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Introduction

One of the main questions of economics has always been to understand and formalize

the dynamic relation between what is individual and what is social. This dissertation

includes two complementary perspectives to explore this major question.

In the first approach, which refers to the first chapter, we investigate how to evaluate

the degree to which differences in individual characteristics result in differences in social

outcomes; so to speak, we chase the ‘individual’ in ‘social’. Focusing on non-income

inequalities between social groups, we propose a new methodology to evaluate them.

Up on providing the foundational analysis of this methodology, we explore the intimate

link between inequality and segregation by means of it.

Unequal distribution of social groups across different levels of a quality-of-life variable is

a frequently observed phenomenon. Since group-based differences in welfare outcomes

are important determinants of social and economic well-being of societies, measuring the

extent of these inequalities is of particular concern. However, when we go beyond in-

come and consider other welfare variables such as educational attainment, occupational

status, health or subjective well-being, we run short of well-developed inequality mea-

surement techniques. Moreover, the existing techniques for evaluating income inequality

are not necessarily applicable in the treatment of these non-income variables since these

variables do not share a very important feature of income: they are not cardinal in

nature. Rather they are defined over categories that can be ordered unambiguously.

In Chapter 1, My Group Beats Your Group: Evaluating Non-Income Inequalities, we

propose a new methodology, the Domination Index, to evaluate non-income inequalities

between social groups without making use of restrictive cardinalisation assumptions.

The Domination Index measures the discrepancy in group distributions in terms of the

number of times a group beats another group in pairwise confrontations. Since beat-

ing is defined purely as an ordinal concept, no cardinalisation for different levels of the

variable of interest is required. We provide an axiomatic approach and show that a set

of desirable properties for a group inequality measure when the variable of interest is

not cardinal but ordinal, characterize the Domination Index. Moreover, depending on

our analysis, we explore the close relation between segregation and group inequalities,

a topic that is widely discussed both from theoretical and empirical perspectives in a

variety of contexts with different variables of interest. Segregation refers to the degree

to which social groups are distributed differently from each other; it is the inequality in

the distributions of social groups across neither measurable nor comparable categories.

We make use of The Domination Index to formulate a unifying framework to approach

iv



Introduction v

these two related concepts. In a first result we show that for a very specific organization

of the society the inequality between groups as measured by the Domination Index is

equal to the segregation in that society as measured by a known segregation measure,

the Gini Segregation Index. This particular organization is the one in which the impor-

tance of each category reflects how uneven the distribution of groups in that category

is. Moreover, this organization is actually the one with a higher level of inequality than

any other organization of the society, i.e., the order of the categories are such that the

resulting inequality is the highest it can ever be for any other order, as established by

a second result. The interpretation is clear: Segregation of social groups is actually the

inequality between them for a hypothetical scenario, where the order of the categories

are such that the inequality is at its peak.

The concept of a domination developed in this first chapter is related to the relative

position of an individual in the society. Overall, the Domination Index presents an

evaluation of the inequality in the society by aggregating these dominations created by

all individuals. Departing from ’individual‘, we arrive to the ’social‘. The remaining

two chapters, on the other hand, can be seen as a chase for the ‘social in ‘individual. We

consider an individual as a social agent and investigate the role of social interactions in

individual decision making. The second chapter is concentrated around the identification

problem of social influence and homophily. We suggest a methodology that exploits

individual decision outcomes in order to assess the level of homophily and influence

related to social interaction.

Individuals sharing the same environment, such as members of the same household,

colleagues from workplace, friends from school, tend to behave similarly in many oc-

casions. As an immediate implication of being part of a society, we do influence each

other’s behaviors. However, performance of similar behavior does not necessarily imply

the influence of one on the other, but performing similarly may have been the reason

that a particular social relation is built at the first place. This refers to the identifica-

tion problem of influence and homophily. In Chapter 2, Choose What You Like or Like

What You Choose? Identifying Influence and Homophily out of Individual Decisions,

we investigate the micro-foundations of this identification problem. We provide a novel

framework that focuses on individual decision making in order to identify the social in-

fluence and homophily effects. Having a closer look to the decision making processes of

individuals that interact, we investigate how they affect each other’s behaviors. We pro-

pose simple and direct measures of homophily and influence by making use of individual

preferences. However since in many occasions, preferences are not easily observed, we

extend our analysis to the observables, decision outcomes. In order to infer the underly-

ing preferences out of decision outcomes, we follow a foundational approach. We analyze

the behavioral characteristics of individual decision making that includes interaction and
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finally we make use of the tools that are provided by revealed preference theory in order

to uncover the underlying preferences of the individuals. Based on revealed preference

analysis, we revisit our measurement techniques for homophily and influence.

In the third chapter, we carry on considering individuals that are in interaction. The

subject matter of this chapter, on the other hand, is the structure of social interac-

tions. We suggest to uncover the underlying structure of a social network by analyzing

individual behavior patterns.

Social networks are known to affect the way individuals behave. From consumption

habits, to voting behavior, from school achievement of teenagers to investment interests

of business people, a variety of decisions that people make in everyday life have an

intimate relation with their social interactions. However, quite often the structure of

the social network is not clearly observable. In Chapter 3, Tell Me Who You Are, I Tell

You Who Your Friends Are: Understanding Social Networks Out of Individual Decisions,

we suggest to exploit individual behavior in order to understand the underlying social

network structure. Our approach is based on the observation that socially connected

individuals, influence each other’s decisions especially at times of indecisiveness. It is

quite common practice for all of us to refer to the opinions of people around if we do

not have sufficient information or experience to compare several options that we are

facing. We may use different communication tools such as asking for advice, gathering

suggestions or we may observe people behaving in a particular way and adapt similar

behavioral patterns. Departing from this observation, we consider individuals that are

sharing a common social environment, in which the exact structure of the interactions

are not known. We first present a decision model that allows these individuals to refer

to their social contacts when they need it. Then we investigate the properties on their

decision outcomes that will reveal out the specific way in which they are connected.

Overall we characterize four different possible interaction structures by which individuals

may be connected in a social network.

The relation between what is individual and what is social is clearly multi-layered and

a quite complicated one. But it is also key to the understanding of many economic de-

cisions. We believe that both perspectives analyzed in this dissertation presents humble

contributions to this understanding.



Chapter 1

My Group Beats Your Group:

Evaluating Non-Income

Inequalities

1.1 Introduction

Inequalities between groups are important determinants of social and economic well-

being of societies. For more than a century now, economists have been interested in

evaluating the extent of inequalities in order to understand: (i) how they change, by

comparing them across time; (ii) why they change and what they change, by comparing

them across societies with different characteristics, revealing their relation to other social

and economical phenomena.

Income or wealth disparities between social groups are well-known, well-documented and

deeply analyzed inequalities. However it has been recognized long ago that comparing

levels of income is not sufficient on its own to assess differences in individual well-

being. Atkinson makes the pioneering move in departing from the classical approach

of measuring inequality as the dispersion of levels of income, first bringing in the idea

of social-welfare based income inequality measurement [7] and second incorporating the

differences in individual needs to the assessment of income inequality [8]. Sen, in a series

of papers and books, explores the need for going beyond income inequality and shifts the

focus to many other variables such as longevity, survival, literacy, fertility, employment

status, that influence individual well-being “but not captured by the simple statistics of

incomes and commodity holdings” [77–80]. There are many other variables that jointly

contribute to one’s quality of life, and hence whose uneven distribution between social

1



Chapter 1. Evaluating Non-Income Inequalities 2

groups is of interest. However they lack the attention and well-developed theoretical

approach that income received.

Moreover for the treatment of these non-income variables such as education, health,

occupational status or subjective well-being, we cannot generally apply the techniques

developed for evaluating income inequality since these variables do not share a very

important feature of income: they are not cardinal in nature. They are rather defined

over categories that are not necessarily associated with cardinal values. However no-

tice that although these categories do not convey any cardinal information, they are

not completely unrelated either. In most of the cases, categories can be compared un-

ambiguously. Everybody will agree that a college graduate’s educational attainment is

higher than a secondary school drop out though we would not know by how much it is

higher. Or it will be safe to claim that an individual that selects the score 3 as answer

to the question of “Taking all things together, how happy would you say you are, on

a scale from 1 to 10 where [1] means you are very unhappy and [10] means you are

very happy?” has selected a lower happiness score than an individual with a score of 9.1

But this would not necessarily imply that the second individual is three times happier

than the first one. Since these variables are vaguely measurable, the methods designed

for measuring income inequality are essentially futile. Representing these categories

by making use of specific cardinalisations requires further assumptions if not result in

misevaluations. Let us give a closer look to a pair of specific examples:

Example 1: Gender based occupational status inequality. The following table

summarizes the gender distribution across occupational hierarchy within the class of the

Management, business and financial occupations in United States.2

Table 1. Women Share of MBF Occupations, U.S., 2010

Total employed Percent women

MBF occupations 20,938 43%

Chief executives 1,505 25,5%

General and operations managers 1,007 29,9%

Managers 12,489 40,5%

Operations 5,937 54,9%

According to the US census data, in 2010, out of almost 21 million employees in man-

agement, business and financial occupations, 43% were women. Within this class, Chief

1This is the Question 42 of the Second European Quality of Life Survey, 2007-2008. Questions of
the same sort are found in population surveys such as United States General Social Survey or Euro-
Barometer Survey Series.

2Civilian noninstitutionalized population 16 years old and over. Annual average of monthly figures.
Figures are in millions. Source: U.S. Census Bureau, The 2012 Statistical Abstract, The National Data
Book, Labor Force, Employment and Earnings Section, Table 616. Employed Civilians by Occupation,
Sex, Race, and Hispanic Origin: 2010.
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executives are the ones with the highest status, followed by General and operations man-

agers. Managers occupy the third position in the hierarchy and finally the last position

is occupied by Operations employees. If the distributions of genders across these posi-

tions were completely equal, we would observe a women share of 43% in each position.

However, the increasing women share going down the hierarchy signals an inequality

in the distribution of genders. How do we treat this data? In order to assess gender

inequality of occupational status consistently we need to take into account the hierar-

chy of positions. One could falsely argue that this hierarchy can be represented by the

corresponding wage levels of the occupational statuses eliminating the need for going

beyond wage inequality. However, as shown in different works [40, 64, 69] the average

wage of a female dominated job do not correspond to women’s occupational prestige for

that status.

Example 2: Racial disparities in educational attainment. According to United

States Census data in the year 1970, 43.2% of the White citizens and 27% of the Black

citizens were high school graduates without a further degree, whereas 11,3% of the

Whites and 4.4% of the Blacks were college graduates or more. These numbers would

roughly imply that back in ’70s, in all higher categories of educational attainment, White

citizens had more representation than Black citizens in relative terms. However in the

year 2010, 57.3% of the Whites and 64.4% of the Blacks had high school diploma, while

30.3% of the Whites and 19.8% of the Blacks had college diplomas or even higher degrees,

which definitely points to a decrease in the discrepancy in higher levels of educational

attainment between race groups. But by how much? Or only by looking at these

categories can we say that the inequality of educational attainment between race groups

has declined from 1970 to 2010? Justified answers to these questions require to compare

the entire distributions of Blacks and Whites across all educational attainment categories

and a method to evaluate the difference in these distributions.3 Since the categories refer

to the highest level of education attained, no obvious cardinal values are attached to

them. In empirical works, this problem is often resolved by assigning the average number

of years of schooling to educational attainment categories in order to make use of cardinal

measures. Different countries, however, possess different educational cycles or countries

make adjustments in their educational systems over time. Since cardinal measurement

techniques are not robust to these changes, application of income inequality measures

will cause misevaluations of inequality especially in cross-contry comparisons [71].

Inequalities of health or subjective well-being are other examples of non-income variables

that face the same difficulty of treatment. The data on health and subjective well-being

are collected via nation-wide surveys held by the health or statistics authorities of the

3Developed by UNESCO, the International Standard Classification of Education (ISCED) provides
an internationally harmonized classification system for educational attainment.
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countries. For practical purposes these variables are either defined over ordered cate-

gories such as “poor, fair, good, excellent” or over a cardinal scale such as “1,2,3,4”,

where 1 corresponding to “poor”, “2” to “fair” and so on.4 Allison and Foster show that

application of cardinal measures of inequality over these categories results in incompa-

rable levels of inequalities for different societies since these techniques are sensitive to

scale changes [1].

As shown by the previous examples, measuring the extent of inequality in occupational

status, educational attainment, health or subjective well-being is subject to restric-

tive assumptions or misevaluations caused by specific cardinalisations. There exists,

therefore, a need for going beyond measurement of income inequality techniques and

developing justified measurement methodologies for the evaluation of these non-income,

social inequalities.

In this study we suggest a methodology to evaluate social inequalities: the Domination

Index. Given a society with ordered categories and two social groups, the Domination

Index follows a very natural logic to compare the distributions of social groups over

categories: It basically counts the number of times a group beats the other group in

pairwise confrontations. Consider a pair of individuals where each of them is a member

of a different group, say Women and Men. The woman beats, dominates the man if she is

in a better category than him. That is what we define as a domination. Then, the total

number of dominations by the group Women is the total number of times that a woman

beats a man. The Domination Index evaluates inequality in terms of the difference in

the number of dominations. It actually is equal to the absolute average difference in the

number of dominations by groups.

On top of its conceptual simplicity, the Domination Index has several appealing prop-

erties. First of all, it has a very intuitive interpretation. Since it compares the average

number of dominations, it actually gives out the ex-ante probability advantage of a group

over the other. In other words, the Domination Index gives out the extra probability

that on a random selection of a pair of individuals from different groups, the member of

one group occupies a better category than the member of the other group.5 Second, it

is efficient. It makes use of all the information available regarding the distributions of

the social groups, and only of this information without going for further assumptions.

Third, it is easy-to-use. Large samples of populations or long lists of categories do not

create computational complexities. Fourth, it is well-founded. Our axiomatic analysis

shows that it satisfies a set of reasonable properties. Moreover, it represents the only

4National Medical Expenditure Survey and National Health Interview Survey of United States, Gen-
eral Household Survey of United Kingdom, Swiss Health Survey and Survey on Health and Retirement
in Europe make use of ordinal health categories.

5The Domination Index is closely related to Mann-Whitney’s Statistic U and the Net Difference Index
[62]. More on this can be found in the following review of literature.



Chapter 1. Evaluating Non-Income Inequalities 5

family that satisfies these properties. These characterizing properties are variations of

classical notions such as a symmetry property that requires equal treatment to social

groups; a monotonicity property that controls the change in inequality for very specific

changes in the society and finally a decomposability and an additivity property that

allow to concentrate in different parts of the society and express the overall inequality

as an aggregation of the inequalities in these parts. For instance, in order to understand

the specific structure of the inequality, one may want to focus on upper and lower parts

of the society separately, where the upper part consists of the better positions and the

lower part consists of the worse ones. Decomposability ensures that the inequality in

the entire society can be expressed in terms of the inequalities in upper and lower parts.

On the other hand, with the same purpose, one may want to identify the contributions

of different sections of the social groups to the overall inequality. An additivity property

ensures that the overall inequality can be expressed in terms of the inequalities between

different sections of the social groups. In a first theorem, we show that these properties

yield us the Domination Index up to a positive scalar transformation.

The Domination Index is also instrumental to understand the connection of social in-

equalities with a related problem: segregation. Segregation is defined as the inequality

in the distribution of groups over neither measurable nor comparable categories. The

relation of between-group inequalities to segregation has been discussed in different liter-

atures from both theoretical and empirical perspectives. Segregation simply captures the

nominal difference of distributions without any regard to how relatively good or bad the

distribution is. Inequality on the other hand involves an evaluation of the distributions.

The difference of the distributions is assessed taking into account how beneficiary they

are for the corresponding groups. Consider an imaginary building with the residents be-

ing from two different groups. A scenario such that one of the groups is occupying all the

nicer flats with the view at the higher floors of the building, whereas all of the members

of the other group living downstairs facing the facade of the building across the street

will be maximally and as equally segregated as the scenario where all members of the

first group are living in the odd numbered floors and all members of the second group

are living in the even numbered floors, hence two groups are never sharing the same

floor. However an inequality measure will label the first scenario more unequal than the

second one. This certainly does not imply the dominance of one concept over the other

but simply demonstrates that although closely related their focuses are different.

Clarifying the theoretical link between segregation and inequality, the Domination Index

helps to understand the structure of the relation between these two concepts. We start

by showing that for some societies the inequality between social groups measured by

the Domination Index coincides with the level of segregation measured by a well-known
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segregation measure, the Gini Segregation Index. In other words, for a particular or-

ganization of the society, segregation is equal to the level of inequality between groups.

This particular organization is the one in which the importance of each category reflects

how uneven the distribution of groups in that category is. In other words, the order

relation of the categories is in line with the relative distribution of groups across cate-

gories. If from the best to the worst category the ratio between the members of groups

is always decreasing or increasing, i.e., if the ratio of the number of members of a group

to the one of the other group is the highest in the best position, the second highest in

the second best position and so on, then segregation in this society according to the

Gini Segregation Index is equal to the inequality measured by the Domination Index.

We then show that this organization is actually the one that results in the maximum

possible level of inequality for that society. Hence, level of segregation in general gives

an upper bound for the level of inequality. These observations not only provide a the-

oretical contribution to the debate on the relation of segregation to inequality but also

gives out the characterization of the Gini Segregation index as a by-product. We show

that variants of the properties that characterize the Domination Index do characterize

the Gini Segregation Index. As a second by-product, we consider an extension of our

methodology to assess inequalities under incomplete information about the ordering of

categories. We exploit the relation between segregation and inequality to provide a way

to measure inequalities between groups when the categories are not completely ordered.

The organization of the paper is as follows: First in a subsection we present a review

of related literature. Then, the following section introduces the basic set up and the

Domination Index. We provide a set of properties and the foundational analysis of the

Domination Index. In the third section, we explore the link between segregation and

inequality with the help of the Domination Index. The fourth section is an extension of

our model to incomplete information. The proofs of the theorems in general are left to

an appendix.

1.1.1 Related Literature

Although works discussing evaluation of social inequalities have not developed in a com-

prehensive and systematic way, there are various related literatures that we refer to. The

most deeply analyzed and well-developed is, not surprisingly, the literature of between-

group income inequality. A major part of this literature analyzes the decomposition

of income inequality to its within-group and between-group components. The measures

that allow the overall inequality to be expressed as the sum of between-group and within-

group inequalities are qualified as additively decomposable measures [27, 28, 82, 83].
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For this class of measures the between-group component of income inequality is sim-

ply found by assuming that each member of a social group receives that group’s mean

income. Then, comparison between-groups essentially becomes a comparison of group

means. Bourguignon (1979) characterizes the family of decomposable functions that

also satisfy other desirable properties and he shows that only two functions serve to

this purpose: One of them is Theil’s entropy measure [85] and the other is the mean

logarithmic deviation, which is closely related to the Theil measure. Lasso de la Vega,

Urrutia and Volij recently provide a characterization of the Theil measure by only mak-

ing use of ordinal axioms [60]. Other methods based on comparison of representative

levels of income of groups instead of mean income [16] or comparison of the observed

between-group inequality with the maximum inequality that could occur [39] have been

proposed as well.

A second major branch of group inequalities literature corresponds to segregation the-

ories. The very first paper on this issue focuses on the residential segregation of race

groups [56]. Research on school segregation by ethno-race groups [38, 43] developed

parallel to the research on residential segregation [33, 68, 88] as well as occupational

segregation by gender and race [26, 32, 72]. Most of the literature on segregation is

based on development and application of indices, that are generally adaptations of mea-

sures of income inequality. Axiomatic characterizations of indices that are relevant for

all questions of segregation are provided in [36, 50–52]. Research on the measurement of

social inequalities is far from forming a well-developed, systematic literature but rather

different pieces can be found as parts of different literatures. In a statistics spin off paper,

Lieberson proposes the Net Difference Index to examine situations where two popula-

tions are to be compared with respect to a completely ordered characteristic such as age

or years of schooling. Net Difference Index is based on Mann-Whitney’s U Statistics

(1947), which gives a non-parametric rank test that is used to determine if two samples

are from the same population. The Statistics U is simply the number of times the obser-

vations from one sample precede the observations from the other sample when all of the

observations are ordered into a single ranked series. The probability distribution tables

of U are provided for testing the null hypothesis that two samples share the same dis-

tribution. The Statistics U is different from well-known Wilcoxon rank-sum statistics in

that U allows for different sample sizes. Another rank-based statistics Somer’s D, which

is essentially a measure of association for ordinal variables, is used by several sociologists

in the measurement of gender-based inequality of occupational status [15, 84].

Hutchens studies the question of gender-based occupational status inequality when the

occupational status is determined by a prestige score [53]. He provides a set of desirable

properties both for cardinal and ordinal variables of prestige. Reardon discusses the

inequality of an ordinal variable such as education or occupational status between social
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groups and proposes to measure it in terms of the distances of the distributions of

groups to a completely polarized distribution [76]. He proposes desirable properties for

a measure of this sort, and then introduces four different functions that satisfy those

properties without going for further axiomatic analysis.

Allison and Foster discuss the measurement of health inequality using self reported

health status data, which is based on ordinal categories attached to a scale [1]. They

argue that traditional measures are not applicable since they are not order preserving

to scale changes and propose a partial ordering of health inequality that is invariant to

scale changes. Based on Allison and Foster methodology, Naga and Yalcin propose a

parametric family of indices that satisfy a basic normalization axiom [73]. Dutta and

Foster apply the same methodology to measure the inequality of happiness in US by

using self reported subjective well-being data [35]. They further use additive decompo-

sition techniques to measure the group inequality of happiness between races, genders

and regions. Kobus and Milos provides a characterization of a decomposable family of

indices that respect Allison and Foster partial ordering [58]. Kobus also proposes an

extension of this ordering to evaluate multi-dimensional inequalities [57]. In the mea-

surement of inequality in educational attainment, although the data is collected over

educational categories, the average number of years of schooling is assigned as a car-

dinal value to corresponding categories [10–12, 86]. This cardinalisation allows to use

common inequality measures such as Gini coefficient and Theil indices while keeping the

aforementioned problems of this procedure unsolved. Quite recently, Herrero and Vil-

lar propose a methodology to compare the educational achievements of different groups

and provide different applications of this methodology in order to evaluate inequality

of opportunities in education and health [46, 47]. Their methodolgy shares a similar

statistical reference with the one proposed in this paper.

1.2 The Domination Index

A society is composed of individuals from different social groups distributed across or-

dered positions. We restrict our analysis to two social groups, namely Women and

Men.6 Formally, a society is a pair of elements (S,LI), where I denotes a finite set of

I positions, S is a society matrix that shows the distribution of Women and Men over

I positions and L is the order relation over I. We assume that L is an exogenous total

order (a complete, transitive and asymmetric binary relation), where for every i, j in

I, iLj is interpreted as social position i is better than position j. A society matrix,

S = (SW , SM ) is a positive real matrix of dimension I × 2 with the first column, SW

6An extension to multigroup case is immediate though, as suggested in the concluding remarks.
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describing the number of women in each position and the second column, SM denoting

the number of men. We denote by Siw and Sim, the i1st and the i2nd elements of the

matrix, the number of women and men in position i respectively, whereas Sw and Sm

stand for total number of women and men, i.e.;
∑

i Siw = Sw and
∑

i Sim = Sm. Small

letters denote the proportions of individuals, i.e.; siw denotes proportion of women in

position i to total number of women in society and sim denotes as of men. We con-

sider Siw and Sim to be nonnegative real numbers.7 We denote with C the space of all

societies., i.e.; C = ∪I(RI×2+ × LI), where RI×2+ is the space of I × 2 nonnegative real

matrices and LI stands for the space of total orders over I.

We define social inequality as the inequality in the distributions of women and men

across ordered positions. Then, a social inequality measure is a non-zero continuous

function H : C → R+ that attaches to each possible society (S,LI), a nonnegative real

number that shows the amount of social inequality.

The Domination Index, D measures social inequality in terms of the number of times

a group beats the other group in pairwise confrontations. Let us define a domination

by a group as having a member in a better position than a counter-group member.

Consider a woman in position i in a society (S,LI). Her position is better than all the

men that are in worse positions than i, thus she creates
∑

j:iLj Sjm dominations in total.

Then, the total number of dominations by women is equal to
∑

i(Siw
∑

j:iLj Sjm), where

total number of dominations by men is
∑

i(Sim
∑

j:iLj Sjw). The absolute difference in

average number of dominations by women and men gives us the Domination Index:

D(S,LI) = |
∑

i(Siw
∑

j:iLj Sjm − Sim
∑

j:iLj Sjw)

SwSm
| = |

∑
i

(siw
∑
j:iLj

sjm − sim
∑
j:iLj

sjw)|

In a more compact form, it can equivalently be expressed as follows:

D(S,LI) = |
∑
i

∑
j

cijsiwsjm| where cij =


1 if iLj

0 if i = j

−1 if jLi

This compact form notation highlights what D measures in essence. D actually gives out

the ex-ante probability advantage between groups. Given a random pair of a woman and

a man, the difference in probabilities of one individual beating the other is the ex-ante

probability advantage of one group over the other, as shown in an immediate lemma:

Lemma 1.1. D(S,LI) = |Pr(Women beating Men)− Pr(Men beating Women)|
7This choice not only ensures the generalization of our results but also is the convention in group-

inequalities literatures. As noted in Hutchens (2001), in some empirical applications part-time employees
are treated as fractional employees.
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Since at the essence of social inequalities lies the idea of having an advantageous or a

disadvantageous position just because being a member of a social group, D does well in

capturing this ex-ante probability advantage in evaluating social inequalities.

D takes values between 0 and 1, 0 being complete equality and 1 being maximum

inequality. The main attraction of D depends on its simple structure and intuitive

interpretation. It is very convenient and easy to apply to compare two distributions

over ordered categories without making further cardinalisation assumptions. It is an

efficient measure in the sense that it makes use of all the available information. Number

of dominations by groups is the only relevant information of this setting and D evaluates

social inequality in terms of it. Although being easy to use, efficient and intuitive is

important for an inequality measure for practical purposes, it is never sufficient unless

supported by the properties that summarize the behavior of the function. To understand

how D behaves, we now introduce a set of properties that are not only satisfied by D

but are also ‘reasonable’ properties for any social inequality measure H.

A first standard property is a symmetry property, that ensures equal treatment to

groups. It simply requires that exchanging the distributions of groups should not change

the amount of social inequality. Formally;

Symmetry for Groups (SYM): Consider two societies (S,LI) and (S′, LI) with

SW = S′M and SM = S′W . Then H(S,LI) = H(S′, LI).

The second property is about the relative character of the index. Inequality measures

are usually differentiated according to their absolute or relative characters. For relative

inequality measures what matters are the relative amount of individuals whereas absolute

inequality measures do take into account absolute amounts. D is a relative inequality

measure as ensured by the following property:

Scale Invariance (INV): Given (S,LI) and any α, β ∈ R++, consider (S′, LI) such

that for all i, S′iw = αSiw and S′im = βSim. Then, H(S,LI) = H(S′, LI).

For scale invariant functions what matters is the proportion of individuals in each posi-

tion, not the absolute amounts. Especially for cross society analysis this is an important

property, since otherwise larger populations would always imply higher inequality.8

Next we will introduce a monotonicity property that defines the behavior of the function

for certain changes in the distributions. For some distributions of the society there

exist some changes that clearly do not increase or do not decrease social inequality.

For instance consider the following simple example of a society (S,LI) with 3 positions

8The absolute version of the index, i.e., |
∑

i(Siw

∑
j:iLj Sjm−Sim

∑
j:iLj Sjw)| is actually character-

ized by similar properties but INV. The characterization result replaces DEC and SAD properties, that
would be introduced soon, with non-weighted versions of them and it is available upon request.
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where all men occupy the best position and all women are grouped in the worst position:

S =
( 0 100

0 0
100 0

)
and 1L2L3. This is a society in which women and men are distributed

in a maximum unequal way possible. Now consider addition of one women to the best

position and one men to the worst position. The resulting society will be of the form:

S =
( 1 100

0 0
100 1

)
. One would not expect from a reasonable relative inequality measure

to identify the resulting society with higher social inequality than the initial one. D

evaluates the second society as less unequal than the first one. Now, consider exactly

the opposite society (S′, LI) such that S′ =
( 100 0

0 0
0 100

)
again with 1L2L3. The same

addition of one women to the best position and one man to the worst is now not an

inequality decreasing change since it results in the society S′ =
( 101 0

0 0
0 101

)
. For any

relative social inequality measure, inequality is still at its maximum. The monotonicity

property will ensure that this particular addition will not increase inequality for societies

like (S,LI) and it will not decrease inequality for societies like (S′, LI).

We define a women improving addition to (S,LI), as a slight increase in the number

of women in the best position and in the number of men in the worst position in S.

Formally, a women improving addition to (S,LI) is the addition of an εW matrix of

dimension I × 2 that only possesses ε number of women in the best position and ε

number of men in the worst position in S for ε small enough, all the other positions

being empty.

We classify societies into two distinct types according to the reaction of the measured

inequality to a women improving addition. If no women improving addition is resulting

in a decrease in the social inequality, then we classify the society as of Women-type.

On the contrary if any women improving addition is decreasing the social inequality,

then the society is classified as of Men-type. Moreover, we define completely equal

societies as of both Women-type and Men-type. Formally; given a society (S,LI) and

a social inequality measure H, for any ε ∈ R++ in a δ neighborhood of 0, for δ small

enough, S is said to be of W -type if H(S + εW , LI) ≥ H(S,LI) or H(S,LI) = 0.

S is said to be of M-type if H(S + εW , LI) < H(S,LI) or H(S,LI) = 0. Notice

that, by definition, not being a W -type matrix directly implies being an M -type matrix.

Obviously which matrices are of which type will depend on the particular behavior of

the specific functional form of H. But for some unambiguous distributions like the ones

of S and S′ given in the example above, all reasonably monotonic measures should agree

on the effect of a women improving addition. For the society (S,LI), clearly no women

improving addition should increase the relative inequality, implying that S is of M -

type. On the contrary, for (S′, LI), any women improving addition should not decrease

inequality, implying that S′ is of W -type. This reasoning is applied in those societies in

which we can make use of the first-order stochastic dominance to compare women and

men distribution.
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For a society (S,LI) that has exactly the same number of women and men, we say that

the distribution of women dominates the distribution of men if for any position there

is always more women than men in total in the positions that are at least as good as

that position. To put formally; for (S,LI) with Sw = Sm, SW dominates SM if for all

k ∈ I;
∑

i:iLk Siw ≥
∑

i:iLk Sim. Symmetrically, we say that SM dominates SW if for all

k ∈ I;
∑

i:iLk Sim ≥
∑

i:iLk Siw.

Monotonicity (MON): Given a society (S,LI) with Sw = Sm, (i) if SW dominates

SM , then S is a W -type society matrix; (ii) if SM dominates SW , then S is a M -type

society matrix.

For a society in which the women distribution dominates the distribution of men, there is

always more women in better positions. The first part of MON ensures that these type of

society matrices are of W -type and the second part is the symmetric counterpart. Note

that MON also guarantees a zero level of inequality for equally distributed societies.

The following lemma states that any monotone social inequality measure assigns a value

0 to an equally distributed society.

Lemma 1.2. For any H that satisfies MON, for a society (S,LI) such that for any i,

Siw = Sim, we have H(S,LI) = 0.

The properties that are introduced up to now, SYM, INV and MON are standard prop-

erties and are satisfied by many other functions in addition to D. The last two properties,

however, will narrow down this class of functions extremely, up to a single family. Both

properties are about the decomposability of overall inequality into the inequalities in

different parts of the society. The concentration of social inequality in specific parts of

a society is not an uncommon phenomenon. For instance in explaining the structure of

the gender-based inequality in the labor market the theories of “glass ceiling” or “sticky

floor” supplement strong evidence for the unbalanced distribution of women and men in

the upper and lower tails of the wage distribution.9 The following property, Decompos-

ability allows to express overall inequality as an aggregation of inequalities in the upper

part and the lower part of the society.

Given a society (S,LI), we define an ordered division of (S,LI) as a pair of societies

(S1, LI1) and (S2, LI2) such that: (i) I1 and I2 define a partition of I such that for

any i in I1 and any j in I2 we have iLj, (ii) for k = 1, 2, iLIkj if and only if iLj for

any i, j in Ik and (iii) for k = 1, 2, Sk is a Ik × 2 society matrix such that each position

possesses the same number of women and men in S and Sk. An ordered division of a

society is basically a partition of the society respecting the order relation: there is the

9See McDowell, Singell and Ziliak (1999), Blau and Kahn (2000), Baker (2003), de la Rica, Dolado
and Llorens (2008)
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upper part that is composed of the better positions in the society and a lower part that

is composed of the worse ones. D expresses the overall inequality as an aggregation

of the inequalities in each of these parts and an interaction term between them that

stems from the fact that all of the positions in the upper part are actually better than

all the positions in the lower part. What we define as the interaction term is equal to

the social inequality in a society with two positions. The first position is occupied by

all the individuals of the upper part of the original society and the second position is

occupied by all the individuals of the lower part. Formally; given an ordered division

of a society (S,LI) as (S1, LI1) and (S2, LI2), the interaction society (S′, L′I′) is a

society defined as the following: (i) It consists of two social positions: I ′ = 1, 2 with

1L′2 (ii) The first position contains all individuals of S1: S′1w = S1
w and S′1m = S1

m (iii)

The second position contains those of S2: S′2w = S2
w and S′2m = S2

m.

The decomposability property allows to decompose the total social inequality as the

weighted sum of the inequalities in the upper part, lower part and the interaction society

for any ordered division of a society, as long as all resulting society matrices are of the

same type. The specific form of the weighting structure depends on the specific form of

the measure. As D counts the number of dominations in pairwise confrontations, the

weighting structure depends on the proportion of these pairwise confrontations in each

part. Given an ordered division, we define a population weight as the proportion of

pairs of women and men in each part to the overall number of pairs. Formally; for an

ordered division of (S,LI) as (S1, LI1) and (S2, LI2), the population weight of (Sk, LI1)

for k = 1, 2 is λkS = (Sk
w)(Sk

m)
(Sw)(Sm) . Notice that the weight of the interaction society (S′, LI′)

will be equal to 1 by this definition.

Decomposability (DEC): For any ordered division of (S,LI) as (S1, LI1) and (S2, LI2)

such that S1, S2 and S′ are either all of W -type or all of M -type the following holds:

H(S,LI) = λS1H(S1, LI1) + λS2H(S2, LI2) +H(S′, L′I′)

As the last property, we introduce Subgroup Additivity, that helps to deepen the analysis

one step further by differentiating the effects of subgroups to overall social inequality.

We define a subgroup as a subset of a social group. For instance Immigrant Women and

Local Women refer to two subgroups of the social group Women. Subgroup Additivity

will allow to identify how much of the overall inequality is between Men and Immigrant

Women and how much of it is between Men and Local Women.

For a society (S,LI), a partition into subgroups is a pair of societies (S′, LI), (S
′′, LI)

such that for all i, either Siw = S′iw = S′′iw and Sim = S′im + S′′im or Sim = S′im = S′′im

and Siw = S′iw + S′′iw holds. Hence, a partition of a society into subgroups results in
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a pair of societies that possess exactly the same distribution of one of the groups with

the original society, and sum up to the original distribution of the other group. For the

sake of simplicity we have defined a partition into subgroups only for two subgroups,

but clearly repeated application of the partition will result in a partition into many

subgroups.

Given a partition into subgroups, the Subgroup Additivity property allows to express

the overall social inequality between Women and Men as a weighted aggregation of the

inequalities between each subgroup and the other social group as long as all societies

are of the same type. Similar to DEC, for a partition of a society (S,LI) into subgroups

(S′, LI) and (S′′, LI), the population weight of the subgroups will be as λS′ = (S′w)(S′m)
(Sw)(Sm) =

(S′w)
(Sw) and λS′′ = (S′′w)(S′′m)

(Sw)(Sm) = (S′′w)
(Sw) . But notice that this time the population weights of

the subgroups add up to 1. Hence SAD expresses the overall inequality as a convex

combination of the subsociety inequalities.

Subgroup Additivity (SAD): For any partition of a society (S,LI) into subgroups

(S′, LI) and (S′′, LI) such that S′ and S′′ are both of W -type or M -type, the following

holds:

H(S,LI) = λS′H(S′, LI) + λS′′H(S′′, LI)

With SAD, since the weights are nonnegative, the original society matrix S will nec-

essarily be of the same type with S′ and S′′. To see this notice that for S, S′ and S′′

with H(S,LI) = λS′H(S′, LI) + λS′′H(S′′, LI), we have H(S + εW , LI) = λS′H(S′ +
εW
2 , LI) + λS′′H(S′′ + εW

2 , LI) for all ε in a δ neighborhood around 0, where δ is deter-

mined by the smaller of the neighborhoods that are induced by S′ and S′′. Then, the

change in the overall inequality yielded by the addition of εW to S will be in the same

direction with the changes in S′ and S′′ created by the addition of εW
2 .

SAD is a strong property and as will be highlighted in the proof of the characterization

result, it has an important role in determining the functional form of D. It actually

implies INV property. In other words, any function that satisfies SAD is a relative

inequality measure, as stated in the following proposition:

Proposition 1.3. Any H : C → R+ that satisfies SAD is Scale Invariant.

We are now ready to introduce the main result of the paper. These properties listed

not only are satisfied by D, but also they do characterize it up to a positive scalar

transformation. As SAD implies INV, we do not include it as an additional axiom.
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Theorem 1.4. A social inequality function H : C → R+ satisfies SYM, MON, DEC

and SAD if and only if it is a positive scalar transformation of the Domination Index:

D(S,LI) = |
∑
i

(siw
∑
j:iLj

sjm − sim
∑
j:iLj

sjw)|

The proof of the characterization can be summarized by the following steps: In Step 1,

we consider a very specific type of a society and derive the functional form of H for it.

We focus our attention to societies for which inequality is always favoring Women, i.e.,

for any subset of positions Women have a better distribution than Men. These would

be the societies with strictly decreasing Siw
Sim

ratios from the best to the worst position.

We call them as Women-perfect societies. Since Women-perfectness allows for iterative

application of DEC, together with INV and MON, we first show that for Women-perfect

societies, overall inequality can be decomposed into the inequalities between the individ-

uals of a position and all other individuals in worse positions. Hence, we remain with a

collection of simpler hypothetical societies with two positions, where the first position of

each hypothetical society possesses the individuals of an original position and the second

position includes all individuals that are in worse positions than this one. In Step 2,

we focus only to those 2 × 2 hypothetical societies. SAD ensures that the inequality

of these societies is a function of the difference in number of dominations by groups.

Then, aggregation of the inequalities of hypothetical societies yields the functional form

as a positive multiple of the average number of dominations by Women net of average

number of dominations by Men. Step 3 simply shows that by SYM, we arrive to the

functional form of the index for societies for which inequality is always favoring Men,

Men-perfect societies. In Step 4, we consider any W -type society and associate it with

a particular Women-perfect society. We do this by adding sufficient number of women

to the original society. The functional form of the index for any W -type society appears

from the difference of the inequalities of the Women-perfect society and the subsociety

that includes the women that are added to the original society. Step 5 mimics Step 4

for any M -type society. Since any society is either W -type or M -type, we arrive to the

index.

All of the characterizing properties are independent. SYM guarantees equal treatment to

Women and Men. Hence, an asymmetric version ofD that values dominations by Women

and Men differently can be an example to a social inequality function that satisfies

all of the other properties but SYM. For instance, H(S,LI) = |
∑

i(2siw
∑

j:iLj sjm −
sim

∑
j:iLj sjw)|.

MON is responsible from the comparison between groups. The function that counts

the total average number of dominations instead of the difference in average number of
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dominations will be an example to a function that only does not satisfy MON out of the

stated properties, i.e., H(S,LI) = |
∑

i(siw
∑

j:iLj sjm + sim
∑

j:iLj sjw)|.

DEC ensures that individuals of each position are taken into account in relation to

the relative order of the position. A function that only considers the dominations by

some of the individuals will not satisfy DEC. An example that comply with MON, SYM

and SAD will be a function that only counts the dominations by the individuals of the

best position: H(S,LI) = |sxw
∑

j:xLj sjm − sxm
∑

j:xLj sjw|, where x denotes the best

position according to L over I.

Finally, SAD accounts for considering only the dominations between groups. A function

that takes into account the dominations within groups will not satisfy SAD. For in-

stance: H(S,LI) = 1
SwSm

(|
∑

i(Siw
∑

j:iLj Sjm−Sim
∑

j:iLj Sjw)|+|
∑

i(Siw
∑

j:iLj Sjw−
Sim

∑
j:iLj Sjm)|).

1.3 Segregation as Inequality

Segregation, in very general terms, is about how separated different groups of a society

are. It is the degree to which social groups are distributed differently in the society. It

has started to attract attention with the discrepancy in the distributions of different race

groups across residential areas in United States at the first half of the 20th century and

since then different types of segregation have been recognized, documented and analyzed

both theoretically and empirically. A major part of the questions about segregation

concerns the relation of segregation to inequalities. Spatial separation of social groups

from each other has been detected to be a cause and a consequence of the unequal levels

of wellbeing between social groups. Higher levels of residential segregation by ethno-race

groups is found to be responsible for low levels of education and occupation outcomes

[30, 37]. Lower racial inequality in terms of educational attainment is in turn shown to

increase residential segregation [13]. Segregation of black and non-black students into

different schools has been blamed for substantial differences in achievement [37, 45].

An important share of wage inequality between women and men has been explained

by gender-based occupational segregation [18, 19, 63]. However not always the trend

in wage inequality follows exactly the same pattern with occupational segregation [75].

Hence there exists a close link between segregation and inequalities between groups,

though the strength or the direction of this link is never clear.

Segregation is defined as a form of inequality. It is the inequality in the distributions of

social groups across neither measurable nor comparable categories. Categories need not

to be uncompared by nature, but a comparison of these categories is not relevant to the
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question of segregation. For instance for residential segregation by race, neighborhood

quality may very well define an ordering of neighborhoods. However the essence of the

idea of residential segregation, “the degree to which two or more groups live separately

from each other in different parts of the urban environment” [68] hinges on spatial

difference in residential patterns. A quality ordering of the neighborhoods is not a part

of the question of segregation itself, but brings in the notion of inequality. Segregation

captures the nominal discrepancy of the distributions regardless of how good or bad

the distributions are, whereas inequality involves an evaluation of the distributions.

Hence the comparison of the categories do matter for inequality analysis in contrast

to segregation. However, despite this conceptual distinction we can observe cases such

that social groups are as segregated as unequally distributed. In other words, there exist

societies in which segregation is actually the inequality between groups. Let us go back

to the imaginary building example with residents from two different groups, given in the

introduction. In the completely polarized society scenario, in which one of the groups is

occupying the nicer flats with the view at the higher floors of the building, whereas all

members of the other group are living downstairs facing the facade of the building across

the street, both segregation and inequality between groups are at their maximum, hence

equal for standardized measures of segregation and inequality. Moreover, this is not

a unique example. One can find many other scenarios such that segregation coincides

with the inequality. The Domination Index becomes helpful at this point: It allows to

identify the societies such that spatial inequality between groups captures the overall

inequality, clarifying the structure of the relation between segregation and inequality.

In this section, we show that for particular societies the inequality between social groups

measured by the Domination Index is equal to the segregation measured by a well-known

segregation measure, Gini Segregation Index. Gini Segregation Index, GS , is one of

the oldest methods to measure segregation, suggested in the first paper on the subject

(Jahn et. al., 1947). As the name suggests it shares the same underlying logic with

Gini Inequality Index in measuring inequality as a normalized mean absolute difference

between all pairs of components.10 Since the order relation L over I is not an argument

for segregation, a society is simply the society matrix over I positions that we denote

as SI . Let Sit denote the total number of individuals in position i, qi women share in

position i and St and q the respective amounts for the whole society, i.e.; Sit = Siw+Sim

and qi = Siw/Sit. A segregation index is simply a non-zero continuous function defined

10The general formulation of Gini inequality indices can be given as
1/T2 ∑n

i=1

∑n
j=1 |Ti−Tj |

2T/n
, where

there are n components (individual, place, position) with component i possessing a Ti share of the T

units (income, people) in total. In the context of income inequality it becomes
∑n

i=1

∑n
j=1 |yi−yj |

2n
∑n

i=1 yi
, where

yi denotes the income level of individual i.
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from B = ∪IRI×2+ to R+. Then, Gini Segregation Index is:

GS(SI) =
∑
i

∑
j

SitSjt|qi − qj |
2S2

t q(1− q)

GS measures segregation in terms of the average difference in women shares of positions.

It will be equal to zero only if the women shares of all positions are the same; for all i

and j, qi = qj . This happens only if the proportion of women in each position, siw is

equal to the proportion of men, sim. Notice that in this case, as shown in Lemma 1.2

there will be zero social inequality as well, i.e., D(S,LI) = 0. Hence, no segregation

implies no social inequality. On the other hand, GS will take its maximum value as 1

under complete polarization, when all men occupy better positions than all women, or

vice versa. In this case, D gives a value of 1, as well.

These two extreme cases with identical levels of segregation and inequality may seem as

opposites. However they share an important property: In both of the cases the order

of the positions are in line with the relative masses of groups occupying the positions.

Going down in the hierarchy of positions, the ratio of number of women to number of

men occupying a position follows a monotone path. Indeed this is a sufficient property

to have equal levels of segregation and inequality. If the ratio of number of women to

men is increasing or decreasing from the best to worse positions, then segregation of this

society equals to the inequality between groups. Let ri denote the proportion of number

of women to number of men in position i, i.e.: ri = Siw
Sim

. Then, we have the following

proposition:

Proposition 1.5. For any (S,LI) in C, we have GS(SI) = D(S,LI) if and only if (i)

ri ≥ rj for all i and j with iLj or (ii) rj ≥ ri for all i and j with iLj.

The proof of the proposition follows fast from an alternative expression of Gini Segre-

gation Index as GS(SI) = 1
2

∑
i

∑
j |siwsjm − simsjw|. This expression of GS stresses

out the relation between GS and D, since D can alternatively be stated as: D(S,LI) =

|
∑

i

∑
j:iLj siwsjm−simsjw|. Both of them evaluate the average difference in cross prod-

ucts of group shares, the amount (siwsjm−simsjw), for pairs of positions. However there

are two main distinctions: (i) In case of inequality this amount refers to the difference

in number of dominations by groups, hence D makes use of the order relation L and

aggregates over for pairs of positions i and j with iLj. In case of segregation this amount

is a measure of how differently distributed two groups over i and j, hence GS aggregates

it for any pair of positions without reference to an order relation. (ii) GS is the summa-

tion of absolute values over pairs of positions; what matters is the nominal difference in

distributions. For any pair of positions i, j, the contribution to the overall segregation



Chapter 1. Evaluating Non-Income Inequalities 19

is always nonnegative. D is the absolute value of a sum over positions. Inequality does

not need to be in the same direction over all pairs of positions.

Thus, combining (i) and (ii), if the structure of the society is such that inequality is

always favoring the same group, then D would be equal to GS . This is possible only if

the positions are ordered according to the relative masses of the groups occupying them.

If from the best to the worst position ri is always decreasing, then Women always have

an advantageous distribution, i.e.; number of dominations by Women is larger then Men

for any pair of positions. If, on the other hand, ri is increasing from the best to the

worst position, then Men always have an advantageous distribution.

Hence for a particular organization of the society, segregation is the inequality between

groups. If the order of importance of the positions is reflected by the relative distribution

of the groups, then segregation is actually responsible from the inequality.

This simple result not only helps to understand the theoretical link between segregation

and inequality, but also provides a characterization of the Gini Segregation Index. We

exploit the relation between D and GS to adapt the characterizing properties of D:

SYM and INV properties remain the same. MON property becomes redundant as there

is no direction in segregation as opposed to inequality. However we need an additional

property to fix the level of no segregation to zero. A normalization property (NORM)

requires that if the distribution of Women is exactly equal to the distribution of Men,

then there is zero segregation. Notice that, this property was implied by MON in case of

inequality. The DEC and SAD properties are the ones that require to be adapted with

reference to the ri ordering instead of the exogenous order of positions. We define r-DEC

as the decomposability of overall segregation into two different segments of the society

and an interaction term between them where the upper segment consists of the positions

with higher ri ratios with respect to the positions of the lower segment. Similarly, r-

SAD ensures that overall segregation could be expressed as a weighted sum of the levels

of segregation of the subsocieties if the ri ordering of the positions is preserved for

subsocieties with respect to the original society. As before, r-SAD implies INV. Formal

definitions of the properties are introduced in the Appendix as well as the proof of the

following theorem:

Theorem 1.6. A segregation index H : B → R+ satisfies SYM, NORM, r-DEC, r-

SAD if and only if H is a positive scalar transformation of the Gini Segregation Index:

GS(SI) = 1
2

∑
i

∑
j |siwsjm − simsjw|
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1.4 Extension: Inequality with Incomplete Information

The previous section has established that if the order of the positions of a society does

not follow a particular pattern, then the level of inequality will be different than the level

of segregation. The proof of this claim demonstrates that for any other organization of

the society, inequality will actually be less severe than segregation. For the sake of

completeness, let us state this observation formally:

Let LI denote the set of linear orderings of I.

Corollary to Proposition 1.5 For any (SI) in B, the level of segregation measured by

GS is equal to the maximum level of inequality measured by D over all possible linear

orderings of I, i.e;

GS(SI) = max
LI∈LI

D(S,LI)

When there is no information about the ordering of positions the only inequality between

groups is due to segregation and is equal to the maximum group inequality over all

possible linear orderings of I. When the information is not null but not complete either,

we could actually follow the same argumentation. For instance, in order to evaluate the

inequality of the distributions of gender groups in a firm hierarchy, one could encounter

problems in ordering the positions completely. Firm hierarchies do not necessarily show

a linear pattern, but they mostly follow a tree structure. This would mean that for some

positions the order relation is clear, but not necessarily all positions are compared to

each other. In other words, the order relation is incomplete. How could we measure the

inequality of distributions if we have incomplete information about the ordering of the

positions?

We propose to follow what is suggested by the previous observation and complete the

missing information by considering all possible linear orderings of the positions and

determining the maximum possible level of group inequality. When there is complete

information about the ordering of the positions, the Domination Index makes use of

all of the existing information. Under no information regarding the ordering of the

positions, it would be safe to consider the maximum level of group inequality over all

possible ways of completing the existing information since we have shown that this

coincides with segregation. Then under incomplete information about the ordering of

the positions a natural extension would be to consider all possible ways of completing it.

The maximum level of group inequality over all possible completions would be qualified

as the group inequality in that society.

Let PI be a strict partial order over the set of positions I. A society will be a pair

of elements (S, PI), where S is the usual society matrix. Let LPI denote the set of
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linear extensions of P over I, i.e.; the set of complete, transitive and asymmetric binary

relations over I with for all LI in LPI , iLj if iP j. Then, Maximum Group Inequality

Index, M , will be a continuous function defined from the set of all possible societies to

nonnegative real numbers in the following way:

M(S, PI) = max
LI∈LPI

D(S,LI)

We know that M is a relative group inequality measure that takes values in [0, 1] as well.

If there is no missing information about the ordering of the positions, M is equal to D.

If there is no ordering information available, then the only inequality between groups

is due to segregation and that is completely captured by M , since it is equal to GS for

this case. In case of some missing information, M gives the maximum possible level of

group inequality, which refers to the worst-case scenario of the society. If two positions

remain uncompared by the original ordering, this will be because of the fact that there

is no unique universal way of ranking these positions; their ordering may change from

time to time, society to society. Considering the worst-case scenario is consistent with

a Rawlsian framework of welfare, apart from being a natural outcome of the structural

relations between inequality and segregation.

1.4.1 An Empirical Exercise: Gender-based Occupational Inequality

in Europe

In this section we provide a quick application of Maximum Inequality Index to assess the

discrepancy in the distribution of genders across occupational groups in Europe. Accord-

ing to International Standard Classification of Occupations (ISCO), jobs are classified

into occupational groups with respect to the skill level and skill specialization required

to competently perform the tasks and duties of the occupations.11 Figure 1 summarizes

the gender distribution across 9 major occupational groups in 9 European countries by

2010. 12 13

In order to evaluate the inequality between gender groups across these occupational cat-

egories we need to take into account welfare attributes of occupations such as income,

working conditions or other socio-economic status indicators offered by the occupations.

The hinge is that not necessarily all attributes are perfectly correlated. An occupation

11We make use of the latest version of the classification system,
ISCO08, which is published by International Labor Organization in 2008.
(http://www.ilo.org/public/english/bureau/stat/isco/isco08/index.htm)

12According to ISCO08, there are 10 major occupational groups. We leave out category 0, ”Armed
forces occupation” due to data restrictions.

13The distribution data used in this exercise is taken from United Nations Economic Comission for
Europe (UNECE) Statistical Division Database (http://w3.unece.org/pxweb/).
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Figure 1.1: Occupational distribution of gender groups in Austria, Denmark, Greece,
Germany, Iceland, Italy, Luxembourg, Portugal, United Kingdom in 2010

may have quite challenging working conditions, even resulting in health troubles, al-

though offering a very high level of wage. Hence taking multi attributes into account, a

linear ordering of occupations will not be possible. However, we can arrive to a partial

ordering of occupations that will not contradict with any of the orderings suggested by

each welfare attribute. Given this partial ordering, the Maximum Inequality Index will

tell us the worst case scenario as the occupational inequality between gender groups.

Figure 2 shows the mean hourly wage pattern of occupational groups computed as 2010

European mean of total population and for women and men separately.14

Although wage levels for women and men differ, the order of occupational categories

suggested by mean hourly wage of women, men and total population do coincide. The

wage ordering of the occupations would be, in decreasing order, as the following: Man-

agers, Professionals, Technicians and Associate Professionals, Clerical Support Workers,

Craft and Related Trade Workers, Plant and Machine Operators and Assemblers, Service

and Sales Workers, Elementary Occupations, Skilled Agricutural, Forestry and Fishery

Workers.

The International Socio-Economic Index of occupational status (ISEI-08) is a scale de-

signed for occupations using the required level of education and the earnings offered. It

basically assigns an optimal score to each occupation that aims to minimize the direct

effect of education on earnings and maximizing the indirect effect of education on earn-

ings via occupation.15 The ISEI ordering of occupations computed according to ISCO08,

14The wage data is taken from the statistical database of Eurostat, Structure of earnings survey, 2010.
(http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/)

15For further reference: http://www.harryganzeboom.nl/isco08/qa-isei-08.htm
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Figure 1.2: Mean hourly wage of occupational groups in Europe in 2010

with the corresponding ISEI08 secores in parantheses, gives us: Professionals (65), Man-

agers (62), Technicians and Associate Professionals (51), Clerical Support Workers (41),

Craft and Related Trade Workers (35), Plant and Machine Operators and Assemblers

(32), Service and Sales Workers (31), Elementary Occupations (20), Skilled Agricutural,

Forestry and Fishery Workers (18).

Finally, working conditions offered by the occupation is a significant welfare determi-

nant, especially when health related outcomes are considered. In order to assess the

working conditions of occupations we make use of five different variables related to work

context: Cramped Work Space-Awkward Positions (How often does this job require

working in cramped work spaces that requires getting into awkward positions?), Ex-

posed to Hazardous Conditions (How often does this job require exposure to hazardous

conditions?), Spend Time Making Repetitive Motions (How much does this job require

making repetitive motions?), Deal With Unpleasant or Angry People (How frequently

does the worker have to deal with unpleasant, angry, or discourteous individuals as

part of the job requirements?), Lack of Decision Power (How much decision making

freedom, without supervision, does the job offer?).16 Averaging the scores attached

to each of these variables for each occupational category, we arrive to the work con-

ditions ordering as the following: Managers (25.08), Professionals (26.61), Technicians

and Associate Professionals (35.03), Clerical Support Workers (35.54), Service and Sales

16Data related to these variables is taken from Occupational Information Network (ONET) database
(http://www.onetonline.org/). ONET database contains information on a variety of standardized and
occupation-specific descriptors and provides importance and levels of these descriptors for each occu-
pation. It is based on the Standard Occupational Classification. In order to translate it to ISCO08
we make use of the crosswalk suggested by US Department of Labor, Bureau of Labor Statistics:
http://www.bls.gov/soc/soccrosswalks.htm.
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Workers (37.35), Skilled Agricutural, Forestry and Fishery Workers (38.73), Craft and

Related Trade Workers (43.68), Elementary Occupations (43.83), Plant and Machine

Operators and Assemblers (47.77).

The following figure corresponds to the partial ordering of occupations once we consider

all three orderings together:
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Figure 1.3: Order of Occupations according to Wage, Socio-Economic Status and
Working Conditions

Below we present the gender-based occupational inequality in 9 European countries in

2000 and 2010, computed by the Maximum Inequality Index by making use of this

partial ordering of occupations.

Table 2. Gender-based Occupational Inequality by Maximum Inequality

Index

Country 2000 2010

Austria 0.1715 0.1928

Denmark 0.1958 0.1442

Germany 0.1499 0.1479

Greece 0.1993 0.2001

Iceland 0.2436 0.2704

Italy 0.2116 0.1577

Luxembourg 0.1676 0.1527

Portugal 0.1778 0.1821

United Kingdom 0.1867 0.1622
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In 3 out of 9 countries, Austria, Greece and Iceland, occupational inequality has tended

to increase in 10 years span. Let us note that, out of these 9 countries, only in Iceland,

inequality is actually favoring women. In all countries but Iceland, men have a more

advantageous distribution with respect to women.

1.5 Concluding Remarks

Unequal distibution of social groups across different levels of welfare is quite commonly

observed. When we go beyond income inequality and consider non-cardinal welfare

determining variables such as education, health, occupation or subjective well-being, we

run short of well-developed inequality measurement techniques. This paper aimed to

propose an intuitive and well-founded methodology to evaluate non-income inequalities

between social groups without appealing to additional cardinalisation assumptions.

The Domination Index evaluates the discrepancy in group distributions as a function of

the number of times a group beats the other group. We showed in a first result that

a set of properties, a classical Symmetry property, a Monotonicity property and two

decomposability properties characterize the Domination Index up to a positive scalar

transformation. The Domination Index is instrumental in clarifying the intimate link

between social inequalities and segregation. In a second result, we showed that seg-

regation is actually the inequality for a very specific distribution of the society, where

the organization coincides with the socially worst outcome. Furthermore, we exploited

this theoretical link between segregation and inequality to propose a technique to eval-

uate inequalities where the information regarding the ordering of the categories is not

necessarily complete and provided a simple empirical exercise to evaluate gender-based

occupational inequality across nine European countries.

We provided the index for evaluation of inequalities between two social groups. However

there are many real life cases that require a multi-group analysis. A natural way to

extend the Domination Index to multi-group case is to consider an aggregation of the

differences in pairwise dominations for any pair of groups. When there are more than

two social groups, we first focus on pairs of groups and calculate for each pair the

average difference in number of dominations, i.e., the Domination Index for two groups.

Then, the average of these average differences would be a multi-group version of the

Domination Index. Let us state this idea formally: Let G be a set of social groups with

cardinality G. Then a society with G groups and I positions will be a pair (S,LI) where

S is a society matrix of dimension I ×G and the multi-group Domination Index would

be equal to 1
2G

∑
M∈G

∑
N∈G D(SM , SN ), where SM denotes the vector of group M in
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S as usual. Notice that this is again a relative inequality measure that takes values

between 0 and 1.

The foundational analysis of the multi-group version of the Domination Index is a ques-

tion of ongoing research as well as its relation to multi-group segregation indices. In

addition, the algorithmic structure and behavior of the Maximum Group Inequality

Index remain to be explored.

1.6 Appendix

Extra Notation for the Proofs:

To denote a society (S,LI) with 1L2L . . . LI, we use S = (S1w, S1m;S2w, S2m; . . . ;SIw, SIm)

or in a more compact form S = (S1;S2; . . . ;SI) where each Si is a row vector of dimen-

sion 2× 1 such that Si = (Siw, Sim). Given (S,LI) with with 1L2L . . . LI, Skj is used to

denote a row vector of dimension 2× 1 where the first entry is the sum of all women in

(S,LI) from position j to k and the second entry is the sum of all men in the same po-

sitions, i.e.; Skj =
∑k

i=j Si = (
∑k

i=j Siw,
∑k

i=j Sim). We use
∑

i Siw to denote
∑

i∈I Siw

and
∑l

k Siw to denote
∑l

i=k Siw.

Proof of Lemma 1.1: Immediate from the expression of D as:

D(S,LI) = |
∑

i(siw
∑

j:iLj sjm)−
∑

i(sim
∑

j:iLj sjw)|. �

Proof of Lemma 1.2: Consider any (S,LI) such that for any i, Siw = Sim. Notice

that since SW dominates SM , MON guarantees that S is of W -type. Similarly since SM

dominates SW as well, S is of M -type. It is immediate to show that by definition, for

any H, S is of both W -type and M -type if and only if H(S,LI) = 0. �

Proof of Proposition 1.3: Consider any H that satisfies SAD and any society

(S,LI) = (SW , SM ). (i) Let α ∈ N++. By using induction, we will show that

H(αSW , SM ) = H(SW , SM ). For α = 2, SAD implies: 1
2H(SW , SM ) + 1

2H(SW , SM ) =

H(2SW , SM ) = H(SW , SM ). Now assume that the statement holds for α − 1, i.e.:

H((α − 1)SW , SM ) = H(SW , SM ). Since, H((α − 1)SW , SM ) is of the same type with

H(SW , SM ), by SAD: α−1
α H((α − 1)SW , SM ) + 1

αH(SW , SM ) = H(αSW , SM ), which

implies by the inductive argument: α−1
α H(SW , SM ) + 1

αH(SW , SM ) = H(SW , SM ) =

H(αSW , SM ) as claimed. (ii) Now consider α ∈ Q++. Let α = p
q for some p, q ∈

N++. Then, repeated application of SAD ensures the following: q
p
q

pH(pqSW , SM ) =

H(pSW , SM ). Since for p ∈ N++ we have proved that H(pSW , SM ) = H(SW , SM ),

we arrive; H(pqSW , SM ) = H(SW , SM ) as claimed. (iii) Finally let α ∈ R++. Since

every irrational number can be expressed as the limit value of a sequence of rational
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numbers, let α = lim qi for some qi ∈ Q++ ∀i. Then, H(αSW , SM ) = H(lim qiSW , SM ) =

limH(qiSW , SM ) by continuity of the function H. Since we have already showed that for

any rational α the statement holds, we arrive: H(αSW , SM ) = H(SW , SM ), establishing

that for any α ∈ R++, H(αSW , SM ) = H(SW , SM ). Since the same argumentation could

be made for the men distribution, we have proved that SAD implies INV. �

Proof of Theorem 1: We omit the proof of necessary part. To prove the sufficiency

part, first we introduce a lemma with three parts. We show that INV together with

MON imply; (i) any society that has members from only one of the groups has zero

inequality; (ii) any society that has members from both of the groups and only one

position occupied by a strictly positive number of individuals has zero inequality; (iii)

any society that has members from both of the groups and has women only in the best

position or men only in the worst position is of W -type and any society that has men

only in the best position and women only in the worst position is of M -type.

Lemma 1.7. Let H : C → R+ satisfy INV and MON. For any (S,LI), (i) if Sw = 0

or Sm = 0, then H(S,LI) = 0; (ii) if there exists i ∈ I with Siw > 0 and Sim > 0 and

for all j 6= i, Sjw = Sjm = 0, then H(S,LI) = 0; (iii) if Sw 6= 0 6= Sm and for i ∈ I
such that there does not exist any j ∈ I with j L i, Siw = Sw or for k ∈ I such that

there does not exist any j ∈ I with k L j, Skm = Sm, then S is of W -type. Moreover if

Sim = Sm or Skw = Sw, then S is of M -type.

Proof (i) Let (S,LI) be such that Sw = 0. Let (S′, LI) be such that S′M = SM and

for some ε > 0, S′W = εSM . By INV and Lemma 1.2, H(S′, LI) = 0. By continuity of

H, limε→0H(S′, LI) = H(S,LI) = 0. The same argument holds for any (S,LI) with

Sm = 0. (ii) Let (S,LI) be as stated. The result is immediate from INV and Lemma

1.2. (iii) Let (S,LI) be such that for i ∈ I such that there does not exist j ∈ I with

j L i, Siw = Sw > 0 and Sm > 0. By INV H(SW , SM ) = H(SW
Sw
, SM
Sm

) = H(S′W , S
′
M ).

Since S′iw = 1 and for any j ∈ I \ {i}, S′jw=0, S′W dominates S′M . Thus, by MON,

S′ and S are of W -type. Similar arguments establish the result for the other society

matrices defined in the statement of Lemma. �

Now we start with the proof of Theorem 1. Let (S,LI) ∈ C. If I = 1, then by Lemma

1.7(ii), H(S,LI) = 0. Let I ≥ 2. For notational simplicity, let us name the positions

such that L over I is as 1 L 2 L . . . L I. Later we show that this holds wihout loss of

generality.

In Step 1, we consider a very specific type of society and derive the functional form of

H for it. We define a W -perfect society matrix as one with strictly positive number

of women and men in each position and a strictly decreasing ri ordering from the best

to the worst position, i.e.; ∞ > r1 > r2 > · · · > rI > 0.
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Step 1: Let S be a W -perfect society matrix. Then

H(S1; . . . ;SI) =
∑
i

∑I
i Sjw

∑I
i Sjm

SwSm
H(Si;S

I
i+1).

17

Step 1.1: S is of W -type.

By Proposition 1, H satisfies INV. Then, for (S′, LI) = (s1w, s1m; . . . ; sIw, sIm), we have

H(S,LI) = H(S′, LI). Notice that S′ is W -perfect and S′w = S′m = 1. We now show

that S′W dominates S′M . Then, by MON, S′ is of W -type, implying that S is of W -type.

By W -perfection, for any k = 1, . . . , I, and for j = k + 1, . . . , I

S′kwS
′
jm > S′jwS

′
km.

Thus, for each j, summing up these equations

S′kw

I∑
k+1

S′jm > S′km

I∑
k+1

S′jw. (1.1)

Since (1.1) holds for each k = 1, . . . , I − 1, summing over all k

k∑
1

(S′iw

I∑
k+1

S′jm) >
k∑
1

(S′im

I∑
k+1

S′jw)

k∑
1

S′iw(1−
k∑
1

S′jm) >

k∑
1

S′im(1−
k∑
1

S′jw)

k∑
1

S′iw −
k∑
1

S′iw

k∑
1

S′jm >
k∑
1

S′im −
k∑
1

S′im

k∑
1

S′jw

k∑
1

S′iw >
k∑
1

S′im.

Since
∑I

1 S
′
iw =

∑I
1 S
′
im = 1, it follows from MON that S′ is of W -type. Then, S is of

W -type as well. Hence any W -perfect S is of W -type.

As a direct implication of Step 1.1, for a W -perfect S, since for each i = 1, . . . , I − 1,

(Si; . . . ;SI) is W -perfect, it is of W -type as well.

17Notice that for i = I, H(SI ;SI
I+1) does not exist. For the sake of simplicity we keep the notation

this way.
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Step 1.2: For any i = 1, . . . , I − 1, (Si;S
I
i+1) is of W -type.

Since for any i ∈ I, ∞ > ri > ri+1 > · · · > rI > 0, then

Siw

I∑
i+1

Sjm > Sim

I∑
i+1

Sjw

Siw
Sim

>

∑I
i+1 Sjw∑I
i+1 Sjm

.

Then, (Si;S
I
i+1) is a W -perfect society matrix with 2 positions. By Step 1.1, for each

i = 1, . . . , I − 1, (Si;S
I
i+1) is of W -type.

Step 1.3: H(S1; . . . ;SI) =
∑

i

∑I
i Sjw

∑I
i Sjm

SwSm
H(Si;S

I
i+1).

First consider the division of society (S,LI) = (S1; . . . ;SI) as S1 and (S2; . . . ;SI). Since

S is W -perfect, by Step 1.2, these societies and the interaction society are of W -type.

Thus, by DEC

H(S1; . . . ;SI) =
S1wS1m
SwSm

H(S1) +

∑I
2 Siw

∑I
2 Sim

SwSm
H(S2; . . . ;SI) +H(S1;S

I
2). (1.2)

By Lemma 1.7(ii), H(S1) = 0. Now, consider the division of the society (S2; . . . ;SI) as

S2 and (S3; . . . ;SI). Again by W -perfection, DEC yields

H(S2; . . . ;SI) =
S2wS2m∑I

2 Siw
∑I

2 Sim
H(S2) +

∑I
3 Siw

∑I
3 Sim∑I

2 Siw
∑I

2 Sim
H(S3; . . . ;SI) +H(S2;S

I
3).

Since by Lemma 1.7(ii), H(S2) = 0, substitution into (1.2) yields:

H(S1; . . . ;SI) =

∑I
3 Siw

∑I
3 Sim

SwSm
H(S3; . . . ;SI)+

∑I
2 Siw

∑I
2 Sim

SwSm
H(S2;S

I
3))+H(S1;S

I
2).

Iterative application of DEC and Lemma 1.7(ii) results in

H(S1; . . . ;SI) =
∑
i

∑I
i Sjw

∑I
i Sjm

SwSm
H(Si;S

I
i+1), (1.3)

concluding Step 1.18

Step 2: For each society (S,LI) ∈ C with a W -perfect society matrix S

H(S1; . . . ;SI) =
∑
i

(siw

I∑
i+1

sjm − sim
I∑
i+1

sjw)H(1, 0; 0, 1).

18Notice that DEC allows to express overall inequality as a weighted sum of inequalities in 2 × 2
society matrices naming the best position as 1 and the other position as 2. This shows that neutrality
of positions is implied by DEC, naming the positions as 1 L 2 L . . . L I is without loss of generality.
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Step 2.1: For any i = 1, . . . , I − 1

H(Si;S
I
i+1) =

Siw
∑I

i+1 Sjm − Sim
∑I

i+1 Sjw∑I
i Sjw

∑I
i Sjm

H(1, 0; 0, 1).

First notice that by INV,H(Siw, Sim;
∑I

i+1 Sjw,
∑I

i+1 Sjm) = H(siw, sim;
∑I

i+1 sjw,
∑I

i+1 sjm).

For simplicity let us use the notationH(a, b; c, d) instead ofH(siw, sim;
∑I

i+1 sjw,
∑I

i+1 sjm).

By Step 1.2, (a, b; c, d, ) is of W -type. Since a + c = b + d = 1, then a > b and d > c.

Since b
b = 1 > c

d , by Step 1.1, (b, b; c, d) is of W -type and by Lemma 1.7(iii), (a−b, b; 0, d)

is of W -type. Then, by SAD

H(a, b; c, d) =
b+ c

a+ c
H(b, b; c, d) +

a− b
a+ c

H(a− b, b; 0, d). (1.4)

Moreover, since by Lemma 1.2, H(b, b; c, c) = 0, by definition (b, b; c, c) is of W -type and

by Lemma 1.7(iii), (b, 0; c, d− c) is of W -type. Then, by SAD

H(b, b; c, d) =
b+ c

b+ d
H(b, b; c, c) +

d− c
b+ d

H(b, 0; c, d− c). (1.5)

Combining (1.4) and (1.5)

H(a, b, c, d) =
(b+ c)(d− c)
(a+ c)(b+ d)

H(b, 0; c, d− c) +
a− b
a+ c

H(a− b, b; 0, d).

Similarly, by Lemma 1.7(ii), H(0, 0; c, d− c) = H(a− b, b; 0, 0) = 0. Then, by definition

(0, 0; c, d − c) and (a − b, b; 0, 0) are of W -type. By Lemma 1.7(iii), (b, 0; 0, d − c) and

(a− b, 0; 0, d) are of W -type. Then, by SAD

H(b, 0; c, d− c) =
c

b+ c
H(0, 0; c, d− c) +

b

b+ c
H(b, 0; 0, d− c),

H(a− b, b; 0, d) =
d

b+ d
H(a− b, 0; 0, d) +

b

b+ d
H(a− b, b; 0, 0),

resulting in

H(a, b, c, d) =
b(d− c)

(a+ c)(b+ d)
H(b, 0; 0, d− c) +

(a− b)(d)

(a+ c)(b+ d)
H(a− b, 0; 0, d).

Finally, by INV

H(a, b; c, d) =
b(d− c)

(a+ c)(b+ d)
H(1, 0; 0, 1) +

(a− b)d
(a+ c)(b+ d)

H(1, 0; 0, 1)

=
ad− bc

(a+ c)(b+ d)
H(1, 0; 0, 1).
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Going back to the original notation

H(Si;S
I
i+1) =

Siw
∑I

j=i+1 Sjm − Sim
∑I

j=i+1 Sjw∑I
j=i Sjw

∑I
j=i Sjm

H(1, 0; 0, 1). (1.6)

Step 2.2: H(S1; . . . ;SI) =
∑

i(siw
∑I

i+1 sjm − sim
∑I

i+1 sjw)H(1, 0; 0, 1).

Combining equation (1.3) and (1.6),

H(S1; . . . ;SI) =
∑
i

∑I
i Sjw

∑I
i Sjm

SwSm

Siw
∑I

i+1 Sjm − Sim
∑I

i+1 Sjw∑I
i Sjw

∑I
i Sjm

H(1, 0; 0, 1)

=
∑
i

Siw
∑I

i+1 Sjm − Sim
∑I

i+1 Sjw

SwSm
H(1, 0; 0, 1)

=
∑
i

(siw

I∑
i+1

sjm − sim
I∑
i+1

sjw)H(1, 0; 0, 1), (1.7)

concluding Step 2.

Now let us define an M-perfect society matrix as one with strictly positive number

of women and men in each position and a strictly increasing ri ordering, i.e.; 0 < r1 <

r2 < . . . < rI <∞.

Step 3: For each society (S,LI) ∈ C with an M -perfect society matrix

H(S,LI) = −
∑
i

(siw

I∑
i+1

sjm − sim
I∑
i+1

sjw)H(1, 0; 0, 1).

Let (S,LI) ∈ C be such that S is M -perfect. Let (S′, LI) ∈ C be such that S′W = SM

and S′M = SW . Thus S′ is W -perfect. By SYM, H(S′, LI) = H(S,LI). Then, by Step

2

H(S,LI) = H(S′, LI)

=
∑
i

(s′iw

I∑
i+1

s′jm − s′im
I∑
i+1

s′jw)H(1, 0; 0, 1)

=
∑
i

(sim

I∑
i+1

sjw − siw
I∑
i+1

sjm)H(1, 0; 0, 1)

= −
∑
i

(siw

I∑
i+1

sjm − sim
I∑
i+1

sjw)H(1, 0; 0, 1).
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Step 4: For each society (S,LI) ∈ C with a W -type society matrix S

H(S,LI) =
∑
i

(siw

I∑
i+1

sjm − sim
I∑
i+1

sjw)H(1, 0; 0, 1).

Step 4.1: Let S be of W -type such that for all i ∈ I, Sim 6= 0. There exist a W -perfect

society matrix X with XM = SM such that S′ with S′W = SW + XW and S′M = SM is

W -perfect as well.

Let us denote the total number of women and men in S with St, i.e.; St = Sw +Sm. Let

(X,LI) ∈ C be such that XM = SM and for any i ∈ I, Xiw =
∑I−i+1

k=2 (St)
k. Then for

any i = 2, . . . , I

X(i−1)w

X(i−1)m
>
Xiw

Xim∑I−i+2
k=2 (St)

k

S(i−1)m
>

∑I−i+1
k=2 (St)

k

Sim

St
∑I−i+1

k=2 (St)
k

S(i−1)m
>

∑I−i+1
k=2 (St)

k

Sim

St
S(i−1)m

>
1

Sim
.

Thus, ∞ > ri−1 > ri > 0, establishing that X is W -perfect.

Now let (S′, LI) ∈ C be such that S′W = SW +XW and S′M = SM . For any i = 2, . . . , I,

S′im 6= 0 and

S′(i−1)w

S′(i−1)m
>
S′iw
S′im

S(i−1)w +X(i−1)w

S(i−1)m
>
Siw +Xiw

Sim

S(i−1)w +
∑I−i+2

k=2 (St)
k

S(i−1)m
>
Siw +

∑I−i+1
k=2 (St)

k

Sim

S(i−1)wSim + S(i−1)wSim +
I−i+2∑
k=2

(St)
kSim > SiwS(i−1)m +

I−i+1∑
k=2

(St)
kS(i−1)m.

Since
∑I−i+2

k=3 (St)
kSim >

∑I−i+1
k=2 (St)

kS(i−1)m and (St)
2Sim > SiwS(i−1)m,

S(i−1)wSim + S(i−1)wSim +

I−i+2∑
k=3

(St)
kSim + (St)

2Sim > SiwS(i−1)m +

I−i+1∑
k=2

(St)
kS(i−1)m.
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Thus, ∞ > r′i−1 > r′i > 0, establishing that S′ is W -perfect.

Step 4.2: For anyW -type S such that for all i ∈ I, Sim 6= 0, H(S,LI) =
∑

i(siw
∑I

i+1 sjm−
sim

∑I
i+1 sjw)H(1, 0; 0, 1).

Since both S andX are ofW -type, by SAD,H(S′, LI) = Sw
Sw+Xw

H(S,LI)+
Xw

Sw+Xw
H(X,LI).

Since S′ and X are W-perfect matrices, using the functional form of H for societies with

W -perfect society matrices derived in Step 2.2,

H(S,LI) =
Sw +Xw

Sw
H(S′, LI)−

Xw

Sw
H(X,LI)

=
∑
i

(siw

I∑
i+1

sjm − sim
I∑
i+1

sjw)H(1, 0; 0, 1). (1.8)

Step 4.3: Let S be ofW -type. H(S,LI) =
∑

i(siw
∑I

i+1 sjm−sim
∑I

i+1 sjw)H(1, 0; 0, 1).

Let (S′, LI) ∈ C be such that for all i ∈ I, S′iw = Siw, for all i with Sim 6= 0, S′im = Sim

and for all i with Sim = 0, S′im = ε for some ε in a small neighborhood of 0. By Step 3

and Step 4.1:

H(S′, LI) =
∑
i

(s′iw

I∑
i+1

s′jm − s′im
I∑
i+1

s′jw)H(1, 0; 0, 1).

By continuity of H:

H(S,LI) = lim
ε→0

H(S′, LI)

= lim
ε→0

∑
i

(s′iw

I∑
i+1

s′jm − s′im
I∑
i+1

s′jw)H(1, 0; 0, 1)

=
∑
i

(siw

I∑
i+1

sjm − sim
I∑
i+1

sjw)H(1, 0; 0, 1)

establishing the functional form for any W -type S.

Step 5: For each society (S,LI) ∈ C with an M -type society matrix S

H(S,LI) = −
∑
i

(siw

I∑
i+1

sjm − sim
I∑
i+1

sjw)H(1, 0; 0, 1).

Symmetrically, now let S be not M -perfect but of M -type. Following the same technique

in Step 4, one can establish the result.
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Hence, for each society (S,LI) ∈ C with a W -type society matrix S,

H(S,LI) =
∑
i

(siw

I∑
i+1

sjm − sim
I∑
i+1

sjw)H(1, 0; 0, 1)

and with an M -type S

H(S,LI) = −
∑
i

(siw

I∑
i+1

sjm − sim
I∑
i+1

sjw)H(1, 0; 0, 1).

Since by construction each S is of W -type or of M -type, we have derived the functional

form for all possible societies. At the beginning, we have assumed that 1 L 2 L . . . L I.

Then in general, for any (S,LI) in C

H(S,LI) = |
∑
i

(siw
∑
j:iLj

sjm − sim
∑
j:iLj

sjw)H(1, 0; 0, 1)|. (1.9)

By definition, H is a nonzero function. Thus, H(1, 0; 0, 1) is a strictly positive real

number. �

Proof of Proposition 1.5: It is straightforward to show thatGS(SI) = 1
2

∑
i

∑
j |siwsjm−

simsjw|.
First we will show that if (i) or (ii) holds, then GS(SI) = D(S,LI). Notice that

(siwsjm − simsjw) > 0 if and only if ri > rj and (siwsjm − simsjw) = 0 if and only

if ri = rj . Hence GS can equivalently be expressed as:

GS(SI) =
1

2

∑
i

∑
j

|siwsjm − simsjw|

=
1

2
(
∑
i

∑
j:ri≥rj

(siwsjm − simsjw) +
∑
i

∑
j:ri<rj

−(siwsjm − simsjw)).

Notice that
∑

i

∑
j:ri≥rj (siwsjm − simsjw) =

∑
i

∑
j:ri<rj

−(siwsjm − simsjw). Since for

i, j with ri = rj , (siwsjm − simsjw) = 0, then:

GS(SI) =
∑
i

∑
j:ri≥rj

(siwsjm − simsjw) =
∑
i

∑
j:ri≤rj

−(siwsjm − simsjw).
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Now let us assume (i) holds. Since for any i, (siw
∑

j:iLj sjm − sim
∑

j:iLj sjw) ≥ 0, we

have:

D(S,LI) =
∑
i

(siw
∑
j:iLj

sjm − sim
∑
j:iLj

sjw)

=
∑
i

∑
j:iLj

(siwsjm − simsjw)

=
∑
i

∑
j:ri≥rj

(siwsjm − simsjw)

establishing the claim. Now assume that (ii) holds. Then, we have:

D(S,LI) =
∑
i

−(siw
∑
j:iLj

sjm − sim
∑
j:iLj

sjw)

=
∑
i

∑
j:iLj

−(siwsjm − simsjw)

=
∑
i

∑
j:rj≥ri

−(siwsjm − simsjw)

as claimed.

Now we will show that if GS(SI) = D(S,LI) then (i) or (ii) holds. First notice that

D(S,LI) = |
∑

i

∑
j:iLj dij |aij || = |

∑
ij:iLj dij |aij || where aij = (siwsjm − simsjw) and

dij = 1 if ri ≥ rj and dij = −1 if ri < rj . Hence for any two positions i and j,

since either iLj or jLi, if aij enters the sum, aji does not and for sure either aij or aji

enters. If (i) holds, then dij = 1 for all ij with iLj. Then, D(S,LI) =
∑

ij:iLj |aij | =∑
ij:iLj aij = GS(SI) as shown in the sufficiency part. If (ii) holds, then dij = −1 for all

ij with iLj. Then, D(S,LI) = |
∑

ij:iLj −|aij || =
∑

ij:iLj |aij | =
∑

ij:iLj −aij = GS(SI)

as shown in the sufficiency part. If neither (i) nor (ii) holds, then for some ij with iLj

and aij 6= 0 we have dij = 1 and for some other ij with iLj we have dij = −1. Then

D(S,LI) <
∑

ij:iLj |aij | = GS(SI), concluding the proof. �

Characterizing Properties of Gini Segregation Index

(SYM): For any (SI) and (S′I) with SW = S′M and SM = S′W , H(SI) = H(S′I).

(INV): Given (SI) and any α, β ∈ R+, for (S′I) such that for all i, S′iw = αSiw and

S′im = βSim, H(SI) = H(S′I).

(NORM): For any (SI) such that for any i, Siw = Sim, we have H(SI) = 0.

(r-DEC): For any r-ordered division of SI as S1
I1 and S2

I2 , the following holds: H(SI) =

λS1H(S1
I1) + λS2H(S2

I2) + H(S′I′) , where an r-ordered division of SI is a pair of

societies S1
I1 and S2

I2 such that: (i) I1 and I2 define a partition of I such that for any

i in I1 and any j in I2 we have ri ≥ rj . (ii) for k = 1, 2, Sk is a Ik × 2 society matrix

such that each position i possess the same number of women and men in S and Sk; S′I′
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denotes the interaction society, which is a society of two positions, I ′ = 1, 2, with

S′1w = S1
w, S′1m = S1

m, S′2w = S2
w and S′2m = S2

m; λSk refers to the population weight of

society part Sk.

(r-SAD): For any partition of a society (SI) into subsocieties (S′I) and (S′′I) such that

for any i and j, ri ≥ rj if and only if r′i ≥ r′j if and only if r′′i ≥ r′′j holds, the following

holds: H(SI) = λS′H(S′I) + λS′′H(S′′I).

Proof of Theorem 1.6: We omit the necessary part. For sufficiency part we first

introduce a couple of lemmas:

Lemma 1.8. Any H : B → R+ that satisfies r-SAD is Scale Invariant.

Proof of Lemma 1.8: The proof is exactly the same with the proof of Proposition

1.3 with the exception that r-SAD could be applied at any induction step since the ri

ordering of (αSW , SM ) is the same with the one of (SW , SM ) for any α > 0. �

Lemma 1.9. Given H that satisfies INV and NORM, for any (SI) (i) if Sw = 0 or

Sm = 0, then H(SI) = 0; (ii) if ∃i ∈ I with Siw > 0 and Sim > 0 and for all j 6= i,

Sjw = Sjm = 0, then H(S,LI) = 0.

Proof of Lemma 1.9 See part (i) and (ii) of the Proof of Lemma 1.7.�

Now consider any SI in B. If I = 1, then by Lemma 1.9(ii), H(SI) = 0. Let I ≥ 2. Let

us name the positions such that r1 ≥ r2 ≥ . . . ≥ rI . The proof will closely follow the

proof of Theorem 1.

Step 1: Consider the division of society (SI) = (S1, . . . , SI) as (S1) and (S2, . . . , SI).

Since r1 ≥ rj for all j in {2, 3, . . . , I}, r-DEC is applied:

H(S1, . . . , SI) =
S1wS1m
SwSm

H(S1) +

∑I
2 Siw

∑I
2 Sim

SwSm
H(S2, . . . , SI) +H(S1, S

I
2).

The rest of the iterative decomposition is the same as Step 1.3 of Theorem 1 with

the exception that here r-DEC is applied thanks to the decreasing order of ri ratios.

Repeated application of r-DEC, and Lemma 1.9(ii) results in:

H(S1, . . . , SI) =
∑
i

∑I
i Sjw

∑I
i Sjm

SwSm
H(Si, S

I
i+1) (1.10)

concluding Step 1.

Step 2: In this step, similar to Step 2.1. of Theorem 1, first we focus on one component

of the sum over positions derived in Step 1, H(Si;S
I
i+1) and show that for any i the
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following holds:

H(Si, S
I
i+1) =

Siw
∑I

i+1 Sjm − Sim
∑I

i+1 Sjw∑I
i Sjw

∑I
i Sjm

H(1, 0; 0, 1).

First notice that since INV is ensured by Lemma 1.8, we have:

H(Siw, Sim,
∑I

i+1 Sjw;
∑I

i+1 Sjm) = H(siw, sim;
∑I

i+1 sjw,
∑I

i+1 sjm). For simplicity let

us use the notation H(a, b; c, d) instead of H(siw, sim;
∑I

i+1 sjw,
∑I

i+1 sjm). Notice that

since ri ≥ rj for all j ∈ {i+1, . . . , I}, ri = a
b ≥

∑
i+1 sjw∑
i+1 sjm

= c
d . And since a+c = b+d = 1,

then a ≥ b and c ≤ d. If a = b, then c = d yielding H(a, b; c, d) = 0. Now let a > b and

c < d. Let b 6= 0. Then for X = ad−bc
d , r-SAD results in:

H(a, b; c, d) =
a+ c−X
a+ c

H(a−X, b; c, d) +
X

a+ c
H(X, b; 0, d).

Notice that this is admissible since a−X
b = c

d and X
b > 0

d . As by INV and NORM,

H(a−X, b; c, d) = 0, we have:

H(a, b; c, d) =
X

a+ c
H(X, b; 0, d). (1.11)

Now notice that for all ε in (0, d), the following holds:

H(X, b; 0, d) =
d− ε
b+ d

H(X, 0; 0, d− ε) +
b+ ε

b+ d
H(X, b; 0, ε)

and hence:

lim
ε→0

H(X, b; 0, d) = lim
ε→0

(
d− ε
b+ d

H(X, 0; 0, d− ε)) + lim
ε→0

(
b+ ε

b+ d
H(X, b; 0, ε)).

Then by continuity of H:

H(X, b; 0, d) =
d

b+ d
H(X, 0; 0, d) +

b

b+ d
H(X, b; 0, 0).

Since, H(X, b; 0, 0) = 0 by NORM, combining with (1.11), we arrive:

H(a, b; c, d) =
X

a+ c

d

b+ d
H(X, 0; 0, d).

By INV,

H(a, b; c, d) =
X

a+ c

d

b+ d
H(1, 0; 0, 1).
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And finally for values of X = ad−bc
d and (a, b; c, d) = (siw, sim;

∑I
i+1 sjw,

∑I
i+1 sjm), we

arrive:

H(Si;S
I
i+1) =

Siw
∑I

i+1 Sjm − Sim
∑I

i+1 Sjw∑I
i Sjw

∑I
i Sjm

H(1, 0; 0, 1). (1.12)

Notice that for b = 0, we would have the same by continuity.

Step 3: Combining the results of Step 1 and Step 2, (1.10) and (1.12) we arrive;

H(SI) =
∑
i

∑I
i Sjw

∑I
i Sjm

SwSm

Siw
∑I

i+1 Sjm − Sim
∑I

i+1 Sjw∑I
i Sjw

∑I
i Sjm

H(1, 0; 0, 1)

=
∑
i

(siw

I∑
i+1

sjm − sim
I∑
i+1

sjw)H(1, 0; 0, 1).

We have named the positions as, r1 ≥ r2 ≥ . . . ≥ rI . Then, in general we have:

H(SI) =
∑
i

(siw
∑

j:ri≥rj

sjm − sim
∑

j:ri≥rj

sjw)H(1, 0; 0, 1)

=
∑
i

∑
j:ri≥rj

(siwsjm − simsjw)H(1, 0; 0, 1).

Since GS(SI) = 1
2

∑
i

∑
j |siwsjm − simsjw| could equivalently be expressed as;∑

i

∑
j:ri≥rj (siwsjm−simsjw) and H(1, 0; 0, 1) is a strictly positive constant, we establish

the result. �



Chapter 2

Choose what you like or like what

you choose? Identifying Influence

and Homophily out of Individual

Decisions

2.1 Introduction

Individuals sharing the same environment, such as members of the same household, col-

leagues from workplace, friends from school, tend to behave similarly in many occasions.

It is no surprise that roommates use the same brand of parfume, colleagues of the same

firm happen to crash into each other in the same Italian restaurant or your examplary

daughter is caught smoking after beginning to this new school full of adventurous young-

sters. As an immediate implication of being part of a society, we do influence each other’s

behaviors. We take advice from each other, we inspire each other or we convince each

other, resulting in behavioral resemblances. For one way or the other, our decisions in

life embody and reflect the effect of people that we are in contact with. Understanding

the extent of this influence is of particular interest to many economists as well as other

social scientists such as psychologists, sociologists or marketing theorists. However it is

not straightforward to disentangle the part of our decisions that are due to our social

interactions from the part that is not affected by them, since it bears a certain para-

doxical situation: We are the ones to decide who we want to be in contact with as well.

Indeed most of our social relations are neither given nor random, but built by ourselves

consciously. We have a say to choose from whom to take advice or inspiration or with

whom to hang out. But then it is highly likely to have built these relations at the first

39
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place because we are similar people or we have similar interests, rules or styles. It is very

probable to share a flat with someone that we share tastes as well. Thus performance

of similar behavior by socially related people does not necessarily imply the influence

of one on the other, but performing similarly may have been the reason for which this

social relation is built.

This phenomenon is known as the identification problem of homophily and social in-

fluence. Homophily refers to the tendency to create social ties with people that are

similar to one’s self.1 Peer-to-peer influence, social influence or contagion, on the other

hand, is defined as adopting similar behavioral patterns with people that one is socially

connected to.2 Since both homophily and influence result in behavioral resemblances

between people that are related to each other, one cannot easily detect the real cause of

similar behavior patterns. However, it is important to distinguish these two forces from

each other in order to understand the functioning of social structures in general.

In this study, we approach to this identification problem by investigating its microfoun-

dations. We provide a novel framework that focuses on individual decision making in

order to identify the social influence and homophily effects. Suggesting to have a closer

look to the decision making processes of individuals that interact, we investigate how

they affect each other’s behaviors. We propose simple and direct measures of homophily

and influence by making use of individual preferences of these interacting individuals,

hence providing a solution to the identification problem. However since in many oc-

casions, preferences are not easily observed, we extend our analysis to the observables,

decision outcomes. In order to infer the underlying preferences of interacting individu-

als out of their decision outcomes, we follow a foundational approach. We analyze the

behavioral characteristics of individual decision making that includes interaction and

finally we make use of the tools that are provided by revealed preference theory in order

to uncover the underlying preferences of the individuals. Based on revealed preference

analysis, we revisit our measurement techniques for homophily and influence.

In the heart of our framework, there lies two important observations. First, we suggest

that individuals are susceptible to influence especially in times of indecisiveness. We

may refer to each other’s opinion, take advice, get inspired or get influenced in some

way especially if we are facing a situation that we fail to decide on our own. There

may be several explanations for that: We may have informational constraints; we may

lack sufficient information to evaluate several alternatives we are facing and we may

refer to someone with more expertise or experience on the subject: “These investment

1For an overview of research on homophily in general see [70], in couples see [17], on economic
networks see [29].

2For an overview of research about peer influence in teenage behavior see [41], in crime see [44], in
education see [89], in labor market see [67], over social networks see [25] and [23].
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decisions are quite difficult for me. Luckily my cousin is a broker. I always ask her when

I can’t decide what to invest.”“ Mom! Which detergent should I buy for washing the

whites? There are tens of different brands here, I have no idea which one to choose!”

Or instead we may have compliance motives; we may especially prefer to comply with

another person’s preferences although we could be as fine with another option: “I don’t

mind Caribbeans or Hawai. But Susan from work was in Hawai last year and she did not

stop talking about it. Let’s go there!”“I was not especially in favor of pizza, but nobody

else in the table was having pasta, so I ordered pizza as well.” Whatever the underlying

motivation is, it is safe to assume that there is room for being influenced by someone

else as long as we are not perfectly sure about what to do. In other words, we seek

advice, inspiration or an example to imitate especially at times of being indeterminate

or indecisive. This observation directly translates into our framework in the form of

incomplete preferences. We suggest that individuals are susceptible to influence over

those alternatives for which they do not have well-defined preferences.

Second, we observe that interaction is a two-way concept. Quite often those individu-

als that we ask for advice or get influenced somehow, ask our opinions or copy us in

those situations that they are not perfectly sure about what to do. We do influence

people that are related to us as well as we get influenced from them. The degree or

amount of influence may change, but it, quite often, is a two dimensional issue. Thus,

in our approach we do focus on two individuals that are in interaction. The whole of

our analysis is based on a pair of individuals that has direct influence on each other’s

behavior. We suggest that individuals conduct a two stage decision making mechanism

where the second stage involves interaction with each other. Facing a decision problem

individuals first use their own preferences, maximizing them. If individual preferences

are complete enough to single out a best preferred alternative for that specific problem,

there would be no room for influence. Whenever this is not the case, in order to be

able to choose from those remaining alternatives, they refer to each other’s preferences.

Hence they directly influence each other’s choices. This is what we call as influence via

choice completion. Let us follow a simple example in order to demonstrate these two

models and how we suggest to measure the influence and homophily with them:

An Example: Adventures of Ian and Jane. Ian and Jane are two kids that

go to the same school. On their way back from school, they talk about how each of

them wants to spend the afternoon. They usually have three different activity options:

stealing Apples from Mr. Smith’s tree, riding a Bike or chasing Cats. Ian likes riding

a Bike more than stealing Apples, but he has never chased Cats in his life, hence he

does not have any idea in favor or against chasing Cats. Jane is a fan of Mr. Smith’s

Apples. She definitely prefers stealing Apples to both riding a Bike and chasing Cats,

yet she is never sure how to compare these two. Their preferences can be summarized
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as: �i= {BA} and �j= {AB,AC}, where �i refers to Ian’s preferences, �j to Jane’s,

and A,B,C to activity options. Hence on a day that the town’s cats are away for a

cat fight in the neighbor town, leaving the only available activities to the kids as riding

a Bike, or stealing Apples, there is no problem. Each of them knows what they would

like to do, and could go for their own best. However, the next day, although the cats

are back in town, the day is a rainy day, hence it is not possible to ride a Bike. Now,

facing the question of ‘stealing Apples or chasing Cats?’, the decision for Ian is not

easy anymore, since he has no idea on whether he likes chasing Cats. Hence he does a

very natural move, turns to Jane, and asks her own tastes. Being influenced by Jane’s

tastes, he goes for stealing Apple over chasing Cats as well. Similarly, on a day that

all activity options are available, for Jane maximizing her own preferences would result

in her stealing Apples, whereas for Ian maximizing his own preferences leaves him with

two possible options, riding a Bike or chasing Cats. Taking Jane’s opinion about these

two options does not let him to further choose either. The decision outcomes of Ian and

Jane under this behavioral model are given in Table 2.1.

Ian Jane

ABC BC A
AB B A
BC BC BC
AC A A

Table 2.1: Behavior of Ian and Jane with Influence via Choice Completion

Let us assume that we observe Ian and Jane behaving exactly as described above. In-

evitably, on a rainy day, where riding a Bike is not an option anymore, leaving the kids

with activities A and C, Mr. Smith catches the two kids stealing his Apples. Immedi-

ately he calls Ian’s and Jane’s mothers to complain about their kids behavior. Hearing

about their kid’s misbehaviour, both of the moms fall into thoughts: “But it is not my

kid, it is that other kid s/he hangs out with!”

In order to figure out if any influence took place, we suggest to compare the decision

outcomes of the kids from the binary problems with their own preferences. Any decision

from a binary problem that is not supported by individual preferences has to be a result

of the social interaction. This would point out Jane’s influence on Ian to steal Mr.

Smith’s Apples instead of chasing Cats as the only influence in this model.

Continuing with the story, Ian’s mom becomes happy enough to clear her son’s repu-

tation. Afterall, her son has misbehaved under the influence of Jane. But a serious

warning comes from Mr. Smith, leaving Ian’s mom to deep thoughts once again: “It

may be the other kid this time, but kids become friends with kids that are a lot like

them.” Hence, the question becomes how similar are Ian and Jane?
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In order to assess the similarity of kids’ preferences we suggest to compare their own

preferences, �i and �j . Although their preferences do not contain any common binary

comparisons, the fact that they fail to compare the same alternatives suggest some level

of homophily. In other words Ian is more similar to Jane than another possible kid

with binary comparisons {AB,AC,BC}. We suggest a clear measure of homophily for

individuals with incomplete preferences in the following section.

Our approach stands as a novel contribution to the literature on the identification of

social influence from homophily since up to our knowledge, this problem is challenged

mainly by the application of different econometrical strategies. Many studies document

that both effects prevail simultaneously and distinguishing one from the other requires

strong parametrical assumptions [4, 59, 65, 74, 81]. A major part of the works concen-

trates around adolescent behavior such as school achievement, use of drugs and recre-

ational activities among high school children [23, 25, 65] and innovation diffusion [6, 54].

Recently online networks have drawn particular attention since they provide a powerful

data source where the network structure is easily observable, hence this structure itself

may provide additonal information to solve this identification problem [2, 4, 5, 61].

In the following two sections we present and analyze the model. Section 2 introduces

decision making under influence with choice completion, discusses how to evaluate the

influence and homophily counterparts under this behavioral model and presents the

related foundational analysis. Section 3 deals with the idetification problem related to

the revealed preference analysis. We conclude with some further remarks. All the proofs

are delayed to an Appendix.

2.2 Influence via Choice Completion

2.2.1 The Decision Model and the Measurement of Influence and Ho-

mophily

Consider two individuals, equipped with transitive but not necessarily complete prefer-

ences. The incomplete parts of their preferences constitute the parts that are susceptible

to influence. These individuals, simultaneously, refer to each other’s preferences over

those problems for which their own preferences do not lead them to a single choice.

Let X be a nonempty finite set of alternatives and 1 and 2 denote two individuals with

preferences defined over X. For i ∈ {1, 2}, let �i be the strict preference relation of i

over X, i.e., an asymmetric and transitive but not necessarily complete binary relation

over X. Facing a decision problem S, individual i ∈ {1, 2} is trying to choose the option
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she likes better. First she maximizes her own preferences. Given S, the set of maximal

elemets of S according to �i wil be Max(S,�i) = {x ∈ S : @y ∈ S with yx ∈�i}.
If individual preferences are complete enough to single out a best preferred alternative,

i.e., if Max(S,�i) is a singleton, there will be no room for asking other person’s opinion,

copying her behavior, or any kind of influence process. Therefore individual i would be

choosing this maximal element from S. However, if there are many alternatives that are

deemed to be choosable from S, i would be susceptible to influence by j’s behavior over

these choosable alternatives, hence arriving to Max(Max(S,�i),�j).

To put it formally, given 1 and 2 with initial preferences �1 and �2 over X, respectively,

we say that 1 and 2 are influencing each other via choice completion if for any

nonempty decision problem S ⊆ X, their respective decision outcomes can be defined

as:

Max(Max(S,�1),�2)

Max(Max(S,�2),�1).

Notice that unless j’s preferences are complete for all those alternatives over which i’s

preferences are incomplete, the decision outcomes will not be single-valued.

Choice completion suggests a very natural and intutive way of decision-making for in-

teracting individuals with incomplete preferences. It also provides us with direct and

simple tools to measure the influence and homophily counterparts of this interaction.

Influence is about what happens during interaction that is not justified by the own pref-

erences of the individuals. If two individuals are influencing each other according to this

behavioral model, we can actually make use of their own preferences and their decision

outcomes to uncover what is happening during interaction. This way we can fully iden-

tify who is influencing who and over which decision problems that influence takes place.

Homophily, on the other hand, is about why these two individuals have chosen each

other to interact at the first place. It suggests the similarity of their own preferences as

a possible explanation to the existence of this interaction. Then an assessment of the

similarity of individual preferences enables us to identify the level of homophily between

these individuals.

Going back to our initial question, if two individuals are behaving according to this

influence via choice completion model, how can we assess the influence that they have

on each other and the level of homophily of this interaction?

Let 1 and 2 influence each other via choice completion. We can evaluate the influence

they create on each other by comparing their preferences with their decision outcomes
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from the binary problems. Any influence taken from the other individual will show itself

in the form of a choice of a single alternative over the other from a binary problem

although the preferences do not comply with this choice. We can measure the influence

of individual 1 over 2 as {xy ∈ X×X : x = Max(Max({x, y},�1),�2)}\ �1. Similarly,

{xy ∈ X×X : x = Max(Max({x, y},�2),�1)}\ �2 summarizes the influence of 2 on 1.

Then all social influence that took place during this interaction can be defined by these

two sets. A comparison of them will provide an assesment of influence between 1 and

2. For instance, comparing the sizes of these sets, we can point out the more influential

individual. Or as a measure of the total influence occured during this interaction we

can refer to the sum of the sizes of these two sets relative to the total number of binary

comparisons, which gives us a measure in [0, 1].

The similarity of two individuals, on the other hand, can be assessed by comparing

their preferences. The closer the preferences are to each other, the more similar are

individuals’ tastes. An immediate idea to quantify how close two incomplete preferences

are, is to count the number of binary pairs on which these preferences do not agree,

that is, d(�i,�j) = | �i \ �j | + | �j \ �i |.3 Notice that, this way, the distance

between two preferences is not only a function of their complete disagreements, but also

depends on the binary pairs that are only compared by one of the preferences. Yet the

disagreements count more with respect to the latter. Any pair of alternatives for which

�i and �j disagree adds twice as much to the distance as any pair of alternatives that

only one of them is able to compare.

Once the distance between the initial preferences is measured, the correlation between

them as a function of this distance provides a sound assessment of similarity. Consider:

τ(�1,�2) = 1− 2 d(�1,�2)
maxd(�1,�2)

= 1− 2d(�1,�2)
n2−n ,

where maxd(�1,�2) denotes the maximum possible distance between two binary rela-

tions defined over X and n is the number of alternatives in X. Notice that τ is equal to

1 when two preferences are identical, and −1 when they are completely reverse.4

The level of homophily between the individuals is inversely related to the number of the

binary pairs over which their preferences do not coincide, which in turn includes those

pairs that one is susceptible to influence while the other has clear tastes about. The

influence acquired during the interaction has to be a subset of those pairs. Thus, in very

rough terms, a higher level of homophily is associated to a lower potential for influence,

3This distance function refers to the generalization of Kemeny-Snell distance to incomplete prefer-
ences, and first introduced and axiomatized in [22].

4As noted in [22], τ is the only linear function of d that takes a value 1 when two preferences are
identical, and −1 when they are completely reverse. And also note that τ reduces to Kendall’s correlation
coefficient τ in the case that preferences are complete.
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although the exact relation between these two effects certainly depends on the structure

of the preferences in question.

The tools that we suggest for the measurement of influence and homophily are quite

straightforward tools once the underlying preferences of the individuals are known.

However in many decision environments, preferences do not consititute a part of the

observable variables. On the contrary we do observe the decision outcomes of the in-

dividuals. One possible way to distinguish the influence from homophily in this case

is to infer the hidden preferences out of the observables, the decison outcomes. In the

following subsection we address this challenge. We first investigate the properties of

the decision outcomes that would imply the existence of influence via choice comple-

tion between two individuals. Identification of the characterizing properties also allows

us to infer the underlying preferences. Following the foundational analysis, we revisit

the suggested measurement techniques for influence and homophily and highlight their

strengths and weaknesses for the scenarios where the only observables are the decision

outcomes.

2.2.2 Foundational Analysis

Suppose we observe the individual decision outcomes of two individuals for any problem

that they are facing. What kind of properties of the observed behaviors would imply

that these two individuals are behaving as if they are influencing each other via choice

completion?

Given X, let ΩX be the set of all nonempty subsets of X. For any i ∈ {1, 2}, we

define the decision outcomes of i on ΩX as a choice correspondence Ci : ΩX ⇒ X with

∅ 6= Ci(S) ⊆ S for every S ∈ ΩX .

From now on, the object of our analysis will be the choice behaviors of the two individ-

uals: (C1, C2). We next introduce the properties over (C1, C2) that would indicate that

each of the indviduals are completing their choices with influence from each other, that

is:

C1(S) = Max(Max(S,�1),�2) and

C2(S) = Max(Max(S,�2),�1) for all S ∈ ΩX .

As a two stage maximization process, influence via choice completion is clearly related

to other two stage maximization processes studied in the boundedly rational choice lit-

erature. The baseline model of two stage maximization would be the Rational Shortlist

Method (RSM) proposed by Manzini and Mariotti [66]. RSM essentially refers to a
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single-valued choice mechanism where a two-stage maximization process yields out the

chosen alternative uniquely.5 In the first stage an acyclic and not necessarily complete

binary relation and in the second stage a complete and not necessarily acyclic relation

are considered to be maximized. Two rationality axioms, the standard Expansion axiom

and a weakening of WARP, Weak WARP are shown to be necessary and sufficient for

the choice data to reveal the two binary relations of the RSM. The novelty of RSM lies in

explaining cyclical choice as a result of a boundedly rational procedure. A natural and

interesting subclass of RSM models, not only for our purposes but also in general, would

be RSM with transitive binary relations. Au and Kawai [9] show that an additional

axiom that ensures the acyclicity of the revealed preference relation also ensures transi-

tivity. In a recent project, Horan [48] proposes a pair of behavioral axioms that do not

impose acyclicity directly but does guarantee the existence of transitive rationales. Our

model, differs from the existing two stage maximization procedures in many aspects.

First of all we consider two individuals. The second criterion that the individual uses

to choose is not simply another criteria in mind, but the preference of another individ-

ual that is equipped with a choice structure as well. Hence the behavioral axioms we

search for are to reveal the mutual relation between these two individuals, to identify

the specific choice problems over which influence is taken. Moreover, we do not impose

single-valuedness of the choice structure. Since the basic motivation for getting influ-

enced is the inability to compare all alternatives it would be too restraining to focus only

on single-valued choice. It would require individuals to ever interact with each other

only if each of them has a unique answer to all of the questions the other makes.

A first axiom, Consistency of Influence links the choice behavior of the two individuals.

It allows to detect the binary choice problems over which one of the individuals has

influenced the other, and guarantees consistent behavior in larger problems:

Consistency of Influence (CoI). Let x, y ∈ X and i ∈ {1, 2} such that x = Ci(xy)

and Ci(S) 6= Ci(S \ y) for some S ∈ ΩX with x ∈ S. Then Cj(S) = Cj(S \ y) for all

S ∈ ΩX with x ∈ S, where j ∈ {1, 2} and i 6= j.6

The choice of a single alternative from a binary problem may be the result of two alter-

native scenarios: Either the individual’s preferences dictate this choice or being unable

to compare these alternatives according to the initial preferences, she gets influenced by

the other individual. In the former case, due to the transitivity of the initial preferences

we would never observe an inconsistency involving these two alternatives in the choice

outcomes: Having the unchosen alternative from the binary problem available in any

larger problem that also includes the better alternative would never affect the choice

5For further reference on two stage maximization procedures, or sequential decision making in general
see [87], [3].

6Once again, we abuse the notation and we use Ci(xy) in order to denote Ci({x, y}).
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from that larger problem. CoI detects the binary problems for which this is indeed not

the case. Although i chooses x over y from the binary problem, adding y to a problem

that also includes x alters her choice behavior. This is a clear indication of i being

influenced by j in her choice of x from the binary problem. But then according to j’s

preferences, x is clearly a better alternative than y. Due to transitivity, j would never

choose inconsistently in the larger problems: The availability of y will never change j’s

choice from any problem that also includes x.

CoI ensures that any violation of consistency observed in the choice data has to be the

result of influence taken regarding those alternatives. Therefore the individual that is

the source of this influence will not show inconsistencies regarding those alternatives in

her choice outcomes.

A second property that is required to link the behaviors of the individuals is Full In-

fluence. This property ensures that if an individual is unable to choose one alternative

from a binary problem, then the other individual is unable to choose as well:

Full Influence (FI). For any x, y ∈ X, if xy = Ci(xy), then xy = Cj(xy), for i, j ∈
{1, 2} with i 6= j.

According to FI, whenever an individual is susceptible to influence, she does get influ-

enced as long as the other individual is able to compare the alternatives in question.

The last three properties that we introduce will be individual rationality properties.

The main axioms of any two stage maximization problem, Expansion and WWARP are

satisfied by influence via choice completion as well, but with a slight modification to the

case of correspondences.

Weak WARP (WWARP). For any x, y ∈ X, if x = Ci(xy) and x ∈ Ci(S) for some

S ∈ ΩX with y ∈ S, then y 6∈ Ci(T ), for any T ∈ ΩX with {x, y} ⊆ T ⊆ S, for any

i ∈ {1, 2}.

According to WWARP, if an alternative x is chosen uniquely from a binary problem

and a larger problem, then the alternative that is not chosen from the binary problem

cannot be chosen from any intermediary problem. Next we introduce the other standard

property: Expansion. It simply states that an alternative chosen from two sets, will be

chosen from the union of these two sets as well.

Expansion (EXP). For any x ∈ X, if x ∈ Ci(S) and x ∈ Ci(T ) for S, T ∈ ΩX , then

x ∈ Ci(S ∪ T ), for any i ∈ {1, 2}.

Expansion forbids not choosing an alternative from a choice problem, if that alternative

is chosen somewhere at the presence of each and all of the alternatives of the problem.

Finally, the following property, Independence of Inferior Alternatives ensures the choice
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of an alternative independent of the inferior alternatives. An alternative chosen from

a problem continues to be chosen from a larger problem if the additional elements are

clearly inferior to the alternatives of the set:

Independence of Inferior Alternatives (IInA). Let x, y, z ∈ X such that (i) there

does not exist any T ∈ ΩX with z ∈ T , y ∈ Ci(T ) and (ii) x ∈ Ci(T ′) for some T ′ ∈ ΩX

with y ∈ T ′. Then for S ∈ ΩX with x, y, z ∈ S, if x ∈ Ci(S \ y), then x ∈ Ci(S), for

i ∈ {1, 2}.

Consider x, y, z ∈ X such that y is never chosen at the presence of z, but x is chosen

somewhere at the presence of y. If x is chosen from a set that includes z but not y, then

IInA ensures the choice of x when y is added to the set as well.

These five axioms are necessary and sufficient for the representation of influence via

choice completion.

Theorem 2.1. Let C1 and C2 be two choice correspondences. Then C1 and C2 satisfy

CoI, FI, EXP, WWARP and IInA if and only if, there exist two asymmetric and transi-

tive binary relations �1 and �2 on X such that Ci(S) = Max(Max(S,�i),�j) for any

S ∈ ΩX , i, j ∈ {1, 2} with i 6= j.

The representation theorem gives the necessary and sufficient conditions for the existence

of influence via choice completion between two individuals, hence identifies a pair of

revealed preference relations (�1,�2). How accurate are these relations in capturing

the underlying preferences of the individuals is what we investigate in the next section.

2.3 Identification of the Underlying Preferences under In-

fluence

Given a particular pair of choice behaviors (C1, C2) satisfying the properties listed in

the previous section, we can find a pair of revealed preference relations (�1,�2) that

would represent (C1, C2) according to the influence via choice completion model. We

suggest to make use of these revealed preferences in order to assess the influence that this

interaction creates and the level of homophily between the individuals. However, the

pair of revealed preferences defined in the proof of the representation theorem is not the

only pair of binary relations with required properties that would result in this particular

choice data according to influence via choice completion. In other words, preferences are

not uniquely identified. One can actually find other pairs of revealed preferences that

would represent the same choice behavior. Thus conducting the influence and homophily
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analysis over these pairs of preferences may mislead us. We now investigate how accurate

we can be in capturing the underlying preferences of the individuals.

We first point out that all possible pairs of preferences explaining the same pair of choice

data must share a common part. Identifying this common part will allow us to determine

how much of the underlying preferences are captured accurately by the revealed prefer-

ence analysis. Notice that the choices of the individuals from the binary problems define

the following mutually exclusive sets of binary comparisons: Disagreements, influences

on the other one, influences from the other one and agreements, where;

• disagreements of i from j: Pi = {xy ∈ X ×X : x = Ci(xy) 6= Cj(xy)}

• influence of i over j: Qi = {xy ∈ X × X : x = Ci(xy) = Cj(xy) and Cj(S) 6=
Cj(S \ y) for some S ∈ ΩX with x ∈ S}.

• agreements of i and j: R = {xy ∈ X × X : x = Ci(xy) = Cj(xy) and Ci(S) =

Ci(S \ y) and Cj(S) = Cj(S \ y) for all S ∈ ΩX with x ∈ S}.

A first observation is that any pair of preferences explaining the same choice data will

recognize the pairs of alternatives that two individuals disagree on, Pi. These refer to

the pairs of alternatives about which the individuals have reverse tastes. No influence

may possibly take place regarding these pairs. Hence, (P1, P2) will be common to any

preference (�1,�2) for a given (C1, C2).

Moreover, we are able to detect the pairs of alternatives such that an influence is taken

for sure, Qi and Qj . Consider a binary problem such that both individuals have chosen

x over y. If one of the individuals shows inconsistent behavior in a larger problem, then

the choice of x over y from the binary problem can only be the result of getting influence

and any preference pair resulting in this behavior will recognize that. Qi identifies the

pairs x, y such that individual j has been influenced by i to choose x over y. Thus,

(Q1, Q2) will be common to any preference (�1,�2) for a given (C1, C2) as well.

Finally, since preferences are defined to be transitive, the ordered pairs that are not

necessarily in Pi or Qi, but implied by transitivity of �i will be common to any (�1,�2)

for the given (C1, C2): the transitive closure of Pi ∪ Qi. Let us denote the transitive

closure of Pi∪Qi as tr(Pi∪Qi).7 The following theorem states that the intersection of all

pairs of preferences (�1,�2), that explain a given choice data is (tr(P1∪Q1), tr(P2∪Q2)):

Theorem 2.2. Let C1 and C2 be two choice correspondences such that (C1, C2) satisfy

CoI, FI, EXP, WWARP, and IInA. Then the intersection of all the preference pairs

(�1,�2) that represent (C1, C2) is (tr(P1 ∪Q1), tr(P2, Q2)).

7The transitive closure of a binary relation is the smallest transitive relation that contains it.
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Theorem 2.1 provides conditions for individuals choosing as if they are influencing each

other via choice completion. Theorem 2.2 makes sure that we can actually recover a

major part of this influence and their underlying preferences.

In the proof of Theorem 2.1, the pair of revealed preference relations of a given (C1, C2)

was indeed (P1 ∪Q1 ∪R,P2 ∪Q2 ∪R). Actually these refer to the largest pair of initial

preferences that would explain (C1, C2). In other words, any other possible pair of

initial preferences for the same (C1, C2) has to be included in (P1 ∪ Q1 ∪ R,P2 ∪ Q2 ∪
R). And as established by Theorem 2.2, any pair of initial preferences has to include

(tr(P1 ∪Q1), tr(P2 ∪Q2)). Thus the part of the underlying preferences that cannot be

uniquely identified is included in R. They refer to the pairs of alternatives that both

of the individuals have agreed on the choice of a unique one out of the binary problem,

and none of them has shown any inconsistency in terms of choice outcomes that would

indicate the influence taken. Hence the model does not help us to associate these binary

pairs uniquely to one of the individuals unless they are a part of the transitive closure

of (Pi ∪Qi). Although this leaves us with an obvious identification problem, we should

investigate how severe this problem is and to which extent we can overcome it for the

sake of measurement of influence and homophily with the tools we have suggested.

Consider the extreme case where two individuals show exactly the same choice behavior.

Then since �1=�2= R, we cannot conclude if two individuals have actually the same

sincere preferences, indicating maximum homophily with τ equal to 1 and zero influence

between the individuals or one of them has null preferences and is getting fully influenced

by the other, indicating a level of homophily equal to 0 at the least. On the other

extreme, if we observe a pair of choice behaviors with a null R, we can completely

identify the amount of influence and the exact level of homophily, since we can recover the

underlying initial preferences fully. Hence the accurateness of these measures depends

on the size of R.

Notice that although we cannot determine the exact level of homophily and influence

in cases with nonempty R, it is always possible to find out the maximum potential

homophily level of a pair of individuals as well as the minimum influence. Given (C1, C2),

the minimum influence between individuals is captured by Qi and Qj . On the other

hand, the minimum possible distance between their underlying preferences will be d∗(�i
,�j) = |P1|+ |P2|+ |Q1|+ |Q2|, yielding a maximum potential homophily level equal to

τ(�1,�2) = 1− 2 |P1|+|P2|+|Q1|+|Q2|
n2−n .
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2.4 Concluding Remarks

In this study we approached to the identification problem of social influence and ho-

mophily from a micro-theoretical perspective. We presented and analyzed a decision

model that allows individuals to get influenced from each other and we suggested simple

tools to evaluate influence and homophily effects.

With influence with choice completion model, there remains a part of the underlying

preferences that is not uniquely identified out of the decision outcomes. The size of

this part determines the extent of the accuracy of the suggested measures of influence

and homophily. One possible way to overcome this partial identification problem can

be found by observing the individual decision outcomes before this particular social

interaction. In other words, if we have the chance to observe the individual’s decisions

both before and after they get related, then we can actually recover the initial preferences

completely. This can be valid for several scenarios where the behavior of individuals over

a time span, which includes the first time that they get related, can be documented such

as recently married individuals, fresh housemates or new colleagues.

In this case, before the interaction individuals will be choosing to maximize their own

transitive but not necessarily complete preferences, i.e., Ci(S) = Max(S,�i) for any

S ∈ ΩX and for i ∈ {1, 2}. Then we can quickly show that, a strong consistency

property (SCo) together with EXP characterizes this choice behavior revealing out the

underlying sincere preferences (�1,�2) uniquely.

Strong Consistency (SCo). For any i ∈ {1, 2} and for any x, y ∈ X, if x = Ci(xy),

then Ci(S) = Ci(S \ y) for any S ∈ ΩX with x, y ∈ S.

Theorem 2.3. Let Ci be a choice correspondence. Then Ci satisfies EXP and SCo if

and only if, there exists a unique asymmetric and transitive binary relation �i on X

such that Ci(S) = Max(S,�i) for any S ∈ ΩX .

The underlying preferences can be directly derived from the choices from binary prob-

lems: �i= {xy ∈ X × X : x = Ci(xy)}. Once these sincere preferences are derived,

identifying the exact level of influence and homophily becomes a simple matter of com-

parison as described in the previous sections.

All the current analysis is based on interaction of two individuals. Extending this ap-

proach to further study more complicated interaction structures, such as social networks,

stands as an interesting line of research.
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2.5 Appendix

Proof of Theorem 2.1. Necessity is fairly straightforward, thus omitted. We prove the

sufficiency part. The proof consists of two main parts. First we define a pair of auxiliary

relations, (�∗1,�∗2), and show that Ci(S) = Max(Max(S,�∗i ),�∗j ) for any S ∈ ΩX , i, j ∈
{1, 2} with i 6= j. Then, we show there exists indeed a pair of asymmetric and transitive

relations (�1,�2) on X such that Max(Max(S,�i),�j) = Max(Max(S,�∗i ),�∗j ) for

any S ∈ ΩX , i, j ∈ {1, 2} with i 6= j.

For i ∈ {1, 2}, define the binary relation �∗i⊆ X ×X as follows:

xy ∈�∗i iff there does not exist any S ∈ ΩX with y ∈ Ci(S) and x ∈ S,

for any x, y ∈ X. Notice that �∗i is asymmetric and acyclic. Asymmetry is obvious by

definition and nonemptiness of the choice correspondence. To see acyclicity, consider

x, z1, ..., zk, y ∈ X such that xz1, z1z2, ..., zky ∈�∗i . Assume for a contradiction yx ∈�∗i .
But then, by definition of �∗i , x, z1, ..., zk, y 6∈ Ci(xz1...zky), contradicting with the

nonemptiness of the choice correspondence.

Fix i, j ∈ {1, 2} with i 6= j. Take any S ∈ ΩX and x ∈ S. First we will show that x ∈
Ci(S) implies x ∈Max(Max(S,�∗i ),�∗j ). By definition of �∗i , x ∈Max(S,�∗i ). Assume

for a contradiction, x /∈Max(Max(S,�∗i ),�∗j ). Then, there exists z ∈Max(S,�∗i ) with

zx ∈�∗j , which in turn implies, z = Cj(xz). By FI, xz 6= Ci(xz). Let x = Ci(xz). Since

z ∈ Max(S,�∗i ), there exists a set T including x such that z ∈ Ci(T ). But then

Ci(T ) 6= Ci(T \ z). By CoI, for any set T including x and z, Cj(T ) = Cj(T \ z),
contradicting with z = Cj(xz). Finally, if z = Ci(xz), then since z ∈ Max(S,�∗i ),
for any y ∈ S, there exists Szy ∈ ΩX such that y ∈ Szy and z ∈ Ci(Szy). Then, by

EXP, z ∈ Ci(∪y∈SSzy). But since S ⊆ ∪y∈SSzy, and z = Ci(xz), WWARP implies that

x 6∈ Ci(S), giving the desired contradiction.

Now, we will show that x ∈ (Max(Max(S,�∗i ),�∗j ) implies x ∈ Ci(S). First we show

that for all y ∈Max(S,�∗i ), x ∈ Ci(xy). Assume for a contradiction that this does not

hold and consider y ∈Max(S,�∗i ) with y = Ci(xy). As x ∈Max(S,�∗i ), there exists a

T ∈ ΩX with x ∈ Ci(T ) while y ∈ T , hence Ci(T ) 6= Ci(T \ x). But then, by CoI, there

does not exist any T ∈ ΩX with x, y ∈ T and Cj(T ) 6= Cj(T \ x). But this implies that

for any T ∈ ΩX with y ∈ T , x 6∈ Cj(T ), which means yx ∈�∗j , creating a contradiction

with x ∈ (Max(Max(S,�∗i ),�∗j ). Hence, x ∈ Ci(xy) for all y ∈ Max(S,�∗i ). Then, by

EXP, x ∈ Ci(Max(S,�∗i )). But since for any y ∈ S \Max(S,�∗i ), there exists z ∈ S
with zy ∈�∗i and clearly yx 6∈�∗i , by iterative application of IInA, x ∈ Ci(S).
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Hence we have shown that there exists a pair of acyclic binary relations (�∗1,�∗2) such

that Ci(S) = Max(Max(S,�∗i ),�∗j ) for i, j ∈ {1, 2} with i 6= j. By making use of these

auxiliary relations, we now show that there indeed exists a pair of transitive preferences

(�1,�2) such that Max(Max(S,�i),�j) = Max(Max(S,�∗i ),�∗j ) for any S ∈ ΩX ,

i, j ∈ {1, 2} with i 6= j.

For i ∈ {1, 2}, define �i⊆ X ×X as the following:

xy ∈�i if and only if xy ∈�∗i and xa ∈�∗i for all ya ∈�∗i .

Clearly �i⊆�∗i . To see transitivity, consider any xy, yz ∈�i and notice that xa ∈�∗i for

any ya ∈�∗i implies in particular xz ∈�∗i . Moreover, since ya ∈�∗i for any za ∈�∗i and

xa ∈�∗i for any ya ∈�∗i , we have xa ∈�∗i for any za ∈�∗i , establishing transitivity of �i.

The following lemma clarifies the relation between �∗1,�∗2,�1 and �2. It shows that not

only �i⊆�∗i , but also �i ∪ �j=�∗i ∪ �∗j , since any ordered pair that belongs to �∗i but

not �i is also an element of �j :

Lemma 2.4. If xy ∈�∗i \ �i, then xy ∈�j for i ∈ {1, 2} with i 6= j.

Proof of Lemma 2.4. Fix i, j ∈ {1, 2} with i 6= j. Consider any xy ∈�∗i \ �i. Hence,

x ∈ S implies that y /∈ Ci(S) but there exists z ∈ X with xz /∈�∗i although yz ∈�∗i .
Then, there exists T ∈ ΩX with x ∈ T and z ∈ Ci(T ). Clearly, y /∈ T . Since x = Ci(xy),

and z /∈ Ci(T ∪ {y}) as yz ∈�∗i but z ∈ Ci(T ) implies Ci(T ∪ {y}) 6= Ci(T ), by CoI we

have x, y ∈ S implies that Cj(S) = Cj(S \ y) for any S ∈ ΩX , yielding that y /∈ Cj(S)

whenever x ∈ S. Hence, xy ∈�∗j .

Now, for any t ∈ X with yt ∈�∗j , if xt /∈�∗j , then there exists T ′ ∈ ΩX with x ∈ T ′ and

t ∈ Cj(T ′). But then, Cj(T
′ ∪{y}) 6= Cj(T

′), contradicting with CoI. Hence, xt ∈�∗j for

any t ∈ X with yt ∈�∗j , establishing xy ∈�j . �

Now we are ready to show (Max(Max(S,�∗i ),�∗j ) = (Max(Max(S,�i),�j) for any

S ∈ ΩX , i, j ∈ {1, 2} with i 6= j.

Fix i, j ∈ {1, 2} with i 6= j. Take any S ∈ ΩX and x ∈ (Max(Max(S,�∗i ),�∗j ).
Notice that since �i⊆�∗i , Max(S,�∗i ) ⊆ Max(S,�i), in particular x ∈ Max(S,�i).
Now assume for a contradiction, there exists z ∈ Max(S,�i) with zx ∈�j . Clearly,

z /∈ Max(S,�∗i ). Then there exists a1 ∈ S with a1z ∈�∗i \ �i. But then, by Lemma

2.4, a1z ∈�j , which yields a1x ∈�j by transitivity, and hence we have a1x ∈�∗j . Since

x ∈ (Max(Max(S,�∗i ),�∗j ), a1 /∈Max(S,�∗i ). But this in turn would imply that there

exists a2 ∈ S such that a2a1 ∈�∗1. We have two cases: (i) a2a1 ∈�i, (ii) a2a1 /∈�i.
Below we show that both of the cases yield a2x ∈�j :
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(i) If a2a1 ∈�i, then by definition a2z ∈�∗i . Since z ∈Max(S,�∗i ), a2z /∈�i. By Lemma

2.4, a2z ∈�j . Transitivity of �j establishes a2x ∈�j .

(ii) If a2a1 /∈�i, then by Lemma 2.4, a2a1 ∈�j . Transitivity of �j establishes a2x ∈�j .

By definition, a2x ∈�j implies a2x ∈�∗j . Therefore, since x ∈ Max(Max(S,�∗i ),�∗j ),
we have a2 /∈Max(S,�∗i ).

But then following a similar argumentation, there exists a3 ∈ S such that a3a2 ∈�∗1. We

again have two cases: (i) a3a2 ∈�i, (ii) a3a2 /∈�i. Using Lemma 2.4 and transitivity

of �j iteratively, both cases yield a3x ∈�2 as before. If a3 ∈ Max(S,�∗i ), then x /∈
Max(Max(S,�∗i ),�∗j ), giving the desired contradiction. Hence, a3 cannot be an element

of Max(S,�∗i ) similar to a2 and a1. But since S finite, and �∗i is acyclic, there has to

be a maximal element of this chain. In other words, there exists a finite chain in S,

such that ak �∗i ak−1 �∗i ... �∗i a2 �∗i a1 �∗i z with an ∈ Max(S,�∗i ) and anx ∈�j ,
and hence anx ∈�∗j , for any n = 1, 2, ..., k, creating the desired contradiction with

x ∈Max(Max(S,�∗i ),�∗j ).

Now take any x ∈Max(Max(S,�i),�j). We will show that x ∈Max(Max(S,�∗i ),�∗j )
as well. Assume for a contradiciton x /∈ Max(Max(S,�∗i ),�∗j ). Then we have two

cases: (i) There exists y ∈ S with yx ∈�∗i or (ii) There exists z ∈ Max(S,�∗i ) with

zx ∈�∗j . Let us consider the cases one by one:

(i) yx ∈�∗i , but since yx /∈�i, by Lemma 2.4, yx ∈�2. If y ∈ Max(S,�i), then

x /∈ Max(Max(S,�i),�j), the desired contradiction. Thus, y /∈ Max(S,�i), implying

in turn that there exists a1 ∈ S with a1y ∈�i By definition of �∗i and since yx ∈�∗i ,
a1x ∈�∗i . But since x ∈ Max(S,�i), a1x /∈�i, hence by Lemma 2.4, a1x ∈�j . And

if a1 ∈ Max(S,�i), then x /∈ Max(Max(S,�i),�j), giving the desired contradiction.

Thus, a1 /∈Max(S,�i) similar to y. But since S is finite, there exists an ∈Max(S,�i)
with any ∈�i And since by definition, anx ∈�∗i , but anx /∈�i, by Lemma 2.4, anx ∈�j ,
creating the desired contradiction with x ∈Max(Max(S,�i),�j).

(ii) x ∈ Max(S,�∗i ) and there exists z ∈ Max(S,�∗i ) with zx ∈�∗j . As Max(S,�∗i ) ⊆
Max(S,�i), z ∈ Max(S,�i). By maximality of x, zx /∈�j . But then, by Lemma 2.4

we have zx ∈�i, contradicting with x ∈ Max(S,�i). Thus, Max(Max(S,�i),�j) =

Max(Max(S,�∗i ),�∗j ), concluding the sufficiency part of the proof. �

Proof of Theorem 2.2 Let (C1, C2) be as defined. Let Bi denote the intersection of

all preference relations �i such that (�1,�2) represent (C1, C2) for some �j , i.e., define

for i ∈ {1, 2}, Bi⊆ X ×X such that: xy ∈Bi if and only if xy ∈�i for all (�1,�2) that

represent (C1, C2), for any x, y ∈ X.
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First we show that for any xy ∈ tr(Pi ∪ Qi), we have xy ∈Bi. Consider any (�1,�2)

explaining (C1, C2). Fix i, j ∈ {1, 2} with i 6= j. Take any xy ∈ Pi. Since y = Cj(xy),

we have xy /∈�j . But then x = Ci(xy) implies that xy ∈�i. Now take any xy ∈ Qi. As

there exists S ∈ ΩX with x ∈ S and Cj(S) 6= Cj(S \ y), we have xy /∈�j . But then,

x = Ci(xy) implies that xy ∈�i. Hence we have shown that xy ∈ (Pi ∪Qi) is included

in �i as well. Transitivity of �i proves the claim.

To prove the other direction, we first introduce the following lemma:

Lemma 2.5. If Cj(S) = Cj(S \ y) for any S with x ∈ S, then the following holds:

(i) yb ∈�j implies xb ∈ (�i ∪ �j) for any b in X:

(ii) ax, yb ∈�j implies ay, ab ∈ (�i ∪ �j) for any a, b ∈ X.

Proof of Lemma 2.5: (i). Assume for a contradiction that there exists b ∈ X with

yb ∈�j but xb /∈ (�i ∪ �j). Then, Cj(bxy) 6= xb = Cj(xb), absurd.

(ii). Assume that there exists a, b ∈ X with ax, yb ∈�j but ab /∈ (�i ∪ �j). But then

Cj(abxy) 6= ab = Cj(abx), absurd. Now assume for a contradiction that there exists

a, b ∈ X with ax, yb ∈�j but ay /∈ (�i ∪ �j). But then Cj(abxy) = ay 6= Cj(abx),

which is absurd. �.

Now we are ready to prove the other direction. We now show that (tr(Pi ∪ Qi),�∗j )
explains (Ci, Cj), for some �∗j , for i, j ∈ {1, 2} with i 6= j. Consider any (�1,�2)

explaining (C1, C2). Fix i, j ∈ {1, 2} with i 6= j. We will construct �∗j , by making use

of (�1,�2), such that (tr(Pi ∪Qi),�∗j ) explains (Ci, Cj).

Let us denote (�i \tr(Pi ∪Qi)) as Ti. Our claim is that �∗j= tr(�j ∪Ti). We construct

�∗j in three steps:

Step 1: For any xy ∈ Ti, (�i, tr(�j ∪{xy})) explains (Ci, Cj) as well.

Step 2: Recursive application of Step 1 implies that (�i, tr(�j ∪Ti)) explains (Ci, Cj)

as well.

Step 3: Finally, (tr(Pi ∪Qi), tr(�j ∪Ti)) explains (Ci, Cj) as well.

Step 1: First, take any xy ∈ Ti. Since x = Ci(xy) and xy /∈ Pi, we have x = Cj(xy).

And since xy /∈ Qi, Cj(S) = Cj(S \ y) for any S ∈ ΩX with x ∈ S. Hence for any

xy ∈ Ti, we have Cj(S) = Cj(S \ y) for any S 3 x.

Now let us denote tr(�j ∪{xy}) as �′j . If xy ∈�j , the claim of Step 1 holds. Assume

xy /∈�j . Notice that �′j=�j ∪{xb : yb ∈�j} ∪ {ay : ax ∈�j} ∪ {ab : ax, yb ∈�j
} ∪ {xy}. But then by Lemma 2.5, (�′j \ �j) ⊆�i. That is, any binary relation that
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is added to �j to extend it to �′j , is already included in �i. It is now easy to check

indeed, Max(Max(S,�i),�j) = Max(Max(S,�i),�′j) and Max(Max(S,�j),�i) =

Max(Max(S,�′j),�i). Thus, (�i,�′j) explains (C1, C2), as claimed.

Step 2: Consider (�i,�′j). By Step 1, for any xy ∈ Ti, (�i, tr(�′j ∪{xy})) explains

(Ci, Cj). Indeed recursive application of Step 1 implies that (�i, tr(�j ∪Ti)) explains

(Ci, Cj) as well. Let �∗j denote tr(�j ∪Ti).

Step 3: Let us denote tr(Pi ∪ Qi) as �∗i . Now consider (�∗i ,�∗j ). Since Ti ⊆�∗j , we

have �i \ �∗i⊆�∗j . Hence Max(Max(S,�i),�∗j ) = Max(Max(S,�∗i ),�∗j ) and similarly

Max(Max(S,�∗j ),�i) = Max(Max(S,�∗j ),�∗i ). Thus, (�∗i ,�∗j ) explains (C1, C2), con-

cluding the proof. �

Proof of Theorem 2.3: Necessity is fairly straightforward, thus omitted. We prove the

sufficiency part. Take any i, j ∈ {1, 2} with i 6= j. Define �i over X as follows: xy ∈�i
iff x = Ci(xy) for any x, y ∈ X. Asymmetry is by definition of �i. To see transitivity,

consider any xy, yz ∈�i. By SCo, y /∈ Ci(xyz) and z /∈ Ci(xyz). Hence, x = Ci(xyz).

Since xy �i, once again by SCo, Ci(xyz) = Ci(xz) = x, establishing xz ∈�i.

Consider any S ∈ ΩX . We will now show that Ci(S) = Max(S,�i). Take any x ∈ Ci(S).

Assume for a contradiction that there exists y ∈ S with yx ∈�i. But then y = Ci(xy)

and by SCo x /∈ Ci(S), giving the desired contradiction. Hence, x ∈Max(S,�i).

Finally take any x ∈ Max(S,�i). By definition of �i, for all y ∈ S \ {x}, either

x = Ci(xy) or xy = Ci(xy). But then, by EXP, x ∈ Ci(S), establishing sufficiency. �



Chapter 3

Tell Me Who You Are, I Tell You

Who Your Friends are:

Understanding Social Networks

out of Individual Decisions

3.1 Introduction

Social networks are known to affect the way individuals behave. From consumption

habits, to voting behavior, from school achievement of teenagers to investment interests

of business people, a variety of decisions that people make in everyday life have an

intimate relation with their social interactions. Extensive research has been conducted in

order to understand the “countless ways in which network structures affect behavior”[55].

In this study, we take the reverse approach and suggest to investigate individual behavior

in order to understand the underlying social network structure.

Quite often the structure of the social network is not clearly observable. Having individ-

uals in the same environment may give clues about the possible set of social interactions,

but not necessarily all people of the same environment are related to each other in the

same way. Teenagers going to the same school are probably more likely to be friends

than the teenagers registered to different schools, but obviously not all the students in a

school have active friendship relations. Or individuals of the same work place probably

know each other at some degree, but there exist different types of relations including

hierarchical ones such as the one with the boss or nonhierarhical ones such as the one

between colleagues working on the same project. Consider on-line network structures

58
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such as Facebook. Befriending someone at some point in time is not at all informative

about the actual relation that you have with her. It is very possible to ‘add’ people just

for social courtesy reasons, or to even forget that you had met at some point somewhere.

Hence many social circles are full of non-active, non-working links and assuming that

people of the same circle are all connected to each other in the same way will be quite

misleading especially if policy suggestions are made depending on this assumption.

In this study we suggest to uncover the underlying structure of the social network by

analyzing individual behavior patterns, individual decision outcomes, to be more specific.

Our approach is based on the observation that socially connected individuals, influence

each other’s decisions through different channels, especially at times of indecisiveness. It

is quite common practice for all of us to refer to the opinions of people around, especially

if we do not have sufficient information or experience to compare several options that

we are facing. We may use different communication tools such as asking for advice,

gathering suggestions or we may observe people behaving in a particular way and adapt

similar behavioral patterns. With this purpose we first present a decision model that

allows individuals to refer to their social contacts when they need it. Then we investigate

the properties on their decision outcomes that will reveal out the specific way in which

they are connected.

We suggest that individuals prioritize their own preferences over what they observe

from their social environment. However they are susceptible to influence over those

alternatives that their own preferences are not well-defined. Thus their decision outcomes

can be described as the result of a two stage procedure, where the first stage involves

maximization of their own preferences. The second stage allows them to refine their

choices further, if needed, by making use of the information they gather from their

social environment.

In a social network one individual may be connected to a group of individuals in total

in four different ways: she may be in touch with only one individual that somehow

connects her to the group, she may be influencing all or a subset of the group, she may

be getting influenced by all or a subset of the group or finally she may be connecting

two individuals that are themselves connected to the rest of the group in some specific

way. Our objective is to find out which one of these possible connections is taking place

by comparing the decision outcomes of the individuals of the group. With this purpose

we present the properties on the decision outcomes of a group of individuals that will

reveal out the structure of their connections. Overall we characterize all four possible

interaction structures.

Social interactions literature on social networks presents a fruitful line of research since

network structure of relations provides a rich environment to overcome the identification
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problems related to the estimation of the effects of social interactions on individual

decisions. Existing research mainly focuses on the influence of peers in contexts such as

choice of college education [31], academic achievement [25, 42], consumption decisions

[23] or over online networks [2, 4, 5]. A major part of the literature assumes that the

structure of the network is known. Noting that this assumption is critical in terms of

restricting the emprical work to contexts in which survey data can be used to measure

network structure, several directions for the development of empirical strategies when

network structure is unknown are suggested in [21]. A second line of research that focuses

on the structure of social interactions includes equilibrium analysis on binary choice

models [14, 20, 49].1 Research on these discrete choice models focuses on the analysis

of aggregate behavioural outcomes when individual utility exhibits social interaction

effects.

The following section introduces the individual decision model and focuses on the anal-

ysis with the most simple interaction structure, a dyad. Section 3 extends the analysis

to more general network forms, that includes a star, inverse star and a chain. Finally,

we conclude. All proofs are delayed to an Appendix.

3.2 Decision Making with Influence in a Dyad

Let X be a finite nonempty set of alternatives and consider individual j. Let �j denote

the preference relation of j over X. We assume that preferences are asymmetric, tran-

sitive but not necessarily complete. Asymmetry is assumed to keep the analysis simple.

Transitivity is seen as an individual rationality requirement. Incompleteness, on the

other hand is the main reason for individuals to be susceptible to influence.

Individuals use their social environment as a means of gathering information about the

alternatives they fail to compare. Endowed with not necessarily complete preferences,

they make use of the behaviors of the individuals they observe around to further refine

their decision outcomes. In other words they get influenced through their social interac-

tions over those alternatives that they are initially indecisive. Then individual decision

making becomes a function of not only the preferences of the individuals, but also the

decision outcomes of the individuals that they get influenced by. We suggest that indi-

viduals prioritize their own preferences over what they observe from their society. Then,

facing a decision problem, first they try to solve it on their own, maximizing their own

preferences. If this maximization leads them to a single outcome, then then there will

not be any room for being influenced. However, if they are not able to choose on their

1For an overview of theoretical approaches in this literature see [34]. For parallel work with multino-
mial choice models see [24].
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own uniquely, but rather left with a set of choosable alternatives, they refer to their so-

cial interactions in order to be able to further refine their choice. We suggest that in this

second stage of decision, they maximize a binary relation that summarizes what they

have observed from their social environment. In this section we restrict our analysis to

the minimal possible group of individuals in which social influence takes place: A dyad.

In the following section, based on our analysis on dyads, we will extend our focus to

more general types of social interactions.

Now assume that i is the only individual that j is directly in touch with. Facing a a

decision problem, say A ⊆ X, j first maximizes her own preferences, leaving her with

a set of maximal elements: Max(A,�j) = {x ∈ A: there does not exist y ∈ A with

yx ∈�j}.2 If Max(A,�j) has a unique element, then that is what j chooses from A.

Otherwise, she refers to what she observes from her social environment, which is only i

in this case. We suggest that in this second stage, j maximizes a binary relation, say �ij
that depends on the binary decision outcomes of i: xy ∈�ij if and only if x is the unique

outcome of i from the decision problem A = {x, y}.3 As long as j does not observe

cyclic behavior from i for those alternatives that she cannot compare on her own, this

two stage maximization process will result in nonempty decision outcomes. We suggest

that this is indeed the case, otherwise j would use other social connections that would

not create further decision complexities for herself. Notice that the decision outcomes

need not to be single-valued though. Thus, the decison outcomes of j can actually be

represented by a choice correspondence, Cj .

Notice that we have not discussed the way that i decides, since it is not the focus right

now. Here we only define the case that i influences j, but we simply assume that i’s

decision outcomes can be represented by a choice correspondence as well.

Formally, let ΩX be the set of all nonempty subsets of X. For an individual, say k, we

define the decision outcomes of k on ΩX as a choice correspondence Ck : ΩX ⇒ X such

that ∅ 6= Ck(A) ⊆ A for every A ∈ ΩX .

Given Ci, Cj we say that i is influencing j, if there exists an asymmetric and transitive

�j such that Cj(A) = Max(Max(A,�j),�ij) for all A ∈ ΩX , where �ij= {xy : x =

Ci(xy)}.

Now we are ready to investigate the main question of this section: Given the decision

outcomes of the individuals Ci, Cj , what kind of properties on Cj in relation to Ci ensure

that i is influencing j?

2We abuse the notation a bit and denote an ordered pair as ‘xy’ instead of ‘{x, y}’.
3Certainly there are alternative definitions for this second stage relation that summarizes what one

observes from her social environment. We discuss several alternatives to �i
j in Concluding Remarks.
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The first property we introduce is the classical expansion property. It states that if an

alternative is chosen from two different sets, it has to be chosen from the union of them

as well:

(A1). For any x, if x ∈ Ck(A) and x ∈ Ck(B), then x ∈ Ck(A ∪B).

The remaining properties will allow us to identify the directed influence relation between

i and j. Hence they will combine the choice outcomes of the individuals. Before present-

ing them let us introduce a few definitions, that will ease the statement of the properties

especially for larger networks structures that we will investigate in the following section.

For a given Ck, we say that an alternative x is strongly revealed preferred to y, if

the availability of y has never changed the choice behavior of k from a set that includes

x: Ck(A) = Ck(A \ y) for any A 3 x. Notice that this also implies that x is uniquely

chosen from the binary problem: x = Ck(xy).

We say that an alternative x is weakly revealed preferred to y if although x is chosen

uniquely from the binary problem, we can find some set that includes x and the inclusion

of y changes the choice behavior of k from that set: x = Ck(xy), Ck(A) 6= Ck(A \ y) for

some A 3 x.

Finally, we say that a pair of alternatives x, y are not revealed preferred to each

other if neither of them is uniquely chosen from the binary problem: xy = Ck(xy).

Given Ck, we define three mutually exclusive sets of binary pairs according to such

revelations of k: The set of strong revelations of k, Sk; the set of weak revelations of k,

Wk and finally the set of binary pairs without a particular revelation, Ik, where

• Sk = {(xy) : x = Ck(xy), Ck(A) = Ck(A \ y) for any A 3 x}.

• Wk = {(xy) : x = Ck(xy), Ck(A) 6= Ck(A \ y) for some A 3 x}.

• Ik = {(xy) : xy = Ck(xy)}.

A second property, that is required to connect the two individuals, (A2), states that a

weak revelation of j cannot include alternatives that are not reveal preferred to each

other by i:

(A2). Ii ∩Wj = ∅.

(A2) is simply a consistency type of property for influence: If xy is a weak revelation of

j, then although j has chosen x uniquely from the binary problem, she has not chosen

consistently in some larger problem: availability of y has changed j’ s choice from a set

that also includes x. Then the choice of x from the binary problem is not because j
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actually likes x better than y, but because she has been influenced by i’s choice over

this problem. Then obviously, i cannot be indecisive for x and y.

The last property, (A3), also connects the choice behaviors of the individuals:

(A3). xy ∈ (Wi ∪ Si) and A is such that for all z ∈ A, zx /∈ Sj , then y /∈ Cj(A).

xy ∈ (Wi∪Si) simply means that i has chosen x uniquely from the binary problem x, y.

So if j needs to refer to i’s behavior, choice of x over y is what she is going to observe.

And A is such a set that no other alternative is clearly better than x for j: none of the

alternatives are strongly revealed preferred to x, including y. Then, y cannot be chosen

from A. Otherwise, if y is chosen from A, that would have been definitely due to j’s own

preferences, since i is behaving differently, but then y would have been strongly revealed

preferred to x for j, which would be a contradiction.

Now we are ready to state the first result of this text. The previous three properties are

necessary and sufficient for j to be influenced by i:

Theorem 3.1. Given Ci, Cj satisfies A1, A2 and A3 if and only if i is influencing j.

3.3 Social Influence on a Network

Our main interest in this study is to uncover the structure of the interactions between

individuals by evaluating their individual decision outcomes. The first section tells us

that one way to understand if an individual is linked to another is to follow the choice

inconsistencies in the choice data. If all the inconsistencies in the choice data of an

individual j can be traced back to another individual i, then it is safe to assume that i

is influencing j. In this section we make use of this observation to extend our analysis

to larger networks.

Our strategy is to focus on different types of interactions that could occur in a network

one by one. Afterall what we observe in a network in general is a possibly complicated

structure of individuals influencing and being influenced by each other. There can be

individuals that are only being influenced by one person as well as individuals that are

being influenced by many others or influencing many others. In this section we analyze

each of these cases separately. First we concentrate on the case where one individual

influences many others around her. This suggests a star shaped set of interactions where

the individual in the center is the one that has a direct influence on the choice outcomes

of the others. Second we discuss exactly the opposite case, where an individual is being

influenced by many others. We call this set of interactions an inverse star. Finally

we focus on a chain, where there is actually an order of individuals such that each of



Chapter 3. Understanding Social Networks out of Individual Decisions 64

them is influencing the one that comes after. Notice that in this case in addition to the

direct influence of one on the individual that comes right after, there is the possibility of

indirect influence. An individual may have an effect on the choice outcomes of another

individual that is not directly linked to her, but being influenced by the individual that

she influences.

Throughout this section we assume that each of the individuals is endowed with an

individual choice correspondence Ck over X. Our objective is to find out the properties

on the choice data of the individuals that would allow us to specify the particular form

of interaction that they are a part of: a star, an inverse star or a chain.

3.3.1 Star

We say that a group of individuals forms a star if there exists an individual i that

influences all the other individuals, j1, j2, ..., jn.

Notice that we do not put any restriction to the choice behavior of the individual in the

center, i. She may be getting influenced by someone in the group, or out of the group,

or she may be an individual with complete preferences, without any room for being

influenced. For a group of individuals to form a star, we only require that the center

individual is influencing the others. We suggest that (A1), as a standard property, is

satisfied by the choice correspondences of all of the individuals. The remaining properties

will allow us to identify the star structure of their relations. Thus they are not about each

Ck but they will be combining different choice correspondences to each other, similar to

(A2) and (A3) in the previous section. Indeed they will extend these two properties to

the case of many individuals since a star is nothing but an individual i that influences

many other individuals, j1, j2, ..., jn.

(A2*). For any pair of individuals i, j, we have Ii ∩Wj = ∅.

(A2*) is a generalization of (A2) to many individuals. Considering any pair of individ-

uals, we have two options: Either one of them is in the center and the other is being

influenced by her, or none is. In the former case, if the one in the periphery, is revealing

x weakly preferred to y, this means that she has been influenced to do so by the one

in the center. Hence the center cannot be indecisive over this pair. If the one in the

center is revealing x weakly preferred to y, observing her, the one in the periphery will

do the same, whenever she is susceptible to influence for this pair. And finally, if both

of the individuals are in the periphery, and one of them is weakly revealing x preferred

to y, then the influence coming from the center will exactly be the same for the other

periphery individual as long as she is susceptible to influence for this pair of alternatives.
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(A3*). There exists an individual i such that for any j with i 6= j; xy ∈ (Wi ∪ Si) and

A is such that for all z ∈ A, zx /∈ Sj , then y /∈ Cj(A).

(A3*) implies (A3) for two individuals. The center of the star, i has chosen x uniquely

from the binary problem xy. So if any other j needs to refer to i’s behavior, choice of x

over y is what she is going to observe. And A is such a set that no other alternative is

clearly better than x for j. Then, y cannot be chosen from A for j.

Theorem 3.2. C1, C2, ..., Cn satisfy A1, A4 and A5 if and only if 1, 2, ..., n form a star.

3.3.2 Inverse Star

Now we focus on the parts of the network where an individual is being influenced by

many others around her. In this case we need to define an aggregation rule for the

individual that is being influenced since not necessarily all the others around her always

behave in the same way. Let us explain this point with a simple example: Let j and

i1, i2, i3 be in the same social environment and assume that j is linked to all the others.

Consider x, y uncompared according to the preferences of j. In order to be able to choose

from xy, j refers to her social environment and observes that x = Ci1(xy), y = Ci2(xy)

and xy = Ci3(xy). How would j compare x, y up on this observation? Naturally, individ-

uals have different thresholds in order to accept support favoring one option convincing

enough. In other words, for some individuals observing that a majority of their social

environment is strictly deciding in favor of x can be sufficient to go for option x, while

for some others it will require stronger consensus. At this point, we suggest unanimity

rule as a plausible aggregation rule that everbody will agree on: Being connected to

many other individuals, if j observes that everybody else is deciding in favor of x from

the binary problem, then she will definitely consider x over y in a second stage. Let us

define this formally:

Given Ci1 , Ci2 , ..., Cin , we say that i1, i2, ..., in are influencing j, if there exists an

asymmetric and transitive �j such that:

Cj(A) = Max(Max(A,�j),�i1−inj ) for all A ∈ ΩX ,

where �i1−inj = {xy : x = Ci(xy) for all i = i1, i2, ..., in}.

We say that a group of individuals forms an inverse star if there exists an individual

j that is being influenced by all the other individuals, i1, i2, ..., in.

Now let us present the properties that characterize the inverse star. In addition to (A1),

we introduce two properties. The first of them, (A4), is a property that is actually
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satisfied by any choice correspondence that can be represented by a two stage maxi-

mization procedure where the first relation is transitive. And it is indeed implied by the

properties (A2) and (A3) for the case of two individuals:

(A4). xy ∈ (Wj ∪ Sj) and A is such that for all z ∈ A, zx /∈ Sj , then y /∈ Cj(A).

(A4) basically states that if x is chosen uniquely over y from the binary problem and A

is a set that any other alternative in the set is not clearly better than x, then y cannot

be chosen from A. Choosing x over y means that either strongly or weakly x is revealed

to be a better alternative compared to y. Apparently x is a good alternative in the set

A as well, since there is no other alternative that is strongly revealed preferred to x.

The condition says that in this case, j will not be choosing y.

Finally the following property is required to connect the choice data of the individuals

to each other:

(A5). There exists j such that Wj ⊆
⋂
i(Wi ∪ Si) and (

⋂
i(Wi ∪ Si)) ∩ Ij = ∅.

Obviously j is in the center of the inverse star. The first part of the property ensures

that whenever j chooses inconsistently with a choice from a binary problem, then this

choice has to be justified by all the other individuals that she is connected to. (A5) is

the only property that brings unanimity as the aggregation rule for j. If we consider

different aggregation rules instead of unanimity, modifying (A5) will be sufficient for

the characterization. For instance, if j aggregates the information that she observes

according to majority rule, then Wj ⊆ {xy : |i : x = Ci(xy)| > |i : y = Ci(yx)|} would

be the corresponding property.

The second part of (A5) makes sure that j does not continue to be indecisive if everbody

that she is connected to unanimously agree on the choice of a single alternative from

a binary problem, ensuring that if j is susceptible to influence and if there is sufficient

information, then she must be influenced.

Theorem 3.3. C1, C2, ..., Cn satisfy A1, A4 and A5 if and only if 1, 2, ..., n form an

inverse star.

3.3.3 Chain

Finally, we analyze the parts of the networks that possibly combine different groups

to each other. Up to now, all the structures that we have considered only included

paths of lenght 1, where one individual directly influences some other. However in social

networks, we do observe longer paths, in which individuals are connected to each other

via other individuals. We call this kind of interaction structures as chains:
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We say that a group of individuals form a chain if there exists an order of the individuals

such that each individual i influences the individual j that comes after i.

The interesting feature of chains is that they allow for indirect influence between the

individuals. For instance, consider three individuals i, j, l such that xy ∈�i, but xy, yx /∈
(�j ∪ �l), where i is influencing j and j is influencing l. Then clearly x = Ci(xy). Since

j is being influenced by i, x = Cj(xy), allowing l to copy it as well, yielding x = Cl(xy).

Hence, the comparison xy coming from the preferences of i may indirectly cause l to

choose in favor of x.

To present the characterizing property of chains, we first introduce a couple of definitions:

We say that a pair i, j is a team with i as the team leader if i is influencing j.

In a chain, any consecutive pair refers to a team. Thus, we intoduce the following

recursive definition of a team that is formed by a group of individuals:

We say that a group of n individuals, Nn, defines a team if:

• There exists a team leader i ∈ Nn such that Nn \ {i} defines a team.

• i and the team leader of Nn \ {i} is a team.

This is indeed sufficient to capture the chain structure. Notice that if i influences j and j

influences l, then by definition of a team, Wj∩Wl actually captures the indirect influence

of i on l. Hence if we consider all the individuals of a team, we have
⋂
kWk ⊆ (Wi∪Si),

where i is the leader of the team. In general, any common inconsistency that is shared

by the choice behavior of individuals that are coming after one individual, say i, has to

be justified by i’s behavior as well. Either i makes the same inconsistency or she is the

one that has this particular comparison in her initial preferences.

Once we are equipped with this recursive definition of influence, the characterizing prop-

erty will simply say that the group of individuals we are considering forms a team:

(A6). 1, 2, ..., n define a team.

Theorem 3.4. C1, C2, ..., Cn satisfy A1 and A6 if and only if 1, 2, ..., n form a chain.

3.4 Concluding Remarks

In this study we aimed to present a framework that allows us to exploit individual deci-

sion outcomes in order to understand the underlying structure of interactions between
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individuals of a network. This paper can be seen as a first attempt to apprehend the

rich environment that this approach is to offer. Much has to be done yet.

First of all, we considered a very particular type of second stage relation to summarize

the information that individual gathers from her social environment. An immediate

alternative to this would be to directly consider the underlying preferences of the in-

dividuals as the second stage relation. In this case, individuals would not be getting

influence as a result of observation but probably using more direct forms of communi-

cation such as asking for advice. We can easily show that slight modifications of the

properties we suggested indeed would characterize the decision procedure in this case,

and hence the specific network structures. However, notice that this modelling would

not allow for indirect influence. Hence, the only influence one gets is what she obtains

with directly asking to the people that she is in contact with. Moreover, if we consider

that i is influencing j, who is influencing l, the influence that l gets from j need not to

be equal to how j, herself, behaves if she is getting influenced by i.

Another interesting alternative would be to allow the second stage relation not to be

defined as a function of binary decision outcomes but to depend on the choice from any

problem. In other words, once again we consider a two stage mechanism, but not a

sequential elimination one. Instead, upon maximization of own preferences individual j

exactly copies the choice outcome of i from that set of choosable alternatives; Cj(A) =

Ci(Max(A,�j)) for any A. This model suggests a very interesting decision procedure

to investigate, however brings new complexities since it does not satisfy any known

properties.

Apart from the discussion of how social influence should be integrated into individual

decision making, there is much more to explore. For instance, we focused on special

interaction structures that could appear on a social network separately. Bringing all

the identified parts together and providing a more integrated approach is of immediate

future work. We also need to investigate how accurate our analysis is in terms of

identification. Obviously the social interactions revealed out of the choice data are not

uniquely identified. Thus we shall explore the boundaries of identification strategies.

And finally emprical application of the theory provided will open an interesting line of

future research.

3.5 Appendix

Proof of Theorem 3.1: We only prove the sufficiency part since necessity is fairly

easy. Given Ci, let Cj satisfy A1, A2 and A3.
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Define �j and �′j as follows:

xy ∈�j whenever xy ∈ Sj .

xy ∈�′j whenever xy ∈Wj .

Asymmetry of �j is obvious. To see transitivity of �j , consider any xy, yz ∈�j and

consider any A ∈ ΩX with x, z ∈ A. If y ∈ A, by yz ∈�j we have: Cj(A \ z) = Cj(A).

Let y /∈ A. But then, once again by yz ∈�j : Cj((A∪ y) \ z) = Cj(A∪ y). Since xy ∈�j
implies Cj(A∪ y) = Cj(A) and Cj((A∪ y) \ z) = Cj(A \ z), we have Cj(A \ z) = Cj(A),

establishing transitivity of �j .

We now show that Cj(A) = Max(Max(A,�j),�′j). Then we will show that indeed

Max(Max(A,�j),�′j) = Max(Max(A,�j),�ij) for �ij= {xy : x = Ci(xy)}.

Take any A and any x ∈ Cj(A). By definition, for any y ∈ A, yx /∈ Sj since x ∈ Cj(A)

implies Cj(A) 6= C(A \ x). Then, x ∈ Max(A,�j). Now assume for a contradiction

that there exists y ∈Max(A,�j) with yx ∈�′j ; yx ∈Wj . By A2, yx /∈ Ii. Hence either

y = Ci(xy) or x = Ci(xy). If y = Ci(xy), since x ∈ Cj(A), by A3, there must exist

z ∈ A such that zy ∈ Sj , contradicting with y ∈ Max(S,�j). Hence x = Ci(xy). But

then, again by A3, choosing y from a set that x exists implies that there has to be an

element in that set that is strongly revealed preferred to y, i.e., y = Cj(xy) implies that

yx ∈ Sj , contradicting with x ∈Max(S,�j). Hence, x ∈Max(Max(A,�j),�′j).

Now take any x ∈Max(Max(A,�j),�′j). Notice that x ∈ Cj(xy) for all y ∈Max(A,�j
), since y = Cj(xy) implies yx ∈ (Wj ∪ Sj), which contradicts with maximality of x in

A or in Max(A,�j). But then, by A1, x ∈ Cj(Max(A,�j). Notice that for any

z ∈ A \ (Max(A,�j), there exists t ∈ A such that tz ∈ Sj . But then by transitivity

of �j and finiteness of X, there exists w ∈ Max(A,�j) such that wz ∈ Sj , and thus

Cj(S) = Cj(Max(A,�j)∪ {z}). Since this holds for any z ∈ A \ (Max(A,�j), Cj(S) =

Cj(Max(S,�j).

Finally we show that Max(Max(A,�j),�′j) = Max(Max(A,�j),�ij). Since the first

stage relation is the same for both, we only need to show that for x, y ∈ Max(A,�j),
xy ∈�′j if and only if xy ∈�ij . First, notice x, y ∈Max(A,�j), means that xy /∈ Sj and

yx /∈ Sj . Let xy ∈�′j ; xy ∈Wj . By A2, yx /∈ Ii. Hence either y = Ci(xy) or x = Ci(xy).

If y = Ci(xy), since x ∈ Cj(xy), by A3, xy ∈ Sj , contradicting with y ∈ Max(S,�j).
Hence x = Ci(xy), and hence, xy ∈�ij .

Now let xy ∈�ij , x = Ci(xy). If y ∈ Cj(xy), by A3, yx ∈ Sj , contradiction. Thus,

x = Cj(xy) and since xy /∈ Sj , we have xy ∈Wj ; xy ∈�′j , concluding the proof. �.
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Proof of Theorem 3.2: We only prove the sufficiency. Let C1, C2, ..., Cn satisfy A1,

A2*and A3*. We only need to show that there exists an i such that for any j ∈
{1, 2, ..., n} \ {i}, i, j satisfy A2 and A3. Then by Theorem 1, we will be done. But this

is immediate by A2*, A3* and by the definition of sets Sk,Wk and Ik. �.

Proof of Theorem 3.3: We only show sufficiency. Let C1, C2, ..., Cn satisfy A1, A4

and A5. We will show that there exists j such that {1, 2, ..., n} \ {j} influence j. By A5,

there exists j such that Wj ⊆
⋂
i(Wi ∪ Si).

Define �j and �′j as usual: xy ∈�j whenever xy ∈ Sj and xy ∈�′j whenever xy ∈ Wj .

Asymmetry and transitivity of �j is as already guaranteed in the Proof of Theorem 3.1.

We now show that Cj(A) = Max(Max(A,�j),�′j). Then we will show that indeed

Max(Max(A,�j),�′j) = Max(Max(A,�j),�i1−inj ) for �i1−inj = {xy : x = Ci(xy) for

all i}.

Take any A and any x ∈ Cj(A). By definition, for any y ∈ A, yx /∈ Sj since x ∈
Cj(A). Then, x ∈ Max(A,�j). Now assume for a contradiction that there exists

y ∈ Max(A,�j) with yx ∈�′j ; yx ∈ Wj . Hence y = Cj(xy). But since x ∈ Cj(A), A4

implies that there exists z ∈ A with zy ∈ Sj , contradicting with y ∈Max(S,�j). Hence

x ∈Max(Max(A,�j),�′j).

Now take any x ∈Max(Max(A,�j),�′j). By A1 and transitivity of �j , x ∈ Cj(S) can

be shown as exactly the same way by using the arguements of the Proof of Theorem 3.1.

Finally we show that Max(Max(A,�j),�′j) = Max(Max(A,�j),�i1−inj ). Since the

first stage relation is the same for both, we only need to show that for x, y ∈Max(A,�j),
xy ∈�′j if and only if xy ∈�i1−inj . First, notice x, y ∈Max(A,�j), means that xy /∈ Sj
and yx /∈ Sj . Let xy ∈�′j ; xy ∈Wj . A5 directly implies xy ∈�i1−inj .

Now let xy ∈�i1−inj . If y = Cj(xy), since yx /∈ Sj , yx ∈ Wj . But then by A5 we

contradict with xy ∈�i1−inj . If xy = Cj(xy), by the second part of A5 we contradict

with xy ∈�i1−inj . Thus, x = Cj(xy) and since xy /∈ Sj , we have xy ∈ Wj ; xy ∈�′j ,
concluding the proof. �.

Proof of Theorem 3.4: We only prove the sufficiency. Let C1, C2, ..., Cn satisfy A1

and A6. By A6, there is a team leader, say i and i forms a team with the team leader

of {1, 2, ..., n} \ i, say j. Then, by definition i influences j. But then, application of

the same argumentation recursively shows that there exists an order of individuals such

that each individual influences the one that comes after. �
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