based) can be embedded in a complete lattice. Specific properties, such as

compactness and denseness, are required for such embedding. By constructing the

canonical extensions of algebras related with non-classical logics, and then apply-

ing discrete dualities (i. e. dualities that do not involve topology) to the resulting

complete algebras, completeness of non-classical logics with respect to Kripke-style

semantics can also be proven. This is usually an alternative way of getting such

completeness results, but there are cases when it is the only known way, as in the

case of several substructural logics that were studied in [26].

In summary, duality theory in (mathematical) logic has been proven to be a

fruitful field of study from which, among other results, completeness with respect

to Kripke-style semantics of a wide range of non-classical logics has been proven.

We are interested in the topological dualities that are encountered along the way,

and more precisely, in the so called Spectral-like and Priestley-style dualities. We

aim to develop a common framework that reports all these dualities in a uniform

way.

Abstract Algebraic Logic

Abstract Algebraic Logic (AAL from now on) is a general theory of the alge-

braization of logic. Emphasis is put on the general process of associating logics and

algebra related mathematical structures, regardless of the language and the way in

which the logics are defined. Algebras, logical matrices and generalized matrices

have been used to develop a general and uniform procedure for canonically asso-

ciating the class of S-algebras AlgS, the class of reduced S-algebras Alg∗S or the
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intrinsic variety of S, to any logic S. In [35] it is argued why AlgS should be taken

as the canonical algebraic counterpart of any arbitrary logic, and it is currently

considered so in AAL.

From this point of view, the study of which metalogical properties of the logics

correspond with which algebraic properties of the related algebras (or algebra-

based structures) is one of the main topics. These results are known as bridge

theorems. For example, it is well-known that for any algebraizable logic S, to have

a deduction theorem is related to the property that the members of AlgS have

uniformly equationally definable principal relative congruences.

Another topic of AAL is to classify logics according to their abstract properties

or to the algebraic properties of their algebraic counterparts. Mainly two hierarchies

have been studied in depth: the Frege hierarchy and the Leibniz hierarchy. The

Frege hierarchy is a classification scheme of logics under four classes defined in terms

of congruence properties of the algebraic counterparts of the logics. The Leibniz

hierarchy presently consists of twenty different classes of logics, that form a lattice

when ordered by inclusion, whose bottom element is the class of implicative logics.

The notion of closure operator is one of the key points of this field of study.

It is worth mentioning that within AAL, logics are studied as deductive systems,

this is, as systems concerning validity of inferences, instead of validity of formuli.

Formally, a logic is a substitution invariant closure relation on a formula algebra.

This approach is precisely what allows us to study in a uniform way logics that

have been defined according to different methods, such as Hilbert-style presenta-

tions, natural deduction, Gentzen calculus, tableaux, algebraic semantics, relational

semantics, game-theoretic semantics, etc. Moreover, this takes us to another in-

teresting topic in AAL, namely, the study of how to define logics from classes of

algebras (or algebra based structures).

In summary, although AAL is a relatively young field of study, its value for

a uniform account of the study of non-classical logics has been largely proven.

In particular, the canonical algebraic counterpart of any arbitrary logic has been

studied. Given this abstract and general study of the algebra-based structures that

are canonically associated with arbitrary logics, the following question arises: can

we regard all dualities for non-classical logics under this abstract point of view, and

search for an abstract and general duality theory that unifies all the results that

are scattered throughout the literature?

Duality Theory and Abstract Algebraic Logic

In the late eighties, Wójcicki studied in his Theory of logical calculi [73] which

abstract properties of the logics allow us to define a referential semantics for them.

The concept of referential semantics aims to capture under a uniform point of

view different semantic approaches such as frame semantics, Kripke-style semantics,

relational semantics, etc. The basic underlying idea is that the truth values of the

formuli depend on reference points. Thus models are based on non-empty sets of

reference points, endowed with additional structure. Each propositional variable is

assigned to a subset of points, and this assignment is extended to any formuli using

the additional structure, that is always explicitly or implicitly algebra-based.
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Wójcicki identified selfextensional logics as those that admit referential seman-

tics. Selfextensional logics might be defined, in brief, as those logics for which the

relation between two formuli of having the same consequences is a congruence in the

formula algebra. This is one of the four classes of algebras of the Frege hierarchy,

the others being congruential logics, Fregean logics and fully Fregean logics.

Wójcicki studied under an abstract perspective how referential semantic models

for selfextensional logics correspond with the algebra based structures that AAL

associates with such logics. The correspondence studied by Wójcicki was recently

formulated by Jansana and Palmigiano as a proper categorical duality in [56].

More specifically, they proved that for any selfextensional logic S, there is a dual

equivalence between the category of reduced generalized S-models and generalized

morphisms between them, and the category of reduced S-referential algebras and

strict homomorphisms between them. They also studied the restriction of this dua-

lity to congruential (a. k. a. fully selfextensional or strongly selfextensional) logics.

These logics are particularly well-behaved selfextensional logics. They can be de-

scribed as those logics for which the property of selfextensionality transfers to every

algebras. We do not go into details here. What we aim to highlight is that these

studies already tackled the problem of developing a uniform account of the bridges

that can be built between algebraic and referential semantics for non-classical logics

under an abstract algebraic logic point of view.

In [56] it was remarked that their duality serves as a general template where a

wide range of Spectral-like and Priestley-style dualities related with concrete logics

can fit. But they do not inquire further into this topic, and their construction

is rather far from those concrete examples. Our aim is to provide a construction

as general as possible, but closer to the dualities for non-classical logics that are

already well-known.

To accomplish this, the study of various recent dualities for non-classical logics

that we find in the literature was a crucial step. It is worth noting that until the

mid-2000s, all categories of algebras (and homomorphisms) for which Spectral-like

or Priestley-style dualities had been studied were built upon lattice-based algebras,

in most cases distributive. In recent literature, however, we find studies that extend

the same ideas beyond the distributive lattice setting. There have been considered

categories whose objects are the algebraic counterparts of certain fragments of in-

tuitionistic logic, that do not have conjunction and disjunction at the same time or

that do not have any of these connectives [5,6,11,15,18,19].

It was precisely through the study of those dualities that we came up with

the appropriate notions of filters upon which the general theory can be formulated

in such a way that it subsumes all the related results in the literature. For the

Spectral-like duality, the notion of irreducible logical filter is the basic tool. These

are the meet-irreducible elements of the lattice of logical filters. For the Priestley-

style duality, the issue is more involved. Optimal logical filters turn out to be the

right tools, and these filters are defined through another notion of strong logical

ideal, that will be introduced when appropriate.

The approach that we adopted is the following: we examined sufficient condi-

tions for a logic in order to posses a Spectral-like or a Priestley-style duality for

the class of algebras AlgS, that is the one canonically associated to it according to
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AAL. Obviously, from the mentioned work by Wójcicki [73] and by Jansana and

Palmigiano [56], it follows that we should focus on congruential logics. Moreover,

we encountered that we need to restrict ourselves to filter distributive logics. This

class of logics, first studied by Czelakowski [21], consists of the logics for which the

collection of logical filters of any algebra is a distributive lattice. Such property is

satisfied by any logic with a disjunction, or with the deduction-detachment theo-

rem, among others. Filter-distributivity comes as a natural assumption, given that

distributivity, as it was already mentioned, is the ground assumption for Spectral-

like and Priestley-style dualities. Further assumptions over the logics are finitarity

and having theorems. Finitarity is used to get necessary separation lemmas, and

having theorems is a technical requirement that we assume for convenience.

All these properties of logics have been extensively studied within AAL, and

they are satisfied by many logics such as classical logic (and its fragments), in-

tuitionistic logic (and its fragments), local consequences of modal logics,... Some

well-known logics such as relevance logic R and  Lukasiewicz’s infinite-valued logic

are not congruential (according to their usual formulation). However, in [53–55]

several strategies have been studied according to which a logic S with certain prop-

erties can be endowed with a congruential logic companion S ′ so that AlgS = AlgS ′.
And these strategies apply, in particular, for those mentioned logics.

In the present dissertation we prove that there is a Spectral-like duality and

a Priestley-style duality associated with any logic satisfying such conditions. The

precise and detailed formulation of those dualities is one of the main contributions

of this dissertation. Most of the dualities for non-classical logics that we encounter

in the literature fit straightforwardly in our general pattern and, moreover, new

dualities might potentially be studied out of it.

Those dualities for the category of S-algebras and homomorphisms, for any

filter distributive finitary congruential logic S, are the base that supports all other

results in the dissertation. Notice that we follow the spirit of AAL, and we work with

a fixed but arbitrary language. Our abstract approach yields, as it also happened

in [73] and in [56], to dual categories that also possess an algebraic nature. This

drawback cannot be bypassed within this abstract program, since we need the

arbitrary language to somehow be encoded in the dual spaces. However, the obstacle

can be overcome for concrete logics. We usually refer to the dualities for which the

dual categories have no explicit algebraic natura, as elegant dualities. Through

the study of the dual properties that correspond with several properties of logics,

we come up with a modular account of how the nature of the dual spaces can be

substantially simplified whenever the logics are sufficiently well-behaved.

This analysis, however, is not satisfactory for some logics that are not so well-

behaved, that is to say, we address this problem under a more concrete point of

view. We focus on some expansions of the implicative fragment of intuitionistic

logic, for which our general theory does not supply elegant dualities. Our contri-

bution consists of the development of a new strategy for defining dualities for such

expansions in a modular way. For this part of the dissertation, we were inspired by

extended Priestley duality. In the same way as the duality for distributive lattice

is taken as the cornerstone from which dualities for distributive lattice expansions



6 Introduction and Summary of Contents

are defined, we take the dualities for Hilbert algebras (that are the algebraic coun-

terpart of the implicative fragment of intuitionistic logic) as the cornerstone from

which dualities for suitable expansions of the implicative fragment of intuitionistic

logic can be defined.

Summary of contents

We will now give a broad overview of the main contents of this dissertation. It

has three linear parts that should preferably be read consecutively, since the first

part introduces the preliminaries in which the other two are supported, and the

second part presents the general theory with which the results in the third part are

closely related.

Part 1. Preliminaries and Literature Survey. This part consists of three

independent chapters. As its title indicates, we introduce here the preliminaries

and basic notations, as well as a non-exhaustive account of the literature on duality

theory for structures related with non-classical logics.

In Chapter 1 we briefly discuss some of the mathematical background knowl-

edge which we assume that the reader is familiar with and we introduce the nota-

tional conventions that we use throughout the dissertation. Of particular interest is

§ 1.6, where we revise with more detail some concepts from AAL that often appear

later on.

The notion of closure operator plays a prominent role in AAL, and it is also

a leading notion in this dissertation. Therefore the entire Chapter 2 is devoted

to the study of filters, ideals and separation lemmas associated with closure ope-

rators. Some of these results were already known, and others are new. Moreover,

this serves as an excuse to introduce two algebraic structures with which we deal

throughout this dissertation, namely meet-distributive semilattices with top element

(distributive semilattices for short) and Hilbert algebras.

In Chapter 3 we present what is meant by Stone/Priestley dualities or, accord-

ing to the terminology that we introduce thereafter, by Spectral-like and Priestley-

style dualities. We survey the Spectral-like and Priestley-style dualities for distri-

butive semilattices and Hilbert algebras that we encounter in the literature. These

are dualities located out of the setting of distributive lattices, and from their analy-

sis we came up with the basic ideas for the abstract duality theory that is provided

later on.

Part 2. Duality Theory for Filter Distributive Congruential Logics.

This part is divided in two related chapters. We study in the first one the basic

tools that we need to develop the theory of the second one.

In Chapter 4 we argue about the interest of an abstract view of the duality

theory for non-classical logics. We review previous works in this respect, and we

bring in some notions such as referential algebra, irreducible and optimal S-filters

or S-semilattice that provide us with the toolkit we need for the next chapter.

This study encompasses some well-known results that were scattered throughout

the literature, and some new results as well.

The bulk of this part of the dissertation is contained in Chapter 5, where

the abstract Stone/Priestley dualities for a wide range of non-classical logics are
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systematically exposed. The analysis of the dual correspondence of the most im-

portant logical properties lead us to recover most of the dualities for non-classical

logics that we find in the literature.

Part 3. Applications to Expansions of the Implicative Fragment of

Intuitionistic Logic. Here we explore the applications of the work in Part 2 in a

concrete setting, namely, we focus on Stone/Priestley dualities for logics that are

expansions of the implicative fragment of intuitionistic logic. This part is again

divided in two related chapters.

In Chapter 6 we introduce several logics, all of which are expansions of the

implicative fragment of intuitionistic logic. We study their properties and how the

theory in Chapter 5 can be specialised for them. We show how the general theory

yields to new dualities for them, but in some cases, those dualities are not elegant.

We focus on the algebras associated with one of those troublesome logics, namely

the class of Hilbert algebras with Infimum, and we study their properties in § 6.5.1.

Finally in Chapter 7 we develop new Stone/Priestley dualities for a subclass

of Hilbert algebras with Infimum. And these can be used, similarly to what is

done in extended Priestley duality, to provide Stone/Priestley dualities for some of

those troublesome logics. Therefore, the work in Part 3 can be seen as a refinement

of the results of the theory in Part 2 for the particular case of expansions of the

implicative fragment of intuitionistic logic.





Part 1

Preliminaries and Literature

Survey





CHAPTER 1

Background and Notational Conventions

In this chapter we introduce the mathematical background that supports the

main body of this dissertation. The purpose of this chapter is to fix the notation

we use throughout the dissertation, and to introduce some notational conventions

that should be kept in mind.

Notational issues concerning Set theory, Order and Lattice theory, Topology,

Universal Algebra, Category theory and Abstract Algebraic Logic are treated in

the following sections. Of special interest is the last section, where we introduce

the concept of logic we work with.

Logics are denoted by calligraphic complexes of letters, e. g. S,H, IPC+ . . .

Algebraic structures, in particular algebras, are denoted by combinations of bold-

face letters, e. g. A,B,M, . . . , and their universes (or carriers) by the correspon-

ding light-face letters, A,B,M, . . . Classes of algebras are denoted by combinations

of blackboard bold letters, with maybe additional superscripts or subscripts, e. g.

H,DL,DH∧, and by ‘K-algebra’ we mean an algebra in the class K. Categories are

denoted by combinations of sans serif letters, with maybe additional superscripts

or subscripts, e. g. DL,Pr,HH , . . . Dual spaces of algebras are denoted by combi-

nations of letters beginning with a Fraktur capital letter, e. g. X,X1,Op∧(A), . . .

The expression ‘iff’ is used as an abbreviation of ‘if and only if’. The expression

‘. . . & . . . ’ is used as an abbreviation of ‘. . . and . . . ’. When introducing formal

definitions, we use ‘:=’. The symbol ‘=’ is used to express the fact that both sides

name the same object, whereas ‘≈’ is used to build equations that may or may not

be true of particular elements.

1.1. Set theory

We assume that the reader is familiar with elementary set theoretical notions

such as membership, x ∈ X, inclusion, Y ⊆ X, union, X ∪ Y , intersection, X ∩ Y
and difference, X \ Y . By ω we denote the set of all natural numbers. For any

subset Y ⊆ X, we use Y c, meaning the complement of Y with respect to X, as

an abbreviation of X \ Y . We write Y ⊆ω X to concisely say that Y ⊆ X is a

(possibly empty) finite subset of X. For X a set, P(X) denotes the powerset of X,

i. e. the collection of all subsets of X. For an equivalence relation R on a set X,

X/R denotes the quotient.

For f : X −→ Y a function between sets X and Y , by f−1[ ] : P(Y ) −→ P(X)

we denote the inverse image function, that maps any set U ⊆ Y to

f−1[U ] := {x ∈ X : f(x) ∈ U}.

11
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Moreover, by f [ ] : P(X) −→ P(Y ) we denote the function that maps any set

U ⊆ X to

f [U ] := {f(x) : x ∈ U}.
For functions f : X −→ Y and g : Y −→ Z, regarding composition of functions,

we use the right composition notation, where the first function applied is the right

one, as it is standard practice, and we write g ◦ f , or sometimes gf .

We also introduce a non standard notational convention, about which we warn

the reader whenever it is used: for f : X −→ P(Y ) a function between a set X and

the powerset P(Y ), by f̂ : P(X) −→ P(Y ) we denote the function that maps any

set U ⊆ X to

f̂(U) :=
⋂
f [U ] = {y ∈ Y : ∀u ∈ U, y ∈ f(u)}.

For R ⊆ X×Y a binary relation between sets X and Y , we use interchangeably

(x, y) ∈ R or xRy for denoting that the pair (x, y) belongs to the relation. By

R( ) : X −→ P(Y ) we denote the function that maps any element x ∈ X to

R(x) := {y ∈ Y : (x, y) ∈ R}.

By R−1( ) : P(Y ) −→ P(X) we denote the function that maps any set U ⊆ Y to

R−1(U) := {x ∈ X : ∃y((x, y) ∈ R & y ∈ U)}.

The former should not be confused with �R : P(Y ) −→ P(X), that denotes the

function that maps any set U ⊆ Y to

�R(U) := {x ∈ X : ∀y( if (x, y) ∈ R, then y ∈ U)}.

For binary relations R ⊆ X×Y and S ⊆ Y ×Z, regarding composition of relations,

we use again the right composition notation, this time against to the standard

practice, and we write S ◦R, or sometimes SR.

1.2. Order and Lattice theory

Our main reference for Order theory is Davey and Priestley [24]. We assume

that the reader is familiar with elementary order theoretical notions, such as qua-

siorder (set endowed with a reflexive and transitive binary relation), partial order or

partially ordered set or poset (quasiorder where the relation is also anti-symmetric),

lattice and distributive lattice. As usual, for 〈P,≤P 〉 a poset and elements a, b ∈ P ,

we write a ≤P b when the pair (a, b) belongs to the relation ≤P . When no confusion

is possible, we identify 〈P,≤P 〉 with P . We denote by P ∂ the dual of the poset P ,

namely the poset 〈P,≥P 〉, where for all a, b ∈ P , a ≥P b if and only if b ≤P a.

For 〈P,≤P 〉 a poset, for any a ∈ P we define ↑≤P a := {b ∈ P : a ≤P b}
and ↓≤P a := {b ∈ P : b ≤P a} and when the context is clear, we omit the

subscript using instead ↑a and ↓a. For U ⊆ P we define ↑U :=
⋃
{↑a : a ∈ U} and

↓U :=
⋃
{↓a : a ∈ U}. Moreover, we say that U ⊆ P is an up-set when ↑U = U ,

or equivalently, when for any a ∈ U , if a ≤P b for some b ∈ P then b ∈ U . Dually,

U ⊆ P is a down-set whenever ↓U = U . For any a ∈ P we call ↑a (resp. ↓a)

the principal up-set (resp. principal down-set) generated by a. Similarly, for any

U ⊆ P , ↑U (resp. ↓U) is said to be the up-set (resp. down-set) generated by U .

By P↑(P ) (resp. P↓(P )) we denote the collection of all up-sets (resp. down-sets) of

〈P,≤P 〉.
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For 〈P,≤P 〉 a poset, U ⊆ P is up-directed when for any a, b ∈ U there exists

c ∈ U such that a, b ≤P c. Dually, U ⊆ P is down-directed when for any a, b ∈ U
there exists c ∈ U such that c ≤P a, b.

Given two posets 〈P,≤P 〉 and 〈Q,≤Q〉, a function f : P −→ Q is said to be

order-preserving when for all a, b ∈ P , if a ≤P b, then f(a) ≤Q f(b). On the other

hand, f is order-reversing when for all a, b ∈ P , if a ≤P b, then f(b) ≤Q f(a). We

say that f is an order embedding when for all a, b ∈ P , a ≤P b iff f(a) ≤Q f(b),

and it is an order isomorphism when it is a surjective order-embedding.

Given a poset 〈P,≤P 〉 and a subset U ⊆ P , we say that u is a maximal element

of U (or a is maximal in U), when a ∈ U and for all b ∈ U , a � b. We define

dually minimal elements on U . We denote by max(P ) the collection of all maximal

elements of P . An element a ∈ P such that b ≤P a for all b ∈ P is called the top

element of P (notice that if it exists, it is unique), and it is usually denoted by 1P ,

or simply 1. Dually, an element a ∈ P such that a ≤P b for all b ∈ P is called the

bottom element of P , and it is usually denoted by 0P , or simply 0.

Given a lattice L = 〈L,∧,∨〉, an element m ∈ L is a meet-irreducible element

of L, when m 6= 1 (in case L has a top element 1) and m = a ∧ b implies m = a or

m = b for any a, b ∈ L. When m satisfies moreover the last condition generalized

to arbitrary meets, m is called completely meet-irreducible.

We denote by M(L) and M∞(L) the collections of meet-irreducible and com-

pletely meet-irreducible elements of L respectively. Join-irreducibles J (L) and

completely join-irreducible J∞(L) of L are defined dually.An element m ∈ L is a

meet-prime element of L, when a∧ b ≤ m implies a ≤ m or b ≤ m for any a, b ∈ L.

Join-prime elements of L are defined dually. Similarly we define completely join-

prime elements and completely meet-prime elements. Clearly, (completely) meet-

prime (resp. join-prime) elements are always (completely) meet-irreducible (resp.

join-irreducible), and both notions coincide for distributive lattices.

1.3. Topology

Our main reference for General Topology is Engelking [29]. We assume that

the reader is familiar with elementary topological notions, such as topology, topolo-

gical space, base, subbase, open, closed and compact sets, Kolmogorov or T0 spaces

(for every pair of distinct points of X, at least one of them has an open neighbor-

hood not containing the other) and Hausdorff spaces (distinct points have disjoint

neighborhoods).

For 〈X, τ〉 a topological space, we usually refer to it as X when it is clear what

the topology on X is under consideration. By O(X) (resp. C(X)) we denote the

collection of all open (resp. closed) sets of 〈X, τ〉. By C`(X) we denote the collection

of all clopen sets, i. e. all sets that are open and closed. By K(X) we denote the

collection of all compact sets and by KO(X) we denote the collection of all open

and compact sets, i. e. all open sets whose open covers have always finite sub-covers.

A topological space is called compactly-based provided it has a basis of open and

compact sets. When moreover we have that 〈X,≤〉 is a partial order, by C`U(X)

we denote the collection of all clopen sets of 〈X, τ〉 that are up-sets of 〈X,≤〉, and

we refer to them as clopen up-sets of 〈X, τ〉.
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For 〈X, τ〉 a topological space, the closure of a set U ⊆ X (the smallest closed

set containing U) is denoted by cl(U). A subset U ⊆ X is saturated if it is an

intersection of open sets. The saturation of a set U ⊆ X (the smallest saturated set

containing U) is denoted by sat(U). For x ∈ X, we generally write cl(x) and sat(x)

in place of cl({x}) and sat({x}). An arbitrary non-empty subset Y ⊆ X is called

irreducible if Y ⊆ U ∪ V for closed subsets U and V implies Y ⊆ U or Y ⊆ V . A

topological space is called sober provided for every irreducible closed set Y , there

exists a unique x ∈ X such that cl(x) = Y . A subset Y ⊆ X is dense provided any

non-empty open subset U of X has non-empty finite intersection with Y .

We recall that for a topological space 〈X, τ〉, the specialization quasiorder of

〈X, τ〉 is defined by

x �X y iff x ∈ cl(y),

and when the space is T0, �X turns out to be a partial order, that we call the

specialization order of 〈X, τ〉.
If 〈X, τ〉 is a topological space and Y ⊆ X is a set, we can define a topology

τY on Y , that is known as the subspace topology, by

τY := {U ∩X : U ∈ τ},

and the space 〈Y, τY 〉 is called the subspace of 〈X, τ〉 generated by Y .

1.4. Universal Algebra

Our main reference for Universal Algebra is Burris and Sankappanavar [8]. We

assume that the reader is familiar with elementary universal algebraic notions.

A language (or logical language or algebraic language or similarity type) is a

set L of function symbols, each with a fixed arity n ≥ 0. Given a language L and

a countably infinite set of propositional variables V ar, the L -formulas are defined

by induction as usual:

– for each variable x ∈ V ar, x is an L -formula,

– for each connective f ∈ L , with arity n ∈ ω, and L -formulas δ1, . . . , δn,

f(δ1, . . . , δn) is an L -formula.

We denote by FmL the collection of all L -formulas. When we consider the function

symbols as the operation symbols of an algebraic similarity type, we have the

algebra of terms, that is the absolutely free algebra of type L over a denumerable

set of generators V ar. We call this algebra the algebra of formulas or the formula

algebra on the language L and we denote it by FmL .

For A and B algebras of algebraic similarity type L , by Hom(A,B) we denote

the collection of all homomorphisms from A to B. Any endomorphism of FmL ,

i. e. any function e ∈ Hom(FmL ,FmL ) is said to be a substitution. By Co(A)

we denote the collection of all congruences on A. The identity congruence on A is

denoted by 4A and the identity homomorphism from A to A is denoted by idA.

We may omit the subscripts when the context is clear.

Given an algebra A on a language L and a subset L ′ ⊆ L , we call the algebra

〈A, {f : f ∈ L ′}〉 the L ′-reduct of A.
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Given a class of algebras K of type L , we define the equational consequence

relative to K, denoted by �K, as the relation between sets of equations and equations

given by: for any {δi : i ∈ I} ∪ {γi : i ∈ I} ∪ {δ, γ} ⊆ FmL

{δi ≈ γi : i ∈ I} �K δ ≈ γ iff (∀A ∈ K)(∀h ∈ Hom(FmL ,A))

if (∀i ∈ I)h(δi) = h(γi), then h(δ) = h(γ).

1.5. Category theory

Our main reference for Category theory is Mac Lane [61]. We assume that

the reader is familiar with elementary category-theoretic notions, such as category,

subcategory, object, morphism, composition of morphisms (denoted by ◦), identity

morphism (denoted by idX : X −→ X), isomorphism and functor. For composition

of functors we use the right composition notation.

Given a category C, we construct its dual category Cop by taking objects of C
as its objects, and for each morphism f in C, we take fop as a morphism in Cop,
that is defined as follows: if f : X −→ Y , then fop : Y −→ X, i. e. it goes in the

other direction. Composition of morphisms fop : Y −→ X and gop : Z −→ Y in

Cop is given by fop ◦ gop := (gf)op. And (idX)op is the identity morphism for X in

Cop.
A functor F : C −→ Dop is a contravariant functor from C to D. A family of

morphisms in D

H :=
(
hX : F (X) −→ G(X)

)
X∈C

one for each object in C is a natural transformation between functors F,G : C −→ D,

when for any morphism f : X −→ Y in C, the following diagram commutes:

F (X)

F (f)

��

hX // G(X)

G(f)

��
F (Y )

hY

// G(Y )

If H is a natural transformation between functors F,G : C −→ D such that for

each X, hX is an isomorphism, then we call H a natural isomorphism, and we say

that F and G are naturally isomorphic.

We say that the categories C and D are equivalent if there exist functors

F : C −→ D and G : D −→ C such that GF is naturally isomorphic to the identity

functor on C and FG is naturally isomorphic to the identity functor on D. If both

F and G are contravariant functors, then we say that C and D are dually equivalent.

Throughout this dissertation, we use the lax but commonly used term duality for

referring to dual equivalences of categories. And we often say a duality for a class

of objects (e. g. algebras) but we mean a duality for the appropriate category that

has such class as objects.

1.6. Abstract Algebraic Logic

Our work is located in the field of Abstract Algebraic Logic (AAL for short).

Our main reference for AAL is the survey by Font, Jansana and Pigozzi [36]. We
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introduce now the standard notion of logic in AAL. It arises, essentially, from

regarding logic as concerning validity of inferences, instead of validity of formulas.

A crucial notion in AAL is the notion of closure operator. For X a set, a

function C : P(X) −→ P(X) on the power set of X is a closure operator when it

satisfies the following conditions:

(C1) for all Y ⊆ X, Y ⊆ C(Y ),

(C2) for all Y, Y ′ ⊆ X, if Y ⊆ Y ′, then C(Y ) ⊆ C(Y ′),

(C3) for all Y ⊆ X, C(C(Y )) = C(Y ).

Conditions (C1)-(C3) are known as being extensive, isotone and idempotent res-

pectively. A closure operator C is finitary or algebraic (cf. Definition 5.4 in [8]),

when:

(C4) for all Y ⊆ X, ∀x ∈ X, if x ∈ C(Y ), then there is a finite Y ′ ⊆ω Y such

that x ∈ C(Y ′).

When C is a closure operator on X and X is the carrier of an algebra X, C is called

X-structural , when:

(C5) for all Y ∪ {x} ⊆ X and all h ∈ Hom(X,X), we have h(x) ∈ C(h[Y ])

whenever x ∈ C(Y ).

For any x ∈ X and any Y ⊆ X, we use C(x) and C(Y, x) as a shorthand for C({x})
and C(Y ∪ {x}) respectively. For any closure operator C on X we define the Frege

relation of C, ΛC, as follows:

(x, y) ∈ ΛC iff C(x) = C(y).

This relation is always an equivalence relation, but when X is the carrier of an

algebra X, ΛC is not necessarily a congruence on X.

Any closure operator C on X can be transformed in a relation `C on X as

follows: for all Y ∪ {x} ⊆ X

Y `C x iff x ∈ C(Y ).

The properties that `C inherits from those of C as a closure operator, define what

is called a closure relation on X, i. e. a relation `C ⊆ P(X)×X such that:

(C1′) if x ∈ X, then X `C x,

(C2′) if Y `C x for all x ∈ X and X `C z, then Y `C z.

Clearly, any closure relation `C on X defines a closure operator C` by setting

x ∈ C`(Y ) iff Y `C x.

When X is the carrier of an algebra X and C` is a structural closure operator,

we say that `C is invariant under substitutions. Notice that �K, the equational

consequence relative to a class of algebras K, is a closure relation on the set of

equations of type L and it is invariant under substitutions.

Following [36], given a logical language L , a logic (or deductive system) in the

language L is a pair S := 〈FmL ,`S〉, where FmL is the formula algebra of L
and `S ⊆ P(FmL )× FmL is a substitution-invariant closure relation on FmL ,

i. e. `S is a relation such that:

(C1′) if γ ∈ Γ, then Γ `S γ,

(C2′) if ∆ `S γ for all γ ∈ Γ and Γ `S δ, then ∆ `S δ,
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(C3′) if Γ `S δ, then e[Γ] `S e(δ) for all substitutions e ∈ Hom(FmL ,FmL )

(structurality).

Equivalently, we could say that a logic in the language L is a pair 〈FmL ,CS〉,
where FmL is the formula algebra of L and CS : P(FmL ) −→ P(FmL ) is

a structural closure operator. Notice that CS is a shorthand for C`S , the closure

operator associated with a given substitution invariant closure relation `S on FmL .

We say that a logic S is finitary when the closure operator CS is finitary, i. e.

when for all Γ ∪ {ϕ} ⊆ FmL , if Γ `S ϕ, then there is a finite Γ0 ⊆ω Γ such that

Γ0 `S ϕ.

Let S be a logic in the language L . We say that an algebra A has the same type

as S when the logical language L is also the algebraic language of A. Throughout

this dissertation, when we assume that S is a logic and we pick an arbitrary algebra

A, if not otherwise stated, A is always assumed to be an algebra of the same type

as S.

The notion of logic we just defined is the standard notion of logic considered

in the framework of contemporary Abstract Algebraic Logic. At a first sight, it

might seem that only the so called ‘propositional’ or ‘sentential’ logics fall under

the scope of this definition. Logics such as ordinary first order logic, quantifier

logics or substructural logics seem to be left out. There have been, though, several

approaches that accommodate all these logics in the framework of AAL (see Section

1.2 in [36] and its references).

Let S be a logic in a language L and let A be an algebra of the same type as

S. We call a subset F ⊆ A an S-filter of A when for any h ∈ Hom(FmL ,A) and

any Γ ∪ {δ} ⊆ FmL such that Γ `S δ:

if h(γ) ∈ F for all γ ∈ Γ, then h(δ) ∈ F.

We denote by FiS(A) the collection of all S-filters of A, that is always a closure

system. The notion of S-filter is capital in AAL.

One of the basic topics of AAL is how to associate in a uniform way a class of

algebras (or a class of algebraic structures) with an arbitrary logic S. On the one

hand, through the study of the Leibniz congruence we encounter the class Alg∗S.

Given an algebra A and a subset F ⊆ A, the Leibniz congruence of F relative to

A, denoted by ΩA(F ), is the greatest congruence on A compatible with F , that

is, that does not relate elements in F with elements not in F . The class Alg∗S is

defined as follows:

Alg∗S = {A : (∃F ∈ FiS(A))ΩA(F ) = 4A}.

The class Alg∗S is the class of algebras that the semantics of logical matrices

canonically associates with the logic S, but this is not the class that is considered in

contemporary AAL as the canonical algebraic counterpart of S. Rather, the class

AlgS is the canonical algebraic counterpart of an arbitrary logic S (as proposed

in [35]). This class can be defined in more than one way, one being through the

study of the Suszko congruence. Given an algebra A and an S-filter F ∈ FiS(A),

the Suszko congruence of F relative to S is the congruence:

Ω̃A
S (F ) :=

⋂
{ΩA(G) : F ⊆ G ∈ FiS(A)}.
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The class AlgS is defined as follows:

AlgS := {A : (∃F ∈ FiS(A))Ω̃A
S (F ) = 4A}.

The elements of AlgS are called S-algebras. In Chapter 4 we provide an alternative

definition of this class of algebras, that will play a crucial role throughout this

dissertation.

Another class of algebras is associated with S, whose definition is a bit more

involved. Let us denote by Ω̃(S) the Suszko congruence of the least S-filter of

FmL relative to FmL . Then the intrinsic variety of S is the variety generated

by the algebra FmL /Ω̃(S), and it is denoted by VS . Ω̃(S) is usually called the

Tarski congruence of S, and

Fm∗L := FmL /Ω̃(S)

is called the Lindenbaum-Tarski algebra of S. Moreover, as it is pointed out in

page 36 in [35], the Lindenbaum-Tarski algebra of any logic S is an S-algebra. The

relation between the three classes of algebras so far introduced goes as follows

Alg∗S ⊆ AlgS ⊆ VS .

In principle the three classes can be different, and there are examples of all the

possible combinations of equalities and inequalities.

Another topic of AAL is how to associate a logic with a class of algebraic

structures. Let us show this by two examples.

Let K be a pointed class of algebras, i. e. a class of algebras in a language

L with a constant term 1. The 1-assertional logic of K (or the logic preserving

truth for K) is the logic S1
K := 〈FmL ,`1

K〉, such that for any δ ∈ FmL and finite

Γ ⊆ω FmL :

Γ `1
K δ iff (∀A ∈ K)(∀h ∈ Hom(FmL ,A)) if h[Γ] ⊆ {1A}, then h(δ) = 1A

iff {γ ≈ 1 : γ ∈ Γ} �K δ ≈ 1,

and for Γ an arbitrary set of formulas we take:

Γ `1
K δ iff (∃Γ′ ⊆ω Γ) Γ′ `1

K δ.

Let K be a class of ordered algebras. The logic of the order of K (or the logic

preserving degrees of truth for K) is the logic S≤K := 〈FmL ,`≤K 〉, such that for any

δ ∈ FmL and finite Γ ⊆ω FmL :

Γ `≤K δ iff (∀A ∈ K)(∀h ∈ Hom(FmL ,A))(∀a ∈ A)

if (∀γ ∈ Γ) a ≤A h(γ), then a ≤A h(δ),

and for Γ an arbitrary set of formulas we take:

Γ `≤K δ iff (∃Γ′ ⊆ω Γ) Γ′ `≤K δ.

Notice that these logics are finitary by definition. In § 2.3 and § 2.4 we return

to the topic of how logics can be defined from classes of algebraic structures. This

will play an important role in Chapter 6. As a final illustration of how logics are

studied within the framework of AAL, we present below several abstract properties

that a logic may have. In what follows, let S be a logic:
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- S satisfies the property of conjunction (PC) for a given formula in two

variables that we write p ∧ q, if for all formulas δ, γ ∈ FmL :

δ ∧ γ `S δ, δ ∧ γ `S γ, δ, γ `S δ ∧ γ.
- S satisfies the property of weak disjunction (PWDI) for a given formula

in two variables that we write p ∨ q, if for all formulas δ, γ, µ ∈ FmL :

δ `S δ ∨ γ, δ `S γ ∨ δ,
if δ `S µ & γ `S µ, then δ ∨ γ `S µ.

- S satisfies the property of disjunction (PDI) for a given formula in two

variables that we write p ∨ q, if for all {δ, γ, µ} ∪ Γ ⊆ FmL :

δ `S δ ∨ γ, δ `S γ ∨ δ,
if Γ, δ `S µ & Γ, γ `S µ, then Γ, δ ∨ γ `S µ.

- S satisfies the (multiterm) deduction-detachment theorem (DDT) for a

given non-empty set of formulas in two variables p and q, that we denote

by ∆(p, q), if for all {δ, γ} ∪ Γ ⊆ FmL :

Γ, δ `S γ iff Γ `S ∆(δ, γ).

- S satisfies the uniterm deduction-detachment theorem (uDDT) for a given

formula in two variables that we write p→ q, if for all {δ, γ}∪Γ ⊆ FmL :

Γ, δ `S γ iff Γ `S δ → γ.

- S satisfies the property of inconsistent element (PIE) if there is a formula

⊥, called the inconsistent element, such that for every formula δ ∈ FmL :

⊥ `S δ.
- S satisfies the property of being closed under introduction of a modality

(PIM), for a given formula in one variable that we write �p, if for all

{δ} ∪ Γ ⊆ FmL :1

if Γ `S δ, then �Γ `S �δ.
Notice that all these properties can be also stated using the closure operator

CS associated with `S . And similarly, they can be stated for any closure operator

on any arbitrary algebra. Wójcicki refers to these conditions on closure operators

as ‘Tarski-style’ conditions in [73]. For example, given a closure operator C on

an algebra A, we say that C has the deduction-detachment theorem for a given

formula in two variables x→ y provided for any B ∪ {a, b} ⊆ A,

b ∈ C(B, a) iff a→ b ∈ C(B).

1Notice that we denote the set {�γ : γ ∈ Γ} by �Γ.





CHAPTER 2

Filters and Ideals Associated with Closure

Operators

In this chapter we examine different notions of filters and ideals that we can

define as associated with a closure operator. We analyze the relationship that exists

between these notions, and we study in detail two instances of the general theory.

More precisely, in § 2.1 we analyze the notions of C-closed subset, irreducible

C-closed subset, Cd-closed subset, strong Cd-closed subset and optimal C-closed

subset, from which we obtain two analogues of Birkhoff’s Prime Filter Lemma,

and interesting interrelationships between those notions under certain conditions

over a closure operator C. In § 2.2 special attention is paid to the case when the

lattice of closed subsets of a given closure operator is distributive. The discussion

throughout these sections provides us with the tools required to develop the theory

of Chapter 5.

We present two illustrative examples: meet-semilattices with top element, that

are introduced in § 2.3, and Hilbert algebras, that are introduced in § 2.4. These

algebraic structures are not only explanatory examples, but they play a fundamental

role in the duality for Distributive Hilbert algebras with infimum of Chapter 7.

2.1. Filters, ideals and separation lemmas given by closure operators

From now on, let C be a closure operator on a set X (see definition in page

16). A subset Y ⊆ X is called a closed set of C, or a C-closed, when C(Y ) = Y .

For any Y ⊆ X, we call C(Y ) the closure of Y (under C).

A closure system on a set X is any collection of subsets that contains X and

is closed under non-empty intersections. Any closure system C on X yields an

associated closure operator CC , that is defined as follows:

CC : P(X) −→ P(X)

Y 7−→
⋂
{C ∈ C : Y ⊆ C}.

Moreover, for any closure operator C on X, the collection of all C-closeds is a closure

system on X. Therefore, it is a complete lattice, in which the meet operation is

given by the intersection, and the join operation is given by the closure of the union

(cf. Theorem 5.2 in [8]).

All closure operators over finite sets are finitary. Moreover, finitary closure

operators correspond with inductive or algebraic closure systems, i. e. closure sys-

tems closed under unions of non-empty chains. We are interested in finitarity, since

many of the well-known logics are finitary, and so are all the logics we pay attention

to in this dissertation.

21
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Let F be a family of C-closeds. We say that F is a closure base for C provided

the family F is such that ∩-generates the collection of all C-closed, i. e. for any

C-closed Y , we have that Y =
⋂
{F ∈ F : Y ⊆ F}.

Within the lattice of C-closeds, its meet-irreducible elements, that we call irre-

ducible C-closeds, play an important role in the so called Spectral-like dualities.

These subsets are also called C-irreducibles in the literature

Let us take a look at closure operators defined on posets. Let 〈P,≤〉 be a poset,

and let C be a closure operator on P . We are interested in the following property:

(E1) {Y ⊆ X : C(Y ) = Y } ⊆ P↑(X),

in other words, in the case when all C-closeds are up-sets. In this case, we have the

following analogue of Birkhoff’s Prime Filter Lemma.

Lemma 2.1.1. Let P be a poset and let C be a finitary closure operator on P

that satisfies (E1). For any C-closed Y ⊆ P and any non-empty up-directed down-

set Z ⊆ P , if Y ∩ Z = ∅, then there is an irreducible C-closed Y ′ ⊆ P such that

Y ⊆ Y ′ and Y ′ ∩ Z = ∅.

Proof. Consider the set

Y := {Y ′ ⊆ P : C(Y ′) = Y ′, Y ⊆ Y ′, Y ′ ∩ Z = ∅}.

This set is non-empty, since Y ∈ Y. Moreover, it is closed under unions of chains.

Let {Yi : i ∈ ω} ⊆ Y be a chain of elements of Y, i. e. Yi ⊆ Yi+1 for all i ∈ ω. By

finitarity Y :=
⋃
{Yi : i ∈ ω} is C-closed, and moreover Y ⊆ Y and Y ∩ Z = ∅.

Hence, by Zorn’s Lemma, there is Y ′ a maximal element of Y. We show that

Y ′ is an irreducible C-closed. Clearly Y ′ 6= P , since Z 6= ∅. Let Y1, Y2 be C-closeds

such that Y1 ∩ Y2 = Y ′, and suppose, towards a contradiction, that Y1, Y2 6= Y ′.

Then there are a1 ∈ Y1 \ Y ′ and a2 ∈ Y2 \ Y ′. By maximality of Y ′, there are

b1 ∈ C(Y ′ ∪ {a1}) ∩ Z and b2 ∈ C(Y ′ ∪ {a2}) ∩ Z. Since Z is up-directed, there is

b ∈ Z such that b1, b2 ≤ b, and by (E1), b ∈ C(Y ′∪{a1})∩C(Y ′∪{a2}). Therefore,

as Y ′ ∪ {a1} ⊆ Y1, Y ′ ∪ {a2} ⊆ Y2 and Y1, Y2 are C-closeds, b ∈ Y1 ∩ Y2 = Y ′, and

so b ∈ Y ′ ∩ Z 6= ∅, a contradiction. �

Corollary 2.1.2. Let P be a poset and let C be a finitary closure operator

on P that satisfies (E1). For any C-closed Y ⊆ P and any z /∈ Y , there is an

irreducible C-closed Y ′ ⊆ P such that Y ⊆ Y ′ and z /∈ Y ′.

Notice that the previous corollary states that when C is a finitary closure

operator defined on a poset and it satisfies (E1), the collection of all irreducible

C-closeds is a closure base for C. This fact plays a key role in the Spectral-like

dualities.

Returning to the general situation, let us move to the study of dual counterparts

of closure operators. In [72] Wójcicki introduces one dual counterpart of C for any

infinite cardinal, and he develops the theory of such operators. We focus on the

one associated with ℵ0, that has been also used in [48] for the formalization of

reasoning on rejected information, and in [41] for the study of canonical extensions

of congruential logics.
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Definition 2.1.3. The (finitary) dual closure operator of a given closure op-

erator C on X, is the function Cd : P(X) −→ P(X) defined as follows:

Cd(Y ) := {x ∈ X : ∃Y ′ ⊆ω Y
( ⋂
y∈Y ′

C(y) ⊆ C(x)
)
}.

A subset Z ⊆ X is called a dual closed set of C, or a Cd-closed, when Cd(Z) = Z.

Notice that Cd(∅) = {x ∈ X : C(x) = X}. Moreover, it follows from the

definition that Cd is finitary, and we also have that

a ∈ C(b) iff b ∈ Cd(a).

We introduce now, motivated by the work in [17], a special class of Cd-closeds,

that plays an important role in the so called Priestley-style dualities.

Definition 2.1.4. A Cd-closed Z ⊆ X is strong when for all Z ′ ⊆ω Z and all

X ′ ⊆ω X,

if
⋂
z∈Z′

C(z) ⊆ C(X ′), then C(X ′) ∩ Z 6= ∅.

Notice that for all x ∈ X, the Cd-closed set Cd(x) is strong: let Y ′ ⊆ω Cd(x)

and X ′ ⊆ω X be such that
⋂
{C(y) : y ∈ Y ′} ⊆ C(X ′). By assumption, for each

y ∈ Y ′ we have y ∈ Cd(x), i. e. x ∈ C(y). Therefore, x ∈
⋂
{C(y) : y ∈ Y ′} ⊆ C(X ′),

and since x ∈ Cd(x), then clearly C(X ′) ∩ Cd(x) 6= ∅.
While the collection of Cd-closeds is always a closure system, the collection

of strong Cd-closeds may fail to be so, but it is always closed under unions of

non-empty chains.

Lemma 2.1.5. Let C be a closure operator on a set X. The collection of strong

Cd-closed subsets of X is closed under unions of chains.

Proof. Let {Zi : i ∈ ω} be a chain of strong Cd-closeds. Since Cd is finitary

by definition, then Z :=
⋃
{Zi : i ∈ ω} is Cd-closed. Let X ′ ⊆ω X and Z ′ ⊆ω Z

be such that
⋂
{C(z) : z ∈ Z ′} ⊆ C(X ′). As Z ′ is finite, there is n ∈ ω such that

Z ′ ⊆ Zn, and then by Zn being strong Cd-closed, we get C(X ′) ∩ Zn 6= ∅, and so

C(X ′) ∩ Z 6= ∅, as required. �

This fact motivates the introduction of the following notions. For a given

C-closed Y ⊆ X and a given Cd-closed Z ⊆ X, we say that Y is Z-maximal

when Y is a maximal element of the collection {Y ′ ⊆ X : C(Y ′) = Y ′, Y ′ ∩Z = ∅}.
Similarly, we say that Z is Y -maximal when it is a maximal element of the collection

{Z ′ ⊆ X : Cd(Z ′) = Z ′, Y ∩ Z ′ = ∅}. Using these notions we introduce one more

concept, that leads us to another analogue of Birkhoff’s Prime Filter Lemma.

Definition 2.1.6. A C-closed Y ⊆ X is an optimal C-closed when there is a

strong Cd-closed Z ⊆ X such that Y is Z-maximal and Z is Y -maximal.

Lemma 2.1.7. Let C be a finitary closure operator on a set X. For any C-closed

Y ⊆ X and any strong Cd-closed Z ⊆ X, if Y ∩ Z = ∅, then there is an optimal

C-closed Y ′ ⊆ X such that Y ⊆ Y ′ and Y ′ ∩ Z = ∅.
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Proof. Consider the set

Y := {Y ′ ⊆ X : C(Y ′) = Y ′, Y ⊆ Y ′, Y ′ ∩ Z = ∅}.

This set is non-empty, since Y ∈ Y. Moreover, by finitarity it follows that Y is

closed under unions of chains. Hence, by Zorn’s Lemma, there is Y ′ a maximal

element of Y. We show that Y ′ is an optimal C-closed. For that, let us consider

the set

Z := {Z ′ ⊆ X : Cd(Z ′) = Z ′ strong , Z ⊆ Z ′, Y ′ ∩ Z ′ = ∅}.
This set is again non-empty, since Z ∈ Z. Moreover it is closed under unions of

chains, since so is the collection of strong Cd-closeds. Hence by Zorn’s Lemma,

there is Z ′ a maximal element of Z. By assumption Z ′ is Y ′-maximal, so it is just

left to show that Y ′ is Z ′-maximal: on the contrary, there would be a C-closed Y ′′

such that Y ′ ( Y ′′ and Y ′′∩Z ′ = ∅, and this implies Y ( Y ′′ and so Y ′ ( Y ′′ ∈ Y,

contrary to the assumption of Y ′ being a maximal element of Y. �

Corollary 2.1.8. Let C be a finitary closure operator on a set X. For any

C-closed Y ⊆ P and any z /∈ Y , there is an optimal C-closed Y ′ ⊆ P such that

Y ⊆ Y ′ and z /∈ Y ′.

Proof. This follows from the previous lemma and the fact that if z /∈ Y , then

Cd(z) ∩ Y = ∅: on the contrary, there would be b ∈ Y ∩ Cd(z), so z ∈ C(b) ⊆ Y ,

contradicting the assumption. �

Notice that the previous corollary states that when C is a finitary closure

operator defined on a set, then the collection of all optimal C-closeds is a closure

base for C. This fact plays a key role in the Priestley-style dualities.

2.2. Distributivity of the lattice of C-closed subsets

Let us examine now the case when the lattice of C-closeds, for a given closure

operator C on a set X, is distributive. In this case we have the following relations

between optimal C-closeds and strong Cd-closeds, that are useful in the Priestley-

style dualities.

Lemma 2.2.1. Let C be a finitary closure operator on a set X such that the

lattice of C-closeds is distributive. For any C-closed Y ⊆ X, Y is optimal if and

only if Y c is strong Cd-closed.

Proof. Let Y ⊆ X be a C-closed. If Y c is a strong Cd-closed, then clearly

Y is optimal, since Y is Y c-maximal and Y c is Y -maximal. For the converse,

suppose that Y is optimal, so there is a strong Cd-closed Z ⊆ X such that Y is

Z-maximal and Z is Y -maximal. We show that Y c is strong Cd-closed. If Y = X,

then Y c = Z = ∅, that by assumption is a strong Cd-closed. Assume, without loss

of generality, that Y 6= X. We show that for any Y ′ ⊆ω Y c and any X ′ ⊆ω X, if⋂
{C(y) : y ∈ Y ′} ⊆ C(X ′), then C(X ′) ∩ Y c 6= ∅. This implies, for the case X ′ is

a singleton, that Y c is a Cd-closed, and hence, for the general case it also implies

that Y c is strong.

Let Y ′ ⊆ω Y c and any X ′ ⊆ω X be such that
⋂
{C(y) : y ∈ Y ′} ⊆ C(X ′).

If Y ′ = ∅, then the assumption implies C(X ′) = X and since Y is proper, we get

C(X ′) ∩ Y c 6= ∅. Assume, without loss of generality, that Y ′ 6= ∅. By Y being
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Z-maximal, Y ∩ Z = ∅ and for all y /∈ Y there is by ∈ C(Y, y) ∩ Z 6= ∅. Then by

finitarity, for each y ∈ Y ′ there is Ty ⊆ω Y such that by ∈ C(Ty, y) = C(Ty)tC(y),

where the symbol t denotes the join in the lattice of C-closeds. As Ty is finite

for each y ∈ Y ′, and Y ′ is also finite, so is T :=
⋃
{Ty : y ∈ Y ′} and clearly

C(Ty) ⊆ C(T ) for all y ∈ Y ′. Therefore by ∈ C(T ) t C(y) for all y ∈ Y ′. As

the lattice of C-closeds is distributive and Y ′ is finite and non-empty, from the

hypothesis we get:⋂
{C(by) : y ∈ Y ′} ⊆

⋂
{C(T ) t C(y) : y ∈ Y ′} = C(T ) t

⋂
{C(y) : y ∈ Y ′}

⊆ C(T ) t C(X ′) = C(T ∪X ′).

By assumption {by : y ∈ Y ′} ⊆ω Z, Z is strong Cd-closed and T ∪ X ′ is

finite, so the previous equation implies, by definition of strong Cd-closed, that

C(T ∪X ′) ∩ Z 6= ∅. Suppose, towards a contradiction, that C(X ′) ∩ Y c = ∅. Then

C(X ′) ⊆ Y , and since T ⊆ Y , we get C(T ∪X ′) ⊆ Y , and then we obtain Y ∩Z 6= ∅,
a contradiction. �

There is another useful correspondence between the different notions so far

examined, for the case when we have a closure operator defined on a poset P . We

have a lemma similar to the previous one, where irreducible C-closeds play the

role that optimals did, and non-empty up-directed down-sets play the role that

Cd-closeds did.

Lemma 2.2.2. Let P be a poset and let C be a finitary closure operator on P

that satisfies (E1), such that the lattice of C-closeds is distributive and C(p) = ↑p
for all p ∈ P . For any C-closed Y ⊆ X, Y is irreducible if and only if Y c is a

non-empty up-directed down-set.

Proof. Let first Y ⊆ P be an irreducible C-closed. By assumption, Y is an

up-set, so Y c is a down-set. As Y is proper, then Y c is non-empty. It is just left

to show that Y c is up-directed: let a, b /∈ Y , so C(a),C(b) * Y . By assumption,

the lattice of C-closeds is distributive, so meet-irreducible and meet-prime elements

of this lattice coincide. Then by meet-primeness of Y we get C(a) ∩ C(b) * Y .

Therefore, there is c ∈ C(a) ∩ C(b) = ↑a ∩ ↑b such that c /∈ Y , so a, b ≤ c ∈ Y c, as

required.

Let now Y ⊆ P be a C-closed such that Y c is a non-empty up-directed down-

set. We show Y is a meet-prime element of the lattice of C-closeds: since Y c

is non-empty, then Y is proper; let Y1, Y2 be C-closeds such that Y1 ∩ Y2 ⊆ Y ,

and suppose, towards a contradiction, that Y1 * Y and Y2 * Y . Then there are

p1 ∈ Y1 \ Y and p2 ∈ Y2 \ Y such that p1, p2 /∈ Y . Since Y c is up-directed, there

is p /∈ Y such that p1, p2 ≤ p, so we get p ∈ C(p1) ∩ C(p2) ⊆ Y1 ∩ Y2 ⊆ Y , a

contradiction. �

Summarizing, we have studied separation lemmas for closure operators defined

on ordered sets, and we have focused on the case when the lattice of closed subsets

is distributive. In the remaining sections we consider two examples of that gene-

ral theory. We study first meet semilattices with top element, and after that we

consider Hilbert algebras.
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2.3. Meet-semilattices with top element

We introduce now meet-semilattices with top element as an example of what

has been treated in § 2.1 and § 2.2. Be aware that these algebraic structures are an

important tool both in Part 2 and in 3.

Definition 2.3.1. An algebra M = 〈M,∧, 1〉 of type (2, 0) is a meet-semilattice

with top element when the binary operation ∧ is idempotent, commutative, asso-

ciative, and a ∧ 1 = 1 for all a ∈M .

A binary relation ≤M is defined on M such that for any a, b ∈M :

a ≤M b iff a ∧ b = a.

This relation is indeed a partial order on M in which a ∧ b is the meet of a and

b, for every a, b ∈ M . We use ≤ for ≤M when no confusion is possible. Meet-

semilattices with top element and with an additional constant 0 that is the bottom

element of that order are called bounded meet-semilattices. We denote by S and BS
the varieties of meet-semilattices with top element and bounded meet-semilattices

respectively.

Dual structures of meet semilattices with top element are usually called join-

semilattices with bottom element, and they are defined just changing the order

upside-down. Classical books on order theory or lattice theory [24, 49] usually

work with join-semilattices, but it is wise for us to work with meet-semilattices.

All results in the rest of the section could be stated though for join-semilattices,

changing the role of meets by joins and reversing the order. From now on, let

M = 〈M,∧, 1〉 be a meet-semilattice with top element. We use ‘semilattice’ as an

abbreviation of ‘meet-semilattice with top element’, not only in the present chapter

but also throughout the whole dissertation.

An order ideal of M is a non-empty up-directed down-set of 〈M,≤〉, i. e. I ⊆M
is an order ideal of M if I 6= ∅ and for all a, b ∈M :

– if a ∈ I and b ≤ a, then b ∈ I,

– if a, b ∈ I, then there is c ∈ I such that a, b ≤ c.
We denote by Id(M) the collection of all order ideals of M. Notice that all principal

down-sets are order ideals.

A meet filter of M is a non-empty up-set of 〈M,≤〉 closed under the meet

operation or equivalently, a non-empty down-directed up-set of 〈M,≤〉, i. e. F ⊆M
is a meet filter of M if F 6= ∅ and for all a, b ∈M :

– if a ∈ F and a ≤ b, then b ∈ F ,

– if a, b ∈ F , then a ∧ b ∈ F .

We denote by Fi∧(M) the collection of all meet filters of M. Notice that all principal

up-sets are meet filters. A meet filter F is proper when F 6= M .

The collection Fi∧(M) is closed under arbitrary intersections. Therefore, we

may define the function J 〉〉 : P(M) −→ P(M) that assigns to each subset B ⊆M ,

the least meet filter containing B. We call JB〉〉 the meet filter generated by B. It

is well known that for any B ⊆M and any a ∈M :

a ∈ JB〉〉 iff a = 1 or (∃n ∈ ω)(∃b0, . . . , bn ∈ B) b0 ∧ · · · ∧ bn ≤ a
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b1 ∧ b2

b1 b2a

c1 c2

Figure 1. Distributivity of meet semilattices.

The map given by J 〉〉 is in fact a finitary closure operator on M and Fi∧(M) is the

collection of all closed subsets of J 〉〉. We consider the bounded lattice

Fi∧(M) := 〈Fi∧(M),∩,∨,M, {1}〉 ,
where the meet operation is given by intersection and the join operation is given

by the meet filter generated by the union. Meet-irreducible elements of this lattice

are called ∧-irreducible meet filters or irreducible meet filters when no confusion

is possible. Recall that F ∈ Fi∧(M) is a meet-irreducible element of the lattice

Fi∧(M) when for all F1, F2 ∈ Fi∧(M), if F = F1 ∩ F2 then F = F1 or F = F2.

We denote by Irr∧(M) the collection of all irreducible meet filters of M. When

M is moreover a lattice, irreducible meet filters are precisely prime filters, this

is, meet filters F such that a ∈ F or b ∈ F whenever a ∨ b ∈ F . In this case

we denote the collection of irreducible/prime meet filters of M by Pr(M). The

following proposition characterizes irreducible meet filters, and its proof can be

found in Lemma 6 in [12].

Proposition 2.3.2. Let M be a semilattice and let F ∈ Fi∧(M) be proper.

The following are equivalent:

(1) F ∈ Irr∧(M).

(2) For all a, b /∈ F , there are c /∈ F and f ∈ F such that a ∧ f, b ∧ f ≤ c.

Notice that meet filters are up-sets, so Property (E1) holds for J 〉〉, and so

we have the following instance of Lemma 2.1.1, that is also proved in Theorem 8

in [12].

Lemma 2.3.3. Let M be a semilattice, and let F ∈ Fi∧(M) and I ∈ Id(M) be

such that F ∩ I = ∅. Then there is G ∈ Irr∧(M) such that F ⊆ G and G ∩ I = ∅.

Corollary 2.3.4. Let M be a semilattice, and let F ∈ Fi∧(M) be such that

a /∈ F . Then there is G ∈ Irr∧(M) such that F ⊆ G and a /∈ G.

Definition 2.3.5. A semilattice is distributive (cf. Section II.5 in [49]) when for

each a, b1, b2 ∈M with b1∧ b2 ≤ a, there exist c1, c2 ∈M such that b1 ≤ c1, b2 ≤ c2
and a = c1 ∧ c2 (see Figure 1).

We denote by DS and BDS the classes of distributive semilattices and bounded

distributive semilattices respectively.

It is well known that a semilattice M is distributive if and only if the lattice

of meet filters Fi∧(M) is distributive (for a proof, see Lemma 1 in Section II.5

of [49]). Since we have that Ja〉〉 = ↑a for all a ∈ M , we obtain the following
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instance of Lemma 2.2.2, that is proven in Theorem 10 in [12], where it is also

shown that it characterizes semilattices that are distributive:

Theorem 2.3.6. Let M be a semilattice. M is distributive if and only if for

all F ∈ Fi∧(M),

F ∈ Irr∧(M) iff F c ∈ Id(M).

Let us return to consider the closure operator J 〉〉. We denote by 〈〈 K the dual

closure operator of J 〉〉. By definition, for any B ⊆M and any a ∈M :

a ∈ 〈〈BK iff ∃B′ ⊆ω B such that
⋂
b∈B′

Jb〉〉 ⊆ Ja〉〉.

Dually closed subsets of J 〉〉, i. e. 〈〈 K-closed subsets, are Frink ideals, that were

introduced by Frink in [37]. This notion has also been considered recently in [17]

and [5], and it can be defined indeed for any poset: Frink ideals are those down-sets

closed under existing joins. Equivalently, we say that I ⊆ M is a Frink ideal (or

F-ideal) of M if for every I ′ ⊆ω I and b ∈M ,
⋂
{↑a : a ∈ I ′} ⊆ ↑b implies b ∈ I.

In [5] a slightly different definition of ‘Frink ideal’ is given. As the authors

deal with bounded distributive semilattices, they require Frink ideals to be non-

empty. In the bounded case, both notions coincide, unlike the non-bounded case.

We denote by IdF (M) the collection of all F-ideals of M. Notice that the empty

set may be an F-ideal, but this happens if and only if there is no bottom element

in M. Moreover, it is easy to see that all order ideals are F-ideals, therefore:

Id(M) ⊆ IdF (M).

Notice that for any B ⊆ω M , JB〉〉 = ↑
∧
B, therefore strong dually closed subsets

of J 〉〉 are the same as dually closed subsets of J 〉〉, i. e. Frink ideals.

Applying Definition 2.1.6 to J 〉〉, a meet filter F ∈ Fi∧(M) is said to be

∧-optimal (or simply optimal), when there is an F-ideal I of M such that:

– F is I-maximal, i. e. F is a maximal element of {G ∈ Fi∧(M) : G ∩ I = ∅},
– I is F -maximal, i. e. I is a maximal element of {J ∈ IdF (M) : F ∩ J = ∅}.

In [5] a slightly different notion of optimal (meet) filter for bounded distributive

semilattices is considered, requiring these filters to be proper. That notion coincides

with ours for the bounded case, but differs from it in the general case. Recall that

when the algebra has no bottom element, the empty set is an F-ideal, and so the

total M is an optimal filter, and optimal filters are not necessarily proper. We

denote by Op∧(M) the collection of all optimal meet filters of M. As an instance

of Lemma 2.1.7, concerning optimal meet filters and Frink-ideals we have:

Lemma 2.3.7. Let M be a semilattice and let F ∈ Fi∧(M) and I ∈ IdF (M) be

such that F ∩ I = ∅. Then there is G ∈ Op∧(M) such that F ⊆ G and G ∩ I = ∅.

Corollary 2.3.8. Let M be a semilattice and let F ∈ Fi∧(M) be such that

a /∈ F . Then there is G ∈ Op∧(M) such that F ⊆ G and a /∈ G.

For distributive semilattices, we obtain the following instance of Lemma 2.2.1.

Theorem 2.3.9. Let M be a distributive semilattice. For any F ∈ Fi∧(M),

F ∈ Op∧(M) if and only if F c ∈ IdF (M).
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From the previous theorem, Theorem 2.3.6 and the fact that Id(M) ⊆ IdF (M),

we obtain that for any distributive semilattice:

Irr∧(M) ⊆ Op∧(M) ⊆ Fi∧(M).

Let us introduce a definition that is used later on. We say that an F-ideal is

∧-prime (or simply prime) if it is a proper F-ideal I ∈ IdF (M) such that for all

non-empty Y ⊆ω M ,
∧
Y ∈ I implies y ∈ I for some y ∈ Y . Making use of this

notion, we obtain the following corollaries of theorems 2.3.6 and 2.3.9.

Corollary 2.3.10. Let M be a distributive semilattice and F ⊆ M . F ∈
Op∧(M) if and only if F c is an ∧-prime F-ideal.

Corollary 2.3.11. Let M be a distributive semilattice and F ⊆ M . F ∈
Irr∧(M) if and only if F c is an ∧-prime order ideal.

Let us conclude this section by considering classes of algebras with semilattice

reducts, that is, classes of algebras K on a given language L that contains a binary

function symbol ∧ and a constant 1 such that the (∧, 1)-reducts of the algebras in

K are semilattices. Notice that this implies that the algebras in K are ordered by

the order of the semilattice reduct. For such class of algebras we may provide an

alternative definition of the logic of the order of K, that recall that is denoted by

S≤K := 〈Fm,`≤K 〉. For any non-empty finite set Γ of formulas and any formula δ we

define:

Γ `≤K δ iff (∀A ∈ K)(∀h ∈ Hom(Fm,A)
( A∧
γ∈Γ

h(γ)
)
≤ h(δ)

iff �K
( ∧
γ∈Γ

γ ∧ δ
)
≈
∧
γ∈Γ

γ.

For Γ the empty set of formulas and any formula δ we have we define:

∅ `≤K δ iff �K δ ≈ 1.

And for Γ an arbitrary set of formulas and any formula δ we take:

Γ `≤K δ iff (∃Γ′ ⊆ω Γ) Γ′ `≤K δ.

In this context, S≤K is also called the semilattice based logic of K.

2.4. Hilbert algebras

As another example of what has been treated in § 2.1 and § 2.2, we introduce

now Hilbert algebras. For the moment, we just present these structures under an

algebraic point of view. We refer the reader to § 6.2, where we explain in detail the

connexion between logic and Hilbert algebras.

Definition 2.4.1. An algebra A = 〈A,→, 1〉 of type (2, 0) is a Hilbert algebra

or H-algebra (also called positive implication algebra in [67]) if for all a, b, c ∈ A:

(H1) a→ (b→ a) = 1,

(H2) (a→ (b→ c))→ ((a→ b)→ (a→ c)) = 1,

(H3) if (a→ b = 1 = b→ a), then a = b.
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Lemma 2.4.2. Let A be a Hilbert algebra and a, b, c ∈ A. Then the following

equalities are satisfied:

(1) a→ a = 1,

(2) 1→ a = a,

(3) a→ (b→ c) = b→ (a→ c),

(4) a→ (b→ c) = (a→ b)→ (a→ c),

(5) a→ ((a→ b)→ b) = 1,

(6) a→ (a→ b) = a→ b,

(7) ((a→ b)→ b)→ b = a→ b,

(8) (a→ b)→ ((b→ a)→ a) = (b→ a)→ ((a→ b)→ b).

Let us denote by H the class of all Hilbert algebras. This class was extensively

studied by Diego in [25]. It is indeed a variety, for which an equational definition

is given as follows. A = 〈A,→, 1〉 is a Hilbert algebra if for all a, b, c ∈ A:

(K) a→ a = 1,

(H2′) (a→ (b→ c)) = ((a→ b)→ (a→ c)),

(H4) 1→ a = a,

(H5) (a→ b)→ ((b→ a)→ a) = (b→ a)→ ((a→ b)→ b).

It is well known that Hilbert algebras are subalgebras of the (→, 1)-reducts of

Heyting algebras. It is also well known that Hilbert algebras are a subclass of the

class of Implicative algebras, that was studied by Rasiowa in [67]. An implicative

algebra is an algebra A = 〈A,→, 1〉 of type (2, 0) such that for all a, b, c ∈ A:

(K) a→ a = 1,

(H3) if (a→ b = 1 = b→ a), then a = b,

(IA1) if (a→ b = 1 & b→ c = 1), then a→ c = 1,

(IA2) a→ 1 = 1.

Let us denote by IA the class of implicative algebras. Hilbert algebras are precisely

the implicative algebras that satisfy (H1) and (H2).

It is also well known that Hilbert algebras are a subclass of the class of BCK-

algebras, that was first introduced by Iséki in [52]. For our purposes, following

Idziak [51], we define a BCK-algebra as an algebra A = 〈A,→, 1〉 of type (2, 0)

such that for all a, b, c ∈ A:

(B) (a→ b)→ ((b→ c)→ (a→ c)) = 1,

(C) a→ ((a→ b)→ b) = 1,

(K) a→ a = 1,

(H3) if (a→ b = 1 = b→ a), then a = b,

(IA2) a→ 1 = 1.

Let us denote by BCK the quasivariety of BCK-algebras. This presentation is

somewhat unusual. The most of literature concerning BCK-algebras employs the

dual notion. We opt for this presentation, as then it is easy to check that Hilbert

algebras are precisely the BCK-algebras A such that for all a, b ∈ A:

(H) (a→ (a→ b)) = a→ b.

A binary relation ≤A is defined on any Hilbert algebra A, such that for all

a, b ∈ A:

a ≤A b iff a→ b = 1.
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This relation is indeed a partial order on A, whose top element is 1. We use ≤ for

≤A when no confusion is possible. Besides order ideals of A, that are defined as in

page 26, and order filters of A, that are defined order dually, a well-known notion

of filter associated with Hilbert algebras is the following. An implicative filter (also

known as deductive system) of A is a subset P ⊆ A such that for all a, b ∈ A:

– 1 ∈ P ,

– if a, a→ b ∈ P , then b ∈ P .

We denote by Fi→(A) the collection of all implicative filters of A. Notice that

implicative filters are up-sets, and all principal up-sets are implicative filters.

The collection Fi→(A) is closed under arbitrary intersections. Therefore, we

may define the function 〈 〉 : P(A) −→ P(A) that assigns to each subset B ⊆ A,

the least implicative filter containing B. We call 〈B〉 the implicative filter generated

by B. It is well known that for any B ⊆ A and any a ∈ A:

a ∈ 〈B〉 iff a = 1 or (∃n ∈ ω)(∃b0, . . . , bn ∈ B)

b0 → (b1 → (. . . (bn → a) . . . )) = 1.

The map given by 〈 〉 is in fact a finitary closure operator and Fi→(A) is the

collection of all closed subsets of 〈 〉. We consider the bounded lattice

Fi→(A) := 〈Fi→(A),∩,∨, A, {1}〉 ,

where the meet operation is given by intersection, and the join operation is given

by the implicative filter generated by the union. It is well known [25] that for

any Hilbert algebra A, the lattice of implicative filters Fi→(A) is distributive.

Meet-irreducible elements of this lattice are called →-irreducible implicative filters

or simply irreducible implicative filters when no confusion is possible. Recall that

P ∈ Fi→(A) is a meet-irreducible element of Fi→(A) when for all P1, P2 ∈ Fi→(A),

if P = P1∩P2 then P = P1 or P = P2. As the lattice Fi→(A) is distributive, meet-

irreducible elements and meet-prime elements of Fi→(A) coincide, so we have that

P ∈ Fi→(A) is an irreducible implicative filter of A when for all P1, P2 ∈ Fi→(A),

if P1 ∩P2 ⊆ P , then P1 ⊆ P or P2 ⊆ P . We denote by Irr→(A) the collection of all

irreducible implicative filters of A. The following theorem characterizes irreducible

implicative filters, and its proof can be found in Lemma 2.4 in [10].

Proposition 2.4.3. Let A be a Hilbert algebra and let P ⊆ A. The following

are equivalent:

(1) P ∈ Irr→(A).

(2) For all a, b /∈ P there is c /∈ P such that a→ c, b→ c ∈ P .

(3) For all a, b /∈ P there is c /∈ P such that a, b ≤ c.

Corollary 2.4.4. Let A be a Hilbert algebra. Then for all P ∈ Fi→(A),

P ∈ Irr→(A) if and only if P c ∈ Id(A).

Notice that the previous corollary is another instance of Lemma 2.2.2, that

holds because the lattice of implicative filters is distributive, and moreover for all

a ∈ A, 〈a〉 = ↑a. Notice also that implicative filters are up-sets, so Property (E1)

also holds for 〈 〉, and so we have the following instance of Lemma 2.1.1, that is

also proven in Theorem 2.6 in [10].
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Lemma 2.4.5. Let A be a Hilbert algebra and let P ∈ Fi→(A) and I ∈ Id(A)

be such that P ∩ I = ∅. Then there is Q ∈ Irr→(A) such that P ⊆ Q and Q∩ I = ∅.

Corollary 2.4.6. Let A be a Hilbert algebra, and let P ∈ Fi→(A) be such

that a /∈ P . Then there is Q ∈ Irr→(A) such that P ⊆ Q and a /∈ Q.

Let us return to consider the closure operator 〈 〉. Since for all a ∈ A, 〈a〉 = ↑a,

dually closed subsets of 〈 〉 are the same as Frink ideals (see definition in page 28).

However, strong dually closed subsets of 〈 〉 provides us with a different notion of

ideal. We say that I ∈ IdF (A) is a strong Frink ideal (or sF-ideal) of A if for all

I ′ ⊆ω I and all B ⊆ω A,

if
⋂
a∈I′
↑a ⊆ 〈B〉, then 〈B〉 ∩ I 6= ∅.

Recall that we have that ∅ /∈ IdF (A) whenever A has a bottom element 0. From

the definition it also follows that ∅ /∈ IdsF (A) whenever A has a bottom element

0, since in this case A =
⋂
{↑a : a ∈ ∅} ⊆ 〈0〉 but 〈0〉 ∩ ∅ = ∅.

In [17] a slightly different notion of ‘strong Frink ideal’ is introduced, since the

authors require them to be non-empty. Both notions coincide for bounded Hilbert

algebras, but not for the general case. We denote by IdsF (A) the collection of all

sF-ideals of A. We already know that IdsF (A) is not necessarily a closure system,

but it is always an inductive family. It is easy to check that:

Id(A) ⊆ IdsF (A) ⊆ IdF (A).

Applying Definition 2.1.6 to 〈 〉, an implicative filter P ∈ Fi→(A) is said to be

→-optimal (or simply optimal), when there is an sF-ideal I of A such that:

– P is I-maximal, i. e. P is a maximal element of {G ∈ Fi→(A) : G∩I = ∅},
– I is P -maximal, i. e. I is a maximal element of {J ∈ IdsF (A) : F ∩J = ∅}.

In [17] a slightly different notion of ‘optimal implicative filter’ for Hilbert alge-

bras is considered, requiring these filters to be proper. That notion coincides with

ours for bounded Hilbert algebras, but differs from it for the general case. Recall

that when the algebra has no bottom element, the empty set is an sF-ideal, and so

the total A is an optimal implicative filter. We denote by Op→(A) the collection

of all optimal implicative filters of A. As an instance of Lemma 2.1.7, concerning

optimal implicative filters and strong Frink-ideals we have:

Lemma 2.4.7. Let A be a Hilbert algebra and let P ∈ Fi→(A) and I ∈ IdsF (A)

be such that P ∩I = ∅. Then there is Q ∈ Op→(A) such that P ⊆ Q and Q∩I = ∅.

Corollary 2.4.8. Let A be a Hilbert algebra and let P ∈ Fi→(A) be such that

a /∈ P . Then there is Q ∈ Op→(A) such that P ⊆ Q and a /∈ Q.

And since the lattice of implicative filters is distributive, the following instance

of Lemma 2.2.1 also holds:

Theorem 2.4.9. Let A be a Hilbert algebra. For any P ∈ Fi→(A), P ∈
Op→(A) if and only if P c ∈ IdsF (A).

From the previous theorem, Corollary 2.4.4, and the fact that Id(A) ⊆ IdsF (A),

we obtain that for any Hilbert algebra:

Irr→(A) ⊆ Op→(A) ⊆ Fi→(A).
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We say that an F-ideal is →-prime, if it is a proper F-ideal I ∈ IdF (A) such

that for all non-empty Y ⊆ω A, 〈Y 〉 ∩ I 6= ∅ implies Y ∩ I 6= ∅. This notion is

also considered in [17] under the name of ‘prime’. We prefer to use ‘→-prime’ in

order to avoid confusion with the notion of ‘∧-prime’, that is usually called ‘prime’.

Making use of this notion, we obtain the following corollaries of Corollary 2.4.4 and

Theorem 2.4.9.

Corollary 2.4.10. Let A be a Hilbert algebra and P ⊆ A. P ∈ Op→(A) if

and only if P c is a →-prime sF-ideal.

Corollary 2.4.11. Let A be an H∧-algebra and P ⊆ A. P ∈ Irr→(A) if and

only if P c is a →-prime order ideal.

Let us conclude this section by considering Hilbert-based classes of algebras.

These are classes of algebras K on a given language L that contains a binary

function symbol→ and a constant 1 such that the (→, 1)-reducts of the algebras in

K are Hilbert algebras. Notice that this implies that the algebras in K are ordered

by the order given by →. For any of such class of algebras, similarly to the case of

semilattice based logics, we may define the Hilbert based logic of K (see Definition

4 in [54]), as the logic S→K := 〈Fm,`→K 〉, defined for any non-empty finite set

Γ = {γ0, . . . , γn} of formulas and any formula δ:

Γ `→K δ iff (∀A ∈ K)(∀h ∈ Hom(Fm,A))

h(γ0)→A (h(γ1)→A . . . (h(γn)→A h(δ)) . . . ) = 1A

iff �K γ0 → (γ1 → . . . (γn → δ) . . . ) ≈ 1.

For Γ the empty set of formulas and any formula δ we define:

∅ `→K δ iff �K δ ≈ 1.

And for Γ an arbitrary set of formulas and any formula δ we define:

Γ `→K δ iff (∃Γ′ ⊆ω Γ) Γ′ `→K δ.





CHAPTER 3

Literature Survey

In this chapter we define what we refer to as Spectral-like and Priestley-style

dualities, and we review in detail some of the dualities in the literature that can be

seen as Spectral-like or Priestley-style dualities.

In § 3.1 we explain what we mean by Spectral-like and Priestley-style dualities.

There is a vast literature on this topic, but we focus our attention on two recent

results, that are used later on and whose study provided us with inspiration for our

work.

On the one hand, in § 3.2 we focus on dualities for distributive meet-semilattices

with top element. In § 3.2.1 we briefly present a simplified version of the Spectral-

like duality for distributive meet-semilattices with top element that was studied

in [12] by Celani. In § 3.2.2 we discuss the Priestley-style duality for distributive

meet-semilattices with top element that was only sketched in [5] by Bezhanishvili

and Jansana.

On the other hand, in § 3.3 we focus on dualities for Hilbert algebras. In § 3.3.1

we briefly present the Spectral-like duality for Hilbert algebras that was introduced

in [19] by Celani and Montangie as a simplification of their work with Cabrer

in [15]. Finally, in § 3.3.2 we outline the Priestley-style duality for Hilbert algebras

that was studied in [18] by Celani and Jansana. Apart from some insignificant

details in the last one, these dualities turn out to be instances of the general theory

we develop in Chapter 5.

3.1. Spectral-like and Priestley-style dualities

The mathematical interest of studying Spectral-like and Priestley-style duali-

ties goes back to Stone’s duality for Boolean algebras [69], that properly speaking,

is a dual equivalence between the category of Boolean algebras with algebraic homo-

morphisms, and the category of Boolean spaces and continuous maps. This duality

has been generalized to distributive lattices in at least three ways (cf. [3] and its

references).

The approach initiated by Stone himself [69] leads to a representation of dis-

tributive lattices in terms of spaces 〈X, τ〉 that are sober, compactly-based and

in which the collection of compact open sets is closed under finite intersections.

Duals of algebraic homomorphisms are the so called Spectral functions, which are

the maps whose inverse sends compact opens to compact opens.

A different approach initiated by Priestley [65] leads to a representation of

distributive lattices in terms of ordered Hausdorff topological spaces that are named

Priestley spaces. These are ordered topological spaces 〈X,≤, τ〉 that are compact

and totally order-disconnected (whenever a ≤ b, there exists a clopen up-set U such

35
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that a ∈ U and b /∈ U). Duals of algebraic homomorphisms are order-preserving

continuous maps.

Recently, a third duality for Distributive Lattices, based on Pairwise Stone

spaces has been studied in detail in [3]. Although we restrict our study to the first

two dualities, it would be very interesting to look into the last one as well.

What makes the Stone/Priestley duality a powerful mathematical tool is that

it allows us to use topology in the study of algebra (and vice versa). Many alge-

braic notions have their dual translation in terms of nice topological notions. It

is precisely the fact that it is a dual equivalence of categories, i. e. the morphisms

are reversed, which implies that dual of injectivity is surjectivity (and vice versa),

duals of subalgebras are order-quotients, duals of homomorphic images are closed

subsets and duals of disjoint unions are products (and vice versa).

All mentioned so far motivates the name of Spectral-like dualities for those

dualities for which the objects of one of the categories are structures of the form

〈X, τ, . . . 〉, where 〈X, τ〉 is a compactly-based sober topological space, and the

suspension points indicate that we may have additional structure. Similarly, we

use the name of Priestley-style dualities for those dualities for which the objects of

one of the categories are structures of the form 〈X, τ,≤, . . . 〉, where 〈X, τ,≤〉 is a

compact totally order-disconnected ordered topological space, and the suspension

points indicate again that we may have additional structure.

3.2. Duality theory for distributive semilattices

In this section we revise the results of Celani in [12], and the results of Be-

zhanishvili and Jansana in [5]. Special attention should be paid to the notation

introduced, as it is used later on.

3.2.1. Spectral-like duality for distributive semilattices. A represen-

tation theorem for distributive semilattices can be obtained from Stone’s pioneering

work in [69], or more detailed in [49], where Grätzer considers distributive semila-

ttices as the appropriate setting to discuss topological representations of distributive

lattices. A duality for the category of distributive semilattices and algebraic homo-

morphisms (DS), was studied in [12], where dual objects of distributive semilattices

are topological spaces called DS-spaces. We recall that X = 〈X, τ〉 is a DS-space

(Definition 14 in [12]) when it is a compactly-based sober topological space, that

is, a topological space such that:1

(DS1) the collection KO(X) of compact open subsets forms a basis for the to-

pology τ ,

(DS2) the space 〈X, τ〉 is sober.

In place of condition (DS2) we could also have:

(DS2′) the space 〈X, τ〉 is T0 and if Z is a closed subset and L is a non-empty

down-directed subfamily of KO(X) such that Z ∩ U 6= ∅ for all U ∈ L,

then Z ∩
⋂
{U : U ∈ L} 6= ∅.

1Notice that DS-spaces were originally defined in [12] as ordered topological spaces, where

the order considered turns out to be precisely the dual of the specialization quasiorder of the

space, that is in fact an order, since the space is T0 (this follows from sobriety). This simple fact

considerably simplifies the definition.
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For any DS-space X = 〈X, τ〉, we consider the family

F (X) := {U c : U ∈ KO(X)},

which is closed under finite intersection by condition (DS1). In [12] (see also [49])

it is proven that X∗ := 〈F (X),∩, X〉 is a distributive semilattice, called the Spectral-

dual distributive semilattice of X.

For M = 〈M,∧, 1〉 a given distributive semilattice, we shall consider the map

ψM : M −→ P↑(Irr∧(M)) given by:

ψM(a) := {P ∈ Irr∧(M) : a ∈ P}.

In [12] it is proven that {ψM(a)c : a ∈M} is a basis for a topology τ̂M on Irr∧(M).

Moreover the structure Irr∧(M) := 〈Irr∧(M), τ̂M〉 is shown to be a DS-space, called

the dual DS-space of M.

If X = 〈X, τ̂〉 is a DS-space, then it is homeomorphic to 〈Irr∧(X∗), τ̂X∗〉 by

means of the map ε̂X : X −→ Irr∧(X∗), given by:

ε̂X(x) := {U ∈ F (X) : x ∈ U}.

If M is a distributive semilattice, then it is isomorphic to (Irr∧(M))∗, the Spectral-

dual distributive semilattice of Irr∧(M), by means of the map ψM.

With respect to morphisms, duals of algebraic morphisms are not functions but

relations, called meet-relations. We recall that for DS-spaces X1 and X2, a relation

R ⊆ X1 ×X2 is a meet-relation when:2

(DSR1) �R(U) ∈ F (X1) for all U ∈ F (X2),

(DSR2) R(x) is a closed subset of X2 for any x ∈ X1.

For any meet-relation R ⊆ X1 × X2, the map �R : P(X2) −→ P(X1) is an

algebraic homomorphism between the distributive semilattices X∗2 and X∗1. For

any homomorphism h : M1 −→ M2 between distributive semilattices, the relation

Rh ⊆ Irr∧(M2)× Irr∧(M1), given by:

(P,Q) ∈ Rh iff h−1[P ] ⊆ Q,

is a meet-relation between the DS-spaces Irr∧(M2) and Irr∧(M1). If R ⊆ X1×X2

is a meet-relation, then (x1, x2) ∈ R if and only if (ε̂1(x1), ε̂2(x2)) ∈ R�R , for all

x1 ∈ X1 and x2 ∈ X2. If h : M1 −→ M2 is a homomorphism, then we have

ψ2(h(a)) = �Rh(ψ1(a)) for all a ∈M1.

In brief, what is proven in [11] is that the category of distributive semilattices

and homomorphisms DS is dually equivalent to the category SpDS, that has DS-

spaces as objects and meet-relations as morphisms.

3.2.2. Priestley-style duality for distributive semilattices. A different

approach was followed in [50] and [5]. We focus on the work in [5], where two cate-

gorical dualities for categories having distributive semilattices as objects are studied

and where the authors make an explicit connection between Priestley duality for

2Notice that this is a simplification of the original definition of meet-relation, that was more

involved and obscure.
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distributive lattices and the duality they provide for distributive semilattices, that

is a generalization of the former.3

Regarding objects, their strategy consists in what follows: first they study how

any distributive semilattice M can be embedded in a distributive lattice L(M),

that they call distributive envelope of M. This construction is also called in [5] the

free distributive lattice extension of M, due to a universal property that it has, and

that will be stated later on in this section. We refer the reader to the Appendix A

to go into details of this construction.

Once the authors have defined the distributive envelope of any distributive

semilattice M, they associate as the Priestley dual of M, the Priestley dual of

L(M), that can be described in terms of optimal meet filters of M. But then they

need to add additional structure to the dual spaces in order to recover the original

semilattice. Dual objects of distributive semilattices are called generalized Priestley

spaces. We recall that X = 〈X, τ,≤, XB〉 is a generalized Priestley space (Definition

9.1 in [5]) when:

(DS3) 〈X, τ,≤〉 is a Priestley space,

(DS4) XB is a dense subset of X,

(DS5) XB = {x ∈ X : {U ∈ C`UadXB (X) : x /∈ U} is non-empty and up-directed},
(DS6) for all x, y ∈ X, x ≤ y iff (∀U ∈ C`UadXB (X)) if x ∈ U , then y ∈ U .

where C`UadXB (X) := {U ∈ C`U(X) : max(U c) ⊆ XB}. Notice that the authors work

with distributive semilattices that are bounded, whose dual spaces are the ones that

they call generalized Priestley spaces. Only in Section 9 they briefly consider the

case when there is not necessarily a bottom element, in which case dual spaces

are called *-generalized Priestley spaces, and these are precisely the ones that we

introduce here under the simplified name of generalized Priestley spaces. It should

be noted that there is an inaccuracy in that outline: the duality they sketch for

the non-bounded case works only if we modify the definition of optimal meet filter

given in [5], and we use instead the one given in page 28.

For a given generalized Priestley space X = 〈X, τ,≤, XB〉, we callXB-admissible

clopen up-sets the elements in C`UadXB (X). It turns out that this collection is closed

under intersection, and in [5] it is proven that X• := 〈C`UadXB (X),∩, X〉 is a distri-

butive semilattice, called the Priestley-dual distributive semilattice of X.

For a given distributive semilattice M = 〈M,∧, 1〉, we consider the function

ϑM : M −→ P↑(Op∧(M)) given by:

ϑM(a) = {P ∈ Op∧(M) : a ∈ P}.

For the bounded case, in [5] it is proven that {ϑM(a) : a ∈M} ∪ {ϑM(b)c : b ∈M}
is a subbasis for a Hausdorff topology τM on Op∧(M). Relying on the one-to-one

correspondence that exists between optimal meet filters of M and prime filters of its

distributive envelope L(M), the authors prove that the ordered topological space

〈Op∧(M), τM,≤〉 is order homeomorphic to the Priestley dual of L(M), and hence

it is a Priestley space as well. As stated before, if we use the definition of optimal

meet filter given by § 2.3, the same results hold for the general case, and moreover,

3In fact they define more categories, concerning the preservation of the bottom element by

the morphisms. As we work in the more general setting where no bottom element is required, we

do not treat these other categorical dualities.
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the structure Op∧(M) := 〈Op∧(M), τM,⊆, Irr∧(M)〉 turns out to be a generalized

Priestley space, called the dual (generalized) Priestley space of M.

If X = 〈X, τ,≤, XB〉 is a generalized Priestley space, then it is order homeo-

morphic to 〈Op∧(X•), τX• ,⊆, Irr∧(X•)〉 by means of the map ξ̂X : X −→ Op∧(X•),

given by:

ξ̂X(x) := {U ∈ C`UadXB (X) : x ∈ U}.

If M is a distributive semilattice, then it is isomorphic to (Op∧(M))•, the Priestley-

dual distributive semilattice of Op∧(M), by means of the map ϑM.

Regarding morphisms, two different notions are considered. One is the usual

notion of algebraic homomorphism, and the other is a stronger notion, called sup-

homomorphism. These are algebraic homomorphisms h : A1 −→ A2 that preserve

all existing finite suprema (including the bottom, when it exists). This is equivalent

to saying that for all n ∈ ω and all a1, . . . , an, b ∈M :

if
⋂
i≤n

↑ai ⊆ ↑b, then
⋂
i≤n

↑h(ai) ⊆ ↑h(b).

The importance of sup-homomorphism in the study of distributive semilattices is

due precisely to the universal property of the distributive envelope of a distributive

lattice: the distributive envelope of M is the unique (up to isomorphism) distribu-

tive lattice L such that there is a one-to-one sup-homomorphism h : M −→ L such

that for every distributive lattice L′ and every sup-homomorphism g : M −→ L′,

there exists a unique lattice homomorphism g : L −→ L′ such that g = g ◦ h. An

alternative characterization of the distributive envelope is the following (the proof

can be found in Theorem 3.9 of [5]).

Theorem 3.2.1. Let M be a bounded distributive semilattice. The distributive

envelope L(M) of M is up to isomorphism the unique distributive lattice L for which

there is a one-to-one sup-homomorphism e : M −→ L such that e[L] is join-dense

in L.

The duals of algebraic homomorphisms are called generalized Priestley mor-

phisms while the duals of sup-homomorphisms are called functional generalized

Priestley morphisms. We recall that for generalized Priestley spaces X1 and X2, a

relation R ⊆ X1 × X2 is a generalized Priestley morphism (Definition 6.2 in [5])

when:

(DSR3) �R(U) ∈ C`UadXB1
(X1) for all U ∈ C`UadXB2

(X2),

(DSR4) if (x, y) /∈ R, then there is U ∈ C`UadXB2
(X2) such that y /∈ U and R(x) ⊆

U .

We say that R is a functional generalized Priestley morphism (Definition 6.11 in [5])

when it is a generalized Priestley morphism that satisfies:

(DSF) for each x ∈ X1 there is x′ ∈ X2 such that R(x) = ↑x′.

For a given generalized Priestley morphism R ⊆ X1×X2, we get that the map

�R : P(X2) −→ P(X1) is an algebraic homomorphism between distributive semi-

lattices X•2 and X•1. Moreover, if R is functional, then �R is a sup-homomorphism.
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Table 1. Categories involved in the Priestley-style duality for dis-

tributive semilattices [5].

Category Objects Morphisms

DS Distributive semilattices Algebraic homomorphisms

DSsup Distributive semilattices Sup-homomorphisms

PrDSM Generalized Priestley spaces Generalized Priestley morphisms

(composition ?)

PrDSF Generalized Priestley spaces Functional generalized Priestley

morphisms (composition ?)

For a given homomorphism between distributive semilattices h : M1 −→ M2, the

relation Rh ⊆ Op∧(M2)×Op∧(M1), given by:

(P,Q) ∈ Rh iff h−1[P ] ⊆ Q,
is a generalized Priestley morphism between generalized Priestley spaces Op∧(M2)

and Op∧(M1). Moreover, if h is a sup-homomorphism, then Rh is functional. If

R ⊆ X1 × X2 is a generalized Priestley morphism, then (x, y) ∈ R if and only

if (ξ̂(x), ξ̂(y)) ∈ R�R , for all x ∈ X1 and all y ∈ X2. If h : M1 −→ M2 is a

homomorphism, then ϑ2(h(a)) = �Rh(ϑ1(a)) for all a ∈M1.

It should be noted that these Priestley-style dualities have a slight drawback:

unfortunately, usual composition of relations does not work as composition between

generalized Priestley morphisms. Instead we have that for any generalized Priestley

spaces X1, X2 and X3 and any generalized Priestley morphisms R ⊆ X1 ×X2 and

S ⊆ X2 × X3, the composition of R and S as morphisms between generalized

Priestley spaces is S ? R,4 where:

(x, z) ∈ (S ? R) iff ∀U ∈ C`UadXB3
(X3)

(
if x ∈ (�R ◦�S)(U), then z ∈ U

)
.

Table 1 collects all the categories involved in this duality. Summarizing, in [5]

Bezhanishvili and Jansana work out a Priestley-style duality for bounded distri-

butive semilattices. Although it is only sketched in [5], their results can also be

applied to get a Priestley-style duality for distributive semilattices not necessarily

bounded. Then we get that DS is dually equivalent to PrDSM and DSsup is dually

equivalent to PrDSF .

3.3. Duality theory for Hilbert algebras

In this section we revise the results of Celani, Cabrer and Montangie in [15],

and we only sketch the results of Celani and Jansana in [18]. Special attention

should be paid again to the notation introduced, as it is used later on.

4Notice that in the original paper [5] there is a notational inconsistency that is worth being

aware of: up to page 107, where ? is defined, the notation used for composition of relations is the

one usually used in category theory, namely the left composition, where the first applied relation

is the left one. From this point on, the notation used for both ◦ and ? is the usual one for

composition of relations, namely the right composition.
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3.3.1. Spectral-like duality for Hilbert algebras. In [15] and [19] Celani

et al. have studied Spectral-like dualities for two categories having Hilbert algebras

as objects. In both dualities, dual objects of Hilbert algebras are ordered topolo-

gical spaces called H-spaces. We recall that X = 〈X, τκ〉 is an H-space (Definition

3.4 in [19]) when:5

(H6) κ is a basis of open and compact subsets for the topological space 〈X, τκ〉,
(H7) for every U, V ∈ κ, sat(U ∩ V c) ∈ κ,

(H8) 〈X, τκ〉 is sober.

In place of condition (H8) we could also have:

(H8′) the space 〈X, τκ〉 is T0 and whenever Z is a closed subset and U is a non-

empty down-directed subfamily of κ such that Z ∩ U 6= ∅ for all U ∈ U ,

we have Z ∩
⋂
{U : U ∈ U} 6= ∅.

For any H-space X = 〈X, τ〉, we consider the family

D(X) := {U c : U ∈ κ},

and we define on this set the operation ⇒ such that for all U, V ∈ κ,

U c ⇒ V c := (sat(U ∩ V c))c.

This operation is well defined by condition (H7), and in [15] it is proven that the

structure X∗ := 〈D(X),⇒, X〉 is a Hilbert algebra, called the Spectral-dual Hilbert

algebra of X.

For a given Hilbert algebra A = 〈A,→, 1〉, we shall consider the function

ψA : A −→ P↑(Irr→(A)), given by:

ψA(a) := {P ∈ Irr→(A) : a ∈ P}.

In [15] it is proven that κA = {ψA(a)c : a ∈ A} is a basis for a topology τκA
on

Irr→(A). Moreover the structure Irr→(A) := 〈Irr→(A), τκA
〉 is shown to be an

H-space, called the dual H-space of A.

If X = 〈X, τκ〉 is an H-space, then it is homeomorphic to 〈Irr→(X∗), τκX∗ 〉 by

means of the map εX : X −→ Irr→(X∗), given by:

εX(x) := {U ∈ D(X) : x ∈ U}.

If A is a Hilbert algebra, then it is isomorphic to (Irr→(A))∗, the Spectral-dual

Hilbert algebra of Irr→(A), by means of the map ψA.

With regard to morphisms, two different notions are considered. One is the

usual notion of algebraic homomorphism, and the other is a weaker notion, called

semi-homomorphism. These are functions h : A1 −→ A2 such that h(1A1) = 1A2

and for all a, b ∈ A1, it holds h(a →A1 b) ≤A2 h(a) →A2 h(b). The importance

of semi-homomorphisms in the study of Hilbert algebras is given by the following

theorem, that involves the important notion of implicative filter (see page 31 for

the definition), and whose proof can be found in Theorem 3.2 in [10].

5H-spaces were originally defined in [15] as ordered topological spaces with the designated

basis. In [19] it was remarked that the order was nothing but the dual of the specialization order

of the space. Therefore some conditions in the original definition of H-spaces are redundant, and

a more compact definition of such spaces is given in [19], where the original name is maintained

for the new spaces, while the former are renamed as ordered H-spaces.
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Table 2. Categories involved in the Spectral-like duality for

Hilbert algebras [15].

Category Objects Morphisms

HS Hilbert algebras Semi-homomorphisms

HH Hilbert algebras Algebraic homomorphisms

SpHM H-spaces H-relations

SpHF H-spaces functional H-relations

Theorem 3.3.1. Let A1 and A2 be two Hilbert algebras. A map h : A1 −→ A2

is a semi-homomorphism if and only if h−1[F ] ∈ Fi→(A1) for every F ∈ Fi→(A2).

Duals of semi-homomorphisms are called H-relations while duals of homomor-

phisms are called functional H-relations. We recall that for H-spaces 〈X1, τκ1
〉 and

〈X2, τκ2
〉, a relation R ⊆ X1 ×X2 is an H-relation (definition 3.2 in [15]) when:

(HR1) �R(U) ∈ κ1, for all U ∈ κ2,

(HR2) R(x) is a closed subset of X2, for all x ∈ X1.

We say that R is a functional H-relation (Definition 3.3 in [15]) when it is an

H-relation that satisfies:

(HF) if (x, y) ∈ R, then there exists z ∈ cl(x) such that R(z) = cl(y).

Notice that here the authors use the adjective ‘functional’ associated with being

the dual of an algebraic homomorphism whereas in the Priestley-style duality for

distributive semilattices, the adjective ‘functional’ is used associated with being the

dual of a sup-homomorphism.

For R ⊆ X1 ×X2 a given H-relation, the map �R : P(X2)× P(X1) is a semi-

homomorphism between Hilbert algebras X∗2 and X∗1. Moreover, if R is functional,

then �R is a homomorphism. For h : A1 −→ A2 a given semi-homomorphism

between Hilbert algebras, the relation Rh ⊆ Irr→(A2)× Irr→(A1), defined by:

(P,Q) ∈ Rh iff h−1[P ] ⊆ Q,

is an H-relation between H-spaces Irr→(A2) and Irr→(A1). Moreover, if h is a

homomorphism, then Rh is functional. If R ⊆ X1×X2 is a (functional) H-relation,

then (x1, x2) ∈ R if and only if (ε1(x1), ε2(x2)) ∈ R�R , for all x1 ∈ X1 and x2 ∈ X2.

If h : A1 −→ A2 is a (semi-)homomorphism, then ψ2(h(a)) = �Rh(ψ1(a)) for all

a ∈ A1.

Table 2 collects all the categories involved in this duality. Summarizing, what

is proven in [15] is that HS is dually equivalent to SpHM and HH is dually equivalent

to SpHF .

3.3.2. Priestley-style duality for Hilbert algebras. In [18], Celani and

Jansana have studied Priestley-style dualities for four categories having Hilbert
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algebras as objects.6 This spread of categories is because their work is based in the

mentioned Priestley-style dualities for DS and DSsup.
In relation to objects, their strategy consists in what follows: first they study

how any Hilbert algebra A can be embedded in a bounded distributive semila-

ttice M(A), so that they can associate as the Priestley dual of A, the Priestley

dual of M(A) (as it was defined in [5]). This construction is based on their work

in [17] where they study how any Hilbert algebra can be embedded in an implica-

tive semilattice (not necessarily bounded) that they call free implicative semilattice

extension of A (the name is due to the universal property that this construction

has). This issue concerning bounds (Hilbert algebras do not have necessarily a

bottom element, while bounded distributive semilattices certainly do) makes their

construction a bit involved. Their duality can be simplified if we forget about the

bottom, and we use instead the duality for distributive semilattices we already

presented. This follows, in fact, as a particular instance of the theory we present

in Chapter 5. We encourage the reader to address § 6.2 for a full description of a

Priestley-style duality for Hilbert algebras. In what follows, we just briefly present,

for the sake of completeness, the definitions of dual objects and morphisms the

authors give in [18]. We recall that X = 〈X, τ,≤, B〉 is an augmented Priestley

space (Definition 5.4 in [18]) when:

(H9) 〈X, τ〉 is a compact topological space,

(H10) 〈X,≤〉 is a poset with top element t,

(H11) B is a non-empty collection of non-empty clopen up-sets of X,

(H12) for every x, y ∈ X, x ≤ y iff ∀U ∈ B( if x ∈ U , then y ∈ U),

(H13) the set XB ∪ {t} is dense in X, where

XB := {x ∈ X : {U ∈ B : x /∈ U} is non-empty and up-directed},

(H14) for all U, V ∈ B, (↓(U ∩ V c))c ∈ B.

Notice that from compactness and condition (H12), it follows that 〈X, τ,≤〉 is a

Priestley-space.

For a given augmented Priestley space X = 〈X, τ,≤, B〉, consider the operation

⇒: B ×B −→ B such that for all U, V ∈ B,

U ⇒ V := (↓(U ∩ V c))c.

By condition (H14), this operation is well defined. In [17] it is proven that the al-

gebra X• := 〈B,⇒, X〉 is a Hilbert algebra, called the Priestley-dual Hilbert algebra

of X.

For a given Hilbert algebra A = 〈A,→, 1〉, define Op+
→(A) := Op→(A) ∪ {A}.

Recall that only if A has no bottom element, the emptyset is an strong Frink

ideal, and so A is an optimal implicative filter, in which case Op+
→(A) = Op→(A).

Consider the map ϑ+
A : A −→ P↑(Op+

→(A)) given by:

ϑ+
A(a) := {P ∈ Op+

→(A) : a ∈ P}.

In [17] it is proven that {ϑ+
A(a) : a ∈ A} ∪ {ϑ+

A(b)c : b ∈ A} is a subbasis for

a topology τ+
A on Op+

→(A). Moreover it is defined the structure Op+
→(A) :=

6In fact, they consider more categories, concerning preservation of the bottom element, that

we do not consider here.
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〈Op+
→(A), τ+

A ,⊆, ϑ
+
A[A]〉, that is shown to be an augmented Priestley space, called

the dual (augmented) Priestley space of A.

If X = 〈X, τ,≤, B〉 is an augmented Priestley space, then we obtain that the

structure 〈Op+
→(X•), τ+

X• ,⊆, ϑ
+
X• [B]〉 is an augmented Priestley space, and the or-

dered topological space 〈X, τ,≤〉 is order homeomorphic to 〈Op+
→(X•), τ+

X• ,⊆〉 by

means of the map ξ+
X : X −→ Op+

→(X•), given by:

ξ+
X (x) := {U ∈ B : x ∈ U}.

If A is a Hilbert algebra, then it is isomorphic to (Op+
→(A))•, the Priestley-dual

Hilbert algebra of Op+
→(A), by means of the map ϑ+

A.

In relation to morphisms, the following property of maps is considered. A map

h : A −→ B between Hilbert algebras A and B has the sup-property if for every

a1, . . . , an, b0, . . . , bm ∈ A:

if
⋂
i≤n

↑ai ⊆ 〈{b0, . . . , bn}〉, then
⋂
i≤n

↑h(ai) ⊆ 〈{h(b0), . . . , h(bm)}〉.

Besides semi-homomorphisms and homomorphisms, two more notions are consi-

dered, namely sup-semi-homomorphisms, that are semi-homomorphisms with the

sup-property, and sup-homomorphisms, that are homomorphisms with the sup-

property.

Duals of semi-homomorphisms are called augmented Priestley semi-morphisms.

We recall that for augmented Priestley spaces X1 and X2, a relation R ⊆ X1 ×X2

is an augmented Priestley semi-morphism (Definition 5.13 in [18]) when:

(HR3) if (x, y) /∈ R, then there is U ∈ B2 such that y /∈ U and R(x) ⊆ U ,

(HR4) �R(U) ∈ B1 for all U ∈ B2.

We say that R is an augmented Priestley morphism if in addition satisfies:

(HF′) for every x ∈ X1 and every y ∈ XB2
, if (x, y) ∈ R, then there exists

z ∈ XB1
such that z ∈ ↑x and R(z) = ↑y.

that for

We say that an augmented Priestley semi-morphism is functional if for every

x ∈ X1, the set R(x) has a least element. Notice that concerning the use of the

adjective ‘functional’, the authors follows the terminology used in [5].

For a given augmented Priestley semi-morphism R ⊆ X1 × X2, the map

�R : P(X2) −→ P(X1) is a semi-homomorphism between Hilbert algebras X•2
and X•1. Moreover, if R is an augmented Priestley morphism, then �R is a ho-

momorphism, and if R is functional, then �R has the sup-property. For any semi-

homomorphism between Hilbert algebras h : A1 −→ A2, we obtain that the relation

Rh ⊆ Op+
→(A2)×Op+

→(A1), given by

(P,Q) ∈ Rh iff h−1[P ] ⊆ Q,

is an augmented Priestley semi-morphism between augmented Priestley spaces

Op+
→(A2) and Op+

→(A1). Moreover, if h is an homomorphism, then Rh is an

augmented Priestley morphism, and if h has the sup-property, then Rh is func-

tional. If R ⊆ X1 ×X2 is an augmented Priestley semi-morphism, then (x, y) ∈ R
if and only if (ξ+(x), ξ+(y)) ∈ R�R , for all x ∈ X1 and y ∈ X2. If h : A1 −→ A2 is

a semi-homomorphism, then ϑ+
2 (h(a)) = �Rh(ϑ+

1 (a)) for all a ∈ A1.
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Table 3. Categories involved in the Priestley-style duality for

Hilbert algebras [18].

Category Objects Morphisms

HS Hilbert algebras semi-homomorphisms

HH Hilbert algebras algebraic homomorphisms

HsupS Hilbert algebras sup-semi-homomorphisms

HsupH Hilbert algebras sup-homomorphisms

PrHsM Augmented Priestley spaces Augmented Priestley semi-

morphisms (composition ?)

PrHM Augmented Priestley spaces Augmented Priestley morphisms

(composition ?)

PrHsF Augmented Priestley spaces Functional augmented Priestley

semi-morphisms (composition ?)

PrHF Augmented Priestley spaces Functional augmented Priestley

morphisms (composition ?)

As in the case of Priestley-style duality for distributive semilattices, usual com-

position of relations does not work as composition between augmented Priestley

semi-morphisms. Instead we have that for any augmented Priestley spaces X1,

X2 and X3 and any augmented Priestley semi-morphisms R ⊆ X1 × X2 and

S ⊆ X2 × X3, the composition of R and S as morphisms between augmented

Priestley spaces is S ? R, where:

(x, z) ∈ (S ? R) iff ∀U ∈ B3

(
if x ∈ �R ◦�S(U), then z ∈ U

)
.

Table 3 collects all the categories involved in these dualities. Summarizing,

what is proven in [18] is that HS is dually equivalent to PrHsM , HH is dually equiv-

alent to PrHM , HsupS is dually equivalent to PrHsF and HsupH is dually equivalent to

PrHF .





Part 2

Duality Theory for Filter

Distributive Congruential Logics





CHAPTER 4

Duality Theory and Abstract Algebraic Logic:

Introduction and Motivation

In this chapter we introduce our work plan for Part 2, we give the motivation

and we make the first steps towards an abstract Stone/Priestley duality theory for

non-classical logics under the point of view of AAL.

In § 4.1 we introduce the problem we aim to solve, and how we propose to reach

it. We tackle that problem in Chapter 5, but in the remaining part of the present

chapter we examine the tools we need to achieve that goal. First, we introduce

in § 4.2 some concepts from Wójcicki’s theory of logical calculi [73], that were

introduced to deal with a more general problem closely related to ours. In § 4.3 we

focus on closure bases for CA
S , the closure operator associated with the collection of

S-filters of A. We present some results that can also be found in [56]. Then in § 4.4

we introduce some new concepts, from another instance of what was presented in

Chapter 2, specialized in this case for the closure operator CA
S defined on the poset

〈A,≤A
S 〉. This completes the toolkit we need for the next chapter. Finally, relying

on the work in [41], the S-semilattice of A is introduced and studied in § 4.5, and

we take a look in § 4.6 at canonical extensions for congruential logics.

4.1. Introduction and motivation

Regarding logic and theoretic computer science, Stone/Priestley duality has

been used for different purposes: Rasiowa and Sikorski [68] applied Baire category

theorem to the dual space of the Lindenbaum-Tarski algebra of the first-order logic

to provide a topological proof of Gödel’s completeness theorem for first-order logic.

Abramsky [1] used Stone duality for distributive lattices to connect specification

languages and denotational semantics, thus linking lambda calculus and domain

theory. More recently, Gehrke, Grigorieff and Pin [39, 40] studied the connection

between regular languages and monoids as another case of Stone duality.

Apart from these less-known applications of duality theory in the study of logic,

what is always mentioned, and rightfully so, is the work by Jónsson and Tarski

[58, 59] on representation of Boolean algebras with operators. As it is addressed

in [47], this algebraic work was overlooked by modal logicians at that time, but

it could immediately have been applied to give new algebraic semantics of modal

logics, and even more, to prove completeness of modal logic with respect to what

later became known as general Kripke frames.

Nevertheless, Jónsson and Tarski’s paper ushered a fruitful field of study: the

study of the relation between algebraic semantics and Kripke-style semantics of a

49
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logic via dual equivalences of categories. Although both Stone and Priestley ap-

proaches have been followed to generalize this pioneering work on representation

of Boolean algebras with operators [58], the latter, that deals with Hausdorff (i. e.

nicer) topological spaces, has been held to be advantageous [13, 46], especially in

view of recent developments of the theory of canonical extensions (see [43] and

its references). The key point of this theory, called extended Priestley duality, is

that the additional n-ary operations either preserve joins (resp. meets) in each

coordinate, or send joins (resp. meets) in each coordinate to meets (resp. joins).

These n-ary operations are dually represented in terms of n+ 1-ary relations satis-

fying certain conditions. Moreover, the theory of canonical extensions has enabled

the study of the relation between algebraic and relational semantics of some well-

behaved substructural logics [26, 70, 71], via discrete dualities (i. e. dualities in

which no topology is involved). A modular study of the relational semantics that

follows from these studies was developed by Gehrke in [38], where such semantic

models were called generalized Kripke frames.

Until the mid-2000s, all categories of algebras (and homomorphisms) for which

Stone/Priestley dualities were studied had as objects lattice-based algebras (i. e.

algebras with a lattice reduct), in most cases distributive. Which means that all

logics for which the relation between its algebraic semantics and its Kripke-style se-

mantics had been studied via a topological duality, were logics having well-behaved

conjunction and disjunction connectives. In the recent literature, we find further

studies that work out dualities for logics that do not have both a conjunction and

a disjunction at the same time, or that do not have any of these connectives. In

other words, Spectral-like and Priestley-style dualities have been studied for cate-

gories whose objects correspond to certain ordered algebraic structures that are not

lattice-based. The approach initiated by Stone has been followed in [11, 15, 19],

whereas the approach initiated by Priestley has been followed in [5,6,18], among

others.

Although these studies often have a logical motivation, their content is math-

ematical above all, and it happens that the connection with logic is not studied in

a sufficiently explicit manner. For example, it has become vox populi that Stone

duality for Modal algebras provides relational semantics for modal logics. But it

is rather unusual to specify which modal logic (as a closure relation) they refer to,

namely the local consequence of the referred modal logic. This connection can be

made explicit by using the notions from AAL of S-algebras and S-filters. As these

notions are defined for any arbitrary logic and any arbitrary algebra, a natural

question arises: which abstract properties should a logic have in order to possess a

Stone/Priestley duality for the class of algebras canonically associated with it? We

aim to identify the class of logics S such that the category of S-algebras and homo-

morphisms can be seen dually as a Spectral-like and/or a Priestley-style category.

This problem might be seen as a restriction of a more general question that was

tackled by Wójcicki in [73]. He asked about the abstract properties that a logic

should have in order to posses a frame semantics. In the next section we review in

detail this work, given that the problem we tackle in this dissertation can be seen

as a restriction of that addressed in [73] by Wójcicki.
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4.2. Referential semantics and selfextensional logics

Referential algebras were introduced by Wójcicki [73] as a tool for studying

the link between frame semantics and algebraic semantics of arbitrary logics. The

underlying idea of frame semantics is simple and straightforward: it consists in

assuming that truth values of the formulas depend on reference points. One of the

possible interpretations of those reference points is that of the possible worlds, in

which case frame semantics reduces to possible world semantics. Instead of dealing

with frames, Wójcicki opts to deal with referential algebras. These structures are

linked with referential semantics in the same way as Kripke frames are linked with

Kripke semantics. Moreover in [73], it is shown that a logic has a frame semantics

if, and only if, it admits referential semantics. So the only difference is the point

of view: referential semantics is nothing but regarding frame semantics (or Kripke-

style semantics) under an algebraic point of view. And this seems to be the suitable

outlook if we aim to study the link between algebraic and frame semantics.

Given a logical language L , an L -referential algebra is a structure X = 〈X,B〉
where:

(1) X is a non-empty set, and

(2) B is an L -algebra whose elements are subsets of X.

For any L -referential algebra X = 〈X,B〉, we define the relation �X ⊆ X×X
as follows:

x �X y iff ∀U ∈ B
(

if x ∈ U , then y ∈ U
)
.

This relation is a quasiorder on X, and whenever �X is a partial order, the

L -referential algebra X is said to be reduced. In this case, we denote �X by

≤X , or even by ≤ when the context is clear.

Referential algebras are another example of structures that can be used to

define logics. For instance, for any L -referential algebra X = 〈X,B〉 we might

define the relation `X ⊆ P(FmL )× FmL such that for all Γ ∪ {δ} ⊆ FmL :

Γ `X δ iff ∀h ∈ Hom(FmL ,B),
⋂
γ∈Γ

h(γ) ⊆ h(δ).

Given a logic S in the language L , and an L -referential algebra X , we say that

X is an S-referential algebra provided `S ⊆`X . Moreover, we say that S admits

a (complete local) referential semantics if there is a class of referential algebras X
such that `S =

⋂
{`X : X ∈ X}.

Remark 4.2.1. It is easy to see (check Remark 5.2 in [56]) that for each

algebraic reduct B of a reduced S-referential algebra, B ∈ AlgS.

In [73] it is identified the abstract property of a logic that corresponds to

admitting a complete local referential semantics. Wójcicki defines selfextensional

logics as those logics S for which ΛCS , the Frege relation of CS , is a congruence of

Fm, where recall that ΛCS ⊆ Fm× Fm is given by: for all γ, δ ∈ Fm

(γ, δ) ∈ ΛCS iff CS(γ) = CS(δ).

Alternatively, we can define selfextensional logics (see Definition 2.41 in [35])

as those logics for which the Frege relation of CS and the Tarski congruence of S
coincide.
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Selfextensional logics are precisely those logics that admit complete and local

referential semantics. An updated approach to the topic is carried out by Jansana

and Palmigiano in [56], using modern notation and terminology that we follow.

The mentioned correspondence between selfextensional logics and logics that admit

referential semantics is formulated in [56] as a proper equivalence of categories.

These studies fit in the field of AAL, where selfextensional logics have been

studied in depth (cf. [34, 53–55] and its references). Other classes of logics can

be defined using the Frege relation, and this yields to what is known as the Frege

hierarchy. This is a classification scheme of logics under four classes defined in

terms of congruence properties. Selfextensional logics are one of theses classes, the

others being Fregean, fully Fregean and congruential (a. k. a. fully selfextensional)

logics. The study of this classification, its structure and its relations with the

Leibniz hierarchy started in the late 90’s, and has continued to be intense in the

last twenty years.1 Almost all known selfextensional logics are congruential, and

only in [2] it is presented an ad hoc example that shows that the inclusion of the

former in the latter is strict.

As it is formulated by Jansana and Palmigiano in [56], the correspondence be-

tween selfextensional logics and logics that admit referential semantics involves a

dual equivalence of categories: one being the class of referential algebras associated

with the referential semantics, and the other being the class of reduced g-models

that provides the algebraic semantics. Thus they provide a duality between alge-

braic and referential semantics, and hence we take it as an starting point of our

work. Recall that we aim to identify the class of logics S for which a Stone/Priestley

duality can be defined for AlgS. We are not interested in the algebraic semantics

given by the reduced g-models, rather in the algebraic semantics given by purely al-

gebraic structures. In [56] it is shown that when we deal with selfextensional logics

that are congruential, the correspondence can be formulated as a dual equivalence

of categories, one being the class of S-algebras (and homomorphisms), and the

other being what they call perfect S-referential algebras (and suitable morphisms).

What they present is a general framework in which our work is placed as well. In

particular, the representation theorem for congruential logics they deal with, is the

same that we study in the next section. We review in detail their work in § 5.4,

where we compare their results with ours.

4.3. Closure Bases and congruential logics

We define now congruential logics and we present a representation theorem for

S-algebras, when S is congruential. From now on, fix a language L , let S be a

logic in the language L and let A be an algebra of the same type. If not otherwise

1The Leibniz hierarchy is another classification scheme of logics that can be presented in

at least four ways: according to either syntactic characterizations of logics, or definability char-

acterizations, or lattice-theoretical characterizations in terms of the properties of the Leibniz

congruence, or model-theoretic characterizations of the classes of reduced S-models and reduced

S-algebras. This hierarchy has been enriched recently by the contributions of Raftery [66] and

Cintula and Noguera [20], and some well-known classes of the hierarchy are, for instance, the class

of implicative logics introduced by Rasiowa [67], or the class of protoalgebraic logics, that was

first defined by Blok and Pigozzi in [7] and independently by Czelakowski in [22], and that was

studied in depth by Czelakowski [23].
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stated, all logics and algebras considered in what follows are assumed to have the

type of L .

Recall that we denote by FiS(A) the collection of S-filters of A, that is a closure

system. Let us denote by CA
S the closure operator associated with FiS(A). Thus

for any subset B ⊆ A, CA
S (B) denotes the least S-filter of A that contains B.

This closure operator defines the specialization quasiorder ≤A
S on A associated

with CA
S , such that for all a, b ∈ A:

a ≤A
S b iff CA

S (b) ⊆ CA
S (a).

We denote by≡A
S the equivalence relation associated with≤A

S , i. e.≡A
S := ≤A

S ∩ ≥A
S .

Notice that ≡A
S is precisely ΛCA

S
, the Frege relation of CA

S . This relation provides

a definition of the canonical class of algebras associated with S alternative to that

presented in page 18.

Definition 4.3.1. An algebra A is an S-algebra when for every congruence θ

of A, if θ ⊆ ≡A
S , then θ = 4A.

In particular, from the definition of Lindenbaum-Tarski algebra (see page 18),

and since the Frege relation of CS and the Tarski congruence of S coincide for any

selfextensional logic we obtain that for any selfextensional logic S, the Lindenbaum-

Tarski algebra Fm∗ = Fm/ΛCS = Fm/ ≡Fm
S is an S-algebra. The relation ≡A

S is

also used to define the class of congruential logics.

Definition 4.3.2. (Prop. 2.42 in [35]) A logic S is called congruential,2 when

for every algebra A, ≡A
S is a congruence of A.

Notice that it follows from the definition that any congruential logic is self-

extensional. When the Frege relation of a closure operator C on an algebra A is

a congruence, we say that the structure 〈A,C〉 has the congruence property (Def.

2.39 in [35]). Therefore, a logic S is congruential, provided for any algebra A,

〈A,CA
S 〉 has the congruence property. Many of the well-known logics, including

classical and intuitionistic propositional logics, are congruential. A sufficient condi-

tion for a selfextensional logic for being congruential is satisfying (uDDT) or (PC).

Next theorem, stated in Theorem 2.2 in [41] without a proof, gives an alternative

definition of congruentiality.

Theorem 4.3.3. A logic S is congruential if and only if for every algebra A of

the same type:

A ∈ AlgS iff 〈A,≤A
S 〉 is a poset.

Proof. Let S be a congruential logic. Clearly ≤A
S being an order implies that

A ∈ AlgS. For the converse, let A ∈ AlgS. By assumption ≡A
S is a congruence of

A, so by definition of S-algebra, ≡A
S = 4A, and therefore, ≤A

S is an order.

Let now S be a logic such that for every algebra A, A ∈ AlgS if and only if

〈A,≤A
S 〉 is a poset. Let B be any algebra of the same type of S. We show that

≡B
S = 4B. By propositions 2.10 and 2.21 in [35], B∗ := B/Ω̃B(FiS(B)) ∈ AlgS,

2We follow here the terminology used in [41]. Congruential logics were previously called

strongly selfextensional [35] and fully selfextensional [56].
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where Ω̃B(FiS(B)) is the Tarski congruence of 〈B,FiS(B)〉.3 We also get that

the projection map is a bilogical morphism from 〈B,FiS(B)〉 to 〈B∗,FiS(B∗)〉. by

assumption ≡B∗

S = 4B∗ , i. e. 〈B∗,FiS(B∗)〉 has the congruence property. But since

this property is preserved by bilogical morphisms (Proposition 2.40 in [35]), we

conclude that 〈B,FiS(B)〉 has the congruence property, i. e. we get that ≡B
S = 4B

is a congruence, as required. �

From the previous theorem we infer that for any congruential logic S,

AlgS = {A : ≡A
S = 4A}.

Remark 4.3.4. Notice that when S is congruential, all S-filters are up-sets

with respect to ≤A
S , and for all a ∈ A, CA

S (a) = ↑≤A
S
a. When the context is clear,

we drop the subscript of ↑≤A
S

as well as the subscript of ↓≤A
S

.

From now on we focus on congruential logics and on closure bases for CA
S , as

they provide us with the representation theorems for S-algebras we are looking

for. Recall that F ⊆ FiS(A) is a closure base for CA
S provided any S-filter is an

intersection of elements in F .

For any closure base F for CA
S , we define the map ϕF : A −→ P↑(F) such that

for any a ∈ A:

ϕF (a) = {P ∈ F : a ∈ P}.
For any a ∈ A, ϕF (a)c denotes the set {P ∈ F : a /∈ P}. For any B ⊆ A, we

denote:

ϕ̂F (B) :=
⋂
{ϕF (b) : b ∈ B} = {P ∈ F : B ⊆ P}.

Notice that for any B,B′ ⊆ A, we have that ϕ̂F (B) ∩ ϕ̂F (B′) = ϕ̂F (B ∪B′). This

notation should not be confused with ϕF [B] := {ϕF (b) : b ∈ B}.
Let us denote by ϕF [A] the algebra whose carrier is ϕF [A] and such that for

each n-ary connective f of the language L , and any elements a1, . . . , an ∈ A, an

operation fϕF [A] on ϕF [A] is defined as follows:

fϕF [A](ϕF (a1), . . . , ϕF (an)) := ϕF (fA(a1, . . . , an)).

These operations are well defined since the map ϕF is injective, and injectivity of

ϕF follows easily from S being congruential and F being a closure base for CA
S : let

a, b ∈ A be such that a 6= b. Since S is congruential and A is an S-algebra, we have

4A = ≡A
S , so from a 6= b we can assume, without loss of generality, that a �A

S b.

Then b /∈ CA
S (a), and therefore there is P ∈ F such that CA

S (a) ⊆ P and b /∈ P .

We conclude that P ∈ ϕF (a) \ ϕF (b), so ϕF (a) 6= ϕF (b), as required. Thus ϕF [A]

is well defined and moreover ϕF ∈ Hom(A, ϕF [A]).

Theorem 4.3.5. Let S be a congruential logic, let A be an S-algebra and let F
be a closure base for CA

S . The map ϕF : A −→ P↑(F) is an isomorphism between

3 The Tarski congruence has been introduced through the study of the semantics of gener-

alized matrices. It is defined for any pair consisting of an algebra and a closure system, as the

greatest congruence on the algebra compatible with all the subsets of the closure system. The

Tarski congruence can be defined also in terms of the Leibniz congruence, and it can be used to

give an alternative definition of AlgS, for any logic S. For a more precise definition see Definition

1.1 in [35].
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the algebras A and ϕF [A], and an order embedding between the posets 〈A,≤A
S 〉 and

〈ϕF [A],⊆〉.

Proof. By definition ϕF is a homomorphism of A onto ϕF [A]. Notice that

a ≤A
S b implies ϕF (a) ⊆ ϕF (b), and from this and the previous argument about

injectivity, we get the required order embedding. �

Previous theorem is the representation theorem we were looking for. Moreover,

from it we obtain that the algebra ϕF [A] is an S-algebra. Therefore, we may con-

sider the closure operator C
ϕF [A]
S associated with the closure system FiS(ϕF [A]).

Lemma 4.3.6. Let S be a congruential logic, let A be an S-algebra and let F
be a closure base for CA

S . Then {ϕF [P ] : P ∈ F} is a closure base for C
ϕF [A]
S .

Proof. As ϕF is an isomorphism between S-algebras A and ϕF [A], in par-

ticular we have that FiS(ϕF [A]) = {ϕF [F ] : F ∈ FiS(A)}. Consider the family

F ′ := {ϕF [P ] : P ∈ F} and let G ∈ FiS(ϕF [A]) and a ∈ A be such that ϕF (a) /∈ G.

Since ϕF is an isomorphism, there is F ∈ FiS(A) such that ϕF [F ] = G, so we have

a /∈ F . Then by F being closure base, there is P ∈ F such that F ⊆ P and a /∈ P .

This implies G = ϕF [F ] ⊆ ϕF [P ] ∈ F ′ and ϕF (a) /∈ ϕF [P ], as required. �

Corollary 4.3.7. Let S be a congruential logic, let A be an S-algebra and

let F be a closure base for CA
S . For any a ∈ A and any B ⊆ A:

a ∈ CA
S (B) iff ϕ̂F (B) ⊆ ϕF (a) iff ϕF (a) ∈ C

ϕF [A]
S (ϕF [B]).

Proof. Assume first that a ∈ CA
S (B) and let P ∈ ϕ̂F (B), i. e. B ⊆ P . Then

we have CA
S (B) ⊆ CA

S (P ) = P , and so a ∈ P , i. e. P ∈ ϕF (a). For the converse,

let a /∈ CA
S (B), then by F being a closure base for CA

S , there is P ∈ F such that

a /∈ P and CA
S (B) ⊆ P , i. e. P ∈ ϕ̂F (B) \ ϕF (a).

We show now that a ∈ CA
S (B) if and only if ϕF (a) ∈ C

ϕF [A]
S (ϕF [B]). Assume

first that ϕF (a) ∈ C
ϕF [A]
S (ϕF [B]). Notice that since CA

S (B) is an S-filter of A,

by ϕF being an isomorphism, the set ϕF [CA
S (B)] is an S-filter of ϕF [A]. Then

from B ⊆ CA
S (B) we get C

ϕF [A]
S (ϕF [B]) ⊆ C

ϕF [A]
S (ϕF [CA

S (B)]) = ϕF [CA
S (B)].

Therefore, from the assumption it follows ϕF (a) ∈ ϕF [CA
S (B)], and so a ∈ CA

S (B).

Assume now that ϕF (a) /∈ C
ϕF [A]
S (ϕF [B]). Then as C

ϕF [A]
S (ϕF [B]) is an S-filter

of ϕF [A], from lemma 4.3.6 we get that there is P ∈ F such that ϕF (a) /∈ ϕF [P ]

and C
ϕF [A]
S (ϕF [B]) ⊆ ϕF [P ]. So from ϕF [B] ⊆ ϕF [P ], we infer B ⊆ P , and then

CA
S (B) ⊆ CA

S (P ) = P . And from a /∈ P , we conclude a /∈ CA
S (B). �

Corollary 4.3.8. Let S be a congruential logic, let A be an S-algebra and

let F be a closure base for CA
S . For any B,D ⊆ A:

D ⊆ CA
S (B) iff ϕ̂F (B) ⊆ ϕ̂F (D) iff

⋃
{ϕF (d) : d ∈ D} ⊆ C

ϕF [A]
S (ϕF [B]).

Notice that from Corollary 4.3.7 it follows that for all B ⊆ A:

C
ϕF [A]
S (ϕF [B]) = ϕF [CA

S (B)].

The structure 〈F , ϕF [A]〉 is a referential algebra, that in Section 5.6.7 of [73]

is called the canonical referential algebra for CA
S determined by F .
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Theorem 4.3.9. Let S be a congruential logic, let A be an S-algebra and let F
be a closure base for CA

S . Then 〈F , ϕF [A]〉 is a reduced S-referential algebra and

the associated order is given by the inclusion relation.

Proof. By definition, 〈F , ϕF [A]〉 is a referential algebra. We show first that

〈F , ϕF [A]〉 is reduced. Consider the quasiorder � ⊆ F × F of the referential

algebra, which is defined as follows:

P � Q iff ∀a ∈ A
(

if P ∈ ϕF (a), then Q ∈ ϕF (a)
)
.

Note that using the definitions of the notions involved, it follows that this quasiorder

is the inclusion relation on F . Therefore it is a partial order and the referential

algebra is reduced.

Let us show that 〈F , ϕF [A]〉 is an S-referential algebra. Let Γ ∪ {δ} ⊆ Fm be

such that Γ `S δ, and let h ∈ Hom(Fm, ϕF [A]). Since ϕF ∈ Hom(A, ϕF [A]) is an

isomorphism, there is h′ ∈ Hom(Fm,A) such that ϕF ◦ h′ = h. We have to show

that
⋂
{h(γ) : γ ∈ Γ} ⊆ h(δ), so let P ∈ F be such that P ∈

⋂
{h(γ) : γ ∈ Γ} =⋂

{ϕF (h′(γ)) : γ ∈ Γ}. Then h′(γ) ∈ P for all γ ∈ Γ. And since P ∈ FiS(A) and

h′ ∈ Hom(Fm,A), from the assumption and the definition of S-filter we obtain

h′(δ) ∈ P , so P ∈ ϕF (h′(δ)) = h(δ), as required. �

Notice that the previous theorem, Remark 4.2.1 and Lemma 4.3.6 imply that

for any S congruential logic, there is a back and forth correspondence between

reduced S-referential algebras and structures of the form 〈A,F〉, where A is an S-

algebra and F is a closure base for CA
S . This correspondence between objects, first

addressed by Czelakowski in [23], was formulated as a full-fledged duality in [56],

for the case when the collection FiS(A) was taken as the closure base. But this is

not the closure base that properly generalizes the representation theorem on which

they are based the Stone/Priestley dualities that we find in the literature. Let us

consider the example of intuitionistic logic, for which the canonical class of algebras

associated with are Heyting algebras. Logical filters of Heyting algebras are lattice

filters. But the representation theorem on which is based Stone/Priestley duality

for Heyting algebras focuses on prime lattice filters and not on all lattice filters.

Therefore, for our purposes, we should not work with the whole collection of S-

filters, but rather we should identify the closure bases that provide us with a direct

generalization of the mentioned representation theorem in the literature. This is

what we do in the next section, where we define irreducible and optimal S-filters,

using what we studied in Chapter 2.

4.4. The closure operator CA
S : irreducible and optimal logical filters

From now on, let S be a congruential logic and let A be an S-algebra. Notice

that when S is a finitary logic, then CA
S is a finitary closure operator for any

S-algebra A. By convenience we assume that S has theorems. Recall that we say

that a logic S has theorems when there is at least one formula ϕ ∈ Fm such that

∅ `S ϕ. The collection of all formulas that are theorems is denoted by ThmS.

It is easy to see that when S has theorems, then the poset 〈A,≤A
S 〉 has a top

element, that we denote by 1A, that is the image of any theorem of the logic by any

homomorphism from Fm to A. Moreover, when S has theorems, all S-filters of A
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are non-empty, since they contain the top element 1A: for F ∈ FiS(A) an S-filter,

δ ∈ ThmS a theorem, and h ∈ Hom(Fm,A) a homomorphism, from ∅ `S δ it

follows h(δ) = 1A ∈ F . Therefore CA
S (∅) is non-empty.

The usual notions of order ideal and order filter might be defined for the poset

〈A,≤A
S 〉. An order ideal (cf. definition in page 26) of A is a non-empty up-directed

down-set of 〈A,≤A
S 〉. Dually, an order filter of A is a non-empty down-directed

up-set of 〈A,≤A
S 〉. We denote by Id(A) (resp. Fi(A)) the collection of all order

ideals (resp. order filters) of A. Notice that all principal down-sets (resp. up-sets)

are, in particular, order ideals (resp. order filters).

Concerning the closure operator CA
S defined on A, making use of what was

presented in § 2.1, we get several notions of filter and ideal, as well as separation

lemmas and other important results.

Recall that by definition, the S-filters of A are the closed sets of CA
S . We say

that an S-filter is irreducible when it is an irreducible CA
S -closed, i. e. when it is a

meet-irreducible element of the lattice of S-filters FiS(A). We denote by IrrS(A)

the collection of all irreducible S-filters of A. Notice that FiS(A) satisfies condition

(E1) in page 22 on the poset 〈A,≤A
S 〉, i. e. all S-filters are up-sets with respect to

≤A
S . Therefore, the following instance of Lemma 2.1.1 holds for CA

S , when the logic

is finitary.

Lemma 4.4.1. Let S be a finitary congruential logic, let A be an S-algebra and

let P ∈ FiS(A) and I ∈ Id(A) be such that P ∩ I = ∅. Then there is Q ∈ IrrS(A)

such that P ⊆ Q and Q ∩ I = ∅.

Corollary 4.4.2. Let S be a finitary congruential logic, let A be an S-algebra

and let P ∈ FiS(A) and a ∈ A be such that a /∈ P . Then there is Q ∈ IrrS(A) such

that P ⊆ Q and a /∈ Q.

By the previous corollary, IrrS(A) is a closure base for CA
S provided S is a

finitary congruential logic. Remember that for all a ∈ A, CA
S (a) = ↑a.

(Finitary) dually closed sets of CA
S are called S-ideals by Gehrke, Jansana and

Palmigiano in [41]. For the sake of completeness, we refresh now the definition. A

subset I ⊆ A is an S-ideal of A provided for all I ′ ⊆ω I and all a ∈ A

if
⋂
b∈I′

CA
S (b) ⊆ CA

S (a), then a ∈ I.

We denote by IdS(A) the collection of all S-ideals of A. For any a ∈ A, CA
S (a) = A

if and only if a is the bottom element of 〈A,≤A
S 〉. Moreover, ∅ ∈ IdS(A) if and

only if 〈A,≤A
S 〉 has no bottom element. This fact should be kept in mind, because

it will be repeatedly used later on.

Up to this point, our definitions of S-filter and S-ideal, as well as the notation

introduced, coincide with those of [41]. However, our approach differs in what

follows.

Strong dually closed sets of CA
S are called strong S-ideals (or sS-ideals). An

S-ideal I ∈ IdS(A) is strong when for all I ′ ⊆ω I and all B ⊆ω A:

if
⋂
b∈I′

CA
S (b) ⊆ CA

S (B), then CA
S (B) ∩ I 6= ∅.
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We denote by IdsS(A) the collection of all sS-ideals of A. This is a new notion

of ideal, that comes from a generalization of the notion of strong Frink ideals for

Hilbert algebras, first introduced by Celani and Jansana in [17].

Lemma 4.4.3. For any congruential logic S and any S-algebra A:

Id(A) ⊆ IdsS(A) ⊆ IdS(A).

Proof. The second inclusion is immediate, so we just have to check the first

inclusion. Let us show first that any order ideal is an S-ideal. Let I ∈ Id(A),

I ′ ⊆ω I and b ∈ A be such that
⋂
{CA
S (a) : a ∈ I ′} ⊆ CA

S (b). If I ′ = ∅, then

CA
S (b) = A, so b is the bottom element and then b ∈ I because I is a non-empty

down-set. If I ′ 6= ∅, then there is c ∈ I such that a ≤A
S c for all a ∈ I ′, since I

is up-directed. Therefore c ∈
⋂
{CA
S (a) : a ∈ I ′} and consequently c ∈ CA

S (b), i. e.

b ≤A
S c. Since I is a down-set, we get b ∈ I. We conclude that any order ideal

is an S-ideal. Let us show now that I is strong. Let I ′ ⊆ω I and B ⊆ω A be

such that
⋂
{CA
S (a) : a ∈ I ′} ⊆ CA

S (B). If I ′ = ∅, then CA
S (B) = A and certainly

CA
S (B) ∩ I 6= ∅ since I is non-empty. If I ′ 6= ∅, using that I is updirected, we get

c ∈ I such that c ∈
⋂
{CA
S (a) : a ∈ I ′} ⊆ CA

S (B). Therefore CA
S (B) ∩ I 6= ∅. We

conclude that any order ideal is an sS-ideal. �

Optimal closed subsets of CA
S are called optimal S-filters. Hence an S-filter

P ∈ FiS(A) is an optimal S-filter when there is an strong S-ideal I ∈ IdsS(A)

such that P is I-maximal and I is P -maximal, i. e. P is a maximal element of the

collection {P ′ ∈ FiS(A) : P ′ ∩ I = ∅} and I is a maximal element of the collection

{I ′ ∈ IdsS(A) : P ∩ I ′ = ∅}. We denote by OpS(A) the collection of optimal

S-filters of A.

Remark 4.4.4. Notice that from the definition it follows that ∅ is an sS-ideal

if and only if A is an optimal S-filter.

This is a new notion of filter, that comes from a generalization of that of optimal

implicative filter for Hilbert algebras that was first introduced in [17]. The following

instance of Lemma 2.1.7 holds when the logic is finitary.

Lemma 4.4.5. Let S be a finitary congruential logic, let A be an S-algebra and

let P ∈ FiS(A) and I ∈ IdsS(A) be such that P ∩ I = ∅. Then there is Q ∈ OpS(A)

such that P ⊆ Q and Q ∩ I = ∅.

Corollary 4.4.6. Let S be a finitary congruential logic, let A be an S-algebra

and let P ∈ FiS(A) and a ∈ A be such that a /∈ P . Then there is Q ∈ OpS(A)

such that P ⊆ Q and a /∈ Q.

By the previous corollary, OpS(A) is a closure base for CA
S provided S is a

finitary congruential logic. Up to this point, all the results in this section hold in

general for any finitary congruential logic with theorems, and they are just instances

of what was treated in Chapter 2. If we assume further properties of the logic, we

get more results. In particular, we are interested in the following class of logics:

Definition 4.4.7. We say that a logic S is filter distributive when for all

algebras A (of the type of S), FiS(A) is a distributive lattice.
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The class of filter distributive logics, first considered by Czelakowski in [21] and

also studied in [22,63,73] and indirectly in [27,28,57] includes a lot of well-known

logics, for example, any axiomatic extension (expansion in the same language) of

the intuitionistic logic, or any logic satisfying either the (DDT) or (PDI) (more on

this topic in § 5.5). When S is a filter distributive finitary congruential logic with

theorems, the following instances of lemma 2.2.2 and 2.2.1 hold.

Theorem 4.4.8. Let S be a filter distributive finitary congruential logic with

theorems and let A be an S-algebra. For any P ∈ FiS(A), P ∈ IrrS(A) if and only

if P c ∈ Id(A).

Theorem 4.4.9. Let S be a filter distributive finitary congruential logic with

theorems and let A be an S-algebra. For any P ∈ FiS(A), P ∈ OpS(A) if and only

if P c ∈ IdsS(A).

Precisely these theorems together with the relation between the different classes

of ideals, lead us to the following relation between the different classes of filters,

that holds under the assumptions of finitarity and filter distributivity.

Lemma 4.4.10. For any filter distributive finitary congruential logic with theo-

rems S and any S-algebra A:

IrrS(A) ⊆ OpS(A) ⊆ FiS(A).

Proof. This follows from Lemma 4.4.3 and theorems 4.4.8 and 4.4.9. �

Lemmas 4.4.1 and 4.4.5 are crucial in Spectral-like and Priestley-style dualities

respectively, as it is shown in Chapter 5. Theorems 4.4.8 and 4.4.9 are crucial as

well, and might be refined making use of the following notion that generalizes the

concept of prime ideal of a lattice.

A subset X ⊆ A is a called S-prime when it is a proper subset (X 6= A) and

for all non-empty B ⊆ω A,

if CA
S (B) ∩X 6= ∅, then B ∩X 6= ∅.

In [17], within the setting of Hilbert algebras, the adjective associated with this

condition is prime, and it is usually addressed to ideals. In [41], prime is used in

relation to congruential logics in a slightly different way. As this can be messy, we

prefer to use S-prime. The following lemma points out that S-prime is somehow a

dual notion of that of S-filter, and it is used to prove two corollaries of theorems

4.4.8 and 4.4.9.

Lemma 4.4.11. Let S be a finitary congruential logic, let A be an S-algebra

and let X ⊆ A. Then X ∈ FiS(A) if and only if Xc is S-prime.

Proof. Let X ∈ FiS(A). We show that Xc is S-prime. As S has theorems,

X is non-empty, and so Xc is proper. Let B ⊆ω A be non-empty and such that

CA
S (B) ∩Xc 6= ∅. Suppose, towards a contradiction, that B ∩Xc = ∅. Then

B ⊆ X, and therefore CA
S (B) ⊆ X, so CA

S (B) ∩Xc = ∅, a contradiction.

For the converse, let X ⊆ A be such that Xc is S-prime. If Xc = ∅, then

X = A, that is trivially an S-filter. Suppose Xc 6= ∅. We show that X is an

S-filter, by showing that CA
S (X) = X. Clearly X ⊆ CA

S (X), so in order to show
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the other inclusion, let a ∈ CA
S (X). By finitarity, there is X ′ ⊆ω X such that

a ∈ CA
S (X ′). We can assume without loss of generality that X ′ is non-empty.

Suppose, towards a contradiction that a /∈ X. Then from a ∈ Xc and the fact that

Xc is an S-prime, we conclude X ′ ∩Xc 6= ∅, so X ′ * X, a contradiction. �

Corollary 4.4.12. Let S be a filter distributive finitary congruential logic with

theorems, let A be an S-algebra and let P ⊆ A. Then P ∈ OpS(A) if and only if

P c ∈ IdsS(A) and P c is an S-prime.

Corollary 4.4.13. Let S be a filter distributive finitary congruential logic with

theorems, let A be an S-algebra and let P ⊆ A. Then P ∈ IrrS(A) if and only if

P c ∈ Id(A) is and P c is an S-prime.

Before concluding this section, we introduce one more concept that is used later

on. We consider finite families of elements that behave like a bottom element in

the following sense.

Definition 4.4.14. Let S be a congruential logic and A and S-algebra. We

say that a non-empty finite set B ⊆ω A of incomparable elements with respect to

≤A
S is a bottom-family of A if CA

S (B) = A.

Notice that ∅ ∈ IdsS(A) if and only if A has no bottom-family. This fact is

used repeatedly later on, especially in § 4.5.

Summarizing, for any finitary congruential logic S (with theorems) we have

a version of Birkhoff’s Prime Filter Lemma for both irreducible and optimal S-

filters of A, and so IrrS(A) and OpS(A) are both closure bases for CA
S , for any

S-algebra A. Furthermore, when the logic is filter distributive, both collections are

complements of order ideals of 〈A,≤A
S 〉 and strong S-ideals of A respectively. We

use these facts to formulate the answer to the question we suggested in § 4.1. We

carried out the first steps towards such answer. We have stated two representation

theorems of S-algebras that yield S-referential algebras with interesting properties.

Now we change slightly the point of view, and we focus on the poset 〈A,≤A
S 〉.

We already know that for any closure base F , the poset 〈A,≤A
S 〉 isomorphically

embeds in the poset 〈ϕF [A],⊆〉 (Theorem 4.3.5). Clearly it also embeds in the

Boolean algebra given by P(F) and in the distributive lattice given by P↑(F).

We pursue, however, to embed such poset in a smaller distributive semilattice

with some nice properties. We do not intend this semilattice to run properly with

all additional operations of A, but to get a good correspondence between logical

filters and logical ideals of A and order filters and ideals of the semilattice. This

construction is important for the Priestley-style duality, as the dual space of A is

built from the dual Priestley space of such distributive semilattice.

4.5. The S-semilattice of A

We study now the semilattice of finitely generated S-filters of A. Some of the

results in this section are new, and others were first proven by Gehrke, Jansana

and Palmigiano in [41] (this will be remarked when appropriate).

This structure is called in [41] the S-semilattice of A, name that we adopt

here. Different approaches to this object can be followed. In [41], Gehrke et al.

choose to work with equivalence classes of generators of filters. In [17] Celani and
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Jansana follow a different approach, using the concept of separating family.4 For

our purposes, we prefer to take the same approach as in [17], as then it is easier to

see how some of our results are generalizations of results there.

Definition 4.5.1. A family F ⊆ OpS(A) of optimal S-filters of A is an optimal

S-base if for every S-filter F ∈ FiS(A) and every a /∈ F , there is P ∈ F such that

F ⊆ P and a /∈ P .

Notice that for any S-algebra A, an optimal S-base is nothing but a closure

base for CA
S consisting in optimal S-filters of A. By Lemma 4.4.5, for any finitary

congruential logic OpS(A) is itself an optimal S-base, and by Lemma 4.4.1, IrrS(A)

is also an optimal S-base. From now on, let F be an optimal S-base.

From Theorem 4.3.5 and Lemma 4.3.6 we get that {ϕF [P ] : P ∈ F} is an

optimal S-base for ϕF [A]. Let us denote by MF (A) the closure of ϕF [A] under

non-empty finite intersections. Notice that F ∈ MF (A), since ϕF (1A) = F .

Definition 4.5.2. For any congruential logic S and any S-algebra A, the

algebra MF (A) := 〈MF (A),∩,F〉 is called the S-semilattice of A.

From Corollary 4.3.8 it follows that for closure bases F and F ′ for A, MF (A)

and MF ′(A) are isomorphic semilattices. By convenience, we dispense with the

subscript F of MF (A), ϕF and ϕ̂F and we use instead M(A), ϕ and ϕ̂.

By definition, M(A) is a meet semilattice with top element, and clearly, we

have that for any U ∈ P↑(F):

(E2) U ∈ M(A) iff U = ϕ̂(B) for some non-empty B ⊆ω A.

Hereinafter we will repeatedly use this property, so it is convenient to keep it in

mind. We should be careful when dealing with the bottom element, so let us state

the following technical lemma concerning the bottom element and bottom-families

of A:

Lemma 4.5.3. Let S be a congruential logic, let A be an S-algebra and let F
be an optimal S-base:

(1) If A has a bottom element 0A, then M(A) has a bottom element 0M(A) =

ϕ(0A) = ∅. So if ∅ /∈ IdS(A), then ∅ /∈ IdF (M(A)).

(2) If A has a bottom-family B, then M(A) has a bottom element 0M(A) =

ϕ̂(B) = ∅. So if ∅ /∈ IdsS(A), then ∅ /∈ IdF (M(A)).

(3) A has a bottom-family if and only if ∅ ∈ M(A).

Proof. (1) If A has a bottom element 0A, then ∅ /∈ IdS(A). Therefore

A /∈ OpS(A) (Remark 4.4.4), so ϕ(0A) = ∅ ∈ M(A), which is clearly the bottom

element of M(A).

(2) If A has a bottom-family B, then ∅ /∈ IdsS(A). Therefore A /∈ OpS(A)

(by Remark 4.4.4 again), and there is no optimal S-filter containing B. So ϕ̂(B) =

∅ ∈ M(A), which is the bottom element of M(A).

(3) We show that if ∅ ∈ M(A), then A has a bottom-family. Assume that

∅ ∈ M(A), then by (E2), there is a non-empty B ⊆ω A such that ∅ = ϕ̂(B). We

4Notice that they work with a particular S, namely the implicative fragment of intuitionistic

logic.
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can assume, without loss of generality, that B is a family of incomparable elements.

Moreover, CA
S (B) = A, since if there is a /∈ CA

S (B), then using that F is an optimal

S-base, there is P ∈ F such that CA
S (B) ⊆ P and a /∈ P , so P ∈ ϕ̂(B) 6= ∅.

Therefore B is a bottom-family of A. The converse follows from item (2). �

Let us consider first S-filters of A and meet filters of M(A). Recall that for

any U ⊆ M(A), we denote by JU〉〉 the meet filter of M(A) generated by U (see

definition in page 26). In particular, for any non-empty B ⊆ω A, Jϕ̂(B)〉〉 denotes

the meet filter generated by ϕ̂(B). As ϕ̂(B) is an element of M(A), then Jϕ̂(B)〉〉 is

the principal up-set ↑M(A) ϕ̂(B).

Lemma 4.5.4. Let S be a congruential logic, let A be an S-algebra and let F
be an optimal S-base. For any non-empty B,B0, . . . , Bn ⊆ω A:⋂

i≤n

CA
S (Bi) ⊆ CA

S (B) iff
⋂
i≤n

Jϕ̂(Bi)〉〉 ⊆ Jϕ̂(B)〉〉.

Proof. Assume first that
⋂
{CA
S (Bi) : i ≤ n} ⊆ CA

S (B) and let D ⊆ω A be

such that ϕ̂(D) ∈
⋂
{Jϕ̂(Bi)〉〉 : i ≤ n}, i. e. ϕ̂(Bi) ⊆ ϕ̂(D) for all i ≤ n. Then by

Corollary 4.3.8 for all i ≤ n, D ⊆ CA
S (Bi). Thus by hypothesis D ⊆ CA

S (B). and

by Corollary 4.3.8 again ϕ̂(B) ⊆ ϕ̂(D), hence ϕ̂(D) ∈ Jϕ̂(B)〉〉.
For the converse, we assume that

⋂
{Jϕ̂(Bi)〉〉 : i ≤ n} ⊆ Jϕ̂(B)〉〉. So let

a ∈
⋂
{CA
S (Bi) : i ≤ n}. Then for each i ≤ n, a ∈ CA

S (Bi), and so by Corollary

4.3.7 ϕ̂(Bi) ⊆ ϕ(a). This implies that ϕ(a) ∈
⋂
{Jϕ̂(Bi)〉〉 : i ≤ n}, and so by

hypothesis ϕ(a) ∈ Jϕ̂(B)〉〉, i. e. ϕ̂(B) ⊆ ϕ(a). Then by Corollary 4.3.7 again we get

a ∈ CA
S (B). �

From the previous lemma we already get the idea of what happens here. We

see that S-filters of A and meet filters of M(A) are closely related. This relation

becomes clearer when S is finitary, as it is shown in the following proposition, that

was first proven in Lemmas 4.5 and 4.8 in [41].

Proposition 4.5.5. Let S be a finitary congruential logic, let A be an S-algebra

and let F be an optimal S-base:

(1) If F is an S-filter of A, then

(a) Jϕ[F ]〉〉 is a meet filter of M(A), and

(b) ϕ−1
[
Jϕ[F ]〉〉

]
= F .

(2) If F is a meet filter of M(A), then

(a) ϕ−1[F ] is an S-filter of A, and

(b) JF ∩ ϕ[A]〉〉 = F .

Proof. (1) For F ∈ FiS(A), by definition Jϕ[F ]〉〉 is a filter of M(A), and

clearly F ⊆ ϕ−1
[
Jϕ[F ]〉〉

]
. Let us show the other inclusion. Let a ∈ ϕ−1

[
Jϕ[F ]〉〉

]
,

i. e. ϕ(a) ∈ Jϕ[F ]〉〉. By definition of meet filter generated, there is B ⊆ω F such

that ϕ̂(B) ⊆ ϕ(a). Then by Corollary 4.3.7, a ∈ CA
S (B) ⊆ F .

(2) Let now F ∈ Fi∧(M(A)) and let a ∈ CA
S (ϕ−1[F ]). We show first that

a ∈ ϕ−1[F ]. By finitarity, there is B ⊆ω ϕ−1[F ] such that a ∈ CA
S (B). Then by

Corollary 4.3.7, ϕ̂(B) ⊆ ϕ(a). Moreover by F being a filter, since meet is given in

M(A) by intersection, from ϕ[B] ⊆ F we get ϕ̂(B) ∈ F , and then as F is a up-set,

ϕ(a) ∈ F . Hence a ∈ ϕ−1[F ], as required.
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Notice that Jϕ[ϕ−1[F ]]〉〉 = JF ∩ ϕ[A]〉〉. Clearly JF ∩ ϕ[A]〉〉 ⊆ F . For the other

inclusion we use (E2), so let a non-empty B ⊆ω A be such that ϕ̂(B) ∈ F . Then

for all b ∈ B, ϕ(b) ∈ F ∩ ϕ[A], thus
⋂
{ϕ(b) : b ∈ B} = ϕ̂(B) ∈ JF ∩ ϕ[A]〉〉. �

Previous proposition shows that the maps Jϕ[ ]〉〉 and ϕ−1 give us, for any

finitary congruential logic, an order isomorphism between S-filters of A and meet

filters of M(A):

(E3) 〈FiS(A),⊆〉 ∼= 〈Fi∧(M(A)),⊆〉

Let us move now to consider S-ideals of A and F-ideals of M(A). Recall that

for any U ⊆ M(A), we denote by 〈〈UK the Frink ideal of M(A) generated by U
(see definition in page 28). In particular, for any B ⊆ω A, 〈〈ϕ̂(B)K denotes the

Frink ideal generated by ϕ̂(B). As ϕ̂(B) is an element of M(A), 〈〈ϕ̂(B)K is the

principal down-set ↓M(A) ϕ̂(B). Recall also that an F-ideal I ∈ IdF (M(A)) is

∧-prime provided ϕ̂(B) ∈ I or ϕ̂(B′) ∈ I whenever ϕ̂(B) ∩ ϕ̂(B′) ∈ I. Notice that

for any B ⊆ω A, ϕ̂(B) is itself a meet of elements of M(A), so if I is a ∧-prime

F-ideal such that ϕ̂(B) ∈ I, then there is b ∈ B such that ϕ(b) ∈ I.

Next proposition is new, and it shows that when S is finitary, there is also

a close relation between sS-ideals of A and F-ideals of M(A). By convenience,

throughout the next proof, we use ↓U instead of ↓M(A)U , for any U ⊆ M(A).

Proposition 4.5.6. Let S be a finitary congruential logic, let A be an S-algebra

and let F be an optimal S-base:

(1) For any I sS-ideal of A, 〈〈ϕ[I]K = ↓M(A)ϕ[I].

(2) If I is an sS-ideal of A, then

(a) 〈〈ϕ[I]K is an F-ideal of M(A), and

(b) ϕ−1[〈〈ϕ[I]K] = I.

(3) If I is an S-prime sS-ideal of A, then 〈〈ϕ[I]K is a ∧-prime F-ideal of

M(A).

(4) If I is a ∧-prime F-ideal of M(A), then

(a) ϕ−1[I] is an S-prime sS-ideal of A, and

(b) 〈〈ϕ[ϕ−1[I]]K = I.

Proof. (1) Let I ∈ IdsS(A). If I = ∅ then there is nothing to prove, so assume

I 6= ∅. As F-ideals are down-sets, then clearly ↓ϕ[I] ⊆ 〈〈ϕ[I]K, so it is enough to show

that ↓ϕ[I] is an F-ideal. By (E2), let B1, . . . , Bn, C ⊆ω A be non-empty and such

that ϕ̂(Bi) ∈ ↓ϕ[I] for all i ≤ n, and assume that
⋂
{Jϕ̂(Bi)〉〉 : i ≤ n} ⊆ Jϕ̂(B)〉〉.

We show that ϕ̂(B) ∈ ↓ϕ[I]. If n = 0, then Jϕ̂(B)〉〉 = M(A), and so ϕ̂(B) is the

bottom element of M(A), and since I is non-empty, then there is a ∈ I and clearly

ϕ̂(B) ⊆ ϕ(a), so ϕ̂(B) ∈ ↓ϕ[I]. If n 6= 0, then by assumption, for each i ≤ n there

is ai ∈ I such that ϕ̂(Bi) ⊆ ϕ(ai) and then clearly
⋂
{Jϕ(ai)〉〉 : i ≤ n} ⊆ Jϕ̂(B)〉〉.

Now using Lemma 4.5.4,
⋂
{CA
S (ai) : i ≤ n} ⊆ CA

S (B), and since ai ∈ I for each

i ≤ n and I is an sS-ideal, then CA
S (B) ∩ I 6= ∅. Then for c ∈ CA

S (B) ∩ I, using

Corollary 4.3.7 ϕ̂(B) ⊆ ϕ(c) ∈ ϕ[I], and then ϕ̂(B) ∈ ↓ϕ[I], as required.

(2) For I ∈ IdsS(A), by definition 〈〈ϕ[I]K is an F-ideal of M(A), and clearly

I ⊆ ϕ−1[〈〈ϕ[I]K]. Let us show the other inclusion. If I = ∅ then there is nothing

to prove, so assume I 6= ∅. Let a ∈ ϕ−1[〈〈ϕ[I]K], i. e. ϕ(a) ∈ 〈〈ϕ[I]K. By definition

of F-ideal generated, there is I ′ ⊆ω I such that
⋂
{Jϕ(b)〉〉 : b ∈ I ′} ⊆ Jϕ(a)〉〉. As
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I 6= ∅, we can assume, without loss of generality, that I ′ 6= ∅. Then by Lemma

4.5.4,
⋂
{CA
S (b) : b ∈ I ′} ⊆ CA

S (a). And since I is an S-ideal, we obtain a ∈ I, as

required.

(3) Let I ∈ IdsS(A) be S-prime, and using (E2) let B1, B2 ⊆ω A be non-empty

and such that ϕ̂(B1) ∩ ϕ̂(B2) ∈ 〈〈ϕ[I]K. We use that ϕ̂(B1) ∩ ϕ̂(B2) = ϕ̂(B1 ∪ B2)

and 〈〈ϕ[I]K = ↓ϕ[I]. Then from ϕ̂(B1 ∪ B2) ∈ ↓ϕ[I], we obtain that there is c ∈ I
such that ϕ̂(B1 ∪ B2) ⊆ ϕ(c). Then by Corollary 4.3.7, c ∈ CA

S (B1 ∪ B2), so

CA
S (B1 ∪ B2) ∩ I 6= ∅. Moreover, since I is S-prime, we get (B1 ∪ B2) ∩ I 6= ∅,

so B1 ∩ I 6= ∅ or B2 ∩ I 6= ∅. This implies, by Corollary 4.3.7 again that either

ϕ̂(B1) ∈ ↓ϕ[I] or ϕ̂(B2) ∈ ↓ϕ[I]. Hence 〈〈ϕ[I]K is ∧-prime.

(4) Let now I ∈ IdF (M(A)) be ∧-prime. First we show that ϕ−1[I] is an

S-ideal. Let I ′ ⊆ω ϕ−1[I] and a ∈ A be such that
⋂
{CA
S (b) : b ∈ I ′} ⊆ CA

S (a). If

I ′ = ∅, then a is the bottom element of A, so by Lemma 4.5.3, ϕ(a) is the bottom

element of M(A), and any F-ideal of M(A) contains the bottom element, so ϕ(a) ∈ I
and then a ∈ ϕ−1[I]. If I ′ 6= ∅, then by Lemma 4.5.4,

⋂
{Jϕ(b)〉〉 : b ∈ I ′} ⊆ Jϕ(a)〉〉,

and by I being an F-ideal, we get ϕ(a) ∈ I, so a ∈ ϕ−1[I].

Now we show that the S-ideal ϕ−1[I] is strong. Let I ′ ⊆ω ϕ−1[I] and B ⊆ω A
be such that

⋂
{CA
S (b) : b ∈ I ′} ⊆ CA

S (B). Since CA
S (∅) = CA

S (1) = {1}, we can

assume, without loss of generality, that B 6= ∅. We show that CA
S (B)∩ϕ−1[I] 6= ∅.

If I ′ = ∅, then there is B′ ⊆ B such that B′ is a bottom-family for A, so ϕ̂(B′) is a

bottom element of M(A), and it belongs to all its F-ideals, in particular ϕ̂(B′) ∈ I.

Now since I is ∧-prime, there is b ∈ B′ such that ϕ(b) ∈ I, so b ∈ ϕ−1[I]. As

b ∈ B, we conclude CA
S (B) ∩ ϕ−1[I] 6= ∅. If I ′ 6= ∅, then by Lemma 4.5.4, we get⋂

{Jϕ(b)〉〉 : b ∈ I ′} ⊆ Jϕ̂(B)〉〉. As I is an F-ideal and by assumption ϕ(b) ∈ I for all

b ∈ I ′, we obtain ϕ̂(B) ∈ I. As before, primeness of I implies CA
S (B)∩ϕ−1[I] 6= ∅.

It remains to show that ϕ−1[I] is a S-prime. As I is proper, ϕ(1) /∈ I, so

ϕ−1[I] is proper. Let B ⊆ω A be non-empty and such that CA
S (B) ∩ ϕ−1[I] 6= ∅,

and let c ∈ CA
S (B) ∩ ϕ−1[I]. As c ∈ CA

S (B), then by Corollary 4.3.7 ϕ̂(B) ⊆ ϕ(c).

Moreover, since ϕ(c) ∈ I, and I is a down-set, we get ϕ̂(B) ∈ I. Now, as I is

∧-prime, there is b ∈ B such that ϕ(b) ∈ I, so B ∩ ϕ−1[I] 6= ∅, as required.

Finally, we show that 〈〈ϕ[ϕ−1[I]]K = I. Clearly the inclusion from left to right

holds, so we just have to show the other inclusion. By (E2) let B ⊆ω A be non-

empty and such that ϕ̂(B) ∈ I. Then, as I is ∧-prime, there is b ∈ B, such that

ϕ(b) ∈ I. So ϕ(b) ∈ ϕ[ϕ−1[I]] and as ϕ̂(B) ⊆ ϕ(b) and F-ideals are down-sets, then

ϕ̂(B) ∈ 〈〈ϕ[ϕ−1[I]]K. �

Previous proposition shows that the maps 〈〈ϕ[ ]K and ϕ−1 give us, for any

finitary congruential logic, an order isomorphism between S-prime sS-ideals of A

and ∧-prime F-ideals of M(A):

(E4) 〈S-prime IdsS(A),⊆〉 ∼= 〈prime IdF (M(A)),⊆〉

A different correspondence between certain class of S-ideals of A and certain

class of F-ideals of M(A) was studied in [41]. The authors introduce the following

notion of ideal of M(A).

Definition 4.5.7. An order ideal I of M(A) is an A-ideal if for every ϕ̂(B) ∈ I
there exists a ∈ A such that ϕ̂(B) ⊆ ϕ(a) ∈ I.
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Notice that any ∧-prime order ideal of M(A) is an A-ideal. In Propositions

4.10 and 4.11 in [41] it is proven the following:

Proposition 4.5.8. Let S be a finitary congruential logic, let A be an S-algebra

and let F be an optimal S-base:

(1) If I is a non-empty up-directed S-ideal of A, then 〈〈ϕ[I]K is an A-ideal of

M(A).

(2) If I is an A-ideal of M(A), then ϕ−1[I] is a non-empty up-directed S-ideal

of A.

Notice that up-directed S-ideals are strong: let I ∈ IdS(A) be up-directed,

I ′ ⊆ω I and B ⊆ω A such that
⋂
{CS(b) : b ∈ I ′} ⊆ CS(B). By I up-directed,

there is c ∈ I such that b ≤A
S c for all b ∈ I ′. Therefore we obtain that CA

S (c) ⊆⋂
{CS(b) : b ∈ I ′} ⊆ CA

S (B), and then c ∈ CA
S (B) ∩ I 6= ∅, as required.

Let us denote by udIdsS(A) the collection of all non-empty up-directed (strong)

S-ideals of A. As a consequence of the previous proposition, the same maps that

gave us (E4), provide us with an order isomorphism (stated in Proposition 4.14

in [41]) between non-empty up-directed strong S-ideals of A and A-ideals of M(A):

(E5) 〈udIdsS(A),⊆〉 ∼= 〈 A-ideal Id(M(A)),⊆〉

In [41] the authors are mainly interested in a restriction of (E5), where on the

right-hand-side we have ∧-prime order ideals of M(A). Using our terminology,5

from Proposition 4.16 in [41] we get an order isomorphism between non-empty up-

directed S-prime sS-ideals of A and ∧-prime order ideals of M(A), given by the

same maps as in (E4):

(E6) 〈S-prime udIdsS(A),⊆〉 ∼= 〈prime Id(M(A)),⊆〉

Notice that (E6) is also a restriction of (E4). Moreover, this approach makes

it clear that having order ideals on the right-hand-side corresponds with having

non-empty up-directed subsets on the left-hand-side. In § 4.6 we analyze further

consequences of these facts.

Up to this point, all results in the present section are valid in general for any

finitary congruential logic (with theorems). If we assume besides, that S is filter

distributive, then we get further results. Notice that next corollaries and lemmas

use the assumption of filter-distributivity of the logic indirectly, when appealing to

Theorem 4.4.9.

Corollary 4.5.9. Let S be a filter distributive finitary congruential logic with

theorems, let A be an S-algebra and let F be an optimal S-base. Then M(A) is a

distributive semilattice.

Proof. By assumption, the lattice FiS(A) of S-filters of A is distributive,

and by Proposition 4.5.5, this lattice is isomorphic to Fi∧(M(A)). Then we are

done, since a semilattice is distributive whenever the lattice of its meet filters is

distributive. �

5The authors name prime S-ideals what we call ‘non-empty up-directed S-prime sS-ideals’.
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Lemma 4.5.10. Let S be a filter distributive finitary congruential logic with

theorems, let A be an S-algebra and let F be an optimal S-base. For any non-

empty B,B0, . . . , Bn ⊆ω A:⋂
i≤n

CA
S (Bi) ⊆ CA

S (B) iff ϕ̂(B) ⊆
⋃
i≤n

ϕ̂(Bi).

Proof. Assume
⋂
{CA
S (Bi) : i ≤ n} ⊆ CA

S (B) and let G ∈ ϕ̂(B). Then

we have B ⊆ G, and so CA
S (B) ⊆ G. Suppose, towards a contradiction, that

G /∈
⋃
{ϕ̂(Bi) : i ≤ n}. Then for each i ≤ n there is bi ∈ Bi such that bi /∈ G.

Notice that
⋂
{CA
S (bi) : i ≤ n} ⊆

⋂
{CA
S (Bi) : i ≤ n}, thus from the assumption we

get
⋂
{CA
S (bi) : i ≤ n} ⊆ CA

S (B). As G is an optimal S-fiter, by Theorem 4.4.9 we

know that Gc is an sS-ideal, and then we obtain CA
S (B)∩Gc 6= ∅, a contradiction.

For the converse, assume ϕ̂(B) ⊆
⋃
i≤n ϕ̂(Bi) and let a ∈

⋂
{CA
S (Bi) : i ≤ n}.

Then ϕ̂(Bi) ⊆ ϕ(a) for all i ≤ n. Using the assumption, we obtain ϕ̂(B) ⊆⋃
i≤n ϕ̂(Bi) ⊆ ϕ(a), and then by Corollary 4.3.7, we obtain a ∈ CA

S (B). �

Corollary 4.5.11. Let S be a filter distributive finitary congruential logic

with theorems, let A be an S-algebra and let F be an optimal S-base. For any

a, a0, . . . , an ∈ A: ⋂
i≤n

CA
S (ai) ⊆ CA

S (a) iff ϕ(a) ⊆
⋃
i≤n

ϕ(ai).

Corollary 4.5.12. Let S be a filter distributive finitary congruential logic with

theorems, let A be an S-algebra and let F and F ′ be two optimal S-bases. For any

non-empty B,B0, . . . , Bn ⊆ω A:

ϕ̂F (B) ⊆
⋃
i≤n

ϕ̂F (Bi) iff ϕ̂F ′(B) ⊆
⋃
i≤n

ϕ̂F ′(Bi).

Proposition 4.5.13. Let S be a filter distributive finitary congruential logic

with theorems, let A be an S-algebra and let F be an optimal S-base:

(1) If F is an irreducible S-filter of A, then Jϕ[F ]〉〉 is an irreducible meet

filter of M(A).

(2) If F is an optimal S-filter of A, then Jϕ[F ]〉〉 is an optimal meet filter of

M(A).

(3) If F is an optimal meet filter of M(A), then ϕ−1[F ] is an optimal S-filter

of A.

Proof. (1) Let F ∈ FiS(A) be irreducible. We show that Jϕ[F ]〉〉 is irredu-

cible. As we already know that Jϕ[F ]〉〉 is a meet filter of M(A), by Theorem 2.3.6

we just need to show that Jϕ[F ]〉〉c is up-directed. We use (E2), so let B1, B2 ⊆ω A
be non-empty and such that ϕ̂(B1), ϕ̂(B2) /∈ Jϕ[F ]〉〉. We show that there is B ⊆ω A
non-empty and such that ϕ̂(B1), ϕ̂(B2) ⊆ ϕ̂(B) /∈ Jϕ[F ]〉〉. By assumption, there

are b1 ∈ B1, and b2 ∈ B2 such that ϕ(b1), ϕ(b2) /∈ Jϕ[F ]〉〉. Then b1, b2 /∈ F ,

so CA
S (b1),CA

S (b2) * F . Now as F is irreducible, CA
S (b1) ∩ CA

S (b2) * F . Let

c ∈ (CA
S (b1) ∩ CA

S (b2)) \ F . Then ϕ(b1), ϕ(b2) ⊆ ϕ(c), so ϕ̂(B1), ϕ̂(B2) ⊆ ϕ(c) and

moreover ϕ(c) /∈ Jϕ[F ]〉〉.
(2) Let F ∈ FiS(A) be optimal. Then by Corollary 4.4.12 F c is an S-prime sS-

ideal of A, and so by Proposition 4.5.6 〈〈ϕ[F c]K is a ∧-prime F-ideal of M(A), and
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moreover by Corollary 2.3.10 〈〈ϕ[F c]Kc is an optimal meet filter of M(A). Therefore,

it is enough to show that Jϕ[F ]〉〉 = 〈〈ϕ[F c]Kc.
First we show the inclusion from right to left. We use (E2), so let B ⊆ω A be

non-empty and such that ϕ̂(B) ∈ 〈〈ϕ[F c]Kc. Then for all b ∈ B, ϕ(b) /∈ 〈〈ϕ[F c]K.
Thus by Proposition 4.5.6, we get that b /∈ ϕ−1[〈〈ϕ[F c]K] = F c, and therefore

ϕ(b) ∈ ϕ[F ] for all b ∈ B. Thus
⋂
{ϕ(b) : b ∈ B} = ϕ̂(B) ∈ Jϕ[F ]〉〉.

For the other inclusion, we use (E2) so let B ⊆ω A be non-empty and such that

ϕ̂(B) ∈ Jϕ[F ]〉〉. Then either ϕ̂(B) = ϕ̂(1) or there is a non-empty B′ ⊆ω F such

that ϕ̂(B′) ⊆ ϕ̂(B). In the first case, as 1 ∈ F 6= ∅, then clearly ϕ̂(1) /∈ 〈〈ϕ[F c]K, and

we are done, so assume that there is non-empty B′ ⊆ω F such that ϕ̂(B′) ⊆ ϕ̂(B).

By Lemma 4.5.10, CA
S (B) ⊆ CA

S (B′) ⊆ F , so B ⊆ F . Therefore for all b ∈ B,

b /∈ F c = ϕ−1[〈〈ϕ[F c]K], using Proposition 4.5.6 again. Hence ϕ(b) /∈ 〈〈ϕ[F c]K
for all b ∈ B. Moreover, as by assumption 〈〈ϕ[F c]K is a ∧-prime F-ideal, then

ϕ̂(B) /∈ 〈〈ϕ[F c]K, i. e. ϕ̂(B) ∈ 〈〈ϕ[F c]Kc, as required.

(3) Let F ∈ Op∧(M(A)) be optimal. Then by Corollary 2.3.10, F c is a ∧-prime

F-ideal of M(A), and so by Proposition 4.5.6, ϕ−1[F c] is an S-prime sS-ideal of

A, and moreover by Corollary 4.4.12, ϕ−1[F c]c is an optimal S-filter of A. Notice

that (ϕ−1[F c])c = ϕ−1[F ]. Therefore ϕ−1[F ] is an optimal S-filter of A. �

Previous proposition shows that for any filter distributive finitary congruential

logic with theorems, (E3) restricts to an order isomorphism between optimal S-

filters of A and optimal meet filters of M(A):

(E7) 〈OpS(A),⊆〉 ∼= 〈Op∧(M(A)),⊆〉

Summarizing, what we have seen throughout this chapter is that for any fil-

ter distributive finitary congruential logic with theorems S, optimal S-filters and

irreducible S-filters are two optimal S-bases. This gives us an S-algebra of subsets

ϕ[A] isomorphic to A, that is a reduced S-referential algebra. And it allows us to

embed 〈A,≤A
S 〉 in a distributive semilattice M(A) with nice properties. We exploit

these two facts in the next chapter, where Spectral-like and Priestley-style dualities

for S-algebras are studied.

4.6. Canonical extensions and ∆1-completions for filter distributive

finitary congruential logics with theorems

In this section we just intend to take a look at canonical extensions and

∆1-completions for filter distributive finitary congruential logics with theorems.

We recall that ∆1-completion is an order-theoretic tool which allows for modular

development of representation theory of classes of ordered algebras. When the class

of algebras under consideration is not lattice-based, there may be a wide range of

∆1-completions on hand, being canonical extensions one of such ∆1-completions.

Gehrke, Jansana and Palmigiano define and study in detail in [42] ∆1-completions

for posets, that are defined as those completions for which, simultaneously, each

element is obtainable as a join of meets of elements of the original poset and as a

meet of joins of elements of the original poset. For any poset P , we denote by P δ

the canonical extension of P , in the sense defined by Dunn, Gehrke and Palmigiano

in [26].
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Following a development parallel and complementary to the progress of duality

theory, canonical extensions have been applied to several classes of algebras that

are the algebraic counterpart of certain non-classical logics. It is a natural question

accordingly to explore whether a logic based notion of canonical extensions can be

built within the field of AAL. This is precisely the motivation of the work in [41],

whose main results we review in § 4.6.1. Inasmuch as in Chapter 5 we introduce new

tools for the study of duality theory for non-classical logics within the perspective

of AAL, it is natural to ask whether such tools may be used to enhance the results

of [41].

The remaining subsections are organized as follows: first we refresh the def-

inition of canonical extension for finitary congruential logics with theorems and

satisfying (uDDT) proposed in [41], and we just outline how it could be extended

for any filter distributive finitary congruential logic with theorems. After that we

use the notions we introduced previously in this Chapter to study a different ∆1-

completion for filter distributive finitary congruential logics with theorems, and we

show that this ∆1-completion has most of the nice properties that the canonical

extension proposed in [41] has.

4.6.1. S-canonical extensions. Let S be a finitary congruential logic with

theorems and let A be an S-algebra. Remember that we denote by M(A) the

S-semilattice of A (cf. definition in page 61), that in [41] is denoted by L∧S(A).

The S-canonical extension of A (Definition 4.17 in [41]) is defined as the

(Fi∧(M(A)), Id(M(A)))-completion of M(A), and it is denoted by AS . Notice

that if we look at M(A) as a poset, then AS is precisely what in [26] Dunn et al.

called the canonical extension of M(A), that we denote by M(A)δ. Accordingly,

the S-canonical extension of A is a complete lattice in which M(A) embeds satis-

fying the usual properties of denseness and compactness. Moreover, it follows from

the embedding of 〈A,≤A
S 〉 into M(A), that 〈A,≤A

S 〉 lives into AS . But within this

abstract approach, the operations in A are not taken into account.

Once the S-canonical extension of A is defined in such a general way, the proof

strategy by Gehrke, Jansana and Palmigiano in [41] goes as follows: first they prove

(Theorem 4.20 in [41]) that when AS satisfies that for all B ∪ {c} ⊆ AS :

((∨,
∧

)-distributive law) c ∨ (
∧
B) =

∧
b∈B

(c ∨ b),

then AS is (up to isomorphism) the (FiS(A), udIdsS(A))-completion of A. After

that, they show (Theorem 5.6 in [41]) that when S satisfies (uDDT), AS satisfies

the (∨,
∧

)-distributive law. They conclude that whenever S satisfies (uDDT),

(Can) AS is the (FiS(A), udIdsS(A))-completion of A.

Finally, they apply these results to the logic H, the implicative fragment of in-

tuitionistic logic, whose algebraic semantics is given by Hilbert algebras (we study

this in detail in § 6.2). They use the following fact (that was extensively studied

by Celani and Jansana in [17]): for any Hilbert algebra A = 〈A,→, 1〉, an implica-

tion →′ may be defined in M(A) such that 〈M(A),→′,∧, 1〉 is the free implicative

semilattice extension of A. Using this fact, the π-extension of → to AH may be

defined as the π-extension of →′ to M(A)δ. Let us denote such operation by →π.
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It follows that 〈AH,→π,∧,∨, 0, 1〉 is a complete Heyting algebra, and in particular

〈AH,→π, 1〉 is a Hilbert algebra. This is, of course, a desirable property of a logic-

based notion of canonical extension, and it fails dramatically for the order-theoretic

notion of canonical extension, when applied to Hilbert algebras as poset expansions,

as Example B.16 in Appendix B shows.

Notice that the S-canonical extension of A is based on the definition of the

canonical extension of meet semilattices given in [26]. It would be certainly desir-

able, that the canonical extension of a meet semilattice is completely distributive

provided the semilattice is distributive.6 If that would be true, then we could ex-

tend (Can) to any filter distributive finitary congruential logic with theorems. This

would follow since filter distributivity of the logic S implies, by Corollary 4.5.9,

that M(A) is a distributive semilattice. It would be very interesting to investigate

whether distributivity of semilattices lifts to complete distributivity of their canon-

ical extensions, but we do not go further into this topic, because it escapes the

purposes of this section.

4.6.2. sS-extensions. The main goal of [41] was, as stated in the introduc-

tion, to explore whether canonical extensions can be developed as a logical construct

within AAL rather that just as a purely order-theoretical construct. Nevertheless,

the notion of S-canonical extension that is introduced in [41] falls mid-way between

being logic-based and order-based, since, as we have already seen, it involves the

collection of non-empty up-directed S-ideals.

We pursue to study now, making use of the new notions introduced in this

chapter, a ∆1-completion that may seem more logic-based. The proof strategy

that we follow is similar to that employed in [41]. From now on, let S be a finitary

congruential logic with theorems, and let A be an S-algebra.

We are interested in the (Fi∧(M(A)), IdF (M(A)))-completion of M(A), that

we call F-extension of M(A), and that we denote by M(A)F . Recall that filter

distributivity of the logic S implies, by Corollary 4.5.9, that M(A) is a distributive

semilattice. Then by results in Appendix B, the F-extension of M(A) is an algebraic

lattice, and in particular, it is completely distributive.

Now we aim to prove that the F-extension M(A)F of M(A) is (up to isomor-

phism) the (FiS(A), IdsS(A))-completion of A. Notice that we have:

〈A,≤A
S 〉

ϕ−→ M(A)
k−→ M(A)F ,

where ϕ is the embedding of 〈A,≤A
S 〉 into its S-semilattice, defined in § 4.5, and

k is the embedding of M(A) into its F-extension, defined in Appendix B. Let us

define g as the composition of these two maps:

g := (k ◦ ϕ) : A −→ M(A)F .

6From results by Gehrke and Priestley in [44] and Gehrke and Vosmaer in [45] it follows

that the canonical extension of any meet semilattice with top element M is the dcpo-completion

of (i. e. dcpo freely generated by) 〈Fi∧(M),⊇,C〉, where C is a binary relation between meet

filters of M and up-directed collections of meet filters of M, given by F C U if and only if for

all I ∈ Id(M), if F ′ ∩ I = ∅ for all F ′ ∈ U , then F ∩ I = ∅. Moreover, if M is a distributive

semilattice, then Fi∧(M) is a distributive lattice. By properties of dcpo-completions we know

that the distributivity equation should lift through these completions, and hence the canonical

extension of any distributive semilattice is a distributive (complete) lattice.
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Similarly to what it was done in Section 4.4 in [41], the next lemma states some facts

concerning the map g, that we need in the following theorem. Notice that all infinite

meet and joins in the next proofs are referred to the complete lattice M(A)F . And

recall thatM∞(M(A)) is the collection of all completely meet-irreducible elements

of the semilattice M(A) (see definition in page 13).

Lemma 4.6.1. Let S be a filter distributive finitary congruential logic with

theorems, let A be an S-algebra and let g and k be as defined above. Then

(1) For all F ∈ FiS(A),
∧
g[F ] =

∧
k[Jϕ[F ]〉〉].

(2) For all I ∈ IdsS(A),
∨
g[I] =

∨
k[↓ϕ[I]].

(3) For all I ∈ IdF (M(A)), I is ∧-prime if and only if
∨
k[I] ∈M∞(M(A)F ).

(4) For all c ∈ M∞(M(A)F ), there is Ic ∧-prime F-ideal of M(A) such that

c =
∨
k[I].

Proof. Item (1) was proven in Lemma 4.18 (1) in [42]. The proof of (3) is

similar to that of Proposition 4.19 (1) in [42], and (4) is a corollary of (3). It only

remains to prove (2): on the one hand, from ϕ[I] ⊆ ↓ϕ[I], we get k[ϕ[I]] ⊆ k[↓ϕ[I]],

and so
∨
g[I] =

∨
k[ϕ[I]] ≤

∨
k[↓ϕ[I]]. On the other hand, for any X ∈ ↓ϕ[I], there

is some aX ∈ I such that X ≤ ϕ(aX), and so k(X) ≤ k(ϕ(aX)). This implies that∨
k[↓ϕ[I]] =

∨
{k(X) : X ∈ ↓ϕ[I]} ≤

∨
{k(ϕ(a)) : a ∈ I} =

∨
g[I], as required. �

Theorem 4.6.2. Let S be a filter distributive finitary congruential logic with

theorems, let A be an S-algebra. The F-completion M(A)F of M(A), is (up to

isomorphism) the (FiS(A), IdsS(A))-completion of A.

Proof. We show that g gives us the required dense and compact embedding.

Claim 4.6.3. M(A)F is (FiS(A), IdsS(A))-compact.

Proof of the claim. Let F ∈ FiS(A) and let I ∈ IdsS(A) be such that∧
g[F ] ≤

∨
g[I]. By Lemma 4.6.1,

∧
k[Jϕ[F ]〉〉] ≤

∨
k[↓ϕ[I]]. By Proposition

4.5.6 ↓ϕ[I] is an F-ideal of M(A). By Proposition 4.5.5 Jϕ[F ]〉〉 is a meet filter

of M(A). Then by (Fi∧(M(A)), IdF (M(A)))-compactness of M(A)F we get that

↓ϕ[I]∩ Jϕ[F ]〉〉 6= ∅. Then by definition of down-set generated and since meet filters

are up-set, we conclude that there is a ∈ I such that ϕ(a) ∈ Jϕ[F ]〉〉. Then from

Proposition 4.5.5 again, a ∈ ϕ−1[Jϕ[F ]〉〉] = F , so F ∩ I 6= ∅, as required. �

Claim 4.6.4. M(A)F is (FiS(A), IdsS(A))-dense.

Proof of the claim. First we show that the collection of FiS(A)-filter el-

ements of M(A)F is join-dense in M(A)F . Recall that these are the elements of

the form
∧
g[F ] for some F ∈ FiS(A). By (Fi∧(M(A)), IdF (M(A)))-denseness we

have that for each z ∈ M(A)F there is X ⊆ Fi∧(M(A)) a collection of meet fil-

ters of M(A) such that z =
∨
{
∧
k[F ] : F ∈ X}. Notice that for any F ∈ X ,

by Lemma 4.6.1 and Proposition 4.5.5, ϕ−1[F ] is an S-filter of A and
∧
k[F ] =∧

k[ϕ[ϕ−1[F ]]] =
∧
g[ϕ−1[F ]], so we are done.

Finally we show that the collection of IdsS(A)-ideal elements of M(A)F is

meet-dense in M(A)F . Recall that these are the elements of the form
∨
g[I] for

some I ∈ IdsS(A). Recall also that M(A)F is algebraic, so its completely meet

irreducible elements are completely meet prime, and they meet-generate M(A)F .
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Therefore, for all z ∈ M(A)F , there is X ⊆M∞(M(A)F ) a collection of completely

meet irreducible elements of M(A)F such that z =
∧
X. Then by Lemma 4.6.1,

z =
∧
{
∨
k[I] : I ∈ Y} for some Y a collection of ∧-prime F-ideals of M(A). Notice

that for any I ∈ Y, by Lemma 4.6.1 and Proposition 4.5.6, ϕ−1[I] is an strong

S-ideal of A and
∨
k[I] =

∨
k[↓ϕ[ϕ−1[I]]] =

∨
g[ϕ−1[I]], so we are done. �

Notice that we have shown that M(A)F is a (FiS(A), IdsS(A))-compact and

(FiS(A), IdsS(A))-dense extension of A, we conclude that M(A)F is, up to isomor-

phism, the (FiS(A), IdsS(A))-completion of A. �

Previous theorem justifies the introduction of the following definition:

Definition 4.6.5. The sS-extension of A is the (FiS(A), IdsS(A))-completion

of A, and it is denoted by AsS .

We showed in Appendix B that the canonical extension and the F-extension

of a distributive meet semilattice may not be isomorphic. This implies that the

S-canonical extension and the sS-extension of an S-algebra may not be isomorphic

either. It would be very interesting to investigate under which conditions on S
might the S-canonical extension and the sS-extension of any S-algebra coincide,

but we leave this as future work. What we do know from udIdsS(A) ⊆ IdsS(A) is

that the S-canonical extension of A is always embeddable in the sS-extension of

A. The main difference between both concepts is that the sS-extension is defined

for a wider class of logics, namely filter distributive finitary congruential logics with

theorems, that, as we know, include finitary congruential logics with theorems and

satisfying (uDDT).

We conclude this section by applying these results to the implicative fragment of

intuitionistic logicH. Recall that for any Hilbert algebra A and implication→′ may

be defined in M(A) such that 〈M(A),→′,∧, 1〉 is an implicative semilattice in which

A embeds. From results in Appendix B we know that 〈M(A)F , (→′)π,∧,∨, 0, 1〉
is a complete Heyting algebra, where (→′)π is the π-extension of →′ to M(A)F .

Therefore, if we define the π-extension of → to AsH as the π-extension of →′ to

M(A)F , and we denote it simply by →π, it follows that 〈AsH,→π,∧,∨, 0, 1〉 is a

complete Heyting algebra, and in particular 〈AsH,→π, 1〉 is a Hilbert algebra.

In summary, the notions that we have introduced throughout this section, such

as the notion of sS-ideal, can be used to define a logic-based ∆1-completion of

S-algebras that has at least the same nice properties as the S-canonical extension

of S-algebras that was introduced in [41]. We do not go further into this topic, since

we are mainly interested in using such notions for developing an abstract duality

theory for S-algebras and homomorphisms between them. This is precisely what

we do in the next chapter.





CHAPTER 5

Duality Theory for Filter Distributive

Congruential Logics

In Chapter 4 we introduced the toolkit we need to develop Spectral-like and

a Priestley-style abstract dualities for any filter distributive finitary congruential

logic with theorems. In the present chapter we expose systematically in parallel

these two dualities for AlgS, with S a fixed but arbitrary filter distributive finitary

congruential logic with theorems.

In § 5.1 we prove representation theorems for S-algebras and we introduce the

definitions of S-Spectral spaces and S-Priestley spaces. In § 5.2 we consider mor-

phisms, and we introduce the definitions of S-Spectral morphism and S-Priestley

morphism. In § 5.3 they are defined the functors and the natural transformations

involved in the dualities. In § 5.4 we compare our work with that of Jansana and

Palmigiano in [56].

Notice that we do not fix any specific language, so our approach is necessarily

abstract in the sense that the dual categories will necessarily involve a similar notion

to that of S-algebra and homomorphism between S-algebras. This constraint can

be avoided in many cases, when a concrete language is under consideration. We

analyze in § 5.5 different logical properties that a logic may have, and we study

how each of them corresponds with a dual property of the dual categories. Thanks

to this analysis, the connection with the results in the literature is evidenced, as

discussed in Chapter 6.

5.1. Duality for objects

In the present section, we use the results from Chapter 4 to present two cor-

respondences between S-algebras and certain classes of Spectral-like and Priestley-

style spaces that we introduce later on.

Recall that for any finitary congruential logic with theorems S, and for any

S-algebra A, the collection of irreducible S-filters of A and the collection of op-

timal S-filters of A are both optimal S-bases. Therefore, by our work in § 4.3 we

know that the maps ϕIrrS(A) and ϕOpS(A) have some interesting properties. For

convenience, let us denote the map ϕIrrS(A) by ψA and similarly let us denote the

map ϕOpS(A) by ϑA, so we have:

ψA : A −→ P↑(IrrS(A)) ϑA : A −→ P↑(OpS(A))

a 7−→ {P ∈ IrrS(A) : a ∈ P} a 7−→ {P ∈ OpS(A) : a ∈ P}

Recall that for any B ⊆ A, by ψ̂A(B) we denote the set
⋂
{ψA(b) : b ∈ B}, and sim-

ilarly for ϑ̂A. When the context is clear, we drop the subscripts of ψA, ψ̂A, ϑA, ϑ̂A.

73



74 Chapter 5. Duality Theory for Filter Distributive Congruential Logics

Let us collect in the following two theorems what we obtained in theorems 4.3.5

and 4.3.9 and Corollary 4.3.7.

Theorem 5.1.1. Let S be a finitary congruential logic with theorems and let

A be an S-algebra. The map ψA is an isomorphism between A and ψA[A]. The

structure 〈IrrS(A), ψA[A]〉 is a reduced S-referential algebra whose associated order

is given by the inclusion relation. Moreover, for any {a} ∪B ⊆ A,

a ∈ CA
S (B) iff ψ̂(B) ⊆ ψ(a) iff ψ(a) ∈ C

ψ[A]
S (ψ[B]).

Theorem 5.1.2. Let S be a finitary congruential logic with theorems and let

A be an S-algebra. The map ϑA is an isomorphism between A and ϑA[A]. The

structure 〈OpS(A), ϑA[A]〉 is a reduced S-referential algebra whose associated order

is given by the inclusion relation. Moreover, for any {a} ∪B ⊆ A,

a ∈ CA
S (B) iff ϑ̂(B) ⊆ ϑ(a) iff ϑ(a) ∈ C

ϑ[A]
S (ϑ[B]).

Notice that these representation theorems hold for any finitary congruential

logic with theorems, not necessarily a filter distributive one. However, for getting

a full duality between objects, we should assume additionally filter-distributivity

of the logic. In the following subsections, we discuss first the Spectral-like dual

objects of S-algebras, and then the Priestley-style dual objects of S-algebras. In

both cases we prove the facts that motivate the definition of the dual objects before

introducing such definition. For the Priestley-style duality, some results from § 4.5

about the S-semilattice of A are essential.

5.1.1. Spectral-like dual objects. We assume that S is a filter distributive

finitary congruential logic with theorems and A an S-algebra. We define on IrrS(A)

a topology τκA
, having as basis the collection:

κA := {ψ(a)c : a ∈ A}.

Next proposition shows that this topology is well defined.

Proposition 5.1.3. Let a, b ∈ A, P ∈ IrrS(A) and B ⊆ A non-empty. Then:

(1) IrrS(A) =
⋃
{ψ(a)c : a ∈ A}.

(2) If P ∈ ψ(a)c ∩ ψ(b)c, then there is an element c ∈ A such that P ∈ ψ(c)c

and ψ(c)c ⊆ ψ(a)c ∩ ψ(b)c.

(3) If ψ(a)c =
⋃
{ψ(b)c : b ∈ B}, then there is a subset B′ ⊆ω B such that

ψ(a)c =
⋃
{ψ(b)c : b ∈ B′}.

Proof. (1) By definition
⋃
{ψ(a)c : a ∈ A} ⊆ IrrS(A). Moreover, for any

P ∈ IrrS(A), since P is proper, there is an element aP ∈ A such that aP /∈ P .

Thus P ∈ ψ(aP )c ⊆
⋃
{ψ(a)c : a ∈ A}.

(2) Let P ∈ ψ(a)c ∩ ψ(b)c, i. e. a, b /∈ P . By Theorem 4.4.8, P c is a poset ideal

of 〈A,≤A
S 〉, so there is c ∈ A such that a, b ≤A

S c /∈ P . Then we have P ∈ ψ(c)c

and moreover, since P is an up-set, a, b /∈ P ′ for all P ′ ∈ IrrS(A) such that c /∈ P ′.
Hence P ∈ ψ(c)c ⊆ ψ(a)c ∩ ψ(b)c.

(3) Assume ψ(a)c =
⋃
{ψ(b)c : b ∈ B}, i. e. ψ(a) = ψ̂(B). Then from Theorem

5.1.1, CA
S (a) = CA

S (B), and in particular a ∈ CA
S (B). Then by finitarity, there is

B′ ⊆ω B such that a ∈ CA
S (B′). But then CA

S (a) ⊆ CA
S (B′) ⊆ CA

S (B) = CA
S (a),
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and from Theorem 5.1.1 again, we get ψ(a) = ψ̂(B′), i. e. ψ(a)c =
⋃
{ψ(b)c : b ∈

B′}, as required. �

Item (3) of the previous proposition states that κA is a basis of open-compacts

for the topology τκA
. Moreover, the space 〈IrrS(A), τκA

〉 is T0: if P 6= Q we can

assume, without loss of generality, that there is a ∈ P \ Q, and so P /∈ ψ(a)c and

Q ∈ ψ(a)c. Hence the space separates points. Therefore, the specialization order

of 〈IrrS(A), τκA
〉 is a partial order, whose dual is denoted by ≤IrrS(A), or simply by

≤ when no confusion is possible. Moreover, all open (resp. closed) subsets of the

space are down-sets (resp. up-sets) with respect to ≤IrrS(A).

Proposition 5.1.4. For any F1, F2 ∈ FiS(A):

F1 ⊆ F2 iff ψ̂(F2) ⊆ ψ̂(F1).

Proof. Clearly from F1 ⊆ F2 it follows that ψ̂(F2) ⊆ ψ̂(F1). For the converse,

suppose F1 * F2. Then there is a ∈ F1 such that a /∈ F2. By Corollary 4.4.2, there

is P ∈ IrrS(A) such that F2 ⊆ P and a /∈ P , and so F1 * P . Thus P ∈ ψ̂(F2) and

P /∈ ψ̂(F1), hence ψ̂(F2) * ψ̂(F1). �

Proposition 5.1.5. For any F0, . . . Fn ∈ FiS(A) and P ∈ IrrS(A):⋂
{Fi : i ≤ n} ⊆ P iff ψ̂(P ) ⊆

⋃
i≤n

ψ̂(Fi).

Proof. Assume first that
⋂
{Fi : i ≤ n} ⊆ P and let Q ∈ ψ̂(P ), i. e.

P ⊆ Q ∈ IrrS(A). By assumption
⋂
{Fi : i ≤ n} ⊆ Q, and since Q is an irre-

ducible S-filter and the logic is filter distributive, there is j ≤ n such that Fj ⊆ Q.

Now by the previous proposition ψ̂(Q) ⊆ ψ̂(Fj) ⊆
⋃
{ψ̂(Fi) : i ≤ n}.

For the converse, suppose that
⋂
{Fi : i ≤ n} * P . Then there is an element

a ∈
⋂
{Fi : i ≤ n} such that a /∈ P . So for each i ≤ n, Fi * P , and then we have

P ∈ ψ̂(P ) and P /∈
⋃
{ψ̂(Fi) : i ≤ n}, hence ψ̂(P ) *

⋃
{ψ̂(Fi) : i ≤ n}. �

The following propositions serve us to complete the description of the topologi-

cal space 〈IrrS(A), τκA
〉, as they characterize closed subsets and irreducible closed

subsets of the space 〈IrrS(A), τκA
〉.

Proposition 5.1.6. U ⊆ IrrS(A) is a closed subset of 〈IrrS(A), τκA
〉 if and

only if there is F ∈ FiS(A) such that U = ψ̂(F ). Moreover, for all P ∈ IrrS(A),

cl(P ) = ψ̂(P ).

Proof. By definition, for any B ⊆ A, the subset ψ̂(B) =
⋂
{ψ(a) : a ∈ B}

is a closed subset of 〈IrrS(A), τκA
〉. For the converse, let U be a closed subset of

〈IrrS(A), τκA
〉, i. e. U =

⋂
{ψ(b) : b ∈ B} = ψ̂(B) for some B ⊆ A. Since we know

that ψ̂(B) = ψ̂(CA
S (B)), and CA

S (B) ∈ FiS(A) we are done.

Let now P ∈ IrrS(A). As ψ̂(P ) is closed and P ∈ ψ̂(P ), clearly cl(P ) ⊆ ψ̂(P ).

For the converse, assume U be a closed subset such that P ∈ U . We show that

ψ̂(P ) ⊆ U . Since U is closed, there is F ∈ FiS(A) such that U = ψ̂(F ), and then

by assumption F ⊆ P . Then by Proposition 5.1.4 ψ̂(P ) ⊆ ψ̂(F ) = U . We conclude

that ψ̂(P ) ⊆ cl(P ), and we are done. �
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Proposition 5.1.7. Let U be a closed subset of 〈IrrS(A), τκA
〉. Then U is

irreducible if and only if U = ψ̂(P ) for some P ∈ IrrS(A).

Proof. Let first U ⊆ IrrS(A) be an irreducible closed subset and, using Propo-

sition 5.1.6, let F ∈ FiS(A) be the S-filter such that U = ψ̂(F ). We show that F

is a meet prime element of the lattice of S-filters. Since irreducible closed subsets

are non-empty, then F is proper. Let F1, F2 ∈ FiS(A) be such that F1 ∩ F2 ⊆ F .

By Proposition 5.1.5 we get ψ̂(F ) ⊆ ψ̂(F1) ∪ ψ̂(F2). Now from ψ̂(F ) being irredu-

cible closed subset, either ψ̂(F ) ⊆ ψ̂(F1) or ψ̂(F ) ⊆ ψ̂(F2), i. e. either F1 ⊆ F or

F2 ⊆ F . Hence, F is a meet prime element of the lattice of S-filters, and so by

filter distributivity of the logic, it is an irreducible S-filter.

Let now P ∈ IrrS(A). We show that ψ̂(P ) is an irreducible closed subset. Since

P ∈ ψ̂(P ), then ψ̂(P ) is non-empty. Let V1, V2 be closed subsets of 〈IrrS(A), τκA
〉

such that ψ̂(P ) ⊆ V1 ∪ V2. Using Proposition 5.1.6, let F1, F2 ∈ FiS(A) be the

S-filters of A such that V1 = ψ̂(F1) and V2 = ψ̂(F2). Then we have ψ̂(P ) ⊆
ψ̂(F1)∪ψ̂(F2). By Proposition 5.1.5 again, F1∩F2 ⊆ P , and since P is an irreducible

S-filter and the logic is filter distributive, then F1 ⊆ P or F2 ⊆ P . Thus we obtain

ψ̂(P ) ⊆ ψ̂(F1) = V1 or ψ̂(P ) ⊆ ψ̂(F2) = V2, as required. �

Corollary 5.1.8. The space 〈IrrS(A), τκA
〉 is sober.

Corollary 5.1.9. The dual of the specialization order of 〈IrrS(A), τκA
〉 coin-

cides with the inclusion relation.

Proof. Let P,Q ∈ IrrS(A). By Proposition 5.1.6 we have that P ≤ Q if and

only if Q ∈ cl(P ) = ψ̂(P ) if and only if P ⊆ Q. �

From Theorem 5.1.1 and Corollary 5.1.9 we obtain that the dual of the spe-

cialization order of 〈IrrS(A), τκA
〉 coincides with the order associated with the re-

ferential algebra 〈IrrS(A), ψ[A]〉. Now we are ready to introduce the definition of

Spectral-like dual objects of S-algebras.

Definition 5.1.10. A structure X = 〈X,B〉 is an S-Spectral space when:

(Sp1) 〈X,B〉 is an S-referential algebra,

(Sp2) for all U ∪ {V } ⊆ω B, if
⋂
U ⊆ V , then V ∈ CB

S (U),

(Sp3) κX := {U c : U ∈ B} is a basis of open compact subsets for a topology τκX

on X,

(Sp4) the space 〈X, τκX
〉 is sober.

We will see later on that the converse of (Sp2) follows from the other conditions.

Recall that the quasiorder � associated with the referential algebra 〈X,B〉 is given

by: x � y if and only if for all U ∈ B, if x ∈ U then y ∈ U . Moreover, the order ≤
associated with a sober topological space 〈X, τ〉 (the dual of the specialization order

of this space) is given by: x ≤ y if and only if y ∈ cl(x). From the definition we get

that for any S-Spectral space 〈X,B〉, the quasiorder associated with the referential

algebra and the order associated with the sober topological space 〈X, τκX
〉 coincide.

This implies, in particular, that the S-referential algebra 〈X,B〉 is reduced, and

then, by Remark 4.2.1, we know that B is an S-algebra. In this case, we denote the

(quasi)order simply by ≤X , and we drop the subscript when the context is clear.
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Corollary 5.1.11. For any filter distributive finitary congruential logic with

theorems S and any S-algebra A, the structure IrrS(A) := 〈IrrS(A), ψA[A]〉 is an

S-Spectral space.

Proof. Conditions (Sp1) and (Sp2) are stated in Theorem 5.1.1. Condition

(Sp3) follows from Proposition 5.1.3 and condition (Sp4) follows from Corollary

5.1.8. �

Notice that for any S-Spectral space X = 〈X,B〉, since B is an S-algebra by

(Sp1), then IrrS(B) = 〈IrrS(B), ψB[B]〉 is an S-Spectral space, for which the basis

κIrrS(B) = {U c : U ∈ ψB[B]} given by (Sp3) is precisely what we denote by κB.

From now on, we focus on the structures X = 〈X,B〉 that satisfy conditions

(Sp1)–(Sp3) in Definition 5.1.10. Let us call such structures S-pre-Spectral spaces.

For any S-pre-Spectral space we define the map εX : X −→ P↑(B) as follows:

εX(x) := {U ∈ B : x ∈ U}.

And for any Y ⊆ X, we define:

ε̂X(Y ) :=
⋂
{εX(w) : w ∈ Y } = {U ∈ B : Y ⊆ U}.

When the context is clear, we drop the subscript of εX and ε̂X.

Remark 5.1.12. By condition (Sp3), we obtain that for any S-pre-Spectral

space X, for all x ∈ X, it holds {U ∈ B : x ∈ U} = {U ∈ B : cl(x) ⊆ U}. Therefore

ε̂(cl(x)) = ε(x) for all x ∈ X.

Lemma 5.1.13. Let X = 〈X,B〉 be an S-pre-Spectral space. If the topological

space 〈X, τκX
〉 is T0, then ε is one-to-one.

Proof. If the space 〈X, τκX
〉 is T0, then for any x, y ∈ X such that x 6= y,

there is U ∈ B such that x ∈ U c and y /∈ U c. So U ∈ ε(y) and U /∈ ε(x), and

therefore ε(x) 6= ε(y). Hence ε is one-to-one. �

Lemma 5.1.14. Let X = 〈X,B〉 be an S-pre-Spectral space. Then for any closed

subset Y of 〈X, τκX
〉, ε̂(Y ) ∈ FiS(B), and moreover

⋂
ε̂(Y ) = Y .

Proof. Let Y ⊆ X be a closed subset of 〈X, τκX
〉, let Γ ∪ {δ} ∈ Fm be such

that Γ `S δ and let h ∈ Hom(Fm,B) be such that h(γ) ∈ ε̂(Y ) for all γ ∈ Γ.

Then by 〈X,B〉 being an S-referential algebra, we have
⋂
{h(γ) : γ ∈ Γ} ⊆ h(δ),

and by assumption Y ⊆ h(γ) for all γ ∈ Γ, so we get Y ⊆ h(δ), i. e. h(δ) ∈ ε̂(Y ).

This shows that ε̂(Y ) is an S-filter of B. Moreover, as Y is closed, by (Sp3) we get⋂
ε̂(Y ) =

⋂
{U ∈ B : Y ⊆ U} = Y . �

Remark 5.1.15. Notice that from Remark 5.1.12 and the previous lemma we

obtain that for any x ∈ X, ε(x) is an S-filter. This implies that the converse of

(Sp2) holds, i. e. for all U ∪ {V } ⊆ω B, if V ∈ CB
S (U), then

⋂
U ⊆ V . Assume

V ∈ CB
S (U) and let x ∈

⋂
U , so U ⊆ ε(x). Since ε(x) is an S-filter, CB

S (U) ⊆ ε(x),

and therefore by assumption V ∈ ε(x), i. e. x ∈ V .

Corollary 5.1.16. Let X = 〈X,B〉 be an S-pre-Spectral space. Then the order

≤B
S on B given by CB

S , coincides with the inclusion relation.
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Proof. Let U, V ∈ B. By (Sp2) we get that U ⊆ V implies V ∈ CB
S ({U}), i. e.

U ≤B
S V . Let us show the converse. Suppose U ≤B

S V , i. e. V ∈ CB
S ({U}). We show

that U ⊆ V . Let x ∈ U , then using Remark 5.1.12, U ∈ ε(x) = ε̂(cl(x)), where

ε̂(cl(x)) is an S-filter of B by Lemma 5.1.14, and so V ∈ CB
S ({U}) ⊆ ε̂(cl(x)) = ε(x),

hence x ∈ V . �

Lemma 5.1.17. Let X = 〈X,B〉 be an S-pre-Spectral space. Then for any

irreducible closed subset Y of 〈X, τκX
〉, ε̂(Y ) ∈ IrrS(B). Hence ε[X] ⊆ IrrS(B).

Proof. Let Y ⊆ X be an irreducible closed subset of 〈X, τκX
〉. By Lemma

5.1.14, ε̂(Y ) is an S-filter of B, so we just have to show that ε̂(Y ) is irreducible

as an S-filter. Since Y is non-empty, ε̂(Y ) is proper. Let F1, F2 ∈ FiS(B) be such

that F1∩F2 ⊆ ε̂(Y ) and suppose, towards a contradiction, that F1, F2 * ε̂(Y ). Let

U1 ∈ F1 \ ε̂(Y ) and U2 ∈ F2 \ ε̂(Y ). Then Y * U1, U2, and since U1, U2 are closed

subsets and Y is an irreducible closed subset, then Y * U1∪U2. Let x ∈ Y \U1∪U2,

so x ∈ U c1 ∩ U c2 . By (Sp3) there is V ∈ B such that x ∈ V c ⊆ U c1 ∩ U c2 . On the

one hand, we have x /∈ V , and therefore Y * V , i. e. V /∈ ε̂(Y ). On the other hand,

from U1, U2 ⊆ V , using Corollary 5.1.16 we get V ∈ F1 ∩ F2. Since by assumption

F1 ∩ F2 ⊆ ε̂(Y ), we obtain V ∈ ε̂(Y ), a contradiction.

This shows that ε̂(Y ) is an irreducible S-filter of B for any irreducible closed

subset Y of 〈X, τκX
〉. In particular, this holds for cl(x), for every x ∈ X. Then by

Remark 5.1.12 we obtain ε(x) = ε̂(cl(x)) ∈ IrrS(B). �

Lemma 5.1.18. Let X = 〈X,B〉 be an S-pre-Spectral space. Then:

(1) For any F ∈ FiS(B),
⋂
F =

⋂
{V ∈ B : V ∈ F} is a closed subset of

〈X, τκX
〉, and moreover ε̂(

⋂
F ) = F .

(2) For any P ∈ IrrS(B),
⋂
P is an irreducible closed subset of 〈X, τκX

〉.

Proof. (1) Let F ∈ FiS(B). Clearly
⋂
F is closed. Consider the set ε̂(

⋂
F ) =

{U ∈ B :
⋂
F ⊆ U}. It is immediate that F ⊆ ε̂(

⋂
F ), so we just have to show the

other inclusion. If F = ∅, then ε̂(
⋂
F ) = {U ∈ B : X ⊆ U}. From (Sp2) we know

that for any V ∈ B, if V = X, then V ∈ CB
S (∅), and so V ∈ G for all G ∈ FiS(B).

Therefore, from F = ∅ we conclude that ε̂(
⋂
F ) = ∅. If F 6= ∅, let U ∈ ε̂(

⋂
F ),

i. e.
⋂
F ⊆ U ∈ B. Then U c ⊆

⋃
{V c : V ∈ F}, and by (Sp3) U c is compact, so

there is F ′ ⊆ω F , such that U c ⊆
⋃
{V c : V ∈ F ′}, i. e.

⋂
F ′ ⊆ U . Thus by (Sp2)

U ∈ CB
S (F ′) ⊆ F , as required.

(2) Let P ∈ IrrS(B). Notice that as P is proper, B 6= P = ε̂(
⋂
P ), and therefore⋂

P 6= ∅. Let C1, C2 be closed subsets of 〈X, τκX
〉 such that

⋂
P ⊆ C1 ∪ C2. By

Lemma 5.1.14 we have ε̂(C1), ε̂(C2) ∈ FiS(B), C1 =
⋂
ε̂(C1) and C2 =

⋂
ε̂(C2).

Suppose, towards a contradiction, that
⋂
P * C1 and

⋂
P * C2. Then ε̂(C1) * P

and ε̂(C2) * P . Now since P is an irreducible S-filter, we obtain that ε̂(C1 ∪C2) =

ε̂(C1) ∩ ε̂(C2) * P , and therefore
⋂
P * C1 ∪ C2, a contradiction. �

From lemmas 5.1.14, 5.1.17 and 5.1.18 we get that for any S-pre-Spectral space

X = 〈X,B〉 there is an order isomorphism between closed subsets of 〈X, τκX
〉 and

S-filters of B given by the maps:

ε̂ : C(X) −→ FiS(B)
⋂

: FiS(B) −→ C(X)

Y 7−→ {U ∈ B : Y ⊆ U} F 7−→
⋂
F
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that restricts to an order isomorphism between irreducible closed subsets of 〈X, τκX
〉

and irreducible S-filters of B.

Corollary 5.1.19. Let X = 〈X,B〉 be an S-pre-Spectral space and let F ∈
FiS(B) and U ∈ B. Then U ∈ F if and only if

⋂
F ⊆ U .

Proof. The inclusion from left to right is immediate, so let us show the other

inclusion. Assume that
⋂
F ⊆ U for some U ∈ B. Notice that this implies that

F 6= ∅: otherwise, we have U = X, and then by (Sp2), U belongs to all S-filters of

B, in particular, U ∈ F = ∅, a contradiction. Then we have, using Lemma 5.1.18,

that ε̂(U) ⊆ ε̂(
⋂
F ) = F . And since U ∈ ε̂(U), we conclude U ∈ F . �

Theorem 5.1.20. Let X = 〈X,B〉 be an S-pre-Spectral space. Then the follow-

ing conditions are equivalent:

(1) 〈X, τκX
〉 is T0, and for every closed subset Y of X and every non-empty

and down-directed Q ⊆ {U c : U ∈ B}, if Y ∩ V c 6= ∅ for all V c ∈ Q, then

Y ∩
⋂
{V c : V c ∈ Q} 6= ∅.

(2) 〈X, τκX
〉 is T0 and the map ε : X −→ IrrS(B) is onto.

(3) 〈X, τκX
〉 is sober.

Proof. Recall that any sober space is T0.

(1) implies (2). Let P ∈ IrrS(B). We show that there is x ∈ X such that

ε(x) = P . Since P is an irreducible S-filter, by Theorem 4.4.8 we have P c ∈ Id(B),

and so Q′ := {V c : V /∈ P} is down-directed. Moreover, since P is proper, Q′ is

non-empty. If P = ∅, then we get that for all U ∈ B, U 6= X, because otherwise

by (Sp2) we obtain U ∈ CB
S (P ) = P = ∅. Then we have

⋂
P ∩ U c = X ∩ U c 6= ∅

for all U /∈ P . If P 6= ∅, then using Corollary 5.1.19, we obtain that for the closed

subset
⋂
P ,
⋂
P ∩ V c 6= ∅ whenever V /∈ P . Then in any case, by (1) there is

x ∈
⋂
P ∩

⋂
{V c : V /∈ P} 6= ∅, and clearly ε(x) = P .

(2) implies (3). Let Y be an irreducible closed subset of 〈X, τκX
〉. We show

that there is x ∈ X such that Y = cl(x). By Lemma 5.1.17, ε̂(Y ) ∈ IrrS(B). Then

by (2) there is a x ∈ X such that ε(x) = ε̂(Y ). By Lemma 5.1.13 ε is one-to-one, so

such x is unique. Moreover, as ε(x) = ε̂(cl(x)), and using Lemma 5.1.18 we obtain

cl(x) =
⋂
ε̂(cl(x)) =

⋂
ε̂(Y ) = Y , as required.

(3) implies (1). Let Y ⊆ X be a closed subset of 〈X, τκX
〉 andQ ⊆ {U c : U ∈ B}

be non-empty and down-directed, and such that Y ∩ V c 6= ∅ for all V c ∈ Q. We

show that Y ∩
⋂
{V c : V c ∈ Q} 6= ∅. As Y is closed, then ε̂(Y ) ∈ FiS(A). As Q

is down-directed and non-empty, then ↓{V : V c ∈ Q} is a poset ideal of 〈B,≤B
S 〉.

We claim that ε̂(Y ) ∩ ↓{V : V c ∈ Q} = ∅. Suppose, towards a contradiction, that

there is U ∈ ε̂(Y ) ∩ ↓{V : V c ∈ Q}. Then there is V c ∈ Q such that U ⊆ V and

U ∈ ε̂(Y ). Thus Y ⊆ U ⊆ V , so Y ∩ V c = ∅, contrary to the assumption.

Then we have ε̂(Y ), an S-filter of B, and ↓{V : V c ∈ Q}, a poset ideal of

〈B,≤B
S 〉, such that ε̂(Y ) ∩ ↓{V : V c ∈ Q} = ∅. By the Lemma 4.4.1, there is

P ∈ IrrS(B) such that ε̂(Y ) ⊆ P and ↓{V : V c ∈ Q} ∩ P = ∅. Then consider the

irreducible closed subset
⋂
P . By (3) there is x ∈ X such that

⋂
P = cl(x). Since

ε̂(Y ) ⊆ P , then cl(x) =
⋂
P ⊆

⋂
ε̂(Y ) = Y , so in particular x ∈ Y . Suppose,

towards a contradiction, that x /∈
⋂
{V c : V c ∈ Q}. Then there is V c ∈ Q such

that x /∈ V c. So
⋂
P = cl(x) ⊆ V , and then V c ⊆

⋃
{U c : U ∈ P}. Since V c is
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compact, there is P ′ ⊆ω P such that V c ⊆
⋃
{U c : U ∈ P ′}. Thus

⋂
P ′ ⊆ V , and

by condition (Sp2), we get V ∈ CB
S (P ′) ⊆ P . But then ↓{V : V c ∈ Q} ∩ P 6= ∅, a

contradiction. We conclude that x ∈ Y ∩
⋂
{V c : V c ∈ Q} 6= ∅. �

Corollary 5.1.21. Let X = 〈X,B〉 be an S-Spectral space. Then ε is a ho-

meomorphism between the topological spaces 〈X, τκX
〉 and 〈IrrS(B), τκB

〉.

Proof. Notice that for all x ∈ X and all U ∈ B we have: x ∈ U if and only if

U ∈ ε(x) if and only if ε(x) ∈ ψB(U). Therefore, we have:

x ∈ ε−1[ψB(U)c] iff ε(x) ∈ ψB(U)c iff U /∈ ε(x) iff x ∈ U c.

Thus ε−1[ψB(U)c] = U c for all U ∈ B. Recall that κB = {ψB(U)c : U ∈ B}
is a basis for the topology τκB

on IrrS(B). Then we have that the inverse image

by ε of any element of the basis κB belongs to κX = {U c : U ∈ B}, that is a

basis for τκX
. Moreover, by Lemma 5.1.13 and Theorem 5.1.20, ε is a one-to-one

map onto IrrS(B). We conclude that ε is a homeomorphism between 〈X, τκX
〉 and

〈IrrS(B), τκB
〉. �

Corollary 5.1.22. Let X = 〈X,B〉 be an S-Spectral space. Then the structure

〈IrrS(B), ψB[B]〉 is an S-Spectral space such that 〈X, τκX
〉 and 〈IrrS(B), τκB

〉 are

homeomorphic topological spaces by means of the map εX : X −→ IrrS(B) and

moreover B and ψB[B] are isomorphic S-algebras by means of the map ψB : B −→
ψB[B].

Previous corollary together with Corollary 5.1.11 summarize all preceding re-

sults, and should be kept in mind for § 5.2 and § 5.3, where the duality for mor-

phisms is studied, and the functors involved are defined. Before moving to that, let

us examine Priestley-dual objects of S-algebras.

5.1.2. Priestley-style dual objects. We assume that S is a filter distri-

butive finitary congruential logic with theorems and A is an S-algebra. Recall

that the map ϑ : A −→ P↑(OpS(A)) assigns to each a ∈ A, the collection

{P ∈ OpS(A) : a ∈ P}. We define on OpS(A) a topology τA, having as sub-

basis the collection:

{ϑ(a) : a ∈ A} ∪ {ϑ(b)c : b ∈ A}.

Remark 5.1.23. Notice that for any non-empty B ⊆ω A we have ϑ̂(B) 6= {A}.
Suppose, towards a contradiction, that there is a non-empty B ⊆ω A such that

ϑ̂(B) = {A}. This implies that A is an optimal S-filter of A, and therefore, by

Theorem 4.4.9 and Remark 4.4.14, A has no bottom-family. Then CA
S (B) 6= A and

so there is a /∈ CA
S (B). Then by Corollary 4.4.6 there is P ∈ OpS(A) such that

a /∈ P and CA
S (B) ⊆ P . In particular, B ⊆ P , so P ∈ ϑ̂(B) = {A}, but a /∈ P , a

contradiction.

Recall that M(A) denotes the S-semilattice of A. For the purposes of this

section, as OpS(A) is an optimal S-base, we assume that M(A) is the closure

under non-empty finite intersections of ϑ[A]. Recall that by Property (E2), any

element of M(A) has the form ϑ̂(B) for some non-empty B ⊆ω A. Moreover there

is an order isomorphism between optimal S-filters of A and optimal meet filters of

M(A). Recall also that IdS(A) is always a closure system, but this is not the case
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for IdsS(A), so we do not have a closure operator that generates the least strong

S-ideal containing a given subset. Through the mentioned correspondence between

OpS(A) and Op∧(M(A)), we can avoid the difficulties that this fact brings us by

moving our proof-strategies to the S-semilattice of A. This is precisely what we

do in the next proposition, where we show that the space 〈OpS(A),⊆, τA〉 is a

Priestley space.

Proposition 5.1.24. The structure 〈OpS(A),⊆, τA〉 is a Priestley space.

Proof. Priestley Separation Axiom. Let P, P ′ ∈ OpS(A) be such that P * P ′.

So there is a ∈ P \ P ′. Then P ∈ ϑ(a) and P ′ /∈ ϑ(a), and we are done.

Compactness. We use Alexandrov Subbasis Theorem, so let B ∪ D ⊆ A be

such that OpS(A) ⊆
⋃
{ϑ(b) : b ∈ B} ∪

⋃
{ϑ(d)c : d ∈ D} and suppose, towards a

contradiction, that OpS(A) * {ϑ(b) : b ∈ B′} ∪
⋃
{ϑ(d)c : d ∈ D′} for any finite

B′ ⊆ω B and D′ ⊆ω D. Without loss of generality, we can assume D 6= ∅, since

ϑ(1) = OpS(A). Let F be the filter of M(A) generated by ϑ[D], i. e. F := Jϑ[D]〉〉 =

↑{ϑ̂(D′) : D′ ⊆ω D}. Let I be the F-ideal of M(A) generated by ϑ[B], i. e.

I := 〈〈ϑ[B]K = {ϑ̂(C) ∈ MF (A) : ∃B′ ⊆ω B
(⋂
{↑ϑ(b) : b ∈ B′} ⊆ ↑ϑ̂(C)

)
}.

We claim that F ∩ I = ∅. Suppose, towards a contradiction, that F ∩ I 6= ∅, so let

C ⊆ω A such that ϑ̂(C) ∈ F ∩I. On the one hand, since D 6= ∅, there is non-empty

D′ ⊆ω D such that ϑ̂(D′) ⊆ ϑ̂(C), and so ↑ϑ̂(C) ⊆ ↑ϑ̂(D′). On the other hand,

there is B′ ⊆ω B such that
⋂
{↑ϑ(b) : b ∈ B′} ⊆ ↑ϑ̂(C). Hence we have

⋂
{↑ϑ(b) :

b ∈ B′} ⊆ ↑ϑ̂(D′). If B′ = ∅, then ↑ϑ̂(D′) = MF (A), so ϑ̂(D′) is the bottom

element of M(A), and so there is no optimal meet filter of M(A) containing ϑ̂(D′).

Using the isomorphism between optimal meet filters of M(A) and optimal S-filters

of A given by Proposition 4.5.13, we conclude that this implies that no optimal

S-filter of A includes D′: if G ∈ OpS(A) is such that D′ ⊆ G, then ϑ̂(D′) would be

an element of the optimal meet filter Jϑ[G]〉〉 ∈ Fi∧(M(A)). Therefore, we have that⋃
{ϑ(d)c : d ∈ D′} is a finite cover of the space, a contradiction. If B′ 6= ∅. Then by

Lemma 4.5.10, ϑ̂(D′) ⊆
⋃
{ϑ(b) : b ∈ B′}, so

⋃
{ϑ(d)c : d ∈ D′} ∪

⋃
{ϑ(b) : b ∈ B′}

is a finite cover of the space, a contradiction.

We conclude that F ∩ I = ∅. Then by Lemma 2.3.7 there is an optimal meet

filter P ∈ Op∧(M(A)) such that F ⊆ P and I ∩ P = ∅. Then by the isomor-

phism between optimal meet filters of M(A) and optimal S-filters of A given by

Proposition 4.5.13, ϑ−1[P ] is an optimal S-filter of A. Then from F ⊆ P we get

D ⊆ ϑ−1[P ], and from I ∩ P = ∅ we get b /∈ ϑ−1[P ] for all b ∈ B. Therefore

P /∈
⋃
{ϑ(b) : b ∈ B} ∪

⋃
{ϑ(d)c : d ∈ D}, a contradiction. �

For the proof of the next proposition, we use that IrrS(A) is also an optimal S-

base. Recall that we denote by ψ the map that assigns to each a ∈ A, the collection

{P ∈ IrrS(A) : a ∈ P}.

Proposition 5.1.25. The collection IrrS(A) is dense in the space 〈OpS(A), τA〉.

Proof. We show that each non-empty basic open contains an irreducible

S-filter. Let B,D ⊆ω A and suppose P ∈
⋂
{ϑ(b) : b ∈ B} ∩

⋂
{ϑ(d)c : d ∈ D} 6= ∅.

Without loss of generality, we can assume that B 6= ∅, since ϑ(1) = OpS(A). If

D = ∅, then P ∈ ϑ̂(B) 6= ∅, and by Remark 5.1.23 we can assume that P 6= A, so
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there is a /∈ P . Then by Corollary 4.4.2 there is an irreducible S-filter Q ∈ IrrS(A)

such that a /∈ Q ⊇ P , so Q ∈
⋂
{ϑ(b) : b ∈ B} ∩ IrrS(A), as required. If

D 6= ∅, then we have ϑ̂(B) *
⋃
{ϑ(d) : d ∈ D}, and so by Corollary 4.5.12 we

get ψ̂(B) *
⋃
{ψ(d) : d ∈ D}. Thus there is Q ∈ IrrS(A) such that B ⊆ Q and

d /∈ Q for all d ∈ D, i. e. Q ∈
⋂
{ϑ(b) : b ∈ B} ∩

⋂
{ϑ(d)c : d ∈ D} ∩ IrrS(A), as

required. �

Remark 5.1.26. Notice that from Theorem 4.4.8 we get that for any optimal

S-filter P of A, P is irreducible if and only if {a ∈ A : a /∈ P} is non-empty and up-

directed in 〈A,≤A
S 〉. Moreover, from Theorem 5.1.2, ϑ is an isomorphism between

A and ϑ[A]. Therefore {a ∈ A : a /∈ P} is non-empty and up-directed in 〈A,≤A
S 〉 if

and only if {ϑ(a) : a /∈ P} is also non-empty and up-directed in 〈ϑ[A],⊆〉. Hence,

for any P ∈ OpS(A)

P ∈ IrrS(A) iff {ϑ(a) : a ∈ P} is non-empty and up-directed in 〈ϑ[A],⊆〉.

Finally we prove some facts concerning clopen up-sets of the Priestley-space

〈OpS(A),⊆, τA〉. Recall that in Priestley duality for bounded distributive lattices,

the collection of clopen up-sets takes a prominent role. In Priestley duality for

distributive semilattices, such a role is taken by the collection of admissible clopen

up-sets (see definition in page 38). In what follows we see that in the present duality

admissible clopen up-sets play an important role as well.

Proposition 5.1.27. Each non-empty open up-set of 〈OpS(A),⊆, τA〉 is a

non-empty union of non-empty finite intersections of elements of ϑ[A].

Proof. Let U be a non-empty open up-set of 〈OpS(A),⊆, τA〉 and let P ∈ U .

It is enough to show that there are a0, . . . , an ∈ A, for some n ∈ ω, such that

P ∈ ϑ(a0) ∩ · · · ∩ ϑ(an) ⊆ U . If U = OpS(A) we are done, since OpS(A) = ϑ(1A).

So suppose U 6= OpS(A). Then for each Q /∈ U , P * Q, so there is aQ ∈ P \ Q.

Notice that in case A is an S-optimal filter, then A /∈ U c, since U is an up-set.

Then we have
⋂
{ϑ(aQ) : Q /∈ U} ∩ U c = ∅, and by compactness of the space we

are done. �

Proposition 5.1.28. Each non-empty clopen up-set of 〈OpS(A),⊆, τA〉 is a

non-empty finite union of non-empty finite intersections of elements of ϑ[A].

Proof. This follows from the previous proposition and the fact that in any

Priestley space clopen up-sets are compact. �

Note that the emptyset is a clopen up-set of 〈OpS(A),⊆, τA〉, and it can be

described as an (empty) finite union of non-empty finite intersections of elements of

ϑ[A]. When A has a bottom element, the emptyset is moreover a non-empty finite

union of non-empty finite intersections of elements of ϑ[A], since optimal S-filters

are proper, we have ∅ = ϑ(0A). Recall that for any poset P , by max(P ) we denote

the collection of maximal elements of P . And IrrS(A)-admissible clopen up-sets of

〈OpS(A),⊆, τA〉 are the clopen up-sets U ⊆ OpS(A) such that max(U c) ⊆ IrrS(A).

Proposition 5.1.29. For any clopen up-set U of 〈OpS(A),⊆, τA〉, if U = ϑ̂(B)

for some non-empty B ⊆ω A, then max(U c) ⊆ IrrS(A).
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Proof. Let U be a clopen up-set such that ϑ̂(B) = U for some non-empty

B ⊆ω A. If U = OpS(A), then we are done, since max(U c) = ∅ and this set

is trivially included in IrrS(A). Suppose U 6= OpS(A) and let P ∈ max(U c) =

max(ϑ̂(B)c). We show that P is an irreducible S-filter. By assumption B * P , so

there is b ∈ B \ P . Then by Lemma 4.4.1, there is Q ∈ IrrS(A) such that b /∈ Q
and P ⊆ Q. This implies B * Q, so we have Q ∈ ϑ̂(B)c = U c and P ⊆ Q. Since

P is a maximal element of U c, we conclude P = Q, i. e. P is an irreducible S-filter,

as required. �

The converse of the previous proposition also holds. Notice that we move again

to the S-semilattice of A to prove it.

Proposition 5.1.30. For any clopen up-set U of 〈OpS(A),⊆, τA〉, whenever

max(U c) ⊆ IrrS(A), then there is a non-empty B ⊆ω A such that U = ϑ̂(B).

Proof. Let U be a clopen up-set such that max(U c) ⊆ IrrS(A). Let us

consider first the case when U = ∅. Then since irreducible S-filters are proper, A is

not an optimal S-filter, otherwise we would have A ∈ max(OpS(A)) = max(U c) ⊆
IrrS(A). Then A has a bottom-family D ⊆ω A, and thus ϑ̂(D) = ∅ = U , so we are

done.

Let now U be non-empty. Then by Proposition 5.1.28, there are non-empty

B0, . . . , Bn ⊆ω A, for some n ∈ ω, such that

U =
⋃
{ϑ̂(Bi) : i ≤ n}.

On the one hand, consider the set F :=
⋂
{Jϑ̂(Bi)〉〉 : i ≤ n}, that is a meet filter of

the S-semilattice of A. On the other hand, consider the set J := 〈〈{ϑ̂(Bi) : i ≤ n}K,
that is a Frink ideal of the S-semilattice of A.

We claim that F ∩ J 6= ∅. Suppose not, then by Lemma 2.3.7, there is P ∈
Op∧(M(A)) an optimal meet filter of the S-semilattice of A, such that F ⊆ P and

P ∩ J = ∅. Then by definition of J , ϑ̂(Bi) /∈ P for all i ≤ n. Therefore for each

i ≤ n, there is bi ∈ Bi such that ϑ(bi) /∈ P , i. e. bi /∈ ϑ−1[P ]. Then Bi * ϑ−1[P ]

for all i ≤ n. Recall that by the isomorphism between optimal S-filters of A and

optimal meet filters of M(A) (Proposition 4.5.13), ϑ−1[P ] ∈ OpS(A) is an optimal

S-filter of A. Thus we have ϑ−1[P ] /∈
⋃
{ϑ̂(Bi) : i ≤ n} = U . Let Q ∈ max(U c)

be such that ϑ−1[P ] ⊆ Q. This implies that P = Jϑ[ϑ−1[P ]]〉〉 ⊆ Jϑ[Q]〉〉. By

assumption Q ∈ IrrS(A), so by Proposition 4.5.13 again, Jϑ[Q]〉〉 is an irreducible

meet filter of M(A). Then from F ⊆ P we get F ⊆ Jϑ[Q]〉〉. Since Jϑ[Q]〉〉 is

irreducible, by definition of F we get ϑ̂(Bi) ∈ Jϑ[Q]〉〉 for some i ≤ n. By definition

of meet filter generated either ϑ̂(Bi) = OpS(A) or there is non-empty Q′ ⊆ω Q

such that ϑ̂(Q′) ⊆ ϑ̂(Bi). If ϑ̂(Bi) = OpS(A), then Bi = {1A}, and clearly

Bi ⊆ Q. If there is non-empty Q′ ⊆ω Q such that ϑ̂(Q′) ⊆ ϑ̂(Bi), then by Lemma

4.5.10, Bi ⊆ CA
S (Q′) ⊆ Q. So in either case we get Bi ⊆ Q, and this implies

Q ∈ ϑ̂(Bi) ⊆ U , a contradiction.

We conclude that F ∩ J 6= ∅. Then by (E2), let a non-empty B ⊆ω A be such

that ϑ̂(B) ∈ F ∩ J . On the one hand, we have ϑ̂(B) ∈ Jϑ̂(Bi)〉〉 for all i ≤ n,

so ϑ̂(Bi) ⊆ ϑ̂(B) for all i ≤ n. On the other hand, by definition of Frink ideal
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generated by a subset,
⋂
{Jϑ̂(Bi)〉〉 : i ≤ n} ⊆ Jϑ̂(B)〉〉, and so by Lemma 4.5.10 we

obtain ϑ̂(B) ⊆
⋃
{ϑ̂(Bi) : i ≤ n}. We conclude that U = ϑ̂(B) as required. �

Now we are ready to introduce the definition of Priestley-dual objects of S-

algebras.

Definition 5.1.31. A structure X = 〈X, τ,B〉 is an S-Priestley space when:

(Pr1) 〈X,B〉 is a reduced S-referential algebra, whose associated order is de-

noted by ≤,

(Pr2) for all U ∪ {V } ⊆ω B,
⋂
U ⊆ V iff V ∈ CB

S (U),

(Pr3) 〈X, τ〉 is a compact space,

(Pr4) B is a family of clopen up-sets for 〈X, τ,≤〉 that contains X,

(Pr5) the set XB := {x ∈ X : {U ∈ B : x /∈ U} is non-empty and up-directed}
is dense in 〈X, τ〉.

From now on let 〈X, τ,B〉 be an S-Priestley space. By conditions (Pr1), (Pr3)

and (Pr4) we obtain that for any S-Priestley space 〈X, τ,B〉, the space 〈X, τ,≤〉 is

a Priestley space, and by condition (Pr2) we obtain that for all U, V ∈ B:

U ⊆ V iff V ∈ CB
S (U).

Therefore, the order ≤B
S on B coincides with the inclusion relation on B. Moreover,

concerning the bottom element and bottom-families, we have the following lemma,

that is used later on:

Lemma 5.1.32. Let 〈X, τ,B〉 be an S-Priestley space.

(1) B has a bottom element if and only if ∅ ∈ B.

(2) B has a bottom-family if and only if there is D ⊆ω B such that
⋂
D = ∅.

Proof. (1) Clearly if ∅ ∈ B, then ∅ is the bottom element of B. For the

converse, assume that U is the bottom element of B, and suppose, towards a

contradiction, that there is x ∈ U ∩XB . Then by condition (Pr5), there is V ∈ B
such that x /∈ V , but since U is the bottom element, then U ⊆ V . This implies

x ∈ V , a contradiction. Hence we obtain that U ∩XB = ∅, and then from denseness

given by (Pr5), U = ∅ as required.

For (2), by (Pr2) it follows the implication from right to left. For the converse,

assume that B has a bottom-family D ⊆ω B, and suppose, towards a contradiction,

that there is x ∈
⋂
D. Since D is finite, by denseness we can assume, without loss

of generality, that x ∈ XB . Then by condition (Pr5) there is V ∈ B such that

x /∈ V . But by assumption there is U ∈ D such that U ⊆ V , and from x ∈ U it

follows x ∈ V , a contradiction. �

Corollary 5.1.33. For any filter distributive finitary congruential logic with

theorems S and any S-algebra A, the structure OpS(A) := 〈OpS(A), τA, ϑ[A]〉 is

an S-Priestley space.

Proof. Conditions (Pr1) and (Pr2) are stated in Theorem 5.1.2. Condition

(Pr3) was shown in Proposition 5.1.24. Condition (Pr4) follows from the definition

of τA, and from ϑ(1A) = OpS(A). Condition (Pr5) follows from Remark 5.1.26

and Proposition 5.1.25. �
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Let 〈X, τ,B〉 be an S-Priestley space. Note that since B is an algebra of subsets

of X, this provides us with an alternative characterization of the S-semilattice

of B: let B∩ be the closure of B under non-empty finite intersections. Then

clearly B∩ := 〈B∩,∩, X〉 is isomorphic to M(B), the S-semilattice of B. Let

B∩∪ be the closure of B∩ under non-empty finite unions. It also follows that

B∩∪ := 〈B∩∪,∩,∪, X〉 is isomorphic to L(M(B)), the distributive envelope of M(B)

(see Appendix A for the definition). Hence we have that:

B∩ ∼= M(B),

B∩∪ ∼= L(M(B)).

For convenience we take such isomorphisms as the identity and we identify B∩

with M(B) and B∩∪ with L(M(B)). Now we examine some properties of S-Priestley

spaces, that lead us to an alternative definition of S-Priestley spaces, that provides

us with a better understanding of the structure of these spaces.

Proposition 5.1.34. Let 〈X, τ,B〉 be an S-Priestley space. A subset U ⊆ X

is a non-empty open up-set of 〈X, τ,≤〉 if and only if it is a non-empty union of

non-empty finite intersections of elements of B.

Proof. Let U be a non-empty open up-set of 〈X, τ,≤〉. When U = X there is

nothing to prove, as X ∈ B by (Pr4), so assume that U 6= X. As U is non-empty,

let x ∈ U . Because U is an up-set, we have that for all y /∈ U , x � y. Then

by (Pr1), since the S-referential algebra 〈X,B〉 is reduced, for all y /∈ U there is

V xy ∈ B such that x ∈ V xy and y /∈ V xy . Then we have a closed set U c and open

sets {(V xy )c : y /∈ U} such that U c ⊆
⋃
{(V xy )c : y /∈ U}. Now by compactness

of the space given by (Pr3), there are y0, . . . , yn /∈ U , for some n ∈ ω, such that

U c ⊆ (V xy0)c ∪ · · · ∪ (V xyn)c. Hence V xy0 ∩ · · · ∩V
x
yn ⊆ U . Notice that by construction,

x ∈ V xy0 ∩ · · · ∩ V
x
yn , therefore we get

U ⊆
⋃
x∈U

(V xy0 ∩ · · · ∩ V
x
yn) ⊆ U.

Thus, as U is non-empty, U is a non-empty union of non-empty finite intersections

of elements of B, as required. �

Proposition 5.1.35. Let 〈X, τ,B〉 be an S-Priestley space. A subset U ⊆ X is

a non-empty clopen up-set of 〈X, τ,≤〉 if and only if it is a non-empty finite union

of non-empty finite intersections of elements of B.

Proof. It follows from the previous proposition and compactness of the space.

�

Notice also that the emptyset is a clopen up-set that can be trivially described

as an (empty) finite union of non-empty finite intersections of elements of B.

Corollary 5.1.36. Let 〈X, τ,B〉 be an S-Priestley space. Then the collection

B ∪ {U c : U ∈ B} is a subbasis for 〈X, τ〉.

Proof. This follows from the previous proposition and the fact that for any

Priestley space 〈X, τ,≤〉, {U \ V : U, V ∈ C`U(X)} is a basis of the space. �
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The next proposition highlights that previous fact is strongly connected with

the property of the S-referential algebra 〈X,B〉 of being reduced.

Proposition 5.1.37. For any S-referential algebra 〈X,B〉 augmented with a

topology τ and an order ≤ on X, if 〈X, τ,≤〉 is a Priestley space, X ∈ B and

C`U(X) is the closure of B under finite unions of non-empty finite intersections of

elements of B, then 〈X,B〉 is reduced.

Proof. Assume that 〈X, τ,≤〉 is a Priestley space, X ∈ B and C`U(X) is

the closure of B under finite unions of non-empty finite intersections. We show

that 〈X,B〉 is reduced, by showing that ≤ is the quasiorder � associated with the

referential algebra.

Let first x, y ∈ X be such that x ≤ y. As elements of B are up-sets, it follows

that for all V ∈ B, if x ∈ V then y ∈ V . Let now x, y ∈ X be such that x � y.

Then by totally order disconnectedness of the space, there is U a clopen up-set such

that x ∈ U and y /∈ U . Then there are non-empty U0 . . . ,Un ⊆ω B finite subsets,

for some n ∈ ω, such that x ∈
⋂
U1 ∪ · · · ∪

⋂
Un = U . So there is i ≤ n such that

x ∈
⋂
Ui and y /∈

⋂
Ui. And then there is V ∈ Ui ⊆ B such that x ∈ V and y /∈ V .

We conclude that for all x, y ∈ X, x ≤ y if and only for all V ∈ B, if x ∈ V
then y ∈ V . Hence ≤ = �. Since ≤ is a partial order, it follows that the referential

algebra 〈X,B〉 is reduced. �

From previous results we come up with the following corollary, that provides

an alternative definition of S-Priestley spaces.

Corollary 5.1.38. A structure X = 〈X, τ,B〉 is an S-Priestley space if and

only if the following conditions are satisfied:

(Pr1′) 〈X,B〉 is an S-referential algebra, whose associated quasiorder is denoted

by ≤,

(Pr2) for all U ∪ {V } ⊆ω B,
⋂
U ⊆ V iff V ∈ CB

S (U),

(Pr3′) 〈X, τ,≤〉 is a Priestley space, and B ∪ {U c : U ∈ B} is a subbasis for it

(Pr4′) X ∈ B and C`U(X) = B∩∪ ∪ {∅},
(Pr5) the set XB := {x ∈ X : {U ∈ B : x /∈ U} is non-empty and up-directed}

is dense in 〈X, τ〉.

In the same way that we stablished that clopen up-sets of X are the elements

of B∩∪, we prove now that XB-admissible clopen up-sets are the elements of B∩.

Notice that in the following proofs we use the well-known correspondence between

the elements of a Priestley space and the prime meet filters of the lattice of its

clopen up-sets. Recall also that for convenience we identify M(B) and B∩.

Proposition 5.1.39. Let 〈X, τ,B〉 be an S-Priestley space. Then for any non-

empty finite intersection U of elements of B, we have that max(U c) ⊆ XB.

Proof. Let U ∈ M(B) be a non-empty finite intersection of elements of B,

and let x ∈ max(U c). We show that x ∈ XB . Let Fx := {V ∈ M(B) : x ∈ V }.
This set is a meet filter of M(B) and by hypothesis U /∈ Fx. By Lemma 2.3.3,

there is Q ∈ Irr∧(M(B)) such that Fx ⊆ Q and U /∈ Q. By Proposition A.8 in

Appendix A, Q′ := JQ〉〉L(M(B)) is an optimal filter of L(M(B)). By Proposition

5.1.35, Q′ can also be seen as a prime filter of the lattice of clopen up-sets of
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X. Therefore, by Priestley duality for distributive lattices, there is y ∈ X such

that Q′ = {W ∈ L(M(B)) : y ∈ W}. Moreover, by Proposition A.8 again, Q =

Q′ ∩M(B) = {W ∈ M(B) : y ∈ W}. Then since Q is irreducible, we obtain that

Qc = {W ∈ M(B) : y /∈W} is up-directed.

We claim that {W ∈ B : y /∈ W} is up-directed. Let W1,W2 ∈ B be such

that y /∈ W1,W2. As Qc is up-directed, there is W ∈ M(B) such that y /∈ W and

W1,W2 ⊆ W . By definition of M(B), there are U0, . . . , Un ∈ B, for some n ∈ ω
such that W = U0 ∩ · · · ∩ Un. It follows that there is i ≤ n with y /∈ Ui ∈ B, and

clearly W1,W2 ⊆ Ui, as required.

From the claim and since y /∈ U , we have that {W ∈ B : y /∈ W} is non-

empty and up-directed, hence by (Pr5), y ∈ XB . Now we claim that x ≤ y. On

the contrary, by (Pr1) there is W ∈ B such that x ∈ W and y /∈ W . But then

W ∈ Fx ⊆ Q, and so y ∈ W , a contradiction. Finally, by x being maximal in U c,

we obtain x = y ∈ XB , as required. �

Previous proposition establishes that non-empty finite intersections of elements

of B are XB-admissible clopen up-sets of X. The following proposition shows that

the converse also holds.

Proposition 5.1.40. Let 〈X, τ,B〉 be an S-Priestley space. Each XB-admissible

clopen up-set U of X is a non-empty finite intersection of elements of B.

Proof. Let U ∈ C`U(X) be a clopen up-set of X such that max(U c) ⊆ XB .

Let us consider first the case when U = ∅. Then by assumption max(X) ⊆ XB ,

which implies by condition (Pr5) that for each x ∈ max(X) there is U ∈ B such

that x /∈ U . Since the elements of B are up-sets, this implies that for each x ∈ X
there is U ∈ B such that x /∈ U . Therefore, there is U ⊆ B such that

⋂
U = ∅.

Now since the elements of B are clopens,
⋃
{U c : U ∈ U} is an open cover of the

space, and so by compactness given by (Pr5), there is a finite subcover U0, . . . , Un.

Hence, U = ∅ = U0 ∩ · · · ∩ Un is a non-empty finite intersection of elements of B,

as required.

Let now U be non-empty. By Proposition 5.1.35 we know that there are

V0, . . . , Vn ∈ M(B), for some n ∈ ω, such that U = V0 ∪ · · · ∪ Vn. Let us con-

sider the set G :=
⋂
{↑M(B)Vi : i ≤ n}, which is a meet filter of M(B). And let

I := 〈〈{V0, . . . , Vn}KM(B) be the F-ideal of M(B) generated by {V0, . . . , Vn}.
We claim that G ∩ I 6= ∅. Suppose, towards a contradiction, that G ∩ I = ∅.

Then by Lemma 2.3.7, there is P ∈ Op∧(M(B)), such that G ⊆ P and P ∩ I =

∅. By Proposition A.8 in Appendix A, P ′ := JP 〉〉L(M(B)) is an optimal filter of

L(M(B)). By Proposition 5.1.35, P ′ can also be seen as a prime filter of the lattice

of clopen up-sets of X. Therefore, by Priestley duality for distributive lattices,

there is x ∈ X such that P ′ = {W ∈ L(M(B)) : x ∈W}. Moreover, by Proposition

A.8 again, P ′∩M(B) = {W ∈ M(B) : x ∈W} = P . From P ∩ I = ∅ we obtain that

x /∈ Vi for all i ≤ n, and so x /∈ U . Now let y ∈ max(U c) be such that x ≤ y. Then

y /∈ Vi for all i ≤ n, and by hypothesis y ∈ XB , so the collection {W ∈ B : y /∈W}
is up-directed. So there is W ∈ B such that y /∈W and Vi ⊆W for all i ≤ n. This

implies, since W is an up-set, that x /∈ W . Moreover, from the definition of G we

get that W ∈ G ⊆ P , so x ∈W , a contradiction.
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From the claim, we get W ∈ G ∩ I 6= ∅. By definition of G, Vi ⊆ W for each

i ≤ n, so U =
⋃
{Vi : i ≤ n} ⊆ W . By definition of F-ideal generated, we know

that
⋂
{↑Vi : i ≤ n} ⊆ ↑W . We only have to show that W ∩XB ⊆

⋃
{Vi : i ≤ n},

because from this fact and denseness of the space, since U is open, it follows that

W ⊆
⋃
{Vi : i ≤ n} = U , and this completes the proof of U = W ∈ M(B).

Suppose, towards a contradiction, that there is z ∈ W ∩XB such that z /∈ Vi
for all i ≤ n. Then Vi ∈ {W ∈ B : z /∈ W} for each i ≤ n. Notice that by (Pr5)

we know that this collection is up-directed. Thus there is V ′ ∈ B such that z /∈ V ′
and Vi ⊆ V ′ for each i ≤ n. Hence we get V ′ ∈

⋂
{↑Vi : i ≤ n} ⊆ ↑W , so W ⊆ V ′,

and then from z ∈W it follows z ∈ V ′, a contradiction. �

Previous propositions shed light on our construction: they reveal the following

connection between S-Priestley spaces and generalized Priestley spaces.

Theorem 5.1.41. Let 〈X, τ,B〉 be an S-Priestley space. Then 〈X, τ,≤, XB〉
is a generalized Priestley space.

Proof. We just need to check that conditions (DS5) and (DS6), given in page

38 are satisfied by the structure 〈X, τ,≤, XB〉. By propositions 5.1.40 and 5.1.39,

condition (DS6) reduces to the following condition: for all x, y ∈ X

x ≤ y iff ∀U ∈ M(B)
(

if x ∈ U , then y ∈ U
)
.

And this follows straightforwardly from 〈X,B〉 being reduced (condition (Pr1)).

For condition (DS5) we have to show that:

XB = {x ∈ X : {U ∈ M(B) : x /∈ U} is non-empty and up-directed}.

Let first x ∈ XB , so by (Pr5), {V ∈ B : x /∈ V } is non-empty and up-directed. We

only have to show that {U ∈ M(B) : x /∈ U} is up-directed, so let U1, U2 ∈ M(B)

be such that x /∈ U1, U2. By definition, U1 and U2 are intersections of non-empty

finite subsets of B, thus by assumption there are V1, V2 ∈ B such that Ui ⊆ Vi and

x /∈ Vi for i ∈ {1, 2}. Now by hypothesis, there is W ∈ B such that V1, V2 ⊆ W

and x /∈W , and as W ∈ M(B) we are done.

For the converse, let x ∈ X be such that {U ∈ M(B) : x /∈ U} is non-empty and

up-directed. So by definition of M(B), there is V ∈ B such that U ⊆ V and x /∈ V .

Hence {V ∈ B : x /∈ V } is non-empty. We only have to show that this collection is

also up-directed, so let V1, V2 ∈ B be such that x /∈ V1, V2. By hypothesis, there is

U ∈ M(B) such that V1, V2 ⊆ U and x /∈ U . And then by definition of M(B), there

is V ∈ B such that U ⊆ V and x /∈ V , so we are done. �

We aim to prove that the correspondence betweenXB-admissible clopen up-sets

of X and elements of B∩ is in fact an isomorphism between distributive semila-

ttices. For proving this we need some results from Priestley duality for distributive

semilattices. Since in [5] it was studied a Priestley duality for bounded distributive

semilattices, and only outlined how their results can be generalized for the non-

bounded case, we present in Appendix A several results from [5] but generalized

for the case of distributive semilattices with top element. We encourage the reader

that is not familiar with such duality to read that appendix before continuing with

the reading.
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For any S-Priestley space X = 〈X, τ,B〉, we define the map ξX : X −→ P↑(B)

as follows:

ξX(x) := {U ∈ B : x ∈ U}.
Notice that this definition is analogous to that of ε given in page 77. For any

Y ⊆ X, we use the following notation:

ξ̂X(Y ) :=
⋂
{ξX(w) : w ∈ Y } = {U ∈ B : Y ⊆ U}.

When the context is clear, we drop the subscript of ξX and ξ̂X.

Lemma 5.1.42. Let 〈X, τ,B〉 be an S-Priestley space. Then ξ is one-to-one.

Proof. This follows easily from (Pr1) and (Pr3): let x, y ∈ X be such that

x 6= y. We can assume, without loss of generality, that x � y. Then since ≤ is the

order associated with the reduced referential algebra 〈X,B〉, by definition of this

order, there is U ∈ B such that x ∈ U and y /∈ U . Therefore ξ(x) 6= ξ(y). �

Proposition 5.1.43. Let 〈X, τ,B〉 be an S-Priestley space. For any non-empty

U ,V ⊆ω B: ⋂
V ⊆

⋃
U iff

⋂
U∈U

CB
S (U) ⊆ CB

S (V).

Proof. Assume first that
⋂
V ⊆

⋃
U and let U ′ ∈

⋂
{CB
S (U) : U ∈ U}. By

condition (Pr2) we get
⋃
U ⊆ U ′, and then by assumption

⋂
V ⊆ U ′. It follows

from condition (Pr2) again that U ′ ∈ CB
S (V).

Assume now that
⋂
{CB
S (U) : U ∈ U} ⊆ CB

S (V). We show that
⋂
V ∩XB ⊆⋃

U , and then the claim follows from denseness and from
⋃
U being clopen. Let

x ∈
⋂
V ∩XB and suppose, towards a contradiction, that x /∈

⋃
U . Then using

condition (Pr5), there is U ′ ∈ B such that
⋃
U ⊆ U ′ and x /∈ U ′. Thus U ′ ∈⋂

{CB
S (U) : U ∈ U}, and so by assumption U ′ ∈ CB

S (V), that by (Pr2) implies⋂
V ⊆ U ′. As x ∈

⋂
V, we get x ∈ U ′, a contradiction. �

Corollary 5.1.44. Let 〈X, τ,B〉 be an S-Priestley space. For any non-empty

U ,V ⊆ω B: ⋂
U =

⋂
V iff ϑ̂B(U) = ϑ̂B(V).

Proof. From the previous proposition and Lemma 4.5.10 we get
⋂
U ⊆ V if

and only if CB
S (V ) ⊆ CB

S (U) if and only if ϑ̂B(U) ⊆ ϑB(V ). Therefore, we get⋂
U ⊆

⋂
V if and only if ϑ̂B(U) ⊆

⋂
{ϑB(V ) : V ∈ V} = ϑ̂B(V). And hence,⋂

U =
⋂
V if and only if ϑ̂B(U) = ϑ̂B(V). �

Proposition 5.1.45. Let 〈X, τ,B〉 be an S-Priestley space. Then for any

x ∈ X, ξ(x) ∈ OpS(B).

Proof. First we show that ξ(x) is an S-filter of B. Let Γ ∪ {δ} ⊆ Fm be

such that Γ `S δ and let h ∈ Hom(Fm,B) be such that h(γ) ∈ ξ(x) for all γ ∈ Γ,

i. e. x ∈ h(γ) for all γ ∈ Γ. Then by condition (Pr1) and definition of S-referential

algebra, we obtain
⋂
{h(γ) : γ ∈ Γ} ⊆ h(δ), and therefore x ∈ h(δ) i. e. h(δ) ∈ ξ(x).

Notice that if ξ(x) = B, then by Lemma 5.1.32, B has no bottom-family:

otherwise there is V ⊆ω B such that
⋂
V = ∅, but by assumption x ∈

⋂
V. There-

fore, by definition of bottom-family, it follows that ∅ is an strong S-ideal of B, and

so ξ(x) = B is an optimal S-filter of B.
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Suppose now that ξ(x) 6= B. First we show that ξ(x)c is an S-ideal of B, where

ξ(x)c = {U ∈ B : x /∈ U}. Let V ∈ B and U1, . . . , Un ∈ ξ(x)c, for some n ∈ ω,

be such that
⋂
{CB
S (Ui) : i ≤ n} ⊆ CB

S (V ). For n = 0 the hypothesis turns into

CB
S (V ) = B. This implies that V is the bottom element of B. Thus, by Lemma

5.1.32, V = ∅ and then clearly x /∈ V . For n 6= 0, by Proposition 5.1.43 we get

V ⊆
⋃
{Ui : i ≤ n}, and then from x /∈ Ui for all i ≤ n we get x /∈ V . We conclude

that ξ(x)c ∈ IdS(B).

Now we show that ξ(x)c is a strong S-ideal of B. Let V ⊆ω B and let

U1, . . . , Un ∈ ξ(x)c, for some n ∈ ω, be such that
⋂
{CB
S (Ui) : i ≤ n} ⊆ CB

S (V).

Recall that since S is assumed to have theorems, CB
S (∅) = CB

S (1B) = CB
S (X) 6= ∅.

Then if V = ∅, by ξ(x)c being S-ideal, the assumption implies that ξ(x)c = B.

Therefore CB
S (V) ∩ ξ(x)c 6= ∅, and we are done, so assume V 6= ∅. For n = 0 the

hypothesis turns into CB
S (V) = B. This implies that there is V ′ ⊆ V that is a

bottom-family for B. Thus
⋂
V ′ = ∅, and then there is V ∈ V such that x /∈ V , i. e.

V ∈ ξ(x)c. For n 6= 0, by Proposition 5.1.43 we get
⋂
V ⊆

⋃
{Ui : i ≤ n}, and then

from x /∈ Ui for all i ≤ n we get that there is V ∈ V such that x /∈ V , i. e. V ∈ ξ(x)c.

From either case we get that V ∩ ξ(x)c 6= ∅, and so CB
S (V) ∩ ξ(x)c 6= ∅. Thus, we

have shown that ξ(x)c is an strong S-ideal, and by Theorem 4.4.9 we conclude that

ξ(x) is an optimal S-filter. �

Proposition 5.1.46. Let 〈X, τ,B〉 be an S-Priestley space. Then for any x ∈
XB, ξ(x) ∈ IrrS(B).

Proof. This follows from the previous proposition, Theorem 4.4.8 and condi-

tion (Pr5), that states that for any x ∈ XB , ξ(x)c is non-empty and up-directed,

i. e. an order ideal of B. �

Let us show now that the bijection between XB-admissible clopen up-sets of

X and the elements of B∩ (i. e. the elements of M(B)) given by propositions 5.1.40

and 5.1.39 is an isomorphism of distributive semilattices. On the one hand, from

Theorem 5.1.41 and Priestley duality for distributive semilattices we know that

C`Uad
XB

(X) := 〈C`UadXB (X),∩, X〉 is a distributive semilattice. On the other hand,

we have the S-semilattice of B, that is also distributive. Let us define the map

g : C`UadXB (X) −→ M(B), such that for any non-empty U ⊆ω B:

g(
⋂
U) :=

⋂
{ϑB(U) : U ∈ U} = ϑ̂B(U).

Theorem 5.1.47. Let 〈X, τ,B〉 be an S-Priestley space. The map g is an

isomorphism between C`Uad
XB

(X) and M(B).

Proof. Injectivity of g follows from Corollary 5.1.44 and surjectivity follows

immediately from the definition of the S-semilattice of B. Finally, meets are pre-

served, since g(
⋂
U ∩

⋂
V) = ϑ̂B(U ∪ V) = ϑ̂B(U) ∩ ϑ̂B(V) = g(

⋂
U) ∩ g(

⋂
V),

and g(X) = g(
⋂
{X}) = ϑB(X) = OpS(B), that recall that is the top element of

M(B). �

Summarizing, we have that for any 〈X, τ,B〉 S-Priestley space, 〈X, τ,≤, XB〉
is a generalized Priestley space, whose dual distributive semilattice is isomorphic

to M(B). Table 4 collects all these results. Recall that when the algebra A has a
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Table 4. Priestley duality for S-algebras – Summary.

Algebras Dual spaces

A 〈OpS(A), τA, ϑA[A]〉

M(A) 〈Op∧(M(A)), τM(A),⊆, Irr∧(M(A))〉 ∼= 〈OpS(A), τA,⊆, IrrS(A)〉

L(M(A)) 〈Op∧(L(M(A))), τL(M(A)),⊆〉 ∼= 〈OpS(A), τA,⊆〉

bottom element, so do M(A) and L(M(A)). In this case, the optimal meet filters

of L(M(A)) are the prime filters defined as usual.

Let 〈X, τ,B〉 be an S-Priestley space. By Priestley duality for distributive

semilattices we know that for any P ∈ Op∧(C`Uad
XB

(X)) there is x ∈ X such that

P = {U ∈ C`UadXB (X) : x ∈ U}. Then we can translate this and obtain that for any

P ∈ Op∧(M(B)) there is x ∈ X such that P = {U ∈ M(B) : x ∈ U}. We use this

fact to prove that the map ξ : X −→ P↑(B) is onto OpS(B).

Proposition 5.1.48. Let 〈X, τ,B〉 be an S-Priestley space. Then the map

ξ : X −→ P↑(B) is onto OpS(B).

Proof. Let P be an optimal S-filter of B. Then by Proposition 4.5.13,

JP 〉〉M(B) is an optimal meet filter of M(B). By Priestley duality for distributive

semilattices, there is x ∈ X such that JP 〉〉M(B) = {U ∈ M(B) : x ∈ U}. Then by

Proposition 4.5.5, P = JP 〉〉M(B) ∩B = {U ∈ B : x ∈ U} = ξ(x). �

Corollary 5.1.49. Let 〈X, τ,B〉 be an S-Priestley space. Then ξ is an order

homeomorphism between ordered topological spaces 〈X, τ,≤〉 and 〈OpS(B), τB,⊆〉.

Proof. Notice that for all x ∈ X and all U ∈ B we have: x ∈ U if and only if

U ∈ ξ(x) if and only if ξ(x) ∈ ϑB(U). Thus ξ−1[ϑB(U)] = U and moreover:

x ∈ ξ−1[ϑB(U)c] iff ξ(x) ∈ ϑB(U)c iff U /∈ ξ(x) iff x ∈ U c.

Therefore ξ−1[ϑB(U)c] = U c. From condition (Pr1) it follows that ξ is order pre-

serving. As ξ is one-to-one, onto (Proposition 5.1.48), and its inverse sends subbasic

opens of 〈OpS(B), τB〉 to subbasic opens of 〈X, τ〉, we conclude that ξ is an homeo-

morphism, as required (notice that we use that inverse map preserve intersections,

so the previous condition implies that the inverse of ξ sends basic opens to basic

opens). �

Corollary 5.1.50. Let X = 〈X, τ,B〉 be an S-Priestley space. Then the struc-

ture 〈OpS(B), τB, ϑB[B]〉 is an S-Priestley space such that 〈X, τ〉 and 〈OpS(B), τB〉
are homeomorphic topological spaces by means of the map ξX : X −→ OpS(B), that

moreover is an order isomorphism between 〈X,≤〉 and 〈OpS(B),⊆〉. Furthermore

B and ϑB[B] are isomorphic S-algebras by means of the map ϑB : B −→ ϑB[B].

Previous corollary together with Corollary 5.1.33 summarize all preceding re-

sults, and should be kept in mind for § 5.2 and § 5.3, where the duality for morphisms

is studied, and the functors involved are defined.
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5.2. Duality for morphisms

In the present section we use the results from Chapter 4 and from § 5.1 to

present two dual correspondences between algebraic homomorphisms between S-

algebras and certain classes of relations between S-Spectral spaces and S-Priestley

spaces. The approach for the Spectral-like duality is similar to that by Celani et al.

in [15]. For the Priestley-style duality, we follow the same line as Bezhanishvili and

Jansana follow in [5]. Let us begin with a basic fact concerning algebraic homo-

morphisms and S-filters that is used later on. A proof can be found in Proposition

1.19 in [35].

Lemma 5.2.1. Let S be a logic, let A1 and A2 be S-algebras and let h ∈
Hom(A1,A2) be an algebraic homomorphism between them. Then for any S-filter

F of A2, h−1[F ] is an S-filter of A1.

From now on let S be a finitary congruential logic with theorems, let A1 and

A2 be S-algebras and let h ∈ Hom(A1,A2) be a homomorphism between them.

We define a binary relation Rh ⊆ OpS(A2)×OpS(A1) by:

(P,Q) ∈ Rh iff h−1[P ] ⊆ Q.
We denote the restriction of Rh to IrrS(A2)× IrrS(A1) by Rh. These are the

relations that we use to represent h. Recall that for the relation Rh we may consider

the function �Rh : P(OpS(A1)) −→ P(OpS(A2)) given by:

�Rh(U) := {Q ∈ OpS(A2) : Rh(Q) ⊆ U}.
Similarly, for Rh, the restriction of Rh to IrrS(A2) × IrrS(A1), we may consider

the function �Rh : P(IrrS(A1)) −→ P(IrrS(A2)) given by:

�Rh(U) := {Q ∈ IrrS(A2) : Rh(Q) ⊆ U}.

Let us examine in detail the properties of the relations Rh and Rh. Notice that,

for convenience, we denote by ϑi and ψi the maps ϑAi and ψAi respectively.

Proposition 5.2.2. Let S be a finitary congruential logic with theorems, let

A1 and A2 be S-algebras and let h ∈ Hom(A1,A2). For all a ∈ A1:

(1) R−1
h (ϑ1(a)c) = ϑ2(h(a))c.

(2) R
−1

h (ψ1(a)c) = ψ2(h(a))c.

Proof. For (1), first we show that R−1
h (ϑ1(a)c) ⊆ ϑ2(h(a))c, so we take

P ∈ OpS(A2) be such that P ∈ R−1
h (ϑ1(a)c), i. e. h−1[P ] ⊆ Q for some Q /∈ ϑ1(a).

Then from a /∈ Q we get a /∈ h−1[P ], i. e. h(a) /∈ P so P ∈ ϑ2(h(a))c. For the

converse, let P ∈ ϑ2(h(a))c, i. e. a /∈ h−1[P ]. As P is an S-filter of A2, by Lemma

5.2.1 we know that h−1[P ] is an S-filter of A1. Then by Corollary 4.4.6 there is an

optimal S-filter Q of A1 such that a /∈ Q ⊇ h−1[P ]. So we have Q ∈ ϑ1(a)c and

Q ∈ Rh(P ), hence P ∈ R−1
h (ϑ1(a)c).

(2) The proof is similar to that of item (1), using Corollary 4.4.2 instead of

Corollary 4.4.6. �

Proposition 5.2.3. Let S be a finitary congruential logic with theorems, let

A1 and A2 be S-algebras and let h ∈ Hom(A1,A2). For all a ∈ A1:

(1) �Rh(ϑ1(a)) = ϑ2(h(a)).
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(2) �Rh(ψ1(a)) = ψ2(h(a)).

Proof. (1) First we show that �Rh(ϑ1(a)) ⊆ ϑ2(h(a)), so let P ∈ �Rh(ϑ1(a)),

i. e. Rh(P ) ⊆ ϑ1(a). Suppose, towards a contradiction, that P /∈ ϑ2(h(a)). Then by

item (1) of Proposition 5.2.2 we get that P ∈ R−1
h (ϑ1(a)c), so there is Q ∈ Rh(P )

such that Q /∈ ϑ1(a), a contradiction. For the converse, let P ∈ ϑ2(h(a)), so

a ∈ h−1[P ]. Then for any Q ∈ Rh(P ), from h−1[P ] ⊆ Q and the hypothesis we get

a ∈ Q, i. e. Q ∈ ϑ1(a). This implies that Rh(P ) ⊆ ϑ1(a), i. e. P ∈ �Rh(ϑ1(a)), as

required.

(2) The proof is similar to that of item (1), using item (2) of Proposition 5.2.2

instead of item (1). �

Notice that in the statement of the next corollary, by ‘�Rh ∈ Hom(ϑ1[A1], ϑ2[A2])’

we mean that the restriction of the function �Rh to ϑ1[A1] is an homomorphism

from ϑ1[A1] to ϑ2[A2]. Similarly for ‘�Rh ∈ Hom(ψ1[A1], ψ2[A2])’. We keep using

this abuse of notation, but we should retain in mind what it refers to.

Corollary 5.2.4. Let S be a finitary congruential logic with theorems, let A1

and A2 be S-algebras and let h ∈ Hom(A1,A2). Then:

(1) �Rh ∈ Hom(ϑ1[A1], ϑ2[A2]).

(2) �Rh ∈ Hom(ψ1[A1], ψ2[A2]).

Proof. (1) Let f be an n-ary connective of the language and let ai ∈ A1 for

any i ≤ n. We have to show that �Rh
(
fϑ1[A1](ϑ1(a1), . . . , ϑ1(an)) is equal to

fϑ2[A2](�Rh(ϑ1(a1)), . . . ,�Rh(ϑ1(an))).

Using the definition of ϑ1[A1] and ϑ2[A2], item (1) in Proposition 5.2.3, and the

fact that h is a homomorphism between A1 and A2, we get:

�Rh(fϑ1[A1](ϑ1(a1), . . . , ϑ1(an))) = �Rh(ϑ1(fA1(a1, . . . , an)))

= ϑ2(h(fA1(a1, . . . , an)))

= ϑ2(fA2(h(a1), . . . , h(an)))

= fϑ2[A2](ϑ2(h(a1)), . . . , ϑ2(h(an)))

= fϑ2[A2](�Rh(ϑ1(a1)), . . . ,�Rh(ϑ1(an))).

(2) The proof is similar to that of item (1), using the definition of ψ1[A1] and

ψ2[A2], and item (2) in Proposition 5.2.3 instead of item (1). �

Notice that Corollary 5.2.4 gives us two analogous representation theorems for

h, that hold for any finitary congruential logic, not necessarily a filter distributive

one. However, for getting a full duality between morphisms, we should assume

additionally filter-distributivity of the logic. In the following subsections, we discuss

first the Spectral-dual morphisms of homomorphisms between S-algebras, and then

the Priestley-dual morphisms. In both cases, we prove the facts that motivate the

definition of the dual morphisms before introducing such definition.
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5.2.1. Spectral-like dual morphisms. Assume that S is a filter distribu-

tive finitary congruential logic with theorems, A1 and A2 are two S-algebras, and

h ∈ Hom(A1,A2) is a homomorphism between them.

Proposition 5.2.5. For any P ∈ IrrS(A2), Rh(P ) is a closed subset of the

space 〈IrrS(A1), τκA1
〉.

Proof. Notice that for any P ∈ IrrS(A2), we have that the subset Rh(P ) =

{Q ∈ IrrS(A1) : h−1[P ] ⊆ Q} coincides with ψ̂1(h−1[P ]), and since h is an algebraic

homomorphism, by Lemma 5.2.1 we get that h−1[P ] is an S-filter of A1. Then by

Proposition 5.1.6 we conclude that Rh(P ) is closed subset of 〈IrrS(A1), τκA1
〉. �

We introduce now the definition of the morphisms between S-Spectral spaces,

that are the Spectral-dual morphisms of homomorphisms between S-algebras.

Definition 5.2.6. Let X1 = 〈X1,B1〉 and X2 = 〈X2,B2〉 be two S-Spectral

spaces. A relation R ⊆ X1 ×X2 is an S-Spectral morphism when:

(SpR1) �R ∈ Hom(B2,B1),

(SpR2) R(x) is a closed subset of 〈X2, τκX2
〉 for all x ∈ X1.

Notice that for any S-Spectral morphism R ⊆ X1 × X2 between S-Spectral

spaces X1 and X2, we have that for all U ∈ B2:

R−1(U c) = {x ∈ X1 : ∃y /∈ U, (x, y) ∈ R} = {x ∈ X1 : R(x) * U} = (�R(U))c.

Corollary 5.2.7. Let S be a filter distributive finitary congruential logic with

theorems, let A1 and A2 be S-algebras and let h ∈ Hom(A1,A2). Then Rh is an

S-Spectral morphism between S-Spectral spaces IrrS(A2) and IrrS(A1).

Proof. (SpR1) follows from Corollary 5.2.4 and (SpR2) follows from Propo-

sition 5.2.5. �

Proposition 5.2.8. For any S-Spectral space X = 〈X,B〉, the order associated

with the S-referential algebra 〈X,B〉 is an S-Spectral morphism.

Proof. Recall that we denote by ≤ the order associated with the S-referential

algebra 〈X,B〉, that coincides with the dual of the specialization order of the space

〈X, τκX
〉. Therefore, for all x ∈ X, ↑x = cl(x), which is a closed subset of 〈X, τκX

〉,
hence condition (SpR2) is satisfied by ≤. Notice also that �≤(Y ) = {x ∈ X : ↑x ⊆
Y }. As the elements of B are closed subsets of 〈X, τκX

〉, they are up-sets with

respect to the order ≤, so for all U ∈ B, �≤(U) = U . Therefore �≤ is the identity

map from B to B, and so �≤ ∈ Hom(B,B) and condition (SpR1) is also satisfied

by ≤. Hence the relation ≤ ⊆ X ×X is an S-Spectral morphism. �

5.2.2. Priestley-style dual morphisms. Assume that S is a filter distri-

butive finitary congruential logic with theorems, A1 and A2 are two S-algebras,

and h ∈ Hom(A1,A2) is a homomorphism between them.

Proposition 5.2.9. For any P ∈ OpS(A2) and Q ∈ OpS(A1) such that

(P,Q) /∈ Rh, there is a ∈ A1 such that Q /∈ ϑ(a) and Rh ⊆ ϑ(a).

Proof. From (P,Q) /∈ Rh we get h−1[P ] * Q, so there is a ∈ A such that

a ∈ h−1[P ] and a /∈ Q. This implies that Q /∈ ϑ(a) and for all Q′ ∈ OpS(A1) such

that (P,Q′) ∈ Rh, a ∈ Q′. Therefore Rh(P ) ⊆ ϑ(a) and we are done. �
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We introduce now the definition of the morphisms between S-Priestley spaces,

that are the Priestley-dual morphisms of homomorphisms between S-algebras.

Definition 5.2.10. Let X1 = 〈X1, τ1,B1〉 and X2 = 〈X2, τ2,B2〉 be two S-

Priestley spaces. A relation R ⊆ X1 ×X2 is an S-Priestley morphism when:

(PrR1) �R ∈ Hom(B2,B1),

(PrR2) if (x, y) /∈ R, then there is U ∈ B2 such that y /∈ U and R(x) ⊆ U .

Corollary 5.2.11. Let S be a filter distributive finitary congruential logic with

theorems, let A1 and A2 be S-algebras and let h ∈ Hom(A1,A2). Then Rh is an

S-Priestley morphism between S-Priestley spaces OpS(A2) and OpS(A1).

Proof. (PrR1) follows from Corollary 5.2.4 and (PrR2) follows from Propo-

sition 5.2.9. �

Recall that in Theorem 5.1.41 we proved that for any S-Priestley space 〈X, τ,B〉,
the structure 〈X, τ,≤, XB〉 is a generalized Priestley space. Analogously, in the next

theorem we show how S-Priestley morphisms and generalized Priestley morphisms

are related:

Theorem 5.2.12. Let R ⊆ X1 × X2 be an S-Priestley morphism between S-

Priestley spaces X1 and X2. Then R is a generalized Priestley morphism between

generalized Priestley spaces 〈X1, τ1,≤1, XB1
〉 and 〈X2, τ2,≤2, XB2

〉.

Proof. We just need to check that condition (DSR3) holds, as (DSR4) follows

directly from (PrR2) and Proposition 5.1.39. So let U ∈ C`UadXB2
(X2). By Propo-

sition 5.1.40 there are U0, . . . , Un ∈ B2 such that U = U0 ∩ · · · ∩Un. Then we have

that �R(U) = {x ∈ X : R(x) ⊆ U0 ∩ · · · ∩Un} = �R(U0)∩ · · · ∩�R(Un). And then

by (PrR1) and Proposition 5.1.39, �R(U) ∈ C`UadXB1
(X1), as required. �

Proposition 5.2.13. For any S-Priestley space X = 〈X, τ,B〉, the order asso-

ciated with the S-referential algebra 〈X,B〉 is an S-Spectral morphism.

Proof. Recall that we denote the order associated with the S-referential alge-

bra 〈X,B〉 by ≤. As the referential algebra is reduced, for any x, y ∈ X such that

x � y, there is U ∈ B such that x ∈ U and y /∈ U . Moreover, as B is a family of

clopen up-sets, for every z ∈ ↑x we get z ∈ U . Therefore ↑x ⊆ U , hence condition

(PrR2) is satisfied by ≤. Notice also that �≤(Y ) = {x ∈ X : ↑x ⊆ Y }. As the

elements of B are up-sets with respect to ≤, for all U ∈ B we have �≤(U) = U .

Therefore �≤ is the identity map from B to B, and so �≤ ∈ Hom(B,B) and condi-

tion (SpR1) is also satisfied by ≤. Hence the relation ≤ ⊆ X ×X is an S-Priestley

morphism. �

5.3. Categorical dualities

In the present section we conclude the presentation of the dualities, by showing

the functors and the natural transformations involved in them. From now on,

let S be a filter distributive finitary congruential logic with theorems. Clearly

S-algebras and homomorphisms between them form a category, that we denote by

AlgS. Before proving the two categorical dualities for AlgS, we need to show that
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S-Spectral spaces and S-Spectral morphisms form a category, and that S-Priestley

spaces and S-Priestley morphisms form a category as well.

Theorem 5.3.1. Let X1 = 〈X1,B1〉, X2 = 〈X2,B2〉 and X3 = 〈X3,B3〉 be

S-Spectral spaces and let R ⊆ X1×X2 and S ⊆ X2×X3 be S-Spectral morphisms.

Then:

(1) The S-Spectral morphism ≤2 ⊆ X2 ×X2 satisfies:

≤2 ◦R = R and S ◦ ≤2 = S,

(2) S ◦R ⊆ X1 ×X3 is an S-Spectral morphism.

Proof. (1) By (SpR2), R(x) is closed subset of 〈X2, τκX2
〉 for any x ∈ X1. As

closed subsets are up-sets with respect to ≤2 (the dual of the specialization order),

it follows that ≤2 ◦R = R.

Let us show that S ◦ ≤2 = S. Let x ≤2 y and (y, z) ∈ S, and suppose, towards

a contradiction, that z /∈ S(x). Then by {V c : V ∈ B3} being a basis for 〈X3, τκX3
〉

(condition (Sp3)), there is V ∈ B3 such that z ∈ V c and S(x) ∩ V c = ∅. Then we

have S(x) ⊆ V , so x ∈ �S(V ). Moreover, as �S(V ) ∈ B2 (by condition (SpR1)),

it follows that y ∈ �S(V ), and therefore S(y) ⊆ V . Then by assumption, from

(y, z) ∈ S we get z ∈ V , a contradiction. This proves that S ◦ ≤2 ⊆ S. The other

inclusion is immediate.

(2) It is easy to see that �S◦R = �R ◦�S . Therefore, since �S ∈ Hom(B3,B2)

and �R ∈ Hom(B2,B1), we conclude that �S◦R ∈ Hom(B3,B1), and then condi-

tion (SpR1) is satisfied by S ◦R.

We prove that condition (SpR2) is also satisfied by S ◦ R. Let y ∈ X3 and

x ∈ X1 be such that y /∈ (S ◦ R)(x). We show that there is V ∈ B3 such that

y ∈ V c and V c ∩ (S ◦R)(x) = ∅. This implies, by κX3 = {V c : V ∈ B3} being a

basis, that (S ◦R)(x) is a closed subset of 〈X3, τκX3
〉.

Notice that for any z ∈ R(x), y /∈ S(z). By condition (SpR2) on 〈X3,B3〉, S(z)

is closed. And then by (Sp3), there is Vz ∈ B3 such that y ∈ V cz and S(z) ⊆ Vz, so

z ∈ �S(Vz). This implies that:

R(x) ∩
⋂
{�S(V )c : y ∈ V c ∈ κX3} = ∅.

Now as κX3 is a basis for 〈X3, τκX3
〉, the set {V c : y ∈ V c ∈ κX3} is down-directed,

and then so is the set {�S(V )c : y ∈ V c ∈ κX3}. Then by Theorem 5.1.20, we

conclude that there is V c ∈ κX3 such that y ∈ V c and R(x) ∩�S(V )c = ∅, i. e.

R(x) ⊆ �S(V ). This implies that x ∈ �R ◦�S(V ) = �S◦R(V ) so (S ◦R)(x) ⊆ V ,

as required. �

Corollary 5.3.2. S-Spectral spaces and S-Spectral morphisms form a cate-

gory.

Proof. For an S-Spectral space X, Proposition 5.2.8 shows that the order ≤X
defined on X is an S-Spectral morphism. Then by item (1) in Theorem 5.3.1, ≤X is

the identity morphism for X. By item (2) in Theorem 5.3.1, relational composition

works as composition between S-Spectral morphisms. �

For the Priestley-style category, we obtain similar results, except that set-

theoretic relational composition does not work as composition in the new category,
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but we have to define a new composition between S-Priestley morphisms. For

S-Priestley spaces X1,X2 and X3 and S-Priestley morphisms R ⊆ X1 × X2 and

S ⊆ X2 ×X3, let (S ? R) ⊆ X1 ×X3 be the relation given by:

(x, z) ∈ (S ? R) iff ∀U ∈ B3

(
if x ∈ �R ◦�S(U), then z ∈ U

)
iff ∀U ∈ B3

(
if (S ◦R)(x) ⊆ U , then z ∈ U

)
.

Notice that from the definition of ? it follows that �(S?R) = �R ◦�S .

Theorem 5.3.3. Let 〈X1, τ1,B1〉, 〈X2, τ2,B2〉 and 〈X3, τ3,B3〉 be S-Priestley

spaces and let R ⊆ X1 ×X2 and S ⊆ X2 ×X3 be S-Priestley morphisms. Then:

(1) The S-Priestley morphism ≤2 ⊆ X2 ×X2 satisfies:

≤2 ◦R = R and S ◦ ≤2 = S,

(2) (S ? R) ⊆ X1 ×X3 is an S-Priestley morphism.

Proof. (1) First we show that ≤2 ◦ R = R. Let y ∈ R(x) and y ≤2 z, and

suppose, towards a contradiction, that z /∈ R(x). By (PrR2) there is U ∈ B2 such

that R(x) ⊆ U and z /∈ U . Then by assumption y ∈ U , and since U is an up-set,

we get z ∈ U , a contradiction. Hence we have ≤2 ◦ R ⊆ R. The other inclusion is

immediate.

Now we show that S ◦ ≤2 = S. Let x ≤2 y and z ∈ S(y), and suppose,

towards a contradiction, that z /∈ S(x). By (PrR2) again, there is U ∈ B3 such

that S(x) ⊆ U and z /∈ U . Then we have x ∈ �S(U) and by (PrR1) we get

�S(U) ∈ B2. In particular �S(U) is an up-set, thus y ∈ �S(U). Then S(y) ⊆ U ,

and therefore z ∈ U , a contradiction. Hence we have S ◦ ≤2 = S. The other

inclusion is immediate.

(2) Conditions (PrR1) and (PrR2) follow easily from the definition of ?. �

Corollary 5.3.4. S-Priestley spaces and S-Priestley morphisms form a cat-

egory.

Proof. For an S-Priestley space X, Proposition 5.2.13 shows that the order

≤X defined on X is an S-Priestley morphism. We claim that for any S-Priestley

spaces 〈X1, τ1,B1〉 and 〈X2, τ2,B2〉, and S-Priestley morphism R ⊆ X1 ×X2, we

have ≤2 ◦ R = ≤2 ? R. The inclusion from left to right follow by definition. From

the other inclusion, let (x, z) ∈ (≤2 ? R) and suppose, towards a contradiction that

(x, z) /∈ ≤2 ◦R. By item (1) in Theorem 5.3.3 we know that ≤2 ◦R = R, and then

from the hypothesis and (Pr2), there is U ∈ B2 such that R(x) ⊆ U and z /∈ U .

But since (≤2 ◦R)(x) = R(x), we conclude (x, z) /∈ (≤2 ? R), a contradiction.

Hence by item (1) in Theorem 5.3.3 we obtain that ≤X is the identity morphism

for X. By item (2) in Theorem 5.3.3, composition of S-Priestley morphisms is given

by ? (associativity of ? follows easily). �

For any filter distributive finitary congruential logic with theorems S, let SpS
be the category of S-Spectral spaces and S-Spectral morphisms, and let PrS be

the category of S-Priestley spaces and S-Priestley morphisms. We summarize in

Table 5 all the categories so far considered.
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Table 5. Categories involved in the dualities for S a filter distri-

butive finitary congruential logic with theorems.

Category Objects Morphisms

AlgS S-algebras algebraic homomorphisms

SpS S-Spectral spaces S-Spectral morphisms

PrS S-Priestley spaces S-Priestley morphisms (comp ?)

Once we have defined the categories, we need to build the contravariant functors

and the natural isomorphisms involved in the dualities. Let us examine first the

Spectral-like duality, and then we move to the Priestley-style duality.

5.3.1. Spectral-like duality. Let us start with the functors for the Spectral-

like duality. On the one hand, we consider the functor IrrS : AlgS −→ SpS such

that for any S-algebras A,A1,A2 and any h ∈ Hom(A1,A2):

IrrS(A) := 〈IrrS(A), ψA[A]〉,

IrrS(h) := Rh ⊆ IrrS(A2)× IrrS(A1).

Recall that a topology τκA
is defined on IrrS(A), taking κA := {ψA(a)c : a ∈ A}

as a basis, for ψA : A −→ P↑(IrrS(A)) given by ψA(a) := {P ∈ IrrS(A) : a ∈ P}.
And by definition (P,Q) ∈ Rh if and only if h−1[P ] ⊆ Q.

Clearly, for idA : A −→ A, the identity morphism for A in AlgS, we obtain

RidA
= ⊆, and this is precisely the identity morphism for IrrS(A) in SpS. More-

over, it follows from from definition that for S-algebras A1,A2 and A3 and homo-

morphisms f ∈ Hom(A1,A2) and g ∈ Hom(A2,A3), Rg◦f = Rf ◦ Rg. Therefore,

by corollaries 5.1.11 and 5.2.7, the functor IrrS is well defined.

On the other hand, we consider the functor ( )∗ : SpS −→ AlgS such that for

any S-Spectral spaces X,X1,X2 and any S-Spectral morphism R ⊆ X1 ×X2:

X∗ := B,

R∗ := �R : B2 −→ B1.

We recall that for all U ∈ B2, �R(U) := {x ∈ X1 : R(x) ⊆ U}. For ≤X ⊆ X ×X,

the identity morphism for X in SpS, �≤X = idB, that is precisely the identity

morphism for B in AlgS. Moreover, it follows by definition that for S-Spectral

spaces X1,X2 and X3, and S-Spectral morphisms R ⊆ X1 × X2 and S ⊆ X2 ×
X3, �S◦R = �R ◦ �S . Therefore, by Remark 4.2.1 and definition of S-Spectral

morphism, the functor ( )∗ is well defined.

In order to complete the duality, we need to define two natural isomorphisms,

one between the identity functor on AlgS and (IrrS( ))∗, and the other between

the identity functor on SpS and IrrS(( )∗). Consider first the family of morphisms

in AlgS:

ΨS =
(
ψA : A −→ ψA[A]

)
A∈AlgS

Theorem 5.3.5. ΨS is a natural isomorphism between the identity functor on

AlgS and (IrrS( ))∗.
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Proof. Let A1,A2 be S-algebras and let h ∈ Hom(A1,A2). We prove that

�Rh ◦ ψ1 = ψ2 ◦ h. For a ∈ A1 and P ∈ �Rh(ψ1(a)), we have Rh(P ) ⊆ ψ1(a). It

follows that h(a) ∈ P , so, P ∈ ψ2(h(a)). For P ′ ∈ ψ2(h(a)), we have h(a) ∈ P ′. It

follows that Rh(P ′) ⊆ ψ1(a), so P ′ ∈ �Rh(ψ1(a)).

From this we have that ΨS is a natural transformation, and since for any

S-algebra A, we have that ψA is an isomorphism from A to ψA[A], we conclude

that ΨS is a natural isomorphism. �

Clearly, what we have is that for any S-algebras A1 and A2 and any homo-

morphism h ∈ Hom(A1,A2), the following diagram commutes:

A1

h

��

ψ1 // ψ1[A1]

�Rh
��

A2
ψ2

// ψ2[A2]

Before stating the other natural isomorphism, we need to do some work. Re-

call that for any S-Spectral space X = 〈X,B〉, we proved that the function εX :

X −→ IrrS(B) is a homeomorphism between topological spaces 〈X, τκX
〉 and

〈IrrS(B), τκB
〉. This map encodes the natural isomorphism we are looking for,

but since morphisms in SpS are relations, we need to give a relation associated

with this map. We define the relation EX ⊆ X × IrrS(B) given by:

(x, P ) ∈ EX iff εX(x) ⊆ P.

Proposition 5.3.6. EX is an S-Spectral morphism.

Proof. We have to show that �EX
∈ Hom(ψB[B],B). Notice that for all

ψB(b) ∈ ψB[B], we have:

�EX
(ψB(b)) = {x ∈ X : ∀y ∈ X

(
(x, εX(y)) ∈ EX ⇒ εX(y) ∈ ψB(b)

)
}

= {x ∈ X : ∀y ∈ X
(
εX(x) ⊆ εX(y)⇒ b ∈ εX(y)

)
}

= {x ∈ X : b ∈ εX(x)} = b.

Therefore �EX
= ψ−1

B . And since B and ψB[B] are isomorphic S-algebras by means

of the map ψB, it follows that �EX
∈ Hom(ψB[B],B). This proves that condition

(SpR1) is satisfied by EX. Moreover, this also proves that EX is an isomorphism

in the category SpS.

Notice that for each x ∈ X, we have EX(x) = ↑εX(x) = cl(εX(x)), which is a

principal up-set of 〈IrrS(B),⊆〉, and so a closed subset of 〈IrrS(B), τκB
〉. Therefore

condition (SpR2) is also satisfied by EX. �

Consider the family of morphisms in SpS:

ΣS =
(
EX ⊆ X × IrrS(B)

)
X∈SpS

Theorem 5.3.7. ΣS is a natural transformation between the identity functor

on SpS and IrrS(( )∗).



100 Chapter 5. Duality Theory for Filter Distributive Congruential Logics

Proof. Let X1 = 〈X1,B1〉 and X2 = 〈X2,B2〉 be two S-Spectral spaces and

let R ⊆ X1 ×X2 be an S-Spectral morphism. For convenience, we denote εX1
and

εX2
by ε1 and ε2 respectively. First we show that:

(x, y) ∈ R iff (ε1(x), ε2(y)) ∈ R�R .

Let first x ∈ X1 and y ∈ X2 be such that (x, y) ∈ R and let U ∈ B2. Notice

that we have:

U ∈ �−1
R [ε1(x)] iff �R(U) ∈ ε1(x) iff x ∈ �R(U) iff R(x) ⊆ U.

Thus if U ∈ �−1
R [ε1(x)], then R(x) ⊆ U , and since (x, y) ∈ R, we obtain y ∈ U , i. e.

U ∈ ε2(y), and therefore (ε1(x), ε2(y)) ∈ R�R . For the converse, let x ∈ X1 and

y ∈ X2 be such that (ε1(x), ε2(y)) ∈ R�R and suppose, towards a contradiction,

that y /∈ R(x). Since R is an S-Spectral morphism, R(x) is closed, so there is

V ∈ B2 such that y ∈ V c and V c ∩R(x) = ∅. Then R(x) ⊆ V , so x ∈ �R(V ), and

then �R(V ) ∈ ε1(x). Thus by hypothesis V ∈ ε2(y), so y ∈ V , a contradiction.

The equivalence that we just proved implies that R�R ◦EX1 = EX2 ◦R. Thus

ΣS is a natural equivalence. Moreover, as EX is an isomorphism for each S-Spectral

space X, then ΣS is a natural isomorphism in SpS. �

Theorem 5.3.8. The categories AlgS and SpS are dually equivalent by means

of the contravariant functors IrrS and ( )∗ and the natural equivalences ΨS and

ΣS .

5.3.2. Priestley-style duality. Let us move now to the other duality. We

begin by considering the functors involved on it. On the one hand, we consider the

functor OpS : AlgS −→ PrS such that for any S-algebras A, A1 and A2 and any

homomorphism h ∈ Hom(A1,A2):

OpS(A) := 〈OpS(A), τA, ϑ[A]〉,
OpS(h) := Rh ⊆ OpS(A2)×OpS(A1).

Recall that the topology τA is defined taking {ϑA(a) : a ∈ A}∪{ϑA(b)c : b ∈ A} as

a subbasis, for ϑA : A −→ P↑(OpS(A)) given by ϑA(a) := {P ∈ OpS(A) : a ∈ P}.
By definition (P,Q) ∈ Rh if and only if h−1[P ] ⊆ Q.

Clearly, for idA : A −→ A, the identity morphism for A in AlgS, we get

RidA
= ⊆, and this is exactly the identity morphism for OpS(A) in PrS. Moreover,

it follows from definition that for S-algebras A1,A2 and A3 and homomorphisms

f ∈ Hom(A1,A2) and g ∈ Hom(A2,A3), Rg◦f = Rf ? Rg. Therefore, using

corollaries 5.1.33 and 5.2.11, we conclude that the functor OpS is well defined.

On the other hand, we consider the functor ( )• : PrS −→ AlgS such that for

any S-Priestley spaces X, X1, X2 and any S-Priestley morphism R ⊆ X1 ×X2:

X• := B,

R• := �R : B2 −→ B1.

We recall that for all U ∈ B2, �R(U) := {x ∈ X1 : R(x) ⊆ U}. Clearly, for

≤X ⊆ X ×X, the identity morphism for X in PrS, �≤X = idB, that is the identity

morphism for B in AlgS. Moreover, it follows by definition that for any S-Priestley

spaces X1, X2 and X3, and any S-Priestley morphisms R ⊆ X1 × X2 and S ⊆
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X2 ×X3, we have �S?R = �R ◦�S . Therefore, by Remark 4.2.1 and definition of

S-Priestley morphism, the functor ( )• is also well defined.

In order to complete the duality, we need to define two natural isomorphisms,

the one between the identity functor on AlgS and (OpS( ))•, and the other between

the identity functor on PrS and OpS(( )•). Consider first the family of morphisms

in AlgS:

ΘS : (ϑA : A −→ ϑA[A])A∈AlgS

Theorem 5.3.9. ΘS is a natural isomorphism between the identity functor on

AlgS and (OpS( ))•.

Proof. Let A1,A2 ∈ AlgS and let h ∈ Hom(A1,A2). It is enough to show

that �Rh ◦ ϑ1 = ϑ2 ◦ h. For a ∈ A1 and P ∈ �Rh(ϑ1(a)), we have Rh(P ) ⊆ ϑ1(a).

It follows that h(a) ∈ P , so P ∈ ϑ2(h(a)). For P ′ ∈ ϑ2(h(a)), we have h(a) ∈ P ′.
It follows that Rh(P ′) ⊆ ϑ1(a), so P ′ ∈ �Rh(ϑ1(a)).

From this we have that ΘS is a natural transformation, and since ϑ1 is an

isomorphism from A1 to ϑ1[A1], we conclude that ΘS is a natural isomorphism. �

In other words, we have that for any S-algebras A1 and A2 and any homomor-

phism h ∈ Hom(A1,A2), the following diagram commutes:

A1

h

��

ϑ1 // ϑ1[A1]

�Rh
��

A2
ϑ2

// ϑ2[A2]

Before formulating the other natural isomorphism, we need again to do some

work. Recall that for any S-Priestley space X = 〈X, τ,B〉, we define the map

ξX : X −→ OpS(B) that is a homeomorphism between topological spaces 〈X, τ〉
and 〈OpS(B), τB〉. This map encodes the natural isomorphism we are looking for,

but since morphisms in PrS are relations, we need to give a relation associated with

this map. We define the relation TX ⊆ X ×OpS(B) given by:

(x, P ) ∈ TX iff ξX(x) ⊆ P.

Proposition 5.3.10. TX is an S-Priestley morphism.

Proof. We have to show that �TX
∈ Hom(ϑB[B],B). Notice that for all

ϑB(b) ∈ ϑB[B], we have:

�TX
(ϑB(b)) = {x ∈ X : ∀y ∈ X

(
(x, ξX(y)) ∈ TX ⇒ ξX(y) ∈ ϑB(b)

)
}

= {x ∈ X : ∀y ∈ X
(
ξX(x) ⊆ ξX(y)⇒ b ∈ ξX(y)

)
}

= {x ∈ X : b ∈ ξX(x)} = b.

Therefore �TX
= ϑ−1

B . And since B and ϑB[B] are isomorphic S-algebras by means

of the map ϑB, it follows that �TX
∈ Hom(ϑB[B],B). This proves that condition

(PrR1) is satisfied by TX. Moreover, this also proves that TX is an isomorphism of

PrS.

We show now that condition (PrR2) is also satisfied by TX. Notice that for

each x ∈ X, we have TX(x) = ↑ξX(x). Let x ∈ X and P ∈ OpS(B) be such that
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(x, P ) /∈ TX. We have to show that there is U ∈ B such that P /∈ ϑB(U) and

TX(x) ⊆ ϑB(U). By definition of TX, we have that ξX(x) * P , so there is U ∈ B
such that U ∈ ξX(x) and U /∈ P . Hence P /∈ ϑB(U) and ξX(x) ∈ ϑB(U). Now since

TX(x) = ↑ξX(x), we obtain that TX(x) ⊆ ϑB(U), as required. �

Consider now the family of morphisms in PrS:

ΞS =
(
TX ⊆ X ×OpS(B)

)
X∈PrS

Theorem 5.3.11. ΞS is a natural transformation between the identity functor

on PrS and OpS(( )•).

Proof. Let X1 = 〈X1, τ1,B1〉 and X2 = 〈X2, τ2,B2〉 be two S-Priestley spaces

and let R ⊆ X1×X2 be an S-Priestley morphism. For convenience, we denote ξX1

and ξX2
by ξ1 and ξ2 respectively. First we show that:

(x, y) ∈ R iff (ξ1(x), ξ2(y)) ∈ R�R .

Let x ∈ X1 and y ∈ X2 be such that (x, y) ∈ R, and let U ∈ B2. Notice that

we have:

U ∈ �−1
R [ξ1(x)] iff �R(U) ∈ ξ1(x) iff x ∈ �R(U) iff R(x) ⊆ U.

Thus if U ∈ �−1
R [ξ1(x)], then R(x) ⊆ U , and since (x, y) ∈ R, we obtain y ∈ U , i. e.

U ∈ ξ2(y), and therefore (ξ1(x), ξ2(y)) ∈ R�R . For the converse, let x ∈ X1, y ∈ X2

be such (ξ1(x), ξ2(y)) ∈ R�R and suppose, towards a contradiction, that y /∈ R(x).

Since R is an S-Priestley morphism, by (PrR1), there is U ∈ B2 such that y /∈ U
and R(x) ⊆ U . From previous equivalences we obtain U ∈ �−1[ξ1(x)]. But then

from the hypothesis U ∈ ξ2(y), so y ∈ U , a contradiction.

The equivalence that we just proved implies that R�R ?TX1 = TX2 ?R. Thus ΞS
is a natural equivalence. Moreover, as TX is an isomorphism for each S-Priestley

space X, then ΞS is a natural isomorphism in PrS. �

Theorem 5.3.12. The categories AlgS and PrS are dually equivalent by means

of the contravariant functors OpS and ( )• and the natural equivalences ΘS and

ΞS .

5.4. Comparison with another duality for congruential logics

As it was already mentioned in § 4.2, the back and forth correspondences

between objects that underly our dualities are two particular cases of a more ge-

neral correspondence, that can be formulated for any selfextensional logic. In [56]

Jansana and Palmigiano pointed out that this general correspondence serves as

a general template where a wide range of Stone/Priestley dualities related with

concrete logics can fit. The theory we developed in the present chapter consisted

precisely in making this assertion more precise, by showing how such dualities do

fit in such general correspondence. We emphasize that we are indebted with the

work in [56], because it served as an inspiration and as an starting point of our

theory.

In [56] a different case of such general correspondence is also studied, and it

is used to characterize the congruential logics among the selfextensional ones, as
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those logics S for which AlgS is dually equivalent to the category PRAS . From now

on, let S be a congruential logic.

We recall that an S-referential algebra X = 〈X,B〉 is perfect (see definition in

Section 5.1 in [56]) when:

(P1) 〈X,�〉 is a complete lattice, where � is the quasiorder associated with the

referential algebra,

(P2) for all U ∪ {V } ⊆ B, if
⋂
U ⊆ V , then V ∈ CB

S (U),

(P3) B ⊆ {↑x : x ∈ X},
(P4) {x : ↑x ∈ B} is join-dense in X.

Notice that for any S-algebra A, FiS(A) is trivially a closure base for CA
S . So

results in § 4.3 can be applied for F = FiS(A). In particular, we have that the map

ϕFiS(A) is an isomorphism between algebras A and ϕFiS(A)[A], and by Theorem

4.3.9, it follows that 〈FiS(A), ϕFiS(A)[A]〉 is a reduced S-referential algebra. And

then it is easy to prove (see Lemma 5.5 in [56]) that 〈FiS(A), ϕFiS(A)[A]〉 is a

perfect S-referential algebra.

This is the definition of the dual space of S-algebras, for any S a congruential

logic. Notice that in this general case, no topology is considered. It is precisely

the assumption of finitarity, what enables us to topologize the dual space. This is

what it was done in Section 5.2 in [56], where the previous correspondence between

objects is specialized for the case when S is a finitary congruential logic. In this

case, we have that an S-referential algebra X = 〈X,B〉 is f-perfect when:1

(Pf1) 〈X,≤〉 is an algebraic lattice, where ≤ is the quasiorder associated with

the referential algebra,

(Pr2) for all U ∪ {V } ⊆ω B, if
⋂
U ⊆ V , then V ∈ CB

S (U),

(Pr3′) B ∪ {U c : U ∈ B} is a subbasis for a topology τ on X such that 〈X, τ,≤〉
is a Priestley space,

(Pf3) B ⊆ {↑x ∈ C`(X) : x ∈ K(X)},
(P4) {x : ↑x ∈ B} is join-dense in X.

Recall that K(X) denotes the collection of compact subsets of X and C`(X)

the collection of clopen subsets of X. Notice that there are some similarities be-

tween the previous definition and the definition of S-Priestley space (for a clearer

comparison, take into account the characterization of S-Priestley spaces given in

Corollary 5.1.38 in page 86), but the comparison does not go further. The approach

in [56] regarding morphisms differs substantially from ours. A morphism between

perfect S-referential algebras 〈X1,B1〉 and 〈X2,B2〉 is a map h : X1 −→ X2 such

that h−1 : B2 −→ B1 is a homomorphism between S-algebras B2 and B1.

Recall that we remarked in Lemma 5.2.1 that it is a well-known fact that for

any logic S, and any homomorphism between S-algebras h ∈ Hom(A1,A2), the

set h−1[F ] is an S-filter of A1 for all F ∈ FiS(A2). Then it is easy to prove

(see Proposition 4.3 in [56]) that h−1 is a morphism between S-referential algebras

〈FiS(A2), ϕ2[A2]〉 and 〈FiS(A1), ϕ1[A1]〉, in the sense defined above.

We have just reviewed the definition of the dual morphisms of homomorphisms

between S-algebras, for any (finitary) congruential logic S. Notice that there is a

1This is defined in Theorem 5.11 in [56], although no name is given for such structures.
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fundamental difference between this approach and ours, as in [56] duals of homo-

morphisms are maps, whereas we need to consider relations, instead of maps. This

is because we do not have in general that the inverse image of an optimal (resp.

irreducible) S-filter by a homomorphism between S-algebras is an optimal (resp.

irreducible) S-filter. But the correspondence between morphisms is, in essence, the

same in both approaches.

Finally, for any congruential logic, PRAS is the category of perfect S-referential

algebras and morphisms between them. Theorem 5.9 in [56] states that for any

congruential logic S, AlgS and PRAS are dually equivalent. This duality is clearly

less restrictive than ours, since it applies for any congruential logic, but it is not

connected so directly with the various Spectral-like and Priestley-style dualities that

we already mentioned, that indeed follow as particular cases of our general theory,

as we show in Chapter 6. Nevertheless, an indirect connection with Priestley duality

for bounded distributive lattices, Stone duality for bounded distributive lattices and

Stone duality for Boolean algebras with operators is pointed out in [56]. Similar

results follow for our dualities from our work in § 5.5, as it will be pointed out where

appropriate.

5.5. Dual correspondence of some logical properties

In this section we examine how the correspondences between objects presented

in § 5.1 can be refined depending on the properties of the logic under consideration.

Recall that in § 1.6 we already introduced several abstract properties of logics,

as they are studied within AAL. These properties are particularly interesting for

our purposes, because they may be connected with properties of the consequence

operator associated with the logical filters. In case a good connection exists, we

talk about transfer theorems. Let S be a logic and let Φ be one of those properties,

relative to some term. We say that the property Φ transfers to every algebra if for

every algebra A (of the same type as S) the closure operator CA
S has Φ relative to

the same term.

Note that since we do not fix any concrete logical language, we obtain dualities

between categories that both have algebraic nature. This inelegance cannot be

avoided within such abstract program. Nevertheless, it might be dodged when

we fix a concrete logical language and a concrete logic. Some steps towards this

direction are carried out in the Chapter 7, using results from the present section.

In what follows we study, for a given filter distributive finitary congruential logic

with theorems S, which properties of the dual spaces correspond with which prop-

erties of the logic. Given the abstraction of our general approach, we are allowed

to carry out this study in a modular fashion, treating each property independently.

Afterwards we might combine these results, as it is indicated when appropriate.

The following subsections are organized as follows: we treat one by one the

logical properties that we introduced in § 1.6. First we examine, for each property

Φ relative to some term t, the corresponding property of the closure operator CA
S .

After that we suggest a Spectral-dual and a Priestley-dual of Φ. For some of those

properties we obtain moreover that these dual conditions imply the corresponding

property of the logic. Finally we obtain how the term t is represented in each case
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in the referential algebra B. The results for the Spectral-like and for the Priestley-

style dualities are collected in separate tables at the end of the section. Throughout

this section we assume that S is a filter distributive finitary congruential logic with

theorems and A is an S-algebra.

5.5.1. Property of Conjunction. Let S be a logic that satisfies (PC) for

a term p ∧ q. We say that (PC) transfers to every algebra, if for every algebra A

and every a, b ∈ A:

CA
S (a ∧A b) = CA

S (a, b).

It is well known that for any logic, (PC) transfers to every algebra (see page 50

in [35]).

Lemma 5.5.1. Let A be an S-algebra for a logic S that satisfies (PC), and let

F be an optimal S-base. Then for all a, b ∈ A, ϕF (a) ∩ ϕF (b) = ϕF (a ∧A b).

Proof. Notice that, since (PC) transfers to every algebra, for all a, b ∈ A we

have CA
S (a ∧A b) = CA

S (a, b). Then we get that for any P ∈ F :

a, b ∈ P iff CA
S (a, b) ⊆ P iff CA

S (a ∧A b) ⊆ P iff a ∧A b ∈ P.
Now notice that by definition ϕF (a) ∩ ϕF (b) = {P ∈ F : a, b ∈ P} and ϕF (a∧Ab) =

{P ∈ F : a ∧A b ∈ P}, so we are done. �

Notice that by associativity of intersection, the previous lemma implies that for

any non-empty B ⊆ω A,
⋂
{ϕF (b) : b ∈ B} = ϕF (

∧A
B). Recall that we defined

the S-semilattice of A as the closure of ϕF [A] under non-empty finite intersections.

Therefore, if S satisfies (PC), then A and M(A) are isomorphic.

Let us consider first the Spectral-like duality for S-algebras, when S satisfies

(PC). In the proof of the following proposition we use Lemma 5.5.1 when F is

IrrS(A).

Proposition 5.5.2. Let A be an S-algebra for a logic S that satisfies (PC).

For all U ⊆ IrrS(A), if U is an open compact subset of 〈IrrS(A), τκA
〉, then there

is a ∈ A such that U = ψ(a)c.

Proof. If U = ∅, then U = ψ(1A)c = ∅ and we are done. Since κA =

{ψ(a)c : a ∈ A} is a basis for IrrS(A), for any U open set there is B ⊆ A such

that U =
⋃
{ψ(b)c : b ∈ B}. Thus for any non-empty open and compact U ,

there are b0, . . . , bn ∈ A, for some n ∈ ω, such that U = ψ(b0)c ∪ · · · ∪ ψ(bn)c =

(ψ(b0)∩· · ·∩ψ(bn))c. Now we use Lemma 5.5.1, and we get U = (ψ(b0∧A· · ·∧Abn))c,

as required. �

Corollary 5.5.3. Let A be an S-algebra for a logic S that satisfies (PC).

Then the collection of all open compact sets of 〈IrrS(A), τκA
〉 is included in κA.

From the previous corollary we get the idea that for any S-Spectral space

〈X,B〉, the Spectral-dual of (PC) is the property of κX being the collection of open

compact subsets of the space. Let us check now that this condition is enough for

recovering the conjunction.

Proposition 5.5.4. Let X = 〈X,B〉 be an S-Spectral space such that KO(X) =

κX. Then for all U, V ∈ B, CB
S (U, V ) = CB

S (U ∩ V ).
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Proof. First notice that the hypothesis implies that κX is closed under finite

unions, i. e. B is closed under finite intersections. Now let U, V ∈ B. On the

one hand, notice that
⋂

CB
S (U, V ) ⊆ U ∩ V , since for any x ∈

⋂
CB
S (U, V ), as

U, V ∈ CB
S (U, V ), then x ∈ U, V and so x ∈ U ∩ V . Then by Corollary 5.1.19 we

have U ∩V ∈ CB
S (U, V ), and thus CB

S (U ∩V ) ⊆ CB
S (U, V ). On the other hand, from

U ∩V ⊆ U, V we get U, V ∈ CB
S (U ∩V ), and therefore CB

S (U, V ) ⊆ CB
S (U ∩V ). �

Theorem 5.5.5. Let S be a logic such that for any S-Spectral space X = 〈X,B〉
it holds that KO(X) = κX. Then S satisfies (PC).

Proof. Recall that the Lindenbaum-Tarski algebra Fm∗ = Fm/ ≡Fm
S is an

S-algebra, so 〈IrrS(Fm∗), ψ[Fm∗]〉 is an S-Spectral space. For any variable p ∈
Fm, we denote by p its equivalence class in Fm∗, i. e. p := p/ ≡Fm

S . Let p, q ∈ V ar.
By assumption, there is ρ ∈ Fm such that ψ(p) ∩ ψ(q) = ψ(ρ). Moreover, by

Proposition 5.5.4 we have that

C
ψ[Fm∗]
S (ψ(p), ψ(q)) = C

ψ[Fm∗]
S (ψ(p) ∩ ψ(q)) .

Then by Corollary 4.3.7 we obtain CFm∗

S (p, q) = CFm∗

S (ρ). Recall that by Propo-

sition 2.21 in [35] the projection map is a bilogical morphism, and then we obtain

using Proposition 1.4 in [35] that CS(p, q) = CS(ρ). By structurality of the logic

S, we get that there is a formula ρ′(p, q) in at most the variables p and q such

that CS(p, q) = CS(ρ′(p, q)). By structurality again we get that for any formulas

δ, µ ∈ Fm, CS(δ, µ) = CS(ρ′(δ, µ)). Hence S satisfies (PC) forthe term ρ′. �

Corollary 5.5.6. Let S be a logic. Then S satisfies (PC) if and only if for

any S-Spectral space X = 〈X,B〉 it holds that KO(X) = κX.

Let us consider now the Priestley-style duality for S-algebras, when S satisfies

(PC). In the proof of the following proposition we use Lemma 5.5.1 when F is

OpS(A).

Proposition 5.5.7. Let A be an S-algebra for a logic S that satisfies (PC). For

all U ⊆ OpS(A), if U is an IrrS(A)-admissible clopen up-set of 〈OpS(A), τA,⊆〉,
then there is a ∈ A such that U = ϑ(a).

Proof. Let U ⊆ OpS(A) be a clopen up-set of 〈OpS(A), τA,⊆〉 such that

max(U c) ⊆ IrrS(A). Then by Proposition 5.1.30, there is non-empty B ⊆ω A and

such that U = ϑ̂(B). Then by Lemma 5.5.1 U = ϑ(
∧A

B), as required. �

Corollary 5.5.8. Let A be an S-algebra for a logic S that satisfies (PC). Then

the collection of IrrS(A)-admissible clopen up-sets of 〈OpS(A), τA,⊆〉 is included

in ϑ[A].

From the previous corollary we get the idea that for any S-Priestley space

〈X, τ,B〉, the Priestley-dual of (PC) is the property of B being the collection of

XB-admissible clopen up-sets. Let us check now that this conditions is enough for

recovering the conjunction.

Proposition 5.5.9. Let 〈X, τ,B〉 be an S-Priestley space such that B is the

collection of XB-admissible clopen up-sets C`UadXB (X). Then for all U, V ∈ B,

CB
S (U, V ) = CB

S (U ∩ V ).
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Proof. First notice that the hypothesis implies that B is closed under finite

intersections. Now let U, V ∈ B. Moreover, by (Pr2) we get
⋂
{U, V } ⊆ U ∩ V if

and only if U ∩ V ∈ CB
S (U, V ). So we are done. �

Theorem 5.5.10. Let S be a logic such that for any S-Priestley space 〈X, τ,B〉,
C`UadXB (X) = B. Then S satisfies (PC).

Proof. The proof is similar to that of Theorem 5.5.5. �

Corollary 5.5.11. Let S be a logic. Then S satisfies (PC) if and only if for

any S-Priestley space 〈X, τ,B〉 it holds that C`UadXB (X) = B.

5.5.2. Property of Disjunction. Let S be a logic that satisfies (PWDI) for

a term p ∨ q. We say that (PWDI) transfers to every algebra, if for every algebra

A, and every a, b ∈ A:

CA
S (a ∨A b) = CA

S (a) ∩ CA
S (b).

Let now S be a logic that satisfies (PDI) for a term p ∨ q. We say that (PDI)

transfers to every algebra, if for every algebra A, and every {a, b} ∪X ⊆ A:

CA
S (X, a ∨A b) = CA

S (X, a) ∩ CA
S (X, b).

Lemma 5.5.12. If a logic S is filter distributive and satisfies (PWDI), then it

satisfies (PDI).

Proof. Let S be a filter distributive logic that satisfies (PWDI) for p∨ q and

let A be an algebra of the same type as S. We denote by t the join in FiS(A), that

is a distributive lattice by assumption. Then we have that for all {a, b} ∪X ⊆ A:

CA
S (X, a) ∩ CA

S (X, b) =
(
CA
S (X) t CA

S (a)
)
∩
(
CA
S (X) t CA

S (a)
)

= CA
S (X) t

(
CA
S (a) ∩ CA

S (b)
)

= CA
S (X) t CA

S (a ∨A b)

= CA
S (X, a ∨A b).

�

By the previous lemma, we conclude that for our purposes it is enough to

consider only the property (PDI). It is well known that (PDI) transfers to every

algebra (see Theorem 2.52 in [35]). Moreover (PDI) implies filter-distributivity of

the logic (see [21]).

Lemma 5.5.13. Let A be an S-algebra for a logic S that satisfies (PDI), and

let F be an optimal S-base. Then for all a, b ∈ A, ϕF (a) ∪ ϕF (b) = ϕF (a ∨A b).

Proof. Notice that since (PDI) transfers to every algebra, for all a, b ∈ A we

have CA
S (a ∨A b) = CA

S (a) ∩ CA
S (b). This implies, on the one hand, that a, b ≤A

S
a∨Ab, therefore for any P ∈ F , if a ∈ P or b ∈ P , as P is an up-set, thus a∨Ab ∈ P .

On the other hand, we also have that ↑a∩↑b ⊆ ↑(a∨A b). Therefore, for any P ∈ F
such that a /∈ P and b /∈ P , as P c is an strong S-ideal by Theorem 4.4.9, we get

a ∨A b /∈ P . Hence we conclude that ϕF (a) ∪ ϕF (b) = ϕF (a ∨A b). �

Notice that by associativity of union, the previous lemma implies that for any

non-empty B ⊆ω A,
⋃
{ϕF (b) : b ∈ B} = ϕF (

∨A
B).
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Let us consider first the Spectral-like duality for S-algebras, when S satisfies

(PDI). In the proof of the following corollary we use Lemma 5.5.13, when F is

IrrS(A).

Corollary 5.5.14. Let A be an S-algebra for a logic S that satisfies (PDI).

Then κA is closed under finite intersections.

Proof. Since κA = {ψ(a)c : a ∈ A}, by Lemma 5.5.13 we get that for all

a, b ∈ A, ψ(a)c ∩ ψ(b)c = (ψ(a) ∪ ψ(b))c = ψ(a ∨A b)c ∈ κA. �

From the previous corollary we get the idea that for any S-Spectral space

〈X,B〉, the Spectral-dual of (PDI) is the property of κX being closed under inter-

section. Let us check now that this condition is enough for recovering the disjunction

in the algebras of the dual.

Proposition 5.5.15. Let X = 〈X,B〉 be an S-Spectral space such that κX
is closed under finite intersections. Then for all U, V ∈ B, CB

S (U) ∩ CB
S (V ) =

CB
S (U ∪ V ).

Proof. Notice that the hypothesis implies that B is closed under finite unions.

Then for any W ∈ B we have:

W ∈ CB
S (U) ∩ CB

S (V ) iff (U ⊆W & V ⊆W ) iff U ∪ V ⊆W

iff W ∈ CB
S (U ∪ V ).

�

Corollary 5.5.16. Let X = 〈X,B〉 be an S-Spectral space such that κX is

closed under finite intersections. Then for all {U, V } ∪ W ⊆ B, CB
S (W, U) ∩

CB
S (W, V ) = CB

S (W, U ∪ V ).

Proof. This follows from filter distributivity of S and the previous proposi-

tion, as we have:

CB
S (W, U) ∩ CB

S (W, V ) =
(
CB
S (W) t CB

S (U)
)
∩
(
CB
S (W) t CB

S (V )
)

= CB
S (W) t

(
CB
S (U) ∩ CB

S (V )
)

= CB
S (W) t CB

S (U ∪ V )

= CB
S (W, U ∪ V ).

�

Let us consider now the Priestley-style duality for S-algebras, when S satisfies

(PDI). In the proof of the following corollary we use Lemma 5.5.13, when F is

OpS(A).

Corollary 5.5.17. Let A be an S-algebra for a logic S that satisfies (PDI).

Then ϑ[A] is closed under finite unions.

From the previous corollary we get the idea that for any S-Priestley space

〈X, τ,B〉, the Priestley-dual of (PDI) is the property of B being closed under union.

As for the Spectral-like duality, it follows straightforwardly that this condition is

enough in each case for recovering the disjunction in the algebras of the dual.

Corollary 5.5.18. Let 〈X, τ,B〉 be an S-Priestley space such that B is closed

under finite unions. Then for all U, V ∈ B, CB
S (U) ∩ CB

S (V ) = CB
S (U ∪ V ).
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Corollary 5.5.19. Let 〈X, τ,B〉 be an S-Priestley space such that B is closed

under finite unions. Then for all {U, V } ∪ W ⊆ B, CB
S (W, U) ∩ CB

S (W, V ) =

CB
S (W, U ∪ V ).

To conclude, let us consider the case when S satisfies both (PC) and (PDI).

Then it is well known that all S-algebras have a distributive lattice reduct (see

Proposition 2.8 in [41]) and S-filters are the same as order filters. In this case, by

corollaries 5.5.8 and 5.5.17 and Proposition 5.1.28 we know the following: if A has

a bottom element, then ϑ[A] is the collection of clopen up-sets of 〈OpS(A), τA,≤〉.
Since in this case optimal S-filters coincide with prime filters, what we obtain is

precisely what Priestley duality for bounded distributive lattices gives us. Notice

that if no bottom element is assumed, we still need to deal with IrrS(A)-admissible

clopen up-sets for recovering the algebra from the space. This collection coincides

with all clopen up-sets when the algebra has a bottom element, but excludes the

emptyset when the algebra has no bottom element.

5.5.3. Deduction-Detachment Theorem. Let S be a logic that satisfies

(DDT) for a non-empty set of formulas in two variables ∆(p, q). We say that (DDT)

transfers to every algebra, if for every algebra A, and every {a, b} ∪X ⊆ A:

b ∈ CA
S (X, a) iff ∆A(a, b) ⊆ CA

S (X).

Let now S be a logic that satisfies (uDDT) for a term p → q. We say that

(uDDT) transfers to every algebra, if for every algebra A, and every {a, b}∪X ⊆ A:

b ∈ CA
S (X, a) iff a→A b ∈ CA

S (X).

It is well known that (DDT) transfers to every algebra (see Theorem 2.48

in [35]). Moreover (DDT) implies filter-distributivity of the logic (see [21]).

Lemma 5.5.20. Let A be an S-algebra for a logic S that satisfies (uDDT) and let

F be an optimal S-base. Then for all a, b ∈ A, (↓(ϕF (a)∩ϕF (b)c))c = ϕF (a→A b).

Proof. Since (uDDT) transfers to every algebra, for any {a, b} ∪X ⊆ A we

have b ∈ CA
S (X, a) if and only if a→A b ∈ CA

S (X). Let first P ∈ ϕF (a→A b), and

suppose, towards a contradiction, that P /∈ (↓(ϕF (a) ∩ ϕF (b)c))c. Then it follows

that P ∈ ↓(ϕF (a) ∩ ϕF (b)c), and so there is Q ∈ F such that P ⊆ Q, Q ∈ ϕF (a)

and Q /∈ ϕF (b). By assumption, from P ⊆ Q we get a →A b ∈ Q, and then by

(uDDT) we obtain b ∈ CA
S (Q, a). Since a ∈ Q, then b ∈ CA

S (Q, a) = CA
S (Q) = Q,

a contradiction. We conclude that P ∈ (↓(ϕF (a) ∩ ϕF (b)c))c, as required.

Let now P ∈ F be such that P /∈ ϕF (a →A b), i. e. a →A b /∈ P . By

(uDDT) we get that b /∈ CA
S (P, a). Then by definition of optimal S-base, there

is Q ∈ F such that b /∈ Q and CA
S (P, a) ⊆ Q. So, we have a ∈ Q, P ⊆ Q

and b /∈ Q, i. e. Q ∈ ϕF (a) ∩ ϕF (b)c, and so P ∈ ↓(ϕF (a) ∩ ϕF (b)c). Therefore

P /∈ (↓((ϕF (a) ∩ ϕF (b)c))c), as required. �

Notice that when the logic S satisfies (DDT) for ∆(p, q), the following gener-

alization of the previous lemma also holds: for all a, b ∈ A:

(↓(ϕF (a) ∩ ϕF (b)c))c = ϕ̂F (∆A(a, b)).
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Let us consider first the Spectral-like duality for S-algebras, when S satisfies

(uDDT). In the proof of the following corollary we use Lemma 5.5.20, when F is

IrrS(A).

Corollary 5.5.21. Let A be an S-algebra for a logic S that satisfies (uDDT).

Then for all W1,W2 ∈ κA, ↓(W c
1 ∩W2) ∈ κA.

Proof. Since κA = {ψ(a)c : a ∈ A}, by Lemma 5.5.20 we get that for all

a, b ∈ A, ↓((ψ(a)c)c ∩ ψ(b)c) = ↓(ψ(a) ∩ ψ(b)c) = ψ(a→A b)c ∈ κA. �

From the previous corollary we get the idea that for any S-Spectral space

〈X,B〉, the Spectral-dual of (uDDT) is the property of κX being closed under

↓(( )c ∩ ( )). Let us check now that this condition is enough for recovering the

implication in the algebras of the dual.

Proposition 5.5.22. Let X = 〈X,B〉 be an S-Spectral space such that for any

W1,W2 ∈ κX, it holds that ↓(W c
1 ∩W2) ∈ κX. Then for all {U, V } ∪W ⊆ B:

V ∈ CB
S (W, U) iff (↓(U ∩ V c))c ∈ CB

S (W).

Proof. Assume first that (↓(U ∩ V c))c ∈ CB
S (W). By Corollary 5.1.19, it

is enough to show that
⋂

CB
S (W, U) ⊆ V , so let x ∈

⋂
CB
S (W, U) and suppose,

towards a contradiction, that x /∈ V . Since U ∈ CB
S (W, U), x ∈ U . By hypothesis

(↓(U ∩V c))c ∈ CB
S (W, U), so x ∈ (↓(U ∩V c))c, i. e. x /∈ ↓(U ∩V c). But from x /∈ V

and x ∈ U we get x ∈ U ∩ V c ⊆ ↓(U ∩ V c), a contradiction.

Assume now that V ∈ CB
S (W, U). By Corollary 5.1.19, it is enough to show that⋂

CB
S (W) ⊆ (↓(U ∩V c))c. Let x ∈

⋂
CB
S (W) and suppose, towards a contradiction,

that x /∈ (↓(U ∩ V c))c. Then there is y ∈ U ∩ V c such that x ≤ y. Let ε(y) =

{W ∈ B : y ∈ W}, that is an irreducible S-filter of B by Lemma 5.1.17, and let

W ∈ W. Clearly W ∈ CB
S (W), so by assumption x ∈ W . As W is an up-set, then

y ∈W , and so W ∈ ε(y). ThereforeW ⊆ ε(y). Moreover, since y ∈ U , we also have

U ∈ ε(y). And since ε(y) is an S-filter, then CB
S (W, U) ⊆ ε(y). Now by hypothesis

V ∈ ε(y), i. e. y ∈ V , a contradiction. �

We can show that, under the assumption of S being protoalgebraic, we can also

find the conditions over the dual space that make the logic to have (DDT).2 This

result is supported in the following theorem due to Czelakowski.

Theorem 5.5.23 (Theorem 2.6.8 in [23]). Let S be a protoalgebraic logic. Then

S satisfies (DDT) if and only if for any S-algebra A, the lattice of S-filters FiS(A)

is infinitely meet-distributive over its compact elements, i. e. for any B ⊆ω A and

any {Gi : i ∈ I} ⊆ FiS(A):

CA
S (B) t

⋂
i∈I

Gi =
⋂
i∈I

(CA
S (B) tGi).

Theorem 5.5.24. Let S be a protoalgebraic logic such that for any S-Spectral

space X = 〈X,B〉, ↓(W c
1 ∩W2) ∈ κX for all W1,W2 ∈ κX. Then S satisfies (DDT).

2Recall that a logic S is protoalgebraic, following the definition of Block and Pigozzi [7], when

for any CS -closed set of formulas Γ ⊆ Fm and any formulas δ, µ ∈ Fm, if (δ, µ) ∈ ΩFm(Γ), then

Γ, δ `S µ and Γ, µ `S δ. Remind that ΩFm(Γ) is the Leibniz congruence of Γ relative to Fm.
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Proof. Let S be protoalgebraic and let A be an S-algebra. By Theorem

5.5.23, it is enough to show that FiS(A) is infinitely meet-distributive over its

compact elements. By Theorem 5.1.1, the representation theorem for S-algebras,

and Corollary 5.1.11, we know that for any S-algebra A there is an S-Spectral space

〈X,B〉 such that A is isomorphic to B. Therefore, it is enough to show that for

any S-Spectral space 〈X,B〉, FiS(B) is infinitely meet-distributive over its compact

elements.

So let 〈X,B〉 be an S-Spectral space, let {Gi : i ∈ I} ⊆ FiS(B) and let

U1, . . . , Un ⊆ω B. We show that

CB
S ({U1, . . . , Un}) t

⋂
{Gi : i ∈ I} =

⋂
{CB
S ({U1, . . . , Un} ∪Gi) : i ∈ I}.

Notice that the inclusion from left to right is immediate by finitarity of the logic, so

we just have to show the other inclusion. Let V ∈
⋂
{CB
S ({U1, . . . , Un}∪Gi) : i ∈ I}.

Then for each i ∈ I we have that V ∈ CB
S ({U1, . . . , Un}∪Gi). For any W1,W2 ∈ B,

let us denote (↓(W1 ∩W c
2 ))c by W1 ⇒W2. Then for each i ∈ I, by assumption we

get U1 ⇒ (. . . (Un ⇒ V ) . . . ) ∈ Gi. Thus U1 ⇒ (. . . (Un ⇒ V ) . . . ) ∈
⋂
{Gi : i ∈ I}.

Recall that
⋂
{Gi : i ∈ I} = CB

S (
⋂
{Gi : i ∈ I}) is an S-filter of B. So by

assumption again we conclude

V ∈ CB
S ({U1, . . . , Un} ∪

⋂
{Gi : i ∈ I}) = CB

S
(
CB
S ({U1, . . . , Un}) ∪

⋂
{Gi : i ∈ I}

)
= CB

S ({U1, . . . , Un}) t
⋂
{Gi : i ∈ I}.

�

Let us consider now the Priestley-style duality for S-algebras, when S satisfies

(uDDT). In the proof of the following corollary we use Lemma 5.5.20, when F is

OpS(A).

Corollary 5.5.25. Let A be an S-algebra for a logic S that satisfies (uDDT).

Then for all a, b ∈ A, (↓(ϑ(a) ∩ ϑ(b)c))c = ϑ(a→A b) ∈ ϑ[A].

From the previous corollary we get the idea that for any S-Priestley space

〈X, τ,B〉, the Priestley-dual of (uDDT) is the property of B being closed under

(↓(( ) ∩ ( )c))c. Let us check now that this condition is enough for recovering the

implication.

Proposition 5.5.26. Let 〈X, τ,B〉 be an S-Priestley space such that U, V ∈ B,

(↓(U ∩ V c))c ∈ B. Then for all {U, V } ∪W ⊆ B:

V ∈ CB
S (W, U) iff (↓(U ∩ V c))c ∈ CB

S (W).

Proof. Assume first that (↓(U ∩ V c))c ∈ CB
S (W). Then as the logic S is

finitary, there is W ′ ⊆ω W a finite subset such that (↓(U ∩ V c))c ∈ CB
S (W ′). Thus

by (Pr2),
⋂
W ′ ⊆ (↓(U ∩ V c))c. We show that U ∩

⋂
W ′ ⊆ V , so let x ∈ U ∩

⋂
W ′

and suppose, towards a contradiction, that x /∈ V . On the one hand x ∈ U .

Moreover x ∈
⋂
W ′ ⊆ (↓(U ∩V c))c. i. e. x /∈ ↓(U ∩V c). But from x /∈ V and x ∈ U

we get x ∈ U ∩ V c ⊆ ↓(U ∩ V c), a contradiction. We conclude that U ∩
⋂
W ′ ⊆ V ,

and thus by (Pr2), V ∈ CB
S (W ′) ⊆ CB

S (W).

Assume now that V ∈ CB
S (W, U). Then by finitarity again, there is W ′ ⊆ω W

a finite subset such that V ∈ CB
S (W ′, U). We show that

⋂
W ′ ⊆ (↓(U ∩ V c))c. Let
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x ∈
⋂
W ′ and suppose, towards a contradiction, that x /∈ (↓(U ∩V c))c. Then there

is y ∈ U ∩ V c such that x ≤ y. Let ξ(y) = {W ∈ B : y ∈ W}, that is an optimal

S-filter of B by Proposition 5.1.45, and let W ∈ W ′. By assumption x ∈ W and

since W is an up-set, y ∈ W , i. e. W ∈ ξ(y). Therefore W ′ ⊆ ξ(y) and moreover,

since y ∈ U , U ∈ ξ(y). Furthermore, as ξ(y) is an S-filter CB
S (W ′, U) ⊆ ξ(y),

so by hypothesis V ∈ ξ(y), i. e. y ∈ V , a contradiction. Thus we conclude that⋂
W ′ ⊆ (↓(U ∩ V c))c, and then by (Pr2), (↓(U ∩ V c))c ∈ CB

S (W ′) ⊆ CB
S (W), as

required. �

Theorem 5.5.27. Let S be a protoalgebraic logic such that for any S-Priestley

space 〈X, τ,B〉, ↓(U ∩ V c) ∈ B for all U, V ∈ B. Then S satisfies (DDT).

Proof. The proof is similar to that of Theorem 5.5.24 �

It would also be very interesting to study in detail the case when S satisfies

(DDT) for ∆(p, q), but this is not our aim here since it would take too long. The

case when ∆(p, q) is a finite subset of formulas seems to be simpler that the general

case, because then by Lemma 5.5.20 we obtain that for any S-algebra A, for any

optimal S-base F and for any a, b ∈ A, (↓(ϕF (a)∩ϕF (b)c))c belongs to M(A), the

S-semilattice of A, that for the Priestley-style duality can be dually defined as the

collection of XB-admissible clopen up-sets. We leave this as future work.

5.5.4. Property of Inconsistent element. Let S be a logic that satisfies

(PIE) for ⊥. We say that (PIE) transfers to every algebra, if for every algebra A

the element ⊥A ∈ A, called the inconsistent element, is such that for every a ∈ A:

a ∈ CA
S (⊥A).

It is immediate that (PIE) transfers to every algebra. Moreover, if S satisfies

(PIE) for ⊥, then for any S-algebra A, ⊥A is the bottom element of A, and for

convenience, we denote it by 0A.

Lemma 5.5.28. Let A be an S-algebra for a logic S that satisfies (PIE) and let

F be an optimal S-base. Then for all a ∈ A, ϕF (0A) ⊆ ϕF (a).

Proof. Notice that, since (PIE) transfers to every algebra, we have that A

has a bottom element 0A. Then we have that for any P ∈ F :

P ∈ ϕF (0A) iff 0A ∈ P iff A ⊆ P.

Recall that when A has a bottom element, then ∅ /∈ IdsS(A), so optimal S-filters

are proper. In particular, all elements of F are proper, and we get ϕF (0A) = ∅, so

it follows trivially that ϕF (0A) = ∅ ⊆ ϕF (a) for all a ∈ A. �

Let us consider first the Spectral-like duality for S-algebras, when S satisfies

(PIE). In the proof of the next corollary we use Lemma 5.5.28 when F is IrrS(A).

Corollary 5.5.29. Let A be an S-algebra for a logic S that satisfies (PIE).

Then 〈IrrS(A), τκA
〉 is compact.

Proof. Let 0A be the inconsistent element of A. By Lemma 5.5.28 ψ(0A) = ∅,
and therefore X ∈ κA = {ψ(a)c : a ∈ A}, that is a collection of open compact

elements. Hence, in particular X is compact. �
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From the previous corollary we get the idea that for any S-Spectral space

〈X,B〉, the Spectral-dual of (PIE) is the property of 〈X, τκX
〉 being compact. Let

us check now that this condition is enough for recovering the inconsistent element.

Corollary 5.5.30. Let X = 〈X,B〉 be an S-Spectral space such that 〈X, τκX
〉

is compact. Then there is W ∈ B such that for all U ∈ B, U ∈ CB
S (W ).

Proof. By hypothesis we get that ∅ ∈ B. Moreover, since ∅ ⊆ U for all

U ∈ B, by definition of CB
S we get U ∈ CB

S (∅). Hence ∅ is the required inconsistent

element. �

Theorem 5.5.31. Let S be a logic such that for any S-Spectral space X = 〈X,B〉,
the space 〈X, τκX

〉 is compact. Then S satisfies (PIE).

Proof. Recall that the Lindenbaum-Tarski algebra Fm∗ = Fm/ ≡Fm
S is an

S-algebra, so the structure 〈IrrS(Fm∗), ψ[Fm∗]〉 is an S-Spectral space. For any

formula µ ∈ Fm, we denote by µ its equivalence class in Fm∗. By assumption and

Corollary 5.5.30 there is δ ∈ Fm such that for all µ ∈ Fm, ψ(µ) ∈ C
ψ[Fm∗]
S (ψ(δ)).

Then by Corollary 4.3.7 we obtain that for all µ ∈ Fm, µ ∈ CFm∗

S (δ). Using

again that the projection map is a bilogical morphism, we get that for all µ ∈ Fm,

µ ∈ CS(δ). It is immediate that S satisfies (PIE) for δ. �

Corollary 5.5.32. Let S be a logic. Then S satisfies (PIE) if and only if for

any S-Spectral space X = 〈X,B〉, the space 〈X, τκX
〉 is compact.

Let us consider now the Priestley-style duality for S-algebras, when S satisfies

(PIE). In the proof of the next corollary we use Lemma 5.5.28 when F is OpS(A).

Corollary 5.5.33. Let A be an S-algebra for a logic S that satisfies (PIE)

and let 0A be the inconsistent element of A. Then ϑ(0A) = ∅ ∈ ϑ[A].

Theorem 5.5.34. Let S be a logic such that for any S-Priestley space 〈X, τ,B〉,
∅ ∈ B. Then S satisfies (PIE).

Proof. The proof is similar to that of Theorem 5.5.31. �

Corollary 5.5.35. Let S be a logic. Then S satisfies (PIE) if and only if for

any S-Priestley space 〈X, τ,B〉 it holds that ∅ ∈ B.

Observe that both in the Spectral-like and in the Priestley-style duality, when

the logic S satisfies (PIE), we have that ∅ is the inconsistent element in B, so the

inconsistent element in the referential algebra B is represented by the emptyset in

both cases.

To conclude, consider now the Priestley-style duality when S satisfies both

(PC) and (PIE). Then we know that B = C`UadXB (X), so in this case Corollary

5.5.30 is equivalent to say that max(X) ⊆ XB , or in other words, ↓XB = X. In

fact this property corresponds, in general, with the property of the S-algebras of

having a bottom-family.

5.5.5. Property of being closed under introduction of a modality.

Let S be a logic that satisfies (PIM) for a term �p. We say that (PIM) transfers

to every algebra, if for every algebra A, and every X ⊆ A:

�A(CA
S (X)) ⊆ CA

S (�AX).
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For convenience, let us denote �A as �. It is well known that (PIM) transfers to

every algebra (see Proposition 2.56 in [35]). Notice that this implies that for any

algebra A and any B,B′ ⊆ A:

if CA
S (B) = CA

S (B′), then CA
S (�[B]) = CA

S (�[B′]).

Suppose that f : A −→ A is a map such that for any B,B′ ⊆ω A finite subsets:

if CA
S (B) = CA

S (B′), then CA
S (f [B]) = CA

S (f [B′]).

Notice that this condition implies that f preserves the top element of A. More-

over, we may extend f in a unique way to the S-semilattice of A as follows. Let

f̂ : M(A) −→ M(A) be such that

f̂(ϕ̂(B)) := ϕ̂(f [B]).

By definition f̂ is well defined, and moreover it is an homomorphism between distri-

butive semilattices. By either Spectral-like or Priestley-style duality for distributive

semilattices, we already know how to dualize it by a relation. Thus we could take

such relation as the dual of f . This is precisely what we do in detail in what follows,

for the case where the function f is precisely �. It would be very interesting to in-

vestigate whether the same method could be generalized for any n-ary f satisfying

a similar property.

Lemma 5.5.36. Let A be an S-algebra for a logic S that satisfies (PIM) and

let F be an optimal S-base. Then for all a ∈ A, ϕF (�(a)) = �R̃�
(ϕF (a)), where

R̃� ⊆ F × F is given by:

(P,Q) ∈ R̃� iff �−1[P ] ⊆ Q.

Proof. First we show that for any F ∈ FiS(A), �−1[F ] ∈ FiS(A). From

(PIM) we have that �(CA
S (�−1[F ])) ⊆ CA

S (�(�−1[F ])), but since �(�−1[F ]) ⊆ F ,

then we get CA
S (�(�−1[F ])) ⊆ CA

S (F ) = F . Thus �(CA
S (�−1[F ])) ⊆ F , and so

CA
S (�−1[F ]) ⊆ �−1[F ]. We conclude that the set �−1[F ] = CA

S (�−1[F ]) is an

S-filter of A.

Let us prove now the statement of the lemma. By definition we have that

ϕF (�(a)) = {P ∈ F : �(a) ∈ P}. Let first P ∈ ϕF (�(a)). We show that

P ∈ �R̃�
(ϕF (a)) = {P ∈ F : R̃�(P ) ⊆ ϕF (a)}. Let Q ∈ R̃�(P ), i. e. �−1[P ] ⊆ Q.

By assumption �(a) ∈ P , so a ∈ �−1[P ] ⊆ Q. Hence Q ∈ ϕF (a), as required. Let

now P ∈ �R̃�
(ϕF (a)), i. e. R̃�(P ) ⊆ ϕF (a), and suppose, towards a contradiction,

that �(a) /∈ P . Then a /∈ �−1[P ], that is an S-filter. Therefore by definition

of optimal S-base, there is Q ∈ F such that a /∈ Q and �−1[P ] ⊆ Q. Then

Q ∈ R̃�(P ) \ ϕF (a), a contradiction. �

Let us consider first the Spectral-like duality for S-algebras, when S satisfies

(PIM). In the proof of the following corollaries we use Lemma 5.5.36, when F is

IrrS(A).

Corollary 5.5.37. Let A be an S-algebra for a logic S that satisfies (PIM).

For all P ∈ IrrS(A), R�(P ) is a closed set of 〈IrrS(A), τκA
〉.
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Proof. Notice that by definition R�(P ) = {Q ∈ IrrS(A) : �−1[P ] ⊆ Q} =

ψ̂(�−1[P ]). Therefore, by Proposition 5.1.6, since �−1[P ] is an S-filter, R�(P ) is

closed. �

From the previous corollary we get the idea that for any S-Spectral space

〈X,B〉, the Spectral-dual of (PIM) is the following pair or properties: κX is closed

under (�R�
(( )c))c and R�( ) maps elements of the dual space to closed subsets.

Let us check now that this condition is enough for recovering the operation � in

the algebras of the dual.

Proposition 5.5.38. Let X = 〈X,B〉 be an S-Spectral space and let R ⊆ X×X
be a binary relation such that �R(U) ∈ B for all U ∈ B and R(x) is a closed set

of 〈X, τκX
〉 for all x ∈ X. Then for all W ⊆ B:

�R[CB
S (W)] ⊆ CB

S (�R[W]).

Proof. Let U ∈ CB
S (W). We show that �R(U) ∈ CB

S (�R[W]). As S is

finitary, there is W ′ ⊆ω W a finite subset such that U ∈ CB
S (W ′). We claim

that
⋂
�R[W ′] ⊆ �R(U). Let x ∈

⋂
�R[W ′], so by definition R(x) ⊆ W for all

W ∈ W ′. Since by hypothesis R(x) is closed, by Lemma 5.1.14 we obtain that

ε̂(R(x)) = {U ∈ B : R(x) ⊆ U} is an S-filter of B. Therefore, as W ∈ ε̂(R(x)) for

all W ∈ W ′, from U ∈ CB
S (W ′) we get U ∈ ε̂(R(x)), i. e. R(x) ⊆ U , and therefore

x ∈ �R(U).

Now from the claim and (Sp2) we get �R(U) ∈ CB
S (�R[W ′]), and hence

�R(U) ∈ CB
S (�R[W]), as required. �

Let us consider now the Priestley-style duality for S-algebras, when S satisfies

(PIM). In the proof of the following corollary we use Lemma 5.5.36, when F is

OpS(A).

Corollary 5.5.39. Let A be an S-algebra for a logic S that satisfies (PIM).

For all P,Q ∈ OpS(A), if �−1[P ] * Q, then there is a ∈ A such that Q /∈ ϑ(a) and

R�(P ) ⊆ ϑ(a).

Proof. Let P,Q ∈ OpS(A) be such that �−1[P ] * Q, and let a ∈ �−1[P ]\Q.

Let Q′ ∈ R�(P ), i. e. �−1[P ] ⊆ Q′. Then clearly by hypothesis a ∈ Q′, i. e.

Q′ ∈ ϑ(a). Therefore R�(P ) ⊆ ϑ(a) but Q /∈ ϑ(a), as required. �

From the previous corollary we get the idea that for any S-Priestley space

〈X, τ,B〉, the Priestley-dual of (PIM) is B being closed under �R�
. Let us see now

that this condition is enough to recover the operation � in the algebras of the dual.

Proposition 5.5.40. Let 〈X, τ,B〉 be an S-Priestley space and let R ⊆ X×X
be a binary relation such that �R(U) ∈ B for all U ∈ B. Then for all W ⊆ B:

�R[CB
S (W)] ⊆ CB

S (�R[W]).

Proof. Let U ∈ CB
S (W). We show that �R(U) ∈ CB

S (�R[W]). As S is

finitary, there isW ′ ⊆ω W a finite subset such tat U ∈ CB
S (W ′). Then by condition

(Pr2)
⋂
W ′ ⊆ U . We claim that

⋂
�R[W ′] ⊆ �R(U). Let x ∈

⋂
�R[W ′], so

x ∈ �R(W ) = {y ∈ X : R(y) ⊆ W} for all W ∈ W ′. Then R(x) ⊆
⋂
W ′, that by

hypothesis is included in U , so R(x) ⊆ U , i. e. x ∈ �R(U).
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Table 6. Correspondence for the Spectral-like duality.

Property Dual correspondence Representation in B

(PC) KO(X) = κX B closed under ∩

(PDI) κX closed under ∩ B closed under ∪

(uDDT) κX closed under ↓(( )c ∩ ( )) B closed under (↓(( )∩ ( )c))c

(PIE) 〈X, τκX
〉 is compact ∅ ∈ B

(PIM) κX is closed under (�R�
(( )c))c

and R�( ) maps elements of the

dual space to closed subsets

B closed under �R�

From the claim and (Pr2) we get �R(U) ∈ CB
S (�R[W ′]), and hence �R(U) ∈

CB
S (�R[W]), as required. �

Observe that both in the Spectral-like and in the Priestley-style duality, when

the logic S satisfies (PIM), we have that � in the referential algebra B is represented

by �R�
.

It would be very interesting to make a deep study into the correspondence

theory between properties that � may satisfy, and properties of its dual relation.

For example, it is easy to see that for any logic S satisfying (PIM), the property

that for any Γ ⊆ Fm:

�Γ ` γ for all γ ∈ Γ.

corresponds with the dual relation being reflexive. Similarly, the property that for

any Γ ⊆ Fm:

�Γ ` ��γ for all γ ∈ Γ.

corresponds with the dual relation being transitive. These results generalize the

well-known results of correspondence theory for normal modal logics. We do not

go further into this topic, but we leave it as future work.

5.5.6. Summary of results. Tables 6 and 7 summarize what we have seen

throughout this section. Notice that as a preliminary conclusion we could say that

the Spectral-like duality allows us to carry out a smoother modular analysis than

the Priestley-style duality.
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Table 7. Correspondence for the Priestley-style duality.

Property Dual correspondence Representation in B

(PC) C`UadXB (X) = B B closed under ∩

(PDI) B closed under ∪ B closed under ∪

(uDDT) B closed under (↓(( ) ∩ ( )c))c B closed under (↓(( )∩ ( )c))c

(PIE) ∅ ∈ B ∅ ∈ B

(PIM) B closed under �R�
B closed under �R�
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CHAPTER 6

Filter Distributive and Congruential Expansions of

the Implicative Fragment of Intuitionistic Logic

In this chapter we define several filter distributive finitary congruential logics

with theorems that are expansions of the implicative fragment of intuitionistic logic,

and we study how our results from Chapter 5 can be applied to obtain dualities for

such logics. In § 6.1 we motivate our study of such logics, in relation with extended

Priestley duality for distributive lattices expansions. We explain why, instead of

keep dealing with an abstract framework, we restrict ourselves to a more concrete

setting. What we do, from an algebraic point of view, is looking at expansions of

Hilbert algebras. More precisely, we consider varieties of algebras with a Hilbert

algebra reduct.

In § 6.2 we recall how H, the implicative fragment of intuitionistic logic, is

axiomatized, and we study Spectral-like and Priestley-style dualities for it as a

particular case of our theory in Chapter 5. So we recover, on the one hand, the

Spectral-like duality for Hilbert algebras that Celani et al. studied in [15] (see

§ 3.3.1). On the other hand, we obtain a Priestley-style duality for Hilbert algebras

that slightly simplifies the one presented by Celani and Jansana in [18] (see § 3.3.2).

In § 6.3 we consider a class of algebras expanded with a modal operator, that

yields a modal expansion of H for which dualities can be studied following our

general approach. In § 6.4 we do the same for a class of algebras expanded with

a supremum, that yields an expansion of H with a disjunction, that fits in the

framework of our theory. In § 6.5 we consider classes of algebras expanded with a

conjunction. One of them corresponds to the implicative-conjunctive fragment of

intuitionistic logic, and it is suitable for our general theory. The others are wider

classes of algebras for which the general theory is not completely satisfactory, so we

aim to develop new tools that yield nice dualities for such algebras. In § 6.5.1 we

study in depth Distributive Hilbert algebras with infimum, and in the next chapter

we develop Spectral-like and Priestley-style dualities for these algebras.

Unfortunately, the class of Distributive Hilbert algebras with infimum is not

associated with any logic, but we consider in § 6.6 and § 6.7 other classes related with

it, that yield expansions of H for which the general theory is neither satisfactory,

but for which the results in Chapter 7 can be applied to get new dualities.

6.1. Introduction and motivation

Extended Priestley duality provided inspiration for our work on applications

of what was studied in Chapter 5. From an algebraic point of view, the main

idea behind extended Priestley duality is the following: from Priestley duality for

121
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distributive lattices, Priestley-style dualities for expansions of distributive lattices

shall be developed just by expanding Priestley spaces. And this can be done in a

modular way when the expansions of the distributive lattices are nice enough. Let

us review this with more detail, and translate these ideas into logic.

Extended Priestley duality provides a uniform approach to Priestley-style dua-

lities for a wide range of distributive lattice-based algebras. It generalizes the work

by Jónsson and Tarski [58,59] on Boolean algebras with operators. A distributive

lattice expansion, is a structure A = 〈A,∧,∨, f : f ∈ F〉, such that 〈A,∧,∨〉 is a

distributive lattice. We denote by DLE the class of distributive lattice expansions.

A bounded distributive lattice expansion is a structure A = 〈A,∧,∨, 1, 0, f : f ∈ F〉
such that 〈A,∧,∨, 1, 0〉 is a bounded distributive lattice, in which 1 is the top

element and 0 is the bottom element.

Goldblatt [46] develops a general duality theory for bounded DLE’s in which the

additional operations are normal operators or normal dual operators. We recall that

for L = 〈L,∧,∨, 0, 1〉 an arbitrary bounded lattice, an n-ary function f : Ln −→ L is

an operator (resp. dual operator) provided f preserves non-empty finite joins (resp.

meets) in each coordinate. Moreover, f is a normal operator (resp. normal dual

operator) provided f is an operator (resp. dual operator) that preserves arbitrary

finite joins (resp. meets) in each coordinate.

In [46], Priestley duality for distributive lattices is used to get the basic building

block over which the dual spaces are constructed. The additional normal (dual)

n-ary operators are dually represented by additional n+1-ary relations on the dual

Priestley space. This theory can be generalized to distributive lattice expansions in

which the additional operations are (dual) quasioperators, this is precisely what is

known as extended Priestley duality. We recall that for an arbitrary bounded lattice

L = 〈L,∧,∨, 0, 1〉, an n-ary function f : Ln −→ L is a (ε)-quasioperator (resp. dual

(ε)-quasioperator) provided there is an n-tuple ε = (ε1, . . . , εn), where εi ∈ {1, ∂}
for each i ≤ n, such that f : Lε −→ L is an operator (resp. dual operator). Notice

that by Lε we denote Lε1 × · · · × Lεn .

Translating these ideas into logic, from this theory we get Kripke-style seman-

tics for logics that are expansions of the conjunctive-disjunctive fragment of classical

logic. Extended Priestley duality and what can be called extended Spectral-like dua-

lity that can be worked out in a similar way, fit well into the framework developed in

Chapter 5. Let K be a variety of bounded distributive lattices with quasioperators

and dual quasioperators in the language L . The points of the dual Priestley space

of an algebra A ∈ K, as well as the points of its Spectral dual space, are the prime

filters of the distributive lattice reduct of A. These are the irreducible S≤K -filters of

A, which in this case coincide with the optimal S≤K -filters of A, where recall that

the finitary logic S≤K is the semilattice based logic of K, that we defined in page 29

as follows: for Γ any a non-empty finite set of formulas and any formula δ:

Γ `≤K δ iff (∀A ∈ K)(∀h ∈ Hom(Fm,A))
( A∧
γ∈Γ

h(γ)
)
≤ h(δ).

For Γ the empty set of formulas and any formula δ:

∅ `≤K δ iff �K δ ≈ 1.
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And for Γ any arbitrary set of formulas and any formula δ:

Γ `≤K δ iff (∃Γ′ ⊆ω Γ) Γ′ `≤K δ.

By definition S≤K is finitary. It follows from Proposition 3.13 in [53] that it is

congruential, and also that AlgS≤K = K (given that K is a variety). Moreover it

is an expansion of the logic S≤BDL, where BDL stands for the variety of bounded

distributive lattices. Furthermore, from Lemma 3.8 in [53] we get that for any

A ∈ K, the S≤K -filters of A are the lattice filters. This implies that S≤K is filter

distributive, since the lattice of filters of any distributive lattice is a distributive

lattice. Thus, S≤K fits in the framework developed in Chapter 5. Moreover S≤K
satisfies (PC) and (PDI), so we shall simplify the definition of the dual spaces

according to what was investigated in § 5.5.

We are interested in applying a similar strategy in a different setting, using

what we studied in Chapter 5. But instead of keeping a fully abstract approach, we

restrict ourselves to the following case: we investigate dualities for classes of algebras

that correspond to filter distributive finitary congruential logics with theorems that

expand the implicative fragment of intuitionistic logic H. We want to emphasize

the similarities between the two approaches: in what follows AlgH will play the role

that BDL did in extended Priestley duality. One of the main contributions of this

approach is that it allows us to tackle dualities for varieties of distributive lattice

expansions that do not fall under the scope of extended Priestley duality.

6.2. The implicative fragment of intuitionistic logic

Let H be the implicative fragment of intuitionistic logic, i. e. the logic H :=

〈Fm,`H〉 in the language (→, 1) of type (2, 0), where `H is the restriction of the

intuitionistic logic (as a closure relation) to the formulas in the language (→, 1).

The logic H can be presented in a Hilbert-style calculus by the following axioms

and rules:

(A1) `H β → (γ → β),

(A2) `H (γ → (β → δ))→ ((γ → β)→ (γ → δ)),

(MP) γ, γ → β `H β.

The logic H is the least finitary logic that satisfies (uDDT) for p→ q.1 Clearly

H has theorems, as for any γ ∈ Fm, γ → γ ∈ ThmH. It is well known that

the logic H is equal to the 1-assertional logic S1
H of H, where H is the variety of

Hilbert algebras (definition in page 18). And for any Hilbert algebra A, we have

FiH(A) = Fi→(A).

Theorem 6.2.1. The logics H, S→H and S≤H are equal.

Proof. Assume first that Γ `H δ. Then either δ is a theorem, in which case

for every A ∈ H and every h ∈ Hom(Fm,A) we have that h(δ) = 1A, or there

are γ0, . . . , γn ∈ Γ such that γ0, . . . , γn `H δ. In the last case, by (uDDT) we get

`H γ0 → (γ1 → (. . . (γn → δ) . . . )). So if A ∈ H and h ∈ Hom(Fm,A), then

h(γ0 → (γ1 → (. . . (γn → δ) . . . ))) = 1A, and therefore Γ `→H δ. And if a ∈ A is

1This follows from results in Porębska and Wroński [64] and it is also remarked in Corollary

2.4.3 in [73].
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such that a ≤A h(γi) for every i ≤ n, it easily follows that a ≤A h(δ). We show

it by induction on n. If n = 0, then we have `H γ0 → δ and a ≤A h(γ0). This

implies h(γ0)→A h(δ) = 1A, and by definition of the order on a Hilbert algebra, we

obtain h(γ0) ≤A h(δ), and so we are done. Suppose now that the hypothesis holds

for n and let γ0, . . . , γn, γn+1 `H δ. Then by (uDDT) γ0, . . . , γn `H γn+1 → δ,

therefore, if a ∈ A is such that a ≤A h(γi) for every i ≤ n + 1, by the induction

hypothesis it follows that a ≤ h(γn+1) →A h(δ). Hence, since a ≤A h(γn+1) we

obtain a ≤A h(δ). We conclude that Γ `≤H δ.

For the converse, assume first that Γ `→H δ. Then either for every A ∈ H and

every h ∈ Hom(Fm,A) we have h(δ) = 1A, or there are γ0, . . . , γn ∈ Γ such that for

every A ∈ H and every h ∈ Hom(Fm,A), h(γ0 → (γ1 → (. . . (γn → δ) . . . ))) = 1A.

This implies `H γ0 → (γ1 → (. . . (γn → δ) . . . )), and by (uDDT) we have Γ `H δ.
Finally, assume that Γ `≤H δ. Then there is Γ′ ⊆ω Γ such that Γ′ `≤H δ.

Suppose, towards a contradiction, that Γ′ 0H δ. Then there is a Hilbert algebra A

and h ∈ Hom(Fm,A) such that h(γ) = 1A for all γ ∈ Γ′ and h(δ) 6= 1A. Then

1A ≤A h(γ) for all γ ∈ Γ′ but 1A �A h(δ), contrary to the assumption. We

conclude Γ′ `H δ, and therefore Γ `H δ. �

The previous theorem implies, by Proposition 7 in [54], that H is selfexten-

sional, and then by Theorem 4.46 in [35] it follows thatH is congruential. Moreover,

since H satisfies (uDDT), then it is filter distributive.

Thereupon, we are in a framework in which the theory exhibited in Chap-

ter 5 can be straightforwardly applied. Let us briefly review how the definitions of

H-Spectral space and H-Priestley space might be simplified using what we studied

in § 5.5. In what follows, let us denote by ⇒ the binary operation (↓(( ) ∩ ( )c))c.

First we prove two useful propositions.

Proposition 6.2.2. Let 〈X,B〉 be a reduced referential algebra such that X ∈ B,

B ⊆ P↑(X) and B is closed under ⇒. Then for any U0, . . . , Un, V ∈ B,⋂
{Ui : i ≤ n} ⊆ V iff U0 ⇒ (. . . (Un ⇒ V ) . . . ) = X.

Proof. Assume first that
⋂
{Ui : i ≤ n} ⊆ V and suppose, towards a contra-

diction, that there is x ∈ X such that x /∈ U0 ⇒ (. . . (Un ⇒ V )). Then by definition

of ⇒, there is x0 ≥ x such that x0 ∈ U0 and x0 /∈ U1 ⇒ (. . . (Un ⇒ V )). Similarly,

we get that there is x1 ≥ x0 such that x1 ∈ U1 and x1 /∈ U0 ⇒ (. . . (Un ⇒ V )).

Iterating this process n times we obtain x ≤ x0 ≤ . . . xn such that xi ∈ Ui and

xn /∈ V . By assumption Ui is an up-set for all i ≤ n, so xn ∈
⋂
{Ui : i ≤ n}. But

then by assumption we have x ∈ V , a contradiction.

Assume now that U0 ⇒ (. . . (Un ⇒ V )) = X and let x ∈
⋂
{Ui : i ≤ n}. Notice

that for each i ≤ n, if x ∈ Ui ⇒ Y for some Y ⊆ X, implies x /∈ Ui∩Y c. Therefore,

by hypothesis we get x ∈ Y . Thus, for any i ≤ n, from x ∈ Ui ⇒ (. . . (Un ⇒ V ) . . . )

we obtain x ∈ Ui+1 ⇒ (. . . (Un ⇒ V ) . . . ), and hence x ∈ V , as required. �

Proposition 6.2.3. Let 〈X,B〉 be a reduced referential algebra such that X ∈ B,

B ⊆ P↑(X) and B is closed under ⇒. Then 〈X, 〈B,⇒, X〉〉 is an H-referential al-

gebra.

Proof. As the referential algebra is reduced, 〈X,≤〉 is a poset. It is easy to

see that then 〈P↑(X),⇒, X〉 is a Hilbert algebra. From the hypothesis we obtain
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that B := 〈B,⇒, X〉 is a Hilbert algebra, as it is a subalgebra of the Hilbert algebra

〈P↑(X),⇒, X〉. We show that for all Γ ∪ {δ} ⊆ Fm, Γ `H δ implies that for all

h ∈ Hom(Fm,B),
⋂
{h(γ) : γ ∈ Γ} ⊆ h(δ).

Assume that Γ `H δ and let h ∈ Hom(Fm,B). Then by hypothesis we get

h(δ) ∈ CB
H(h[Γ]). Then as H-filters are implicative filters, by definition and fini-

tarity, there are γ1, . . . , γn ∈ Γ such that h(γ1) ⇒ (. . . (h(γn) ⇒ h(δ)) . . . ) = X.

Then by the previous proposition, this implies h(γ1) ∩ · · · ∩ h(γn) ⊆ h(δ), and so⋂
{h(γ) : γ ∈ Γ} ⊆ h(δ). �

Now we focus on the Spectral-like duality for Hilbert algebras. For the sake

of completeness, we retype now the definition of H-space that we already stated in

§ 3.3.1. A structure X = 〈X, τκ〉 is an H-space when:

(H6) κ is a basis of open compact subsets for the topological space 〈X, τκ〉,
(H7) for every U, V ∈ κ, sat(U ∩ V c) ∈ κ,

(H8) 〈X, τκ〉 is sober.

Theorem 6.2.4. For X = 〈X,B〉 an H-Spectral space, the structure X′ =

〈X, τκX
〉 is an H-space such that 〈X, (X′)∗〉 = X.

Proof. Let X = 〈X,B〉 be an H-Spectral space. Recall that since H satisfies

(uDDT), from Corollary 5.5.21 it follows that B = 〈B,⇒, X〉 where U ⇒ V =

(sat(U ∩ V c))c for all U, V ∈ B. Therefore X′ satisfies condition (H7). From

condition (Sp3) of the definition of H-Spectral space it follows condition (H6) and

from condition (Sp3) it follows condition (H8).

Recall that for the H-space X′, the algebra (X′)∗ is defined as 〈D(X′),⇒, X〉,
where D(X) := {U c : U ∈ κX} and U ⇒ V := (sat(U ∩ V c))c for all U, V ∈ D(X′).

So we have D(X′) = B and clearly B = (X′)∗. Hence 〈X, (X′)∗〉 = X. �

Theorem 6.2.5. For X = 〈X, τκ〉 an H-space, the structure X = 〈X,X∗〉 is an

H-Spectral space such that 〈X, τκX
〉 = X.

Proof. Let X = 〈X, τκ〉 an H-space. As sobriety implies T0, from condition

(H8) it follows that X is a reduced referential algebra. Moreover, the order asso-

ciated with it coincides with the dual of the specialization order of the space, so

from condition (H6) it follows that all elements of D(X) are up-sets and clearly

X ∈ D(X). Therefore, as condition (H7) implies that D(X) is closed under ⇒, we

conclude, by Proposition 6.2.3, that X is an H-referential algebra, i. e. condition

(Sp1) holds. Moreover, by Proposition 6.2.2 it follows condition (Sp2). And clearly

conditions (Sp3) and (Sp4) follow straightforwardly.

By definition κ = {U c : U ∈ D(X)} is a basis of open compacts for τκX
,

therefore this topology is equal to τκ and thus 〈X, τκX
〉 = X. �

Regarding morphisms, recall the definition of H-relation that we already stated

in § 3.3.1. Let X1 and X2 be two H-spaces. A relation R ⊆ X1×X2 is an H-relation

when:

(HR1) �R(U) ∈ κ1 for all U ∈ κ2,

(HR2) R(x) is a closed subset of X2, for all x ∈ X1.

Moreover, R is said to be functional when:

(HF) if (x, y) ∈ R, then there exists z ∈ cl(x) such that R(z) = cl(y)
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The following proposition will allow us to compare this notion with that of

H-Spectral morphism.

Proposition 6.2.6. Let R ⊆ X1 × X2 be an H-Spectral morphism between

H-Spectral spaces X1 and X2. Then for all x1 ∈ X1 and all x2 ∈ X2 such that

(x1, x2) ∈ R, there is z ∈ X1 such that x1 ≤ z and R(z) = cl(x2).

Proof. Let x1 ∈ X1 and x2 ∈ X2 be such that x2 ∈ R(x1). Then by Spectral-

like duality for H, ε(x2) ∈ R�R(ε(x1)), i. e. �−1
R [ε(x1)] ⊆ ε(x2), where ε(x1) is an

irreducible H-filter of B1 and ε(x2) is an irreducible H-filter of B2. Since �R is

order preserving, from ε(x2)c being up-directed we get that �R[ε(x2)c] is also up-

directed, and so I := ↓�R[ε(x2)c] is an order ideal of B1. Let F := 〈ε(x)∪�R[ε(y)]〉.
We claim that F ∩ I = ∅. Suppose, towards a contradiction, that there is

U ∈ F ∩ I. Then, using the definition of implicative filter generated, we get that

there are V ∈ ε(x1), W ∈ ε(x2) and W ′ /∈ ε(x2) such that U ⊆ �R(W ′) and

V ⇒ (�R(W )⇒ U) = X. Then we get V ⇒ (�R(W )⇒ �R(W ′)) = X, and since

V ∈ ε(x1), that is an H-filter, then �R(W ) ⇒ �R(W ′) ∈ ε(x1). By hypothesis

we have that �R(W ) ⇒ �R(W ′) = �R(W ⇒ W ′), then from the assumption we

obtain W ⇒ W ′ ∈ �−1
R (ε(x1)) ⊆ ε(x2). And since W ∈ ε(x2), that is an H-filter,

we obtain W ′ ∈ ε(x2), a contradiction.

From the claim, by Lemma 2.3.3 there is an irreducible H-filter G such that

F ⊆ G and I ∩ G = ∅. But then by definition of F and I we get ε(x1) ⊆ G and

�−1
R [G] = ε(x2). Now by Spectral-like duality for H, there is z ∈ X1 such that

ε(z) = G. But then we obtain x1 ≤ z and R(z) = cl(x2), as required. �

Theorem 6.2.7. For R ⊆ X1×X2 an H-Spectral morphism between H-Spectral

spaces X1 = 〈X1,B1〉 and X2 = 〈X2,B2〉, R is a functional H-relation between

H-spaces 〈X1, τκX1
〉 and 〈X2, τκX2

〉.
Proof. This follows from Proposition 6.2.6. �

Theorem 6.2.8. For R ⊆ X1 × X2 a functional H-relation between H-spaces

X1 = 〈X1, τκ1〉 and X2 = 〈X2, τκ2〉, R is an H-Spectral morphism between H-Spectral

spaces 〈X1,X
∗
1〉 and 〈X2,X

∗
2〉.

Proof. This follows from the duality studied in [15]. �

Let us move now to the Priestley-style duality. Taking inspiration from the

Spectral-like case, we come up with the following definition.

Definition 6.2.9. A structure X = 〈X, τ,≤, B〉 is a H-Priestley space when:

(H9) 〈X, τ〉 is a compact topological space,

(H10′) 〈X,≤〉 is a poset,

(H11′) B is a collection of clopen up-sets of X that contains X,

(H12) for every x, y ∈ X, x ≤ y iff ∀U ∈ B( if x ∈ U , then y ∈ U),

(H13′) the set XB := {x ∈ X : {U ∈ B : x /∈ U} is non-empty and up-directed }
is dense in X,

(H14) for all U, V ∈ B, (↓(U ∩ V c))c ∈ B.

For a given H-Priestley space X = 〈X, τ,≤, B〉 we define a binary operation ⇒
on B such that for all U, V ∈ B:

U ⇒ V := (↓(U ∩ V c))c.
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By condition (H14) this operation is well-defined, and it is easy to check that

B• = 〈B,⇒, X〉 is a Hilbert algebra, that we call the Priestley-dual Hilbert algebra

of X.

Theorem 6.2.10. For X = 〈X, τ,B〉 an H-Priestley space, the structure X′ =

〈X, τ,≤, B〉 is an H-Priestley space such that 〈X, τ,B•〉 = X.

Proof. Let X = 〈X, τ,B〉 be an H-Priestley space. Recall that since H
satisfies (uDDT), from Corollary 5.5.25 it follows that B = 〈B,⇒, X〉, where

U ⇒ V = (↓(U ∩ V c))c. Therefore X′ satisfies condition (H14). From condi-

tion (Pr3) in the definition of H-Priestley space, they follow conditions (H9) and

(H10′), from condition (Pr4) it follows condition (H11′), from condition (Pr5) it

follows condition (H13′), from condition (Pr1) it follows condition (H12). From the

definition it follows easily that 〈X, τ,B•〉 = X. �

Theorem 6.2.11. For X = 〈X, τ,≤, B〉 an H-Priestley space, the structure

X = 〈X, τ,B•〉 is an H-Priestley space.

Proof. By condition (H12), the referential algebra 〈X,B•〉 is reduced. By

condition (H11′) B is a family of up-sets, so from condition (H14) and Proposition

6.2.3 we conclude that 〈X,B•〉 is a reducedH-referential algebra, so condition (Pr1)

holds. Moreover, by Proposition 6.2.2 it follows condition (Pr2). And clearly the

rest of conditions also follow. �

This definition of the Priestley-dual space of a Hilbert algebra can be viewed as

a simplification of the one presented in § 3.3.2, i. e. the notion of H-Priestley space is

a simplification of the notion of augmented Priestley space, that was introduced by

Celani and Jansana in [18]. We will repeatedly use H-Priestley spaces in Chapter 7.

With regard to morphisms, again the Spectral-like case provided us with inspiration

for the following definition:

Definition 6.2.12. For H-Priestley spaces X1 and X2, a relation R ⊆ X1×X2,

is an H-Priestley morphism when:

(HR3) if (x, y) /∈ R, then there is U ∈ B2 such that y /∈ U and R(x) ⊆ U ,

(HR4) �R(U) ∈ B1 for all U ∈ B2.

Moreover, R is said to be functional when:

(HF′) for every x ∈ X1 and every y ∈ XB2 , if (x, y) ∈ R, then there exists

z ∈ XB1 such that z ∈ ↑x and R(z) = ↑y.

Notice that the definition of H-Priestley morphism is similar to that of aug-

mented Priestley semi-morphisms introduced by Celani and Jansana in [18], and

functional H-Priestley morphisms are what they called there augmented Priestley

morphisms.

Proposition 6.2.13. Let R ⊆ X1 ×X2 be an H-Priestley morphism between

H-Priestley spaces X1 and X2. Then for all x1 ∈ X1 and all x2 ∈ XB2 such that

(x1, x2) ∈ R, there is z ∈ XB1 such that x1 ≤ z and R(z) = ↑y.

Proof. The proof is similar to that of Proposition 6.2.6. �
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Theorem 6.2.14. For R ⊆ X1 × X2 a functional H-Priestley morphism be-

tween H-Priestley spaces X1 = 〈X1, τ1,≤1, B1〉 and X2 = 〈X2, τ2,≤2, B2〉, R is an

H-Priestley morphism between H-Priestley spaces 〈X1, τ1,B
•
1〉 and 〈X2, τ2,B

•
2〉.

Proof. This follows from the Priestley-style duality for H-algebras studied in

Chapter 5. �

Theorem 6.2.15. For R ⊆ X1 × X2 an H-Priestley morphism between H-

Priestley spaces 〈X1, τ1,B1〉 and 〈X2, τ2,B2〉, R is a functional H-Priestley mor-

phism between H-Priestley spaces 〈X1, τ1,≤1, B1〉 and 〈X2, τ2,≤2, B2〉.

Proof. This follows from Proposition 6.2.13. �

This concludes the review of the Spectral-like duality and the Priestley-style

duality for H, in relation to our work in Chapter 5. In the following sections

we consider several filter distributive finitary congruential logics with theorems

that are expansions of H, and we pay attention to the Spectral-like and Priestley-

style dualities for these logics. We review, when appropriate, the dualities in the

literature. Moreover, we carry out analyses similar to what we have done in this

section, in order to get simplified definitions of the dual spaces of the corresponding

algebras.

6.3. Modal expansions

Let us focus on the language (→,�, 1), of type (2, 1, 0).

Definition 6.3.1. An algebra A = 〈A,→,�, 1〉 of type (2, 1, 0) is a modal

Hilbert algebra or an H�-algebra if 〈A,→, 1〉 is a Hilbert algebra and for all a, b ∈ A:

(H�1) �1 = 1,

(H�2) �(a→ b)→ (�a→ �b) = 1.

Let us denote by H� the variety of modal Hilbert algebras. It follows from

the study of selfextensional logics with implication in [54], that S→H� , the Hilbert

based logic of H�, is finitary and congruential. Moreover, it satisfies (uDDT) for

p → q, AlgS→H� = H�, and for any modal Hilbert algebra A, the collection of

implicative filters of A is the collection of S→H� -filters of A. Thus the logic S→H� is

filter distributive.

Consider the logic H�, that has all axioms and rules of H applied to the

formulas of the language (→,�, 1), together with the following list of axioms:

(A�1) `H� �nγ for every substitution instance of a theorem of H and for every

n ∈ ω,

(A�2) `H� �n(�(γ → β) → (�γ → �β)) for all formulas γ, β and for every

n ∈ ω.

It is immediate that the logic H� satisfies (uDDT) with respect to the formula

p→ q, because it is an axiomatic expansion of H. In order to show that the logics

H� and S→H� are equal, we need the following lemmas:

Lemma 6.3.2. For every formula γ in the language (→,�, 1), if `H� γ, then

`H� �γ.
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Proof. Let Γ := {γ : `H� �γ}. We show that this set contains all axioms

and is closed under modus ponens. It is clear by (A�2) that if δ is an axiom, then

�δ is an axiom, and therefore δ ∈ Γ for all axioms δ. Suppose that δ, δ → β ∈ Γ,

so `H� �δ and `H� �(δ → β). Then by (A�2) for n = 1 we have the axiom

`H� �(δ → β) → (�δ → �β). It follows by (MP) that `H� �δ → �β, and then

by hypothesis again `H� �β, so β ∈ Γ, as required. �

Lemma 6.3.3. For every formula γ,

`H� γ iff (∀A ∈ H�)(∀h ∈ Hom(Fm,A))h(γ) = 1A.

Proof. The direction from left to right follows easily, we only have to check

that every axiom takes value 1A in every valuation on an arbitrary modal Hilbert

algebra A, and that taking value 1A is preserved by modus ponens.

To prove the other direction, assume 0H� γ. Let us consider the following

congruence θ on the formula algebra Fm:

(β, δ) ∈ θ iff `H� β → δ and `H� δ → β.

Notice that for every equation β ≈ δ defining the variety H�, we have that β → δ

and δ → β are theorems of H�. This implies that Fm/θ ∈ H�. Moreover, for any

β ∈ Fm, β is a theorem of H� if and only if (β, 1) ∈ θ (we use 1 as a shorthand

for δ → δ for any δ ∈ Fm). Let π : Fm −→ Fm/θ be the canonical natural map.

Then π(β) = 1/θ if and only if β is a theorem of H�. So since by hypothesis 0H� γ,

we get π(γ) 6= 1/θ. This proves the direction from right to left. �

Theorem 6.3.4. The logics H� and S→H� are equal.

Proof. Assume first that Γ `H� δ. Then we know that either δ is a theorem

of H�, in which case for every A ∈ H� and every h ∈ Hom(Fm,A), h(δ) = 1A,

or there are γ0, . . . , γn ∈ Γ such that γ0, . . . , γn `H� δ. By (uDDT) it follows

that `H� γ0 → (γ1 → (. . . (γn → δ) . . . )). Then for every A ∈ H� and every

h ∈ Hom(Fm,A), h(γ0 → (γ1 → (. . . (γn → δ) . . . ))) = 1A, and so Γ `→H� δ.

For the converse, assume Γ `→H� δ. Then either δ is a theorem of S→H� , in

which case for every A ∈ H� and every h ∈ Hom(Fm,A), h(δ) = 1A, or there are

γ0, . . . , γn ∈ Γ such that γ0, . . . , γn `→H� δ. In the last case, for every A ∈ H� and

every h ∈ Hom(Fm,A), h(γ0) →A h((γ1) →A (. . . (h(γn) →A h(δ)) . . . )) = 1A.

Then by Lemma 6.3.3 and since h is an homomorphism, the previous fact implies

that `H� γ0 → (γ1 → (. . . (γn → δ) . . . )). And so, using (MP) again, we obtain

Γ `H� δ. �

As the axioms of H� are closed under the addiction of � by (A�2), an easy

induction over the length of the proofs shows that H� satisfies (PIM), so our

theory in Chapter 5 can be applied to get dualities for it, and these dualities can

be refined using the correspondences studied in § 5.5. Notice that for any modal

Hilbert algebra A = 〈A,→,�, 1〉, the operation � is a semi-homomorphism from

the Hilbert algebra reduct 〈A,→, 1〉 to itself. From the Spectral-like and Priestley-

style dualities presented in § 6.2 we know how to dualize semi-homomorphisms.

Therefore, in regard to objects, we can build dualities for modal Hilbert algebras as

follows: for the Spectral-like duality, the Spectral-dual of a modal Hilbert algebra

is the Spectral-dual of its Hilbert algebra reduct, augmented with a binary relation
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that is an H-relation. For the Priestley-style duality, the Priestley-dual of a modal

Hilbert algebra is the Priestley-dual of its Hilbert algebra reduct, augmented with

a binary relation that is an H-Priestley relation.

In summary, S→H� is a filter distributive finitary congruential logic with theo-

rems, so our theory of Chapter 5 might be applied directly to it. But if we carry out

a more detailed analysis of the logic, we discover that, analogously as in extended

Priestley duality, we can build the dualities for H� from the ones for H, and so

we obtain dual spaces with no explicit algebraic structure. It should be further

investigated how to dispense with the algebraic structure of the dual morphisms,

but we leave this as future work.

6.4. Expansions with a disjunction

Let us consider now the language (→,∨, 1) of type (2, 2, 0).

Definition 6.4.1. An algebra A = 〈A,→,∨, 1〉 of type (2, 2, 0) is a Hilbert

algebra with supremum or an H∨-algebra if 〈A,→, 1〉 is a Hilbert algebra, 〈A,∨〉 is

a join-semilattice and → and ∨ define the same order, i. e. for all a, b ∈ A:

a→ b = 1 iff a ∨ b = b.

Let us denote by H∨ the class of Hilbert algebras with supremum. This class

of algebras was studied by Busneag and Ghita in [9] and more recently by Celani

and Montangie in [19] and. It is easy to check that H∨-algebras are BCK-join-

semilattices (or BCK∨-algebras).This class was studied by Idziak in [51], where he

proves that BCK∨ is indeed a variety. It follows that H∨ is also a variety, for which

an equational definition is given as follows. A = 〈A,→,∨, 1〉 is a Hilbert algebra

with supremum if 〈A,→, 1〉 is a Hilbert algebra, 〈A,∨〉 is a join-semilattice and for

all a, b ∈ A:

(H∨1) a→ (a ∨ b) = 1,

(H∨2) (a→ b)→ ((a ∨ b)→ b) = 1.

Then it is easy to check that the (→,∨, 1)-reduct of any Heyting algebra is a Hilbert

algebra with supremum.

Let us consider the Hilbert based logic S→H∨ of H∨. From the general theory

in [54] it follows that this logic is finitary and congruential. Moreover it satisfies

(uDDT) for p → q, AlgS→H∨ = H∨, and for any Hilbert algebra with supremum A,

the collection of implicative filters of A is the collection of S→H∨-filters of A. Thus

the logic S→H∨ is also filter distributive. We show now that it has the property of

disjunction.

Lemma 6.4.2. For any δ, γ ∈ Fm, δ `→H∨ δ ∨ γ and γ `→H∨ δ ∨ γ.

Proof. Notice that for every H∨-algebra A, and every a, b ∈ A, it holds

a ≤ a ∨A b, i. e. a →A (a ∨A b) = 1A. This implies that for every A ∈ H∨ and

every h ∈ Hom(Fm,A), h(δ) →A h(δ ∨ γ) = 1A. Hence we obtain δ `→H∨ δ ∨ γ.

The proof of the other statement is similar. �

Lemma 6.4.3. For any δ, γ, µ ∈ Fm, if δ `→H∨ µ and γ `→H∨ µ, then δ∨γ `→H∨ µ.
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Proof. Assume that δ `→H∨ µ and γ `→H∨ µ. Then by definition of S→H∨ we

have that for every A ∈ H∨ and every h ∈ Hom(Fm,A), h(δ)→A h(µ) = 1A and

h(γ)→A h(µ) = 1A. This implies that h(δ) ≤A h(µ) and h(γ) ≤A h(µ). Therefore

h(δ ∨ γ) = h(δ) ∨A h(γ) ≤A h(µ), i. e. h(δ ∨ γ) →A h(µ) = 1A. As this holds

for every H∨algebra A and every h ∈ Hom(Fm,A), we obtain δ ∨ γ `→H∨ µ, as

required. �

Corollary 6.4.4. The logic S→H∨ satisfies (PWDI) and (PDI) for p ∨ q.

Proof. From lemmas 6.4.2 and 6.4.3 it follows that S→H∨ satisfies (PWDI),

and since the logic is filter distributive, by Lemma 5.5.12 this implies that the logic

satisfies (PDI). �

Let H∨ be the implicative-disjunctive fragment of intuitionistic logic, i. e. the

logic H∨ := 〈Fm,`H∨〉 in the language (→,∨, 1), where `H∨ is the restriction of

intuitionistic logic to the formulas of the language (→,∨, 1). The logic H∨ can be

presented in a Hilbert-style calculus by the following axioms and rules (see Lemma

2.4.6 in [73]):

(A1) `H∨ β → (γ → β),

(A2) `H∨ (γ → (β → δ))→ ((γ → β)→ (γ → δ)),

(A6) `H∨ γ → (γ ∨ β),

(A7) `H∨ γ → (β ∨ γ),

(A8) `H∨ (γ → δ)→ ((β → δ)→ ((γ ∨ β)→ δ)),

(MP) γ, γ → β `H∨ β.

It follows from results by Porębska and Wroński in [64], that H∨ is the least finitary

logic in the language (→,∨, 1) that satisfies (uDDT) for p→ q and satisfies (PDI)

for p ∨ q.2

Theorem 6.4.5. The logics H∨ and S→H∨ ar equal.

Proof. Since S→H∨ is finitary and satisfies (uDDT) and (PDI), and H∨ is the

least finitary logic satisfying (uDDT) and (PCI), it follows that `H∨⊆`→H∨ . For the

converse, let L = (→,∨, 1) the and let L ′ = (→,∧,∨, 0, 1) be the language of intu-

itionistic logic. let Γ∪{δ} ⊆ FmL be such that Γ 0H∨ δ. Then as H∨ is a fragment

of the intuitionistic logic IPC, we have that Γ 0IPC δ. Hence there is a Heyting

algebra A = 〈A,→,∧,∨, 0A, 1A〉 and a homomorphism h ∈ Hom(FmL ′ ,A) such

that h(γ) = 1A for all γ ∈ Γ and h(δ) 6= 1A. This implies that for any n ∈ ω and

any γ0, . . . , γn ∈ Γ, h(γ0 → (γ1 → (. . . (γn → δ) . . . ))) 6= 1A.

Recall that the (→,∨, 1)-reduct of A, that we denote by A′ = 〈A,→,∨, 1A〉 is

an H–algebra. Moreover, h is a homomorphism from FmL to A′. So by definition

of the Hilbert based logic we conclude that Γ 0→H∨ δ, as required. �

Given that the logic H∨ is a filter distributive finitary congruential logic with

theorems, and it satisfies (uDDT) and (PDI), our theory of § 5.5 can be applied to

it, as we did in § 6.2:

Definition 6.4.6. A structure X = 〈X, τκ〉 is an H∨-Spectral space when

〈X, τκ〉 is an H-space and:

2This was also remarked by Wójcicki in [73].
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(H∨3) κ is closed under finite intersections.

Definition 6.4.7. A structure X = 〈X, τ,≤, B〉 is an H∨-Priestley space when

〈X, τ,≤, B〉 is an H-Priestley space and:

(H∨4) B is closed under finite unions.

In [19] Celani and Montangie studied a Spectral-like duality for H∨-algebras,

and the definition of dual spaces they came up with is precisely that of H∨-Spectral

spaces. In regard to morphisms, we refer the reader to [19], where the duality

is studied in detail. For the Priestley-style duality, the definition of H∨-Priestley

space is new, but it works analogously to the Spectral-like case.

In summary, S→H∨ is a filter distributive finitary congruential logic with the-

orems, that is the implicative-disjunctive fragment of intuitionistic logic. It falls

under the scope of our theory in Chapter 5. Moreover S→H∨ satisfies (uDDT) and

(PDI). So we can use the correspondences studied in § 5.5 to put aside the algebraic

structure of the definition of the dual spaces. Although we did not go into details,

it is remarkable that in this case we can put aside also the algebraic structure in

the definition of dual morphisms.

6.5. Expansions with a conjunction

Let us consider the language (→,∧, 1) of type (2, 2, 0). In this section we

study mainly two logics defined in this language. One is the implicative-conjunctive

fragment of intuitionistic logic, that is a well-known logic for which Spectral-like and

Priestley-style have been already studied. We will show that these results follow

from our general theory. And the other is a weaker logic with some interesting

properties. We will study in detail the class of algebras associated with it, since in

Chapter 7 we develop new Spectral-like and Priestley-style dualities for a subclass

of such algebras.

Let H∧ be the implicative-conjunctive fragment of intuitionistic logic, i. e. the

logic H∧ := 〈Fm,`H∧〉 in the language (→,∧, 1), where `H∧ is the restriction

of intuitionistic logic to the formulas of the language (→,∧, 1). The logic H∧ is

presented in a Hilbert-style calculus by the following axioms and rules:

(A1) `H∧ β → (γ → β),

(A2) `H∧ (γ → (β → δ))→ ((γ → β)→ (γ → δ)),

(A3) `H∧ (γ ∧ β)→ β,

(A4) `H∧ (γ ∧ β)→ γ,

(A5) `H∧ (γ → β)→ ((γ → δ)→ (γ → (β ∧ δ))),
(MP) γ, γ → β `H∧ β.

From results by Porębska and Wroński in [64], it follows that H∧ is the least

finitary logic satisfying (PC) and (uDDT).3 Moreover, as it satisfies (uDDT), then

it is a filter distributive logic. Clearly H∧ has theorems, as for any γ ∈ Fm,

γ → γ ∈ ThmH∧. It is also well known that H∧ is the 1-assertional logic of IS, the

variety of implicative semilattices.

Definition 6.5.1. An implicative semilattice or IS-algebra (also called Hertz

algebra or Browerian semilattice) is an algebra A = 〈A,→,∧, 1〉 of type (2, 2, 0)

3This was also remarked in Lemma 2.4.5 in [73].
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such that 〈A,∧, 1〉 is a meet-semilattice with top element 1, and → is the right

residuum of ∧, i. e. for all a, b, c ∈ A:

a ∧ c ≤A b iff c ≤A a→ b,

where the partial order ≤A is the one associated with the semilattice.

Let us denote by IS and BIS the classes of implicative semilattices and bounded

implicative semilattices respectively. Nemitz studied IS in [62] from an algebraic

point of view, and later Köhler studied it in [60] from a logical point of view. It

is well known that the (∧, 1)-reduct of an implicative semilattice is a distributive

semilattice, and the (→, 1)-reduct is a Hilbert algebra, whose order associated co-

incides with ≤A. Moreover, for any implicative semilattice A, Fi∧(A) = Fi→(A) =

FiH∧(A).

It is also well known that implicative semilattices can also be obtained as the

subalgebras of the (→,∧, 1)-reducts of Heyting algebras. Implicative semilattices

are indeed a variety, for which an equational definition is given as follows. A =

〈A,→,∧, 1〉 is an IS-algebra when for all a, b, c ∈ A:

(K) a→ a = 1,

(IS1) (a→ b) ∧ b = b,

(IS2) a ∧ (a→ b) = a ∧ b,
(IS3) a→ (b ∧ c) = (a→ c) ∧ (a→ b).

Theorem 6.5.2. The logics H∧, S→IS and S≤IS are equal.

Proof. The proof is similar to that of Theorem 6.2.1, and it is based on the

fact that H∧ satisfies (uDDT) for p→ q. �

The previous theorem implies, by Proposition 7 in [54], that H∧ is selfexten-

sional, and then by Theorem 4.46 in [35] it follows that H∧ is congruential.

As the logic H∧ is a filter distributive finitary congruential logic with theorems,

and it satisfies (uDDT) and (PC), our theory of Chapter 5 can be again applied to

H∧, as we did in § 6.2, § 6.3 and § 6.4.

More specifically, for the Spectral-like duality, we get analogues of propositions

6.2.3 and 6.2.6 that allow us to dispense with the algebraic structure in the defini-

tions of dual spaces and dual morphisms. This leads us to recover the Spectral-like

duality for IS-algebras that have been studied in the literature, as particular cases

of our general theory.

In [11] Celani studied a Spectral-like duality for IS-algebras, where dual objects

are topological spaces called IS-spaces. We recall that X = 〈X, τ〉 is an IS-space

(Definition 4.1 in [11]) when 〈X, τ〉 is a DS-space (see definition in page 36) and:4

(IS4) for any U, V ∈ KO(X), sat(U ∩ V c) ∈ KO(X).

Recall that for a DS-space X (see definition in page 36), we denote by F (X) the set

{U c : U ∈ KO(X)}. Then for any IS-space X = 〈X, τ〉, the algebra X∗ := 〈F (X),⇒
,∩, X〉 is an IS-algebra, where ⇒ is defined as U ⇒ V := (sat(U ∩ V c))c for all

U, V ∈ F (X′).

4Notice that what we present here is a simplification of the original definition, that involves

the notion of IS-frame.
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With respect to morphisms, duals of algebraic morphisms between IS-algebras

are binary relations called in [11] IS-morphisms. We recall that for IS-spaces X1

and X2, a relation R ⊆ X1 × X2 is a IS-morphism (or functional meet-relation)

when:

(DSR1) �R(U) ∈ F (X1) for all U ∈ F (X2),

(DSR2) R(x) is a closed subset of X2 for any x ∈ X1,

(HF) for all x1 ∈ X1 and x2 ∈ X2 such that (x1, x2) ∈ R, there is z ∈ X1 such

that z ∈ cl(x1) and R(x2) = cl(x2).

Theorem 6.5.3. For X = 〈X,B〉 an H∧-Spectral space, the structure X′ =

〈X, τκX
〉 is an IS-space such that 〈X, (X′)∗〉 = X. Moreover, for R ⊆ X1 × X2

an H∧-Spectral morphism between H∧-Spectral spaces X1 = 〈X1,B1〉 and X2 =

〈X2,B2〉, R is an IS-morphism between IS-spaces 〈X1, τκX1
〉 and 〈X2, τκX2

〉.

Theorem 6.5.4. For X = 〈X, τ〉 an IS-space, the structure X = 〈X,X∗〉 is

an H∧-Spectral space such that 〈X, τκX
〉 = X. Moreover, for R ⊆ X1 × X2

an IS-morphism between IS-spaces X1 = 〈X1, τ1〉 and X2 = 〈X2, τ2〉, R is an

H∧-Spectral morphism between H∧-Spectral spaces 〈X1,X
∗
1〉 and 〈X2,X

∗
2〉.

On the other hand, for the Priestley-style duality, from analogues of proposi-

tions 6.2.3 and 6.2.13 we figure out how to dispense with the algebraic structure

in the definitions of dual spaces and dual morphisms. And this leads us to recover

as particular cases of our general theory, the Priestley-style duality for IS-algebras

that Bezhanishvili and Jansana studied in [6]. Dual objects were called there gen-

eralized Esakia spaces.5 We recall that X = 〈X, τ,≤, XB〉 is a generalized Esakia

space when 〈X, τ,≤, XB〉 is a generalized Priestley space (see definition in page 38)

and:

(IS5) for all U, V ∈ C`UadXB (X), (↓(U ∩ V c))c ∈ C`UadXB (X).

Strictly speaking, the definition of generalized Esakia spaces in [6] involves, instead

of condition (IS5), the following equivalent and nicer condition:

(Es) ↓U is clopen for every Esakia clopen U ,

where U ⊆ X is an Esakia clopen if and only if U =
⋃
{(Ui ∩ V ci ) : i ≤ n} for some

n ∈ ω, and Ui, Vi ∈ C`UadXB (X) for all i ≤ n.

For a given generalized Esakia space X = 〈X, τ,≤, XB〉 we define a binary

operation ⇒ on C`UadXB (X) such that for all U, V ∈ C`UadXB (X):

U → V := (↓(U ∩ V c))c.
Then we get that X• := 〈C`UadXB (X),⇒,∩, X〉 is an IS-algebra, that we call the

Priestley-dual implicative semilattice of X.

In relation to morphisms, duals of homomorphisms between IS-algebras are

binary relations called generalized Esakia morphisms in [6]. We recall that for

generalized Esakia spaces X1 and X2, a relation R ⊆ X1 × X2 is an generalized

Esakia morphism when:

5Actually, Bezhanishvili and Jansana work with bounded IS-algebras, and their duals are

what they call generalized Esakia spaces. Similarly to what we presented for the Priestley-style

duality for DS-algebras, their work can be extended to IS-algebras that do not have necessarily

bottom. For simplicity we use the same name, but it should be kept in mind that the context we

work in is broader than the one in [6].
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(DSR3) �R(U) ∈ C`UadXB1
(X1) for all U ∈ C`UadXB2

(X2),

(DSR4) if (x, y) /∈ R, then there is U ∈ C`UadXB2
(X2) such that y /∈ U and R(x) ⊆

U .

(HF′) for every x ∈ X1 and every y ∈ XB2
, if (x, y) ∈ R, then there exists

z ∈ XB1
such that z ∈ ↑x and R(z) = ↑y.

Theorem 6.5.5. For X = 〈X, τ,B〉 an H∧-Priestley space, the structure X′ =

〈X, τ,≤, XB〉 is a generalized Esakia space such that 〈X, τ, (X′)•〉 = X. More-

over, for R ⊆ X1 × X2 an H∧-Priestley morphism between H∧-Priestley spaces

〈X1, τ1,B1〉 and 〈X2, τ2,B2〉, R is a generalized Esakia morphism between general-

ized Esakia spaces 〈X1, τ1,≤1, XB1
〉 and 〈X2, τ2,≤2, XB2

〉.

Theorem 6.5.6. For X = 〈X, τ,≤, XB〉 a generalized Esakia space, the struc-

ture 〈X, τ,X•〉 is an H∧-Priestley space such that 〈X, τ,≤, XX•〉 = X. Moreover,

for R ⊆ X1×X2 an generalized Esakia morphism between generalized Esakia spaces

X1 = 〈X1, τ1,≤1, XB1〉 and X2 = 〈X2, τ2,≤2, XB2〉, R is an H∧-Priestley morphism

between H∧-Priestley spaces 〈X1, τ1,X
•
1〉 and 〈X2, τ2,X

•
2〉.

Summarizing, from our general theory we recover the Spectral-like and Priestley-

style dualities for IS-algebras that we find in the literature. Let us change now the

subject and consider a different logic defined in the language (→,∧, 1).

Definition 6.5.7. An algebra A = 〈A,→,∧, 1〉 of type (2, 2, 0) is a Hilbert

algebra with infimum or an H∧-algebra if 〈A,→, 1〉 is a Hilbert algebra, 〈A,∧, 1〉 is

a semilattice with top element 1, and → and ∧ define the same order, i. e. for all

a, b ∈ A:

a→ b = 1 iff a ∧ b = a.

Example 6.5.8. In any semilattice 〈A,∧, 1〉 it is possible to define a structure

of H∧-algebra considering the implication → defined by the order :

x→ y =

{
1 if x ≤ y,
y if otherwise.

Let us denote by H∧ the class of Hilbert algebras with infimum. In [32] Figallo

et al. prove that H∧ is a variety. It is not difficult to see that H∧-algebras are in par-

ticular BCK-meet-semilattices or BKC∧-algebras. Idziak studied BKC∧-algebras

in [51], and we note that from his work it also follows that H∧ is a variety. In

fact, H∧-algebras are precisely BKC∧-algebras that satisfy condition (H) (see page

30). An equational definition of H∧ is given as follows. A = 〈A,→,∧, 1〉 is an

H∧-algebra when 〈A,→, 1〉 is a Hilbert algebra, 〈A,∧, 1〉 is a semilattice with top

element 1, and for all a, b, c ∈ A:

(H∧1) a ∧ (a→ b) = a ∧ b,
(H∧2) (a→ (b ∧ c))→ ((a→ b) ∧ (a→ c)) = 1.

In [32] Figallo et al. also prove that implicative semilattices are the H∧-algebras

that satisfy the following equation:

(PA) a→ (b→ (a ∧ b)) = 1.

The following example from [32] shows that the inclusion is strict.
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0

a

b c

d

1

Figure 2. Example of a Hilbert algebra with infimum that is not

an implicative semilattice.

Example 6.5.9. Consider the lattice in Figure 2 as a semilattice 〈A,∧, 1〉,
where A = {0, a, b, c, d, 1}, and let → be the implication defined on A by the or-

der (cf. Example 6.5.8). Then we have that A := 〈A,→,∧, 1〉 is an H∧-algebra,

that is not an implicative semilattice because (PA) fails: b→ (c→ (b ∧ c)) =

b→ (c→ a) = b→ a = a 6= 1.

In [33] Figallo et al. provide an axiomatization of the 1-assertional logic of H∧,

that we denote by S1
H∧ . The logic S1

H∧ := 〈Fm,`1
H∧〉 in the language (→,∧, 1) of

type (2, 2, 0), is presented in a Hilbert-style calculus by the following axioms and

rules:

(A1) `1
H∧ β → (γ → β),

(A2) `1
H∧ (γ → (β → δ))→ ((γ → β)→ (γ → δ)),

(A3) `1
H∧ (γ ∧ β)→ β,

(A∧1) `1
H∧ (γ ∧ (γ → β))→ (γ ∧ β),

(A∧2) `1
H∧ (γ ∧ β)→ (β ∧ γ),

(A∧3) `1
H∧ ((γ ∧ β) ∧ δ)→ ((γ ∧ δ) ∧ β),

(MP) γ, γ → β `1
H∧ β,

(AB) γ → β `1
H∧ γ → (γ ∧ β).

Notice that S1
H∧ is an expansion of H, but it is not an axiomatic expansion, as the

rule (AB) cannot be derived from any collection of axioms and the only rule of

(MP).

Clearly S1
H∧ is finitary and has theorems as for any γ ∈ Fm, γ → γ ∈ ThmS1

H∧ .

Moreover it satisfies (PC) for p∧q. In [33] it is claimed erroneously that S1
H∧ satisfies

(uDDT) for p → q. Notice that from (A1), (A∧2), (MP) and (AB), by isotonicity

(condition (C2′) in page 16) it follows γ `1
H∧ β → (γ ∧ β). Then if S1

H∧ would have

the deduction theorem, it would follow `1
H∧ γ → (β → (β ∧ γ)), and this implies,

in particular, that (PA) holds for any H∧-algebra, a contradiction.

Let us show that S1
H∧ is not congruential. We use Definition 4.3.2 and we

show that there is an algebra A = 〈A,→,∧, 1〉 of type (2, 2, 0) such that ≡A
S1
H∧

is not a congruence of A. Take the algebra A defined in Example 6.5.9. Notice

that CA
S1
H∧

(b) = CA
S1
H∧

(c) = CA
S1
H∧

(a) = ↑a. Therefore a ≡A
S1
H∧

b ≡A
S1
H∧

c. However

b→ c�≡A
S1
H∧
a→ b, since CA

S1
H∧

(b→ c) = CA
S1
H∧

(c) = ↑a but CA
S1
H∧

(a→ b) = CA
S1
H∧

(1) =

{1}.
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Logical filters of the logic S1
H∧ are also studied by Figallo et al. in [32]. For any

H∧-algebra A = 〈A,→,∧, 1〉, a subset H ⊆ A is an absorbent filter of A if for all

a, b ∈ A:

– H is an implicative filter of 〈A,→, 1〉,
– if b ∈ H, then a→ (a ∧ b) ∈ H.

We denote by Ab(A) the collection of all absorbent filters of A. It is easy to prove

that all absorbent filters are meet filters of 〈A,∧, 1〉: let a, b ∈ H ∈ Ab(A). Clearly

H is an up-set and moreover a → (a ∧ b) ∈ H. Since H is a implicative filter,

then a ∧ b ∈ H. Notice that Ab(A) is closed under arbitrary intersections, so for

B ⊆ A we may consider the least absorbent filter containing B. But we do not

have on hand an alternative characterization of the absorbent filter generated by a

set. And we do not know whether the lattice of absorbent filters is distributive or

not. However, later on we prove a proposition (see page 143) that sheds light on

these filters.

The logic S1
H∧ does not have the properties that are required for the application

of our theory in Chapter 5. However, a different logic that has such properties can

be defined from H∧-algebras, namely S→H∧ , the Hilbert based logic of H∧.

By the general theory in [54], S→H∧ is finitary and congruential. Moreover it

satisfies (uDDT) for p→ q, AlgS→H∧ = H∧, and for any Hilbert algebra with infimum

A, the collection of implicative filters of A is the collection of S→H∧-filters of A. Thus

the logic S→H∧ is also filter distributive.

The logic S→H∧ does not satisfy (PC) for p ∧ q though. This follows easily

from Example 6.5.9. From it we get that 2H∧ γ → (δ → (γ ∧ δ)) ≈ 1, and this

implies that γ, δ 0→H∧ γ ∧ δ. Hence S→H∧ does not satisfy (PC) for p ∧ q, and so

we cannot apply the correspondences studied in § 5.5 in order to dispense with the

algebraic structure in the dual spaces of H∧-algebras. We obtain, from our theory

in Chapter 5, Spectral-like and Priestley-style dualities for S→H∧ , but they are not

elegant dualities.

We can consider even one more logic, the logic of the order S≤H∧ of H∧, that

is also the semilattice based logic of H∧. By definition, this logic is a finitary and

congruential logic with theorems, it satisfies (PC), AlgS≤H∧ = H∧ and for any H∧-

algebra A, the order filters of A are the S≤H∧-filters of A. By results reported below

(see Example 6.5.12) we know that the logic S≤H∧ is not filter distributive, so it does

not fall under the scope or our study.

Notice that, unlike the case of implicative semilattices, for H∧-algebras we have

that S1
H∧ , S≤H∧ and S→H∧ are three different logics, and moreover, the relation between

them goes as follows:

`→H∧ ( `
≤
H∧ ( `

1
H∧ .

Theorem 6.5.10. Let L = (→,∧, 1, . . . ) be a language and let K be a quasi-

variety of L -algebras such that 〈A,→,∧, 1〉 is an H∧-algebra for any A ∈ K. Then

S→K = S≤K if and only if

(∀A ∈ K)(∀a, b, c ∈ A) a ∧ b ≤A c iff b ≤A a→ c,

where ≤A is the order associated with the H∧-algebra 〈A,→,∧, 1〉.
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Proof. Assume first that S→K = S≤K . Then by the general theory in [54]

and [53], S = S→K = S≤K is congruential and satisfies (PC) and (uDDT). This

implies that FiS(A) = Fi→(A) = Fi∧(A) for all A ∈ K. Let A ∈ K and a, b, c ∈ A.

We have 〈{a, b}〉 = J{a, b}〉〉 = ↑(a ∧ b). Then

a ∧ b ≤A c iff c ∈ ↑(a ∧ b) = J{a, b}〉〉 = 〈{a, b}〉 iff a→ c ∈ Fi→(b) = ↑b

iff b ≤A a→ c.

For the converse, let us assume that for all A ∈ K and all a, b, c ∈ A we have

that a ∧ b ≤A c if and only if b ≤A a → c. Let γ1, . . . , γn, δ ∈ Fm, let A ∈ K
and let h ∈ Hom(Fm,A). Notice that by definition of the order on A, we have

that h(γ1)→A (h(γ2)→A (. . . (h(γn)→A h(δ)) . . . )) 6= 1A if and only if h(γ1) �A

h(γ2) →A (. . . (h(γn) →A h(δ)) . . . ). By assumption, we can use the residuation

law n−1 times and we get h(γ1) �A h(γ2)→A (. . . (h(γn)→A h(δ)) . . . ) if and only

if h(γ1)∧ · · · ∧ h(γn) �A h(δ). Hence, we conclude that S→K = S≤K , as required. �

The problem that we originally addressed in the early stages of our research, was

to get elegant Spectral-like and Priestley-style dualities for S→H∧ , i. e. for the variety

of Hilbert algebras with infimum. But for the moment we have only been able to find

a solution for a subclass of H∧, namely the Hilbert algebras with infimum with the

additional property that the semilattice reduct is distributive. These algebras are

called distributive Hilbert algebras with infimum. We devote Chapter 7 to expound

Spectral-like and Priestley-style dualities for such algebras. Distributive Hilbert

algebras with infimum do not form a variety, not even a quasi-variety. So they are

not the algebraic counterpart of any logic that we could define form them. However,

it turns out that the dualities for Hilbert algebras with infimum can be restricted

to dualities for other classes that do relate with interesting logics. We address this

issue in § 7.6. For the moment, let us introduce the subclass of H∧ for which we

develop the dualities in Chapter 7.

6.5.1. Distributive Hilbert algebras with infimum.

Definition 6.5.11. A H∧-algebra A = 〈A,→,∧, 1〉 is a distributive H∧-algebra

or a DH∧-algebra when the underlying semilattice 〈A,∧, 1〉 is distributive.

Let us denote by DH∧ the class of distributive Hilbert algebras with infimum.

Notice that the algebra defined in Example 6.5.9 is in fact a DH∧-algebra. There-

fore, that example shows that implicative semilattices are strictly included in DH∧.

Moreover, the following example shows that DH∧ is strictly included in H∧.

Example 6.5.12. Consider the lattice N5 in Figure 3 as a semilattice 〈A,∧, 1〉,
where A = {0, a, b, c, 1}, and let → be the implication defined on A by the order

(cf. Example 6.5.8). Then we have that A := 〈A,→,∧, 1〉 is an H∧-algebra, that is

obviously not distributive.

The relations between the four classes of algebras in the language (→,∧, 1) so

far considered are:

IS ( DH∧ ( H∧ ( BKC∧

We focus now on filters and ideals of DH∧-algebras. However, all the definitions

and several lemmas stated in what follows hold in general for H∧-algebras, not
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Figure 3. Example of a Hilbert algebra with infimum that is not

distributive – N5 with the order given by implication.

necessarily distributive. We state them in the more general form when possible,

and so we bring out which properties related with distributivity are essential to get

which results. From now on, let A = 〈A,→,∧, 1〉 be an H∧-algebra, where we have

the order ≤ given by:

a ≤ b iff a→ b = 1 iff a ∧ b = a.

We focus on the two underlying structures of any H∧-algebra: the semilattice and

the Hilbert algebra.

Concerning the underlying semilattice 〈A,∧, 1〉, we may consider the collec-

tions of meet filters Fi∧(A) (definition in page 26), irreducible meet filters Irr∧(A)

(definition in page 27), optimal meet filters Op∧(A) (definition in page 28), order

ideals Id(A) (definition in page 26), and F-ideals IdF (A) (definition in page 28),

that we introduced in § 2.3, and that yield the following lemmas and corollaries

that we retype here for the sake of completeness:

Lemma 2.3.3: Let A be an H∧-algebra, and let F ∈ Fi∧(A) and I ∈ Id(A)

be such that F ∩ I = ∅. Then there is G ∈ Irr∧(A) such that F ⊆ G and

G ∩ I = ∅.
Theorem 2.3.6: Let A be a DH∧-algebra. Then for all F ∈ Fi∧(A), F ∈

Irr∧(A) if and only if F c ∈ Id(A).

Lemma 2.3.7: Let A be an H∧-algebra and let F ∈ Fi∧(A) and I ∈ IdF (A)

be such that F ∩ I = ∅. Then there is G ∈ Op∧(A) such that F ⊆ G and

G ∩ I = ∅.
Theorem 2.3.9: Let A be a DH∧-algebra. For any F ∈ Fi∧(A), F ∈

Op∧(A) if and only if F c ∈ IdF (A).

Notice that the separation lemmas hold in general for any H∧-algebra, but the

correspondences between filters and ideals hold only for the distributive ones.

Concerning the underlying Hilbert algebra 〈A,→, 1〉, we may consider the col-

lections of implicative filters Fi→(A) (definition in page 31), irreducible implicative

filters Irr→(A) (definition in page 31), optimal implicative filters Op→(A) (defi-

nition in page 32), order ideals Id(A) (definition in page 26), and strong F-ideals

IdsF (A) (definition in page 32), that we introduced in § 2.4, and that yield the

following lemmas and corollaries that we retype here for the sake of completeness:

Lemma 2.4.5: Let A be an H∧-algebra, and let F ∈ Fi→(A) and I ∈ Id(A)

be such that F ∩ I = ∅. Then there is G ∈ Irr→(A) such that F ⊆ G and

G ∩ I = ∅.
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Corollary 2.4.4: Let A be a H∧-algebra. Then for all F ∈ Fi→(A), F ∈
Irr→(A) if and only if F c ∈ Id(A).

Lemma 2.4.7: Let A be an H∧-algebra and let F ∈ Fi→(A) and I ∈
IdsF (A) be such that F ∩ I = ∅. Then there is G ∈ Op→(A) such

that F ⊆ G and G ∩ I = ∅.
Theorem 2.4.9: Let A be an H∧-algebra. For any F ∈ Fi→(A), F ∈

Op→(A) if and only if F c ∈ IdsF (A).

Notice that distributivity is not needed in any of the previous lemmas and corol-

laries. Now we focus on the relations between all these notions. Recall that for any

H∧-algebra, the order defined by the meet and the order defined by the implica-

tion coincide. This fact implies a strong link between the two operations, that is

reflected in the following propositions.

Proposition 6.5.13. Let A be an H∧-algebra. Then any meet filter of A is

an implicative filter of A.

Proof. Let F ∈ Fi∧(A). Since F is a non-empty up-set, clearly 1 ∈ F . Let

a, a→ b ∈ F . Then a ∧ b = a ∧ (a→ b) ∈ F so since a ∧ b ≤ b and F is an up-set,

we obtain b ∈ F . �

Corollary 6.5.14. Let A be an H∧-algebra. Then for all B ⊆ A, 〈B〉 ⊆ JB〉〉.

Lemma 6.5.15. Let A be an H∧-algebra. Then a→ (b→ c) ≤ (a ∧ b)→ c for

all a, b, c ∈ A.

Proof. Let a, b, c ∈ A. From a∧b ≤ a we get a→ (b→ c) ≤ (a∧b)→ (b→ c).

From a ∧ b ≤ b we get b → c ≤ (a ∧ b) → c, and so (a ∧ b) → (b → c) ≤ (a ∧ b) →
((a ∧ b)→ c) = (a ∧ b)→ c, and we are done. �

Proposition 6.5.16. Let A be an H∧-algebra. Then

Irr→(A) ∩ Fi∧(A) ⊆ Irr∧(A).

Proof. Let F ∈ Irr→(A) ∩ Fi∧(A) and let F1, F2 ∈ Fi∧(A) be such that

F1 ∩F2 = F . Since F1, F2, F are implicative filters, and F is →-irreducible, we get

F1 = F of F2 = F , therefore F is ∧-irreducible meet filter. �

Proposition 6.5.17. Let A be an H∧-algebra. Then

Op→(A) ∩ Fi∧(A) ⊆ Op∧(A).

Proof. Let F ∈ Op→(A) ∩ Fi∧(A). By Theorem 2.4.9 we know that F c

is sF-ideal, so it is in particular an F-ideal. Let us show that it is ∧-prime: let

B ⊆ω A be such that
∧
B ∈ P c. We show that B ∩ P c 6= ∅. Suppose, towards

a contradiction, that B ∩ P c = ∅. Then B ⊆ P , and since P is a meet filter by

assumption, we get
∧
B ∈ P , a contradiction.

Hence, we have shown that F c is a ∧-prime F-ideal. Thus by Corollary 2.3.10

we conclude that F is an ∧-optimal meet filter. �

For the case when the underlying semilattice is distributive, we find stronger

links between these collections of filters.

Proposition 6.5.18. Let A be an H∧-algebra. Then the underlying semilattice

is distributive if and only if Irr∧(A) ⊆ Irr→(A).
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Proof. Assume first that A is distributive and let P ∈ Irr∧(A). On the one

hand we have that P ∈ Fi→(A). On the other hand, by Theorem 2.3.6, P c ∈ Id(A).

Then by Corollary 2.4.4, we conclude that P ∈ Irr→(A).

Assume now that Irr∧(A) ⊆ Irr→(A). Then by Corollary 2.4.4 we have that

for all P ∈ Irr∧(A), P c is an order ideal. By Theorem 10 in [12], this implies that

the underlying semilattice is distributive, so A is a DH∧-algebra, as required. �

Corollary 6.5.19. Let A be a DH∧-algebra. Then

Irr→(A) ∩ Fi∧(A) = Irr∧(A).

Proof. This follows from propositions 6.5.18 and 6.5.16. �

Proposition 6.5.20. Let A be a DH∧-algebra. Then any ∧-prime F-ideal is

an sF-ideal.

Proof. Assume that A is distributive and let I ∈ IdF (A) be ∧-prime. Let

I ′ ⊆ω I and let B ⊆ω A be such that
⋂
{↑a : a ∈ I ′} ⊆ 〈B〉. We show that

〈B〉 ∩ I 6= ∅. Recall that for any C ⊆ω A we have 〈C〉 ⊆ JC〉〉 = ↑
∧
C. Thus from

the hypothesis we have
⋂
{↑a : a ∈ I ′} ⊆ JB〉〉 = ↑

∧
B. And by I being an F-ideal

of A, we get
∧
B ∈ I. Now we use that I is ∧-prime, so there is b ∈ B such that

b ∈ I. We conclude that 〈B〉 ∩ I 6= ∅, as required. �

Corollary 6.5.21. Let A be a DH∧-algebra. Then Op∧(A) ⊆ Op→(A).

Proof. This follows from Corollary 2.3.10, Proposition 6.5.20 and Theorem

2.4.9. �

The relation between ∧-irreducibles and→-irreducibles is shown in Proposition

6.5.18 to characterize DH∧-algebras, but it remains as an open question whether

the inclusion in last corollary characterizes DH∧-algebras or not.

Corollary 6.5.22. Let A be a DH∧-algebra. Then

Op→(A) ∩ Fi∧(A) = Op∧(A).

Proof. This follows from Propositions 6.5.17 and Corollary 6.5.21. �

For the non-distributive case, it may happen that the equalities in corollaries

6.5.19 and 6.5.22 fail, as the Example 6.5.23 shows.

Example 6.5.23. Consider the H∧-algebra A given in Example 6.5.12 (N5

as a semilattice, with the implication defined by the order). On the one hand,

we have that Fi∧(A) is the collection of all principal up-sets and so Irr∧(A) =

{↑a, ↑b, ↑c, ↑1}. On the other hand, we have that Fi→(A) is the collection of all

principal up-sets together with Fa := {a, c, 1} and Fab := {a, b, c, 1}. The lattice of

implicative filters of A is represented in Figure 4.

Clearly Irr→(A) = {↑0, Fab, Fa, ↑b, ↑c}. Hence as ↑a ∈ Irr∧(A) \ Irr→(A), we

have an example of a H∧-algebra that is not distributive and for which it holds

Irr∧(A) * Irr→(A) ∩ Fi∧(A), and also Op∧(A) * Op→(A) ∩ Fi∧(A).

Notice that we should restrict ourselves to search dualities for distributive

H∧-algebras, precisely because of the possible failure of the inclusions in corollaries

6.5.19 and 6.5.22 when the underlying semilattice is not distributive.
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Figure 4. Lattice of implicative filters of N5 with the implication

given by the order.
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Figure 5. Example of a distributive Hilbert algebra with infimum.

Let us present one more example extracted from [5], that shows that for the

distributive case, some of the mentioned inclusions may be strict.

Example 6.5.24. Consider the semilattice in Figure 5 that is a distributive se-

milattice 〈A,∧, 1〉, where A = {0, a, b, 1}∪{ci : i ∈ ω}, and let→ be the implication

defined on A by the order (cf. Example 6.5.8). Then we have that A := 〈A,→,∧, 1〉
is a DH∧-algebra.

Let us denote by Fab the implicative filter ↑({a, b}) = {a, b, 1} ∪ {ci : i ∈ ω},
and by Fc the meet filter {ci : i ∈ ω} ∪ {1}. It is easy to see that Fi∧(A) is the

collection of all principal up-sets together with Fc. Moreover, Fi→(A) is Fi∧(A)

together with Fab. It is not difficult to check that Fab ∈ Irr→(A). But since Fab is

not closed under meet, Fab /∈ Fi∧(A). Hence, we have:

Irr∧(A) ( Irr→(A),

Op∧(A) ( Op→(A),

Fi∧(A) ( Fi→(A).

Moreover, we have that Fc ∈ Op→(A), since ↓{a, b} is an sF-ideal of A, but

Fc /∈ Irr→(A), since we have Fc = ↑a∩↑b but Fc 6= ↑a, ↑b. Similarly, Fc ∈ Op∧(A),

since it is closed under meet, but Fc /∈ Irr∧(A). Finally, notice that A is bounded,

so ∅ /∈ IdsF (A). Therefore ↑0 = A /∈ Op→(A), but clearly A ∈ Fi→(A). Similarly

A ∈ Fi∧(A) but A /∈ Op∧(A). Hence, we have:

Irr→(A) ( Op→(A) ( Fi→(A),
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Irr∧(A) ( Op∧(A) ( Fi∧(A).

Let us conclude this section with a proposition concerning absorbent filters that

will be useful later.

Proposition 6.5.25. Let A = 〈A,→,∧, 1〉 be an H∧-algebra. For any meet

filter F of 〈A,∧, 1〉, F ∈ Ab(A) if and only if 〈F ∪ ↑a〉 is a meet filter of 〈A,∧, 1〉
for all a ∈ A.

Proof. Let F ∈ Ab(A) and let a ∈ A. If a ∈ F there is nothing to prove,

so suppose a /∈ F . Recall that 〈F ∪ ↑a〉 denotes the implicative filter of 〈A,→, 1〉
generated by F ∪ ↑a.

We claim that 〈F ∪ ↑a〉 is a meet filter. We show that b ∧ c ∈ 〈F ∪ ↑a〉 for

any b, c ∈ 〈F ∪ ↑a〉, so let b, c ∈ 〈F ∪ ↑a〉. As F ∪ ↑a 6= ∅, we can assume that

there are b0, . . . , bn, c0, . . . , cm ∈ F ∪ ↑a such that b0 → (. . . (bn → b) . . . ) = 1 and

c0 → (. . . (cm → c) . . . ) = 1. By Lemma 6.5.15, this implies (b0 ∧ · · · ∧ bn)→ b = 1

and (c0 ∧ · · · ∧ cm)→ c = 1. Then we have b0 ∧ · · · ∧ bn ∧ c0 ∧ · · · ∧ cm ≤ b ∧ c.
Since b0, . . . , bn, c0, . . . , cm ∈ F ∪ ↑a and F and ↑a are both closed under meets,

then we have d1 ∈ F and d2 ∈ ↑a such that b0∧· · ·∧bn∧c0∧· · ·∧cm = d1∧d2 ≤ b∧c.
Moreover, by definition of absorbent filter, d2 → (d1∧d2) ∈ F ⊆ 〈F∪↑a〉. And since

d2 ∈ ↑a ⊆ 〈F ∪ ↑a〉, by definition of implicative filter we obtain d1 ∧ d2 ∈ 〈F ∪ ↑a〉.
Now since 〈F ∪ ↑a〉 is an up-set, we conclude b ∧ c ∈ 〈F ∪ ↑a〉.

For the converse, let F ∈ Fi∧(A) be such that for all a ∈ A, 〈F ∪ ↑a〉 is a

meet filter. We show that F is absorbent. Let b ∈ F and a ∈ A. We show that

a → (a ∧ b) ∈ F . Notice first that 〈F ∪ ↑a〉 = 〈F ∪ {a}〉. Then, as a ∈ 〈F ∪ ↑a〉
and b ∈ F we get by hypothesis that a ∧ b ∈ 〈F ∪ ↑a〉. Now we use the definition

of implicative filter generated, and we get that there are c0, . . . , cn ∈ F , for some

n ∈ ω, such that c0 → (c1 → (. . . (cn → (a → (a ∧ b))) . . . )) = 1. But this implies

a→ (a ∧ b) ∈ F , as required. �

In brief, we have studied the properties of the different collections of filters and

ideals for DH∧-algebras, and these results will be used in Chapter 7, where Spectral-

like and Priestley-style dualities for categories that have DH∧-algebras as objects

are studied in detail. Before moving to this topic, let us review some other filter

distributive and congruential expansions of H for which the mentioned dualities

could also be applied, as it will be outlined in § 7.6.

6.6. Expansions with a conjunction and a disjunction

Let us concentrate now on the language (→,∧,∨, 1) of type (2, 2, 2, 0). A well-

known logic defined in this language is IPC+, the positive (intuitionistic) logic, that

is, the negation-less fragment of intuitionistic logic. The logic IPC+ := 〈Fm,`IPC+〉
in the language (→,∧,∨, 1) can be presented in a Hilbert-style calculus by the fol-

lowing axioms and rules:

(A1) `IPC+ β → (γ → β),

(A2) `IPC+ (γ → (β → δ))→ ((γ → β)→ (γ → δ)),

(A3) `IPC+ (γ ∧ β)→ β,

(A4) `IPC+ (γ ∧ β)→ γ,

(A5) `IPC+ (γ → β)→ ((γ → δ)→ (γ → (β ∧ δ))),
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(A6) `IPC+ γ → (γ ∨ β),

(A7) `IPC+ γ → (β ∨ γ),

(A8) `IPC+ (γ → δ)→ ((β → δ)→ ((γ ∨ β)→ δ)),

(MP) γ, γ → β `IPC+ β.

It is well known that IPC+ is the 1-assertional logic of the variety of relatively

pseudo-complemented lattices, that coincides with AlgIPC+.

Definition 6.6.1. A relatively pseudo-complemented lattice or generalized Hey-

ting algebra (gHe-algebra for short) is an algebra A = 〈A,→,∧,∨, 1〉 of type

(2, 2, 2, 0) such that 〈A,∧,∨, 1〉 is a lattice with top element 1 and → is the right

residuum of ∧, i. e. for all a, b, c ∈ A:

a ∧ c ≤ b iff c ≤ a→ b.

Let us denote by gHe the class of relatively pseudo-complemented lattices and

by He the class of bounded relatively pseudo-complemented lattices, i. e. the class

of Heyting algebras. It is well known that the lattice reduct of any gHe-algebra is

distributive. Since implicative semilattices are a variety, it follows that gHe and

He are also varieties.

Theorem 6.6.2. The logics IPC+, S→gHe and S≤gHe are equal.

Proof. The proof is similar to that of Theorem 6.2.1, using that IPC+ satisfies

(uDDT). �

Again we obtain that IPC+ is a filter distributive finitary congruential logic

with theorems, that satisfies (uDDT), (PC) and (PDI), so our theory from Chap-

ter 5 can be applied to it, and similarly as we did with the implicative-conjunctive

fragment of intuitionistic logic, the dualities obtained from the general theory can

be refined to dispense with the algebraic structures in the dual side. Notice that

relatively pseudo-complemented lattices are an example of distributive lattices ex-

panded with a binary quasioperator. And in fact extended Priestley-duality (or

what could be called extended Spectral-duality) can be applied to them, in order

to obtain the mentioned dualities.

In [13] Celani and Cabrer consider another class of algebras in this language,

that they call (bounded) distributive lattices with implication or DLI-algebras. These

are bounded distributive lattices expanded with a normal dual (∂, 1)-quasioperator

→, i. e. algebras A = 〈A,→,∧,∨, 0, 1〉 of type (2, 2, 2, 0, 0) such that 〈A,∧,∨, 0, 1〉
is a bounded distributive lattice and for all a, b, c ∈ A:

(IA2) (a→ 1) = 1,

(DLI0) (0→ a) = 1,

(DLI1) a→ (b ∧ c) = (a→ b) ∧ (a→ c),

(HL1) (a ∨ b)→ c = (a→ c) ∧ (b→ c).

Extended Priestley duality shall be applied to this class of algebras, and this is

precisely what Celani and Cabrer do, in order to study some of their subvarieties in

a modular way, getting relational semantics for the algebraic counterpart of certain

fuzzy logics, such as MTL-algebras or MV-algebras. Moreover, Heyting algebras

are contained in DLI, as well as weakly Heyting algebras introduced by Celani and

Jansana in [16], where a study of Priestley-style duality for them yields relational
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semantics for strict implication fragments of some normal modal logics. We are

not interested in DLI and its subvarieties, since Priestley-style duality for them is

already known, but we show in what follows that the variety we are interested in

does not include and is not included in DLI.
Notice that DLI-algebras are lattices expanded with an implication that pre-

serves the order in the second coordinate and reverses the order in the first coordi-

nate. The class of algebras that we introduce now shares the same property.

Let us focus on a different logic defined in the language (→,∧,∨, 1). We con-

sider the Hilbert based logic of the following class of algebras:

Definition 6.6.3. An algebra A = 〈A,→,∧,∨, 1〉 of type (2, 2, 2, 0) is a Hilbert

algebra with lattice structure or a HL-algebra if:

(1) 〈A,→, 1〉 is a Hilbert algebra,

(2) 〈A,∧,∨, 1〉 is a lattice with top element 1,

(3) → and ∧ define the same order, i. e. for all a, b ∈ A:

a→ b = 1 iff a ∧ b = a.

Let us denote by HL the class of Hilbert algebras with lattice structure, and by

HL0 the class of bounded Hilbert algebras with lattice structure, i. e. HL-algebras

with an additional constant, that is interpreted as the bottom element of the un-

derlying lattice.

Example 6.6.4. The H∧-algebra considered in Example 6.5.12 (see page 138),

that recall is the lattice N5 with the implication given by the order, can also be

seen as an HL-algebra.

Note that HL-algebras are a subclass of BCK-lattices (or BCKL-algebras).

These algebras were studied by Idziak in [51], where he shows that they form a va-

riety. In fact, HL-algebras are those BCKL-algebras that satisfy condition (H) (see

page 30), and an equational definition of HL is given as follows. A = 〈A,→,∧,∨, 1〉
is an HL-algebra if for all a, b, c ∈ A:

(1) 〈A,→, 1〉 is a Hilbert algebra,

(2) 〈A,∧,∨, 1〉 is a lattice with top element 1,

(H∧1) a ∧ (a→ b) = a ∧ b,
(H∧2) (a→ (b ∧ c))→ ((a→ b) ∧ (a→ c)) = 1,

(HL1) (a ∨ b)→ c = (a→ c) ∧ (b→ c).

The variety gHe of relatively pseudo-complemented lattices is strictly included

in the variety of HL-algebras. A relevant equation is again (PA) (see page 135).

Heyting algebras are precisely those bounded HL-algebras that satisfy (PA). More-

over, the inclusion is strict. The H∧-algebra considered in Example 6.5.9 (see page

136) shall also be seen as an HL-algebra, that is obviously not a Heyting algebra.

In [32] we find a different example:

Example 6.6.5. Consider the lattice in Figure 6, that is distributive, and let

→ be the implication defined on A by the table in Figure 7. Then we have that

A = 〈A,→,∧, 1, 0〉 is a bounded HL-algebra, but is not a Heyting algebra, since

a→ 0 = b 6= f = max{z : a ∧ z ≤ 0}.
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0

a b c

d e f

1

Figure 6. Example of a distributive Hilbert algebra with lattice structure.

→ 0 a b c d e f 1

0 1 1 1 1 1 1 1 1

a b 1 b f 1 1 f 1

b e e 1 e 1 e 1 1

c b d b 1 d 1 1 1

d 0 e b c 1 e f 1

e b d b f d 1 f 1

f 0 a b e d e 1 1

1 0 a b c d e f 1

Figure 7. Example of a distributive Hilbert algebra with lattice

structure – definition of the implication.

As in the case of Hilbert algebras with infimum, the 1-assertional logic of HL
is not congruential. Therefore we focus on the Hilbert based logic of HL, that we

denote by S→HL . By construction, this logic is finitary and congruential. Moreover it

satisfies (uDDT) for p→ q, AlgS→HL = HL, and for any Hilbert algebra with lattice

structure A, the collection of implicative filters of A is the collection of S→HL-filters

of A. Therefore the logic S→HL is also filter distributive. Similarly to the case of

the Hilbert based logic of H∧, it turns out that the logic S→HL does not satisfy (PC)

for p ∧ q. Notice that the (→,∧, 1)-reduct of any HL-algebra is an H∧-algebra.

Therefore, the logic S→HL is also an expansion of the logic S→H∧ .

We could think on a different logic defined from HL, the semilattice based logic

of HL, that we denote by S≤HL . From the general theory (see [53] and [55]) it

follows that S≤HL is a finitary congruential logic with theorems that satisfies (PC).

Furthermore, AlgS≤HL = HL, and for every HL-algebra A, the order filters of A are

the S≤HL-filters of A. Hence the logic S≤HL is not filter distributive, so it is out of

reach of our study.

Just like the case of H∧-algebras, we have not been able to get elegant Spectral-

like and Priestley-style dualities for HL, but for a subclass of HL. Nevertheless,

that subclass turns out to be an interesting variety, from both a logical and an

algebraic point of view.

Definition 6.6.6. An HL-algebra A = 〈A,→,∧,∨, 1〉 is a Hilbert algebra with

distributive lattice structure or anHDL-algebra when the underlying lattice 〈A,∧,∨〉
is distributive.
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Let us denote by HDL the class of Hilbert algebras with distributive lattice

structure, that by definition is a variety, because distributivity in this setting is an

equational condition, unlike in the semilattice setting, where it is not equational.

Bounded HDL-algebras (or HDL0 -algebras following a similar notation) have been

studied by Figallo et al. in [31], under the name of distributive Hilbert algebras,

and also by Celani and Cabrer in [14], under the name of Hilbert implications over

bounded distributive lattices.

Notice that the algebra defined in Example 6.5.12 (see page 138) is anHL-algebra

that is obviously not an HDL-algebra. Hence, HDL-algebras are strictly included in

HL. Moreover, the algebra considered in Example 6.5.9 is in fact a HDL-algebra.

Therefore, that example shows that relatively pseudo-complemented lattices are

strictly included in HDL. It also shows that bounded HDL-algebras are not in-

cluded in DLI: (DLI1) fails since 1 = a → (b ∧ c) 6= (a → b) ∧ (a → c) = a. This

implies, in particular, that HDL-algebras is not a variety of distributive lattices

expanded with (dual) quasioperators.

Proposition 6.6.7. Heyting algebras are precisely those algebras that are both

DLI-algebras and HL0 -algebras.

Proof. We already know that Heyting algebras are DLI-algebras and bounded

Hilbert algebras with lattice structure. So we just need to show the other inclusion.

Let A = 〈A,∧,∨,→, 1, 0〉 be a DLI-algebra and an HL0 -algebra. We just need to

show that the residuation law holds.

Let first a, b, c ∈ A be such that a ∧ c ≤ b. By (DLI1) we have a → (a ∧ c) =

(a → a) ∧ (a → c) = a → c. Since 〈A,→, 1〉 is a Hilbert algebra, → is order

preserving in the second coordinate, so we get a → (a ∧ c) ≤ a → b. Moreover,

by (H1) we have c ≤ a → c. And putting all these equations together, we obtain

c ≤ a→ b.

Let now a, b, c ∈ A be such that c ≤ a → b. Then by definition of ∧, we have

that a ∧ c ≤ a ∧ (a → b). Now by (H∧1) a ∧ (a → b) = a ∧ b, and since a ∧ b ≤ b,

we conclude a ∧ c ≤ b, as required. �

We conclude with the following example, that witnesses that DLI-algebras are

not included in bounded BCKL-algebras. This implies, in particular, that DLI-
algebras are not included in bounded HDL-algebras.

Example 6.6.8. Consider the lattice in Figure 8, that is distributive, and let

→ be the implication defined on A by the table in Figure 9. It is easy to check that

A is a DLI-algebra. Notice that a ∧ ((a → 0) → 0) = 0 6= a, therefore (BKC∧2)

fails and so A is not a BKC∧-algebra, nor a DH∧-algebra.

Summarizing, some of the relations between the classes of algebras in the lan-

guage (→,∧,∨, 1) so far considered are:

gHe ( HDL ( HL ( BCKL

He ( HDL0 ( HL0 ( BCK
L
0

All these varieties are distributive lattice expansions, but only relatively pseudo-

complemented lattices and Heyting algebras are distributive lattices expanded with
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0

a

b c

d

1

Figure 8. Example of a weakly Heyting algebra.

→ 0 a b c 1

0 1 1 1 1 1

a b 1 b 1 1

b 0 0 1 1 1

c 0 0 b 1 1

1 0 0 b c 1

Figure 9. Example of a weakly Heyting algebra – definition of the implication.

(dual) quasioperators. Hence, the rest of varieties does not fall under the scope of

extended Priestley duality.

Since HDL is a variety, unlike the case of DH∧-algebras, we shall consider its

1-assertional logic, its Hilbert based logic or its semilattice based logic. As it was

to be expected, the 1-assertional logic of HDL does not have nice properties, but

the Hilbert based logic of HDL does.

The Hilbert based logic of HDL, that we denote by S→HDL , is by construc-

tion a filter distributive finitary congruential logic with theorems. We have that

AlgS→HDL = HDL and for every HDL-algebra A, the implicative filters of A are

the S→HDL-filters of A. Moreover S→HDL satisfies (uDDT) for p → q. However, by

Example 6.5.9 we get that γ, δ 0→HDL δ, and therefore S→HDL does not satisfy (PC)

for p ∧ q.
We could think on the semilattice based logic of HDL, that we denote by S≤HDL .

The logic is finitary, congruential and has theorems by construction. Moreover

AlgS≤HDL = HDL and for every HDL-algebra A, the order filters of A are the

S≤HDL-filter of A. Hence S≤HDL is filter distributive, and moreover it satisfies (PC),

but it does not satisfy (uDDT). We do not go further into details, and we leave the

in-depth study of this logic as future work.

For none of the logics S→HDL and S≤HDL we can dispense immediately with the

algebraic structure in the dual spaces of HDL-algebras. However, we will see in § 7.6

that the dualities for Distributive Hilbert algebras with infimum that we present

in Chapter 7 can be easily restricted to get dualities for S→HDL , in which in the

definition of the dual spaces there is no explicit mention to any algebraic structure.

This is even more interesting, given that HDL is a variety of distributive lattice

expansions for which extended Priestley duality cannot be applied.
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6.7. More expansions

We can get things even more complicated and think of other varieties of Hilbert

based algebras whose Hilbert based logics are suitable for our analysis. We mention

just two of them, one is defined in the language (→,∧,→′, 1) of type (2, 2, 2, 0), and

the other is defined in the language (→,∧,∨,→′, 1) of type (2, 2, 2, 2, 0).

It is well known that there are distributive lattices that are not relatively

pseudo-complemented. Therefore, there are distributive semilattices that cannot

be turned into implicative semilattices. Notice that for any distributive semilattice

〈A,∧, 1〉, at most one operation→′ can be defined on A such that 〈A,→′,∧, 1〉 turns

out to be an implicative semilattice. However, a priori there is no such restriction

over the number of operations → that can be defined on A such that 〈A,→,∧, 1〉
turns out to be an H∧-algebra. Let us show this situation by an example.

Example 6.7.1. Let 〈A,∧, 1〉 be the distributive semilattice given by Figure 5

(see page 142). On the one hand, we already know that the implication → defined

on A by the order (see 6.5.8) is such that 〈A,→,∧, 1〉 is a DH∧-algebra but it is

not an implicative semilattice. Consider now a new implication →′ defined on A

as follows:

x→′ y =


1 if x ≤ y,
a if x = b and y = 0,

b if x = a and y = 0,

y otherwise.

It is easy to check that 〈A,→′,∧, 1〉 is an implicative semilattice. Moreover, it is

also a DH∧-algebra, that is evidently different from 〈A,→,∧, 1〉.

Previous remarks motivate the study of the following classes of algebras:

Definition 6.7.2. An algebra A = 〈A,→,∧,→′, 1〉 of type (2, 2, 2, 0) is an

implicative Hilbert algebra with infimum or IH∧-algebra if:

(1) 〈A,→,∧, 1〉 is an H∧-algebra,

(2) 〈A,→′,∧, 1〉 is an implicative semilattice.

Definition 6.7.3. An algebra A = 〈A,→,∧,∨,→′, 1〉 of { (2, 2, 2, 2, 0) is an

implicative Hilbert algebra with lattice structure or IHL-algebra if:

(1) 〈A,→,∧,∨, 1〉 is an HL-algebra,

(2) 〈A,→′,∧,∨, 1〉 is a relatively pseudo-complemented lattice.

For any implicative semilattice 〈A,→,∧, 1〉, it follows that 〈A,→,∧,→, 1〉 is an

IH∧-algebra, and similarly for any relatively pseudo-complemented lattice. Exam-

ple 6.7.1 shows that not all IH∧-algebras have this form, i. e. it shows that there

are IH∧-algebras 〈A,→,∧,→′, 1〉 for which → and →′ are different.

It follows from the definition that IH∧-algebras form a variety and IHL-algebras

form a variety as well. Like in previous cases, the Hilbert based logics of IH∧ and

IHL (taking → as the main connective) are filter distributive finitary congruential

logics with theorems. The key point is that the dualities for Distributive Hilbert

algebras with infimum that we present in Chapter 7 can also be restricted to get

dualities for these logics. We do not go further into this, as the reader shall already

figure out how these and other classes of algebras could be defined in the same way.
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Table 8 summarizes the classes of algebras so far considered. The filter distri-

butive and congruential expansions of H they are related with are also listed. All

classes of algebras, except for H� and H∨, have a (→,∧, 1)-reduct that is a Hilbert

algebra with infimum. Except for DH∧, all the classes of algebras in Table 8 are

known to be varieties.

Notice that we only consider the classes of algebras that are not bounded, but

a similar table with the corresponding bounded algebras could be given.
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Table 8. Algebras with a reduct that is a Hilbert Algebra and

their logics.





CHAPTER 7

Duality theory for Distributive Hilbert Algebras

with infimum

In this chapter we present Priestley-style and Spectral-like dualities for the

class of DH∧-algebras, and we apply these results to tackle several problems.

Recall that in § 6.5.1 we reviewed the toolkit we need to carry out this objective.

In what follows we use such toolkit, as well as the dualities for Hilbert algebras (cf.

§ 6.2) and for distributive semilattices (cf. § 3.2) to develop the mentioned Spectral-

like and Priestley-style dualities for DH∧-algebras.

We expose systematically both dualities in parallel. In § 7.1 we prove represen-

tation theorems for DH∧-algebras and we introduce the definitions of DH∧-Spectral

spaces and DH∧-Priestley spaces. In § 7.2 we consider morphisms, and we introduce

the definition of DH∧-Spectral morphisms and DH∧-Priestley morphisms. In § 7.3

we define the functors and the natural transformations involved in the dualities.

In § 7.4 we study how the different notions of filters can be characterized within

the Spectral-like duality for DH∧-algebras. We use those results in § 7.5, where we

compare both dualities, and we show the functors involved in the equivalence of

the Spectral-like and the Priestley-style dual categories.

Finally in § 7.6 we explain how the same strategy followed for the dualities

for DH∧-algebras can yield dualities for other classes of algebras that were already

introduced in § 6.6 and § 6.7. In particular, in § 7.6.1 we show how the Spectral-like

and Priestley-style dualities for implicative semilattices that we find in the literature

can be obtained as a particular case of the dualities for DH∧-algebras. Moreover, in

§ 7.6.3–§ 7.6.4 we outline how the dualities for DH∧-algebras yield elegant Spectral-

like and Priestley-style dualities for some filter distributive finitary congruential

logics with theorems for which our theory in Chapter 5 does not lead us to elegant

dualities.

7.1. Dual objects

In this section we use what we know about duality theory for distributive

semilattices and Hilbert algebras (cf. § 3.2 and § 6.2) to develop two correspondences

between DH∧-algebras and certain classes of Spectral-like and Priestley-style spaces

that we introduce later on.

From now on, let A = 〈A,→,∧, 1〉 be a DH∧-algebra. As we already mentioned,

throughout this chapter the reader should keep in mind that the implication is taken

as the main operation on the DH∧-algebra, whereas the conjunction is taken as the

additional operation. Hence, the Spectral-like duality for DH∧-algebras that we

study here is built upon the Spectral-like duality for Hilbert algebras of [15] that

153
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we reviewed in § 3.3.1. And the Priestley-style duality for DH∧-algebras is built

upon the Priestley-style duality for Hilbert algebras that we obtained in § 6.2, that

is a simplification of the one in [17]. More specifically, the posets 〈Irr→(A),⊆〉 and

〈Op→(A),⊆〉 play a crucial role, as well as the maps:

ψA : A −→ P↑(Irr→(A)) ϑA : A −→ P↑(Op→(A))

a 7−→ {P ∈ Irr→(A) : a ∈ P} a 7−→ {P ∈ Op→(A) : a ∈ P}

that we already know that are isomorphisms between the Hilbert algebras 〈A,→, 1〉,
and 〈ψA[A],⇒, A〉 and 〈ϑA[A],⇒, A〉 respectively (cf. theorems 5.1.1 and 5.1.2).

When the context is clear, we drop the subscripts of ψA and ϑA.

The next proposition gives us the representation theorem for A based on the

collection of irreducible implicative filters of A. Notice that we use ↑ (resp. ↓) for

the up-set (resp. down-set) generated by a set in the poset 〈Irr→(A),⊆〉.
Proposition 7.1.1. For any DH∧-algebra A:

(1) ↑(ψ(a) ∩ Irr∧(A)) = ψ(a).

(2) ψ(a ∧ b) = ↑(ψ(a) ∩ ψ(b) ∩ Irr∧(A)).

Proof. For (1), the inclusion from left to right is immediate, since ψ(a) is an

up-set. Let us show the inclusion from right to left. Let P ∈ ψ(a), i. e. a ∈ P for

P ∈ Irr→(A). Then by Corollary 2.4.4, P c is an order ideal. And since a /∈ P c,
there are an order ideal P c and a meet filter ↑a such that ↑a∩ P c = ∅. By Lemma

2.3.3 there exists Q ∈ Irr∧(A), such that ↑a ⊆ Q and P c ∩ Q = ∅. Therefore we

have a ∈ Q ⊆ P for Q ∈ Irr∧(A), i. e. Q ∈ ψ(a) ∩ Irr∧(A) and Q ⊆ P , hence P ∈
↑(ψ(a) ∩ Irr∧(A)). For (2), notice that ψ(a)∩ψ(c)∩ Irr∧(A) = ψ(a∧ c)∩ Irr∧(A).

Now using item (1), it follows that ↑(ψ(a ∧ c) ∩ Irr∧(A)) = ψ(a ∧ c). �

Let us define a new binary operation u on ψ[A] as follows:

ψ(a) u ψ(b) := ↑(ψ(a) ∩ ψ(b) ∩ Irr∧(A)).

By the previous proposition we obtain that A is isomorphic to the algebra

ψ[A] := 〈ψ[A],⇒,u, Irr→(A)〉.
An alternative representation theorem for A, based on the collection of optimal

implicative filters of A, is obtained from the following proposition. It should be

kept in mind that in this case we use ↑ (resp. ↓) for the up-set (resp. down-set)

generated by a set in the poset 〈Op→(A),⊆〉.
Proposition 7.1.2. For any DH∧-algebra A:

(1) ↑(ϑ(a) ∩Op∧(A)) = ϑ(a).

(2) ϑ(a ∧ b) = ↑(ϑ(a) ∩ ϑ(b) ∩Op∧(A)).

Proof. For (1), the inclusion from left to right is immediate, since ϑ(a) is an

up-set. Let us show the inclusion from right to left: let P ∈ ϑ(a), i. e. a ∈ P for

P ∈ Op→(A). Then by Theorem 2.4.9, P c is an sF-ideal. And since a /∈ P c, there

are an F-ideal P c and a meet filter ↑a such that ↑a∩P c = ∅. By Lemma 2.3.7 there

exists Q ∈ Op∧(A), with ↑a ⊆ Q and P c∩Q = ∅. Therefore we have a ∈ Q ⊆ P for

Q ∈ Op∧(A), i. e. Q ∈ ϑ(a) ∩ Op∧(A) and Q ⊆ P , hence P ∈ ↑(ϑ(a) ∩Op∧(A)).

For (2), notice that ϑ(a) ∩ ϑ(c) ∩ Op∧(A) = ϑ(a ∧ c) ∩ Op∧(A). Now using item

(1), it follows that ↑(ϑ(a)∩ϑ(c)∩Op∧(A)) = ↑(ϑ(a∧ c)∩Op∧(A)) = ϑ(a∧ c). �



7.1. Dual objects 155

As before, let us define a new binary operation u on ϑ[A] as follows:

ϑ(a) u ϑ(b) := ↑(ϑ(a) ∩ ϑ(b) ∩Op∧(A)).

In this case we get that A is isomorphic to the algebra

ϑ[A] := 〈ϑ[A],⇒,u,Op→(A)〉.

Once we got the representation theorems, we need to introduce topologies for

characterizing dual objects. At this point both dualities differ substantially, and

that is why we discuss them in different subsections.

7.1.1. Spectral-like dual objects. Recall that within the Spectral-like dua-

lity for Hilbert algebras reviewed in § 3.3.1, we define on Irr→(A) a topology τκA
,

having as basis the collection

κA := {ψ(a)c : a ∈ A},

and we obtain that the structure 〈Irr→(A), τκA
〉 is an H-space (see definition in

page 41). Furthermore, the dual of the specialization order of the space coincides

with the inclusion relation on Irr→(A). And for all U ⊆ Irr→(A), cl(U) = ↑U
and sat(U) = ↓U , where ↑ (resp. ↓) are the up-set (resp. down-set) generated with

respect to the dual of the specialization order.

Let us consider the subspace of 〈Irr→(A), τκA
〉 generated by Irr∧(A). As κA

is a basis for Irr→(A), then we have that

κ̂A := {U ∩ Irr∧(A) : U ∈ κA} = {ψ(a)c ∩ Irr∧(A) : a ∈ A}

is a basis for the induced topology on Irr∧(A), that we denote by τκ̂A
. Notice that

for each a ∈ A,

ψ(a)c ∩ Irr∧(A) = {F ∈ Irr∧(A) : a /∈ F}.
We should recall now the Spectral-like duality for distributive semilattices pre-

sented in § 3.2.1. From that duality it follows that 〈Irr∧(A), τκ̂A
〉 is a DS-space (see

definition in page 36), and so it is compactly-based and sober. In order to complete

the characterization of the Spectral-like dual spaces of DH∧-algebras, we just need

the following proposition.

Proposition 7.1.3. For any non-empty subset B ⊆ A and any c ∈ A, if

cl(
⋂
{ψ(b) : b ∈ B} ∩ Irr∧(A)) ⊆ ψ(c), then there are n ∈ ω and b0, . . . , bn ∈ B,

such that:

cl(ψ(b0) ∩ · · · ∩ ψ(bn) ∩ Irr∧(A)) ⊆ ψ(c).

Proof. Assume that cl(
⋂
{ψ(b) : b ∈ B} ∩ Irr∧(A)) ⊆ ψ(c). We claim that

c ∈ JB〉〉. Suppose, towards a contradiction, that c /∈ JB〉〉. Then by Corollary

2.3.4 there is G ∈ Irr∧(A) such that JB〉〉 ⊆ G and c /∈ G. So B ⊆ G and thus

G ∈
⋂
{ψ(b) : b ∈ B} ∩ Irr∧(A) ⊆ cl(

⋂
{ψ(b) : b ∈ B} ∩ Irr∧(A)). And then from

the hypothesis it follows that G ∈ ψ(c) and so c ∈ G, a contradiction

Now if c = 1 then ψ(c) = Irr→(A) and there is nothing to prove. So assume

c 6= 1. Since c ∈ JB〉〉 and c 6= 1, there are n ∈ ω and b0, . . . , bn ∈ B such that

(b0 ∧ · · · ∧ bn) → c = 1, i. e. b0 ∧ · · · ∧ bn ≤ c. So ψ(b0) ∩ · · · ∩ ψ(bn) ∩ Irr∧(A) =

ψ(b0 ∧ · · · ∧ bn) ∩ Irr∧(A) ⊆ ψ(c), and since ψ(c) is an up-set, we obtain that

cl(ψ(b0) ∩ · · · ∩ ψ(bn) ∩ Irr∧(A)) ⊆ ψ(c), as required. �
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Definition 7.1.4. A structure X = 〈X, X̂, τκ〉 is a DH∧-Spectral space when:

(DH∧1) 〈X, τκ〉 is an H-space,

(DH∧2) X̂ ⊆ X generates a sober subspace of 〈X, τκ〉,
(DH∧3) U c = cl(U c ∩ X̂), for all U ∈ κ,

(DH∧4) cl(U c ∩ V c ∩ X̂)c ∈ κ, for any U, V ∈ κ,

(DH∧5) for any U, V ∈ κ andW ⊆ κ non-empty, if cl(
⋂
{W c : W ∈ W}∩X̂) ⊆ U c,

then cl(W c
0 ∩ · · · ∩W c

n ∩ X̂) ⊆ U c for some W0, . . . ,Wn ∈ W and some

n ∈ ω.

Recall that for any H-space 〈X, τκ〉, sobriety implies that the space is T0, so the

specialization quasiorder turns out to be an order whose dual is denoted by ≤X ,

or simply by ≤. Moreover, by condition (DH∧3) we get that for any DH∧-Spectral

space 〈X, X̂, τκ〉, we have X = cl(X ∩ X̂) = cl(X̂), and {U ∩ X̂ : U ∈ κ} is a basis

for the subspace of X generated by X̂, that we may denote simply by X̂.

Corollary 7.1.5. Let A = 〈A,→,∧, 1〉 be a DH∧-algebra. Then

Irr(A) := 〈Irr→(A), Irr∧(A), τκA
〉

is a DH∧-Spectral space.

Proof. Condition (DH∧1) follows from Spectral-like duality for Hilbert al-

gebras (see § 3.3.1). Condition (DH∧2) follows from Spectral-like duality for dis-

tributive semilattices (see § 3.2.1) and the fact that Irr∧(A) ⊆ Irr→(A) given by

Proposition 6.5.16. Conditions (DH∧3) and (DH∧4) follow from Proposition 7.1.1,

and condition (DH∧5) follows from Proposition 7.1.3. �

Remark 7.1.6. Concerning a DH∧-Spectral space 〈X, X̂, τκ〉, we have to be

careful when using complements, since we are working with two topological spaces

at the same time, namely, the main space 〈X, τκ〉 and the subspace generated by

X̂. We establish now the following convention: complements are always referred to

the biggest set X.

Proposition 7.1.7. Let 〈X, X̂, τκ〉 be a DH∧-Spectral space. Then KO(X̂) =

{U ∩ X̂ : U ∈ κ}.

Proof. First we show that KO(X̂) is included in {U ∩ X̂ : U ∈ κ}. Let

W ∈ KO(X̂), so by definition of subspace generated and using that κ is a basis for

τκ, we get W =
⋃
{V ∩ X̂ : V ∈ V} for some set V ⊆ κ. Since W is compact, there

are V0, . . . , Vn ∈ V, for some n ∈ ω, such that W = (V0 ∩ X̂) ∪ · · · ∪ (Vn ∩ X̂) =

(V c0 ∩ · · · ∩ V cn )c ∩ X̂. Notice that for each i ≤ n, we have that V ci is closed, so

cl(V c0 ∩· · ·∩V cn ∩X̂) ⊆ V ci . We obtain that cl(V c0 ∩· · ·∩V cn ∩X̂) ⊆ V c0 ∩· · ·∩V cn , and

then V c0 ∩· · ·∩V cn ∩X̂ ⊆ cl(V c0 ∩· · ·∩V cn ∩X̂)∩X̂. Clearly the reverse inclusion also

holds, so V c0 ∩· · ·∩V cn ∩X̂ = cl(V c0 ∩· · ·∩V cn ∩X̂)∩X̂ and then (V c0 ∩· · ·∩V cn )c∩X̂ =

(cl(V c0 ∩· · ·∩V cn ∩X̂))c∩X̂. Therefore W = cl(V c0 ∩· · ·∩V cn ∩X̂)c∩X̂. By condition

(DH∧4), cl(V c0 ∩ · · · ∩ V cn ∩ X̂)c ∈ κ. Thus we obtain, W = V ∩ X̂ for some V ∈ κ,

as required.

Now we show the reverse inclusion. We just have to show that for any U ∈ κ,

the set U ∩ X̂ is compact in X̂. Let U ∈ κ and consider W := U ∩ X̂. Sup-

pose that W =
⋃
{V ∩ X̂ : V ∈ V} for some non-empty V ⊆ κ. We claim that
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{V c : V ∈ V} ∩ X̂ ⊆ U c. Let x ∈

⋂
{V c : V ∈ V} ∩ X̂, i. e. x ∈ X̂ and x /∈ V for

all V ∈ V. Therefore x /∈
⋃
{V ∩X̂ : V ∈ V} = U∩X̂, and since x ∈ X̂, then x ∈ U c.

As U c is an up-set, it follows from the claim that cl(
⋂
{V c : V ∈ V} ∩ X̂) ⊆ U c.

And then by condition (DH∧5), there are V0, . . . , Vn ∈ V, for some n ∈ ω, such that

cl(V c0 ∩· · ·∩V cn ∩X̂) ⊆ U c. So U ⊆ (V c0 ∩· · ·∩V cn ∩X̂)c = (V c0 ∩X̂)c∪· · ·∪(V cn ∩X̂)c.

Therefore:

W = U ∩ X̂ ⊆ ((V c0 ∩ X̂)c ∪ · · · ∪ (V cn ∩ X̂)c) ∩ X̂

= ((V c0 ∩ X̂)c ∩ X̂) ∪ · · · ∪ ((V cn ∩ X̂)c ∩ X̂) = (V0 ∩ X̂) ∪ · · · ∪ (Vn ∩ X̂) ⊆W.

and thus W = (V0 ∩ X̂) ∪ · · · ∪ (Vn ∩ X̂), so W is compact. �

Corollary 7.1.8. Let 〈X, X̂, τκ〉 be a DH∧-Spectral space. Then the subspace

generated by X̂ is a DS-space.

Proof. Recall that {U ∩ X̂ : U ∈ κ} is a basis for the subspace generated by

X̂. By definition X̂ is sober, and it is T0 since the space 〈X, τκ〉 is T0. Moreover,

by Proposition 7.1.7, the subspace X̂ is compactly-based, so we are done. �

Similarly as it is done when dealing with H-spaces, for any DH∧-Spectral space

X = 〈X, X̂, τκ〉, we define the family D(X) := {U c : U ∈ κ}, that is a collection of

closed elements of X, and we also define the binary operation ⇒ on it, such that

for all U, V ∈ κ:

U c ⇒ V c := (sat(U ∩ V c))c.
The structure 〈D(X),⇒, X〉 turns out to be a Hilbert algebra. Moreover, the map

εX : X −→ P↑(D(X)) given by

εX(x) := {U ∈ D(X) : x ∈ U}

is a map onto the collection of irreducible implicative filters of the Hilbert algebra

〈D(X),⇒, X〉. Let u be the binary operation on D(X), such that for all U, V ∈ κ:

U c u V c := cl(U c ∩ V c ∩ X̂).

By condition (DH∧4), we obtain that D(X) is closed under u. Let us show that

〈D(X),u, X〉 is isomorphic to the dual distributive semilattice of the DS-space X̂.

Recall that for the DS-space X̂ given by Corollary 7.1.8, the family F (X) :=

{U c : U ∈ KO(X̂)} is closed under finite intersections and moreover the struc-

ture 〈F (X),∩, X̂〉 is the dual distributive semilattice of X̂. Consider the map

f : D(X) −→ F (X), given by

f(U) := U ∩ X̂.

Clearly f is a surjective map, and by condition (DH∧3), U = cl(U ∩ X̂) for all

U ∈ D(X). Thus f is also injective. Moreover, from U, V ∈ D(X) being up-sets, it

follows that f(U) ∩ f(V ) = U ∩ V ∩ X̂ = cl(U ∩ V ∩ X̂) ∩ X̂ = f(U u V ). Hence f

is an isomorphism between 〈D(X),u, X〉 and 〈F (X),∩, X̂〉.

Theorem 7.1.9. Let X = 〈X, X̂, τκ〉 be a DH∧-Spectral space. Then X∗ :=

〈D(X),⇒,u, X〉 is a DH∧-algebra.
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Proof. We just need to show that for all U, V ∈ D(X) the following condition

holds:

U ⇒ V = X iff U u V = U.

Recall that by definition of ⇒, we have that U ⇒ V = X if and only if U ⊆ V .

Assume that U ⊆ V . Then by (DH∧3), U u V = cl(U ∩ V ∩ X̂) = cl(U ∩ X̂) = U .

Assume now that U = U u V = cl(U ∩ V ∩ X̂), and let P ∈ U . We show that

P ∈ V . By assumption, there is Q ∈ U ∩ V ∩ X̂ such that Q ⊆ P . In particular,

Q ∈ V and since V is an up-set and Q ⊆ P , we obtain P ∈ V , as required. �

Corollary 7.1.10. Let X = 〈X, X̂, τκ〉 be a DH∧-Spectral space. Then εX[X̂] =

Irr∧(X∗).

Proof. For all x ∈ X̂ we have that f [εX(x)] = {U ∩ X̂ : x ∈ U,U c ∈ κ} =

{U : x ∈ U,U c ∈ KO(X̂)}, therefore by Spectral-like duality for distributive semi-

lattices, f [εX[X̂]] is the collection of all irreducible meet filters of 〈F (X),∩, X̂〉, and

then, by the isomorphism given by f , we obtain that εX[X̂] = Irr∧(X∗). �

Theorem 7.1.11. Let X = 〈X, X̂, τκ〉 be a DH∧-Spectral space. Then

Irr(X∗) := 〈Irr→(X∗), Irr∧(X∗), τκX∗ 〉

is a DH∧-Spectral space such that 〈X, τκ〉 and 〈Irr→(X∗), τκX∗ 〉 are homeomorphic

topological spaces by means of the map εX : X −→ Irr→(X∗) and moreover εX[X̂] =

Irr∧(X∗).

Proof. By Spectral-like duality for Hilbert algebras we know that εX is a ho-

meomorphism between the topological spaces 〈X, τκ〉 and 〈Irr→(X∗), τκX∗ 〉. More-

over by Corollary 7.1.10, εX[X̂] = Irr∧(X∗). �

Theorem 7.1.12. Let A = 〈A,→,∧, 1〉 be a DH∧-algebra. Then

(Irr(A))∗ := 〈D(Irr(A)),⇒,u, Irr→(A)〉

is a DH∧-algebra isomorphic to A by means of the map ψA : A −→ D(Irr(A)).

Proof. By Spectral-like duality for Hilbert algebras we know that ψA is an

isomorphism between Hilbert algebras 〈A,→, 1〉 and 〈D(Irr(A)),⇒, Irr→(A)〉. It

only remains to show that for all a, c ∈ A, ψA(a) u ψA(c) = ψA(a ∧ c). This

follows from the definition of u and from Proposition 7.1.1, since ψA(a) u ψA(c) =

cl(ψA(a) ∩ ψA(c) ∩ Irr∧(A)) = ψA(a ∧ c). �

The previous theorem, together with Corollary 7.1.5 and theorems 7.1.9 and

7.1.11 summarize all preceding results, and should be kept in mind for § 7.2 and

§ 7.3, where the duality for morphisms is studied, and the functors between the

categories we will be interested in are defined. Before moving to that, let us examine

Priestley-dual objects of DH∧-algebras

7.1.2. Priestley-style dual objects. Recall that within the Priestley-style

duality for Hilbert algebras that we developed in § 6.2, we define on Op→(A) a

topology τA, having as subbasis the collection:

{ϑ(a) : a ∈ A} ∪ {ϑ(b)c : b ∈ A},
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and we obtain that the structure 〈Op→(A), τA,⊆, ϑ[A]〉 is an H-Priestley space (see

definition in page 126). Furthermore, the dense subset given by condition (H13) is

precisely Irr→(A).

Let us consider the subspace of 〈Op→(A), τA〉 generated by Op∧(A). By defi-

nition,

{ϑ(a) ∩Op∧(A) : a ∈ A} ∪ {ϑ(b)c ∩Op∧(A) : b ∈ A}
is a subbasis for the induced topology on Op∧(A), that we denote by τ̂A.

We should recall now the Priestley-style duality for distributive semilattices

presented in § 3.2.2. From that it follows that 〈Op∧(A), τ̂A,⊆〉 is a Priestley space,

such that for any clopen up-set W of that space, W is Irr∧(A)-admissible if and

only if W = ϑ(a)∩Op∧(A) for some a ∈ A. Recall that Irr∧(A)-admissible clopen

up-sets of 〈Op∧(A), τ̂A,⊆〉 are subsets W ⊆ Op∧(A) such that Op∧(A) \ W ⊆
↓(Irr∧(A) \W ).

Now we are ready to introduce the definition of Priestley-style dual objects of

DH∧-algebras.

Definition 7.1.13. A structure X = 〈X, τ,≤, B, X̂〉 is a DH∧-Priestley space

when:

(DH∧6) 〈X, τ,≤, B〉 is an H-Priestley space,

(DH∧7) X̂ ⊆ X generates a compact subspace,

(DH∧8) U = ↑(U ∩ X̂), for any U ∈ B,

(DH∧9) ↑(U ∩ V ∩ X̂) ∈ B, for any U, V ∈ B,

(DH∧10) W is X̂ ∩ XB-admissible clopen up-set of X̂ iff W = U ∩ X̂ for some

U ∈ B.

Recall that for any H-Priestley space 〈X, τ,≤, B〉 (see Definition 6.2.9 in page

126), the set XB := {x ∈ X : {U ∈ B : x /∈ U} is non-empty and up-directed} is

the dense subset of 〈X, τ〉 given by condition (H13), and it follows from Corollary

5.1.36 that B∪{U c : U ∈ B} is a subbasis of the Priestley space 〈X, τ,≤〉. Moreover,

by condition (DH∧7) we get that for any DH∧-Priestley space 〈X, τ,≤, B, X̂〉, the

family {U ∩ X̂ : U ∈ B} ∪ {U c ∩ X̂ : U ∈ B} is a subbasis for the subspace of X

generated by X̂. We may denote this subspace by 〈X̂, τ̂〉, or simply by X̂. Let us

denote {U ∩ X̂ : U ∈ B} by B̂.

Corollary 7.1.14. Let A = 〈A,→,∧, 1〉 be a DH∧-algebra. Then

Op(A) := 〈Op→(A), τA,⊆, ϑA[A],Op∧(A)〉

is a DH∧-Priestley space.

Proof. Condition (DH∧6) follows from Priestley-style duality for H-algebras

(see § 6.2). Conditions (DH∧7) and (DH∧10) follow from Priestley-duality for dis-

tributive semilattices (see § 3.2.2) and the fact that Op∧(A) ⊆ Op→(A) given by

Corollary 6.5.21. Finally conditions (DH∧8) and (DH∧9) follow from Proposition

7.1.2. �

Remark 7.1.15. Concerning a DH∧-Priestley space X = 〈X, τ,≤, B, X̂〉, we

have to be careful again when using complements, since we are dealing with two

ordered topological spaces at the same time, namely the main space 〈X,≤, τ〉, and
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the subspace of it generated by X̂, equipped with the inherited order. As before,

we establish now the following convention: complements are always referred to the

biggest set X.

Proposition 7.1.16. Let 〈X, τ,≤, B, X̂〉 be a DH∧-Priestley space. Then the

set XB ∩ X̂ is dense in X̂.

Proof. It is enough to show that for every non-empty basic open K of X̂,

there is x ∈ XB ∩ X̂ such that x ∈ K. Let K be a non-empty basic open of

X̂. By definition of subbasis, there are U0, . . . , Un, V0, . . . , Vm ∈ B such that K =

U0∩· · ·∩Un∩V c0 ∩· · ·∩V cm∩X̂. By assumption U0∩· · ·∩Un∩V c0 ∩· · ·∩V cm∩X̂ 6= ∅ so

U0∩· · ·∩Un∩X̂ * V0∪· · ·∪Vm. Then we also have ↑(U0∩· · ·∩Un∩X̂) * V0∪· · ·∪Vm.

By (DH∧9), U := ↑(U0 ∩ · · · ∩Un ∩ X̂) ∈ B. Then we have U * V0 ∪ · · · ∪ Vm, and

since XB is dense in 〈X, τ〉, and B is a family of clopen up-sets, there is x ∈ XB

such that x ∈ U and x /∈ V0∪· · ·∪Vm. As x ∈ XB , the collection {W ∈ B : x /∈W}
is up-directed, so there is W ∈ B such that Vj ⊆ W , for all j ≤ m, and x /∈ W .

By definition of U , there is x′ ∈ U0 ∩ · · · ∩ Un ∩ X̂ such that x′ ≤ x. Since W is

an up-set, it follows x′ /∈ W . Therefore, we have x′ ∈ W c ∩ X̂. Thus by (DH∧10),

there is z ∈W c∩X̂∩XB such that x′ ≤ z. As Ui are up-sets for all i ≤ n, it follows

z ∈ U0 ∩ · · · ∩ Un. Moreover, since Vj ⊆ W for all j ≤ m, it follows z /∈ Vj , for all

j ≤ m. Hence we have z ∈ XB such that z ∈ U0 ∩ · · · ∩ Un ∩ V c0 ∩ · · · ∩ V cm ∩ X̂, as

required. �

Recall that for a DH∧-Priestley space 〈X, τ,≤, B, X̂〉, the XB-admissible clopen

up-sets of X are the clopen up-sets U ∈ C`U(X) such that max(U c) ⊆ XB . Simi-

larly, the XB∩X̂-admissible clopen up-sets of X̂ are the clopen up-sets V ∈ C`U(X̂)

such that X̂ \ V ⊆ ↓(X̂ ∩XB \ V ).

Proposition 7.1.17. Let 〈X, τ,≤, B, X̂〉 be a DH∧-Priestley space and let

x ∈ X̂. Then x ∈ XB if and only if the collection of XB ∩ X̂-admissible clopen

up-sets W of X̂ such that x /∈W is non-empty and up-directed.

Proof. Notice that from condition (DH∧10), this proposition can be restated

as follows: for any x ∈ X̂, x ∈ XB if and only if {U ∩ X̂ : x /∈ U ∈ B} is non-empty

and up-directed.

Let x ∈ XB ∩ X̂. Then as x ∈ XB , by condition (H13′) in Definition 6.2.9,

the collection {U ∈ B : x /∈ U} is non-empty and up-directed. From this it clearly

follows the claim.

Let now x ∈ X̂ and assume that {U ∩ X̂ : x /∈ U ∈ B} is non-empty and up-

directed. On the one hand, this clearly implies that {U ∈ B : x /∈ U} is non-empty.

On the other hand, let U1, U2 ∈ B be such that x /∈ U1, U2. Then x /∈ U1 ∩ X̂ and

x /∈ U2 ∩ X̂, so by assumption, there is V ∈ B such that U1 ∩ X̂, U2 ∩ X̂ ⊆ V ∩ X̂
and x /∈ V . And since V is an up-set, we have ↑(U1 ∩ X̂), ↑(U2 ∩ X̂) ⊆ V , and

by condition (DH∧8), this implies that U1, U2 ⊆ V , for x /∈ V . We conclude that

{U ∈ B : x /∈ U} is up-directed, and therefore, by definition of H-Priestley space,

x ∈ XB . �
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Proposition 7.1.18. Let 〈X, τ,≤, B, X̂〉 be a DH∧-Priestley space. Then for

any x, y ∈ X̂, x ≤ y if and only if for every XB ∩ X̂-admissible clopen up-set W of

X̂, x ∈W implies y ∈W .

Proof. This follows from condition (DH∧10) and condition (H13′) in the def-

inition of H-Priestley space. �

Corollary 7.1.19. Let X = 〈X, τ,≤, B, X̂〉 be a DH∧-Priestley space. Then

〈X̂, τ̂ ,≤, XB ∩ X̂〉 is a generalized Priestley space.

Proof. As Priestley separation axiom is inherited by subspaces, and 〈X̂, τ̂〉 is

compact by definition, 〈X̂, τ̂ ,≤〉 is a Priestley space, so condition (DS3) holds. By

Proposition 7.1.16, condition (DS4) holds. By Proposition 7.1.17, condition (DS5)

holds, and by Proposition 7.1.18, condition (DS6) also holds. �

Similarly as when dealing with H-Priestley spaces, for any DH∧space X =

〈X, τ,≤, B, X̂〉, we define a binary operation ⇒ on B,such that for all U, V ∈ B:

U ⇒ V := (↓(U ∩ V c))c.

The structure 〈B,⇒, X〉 turns out to be a Hilbert algebra. Moreover, the map

ξX : X −→ P↑(B) given by

ξX(x) := {U ∈ B : x ∈ U}

is a map onto the collection of optimal implicative filters of the Hilbert algebra

〈B,⇒, X〉. Let u be the binary operation on B such that for all U, V ∈ B:

U u V := ↑(U ∩ V ∩ X̂).

By condition (DH∧9) B is closed under u. Let us show that 〈B,u, X〉 is iso-

morphic to the dual distributive semilattice of the generalized Priestley space

X̂ := 〈X̂, τ̂ ,≤, XB ∩ X̂〉.
Recall that for the generalized Priestley space X̂ given by Corollary 7.1.19, the

collection of XB ∩ X̂-admissible clopen up-sets of X̂ is closed under finite inter-

sections and moreover the structure 〈C`Uad
XB∩X̂

(X̂),∩, X̂〉 is the dual distributive

semilattice of X̂. By condition (DH∧10) we know that this collection is precisely

B̂ = {U ∩ X̂ : U ∈ B}, therefore 〈B̂,∩, X̂〉 is a distributive semilattice. Consider

the map g : B −→ B̂, given by:

g(U) := U ∩ X̂.

Clearly g is a surjective map, and by condition (DH∧8), for all U ∈ B, U = ↑(U∩X̂).

Thus g is also injective. Moreover, from U, V ∈ B being up-sets, it follows that

g(U)∩g(V ) = U∩V ∩X̂ = ↑(U∩V ∩X̂)∩X̂ = g(UuV ). Hence g is an isomorphism

between 〈B,u, X〉 and 〈B̂,∩, X̂〉.

Theorem 7.1.20. Let X = 〈X, τ,≤, B, X̂〉 be a DH∧-Priestley space. Then

X• = 〈B,⇒,u, X〉 is a DH∧-algebra.

Proof. We just need to show that both ⇒ and u define the same order, i. e.

we have to show that for all U, V ∈ B:

U ⇒ V = X iff U u V = U.
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Notice that for all U ∈ B, g−1[U ∩ X̂] = ↑(U ∩ X̂). By definition we have that

U ⇒ V = X if and only if U ⊆ V . First assume U ⊆ V . Then using (DH∧8)

we get U u V = ↑(U ∩ V ∩ X̂) = ↑(U ∩ X̂) = U . For the converse, assume that

U = U u V = ↑(U ∩ V ∩ X̂) and let x ∈ U . Then there is y ∈ U ∩ V ∩ X̂ such that

y ≤ x. But then since V is an up-set, we get x ∈ V , so U ⊆ V , as required. �

Corollary 7.1.21. Let X = 〈X, X̂, τκ〉 be a DH∧-Spectral space. Then ξX[X̂] =

Op∧(X•).

Proof. Notice that for all x ∈ X̂ we have g[ξX(x)] = {U ∩ X̂ : x ∈ U ∈ B} =

{V ∈ B̂ : x ∈ V }, therefore by Priestley-style duality for distributive semilattices,

g[ξX[X̂]] is the collection of all optimal meet filters of 〈B̂,∩, X̂〉, and then, by the

isomorphism given by g, we obtain that ξX[X̂] = Op∧(X•). �

Theorem 7.1.22. Let X = 〈X, τ,≤, B, X̂〉 be a DH∧-Priestley space. Then

Op(X•) := 〈Op→(X•), τX• , ⊆, ϑX• [B],Op∧(X•)〉

is a DH∧-Priestley space such that the structures 〈X, τ,≤〉 and 〈Op→(X•), τX• ,⊆〉
are order-homeomorphic topological spaces by means of the map ξX : X −→ Op→(X•)

and moreover ξX[XB ] = Irr→(X•) and ξX[X̂] = Op∧(X•).

Proof. By Priestley-style duality for Hilbert algebras we know that ξX is an

order-homeomorphism between 〈X, τ,≤〉 and 〈Op→(X•), τX• ,⊆〉, and ξX[XB ] =

Irr→(X•). Moreover, by Corollary 7.1.21, ξX[X̂] = Op∧(X•). �

Theorem 7.1.23. Let A = 〈A,→,∧, 1〉 be a DH∧-algebra. Then:

ϑA[A] := 〈ϑA[A],⇒,u,Op→(A)〉

is a DH∧-algebra isomorphic to A by means of the map ϑA : A −→ ϑA[A].

Proof. By Priestley-style duality for Hilbert algebras, we know that ϑA is an

isomorphism between Hilbert algebras 〈A,→, 1〉 and 〈ϑA[A],⇒,Op→(A)〉. So we

just need to show that for all b, c ∈ A, ϑA(b) u ϑA(c) = ϑA(b ∧ c). This follows

from the definition and Proposition 7.1.2, since ϑA(b)uϑA(c) = ↑(ϑA(b)∩ϑA(c)∩
Op∧(A)) = ϑA(b ∧ c). �

The previous theorem together with theorems 7.1.11 and 7.1.20, and Corollary

7.1.14 summarize all preceding results, and should be kept in mind for the next

sections, where the duality for morphisms is studied, and the functors involved are

defined.

7.2. Dual morphisms

In the present section we study two dual correspondences concerning two di-

fferent notions of morphisms between DH∧-algebras and certain classes of relations

between DH∧-Spectral spaces and DH∧-Priestley spaces respectively that we intro-

duce later on.

We follow an approach similar to that for Hilbert algebras by Celani et al. in [15]

and we focus on two different morphisms between DH∧-algebras. One is the usual

notion of algebraic homomorphism (preserving the constant and the operations),
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and the other is a weaker notion, similar to that of semi-homomorphism between

Hilbert algebras:

Let A1 = 〈A1,→1,∧1, 11〉 and A2 = 〈A2,→2,∧2, 12〉 be two DH∧-algebras.

A map h : A1 −→ A2 is a meet-semi-homomorphism (or ∧-semi-homomorphism)

when for all a, b ∈ A1:

– h(11) = 12,

– h(a→1 b) ≤ h(a)→2 h(b),

– h(a ∧1 b) = h(a) ∧2 h(b).

When h satisfies moreover h(a →1 b) = h(a) →2 h(b) for all a, b ∈ A, then h is

called a meet-homomorphism or ∧-homomorphism, or simply homomorphism when

no confusion is possible.

Notice that ∧-semi-homomorphisms are semi-homomorphisms between the res-

pective Hilbert algebra reducts, and they are also homomorphisms between the

respective distributive semilattice reducts. From now on let A1 = 〈A1,→1,∧1, 11〉
and A2 = 〈A2,→2,∧2, 12〉 be two DH∧-algebras and let h : A1 −→ A2 be a

∧-semi-homomorphism. As in the case of the study of Hilbert algebras, ∧-semi-

homomorphisms are relevant, because they are the maps whose inverse map sends

implicative filters to implicative filters. It also follows that the inverse map of a

∧-semi-homomorphism sends meet filters to meet filters:

Lemma 7.2.1. For any P ∈ Fi→(A2), h−1[P ] ∈ Fi→(A1). Moreover, if

P ∈ Fi∧(A2), then h−1[P ] ∈ Fi∧(A1).

For any ∧-semi-homomorphism h : A1 −→ A2, we define a binary relation

Rh ⊆ Op→(A2)×Op→(A1) by:

(P,Q) ∈ Rh iff h−1[P ] ⊆ Q.
We denote the restriction of Rh to Irr→(A2) × Irr→(A1) by Rh. These are the

relations that are used to represent h. Recall that for the relation Rh we may

consider the function �Rh : P(Op→(A1)) −→ P(Op→(A2)) given by:

�Rh(U) := {Q ∈ Op→(A2) : Rh(Q) ⊆ U}.
And regarding the relation Rh, we may consider a different map, the function

�Rh : P(Irr→(A1)) −→ P(Irr→(A2)), given by:

�Rh(U) := {Q ∈ Irr→(A2) : Rh(Q) ⊆ U}.

Let us examine in detail the properties of the relations Rh and Rh. Notice

that, for convenience, we denote by ϑi and ψi the maps ϑAi
and ψAi

respectively.

Similarly, we use κi, τκi and τi instead of κAi
, τκAi

and τAi
respectively. The next

proposition gives us the two representation theorems for h:

Proposition 7.2.2. For any ∧-semi-homomorphism h : A1 −→ A2:

(1) �Rh(ϑ1(a)) = ϑ2(h(a)) for all a ∈ A.

(2) �Rh(ψ1(a)) = ψ2(h(a)) for all a ∈ A.

Proof. For (1), we have from the definition of �Rh that:

�Rh(ϑ1(a)) = {P ∈ Op→(A2) : Rh(P ) ⊆ ϑ1(a)}
= {P ∈ Op→(A2) : ∀Q ∈ Op→(A1)

(
if h−1[P ] ⊆ Q, then a ∈ Q

)
}.
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Notice that from Corollary 2.4.8 we obtain that for any P ′ ∈ Fi→(A1), a ∈ P ′

if and only if for all Q ∈ Op→(A1), a ∈ Q whenever P ′ ⊆ Q. And by Lemma

7.2.1 we know that h−1[P ] ∈ Fi→(A1) for all P ∈ Op→(A2), so what we have is

�Rh(ϑ1(a)) = {P ∈ Op→(A2) : a ∈ h−1[P ]} = {P ∈ Op→(A2) : h(a) ∈ P} =

ϑ2(h(a)).

For (2) we proceed similarly, since we have from the definition of �Rh that:

�Rh(ψ1(a)) = {P ∈ Irr→(A2) : Rh(P ) ⊆ ψ1(a)}
= {P ∈ Irr→(A2) : ∀Q ∈ Irr→(A1)

(
if h−1[P ] ⊆ Q, then a ∈ Q

)
}.

And from Corollary 2.4.6 we obtain that for any P ′ ∈ Fi→(A1), a ∈ P ′ if and

only if for all Q ∈ Irr→(A1), z ∈ Q whenever P ′ ⊆ Q. Then using again Lemma

7.2.1, as h−1[P ] ∈ Fi→(A1) for all P ∈ Irr→(A2), what we get is �Rh(ψ1(a)) =

{P ∈ Irr→(A2) : a ∈ h−1[P ]} = {P ∈ Irr→(A2) : h(a) ∈ P} = ψ2(h(a)). �

It follows from the previous proposition that the restriction of �Rh to ϑ1[A1] is

a ∧-semi-homomorphism between ϑ1[A1] and ϑ2[A2]. Similarly the restriction of

�Rh to ψ1[A1] turns out to be a ∧-semi-homomorphism between ψ1[A1] and ψ2[A2].

Moreover, when h is a ∧-homomorphism, then so are the respective restrictions

of �Rh and �Rh . Hence Proposition 7.2.2 gives us two analogous representation

theorems for h. In the following subsections, we discuss first the Spectral-like

duals of ∧-semi-homomorphisms and ∧-homomorphisms, and then the Priestley-

style duals. In both cases we prove the facts that motivate the definition of dual

morphisms before introducing such definition.

7.2.1. Spectral-like dual morphisms. Recall that within the Spectral-like

duality for Hilbert algebras reviewed in § 3.3.1, it is proven that the relation Rh
is an H-relation, whenever h is a semi-homomorphism between Hilbert algebras,

and it is functional provided h is a homomorphism of Hilbert algebras. We just

need the following proposition to complete the characterization of Spectral-duals

of morphisms between DH∧-algebras:

Proposition 7.2.3. Let P ∈ Irr∧(A2). Then Rh(P ) = ↑(Rh(P ) ∩ Irr∧(A1)).

Proof. By definition Rh(P ) is an up-set, so we just have to show the inclusion

from left to right. Let Q ∈ Rh(P ), i. e. h−1[P ] ⊆ Q. By Lemma 7.2.1 we know

that h−1[P ] ∈ Fi∧(A1). Moreover, as Q ∈ Irr→(A1), Qc is an order ideal. Then

from h−1[P ] ∩ Qc = ∅ and Lemma 2.3.3 we get that there is Q′ ∈ Irr∧(A1) such

that h−1[P ] ⊆ Q′ and Q′ ∩ Qc = ∅. Then Q′ is the required element such that

Q′ ∈ Rh(P ) ∩ Irr∧(A1) and Q′ ⊆ Q. �

Definition 7.2.4. Let X1 = 〈X1, X̂1, τκ1〉 and X2 = 〈X2, X̂2, τκ2〉 be two

DH∧-Spectral spaces. A relation R ⊆ X1×X2 is an DH∧-Spectral morphism when:

(DH∧R1) R is an H-relation between H-spaces 〈X1, τκ1
〉 and 〈X2, τκ2

〉,
(DH∧R2) for every x ∈ X̂1, R(x) = cl(R(x) ∩ X̂2).

Moreover, R is said to be functional when it is moreover a functional H-relation,

i. e. when it satisfies the condition:

(HF) if (x, y) ∈ R, then there exists z ∈ cl(x) such that R(z) = cl(y).
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Recall that for any H-relation R ⊆ X1 ×X2 between H-spaces X1 and X2, the

map �R : P(X2) −→ P(X1) is a semi-homomorphism between the Hilbert algebras

〈D(X2),⇒2, X2〉 and 〈D(X1),⇒1, X1〉. Moreover, �R is a homomorphism provided

R is functional.

Corollary 7.2.5. Let A1 and A2 be two DH∧-algebras and let h : A1 −→ A2

be a ∧-semi-homomorphism between them. Then Rh is a DH∧-Spectral morphism

between DH∧-Spectral spaces Irr→(A2) and Irr→(A1). Moreover, if h is a ∧-homo-

morphism, then Rh is a functional.

Proof. Condition (DH∧R1) follows from Spectral-like duality for Hilbert al-

gebras. Condition (DH∧R2) follows from Proposition 7.2.3. Moreover, when h is a

∧-homomorphism, and condition (HF) follows again from Spectral-like duality for

Hilbert algebras. �

Example 7.2.6. Let X = 〈X, X̂, τκ〉 be a DH∧-Spectral space. Recall that we

denote by ≤ the dual of the specialization order of the space 〈X, τκ〉. By Spectral-

like duality for Hilbert algebras it follows that ≤ is a functional H-relation between

the H-space 〈X, τκ〉 and itself. It is, in fact, the identity morphism for X. Notice

that we have for all x ∈ X̂, ↑x = ↑(↑x ∩ X̂). Therefore ≤ also satisfies condition

(DH∧R2), and so it is a DH∧-Spectral functional morphism.

Theorem 7.2.7. Let X1 and X2 be two DH∧-Spectral spaces and let R ⊆ X1 ×X2

be a DH∧-Spectral morphism between them. Then �R is a ∧-semi-homomorphism

between the DH∧-algebras 〈D(X2),⇒2,u2, X2〉 and 〈D(X1),⇒1,u1, X1〉.

Proof. We only need to show that�R preserves meets, i. e. that�R(U u2 V ) =

�R(U) u1 �R(V ) for all U, V ∈ D(X2). By definition, this is equivalent to show that

for all U, V ∈ D(X2):

�R(cl(U ∩ V ∩ X̂2)) = cl(�R(U) ∩�R(V ) ∩ X̂1).

First we show the inclusion from left to right. Let x ∈ �R(cl(U ∩V ∩ X̂2)). By

condition (DH∧3) we know that �R(cl(U ∩V ∩X̂2)) = cl(�R(cl(U ∩V ∩X̂2))∩X̂1).

Then there is y ∈ X̂1 such that y ∈ �R(cl(U ∩ V ∩ X̂2)) and y ≤ x. By definition

we have R(y) ⊆ cl(U ∩V ∩ X̂2). We show R(y) ⊆ U ∩V : let z ∈ R(y), then there is

z′ ∈ U ∩ V ∩ X̂2 such that z′ ≤ z. Since U, V are up-sets, then we have z ∈ U ∩ V .

We conclude R(y) ⊆ U ∩ V , i. e. y ∈ �R(U) and y ∈ �R(V ). Since, by assumption

y ∈ X̂1, we have y ∈ �R(U) ∩ �R(V ) ∩ X̂1. Now using that y ≤ x, we obtain

x ∈ cl(�R(U) ∩�R(V ) ∩ X̂1), as required.

Let us show now the reverse inclusion. since �R(cl(U ∩ V ∩ X̂2)) is an up-

set, it is enough to show that �R(U) ∩ �R(V ) ∩ X̂1 ⊆ �R(cl(U ∩ V ∩ X̂2)). So

we take x ∈ �R(U) ∩ �R(V ) ∩ X̂1, i. e. R(x) ⊆ U ∩ V and x ∈ X̂1. We show

R(x) ⊆ cl(U ∩ V ∩ X̂2). Let y ∈ R(x). By condition (DH∧R2) we know that

R(x) = cl(R(x) ∩ X̂2). Then there is y′ ∈ R(x) ∩ X̂2 such that y′ ≤ y. Then

since R(x)|subseteqY ∩ V , we have y′ ∈ U ∩ V , so y′ ∈ U ∩ V ∩ X̂2. Therefore

y ∈ cl(U ∩ V ∩ X̂2). Hence R(x) ⊆ cl(U ∩ V ∩ X̂2), i. e. x ∈ �R(cl(U ∩ V ∩ X̂2)),

as required. �
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Corollary 7.2.8. Let R ⊆ X1 ×X2 be a DH∧-Spectral functional morphism

between DH∧-Spectral spaces X1 and X2. Then �R is a homomorphism between

DH∧-algebras 〈D(X2),⇒2,u2, X2〉 and 〈D(X1),⇒1,u1, X1〉.

Corollary 7.2.5 and Theorem 7.2.7 summarize the main results concerning ∧-

semi-homomorphisms and their duals. Corollaries 7.2.5 and 7.2.8 do the same

concerning ∧-homomorphisms. These results should be kept in mind for § 7.3.1,

where the functors involved are defined. Before moving to that, let us examine

Priestley-duals of ∧-semi-homomorphisms and ∧-homomorphisms.

7.2.2. Priestley-style dual morphisms. In regard to morphisms between

DH∧-Priestley spaces, we follow the same strategy as in the previous subsection.

Recall that when we developed Priestley-style duality for Hilbert algebras in § 6.2,

we proved that the relation Rh is an H-Priestley morphism, whenever h is a semi-

homomorphism between Hilbert algebras. Moreover if h is a homomorphism be-

tween Hilbert algebras, then Rh is functional. The following proposition is the only

result required to complete the characterization of Priestley-duals of morphisms

between DH∧-algebras.

Proposition 7.2.9. Let P ∈ Op∧(A2). Then Rh(P ) = ↑(Rh(P ) ∩Op∧(A1)).

Proof. By definition, Rh is an up-set, so we just have to show the inclusion

from left to right. Let Q ∈ Rh(P ), i. e. h−1[P ] ⊆ Q. By Lemma 7.2.1 we know

that h−1[P ] ∈ Fi∧(A1). Moreover, as Q ∈ Op→(A1), Qc is an sF-ideal, and in

particular it is an F-ideal. Then from h−1[P ] ∩ Qc = ∅ and Lemma 2.3.7, we get

that there is Q′ ∈ Op∧(A1) such that h−1[P ] ⊆ Q′ and Q′ ∩ Qc = ∅. Then Q′ is

the required element such that Q′ ∈ Rh(P ) ∩Op∧(A1) and Q′ ⊆ Q. �

Definition 7.2.10. Let X1 = 〈X1, τ1,≤1, B1, X̂1〉 and X2 = 〈X2, τ2,≤2, B2, X̂2〉
be two DH∧-Priestley spaces. A relation R ⊆ X1×X2 is a DH∧-Priestley morphism

when:

(DH∧R3) R is an H-Priestley morphism between H-Priestley spaces 〈X1, τ1,≤1, B1〉
and 〈X2, τ2,≤2, B2〉,

(DH∧R4) for every x ∈ X̂1, R(x) = ↑(R(x) ∩ X̂2).

Moreover, R is said to be functional when it is moreover a functional H-Priestley

morphism, i. e. when it satisfies the condition:

(HF′) for every x ∈ X1 and every y ∈ XB2 , if (x, y) ∈ R, then there exists

z ∈ XB1 such that z ∈ ↑x and R(z) = ↑y.

Recall that for anyH-Priestley relationR ⊆ X1×X2 betweenH-Priestley spaces

X1 and X2, the map �R : P(X2) −→ P(X1) is a semi-homomorphism between

Hilbert algebras 〈B2,⇒2, X2〉 and 〈B1,⇒1, X1〉. Moreover �R is a homomorphism

whenever R is functional.

Corollary 7.2.11. Let A1 and A2 be two DH∧-algebras and let h : A1 −→ A2

be a ∧-semi-homomorphism between them. Then Rh is a DH∧-Priestley mor-

phism between DH∧-Priestley spaces Op(A2) and Op(A1). Moreover, if h is a

∧-homomorphism, then Rh is a functional.
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Proof. Condition (DH∧R3) follows from Priestley-style duality for Hilbert

algebras. Condition (DH∧R4) follows from Proposition 7.2.9. Moreover, when h is

a ∧-homomorphism, condition (IS5) follows again from Priestley-style duality for

Hilbert algebras. �

Example 7.2.12. Similarly to the Spectral-like case, we have that the or-

der of any DH∧-Priestley space is a functional DH∧-Priestley morphism. Let

X = 〈X, τ,≤, B, X̂〉 be a DH∧-Priestley space. By Priestley-style duality for

Hilbert algebras it follows that ≤ is an H-Priestley functional morphism between

the H-Priestley space 〈X, τ,≤, B〉 and itself. Notice that for all x ∈ X̂, we have

↑x = ↑(↑x ∩ X̂). Therefore ≤ also satisfies condition (DH∧R4), and thus ≤ is a

DH∧-Priestley functional morphism.

Theorem 7.2.13. Let R ⊆ X1 ×X2 be a DH∧-Priestley morphism between

DH∧-Priestley spaces X1 and X2. Then �R is a ∧-semi-homomorphism between

the DH∧-algebras 〈B2,⇒2,u2, X2〉 and 〈B1,⇒1,u1, X1〉.

Proof. We just need to show that�R preserves meets, i. e. that�R(U u2 V ) =

�R(U) u1 �R(V ) for all U, V ∈ B2. By definition, it is equivalent to show that for

all U, V ∈ B2:

�R(↑(U ∩ V ∩ X̂2)) = ↑(�R(U) ∩�R(V ) ∩ X̂1).

First we show the inclusion from left to right. Let x ∈ �R(↑(U ∩ V ∩ X̂2)). By

condition (DH∧8) we know that �R(↑(U ∩V ∩ X̂2)) = ↑(�R(↑(U ∩V ∩ X̂2))∩ X̂1).

Then there is y ∈ X̂1 such that y ∈ �R(↑(U ∩ V ∩ X̂2)) and y ≤ x. By definition

we have R(y) ⊆ ↑(U ∩ V ∩ X̂2). We show that R(y) ⊆ U ∩ V : let z ∈ R(y), then

there is z′ ∈ U ∩ V ∩ X̂2 such that z′ ≤ z. Since U, V are up-sets, then we have

z ∈ U ∩V . We conclude R(y) ⊆ U ∩V , i. e. y ∈ �R(U) and y ∈ �R(V ). Moreover,

by assumption y ∈ X̂1, then we have y ∈ �R(U) ∩ �R(V ) ∩ X̂1. Now using that

y ≤ x, we obtain x ∈ ↑(�R(U) ∩�R(V ) ∩ X̂1), as required.

For the converse, since �R(↑(U ∩ V ∩ X̂2)) is an up-set, it is enough to show

that �R(U)∩�R(V )∩X̂1 ⊆ �R(↑(U ∩V ∩X̂2)). Let x ∈ �R(U)∩�R(V )∩X̂1, i. e.

R(x) ⊆ U ∩ V and x ∈ X̂1. We showR(x) ⊆ ↑(U ∩ V ∩ X̂2). Let y ∈ R(x). By con-

dition (DH∧R4) we know that R(x) = ↑(R(x)∩ X̂2). Then there is y′ ∈ R(x) ∩ X̂2

such that y′ ≤ y. Then sinceR(x) ⊆ U∩V , we have y′ ∈ U ∩ V , so y′ ∈ U ∩ V ∩ X̂2.

Therefore y ∈ ↑(U ∩ V ∩ X̂2). Hence R(x) ⊆ ↑(U ∩ V ∩ X̂2), i. e. we obtain

x ∈ �R(↑(U ∩ V ∩ X̂2)), as required. �

Corollary 7.2.14. Let R ⊆ X1 ×X2 be a DH∧-Priestley functional morphism

between DH∧-Priestley spaces X1 and X2. Then �R is a homomorphism between

DH∧-Priestley-algebras 〈B2,⇒2,u2, X2〉 and 〈B1,⇒1,u1, X1〉.

Corollary 7.2.11 and Theorem 7.2.13 summarize the main results concerning

∧-semi-homomorphisms and their duals. Corollaries 7.2.11 and 7.2.14 do the same

concerning ∧-homomorphisms. These results should be kept in mind for § 7.3.2,

where the functors involved are defined.
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7.3. Categorical dualities

In the present section we conclude the presentation of the dualities, by showing

the functors and the natural transformations involved in them. Clearly we have

that DH∧-algebras and ∧-semi-homomorphisms form a category and similarly for

DH∧-algebras and ∧-homomorphisms. We denote these categories by DH∧S and

DH∧H respectively. We will prove in the present section that there are two cate-

gories with DH∧-Spectral spaces as objects that are dually equivalent to DH∧S and

DH∧H respectively. In a like manner we prove that there are two categories with

DH∧-Priestley spaces as objects that are dually equivalent to DH∧S and DH∧H respec-

tively. The first thing to do is to show that DH∧-Spectral spaces and DH∧-Spectral

morphisms are indeed a category, and that DH∧-Priestley spaces and DH∧-Priestley

morphisms form a category as well.

Theorem 7.3.1. Let 〈X1, X̂1, τκ1〉, 〈X2, X̂2, τκ2〉 and 〈X3, X̂3, τκ3〉 be three

DH∧-Spectral spaces and let R ⊆ X1 × X2 and S ⊆ X2 × X3 be DH∧-Spectral

morphisms. Then:

(1) The DH∧-Spectral morphism ≤2 ⊆ X2 ×X2 satisfies:

≤2 ◦R = R and S ◦ ≤2 = S,

(2) S ◦R ⊆ X1 ×X3 is a DH∧-Spectral morphism,

(3) if R,S are functional, then S ◦R is functional.

Proof. (1) This has been proven for H-relations, so it holds in particular for

DH∧-Spectral morphisms.

For (2), by Spectral-like duality for Hilbert algebras we get that S ◦ R is an

H-relation, so condition (DH∧R1) is satisfied by S ◦R. We just have to show that

S ◦R satisfies condition (DH∧R2), i. e. we have to show that for all x ∈ X̂1:

(S ◦R)(x) = cl(S ◦R(x) ∩ X̂3).

Let x ∈ X̂1. First we prove that (S ◦ R)(x) is an up-set: let (x, z) ∈ S ◦ R
and z ≤3 w for some w ∈ X3. We show that w ∈ S ◦ R(x). By definition there is

y ∈ X2 such that y ∈ R(x) and z ∈ S(y). By condition (DH∧R2) for R, we have

R(x) = cl(R(x) ∩ X̂2). Then, there is y′ ∈ R(x) ∩ X̂2 such that y′ ≤2 y. Now since

S ◦ ≤2= S, we have z ∈ S(y′). And since y′ ∈ X̂2, by condition (DH∧R2) of S,

S(y′) = cl(S(y′) ∩ X̂3). Then, there is z′ ∈ S(y′) ∩ X̂3 such that z′ ≤3 z ≤3 w.

Therefore, we have w ∈ S(y′), and since (x, y′) ∈ R, then (x,w) ∈ S ◦R.

From (S ◦ R)(x) being an up-set, it is immediate that cl((S ◦ R)(x) ∩ X̂3) ⊆
(S ◦ R)(x). For the other inclusion, let (x, z) ∈ S ◦ R. By a similar argument as

before, we conclude that there is z′ ∈ (S ◦ R)(x) ∩ X̂3 such that z′ ≤ z, therefore

z ∈ cl((S ◦R)(x) ∩ X̂3).

(3) follows from item (2) and Spectral-like duality for Hilbert algebras. �

Corollary 7.3.2. DH∧-Spectral spaces and DH∧-Spectral morphisms form a

category. DH∧-Spectral spaces and DH∧-Spectral functional morphisms form a cat-

egory as well.

Proof. For a DH∧-Spectral space X, Example 7.2.6 shows that the order ≤
on X is a DH∧-Spectral morphism. Then by item (1) in Theorem 7.3.1, it is the
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identity morphism on X. By item (2) in Theorem 7.3.1, relational composition

works as composition between DH∧-Spectral morphisms. �

For the Priestley-style categories, we obtain similar results, except that re-

lational composition does not work as composition in the respective categories.

We have to define a new composition between DH∧-Priestley morphisms. For

DH∧-Priestley spaces X1,X2 and X3 and DH∧-Priestley morphisms R ⊆ X1 ×X2

and S ⊆ X2 ×X3, let (S ? R) ⊆ X1 ×X3 be the relation given by:

(x, z) ∈ (S ? R) iff ∀U ∈ B3

(
if x ∈ �R ◦�S(U), then z ∈ U

)
iff ∀U ∈ B3

(
if (S ◦R)(x) ⊆ U , then z ∈ U

)
.

Theorem 7.3.3. Let X1 = 〈X1, τ1,≤1, B1, X̂1〉, X2 = 〈X2, τ2,≤2, B2, X̂2〉 and

X3 = 〈X3, τ3,≤3, B3, X̂3〉 be three DH∧-Priestley spaces and let R ⊆ X1 ×X2 and

S ⊆ X2 ×X3 be two DH∧-Priestley morphisms. Then:

(1) The DH∧-Priestley morphism ≤2 ⊆ X2 ×X2 satisfies:

≤2 ◦R = R andS ◦ ≤2= S.

(2) (S ? R) ⊆ X1 ×X3 is a DH∧-Priestley morphism,

(3) If R,S are functional, then (S ? R) ⊆ X1 ×X3 is functional.

Proof. (1) This holds for H-Priestley morphisms, so it holds in particular for

DH∧-Priestley morphisms.

For (2), by Priestley-style duality for Hilbert algebras we get that (S ?R) is an

H-Priestley morphism, so condition (DH∧R3) is satisfied by (S ? R). We just have

to show that (S ? R) satisfies condition (DH∧R4), i. e. we have to show that for all

x ∈ X̂1:

(S ? R)(x) = ↑((S ? R)(x) ∩ X̂3).

The inclusion from right to left is immediate, since (S ? R)(x) is an up-set

by definition. We show the reverse inclusion, that we will see that follows from

Theorem 7.1.22, Proposition 7.2.9 and the definition of ?. Notice that by definition

we have that for all x ∈ X1, z ∈ X3:

(x, z) ∈ (S ? R) iff (ξ1(x), ξ3(z)) ∈ R�R◦�S .

So let x ∈ X̂1 and z ∈ (S ? R)(x). On the one hand, we already know that

ξ1(x) ∈ Op∧(X•1). On the other hand, by assumption ξ3(z) ∈ R�R◦�S (ξ1(x)).

Since �R ◦ �S is a DH∧-Priestley semi-homomorphism, by Proposition 7.2.9, we

obtain that R�R◦�S (ξ1(x)) = ↑(R�R◦�S (ξ1(x)) ∩ Op∧(X•3)). So we know that

there is Q ∈ R�R◦�S (ξ1(x)) ∩Op∧(X•3) such that Q ⊆ ξ3(z). By Theorem 7.1.22,

Op∧(X•3) = ξ3[X̂3], so there is z′ ∈ X̂3 such that Q = ξ3(z′). Then we have

ξ3(z′) ⊆ ξ3(z) and (ξ1(x), ξ3(z′)) ∈ R�R◦�S . So by the definition of ? we obtain

z′ ∈ (S ? R)(x) ∩ X̂3, and from ξ3 being an order homeomorphism, we get z′ ≤ z.

Therefore (S ? R)(x) = ↑((S ? R)(x) ∩ X̂3), as required.

(3) follows from item (2) and Priestley-style duality for Hilbert algebras. �

Corollary 7.3.4. DH∧-Priestley spaces and DH∧-Priestley morphisms form

a category. DH∧-Priestley spaces and DH∧-Priestley functional morphisms from a

category as well.
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Table 9. Categories involved in the dualities for distributive

Hilbert algebras with infimum.

Category Objects Morphisms

DH∧S DH∧-algebras ∧-semi-homomorphisms

DH∧H DH∧-algebras (∧)-homomorphisms

SpDH
∧

M DH∧-Spectral spaces DH∧-Spectral morphisms

SpDH
∧

F DH∧-Spectral spaces DH∧-Spectral functional morphisms

PrDH
∧

M DH∧-Priestley spaces DH∧-Priestley morphisms (comp ?)

PrDH
∧

F DH∧-Priestley spaces DH∧-Priestley functional morphisms (comp ?)

Proof. For a DH∧-Priestley space X, Example 7.2.12 shows that the order

≤ on X is a DH∧-Priestley morphism. It is not difficult to check that for any

DH∧-Priestley spaces X1 and X2 and DH∧-Priestley morphism R ⊆ X1 × X2, we

have ≤2 ◦R = ≤2 ? R and R ◦ ≤1 = R ?≤1. Then by item (1) in Theorem 7.3.3

we obtain that ≤ is the identity morphism for X By item (2) in Theorem 7.3.3, the

operation ? gives composition between DH∧-Priestley morphisms (associativity of

? follows easily). �

Let SpDH
∧

M be the category of DH∧-Spectral spaces and DH∧-Spectral mor-

phisms, and let SpDH
∧

F be the category of DH∧-Spectral spaces and DH∧-Spectral

functional morphisms. Let PrDH
∧

M be the category of DH∧-Priestley spaces and

DH∧-Priestley morphisms, and let PrDH
∧

F be the category of DH∧-Priestley spaces

and DH∧-Priestley functional morphisms. We summarize in Table 9 all the cate-

gories we have so far considered.

Once we have defined all the categories, we need to build the contravariant

functors and the natural isomorphisms involved in the dualities. Let us examine

first the Spectral-like duality, and then we move to the Priestley-style duality.

7.3.1. Spectral-like dualities. Let us start looking at the functors for the

Spectral-like dualities. We consider first the functor Irr : DH∧S −→ SpDH
∧

M such that

for any DH∧-algebras A,A1,A2 and any ∧-semi-homomorphism h : A1 −→ A2:

Irr(A) := 〈Irr→(A), Irr∧(A), τκA
〉,

Irr(h) := Rh ⊆ Irr→(A2)× Irr→(A1).

We recall that τκA
is a topology on Irr→(A) having as basis κA := {ψA(a)c : a ∈ A},

for ψA : A −→ P↑(Irr→(A)) given by ψA(a) := {P ∈ Irr→(A) : a ∈ P}, and by

definition (P,Q) ∈ Rh if and only if h−1[P ] ⊆ Q.

Clearly, for the identity morphism idA : A −→ A for A in DH∧S , it holds

that RidA
= ⊆, and this is precisely the identity morphism for Irr(A) in SpDH

∧

M .

Moreover, it follows by definition that for DH∧-algebras A1,A2 and A3 and ∧-semi-

homomorphisms f : A1 −→ A2 and g : A2 −→ A3, Rg◦f = Rf ◦ Rg. Therefore, by
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Spectral-like duality for Hilbert algebras and corollaries 7.1.5 and 7.2.5, the functor

Irr is well defined.

On the other hand, we consider the functor ( )∗ : SpDH
∧

M −→ DH∧S such that for

any DH∧-Spectral spaces X,X1,X2 and any DH∧-Spectral morphism R ⊆ X1×X2:

X∗ := 〈D(X),⇒,u, X〉,
R∗ := �R : D(X2) −→ D(X1).

We recall that by definition D(X) := {U c : U ∈ κ}, and for all U ∈ D(X2),

�R(U) := {x ∈ X1 : R(x) ⊆ U}.
Obviously, for the identity morphism ≤ ⊆ X ×X for X in SpDH

∧

M , we get

�≤ = idX∗ , and this is precisely the identity morphism for X∗ in DH∧S . Further-

more, it follows by definition that for DH∧-Spectral spaces X1,X2, and X3, and

DH∧-Spectral morphisms R ⊆ X1 × X2 and S ⊆ X2 × X3, �S◦R = �R ◦ �S .

Therefore by Spectral-like duality for Hilbert algebras and theorems 7.1.9 and 7.2.7

the functor ( )∗ is well defined.

In order to complete the dualities, we need to define two natural isomorphisms,

the one between the identity functor on DH∧S and (Irr( ))∗, and the other between

the identity functor on SpDH
∧

M and Irr(( )∗). Consider first the family of morphisms

in DH∧S :

Ψ :=
(
ψA : A −→ D(Irr(A))

)
A∈DH∧S

Theorem 7.3.5. Ψ is a natural isomorphism between the identity functor on

DH∧S and (Irr( ))∗.

Proof. Let A1,A2 be two DH∧-algebras and let h : A1 −→ A2 be a ∧-semi-

homomorphism between them. By Spectral-like duality for Hilbert algebras we get

that �Rh ◦ ψ1 = ψ2 ◦ h. From this we have that Ψ is a natural transformation,

and by Theorem 7.1.12 we get that for all A ∈ DH∧S , ψA is an isomorphism, so we

conclude that Ψ is a natural isomorphism. �

Clearly, what we have is that for any DH∧-algebras A1 and A2 and any ∧-semi-

homomorphism h : A1 −→ A2, the following diagram commutes:

A1

h

��

ψ1 // D(Irr(A1))

�Rh
��

A2
ψ2

// D(Irr(A2))

We need to do some preparatory work before enunciating the other natural

isomorphism. Recall that for any DH∧-Spectral space X = 〈X, X̂, τκ〉, we define

the map εX : X −→ Irr→(X∗), that by Theorem 7.1.11 is a homeomorphism between

the topological spaces 〈X, τκ〉 and 〈Irr→(X∗), τκX∗ 〉. This map encodes the natural

isomorphism we are looking for, but since morphisms in SpDH
∧

M are relations, we

need to give a relation associated with this map. We define the relation EX ⊆
X × Irr→(X∗) given by:

(x, P ) ∈ EX iff εX(x) ⊆ P.

Proposition 7.3.6. EX is a DH∧-Spectral functional morphism.
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Proof. From the Spectral-like duality for Hilbert algebras, we know that EX

is a functional H-relation, so we just have to check that condition (DH∧R2) is

satisfied. Let x ∈ X̂. It is immediate that cl(EX(x)∩ Irr∧(X∗)) ⊆ EX(x), so we just

have to check the other inclusion. Let P ∈ EX(x), i. e. εX(x) ⊆ P . By Corollary

7.1.10 we know that εX(x) ∈ Irr∧(X∗) and clearly εX(x) ∈ EX(x). Therefore

P ∈ cl(EX(x) ∩ Irr∧(X∗)), as required. �

Consider now the family of morphisms in SpDH
∧

M :

Σ :=
(
EX ⊆ X × Irr→(X∗)

)
X∈SpDH∧M

Theorem 7.3.7. Σ is a natural isomorphism between the identity functor on

SpDH
∧

M and Irr(( )∗).

Proof. Let X1,X2 be two DH∧-Spectral spaces and let R ⊆ X1 × X2 be a

DH∧-Spectral morphism between them. By Spectral-like duality for Hilbert alge-

bras we get that (x, y) ∈ R if and only if (εX1
(x), εX2

(y)) ∈ R�R , and from this

it follows that R�R ◦ EX1 = EX2 ◦ R. Thus Σ is a natural equivalence. More-

over, by Theorem 7.1.11 we have that the map εX is an homeomorphism between

〈X, τκ〉 and 〈Irr→(X∗), τκX∗ 〉 such that εX[X̂] = Irr∧(X∗). It follows that EX is an

isomorphism in SpDH
∧

M , and then Σ is a natural isomorphism in SpDH
∧

M . �

Corollary 7.3.8. The categories SpDH
∧

M and DH∧S are dually equivalent by

means of the contravariant functors Irr and ( )∗ and the natural equivalences Ψ

and Σ. Similarly, the categories SpDH
∧

F and DH∧H are dually equivalent by means

of the restrictions of the functors Irr and ( )∗ and the restrictions of the natural

equivalences Ψ and Σ.

7.3.2. Priestley-style dualities. Let us move now to the other dualities,

namely the ones involving DH∧-Priestley spaces. We start considering the func-

tors: We define the functor Op : DH∧S −→ PrDH
∧

M such that for any DH∧-algebras

A,A1,A2 and any ∧-semi-homomorphism h : A1 −→ A2:

Op(A) := 〈Op→(A), τA,⊆, ψA[A],Op∧(A)〉,
Op(h) := Rh ⊆ Op→(A2)×Op→(A1).

We recall that τA is a topology on Op→(A) that is defined from the subba-

sis {ϑA(a) : a ∈ A} ∪ {ϑA(b)c : b ∈ A}, for ϑA : A −→ P↑(Op→(A)) given by

ϑA(a) := {P ∈ Op→(A) : a ∈ P}, and (P,Q) ∈ Rh if and only if h−1[P ] ⊆ Q.

It should be clear that for the identity morphism idA : A −→ A for A in

DH∧S , we have RidA
= ⊆, that is the identity morphism for Op(A) in PrDH

∧

M .

Furthermore, it follows by definition that for DH∧-algebras A1,A2 and A3 and

∧-semi-homomorphisms f : A1 −→ A2 and g : A2 −→ A3, Rg◦f = Rf ◦ Rg.
Therefore, by Priestley-style duality for Hilbert algebras and corollaries 7.1.14 and

7.2.11, the functor Op is well defined.

Besides, we define the functor ( )• : PrDH
∧

M −→ DH∧S , that for any DH∧-Priestley

spaces X,X1,X2 and any DH∧-Priestley morphism R ⊆ X1 ×X2:

X• := 〈S,⇒,u, X〉,
R• := �R : B2 −→ B1.
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We recall that for all U ∈ B2, �R(U) := {x ∈ X1 : R(x) ⊆ U}. It is immediate that

for the identity morphism ≤ ⊆ X ×X for X in PrDH
∧

M , we have �≤ = idX• , that is

the identity morphism for X• in DH∧S . Moreover, it follows by definition that for

DH∧-Spectral spaces X1,X2, and X3, and DH∧-Spectral morphisms R ⊆ X1 ×X2

and S ⊆ X2 × X3, �S◦R = �R ◦ �S . Thus by Priestley-style duality for Hilbert

algebras and theorems 7.1.20 and 7.2.13 the functor ( )• is well defined.

For completing the dualities, we need to define two natural isomorphisms, the

one between the identity functor on DH∧S and (Op( ))•, and the one between the

identity functor on PrDH
∧

M and Op(( )•). Consider first the family of morphisms in

DH∧S :

Θ :=
(
ϑA : A −→ ϑA[A]

)
A∈DH∧S

Theorem 7.3.9. Θ is a natural isomorphism between the identity functor on

DH∧S and (Op( ))•.

Proof. Let A1,A2 be two DH∧-algebras and let h : A1 −→ A2 be a ∧-semi-

homomorphism between them. By Priestley-style duality for Hilbert algebras we

get that �Rh ◦ ϑ1 = ϑ2 ◦ h. From this we have that Θ is a natural transformation,

and by Theorem 7.1.23 we get that for all A ∈ DH∧S , ϑA is an isomorphism, so we

conclude that Θ is a natural isomorphism. �

What we obtain is that for any DH∧-algebras A1 and A2 and any ∧-semi-

homomorphism h : A1 −→ A2, the following diagram commutes:

A1

h

��

ϑ1 // ϑ1[A1]

�Rh
��

A2
ϑ2

// ϑ2[A2]

Before presenting the other natural isomorphism, we need again to do some

work. Recall that for any DH∧-Priestley space X = 〈X, τ,≤, B, X̂〉 we define the

map ξX : X −→ Op→(X•), that by Theorem 7.1.22 is an order homeomorphism

between ordered topological spaces 〈X, τ,≤〉 and 〈Op→(X•), τX• ,⊆〉. As in the

Spectral-like case, this map encodes the natural isomorphism we are looking for,

but since morphisms in PrDH
∧

M are relations, we need to give a relation associated

with that map. We define the relation TX ⊆ X ×Op→(X•) given by:

(x, P ) ∈ TX iff ξX(x) ⊆ P.

that turns out to be a DH∧-Priestley functional morphism.

Proposition 7.3.10. TX is a DH∧-Priestley functional morphism.

Proof. By Priestley-style duality for Hilbert algebras TX is an H-Priestley

functional morphism, so we just have to check that condition (DH∧R4) is satisfied.

Let x ∈ X̂. It is immediate that ↑(TX(x) ∩ Op∧(X•)) ⊆ TX(x), so we just have to

check the other inclusion. Let P ∈ TX(x), i. e. ξX(x) ⊆ P . As x ∈ X̂, by Theorem

7.1.22 we know that ξX(x) ∈ Op∧(X•) and clearly ξX(x) ∈ TX(x). Therefore

P ∈ ↑(TX(x) ∩Op∧(X•)), as required. �
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Consider the family of morphisms in PrDH
∧

M :

Ξ :=
(
TX ⊆ X ×Op→(X•)

)
X∈PrDH∧M

Theorem 7.3.11. Ξ is a natural isomorphism between the identity functor on

PrDH
∧

M and Op(( )•).

Proof. Let X1,X2 be two DH∧-Priestley spaces and let R ⊆ X1 × X2 be a

DH∧-Priestley morphism between them. From Priestley-style duality for Hilbert

algebra we get that (x, y) ∈ R if and only if (ξX1
(x), ξX2

(x)) ∈ R�R , and from this

it follows that R�R ? TX1
= TX2

? R. Thus Ξ is a natural equivalence. Moreover,

by Theorem 7.1.22 we have that the map ξX is an order homeomorphism between

〈X, τ,≤〉 and 〈Op→(X•), τX• ,⊆〉 such that ξX[X̂] = Op∧(X•). It follows that TX is

an isomorphism in PrDH
∧

M , and then Ξ is a natural isomorphism in PrDH
∧

M . �

Corollary 7.3.12. The categories PrDH
∧

M and DH∧S are dually equivalent by

means of the contravariant functors Op and ( )• and the natural equivalences Θ

and Ξ. Similarly, the categories PrDH
∧

F and DH∧H are dually equivalent by means

of the restrictions of the functors Op and ( )• and the restrictions of the natural

equivalences Θ and Ξ.

7.4. Spectral-like duality: topological characterization of filters

In the present section we focus on the Spectral-like duality for DH∧-algebras,

and we study the dual of notions such as implicative filter, irreducible implicative

filter, optimal implicative filter, meet filter, irreducible meet filter, optimal meet

filter and absorbent filter. We will use those results in the following section, where

we compare the Spectral-like and the Priestley-style dualities for DH∧-algebras

From now on, let X = 〈X, X̂, τκ〉 be a DH∧-Spectral space, and consider the

following maps:

f : C(X) −→ Fi→(X∗) g : Fi→(X∗) −→ C(X)

C 7−→ {U c ∈ D(X) : C ⊆ U c} F 7−→
⋂
{U c : U c ∈ F}

where recall that C(X) denotes the collection of closed subsets of 〈X, τκ〉, and

X∗ = 〈D(X),⇒,u, X〉. In [15] Celani et al. show that these maps are well defined,

and moreover in Proposition 5.1 it is proven the following.

Proposition 7.4.1. The maps f and g establish a dual order isomorphism

between 〈C(X),⊆〉 and 〈Fi→(X∗),⊆〉.

Let us denote by CIrr(X) the collection of all irreducible closed subsets of X. By

sobriety, we know that there is a one-to-one correspondence between the elements of

X and the irreducible closed subsets of X, given by the map sending each element

to its topological closure:

cl : X −→ CIrr(X)

x 7−→ cl(x)

Therefore, as irreducible closed subsets are precisely the irreducible elements of the

lattice of closed subsets, ordered by reverse inclusion, the next proposition follows

straightforwardly.
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Proposition 7.4.2. There is a dual order isomorphism between 〈CIrr(X),⊆〉
and 〈Irr→(X∗),⊆〉 given by the maps f and g.

Let us introduce now a new concept, that captures the dual property of being

an optimal implicative filter.

Definition 7.4.3. A closed subset C ∈ C(X) is optimal when for all V,U ⊆ω κ,

if
⋂
U ⊆

⋃
V and C ∩ U 6= ∅ for all U ∈ U , then C ∩

⋃
V 6= ∅.

We denote by COp(X) the collection of all optimal closed subsets of X.

Lemma 7.4.4. Let X = 〈X, X̂, τκ〉 be an DH∧-Spectral space and let U1, . . . , Un ∈
κ and V1, . . . , Vm ∈ κ for some n,m ∈ ω. Then:

V c1 ∩ · · · ∩ V cm ⊆ U c1 ∪ · · · ∪ U cn iff ↑U c1 ∩ · · · ∩ ↑U cn ⊆ 〈{V c1 , . . . , V cm}〉.

Proof. Assume first that ↑U c1 ∩ · · · ∩ ↑U cn ⊆ 〈{V c1 , . . . , V cm}〉, and suppose,

towards a contradiction that there is x ∈
(
V c1 ∩ · · · ∩ V cm

)
\
(
U c1 ∩ · · · ∪ U cn

)
. By

κ being a basis, there is W ∈ κ such that U c1 ∩ · · · ∪ U cn ⊆ W c and x /∈ W c.

But then by assumption W c ∈ 〈{V c1 , . . . , V cm}〉, so in particular we have that

V c1 ⇒ (. . . (V cm ⇒W c) . . . ) = X. Notice that for any V,U ∈ κ, if x ∈ V c and

x ∈ V c ⇒ U c = (↓(V c ∩ U))c, then x ∈ U c. Therefore, from x ∈ V c1 ∩ · · · ∩ V cm and

x ∈ V c1 ⇒ (. . . (V cm ⇒W c) . . . ) we obtain x ∈W c, a contradiction.

For the converse, assume that V c1 ∩ · · · ∩ V cm ⊆ U c1 ∪ · · · ∪ U cn, and suppose,

towards a contradiction that ↑U c1 ∩ · · · ∩ ↑U cn * 〈{V c1 , . . . , V cm}〉. So we take

W c ∈
(
↑U c1 ∩ · · · ∩ ↑U cn

)
\ 〈{V c1 , . . . , V cm}〉. On the one hand, we have U c1∪· · ·∪U cn ⊆

W c, so by assumption we get V c1 ∩ · · · ∩ V cm ⊆ W c. On the other hand, we

have V c1 ⇒ (. . . (V cm ⇒ W c) . . . ) 6= X. By convenience, for each j ≤ m, let

Zj := (V cj ⇒ (. . . (V cm ⇒ W c) . . . ))c. Then there is x /∈ V c1 ⇒ Zc2 = (↓(V c1 ∩ Z2))c,

so there is x1 ∈ V c1 ∩ Z2 such that x ≤ x1. Similarly we obtain that for each

3 ≤ j ≤ m, there is xj−1 ∈ V cv−1 ∩ Zj such that xj−1 ≤ xj . Therefore, we get

x ≤ x1 ≤ · · · ≤ xm such that xj ∈ V cj for each 2 ≤ j ≤ m − 1 and xm ∈ W .

Now since closed subsets are up-sets, we have xm ∈ V cj for all j ≤ m, hence

xm ∈
(
V c1 ∩ · · · ∩ V cm

)
\W c, a contradiction. �

Corollary 7.4.5. Let U ⊆ κ be non-empty. The F-ideal of X∗ generated by

{U c : U ∈ U} is {W c ∈ D(X) : (∃n ∈ ω)(∃U1, . . . , Un ∈ U)W c ⊆ U c1 ∪ · · · ∪ U cn}.

Proof. Let U ⊆ κ and let

Z := {W c ∈ D(X) : (∃n ∈ ω)(∃U1, . . . , Un ∈ U)W c ⊆ U c1 ∪ · · · ∪ U cn}.
Clearly Z is included in the Frink ideal generated by {U c : U ∈ U}. For the reverse

inclusion, let V c be in that Frink ideal, so there are n ∈ ω and U1, . . . , Un ∈ U such

that ↑U c1 ∩ · · · ∩ ↑U cn ⊆ ↑V c. By the previous lemma we get V c ⊆ U c1 ∪ · · · ∪ U cn,

and so V c ∈ Z, as required. �

Proposition 7.4.6. There is a dual order isomorphism between 〈COp(X),⊆〉
and 〈Op→(X∗),⊆〉 given by the maps f and g.

Proof. First we show that for C an optimal closed subset of X, f(C) is an

→-optimal implicative filter of X∗, by showing that D(X) \ f(C) is a strong Frink

ideal of X∗. Let U c1 , . . . , U
c
n /∈ f(C) be such that ↑U c1 ∩ · · · ∩ ↑U cn ⊆ ↑W c for some
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W ∈ κ. Recall that ↑W c = 〈{W c}〉, so by Lemma 7.4.4 we get W c ⊆ U c1 ∪ · · · ∪ U cn.

Suppose, towards a contradiction, that W c ∈ f(C), i. e. C ∩W = ∅. As by assump-

tion C∩Ui 6= ∅ for all i ≤ n and since C is optimal closed, we get U1∩· · ·∩Un *W ,

a contradiction.

Let now U c1 , . . . , U
c
n /∈ f(C) be such that ↑U c1 ∩· · ·∩↑U cn ⊆ 〈{W c

1 , . . . ,W
c
m}〉 for

some W1, . . . ,Wm ∈ κ. From Lemma 7.4.4 we have W c
1 ∩ · · · ∩W c

m ⊆ U c1 ∪ · · · ∪U cn.

Suppose, towards a contradiction, that 〈{W c
1 , . . . ,W

c
m}〉 ⊆ f(C). Then we obtain

that for all i ≤ m, W c
i ∈ f(C). Therefore C ⊆ W c

1 ∩ · · · ∩W c
m, and since C is

optimal closed, then W c
1 ∩ · · · ∩W c

m * U c1 ∪ · · · ∪U cn, a contradiction. We conclude

that 〈{W c
1 , . . . ,W

c
m}〉 * f(C), and so D(X) \ f(C) is a strong F-ideal, as required.

Now we show that for any →-optimal implicative filter P of X∗, the subset

g(P ) is an optimal closed subset of X. Let U ,V ⊆ω κ be such that g(P )∩U 6= ∅ for

all U ∈ U and
⋂
U ⊆

⋃
V. Then from Lemma 7.4.4 we get

⋂
{↑U c : U ∈ U} ⊆ 〈V〉.

Notice that for all U ∈ κ, U c ∈ P if and only if g(P ) ∩ U = ∅. Therefore, by

assumption we have U c /∈ P for all U ∈ U . Suppose, towards a contradiction,

that g(P ) ⊆
⋃
V. Then V c ∈ P for all V ∈ V, and so 〈V〉 ⊆ P . Now since P is

an →-optimal implicative filter, we get
⋂
{↑U c : U ∈ U} * 〈V〉, a contradiction.

We conclude, using Proposition 7.4.1 that f and g give us the required dual order

isomorphism. �

We introduce one more concept, that captures the dual property of being a

meet filter.

Definition 7.4.7. A closed subset C ∈ C(X) is a ∧-closed subset when C =

↑(C ∩ X̂).

We denote by C∧(X) the collection of all ∧-closed subsets of X. Similarly, we

denote by CIrr
∧ (X) the collection of all irreducible ∧-closed subsets, and by COp

∧ (X)

the collection of all optimal ∧-closed subsets.

Proposition 7.4.8. There is a dual order isomorphism between 〈C∧(X),⊆〉
and 〈Fi∧(X∗),⊆〉 given by the maps f and g.

Proof. First we show that for C a ∧-closed subset of X, f(C) is a meet

filter of X∗. Since f(C) is an implicative filter, it is an up-set, so we just have to

show that it is closed under the meet operation. Let U c1 , U
c
2 ∈ f(C). Recall that

U c1 u U c2 = cl(U c1 ∩ U c2 ∩ X̂) = ↑(U c1 ∩ U c2 ∩ X̂). So it only remains to show that

C ⊆ ↑(U c1 ∩ U c2 ∩ X̂). By assumption C ⊆ U c1 ∩ U c2 , so C ∩ X̂ ⊆ U c1 ∩ U c2 ∩ X̂, and

therefore, using that C is ∧-closed, we get C = ↑(C ∩ X̂) ⊆ ↑(U c1 ∩ U c2 ∩ X̂), as

required.

Now we show that for F a meet filter of X∗, g(F ) is a ∧-closed subset of X.

Since closed subsets are up-sets, and we already know that g(F ) is closed, we just

need to show that g(F ) ⊆ ↑(g(F )∩X̂). Let x ∈ g(F ). Then cl(x) ⊆ g(F ), and then

F ⊆ f(cl(x)). Since cl(x) is an irreducible closed subset, then by Proposition 7.4.2

f(cl(x)) ∈ Irr→(X∗), and so f(cl(x))c is an order ideal such that F ∩ f(cl(x))c = ∅.
Then by Lemma 2.3.3, there is G ∈ Irr∧(X∗) such that F ⊆ G and G ∩ f(cl(x))c =

∅. Now since Irr∧(X∗) ⊆ Irr→(X∗), from Proposition 7.4.2 again, we get that there is

x′ ∈ X such that f(cl(x′)) = G. Notice that f(cl(x′)) = {U ∈ D(X) : cl(x′) ⊆ U} =

{U ∈ D(X) : x′ ∈ U} = εX(x). Then by Corollary 7.1.10 we have that Irr∧(X∗) =
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εX[X̂], so we conclude that x′ ∈ X̂. Now from F ⊆ G = f(cl(x′)) we get cl(x′) ⊆
g(F ), so x′ ∈ g(F ), and from G∩ f(cl(x))c = ∅, we obtain f(cl(x′)) ⊆ f(cl(x)) and

so cl(x) ⊆ cl(x′), i. e. x′ ≤ x. Hence x ∈ ↑(g(F ) ∩ X̂), as required. �

Corollary 7.4.9. There is a dual order isomorphism between 〈CIrr
∧ (X),⊆〉 and

〈Irr∧(X∗),⊆〉 given by the maps f and g.

Proof. This follows from propositions 7.4.2, 7.4.8 and the fact that Irr∧(X∗) =

Fi∧(X∗) ∩ Irr→(X∗) given in Corollary 6.5.19. �

Corollary 7.4.10. There is a dual order isomorphism between 〈COp
∧ (X),⊆〉

and 〈Op∧(X∗),⊆〉 given by the maps f and g.

Proof. This follows from propositions 7.4.6, 7.4.8 and the fact that Op∧(X∗) =

Fi∧(X∗) ∩Op→(X∗) given in Corollary 6.5.22. �

Finally we identify what is the dual property of being an absorbent filter (see

definition in page 137).

Definition 7.4.11. A closed subset C ⊆ C(X) is absorbent when for all U ∈ κ,

C ∩ U c = cl(C ∩ U c ∩ X̂).

We denote by CAb(X) the collection of all absorbent closed subsets of X.

Proposition 7.4.12. There is a dual order isomorphism between 〈CAb(X),⊆〉
and 〈Ab(X∗),⊆〉 given by the maps f and g.

Proof. First we show that for C an absorbent closed subset of X, f(C) is an

absorbent filter of X∗. Using the definition, we show that for any U c ∈ f(C) and

any V c ∈ D(X), we have V c ⇒ (U c u V c) ∈ f(C). By definition of f , it is enough

to show that C ⊆ V c ⇒ (U c u V c). By hypothesis C ∩ V c ⊆ cl(C ∩ V c ∩ X̂) and

by assumption C ⊆ U c. Then we have C ∩ V c ⊆ cl(U c ∩ V c ∩ X̂) = U c u V c. Thus

C ∩ V c ∩ (U c u V c)c = ∅, and since C is closed, it is an up-set, and this implies

C ∩ sat(V c ∩ (U c u V c))c = ∅, i. e. C ⊆ (sat(V c ∩ (U c u V c)c))c = V c ⇒ (U c u V c),
as required.

Now we show that for F an absorbent filter of X∗, g(F ) is an absorbent closed

subset of X, so let U ∈ κ. If U c ∈ F , then g(F ) ∩ U c = g(F ), and since F is

a meet filter, by Proposition 7.4.8 we know that g(F ) is ∧-closed, and therefore

g(F ) ∩ U c = g(F ) = cl(g(F ) ∩ X̂) = cl(g(F ) ∩ U c ∩ X̂). Assume that U c /∈ F .

Then by Proposition 6.5.25, the implicative filter 〈F ∪ ↑U c〉 is a meet filter. We

show that g(F )∩U c ⊆ cl(g(F )∩U c ∩ X̂), since the reverse inclusion is immediate.

Let x ∈ g(F ) ∩ U c. Then for the irreducible closed subset cl(x) we have that

F ∪ U c ⊆ f(cl(x)) and by Proposition 7.4.2, f(cl(x)) is an irreducible implicative

filter of X∗. So by 2.4.11 we have that D(X) \ f(cl(x))) is an order ideal of X∗,

and clearly it is disjoint from the meet filter 〈F ∪ ↑U c〉. Therefore, by Lemma

2.3.3 there is F ′ ∈ Irr∧(X∗) such that 〈F ∪ ↑U c〉 ⊆ F ′ and F ′ ⊆ f(cl(x)). Since

F ′ is irreducible meet filter, there is y ∈ X̂ such that f(cl(y)) = F ′. On the

one hand, we have U c ∪ F ⊆ F ′, and this implies y ∈ g(F ) ∩ U c ∩ X̂. On the

other hand, we have f(cl(y)) = F ′ ⊆ f(cl(x)), and so y ≤ x. We conclude that

x ∈ ↑(g(F ) ∩ U c ∩ X̂) = cl(g(F ) ∩ U c ∩ X̂), as required. �
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Table 10. Spectral-duals of filters of DH∧-algebras.

Filters Spectral-dual closed subsets

Fi→(A) closed subsets of the dual space C(X)

Irr→(A) irreducible closed subsets of the dual space CIrr(X)

Op→(A) optimal closed subsets of the dual space COp(X), i. e. C ∈ C(X)

such that for all V,U ⊆ω κ, if
⋂
U ⊆

⋃
V and C ∩ U 6= ∅ for all

U ∈ U , then C ∩
⋃
V 6= ∅

Fi∧(A) ∧-closed subsets of the dual space C∧(X), i. e. C ∈ C(X) such that

C = ↑(C ∩ X̂)

Irr∧(A) irreducible ∧-closed subsets of the dual space CIrr
∧ (X)

Op∧(A) optimal ∧-closed subsets of the dual space COp
∧ (X)

Ab(A) absorbent closed subsets of the dual space CAb(X), i. e. C ∈ C(X)

such that for all U ∈ κ, C ∩ U c = cl(C ∩ U c ∩ X̂)

Let us summarize the results in this section in Table 10, where A denotes an

arbitrary DH∧-algebra.

7.5. Comparison between both dualities

In the present section we carry out a comparison between the Spectral-like

and the Priestley-style dualities for DH∧H . It is remarkable that, while Priestley

and Spectral dual objects of distributive lattices are built on the same base set,

namely the set of prime filters of the distributive lattice, this is not the case for

weaker settings such as distributive semilattices, Hilbert algebras or DH∧-algebras.

In particular, DH∧-Spectral spaces are built on the set of irreducible implicative

filters of the DH∧-algebra, whereas DH∧-Priestley spaces are built on the set of

optimal implicative filters of the DH∧-algebra. This makes the comparison between

both dualities interesting.

The category DH∧S is dually equivalent to the categories SpDH
∧

M and PrDH
∧

M .

Therefore these two latter categories are equivalent. We proceed in what follows to

explicitly define the functors from one category to the other, that are obtained as

the concatenation of both dual constructions, passing through the algebraic one.

The definition of the functor from PrDH
∧

M to SpDH
∧

M is relatively simple to obtain.

However the definition of the functor that goes the other way around is considerably

more involved. Similarly, as DH∧H is dually equivalent to the categories SpDH
∧

F

and PrDH
∧

F , these two later categories are again equivalent. And we also explicitly

define the functors that witness such equivalence. The situation is analogous to the

case of distributive semilattices, for which the easy direction was pointed out by

Bezhanishvili and Jansana in [5].
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7.5.1. From the Priestley-style duality to the Spectral-like duality.

Let X = 〈X, τ,≤, B, X̂〉 be a DH∧-Priestley space. Recall that the dual of X

is the algebra X• := 〈B,⇒,u, X〉 and the Spectral dual of X• is Irr(X•) :=

〈Irr→(X•), τκX• , Irr∧(X•)〉. We aim to provide a more transparent construction of

this structure that is equivalent to X. We recall that the dense subset XB is given

by {x ∈ X : {U ∈ B : x /∈ U} is non-empty and up-directed}. Let us consider the

collection

κB := {XB \ U : U ∈ B}.
First we show that κB is a basis for a topological space on XB . Let U, V ∈ B

and x ∈ (XB \ U) ∩ (XB \ V ). Then x ∈ XB and x /∈ U, V . By condition (H13′),

there exists W ∈ B such that x /∈ W and U, V ⊆ W . Therefore x ∈ XB \W ⊆
(XB \ U) ∩ (XB \ V ), as required.

Thus we take κB as a basis for a topology τκB on XB . We claim that the

structure

〈XB , XB ∩ X̂, τκB 〉
is a DH∧-Spectral space

In page 161 we introduced the map ξX : X −→ Op→(X•) given by ξX(x) :=

{U ∈ B : x ∈ U} that satisfies ξX[XB ] = Irr→(X•). Moreover, notice that for each

U ∈ B,

ξX[XB \ U ] = {ξX(x) : x ∈ XB \ U} = {ξX(x) : x ∈ XB , U /∈ ξX(x)}
= {P ∈ Irr→(X•) : U /∈ P} = X• \ ψX•(U),

where recall that the map ψX• : B −→ P↑(Irr→(X•)), introduced in page 73, is

given by ψX•(U) := {P ∈ Irr→(X•) : U ∈ P}.
From this fact it follows that ξX is a continuous and open function between

〈XB , τκB 〉 and 〈Irr→(X•), τκX• 〉, and hence it is a homeomorphism. Moreover, by

Theorem 7.1.22 and Corollary 6.5.19 we obtain that ξX[XB ∩ X̂] = Irr∧(X•).

Corollary 7.5.1. For any DH∧-Priestley space X = 〈X, τ,≤, B, X̂〉, ξX is a

homeomorphism between 〈XB , τκB 〉 and 〈Irr→(X•), τκX• 〉 such that ξX[XB ∩ X̂] =

Irr∧(X•).

Corollary 7.5.2. For any DH∧-Priestley space X = 〈X, τ,≤, B, X̂〉, the struc-

ture XB := 〈XB , XB ∩ X̂, τκB 〉 is a DH∧-Spectral space.

Now we move to consider morphisms. We claim that for any DH∧-Spectral

morphism R ⊆ X1 ×X2, the relation

R ∩ (XB1 ×XB2) ⊆ XB1 ×XB2

is a DH∧-Spectral morphism. The following lemma concerning dual spaces of

Hilbert algebras is all we need to get our claim.

Lemma 7.5.3. Let R ⊆ X1 ×X2 a (functional) H-Priestley morphism between

H-Priestley spaces X1 = 〈X1, τ1,≤1, B1〉 and X2 = 〈X2, τ2,≤2, B2〉. Then the

relation R ∩ (XB1 ×XB2) is a (functional) H-relation between H-spaces 〈XB1 , τκ1〉
and 〈XB2 , τκ2〉.
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Proof. As κi = {XBi \U : U ∈ Bi}, from condition (HR3) it follows condition

(HR1). For any x ∈ XB1
, R(x) ∩ XB2

is closed in XB2
, since by (HR4), for

each y ∈ XB2
such that y /∈ R(x), there is an open U ∈ κ2 such that y ∈ U

and R(x) ∩ U = ∅. Hence condition (HR2) also holds, and so R ∩ (XB1
×XB2

)

is an H-relation. Finally, from condition (HF′) it immediately follows that it is

functional. �

Proposition 7.5.4. Let R ⊆ X1 × X2 a DH∧-Priestley morphism between

DH∧-Priestley spaces X1 and X2. Then R ∩ (XB1 ×XB2) is a DH∧-Spectral mor-

phism between DH∧-Spectral spaces XB1 and XB2 .

Proof. This follows from Lemma 7.5.3 and the fact that condition (DH∧R4)

follows immediately from condition (DH∧R2). �

We define the functor F : PrDH
∧

M −→ SpDH
∧

M such that for any DH∧-Priestley

spaces X,X1,X2 and any DH∧-Priestley morphism R ⊆ X1 ×X2:

F(X) := XB = 〈XB , X̂ ∩XB , τκB 〉,
F(R) := R ∩ (XB1

×XB2
).

where notice that F(≤X) = ≤XB = ≤F(X), so the functor preserves the identity

morphism for PrDH
∧

M . Let us check that it also preserves composition of morphisms

in PrDH
∧

M .

Lemma 7.5.5. Let X1,X2,X3 be H-Priestley spaces and R ⊆ X1 × X2 and

S ⊆ X2 ×X3 be H-Priestley morphisms. Then for any x ∈ XB1
and any z ∈ XB3

:

(x, z) ∈ (S ? R) ∩ (XB1 ×XB3) iff (x, z) ∈ S ◦R.

Proof. Recall that for any x1 ∈ X1 and x3 ∈ X3, x3 ∈ (S ? R)(x1) if and

only if for all U ∈ B3, if S ◦R(x1) ⊆ U , then x3 ∈ U . So in particular S ◦R(x1) ⊆
(S ? R)(x1), and so one of the directions is straightforward. For the converse, let

x ∈ XB1
and z ∈ XB3

be such that z /∈ S ◦R(x). Then as S ◦R(x)∩XB3
is closed

in XB3
by (HR2), there is a basic open that contains z and is disjoint from it. So

by definition of τ3 and denseness of XB3
in X3, there is U ∈ B3 such that S ◦R ⊆ U

and x /∈ U , hence z /∈ (S ? R)(x). �

By the previous lemma we get that for any DH∧-Priestley morphisms R ⊆
X1 × X2 and S ⊆ X2 × X3, F(S ? R) = F(S) ◦ F(R), so the functor preserves

composition of morphisms, and hence it is well defined.

7.5.2. From the Spectral-like duality to the Priestley-style duality.

Let X = 〈X, X̂, τκ〉 be a DH∧-Spectral space. Recall that the dual of X is the algebra

X∗ := 〈D(X),⇒,u, X〉, and the Priestley dual of X∗ is Op(X∗) := 〈Op→(X∗), τX∗ ,⊆
, ϑX∗ [D(X)],Op∧(X∗)〉. As before, we aim to provide a more transparent construc-

tion of this structure equivalent to X. For getting a DH∧-Priestley space out of it,

we need to add extra points. Notice that for each x ∈ X, cl(x) ∈ CIrr(X) and all
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irreducible closeds have this form. For each C ∈ COp(X) \ CIrr(X), we add a new

point xC to the collection X. Then we obtain the collections

X ′ := X ∪ {xC : C ∈ COp(X) \ CIrr(X)},

X̂ ′ := X̂ ∪ {xC : C ∈ COp
∧ (X) \ CIrr

∧ (X)}.

For convenience, sometimes we refer to x by xcl(x). So it is clear that all the

elements of X ′ and X̂ ′ have the form xC for some C ∈ COp(X). Notice that X ′

can be defined for any H-space 〈X, τκ〉. Moreover, an order can be defined on X ′

as follows. For each xC , xC′ ∈ X ′:

xC ≤ xC′ iff C ′ ⊆ C.

Notice that this order extends the dual of the specialization order of X. Let us

consider the map η : κ −→ P(X ′) given by:

η(U) := {xC ∈ X ′ : C ⊆ U c}.

For each U ∈ κ, we denote by η(U)c the set X ′ \ η(U). Consider the topology τ ′

on X ′ having as subbasis the collection:

{η(U) : U ∈ κ} ∪ {η(U)c : U ∈ κ}.

We claim that the structure

〈X ′, τ ′,≤, η[κ], X̂ ′〉

is a DH∧-Priestley space. We prove the claim by showing that there is an order

homeomorphism h between 〈X ′, τ ′,≤〉, and 〈Op→(X∗), τX∗ ,⊆〉, such that h[η[κ]] =

ϑX∗ [D(X)] and h[X̂ ′] = Op∧(X∗).

Recall that by definition, the dual of the DH∧-Spectral space X is the algebra

X∗ := 〈D(X),⇒,u, X〉, and the map ϑX∗ : D(X) −→ P↑(Op→(X∗)) introduced in

page 73 is given by ϑX∗(U) := {P ∈ Op→(X∗) : U ∈ P}.
And recall also the map f : C(X) −→ Fi→(X∗), defined in page 174, that

assigns to each closed C, the set {U c ∈ D(X) : C ⊆ U c}. We define a map

h : X ′ −→ Fi→(X∗) such that:

h(xC) := f(C) = {U c ∈ D(X) : C ⊆ U c}.

By Proposition 7.4.6 and the definition of X ′ we know that h is well defined, and

that it is in fact an isomorphism, such that for each P ∈ Op→(X∗), h−1(P ) = xg(P ),

where recall that g : Op→(X∗) −→ C(X) was defined in page 174. Moreover, from

the definition of the order in X ′, we get that h is order preserving. Notice that for

any P ∈ Op→(X∗):

P ∈ h[η(U)] iff xg(P ) ∈ η(U) iff g(P ) ⊆ U c iff U c ∈ P iff P ∈ ϑX∗(U c).

Therefore, h[η(U)] = ϑX∗(U
c) for every U ∈ κ. From this fact it follows that h is

a continuos and open function between 〈X ′, τ ′〉 and 〈Op→(X∗), τX∗〉, and hence it

is a homeomorphism. It also follows that h[η[κ]] = ϑX∗ [D(X)]. Furthermore, by

Corollary 7.4.10 we conclude that h[X̂ ′] = Op∧(X∗).

Corollary 7.5.6. For any DH∧-Spectral space X = 〈X, X̂, τκ〉, h is an or-

der homeomorphism between 〈X ′, τ ′,≤〉 and 〈Op→(X∗), τX∗ ,⊆〉, such that h[X̂ ′] =

Op∧(X∗) and h[η[κ]] = ϑX∗ [D(X)].
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Theorem 7.5.7. For any DH∧-Spectral space X = 〈X, X̂, τκ〉, the structure

X′ := 〈X ′, τ ′,≤, η[κ], X̂ ′〉

is a DH∧-Priestley space. Moreover, X is the dense subset X ′η[κ].

Proof. The first statement follows from the previous corollary and Corollary

7.1.14. Let us prove that X is the dense subset X ′η[κ] given by the definition of

DH∧-Priestley space. Recall that

X ′η[κ] = {xC ∈ X ′ : {η(U) : U ∈ κ, xC /∈ η(U)} is non-empty and up-directed}.

First we show that X ⊆ X ′η[κ]. This follows from κ being a basis for τ . Let x ∈ X.

Notice that {η(U) : U ∈ κ, x /∈ η(U)} = {η(U) : U ∈ κ, cl(x) * U c}. By κ being a

basis, there is U ∈ κ such that x ∈ U . Then cl(x) * U c and this implies that the set

{η(U) : U ∈ κ, x ∈ η(U)} is non-empty. Let U, V ∈ κ be such that x /∈ η(U), η(V ).

Then cl(x) ⊆ U c, V c, and so x ∈ U ∩ V . Since κ is a basis for τ , there is W ∈ κ
such that x ∈ W ⊆ U ∩ V . And this implies η(U), η(V ) ⊆ η(W ) and cl(x) * W c.

Hence {η(U) : U ∈ κ, x ∈ η(U)} is up-directed.

In order to prove the reverse inclusion, let xC ∈ X ′η[κ]. We show that C is an

irreducible closed subset of X, as from this it follows that xC = xcl(xC) ∈ X. Let

C1, C2 be two closed subsets of X. Assume C ⊆ C1 ∪ C2 and suppose, towards

a contradiction, that C * C1 and C * C2. Then we have xC1
� xC , and using

that Op(X∗) is a DH∧-Priestley space, by condition (H12) there is U1 ∈ κ such that

xC1
∈ η(U1) and xC /∈ η(U1). Similarly we have xC2

� xC , and then there is U2 ∈ κ
such that xC2

∈ η(U2) and xC /∈ η(U2). Thus by hypothesis, from xC ∈ X ′η[κ] we

obtain that there is W ∈ κ such that η(U1), η(U2) ⊆ η(W ) and xC /∈ η(W ). This

implies, on the one hand, that C1, C2 ⊆W c, and on the other hand, that C *W c,

a contradiction. �

The previous theorem gives us how the functor we are looking for acts on the

objects. Now we move to morphisms. In fact, we focus on dual morphisms of ho-

momorphisms between Hilbert algebras, as from defining an H-Priestley morphism

out of an H-relation, it follows straightforwardly the result we need. From now on,

let X1 = 〈X1, τκ1〉 and X2 = 〈X2, τκ2〉 be two H-spaces and let R ⊆ X1 ×X2 be an

H-relation between them. We define the relation R ⊆ X ′1 ×X ′2 as follows:

(xC1
, xC2

) ∈ R iff (∀V ∈ κ2) if R[C1] ⊆ V c, then C2 ⊆ V c,

where recall that R[C1] =
⋃
{R[x] : x ∈ C1}. We claim that R is an H-Priestley

morphism between the H-Priestley spaces 〈X ′1, τ ′1,≤, η1[κ1]〉 and 〈X ′2, τ ′2,≤, η2[κ2]〉.
In order to show this, we prove first some useful lemmas:

Lemma 7.5.8. Let R ⊆ X1 × X2 be an H-relation between H-spaces X1 =

〈X1, τκ1〉 and X2 = 〈X2, τκ2〉. Then for all x1 ∈ X1 and x2 ∈ X2:

(x1, x2) ∈ R iff (x1, x2) ∈ R.

Moreover for all xC1 ∈ X ′1 and all x2 ∈ R[C1], it holds that (xC1 , x2) ∈ R.

Proof. Recall that for each x ∈ X, x = xcl(x), so for the first statement, the

inclusion from left to right is immediate. For the converse, assume (x1, x2) ∈ R

and suppose, towards a contradiction, that (x1, x2) /∈ R. So we have x2 /∈ R(x1),
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that is a closed subset by (HR2), and then there is U ∈ κ2 such that x2 ∈ U

and R(x1) ⊆ U c. From x2 /∈ U c, we get cl(x2) * U c, and then by assumption,

R(cl(x1)) * U c. From R(x1) ⊆ U c, we get x1 ∈ �R(U c), that is closed by (HR1),

and so cl(x1) ⊆ �R(U c). It follows that R[cl(x1)] ⊆ U c, a contradiction. The

second statement follows easily. �

Lemma 7.5.9. Let R ⊆ X1 × X2 be a functional H-relation between H-spaces

X1 = 〈X1, τκ1
〉 and X2 = 〈X2, τκ2

〉. Then for all xC1
∈ X ′1 and any U ∈ κ2:

R(xC1
) ⊆ η2(U) iff R[C1] ⊆ U c.

Proof. Assume first that R(xC1
) ⊆ η2(U) and let y ∈ R[C1]. Then by Lemma

7.5.8 we have (xC1
, y) ∈ R, and then by assumption y ∈ η2(U). Thus by definition of

η2, cl(y) ⊆ U c, and hence y ∈ U c, as required. For the converse, assume R[C1] ⊆ U c
and let xC2

∈ R(xC1
). Then by definition of R, C2 ⊆ U c, i. e. xC2

∈ η2(U), as

required. �

Lemma 7.5.10. For R ⊆ X1 ×X2 a (functional) H-relation between H-spaces

X1 = 〈X1, τκ1
〉 and X2 = 〈X2, τκ2

〉, the relation R is a (functional) H-Priestley

morphism between the H-Priestley spaces 〈X ′1, τ ′1,≤, η1[κ1]〉 and 〈X ′2, τ ′2,≤, η2[κ2]〉.

Proof. First we show that condition (HR3) holds, i. e. that �R(η2(U)) =

η1(�R(U c)c) for all U ∈ κ2. Let U ∈ κ2. Recall that by (HR1), (�R(U c))c ∈ κ1.

Notice that this follows from Lemma 7.5.9, as we have:

xC1 ∈ �R(η2(U)) iff R[xC1 ] ⊆ η2(U) iff R[C1] ⊆ U c

iff C1 ⊆ �R(U c) iff xC1
∈ η1((�R(U c))c).

Now we show that condition (HR4) also holds, i. e. that if (xC1
, xC2

) /∈ R, then

there is U ∈ κ2 such that xC2
/∈ η2(U) and R(xC1

) ⊆ η2(U). Let xC1
∈ X ′1 and

xC2
∈ X ′2 and assume (xC1

, xC2
) /∈ R. Then by definition of R, there is U ∈ κ2 such

that R[C1] ⊆ U c and C2 * U c. This implies xC2
/∈ η2(U) and R(xC1

) ⊆ η2(U), so

we are done. Finally, condition (HF′) follows similarly from condition (HF). �

Corollary 7.5.11. For R ⊆ X1 ×X2 a (functional) DH∧-Spectral morphism

between DH∧-Spectral spaces X1 = 〈X1, X̂1, τκ1
〉 and X2 = 〈X2, X̂2, τκ2

〉, the rela-

tion R is a (functional) DH∧-Priestley morphism between the DH∧-Priestley spaces

X′1 and X′2.

Proof. This follows from Lemma 7.5.10 and the fact that condition (DH∧R4)

follows immediately from condition (DH∧R2). �

We are finally ready to define the functor G : SpDH
∧

M −→ PrDH
∧

M such that for

any DH∧-Spectral spaces X,X1,X2 and any DH∧-Spectral morphism R ⊆ X1×X2:

G(X) := X′ = 〈X ′, τ ′,≤, η[κ], X̂ ′〉,

G(R) := R.

Clearly from (H12) it follows that G(≤X) = ≤X′ = ≤G(X), so the functor pre-

serves the identity morphism in SpDH
∧

M . We prove that G preserves composition of

morphisms in SpDH
∧

M as well.
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Lemma 7.5.12. Let X1,X2,X3 be H-spaces and R ⊆ X1×X2 and S ⊆ X2×X3

be H-relations. Then for any xC1
∈ X ′1 and any U ∈ κ2,

(S ◦R)[C1] ⊆ U c iff (S ◦R)(xC1
) ⊆ η2(U).

Proof. Notice that by definition (S ◦ R)[C1] * U c if and only if R[C1] *
�B(U c), and this holds if and only if there is xC2 ∈ R(xC1) such that S[C2] * U c.

But this is equivalent to having xC2
∈ R(xC1

) and xC3
∈ S(xC2

) such that C3 * U c,

i. e. (S ◦R)(xC1) * η3(U), as required. �

By the previous lemma we get that for any DH∧-Spectral morphisms R ⊆
X1 ×X2 and S ⊆ X2 ×X3, G(S ◦R) = G(S) ?G(R), since we have:

(xC1
, xC2

) /∈ (S ◦R) iff ∃U ∈ κ3

(
(S ◦R)[C1] ⊆ U c & C2 * U c

)
iff ∃U ∈ κ3

(
(S ◦R)[xC1

] ⊆ η3(U) & xC2
/∈ η3(U)

)
iff (xC1 , xC2) /∈ (S ? R).

Hence, the functor G preserves composition of morphisms, and hence it is well

defined.

7.5.3. Categorical equivalence. We finally introduce the natural isomor-

phisms involved in the equivalence of the categories PrDH
∧

M and SpDH
∧

M . Let us

consider first the endofunctor FG : SpDH
∧

M −→ SpDH
∧

M .

Theorem 7.5.13. FG is the identity functor on SpDH
∧

M .

Proof. This follows easily from Theorem 7.5.7, where we proved that X ′η[κ] =

X. This implies that X̂ ′ ∩X ′η[κ] = X̂ ′ ∩X = X̂ and it also follows that τκη[κ] = τκ,

therefore FG(X) = 〈X ′η[κ], X̂
′ ∩X ′η[κ], τκη[κ]〉 = X. �

For each DH∧-Spectral space X, let RX ⊆ X ×X be the order associated with

the space 〈X, τκ〉. We know that RX is the identity morphism for X, and so it is

an isomorphism in SpDH
∧

M . Consider the family of morphisms in SpDH
∧

M :

Φ :=
(
RX ⊆ X × FG(X)

)
X∈SpDH∧M

Corollary 7.5.14. Φ is a natural isomorphism between the identity functor

on SpDH
∧

M and FG.

The previous corollary gives us one of the required natural isomorphisms. Let

us move to consider the endofunctor GF : PrDH
∧

M −→ PrDH
∧

M . We need to show that

for each X ∈ PrDH
∧

M there is an isomorphism SX between X and GF(X) such that

for each R ⊆ X1 ×X2 ∈ PrDH
∧

M , SX2
? R = GF(R) ? SX1

.

Lemma 7.5.15. Let X be a DH∧-Priestley space. For any x ∈ X, we have that

↑x ∩XB ∈ COp(X ′B). Moreover, for each C ∈ COp(X ′B), there is a unique x ∈ X
such that ↑x ∩XB = C.

Proof. First we check that ↑x ∩ XB is closed in X ′B . Let y ∈ XB be such

that y /∈ ↑x ∩XB . Recall that basic opens of XB have the form XB \ U for some

U ∈ B. From x 6= y and (H12) we get that there is U ∈ B such that x ∈ U and

y /∈ U . Hence y ∈ XB \ U and (↑x ∩XB) ∩ (XB \ U) = ∅, so we are done.
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We show now that ↑x∩XB is an optimal closed subset. By (H13) we get that it

is non-empty. Let V,U0, . . . , Un ∈ B, be such that (XB \ U0) ∩ · · · ∩ (XB \ Un) ⊆
XB \ V , and for all i ≤ n, (↑x ∩ XB) ∩ (XB \ Ui) 6= ∅. Suppose, towards a

contradiction, that (↑x ∩ XB) ∩ (XB \ V ) = ∅. From the assumption, we get

that x /∈ Ui for all i ≤ n, since each Ui is an up-set. Suppose that x /∈ V ,

then as V is XB-admissible, there is y ∈ XB such that x ≤ y /∈ V . But then

we get y ∈ (↑x ∩XB) ∩ (XB \ V ), a contradiction. Therefore x ∈ V . So we have

x ∈ V ∩ U c0 ∩ · · · ∩ U cn, that is open. By density, there is z ∈ XB∩(V ∩U c0∩· · ·∩U cn),

so z ∈ V and z /∈ Ui for all i ≤ n. But then, since z /∈ XB \ V by assumption there

is i ≤ n such that z /∈ XB \ Ui, and so z ∈ Ui, a contradiction. We conclude that

↑x ∩XB is an optimal closed subset of X ′B .

Consider now a closed C ∈ COp(X ′B), and suppose, towards a contradiction,

that
⋂
{V ∈ B : C ⊆ V } ∩

⋂
{U c : U ∈ B,C * U} = ∅. Then since the elements of

B are clopens, by compactness of X, there are V0, . . . , Vn, U0, . . . , Um ∈ B such

that C ⊆ Vi, C * Uj , for all i ≤ n and j ≤ m, and V0∩· · ·∩Vn∩U c0 ∩· · ·∩U cm = ∅.
Let V := V0 ∩ · · · ∩ Vn. Clearly C ⊆ V . We have V ⊆ U0 ∪ · · · ∪ Um, and so

(XB \ U0) ∩ · · · ∩ (XB \ Um) ⊆ XB \ V . By assumption, C ∩ (XB \ Uj) 6= ∅, for all

j ≤ m. Then by C being optimal closed C ∩ (XB \ V ) 6= ∅, a contradiction. We

conclude that there is x ∈
⋂
{V ∈ B : C ⊆ V } ∩

⋂
{U c : U ∈ B,C * U}. Clearly

↑x ∩XB = C. Let x, x′ ∈
⋂
{V ∈ B : C ⊆ V } ∩

⋂
{U c : U ∈ B,C * U}. So x and

x′ belong to the same elements of B. This implies by condition (H12) that they

are equal. Therefore the x ∈ X such that ↑x ∩XB = C is unique. �

The previous lemma gives us the following bijection between elements of X and

elements of X ′B : each x ∈ X corresponds with x↑x∩XB ∈ X ′B , and all elements of

X ′B are of this form. The following lemma is then easy to prove.

Lemma 7.5.16. Let X be a DH∧-Priestley space. For all U ∈ B, η(XB\U) = U .

According to this lemma, the map η gives us a one-to-one correspondence

between the subbasis of X, {U : U ∈ B} ∪ {V c : V ∈ B}, and the subbasis of X ′B ,

{η(XB \ U) : U ∈ B} ∪ {η(XB \ V )c : V ∈ B}. Thus the spaces X and X ′B are

homeomorphic. Similarly, for any DH∧-Priestley morphism R ⊆ X1×X2, it follows

that (y1, y2) ∈ R if and only if (x↑y1∩XB1
, x↑y2∩XB2

) ∈ R. For each DH∧-Priestley

space X, let SX ⊆ X ×X ′B be the relation given by:

(x, x↑y∩XB ) ∈ SX iff x ≤ y.

It is easy to check that SX is a DH∧-Priestley morphism, and it is in fact an

isomorphism in PrDH
∧

M . Consider the family of morphisms in PrDH
∧

M :

Ψ := (SX ⊆ X ×GF(X))X∈PrDH∧M

Theorem 7.5.17. Ψ is a natural isomorphism between the identity functor on

PrDH
∧

M and GF.

Corollary 7.5.18. The categories PrDH
∧

M and SpDH
∧

M are equivalent by means

of the functors F and G and the natural equivalences Ψ and Φ. Moreover FG is the

identity functor on SpDH
∧

M .
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7.6. Extending the method to other classes of algebras

In this section we aim to highlight that what has been presented in § 7.1–§ 7.3 is

not only a new topological duality for DH∧-algebras, but moreover, it is a strategy

for getting new topological dualities for other classes of algebras (and logics). In

particular, we focus on the algebras introduced in Chapter 6, that correspond to

filter distributive and congruential expansions of H, the implicative fragment of

intuitionistic logic. This fact is in line with our motivation: in the same way as

extended Priestley duality provides a general method from which many dualities for

lattice-based algebras follow, we claim that from our duality for DH∧-algebras we

shall abstract a general method from which other dualities for DH∧-based algebras

follow as well.

First we abstract the mentioned strategy in a very informal way, and then we

focus on the classes of algebras exhibited in § 6.7 and we indicate how the same

pattern can be followed to get topological dualities for these classes of algebras.

As for the general strategy, let us concentrate on the Spectral-like duality, but

keep in mind that what follows could also be stated for the Priestley-style duality.

Let K and K̂ be two classes of algebras in the languages L and L̂ , for which

Spectral-like dualities are already known. Let us call the dual spaces of the algebras

in K and K̂, K-Spectral spaces and K̂-Spectral spaces respectively. For convenience,

assume that L and L̂ are disjoint. Finally, let K′ be a class of algebras in the

language L ∪ L̂ , such that:

– the L -reducts of K′-algebras are K-algebras, so for any K′-algebra A, let

〈XA, τκA
, . . . 〉 be its dual K-Spectral space,

– the L̂ -reducts of K′-algebras are K̂-algebras, so for any K′-algebra A, let

〈X̂A, τκ̂A
, . . . 〉 be its dual K̂-Spectral space,

Under this general situation, if we have that X̂A ⊆ XA and the subspace of

〈XA, τκA
〉 generated by X̂A is precisely 〈X̂A, τκ̂A

〉, then we claim that a not so

complicated Spectral-like duality for K′ might be built from the dualities for K and

K̂, in such a way that for any K′-algebra A, its dual K′-Spectral space shall be

defined as the dual K-Spectral space of its L -reduct augmented with a subset that

satisfies certain conditions. It would be very interesting to study this thoroughly

and get, for any class K a full characterization of the classes of algebras the strategy

might be applied for, but this should be studied somewhere else. In what follows

we briefly treat the case when K is the variety of Hilbert algebras H.

7.6.1. Dualities for Implicative Semilattices. In the present section we

show that the topological dualities for implicative semilattices studied in [11] and [6]

can be easily obtained as an instance of the ones that we obtained in the present

chapter. Recall that we also obtained such dualities as a particular case of the theory

developed in Chapter 5 (see § 6.5). We refer the reader to § 6.5 for the definitions of

IS-space, IS-morphism, generalized Esakia space and generalized Esakia morphism.

Let us begin with the Spectral-like duality. We show that the collection of

IS-spaces can alternatively be presented as the collection of DH∧-Spectral spaces

X = 〈X, X̂, τκ〉 that satisfy the following condition:

(IS) X̂ = X.
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Proposition 7.6.1. Let X = 〈X, X̂, τκ〉 be a DH∧-Spectral space that satisfies

(IS). Then 〈X, τκ〉 is an IS-space.

Proof. By condition (DH∧1), 〈X, τκ〉 it is a compactly based sober topological

space, by conditions (DH∧2), (DH∧4) and (IS), KO(X) = KO(X̂) = κ is a basis for

the space, and then by condition (DH∧1), the basis is closed under the operation

sat(( ) ∩ ( )c). �

Proposition 7.6.2. Let 〈X, τ〉 be an IS-space. Then X = 〈X,X, τKO(X)〉 is a

DH∧-Spectral space.

Proof. By assumption 〈X, τKO(X)〉 is an H-space. Clearly X ⊆ X generates a

sober subspace. Moreover, we can easily prove that for all {U, V }∪W ⊆ KO(X). As

U c is closed, it is immediate that cl(U c∩X) = U c, so condition (DH∧3) is satisfied.

Also cl(U c∩V c∩X)c = U ∪V ∈ KO(X), so condition (DH∧4) is satisfied. Finally,

if cl(
⋂
{W c : W ∈ W}∩X) ⊆ U c, as U is compact, there are W0, . . . ,Wn ∈ W, for

some n ∈ ω, such that W c
0 ∩ · · · ∩W c

n = cl(W c
0 ∩ · · · ∩W c

n ∩X) ⊆ U c. So condition

(DH∧5) is also satisfied. �

After a careful review of the definition of IS-morphisms, we realize that con-

ditions (DS1), (DS2) correspond with condition (DH∧R1), that appears in the

definition of DH∧-Spectral morphisms, with KO(X) playing the role of κ. In fact,

(DH∧R2) is redundant, under the assumption and condition (DH∧R1). Clearly

condition (HF) is the same in both definitions. Therefore, from the correspondence

for objects it follows easily the correspondence for morphisms.

Corollary 7.6.3. The category of IS-spaces and functional meet-relations is

equivalent to the category of DH∧-Spectral spaces satisfying (IS) and DH∧-Spectral

functional morphisms.

Let us move now to the Priestley-style duality. We show that the collection

of generalized Esakia spaces can be presented as the collection of DH∧-Priestley

spaces X = 〈X, τ,≤, B, X̂〉 that satisfy condition (IS).

Proposition 7.6.4. Let X = 〈X, τ,≤, B, X̂〉 be a DH∧-Priestley space that

satisfies (IS). Then 〈X, τ,≤, XB〉 is a generalized Esakia space.

Proof. By Corollary 7.1.19 we know that 〈X̂, τ̂ ,≤, XB ∩ X̂〉 is a generalized

Priestley space, but by assumption, this structure is the same as 〈X, τ,≤, XB〉.
Notice that the collection of all XB-admissible clopen up-sets of X is precisely

B. Then condition (IS5), that implies that the down-set generated by any Esakia

clopen is clopen, follows easily from condition (DH∧6). �

Proposition 7.6.5. Let 〈X, τ,≤, XB〉 be a generalized Esakia space. Then

X = 〈X, τ,≤, C`UadXB (X), X〉 is a DH∧-Priestley space.

Proof. By assumption 〈X, τ,≤, C`UadXB (X)〉 is an generalized Priestley space

whose dense subset is XB . Clearly X ⊆ X generates a compact subspace. More-

over, for all U, V ∈ C`UadXB (X): as U is up-set, it follows ↑(U ∩X) = U , so condition

(DH∧8) is satisfied. Since C`UadXB (X) is closed under finite intersections, we have

↑(U ∩V ∩X) ∈ C`UadXB (X), so condition (DH∧9) is also satisfied. Finally, for every
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W clopen up-set, we have, by definition of XB-admissible, that W ∈ C`UadXB (X) if

and only if W c ⊆ ↓(W c ∩XB). Therefore, condition (DH∧10) is satisfied. �

If we examine in detail the definition of generalized Esakia morphism, we re-

alize that conditions (DS3) and (DS4) correspond with condition (DH∧R3), and

condition (DH∧R4) is redundant under the assumption and condition (DH∧R3).

Therefore, from the correspondence for objects it follows again easily the corres-

pondence for morphisms.

Corollary 7.6.6. The category of generalized Esakia spaces and generalized

Esakia morphisms is equivalent to the category of DH∧-Priestley spaces satisfying

(IS) and DH∧-Priestley functional morphisms.

7.6.2. Dualities for Hilbert algebras with distributive lattice struc-

ture. Recall that HDL-algebras are given in the language (→,∧,∨, 1) of type

(2, 2, 2, 0). A HDL-algebras is an algebra A = 〈A,→,∧,∨, 1〉, such that 〈A,→, 1〉
is a Hilbert algebra, 〈A,∧,∨〉 is a distributive lattice, and moreover the implica-

tion and the lattice define the same order. We pursue to get Spectral-like and

Priestley-style dualities for HDL-algebras. From a careful analysis of the Spectral-

like duality for DH∧-algebras, and bringing up the well-known Stone duality for

distributive lattices, we deduce the following definition of the Spectral-like dual

spaces of HDL-algebras.

Definition 7.6.7. A structure X = 〈X, X̂, τκ〉 is an HDL-Spectral space when

X is a DH∧-Spectral space and:

(DHL1) cl((U c ∪ V c) ∩ X̂)c ∈ κ, for any U, V ∈ κ.

Similarly, for the Priestley-style dual spaces of HDL-algebras, we get the follow-

ing definition from the analysis of the Spectral-like duality for DH∧-algebras and

the well-known Priestley duality for distributive lattices.

Definition 7.6.8. A structure X = 〈X, τ,≤, B, X̂〉 is an HDL-Priestley space

when X is a DH∧-Priestley space and:

(DHL2) ↑((U ∪ V ) ∩ X̂) ∈ B, for any U, V ∈ B.

Notice that for any HDL-Priestley space X = 〈X, τ,≤, B, X̂〉, by condition

(DH∧8), we could rewrite condition (DHL2) as follows:

(H∨4) U ∪ V ∈ B, for any U, V ∈ B.

In the same way, for any HDL-Spectral space X = 〈X, X̂, τκ〉, by condition (DH∧3),

we could rewrite condition (DHL1) as follows:

(H∨3) U ∩ V ∈ κ, for any U, V ∈ κ.

This yields a different formulation of the definitions of HDL-Spectral and HDL-

Priestley spaces:

Proposition 7.6.9. A structure X = 〈X, X̂, τκ〉 is an HDL-Spectral space

when X is a DH∧-Spectral space and 〈X, τκ〉 is a H∨-Spectral space

Proposition 7.6.10. A structure X = 〈X, τ,≤, B, X̂〉 is an HDL-Priestley

space when X is a DH∧-Priestley space and 〈X, τ,≤, B〉 is a H∨-Priestley space.
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From our work in § 7.1 it is easy to prove the following equivalences between ob-

jects. Some work should be done to encompass morphisms and get a full categorical

duality, but we leave this as future work.

Theorem 7.6.11. Let X = 〈X, X̂, τκ〉 be an HDL-Spectral space. Then X∗ :=

〈D(X),⇒,u,∪, X〉 is an HDL-algebra and Irr(X∗) := 〈Irr→(X∗), Irr∧(X∗), τκX∗ 〉 is

an HDL-Spectral space such that 〈X, τκ〉 and 〈Irr→(X∗), τκX∗ 〉 are homeomorphic

topological spaces by means of the map εX and moreover εX[X̂] = Irr∧(X∗).

Theorem 7.6.12. Let A = 〈A,→,∧,∨, 1〉 be an HDL-algebra. Then Irr(A) :=

〈Irr→(A), Irr∧(A), τκA
〉 is an HDL-Spectral space and (Irr(A))∗ := 〈D(Irr(A)),⇒

,u,∪, Irr→(A)〉 is an HDL-algebra isomorphic to A by means of the map ψA.

Note that this is another example of the modular nature of Stone/Priestley

duality theory for filter distributive finitary congruential logics with theorems. We

should mention that in [14], Celani and Cabrer follow a strategy alike the one

presented above. More precisely, they study a duality for DHL0 -algebras, but they

combine the Spectral-like duality for Hilbert algebras with the Priestley duality for

bounded distributive lattices. We could also combine the Priestley-style duality for

Hilbert algebras and the Spectral-like duality for distributive semilattices, in order

to get another duality for DH∧-algebras.

7.6.3. Dualities for Implicative Hilbert algebras with infimum. Re-

call that in this case we deal with the language (→,∧,→′, 1) of type (2, 2, 2, 0).

We aim to get Spectral-like and Priestley-style dualities for IH∧-algebras. Recall

that A = 〈A,→,∧,→′, 1〉 is an IH∧-algebra when 〈A,→, 1〉 is a Hilbert algebra,

〈A,→′,∧, 1〉 is an implicative semilattice, and moreover → and →′ define the same

order on A. In order to get a Spectral-like duality for IH∧-algebras, we focus on

the Spectral-like duality for DH∧-algebras together with the Spectral-like duality

for implicative semilattices presented in § 6.5, and we get the following definition.

Definition 7.6.13. A structure X = 〈X, X̂, τκ〉 is an IH∧-Spectral space when

X is a DH∧-Spectral space and:

(IH∧1) (cl((satX̂(U ∩ V c))c ∩ X̂))c ∈ κ, for any U, V ∈ κ.

Now for any IH∧-Spectral space X, we can define an operation ⇒′ on D(X)

such that for all U, V ∈ κ:

U c ⇒′ V c := cl((satX̂(U ∩ V c))c ∩ X̂).

On the other hand, we get the definition of Priestley-style dual spaces of IH∧-

algebras from the Priestley-style duality for DH∧-algebras and from the Priestley-

style duality for implicative semilattices presented in § 6.5.

Definition 7.6.14. A structure X = 〈X, τ,≤, B, X̂〉 is an IH∧-Priestley space

when X is a DH∧-Priestley space and:

(IH∧2) ↑((↓(U ∩ V c))c ∩ X̂) ∈ B, for any U, V ∈ B.

And again, for any IH∧-Priestley space X, we can define an operation⇒′ on B

such that for all U, V ∈ B:

U ⇒′ V := ↑((↓(U ∩ V c))c ∩ X̂).
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These definitions are a bit more elaborated than the previous ones. Notice that

condition (IH∧1) involves the closure of a subset in 〈X, τκ〉 and the saturation of a

subset in the subspace generated by X̂. In any case, the dualities work as usual,

although some work should be done again in order to accommodate morphisms.

Theorem 7.6.15. Let X = 〈X, X̂, τκ〉 be an IH∧-Spectral space. Then X∗ :=

〈D(X),⇒,u,⇒′, X〉 is an IH∧-algebra and Irr(X∗) := 〈Irr→(X∗), Irr∧(X∗), τκX∗ 〉
is an IH∧-Spectral space such that 〈X, τκ〉 and 〈Irr→(X∗), τκX∗ 〉 are homeomorphic

topological spaces by means of the map εX and moreover εX[X̂] = Irr∧(X∗).

Theorem 7.6.16. Let A = 〈A,→,∧,∨, 1〉 be an IH∧-algebra. Then Irr(A) :=

〈Irr→(A), Irr∧(A), τκA
〉 is an IH∧-Spectral space and (Irr(A))∗ := 〈D(Irr(A)),⇒

,u,⇒′, Irr→(A)〉 is an IH∧-algebra isomorphic to A by means of the map ψA.

7.6.4. Dualities for Implicative Hilbert algebras with lattice struc-

ture. Finally, we briefly mention the case when we deal with the language (→
,∧,∨,→′, 1) of type (2, 2, 2, 2, 0). Recall that A = 〈A,→,∧,∨,→′, 1〉 is a IHL-

algebra when 〈A,→, 1〉 is a Hilbert algebra, 〈A,→′,∧,∨, 1〉 is a relatively pseudo-

complemented lattice, and both→ and→′ define the same order. The definition of

the Spectral dual objects of IHL-algebras arises from the Spectral-like duality for

HDL-algebras and the Spectral-like duality for implicative semilattices.

Definition 7.6.17. A structure X = 〈X, X̂, τκ〉 is a IHL-Spectral space when

X is a HDL-Spectral space and:

(IH∧1) (cl((satX̂(U ∩ V c))c ∩ X̂))c ∈ κ, for any U, V ∈ κ.

As in previous subsection, for any IHL-Spectral space X, we can define an

operation ⇒′ on D(X) such that for all U, V ∈ κ:

U c ⇒′ V c := cl((satX̂(U ∩ V c))c ∩ X̂).

Regarding Priestley-style dual spaces of IHL-algebras, from the Priestley-style dua-

lity for HDL-algebras and the Priestley-style duality for implicative semilattices, we

get the following definition:

Definition 7.6.18. A structure X = 〈X, τ,≤, B, X̂〉 is a IHL-Priestley space

when X is a HDL-Priestley space and:

(IH∧2) ↑((↓(U ∩ V c))c ∩ X̂) ∈ B, for any U, V ∈ B.

And for any IHL-Priestley space X, we can define an operation ⇒′ on B such

that for all U, V ∈ B:

U ⇒′ V := ↑((↓(U ∩ V c))c ∩ X̂).

Likewise, we get analogous of theorems 7.6.15 and 7.6.16. Summarizing, we

have shown how we can use the dualities for DH∧-algebras to get new dualities

for other classes of algebras. And this is very interesting since those classes of

algebras are the algebraic counterpart of some interesting filter distributive finitary

congruential logics with theorems, all of which are expansions of the implicative

fragment of intuitionistic logic.
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In this dissertation we aimed to show that Abstract Algebraic Logic provides

the appropriate theoretical framework for developing a uniform duality theory for

non-classical logics. We focused on the so called Stone/Priestley dualities, and we

studied them under an abstract point of view. It would be interesting to explore also

the third line that was mentioned in § 3.1, namely the so-called pairwise Stone-type

dualities.

We have captured a sufficient set of conditions for a logic S to get a Spectral-like

or a Priestley-style dual for AlgS. Such conditions are: being congruential, filter

distributive, finitary, and having theorems. Under these assumptions on S, we have

identified the collections of S-filters that can be used for developing the abstract

dualities: irreducible S-filters are used to build up the Spectral-like duality, and

optimal S-filters are the ones used for the Priestley-style duality. We have had a

quick look at how these notions can also be used for an abstract study of the theory

of canonical extensions for non-classical logics. Further questions on this topic, such

as how to encompass canonical extensions of substructural logics, or the possibility

of an abstract Sahlqvist theory, are left as future work.

We have obtained two abstract categorical dualities, in which most of the

Stone/Priestley dualities for non-classical logics that we encounter in the literature

fit. Due to the abstract character of our approach, we cannot avoid, in general,

to have an algebraic structure on the dual side. However, we have analyzed which

dual properties correspond with the best-known logical properties, such as having a

conjunction or a deduction theorem. This allows us to dispense with the algebraic

structure in the dual side, when the logic is sufficiently well behaved. Furthermore,

this analysis is both interesting for duality theory and for AAL. On the one hand,

it confirms the strength of duality theory, that can be developed in a modular way,

even outside of the distributive lattice setting. On the other hand, in the same

way than bridge theorems are studied in AAL between properties of the logic and

properties of its algebraic semantics, our results can be regarded as bridge theo-

rems between properties of the logic and properties of its Kripke-style semantics.

In this sense, we have carried out only the first steps, and we left as future work

to investigate the dual correspondence for more logical properties, such us (DDT),

n-ary modal operators, etc.

The entire second part of the dissertation was devoted to extract concrete re-

sults from our general theory. To do this, instead of keeping our abstract approach,

we focused on a single filter distributive finitary congruential logic with theorems,

namely the implicative fragment of intuitionistic logic, and we tackled the problem

of getting Spectral/Priestley dualities for extensions of such logic.

Aside from several new dualities that follow more or less straightforwardly from

the general case, we have studied new Spectral-like and Priestley-style dualities for

distributive Hilbert algebras with infimum. From those dualities, new Spectral-

like and Priestley-style dualities for a wide range of expansions of the implicative

fragment of intuitionistic logic follow. From our work, Kripke-style semantics for

191
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such logics could also follow. Such relational structures should be analyzed in more

detail, but we leave this as future work.

For distributive Hilbert algebras with infimum, the case that we have studied

in more detail, we also have compared both dualities in § 7.5, and we have given

the Spectral-like characterization of the different classes of filters in § 7.4, but other

algebraic questions about this class of algebras remain open, such as the dual char-

acterization of subalgebras or of homomorphic images. It would be also interesting

to study in depth the other mentioned classes of algebras, as well as the outlined

dualities for them.

A more ambitious project would involve identigying not only sufficient but also

necessary conditions that make our dualities work. On the other hand, it would

be very interesting to explore the development of an abstract theory of Spectral-

like and Priestley-style dualities for nice expansions of H, the implicative fragment

of intuitionistic logic. Or even more ambitious, formulating an abstract theory of

Spectral-like and Priestley-style dualities for nice expansions of S, for S an arbitrary

filter distributive finitary congruential logic with theorems.



APPENDIX A

The distributive envelope of a distributive

meet-semilattice with top element

In this Appendix we present more detailed what was only outlined in Section 9

in [5], namely how the Priestley-style duality for bounded distributive semilattices

presented there can be modified accordingly to obtain a Priestley-style duality for

distributive semilattices with top element.

From now on, let M = 〈M,∧, 1〉 be a distributive semilattice with top element.

The distributive envelope of M may be described, in brief, as the semilattice of

finitely generated F-ideals of M. As it is done in [5] and also in § 4.5, we follow

an alternative approach, and construct the distributive envelope of M from a sep-

arating family for M. As an instance of Definition 4.5.1 we obtain the following

definition.

Definition A.1. A family F ⊆ Op∧(M) of optimal meet filters of M is a

separating family for M if for every meet filter F ∈ Fi∧(M) and every a /∈ F , there

is P ∈ F such that F ⊆ P and a /∈ P .

By Lemma 2.3.7, Op∧(M) is itself a separating family for M, and by Lemma

2.3.3, Irr∧(M) is also a separating family for M. For any separating family F for

M, we define the map σF : M −→ P↑(F) as follows:

σF (a) = {P ∈ F : a ∈ P}.

The following representation theorem for semilattices that goes back to Stone is

stated in [5].

Theorem A.2. Let M be a distributive semilattice and F a separating family

for M. The map σF is an isomorphism between M and σF [M] := 〈σF [M ],∩,F〉.

Let us denote by LF (M) the closure of σF [M ] under non-empty finite unions.

By definition LF (M) is also closed under non-empty finite intersections, since

σF (a) ∩ σF (b) = σF (a ∧ b) for all a, b ∈ M , and moreover F ∈ LF (M) since

σF (1) = F .

Definition A.3. The algebra LF (M) := 〈LF (M),∩,∪,F〉 is called the distri-

butive envelope of M.

It follows that LF (M) is a distributive lattice with top element. Moreover,

the next theorem provides an abstract characterization of LF (M) by a universal

property. The proof is similar to that in Theorem 5.8 in [4]. Recall that sup-

homomorphisms are the algebraic homomorphisms that preserve existing suprema

(see definition in page 39).
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Theorem A.4. Let M be a distributive semilattice and let F be a separating

family for M. The distributive envelope LF (M) is, up to isomorphism, the unique

distributive lattice L for which there is a one-to-one sup-homomorphism h : M −→
L such that for any distributive lattice L′ and any one-to-one sup-homomorphism

h′ : M −→ L′ there is a unique one-to-one lattice homomorphism k : L −→ L′ with

k ◦ h = h′.

By the previous theorem, we know that for separating families F and F ′ for

M, LF (M) and LF ′(M) are isomorphic lattices. For convenience, we dispense with

the subscript F of LF (M), LF (M) and σF , and we use L(M), L(M) and σ instead.

Clearly we have that for each U ∈ P↑(F):

(E8) U ∈ L(M) iff U =
⋃
b∈B

σ(b) for some non-empty B ⊆ω M.

The following technical lemma concerns the case when the distributive envelope

is bounded.

Lemma A.5. Let M be a distributive semilattice. Then:

(1) M has a bottom element if and only if ∅ ∈ L(M).

(2) ∅ ∈ IdF (M) if and only if ∅ ∈ IdF (L(M)).

Proof. (1) If M has a bottom element 0M, then ∅ /∈ IdF (M). Therefore

A /∈ Op∧(M) and so σ(0M) = ∅ ∈ L(M). For the converse, suppose ∅ ∈ L(M).

Then by (E8) there is B ⊆ω M non-empty and such that
⋃
{σ(b) : b ∈ B} = ∅. Let

c :=
∧
B. Then by assumption σ(c) = ∅, and this implies that A /∈ Op∧(M), so M

has a bottom element 0M that clearly coincides with c.

(2) This follows from item (1) and definition of F-ideals of semilattices and

lattices. �

Notice that the previous lemma involves F-ideals of the lattice L(M). These

ideals are defined as in page 28. For any distributive lattice with top element

L = 〈L,∧,∨, 1〉, it follows by definition that:

– if L has a bottom element, then the Frink ideals and the order ideals of

L coincide, i. e. IdF (L) = Id(L), and

– if L has no bottom element, then IdF (L) = Id(L) ∪ {∅}.
It turns out that, when dealing with lattices with top but not necessarily bot-

tom, F-ideals are the right tools to work with instead of working with order ideals.

Similarly, we should work with optimal meet filters of the lattice L(M) instead

of working with prime meet filters. For any distributive lattice with top element

L = 〈L,∧,∨, 1〉, it follows by definition that:

– if L is has a bottom element, then optimal and prime meet filters of L

coincide, i. e. Op∧(L) = Pr(L), and

– if L has no bottom element, then Op∧(L) = Pr(L) ∪ {A}.
In the rest of the appendix we present several results about the distributive

envelope of a distributive meet-semilattice with top element and about Priestley

duality for these structures. There results generalize the ones stated in [5] for

bounded distributive meet-semilattices. The main difference is precisely that they
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involve Frink ideals and optimal meet filters of lattices, instead of order ideals and

prime meet filters.

Lemma A.6. Let M be a distributive semilattice with top element. For any

non-empty B,B0, . . . , Bn ⊆ω M :⋂
i≤n

JBi〉〉 ⊆ JB〉〉 iff σ(
∧
B) ⊆

⋃
i≤n

σ(
∧
Bi) iff

⋂
i≤n

Jσ(
∧
Bi)〉〉 ⊆ Jσ(

∧
B)〉〉.

Corollary A.7 (Lemma 3.2 in [5]). Let M be a distributive semilattice with

top element. For any a, a0, . . . , an ⊆ω M :⋂
i≤n

↑ai ⊆ ↑a iff σ(a) ⊆
⋃
i≤n

σ(ai) iff
⋂
i≤n

↑σ(ai) ⊆ ↑σ(a).

Proposition A.8 (Lemma 3.10 in [5]). Let M be a distributive semilattice

with top element.

(1) If F is a meet filter of M, then

(a) Jσ[F ]〉〉 is a meet filter of L(M), and

(b) σ−1[Jσ[F ]〉〉] = F .

(2) If F is a meet filter of L(M), then σ−1[F ] is a meet filter of M.

(3) If F is an optimal meet filter of M, then Jσ[F ]〉〉 is optimal.

(4) If F is an optimal meet filter of L(M), then

(a) σ−1[F ] is optimal, and

(b) Jσ[σ−1[F ]]〉〉 = F .

The previous proposition shows that the maps Jσ[ ]〉〉 and σ−1 give us an order

isomorphism between optimal meet filters of M and optimal meet filters of L(M):1

〈Op∧(M),⊆〉 ∼= 〈Op∧(L(M)),⊆〉

Proposition A.9 (Lemma 3.12, Theorem 4.3 and Corollary 4.4 in [5]). Let

M be a distributive semilattice with top element. Then:

(1) If I is an F-ideal of M, then

(a) 〈〈σ[I]K is an F-ideal of L(M), and

(b) σ−1[〈〈σ[I]K] = I.

(2) If I is a prime F-ideal of M, then 〈〈σ[I]K is prime.

(3) If I is an F-ideal of L(M), then

(a) σ−1[I] is an F-ideal of M, and

(b) 〈〈σ[σ−1[I]]K = I.

(4) If I is a prime F-ideal of L(M), then σ−1[I] is prime.

The previous proposition shows that the maps 〈〈σ[ ]K and σ−1 give us an order

isomorphism between F-ideals of M and F-ideals of L(M),2 that restricts to an

isomorphism between prime F-ideals of M and prime F-ideals of L(M):

〈IdF (M),⊆〉 ∼= 〈IdF (L(M)),⊆〉

〈prime IdF (M),⊆〉 ∼= 〈prime IdF (L(M)),⊆〉

1Recall that the latter are precisely prime filters of L(M) when M is bounded.
2Recall that the latter are precisely order ideals of L(M) when M is bounded.
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In conclusion, we have seen that the properties of the distributive envelope of

a bounded distributive meet-semilattice that were studied in [5] also hold for the

distributive envelope of a distributive meet-semilattice with top element. To carry

this out, however, the notion of optimal meet filter of bounded distributive meet-

semilattices that is used in [5] has to be modified according to what was exposed

in § 2.3.



APPENDIX B

The F-extension of a distributive meet-semilattice

with top element

Our main reference for this Appendix is [42], where the theory of ∆1-completions

of posets is presented. We study in detail in what follows the properties of a parti-

cular ∆1-completion of distributive semilattices with top element. We assume that

the reader is familiar with the theory of canonical extensions.

Recall that for any poset P , a completion of P is an embedding of P in a

complete lattice, i. e. it is a pair (e,Q) such that Q is a complete lattice and

e : P −→ Q is an order embedding. For convenience, we usually take e as the

identity.

Let P be a poset, let Q be a completion of P and let F and I be standard

collections of up-sets and down-sets respectively, i. e. collections of up-sets (resp.

down-sets) that contain the principal up-sets (resp. principal down-sets).

We call F-filter elements of Q and I-ideal elements of Q the elements in the

following two sets, respectively:

FF (Q) = {c ∈ Q : c =
∧
Q

F, F ∈ F},

II(Q) = {c ∈ Q : c =
∨
Q

I, I ∈ I}.

A completion Q of P is (F , I)-dense provided FF (Q) is join-dense in Q and II(Q)

is meet-dense in Q. A completion Q of P is (F , I)-compact provided for all F ∈ F
and all I ∈ I: ∧

Q

F ≤
∨
Q

I iff F ∩ I 6= ∅.

The property of (F , I)-compactness implies weakly (F , I)-compactness, that holds

whenever for all F ∈ F and all I ∈ I:

if
∧
Q

F ≤
∨
Q

I, then (∃X ⊆ω F )(∃Y ⊆ω I)
∧
Q

X ≤
∨
Q

Y.

Moreover, if F and I are algebraic closure systems, by Proposition 5.14 in [42], if

Q is (F , I)-compact and (F , I)-dense, then Q is compact, i. e. for all X,Y ⊆ P

if
∧
Q

X ≤
∨
Q

Y , then (∃X ′ ⊆ω X)(∃Y ′ ⊆ω Y )
∧
Q

X ′ ≤
∨
Q

Y ′.

An (F , I)-completion of P (Definition 5.9 in [42]) is a completion of P that is

(F , I)-compact and (F , I)-dense.

From now on, let M = 〈M,∧, 1〉 be a distributive meet-semilattice with top

element. Recall that the canonical extension of M is defined in [26] by Dunn.
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et al. as the (Fi∧(M), Id(M))-completion of M and it is customarly denoted by

Mδ. We focus on a different ∆1-completion of M, namely, the (Fi∧(M), IdF (M))-

completion of M. For short, let us call it the F-extension of M. The main result

in this appendix is that the F-extension of M is (up to isomorphism) the canonical

extension of L(M). Recall that we denote by L(M) the distributive envelope of

M, and following [44], for any distributive lattice L we denote by Lδ its canonical

extension. Notice that we have:

M
σ−→ L(M)

m−→ L(M)δ,

where σ is the embedding of M into its distributive envelope, defined in Appendix A,

and m is the canonical embedding of L(M) into its canonical extension L(M)δ. Let

us define:

k := (m ◦ σ) : M −→ L(M)δ.

It is easy to prove the following lemmas, in which all infinite joins and meets are

referred to L(M)δ.

Lemma B.1. For all F ∈ Fi∧(M),
∧
k[F ] =

∧
m[↑σ[F ]].

Proof. Since σ[F ] ⊆ ↑σ[F ], then m[σ[F ]] ⊆ m[↑σ[F ]] and so
∧
m[↑σ[F ]] ≤∧

m[σ[F ]] =
∧
k[F ]. For the converse, let x ∈ L(M) be such that x ∈ ↑σ[F ]. Then

there is ax ∈ F ⊆M such that σ(ax) ≤ x. Since m is order preserving, then k(ax) =

m(σ(ax)) ≤ m(x). We conclude that
∧
k[F ] ≤

∧
m[↑σ[F ]], as required. �

Lemma B.2. For all I ∈ IdF (M),
∨
k[I] =

∨
m[〈〈σ[I]K].

Proof. Notice that since m preserves finite joins, we have that for all X ⊆ω I,

m((
⋃
{σ(x) : x ∈ X}) =

∨
m[σ[X]]. By definition of Frink ideal generated we have

that 〈〈σ[I]K = {
⋃
{σ(x) : x ∈ X} : X ⊆ω I}. Then we get∨

m[〈〈σ[I]K] =
∨

X⊆ωI

m(
⋃
{σ(x) : x ∈ X}) =

∨
X⊆ωI

∨
x∈X

m(σ(x)) =
∨
k[I].

�

Lemma B.3. For any meet filter F of L(M), F ∈ Pr(L(M)) if and only if∧
m[F ] ∈ J∞(L(M)δ).

Proof. Let F ∈ Fi∧(L(M)) and assume that F ∈ Pr(L(M)). We show that∧
m[F ] is completely join irreducible, i. e. that for all Y ⊆ L(M)δ, if

∧
m[F ] ≤

∨
Y ,

then there is y ∈ Y such that
∧
m[F ] ≤ y. By denseness, we can assume that all

elements in Y are closed. So let {Fs : s ∈ S} ⊆ Fi∧(L(M)) and assume that∧
m[F ] ≤

∨
s∈S

∧
m[Fs]. Suppose, towards a contradiction, that for all s ∈ S,∧

m[F ] �
∧
m[Fs]. Then for each s ∈ S there is xs ∈ Fs such that xs /∈ F . By F

prime filter, for all S′ ⊆ω S,
∨
s∈S′ xs /∈ F . And then by compactness

∨
s∈S xs /∈ F ,

so
∧
m[F ] �

∨
s∈Sm(xs). But since for each s ∈ S, we have that xs ∈ Fs,

then
∧
m[Fs] ≤ m(xs), and then by the hypothesis

∧
m[F ] ≤

∨
s∈S

∧
m[Fs] ≤∨

s∈Sm(xs), a contradiction.

Let now F ∈ Fi∧(L(M)) and assume that
∧
m[F ] ∈ J∞(L(M)δ). We show

that for all x1, x2 ∈ L(M), if x1 ∪ x2 ∈ F then x1 ∈ F or x2 ∈ F . Recall that any

element x ∈ L(M) is of the form x =
⋃
{σ(a) : a ∈ A} for some A ⊆ω M .

So, for x1, x2 ∈ L(M), x1 ∪ x2 =
⋃
{σ(c) : c ∈ C} for some C ⊆ω M . So
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let C ⊆ω M and assume that
⋃
{σ(c) : c ∈ C} ∈ F . We show that there is

c ∈ C such that σ(c) ∈ F . Using that m preserves finite joins, we get
∧
m[F ] ≤

m(
⋃
{σ(c) : c ∈ C}) =

∨
m[σ[C]]. By hypothesis

∧
m[F ] is completely join irredu-

cible, so there is c ∈ C such that
∧
m[F ] ≤ m(σ(c)). Then by compactness we

obtain σ(c) ∈ F , as required. �

Lemma B.4. For all c ∈ J∞(L(M)δ), there is F ∈ Pr(L(M)) such that c =∧
m[F ].

Proof. This follows as a corollary of Lemma B.3. �

From previous lemmas and the relations between filters and ideals of M and

L(M) that were presented in Appendix A, we get the following theorem.

Theorem B.5. The canonical extension L(M)δ of L(M) is (up to isomor-

phism) the (Fi∧(M), IdF (M))-completion of M.

Proof. We show that k gives us the required dense and compact embedding.

Claim B.6. L(M)δ is (Fi∧(M), IdF (M))-compact.

Proof of the claim. Let F ∈ Fi∧(M) and I ∈ IdF (M) and suppose that∧
k[F ] ≤

∨
k[I]. Then by lemmas B.1 and B.2,

∧
m[↑σ[F ]] ≤

∨
m[〈〈σ[I]K]. And

then since ↑σ[F ] ∈ Fi∧(L(M)) and 〈〈σ[I]K ∈ Id(L(M)), by compactness we get that

there is x ∈ ↑σ[F ] ∩ 〈〈σ[I]K 6= ∅. So there is a ∈ F such that σ(a) ≤ x ∈ 〈〈σ[I]K,
and so σ(a) ∈ 〈〈σ[I]K. Then from results in Appendix A, a ∈ σ−1[〈〈σ[I]K] = I, so

F ∩ I 6= ∅, as required. �

Claim B.7. L(M)δ is (Fi∧(M), IdF (M))-dense.

Proof of the claim. First we show that IIdF (M)(L(M)δ) is meet-dense in

L(M)δ. By denseness we have that for each z ∈ L(M)δ there is Y ⊆ Id(L(M))

such that z =
∧
{
∨
m[I] : I ∈ Y}. By Lemma B.2 and results in Appendix A,∨

m[I] =
∨
k[σ−1[I]], and by results in Appendix A, σ−1[I] ∈ IdF (M), so we are

done.

Now we show that FFi∧(M)(L(M)δ) is join-dense in L(M)δ. Recall that L(M)δ

is an algebraic lattice, so every completely join irreducible element is completely

join prime. Therefore, for all z ∈ L(M)δ, z =
∨
Y for some Y ⊆ J∞(L(M)δ).

Then by Lemma B.4, z =
∨
{
∧
m[F ] : F ∈ X} for some X ⊆ Pr(L(M)). By

Lemma B.1,
∧
m[F ] =

∧
k[σ−1[F ]] for each F ∈ X , and by results in Appendix A,

σ−1[F ] ∈ Op∧(M) ⊆ Fi∧(M), so we are done. �

We have shown that the canonical extension L(M)δ of L(M) is a completion of

M that is (Fi∧(M), IdF (M))-compact and (Fi∧(M), IdF (M))-dense. We conclude

that L(M)δ is, up to isomorphism, the (Fi∧(M), IdF (M))-completion of M. �

From now on we consider k as the identity map and we denote the F-extension of

M simply by MF . Moreover, we denote the collection of all Fi∧(M)-filter elements

of MF by C(MF ) (or simply C), and we call its elements closed elements. Similarly
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0

a b

c1

c2

1

M

0

a b
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c1

c2
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Mδ ∼= L(M)
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a b
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d

c1

c2

1

MF ∼= L(M)δ

Figure 10. Example of a distributive semilattice for which the

canonical extension and the F-extension are different.

O(MF ) (or simply O) denotes the collection of all IdF (M)-ideal elements of MF ,

that are called open elements.1

The following example shows that the canonical extension and the F-extension

of a distributive semilattice may not be isomorphic. However, from the fact that

Id(M) ⊆ IdF (M) for any distributive semilattice M, it always holds that Mδ, the

canonical extension of M, is embeddable in MF .

Example B.8. We consider again the distributive semilattice M that we in-

troduced in Example 6.5.24 (see Figure 10). On the one hand, all ideals of M

are principal ideals, and the only filter of M that is not a principal filter is Fc =

{1}∪{ci : i ∈ ω}. From the general theory we get that the canonical extension Mδ

of M is the lattice obtained by adding the point c as shown in Figure 10. The dis-

tributive envelope L(M) of M was studied in detail in [5], and in this case it turns

out to be isomorphic to Mδ. Then the F-extension of M, that by Theorem B.5

is the canonical extension of L(M) is the complete distributive lattice obtained by

adding the point d as shown in Figure 10. Hence Mδ and MF are not isomorphic.

Moreover, we see that Mδ embeds into MF .

Notice that for the F-extension, the usual arguments about duality (when ar-

guing for the underlying posets) are not valid, since complements of filters are not

necessarily F-ideals. What it is still true is that finite meets and joins are pre-

served, since for all I ∈ IdF (M), I is closed under existing finite joins, and for all

F ∈ Fi∧(M), F is closed under existing finite meets. Furthermore Fi∧(M) and

IdF (M) are algebraic closure systems, so compactness holds. Let us verify one

more technical issue, taking special care of the bounds.

Lemma B.9. Let M1 and M2 be distributive semilattices. Then:

1Notice that a similar notation is used in the rest of the dissertation for open and closed

subsets of a topological space. This should not lead to confusion, as it is only in the remaining

part of the appendix that open and closed elements of a completion appear.
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(1) Fi∧(M1 ×M2) = Fi∧(M1)× Fi∧(M2).

(2) IdF (M1 ×M2) = IdF (M1)× IdF (M2).

Proof. Notice that M1 ×M2 has a bottom element if and only if both M1

and M2 have a bottom element. As we assume that the semilattices have a top

element, meet filters are non-empty. It is well known that the equality for meet

filters holds. We just have to check the equality for F-ideals.

Let us first show that for any I1 ∈ IdF (M1) and I2 ∈ IdF (M2), it holds that

I1 × I2 := {(a1, a2) : a1 ∈ I1, a2 ∈ I2} ∈ IdF (M1 ×M2). Consider first the

case I1, I2 6= ∅. Then let (a1i , a2i) ∈ I1 × I2, with i ≤ n for some n ∈ ω, and

suppose
⋂
{↑(a1i , a2i) : i ≤ n} ⊆ ↑(b1, b2) for some (b1, b2) ∈ M1 ×M2. We show

that b1 ∈ I1 (the other case is analogous). Suppose, towards a contradiction, that⋂
{↑a1i : i ≤ n} * ↑b1. Then there is z ≥ a1i for all i ≤ n such that z � b1.

Therefore (z, 1) ∈
⋂
{↑(a1i , a2i) : i ≤ n} and (z, 1) /∈ ↑(b1, b2), contrary to the

assumption. Thus we obtain
⋂
{↑a1i : i ≤ n} ⊆ ↑b1, and since I1 is an F-ideal, then

b1 ∈ I1. Similarly we obtain b2 ∈ I2, and therefore (b1, b2) ∈ I1 × I2, as required.

Assume now that I1 = ∅ (the case I2 = ∅ follows analogously). By assumption

I1 × I2 = ∅, and we know that M1 has no bottom element. By the remark above,

this implies that M1×M2 has no bottom element, and so I1×I2 = ∅ is a Frink-ideal

of M1 ×M2.

For the other inclusion, let I ∈ IdF (M1 ×M2). We show that I = I1 × I2 for

some I1 ∈ IdF (M1) and I2 ∈ IdF (M2). Consider first the case I 6= ∅. Notice that

for this case I = π1(I) × π2(I), where π1(I) := {a ∈ M1 : ∃b ∈ M2((a, b) ∈ I)}
and π2(I) := {b ∈ M2 : ∃a ∈ M1((a, b) ∈ I)}, as if we take (a1, a2), (b1, b2) ∈ I,

from ↑(a1, a2)∩↑(b1, b2) ⊆ ↑(a1, b2) and I being a Frink ideal it follows (a1, b2) ∈ I.

Thus if we show that π1(I) ∈ IdF (M1) and π2(I) ∈ IdF (M2) we are done. Let

(ai, bi) ∈ I, for some i ≤ n be such that
⋂
{↑ai : i ≤ n} ⊆ ↑c for some c ∈M1. We

show that c ∈ π1(I). Clearly, the assumption implies that
⋂
{↑(ai, bi) : i ≤ n} ⊆

↑(c,
∧
{bi : i ≤ n}). Therefore, since I is an F-ideal, we get (c,

∧
{bi : i ≤ n}) ∈ I,

and so c ∈ π1(I), as required. We have shown that π1(I) is an F-ideal of M1, and

the proof for π2(I) is analogous. Assume now that I = ∅. Then M1 ×M2 has

no bottom element, and then either M1 or M2 have no bottom element. Assume,

without loss of generality, that M1 has no bottom element. Then ∅ ∈ IdF (M1).

Let I2 ∈ IdF (M2) be any F-ideal of M2. Then clearly I = ∅ × I2, for F-ideals ∅
and I2 of M1 and M2 respectively, so we are done. �

Let us have a look at the extensions of order preserving and order reversing

maps to the canonical extension and the F-extension of a distributive semilattices

with top element.

For f : M1 −→M2 an order preserving map between distributive meet semi-

lattices M1 and M2, we define the σ and the π extension of f to the F-extension

of M1 and M2, such that for any u ∈MF
1 :

fσ(u) :=
∨{∧

{f(p) : x ≤ p, p ∈M1} : x ≤ u, x ∈ C1
}
,

fπ(u) :=
∧{∨

{f(p) : p ≤ y, p ∈M1} : u ≤ y, y ∈ O1

}
.

It is easy to check that the following statements hold:
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Lemma B.10. For all x ∈ C1, y ∈ O1, u ∈MF
1 :

(1) fσ(x) =
∧
{f(p) : x ≤ p, p ∈M1}.

(2) fσ sends closed elements to closed elements.

(3) fσ extends f .

(4) fσ is order preserving on C1.

(5) fσ(u) =
∨
{fσ(x) : x ≤ u, x ∈ C1}.

Proof. (1) follows immediately from f being order preserving. For (2), we

show first that ↑{f(p) : x ≤ p ∈M1} ∈ Fi∧(M2). Clearly this set is an up-set, so it

is just left to show that it is closed under meets. Let a, b ∈ ↑{f(p) : x ≤ p ∈ M1},
so there are p1, p2 ∈ M1, such that x ≤ p1, p2, f(p1) ≤ a and f(p2) ≤ b. As

x =
∧
F for some F ∈ Fi∧(M1) and (by compactness) p1, p2 ∈ F , so p1 ∧ p2 ∈ F .

Then x ≤ p1 ∧ p2. By f order preserving f(p1 ∧ p2) ≤ f(p1) ∧ f(p2) and since

f(p1) ∧ f(p2) ≤ a ∧ b, then a ∧ b ∈ ↑{f(p) : x ≤ p ∈ M1}, as required. So we

have fσ(x) =
∧
{f(p) : x ≤ p ∈ M1} =

∧
↑{f(p) : x ≤ p ∈ M1}, and we are done.

(3)-(5) follow easily. �

Lemma B.11. For all x ∈ C1, y ∈ O1, u ∈MF
1 :

(1) fπ(y) =
∨
{f(p) : p ≤ y, p ∈M1}.

(2) fπ sends open elements to open elements.

(3) fπ extends f .

(4) fπ is order preserving on O1.

(5) fπ(u) =
∧
{fπ(y) : u ≤ y, y ∈ O1}.

Proof. (1) is immediate. For (2), let I ∈ IdF (M1) be the F-ideal such that∨
I = y. We show that

∨
〈〈f [I]K =

∨
{f(p) : p ≤ y, p ∈ M1}. Notice that by

compactness, we get that
∨
{f(p) : p ≤ y, p ∈ M1} =

∨
f [I]. Therefore, since

f [I] ⊆ 〈〈f [I]K, we just have to show that
∨
〈〈f [I]K ≤

∨
{f(p) : p ≤ y, p ∈ M1}. Let

z ∈ 〈〈f [I]K, so there are a0, . . . , an ∈ I such that
⋂
{↑f(ai) : i ≤ n} ⊆ ↑z. This

implies, by definition of the distributive envelope, that z ≤
∨
{f(ai) : i ≤ n} ≤∨

f [I]. Thus
∨
〈〈f [I]K ≤

∨
{f(p) : p ≤ y, p ∈ M1}, and we are done. (3)-(5) follow

easily. �

Notice that for order reversing maps we cannot argue by duality, due to the lack

of symmetry between meet filters an F-ideals of meet semilattices. For g : M1 −→M2

an order reversing map between distributive meet semilattice M1 and M2, we de-

fine the σ and the π extension of g to the F-extension of M1 and M2 as follows:

for all u ∈MF
1

gσ(u) :=
∨{∧

{g(p) : p ≤ y, p ∈M1} : u ≤ y, y ∈ O1

}
,

gπ(u) :=
∧{∨

{g(p) : x ≤ p, p ∈M1} : x ≤ u, x ∈ C1
}
.

It is easy to check that the following statements hold, that are analogues of the

ones in lemmas B.10 and B.11.

Lemma B.12. For all x ∈ C1, y ∈ O1, u ∈MF
1 :

(1) gσ(y) =
∧
{g(p) : p ≤ y, p ∈M1}.

(2) gσ sends open elements to closed elements.

(3) gσ extends f .
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(4) gσ is order reversing on O1.

(5) gσ(u) =
∨
{fσ(y) : u ≤ y, x ∈ O1}.

Proof. (1) is immediate. For (2), let I ∈ IdF (M1) be the F-ideal such that∨
I = y. We show that

∧
Jg[I]〉〉 =

∧
{g(p) : p ≤ y, p ∈ M1}. Notice that by

compactness, we get that
∧
{g(p) : p ≤ y, p ∈ M1} =

∧
g[I]. Therefore, since

g[I] ⊆ Jg[I]〉〉, we just have to show that
∧

Jg[I]〉〉 ≤
∧
{g(p) : p ≤ y, p ∈ M1}: Let

z ∈ Jf [I]〉〉, so there are a0, . . . , an ∈ I such that g(a0) ∧ · · · ∧ g(an) ≤ z. Then∧
g[I] ≤ z and we are done. (3)-(5) follow easily. �

Lemma B.13. For all x ∈ C1, y ∈ O1, u ∈MF
1 :

(1) gπ(x) =
∨
{g(p) : x ≤ p, p ∈M1}.

(2) gπ sends closed elements to open elements.

(3) gπ extends f .

(4) gπ is order reversing on C1.

(5) gπ(u) =
∧
{fπ(x) : x ≤ u, x ∈ C1}.

Proof. (1) is immediate. For (2), we show first that ↓{g(p) : x ≤ p ∈ M1}
is an F-ideal of M2. Clearly the set ↓{g(p) : x ≤ p ∈ M1} is a down-set. Let

a, b ∈ ↓{g(p) : x ≤ p ∈ M1} and c ∈ M2 and suppose that ↑a ∩ ↑b ⊆ ↑c. We have

to show that c ∈ ↓{g(p) : x ≤ p ∈ M1}. By assumption there are p1, p2 ∈ M1,

x ≤ p1, p2 such that a ≤ g(p1) and b ≤ f(p2). Since g is order reversing, then

g(p1), g(p2) ≤ g(p1 ∧ p2). Then ↑g(p1) ∩ ↑g(p2) ⊆ ↑c, and then g(p1 ∧ p2) ∈ ↑c.
Thus c ≤ g(p1 ∧ p2) ∈ {g(p) : x ≤ p ∈ M1}, as required. So we have gπ(x) =∨
{g(p) : x ≤ p ∈ M1} =

∨
↓{g(p) : x ≤ p ∈ M1}, and we are done. (3)-(5) follow

easily. �

Once we have studied how order preserving and order reversing maps between

distributive semilattices can be extended to the F-extensions, we want to apply

this to the study of implicative semilattices. It is well known that the canonical

extension of the semilattice reduct of an implicative semilattice N = 〈N,→,∧, 1〉,
augmented with the π-extension of the implication, is a Heyting algebra [26].

Recall that from Lemma B.9 we obtain that the π extension of a binary function

f : M1 ×M2 −→M3 that is order preserving in the second coordinate and order

reversing in the first coordinate is given by:

fπ(u, v) :=
∧{∨

{f(p, q) : x ≤ p, q ≤ y, p ∈M1, q ∈M2} : x ≤ u, v ≤ y, x ∈ C1, y ∈ O2

}
We aim to show that the F-extension of the semilattice reduct of an implicative

semilattice N = 〈N,→,∧, 1〉, augmented with the π-extension of the implication,

is also a Heyting algebra, and so it is in particular an implicative semilattice.

Let N = 〈N,→,∧, 1〉 be an implicative semilattice. Recall that by definition

→ is the right residuum of ∧, so for all a, b, c ∈ N :

a ∧ c ≤ b iff c ≤ a→ b.

Let Nδ = 〈Nδ,∧Nδ

,∨Nδ

, 0N
δ

, 1N
δ〉 be the canonical extension of the semilattice

reduct of N, and let NF = 〈NF ,∧NF

,∨NF

, 0N
F

, 1N
F 〉 be the F-extension of the

semilattice reduct of N. We already know that ∧Nδ

coincides with the σ-extension

of ∧ in Nδ and ∨Nδ

coincides with the σ-extension of ∨ in Nδ.
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Lemma B.14. For any implicative semilattice N, ∧NF

coincides with the σ-

extension of ∧ in NF .

Proof. Let us denote the σ-extension of ∧ in NF by ∧σ. First we show that

∧NF

and ∧σ coincide for closed elements. Let p1, p2 ∈ C, and let F1, F2 ∈ Fi∧(N) be

the filters such that p1 =
∧
F1 and p2 =

∧
F2. On the one hand, by commutativity

of ∧NF

we have:

p1 ∧N
F

p2 =
∧
F1 ∧N

F ∧
F2 =

∧
{a1 ∧N

F

a2 : a1 ∈ F1, a2 ∈ F2}.

On the other hand, since ∧ is order preserving, we have:

p1 ∧σ p2 =
∧
{a1 ∧ a2 : p1 ≤ a1 ∈ N, p2 ≤ a2 ∈ N}.

And since a∧b = a∧NF

b for all a, b ∈ N , using compactness we obtain p1∧N
F

p2 =

p1 ∧σ p2. Notice that p1 ∧N
F

p2 =
∧
↑{a1 ∧N

F

a2 : a1 ∈ F1, a2 ∈ F2} and moreover

↑{a1 ∧N
F

a2 : a1 ∈ F1, a2 ∈ F2} ∈ Fi∧(N), so p1 ∧N
F

p2 is also a closed element of

NF .

Now we show that for all x1, x2 ∈ NF , x1∧N
F

x2 = x1∧σ x2. On the one hand,

by (Fi∧(N), IdF (N))-denseness, we have:

x1 ∧N
F

x2 =
∨
{p ∈ C : p ≤ (x1 ∧N

F

x2)}.

On the other hand, since ∧ is order preserving, by Lemma B.10 we have:

x1 ∧σ x2 =
∨
{p1 ∧σ p2 : p1 ≤ x1, p2 ≤ x2, p1, p2 ∈ C}.

From above we conclude that x1 ∧N
F

x2 = x1 ∧σ x2, as required. �

Theorem B.15. For any implicative semilattice N, the π-extension of → in

NF is the right residuum of ∧NF

.

Proof. Let u, v, w ∈ NF . By simplicity we will denote ∧NF

= ∧σ by ∧. First

we show that v ≤ u→π w implies u ∧ v ≤ w.

Let us prove first the easy case: let s, t ∈ C and y ∈ O and suppose s ∧ t ≤ y.

Recall that by s, t closed, then s ∧ t =
∧
↑{p ∧ q, p, q ∈ N, s ≤ p, t ≤ q} is also

closed, and so by (Fi∧(N), IdF (N))-compactness, there are p, q ∈ N with s ≤ p,

t ≤ q and p ∧ q ≤ y. By N being an implicative semilattice (by residuation) we

have q ≤ p→ (p ∧ q). Notice that s→π y =
∨
{p′ → q′ : p′, q′ ∈ N, s ≤ p′, q′ ≤ y}.

Therefore, we have t ≤ q ≤ p→ (p∧ q) for s ≤ p and p∧ q ≤ y. Hence t ≤ s→π y,

as required.

For the general case, suppose that u ∧ v ≤ w. We show that v ≤ u →π w.

Recall that u →π w =
∧
{s →π y : s ∈ C, s ≤ u,w ≤ y ∈ O} and moreover by

(Fi∧(N), IdF (N))-denseness, v = {
∨
t ∈ C : t ≤ v}. Let s, t ∈ C and y ∈ O be such

that s ≤ u, t ≤ v and w ≤ y. If we show that t ≤ s→π y, we are done. Using the

assumption we get that s ∧ t ≤ u ∧ v ≤ w ≤ y. Then by the easy case t ≤ s→π y,

as required.

For the converse, assume that v ≤ u →π w. We show that u ∧ v ≤ w. By

(Fi∧(N), IdF (N))-denseness, w =
∧
{y ∈ O : w ≤ y}, and moreover u ∧ v =∨

{s ∧ t : s, t ∈ C, s ≤ u, t ≤ v}. Let y ∈ O, s, t ∈ C be such that s ≤ u,

t ≤ v and w ≤ y. If we show that s ∧ t ≤ y, we are done. By assumption

t ≤ v ≤ u →π w =
∧
{s →π y : s ∈ C, s ≤ u,w ≤ y ∈ O} ≤ s →π y. Recall
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that by definition s →π y =
∨
{p → r : p, r ∈ N, s ≤ p, r ≤ y}. Let us define

the set X := {p → r : p, r ∈ N, s ≤ p, r ≤ y}. Using that
∨
X =

∨
〈〈XK, and

(Fi∧(N), IdF (N))-compactness, we obtain that there are p0, . . . , pn, r0, . . . , rn ∈ N
such that s ≤ pi, ri ≤ y for all i ≤ n and t ≤

∨
{pi →π ri : i ≤ n}.

Let p :=
∧
{pi : i ≤ n} ∈ N . From p ≤ pi, since→ is order reversing in the first

coordinate and order preserving in the second one, we obtain pi → ri ≤ p→ ri for

all i ≤ n, and so t ≤
∨
{pi → ri : i ≤ n} ≤

∨
{p→ ri : i ≤ n}. Now by residuation,

for all i ≤ n we have p ∧ (p → ri) ≤ ri ≤ y. Then
∨
{p ∧ (p → ri) : i ≤ n} ≤

y. Using that NF is a distributive lattice, we get that
∨
{p ∧ (p→ ri) : i ≤ n} =

p ∧
∨
{p→ ri : i ≤ n}. Therefore, since t ≤

∨
{p → ri : i ≤ n} and s ≤ p =

p0 ∧ · · · ∧ pn, we get s ∧ t ≤ y, as required. �

In conclusion, we have shown that for any distributive meet-semilattice with

top element M, the F-extension MF of M is (up to isomorphism) the canonical

extension of the distributive envelope of M. Moreover, for any implicative semila-

ttice N, the F-extension of N augmented with the π extension of the implication

is a Heyting algebra. This is an important result for defining a logic-based notion

of canonical extension of Hilbert algebras. It is worth noticing that the canonical

extension of a Hilbert algebra A = 〈A,→, 1〉, extended with the π extension of the

implication, may fail to be a Hilbert algebra. This is shown in following example.

Example B.16. Consider again the distributive semilattice M in Figure 10

(see page 200). Let → be the implication given by the order in M, and so let

M := 〈M,→, 1〉 be the resulting Hilbert algebra. We know that the canonical

extension of M is Mδ. By definition of the π extension of → in M
δ
, we have:

c→π c =

Mδ∨
{p→ q : c ≤ p, q ≤ c, p, q ∈M} = c 6= 1,

but then 〈M δ,→π, 1M
δ〉 is not a Hilbert algebra since condition (K) fails.
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(A�2) ` �n(�(γ → β)→ (�γ → �β)) for all formulas γ, β and for every n ∈ ω 128

(A∧1) ` (γ ∧ (γ → β))→ (γ ∧ β) 136

(A∧2) ` (γ ∧ β)→ (β ∧ γ) 136

(A∧3) ` ((γ ∧ β) ∧ δ)→ ((γ ∧ δ) ∧ β) 136

(AB) γ → β ` γ → (γ ∧ β) 136

(B) (a→ b)→ ((b→ c)→ (a→ c)) = 1 30

(C) a→ ((a→ b)→ b) = 1 30

(Can) AS is the (FiS(A), udIdsS(A))-completion of A 68

(C1) for all Y ⊆ X, Y ⊆ C(Y ) 16

(C1′) if x ∈ X, then X `C x 16

(C2) for all Y, Y ′ ⊆ X, if Y ⊆ Y ′, then C(Y ) ⊆ C(Y ′) 16

(C2′) if Y `C x for all x ∈ X and X `C z, then Y `C z 16

(C3) for all Y ⊆ X, C(C(Y )) = C(Y ) 16

(C3′) if Γ `S δ, then e[Γ] `S e(δ) for all substitutions e ∈ Hom(FmL ,FmL ) 17

(C4) for all Y ⊆ X, ∀x ∈ X, if x ∈ C(Y ), then there is a finite Y ′ ⊆ω Y such

that x ∈ C(Y ′)

16

(C5) for all Y ∪ {x} ⊆ X and all h ∈ Hom(X,X), we have h(x) ∈ C(h[Y ])

whenever x ∈ C(Y )

16

(DH∧1) 〈X, τκ〉 is an H-space 156

(DH∧2) X̂ ⊆ X generates a sober subspace of 〈X, τκ〉 156

(DH∧3) Uc = cl(Uc ∩ X̂), for all U ∈ κ 156

(DH∧4) cl(Uc ∩ V c ∩ X̂)c ∈ κ, for any U, V ∈ κ 156

(DH∧5) for any U, V ∈ κ and W ⊆ κ non-empty, if cl(
⋂
{W c : W ∈ W}∩ X̂) ⊆ Uc,

then cl(W c
0 ∩ · · · ∩W c

n ∩ X̂) ⊆ Uc for some W0, . . . ,Wn ∈ W and some

n ∈ ω

156

(DH∧6) 〈X, τ,≤, B〉 is an H-Priestley space 159

(DH∧7) X̂ ⊆ X generates a compact subspace 159

(DH∧8) U = ↑(U ∩ X̂), for any U ∈ B 159

(DH∧9) ↑(U ∩ V ∩ X̂) ∈ B, for any U, V ∈ B 159

(DH∧10) W is X̂ ∩ XB-admissible clopen up-set of X̂ iff W = U ∩ X̂ for some

U ∈ B
159
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(DH∧R1) R is an H-relation between H-spaces 〈X1, τκ1 〉 and 〈X2, τκ2 〉 164

(DH∧R2) for every x ∈ X̂1, R(x) = cl(R(x) ∩ X̂2) 164

(DH∧R3) R is an H-Priestley morphism between H-Priestley spaces 〈X1, τ1,≤1, B1〉
and 〈X2, τ2,≤2, B2〉

166

(DH∧R4) for every x ∈ X̂1, R(x) = ↑(R(x) ∩ X̂2) 166

(DHL1) cl((Uc ∪ V c) ∩ X̂)c ∈ κ, for any U, V ∈ κ 188

(DHL2) ↑((U ∪ V ) ∩ X̂) ∈ B, for any U, V ∈ B 188

(DLI0) (0→ a) = 1 144

(DLI1) a→ (b ∧ c) = (a→ b) ∧ (a→ c) 144

(DS1) the collection KO(X) of compact open subsets forms a basis for the topo-

logy τ

36

(DS2) the space 〈X, τ〉 is sober 36

(DS2′) the space 〈X, τ〉 is T0 and if Z is a closed subset and L is a non-empty

down-directed subfamily of KO(X) such that Z∩U 6= ∅ for all U ∈ L, then

Z ∩
⋂
{U : U ∈ L} 6= ∅

36

(DS3) 〈X, τ,≤〉 is a Priestley space 38

(DS4) XB is a dense subset of X 38

(DS5) XB = {x ∈ X : {U ∈ C`UadXB (X) : x /∈ U} is non-empty and up-directed} 38

(DS6) for all x, y ∈ X, x ≤ y iff (∀U ∈ C`UadXB (X)) if x ∈ U , then y ∈ U 38

(DSF) for each x ∈ X1 there is x′ ∈ X2 such that R(x) = ↑x′ 39

(DSR1) �R(U) ∈ F (X1) for all U ∈ F (X2) 37

(DSR2) R(x) is a closed subset of X2 for any x ∈ X1 37

(DSR3) �R(U) ∈ C`UadXB1
(X1) for all U ∈ C`UadXB2

(X2) 39

(DSR4) if (x, y) /∈ R, then there is U ∈ C`UadXB2
(X2) such that y /∈ U and R(x) ⊆ U 39

(E1) {Y ⊆ X : C(Y ) = Y } ⊆ P↑(X) 22

(E2) U ∈ M(A) iff U = ϕ̂(B) for some non-empty B ⊆ω A 61

(E3) 〈FiS(A),⊆〉 ∼= 〈Fi∧(M(A)),⊆〉 63

(E4) 〈S-prime IdsS(A),⊆〉 ∼= 〈prime IdF (M(A)),⊆〉 64

(E5) 〈udIdsS(A),⊆〉 ∼= 〈 A-ideal Id(M(A)),⊆〉 65

(E6) 〈S-prime udIdsS(A),⊆〉 ∼= 〈prime Id(M(A)),⊆〉 65

(E7) 〈OpS(A),⊆〉 ∼= 〈Op∧(M(A)),⊆〉 67

(E8) U ∈ L(M) iff U =
⋃
b∈B σ(b) for some non-emptyB ⊆ω M 194

(Es) ↓U is clopen for every Esakia clopen U 134

(H) (a→ (a→ b)) = a→ b 30

(H1) a→ (b→ a) = 1 29

(H2) (a→ (b→ c))→ ((a→ b)→ (a→ c)) = 1 29

(H2′) (a→ (b→ c)) = ((a→ b)→ (a→ c)) 30

(H3) if (a→ b = 1 = b→ a), then a = b 29

(H4) 1→ a = a 30

(H5) (a→ b)→ ((b→ a)→ a) = (b→ a)→ ((a→ b)→ b) 30

(H6) κ is a basis of open and compact subsets for the topological space 〈X, τκ〉 41

(H7) for every U, V ∈ κ, sat(U ∩ V c) ∈ κ 41

(H8) 〈X, τκ〉 is sober 41
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(H8′) the space 〈X, τκ〉 is T0 and whenever Z is a closed subset and U is a non-

empty down-directed subfamily of κ such that Z ∩ U 6= ∅ for all U ∈ U , we

have Z ∩
⋂
{U : U ∈ U} 6= ∅

41

(H9) 〈X, τ〉 is a compact topological space 43

(H10) 〈X,≤〉 is a poset with top element t 43

(H10′) 〈X,≤〉 is a poset 126

(H11) B is a non-empty collection of non-empty clopen up-sets of X 43

(H11′) B is a collection of clopen up-sets of X that contains X 126

(H12) for every x, y ∈ X, x ≤ y iff ∀U ∈ B( if x ∈ U , then y ∈ U) 43

(H13) the set XB ∪ {t} is dense in X, where XB := {x ∈ X : {U ∈ B : x /∈
U} is non-empty and up-directed}

43

(H13′) the set XB := {x ∈ X : {U ∈ B : x /∈ U} is non-empty and up-directed }
is dense in X

126

(H14) for all U, V ∈ B, (↓(U ∩ V c))c ∈ B 43

(HF) if (x, y) ∈ R, then there exists z ∈ cl(x) such that R(z) = cl(y) 42

(HF′) for every x ∈ X1 and every y ∈ XB2 , if (x, y) ∈ R, then there exists

z ∈ XB1 such that z ∈ ↑x and R(z) = ↑y
44

(HR1) �R(U) ∈ κ1, for all U ∈ κ2 42

(HR2) R(x) is a closed subset of X2, for all x ∈ X1 42

(HR3) if (x, y) /∈ R, then there is U ∈ B2 such that y /∈ U and R(x) ⊆ U 44

(HR4) �R(U) ∈ B1 for all U ∈ B2 44

(H∧1) a ∧ (a→ b) = a ∧ b 135

(H∧2) (a→ (b ∧ c))→ ((a→ b) ∧ (a→ c)) = 1 135

(HL1) (a ∨ b)→ c = (a→ c) ∧ (b→ c) 144

(H�1) �1 = 1 128

(H�2) �(a→ b)→ (�a→ �b) = 1 128

(H∨1) a→ (a ∨ b) = 1 130

(H∨2) (a→ b)→ ((a ∨ b)→ b) = 1 130

(H∨3) κ is closed under finite intersections 132

(H∨4) B is closed under finite unions 132

(IA1) if (a→ b = 1 & b→ c = 1), then a→ c = 1 30

(IA2) a→ 1 = 1 30

(IH∧1) cl((sat
X̂

(U ∩ V c))c ∩ X̂)c ∈ κ, for any U, V ∈ κ 189

(IH∧2) ↑((↓(U ∩ V c))c ∩ X̂) ∈ B, for any U, V ∈ B 189

(IS) X̂ = X 186

(IS1) (a→ b) ∧ b = b 133

(IS2) a ∧ (a→ b) = a ∧ b 133

(IS3) a→ (b ∧ c) = (a→ c) ∧ (a→ b) 133

(IS4) for any U, V ∈ KO(X), sat(U ∩ V c) ∈ KO(X) 133

(IS5) for all U, V ∈ C`UadXB (X), (↓(U ∩ V c))c ∈ C`UadXB (X) 134

(K) a→ a = 1 30

(MP) γ, γ → β ` β 123

(P1) 〈X,�〉 is a complete lattice, where � is the quasiorder associated with the

referential algebra

103
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(P2) for all U ∪ {V } ⊆ B, if
⋂
U ⊆ V , then V ∈ CB

S (U) 103

(P3) B ⊆ {↑x : x ∈ X} 103

(P4) {x : ↑x ∈ B} is join-dense in X 103

(PA) a→ (b→ (a ∧ b)) = 1 135

(Pr1) 〈X,B〉 is a reduced S-referential algebra, whose associated order is denoted

by ≤
84

(Pr1′) 〈X,B〉 is an S-referential algebra, whose associated quasiorder is denoted

by ≤
86

(Pr2) for all U ∪ {V } ⊆ω B,
⋂
U ⊆ V iff V ∈ CB

S (U) 84

(Pr3) 〈X, τ〉 is a compact space 84

(Pr3′) 〈X, τ,≤〉 is a Priestley space, and B ∪ {Uc : U ∈ B} is a subbasis for it 86

(Pr4) B is a family of clopen up-sets for 〈X, τ,≤〉 that contains X 84

(Pr4′) X ∈ B and C`U(X) = B∩∪ ∪ {∅} 86

(Pr5) the set XB := {x ∈ X : {U ∈ B : x /∈ U} is non-empty and up-directed} is

dense in 〈X, τ〉
84

(PrR1) �R ∈ Hom(B2,B1) 95

(PrR2) if (x, y) /∈ R, then there is U ∈ B2 such that y /∈ U and R(x) ⊆ U 95

(Sp1) 〈X,B〉 is an S-referential algebra 76

(Sp2) for all U ∪ {V } ⊆ω B, if
⋂
U ⊆ V , then V ∈ CB

S (U) 76

(Sp3) κX := {Uc : U ∈ B} is a basis of open compact subsets for a topology τκX

on X

76

(Sp4) the space 〈X, τκX 〉 is sober 76

(SpR1) �R ∈ Hom(B2,B1) 94

(SpR2) R(x) is a closed subset of 〈X2, τκX2
〉 for all x ∈ X1 94

BDS bounded distributive meet-semilattices 27

BIS bounded implicative semilattices 132

DH∧ distributive Hilbert algebras with infimum 138

DLI (bounded) distributive lattices with implication 144

DS distributive meet-semilattices with top element 27

gHe relatively pseudo-complemented lattices 144

H Hilbert algebras 29

H∧ Hilbert algebras with infimum 135

H∨ Hilbert algebras with supremum 130

HL Hilbert algebras with lattice structure 145

HDL Hilbert algebra with distributive lattice structure 146

H� modal Hilbert algebras 128

IA implicative algebras 30

IH∧ implicative Hilbert algebra with infimum 149

IHL implicative Hilbert algebra with lattice structure 149

IS implicative semilattices 132
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