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ABOUT THIS THESIS: 
The artificial pancreas is an automated closed-loop control system that is applied for 
glucose regulation in subjects with Type 1 Diabetes Mellitus, who suffer severe lack of 
insulin production. The artificial pancreas has the potential to reduce the frequency and 
severity of the diabetes complications and improve the patients’ quality of life. However, 
blood glucose control is still a challenging problem in biomedical engineering, since there 
exist several factors that significantly hinder the performance of the closed-loop control. 
 
This thesis presents different control strategies for the closed-loop artificial pancreas, 
which are based on Model Predictive Control (MPC) and Sliding Mode Control (SMC). More 
specifically, multiple MPC with linear models and gain scheduling, SMC with linear and 
nonlinear models, and MPC with nonlinear model, have been developed. All control 
strategies use the subcutaneous route for glucose monitoring and insulin delivery. The 
proposed control strategies combine more than one linear/nonlinear control and modeling 
approaches in one structure. The main idea behind such combined approaches is to make 
use of the virtues of each approach while reducing the effects of their drawbacks. The 
control strategies have been tested and validated in simulations, where two mathematical 
models have been used to represent patients with Type 1 Diabetes. The control strategies 
are tested in different conditions, such as the presence of meal disturbance, inter-patient 
and intra-patient variability, time-delay, and sensor errors. 
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Abstract

Diabetes is one of the world’s main causes of death and disability due to

the increasing number of patients with diabetes worldwide. Recent devel-

opments of Continuous Glucose Monitoring sensors and insulin pumps give

hope for the development of an artificial pancreas. The artificial pancreas

is an automated closed-loop control system that is applied for glucose reg-

ulation in subjects with Type 1 Diabetes Mellitus, who suffer severe lack

of insulin production. The artificial pancreas has the potential to reduce

the frequency and severity of the diabetes complications and improve the

patients’ quality of life. However, blood glucose control is still a challenging

problem in biomedical engineering, since there exist several factors that sig-

nificantly hinder the performance of the closed-loop control. These factors

include: the inherent complexity of the glucose regulation system (e.g. the

presence of nonlinearities, the high intra and inter-patient variability), the

inaccurate and noisy measurements of the glucose sensors, the time-delay

associated to the subcutaneous glucose sensing and insulin delivery, and the

presence of different sources of disturbance and uncertainty that interfere

with glucose control (e.g. stress, meal, exercise).

This thesis presents different control strategies for the closed-loop artificial

pancreas, which are based on Model Predictive Control (MPC) and Sliding

Mode Control (SMC). More specifically, multiple MPC with linear models

and gain scheduling, and SMC with linear and nonlinear models, have been

developed. All control strategies use the subcutaneous route for glucose

monitoring and insulin delivery. The proposed control strategies combine

more than one linear/nonlinear control and modeling approaches in one

structure. The main idea behind such combined approaches is to make use

of the virtues of each approach while reducing the effects of their drawbacks.



The control strategies have been tested and validated in simulations (in

silico validation). For the in silico testing, two mathematical models (the

UVa simulator and the Hovorka model) have been used, simulating patients

with Type 1 Diabetes Mellitus (virtual patients). The control strategies

are tested in different conditions, such as the presence of meal disturbance,

inter-patient and intra-patient variability, time-delay, and sensor errors.

The thesis also reviews the state of the art in hypoglycemia prevention and

detection techniques in the closed-loop artificial pancreas. Hypoglycemia is

the major adverse effect of insulin therapy, and therefore, minimizing the

risk of hypoglycemia, by applying different control and detection techniques,

is often considered in the development of the artificial pancreas.



Resumen

La diabetes es una de las principales causas de muerte y discapacidad a

nivel mundial debido al creciente número de pacientes con diabetes. El

reciente desarrollo de los sensores de monitoreo continuo de glucosa y las

bombas de insulina dibujan un panorama alentador para el desarrollo de

un páncreas artificial. El páncreas artificial es un sistema automatizado

de control en bucle cerrado que se aplica para la regulación de la glucosa

en pacientes con diabetes mellitus tipo 1, que padecen un grave déficit de

producción de insulina. El páncreas artificial tiene el potencial de reducir

la frecuencia y gravedad de las complicaciones de la diabetes y mejorar

la calidad de vida de los pacientes. Sin embargo, el control de la glucosa

en sangre sigue siendo un problema dif́ıcil en el ámbito de la ingenieŕıa

biomédica, debido a la existencia de diferentes factores que dificultan sig-

nificativamente el rendimiento del control de bucle cerrado. Entre estos

factores cabe destacar: la complejidad inherente al sistema de regulación

de la glucosa (por ejemplo, la presencia de no linealidades, el alto grado de

variabilidad intra e inter-paciente), las medidas inexactas y ruidosas de los

sensores de glucosa, el retardo asociado a la v́ıa subcutánea de detección de

glucosa y administración de insulina, y la presencia de diferentes fuentes de

perturbación e incertidumbre que interfieren con el control de glucosa (por

ejemplo, estrés, comidas, ejercicio).

Esta tesis presenta diferentes estrategias de control para el páncreas artifi-

cial de bucle cerrado, que se basan en control predictivo basado en modelo

(Model Predictive Control - MPC) y el control por modo deslizante (Sliding

Mode Control - SMC). Más espećıficamente, múltiples MPC con modelos

lineales y planificación de ganancia, y SMC con modelos lineales y no lin-

eales, se han desarrollado. Todas las estrategias de control utilizan la v́ıa



subcutánea para el monitoreo de la glucosa y la administración de insulina.

Las estrategias de control propuestas combinan más de un método (lineal

y/o no lineal) de control y modelado en cada estructura. La idea principal

detrás de estos enfoques combinados es hacer uso de las virtudes de cada

enfoque al tiempo que se reducen los efectos de sus desventajas. Las estrate-

gias de control han sido probadas y validadas en simulaciones (validación in

silico). Para los ensayos in silico, dos modelos matemáticos (el simulador

UVA y el modelo de Hovorka) se han utilizado, simulando los pacientes con

diabetes mellitus tipo 1 (pacientes virtuales). Las estrategias de control se

ensayan en diferentes condiciones, tales como la presencia de perturbación

por ingesta de comida, variabilidad inter- e intra-paciente, retardo, y errores

del sensor.

La tesis también analiza el estado del arte en las técnicas de prevención

y detección de hipoglucemia en el páncreas artificial de bucle cerrado. La

hipoglucemia es el principal efecto adverso de la terapia de insulina, y por

lo tanto, la reducción al mı́nimo del riesgo de hipoglucemia, mediante la

aplicación de diferentes técnicas de detección y de control, se contempla a

menudo en el desarrollo del páncreas artificial.



Resum

La diabetis és una de les principals causes de mort i discapacitat a nivell

mundial a causa del creixent nombre de pacients amb diabetis. El recent

desenvolupament dels sensors de monitorització continua de glucosa i les

bombes d’insulina dibuixen un panorama encoratjador pel desenvolupament

d’un pàncrees artificial. El pàncrees artificial és un sistema automatitzat

de control en bucle tancat que s’aplica per la regulació de la glucosa en

pacients amb diabetis mellitus tipus 1, que pateixen un greu dèficit de pro-

ducció d’insulina. El pàncrees artificial té el potencial de reduir la freqüència

i gravetat de les complicacions de la diabetis i millorar la qualitat de vida

dels pacients. No obstant això, el control de la glucosa en la sang segueix

sent un problema dif́ıcil en l’àmbit de l’enginyeria biomèdica, a causa de

l’existència de diferents factors que dificulten significativament el rendiment

del control de bucle tancat. Entre aquests factors cal destacar: la complexi-

tat inherent al sistema de regulació de la glucosa (per exemple, la presència

de no linealitats, l’alt grau de variabilitat intra i inter-pacient), les mesures

inexactes i sorolloses dels sensors de glucosa, el retard associat a la via sub-

cutània de detecció de glucosa i administració d’insulina, i la presència de

diferents fonts de pertorbació i incertesa que interfereixen amb el control de

glucosa (per exemple, estrès, menjars, exercici).

Aquesta tesi presenta diferents estratègies de control pel pàncrees artifi-

cial de bucle tancat, que es basen en control predictiu basat en model

(Model Predictive Control - MPC) i el control en mode lliscant (Sliding

Mode Control - SMC). Més espećıficament, múltiples MPC amb models

lineals i planificació de guany, i SMC amb models lineals i no lineals, s’han

desenvolupat. Totes les estratègies de control utilitzen la via subcutània

per al monitoratge de la glucosa i l’administració d’insulina. Les estratègies



de control proposades combinen més d’un mètode (lineal i/o no lineal) de

control i modelatge en cada estructura. La idea principal darrere d’aquests

enfocaments combinats és fer ús de les virtuts de cada enfocament alhora

que es redueixen els efectes dels seus desavantatges. Les estratègies de con-

trol han estat provades i validades en simulacions (validació in silico). Per

als assajos in silico, dos models matemàtics (el simulador UVA i el model de

Hovorka) s’han utilitzat, simulant els pacients amb diabetis mellitus tipus 1

(pacients virtuals). Les estratègies de control s’assagen en diferents condi-

cions, com ara la presència de pertorbació per ingesta de menjar, variabilitat

inter- i intra-pacient, retard, i errors del sensor.

La tesi també analitza l’estat de l’art en les tècniques de prevenció i detecció

d’hipoglucèmia en el pàncrees artificial de bucle tancat. La hipoglucèmia

és el principal efecte advers de la teràpia d’insulina, i per tant, reduir al

mı́nim el risc d’hipoglucèmia, mitjançant l’aplicació de diferents tècniques

de detecció i control, es considera sovint en el desenvolupament del pàncrees

artificial.



To my parents who are always there for me.

To my family and all those who supported me through the University years.

To the little ones who always gave me hope.



Acknowledgements

First of all I would like to express my gratitude to ALLAH for giving me

courage and support in order to accomplish the task of my Doctoral Thesis.

This thesis would not have been possible without the support of many

people. I wish to express my gratitude to Prof. Dr. Marc Saez, Head of

GRECS research group, who was abundantly helpful and offered invaluable

assistance, support and guidance. Deepest gratitude is also due to the Head

of ELEC department (VUB, Belgium), Prof. Dr. Ir. Johan Schoukens who

gave me the opportunity to join his group for a period, during which I learnt

a lot. Special thanks also to all my friends in Spain and Belgium, and all

the people in ELEC and GRECS for their continuous help and invaluable

assistance. I want to express my love and gratitude to my beloved family; for

their understanding and endless love, through the duration of my studies.

My special thanks to Dr. Joan Miró, the Ombudsman of the University

of Girona, a person with endless help who was there in the most critical

moments.

I would also like to convey thanks to the University of Girona for providing

the financial means through the BR-UdG grant

Amjad Abu-Rmileh

Girona, November 2013



Contents

Abbreviations 1

Part I General Introduction 3

Chapter 1 Introduction 5

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2 T1DM: Control and Modeling 13

2.1 Glucose regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Diabetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Types of Diabetes . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Current Treatment of Diabetes . . . . . . . . . . . . . . . . . . . 17

2.2.3 Glucose Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Insulin pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Closed-Loop Control in Diabetes . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 The Artificial Pancreas . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Control Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . 25

2.3.4 Sliding mode control . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Models of the Glucose Regulation System . . . . . . . . . . . . . . . . . 32

2.5 Challenges in Glucose Control . . . . . . . . . . . . . . . . . . . . . . . . 33

i



CONTENTS

Chapter 3 Virtual Patient Models 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Dalla-Man model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Intestinal glucose absorption . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Glucose subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2.1 Glucose kinetics . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2.2 Glucose renal excretion . . . . . . . . . . . . . . . . . . 37

3.2.2.3 Endogenous glucose production . . . . . . . . . . . . . . 37

3.2.2.4 Glucose utilization . . . . . . . . . . . . . . . . . . . . . 38

3.2.3 Subcutaneous insulin . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.4 Insulin system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.5 Subcutaneous glucose . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Hovorka model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Glucose absorption subsystem . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Glucose subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2.1 Glucose kinetics . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2.2 Glucose renal clearance . . . . . . . . . . . . . . . . . . 41

3.3.2.3 Glucose utilization . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 Insulin subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.4 Insulin actions subsystem . . . . . . . . . . . . . . . . . . . . . . 42

3.3.5 Subcutaneous glucose . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Subcutaneous glucose sensor . . . . . . . . . . . . . . . . . . . . . . . . . 42

Part II Publications and Results 45

Chapter 4 Publication 1: A Gain Scheduling Model Predictive Con-

troller for Blood Glucose Control in Type 1 Diabetes 47

Chapter 5 Publication 2: Feedforward-feedback multiple predictive con-

trollers for glucose regulation in type 1 diabetes 55

Chapter 6 Publication 3: Internal model sliding mode control approach

for glucose regulation in type 1 diabetes 67

ii



CONTENTS

Chapter 7 Publication 4: A robust sliding mode controller with internal

model for closed-loop artificial pancreas 77

Chapter 8 Publication 5: Wiener sliding-mode control for artificial pan-

creas: a new nonlinear approach to glucose regulation 89

Chapter 9 Publication 6: Hypoglycemia Prevention in Closed-Loop Ar-

tificial Pancreas for Patients with Type 1 Diabetes 105

Chapter 10 Publication 7: Detection and Prevention of Hypoglycemia in

Automated Insulin Delivery Systems for Type 1 Diabetes Patients 127

Part III Discussion and Conclusions 147

Chapter 11 General Discussion 149

Chapter 12 Conclusions and Future Work 159

12.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

12.2 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

12.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Bibliography 167

Appendices 171

Appendix A Smith Predictor Sliding Mode Closed-loop Glucose Con-

troller in Type 1 Diabetes 175

Appendix B Supplementary material 183

iii



CONTENTS

iv



Abbreviations

The following list provides the abbreviations that are frequently used throughout the

thesis text.

AP Artificial Pancreas

BG Blood Glucose

BLA Best Linear Approximation

CGM Continuous Glucose Monitoring

CHO Carbohydrates

CSII Continuous Subcutaneous In-

sulin Infusion

CV GA Control Variability Grid Analy-

sis

FF − FB Feedforward-Feedback

FRF Frequency Response Function

GS Gain Scheduling

GSC Gain Scheduling Control

GS −MPC Gain Scheduling Model Predic-

tive Control

IMC Internal Model Control

IMC − SMC Internal Model Control Sliding

mode Controller

LMPC Linear Model Predictive Control

MDII Multiple Daily Insulin Injections

MPC Model Predictive Control

MMPC Multiple Model Predictive Con-

trol

PID proportional-integral-derivative

PNLSS Polynomial Nonlinear State-

Space

SC Subcutaneous

SD Standard Deviation

SMC Sliding Mode Control

SP Smith Predictor

SP − SMC Smith Predictor Sliding Mode

Control

T1DM Type 1 Diabetes Mellitus

T2DM Type 2 Diabetes Mellitus

WM Wiener Model

WM − SMC Wiener Model Sliding Mode
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Chapter 1

Introduction

This chapter provides a brief background on the glucose regulation problem in diabetes,

introduces the objectives of the thesis and presents the structure of the thesis’s book.

1.1 Background

Diabetes is a chronic disease that is characterized by the fact that the body does

not produce or properly use insulin. Diabetes Mellitus is a long-term condition, which

results in elevated blood glucose levels as a consequence of the body’s failure to effec-

tively control the usage and storage of glucose. According to the International Diabetes

Federation (IDF) there are 366 million people with diabetes worldwide [1]. There are

two major types of diabetes: type 1 and type 2. Type 1 diabetes (insulin-dependent

diabetes mellitus) usually appears suddenly during childhood or adolescence. Type 2

diabetes (non insulin-dependent diabetes mellitus) comes on gradually, generally in

people aged over 40. Diabetes Mellitus is strongly associated with macro-vascular com-

plications, such as coronary, cerebral and peripheral vascular diseases, as well as with

micro-vascular complications like retinopathy, nephropathy and neuropathy. These long

term complications result in increasing disability, reduced life expectancy and enormous

health costs for virtually every society. In 2011, an estimated 4.6 million people died

from consequences of diabetes [1].

In type 1 diabetes (T1DM), which is insulin-dependent diabetes (IDDM), the pancreas
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cannot produce the necessary amount of insulin to control the glucose levels and, thus,

there is a control failure. In non-insulin dependent, or type 2 diabetes (NIDDM), the

pancreas is able to produce insulin, however, the secreted insulin is either not enough

or the body is unable to use the insulin properly (insulin resistance). Therefore, drug

therapy is needed to control the remaining functionality of the glucose regulation sys-

tem. In the case of T1DM patients, control can only be achieved with insulin therapy

due to pancreatic failure.

The intensive insulin therapy, with the goal of maintaining blood glucose levels close

to the normal range, proved to effectively delay the onset and slow the progression of

diabetic retinopathy, nephropathy, and neuropathy in patients with insulin-dependent

diabetes mellitus [2]. The current insulin therapy for T1DM patients is based on discrete

blood glucose measurements and multiple daily insulin injections (MDII) or a continu-

ous subcutaneous insulin infusion (CSII). The use of sensors and CSII pumps systems

in an open-loop combination has resulted in better clinical outcomes than conventional

MDII therapy [3].

Given the inability of current therapies to achieve satisfactory glycemic control, the

development of continuous glucose monitoring (CGM) sensors and the increasing use of

CSII pumps, the development of an artificial pancreas (a biomedical device performing

closed-loop control of blood glucose) is viewed as a promising solution for glycemic

control in T1DM. The artificial pancreas automatically delivers insulin to maintain

blood glucose levels within the desired range, prevents hypoglycemia, minimizes the

need for patient intervention in the therapy and gives higher flexibility for patients in

daily life (e.g. meal times and quantities, physical activity). By achieving good glycemic

control, the artificial pancreas will also reduce the occurrence and severity of diabetes

complications. The artificial pancreas has three main components: a glucose sensor, an

insulin pump, and a control algorithm linking between the sensor measurements and

the pump to calculate the required insulin input.

1.2 Motivation

Diabetes is one of the most serious health problems of our time. In addition to its

significant mortality rate, the direct healthcare costs of diabetes and its related compli-
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cations range from 2.5% to 15% of annual healthcare budgets worldwide [4]. Therefore,

from quality of life and economic perspectives, it is very important for diabetic patients

to regulate their blood glucose level tightly, keeping it within the acceptable range of

70-180 mg/dL [5], by using insulin therapy. Closed-loop insulin delivery by the artificial

pancreas gives hope to achieving the desired glycemic control in T1DM, resulting in less

long-term medical complications, as well as avoiding hypoglycemic and hyperglycemic

incidents.

The development of a closed-loop artificial pancreas has been a continuously growing

research topic for more than four decades. Different clinical and simulation studies have

demonstrated the feasibility of such an automated system, where several classical and

advanced control algorithms have been tested as possible candidates to close the con-

trol loop [6–11]. However, a closed-loop system is not yet commercially available, and

blood glucose control in T1DM is still a challenging problem in biomedical engineering.

Glucose regulation in T1DM encompasses several sources of errors and uncertainty that

convert the design of a control algorithm for the artificial pancreas into a very tough

task: (1) the inherent complexity of the insulin-glucose system which includes the pres-

ence of nonlinearities, and time-varying and patient-specific dynamics; (2) inaccurate

and noisy sensor measurements; (3) modeling errors and uncertainty; (4) time-delay in

glucose sensing and insulin delivery; (5) different sources of disturbance that affect the

glucose level, such as meal intake, stress and physical activities.

An adequate control algorithm must be capable of handling these physiological and

technical challenges while still providing acceptable performance. Currently, the main

challenges that the progress of the artificial pancreas faces are the development of a

reliable closed-loop control algorithm and the availability of a robust and accurate

glucose sensor [12–14].

1.3 Objectives

The main objective of the thesis is to design, validate and compare advanced model-

based control techniques for the closed-loop regulation of blood glucose in type 1 dia-

betes. The proposed control strategies, namely Model Predictive Control (MPC) and

Sliding Mode Control (SMC), are applied to complex nonlinear mathematical models
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that represent the physiological glucose regulation system in diabetic patients (virtual

patients). Mainly, the proposed control strategies will be focusing on the use of models

that are derived from input-output information generated from comprehensive phys-

iological models. First, large and reduced-order linear models are used, and then, a

nonlinear modeling approach is proposed to improve the control performance by using

a data-driven nonlinear model in the control algorithm design.

The designed control strategies will take into account most of the limitations observed

in the direct application of industrial control approaches to the problem of glucose reg-

ulation; the principles of biomedical engineering will be taken into account in order to

adapt and modify the structure of industrial controllers so as to be applicable to biomed-

ical control problems like diabetes. Therefore, each of the designed control algorithms

is a combination of two control techniques; MPC is combined with a gain scheduling

scheme to deal with system nonlinear gain, while SMC is used in a Smith predictor

structure to reduce the effect of system time-delay. The idea behind such ‘combined’

approaches is to make use of the advantages of each technique while reducing the effect

of their drawbacks.

Since the quality of model-based control highly depends on the accuracy of the used

model, obtaining an accurate, as good as possible, model is an essential step to achieve

the objective of the thesis. Therefore, other objectives of the thesis are:

• Assessment of the quality and the reliability of the linear modeling framework,

that is frequently used in closed-loop glucose regulation.

• Identification of a nonlinear control-oriented model that represents the glucose

regulation system more accurately than linear models, and consequently, improves

the control performance. Model identification is based on the available input-

output data of the patient (i.e. data-driven model).

• The development of a new sliding mode control law in which the Wiener model,

that consists of a linear dynamic part and static nonlinear part, is employed in

the mathematical formulation of the control law.
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• Testing the control algorithms under realistic conditions, in order to make the

simulation tests mimic, as close as possible, the real-life conditions of a diabetic

patient.

1.4 Organization of the Thesis

This thesis is organized in 12 chapters, based on the aforementioned compendium of

seven scientific publications:

Chapter 1 is an introductory chapter. The general background of the work, the re-

search motivation and the thesis objectives are outlined in this chapter.

In Chapter 2 an overview of the theoretical background is given, which forms the

basis of development of the thesis. The physiological background of diabetes mellitus

is provided to familiarize the reader with the subject. On the basis of that, the closed-

loop control algorithm and the patient mathematical modeling will be presented. Both

topics form the core of this thesis, and are two main research topics in the field of

artificial pancreas and automated glucose regulation.

In Chapter 3, the mathematical models that will be used to describe the diabetic

patient are presented. Two nonlinear first principle models are selected: the model de-

veloped by Dalla-Man and coworkers [15], and the model developed by Roman Hovorka

and his colleagues [16]. These are the most commonly used physiological models in the

artificial pancreas research in the past few years [6, 17, 18].

In Chapter 4 - Publication 1, a combination between multiple linear MPC and

gain scheduling (GS-MPC) scheme is designed and applied to a benchmark nonlinear

model (i.e. the Dalla-Man virtual patient). The controller is provided with asymmetric

penalties in the cost function, which penalizes hypoglycemia more than hyperglycemia

since the former is more life-threatening in short term. The idea of feedforward control,

that can be used to counteract the effect of known sources of disturbances (such as meal

intake in the glucose control problem) is also introduced in the chapter. The GS-MPC

proved to be more effective than stand-alone MPC in regulating the glucose levels; due

to the controller ability to deal with the nonlinear gain of the model.
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In Chapter 5 - Publication 2, the GS-MPC approach is designed for another nonlin-

ear model (i.e. the Hovorka virtual patient) which exhibits a higher level of nonlinearity,

and more realistic testing conditions are used to test the controller (e.g. time-varying

dynamics is considered).

In Chapter 6 - Publication 3, a nonlinear robust controller based on the vari-

able structure sliding mode control (SMC) is presented, while a simple linear model

is used to build the controller. The SMC controller is merged into a Smith Predictor

time-compensation structure (a special configuration of Internal Model Control). The

combined SP-SMC approach harvests the advantages of each control structure, while

reducing their drawbacks. The Dalla-Man model is used as a virtual patient. The con-

cepts and the use of external dynamic and static feedforward control are discussed in

the chapter. Also, the structure of the IMC Smith predictor and its working principles

are given in Chapter 6.

In Chapter 7 - Publication 4, the SP-SMC strategy is extended to a higher order

model to make it able to deal with the higher nonlinearity shown in the Hovorka virtual

patient.

In Chapter 8 - Publication 5, the linear modeling approach is replaced by a Wiener

block-oriented model. A new approach, including the identification protocol, the mathe-

matical development and the validation of the control algorithm, based on the nonlinear

Wiener model, is proposed.

In Chapter 9 - Publication 6 and Chapter 10 - Publication 7, the state of the

art in hypoglycemia detection and prevention techniques is reviewed. Hypoglycemia

is the most feared complication of insulin therapy, therefore, hypoglycemia prevention

should be listed among the primary goals of the closed-loop artificial pancreas. In order

to achieve this goal, different detection and prediction algorithms, alarms and safety

techniques are being developed to tackle the problem of hypoglycemia.

In Chapter 11, a general discussion is given on the obtained control and modeling

results.

Finally, Chapter 12 provides general conclusions on the work done, and summarizes

the major scientific contributions of the thesis. The chapter ends by highlighting the
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directions of future work.
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Chapter 2

T1DM: Control and Modeling

This chapter presents the elements involved in the glucose regulation problem in di-

abetes. First, the mechanism of glucose regulation in healthy persons is summarized.

Then, the differences between the diabetic patient and the healthy person are explained

in order to indicate the elements of the required control scheme. Finally, the previous

work performed in the area of glucose control, with respect to modeling and closed-

loop control, is briefly reviewed in order to provide the necessary background before

discussing the research completed in this thesis.

2.1 Glucose regulation

Comprehensive discussions on glucose metabolism and the complications associated

with glucose control can be found in specialized textbooks on physiology, endocrinology

and diabetes mellitus [20, 21]. This section gives a general summary so as to provide a

basic understanding of the main processes and hormones involved in glucose control.

The human body uses glucose as a primary source of energy. Glucose molecules are bro-

ken down within cells in order to synthesize Adenosine Triphosphate (ATP) molecules,

energy-rich molecules that drive numerous processes in living cells. Therefore, glucose

is the primary metabolite required for the body to function properly. Glucose molecules

are delivered to the cells by the bloodstream, either to be used as ATP or for energy

storage (depending on the target tissue). Therefore, to ensure a constant supply of
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Figure 2.1: Feedback in blood glucose regulation [19]

glucose to the cells, it is important that relatively constant glucose levels are present in

the bloodstream. In a healthy subject, blood glucose (BG) level is normally maintained

within a relatively narrow range (70-110 mg/dL) by complex negative feedback con-

trol systems that track changes in the body and activate mechanisms that reverse the

changes to restore body conditions to their normal levels. Negative feedback mecha-

nisms are essentially important in glucose regulation to guarantee the balance between

glucose entering the bloodstream and glucose being consumed by the body.

Glucose regulation is mediated primarily by the actions of two pancreatic hormones,

namely insulin and glucagon (Figure 2.1). These hormones are secreted by the endocrine

cells in the islets of Langerhans in the exocrine tissue of the pancreas. The β-cells

secrete insulin, while glucagon is secreted by the α-cells. When the blood glucose rises

to a high level (usually after a meal intake), the β-cells respond by secreting insulin.

Insulin metabolic effects include: (1) stimulation of body cells to increase their rate

of glucose uptake from the blood; (2) increase the cellular utilization of glucose as an

energy source; (3) stimulation of glycogenesis (formation of glycogen from glucose in
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liver and skeletal muscle cells); and (4) catalyze the fat synthesis from glucose in liver

cells and adipose tissue. These effects of insulin cause the blood glucose level to return

to the normal range.

On the other side, when blood glucose levels fall below normal (for instance, between

meals, in fasting conditions, due to exercise, or during starvation), insulin secretion

is inhibited and, at the same time, the α-cells of the pancreas respond by secreting

glucagon, another hormone that functions in the opposite direction of insulin. Glucagon

has the following effects (mainly on the liver cells): (1) stimulation of the breakdown of

glycogen (glycogenolysis) back to glucose, which is then released into the bloodstream,

preventing glucose levels from falling too low; (2) increase the breakdown of fats to

fatty acids and glycerol in the adipose tissue and, consequently, the release of these

substances into the bloodstream; and (3) stimulation of glucose synthesis in the liver

(from glycerol absorbed from the blood) and glucose release into the blood. These effects

cause blood glucose to increase to normal levels. Such feedback control actions of insulin

and glucagon maintain blood glucose within tight limits, guaranteeing a constant supply

of glucose to body tissues. In addition to insulin and glucagon, there are other hormones

that can influence blood glucose levels. The most important are epinephrine, cortisol,

and growth hormone. All of these are counter-regulatory hormones that work against

the action of insulin and can increase blood glucose levels.

2.2 Diabetes

Under normal conditions, glucose is by far the main stimulus for insulin secretion.

When blood glucose levels increase, insulin levels will increase as well, establishing a

classical negative feedback system that keeps the glucose level within a narrow range.

In Diabetes Mellitus, glucose metabolism is impaired by either lack of insulin secretion

or reduced sensitivity (i.e. increased resistance) of the cells to insulin.

Due to lack of insulin or insulin resistance, glucose cannot be efficiently utilized nor

stored by most cells of the body. As a result, blood glucose levels rise (i.e. hyperglycemia

occurs), and the cells utilization of fat and proteins as energy source increases leading

to the release of free fatty acids, cholesterol and phospholipids into the bloodstream.

The accumulation of these substances in blood is associated with damages, dysfunction
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and failure of various organs in the body. Sustained hyperglycemia is associated with

acute ketoacidosis, micro-vascular and macro-vascular diseases [20]. Ketoacidosis, due

to accumulation of ketons from fat and protein breakdown in the blood, can be life-

threatening if left untreated, leading to coma and death.

2.2.1 Types of Diabetes

Regarding the classification of the disease, there are two main types of diabetes:

Type 1 Diabetes Mellitus (T1DM): in T1DM, pancreatic β-cells are destroyed by an

erroneous autoimmune reaction in the body. Thus, insulin secretion is reduced to a very

low level (down to 10% of normal). At this production level, insulin cannot decrease

the blood glucose level. The blood glucose increases even more because of another

missing effect of insulin, namely the inhibition of the secretion of glucagon (which

stimulates the glycogen breakdown into glucose) when the blood glucose level is high.

The blood glucose level in T1DM patients can be as high as 300-1200 mg/dL, 8-10

times higher than the level in a healthy person. When glucose level goes above 180

mg/dL, the kidneys start to release glucose in the urine. The symptoms of T1DM

include tiredness, hunger and weight loss. Patients suffering from T1DM are dependent

on receiving external insulin doses because nothing is secreted. Therefore this type is

also called insulin-dependent diabetes mellitus (IDDM).

Type 2 Diabetes Mellitus (T2DM): in contrast to type 1 diabetes patients, in type 2

diabetes the pancreas is able to produce insulin. However, the secreted insulin is not

able to affect the cells of the body to increase their uptake of glucose. Thus, people

suffering from type 2 diabetes are insulin resistant. Over time, the number of β-cells

start to decrease due to overloading, and then, the type 2 diabetics should be treated

with drugs to increase the insulin sensitivity. If these drugs are not sufficient, external

insulin has to be injected like in T1DM. T2DM is the most common type of diabetes.

During the last two decades, the prevalence of diabetes has increased dramatically and

the disease is now a worldwide public health problem. Worldwide there are about 366

million people who are diabetics. The number is expected to rise to about 552 million by

year 2030 [1]. The disease and its complication had a cost of at least 465 billion dollars

in terms of healthcare expenses in 2011. Diabetes is among the ten-leading causes of
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death in the world. These are alarming facts that justify the need for research in this

area.

2.2.2 Current Treatment of Diabetes

Since the insulin-producing cells in T1DM are destroyed, the treatment of T1DM is

based on daily administration of external insulin. While the number, amount and tim-

ing of the insulin doses are adjusted according to the characteristics of each patient,

T1DM treatment can be classified, according to the insulin regime and the monitoring

(measurement) of blood glucose levels, in: Conventional Therapy (CT) and Intensive

Therapy (IT). The CT includes one or two daily insulin injections, self-monitoring of

glucose in blood or urine, and dietary control and exercise. Generally, this therapy does

not include daily adjustments of the insulin dose. On the other hand, the IT consists

of multiple insulin injections (three or more times a day), or insulin delivery through

a pump, and testing the blood glucose by pricking the fingers for blood six or more

times. The dose can be adjusted according to self-monitoring of glucose levels, diet and

anticipation of the exercise intensity.

The Diabetes Control and Complications Trial (DCCT) [2] studied the types of ther-

apy and demonstrated the benefits of intensive glycemic control in T1DM. The study

proved that microvascular and some macrovascular complications of T1DM could be

reduced by intensive glycemic control. However, the increased risk of hypoglycemia as-

sociated to the intensive insulin therapy has limited the clinical use of such a therapy,

because of the imperfections of available treatment regimes [22]. The two main modal-

ities currently used for insulin administration are MDII and CSII pumps. In fact, all

the current treatments still strongly depend on the patient’s daily decisions about the

insulin therapy, while many factors should be considered (e.g. current blood glucose

level, blood glucose target, insulin sensitivity, meal time and composition and physical

activities). This treatment regime can add strict limitations on the patients’ lifestyle

and is prone to errors. As a result, many diabetic patients do not, or are not able to

maintain tight blood glucose control, subjecting themselves to significant short and

long term complications.
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Therefore, one major problem with current treatment is that there is no interaction

between the glucose monitoring system and the insulin pump to automate the treatment

in a stable and robust way. Due to the problems of current treatment, several attempts

to develop an automated closed-loop control system of blood glucose have been made

in the past and are still undergoing today.

2.2.3 Glucose Monitoring

Typically, glucose is monitored using a glucose meter, which is a small portable device.

Testing glucose level with a traditional meter requires a person to take a small blood

sample by pricking the finger, place the sample on a test strip, and insert the strip in the

device. The existing meters either use electrochemical or optical reflectometry principles

to measure the glucose level [8]. Most of these glucose meters employ an enzyme-based

(glucose oxidation) electrochemical method for glucose detection. The test should be

repeated multiple times daily. The current glucose meters provide instant (discrete)

information, and don’t consider the dynamics (e.g.variations in levels and trends) of

glucose between tests, limiting their ability in achieving the desired glycemic control.

The DCCT recommended a strict monitoring of blood glucose levels to keep the glu-

cose concentration within the safest range possible. Such monitoring is possible by using

continuous glucose monitoring (CGM) devices: sensor technologies that provide con-

tinuous measurements of glucose levels, and emit reading every 1-5 minutes [3]. Most

CGM devices consist of a sensor that is usually inserted into the subcutaneous tissue,

a monitor to display the information, and a transmitter that transmits the sensor data

to the monitor. CGM can provide information to: (1) detect hypoglycemic and hyper-

glycemic events as well as wide fluctuations in glucose levels (glycemic variability), and

(2) predict impending hypoglycemia [23]. CGM devices can help patients and doctors

to make adjustments to therapy and facilitate the development of therapeutic strategies

that take into account the real-time dynamics of the blood, such as the time response

of glucose as a function of meal intake and/or insulin dose and the rate of change of

the measured glucose signal.
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2.2.4 Insulin pumps

The CSII pump is the most accurate way to mimic normal insulin secretion because

basal insulin rates can be programmed in multiple segments throughout a 24-hour

period [24]. Patients can handle metabolic changes related to daily conditions (e.g.

eating, exercise, illness, varying work schedule, etc.) by modifying insulin availability

on an hourly basis. The CSII pump is a small device that patients wear outside their

body, and can deliver insulin to the patient at a continuous rate. The device consists

of a mechanical pump, a disposable container for the insulin within the pump, and a

disposable infusion set consisting of a cannula and soft thin tubing used to connect

the cannula and the insulin container. The cannula at the end of the tubing can be

easily inserted with a single needle-stick under the skin to deliver the insulin to the

subcutaneous tissues.

The amount of insulin a patient needs varies depending on the time of the day, food

intake and activity level. A steady (basal) amount of insulin is needed throughout

the day for normal bodily functions, and an additional dose is needed when eating or

exercising. With traditional insulin injections, it is hard to ensure that the basal rate

is being maintained during the day and that the basal insulin is not being consumed in

eliminating the effect of meals. On the other hand, insulin pumps can be programmed

according to each patient conditions, and can provide the two different amounts of

insulin needed (Figure 2.2). The pump is programmed to deliver a small predetermined

basal rate of insulin continuously to the patients to ensure a constant glucose range

between meals and while patients sleep. The second type of insulin delivery is not a

regular amount, but instead a bolus dose of fast-acting insulin to counter a patient’s

current condition. This dose is usually given at meal time, but can also be given if the

patient’s glucose level is too high.

Modern pumps can accurately track the remaining insulin-on-board (IOB) for safer

use of bolus insulin. IOB is an empirical method used to estimate how much insulin

is still active from previous doses. IOB is represented by decay curves of insulin ac-

tion with different durations (2-8 hours). Insulin pumps include the IOB option that

helps calculating the next required insulin dose while reducing the risk of overdosing

and hypoglycemia [25]. New insulin pumps can also estimate the prandial (meal-time)
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insulin required for a meal [24]. The dose is calculated by the patient entering to the

pump the blood glucose reading at the time and the expected carbohydrate intake. The

pump calculates how much previous prandial insulin is still active, and provides the

patient with a suggested dose which the patient may activate or skip. Although CSII

pumps have several advantages over the MDII therapy, in the sense of convenience,

easy bolusing, accurate carbohydrate counting and precise dose adjustment, the pumps

are still operating in open-loop, requiring the patient’s intervention to set the basal

infusion rate and deliver meal-time boluses based on their blood glucose level.figure9h.png (PNG Image, 550 × 299 pixels) http://www.endotext.org/diabetes/diabetes17/figures/figure9h.png

1 of 1 10/31/2012 10:14 PM

Figure 2.2: Administration of fast-acting insulin by CSII - gray background rep-

resents the physiologic insulin levels seen in healthy persons. The basal insulin component

can be altered based on changing basal insulin requirements [24].

Currently, the use of CSII pumps is increasing, and a number of CGM devices have

received regulatory approval. Although the CGM sensors and CSII pumps systems still

have some problems, their use in an open-loop combination resulted in better clinical

outcomes than the MDII therapy [3, 13]. Therefore, ongoing efforts are aimed at closing

the control loop by linking continuous blood glucose measurement with automatically

controlled insulin pumps, with the final goal of developing an artificial pancreas [23].
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2.3 Closed-Loop Control in Diabetes

2.3.1 The Artificial Pancreas

As previously mentioned, in healthy subjects glucose is regulated through a closed-

loop feedback system. In T1DM, the control loop is broken due to the absence of

insulin. Therefore, a natural way of replacing the broken loop is by using an external

closed-loop control system for glucose regulation. Currently, the inexistence of an outer

‘artificial’ loop to replace the natural one makes diabetic patients regulate their blood

glucose in an open-loop manner, using the available systems of glucose monitoring and

insulin delivery. Although the treatment is supervised by medical staff, mishandled

(uncontrolled) situations often appear, resulting in hyperglycemia and hypoglycemia

which are both dangerous, with the latter being more life-threatening in the short

term, leading, for example, to loss of consciousness and coma. Therefore, arguably, the

most complex component of blood glucose regulation is the control domain.

In the case of glucose regulation by a closed-loop system, also known as an artificial

pancreas, the glucose levels are monitored continuously, which results in a continuous

insulin infusion calculated by a computing algorithm, without the need for patient input

(Figure 2.3). The artificial pancreas has three main components [6, 11]: a glucose sensor,

a pump for insulin, and a control algorithm which is able to determine ‘automatically’

the required insulin dose under real-life conditions (e.g. in the presence of meal and

exercise, or during the night).

Compared to the currently used insulin therapy, the artificial pancreas has the potential

to achieve: (1) lower glycemic variability; (2) less hypoglycemic risk; (3) less pain from

pricking the skin to check glucose and deliver insulin; and (4) less overall patient effort

[23] with a higher flexibility in lifestyle. However, till now no commercially available

artificial pancreas system does exist. With the significant improvements in the CGM

sensor and CSII pumps components, the development of an adequate control algorithm

to close the loop is vital for the progress of the artificial pancreas.
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2.3.2 Control Algorithms

To be able to close the loop, and thus make the glucose control scheme an automatic one,

a set of decision rules (i.e. algorithm) for insulin administration, mainly based on the

monitored glucose level, is required. Several attempts have been made to design such

a control algorithm using a wide spectrum of approaches in control theory. Several

reviews have already extensively discussed the glucose control algorithms developed

since 1960s up to the present time (see for example [6–11, 17, 18, 26–28]). For this

reason, only a brief overview of the existing closed-loop control algorithms will be given

in this chapter, indicating the most relevant ones.
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Figure 2.3: Closed-loop Artificial Pancreas - Upper: Intuitive sketch, Lower: System

block diagram

Attempts to close the control loop started in 1960s by Kadish in 1964, who used an

on-off system with intravenous insulin and glucose (or glucagon) infusion based on con-
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tinuous glucose measurements in the diabetic patient. In 1974, Albisser developed one

of the first control equations based on curve fitting. This algorithm was later modified

and formed the basis for the algorithm used in Biostator, the first commercial device for

automated glucose control [8]. The Biostator also used the intravenous (IV) route for

glucose monitoring and insulin delivery (i.e. IV-IV route), where the control algorithm

calculates the insulin dose using a sigmoidal glucose-insulin response curve [8]. The

adopted IV-IV approach has the disadvantage of being highly invasive, and it can not

be used on a daily basis. The development of fast-acting insulin analogues (e.g. insulin

lispro, insulin aspart, or insulin glulisine) and less (or minimally) invasive glucose sen-

sors have made more feasible the use of the subcutaneous route (SC-SC) which is much

less invasive than the IV-IV route, since insulin delivery and glucose measurements are

done at the subcutaneous tissues.

Subsequently, various control algorithms have been proposed, ranging from classical ap-

proaches such as Proportional-Integral-Derivative (PID), advanced control algorithms

like Model Predictive Control (MPC), run-to-run, Iterative Learning Control (ILC),

adaptive control, robust H∞ and Sliding Mode Control (SMC) approaches, to soft-

computing algorithms like fuzzy and neural network control. Most of these control

algorithms have been tested in simulations [6, 17, 18], while some approaches have

been tested on animals and even on diabetic patients [29–35].

The PID control strategy is one of the most widely used algorithms in the field of glu-

cose regulation. In its simple formulation, the control law of PID depends on the output

error (i.e. difference between measured and desired glucose level) and its proportional-

integral-derivative behavior. Such an algorithm is preferred because it is based on math-

ematical calculations and no detailed knowledge of the patient’s behavior is required.

Also, the PID algorithm shows similarity with the multiphase insulin response of the

natural β-cells [34]. In [34] a PID algorithm was tested in preliminary clinical closed-

loop trial, using the subcutaneous control route. Subsequent modifications have been

adopted in the algorithm, such as the use of an Insulin feedback term to minimize the

administration of insulin based on an estimation of the insulin in blood [36]. In a recent

clinical study [33], the insulin feedback has been used to improve the PID controller

response in avoiding hypoglycemia after breakfast, and the desired performance was

achieved. However, the controller is still not completely able to avoid hypoglycemia.
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In the PID control, the integral action causes the amount of delivered insulin to be

much higher than needed, resulting in overdosing and increased risk of hypoglycemia

(especially in postprandial conditions) [7, 37]. Thus, the PD (Proportional-Derivative)

control algorithm is expected to perform better than PID in avoiding low glucose levels

[7]. Another disadvantage of PID control is its unsatisfactory performance in regulating

systems with time-delay. Thus, the physiological and technological time-delays in the

SC-SC route will result in a poor control performance for the PID algorithm.

The limitations of PID control and other classical approaches have motivated the study

of solutions based on more advanced control approaches, such as model predictive

control (MPC). Most recent studies and reviews suggest that MPC algorithms are

especially well suited for a closed-loop artificial pancreas [6, 7, 11, 14, 18, 38]. As

its name indicates, MPC is a model-based control approach that employs a model of

the patient to predict future glucose levels. To calculate the insulin dose, the MPC

algorithm solves an optimization problem by minimizing a quadratic cost function at

every sampling time. Generally, the cost function includes terms that penalize the set-

point error (i.e. the difference between predicted future blood glucose level and the

desired reference trajectory), and the insulin delivery rate. The main advantage of this

control algorithm, over pure reactive feedback control like PID, is its ability to predict

future glucose excursions and, therefore, to be able to act in an anticipatory manner

to avoid hypoglycemic and hyperglycemic episodes. Another advantage of MPC is its

ability to deal with constraints on the inputs and outputs of the system.

MPC performance depends largely on the ability of the model to accurately predict

future glucose levels based on the current state and available measurements. Several

configurations of MPC have been studied, based on linear and nonlinear models of the

glucose regulation system [6, 18]. MPC is frequently implemented with other techniques

(e.g. parametric programming [39, 40], iterative learning control [41], gain scheduling

[42, 43]), to enhance its overall performance. MPC strategies have been tested in dif-

ferent clinical studies [30–32, 44, 45]. The studies concluded that MPC algorithms are

well suited for glucose control under fasting and overnight conditions in T1DM patients.

The studies showed that the artificial pancreas is superior to open-loop control in pre-

venting overnight hypoglycemia, where significant reduction in overnight hypoglycemia

episodes was observed with closed-loop control in comparison with standard therapy.
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Also, during closed-loop period, the blood glucose level was within the target glycemic

range for a longer time period, with reduced frequency of low glucose values.

As mentioned above, PID and MPC are by far the most common used control algorithms

[6, 7, 11, 18]. In this thesis, MPC and SMC control strategies will be designed and tested

in simulations, using mathematical models to represent the diabetic patient. More into

the details, variations of the MPC algorithm (namely, multiple linear MPC with gain

scheduling, and nonlinear MPC), and robust control based on SMC algorithms are

proposed in the thesis. While MPC is frequently used in the literature, SMC is presented

as an alternative to PID control algorithms. The SMC approach is as simple as PID

in its formulation, yet presenting higher level of robustness, and giving an explicit

relation between the control algorithm and the patient model. The general concepts of

both MPC and SMC algorithms will be briefly presented in the following subsections.

Finally, since hypoglycemia is the major adverse effect of insulin therapy, hypoglycemia

prevention is often considered among the primary goals of the closed-loop artificial pan-

creas. In order to achieve this goal, different detection and prediction algorithms, alarms

and safety techniques are being developed to tackle the problem of hypoglycemia. Tech-

niques like insulin-on-board (IOB) [46, 47], insulin feedback [36], meal detection algo-

rithms [46, 48] and hypoglycemia alarms [49, 50] have been also developed and tested

within the structure of the artificial pancreas control scheme to improve the system per-

formance and reduce the risk of life-threatening hypoglycemia. Reviews about the state

of the art in hypoglycemia detection and prevention techniques are given in Chapters

9 and 10 of the thesis.

2.3.3 Model Predictive Control

Model predictive control (MPC) is a control strategy that has developed considerably

over the past few years. MPC is fundamentally based on a model of the system to be

controlled. The main purpose is to keep an output y(t) at a reference value or setpoint,

r(t). A model is used to predict the future system outputs, based on the past and

current values and on the proposed optimal future control actions (Figure 2.4). These

control actions are calculated by optimizing a cost function where the future tracking

error is considered, as well as the system constraints, if any. MPC employs a receding

25



2. T1DM: CONTROL AND MODELING

horizon strategy; a repeated displacement of the time horizon. At each time step, only

the first control signal in the calculated sequence is applied to the system, with the rest

of the sequence being discarded. The prediction horizon (Hp) of MPC determines how

far ahead the model predicts the output, while the control horizon (Hc) determines

how far ahead the algorithm determines the moves of the control action (Figure 2.4).

Typically, the control horizon is chosen to be smaller than the prediction horizon, and

the manipulated variable remains constant for the remaining Hp−Hc sampling instants.

Figure 2.4: Principle of Model Predictive Control [51]

MPC has many virtues that make it a competitive candidate for the blood glucose

control problem. (1) The prediction property of MPC allows for anticipatory and careful
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insulin delivery to avoid large fluctuations in blood glucose levels. (2) The applicability

of MPC to systems with long time-delays can be useful to overcome the physiological

delays associated to the subcutaneous route [38]. (3) Compensation for dead time,

which exists in the glucose problem also (i.e. delay in CGM tubing, and time course

between the insulin infusion and the glucose response). (4) Implicit introduction of

feedforward control action to compensate for known sources of disturbance affecting the

system, such as meal intake. (5) Constraints handling on system inputs and outputs;

such constraints can be very critical when dealing with the human body, and allow for

satisfying hardware specifications of the insulin pump. These advantages of MPC over

classical feedback control, along with its proved stability and robustness [52–54], have

promoted the use of MPC in the field of automated insulin delivery. Different MPC

schemes have been used in artificial pancreas research, where the applicability of such

a control strategy is demonstrated, see for instance [14, 55–60].

For the design of a linear MPC, a linearized approximation (i.e. model) of the nonlinear

system (i.e. virtual patient) should be obtained. A general representation of a dynamic

nonlinear system is given by:

ẋ(t) = f1(x(t), u(t), v(t), d(t))

y(t) = f2(x(t), u(t), v(t), d(t)) (2.1)

where, in the glucose control problem, x(t) is the states vector (which represents the

memory of the system, and includes the common dynamics present in the different

outputs of the system), u(t) is the insulin input, v(t) is the meal intake disturbance

(measurable disturbance), d(t) is the unmeasured disturbance (e.g. sensor errors), and

y(t) is the measured glucose level (see equation 3.20 in section 3.4). When implementing

the MPC algorithm, state-space realization is the most convenient since it can be easily

extended to multivariable and nonlinear systems [61]. Therefore, the MPC is designed

using the state-space representation of the linear system. The discrete linearized state-

space (prediction model) obtained from the nonlinear virtual patient’s model can be

written as:

x(k + 1) = Ax(k) +Buu(k) +Bvv(k) + Ed(k)

y(k) = Cx(k) +Dvv(k) +Ddd(k) (2.2)
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where An×n, Bn×1, En×1, C1×n, and D1×1 are the matrices of the discrete linear model,

n is the model order, x(k), u(k), y(k), v(k), and d(k) are the discrete linear equivalents

of the variables in (2.1).

The objective of the predictive control system is to bring the predicted output vector,

Y (k) = [ŷ(k + 1) ŷ(k + 2) . . . ŷ(k +Hp)]
T , as close as possible to the desired setpoint

(reference signal). This objective is then translated into an optimization process to find

the ‘best’ control moves sequence such that an error function between the reference

and the predicted output is minimized. To do so, the control action u(k) is governed

by the optimization of a cost function, penalizing predicted output deviations and

control signal along predetermined prediction horizons. In this thesis, the proposed

MPC strategy (see Chapters 4 and 5) employs an asymmetric cost function and soft

output constraints. The used cost function, J , is defined as:

min
∆u

J =

Hp∑

j=1

‖wy(ŷ(k + j|k)− r(k + j))‖2 +

Hc∑

j=1

‖w∆u(∆u(k + j − 1))‖2 + qε2 (2.3)

Subject to:

umin ≤ u(k) ≤ umax

∆umin ≤ ∆u(k) ≤ ∆umax

ymin − εΩmin ≤ y(k) ≤ ymax + εΩmax (2.4)

where ŷ(k + j|k) is the j-step prediction of the output based on data up to instant k,

r(k+ j) is the reference glucose level, ∆u is the input increment (∆u(k) = u(k)−u(k−
1)), Hp and Hc are the prediction and control horizons, w∆u and wy are weights on the

control action increments and the error between y(k) and r(k) respectively, ε is a slack

variable used for output constraints softening, q is the weight on the slack variable ε,

umin/max, ∆umin/max and ymin/max are the constraints imposed on the input, input

increments, and output respectively, and Ωmin, Ωmax are the relaxation variables.

Hard output constraints may cause infeasibility in the optimization problem (e.g. be-

cause of unpredicted disturbances, or model mismatch), therefore, ε is defined for output

constraints softening [62]. The weight q on ε penalizes the violation of the constraints.

The larger q with respect to input and output weights, the more the constraint violation

is penalized.
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The cost function in (2.3) is asymmetric; the lower and upper output constraints are

subjected to unequal relaxation bands, and therefore, the constraints have different lev-

els of softness. The unequal softness levels are achieved by introducing the nonnegative

relaxation variables Ωmin, Ωmax which represent the concern for relaxing the corre-

sponding constraint [51]; the larger Ω, the softer the constraint. The reason for using

such an asymmetric cost function is that, in diabetes therapy, the performance require-

ment of a controller has an asymmetric nature, as hypoglycemic events are much less

tolerable than hyperglycemia. Since hypoglycemia is viewed to be more life-threatening

in short term, the control algorithm should be more aggressive in avoiding hypoglycemic

events than in correcting hyperglycemic events. Satisfying such requirement with the

use of a conventional cost function, that imposes the same weight on hypoglycemic

and hyperglycemic events, would be difficult. Therefore, an asymmetric cost function

MPC is used to minimize the hypoglycemic risk (especially in the postprandial period).

The constrained optimization problem in (2.3) and (2.4) is solved using a quadratic pro-

gramming (QP) solver. The QP solver qpdantz in MATLAB c© uses the Dantzig-Wolfe’s

active set method to find the optimum.

2.3.4 Sliding mode control

Sliding mode control (SMC) is a robust and simple procedure to synthesize controllers

for linear and nonlinear processes based on the principles of variable structure control

(VSC). The controller structure changes in response to the changing state of the system

in order to obtain the desired response. The SMC algorithm includes the following steps:

(1) choosing a sliding (switching) surface, s(t), along which the controlled system can

slide to its desired final value. The sliding surface divides the phase plane into regions

where the function s(t) has different signs. (2) By using an appropriate control law: (a)

make the system reach the switching surface (reaching phase), and (b) keep the system

state trajectory on the switching surface for the subsequent period (sliding phase). The

structure of the controller is intentionally altered as its state crosses the surface in

accordance with the prescribed control law.

The biggest advantage of SMC is its robustness and insensitivity to variation in system

parameters, external disturbances and modeling errors [63, 64]. This can be achieved by

forcing the system onto the desired surface, and subsequently maintaining the system
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Figure 2.5: Sliding Mode Control

state trajectory on this surface. Once reached the surface, the system is insensitive to

external disturbance and variations in parameters. Such control strategy is suitable for

different types of systems due to its ability to deal with modeling errors, nonlinearities,

time-varying behavior and disturbances.

The first step in SMC design is to define the surface s(t), along which the system can

slide to its desired final value. In general, s(t) represents the system behavior during

the transient period, and therefore, it must be designed to represent the desired system

dynamics (e.g. stability and tracking performance). Here, the sliding surface presented

in [65, 66] is used, which is an integral-differential error function:

s(t) =

(
d

dt
+ λ

)n ∫ t

0
e(τ)dτ (2.5)

where n is the system order, e(t) is the tracking error and λ is a tuning parameter,

which helps to shape s(t). This term is selected by the designer. This surface is often

used because it provides a good performance in practical applications of sliding mode

controllers [64, 67].
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The SMC control law contains two parts: a continuous part, uCfb(t), and a discontinuous

part, uDfb(t). The total feedback control action, ufb(t), is given by:

ufb(t) = uCfb(t) + uDfb(t) (2.6)

uCfb(t) is responsible for maintaining the controlled system dynamics on s(t), which

represents the desired closed-loop behavior. The method normally used to generate

the equivalent SMC law uCfb(t) is the Filipov construction of the equivalent dynamics

[66]. The method consists in satisfying the sliding condition, and substituting it into

the system’s dynamic equations to obtain the control law uCfb(t). The nonlinear part

uDfb(t) is used to bring the system onto the sliding surface, and it represents the

switching element in the SMC control law. Typically, uDfb(t) is designed on the basis

of a relay-like function (e.g. the signum function).

The control objective is to ensure that the controlled variable is driven to its reference

value. This means that, in the stationary state, e(t) and its derivatives must be zero.

This requirement is achieved by satisfying the following sliding condition:

ds(t)

dt
= 0 (2.7)

After selecting s(t), attention must be drawn to the design of the control law that drives

the controlled variable to its reference value, and satisfies the sliding condition (2.7).

The formulation of first and second order SMC control laws is presented in more details

in Chapters 6 and 7.

In this thesis, the SMC strategy is designed in a Smith predictor structure, which

has good time-delay compensation features. The Smith predictor (SP) is a special

configuration of Internal model control (IMC), where the system model becomes an

explicit part of the controller, and the time-delay can be compensated for. The resulting

SP-SMC combination is a robust, simple control strategy with time-delay compensation

features. The SMC part provides robustness and clear relation between model and

controller parameters. The SP part makes it possible to avoid the increased complexity

of the SMC that would result from time-delay approximation (i.e. increased controller

order). Also, the SP structure is used due to its good properties in reducing the effect

of system time-delay. The design of the SP-SMC and the formulation of the control

laws are described in more details in Chapters 6 and 7.
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2.4 Models of the Glucose Regulation System

Motivated by the need to study the physiological system and analyze its response to a

wide range of control and disturbance signals without subjecting the real patient to risk,

several mathematical models have been developed to describe the glucose regulation

system in T1DM [11]. These models are essential for testing and validating the artificial

pancreas in simulation studies (i.e. in silico) before putting it into clinical use with

real patients. Also, these models are critical for the design of the closed-loop control

algorithms (for both clinical and in silico trials), since most of the currently proposed

controllers are model-based, where the artificial pancreas regulates the glucose level

based on the glucose measurements and the mathematical model of the patient that is

used to design the controller.

Two classes of models are employed in the field of glucose regulation: physiological

models and empirical models. Physiological models are first principle models, in the

form of differential and algebraic equations, based on existing knowledge and hypotheses

regarding the underlying physiological system. Since the 1960s [8], several physiological

models with different structures and degrees of complexity are being used to describe

the glucose regulation system in T1DM, mainly in terms of insulin-glucose and meal-

glucose relationships. Among the models that have been frequently used to represent the

diabetic patient in artificial pancreas studies are: the Meal model [15, 68], Hovorka model

[16, 55], the minimal model [69], Fabietti model [70], and Sorensen model [71]. Extensive

reviews on available models can be found in [8, 11, 17]. Some of these models have

been implemented in simulation environments designed to support the development of

the closed-loop artificial pancreas [72, 73]. Physiological models are better suited for

simulation of the system and representing the virtual patient for testing and validating

controllers. However, these models are of limited usability in control and prediction

algorithms design, due to their complex structure and the high number of parameters

involved. From a practical perspective, it is very difficult (or even impossible) to identify

the parameters in the structure based on the available input-output data of each patient.

On the other hand, empirical models, or data-driven models, develop a functional re-

lationship between input (e.g. insulin and meal) and glucose based on empirical ob-

servations (i.e. collected patient data) by using system identification methods. These
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models do not provide insight into the physiological system, but they explicitly address

inter-patient variability since the data-driven model is specific to each individual pa-

tient’s dynamics. Empirical models are more suitable for real-time parameter estimation

and updating due to their simple structure in comparison with complex physiological

models. Therefore, the implementation of control algorithms based on these models

will be easier as the model structure is easily identifiable from the available patient

data [17]. To represent the diabetic patient for control and prediction purposes, a wide

range of empirical models has been developed based on linear and nonlinear system

identification techniques, such as autoregressive moving average (ARMA) linear regres-

sion, autoregressive moving average with exogenous input (ARMAX) linear regression,

nonlinear Wiener model identification [74], subspace-based identification, fuzzy logic,

Volterra series and artificial neural networks (ANN) models (see reviews in [17, 75, 76]).

In this thesis, two nonlinear physiological models are used to represent the diabetic

patients. Namely, the model developed by Hovorka and coworkers [16, 55, 77], and the

model proposed by Dalla-Man and coworkers [15, 68, 78] are employed in the simulation

studies to generate the data for the identification of control-relevant empirical models,

and to test the proposed control algorithms under different simulation scenarios. The

next chapter provides a detailed discussion on these models.

2.5 Challenges in Glucose Control

As previously mentioned, the closed-loop control of blood glucose has been a topic of

continuous research for nearly 50 years. The technological improvements in subcuta-

neous glucose sensing and insulin delivery have improved the glycemic control results

in T1DM patients and brought the artificial pancreas closer to reality. However, until

now, only a limited number of artificial pancreas prototypes has been developed and

tested in clinical trials, and there are still various challenges and difficulties that justify

the research on advanced control algorithms:

• The complexity of the glucose regulation system, the presence of nonlinearities,

time-varying and patient-specific dynamics. Due to the inherited nonlinearity

of the glucose regulation system, the used algorithms and models need to be
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complex and nonlinear in order to resemble the real physiological process [10].

Time-varying insulin sensitivity (i.e. the body’s ability to respond to insulin)

is believed to be a major challenge for both modeling and control. Therefore,

obtaining an accurate model to represent the system is believed to be a very

critical aspect.

• The need for control algorithm individualization (i.e. tuning for each patient),

due to the fact that large inter-patient and intra-patient variability exist among

diabetic patients.

• The presence of significant sources of disturbances that affect glucose levels such

as meals, physical activity and stress.

• The time-delay associated to the subcutaneous route (SC-SC), where the control

algorithm should deal with delays for the administrated insulin to take effect and

for the actual blood glucose level to be measured. These time-delays can be time-

varying, depending on the patient conditions, making the situation even more

complicated.

• The noise, accuracy and reliability issues in the CGM devices.

• The insulin effect: insulin is the input controlled by the control algorithm and it

decreases the glucose level. Once delivered, insulin can not be removed from the

body. Till now, there is no other action to counteract the effect of insulin and

reduce the risk of hypoglycemia. The use of glucagon infusion has been proposed

as a possible solution in limited studies [32].

The above-mentioned challenges indicate that the design of a robust closed-loop control

algorithm, that can handle different sources of error and disturbance, is an essential

step for the progress of the artificial pancreas. Intensive research and validation efforts

are still required before a fully developed artificial pancreas system might be used by

diabetic patients in their daily life.
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Chapter 3

Virtual Patient Models

3.1 Introduction

Preclinical testing trial is a critical step to evaluate the performance and robustness of

closed-loop control algorithms. Recently, in silico environments are being increasingly

used for control algorithm testing [72, 73, 79], and have shown ability to replace the

animals’ trials step in the development of clinical tools, while providing realistic results

and covering a wider range of the variability observed among diabetic population [72].

These environments have as main building block a model that describes the T1DM

patient (virtual subject). Many models have been investigated for in silico studies;

these models range from simple linear models (e.g. Ackerman model), to nonlinear

models (Bergman, and De Gaetano models), and comprehensive mathematical models

(e.g. Cobelli, Sorensen, Hovorka, and Dalla-Man models) [8, 17]. Detailed analysis and

simulations of different patient models’ responses can be found in [17]. In this chapter,

the models used to represent the diabetic patient, as well as the model of subcutaneous

glucose sensor are described in detail.

3.2 Dalla-Man model

The Meal model, developed by Dalla-Man and coworkers in [15, 68], consists of a network

of glucose and insulin compartments linked by the control of glucose on insulin secretion
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and by the action of insulin on glucose utilization and endogenous production. Later

on, some modifications have been introduced into the Dalla-Man model in order to

simulate the metabolic conditions in T1DM [78]; the β-cells subsystem in the original

models, which is inactive in the case of diabetes, is replaced by the subcutaneous insulin

subsystem to model the dynamics of external insulin infusion in patients with T1DM

[78, 80].

The model has been implemented in a simulation environment (UVa T1DM simulator)

that has been accepted by the Food and Drug Administration (FDA) as a substitute for

animals’ trial in preclinical testing of closed-loop Artificial Pancreas control algorithms

[72]. In addition to the patient model, the simulator incorporates two other models:

a sensor-related errors model, to account for sensor noise, and measurements’ errors

[72, 81], and a model for the subcutaneous insulin pump. The UVa simulator has been

used to develop several control algorithms [6, 18, 40, 42, 58, 82, 83]. A brief description of

the model units and subsystems is given in the following (adapted from [15, 58, 68, 78]):

3.2.1 Intestinal glucose absorption

Glucose intestinal absorption is modeled by a three-compartment model:

dQsto1(t)

dt
= −kgriQsto1(t) +m(t)

dQsto2(t)

dt
= −kemptQsto2(t) + kgriQsto1(t)

dQgut(t)

dt
= −kabsQgut(t) + kemptQsto2(t) (3.1)

Qsto(t) = Qsto1(t) +Qsto2(t)

Ra(t) =
fabskabsQgut(t)

BW

where Qsto is the amount of glucose in the stomach (Qsto1 in solid, Qsto2 in liquid

phase), Qgut is the glucose amount in the intestine, kgri is the rate of grinding, kabs is

the rate constant of intestinal absorption, fabs is the fraction of intestinal absorption

which actually appears in the plasma, m(t) is the amount of glucose (mg/min) from

digested meal, BW is the body weight, Ra is the glucose rate of appearance in plasma

and kempt is the rate constant of gastric emptying which is a time-varying nonlinear

function of Qsto [68].
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3.2 Dalla-Man model

3.2.2 Glucose subsystem

3.2.2.1 Glucose kinetics

A two-compartment model is used to describe glucose kinetics:

dGp(t)

dt
= −k1Gp(t) + k2Gt(t) + EGP (t) +Ra(t)− Uii − E(t)

dGt(t)

dt
= k1Gp(t)− k2Gt(t) + Uid(t) (3.2)

G(t) =
Gp(t)

VG

where Gp and Gt (both in mg/kg) are glucose amounts in plasma and rapidly equili-

brating tissues, and in slowly equilibrating tissues, respectively, EGP is the endogenous

glucose production, E(t) is the renal excretion, Uii and Uid are the insulin-independent

and insulin-dependent glucose utilizations, respectively, and k1 and k2 are the rate con-

stants, VG is the distribution volume of glucose and G(t) (mg/dL) is the plasma glucose

level.

3.2.2.2 Glucose renal excretion

The renal excretion represents the glucose fraction which is eliminated by the kidneys,

when glucose level exceeds a certain threshold ke2:

E(t) = max{0, ke1(Gp(t)− ke2)} (3.3)

where ke1 (min−1) is the renal filtration rate.

3.2.2.3 Endogenous glucose production

EGP comes from the liver, where a glucose reservoir, as glycogen, exists. EGP is

inhibited by high levels of glucose and insulin:

EGP (t) = max{0, kp1 − kp2Gp(t)− kp3Id(t)} (3.4)

where kp1 is the extrapolated EGP at zero glucose and insulin, kp2 is liver glucose

effectiveness, kp3 is a model parameter describing the insulin action on the liver, and
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Id is the delayed insulin signal, that is given as:

dI1(t)

dt
= −kiI1(t) + kiI(t)

dId(t)

dt
= −kiId(t) + kiI1(t) (3.5)

where I(t) is plasma insulin level and ki is the rate parameter accounting for the delay

between insulin signal and insulin action.

3.2.2.4 Glucose utilization

Glucose utilization consists of two components: an insulin-independent glucose utiliza-

tion Uii, which represents the glucose uptake by the brain and erythrocytes, and an

insulin-dependent component Uid, which depends nonlinearly on glucose level in the

tissues:

Uid(t) = Vm(X(t))
Gt(t)

Km +Gt(t)
(3.6)

dX(t)

dt
= −p2uX(t) + p2u(I(t)− Ib) (3.7)

where Vm is a linear function of the interstitial fluid insulin (i.e. the remote insulin

signal), X(t), which is a function of plasma insulin I(t). Ib is the basal insulin level,

and p2u is the rate constant of insulin action on peripheral glucose utilization. The

insulin-independent glucose utilizations Uii is assumed constant and equal to Fcns [15].

3.2.3 Subcutaneous insulin

To account for the subcutaneous insulin infusion in diabetic patients, a two compart-

ment model is introduced to describe the subcutaneous insulin kinetics:

dS1(t)

dt
= u(t)− (ka1 + kd)S1(t),

dS2(t)

dt
= kdS1(t)− ka2S2(t) (3.8)

where u(t) (pmol/kg/min) represents the flow of administrated insulin, S1 represents

the polymeric insulin, and S2 is the compartment of monomeric insulin in subcutaneous

tissues, kd is the degradation constant of polymeric insulin, ka1 and ka2 are absorption

rate constants.
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3.3 Hovorka model

3.2.4 Insulin system

The insulin coming from the subcutaneous compartments enters the bloodstream and

is degraded in the liver and in the periphery as follows:

dI`(t)

dt
= −(m1 +m3)I`(t) +m2Ip(t)

dIp(t)

dt
= −(m2 +m4)Ip(t) +m1I`(t) + ka1S1(t) + ka2S2(t) (3.9)

I(t) =
Ip(t)

VI

where Ip and I` are the insulin masses in plasma and liver, respectively, VI is the

distribution volume of insulin and m1,m2,m3,m4 are rate parameters.

3.2.5 Subcutaneous glucose

Finally, to model the subcutaneous glucose dynamics, a first order system, with a rate

constant ksc, is used to describe the relation between plasma glucose, G(t), and the

subcutaneous glucose concentration, Gsc(t):

dGsc(t)

dt
= −kscGsc(t) + kscG(t) (3.10)

3.3 Hovorka model

The nonlinear model developed by Hovorka and coworkers [16, 55] is the second model

selected to represent the virtual diabetic patient. It is a physiological model validated

with experimental data. The model consists of several subsystems; a subsystem of

glucose kinetics, a subsystem of carbohydrate absorption, a subsystem of insulin actions,

and a subsystem of subcutaneous insulin absorption and kinetics. The insulin actions

describe the effect of insulin on glucose transport, removal and endogenous production,

and are described by the insulin sensitivities. The model shows a good trade-off between

simplicity and accuracy, and it is being used in clinical and in silico trials for the

artificial pancreas research [31, 37, 40, 44, 74, 84, 85]. A summary of the model’s

subsystems and equations is given in this section (adapted from [55, 73]).
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3.3.1 Glucose absorption subsystem

A two-compartments model, with identical transfer rate constants, is used to de-

scribe the carbohydrates (CHO) breakdown and absorption as glucose into the blood-

stream.The gut absorption rate, UG(t) (mmol/min), is given by:

UG(t) =
MGAG t e

−t/tmax,G

t2max,G

(3.11)

where MG is the amount of CHO digested, AG is the CHO bioavailability of the meal,

and tmax,G is the time-of-maximum appearance rate of glucose in the accessible glucose

compartment (see equation 3.12 below).

3.3.2 Glucose subsystem

3.3.2.1 Glucose kinetics

The glucose kinetics is represented by a two-compartments system:

dQ1(t)

dt
= −F c

01(t)− x1(t)Q1(t) + k12Q2(t)− FR(t) + UG(t) + EGP0(1− x3(t))

dQ2(t)

dt
= x1(t)Q1(t)− (k12 + x2(t))Q2(t) (3.12)

G(t) =
Q1(t)

VG

where Q1(t) and Q2(t) represent the masses of glucose in the accessible (where mea-

surements are made) and non-accessible compartments, k12 represents the transfer rate

constant from the non-accessible to the accessible compartment, VG is the distribu-

tion volume of the accessible compartment, G(t) is the plasma glucose concentration

and EGP0 represents the endogenous glucose production extrapolated to the zero in-

sulin concentration. F c
01(t) is the total non-insulin-dependent glucose consumption, and

FR(t) is the renal glucose clearance above the glucose threshold of 9 mmol/L (about

160 mg/dL).
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3.3 Hovorka model

3.3.2.2 Glucose renal clearance

The glucose fraction eliminated from the blood by the kidney is defined as:

FR(t) =

{
0 if G(t) < 9 mmol/L

0.003(G(t)− 9)VG if G(t) ≥ 9 mmol/L
(3.13)

3.3.2.3 Glucose utilization

The total non-insulin-dependent glucose flux (corrected for the ambient glucose con-

centration) is defined as:

F c
01(t) =

{
f01G(t)

4.5 if G(t) < 4.5 mmol/L
f01 if G(t) ≥ 4.5 mmol/L

(3.14)

3.3.3 Insulin subsystem

The subcutaneous absorption of insulin is described by a two-compartments system:

dS1(t)

dt
= u(t)− S1(t)

tmax,I
,

dS2(t)

dt
=
S1(t)

tmax,I
− S2(t)

tmax,I
(3.15)

where u(t) represents the administration (bolus and infusion) of insulin, tmax,I is the

time-to-maximum insulin absorption, and S1(t), S2(t) are the insulin masses in the

accessible and nonaccessible subcutaneous compartments. The insulin absorption rate

(i.e. appearance of insulin in plasma), Iex(t), is given by:

Iex(t) =
S2(t)

tmax,I
(3.16)

Thus, the plasma insulin concentration, I(t), is described by:

dI(t)

dt
=
Iex(t)

VI
− keI(t) (3.17)

where ke is the fractional elimination rate from plasma, and VI is the insulin distribution

volume.
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3.3.4 Insulin actions subsystem

Plasma insulin concentration has an effect on glucose transport from plasma to tissues,

hepatic glucose production and peripheral glucose disposal. These actions are modeled

as follows:

dx1(t)

dt
= −ka1x1(t) + ka1SIT I(t)

dx2(t)

dt
= −ka2x2(t) + ka2SIDI(t) (3.18)

dx3(t)

dt
= −ka3x3(t) + ka3SIEI(t)

where x1(t) represents the effects of insulin on glucose distribution/transport, x2(t)

represents the effect on glucose disposal and x3(t) is the effect on endogenous glucose

production. ka1, ka2, and ka3 are the deactivation rate constants, and SIT , SID, and

SIE are insulin sensitivities for transport, disposal and endogenous glucose production.

3.3.5 Subcutaneous glucose

At steady state, the subcutaneous glucose concentration Gsc(t) is highly correlated

with the plasma glucose G(t). However, in the dynamic state, it follows the changes

in plasma glucose with some delay. Again, a first order model is used to describe the

subcutaneous glucose kinetics [73]:

dGsc(t)

dt
= − 1

tsc
(Gsc(t) +G(t)) (3.19)

where tsc is the transfer time constant. In this thesis, a tsc = 10 min is used for the

Hovorka virtual patients.

3.4 Subcutaneous glucose sensor

In order to simulate more realistically the behavior of a diabetic patient who uses an

artificial pancreas, it is necessary to consider, beside the glucose level in the subcu-

taneous tissues, the measurement errors related to the subcutaneous sensor. For this
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3.4 Subcutaneous glucose sensor

purpose, the model developed in [81] is used to describe the sensor-related errors. Thus,

the CGM signal, y(t) is given as:

y(t) = Gsc(t) + ε(t) (3.20)

ε(t) = ξ + µ sinh

(
σ(t)− γ

β

)
(3.21)

σ(t) = 0.7(σ(t− 1) + ν(t)) (3.22)

where ε(t) is a non-white sensor error generated using an autoregressive moving average

(ARMA) time series model. The ARMA model is driven by ν(t) which is assumed to be

white noise with zero mean and unity covariance. The model developers in [81] assume

that the sensor errors are not normally distributed. Therefore, the nonlinear Johnson

transformation in (3.21) is used to bias the distribution of the errors generated in (3.22)

from normal. ξ, µ, β and γ are the parameters of Johnson distribution [81]. Note that

Gsc(t) in (3.20) is the subcutaneous glucose level obtained from Dalla-Man (3.10) or

Hovorka (3.19) virtual patients.
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Abstract 

This paper presents a control strategy for blood glucose (BG) level regulation in type 1 diabetic 
patients. To design the controller, model-based predictive control scheme has been applied to a 
newly developed diabetic patient model. The controller is provided with a feedforward loop to 
improve meal compensation, a gain-scheduling scheme to account for different BG levels, and an 
asymmetric cost function to reduce hypoglycemic risk. A simulation environment that has been 
approved for testing of artificial pancreas control algorithms has been used to test the controller. 
The simulation results show a good controller performance in fasting conditions and meal 
disturbance rejection, and robustness against model-patient mismatch and errors in meal 
estimation. 
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Abstract 

Type 1 diabetic patients depend on insulin therapy to maintain blood glucose levels within safe 
range. The idea behind the “Artificial Pancreas” is to mimic, as close as possible, the functions of the 
natural pancreas in glucose sensing and insulin delivery, by using closed-loop control techniques. 
This work presents a model-based predictive control strategy for blood glucose regulation in diabetic 
patients. The controller is provided with a feedforward loop to improve meal compensation, a gain 
scheduling scheme to improve the controller performance in controlling the nonlinear glucose–
insulin system, and an asymmetric cost function to reduce the hypoglycemic risk. Simulation 
scenarios with virtual patients are used to test the designed controller. The obtained results show a 
good controller performance in fasting conditions and meal disturbance rejection, and robustness 
against measurements errors, meal estimation errors, and changes in insulin sensitivity. 
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Abstract: 

Patients with type 1 diabetes require insulin therapy to maintain blood glucose levels within safe 
ranges since their pancreas is unable to complete its function. The development of a closed-loop 
artificial pancreas capable of maintaining normoglycemia during daily life will dramatically improve 
the quality of life for insulin-dependent diabetic patients. In this work, a closed-loop control strategy 
for blood glucose level regulation in type 1 diabetic patients is presented. A robust controller is 
designed using a combination of internal model and sliding mode control techniques. Also, the 
controller is provided with a feedforward loop to improve meal compensation. A simulation 
environment designed for testing the artificial pancreas control algorithms has been used to 
evaluate the controller. The simulation results show a good controller performance in fasting 
conditions and meal disturbance rejection, and robustness against model–patient mismatch and 
meal estimation errors. 
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Abstract 

The study presents a robust closed-loop sliding mode controller with internal model for blood 
glucose control in type-1 diabetes. Type-1 diabetic patients depend on external insulin delivery to 
keep their blood glucose within near-normal ranges. Closed-loop artificial pancreas is developed to 
help avoid dangerous, potentially life-threatening hypoglycemia, as well as to prevent complication-
inducing hyperglycemia. The proposed controller is designed using a combination of sliding mode 
and internal model control techniques. To enhance postprandial performance, a feedforward 
controller is added to inject insulin bolus. Simulation studies have been performed to test the 
controller, which revealed that the proposed control strategy is able to control the blood glucose 
well within the safe limits in the presence of meals and measurements errors. The controller shows 
acceptable robustness against changes in insulin sensitivity, model–patient mismatch, and errors in 
estimating meal’s contents. 
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Abstract 

Type 1 diabetic patients need insulin therapy to keep their blood glucose close to normal. In this 
paper an attempt is made to show how nonlinear control-oriented model may be used to improve 
the performance of closed-loop control of blood glucose in diabetic patients. The nonlinear Wiener 
model is used as a novel modeling approach to be applied to the glucose control problem. The 
identified Wiener model is used in the design of a robust nonlinear sliding mode control strategy. 
Two configurations of the nonlinear controller are tested and compared to a controller designed 
with a linear model. The controllers are designed in a Smith predictor structure to reduce the effect 
of system time delay. To improve the meal compensation features, the controllers are provided with 
a simple feedforward controller to inject an insulin bolus at meal time. Different simulation 
scenarios have been used to evaluate the proposed controllers. The obtained results show that the 
new approach outperforms the linear control scheme, and regulates the glucose level within safe 
limits in the presence of measurement and modeling errors, meal uncertainty and patient variations. 
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1. Introduction

The current chapter addresses the problem of hypoglycemia in type 1 diabetes from
biomedical and control engineering points of view. It gives a general introduction to the
artificial pancreas system, and the risk of hypoglycemia in closed-loop insulin treatment.
Then, it provides a review on the state of the art in hypoglycemia control, and the recent
approaches in dealing with hypoglycemia in closed-loop artificial pancreas systems. Next,
different control techniques that can be used to minimize the risk of hypoglycemia and
improve the control outputs are presented.
Since the Diabetes Control and Complications Trial (DCCT), tight glycemic control has been
established as the control objective in the treatment of patients with type 1 diabetes mellitus
(T1DM) (DCCT Research Group (1993)), except if some contraindication exists. However,
there still lacks a universal, efficient and safe system able to normalize the glucose levels of
patients. The intensive insulin therapy required to achieve the tight glycemic control, based
on the injection of basal and bolus insulin to reproduce its physiological secretion, has as
counteraction an increase in the risk of significant and severe hypoglycemia with all their
consequences. Therefore, hypoglycemia is considered as one of the major limiting factors in
achieving tight glycemic control in T1DM (Cryer (2008)).
With the inability of conventional therapy to achieve satisfactory glycemic control, and the
development in continuous glucose monitoring (CGM) systems and the increasing use of
insulin pumps, the idea of developing an artificial pancreas is viewed as the ideal solution
for glycemic control in T1DM (Bequette (2005); Hovorka et al. (2006); Kumareswaran et al.
(2009)). The artificial pancreas is an automated closed-loop system that maintains blood
glucose levels within the desired range and prevents hypoglycemia, while minimizing or
eliminating the need for patient intervention. The artificial pancreas replaces the β-cells
functions in glucose sensing and insulin delivery. It consists of three main components
(Figure 1): a glucose sensor to measure glucose concentration, a pump for insulin delivery,
and a closed-loop control algorithm to bridge between the glucose measurements and the
dose of insulin to be delivered. As other medical devices, the architecture of closed-loop
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artificial pancreas should include strict safety measures implemented as safety module or
supervision system, to evaluate the performance of the control algorithm and apply fault
detection techniques (Doyle III et al. (2007)).

Feedback
controller Patient

G lucose
target

insulin
Blood

glucose

Feedforward
controller Meal

Pump

CGM

Supervision
System

Fig. 1. Artificial pancreas components with patient in the loop. Control algorithm may use
feedback or feedforward-feedback control loops

Closed-loop control of blood glucose has been a subject of continuous research for more than
40 years, however, till now no commercially available product does exist. The continuous
subcutaneous insulin infusion (CSII) pumps are being widely used, and a number of CGM
systems have received regulatory approval (Kumareswaran et al. (2009)). Although the
sensors and pumps systems still have some limitations, their use in an open-loop combination
resulted in better clinical outcomes over conventional injections therapy (Klonoff (2005);
Kumareswaran et al. (2009)). Thus, the primary limitations to develop such an artificial
pancreas are the development of reliable closed-loop control algorithms, and the availability
of robust and precise glucose sensors. However, recent research in the development of the
artificial pancreas suggests that types of the automatic glucose control system are likely to
come to market in the near future.

1.1 Patient modeling
The artificial pancreas automatically regulates the blood glucose level based on the glucose
measurements, the insulin infusions and in model-based control approaches, on the
mathematical insulin-glucose model (diabetic patient model) used to design the controller.
Also, these models are essential for testing and validating the artificial pancreas in simulation
studies (i.e. in-silico) before putting it into clinical use with real patients. Thus, one essential
task in the development of artificial pancreas is to obtain a model of T1DM patient, which can
help in the development of a closed-loop control system.
Several models with different structures and degrees of complexity are being used to describe
the glucoregulatory system - mainly as insulin-glucose and meal-glucose relationships - in
T1DM. Most of these are first principle models represented by differential and algebraic
equations and based on existing knowledge and hypotheses regarding the underlying
physiological system. Among the models that have been frequently used to represent the
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diabetic patient in artificial pancreas studies are: the Meal model (Dalla Man et al. (2006;
2007)), Hovorka model (Hovorka et al. (2004; 2002)), the minimal model (Bergman et al. (1979)),
and Sorensen model (Sorensen (1985)). Extensive reviews on available models can be found
in Chee & Fernando (2007) and Cobelli et al. (2009). Some of these models have been
implemented in simulation environments designed to support the development of the
closed-loop artificial pancreas (Kovatchev et al. (2009); Wilinska et al. (2010)).
Due to the complex nature of the insulin-glucose system, different empirical models have
been proposed to relate insulin input to glucose response (see for example Eren-Oruklu et al.
(2009b); Finan et al. (2009)). Empirical models develop a functional relationship between
insulin and glucose based on empirical observations (i.e. collected patient data). These models
do not describe the physiological model, but they explicitly address inter-patient variability
since the data-driven model is specific to individual patient dynamics. Empirical models are
more suitable for real-time parameter estimation and updating due to their simple structure
in comparison with complex first order models.

1.2 Control problems
The feasibility of closed-loop artificial pancreas systems and their advantage over
conventional treatment has been proved in several clinical studies (Atlas et al. (2010);
Clarke et al. (2009); Hovorka et al. (2010); Steil et al. (2011; 2006); Weinzimer et al. (2008)),
and a wide spectrum of control algorithms has been proposed to close the control loop,
including classical and modern control strategies. Many reviews on closed-loop algorithms
are available, see for example (Bequette (2005); Chee & Fernando (2007); Doyle III et al. (2007);
El-Youssef et al. (2009); Takahashi et al. (2008)).
However, blood glucose control in T1DM is still one of the difficult control problems to be
solved in biomedical engineering. In addition to the inherent complexity of glucoregulatory
system, which includes the presence of nonlinearities, and time-varying and patient-specific
dynamics, there exist other problems, such as noisy measurements, limitations of the models
used to develop the control algorithms, as well as the limitations of the subcutaneous route
used for glucose sensing and insulin delivery (e.g. technological and physiological delays and
subcutaneous tissues dynamics). The aforementioned challenges make it very difficult to find
a general and reliable solution to the nonlinear problem of glycemic control. Therefore, the
design of a robust closed-loop control algorithm is an essential step for the progress of the
artificial pancreas.
For closed-loop artificial pancreas system to be optimal and replicate the normal insulin
secretion, the insulin therapy should respect the fact that hypoglycemia is not a naturally
occurring episode in T1DM. Also, hypoglycemia is believed to be more dangerous in short
term than hyperglycemia. Therefore, in order to achieve tight control while not substituting
the problem of hyperglycemia for the life-threatening hypoglycemia, the insulin therapy
in T1DM should be optimized so that it reduces the risk of hyperglycemic events in both
frequency and magnitude, without provoking significant or severe hypoglycemia as a result
of excessive or ill-timed insulin infusion.

2. Hypoglycemia in closed-loop artificial pancreas

Hypoglycemia is the most common complication of insulin therapy in T1DM and
continuously limits the efforts to improve glycemic control. Therefore, hypoglycemia
prevention should be unavoidably considered among the main objectives in the development
of the closed-loop artificial pancreas systems. Severe hypoglycemia episodes are a
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well-known cause of death in diabetic patients, and are more commonly seen during the
night than during the day. Given that the first generations of the artificial pancreas are not
expected to achieve complete regulation of the glucose levels during the 24 hours period,
first generations of the artificial pancreas might be focusing on critical aspects like preventing
hypoglycemia episodes during night (Hovorka et al. (2010)).
Currently, the vast majority of closed-loop artificial pancreas works focuses on the
achievement of tight control during daily life conditions (i.e. 24 hours control), and
therefore addresses both hyper- and hypoglycemia in fasting and postprandial conditions.
Various strategies are employed in these works to avoid fasting, postprandial and nocturnal
hypoglycemia. Mostly, the control algorithms use changes in the target blood glucose to adjust
the doses of insulin to prevent hypoglycemia (i.e. higher target glucose level during night
and postprandial periods) (Eren-Oruklu et al. (2009a); Marchetti et al. (2008); Weinzimer et al.
(2008)). In other works, hypoglycemia prediction algorithms were tested, and short-term
suspension of insulin pump was used as safety approach when hypoglycemia is predicted
(Lee & Bequette (2009)). Also, variations in insulin sensitivity during the day (due to the 24
hours circadian cycle in insulin sensitivity), have been considered in the design of artificial
pancreas control algorithms, and used to adjust the basal insulin requirements during the day
(Garcia-Gabin et al. (2009); Steil et al. (2003); Wang et al. (2009)).
Another strategy used to avoid hypoglycemia is the double hormone closed-loop system,
which uses glucagon infusion in response to low glucose levels. In T1DM, insulin
deficiency is often accompanied by the loss of glucagon secretory response to hypoglycemia.
Furthermore, insulin therapy causes even more degradation in the functionality of other
counterregulatory hormones (Briscoe & Davis (2006)), and consequently, results in higher
possibility for hypoglycemic risk. Different artificial pancreas studies have demonstrated that
glucagon infusion significantly reduces the risk of insulin-induced hypoglycemia in T1DM
(Castle et al. (2010); El-Khatib et al. (2009; 2010); Ward et al. (2008)).

2.1 Overnight hypoglycemia control
Overnight closed-loop insulin delivery has received great interest because it addresses
the critical problem of nocturnal hypoglycemia. Furthermore, prevention of nocturnal
hypoglycemia and achieving good control overnight can help in improving the quality
of glycemic control during the day (Hovorka et al. (2010)) (e.g. starting the day with
acceptable glucose levels). A number of clinical and in-silico studies attempts to deal with the
hypoglycemia prevention - mainly nocturnal hypoglycemia - as the primary control objective.
In (Wilinska et al. (2009)), a manual closed-loop insulin delivery system was employed during
night period using model predictive control (MPC) algorithm and CGM measurements (CGM
readings were provided to the MPC by medical staff), and aimed at regulating glucose level
overnight to avoid nocturnal hypoglycemia. In (Hovorka et al. (2010)), the system was tested
in a clinical study with children and adolescents. Earlier version of this MPC algorithm was
tested in previous clinical study to evaluate its control and prediction performance during
fasting conditions (Shaller et al. (2006)). An automated closed-loop insulin delivery system
was tested in a multinational clinical trial (Bruttomesso et al. (2009); Clarke et al. (2009)). The
system used a personalized MPC algorithm developed in (Magni et al. (2007)). The system
was developed completely in-silico and then tested in the clinical trial.
The studies concluded that the MPC algorithm is well suited for glucose control under fasting
and overnight conditions in T1DM patients. The studies showed that the artificial pancreas
is superior to open-loop control in preventing overnight hypoglycemia where significant
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reduction in overnight hypoglycemia episodes was observed with closed-loop control in
comparison with standard therapy. Also, during closed-loop period, the blood glucose level
was within the target glycemic range for a longer time period, and the frequency of low
glucose values was reduced.

2.2 Hypoglycemia alarm systems
Beside control algorithms, several algorithms for hypoglycemia detection and prediction
are proposed as alarm systems to avoid hypoglycemia. The progress in CGM systems
has made it possible to develop such real-time algorithms to reduce the hypoglycemic
risk. These algorithms can be used to detect occurring hypoglycemia or warn about
a pending hypoglycemic episode. The algorithms are based mainly on a combination
of CGM data and a set of defined threshold of glucose and glucose rate of change.
Different estimation and prediction approaches (e.g. linear and statistical prediction,
Kalman filter optimal estimation, time series, etc.) have been proposed to develop these
algorithms (Buckingham et al. (2009); Cameron et al. (2008); Hughes et al. (2010); Palerm et al.
(2005); Sparacino et al. (2007)). Nguyen et al. (2009) used a specialized sensor (Hypoglycemia
monitor) for nocturnal hypoglycemia detection, based on bayesian neural networks approach.
The sensor measures specific physiological parameters continuously trying to detect the
hypoglycemic events. In Skladnev et al. (2010), a data fusion approach was used to enhance
the hypoglycemia alarm of CGM systems. The CGM information (data and alarms) was fused
with autonomic nervous system responses that were detected by the specialized Hypoglycemia
monitor. The data fusion method was able to improve nocturnal hypoglycemia alarms, and
reduced the number of undetected hypoglycemic events.
Hypoglycemia prediction/detection algorithms are usually coupled with specific supporting
actions to improve their efficiency in preventing hypoglycemia. Different actions have
been proposed, such as gradual insulin attenuation (Hughes et al. (2010)), pump suspension
(Buckingham et al. (2009); Lee & Bequette (2009)), glucose infusion (Choleau et al. (2002)), and
audible (Buckingham et al. (2009); Weinzimer et al. (2008)) or visual (Hughes et al. (2010))
alarms to alert the patient about actual or impending hypoglycemia. The statistical and linear
hypoglycemia predictors with pump suspension algorithm proposed in (Buckingham et al.
(2009)) were used in a clinical study, and proved to be effective in preventing hypoglycemia
without provoking rebound hyperglycemia after the suspension of the pump.

3. Hypoglycemia prevention by control algorithm improvement

To improve the performance of the closed-loop system, and significantly reduce the risk of
hypoglycemia, the control system of the artificial pancreas can be augmented with different
control techniques. Such techniques can be introduced either by modifying the controller
structure (i.e. internal), or by implementing the additional technique separately (i.e. external
component). The increased cost or complexity that could be added to the system by
incorporating such techniques can be justified by the improved performance of the system
in dealing with life-threatening hypoglycemia. Both external and internal techniques have
been tested and proved to provide satisfactory results, and to outperform the stand-alone
closed-loop controllers.

3.1 Model predictive control
Several studies have concluded that model predictive control (widely known as MPC) is
expected to be the core of closed-loop control algorithm in the near future artificial pancreas.
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Therefore, MPC is discussed in some details in this chapter. MPC is a control strategy that
has developed considerably over the past few decades. Basically, MPC is based on a model
of the system to be controlled. The model is used to predict the future system outputs,
based on the past and current values and on the proposed optimal future control actions.
These actions are calculated by optimizing a cost function where the future tracking error
is considered, as well as the system constraints if any (Maciejowski (2002)). MPC employs a
receding horizon strategy; repeated displacement of the time horizon, while only applying the
first control signal in the calculated sequence at each time step, with the rest of the sequence
being discarded.
MPC has many virtues that make it a competitive candidate for the blood glucose control
problem: (1) The prediction nature of MPC allows for anticipatory and careful insulin delivery
to avoid large fluctuations in glucose levels. Such feature is important for avoiding overdosing
and hypoglycemic risk. (2) The ability of MPC to handle constraints on system inputs and
outputs is a major advantage of MPC over other control strategies. These constraints are very
critical when dealing with the human body, and allow to satisfy hardware specifications of
the insulin pump. (3) The applicability of MPC to systems with time delays can be useful
to overcome the physiological and technological delays associated with the subcutaneous
route. (4) MPC allows the introduction of feedforward control action to compensate for
known sources of disturbance affecting the system, such as meal intake. These advantages
of MPC over other control strategies have promoted the use of MPC in the field of insulin
delivery. Different MPC schemes are being used in artificial pancreas research, where the
applicability of such control strategy has been demonstrated in in-silico studies (see for
instance (Abu-Rmileh et al., 2010a; Dua et al., 2009; Grosman et al., 2010; Hovorka et al., 2004;
Lee & Bequette, 2009; Magni et al., 2007; Parker et al., 1999)), and clinical trials as mentioned
earlier.

3.2 Unequal penalization
Closed-loop control schemes can be designed so that unequal penalties are used upon
hyperglycemia and hypoglycemia. The reason for such unequal penalties is that in diabetes
therapy, the performance requirement of a controller has asymmetric nature, as hypoglycemic
events are much less tolerable than hyperglycemia. Since hypoglycemia is believed to be more
life-threatening in the short term, the control algorithm should be more aggressive in avoiding
hypoglycemic episodes than in correcting hyperglycemic events.
MPC is one control strategy that permits to incorporate this kind of unequal penalization.
To achieve such requirements of asymmetrical response, an asymmetric cost function is
used in the optimization algorithm in MPC. The asymmetric cost function imposes different
weight on hypoglycemia than on hyperglycemia, in contrast to conventional cost functions
that impose the same weight on hypoglycemic and hyperglycemic events. As stated before,
MPC calculates the insulin control action uk, by optimizing a quadratic cost function,
penalizing predicted output deviations and control signal along some prediction horizons.
The asymmetric cost function has the form:

min
Δu

J =
Np

∑
j=1
‖wy(ŷ(k + j|k)− r(k + j))‖2 +

Nu

∑
j=1
‖wΔu(Δu(k + j|k)‖2 + qε2 (1)
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Subject to the following constraints:

umin ≤ uk ≤ umax

Δumin ≤ Δuk ≤ Δumax

ymin − εΦmin ≤ yk ≤ ymax + εΦmax (2)

where ŷ(k + j|k) is the j-step prediction of the output on data up to instant k, r(k + j) is the
target glucose level, Δu is the insulin input increment, Np and Nu are the prediction and
control horizons, and wΔu, wy are weights on the insulin increments and the error between
y(k) and r(k) respectively, ε is a slack variable used for output constraints softening (to avoid
infeasibility problems in the optimization), q is the weight on the slack variable ε, umin/max,
Δumin/max and ymin/max are the constraints imposed on the input, input increments, and
output respectively, and Φmin, Φmax are the relaxation variables.
The cost function in equation (1) is asymmetric in the sense that the lower and upper
output constraints are subjected to unequal relaxation bands and therefore, the constraints
have different levels of softness. The unequal softness levels could be achieved by
introducing the nonnegative relaxation variables Φmin, Φmax which represent the concern
for relaxing the corresponding constraint; the larger Φ, the softer the constraint. MPC with
asymmetric cost function was tested with different diabetic patient models, and showed
an excellent ability to minimize the hypoglycemic events, especially in postprandial period
(Abu-Rmileh & Garcia-Gabin (2010a;b); Kirchsteiger & Del Re (2009)). Kirchsteiger & Del Re
(2009) give a comparison between symmetric and asymmetric cost function MPC’s, where the
latter shows superior performance in avoiding hypoglycemia.
In Dua et al. (2009), a multi-programming MPC is used, and provided with different
techniques to avoid hypoglycemia. In the multi-programming approach, the optimization
problem in MPC is solved by searching for optimal solution within some valid regions
(search regions) defined by the constraints and the parameters of the cost function. The
main advantage of the multi-parametric MPC is that it provides the same performance as
traditional MPC with lower computational load. The controller is provided with asymmetric
cost function, and higher priority is given to the satisfaction of constraints imposed on
hypoglycemia. Another type of asymmetric performance is presented in Grosman et al. (2010)
to minimize the undesirable hypoglycemic and hyperglycemic events. The proposed MPC
uses a glycemic zone rather than a fixed glucose level as a target (Zone-MPC). Three different
zones are defined (permitted, lower, and upper zones), where the control objective is adjusting
the insulin input to maintain glucose level within the permitted zone.

3.3 Gain scheduling
Gain scheduling (GS) is a well-known technique for controlling nonlinear systems by linear
controllers. Briefly, GS is one of the simplest forms of adaptive control that employs different
control structures in the different operating ranges of the nonlinear system. In glucose
control, GS was inspired from the natural pancreas where the level of insulin activity varies
between different glycemic ranges; being dominant in the hyperglycemic range, in balance
with glucagon action in normoglycemia, and almost inactive in the hypoglycemic range where
glucagon is dominant.
From an engineering perspective, a simple nonlinearity test (e.g. steady state insulin-glucose
relationship) can be used to show that insulin has a nonlinear effect on blood glucose in
different glycemic ranges (see Figure 2). Linear control algorithms are intended to control
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linear systems, and they usually offer poor results when used to control nonlinear systems
in regions far from where the linear model used was obtained. Therefore, nonlinear control
or multiple linear controllers should be applied to handle each glycemic range separately
and mimic the natural pancreas secretions. The use of multiple linear controllers by gain
scheduling approach is discussed here, while nonlinear control is addressed later in this
chapter.
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(a) Smooth nonlinearity (Meal model)
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Fig. 2. Nonlinear steady-state insulin-glucose behavior in different models of diabetic
patients

The idea behind using the GS strategy in artificial pancreas is to use multiple linear controllers
to deal with the system nonlinear behavior and maintain the ability of handling each glycemic
range separately according to its dynamics. Since most of the closed-loop control strategies
use insulin only, the control algorithm should provide the different levels of insulin activity in
different glycemic ranges by employing the GS technique. GS scheme requires the assignation
of scheduling parameters that can be used to select the suitable linear controller for each range.
The GS strategy overcomes the limitations of the linear control approach which is only valid in
the neighborhood of a single operating point, and provides a performance similar to nonlinear
controllers with lower complexity.
A simplified diagram of the GS control is shown in Figure 3. As it can be seen in the figure, the
measured glucose level is used as a scheduling variable, and also delivered to the controllers
box as feedback signal. The controllers receive the desired glucose level (glucose target)
to calculate the required insulin based on the difference between target glucose and CGM
measurements, and the glycemic range defined by the GS selection. A control approach
combining linear MPC with GS was tested in (Abu-Rmileh & Garcia-Gabin (2010a;b)), and
proved to enhance the performance of the closed-loop controller in avoiding hypoglycemia.

3.4 Meal announcement
Regulation of blood glucose level after a meal is one of the main challenges for the fully
developed artificial pancreas. Meals usually lead to a significant glucose flux into the blood
stream. If feedback control is used to eliminate the meal effect, the controller reacts only after
a rise in glucose has occurred and been detected by the CGM sensor. Elevated glucose level
can lead to insulin overdosing, resulting in postprandial hypoglycemia (Steil et al. (2006)).
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Fig. 3. Gain scheduling control scheme; the CGM output is delivered to the controllers box as
a feedback signal, and to GS to select the controller to be used.

To avoid the limitation of purely reactive feedback control action and improve the controller
response against meal effect, feedforward control (i.e. meal announcement) can be used.
Feedforward is a well-known control technique used to eliminate the disturbance effect
when the source of disturbance can be measured. In blood glucose control, the meal intake
can be viewed as a known source of disturbance, and feedforward control can be used for
meal announcement. In case information is given to the artificial pancreas system about
the upcoming meal (size and time), a feedforward scheme may be implemented to deliver
additional meal-time insulin bolus (Figure 1).
For the design of the feedforward controller, the effect of meal on blood glucose level should
be modeled. The system model (insulin-glucose) in the feedforward element describes
or predicts how each change in insulin will affect glucose, while the disturbance model
(meal-glucose) is used to describe or predict how each change in meal will affect glucose.
Let Gs and Gd be the system and disturbance models respectively, the feedforward control
u f f is calculated as:

u f f = −
Gd
Gs
×Meal (3)

Feedforward controllers can range from simple scaling multipliers (static feedforward)
to sophisticated differential equations (dynamic feedforward). Dynamic models give a
better description of actual system and disturbance behaviors, often achieving improved
disturbance rejection performance. However, the dynamic feedforward can be difficult
to obtain and implement. In specific control algorithms such as MPC, the feedforward
control signal can be calculated by the controller itself rather than using a separate
feedforward controller. If the meal effect is included in the prediction model of the MPC,
the controller predicts the future glucose levels as a function of insulin-glucose dynamics,
CGM measurements, and meal information. Consequently, the meal effect on blood glucose
will be considered in calculating the future insulin dose (i.e. predictive feedforward). In
this controller configuration, the insulin dose has two parts: feedback insulin delivered in
fasting conditions, and feedforward insulin bolus used at meal time to obtain better meal
compensation.
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The different configurations of feedforward (static, dynamic, and predictive) are being
used in the artificial pancreas research, and their feasibility in improving the overall
controller performance has been demonstrated in different clinical and simulation studies
(Abu-Rmileh & Garcia-Gabin (2010a;b); Abu-Rmileh et al. (2010b); Lee & Bequette (2009);
Marchetti et al. (2008); Weinzimer et al. (2008)). Since the feedforward action starts to deliver
insulin before the meal effect appears in the CGM feedback loop, lower fluctuations in glucose
levels are observed, with higher percentage of time within the acceptable glycemic range. An
example of the improved performance achieved with feedforward control is shown in Figure
4. Finally, it should be mentioned that meal announcement must be done carefully, since an
excess of insulin or badly-timed bolus may induce undesirable hypoglycemia episodes.
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Fig. 4. Feedback (FB) vs. feedforward-feedback (FF-FB) control performance, (a) glucose
level (b) insulin input

3.5 Meal detection
Beside feedback and feedforward control, meal detection techniques can be used to deal
with meal challenge. Although feedforward-feedback control achieves better results than
feedback alone, it is not uncommon that patients forget to announce upcoming meals.
Therefore, a system for meal compensation that does not require information from the patient,
would be preferable. The CGM measurements along with a set of thresholds on glucose
levels and glucose rates of change (i.e. first and second derivative), can be used to build
meal detection/compensation algorithms. When a meal is detected, the algorithm can be
used to initiate extra meal-time insulin dose, or to activate an alarm for the patient. The
meal-time dose can be delivered as insulin bolus or micro boluses, or a gain scheduling
scheme can be used to adjust the controller output when a meal is detected. Meal detection
and CGM-activated insulin dose remove the need for patient’s interventions, and make the
closed-loop artificial pancreas fully automatic. Meal detection algorithms also reduce the

216 Diabetes – Damages and Treatments

115



Hypoglycemia Prevention in Closed-loop Artificial Pancreas for Patients with Type 1 Diabetes 11

hypoglycemic risk produced by erroneous insulin bolus or skipped meal, which may occur in
the case of feedforward meal announcement.
Three main types of meal detection algorithms currently exist. A voting scheme is used
in (Dassau et al. (2008)) to detect meals based on a combination of four different methods
for calculating glucose rates of change. Another algorithm is proposed in (Lee & Bequette
(2009); Lee et al. (2009)), where the meal detection algorithm is developed by using a finite
impulse response filter and a set of threshold values. The algorithm estimates the meal size
at the time of detection. Since the main objective of the development of meal detection
algorithms is the application to closed-loop artificial pancreas, Lee & Bequette (2009) tested
the design algorithm in combination with a MPC closed-loop controller, and demonstrated
that meal detection strategy is efficient and outperforms the stand-alone feedback control
scheme. Cameron et al. (2009) presented a probabilistic and evolving algorithm to detect the
meal and predict its shape, and to estimate the total appearance of glucose from the meal. The
algorithm has proved to enhance the meal-compensation ability of the feedback controller.

3.6 Time delay compensation
It is well-known that the time delay in the subcutaneous route is a major challenge
in the development of the artificial pancreas (Hovorka (2006)). Both physiological and
technological delays exist in glucose sensing and insulin delivery. Such time delays can result
in poorly controlled glucose since hypoglycemia can be induced and remains undetected
for a significant time period. In an attempt to eliminate or minimize the effect of time
delay, closed-loop control structures with time-delay compensation features can be used to
improve the control outputs and reduce the hypoglycemic risk produced by physiological
and technological delays.
Smith predictor structure is a control scheme that presents good properties in controlling
systems with long time delay. The idea behind Smith predictor is to incorporate the system
model within the closed-loop control structure (i.e. the system model becomes an explicit part
of the controller). Thus, the design of Smith predictor scheme requires a model of the system
dynamics and an estimate of the system time delay t0. In the Smith predictor scheme, there
are two parallel paths for the control signal u(t) (see Figure 5); one passing through the real
system (the patient), and one passing through the model of the system Gs. The function of
the parallel path containing the model is to generate the difference em(t) between the actual
system output y(t) and a model-based prediction of the control signal effect on the system
output ym(t). The Smith predictor uses the model to predict the delay-free response of the
system y−m(t). Then, it compares this prediction to the target glucose level r(t) to decide
what control actions are needed. To avoid drifting and reject external disturbances, the Smith
predictor also compares the actual system output with a prediction that takes the time delay
into account. The error em(t) contributes to the overall error signal e(t) delivered to the
feedback controller.
The Smith predictor structure has been recently used in artificial pancreas studies
(Abu-Rmileh et al. (2010a;b)). With an initial estimation of the time delay, the Smith
predictor shows the ability to minimize the effect of time delays and the associated risk of
hypoglycemia, and to enhance the controller performance. As mentioned before, the MPC
strategy, which has been extensively studied in artificial pancreas applications, is another
competitive control algorithm with inherited ability to deal with system time delays (Hovorka
(2006)).
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Fig. 5. Smith predictor control structure for time-delay compensation

3.7 Insulin on board and insulin feedback
As discussed previously, the use of subcutaneous route faces a challenging problem
represented by the delayed insulin action. The effect of subcutaneous insulin may remain
active over an extended time period (3-5 hours) after administration. Insulin on board (IOB)
is a term used to describe how much insulin is still active from previous doses. Modern
insulin pumps include the IOB option that helps in calculating the next required insulin
dose. Therefore, IOB curves (time-action profiles) can be used in the development of artificial
pancreas control algorithms to consider the effect of previous insulin, and provide a type
of safety measure to avoid the problem of overdosing and the associated hypoglycemia.
Ellingsen et al. (2009) developed a MPC scheme with IOB constraints. The IOB was used as
dynamic safety constraints with a set of curves, to account for the time profile of delayed
insulin action. Lee et al. (2009) used the IOB safety constraints in an integrated control
scheme for the artificial pancreas that includes MPC strategy, meal detection algorithm, IOB
constraints, and pump suspension option to avoid hypoglycemia.
Another technique used to reduce insulin infusion is the insulin feedback, initially introduced
by Steil et al. (2004). The algorithm aims at reproducing as close as possible the insulin
secretion from the natural pancreas. The idea behind this technique is to consider that a part
of previous insulin is still active, and can cause further reduction in glucose level. Based on
a pharmacokinetic model (Steil et al. (2006)), the algorithm estimates the plasma insulin level,
and reduces the output of a proportional-integration-derivative (PID) controller by using the
insulin feedback term, that is proportional to the estimated plasma insulin. Different versions
of the algorithm have been used in clinical studies (Steil et al. (2011; 2006); Weinzimer et al.
(2008)). In a recent study (Steil et al. (2011)), the insulin feedback has been used to improve
the PID controller response in avoiding hypoglycemia after breakfast, and has achieved the
desired performance.

3.8 Nonlinear modeling and control
Since the effect of insulin is nonlinear across the different glycemic ranges, the use of nonlinear
models able to describe this nonlinear behavior would facilitate the design of more robust
nonlinear control strategies, to handle the difference between glycemic ranges and their
insulin requirements. Nonlinear models are more flexible in capturing complex behavior
than the linear models, and consequently, the nonlinear control strategies are considered to
be more suitable for this type of systems than linear control strategies. Therefore, nonlinear
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control is believed to be more appropriate for the closed-loop artificial pancreas, and will
enhance hypoglycemia prevention features of closed-loop systems due to its ability to provide
particular insulin profile for each glycemic region. However, the identification of nonlinear
models is still a challenging task in the artificial pancreas research. In order to be used in
closed-loop control, such nonlinear model should be sufficiently accurate to capture the main
system behavior and nonlinearity, while being relatively simple to be identified from the
available data such as CGM measurements, and insulin and meal information.
Nonlinear control strategies like nonlinear MPC (NMPC) and sliding mode control (SMC),
have shown superior performance over classical linear controllers in the blood glucose control
problem. Most of the available MPC strategies are based on a linear model of the system. For
systems that are highly nonlinear, the performance of a linear MPC can be poor. This has
motivated the design of the NMPC, where a more accurate nonlinear model of the system is
used for prediction and optimization. NMPC has been used in a number of artificial pancreas
studies (Hovorka et al. (2010; 2004); Schlotthauer et al. (2005); Trajanoski & Wach (1998)).
SMC is a nonlinear robust procedure to synthesize controllers for linear and nonlinear
systems. The design of SMC algorithm includes two main steps. 1) Choosing a switching
(sliding) surface, along which the system can slide to its desired final value. The sliding
surface is designed so that it describes the desired system dynamics. The sliding surface
divides the phase plane into regions where the switching function has different signs. 2) By
using appropriate control law: make the system reach the switching surface (reaching phase),
and keep it on the surface (sliding phase). The structure of the controller is intentionally altered
as its state crosses the surface in accordance with a prescribed control law. SMC exhibits good
robustness against parameter variations, modeling errors and disturbances.
SMC algorithms have been employed successfully in different in-silico studies of artificial
pancreas (Abu-Rmileh et al. (2010a;b); Kaveh & Shtessel (2008)). The combination between
SMC and Smith predictor used in (Abu-Rmileh et al. (2010a;b)) is simple in its formulation and
implementation, yet has some good features such as accuracy and robustness, insensitivity
to internal and external disturbances, time-delay compensation and finite time convergence.
These features make the proposed control algorithm suitable for the blood glucose problem
which incorporates many sources of uncertainty and disturbances, and imposes some specific
time requirements to avoid hypoglycemia and extended hyperglycemia. Other nonlinear
control and modeling techniques have been used in the artificial pancreas research. Brief
descriptions of frequently used approaches are given here, while comprehensive reviews are
provided in Bequette (2005); Chee & Fernando (2007); El-Youssef et al. (2009); Takahashi et al.
(2008)).
As mentioned before, the glucoregulatory system is nonlinear and difficult to model
mathematically. Therefore, empirically-based and model-free control techniques such as
fuzzy and neural network systems would be key components in artificial pancreas control
systems. Fuzzy systems are based on the idea that input-output relationships are not crisp,
but can change gradually from one state to the next, and partial membership rather than
crisp membership can be used to adjust the control action. Fuzzy logic control takes the
input variables and maps them into fuzzy levels by sets of membership functions. Each
input variable has determined value’s degree of membership in a fuzzy set. The process of
converting crisp input values to fuzzy values is called fuzzification. The fuzzy controller makes
decisions for what action to take based on a set of rules. The set of rules are built generally
based on expert knowledge. The input signal is processed applying the corresponding rules
and generating a result for each, then combining the results of these rules. Finally, the fuzzy
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controller output is obtained via defuzzification combining result back into a specific crisp
control output value. Different fuzzy control schemes have been implemented in artificial
pancreas studies (see for example Atlas et al. (2010); Campos-Delgado et al. (2006); Ibbini
(2006); Ibbini & Massadeh (2005)). In Atlas et al. (2010), a personalized fuzzy logic controller
has been validated clinically, and proved to minimize hyperglycemic peaks while preventing
hypoglycemia.
Neural networks are modeling techniques that result in a nonlinear model based on
experimental data. It is a black-box model organized in sequential layers containing neurons.
The network output is obtained as a weighted sum of inputs through the hidden layers. The
weights are found during a training process by minimizing the error between desired and
network output. Neural networks show excellent adaptation and learning ability. Neural
networks deal with the blood glucose problem without explicit description of the exact model
of the insulin-glucose system. Such approach is very useful in irregular situations (e.g.
patients have a disease or abnormal conditions) that limit the usability of normal models
(Takahashi et al. (2008)). Neural networks have been used to obtain insulin-glucose models
for the design of nonlinear closed-loop controllers (El-Jabali (2005); Schlotthauer et al. (2005);
Takahashi et al. (2008); Trajanoski & Wach (1998)). A combination between fuzzy logic and
neural network (neuro-fuzzy) control strategy was applied by Dazzi et al. (2001) in clinics,
and proved to provide superior glycemic control compared to conventional algorithms, with
hypoglycemic events reduced to half.
Adaptive control is another approach used for glucose regulation. The complexity of glucose
control mechanism highlights the need for an adaptive control algorithm to compensate
for variations in patient dynamics (e.g. time-varying insulin sensitivity, stress and physical
exercise) or disturbances by adapting the controller and model parameters to the changing
patient conditions (Eren-Oruklu et al. (2009a); Hovorka (2005)). Adaptive control includes
several configurations that allow not only outputs of the controller to be changed over time,
but also the method by which those outputs are generated; the controller continuously
monitors its own adaptation through a defined metric, and is capable of altering its own
control scheme to better meet the adaptation criterion. For blood glucose control, different
adaptation schemes have been employed (Chee & Fernando (2007)), in systems that use the
sensor measurements to track the changes in glucose dynamics and update the controller
structure to assign the required insulin regime. In model-based adaptive control, patient
model is used to predict future glucose levels based on current and past insulin infusions. The
model parameters are continuously updated and used in the control algorithm to calculate
the required insulin. Adaptive control strategies have the ability to individualize the control
scheme and/or patient model to represent the inter- and intra-patient variability. Adaptive
schemes have achieved safe control while avoiding hypoglycemia in spite of all the challenges
facing the closed-loop artificial pancreas (Eren-Oruklu et al. (2009a); Shaller et al. (2006)).

4. Conclusions

Closed-loop insulin delivery by the artificial pancreas gives hope to achieve tight glycemic
control in T1DM by reducing the risk of hypoglycemia while solving the problem of
hyperglycemia. The prevention of life-threatening hypoglycemia is considered as a possible
goal for the first generation of the artificial pancreas before reaching the fully developed
device that mimics the function of natural pancreas in night, fasting and prandial conditions.
The closed-loop system can be subjected to different modifications to implement control
techniques that reduce the risk of hypoglycemia. The feasibility of some of these techniques
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has been tested and proved to improve the performance of the closed-loop control and reduce
the hypoglycemia episodes. Other techniques are still under study.
While partial results obtained in different artificial pancreas studies are promising, several
aspects regarding the fully developed artificial pancreas are still open, and further
improvements are needed. Obtaining models from patient’s input-output data using
advanced modeling techniques is recommended for blood glucose control. Nonlinear
identification of insulin-glucose models for control is desirable. Development of advanced
control techniques is needed due to the nonlinear behavior, unmodeled disturbances, delay
and inaccuracy in measurements, together with modeling errors and patient variability.
Another required improvement is the modeling of different meal contents, since most of
the available models are restricted to carbohydrates effect. Using multiple variable control
(i.e. considering insulin, glucagon, exercise, stress, etc.), and incorporating the effect of
insulin sensitivity change during the day in the control algorithm design, would increase
the reliability of models in representing the real conditions of the diabetic patient, and
consequently, improve the overall performance of the designed artificial pancreas.
Although the nonlinearity in the insulin-glucose system is quite obvious, the available
hypoglycemia detection and prediction algorithms do not consider the nonlinear nature of
the system through the different glycemic ranges (Chan et al. (2010)). Taking into account
the nonlinearity of the system would be a possible way to enhance the performance of the
algorithms and increase their effectiveness in preventing hypoglycemia (Chan et al. (2010)).
The inclusion of IOB effect in predicting future hypoglycemic episodes could be another
technique to improve the feasibility of these algorithms (Buckingham et al. (2009)). Finally,
improving the accuracy and reliability of CGM systems is an essential task, since both
control algorithms and hypoglycemia alarms depend widely on CGM measurements. Poorly
functioning sensor increases the risk of system-induced and undetected hypoglycemia, while
accurate sensor improves the control quality and reduces the risk.
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Abstract 

This chapter presents some key techniques that proved to be efficient in reducing the risk of 
hypoglycemia in automated insulin-delivery systems used in type 1 diabetes therapy. The insulin 
therapy of type 1 diabetes has as major drawback, namely the increased risk of drug-induced 
hypoglycemia, with all of its complications. Therefore, hypoglycemia is considered as one of the 
main challenges in the treatment of the disease. The artificial pancreas brings hope to achieve better 
glycemic control, reduce the occurrence of hypo- and hyperglycemia, and avoid the complications of 
diabetes and insulin therapy. Different techniques can be integrated within the structure of the 
artificial pancreas to improve the performance of the system, and significantly reduce the risk of 
hypoglycemia. The current chapter discusses five major techniques that can be used in integrated 
artificial pancreas systems, to detect and prevent the life-threatening hypoglycemia and its 
consequences. These techniques include: hypoglycemia alarms,asymmetric penalization in control, 
insulin-on-board (IOB) constraints, insulin feedback, and meal detection algorithms. Different 
configurations of these techniques have been tested in the artificial pancreas research, and proved 
to provide satisfactory results in predicting and preventing hypoglycemia. The chapter first briefly 
introduces the idea of the artificial pancreas, then, the hypoglycemia detection and prevention 
techniques are discussed in detail.   
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Chapter 11

General Discussion

The increasing number of patients with diabetes makes it one of the major health

problems worldwide. Blood glucose regulation in type 1 diabetes is still a challenging

biomedical engineering problem. Patients are extremely diverse in their dynamics, and

in addition, their characteristics are time-varying. Inter- and intra-patient variability,

nonlinearity of the physiological system, modeling errors and mismatch between the

models used to develop the control algorithms and the real patients, as well as the

limitations of the subcutaneous route used for glucose sensing and insulin delivery (e.g.

physiological delays and subcutaneous tissues dynamics), make it very difficult to find

a general and reliable solution to the nonlinear problem of glycemic control.

With the inability of conventional therapy to achieve satisfactory glycemic control, and

the development in continuous glucose monitoring (CGM) systems and the increasing

use of insulin pumps, the idea of developing an artificial pancreas is viewed as the

ideal solution for glycemic control in T1DM [7, 13, 86]. The artificial pancreas is an

automated closed-loop system that maintains blood glucose levels within the desired

range and prevents hypoglycemia, while minimizing or eliminating the need for patient

intervention. The artificial pancreas replaces the β-cells functions in glucose sensing

and insulin delivery. It consists of three main components: a glucose sensor to measure

glucose concentration, a pump for insulin delivery, and a closed-loop control algorithm

to bridge between the glucose measurements and the dose of insulin to be delivered.

Closed-loop control of blood glucose has been a subject of continuous research for more
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than 40 years, however, till now no commercially available product does exist. The

continuous subcutaneous insulin infusion (CSII) pumps are being widely used, and a

number of CGM systems have received regulatory approval [13]. Although the sensors

and pumps systems still have some limitations, their use in an open-loop combination

resulted in better clinical outcomes over conventional injections therapy [3, 13, 23].

Thus, the primary limitations in the progress of such an artificial pancreas are the

development of advanced robust closed-loop control algorithms, and the availability of

reliable and precise glucose sensors. However, recent research in the development of the

artificial pancreas suggests that types of the automatic glucose control system are likely

to come to market in the near future.

This thesis presented control strategies for the closed-loop artificial pancreas, which are

based on Model Predictive Control and Sliding Mode Control. The proposed control

strategies adopted the subcutaneous route for glucose monitoring and insulin delivery.

Each of the control strategies combined more than one linear/nonlinear control and

modeling approaches in one structure, in an attempt to make use of the virtues of each

approach while reducing the effects of their drawbacks. The control algorithms have

been tested and validated in simulations, where two mathematical models have been

used to represent the diabetic patients. Different scenarios, such as the presence of meal

disturbance, inter-patient and intra-patient variability, time-delay and sensor errors,

have been considered to study the performance of the developed control strategies.

In Chapters 4 and 5, a first control scheme for closed-loop regulation of blood glucose

was presented. A model-based predictive control strategy with a gain scheduling scheme

was developed and tested with virtual diabetic patients. The control algorithm tack-

led the problem of patient nonlinearity by using multiple linear models/controllers to

handle the difference between glycemic ranges. Although the proposed control scheme

applies a well-known control strategy (linear MPC), it is provided with additional fea-

tures that give it advantage over other approaches commonly used in controlling the

nonlinear patient [28, 87]. These features are mainly the gain scheduling technique, the

asymmetric cost function, and the incorporation of meal information in the prediction

model to calculate the feedforward insulin dose. The control algorithm is provided with

the gain scheduling scheme, which selects between the different linear controllers, to im-

prove the controller performance in controlling the nonlinear system. The asymmetric
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cost function is used in the optimization problem to reduce the hypoglycemic risk [87],

and the feedforward control loop is implemented to improve the meal compensation

features and to avoid high glycemic levels in the postprandial conditions.

In Chapter 4, the model predictive control algorithm with gain scheduling, GS-MPC,

was applied to the blood glucose control problem in T1DM using the Dalla-Man model,

implemented in the UVa simulator, as a (virtual) diabetic patient under test. The

designed controller is evaluated in silico; simulations with virtual diabetic subjects are

used to test and tune the controller. The 10 adults in the UVa simulator are considered

for controller testing and validation. In Chapter 5 the idea of GS-MPC (also named

as MMPC) was applied to the Hovorka virtual patients. The Hovorka patient model

shows a stronger nonlinear steady-state behavior than the UVa patients (see Figure 2

in Chapter 9 - page 113). The main sources of such nonlinearity are the saturation

(activation/deactivation) behavior of some model parameters, and the insulin actions

[55]. The stronger nonlinear nature of the Hovorka patient indicates that it would be

difficult to achieve good control properties by a simple linear controller. A linear model-

based controller with a single linearized model is expected to perform well only in the

neighborhood of the linearization point (i.e. in a specific operating range). However, the

performance of such a controller will degrade considerably in other operating ranges

where the nonlinear system exhibits different dynamics. Thus, the use of the gain

scheduling MPC with multiple linear models is believed to be even more justifiable in

the case of the Hovorka virtual patient.

To apply the linear GS-MPC to the nonlinear Dalla-Man and Hovorka patients, lin-

earized ‘approximations’ of the nonlinear patient models in Chapter 3 were obtained in

the different glycemic ranges. The obtained linearized models were used to design the

family of the MPC controllers. The gain scheduling scheme was used to choose among

the three controllers depending on the measured glucose level. The applicability and

the performance of the proposed control scheme have been evaluated in silico. Several

simulation scenarios with the virtual patients were used to test the proposed control

algorithm. The obtained results show a good controller performance in the presence of

different sources of disturbance and errors.

The prediction ability of the MPC, enforced by effects of the gain scheduling scheme

and the asymmetric cost function, resulted in a good controller performance and ‘adap-
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tation’ to different glucose ranges, so that neither hypoglycemic events nor elevated hy-

perglycemia have been observed during simulation, although big size meals have been

used. A good level of robustness against meal over- and under- estimation errors has

been demonstrated. Also, the GS-MPC controller has shown good performance against

inter- and intra-patient variability and model-patient mismatch. In addition, while the

GS-MPC has been driven by the CGM sensor, that can produce measurements errors

up to 30 mg/dL, the controller has been able to nicely reject the effects of sensor er-

rors. In order to validate the proposed GS-MPC controller under extreme conditions,

the controller in Chapter 4 has been tested with a virtual patient that is represented by

a mathematical model which is completely different from the one used during the con-

troller design. The GS-MPC achieved good control, and maintained the Hovorka patient

within the 70-180 mg/dL range, although the patient is represented by a model that

is totally different from the one implemented in the GS-MPC (the linearized version of

the Dalla-Man model).

Although the GS-MPC achieved good performance under different operating conditions,

it is still difficult to personalize such a control strategy in practice, since it is based on

a linearized version of the full nonlinear patient models. Models with large dimensions

are difficult to obtain from the available patient data. Therefore, the practical use of

such a control strategy will depend on the implementation of an average patient model

obtained from a population of patients. Using a linearized or a nonlinear average patient

to develop an efficient MPC and then apply it to a population of virtual patients, can

work well in in silico tests as a first step in the development of the artificial pancreas

control algorithm. But when applied to real patients, the results obtained with such

an approach are not always satisfactory (see for example the results of the clinical

trials in [45]). Also, the tuning parameters of the controller are not directly related to

the patient model, which makes the controller tuning procedure difficult to perform.

Therefore, there is a need for a control strategy that employs a reduced order model, and

has a clear relation between controller and model parameters to facilitate the tuning of

the controller. The use of reduced-order models requires the control strategy to be able

to handle modeling errors (i.e. robust control algorithm); Chapters 6 and 7 addressed

such an approach.
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In Chapters 6 and 7, the use of sliding mode control in closed-loop glucose regula-

tion was discussed. The chapters presented the design of the robust nonlinear sliding

mode control algorithm, in a linear model-based scheme with time-delay compensation

features. The rationale for this robust model-based approach is that it may provide a

means to deal with different sources of errors and uncertainty that exist in the glucose

control problem.

Chapter 6 considered the application of the proposed Smith predictor sliding mode

control strategy (SP-SMC) to the Dalla-Man virtual patients in the UVa simulator,

while Chapter 7 presented the design and testing of the SP-SMC control strategy with

the Hovorka virtual patient. First and second order linear models were used to represent

the patient (in the internal structure of the controllers), and to formulate the sliding

mode control laws. A higher order model is used for the Hovorka patient because it has

a higher order dynamics and shows a higher level of nonlinearity. According to SMC

theory, the controller structure is based on the used model. Therefore, a different model

order implies that the designed controller will be different. Also, the sliding surface used

for the Hovorka patients is of higher order (second-order sliding surface instead of the

first-order used for the UVa patient).

In order to test the SP-SMC controllers in realistic situations, sensor and meal an-

nouncement errors, intra- and inter-patient variability, patient-model mismatch, vary-

ing meal size and time, and variation in insulin sensitivity have been considered in the

simulation scenarios. From the in silico tests, we observed that the SP-SMC achieves

tight glycemic control with no hypoglycemic events. The ability of the SP-SMC strategy

to deal robustly with the different sources of error and uncertainty in the simulation sce-

narios indicates that the controller would provide acceptable performance when dealing

with other sources of disturbance, such as the influence of stress and physical activity

on blood glucose, and the effect of meal contents other than carbohydrates (e.g., mixed

meals).

It was shown that, in the ideal setting, when the feedforward control action is active,

the SP-SMC outperforms the feedback-alone setting, with lower fluctuations in glucose

levels and significantly lower risk of hypoglycemia. The SP-SMC algorithms achieved

superior postprandial performance with the used of feedforward insulin, highlighting

the limitations of purely reactive feedback control algorithms. The designed controllers
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were able to handle large (> ±25%) errors in the meal announcement without reaching

the severe glycemic limits of 50 mg/dL and 280 mg/dL. From the simulation experi-

ments, it could be observed that, with a good lower-order linear approximation of the

nonlinear virtual patients, the SP-SMC strategy achieved tight glycemic control with

no hypoglycemic events. In order to make the in silico trials as close as possible to real-

istic conditions, time varying insulin sensitivity has been considered in the case of the

Hovorka patient. These sensitivity variations were ignored in the case of UVa patients,

mainly due to the lack of flexibility of the used simulation environment.

The SP-SMC approach is a new control scheme to be applied in the closed-loop ar-

tificial pancreas. The SP-SMC strategy proposed in Chapters 6 and 7 is simple in its

formulation and implementation, yet has several interesting features, such as: finite

time convergence, robustness and accuracy, and insensitivity to internal and external

disturbances. Another important feature of the proposed SP-SMC scheme is the direct

relation between the controller structure and the model parameters; such explicit rela-

tion makes the tuning of the controller easier, a feature that is not common in other

glucose control strategies (see for instance [39, 55, 58, 88]). Furthermore, the SP-SMC

is a nonlinear controller that shows better performance with nonlinear systems than

simple PID or linear MPC. These features of the SP-SMC strategy make it suitable

for the glucose control problem which incorporates many sources of uncertainty and

disturbance, and imposes some specific time requirements to avoid hypo- and hyper-

glycemia.

Still, the SP-SMC scheme need to be evaluated under more realistic conditions, where

the parameters of the reduced-order model must be estimated from the available clinical

data for each subject individually. Also, the controller performance in response to meal

disturbance, containing other nutrients along with CHO, has to be studied. In this

thesis, as in other works based on CHO metabolic models, such testing scenario is

ignored due to the lack of suitable metabolic models.

Then, Chapter 8 was devoted to the use of nonlinear modeling approach for the design

of the control algorithm in the artificial pancreas. The chapter showed how nonlinear

control-oriented model might be used to improve the performance in the closed-loop

regulation of blood glucose. In previous chapters, linear and nonlinear control strategies

were applied to the glucose regulation problem in diabetes, where in both cases, linear
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models (either obtained by linearization of the full nonlinear model or by identifying

low-order process models) were used to design the model-based control strategies. The

nonlinear behavior of the virtual patients has been handled either by using multiple

linear controllers (as in the case of GS-MPC), or by designing a robust nonlinear con-

troller that can handle significant levels of model-patient mismatch (as in the case of

SP-SMC).

The inherent nonlinear behavior of the glucose regulation system motivated the move

towards the nonlinear system identification framework in Chapter 8, to obtain a more

accurate, nonlinear, control-oriented model. Furthermore, linear (model-based) con-

trollers are intended to control linear systems, and they usually offer poor results when

used to control nonlinear systems in regions far from where the used linear model was

obtained. In this case, nonlinear models that are able to represent the system more ac-

curately, could offer better controller performance. Therefore, the nonlinear modeling

approach is adopted in Chapter 8. The nonlinear Wiener model was used as a novel

modeling approach to be applied to the glucose control problem. The Wiener model was

employed in the design of a robust Smith predictor sliding mode control (Wiener-based

SP-SMC) strategy.

The structure of the nonlinear Wiener model, that includes the static nonlinearity,

would facilitate the reduction of the control problem to a linear one by performing

the inverse of the nonlinearity. Therefore, two configurations of the Wiener-based SP-

SMC controller were developed and compared: a full nonlinear configuration and a

linear configuration with static nonlinearity inversion. To explore their feasibility, the

Wiener-based control algorithms were compared to linear model-based control schemes.

The Wiener-based control strategy is a novel nonlinear control approach in the closed-

loop insulin delivery in T1DM, that combines sliding mode control, nonlinear Wiener

model and Smith predictor structure. The static nonlinearity in Wiener model made it

possible to represent the main nonlinear behavior of the insulin-glucose system in dia-

betic patients. The designed Wiener-based SP-SMC control strategies were evaluated in

silico under different simulation conditions. The ability of the Wiener model to provide a

very good approximation for the diabetic patients resulted in excellent closed-loop con-

trol performance. The nonlinear Wiener-SMC proved to be superior to the linear-SMC

and linear-MPC in regulating the blood glucose levels. The features of the combined
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SP-SMC structure (e.g. robustness, insensitivity to internal and external disturbances,

finite time convergence, time-delay compensation and the use of reduced-order inter-

nal model), and the superior performance of the Wiener model in representing the

virtual diabetic patient (compared to linear models) make the Wiener-based SP-SMC

approach suitable for closed-loop glucose control in T1DM, where different sources of

uncertainty, disturbance and nonlinearity should be handled by the control algorithm to

achieve the desired glycemic control performance. The use of the Wiener model-based

control strategies proved to be feasible, and the increased controller/model complexity

was rewarding and justifiable, since the nonlinear model improved the quality of the

control results. Subsequent improvements in the modeling and control results might be

possible, by the identification of better approximations for the static nonlinearity (and

its inverse) in the Wiener model.

Finally, Chapters 9 and 10 reviewed key techniques that proved to be efficient in re-

ducing the risk of hypoglycemia in automated insulin-delivery systems used in T1DM

therapy. The insulin therapy of type 1 diabetes has as major drawback, namely the

increased risk of drug-induced hypoglycemia, with all of its complications. Therefore,

hypoglycemia is considered as one of the main challenges in the treatment of the dis-

ease, and it continuously limits the achievement of tight glycemic control in T1DM [22].

Different techniques can be integrated within the structure of the artificial pancreas

to improve the performance of the system, and significantly reduce the risk of hypo-

glycemia. Chapters 9 and 10 discussed major techniques that can be used in integrated

artificial pancreas systems, to detect and prevent the life-threatening hypoglycemia and

its consequences. These techniques include: insulin-on-board (IOB) constraints [46, 47],

insulin feedback [36], meal detection algorithms [46, 48], hypoglycemia alarms [49, 50]

and asymmetric penalization in control algorithms [42, 43, 87]. Different configurations

of these techniques have been tested in the artificial pancreas research, and proved to

provide satisfactory results in predicting and preventing hypoglycemia.

Chapters 9 and 10 also highlighted different aspects regarding the fully developed arti-

ficial pancreas that are still open, and where further improvements are needed. Among

these topics exist: (1) the use of nonlinear data-driven modeling of diabetic patients,

(2) studying the effect of different meal contents, (3) improving the accuracy and re-

liability of glucose sensors, (4) modeling the effect of factors other than meals and
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insulin (e.g. glucagon, physical exercise, stress, variations in insulin sensitivity, etc.) in

glucose regulation, (5) considering the nonlinearity of the physiological system to im-

prove the effectiveness of hypoglycemia detection and prevention algorithms [89], and

(6) the development of advanced control techniques that could deal with nonlinear be-

havior, unmodeled disturbances, delay and inaccuracy in measurements, together with

modeling errors and patient variability.
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Chapter 12

Conclusions and Future Work

12.1 Overview

Along the development of this thesis, work was devoted to model predictive control,

sliding mode control, linear and nonlinear system identification methods and several

aspects in the MATLAB programming to design a closed-loop control algorithm for the

artificial pancreas in type 1 diabetes.

The main objective of the thesis was to design and validate advanced model-based

control techniques for closed-loop regulation of blood glucose in type 1 diabetes. The

proposed Model Predictive Control (MPC) and Sliding Mode Control (SMC) strate-

gies, have been applied to complex nonlinear mathematical models that represent the

physiological glucose regulation system in diabetic patients. Each of the designed con-

trol algorithms consisted of a combination of two control techniques; MPC is used in

a gain scheduling scheme to deal with system nonlinearity, while SMC is combined

with the Smith predictor structure to reduce the effect of system time-delay. The idea

behind such ‘combined’ approaches was to make the control strategies more suitable

for biomedical systems. Linear and nonlinear models have been used in the design of

the model-based control algorithms.

Since obtaining an accurate model is an essential step for the design of model-based

control, the thesis also addressed related problems, such as: (1) testing the quality and

reliability of the linear modeling framework, that is frequently used in closed-loop glu-
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cose regulation. It was shown that linear models are not able to reliably represent the

nonlinear behavior of the glucose regulation system in the patient under wide operating

conditions. Such observation should be taken into account in subsequent design steps

in order to avoid the risk of model and control algorithm failure. (2) Application of

nonlinear system identification techniques for the identification of control-relevant non-

linear models. The use of nonlinear models in model-based control strategies proved to

be feasible, and the increased complexity in the used model was rewarding, since the

nonlinear models improved the quality of the control results.

The control design started with the use of a linearized version of the complete nonlinear

patient models. Although this approach yielded good simulation results, the use of

model with large order is difficult to apply (as an individualized model) in practice.

Then, reduced-order linear and nonlinear models have been used for controller synthesis.

These models have also the advantage of being data-driven; the model is derived from

input-output data of the patient. Such features make it possible to use these models

in individualized model-based control strategies. The nonlinear model yielded better

results in representing the diabetic patient, and improved the performance of the control

algorithms.

In this thesis, it was shown that reduced-order SP-SMC strategies that are designed

using the nonlinear Wiener model are suitable for closed-loop glucose regulation. These

control algorithms: (1) are simple in structure, (2) have good time-delay compensation

ability, (3) are based on reduced-order nonlinear models that can be identified for each

patient, (4) robust against internal and external disturbances, and (5) have explicit

relation between model and controller parameters (this feature simplifies the controller

tuning for each patient). On the other hand, the use of multiple linear MPC with gain

scheduling has the prediction ability that makes it more conservative in insulin dosing

and more efficient in hypoglycemia prevention. Also, constraints handling in the MPC

formation make it possible to deal with the insulin and glucose constraints that should

be satisfied in the glucose control problem.

To conclude this work, the major contributions of the thesis and the directions of the

future work will be highlighted in the following sections.
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12.2 Major Contributions

The major contributions of the thesis can be summarized in the following aspects:

• The proposed control schemes, that combine between more than one linear/non-

linear control and modeling approaches in one structure. The main idea of such

combined control schemes is to take advantage of the virtues of each approach

while reducing the effects of their drawbacks. The GS-MPC and SP-SMC are novel

approaches introduced in the field of closed-loop glucose regulation in T1DM.

• Introducing the Wiener model as a novel approach in modeling the insulin-glucose

system for control design purposes. Specifically, the combination of the Wiener

model, SMC and Smith predictor collects different contributions:

1. The idea of using nonlinear block-oriented model (Wiener model) in the

design of robust nonlinear control structures (Smith predictor SMC) that

also exhibit good time-delay compensation features.

2. The synthesis of different Wiener-based controller configurations.

3. The mathematical derivation of the Wiener-based SMC control laws.

• The considered testing and validation scenarios. Throughout the thesis, the con-

trol algorithms have been tested under harsh operating conditions that are usually

ignored in the literature, such as big meal intakes, large estimation errors in the

meal contents, changes in insulin sensitivity, inter-patient variability and the pres-

ence of combined sources of errors. Such scenarios are considered because they

are frequently faced in the real-life conditions of diabetic patients.

12.3 Future Work

This thesis opens the way to many possible future developments, mainly related to

the improvement of the proposed control and modeling approaches and their practical

usage. Among the topics that have been recently initiated and would be addressed in

future research:
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• Incorporating supporting techniques (e.g. Insulin-on-board, meal detection algo-

rithms, and hypoglycemia alarms) in the control scheme. Such techniques (as re-

viewed by the author in [28, 90]) are expected to further improve the good control

results obtained by the nonlinear model-based SMC and MPC controller (espe-

cially in avoiding hypoglycemic episodes). Regarding the SP-SMC algorithm, the

control scheme can be modified so that unequal penalties are used upon hyper-

and hypoglycemia.

• Introducing the use of frequency domain analysis and identification techniques

for the development of models and control algorithms for the artificial pancreas.

Recently, we have used the frequency domain framework, in contrast to the time

domain approach, for the characterization and analysis of the dynamics and non-

linearity of the glucose regulation system [91]. In this new approach, the idea

of the best linear approximation (BLA) of nonlinear systems and the concept

of nonlinear distortion (i.e. effect of system nonlinearity on linear modeling) are

introduced, for the first time, in the field of diabetic patient modeling [91]. Such

concepts are very useful when studying the reliability of linear models, and to

emphasize the need for nonlinear data-driven models to represent the patient

under widely-varying operating conditions. Based on the new frequency domain

approach:

1. Firstly, a full analysis of the dynamic and nonlinearity of the glucose regu-

lation system has been performed, to study the differences between popular

physiological models of the glucose regulation system [91]. The BLA of the

nonlinear models and the level and type of nonlinearity are used in the

comparative analysis. The analysis shows significant differences between the

Dalla-Man and Hovorka patient models that are frequently used to represent

the diabetic patients, and raises new questions regarding the reliability of

the linear modeling framework. The analysis results indicate that the glu-

cose regulation system in diabetics (as it is described by the Dalla-Man and

Hovorka models) has a ‘non-negligible’ level of nonlinearity, and that the

use of linear modeling framework may not provide satisfactory results under

wide operating conditions (see results in [91]).
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The steady-state behavior of both virtual patient models (Figure 2 in Chap-

ter 9 - page 113) shows that there exists a difference between these models.

However, both diabetic and healthy persons are almost always in a dynamic

state, making the dynamic response analysis more relevant than the steady-

state behavior. Therefore, we have presented the new analysis method to

study and compare the dynamics and the nonlinearity in these models, us-

ing the frequency domain.

2. Then, motivated by the model analysis results and the better performance

obtained by the nonlinear Wiener model-based SP-SMC algorithm, and

starting from collected input-output data, frequency domain identification

techniques have been used to identify a control-relevant nonlinear model

that mimics the virtual patients very well, but with a much simpler mathe-

matical description. The nonparametric estimate of the frequency response

function (FRF) of the linear dynamics (or the BLA) of the nonlinear system

is obtained, and then used as an initial step in the identification of non-

linear models. Different nonlinear frequency domain modeling techniques

have been studied. The Wiener and the polynomial nonlinear state-space

(PNLSS) models are used for the first time in modeling the insulin-glucose

system, in a wide operating range. The quality and complexity of nonlinear

models are compared to the linear approach. Then, the Wiener model, being

the most control-relevant model, is used in the development of model-based

closed-loop control algorithm. The obtained Wiener model and the BLA of

the system are used in the design of closed-loop MPC algorithms for blood

glucose regulation.

• Lately, we have started the use of Wiener model in the design of Wiener-based

MPC, where the linear block of the Wiener model is used in the design of linear

MPC, and a static nonlinearity is used to capture the nonlinear gain observed

in the system. Such an approach retains the simplicity of linear MPC, while

improving the performance of the feedback control scheme when dealing with

system nonlinearity. The Wiener-based MPC is a novel approach in the field of

closed-loop glucose control in T1DM. First obtained results show the ability of

Wiener-MPC to regulate the glucose levels in different patients (with an average

163



12. CONCLUSIONS AND FUTURE WORK

model), and the ability to identify the Wiener model from available input-output

data (for controller individualization), indicate that the Wiener-based MPC can

be a good candidate to close the control loop in the artificial pancreas. Although

control results are promising, more testing scenarios should be considered to get

a more detailed insight into the control algorithm performance under various

operating conditions.

• Considering the multiple inputs case of the nonlinear model, where the meal effect

is also considered in the Wiener model. Such approach might be helpful to achieve

better representation of the nonlinear glucose regulation system, and would be

rewarding in the design of the feedforward control loop for meal compensation.

First results already obtained show some improvement compared to multiple input

linear models. However, such multiple input approach will increase the complexity

of the model and the control algorithm. Currently, only the insulin input is taken

into account, since it is the main control variable. Another approach that will be

considered for feedforward design is the identification of the feedforward transfer

function in frequency domain, using the nonparametric approach. Preliminary

results indicate that such a method will eliminate the problem or realizability of

the transfer function (as discussed in Chapter 7), since the user will be able to

specify the orders of the fitted parametric transfer function.

• Extend the use of polynomial nonlinear state space (PNLSS) model in repre-

senting the glucose regulation system. The flexibility of PNLSS and its ability

to model dynamic nonlinear behavior [92, 93], indicate that this model structure

can be used to represent the inherently nonlinear glucose regulation system. Sub-

sequently, the obtained model can be used in nonlinear control design for the

artificial pancreas. Recently obtained results show the superior performance of

PNLSS model over linear models in representing the insulin-glucose system. How-

ever, further improvement is still needed in the quality of the proposed PNLSS

model.

• Using the Wiener model in different configurations of MPC, where the full Wiener

model (linear and nonlinear blocks) are used in the prediction/optimization prob-

lem. The complexity and performance of such an approach should be compared

to that of the Wiener-MPC with linear model and static nonlinearity inversion.
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• Highlight the difference between the existing mathematical models of the glucose

regulation system in T1DM, in an attempt to select which one approximates bet-

ter the real system. This is important because big differences do exist between

these models that try to simulate the same system. Other mathematical models

of diabetic patients can be studied and analyzed using the developed frequency

domain analysis method described in [91, 94, 95]. Also, the proposed frequency do-

main method should be further extended to the full problem, where noise sources

(e.g. measurements noise) are presented in the measured output data.
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This final section of the thesis contains two appendices with supplementary material.

The first appendix is a paper presented in the invited session ‘‘Modeling Methods and

Clinical Applications in Medical and Biological Systems II”, in the 18th IFAC world

congress, Italy 2011. The second appendix includes a CD-ROM with a draft version

of different MATLAB and SIMULINK files used during the development of the thesis

publications.
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Abstract: Type 1 diabetic patients depend on external insulin delivery to keep their blood
glucose within near-normal ranges. In this work, two robust closed-loop controllers for blood
glucose regulation are developed to prevent the life-threatening hypoglycemia, as well as to
avoid extended hyperglycemia. The proposed controllers are designed by using the sliding mode
control technique in a Smith predictor structure. To improve meal disturbance rejection, a
simple feedforward controller is added to inject meal-time insulin bolus. Simulations scenarios
were used to test the controllers, and showed the controllers ability to maintain the glucose levels
within the safe limits in the presence of errors in measurements, modeling and meal estimation.

Keywords: Artificial pancreas; biomedical control; sliding mode control; type 1 diabetes.

1. INTRODUCTION

Type 1 diabetes mellitus (T1DM) is a metabolic disease
characterized by the pancreas inability to produce the
glucose-regulating hormone, the insulin. Therefore, T1DM
treatment consists mainly in administrating exogenous
insulin to achieve near-normal glucose levels. If glucose is
not carefully controlled within a tight range, chronic (e.g.
cardiovascular diseases, nephropathy, and retinopathy),
and acute (e.g. hypoglycemic coma) complications can
occur. The progress in insulin pumps and continuous
glucose monitoring (CGM) systems has encouraged the
development of the artificial pancreas (Bequette [2005]).
The artificial pancreas consists of a CGM, a closed-loop
controller, and an insulin pump. The closed-loop artificial
pancreas will improve the patients’ quality of life (e.g.
greater flexibility in meal times, carbohydrate (CHO)
quantities, and physical activities), and will reduce the risk
of T1DM complications.

A wide range of control algorithms was proposed to close
the loop (extensive reviews are given in Bequette [2005],
Chee and Fernando [2007], Takahashi et al. [2008]). How-
ever, there exist many physiological and technical factors
that make it very difficult to find a general and reliable
controller for the blood glucose (BG) control problem.
These factors include the limitations of the subcutaneous
(SC) route used for glucose sensing and insulin delivery
(e.g. time delays and CGM measurement errors), system
nonlinearity, and uncertainty in insulin-glucose system
modeling. Such problems in the BG control highlight the
need for an advanced controller. A controller that shows a
level of robustness sufficient to deal with modeling errors
and other sources of disturbance and uncertainty, and

★ The work was supported by a (BR) research grant to the first
author from the University of Girona

at the same time, has a predictive nature to deal with
physiological and measurements delay, and to provide a
proactive control action to avoid high fluctuations in BG.

In this work, a controller that uses a combination of
the robust sliding mode control (SMC) and the Smith
predictor (SP) structures, is proposed as a competitive
candidate to achieve the required performance. The SP’s
prediction and time delay compensation virtues, and the
robustness of SMC are merged in one structure (SP-
SMC controller). To avoid the limitation of purely reactive
control, and to improve the controller response against
meal disturbance, a static feedforward control (i.e. meal
announcement) is added to inject meal-time insulin bolus.

2. PATIENT MODELING

Different models with different structures and degrees of
complexity are being used to describe the glucoregulatory
system (see for instance Bergman et al. [1979], Hovorka
et al. [2004], Dalla Man et al. [2007]) . In this work, two
nonlinear models have been used to represent the diabetic
patient (virtual subject).

2.1 The Meal Model

The Meal model developed by Dalla Man and coworkers in
Dalla Man et al. [2007] incorporates a complex network of
compartments. The model considers that the glucose and
insulin subsystems are interconnected by the control of
insulin on glucose utilization and endogenous production.
The glucose subsystem is described by a two-compartment
model as is the insulin subsystem. Endogenous glucose
production, glucose rate of appearance, and glucose uti-
lization are the most important model unit processes.
The model was modified to adapt for T1DM subjects,
SC glucose measurements, and exogenous insulin delivery.

Preprints of the 18th IFAC World Congress
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The modified model was implemented in the UVa/Padova
metabolic simulator (Kovatchev et al. [2009]), designed to
support the development of closed-loop artificial pancreas.
In addition to the patient model, the simulator incorpo-
rates a sensor-related errors model to account for sensor
noise and measurements errors (Kovatchev et al. [2009]).

2.2 The Hovorka Model

The second model was developed by Hovorka and cowork-
ers in Hovorka et al. [2002, 2004]. It is a physiological
model validated with experimental data. It consists of
three subsystems: the CHO absorption, the subcutaneous
insulin absorption, and the glucose-insulin kinetics. The
insulin actions describe the effect of insulin on glucose
transport, removal and endogenous production. The model
shows a good trade-off between simplicity and accuracy.

Subcutaneous glucose measurements The output of the
model above is the glucose level in blood, Gb(t). Therefore,
due to our interest in using the SC route, it is necessary
to consider the glucose level in SC tissue, and the CGM
errors. The CGM signal, y(t) is modeled with added errors
and time delay (¿sc = 10 min):

y(t) = Gb(t− ¿sc) + "(t) (1)

The model in Breton and Kovatchev [2008] is used to
describe the sensor-related errors, and is given by:

"(t) = » + µ sinh

(

¾(t)− °

¯

)

(2)

¾(t) = 0.7(¾(t− 1) + º(t)) (3)

where "(t) is a non-white, non-Gaussian sensor error. », µ,
¯ and ° are the parameters of the Johnson distribution.
º(t) is white noise and (3) is the autocorrelation function.

2.3 Model Identification

The two models are used for controllers design and testing;
data obtained from the nonlinear models are used in the
identification of lower order linear models for controllers
design, then, the designed controllers are tested with the
nonlinear models. Although the Meal model has a more
complex structure, the Hovorka model exhibits a more
nonlinear behavior - due to the activation/deactivation
nature of some model parameters. Also, the Hovorka
model has a higher dynamic. Based on the results of the
identification procedure and previous experience with the
used models, the identified linear models have different
orders and time delays. For the Meal model, a first order
plus time delay (FOPTD) is used to represent the insulin-
BG system:

Gm1(s) =
Ym1(s)

U1(s)
=

Km1

¿m1s+ 1
e−t0m1s (4)

For the Hovorka model, a second order plus time delay
(SOPTD) is identified to approximate the insulin-BG
system:

Gm2(s) =
Ym2(s)

U2(s)
=

Km2

(¿m2s+ 1)(¿m3s+ 1)
e−t0m2s (5)

where Ym(s) and U(s) are deviations of glucose level
and insulin infusion from the chosen basal point (Y0, U0).

SMC
Virtual

Patient

Gm
-(s) Gm

+(s)

Gff(s)

r(t)

dml(t)

u(t)ufb(t)

uff(t)

ym(t)

y(t)

em(t)

+

-

+

+

+

-

.

+

Gm(s)

e(t)

ym
-(t)

Indentified model

Feedforward loop

+

Fig. 1. Closed-loop SP-SMC with feedforward control.

Km1,2 are the models gains, ¿m1,2,3 are the time constants
and t0m1,2 are the time delays.

3. CONTROLLER ARCHITECTURE

3.1 The SMC & SP components

SMC is a simple procedure to synthesize robust controllers
for linear and nonlinear processes based on principles of
variable structure control (VSC). The design problem con-
sists of selecting the parameters of each controller struc-
ture and defining the switching logic. The first step in
SMC is to define a sliding surface s(t), along which the
process can slide to its desired final value. The sliding
surface divides the phase plane into regions where the
switching function s(t) has different signs. The structure
of the controller is intentionally altered as its state crosses
the surface in accordance with a prescribed control law.
SMC controller exhibits good robustness against parame-
ter variations (Garcia-Gabin et al. [2010]), and has been
used to design controllers based on its robustness against
modeling errors and disturbances.

The SP scheme is a type of predictive controller for
systems with pure time delay, that needs a model of the
system dynamics and an estimate of its time delay t0.
In the SP structure, the control signal passes through
two parallel paths (Figure 1); one passing through the
real system (the patient), and the other through the
identified model, Gm(s). The parallel path containing the
model is used to generate the difference em(t) between
the actual system output y(t) and an estimation (model-
based prediction) of the control signal effect on the system
output ym(t). The SP scheme uses the model to predict
the delay-free response of the system y−m(t). Then, it
compares this prediction to the desired setpoint to decide
the required control action. To avoid drifting and reject
external disturbances, the SP also compares the actual
system output with a prediction that takes the time delay
into account. The overall error signal e(t) is delivered to
the controller to calculate the needed adjustments.

3.2 SP-SMC Controller design

The main components of the proposed closed-loop con-
trollers (e.g. feedback SMC, SP structure, and feedforward
loop), and the variables used throughout the work are
given in Figure 1.
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First order SMC To design the first SP-SMC controller,
the FOPTD transfer function in (4) is used. Given the
model (4), it can be factorized in the following way:

Gm1(s) = G+

m1(s)G
−

m1(s) (6)

The first factor G+

m1(s) corresponds to terms of the model
Gm1(s) that lead to instability and realisability problems
(e.g. term containing time-delay). The second one,G−

m1(s),
corresponds to terms of the model that can be used to de-
sign the controller. This procedure eliminates all elements
in the process model that can produce an unrealisable
controller. G−

m1(s) eliminates the time-delay term from the
model (4), and G+

m1(s) and G−

m1(s) are defined as

G+

m1(s) = e−t0m1s (7)

G−

m1(s) =
Km1

¿m1s+ 1
(8)

This factorization facilitates the SMC design because de-
veloping a SMC for systems with time delay requires using
approximations for time delay (Camacho et al. [1999]).
The first step to design a SMC is to define the surface
s(t). In general, the sliding surface represents the system
behavior during the transient period, therefore, it must
be designed to represent the desired system dynamics, for
instance stability and tracking performance. In this work,
the sliding surface presented in Camacho et al. [1999] is
used:

s(t) =

(

d

dt
+ ¸

)n ∫ t

0

e(¿)d¿ (9)

where n is the system order, e(t) is the tracking error and
¸ is a tuning parameter, which helps to shape s(t). This
term is selected by the designer. This surface, consisting
of the integral-differential error function, is frequently
used because it provides a good performance in practical
applications of SMC (Garcia-Gabin et al. [2010]). For the
first-order system in (8), the sliding surface (9) will be:

s(t) = e(t) + ¸

∫ t

0

e(¿)d¿ (10)

where the error e(t) = r(t)− (y(t)− ym1(t))− y−m1(t), r(t)
is the glucose reference. ym1(t) is the glucose estimation
using (4), y−m1(t) is the glucose estimation using (8), and
both are deviations variables from the basal point (y0).
The SMC control law contains two parts: a continuous
part uCfb

(t), and a discontinuous part uDfb
(t), so that

ufb(t) = uCfb
(t) + uDfb

(t) (11)

The first of these is responsible for maintaining the con-
trolled system dynamics on the sliding surface, which
represents the desired closed-loop behavior. The method
normally used to generate the equivalent SMC law uCfb

(t)
is Filipov construction of the equivalent dynamics. It con-
sists of satisfying the sliding condition and substituting
it into the system dynamic equations; the control law is
thereby obtained. The control objective is to ensure that
the controlled variable is driven to its reference value. It
means that, in the stationary state, e(t) and its derivatives
must be zero. This condition is satisfied when:

ds(t)

dt
= 0 (12)

Once the sliding surface has been selected, attention must
be drawn to the design of the control law that drives the
controlled variable to its reference value and satisfies (12).
Applying the sliding condition (12) to (10):

ds(t)

dt
=

de(t)

dt
+ ¸e(t) = 0 (13)

and solving for the first derivative and considering the
nominal case (y(t)− ym1(t) = 0), we obtain

dy−m1(t)

dt
=

dr(t)

dt
+ ¸e(t) (14)

Then substituting (14) in the equivalent differential equa-
tion of the model (8), which is

¿m1

dy−m1(t)

dt
+ y−m1(t) = Km1uCfb1(t) (15)

and solving for uCfb1(t) to obtain the continuous part of
the controller (Garcia-Gabin et al. [2010]):

uCfb1(t) =
1

Km1

(

¿m1

dr(t)

dt
+ ¿m1¸e(t) + y−m1(t)

)

(16)

The expression for uCfb1(t) can be simplified making zero
the derivatives of the reference.

dr(t)

dt
= 0 (17)

The derivative computation in many controller implemen-
tations should be based on the value of the process vari-
able itself. Because when setpoint changes (step changes),
derivative on setpoint results in an undesirable control
action called derivative kick (Smith and Corripio [1997]).
Also, concerning practical implementation issues, a nat-
ural continuous approximation of the signum function is
used for the discontinuous part uDfb

(t), to avoid the chat-
tering problem (Garcia-Gabin et al. [2010]). This is the
sigmoid-like function:

sign(s(t)) =
s(t)

∣s(t)∣+ ±
, ± > 0 (18)

where ± is a tuning parameter used to reduce the chat-
tering problem (a non-decreasing oscillatory component
of finite amplitude and frequency). Finally, the resulting
control law is given as:

ufb1(t) =
1

Km1

[

¿m1¸e(t) + y−m1(t)
]

+KD1

s(t)

∣s(t)∣+ ±
(19)

Second order SMC To design the second controller, the
SOPTD model in (5) is used. First, the model is factorized
as follows:

G+

m2(s) = e−t0m2s (20)

G−

m2(s) =
Km2

(¿m2s+ 1)(¿m3s+ 1)
(21)

The next step is to formulate the sliding surface. For
the second order model in (21), the second order s(t) is
(Camacho et al. [1999]):
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s(t) =
de(t)

dt
+ ¸1e(t) + ¸2

∫ t

0

e(¿)d¿ (22)

where ¸1 and ¸2 are tuning parameters of s(t). The next
step is to formulate the control law for the second order
SMC. From the sliding condition in (12):

ds(t)

dt
=

d2e(t)

dt2
+ ¸1

de(t)

dt
+ ¸2e(t) = 0 (23)

then solving for the highest derivative, and considering the
nominal case (y(t)− ym2(t) = 0):

d2y−m2(t)

dt2
=

d2r(t)

dt2
+ ¸1

de(t)

dt
+ ¸2e(t) (24)

Now, substituting (24) in the equivalent differential equa-
tion of the model (21):

¿m2¿m3

d2y−m2(t)

dt2
+ (¿m2 + ¿m3)

dy−m2(t)

dt
+ y−m2(t) =

Km2uCfb2(t)
(25)

and solving for uCfb2(t), gives the continuous part of the
control signal:

uCfb2(t) =
1

Km2

[

¿m2¿m3

(

d2r(t)

dt2
+ ¸1

de(t)

dt
+ ¸2e(t)

)

+(¿m2 + ¿m3)
dy−m2(t)

dt
+ y−m2(t)

]

(26)

Since a constant r(t) is used, the first and second deriva-
tives are equal to zero, and uCfb2(t) can be further simpli-
fied. The final formulation of the control law of the second
order SMC is:

ufb2(t) =
1

Km2

[

¿m2¿m3

(

¸1

de(t)

dt
+ ¸2e(t)

)

+

(¿m2 + ¿m3)
dy−m2(t)

dt
+ y−m2(t)

]

+KD2

s(t)

∣s(t)∣+ ±

(27)

Following Camacho et al. [1999] and Garcia-Gabin et al.
[2010], the following initial tuning parameters can be used
to adjust the designed controllers:

¸ =
1

¿m1

, ¸1 =
¿m2 + ¿m3

¿m2¿m3

, ¸2 =
¸2
1

4
(28)

For the discontinuous part of the controllers, the gain KD

will be selected so that KmKD > 0. This value must be
high enough to cancel the disturbances. The initial values
for KD1,2 were selected as in (Garcia-Gabin et al. [2010]):

KD1 =
1

Km1

,KD2 =
1

Km2

(29)

Feedforward controller Meals usually lead to a significant
glucose flux into the blood. To achieve a better postpran-
dial performance (i.e. avoid high glucose excursions after
meal intakes), the SP-SMC is provided with a feedforward
loop for meal announcement. Feedforward control is a
well-known control technique to eliminate the effect of
measurable sources of disturbance. In the BG problem,
the meal CHO is considered as a known disturbance,

and feedforward control can be used. The benefit of meal
announcement in improving the postprandial performance
has been verified in different studies (see for example
Marchetti et al. [2008], Abu-Rmileh et al. [2010a,b]). To
design a feedforward controller, the effect of meal CHO on
BG level should be known or approximated. Two FOPTD
models are identified to represent the CHO-BG system
in the Meal and Hovorka models, Gml1(s) and Gml2(s)
respectively. The general formula of the obtained transfer
functions is given by:

Gml(s) =
Yml(s)

Dml(s)
=

Kml

¿mls+ 1
e−t0mls (30)

where Yml(s) is the glucose increment caused by the
meal, Dml(s) is the CHO amount in the meal, Kml, ¿ml

and t0ml are the model parameters. The objective of the
feedforward controller Uff (s) is to eliminate the effect of
Dml(s);

Uff (s) = Gff (s)Dml(s) (31)

Where Gff (s) is the transfer function of the feedforward
element. For the Meal model, which is represented by
another FOPTD model in the insulin-BG system (4),
Gff1(s) is given by

Gff1(s) = −
Gml1(s)

Gm1(s)
=

Kff1(¿m1s+ 1)

¿ml1s+ 1
e−t0ff1s (32)

Where Kff1 = −Kml1/Km1, and t0ff1 = t0ml1 − t0m1.
Another formula that can be used is the static feedfor-
ward, which does not consider the dynamic behavior of
Gm1(s) andGml1(s). Using static feedforward,Gm1(s) and
Gml1(s) are limited to their constant gain values, and the
obtained static feedforward element will be a simple gain
ratio multiplier:

Gff1(s) ≃ −
Kml1

Km1

= Kff1 (33)

The feedforward action is given by:

Uff1(s) = Kff1Dml1(s) (34)

For the Hovorka model, which is approximated by a
SOPTD model in the insulin-BG system (5), Gff2(s) will
be:

Gff2(s) =
Kff2(¿m2s+ 1)(¿m3s+ 1)

¿ml2s+ 1
e−t0ff2s (35)

where Kff2 = −Kml2/Km2, and t0ff2 = t0ml2 − t0m2.
The transfer function in (35) is unrealizable, and it should
be approximated. When there are uncertainties in the
lead-time constant and lag-time constant, then a better
performance is obtained by using a static feedforward,
since the performance of dynamic feedforward is affected
by uncertainties in the time constants obtained by approx-
imation(Smith and Corripio [1997]). Therefore, the static
Gff2(s) and the static Uff2(s) will be:

Gff2(s) ≃ −
Kml2

Km2

= Kff2 (36)

Uff2(s) = Kff2Dml2(s) (37)

When feedforward is performed as a static bolus, the
entire calculated insulin dose can be delivered into the
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blood stream with the least possible delay. It was found
that both dynamic and static feedforward improves the
meal disturbance rejection, with the latter being superior
(Abu-Rmileh et al. [2010a]). Thus, the static feedforward
is adopted in this work. Finally, the total insulin dose
delivered to the patient will be (as shown in Figure 1):

u(t) = ufb(t) + uff (t) (38)

4. RESULTS

4.1 In silico testing

To explore the applicability of the designed controllers,
they have been tested with the nonlinear patient models,
while the identified models served as internal models
for the controllers. The simulations considered a 2-days
testing period. For the first day, the meals were 55,
85, and 75 g of CHO at 9:30 AM, 1:30 PM, and 7:30
PM, respectively. In the second day, 60, 90, 85, and
55 g CHO were taken at 7:00 AM, 12:30 PM, 7:00
PM, and 10:00 PM, respectively. A constant target BG
value of 120 mg/dl is used. The CGM signal is used
to drive the controllers, while the BG level is used to
evaluate their performance. The models and controllers
parameters used in the simulations are given in Table 1.
To evaluate the controllers performance in the presence of
different sources of noise, disturbance and uncertainty, the
simulation results are analyzed using the Percentage within
ranges metrics. These metrics give the percentage of the
testing period during which the patient’s BG is within the
acceptable (70-180 mg/dL), hypoglycemic (< 70 mg/dL),
and hyperglycemic (> 180 mg/dL) ranges.

Table 1. Models and controllers parameters.

Parameter Value Units

Km1 -0.3 mg/dL per pmol/min
¿m1 200 min
t0m1 100 min
Kff1 0.57 pmol/mg
KD1 -0.33 pmol/min per mg/dL
¸ 0.0025 min−1

Km2 -19 mg/dL per mU/min
¿m2 155 min
¿m3 365 min
t0m2 35 min
Kff2 7.89 mU/mmol
KD2 -0.526 mU/min per mg/dL
¸1 0.014 min−1

¸2 4.923×10−5 min−2

± 0.6 mg/dL

4.2 Testing scenarios

Feedback-Feedforward vs. Feedback SP-SMC To study
the feasibility of the proposed controllers, two controllers’
modes (fully automatic and semi-automatic) have been
tested and compared. The fully automatic system (i.e.
feedback-alone controller) does not need any input from
the patient, and depends on the CGM signal only. The
semi-automatic system needs the patient intervention to
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Fig. 2. Feedforward-feedback (FF-FB) vs. Feedback (FB)
controllers’ setups: (a) 1st order SP-SMC with Meal
model, (b) 2nd order SP-SMC with Hovorka model,
(c) insulin infusion, (d) feedforward bolus, (e) sensor
errors (mg/dL).

tell that a meal is coming up and the control algorithm
needs to change (i.e. feedforward-feedback controller). The
feedforward action is performed by injecting an insulin
bolus (0-20) min before the meal. The feedback-alone
setup is tested as a possible case where the SP-SMC
should operate out of the nominal conditions (i.e. no
meal announcement). From the results shown in Figure
2 and Table 2, a better performance is obtained when the
feedforward control is active. Since the feedforward action
starts to deliver insulin before the meals effect appears in
the CGM feedback loop, lower hyperglycemic peaks and
lower fluctuations in BG levels are observed. Without meal
announcement, the feedback-alone controller is still able to
achieve acceptable performance; no hypoglycemic events
are detected, and only short periods of hyperglycemia
are observed. Numerical results in Table 2 indicate that
the semi-automatic feedforward-feedback SP-SMC shows
a superior performance over the fully automatic feedback-
alone configuration, highlighting the limitations of purely
reactive controllers. Meal announcement provides better
results, however, it is not uncommon that patients forget
to activate the meal bolus. Therefore, meal detection
algorithms are developed to improve the control outcomes
without requiring patient intervention (Lee et al. [2009]).

Meal estimation errors Although the meal announce-
ment is important to calculate the required feedforward
control signal, the announcement may contain erroneous
information about the meal contents. Therefore, the con-
troller should have a good level of robustness against
errors in estimating the meal CHO. The designed SP-SMC
controllers have been tested with random over- and under-
estimation errors up to 30% in meal announcement (the
error is included in the controllers announcement while the
correct meal is given to patient). Figure 3 shows the glu-
cose levels obtained for the patients with the ±30% errors.
For the three scenarios (nominal meal, overestimation, and
underestimation), the controllers are able to keep the BG
level within the safe glycemic range during the testing
period (See Table 2). The controllers performance is not
affected by small and moderate estimation errors, while
only minimum degradation is noticed near the boundaries
of ±30% errors.
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Fig. 3. BG profile with meal errors: (a) 1st order SP-SMC
with Meal Model, (b) 2nd order SP-SMC with Hov-
orka model. Nominal meal (solid), 30% overestimation
(dashed), 30% underestimation (dotted).

5. CONCLUSION

This study presented a closed-loop control approach for
insulin delivery in T1DM based on SP-SMC methodology
applied to virtual diabetic subjects. The proposed SP-
SMC strategy is as simple as a PID controller in its
formulation and implementation but has some advantages
over it such as accuracy and robustness, insensitivity
to internal and external disturbances, and finite time
convergence. Such features make SP-SMC suitable for the
BG control problem which incorporates many sources of
uncertainty and disturbances, and imposes some specific
time requirements to avoid hypo- and hyperglycemia.
Another important feature of SP-SMC that is not common
in other glucose controllers, is the direct relation between
the controller structure and the model parameters. Such
explicit relation facilitates the tuning of the controller.
The conducted simulations indicate that, with a good
lower-order approximation of the nonlinear model, the SP-
SMC achieves tight glycemic control with no hypoglycemic
events. Future work aims at testing the controllers’ ability
to deal with other sources of errors and uncertainty that
exist in the glucose control problem.

Table 2. Controllers’ performance assessment.

Controller Mean BG % in 70-180 % >180
(±SD) mg/dL mg/dL

1st order SP-SMC

without FF 145 (32) 80.7 19.3
with FF 127.7 (15.7) 97.6 2.4

with + 30 % error 125.1 (14.9) 100 0
with - 30 % error 131.6 (17.17) 94.1 5.9

2nd order SP-SMC

without FF 119.9 (36.3) 89.7 10.3
with FF 120 (15.1) 100 0

with + 30 % error 120.1 (10.1) 100 0
with - 30 % error 121.8 (22.3) 97.2 2.8
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Appendix B

Supplementary material

Accompanying CD-ROM with a draft version of different MATLAB and SIMULINK

files used during the development of the thesis publications.
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