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Abstract 

This work presents two speech hiding methods based on a bio-inspired concept 

known as the ability of adaptation of speech signals. A cryptographic model uses the 

adaptation to transform a secret message to a non-sensitive target speech signal, and 

then, the scrambled speech signal is an intelligible signal. The residual intelligibility is 

extremely low and it is appropriate to transmit secure speech signals. On the other 

hand, in a steganographic model, the adapted speech signal is hidden into a host signal 

by using indirect substitution or direct substitution. In the first case, the scheme is 

known as Efficient Wavelet Masking (EWM), and in the second case, it is known as 

improved-EWM (iEWM).  While EWM demonstrated to be highly statistical transparent, 

the second one, iEWM, demonstrated to be highly robust against signal manipulations. 

Finally, with the purpose to transmit secure speech signals in real-time operation, a 

hardware-based scheme is proposed. 

 

Key words: speech security, ability of adaptation, steganography, cryptography, 

similarity, transparency, hiding capacity, robustness, residual intelligibility. 

 

 

 

 

  



 

 

 

 

 

 

Like the chameleon which adapts to the surrounding 

environment, changing its color to become "imperceptible” 

and not be detected by enemies, a good mechanism to hide a 

speech signal is to adapt it to a non-sensitive speech one. 

 

Ballesteros and Moreno, 2012 

 

 

 

 

 

 

 

 

 

  



vi 

 

 

Acknowledgments 

To my advisor, prof. Juan M. Moreno, for his academic support and orientation in 

the development of the thesis. 

To my sponsors of Colombia: Univerity Militar Nueva Granada (UMNG) and 

Colciencias, for the financial support. 

To my family, for their advice, affection, time and confidence in me. 

For all of you, 

Thank you. 

 

 

 

 

 

 

 

 

 

  



 

Index 

 

List of Figures         xii 

List of Tables          xv 

Acronyms                    xviii 

 

1. Introduction         1 

1.1. Research topic        2 

1.2. Research problem       3 

1.3. Macro Hypotheses       5 

1.4. Aim and objectives       6 

1.5. Methodology        7 

1.6. Chapter descriptions       8 

 

2. Speech security: background and survey     10 

2.1. Basic concepts of information security     11 

2.1.1. Steganography        11 

2.1.2. Cryptography        14 

2.1.3. Comparison between Steganography and Cryptography  15 

2.2. Security         17 

2.2.1. Secure Steganography       17 

2.2.2. Secure Cryptography       18 

2.3. Steganalysis and Cryptanalysis      19 



viii 

 

2.3.1. Techniques for Steganalysis      19 

2.3.2. Techniques for Cryptanalysis      21 

2.4. Methods of Speech Steganography: theory    23 

2.4.1. Least Significant Bit (LSB) substitution    23 

2.4.2. Frequency Masking (FM)      24 

2.4.3. Shift Spectrum Algorithm (SSA)     26 

2.4.4. Spread Spectrum (SS)       27 

2.4.5. Tone Insertion        28 

2.5. Survey of Speech Steganography     29 

2.6. Permutation-based speech scrambling systems: theory  32 

2.6.1. Time-Segment Permutation      32 

2.6.2. Frequency Domain Scrambling     33 

2.6.3. Time-Frequency Scrambling      34 

2.7. Survey of permutation-based Speech Scrambling   36 

2.8. Summary         39 

 

3. Ability of adaptation of speech signals     41 

3.1. Introduction        42 

3.2. Histogram-based analysis of speech signals    43 

3.3. Hypothesis formulation and statements    46 

3.4. Experimental validation      55 

3.4.1. Between different kinds of sounds     55 

3.4.2. Between different language and gender of the speaker  58 

3.5. Summary        61 

 

 



 

4. Speech scrambling and the ability of adaptation of speech signals      62 

4.1. Motivation        63 

4.2. The proposed scheme       67 

4.3. Experimental validation       71 

4.3.1. Relationship between Γnd  and ρ2     72 

4.3.2. Relationship between Γnd  and the ratio of the non-silent time 74 

4.3.3. Relationship between HD and the ability of adaptation  75 

4.4. Security Analysis        76 

4.4.1. Exhaustive key search       76 

4.4.2. Cipher-text only attack      77 

4.4.3. Statistical attach and perfect secrecy     77 

4.5. Summary         78 

 

5. Speech steganography using Efficient Wavelet Masking   79 

5.1. Introduction        80 

5.2. Efficient Wavelet Masking      82 

5.2.1. Embedding module       82 

5.2.2. Extraction module       85 

5.3. Performance of EWM       87 

5.3.1. Statistical analysis       88 

5.3.2. Hiding Capacity and other quality parameters   92 

5.4. Improved Efficient Wavelet Masking     94 

5.4.1. Embedding module       94 

5.4.2. Extraction module       97 

5.5. Relationship between robustness and transparency of the iEWM 100 



x 

 

5.5.1. Selecting SBH        100 

5.5.2. Comparison of the proposed and classical schemes   105 

5.6. Summary         110 

 

6. Speech hiding on hardware devices      112 

6.1. Motivation        113 

6.2. Real-time, Speech-in-speech hiding scheme    115 

6.2.1. Embedding module       116 

6.2.2. Extraction module       119 

6.3. Principle of Perfect Reconstruction (PR)    122 

6.4. Hardware design of the speech-in-speech hiding scheme  126 

6.4.1. Decomposition and reconstruction     126 

6.4.2. Sorting and reverse       130 

6.4.3. Delay         133 

6.5. Hardware performance       134 

6.5.1. Hardware resources       134 

6.5.2. Reconstruction error       136 

6.5.3. Validation of the entire design      138 

6.5.4. Comparing to related works: dwt-idwt blocks   140 

6.5.5. Comparing to related works: the entire design   143 

6.6. Summary         146 

 

7. Conclusions         147 

7.1. General Conclusions       148 

7.2. Future work        150 

 



 

8. Thesis results dissemination      151 

8.1. Journals: published papers      152 

8.2. Journals: under review      153 

References          154 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



xii 

 

 

List of Figures 

 

Chapter 2 

Figure 2.1. Global scheme of secret key steganography    12 

Figure 2.2. The magic triangle of data hiding     14 

Figure 2.3. Global scheme of symmetric cryptography    15 

Figure 2.4. Illustration of the LSB substitution method    23 

Figure 2.5.  Shift Spectrum Principle      27 

Figure 2.6.  Spread Spectrum Principle      27 

Figure 2.7. Example of TSP-based speech scrambling    33 

Figure 2.8. Example of FDS-based speech scrambling    33 

Figure 2.9. Example of TFS-based speech scrambling    34 

 

Chapter 3 

Figure 3.1. Speech signals in time domain and frequency domain  43 

Figure 3.2. Wavelet coefficients of the speech signals    44 

Figure 3.3. Histogram of the non-zero wavelet coefficients   44 

Figure 3.4. Speech signal, entire time-scale and zoom of the signal  48 

Figure 3.5. Target speech signal, entire time-scale and zoom of the signal 48 

Figure 3.6.  Sorted coefficients of target signal and speech signal  53 

Figure 3.7.  Wavelet coefficients of target and adapted-speech signal  53 

Figure 3.8.  Secret message, target signal and adapted-secret message  54 



Chapter 4 

Figure 4.1. Flowchart of the scrambling process    70 

Figure 4.2. Example of adaptation      68 

Figure 4.3. Flowchart of the descrambling process    69 

Figure 4.4.  Similarity and Normalized displacement    73 

Figure 4.5. Ratio and Normalized displacement     75 

Chapter 5 

Figure 5.1. EWM: flowchart of the embedding module    82 

Figure 5.2. EWM: flowchart of the extraction module    85 

Figure 5.3. Difference in the temporal steganalysis test   89 

Figure 5.4. Difference in the frequency domain steganalysis test  90 

Figure 5.5. Difference in the wavelet steganalysis test    91 

Figure 5.6. Block diagram of the improved-EWM embedding module  95 

Figure 5.7. Block diagram of the improved-EWM extraction module  97 

Figure 5.8. Lossy compression test: quality of the recovered secret message 102 

Figure 5.9. Resampling test: quality of the recovered secret signal  104 

 

Chapter 6 

Figure 6.1. Block diagram of the Embedding module    117 

Figure 6.2. Block diagram of the extraction module    119 

Figure 6.3. Decomposition and reconstruction: non-polyphase scheme 122 

Figure 6.4. General design of the dwt-idwt stages    124 

Figure 6.5.  Scheme of the dwt block      128 

Figure 6.6. Scheme of the idwt block      129 

Figure 6.7. Sorting process       131 

Figure 6.8. Reverse process with the non-overlapped scheme   132 



xiv 

 

Figure 6.9. Scheme of the delay block      133 

Figure 6.10.  Block diagram of the decomposition-reconstruction system 136 

Figure 6.11. Simulation of dwt and idwt blocks     137 

Figure 6.12. Simulation of the embedding & extraction modules  138 

Figure 6.13. Simulation of the speech-in-speech hiding scheme  140 

Figure 6.14.  Output at the transmitter and at the receiver   143 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

List of Tables 

 

Chapter 2 

Table 2.1. Steganography & encryption      16 

Table 2.2. Performance of the speech hiding schemes    31 

Table 2.3. Performance of the speech scrambling schemes   15 

 

Chapter 3 

Table 3.1. Squared Correlation Coefficient & Ratio: examples of adaptation 56 

Table 3.2. Squared Correlation Coefficient & Ratio: summary of the tests 57 

Table 3.3. Results by scenario       60 

 

Chapter 4 

Table 4.1. Speech signals in time domain and wavelet domain   70 

 

Chapter 5 

Table 5.1. Signals for HC=100%: Input signal & Difference signal  88 

Table 5.2. Performance in other selected quality parameters   93 

Table 5.3. Lossy compression test: statistical transparency   101 

Table 5.4. Resampling test: statistical transparency    103 

Table 5.5. Re-quantization test       104 

Table 5.6. Performance results without signal manipulation   106 

Table 5.7. Performance results: lossy compression attack   107 



xvi 

 

Table 5.8. Performance results: resampling attack    108 

Table 5.9. Performance results: re-quantization attack    109 

 

Chapter 6 

Table 6.1. Nomenclature in the speech-in-speech hiding scheme  116 

Table 6.2. Resource utilization and longest path delay    135 

Table 6.3.  Macro statistics of the sorting block     135 

Table 6.4. Comparison of multiplierless-based schemes   142 

Table 6.5. Quality of the stego signal and the recovered secret message 145 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



  



xviii 

 

 

Acronyms 

 

DWT Discrete Wavelet 
Transform 

 FFT Fast Fourier Transform 

     

IDWT Inverse Discrete Wavelet 
Transform 

 HAS Human Auditory System 

     
EWM Efficient Wavelet Masking  SNR Signal-to-noise ratio 
     
iEWM improved-EWM  SPCC Squared Pearson 

Correlation Coefficient 
     
LSB Least Significant Bit  TSP Time-segment permutation 
     
MSB Most Significant Bit  FDS Frequency-domain 

scrambling 
     
FM Frequency masking  TFS Time-frequency scrambling 
     
SS Spread Spectrum  HD Hamming Distance 
     
SSA Shift Spectrum Algorithm    
 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

 

 

 

 

1. Introduction 
 

The aim of this chapter is to illustrate the motivation of the research and the 

objectives to overcome the problem. It gives the reader an overview of the 

research and how it is carried out in different phases. 
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1.1. Research topic 

With the growth of internet, the quantity and kind of information which is 

transmitted increases day by day. Everybody wants to transmit data into secure 

channels; but despite the levels of security have improved the ways for stealing the 

information have improved, too. At this point, is it possible to transmit sensitive 

information through vulnerable channels -as internet- without compromising the 

secrecy of data? The answer is related to data hiding which involves cryptography, 

watermarking and steganography. 

In cryptography, secret data is transformed according to a key so that they 

resemble unknown messages. If the encrypted message is intercepted by a non-

authorized user, he/she knows that a secret message is being transmitted; however 

he/she cannot discover the secret message without the knowledge of the secret key. 

Therefore, the aim of cryptography is to save the secrecy of data. 

On the other hand, in watermarking and steganography, the secret messages are 

hidden into host signals, e.g. images, audio or video.  While watermarking is mainly 

focused on copyright protection, steganography is focused on covert communication. 

The transmitted signals, watermarked or stego, are legible signals with high similarity 

to the host signals and the purpose is to not generate suspicions about the existence of 

the secret message. It means that if the transmitted signal is intercepted by a non-

authorized user, he/she does not suspect about the secrecy of the information.   

Although the purpose of watermarking and steganography is not the same, they 

satisfy, with different order of priority, the following characteristics: transparency, 

hiding capacity (HC) and robustness.  Transparency means a high similarity between 

the transmitted and the host signal, hiding capacity is the quantity of information that 

is hidden into the host signal, and robustness is the ability to resist signal manipulation 



1.2. Research problem 

Nowadays, concealment of speech signals is a great interest area for both users 

and researchers. Since a speech signal contains more information than a single plain-

text (e.g. rhythm and gender of the speaker) and it can be viewed as a signature of their 

owner, the theme of secure speech signals is a topical issue. But, are the current 

techniques of data hiding able to transmit secure speech signals? 

In the case of encryption, most techniques have been focused on encryption of 

plain-text, however, some methods to encrypt speech signals have been proposed. The 

classical approaches are based on permutation (in time, frequency or time-frequency 

domain) in which data are relocated according to a secret key. Some works have used 

Pseudo-Noise (PN) generators, and others, chaotic sequences. However, the problem to 

encrypt speech signals with long time-scale has not been overcome. Another group of 

techniques are based on amplitude scrambling in which the amplitude of the speech 

signal is distorted so that it resembles a noise signal.  The main disadvantage of these 

schemes is that the secret message is not recovered if the amplitude of the encrypted 

signal is slightly modified (e.g. by filtering, re-sampling or re-quantization, among 

others). 

Like cryptography, in the case of steganography, most techniques have been 

proposed to hide plain-text.  One of the most known methods is the Least Significant Bit 

(LSB) substitution in which some bits of the host signal are replaced with the bits of the 

secret message. LSB substitution allows hiding speech signals into speech signals, but 

the behavior of the hiding capacity or/and the robustness is the opposite of the 

transparency, it means, if the transparency of the stego signal increases, then at least 

one between HC and robustness decreases.  Spread Spectrum (SS) and Shift Spectrum 

Algorithm (SSA) give a higher transparency than LSB substitution, but the hiding 
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capacity is lower. Therefore, the time-scale of the secret message must be lower than 

the time-scale of the host speech signal.  On the other hand, Frequency Masking (FM) is 

a method that directly takes advantage of the Human Auditory System (HAS) in which a 

weak sound is masked by a stronger sound. Although its hiding capacity is higher than 

in SS and SSA and its robustness is better than in LSB substitution, the masking process 

is not efficient enough.  

  



1.3. Macro Hypotheses 

In order to overcome the limits of the well-known methods of speech hiding, the 

following macro hypotheses have been used in the current research: 

(i) A permutation-based speech encryption scheme which uses an adaptive 

mechanism to relocate data is a good enough solution to transmit speech 

signals.   

(ii) A steganography model with an efficient application of the masking 

property gives a better trade-off among transparency, hiding capacity and 

robustness than its predecessors. 

(iii) Both schemes, encryption and steganography, can be based on the same 

principle of adaptation.  In the first case, adaptation can help to scramble 

the secret message, while in the second case adaptation can help to mask 

the secret message.  

(iv) In real-time implementation, the adaptive secret key should be obtained 

from small frames. It allows having a secure output with small latency. 

The above macro hypotheses are the basis of the research work.  In the rest of the 

document, the hypotheses are validated. 
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1.4. Aim and objectives 

Once the problem has been detected, the following step is to identify the aim and 

the objectives of the research work.  

The aim of the research work consists in proposing a novel scheme of speech-

in-speech hiding that satisfies the features of security, transparency, robustness 

and hiding capacity. 

To achieve this aim, three objectives are identified that have a strong relationship 

with the macro hypotheses, as follows:  

(i) To propose and validate a novel cryptographic scheme of speech signals 

based on the principle of adaptation of speech signals *.  

(ii) To propose and validate a novel speech-in-speech hiding scheme based on 

the principle of adaptation which has a good enough trade-off among 

transparency, hiding capacity and robustness.  

(iii) To propose and validate a novel real-time speech-in-speech hiding scheme 

with adaptive-key generation. 

* It is worth noting that the first specific objective is new in relation to the original 

proposal of the research work. 

 

 

 

 

  



1.5. Methodology 

According to the macro hypothesis, both cryptography and steganography 

schemes should be based on an adaptation criterion, and therefore the first step is to 

propose a hypothesis of adaptation of speech signals.  Therefore, the hypothesis must 

give a response to the question: is it feasible to adapt a speech signal to a target speech 

signal? And if the answer is positive, which are the requirements of adaptation? 

Once the hypothesis has been proposed, the following step is to validate it 

through exhaustive tests.  

If the results demonstrate that adaptation is feasible, then, the third step is to 

apply speech adaptation into a scrambling scheme. It includes several tests to validate 

speech adaptation as a useful key-generator.  

The fourth step is to apply adaptation into a steganography scheme.  The idea is 

to use adaptation to generate an effective masking between the secret message and the 

host signal. The tests validate the transparency, the hiding capacity and the robustness 

of the stego signal.   

Finally, the scheme of speech-in-speech hiding is modified so that it can be used 

in real-time operation.  Nevertheless, the idea of an adaptive-key is preserved. 
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1.6. Chapter descriptions 

The current document encompasses eight chapters. The following seven chapters 

are summarized as follows. 

Chapter 2 shows a background of speech security in terms of steganography and 

cryptography.  Firstly, some definitions of the above techniques are presented, 

secondly, the most important methods of each one are explained and finally, a survey of 

works in the area is shown. 

Chapter 3 defines the hypothesis of adaptation of speech signals. In this chapter 

the idea behind the ability of adaptation, the formulation of the hypothesis, the 

requirements of adaptation, and an algorithm to adapt a speech signal to a target 

speech signal are presented. At the end of the chapter the ability of adaptation is tested 

in two ways: vowels to phrases and vice versa, and phrases to phrases in different 

language or/and gender of the speaker.  

Chapter 4 validates the adaptation as an efficient key-generator into a speech 

scrambling system. Several tests were carried out in order to measure two parameters 

which are strongly related to the residual intelligibility: the number of displacements 

(Γ) and the number of elements which are not coincident in the same positions (HD).  

Chapter 5 presents two schemes of speech-in-speech hiding.  The first one is 

known as Efficient Wavelet Masking (EWM) and the second one as improved-EWM 

(iEMW).  Both of them use the ability of adaptation of speech signals to take advantage 

of the masking property of the HAS. EWM is validated in terms of the statistical 

transparency while iEWM in terms of the robustness.  

Chapter 6 presents a scheme of speech-in-speech hiding on hardware devices. 

Since the schemes presented in Chapter 4 and 5 are not useful for real-time operation, a 



new scheme is proposed. However, it takes advantage of the strengths of its 

predecessors. The hardware performance and the quality of the recovered secret 

message are measured.  

Chapter 7 presents the conclusions of the current works, in terms of the novelty, 

strengths and limits. 

Finally, in Chapter 8 the publications derived from the research work are listed. 
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2. Speech security: background and 

survey 
 

This chapter presents an overview of security techniques applied to speech 

signals.  Firstly, the most important concepts of data hiding and encryption are 

shown; secondly, a review of the classical schemes is presented. 

 

 

 

 

 

 

 

 



2.1. Basic concepts of information security 

In the area of information security, there are three clearly distinguishable 

concepts: cryptography, steganography and watermarking. Although they can be used 

to transmit information in a secure form, the purpose and the techniques are different 

among them. In the following subsections the main concepts of steganography and 

cryptography focused on speech signals are explained. 

2.1.1.  Steganography 

It encompasses pure steganography, secret key steganography and public key 

steganography. Since the current work uses secret key steganography to transmit the 

secret message, some definitions are selected in order to explain it, as follows: 

“In secret key steganography the sender chooses a cover c and 

embeds the secret message into c using a secret key k. If the key used in the 

embedding process is known to the receiver, he can reverse the process 

and extract the secret message. Anyone who does not know the secret key 

should not be able to obtain evidence of the encoded information”. The 

cover c and the stego-object can be perceptually similar”. [1] 

“Classical steganography concerns itself with ways of embedding a 

secret message (which might be a copyright mark, a covert communication, 

or a serial number) in a cover message (such as a video film, an audio 

recording, or computer code). The embedding is typically parameterized by 

a key; without knowledge of this key (or a related one) it is difficult for a 

third party to detect or remove the embedded material”. [2] 

“The embedded data is the message that one wishes to send secretly.  

It is usually hidden in an innocuous message referred to as a cover-text, or 
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cover-image or cover-audio as appropriate, producing the stego-text or 

other stego-object. A stego-key is used to control the hiding process so as to 

restrict detection and/or recovery of the embedded data to parties who 

know it (or who know some derived key value)”. [3] 

“Steganography (from the greek ‘‘steganos’’ – covered) is a term 

denoting mechanisms for hiding information within a ‘‘cover’’ such that, 

generally, only an intended recipient will (i) have knowledge of its 

existence, and (ii) will be able to recover it from within its cover”. [4] 

According to the above definitions, four agents interact in a steganography 

system: the secret message, the cover signal, the stego signal and the secret key.  The 

stego signal is the output of the system and the others are inputs to the system. The 

secret message is hidden into the cover signal according to the secret key and the result 

is the stego signal. To recover the secret message, the authorized user must know the 

stego signal and the secret key. Additionally, only the intended recipient should know 

about the existence of the secret message. It is illustrate in Figure 2.1.  

 

Figure 2.1. Global scheme of secret key steganography 

In any steganographic system there are three inter-related characteristics that 

define its quality: the transparency, the hiding capacity and the robustness of the stego 

signal.  Everyone is explained as follows. 



a) Transparency: the stego signal is transparent if it does not generate suspicious 

about the existence of the secret message.  

“The stego signal is transparent if an average human subject is 

unable to distinguish between the host signal and the stego signal”. [5] 

b) Hiding Capacity: it is related to the amount of information (i.e. quantity of bits) 

hidden into the host signal.  In the case of speech-in-speech hiding, it can be measured 

in terms of the total number of bits hidden by frame or in terms of the time-scale of the 

secret message hidden into a normalized time-scale of the host signal. For example, if a 

speech signal (with sampling frequency , fs, of 8K Hz, and quantization, q, of 16 bits) 

hides 4 bits per sample, then HC=32K [bits/s] or HC=0.25*HCmax (for HCmax = fs * q).  

On the other hand, if a speech signal of 1-second (with fs=8K Hz and q=16-bits) hides a 

secret message of 1-second (with fs=8K Hz and q=4-bits), then HC is 100% in terms of 

time-scale. Although in both cases the total number of replaced bits per frame is the 

same, in the first case it is not guaranteed that the time-scale of the secret message and 

the host signal is the same. In a similar way, if the quantization of the secret message is 

6-bits, HC remains in 100% even if the total number of replaced bits has increased.  For 

this reason, in the specific case of speech-in-speech hiding it is suggested to take into 

account both kinds of measurements. 

c) Robustness: it is related to the ability of the stego signal to preserve the secret 

message even if signal manipulations are applied, such as filtering, lossy compression, 

re-quantization and re-sampling.  

“A system is called robust if the embedded information cannot be 

altered without making drastic changes to the stego signal”. [1] 
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Since there is a compromise among the above features, they cannot be optimized 

at the same time, and therefore if one of them is optimized a reasonable deterioration is 

obtained in at least one of the others [5].  It is known as the magic triangle.  

 

Figure 2.2. The magic triangle of data hiding. Based on [5]. 

Every feature is related to one method of data hiding.  For example, while in 

digital watermarking the most important feature is the robustness, in the case of secure 

steganography is the transparency. Nevertheless, all the features should be satisfied in 

any data hiding system. 

2.1.2. Cryptography 

In a similar way as for steganography, some definitions of cryptography are 

presented, as follows: 

“An encryption scheme or cryptosystem is a tuple (P, C, K, ε, D) with 

the following properties: (i) P  is a set. It is called the plaintext space. Its 

elements are called plaintexts. (ii) C is a set. It is called the ciphertext space. 

Its elements are called ciphertexts. (iii) K is a set. It is called the key space.  

Its elements are called keys. (iv) ε ={Ek  : k  E  K} is a family of functions Ek  : 

P  → C.  Its elements are called encryption functions. (v) D =  {Dk  : k E  K} is a 



family of functions Dk  : C → P. Its elements are called decryption functions. 

(vi) For each e  ∈  K,  there is d ∈  K  such that Dd(Ee(p))  =  p  for  all p ∈ P”. 

[6] 

“Cryptography is the study of methods of sending messages in 

disguised form so that only the intended recipients can remove the disguise 

and read the message.  The message we want to send is called the plaintext 

and the disguised message is called the ciphertext.  The plaintext and 

ciphertext are written in some alphabet consisting of a certain number N of 

letters.  The term "letter"  (or "character") can refer not only to the familiar 

A-Z, but also to numerals, blanks, punctuation marks, or any other  symbols  

that  we  allow  ourselves  to  use  when  writing  the  messages.   The 

process of converting a plaintext to a ciphertext is called enciphering or 

encryption, and the reverse process is called deciphering”. [7] 

According to the above definitions, the encryption system has three agents: the 

plain-text, the cipher-text and the key. Unlike steganography, the plain-text is not 

hidden, instead of that it is “mapped” according to the key. It is illustrated in Figure 2.3. 

 

Figure 2.3. Global scheme of symmetric cryptography 

2.1.3. Comparison between steganography and cryptography 

Summarizing, while cryptography tries to conceal the plain-text of the secret 

message, the purpose of steganography is to try to conceal the existence of the secret 
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message. Both methods use a secret key in the embedding/encryption and 

extraction/decryption processes, however there are important differences between 

them which are illustrated in Table 2.1. 

Table 2.1. Steganography & encryption 

Method Inputs Output Process 

Steganography Secret message; cover 
signal; key 

Stego signal Hiding 

Cryptography Plain-text; key 
 

Cipher-text Mapping 

In the case of speech encryption, both the plain-text and the cipher-text are 

speech signals, while in the case of speech steganography, both the secret 

message, the cover (or host) signal and the stego signal are speech signals. It is 

worth noting that in the classical approach of speech encryption, a second signal 

(the cover signal) is not used in the process.  

 

 

 

 

 

 

 

 

  



2.2. Security 

This section presents the definition of security in both steganographic and 

cryptographic systems. 

2.2.1. Secure Steganography 

A steganographic system is secure if the following four requirements are 

satisfied: 

“(i) Messages are hidden using a public algorithm and a secret key; 

the secret key must identify the sender uniquely; (ii) Only a holder of the 

correct key can detect, extract, and prove the existence of the hidden 

message. Nobody else should be able to find any statistical evidence of a 

message's existence; (iii) Even if the enemy knows (or is able to select) the 

contents of one hidden message, he should have no chance of detecting 

others; (iv) It is computationally infeasible to detect hidden messages”. [1] 

In other words, a secure steganography system must have the following 

characteristics: 

a) The stego signal must be statistically transparent. It guarantees that the 

enemy does not detect the presence of the secret message. 

b) Key-generator must create a different key every time. It means that the key-

space is long enough with the purpose to increase the effort to discover them. 

c) The secret message is recovered by a unique key.  It guarantees that if the 

non-authorized user works with a wrong key, the secret message is not 

recovered. 
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2.2.2. Secure Cryptography 

A cryptographic system is secure if the following conditions are satisfied: 

“Let |C|  = |K|    and Pr(p)  >  0 for any plaintext p. Our cryptosystem 

has perfect secrecy if and only if the probability distribution on the key 

space is the uniform distribution and if for any plaintext p and any 

ciphertext c there is exactly one key k  with Ek(p) = c. Therefore, for each 

ciphertext c there is exactly one key k with Ek(p) = c”. [8] 

In relation to the strength of the system, the authors of [9] present the 

following idea: 

“The strength of crypto is based not on the secrecy of the algorithm, 

but on the secrecy of the key”. [9] 

According to the above statements, it is clear that the most important aspect of a 

crypto-system is the key.  In the first definition of security, it was presented that all keys 

must have the same probability and only one key must be used to map the plain-text to 

the cipher-text and vice versa. In other words, if there are N plain-texts and N cipher-

texts, the total number of keys is exactly equal to N. Therefore, if a wrong key is used to 

decipher the encrypted message, a wrong plain-text must be obtained. 

Summarizing, in both steganography and cryptography the key-space plays an 

important role in the security of the system. In both cases every pair of secret-message 

& stego signal or plain-text & cipher-text must have only one key and therefore if a 

wrong key is used (in the extraction or deciphering process), a wrong recovered secret 

message will be obtained.  



2.3. Steganalysis and cryptanalysis 

Steganalysis is the process of discovering the existence of secret messages while 

the purpose of cryptanalysis is to reveal the secret message.  

Some definitions are presented, as follows: 

“Steganalysis is the set of techniques that aim to distinguish between 

cover-signals and stego-signals. A passive warden simply examines the 

signal and tries to determine if it potentially contains a hidden message. If 

it appears that it does, then the signal is stopped; otherwise, it will go 

through. An active warden, on the other hand, can alter signals 

intentionally, even though there may not be any trace of a hidden message, 

in order to foil any secret communication that nevertheless can be 

occurring”. [10] 

“Cryptanalysis: 1) the steps, operations, and processes performed to 

convert encrypted text into plain text without knowledge of the key 

employed in the encryption. 2) The study of encrypted texts. 3) An analysis 

of a cryptosystem to obtain sensitive information legally or clandestinely 

when applicable key is not available. Note: Cryptanalysis is usually 

performed with the aid of computer hardware and software”. [11] 

Some of these techniques are presented in the following subsections. 

2.3.1. Techniques for Steganalysis 

The techniques of steganalysis are related to the nature of the stego-object; for 

example, techniques for stego-image detection are different from techniques for 

speech-stego detection. In the first case the characteristics of the Human Visual System 
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(HVS) are taken into account, while in the second one the Human Auditory System 

(HAS). 

Although there is a wide variety of techniques to identify image-stego signals 

there are not too many techniques able to identify speech-stego signals. However, in 

the recent years some techniques have been proposed.  Most of them are based on the 

statistical features of the speech signals -in time domain, frequency domain of time-

frequency domain- and these features are the input of the classifier. 

Steganalysis of speech signals in time domain: this kind of technique uses the 

statistics of the speech signal, in time domain, to identify the stego signals. In [12], the 

logarithm of the speech signal is applied before of calculating its statistics.   In [13], the 

amplitude co-occurrence matrix is used as input for the classification system. The 

authors found that the detection rate is better in the logarithmic version of the speech 

signals instead of the original speech signal. 

Steganalysis in frequency domain: the statistics of the spectrum of the speech 

signal are taken into account. The spectrum of the 2nd to 4th order derivate of the speech 

signal is affected when data have been embedded and this is more appreciable in 

higher frequencies [14], [15]. Then, it is expected that the statistics of stego signals are 

significantly different to the statistics of cover signals, and therefore the stego signal 

can be identified. Other authors use the cepstrum of the speech signal (instead of its 

spectrum) to identify stego signals [16]. 

Steganalysis in time-frequency domain: the statistics of the wavelet 

coefficients of the speech signal are used as features for the classifier [17].  



Other type of technique uses some metrics of the speech signal (e.g. signal to 

noise ratio and Log-likelihood ratio [18] or fraction of false neighbors [19]) as features 

to detect the stego signal. 

2.3.2. Techniques for Cryptanalysis 

Since the purpose of cryptanalysis is to reveal the plain-text without the 

knowledge of the key, the techniques are classified according to the information that 

the attacker knows. The following cases are explained for the permutation-based 

speech scramblers.  

Know plain-text attack: in this case, both a plain-text and a cipher-text are 

known by the attacker. The highest amplitude of the plain-text and the highest 

amplitude of the cipher-text are found and then the relative places among them gives 

one value of the key.  The process continues with the rest of data (samples or spectral 

coefficients) and then all the relative positions give the entire key [20]. With the key, a 

new cipher-text is deciphered and then the corresponding plain-text is obtained. 

Cipher-text only attack on a fixed permutation system:  since in a real world 

the plain-text is not known by the attacker, the process consists on revealing the key 

according to a criterion of optimization based on the envelope of the spectrum. It works 

with a smooth spectrum as the reference spectrum and then the objective is to relocate 

the spectral components of the cipher signal to minimize the error between the spectra 

[21]. In this attack it is not necessary to relocate all data in right places, only a sufficient 

number to recover intelligible speech [20]. 

Cipher-text only attack on a varying permutation system: when the system 

uses different keys, the problem to decipher the plain-text without the knowledge of 

the key requires a higher effort. However, the complexity can be reduced if only the 
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bandwidth of 300 to 500 Hz is used in the attack.  In this range the speech signal is still 

intelligible and the advantage is that the total number of coefficients to relocate is 

significantly lower than in the entire spectrum. Once the spectrum has been separated 

into blocks, the process is the same as in the previous attack [20], [21] . 

When the key does not map the plain-text to the cipher-text in a relation of one to 

one, for example in the case of codeword permutations, the plain-text can be 

deciphered if the number of blocks is small enough.  The relocation process is carried 

out by an optimization criterion (e.g. cepstral distance) and the use of neural networks 

and genetic algorithms [22].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



2.4. Methods of Speech Steganography: Theory 

This section explains some of the most important methods of steganography on 

speech signals. It encompasses LSB substitution, Frequency Masking, Shift Spectrum 

Algorithm, Spread Spectrum and Tone Insertion.  

2.4.1. Least Significant Bit (LSB) substitution 

One of the most popular schemes in steganography is LSB substitution because it 

is a very simple and general method to hide data. It has been used in images, video and 

audio. The objective is to replace some of the LSBs of the hosts signal with the bits of 

the secret message.  

 

Figure 2.4. Illustration of the LSB substitution method. 

Figure 2.4 shows an example of the LSB substitution method in which the host 

signal is 8-bits, secret message is 4-bits, and the 4-LSBs of the host signal are replaced 

with the secret message. Secret message can be e.g. the ASCII representation of 

characters, the binary representation of a speech signal or the representation of a 

binary image. 

This method can be carried out in time domain (samples), frequency domain (e.g. 

spectral coefficients, cepstral coefficients) or time-frequency domain (e.g. wavelet 

coefficients). 
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The trade-off among transparency, hiding capacity and robustness is easily 

analyzed in this technique. If the total number of replaced bits by sample (or 

coefficient) increases, HC increases and transparency decreases.  But if only 1-LSB is 

replaced, transparency increases and HC decreases. The robustness depends on the 

position of the replaced bit (or bits). For example if the host sample is 10110011b and 

the fifth-LSB-place is modified with ‘0’, the stego sample is 10100011b; but if the first-

LSB-place is modified (with ‘0’) the stego sample is 10110010b. Although in both cases 

HC=1bit/sample, the robustness of the first case is better than in the second case, or in 

other words, the stego signal of the first case can tolerate signal manipulations (that 

slightly modify the value of the sample) while the second cannot. On the other hand, the 

transparency of the second case is better than in the first case. Since in steganography 

the most important feature is the transparency, the total number of replaced bits varies 

according to the desirable transparency. Some works have revealed that the 

transparency in wavelet domain is higher than in time domain for the same number of 

replaced LSBs [23], [24].  

In the case of speech-in-speech hiding the host signal and secret message are 

speech signals. It is a common practice to attenuate the secret message in order to 

decrease its number of bits, and therefore, e.g. a secret message of 8-bits is hidden into 

a host signal of 16-bits. In this case HC is 100% in terms of the time scale (since both 

signals have the same time-scale) or HC is 8-bits/sample (or 50% of the total number of 

bits). 

2.4.2. Frequency Masking (FM) 

This method takes advantage of the masking property of the HAS in which one 

sound may be masked by another if one produces high levels while the other remains 



faint [25]. A high enough threshold between the level of the high sound and the level of 

the faint sound produces a masking phenomenon and the faint sound would not be 

perceptible.  

The dynamic range of the secret message must be four times lower than the 

dynamic range of the host signal (attenuation is applied if needed). Then, both signals 

are transformed to frequency domain (e.g. Fast Fourier Transform –FFT-). Once the 

secret’s coefficients and the host’s coefficients have been obtained, a search algorithm 

is used, as follows: 

i) The first secret’s coefficient is compared to every one of the host’s 

coefficients and it stops when the masking criteria is satisfied, i.e., when the 

amplitude of the host’s coefficient is at least 4-times higher than the 

amplitude of the secret’s coefficient. 

ii) The secret’s coefficient is hidden into the LSBs of the “selected” host’s 

coefficient.  The output is the stego’s coefficient.  

iii) Steps (i) and (ii) are repeated until the last secret’s coefficient has been 

compared to at least one host’s coefficient.  

Finally, the stego’s coefficients are transformed to time domain (e.g. IFFT) and 

the stego signal is obtained. 

The search procedure is illustrated with an example. Suppose that the host’s 

coefficients are = [5 12 8 16 10 12 17 12] and the secret’s coefficients are = [2 1 2 3 4 3 

3 4], then the first secret’s coefficient (2) is compared to the first host’s coefficient (5) 

and the searching process continues because the masking criterion is not satisfied 

(since 5<2*4). Then, 2 is compared to 12 (the second host’s coefficient) and this is 

selected because the masking criterion is satisfied (since 12≥2*4). The process is 

repeated until the eighth secret’s coefficient (4) is compared to at least one of the host’s 
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coefficients. In some cases, for the last places of the secret’s coefficients it is not 

possible to find a host’s coefficient that satisfies the masking criterion and then this 

technique does not guarantee that all of the secret’s coefficients will be hidden (unlike 

the LSB technique). Therefore, HC in FM is equal or lower than in the LSB scheme. 

2.4.3. Shift Spectrum Algorithm (SSA) 

This technique is used in the frequency domain (or time-frequency domain) of 

the host signal and the secret message.  The spectrum of the secret message is shifted 

to the highest subband of the spectrum of the host signal [26]. The perceptual 

transparency is based on the fact that the HAS is less sensible to the highest 

frequencies; therefore, the secret message can be hidden without suspicion of its 

existence. For example, if the secret message has a bandwidth of 4K Hz and the host 

signal has a bandwidth of 20K Hz, the range of 16-20K Hz of the host signal can be 

replaced with the secret message. It is possible to take two options:  the spectrums of 

the signals are overlapped or the LSBs of the host’s spectrum are replaced with the bits 

of the secret’s spectrum. 

Although the HC of SSA is lower than in the cases of LSB and FM, the 

transparency is better because only one portion of the host’s signal has been modified 

and it represents the less sensible range of the HAS. 

Figure 2.5 illustrates the SSA method in which the spectrum of the secret 

message is lower than the spectrum of the host signal and therefore the high 

frequencies of the host signal are replaced with the spectrum of the secret message. 

 

 

 

 



 

Figure 2.5.  Shift Spectrum Principle. [56]. 

2.4.4. Spread Spectrum (SS) 

In the classical approach, the secret message is spread out by a constant called 

the chip rate and then modulated with a pseudorandom signal [27]. The disadvantage 

is that the computational cost for implementing the scheme is high. A solution consists 

on spreading the secret’s spectrum along host’s spectrum [26].  Because the bandwidth 

of the host signal is higher, the number of spectral coefficients is higher too; therefore, 

the secret’s coefficients are relocated in interspersed positions of the host’s spectrum.  

 

Figure 2.6.  Spread Spectrum Principle. [56]. 
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Figure 2.5 illustrates the principle proposed by the authors of [26]. In the current 

example, every four coefficients of the host’s spectrum are replaced with one coefficient 

of the secret’s spectrum. 

Like SSA, the HC of SS is lower than the obtained from LSB or FM. Since the low 

frequencies of the host signal are modified, it is expected that the transparency is lower 

than in SSA. 

2.4.5. Tone Insertion 

In takes advantage in an indirect form of the masking property of the HAS. Two 

tones at frequencies f0 and f1 are used for embedding one bit. The value of the bit (‘0’ or 

‘1’) depends of the ratio of the power between the tones [28], [29].  For example, if the 

power of f1 is 0.1% of the power of f0, then a bit with value of ‘0’ will be embedded. 

Similarly, if the power of f0 is 0.1% of the power of f1, then a bit with value of ‘1’ will be 

embedded. This process is repeated in small non-overlapped frames. The advantage of 

this method is that the stego signal is robust against signal manipulations, but the 

disadvantage is the very low hiding capacity. 

 

 

 

 

 

 

 

  



2.5. Survey of Speech Steganography 

This section presents the state of the art of speech steganography and the 

comparison among the schemes found in literature. 

Tone Insertion: the scheme proposed by Gopalan uses two frequencies to insert 

one bit according to the ratio between the powers of the frequencies. It is carried out in 

the frequency domain [30] or in the cepstral domain [31], [32]. In both cases, the HC is 

lower than 256 bits into a signal of 256.000 bits. 

LSB substitution:  Cvejic and Sepanem used the wavelet domain to embed bits. 

They found that the highest number of replaced bits without significant degradation of 

the quality of the signal is 8-LSBs. In this case, the HC is up to 352.800 bits into a signal 

of 705.600 bits [33]. The transparency and robustness depend on the number of 

replaced bits, the higher the number the lower the transparency but the higher the 

robustness. However, since 8-bits only represent the ∼0.4% of the amplitude of the 

signal, the stego signal is not robust enough against signal manipulations. Shirali and 

Manzuri proposed a scheme in which the number of LSBs depends on the amplitude of 

the wavelet coefficient. The higher the amplitude, the higher is the number of replaced 

LSBs. With the purpose of increasing the transparency of the signal, the silent regions 

are not used to embed data. In average, the highest HC is 3 bits per coefficient [34]. 

Frequency masking (FM): in the proposal of Djebbar et al, the speech signal is 

divided in frames of 4ms and its spectrum is calculated [35]. The secret message is 

hidden in the first 28 coefficients (of the 64 by frame). Since FM depends on the 

masking criterion, the HC is not fixed and depends on the host signal.  The HC is up to 

14300 bits into a signal of 256000 bits. With the purpose of increasing the robustness 

of the stego signal, they modified the scheme and the bits are not replaced from the 1-
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LSB, the first position is selected.  If the first replaced bit begins in the 4-LSB position, 

the hiding capacity significantly decreases (HC∼3kbps) [36]. 

Shift Spectrum Algorithm (SSA): Djebbar et al proposed a scheme in which the 

secret message is embedded in the 8-LSBs of the coefficients of the host signal in the 

range of 7K Hz to 8K Hz [37].  Since the HAS is low sensible in the selected range, the 

perceptual transparency of the stego signal is high, nevertheless, the secret message is 

lost if the stego signals is filtered with a high-pass filter. The HC is up to 8000 bits into a 

signal of 256000 bits. Rabie and Guerchi proposed a speech-in-speech hiding scheme 

based on SSA and Code-Excited Linear Prediction (CELP) [38]. The 32-CELP parameters 

of the secret message are hidden into the high frequency of the host signal (the last 32 

coefficients of the 80 coefficients by frame). Like the scheme of [37], the weakness is 

that the information related to the secret message is lost if the stego signal is filtered 

with a high pass filter. Finally, the scheme proposed by Dimitry et al shifts the spectrum 

of the voice signal to the range of 18-22 K Hz of the host signal. The stego signal has the 

spectrum of the host signal up to 18 KHz and the spectrum of the secret message from 

18 KHz to 22 KHz. The hiding capacity is 4 of every 22 spectral coefficients [39]. 

Spread Spectrum (SS): in [39] is proposed a scheme of SS in which an attenuated 

speech signal is hidden into an audio signal. The spectral coefficients of the attenuated 

secret message are interlaced with the spectral coefficients of the host signal every n 

places. According to their results, the stego signal resists MP3 compression with a bit 

rate of 320 kbps but does not with bit rate of 256 kbps. If 8-LSBs are replaced every 

four spectral coefficients, the ratio of the capacity is 8 of every 64 bits. 

The comparison among transparency, hiding capacity and robustness of the 

above techniques is shown in Table 2.2.  

 



Table 2.2. Performance of the speech hiding schemes. 

Method Scheme Transparency Hiding 

Capacity 

Robustness 

Tone Insertion [30-32] High HC < 0.1% High 
LSB  [33] Middle to high HC ≤ 50% Middle to low 

[34] High HC < 20% Middle 
FM [35] High HC < 6% Middle to high 

[36] High HC < 1.5% High 
SSA [37] High HC < 4% Low 

[38] High HC ≤ 40% Low 
[39] High HC ≤ 20% Low 

SS [39] High HC ≤ 12.5% Middle to low 
 

According to the results shown in Table 2.2, it is worth noting that when the HC 

increases, the transparency or/and the robustness decreases. The best scheme in terms 

of HC is the worst scheme in terms of transparency and the best scheme in terms of 

robustness is the worst scheme in terms of HC. Until now, none of the known schemes 

has a good enough trade-off among transparency, hiding capacity and robustness. Since 

the speech signal has a higher number of bits than a plain-text, HC plays an important 

role in the design of a speech-in-speech hiding scheme.  
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2.6. Permutation-based speech scrambling systems: theory 

This section explains some of the most important methods of speech scrambling. 

Although the methods are divided in permutation-based and amplitude scrambling, 

only the permutation-based schemes are explained because the proposed design 

(presented in Chapter 4) is a special case of permutation-based speech scrambling. It 

encompasses: Time-Segment Permutation (TSP), Frequency-Domain Scrambling (FDS) 

and Time-Frequency Scrambling (TFS).  Everyone is briefly explained in the following 

subsections. 

2.6.1. Time-Segment Permutation 

TSP is one of the oldest and simplest techniques of speech scrambling. The 

speech signal is divided in small blocks (typically 16 to 32 ms) and then the samples are 

relocated according to a key. Without loss of generality, there are M blocks each one 

with L samples. The samples are permuted into the block and each block can have (or 

not) a different key. 

The weaknesses of this method are listed as follows: 

a) The residual intelligibility is not low enough: it depends on the size of the 

key.  

b) The key space is not long enough:  e.g. a block with L samples has up to L! 

combinations, but only a small percentage (∼0.1% [40]) is usable. For 

example, a key related to single delay or inversion is not usable.  

c) The bandwidth of the scrambled speech signal can be higher than of the 

original speech signal. 

d) A trained listener can discover the original speech signal. 

Figure 2.7 illustrates an example of TSP scheme in which the place within the 

block is permuted. 



 

Figure 2.7. Example of TSP-based speech scrambling 

In the above example every block has twelve samples which are relocated 

according to a key and then the number of possible combinations by block is 12! 

2.6.2. Frequency-Domain Scrambling 

Unlike the TSP scheme, the permutation process is carried out in the frequency 

domain. The speech signal is separated in subbands and then the sub-bands are 

permuted (it is known as band-splitting). The higher the number of subbands, the 

higher is the number of possible combinations. If there are P subbands, the total 

number of possible combinations is P! Figure 2.8 illustrates an example of the scheme 

of FDS. 

 

Figure 2.8. Example of FDS-based speech scrambling 

The advantages of FSD are: 

a) The bandwidth of the speech signal is preserved. 
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b) If band-splitting is combined with inversion, the total number of possible 

combinations increases up to P!2P. It is worth noting that unlike TSP, in FDS 

the inversion is a usable permutation and then the percentage of effective 

keys can increase (e.g. up to 5% [40]). 

Despite the residual intelligibility is better than in TSP it is not low enough. 

2.6.3. Time-Frequency Scrambling 

This technique combines TSP and FDS.  The speech signal is split in P subbands 

and every subband is divided in M blocks of length L. The permutation process is made 

inter blocks and inter coefficients. The total number of possible combinations by 

subband is L!*M! and therefore the higher the values of M and L, the lower is the 

residual intelligibility. However, since M and L are small numbers, the key-space is not 

long enough. Despite of this, TFS overcomes the problem of residual intelligibility of its 

predecessors, and like FDS, it preserves the bandwidth of the speech signal [41]. 

 

Figure 2.9. Example of TFS-based speech scrambling 



Figure 2.9 illustrates an example of TFS in wavelet domain. The permutation 

process is carried out inter blocks of the same sub-band according to a key. It is worth 

noting that the amplitude of the coefficients is not “destroyed”, but in fact the plaint-

text of the speech signal is.  In the current example, the total number of subbands is 2 

and the number of coefficients per subband is 12.  Therefore, the total number of 

possible combinations is 2!*12! 
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2.7. Survey of permutation-based speech scrambling 

The purpose of this section is to give a survey about the schemes of speech 

scrambling.  At the end, they are compared in order to illustrate the strengths and 

weaknesses.   

Time Segment Permutation, TSP: one of the oldest works of speech scrambling 

is the on developed by Philips, Lee and Thomas [42]. They analyzed the relationship 

between the highest level of displacement of the samples and the residual intelligibility 

of the signal.  They found that if the samples are placed in reverse order, the residual 

intelligibility is high; it means that the secret message can be revealed. However, if the 

samples are placed in positions close to the original ones, the residual intelligibility is 

high, too, and therefore the best case is an intermediate value. If the size of the frame is 

15 (N=15), the proposed level of normalized displacement is 0.5. 

Frequency Domain Scrambling, FDS: Matsunaga et al proposed a scheme in 

which the speech signal is compressed and then it is transformed to frequency domain 

by using the FFT [43]. Once the spectral coefficients have been obtained, they are 

permuted and a dummy spectrum is added; finally the IFFT is calculated. This process 

is carried out in frames of 32 ms and the number of coefficients to be permutated is 83. 

The descrambled speech signal is similar to the original speech one. Woo and Leung 

used the 256 spectral coefficients to scramble a speech signal with all the coefficients 

placed in different position than their original ones (derangement) [44]. They found 

that the residual intelligibility is very low.  

TFS and FDS: the scheme proposed by Mosa, Messiha and Zahran uses chaotic 

maps for permuting the speech signal in time domain [45]. The chaotic keys have a size 

up to several thousands and therefore the effort to discover them is very high.  

Together with that, once the samples have been permutated, the output is divided in 



small blocks and their spectrums are relocated.  It guarantees that the residual 

intelligibility is very low. According to their results, the secret message is recovered 

even if additive noise is mixed to the scrambled speech signal.  

Time-Frequency Scrambling, TFS: the scheme proposed by Fulong, Jun and 

Yumin uses the multi-level Wavelet Transform to scramble the speech signal [46].  The 

speech signal is transformed to time-frequency domain by the DWT and then the 

wavelet subbands are permuted. The reconstruction of the permuted sub-bands is the 

scrambled speech signal. In a similar way, Sadkhan, Abdulmuhsen, Al-Tahan proposed 

a scheme in which the speech signal is scrambled in wavelet domain [47].  In this case, 

the speech signal is divided in blocks of 16ms and its wavelet coefficients are permuted 

(128 coefficients by frame). Then, the blocks of the permuted wavelet coefficients are 

concatenated and the inverse wavelet transform is applied. According to their results, 

the recovered speech signal is legible even if the scrambled speech signal has been 

manipulated with additive noise. 

The above proposals are compared in terms of residual intelligibility, quality of 

the descrambled speech signal (recovered secret message) and robustness against 

signal manipulations. The comparison is shown in Table 2.3. 

Table 2.3. Performance of the speech scrambling schemes. 

Method Scheme Security  

(key size) 

Residual 

intelligibility  

Resistance 

against attacks 

TSP [42] Key-space = 15! Middle Low 

FDS [43] Key-space = 83! Middle Low 

 [44] Key-space = 256! Low Middle 

TSP + FDS [45] Key-space1 ≥ 1000! 
Key-space2 is NP* 

Very low High 

TFS [47] Key-space = 128! Low Middle 

*NP = not provided 
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According to the results, the best scenario is the proposed by the authors of [45] 

because they used a long key.  It is worth noting that the chaotic key generator can be a 

better solution than the classical pseudo-noise generator of the rest of the approaches. 

However, it is expected that the residual intelligibility of TFS is better than the obtained 

by TSP+FDS if the length of the key space is high enough. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



2.8. Summary 

According to the state of the art of speech steganography and speech scrambling 

schemes, the following ideas summarize the chapter: 

a) The main difference between a stego signal and a scrambled signal is 

that the first one seems to contain non-sensitive information, and the 

second one looks like a manipulated signal. Therefore, an attacker 

employs his effort in trying to reveal the secret message of the 

scrambled signal but does not in the stego signal. By using traditional 

approaches, if the transparency of the stego signal is high enough, it can 

be a more secure way to transmit speech signals. 

b) The most important feature in a steganography system is the 

transparency followed by the hiding capacity and the robustness. In the 

specific case of speech-in-speech hiding, the HC is significantly higher 

than in the case of text-in-speech hiding. Although the robustness is not 

the most important feature in the design, it is desirable that the stego 

signal can resist signal manipulations like lossy compression, filtering, 

re-quantization and additive noise.  

c) In the proposals found in literature for speech hiding, most of them 

satisfy one or two of the features, but none of them has a good enough 

trade-off among transparency, hiding capacity and robustness. 

d) In the case of speech scrambling, the most important aspects to take into 

account are the residual intelligibility of the speech signal and the size of 

the key. The lower the residual intelligibility and the higher the size of 

the key, the better is the scrambling scheme. 
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e) The schemes based on TFS have a lower residual intelligibility than that 

obtained in TSP or FDS because both the places and frequency of the 

sounds are modified. 

f) Although most of the classical approaches use a PN sequence to relocate 

the samples or coefficients, it is not an efficient key generator because 

the length of the key is not long enough. Alternative solutions can be 

based on chaotic sequences.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

3. Ability of adaptation of Speech 

Signals 
 

The hypothesis of adaptation of speech signals is presented in this chapter. This 

mechanism is the core of the two proposals: a permutation-based speech 

scrambling scheme and a speech-in-speech hiding scheme. 
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3.1. Introduction 

In the subject of digital speech processing, many techniques have been proposed 

with the aim to enhance the quality of the signal (e.g. [48]-[50]), to detect and stand out 

characteristics (e.g. [51]-[53]) and to classify sounds (e.g. [54]-[55]), among others. 

These techniques can be used in time domain, frequency domain or time-frequency 

domain. A speech signal can be manipulated so that it sounds with different tone and 

for example, a voice signal from a female-adult speaker can be transformed so that it 

sounds like a voice signal from a female-child speaker. But until now, it has never been 

proposed a technique able to modify the plain-text (and gender, rhythm and language) 

of the speech signal so that it resembles a target speech signal. This concept is the core 

of the current thesis and it is known as the ability of adaptation of speech signals. 

This chapter is divided in three parts.  In the first one, the idea behind the ability 

of adaptation of speech signals is explained.  The relationship between different speech 

signals is analyzed in terms of their histogram and kurtosis. In the second one, the 

hypothesis of adaptation of speech signals is introduced and the conditions under 

which the hypothesis is true. A deterministic method to adapt an original speech signal 

to a target speech signal is also explained in the second part. Finally, the hypothesis of 

adaptation is validated in two ways: firstly in terms of the type of sounds (vowels and 

words) and secondly in terms of the language and the gender of the speaker. 

 

 

 

 

 



3.2. Histogram-based analysis of speech signals 

Speech signals can be considered as a signature of its owner because both the 

rhythm and tone are special characteristics that vary among people. For example, if the 

same plain-text is pronounced by two people, the time representation of their voices 

can be similar but their frequency representations are not. It is true even if the gender 

(and age) of the speaker is the same. Additionally, if the plain-text is modified, both the 

time and frequency representations of the speech signals will be completely different.   

It can be easily illustrated with an example. Suppose there are two speech signals 

with different plaint-text, for example speech1 with the plain-text “good morning 

everybody” and speech2 with the plain-text “see you the next week”.  Both signals are 

from a female speaker, with fs=8KHz and time-scale=2s. Figure 3.1 shows the signals. 

a) 

 

b) 

 

c) 

 

d) 

 

 

Figure 3.1. Time domain: a) speech1; b) speech2.  Frequency domain: c) speech1; 

d) speech2 

As it is expected, both time and frequency representations are different in each 

case. If the signals are represented in time-frequency domain by using the Discrete 
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Wavelet Transform, their wavelet coefficients are different, too.  Figure 3.2 shows the 

1D-arrays of the wavelet coefficients of the speech signals. 

a) 

 

b) 

 

 

Figure 3.2. Wavelet coefficients: a) speech1; b) speeech2 

Now, two non-zero arrays are made from the non-zero wavelet coefficients of 

speech1 and speech2.  Since there are a lot coefficients with magnitude close to zero, a 

threshold is set, th, which classifies the zero or the non-zero wavelet coefficients. If the 

magnitude of the wavelet coefficient is lower than th, then the thresholded coefficient is 

set to zero, but if this is higher than (or equal to) th, the amplitude of the coefficient is 

preserved. Once the two non-zero arrays have been obtained, their histograms are 

calculated. Figure 3.3 shows the histograms of the non-zero wavelet coefficients of the 

two speech signals.  

a) 

 

 

b) 

 

 

Figure 3.3. Histogram of the non-zero wavelet coefficients: a) from speech1 signal; 

b) from speech2 signal. 
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According to Figure 3.3, it is noticed that the histograms have similar shape. Since 

the kurtosis reflects the shape of a distribution, it is expected that the kurtosis of the 

above histogram is similar. The kurtosis is obtained as follows: 

( )

( ) 4

1

4

1 σ

µ

−

−
=
∑

=

N

w

k

N

i

i

      (3.1) 

Where µ is the mean, σ2 is the variance,  k is the kurtosis, N is the total number of 

elements and w is the 1D-array of the non-zero wavelet coefficients of the speech 

signal. 

In the current example, the kurtosis from the signals is 5.5 for speech1 and 4.6 for 

speech2.  Since a similar shape of the histograms is related to a similar density of data, 

similar value of kurtosis means that the density distribution of the wavelet coefficients 

is similar, too. In other words, although speech1 and speech2 sound different, the 

density distributions of their non-zero wavelet coefficients are similar. Therefore if the 

wavelet coefficients of speech2 are relocated so that they resemble the wavelet 

coefficients of speech1, the adapted speech signal may sound similar to speech1. This is 

the idea behind the ability of adaptation of speech signals.  

In this context, speech2 may sound similar to speech1 (and vice versa) because 

their kurtosis (of the non-zero wavelet coefficients) is similar. Then, the adaptation is 

feasible if and only if the kurtosis and the number of the non-zero wavelet coefficients 

are similar between the speech signals. The hypothesis of adaptation is presented in 

the next section. 
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3.3. Hypothesis formulation and statements 

This section proposes and explains the concept of adaptation based on a 

relocation process in wavelet domain.  The hypothesis of adaptation is formulated as 

follows: 

any speech signal may seem similar to a target speech signal if its wavelet 

coefficients are sorted [56],[57] 

In the above hypothesis: 

(i) The term “any” speech signal corresponds to legible voice signals. It 

discards silence signals and highly noisy speech signals (SNRmin should be 

20 dB). 

(ii) The term “may” implies that the adaptation is feasible. 

(iii) The term “similar” means that the Squared Pearson Correlation Coefficient 

(SPCC) of the target speech signal and the adapted secret signal is close to 

1. In other words, the sound of the adapted speech signal is perceptually 

identical to the sound of the target speech signal. 

The Squared Pearson Correlation Coefficient, ρ2, is obtained as follows: 
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Where S, Ŝ, Smean and Ŝmean are the original, extracted secret signal, 

mean of original and mean of extracted secret signal, respectively. 

(iv) The term “sort” is related to a relocation process. 

The hypothesis is true if the speech signal and the target speech signal satisfy the 

following conditions: 

a) The same sampling frequency. 



b) The same time-frame. 

c) The same wavelet base in the decomposition and reconstruction stages. 

d) The ratio of the (number of the) non-zero wavelet coefficient between the 

signals is close to 1.  

It is measured according to: 

)(_

)(_

2

1

wzeronon

wzeronon
ratio =      (3.3) 

Where non_zero(w) is the total number of the non_zero wavelet 

coefficients of the speech signal, { }21, ww  are the wavelet coefficients of 

speech1 and speech2, respectively. 

A frame is considered as a segment of the speech signal with a quasi-constant 

dynamic range and SNR. For example, if a speech signal contains whisper sounds and 

screaming voice signals, the signal must be separated in non-overlapped segments of 

whisper sounds and screaming sounds.  The same process is applied if the SNR 

abruptly changes into the signal. On the other hand, a coefficient is classified as non-

zero if its magnitude is higher than a threshold (e.g. 1% of the highest amplitude). 

The hypothesis is theoretically supported by the following development. Suppose 

there are two speech signals: one (discrete) speech signal, s[n], and one (discrete) 

target speech signal, tg[n]. Figure3.4 illustrates the speech signal and Figure 3.5 shows 

the target speech signal. 

Every signal has m samples located in an integer place of the discrete time and 

therefore they can be modeled as follows: 
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a) 

 
b) 

 
 

Figure 3.4. Speech signal, s[n]: a) entire time-scale; b) zoom of the speech signal 

a) 

 
b) 

 
 

Figure 3.5. Target speech signal, tg[n]: a) entire time-scale; b) zoom of the speech 

signal 
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with 

[ ] [ ]ntgns ≠         (3.6) 

Where n is the discrete time, [ ]0n-nδ  is the delayed impulse at n=n0 and 

{ }
00

, nn ba
 are the amplitudes of the impulses of the speech signal and target speech 

signal, respectively. These signals are perceptually different if ai and bi are not 

correlated. 

The signals are represented on time-frequency domain by the DWT, according to 

e.q. (3.5) and (3.6): 

[ ] ( )kSns DWT →    Ζ∈k    (3.7) 

[ ] ( )kTgtg DWT →n        (3.8) 

Where ( ) ( ){ }kTgkS ,  are the wavelet representations of the speech signal and 

the target speech signal, respectively, and k is the time-frequency axis. The wavelet 

coefficients includes coarse and detail coefficients, as follows: 

 ( ) ( ) ( ){ }kdkckS ss≡        (3.9) 

( ) ( ) ( ){ }kdkckTg tgtg≡       (3.10) 

In the above equations ( ) ( ){ }kdkc ss ,  and ( ) ( ){ }kdkc tgtg ,  are coarse and detail 

coefficients of the speech signal and the target speech signal, respectively.  
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In a similar way to equations (3.4) and (3.5), the wavelet coefficients can be 

modeled as the sum of delayed impulses in the time-frequency domain, according to: 
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Where { }
00

21 ,
kk

gg are coarse-weights and detail-weights of the wavelet 

coefficients of the speech signal, and { }
00

21 ,
kk

pp  are coarse-weights and detail-

weights of the wavelet coefficients of the target speech signal. The value of M 

corresponds to the total number of detail (or coarse) coefficients of every signal and it 

is related to the number of samples m and the order of the filters of the DWT.  

If the speech signal and the target speech signal are perceptually different, their 

coarse-weights and detail-weights will be different, too. In other words: 

[ ] [ ] ( ) ( ) { }
0000

2211 kkkk
ggpgkTgkSntgnsif ≠∨≠∴≠⇒≠ (3.15) 

Then, only if a sorting (relocation) process is applied, the speech signal would be 

perceptually identical to the target speech signal. If the coarse-weights and detail-

weights of the speech signal are relocated so that they resemble the coarse-weights and 

detail-weights of the target speech signal, the adapted speech signal would sound like 

the target speech signal. Then, the hypothesis is true if the wavelet representation of 

the adapted speech signal, ( )kSa , is highly correlated to the wavelet representation of 

the target speech signal, ( )kTg , according to: 



if   

( ) ( )( ) [ ] [ ]ntgnskTgkS aa ≈⇒≈1,2ρ     (3.16) 

with 

( ) [ ]nskS a

IDWT

a  →       (3.17) 

In the above equations, ρ2 is the index of similarity, IDWT is the Inverse Discrete 

Wavelet Transform and [ ]nsa  is the adapted speech signal, in time domain. At this 

point, the purpose is to find a wavelet representation of the adapted speech signal 

which satisfies eq. (3.16). There are at least two ways to find the adapted speech signal: 

by a deterministic and by a heuristic search. In this thesis a deterministic search is 

proposed. 

To find an adapted speech signals that it resembles the target speech signal, the 

following steps should be carried out: 

(i) The speech signal and the target speech signal are decomposed using the 

DWT with the same wavelet base, according to eq. (3.7) and eq. (3.8). 

(ii) The coarse-weights and detail-weights of the speech signal are grouped in 

a 1D-array, as follows:  

[ ]21 ggG =        (3.18) 

(iii) The coarse-weights and detail-weights of the target speech signal are 

grouped in a 1D-array, as follows:  

[ ]21 ppP =       (3.19) 

(iv) The 1D arrays G and P are sorted in descending order. The initial positions 

of the weights are kept in the arrays ug and up, respectively. 

(v) Every weight of G is relocated, according to: 

 ( ) ( )
gpa uGuG =

      (3.20)
 

Where Ga is the 1D-array that looks similar to P. It means: 
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( ) 1,2 ≈aGPρ
   

    (3.21)
 

(vi) With the 1D-array Ga the wavelet coefficients of the adapted speech signals 

are found, as follows:  
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The first-half of the normalized array Ga corresponds to the coarse-weights 

and the second-half corresponds to the detail-weights; 
{ }

aa
dc ss ,

 contains 

the coarse and detail coefficients of the adapted speech signal. 

(vii) The Inverse Wavelet Transform, of { }
aa

dc ss ,  is calculated, according to: 

{ } [ ]nsdc a

IDWT

aa
 →ss ,      (3.24) 

Where sa[n] is the adapted speech signal, in time domain.  

(viii) Finally, the dynamic range of the adapted speech signal is set to the same 

dynamic range of the target speech signals, as follows:  

[ ] [ ]
[ ]
[ ] 













=

nS

nt
nSnS

a

g

aa
max

max
*

    (3.25)
 

The output signal has the same plaint-text, rhythm and gender of the 

speaker of the target speech signal if and only if the conditions described at 

the beginning of the section were previously satisfied. 

The following example illustrates the above steps.  The speech signal has the 

plain-text “good morning everybody” and the target speech signal has the plain-text 

“see you the next week”.  Both signals have been sampled with fs=8KHz and are from a 



female speaker.  The above signals were used in the first part of the current section as 

speech1 and speech2 (Figure 3.1a and 3.1b).  

Their wavelet coefficients are calculated by using the 5/3 base and they are 

grouped in 1D arrays (Figure 3.2). Then, these arrays are sorted in descending order 

(Figure 3.6) and their original positions are kept in two 1D arrays, one array per signal.  

a) 

 

b) 

 

Figure 3.6.  Sorted coefficients: a) target signal, b) speech signal 

According to Figure 3.6, the sorted target’s coefficients and the sorted speech’s 

coefficients have a similar behavior. The difference lies on the positive amplitude which 

is higher in the second signal. If the speech’s coefficients are relocated according to the 

information contained into the arrays of their original positions, the adapted-speech’s 

coefficients resemble the target’s coefficients (Figure 3.7). 

a) 

 

b) 

 

Figure 3.7.  Wavelet coefficients: a) target’s coefficients, b) adapted-speech’s 

coefficients 
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It is worth noting that the adapted-speech’s coefficients look similar to the 

target’s coefficients. Finally, the IDWT is applied to the adapted-speech’s coefficients 

and then the adapted speech signal is obtained (Figure 3.8). 

a) 

 

b) 

 

c) 

 

Figure 3.8.  Time signals: a) secret message, b) target speech signal, c) adapted-

secret message 

The target speech signal and the adapted-speech signal have the sample plain-

text with the same rhythm as gender of the speaker.   

In the current example, the ratio of the non-zero coefficients is 0.846, and the 

level of similarity is 0.995. Additionally, as the ratio is close to 1, the perceptual 

similarity between the target speech signal and the adapted-speech signal is high. 
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3.4. Experimental validation 

With the purpose to validate the hypothesis of adaptation, several tests have 

been performed. In the first part, the objective is to verify if adaptation is feasible in 

different cases as vowel to vowel, words to words, words to vowel and vowel to words.  

In the second part, the purpose is to verify if adaption depends on the language and 

gender of the speaker.  

3.4.1. Different kinds of sounds 

In this set of tests, the speech signals are divided in two groups: vowel signals 

and voice signals.  In the first group there are 5 vowel sounds in English language while 

in the second group there are six voice signals belonging to female and male speakers 

in English, French and German. The Sound Quality Assessment Material (SQAM) was 

selected as the database of the second group [58]. All the speech signals are sampled to 

8K Hz and quantized with 16-bits with a time-scale of five seconds.  

The following cases are taken into account: vowel to vowel, words to words, 

words to vowel, and vowel to words.  An example of each case is illustrated in Table 3.1. 

The first column enunciates the case of adaptation. The second column shows the level 

of similarity and the ratio of non-zero coefficients between the speech signal and the 

target speech signal. The third column plots (top-down) the speech signal, the target 

speech signal and the adapted speech signal. In the last column the speech’s 

coefficients, the target-speech’s coefficients and the adapted-speech’s coefficients are 

shown. The coefficients are 1D-arrays which include the coarse and detail of the signal, 

according to equations (3.18) and (3.19). 
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Table 3.1. Squared Correlation Coefficient & Ratio: examples of adaptation. [57] 

Case ρρρρ2 & ratio Time Domain Wavelet Coefficients 

Case 1: 
vowel  
to vowel 

 

ρ2 = 0.95 
 
ratio = 1.13 
 

  

 

Case 2: 
words  
to words 

 

ρ2 = 0.99 
 
ratio = 0.94 
 

 

 

 

 

 

Case 3: 
words 
to vowels 

 

 

ρ2 = 0.98 
 
ratio = 0.86 
 
 

 

 

 

 

Case 4: 
vowel to 
words 

 

 

ρ2 = 0.98 
 
ratio = 1.17 
 

 

 

 

 

 

According to the results shown on Table 3.1, it is noticed that: 

(i) It is not necessary a time synchronization between the speech signal and 

the target speech signal.  Due to the ability of adaptation, the adapted 

speech signal is in fact synchronized with the target speech signal. 
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(ii) The ratio of the non-zero coefficients can be slightly higher or lower than 1, 

nevertheless the speech distortion index is close to 1 (and always ρ2> 0.95). 

(iii) The proposed method works both with single sounds (vowels, syllables) 

and words. A group of vowels can imitate words and the contrary is also 

possible. 

The summary of the tests is illustrated in Table 3.2. In every case the lowest and 

highest value and the confidence interval of the 95% are plotted. The first case, vowel 

to vowel, consists in 20 tests.  The five vowels work both as speech signal and as target 

speech signal and everyone is adapted to the rest of them. The second case, words to 

words, includes 30 tests.  Six records of female and male speakers in three languages 

are adapted between them. The third case, six word messages are adapted to five vowel 

signals in 30 tests. In the fourth case, five vowel signals are adapted to six words 

messages in 30 tests, too.  

 

Table 3.2. Squared Correlation Coefficient & Ratio: summary of the tests. [57] 

ρρρρ2 Ratio 

 

 

 

 
 

 

According to Table 3.2, all of the adapted speech signals have a speech distortion 

index, ρ2, higher than 0.9, although the ratio of the non-zero coefficients is not exactly 

equal to 1.  Nevertheless, it is noticed that the two best cases (first and second one) 
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have a ratio of non-zero coefficients closer to 1 than rest of them (third and fourth 

cases). It is expected that if the ratio is in [0.8 1.20], the adapted speech signal will have 

ρ2 higher than 0.95. The parameter ρ2 can be interpreted as the percentage of the 

coefficients of the adapted secret signal that are linearly correlated to the coefficients of 

the target speech signal. 

On the other hand, the p-value was taken into account in these experiments. It 

defines if the linear correlation is due to a coincidence or not; if the p-value is lower 

than 0.05 the idea about a coincidence is rejected. Since the p-values were always 

smaller than 0.05, then ρ2>0.9 is significant and the hypothesis of the adaptation of the 

speech signals is listed as true. 

 

3.4.2. Different language and gender of the speaker 

In this second group of tests, the hypothesis of adaptation is tested in relation to 

the gender and the language of the speech signals. Four scenarios are analyzed, as 

follows: 

(i) The language of the messages and the gender of the speakers of both the 

speech and the target speech signals are the same.  

(ii) The language of the messages is the same, but the gender of the speakers is 

different. 

(iii) The gender of the speakers is the same, but the language of the messages is 

different. 

(iv) Both the gender of the speakers and the language of the messages are 

different. 

The speech signals used in these tests correspond to 10 speech signals from 

female speakers in English language, 10 speech signals from male speakers in English 



language, 10 speech signals from female speakers in Polish language and 10 speech 

signals from male speakers in Polish language. Therefore, the total number of messages 

is 40 which correspond to 40 speakers. English and Polish languages were selected 

because they have strong dissimilarities in terms of phonetic sounds.  

The results by scenario are shown in Table 3.3. It includes the level of similarity 

(second column) and the ratio of the non-zero wavelet coefficients (third column). 

There are 4 cases by scenario, each one with 25 tests, for a total by scenario of 100 

tests. Every case is represented by its highest and lowest value, and the confidence 

interval of 95%. It uses the following notation to name the case: the first and the second 

letter are related to the gender and the language of the original speech signal, 

respectively and the third and the fourth letter are related to the gender and the 

language of the target speech signal, respectively. For example, the case [fP: mE] means 

that the speech signal is from a female (f) speaker in Polish (P) language and the target 

speech signal is from a male (m) speaker in English (E) language.  

According to Table 3.3, all of the results of the four scenarios have level of 

similarity higher than 0.9 (and their confidence ranges are higher than 0.98). It is worth 

noting that the first and second cases of the fourth scenario have ratio into the interval 

[0.88 1.25] and their index of similarity higher than 0.95; while the third and fourth 

cases have ratio outside the above interval and their index of similarity fell to 0.90.  

However, the index of similarity of the third case is better than of the fourth case. 

Therefore, it can be concluded that the quality of the adapted speech signal has a strong 

relationship with ratio, and if it is the range [0.88 1.25] it is expected that the similarity 

between the adapted speech signal and the target speech signal will be high. Together 

with that, if ratio is outside of the above range, it is more desirable a value slightly 

higher than 1.25 instead of a value slightly lower than 0.88. 
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Table 3.3. Results by scenario. [59] 

Scenario ρ2 Ratio 

Same 

gender 

and 

language 
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and 
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language 

 

 

 
 

 

 

 

Summarizing, a speech signal can be adapted so that it resembles another speech 

signal if the theoretical requirements are satisfied even so if the gender of the speaker 

and/or the language of the message is not the same. 
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3.5. Summary 

The main ideas of this chapter are summarized as follows: 

(i) A powerful hypothesis of speech processing is presented. This is known 

as the ability of adaptation of speech signals, formulated as:  

any speech signal may seem similar to a target speech 

signal if its wavelet coefficients are sorted.  

(ii) The idea behind the ability of adaptation is related to the histograms of 

the non-zero wavelet coefficients of speech signals.  Although two speech 

signals have different time-behavior and frequency-behavior, their 

histograms (of the non-zero wavelet coefficients) can be similar. 

Therefore, if the time-frequency elements of a speech signal are relocated 

it is feasible that the output signal looks and sounds similar to a target 

speech signal. 

(iii) Several test of adaptation between vowel sounds and words sounds 

demonstrate that the adaptation is feasible between different kinds of 

sounds. 

(iv) Together with that, it is demonstrated that adaptation is feasible even if 

the language or/and the gender of the speaker are changed between the 

speech signal and the target speech signal. 
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4. Speech scrambling and the ability 

of adaptation of speech signals 
 

A novel scheme of speech scrambling is presented in this chapter. Unlike the 

traditional approach in which the scrambled speech signal is a non-intelligible 

signal, the current proposal supplies a scrambled signal which is a perfectly 

legible signal, but with a plain-text different from the original speech signal. The 

idea is based on the ability of adaptation of the speech signals. 

 

 

 

 

 

 

 

 

  



4.1. Motivation 

In order to give protection to speech signals, many techniques of analog speech 

scrambling and digital encryption have been proposed. Among others, there are three 

aspects to take into account in any scrambling system: to produce a residual 

intelligibility as low as possible, to supply a high quality of the recovered signal even if 

the scrambled speech signal is manipulated, and to generate a long effective number of 

keys (key-space) for resisting cryptanalysis. Usually, the techniques are classified in 

permutation-based and amplitude scrambling (AS) [40], [41].  

Time-Segment Permutation, TSP, Frequency-Domain Scrambling, FDS, and Time-

Frequency Scrambling, TFS, are techniques of permutation-based speech scrambling. In 

the first case, TSP, the speech signal is divided in small blocks (typically 16 to 32 ms) 

and the permutations are made into the blocks according to a scrambling key, 

generated usually by a Pseudo-Noise (PN) generator [42], [60], [61]. Although it is a 

simple technique, it has some disadvantages as a small key-space, not low enough 

residual intelligibility, and low resistance to cryptanalysis. In the second case, FDS, the 

permutation process is carried out in the frequency domain [43], [44], [62]-[66]. The 

residual intelligibility may be lower than in TSP, but the key can be discovered using 

known cipher-text attacks [20], [21]. In the third case, TFS, the speech signal is split in 

subbands and every subband is divided in segments [46], [47]. It overcomes the 

disadvantage of its predecessors in terms of the residual intelligibility, but until now 

the problem of the small key-space has not been overcome.  

On the other hand, in the amplitude scrambling (AS) systems, the scrambled 

speech signal is not obtained by a permutation process, instead of that, the amplitude of 

the speech signal is modified so that it resembles a white noise signal [67]-[71]. These 

systems have mainly two disadvantages: firstly, it has been demonstrated that the 

scrambled speech signals do not overcome cryptanalysis attacks [72] and secondly, the 
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robustness against signal manipulations like MP3 compression, additive noise, filtering, 

among others, is not guaranteed. 

Since two of the most important requirements of speech scrambling are a priori 

not satisfied in AS systems, the effort should be focused on improvement the key-

generation in the permutation-based speech scrambling schemes. It encompasses to 

create a long key-space and adequate sequences that guarantee the very low residual 

intelligibility of the speech signal. In terms of long key-space, if the speech signal is not 

divided in sub-blocks and the entire speech signal is permutated, then the total number 

of possible combinations is significantly higher and consequently the effort to reveal 

the key by brute effort attack is not feasible. In terms of adequate sequences, the key-

generator must avoid the reverse and delay sequences because these do not destroy 

the intelligibility of the speech signal. In order to objectively classify if a sequence is 

appropriate or not, there are two parameters that quantify the level of displacement of 

data and the total number of data displaced out of their original places. They are known 

as the normalized displacement, Γnd, and the Hamming Distance, HD, respectively. If Γnd 

increases the residual intelligibility decreases, however there is a turning point in 

which the residual intelligibility increases again [42]. Since every limit value (Γnd ∼0 and 

Γnd ∼1) is related to the delay sequence and the reverse sequence, an appropriate value 

must be significantly higher than 0 and simultaneously very distant from 1. In the case 

of HD, if all elements are displaced out of their original places (HD=100%), the 

scrambled speech signal would have little residual intelligibility [44]. But if HD>90% 

and if the unpermuted elements are distributed randomly, the residual intelligibility is 

sufficiently low [43]. Summarizing, adequate sequences must have simultaneously HD 

higher than 90% and Γnd around the turning point. 

In the traditional approaches, the key-generator is based on PN sequences with a 

low number of elements (e.g. ∼90). However, in the last years alternative solutions have 



been proposed. The authors of [73] use high dimension matrix transformation to 

relocate the samples of the speech signal.  Although their scrambled speech signals are 

robust against MP3 attack, neither the low residual intelligibility nor the resistance 

against cryptanalysis is guaranteed. On the other hand, the authors of [74] use a 

cellular automaton (CE) to generate the permutation sequence. The advantage of the 

proposal is that the length of the key is up to the total number of samples of the speech 

signal and then the effort to discover the key is high. However, the residual 

intelligibility depends strongly on initial control conditions like the number of 

generations (NOG) and the neighborhood rule. If these parameters are not selected 

appropriately, the very low residual intelligibility is not reached. Consequently, the 

issue of an efficient key-generator for permutation-based speech scrambling systems 

has not been overcome yet. 

The aim is to generate a scrambled speech signal with the following 

characteristics: 

(i) Perfect Secrecy: it is satisfied if the key-space is equal to the secret-space, 

and the mapping process between the secret message and the scrambled 

speech signal is one-to-one [75]. If the above conditions are satisfied, the 

system resists the brute force and the known-cipher attacks. 

(ii) Very low residual intelligibility: if the permutations satisfy the condition of 

normalized displacement and the condition of Hamming Distance, little 

residual intelligibility is obtained. 

(iii) Robustness against signal manipulations attacks: the secret message is 

recovered even if the scrambled speech signal has been manipulated (e.g. 

MP3 compression, and additive noise, filtering). 

Therefore, it is proposed a speech scrambling system that simultaneously satisfies the 

above desirable conditions. The core is the ability of adaptation of speech signals 
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presented in Chapter 3. The secret message is adapted to the target speech signal which 

has non-sensitive information. Unlike traditional approaches in which the scrambled 

speech signal sounds like a white noise signal, in the proposal, the scrambled speech 

signal sounds like the target speech signal. The secret key is the mapping between the 

secret message and the target speech signal. With the secret key, the adaptation 

process is reversed and then the secret message is recovered. Consequently, the 

proposal is focused on protecting public data with private key. Suppose that you want 

to publish (e.g. on a web site) a speech signal which has sensitive information (secret 

message), but you want to protect the secrecy. The idea is to manipulate the secret 

message so that it resembles a target speech signal (which has non-sensitive 

information), and then the scrambled speech signal is published instead of the secret 

message. Therefore, although anyone can access the scrambled speech signal, the secret 

message is protected. Only the authorized user can reveal the secret message through 

the secret key (previously obtained through another channel). 

The rest of the chapter is organized as follows. The idea behind the ability of 

adaptation of speech signals as a key-generator in a scrambling scheme is explained in 

Section 4.2. Remarkable results of the performance of the scrambling system are shown 

in Section 4.3.  Cryptanalysis is shown in Section 4.4. The chapter is summarized in 

Section 4.5.  

 

 

 

 

 

 

  



4.2. The proposed scheme 

The scrambling system is based on the ability of adaptation of speech signals 

already presented in Chapter 3. It works with two speech signals: the secret message 

and the target speech signal. Once the conditions of adaptation have been verified (see 

Section 3.2), the scrambled speech signal is obtained as shown in Figure 4.1. 

 

Figure 4.1. Flowchart of the scrambling process 

The steps are explained as follows: 

a) The speech signals are decomposed by using the Discrete Wavelet 

Transform with one level of decomposition.  The wavelet base must be the 

same in both cases. Since the wavelet decomposition of a signal gives 

coarse and detail coefficients, they are grouped in a one-dimensional array. 

Therefore, there is one 1D array per signal. At the output of this step the 

secret’s coefficients, st_c, and the target’s coefficients, tg_c, are obtained.   

b) The secret’s coefficients are relocated with the purpose to resemble the 

target’s coefficients.  For example, if the target’s coefficients are tg_c=[10, 9, 

6, 4, 8, 12, 14, 16] and the secret’s coefficients are st_c=[2, 5, 6, 9, 8, 4.5, 4, 

3], then the adapted secret’s coefficients, ast_c, are ast_c=[5, 4.5, 3, 2, 4, 6, 8, 

9]. Figure 4.2 shows the three groups of coefficients. It is remarkable the 

similarity of ast_c to tg_c although st_c has a completely different behavior. 



68 
 

 

Figure 4.2. Example of adaptation. [76] 

The key is formed from the positions of ast_c in relation to the original 

positions in st_c.  The first value of the key contains the original position of 

the first value of ast_c, the second value of the key contains the original 

position of the second value of ast_c, and so on. In the current example, 

key=[2, 6, 8, 1, 7, 3, 5, 4].  

c) In the last step, the adapted secret’s coefficients are reconstructed by using 

the Inverse Discrete Wavelet Transform. The output is the scrambled 

speech signal. 

Then, the scrambled speech signal is transmitted together with the key. At the 

receiver, the secret message can be recovered with a reverse process of adaptation.  

The descrambling process is explained as follows (Figure 4.3): 

a) The scrambled speech signal is decomposed by the DWT, mono-level.  The 

wavelet base is the same used in the scrambling process. The coarse and 

detail coefficients are put together into an 1D array, ast_c.   

b) The adapted secret coefficients, ast_c, are relocated according to the key. 

For example, if ast_c=[5, 4.5, 3, 2, 4, 6, 8, 9] and key=[2, 6, 8, 1, 7, 3, 5, 4], the 

recovered secret’s coefficients, rst_c, are obtained as rst_c=[2, 5, 6, 9, 8, 4.5, 

4, 3]. It is worth noting that rst_c is equal to st_c. 
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Figure 4.3. Flowchart of the descrambling process  

c) Once the adapted process has been reverted in the wavelet domain, the 

IDWT is applied to the recovered secret’s coefficients.  The output is the 

recovered secret message. If the scrambled speech signal has not been 

manipulated, it is expected that the recovered secret message will be 

exactly equal to the original secret message. Nevertheless, although the 

scrambled speech signal suffers small amplitude changes, the recovered 

secret message will be very similar to the original secret message. 

The proposed scheme is illustrated with an example.  Suppose we have two 

speech signals with different language and gender of the speaker. The secret message  

is in English language from a male speaker with the  plain-text in the last lecture, we 

dealt with unit four and the target speech signal is in Catalan language from a female 

speaker with the plain-text tornem un moment al que vam fer a l'última classe. Then, the 

secret message is adapted so that it resembles the target speech signal. The scrambled 

(or adapted) speech signal sounds highly similar to the target speech signal –with the 

same rhythm, gender and plain-text-. Therefore, the scrambled signal is transmitted 

together with the key. At the receiver, the adaptation process is reversed and the 

recovered secret message is obtained.  

Table 4.1 shows the secret message, the target speech signal, the scrambled 

speech signal and the recovered secret message. In the current example, the value of 

ratio is equal to 0.9516, the level of similarity between the target speech signal and the 
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scrambled speech signal is 0.9782 and the level of similarity between secret message 

and recovered secret message is ∼1. Since the plain-text of the secret message is 

completely different from the plain-text of the target speech signal, it is expected that 

the residual intelligibility will be close to zero.  On the other hand, since the adaptation 

can be completely reversed, the recovered secret message is equal to the original secret 

message. 

Table 4.1. Speech signals in time domain and wavelet domain 

 
Secret message 

Target speech 
signal 

Scrambled 
speech signal 

Recovered 
secret message 

Time 
domain 

Wavelet 
domain 
(coarse 
and 
detail) 

Finally, in terms of key-generation, the proposal has the following characteristics 

[76]: 

(a) The key length is the same as the secret’s coefficients length. It is expected 

that the key length is at least 8K per second (for a speech signal sampled at 8K Hz). 

The higher the time-scale of the speech signal, the higher is the key length. 

(b) If the key length is m, it has m non-repetitive numbers in the range [1 m].  

(c) Computational cost to obtain the key in the scrambling procedure is very 

low. Since the kernel of adaptation is the sorting process and two arrays are sorted, the 

computational cost to create the key is the double of O(m log m). 

(d) Computational cost to discover the key is very high. An eavesdropper needs 

m! attempts to obtain the right key.   
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4.3. Experimental validation 

In order to validate the ability of adaptation as a key-generator into a speech 

scrambling system, several tests were conducted to measure the level of permutation. 

Two sets of speech signals have been used; the first one corresponds to English 

messages of a male speaker and the second one to Catalan messages of a female 

speaker. These records have been taken from the database of the SLT at the Universitat 

Politecnica de Catalunya [77]. Firstly, ten English messages are adapted to ten Catalan 

messages and vice versa. Secondly, the English messages are adapted between them, 

and the same process is carried out with the Catalan messages. At the end, there are 

100 tests of adaptation of English messages to Catalan messages, 100 test of Catalan 

messages to English messages, 90 tests of adaptation between English messages and 90 

tests of adaptation between Catalan messages.  

In every case three parameters are measured: the normalized displacement (Γnd), 

the level of derangement (HD) and the ratio of the non-silent time of every pair of 

speech signals, (ratio). Together with that, the level of similarity between the scrambled 

speech signal and the target speech signal is taken into account.  

The normalized displacement, Γnd, is measured as follows [60]: 
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Where N is the number of elements in the array, γ  is the value of the extent of the 

shifting and |.| is the magnitude symbol. The value of Γnd is in the range [0 1].  If Γnd =0, it 

means that the elements have not been permutated; but if Γnd =1, the elements were 

placed in the most distant position possible. 
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The level of derangement is measured through the Hamming Distance (HD) 

according to: 
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  (4.2) 

Where i(k) is the original array, p(k) is the permuted array and d(k) is the 

difference array. If all elements are permuted, HD is equal to 1 (or 100%) and it is 

known as derangement.  

The ratio and the similarity were defined in equations (3.3) and (3.2), respectively. 

Similarity is measured through Squared Pearson Correlation Coefficient because it has 

been demonstrated that this parameter can be viewed as a speech distortion index; and 

it gives an indication on the strength of the linear relationship between two speech 

signals [78]. 

In [57], the relationship between the ratio of the non-silent time and the 

similarity between the original speech signal and the adapted (or scrambled) speech 

signals was presented. Now, the aim is to establish the value of the normalized 

displacement and the level of derangement to guarantee a right performance of the 

ability of adaptation into a scrambling system. 

4.3.1. Relationship between Γnd  and ρ2 

The aim is to analyze the relationship between the level of similarity and the 

normalized displacement. Since the objective of destroying the intelligibility of the 

secret message is satisfied if the scrambled speech signal is highly similar to the target 

speech signal, the current purpose is to guarantee that the value of ρ2 is the highest 

possible. Consequently, at the end of the test, a suggested value of Γnd is obtained. 



The results are grouped in four scenarios: adaptation from English to Catalan 

messages, adaptation from Catalan to English messages, adaptation between Catalan 

messages and adaptation between English messages. Figure 4.4 shows the results, 

where tg represents the target speech signal and st the secret message. The red dotted 

line is the threshold for the lowest level of similarity (0.9). The desirable behavior is 

found above this line. Since the ratio values of the selected English messages have the 

lowest dispersion, their values of Γnd and ρ2 have the lowest dispersion, too (Fig 4.4.d). 

In the opposite case, since the ratio values between English to Catalan message (and 

vice versa) have the highest dispersion, their values of Γnd and ρ2 have the highest 

dispersion, too (Fig 4.4.a, 4.4.b).  

a) 

 
 

b) 

 

c) 

 
 

d) 

 

Figure 4.4.  Similarity and Normalized displacement: a) tg =Catalan messages, 

st=English messages; b) tg=English messages, st =Catalan messages; c) [tg st] =Catalan 

messages, d) [tg st] =English messages. [76] 
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According to Figure 4.4.a and 4.4.b, if Γnd is lower than ∼0.25, all values of ρ2 are 

higher than (or equal to) 0.9. In the case of Figure 4.4.c and 4.4.d if Γnd is lower than 

∼0.3, all values of ρ2 are higher than (or equal to) 0.9. Because the threshold of Γnd 

should satisfy all the scenarios, the lower value among them is selected as the 

suggested value. Then, if the normalized displacement, Γnd, is lower than 0.25, it is 

expected that the adaptation process is successful and the scrambled speech signal is 

highly similar to the target speech signal; therefore, the residual intelligibility is very 

low. 

4.3.2. Relationship between ΓΓΓΓnd  and the ratio of the non-silent time 

Once the suggested value of Γnd has been selected, the following aim is to identify 

the range of the ratio values that guarantees a successful adaptation of the secret 

message. Figure 4.5 plots the results of this test. In this case, a red dotted line 

represents the threshold for the highest level of normalized displacement. The 

desirable behavior is found left of this line. 

First of all, it is important to remark that the slope of ratio in Fig 4.5.a is negative 

because the non-mute time of the selected Catalan messages is lower than the non-

mute time of the selected English messages, and consequently in Fig 4.5.b the slope of 

ratio is positive. On the other hand, because the ratio values of the selected Catalan 

messages are more dispersed, data in Fig 4.5.c is more dispersed than in Fig 4.5.d.  

According to Figure 4.5, if ratio is in the range [0.8 1.3], most of the points of Γnd 

are lower than the threshold fixed in 0.25. Therefore, if ratio is in the range [0.8 1.3], 

the displacement of the secret’s coefficients is such that the adaptation is successful 

(high similarity between the scrambled speech signal and the target speech signal) and 

then the scrambled speech signal does not keep trace of the secret message. 



a) 

 
 

b) 

 

c) 

 
 

d) 

 
 

Figure 4.5. Ratio and Normalized displacement: a) tg =Catalan messages, 

st=English messages; b) tg=English messages, st =Catalan messages; c) [tg st] =Catalan 

messages, d) [tg st] =English messages. [76] 

4.3.3. Relationship between HD and the ability of adaptation 

In the 380 tests, it has been found that the number of permuted elements was 

always higher than 97.5% and in most cases higher than 99.9%.  For example, if a 

speech signal has 40,000 wavelet coefficients, at least 39,000 of them are placed out of 

their original position.  

Since HD∼100%, it is expected that a scrambling system based on the ability of 

adaptation of the speech signals would have a high enough level of derangement to 

destroy the intelligibility of the original secret message.  
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4.4. Security Analysis 

Once the speech scrambled system has been tested in terms of the level of 

derangement and the normalized displacement, the following step to validate the 

current proposal is in terms of security analysis. Among the tests to overcome are: 

exhaustive key search (brute force attack), cipher-text only attack and statistical attack.  

4.4.1. Exhaustive key search 

The first attack that a good cryptosystem must overcome is the brute force 

attack. A long enough key-space guarantees that the key will not be discovered by an 

exhaustive key search. If the key size is m, the total number of possible combinations is 

m! Nevertheless, unlike plain-text in which every letter is represented by only one 

character, in the case of speech signals every sound (vowel or syllable) is represented 

by several samples and therefore several wavelet coefficients. Consequently, there are 

several keys (close to the right key) that produce a descrambled speech signal with the 

same plain-text of the secret message. Without loss of generality, suppose that an 

average person speak n sounds (vowel or syllable) per second and the total number of 

different sounds is p (with p significantly higher than the number of symbols in a 

language). Therefore, the total number of different plain-texts per second is (p!)n. If the 

speech signal has t seconds, the above value increases up to (p!)n*t. Consequently, an 

eavesdropper needs to test between (p!)n*t to m! attempts. For example, suppose that 

the secret message has 5-seconds with 40K wavelet coefficients, then the total number 

of possible combinations is (40K)! If the secret message encompasses only vowels (the 

most simple case), p=5 and suppose that n=8. Then, in the best scenario the lowest 

number of attempts is (5!)8*5=(5!)40=1.46*1083 which is long enough to be discovered. 

In the current example, an eavesdropper needs to test between 1.46*1083 and (40K)! 

attempts. [76] 



4.4.2. Cipher-text only attack 

It is a well-known method of cryptanalysis in which the aim is to discover the key 

based on the envelope of the spectrum of the scrambled speech signal [20], [21]. In 

classical approaches, the spectrum of the scrambled speech signal has several 

discontinuities, and therefore, the key can be revealed if the blocks into the spectrum 

are relocated to form a smooth envelope. This technique is useful in scrambling 

schemes of FDS. Since in the proposal the scrambled speech signal looks like an 

intelligible speech signal with a smooth envelope of the spectrum, the key is not 

revealed with this type of attack. [76] 

4.4.3. Statistical attack and perfect secrecy 

According to Shannon’s theory, a cryptosystem has perfect secrecy if the number 

of secret messages is equal to the number of enciphered messages and the relationship 

between them is one-to-one [75].  In our case, because the length of the secret’s 

coefficients is equal to the length of the key and each key produces a different 

scrambled speech signal, our proposal has perfect secrecy. It is worth noting that 

although there are several speech signals that can sound with the same plain-text, the 

mapping process between the secret message and the scrambled speech signal is one-

to-one. In other words, the message-space length is exactly equal to the key-space 

length and the scrambled-space length. In terms of confusion and diffusion, if an 

eavesdropper intercepts the scrambled speech signal and he/she would have enough 

time to try all possibilities, he/she does not have certainty of which of them is the right 

secret message, because the distribution probability of the message-space is uniform. 

Through adaptation, there is not a prior relationship between the secret message and 

the key, or between the secret message and the scrambled speech signal. [76] 
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4.5. Summary 

The current chapter is summarized as follows: 

(i) The ability of adaptation of speech signals has been used to scramble 

speech signals in wavelet domain. The system can be viewed as a special 

case of Time-Frequency Scrambling. Unlike traditional approaches, the key 

is not an input of the system; it is generated in the adaptation from the 

secret message to the target speech signal. 

(ii) The derangement level and the displacement value of the adaptation 

process give a residual intelligibility very low. Therefore, the most 

important feature in a scrambling system is satisfied. 

(iii) The effort required to obtain the secret key in the scrambling module is 

low, with a complexity of O(m log m), where m is the secret’s coefficients 

length. Nevertheless, the effort to find the key by an eavesdropper is hard 

because it is up to m! Consequently, it is concluded that the system 

overcomes the brute force attack. 

(iv) The system works with perfect secrecy because the key-space length is 

equal to the secret-space length, there are as many secret messages as 

scrambled speech signals, and the mapping between inputs and outputs is 

one-to-one.  

 

 

 

 

  



 

 

 

 

 

 

5. Speech steganography using 

Efficient Wavelet Masking  
 

This chapter shows two schemes of speech steganography which take 

advantage of the ability of adaptation of speech signals and the masking 

property of the Human Auditory System (HAS).  The schemes are known as 

Efficient Wavelet Masking (EWM) and improved-EWM (iEWM). The first one is 

optimized in terms of statistical transparency and the second one in terms of 

robustness. Both schemes can hide a speech signal into another one of the same 

time-scale. 
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5.1. Introduction 

The second analyzed method of speech hiding is steganography. The main 

difference related to scrambling is that the secret message is hidden into the host signal 

instead of modifying the secret message so it resembles a target speech signal (which 

can be a legible or non-legible speech signal).  

The output signal, known as the stego signal, must be perceptually equal to the 

host signal with the purpose of not generating suspicion about the existence of the 

secret message (transparency). The higher the number of bits of the secret message 

that are hidden, the higher is the hiding capacity. Additionally, a robust stego signal 

overcomes signal manipulations like lossy compression, re-quantization or resampling, 

among others. All of the features (transparency, hiding capacity and robustness) are 

known as the “magic triangle” and there is a strong relationship among them; when one 

increases at least one of the others decreases [5]. Therefore, it is not possible to 

simultaneously optimize the three above features. 

In the literature the following techniques of speech hiding are well known: Least 

Significant Bit (LSB) substitution, Frequency Masking (FM), Spread Spectrum (SS) and 

Shift Spectrum Algorithm (SSA) [3], [27], [79], [80]. In the case of LSB, the least 

significant bits of the host signal are replaced with the bits of the secret message [23], 

[24], [81]-[84]. If the number of replaced bits per sample increases, then HC and 

robustness increase too, but the transparency decreases. In the second scheme, FM, 

every coefficient of the secret message is hidden into one coefficient of the host signal if 

the masking criterion has been previously satisfied [35], [36], [85]. Since the hiding 

process follows masking criteria, the transparency and robustness are satisfied, 

however the hiding capacity can become lower than in LSB. In the third case, SS, the 

bandwidth of the secret message is spread into the bandwidth of the host signal [26], 



[86]. Finally, in the case of SSA, the bandwidth of the secret message is delayed to the 

highest subband of the bandwidth of the host signal [26], [87], [88]. Both SS and SSA 

have the smallest hiding capacities, but in some cases they have the highest value of 

transparency.  

Since none of the classical schemes of speech steganography have a good enough 

trade-off among transparency, hiding capacity and robustness, a novel scheme of 

speech-in-speech hiding based on the ability of adaptation of speech signals is 

proposed. This scheme is known as Efficient Wavelet Masking (EWM). An improved 

version of EWM in terms of robustness is known as iEWM. Both EWM and iEWM have 

the same hiding capacity in terms of time-scale. 

The rest of the chapter is organized as follows. Section 5.2 explains the proposed 

scheme known as Efficient Wavelet Masking and Section 5.3 shows its results in terms 

of statistical transparency. Section 5.4 explains the scheme iEWM and Section 5.5 

illustrates the results in terms of robustness. The chapter is summarized in Section 5.6. 
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5.2. Efficient Wavelet Masking (EWM) 

In nature, one of the best examples of adaptation is the chameleon which adapts 

to the surrounding environment, changing its color, to become "imperceptible” and not 

be detected by enemies. In a similar way, the best form to hide data is by adapting them 

to the host signal. Because the main purpose of any steganographic model is that the 

secret message seems “imperceptible” into the host signal, the ability of adaptation of 

speech signals is used as the core of the proposed speech-in-speech hiding scheme 

known as Efficient Wavelet Masking [56].  

Like FM, EWM is based on the masking property of the HAS but the main 

difference lies on the “efficient” masking of the secret message dues to the principle of 

adaptation.   

The scheme encompasses two modules: the embedding module at the 

transmitter and the extraction module at the receiver. They are explained as follows. 

5.2.1. Embedding module 

It is carried out by the following steps: decomposition and scaling, efficient 

sorting, indirect LSB replacement, reconstruction and post-scaling (Figure 5.1). 

 

Figure 5.1. EWM: flowchart of the embedding module 



The steps are explained as follows: 

(i) Decomposition and scaling: both the secret message and the host signals are 

decomposed by using the DWT.   

[ ] ( )kSns DWT →    Ζ∈k   (5.1) 

[ ] ( )kHh DWT →n       (5.2) 

Where s[n] is the secret message, h[n] is the host signal, S(k) is the group of 

secret’s coefficients and H(k) is the group of host’s coefficients. 

Then, the secret’s coefficients are attenuated -12dB under the dynamic 

range of the host’s coefficients. If the host’s coefficients are quantized to 16 

bits in the range [-215+1 to 215-1], then, the secret’s coefficients are 

quantized to 14 bits in the range [-213+1 to 213-1]. 

(ii) Efficient sorting (adaptation): the secret’s coefficients are relocated so that 

they resemble the host’s coefficients. The original and final places of the 

secret’s coefficients are used to build the key (in a way similar to that 

explained in Chapter 4). 

(iii) Indirect LSB replacement: once the adapted-secret’s coefficients have been 

obtained, the division between every pair of coefficients (from host’s 

coefficients and adapted-secret’s coefficients) is calculated, according to: 

( ) ( )
( )kH

kS
kdiv a=       (5.3) 

Where Sa(k) is the group of adapted-secret’s coefficients.  

Since the dynamic range of the secret’s coefficients is a quarter of the 

dynamic range of the host’s coefficients, it is expected that the division is 

close to 0.25; nevertheless, it could be higher. Then, the value of div is 

normalized so that it can be represented by 5-bits, as follows: 
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( ) ( )
( )( )kdiv

kdiv
kPd

max
*31=      (5.4) 

Where Pd is called as the Percentage data and max(.) is the maximum 

function. Once Pd has been obtained, this is hidden into the 5-LSBs of the 

host’s coefficient, according to: 

( ) ( ) ( )kPd
kH

kSt +













= 5

5
2*

2
    (5.5) 

Where St(k) is the group of stego’s coefficients and . is the floor function. 

For example if H(1)=3455=0000110101111111b and Pd(1)=20=10100b then 

St(1) = {3455/32*32} + 20 = 3444 = 0000110101110100. It is equal to 

replace the 5-LSBs of H(1) with Pd(1) and it is obtained 

St(1)=0000110101110100b. 

The advantage of using an indirect substitution form is that the number of 

bits replaced is less than in a direct form. Although only five bits are 

replaced in every wavelet coefficient, a speech signal of 14 bits is indirectly 

hidden into a speech signal of 16 bits. For this reason, it is expected that the 

transparency in the stego signal is higher than in other schemes.     

(iv) Reconstruction and post-scaling: in the last step, the stego’s coefficients are 

reconstructed by using the IDWT with the same wavelet base of the first 

step.  

( ) [ ]ngkG
IDWT →       (5.6) 

Where st[n] is the stego signal in time domain.  Finally, the signal is set in 

the dynamic range of [-1 1]. 

 

 



5.2.2. Extraction module 

The secret key and the stego signal are the inputs of the module, while the output 

is the recovered secret message. This module is constituted by the following 

subsystems: decomposition and scaling, recovering, reconstruction and post-scaling 

(Figure 5.2).  

 

Figure 5.2. EWM: flowchart of the extraction module 

The steps are explained, as follows 

(i) Decomposition and scaling: the stego signal is decomposed by using the 

DWT.   

[ ] ( )kGng DWT →       (5.7) 

(ii) Recovering: the 5-LSBs of the stego’s coefficients are extracted, according 

to: 

( ) ( ) ( )













−= 5

5
2*

2

kH
kGkPd     (5.8) 

Then, the adapted-secret’s coefficients are obtained by the multiplication 

between the stego’s coefficients and the percentage data, Pd, as follows: 

( ) ( ) ( )kStkPdkSa *=      (5.9) 

Finally, the adapted-secret’s coefficients, Sa(k), are relocated according to 

the key and then the recovered-secret’s coefficients, Sr(k), are obtained. At 



86 
 

this point, the adaptation process is reversed and the output, Sr(k), has the 

same behavior of the secret’s coefficients.  

(iii) Reconstruction and post-scaling: the recovered-secret’s coefficients are 

reconstructed by using the IDWT.  

( ) [ ]nsrkSr IDWT →       (5.10) 

Where sr[n] is the recovered-secret message. 

A post-scaling is applied so that their dynamic range is [-1 1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



5.3. Performance of EWM 

The statistical transparency is considered in this thesis to establish the quality of 

the stego signal and its robustness against some steganalysis techniques. The objective 

in any steganalysis test is to find signs about the existence of a secret message into the 

speech signal. Most steganalysis methods use an intelligent system which is trained 

with statistics of host and stego signals. Then, the speech signal is analyzed and it is 

classified as a host or stego signal. In this work, the stego signals are tested by three 

steganalysis methods to measure the difference between the statistics of the host signal 

and the stego signal and determine if this is smaller than a threshold.  If the criterion is 

satisfied, the stego signal does not create suspicion about the existence of the secret 

message and it can be transmitted in a secure channel. If this difference is large for any 

of the statistics, the stego signal could be identified by an expert system and therefore 

the message will be vulnerable.  

Three domains have been used in this work to assess the statistical transparency: 

time domain, frequency domain, and wavelet domain. In the time domain, the test is 

based on the log function of the speech signal proposed by [12]. In the frequency 

domain, the test is based on the second-order derivative of the audio signal proposed 

by [15]. Finally, in the wavelet domain, the test is based on the statistical analysis of 

wavelet subbands proposed in [17]. The statistical analysis is carried out by obtaining 

the fourth first moments of these functions: average (µ), variance (σ2), skewness (sk) 

and kurtosiss (k). The difference in the statistics is estimated in the five methods 

considered in this chapter: LSB, FM, SS, SSA, and the proposed one, EWM.  Additionally, 

five hiding capacities have been taken into account in order to evaluate the 

performance of every method against the size of the secret message. 
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5.3.1. Statistical transparency  

The performance of the five schemes against three steganalysis tests is tested.  In 

every experiment, the differences between the statistics of the host and the stego 

signals are calculated. To organize the experiments, five values of hiding capacity (in 

terms of the time-scale: 25%, 33%, 50%, 75% and 100%) are analyzed. The capacity 

corresponds to the percentage of the time-scale of the secret message in relation to the 

time-scale to the host signal; if both signals have the same time-scale, the hiding 

capacity is 100% even if the number of replaced LSBs is not the same. The SSA scheme 

is only tested with its maximum capacity, 25%, SS scheme is tested with 25% and 33%; 

EWM, LSB and FM are tested with the five capacities. One host signal and five secret 

messages are used, one for every hiding capacity. The length of the host signal is 2-

seconds and the frequency sampling of each one is 8 KHz.  

Table 5.1. Signals for HC=100%: Input signal & Difference signal. [56] 

Method EWM LSB FM 

  
Time 

 

Frequency 

 

Wavelet 

 

 

0 0.5 1 1.5 2
0

0.1

0.2

0 0.5 1 1.5 2
-0.1

0

0.1

0 0.5 1 1.5 2
0

0.1
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5000 10000 15000
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5000 10000 15000
-0.1

0
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-1

0

1

5000 10000 15000
-0.1

0

0.1
5000 10000 15000

-1

0

1

5000 10000 15000
-0.1

0

0.1



Table 5.1 illustrates some differences among the three steganalysis methods with 

HC=100%. In every row two signals are plotted, the host signal (in logarithmic form, 

spectrum or wavelet decomposition) and the difference signal (between the host signal 

and the stego signal in the selected domain). It is confirmed that with the EWM scheme 

the transparency is better than with other methods, such as LSB and FM. This can be 

easily seen in the steganalysis test in wavelet domain.  

Now, Figures 5.3 to 5.5 show the difference between the statistics of the host 

signal and the statistics of the stego signal, for every steganalysis test and 

steganography method.  

 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 5.3. Difference (%) in the temporal steganalysis test: a)average, 

b)variance, c)skewness, d)kurtosis. [56] 
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In the steganalysis test in time domain, the maximum difference (7.8%) belongs 

to the skewness in the FM scheme. EWM scheme has a result similar to SSA in low 

capacities, while in high capacities, the best performance corresponds to the EWM 

scheme. The difference in EWM is ever lower than 0.5%, while in the LSB scheme is 

lower than 1%. In this test, the schemes didn’t give any sign about the existence of the 

secret message, because the statistics of the stego signals were very similar to the 

statistics of the host signals.  In other words, it is difficult for a classifier to identify the 

stego signals (from the current schemes) based on the statistics of the logarithm of the 

speech signal. 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 5.4. Difference (%) in the frequency domain steganalysis test: a) average, 

b) variance, c) skewness, d) kurtosis. [56] 
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According to Figure 5.4, for low capacities (25% and 33%) EWM has the smallest 

differences in 75% of the statistics, while LSB has the smallest in 25% of the statistics. 

For high capacities, EWM’s differences are lower than 3.5%; LSB’s differences are lower 

than 10%, while FM’s differences are lower than 13%. It means that EWM is the best 

scheme both in low and high capacities, in terms of the transparency in frequency 

domain. 

a) 

 

b) 

 

c) 

 

d) 

 

 

Figure 5.5. Difference (%) in the wavelet steganalysis test: a) average, b) 

variance, c) skewness, d)kurtosis. [56] 

Finally, the steganalysis test in wavelet domain is presented in Figure 5.5. This 

test gives the highest difference in the statistics between the host and the stego signal.  
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the host and the stego signals, then the stego signals should pass any steganalysis 

method based on time, frequency or time-frequency domain. According to the results, 

the worst case corresponds to the FM scheme, because its difference became 50%, and 

the most stable scheme is EWM, since the difference increases very little from a 

capacity to another and 95% of its statistics are lower than in the other schemes.  

Summarizing, it has been found that the most stable model is EWM, because even 

if the size of the secret message increases with the hiding capacity, the maximum 

difference between the statistics of the host and the stego signals remains below 10%. 

The remaining methods either increase its error with the capacity or between tests. 

 

5.3.2. Hiding Capacity and other quality parameters 

In addition to the statistical transparency, the quality of the recovered secret 

message plays an important role in any steganalysis scheme. In Table 5.2, (first 

column), the correlation coefficient in every scheme is illustrated. Every value of hiding 

capacity has one pair of host signal and secret message. 

In low capacities (HC=25%, 33%) the performance of the EWM, LSB, and SS 

schemes is similar and it is better than the performance of the SSA and FM schemes. In 

high capacities (HC≥50%), LSB is significantly better than FM and slightly better than 

EWM. Summarizing, in terms of quality in the recovered secret message, the best 

scheme is the LSB and the worst is the FM scheme; while EWM scheme has the second 

position. 

Second, it is analyzed the relation between the hiding capacity and the size of the 

secret key. The LSB, SS and SSA schemes do not need a secret key for recovering the 

secret message, but EWM and FM use a secret key to keep the positions of the secret 

coefficients. In the second column of Table 5.2, the percentage of the size of the secret 



key in relation to the size of the host signal is shown. The size of the EWM scheme is 

slightly higher than the FM, and this value is proportional to the hiding capacity. In an 

ideal way, these sizes should be equal, but the difference is due to the failure to hide 

information in FM. In the third column of Table 5.2, the percentage of failure in data 

hiding in every scheme demonstrates that FM does not guarantee that all of the secret 

coefficients can be hidden into the host signal.  

Table 5.2. Performance in other selected quality parameters, for HC=25%, 33%, 50%, 

75% and 100%. [56] 
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5.4. Improved Efficient Wavelet Masking 

The EWM is an “optimized” scheme is terms of the statistical transparency of the 

stego signal but it is not good enough in terms of the robustness against signal 

manipulations. Since only 5-LSBs of the host’s coefficients are modified, the stego signal 

does not tolerate small changes (e.g. ∼0.1%) in its amplitude and then the bits related 

to Pd can be lost. Therefore, an “optimized” scheme in terms of robustness based on the 

EWM is presented in this section.  Nevertheless, there is a trade-off among the 

transparency, the hiding capacity and the robustness and it is expected that the new 

scheme, the improved-EWM (or iEWM), is less transparent than its predecessor. 

The core of iEWM is the ability of adaptation of speech signals and the selective 

Significant-Bit-to-Hold (SBH). With the purpose of increasing the robustness, the 

number of replaced LSBs depends on the amplitude of the host’s coefficient instead of a 

fixed number of LSBs of its predecessor, the EWM scheme. The larger the host’s 

coefficient, the higher the number of replaced LSBs.  Since the larger coefficients would 

hide a higher number of bits, it is expected that the robustness of the stego signal will 

improve.  

The embedding and extraction modules are described as follows. 

5.4.1. Embedding module  

The purpose of this module is to hide a secret signal into the host signal. The 

procedure is illustrated in Figure 5.6. It contains the following steps: decomposition, 

efficient sorting and scaling, selective Significant-Bit-to-Hold, reconstruction and post-

scaling. Every step is detailed as follows: 

(i) Decomposition and scaling: both signals, the host and the secret one, are 

decomposed by using the Discrete Wavelet Transform. To obtain the same 



number of wavelet coefficients, the number of the samples of the signals 

and the wavelet base used in the decomposition must be equal in both 

cases.  The relation between the input and the output is defined by: 

[ ] ( )wSns
DWT →      (5.11) 

[ ] ( )wHnh
DWT →      (5.12) 

Where s[n], h[n], S(w), H(w) are the secret signal, the host signal, the 

secret’s coefficients and the host’s coefficients, respectively. Unlike the 

EWM scheme, the secret signal is not attenuated by -12dB in relation to the 

host signal. 

 

Figure 5.6. Block diagram of the improved-EWM embedding module 

(ii) Efficient sorting and scaling: the secret’s coefficients are relocated so that 

they resemble the host’s coefficients. It uses the ability of adaptation of the 

speech signals proposed in Chapter 3. Once the coefficients have been 

relocated, the dynamic range of the adapted-secret’s coefficients and the 

host’s coefficients are modified to work with integer values in the next step, 

in the dynamic range [-215+1 215-1]. The design works with a resolution of 

16-bits, but the scheme can be easily extrapolated. 
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Like the EWM scheme, the original positions of the secret’s coefficients are 

kept in a 1D-array.  With the original and new positions after the sorting 

process, the secret key is created.  

(iii) Selective Significant Bit-to-hold: the aim of this block is to hold some of the 

most significant bits (MSBs) of the host’s coefficients and replace the rest of 

them. Since every host’s coefficient has specific amplitude, the number of 

replaced bits depends on its amplitude and the selective Significant-Bit-to-

Hold (SBH). The larger the host’s coefficient, the higher the number of 

replaced LSBs.  Without loss of generality, assume that the minimum 

number of bits to represent the host’s coefficient is n, and then the number 

of replaced bits is n-SBH. If SBH is high, only a few bits are replaced and the 

transparency of the stego signal would be high, otherwise the number of 

replaced bits is large and the transparency would be low. Nonetheless, the 

lower the number of replaced bits, the lower the robustness against signal 

manipulations. The trade-off between the robustness and the transparency 

related to the value of SBH will be discussed in section 5.5. 

The stego’s coefficient is calculated from the host’s coefficient, the adapted-

secret’s coefficient, n and SBH, according to: 

( ) ( ) ( )






+















= +

−
− 12

2*
2 SBH

aSBHn

SBHn

N wSwH
wG

   (5.13) 

Where G(w) is the stego’s coefficient. It is noticed that the adapted-secret’s 

coefficient, Sa(w), is attenuated by the factor 1/2SBH+1. For example, if 

H(1)=14102, Sa(1)=12800, n=14 and SBH=4, the stego’s coefficient is 

calculated as G(1)=14102/210*210+12800/25=13312+400=13712. 

In binary format, H(1)b=11011100010110, SsN(1)/25b=0110010000 and 



G(1)b=11010110010000. In the current example, the 10-LSBs of the host’s 

coefficient have been replaced. 

(iv) Reconstruction: the stego signal, g[n], is obtained from the stego’s 

coefficients by using the Inverse Discrete Wavelet Transform (IDWT), as 

follows: 

( ) [ ]ngwG
IDWT →     (5.14) 

Finally, the dynamic range of the stego signal is set in the interval [-1 1]. 

 
5.4.2. Extraction module  

The aim of the extraction module is to obtain an estimate of the secret message 

from the stego signal. The steps are plotted in Figure 5.7.  

 

Figure 5.7. Block diagram of the improved-EWM extraction module 

It includes decomposition, recovering selective LSB, and reconstruction. They are 

detailed as follows. 

(i) Decomposition and scaling: the stego signal, g[n], is decomposed by using 

the Discrete Wavelet Transform, as follows. 

[ ] ( )wGng
DWT →      (5.15) 
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Where G(w) is the stego’s coefficients. The wavelet base is the same used 

for the embedding module. The stego’s coefficients are scaled to obtain 

integer numbers in the range [-2-15+1 215-1]. 

(ii) Recovering selective LSB: the purpose of this step is to recover the bits 

related to the secret’s coefficients.  Like in the embedding process, the 

value of SBH is used to calculate the output, according to: 

( ) ( ) ( ) 12*2*
2

+−
− 






















−= SBHSBHn

SBHna

wG
wGwS

  (5.16) 

Where Sa(w) is the group of adapted-secret’s coefficients. In this case, the 

value of n is the minimum number of bits used to represent the stego’s 

coefficient. For example, if G(1)=13712, SBH=4 and n=14, it is obtained that 

Sa(1)=[13712-13712/210*210]*25=12800. In the current example, the 

result is equal to extract the 10-LSBs of the stego’s coefficient and then 

scale it according to 2SBH+1. It is noticed that the result of Sa is the same as in 

the hiding process presented in the current section. 

Finally, the adaptation process is reversed according to the key. At the 

output, the recovered-secret’s coefficients, Sr(w), are obtained. 

(iii) Reconstruction and post-scaling: the recovered-secret’s coefficients are 

reconstructed by the IDWT and the recovered-secret’s message is obtained, 

as follows:  

( ) [ ]nsrkSr
IDWT →     (5.17) 

Where sr[n] is the recovered-secret message. A post-scaling is applied to 

set the dynamic range of the signal in the interval [-1 1]. 



It is worth noting that the main difference between EWM and iEWM lies on the 

LSB substitution step, in the first it uses an indirect fixed substitution and in the later it 

uses a direct non-fixed substitution based on the SBH criteria.  
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5.5. Relationship between robustness and transparency of the iEWM 

In this section, several tests are conducted to demonstrate the robustness of the 

improved Efficient Wavelet Masking, iEWM. The speech signals from then Sound 

Quality Assessment Material (SQAM) are used in the tests. They belong to female and 

male speakers in English language [58]. Before the signal manipulations, the sounds are 

re-sampled to 8 KHz, the resolution is preserved in 16 bits, and the Bit Rate (BR) is 128 

kbps. The following signal manipulations (attacks) are selected to test the robustness of 

the proposed scheme: lossy compression, resampling and re-quantization. Firstly, the 

stego signal is lossy compressed with four Bit Rates (BR1=64kbps, BR2=48kbps, 

BR3=32kbps and BR4=24kbps). Secondly, the stego signal is decimated/interpolated by 

the factor Q (Q1=5/4, Q2=4/3, Q3=5/3, Q4=2). Thirdly, the stego signal is quantized at 8-

bits. The performance of the speech hiding schemes in terms of the statistical 

transparency and the quality of the recovered secret signal are measured. In the first 

one, the statistics of the host signal and the manipulated stego signal are taken into 

account. In the second one, the speech distortion index between the secret signal and 

the recovered secret signal from the manipulated stego signal is calculated. Thereafter, 

the iEWM and EWM schemes will be compared through different values of the SBH. 

Finally, once the SBH has been selected, iEWM is compared to some of the speech-in-

speech hiding schemes in order to illustrate the high robustness of the proposed 

method. 

 

5.5.1. Selecting SBH 

The iEWM and its predecessor are compared in order to select an adequate SBH 

which satisfies the trade-off between transparency and robustness. The tests values are 



SBH1=1, SBH2=2, SBH3=4 and SBH4=6.  The objective is to preserve the high 

transparency while increasing the robustness against standard benchmark attacks.  

The selected signal manipulations are analyzed as follows.  

Lossy compression: table 5.3 plots the histograms of the logarithm of the host 

signal and the logarithm of the compressed stego signals (from EWM and iEWM). It is 

shown for the following Bit Rates: BR1=64, BR2=48, BR3=32 and BR4=24.  Since the 

uncompressed host signal has BR=128, the Compression Ratio (CR) of each case is 

CR1=2, CR2=2.6, CR3=4 and CR4=5.3. 

Table 5.3. Lossy compression test: statistical transparency 

HOST EWM 
iEWM, 

SBH=1 

iEWM, 

SBH=2 

iEWM, 

SBH=4 

iEWM, 

SBH=6 

BR=64 (CR=2) 

BR=48 (CR=2.6) 

BR=32 (CR=4) 

BR=24 (CR=5.3) 

BR=Bit Rate; CR=Compression Ratio, SBH=Significant Bit to Hold 
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Figure 5.8 shows the speech distortion index of the recovered secret message. 

The x-axis corresponds to the Compression Rate while the y-axis to the Squared 

Pearson Correlation Coefficient.  

 

Figure 5.8. Lossy compression test: quality of the recovered secret message  

According to the results of Table 5.3 and Figure 5.8, it is noticed that the 

statistical transparency of the iEWM scheme is close to the EWM when SBH=4 and 

SBH=6.  In the case of SBH=1, the histogram of the compressed stego signal is highly 

different to the host signal. On the other hand, the higher the CR, the more degraded are 

the recovered secret signals. Nevertheless, iEWM with SBH<4 demonstrated better 

performance than the EWM scheme, while the results of SBH=4 are better in three of 

the five cases. Analyzing the trade-off between statistical transparency and quality of 

the recovered secret signal, it is found in the current case that SBH=4 has the best 

relationship. 

Resampling: in this attack the sampling frequency, fc, of the speech signal is 

modified. Firstly, the signal is decimated and secondly the signal is interpolated, by a 

factor of Q. The higher the value of Q, the lower is the number of samples after the 

decimation process. In this test, the stego signals are decimated/interpolated by the 

0.72

0.80

0.88

0.96

1.0 2.0 3.0 4.0 5.0 6.0

iEWM,

SBH=1

iEWM,

SBH=2

iEWM,

SBH=4



factors: Q1=5/4, Q2=4/3, Q3=5/3 and Q4=2. The histograms of the logarithm of the 

host signal and the logarithm of the resampled stego signals are illustrated in Table 5.4. 

According to Table 5.4, iEWM is close to the host’s histogram (and the EWM’s 

histogram) when SBH=4 and SBH=6.  The graphs of SBH=1 and SBH=2 can give 

suspicion about the existence of a secret signal.  

Table 5.4. Resampling test: statistical transparency 

HOST EWM 
iEWM, 

SBH=1 

iEWM, 

SBH=2 

iEWM, 

SBH=4 

iEWM, 

SBH=6 

Q=5/4 

Q=4/3 

Q=5/3 

Q=2 

Q=resampling factor 

 

The quality of the recovered secret signal from the manipulated stego signals are 

shown in Figure 5.9. The x-axis corresponds to the Q factor and the y-axis to the 

Squared Pearson Correlation Coefficient.  
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Figure 5.9. Resampling test: quality of the recovered secret signal 

Unlike the compression attack, the quality of the recovered secret signal for 

SBH<6 is always better than in the EWM scheme; only for Q=2, the EWM scheme is 

better than one of the iEWM cases.  

Re-quantization: the quantization of the speech signals is transformed from 16 

to 8 bits. The statistical transparency (histogram) and the quality of the recovered 

secret signal (speech distortion index) are shown in Table 5.5.  

 

Table 5.5. Re-quantization test: statistical transparency & quality of the recovered 

secret signal 

HOST EWM 
iEWM, 

SBH=1 

iEWM, 

SBH=2 

iEWM, 

SBH=4 

iEWM, 

SBH=6 

Histogram 

 

Speech distortion index 

 0.779 0.996 0.993 0.959 0.795 
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According to Table 5.5, only the histogram from SBH=4 is similar to the host’s 

histogram.  On the other hand, the quality of the recovered secret signal is significantly 

higher in SBH=4 than from the EWM scheme.  

Summarizing, the iEWM scheme has the best trade-off between statistical 

transparency and quality of the recovered secret signal in the three analyzed attacks 

(lossy compression, resampling and re-quantization) when SBH=4. For this reason, it is 

suggested to use the iEWM scheme with the above value. 

5.5.2. Comparison of the proposed and classical schemes 

Once the SBH has been selected, the next step is to compare the performance of 

the proposed scheme with other speech-in-speech hiding methods. The LSB and FM 

schemes have been selected because they permit to hide a speech signal into another 

speech signal of the same time-scale, like in the EWM and iEWM ones.   

The current test is divided in two parts. Firstly, the statistical transparency and 

the quality of the recovered secret message are measured before the signal 

manipulations. Secondly, the same features are taken in account for lossy compression, 

resampling and re-quantization attacks. A predefined value is used in each case, CR=5.3 

(BR=24) in lossy compression, Q=2 in resampling and resolution of 8-bits in re-

quantization. The test signals are from the Sound Quality Assessment Material (SQAM). 

The host signal is a female English record while the secret signal is a male English one. 

Both of them have a time-scale of five seconds. 

Table 5.6 shows the performance of the three analyzed schemes in relation to the 

quality of the stego signal and the recovered secret signal. The signals in the time 

domain and the objective measurement parameters are plotted for each scheme. The 

parameters considered are the statistical transparency as given by the difference 

between the statistical moments of the logarithm of the host signal and the logarithm of 
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the stego signal, (esk: difference percentage in the skewness and ek: difference 

percentage in the kurtosis) and the quality of the recovered secret signal by the speech 

distortion index, ρ2. 

 

Table 5.6. Performance results without signal manipulation 

Performance 
Original  

(Host or Secret) 
LSB FM iEWM 

Host signal & 
Stego signal 

 
[esk%; ek%]  [0.72%; 0.75%] [1.99%; 2.59%] [1.90%; 2.29%] 

Secret signal &  
Recovered 
secret signal 

 
ρ2  0.9962 0.7389 0.9978 

According to Table 5.6, the statistical transparency of the stego signal is better in 

the LSB scheme, but the quality of the recovered secret signal is slightly better in the 

iEWM scheme.  Nevertheless, in all cases, both esk and ek are lower than 3%. The worst 

performance corresponds to the FM scheme. 

The second part of the current test consists on applying signal manipulations on 

the stego signals.  Firstly, the stego signals are transformed to MP3 format and then are 

forwarded into its original format. The statistical transparency is measured with the 

new stego signals and the recovered secret signals extracted from them (Table 5.7).  

According to Table 5.7, the statistical transparency is not highly affected by the 

compression attack and in fact it can improve. On the other hand, the quality of the 

recovered secret signal from the attacked stego signal is strongly degraded; the worst 
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case is in the LSB scheme (the recovered signal is not legible).  Although the FM scheme 

gives a moderate quality performance it is noticed that the best result is from the iEWM 

scheme. 

Table 5.7. Performance results: lossy compression attack (BR=24) 

Performance 
Original 

(host or secret) 
LSB FM iEWM 

Host signal & 
Stego signal 

 
[esk%; ek%]  [2.04%;1.92%] [1.51%; 1.56%] [0.34%; 1.50%] 

Secret signal &  
Recovered secret 
signal 

 
ρ2  0.0009 0.5916 0.7342 

Secondly, the stego signals are decimated by half of fc and then are interpolated 

by the double of the last fc. At the end, the attacked stego signal and the host signal 

have the same number of samples by second. The results are shown in Table 5.8.  

The robustness against the resampling attack is higher in the iEWM scheme since 

the quality of the recovered secret signal is closer to the secret signal and the 

measurement parameters of the statistical transparency remain below 3%. The FM 

scheme is the second scheme in terms of quality and statistical transparency. Although 

the statistical transparency of the LSB scheme is higher than for the others methods, 

the secret message cannot be recovered if the stego signal has been manipulated. On 

the other hand, it is remarkable that both FM and iEWM schemes give better results 

than those obtained in the compression attack.  
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Table 5.8. Performance results: resampling attack (Q=2) 

Performance 
Original  

(Host or Secret) 
LSB FM iEWM 

Host signal & 
Stego signal 

 
[esk%; ek%]  [0.16 %; 0.12 %] [2.52%; 3.58%] [1.99%; 2.66%] 

Secret signal &  
Recovered 
secret signal 

ρ2  0.0059 0.7365 0.8049 

Finally, we tested the stego signals with the re-quantization attack.  The 

resolution of the stego signals is transformed from 16 to 8 bits.  Once the stego signal 

has been re-quantized, the secret signal is extracted.  Again, the statistical transparency 

of the attacked stego signal and the quality of the recovered secret signal is measured. 

Table 5.9 shows the results. 

According to Table 5.9, the iEWM scheme has a good robustness against the re-

quantization attack; its recovered secret signal is very closer to the original one.  

Together with that, the statistical transparency is high since the esk and ek parameters 

are under 3%. Unlike the LSB scheme, the FM scheme permits to recover the secret 

signal with a moderate quality index. 

Summarizing, in the three studied attacks the iEWM scheme has a better 

robustness than the LSB and FM schemes. The FM scheme permits to recover the secret 

signal with a low to moderate quality index while the LSB scheme does not allow it.  
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Table 5.9. Performance results: re-quantization attack (resolution=8-bits) 

Performance 
Original  

(Host or Secret) 
LSB FM iEWM 

Host signal & 
Stego signal 

 

[esk%; ek%]  [0.51 %; 0.62 %] [2.35%; 2.93%] [1.92%; 2.25%] 

Secret signal &  
Recovered 
secret signal 

 

ρ2  0.0052 0.7364 0.9537 
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5.6. Summary 

Two schemes of speech-in-speech hiding have been proposed with the following 

characteristics: 

(i) Both schemes, EWM and iEWM, are based on the ability of adaptation of 

speech signals taking in advantage the masking property of the HAS. The 

embedding and extraction processes are in wavelet domain. 

(ii) The first one, EWM, uses an indirect LSB substitution based on a 

parameter, Pd, which relates the amplitude of the host signal with the 

amplitude of the adapted-speech signal. The 5-LSBs of the host’s 

coefficients are replaced with the parameter Pd. 

(iii) Since only 5 bits of the host’s coefficients are changed in the embedding 

process, the transparency of the EWM is higher than in other schemes such 

as LSB and FM (with 8-bits of substitution). 

(iv) The maximum hiding capacity of EWM is significantly higher than in SS and 

SSA and equal to LSB and FM.  

(v) The weakness of EWM is the low robustness against signal manipulations. 

However, if the stego signal is not manipulated, the recovered secret 

message is highly similar to the original secret message. It has the same 

plain-text, intonation, rhythm and gender of the speaker. 

(vi) Unlike EWM, iEWM uses direct LSB substitution.  In this case, the adapted 

secret message is directly hidden into the host signal, in wavelet domain. 

The number of bits varies according to the amplitude of the host’s 

coefficients and therefore, the higher the amplitude, the higher is the 

number of replaced bits. Nevertheless, the MSB of the host’s coefficients are 

kept and it is controlled with the parameter Significant-Bit-to-Hold (SBH). 



(vii) According to the results of the tests performed, the most appropriate value 

of SBH is 4.  In this case, the transparency is slightly lower than in EWM but 

the robustness is significantly better. 

(viii) In terms of robustness iEWM is an advisable scheme because it allows 

recovering the secret message with better quality than in other schemes 

such as LSB, FM and EWM.  
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6. Speech hiding on hardware devices  
 

This chapter shows the design and simulation of a real-time speech hiding 

scheme on hardware devices. The scheme encompasses wavelet decomposition, 

sorting unit and reconstruction. The secret’s coarse-coefficients are relocated 

based on a descending order criterion and then they are hidden into the host’s 

coarse-coefficients. The key keeps the original places of the secret’s coefficients 

and this is hidden into the host’s detail-coefficients. The advantage of the 

proposed architecture is that not side information is required to recover the 

secret message because the key is hidden into the transmitted signal. 

 

 

 

 

 

 

  



6.1. Motivation 

The schemes of speech hiding developed in this research work have several 

advantages in relation to the schemes found in literature, but, they are not suitable for 

real-time implementation.  Since the three schemes (EMM, iEWM, speech scrambling) 

are based on the ability of adaptation of speech signals, they need to know the entire 

host signal (or target speech signal) to carry out the adaptation process. Therefore, 

there is long latency between the original speech signal and the stego (or scrambled) 

speech signal. Consequently, it is necessary to review the characteristics of the 

hardware covert communications schemes. 

In literature there are some schemes of speech hiding on hardware devices. For 

example, the authors of [89] use a secret key of a Pseudo-Noise (PN) sequence (by 

performing a XOR operation with the clock signal) to generate an encrypted speech 

signal (which is like a noise signal and is clearly dissimilar to the original speech one). 

In [45], the authors use a key based on the Euler’s numerical solution of chaotic 

equations to generate the encrypted speech signal. On the other hand, hardware-based 

speech steganographic schemes use LSB substitution, SS or SSA techniques. In [90] a 

speech hiding scheme is proposed which uses a SS scheme and a PN sequence. The 

approach presented in [91] uses a chirp signal to embed the secret message instead of a 

PN sequence. Summarizing, most of the hardware covert communications schemes use 

a PN or chaotic sequence to hide the secret message and the key it is related to control 

parameters. These kinds of approaches have two disadvantages: firstly, the secret key 

must be transmitted as side information; secondly, if the control parameters are 

discovered, the secret message is discovered too.  

Taking into account the strengths and weaknesses of the known schemes, a 

desirable hardware speech hiding scheme should have the following characteristics: 
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(i) The key should be generated by an adaptive process. A fixed-key can be 

more vulnerable than an adaptive-key because the former depends on 

initial control parameters and the latter does not. On the other hand, the key 

should be hidden into the transmitted speech signal and therefore side 

information is not necessary to recover the secret message.  

(ii) The hiding capacity of the SS and SSA schemes can be enhanced if the full 

wavelet coefficients are used to hide the secret information. Nevertheless, 

the average number of bits hidden into every wavelet coefficient should not 

be higher than 8 (to obtain a highly transparent stego signal).  

(iii) Finally, the masking property of the HAS should be applied by frames.  It 

will decrease the latency of the system, so that the system can work in real-

time. 

The purpose of the current proposal is to supply an embedded speech hiding 

scheme with higher hiding capacity than the related works and with a self-adjusted and 

self-contained secret key. The scheme works into a steganographic model. 

The rest of the chapter is organized as follows. A brief state of the art of the 

embedded covert communications systems is presented in Section 6.2. The embedding 

and extraction modules are explained in Section 6.3 and their hardware design is 

described in Section 6.4.  The main results of the proposed scheme are shown in 

Section 6.5.  Some concluding remarks are provided in Section 6.6 and the references 

are listed in Section 6.7. 

 

  



6.2. Real-time, Speech-in-speech hiding scheme 

Like the EWM and iEWM schemes the proposed embedded speech-in-speech 

hiding scheme works with two modules: the embedding module and the extraction 

module. In the first one, the secret speech signal is hidden into the host speech signal by 

using an adaptive key. The stego signal transmits both the secret message and the key. 

In the second one, the secret speech signal is recovered from the stego speech signal. 

Unlike EWM and iEWM the secret key is not side information and the system works in 

real-time operation. 

The current scheme is LSB-based with the following characteristics:  

(i) The hiding process is carried out in the wavelet domain.  Both signals, the 

speech signal and the host speech signal, are decomposed by using the 

DWT. 

(ii) Only half of the secret´s coefficients are hidden into the host signal.  Since 

the coarse coefficients keep the most relevant energy of the signal, only the 

coarse-secret´s coefficients are hidden and the detail-secret´s coefficients 

are discarded. Therefore, the compression ratio (CR) into the system is 

two. 

(iii) An adaptive key relocates the coarse-secret’s coefficients before the hiding 

process 

(iv) The coarse-host’s coefficients hide the relocated coarse-secret’s 

coefficients. 

(v) The key is hidden into the detail-host’s coefficients. The system does not 

require side information to recover the secret message. 

(vi)  The recovered secret message has the same plain-text of the original secret 

message but with slightly lower quality.  
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Table 6.1 shows the nomenclature used in the modules.  Each module is 

described as follows. 

 

Table 6.1. Nomenclature in the speech-in-speech hiding scheme. [92] 

Embedding module and extraction module 

Symbol Definition Symbol Definition 
h host signal, time domain rkey recovered key 
hc host’s coarse-coefficient rssc recovered ssc 
hd host’s detail-coefficient rsc recovered sc 
hcd hc with delay rs recovered secret message 
hdd hd with delay g stego signal, time domain 
s secret message, time domain gc stego’s coarse-coefficient 
sc secret’s coarse-coefficient gd stego’s detail-coefficient 
ssc sorted sc   
key Key   

 

6.2.1. Embedding module 

In this module a speech signal of 8-bits is hidden into a speech signal of 16-bits of 

the same time-scale and with m samples.  The host message is transformed in wavelet 

domain and its coarse- and detail-coefficients are obtained, while the secret message is 

decomposed and its coarse-coefficients are obtained. With the purpose to increase the 

difficulty to discover the secret message, the secret’s coarse-coefficients are relocated 

by a sorting process. Therefore, the sorted secret’s coarse-coefficients are hidden into 

the host’s coarse-coefficients and their original positions (key) are hidden into the 

host’s detail-coefficients. The key is self-adjusted and self-contained in the transmitted 

signal (stego signal). Since the module is suitable for real-time operation, the sorting 

block works with N coefficients, with N<<m. Once the secret’s coarse-coefficients and 

the key have been hidden into the host’s coefficients, the stego signal is obtained by the 

wavelet reconstruction of the modified host’s coefficients. The procedure is illustrated 

in Figure 6.1.  It contains the following blocks: dwthost, dwtsecret, sorting, delay, 

idwtstego. Every block is described as follows. 



 

Figure 6.1. Block diagram of the embedding module. [92] 

 

(a) dwthost: the host signal is decomposed by using the Discrete Wavelet 

Transform (DWT). At the output of this block, the host’s coarse-coefficients and 

the host’s detail-coefficients are obtained.  It is represented by the following 

equation: 





 →
hd

hc
h

DWT        (6.1) 

Where h corresponds to the host signal in time domain, hc corresponds to 

the host’s coarse-coefficients and hd to the host’s detail-coefficients. One host’s 

coarse-coefficient and one host’s detail-coefficient are calculated every two clock 

cycles.  

(b) dwtsecret: in this block, the secret’s coarse-coefficients are obtained 

according to: 

scs
DWT →        (6.2) 

Where s is the secret signal in time domain and sc are the secret’s coarse-

coefficients. In the current block, the secret’s detail-coefficients are not 

calculated. In a similar way to the previous block, one secret’s coarse-coefficient 

is calculated every two clock cycles.   

The dwthost and the dwtsecret blocks use the same wavelet base (filters of 

decomposition). 
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(c) Sorting: this block sorts sc in descending order within a frame equal to 

N. There are two outputs: the sorted secret’s coarse-coefficients, ssc, and their 

original positions, key.  For example, if sc=[20, 22, 15, 30, 12, 28, 19, 24], then 

ssc=[30, 28, 24, 22, 20, 19, 15] and key=[4, 6, 8, 2, 1, 7, 3]. Since one secret’s 

coarse-coefficient is generated every two clock cycles, to sort N secret’s coarse-

coefficients 2N clock cycles are required, and the sorted data is available in the 

following two clock cycles. The choice of N is driven by the trade-off among the 

robustness of the key, the hardware complexity and the delay of the system.  If N 

increases, the robustness of the key is better, but the latency and the hardware 

complexity increase, too. It is explained in detail in Section 6.3. 

(d) Delay: the purpose of this block is to synchronize the delays into the 

embedding module. The host’s coarse-coefficients and the host’s detail-

coefficients are delayed 2N+2 clock cycles. The outputs of this block provide a 

delayed version of hc (hcd) and a delayed version of hd (hdd).  

(e) idwstego: this block reconstructs the stego signal from the stego’s 

coarse-coefficients and the stego’s detail-coefficients.  The stego’s coarse-

coefficients, gc, are obtained from hcd and ssc. Without loss of generality, if the 

length of hcd is 17-bits and the length of ssc is 9-bits, gc is calculated according to: 

gc=hcd(16:9)&ssc(8:0)     (6.3) 

where & is the concatenation operator. In this notation, the Most 

Significant Bit (MSB) is 16 and the LSB is 0.  

In a similar way, the stego’s detail-coefficients, gd, are obtained from hdd 

and the key. If the length of hdd is 16 bits and the length of key is 7 bits, gd is 

defined as: 

gd=hdd(16:8)&key(6:0)&’0’     (6.4) 



Since the length of the key is 7-bits, N is up to 127. The least significant bit 

of the stego’s detail-coefficient, gd, is forced to be an even value in order to 

minimize the reconstruction error.  This is fully explained in Section 6.4. 

Once gc and gd have been calculated, the stego signal in time domain is 

their Inverse Wavelet Transform (IDWT) following the equation: 

g
gd

gc
IDWT →





      (6.5) 

Where g is the stego signal, in time domain.  This speech signal has 

embedded both the secret message and the adaptive-key. It is expected that the 

stego signal will be similar to the host signal since the most significant bits of the 

host’s coarse-coefficients and host’s detail-coefficients are preserved. 

 

6.2.2. Extraction module 

In this module the secret message is recovered from the stego signal. Firstly, the 

stego signal is decomposed using the DWT; secondly the key is obtained from the 

stego’s detail-coefficients while the secret’s coarse-coefficients are obtained from the 

stego’s coarse-coefficients.  Once the secret’s coarse-coefficients have been relocated 

according to the key, the IDWT is applied.  The output is the recovered secret message.  

It is expected that the recovered secret message will be similar but not equal to the 

original secret message since the secret’s detail-coefficients were not hidden. A small 

difference between them exists.  

This module contains the following blocks: dwtstego, reverse and idwsecret. It is 

illustrated in Figure 6.2. 

 

Figure 6.2. Block diagram of the extraction module. [92] 
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(a) dwtstego: the stego signal is decomposed by using the DWT. At the 

output of this block, the stego’s coarse-coefficients and the stego’s detail-

coefficients are obtained, according to: 





 →
gd

gc
g

DWT         (6.6) 

The gc contains the secret’s coarse-coefficients while gd contains the key. It 

is necessary to extract the least significant bits of the above coefficients, 

according to: 

rssc=gc(8:0)        (6.7) 

rkey=gd(7:1)        (6.8) 

where rssc and rkey are the recovered ssc and the recovered key. The length 

of rssc is 9-bits, while the length of rkey is 7-bits (these lengths corresponds to 

the case that the host signal is 16-bits and the secret message is 8-bits).  

(b) reverse: in this block, the relocation process done in the sorting block is 

reversed.  The purpose is to relocate rssc with the information contained into 

rkey to obtain the recovered secret’s coarse-coefficients, rsc. For example, if 

rssc=[30, 28, 24, 22, 20, 19, 15] and rkey=[4, 6, 8, 2, 1, 7, 3] then rsc=[20, 22, 15, 

30, 12, 28, 19, 24].  It is worth noting that rsc is the same sc used in the example 

of the embedding module. In an ideal case in which the principle of perfect 

reconstruction of the wavelet transform is satisfied,  rsc must be equal to sc, and 

in a similar way rkey must be equal to key. In Section 6.3 we will explain further 

this concept.  

(c) idwsecret: in this block the recovered secret message, rs, is obtained 

from the recovered secret’s coarse-coefficients, rcs, according to: 

rsrsc
IDWT →         (6.9) 



Since the secret’s detail-coefficients were not hidden in the embedding module, 

the recovered secret message is similar but no equal to the original secret message. 

Nevertheless, the recovered secret message has a good quality and it is legible.  
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6.3. Principle of Perfect Reconstruction (PR) and general design of the 

Discrete Wavelet Transform 

One of the most important aspects to take into account in the design of the dwt-

idwt blocks in hardware is to guarantee the principle of perfect reconstruction. If a 

signal is decomposed by using the DWT and then it is reconstructed by using the IDWT 

-with the same wavelet base-, it is expected that the reconstructed signal is exactly 

equal to the original one. This is the principle of perfect reconstruction. 

In hardware, the weights of the decomposition and reconstruction filters can be 

slightly different from the theoretical ones because of the quantization process.  The 

higher the quantization error, the higher the reconstruction error, and therefore the 

reconstructed signal will be not similar to the original one. Because of that, the 

quantization of the weights is an important aspect to take into account in the design of 

the topology of the dwt-idwt blocks. 

 

Figure 6.3. Decomposition and reconstruction: non-polyphase scheme. [93] 

The non-polyphase scheme of the decomposition and reconstruction stages is 

illustrated in Figure 6.3. The low-pass decomposition filter is represented by h0, the 

high-pass decomposition filter by h1, the low-pass reconstruction filter by g0, the high-

pass reconstruction filter by g1, while 2↓ represents a down-sampling process and 2↑ 

an up-sampling process, by factor of two.  



To guarantee aliasing cancellation and perfect reconstruction, the following 

conditions must be satisfied [94], [95]: 

0=(-z)]}(z).G[H+(-z)](z).G{[H 1/2 1100     (6.10) 

And  

m -

1100 z=(z)]}(z).G[H+(z)](z).G{[H 1/2     (6.11) 

If a constant value, kte, is factorized in all the four filters, equations (6.10) and 

(6.11) are written as follows: 
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According to (6.12) and (6.13) a topology that factorizes the term kte in all the 

four filters and includes a post-amplifier block with gain of kte2 satisfies the principle of 

PR as its original topology.  

With the purpose to have a more efficient architecture of the decomposition 

stage, the non-polyphase scheme is replaced with a polyphase scheme and the input 

signal is down-sampled (split) before the filtering process. Unlike the non-polyphase 

scheme half of the results are not wasted. Figure 6.4 illustrates the general design in 

which h0even   and h1even filters the even part of the input signal, xeven, while h0odd   and h1odd 

filters the odd part of the input signal, xodd.  
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Figure 6.4. General design of the dwt-idwt stages. [93] 

Then, the coarse (c) and detail (d) coefficients are obtained as follows: 
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And the reconstructed signal, xr, is calculated as follows: 

 



( ) ( )[ ]

( )( ) ( ) ( )( ) ( )

( )( )

( )( )
































 ++

↑

+










 ++

↑

=


















↑+








↑=

+=

kte
d

kte
c

ktex

kte
d

kte
cktex

zdzcktex

r

r

rrr

 ...[2].z g[1].z g+[0] g
z2

....[2].z g [1].z g+[0] g
z2

.

zG
z2

zG
z2.

.

2-

1

1-

11

2-

0

1-

00

2

102

2

  (6.16) 

Where cr contains the reconstructed-coarse coefficients and dr contains the 

reconstructed-detail coefficients. The above equations not only guarantee the PR; they 

provide an efficient scheme for the decomposition and reconstruction of the signal. 
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6.4. Hardware design of the speech-in-speech hiding scheme 

The proposed scheme is LSB-based with adaptive key, in wavelet domain. The 

generic blocks of the embedding and extraction modules are: dwt, idwt, sorting, reverse 

and delay. The blocks dwthost, dwtsecret and dwtstego are based on the generic block 

dwt while the blocks idwtstego and idwtsecret are based on the generic block idwt. 

Since the Discrete Wavelet Transform plays an important role in the proposed scheme, 

in the first part of this section we will discuss the design of the blocks dwt-idwt which 

satisfies the principle of Perfect Reconstruction. Thereafter, we will present the design 

of the blocks sorting, reverse and delay. 

 

6.4.1. Decomposition and reconstruction: dwt and idwt blocks 

With the purpose to have efficient hardware architecture of the wavelet 

transform, the following characteristics have been selected: 

(a) Biorthogonal base. The symmetry of this kind of wavelets reduces the 

quantity of operations. Specifically, it is selected the 5/3 wavelet base. 

(b) Multiplierless scheme.  In this topology the multiplications are replaced 

with shifts and therefore the hardware resources decrease. 

(c) Quantization of the weights of the filters based on rational integers.  The 

quantization error is significantly lower than in fixed point format. 

Taking into account the above characteristics and the design presented in Section 

6.3, the weights of the 5/3 wavelet base are represented as follows: 

( )
bh00a

0 .h
2

kh
=  ( ) { }12621kh 0a −−=  ( ) 81kh 0b =  (6.17) 

( )
bh11a

1 .h
2

kh
=  ( ) { }12-1kh 1a =    ( ) 41kh 1b =  (6.18) 



( )
bg 00a

0 .g
2

kg
=  ( ) { }121kg 0a =    ( ) 41kg 0b =  (6.19) 

( )
bg 11a

1 .g
2

kg
=  ( ) { }126-21kg 1a =   ( ) 81kg 1b =  (6.20) 

Where ho(k), h1(k), g0(k), g1(k) are the lowpass-decomposition, highpass-

decomposition, lowpass-reconstruction and highpass-reconstruction filters. It is worth 

noting that the weights of the filters have been divided by the term √2.  This is equal to 

kte presented in Section 6.3.  

Since all the terms (h0a(k), h0b(k), h1a(k), h1b(k), g0a(k), g0b(k), g1a(k), g1b(k),) can be 

represented as a sum of power of two (SPT) , they can be computed by right-shifts and 

left-shifts, in binary representation. A left-shift is a multiplication by power of two (i.e. 

20*data, 21*data, 22*data,..) while a right-shift is equal to the ceiling operator of the 

division by a power of two (i.e. data/20, data/21, data/22,..). Therefore, the 

truncation error appears only in the division process if data is an odd number. For 

example, if data=101101b a division by 2 with one-right-shift is 10110b and the error is 

½ LSB, but if data is an even number, i.e. data=101100b the division by 2 with one-

right-shift is 10110b and the error is 0-LSBs. The grouping of the weights of the filters 

by integer constants and the post-amplifier stage by power of two permit to carry out 

all of the hardware operations by right-shifts and left-shifts.  

Additionally, the proposed design satisfies the desirable condition of the 

Quadrature Mirror Filters (QMF) in which G0(z)=H1(-z) and G1(z)=-H0(-z). It is a 

sufficient condition to guarantee anti-aliasing and it is also an efficient condition to 

have a low hardware cost.  

The structure of the dwt block is illustrated in Figure 6.5. The input signal is split 

and the even (xeven) and odd parts (xodd) are shifted and added to obtain coarse and 
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detail coefficients. The scheme does not use multiplier units and instead of that all 

operations (multiplications and divisions) are carried out with five right-shifts and five 

left-shifts. It takes advantage of the symmetry property of the biorthogonal filters (e.g. 

one left-shift is used to compute 2{xodd(n)+xodd(n-1)}). Additionally, a small number of 

adders are used in the topology.  

Since the input signal is split, the coarse and detail coefficients are updated every 

two cycles.  In the current design, the input signal is 16-bits, the coarse coefficients are 

17-bits and the detail coefficients are 16-bits. 

 

Figure 6.5.  Scheme of the dwt block. [93] 

To reconstruct the signal, the idwt block is designed. Like the dwt block, it uses a 

multiplierless topology. Figure 6.6 illustrates the design: detail coefficients are 

represented as d(n), coarse coefficients as c(n), oversampled detail coefficients as 



dover(n), oversampled coarse coefficients as cover(n), reconstructed detail coefficients as 

dr(n), reconstructed coarse coefficients as cr(n) and the denoising signal as xden. 

Firstly, the coarse and detail coefficients are oversampled, secondly, dover(n) and cover(n) 

are shifted and added, thirdly, dr(n) and the cr(n) are added and finally [cr(n)+dr(n)] is 

multiplied by the term kte2 (by using one left-shift). Since the wavelet coefficients are 

oversampled, the reconstructed signal is obtained in every clock cycle. In the current 

design, the coarse coefficients are 17-bits, the detail coefficients are 16-bits and the 

reconstructed (denoising) signal is 16-bits.  

 

Figure 6.6. Scheme of the idwt block. [93] 

The highest reconstruction error of the dwt and idwt blocks is 2-LSBs and it 

means that if the input signal is 16 bits (in signed format), the highest error is up to 3 of 

32767 or in other words it is 0.0092%.  
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6.4.2. Sorting and reverse 

There are several architectures proposed in the literature for sorting data.  The 

schemes can be classified as sorting networks and linear sorters.  The former approach 

sorts parallel data while the latter sorts serial data. Since in the proposed design a new 

data appears every clock cycle, the scheme based on sorting networks is discarded. In 

the case of linear sorters, the traditional approaches use bidirectional data-shifts in a 

continuous stream. Since the length of the array is fixed, one number is deleted from 

the array to give a place to the new number in every clock cycle, and the criterion is 

based on, for example, a first input- first output (FIFO) scheme [96], [97]. Like the 

traditional approaches, the length of the current arrays is fixed too, but the sorting 

block works with non-overlapped frames. For example, the first N numbers are sorted 

and the result is given in the following N cycles of the clock signal at the same time that 

the second frame is sorted. In other words, while the frame k is sorted, the results of 

the frame k-1 are supplied in every clock cycle. Unlike the schemes of linear sorter 

based on a FIFO scheme which works with two arrays (one for the sorted-array and 

one for the rank-array), the proposed scheme works with four arrays, two sorted-

arrays and two rank-arrays.   One sorted-array (and rank-array) is the original and the 

other is the copy. 

Figure 6.7 shows an example of descending sorting using a FIFO-based scheme 

and a non-overlapped scheme, for N=8. In the first N clock cycles, both schemes sort the 

data in the same form, therefore the sorted-array and rank-array have the same results.  

The difference between them is that in the non-overlapped scheme a copy of the rank-

array and sorted-array is made in the clock cycle N. In the clock cycle equal to 9 (or 

N+1), the results of the sorted-array and rank-array are completely different between 

the schemes, i.e. in the FIFO-based scheme the new data (7) is added to the sorted array 

while in the non-overlapped scheme the process of sorting begins again. When the 



clock cycle is equal to 18 (or 2N), the sorted-arrays of the schemes are equal, but the 

rank-arrays are different.  It is noticed that the highest value of the rank-array in the 

non-overlapped scheme is N, while in the FIFO-based scheme is the current clock cycle. 

Again, a copy of the sorted-array and rank-array is made in the clock cycle equal to 2N. 

This process is repeated until the total of data is reached. 

 

 

Figure 6.7. Sorting process with the FIFO-based and non-overlapped schemes. 

[92] 

 

In hardware, the non-overlapped sorting block includes comparators, 

multiplexers, D-type flip-flops (FF) and a counter.  At the beginning, the FFs of the 

sorted-arrays are set to the lowest number into the range, i.e. -127 if the data is 

encoded with 8-bits, while the FFs of the rank-arrays are set to zero. The sorting 
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process is done between cycles 1 and N of the counter; when the counter reaches N, the 

sorted-array and rank-array are copied and the counter is set to 1, again. In the 

following cycles, while the sorting process is done again, the sorted data and their 

ranks of the above group are provided one by one in every clock cycle.    

 

 

Figure 6.8. Reverse process with the non-overlapped scheme. [92] 

 

On the other hand, the aim of the reverse block is to put the data in the original 

places. It uses the sorted-array and the rank-array. Since one sorted and one rank 

number enters every clock cycle, the reverse process uses N cycles to relocate the 



places.  Figure 6.8 shows an example of the reverse process. The first group of N 

elements is reversed between the clock cycles N+1 and 2N. At the beginning, the 

reverse-array contains null-data and in every clock cycle one position is replaced to the 

current data of copy sorted-array. Once the N elements have been reversed, a copy of 

the reverse-array is made and the reverse process begins again. 

In a similar way to the sorting block, the hardware resources of the reverse block 

include comparators, FFs and a counter. When the counter reaches the value of N, a 

copy of the reverse-array is made and the reverse process begins again in the following 

clock cycle. One value of the copy of the reverse-array is provided every clock cycle. 

Since the secret’s coarse-coefficients are updated every two clock cycles, the real 

latency between the first secret’s coarse-coefficient and the first sorted secret’s coarse-

coefficient is 2(N+1) instead of (N+1) of the previous example.  

6.4.3. Delay 

The aim of this block is to synchronize the data into the embedding module.  It 

uses z-1 units interconnected in two synchronous arrays and the total delay by signal is 

2N+2. Since the host’s coarse-coefficients and the host’s detail-coefficients must be 

delayed, the delay block works with two inputs and two outputs (Figure 6.9).  The 

length of the host’s coarse-coefficients is 17-bits while the length of the host’s detail-

coefficients is 16-bits (for a host signal encoded with 16-bits).   

 

Figure 6.9. Scheme of the delay block.  



134 
 

6.5. Hardware performance 

 

In this section we validate the hardware architecture of the speech-in-speech 

hiding scheme.  The embedding and extraction modules are modeled using VHDL and 

they are compiled and simulated using ISE Foundation 12.4 and ModelSim SE 6.4a, 

respectively. The host signal is encoded with 16-bits, the secret message with 8-bits, the 

stego signal with 16-bits, and the recovered secret message with 8-bits.  

 

6.5.1. Hardware Resources 

With the purpose of measuring the hardware resources of the proposed design; 

we select the Spartan-6 xc6slx45 device for the implementation. In Table 6.2 the total 

amount of resources by block (compiled separately), the percentage of the used 

resources, and the latency, are given. The total of resources of the selected FPGA is 

supplied between brackets. As expected, the used resources in main (entire design) are 

not the sum of the used resources of the eight blocks. If N is 8, the latency of the 

embedding (or extraction) module will be 23 clock cycles and the total latency of the 

system will be 47 clock cycles. If fs=8 KHz, the latency of each module will be 2,87 ms 

and the total latency will be 5,87 ms; but if N is 127, the latency of every module will be 

65 ms. 

According to Table 6.2, the maximum delay per block is extremely low in relation 

to the time between consecutive samples, ∆t, in speech signals (typically ∆t=125000 

ns). Therefore, the delay between the host signal and the stego signal would not be 

perceptible by the HAS. Since for a real-time speech communication system, the highest 

mouth-to-ear delay should be up to 200 ms, the low latency of the embedding module 

allows that the speech signal can be hidden into a high quality transmission scheme. On 

the other hand, the speech signal can be recovered in real-time, too. 



Table 6.2. Resource utilization and longest path delay. [92] 

 
Block 

Slice 
Registers 
(54576) 

Slice  
LUTs 

(27288) 

LUT-FF 
pairs 

(1219) 

Bounded 
IOBs 
(218) 

Max. 
delay 
(ns) 

Latency 
(clock 
cycles) 

dwthost 99(<1%) 130 (<1%) 87 (7%)  51 (23%) 5.32 L1=2 
dwtsecret 43 (<1%) 68 (<1%) 20 (2%) 19 (9%) 6.04 L2=2 
delay  318(<1%) 299 (∼1%) 299 (25%) 68 (31%) 2.64 L3=2(N+1) 
sorting (N=8) 240 (<1%)  408(∼1%) 139 (11%) 25(11%) 6.14 L4=2(N+1) 

idwtstego 160 (<1%)  138(<1%) 68(6%) 50(22%) 5.11 L5=3 
dwstego 79(<1%) 130(<1%) 66(5%) 32(15%) 5.17 L6=2 
reverse 156(<1%) 185(<1%) 150(12%) 26(12%) 3.49 L7=2(N+1) 
idwtsecret 40(<1%) 27(<1%) 22(2%) 19(9%) 2.94 L8=3 

Main (total) 797(1%) 849(3%) 427(35%) 34(15%) 7.28 
*LT= 
LT1+LT2+1 

*LT: total latency; LT1: latency embedding module; LT2: latency extraction module; 
LT1=L2+L4+L5; LT2=L6+L7+L8 

In relation to the hardware resources, the design is extremely simple and uses 

only small percentage of the available resources of the selected FPGA. It is remarkable 

that the dwt-idwt blocks use lower resources that the sorting-reverse blocks. It means 

that the selected scheme (polyphase), the representation of the weights of the FIR 

filters by integer data, and the multiplierless topology (using left-shifts and right-shifts) 

are adequate options to obtain a low cost hardware and low reconstruction error. 

The generation of the adaptive-key is carried out by the sorting block. Since N is 

up to 127 and the current design uses N=8, it is important to estimate the hardware 

resources when N is higher. Firstly, the macro statistics of the sorting block for N=8 are 

shown in Table 6.3. 

Table 6.3.  Macro statistics of the sorting block. [92] 

Adders/Substractor Register Comparators Multiplexers 
5-bit adder 1-bit 5-bit 9-bit 9-bit 5-bit 2-to-1 9-bit 2-to-1 

2 1 18 16 7 41 42 

 

Most of the hardware resources of the sorting block are comparators and 

multiplexers.  The number of comparators is N-1 while the number of multiplexers is 
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up to 2*(N-1)*(N-2).  If N=100 it is expected that the total number of comparators will 

be 99 and the total of multiplexers will be 19400, approximately. Although the 

hardware resources increases with respect to the current resources (N=8), these 

resources would be less than the available resources of the FPGA. In other words, the 

speech-in-speech hiding architecture may work with a higher value of N. 

6.5.2. Reconstruction error  

Since one of the most important characteristics in the proposed model is to have 

an extremely low reconstruction error according to the principle of perfect 

reconstruction, the validation of the dwt-idwt blocks in terms of the reconstruction 

error is taken into account.  It is measured as the difference between the input data and 

the output data expressed in the total number of LSBs. To test this error, the 

architecture is connected as in Figure 6.10.  

 

Figure 6.10.  Block diagram of the decomposition-reconstruction system. [93] 

Then, if the reconstructed signal, xr, is very close to the input signal, x, the 

reconstruction error is low; otherwise the reconstruction error is high. Figure 6.10 

illustrates a simulation of the process. The plot shows the clock signal (clk), the reset 

signal (rst), the input signal (x), the reconstructed signal (xr), the coarse coefficient 

(xcoarse), the detail coefficient (xdetail) and the enable signal for even cycles (div2). 



a) 

b) 
 

 
 

Figure 6.11. Simulation of dwt and idwt blocks: (a) 1st to 16th cycles, (b) 17th to 

32th cycles. [93] 

In a frame-by-frame design, a border extension is applied to the input signal with 

the purpose of smoothing the first and last coefficients, but in a real-time design it is 

not suitable. For this reason, the first coarse and first detail coefficients are not a 

proper representation of the input signal (and they should be ignored).  The proper 

output is in the following even cycle and therefore the latency of the dwt block is two. 

For example, the 1st input of Figure 11a (15254) has its coarse (13129) and detail 

coefficients (426) in the 3rd clock cycle.  These coefficients are updated every two cycles 

according to the theory. On the other hand, the 1st output (15254) is in the 6th cycle; 

therefore the latency of the idwt block is three. The 1st - 5th outputs should be zero; a 

small value is due to the quantization process. Finally, it is worth noting that if the input 

signal is an even number, the reconstructed one is an even number too and the 

reconstruction error is zero; but if the input signal is an odd number, the reconstructed 

signal is an even number and the error is +/-1. Therefore, the highest reconstruction 

error is equal to 2-LSBs. 
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6.5.3. Validation of the entire design 

In this section, the speech-in-speech hiding scheme is simulated on ModelSim 

6.4.a. The embedding and extraction modules have been interconnected in the same 

architecture. At the input, the host signal (host) and the secret message (8-bits) from 

two real speech signals with time-scale of 1s are supplied. The output provides the 

recovered secret message (8-bits). The internal signals are: the stego signal (stego), the 

secret’s coarse-coefficients (scoarse), the recovered secret’s coarse-coefficients 

(srcoarse), the key (ks) and the recovered key (ksr). In order to illustrate the adaptive-

key generation with a small number of clock cycles, it is selected N=8. In Figure 6.12 the 

simulation results between clock cycles 2200 and 2260 are provided. The following 

notation to highlight the inter-block latency is used: stars for host signal and stego 

signal; triangles for secret message and recovered secret message; squares for secret’s 

coarse-coefficient and recovered secret’s coarse-coefficient; and circles for key and 

recovered key. 

 

Figure 6.12. Simulation of the embedding & extraction modules, clock cycles [2200 

2260]. [92] 



To demonstrate the latency between the host signal and the stego signal (latency 

of the embedding module), the host signal equal to 435 is selected (clock cycle number 

2203).  The corresponding value is the stego signal equal to 780 (clock cycle number 

2226).  Then, the latency is 23 clock cycles. Secondly, we select the key equal to 8 (clock 

cycle number 2208) and its corresponding recovered key equal to 8 (clock cycle number 

2214), in this case the latency is equal to 6. Thirdly, the secret’s coarse-coefficient equal 

to 30 (clock cycle number 2204) and its corresponding recovered secret’s coarse-

coefficient equal to 29 (clock cycle number 2246) illustrate the latency between the 

above signals, which is equal to 42. Finally, the total latency of the system (embedding 

module + extraction module) is obtained from the secret message and the recovered 

secret message. The secret message equal to 12 (clock cycle number 2200) and the 

recovered secret message equal to 10 (clock cycle number 2247), then the total latency 

of the system is 47. 

It is worth noting that the recovered key is exactly equal to the original key 

because in the embedding module the stego’s detail-coefficient was forced to be an 

even value; then the reconstruction error is zero. In the case of the recovered secret’s 

coarse-coefficient there is a small error (2-LSBs) in relation to the secret’s coarse-

coefficient, because the stego’s coarse-coefficient is an even or odd number  and the  

term coefficient*sample/8 is calculated as coefficient*sample/8; where . is the ceiling 

operator.   

In order to illustrate the similarity between the host signal and the stego signal, 

and between the secret message and the recovered secret message, the result of the 

entire simulation is provided in Figure 6.13. 

The simulation works with two speech signals (host and secret) with time-scale of 

1-second and sampling frequency, fs, of 8 KHz. The host and the stego signals are in the 

range [-32768 32768], while the secret and the recovered secret message (secretr) are 
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in the range [-128 128]. According to Figure 6.11, it is remarkable that the secret 

message is hidden into the region of silence as the region of non-silence of the host 

signal; however, the stego signal is very similar to the host one. Since the latency of the 

embedding module (23 clock cycles) is very low in relation to fs, the delay between the 

host and the stego signal is quasi-imperceptible. It allows to transmit the stego signal in 

real-time. 

 

Figure 6.13. Simulation of the speech-in-speech hiding scheme. [92] 

6.5.4. Comparing to related works: dwt-idwt blocks 

In wavelet-based data hiding PR is an outstanding requirement of the system and 

therefore the quantization process plays an important role in the design.  However, 

other parameters like latency and hardware resources are important, too. In this 

context, the selection of the “best” design is based on the good trade-off among 

reconstruction error, latency and hardware cost. In order to illustrate the strengths of 

our design, in this section some remarkable designs of multiplier-based and 

multiplierless-based schemes are analyzed.  

Multiplier-based schemes: the schemes based on this topology use multiplier 

units to multiply the input signal by the weights of the FIR filters. Since the multiplier 

unit sums the size of its inputs, the product can exceed the minimum number of bits to 



represent the data (e.g. 101*10=01010), and then the hardware resources are not as 

low as possible. This is the main weakness of the multiplier-based schemes. In [98] a 

multiplier topology of the lifting scheme is presented. Its main characteristic is that the 

size of the quantized weights can be selected according to a desired data precision. If 

the size increases, the precision increases too and the quantization error decreases, but 

the hardware cost increases. Since all the weights of the filters require long word-bits 

and it uses a multiplier topology, this design requires a higher number of resources. 

Unlike [98], the design presented in [99] works with fixed size of the quantization of 

the weights. The main disadvantage is that its quantization error is high (∼15%) and 

therefore it is not appropriate for denoising systems (but it is for other kind of 

applications like detection). Both designs are complex in terms of hardware cost. 

Multiplierless-based schemes: unlike the multiplier-based schemes, the 

current ones use shifts and sum operations to carry out the multiplication process. The 

main point is the representation of the weights of the filters with the minimum number 

of bits. The lower the number of nonzero bits, the lower is the number of shifts. 

Typically, the formats are fixed-point, Canonical Signed Digit (CSD) and ratio of integer 

numbers. The CSD format is a special case of fixed-point in which the bit 1 represents a 

positive power of two and 1 a negative power of two (e.g. 
b110.0  is equal to 0.5-

0.125=0.375).  The designs in [100]-[102] use the CSD format to compute the 9/7 

wavelet base. According to their results, the best design in terms of quantization error 

is not the best in terms of latency. The number of SPT terms is at least 21.  

With the purpose to reduce the quantization error, the weights of the filters can 

be represented as ratio of integer numbers.  In [103], [104]  is designed a 5/3 wavelet 

base for the lifting scheme. Although most of the weights have a finite representation as 

rational terms, the gain (√2) is approximated to 44/32 and it gives a high quantization 
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error (∼2.5%). The advantage is that all denominators are power of two and they can 

be easily made by right-shifts. In [105] is shown a wavelet-denoising system by using 

rational 9/7 wavelet base. The denominator of the rational terms is 64 and the 

numerators are in the range [1 46]. Therefore, the size of the internal signals is higher 

than the size of the input speech signal (more hardware resources) and they need at 

least 35 shifts. In our design, the highest denominator is 8 and the numerators of the 

rational terms are in the range [1 6]. It gives a low number of shifts operations (10) and 

therefore a low hardware complexity. The latency of our dwt block is significantly 

lower than in the above designs. Additionally, unlike other designs [106], the gain of the 

decomposition filter is the same as the reconstruction filter (|H(0)|=|G(0)|) and this 

satisfies the requirement of the QMFs. Some of the remarkable works are shown in 

Table 6.4. 

Table 6.4. Comparison of multiplierless-based schemes. [93].  

Design Scheme Quantization Quantization error  Advantage Disadvantage 

[100]  Non-
polyphase 
scheme 

CSD Up to 3.2% i.e. 
unquantized=0.037828455 
quantized=0.0390625 

Optimized to 
PR 
requirement 

Long SPT terms 
(32) 
Long latency 
(23) 

[101]  Polyphase 
scheme 

CSD Up to 7% i.e. 
unquantized=0.037828455 
quantized=0.03515625 

Optimized to 
PR 
requirement 

Long SPT terms 
(32) 
Long latency 
(19) 

[102] Lifting 
scheme 

CSD Up to 0.024 % i.e.  
unquantized=0.8 
quantized=0.7998046875 

Optimized to 
PR 
requirement 

Long SPT terms 
(21) 
Long latency 
(49) 

[103], 
[104] 

Lifting 
scheme 

Integer From 0% to 2.5% 
unquantized=√2 
quantized=44/32 

Optimized to 
PR 
requirement 

Long SPT terms 

[105] Polyphase Integer Up to 0.0031% Optimized to 
PR 
requirement 

Long SPT terms 
Higher size of 
internal signals 

Proposed 
scheme 

Polyphase Integer Up to 0.0031%  
 
reconstruction error  
ET = [0 3*2-15] or up to 
0.0092% 

High 
tradeoff 
between PR, 
latency and 
hardware 
cost 

Fixed to 5/3 
wavelet base 

. 



6.5.5. Comparing to related works: the entire design 

In this section, it is analyzed the quality of the stego signal and the recovered 

secret message of the proposed architecture. Firstly, the differences between host 

signal and stego signal, and between secret message and recovered secret message, are 

measured. Secondly, the Signal-to-Noise-Ratio (SNR) and the Squared Pearson 

Correlation Coefficient, ρ2, are calculated for every pair of signals.  Finally, the results 

are compared to those obtained from other schemes. With the purpose to obtain the 

difference between host signal and stego signal, and between secret message and 

recovered secret message, we include the diff block which calculates the error between 

the above signals. Since the latency between the host signal and the stego signal is 23 (if 

N=8) and the latency between the secret message and the recovered secret message is 

47, the diff block keeps 23 samples of the host signal and 47 samples of the secret 

message.  

 

Figure 6.14.  Output at the transmitter and at the receiver, and their error signals. 

[92]  

 

Figure 6.14 shows in descending order: the stego signal (stego), the difference 

between the stego and the host signal (diffh), the recovered secret message (secretr) 

and the difference between the secret message and the recovered secret message 

(diffs). The stego signal is in the range [-32768 32768] while diffh is in [-600 600], 
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secretr is in [-128 128] and diffs is in [-128 128]. It can be noticed that diffh is similar to 

white noise while diffs is not. In terms of percentage, the difference between host and 

stego is up to 1.8%, per sample; while in the case of the diffs, the difference between 

secret and secretr, most of the samples are under 2% but there are a few up to 80%. 

Since the recovered secret message only contains the information from the secret’s 

coarse-coefficients, the percentage in diffs is higher than the percentage in diffh; in 

other words, it is expected that the quality of the stego signal will be slightly higher 

than the quality of the recovered secret message. 

In order to objectively assess the quality of the output signals (stego and secretr), 

the proposed scheme is simulated in Matlab together with LSB, FM and EWM, and the 

SNR and SPCC are measured in every scheme. Unlike LSB, FM and EWM schemes are 

not suitable for real time processing because they need to know in advance the host 

signal and the secret message. The detail of the algorithms LSB, FM and EWM are 

presented in [56]. The SNR is calculated as follows: 
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Where x, y, are the input signal and the output signal, respectively. At the 

embedding module, the input signal is the host and the output signal is the stego; while 

in the extraction module, the input signal is the secret and the output signal is the 

recovered secret. SNR measures the level of noise of the output signal in relation to the 

input signal, while ρ2 measures the level of similarity between the input and output 

signals (according to eq. 3.2.). The higher SNR and ρ2, the better is the quality of the 

output signal. The results of the simulations are illustrated in Table 6.5. 

 

 



Table 6.5. Quality of the stego signal and the recovered secret message. [92] 

Method 
Host & Stego Secret & Recovered Secret 

SNR ρ2 SNR ρ2 
FM  22.66 0.993 13.99 0.974 
iEWM  30.23 0.998 30.64 0.999 
LSB  33.88 0.999 18.14 0.985 
Proposed  33.88 0.999 16.65 0.978 

 

In relation to the stego signal, the current proposal provides the same results as 

the LSB scheme and better than the FM scheme. In relation to the recovered secret 

message, the quality decreases in relation to the LSB scheme but it is better than the FM 

scheme, again. Although the best global results correspond to the iEWM scheme, that is 

not suitable for real-time implementation. On the other hand, the current proposal has 

the advantage over LSB than it uses an adaptive key and therefore the security of the 

system increases. 
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6.6. Summary 

The wavelet-based speech-in-speech hiding scheme encompasses decomposition, 

sorting, substitution and reconstruction. 

The dwt-idwt blocks use multiplierless topology with the following 

characteristics: 

(i) The 5/3 wavelet base is factorized so that the weights of the filters are 

represented by rational numbers of small integers. A post-scaling stage is 

added to obtain a reconstructed signal with the same dynamic range of the 

input signal.  

(ii) The symmetry property of the biorthogonal base (5/3) is taken into 

account. 

(iii) The reconstruction error is zero if the input signal is an even number and it 

is lower than 0.01% if the input signal is an odd number.  

Finally, the entire design has the following characteristics: 

(i) At the transmitter, the coarse-secret’s coefficients are relocated before the 

hiding process according to an adaptive key. The adaptive key is hidden 

into the detail-host’s coefficients. The detail-secret’s coefficients are 

discarded. 

(ii) At the receiver, the relocation process is completely reversed because the 

detail-host’s coefficients were forced (at the transmitter) to be even 

numbers and therefore the recovered secret key is exactly equal to the 

original secret key. The recovered secret message is highly similar to the 

original secret message (it is not equal because the detail-secret’s 

coefficients were not hidden).  

(iii) The latency and hardware resources of the entire design are extremely low. 

  



 

 

 

 

 

7. Conclusions 
 

Although in every chapter a summary section has been included, the purpose of 

this chapter is to present the general conclusions of the research work. The 

relationship among the chapters and the future work is also taken into account.  
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7.1. General conclusions 

The general conclusions of the research work are: 

(i) The ability of adaptation of speech signals is a useful tool to transmit 

secure speech signals. It can be used in steganographic systems as well as 

cryptographic systems. 

(ii) It was demonstrated that the ability of adaptation is a feasible operation if 

some requirements are satisfied. The adaptation is carried out between 

sounds of different characteristics like their nature (vowels, words), the 

gender of the speaker (female, male) and the language of the plain-text.  

(iii) In the case of steganography, two schemes were proposed.  The first one is 

known as Efficient Wavelet Masking (EWM) and the second one as 

improved Efficient Wavelet Masking (iEWM). They take advantage of the 

masking property of the HAS by using an efficient process of masking based 

on the adaptation of the secret message to the host signal. 

(iv) EWM demonstrates that the statistical transparency is significantly better 

than the obtained in LSB, FM, SS and SSA. The error between the statistics 

of the host signal and the stego signal was always lower than 15%. 

Additionally, the maximum hiding capacity is higher than in SS and SSA and 

similar to LSB and FM. 

(v) iEWM has better robustness against signal manipulation than in EWM, LSB 

and FM. Its transparency is slightly lower than in EWM and the hiding 

capacity is the same.  In terms of trade-off among transparency, robustness 

and hiding capacity, iEWM is the best scheme in comparison with the 

reviewed schemes in the literature.  However, in terms of statistical 

transparency, the best is EWM. 



(vi) In the case of cryptography, a novel scheme of speech scrambling was 

proposed. Unlike traditional approaches, the scrambled speech signal is a 

legible speech signal and the permutation process is based on the 

adaptation between the secret message and a target speech signal. The 

scheme can be viewed as a special case of Time-Frequency Scrambling, TFS. 

(vii) The main advantage of the proposed speech scrambling scheme over the 

known permutation-based speech scrambling schemes is that the perfect 

secrecy is guaranteed because the key-space is equal to the secret-space 

and the scrambled-space. The mapping between the input and the output is 

one-to-one. In addition, the low residual intelligibility is satisfied as the 

high quality of the recovered secret message. 

(viii) Since both the proposed steganography scheme and the scrambling scheme 

require knowing in advance the speech signals, they are not suitable for 

real-time operation. Therefore, in the proposal on hardware devices the 

adaptation is carried out in small frames. The stego signal is obtained 

quasi-immediately at the time that the speech signal and the host signal are 

pronounced. Additionally, the transparency is similar to the obtained in 

LSB scheme but the security is higher.  
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7.2. Future work 

Although the aim of the research and its specific objectives has been covered in 

the current PhD project, some topics for a future work can be identified: 

 

(i) In the proposal, the ability of adaptation of speech signals is carried out by 

a deterministic search but there is at least one alternative to provide it. A 

heuristic search is an alternative solution and this can decrease (or not) the 

execution time. A research that compares the response time and the 

effectiveness of the algorithm is a future work. 

 

(ii) On the other hand, the adaptation per time-frames can be considered, too. 

For example, if the secret message is too long (several minutes), the 

adaptation can be carried out by time-frames of seconds and then, the 

execution time can decrease in comparison to the case when the entire 

speech signal is adapted. In this case, the key encompasses several sub-

keys. The research should analyze if additional requirements are needed as 

well as the quality of the adapted speech signal by time-frames. In a similar 

way of the above point, the execution time should be compared, too. 

 

 

 

 

 

 

 

  



 

 

 

 

8. Thesis results dissemination 
 

The purpose of this chapter is to collect the results of the PhD research work. It 

encompasses published papers as well as accepted papers in international 

journals. 
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8.1. Journals: published papers 

 

The following papers have been published as result of the research work: 

 

D.M. Ballesteros L, J.M. Moreno A, On the ability of adaptation of speech signals 

and data hiding, Expert Systems with Applications, vol. 39, 2012, pp. 12574-12579. 

http://dx.doi.org/10.1016/j.eswa.2012.05.027  

 

D.M. Ballesteros L, J.M. Moreno A, Highly transparent steganography model of 

speech signals using Efficient Wavelet Masking, Expert Systems with Applications, vol. 

39 , 2012, pp. 9141-9149. http://dx.doi.org/10.1016/j.eswa.2012.02.066  

 

D.M. Ballesteros L, J.M. Moreno A, (In Press) Real-time, speech-in-speech hiding 

scheme based on least significant bit substitution and adaptive key, Comput Electr Eng, 

2013, http://dx.doi.org/10.1016/j.compeleceng.2013.02.006   

 

D.M. Ballesteros L, J.M. Moreno A, (In Press) Wavelet-denoising on hardware 

devices with Perfect Reconstruction, low latency and adaptive thresholding, Comput 

Electr Eng, 2013, http://dx.doi.org/10.1016/j.compeleceng.2013.03.005    

 

Dora M. Ballesteros L, Juan M. Moreno A, A bit more on the ability of adaptation 

of speech signals. Rev. Fac. Ing. Univ. Antioquia, vol. 66, Issue 1, 2013, pp. 82-90.  

〈http://aprendeenlinea.udea.edu.co/revistas/index.php/ingenieria/article/view/1504

2/13127 〉 (last checked 18.04.13).  

 

 



8.2. Journals:  under review 

The following paper has been submitted and it is under review: 

D.M. Ballesteros L, J.M. Moreno A, (Under Review) Speech scrambling based on 

the ability of adaptation of speech signals, Digital Signal Processing. (Submitted:  

27.10.12). 
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