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Abstract

Quantum mechanics was developed as a response to the inadequacy of clas-
sical physics in explaining certain physical phenomena. While it has proved
immensely successful, it also presents several features that severely challenge
our classicality based intuition. Randomness in quantum theory is one such
and is the central theme of this dissertation.

Randomness is a notion we have an intuitive grasp on since it appears to
abound in nature. It afflicts weather systems and financial markets and is
explicitly used in sport and gambling. It is used in a wide range of scientific
applications such as the simulation of genetic drift, population dynamics and
molecular motion in fluids. Randomness (or the lack of it) is also central to
philosophical concerns such as the existence of free will and anthropocentric
notions of ethics and morality.

The conception of randomness has evolved dramatically along with phys-
ical theory. While all randomness in classical theory can be fully attributed
to a lack of knowledge of the observer, quantum theory qualitatively departs
by allowing the existence of objective or intrinsic randomness.

It is now known that intrinsic randomness is a generic feature of hypo-
thetical theories larger than quantum theory called the non-signalling theo-
ries. They are usually studied with regards to a potential future completion
of quantum mechanics or from the perspective of recognizing new physi-
cal principles describing nature. While several aspects have been studied
to date, there has been little work in globally characterizing and quantify-
ing randomness in quantum and non-signalling theories and the relationship
between them. This dissertation is an attempt to fill this gap.

Beginning with the unavoidable assumption of a weak source of ran-
domness in the universe, we characterize upper bounds on quantum and
non-signalling randomness. We develop a simple symmetry argument that
helps identify maximal randomness in quantum theory and demonstrate its
use in several explicit examples. Furthermore, we show that maximal ran-
domness is forbidden within general non-signalling theories and constitutes
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a quantitative departure from quantum theory.

We next address (what was) an open question about randomness ampli-
fication. It is known that a single source of randomness cannot be amplified
using classical resources alone. We show that using quantum resources on the
other hand allows a full amplification of the weakest sources of randomness
to maximal randomness even in the presence of supra-quantum adversaries.
The significance of this result spans practical cryptographic scenarios as well
as foundational concerns. It demonstrates that conditional on the smallest
set of assumptions, the existence of the weakest randomness in the universe
guarantees the existence of maximal randomness.

The next question we address is the quantification of intrinsic random-
ness in non-signalling correlations. While this is intractable in general, we
identify cases where this can be quantified. We find that in these cases all ob-
served randomness is intrinsic even relaxing the measurement independence
assumption.

We finally turn to the study of the only known resource that allows
generating certifiable intrinsic randomness in the laboratory i.e. entangle-
ment. We address noisy quantum systems and calculate their entanglement
dynamics under decoherence. We identify exact results for several realistic
noise models and provide tight bounds in some other cases.

We conclude by putting our results into perspective, pointing out some
drawbacks and future avenues of work in addressing these concerns.
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Chapter 1

Introduction

Quantum theory started developing around the beginning of the twentieth
century as a response to limitations of the prevailing classical theories. The
dramatic failure in a physical explanation for the black body radiation spec-
trum (termed the ultraviolet catastrophe) was the proximate event that was
solved by Planck’s introduction of quanta of energy.

Quantum theory has since become the most successful theory in physics
predicting observed behaviour with unprecedented accuracy in several do-
mains of physics. It was successfully applied to describe scattering, matter-
radiation interaction, nuclear decay and in condensed matter physics [ER85].

However, quantum theory also famously presents several counter intu-
itive and bizarre features such as the wave-particle duality, the uncertainty
principle and non-locality. As a result, the study of the foundations of quan-
tum theory has remained a subject of intense study right from its inception
to date. The intrinsic randomness codified in the axiomatic structure of
operational quantum theory is one such intriguing feature and is the subject
of the present thesis.

1.1 Motivation for the study of randomness

Randomness is a notion that we understand and identify with at an intuitive
level. It is usually associated with events with no intelligible pattern or pre-
dictability or whose underlying cause or structure is indiscernible. Random-
ness appears to abound in situations and events all around us. Coin flips are
used for random initialization in sport, weather is a complex system with be-
haviour that appears unpredictable. Random throws of dice are used in gam-
bling. In the physical sciences, randomness constitutes a valuable resource
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1.1. MOTIVATION FOR THE STUDY OF RANDOMNESS

for applications such as cryptographic protocols [Gol01, Gol04, GRTZ02] or
the numerical simulation of physical and biological systems [KTB11]|. The
mechanisms of evolution - like natural selection and genetic drift - work with
the random variation generated by mutation [Sch44]. Randomness also oc-
cupies a central role in philosophical debates about the existence of free will!
[Kan98] with the natural implications for anthropocentric concerns such as
ethics and morality?.

Important note on terminology. We use the terms randomness and
unpredictability interchangeably unless specified otherwise. We distinguish
between different flavours of randomness with the use of adjectives such as
classical or intrinsic (discussed below).

Given the centrality of the notion of randomness in such varied disci-
plines of knowledge, the immediate question that begs itself is, is the per-
ceived randomness merely a reflection of the less-than-complete subjective
state of knowledge of the observer or does genuine randomness indeed exist?
For example, coin flips appear random because of incomplete knowledge
of parameters such as applied force, torque and interactions such as the
friction due to air viscosity. However, given such knowledge, a coin flip is
fully predictable. Additionally, identical initialization and interactions make
the outcomes fully reproducible. Same is the case with the throw of dice.
Weather systems also display what appears to be highly random behaviour.
This is the outcome of the non-linear dynamics of such systems making
them highly sensitive to initial conditions despite the dynamics being de-
scribed by deterministic equations. Minor variations are amplified quickly
resulting in their characteristic behaviour. In other words, the behaviour of
such systems is deterministic and reproducible in principle if the initializing
conditions can be made sufficiently accurate.

In fact, the mere possibility of the existence of objective randomness is
forbidden within the confines of classical physics. Perfect knowledge of the
positions and momenta of a system of classical particles at a given time, as
well as of their interactions, allows one to predict their future (and also past)
behaviour with complete certainty [Lap40]. Thus, any unpredictability ob-
served in classical systems is but a manifestation of our imperfect description
of the system. Henceforth, we term this as classical or deterministic ran-
domness.

It was the advent of quantum physics that put into question this deter-

ncompatibilism is a school of philosophy that considers determinism to be incompat-
ible with free will. It is a view this author sympathizes with.
*http://www.bu.edu/law /central /jd /organizations/journals/bulr/documents/SCANLON.pdf
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CHAPTER 1. INTRODUCTION

ministic viewpoint, as there exist experimental situations for which quantum
theory gives predictions only in probabilistic terms, even if one has a per-
fect description of the preparation and interactions of the system. Nuclear
decay, electronic transitions in atoms and vacuum fluctuations are examples
of what is considered objectively random (quantum) behaviour.

In other words, quantum theory postulates the existence of (what we
term henceforth) objective, intrinsic or genuine randomness qualitatively
distinct from classical randomness. From a classical perspective,this is a
highly counter intuitive phenomenon and a ”solution” was proposed in the
early days of quantum physics: Quantum mechanics had to be incom-
plete [EPR35], and there should be a complete theory capable of providing
deterministic predictions for all conceivable experiments. There would thus
be no room for objective randomness, as any observed randomness would
again be a consequence of our lack of control over hypothetical "hidden vari-
ables” not treated by the quantum formalism.

This remained a burning philosophical question until path-breaking re-
search by John Bell where he proved a no-go theorem [Bel64] implying that
classical (local deterministic) hidden-variable theories are inconsistent with
quantum mechanics. Therefore, none of these could ever render a deter-
ministic completion to the quantum formalism. While determinism is an
ontological assumption at the level of the hidden variables, it is known that
the Bell inequalities can also be derived from the operational assumptions of
signal locality (instantaneous communication impossible between separated
observers) and predictability [CW12]. Thus, conditional on believing the
validity of signal locality (also called no-signalling), Bell’s theorem allows
us to conclude that predictability must necessarily fail®. In other words, we
are inexorably led to the conclusion that the known laws of physics indeed
allow objective randomness to exist in nature.

The intrigue however deepens since there is a further subtle assumption
used to derive the Bell theorem. Going under the name of measurement
independence or free choice* it is the requirement that observers already
possess a source of randomness before performing the Bell experiment. This
leads to recursive logic in concluding the existence of randomness from the
Bell theorem. In fact, by definition, super-deterministic models of nature
postulating that all events in nature are fully pre-determined cannot be
ruled out. In other words, at a philosophical level the existence of objective

3Here ”failure of predictability” is taken to mean in the strong sense that either any
underlying model is indeterministic and if not, then the hidden variables are necessarily
unknowable. Thus, failure of predictability -in this context- implies objective randomness.
4This is discussed at length in Chapter 2.
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1.2. OUTLINE OF THESIS AND MAJOR QUESTIONS ADDRESSED

randomness, while allowed by the known laws of physics, must remain an
un-testable assumption.

We proceed through the rest of this work under the implicit and critical
assumption that a source of non-zero genuine randomness does indeed exist
in our universe. The view we take here is that giving up this assumption en-
tirely entails adverse consequences for both our current approach to science
-such as the lack of free will [Gis10]- as well as our implicit understanding of
the anthropocentric concepts previously alluded to. Thus, we believe ours
to be a natural assumption.

1.2 Outline of thesis and major questions addressed

Here we trace the underlying theme and the work presented in the following
chapters as well the links between them.

Having accepted the existence of sources of non-zero intrinsic randomness
in the universe, the next logical question is if there are upper limits on how
much randomness may be attained in theories of nature and how we may
quantify such randomness. How does such a quantification depend on the
specific mathematical framework being employed to describe the theory? It
turns out that depending on whether we use the quantum framework or an
expanded one called the no-signalling framework, there are different bounds
on the maximum of objective randomness. We address this in detail in
Chapters 3 and 4.

The next question we pose concerns the connection between the initial
non-zero randomness to the maximum allowed randomness discussed above.
More to the point, is it possible to amplify randomness fully? The answer
to this question is a strict "no” using exclusively classical resources [SV86].
We find that using quantum resources on the other hand makes this task
possible in the broadest possible framework of no-signalling. This result and
its far reaching ramifications are discussed in Chapter 5.

Staying with the theme of intrinsic randomness in the non-signalling
framework, in Chapter 6 we identify broad criteria for certain scenarios that
quantify the intrinsic randomness content in observed correlations. Our
methods also constitute a significantly simpler proof of randomness amplifi-
cation and produces a maximally random bit exponentially fast in the system
size.

We conclude in Chapter 7 with a study of the only known physical re-
source known to generate intrinsic randomness, viz. entanglement. We study
the dynamics of entanglement in an important class of multipartite entangled
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CHAPTER 1. INTRODUCTION

quantum states called the graph states evolving under noise (Chapter 7).

1.3 Contributions

This section summarizes the ideas and work that I, together with my co-
workers, have developed over the course of my doctoral study.

1.3.1 Randomness in quantum theory certified by Bell in-
equalities.

We begin by studying randomness within quantum theory. We show that
symmetries in Bell inequalities may be exploited to certify the existence (or
lack thereof) of maximal randomness in quantum distributions maximally
violating these inequalities. For this we require that such distributions be
unique. We demonstrate uniqueness for several useful Bell inequalities and
postulate it to be a general property of the quantum set of correlations -
unlike the local or the non-signalling sets. We then use this for certificates of
randomness in scenarios of higher complexity. We identify several scenarios
where maximum randomness is attained within the quantum set [DPA12].

1.3.2 Maximal randomness precluded in maximally non-local
theories.

It is well known that genuine randomness is completely precluded within
classical theories or equivalently (as we call them here) the local set of corre-
lations. Intrinsic randomness is a feature of general non-local, non-signalling
theories of which quantum theory is a strict subset. We ask the question:
what is the maximum allowed randomness in the largest possible set of
non-local correlations respecting signal-locality? Intriguingly, we find that
maximal randomness is forbidden for general no-signalling theories. We find
upper bounds on the global randomness for the most general scenarios and
find that in certain cases, the randomness diverges greatly from the maxi-
mum in the quantum set. This completes the theme of maximal (genuine)
allowed randomness within the three sets of interest, local, quantum and
no-signalling: No randomness in the local set, maximum in the quantum,
but strictly less than maximum in the no-signalling [In preparation).
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1.3. CONTRIBUTIONS

1.3.3 Full randomness amplification possible with quantum
resources.

Randomness amplification is an informational task of using poor quality
randomness and distilling higher quality randomness using available phys-
ical resources. It has been long known that this is impossible classically.
However, it was recently shown to be possible in a limited case within quan-
tum theory. We completed this project by showing that full amplification
of randomness may be achieved by using quantum non-local resources. In
other words, we showed that given a source generating the smallest amount
of non-zero randomness we can use quantum correlations to amplify this
randomness to that of a perfectly unbiased bit. We derive this result in a
Device Independent manner which makes it conditional on only observing
the desired violation of a Bell inequality. Thus, they are valid even in crypto-
graphic settings allowing the existence of a supra-quantum adversaries. Full
amplification has far reaching philosophical implications since it guarantees
that fully random events are guaranteed to occur in our universe even if only
slightly random events are assumed to exist [GMdIT*12].

1.3.4 Observed randomness is fully genuine.

In the so-called device independent scenarios that are dealt with in this
work, the source of the observed correlations is uncharacterised. Thus, the
preparation of the observed correlations may in general be a mixture of ex-
tremal correlations, knowledge of which is hidden from the observers. Thus,
one would generally expect the randomness observed in such correlations
to contain some classical randomness associated with the lack of knowledge
of the source. We show that, even so, one may choose certain correlations
and scenarios where the observed randomness of appropriately defined func-
tions completely excludes classical randomness. What makes this result even
more significant is its validity even under almost complete relaxation of the
freedom of choice assumption. Our criteria are general enough that for the
first time, such results are derived for finite choices of parties, measurements
and outcomes. The techniques can also be extended to provide a new and
significantly simpler proof of full randomness amplification [In preparation).

1.3.5 Noisy entanglement evolution in graph states.

We finally change focus from characterization of randomness in non-local
theories to the study of a physical resource strictly necessary for the existence
of intrinsic randomness, namely, entanglement. We study entanglement
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CHAPTER 1. INTRODUCTION

dynamics in a very important class of quantum systems called the graph
states. These include the GHZ states whose randomness properties we ex-
plore throughout this thesis. Graph states constitute resources for universal
quantum computation and hence the study of their entanglement properties
is of independent interest. We develop and expand on a computational tool
which allows us to compute the entanglement dynamics of graph states under
the action of an important class of noise channels, called the Pauli channels.
We compute the decay of entanglement in systems of up to 14 qubits. The
show that our method is scalable and generalize it to noise channels outside
the afore said class with concrete examples [Dha09, ACCT10].
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Chapter 2

Preliminaries

In this chapter, we introduce the most important concepts and definitions
that are necessary to make this thesis self-contained.

Section 2.1 introduces the concept of non-locality since this is a strictly
necessary requirement for the existence of intrinsic randomness.

Section 2.2 is a brief introduction to the Device-Independent formalism
which allows us to characterize randomness without reference to the internal
working of the devices used and under the sole assumption of signal locality.

Non-locality imposes a natural classification in the space of correlations.
We characterize the intrinsic randomness in each of these classes in Chap-
ters 3 and 4. In preparation, Section 2.3 introduces the geometry of the
correlation spaces.

Section 2.4 is a primer on the entropic measures of randomness we will
use for our work and we end with a discussion about quantum entanglement
in Section 2.5 since this is the topic of Chapter 7.

2.1 Non-locality

One of the clearest manifestations of the remarkable and highly counter-
intuitive behaviour of quantum systems is the violation of the Bell inequal-
ities [Bel64, Bel66, Bel87] by entangled states. This feature is termed non-
locality. It captures the notion that statistics generated by measurements
on entangled quantum systems do not allow simulation by strictly local re-
sources. Such a simulation necessarily requires, in addition to local resources,
some non-local resource such as communication [TB03].

As discussed in Chapter 1, the initial suggestions of the existence of
local hidden variable models (LHVMs) simulating quantum statistics were
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CHAPTER 2. PRELIMINARIES

an attempt to demonstrate the incompleteness of quantum theory [EPR35]
which however failed in that particular case [Boh35]. However, the question
remained open, at a philosophical level, whether the quantum description
of nature was complete. It was after several decades that work by John
Bell convincingly placed the question in the realm of experimentation and
observation. His approach consisted of bounding the correlations that may
be attained by LHVMs and demonstrating explicitly that there exist corre-
lations in quantum theory that exceed these bounds. These bounds are usu-
ally called the Bell inequalities. It has been shown both theoretically as well
as experimentally [ADR82] that these inequalities are violated by quantum
probability distributions. The experimental confirmation is modulo certain
well known loopholes that are difficult to treat technologically but are being
actively addressed in different setups [TBZG98, WJST98, Row01, GMR*12].

Non-locality is a necessary condition for the existence of intrinsic ran-
domness. This is because the violation of Bell inequalities (namely, non-
locality) implies the failure of the conjunction of signal locality and pre-
dictability as discussed in the previous chapter. Since signal locality has
passed all experimental tests to date we may safely assume the failure of
predictability, implying intrinsic randomness. This is an important observa-
tion that we will return to time and again.

A simple derivation of the Clauser-Horne-Shimony-Holt in-
equality

The easiest demonstration of Bell’s idea which is directly amenable to ex-
periment is called the Clauser-Horne-Shimony-Holt (CHSH) inequality after
its authors [CHSH69]. It involves two parties, each choosing between two
possible measurements. FKach measurement may yield one of two possible
outcomes (these are termed dichotomic measurements). We sketch a very
simple derivation of this inequality and show that even so one can see how
it is violated by quantum theory.

Consider two observers A and B (See Fig. 2.1) in different locations who
perform several runs of the following experiment in order to gather statis-
tics. Each observer is given a choice among two possible measurements. At
every run of the experiment, the source distributes some physical state be-
tween them. Then, each observer must choose randomly among her options
to make a measurement on the part of the system in her possession. We
denote the measurement choice of A at a given round by z which could be
either of xy or x1 and the choice of B by y that may be either of yy or
y1. Each of these measurements is dichotomic i.e. having only two possible
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2.1. NON-LOCALITY

outcomes. We denote the outcomes of measurements x; by a; and those of
y; by b; for ¢ = 0,1. While referring to the measurements with the variables
x or y, the corresponding outcomes are referred to as a or b. With this
notation, the statistics predicted by quantum theory are given by the Born
rule, Pap(a,blz,y,p) = tr(ng‘jM;j’), where M$ > 0 and Mé’ > 0 constitute
elements of a general quantum measurement that satisfy > M? = T and
> Mé’ =1 for all the inputs.

Locality. The correlations Pap(a,b|x,y) are called local a la Bell or
consistent with an LHVM iff,

Rmmwmﬂw—AdMQﬂumuAﬂ%w%», (2.1)

where X is distributed according to some well-defined density function p(\)
and P4 and Pg are well defined local response functions. A is understood to
encode all the additional (unknown or unknowable) information required to
assign locally probabilities to the outcomes of every possible measurement.

Determinism. In a deterministic model Py (alz, \) € {0,1} and Pg(bly, \)
{0,1}. While this is not required for the general stochastic model in Eqn.
2.1 it is known that determinism does not diminish generality [Fin82]. Using
the standard notation of £1 to denote possible values of a; and b;, Eqn. 2.1
is then equivalent to

Rw@ﬁ@ﬂ%—AdMMﬁMmﬂ%Mﬁm@M%M% (2.2)

where f(z,\) € {—1,1} and g(y,\) € {—1,1} are deterministic functions
with values specified fully by the corresponding input and the underlying
hidden variable.

What the observation above tells us is that it is sufficient to consider
deterministic local models to compute bounds on Bell inequalities. We use
this observation in the following example.

Let us meditate on possible values of the expression

B = agby + apbr + a1bg — a1bq, (2.3)

for a deterministic local model at one run of the experiment where A =
{ag,a1,bo,b1} € {—1,+1}% It can be immediately verified that By €
{-2,2}. Interpreting the above observation in the context of a full experi-
ment we are only interested in the average of B over all the runs. Indeed,
without the knowledge of the underlying hidden variables B cannot be com-
puted at individual runs since A observes only one of ag,a; and B only
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CHAPTER 2. PRELIMINARIES

Ne ke
a p b
(a)
)\*)\

(b)

Figure 2.1: The simulation of correlations observed from measurements on quantum en-
tangled particles with a hidden variable model. a) A source of quantum states of entangled
particles (say, electrons) on which A and B measure observables (say, spin) « and y obtain-
ing the corresponding outcomes a and b. b) The simulation of the correlations using only
local hidden variables A where the inputs are denoted by classical bits x and y yielding
classical bits a and b as outcomes.

one of by, b;. Then we ask: "Do the observed correlations allow description
in terms of a deterministic LHVM?” To answer the question we begin by
noticing that for any LHVM we have the bound,

(B) = (apbp) + (apb1) + (a1by) — (a1b1)
<2 (2.4)

This expression is called the CHSH inequality. Now the remarkable bit:
It turns out that there exist quantum correlations that violate this inequality.
For instance, for the maximally entangled state |t/) = (|00) 4 [11))/+/2 and
the choice of measurements xg = o0, 1 = 0, and ¥y = (0, + 0.)/V?2,
y1 = (0p — 0.)/V/2 the value of the CHSH operator is (By) = 2+/2. This
proves the existence of quantum correlations that cannot be simulated using
local resources alone.
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2.2. THE DEVICE INDEPENDENT FORMALISM

The consequences of this remarkably simple observation are profound
indeed as discussed earlier in this text. However, there are certain critical
assumptions that are used in the derivation of the Bell inequalities. Any
violation of those assumptions could imply a failure in the conclusions!. We
discuss these assumptions in the next section where the more general device-
independent formalism is developed. Under this formalism, the assumptions
become much more transparent and easier to place into context.

2.2 The Device Independent Formalism

The Device Independent (DI) formalism has been an outgrowth of the for-
malism of the Bell inequalities. As was observed in the previous section,
the bipartite CHSH inequality studied the correlations in the statistics gen-
erated by certain entangled states denoted by P(a,b|z,y). The CHSH is
an example of N = 2 parties each performing M = 2 measurements of
d = 2 outcomes. We denote Bell scenarios with the shorthand (N, M,d) in
which case the CHSH represents the simplest possible one: the (2,2,2). The
correlations in a general (N, M,d) scenario are encapsulated in the object
P(ay,az,...,an|x1,29,...,2N), where z; € {1,..., M} is the measurement
choice of the ith party yielding outcome a; € {0,...,d—1} fori=1,..., N.

Underlying the DI approach is the simple observation that the object
P(ay,...,an|z1,...,2zN) requires no knowledge about the precise physical
processes generating the experimental results. It is neutral with respect to
the underlying states, the dimension of the respective Hilbert spaces and the
description of the physical measurement devices. In fact, the only quantity
of importance in this approach is P(ay,...,aN|z1,...,2x). Thus, in this
approach, physical devices are replaced with black boxes, the internal work-
ing of which are of no relevance since only the measured statistics are used
for the analyses.

The DI study of correlations and the violation of Bell inequalities are
immensely useful from both a foundational and applications point of view.
Foundationally, this approach allows the characterization of physical quan-
tities as independent of the mathematical framework as possible. In fact,
the only framework is that of no-signalling. Non-signalling is the assumption
that information propagation speed is finite and we discuss it in greater detail
further in this section. The DI approach allows us to characterize the prop-
erties of no-signalling probability distributions independent of whether they

!The afore mentioned loopholes in Bell experiments are some of the technological/
practical inadequacies that may result in such failure.
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Alice choice, x Bob choice, y

? - Source ‘ ?

Outcome, a Outcome, b
P(a,blz,y)

Figure 2.2: Schematic for a bipartite Device Independent Bell experiment. The statistics
gathered at the end of the experiment is independent of the internal working of the source
and the measurement devices and thus makes the conclusions dependent on only a few
assumptions such as non-signalling.

were generated by a quantum system. It is highly desirable, from a founda-
tions perspective, to study the properties of such correlations since it allows
us to identify properties that are generic among all non-local theories vs
those that are specific to quantum theory alone [MAGO06]. Such approaches
have even motivated the formulation of plausible physical principles such as
Information Causality [PPK*09], Macroscopic Locality [NW10] and Local
Orthogonality [FSA112] that may serve to distinguish quantum theory from
the larger set of no-signalling theories. Several important results connected
with DI randomness expansion [Col07, PAM*10b, VV12a] and (full) ran-
domness amplification [CR12b, GMdIT*12] have also been obtained. Much
work has also focussed on a DI quantum information processing and cryp-
tography [ABGT07, Eke91, BHK05, DMPA11, VV12b].

We illustrate these ideas and the explain the underlying assumptions
using the schematic in Fig. 2.2. While the illustrated system is bipartite,
this is only for convenience of representation. All the statements and as-
sumptions that follow are made for the most general case (N, M,d). While
the object P(aj ...anl|z1...xN) is obtained in a DI fashion, all applications
require calculating its Bell violation. However, even the mere requirement
that this quantity is definable entails the implicit assumption that the source
can generate identical states which are independent of one another at ev-
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ery run of the experiment. This assumption is called the i.i.d. assumption.
From the foundational physical point of view, this is a reasonable assump-
tion. However, in cryptographic scenarios we would like to avoid even this
assumption [BCHT02] which is also the case in Chapter 5.

For the moment, making the 4.i.d. assumption, we can define prob-

el . N(ai,....an|®1,...,TN
abilities as P(a1,...,an|T1,...,2N) = IMy(g, . 2xy) =00 ( N(x1,..‘.,x1v) ).
From now, we also use the shorthand notation a = {aj,as,...,ay} and

x = {x1,x9,...,xN} where necessary or convenient.

Assumptions. Here we discuss the most important assumptions made
in deriving the Bell inequalities and by extension in the DI formalism.

1. Non-signalling. Non-signalling is the most important assumption made
in the Device Independent formalism. It basically forbids the existence
of super-luminal communication. Non-signalling is an operational as-
sumption referring to observable and experimentally verifiable phe-
nomena. In fact, this assumption is generic to a large part of modern
physics and is one of its most well tested hypotheses. Thus, we may
be confident of its validity.

At the level of correlations, non-signalling is translated into the re-
quirement that the outcome of a measurement performed at one loca-
tion is independent of the choice of (simultaneous) measurements at
other locations. It is a natural requirement in that it allows associating
well-defined statistics to marginal distributions as expressed below:

P(ay,...,ai—1,0i11,-..,aN|T1, ..., Ti—1,Tit1, ..., TN)

:ZP(al,...,a,-,...,aN\xl,...,:z:i,...,xN)
ai

:ZP(al,...,ai,...,aN|x1,...,x;,...xN),
ai

where z; and ) are distinct measurement inputs of party ¢. This
ensures that the marginal of all the parties but ¢ is well defined.

2. Measurement independence. Informally, the assumption of measure-
ment independence or free choice is the notion that the every party has
access to a source of private randomness to choose her measurement
at every run of the experiment. This source may be a pseudo-random
generator or a source of quantum randomness like nuclear decay or
even her own "free will”. Hence, this is also referred to as the free will
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assumption. Mathematically, it implies that the input choice z; is in-
dependent of any underlying hidden variables A: p(x;|A) = p(x;). This
assumption may however be rejected as being too strong and recently
much work has been directed towards weakening this assumption as
far as possible [BG10, Hal10, Hal11, GMdIT*12, KHS™12].

2.3 The geometry of correlations

The Bell inequalities impose a natural structure in the space of correlations.
In particular, we may distinguish between the local and the non-local cor-
relations and the latter are further classified as quantum or non-signalling,.
We introduce these ideas with the bipartite (2,2, 2) scenario since it is the
easiest in which to discuss the geometry of correlation spaces (See Fig. 2.3
for a 2d projection of an 8d space).

Given some statistical correlations in the form a non-signalling distribu-
tion P(a,b|z,y), we test the CHSH expression (B) given in Eqn. 2.4. Then
the following is known:

e Local. If P(a,blz,y) = [, d\p(A)P(alz, \)P(bly, \) then P(a,b|z,y) €
L where £ denotes the local set. The distribution can be simulated by
a LHVM with hidden parameters A. In this case, (B)p < 2.

The local set is known to be a convex set having a finite set of vertices

and facets making it a polytope. The vertices of this polytope represent
the deterministic strategies [Fin82].

e Quantum. If one can express the given correlations as P(a,b|z,y) =
tr(pMS ® Mé’) for a quantum state p > 0 of unit trace tr(p) = 1 and
a set of general measurement operators {M¢} 4 and {M}} p satisfying
YaMg =Tand ), Mé’ = I for all  and y then the distribution
belongs to the quantum set Q. In this case, (B)p < 2v/2.

Q is known to be a convex set with infinite vertices [Tsi87], thus not
a polytope.

e No-signalling. If the given correlations cannot be represented in
either of the two forms above, then they belong to the non-signalling
set N'S. In this case, (B)p < 4,

The non-signalling set is also convex and known to be a polytope.
These vertices are generally called the extremal boxes [BP05] while in
the special case of the (2,2,2) are called the PR boxes [PR94].
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Non-signalling set

2\/5 ““““““““ Quantum set

Figure 2.3: The geometry of the local, quantum and non-signalling sets for a bipartite
(2,2,2) scenario. The tight Bell inequalities are all symmetries of the CHSH inequality
while the extremal boxes are all symmetries of the PR box. The numbers to the left
indicate the value of the CHSH inequality. The relationship between the sets is £L C Q C
NS.

We have the strict inclusion £ C Q C N'S. The reason the (2,2,2) has
simple geometry is because all extremal boxes are known to be equivalent to
each other under re-labellings of the inputs, outcomes and parties [BLM*05].
Moreover, every Bell inequality is equivalent under symmetries to the CHSH
inequality [Fin82].

However, in progressing to higher scenarios (N, M, d) the geometry quickly
becomes far more complex. For instance, the (3,2,2) already presents 46
distinct classes of extremal boxes and the same number of classes of Bell
inequalities [PBS11, S03, Fri12]. The classification of local, quantum and
non-signalling sets and their ordering relation follows the same logic as before
and we represent the case (3,2,2) with only the qualitative figure 2.4. The
exact classification of inequalities and extremal boxes for higher scenarios is
unknown in general and only a few partial results exist [BLMT05, BP05].
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Non-signalling set ,/ Mermin inequality

/ ~.
Quantum set GYNI inequality

Figure 2.4: The qualitatively richer geometry of the local, quantum and non-signalling
correlations for the (3,2,2) scenario. Two non-equivalent Bell inequalities are indicated.
The Mermin inequality is algebraically violated by the quantum set while the Guess Your
Neighbour Input (GYNI) inequality is violated only by non-signalling points, but not
quantum. In total, there are 46 non-equivalent classes of extremal boxes and as many
classes of Bell inequalities. The ordering relation between the various classes follows as
before the relationship £ C Q@ C N'S.

2.4 Randomness

In this section, we summarize some of the most relevant entropic definitions
of randomness and their properties. We also justify the use of min-entropy
as our preferred definition in this work.

Entropy as a measure of unpredictability. Entropy in thermodynamics
and statistical mechanics is often understood to be a measure of the disorder
in the given system. This lends itself to the intuition that entropy constitutes
a good measure of randomness. Three of the most common definitions of
entropy used in information theory [CT91] are as follows:

Definition 1. (entropy measures). Let X be a discrete random variable
with possible values {x1,xa,...,x,} with respective weights {p1,p2,...,Pn}-
Then

1. The Rényi entropy [Ré]] of X is
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Ho(X) =

1 (6%
T log ( E pi ) (2.5)
2. the Shannon entropy [Sha48] of X is,

Hen(X) = = 3 plai) log p(xi). (2:6)

3. the min-entropy of X is,
Hy(X)=—log <maxp(:c,-)> . (2.7)

where all logs are to the base 2.

The Shannon and min-entropy are special cases of the Rényi entropy.
For @ — 1, it can be shown that the Rényi entropy converges to the Shan-
non entropy while for a — oo, it converges to the min-entropy. The reason
the later two quantities are explicitly defined above is because of their sig-
nificance in information theory.

Henceforth, we will mainly be concerned by the latter two quantities.
These quantities satisfy the following properties that we would expect from
a randomness measure.

Lemma 2. (properties of entropy). Each of the entropy measures H €
{Hgn, Hoo} satisfies for the random variables X and Y :

e H(X) >0, with equality iff X is supported on a single element.

e H(X) <log|Supp(X)|, with equality iff X is uniform on Supp(X)?.
e if X, Y are independent, then H(X,Y)=H(X)+ H(Y),

e for every deterministic function f, we have H(f(X)) < H(X), and

o for every X, we have Hoo(X) < Hyo(X) implying in particular Hoo (X)) <
Hgn(X).

2Supp(X) denotes the support of X.
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The Shannon entropy is related to the resources required to store infor-
mation or alternatively, to the compressibility of information. This is called
the Shannon’s source coding theorem [CT91, NC00]. While the formal state-
ment of the theorem is a departure of the main theme of this section, we
do state its consequences and limitations as a measure of randomness. For
example, suppose a random variable (equivalently information source) can
take any one of four symbols 1,2,3 or 4. Nai vely, storage of this informa-
tion requires 2 bits for each use of the source without compression. And
indeed this is the case, if each symbol is equi-probable, that is, occurs with
a probability of 1/4. However, for any non-uniform distribution of the sym-
bols, the noiseless source coding theorem states that the information can
be compressed on average to less than 2 bits. For example, for a source
producing the symbols with the probabilities 1/8, 1/16, 1/16 and 3/4, the
average storage required is only Hgp = 1.19 bits. Thus, the source coding
theorem assures us that the average storage space required is much less than
the naive value of 2 bits.

However, now consider the possible value of the random variable over just
one run of the experiment and the issue of randomness in X rather than
its compressibility. Intuitively, since X takes the value 4 with a relatively
large probability and all the others with much smaller probability, we expect
the randomness to be less than one bit. By this logic, the Shannon entropy
Hgyp, = 1.19 bits is clearly too large but the min-entropy Ho, = —log3/4 =
0.42 bits gives a more intuitively satisfying measure of the randomness. This
observation, while very hand-waving and qualitative, is useful as an aid to
intuition in distinguishing the relation between compressibility and Shannon
entropy and between randomness and min-entropy.

Min-entropy is related to the guessing probability of the outcome of a
given random variable. This can be seen from Eqn. 2.7. It is the favoured
measure of randomness used in the theory of randomness extractors [Rao07].
The operational interpretation as well as several useful properties of min-
entropy were proved in [Ren05, KRS09].

Now we have established min-entropy as our measure of randomness of
choice, we now distinguish between classical or deterministic randomness
associated with our lack of knowledge and genuine, intrinsic or objective
randomness as found exclusively within non-local theories. In particular, our
task is to quantify the intrinsic randomness inherent in a given probability
distribution depending on whether we view that distribution as belonging
to quantum set alone or to the larger no-signalling set. We expand on these
points in the following.
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2.4.1 Randomness within the quantum formalism

Within the quantum theory, complete knowledge of the preparation of a
system allows us to describe it with a pure state . In such systems, all
observed randomness is intrinsic since there is no randomness stemming from
a lack of knowledge. Systems lacking an unambiguous pure state description
are instead represented as a mixture of pure states, p = >, p;[1;) (¢;|. These
are called mixed states and generally include both intrinsic randomness as
well as classical randomness associated with out lack of knowledge of the
exact preparation of the system. We are interested in characterizing the
first type of randomness.

Definition 3. (Randomness in pure states). Let |p) € Hy ® Hp be a
bipartite pure state. Then the randommness of an outcome pair (a,b) resulting
from the measurement of the observables A and B may be characterized by
the guessing probability,

G(A, B,v) = max P(a,0|4, B, ) (2.8)

with the min-entropy defined as Hoo (A, B, ) = —logy G(A, B, ) from Eqn. (2.7).

As an example of the application of this formula3, consider a state [¢)) =
(100) + 11))/v2, A = 0., B = 0,. Then, P(a,blA, B,v) = 1/4 for all
a,b = 0,1 giving G(fl, B,zp) = 1/4. Thus for this uniform distribution we
have H,, = 2 bits. This is the maximum possible randomness given this
scenario since there are two observer each making a measurement of two
outcomes (1 bit each).

By extension, the maximum randomness in a (N, M, d) scenario would
be N dits of randomness or equivalently N log, d bits of randomness.

Definition 4. (Randommness in mized states). Let p € O(Hs ® Hp)
be a bipartite mized state. The intrinsic randomness in p associated with
measurements A and B is given by the optimised guessing probability,

G(A,B,p) = e Z piG(A, B, yy), (2.9)
Di, z X

where p =, pil1i) (i]. As before, Hy(A, B, p) = —logy G(A, B, p).

The optimization is performed in order to remove the classical random-
ness associated with the lack of knowledge of the exact preparation of a

3example chosen from [AMP12]
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mixed state. In cryptographic adversarial terms, it quantifies the minimum
randomness perceived by a quantum adversary correlated with p with knowl-
edge of its preparation.

Randomness in a general quantum probability distribution. We are finally
prepared to define randomness in a DI manner. We do this in the following
for a general distribution Pg(a,blx,y) known to come from a quantum sys-
tem but where the precise states of measurements or the internal workings
of the devices are unknown.

Definition 5. (DI randomness in quantum probability distributions).
The intrinsic randomness content of the distribution Pg(a,blz,y) is,

G(z,y,Po) = max G(A,, By, 2.10
(@, Pg) = | max GlAeByup) (210)

where the optimization is performed over all quantum realizations {p, M }
compatible with Pg(a,b|z,y).

2.4.2 Randomness in non-signalling distributions

Let P(a, b|z,y) be a non-signalling distribution. We can define two notions of
randomness with regards to this distribution: the observed and the intrinsic.

Definition 6. (Observed randomness). The observed randomness Gops
for a non-signalling P(a,b|x,y) is given by,

Gobs(xvyvp) = m%XP(a,b\x,y). (211)

a,

Randomness quantified by this definition takes no account of the prepa-
ration of the the given distribution, which in general could be mixture of
non-signalling extremal distributions (including local and quantum ones).
Thus, it is expected to include a contribution from classical randomness
associated with this lack knowledge in addition to intrinsic randomness.

In general, it is only if P = P i.e. an extremal point of the no-signalling
set that this definition is equivalent to the intrinsic randomness of P, since
in this case there is no "missing” knowledge. If P is non-extremal, however,
we define the intrinsic randomness of P as below.

Definition 7. (Intrinsic randomness). The intrinsic randomness Ging
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for a non-signalling P(a,blz,y) is given by,

Gint(xvyup) = max ijGObS(x7y7PjeX)
0P} &

subject to:

P(a,blz,y) =Y piP™(a,blz,y). (2.12)
j

Note the analogy with the definition of randomness of mixed quantum
states.

2.4.3 A comment on algorithmic definitions of randomness

Before concluding the discussion on randomness it is appropriate to comment
on the quantification of randomness coming from the field of algorithmic in-
formation theory [Cha87]. A part of this subject deals with the randomness
in bit strings and has developed some formidable notions of randomness.
For infinite strings, the Martin Léf randomness [ML66] is a robust defini-
tion which satisfies all the intuitive properties we may expect from a random
string, such as incompressibility and the lack of a shorter description of the
string. While it is unknown exactly how quantum objective randomness re-
lates to Martin Lof randomness, we believe that it is reasonable to assume
that the two quantities are equivalent [Cal04].

The situation is more tricky for finite strings since there is no unify-
ing notion of randomness in this case. Shannon entropy (already alluded
to) of a randomness source and the Kolmogorov complexity [LVO08] of a bit
string are the two most important concepts. Using notions from Kolmogorov
complexity, a finite bit string is defined to be random if it lacks a shorter
description than itself in some universal description language. While within
computation theory, this is a reasonable definition, we take the view that
nothing can be concluded about a finite bit string without reference to the
physical system generating the randomness: is it classical or quantum? On
appending the next bits from the source, do we get a correspondingly larger
incompressible string? For these reasons, we interpret Kolmogorov complex-
ity (of finite bit strings) also as relating to the notion of the compressibility
alone (as with Shannon entropy), but not to randomness in the sense of
predictability.
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2.5 Quantum Entanglement

We have noted before that non-locality is necessary for intrinsic randomness.
However, non-locality in physical systems occurs only for those that are en-
tangled. In other words, entanglement is the only physical resource known
that allows non-locality and thus intrinsic randomness to exist. Thus, we
turn to the study of entanglement as a resource. We study the dynamics of
entanglement in a very important class of quantum systems termed graph
states [BRO1, RB01, DAB03, RBB03, HEB04, ACC™10]. Since graph states
are networks of Ising type interaction and code words for universal mea-
surement based quantum computation, the study of entanglement in these
systems is also significant independent of the theme of randomness.

Entanglement refers to the existence of global states of composite sys-
tems that cannot be written as a product of the states of the individual
subsystems. Another way of stating the above is that complete knowledge
of the global state of a composite system does not imply a complete knowl-
edge of the subsystems which it consists of. This has no counterpart in
classical theory.

Among the first papers to recognize entanglement was the EPR paper
alluded to before [EPR35] as well as Schrodinger [Sch35]. While the authors
of the former (EPR) regarded the existence of entanglement as a paradox
indicating the inadequacy of quantum mechanics, the latter (Schrodinger)
believed it to be an essential component of quantum mechanics. Despite
the lack of consensus during the early days, entanglement has now been
firmly established as an essential part of the formalism of quantum theory.
The modern consensus considers entanglement to be a key resource in sev-
eral informational tasks such as quantum dense coding, teleportation and
swapping as well as in quantum cryptography and the speed up of quantum
algorithms. Please see [NC00, HHHHO09] and the references within for an
exhaustive discussion.

We now define entanglement formally as well as some measures of entan-
glement which will be used in Chapter 7. Note that, entanglement usually
has a negative definition: We define states that are separable and entangled
states are understood to be precisely those that are non-separable.

2.5.1 Bipartite entanglement

Pure states. A pure state |¢ap) € Ha ® Hp with subsystems of local
dimension d4 and dp is separable iff it can be written as a product of vectors
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corresponding to the respective subsystems, i.e.

[aB) = [¥a) @ |¥B). (2.13)

In general, any bipartite pure state can be expressed using the Schmidt
decomposition [NCO00] as,

()
[WaB) =Y ailia) @ lin), (2.14)
=1

where g; are non-negative real numbers called the Schmidt coefficients sat-
isfying >, ¢? = 1 while {|ia)} and {|ig)} are orthonormal bases of H
and Hp respectively. In general, (1) < min[d4,dp]| is called the Schmidt
rank of ¥ and is equal to either of the ranks of the reduced operators
pa = trp[[Yap)(Yapll or pp = tral[ap)(Yasll-

Given Eqn. (2.14), a quantitative restatement of the condition for entan-
glement: |¢4p) is separable iff ¢; = §}. Thus, any state requiring more than
one Schmidt coefficient in Eqn. (2.14) is entangled.

And example of a pure entangled state is the singlet state, |¢p~) = (]01) —
110))/v/2.

Mized states. In general, we deal with mixed states in the laboratory
rather than pure states because of imperfections in the preparation proce-
dures and decoherence. Hence we move next to the definition of entangle-
ment in bipartite mixed states.

A bipartite mixed state pap defined on Hy ® Hp is separable [Wer89)
iff it cannot be represented by states of the form,

k
paB =Y _pi P4 @ pig, (2.15)

=1

where p% and pi are defined on H, and Hp respectively. These local
density operators can be chosen to be pure for dim(Hap) < oo. Then,
k < dim(H p)? [HHHHO9].

Separability criteria are generally hard to check for mixed states. For
example, for the Werner states [Wer89] defined as p" = v|¢™) (¢~ | + 1341,
we may apply the PPT criterion [Per96] to find that p'/5 is separable for

visibility v < 1/3. Thus, it is entangled for all 1/3 < v < 1.

2.5.2 Multipartite entanglement

Multipartite entanglement is qualitatively far richer than bipartite entan-
glement. For a n-partite system of n > 2 one may distinguish genuine
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n-partite entanglement from more restricted flavours of entanglement. Be-
fore proceeding to the formal definitions, we illustrate these differences with
some examples.

It turns out that tripartite states are sufficient to demonstrate the com-
plexity of the notions of entanglement in multipartite systems. Let us con-
sider first the state,

p=p ) + (1L —p) =)=, (2.16)

where {|+),|—)} is the eigenbasis of o,. This is clearly a separable state
from a simple generalization of the notions of separability developed for the
bipartite case. An example of a tripartite entangled state is the so-called
GHZ state [GHZ89],

[Yarz) = (1000) +[111))/2. (2.17)

These are the intuitive generalizations of the notion of separable and entan-
gled states developed for the bipartite scenario. However, in a departure
from the latter, there exist separable and entangled tripartite states which
are not captured by the bipartite definitions. Let us meditate over the state,

[Yapc) = %(|00>AB +[11)aB) @ [0)c- (2.18)

This state is clearly not "fully” tripartite entangled since C' is manifestly
uncorrelated from the other two subsystems.

A more complicated example of a family of tripartite mixed states is of
the form,

paBC = Y _PiPaPBC + Y TiPsPac + ) archas.  (219)

K3 K3

Here, papc is a mixture of states that are each entangled in two parties
while uncorrelated from the third. We term this as a 2-entangled state.

These examples demonstrate the different flavours of entanglement that
exist in multipartite systems. In this context, the examples of Eqns. 2.16
and 2.17 may be termed as fully separable and fully entangled states respec-
tively while the examples of Eqns. 2.18 and 2.19 may be called 2-entangled
pure and mixed states respective. We can use these examples to formulate
our criteria for multipartite full and partial separability (and thus entangle-
ment).
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Definition 8. (Full multipartite separability). An n-partite pure state
is called fully separable iff | A, A,..4,) = |V4,)®|Va,) R ®|1ha,) while an
n-partite mized state is called fully separable iff pa, a,..a, = E?:l pipf41 &
pf42 R ® piAn [Wer89]. Any state not fully separable is called entangled.

This definition does not guarantee that a given state is genuinely n-
partite entangled. We formulate next the criterion to decide if a pure state
is indeed genuinely n-partite entangled.

Definition 9. (Genuine multipartite entanglement). An n-partite pure
state is genuinely n-partite entangled iff every bipartition yields mized re-
duced density operators.

The intuitive reasoning is that this condition ensures that the state is
not a product across any bipartite cut. Graph states are an important class
of genuinely n-partite entangled multipartite states, entanglement dynamics
of which are studied in detail in Chapter 7.

2.5.3 Quantifiers of entanglement

Since entanglement is a critical quantum resource it is important to quan-
tify it for applications in the fields of quantum communication [BBP*96,
BDSW96] and algorithms (see Chapter 7). We do not give an exhaustive
account of the various measures of entanglement but focus on the intuitive
properties required of a "good” measure of entanglement and the particular
definition that will be used later in the text.

In fact, there is only one property that is considered critical for an entan-
glement quantifier which is monotonicity under Local Operations and Clas-
sical Communication (LOCC). This requires that the entanglement must be
non-increasing under any LOCC operation L,

E(L(p)) < E(p) (2.20)

Other properties such as asymptotic continuity and convexity are often
useful and are satisfied by many measures of entanglement. However, they
are not necessary. While there are several measures of entanglement relevant
to different situations, we focus on negativity since it will be used later. We
consider a (multipartite) state p in which we choose a certain bipartition.

Definition 10. (Negativity). Negativity [ZHSL98, VW02] is defined as
the absolute value of the sum of the negative eigenvalues of the given density
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matriz partially transposed with respect to the considered bipartition.

A

2
= > AL (2.21)

A<0

N

where X denote the eigenvalues of p’ .

Negativity is a convex entanglement monotone. Further properties are
discussed where relevant (Chapter 7).
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Chapter 3

Maximal quantum
randomness

As we have discussed as some length in the preceding chapters, quantum
theory incorporates intrinsic randomness in its framework having no classi-
cal counterpart. Non-locality is a necessary condition for the existence of
intrinsic randomness. However, the relationship between the two physical
quantities beyond this is troubled and we are still far from understand-
ing the exact relation between them. For instance, probability distributions
with maximal non-locality does not necessarily contain maximal randomness
[AMP12]. Conversely, distributions with arbitrarily small non-locality may
contain almost maximal randomness [AMP12]. This informs us that naively
expecting maximally non-local quantum distributions to demonstrate max-
imal randomness is incorrect. One of the primary reasons why the relation-
ship is hard to characterize is the lack of a general characterization of the
boundary of quantum correlations. The best techniques known so far use
a hierarchy of semi-definite programs that bound the quantum set asymp-
totically [NPAO7]. However, the complexity and computational resources
required at higher levels make the problem infeasible. Hence, it is not yet
known if the problem of identifying the quantum boundary is even decidable
[WCPG11]. Along these lines, identifying those quantum set-ups, namely
Bell tests, which offer the highest possible randomness would be a highly
desirable result, relevant to our theme of maximal randomness as well as
for applications such as cryptography and others requiring high randomness
sources.

Consider as an example the standard Clauser-Horne-Shimony-Holt (CHSH)
inequality [CHSH69], Icusay = <A1B1> + <AlBQ> + <A231> — <AQBQ>. For
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the Tsirelson correlations maximally violating the CHSH, any measurement
output by any of the parties provides a perfect random bit. That is, the cor-
responding probability distribution contains locally the maximum possible of
one bit of randomness for every party and every measurement setting. How-
ever, there are strictly less than 2 random bits (H4P = 1.23 bits) globally,
as any pair of local measurements gives correlated results. Now, consider
the following modification of the CHSH inequality, I,, = (A1 B1) 4+ (A1 B2) +
(A2B1) — (A2B2) + n{A1). At the point of maximal quantum violation,
only the measurement Ag defines a perfect random bit [AMP12]. Why this
setting and not the others? Why all of them in the case of CHSH? More
in general, does maximal (global) randomness occur for quantum correla-
tions at all and if so what measurement settings much be chosen? What
relationship do they bear with maximal non-locality?

3.1 Results

Our main result is to recover all previously known results on maximal ran-
domness in quantum distributions and identify several new cases where max-
imal randomness exists. Furthermore, not all the possible measurement set-
tings in a Bell type experiment can be used to certify maximal randomness
so we provide a simple criterion to infer when and which settings in a Bell
test are optimal for randomness extraction.

Given a Bell inequality, our method (i) assumes that the quantum prob-
ability distribution attaining its maximal violation is unique and (ii) exploits
the symmetries of the inequality. We show how this method reproduces all
known results relating Bell tests and maximal randomness. Moreover, based
on our construction, we provide Bell tests certifying the maximal global ran-
domness in a robust manner, that is, Bell tests for which there exist mea-
surements by the N parties providing N random bits. We also provide a
geometric interpretation of our findings. Finally, we discuss the existence
of uniqueness and show that it is known to exist in several important cases
either analytically or from numerical computation.
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Bell’s Inequalities Locall%andmglllc(jls); Uniqueness
CHSH (2,2,2) 1-bit < 2-bits anl
CGLMP (2, M,d) 1-dit < 2-dits num
Chain (2, M, 2) 1-bit  2-bits (Modq) num
Mermin (Noygq, 2, 2) 1-bit N-bits anl
Mermin (Neyen,2,2) | 1-bit (N — 1)-bits anl
gMermin (Neyen,2,2) | 1-bit N-bits anl
gMermin (3,2, d) 1-dit 3-dits -

Table 3.1: All results derived in this chapter for local and global randomness and whether
uniqueness is known analytically (anl) or numerically (num) in each case. The last two
Bell inequalities refer to the ones in Eqns. 3.6 and 3.7 respectively.

3.2 Background

Before proceeding, we recall some important points. Since we often work
with (IV, M,d = 2) cases we can use the following useful parametrization,

(a|x 1+ Z CLZ —|— Z a;Q; <A1A]>
1<J
+ Z aiajak<AiAjAk> + -4 ajaz... CLN<A1A2 - AN>)
1<j<k
(3.1)

Here, measurement outputs are labelled by 1 and (A4; ... A;) are the stan-
dard correlators (A;...A;) = Pr(ay...any = +1l|zy = i,...,ay = j) —
Pr(ay...ay = 1|z =1i,..., 2Ny = j).

Also note that in a general (N, M, d) scenario maximum local random-
ness is log, d bits while maximum global, N log, d.

3.3 Methods

The main result of this chapter is a simple method to infer when some set-
tings in a Bell test provide maximal randomness. We assume in what follows
that the quantum distribution attaining the maximal quantum violation of
the Bell inequality is unique! (discussed later). Under this assumption, we

In the usual sense of the word: There is no other quantum distribution attaining the
same Bell violation.
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show how symmetries in the Bell inequality under permutation of measure-
ment results, possibly together with permutations of measurement settings,
lead to maximal randomness. Our method, then, can be summarized as
follows: uniqueness plus symmetries implies maximal randomness.

3.3.1 Maximal local randomness

To illustrate our method, we return to the examples given above. Consider
again the CHSH inequality and denote by P* the distribution attaining
its maximal quantum violation, namely Icgsy(P*) = 2v/2. Note that in
this case, this distribution is known to be unique [Tsi87]. The symmetry
transformation 7;: a2 — —a12 and b2 — —byo flips the signs of all
the one-body correlators, (4;) and (B;), while keeps unchanged all two-
body correlators, (A;B;). Applying 7 to P* we obtain a new distribution
Ts(P*) = P** with

(A)™" = =(A)", (By)™ = —(B))", (3.2)

and that also maximally violates CHSH. Because of the uniqueness of the
distribution, P* = P** and all one-body correlators (3.2) must be zero,
which certifies 1 bit of local randomness (for both parties). Moving to I,
the transformation ag +— —ag, By <> Ba, flips the value of (As) without
changing the value of ;. Under the assumption of uniqueness, this proves
that the setting A is fully random. A little thought shows that it is impos-
sible to construct similar transformations for the other local measurements.
Our argument, then, easily reproduces the known results for these two in-
equalities.

As mentioned, our method applies to any Bell inequality with symme-
tries. The previous argument for the CHSH inequality can be easily gen-
eralized to all the chained inequalities of Refs. [BC90, BKP06]. Under the
assumption of uniqueness, these inequalities always certify 1-dit of local
randomness. The chained Bell inequalities can be compactly represented
as [BKPO06]:

M
OC]lV[ - Z<[AZ — Bila) + {([Bi — Ait1]a) =2 d—1 (3.3)
i=1
where A;, B; € {0,...,d — 1} are measurement choices for Alice and Bob

and Apr11 = Ay + 1. The square brackets denote sum modulo d.

Let P attain the quantum maximum of Cé” . The transformation 7:
a; — a; +1 and b; — b; + 1 for every i changes the value of the marginal dis-
tributions of Alice and Bob but leaves the terms in chlw unchanged. Applying
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T to P and assuming it to be unique, it follows that all local distributions
of Alice and Bob must be uniform. In other words, the chained inequality
certifies log, d bits of local randomness for every measurement by each party.

3.3.2 Maximal global randomness

A natural open question is whether there exist Bell tests in the (N, M, d)
scenario that allow certifying the maximal possible randomness, namely
N log, d bits. Some progress on this question was obtained in [AMP12],
where it was shown how to get arbitrarily close to two random bits in the
(2,2,2) scenario. However the corresponding correlations are non-robust.
Here, we show how our method can be easily applied to design Bell tests
allowing maximal randomness certification in a robust manner.

We start with the bipartite case. Maximal global randomness is impos-
sible in the CHSH case, as at the point of maximal violation all settings are
correlated. Maximal global randomness, however, can be certified as soon
as another measurement is included. More in general, consider the chained
inequalities for an odd number of two-outcome measurements. We move to
the notation a;,b; = 1 and reexpress (3.3) as follows:

M M-1
Cy' = > (AiBi) + > (Ai1Bi) — (A1By) (3.4)

i=1 i=1

where A;, B; = £1. Let M = 2k+1. As above, we consider a transformation
leaving C}! unchanged but under which (A;Bgy1) — —(A1Bgy1). Such a
transformation is: T: a1 — —a1, B1y; < By, Aoy > Ay Vi 0 <0 <
k — 1. Assuming that the distribution maximally violating (3.4) is unique
leads to (A1 By+1) = 0. The previous results show that (A1) =0 = (Byy1).
These together certify 2 bits of global randomness for (Ay, Bi41). Similar
arguments certify maximal randomness in all inputs of the form (A;, Bi1)
V 1 <1 < k. Analogous to the case for CHSH, maximal randomness cannot
be certified for those measurement combinations appearing in the chained
inequality, as they display non-zero correlations. The previous results rely on
the assumption of uniqueness, which is unknown for the case of the chained
inequality with M > 2. We then follow [PAM™*10b] and apply the techniques
in [NPA0O7, NPAOS] to get an upper bound on the randomness of (A1, By) for
the chained inequality with 3 measurement settings. The obtained results
corroborate the presence of maximal global randomness, up to numerical
accuracy.
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3.3.3 Maximal randomness from multipartite Bell inequali-
ties

We show that randomness may be deduced in multipartite systems using
appropriate Bell inequalities. We treat the cases of even and odd N sepa-
rately since they require different Bell inequalities for the demonstration of
full global randomness.

Case when N is odd

We consider the Mermin inequalities [Mer90] and prove that they allow cer-
tifying up to N bits of global randomness for arbitrary odd N. The Mermin
inequalities belong to a class of Bell-Klyshko inequalities of N parties that
are defined recursively as,

1 1
My = iMNfl(AN + Ay) + §M1/v71(AN - Ay) (3.5)

where My is the CHSH inequality and M},_, is obtained from My_; by
exchanging all A; and A;. The Mermin inequalities are precisely those for
odd N.

Let My denote a Mermin inequality of N = 2J + 1 sites. Party i, with
1 = 1,...,N has a choice between two dichotomic measurements, A; and
Al Tt is easily checked that for odd N, My contains only full correlators
with an odd number of primes. We show, using symmetry arguments, that
at the point of maximal quantum violation every correlator (4;...A;) (in-
volving an arbitrary number of measurements) that does not appear in My
is identically zero. This automatically implies that any combination of N
settings not appearing in the inequality define N random bits.

To see this, first take a specific N-body correlator not appearing in My,
(X1X2...Xn) where X; = A; or A, but such that the total number of
primed A is an even number. Denote the outcome of X; by z;. Choose
any of the parties, say the first one, and denote by Corr(X;) the set of
all correlators of arbitrary size containing X; plus possibly other settings
X; with ¢ > 1. We would like to show that every element belonging to
Corr(X7) is equal to zero for the unique distribution maximally violating
the inequality. Let us consider the transformation S : {z1 — —z1, and z;
untouched Vj > 1}. This maps Corr(X;) — —Corr(Xi). The terms in
My remains unchanged if we complement Sy with 8] : {2, — —aVj > 1},
where we use (A})" = A;. In fact, note that for the original even primed term
we started with, 8] o S1(X1Xa... Xy) = —(X1X2... Xy). The Mermin
inequality consists only of odd-parity full-correlators. Any such a term can
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be obtained from (X;Xs...Xy) by swapping inputs at an odd number
of places. However, the transformation 8] o &; is such that at every site,
either the outcome of A; or A flips sign but not both. Hence, S} o S;
applied on any correlator obtained by an odd number of local swaps on
(X1X2...XnN) gains an additional factor of —1 for each swapped site relative
to §{oS1(X1Xs ... Xy). Thus, My remains unchanged. It remains to study
the effect of S} on Corr(X1). Since X ¢ Corr(X1), this set is unmodified
under 87, so 8] oSy maps Corr(X;) — —Corr(Xi). We then conclude from
uniqueness that all the correlators in Corr(X;) must be zero. The same
argument can be run for any party, and then for any full-correlator with an
even number of primes, proving the result.

Case when N is even

It is worth mentioning first that similar arguments to above may be applied
to the Bell-Klyshko inequalities for even N allowing the certification of (N —
1) bits of randomness.

However, there exist a different class of inequalities [HCLB11] for which
full global randomness exists for even N. These inequalities are defined as,

N
S (1) @D T A Az ATy < C (3.6)
x
where f(z) = @j\[:—f xj(@z;;ﬂ xr) and z; € {0,1} is the choice of mea-
surement input. It can be shown that the local bound C is strictly lower
than 2V~1, the quantum limit.

Symmetry arguments can be applied [Hob] to show that maximal vio-
lation of this inequality provides full N bits of randomness for any input
string not appearing in the inequality. The uniqueness for this inequality is
discussed in the next section.

Case when d > 2

The examples considered so far have involved dichotomic observables. We
finally study a simple generalization of the tripartite Mermin inequality
[GLBT12] for arbitrary outcomes to demonstrate that our method works
more generally. The inequality introduced by Grandjean et al. was,

Mg = ([A2 — By + Ci]a) + ([A1 + B2 — C1a)
+([—A1+ By + Cola) + ([-A2 — Bo — C2 — 1]g)
>d-1. (3.7)
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It can be easily verified that the same symmetry transformations used for the
regular Mermin inequality of d = 2 can be used to certify 3 dits of random-
ness for any distribution maximally violating My. However, uniqueness is
unknown for this inequality and must remain at the level of an assumption.

3.4 Geometric interpretation

The previous argument crucially relies on the assumption that there is a
unique quantum distribution attaining the maximal violation of a given Bell
inequality. For some cases, such as Mermin (N, 2,2), this uniqueness has
been proven [FFW11, WWO01, Che04] and, then, it is no longer an assump-
tion. Moreover, these arguments also apply to the class of inequalities of
Eqn. 3.6-being full correlator inequalities- and so have a unique quantum
saturation. For the chained inequality, we have numerical evidence using the
techniques from [NPAOQ7] that the distribution saturating it is unique in the
(2,3,2) and (2,4,2) cases. The check involved using semi-definite program-
ming to maximize different correlators and marginals under the constraint
of maximal Bell violation (at the so-called 1 + AB level of the hierarchy).
We found that no matter which correlator is maximized, the resultant dis-
tribution is the same up to numerical error.

From a geometrical point of view, it is natural to expect that the maximal
violation of a generic Bell inequality is attained by a unique point. The set
of quantum correlations defines a convex set in the space of probability
distributions P(ay,...,an|x1,...,2x). A Bell inequality is a hyperplane
in this space. The maximal quantum violation corresponds to the point in
which the hyperplane, i.e. the Bell inequality, becomes tangent to the set
of quantum correlations. Since the set is convex, this point is expected to
be unique, in general. Of course, there may be situations for which this
is not true. So far the only exceptions we have found from numerics are
for lifted Bell inequalities. A tight Bell inequality of a smaller space can
be lifted in a sense made precise in [Pir05] to a tight Bell inequality in
a higher space, either with more parties, measurements or outcomes. For
example, (CHSH — 2)4p ® C1 < 0 is a tight Bell inequality of (3,2,2) in
which party C only applies one measurement. It is easy to see that there
are several quantum realizations attaining the maximal violation of this
inequality. However, it may be argued that these Bell inequalities should be
properly be considered as belonging to a lower dimensional space.

One should, however, be careful when following this geometrical intu-
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Figure 3.1: a) A generic hyperplane generally does not have symmetries and has a unique
maximum in both the local and the quantum sets. b) A hyperplane with symmetries (such
as the CHSH) precludes uniqueness in the local set but still allows for a unique maximum
in the quantum set.

ition. Note that the previous argument does not make use of any quantum
property. In fact, the set of classical correlations is also convex and, thus,
a generic hyperplane is expected to become tangent at a unique extremal
point, see Fig. 3.1a. However, randomness cannot be certified by classical
correlations. The reason is that our method applies only to Bell inequalities
that are symmetric under permutation of some of the measurement results,
possibly assisted by permutations of measurements. It is easy to see that,
within the local set, any symmetry under permutations of the results can
be immediately used to construct another extremal and deterministic point
saturating the inequality, thus breaking uniqueness (see Fig. 3.1Db).

How do these considerations extend to general non-signalling correla-
tions? While this is treated in the next chapter, we just pointed out here
that the chained inequality allows certifying at most one bit of global ran-
domness [JMO05], as opposed to the two bits in the quantum case. This
implies that there is more than one non-signalling point saturating the in-
equality. Understanding why randomness certification, based on uniqueness
and symmetries, behaves so differently in the quantum set is an interesting
question that deserves further investigation. From a speculative point of
view, the fact that the quantum set is not a polytope, as opposed to the
set of classical and non-signalling correlations, may play a key role in these
considerations.
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3.5 Discussion

Our argument is based on the simultaneous existence of uniqueness and
symmetries. While in the classical case the needed symmetries immediately
break the uniqueness of the maximal violation, this is no longer the case for
quantum correlations, as implied by our results. Furthermore, we are yet
to find an example where results from our symmetry arguments are in con-
tradiction with numerical results where such computation was possible. For
instance, for the 13322 [Fro81, $03, CGO04] inequality, there are no symmetry
arguments possible in order to certify maximal local randomness and, in fact,
the known maximal quantum violation of the inequality gives non-uniform
marginals [Ver].

While our simple recipe does not constitute a formal proof of random-
ness unless uniqueness is proven it still turns out to be very useful to find
the right Bell inequalities and measurements allowing maximal randomness
certification. Indeed, the results derived following our method can later be
confirmed using the techniques from [PAM*10b, NPAO7]. In this sense, we
are not aware of any Bell test leading to maximal randomness, local or global,
that cannot be explained using our method. Our findings indicate that set-
tings not appearing in the Bell inequality may have more global randomness
than those appearing in the inequality. Moreover, using our method, we
easily demonstrated the existence of Bell tests allowing maximal global ran-
domness. Finally, our work opens new perspectives on the relation between
randomness and non-locality that deserve further investigation.

This recipe demonstrates explicitly that maximal randomness is indeed
attained in the set of quantum correlations and identifies several scenarios
where this occurs. This is particular remarkable placed in the context of the
results for the larger non-signalling set derived in the following chapter.
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Chapter 4

Maximal non-signalling
randomness

Quantum mechanics is the most successful theory of physics with remark-
ably precise predictions and successful application in the widest range of
topics in physics. Why then would we study general non-signalling theo-
ries? One of the motivations for the study is that it allows us to understand
properties thought to be generically "quantum” in the context of these ex-
tended theories. For instance it turns out that monogamy of correlations,
the impossibility of perfect cloning and privacy of correlations are a conse-
quence of non-locality alone [MAGO6] rather than a property of specifically
quantum correlations. On the flip side, it has also been demonstrated that,
given PR boxes [PR94], communication complexity [Dam05] and dynamics
[SPGO5] are rendered trivial. Such results further understanding of what
may be considered properties genuinely associated with quantum theory
alone. In addition, the quantification and comparison of properties between
the two sets provide insight into why stronger-than-quantum correlations
are forbidden in nature. Information causality [PPK™09], macroscopic lo-
cality [NW10] and local orthogonality [FSAT12] are examples of principles
that have been proposed along these lines.

Intrinsic randomness is also known to be a generic feature of non-local
correlations [PR94, MAG06, PAM*10a, CW12]. However, there has been
little work so far on quantifying it in the non-signalling set. Results are
known for particular scenarios but systematic studies are limited on account
of the rapidly increasingly complexity of the set of non-local correlations
with increasing system size N, measurements M and outcomes d. The
theme of this chapter is similar to the one in the previous chapter, but in the
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context of the non-signalling set. Namely, we investigate whether maximal
global randomness is attained by extremal non-signalling correlations. If not,
we are interested in finding quantitative upper bounds on the randomness.
Before we present our results, we review results already known or that may
be easily deduced from the literature thus far. Some of these were found in
a different context and are often single examples rather than a systematic
treatment.

The simplest scenario we can define is the (2,2,2) where it is known
that the PR boxes are the singular extremal boxes and encode only 1 bit of
global randomness for any measurement. The extremal boxes characterizing
the non-local sets for (2, M, 2) [JMO05] and (2,2, d) [BLM™05] have also been
found and the corresponding maximum allowed global randomness is 1 bit
and 1 dit respectively. These two instances are somewhat "trivial” in the
sense that they admit only a single class of extremal boxes in either case.
The only scenario where a full non-trivial (in the sense of the existence of
multiple non-equivalent classes) characterization of extremal boxes has been
successful, to our knowledge, is the (3,2,2) scenario [PBS11]. The maximal
randomness among all these classes and measurement combinations is found
to be logy 6 = 2.58 bits. Due to the non-trivial nature of this scenario, it
provides important insight into the existence (or lack thereof) of maximal
global randomness.

Certain other examples have also been studied in the context of monogamy
and security of correlations. One of the first such was by Barrett and co-
workers [BKP06] where they showed that all non-signalling correlations max-
imally violating the chained inequality [BC90] in the limit of infinite mea-~
surements encodes 1 dit of randomness for arbitrary local dimension in the
scenario (2, M,d). This result naturally generalized to N — 1 dits of ran-
domness in chained inequalities for infinite measurements in the (N, M, d)
scenario [AGCA12].

The common thread running through these results is that in no case
do we find the maximal possible global randomness defined for the given
scenario. Is this merely an accident resulting from our inability in charac-
terizing more general examples? Or is it indicative of an underlying property
of general non-signalling theories which distinguishes them from quantum
theory? Our main result is to show that the answer to the latter question
is "Yes”. It turns out that randomness in general non-signalling theories is
indeed forbidden from attaining the maximal possible randomness one could
expect from the description of the scenario.
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4.1 Results

The randomness of extremal non-signalling distributions for (N, M,2) is
given by a guessing probability satisfying the bound G(x, P®*) > ﬁ
Since the algebraic maximum randomness for this scenario corresponds to
a guessing probability of G = 1/2V, this constitutes the first demonstra-
tion that non-signalling theories do not allow maximal randomness even
in principle. For (N, M,d > 2) the bound on the guessing probability is,
G(x, P®) = This compares with the algebraic maximum of
G=1/d".
We discuss the tightness of these bounds after the formal proofs.

__ 1
dAN—(d—1)N

4.2 Methods

4.2.1 Bound for d =2

Theorem 11. (Conditions for non-extremality for d =2). Let P(a|x)
be a non-signalling distribution of a (N, M,d = 2) scenario. If 3 x¢ such
that P(a|xg) > 0V a then P is non-extremal.

Before proving the theorem, we recall that a general non-signalling dis-
tribution P satisfies the following properties:

1. Non-signalling: The marginals of P are well-defined.
2. Normalization: ), P(alx) =1 for all x.
3. Non-negativity: P(alx) > 0.

Furthermore, for d = 2, we can use the same correlator decomposition for
P as in the previous chapter. We restate it here for convenience,

N
1
P(alx) = g5 (1+ D ai{Ai) + ) aiaj(AA))
i=1 i<j
+ Z aiajak<AiAjAk> + -4 ajas... CLN<A1A2 ... AN>),
1<j<k
(4.1)

where all k-body correlators for 1 < k < N satisfy [(.)x] < 1. Any P defined
by this parametrization satisfies the first two conditions and only the third
needs to be additionally imposed.
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Proof. (Theorem 11) We demonstrate the non-extremality of P by explicit
decomposition. In particular, we show that under the given assumptions we
can construct two non-signalling distributions P, and P_ such that,

Plalx) = %m(a\x) + %P,(a|x). (4.2)

Let € = min{ Pin(x0), 1—|(A1 ... AN)xo|} Where Ppin(x0) = ming P(a|xg).
The full correlator in question cannot take its extremal values of 41 since
otherwise the definition (A;...AN)x, = P(a1 - az...an = 1|x0) — P(ay -
as...ay = —1|xg) implies many outcomes of zero probability in P(a|xg)
violating the assumptions in the theorem. These observations provide us
the strict positivity € > 0. We can now define each new distribution (us-
ing its equivalent correlator parametrization) as identical to P except only
the full-correlator corresponding to xg. This we set to be respectively
(A1 A, .. .AN>f§O = (A1A2... AN)xo £ €/2. It only remains to show that
P, are well-defined non-signalling distributions.

Since the only correlator in which they differ from P is (A1 ... An)%,,
we must show that Py (alxg) > 0 for all a.
This follows from the relations,
1
Py (al]xg) = P(alxo) = SN aN €/2
1
> Ppin(x0) — 2—N|a1 ...an €/2]
1
= Pmin(xO) - N+ €
1
> Pmin(XO) - mein(XO)
> 0,
from the definition of e. O

From Theorem 11, it immediately follows that if a non-signalling dis-
tribution P(a|x) is uniformly distributed in any input x = xg, then it is
non-extremal. Thus, maximal randomness is forbidden in any extremal dis-
tribution. The convex decomposition of Eqn. 4.2 can be effected unless
P(alxg) = 0 for some outcome string a. This may be used to upper bound
the randomness for an extremal distribution. Indeed, if the probability is
zero for for just one outcome corresponding to xg then we can lower bound
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the guessing probability assuming a uniform distribution on the other out-
comes. This is given by,

G(xo, P*) = max P (alxg) > —. (4.3)
a 2N 1
This is effectively an upper bound on the randomness defined by the min-
entropy. It provides an in-principle upper bound to attainable random-
ness within the set of non-signalling correlations and suggests that counting
the least number of zeros in an extremal distribution is a means of bound-

ing randomness. We use this observation in the following generalization to

(N, M, d).

4.2.2 Bound for d > 2

For scenarios (N,M,d > 2), the parametrization of Eqn. 4.1 does not
provide adequate free parameters. While it is possible to write an equivalent
parametrization, we opt for a different approach. We parameterize the given
distribution with the least number of required terms by normalization and
non-signalling.

The full distribution is P(a1,ag,...,an|x1,22,...,2x) where 1 < z; <
M and 0 < a; < d — 1 for every party. P is subject to the non-signalling,
normalization and non-negativity as before. These constraints reduce the
number of free parameters and P can be parameterized in terms of a trun-
cated set. We fix some notation which will be useful in what follows.

1. The input string we extract randomness from is xg.

2. a = {ay,...,ay} where the outcomes take the truncated values 0 <
a; <d—2.
3. SN-Y(a) = {P(ay,...,@i_1,8is1,-..,an|xp) for all 1 < i < N} for a

chosen outcome a. This is the set of all the N — 1 party marginals for
a given outcome string a.

4. T = {P(alxp)} for all the outcomes a.

The following example aids understanding the new notation. Let N = 3,
M =2, d=3 and x¢ = (0,0,0) where the measurement labels are taken to
be 0 or 1 for each party. Then, the outcomes satisfy 0 < aj,as2,a3 < 2 and
the truncated set, 0 < aq,a9,a3 < 1. In this case,
S%(a=(0,1,1)) = {Ppc(1,1]0,0), P4c(0,1]0,0), P45(0,1]0,0)}
T = {PABC(Oa 0, O|X0)7 PABC(Oa 0, 1|X0)7 s 7PABC(17 1, 1|X0)}7
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so that |T| = 8.
Now, P(alx) may be parameterized in terms of a truncated set of its
terms as,

P(a|x) = h[P(a1|z1),. .., Plan|zN);
P(di,&j|xi,xj) for all © < j;

P(di,&j,aklwi,xj,xk) for all i < j < k;

P(dl,...,dN|x1,...,xN)], (4.4)

with the terms being related by the usual ordering between marginals, of
the form, P(a;|z1) > P(a1,az|z1,x2) > -+ > P(ay,...,an|z1,...,xN) etc.
A set of parameters (on the right hand side) in Eqn. 4.4 lying in the interval
[0, 1] and satisfying this ordering relation specifies a valid non-signalling dis-
tribution P(a|x). We can now state the next theorem on the non-extremality
of P for arbitrary outcomes.

Theorem 12. (Conditions for non-extremality for d > 2). Let P(a|x)
be a non-signalling distribution of the (N, M,d) scenario. If 3 a’ such that
an element of T say P(&|xg) > 0 and P(d'|xq) # a ¥V a € SN=1(@’), then
P is non-extremal.

Proof. The proof is constructive.

We can define two new distributions P o(a|x) parameterizing them as
in Eqn. 4.4. We set all parameters of Pj 2(alx) equal to the corresponding
ones for P(a|x), except for just the N-partite parameter in question. This
term is used for the decomposition:

P(a'|xg) = P(a'|x0) + ¢/2
Py(&]x0) = P(@|xo) — ¢/2 (45)

where e = min{ P(a’|x), D(P(a’|xq), SV ~1(a’))}. For a given distribution p
and a set S the quantity D is defined by D(p, S) = min{|p—«| such that o €
S} and is a notion of distance of p from S. Clearly € > 0.

The new distributions satisfy non-negativity by construction. Normal-
ization is accounted for by the terms not appearing in the parametrization
and they satisfy non-signalling since the marginals of P; 2 are identical to
those of P. The ordering relationship between the marginals are also pre-
served for this choice of €. Thus, we can effect the decomposition,

Plalx) = %Pl(a\x) + %Pg(a]x). (4.6)
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Theorem 13. (Mazimum randomness for d > 2). Given an extremal
non-signalling distribution P°*(a|x) in (N, M,d), the maximal randomness
for any input x = xq is given by, G(xq, P**) = m.

We prove the result by showing that there must exist at least (d — 1)V
outcomes with probability zero in P(alxg). Then the guessing probability
is least for a uniform distribution over the other terms i.e. G(xo, P**) >
m, proving the result. Towards this end, we observe that T defined

earlier has |T| = (d — 1)V terms. Thus, if each element of T is identically
0, then the result follows trivially. However, more generally, there will exist
non-zero elements in T. In this case, Theorem 12 allows us to conclude that
any such non-zero element must necessarily equal at least one of its (N —1)-
party marginals to render decomposition in Eqn. 4.6 impossible. We now
provide the formal proof of Theorem 13 showing that (d — 1)V zeros can
be guaranteed in P°*(alxg) by mapping every non-zero element of T to a
unique term guaranteed to be 0.

Proof. (Theorem 13). We frame the proof as a protocol scanning T for non-
zero elements and then updating it, replacing the said non-zero term with
another term guaranteed to be zero under the assumed constraints. At the
end of the protocol T can be mapped to a tensor of all zeros 0 proving our
result.

It is however useful to first illustrate the point explicitly by revisiting the
previous example of (N = 3, M = 2,d = 3). Suppose the non-zero element
of T'is Papc(a = (0,1,1)]0,0,0) and is equal to a marginal P4¢(0,1]0,0) €
S?%(a=(0,1,1)).

In this case, we necessarily get two other elements identically equal to
zero. One of these belongs to the set T and the other does not. Namely, 0 =
Papc(0,0,1|0,0,0) € T while 0 = Papc(0,2,1|0,0,0) ¢ T. The latter term
is used to replace the original non-zero term in T. We can thus systematically
associate a term guaranteed to be zero for every non-zero term to create a
mapping between T and O.

The general protocol is the following.

1. Scan T until a non-zero term is found. We denote this term by
p(C_Ll, ... ,(_LN).

2. Compare p(@y, ..., ay) with the set of its marginals SV =1(ay,...,ay).
It must necessarily equal at least one of the marginals (consistent with
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the rest of the terms in T) taking into account Theorem 12 and that
P(alx) is extremal. Suppose,

p<a17 s 7CLN) :p(a17 ces 1, Qg - ,GN>, (47>

for some 4. This implies,

i. certain zero terms in T. Namely, p(ai,...,ai—1,ai, Gi+1,...,aN) =
Oforall0<a; #a; <d-—2.

ii. azeroterm notinT. Namely, p(ai,...,a;i—1,d—1,a;+1,...,an) =
0.

3. Update T by setting all terms given in Step 2.1 explicitly equal to
zero. Also replace the original non-zero term p(as,...,ay) by the
term in Step 2.ii, p(ai,...,a;—1,d — 1,a;41,...,ay) This replacement
is unique of all other terms already in T. This is because all elements
that map to p(as,...,a;—1,d—1,@;t+1,...,ayN) are exactly those in Step
2.i, which are set to zero at this iteration. Hence, further iterations of
this protocol skips those elements.

4. Go to Step 1 and repeat until all non-zero elements in T are replaced
by zero elements.

O

4.3 Discussion

We have demonstrated that randomness in the general set of non-signalling
correlations is generically upper bounded, in contrast to the quantum set.
These results add a layer of subtlety to the notion of intrinsic randomness
being a general property of non-signalling correlations. While this is true,
we have shown that there are important quantitative differences between
the two sets.

Our results are not tight. The bounds for (2,2,2) and (3,2, 2) scenarios
directly observed from the given classes of extremal boxes appear to satisfy
G(x,P") > 55—. A result of this form is derived in [BLM'05] using
methods that ours bears a close relation to. For N = 2, we have derived
(d — 1)? zeros while they demonstrate the marginally larger d(d — 1) zeros.
The tightness in their bound relative to ours arises because their subject
of study was a general characterization of extremal boxes in the specific

scenario of (2,2, d), while our scenario is completely general.
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However, our bound is tight in the limit d — oo for a fixed N. The
bound given by Theorem 13 in this limit upper bounds the randomness in
extremal boxes to (N — 1)-dits whereas the results of [AGCA12| indicate
that this is also a lower bound in the specific instance they consider. It is
an open question if quantum distributions attain the maximal of N-dits in
this scenario. If so, the difference in the maximum randomness between the
quantum and non-signalling sets becomes large in this limit.

These results also connect to the symmetry argument of the previous
chapter. The non-existence of maximal global randomness implies that
either symmetries of Bell inequalities allowing full global randomness or
uniqueness of the non-signalling Bell violation does not hold for every non-
signalling scenario. This is indeed known to be true in those scenarios where
the extremal boxes have been characterized. In the (2,2,2) scenario, for in-
stance, the PR box is the unique extremal box maximally violating the
CHSH inequality but as we have already seen, there are no symmetries that
allow global randomness for this inequality. Another example is the class of
Mermin inequalities. Here, the symmetries do indeed exist allowing certifica-
tion of global randomness, however uniqueness does not. There are multiple
classes of inequalities that maximally violate the Mermin inequality each al-
lowing several symmetries. In this sense our present results provide further
evidence of the intimate relationship between symmetries and randomness.
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Chapter 5

Full randomness
amplification

Understanding whether nature is perfectly pre-determined or there are in-
trinsically random processes is a fundamental question that has attracted
the interest of multiple thinkers, ranging from philosophers and mathemati-
cians to physicists or neuroscientists. Today this question is also important
from a practical perspective, as random bits constitute a valuable resource
for applications such as cryptographic protocols, gambling, or the numerical
simulation of physical and biological systems.

In the Introduction we discussed the notion of intrinsic versus classical
randomness at length. Since they form the very crux of the work in this
chapter, we quickly recall the arguments made and expand on the most
significant parts.

Randomness observed in classical systems is not intrinsic to the theory
but merely a manifestation of our imperfect description of the system. In
other words, it is what we have termed classical or deterministic randomness.

It was the development of quantum physics that first challenged this de-
terministic view of nature. It was suggested that quantum mechanics could
be completed with hidden variables [EPR35] which would again render na-
ture fully deterministic. However Bell’s no-go theorem [Bel64] conclusively
excluded the possibility of such a project. More precisely, Bell found that
all hidden-variable theories compatible with a local causal structure predict
that any correlations among space-like separated events satisfy a series of
inequalities, which have now come to be known as Bell inequalities. Bell
inequalities, in turn, are violated by some correlations among quantum par-
ticles. This is, of course, non-locality.
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However non-locality alone does not necessarily imply the existence of
fully unpredictable processes in nature. The reasons behind this are sub-
tle. First of all, unpredictable processes could be certified only if the non-
signalling principle holds. In fact, Bohm’s theory is both deterministic and
able to reproduce all quantum predictions [Boh52], but it is incompatible
with non-signalling. Thus, we assume throughout the validity of the non-
signalling principle. Yet, even within the non-signalling framework, it is still
not possible to infer the existence of fully random processes from the mere
observation of non-local correlations. This is due to the fact that Bell tests
require measurement settings chosen at random, but the actual random-
ness in such choices can never be certified. The extremal example is given
when the settings are determined in advance. Then, any Bell violation can
easily be explained in terms of deterministic models. As a matter of fact,
super-deterministic models, which postulate that all phenomena in the uni-
verse, including our own mental processes, are fully pre-programmed, are by
definition impossible to rule out.

These considerations imply that the strongest result on the existence
of randomness one can hope for using quantum non-locality is stated by
the following possibility: Given a source that produces an arbitrarily small
but non-zero amount of randomness, can one still certify the existence of
completely random processes? Our main result is to provide an affirma-
tive answer to this question. Our results, then, imply that the existence
of correlations as those predicted by quantum physics forces us into a di-
chotomic choice: Either we postulate super-deterministic models in which
all events in nature are fully pre-determined, or we accept the existence of
fully unpredictable events.

Besides the philosophical and physics-foundational implications, our re-
sults provide a protocol for full randomness amplification using quantum
non-locality. Randomness amplification is an information-theoretic task
whose goal is to use an input source of imperfectly random bits to pro-
duce perfect random bits. Santha and Vazirani proved that randomness
amplification is impossible using classical resources [SV86]. This is in a
sense intuitive, in view of the absence of any intrinsic randomness in clas-
sical physics. In the quantum regime, randomness amplification has been
recently studied by Colbeck and Renner [CR12b|. They proved how in-
put bits with very high initial randomness can be mapped into arbitrarily
pure random bits, and conjectured that randomness amplification should
be possible for any initial randomness [CR12b]. Our results also solve this
conjecture, as we show that quantum non-locality can be exploited to attain
full randomness amplification.
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Finally, before presenting our results, it is worth commenting on previous
works on randomness in connection with quantum non-locality. In [PAM*10b]
it was shown how to bound the intrinsic randomness generated in a Bell test.
These bounds can be used for device-independent randomness expansion,
following a proposal by Colbeck [Col07], and to achieve a quadratic expan-
sion of the amount of random bits (see [AMP12, PM11, FGS11, VV12a]
for further works on device-independent randomness expansion). Note how-
ever that, in randomness expansion, one assumes instead, from the very
beginning, the existence of an input seed of free random bits, and the main
goal is to expand this into a larger sequence. The figure of merit there is
the ratio between the length of the final and initial strings of free random
bits. Finally, other recent works have analysed how a lack of randomness in
the measurement choices affects a Bell test [KPB06, BG10, Hall0] and the
randomness generated in it [KHST12].

5.1 Results

5.1.1 Definition of the scenario

From an information perspective, our goal is to construct a protocol for full
randomness amplification based on quantum non-locality. In randomness
amplification, one aims at producing random bits that are arbitrarily uncor-
related from all the events that may have been a potential cause of them, i.e.
arbitrarily free, from many uses of an input source S of imperfectly random
bits. In general, S produces a sequence of bits x1,x2,...zj,..., with z; =0
or 1 for all j, see Fig. 5.1. Each bit j contains some randomness, in the sense
that the probability P (x;|rest) that it takes a given value z;, conditioned
on the rest of the bits produced by the source and any pre-existing variable
e, is such that

€ < P(zjlrest) <1—¢ (5.1)

for all j and e, where 0 < € < 1/2. Here, rest = {x;},2; U e where the
variable e can correspond to any event that could be a possible cause of bit
x; (different from the rest of the bits generated by the source). Therefore, e
represents events contained in the space-time region lying outside the future
light-cone of x;. Free random bits correspond to € = %; while deterministic
ones, i.e. those predictable with certainty by an observer with access to e,
to € = 0. More precisely, when ¢ = 0 the bound (5.1) is trivial and no
randomness can be certified. We refer to S as an e-source, and to any bit
satisfying (5.1) as an e-free bit. The aim is then to generate, from arbitrarily
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Figure 5.1: Local causal structure and randomness amplification. A source S
produces a sequence 1,2,...Z;,... of imperfect random bits. The goal of randomness
amplification is to produce a new source Sy of perfect random bits, that is, to process the
initial bits to get a final bit k fully uncorrelated (free) from any potential cause of it. All
space-time events outside the future light-cone of k may have been in its past light-cone
before and therefore constitute a potential cause of it. Any such event can be modelled
by a measurement z, with an outcome e, on some physical system. This system may be
under the control of an adversary Eve, interested in predicting the value of k.

many uses of S, a final source Sy of €; arbitrarily close to 1/2. If this is
possible, no cause e can be assigned to the bits produced by Sy, which are
then fully unpredictable. Note that efficiency issues, such as the rate of
uses of & required per final bit generated by Sy do not play any role in
randomness amplification. The relevant figure of merit is just the quality,
measured by ey, of the final bits. Thus, without loss of generality, we restrict
our analysis to the problem of generating a single final free random bit k.
The randomness amplification protocols we consider exploit quantum
non-locality. This idea was introduced in [CR12b], where a protocol was
presented in which the source S is used to choose the measurement settings
by two distant observers, Alice and Bob, in a Bell test [BC90] involving two
entangled quantum particles. The measurement outcome obtained by one
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of the observers, say Alice, in one of the experimental runs (also chosen with
S) defines the output random bit. Colbeck and Renner proved how input
bits with very high randomness, of 0.442 < ¢ < 0.5, can be mapped into
arbitrarily free random bits of ey — 1/2. In our case, the input e-source S is
used to choose the measurement settings in a multipartite Bell test involving
a number of observers that depends both on the input € and the target €.
After verifying that the expected Bell violation is obtained, the measurement
outcomes are combined to define the final bit k. For pedagogical reasons, we
adopt a cryptographic perspective and assume the worst-case scenario where
all the devices we use may have been prepared by an adversary Eve equipped
with arbitrary non-signalling resources, possibly even supra-quantum ones.
In the preparation, Eve may have also had access to S and correlated the
bits it produces with some physical system at her disposal, represented by
a black box in Fig. 5.1. Without loss of generality, we can assume that Eve
can reveal the value of e at any stage of the protocol by measuring this
system. Full randomness amplification is then equivalent to proving that
Eve’s correlations with k& can be made arbitrarily small.

Let us make two clarifications about the causal structure of the protocol.
Firstly, note that the bits used by each party are drawn from local sources.
However, since all those sources are not independent but hold correlations
between each other, they form collectively a Santha-Vazirani source with
the properties previously described. Secondly, note that throughout the
protocol, all measurements define space-like separated events.

5.1.2 Partial randomness from GHZ paradoxes

One of the Bell tests for which quantum correlations achieve the maximal
non-signalling violation are known as Greenberger-Horne-Zeilinger (GHZ)
paradoxes [GHZ89] and are necessary for full randomness amplification. This
is due to the fact that unless the maximal non-signalling violation is attained,
for sufficiently small ¢, Eve may fake the observed correlations with classical
deterministic resources. Nevertheless, GHZ paradoxes are not sufficient.
In fact, given (i) maximal violation of the 3-party GHZ paradox [GHZ89]
and (ii) any function of the measurement outcomes, it is always possible
to find non-signalling correlations that assign a deterministic value to the
said function. For example, if the function selects outcome c, one can have
a PR-box shared between A and B with C being deterministic since such
correlations are known to satisfy point (i). This observation can be checked
for all unbiased functions mapping {0,1}3 to {0,1} (there are (i) of those)
through a linear program analogous to the one used in the proof of the
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Lemma below.

For five parties though, the latter happens not to hold any longer. Con-
sider now any correlations attaining the maximal violation of the five-party
Mermin inequality [Mer90]. In each run of this Bell test, measurements
(inputs) x = (21,...,25) on five distant black boxes generate 5 outcomes
(outputs) a = (aq,...,as), distributed according to a non-signalling condi-
tional probability distribution P(a|x). Both inputs and outputs are bits,
as they can take two possible values, x;,a; € {0,1} with ¢ = 1,...,5. The
inequality can be written as

> I(a,x)P(alx) > 6 , (5.2)

with coefficients
I(a,x) = (a1@a2Daz®asDas) dxex, +(a1Daz®azDas®as D) oxex, , (5.3)

where

5 B 1 ifxe X
X% T 0 ifx¢ X,

and

5 5
XO:{X ’ ;xizl}u{x ‘ ;mi:5}, (5.4)
X = {x ‘ ix - 3}. (5.5)

That is, only half of all possible combinations of inputs, namely those in
X = Ay U A1, appear in the Bell inequality.

The maximal, non-signalling and algebraic, violation of the inequality
corresponds to the situation in which the left-hand side of (5.2) is zero. The
key property of inequality (5.2) is that its maximal violation can be attained
by quantum correlations and furthermore, one can construct a function of
the outcomes that is not completely determined. Take the bit corresponding
to the majority-vote function of the outcomes of any subset of three out of
the five observers, say the first three. This function is equal to zero if at
least two of the three bits are equal to zero, and equal to one otherwise.
We show that Eve’s predictability on this bit is at most 3/4. We state this
result in the following Lemma:
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Lemma. Let a five-party non-signalling conditional probability distribution
P(a|x) in which inputs x = (x1,...,25) and outputs a = (ai,...,as) are
bits. Consider the bit maj(a) € {0,1} defined by the majority-vote function
of any subset consisting of three of the five measurement outcomes, say the
first three, a1, as and az. Then, all non-signalling correlations attaining
the mazimal violation of the 5-party Mermin inequality are such that the
probability that maj(a) takes a given value, say 0, is bounded by

1/4 < P(maj(a) =0) < 3/4. (5.6)

Proof. This result was obtained by solving a linear program. Therefore,
the proof is numeric, but exact. Formally, let P(a|x) be a 5-partite non-
signalling probability distribution. For x = xg € X, we performed the
maximization,

P = Hl]EDLX P(maj(a) = 0|X0)

subject to (5.7)
I(a,x)- P(a]x) =0

which yields the value Py, = 3/4. Since the same result holds for P(maj(a) =
1]x¢), we get the bound 1/4 < P(maj(a) =0) < 3/4.
U

As a further remark, note that a lower bound to P, can easily be
obtained by noticing that one can construct conditional probability distri-
butions P(a|x) that maximally violate 5-partite Mermin inequality (5.2) for
which at most one of the output bits (say a1) is deterministically fixed to
either 0 or 1. If the other two output bits (az, a3) were to be completely ran-
dom, the majority-vote of the three of them maj(ay, az, as) could be guessed
with a probability of 3/4. Our numerical results say that this turns out to
be an optimal strategy.

The previous lemma strongly suggests that, given an e-source with any
0 < € <1/2 and quantum five-party non-local resources, it should be possi-
ble to design a protocol to obtain an e;-source of ¢; = 1/4. We do not explore
this possibility here, but rather use the partial unpredictability in the five-
party Mermin Bell test as building block of our protocol for full randomness
amplification. To complete it, we must equip it with two essential compo-
nents: (i) an estimation procedure that verifies that the untrusted devices do
yield the required Bell violation; and (i) a distillation procedure that, from
sufficiently many ¢;-bits generated in the 5-party Bell experiment, distills a
single final €¢-source of e — 1/2. Towards these ends, we consider a more
complex Bell test involving N groups of five observers (quintuplets) each.
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5.1.3 A protocol for full randomness amplification

Our protocol for randomness amplification uses as resources the e-source
S and 5N quantum systems. Each of the quantum systems is abstractly
modelled by a black box with binary input x and output a. The protocol
processes classically the bits generated by S and by the quantum boxes. The
result of the protocol is a classical symbol k, associated to an abort/no-abort
decision. If the protocol is not aborted, k encodes the final output bit, with
possible values 0 or 1. However when the protocol is aborted, the symbol
& is assigned to k (instead of a numerical value), representing the fact that
the bit is empty. The formal steps of the protocol are, see also Fig. 5.2:

1. S is used to generate N quintuple-bits x1,...xx, which constitute the
inputs for the 5NV boxes. The boxes then provide N output quintuple-
bits aj,...ayn.

2. The quintuplets such that x ¢ X are discarded. The protocol is
aborted if the number of remaining quintuplets is less than N/3.

3. The quintuplets left after step 2 are organized in N, blocks each one
having Ny quintuplets. The number N, of blocks is chosen to be
a power of 2. For the sake of simplicity, we relabel the index run-
ning over the remaining quintuplets, namely x1,...xy, n, and outputs
aj,...an,n,- The input and output of the j-th block are defined as
Yi = (X(G1)Ngt1s - - - X(G-1)NgtN,) and bj = (@G 1Ny 415 - - G- 1) N+ Ny)
respectively, with j € {1,..., Np}. The random variable I € {1,... Ny}
is generated by using log, N} further bits from S. The value of [ speci-
fies which block (b, y;) is chosen to generate k, i.e. the distilling block.
We define (b, ) = (by,y1). The other Ny — 1 blocks are used to check
the Bell violation.

4. The function

1 if I(an,x) = =I(an,xn,) =0

riby] = { 0 otherwise (5:8)
tells whether block (b,y) features the right correlations (r = 1) or the
wrong ones (r = 0), in the sense of being compatible with the maximal
violation of inequality (5.2). This function is computed for all blocks
but the distilling one. The protocols is aborted unless all of them give
the right correlations,

il 1 ot abort
n T
g= 11 rlbs.vl :{ 0 abort (5.9)
J=Lj#1
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Note that the abort/no-abort decision is independent of whether the
distilling block [ is right or wrong.

5. If the protocol is not aborted then k is assigned a bit generated from
by = (aj,...an,) as

k = f(maj(ap),...maj(ay,)) . (5.10)

Here f: {0,1}¢ — {0,1} is a function whose existence is proven in
Appendix A (along with other technical details), while maj(a;) € {0,1}
is the majority-vote among the three first bits of the quintuple string
a;. If the protocol is aborted it sets k = @.

At the end of the protocol, k is potentially correlated with the settings
of the distilling block § = y;, the bit g in (5.9), and the bits

t=101,(b1,v),. (bi—1,y1-1), (bix1, Yi41), - - - (b, ynv, ))-

Additionally, an eavesdropper Eve might have a physical system correlated
with k, which she may measure at any instance of the protocol. This system
is not necessarily classical or quantum, the only assumption about it is that
measuring it does not produce instantaneous signalling anywhere else. We
label all possible measurements Eve can perform with the classical variable
z, and with e the corresponding outcome. In summary, after performing the
protocol all the relevant information is k, ¥, ¢, g, e, z, with statistics described
by an unknown conditional probability distribution P(k,3,t,g,e|z).

To assess the security of our protocol for full randomness amplifica-
tion, we have to show that with a high probability the distribution de-
scribing the protocol when not aborted is indistinguishable from the distri-
bution Pigear(k,9,t,9,€elzg = 1) = %P(g],t,e|zg = 1) describing an ideal
free random bit. For later purposes, it is convenient to cover the case
when the protocol is aborted with an equivalent notation: if the proto-
col is aborted, we define P(k,g,t,elzg = 0) = 67 P(y,t,elzg = 0) and
Pea(k, g, t,elzg = 0) = 67 P(y,t,elzg = 0), where 5’,5 is a Kronecker’s
delta. In this case, it is immediate that P = P,geal, as the locally generated
symbol @ is always uncorrelated to the environment. To quantify the indis-
tinguishability between P and P,gea1, We consider the scenario in which an
observer, having access to all the information k, 9,t, g, e, z, has to correctly
distinguish between these two distributions. We denote by P(guess) the op-
timal probability of correctly guessing between the two distributions. This
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Steps 1 and 2 Steps 3 and 4

Step 5

as .
> maj(ay)

g 666 ¢
I A maj(.

32)

g 666 ¢

ay |az |as |as |as

maj(an,)

Figure 5.2: Protocol for full randomness amplification based on quantum non-
locality. In the first two steps, all N quintuplets measure their devices, where the choice
of measurement is done using the e-source S; the quintuplets whose settings happen not to
take place in the five-party Mermin inequality are discarded (in red). Note that although
S is shown as a single source, it represents the collection of sources at the location of
each observer correlated by (5.1). In steps 3 and 4, the remaining quintuplets are grouped
into blocks. One of the blocks is chosen as the distillation block, using again S, while the
others are used to check the Bell violation. In the fifth step, the random bit k is extracted
from the distillation block.

probability reads

4 £
k,g.t.9

Plguess) = ¢ + 1 3 max Y| P(k, 5.1,9,¢l2) — Puaca(k, 9., 5. ¢l2)]
e
(5.11)
where the second term can be understood as (one fourth of) the variational
distance between P and P,gea1 generalized to the case when the distributions
are conditioned on an input z [Mas09]. If the protocol is such that this
guessing probability can be made arbitrarily close to 1/2, it generates a

distribution P that is basically undistinguishable from the ideal one. This is
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CHAPTER 5. FULL RANDOMNESS AMPLIFICATION

known as “universally-composable security”, and accounts for the strongest
notion of cryptographic security (see [Can01] and [Mas09]). It implies that
the protocol produces a random bit that is secure (free) in any context. In
particular, it remains secure even if the adversary Eve has access to g, t and
g. At this point, we can state the main result of our work.

Main result: Given an e-source with any 0 < € < 1/2, a perfect free random
bit k can be obtained using quantum non-local correlations.

This result follows from the following theorem.

Theorem. Consider the previous protocol for randomness amplification and

the conditional probability distribution P(k,q,t,g,e|z) describing the statis-

tics of the bits k, 3, t, g generated during its execution and any possible system

with input z and output e correlated to them. The probability P(guess) of cor-

rectly guessing between this distribution and the ideal distribution Pgea(k,3,t, g, €|z)
s such that

1 3VN 0y (1—c _
P(guess) < §+372Cl[aNd+2N; 820179) (328¢ 5)Nd] . (5.12)

where o and [ are real numbers such that 0 < a <1 < £.

Proof. The proof of this Theoremis rather technical and and has been moved
to Appendix A. O

Now, the right-hand side of (5.12) can be made arbitrary close to 1/2, for
instance by setting N, = (32 B 6_5)2Nd/|10g2(1_6)| and increasing Ny subject
to fulfilling the condition NyN;, > N/3. [Note that logy(1 —€) < 0.] In the
limit P(guess) — 1/2, the bit k generated by the protocol is indistinguish-
able from an ideal free random bit.

To complete the argument, we must show that quantum resources can
indeed successfully implement our protocol. It can be immediately veri-
fied that the qubit measurements X or Y on the quantum state |¥) =
%(|OOOOO> +[11111)), with |0) and |1) the eigenstates of the Z qubit basis,
yield correlations that maximally violate the five-partite Mermin inequality
in question. This completes our main result.

Finally, we would like to conclude by explaining the main intuitions be-
hind the proof of the previous theorem. As mentioned, the protocol builds
on the 5-party Mermin inequality because it is the simplest GHZ para-
dox allowing some randomness certification. The estimation part, given by
step 4, is rather standard and inspired by estimation techniques introduced
in [BHKO05], which were also used in [CR12b] in the context of randomness
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amplification. The most subtle part is the distillation of the final bit in
step 5. Naively, and leaving aside estimation issues, one could argue that
it is nothing but a classical processing by means of the function f of the
imperfect random bits obtained via the N; quintuplets. But this seems
in contradiction with the result by Santha and Vazirani proving that it is
impossible to extract by classical means a perfect free random bit from im-
perfect ones [SV86]. This intuition is however wrong. The reason is because
in our protocol the randomness of the imperfect bits is certified by a Bell
violation, which is impossible classically. Indeed, the Bell certification allows
applying techniques similar to those obtained in Ref. [Mas09] in the context
of privacy amplification against non-signalling eavesdroppers. There, it was
shown how to amplify the privacy, that is the unpredictability, of one of the
measurement outcomes of bipartite correlations violating a Bell inequality.
The key point is that the amplification, or distillation, is attained in a de-
terministic manner. That is, contrary to standard approaches, the privacy
amplification process described in [Mas09] does not consume any random-
ness. Clearly, these deterministic techniques are extremely convenient for
our randomness amplification scenario. In fact, the distillation part in our
protocol can be seen as the translation of the privacy amplification tech-
niques of Ref. [Mas09] to our more complex scenario, involving now 5-party
non-local correlations and a function of three of the measurement outcomes.

5.2 Discussion

In summary, we have presented a protocol that, using quantum non-local
resources, attains full randomness amplification. This task is impossible
classically and was not known to be possible in the quantum regime. As
our goal was to prove full randomness amplification, our analysis focuses
on the noise-free case. In fact, the noisy case only makes sense if one does
not aim at perfect random bits and bounds the amount of randomness in
the final bit. Then, it should be possible to adapt our protocol in order to
get a bound on the noise it tolerates. Other open questions that naturally
follow from our results consist of studying randomness amplification against
quantum eavesdroppers, or the search of protocols in the bipartite scenario.

From a more fundamental perspective, our results imply that there exist
experiments whose outcomes are fully unpredictable. The only two assump-
tions for this conclusion are the existence of events with an arbitrarily small
but non-zero amount of randomness and the validity of the no-signalling
principle. Dropping the former implies accepting a super-deterministic view
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CHAPTER 5. FULL RANDOMNESS AMPLIFICATION

where no randomness exist, so that we experience a fully pre-determined
reality. This alternative challenges both our usual scientific [Gis10] and
philosophical presumptions. Dropping the latter, in turn, implies abandon-
ing a local causal structure for events in space-time. However, this is one of
the most fundamental notions of special relativity, and without which even
the very meaning of randomness or predictability would be unclear, as these
concepts implicitly rely on the cause-effect principle.

67



Chapter 6

The intrinsic content of
observed randomness

Randomness comes in two flavours: Classical randomness associated with
subjective lack of knowledge and the objective or intrinsic randomness. In
quantum theory, randomness from pure states is fully intrinsic while those
from mixed states necessarily encode classical randomness associated with
our lack of knowledge of the preparation. The analogues in the non-signalling
set for pure quantum states are the extremal boxes while for the mixed
quantum states, the non-extremal ones. Exploiting this analogy further, we
expect that a given general non-signalling distribution contains both classical
and intrinsic randomness unless the distribution happens to be extremal in
the non-signalling set.

Fig. 6.1 is a useful qualitative geometric picture which serves to clar-
ify the general idea and to explain the scenario we work with. Given some
non-local distribution Py, its intrinsic randomness content is quantitatively
dependent on whether we use the quantum or non-signalling framework. For
example, the Tsirelson correlations [Tsi87] in the (2,2,2) scenario consid-
ered strictly within the quantum set yields 1.23 bits of randomness [AMP12].
However, its randomness in the larger non-signalling set is a much smaller
0.34 bits!. Another example is the GHZ correlations [GHZ89] which contain
(considering the tripartite states in particular) 3 bits of randomness within
the quantum set. However, in the non-signalling set it is just 1 bit? as can
be seen from the extremal boxes characterized in [PBS11]. In fact, it is
generally the case that the intrinsic randomness of a point considered to be

1This can be computed easily from Fig. 2.3
2This can be computed from Definition 7 in Chapter 2.
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embedded in the non-signalling set is lower than its intrinsic randomness
within the quantum set. The reason is simply that there are more general
decompositions possible within the non-signalling set which increases our
ignorance about its underlying preparation. It is in this context that we
now pose the question that is the theme of this chapter: is it possible to cer-
tify that observed randomness is fully intrinsic for some observed quantum
correlations P,pg?

Figure 6.1: Qualitative picture of the local, quantum and no-signalling sets and a possible
preparation of a given distribution P,,s as a mixture of extremal non-signalling points.
Knowledge of the exact preparation of P,ps is required to compute its intrinsic randomness,
which is thus expected to be lower than its observed randomness (calculated from the
observed statistics without regard for the underlying preparation).

The challenge to answering this question in full generality is that the
definition of intrinsic randomness in these scenarios (Dfn. 7, Chapter 2)
required an optimization over all possible non-signalling preparations of Pys.
This is believed to be a hard problem?. What we show here is that despite the
apparent complexity of calculating the intrinsic randomness in full generality
it is possible to choose scenarios carefully in which an analytic computation
is feasible. We not only demonstrate one such case but also certify that the

3For (2,2,2) there are 8 extremal boxes in two inequivalent classes while in (3,2,2)
there are 53,856 extremal boxes forming forty six inequivalent classes. A full classification
for higher scenarios is non-existent to date.
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observed randomness is fully intrinsic in our chosen scenario. What make
the result counter-intuitive is that our results are valid for a whole class of
non-extremal distributions.

There is a further layer of subtlety which we additionally address in our
work. This is related to the particular concern about using the measurement
independence assumption in the context of randomness certification using
Bell inequalities. This is the assumption of using randomness for the choice
of inputs in order to certify randomness of the outcomes. Recently there has
been a significant body of work in deriving Bell inequalities with relaxations
of this assumption [KPB06, BG10, Gis10, Halll, GMdIT*12]. A signifi-
cant feature of our results are that they are valid even under a complete
(non-zero) relaxation of the measurement assumption since the conceptual
machinery from the previous chapter applies here. For this reason, these re-
sults may also be interpreted as an alternative approach for full randomness
amplification with the benefit of significantly easier techniques.

6.1 Results

In general, computing the intrinsic randomness of non-extremal distribu-
tions belonging to the non-signalling set is infeasible for the lack of charac-
terization of the extremal boxes in all but the simplest cases. However, we
demonstrate a criterion that allows the computation of the intrinsic random-
ness for the class of non-signalling boxes maximally violating the Mermin
inequality (See Eqn. 6.4). We do this by choosing a function of the out-
comes. Furthermore, for the GHZ correlations in particular, these functions
provide a fully random bit asymptotically in the system size. We express
our results concisely in the following theorems.

Theorem 14. Let P(a|x) be a N-partite (odd N ) non-signalling probability
distribution maximally violating the corresponding Mermin inequality and
f 40,13 = {0,1} a boolean function defined as,

0 SN ai=4j+2); j=0,1,2,...
fla) = (6.1)

1 otherwise

where the outcomes a; € {0,1}. Then Gint(f,x, P) = Gobs(f, %, P) for any
mput X appearing in the Mermin inequality.

From this, one can derive the following result for the important family
of quantum probability distributions called the GHZ correlations:
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Lemma 15. For the N-partite (odd N ) quantum probability probability dis-
tribution Py, (alx), the intrinsic randomness of f for a Mermin input is,

1 1
Gint/obs(fa X, Pghz) = 2 + 9(N+1)/2

This means that, in this particular scenario, additional knowledge of the
particular preparation of Py, (as a mixture of non-signalling boxes) does
not help to predict the the output bit k£ = f(a) better. Furthermore, output
bit k approaches a perfect random bit exponentially fast in the system size.

We prove these results explicitly for N = 3 in this Chapter and generalize
it for arbitrary N in Appendix B.

6.2 Methods

Although we have already defined our measures of randomness in Chapter 2,
it is useful to recall them once again particularly since they are adapted to
calculating the randomness of a function of the outcomes. To this end,
consider a function g : {0,1}¥ +~ {0,1} mapping a string of N bits
a = (a1,...,ay) to an output of R bits g(a) where 1 < R < N. Given
an N-partite probability distribution Pyps(a|x) we define the following two
quantities:

Definition. (Observed randomness) Given the correlations Pyps(alx), the
observed randomness of the function g(a) for a given input x is quantified
by the maximum probability of guessing its outcome:

Gobs(gaxa Pobs) = kgIlri}(%q) Pobs(g(a) = k|X) (62)

As before, the randomness is given by the min-entropy defined as, H(g,X, Pops) =
—logy Gops (g, X, Pobs)'

This is a quantity that can be easily computed from the observed statis-
tics.

Definition. (Intrinsic randomness) Given the correlations Pops(a|x), the
intrinsic randomness of the function g(a) for a given input x is quantified by
the maximum probability of guessing its outcome optimized over all possible
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non-signalling extremal decompositions of Pyps(a|x):

Gint(ga X, Pobs) = ( m]%)ei} ijGobs(g’ X, ]Djex)
Py, j ]

subject to:

> " pi P (alx) = Paws(alx), (6.3)
J

where Gops(9,%, P5*) = maxpemm(g) P5*(9(a) = k[x) is also the intrinsic
randomness of P since it is an extremal point of the non-signalling set.

H s defined analogous to the above.

This definition of intrinsic randomness manifestly depends on the knowl-
edge of the extremal boxes and is operationally relevant to cryptographic
scenarios involving a non-signalling eavesdropper potentially possessing such
knowledge. It quantifies the randomness perceived by the eavesdropper.

We now make a simple observation that not only allows calculating the
intrinsic randomness without reference to the extremal boxes but also guar-
antees that the intrinsic randomness thus calculated is exactly equal to the
observed randomness. We work with the class of distributions P(a|x) max-
imally violating a Mermin inequality,

1 1
My = SMy-1(Ay + Ay) + §Mz'v_1(AN — Ay), (6.4)

where My is the CHSH inequality and M}, _, denotes My_; with all oper-
ators locally swapped.

Let us assume without immediate justification that there exists a boolean
function f : {0, 1} — {0, 1} satisfying,

P(f(a) =0x) > 1/2 (6.5)

for the entire class of distributions maximally violating the Mermin inequal-
ity.

It is easy to see that the intrinsic randomness of f for some distribution
Pyps(alx) in this class is equal to its observed randomness. To this end,
we first make the observation that all P* in any valid decomposition of
Pyps(alx) must also necessarily lead to a maximal violation of the Mermin
inequality*. Hence, they satisfy property (6.5). We use this to first compute

41f not, the Mermin violation of the decomposition is incompatible with the maximal
violation of P,y
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the randomness in any extremal point appearing in Eqn. 6.3,

Gobs(f,x, Fj™) = max{P}*(f(a) = 0]x), P}*(f(a) = 1|x)}
= P (f(a) = 0x) = 1/2[ +1/2
= P{*(f(a) = 0[x), (6.6)

for every j. We use this expression to finally compute the intrinsic random-
ness of the given distribution Py,

Gint(f, %, Pobs) = max ijGobs(fv X, P;X)

{pi P5}
= max p; PX(f(a) = 0|x
{pjﬁpﬁbs}g 7 PP(f(a) = 0lx)
= Pos(f(a) = 0]x), (6.7)

where the last equality follows from the constraint } _; p; Pj(alx) = Pops(alx).
On the other hand the observed randomness given by Eqn. (6.2) for f gives
us, Gopbs(f, X, Pops) = Pons(f(a) = 0|x). Thus, the intrinsic and observed
randomness are identical for any P maximally violating the Mermin in-
equality for any function that come equipped with property (6.5).

6.2.1 A function satisfying the required property

The task is now to demonstrate that the function f defined in Eqn. 6.1
satisfies the property 6.5 for all V. Since the general proof involves many
details, we prove it for N = 3 below and relegate the generalization to
Appendix B.

Denoting the measurement choices of each party with the labels {0,1}
for convenience, the tri-partite Mermin inequality may be expressed as,

Mz = (001) + (010) + (100) — (111) < 2. (6.8)

The quantum and non-signalling maximal violation assigns M3 = 4 which
can clearly only occur when the first three correlators in 6.8 take their max-
imum value of +1 and the last takes its minimum of —1. Let P(alx) be
a tripartite no-signalling distribution maximally violating Ms. We extract
randomness from one of the inputs combinations appearing in the inequal-
ity. To be concrete, we choose this input to be x,, = (0,0,1). Notice that
the correlator corresponding to this input appears in Eqn. (6.8). For tri-
partite systems, the definition of the function (6.1) implies that f(a) = 0 if
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> ;a; = 2. In order that the machinery of and conclusions following Eqn.
(6.7) hold, we would like to prove that f has the property,

P(f(a) = 0]xm)
= P(0,1,1|xm) + P(1,0, 1|xm) + P(1,1,0[xm) (6.9)
>1/2
for any P satisfying M3(P) = 4 i.e. the maximal violation of the inequality.
Maximal violation of the inequality imposes several conditions on the
correlators and the marginals. Since, we use these extensively it is useful to

state them explicitly for this case. Maximal violation imposes the chain of
relationships:

1. (001) = 1. This further implies (0), = (01)y., (0)y, = (01),. and

2. (010) = 1 implying (0)z = (10)yz, (1), = (00} and (0), = (01),.
3. (100) = 1 implying (1)5 = (00}, (0), = (10),> and (0}, = (10},
4. (111) = —1 implying (1), = —(11)y., (1)y = —(11);, and (1), =

Using these relations in the usual parametrization of P for input xpy, =
(0,0,1) gives,

P(a,b,c|0,0,1)

= (14 a{0)s + {0}, + {1} + ab{00),

+ac(01) 4z + be(01)y. + abe(001).yz) (6.10)
= (1t abe+ (a+ be){0)s + (b +ac) (0),

+(c+ab)(1):)

We are finally ready to expand Eqn. (6.9) using the relations above. Taking
care to change the outcome labelling from {0,1} — {+1,—1} in order to
correctly use the parametrization Eqn. (6.10) we may write,

P(f(a) = O|xm)

P(1,-1,—1|xm) + P(—1,1, —1|xm)
P(-1,— 11\xm) (6.11)
1(3 (0} = (0)y — (1)-)
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Hence, proving P(f(a) = 0|xm) > 1/2 is equivalent to proving 1 — (0), —
(0)y = (1)z = 0.

This form is very convenient since it immediately reminds one of a pos-
itivity condition of probabilities. Our next task is precisely to show that
summing appropriate positivity conditions gives us the result.

6.2.2 Positivity conditions from the swapped input

Given that x,, = (0,0,1) is the input from which we extract randomness,
we denote by Xy, the input combination which is a local swapping by each
party of their setting in xp,. We call this the swapped input. Thus, in this
case Xm = (1,1,0). Note that this is not an input appearing in the Mermin
inequality. We can again write the correlator parametrization as before,

P(a,b,c|1,1,0)
8(1+a( Yo + b(1)y 4+ ¢(0), + ab(11) 4,
+ ac(10),. + bc(10)y, + abe(110) 4y ) (6.12)
=1+ afly +B{1), +c(0). — ab{1).

b(
+ ac(0)y + bc(0), + abe(110) 4y ),

where the second equality results from the relations (11)g, = — (1), (10)4, =
(0)y and (10)y> = (0)s-

It can be easily verified that summing the two positivity conditions
P(1,1,-1|%Xm) > 0 and P(—1,—1,1|Xm) > 0 gives us the result we seek,
namely, 1 — (0), — (0), — (1), > 0.

This proves that f satisfies P(f(a) = 0|x) > 1/2 for all tripartite dis-
tributions maximally violating the Mermin inequality. This guarantees that

the observed randomness of f has no classical component, namely that
Hgéass(f, X, Pobs) = 0.

6.3 Discussion

We have seen that for the choice of our function, the observed randomness in
distributions maximally violating the Mermin inequality is wholly intrinsic.
This includes the physically realizable GHZ correlations. For the latter, the
randomness of the function approaches that of a perfect bit exponentially
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fast in the size of the system. In adversarial terms, this implies that no non-
signalling adversary has additional knowledge or can predict the outcome of
f better than the parties performing the Bell test.

In the context of the GHZ correlations (being the only correlations in
the class we have defined that may be attained by quantum systems), our
result bears a resemblance to those in [CR11, CR12a] where the complete-
ness of quantum theory was discussed. These results attempt to show that
the predictive power of quantum theory is maximal. However, our scenario
departs significantly from the one considered there. For one thing, our re-
sults concern a specific class of non-signalling distributions which contains
only one quantum point. Besides, we consider a function of the outcomes.
Most important of all, our setup allows us to relax the critical measurement
independence assumption arbitrarily, as long as it is non-zero. This was not
possible in [CR11, CR12a], except perhaps in a limited sense due to the
partial randomness amplification results of [CR12b].

Furthermore, our results bear a deep relationship with full randomness
amplification [GMdITT12]. Since the measurement independence can be
relaxed and we find our function approaching a perfect random bit with in-
creasing system size for GHZ correlations, this is precisely the task set out to
full randomness amplification. The missing link is a protocol to estimate the
obtained statistics. Such a protocol is a departure from the theme we pursue
here but we point out that one does not in principle require the (technically
complex) distillation step used in Chapter 5. Thus, our techniques here may
potentially lead to a much simplified randomness amplification procedure.

Our techniques can also be extended in some natural directions. For
instance, for a chosen value of NN, suppose there exists some function [
satisfying P(l = 0|x,,) < 1/2 4 (¢ for all P maximally violating the Mer-
min inequality. Using logic similar to Eqn. 6.6 and the triangle inequal-
ity, we find that the intrinsic randomness of [ for the GHZ correlations is,
Gint ([, Xm, Pyhz) < Pynz(l = 1|Xp,) + 2¢n. In other words, intrinsic random-
ness is generally smaller than the observed randomness in such cases.

Future directions of work include exploiting such relations to upper
bound the classical randomness where exact relations are not possible. More-
over, an interesting line of work is to extend these techniques for distribu-
tions non-maximally violating Bell inequalities. These could lead to ex-
perimentally viable tests of device independence randomness certification
[PAMT10b].
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Chapter 7

Noisy entanglement
dynamics in graph states

In the preceding chapters we studied the properties of intrinsic randomness
in the different classes of non-local correlations. However, we have not yet
discussed the resources required for the generation of such randomness in
a physical set-up. In general, behaviour such as spontaneous emission and
nuclear decay are believed objectively random. However, there is no known
way to certify this to be true. It is simply axiomatic in operational quantum
theory. Non-locality is the only known certificate of objective randomness
and occurs in multipartite systems by definition. In fact, in physical terms,
it is only entanglement that can general non-local correlations which in turn
is necessary to generate certifiable objective randomness. For this reason,
we focus our attention in this last chapter on the resource of entanglement.
We do this for a class of special quantum states known as graph states,
which are fully multipartite entangled as already pointed out in Chapter 2.
In particular this class includes the GHZ states which are used extensively
in this work for randomness generation and amplification. They have also
been identified as critical resources for several other tasks. We discuss these
below in the context of graph states.

Graph states [HEB04, HDE'06] constitute an important family of gen-
uine multiparticle-entangled states with several applications in quantum
information. The most popular example of these are arguably the clus-
ter states, which have been identified as a crucial resource for universal
measurement-based quantum computation [BBD*09, RB01, RBB03]. Other
members of this family were also proven to be potential resources, as code-
words for quantum error correction [SWO01], to implement secure quantum
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communication [DCB05, CL07], and to simulate some aspects of the en-
tanglement distribution of random states [DP06a]. Moreover, graph states
encompass the GHZ states [GHZ89], whose importance spans several funda-
mental and applied issues beyond those discussed in the previous chapters.
GHZ states can — for large-dimensional systems — be considered as sim-
ple models of the gedanken Schrodinger-cat states, are crucial for quantum
communication protocols [BVK98, HBB99, DP06b], and find applications
in quantum metrology [GLMO04] and high-precision spectroscopy [BIWH96].
All these reasons explain the great deal of effort made both to theoretically
understand the features [HEB04, HDE'06], and to generate and coherently
manipulate graph states in the laboratory [WRRT05, KSWT05, LZG107,
CLZ*07, VPDMMOS].

For the same reasons, it is crucial to unravel the dynamics of graph states
in realistic scenarios, where the system is unavoidably exposed to interac-
tions with its environment and/or experimental imperfections. Previous
studies on the robustness of graph-state entanglement in the presence of
decoherence showed that the disentanglement times (i.e. the time for which
the state becomes separable) increases with the system size [SK02, DB04,
HDBO05]. However the disentanglement time on its own is known not to
provide in general a faithful figure of merit for the entanglement robustness:
although the disentanglement time can grow with the number N of particles,
the amount of entanglement in a given time can decay exponentially with N
[ACC*08, ACAT09]. The full dynamical evolution must then be monitored
to draw any conclusions on the entanglement robustness.

A big obstacle must be overcome in the study of entanglement robust-
ness in general mixed states: the direct quantification of the entanglement
involves optimizations requiring computational resources that increase ex-
ponentially with N. The problem thus becomes in practice intractable even
for relatively small system sizes, not to mention the direct assessment of
entanglement during the entire noisy dynamics. All in all, some progress
has been achieved in the latter direction for some very particular cases: For
arbitrarily-large linear-cluster states under collective dephasing, it is possi-
ble to calculate the exact value of the geometric measure of entanglement
[WGO03] throughout the evolution [GBBO0S8]. Besides, bounds to the relative
entropy and the global robustness of entanglement for two-colorable graph
states [HEB04, HDE106] of any size under local dephasing were obtained
[HW10].

In a conceptually different approach, a framework to obtain families of
lower and upper bounds to the entanglement evolution of graph, and graph-
diagonal, states under decoherence was introduced in Ref. [CCAT09]. The
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bounds are obtained via a calculation that involves only the boundary sub-
system, composed of the qubits lying at the boundary of the multipartition
under scrutiny. This, very often, considerably reduces the size of the ma-
trices involved in the calculation of entanglement. No optimization on the
full system’s parameter space is required throughout. Another remarkable
feature of the method is that it is not limited to a particular entangle-
ment quantifier but applies to all convex (bi-or multi-partite) entanglement
measures that do not increase under local operations and classical com-
munication (LOCC). The latter are indeed two rather natural and general
requirements [PV07, HHHHO09].

In the case of open-dynamic processes described by Pauli maps, which
are defined below, the lower and upper bounds coincide and the method
thus allows one to calculate the exact entanglement of the noisy evolving
state. Pauli maps encompass popular models of (independent or collective)
noise, as depolarization, phase flip, bit flip and bit-phase flip errors, and
are defined below. Moreover, one of the varieties of lower bounds is of
extremely simple calculation and — despite less tight — depends only on
the connectivity of the graph and not on its total size. The latter is a very
advantageous property in situations where one wishes to assess the resistance
of entanglement with growing system size. For example, the versatility of
the formalism has very recently been demonstrated in Ref. [DCA10], where
it was applied to demonstrate the robustness of thermal bound entanglement
in macroscopic many-body systems of spin-1/2 particles.

7.1 Results

We elaborate on the details of the formalism introduced in [CCAT09] and
partially studied in [Dha09]. For Pauli maps we give an explicit formula
for the characterization of the effective noise involved in the calculation of
the bounds. We use this formula to compute the dynamics of entanglement
of a 12 and 14 qubit cluster state under individual depolarizing noise (see
Fig. 7.3). Furthermore, we extend the method to the case where each
qubit is subjected to the action of independent thermal baths of arbitrary
temperature. This is a crucial, realistic type of dynamic process that is
not described by Pauli maps. In all cases, we exhaustively compare the
different bounds with several concrete examples. Finally, we discuss the
main advantages and limitations of our method in comparison with other
approaches.
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7.2 Basic concepts

In this section, we define graph and graph-diagonal states, introduce the
basics of open-system dynamics and the particular noise models used later.

7.2.1 Graph and graph-diagonal states

Graph states are multiqubit quantum states defined from mathematical
graphs through the rule described below. First, a mathematical graph
G,y = {V,C} is defined by a set V of N vertices, or nodes, and a set
C, of connections, or edges, connecting each node i to some other j. An
example of such graph is illustrated in Fig. 7.1. Each vertex i € V repre-
sents a qubit in the associated physical system, and each edge {i,j} € C
represents a unitary maximally-entangling controlled-Z (CZ) gate, CZ;; =
‘Oi0j><0ioj| + |0i1j><0i1j| + |1i0j><1i0j| — ‘1i1j><1i1j|7 between the qubits i
and j connected through the corresponding edge. The N-qubit graph state
G 0> corresponding to graph G(y ¢) is then operationally defined as fol-
lows:
(1) Initialize every qubit ¢ in the superposition |+;) = %(|O,> + [1;)), so

that the joint state is in the product state [gy),) = &,y [+i)-

) (ii) Then, for every connection {¢, j} € C apply the gate CZ;; to |g(),)-
That is,

Greyy) = & CZijlgpy,)- (7.1)
{i,j}eC

Graph state (7.1) can also be defined in an alternative, non-operational
fashion. Associated to each node i € V of a given graph G(y ¢y we define the
operator

Si = Xz’ ® Zj, (7'2)
JEN;

with X; and Z; the usual Pauli operators acting respectively on qubits ¢ and
j, and where N; denotes the set of neighbours of i, directly connected to it
by an edge {i,j}. Operator (7.2) possess eigenvalues 1 and —1. It is the
i-th generator of the stabilizer group and is often called for short stabilizer
operator. All N stabilizer operators commute and share therefore a common
basis of eigenstates. Graph state |Gy ¢) 0> in turn has the peculiarity of being
the unique common eigenstate of eigenvalue +1 [HEB04, HDET06]. In other
words,
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Figure 7.1: Mathematical graph associated to a given physical graph state. An exemplary
bipartition divides the system into two subparts: the yellow and white regions. The edges
in black are the boundary-crossing edges X and the nodes (also in black) connected by
these are the boundary nodes . Together they compose the boundary sub-graph G(Y, X).
The remaining vertices, painted in orange (grey), constitute the non-boundary subsystem.

SilGwe)y) =1Gwe),) VieV.

The other 2 — 1 common eigenstates |Gv,c),) are in turn related to
(7.1) by a local unitary operation:

Gy, = Zi"|Gwey,) = 27 1Gwe)): (7.3)
=

such that S; ‘G(V7c)y>:(—1)”i G(V,C)V>7 where v is a multi-index represent-
ing the binary string v = v ... vy, with ;, =0 or 1 Vi € V, and where
the short-hand notation Z¥ = ),y Z;"* has been introduced. Therefore,
states (7.3) possess all exactly the same entanglement properties and, to-
gether with |Gy c) 0>’ define the complete orthonormal graph-state basis of
#H (corresponding to the graph Gy ¢)). Any state p diagonal in such basis
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is called a graph-diagonal state:
pep =) PlGwe Gwe, . (7.4)

where p, is any probability distribution. Interestingly, for any graph, any
arbitrary N-qubit state can always be depolarized by some separable map
(defined below) into the form (7.4) without changing its diagonal elements
in the considered graph basis [DAB03, ADBO05].

Two simple identities following from definition (7.2) will be crucial for
our purposes. For every eigenstate |G(V7c)y> of S;, with eigenvalues s;, = 1
or —1

XilGwe,) = Si® Q) Zi|Guye),)
JEN;
= Siv ® Zj’G(V,C)l)? (75)
JEN;

where definition (7.2) was used, and

YilGwe),) = (-1)Z:.85:® Q) Zi|Gue),)
JEN;
siv(—1)Zi ® Q) ZilG ), (7.6)
JEN;

So, when applied to any pure graph — or mixed graph-diagonal — state, the
following operator equivalences hold up to a global phase:

X & Q) 7, (7.7a)
JEN;

Yo Zi® (X) Z;. (7.7b)
JEN;

7.2.2 Open-system dynamics

As mentioned before, our ultimate goal is to study the behaviour of graph
state entanglement in realistic dynamic scenarios where the system evolves
during a time interval ¢ according to a generic physical process, which can in-
clude decoherence. This process can always be represented by a completely-
positive trace-preserving map A, that maps any initial state p to the evolved
one after a time ¢, py = A(p). In turn, for every such A, there always exists a
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maximum of D? (D = dim(H)) operators K, such that the map is expressed
in a Kraus form [NCO00].

pe=Mp) = KupK]. (7.8)
I

Operators K, are called the Kraus operators, and decompose the identity
operator 1 of H in the following manner: ZM KLKM = 1. Conversely,
the Kraus representation encapsulates all possible physical dynamics of the
system. That is, any map expressible as in (7.8) is automatically completely-
positive and trace-preserving. For our case of interest — IN-qubit systems —,
index g runs from 0 to (2V)” — 1 = 4V — 1. For later convenience, we
will represent it in base 4, decomposing it as the following multi-index:
W=py ... pn, with g; =0,1,2, 0or3 Viel.

We call A a separable map with respect to some multipartition of the
system if each and all of its Kraus operators factorize as tensor products
of local operators each one with support on only one of the subparts. For
example, if we split the qubits associated to the graph shown in Fig. 7.1
into a set ) of boundary qubits (black) and its complement Y = V/Y of non-
boundary qubits (orange), A is separable with respect to this partitioning if
K,=Ky,® Kyﬂ, with Ky, and K?# operators acting non-trivially only
on the Hilbert spaces of the boundary and non-boundary qubits, respec-
tively. A separable map cannot increase the entanglement in the considered
multipartition [GGOS].

In turn, we call A an independent map with respect to some multiparti-
tion of the system if it can be factorized as the composition (tensor product)
of individual maps acting independently on each subpart. Otherwise, we say
that A is a collective map. Examples of fully independent maps are those in
which each qubit 7 is independently subject to its own local noise channel &;.
By the term independent map without explicit mention to any respective
multipartition we will refer throughout to fully independent maps. In this
case, the global map A factorizes completely:

Ap)=E0E®...0EN(p). (7.9)

It is important to notice that all independent maps are necessarily separable
but a general separable map does not need to be factorable as in (7.9) and
can therefore be both, either individual or collective.
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7.2.3 Pauli maps

A crucial family of fully separable maps is that of the Pauli maps, for which
every Kraus operator is proportional to a product of individual Pauli and
identity operators acting on each qubit. That is, K, = \/P,, .. uy) 01 @

LR ONuy = \/E o, with 059 = 1; (the identity operator on qubit i),
oi1 = Xi, 0ip = Y, and o433 = Z;, and P, . ,.y) = P, any probability
distribution. Popular instances are the (collective or independent) depolar-
ization and dephasing (also called phase damping, or phase-flip) maps, and
the (individual) bit-flip and bit-phase-flip channels [NC00]. For example, the
independent depolarizing (D) channel describes the situation in which the
qubit remains untouched with probability 1 — p, or is depolarized - meaning
that it is taken to the maximally mixed state (white noise) - with probability
p- It is characterized by the fully-factorable probability P, = p1,, X ... pn
with p;o = 1 —p and p;; = pis = piz =p/3, Vi€ V. The mdependent phase
damping (PD) channel in turn induces the complete loss of quantum coher-
ence with probability p, but without any energy (population) exchange. It is
also given by a fully-factorable probability with p;q = 1 —p/2, pi; = 0 = pis,
and piz =p/2, Vie V.

For later convenience, we finally recall that each Pauli operator o,
can be written in the following way (also called the chord representation
[AGMSO04]): Tj(u, ) = Z;*-X;", with u; and v; = 0, or 1. Indeed, notice that
Tiv,+lvitusls = Li(usv;) (UP to an irrelevant phase factor for u; = 1 = v;),
where “| |27 stands for modulo 2. In this representation, the Kraus de-
composition of the above-considered general Pauli map has the following
Kraus operators: Kcw,v) = /Po(uyv, ... un.won) 11(ur00) @ - OTN (uyoy) =
VPocwyvy Twvy, Where U (u1, ... uy) and V = (v, ... vn). The prob-
ability Pow,v)y = Po(uiu, ... uy,oy) 1 turn is related to the original P, by

PC(ul,vl, UN,’UN) = P(2v1+|v1+u1|2, ,2UN+|’UN+U,N‘2))'

7.2.4 The thermal bath

An important example of a non-Pauli, independent map is the generalized
amplitude-damping channel (GAD) [NCO00]. It represents energy diffusion
and dissipation with a thermal bath into which each qubit is individually
immersed. Its Kraus representation is

1
Kipo = | e (10 (04] + /T = pl1:){ (7.100)

n+1
o1 =\ P10 (Ll (7.10b)
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Kip—2 =

(/T = pl03) (04] + 1) (L)), (7.10¢)

and

n
K;
=3 =\ o 11
Here 7 is the average number of quanta in the thermal bath, p = p(t) =

p[13)(04]. (7.10d)

1—e~ 27Dt ig the probability of the qubit exchanging a quantum with the
bath after a time ¢, and ~ is the zero-temperature dissipation rate. Channel
GAD is actually the extension to finite temperature of the purely dissipative
amplitude damping (AD) channel, which is obtained from GAD in the zero-
temperature limit 7 = 0. In the opposite extreme, the purely diffusive case
is obtained from GAD in the composite limit @ — oo, v — 0, and 7y = T,
where I' is the diffusion constant. Note that in the purely-diffusive limit
channel GAD becomes a Pauli channel, with defining individual probabilities
pio = 35(1 = p/24+ VT =p), pi1 = § = pig, and piz = 5(1 —p/2 — VT —p),
VieV.

Finally, the probability p in channels D, PD and GAD above can be
interpreted as a convenient parametrization of time, where p = 0 refers to
the initial time 0 and p = 1 refers to the asymptotic t — oo limit.

7.3 Methods

As mentioned before, the direct calculation of the entanglement in arbi-
trary mixed states is a task exponentially hard in the system’s size [PV07,
HHHHO09]. In this section, we elaborate in detail a formalism that dramat-
ically simplifies this task for graph — or graph-diagonal — states undergoing
a noisy evolution in a fully general context. Along the way, we also describe
carefully which requirements an arbitrary noisy map has to satisfy so that
the formalism can be applied.

7.3.1 Evolution of graph-state entanglement under generic
noise: the general idea

Consider a system initially in graph state (7.1) that evolves during a time ¢
according to the general map (7.8) towards the evolved state

MG, ZK IGw.e)) (Gl K (7.11)

We would like to follow the entanglement E(pt) of p; during its entire evo-
lution. Here, E is any convex entanglement monotone [PV07, HHHH09]
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that quantifies the entanglement content in some given multi-partition of
the system. An example of such multi-partition is displayed in Fig. 7.1,
where the associated graph is split into two subsets, painted respectively in
yellow and white in the figure. The edges that connect vertices at different
subsets are called the boundary-crossing edges and are painted in black in
the figure. We call the set of all the boundary-crossing edges X C C, and
its complement X = C/X the set of all non-boundary-crossing edges. All
the qubits associated to vertices connected by any edge in X constitute the
set Y CV of boundary qubits (or boundary subsystem), and its complement
Y = V/Y is the non-boundary qubit set. We refer to G(y,x) as the boundary
sub-graph.

We can use this classification and the operational definition (7.1) to write
the initial graph state as

Guep = @ CZijlGu.ay) @l9m),): (7.12)
{i,j}eXx

where | 9I%), ) = @iy |+i)- In other words, we explicitly factor out all the
CZ gates correspondmg to non-boundary qubits.

Consider now the application of some Kraus operator K, of a general
map on graph state (7.12): K, ®{i,j}e? CZij|Gy,xy,) @ |g@)0>. The latter

can always be written as ®{i,j}€? CZZ-]-IN(M\GO;,X)O) ® |g@)0>, with

Q) Czyi Ky K CZuy, V pu, (7.13)

{ijtex {i.5' ex
Now, consider every map A such that transformation rule (7.13) yields, for
each and all of its Kraus operators, modified Kraus operators of the form

KMZKM@K

Vo (7.14)

where Ky,y and f(y , are normalized (modified) Kraus operators acting non-
trivially only on the boundary and non-boundary qubits, respectively, and
v ={w;, i€ Y}and w = {y;, i € Y} are multi-indices ! labeling re-
spectively the alternatives for the boundary and non-boundary subsystems.
The modified map A, composed of Kraus operators K . is then clearly bi-
separable with respect to the bi-partition “boundary / non-boundary”. For

!That p, v and § may be multi-indices is not implicit from the context or the definition
of i in Eqn. (7.11). However, for the purpose of our later examples, we already term them
S0.
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all such maps the calculation of E(p;) can be drastically simplified, as we
see in what follows.
In these cases, the evolved state (7.11) can be written as

pn=MGrey) = Q) CZyp Q Cu. (7.15)
{i,j}eX {k,l}ex

with

=

pr=M|Gy x),) ® |9@)0>)

- =i - =t
Eyyw|G@,x)01 G210y (1) ® KFu()193)0)93)0 K50

M=

= ~ -t
yw‘g(j)0> (9@)0’Kyw ® Z KLV(VIW)‘G(yvé‘%)<G(3’:X)0‘Ky(wlw)’
v

where IN(yMw) is the «-th modified Kraus operator on the boundary sub-
system given that K’y , has been applied to the non-boundary one. Recall
that both v = v(u) and w = w(p) come from the same single multi-index p
and are therefore in general not independent on one another. In the second
equality of (7.16) we have chosen to treat w as an independent variable for
the summation and make ~ explicitly depend on w. This can always be done
and will be convenient for our purposes.

The crucial observation now is that the C'Z operators explicitly factored
out in the evolved state (7.15) correspond to non-boundary-crossing edges.
Thus, they act as local unitary operations with respect to the multi-partition
of interest. For this reason, and since local unitary operations do not change
the entanglement content of any state, the equivalence

E(pt) = E(pt) (7.16)

holds.

In the forthcoming subsections we see how, by exploiting this equiva-
lence in different noise scenarios, the computational effort required for a
reliable estimation (and in some cases, an exact calculation) of E(p;) can
be considerably reduced. The main idea behind this reduction lies on the
fact that, whereas in the general expression (7.11) the entanglement can be
distributed among all particles in the graph, in state (7.16) the boundary
and non-boundary subsystems are explicitly in a separable state. All the
entanglement in the multi-partition of interest is therefore localized exclu-
sively in the boundary subgraph. The situation is graphically represented
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Figure 7.2: Same graph as in Fig. 7.1 but where all non-boundary-crossing edges have
been erased, representing the fact that the boundary and non-boundary subsystems are
fully unentangled. The entanglement in the whole system is obtained via a calculation
involving only the smaller boundary subsystem.

in Fig. 7.2, where the same graph as in Fig. 7.1 is plotted but with all its
non-boundary-crossing edges erased.

More precisely, the general approach consists of obtaining lower and
upper bounds on E(p;) by bounding the entanglement of state (7.16) from
above and below as explained in what follows.

Lower bounds to the entanglement evolution

The property of LOCC monotonicity of F/, which means that the average
entanglement cannot grow during an LOCC process [Vid00], allows us to
derive lower-bounds on E(p;). The ones we consider can be obtained by the
following generic procedure:

(i) after bringing the studied state into the form (7.16), apply some local

general measurement M = {M,,}, with measurement elements M,,,
on the non-boundary subsystem J;
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(ii) for each measurement outcome w trace out the measured non-boundary
subsystem, and finally

(#ii) calculate the mean entanglement in the resulting state of the boundary
subsystem ), averaged over all outcomes w.

Since this procedure constitutes an LOCC with respect to the multipartition
under scrutiny, the latter average entanglement can only be smaller than,
or equal to, that of the initial state, i.e. :

~ 1 % 2
B(pr) = B(3) 2 3 PP ( L 5 0| K MI- MoK l93), )
- - (7.17)

. ot
Z Ky('y\w’) ’G(y,X)0> <G(y7X)0’Ky(’Y‘“’/)) ’
~

with P, = Y, (95 | KS, ML MKy, |93),) being the probability of out-
come w. )

Notice that if the states {K5;,,/| g(y)())} of the non-boundary subsystem
happen to be orthogonal, then there exists an optimal measurement M =

_ R399, K o .
{M, = 0 «1 that can distinguish them unambiguously, so
<g(7)0|K§wK?f|Tg(?)o>T _ b
that we have (g3 [K3  Mb.MuK3,1903),) = S X (903, | K3 E50,193,)

and P, = <g(y)O|K%wK—w] g(y)0>. In these cases an optimal lower bound is

achieved as (constant normalization factors omitted again)
E(pr) > Y PuB(Y Ky Gon ) (Coag Kop ) (718)
w g

Full distinguishability of the states in the non-boundary subsystem allows
to reduce the mixing in the remaining boundary subsystem. In other words,
the measurement outcome w works as a perfect flag that marks which sub-
ensemble of states of the boundary subsystem, from all those present in
mixture (7.16), corresponds indeed to the obtained outcome.

In the opposite extreme, when states {f(—w,]g@)[))} are all equal, no
flagging information can be obtained via any measurement. In this case,
the resulting bound is always equal to that obtained had we not made any
measurement at all, but just directly taken the partial trace over ) from
(7.16):

1 - )
Blpe) 2 E(J; > Ky G (G a0 K ) (7.19)
w?’y

89



7.3. METHODS

where || stands for the number of non-boundary qubits and full mixing
over variable w takes place now.

Henceforth we refer to lower bound (7.19) as the lowest lower bound
(LLB). As its name suggests, its tightness is far from the optimal one given
by (7.18). However, as we will see in the forthcoming subsections, due to
the partial tracing, it typically does not depend on the total system’s size
but just on the boundary subsystem’s.

This constitutes an appealing, useful property, for it allows one to draw
generic conclusions about the robustness of entanglement in certain parti-
tions of graph states, irrespective of their number of constituent particles
(see examples below).

Upper bounds to the entanglement evolution

On the other hand, we consider upper-bounds on E(p;) based on the prop-
erty of convexity of E/, which essentially means that the entanglement of the
convex sum is lower than, or equal to, the convex sum of the entanglements

[PV07, HHHHO09]. From (7. 16) the latter implies that

E(p) = E(r) <ZPE 51900 99, K3,©

Z Ky(310) G20 (G .2)0 K )
Y

(7.20)

. I
where, once again, P, = <g(y)0|Kwayw’9(y)0>' In each term of the last
summation the boundary and non-boundary subsystems inside the brackets
are in a product state. Therefore, as for what the multi-partition of inter-
est concerns, the non-boudary subsystem works as a locally-added ancila
. 1 7

(in a state P—waw|g@)0>< y)O|K ) and consequently does not have any
influence on the amount of entanglement. This leads to the generic upper
bound

E(pr) <D PoE(D - Ky G000 (G000 K ) (7.21)
w Y

Exact entanglement

Notice that upper bound (7.21) and optimal lower bound (7.18) coincide.
This means that, in the above-mentioned case when states { K=;_| 99, )} are

orthogonal these coincident bounds yield actually the exact value of E(pt)
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Expression (7.22) is still not an analytic closed formula for the exact
entanglement of p;, but reduces its calculation to that of the average entan-
glement over an ensemble of states of the boundary subsystem alone. More
in detail, a brute-force calculation of E(p;) would require in general a convex
optimization over the entire (2V )2—complex—parameter space. Through Eq.
(7.22) in turn such calculation is reduced to that of the average entangle-
ment over a sample of 21Vl states (one for each w) of | Y| qubits, being || the
number of boundary qubits. The latter involves at most 2% independent
optimizations over a (2|y |)2—complex—parameter space. This, from the point
of view of computational memory required, accounts for a reduction of re-

sources by a factor of (2‘3) ‘)2. Alternatively, when computational memory is
not a major restriction — for example if large classical-computer clusters are
at hand —, one can take advantage of the fact that the |))| required optimiza-
tions in (7.22) are independent and therefore the calculation comes readily
perfectly-suited for parallel computing. In this case, it is in the required
computational time where an |)|-exponentially large speed-up is gained.
In the cases where states { Ky;_| g(y)o)} are not orthogonal and the upper
and lower bounds do not coincide, expressions (7.21) and (7.17) still yield

highly non-trivial upper and lower bounds, respectively, as we discuss in Sec.
7.4.1.

Finally, it is important to stress that all the bounds derived here are
general in the sense that they hold for any function fulfilling the fundamen-
tal properties of convexity and monotonicity under LOCC processes. This
class includes genuine multipartite entanglement measures, as well as sev-
eral quantities designed to quantify the usefulness of quantum states in the
fulfilment of some given task for quantum-information processing or com-
munication [PV07, HHHHO09].

7.4 Application and examples

In the present section we apply the ideas of the previous section to some im-
portant concrete examples of noise processes. This shows how the method
is helpful in the entanglement calculation for systems in natural dynam-
ics physical scenarios. We first discuss the case of Pauli maps and then
the generalized amplitude damping channel (thermal reservoir). Explicit
calculations for noisy graph states composed of up to fourteen qubits are
presented as examples.

91



7.4. APPLICATION AND EXAMPLES

7.4.1 Pauli maps on graph states

Pauli maps defined in Sec. 7.2.2 provide the most important and general
subfamily of noise types for which expression (7.22) for the exact entangle-
ment of the evolved state applies. In this case, every X; or Y; Pauli matrix
in the map’s Kraus operators is systematically substituted by products of
Z; and 1; according to rules (7.7). The resulting map A defined in this way
automatically commutes with any C'Z gate and is fully separable, so that
condition (7.14) is trivially satisfied. Since for every qubit in the system four
orthogonal single qubit operators are mapped into products of just two, sev-
eral different Kraus operators of the original map contribute to the same
Kraus operator of the modified one. This allows us to simplify the notation
going from indices p;, which run over 4 possible values each, to modified in-
dices fi; having only two different alternatives. In fact, the original operators
K, give rise to only 2V modified ones of the form

Ki=\PZ' @ ZP @ @ Z8N =/ P Z" (7.23)

where multi-index fi stands for the binary string it = fi1 ... jiy, with g; =0
or 1, Vi € V. Probability f’ﬁ is given simply by the summation of all P, in
the original Pauli map over all the different events p for which o, yields —
via rules (7.7) — the same modified operator Z* in (7.23).

To compute the latter modified probability we move to the chord no-
tation [AGMS04], mentioned at the end of Sec. 7.2.3. Indeed, under
transformation (7.7), we have that Ti(y,.,) — Z;"' @ Qjecp; £, so that

7 Y
I+ ey U UN+EjENN u;
N .

T(U,V) = Tl(u1,v1) X ... TN(@N,UN) — Zl R - QRZ
The latter coincides with Z# every time fi; = |v; + ZjENi Uj’2> Vie.

Thus, in this representation, the modified probability ]50[,, is obtained from
the defining probability Po(y,y) in the original map by the explicit formula

Pep = Z PC(uhlﬂl—ZjeNl Ujla, oo N L= e pry Ui l2)” (7.24)
U

The modified Kraus operators (7.23) in turn are fully separable, thus
trivially satisfying factorization condition (7.14). We can express them as

K/] = Ky:y X Kf&)’ with

Ky;/ = Ky(:ﬂ‘:}) = ”P(:YW)Z’Y and Ky‘:) =\ P@Zw. (725)

The new multi-indices are 5 = {fi;, i € Y} and © = {fi;, © € Y}, and the
corresponding probabilities satisfy P55y P0 = Fp-
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The states { Ky 95),) = VB 2% [+5) = vV Bor @, 5 (100 +(~ 1) 1)
= \/1T | 9 )} are trivially checked to be all orthogonal. Thus, they pro-
vide perfect ﬂ)ags that mark each sub-ensemble in the boundary subsystem’s
ensemble. The perfect flags are revealed by local measurements on the non-
boundary qubits in the product basis {| g(y)&))}. Therefore, for Pauli maps
the exact entanglement E(p;) can be calculated by expression (7.22), which,
in terms of binary indexes 4 and @, and using graph-state relationship (7.3),
can be finally expressed as

t) = ZPwE(Z Pi312)|G .2 (G .x)51) (7.26)
@ v

In Fig. 7.3 we have plotted the bipartite entanglement of the exemplary
bipartition of one qubit versus the rest fourteen and a twelve qubit graph
states evolving under individual depolarization. This map, as said before, is
characterized by the one-qubits Kraus operators /1 — p1,/p/3X,/p/3Y,
and MZ . The parameter p (0 < p < 1) refers to the probability that
the map has acted: for p = 0 the state is left untouched and for p =1 it is
completely depolarized. Once more, p can be also set as a parametrization
of time: p = 0 referring to the initial time (when nothing has occurred) and
p = 1 referring to the asymptotic time ¢ — oo (when the system reaches its
final steady state).

As the quantifier of entanglement, we choose the negativity [VWO02]
which is the absolute value of the sum of the negative eigenvalues of the den-
sity matrix partially transposed with respect to the considered bipartition.
It has been defined formally in Section 2.5.3. Negativity, in general, fails to
quantify the entanglement in those systems containing bound entanglement
i.e. those with a positive partial transpose (PPT) [HHH98]. However, none
of the examples (graph states) we work with bear any PPT bipartite en-
tanglement. The negativity thus encapsulates all the relevant information
about the separability in bipartitions of these states. In other words, null
negativity implies separability in the corresponding partition. The most im-
portant feature of this quantifier relevant to us is its mathematical property
of convexity and the ease of its computation since it involves only matrix di-
agonalization rather than optimizations. For these reasons, it is well suited
for a simple illustration of our ideas.

We emphasize that, for the graph used in Fig. 7.3, a brute-force calcula-
tion would involve diagonalizing a 2'4 x 214 = 16384 x 16384 density matrix
for each value of p, whereas with the assistance of expression (7.26) E(p,) is
calculated via diagonalization of many 22 x 23 = 8 x 8 dimensional matrices
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Figure 7.3: Negativity vs p for a 14 qubit (triangulated green curve) and 12 qubit (red
curve) cluster state for depolarizing noise and a selected partition (shown in inset). The
parameter p can be thought as a parametrization of time (see text).

In the case of Pauli maps the entanglement lower and upper bounds
coincide, and provide the exact entanglement. However, this is not the
case for general, non-Pauli, noise channels. The upper bound is given, as
usual, by convexity. The lower bounds must be optimized by appropriate
choice of LOCC operations. Here, we investigate and optimize measurement
strategies for channel GAD, defined in Sec. 7.2.4.

Observe that the Kraus operators defined in Eqs. (7.10) satisfy the
following: K;y, and K;5 commute with any C'Z operator, while for every
j € V different from 4 it holds that (K;; ® 1;).CZ;; = CZ;;.(K;; ® Z;) and
(Ki3 ® 15).CZ;j = CZ;;.(K;3 ® Zj). Based on this, one can perform the
factorization in equation (7.13) and apply this way the formalism described
in Sec. 7.3.1.

In what follows we focus on two main limits of channel GAD discussed
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in Sec. 7.2.4: the purely-dissipative limit 7 = 0 (amplitude damping), and
the purely-difusive limit @ — oo, v — 0, and 7y =T

7.4.2 Graph states under zero-temperature dissipation

We consider a four qubit linear (1D) cluster state subjected to the AD
map and study the decay of entanglement in the partition consisting of
the first qubit versus the rest shown in the inset of Fig. (7.4). Along
with the exact calculation of entanglement via brute-force diagonalization of
the partially-transposed matrices, the lowest lower bound LLB, obtained by
tracing out the flags, and the upper bound (7.21), obtained from convexity,
are plotted. In addition, the tightness of the lower bounds obtained by the
flag measurements can be scanned as a function of the measurement bases.

Based on observations about the behavior of the system under the AD
map we can guess good measurement strategies. For example, examination
of the initial state reveals that at p = 0 each of the non-boundary qubits is in
one of the states of the basis {|+), |—)}; whereas at p = 1, in one of the states
of {]0),]1)}. We call the lower bound corresponding to measurements in the
basis {|+),|—)} LB(n/4), and the one obtained through measurements in
{]0),]1)} LB(0). The latter bounds are the two additional curves plotted in
Fig. (7.4). We observe that LB(0) provides only a slight improvement over
the LLB, whereas LB(7/4) appears to give a significant one. This raises the
obvious question of how to optimize the choice of measurement basis at each
instant p in the evolution.

As an illustration we consider lower bounds LB(€) obtained through or-
thogonal measurements composed ot the projectors [#+) = cos 0|0) +sin 0|1)
and |#—) = —sin0|0)+cosf|1), and look for the angle 6 that gives us approx-
imately the largest value of LB(6). This is certainly not the most general
measurement scenario one may consider, but it gives a clue on how to in-
crease the tightness of the bounds. Figs. (7.5) and (7.6) illustrate this idea.

At discrete values of p, we have varied parameter 0 < 6 < 7/2 through its
whole range. The measured entanglement for each value of 6 is compared
against the exact entanglement at the given p. In physical terms, we are
taking a snapshot of the system at discrete time instants. The non-boundary
qubits are then measured in a range of different bases and the lower bounds
to the entanglement are computed after each measurement. The value of
0 at each time interval that gives the maximum entanglement represents
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Negativity

Figure 7.4: Negativity vs p for a 4 qubit linear cluster subjected to the amplitude damping
channel and for the partition displayed in the inset. Solid (upper, black) curve: exact
entanglement; Solid (lower, blue) curve: lowest lower bound (obtained by tracing out the
flags); Dashed-dotted (blue) curve: upper bound (7.21) obtained by convexity; Dotted
(red) curve: LB(0) obtained by measuring the flags in the Z basis; Dashed (brown) curve:
LB(7/4) obtained by measuring the flags in the X basis.

the optimal basis for measurement at that particular time interval. It is
clearly seen that, for small values of p, angles around 6 = 7 give the closest
approximations to the exact entanglement, in consistence with the significant
improvement of LB(7/4) over the LLB observed in Fig. (7.4). For large
values of p though, the best approximations tend to be given by the angles
¢ =0 or 6 = 7, as can be observed in Fig. 7.6. It must still be kept in mind
that none of these closest approximations equals the exact entanglement of
the state.

7.4.3 Graph states under infinite-temperature difusion

We now consider the purely-diffusive case of the GAD channel, where each
qubit is in contact with an independent bath of infinite temperature. In
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Figure 7.5: Lower bound LB(#) to the negativity as a function of the angle 6 in the
measurement basis, for the same situation as in Fig. 7.4, and for fixed values of p. Each
value p = 0.01,0.1,0.3,0.5 has two curves associated to it. The horizontal (gray) straight
line represents the exact entanglement at each p, while the blue (black) curve represents
the bound LB(6) at this p. The red line (vertical) corresponds to 6 = 7, i.e. measurements
in the basis {|+),|—)}.

Fig. 7.7 we display the entanglement evolution in a similar way as in Fig.
7.4. Since in the purely-diffusive limit channel GAD becomes a Pauli map,
as was mentioned in the end of Sec. 7.2.4, the bound LB(7/4) yields the
exact entanglement. LB(0) on the other hand coincides with the lowest lower
bound LLB. The fact that in this case LB(0) reaches the exact entanglement
at 6 = 7 can also be seen in a clearer way in Fig. 7.8.

In Fig. 7.7 upper bound (7.21) is plotted as well. Since in this case the
channel is a Pauli channel, one would expect the upper bound to coincide
with the exact entanglement as well. The fact that this does not occur is be-
cause, even though the noise itself is describable as a Pauli map, the plotted
upper bound has been calculated using the original Kraus decomposition of
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Figure 7.6: Same as fig. (7.5) for p = 0.9 plotted separately for clarity.

Egs. (7.10), which is not in a Pauli-map form. For every given particular
Kraus decomposition of a superoperator, the naive application of convexity
always yields UB through Eq. (7.21), but this needs not the tightest, for
the Kraus decomposition of a superoperator is in general not unique. This
observation leads to a whole family of upper bounds for a given map. In the
same spirit as with the lower bounds, one could in principle optimize the
obtained UBs over all possible Kraus representations of the map.

7.5 Extentions and Limitations

The framework developed here is not restricted to graph states. The cru-
cial ingredient in our formalism is the factorization of entangling operations
that act as local unitary transformations in a considered partition and the
redefinition of the Kraus operators acting on the state, reducing the entan-
glement evaluation problem to the boundary system. Given an entangled
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Negativity

Figure 7.7: Negativity vs p for a 4 qubit linear cluster and a chosen partition (inset)
subjected to the generalized amplitude damping channel in the diffusive limit 7 — ooc.
The central curve in an exact overlap of the curves for exact entanglement (solid black)
and LB(7/4) (dashed brown). The lowest curve is an exact overlap of the curves for lowest
lower bound (solid blue) and LB(0) (dotted red). The top most curve is the upper bound
(7.21) (dot-dashed blue).

state and a prescription of its construction in terms of entangling oper-

ations, useful bounds and exact expressions for the entanglement can be

readily obtained. As an example, a GHZ-like state [¢) = a [0)®Y + g]1)%N

can be operationally constructed by the sequential application of maximally-

entangling operation CNOT;; = [0,0;) (0,05 + 0;1;) (0;1,] + [1,0;) (1;1;] +

11;1;) (1;04] to the product state («|0) + 5[1)) ® |0) ® ... ® |0) such that
N-1

|v) = ®C’N0Tm+1(a|0> +6|1)) ®|0) ®...®|0). Using our techniques and
i=1

the permutation symmetry of the state it can be seen that the entanglement

evaluation in any bipartition can be reduced to that of a two qubits sys-

tem. It is also worth noticing that the techniques presented here can also

be extended to higher-dimensional graph states [ZZXS03, TPHT06].
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Figure 7.8: Lower bound LB(f) to the negativity as a function of the angle 6 in the
measurement basis, for the same situation as in Fig. 7.7, and for fixed values of p. Each
value p = 0.01,0.1,0.3,0.5 has two curves associated to it. Again, the horizontal (gray)
straight line represents the exact entanglement at each p, while the blue (black) curve

us

represents the bounds LB(6) at the this p. The red line (vertical) corresponds to 6§ = 7,
i.e. measurement in the basis {|+),]|—)}.

In addition, it is important to mention that all bounds developed so far
can in fact also be exploited to follow the entanglement evolution when the
system’s initial state is a mixed graph-diagonal state. This is simply due to
the fact that any graph-diagonal state (7.4) can be thought of as a Pauli
map Agp acting on a pure graph state:

pGD = Z PGy {Gwe,
= Z PI/ZV|G(V,C)O><G(V,C)O|ZV (727)

= Acp(|Gw,ey,))-

Thus, the entanglement at any time ¢ in a system initially in a mixed graph-
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diagonal state pgp, and evolving under some map A, is equivalent to that of
an initial pure graph state |G V.0 0> whose evolution is ruled by the composed
map Ao Agp, where Agp is defined in (7.27). When A is itself a Pauli map,
then A o Agp is also a Pauli map and the expression (7.26) for the exact
entanglement can be applied. For the cases where A is not a Pauli map but
the relations (7.13) are satisfied by its Kraus operators, the relations (7.13)
will also be satisfied by the composed map Ao Agp, so that all other bounds
derived here also hold.

Furthermore, as briefly mentioned before, any arbitrary state can be
depolarized by some separable map towards a graph-diagonal state [DABO03,
ADBO5]. The latter, since the entanglement of any state cannot increase
under separable maps, implies that all the lower bounds presented here
also provide lower bounds to the decay of the entanglement that, though
in general far from tight, apply to any arbitrary initial state subject to any
decoherence process.

The gain in computational effort provided by the machinery presented
here diminishes with the ratio between the number of particles in the bound-
ary subsystem and the total number of particles. For example, for multipar-
titions such that the boundary system is the total system itself, or for entan-
glement quantifiers that do not refer to any multi-partition at all, our method
yields no gain. An example of the latter are the entanglement measures
that treat all parties in a system indistinguishably, some of which, as was
mentioned in the introduction, have been studied in Refs. [GBB08, HW10).
These methods naturally complement with ours to offer a rather general and
versatile toolbox for the study of the open-system dynamics of graph-state
entanglement.

7.6 Discussion

We have studied in detail a general framework for computing the entan-
glement of a graph state under decoherence introduced in [CCAT09]. This
framework allows to drastically reduce the effort in computing the entangle-
ment evolution of graph states in several physical scenarios. We have given
an explicit formula for the construction of the effective noise involved in the
calculation of the entanglement for Pauli maps and extended the formalism
to the case of independent baths at arbitrary temperature. Also, we have
elaborated the formalism to construct non-trivial lower and upper bounds
to the entanglement decay where exact results cannot be obtained from the
formalism itself.
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Finally we would like to add that the necessary requirements on the noise
channels for the method to apply do not prevent us from obtaining general
results for a wide variety of realistic decoherence processes. Furthermore,
the conditions required on the entanglement measures are satisfied by most

quantifiers.
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Summary and outlook

In this thesis, we have explored several aspects of randomness involving
its generation, quantification and amplification (the latter two being device
independent). We have discussed at length an explanation of upper bounds
on randomness in non-local theories based on symmetries. Not only do these
arguments help identify maximal randomness (or the lack of it) in both
the quantum and non-signalling sets but also shed light on the relationship
between the resource of non-locality and that of randomness. We have also
shown for the first time that randomness can be quantified for arbitrary
system size given specific correlations and can be fully amplified given even
the lowest quality initial source of randomness. The criteria and techniques
developed can be extended to many other scenarios.

In all this work, we have extensively used the so-called GHZ correla-
tions. These were already known to be of great utility in quantum infor-
mation since they display both genuine N-partite entanglement and non-
locality. The present work demonstrates that these correlations also encode
robust randomness. Even allowing non-signalling preparations, one can dis-
til randomness in a Bell experiment allowing an arbitrary (but not absolute)
weakening of the freedom of choice assumption.

This work raises several questions. Uniqueness of quantum correlations
maximally violating Bell inequalities is a conjecture we have shown to be
very useful to detect maximal randomness. While a formal proof in full
generality appears to be difficult, the significance of such a result makes an
attempt worthwhile. The NPA semi-definite hierarchy bounding quantum
correlations is potentially a significant tool to attack this problem. Concern-
ing the bounds to randomness in the non-signalling set, it would be of great
interest to find tighter ones than the ones we derive. Furthermore, there is
the outstanding question if full randomness amplification can be achieved in
the bipartite scenario.

Most of our results are derived for "pure” correlations free of noise. From
an experimental point of view this is a significant drawback. Laboratory
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preparations of such correlations involve noise in either the preparation or
measurement or both. This relates to our final study of the entanglement
properties of GHZ correlations (as an example of the much larger class of
graph states) evolving under noise. This suggests several avenues for further
work, some of which we are currently working on. One is the characteri-
zation of intrinsic randomness for GHZ correlations subject to noise. Work
in progress suggests that the randomness content in such states decreases
linearly with the visibility under white noise. Analytical results, where pos-
sible, for arbitrary system size would be a very useful demonstration of the
relationship between not just non-locality and randomness but also with en-
tanglement, which has been computed in the final chapter. Moreover, such
results would allow experimental generation of verifiable randomness with
the advantage of a weakened freedom of choice assumption. This has not
yet been achieved in any experimental scenario to our knowledge.
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Appendix A

Proof of full randomness
amplification

Before entering the details of the Theorem in the main text, let us introduce
a convenient notation. In what follows, we sometimes treat conditional
probability distributions as vectors. To avoid ambiguities, we explicitly label
the vectors describing probability distributions with the arguments of the
distributions in upper case. Thus, for example, we denote by P(A|X) the
(25 x 2%)-dimensional vector with components P(a|x) for all a,x € {0,1}°.
With this notation, the five-partite Mermin inequality can be written as the
scalar product

P(AIX) = ZI a,x)P(alx) > 6 . (A.1)

Any probability distribution P(a|x) satisfies C' - P(A|X) = 1, where C is
the vector with components C'(a,x) = 27°. We also use this scalar-product
notation for full blocks, as in

Ng
I®Nd . B|Y Z Z [HI(&Z’,XZ‘)

ar,...any X1,--XN, Li=1

P(ai,...an,|x1,...XnN,) -

Following our upper/lower-case convention, the vector P(B|Y, e, z) has com-
ponents P(bly, e, z) for all b,y but fixed e, z.

Recall also that the bits produced by the source S are such that the
probability P (xj|rest) that bit j takes a given value x;, conditioned on e
and the rest of the bits from the source is bounded by,

e < P(xj|rest) <1 —¢, (A.2)
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where 0 < € < 1/2. The bound, when applied to n-bit strings produced by
the e-source, implies that

" < P(xy1,...,zple) < (1—¢)". (A.3)

The proof of the Theorem in the main text relies on two crucial lemmas,
which are stated and proven in Sections A.1.1 and A.1.2, respectively. The
first lemma bounds the distinguishability between the distribution distilled
from a block of N4 quintuplets and the ideal free random bit as function of
the Bell violation (A.1) in each quintuplet. In particular, it guarantees that,
if the correlations of all quintuplets in a given block violate inequality (A.1)
sufficiently much, the bit distilled from the block will be indistinguishable
from an ideal free random bit. The second lemma is required to guaran-
tee that, if the statistics observed in all blocks but the distilling one are
consistent with a maximal violation of inequality (A.1), the violation of the
distilling block will be arbitrarily large.

A.1 Proof of the Theorem

We begin with the identity

P(guess) = P(g = 0)P(guess|g =0) + P(g = 1)P(guess|g =1) . (A.4)

As discussed, when the protocol is aborted (g = 0) the distribution generated
by the protocol and the ideal one are indistinguishable. In other words,

1
P(guess|g = 0) = 3" (A.5)

If P(g = 0) = 1 then the protocol is secure, though in a trivial fashion. Next
we address the non-trivial case where P(g = 1) > 0.
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From the definition of the guessing probability, we have

P(guess|g = 1)

1 1 . 1.
= g max ) |P(hgtelzg=1) - 5P@telzg=1)
kgt e
= 5t g Pl = 13 max D [P(kelzgtig = 1)~ gPlelz it = 1)
BTG i i H A A A S
1 1 IRV
< gt 2 Pty =1)6y/Ng (aC + )N P(BY 1.9 = 1)
g’t
1 3N, ~ SIRY,
- -+ ‘/27(@0+BI)®N‘”ZP(W!9=1)P(B\Yat»9=1)
g7t
1  3vVN, IR
_ f+ﬂ(ac+m)®wd_zp(ﬂg: )P(B|Y,t,g=1)
2" 2 .
1 3Ny ®N, SITIRY
_ 1 NN NT P(B Y, g =1
1 3v/N, by
B \/27(0‘C+61)®Nd-P(B!Y,9=1)

where the inequality is due to Lemma 16 in Section A.1.1, we have used
the no-signaling condition through P(y,t|z,g = 1) = P(g,t|g = 1), in the
second equality, and Bayes rule in the second and sixth equalities. From
(A.6) and Lemma 17 in Section A.1.2, we obtain

g N9

P(guessjlg=1) < aVe b
(suessla =1 Plg=1)

1, 3V
2 2

(3256—5)”] . (AT)

Finally, substituting bound (A.7) and equality (A.5) into (A.4), we obtain

P(guess) < % + 3 QNd [P(g =1)a™ + 2Nblog2(1_6) (32,8675)Nd:| , (A8)

which, together with P(g = 1) < 1, implies

P(guess) < % + 3TNd [aNd + 2Ng°g2(1_5) (32,6675)]\[‘1] . (A.9)

and in turn, proves the Theorem in the main text.
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A.1.1 Statement and proof of Lemma 16

As mentioned, Lemma 16 provides a bound on the distinguishability between
the probability distribution obtained after distilling a block of N4 quintuplets
and an ideal free random bit in terms of the Bell violation (A.l) in each
quintuplet. The proof of Lemma 16, in turn, requires two more lemmas,
Lemma 18 and Lemma 19, stated and proven in Section A.1.3.

Lemma 16. For each integer Ny > 130 there exists a function f : {0,1}Ve —
{0,1} such that, for any given (5Ng4 + 1)-partite non-signaling distribution

P(ay,...an, e|x1,...xn,,2) = P(b,ely,z), the random variable given by
k = f(maj(a;),...maj(ay,)) satisfies

Zk:mgxg: [Pk, ely. 2) - %P(e|y, 2| < 6V/Na(aC + 51N - P(B]Y)

(A.10)
for all inputs y = (x1,...XN,) € XNa  and where o and B are real numbers
such that 0 < aa < 1 < B.

Proof of Lemma 16. For any xg € X let MX° be the vector with com-
ponents MX°(a,x) = 5fr”1aj( )5"0. The probability of getting maj(a) = w
when using x¢ as input can be written as P(w|xg) = M} ° - P(A|X). Note
that this probability can also be written as P(w|x¢) = I'X0 - P(A|X), where
%0 = MXo + AX0 and AX° is any vector orthogonal to the no-signaling sub-
space, that is, such that AX - P(A|X) = 0 for all non-signaling distribution
P(A|X). We can then write the left-hand side of (A.10) as

1
k e’ya - §P(6|y7 Z)
1
= ngxzp(e\y,z) Z <5lj(w) - 2) P(wly,e, z)
k e w

NP

> max ) Plelz) (5’;(w) - 2) (@rg) - P(B|Y,e, zo+,11)
k e w =1

where in the last equality we have used no-signaling through P(ely,z) =
P(e|z) and the fact that the probability of obtaining the string of majorities
w when inputting y = (x1,...xy,) € XN¢ can be written as

Ny
P(wly) = (@ r;g_) . P(BJY). (A.12)

=1
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In what follows, the absolute value of vectors is understood to be component-
wise. Bound (A.11) can be rewritten as

Zmzaxz ‘P(kj,e|y, z) — %P(e\y,z)
k e
Zk:mfuxze:P(dz) zw: <6§(W) - ;) i@%f‘ﬁ}z
- S|S0 (- 3) @i (S peroc)
k w i=1 e
- 2|8 (tho - 3) O

k w =1

IN

- P(BlY,e, z)

. P(B|Y), (A.13)

where the inequality follows from the fact that all the components of the
vector P(BlY e, z) are positive and no-signaling has been used again through
P(B|Y,z) = P(B]|Y) in the last equality. The bound applies to any function
f and holds for any choice of vectors A} in I}, In what follows, we compute
this bound for a specific choice of these vectors and function f.

Take A} to be equal to the vectors A} in Lemma 18. These vectors
then satisfy the bounds (A.26) and (A.35) in the same Lemma. Take f
to be equal to the function whose existence is proven in Lemma 19. Note
that the conditions needed for this Lemma to apply are satisfied because of
bound (A.26) in Lemma 18, and because the free parameter Ny > 130 satis-
fies (BM)_l/Nd > v = 0.9732. With this choice of f and A%, bound (A.13)

becomes

1
S mexy Pl 2) ~ 3Plely

Ny
< Ysum (@ Q) P(BIY)
k i=1
< 6v/Ny(aC + 80N P(BJY) | (A.14)
where we have used % = /(T'y")% + (I'77)?, >, 3 = 6, bound (A.26) in
Lemma 18 and bound (A.35) in Lemma 19. O

A.1.2 Statement and proof of Lemma 17

In this section we prove Lemma 17. This Lemma bounds the Bell violation in
the distillation block in terms of the probability of not aborting the protocol
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in step 4 and the number and size of the blocks, N, and Ny.

Lemma 17. Let P(by,...bn,|y1,-..yn,) be a (5NqNy)-partite non-signaling
distribution, y1,...yn, and | the variables generated in steps 2 and 3 of the
protocol, respectively, and o and B real numbers such that 0 < a < 1 < §;
then

o log (1—¢)
(aC + BNEN . P(B|Y,g=1) < aMa+ ﬁ (328¢7%)" . (A.15)
g =
Proof of Lemma 17. According to definition (see main text)
o 1 if I(al,xl):---:I(aNd,XNd):()
rib,y] = { 0 otherwise (A-16)

we have I(a;,x;) < 52[1) ) for all values of b = (ar,...an,)andy = (x1,...Xn,).
This also implies I(a;,x;)I(a;,x;) < 619“) J and so on. Due to the property

0 < a <1< 3, one has that («272)Na=i3" < gNa for any i = 1,... Ng. All
this in turn implies

Ng

H (@275 + BI]

i=1

02 ?) M 4 (02) BN L (02 )T B Y Rl
i 7]

|
—

< (a2—5)Nd_|_ﬁNd (ZIi+ZIin+'.')
i i)
< (a277) 4 pNe (Z Ol T D )+ )
i i)
< (a2 g N (2N 1) 69, 1 < (a270) Y 4 (B2)N 60, (ALT)
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where I; = I(a;,x;). This implies that
(aC + B)*N . P(B|Y, g = 1)

Ng
- Z Z H[a275+51(ai7xi>]P(al,...aNd X17~--XNd7g:1)
a1,‘..aNd X17...de =1
< 3 [(@2 )™+ 28Nl POg = 1)
by

= aMNey 9 Ne 4 (28)NaN " P(r = 0]y, g = 1)

Y Y

= oMt (20)M Y P(r=0ly,g = 1)
Yy

= oMy (28)Ne Zy: P(;Ty?g;y:'g; b (A.18)

We can now bound P(y|g = 1) taking into account that y denotes a 5N4-bit
string generated by the e-source S that remains after step 2 in the pro-
tocol. Note that only half of the 32 possible 5-bit inputs x generated by
the source belong to X and remain after step 2. Thus, P((x1,...,Xn,) €
ANi|g = 1) < 16M4(1 — €)®M4, where we used (A.3). This, together with
P((x1,...,%n,)|lg = 1) > €Ne implies that

5

Ny
e e (A19

Substituting this bound in (A.18), and summing over y, gives

_ )\ Ve
16(165 )) P(r=0lg=1).

(A.20)

(@C -+ BD™MP(BIY.g =1) < a¥r29)™ (

In what follows we use the notation
P(11,02,13,14,...) = P(rb1,y1] = 1,7[ba, y2] = 0,7[b3,y3] = 1,7[bs,ya] = 1,...).
According to step 4 in the protocol described in the main text, it aborts
(g9 = 0) if there is at least a “not right” block (r[b;,y;] = 0 for some j # 1).

While abortion also happens if there are more than one “not right” block, in
what follows we lower-bound P(g = 0) by the probability that there is only
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one “not right” block:
1 > P(g=0)

N, N,
P Y Py, Lt L, dpoy, O g, Ly,

>
=1 ———

> ZP(Z) Z P(ly,. . Ly, Ly Ly e Leg, Oy 1y, o2 1)
] =

- ¥ {Zlﬂ,P(Z)} P11, 11, 1, Lty - dpe1, Oy Ly, - 1y,
l/

= > 1—=P@)]P(1,... 1p_1,00, 1p41, .. 1ny,), (A.21)
l/

where, when performing the sum over [, we have used that
Py, o, Iy Ly, oo L1, Oy gy ) = P(1g, 0 1y, Oy g, L 1y)
does not depend on I. Bound (A.3) implies

log, ﬁ

1-PQl) _ 1-(1-—¢l=M Mmoo N

Pl) = (-l b >

(A.22)

where the last inequality holds for sufficiently large Np. Using this and (A.21),
we obtain

1 log %6
1 > 2;Nb 21 P(l/) P(]-la" . 1l’—170l’711’+17' . 1Nb)

1 log %5 -
> 5N, T P(F=0,9=1), (A.23)

where 7 = r[b;, y;]. This together with (A.20) implies

(aC + B*N* . P(B|Y g =1)

Ny
’ 2 328(1 — )"\ " g, (1c
< oy P(g=1) ( (65 : ) A (4.25)

where, in the second inequality, Bayes rule was again invoked. Inequality
(A.25), in turn, implies (A.15). O
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A.1.3 Statement and proof of the additional Lemmas

Lemma 18. For each xo € X there are three vectors Ay°, AT°,A3° or-
thogonal to the mon-signaling subspace such that for all w € {0,1} and
a,x € {0,1}° they satisfy

VIME (%) + A% (@, %)) + (M (a, %) + AP (a, %)
< aC(a,x)+ fI(a,x) + A3 (a, x) (A.26)

and
| M0 (a,x) + A% (a, %)
< /IR (a,x) + AR (@, %)) + [M(a,x) + AF(a, %)) (A.27)

where o = 0.8842, f = 1.260 and v = 0.9732.

Proof of Lemma 18. The proof of this lemma is numeric but rigorous.
It is based on two linear-programming minimization problems, which are
carried for each value of xg € X'. We have repeated this process for different
values of v, finding that v = 0.9732 is roughly the smallest value for which
the linear-programs described below are feasible.

The fact that the vectors Aj°, AT, A3° are orthogonal to the non-signaling
subspace can be written as linear equalities

D A% =0 (A.28)

for w € {0,1,2}, where 0 is the zero vector and D is a matrix whose rows
constitute a basis of non-signaling probability distributions. A geometrical
interpretation of constraint (A.26) is that the point in the plane with coordi-
nates [MJ°(a,x) + Ay’ (a,x), M;(a,x) + AJ°(a,x)] € R? is inside a circle
of radius aC'(a,x) + fI(a,x) + AJ°(a, x) centered at the origin. All points
inside an octagon inscribed in this circle also satisfy constraint (A.26). The
points of such an inscribed octagon are the ones satisfying the following set
of linear constraints:

[M°(a,x) + Ay’ (a,x)] ncos b + [M]°(a,x) + AT (a,x)|nsind
< aC(a,x)+ pI(a,x) + A’ (a,x) , (A.29)

for all 0 € {§, %’r, %’T, %’r, 9%, HT”, 1%”, 1%” , where 1 = (cos %)_1 ~ 1.082. In
other words, the eight conditions (A.29) imply constraint (A.26). From now

on, we only consider these eight linear constraints (A.29). With a bit of
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algebra, one can see that inequality (A.27) is equivalent to the two almost
linear inequalities,

[ 2
X X g X X
+ [M’wo (a7 X) + Awo <a7 X)] < 1 — 72 ’M'LUO (a7 X) + AZDO (a7 X)‘ ’ (ABO)

for all w € {0,1}, where w = 1 — w. Clearly, the problem is not linear
because of the absolute values. The computation described in what follows
constitutes a trick to make a good guess for the signs of the terms in the
absolute value of (A.30), so that the problem can be made linear by adding
extra constraints.

The first computational step consists of a linear-programming minimiza-
tion of o subject to the constraints (A.28), (A.29), where the minimization
is performed over the variables o, 8, Aj®, AT®, A3°. This step serves to guess
the signs

ow(a,x) = sign[M;°(a,x) + Ay’ (a,x)] , (A.31)

for all w, a, x, where the value of AX?(a, x) corresponds to the solution of the
above minimization. Once we have identified all these signs, we can write
the inequalities (A.30) in a linear fashion:

ow(a,x) [M3°(a,x) + AX(a,x)] >0, (A.32)

o (8, ) M (2, %) + A9 (a,%)] < oula,x) M (a,%) + A (a,x)]

L=y
(A.33)

for all w € {0,1}.

The second computational step consists of a linear-programming mini-
mization of « subjected to the constraints (A.28), (A.29), (A.32), (A.33),
over the variables a, 8, A§°, AT°, A3°. Clearly, any solution to this problem
is also a solution to the original formulation of the Lemma. The minimiza-
tion was performed for any xg € X and the values of «, 8 turned out to
be independent of xg € X. These obtained numerical values are the ones
appearing in the formulation of the Lemma. ]

Note that Lemma 18 allows one to bound the predictability of maj(a) by
a linear function of the 5-party Mermin violation. This can be seen by com-
puting I'*0 - P(A|X) and applying the bounds in the Lemma. In principle,
one expects this bound to exist, as the predictability is smaller than one at
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the point of maximal violation, as proven in Result 1 in the main text, and
equal to one at the point of no violation. However, we were unable to find
it. This is why we had to resort to the linear optimization technique given
above, which moreover provides the bounds (A.26) and (A.27) necessary for
the security proof.

Lemma 19. Let Ny be a positive integer and let T (a,x) be a given set of
real coefficients such that for alli € {1,... Ny}, w € {0,1} and a,x € {0,1}°
they satisfy

—1/Ny
) iax) (A.34)

IT%, (a, %) < (3 Ny

where Q;(a, x) = \/Fg(a, x)2 4+ T%(a,x)2. There ezists a function f : {0,1}e —

{0,1} such that for each sequence (ai,x1),...(an,,Xn,) we have
1 Nd Nd
> <5’;(w) — 2) [[Th: (i x)| < 3V/Ng [[u(ai,xi) , (A.35)
w i=1 i=1
where the sum runs over all w = (wy, ... wy,) € {0, 1}Ve.
Proof of Lemma 19. First, note that for a sequence (aj,x1), ... (an,,Xn,)

for which there is at least one value of i € {1,... N;} satisfying T(a;, x;) =
I'i(a;,x;) = 0, both the left-hand side and the right-hand side of (A.35)
are equal to zero, hence, inequality (A.35) is satisfied independently of
the function f. Therefore, in what follows, we only consider sequences
(a1,x1),...(an,,xn,) for which either Ti(a;,x;) # 0 or T (a;,x;) # 0, for
alli=1,... Ny Or, equivalently, we consider sequences such that

Ny
HQi(aiaXi) >0. (A.36)
=1

The existence of the function f satisfying (A.35) for all such sequences is
shown with a probabilistic argument. We consider the situation where f is
picked from the set of all functions mapping {0, 1}"¢ to {0, 1} with uniform
probability, and upper-bound the probability that the chosen function does
not satisfy the constraint (A.35) for all k£ and all sequences (a;,x1), ... (an,,Xn,)
satisfying (A.36). This upper bound is shown to be smaller than one. There-
fore there must exist at least one function satisfying (A.35).

For each w € {0,1}¢ consider the random variable Fy, = (5?(“,) -
2) € {3.—1}, where f is picked from the set of all functions mapping
{0,1}¥¢ — {0,1} with uniform distribution. This is equivalent to saying
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that the 24 random variables {Fy }w are independent and identically dis-

tributed according to Pr{Fy, = :I:%} = % For ease of notation, let us fix

a sequence (ap,x1),...(an,,xny,) satisfying (A.36) and use the short-hand
notation I, = Il (aj, ;).

We proceed using the same ideas as in the derivation of the exponential
Chebyshev’s Inequality. For any u,v > 0, we have

Ny
Pr {ZFWHF:UZ > M}
w i=1 N
= Pr {1/ (—u—i— ZFWHF’ZIU1> > 0}
w =1 N
= Pr {exp(—uu—i— VZFWHH%) > 1}
w N::l
exp (—l/u +v Z Fy H F%)] (A.37)
w . =1
e~ VH H exp (VFW H F:,Jl)]
W z;dl
= e V¥ HE exp (VFW H Ffwl>] (A.38)
w =1

Ny Ny 2
< e ]]E |1+ vER [T, + (Z/Fw 11 r;,i) . (A39)
w =1 i=1

E

IN

= E

Here E stands for the average over all Fy,. In (A.37) we have used that any
positive random variable X satisfies Pr{X > 1} < E[X]. In (A.38) we have
used that the {Fy }w are independent. Finally, in (A.39) we have used that
e < 1+ n+n?, which is only valid if < 1. Therefore, we must show that

14 N
5 I, <1, (A.40)
=1

which is done below, when setting the value of v. In what follows we use
the chain of inequalities (A.39), the fact that E[Fy] = 0 and E[F2] = 1/4,
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bound 1+ 71 < e” for n > 0, and the definition Q2 = (I'})% + (I'})%:
Ny

2OMAICE }

_V“H<1+E Hrl +EF2 2H )

2 Ng

= ”“H(lJFZzH1 r’i)z)
ol

12 Nqg
= exp(—y,u—i—z H )
2 Na
= exp <—1/u +— H Q2> (A.41)

=1

IN

IN

In order to optimize this upper bound, we minimize the exponent over v.
This is done by differentiating with respect to v and equating to zero, which
gives

Ny
v=2u]]07". (A.42)

Note that constraint (A.36) implies that the inverse of €; exists. Since we
assume p > 0, the initial assumption v > 0 is satisfied by the solution (A.42).
By substituting (A.42) in (A.41) and rescaling the free parameter p as

_ 1
_ , A.43
fi % o, (A.43)

we obtain
Ny Ny
Pr {ZFW [Ir. > ﬂHQz} <e (A.44)
w i=1 i=1

for any i > 0 consistent with condition (A.40). We now choose fi = 31/ Ny,
see Eq. (A.35), getting

N, N,
Pr {Z Fy ﬁ%— > 3\/ﬁdﬁ9} < e WNa (A.45)
w =1 =1
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With this assignment, and using (A.42) and (A.43), condition (A.40), yet
to be fulfilled, becomes

o7 Ik
3\/NdHTf <1, (A.46)
i=1 "

which now holds because of the initial premise (A.34).

Bound (A.45) applies to each of the sequences (a;,x1),...(an,,xn,)
satisfying (A.36), and there are at most 4°V¢ of them. Hence, the probability
that the random function f does not satisfy the bound

Ny Ny
> P [T, =3V Na [ (A.47)
w =1 =1

for at least one of such sequences, is at most 4°NVae=Va  which is smaller
than 1/2 for any value of Ng. A similar argument proves that the probability
that the random function f does not satisfy the bound

Ny Ny
> B ][r, < -3vNa] ] (A.48)
w =1 =1

for at least one sequence satisfying (A.36) is also smaller than 1/2. The
lemma now easily follows from these two results. O

A.2 Final remarks

The main goal was to prove full randomness amplification. In this Appendix,
we have shown how our protocol, based on quantum non-local correlations,
achieves this task. Unfortunately, we are not able to provide an explicit
description of the function f : {0,1}"¥¢ — {0,1} which maps the outcomes
of the black boxes to the final random bit k; we merely show its existence.
Such function may be obtained through an algorithm that searches over the
set of all functions until it finds one satisfying (A.35). The problem with this
method is that the set of all functions has size 24, which makes the search
computationally costly. However, this problem can be fixed by noticing that
the random choice of f in the proof of Lemma 19 can be restricted to a four-
universal family of functions, with size polynomial in N;. This observation
will be developed in future work.

A more direct approach could consist of studying how the randomness in
the measurement outcomes for correlations maximally violating the Mermin
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inequality increases with the number of parties. We solved linear optimiza-
tion problems similar to those used in Result 1 in the main text, which
showed that for 7 parties Eve’s predictability is 2/3 for a function of 5 bits
defined by f(00000) = 0, f(01111) = 0, f(00111) = 0 and f(x) = 1 oth-
erwise. Note that this value is lower than the earlier 3/4 and also that the
function is different from the majority-vote. We were however unable to
generalize these results for an arbitrary number of parties, which forced us
to adopt a less direct approach. Note in fact that our protocol can be inter-
preted as a huge multipartite Bell test from which a random bit is extracted
by classical processing of some of the measurement outcomes.

We conclude by stressing again that the reason why randomness amplifi-
cation becomes possible using non-locality is because the randomness certifi-
cation is achieved by a Bell inequality violation. There already exist several
protocols, both in classical and quantum information theory, in which imper-
fect randomness is processed to generate perfect (or arbitrarily close to per-
fect) randomness. However, all these protocols, e.g. two-universal hashing
or randomness extractors, always require additional good-quality random-
ness to perform such distillation. On the contrary, if the initial imperfect
randomness has been certified by a Bell inequality violation, the distillation
procedure can be done with a deterministic hash function (see [Mas09] or
Lemma 16 above). This property makes Bell-certified randomness funda-
mentally different from any other form of randomness, and is the key for the
success of our protocol.
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Appendix B

Proof for vanishing classical
randomness for arbitrary N

Here we prove the main theorem of Chapter 6. It is basically a generalization
of the the proof for N = 3. We would like to prove that the function f
defined in the main text, satisfies the property P(f(a) = 0|xm) > 1/2 for
any N-partite distribution (odd N) that maximally violates the Mermin
inequality. As before we will express this condition in terms of correlators
and use positivity conditions from the swapped input to complete the proof.
One complication for larger IV is that conditional on IV, the function satisfies
either of P(f(a) =0|xm) > 1/2 or P(f(a) = 1|xm) > 1/2 for P maximally
violating the N-partite Mermin inequality. For instance, it turns out that
the former property is satisfied for N = 3,5 and the latter for N = 7,9
etc. Thus, we instead prove that hy.(P(f(a) = 0|xm) — 1/2) > 0 where the
dependence on N in the equation is now contained in the new parameter
hy taking values 41 or —1 conditional on N.The exact expression for hy is
stated later as required.

A N-partite no-signalling probability distribution P(alx) with inputs
x € {0,1}" and outputs a € {+1,—1}"V can be parameterized in terms of
correlators as

N
1
i=1 1<j

Z aiajak<a:imjxk> + -+ ajas... aN<.T11'2 .. 37N>>
1<j<k
(B.1)
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Restricting P(a|x) to those maximally violating the N-partite Mermin in-
equality is equivalent to requiring all correlators of input strings of odd parity
to take their extremal values. Namely, we have,

(r12a...zN) = (—1)CIHZL @)/2, (B.2)

for all N-point correlators satisfying Zz‘N:O z; = 1 mod 2. For instance,
(0,0, ...,1) = 1 and similarly for all permutations. Also, (0,0,...,0,1,1,1) =
—1 as well as for for all permutations, etc. In the following we will use the
notation (.); to denote a k-pt correlator. The input combination used to
extract randomness from is a generalization of the tripartite case and de-
noted by xpym = (0,0,...,0,1). The corresponding N-point correlator satis-
fies (00...01) =1 for all N. The latter implies two useful relations:

1. Half the total outcomes vanish. In particular these are the terms for
which the product of outcomes is —1 i.e. P(H?Ll a; = —1|xm) = 0.

2. ()n—k = () for all 1 < k < (N —1)/2 where the correlators (.)y_g
and (.) are complementary in the input Xy,.

One can use these in Eqn. B.1 to express P(a|xm) in terms of only the first
(N —1)/2-pt. correlators as,

1
Plalxm) = 5x—(1+ D aiAi) + ) aiaj(4;A))

where a1 -ag-as...ay = +1.
We denote by S* the set of all (.); correlators that appear in the input
Xm.

(B.3)

B.1 Property to be satisfied by f

Now we can calculate the value of hy(P(f(a) = 0|x,,) — 1/2). Taking into
account that f is permutationally symmetric, it will prove convenient to
express our quantity of interest as

(P(f(a) = 0]x,,) —1/2) - hy =2~ VDo . ¢

where
o =hy- (o — 2N72, aq, 02, ... 7a(N71)/2) (B.4)
c= 17Z<'>172<->27"'7 Z <'>(N—1)/2

St S2 S(N-1)/2
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Recall that function f is such that f(a) = 0 if 21111 a; =2 mod 4. By
inspection, the explicit values of «; can be written as

o = i:(_l)r <i> ]; (4]' 1_2 Z_ r), (B.5)

For example, ag = >0 ( 4;12) as one would expect since o simply counts
the total number of terms P(a|x,,) being summed to obtain P(f(a) = 0|x;,).

Making use of the closed formula .-, (Tjia) = %Zz;éw_k“(l + wh)m
[BCK10], where w = 27/ is the r* root of unity we can simplify the second
sum appearing in Eqn. B.5. Finally the exact form of the phase hy as a
function of N is hy = v/2cos(N +4)7/4. Putting all this together and

performing the first sum in Eqn. (B.5) gives us,

- N — 2 N +14
af = 9™ <—2 cos ( 1 i cos ( Z )Tr) (B.6)

Notice that the term in the parenthesis is a phase taking values in the set
{+1, -1} since N is odd while the amplitude is independent of N. Thus,
we can simplify Eqn. (B.6) for even and odd values of i as,

2(N=3)/2(_1)"5"  j odd
af = , (B.7)
oN=3)/2(_1)2 i even

Thus, to prove that f possesses the property (P(f(a) = 0|xm)—1/2)hny >0
is equivalent to proving
o -c>0, (B.8)

for ¢ as defined in Eqn. (B.4) and for the values of & given by Eqn. (B.7).
This is the task of the following section.

B.2 Swapped Input

We show that positivity conditions derived from the swapped input x =
(1,1,...,1,0) may be used to show o’ -c¢ > 0. In the following we will
repeatedly use the Mermin conditions of Eqn. (B.2).

We start by summing the positivity conditions P(+ + +---+ —|X) > 0
and P(———---—+|x) > 0. Using Eqn. (B.1), one can easily see that upon
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summing, all k-point correlators for odd k cancel while those for even k£ add
up. Thus, we are left with an expression of the form

1+ Z aia; <AZAJ> + Z aiajakal<AiAjAkAl>+

1<j 1<j<k<l B.9
...+Zai...ap (Ai...Ap) >0. (B-9)
—_———

(N—1)-pt. corr

We would like to cast the above in a form that can be compared directly
with Eqn. (B.4). Hence, we need to convert to an expression of the form,

(Bo, B, -+ - Bn=1)/2)-

<1az<‘>17---aZ<->(N71)/2) >0

Notice however that the correlators appearing in Eqn. (B.10) are locally
swapped relative to the ones appearing in Eqn. (B.4). In order to compare
the two expressions, we would like to convert all 2m-pt. correlators (for
2m > (N —1)/2) to (N — 2m)-pt. correlators with the entries appearing
in Eqn. (B.4). Moreover, we also need to convert 2m-pt. correlators to the
“correct” entries i.e. their locally swapped forms that appear in ¢ in Eqn.
B.4.

We show that this may be achieved by systematic use again of the Mer-
min conditions Eqn. (B.2).

(B.10)

B.2.1 Even-point correlators

Consider a 2k-pt. correlator where 2k < (N —1)/2. The correlators are of
two forms and we show how they are transformed in each case:

e (11...1)9g. The corresponding correct correlator entry is (00...0)ay.
We achieve the mapping by completing each to the corresponding Mer-
min full-correlators (11...1100...0)xy = (=1)*and (00...0100...0)x =

— T —— —{ ——
2k (N—2k) 2k (N—2k)
(-1)° = 1. From the signs, we have the relation, (11...1)p, =
(=1)*(00...0)9

e (11...10)9;, which we would like to map to (00...01)9;. Using the
same ideas we get (11...10110...0)x = (—1)* and (00...01110...0)x =
R N e e
2k (N—2k) 2k (N—2k)
(—1)! = —1. Thus, giving us the relation (11...10)9, = (—1)**(00...01)9.
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Finally, a little thought shows that

a1ag ...ak <A1A2 e A2k> == (—1)k <A1A2 e A2k>
| S ——

-~

even wrong cor correct cor

for correlators of either form discussed above on multiplying with their corre-
sponding coefficients. Since we have finally converted to the correct entries
of the correlator, we can read off §; as the corresponding phase. Thus,
B; = (—1)"/2 for even i.

B.2.2 Odd-point correlators

Consider now a 2k-pt. correlator where 2k > (N — 1)/2. The correlators
are again of two forms and may be transformed to the required (N — 2k)-pt
correlators in each case. The only difference from before is that the the
two correlators are now complementary to each other in the swapped input.
Since the details are similar, we simply state the final result 8; = (—1)(N=%/2
for odd i.

The final expression thus reads,

(-1)"z" i odd
B = | (B.11)
(=1)2 i even

These expressions exactly match the ones for o (up to the constant factor)
given in Eqn. B.7. Together with the correlators matching those in c, it
proves that f satisfies the required o’ - ¢ > 0 and hence the full result.
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