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Abstract

In recent years, wireless sensor networks have attracted considerable attention in the research

community. Their development, induced by technological advances in microelectronics,

wireless networking and battery fabrication, is mainly motivated by a large number of possible

applications such as environmental monitoring, industrial process control, goods tracking,

healthcare applications, to name a few.

Due to the unattended nature of wireless sensor networks, battery replacement can be either

too costly or simply not feasible. In order to cope with this problem and prolong the network

lifetime, energy efficient data transmission protocols have to be designed. Motivated by

this ultimate goal, this PhD dissertation focuses on the design of collaborative beamforming

schemes for wireless sensor networks with energy harvesting capabilities. On the one hand,

by resorting to collaborative beamforming, sensors are able to convey a common message to

a distant base station, in an energy efficient fashion. On the other, sensor nodes with energy

harvesting capabilities promise virtually infinite network lifetime. Nevertheless, in order to

realize collaborative beamforming, it is necessary that sensors align their transmitted signals

so that they are coherently combined at the destination. Moreover, sensor nodes have to adapt

their transmissions according to the amounts of harvested energy over time.

First, this dissertation addresses the scenario where two sensor nodes (one of them capable

of harvesting ambient energy) collaboratively transmit a common message to a distant base

station. In this setting, we show that the optimal power allocation policy at the energy

harvesting sensor can be computed independently (i.e., without the knowledge of the optimal

policy at the battery operated one). Furthermore, we propose an iterative algorithm that allows

us to compute the optimal policy at the battery operated sensor, as well. The insights gained

by the aforementioned scenario allow us to generalize the analysis to a system with multiple

energy harvesting sensors. In particular, we develop an iterative algorithm which sequentially

optimizes the policies for all the sensors until some convergence criterion is satisfied. For the

previous scenarios, this PhD dissertation evaluates the impact of total energy harvested, number

of sensors and limited energy storage capacity on the system performance.

Finally, we consider some practical schemes for carrier synchronization, required in order to

implement collaborative beamforming in wireless sensor networks. To that end, we analyze
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two algorithms for decentralized phase synchronization: (i) the one bit of feedback algorithm

previously proposed in the literature; and (ii) a decentralized phase synchronization algorithm

that we propose. As for the former, we analyze the impact of additive noise on the beamforming

gain and algorithm’s convergence properties, and, subsequently, we propose a variation that

performs sidelobe control. As for the latter, the sensors are allowed to choose their respective

training timeslots randomly, relieving the base station of the burden associated with centralized

coordination. In this context, this PhD dissertation addresses the impact of number of timeslots

and additive noise on the achieved received signal strength and throughput.
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Resumen

En los últimos años, las redes de sensores inalámbricas han atraído considerable atención en

la comunidad investigadora. Su desarrollo, impulsado por recientes avances tecnológicos en

microelectrónica y radio comunicaciones, está motivado principalmente por un gran abanico

de aplicaciones, tales como: Monitorización ambiental, control de procesos industriales,

seguimiento de mercancías, telemedicina, entre otras.

En las redes de sensores inalámbricas, es primordial el diseño de protocolos de transmisión

energéticamente eficientes ya que no se contempla el reemplazo de baterías debido a su coste

y/o complejidad. Motivados por esta problemática, esta tesis doctoral se centra en el diseño de

esquemas de conformación de haz distribuidos para redes de sensores, en el que los nodos son

capaces de almacenar energía del entorno, lo que en inglés se denomina energy harvesting.

En primer lugar, esta tesis doctoral aborda el escenario en el que dos sensores (uno de

ellos capaz de almacenar energía del ambiente) transmiten conjuntamente un mensaje a una

estación base. En este contexto, se demuestra que la política de asignación de potencia

óptima en el sensor con energy harvesting puede ser calculada de forma independiente (es

decir, sin el conocimiento de la política óptima del otro sensor). A continuación, se propone

un algoritmo iterativo que permite calcular la política óptima en el sensor que funciona con

baterías. Este esquema es posteriormente generalizado para el caso de múltiples sensores. En

particular, se desarrolla un algoritmo iterativo que optimiza las políticas de todos los sensores

secuencialmente. Para los escenarios anteriormente mencionados, esta tesis evalúa el impacto

de la energía total cosechada, número de sensores y la capacidad de la batería.

Por último, se aborda el problema de sincronización de fase en los sensores con el fin de poder

realizar la conformación de haz de forma distribuida. Para ello, se analizan dos algoritmos para

la sincronización de fase descentralizados: (i) el algoritmo "one bit of feedback" previamente

propuesto en la literatura, y (ii) un algoritmo de sincronización de fase descentralizado que se

propone en esta tesis. En el primer caso, se analiza el impacto del ruido aditivo en la ganancia

y la convergencia del algoritmo. Además, se propone una variación que realiza el control

de lóbulos secundarios. En el segundo esquema, los sensores eligen intervalos de tiempo de

forma aleatoria para transmitir y posteriormente reciben información de la estación base para

ajustar sus osciladores. En este escenario, esta tesis doctoral aborda el impacto del número de
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intervalos de tiempo y el ruido aditivo sobre la ganancia de conformación.
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Resum

En els darrers anys, les xarxes de sensors sense fils han estat objecte d’atenció per la

comunitat investigadora. El seu desenvolupament, impulsat pels recents avenços tecnològics

en microelectrònica i ràdio comunicacions, està motivat principalment per un gran ventall

d’aplicacions, com ara: Monitorització ambiental, control de processos industrials, seguiment

de mercaderies i telemedicina, entre altres.

A les xarxes de sensors sense fils és primordial el disseny de protocols de transmissió

energèticament eficients, ja que no es contempla la substitució de bateries a causa del seu

cost i / o complexitat. Motivats per aquesta problemàtica, aquesta tesi doctoral es centra en el

disseny d’esquemes de conformació de feix distribuïts per xarxes de sensors capaços d’obtenir

i emmagatzemar energia de l’entorn, el que en anglès s’anomena energy harvesting.

En primer lloc, aquesta tesi doctoral aborda l’escenari en el qual dos sensors (un d’ells

capaç d’emmagatzemar energia de l’ambient) conjuntament transmeten un mateix missatge

a la estació base. En aquest context, es demostra que la òptima política d’assignació de

potència en el sensor amb energy harvesting pot ser calculada de forma independent (és a

dir, sense el coneixement de la política òptima de l’altre sensor). A continuació, es proposa

un algoritme iteratiu que permet calcular la política òptima en el sensor que funciona amb

únicament amb bateries. Aquest esquema és posteriorment generalitzat per al cas de múltiples

sensors. En particular, es desenvolupa un algoritme iteratiu que optimitza les polítiques de

tots els sensors seqüencialment. Pels escenaris anteriorment esmentats, aquesta tesi avalua

l’impacte de l’energia total recollida, nombre de sensors i la capacitat de la bateria.

Finalment, es considera el problema de sincronització de fase entre els sensors necessari per tal

de poder realitzar la conformació de feix de forma distribuïda. Per aquest escenari, s’analitzen

dos algorismes de sincronització de fase descentralitzats: (i) l’algoritme "one bit of feedback"

prèviament proposat en la literatura, i (ii) un algoritme de sincronització de fase descentralitzat

que es proposa en aquesta tesi. En el primer cas, s’analitza l’impacte del soroll additiu en el

guany i la convergència de l’algoritme. A més, es proposa una variació que realitza el control

de lòbuls secundaris. En el segon esquema, els sensors trien intervals de temps de forma

aleatòria per transmetre i posteriorment reben informació de l’estació base per ajustar els seus

oscil·ladors. En aquest escenari, aquesta tesi doctoral aborda l’impacte del nombre d’intervals
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de temps i el soroll additiu sobre el guany de conformació.
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Chapter 1

Introduction

1.1 Motivation

Recent improvements in wireless networking, microfabrication and embedded microprocessors

have enabled the production of low-cost sensor nodes. Wireless Sensor Networks (WSNs),

which typically consist of a large number of sensor nodes, are used in many commercial

and military applications, these including industrial process control, environmental monitoring

(e.g., measuring temperature, humidity, air pressure, etc.), healthcare (patient’s vital parameter

monitoring), battlefield surveillance (enemy localization and tracking), and many others. In a

near future, it is foreseen that in the “Internet of Things”, the objects in our environment will

be able to communicate among themselves without human intervention. This could potentially

result in reduction of cost and losses, greatly improving the quality of life as we know it. All

these promises and potentially huge future markets have driven research in decentralized signal

processing, cooperative communications, energy harvesting technologies, and microelectron-

ics.

In contrast to ordinary data networks, mainly used for human communications, wireless sen-

sor networks pose new challenges to the research community. Constraints, such as size and

production cost, result in wireless sensor nodes which have limited computational capabilities,

this requiring new data processing and communication schemes to be developed. Moreover,
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Chapter 1. Introduction

replacing depleted sensor batteries might not be affordable or simply not feasible (e.g. when

sensors are deployed in remote places). Harvesting ambient energy, however, makes it possible

to overcome this drawback, resulting in a virtually infinite network lifetime. Still, the optimal

allocation of such harvested energy can be quite challenging due to the random nature and vari-

ability of ambient energy sources. This, in turn, requires new approaches to problem solving,

different from those used in battery-operated communication systems.

In some scenarios (e.g. remote area monitoring), sensor nodes need to communicate to a distant

Base Station (BS). This turns out to be particularly challenging for low-power sensor nodes. In

such situations, Distributed Beamforming (DBF), a technique by which sensors coordinate their

transmissions to collaboratively send information, may become a viable solution. However,

distributed beamforming requires precise carrier phase and frequency synchronization among

all the sensor nodes, which turns out to be particularly difficult, due to the distributed nature of

wireless sensor networks.

This PhD dissertation revolves around the design of collaborative beamforming schemes in

wireless sensor networks with energy harvesting capabilities. In particular, it attempts to find

the answer to the questions such as: How to allocate the available energy over time when en-

ergy harvesting and battery operated sensor collaborate? How the energy allocation changes

when multiple energy harvesting sensors are used? What is the impact of energy storage con-

straints and/or battery aging? What is the influence of different amounts of energy at sensor

nodes on the achieved throughput? As for distributed synchronization schemes, this disserta-

tion addresses questions such as: What is the impact of the number of base stations and their

location? How does interference impact on the the algorithm’s convergence rate? And many

others.

In the following section, we outline the contents of this PhD Dissertation. Next, we provide the

list of journal and conference papers that have resulted of this work.

1.2 Outline

This PhD dissertation focuses on the design and analysis of distributed beamforming schemes

for wireless sensor networks with energy harvesting capabilities. It is organized as follows:

Chapter 2 provides the reader with some background on the concepts to be used throughout this

PhD dissertation. First, we provide a general overview of wireless sensor networks. Second,

we revisit channel models for different wireless communication scenarios. Then, we briefly

revisit the concept of antenna arrays and distributed beamforming. Next, we discuss a number

of energy harvesting concepts, highlighting particularities related to wireless sensor networks.

Finally, we outline some basic concepts in convex optimization.
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1.2. Outline

In Chapter 3, we consider a scenario where one energy harvesting (EH) and one battery op-

erated (BO) sensors cooperate to transmit (beamform) a common message to a distant base

station. Our goal is to find the jointly optimal power allocation strategy which maximizes the

total throughput for a given deadline. We initially assume that the energy harvesting sensor

is equipped with a re-chargeable battery of infinite storage capacity. In this context, we iden-

tify the necessary conditions for the jointly optimal transmission policy. This leads to convex

optimization problem. Furthermore, we prove that the optimal policy for the EH node can

be computed independently from that of the BO one, and propose an algorithm to compute

the latter from the former. Next, we generalize the analysis for a scenario in which the stor-

age capacity of the EH sensor is finite. In addition, we analyze the computational complexity

associated with the proposed optimization method. We also consider imperfections in the re-

chargeable battery of the EH sensor. More specifically, we focus on the impact of long-term

capacity degradation. The performance of the proposed algorithm is assessed in a scenario

where solar energy is harvested from the environment.

Chapter 4 generalizes the scenario addressed in Chapter 3, by considering a setting where mul-

tiple energy harvesting sensors transmit a common message using collaborative beamforming.

Again, the aim is to identify the jointly optimal transmission policy which maximizes the total

throughput for a given deadline. In this setup, as opposed to Chapter 3, the policy at each EH

sensor node cannot be computed independently. Therefore, we derive a semi-analytical solu-

tion which leverages on the coordinate descent method and an iterative algorithm, on which

basis one can compute the optimal policy for one sensor whilst the policies for the remaining

sensors are held fixed. We rigorously prove the optimality of the proposed method for a vir-

tual array with an arbitrary number of EH sensor nodes, and, for the sake of completeness, we

analyze its computational complexity. Besides, we extensively assess the performance of the

proposed method in a realistic system scenario where vibrational energy is harvested from the

environment.

Chapter 5 addresses the problem of distributed carrier synchronization. More specifically, we

generalize the so-called one bit of feedback carrier synchronization algorithm to encompass

sidelobe control mechanisms. The performance of the proposed algorithm is assessed in terms

of Received Signal Strength (RSS) as well as the algorithm’s convergence rate. Next, we

consider a more realistic scenario with Additive White Gaussian Noise (AWGN). More specif-

ically, we assess the impact of noise on the achievable beamforming gain and initial conver-

gence rate. In order to maximize the received signal strength after algorithm’s convergence,

complementarily, we also investigate the optimal number of samples per iteration, as a func-

tion of the noise variance.

Furthermore, we propose a decentralized phase synchronization scheme where sensor ran-

domly choose their respective training timeslots. In this context, we ask ourselves whether

there exists an optimal number of training timeslots, and about the optimal split for the training

and data transmission periods. To answer this question, we analytically derive upper bounds of
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the resulting beamforming gain in two scenarios of interest: ideal, and noisy phase shift esti-

mation. Computer simulation results are mainly given in terms of (normalized) beamforming

gain and achievable throughput.

Chapter 6 concludes this PhD dissertation with a summary and discussion of the main results

of this work. A number of topics for future work in this research area are outlined, as well.

1.3 Contribution

Chapter 3

Contributions of Chapter 3 have resulted in 1 journal paper and 1 conference paper.

• L. Berbakov, C. Anton-Haro, and J. Matamoros, Optimal Transmission Policy for Coop-

erative Transmisssion with Energy Harvesting and Battery Operated Sensor Nodes. To

appear in Elsevier Signal Processing Journal, pp. 1-30, submission date: Jun. 15th 2012,

(accepted for publication).

• L. Berbakov, J. Matamoros, and C. Anton-Haro, Optimal Transmission Policy for Dis-

tributed Beamforming with Energy Harvesting and Battery Operated Sensor Nodes, in

Proceedings of International Symposium on Wireless Communication Systems (ISWCS

2012), Aug. 2012, Paris (France).

Chapter 4

Contributions of Chapter 4 have resulted in 1 journal paper and 2 conference papers.

• L. Berbakov, C. Anton-Haro, and J. Matamoros, Joint optimization of transmission poli-

cies for collaborative beamforming with energy harvesting sensors. Submitted to IEEE

Transactions on Wireless Communications, pp. 1-13, submission date: Nov. 11th 2012

(second review round).

• L. Berbakov, J. Matamoros, and C. Anton-Haro, Greedy transmission strategies for col-

laborative beamforming with energy harvesting sensors, in Proceedings of 7th Interna-

tional ITG Workshop on Smart Antennas (WSA 2013), March 2013, Stuttgart (Ger-

many).

• L. Berbakov, C. Anton-Haro and J. Matamoros, Optimal Transmission Policy for Col-

laborative Beamforming with Finite Energy Storage Capacity, submitted to IEEE Inter-

national Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC

2013), Sep. 2013, London (UK).
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Chapter 5

Contributions of Chapter 5 have resulted in 4 conference papers.

• L. Berbakov, C. Anton-Haro, and J. Matamoros, Distributed beamforming with sidelobe

control using one bit of feedback, in Proceedings of 73rd Vehicular Technology Confer-

ence (VTC Spring 2011), May 2011, Budapest (Hungary).

• L. Berbakov, J. Matamoros, and C. Anton-Haro, Decentralized phase synchronization

scheme for collaborative beamforming in wireless sensor networks, in Proceedings of

19th European Signal Processing Conference (EUSIPCO 2011), Sep. 2011, Barcelona

(Spain).

• L. Berbakov, C. Anton-Haro, and J. Matamoros, Distributed beamforming using one bit

of feedback: AWGN analysis, in Proceedings of 18th European Wireless Conference

(EW 2012), Apr. 2012, Poznan (Poland).

• L. Berbakov, C. Anton-Haro, and J. Matamoros, Decentralized phase synchronization

scheme for distributed beamforming in WSN with quantized phase feedback, in Proceed-

ings of Future Network Mobile Summit (FUNEMS 2012), July 2012, Berlin (Germany).
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Chapter 2

Background

In this chapter, we provide an overview of a number of concepts and tools which will be used

throughout this PhD dissertation. First, in Section 2.1, we discuss some important hardware-

and communication-related issues in wireless sensor networks. Then, in Sections 2.2 and 2.3,

we provide some background on channel models for wireless communications. Next, in Section

2.4, we present an overview of distributed antenna arrays and beamforming, and its applica-

bility in wireless sensor network contexts. Then, in Section 2.5, we briefly introduce energy

harvesting technologies. Finally, in Section 2.6, we provide some necessary background on

convex optimization tools.

2.1 Wireless sensor networks

Wireless sensor networks have become very popular in recent years, especially in areas where

timely information about the physical world is crucial. This trend is expected to continue in

coming years, mainly due to recent advances in microelectronics and the reduction of sensor

fabrication costs. In a near future, it will be possible to incorporate hundreds or even thousands

of sensors into various systems, to improve their performance and decrease the maintenance

costs. A sensor node is usually composed of one sensing unit (one or more sensors with an

A/D converter), one microprocessor, some memory, one RF transceiver, some energy storage
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SENSORS

ADC

MEMORY

MICROPROCESSOR

RF TRANSCEIVER

ENERGY STORAGE (BATTERY)

ENERGY HARVESTING

SENSING PROCESSING COMMUNICATION

Figure 2.1: Block diagram of a wireless sensor node.

capacity and, possibly, an energy harvesting device (see Figure 2.1). The sensing unit may

consist of many different types of sensor such as: thermal, seismic, acoustic, infrared, radar,

etc. which, in turn, are able to monitor a variety of physical parameters such as: temperature,

humidity, concentration of pollutants, object proximity, mechanical stress, etc. This motivates

a range of possible applications for wireless sensor networks such as: environmental monitor-

ing, industrial process control, military surveillance, healhcare monitoring, space exploration,

among others.

In some applications, the exact location of individual sensors is not of great importance. This

allows their random deployment (e.g., from an airplane) in remote areas. In these scenarios,

however, the replacement of depleted batteries is quite often either costly, difficult or simply

impossible to accomplish. Consequently, energy efficiency becomes of a great importance in

wireless sensor networks, this being in stark contrast with Wireless Data Networks (WDN)

where more emphasis is given to traditional Quality of Service (QoS) requirements such as

achievable throughput and/or maximum communication delay. Energy efficiency aspects must

be addressed at every layer of the protocol stack: from the modulation scheme and power

allocation at the physical layer to the upper-layer protocols.

Until now, many different platforms have been developed for wireless sensor networks. Cheaper,

low-end nodes such as Mica, Mica2, MicaZ [1], BTnodes, etc. are equipped with Atmel AVR

microcontrollers with a CPU speed of 8-16 MHz and 128-256 kB of programmable flash mem-

ory. These sensor nodes operate on different ISM frequency bands such as 868 MHz, 915 MHz

and 2.4 GHz, achieving data rates from 10 - 250 kbps. As long as some advanced functions,

such as network management, are considered, the low-end devices might be out of game. To

provide these functions, high-end nodes have also been developed. To name a few, Stargate,

Netbridge NB-100 and Imote2, are equipped with more memory (8-32 MB), faster processors

(13-400 MHz), and additional communication modules such as 802.11 and bluetooth.

To ensure inter-platform compatibility and specify a technology for low-data-rate wireless

transceiver technology with low complexity and long battery lifetime, the IEEE 802.15.4 work-

ing group was formed. The resulting standard specifies three different operating frequency
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bands: 868 MHz (1 channel, Europe), 915 MHz (10 channels, America) and 2.4 GHz (16

channels, global availability). Physical layer supports ASK and BPSK modulation schemes

for the 868 and 915 MHz bands, and O-QPSK for all three frequency bands. The transmis-

sion range of individual sensor nodes is typically 10-100 m with data rates ranging from 20

to 250 kbps. IEEE 802.15.4 only standardizes the Physical and MAC layers, leaving the stan-

dardization of the upper layers to other standard bodies, such as ZigBee, WirelessHART, and

WINA.

2.2 Information theoretical channel models

In this section, we provide a brief introduction to channel models. The definition of a channel

model mainly depends on the number of users involved in the communication. In terms of

information theory, the channel models are divided into two groups:

• Single-user channel model: This channel model is used to provide an analytical frame-

work for analyzing scenarios where one user sends data to another user. In the particular

case where the noise is Gaussian, the resulting channel is usually referred to as a Gaus-

sian point-to-point channel model.

• Multi-user channel models: These channel models are used to model communication

scenarios where multiple users exchange data. A more general multi-user channel model

can be built by combining the following, simpler multi-user channel models, namely:

Gaussian Multiple Access Channel (MAC) [2, Section 15.1.2], which is used to model a

scenario where two or more transmitters send information to a common receiver; Gaus-

sian broadcast channel [2, Section 15.1.3], where one transmitter sends data to two or

more receivers; Gaussian relay channel [2, Section 15.1.4], where transmitter sends data

to a receiver with the help of relays; and Gaussian interference channel [2, Section

15.1.5], where two (or more) transmitters transmit data to two (or more) receivers at

the same time and cause interference to one another.

For the reader’s convenience, in the sequel, we only provide a more detailed description of

those channel models which are particularly relevant to this dissertation.

2.2.1 Gaussian point-to-point channel

Here, we consider the discrete-time and memoryless1 Gaussian channel. In this channel, given

an input Xi, the output Yi is given as the sum of the input Xi and the noise Zi, as shown

1The output probability distribution at time i only depends on the current channel input and the noise.

9



Chapter 2. Background
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Figure 2.2: Gaussian channel.

in Figure 2.2. Noise realizations are i.i.d. and Gaussian distributed random variables with

variance σ2, whereas {Xi}ni=1 denotes the transmitted codeword of length n with probability

density function f(x). Therefore, according to Figure 2.2, the output Yi is given by

Yi = Xi + Zi, Zi ∼ N (0, σ2), (2.1)

where the noise Zi is assumed to be independent of the signal Xi.

In real communication systems, the transmitter has limited transmit power. Consider an average

power constraint P , i.e. for any codeword {Xi}ni=1 transmitted over the channel, we have that

E{X2} = 1

n

n∑

i=1

X2
i ≤ P. (2.2)

Bearing this in mind, the capacity of this channel, C, defined as the maximum of the mutual

information between the input and output, is given as follows

C = max
f(x):E{X2}≤P

I(X ; Y ), (2.3)

where f(x) denotes the probability density function of the input X and the mutual information

I(X ; Y ) is defined [2] as follows

I(X ; Y ) ,

∫

X

∫

Y

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
dxdy, (2.4)

with pX,Y (x, y) denoting the joint probability density function. It can be shown [2], that the

optimal input is Gaussian distributed as Xi ∼ N (0, P ), and hence, the capacity reads

C =
1

2
log

(

1 +
P

σ2

)

bits/channel use. (2.5)

2.2.2 Gaussian multiple-access channel

The Multiple-Access Channel (MAC) models a scenario in which two or more transmitters send

data to a common receiver, as shown in Figure 2.3. In this scenario, in addition to noise, the

interference from the other transmitters must be considered as well. In the sequel, we consider
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Figure 2.3: Gaussian Multiple-Access channel.

a Gaussian MAC channel with M transmitters, each subject to an average power constraint P .

The received signal is given by

Y =
M∑

i=1

Xi + Z, Z ∼ N (0, σ2). (2.6)

The maximum achievable rates region for the MAC Gaussian channel must satisfy [2, Section

15.1.2]:

Ri < CG

(
P

σ2

)

, (2.7)

Ri +Rj < CG

(
2P

σ2

)

, (2.8)

...

M∑

i=1

Ri < CG

(
MP

σ2

)

, (2.9)

where CG (x) = 1
2
log (1 + x) denotes the capacity of a single user Gaussian channel.

In the case where the codebooks of all the transmitters are fully correlated, i.e. when all the

transmitters transmit the information with the same codeword using beamforming, the capacity

is given by

C =
1

2
log

(

1 +
M2P

σ2

)

, (2.10)

where the M2 factor is the so-called beamforming gain.

2.2.3 Gaussian interference channel

In Figure 2.4, we depict a Gaussian interference channel comprising two transmitters and two

receivers. In the given setup, the transmitter 1 wants to send information to receiver 1; likewise,

transmitter 2 sends information to receiver 2. The channel gains to the intended receivers are
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Figure 2.4: Gaussian interference channel.

normalized, whereas
√
a and

√
b denote the gains for crossover channels. For the given model,

the received signals can thus be expressed as follows:

Y1 = X1 +
√
aX2 + Z1 (2.11)

Y2 = X2 +
√
bX1 + Z2 (2.12)

where Z1 and Z2 are modeled as independent Gaussian random variables. The capacity region

of interference channel is not known in general. However, in some particular scenarios, it can be

found. For strong interference scenarios (when the signal received from unintended transmitter

is stronger), the capacity region is characterized in [3]. In addition, the results regarding the

capacity region and low interference sum capacity are given in [4].

2.3 Fading channels

In wireless channels, in addition to noise and interference, which might be present in wired

channel as well, there exist some additional challenges, such as multipath fading and shadow-

ing, which often change over time in an unpredictable manner. For communication scenarios

where the location, number and dielectric characteristics of scatterers are not known, statistical

models must be used. In scenarios without a Line-of-Sight (LoS) component, only signals re-

flected from the surrounding objects are combined at the receiver. Let us assume that the signal

transmitted is the unmodulated carrier s(t) = R
{
ej(2πfct+φ0)

}
. Then, the signal received will

correspond to a sum of N multipath components:

r(t) = R
{(

N∑

n=1

an(t)e
jφn(t)

)

ej2πfct

}

, (2.13)

where the phase term φn(t) includes the initial phase offset φ0 and the delay associated with

each multipath component, and an(t) stands for the corresponding path loss. Alternatively, the
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received signal can also be rewritten as:

r(t) = rI(t) cos 2πfct + rQ(t) sin 2πfct, (2.14)

where the in-phase and quadrature components are given by:

rI(t) =

N∑

n=1

an(t) cosφn(t),

rQ(t) =

N∑

n=1

an(t) sinφn(t). (2.15)

By considering N large, and by resorting to the central limit theorem 2, rI(t) and rQ(t) can be

well approximated as jointly Gaussian random processes. Then, if both rI(t) and rQ(t) have

variance equal to σ2, the signal envelope

z(t) = |r(t)| =
√

r2I (t) + r2Q(t), (2.16)

is Rayleigh-distributed, namely

pZ(z) =
z

σ2
e−

z2

2σ2 , (2.17)

and, the phase θ = arctan(rQ(t)/rI(t)) is uniformly distributed, i.e. θ ∼ U(0, 2π).

Conversely, in a channel with a strong LoS component, rI(t) and rQ(t) are not zero-mean. In

this case, the received signal can be found as the sum of an LoS component and a complex

Gaussian component. Consequently, the signal envelope is shown to be a Rician-distributed

random variable, where the Rician distribution is given by:

pZ(z) =
z

σ2
e−

(z2+s2)

2σ2 I0(
zs

σ2
), (2.18)

with 2σ2 accounting for the average power of the non-LoS multipath components, s2 standing

for the power of the LoS component, and the function I0 denoting the modified Bessel function

of 0-th order.

2.4 Distributed beamforming techniques for wireless sensor

networks

A technique where two or more antennas align their carrier signals in such a way that, after

propagation, they combine coherently at the destination is known as transmit beamforming.

On the one hand, this technique has clear benefits when compared to single antenna systems,

2Note that an(t) and φn(t) are stationary and ergodic random processes.
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such as: increased gain in received power, reduced interference levels to unintended directions

and improved security. On the other hand, wireless transmitters with multiple antennas usually

require a more complex circuitry, which is not suitable for wireless sensor network applications

due to cost and size constraints.

Bearing in mind the advantages of transmit beamforming, one could wonder whether it can

be implemented in a distributed scenario such as wireless sensor network. Until now, several

research groups have conducted research on scenarios where sensor nodes cooperatively trans-

mit a common message. They have shown that such collaborative transmission result in all

the advantages of multi-antenna systems and, at the same time, the individual node complexity

can be kept sufficiently low. However, in order to put this idea into a practical scenario, one

has to face a variety of challenges such as information sharing, carrier and time synchroniza-

tion, which can be difficult to accomplish, because of the distributed nature of wireless sensor

networks.

Next, we outline a number of important issues in distributed beamforming contexts, namely,

distributed carrier synchronization, beampattern analysis, and sidelobe control.

2.4.1 Distributed carrier synchronization

In centralized antenna arrays, frequency and phase synchronization can be assumed at all an-

tenna elements. This assumption, however, does not hold in distributed antenna arrays (see

Fig 2.5) since, here, each sensor is equipped with its own (low-quality) oscillator, which works

independently from the others. Consequently, the signals transmitted by each sensor will have

different initial phase. The transmitted signal, furthermore, may exhibit a significant drift, es-

pecially in temperature varying environments (i.e., in outdoor WSNs). Moreover, the exact

locations of individual nodes are usually not known, this resulting in unknown phase change

of the signal, due to different distances between each sensor and the destination. All the afore-

mentioned effects pose serious obstacles to achieve coherent reception at the destination. Thus,

before dealing with more complex concepts, such as beampattern analysis and sidelobe control,

it is of a paramount importance to solve the problem of distributed carrier synchronization first.

One way for sensors to determine the common time scale is by resorting to mutual synchro-

nization techniques. Since all the sensors are assumed to have the same role in synchronization,

mutual synchronization is preferred in networks where sensors are equipped with oscillators of

same accuracy. This method, however, usually entails large overhead. Moreover, some sort of

multiple access scheme is necessary in order to differentiate one clock from the other. These

issues must be particularly taken into account, especially in scenarios with large number of

nodes, where a long synchronization overhead may diminish the energy savings due to beam-
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BS

WSN

Figure 2.5: Distributed Beamforming in WSN.

forming.

Another possibility is to have a so called master node, which is used to help slave nodes to

synchronize. Since propagation delays from master to slaves and from slaves to the destination

are different, in order to account for these different delays, the oscillators at the slaves must

precompensate their initial phase shifts. In [5], the authors propose a scheme where multiple

transmitters adjust their carrier frequency and phase by tracking the clock of the destination.

More specifically, the BS sends a common master beacon to all the sensor nodes. Each node

"bounces" the master beacon back to the BS using a frequency different from that of the master

beacon. In the proposed scheme, sensor nodes are distinguished by different direct-sequence

codes at the BS. After receiving node transmissions, the BS estimates received phase of each

sensor node relative to the transmitted master beacon. Next, the base station quantizes these

estimates and sends them to the source nodes in a phase compensation message. Finally, after

receiving the phase compensation message, each sensor node extracts its own phase compen-

sation estimate and adjusts its carrier phase.

In [6], the authors consider a scenario where two sensor nodes S1 and S2 act as a distributed

antenna array in order to send a common message to a destinationD (see Figure 2.6). Similarly

to [5], the destination sends a beacon at frequency f0 to source nodes. However, this beacon

is not directly used for carrier synchronization. Instead, each sensor generates a secondary

sinusoidal beacon that is phase locked to the master beacon, but at different frequency, namely

f1 = N1

M1
f0. The secondary beacons propagate between the sensors, and, upon being received

by the other sensor node, they are used to generate a carrier signal at frequency fc =
N2

M2
f1, that

is phase locked to the received secondary beacon signal. In the proposed scheme, the authors

assume that the overall propagation delay in both D → S1 → S2 → D and D → S2 →
S1 → D directions is the same (see Figure 2.6). With this assumption, and by preserving the

phase of the corresponding beacon signal when using frequency synthesis, the overall phase

shift for both directions turns out to be the same. As a consequence, when the carrier signals
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Figure 2.6: Time-slotted round-trip carrier synchronization.

arrive at the destination D, they will have the same phase. This work is further generalized

in [7], by considering a scenario where multiple source nodes form a distributed antenna array.

The proposed schemes, unfortunately, require multiple PLL loops at source nodes in order

to accomplish simultaneous beacon receiving and data transmission. This, in turn, requires

some additional complexity at individual nodes, that, in some cases, might not be affordable in

wireless sensor network contexts.

A carrier synchronization scheme, suitable for simple hardware usually found on cheap sensor

nodes, is proposed in [8]. In particular, the authors propose a simple carrier phase synchroniza-

tion algorithm requiring only one bit of feedback per iteration. In the proposed scheme, all the

sensors make random phase perturbations of their carriers in each algorithm’s iteration. The

sum received signal strength Y is measured at the destination and compared to the received

signal strength from the previous iteration. The outcome of this comparison is then fedback to

all the sensors, telling them to either retain or discard the last phase perturbation, according to

the following rule:

Feedback =

{

“1” - keep the perturbation if Y [n] > Y [n− 1]

“0” - discard the perturbation if Y [n] ≤ Y [n− 1]
, (2.19)

where n denotes the iteration index. This procedure is repeated until some prescribed level

of the received signal strength is achieved. The main result of this paper is the analytical

expression modelling the evolution of the normalized received signal strength as a function of

algorithm’s iteration, as shown in Figure 2.7. Although the proposed scheme does not require

a complex hardware at individual sensors, it has some drawbacks. Namely, it is shown that the

algorithm’s convergence time scales linearly with the number of sensors. As a consequence,

for large networks, the energy spent for carrier synchronization might be much higher than the

energy saved due to distributed beamforming.

In [9], the authors extend the work in [8] by explicitly including carrier frequency synchroniza-
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Figure 2.7: Monte Carlo simulation of optimized beamforming algorithm with N = 1000

transmitters, where the pdf of phase perturbations is numerically optimized, [8].

tion as well. In addition, in [9], the authors provide the experimental verification of the pro-

posed distributed beamforming scheme. It is important to note that the scheme proposed in [8]

assumes an ideal scenario, with only one destination and perfect estimation of the received

signal strength. In practice, however, many different WSNs can be deployed in neighboring

areas, making inter-network interference an important challenge. In addition, the noise at the

receiver results in non-perfect received signal strength estimates. This, in turn, may lead to a

wrong decision on whether to keep or discard the phase perturbation. In order to evaluate the

algorithm’s behavior in realistic scenarios, in Chapter 5, we study a scenario with multiple des-

tinations. Furthermore, we also include the analysis of the impact of noise on the algorithm’s

convergence properties.

When wireless sensor networks consist of a large number of nodes, sometimes, it is not nec-

essary that all of them cooperate. In contrast to all previous approaches, in [10] the author

do not employ phase precompensation techniques. Instead, inspired by the observation that

bandpass signals with even moderate phase offsets can still combine to provide beamforming

gain, they develop a scheme which opportunistically selects a subset of available source nodes

whose transmitted signals combine in a quasi-constructive manner at the destination. Since

the computation of the optimal selection vector is exponentially complex, the authors resort to

several suboptimal selection rules. The simplest one is referred to as a sector-based selection

method (see Figure 2.8). The selection region is defined by two parameters: γ corresponding

to a minimum amplitude; and α corresponding to a maximum angle. In order to be selected, a

node sk must satisfy both the minimum amplitude and maximum angle conditions, i.e.

sk =

{

1 - node selected if ak ≥ γ and |φk| ≤ α

0 - node not selected otherwise.
(2.20)
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Figure 2.8: Sector-based selection region, [10].

with ak and φk accounting for sensor-to-destination channel magnitude and phase shift (with

Rayleigh and uniform distributions respectively). The optimal values of γ and α are found by

maximizing the lower bound on expected normalized received power, and according to [10],

they equal ᾰ = 1.1656 radians and γ̆ = 0.5316.

2.4.2 Beampattern analysis

When considering distributed antenna arrays, one can ask whether a beampattern with a narrow

mainlobe and sufficient beamforming gain can be formed. One of the challenges associated

with this question lies in the fact that, often, sensor node locations are not precisely known.

Since the resulting beampattern strongly depends on the particular realization of the sensor

locations, it is quite reasonable to address this question in a probabilistic framework. In fact,

given a particular antenna geometry, spatial distribution of sensor location, and the distribution

of the phase offsets at the sensor nodes, it is possible to compute the average beampattern (over

different network realizations), in order to determine its mainlobe width, sidelobe characteris-

tics, etc.

In the antenna arrays literature, the interest on stochastic analysis of random antenna arrays is

not new. In [11], the authors build a random array theory based on linear non-uniform arrays.

They show that a random linear array with a large number of nodes can indeed form a beam-

pattern where the directivity approaches N , with N accounting for the number of antennas.

Furthermore, it is shown that the width of the main lobe strongly depends on the array size, i.e.

the larger the array, the narrower the main lobe. In other words, when the number of antenna

elements is fixed, it is possible to reduce the width of mainlobe by spreading these elements
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sensors N = 16, 256, [12].

over larger distances without risking the increase in sidelobe levels.

More recently, in the context of wireless sensor networks, in [12], the authors derive the statis-

tical average beampattern (see Figure 2.9) and probability distribution of the beampattern for

sensor nodes uniformly distributed over a disk of radius R. All the sensor nodes are assumed

to be located on the x - y plane. Each sensor node has only one ideal isotropic antenna, and all

sensor nodes transmit with identical powers. Path losses are assumed to be identical as well,

and multipath and shadowing effects are not considered. The authors show that the average

far-field beampattern for an N-node distributed beamformer is given by:

Pav(φ) =
1

N
+

(

1− 1

N

)
∣
∣
∣
∣
∣

J1(4πR̃ sin(φ/2))

2πR̃ sin(φ/2)

∣
∣
∣
∣
∣

2

(2.21)

where R̃ = R/λ stands for the radius of the disk normalized by the wavelength of the carrier, φ

accounts for the angle with respect to the BS, and J1(x) denotes the first-order Bessel function

of the first kind. From (2.21), we see that with N sensor nodes uniformly distributed over a

disk, the directivity approaches N . Furthermore, for N →∞, the authors show that the width

of the main lobe turns out to be proportional to the inverse of the disk radius R̃.

In some deployment scenarios, a uniform sensor distribution cannot be guaranteed. Indeed, to

cover a wide area, a large number of sensor nodes must be deployed simultaneously in an ad

hoc way. An example of such application is rural areas monitoring where the deployment is

done by dropping a group of sensor nodes from an airplane. In this particular scenario, the

actual location of the sensor nodes are affected by different factors such as wind, the releasing

mechanism, speed, etc. The bias from the targeted location due to each of these multiple factors

can be modeled as a random variable being the effective bias the result of all these random

variables. Therefore, according to the central limit theorem, the actual x and y locations will
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Figure 2.10: The mean of the array factor for both uniform and Gaussian spatial distributions:

N = 16, σ2 = 1, R̃ = 3σ, [13].

follow a Gaussian distribution. In [13], the authors use the beampattern analysis framework

from [12], and derive the average beampattern, which is, in the case for N Gaussian distributed

sensor nodes, given by:

Pav(φ) =
1

N
+

(

1− 1

N

) ∣
∣
∣e−

α2σ2

2

∣
∣
∣

2

(2.22)

where α = α(φ) = 4π sin
(
φ
2

)
and R̃ = 3σ. They show that both uniform and Gaussian sensor

node deployments behave in a similar way with respect to the relation between the beamwidth

and the network diameter. However, the Gaussian deployment was shown to result in wider

mainlobe, and to have lower chance of large sidelobes, as can be observed in Figure 2.10.

In [12] and [13], the authors showed that after achieving phase alignment, a beampattern with

a stable mainlobe is formed. However, the sidelobes of such beampattern strongly depend on

the set of actual node locations. In scenarios with multiple wireless sensor networks deployed

in neighboring areas, high sidelobes may cause an unacceptable level of interference to the un-

intended base stations. If, somehow, we manage to control sidelobes in order to keep the inter-

ference below some prescribed threshold, this could result in the increase of network capacity

and wireless channel availability. To that end, in [14] the authors propose a node selection al-

gorithm. The algorithm is based on the iterative selection of the group of sensors, which results

in sidelobe level that is below some prescribed threshold. It is designed to overcome simple

node’s hardware limitations and avoid complex central weight design and signalling. Node se-

lection is carried out when the network is deployed for the first time and can be repeated when

configuration of the network changes.

20



2.5. Energy harvesting

Table 2.1: Typical Data for Various Energy Harvesting Sources. [15]

Energy kind Conditions Power density Area/Volume

Vibration 1 m/s2 100 µW/cm3 1 cm3

Solar Outdoors 7500 µW/cm2 1 cm2

Solar Indoors 100 µW/cm2 1 cm2

Thermal ∆T = 5◦C 60 µW/cm2 1 cm2

2.5 Energy harvesting

In deployment scenarios where non-rechargeable batteries are difficult or impossible to replace

(e.g., in remote areas), network lifetime is severely constrained by battery capacity. A natural

way to overcome this drawback is to extract energy from the environment, convert it into elec-

trical energy and effectively recharge such batteries. This concept, usually referred to as energy

harvesting, has attracted considerable attention in the research community in recent years. De-

pending on the application, the energy is available in solar, thermal or mechanical form, which,

in turn, require different transducers: solar panels, Peltier element for thermal harvesting along

with piezoelectric, or electromagnetic harvesters for vibrational energy. The amount of en-

ergy harvested strongly depends on the kind of energy source used. In Table 2.1, we provide

typical power density levels for aforementioned kinds of harvested energy and the conditions

assumed. The harvested energy needs to be stored, so that it can be used when needed by the

sensor node. Energy storage devices usually come in the form of rechargeable batteries (e.g.,

Li-Ion, NiMH) or supercapacitors. Although rechargeable batteries have higher capacities than

supercapacitors, they loose some of their capacity with each recharge cycle. Moreover, their

peak power output is much more limited than in the case of supercapacitors. On the contrary,

supercapacitors suffer from higher energy leakage rate. In order to take advantage of both,

one can resort to an intelligent hybrid storage device, as suggested in [16]. In the proposed

architecture, the instantaneous power demand is supplied by the supercapacitor, whenever the

power generated by the energy harvesting traducer is less than the power required for the load

and battery charge.

In the sequel, we provide an overview of design challenges to be faced when dealing with

the EH communication systems. Communication scenarios can be categorized into two main

groups, namely, those with single or multiple energy harvesting sensor(s).

2.5.1 Single energy-harvesting sensor

In order to make the analysis tractable, it is often assumed that energy and data packets are

generated at discrete time instants, as shown in Figure 2.11. Furthermore, the information on
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Figure 2.11: Energy harvesting transmitter with discrete energy and data arrivals.

energy and data amounts, i.e. Ek and Bk, along with the exact time instants is assumed to be

known either in advance (non-causal information), or that the knowledge is acquired during

the transmission (causal information). When compared to a battery operated communication

system, with total power/energy constraint, energy harvesting systems include an additional set

of causality constraints. In other words, energy cannot be spent before it is harvested (and, thus,

the Energy Consumption (EC) curve must lie below the cumulative Energy Harvesting (cEH)

constraint at all times), as shown in Figure 2.12 (left). Likewise, data cannot be transmitted

before it is generated.

For single-sensor scenarios, in [17], the authors derive the optimal transmission (power alloca-

tion) policy which minimizes the time T needed to deliver all data packets to the destination

subject to causality constraints on energy Ek and data packet Bk arrivals. They consider a sce-

nario in which energy and data packet arrivals are non-causally known. In addition, the energy

storage capacity is assumed to be infinite. For the data packet arrivals, the authors consider

two scenarios: first, where all the packets have arrived before the transmission starts; second,

where the packets arrive during the transmission. For the former scenario, they show that the

power only potentially changes (increases) in time instants where some energy is harvested,

i.e. the transmission policy is nondecreasing. Furthermore, they develop an algorithm that

finds the optimal policy, which turns out to be the one that yields the tightest piecewise linear

energy consumption curve, lying below the energy harvesting curve at all times and touching

the energy harvesting curve at t = T , as shown in Figure 2.12 (right). For the later scenario, i.e.

when data arrive during transmission, the authors identify the new set of optimality conditions

that require that the transmission power remains constant between two events , i.e., the power

only potentially changes when new energy is harvested or a new packet arrives. Furthermore,

they show that the optimal policy is such that whenever the power changes at an energy har-

vesting event, then the energy consumed up to that event equals the energy harvested up to

that event. In addition, it is shown that when the power changes at a packet arrival event, the

22



2.5. Energy harvesting

E

t

cEH

EC

T

E

t

cEH

EC

T

Figure 2.12: Feasible and optimal transmission policy for an EH transmitter with infinite battery

capacity.

E

t

cEH

EC

cES

T

E

t

cEH

EC

cES

T

Figure 2.13: Feasible and optimal transmission policy for an EH transmitter with finite battery

capacity.

number of packets transmitted until that event equals the number of packets generated up to

that event. Finally, if the power changes at an event that has both energy and data arrivals at the

same time, then, one of the two causality constraints (either energy or data constraint) must be

satisfied with equality.

In [18], the authors go one step beyond [17], by considering finite energy storage capacity

effects in a scenario where all data packets are available before the transmission starts. Now, the

transmission policy must be such, that there is always enough free space in the energy storage

device to accommodate the next energy arrival (i.e., any policy causing a battery overflow is

strictly suboptimal). This translates into a set of cumulative Energy Storage (cES) constraints,

as those shown in Figure 2.13 (left). Consequently, the EC curve of the optimal policy must

lie inside the tunnel defined by cEH and cES curves. Furthermore, the authors show that in

contrast with [17], transmit powers are not anymore nondecreasing over time. As a matter of

fact, the optimal policy requires that the power decreases only at energy harvesting instants

when the energy storage device is full and increases only at energy harvesting instants when

the energy storage device is completely discharged. The optimal policy is such that it yields

the tightest piecewise linear energy consumption curve, lying inside the tunnel defined by cEH

and cES curves at all times and touching the energy harvesting curve at t = T (see Figure 2.13

(right)).

Ozel et al generalize the previous analysis to Rayleigh fading channels (instead of Gaussian)
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Figure 2.14: Optimal transmission policy for an EH transmitter with battery leakage.

and for the case in which the information on the harvested energy and channel gains is either

causally or non-causally known [19]. For the non-causal case, the approach from [17] and [18]

cannot be used, since the knowledge of energy arrivals/fading coefficients is acquired during

transmission. Instead, a dynamic programming approach is considered. In order to further

reduce the computational complexity, inherent in dynamic programming, the authors propose

several suboptimal policies.

In [17–19], the authors consider that the harvested energy is exclusively used for data transmis-

sion. In practice, however, a fraction of the harvested energy will be unavoidably spent in the

sensor’s circuitry for data processing. In order to further investigate this issue, in [20] and [21],

the authors explicitly take into account both transmission and processing energy consumption

in a system with energy harvesting capabilities.

In real-world communication systems, batteries lose a portion of stored energy over time. This

is due to unwanted chemical reactions, resulting into an internal current leakage between posi-

tive and negative electrode of a cell. Besides, batteries may also loose some capacity, because

of aging and repetitive recharging cycles. All these effects have a major impact on perfor-

mance. In order to facilitate the analysis of energy harvesting communication systems with

battery imperfections, the authors in [22] propose a general optimization framework. Further-

more, they derive the optimal transmission policy for a wireless system with constant energy

leakage rate. They show that, in contrast to previous works, it is not optimal to transmit with

constant power until deadline T anymore, since some energy will be wasted until then (see

Figure 2.14, dash-dotted curve). Instead, the authors show that there exists an optimal power p

and transmission time E
p+ǫ

, which depends on the energy leakage rate ǫ. Similarly, in [23], the

authors derive a throughput-optimal transmission policy for a transmitter with energy storage

losses, in point-to-point and broadcast channels scenarios. They show that the optimal policies

for these models are threshold policies. More specifically, energy is stored when harvesting

power is above an upper threshold, energy is retrieved when harvested power is below a lower
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threshold, and the transmitter transmits when the harvested power is in between.

2.5.2 Multiple energy-harvesting sensors

Communication scenarios involving multiple sensors, in general render the computation of the

optimal transmission policy more involved and often, coupled.

In [24], the authors consider a two-hop network model, in which the source S and the relay R

are capable of harvesting energy from the environment, as shown in Figure 2.15. Depending

on whether the relay can simultaneously transmit and receive data, the authors consider two

communication scenarios, namely, full-duplex and half-duplex relaying scenarios. The goal

in both scenarios is to identify the transmission policy that departs the maximum number of

bits until a given deadline. In a scenario with full-duplex relaying, the authors show that the

transmission policies are to some extent decoupled. In other words, it is optimal that source S

adopts the transmission policy that maximizes the total number of bits transmitted to the relay.

Likewise, the bit arrival profile from the source transmission along with the energy harvesting

profile at relay are used to compute the optimal transmission policy at relay. Consequently,

both policies can be computed by employing the algorithm proposed in [17]. This approach,

however, cannot be used in a half -duplex relay scenario, due to the fact the relay cannot trans-

mit and receive data at the same time. This, in turn, renders the transmission policies coupled.

However, in the case of a single energy arrival at the source, the numerical solution can be

efficiently computed. Furthermore, in [25], the authors generalize the half-duplex scenario

in [24], by considering the case of multiple-energy arrivals for both the source and the relay.

More specifically, they identify the optimal policy for the case of two energy arrivals at the

source, delegating the multi-arrival case for future work.

In [26], the authors investigate the optimal packet scheduling and power allocation in a two-

user multiple access communication system, where both transmitters have energy harvesting

capabilities. They assume that all data, i.e. B1 and B2, have arrived before the transmission
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Figure 2.16: Interference channel model with energy harvesting and data arrivals, [27].

starts, and that the information on energy harvesting arrivals is non-causally known. The goal

is to identify the optimal transmission policies, such that the time, by which all packets from

both users are delivered to the destination, is minimized. In order to solve this problem, the

authors consider a dual problem, i.e. the problem of maximizing the number of bits transmitted

for a given deadline T .

A two-user Gaussian interference channel with energy harvesting transmitters is considered

in [27] (see Figure 2.16). The focus of this paper is on the transmission policy which maxi-

mizes the total number of bits transmitted from T1 and T2 to R1 and R2 respectively, for a given

deadline. The authors show that the iterative coordinate descent method, optimizing individ-

ual transmission policies at each iteration, converges to the optimal solution when all data is

available before the transmission starts. Namely, in each iteration, the network utility function,

i.e. the sum data throughput, is maximized over the transmission policy of one transmitter,

whilst the policy of the other one is fixed, until both policies converge to the optimal solution.

Furthermore, this solution is extended to the scenario where data arrive during the transmis-

sion, Besides, it is observed that, in some cases, the single-user subproblems can further be

simplified by considering them independently from each other.

In [28], the authors consider an AWGN broadcast channel. The transmitter has a fixed number

of packets to deliver to each receiver. The goal is to minimize the time by which all the packets

are delivered to their respective destinations. To gain some insight into the problem, the authors

first consider a two-receiver broadcast channel. They show that the optimal total transmit power

allocation has the the same structure as the optimal single user transmit power allocation in [17].

In addition, they prove that the total transmit power must be split among all the users based on

a cut-off power level. Furthermore, the analysis is extended to an M user broadcast channel,

where it is shown to be optimal to split the total power among M users according to M − 1
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Figure 2.17: Convex and nonconvex sets. Left: Pentagon including its border is convex; Mid-

dle: The kidney shape is not convex; Right: Square, which does not contain some border points,

is not convex [32].

cut-off levels. This problem is further generalized in [29] and [30] for scenarios with finite

battery capacity and fading broadcast channel respectively.

All the previous work assume that receivers require much less energy than transmitters, and

hence, it can be neglected. However, the receiving energy can be comparable to the energy re-

quired by transmitter, especially in scenarios where complex coding and modulation schemes

are employed. To address these scenarios, a general framework for utility function maximiza-

tion in a wireless network with energy harvesting transmitters and receivers is proposed in [31].

2.6 Convex optimization

In some parts of this PhD dissertation, we assume that the wireless sensor nodes are capable

of harvesting energy from the environment. In these scenarios, it turns out that the problem of

optimal power allocation can be cast into a convex program. To provide the necessary mathe-

matical background, in this section, we review some important concepts of convex optimization

along with the necessary and/or sufficient optimality conditions.

2.6.1 Convex sets

A set C is said to be convex if the line segment between any two points in C lies in C, that is, if

for any x1,x2 ∈ C and any θ such that 0 ≤ θ ≤ 1, the following holds:

θx1 + (1− θ)x2 ∈ C (2.23)

Figure 2.17 presents some simple convex and nonconvex sets in R
2. A point of the form

θ1x1 + θ2x2 + . . .+ θkxk, where θ1 + θ2 + . . .+ θk = 1 and θi ≥ 0 for i = 1, . . . , k, is called

a convex combination of the points x1, . . . ,xk. It can be shown that a set is convex if and only

if it contains every convex combination of its points.

In the sequel, we list the operations that preserve convexity of sets. In other words, they allow

us to construct the convex sets from others, and help us to determine convexity of sets.
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Figure 2.18: Convex function. The cord between any two point lies above the graph of convex

function [32].

• Intersection preserves convexity: if S1 and S2 are convex, then S1
⋂S2 is also convex.

This property extends to the intersection of an infinite number of sets: if Sk is convex for

every k ∈ K , then the set
⋂

k∈K Sk is convex, as well.

• An affine function of a convex set is convex. In other words, for a convex set S ⊆ R
n

and affine function f(x) = Ax+b, the image of S under f , i.e. f(S) = {f(x)|x ∈ S},
is convex.

• Perspective function preserves convexity. Recall that the perspective function scales or

normalizes vectors so the last component is one, and then discards the last component.

Therefore, if C ⊆ domP is convex, than its image P (C) = {P (x)|x ∈ C} is convex, as

well.

2.6.2 Convex functions

A function f : Rn → R is convex if domf is a convex set and if for all x,y ∈ domf , and θ

such that 0 ≤ θ ≤ 1, we have:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (2.24)

In other words, this means that the line segment between (x, f(x)) and (y, f(y)), which is the

chord from x to y, lies above the graph of function f , as show in Figure 2.18 . A function f is

called strictly convex if strict inequality holds in (2.24) for x 6= y and 0 < θ < 1. We call the

function f concave if −f is convex, and strictly concave if −f is strictly convex.

For a function f that is differentiable (i.e. its gradient ∇f exists at each point in domf which

is open), we have that if the following holds:

f(y) ≥ f(x) +∇f(x)T (y − x) (2.25)

for all x,y ∈ domf , then the function f is convex. This is the so-called first-order condition.

In the same vein, let us consider a twice differentiable function f (i.e. its Hessian ∇2f exists

on each point in domf , which is open). Then f is convex, if and only if domf is convex and its
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Hessian is positive semidefinite. In other words, for all x ∈ domf the following second-order

condition holds:

∇2f(x) � 0. (2.26)

Likewise, f is concave if and only if domf is convex and∇2f(x) � 0 for all x ∈ domf . How-

ever, for strict convexity if and only if relation does not hold anymore. In fact, if ∇2f(x) ≻ 0

for all x ∈ domf , then f is strictly convex. Nevertheless, the converse is not true.

Similarly to convex sets, the operations that preserve convexity might help us prove convexity

or concavity of some particular function. A list of operations includes:

• Nonnegative weighted sum of convex functions, i.e f = w1f1 + . . .+ wkfk is convex.

• Composition with an affine mapping is convex function, i.e. if f is convex, than g(x) =

f(Ax+ b) is complex as well.

• Pointwise maximum: If functions f1 and f2 are convex functions, then their pointwise

maximum defined by f(x) = max {f1(x), f2(x)}, is also convex.

• Composition: Consider two functions h : Rk → R and g : Rn → R
k and their composi-

tion f = h ◦ g : Rn → R, defined by:

f(x) = h(g(x)), dom f = {x ∈ dom g|g(x) ∈ dom h}. (2.27)

By assuming that k = 1 and n = 1, the following rules for scalar composition hold:

– function f is convex if h is convex and nondecreasing, and g is convex,

– function f is convex if h is convex and nonincreasing, and g is concave,

– function f is concave if h is concave and nondecreasing, and g is concave,

– function f is concave if h is concave and nonincreasing, and g is convex.

2.6.3 Convex optimization problems

In general, optimization problems can be posed as follows:

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , p, (2.28)

where x ∈ R
n accounts for the optimization variable whereas the function f0 : R

n → R stands

for the objective or cost function. The inequalities fi(x) ≤ 0 denote inequality constraints,
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while the equations hi(x) = 0 stand for the equality constraints. If there are no constraints we

say the problem is unconstrained.

The set of points for which objective as well as all constraints are defined is called the domain

D of the optimization problem. A given point x ∈ D is called feasible if it satisfies all equality

and inequality constraints. The problem is called feasible if there exists at least one feasible

point, and infeasible otherwise. The set of all feasible points is called the feasible set.

We define the optimal value p̆ of the problem (2.28) as

p̆ = inf
x
{f0(x)|fi(x) ≤ 0, i = 1, . . . , m, hi(x) = 0, i = 1, . . . , p} (2.29)

We say that x̆ is an optimal solution, if x̆ is feasible and f0(x̆) = p̆. The set of all optimal

solutions is denoted as optimal set. A feasible point x is locally optimal if it minimizes f0

over nearby points in the feasible set. In this dissertation, we will sometimes refer to optimal

solution as globally optimal in order to distinguish between locally optimal and optimal. If

point x is feasible and fi(x) = 0, we say that i-th inequality constraint is active. On the

contrary, if fi(x) < 0, we say that i-th inequality constraint is inactive.

A problem of the form (2.28) is a convex optimization problem when the following holds:

• the objective function f0(x) is convex,

• the inequality constraint functions fi(x), i = 1, . . . , m are convex,

• the equality constraint functions hi(x), i = 1, . . . , p are affine, i.e. hi(x) = aTi x− bi.

An important property of convex optimization problems is that any locally optimal point is also

globally optimal.

2.6.4 The Lagrange dual function

Consider an optimization problem in the standard form (2.28). Assume that its domain D =
⋂m
i=0 dom fi ∩

⋂p
i=1 dom hi is nonempty. To recall, we do not assume that the problem is

convex. The Lagrangian duality results from augmenting the objective function with a weighted

sum of the constraint functions. The Lagrangian L : Rn × R
m × R

p → R associated with the

problem (2.28) is defined as:

L(x,λ,ν) = f0(x) +

m∑

i=1

λifi(x) +

p
∑

i=1

νihi(x), (2.30)

with domain dom L = D × R
m × R

p. The variables λi account for Lagrangian multipliers

associated with the i-th inequality constraint fi(x) ≤ 0. In the same vein, νi denote Lagrange
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multipliers associated with the i-th equality constraint hi(x) = 0. The vectors λ = {λi}mi=1

and ν = {νi}pi=1 stand for the dual variables.

The Lagrangian dual function g : Rm × R
p → R can be defined as:

g(λ,ν) = inf
x
L(x,λ,ν) = inf

x

(

f0(x) +

m∑

i=1

λifi(x) +

p
∑

i=1

νihi(x)

)

. (2.31)

When the Lagrangian (2.30) is not lower-bounded in x, the Lagrange dual function equals−∞.

Note that the dual function is the pointwise infimum of a family of affine functions of (λ,ν),

and, hence, it is concave, even when the problem (2.28) is not convex.

An important property of the Lagrangian dual function is that yields a lower bound on the

optimal value p̆ of the problem (2.28). In other words, for any λ � 0 and any ν, we have that

g(λ,ν) ≤ p̆

The Lagrange dual problem

For each pair (λ,ν) with λ � 0, we know that the Lagrange dual function gives us a lower

bound on the optimal value p̆. Therefore, the tightest lower-bound can be obtained by solving

the so-called Lagrange dual problem, namely

max
λ,ν

g(λ,ν)

s.t. λ � 0. (2.32)

which, from (2.31) is a convex optimization problem.

The optimal dual variables are usually denoted by (λ̆, ν̆) and the optimal value of the Lagrange

dual problem (2.32) is denoted by d̆, which turns out to be the tightest lower bound on p̆. It is

worth noting that the inequality d̆ ≤ p̆ also holds true for nonconvex problems. This property

is well known as weak duality.

KKT optimality conditions for convex problems

The so-called Karush-Kuhn-Tucker (KKT) conditions [32] are sufficient for the points x,λ,ν

to be primal and dual optimal. In other words, any solution (x,λ,ν) satisfying the KKT con-
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ditions:

fi(x̆) ≤ 0, i = 1 . . .m (2.33)

hi(x̆) = 0, i = 1 . . . p (2.34)

λ̆i ≥ 0, i = 1 . . .m (2.35)

λ̆ifi(x̆) = 0, i = 1 . . .m (2.36)

∇f0(x̆) +
m∑

i=1

λ̆i∇fi(x̆) +
p
∑

i=1

ν̆i∇hi(x̆) = 0, (2.37)

is known to be optimal. KKT conditions play a pivotal role in this PhD dissertation. They will

be extensively used in Chapters 3 and 4, for various proofs.
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Chapter 3

Collaborative Beamforming with Energy

Harvesting and Battery Operated Sensors

In this chapter, we focus on the scenario where one energy harvesting and one battery operated

sensor cooperatively transmit a common message to a distant base station. The goal is to find

the jointly optimal transmission (power allocation) policy which maximizes the total through-

put for a given deadline. First, we address the case in which the storage capacity of the energy

harvesting sensor is assumed to be infinite. In this case, we identify the necessary conditions

for such optimal transmission policy. Based on these conditions, we first show that the problem

is convex. Then, we go one step beyond and prove that (i) the optimal power allocation for the

energy harvesting sensor can be computed independently (i.e. without taking into account the

policy at the battery operated sensor); and that (ii) it unequivocally determines (and allows to

compute) that of the battery operated one. Finally, we generalize the analysis for the case were

the energy harvesting sensor is assumed to have finite storage capacity. For both infinite and

finite storage capacity cases, we prove the optimality of the proposed algorithm. Furthermore,

we provide detailed analysis of algorithms complexity. Finally, we assess the performance

by means of computer simulations, where a particular attention is paid to the impact of total

energy harvested, finite storage capacity and long-term battery degradation on the achievable

throughput.
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3.1 Introduction

Although battery-operated sensor nodes can be deployed in remote or inaccessible areas, their

limited energy storage capabilities severely constraint the wireless sensor network operation

lifetime. In order to overcome this drawback, energy harvesting has been proposed as a viable

solution. Namely, sensor nodes equipped with an energy harvesting device are able to extract

the energy available in the surrounding (e.g., solar, thermal or vibrational energy), convert it

into electrical energy and recharge the battery. However, since the ambient energy sources are

usually unpredictable, it is very important to develop novel energy management and commu-

nication schemes, which particularly take into account the randomness and variability of the

energy harvesting process.

Recently, the research community has shown a great interest on how to optimally allocate such

harvested energy for efficient communication by wireless transmitters in various communica-

tion scenarios. Although from a completely different context (optimal rate control with QoS

constraints), the approach to problem solving in [33] has extensively been used in analysis of

different energy harvesting communication settings. In [17], a single-transmitter scenario with

infinite energy storage capacity is considered. In order to facilitate analysis, the authors assume

that the full knowledge on energy harvesting and data arrivals is available before the transmis-

sion starts. For the given setting, the authors derive the optimal power allocation policy such

that the time needed to deliver all data packets to the destination is minimized, subject to con-

straints imposed by energy and data packet arrivals. They show that the optimal transmission

policy has a so-called majorization structure, i.e. the power allocation is piece-wise constant

non-decreasing function of time. Besides, it is shown that the battery must be empty at the time

instants where the power changes.

In [18], the authors further generalize the scenario in [17], by considering an energy harvesting

wireless transmitter with finite energy storage capacity. The authors show that the optimal

transmission policy must be such that there is always enough available energy storage capacity

to accommodate a new energy arrival (i.e., no energy is lost due to battery overflows). This

finding, as a consequence, introduces a new set of battery capacity constraints that have to be

fulfilled. In contrast to [17], the optimal policy is not non-decreasing anymore. Instead, the

optimal transmission policy is such that the power is allowed to increase/decrease when the

energy storage is empty/full at some energy harvesting time instant. Further generalizing the

scenarios with Gaussian channels, considered in [17] and [18], Ozel et al address a setting

where single node transmits data over a Rayleigh-fading channel and for the case in which

the information on the harvested energy and channel gains is either causally or non-causally

known [19].

Departing from single transmitter - single receiver scenario, other works in the literature ad-

dress scenarios with multiple energy harvesting terminals. This includes studies for the multiple-
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access [26], interference [27], relay [24] and broadcast [28–30] channels.

Multi-antenna transceivers are proven to be very useful for wireless communication, especially

because of improving the overall energy efficiency and decreasing the interference levels to

unintended directions. However, using sensor nodes equipped with multiple antennas would

increase the overall complexity and cost, which might not always be affordable in wireless sen-

sor network contexts. In order to overcome individual node’s complexity while still providing

the benefits of antenna arrays, distributed beamforming techniques have been proposed as a

viable solution. Namely, by employing these techniques, the set of nodes in a wireless sensor

network emulate a virtual antenna array, this allowing them to reach a distant base station or

data sink in a more energy efficient manner. Nevertheless, distributed nature of virtual antenna

arrays renders the accurate frequency and phase synchronization, naturally assumed in cen-

tralized arrays, more involved. In order to cope with these challenges, different schemes have

been proposed, such as iterative synchronization scheme with one-bit of feedback in [8, 9], or

opportunistic sensor selection schemes [10].

3.1.1 Contribution

In this chapter, we consider a scenario where one energy harvesting and one battery operated

transmitter cooperatively transmit a previously shared, common message to a distant base sta-

tion. We assume that the sensors have their oscillators perfectly synchronized, this resulting

in a coherent sum of received signals at the base station1. Besides, as in [17, 18], the informa-

tion on harvested energy arrivals and amounts is assumed to be perfectly known in advance.

In addition, the Gaussian model is adopted for the channel between each sensor and the BS.

Our goal is to find the jointly optimal transmission (power allocation) policy at both the energy

harvesting and battery operated sensors, such that the total data throughput for a given deadline

is maximized. The problem of interest is similar to the one addressed in [17, 18], but here we

consider a more general scenario with multiple transmitters. Besides, and unlike the Multiple-

Access channel scenarios in [26], sensors here attempt to convey a common message to the

destination. We also go one step beyond the distributed beamforming approaches in [8–10]

where, implicitly, all sensors were assumed to be battery operated, and investigate the impact

of energy harvesting constraints on performance.

As in [17], we initially assume that the energy harvesting sensor is equipped with an energy

storage of infinite capacity. For this scenario, we identify the necessary conditions for the

transmission policy to be jointly optimal. These conditions allow us to pose the problem in

a convex optimization framework. Furthermore, we prove that the optimal policy for the EH

node can be computed independently from that of the BO one by using the algorithm proposed

1This assumption will be justified in Chapter 5, where we provide a more detailed analysis of distributed carrier

synchronization schemes.
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in [17]. Subsequently, we show that the knowledge of the optimal policy at EH sensor allows

us to compute the optimal policy at BO sensor by employing an iterative algorithm based on

the KKT conditions. Next, we generalize the analysis for a scenario in which, as in [18], the

storage capacity of the EH sensor is assumed to be finite. Surprisingly, this assumption only

modifies the way of computing the optimal policy at the EH sensor (by using the algorithm

proposed in [18]), whereas the optimal policy for the BO sensor can be computed with the same

iterative algorithm proposed before. The system performance is evaluated in a scenario with

solar energy harvesting. For the finite storage capacity case, we also consider imperfections in

the re-chargeable battery of the EH sensor. More specifically, we focus on the impact of long-

term capacity degradation, as opposed to the (short-time) battery leakage effects addressed

in [22], and find the loss in throughput if the information on degraded battery capacity is not

available.

The contents of this chapter have been partly published in references [34] and [35].

The chapter is organized as follows. First, in Section 3.2, we introduce the signal model. Next,

in Section 3.3, we consider a scenario where battery capacity of EH sensor is assumed to be

infinite. Then, in Section 3.4, we generalize the previous analysis to a scenario in which the

energy storage capacity of EH sensor is finite. Subsequently, in Section 3.5 we analyze the

computational complexity of proposed scheme. Finally, we conclude the chapter by summa-

rizing the main findings in Section 3.6.

3.2 Signal model

Let us consider one energy harvesting and one battery operated sensor that cooperate to transmit

a common message signal m(t) to a distant base station, as shown in Figure 3.1. The received

signal reads

r(t) = m(t)

(
2∑

i=1

g∗i (t)e
jψi(t)

)

+ w(t) (3.1)

where the common message is given by m(t) =
∑

l xlu(t − lTs), with {xl} standing for a

sequence of zero-mean complex Gaussian symbols with unit variance (Ts is the symbol pe-

riod) and u(t) denoting the impulse response of a bandlimited pulse (unit bandwidth); gi(t) =
√

pi(t)e
−jθi(t) accounts for the time-varying complex transmit weights in polar notation (to

be designed); ejψi(t) stands for the phase shift of the (Gaussian) sensor-to-base station chan-

nels; and w(t) is zero-mean complex additive white Gaussian noise with unit variance (i.e.

w(t) ∼ CN (0, 1)). In the sequel, we assume that by properly designing θi(t) the channel

phase and, where relevant, oscillator offsets can be ideally pre-compensated (for details on

actual implementation, see Chapter 5). Frequency and time synchronization is assumed, as

well. Hence, the sensor network behaves as a virtual antenna array capable of beamforming
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Figure 3.1: Network with energy harvesting and battery operated sensors (left); cumulative

energy harvesting constraints and energy consumption curves (right).

the message to the base station. Without loss of generality, we let the first sensor be the one

with energy harvesting capabilities, and the second one to be battery operated. Consequently,

we hereinafter denote by pH(t) , p1(t) and pB(t) , p2(t) the instantaneous transmit power at

the energy harvesting and battery operated sensors, respectively. Bearing all this in mind, the

instantaneous received power at the base station is given by pBF(t) = (
√

pH(t)+
√

pB(t))
2. The

total throughput for a given deadline T then reads

GT

(
pH(t), pB(t)

)
=

∫ T

0

log
(
1 + pBF(t)

)
dt. (3.2)

Our goal is to find the jointly optimal transmission (power allocation) policies pH(t) and pB(t)

such thatGT is maximized subject to the causality constraints imposed by the energy harvesting

process, namely2,

eH(t) ≤ EH(t) ,
∑

k:sk<t

E1,k (3.3)

eB(t) ≤ EB(t) , E2,0, (3.4)

for 0 ≤ t ≤ T , where eH(t) =
∫ t

0
pH(τ)dτ and eB(t) =

∫ t

0
pB(τ)dτ denote the energy consump-

tion (EC) curves; andEH(t), EB(t) stand for the cumulative energy harvesting (cEH) constraints

(see Figure 3.1, right). In the above expression, Ei,k accounts for the amount of energy har-

vested3 by sensor i in the kth event (k = 0 . . .N − 1). We define event sk as the time instant in

which some energy is harvested by any of the sensors in the network (Ei,k = 0 for the sensor

2For scenarios where the storage capacity of the EH sensor is finite, additional constraints must be introduced

(see Section 3.4).
3Discrete energy arrival process will be justified in Section 3.3.3.
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not harvesting any energy in that event). Both the events and the amounts of energy harvested

Ei,k are assumed to be known a priori. Further, we impose Ei,0 > 0 for all i (sensors) so

that collaborative transmission can start immediately, that is, from t = 0. For battery operated

sensors, we have Ei,k = 0 for k > 0 and, thus, the cumulative energy harvesting function is

constant for the whole period. For the EH sensor, on the contrary, it is given by a staircase func-

tion, as shown in Figure 3.1, right. Finally, we define kth epoch as the time elapsed between

two consecutive events sk−1 and sk. Its duration is given by τk , sk− sk−1 for k = 1 . . .N −1

and, likewise, we define τN , T − sN−1. A given transmission policy is said to be feasible

(yet, perhaps, not optimal) if, as imposed by (3.3) and (3.4), the energy consumption curves lie

below cumulative energy harvesting ones at all times (or occasionally hit them).

3.3 Infinite battery capacity

In this section, we consider a scenario where the energy storage capacity of EH sensor is

infinite. This, in turn, means that the transmission policy at the EH sensor is only constrained by

the energy availability due to energy harvesting process. In the following lemmas, we give the

necessary conditions for a transmission policy to be optimal. Furthermore, the insights gained

into the problem structure allow us to compute the jointly optimal policies in a computationally

efficient manner. Unless otherwise stated, the lemmas hold for both the energy harvesting and

battery operated sensor nodes.

3.3.1 Necessary conditions for the optimality of the transmission policy

Lemma 3.1 The transmit power in each sensor remains constant between consecutive events.

In other words, the power/rate in each sensor only potentially changes when new energy arrives

to any of them 4. The proof of this lemma, which is based on Jensen’s and Cauchy’s inequali-

ties, can be found in Appendix 3.A.1. This lemma implies that pH(t) = pH,k, pB(t) = pB,k for

sk−1 ≤ t < sk . That is, the power allocation curves pH(t) and pB(t) are necessarily staircase

functions and, hence, the energy consumption curves eH(t) and eB(t) are piecewise linear. This

observation allows us to pose the original problem (3.2)-(3.4) in a tractable convex optimiza-

tion framework in which a numerical (or analytical) solution is easier to find. This will be

accomplished in Section 3.3.2.

Lemma 3.2 All the harvested/stored energy must be consumed by the given deadline T .

4In our scenario, only one sensor harvests energy. Still, this lemma holds for a more general case with multiple

energy harvesters.
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Figure 3.2: All available energy must be consumed by the deadline, (Lemma 3.2).

This means that, necessarily, the energy consumption curves reach the cumulative energy har-

vesting constraints at time instant T .

Proof: Lemma 3.2 can be easily proved by contradiction. Assume that the optimal trans-

mission policy pH(t), pB(t) does not fulfill such condition. We could think of a different fea-

sible policy ṗH(t), ṗB(t) (see Figure 3.2) such that (i) the set of curves ėH(t) and ėB(t) differ

from the optimal ones in the last epoch only, namely, for t ∈ [sN−1 . . . T ); and (ii) it verifies

ėH(T ) = EH(T ) and ėB(T ) = EB(T ). Being piecewise linear (and continuous), these curves

would necessarily lie above the optimal ones during the last epoch, this resulting in a higher

received power and throughput. This contradicts the optimality of the original transmission

policy.

Lemma 3.3 If feasible, a transmission policy with constant transmit power in each sensor

between any two (i.e. not necessarily consecutive) events turns out to be optimal for the period

of time elapsed between these two events.

This lemma goes one step beyond and states that Lemma 3.1 also holds for non-consecutive

events, as long as a constant transmit power policy in both sensors is feasible5 for this period.

This follows directly from the proof of Lemma 3.1 but, since one or more energy harvests

might take place in between the initial and final events, feasibility needs to be ensured (clearly,

this is not needed in Lemma 3.1).

3.3.2 Computation of the optimal transmission policy

Lemma 3.1 allows us to re-write the original optimization problem given by the score function

(3.2) and the causality constraints (3.3) and (3.4) as follows (to recall, our focus here is on

5In our setting, this can only be constrained by the cEH curve of the EH sensor.
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scenarios where the storage capacity of the EH sensor is infinite):

max
{pH,k}Nk=1,{pB,k}Nk=1

N∑

k=1

τk log
(
1 + (

√
pH,k +

√
pB,k)

2
)

(3.5)

s.t.:
n∑

k=1

τkpH,k ≤ En
H =

n−1∑

k=0

E1,k for n = 1 . . . N (3.6)

n∑

k=1

τkpB,k ≤ En
B = E2,0 for n = 1 . . .N (3.7)

pH,k ≥ 0 for k = 1 . . .N (3.8)

pB,k ≥ 0 for k = 1 . . . N (3.9)

where we have defined En
H , EH(t) and En

B , EB(t) for t ∈ [sn−1, sn). The problem is convex

since all the constraints are affine and linear, and the objective function is concave (composition

of concave nondecreasing and concave function, [32, Section 3.2.4]). Furthermore, it can be

proven that the utility function is indeed strictly concave (see Appendix 3.A.2). Since the

optimization problem is strictly convex, its unique solution can at least be found numerically

(e.g. by resorting to interior point methods). However, this task is computationally intensive,

in particular when the number of energy harvesting events N is large. This motivates the

following analysis from which a semi-analytical and less computationally intensive solution to

the optimization problem can be obtained.

The Lagrangian of the optimization problem (3.5)-(3.9) is given by

L1 =−
N∑

k=1

τk log
(
1 + (

√
pH,k +

√
pB,k)

2
)

+
N∑

n=1

λn

(
n∑

k=1

τkpH,k − En
H

)

+
N∑

n=1

νn

(
n∑

k=1

τkpB,k − En
B

)

−
N∑

k=1

µkpH,k −
N∑

k=1

ξkpB,k (3.10)

and, hence, the corresponding Karush-Kuhn-Tucker conditions read

∂L1

∂p̆H,k
,
∂L1

∂p̆B,k
= 0 (3.11)

n∑

k=1

τkp̆H,k ≤ En
H for n = 1 . . .N (3.12)

n∑

k=1

τkp̆B,k ≤ En
B for n = 1 . . .N (3.13)
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p̆H,k, p̆B,k ≥ 0 (3.14)

λ̆n, ν̆n, µ̆k, ξ̆k ≥ 0 (3.15)

λ̆n

(
n∑

k=1

τkp̆H,k −En
H

)

= 0 for n = 1 . . . N (3.16)

ν̆n

(
n∑

k=1

τkp̆B,k −En
B

)

= 0 for n = 1 . . . N (3.17)

−µ̆kp̆H,k = 0 for k = 1 . . . N (3.18)

−ξ̆kp̆B,k = 0 for k = 1 . . . N. (3.19)

where the partial derivatives in (3.11) can be expressed as

∂L1

∂p̆H,k
= −τk

√
p̆H,k +

√
p̆B,k

√
p̆H,k

(
1 + (

√
p̆H,k +

√
p̆B,k)2

) + τk

N∑

n=k

λ̆n − µ̆k (3.20)

∂L1

∂p̆B,k
= −τk

√
p̆H,k +

√
p̆B,k

√
p̆B,k

(
1 + (

√
p̆H,k +

√
p̆B,k)2

) + τk

N∑

n=k

ν̆n − ξ̆k (3.21)

By considering (3.11) and by introducing the change of variables Ăk =
∑N

n=k λ̆n − µ̆k
τk

and

B̆k =
∑N

n=k ν̆n − ξ̆k
τk

, equations (3.20) and (3.21) can be rewritten as follows:

−
√
p̆H,k +

√
p̆B,k

√
p̆H,k

(
1 + (

√
p̆H,k +

√
p̆B,k)2

) + Ăk = 0 (3.22)

−
√
p̆H,k +

√
p̆B,k

√
p̆B,k

(
1 + (

√
p̆H,k +

√
p̆B,k)2

) + B̆k = 0 (3.23)

From [32, Section 5.5.3], we know that for any optimization problem with differentiable ob-

jective and constraint functions for which strong duality holds6, any pair of primal and dual

optimal points must satisfy the KKT conditions. This is very important property, since it al-

lows us to identify various optimality conditions which, in turn, help us to compute the optimal

solution more efficiently.

Lemma 3.4 Transmit powers are strictly positive.

Proof: Again, this can be proved by contradiction. Assume that the power allocation policy

before sk−1 and after sk+1 is optimal. Assume that, as shown in Figure 3.3, the optimal policy

for the [sk−1, sk+1) period verifies pH,k = 0 and pH,k+1 > 0. One could think of a new (and

feasible) transmission policy given by ṗH,k = ∆eH

ṡk−sk−1
and ṗB,k = ∆eB

ṡk−sk−1
for t ∈ [sk−1, ṡk);

and ṗH,k+1 = pH,k+1 along with ṗB,k+1 = pB,k+1 for t ∈ [ṡk, sk+1). From the proof7 of Lemma

6For convex optimization problem given by (3.5)-(3.9), the strong duality reduces to feasibility, since all the

constraints are linear, [32, Section 5.2.3].
7Although Lemma 3.1 holds for EH events, its proof has a broader scope and encompasses any time instant,

such as s′k. See Appendix 3.A.1.
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Figure 3.3: Transmit powers are strictly positive (Lemma 3.4).

3.1, we know that the new policy achieves higher throughput than the original one in [sk−1, ṡk)

and, thus, in [sk−1, sk+1) too. Yet not optimal (since this new policy e.g. contradicts Lemma

3.1), this proves that the original policy given by pH,k = 0 and pH,k+1 > 0 was not optimal

either.

Next, in order to prove that the optimal powers at the BO sensor are strictly positive as well, we

employ the KKT conditions associated with the problem (3.5)-(3.9). Namely, from (3.22) and

(3.23), and by taking the first term in both sums, it can be shown that these terms are strictly

negative. This, in turn, means that, in order for both (3.22) and (3.23) to vanish, the corre-

sponding variables Ăk and B̆k must be strictly positive, i.e. Ăk, B̆k > 0. Next, by combining

equations (3.22) and (3.23), we get the following relation between the optimal primal and dual

variables:

p̆B,k =

(

Ăk

B̆k

)2

p̆H,k (3.24)

By further replacing (3.24) into (3.22) and (3.23), and solving them for p̆H,k, p̆B,k, we get

p̆H,k =
B̆k(Ăk + B̆k − ĂkB̆k)

Ăk(Ăk + B̆k)2
(3.25)

p̆B,k =
Ăk(Ăk + B̆k − ĂkB̆k)

B̆k(Ăk + B̆k)2
. (3.26)

From the first part of this proof, we know that the optimal powers at the EH sensor node must

be strictly positive, i.e. p̆H,k > 0. From this, the fact that Ăk, B̆k > 0, along with equation

(3.24), we conclude that the corresponding power at BO sensor must be strictly positive, as

well. This concludes our proof.

Lemma 3.5 The transmit powers for an energy harvesting sensor with infinite storage capacity

are monotonically increasing, i.e. pH,1 ≤ pH,2 ≤ . . . ≤ pH,N

42



3.3. Infinite battery capacity

t t1 ks ks 1!ks

k" 1!k"

H,kp H, 1kp
! B,kp B, 1kp !

H ( )E t

B ( )E t

1 ks ks 1!ks

k" 1!k"

Figure 3.4: Transmit powers at the EH sensor are monotonically increasing (Lemma 3.5).

Proof: This property follows from the fact that EH(t) is a staircase function. Assume that

the power allocation policy before sk−1 and after sk+1 is optimal. As shown in Figure 3.4, the

optimal EC curve verifies eH(sk+1) ∈ (eH(sk−1), EH(sk+1)]. For eH(sk+1) ∈ (eH(sk−1), ǫH], we

know from Lemma 3.3 that a constant power allocation for the energy harvesting and battery

operated sensors turns out to be optimal for [sk−1, sk+1) (and, hence, for [0, T ]). In particular,

this implies that pH,k+1 = pH,k. For eH(sk+1) ∈ (ǫH, EH(sk+1)], on the contrary, the fact that

eH(t) is continuous and piecewise linear can only be ensured if (and only if) pH,k+1 > pH,k.

By repeatedly applying this reasoning to all consecutive epoch pairs the proof follows. As for

the relationship between pB,k+1 and pB,k, nothing can be said yet. Still, the fact that EB(t) is a

constant function does not impose any additional restrictions to the power allocation policy of

the BO sensor in [sk−1, sk+1].

Lemma 3.6 The jointly optimal power allocation policy is such that, whenever the transmit

power changes, the energy consumed by the energy harvesting sensor up to that time instant,

equals the energy harvested by such sensor up to that instant (i.e, the stored energy is zero).

The proof of this Lemma is based on the Karush-Kuhn-Tucker (KKT) conditions associated

with the (joint) optimization problem (3.5)-(3.9). Details can be found in Appendix 3.A.4.

The next theorems state the main result of this paper since they allow to effectively compute

the optimal transmissions policies for the EH and BO sensors, respectively.

Theorem 3.1 The optimal transmission policy for the energy harvesting sensor, {p̆H,k}Nk=1,

can be computed independently from that of the battery operated one. The associated energy

consumption curve turns out to be the shortest string starting in t = 0, ending in t = T , and

lying below the cumulative energy harvesting curve.

Proof: As we will prove next, Lemmas 3.1 to 3.6 unequivocally determine the optimal trans-

mission policy for the EH sensor. First note that, in order to satisfy the energy causality con-

straint, the corresponding EC curve must lie below the cEH curve. From Lemma 3.2, it follows
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Figure 3.5: The optimal energy consumption curve for the EH sensor is given by the shortest

string below the cumulative EH curve (Theorem 3.1).

that the EC curve reaches the cEH curve at t = T . Besides, from Lemmas 3.1 and 3.3, we know

that the transmit power only potentially changes at the energy harvesting events. Consequently,

the optimal EC curve must be linear between them (i.e. piecewise linear). Moreover, Lemma

3.6 dictates that, whenever the transmit power (slope) changes at an energy harvesting event,

the EC curve hits the cEH curve. Based on these facts, we conclude that the first linear part

of EC curve must connect the origin with some corner point on the cEH curve (see Fig 3.5).

Because of Lemma 3.5, we must choose the one with the minimal slope, since otherwise the

constraint on energy causality (point c) or monotonicity property of Lemma 3.5 (point a) would

not be satisfied. Clearly, in Fig 3.5 this corresponds to point b. Once this point is identified,

the algorithm can be iteratively applied until we find the optimal policy until deadline T . As a

result, the EC curve is given by the shortest string below the cEH curve. It must be noted that

this algorithm is equivalent to the one presented in [17]. However, the interesting points are

that (i) we have proved that it continues to be optimal in a scenario where two sensors, one of

them battery operated, collaborate to send the message (vs. one sensor in [17]); and that (ii) no

information on the BO sensor (i.e. its optimal EC curve) is needed to determine it.

Theorem 3.2 Upon finding the optimal transmission policy for the energy harvesting sensor,

the optimal transmission policy for the battery operated one, {p̆B,k}Nk=1, can be computed with

the iterative procedure given by Algorithm 1.

Proof: This algorithm stems from (3.22), (3.23), and the proof of Lemma 3.6 in Appendix

3.A.4 (see Remark). The real-valued variable Bk (or its counterpart for iteration m, namely,

B
(m)
k ) is a linear function of the Lagrange multipliers associated with the constraint (3.7).

Therefore, the equation in Step 8 provides a connection between the primal and dual solu-

tions of the problem. Since p̆H,k is already known from Theorem 3.1, for each value of B
(m)
k
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Algorithm 1 Optimal policy for the battery operated sensor

1: choose some small δ > 0 ⊲ Step for searching

2: m← 0 ⊲ Iteration index

3: EB(T )← E2,0 ⊲ Energy stored in the battery

4: repeat

5: m← m+ 1

6: for all k = 1 . . . N do

7: B
(m)
k ← mδ,

8: solve −
√
p̆H,k+

√

p̆
(m)
B,k

√

p̆
(m)
B,k

(

1+(
√
p̆H,k+

√

p̆
(m)
B,k )2

) +B
(m)
k = 0 for p

(m)
B,k

9: end for

10: E
(m)
B,T ←

∑

k τkp
(m)
B,k

11: until E
(m)
B,T = EB(T )

12: p̆B,k ← p
(m)
B,k ∀k

to be tested (from Appendix 3.A.4 we know that all the Bks are identical and equal to the

largest Lagrange multiplier associated with (3.7), which is enforced in Step 7), the associated

p̆
(m)
B,k can be found by solving the corresponding third order equation (a single real-valued root

exists, as it is shown in Appendix 3.A.3). If the total energy consumed until time instant T

by the battery operated sensor, computed in Step 10, equals the energy (initially) stored in it,

EB(T ), the iterative algorithm stops. The stopping condition not only ensures that Lemma 3.2

is fulfilled but also, it implies that the whole transmission policy for the battery operated sensor

{p̆B,k}Nk=1 is feasible. In summary, we have found the optimal transmission policy for the BO

sensor by (i) conducting a grid search over one variable of the dual solution; and (ii) checking

in each iteration whether the unknown part of the primal solution resulting from the algorithm

is feasible. Clearly, the choice of δ leads to a number of trade-offs in terms of accuracy and

number of iterations needed.

As for algorithmic convergence, one can easily prove that each element in the set of transmit

powers {pB,k}Nk=1 is a monotonically decreasing function in νN (the only non-zero element in

the dual solution). Namely, by considering (3.23), and taking the derivative of the first term

with respect to pB,k, i.e.

∂

(

−
√
p̆H,k+
√
p̆B,k√

p̆B,k(1+(
√
p̆H,k+
√
p̆B,k)2)

)

∂p̆B,k
=

2p̆
3/2
B,k + 5p̆B,k

√
p̆H,k + 4p̆H,k

√
p̆B,k +

√
p̆H,k + p̆

3/2
H,k

p̆
3/2
B,k(1 + p̆B,k + 2

√
p̆B,kp̆H,k + p̆H,k)2

(3.27)

we conclude that the first term of the sum in (3.23) increases as pB,k increases (still it is always

negative). This, in turn means that νN = Bk must be lower, in order to keep (3.23) equal

to zero. In other words, as the power pB,k increases, the corresponding sum of Lagrangians

Bk decreases, and viceversa. Likewise, E
(m)
B,T is a monotonically decreasing function in νN as
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Figure 3.6: Optimal power allocation: EH and BO sensors (T = 10s, E2,0 = 50J).

well. In other words, there exists a one-to-one mapping function between the primal and dual

solutions. This turns out to be a sufficient condition for the algorithm to converge, as long

as a sufficiently small step size δ is used for the grid search over some range of νN values.

Finally, Figure 3.6 depicts the optimal transmission policies corresponding to the EH and BO

sensors for a specific realization of the energy arrivals. Clearly, (i) it satisfies all the lemmas

and theorems; (ii) Lemma 3.5 on the monotonicity of the optimal power allocation does not

hold for the BO sensor; and (iii) in order to collaboratively transmit data, the BO sensor must

adopt an optimal transmission policy which is different from that of the single-sensor scenario,

that is, constant transmit power within [0 . . . T ].

3.3.3 Simulations and numerical results

In this section, we assess the performance of the proposed power allocation algorithm in a

scenario where solar energy is harvested from the environment. The energy storage system in

the EH sensor comprises (i) a supercapacitor [16]; and (ii) a re-chargeable Lithium-Ion battery

(see Figure 3.7). Upon being harvested, the energy is temporarily stored in the supercapacitor.

When it is fully charged, the energy is transferred to the battery in a burst8. Clearly, this

validates the event-based model of the energy harvesting process presented in Section 3.2.

For such devices, the amount of energy harvested in each event is constant and it equals the

8Pulse charging is beneficial for Lithium-Ion batteries in terms of improved discharge capacity and longer life

cycles [36].
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Figure 3.8: Typical cumulative energy curves parameterized by c.

maximum energy that can be stored in the supercapacitor. Since solar irradiation levels change

over time (e.g. from dawn to noon, from winter to summer), so does the average number of

energy arrivals (events). Consequently, the stochastic process that models energy arrivals is

non-stationary. In the sequel, we adopt a Poisson process with time-varying mean given by

λE(t). From the solar irradiation data in [37], the mean arrival rate from 5 A.M. to 12 P.M. (i.e.

dawn to noon, with T = 7 h) can be fitted by the following exponential function:

λE(t) = βE,c,Te
ct (3.28)

where parameter c models the variability of the energy harvested over time (i.e. the rate of

energy transfers from the capacitor to the battery); and βE,c,T is a constant depending on the

total amount of energy harvested E, parameter c, and the total harvesting time T . For the

solar irradiation data in [37], it yields βE,c,T = 3.899 · 10−2 and c = 6 · 10−5. Figure 3.8
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Figure 3.9: Throughput vs. total energy in the system (c = 30 · 10−5, RE = 1).

shows a number of cumulative energy harvesting curves for different values of parameter c:

the higher c, the higher the energy variability, i.e. the steeper the curves by the end of the

observation interval. Hereinafter, we let EH
T =

∑N−1
k=0 E1,k and EB

T = E2,0 denote the total

energy harvested by/stored in the EH and BO sensors, respectively; whereas ET = EH
T + EB

T

accounts for the total energy in the system. Further, we define RE = EB
T/E

H
T as the ratio

between the total energy in the BO and EH sensors, that is, for large RE , the battery operated

sensor dominates. In all plots, we have T = 7 h (from 5 A.M. to noon). Initially, we assume

that the storage capacity of the aforementioned Lithium-ion battery is infinite. In Figure 3.9,

we depict the throughput of the virtual array with the jointly optimal transmission policies

defined by Theorem 3.1 and Theorem 3.2 for the EH and BO sensors, respectively. The amount

of energy harvested by/stored in the EH and BO sensors is identical (RE = 1) and results

are shown as a function of the total energy ET in the system. As benchmarks, we consider

(i) a system with only one EH sensor, the cEH curve of which is given by the point-wise

sum of the cEH curves for the EH and BO sensors in the virtual array (curve labeled with

“1H, sum of cEHs”); and (ii) a two-sensor virtual array in which the transmission policies

for the EH and BO sensors are optimized individually for each sensor as in [17], which is

suboptimal for a virtual array (“1H+1B, suboptimal”). For (ii), the optimal policy for the BO

sensor consists in a constant transmit power for t = 0 . . . T . Unsurprisingly, for systems with

multiple transmitters the beamforming gain translates into substantially higher throughputs.

Besides, some additional throughput gain results from the joint optimization of the transmission
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Figure 3.10: Throughput gain vs. total energy in the system (c = 30 · 10−5).

policies for the EH and BO sensors, that is, by forcing the BO sensor to adapt to the changes in

transmit power in the EH sensor.

Figure 3.10 provides further insights on the throughput gains stemming from the joint opti-

mization of transmission policies over sensors. More precisely, we depict the throughput gain

by ratio RG = GT,opt/GT,subopt as a function of the total system energy. Interestingly, the high-

est gain is attained when the total energy harvested by the EH sensor equals that stored in the

BO one, that is, forRE = 1. Yet in a totally different context, this is consistent with [10] where

the authors conclude that, in order to maximize the beamforming gain, the received signal lev-

els from the opportunistically selected sensors must be comparable. Conversely, when either

the EH or the BO sensors dominate (RE ≪ 1 or RE ≫ 1, respectively) the gain from a joint

optimization becomes marginal (RG → 1) since the signal received from the other sensor is

weak. We also observe that, in the case of unbalanced energy levels, throughput gains are lower

when the BO sensor dominates. This is motivated by the fact that when EH
T ≪ EB

T the policy

for the EH sensor has very little impact in the definition of the (jointly) optimal policy for the

BO one. In other words, the energy consumption curves for the BO sensor with and without

joint optimization are similar and, hence, the throughput gain approaches 1. It is also clear

that throughput gains become negligible when ET increases (i.e. in the high SNR regime). Let

α = ET,high/ET,low denote the ratio of total system energies in the high and low SNR regimes.

Since the total received power pBF(t) scales with α, from the score function in (3.5) and for
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Figure 3.11: Throughput gain vs. variability of the energy harvested (RE = 1).

large ET,high we can write,

RG(Et,high) =
N log(α) +GT,opt(ET,low)

N log(α) +GT,subopt(ET,low)
.

Clearly, for large α the impact of the specific transmission policies (optimal/ suboptimal) di-

minishes. In other words, joint optimization of transmission policies is more relevant in the

low-SNR regime.

Next, Figure 3.11 illustrates the impact of the variability of energy arrivals in the throughput

gain. Clearly, the higher the variability (i.e. for higher values of parameter c), the higher the

gain: RG = 1.2 (or +20% gain) for c = 3 · 10−4 and ET = 10 J. On the contrary, if the average

number of arrivals does not vary (increase) substantially in the observation interval, the gain

stemming from a joint optimization of both transmission policies is marginal (RG ≈ 1). In

conclusion, rapid variations of solar irradiation levels from dawn to noon (e.g. in high latitude

locations, winter time) make joint optimization of transmission policies advisable.
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Figure 3.12: Cumulative energy harvesting and energy storage constraints.

3.4 Finite battery capacity

Unlike in previous sections, here we assume that the energy storage capacity of the EH sen-

sor, Emax, is finite. If, in the kth event, the energy harvested by the EH sensor E1,k exceeds

the remaining storage capacity at that time instant, a battery overflow occurs. That is, its re-

chargeable battery gets fully charged and the excess harvested energy is simply discarded. In

Appendix 3.A.5, we prove that any transmission policy allowing battery overflows to occur

is strictly suboptimal. Assuming that9 E1,k ≤ Emax ∀k, those suboptimal solutions can be

removed from the feasible set by imposing that

eH(t) ≥ SH(t) ,
∑

k:sk<t

E1,k − Emax (3.29)

for 0 ≤ t ≤ T , where SH(t) denotes the cumulative energy storage (cES) constraint. One

can easily verify that Lemmas 3.1-3.3 and Lemma 3.4 still hold for the case of finite storage

capacity. On the contrary, Lemma 3.5 does not, as we will discuss in the proof of Lemma 3.7.

Since, in particular, Lemma 3.1 does hold, the optimization problem can be posed again by the

set of equations given by (3.5)-(3.9) in Section 3.3, along with the additional constraint (3.29),

namely,
n∑

k=1

τkpH,k ≥ SnH =

n∑

k=0

E1,k − Emax for n = 1 . . . N. (3.30)

A graphical representation for this additional constraint can be found in Figure 3.12. Clearly,

a transmit policy is now feasible when the corresponding EC curve lies inside the tunnel de-

fined by the cEH and cES curves. The additional constraint (3.30) is affine and therefore the

optimization problem continues to be convex.

3.4.1 Computation of the optimal transmission policy

The next Lemma is an extension of Lemma 3.6 for the case of finite storage capacity:

9Otherwise, part of the energy in each arrival will be unavoidably wasted.
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Figure 3.13: Optimal transmission policy for the EH sensor with infinite (top) and finite (bot-

tom) battery capacity.

Lemma 3.7 The jointly optimal power allocation policy when the storage capacity of the EH

sensor is finite is such that, whenever the transmit power changes, its re-chargeable battery is

either fully charged or completely depleted.

Proof: The proof of this Lemma is based again on the Karush-Kuhn-Tucker (KKT) conditions

associated with the new optimization problem and it can be found in Appendix 3.A.6. This

Lemma can also be regarded as an extension of Lemma 4 in [18] for scenarios with multiple

sensor nodes forming a virtual array. In essence, Lemma 3.7 states that changes in the slope

of the EC curve can only occur when it hits either the cEH curve (depleted battery) or the cES

curve (fully charged). Intuitively, this is the reason why Lemma 3.5 (on the monotonically

increasing behavior of transmit powers for the EH sensor) does not hold anymore in scenarios

with finite energy storage capacity. This extent is illustrated in Figure 3.13.

In the same vein of Theorem 3.1, one can easily verify that Lemmas 3.1-3.3, 3.4, and 3.7

unequivocally determine the optimal transmission policy for the EH harvesting sensor with

finite storage capacity. Since those Lemmas are equivalent to the ones presented in [18] for

the single sensor case, the (jointly) optimal transmission policy for the EH sensor here can be

again independently computed on the basis of algorithm A1 proposed therein. Interestingly, the

optimal EC curve turns out to be the shortest feasible string which, now, lies inside the tunnel

given by the cEH and cES curves. Besides, the equation in Step 8 of Algorithm 1 in Section

3.3.2 continues to provide a connection between the primal and dual solutions of the problem

with finite storage capacity. Since no additional constraints apply to the BO sensor, its optimal

transmission policy can be computed from that of the EH one with Algorithm 1.
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Figure 3.14: Throughput ratio (loss) as a function of battery capacity (N = 2250 epochs). Big

round markers on the curve correspond to the operating points where the maximum storage

capacity Emax equals the energy harvested in each arrival E1,k (E1,k = 2.21 · 10−3, 2.21 ·
10−2, 2.21 · 10−1 for the ET = 10, 100, 1000 J curves, respectively).

3.4.2 Simulations and numerical results

Unlike in Section 3.3.3, here we assume the more realistic case where the energy storage ca-

pacity for the EH sensor is finite.

Figure 3.14 depicts the total loss in throughput with respect to the case of infinite storage capac-

ity by throughput ratio LG. Interestingly, as long as the maximum storage capacity is greater

than the energy harvested in each arrival, the throughput loss is barely noticeable (the through-

put ratio equals 1). In other words, the changes in the optimal transmission policy resulting

from the introduction of the additional constraint (3.30), which avoids battery overflows, have

a rather marginal impact on the achievable throughput. This is excellent news since, typically,

storage capacity is well above individual harvested energy levels. On the contrary, throughput

performance rapidly degrades for smaller storage capacities. This stems from the fact that now

part of the energy in each arrival is unavoidably wasted in battery overflows. As a result, the

total amount of energy stored with respect to the case of infinite capacity decreases, and so

does the resulting throughput.

Next, we analyze the impact of battery degradation in the EH sensor on system performance.
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Figure 3.15: Battery overflow and early depletion phenomena: transmission policies for the EH

sensor with nominal battery capacity (top, Enom
max = 5 J) and actual capacity (bottom, Eactual

max =

2.5 J) for a given realization of energy arrivals. Dotted arrows indicate the arrivals in which

part of the energy is wasted (E1,k = 2 J). As a reference, the lower plot includes the cEH curve

for the nominal capacity (dash-dotted line).

Our focus is on impairments due to long-term battery degradation due to e.g. aging. Accord-

ingly, its storage capacity is assumed to take a constant value for the whole transmission period

(i.e. no battery leakage between arrivals). The nominal storage capacity Enom
max , on which basis

the optimal transmission policies for the EH and BO are computed, is assumed to be known. On

the contrary, the actual capacity Eactual
max ≤ Enom

max , which enables data transmission, is unknown.

The fact that the actual capacity is lower that its nominal value may result into battery overflows

and early battery depletion (see Figure 3.15), both having a negative impact on the achievable

throughput. Despite of the introduction of the additional constraint (3.30), now there is a risk

to waste part of the energy arrivals in battery overflows since the remaining battery capacity is

smaller than expected. As an example, for the particular realization in Figure 3.15, the total

energy actually harvested within 0 . . . T amounts to 13.375 J instead of 16 J. Likewise, the fact

that the actual energy stored in the battery is lower than expected might lead to early battery de-

pletions. This forces data transmission for the EH sensor to be suspended until the next energy

arrival. Consequently, the beamforming gain vanishes for this period of time.

In Figure 3.16, we investigate the impact of battery overflows and early depletions on through-
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Figure 3.16: Throughput ratio (loss) vs. battery capacity degradation (ET = 100 J, c = 30 ·
10−5, T = 7h).

put. More specifically, we depict the throughput ratio LG = GT,actual/GT,nom as a function of

the ratio between actual and nominal battery capacities, namely, RC = Eactual
max /Enom

max . Unsur-

prisingly, throughput degradation is particulary severe and faster for smaller values of nom-

inal capacity (i.e. for Enom
max = 0.05 J). In this case, the amount of energy in each arrival

(E1,k = 2.21 · 10−2 J) is comparable to the nominal capacity. Consequently, many battery

overflows and early depletions occur. Furthermore, for RC = 0.1, the actual battery capacity

amounts to Eactual
max = 5 · 10−3 which is below E1,k. Hence, every energy arrival causes a battery

overflow which results into a throughput loss of 60%. It is also worth noting that for large

nominal battery capacities (Enom
max = 1 J) and higher values of capacity degradation (RC = 0.1)

there is also a noticeable throughput loss (some 10%). Even though the actual battery capacity

(Eactual
max = 0.1 J) is well aboveE1,k, the mismatch between nominal and actual capacities results

into some battery overflows and early depletions too.

3.5 Computational complexity analysis

To recall, the computation of the optimal transmission policy for the EH sensor with infinite

storage capacity entails the determination of a number of piece-wise linear functions with min-
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imal slope which connect a subset of the N corner points on the cEH curve (see proof of

Theorem 3.1 and [17]). In the worst case, the total number of corner points on the EC curve

equals10 N . For the first corner point (actually, the origin), the total number of slopes to be

checked equals N , that is, as many as the number of corner points up to t = T . For the second

corner point, the total number of slopes equals N − 1. The total number of operations is, thus,

N + (N − 1)+ . . . 1 = N ·(N−1)
2

. Hence, the complexity associated with the computation of the

optimal transmission policy for the EH sensor with infinite energy storage capacity is O(N2).

As for the BO sensor, each iteration of Algorithm 1 entails the computation ofN transmit pow-

ers (Steps 6 to 10). When a bi-section scheme is adopted (rather than the grid search we actually

used in Algorithm 1), the total number of iterations needed is on the order of log(1
ǫ
) [38], where

ǫ denotes the constraints prescribed tolerance. Hence, the complexity associated with the com-

putations of the optimal transmission policy for the BO sensor is O(N log(1
ǫ
)). In conclusion,

the computational complexity11 of the proposed scheme is dominated by that of the algorithm

presented in [17] and it reads O(N2).

3.6 Chapter summary and conclusions

In this chapter, we have derived the jointly optimal transmission policy which allows an energy

harvesting plus a battery operated sensor node to act as a virtual antenna array to maximize

throughput for a given deadline. The necessary conditions for optimality that we have iden-

tified, for both scenarios, i.e. with infinite and finite energy storage capacity in the energy

harvesting sensor, allowed us to prove that the optimal transmission policy for the energy har-

vesting sensor can be computed independently from that of the battery operated one according

to the procedure described in [17] and [18], respectively. Interestingly enough, we have proved

that such policies continue to be optimal for our two-sensor (vs. single-sensor) scenario. More-

over, we have shown that the optimal transmission policy for the battery operated sensor is

unequivocally determined and can be iteratively computed from that of the energy harvest-

ing one. The resulting policy is, in general, different from that of battery operated sensors in

single-sensor scenarios (i.e. constant transmit power).

The performance of the jointly optimal transmission policy has been assessed by means of com-

puter simulations in a realistic scenario where solar energy is harvested from the environment.

Computer simulation results have revealed that, in scenarios with infinite storage capacity in

the energy harvesting sensor, the joint optimization of transmit policies in combination with

10The actual number depends on the specific realization of energy arrivals.
11Likewise, for the scenario where EH sensor is equipped with an energy storage of finite capacity, the algorithm

proposed in [18] checks two times more slopes. The order of number operations, however, continues to be the

same, i.e. O(N2). Consequently, the computational complexity for the optimization method proposed in Section

3.4 is dominated by that of the algorithm presented in [18], and it equalsO(N2).
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beamforming yields substantial throughput gains. The highest gain is attained when the to-

tal energy in the energy harvesting and battery operated sensors are identical. However, the

gain becomes negligible in high-SNR scenarios where large amounts of energy are harvested

by/stored in sensors. In the case of unbalanced energy levels, throughput gains are lower when

the BO sensor dominates. Besides, we have found that throughput gain is higher when solar

irradiation levels vary rapidly.

We have also learnt that throughput losses stemming from finite storage capacity are only sub-

stantial when battery capacity is smaller than the amount of energy in each arrival. Finally, we

have observed that a long-term degradation of battery capacity may result into battery overflows

and early battery depletions. The associated throughput loss is particulary severe for smaller

values of the nominal storage capacity. Still, the impact of the mismatch between nominal and

actual capacities can also be noticeable for larger values.
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3.A Appendix

3.A.1 Proof of Lemma 3.1

Assume that the optimal policy before sk−1 and after sk is optimal. The total throughput

in the kth epoch is given by Gτk =
∫ sk
sk−1

log(1 + pBF(t))dt where, to recall, we defined

pBF(t) = (
√

pH(t) +
√

pB(t))
2 as the instantaneous power received at the base station from

the two sensors. Besides, let ∆eBF =
∫ sk
sk−1

pBF(t)dt denote the total received energy in the kth

epoch of duration τk = sk − sk−1. From Jensen’s inequality [39, Section 7.2.5], we have that

the following inequality:

∫ b

a
g (f(t))h(t)dt
∫ b

a
h(t)dt

≤ g

(∫ b

a
f(t)h(t)dt
∫ b

a
h(t)dt

)

holds as long as g(·) is a concave function, f(t) is such that α ≤ f(t) ≤ β, and h(t) ≥ 0.

Letting g(p) = log(1 + p), f(t) = pBF(t) and h(t) = 1 yields

Gτk =

∫ sk

sk−1

log(1 + pBF(t))dt

≤ τk log

(

1 +

(∫ sk
sk−1

pBF(t)dt
∫ sk
sk−1

dt

))

(3.31)

= τk log

(

1 +
∆eBF

τk

)

.

This last inequality evidences that for a given energy ∆eBF, the optimal power allocation poli-

cies for the kth epoch must be such that the instantaneous received power at the BS is constant

and equal to pBF(t) = ∆eBF/τk. In order to determine the optimal transmission policy for each

sensor, we resort to Cauchy’s inequality [39, Section 7.2.5] to learn that

(
∫ sk

sk−1

pBF(t)dt

) 1
2

≤
(
∫ sk

sk−1

pH(t)dt

) 1
2

+

(
∫ sk

sk−1

pB(t)dt

) 1
2

or, equivalently (see Figure 3.17),
∫ sk

sk−1

pBF(t)dt ≤
(√

∆eH +
√

∆eB

)2

. (3.32)

By replacing (3.32) into (3.31), we finally get:

Gτk ≤ τk log



1 +

(√

∆eH

τk
+

√

∆eB

τk

)2


 . (3.33)

In other words, the individual power allocation policies that maximize the throughput in the kth

epoch consist in using a constant transmit power given by pH(t) = ∆eH/τk and pB(t) = ∆eB/τk

for the EH and BO sensors, respectively. This concludes the proof.
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Figure 3.17: Transmit power in each sensor remains constant between consecutive events

(Lemma 3.1).

3.A.2 Proof of strict concavity of the utility function

The utility function for the optimization problem is given by:

N∑

k=1

τk log
(
1 + (

√
pH,k +

√
pB,k)

2
)

(3.34)

As it can be seen, it is represented as a weighted sum of terms, where all the terms have the

same form. In addition, the kth term only depends on the corresponding two variables, i.e. pH,k

and pB,k. Let us define the following function:

G1(pH, pB) = τ log
(
1 + (

√
pH +

√
pB)

2
)

(3.35)

which represents the kth term in the sum (indices k have been omitted for brevity). Hence,

it suffices to show that G1(pH, pB) is strictly concave, or, alternatively that G2(pH, pB) =

−G1(pH, pB) is strictly convex. The latter can be verified by realizing that for pH > 0 and

pB > 0, the Hessian

∇2G2(pH, pB) =

[
∂2G2

∂pH
2

∂2G2

∂pH∂pB

∂2G2

∂pB∂pH

∂2G2

∂pB
2

]

(3.36)

is positive definite, i.e. ∇2G2(pH, pB) ≻ 0. By using the Schur complement, it is equivalent to

say that A > 0, S > 0, with A and S defined as follows:

A =
∂2G2

∂pH
2

(3.37)

S =
∂2G2

∂pB
2
− ∂2G2

∂pB∂pH

(
∂2G2

∂pH
2

)−1
∂2G2

∂pH∂pB

(3.38)

Considering the definition of G2, (3.37) and (3.38) can further be expressed as follows:

A =
2p

3/2
H + 5pH

√
pB + 4

√
pHpB +

√
pB + p

3/2
B

2p
3/2
H (1 + pH + 2

√
pHpB + pB)2

(3.39)
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S =
6
√
pBp

5/2
H + p3B + 6pHpB + 4p

3/2
H

√
pB + p3H + 6p

5/2
B

p
3/2
B (2p

3/2
H + 5pH

√
pB + 4

√
pHpB +

√
pB + p

3/2
H )(1 + pH + 2

√
pHpB + pB)2

+
15p2BpH + 15pBp

2
H + 20p

3/2
B p

3/2
H + p2H + p2B + 4p

3/2
B

√
pH

p
3/2
B (2p

3/2
H + 5pH

√
pB + 4

√
pHpB +

√
pB + p

3/2
H )(1 + pH + 2

√
pHpB + pB)2

(3.40)

Since pH > 0 and pB > 0, as shown in Lemma 3.4, we conclude that A > 0 and S > 0,

and therefore ∇2G2(pH, pB) ≻ 0. This concludes the proof of strict concavity of the utility

function.

3.A.3 Solution of third order equation

In order to find the optimal policy for BO sensor node, it is necessary to solve the third order

equation (Step 8 in Algorithm 1), where, to recall, the optimal policy at the EH sensor p̆H,k is

known from Theorem 3.1. To that end, let us rewrite the equation (3.23) as follows:

ax2 + bx2 + cx+ d = 0, (3.41)

with variable x and coefficients a, b, c, and d given by:

x =
√

p̆B,k (3.42)

a = B̆k (3.43)

b = 2B̆k

√

p̆H,k (3.44)

c = B̆kp̆H,k + B̆k − 1 (3.45)

d = −
√

p̆H,k. (3.46)

Equation (3.41), known as complete cubic equation [39, Section 5.1.3], can be solved by intro-

ducing the following change of variable

x = y − b

a
, (3.47)

this resulting in an incomplete cubic equation, namely

y3 + py + q = 0, (3.48)

with the coefficients p and q given by

p = −1
3

(
b

a

)2

+
c

a

q =
2

27

(
b

a

)3

− bc

3a2
+
d

a
.

(3.49)
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The solutions of the incomplete cubic equation read:

y1 = α + β

y2,3 = −
1

2
(α + β)± i

√
3

2
(α− β) (3.50)

with α and β given by:

α =
(

−q
2
+
√
D
)1/3

β =
(

−q
2
−
√
D
)1/3

, (3.51)

being D, the discriminant, namely:

D =
(p

3

)3

+
(q

2

)2

. (3.52)

The number of real-valued roots of a cubic equation depends on the sign of the discriminant

D:

• D > 0: there is one real and two complex conjugate roots.

• D < 0: There are three real roots.

• D = 0: There is one real root and another real root of double multiplicity (for p = q = 0).

From the Viète theorem [39, Sec 5.1.3], the roots of a complete cubic equation (3.41) must

satisfy

x1 + x2 + x3 = −
b

a
, (3.53)

x1x2 + x1x3 + x2x3 =
c

a
, (3.54)

x1x2x3 = −
d

a
. (3.55)

Hence, from (3.43), (3.46) and (3.55), we know that:

x1x2x3 =

√
p̆H,k

B̆k

> 0 (3.56)

where the strict positivity of (3.56) comes out of the fact that p̆H,k, B̆k > 0. When the dis-

criminant D is positive, the single real (and positive) root will be the solution to (3.41). On

the contrary, when there are multiple real roots (i.e.D ≤ 0), only one of them can be positive

and the other two must be negative in order for (3.56) to hold. Again, this single positive root

will be chosen. Finally, by considering the change of variables (3.42), the power at the battery

operated sensor during kth epoch follows

p̆B,k = x21, (3.57)

where x1 is the only positive solution to equation (3.41).
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Figure 3.18: When transmit power changes, the energy consumed by the EH sensor equals the

energy harvested (Lemma 3.6).

3.A.4 Proof of Lemma 3.6

Let us consider (3.25) and (3.26), which give us the connection between primal and dual op-

timal solutions. Since, as stated in Lemma 3.4 , p̆H,k, p̆B,k 6= 0, the complementary slackness

conditions (3.18) and (3.19), force the corresponding Lagrangian multipliers to vanish, i.e.

µ̆k, ξ̆k = 0. When transmit power changes, due to Lemma 3.5 we have p̆H,k < p̆H,k+1. From

(3.25) and the Remark below, this can only hold if Ăk 6= Ăk+1 or, equivalently, if λ̆k 6= 0

(to recall, µ̆k = 0). From the complementary slackness condition in (3.16), we have that

λ̆k 6= 0 ⇒ ∑k
i=1 τip̆H,i − Ek

H = 0. That is, the energy consumed by the energy harvesting

sensor up to sk, equals the energy harvested by such sensor up to that instant (see Figure 3.18).

This concludes the proof.

Remark: From Lemma 3.2, we know that
∑N

k=1 τkp̆B,k = E2,0. Since, in addition p̆B,k 6= 0 this

yields
∑n

k=1 τkp̆B,k − E2,0 < 0 for all n = 1 . . . N − 1. From the complementary slackness

condition of (3.17), we conclude that, necessarily, ν̆k = 0 for k = 1 . . . N −1. This, along with

the fact that µ̆k = 0 for all k, implies that B̆k = B̆N = νN , ∀k, that is, all B̆ks are identical. This

property is a cornerstone of Algorithm 1 since it turns an N-dimensional exhaustive search into

a single-dimensional one.

3.A.5 Transmission policies with battery overflows are suboptimal

Here we show that any transmission policy resulting into battery overflows in the EH sensor

is strictly suboptimal. We will prove this by contradiction. Assume that a transmission policy

with battery overflow at sk only (Figure 3.19 left) is optimal. Let ΠH = {pH,1, . . . , pH,k, . . . , pH,N}
and ΠB = {pB,1, . . . , pB,k, . . . , pB,N} denote the corresponding optimal transmission policies

for the EH and BO sensors, respectively. We can think of an alternative (and feasible) trans-

mission policy Π̇ = {Π̇H, Π̇B} such that, on the one hand, Π̇H = {pH,1, . . . , ṗH,k, . . . , pH,N}
and, on the other, Π̇B = ΠB. That is, the new policy only differs from the optimal one in the

power allocated to the EH sensor in the kth epoch. By properly adjusting ṗH,k, the battery over-
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Figure 3.19: Transmission policies with battery overflows are strictly suboptimal.

flow at sk can be avoided (Figure 3.19 right). Since, clearly, ṗH,k > pH,k, the throughput in the

kth epoch is higher, this resulting into a higher total throughput in [0 . . . T ]. This contradicts the

claim that the original policy Π = {ΠH,ΠB} is optimal and concludes the proof.

3.A.6 Proof of Lemma 3.7

The Lagrangian L2 of the new optimization problem with finite battery capacity constraints is

given by

L2 =−
N∑

k=1

τk log
(
1 + (

√
pH,k +

√
pB,k)

2
)

+
N∑

n=1

λn

(
n∑

k=1

τkpH,k −En
H

)

−
N∑

n=1

πn

(
n∑

k=1

τkpH,k − SnH

)

+

N∑

n=1

νn

(
n∑

k=1

τkpB,k − En
B

)

−
N∑

k=1

µkpH,k −
N∑

k=1

ξkpB,k. (3.58)

The new KKT conditions thus read

∂L2

∂pH,k
,
∂L2

∂pB,k
= 0 (3.59)

n∑

k=1

τkp̆H,k ≤ En
H for n = 1 . . . N (3.60)

n∑

k=1

τkp̆H,k ≥ SnH for n = 1 . . . N (3.61)

n∑

k=1

τkp̆B,k ≤ En
B for n = 1 . . . N (3.62)

p̆H,k, p̆B,k > 0 (3.63)

λ̆n, π̆n, ν̆n, µ̆k, ξ̆k ≥ 0 (3.64)
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λ̆n

(
n∑

k=1

τkp̆H,k − En
H

)

= 0 for n = 1 . . . N (3.65)

π̆n

(
n∑

k=1

τkp̆H,k − SnH

)

= 0 for n = 1 . . . N (3.66)

ν̆n

(
n∑

k=1

τkp̆B,k − En
B

)

= 0 for n = 1 . . . N (3.67)

−µ̆kp̆H,k = 0 for k = 1 . . . N (3.68)

−ξ̆kp̆B,k = 0 for k = 1 . . . N (3.69)

where equation (3.66) accounts for the additional constraint given by (3.30), and {πn} denote

the corresponding set of Lagrange multipliers. Since the additional constraint does not apply

to the BO sensor, the partial derivative ∂L2

∂pB,k
is identical to that in Appendix 3.A.4, namely,

∂L2

∂pB,k
= ∂L1

∂pB,k
. On the contrary, ∂L2

∂pH,k
differs and, more specifically, it reads

∂L2

∂pH,k

= −τk
√
p̆H,k +

√
p̆B,k

√
p̆H,k

(
1 + (

√
p̆H,k +

√
p̆B,k)2

) + τk(
N∑

n=k

λ̆n − π̆n)− µ̆k (3.70)

From (3.59) and by introducing the change of variables Ăk =
∑N

n=k(λ̆n − π̆n) − µ̆k
τk

and

B̆k =
∑N

n=k ν̆n − ξ̆k
τk

, the optimal transmit powers in kth epoch, p̆H,k and p̆B,k, again yield

p̆H,k =
B̆k(Ăk + B̆k − ĂkB̆k)

Ăk(Ăk + B̆k)2
(3.71)

p̆B,k =
Ăk(Ăk + B̆k − ĂkB̆k)

B̆k(Ăk + B̆k)2
. (3.72)

Equation (3.63) and the complementary slackness conditions (3.68) and (3.69) again force the

corresponding Lagrangian multipliers to vanish, i.e. µ̆k, ξ̆k = 0. As in Appendix 3.A.4, the

transmit power changes (p̆H,k 6= p̆H,k+1) iff Ăk 6= Ăk+1 or, equivalently, if λ̆k − π̆k 6= 0.

This is only possible for the following combinations of values of the Lagrangian multiplier: (i)

λ̆k 6= 0, π̆k = 0; (ii) λ̆k = 0, π̆k 6= 0; or (iii) λ̆k 6= 0, π̆k 6= 0, λ̆k 6= π̆k. The conditions (i)

and (ii) accounts for cases in which the EC curve hits the cEH or cES curves at sk respectively;

whereas (iii) accounts for the case in which the cEH and cES curves coincide at time instant sk

(i.e. when energy harvested at sk equals battery capacity, namely, E1,k = Emax).
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Chapter 4

Collaborative Beamforming with Energy

Harvesting Sensors

In this chapter, we generalize the communication scenario from Chapter 3, by considering a

system where multiple energy harvesting sensors cooperate to transmit a common message to a

distant base station. As in the previous chapter, the aim is to identify the jointly optimal trans-

mission policy such that the total data throughput for a given deadline is maximized. However,

the fact that now, all the sensors are capable of harvesting ambient energy, renders this problem

more involved. First, we address a scenario where the energy storage capacity of sensors is as-

sumed to be infinite. In order to facilitate the presentation of the proposed optimization method,

initially, we consider the case with only two EH sensors. For the given setup, we prove that

the jointly optimal solution can be found in an iterative manner, where, in each iteration, the

utility function is maximized by adjusting the powers at one of the sensors, whilst the policies

at the other sensor(s) is(are) kept fixed. Next, we generalize the analysis for a scenario were

the sensors are assumed to have finite energy storage capacity. The computational complexity

of the proposed schemes is analyzed in detail and compared with that of interior point meth-

ods. The performance is extensively assessed by means of computer simulations in different

scenarios with vibrational energy harvesting. As benchmarks, we consider the case where the

transmission policies for each sensor are separately optimized, as well as other cluster-based

suboptimal transmission strategies. Besides, for a finite storage capacity scenarios, we evaluate
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the effects of long-term battery aging.

4.1 Introduction

This chapter is a natural extension of Chapter 3. To recall, in the previous chapter, we con-

sidered a simple communication scenario with two sensor nodes, where only one of them was

able to harvest energy from the environment. Although the given scenario is quite simple, the

insights gained therein, along with the iterative method proposed in this chapter, will ultimately

allow us to solve a more general problem with multiple energy harvesting sensors.

4.1.1 Contribution

In this chapter, the focus of our study is a communication scenario where multiple energy-

harvesting-enabled sensor nodes collaborate to transmit a common message signal to a distant

base station. As for the system model, we assume the setup identical to that of Chapter 3, i.e.

the information on energy harvesting arrivals is perfectly known in advance and the sensor-to-

BS channels are described by using the Gaussian model. Once again, the goal is to identify the

jointly optimal transmission policy at all energy harvesting sensors such that the total through-

put up to a given deadline is maximized. In contrast to Chapter 3, the transmission policies

at all the sensor nodes are now constrained by the corresponding energy harvesting arrivals.

Consequently, the optimal policies for the scenario considered here cannot be computed inde-

pendently anymore.

Since Lemma 3.1 continues to hold for the multiple energy harvesting sensor case, once again,

the problem of computing the jointly optimal transmission policy can be cast into a convex

program. Furthermore, this allows us to derive a semi-analytical solution which leverages

on (i) the computationally-efficient iterative coordinate descent method of [40, Section 2.7];

and (ii) algorithms that we propose for infinite and finite energy storage capacity cases, on

which basis one can compute the optimal policy for one sensor whilst the policy(ies) for the

remaining one(s) is (are) held fixed. We also rigorously prove the optimality of the proposed

method for a virtual array with an arbitrary number of EH sensors. Besides, we analyze the

computational complexity associated with the proposed optimization scheme. In this respect,

interior point methods are used as a benchmark. Finally, we extensively assess the performance

of the proposed algorithm in a realistic system scenario where vibrational energy is harvested

from the environment.

The contents of this chapter have been partly published in references [41], [42] and [43].

The chapter is organized as follows. First, in Section 4.2, we introduce the signal and commu-
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nication model for the two energy harvesting sensor case. Next, in Section 4.3 we address a

scenario where EH sensors are equipped with energy storage of infinite capacity. Subsequently,

we generalize the analysis to a scenario with an arbitrary number of energy harvesting sensors.

Then, in Section 4.4, we provide the analysis for a case in which multiple sensors are equipped

with energy storage of finite capacity. Finally, we outline the main findings of the chapter in

Section 4.5.

4.2 Signal model

Let I denote the total number of EH sensors which cooperate to transmit a common message

to a distant base station. Initially, we restrict the analysis to the two-sensor case1 (i.e., I = 2)

and, thus, the received signal reads

r(t) = m(t)

(
2∑

i=1

g∗i (t)e
jψi(t)

)

+ w(t) (4.1)

where, to recall, the common message is given by m(t) =
∑

l xlu(t − lTs), with {xl} denot-

ing a sequence of zero-mean complex Gaussian symbols with unit variance (Ts is the symbol

period) and u(t) standing for the impulse response of a bandlimited pulse (unit bandwidth);

function gi(t) =
√

pi(t)e
−jθi(t) accounts for the ith time-varying complex transmit weight

to be designed (in polar notation); ejψi(t) stands for the phase shift of the Gaussian sensor-

to-base station channels; and w(t) is zero-mean complex additive white Gaussian noise with

unit variance (i.e. w(t) ∼ CN (0, 1)). By properly designing θi(t) for i = {1, 2}, again,

we assume that the aforementioned channel phase shifts and oscillator offsets can be ideally

pre-compensated (frequency and time synchronization are assumed, as well). With these as-

sumptions, the whole sensor network behaves as a virtual array capable of beamforming the

message to the base station. The instantaneous received power at the base station is thus given

by pBF(t) = (
√

p1(t) +
√

p2(t))
2, and the total throughput for a given deadline T , GT , then

reads

GT = GT

(
p1(t), p2(t)

)
=

∫ T

0

log
(
1 + pBF(t)

)
dt. (4.2)

Once again, the aim is to identify the jointly optimal transmission (power allocation) policies

p1(t) and p2(t) such that the throughput GT is maximized subject to the constraints imposed by

the energy harvesting processes, namely,

e1(t) ≤ E1(t) ,
∑

k:sk<t

E1,k ; 0 ≤ t ≤ T (4.3)

e2(t) ≤ E2(t) ,
∑

k:sk<t

E2,k ; 0 ≤ t ≤ T, (4.4)

1This initial assumption, to be relaxed in Section 4.3.4, greatly facilitates the presentation of the proposed

algorithm.
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Figure 4.1: Network with two energy harvesting sensors (left); cumulative energy harvesting

constraints and energy consumption curves (right).

where, again, e1(t) =
∫ t

0
p1(τ)dτ and e2(t) =

∫ t

0
p2(τ)dτ denote the energy consumption (EC)

curves; and E1(t), E2(t) stand for the cumulative energy harvesting (cEH) constraints which,

as Figure 4.1 illustrates, are both staircase functions. The rest of parameters, i.e. Ei,k, sk and

τk, were defined in Chapter 3.

4.3 Infinite battery capacity

In this section, we initially assume that the energy storage capacity of each sensor in the net-

work is unlimited (infinite). In other words, each sensor is capable of storing all energy packets

that arrive over time. Consequently, the transmission policy for each of them is only constrained

by the corresponding cumulative energy harvesting curve. Furthermore, it can be shown that

Lemmas 3.1 - 3.4 from Chapter 3 continue to hold, even for a more general scenario where

all the sensors have energy harvesting capabilities. As shown in the previous chapter, this

considerably simplifies the analysis, by allowing us to pose the original optimization problem

given by the score function (4.2) and the causality constraints (4.3) and (4.4) into a convex

optimization framework.
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4.3.1 Computation of the optimal transmission policy

The problem of maximizing the throughput for a given deadline, such that energy causality

constraints are satisfied2, can be expressed as the following optimization problem:

max
{p1,k}Nk=1,{p2,k}Nk=1

N∑

k=1

τk log
(
1 + (

√
p1,k +

√
p2,k)

2
)

(4.5)

s.t.:
n∑

k=1

τkp1,k ≤ En
1 =

n−1∑

k=0

E1,k for n = 1 . . . N (4.6)

n∑

k=1

τkp2,k ≤ En
2 =

n−1∑

k=0

E2,k for n = 1 . . . N (4.7)

p1,k ≥ 0 for k = 1 . . .N (4.8)

p2,k ≥ 0 for k = 1 . . .N (4.9)

where pi,k account for the power at ith sensor during kth epoch, i.e. pi(t) = pi,k for sk−1 ≤ t <

sk. Again, the optimization problem given by (4.5)-(4.9) turns out to be convex since the aim

is to maximize a concave function subject to a set of affine constraints. In order to overcome

the drawbacks associated with the numerical optimization (high computational complexity),

in the remainder of this section we derive a semi-analytical solution which is computationally

efficient. To that aim, we leverage on (i) the so-called iterative coordinate descent method (see

Section 4.3.2); and (ii) the algorithm that we propose in Section 4.3.3, on which basis we can

maximize the throughput by adjusting the policy for one sensor whilst the policy of the other

sensor is held fixed.

4.3.2 Iterative coordinate descent method

Consider an optimization problem of the form:

max
p

f(p)

s.t.: p ∈ P, (4.10)

where f(p) : Rn → R is a continuously differentiable and concave function on a set P which,

in turn, can be expressed as the Cartesian product of convex sets P1, . . . ,Pn.

In [44], the authors prove that as long as (i) f(p) is a strictly concave function of the ith coordi-

nate of vector p (i.e. it has a unique maximum in pi when the remaining coordinates are held

constant); and (ii) the sequence of said coordinates is generated according to an almost cyclic

rule (or, more intuitively, every coordinate is iterated a sufficient number of times); an iterative

2The energy consumption curves lie below the cumulative energy harvesting constraints at all times.
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procedure by which in each step a subset of coordinates in p are adjusted so as to minimize

f(·) over P along this direction necessarily converges to the optimal solution. This procedure

is referred to in the literature as the iterative coordinate descent method.

One can easily prove that the optimization problem (4.5)-(4.9) can be cast into the general

framework described above and, hence, it can be solved in an iterative fashion. In this con-

text, we let pi = [pi,1, pi,2, . . . , pi,N ]
T

denote a column vector gathering the N components in

the transmission policy {pi,k}Nk=1 of sensor i ∈ {1, 2}. Further, we define transmission sub-

policy as the subset of transmit powers {pi,k}kuk=kl in epochs k = kl . . . ku. Accordingly, vector

pi,kl:ku = [pi,kl, pi,kl+1, . . . , pi,ku]
T

gathers the transmit powers in such transmission sub-policy.

Bearing all this in mind, the original optimization problem (4.5)-(4.9) can be decomposed in

two individual sub-problems (one for each sensor in the network) and be iteratively solved.

More precisely, in the mth iteration of coordinate descent method, we update the transmission

policy of the first sensor, p
(m)
1 , by solving the subproblem

p
(m)
1 = argmax

p1

N∑

k=1

τk log

(

1 +

(√

p
(m)
1,k +

√

p
(m−1)
2,k

)2
)

(4.11)

s.t.:

n∑

k=1

τkp
(m)
1,k ≤ En

1 =

n−1∑

k=0

E1,k for n = 1 . . .N (4.12)

p
(m)
1,k ≥ 0 for k = 1 . . .N (4.13)

while holding fixed the policy for the second sensor that was computed in the previous iteration,

namely, p
(m−1)
2 . Next, we update the transmission policy of the second sensor, p

(m)
2 by solving

p
(m)
2 = argmax

p2

N∑

k=1

τk log

(

1 +

(√

p
(m)
1,k +

√

p
(m)
2,k

)2
)

(4.14)

s.t.:

n∑

k=1

τkp
(m)
2,k ≤ En

2 =

n−1∑

k=0

E2,k for n = 1 . . .N (4.15)

p
(m)
2,k ≥ 0 for k = 1 . . .N (4.16)

while holding p
(m)
1 fixed3. This procedure is iterated until a prescribed level of accuracy is

attained or when the maximum number of iterations is reached. Since in each iteration both

transmission policies are updated, the almost cyclic rule is clearly satisfied.

3Note that each subproblem includes only its own energy causality constraint. This follows from the fact

that (i) causality for the other (fixed) transmission policy is enforced in the previous iteration; and (ii) causality

constraints are not mutually coupled since both sensors harvest energy independently.
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4.3. Infinite battery capacity

4.3.3 Updating the transmission policy of one sensor node

In this section, we propose an algorithm to semi-analytically find the (jointly) optimal trans-

mission policy of one sensor whilst that of the other one is held fixed. Assume, without loss

of generality, that we want to optimize the transmission policy of the first sensor. The Karush-

Kuhn-Tucker (KKT) conditions for the sub-problem (4.11)-(4.13), read4:

∂L1

∂p̆1,k
= 0 (4.17)

n∑

k=1

τkp̆1,k ≤ En
1 =

n−1∑

k=0

E1,k for n = 1 . . .N (4.18)

p̆1,k ≥ 0 (4.19)

λ̆n, µ̆k ≥ 0 (4.20)

λ̆n

(
n∑

k=1

τkp̆1,k − En
1

)

= 0 for n = 1 . . .N (4.21)

−µ̆kp̆1,k = 0, (4.22)

where ∂L1

∂p̆1,k
stands for the partial derivative of the Lagrangian associated with the sub-problem,

namely,

∂L1

∂p̆1,k
= −τk

√
p̆1,k +

√
p2,k

√
p̆1,k

(
1 + (

√
p̆1,k +

√
p2,k)2

) + τk

(
N∑

n=k

λ̆n −
µ̆k
τk

)

. (4.23)

In the previous chapter, it is shown that the optimal solution is such that all the powers must be

strictly positive. This fact, along with the complementary slackness condition (4.22) implies

that, at the optimal point p̆1, all µ̆k must vanish, i.e. µ̆k = 0, ∀k. Hence, by defining

Ak =
N∑

n=k

λn (4.24)

the partial derivative of the Lagrangian in (4.23) can be conveniently re-written as

∂L1

∂p̆1,k
=− τk

√
p̆1,k +

√
p2,k

√
p̆1,k

(
1 + (

√
p̆1,k +

√
p2,k)2

) + τkĂk. (4.25)

In order to compute the optimal transmission policy for the first sensor, we partly leverage

on (and generalize) Algorithm 1 presented in Chapter 3. To recall, Algorithm 1 allows to

analytically compute the optimal policy for a battery operated (BO) sensor in a virtual array

composed of one EH plus one BO sensor. For a BO sensor, we have Ei,0 > 0 whereas Ei,k = 0

for k = 1 . . .N − 1. In other words, no energy other than that initially stored in its battery is

harvested during sensor operation. As a result, the cEH curve defined in (4.3) or (4.4) is no

longer a staircase function. Instead, it takes a constant value for the whole 0 ≤ t ≤ T period.

4For brevity, hereinafter we omit the iteration index m.
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Figure 4.2: Original and virtual optimization problems. Dashed and dash-dotted lines account

for the original and virtual cEH curves, respectively.

Specifically, in order to compute the optimal transmission policy for the first sensor we propose

the following 4-step procedure:

1. Check whether a BO-like solution for epochs k = 1 . . . N is feasible: To that aim, we

assume that all the energy harvested by the first sensor during its operation is available

from t = 0 (see Figure 4.2). This is equivalent to solve an optimization sub-problem

where we replace the set of actual harvested energies E1,k by the following virtual ones

E ′
1,0 =

N−1∑

k=0

E1,k (4.26)

E ′
1,k = 0 (4.27)

for k = 1 . . . N − 1. The corresponding virtual transmission policy p̆′
1 can thus be

computed by using the procedure given in Algorithm 1. If such virtual transmission

policy verifies the constraints (4.12)-(4.13) of the original sub-problem (i.e. it is feasible)

then it is solved and the procedure terminated. This follows from the facts that (i) the

score function optimized in the virtual and original sub-problems are identical; (ii) the

sub-problem is strictly convex and, hence, the optimal solution is unique; and (iii) the

solution of the virtual sub-problem is feasible for the original one too5. In other words,

we have p̆1 = p̆′
1. Interestingly enough, if the BO-like solution is feasible (and, thus,

optimal) then p̆1 is not affected by the causality constraints for n = 1 . . . N − 1 which

could well be dismissed. More formally, this is equivalent to say that, in the Lagrange

dual we have λ̆n = 0 for n = 1 . . . N − 1 (still, we must have λ̆N > 0 in order to fulfill

5Intuitively, since in a BO-like policy all the energy harvested is available from the onset the throughput it

attains is necessarily higher than that of any other policy computed with the actual energy arrivals.

72



4.3. Infinite battery capacity

the necessary optimality condition given by Lemma 3.2 and, thus, enforce
∑N

k=1 τkp̆1,k =

EN
1 in the KKT condition given by (4.21)).

On the contrary, if the resulting virtual policy p̆′
1 violates one or more causality constraint

given by (4.12) then it is not feasible. In order to enforce those constraints, we necessarily

have λ̆n > 0 for one or more epochs in n = 1 . . .N − 1 (in addition to having λ̆N >

0). Consequently, the optimal policy p̆1 is such that the EC curve touches6 the cEH

constraints in one or more corner points of the cEH curve in n = 1 . . .N − 1. This case

is addressed in Step 2.

2. Find the largest L < N such that a BO-like solution for epochs k = 1 . . . L is feasible

and, simultaneously, the energy harvested by that sensor in sL is non-zero: If the BO-like

virtual sub-policyp′
1,1:L is feasible for original problem, then it verifies the causality con-

straints for k = 1 . . . L (or, equivalently, the KKT conditions for such epochs). Hence,

p′
1,1:L is a good candidate for the optimal transmission policy p̆1 since, at least, it verifies

the problem constraints up to the Lth epoch. As soon as this happens, we move to Step

3 below (otherwise, we try a smaller value of L). It is worth noting that, analogously to

Step 1, the fact that this virtual sub-policy is feasible implies that, in the Lagrange dual,

we have λn = 0 for n = 1 . . . L − 1 and7 λL > 0. In other words, in the first L epochs

the EC curve associated with this candidate hits the cEH curve in sL only.

The reason why we impose the sensor to effectively harvest some energy in sL (i.e.,

E1,L > 0) will be clarified in Step 4 below. For the time being, it suffices to say that

imposing E1,L > 0 is equivalent impose that the cEH curve has a corner point in sL.

3. Retain sub-policy p′
1,1:L and repeat Steps 1 and 2 for epochs k = L + 1 . . . N only

(instead of k = 1 . . . N). Steps 1 to 3 are iterated until all the transmit powers for epochs

k = 1 . . . N have been computed as BO-like feasible solutions.

4. Construct the optimal transmission policy as a concatenation of the BO-like sub-policies

computed and retained in Steps 1-3. This extent is illustrated in Figure 4.3 where, as

an example, we have p̆1 = [p
′T
1,1:L,p

′T
1,L+1:M ,p

′T
1,M+1:N ]

T with L,M < N . The intuition

behind this approach is that, as previously discussed, each BO-like policy attains the

highest possible throughput in its own epoch subset, which is determined in Steps 1-2.

However, its overall optimality needs to be proved.

As a final remark, note that should the sub-policy p
′

1,1:L hit the cEH curve in a non-

corner point, we would unavoidably have p
′

1,L+1 = 0 which contradicts the necessary

optimality condition that the powers must be strictly positive. This is why in Step 2

above we imposed E1,L > 0.

6This occurs due to the complementary slackness constraint (4.21).
7This is consistent with the fact that, from Step 1, we know that there exists at least one n < N such that

λ̆n > 0.
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Figure 4.3: Concatenation of sub-policies.

In the remainder of this section, we prove our claim that the resulting transmission policy is

indeed optimal. This motivates the following two lemmas and theorem.

Lemma 4.1 If L ≤ N is the largest value for which a candidate BO-like transmission sub-

policy p1,1:L ending in a corner point of the cEH curve is feasible, then there exists no other BO-

like transmission sub-policy p1,1:R with R < L such that it is part of the optimal transmission

policy.

This lemma implies that, as soon as the aforementioned largest L has been identified, there is no

need to search for additional candidate sub-policies in which the EC curve touches the cEH one

in a corner point at a previous time instant sR (since, for sure, the overall optimal transmission

policy will not include those corner points). This avoids conducting an exhaustive search over

events and, hence, allows us to move from Step 2 to Step 3 as described in the procedure above

without compromising optimality. This lemma can be easily proved by contradiction, as we

will see next.

Proof: Consider two candidate transmission policies, p1 and ṗ1, the first L orR (respectively)

elements of which, namely, p1,1:L and ṗ1,1:R with R < L, have been computed as BO-like

solutions (see Figure 4.4). From the discussions in Steps 1 and 2 above, we know that p1

verifies

λn = 0, n = 1, . . . , L− 1; λL > 0

and, as long as L < N ,

λn ≥ 0, n = L+ 1, . . . , N (4.28)
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Figure 4.4: Lemma 4.1: A sub-policy consuming all the harvested energy in sR is not feasible

and, thus, is not part of the overall optimal policy.

where (4.28) follows from the KKT conditions. From this, the corresponding sums of La-

grangian multipliers Ak verify in turn

A1 = A2 = . . . = AL =

N∑

n=L

λn. (4.29)

Likewise, for ṗ1 we have

λ̇n = 0, n = 1, . . . , R− 1; λ̇R > 0

λ̇n ≥ 0, n = R + 1, . . . , N (4.30)

and, hence,

Ȧ1 = Ȧ2 = . . . = ȦR =

N∑

n=R

λ̇n. (4.31)

Since in sR the EC curve associated with ṗ1 lies above that of p1 (see Figure 4.4), there nec-

essarily exists at least one epoch ko ∈ {1 . . .R} such that ṗ1,ko > p1,ko . Besides, a necessary

condition for either candidate sub-policy to qualify as optimal, is that the corresponding deriva-

tive of the Lagrangian given by (4.25) must vanish for all k ∈ {1 . . . R}, namely, ∂L1

∂p̆1,k
= 0.

In particular, for k = ko the fact that ṗ1,ko > p1,ko implies that Ȧko < Ako (and vice-versa: if

ṗ1,ko < p1,ko then Ȧko > Ako). Moreover, from (4.29) and (4.31), we conclude that Ȧk < Ak

for all k ∈ {1 . . .R} which, in turn, implies ṗ1,k > p1,k for those epochs. In other words, the

EC curve associated with the candidate sub-policy ṗ1,1:R lies strictly above that of p1,1:R for

all those epochs, as Figure 4.4 illustrates. This holds true in particular for k = R, namely,

ṗ1,R > p1,R. For the next epoch, we have that either ṗ1,R+1 < p1,R+1 or ṗ1,R+1 ≥ p1,R+1. The
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former would hold if (and only if)

ȦR < AR = AL (4.32)

ȦR+1 > AR+1 = AL (4.33)

which renders λ̇R = ȦR − ȦR+1 < 0. Since this contradicts one KKT condition then, neces-

sarily, ṗ1,R+1 ≥ p1,R+1. By applying the same reasoning to the subsequent consecutive epoch

pairs, we conclude that ṗ1,k ≥ p1,k for all k ∈ {R+1, L}. Hence, the EC curve associated with

the candidate sub-policy ṗ1,1:L lies strictly above that of p1,1:L not only for the first R epochs

but for all epochs k ∈ {1 . . . L}. Since, to recall, at sL the EC associated with the candidate

sub-policy ṗ1,1:L hits the cEH curve, this means that the candidate sub-policy ṗ1,1:L is neces-

sarily not feasible and, thus, cannot be part of the overall optimal policy (see Figure 4.4). This

concludes the proof.

To insist, this Lemma does not state that p1,1:L is part of the overall optimal policy (to that aim

we need Lemma 4.2 next) but, instead, that ṗ1,1:L cannot be part of it.

Lemma 4.2 If L ≤ N is the largest value for which a candidate BO-like sub-policy p1,1:L

ending in a corner point of the cEH curve is feasible then such sub-policy is necessarily part

of the optimal transmission policy p̆1.

Proof: For the L = N case, the proof is trivial. In order to prove the lemma for L < N , notice

that from Step 1 we know that there exists one (or more) λ̆k > 0 for k = 1 . . . N − 1. In other

words, the EC curve hits the cEH curve in some corner point(s) at sk with k = 1 . . .N − 1.

Assume that this occurs for the first time at k = N − 1. If so, the corresponding BO-like

sub-policy is feasible and λN−1 > 0. Otherwise, we know that the EC curve hits the cEH one

for the first time in some corner point(s) at sk for k = 1 . . . N − 2 for which λk > 0. We

recursively apply this procedure and, for k = L+1, we realize that the corresponding BO-like

policy is again not feasible and, thus, the first λk > 0 is necessarily in the range k = 1 . . . L.

Finally, for k = L the BO-like policy is feasible and, from Lemma 4.1, we know that the EC

curve associated with the optimal transmission policy does not touch the cEH one in a corner

point at a previous time instant. Therefore only the BO-like transmission sub-policy p1,1:L is

in a position to satisfy the λk > 0 for some k = 1 . . . L and, thus, it must be part of the overall

optimal transmission policy. This concludes the proof.

Theorem 4.1 When the transmission policy for the second sensor is held fixed, the jointly

optimal transmission policy for the first sensor, p̆1, can be computed with the procedure given

in Algorithm 2.

Algorithm 2 is nothing but a more formal representation of the 4-step procedure described

above. The corresponding proof of its optimality follows.
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Algorithm 2 Optimal policy for sensor 1 with infinite storage capacity (mth iteration)

1: m ⊲ Current iteration index

2: kl = 1 ⊲ Transmission sub-policy starts in epoch 1

3: ku = N ⊲ Transmission sub-policy ends in epoch N

4: p2 := p
(m−1)
2 ⊲ Let the transmission policy for sensor 2

5: ⊲ be the one computed in the previous iteration.

6: repeat

7: Compute BO-like sub-policy p′
1,kl:ku

as per Algorithm 1

8: if (p′
1,kl:ku

is feasible) then

9: p
(m)
1 [kl : ku]← p′

1,kl:ku

10: kl ← ku + 1

11: ku ← N

12: else

13: repeat

14: ku ← ku − 1

15: until E1,ku > 0 ⊲ Sub-policy ends in corner point

16: end if

17: until kl > ku

Proof: After computing and retaining the candidate sub-policy p1,1:L, we only need to

compute the remaining elements of the optimal transmission policy, namely, p̆1,k for k =

L + 1 . . . N . Since at sL the total energy spent equals the energy harvested, the elements

k = L + 1 . . .N exclusively depend on the energy harvested in subsequent events (i.e. not in

the previous ones, or on the optimal transmit powers for the preceding epochs). Thus, we can

simply re-start the 4-step procedure above for epoch L + 1 onwards, as it is done in Step 3.

The overall optimal transmission policy is finally computed as a concatenation of the BO-like

sub-policies computed in Steps 1-3, which is accomplished in Step 4.

To conclude this section, in Figure 4.5 we depict the transmission policies of both sensors when

(i) both policies are jointly optimized (JO); and (ii) such policies are separately optimized (SO)

as in the single-sensor scenario addressed in [17], which is suboptimal for a virtual antenna

array. The corresponding transmission policies are clearly different. The impact in terms of

throughput will be assessed in detail in Section 4.3.6.
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Figure 4.5: Joint vs. separate optimization of transmission policies (I = 2).

4.3.4 Generalization to networks with an arbitrary number of sensors

For the general case of a network with I energy-harvesting sensors, the optimization problem

reads

max
p1,p2,...pI

N∑

k=1

τk log



1 +

(
I∑

i=1

√
pi,k

)2


 (4.34)

s.t.:

n∑

k=1

τkpi,k ≤ En
i =

n−1∑

k=0

Ei,k; i = 1 . . . I (4.35)

n = 1 . . .N

pi,k > 0; i = 1 . . . I (4.36)

k = 1 . . .N.

In order to generalize the results from the previous sections, it suffices to (i) show that the score

function (4.34) is strictly concave as well; and (ii) ensure that the sequence of transmission

policy updates of the iterative coordinate descent method is almost cyclic. The latter can be en-

forced by e.g. sequentially updating all sensor transmission policies in each iteration (namely,

p
(m)
1 → p

(m)
2 → . . .→ p

(m)
I → p

(m+1)
1 → . . .). As for the former, it is worth noting again that
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the kth term in the summation, namely

Gk(p1,k...pI,k) = τk log



1 +

(
I∑

i=1

√
pi,k

)2


 , (4.37)

exclusively depends on the vector of transmit powers in the kth epoch. In other words, there are

no cross variables. In these circumstances, it suffices to show that for any k, Gk(·) is a strictly

concave function. This holds true if its Hessian∇2Gk is negative definite (namely,∇2Gk ≺ 0)

in its domain, that is, if yT∇2Gky < 0 for all non-zero vectors y ∈ R
I .

Let us define functions f (·) and h (·) as

f (h) = log (1 + h) (4.38)

h (p) =

(
I∑

i=1

√
pi

)2

(4.39)

From these definitions, we can writeG (p) = f (h (p)) where we have omitted the epoch index

k for brevity. Its Hessian can thus be expressed as8:

∇2G = ∇h∂
2f

∂h2

∣
∣
∣
h=h(p)

∇hT +
∂f

∂h

∣
∣
∣
h=h(p)

∇2h (4.40)

with

∇h =

(
I∑

i=1

√
pi

)

·
[

1√
p1

1√
p2
. . . 1√

pI

]T

, (4.41)

∂2f

∂h2

∣
∣
∣
h=h(p)

= − 1
(

1 +
(
∑I

i=1

√
pi

)2
)2 , (4.42)

∂f

∂h

∣
∣
∣
h=h(p)

=
1

1 +
(
∑I

i=1

√
pi

)2 , (4.43)

and

∇2h =
1

2











−
∑I

i=1
√
pi−

√
p1√

p1
3 . . . 1√

p1
√
pI

1√
p1

√
p2

. . . 1√
p2

√
pI

...
. . .

...

1√
p1

√
pI

. . . −
∑I

i=1
√
pi−

√
pI√

pI
3
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. (4.44)

8The composition of strictly concave functions is not necessarily a strictly concave function [32]. This is why,

in the sequel, we derive a specific proof for the function of interest.
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After some tedious manipulations, it yields

yT∇2G y = − 1

1 + h (p)
·









h (p)

1 + h (p)
·
(

I∑
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yi√
pi

)2

︸ ︷︷ ︸

L1

− 1

2

(
I∑

i=1

yi√
pi

)2

︸ ︷︷ ︸

L2

+
1

2

(
I∑

i=1

y2i√
pi

2 ·
1√
pi

I∑

j=1

√
pj

)

︸ ︷︷ ︸

L3









(4.45)

Interestingly, from Cauchy-Schwartz’s inequality [39, Section 1.6.2], the following relationship

between the L2 and L3 terms can be established:

L3 =
1

2

(
I∑

i=1

y2i√
pi

2 ·
1√
pi

)

·
(

I∑

j=1

√
pj

)

≥ 1

2

(
I∑

i=1

yi√
pi
·

4
√
pi

4
√
pi

)2

=
1

2

(
I∑

i=1

yi√
pi

)2

= L2 (4.46)

where the equality holds if (and only if) yi = αpi for all i, that is, if vectors y and p are

co-linear. Besides, we know that all transmit powers pi are strictly positive and, hence, from

(4.39) we have h (p) > 0. Thus, from (4.45) it follows that ∇2G is negative definite iff

L1 − L2 + L3 > 0. Since vector y is different from zero, this implies L1, L2 > 0, and L3 > 0.

If vectors y and p are not co-linear then L3 > L2 and, consequently, L1 − L2 + L3 > 0. If,

on the contrary, vectors y and p are co-linear then L2 = L3 which yields L1 − L2 + L3 = L1.

Since yi = αpi this means that all yi are either strictly positive or negative. Consequently,

L1 > 0 and, again, this yields yT∇2G y < 0, which concludes the proof.

4.3.5 Computational complexity analysis

In this section, we analyze the computational complexity of the proposed joint optimization

scheme, and compare it with that of the popular interior point methods [45]. More precisely,

we focus on the number of operations needed in order to determine the (jointly) optimal trans-

mission policy of one sensor while holding the rest fixed. This renders the comparison inde-

pendent of the number of iterations of the coordinate descent method described in Section 4.3.2

which depends inter-alia on the required precision.
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4.3. Infinite battery capacity

To recall, we construct the jointly optimal transmission policy as the concatenation of a number

of feasible BO-like sub-policies. Necessarily, each sub-policy starts and ends in a corner point

of its cEH curve (see Figure 4.3). For large I , the average number of corner points in each cEH

curve reads P = N/I . The total number of corner points in the optimal policy is, thus, within

the 1 . . . P range. The maximum (worst-case) number of BO-like sub-policies that need to be

checked for feasibility (i.e. pseudo-instructions 6 to 15 in Algorithm 2) equals P + (P − 1) +

(P −2)+ ...+1 = P (P−1)
2

. The minimum number (best-case) is, clearly, 1 (when the EH sensor

behaves as a BO one), whereas the actual number depends on the specific realization of energy

arrivals. In all cases, though, the number of epochs in each sub-policy is upper-bounded by N .

For each of those epochs, the BO-like transmit power is computed according to the iterative

procedure given by Algorithm 1, which essentially entails solving the third order equation in

pseudo-instruction 8. Still, the number of operations that solving it entails, Ω, does not depend

on the problem dimensionality (e.g. N , or I). Finally, the total number of times that such third

order equation needs to be solved depends on χ, namely, the required accuracy with which the

constraint in pseudo-instruction 11 of Algorithm 1 is enforced. When a bi-section scheme is

adopted (rather than the grid search actually used in Algorithm 1), the total number of iterations

needed scales as log( 1
χ
) [38]. Bearing all the above in mind, the computational complexity of

the proposed scheme is upper-bounded by

O
(

P 2 ·N · Ω · log
(
1

χ

))

= O
(

N3

I2
· Ω · log

(
1

χ

))

(4.47)

and lower-bounded by

O
(

N · Ω · log
(
1

χ

))

. (4.48)

The computational complexity of interior point methods reads [45]

O
(

N3 · log
(
1

ǫ

))

. (4.49)

where parameter ǫ is directly related with the accuracy with which the optimization problem is

solved. Clearly, even for the upper bound of (4.47), the computational complexity savings are

on the order of I2. This is of utmost importance since the number of sensors in such networks is

typically high. Furthermore, Figure 4.6 reveals that the actual number of times that a BO-like

policy needs to be checked for feasibility (averaged over realizations) is substantially below the
P ·(P−1)

2
figure of the worst case. For this particular yet representative setting, it was empirically

found to beO (NP ). Consequently, the actual savings are much larger than those predicted by

the upper bound (4.47).
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Figure 4.6: Number of times that a BO-like sub-policy needs to be checked for feasibility:

worst-case, best-case, and actual number averaged over realizations (I = 32, ET = 1 J).

4.3.6 Simulations and numerical results

In this section, we assess the performance of the proposed power allocation algorithm in a sce-

nario where vibrational energy is harvested from the environment. More precisely, sensors are

assumed to be deployed along a roadside and the energy they harvest is generated by passing-

by vehicles (see Figure 4.7). As for the energy storage device, we use the model introduced in

dD

Figure 4.7: Vibration energy harvesting, two sensor nodes.
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4.3. Infinite battery capacity

Section 3.3.3. Except in very dense traffic conditions, the levels of vibrational energy change

over time (e.g. when a vehicle passes by), and so does the average number of energy arrivals

(events). Consequently, the stochastic process that models energy arrivals is non-stationary. In

the sequel, we adopt a Poisson process with time-varying mean given by λE(t). For simplicity,

we assume that sensors harvest energy at a constant rate λE(t) = λo when the vehicle is in its

vicinity, and λE(t) = 0 otherwise (i.e. λE(t) is given by a sequence of rectangular pulses).

Hereinafter, we let Ei
T =

∑N−1
k=0 Ei,k denote the total energy harvested by the ith sensor;

whereas ET =
∑I

i=1E
i
T accounts for the total energy in the system. In all plots, we have

set T = 320 s.

Two-sensor case

Here, we assume that two sensors have been deployed at normalized locations d1 = 0.05 and

d2 ≥ d1. The normalized inter-sensor distance is denoted by ∆d = d2 − d1. Each sensor

i ∈ {1, 2} is assumed to harvest energy when the passing vehicle is within a road segment

centered in di and total normalized length9 0.1. Further, we define RE = E1
T/E

2
T as the ratio

between the total energy harvested by the first and second sensors, respectively (i.e. for large

RE , the first sensor dominates).

In Figure 4.8, we depict the throughput attained by the virtual array when using the jointly

optimal (JO) transmission policy described in Sections 4.3.1 and 4.3.3.

As a benchmark, we consider a system in which the transmission policy for each sensor is

separately optimized (SO) as in [17], which is suboptimal for a virtual array. The total energy

harvested by each sensor is identical (RE = 1) and the results are shown as a function of nor-

malized inter-sensor distance ∆d. For smallET , the throughput attained by the JO transmission

policy is approximately constant for the whole range of ∆d values. On the contrary, the perfor-

mance exhibited by the SO policy degrades when inter-sensor distance increases: since the first

sensor ignores that the second one is idle for most of the time, its harvested energy is mostly

wasted before the second sensor starts transmitting. In other words, the JO transmission policy

tends to allocate (shift) more energy to the period of time where both sensors are active. The

beamforming gain that it entails, results into a higher throughput. For this range of ET values,

the larger the inter-sensor distance, the more noticeable this effect becomes. This extent is

illustrated for a particular realization in Figure 4.9.

On the contrary, for large ET the jointly optimal and suboptimal transmission policies are

almost identical, as shown in Figure 4.10. This is due to the fact that throughput scales log-

arithmically in the transmit power (and, thus, on the total harvested energy) and linearly in

the transmission time. Hence, for large ET it makes no sense for sensor 1 to wait until sensor

9Ultimately, this value depends on the sensitivity of the EH device
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Figure 4.8: Throughput vs. normalized inter-sensor distance for several levels of total energy

harvested ET (RE = 1, I = 2).

2 starts transmitting: the additional beamforming gain (and instantaneous throughput) cannot

compensate the saturation effect of the concave log function and the reduced transmission

time. Instead, it is optimal to let sensor 1 transmit for most of the time, as the SO solution

does. In other words, joint optimization of transmission policies is particularly useful in the

low-SNR regime (i.e. for small ET ). Indeed, for large inter-sensor distances and large ET , the

throughput achievable by the jointly optimal policy decreases as well, since the contribution of

the second sensor vanishes. The larger ET , the more noticeable this effect is for smaller values

of inter-sensor distance, as Figure 4.8 illustrates.

Figure 4.11 provides further insights on the throughput gain stemming from the joint optimiza-

tion of transmission policies. More precisely, we depict the throughput ratio RG =
GT,opt

GT,subopt
as

a function of inter-sensor distance. The throughput gain can be as high as 40% when the total

amount of energy harvested is small (ET = 0.1 J) and inter-sensor distance high (∆d = 0.9).

For large ET values and, in particular, in the case of distant sensors, the gain vanishes, as

discussed in the previous paragraph.

84



4.3. Infinite battery capacity

0 50 100 150 200 250 300
0

0.2

0.4

t [s]

S
e
n
s
o
r 

1

Joint optimization - JO

Separate optimization - SO

cEH

0 50 100 150 200 250 300
0

0.2

0.4

t [s]

S
e
n
s
o
r 

2

Figure 4.9: Joint and separate optimization of transmission policies for one particular realiza-

tion of energy arrivals (ET = 1J , ∆d = 0.9, I = 2, RE = 1).
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Figure 4.10: Joint and separate optimization of transmission policies for one particular realiza-

tion of energy arrivals (ET = 100J , ∆d = 0.9, I = 2, RE = 1).
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Figure 4.11: Throughput gain vs. normalized inter-sensor distance (RE = 1, I = 2).

Next, in Figure 4.12, we depict the throughput gain vs. total system energy, for a number of

energy ratios RE = E1
T/E

2
T between the first and second sensors. Interestingly enough, the

highest gain for most scenarios is attained when the energies harvested by the first and second

sensors are identical, that is, for RE = 1. Conversely, when either the first or second sensor

dominate (RE ≪ 1 or RE ≫ 1, respectively) the gain from the joint optimization becomes

marginal (RG → 1) since the signal received from the other sensor is weak. We also observe

that, in the case of unbalanced energy levels10, the throughput gain is lower when the first

sensor dominates. In other words, when E1
T ≫ E2

T the transmission policy of the second

(weak) sensor has very little impact in that of the first (strong) one, which is close to that

resulting from a separate optimization over sensors. Finally, and as it was discussed earlier, all

throughput gains vanish in the high-SNR regime (i.e. for large ET ).

10Such an imbalance might result e.g. from differences in the transduction efficiency of the two energy harvest-

ing devices.
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Figure 4.12: Throughput gain vs. total energy harvested (∆d = 0.7, I = 2).

Multiple-sensor case

Hereinafter, we consider a deployment scenario where the I > 2 sensors in the network are

grouped intoNc non-overlapping and homogeneous clusters, each with I/Nc sensors, as shown

in Figure 4.13.

Cluster 1

Cluster 2

Cluster 3

Figure 4.13: Vibration energy harvesting, multiple sensor nodes grouped into Nc clusters.

The sensors in the ith cluster are deployed in the vicinity of the normalized location di =
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Table 4.1: Optimization mechanisms and parameter set-up for each strategy.

Strategy Optimiz. Max. Nr. sensors Max. Tx time

Joint Optimization Joint I T

Separate Optimization Separate I T

Cluster-by-cluster Joint I/Nc T/Nc

All sensors, last cluster Joint I T/Nc

0.05 + i/Nc for i = 0 . . .Nc − 1 and, again, they harvest energy when the passing vehicle is

within a road segment centered in di and total normalized length equal to 0.1. It is assumed

that all the sensing devices are identical and, thus, we have Ei
T = ET/I for all i. As far as the

computation of the transmission policy for each sensor is concerned, we consider four possible

strategies, namely,

• Joint Optimization (JO): Here, again, we compute the jointly optimal transmission

policy for each sensor as proposed in Section 4.3.4. Hence, the maximum number of

active sensors in the virtual array and, thus, the maximum beamforming gain is I . All

sensors are allowed to transmit data at any time instant in [0 . . . T ] (of course, as long

as some energy has been harvested before). Clearly, this strategy will attain the highest

possible throughput. Subsequent ones are suboptimal and will be used as benchmarks.

• Separate Optimization (SO): As in the two-sensor case, here the transmission policy

for each sensor is separately optimized (vs. jointly).

• Cluster-by-cluster (CbC): In this strategy, the sensors in the ith cluster are allowed to

transmit data until the first sensor in the (i+ 1)th cluster becomes active. As a result, (i)

the maximum number of simultaneously active sensors is I/Nc; and, (ii) the maximum

transmission time for a specific sensor is, roughly, T/Nc. That is, the beamforming gain

is lower and the transmission time is shorter than in the previous strategies.

• All sensors, last cluster (ASLC): Here, we assume that the sensors in the first Nc − 1

clusters harvest some energy, they store it in their respective batteries, and postpone data

transmissions until the first sensor in the Nc cluster harvests some energy (i.e. the time

instant in which data transmission for the last cluster can start). As a result, the maximum

transmission time for a given sensor is, again, T/Nc; and the maximum number of active

sensors equals I .

For the sake of comparison, Table 4.1 summarizes the mechanisms to compute the transmission

policy and provides details on the parameter set-up for each strategy. In Figure 4.14, we depict

the throughput attained by the various strategies in a low to mid-SNR scenario (ET = 1 J).

Unsurprisingly, throughput is a monotonically increasing function in the number of sensors for
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Figure 4.14: Throughput vs. number of sensors (Nc = 8, ET = 1 J).

all the strategies considered. When the number of sensors increases, so does the beamforming

gain and the SNR of the received signal (and, thus, throughput) becomes higher. In other words,

by deploying more sensors, we drive the network towards high-SNR regime. Unsurprisingly

too, the JO strategy attains the highest throughput. However and as we will see next, the

fact that some suboptimal strategies outperform others will ultimately depend on a number of

system parameters.

Next, we show some results in terms of the throughput ratio (i.e., loss) between the JO strategy

and the suboptimal ones, namely, LG,{SO,CbC,ASLC} = GT,{SO,CbC,ASLC}/GT,JO ≤ 1. In Figure

4.15 we depict the corresponding losses as a function of the number of sensors, and for diverse

conditions in terms of cluster number and amount of energy harvested. In brief, by moving from

(i) the top to the bottom subplot, or (ii) from left to right in each subplot, we drive the system

towards the high-SNR regime. By moving from the first to the second subplot, we increase

the number of clusters as well. Interestingly, in the low to mid-SNR regime (top and middle

subplots, left), the ASLC strategy outperforms all suboptimal ones and, in particular, separate

optimization (SO). Hence, forcing all sensors to simultaneously transmit with those in the last

cluster (which leads to an increased beamforming gain) is definitely better than allowing them

to transmit at any time in an uncoordinated manner (at the risk of wasting the scarce energy

harvested without really acting as a virtual array). As already discussed in the two-sensor case,

the performance gap for the JO and SO strategies vanishes in the high-SNR regime.
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Figure 4.15: Throughput ratio (loss) vs. number of sensors. Top: Low-SNR, low number of

clusters. Middle: low-SNR, high number of clusters. Bottom: high-SNR, high number of

clusters.

Consequently, LG,SO ≈ 1 in the bottom subplot (high ET or in the rightmost part of the top

and middle ones. It is also worth noting that, in the low-SNR regime, increasing the number of

clusters results into a wider performance gap between the CbC and ASLC strategies (c.f. upper

and middle subplots). Since the number of sensors per cluster is lower and no inter-cluster
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coordination takes place (clusters transmit one after the other), this results into a lower beam-

forming gain for CbC and, thus, poorer performance (to stress, the maximum transmission time

for each sensor is identical in the CbC and ASLC cases). Finally, we also observe that if we

sustainedly drive the sensor network towards higher SNRs (bottom, right), the CbC strategy fi-

nally outperforms ASLC, as the crossing point indicates. Interestingly, this is despite of the fact

that the former exhibits a lower beamforming gain (I/Nc vs. I). This, again, is motivated by

the fact that throughput is a concave function which increases slowly in the high-SNR regime.

In other words, it is more efficient to split the sensors into higher number of clusters and, hence,

increase the transmission time linearly (CbC); rather than increasing the beamforming gain and

shortening the transmission time (ASLC).

Finally, Figure 4.16 provides further insights into the performance of the various strategies as a

function of the total energy harvested. The main conclusions are as follows: (i) the JO strategy

proposed in this section is particularly useful for the low-SNR regime; (ii) in the mid-to-high

SNR regime, on the contrary, separate optimization results into a marginal loss (SO is virtually

identical to JO); and (iii) the CbC and ASLC strategies exhibit substantial performance losses

in the mid-to-high SNR regime.
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Figure 4.16: Throughput ratio (loss) vs. number of sensors (Nc = 8, I = 16) .
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4.4 Finite battery capacity

In the sequel, we further generalize the communication scenario from Section 4.3, by realis-

tically assuming that all the energy harvesting sensors are equipped with energy storage (ES)

devices of finite capacity, denoted by Emax. The goal remains to be the same, i.e. we aim to

identify the jointly optimal power allocation strategy which maximizes the total throughput for

a given deadline. Hence, whenever the energy harvested by ith EH sensor in the kth event, Ei,k,

exceeds the remaining storage capacity at that time instant, a battery overflow occurs. To avoid

that11, similarly to Section 3.4, we introduce the additional set of constraints:

ei(t) ≥ Si(t) =
∑

k:sk<t

Ei,k − Emax for i = 1 . . . I (4.50)

where Si(t) denotes the cumulative energy storage (cES) constraints for the ith sensor. In gen-

eral, both the cEH and cES curves are given by a staircase functions. For this scenario, a given

transmission policy is said to be feasible if, as imposed by (4.35) and (4.50), the energy con-

sumption curves for each sensor lie inside the tunnel defined by the corresponding cEH and

cES curves at all times, as shown in Figure 4.17.

11To recall, in Appendix 3.A.5, it is shown that any transmission policy that results in battery overflow is strictly

suboptimal.
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4.4.1 Computation of the optimal transmission policy

The original problem given by the score function (4.34), causality constraints (4.35) along with

the associated energy storage capacity constraints (4.50) can be cast into following convex

optimization framework:

max
{pi,k}N,I

k=1,i=1

N∑

k=1

τk log

(

1 + (
I∑

i=1

√
pi,k)

2

)

(4.51)

s.t.:

n∑

k=1

τkpi,k ≤ En
i =

n−1∑

k=0

Ei,k (4.52)

n∑

k=1

τkpi,k ≥ Sni =

n∑

k=0

Ei,k −Emax (4.53)

for n = 1 . . .N, i = 1 . . . I

pi,k ≥ 0 for i = 1 . . . I, k = 1 . . . N (4.54)

where we defined En
i , Ei(t) and Sni , Si(t) for t ∈ [sn−1, sn). The problem (4.51)-(4.54)

is strictly convex, since it only adds a new set of affine constraints (4.53) to the problem con-

sidered before, in Section 4.3. In an attempt to determine its unique solution without resorting

to computationally intensive numerical methods, we hereinafter generalize the semi-analytical

approach presented in Section 4.3 to a scenario where EH sensors are equipped with ES de-

vices of finite capacity. To that aim, once again we leverage on (i) the iterative coordinate

descent method given in Section 4.3.2 ; and (ii) the algorithm that we propose in the Section

4.4.2 ahead. Similarly to Section 4.3.3, the latter allows to compute the optimal policy for one

sensor whilst the policies of the other sensors are held fixed. However, the difference is that the

proposed algorithm now has to specifically take into account the fact that sensors are equipped

with an energy storage device of finite capacity.

By employing the coordinate descent method, we decompose the original problem (4.51)-

(4.54) into a number of individual sub-problems (one for each sensor in the network) which, in

turn, can be solved in an iterative fashion. More specifically, in the mth iteration of the coordi-

nate descent method the transmission policies of all sensors p
(m)
i are sequentially updated by

93



Chapter 4. Collaborative Beamforming with Energy Harvesting Sensors

solving

p
(m)
j = argmax

{pj,k}Nk=1

N∑

k=1

τk log



1 +

(

√
pj,k +

∑

i 6=j

√

p
(m−1)
i,k

)2


 (4.55)

s.t.:

n∑

k=1

τkpj,k ≤ En
j =

n−1∑

k=0

Ej,k for n = 1 . . . N (4.56)

n∑

k=1

τkpj,k ≥ Snj =

n∑

k=0

Ej,k − Emax for n = 1 . . .N (4.57)

pj,k ≥ 0 for k = 1 . . . N (4.58)

where, in the above expression, p
(m)
j = [p

(m)
j,1 , . . . , p

(m)
j,N ]

T denotes a column vector gathering

theN components in the transmission policy {pj,k}Nk=1 of the j thsensor computed in the current

iteration. Likewise, p
(m−1)
i denotes the transmission policies computed for the other sensors in

the previous iteration which are held fixed. This procedure is iterated until a prescribed level

of accuracy is attained or when the maximum number of iterations is reached.

4.4.2 Updating the transmission policy of one sensor node

To recall, we define transmission sub-policy {pi,k}kuk=kl as the subset of transmit powers associ-

ated with epochs k = kl . . . ku, which can be gathered in vector12 pi,kl:ku = [pi,kl, pi,kl+1, . . . , pi,ku]
T

.

In Section 4.3, we rigorously proved that, in scenarios with infinite energy storage capacity, the

optimal transmission policy for the ith sensor, p̆i, can be constructed as the concatenation of a

number of battery operated (BO)-like (see definitions below) and feasible sub-policies p′
i,kl:ku

starting and ending in certain corner points of the cEH curve. This extent was illustrated in

Figure 4.3 where we have p̆1 = [p
′T
1,1:L,p

′T
1,L+1:M ,p

′T
1,M+1:N ]

T . As discussed in Section 4.3,

the intuition behind is that (i) each BO-like sub-policy attains the highest possible throughput

in its own epoch subset; and (ii) the transmission sub-policies in different epoch subsets can

be computed independently (when the EC curve hits the cEH constraint, the battery becomes

completely depleted and, hence, transmit powers in subsequent epochs exclusively depend on

the energy harvested in those epochs).

As a reminder, a BO-like policy p′
i is the solution to an optimization problem where we replace

the set of actual harvested energies Ei,k by the following virtual ones: E ′
i,0 =

∑N−1
k=0 Ei,k,

and E ′
i,k = 0 for k = 1 . . .N − 1. That is, as if all the harvested energy had been available

from t = 0, as in battery-operated devices. Likewise, we define a BO-like policy p′′
i as the

one resulting from the set of virtual energies E ′′
i,0 =

∑N
k=0Ei,k − Emax, and E ′′

i,k = 0 for k =

12In the sequel, we omit the iteration index m for brevity.
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1 . . . N − 1. Interestingly, BO-like solutions can be very efficiently computed with Algorithm

1 from Chapter 3.

In the sequel, we generalize the results from Section 4.3, by presenting an algorithm to semi-

analytically find the optimal transmission policy of one sensor with finite energy storage capac-

ity while those of the other sensors are held fixed. More specifically, we propose a procedure

to determine the (new) set of starting and ending corner points for each BO-like sub-policy.

Differently from our previous work, those corner points can now be located either on the cEH

or the cES curves (to recall, the optimal energy consumption curve must lie inside the tunnel

defined by those two sets of causality constraints).

Let us assume, without loss of generality, that we aim to optimize the transmission policy of

the first sensor node (i.e., j = 1). The KKT conditions associated with the sub-problem (4.55)

- (4.58) read

∂L1

∂p̆1,k
= 0 (4.59)

n∑

k=1

τkp̆1,k ≤ En
1 =

n−1∑

k=0

E1,k for n = 1 . . .N (4.60)

n∑

k=1

τkp̆1,k ≥ Sn1 =

n∑

k=0

E1,k −Emax for n = 1 . . .N (4.61)

p̆1,k ≥ 0 (4.62)

λ̆n, π̆n, µ̆k ≥ 0 (4.63)

λ̆n

(
n∑

k=1

τkp̆1,k −En
1

)

= 0 for n = 1 . . . N (4.64)

−π̆n
(

n∑

k=1

τkp̆1,k − Sn1

)

= 0 for n = 1 . . . N (4.65)

−µ̆kp̆1,k = 0, (4.66)

where ∂L1

∂p̆1,k
accounts for the partial derivative of the Lagrangian associated with the sub-

problem:

∂L1

∂p̆1,k
= −τk

√
p̆1,k +

∑

i 6=1

√
p̆i,k

√
p̆1,k

(

1 +
(
√
p̆1,k +

∑

i 6=1

√
p̆i,k

)2
) + τk

(
N∑

n=k

λ̆n − π̆n −
µ̆k
τk

)

. (4.67)

The fact that powers are strictly positive along with the complementary slackness condition

(4.66) implies that, at the optimal point, all µ̆k must vanish, i.e. µ̆k = 0. Thus, by defining

Ak =
N∑

n=k

λn − πn, (4.68)

95



Chapter 4. Collaborative Beamforming with Energy Harvesting Sensors

t

E

1s 2s 3s

 !1,0E L"

 !1,0E L""

cEH

cES

maxE

1,0E 1,1E 1,2E

Figure 4.18: Violation of cES constraints - Case (i).

the partial derivative of the Lagrangian in (4.23) can be conveniently re-written as

∂L1

∂p̆1,k
= −τk

√
p̆1,k +

∑

i 6=1

√
p̆i,k

√
p̆1,k

(

1 +
(
√
p̆1,k +

∑

i 6=1

√
p̆i,k

)2
) + τkAk. (4.69)

In order to find the points where the EC curve hits either cEH or cES constraint (or, in other

words, where corresponding Lagrangian multipliers in (4.68) are positive), we start the follow-

ing four-step procedure:

1. Check whether a BO-like solution p′
1 for epochs k = 1 . . .N is feasible. If such virtual

transmission policy verifies the causality constraints (4.56)-(4.57) of the original sub-

problem (i.e. it is feasible) then it is optimal, the problem is solved and the procedure

terminated. In other words, we have p̆1 = p′
1. Similarly to procedure given in Section

4.3, if the BO-like solution is feasible (and, thus, optimal) then p̆1 is not affected by

the energy causality and energy storage constraints for n = 1 . . .N − 1 which could

well be removed (or, equivalently, the corresponding Lagrange multipliers vanish). On

the contrary, if the resulting virtual policy p′
1 violates one or more causality constraints,

then it follows from basic concepts in convex optimization theory [32] that p̆1 is such

that the EC curve hits the cEH and/or cES constraints in one or more corner points in

n = 1 . . .N−1 (or, more formally, the corresponding Lagrange multipliers are positive).

This case is addressed in Step 2 and Step 3.

2. Identify the first event sL such that either (i) a BO-like sub-policy p′
1,1:L ending in a

corner point of the cEH curve at sL violates the cES constraints at some previous time
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4.4. Finite battery capacity

instant(s); or (ii) a BO-like sub-policy p′′
1,1:L ending in a corner point of the cES curve

violates the cEH constraints13.

As an example, Figure 4.18 illustrates a case where (i) holds for sL = s3 since, clearly,

the EC curve violates the cES constraint in s1. Interestingly, from Section 4.3.3 and the

proof of convergence of Algorithm 1 in Section 3.3.2, any other EC curve associated

with some candidate policy ṗ1 (see Figure 4.18) which in s3 lies in between the corner

points of the cEH and cES curves will necessarily not be feasible. This follows from the

fact that, in order for such candidate EC curve to take a smaller value than that of the

cEH curve, we must have ṗ1,1:L 4 p′
1,1:L, where 4 denotes component-wise inequality.

Thus, if p′
1,1:L violates the cES constraints, so does ṗ1,1:L and, hence, it is not feasible.

As a result, now we know that the optimal transmission policy is such that the associated

EC curve necessarily hits the cES curve in some previous corner point (or the cEH curve

for case (ii) above)14.

3. Identify the first corner point where the optimal EC curve hits the cES or cEH curves

(cases (i) and (ii), respectively). The previous step allows us to restrict the search for

the first corner point. For the given example, we just need to check events s1 and s2.

Actually, it suffices to search for the event sR with largest R < L such that a BO-like

policy p′′
1,1:R (or p′

1,1:R, for the (ii) case) ending in such corner point of the cES (or cEH)

curve is feasible. The reason why is that, according to Lemma 4.3, there exists no other

sub-policy p1,1:Q with Q < R such that it is part of the optimal transmission policy15.

4. Retain the corner points computed in the previous step and repeat Steps 1, 2, and 3 for

epochs k = R + 1 . . . N only (instead of k = 1 . . .N). In each iteration, the associated

sub-policy p′′
1,1:R (or p′

1,1:R) is retained as well.

Steps 1 to 4 are iterated until all the transmit powers for epochs k = 1 . . .N have been com-

puted as BO-like feasible solutions. In the sequel, we prove our claim that the resulting trans-

mission policy is in fact optimal. This motivates the following lemma and theorem.

Lemma 4.3 If R < L is the largest value for which a candidate BO-like transmission sub-

policy p′
1,1:R (p′′

1,1:R) ending in a corner point of the cEH (cES) curve is feasible, then there

exists no other BO-like transmission sub-policy p′
1,1:Q (p′′

1,1:Q) with Q < R such that it is part

of the optimal transmission policy.

13Likewise, we define the virtual BO-like sub-policy p
′′

1,1:L as the one that results from solving an optimization

problem with the virtual energies E′′

1,0(L) =
∑L

k=0
E1,k − Emax and E′′

1,k(L) = 0 for k = 1 . . . L− 1
14However, nothing could be inferred from a scenario where a BO-like sub-policy p

′

1,1:L ending in a corner

point of the cEH curve violates the same constraint at some previous time instant. This is why this case is not

analyzed.
15Lemma 4.3 extends Lemma 4.1 for the case with sensors of finite energy storage capacity.
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Proof: This lemma is an extension of Lemma 4.1 for the case where sensors have limited

energy storage capacity. The proof is given in Appendix 4.A.1.

Theorem 4.2 When the transmission policies at the other sensors is held fixed, the jointly

optimal transmission policy for the first sensor (with finite energy storage capacity), p̆1, can be

computed with the procedure given in Algorithm 3.

Proof: Algorithm 3 is in fact a more formal representation of the 4-step procedure given

above. Step 2 allow us to restrict the search of the first “touching” corner to either cEH or cES

curve. When such curve is identified, from Lemma 4.3, we realize that the first touching point

corresponds to the ending point of the longest feasible BO-like policy. Once this point is found,

the procedure can be restarted until the overall optimal policy is found as a concatenation of

BO-like policies starting and ending at the corresponding corners of cEH and/or cES curves16.

4.4.3 Simulations and numerical results

In this section, we assess the performance of the proposed algorithm in a scenario where vi-

brational energy is harvested from the environment. As for the energy harvesting scenario, we

take the setup given in Section 4.3.6.

We present results for a two-sensor scenario (I = 2) only, being those sensors deployed at

normalized locations d1 = 0.05 and d2 ≥ d1. The normalized inter-sensor distance is denoted

by ∆d = d2 − d1. Each sensor i ∈ {1, 2} harvests energy when the passing vehicle is within

a road segment centered in di and total normalized length17 0.1. This, of course, means that

collaborative transmission can only start in practice when the vehicle reaches the second sensor.

To recall, we define RE = E1
T/E

2
T as the ratio between the total energy harvested by the first

and second sensors, respectively (i.e. for large RE, the first sensor dominates).

Figure 4.19 depicts the ratio (loss) of achievable throughputs for sensors with finite and infinite

energy storage capacities, LG =
GT,Emax

GT,∞
. Three main regions can be observed for each curve,

accounting for situations with rapid, slow and, no throughput degradation (left to right, with

vertical lines on the curves denoting region boundaries). Indeed, when the capacity of the ES

device is above the total amount of energy harvested by each sensor (Emax > ET/2, rightmost

region) no loss in throughput results: energy storage constraints here are inactive. On the

16It can been shown that the complexity of Algorithm 3 is equal to that of Algorithm 2. This stems from the fact

that, although Algorithm 3 checks the points on the cES curve as well, the order of number operations continues

to be the same.
17Ultimately, this value depends on the sensitivity of the EH device
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4.4. Finite battery capacity

Algorithm 3 Optimal policy for sensor 1 with finite storage capacity (mth iteration)

1: m ⊲ Current iteration index

2: p2 ← p
(m−1)
2 ⊲ Let the transmission policy for sensor 2

3: ⊲ be the one computed in the previous iteration.

4: kl ← 1 ⊲ Sub-policy starts in epoch 1

5: ku ← N ⊲ Sub-policy ends in epoch N

6: repeat

7: Compute BO-like sub-policy p′
1,kl:ku

8: if (p′
1,kl:ku

is feasible) then

9: p
(m)
1 [kl : ku]← p′

1,kl:ku

10: else

11: ku ← kl + 1

12: Cout ← false

13: repeat

14: Compute BO-like sub-policy p′
1,kl:ku

, p′′
1,kl:ku

15: C1 ← (p′
1,kl:ku

violates cES)

16: C2 ← (p′′
1,kl:ku

violates cEH)

17: if (C1 or C2) then ⊲ Find first corner point

18: if C1 then

19: Find max k
k<ku

such that p′′
1,kl:k

feasible

20: p
(m)
1 [kl : k]← p′′

1,kl:k

21: else

22: if C2 then

23: Find max k
k<ku

s.t. p′
1,kl:k

feasible

24: p
(m)
1 [kl : k]← p′

1,kl:k

25: end if

26: end if

27: kl ← k + 1

28: ku ← N

29: Cout ← true

30: else ⊲ Check violations from next event

31: ku ← ku + 1

32: end if

33: until Cout

34: end if

35: until (Optimal transmission policy computed)
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Figure 4.19: Throughput ratio (loss) as a function of energy storage capacity (N = 100 , Ei,k

(Ei,k = 10−2, 10−1, 1J for ET = 1, 10, 100J respectively).

contrary, throughput rapidly degrades when the storage capacity is smaller than the energy

harvested in each arrival (Emax < Eev, leftmost region) since part of the energy in each arrival

is unavoidably wasted. As a result, throughput rapidly decreases. Finally, when Eev ≤ Emax ≤
ET/2 (central region), throughput experiences a graceful degradation for decreasing values of

Emax. This is in stark contrast with our previous results in Figure 3.16 where throughput loss

was barely noticeable as long as the maximum storage capacity exceeded the energy harvested

in each arrival (i.e. no central region). This is attributed to the fact that in Figure 3.16 one of the

two sensors was battery-operated. Hence, only the EH sensor was affected by the additional

energy storage constraints. When computing its transmission policy, the BO sensor (partly)

compensated the penalty due to the additional constraints imposed to the EH one.

From Figure 4.19, we also conclude that throughput loss is far more sensitive to changes in

inter-sensor distance when the amount of energy harvested ET is large. Ultimately, this is

due to the fact that throughput scales logarithmically in the transmit power and linearly in the

transmission time. For small ET , the optimal transmission policy tends to allocate (shift) more

energy to the period of time where both sensors are active: the additional beamforming gain that

it entails, results into a higher throughput. Besides, in this region the log function exhibits an

approximately linear behavior. As a result, the total throughputGT,∞ resulting from the integra-

tion of the instantaneous throughput over the actual transmission time (which, clearly, depends
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on inter-sensor distance) is approximately constant. The introduction of energy storage con-

straints renders the period of time when the harvested energy is usable potentially shorter and,

thus, may turn collaborative transmission into sequential transmissions (i.e., each sensor uses

its energy as soon as it is harvested). Yet, unavoidably, this results into lower GT,Emax
values,

again this barely depend on inter-sensor distance. Being bothGT,∞ andGT,Emax
barely sensitive

to inter-sensor distance, it renders LG =
GT,Emax

GT,∞
barely sensitive to it, as well. For large ET ,

on the contrary, it makes no sense for sensor 1 to wait until sensor 2 can start transmitting:

the additional beamforming gain cannot compensate the saturation effect of the concave log

function and the reduced transmission time. Instead, it is optimal to let sensor 1 (and sensor 2)

transmit for most of the time. The transmission time for sensor 2, however, decreases linearly

in the inter-sensor distance and, thus, the resulting throughput exhibits substantial variations

in ∆d. In the presence of energy storage constraints, on the contrary, throughput sensitivity

to inter-sensor distance is far more limited. As a result, the sensitivity of LG to inter-sensor

distance is quite high, as Figure 4.19 illustrates.

Finally, in Figure 4.20 we depictRG =
GT,JO

GT,SO
, namely, the ratio (gain) of achievable throughputs

resulting from (i) the Joint Optimization (JO) of sensors’ transmission policies (by means of

Algorithm 3); and (ii) the Separate Optimization (SO) of those policies, as in the single-sensor

scenario addressed in [18], which is suboptimal. In the leftmost part of the plot, the total

amount of energy harvested by each sensor is well below its energy storage capacity (Emax = 5

J). Hence, the curves with infinite and finite storage capacity are identical. Consistently with

results in the previous sections, the highest gain is attained when the energies harvested by

the first and second sensors are identical, that is, for RE = 1 (some 20% gain). Besides,

all throughput gains vanish when ET increases, as discussed earlier. In the rightmost part of

the plot, on the contrary, energy storage constraints do have some impact on throughput gains

and, thus, curves split. Interestingly, the throughput gain in all cases verifies RG > 1, that

is, a joint optimization of transmission policies continues to pay-off. This holds in particular

when RE ≥ 1 (i.e., the first sensor dominates or both sensors harvest the same amount of

energy) since the throughput gain is even larger that that of a system with infinite energy storage

capacity.

4.5 Chapter summary and conclusions

In this chapter, we have proposed a semi-analytical algorithm that allows to compute the jointly

optimal transmission policy for a virtual array of energy harvesting sensors in such a way that

the throughput for a given deadline is maximized. For both infinite and finite energy storage

capacity cases, the optimality of the resulting policy has been rigorously proved. We have also

found that the computational complexity of the proposed scheme is upper-bounded byO
(
N3

I2

)

for infinite and finite energy storage capacity. Consequently, the computational savings with
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Figure 4.20: Throughput gain vs. total energy (∆d = 0.7, Emax = 5J).

respect to interior point methods are, at least, of an I2 factor (yet, in practice, much higher).

Performance has been assessed by means of computer simulations in a realistic scenario where

vibrational energy is harvested from the environment. Computer simulation results revealed

that, for infinite capacity scenario, in the low-SNR regime, the gain resulting from the joint op-

timization (vs. separate optimization) of the transmission policies can be as high as 40% when

inter-sensor distance is high. This is achieved by favoring simultaneous sensor transmissions

which result into a higher beamforming gain (and, thus, throughput). On the contrary, in the

high-SNR regime the jointly and separately optimal transmission policies are almost identical

and, hence, such gain vanishes. This follows from the fact that throughput scales logarithmi-

cally in the transmit power and linearly in the transmission time. We have also concluded that,

for most scenarios, the throughput is higher when each sensor in the virtual array harvests the

same amount of total energy. As for the other suboptimal transmissions strategies (cluster-

by-cluster, all sensors-last cluster), we have learnt that, in the low-to-mid SNR regime the all

sensors-last cluster policy outperforms all the rest and, in particular, separate optimization. Be-

sides, the performance gap between between the cluster-by-cluster and all sensors-last cluster

strategies becomes wider when the number of cluster increases. In the high-SNR regime, on

the contrary, the cluster-by-cluster strategy outperforms the all sensors-last cluster one.

In the realistic scenario, where the energy storage capacity is assumed to be finite, we specifi-

cally evaluate the effects of limited capacity on the system performance. Namely, for interme-
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diate values of the energy storage capacity, the throughput ratio w.r.t. to a system with infinite

energy storage capacity, experiences a graceful degradation. When the total energy harvested

by the group of sensors is large, performance is more sensitive to inter-sensor distance. Finally,

we have also found that, in the presence of strict energy storage constraints, joint (vs. sepa-

rate) optimization of transmission policies continues to pay-off, in particular when both sensors

harvest the same amount of energy or the first sensor dominates.
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4.A Appendix

4.A.1 Proof of Lemma 4.3

Since the case for the sub-policy p′
1,1:R ending in a corner point of cEH curve has already been

addressed in Lemma 4.1, here we only consider the proof related to sub-policy p′′
1,1:R. Again,

the proof is based on contradiction.

Let us consider two candidate transmission policies, p1 and ṗ1, the first R or Q (respectively)

elements of which, namely, p1,1:R and ṗ1,1:Q with Q < R, have been computed as BO-like

solutions (see Figure 4.21). From the discussions in Steps 1 and 2 above, we know that the

Lagrangian multipliers associated with p1 verify

λn = 0, n = 1, . . . , R

πn = 0, n = 1, . . . , R− 1; πR > 0 (4.70)

and, as long as R < N ,

λn ≥ 0, πn ≥ 0 n = R + 1, . . . , N (4.71)

where (4.70) and (4.71) follow from the KKT conditions. From this, the corresponding sums

of Lagrangian multipliers Ak verify in turn

A1 = A2 = . . . = AR =

N∑

n=R

λn − πn. (4.72)

Similarly, for ṗ1 we have

λ̇n = 0, n = 1, . . . , Q

π̇n = 0, n = 1, . . . , Q− 1; π̇Q > 0

λ̇n ≥ 0, π̇n ≥ 0, n = Q+ 1, . . . , N (4.73)

and, accordingly,

Ȧ1 = Ȧ2 = . . . = ȦQ =
N∑

n=Q

λ̇n − π̇n. (4.74)

Since in sQ the EC curve associated with ṗ1 lies below that of p1 (see Figure 4.21), there nec-

essarily exists at least one epoch ko ∈ {1 . . .Q} such that ṗ1,ko < p1,ko . Besides, a necessary

condition for either candidate sub-policy to qualify as optimal, is that the corresponding deriva-

tive of the Lagrangian given by (4.69) must vanish for all k ∈ {1 . . . Q}, namely, ∂L1

∂p̆1,k
= 0.

In particular, for k = ko the fact that ṗ1,ko < p1,ko implies that Ȧko > Ako (and vice-versa: if

ṗ1,ko > p1,ko then Ȧko < Ako). Furthermore, from (4.72) and (4.74), we conclude that Ȧk > Ak

for all k ∈ {1 . . .Q} which, in turn, implies ṗ1,k < p1,k for those epochs. In other words, the
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Figure 4.21: Lemma 4.3: A sub-policy touching the cES (cEH) curve at point sQ is not feasible

and, thus, it cannot be part of the overall optimal policy.

EC curve associated with the candidate sub-policy ṗ1,1:Q lies strictly below that of p1,1:Q for

all those epochs, as Figure 4.21 illustrates. In particular, this holds true for k = Q, namely,

ṗ1,Q < p1,Q. For the subsequent epoch, we have that either ṗ1,Q+1 > p1,Q+1 or ṗ1,Q+1 ≤ p1,Q+1.

The former would hold if (and only if)

ȦQ > AQ = AR (4.75)

ȦQ+1 < AQ+1 = AR (4.76)

which translate to π̇Q = ȦQ+1 − ȦQ < 0. Since this violates one KKT condition then, neces-

sarily, ṗ1,Q+1 ≤ p1,Q+1. By applying the same reasoning to the subsequent consecutive epoch

pairs, we conclude that ṗ1,k ≤ p1,k for all k ∈ {Q + 1, R}. Hence, the EC curve associated

with the candidate sub-policy ṗ1,1:R lies strictly below that of p1,1:R not only for the first Q

epochs but for all epochs k ∈ {1 . . . R}. Since, to recall, at sR the EC associated with the

candidate sub-policy ṗ1,1:R hits the cEH curve, this means that the candidate sub-policy ṗ1,1:R

is necessarily not feasible and, thus, cannot be part of the overall optimal policy (see Figure

4.21). This concludes the proof.
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Chapter 5

Distributed Carrier Synchronization

Schemes for Collaborative Beamforming

In previous chapters, we designed jointly optimal transmission strategies for scenarios where

a number of sensors cooperate to transmit (beamform) a common message to a distant base

station. To make the problem more tractable, we assumed full carrier and time synchronization

over sensors. In particular, we assumed that, by properly designing the set of transmit weights,

both the channel phase shifts and oscillator offsets could be ideally pre-compensated. In this

chapter, instead, we focus on the design of the (decentralized) carrier synchronization schemes

behind our initial assumption. For instance, we propose a phase synchronization scheme which

does not require base stations to coordinate the allocation of sensors to the training timeslots

or poll them individually, which can be burdensome for large networks. We also analyze the

impact of additive noise on the behavior of an iterative phase synchronization scheme, and

propose new synchronization schemes capable of maximizing the beamforming gain in the di-

rection of the main base station while keeping the sidelobe levels in the direction of unintended

base stations reasonably low.
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5.1 Introduction

In Chapters 3 and 4, we have addressed scenarios where energy harvesting and/or battery oper-

ated sensors employ collaborative beamforming in order to reach a distant base station. Never-

theless, in order to implement this idea into a practical scenario, accurate frequency and phase

carrier synchronization over sensors is a must.

A simple phase synchronization scheme, with low feedback requirements is proposed in [8].

At each iteration, all the sensors in the network add some random perturbation to the carrier

phase. Then, based on the change in resulting received signal strength, the BS informs the

sensors in the network whether they should keep (if RSS increased) or discard (otherwise) the

introduced phase perturbation. The authors show that in an idealized scenario where noise is

neglected, and therefore the RSS estimation is perfect, the proposed algorithm almost surely

converges to full phase synchronization. The proposed scheme is further generalized in [9],

where the authors explicitly include simultaneous frequency synchronization as well.

Employing the fact that collaborative transmission where sensors are not perfectly synchro-

nized can still provide significant beamforming gain, the authors in [10] propose an algorithm

which is based on the selection of a subset of sensor nodes whose signals combine in a quasi-

coherent manner at the base station. In order to relieve the BS from the burden associated with

exhaustive search among all the possible combinations, they propose different suboptimal se-

lections schemes, which result in small performance loss with respect to the optimal scheme.

Still, the fact that only a subset of sensor nodes is selected for beamforming results in an un-

equal energy consumption among the sensors, which may have adverse effects on the network

lifetime.

The main challenge when computing the resulting beampattern stems from the fact that sensor

nodes are randomly deployed, and therefore their precise locations are usually not known. In

such situations, it is natural to consider stochastic measures such as average beampattern or

sidelobe distribution. For uniform and Gaussian sensor node distributions, in [12] and [13], the

authors find the mathematical expressions for average beampattern. From these two papers,

we learn that both uniform and Gaussian sensor node deployments provide similar conclusions

with respect to the relation between network diameter and beamwidth. Nevertheless, the Gaus-

sian distributed antenna array was shown to result in the beampattern with wider mainlobe and

lower probability of high sidelobes.

Due to random deployment of sensor nodes, the sidelobe locations and levels for a particular

network realization can not be predicted. This, in turn, may lead to high interference levels

that the given network is causing to the neighboring ones. One possible approach to deal

with this problem is given in [14], where the authors propose a sidelobe control mechanism

based on the node selection method. In the proposed scheme, the authors assume that all the
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nodes in the network have already achieved perfect phase synchronization. Then, they employ

an iterative algorithm, where in each iteration, a new subset of nodes is added to a group of

selected nodes if the resulting sidelobe levels for specific directions is kept below the prescribed

threshold. Although this method is of low complexity and requires low rate feedback, only a

subset of all the nodes is selected for beamforming. This, however, may not be suitable for

some applications, where higher received signal is needed, thus requiring all the sensors to be

active.

5.1.1 Contribution

In this chapter, we carry out an analysis of distributed carrier synchronization schemes. In

Section 5.3, we focus on the so called one bit of feedback algorithm proposed in [8]. First, we

generalize the analysis given therein, for a more realistic scenario with additive noise. With this

assumption we ask ourselves what is the impact of imperfect RSS estimation on the algorithm

convergence. To answer this question, we derive an analytical expression for expected increase

in RSS as a function of algorithm iteration. Furthermore, we also prove that for the noisy

scenario, the algorithm does not converge to full phase synchronization. In order to maximize

the resulting RSS, we numerically optimize the number of samples per RSS estimate. Next, we

generalize the one bit of feedback algorithm from [8] to a scenario with multiple base stations.

Namely, the goal is not only to increase the received signal level at the base station of interest

(main BS), but also to keep the received signal level at the unintended base stations below some

prescribed threshold. In some scenarios, this may result in decreased RSS levels at the main

base station. Furthermore, we compare the resulting beampattern obtained by the one bit of

feedback algorithm with the one obtained by centralized numerical optimization solution. The

impact of number and relative positions of unintended base stations on system performance is

considered, as well.

Finally, in Section 5.4, we propose a novel decentralized phase synchronization scheme for col-

laborative beamforming with wireless sensor networks. The proposed scheme does not require

the base station to coordinate the allocation of sensors to the training timeslots or poll them

individually (which can be burdensome for large networks), and, instead, sensors randomly

choose their respective training timeslots. In this context, we ask ourselves whether there ex-

ists an optimal number of training timeslots, and about the optimal split for the training and

data transmission periods. To answer this question, we analytically derive upper bounds of the

resulting beamforming gain with ideal and noisy phase shift estimation. Computer simulation

results are mainly given in terms of (normalized) beamforming gain and achievable throughput.

The contents of this chapter have been partly published in references [46–49].

The chapter is organized as follows. First, in Section 5.2, we present the signal model. Next,

in Section 5.3 we present the analysis of one bit of feedback algorithm for noisy and multiple
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Figure 5.1: Distributed beamforming in wireless sensor networks.

base station scenarios, and provide some computer simulation results. Next, in Section 5.4 we

propose a novel decentralized phase synchronization scheme. The algorithm’s performance is

given with the special emphasis on ideal and noisy phase estimation. The main findings for

both synchronization schemes are given at the end of this chapter.

5.2 Signal model

Consider a wireless sensor network consisting of I sensor nodes randomly placed over a disk of

radius R according to a uniform distribution, as shown in Figure 5.1. We assume that the base

station is located far apart and outside the coverage area of each individual sensor node, i.e.

D ≫ R. The goal is to collaboratively transmit a common narrowband message signal m(t) to

the BS. For simplicity, we assume that nodes have already shared the message signal and that

E [|m(t)|2] = 1. In order to save energy, sensors are in the sleep state (i.e. transceiver circuits

are turned off) for most of the time. When new data have to be collected, the BS sends an RF

signal, which activates the energy detectors in the sensor nodes and wakes them up (see [50]

for details). After the sleep period, all sensors are assumed to remain frequency-locked to the

reference carrier frequency fc (i.e., negligible frequency drift). The signal transmitted by the

i-th sensor node reads:

si(t) = g∗im(t) ej(2πfct+γi) (5.1)

where gi = bie
−jθi denotes the corresponding complex transmit weight (to be designed),

whereas γi stands for the initial phase offset. The phase offset of each oscillator, however,

is unknown, and we model it as a uniformly distributed (i.e. γi ∼ U (−π, π)) and i.i.d. ran-
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5.3. One bit of feedback scheme for collaborative beamforming

dom variable. The complex channel from the i-th sensor to the base station is denoted by

hi = aie
jψi , where ai and ψi account for the channel gain and phase shift associated with the

Euclidean distance between the sensor and the BS. Accordingly, the signal received at the BS

is given by:

r(t) = R
(

I∑

i=1

si(t)hi + w(t)

)

= R
(

m(t)ej2πfct
I∑

i=1

aibie
j(γi+θi+ψi) + w(t)

)

(5.2)

withw(t) ∼ N (0, σ2
w) denoting additive white Gaussian noise. To further simplify the analysis,

we assume that the transmit power at each sensor node is constant and, hence, the transmit

weights become gi = e−jθi . We also assume that ai = 1 for all sensors or, in other words,

that the distance between the BS and the sensors is much larger than inter-sensor distances (in

addition to line-of-sight conditions). After down-conversion and sampling, the received signal

strength (RSS) at the BS in time instant n reads:

RSS [n] = R[n] =

∣
∣
∣
∣
∣

I∑

i=1

ejΦi[n] + w [n]

∣
∣
∣
∣
∣
, (5.3)

where Φi[n] = γi + ψi + θi[n] denotes the overall phase rotation of the signal received at the

BS from the i-th sensor node. Likewise, we define the beamforming gain Y [n] as:

Y [n] =

∣
∣
∣
∣
∣

I∑

i=1

ejΦi[n]

∣
∣
∣
∣
∣
∈ R

+ ∪ {0}. (5.4)

5.3 One bit of feedback scheme for collaborative beamform-

ing

Clearly, for the given signal model, the beamforming gain Y [n] is maximized when the individ-

ual signals from all the sensors are coherently combined at the BS, namely, γi + ψi − θi = C; ∀i
(whereC is a constant) which yields Y [n] = Ymax = |

∑I
i=1 e

jC | = I . To that aim, sensors must

pre-compensate the unknown oscillator and channel phase offsets by properly adjusting the θi

term during e.g. a training period. The distributed beamforming scheme of [8] achieves that

in an iterative manner. To recall, in [8], the authors neglect the impact of noise, i.e. w(t) = 0.

With this assumption, the RSS and beamforming gain Y [n] turn out to be identical. As a

reminder, we outline the one bit of feedback algorithm proposed in [8]:

Initially, the phases of the received signals at the base station, Φi[0] = γi+ψi−θi[0] = γi+ψi,

are uniformly distributed in [−π, π]1. At all times, each transmitter keeps track of the best value

1This follows from the fact that, on the one hand, the oscillators run independently and, on the other, R≪ D
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of θbest,i[n]. At each iteration, θbest,i[n] is adjusted with a random perturbation δi[n] drawn from

a suitable probability distribution fδ(δi). Next, all the sensor nodes transmit their signals with

the incremental phase rotations, namely, θi[n + 1] = θbest,i[n] + δi[n] and the BS measures the

RSS again2. By comparing Y [n + 1] with Ybest[n] = maxm≤n Y [m] (i.e. the largest RSS until

time instant n), the BS determines whether the set of perturbations ∆[n] = [δ1[n], . . . , δN [n]]

should be kept (if RSS increases) or discarded (otherwise). The sensor nodes are notified about

this decision by sending one bit of feedback over an error-free common signalling channel.

More formally,

Ybest[n+ 1] =

{

Y [n + 1] if Y [n+ 1] ≥ Ybest[n]

Ybest[n] otherwise
. (5.5)

Accordingly, the bit in the feedback channel is set to:

zFB[n+ 1] =

{

1 if Y [n+ 1] ≥ Ybest[n]

0 otherwise
, (5.6)

and, finally, the sensor nodes update their phases according to:

θbest,i[n+ 1] =

{

θbest,i[n] + δi[n] if zFB[n + 1] = 1

θbest,i[n] otherwise
. (5.7)

5.3.1 Distributed beamforming with noisy RSS measurements

In this section, we generalize the algorithm’s convergence analysis from [8], by explicitly tak-

ing into account the impact of additive noise in RSS measurements. As a consequence, the

decisions on whether to accept or discard the phase perturbations are based on the noisy RSS

estimates R[n], given by (5.3) and, thus,

zFB[n + 1] =

{

1 if R[n + 1] ≥ Rbest[n]

0 otherwise
. (5.8)

θbest,i[n+ 1] =

{

θbest,i[n] + δi[n] if zFB[n + 1] = 1

θbest,i[n] otherwise
. (5.9)

Note that in (5.8), the RSS estimates R[n] are different from the corresponding beamforming

gain Y [n]. This, in turn, means that, even if R[n + 1] ≥ Rbest[n], the system could experience

a decrease in terms of beamforming gain (i.e. Y [n + 1] < Ybest[n]). This has a number of

implications that we will discuss in the sequel.

2To recall, in the absence of additive noise, we have R[n] = Y [n].
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Evolution of the expected beamforming gain

Let us rewrite equation (5.3) as follows

R[n] =
∣
∣Y [n] + w [n] e−jα

∣
∣

, |Y [n] + wα [n]| , (5.10)

with α = arg
{
∑I

i=1 e
jΦi[n]

}

and where wα ∼ CN (0, σ2
w). Clearly, the random variable R is

Ricean distributed. However, for Y ≫ σw, its pdf can be approximated by a Gaussian pdf [51],

namely,

R ∼ N (

√

Y 2[n] +
σ2
w

2
,
σ2
w

2
). (5.11)

From [8], we know that the following equality holds for the expected value of the normalized

beamforming gain in n-th iteration:

1

I
E [Ybest[n+ 1]] =

1

I
E [Ybest[n]] + E [hn (y)] , (5.12)

with the random variable y being defined as y = 1
I
Ybest[n]. For the sake of clarity, the ex-

pectations in the above equation are taken with respect to the random perturbations and the

measured received signal strength in time instants n and n + 1, where relevant; and the func-

tion hn(y) denotes the conditional expectation of the increment in the normalized beamforming

gain, namely,

hn(y) ,
1

I
E

[

(Y [n+ 1]− Ybest[n])×H (R[n + 1]−Rbest[n])

∣
∣
∣
∣

1

I
Ybest[n] = y

]

, (5.13)

withH(x) denoting the Heaviside step function:

H(x) =

{

1 x > 0

0 otherwise
, (5.14)

which models the phase perturbation acceptance rule given by (5.8) and (5.9). From (5.12) and

based on the observation that Ybest[n] is highly concentrated around its expected value when I

is large, we have that

1

I
E [Ybest[n+ 1]] ≈ 1

I
E [Ybest[n]] + hn

(
1

I
E [Ybest[n]]

)

. (5.15)

This last equation suggests that we can model the evolution of the expected (and normalized)

beamforming gain through function hn(y). In the sequel, we attempt to derive an expression

for such function that, unlike in previous works, explicitly takes into consideration the impact

of noise.

The authors in [8] showed that, given 1
I
Ybest[n] = y, the following holds for normalized beam-

forming gain in the (n+ 1)-th iteration

1

I
Ybest[n + 1] −→

p
χny + x, (5.16)
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where χn = 1− 1
2
Var[δi[n]] is constant, and x denotes a zero-mean Gaussian r.v. with variance:

σ2
R[n] =

1− χ2
n − ρnκn(y)
2I

, (5.17)

being κn(y) a function of the normalized beamforming gain y only which can be approximated

as

κn(y) ≈ e−4(1−y). (5.18)

Next, ρn ≈ Var[δi[n]] in (5.17) is a constant that exclusively depends on the pdf of the pertur-

bation, i.e. fδ(δi). From all this, we can approximately re-write (5.13) as

hn(y) , E

[

(χny + x− y)×H (rn+1 − rn)
∣
∣
∣
∣

1

I
Ybest[n] = y

]

(5.19)

where, to simplify notation, we have re-defined rn = 1
I
Rbest[n] and rn+1 = 1

I
R[n + 1]. From

(5.11) and bearing in mind that noise is stationary, it follows that

rn+1 ∼ N
(√

(χny + x)2 +
σ2
w

2I2
,
σ2
w

2I2

)

, (5.20)

rn ∼ N
(√

y2 +
σ2
w

2I2
,
σ2
w

2I2

)

, (5.21)

and, consequently, zn+1 , rn+1 − rn verifies

zn+1 ∼ N
(√

(χny + x)2 +
σ2
w

2I2
−
√

y2 +
σ2
w

2I2
,
σ2
w

I2

)

. (5.22)

Finally, from (5.19) and (5.22), we conclude that the conditional expectation of the increase in

beamforming gain equals:

hn(y) =

∫ ∞

−∞

∫ ∞

A(x)

(x− y(1− χn))
1

√

2πσ2
R[n]

e
− x2

2σ2
R

[n]×

× 1
√

2πσ2
w/I

2
e
− z2

2σ2
w/I2 dz dx

=

∫ ∞

−∞
(x− y(1− χn))

1
√

2πσ2
R[n]

e
− x2

2σ2
R

[n]×

×Q





√

y2 + σ2w
2I2
−
√

(χny + x)2 + σ2w
2I2

σw/I



 dx, (5.23)

where the lower limit of the second integral equals: A(x) =
√

y2 + σ2w
2I2
−
√

(χny + x)2 + σ2w
2I2

,

and Q(x) stands for the Q-function, namely, Q(x) =
∫∞
x

exp(−u2/2)du. Since a closed-form

solution of (5.23) is difficult to obtain, in the sequel we will resort to numerical integration

methods.
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Asymptotic behavior

In [8], the authors proved that in a noiseless scenario the expected value of the normalized

beamforming gain when n → ∞ is y = 1. Here, we show that in noisy scenarios such limit

is not achievable. We start by noting that the increment of the normalized beamforming gain

hn(y) is, by definition, a continuous function (actually, an integral of a continuous function).

In Appendix 5.A.1, we prove on the one hand that hn(y) < 0 for y = 1; and, on the other, that

hn(y) > 0 for y = 0. Hence, there exists a value of y ∈ (0 . . . 1) for which expected increase

of the normalized beamforming gain turns out to be hn(y) = 0. At this point, the expected

normalized beamforming saturates. Besides, when the recursive algorithm is initialized (i.e.

before running the algorithm), the set of overall phase rotations Φi[n] are uniform i.i.d. random

variables (over sensors). In these circumstances, one can easily show that the expected value of

the beamforming gain is 1/
√
I . In other words, 1/

√
I can be regarded as a lower bound which

results when no control is exerted on the phases. For this reason, we conjecture that, in noisy

scenarios, the maximum achievable value of the expected beamforming gain actually lies in the

range (1/
√
I . . . 1). Computer simulation results confirm this extent.

Numerical results

Next, we present some numerical and computer simulation results aimed to illustrate the impact

of channel noise on the behavior of the algorithm. The total number of sensors equals I = 300.

Sensors are deployed over a disk of radius R according to a uniform distribution. The base

station is located at a distance D ≫ R (i.e. far field conditions). The phase perturbations are

chosen independently from a uniform distribution, that is, δi ∼ U(− π
20
, π
20
).

In Figure 5.2, we depict the evolution of the expected beamforming gain (normalized). Several

curves are shown for a collection of values of the noise variance. As a benchmark, the curve

corresponding to a noiseless scenario (σ2
w = 0) is included, as well. First of all, we observe

a close match between computer simulations results (solid lines) and the prediction from our

analysis (dashed lines). Next, and as previously discussed, the algorithm does not achieve full

beamforming gain in noisy scenarios (i.e. σ2
w > 0). Beyond some point, the fact that the

variable upon which the decisions on keeping or rejecting perturbations is corrupted by noise

prevents the algorithm from fully aligning sensor phases (and, of course, the higher the noise,

the lower the beamforming gain after convergence). This also has an impact on the initial rate

at which the algorithm converges which is also lower (i.e. less steep curves around n = 0)

when the variance of the noise increases.
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Figure 5.2: Mean normalized beamforming gain vs. number of iterations (I = 300).
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Figure 5.3: Mean normalized beamforming gain after M = ⌊LT /L⌋ iterations vs. number of

samples per iteration, L. (I = 300, LT = 9000).

Indeed, one can increase the reliability of the measured received signal strength (R[n]) by

averaging out L consecutive samples. By doing so, the effective noise variance becomes σ2
w/L.
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WSN

BS1

ikj

ik ikh a e
y

=

R

BS2

BSK

BS1

BS2

BSK

1 1,D a

2 2,D a

,K KD a

Figure 5.4: A WSN cluster with multiple base stations.

However, the total number of iterations M for a given number of samples LT yields M =

⌊LT /L⌋. In other words, decisions are more reliable now but the number of iterations available

is smaller. This suggests that an optimal value of L could exist. Figure 5.3 illustrates this

extent. Clearly, the higher the variance of the observation noise, the higher the optimal number

of samples per iteration.

5.3.2 Distributed beamforming with sidelobe control mechanisms

In this section, we generalize the one bit of feedback algorithm of [8] to encompass sidelobe

control mechanisms. As in the previous section, we consider a wireless sensor network con-

sisting of I sensor nodes randomly placed over a disk of radius R according to a uniform dis-

tribution. In contrast to the original scenario given in [8], here we assume that the WSN is sur-

rounded by K Base Stations (BS) located on the XY plane at directionsA = {α1, α2, . . . , αK}
and distances D = {D1, D2, . . . , DK} (see Figure 5.4). As in Section 5.2, we assume that

BSs are far apart and outside the coverage area of each individual sensor node. In the given

scenario, the goal is to collaboratively transmit a common message signal m(t) to the BS of

interest (referred to in the sequel as main BS) without causing unacceptable interference lev-

els to the remaining K − 1 base stations which are assigned to other clusters of sensor nodes

(interfered or unintended ones). We make the same assumptions for the common message and

transmitted signal as those given in Section 5.2.

As for the complex channel from the i-th sensor to the k-th BS, it is now denoted by hik =

aike
jψik , where aik and ψik account for the channel gain and phase shift associated with the Eu-

clidean distance between the sensor and the k-th base station. Accordingly, the signal received
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at the k-th BS is given by:

rk(t) = R
(

I∑

i=1

si(t)hik + w(t)

)

= R
(

m(t)ej2πfct
I∑

i=1

aikbie
j(γi+θi+ψik) + w(t)

)

(5.24)

with w(t) ∼ N (0, σ2
w). Due to hardware limitations, we assume that the transmit power at

each sensor node is constant and, hence, the transmit weights become gi = e−jθi. Besides, for

simplicity, we assume that aik = 1 for all sensors, i.e. the distance between each BS and the

sensors is much larger than inter-sensor distance. After down-conversion and sampling and by

neglecting the noise term in (5.24), the received signal strength (RSS) at the k-th BS in the

current timeslot reads:

RSSk [n] = Yk[n]

=

∣
∣
∣
∣
∣

I∑

i=1

ejΦik[n]

∣
∣
∣
∣
∣
, (5.25)

where Φik = γi + θi + ψik denotes the overall phase rotation of the signal received at the k-th

BS from the i-th sensor node.

Optimization problem

From all the above, the problem of distributed beamforming with sidelobe control can be posed

as follows (without loss of generality, we assume that k = 1 indexes the main BS):

max Y1

subject to Yk ≤ Γk, k = 2, . . . , K,
(5.26)

where the Γk thresholds are system parameters. By resorting to vector notation, and defining

ak = [a1ke
j(γ1+ψ1k), . . . , aNke

j(γN+ψNk)]T g = [e−jθ1, . . . , e−jθN ]T , the problem can be posed

as:
max
g

∣
∣gHa1

∣
∣

subject to
∣
∣gHak

∣
∣ ≤ Γk, k = 2, . . . , K.

diag
[
ggH

]
≤ 1,

(5.27)

where 1 denotes an I × 1 vector with all entries equal3 to 1. In this way, vector g gathers the

beamforming weights to be optimized, whereas ak accounts for the phase offset and channel

propagation effects. This formulation is particularly useful in order to numerically solve the

problem.

3This is a relaxed optimization problem. Note, that for the iterative solution, we assume that the powers at all

the sensors are constant and equal to one.
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Iterative solution with partial channel state information

The enhancement of the original DBF scheme by including sidelobe control mechanisms (DBF-

SC) is motivated by the fact that a subset of the sequence of perturbations {∆[n]} is capable

of simultaneously increasing Y1[n] and decreasing Yk[n] for k = 2 . . .K, bringing us one step

closer to the solution of the constrained problem (5.26). To enforce this behavior, not only the

main BS but also the unintended ones need to measure the RSS and generate the corresponding

feedback messages, that is,

zFB,1[n+ 1] =

{

1 if Y1[n + 1] ≥ Ybest,k[n]

0 otherwise
, (5.28)

zFB,k[n+1] =

{

1 if (Yk[n + 1] < Ybest,k[n] or Yk[n + 1] < Γk)

0 otherwise
, for k = 2, . . . , K. (5.29)

The sensor nodes will only keep their perturbations if positive feedback is received from all the

BSs, namely,

θbest,i[n+ 1] =

{

θbest,i[n] + δi[n] if zFB,k[n + 1] = 1 for k = 1, . . . , K.

θbest,i[n] otherwise
(5.30)

This algorithm is iterated until the desired RSS level at the main BS stabilizes while the RSS at

the unintended BS are kept below the corresponding set of Γk thresholds (or until the maximum

number of iterations is reached).

Clearly, the introduction of constraints into the problem leads to a decreased convergence rate:

only a subset of the perturbations of the unconstrained problem will be kept now. This can be

particularly harmful when the directions of main and unintended BSs are close to each other,

or when the number of unintended BSs is high. In order to investigate these challenges, in

the sequel, we propose to check the validity of the solutions against those obtained via convex

optimization methods, which will be used as a benchmark.

Numerical solution with full channel state information

The optimization problem (5.27) is not convex because the goal is to maximize a convex objec-

tive function subject to a set of convex inequality constraint functions. Besides, the objective

function is invariant to an arbitrary phase rotation applied to vector g. To transform the prob-

lem into a convex one, we force the solution vector to fulfill4 I
(
gHa1

)
= 0, this leading to the

4This can be done by appropriately selecting the phase rotation term.
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following equivalent optimization problem:

max
g

R
(
gHa1

)

subject to I
(
gHa1

)
= 0

R2
(
gHak

)
+ I2

(
gHak

)
≤ Γ2

k, k = 2, . . . , K

diag
[
ggH

]
≤ 1,

(5.31)

where the third constraint in (5.31) becomes active for large I . Next, we apply the following

change of variables:

ĝ =

[

R(g)
I(g)

]

; âk =

[

R(ak)
I(ak)

]

; åk =

[

I(ak)
−R(ak)

]

; (5.32)

and, bearing all the above in mind, the optimization problem can be finally re-written as:

max
ĝ

ĝT â1

subject to ĝT å1 = 0
(
ĝT âk

)2
+
(
ĝT åk

)2 ≤ Γ2
k, k = 2, . . . , K.

diag
[
(Mĝ)(Mĝ)H

]
≤ 1,

(5.33)

where we have defined M = [II , jII ] with II denoting an I × I identity matrix. Clearly, the

problem (5.33) is convex, since the goal is to maximize5 a linear objective function (which, by

definition, is convex and concave), the inequality constraint functions are convex (quadratic),

and the equality constraint ones are affine (actually, linear). Consequently, it can be numerically

solved using e.g. interior points methods. To that aim, full Channel State Information (CSI) is

required at the BS, which is impractical in particular for large networks. On the contrary, the

iterative algorithm proposed previously only requires partial CSI knowledge (essentially, SNR

measurements at the BS plus one bit of feedback from every BS) and, interestingly, operates in

a decentralized manner.

Numerical results

In the sequel, we present some computer simulation results which illustrate the behavior of

the iterative distributed beamforming scheme with sidelobe control. Where appropriate, the

numerical optimization solution will be used as a benchmark. The total number of sensor

nodes is I = 100 and they are deployed in a disk or radius R (normalized to the wavelength).

The main and the K − 1 unintended BS are located in the far-field of the cluster WSN at

identical distances (i.e. Dk = D ≫ R). Without loss of generality, we assume that the main

5Out of the two phase rotations for which g
H
a1 = R(gH

a1), this formulation naturally leads to the one

resulting inR(gH
a1) > 0.
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Figure 5.5: Average radiation pattern of beamforming schemes with and without sidelobe con-

trol mechanisms (K = 4, R = 2, αmain = 0◦, αun = [−30◦,−25◦, 10◦], ΓdB = −30 dB).

.

BS is located at α1 = α main = 0◦. The phase perturbations are chosen independently from a

uniform distribution, that is, δi ∼ U(− π
50
, π
50
). Unless otherwise stated, the maximum number

of iterations allowed to the DBF-SC scheme is L = 5 · 104 and the (normalized) thresholds for

the unintended BS are set to Γ2 = . . . = ΓK = −30 dB.

Figure 5.5 illustrates the impact of sidelobe control mechanisms on the resulting beampattern.

Clearly, the DBF-SC scheme succeeds in reducing the received signal strength in the direction

of the unintended BSs (denoted by dashed vertical lines in the plot) at levels of -30 dB or

less, whereas in the original beampattern they were substantially above. However, we also

observe that the maximum of the beampattern is shifted away from α main. This is due to

the fact that one of the unintended BSs falls within the mainlobe of the original beampattern

(α2 = 10◦). Besides, Figure 5.5 reveals that the beampatterns obtained with the iterative

DBF-SC scheme and numerical optimization tools are identical, which empirically validates

the proposed distributed beamforming scheme.

Figure 5.6 shows the average beampattern for different WSN radii R in the presence of one

unintended BS at α2 = 10◦. As expected, the larger radius, the narrower the mainlobe. For

R = 4 (or larger), this allows the mainlobe to continue to point at the main BS whereas for

smaller radii its maximum is again shifted away. Clearly, this results into an RSS loss at the

main BS. This effect can be readily observed in Figure 5.7 where we depict the evolution of

the mean normalized RSS for the main BS in the same scenario (averaged over 100 algorithm
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Figure 5.6: Average radiation pattern of beamforming schemes with sidelobe control mecha-

nisms (K = 2, αmain = 0◦, αun = 10◦, ΓdB = −30 dB).

runs). After convergence, the penalty in terms of normalized RSS for the R = 1 case is

on the order of 7 dB. Interestingly, the rate at which the DBF-SC converges to the optimal

solution is also affected by the network size. Whereas for larger radii the loss is marginal with

respect to the unconstrained case (dotted curve), for smaller radii the slope of the curves is

substantially smaller. Indeed, for broader mainlobes it is more difficult to find perturbations

that simultaneously increase the RSS at the main BSS and decrease the RSS at the interfered

ones. This can also be observed in Figure 5.8 where we show the evolution of the normalized

RSS at the unintended BS. Clearly, the interference level decreases more slowly for smaller

radii. The inspection of the upper and bottom plots also gives some insights on how the DBF-

SC scheme exploits the available degrees of freedom to find an optimal balance. Although the

interference level temporarily goes below the prescribed threshold (see the first 500 iterations

of the R = 4 curve), finally it converges to Γ = −30 dB since, otherwise, it would not be

possible to maximize the RSS at the main BS.

Next, in Figure 5.9, we analyze the impact of the angle difference ∆α between the main and

the unintended BS on the normalized RSS at the main BS. We observe that, as soon as the

unintended BS enters the mainlobe region, the normalized RSS degrades rapidly. Of course,

the angle difference at which such degradation starts depends on the network radius. Besides,

the fact that for some directions of the unintended BS it coincides with the maximum of a

sidelobe (that needs to be canceled) and for some other with a deep null of the radiation pattern

motivates the slight fluctuations in the upper part of the plot.
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Figure 5.7: Mean normalized RSS for the main BS vs. number of iterations (αmain = 0◦,

αun = 10◦, ΓdB = −30 dB).
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Figure 5.8: Mean normalized RSS for the unintended BS vs. number of iterations (αmain = 0◦,

αun = 10◦, ΓdB = −30 dB).

Interestingly, the results (which are averaged over a large number of realizations) are identical

for both the iterative DBF-SC scheme and the numerical solution. This, again, validates the

proposed distributed beamforming scheme.

Complementarily, Figure 5.10 shows the normalized RSS at the main BS as a function of the

threshold associated with the unintended one (K = 2 case). For this scenario, the impact of Γ is
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Figure 5.9: Mean normalized received signal strength vs. angle difference main-unintended

BS (K = 2, ΓdB = −30 dB).

relatively mild: it slightly degrades in the −20 . . .− 40 dB range and, interestingly, it virtually

saturates for values below −40 dB. In other words, beyond a certain point there is no penalty

associated with making nulls deeper and, by doing so, increasing the SINR in the unintended

BSs. Curves can be significantly different (RSS saturation levels, ranges) for networks with

a diverse number of sensor nodes since the average value of sidelobe peaks (and, the effort

needed to keep them under control) strongly depends on I .

Finally, in Figure 5.11 we depict the hitting time which is defined as the number of iterations

needed until the average RSS at the main BS reaches 90% of its maximum value, for a varying

number of unintended BSs. Results are averaged over the directions of the interfered BSs and

sensor locations. As expected, when the number of BSs increases, the time needed for the

algorithm to converge increases, as well (chances are higher for one of those BS to lie in the

mainlobe of the main BS). Consequently, the degradation is particulary severe for networks

with smaller disk radii with almost a 10-fold increase of the hitting time when the number of

unintended BSs increases from 1 to 3.
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Figure 5.10: Mean normalized received signal strength vs. RSS threshold at the unintended BS

(K = 2, ∆α = 10◦).
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Figure 5.11: Hitting time (ΓdB = −30 dB).
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5.4 Decentralized phase synchronization scheme for collab-

orative beamforming

In this section, we propose a novel distributed phase synchronization scheme, which turns

out to be particularly suitable for communication scenarios where the total duration of the

training plus data transmission period is fixed irrespectively of the number of sensors (unlike

the iterative schemes proposed in [8,9]). In the proposed scheme, we let all sensors participate

in the beamforming process since, unlike in [10], we count with mechanisms to pre-compensate

the oscillator phase offset and the channel phase shift.

5.4.1 Communication protocol

To recall, the signal model in Section 5.2 assumes that I sensors collaborate to send a common

message signal m(t) to a distant base station. In order to maximize the received signal strength

at the base station, the sensor must precompensate the oscillator and channel phase offsets by

properly adjusting the θi term. In the sequel, we take an approach different from that of Section

5.3. Namely, upon BS request, nodes wake up for T seconds during which a data packet will

be transmitted. Typically, T is predefined and turns out to be a small percentage of the time

elapsed between consecutive requests (i.e. low duty-cycle). Within this period of time, sensors

need to (i) estimate θi; (ii) share the common message m(t); and (iii) actually transmit the

message. For simplicity, we assume that (ii) is carried out transparently to (i) and (iii) and,

hence, the packet consists of one training block and one data transmission block only. Their

respective durations are TT and TD, with T = TT + TD. The training block, in turn, consists of

M timeslots of duration TM (see Figure 5.12). Each timeslot is used by a sensor (or group of

sensors) in order to estimate the corresponding pre-compensation phase. In order to relieve the

BS from the burden of allocating sensors to timeslots6, we allow sensors to randomly choose

training timeslots according to a uniform distribution, namely, pj = 1/M ; j = 1 . . .M . Let

Sj denote the subset of sensors in timeslot j of cardinality |Sj| = Ij . Clearly, Ij is a binomial

random variable and it fulfills
∑M

j=1 Ij = I . Whenever Ij > 1, the phase pre-compensation

will be carried out for the group of sensors rather than for individual ones. Because of that,

the overall received signal strength in the subsequent data transmission period will be lower.

However, arbitrarily increasing the number of timeslots M (to avoid sensors to overlap) is

detrimental, as well.

6Note that, in realistic settings, the BS should first learn about which sensors woke up. Since the number is

potentially large, the associated signalling needs would also be.
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Figure 5.12: Training and data transmission phases.

The amount of information conveyed (i.e., throughput) in the transmit period is given by:

R(TD) = TD log2

(

1 +
RSS2 (TT)

σ2
w

)

[bits]. (5.34)

If TM is pre-defined, then increasing M results into a shorter data transmission block (TD =

T−M ·TM) and, consequently, lower throughput. If, on the contrary, the duration of the training

period TT is fixed, then timeslots become shorter (TM = TT

M
) which results into poorer phase

estimates (and, thus, lower RSS in the data transmission period). Consequently, the optimal

split between the training and data transmission periods, and the optimal number of timeslots

in the training phase should be identified. A more detailed analysis follows.

RSS analysis: ideal phase shift estimation

In the training period, sensors merely transmit an unmodulated carrier. From (5.1) and by

defining φi = γi + ψi, the received signal in the j-th timeslot reads7:

rj(t) = ej2πfct
∑

i∈Sj

ejφi + w(t); t ∈ [(j − 1)TM, jTM) (5.35)

The summation term can be conveniently expressed as

∑

i∈Sj

ejφi = RSSje
jξj (5.36)

with RSSj ≥ 0 denoting the received signal strength in j-th timeslot8 and ξj standing for the

aggregated phase shift (see Figure 5.13). For the time being, we assume that ξj can be perfectly

estimated and fedback to all the Ij sensors in timeslot j. Upon completion of the training

period, each sensor node pre-compensates its carrier phase by setting θi = −ξj ; ∀i ∈ Sj and,

hence, the received signal strength during the data transmission period yields:

RSS =

∣
∣
∣
∣
∣
∣

M∑

j=1

∑

i∈Sj

ej(φi−ξj)

∣
∣
∣
∣
∣
∣

, (5.37)

7Time synchronization is already achieved.
8For simplicity, the contribution of the additive noise to the resulting RSS will be neglected throughout this

section.
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Figure 5.13: Aggregated phase shift in a training slot.

and the expected value of the normalized RSS then reads

RSS =
1

I
E{Ij}Mj=1,{φi}Ii=1

[RSS]. (5.38)

From (5.36), it follows that
∑

i∈Sj
ej(φi−ξj) = RSSj ∈ {R+, 0}. If, in addition, we define

ΦI , {φi}Ii=1 then we can write:

RSS =
1

I

M∑

j=1

EIj ,ΦI
[RSSj ] , (5.39)

where:

EIj ,ΦI
[RSSj ] = EIj ,ΦI





∣
∣
∣
∣
∣
∣

∑

k∈Sj

ej(φk−ξj)

∣
∣
∣
∣
∣
∣



 (5.40)

= EIj ,ΦI






√
√
√
√

∑

k∈Sj

ej(φk−ξj)
∑

l∈Sj

e−j(φl−ξj)




 (5.41)

= EIj ,ΦI








√
√
√
√
√
Ij +

∑

k∈Sj

∑

l∈Sj

l 6=k

ej(φk−φl)








(5.42)

= EIj ,ΦI








√
√
√
√
√
Ij +

∑

k∈Sj

∑

l∈Sj

l>k

2R{ej(φk−φl)}








(5.43)

= EIj ,ΦI








√
√
√
√
√
Ij +

∑

k∈Sj

∑

l∈Sj

l>k

2 cos(φk − φl)








(5.44)

(5.45)
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The expectation in this last expression is difficult to compute in closed form. Hence, we resort

to the following upper bound:

EIj ,ΦI
[RSSj ] ≤ EIj








√
√
√
√
√
Ij +

∑

k∈Sj

∑

l∈Sj

l>k

2Eφk ,φl[cos(φk − φl)]







, (5.46)

which follows from Jensen’s inequality and the fact that Ij is statistically independent of ΦI .

With the change of variables z = φk − φl, the inner expectation term yields

Eφk,φl[cos(φk − φl)] = Ez[cos(z)]

=
1

2π

∫ π

−π
cos(z)dz

= 0. (5.47)

which follows from the fact that z is uniformly distributed in [−π, π] since so are both φk and

φl
9.

From (5.46) and (5.47), we conclude that the contribution of the sensors in the j-th slot to the

resulting RSS can be upper-bounded as follows:

EIj ,ΦI
[RSSj ] ≤ EIj

[√

Ij

]

. (5.48)

and, hence, the normalized RSS of (5.39) can in turn be upper-bounded by:

RSS ≤ M

I
EIj

[√

Ij

]

. (5.49)

Unfortunately, this expectation cannot be computed in closed-form and, as such, is not very

informative. We can gain some insight by letting M and I grow without bound at a constant

ratio α = M
I

. In this case, the (binomial) random variable Ij is well approximated by a Poisson

r.v. of mean α−1 [52](Ch.3). From all the above, the upper bound for normalized RSS in (5.49)

yields:

RSS ≤ e−
1
α

∞∑

k=0

α1−k
√
k

k!
. (5.50)

This expression reveals that, with perfect phase-shift estimation, the normalized RSS exclu-

sively depends on α, that is, the ratio of the number of available timeslots to the number of

sensors. In Figure 5.14, we depict the actual RSS (for a scenario with I = 100 sensors) along

with the corresponding upper bound. The bound is particularly tight for large α (i.e. M ≫ I)

since, in this case, the upper bound in (5.46) is tight as well (essentially, the cross terms in

the summations vanish). Besides, we also realize that, for large α, the system achieves full

beamforming gain. This follows from the fact that, for large M , the probability of having more

than one sensor in a time slot is low. Consequently, the phase shift can be ideally estimated and

pre-compensated for each individual sensor rather than for the whole group.

9The pdf of z = φk − φl is given by the convolution of the individual pdfs and, thus, it exhibits a triangular

shape within [−2π, 2π]. Phase wrapping effects, render this pdf equivalent to a uniform one within [−π, π].
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Figure 5.14: Mean normalized RSS vs. α = M
I

(I = 100).

RSS analysis: noisy phase shift estimation

Here, we assume that the duration of the training period is fixed (e.g. defined as a percentage

of the data transmission time). Consequently, the higher the number of timeslots, the shorter

their duration. This has an impact on the quality of the corresponding phase estimates ξ̂j that

we analyze next.

Let fs be the sampling frequency. Consequently, the total number of samples in the training

period and in each timeslot are LT = fsTT and L = LT/M , respectively. The maximum-

likelihood (ML) estimate of the aggregated phase shift in the j-th slot is given by [53](Ch.7)

ξ̂j = − arctan

∑L−1
n=0 rj [n] sin(2πfcn)

∑L−1
n=0 rj[n] cos(2πfcn)

. (5.51)

where rj [n] denotes the sampled version of the received signal. For large L, the estimation

error ∆ξj = ξj − ξ̂j turns out to be a zero-mean Gaussian r.v. of variance

σ2
∆ξj

=
σ2
w

L · RSS2
j

=
Mσ2

w

LT · RSS2
j

. (5.52)

which indicates that the quality of the estimate is a function of the number of samples L in

the timeslot. To recall, the instantaneous RSS at the BS after phase pre-compensation by all
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sensors reads

RSS =

∣
∣
∣
∣
∣
∣

M∑

j=1

∑

i∈Sj

ej(φi−ξ̂j)

∣
∣
∣
∣
∣
∣

, (5.53)

and, from (5.36), we can write

1

I
RSS =

1

I

∣
∣
∣
∣
∣

M∑

j=1

RSSje
j∆ξj

∣
∣
∣
∣
∣

= α

∣
∣
∣
∣
∣

1

M

M∑

j=1

RSSje
j∆ξj

∣
∣
∣
∣
∣
. (5.54)

From the weak law of large numbers, for large M and I we have that

α

∣
∣
∣
∣
∣

1

M

M∑

j=1

RSSje
j∆ξj

∣
∣
∣
∣
∣

P→ α
∣
∣EIj ,ΦI ,∆ξj [RSSje

j∆ξj ]
∣
∣ , (5.55)

where P denotes convergence in probability. With a slight abuse of notation, the normalized

RSS asymptotically reads:

RSS =
M

I

∣
∣EIj ,ΦI ,∆ξj [RSSje

j∆ξj ]
∣
∣ (5.56)

or, equivalently,

RSS =
M

I

∣
∣EIj ,ΦI

[
RSSjE∆ξj |Ij ,ΦI

[ej∆ξj ]
]∣
∣ . (5.57)

Since the phase estimation errors are Gaussian-distributed, this implies that

E∆ξj |Ij ,ΦI

[
ej∆ξj

]
= e

− 1
2
σ2∆ξj

= e
− Mσ2

w
2LT·RSS2

j . (5.58)

From the last two equations and by resorting again to Jensen’s inequality, we can thus write

RSS =
M

I

∣
∣
∣
∣
∣
EIj ,ΦI

[

RSSje
− Mσ2

w
2LT·RSS2

j

]∣
∣
∣
∣
∣

(5.59)

=
M

I
EIj ,ΦI

[

RSSje
− Mσ2

w
2LT·RSS2

j

]

(5.60)

≤ M

I
EIj

[
√

Ije
− Mσ2

w
2LT·Ij

]

(5.61)

where in the second equality we have exploited the fact that all the terms in the expectation are

real-valued and positive. Again, for M, I →∞ and α = M
I

constant, the random variable Ij is

approximately Poisson distributed and, thus,

RSS ≤ e−
I
M

∞∑

k=0

(
M

I

)1−k √
k

k!
e
−Mσ2

w
2LTk (5.62)

Interestingly, the exponential term in the summation models the decrease in RSS resulting from

the use of imperfect phase estimates.
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Figure 5.15: Mean normalized RSS vs. number of timeslots M (σ2
w = 6, TT = 104).

Numerical results

In this section, we present some computer simulation and numerical results which illustrate

the behavior of the proposed distributed beamforming scheme. In all cases, the duration of the

training slots is inversely proportional toM and, hence, we address the scenario with imperfect

(noisy) phase estimates. Without loss of generality, time is normalized to the sampling period

(i.e. Ts = 1).

Figure 5.15 depicts the normalized RSS as a function of the number of timeslots M . For

benchmarking purposes, we also indicate the RSS attainable when the BS allocates sensors

to timeslots in a centralized manner (M = I case, curves labeled as ’deterministic’) and the

corresponding upper bounds of (5.62). The plot reveals that the upper bound is, in general,

tight. However, it is worth noting that it is not valid for very small or large values of M .

For small M , on the one hand, the bound (5.61) is loose and, besides, the approximation

of a binomial distribution by a Poisson one is not accurate. For large M , on the other, the

assumption of large L = LT/M in the computation of the asymptotic variance of (5.52) does

not hold. We also observe that the optimal number of timeslots increases for larger networks

(see maxima for the curves with I = 10, 100 and 1000 sensors). Intuitively, the higher the

number of sensors, the higher the number of timeslots needed to minimize the risk of having

more than one sensor in one timeslot (even if this comes at a price of experiencing higher

variance in the phase estimates). Besides, we observe that the loss (in terms of normalized

RSS) for schemes with decentralized allocation of timeslots is moderate (some 5% to 15%).
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Figure 5.16: Mean normalized RSS vs. number of timeslots M (σ2
w = 6, TT = 105).

In other words, the lack of coordination can be in part compensated with a sufficiently high

(and optimally designed) number of training timeslots. Complementarily, Figure 5.16 shows

some additional results in scenarios with longer training periods (TT = 105 vs. TT = 104).

Unsurprisingly, the resulting RSS is higher and so is the optimal number of timeslots.

Next, in Figure 5.17, we plot the optimal number of timeslots M∗ as a function of the variance

of the channel noise σ2
w. Clearly, M∗ is a monotonically decreasing function of σ2

w: in noisy

scenarios, more samples per timeslot (L = LT/M) are needed to average out channel noise.

It also reveals that the optimal number of timeslots increases for an increasing duration of the

training period TT. Since the number of sensors is fixed (I = 100), for larger TT the probability

of having more than one sensor per timeslot decreases without impairing too much the quality

of the estimates. As a remark, the curves saturate in the low-noise region because the lowest

possible number of samples per timeslot (namely, L = 1) is reached there.

Finally, in Figure 5.18 we depict the throughput given by (5.34) vs. the total duration of the

data transmission period (for fixed T = 104). For the training period, we (numerically) op-

timize on the number of timeslots. For benchmarking purposes, we also include data on the

theoretical throughput achievable if the (channel and oscillator) phase shifts were known and,

consequently, no training period were needed (i.e. TD = T and RSS = I , dashed lines). As ex-

pected, there exists an optimal operating point for each curve where the best trade-off in terms

of the beamforming gain after phase adjustments vs. time left for data transmission is reached.

Interestingly, the duration of the training period amounts to less than 10% of the wake up time
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T only. Moreover, the gap with respect to the highest theoretical throughput is on the order of

some 25%, in all cases.
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Figure 5.17: Optimal number of timelots vs. variance of the channel noise (N = 100).
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5.5 Chapter summary and conclusions

In this chapter, we have studied the problem of distributed carrier synchronization in wireless

sensor networks. In particular, we have addressed two carrier phase synchronization schemes:

(i) the one bit of feedback synchronization scheme, and (ii) the novel distributed phase syn-

chronization scheme that we propose.

As for the one bit of feedback scheme, we have learned that the impact of noise on the behav-

ior is two-fold: on the one hand, it prevents the algorithm from achieving full beamforming

gain; on the other, it exhibits a slower convergence rate. This effect can be partly mitigated

by averaging out over a number of RSS samples at each iteration. An optimal value of such

number of samples exists and it is a function of the noise variance. In addition, we have also

addressed an enhanced version of one bit of feedback scheme with sidelobe control (DBF-SC).

It is shown that after a sufficient number of iterations, DBF-SC maximizes the beamforming

gain at the main BS and, simultaneously, it keeps the sidelobe levels in the directions of the un-

intended BSs below some prescribed threshold. The proposed algorithm operates with partial

CSI (namely, the RSSs measured at the main and unintended BSs), its signalling requirements

are minimal (essentially, one bit of feedback per BS) and it exhibits a very low computational

complexity. In spite of that, its performance and the associated radiation patterns are virtu-

ally identical to those of other centralized solutions obtained via convex optimization tools

(i.e. numerically) which require full CSI and exhibit a much higher computational complexity.

Computer simulation results reveal that, in scenarios where the unintended BS lies in the main-

lobe of the original beampattern, the maximum of the radiation pattern shifts away from the

direction of the main BS. Clearly, this results into degradation of the RSS at the main BS. On

the contrary, when the interfered BS lie in the sidelobe region, we find only minor fluctuations

in the RSS. Moreover, for the scenarios considered, the impact of the actual threshold value

is relatively mild and, interestingly, it virtually saturates for values below -40 dB. Finally, we

observed that increasing the number of unintended BSs has a substantial impact on the hit-

ting time. For networks with small radii, increasing from 1 to 3 unintended BSs results into a

10-fold increase in the hitting time.

In this chapter, we have also proposed a novel decentralized phase synchronization scheme for

collaborative beamforming with wireless sensor networks. This scheme does not require the

BS to coordinate the allocation of sensors to the training timeslots or poll them individually.

For the given scenario, we have derived (in general, tight) closed-form expressions for the

upper bound of the resulting received signal strength (i.e., beamforming gain) in two scenarios

of interest: ideal, and noisy phase shift estimates. For the ideal scenario, we have learnt that,

asymptotically, the normalized received signal strength exclusively depends on the ratio of the

number of timeslots to sensors in the network (and it is a monotonically increasing function).

For the noisy phase shift estimates, numerical results reveal that there exists an optimal number
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of timeslots maximizing the overall received signal strength for the data transmission period.

The optimal number of timeslots increases with the number of sensors in the network and the

duration of the training period, and it decreases with the variance of the channel noise. The

loss, in terms of normalized RSS, with respect to centralized schemes is moderate (some 5% to

20%). In terms of achievable throughput, there also exists an optimal split for the duration of the

training and data transmission periods which attains the best trade-off in terms of beamforming

gain vs. time left for data transmission. The gap with respect to the theoretical throughput with

ideal knowledge on channel and oscillator phase shifts is on the order of 25%.
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5.A Appendix

5.A.1 Proof of the convergence of one bit of feedback algorithm

In (5.23), we show that, the expected increase of the normalized RSS in the presence of AWGN

can be expressed as :

hn(y) =

∫ ∞

−∞
(x− y(1− χn))

1
√

2πσ2
R[n]

e
− x2

2σ2
R

[n]×

×Q





√

y2 + σ2w
2I2
−
√

(χny + x)2 + σ2w
2I2

σw
I



 dx

=

∫ ∞

−∞
g(x, y) dx, (5.63)

Given y = yn, the evolution of the mean normalized RSS (see eq. (5.15)) is modeled by the

following recursion:

yn+1 , yn + hn(y), with the initialization10 y0 ,
1√
I
. (5.64)

We note that, the algorithm convergence in mean implies that yn+1 = yn for n → ∞, or that

the expected RSS increase equals zero (hn(y) = yn+1 − yn = 0). In the sequel, we prove that

in the presence of AWGN, the algorithm converges to ỹ, such that ỹ = arg
y
{hn(y) = 0}, with

ỹ ∈ [ 1√
I
, 1). To that end, we show that:

• The function hn(y) is continuous on the interval y ∈ [0, 1]. This follows from the fact

that, the derivative of expected RSS increase in (5.63)
dhn(y)
dy

= d
dy

∫∞
−∞ g(x, y)dx is

continuous function, since d
dy

∫ b

a
g(x, y)dx =

∫ b

a
dg(x,y)
dy

dx (see [54]) and
dg(x,y)
dy

in (5.63)

is continuous.

• At y = 1 the expected RSS increase is negative (namely, hn(y) < 0).

• At y = 0 the expected RSS increase is positive (namely, hn(y) > 0) and and the expected

RSS is lower bounded by 1√
I
.

Based on the previous facts, since the function hn(y) is continuous, and inside the interval [0, 1]

it changes its sign from positive to negative, we know that it must have zero somewhere inside

this interval. Since hn(y) cannot be zero for y < 1√
I
, we conclude that, its zero must lie in

the interval [ 1√
I
, 1), and therefore, the algorithm, on average converges to the normalized RSS

value ỹ ∈ [ 1√
I
, 1).
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Proof that expected RSS increase is negative for y = 1

First, we replace theQ function inside the integral (5.63) with the function f(x) defined as:

f(x) , Q





√

y2 + σ2w
2I2
−
√

(χny + x)2 + σ2w
2I2

σw
I



 , (5.65)

where for I large and σ2
w constant (i.e. y ≫ σw

I
) here, the function f(x) can be approximated

as follows:

f(x) ≈ Q
(

−x− y(1− χn)σw
I

)

= 1−Q
(
x− y(1− χn)

σw
I

)

(5.66)

Next, we express (5.63) as a sum of two integrals as follows:

hn(y) =

∫ ∞

−∞
(x− y(1− χn))

1
√

2πσ2
R[n]

e
− x2

2σ2
R

[n] f(x)dx

=

∫ y(1−χn)

−∞
(x− y(1− χn))

1
√

2πσ2
R[n]

e
− x2

2σ2
R

[n]f(x)dx

+

∫ ∞

y(1−χn)

(x− y(1− χn))
1

√

2πσ2
R[n]

e
− x2

2σ2
R

[n]f(x)dx. (5.67)

Now, by introducing the variable change t = 2y(1−χn)−x to the first integral of (5.67) which

we denote by I0, and by exploiting the fact that f(t) = 1 − f(x), we obtain the following

expression for I0:

I0 =

∫ y(1−χn)

−∞
(x− y(1− χn))

1
√

2πσ2
R[n]

e
− x2

2σ2
R

[n]f(x)dx

= −
∫ y(1−χn)

∞
(−t + y(1− χn))

1
√

2πσ2
R[n]

e
− (2y(1−χn)−t)2

2σ2
R

[n] (1− f(t)) dt

= −
∫ ∞

y(1−χn)

(t− y(1− χn))
1

√

2πσ2
R[n]

e
− (t−2y(1−χn))2

2σ2
R

[n] (1− f(t))dt

= −
∫ ∞

y(1−χn)

(x− y(1− χn))
1

√

2πσ2
R[n]

e
− (x−2y(1−χn))2

2σ2
R

[n] (1− f(x))dx. (5.68)

Then, by plugging (5.68) into (5.67), we have that:

hn(y) =

∫ ∞

y(1−χn)

f1(x)f(x)dx−
∫ ∞

y(1−χn)

f2(x) (1− f(x)) dx, (5.69)
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where f1(x) and f2(x) are functions defined in the sequel:

f1(x) , (x− y(1− χn))
1

√

2πσ2
R[n]

e
− x2

2σ2
R

[n] , (5.70)

f2(x) , (x− y(1− χn))
1

√

2πσ2
R[n]

e
− (x−2y(1−χn))2

2σ2
R

[n] . (5.71)

(5.72)

Therefore, the expected RSS increase of (5.69) can be rewritten as follows

hn(y) =

∫ ∞

y(1−χn)

(f1(x) + f2(x))f(x)dx−
∫ ∞

y(1−χn)

f2(x)dx (5.73)

= I1 − I2 (5.74)

where

I1 ,

∫ ∞

y(1−χn)

(f1(x) + f2(x))f(x)dx, (5.75)

I2 ,

∫ ∞

y(1−χn)

f2(x)dx. (5.76)

On the one hand, integral I2 can be lower bounded as follows:

I2 ,

∫ ∞

y(1−χn)

f2(x)dx

(a)
>

∫ ∞

−∞
f2(x)dx

=

∫ ∞

−∞
(x− y(1− χn))

1
√

2πσ2
R[n]

e
− (x−2y(1−χn))2

2σ2
R

[n] dx

= y(1− χn), (5.77)

where (a) follows from the fact that f2(x) < 0 for x ∈ (−∞, y(1− χn)). On the other hand,

integral I1 can be upper bounded as follows:

I1 =

∫ ∞

y(1−χn)

(f1(x) + f2(x))f(x)dx

(b)
<

∫ ∞

y(1−χn)

(f1(x) + f2(x))dx

=

∫ ∞

y(1−χn)

f1(x)dx+

∫ ∞

y(1−χn)

f2(x)dx

= I3 + I4, (5.78)

where inequality (b) in (5.78) follows from the fact that that f(x) ≤ 1 for x ∈ R, and

I3 ,

∫ ∞

y(1−χn)

f1(x)dx, (5.79)

I4 ,

∫ ∞

y(1−χn)

f2(x)dx. (5.80)
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After some algebra manipulations integral I3 reads

I3 =

∫ ∞

y(1−χn)

f1(x)dx

=

∫ ∞

y(1−χn)

(x− y(1− χn))
1

√

2πσ2
R[n]

e
− x2

2σ2
R

[n]dx

=

∫ ∞

y(1−χn)

x
1

√

2πσ2
R[n]

e
− x2

2σ2
R

[n]dx− y(1− χn)
∫ ∞

y(1−χn)

1
√

2πσ2
R[n]

e
− x2

2σ2
R

[n]dx

(c)
= σR

1√
2π

∫ ∞

y(1−χn)
σR

te−
t2

2 dt− y(1− χn)
∫ ∞

y(1−χn)
σR

1√
2π
e−

t2

2 dt

= σR

[
1√
2π
e−

x2

2 − xQ(x)
]∣
∣
∣
∣
x=

y(1−χn)
σR

, (5.81)

where we have introduced the variable change t = x
σR

in (c). Similarly to (5.81), integral I4

can be computed as follows:

I4 =

∫ ∞

y(1−χn)

f2(x)dx

=

∫ ∞

y(1−χn)

(x− y(1− χn))
1

√

2πσ2
R[n]

e
− (x−2y(1−χn))2

2σ2
R

[n] dx

=

∫ ∞

y(1−χn)

(x− 2y(1− χn))
1

√

2πσ2
R[n]

e
− (x−2y(1−χn))2

2σ2
R

[n] dx

+ y(1− χn)
∫ ∞

y(1−χn)

1
√

2πσ2
R[n]

e
− (x−2y(1−χn))2

2σ2
R

[n] dx

(d)
= σR

1√
2π

∫ ∞

− y(1−χn)
σR

ue−
u2

2 du+ y(1− χn)
∫ ∞

− y(1−χn)
σR

1√
2π
e−

u2

2 du

= σR

[
1√
2π
e−

x2

2 − xQ(x)
]∣
∣
∣
∣
x=−y(1−χn)

σR

(5.82)

where we have introduced the variable change u = x−2y(1−χn)
σR

in (d). Therefore, from (5.78),

(5.81) and (5.82) we have that:

I1 < I3 + I4

= σR

[
1√
2π
e−

x2

2 − xQ(x)
]∣
∣
∣
∣
x=

y(1−χn)
σR

+ σR

[
1√
2π
e−

x2

2 − xQ(x)
]∣
∣
∣
∣
x=

−y(1−χn)
σR

= σR

[

2
1√
2π
e−

x2

2 − xQ(x) + x(1 −Q(x))
]∣
∣
∣
∣
x= y(1−χn)

σR

= 2σR

[
1√
2π
e−

x2

2 − xQ(x)
]∣
∣
∣
∣
x=

y(1−χn)
σR

+
y(1− χn)

σR
σR

= 2σRh
∗
n + y(1− χn), (5.83)
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where h∗n =
[

1√
2π
e−

x2

2 − xQ(x)
]∣
∣
∣
x=

y(1−χn)
σR

corresponds to the expected increase when no

noise is present in the system (see [8, eq.(23)]) and, hence, this term turns out to be zero (i.e.

h∗n = 0) for y = 1. Finally, from (5.74), (5.77) and (5.83) we have that

hn(y) = I1 − I2 (5.84)

< 0, (5.85)

which concludes the proof.

Proof that expected RSS increase is zero for ỹ ≥ 1√
I

When y = 0, the BS observes only noise, whose signal strength on average is always greater

than zero. Based on that non-accurate measurement, the algorithm accepts any given perturba-

tion, which results in the average RSS increase greater than zero.

Even more, at the algorithm’s starting point, all the carrier phases are uniformly distributed, re-

sulting in the expected RSS equal to y = 1√
I
.When the noise variance is very high, the average

RSS remains the same over time. This happens since, based on non-reliable RSS measure-

ments, the algorithm accepts or discards phase perturbation randomly, maintaining the initial

uniform distribution of phases. On the other hand, when the noise is not that much high, the

RSS can be improved, leading to positive expected RSS increase. Based on these two facts and

the continuity of hn(y), we conclude that the expected RSS increase can be zero only for some

normalized RSS ỹ ≥ 1√
I
.
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Chapter 6

Conclusions and Future Work

In this PhD dissertation, we have focused on the design of collaborative beamforming schemes

for energy harvesting wireless sensor networks. First, in Chapter 3, we have addressed the case

where one energy harvesting and one battery operated sensor collaborate to transmit data to a

distant base station. This scenario is further generalized in Chapter 4, where we have consid-

ered the collaborative transmission with multiple energy harvesting nodes. In both Chapters 3

and 4, we have assumed that the signals from all the sensors involved in collaborative transmis-

sion are coherently added at the destination. This assumption is justified in Chapter 5, where

we have addressed the problem of distributed carrier phase synchronization. In the sequel, we

summarize the main findings of each chapter of this dissertation.
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6.1 Conclusions

Chapter 3

In this chapter, we have addressed the scenario where two sensors (one of them with energy

harvesting capabilities) collaboratively transmit a common message to a distant base station.

In this setting, we have identified the optimal transmission policy such that the throughput for

a given deadline is maximized. To do so, we have proposed a semi-analytical solution for the

cases of infinite and finite energy storage capacity. More specifically, we have shown that the

optimal transmission policy for the energy harvesting sensor can be computed independently

(without the knowledge of the optimal policy for the battery operated sensor) by using the al-

gorithms proposed in [17] and [18], respectively. Next, we have shown that the optimal policy

at the battery operated sensor can be computed by means of the iterative algorithm that we

propose. The performance of the jointly optimal transmission policy is compared to that of the

suboptimal one, in the realistic scenario where solar energy is harvested. The computer simula-

tion results have shown that the optimal transmission policy yields substantial throughput gains

with respect to the suboptimal policy, especially when small amounts of energy are harvested

or solar irradiation levels vary faster.

Regarding the case of finite energy storage capacity, numerical results have revealed that the

loss due to limited capacity turns out to be significant, only when the storage capacity is smaller

than the amount of energy harvested in each arrival. Finally, by considering long-term energy

storage capacity degradation, the throughput loss is shown to be particularly severe for smaller

values of nominal energy storage capacity.

Chapter 4

In this chapter, we have generalized the analysis of Chapter 3 by considering a scenario with

multiple energy harvesting sensor nodes. In this setting, we have proposed an algorithm that

finds the jointly optimal transmission policy in an iterative manner. More specifically, in each

iteration, the algorithm optimizes the policy of a given sensor node, whilst the policies at other

sensors are held fixed.

Next, we have assessed the system performance in a realistic scenario where vibrational energy

is harvested from the environment. Computer simulation results have shown that for the infinite

energy storage capacity case and for the low-SNR regime, the gain resulting from the joint

optimization can be as high as 40% when the distance between sensors is high. Conversely, in

the high-SNR regime such gain vanishes, since the jointly and separately optimal transmission

policies turn out to be almost identical. Furthermore, we have found that for most of the

scenarios, the throughput is higher when all sensors in the network harvest the same amount of

energy.
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6.1. Conclusions

Finally, by evaluating the impact of finite energy storage capacity, we have shown that the

throughput gracefully degrades for intermediate values of the storage capacity. Moreover, for

large energy storage capacities, the performance is more sensitive to inter-sensor distance.

Chapter 5

In this chapter, we have addressed two decentralized schemes for carrier phase synchroniza-

tion. The proposed schemes perform in a distributed manner, which renders them particularly

suitable for collaborative beamforming scenarios considered in Chapters 3 and 4.

First, we have considered the so-called one bit of feedback algorithm proposed in [8]. More

particularly, we have generalized the analysis of [8] to the scenario with noisy received signal

strength estimates. In such setting, we have found that the impact of noise on the algorithm’s

behavior is twofold: (i) the noise prevents the algorithm from achieving full beamforming

gain; (ii) the algorithm exhibits a slower convergence rate. Besides, we have also proposed an

enhanced version of one bit of feedback algorithm by including sidelobe control (DBF-SC).

We have shown that after a sufficient number of iterations, DBF-SC is capable of maximizing

the beamforming gain at the main BS while keeping the sidelobe levels in the directions of

the unintended BSs below some prescribed threshold. The performance and the associated

radiation patterns are practically identical to those of other centralized solutions obtained via

convex relaxations, which, however, require full CSI.

In the second part of this chapter, we have proposed a novel decentralized phase synchro-

nization scheme. Unlike the one bit of feedback algorithm considered before, this scheme is

particularly suitable for scenarios where the total duration of the training plus data transmis-

sion period is fixed irrespectively of the number of sensors. In addition, similarly to the one

bit of feedback algorithm, the proposed scheme does not require the centralized allocation of

the sensors to the training timeslots. Initially, we have derived the closed-form expressions for

the upper bound of the resulting received signal strength in two scenarios: ideal, and noisy

phase shift estimates. For the ideal scenario, we have found that the normalized received signal

strength exclusively depends on the ratio of the number of timeslots and the number of sensors.

As for the noisy phase shift estimates, numerical simulations have revealed that there exists an

optimal number of timeslots which maximizes the received signal strength during data trans-

mission period. The RSS loss with respect to centralized schemes ranges from 5% to 20%.

Besides, we have shown that there exists an optimal split for the duration of the training and

data transmission periods, which attains the best trade-off in terms of beamforming gain vs.

time left for data transmission. The performance gap with respect to the theoretical throughput

with global CSI and full knowledge of the oscillator phase shifts turns out to be in the order of

25%.
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Chapter 6. Conclusions and Future Work

6.2 Future work

In this section, we discuss a number of research areas and related topics for further work in the

field of distributed beamforming and decentralized carrier synchronization in wireless sensor

networks.

• Energy harvesting sensors with causal knowledge of energy arrivals. For the com-

munication system considered in this dissertation, we assume that energy arrivals are

known in advance. With this assumption, one can model quite accurately the energy har-

vesting process of predictable ambient energy sources. However, in the case where the

amounts of energy and/or harvesting events cannot be predicted with sufficient accuracy,

stochastic models are required. In this case, the convex optimization framework used in

this dissertation cannot be used. Instead, one should resort to stochastic optimization and

dynamic programming tools.

• Energy required for data processing tasks. In this dissertation, we assume that all

the harvested energy is used for data transmission only. This assumption is only valid

when the energy needed for data transmission dominates in the overall energy consump-

tion. However, when the sensor node employs more complex data processing/modulation

schemes, the processing energy cost must be included in the signal model, as well.

• Convergence analysis of DBF-SC algorithm. In this dissertation, we have analyzed

the one bit of feedback algorithm for carrier phase synchronization with sidelobe control

mechanisms. It is shown that the proposed method achieves the beampattern virtually

identical to that of the centralized numerical optimization. Nevertheless, since the algo-

rithm performs in an iterative manner, it still remains to verify the algorithm’s conver-

gence properties.

• Soft keep/reject decisions for phase perturbations DBF-SC algorithm. The proposed

DBF-SC method performs quite well with respect to sidelobe control when the num-

ber of unintended base stations is small. However, when this number grows large, the

probability that all the base stations give positive feedback becomes very small. This, in

turn, results in significantly slower algorithm’s convergence rate. Therefore, it is neces-

sary to consider different rules on accepting/rejecting the phase perturbation, which may

possibly lead to better performance in terms of convergence rate.

• Message sharing. In this dissertation we do not pay particular attention to the required

message sharing stage. However, in scenarios with sensor nodes deployed over larger ar-

eas, a significant amount of energy is needed for this task. Consequently, those scenarios

require the impact of the sharing overhead to be considered, as well.
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