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Abstract 

 

Nowadays, it would be very difficult to deny the need to prioritize sustainable development 

through energy efficiency at all consumption levels. In this context, an energy management 

system (EMS) is a suitable option for continuously improving energy efficiency, particularly on 

the user side. An EMS is a set of technological tools that manages energy consumption 

information and allows its analysis. EMS, in combination with information technologies, has 

given rise to intelligent EMS (iEMS), which, aside from lending support to monitoring and 

reporting functions as an EMS does, it has the ability to model, forecast, control and diagnose 

energy consumption in a predictive way. The main objective of an iEMS is to continuously 

improve energy efficiency (on-line) as automatically as possible. 

The core of an iEMS is its load modeling forecasting system (LMFS). It takes advantage of 

historical information on energy consumption and energy-related variables in order to model 

and forecast load profiles and, if available, generator profiles. These models and forecasts are 

the main information used for iEMS applications for control and diagnosis. That is why in this 

thesis we have focused on the study, analysis and development of LMFS on the user side. 

The fact that the LMFS is applied on the user side to support an iEMS means that specific 

characteristics are required that in other areas of load forecasting they are not. First of all, the 

user-side load profiles (LPs) have a higher random behavior than others, as for example, in 

power system distribution or generation.  This makes the modeling and forecasting process 

more difficult. Second, on the user side --for example an industrial user-- there is a high number 

and variety of places that can be monitored, modeled and forecasted, as well as their 

precedence or nature. Thus, on the one hand, an LMFS requires a high degree of autonomy to 

automatically or autonomously generate the demanded models. And on the other hand, it needs 

a high level of adaptability in order to be able to model and forecast different types of loads and 

different types of energies.  

Therefore, the addressed LMFS are those that do not look only for accuracy, but also 

adaptability and autonomy. Seeking to achieve these objectives, in this thesis work we have 

proposed three novel LMFS schemes based on hybrid algorithms from computational 

intelligence, signal processing and statistical theory. 

The first of them looked to improve adaptability, keeping in mind the importance of accuracy 

and autonomy.  It was called an evolutionary training algorithm (ETA) and is based on adaptive-

network-based-fuzzy-inference system (ANFIS) that is trained by a multi-objective genetic 

algorithm instead of its traditional training algorithm. As a result of this hybrid, the generalization 
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capacity was improved (avoiding overfitting) and an easily adaptable training algorithm for new 

adaptive networks based on traditional ANFIS was obtained. 

The second scheme deals with LMFS autonomy in order to build models from multiple loads 

automatically. Similar to the previous proposal, an ANFIS and a MOGA were used. In this case, 

the MOGA was used to find a near-optimal configuration for the ANFIS instead of training it. The 

LMFS relies on this configuration to work properly, as well as to maintain accuracy and 

generalization capabilities. Real data from an industrial scenario were used to test the proposed 

scheme and the multi-site modeling and self-configuration results were satisfactory. 

Furthermore, other algorithms were satisfactorily designed and tested for processing raw data in 

outlier detection and gap padding. 

The last of the proposed approaches sought to improve accuracy while keeping autonomy and 

adaptability. It took advantage of dominant patterns (DPs) that have lower time resolution than 

the target LP, so they are easier to model and forecast. The Hilbert-Huang transform and 

Hilbert-spectral analysis were used for detecting and selecting the DPs. Those selected were 

used in a proposed scheme of partial models (PM) based on parallel ANFIS or artificial neural 

networks (ANN) to extract the information and give it to the main PM. Therefore, LMFS 

accuracy improved and the user-side LP noising problem was reduced. Additionally, in order to 

compensate for the added complexity, versions of self-configured sub-LMFS for each PM were 

used. This point was fundamental since, the better the configuration, the better the accuracy of 

the model; and subsequently the information provided to the main partial model was that much 

better.  

Finally, and to close this thesis, an outlook of trends regarding iEMS and an outline of several 

hybrid algorithms that are pending study and testing are presented. 
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Resumen 
 

En el contexto energético actual y particularmente en el lado del usuario, el concepto de 

sistema de gestión energética (EMS) se presenta como una alternativa apropiada para mejorar 

continuamente la eficiencia energética. Los EMSs en combinación con las tecnologías 

informáticas dan origen al concepto de iEMS, que además de soportar las funciones de los 

EMS, tienen la capacidad de modelar, pronosticar, controlar y supervisar los consumos 

energéticos. Su principal objetivo es el de realizar una mejora continua, lo más autónoma 

posible y predictiva de la eficiencia energética. 

Este tipo de sistemas tienen como núcleo fundamental el sistema de modelado y pronóstico de 

consumos (Load Modeling and Forecasting System, LMFS). El LMFS está habilitado para 

pronosticar el comportamiento futuro de cargas y, si es necesario, de generadores. Es sobre 

estos pronósticos sobre los cuales el iEMS puede realizar sus tareas automáticas y predictivas 

de optimización y supervisión. Los LMFS en el lado del usuario son el foco de esta tesis. 

Un LMFS en el lado del usuario, diseñado para soportar un iEMS requiere o demanda ciertas 

características que en otros contextos no serían tan necesarias. En primera estancia, los 

perfiles de los usuarios tienen un alto grado de aleatoriedad que los hace más difíciles de 

pronosticar. Segundo, en el lado del usuario, por ejemplo en la industria, el gran número de 

puntos a modelar requiere que el LMFS tenga por un lado, un nivel elevado de autonomía para 

generar de la manera más desatendida posible los modelos. Por otro lado, necesita un nivel 

elevado de adaptabilidad para que, usando la misma estructura o metodología, pueda modelar 

diferentes tipos de cargas cuya procedencia pude variar significativamente. 

Por lo tanto, los sistemas de modelado abordados en esta tesis son aquellos que no solo 

buscan mejorar la precisión, sino también la adaptabilidad y autonomía. En busca de estos 

objetivos y soportados principalmente por algoritmos de inteligencia computacional, 

procesamiento de señales y estadística, hemos propuesto tres algoritmos novedosos para el 

desarrollo de un LMFS en el lado del usuario. 

El primero de ellos busca mejorar la adaptabilidad del LMFS manteniendo una buena precisión 

y capacidad de autonomía. Denominado ETA, consiste del uso de una estructura ANFIS que es 

entrenada por un algoritmo genético multi objetivo (MOGA). Como resultado de este híbrido, 

obtenemos un algoritmo con excelentes capacidades de generalización y fácil de adaptar para 

el entrenamiento y evaluación de nuevas estructuras adaptativas basadas en ANFIS. 

El segundo de los algoritmos desarrollados aborda la autonomía del LMFS para así poder 

generar modelos de múltiples cargas. Al igual que en la anterior propuesta usamos un ANFIS y 

un MOGA, pero esta vez el MOGA en vez de entrenar el ANFIS, se utiliza para encontrar la 
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configuración cuasi-óptima del ANFIS. Encontrar la configuración apropiada de un ANFIS es 

muy importante para obtener un buen funcionamiento del LMFS en lo que a precisión y 

generalización respecta. El LMFS propuesto, además de configurar automáticamente el ANFIS, 

incluyó diversos algoritmos para procesar los datos puros que casi siempre estuvieron 

contaminados de datos espurios y gaps de información, operando satisfactoriamente en las 

condiciones de prueba en un escenario real.  

El tercero y último de los algoritmos buscó mejorar la precisión manteniendo la autonomía y 

adaptabilidad, aprovechando para ello la existencia de patrones dominantes de más baja 

resolución temporal que el consumo objetivo, y que son más fáciles de modelar y pronosticar. 

La metodología desarrollada se basa en la transformada de Hilbert-Huang para detectar y 

seleccionar tales patrones dominantes. Además, esta metodología define el uso de modelos 

parciales de los patrones dominantes seleccionados, para mejorar la precisión del LMFS y 

mitigar el problema de aleatoriedad que afecta a los consumos en el lado del usuario. 

Adicionalmente, se incorporó el algoritmo de auto configuración que se presentó en la 

propuesta anterior para hallar la configuración cuasi-óptima de los modelos parciales. Este 

punto fue crucial puesto que a mejor configuración de los modelos parciales mayor es la mejora 

en precisión del pronóstico final. 

Finalmente y para cerrar este trabajo de tesis, se realizó una prospección de las tendencias en 

cuanto al uso de  iEMS y se esbozaron varias propuestas de algoritmos híbridos, cuyo estudio 

y comprobación se plantea en futuros estudios. 
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1. Introduction 
 

This first chapter is dedicated to introducing our motivations, starting hypothesis, the thesis and 

our objectives. Therefore, at the end of the Chapter the reader should have a general idea of 

the basis, targets, work performed and the structure of the thesis. 

 

CONTENTS: 

1.1. Introduction and motivations 

1.2. Research area 

1.3. Starting hypothesis and thesis 

1.4. Objectives 

1.5. Outline of the thesis  
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1.1. Introduction and motivations 

Due to the current global energy scenario, energy efficiency is increasingly important at all 

levels of generation and consumption.  On the one hand, oil reserves are depleting; political 

problems with oil supplying countries continuously destabilize oil prices; catastrophes such as 

2011’s Fukushima Daiichi’s nuclear disaster are casting doubt on the safety of nuclear power 

plants; and renewable energies must still overcome energy storage problems due to their 

stochastic generation. On the other hand, climate change from greenhouse gas emissions is a 

serious problem to be resolved.  

In that sense, according to the 450 scenario of the World Energy Outlook 2011 [1], more than 

50% of CO2 savings come from energy efficiency (Figure 1.1). In other words, the most 

important contribution to reaching energy security and climate goals actually comes from the 

energy that we do not consume. This fact highlights the importance of energy efficiency. 

 

Figure 1.1. 450 scenario, World Energy Outlook 2011. 

For this reason, it is increasingly important to use energy efficiently at every link in the energy 

chain, but even more on the user-side. It is in this field, especially for industrial users and 

tertiary buildings, where energy management systems (EMSs) are taking an important role by 

developing much more advanced and autonomous functions. They are moving from merely 

monitoring, reporting and supporting energy audits to having direct control over the loads, 

diagnostic functions and shape of the load demand, etc. As a result, the concept of intelligent 

EMS (iEMS) arises. Figure 1.2 depicts the concept of an iEMS. 
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Figure 1.2. Block diagram of the proposed iEMS. 

Furthermore, the new paradigms of smart-grid, micro-grids and distributed energy resources are 

changing the way of how the user consumes electric energy. Nowadays, the moment when the 

user uses energy and the resource from which it is taken affects energy prices and greenhouse 

emissions. In order to be able to optimally manage and control these key performance 

indicators, the user has to know how, where and when to use the energy. Furthermore, due to 

the high level of monitoring associated with these new paradigms, the availability of energy 

databases is rising. Thus, iEMSs, together with their advanced functions, are important 

technologies for supporting these new requirements and taking advantage of these huge 

energy databases for energy efficiency.  

1.2. Research area 

In order to support these new advanced and autonomous functions in an iEMS, load modeling 

and forecasting (LMF) of energy consumption take a critical role. They take advantage of an 

energy database to build models of load demand at different time resolutions (from monthly to 

quarter-hourly), at different levels (overall consumption, specific department consumption, 

process consumption, etc.) and for forecasting at different time horizons (e.g., a day, week, 

month ahead).  

Models are used to forecast consumption. The optimization modules can use these forecasts in 

order to detect demand peaks and take actions over the controllable loads to avoid them. 

Diagnosis modules based on the “healthy” patterns of consumption can track normal 

consumption under normal operation conditions and detect anomalous consumption. When this 

is detected, the diagnosis can initiate a specific algorithm for locating energy waste. Therefore, 
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the iEMS can avoid energy waste in real time. Daily, weekly and monthly forecasts can support 

cost estimations and decision-making by administrative departments (e.g., scheduling 

workdays, on-off production lines, etc.). Thus, load modeling and forecasting (LMF) is the 

basis of an iEMS on the user side and the main topic of research for this thesis work. 

On the other hand, LMF has been a very important subject in energy management by utilities, 

mainly because of the necessity to match energy production with demand. Furthermore, this 

has been an interesting topic in the scientific literature for several years. Computational 

Intelligence (CI) algorithms have been commonly investigated as a tool for facing this problem, 

with successful results. Much of these algorithms are based on Artificial Neural Networks 

(ANN), Fuzzy Systems (FS) and different kinds of hybrid methods based on them.  

However, only a few studies on LMF have been carried out on the user side. There is an 

exception regarding research in the field of heating, ventilation and air condition systems 

(HVAC), mainly for energy optimization in buildings. CI algorithms also have wide diffusion in 

this field. 

The specific subject of LMF on the user side must still face some special issues that, so far, 

have not been investigated in depth. What’s more, these issues have greater influence on the 

user side than on utilities or the energy market. They are: 

- Random user behavior increase noisy load profile (LP) problem (the smaller the 

demand, the more noise the LP) 

- Multiple and different types of places to be modeled, and 

- Increasing energy databases to manage and model. 

Hence, in this work, we study and research an LMF in the specific area of large energy 

users, such as factories and big buildings, with different time resolutions, supported by 

CI algorithms and signal processing functions.  

1.3. Starting hypothesis and thesis 

In order to tackle these challenging conditions in LMF on the user-side, in this work we define 

the next starting hypothesis: 

 Intelligent control-optimization and diagnostic applications supported by the models are 

the key for an iEMS. Hence, one of the most important steps in improving energy 

consumption is to obtain a suitable LMF system. 

 In order for an iEMS to manage the huge available energy databases coming from, for 

example, smart-grids, micro-grids and other sources of energy databases, the LMF 

system has to be adaptive (multi-site modeling) and autonomous (self-configured). 
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 Taking into account the success of CI in areas like LMF for utilities, energy price 

forecasting and for time series modeling and forecasting in general, CI algorithms are 

currently the most appropriate for LMF on the user-side. Neural networks (NN), 

adaptive-network-based fuzzy inference systems (ANFIS) and neuro-fuzzy (NF) systems 

are noteworthy algorithms for LMF. Hybrid algorithms are the best alternative for 

improving the current and classic structures. 

 Hybrid algorithms, that are hybrids between adaptive networks and evolutive 

algorithms, have the potential not only to increase accuracy, but also to add autonomy 

and adaptability. Autonomy means the capacity to auto-configure and adaptability refers 

to the capacity to model different sites using the same modeling scheme or structure. 

 Given that we can find different patterns when analyzing demand load profiles on the 

user-side at different time resolutions and with different repetition frequencies, such 

patterns can be used to give the LMF system extra information freely or with less 

degree of randomness (noisy LP problem) than the target LP. 

We can sum up the former hypothesis in the global thesis hypothesis:  

“By combining CI tools with mathematical and statistical functions (hybrid algorithms), 

we can obtain an accurate, adaptive (multi-site) and autonomous (self-configured) LMF 

system, which is appropriate for iEMS implementation on the user-side.”  

This sentence depicts the thesis of the work here presented. 

1.4. Objectives 

Consistent with the thesis, the general and specific objectives below are defined in this work: 

 Study and analysis of LMF process on the user-side. 

o Study and analyze main troubles and challenging conditions for LMF on the user-

side, and develop different approaches to solve them. 

o Analyze and pre-process energy databases. For example, detect and replace 

outliers and gaps in energy database to get reliable datasets from real raw data. 

 Study and propose new structures and schemes for LMF on the user-side based 

on CI algorithms and mathematical and statistical functions. 

o Study, design and test new hybrid structures based on CI algorithms for LF on 

the user side. 

o Study, design and test new hybrid self-configured structures based on CI 

algorithms. 

o Analyze dominant load profile patterns of energy demand as a basis for 

researching, developing and testing new schemes or methodologies for LMF. 



Load Forecasting on the User‐side by means of Computational Intelligence Algorithms 

1. Introduction 

     
  Page 28 / 139 

Juan José Cárdenas Araujo    May 28, 2013 
 

   
 

 

In practice, these objectives must lead us to the main objective of obtaining an accurate, 

adaptive (multi-site), autonomous (self-configured) LMF system (LMFS), appropriate for 

implementation in an iEMS. 

1.5. Outline of the thesis  

Chapter 1 includes the introduction, motivations, research area, hypothesis, thesis and 

objectives of the thesis. At the end of reading this chapter, the reader should have a clear global 

idea of the work performed in this thesis.  

Chapter 2 presents the state of the art, starting with the evolution from EMS to intelligent EMS, 

and ending with the main research projects found regarding LMF during the development of this 

thesis.  

Chapter 3 conducts a deep analysis of the main problems found in LMF and outlines the 

proposed solutions. This chapter is the basis and starting point for the subsequent chapters. 

Chapter 4 proposes hybrid algorithms based on single modeling structures, oriented toward 

improving autonomy and the capacity of the LMFS to generalize for iEMS. A general 

Evolutionary Training Algorithm (ETA) for adaptive-network based fuzzy inference system 

(ANFIS) is proposed and tested with a modified ANFIS (e-ANFIS), which uses exponential 

membership functions for the output functions instead of polynomials. 

Derived from these proposals, two notable congress papers were presented. One of them 

presented the ETA approach for genetic ANFIS training [2] and the other one, as a continuation 

of the work, presented the e-ANFIS trained by ETA [3].  

Chapter 5 addresses the multi-site and self-configuration of LMFS by proposing a novel 

approach of a self-configured LMF framework based on a genetic algorithm (GA) and an 

ANFIS.  

Related to the proposed self-configured LMF framework, a journal paper was written and 

published [4]. 

Chapter 6 introduces a new methodological scheme to take advantage of dominant patterns 

found in the LP, which is based on partial models of these dominant patterns. LMFS accuracy is 

the main subject addressed in this chapter, but adaptability and autonomy are inherited from 

previous proposals [5].  

As a result of the studies and proposed approach to dominant pattern detection and partial 

model forecasting, a journal paper has been presented and is currently under revision. 
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Finally, Chapter 7 summarizes the conclusions of the thesis, highlighting the main results 

obtained and, in Chapter 8, we present our outlook for future works on both iEMS trends and 

new LMFS approaches. 



Load Forecasting on the User‐side by means of Computational Intelligence Algorithms 

 

     
  Page 30 / 139 

Juan José Cárdenas Araujo    May 28, 2013 
 

   
 

 



Load Forecasting on the User‐side by means of Computational Intelligence Algorithms 

 

     
  Page 31 / 139 

Juan José Cárdenas Araujo    May 28, 2013 
 

   
 

 

 

2. State of the Art 
 

It is a fact load modeling and forecasting (LMF) on user-side are growing interest. Therefore, 

EMSs are including the capability of LMF in order to take autonomous decisions and to improve 

its energy optimization functions. Improving of this item could enhance the system performance 

and make more automatic the EMS without affect the production or comfort.  

In this chapter, we first introduce the concept of EMS, intelligent EMS, user-side, load profile 

and load modeling and forecasting (LMF). Then we move to check the state of the art in LMF at 

different related areas as utilities, energy market, general time series modeling and finally on 

the user-side energy consumptions. We highlight the main trends, the most remarkable 

algorithms and problems found in LMF on the user-side. Next, we outline how we are going to 

tackle these problems. Finally, we outline the basic load forecasting algorithms and pre-

processing tools used in the developing of this thesis work. 

 

CONTENTS: 

2.1. Energy management system (EMS) on the user-side 

2.2. Intelligent energy management system (iEMS) 

2.3. Load Modeling and Forecasting 

2.4. Conclusions 
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2.1. Energy management system (EMS) on the user-side 

Due to the current energy problem, the interest in Energy Management (EM) is growing 

increasingly. Particularly in the field of industrial and building consumption, here called user-

side1, Energy Management Systems2 (EMSs) are an excellent option to improve energy 

efficiency and company competitiveness. “Doing more with less” [6] it is the idea behind energy 

efficiency improvement by means of EMS.  

When we talk about EMS on the user-side, we can refer to two fields of action. One is the 

industrial EMS, also known as Enterprise Energy Management System (EEMS) [7], which is 

associated with SCADA and others industrial software systems. The other one is building 

EMS, called Building Energy Management Systems (BEMS), which is associated with the 

concept of intelligent building [8-10]. 

So far in the industrial sector, EMSs have focused on the monitoring and “passive” 

management of energy, as outlined in [6] and [11]. Figure 2.1 shows the basic structure of these 

management systems. With “passive”, we mean that an EMS does not take autonomous 

actions for improvement of energy efficiency, as it will be explain further. 

 

Figure 2.1. Basic structure of current EMS. 

Typical EMS is based on the collection of information through energy meters (electricity, gas, 

water, etc.), which is taken by a SCADA system or another software for later information 

processing and management. For example, collecting, storing and presenting the data 

appropriately for the users. The software is also able to analyze data and generate reports to 

identify critical points of consumption. Based on these reports, expert users can propose actions 

in order to improve the energy efficiency. 

                                                            
1 User‐side makes reference all consumption in domestic and industrial users. However, we have focused in 
Industrial and big building users only. These kinds of users normally already have an EMS. 
2 In other contexts, EMS can refer to the set of policies taken by a company with the objective of improvement of 
energy efficiency. Here we refer only to the concept of EMS as a type of Energy SCADA. 
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The main advantage in these monitoring systems is to enable the user to control consumption 

and costs through energy audits that are supported by data collected continuously, improving 

the energy efficiency of the plant, its processes and devices. 

In the case of BEMS, the current EMS is based mainly in controlling the variables related to the 

lighting system and the comfort of occupants in a building. Therefore, it focuses on the 

management and optimization of the electrical energy used by heating, ventilation and air 

conditioning systems (HVAC) [12, 13] and energy waste caused by old lighting systems.  

In general, a strategic energy management approach that includes an EMS has the power to 

increase energy savings beyond the savings realized by traditional tactical practices alone. This 

has been demonstrated by an U.S. DOE paper  [14]. It studied energy efficiency projects at 

more than 900 buildings and found that projects that implemented best practices in 

measurement and verification realized higher savings (both initially and over time) than 

comparable projects. 

Besides, energy data could be used to build up different kinds of models to get consumption 

trends. So in some recent works models based on linear regressions of energy consumption 

versus production scheduling are proposed [14]. These models could be used to forecast 

energy consumption for a given production volume, which has a number of useful applications, 

ranging from consumption energy prediction for production scheduling to improving the 

efficiency by predicting the possible energy saving if some proposed energy efficiency 

measures are  taken [10].  

However, the models used are based on simple linear regressions, the mechanisms of control 

are normally off-line actions, and advanced analytical tools for prediction and control are not 

use. Improving of these items could enhance the system performance and make more 

automatic the EMS without affect the production or comfort. Therefore, the concept of 

intelligent EMS (iEMS) arises to improve the current EMS [15, 16].  

2.2. Intelligent energy management system (iEMS) 

In Figure 2.2 an iEMS is depicted [4]. As a typical EMS, it can access to information collected 

from the meters via field buses. In addition, it has capacity to interact with active systems in the 

building or factory plant to take automatic actions with the objective of optimizing the demanded 

power. The iEMS takes advantage of its ability to create advanced models of load profiles for 

load forecasting of consumptions from collected information (energy database) and information 

entered by users.  
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In order to carry out these advanced functions the iEMS is supported by the load modeling 

and forecasting system (LMFS). The system proposes to take advantage of available energy 

database to build up models of load demand at different time resolutions (ranging from quarter 

hourly to monthly scale) and at different levels (for overall plant consumption, specific 

department consumptions, particular process consumptions, etc.). Besides, the forecasting 

horizon can be from next day (short-term) to the next or more months (mid or long-term). This 

depends on the requirements of the final module that uses the LMFS.  

These models are used to forecast consumptions. The optimization modules can use these 

forecasts to detect demand peaks and take actions over the controllable loads to avoid them 

[17, 18] and so to reduce the contracted electrical power [19, 20]. Diagnosis modules can make 

a tracking of normal consumptions (healthy patterns of consumptions) under normal operation 

conditions and detect anomalous consumptions [10]. Then, they can trigger specific algorithms 

for energy wasting localization. Daily and monthly forecasts can support estimation cost and 

making decisions in administrative departments (e.g. scheduling workdays, on-off production 

lines, etc.). Therefore, load modeling and forecasting (LMF) is the base for an iEMS. 

The objectives of an iEMS are to optimize and improve economical, environmental and 

electrical key performance indicators. The iEMS takes advantage of EMS framework and its 

entire energy database to implement automatic management and control and to save energy 

and improve the energy efficiency in “active” way.  

It must be reminded and highlighted that intelligent control-optimization and diagnostic 

applications are the base core of the iEMS in order to get its objectives. Moreover, due to they 

are supported by the models of consumption patterns and their forecast, one of the most 

important steps to improve the energy consumptions is to get a suitable LMFS. 

 
Figure 2.2 iEMS: general structure 
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Finally, in order to support iEMS advanced control and forecasting functions, the LMFS has to 

have some special features:  

 Autonomy: ease to build up models in an automatic way;  

 Adaptability: capacity to implement multi-site modeling;  

 Accuracy: reliable forecast that is able to deal with high degree of randomness in loads 

and therefore to give a reliable base to the control system for implementing the 

optimization tasks.  

2.3. Load Modeling and Forecasting Systems 

In other areas of energy management, LMFSs have been widely used and investigated due to 

their importance in supporting energy management. However, on the user side, LMF is still an 

area rising in importance. We assume that this is mainly due to the lack of a strong need to 

perform energy management on the user side. Nowadays, due to the current energy and 

environmental crisis, the need for energy management and smart consume on the user side 

is increasing more and more. 

Owing to the importance of LMFSs in other areas, wide varieties of them have been proposed in 

the last two decades [21-27]. These are mainly based on a range of methods from pure statistic 

methods to complex structures of adaptive networks joined with advanced techniques of signal 

processing as wavelet transformations and integral filters. These methods are called hybrid 

methods. 

Next, we are going to check the state of the art for LMFS in its main areas. At the end, we 

highlight some noteworthy approaches found in the recent scientific literature, mostly based on 

hybrid algorithms. 

2.3.1. LMF: main areas in the energy field 

LMF has had big importance at different areas of energy management, for example, for utilities 

in generation, transmission and distribution of electricity; in energy markets for price 

forecasting; and in buildings for HVAC control and optimization. Furthermore, LMF as a time 

series modeling and forecasting problem has been investigated widely in the current scientific 

literature [28]. 

Utilities 

In this area, LMF is important in supporting making decision process. For example, to face the 

problems of economic scheduling of generating capacity, scheduling of fuel purchases, security 

assessment, and planning for energy transactions. The energy security and stability rely on the 

right planning of these items. Therefore, LMF has taken an important role in utilities for long 
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time ago (approx. since 1980s). Short-term load forecasting (STLF) is the most important type 

of forecasting in this field. Commonly, STLF is an energy forecast of 24 hours ahead, each 

quarter hour. More information and research was found by the beginning of this thesis work in 

this area [22, 24, 29-33]. Other important kind of forecasting it is peak power load forecasting of 

a few days ahead. It is used as an operation index for unit commitment and scheduling [34, 35].  

Currently, there is a trend to use CI tools for LMF, mainly, hybrid algorithms. NN, NF and 

evolutionary algorithms are noteworthy of mention. This is mainly due to the capacities of CI 

algorithms to model no-lineal behaviors as electrical consumptions are. 

Energy price forecasting 

Other area where we have found important research on LMF has been in energy price 

forecasting [36-41]. For these applications, LMF takes high importance. This is because in the 

new model of energy market, where consumers can buy energy from different electric power 

suppliers that are called the pool, both kind of participants of the market need for LMF in order 

to maximize their profits [23].  

In this area, possibly because market influence, statistical tools are the most used for LMF [37]. 

However, there is a trend now to make hybrid algorithms by joining statistical with CI tools and 

statistical with signal processing operators as wavelet transformations and integral filters [38, 

39, 42].  

BEMS  

In BEMS LMF has taken high importance because of the need of control and optimization of 

HVAC systems. Using the forecast of demand in, for example, a day ahead, BEMS can 

schedule the demand of HVAC taking advantage of slow thermal behavior of buildings [43-47]. 

Its importance has been such that there is a society founded in 1894 dedicate to HVAC systems 

for buildings [48]. This society, among its different lines of action, supports the research on LMF 

systems for energy consumption in buildings. In [43] it is also presented the potential of energy 

modeling in buildings, especially in HVAC systems forecasting. It is not mentioned that in the 

industrial sector the potential could be larger since it exists the possibility of process and 

machine control. 

As in utilities area, in BEMS CI tools have good acceptation for LMF [44, 45] and also hybrid 

algorithms with CI and statistical algorithms [46]. Statistical LMF systems have been also 

proposed [49]. 
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On the user side 

Even though on the user-side, particularly for industrial users, LMF of energy consumptions 

has not had the same importance as in the other areas, some works have been found [50, 51]. 

In these works, LMF is mainly aimed at supporting decision-making, looking for taking 

advantage of available energy smart-meters database by means of data mining. For example, 

in [51] is presented a fuzzy based energy forecasting system for clothing factory. This system 

can forecast the energy change based on some energy drivers (variables that affect the 

energy consumption), such as the daily total mass of finished garments produced, the total 

work hours of operators in the plant in one day and the total running time of equipment in the 

plant. However, no lower levels of modeling areas were carried out (especial areas or sections, 

process and machines), but only the overall consumption of the plant. Furthermore, the time 

resolution is large (daily forecasting). 

Therefore, we can see that for industrial users LMF is a subject still rising in importance and CI 

technologies are the main approach being used to tackle the problem of LMF. 

In conclusion, due to flexibility of CI algorithms, they are very interesting approaches for 

addressing LMF problem. The flexibility enables mixes of CI algorithms with other CI algorithms, 

statistical or signal processing functions. These mixes can be done at different levels and 

schemes. For example, we can mix different structures as NN and FL and get NF approaches 

[22]. Also, we can use evolutionary algorithms to train adaptive network (AN) structures as NN, 

NF, ANFIS and get evolutive trained AN structures [30, 42]. Furthermore, because of the cycling 

behavior of demand load profiles, statistical and signal processing functions or operators can be 

useful to highlight this kind of cyclic behavior and improve the results. Examples of these 

functions are wavelet transforms [42, 52], integral or Kalman filters [52, 53], correlation functions 

[33], etc. Therefore, proposals based on hybrid algorithms by joining CI with statistical, signal 

processing functions or operators have presented the best results in the resent years [26, 32, 

52, 54]. 

2.3.2. Novel proposed approach for LMF 

In [52], the authors propose two new LMF schemes for STLF in utilities. One of them is based 

on NF and wavelet transformation, particularly Daubechies wavelets, and it is called wavelet 

fuzzy neural network (WFNN). According to the authors, “fuzzy rules and learning from neural 

networks can be inferred from multi-resolution property of the wavelets obtained by wavelet 

decomposition of the signal”. This action divides the complex input space into subspaces, 

appropriates to the fuzzification process that is done by the FL structure.  
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The second proposed of the same authors is based on integral filter, particularly the Choquet 

integral, combined with a NF structure. It is called fuzzy neural network based on Choquet 

integral (FNCI). In this case, the Choquet integral is used to compute the consequent part in 

order to convert the additive fuzzy system in a non-additive fuzzy system. This change in the NF 

structure makes more efficient the LMFS because avoids overlapping information coming from 

the rules of the premise part. 

Other interesting propose is a LMFS based on wavelets, particle swarm optimization and 

ANFIS (Wavelet-PSO-ANFIS) [42]. In this case, the objective is to forecast the electrical energy 

price in the market, specifically into the pool. There are different suppliers, so the users can 

chose the best energy supplier according their interests. In order to do that, the users need to 

know the price forecasting for the next day ahead. This kind of forecasting has the challenge of 

the high randomness in the behaviour of the hourly energy price, as happened on the user-side 

energy consumption LP. The wavelet is used again to decompose the noising price series into a 

set of better-behaved constitutive series. These decomposed inputs are taking by the ANFIS 

structure, which is able to get the right relationship between output and decomposed inputs. 

PSO is used to tuning the membership functions of the ANFIS. The result is a more accurate 

forecasting of the energy price when compared with other LMF approach. 

Apart from adaptive networks with CI tools, there are also others interesting proposal using data 

mining techniques in order to take advantage of energy databases. For example in [50] is 

proposed a data mining framework designed to sort, filter, and get relevant information from 

energy data. The information obtained is used for a LMF. 

However, all these approach at different areas are looking for improving the accuracy of the 

LMFS. We are looking for improving the accuracy, but also taking into account the other 

features demanded by an iEMS. Therefore, our proposed approaches were thought to improve 

not only accuracy, but also autonomy and multi-site ability, getting the dominant patterns in an 

effective and simple way. In order to do this, we will take advantage of evolutionary 

algorithms to improve autonomy. We will use adaptive networks to obtain multi-site 

ability or adaptability. We will analyze user-side LP and based on this, we will propose a 

new scheme to take advantage of dominant patters. Thus, we will improve the accuracy 

and tackle the random behavior of user-side LP (noisy LP problem), both subjects 

supported by statistical functions. 
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2.3.3. Basic structures for LMFS 

It is important to point out the significance of basic structures as adaptive networks (AN), which 

plays currently an important role on LMFS. Two of the most important AN are Neural Networks 

(NN) and Adaptive-network-based fuzzy inference systems (ANFISs). 

ANFIS and NN are excellent algorithms for LMF because of its potential to solve problems of 

time series modeling. Indeed, the availability of historical energy data on the iEMS databases 

and the fact that ANFIS and NN are data driven approaches capable of performing a non-linear 

mapping between sets of input and output variables make these modeling tools very attractive 

[4, 22, 45, 52]. ANFIS and NN do not need of explicit knowledge of the relationship between 

inputs and output to establish a map between them. Only historical data is needed. Once the 

AN structure is defined, training algorithms are used to extract the relevant information from the 

historical data and set up the model. One of the advantages of ANFIS over NN is that even 

though it does not need prior knowledge to be trained, it can be used if it is available, when the 

ANFIS’s inference database (rules) are defined.  

For deeper information on ANFIS and NN, Appendix A shows their foundations. Extra details 

can be found in [55] and [56] respectively. 

2.3.4. Signal processing and statistical functions 

On the other hand, a part from CI algorithms other mathematical algorithms have been used for 

hybrid algorithms, which belong mainly to signal processing and statistical functions. They are 

mainly aimed for pre-processing. The idea of using these pre-processing tools is to highlight the 

relationships between output and inputs to the LMFS. Besides, they can be used for outlier 

detection, input selection, noise reduction, etc. For example, wavelet transform (WT) is now 

being widely used in LMF for noise reduction and feature extraction. By means of 

decomposition of the time series being modeled, better-behaved signals can be obtained. 

These are easier to model and forecast than original target signal [38, 42, 52, 57]. 

Another interesting transform, perhaps less popular than WT, it is Hilbert-Huang Transform 

(HHT). It has high potential to analyze non-stationary and non-linear signals and to extract 

useful information and indicators from datasets. Chapter 6 will exploit these features to detect 

and select dominant patterns from energy LP. 

Appendix B expands the related information with signal processing and statistical functions for 

hybrid algorithms. 
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2.4. Conclusions 

On the user side, LMF becomes the core of the new iEMS. The main areas of energy 

management where we can find LMF are utilities; BEMS for HVAC control and optimization; 

energy market for energy price forecasting; and in a general approach, in energy- time series 

modeling. 

The methods used for LMF range from pure statistical ones to advanced and complex schemes 

based on CI technologies mixed with signal processing, statistical or other mathematical 

functions. These last types of approaches, called hybrid algorithms, were reported as the most 

powerful tool to face LMF problem in the mentioned areas. 

Even though there is some bibliography and results in load modeling and forecasting on the 

user side, there is still a lack of research in this area, especially for industrial users (EEMS). 

This is the reason for what it is necessary to adapt the LMF algorithms used in other areas as 

utility’ EMS and come up with new ones to face the challenging conditions of the high degree of 

random in consumptions on the user side and other associated problems.  

The approaches for LMF found on the user side were mainly oriented toward daily consumption, 

and overall consumptions of the buildings or factories. No lower levels of modeling areas were 

carried out, such as especial areas or sections, process and machines. This means that the 

current approaches for LMF have not been tested in fast industrial process of hour or quarter 

hour scheduling, such as it is proposed in this work and it is required in many demand-side 

management programs. In addition, the configuration of all these models is mainly based in 

human knowledge, which makes necessary the human intervention in the process of building up 

the models. These facts explain why it is necessary to implement a self-configured and multi-

site modeling system, as it is required for advanced iEMS. 

Therefore, for an iEMS as the depicted here, the schemes for LMF have to tackle other 

requirements apart from accuracy. These are autonomy and adaptability LMF. According to the 

checked literature, hybrid technologies are one of the best alternatives for providing the LMFS 

of these skills.  Thus, we will take advantage of evolutionary algorithms to improve autonomy, 

use adaptive networks (NN, NF, ANFIS) to obtain adaptability or multi-site ability, and use signal 

processing or statistical functions to take advantage of dominant patters to improve the 

accuracy and tackle the random behavior of user-side load profiles. 
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3. Load modeling and forecasting on the 
user-side 

 

In the previous chapters we introduce the problems on LMF on the user side and the trends on 

LMF at different areas related with energy. In this chapter we are going to go in depth in the 

analysis of the addressed problems in LMF on the user side. The aim of these analysis and 

studies is to give the bases for the subsequent chapters, where the proposed approaches are 

developed. 

Therefore, in this chapter we analyze the load profiles (LPs) on the user side, the challenges 

of modeling them and the main variables that can affect the energy consumption. With this in 

mind, we present the particular methodology, used to implement a LMFS, which will be the 

base of each approach in the thesis. It describes the steps starting from the processing of raw 

energy data until the evaluation of the obtained models. 

We finalize the chapter with a summary table where we present some examples of scenarios 

and proposals of the designed LMFSs, which are developed in the thesis work. 

 

CONTENTS: 

3.1. User-side load profile analysis 

3.2. LMF methodology 

3.3. Possible scenarios for LMF 

3.4. Conclusions  
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3.1. User-side load profile analysis 

An iEMS [4] is based on an EMS. But the main difference between them is that the iEMS can 

take autonomous decisions in order to optimize one or several key parameters of energy 

efficiency. Thus, the iEMS needs accurate forecasting of the LP of the consumptions that we 

want to control. As presented previously, the main problems of LP forecasting on the user-side 

are the random user consumption that generates the noisy LP problem, the large LP 

diversity and the quantity of possible LPs to be modeled. Hence, final configuration of the 

LMFS, i.e. selection of the inputs, pre-processing, filtering methods and the final modeling 

structure, are very important matters to get an accurate forecasting in a scenario with multiple 

types and number of loads to be modeled. In order to do that, a comprehensive analysis of the 

nature of the load and possible correlated variables is needed.  

3.1.1. Differences between load forecasting for utilities and on the user-
side (noisy LP problem) 

LMFS development on the user side has to deal with LPs with high degree of Randomness, 

which is here called noisy LP problem. In general, the lower the consumption is, the more 

randomness the LP has. For that reason, consumptions LPs closer to the final user have 

higher noisy LP problem. The similar principle applies to the different levels of consumption into 

the user side: the lower the level of the LP is, the more randomness the LP has. 

The time resolution of the LP also affects the randomness. Higher time resolutions will have 

more randomness. The forecasting time resolution and forecasting horizon are defined 

depending on the final purpose of the forecast.  

In order to show the effect of level of consumption and the time resolution, in Figure 3.1 we 

have the LP of three different places at different levels of consumption. Figure 3.1 (a) shows the 

LP of consumption of a machine process into an automotive factory (consumption into the user 

side); Figure 3.1 (b) depicts the LP of a full workhouse into the same factory; and finally, in 

Figure 3.1 (c), it is shown the LP of Spain. It is evident the difference in the randomness of the 

LPs and how the LP is getting smoother when the level of consumption is increasing. Besides, 

we can note how the time resolution affects the randomness in the LP. Figure 3.1 (b) and (c) 

have one hour time resolution and (a) has quarter hour time resolution. The first figure has the 

LP with highest randomness for lowest level of consumption and for highest time resolution.  
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  (c) 

Figure 3.1 Different levels of LPs. (a), two weeks LP on the user side of a machine process with a quarter 
hour time resolution. (b), a week LP on the user side of a workhouse into the same factory as (a). (c), Spanish 
demand LP for the same week (source: www.ree.es). (b) and (c) LPs are normalized between 0 and 1 and 
have a time resolution of one hour. 

The criteria to choose the appropriate time resolution and forecasting horizon for a 

specific LMFS depend on the final application, where the LMFS is going to be used. Thus, for 

example if we want to control the power load peaks, it is needed a higher time resolution and 

short-term forecasting of the LP than if we want to use the LMFS to support the daily production 

schedule in a factory. In the first case, the time resolution can be quarter hour or even less, with 

a forecasting horizon of some hours until one day ahead, depending on the possible control 
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strategies that can be taken. In the second case, with a eight (8) or twenty four (24) hours time 

resolution and forecasting horizon of one day, one week or one month ahead would be enough 

to carry out a proper daily production schedule. 

In the literature the first example is useful to define short-term load forecasting and the second 

one for mid-term load forecasting. Other possible forecasting horizon is long-term load 

forecasting and it is used when we want to forecast consumptions some weeks, months of 

years ahead with similar time resolution to the forecasting horizon (by day, week, month, year). 

3.1.2. Diversity of loads and energies on the user side  

Other two of the biggest problems found on the user side are the diversity and quantity of loads 

to be modeled. For example, in an industrial user where energy meters are distributed around 

the facilities, it is important to analyze the used energy by departments, process or machines. If 

we add the need for modeling and forecasting not only of basic energies as electricity and gas 

and we desire to model also other resources as water, hot water, compressed air, etc. the 

problem of load modeling and forecasting increases and gets each time more complex.  

Therefore, it is clear the existence of challenging conditions that have to be tackle when we 

want to implement a LMFS on the user side. Conditions that in other load forecasting scenarios 

are not found, as for example in load forecasting in power distribution systems by utilities.  

3.1.3. Energy Drivers: consumption correlated variables 

In order to be able to start a modeling process, one of the first steps is to choose the possible 

variables that affect the energy consumption LP. These are called energy drivers, the variables 

that are correlated in some way with the target LP.  

In LMFS applied to energy consumption the most common energy drivers are:  

 Weather variables as temperature, humidity, dew point;  

 Working or process variables as scheduled production, working turn, type of the day 

(holiday or working day);  

 Time variables such as hour or day of the week;  

 Delayed variables of the target consumption.  

Next we are going to analyze each one of these energy drivers. 

Weather variables 

Figure 3.2 shows the relationship between daily energy consumption for 2007 of overall 

consumption of an automotive factory vs. the daily minimum temperature. We can notice that for 

working days (upper data over the discontinuous red line in the figure) there is a trend to 

increase the consumption for minimum temperatures higher than 15ºC. For no working days 
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(lower data under the discontinuous red line) we can identify two trends. One of these trends is 

around consumptions of 5x105 kWh and other around 3x10^5 kWh ones. The first one 

correspond to Saturday consumptions and the second one to Sundays consumptions. 

Considering the workings days, we can notice the consumption dependence with temperature 

variables. Besides, at weekends we can see its dependence with the type of the days. 

Depending on the type of the weekend or holiday, i.e. starting holiday (Saturday), middle 

holiday or finishing holiday (Sunday), the daily consumption changes. The working and no 

working day variables are analyzed later. 

 
Figure 3.2. 2007 daily consumption vs. daily minimum temperature. The red line divides the tow kind of 
consumptions: working days (higher consumption) and weekend and holiday consumption. 

Working or process variables 

Figure 3.3 depicts the daily energy consumption of the same automotive factory vs. daily 

production for the year 2007. There we can observe that almost all production is near 2000 

units for day and there is not significant variation among consumption in working days. When 

the production is zero (weekends and holydays) the consumption is much less than in working 

days, as expected. Then, the production variable can help to the system to determinate if a day 

is working or not working one, as it has been done in this work. 

 
Figure 3.3. 2007 consumption vs. daily production. Production can define if a day is working or not working 

day. 
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For example, the variable working day indicates if a day is a working day or holiday. However, 

it was found that the use a binary variable for this input it is not the best alternative, mainly 

because of the sudden change that such a binary variable can put into the LMFS. This sudden 

change propagates into the LMFS and generates a no desired sudden change over the 

forecasted output. Furthermore, if a continuous version of this input is used instead of binary 

value, information of the transition from one state (for example no working day) to another 

(working day) can be given to the system. This soft transition fits better with fuzzy logic bases 

and improves the results avoiding sudden changes in the output. 

Time variables 

Time variables as hour or day of the week/month/year help the system to find cycle or periodical 

behaviours related with natural trends of the human behaviour, working time tables, seasonal 

patterns, etc. For example, in the “day of the year” variable is implicit the weather changes, 

because the weather change with the day of the year.  

Other example of time variables impact can be found on the different consumption profiles in 

starting in working days as Mondays or in a day after holidays, intermediate days of the week, 

as Wednesday to Thursday, and ending days as Friday or last day before holidays. These 

profiles clearly distinguish the different days that have been considered in obtaining. 

Sometimes these time variables have more useful information than the expected ones, for 

example weather variables. Besides, they have the great advantage that they are easy to get. 

Therefore, they are more appropriate to be chosen as possible inputs to the LMFS. 

Delayed variables 

For the delayed variables, also known as lagged variables, obtained from the historical 

consumptions, one day and seven days delayed signals are mainly the most useful [52]. This 

is due to there is a daily trend of consumption repetition, easy to find in consumptions, as can 

be noted in LPs showed before in Figure 3.1. For type of day, for example Sundays, Mondays, 

etc., we can notice a repetition trend also. In other words, we can say there is a relationship 

between consumptions at the same time of the current day and one day before; and 

consumptions at the same time but one week ago. Furthermore, as the weather variables 

normally trend to change softly between days, delayed consumption variables also carry 

information of the weather of the week or season. For these reasons, these variables are 

powerful energy drivers that have to be considered in modeling the consumptions.  

Holidays problem: However, in the process of obtaining one day delayed variable we have to 

be careful with holidays, Sundays and Fridays: i.e. the information of Sunday for Monday 

forecasting cannot be used, nor Friday information for Saturday forecasting. The same case 
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happens when occurs a holiday. The holiday information only can be used for forecasting of 

holidays.  

In order to solve this problem, the information of last Monday for forecasting the next Monday is 

used. The same solution can be done for Saturday forecasting and Sunday forecasting. When 

holidays occur similar algorithm can be applied. So, the delayed vector of one day before, 

actually is a mix of real one day delayed data and the nearest same type of day and type of 

working or no working day, in regards of consumption information.  

Building up the seven day delayed consumption vector has fewer problems than one day 

delayed consumption vector. In this case only the information from holidays needs to be 

corrected.  

Taking into account these specific changes in the delayed vector, there will be consistency 

between target data (the data to be modeled) and input data (energy drivers). Therefore, the AN 

structure will be able to model working days and nonworking days properly. However, if we want 

to get a more specialized and more accurate LMF for holidays or working days, the use of 

independent structures could be a better option [46, 58]. 

3.2. Proposed LMF methodology 

After analyzing the LP being modeled and its energy drivers, we can start with the construction 

of the LMFS. Therefore, in this section the proposed modeling process that is followed to 

implement a LMFS is presented.  

As it was mentioned in the introduction chapter, one of the most important parts of an iEMS is 

the LMFS. It could be said that this is the heart of the system. In order to meet the iEMS 

requirements for a modeling system with high capabilities of accuracy, autonomy and 

adaptability, the framework of the Figure 3.4 is proposed, which is discussed next. This 

framework is the base for each LMFS implemented in the thesis. Furthermore, we have used 

this figure to outline the main addressed subjects of the next chapters.  
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Figure 3.4 Dataflow of the system modeling and subject distribution for development of chapters of the 
thesis. 

Step 0: energy drivers 

As explained in the former section, energy drivers are the variable that can significantly affect 

the energy consumption LP. In this step the main energy drivers that can become candidates 

for inputs of the LMFS must be chosen. Of course in a real case, they are chosen from the 

available energy databases. In a later step, the final inputs of the LMFS are selected from these 

energy driver candidates. 

Step 1: outlier detection and gap padding 

The outlier detection and gap padding process is important to get a reliable dataset. This is due 

to outlier data and gaps introduce “noise” in the final model and the quality of the model will 

depend on the reliability of the data. With the aim of get reliable data, here the available data is 

analyzed to detect, remove outlier data and pad the found and generated gaps in the raw 

data.  
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This is done by means of statistical parameter as standard deviation, correlation function, 

variance and linear regressions for padding, etc.  Among these, outlier detection based on 

statistical parameters is one of the most effective and easy to implement methods. 

For example, one of the criteria to indentify and remove outlier data is to remove energy 

consumption data equal or less to cero. Usually, in operation and also in no-operation days 

there are energy consumptions, so the zero or negative consumption data are taken as outlier. 

On the other side, huge spontaneous peaks also are taken as outlier data. In order to remove 

them, those data that are three times deviations bigger or smaller than the arithmetic mean are 

removed. These criteria are easily corroborated by visual analysis of the data profiles obtained 

from database. Expression (3.1) shows how outlier detection is done. There µ is the mean of the 

analyzed data, σ is the standard deviation of data, x represents analyzed data and  

ሼoutlier_dataሽ is the set of outlier data. ݄ݐ is a threshold selected by means of try and error 

process, usually adjusted to three for the most of the evaluated cases in this work. 

if |x െ µ| ൒ ݄ݐ · σ ՜ x א ሼܽݐܽ݀_ݎ݈݁݅ݐݑ݋ሽ 

(3.1) 

We want to highlight the importance of having reliable and continuous data for time series 

forecasting. Having reliable data is the base to get an appropriated and accurate LMFS. (3.1) 

Step 2: data pre-processing 

The second step is the data pre-processing, where the data is scaling, filtered or converted by 

means of some mathematical transformation if it is needed. All these operations are done with 

the aim of:  

 Improving or enhancing the existing relationships between the output and input data;  

 Reducing noise (random peaks); 

 Get dominant patterns useful for the LMFS.  

As can be noticed, these operation results are oriented to improve accuracy for the LMFS and 

are helpful to tackle the randomness problem outlined in former sections. Therefore, as showed 

in Figure 3.4, this step will be object of specific research in this thesis work, oriented to take 

advantage of periodical patterns of the LP. We will propose to use an analysis based on Hilbert-

Huang transform (HHT) to extract relevant information about periodical patterns as it is 

explained in Chapter 6, where a novel scheme of LMF based on these dominant patterns is 

proposed [5].  
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Step 3: model definition and configuration 

In this step called model definition and configuration, different kind of settings must be defined. 

These depend largely on the type of adaptive network (AN) and the global structure of the 

LMFS. As showed in Figure 3.5, the first action in this step is the structure definition. In 

general, we can find two types of structures: single and compound structures. From the first 

ones result LMFSs that use only one compact structure, for example a single ANFIS or NN. The 

second ones use more than one compact structure in parallel, serial or mixed topologies. 

Examples of this type of structures are parallel ANFIS, partial models [5], etc. 

Once the structure is defined, the second action into this step is the structure configuration. 

As we can see in Figure 3.5, this will depend on the type of selected structure. For example, for 

a single ANFIS structure the final input data, the number of membership functions and the type 

of membership functions of the inputs and the output have to be chosen. In the case of an NN, 

the number of layers, the number of neurons and type of internal functions has to be defined. In 

the case of compound structures, apart from interconnection between singles structures, the 

type of basic structure used (ANFIS, NN, NF, etc.) has to be chosen as well as the number of 

basic structures. Thus, when using compound structure, a basic or standard configuration 

should be used for each single structure in order to simplify the global structure configuration.  

 

Figure 3.5. Model definition and configuration process. 

As can be noticed, the large amount of parameters to be defined to get a suitable model for a 

particular place could be a problem if the number of places to be modeled is high. This is a 
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drawback when working with flexible and adaptive networks as ANFIS and NN [59]. The 

problem increases when the used structure is a compound instead of a single one. 

However, as highlighted in the state of the art, the fusion of adaptive networks with optimization 

algorithms as evolutionary ones could solve this problem. Therefore, with the aim of get a 

suitable LMFS with high degree of autonomy (self-configuration) and multi-site capacity, in this 

work genetic algorithm are proposed to solve this issue in the LMFS on the user side. As 

showed in Figure 3.4, in Chapter 5 a novel approach of a self-configured LMF framework based 

on an ANFIS and genetic algorithm (GA) is proposed and developed. 

Step 4: training 

In this step the training of the full LMFS is carried out. It means the tuning up of each internal 

parameter of each AN that belongs to the global structure of the LMFS. Before starting this 

process, it is important to select properly the training and the checking data, the training 

algorithm and the stop criterion. Usually, the stop criterion is the number of iterations, and it has 

been selected in this work.  

The final training algorithm depends on the AN structure and the possible training algorithms 

that can be applied to it. For single structures the process is shorter than for compound ones. 

For compound structures there are more basic structures to train and the data for training and 

checking have to be selected according to the target signal of each basic structure. This will 

depend on the final design of the global structure. 

The training process can be done in to modes: on-line or off-line mode. In the first one, before to 

make a forecasting, the training data is updated with the last available data immediately before 

to the period being forecasted. The quantity of the used data will depend on designer criteria. 

Then, the global structure is re-trained with the new training data and the forecasting is 

generated. Using on-line training, seasonal, weather and sudden changes are taking into 

account [58]. In off-line mode, the model is not updated before the forecasting. However, it is 

recommended to make an update when significant changes occur in the modeled place. Off-line 

mode is appropriated to be used for diagnosing modules. These modules need for reference 

models, which keep the information of healthy process and machines.  

On the other hand, as outlined in Figure 3.4, good design of the training process is important for 

getting generalization capacity and accuracy in an LMFS. In order to get these important 

features, overfitting and local minimums must be avoided. 

Furthermore, when we want to test new designs of adaptive network, special mathematical 

algorithms have to be defined to train the new or modified structures. Therefore, in chapter 4 we 

will test an Evolutionary Training Algorithm (ETA) with the aim of build up a generic training 
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algorithm, able to train modified ANFIS with just simple changes. ETA uses a multi-objective 

genetic algorithm (MOGA) that enables it to take into account overfitting problem by means of 

simultaneous calculation of training and checking error. Besides, in order to test the ETA a 

modified ANFIS with exponential output membership functions is proposed, which could 

improve the generalization capacity of the normal ANFIS structure.  

Step 5: model assessment 

Finally, the obtained model is checked with the checking data selected in the previous step. 

Typically, the manner to quantify the fitness of the model is through the root mean square error 

(RMSE) calculation. The equation (3.2) shows the mathematical formula. ܰ is the number of 

samples, t୧ is the target output, in this case the actual consumption, and ݕ୧ is the output of the 

model, the forecasting of the consumption.  

ܧܵܯܴ ൌ ඩ
1
N

෍ሺt୧ െ ୧ሻଶݕ

N

௜ୀଵ

 

(3.2) 

Since the aim is to get an automatic system modeling with continuous learning capabilities, the 

RMSE of the new model is compared with the RMSE of the model of reference. The RMSE of 

previous or old models could be used as reference, so if the new model’s RMSE is better that 

the old one, the new model will replace it. If not, the cycle starts again and the results of each 

step are checked and corrected. 

Other measurement of accuracy is carried out by means of the mean absolute percentage error 

(MAPE). It is more common for STLF focused in energy, whereas RMSE is a type of 

measurement of error more general and common in the field of computational intelligence. In 

this thesis work, RMSE is used in order to choose the final model. However, both indicators are 

used in the final assessment and comparison among the results of the different kind of models. 

ܧܲܣܯ ൌ
100

N
෎ ฬ

t୧ െ ୧ݕ
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ฬ
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௜ୀଵ

 

 (3.3) 

3.3. Possible scenarios for LMF 

With the aim of closing the presented studies and analysis, Table 3.1 presents examples of final 

configurations for each of the presented steps of the modeling methodology. We orient these 

configurations to two types of scenarios: power peak control and daily forecasting for making-
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decision support applications. As it can be seen, depending on the final application, the LMFS 

parameters change, as for example, time resolution, energy drivers and model definition and 

configurations. Furthermore, a summary of the proposed approaches to develop in this thesis 

work are presented in the same Table. 

As it can be noticed, power peak control application needs higher time resolution than making-

decision support application. In general, control applications will need more time resolution and 

their forecasting will be for short-term. These applications are the more demanding in terms of 

accuracy and reduction of LP randomness.  

Going back to Figure 3.4 and reviewing the last column of the Table 3.1, we can review the 

different approaches proposed in this work. 

Table 3.1. Configurations for two scenarios and thesis proposals 

Steps and general 

configurations 

Scenery 1: power peak control 

application 

Scenery 2: daily forecasting 

application 

Proposals 

0: energy drivers and initial 

configurations 

 1 and 7 days delayed 

consumptions. 

 Temperature. 

 Type of day. 

 Quarter hour time resolution 

 Production 

 Temperature 

 Daily time resolution 

 

NA 

1: outlier detection and gap 

padding 

 Zero, negative and spontaneous peak elimination. 

 Padding by interpolation and copy of 1 or 7 days before data. 

NA 

2: data pre‐processing   Average filter, average 

jumping operator, 

correlation, HHT analysis 

 NA  DP detection based on 

HHT analysis 

3: model definition and 

configuration 

 Single ANFIS, Partial models 

using ANFIS. 

 Single ANFIS, Single e‐

ANFIS 

Self‐configured ANFIS, 

e‐ANFIS, Partial 

models 

4: training   Hybrid algorithm, off‐line 

training mode.  

 Number of iterations as stop 

criterion. 

 Hybrid algorithm, ETA, 

on‐line and off‐line 

training mode. 

 Number of iterations as 

stop criterion. 

ETA 

5: evaluation  RMSE and MAPE  NA 

3.4. Conclusions 
In this chapter has been outlined the main studies and analysis that are necessary to design 

and develop a useful iEMS for the user side. Conclusions of this study will be used during the 

development of this thesis and its derived works. 

By means of the study of the load profiles (LPs) on the user side we pointed out the challenges 

of LMF on the user side: 

 High degree of randomness in LPs associated with random behavior of the user (noisy 

LP problem) 
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 Wide variety or diversity of loads and 

 High number of points to model at the same user. 

Besides, we analyzed the dependence of randomness of LP with the level of consumption and 

time resolution.  

Our proposed methodology to implement a LMFS, from processing of raw energy data to 

evaluation of the obtained models, was presented and the steps that are going to be addressed 

were highlighted:  

 Pre-processing algorithms and functions (Chapter 6). 

 Model configuration (Chapter 5). 

 Model training (Chapter 4). 

Furthermore, we analyzed the possible problems that can be found in each step. For the 

addressed problems the proposed solution was introduced. 

Finally, we close the Chapter with the definition of the more used configurations of the LMFS 

that are going to be used in the next chapters. Each of these configurations depends on the 

application that is going to use it. In general, the application will define time resolution, 

forecasting horizon and energy drivers. For example, control applications as power peak control 

will need higher time resolution than making-decision support applications. 
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4. Evolutionary training for new adaptive 
networks 

 

In chapter 2 we studied the state of the art of LMFS applied to energy fields. One of the most 

important conclusions of this study was the rising importance that hybrid algorithms of CI are 

getting in this area, mainly due to the improvements achieved in forecast accuracy. 

Furthermore, in this thesis has been highlighted the importance of adaptability and autonomy for 

LMFS on the user side.  

Taking into account these precedents, in this chapter we present the first proposal of hybrid 

algorithms, looking for improving the adaptability of the LMFS in a challenging area as LMF on 

the user side is, but keeping in mind the importance of accuracy and autonomy. The first 

objective of this approach is to improve adaptability of the LMFS creating a generic and flexible 

training algorithm, easy to adjust to new adaptive networks as for example modified ANFIS or 

ANN. The second objective is to exploit the multi-objective optimization possibilities that 

evolutionary algorithms offer in order to improve generalization capabilities of the LMFS. 

 

CONTENTS: 

4.1. Introduction and proposal 

4.2. ANFIS training by means of GA 

4.3. Parallel computing 

4.4. e-ANFIS 

4.5. Implementation and results 

4.6. Conclusions 
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4.1. Introduction and proposal 
As outlined in the chapter 3, the training process is important for getting generalization 

capability (adaptability) and accuracy in an LMFS. In order to get these important features, 

overfitting and local minimums must be avoided. Furthermore, when we want to test new 

adaptive network, special mathematical algorithms have to be designed to train the new or 

modified structures. This fact is a drawback when we want to implement an autonomous 

adaptive network designer. 

Therefore, in this chapter we propose an evolutionary training algorithm (ETA) for ANFIS 

structures. Its main purpose is to avoid overfitting problem and to define a path for a generic 

training algorithm of adaptive networks, mainly for those based on ANFIS. Multi objective 

feature of evolutionary algorithms, as genetic algorithms (GA), could help to avoid overfitting 

problem. Flexibility of evolutionary algorithm can support generic training because the designer 

does not have to define a deterministic mathematical training algorithm for any structural 

change done in a typical ANFIS. 

The basic idea, as Figure 4.1 depicts, is concentrate the adaptive parameters of the AN and 

encode them to enable to some GAs to find the near-optimal solution. Using this scheme, any 

change can be done in the AN parameters and with little adjust in the GA codification, the 

designer (a person or machine) will be able to test their new structure. Multi-objective GA 

(MOGA) can considerer both training and checking error during training process and thus, test 

generalization capacity and avoid overfitting. 

1w

2w

1w

2w

3w

4w
4w

3w

 

Figure 4.1 Evolutionary training algorithm (ETA) for ANFIS. 
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In order to test the ETA, we propose a new modified ANFIS, which is based on typical ANFIS 

with a change in its output membership functions. Instead of use normal polynomial output 

membership functions, it use exponential membership functions, and it is called e-ANFIS. 

Typical ANFIS’ training algorithms are designed to get the coefficients of polynomials. However, 

if we want to use other type of functions, equations of training algorithm have to be redefined.  

Finally, with the aim of counteracting the added burden by the evolutionary algorithm and taking 

advantage of the growing availability of parallel computing technologies, a parallel genetic 

algorithm is used for the implementation of the evolutionary training algorithm. 

4.2. ANFIS training by means of GA 
As Figure 4.1 shows, the evolutionary algorithm chosen for implementation of ETA was a 

genetic algorithm (GA). It was chosen because of its capacity of searching in complex spaces, 

simplicity, convergence capabilities, mathematical abstraction, multi-objective and parallel 

execution possibilities. ANFIS training based on GA provides flexibility and adaptability to this 

process. 

Implement a GA has two main steps: chromosome definition and fitness-function definition. 

Joining these steps with the required steps to implement and training an ANFIS, the final 

procedure to carry out the evolutionary training is: 

 ANFIS definition 

 GA codification 

 Fitness function definition 

 Execution of training process 

 Final validation 

In the following sub-sections we are going to explain each of them. 

4.2.1. ANFIS structure definition 

This process involves choosing the inputs (variables that affect the consumption) and 

depending on their relationship with the output, the type and number of membership functions 

for each input. Additionally, other parameter that can be changed is the type of the output 

membership function. Frequently, the same type of input membership function is implemented 

for all the inputs. 

Independently of real configuration of final ANFIS, which is to be decided along the thesis, for 

the subsequent explanation of the proposed algorithms, we are going to use the following 

example ANFIS configuration: 

 Two energy drivers (inputs): daily production and minimum or maximum temperature of 

the day. 
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 Two membership functions for each input. 

 Gauss membership function type for each input. 

 Polynomial (ANFIS) or exponential (e-ANFIS) membership functions for the output. 

This final configuration fits the ANFIS structure depicted in Figure 4.1, where x could be the 

forecasted maximum temperature and y the scheduled production.  

4.2.2. GA codification 

As it can be noticed on Figure 4.1 and according to first ANFIS proposal [55], there are two sets 

of parameters to get from training in the ANFIS architecture. These are the antecedents and 

consequents. Typically, they are found by means of least squares (LS) and back-propagation 

(BP) algorithms respectively, and the training algorithm is called hybrid algorithm. However, in 

this approach, we are going to use GAs to find both parameter sets. 

In order to implement the GA, first we have to build up the chromosome, also called genome or 

individual of the GA. This process is called codification or encoding. The chromosome or 

individual of a GA is composed by the encoded version of the variables that we want to find. 

Each encoded variable is called gene.  

In this case, in order to carry out the GA codification for the ANFIS training, the first step is to 

identify the variables in each parameter set. For antecedents, because the selected 

membership-function (MF) was a Gaussian function (4.1), the variables or parameters to be 

found are the centre ܿ஺௜ and the standard deviation ߪ஺௜ that define the Gaussian function for 

each MF. 

ሻݔ஺௜ሺߤ ൌ ݁
ି

ሺ௫ି௖ಲ೔ሻమ

ଶ·ఙಲ೔
మ

 

(4.1) 

Where ܿ஺௜ is the center of the gauss bell and ߪ஺௜ is the standard deviation for the membership 

function ߤ஺௜ሺݔሻ that defines the degree of membership of the input x to the fuzzy set Ai. 

In the consequent part, the parameters to be found are the coefficients of each polynomial, i.e. 

,௜݌ ,௜ݍ  ௜, where i=1,2,3,4. There is a polynomial for each rule of the four rules in the definedݎ

ANFIS [55]. 

Therefore, for an ANFIS structure with two inputs (x and y), two membership functions for each 

input and four rules, the resulting chromosomes for antecedents and consequents are 

presented on Figure 4.2 and Figure 4.3 respectively. 
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Figure 4.2. String code or chromosome for the antecedent GA. 

 

Figure 4.3. String code or chromosome for the consequent GA. 

We have to highlight the fact that the content of the chromosome for the GA is as a black box. 

In other words, the GA does not care about what is the meaning of each gene into the 

chromosome. Instead, it uses the fitness function to get its feedback. This feature gives to the 

evolutionary training algorithm its flexibility and potential to train any kind of modified ANFIS that 

follows the same or similar codification with just few adjusts. 

Due to the GA gets its feedback by means of the fitness function and not by the chromosome, 

the meaning of the chromosome is decoded into the fitness function. But it does not mean that 

the evolutionary algorithm loses its flexibility. It means that the differences among the possible 

modified ANFIS are relegated punctually to the fitness function and the decoded functions used 

in the implementation of the GA. Therefore, the adjustments for use the ETA in new ANFIS are 

reduced and simplified to be done in the fitness function. 

4.2.3. GA configuration  

We have said that GA provides flexibility to the training algorithm. However, this flexibility has its 

opposing party into the GA configuration. Even though a big part of the GA configuration relies 

on trial and error methodology, the taking advantage on the knowledge about the problem and 

how the different GA parameters affect its performance can help drastically in the objective of 

getting the right GA configuration. Next, we are going to outline how the main parameters of the 

GA for the evolutionary training were configured using the knowledge of the problem and the 

knowledge on GA. 

Data normalization and GA constraints: Once we have defined the chromosome, we have to 

define the constraints and bounds for the GA. In this point is very important to normalize the 

data, so the magnitude of the parameters to be found remind near to plus and minus one and 

so restricts the search space. In order to carry out this normalization, each input and the output 

data have to be divided for the maximum of its type. The use of these constraints it is a way of 
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introducing human knowledge to the GA in order to improve its convergence speed and 

reducing the search space. 

Initial chromosome: Another important thing is the initialization of the population, so the GA 

can find the near-optimal solution faster. For the antecedents, it was taken as initial values 

symmetrical distribution of the membership functions for each input. Thus, the centre (ܿ஺௜ or ܿ஻௜) 

of each membership function was: 0 (low range) or 1 (high range). For the consequents, the 

coefficients of a single polynomial model obtained by means of linear regression using of LS 

algorithm, were given to each polynomial of the output functions and encoded into the initial 

chromosome. 

Population size: the population size is recommended to be at least equal to twice the number 

of variables. Therefore the individuals in each population span the search space. For the 

antecedents the population size was set up to three times the number of variables. For the 

consequent, it was followed the same criterion.  

Initial range: this parameter affects the diversity of population. The diversity is one of the most 

important factors that determine the performance of GA. It cannot be too high or too low; 

otherwise the genetic algorithm could not perform well. For the calculation of antecedents and 

consequents the initial range was set up between [-1 2], which was obtained by trial and error 

Selection: among the different ways for implementing the selection function (stochastic 

uniform, remainder, uniform, roulette, tournament, etc.) the roulette selection function was 

chosen. This function simulates a roulette wheel with the area of each segment proportional to 

its expectation. Then, the algorithm uses a random number to select one of the sections with a 

probability equal to its area. At the end of the execution of this function we obtained the parents 

for the next generation. 

Reproduction: here it is defined the number of elite, crossover and mutation children for the 

next generation. The value of elite children was set to 10% of the size of population, so we 

guarantee that for iteration the best fitness-function value decreases. However, we have to 

avoid higher number of elite children, because it increases the probability that the fittest 

individuals dominate the population, which can make the search to finish in a local minimum.  

The rest of children are obtained by crossing and mutation. The proportion ratio between these 

kinds of children was chosen of 0.5. This value means that there is a high quantity of mutation 

children, thereby diversity is added to each generation and it is increased the likelihood that the 

algorithm will generate individuals with better fitness values and will avoid local minimums. 
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Mutation: this operator was implemented as an adaptative feasible mutation function, which 

randomly generates directions that are adaptive with respect to the last successful or 

unsuccessful generation. A step length is chosen along each direction so that linear constraints 

and bounds are satisfied. 

Crossover: the function chosen for this operator was the scattered one, which is explained in 

Appendix C. In that appendix basic concept and definitions about GA and MOGA are given.   

4.2.4. Genetic ANFIS training process 

Because we have to get two sets of parameters, antecedents and consequents, the ETA 

training process is carried out in two main blocks of steps that are executed at each epoch. 

Figure 4.4 shows a flowchart of ETA training process. The obtained trained ANFIS using ETA 

training is called here genetic ANFIS (G-ANFIS). 

In steps 1 to 3 initial configurations are executed according to instructions explained in the 

former sections. Once the initial configurations are done, the next step is to train the 

consequents (Figure 4.4, step 4) using the GA according to the flow chart explained in Appendix 

C. In this step a thick tuning is done. The antecedents remain unchanged. At the end of the step 

the current ANFIS consequents are updated (Figure 4.4, step 5). This set of steps are similar to 

forward pass in the hybrid algorithm [55].  

The next step is to train the antecedents using again GA (Figure 4.4, step 6) and using the 

current ANFIS updated in the step before. At the end of the seventh step, the antecedents are 

updated (Figure 4.4, step 7) and one epoch is done. This set of steps is similar to backward 

pass in the hybrid algorithm [55]. The training finishes when the maximum number of epochs is 

reached (Figure 4.4, step 8).  

The fitness function in both steps is the RMSE function: 

ܧܵܯܴ ൌ ඩ
1
N

෍ሺ݀௜ െ ௜ሻଶ݋
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௜ୀଵ

 

(4.2) 

Where ݀௜ is the desired output and ݋௜ is the ANFIS output for the i‐th sample from training data. 

ܰ is the number of training samples. This function evaluates each individual for every iteration. 

During the execution of the full flow chart, the result of each epoch is stored in a vector 

containing training evolution and results. Therefore, the best individual or chromosome is 

chosen at the end of the process. 
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Figure 4.4. Flowchart of the G-ANFIS. 

4.3. Parallel computing 
Due to the computational burden that ETA demands, we have decide to take advantage of GA 

parallel structure in order to tackle this drawback. Furthermore, recently improvement and 

availability of multicore computers offer the conditions for parallel GA implementation. 

However, other strategies could be used to face this subject. For example, increase the 

computational power, to program in low level the algorithm to avoid no efficient routines, etc. 

The fine-gained algorithm was the scheme used to implement the parallel GA in this proposal. 

In order to do that, Parallel Computing Toolbox by Matlab was used [60]. GA's coarse-grained 

or fine-grained grained parallel algorithms belong to the distributed applications concept. A 



Load Forecasting on the User‐side by means of Computational Intelligence Algorithms 

4.  Evolutionary training for new adaptive networks 

     
  Page 63 / 139 

Juan José Cárdenas Araujo    May 28, 2013 
 

   
 

 

distributed application runs independently on several nodes, possibly with different input 

parameters. There is no communication, shared data, or synchronization points between the 

nodes.  

Run time of fine-grained application is significantly less than the time needed to coarse-grained 

application. For that reason Matlab implements Multiple-deme GA’s based in fine-grained 

method. 

“ClusterSize” indicates the number of workers available to the scheduler for running your jobs. 

This is the number of all threads in processor.  A thread (a sequence of steps to be executed) is 

constructed in a "pipeline" and then "scheduled" for execution by a CPU core. Once a thread is 

scheduled, the CPU core is executing the pipelined instructions. Intel CPUs support 

multithreading, but only two threads per core. 

A worker object represents the MATLAB worker session that evaluates tasks in a job scheduled 

by a job manager. Only worker sessions started with the start worker script can be represented 

by a worker object. 

Finally, the algorithm was implemented on a PC with: 8GB DDR3 Ram, processor Intel i7 

2600K, Clock Speed 3.4 GHz, 4 cores and two threads per core. The training time of model 

using the parallel structure was approx. 2 hours; meanwhile the required time using a single 

core was approx. 8 hours. This represents an improvement in speed of four times faster 

than sequential GA implementation. 

Even though two hours is still long time for a modeling system, this time is still low in 

comparison to the time resolution (1 day by sample) and horizon of the forecasting (1 week 

ahead). 

4.4. e-ANFIS 
The ideas driving the use of an exponential function instead of polynomial one are: 

1. Test the ability of the evolutive training implemented in the G-ANFIS to train new ANFIS 

structures. 

2. Take advantage of the versatility of ANFIS structure using new output membership 

function as is already done with input membership functions. 

3. Open the path to implement an autonomous-evolutive AN designer, which is able to look 

for near-optimal AN structures for LMF. 

For an iEMS, the capacity of autonomous modeling is important because the multiple kind of 

load of different nature that can be found on the user-side. Furthermore, the idea of “intelligent” 

EMS is associated with the autonomy of the system to infer models to support the making 
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decisions tasks. Therefore, the idea of using modified ANFIS, which can improve accuracy and 

keep the adaptability capacity inherited from ANFIS, fulfils the requirements demanded by an 

iEMS. 

4.4.1. e-ANFIS implementation 

According to [55], the fuzzification layer realizes a fine tuning of the relationship output-inputs 

and the defuzzification layer a thick tuning. Normally as was proposed in [55], the output 

membership function is a constant or a polynomial as it is presented in (4.3). However in this 

work we want to test new alternatives to this output function using an exponential function 

instead of a polynomial one. In (4.4) is presented the proposed function. 

f୧ሺx, yሻ ൌ p୧x ൅ q୧y ൅ r୧ 

(4.3) 

f୧ሺx, yሻ ൌ p୧eן౟୶ ൅ q୧eஒ౟୷ ൅ r୧ 

(4.4) 

The exponential output adds to the output layer the capacity of fine tuning and not only of the 

thick tuning. This is due to the exponential shape as showed in Figure 4.5. This output fine 

tuning improves the generalization feature of the structure and avoid the overfitting problem as it 

is showed in the next section. 

 

Figure 4.5. Comparison between lineal and exponential output MF. 

However, we must point out that now we have to find two parameters more for each input and 

we have to adapt the training algorithm to this new expression.  

Finally, because we use the ETA algorithm to train the ANFIS structure, few changes have to be 

done to introduce these new parameter in the evolutive training algorithm as it will be showed in 
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the next sub-section. As it was mentioned in “GA codification” section, we have just to change 

the coding and decoding functions. 

e-ANFIS consequent codification 

Figure 4.3 shows how the consequent chromosome codification was when training the normal 
ANFIS. In Figure 4.6 we can see the updated chromosome in order to train the e-ANFIS. We 
can note that slight changes have to be done and the rest of the algorithm remains unchanged.  

q1 β1 r1

Exp. mf1

p1 α1 q2 β2 r2

Exp. mf2

p2 α2

q3 β3 r3

Exp. mf3

p3 α3 q4 β4 r4

Exp. mf4

p4 α4

 

Figure 4.6. String code for the consequent GA. 

4.5. Implementation and results 

4.5.1. Case of study 

In order to implement and test the proposed algorithms, real data from an automotive factory 

were used. They have been obtained thanks to a technology transfer agreement signed with the 

automobile company SEAT, in Martorell, Spain. They have provided information of its SCADA 

to develop a LMFS, with daily resolution. It is aimed to support the decision-making process. 

For example, it can support decisions about scheduling of daily production, shifts, working lines, 

maintenance tasks, etc. 

The consumption data to be modeled belongs to the daily overall consumption of the factory. 

Apart of consumption data, daily temperatures (minimum and maximum) and daily production 

were available. The data correspond to the years 2007 and 2008; the first year was used for 

training and the second one for validation of the implemented models. 

4.5.2. Models 

Following two types of training schemes (off-line and on-line training) five models were trained 

and checked in order to test the proposed forecasting scheme. 

 2xANFIS: ANFIS structure using hybrid algorithm for training and using off/on-line 

training scheme. 

 1xG-ANFIS: ANFIS structure using the proposed ETA and using only off-line training 

scheme. 

 2xe-ANFIS: modified exponential ANFIS using the proposed ETA and using off/on-line 

training scheme. 
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The first two models were used as referenced models. They are typical ANFIS structures, 

trained with hybrid algorithm. The first was trained using off-line training and the second one on-

line training. The third, the G-ANFIS, was used to test the ETA method and its evolution. The 

others two models are based on e-ANFIS structures and they use ETA for training. Again, one 

of them was trained off-line and the other one on-line. 

The on-line training was implemented by updating the training data with the last year data 

immediately before to the week being forecasted. Then the ANFIS and e-ANFIS on-line models 

were re-trained with the new training data. The idea of using on-line training is to update the 

models according to  weather and seasonal changes [58].  

4.5.3. Training evolution of the ETA (off-line training) 

Figure 4.7 depicts the off-line training evolution in each epoch for the hybrid training algorithm 

(denoted as ANFIS) and genetic based training algorithm (showed as G-ANFIS). Both, training 

and checking evolution are shown. We can see that the training rates in terms of epochs are 

similar for both algorithms. However, the G-ANFIS reaches before the minimum checking error, 

about epoch 12, while typical ANFIS training algorithm reaches the minimum about epoch 20. 

Note also that the G-ANFIS gets a better checking result than ANFIS. This result shows a better 

performance of G-ANFIS than the hybrid trained ANFIS. It is well known that the checking error 

is more important than the training one, because it shows the grade of generalization of the 

model. 

 
Figure 4.7. Training evolution for ANFIS and G-ANFIS. 

4.5.4. ETA validation (off-line training) 

Figure 4.8 shows the forecast for entire year 2008 (a) and for months of April to June 2008.(b) 

Both forecasts show a good prognosis for this year, which belongs to the checking data. This 
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proves that the genetic algorithm is able to find near-optimal solutions for training an ANFIS, 

even for antecedent and consequent parameters (fine and thick tuning respectively) 

a) b)  

Figure 4.8. 2008 daily consumption forecast (a) and three months forecast (b) by ANFIS and G-ANFIS. 

4.5.5. Weekly comparison results for all models (off-line and on-line) 

Figure 4.9 represents the results for a week of each month of the eleven months of the 2008 

year (because of outlier detection some data was deleted of the full year). From the picture, we 

can see that all models get quiet similar results except ANFIS on-line, which presents bigger 

RMSEs for weeks 26, 30 and 38 (summer and autumn). Furthermore, we can notice that among 

all models, the best and most stable results were getting with e-ANFIS on-line model. Week 22 

is an exception. There all models got a big RMSE. Probably this is due to outlier data not 

detected in the pre-processing step.   

 
Figure 4.9. RMSE comparison among the four models for one week of each month of 2008 year. 

In order to finish the validation and comparison results among the evaluated models, in Figure 

4.10, we have the results for a week of each season in the 2008. The seven days of the week 

were tested, i.e. working days and weekend days. The results for the four models were similar 
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for winter and spring weeks. However, for summer and autumn the results obtained with e-

ANFIS on-line forecasting scheme are better than those obtained with the others schemes. 

 (a)  (b)  

(c)  (d)  

Figure 4.10. Actual and forecasting daily load profile for winter week (a), spring week (b), summer week (c), 

autumn week (d). 

4.6. Conclusions 
We have proposed new hybrid algorithms that look for improving the accuracy, autonomy and 

adaptability of the LMFS. In this case we have addressed the problem of proposing structural 

modifications in the way how the adaptive networks are trained and making modifications into 

the used adaptive structure. Particularly, the base algorithms were an ANFIS and a genetic 

algorithm.  

Using them, we have developed an evolutive training algorithm (ETA) based on a GA to train an 

ANFIS and a modified ANFIS. This algorithm is the key to train and test any kind of new 

adaptive networks for load forecasting (LF) on the user-side. ETA helps us to avoid the problem 

of build up a deterministic and/or mathematically complex training algorithm for new adaptive 

networks. 

Furthermore, multi-objective optimization capacity of GA was used to avoid overfitting problem 

and so, increase the generalization and adaptability of LMFS. MOGA can considerer both 

training and checking error during training process and thus, test generalization capacity and 

avoid overfitting. 
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On the other hand, off/on-line schemes were used to train the proposed and reference models 

used for comparison. The modified ANFIS was an ANFIS with exponential output functions 

called e-ANFIS. This new structure presented excellent generalization capability. Therefore, the 

forecasting scheme based on the ETA and e-ANFIS with on-line training obtained the best 

results for load forecasting on the user-side taking into account error and generalization for the 

four evaluated weather seasons. The results were better than the obtained using typical 

structure as ANFIS with or without on-line training. All the tests were done using real data from 

the EMS of an automotive factory in Spain. 

In order to solve the problem of high computational cost that requires ETA, a parallel genetic 

algorithm was used. The parallel GA takes advantage of multi-core CPUs and reduces 

considerably the elapsed time for training. 

Taking into account the obtained results with the ETA and e-ANFIS algorithms, we conclude 

that the proposed forecasting scheme is suitable to be used in an iEMS and can be used in 

other applications, as for example in power-system forecasting in utilities. 
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5. Autonomous configuration and multi-site 
modeling 

 

This chapter discusses two of the three features that we define as important for a LMFS being 

used in an iEMS. These are autonomy and adaptability. When energy databases grow and get 

huge quantities of data from different places, how to get efficiently appropriated consumption 

models with the less possible human intervention is a challenging task. It is in this context 

where the mentioned features take high importance.  

In order to improve these features in a LMFS and considering chapter 4 experience, we 

propose a new hybrid algorithm based on an ANFIS and GA. In this case, the GA is used to 

configure (no for training) the ANFIS providing it of autonomy and improving the adaptability 

inherent to ANFIS modeling structures. 
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5.1. Introduction and proposal 

One of the most serious problems to face a LMFS design in an iEMS is to deal with the big 

number of data-available to be modeled, which  are really high in a factory or smart building. 

The collected data by smart-meters generate huge energy databases, which correctly 

processed make possible the creation of energy models of different places in different levels of 

consumption. In order to take advantage of energy databases (consumptions and energy 

drivers) the LMFS has to be able to get automatically or with low human attendance accurate 

energy models. Therefore, this chapter is aimed to study and propose self-configured 

(autonomy) and multi-site (adaptability) LMFSs. These features are two of the most 

important capabilities that LMFSs have to have in order to fulfil the iEMS requirements.  

In this chapter, we present a self-configured electricity consumption-forecasting 

framework for multi-site LMFS (Figure 5.1). It is based on an Adaptative Neural Network 

Inference System (ANFIS) fused with a multi-objective genetic algorithm (MOGA). ANFIS 

gives to the LMFS adaptability and flexibility, which are needed for multi-site modeling. MOGA 

provides a power search heuristic algorithm to find the near optimal configuration of the ANFIS 

when it is trained in different places and levels of load demand on the user side. This structure 

gives to the LMFS autonomy to self-configuration for different kind of places and consumptions 

levels. 

This framework is aimed to be implemented in industrial plants, such as automotive factories, 

with the objective of giving support to an iEMS. The forecasting purpose is to support the 

decision-making (i.e. scheduling workdays, on-off production lines, shift power loads to avoid 

load peaks, etc.) to optimize and improve economical, environmental and electrical key 

performance indicators. Thus, quarter hour resolution of the load profiles (LPs) is needed. 

This is one of the highest resolutions found in LMFS on the user side and one of the most 

challenging because the associated randomness of the load profiles. In order to test the 

proposed framework, the LMFS was implemented in an independent section of an 

automotive factory, which was selected for the high randomness of its main loads.  
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Figure 5.1. Self-configured electricity consumption-forecasting framework for multi-site LMFS. 

5.2. Challenges in multi-side LMFS on the user side 

The main challenge to face in multi-site modeling on the user side is the wide variety of load 

profiles (LPs) that we can find in the different levels of load demand in a factory or building. 

For example, the degree of randomness increases in lower levels of consumption. Thus, it will 

be easier to model and forecast the overall consumption of the factory or a workshop of the 

factory than the consumption of a specific process or machine. 

Other factor to tackle derived of the LP variety is the selection and availability of the energy 

drivers. For example, possibly the weather affects the consumption of the overall factory or 

building but it does not imply that it significantly affects the consumption or LP of a process or 

machine. On the other hand, the availability of energy drivers changes for different places. For 

example, it is possibly easier to get the production of the overall factory but it could be harder to 

get the specific production of a workshop or a manufacturing line into the same factory. 

Furthermore, the linearity or nonlinearity of the load demand changes from a place to 

another.  
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All these variations make hard to find the optimal or near-optimal model (main structure) and 

model configuration. For example, if we are using as model an ANFIS, the complexity of this 

model will depend on the degree of linearity or nonlinearity between of target LP and its energy 

drivers. Thus, it will be necessary to use more membership functions (MFs), more rules, and 

more inputs in a target LP with a high degree of nonlinearity, randomness, high time resolution, 

etc. Besides, if we use a complex model when it is not necessary, then the probability of 

overfitting will increase. Therefore, the configuration of an ANFIS for different places, with a 

wide variety of LP, is not a trivial task and demands advanced algorithms to face the problem of 

self-configuration and multi-site modeling. 

5.3. Adaptive network and Evolutionary algorithm 

In order to tackle all these different kind of LPs using the same LMFS in an automatic way, we 

have appealed to universal approximation features of adaptive networks as ANFIS and the 

power heuristic search algorithm provides by evolutionary algorithms as multi-objective GA. 

The problem of self-configuration feature of modeling systems using other CI structures or 

statistical algorithms has been addressed in published works and scientific literature. For 

example, in [26, 32], chaotic particle swarm optimization is used for seeking the optimal 

unknown parameters of support vector machine; in [24] a Bayesian neural network is proposed 

to implement an adaptative network with features of auto tuning. 

ANFIS and MOGA are quite similar algorithms from CI tools and here we want to exploit their 

adaptive and optimization features. We use ANFIS and MOGA because ANFIS gives to the 

LMFS adaptability and flexibility, which are needed for multi-site modeling. Meanwhile, MOGA 

provides a power search heuristic algorithm to find the near optimal configuration of the ANFIS. 

Furthermore, by means of its multi-objective property, MOGA can help us to solve overfitting 

problem of ANFIS. It can take into account both training and checking RMSE (root mean square 

error) in the search algorithm. This is other advantage for using MOGA in a self-configured and 

multi-site LMFS. 

In Appendix A, the background about ANFIS and MOGA are outlined. For that reason, we will 

refer to the theory presented in that Appendix when necessary along the chapter. 

5.4. Design of the LMFS 

As it was mentioned in the introduction chapter, one of the most important parts of the iEMS is 

the LMFS. It could be said that this is at the heart of the system. Getting a LMFS with high 

capabilities of autonomy and adaptability means: 
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 Automatic selection of the best input variables,  

 Automatic near-optimal tuning of parameters (number and type of MFs, rules, output 

functions, etc.),  

 Derivation of an uncertainty interval on the model output,  

 The possibility to perform a comparison of different models and, as a result, do the 

selection of the optimal model.  

In order to achieve these targets, we based our current proposal of autonomous and adaptive 

LMFS on the framework called “Load modeling and forecasting methodology”, which was 

presented in chapter 3. Figure 5.2 represents the cited methodology and there it is emphasized 

the step where the current approach is focused in. 

Because each one of those steps were reviewed and analysed former, in this chapter we are 

only going to check the main idea of each step and define the specific algorithm used for the 

real case presented here. 

Furthermore, it is important to say that this chapter is mainly focused on the step three (3) 

“model definition and configuration”, where the ANFIS configuration is made. This is the most 

complex step when we want to improve the multi-site and self-configuration features of the 

LMFS.  

  
Figure 5.2. Dataflow of the system modeling methodology. 
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5.4.1. Outlier detection and gap padding 

Collected from the sensors system we have the raw data of production, temperature, time data, 

work shift data, and energy data. The first step is to apply a statistical analysis to identify and 

remove the outlier data. This process is important to get successful in the automatic modeling 

because outlier data introduce “noise” in the final model.  

For the case study of this chapter, the criteria to indentify and remove outlier data are to remove 

energy-consumption data equal or less to zero. Usually both in operation and in no-operation 

days there are energy consumptions, so the zero or negative consumption data is taken as 

outlier.  

For energy consumption and typical energy drivers as temperature and production, big 

spontaneous peaks are taken as outlier data. In order to remove them, those data that are more 

than three standard deviations bigger or smaller than the arithmetic mean are removed. These 

criteria are even easily noted by visual analysis of the data profiles obtained from database. 

Expression (5.1) shows how outlier detection is done. There µ is the mean of the analyzed data, 

σ is the standard deviation of data, x represents analyzed data and  ሼoutlier_dataሽ is the set of 

outlier data.  

if |x െ µ| ൒ 3 · σ ՜ x א ሼܽݐܽ݀_ݎ݈݁݅ݐݑ݋ሽ 

(5.1) 

This expression was selected as the best way to detected outlier data because its simplicity and 

effectiveness. These features make it suitable for multi-site modeling. 

On another hand, when we remove the outlier data we have to replace the deleted data in order 

to keep a continuous stream of data.  Therefore, to carry out this padding task we propose the 

next algorithm: 

1. Detect gaps by means of date variable. 

2. If the gap is shorter than four samples, use simple interpolation. If not, look for nearest 

day of the same type (working day or holiday) with data of the same hour. 

3. Replace the gaps with the obtained information. 

This simple algorithm worked appropriately in more than four different places, as it will be 

shown in the implementation section later.   

5.4.2. Data pre-processing 

In multi-site modeling on the user side, this step takes high importance due to there are a wide 

range of levels of consumption with their associated randomness. Due to this randomness, 
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mainly found in lower levels, a moving window filter is applied to the energy consumption data. 

This filter reduces the high variation of the load profile.  

In the equation (5.2), the mathematical expression of the filter can be found. There yሺnሻ 

represents the filtered energy data, xሺnሻ, xሺn െ 1ሻ, xሺn െ 2ሻ and xሺn െ 3ሻ represent the current 

and delayed energy data, which occurred one, two and three quarters of an hour before the 

current time respectively. 

yሺnሻ ൌ
1
4

xሺnሻ ൅
1
4

xሺn െ 1ሻ ൅
1
4

xሺn െ 2ሻ ൅
1
4

xሺn െ 3ሻ 

(5.2) 

Other data transformations can be done in this step. These transformations can help to get new 

variables with higher correlation with the output than the original variable. For example, getting 

the day-of-the week (called week_day in this work) is proposed and done in this step from the 

date recorded in the database. Besides, data scaling could be considered. In the real 

implementation presented later in this chapter, different kinds of scaling were tested without 

considerable improvements, so the raw data were used. Using the raw data avoids scaling 

calculations and makes the analysis more direct. 

On the other hand, with the objective of getting better-behaved signals (less noising) and extra 

additional features, time-frequency transforms could be applied in this step. For example, 

wavelets or Hilbert-Huang transforms are good candidates for this purpose. Chapter 6 will 

present our proposal addressing this hypothesis. 

5.4.3. ANFIS parameter configuration 

As can be noticed in Figure 5.3, single structure and ANFIS have been chosen as the final 

LMFS structure. Therefore, the problem of model definition and configuration is reduced to an 

ANFIS parameter configuration. The reasons for choosing ANFIS have been depicted in 

previous sections. 
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Figure 5.3. Model definition and configuration process focused on single ANFIS topology. 

In ANFIS parameter configuration, external and internal ANFIS parameters have to be 

configured. These are different from those got in the training process (consequents and 

antecedents). External parameters are the inputs; internal are the number of membership 

functions for each input, the type of the membership function and the type of function of the 

output (the last one could be a linear equation or a constant function). A summary of all ANFIS 

parameters and methods for both training and configuration are showed in Table 5.1.  

Table 5.1. ANFIS training, parameter configuration and methods. 

ANFIS Parameter  Method  Forward Pass  Backward Pass 

Input selection  Human knowledge / MOGAa  ‐‐  ‐‐ 

Number of MFb by input  Human knowledge / MOGAa  ‐‐  ‐‐ 

Type of MFb  Human knowledge / MOGAa  ‐‐  ‐‐ 

MFb parameters (antecedents)  Human knowledge / BP algorithm  Fixed  Gradient Descent 

Rules  Human knowledge / BP‐LS algorithm  LS Estimate  Gradient Descent 

Coefficients (consequents)  LS algorithm  LS Estimate  Fixed 

a MOGA is the acronym of Multi Objective Genetic Algorithm. 
b MF is the acronym of membership function. 

In the zero step on Figure 5.2, some pre-input selection methodologies can be applied (PCA 

and exhaustive ANFIS searching) to get pre-selected inputs (energy drivers). In the current 
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step, these pre-selected inputs could be used as starting point for the final input selection. This 

will depend on the final selection algorithm. 

Once the inputs are selected, the next step is to choose the number of the membership 

functions (MF) for each of them. In other words, choose the number of fuzzy sets for each input. 

The human knowledge could be used at this point, considering as basic criterion that: the 

simpler the model is, the more capacity of inference the system modeling will have. However, 

because the aim of our proposal is get a self-configured LMFS, human knowledge will not be 

used for carry out this step. 

For the case of the membership function selection, some of the more used are triangular, 

trapezoidal, Gaussian, Gaussian bell, sigmoid and ‘Z’ functions, among others. Figure 5.4 

shows the graphic representation of them. 

 

Figure 5.4. Typical membership functions for fuzzy sets. 

As it can be noticed, the number of external parameters and their possible combinations are 

considerably high. These combinations define a complex search space, which is composed of 

different kind of variables (integers and binary). Getting the appropriated configuration for 

multiple and different behaviour places, increases the complexity of the search problem. 

Therefore, it is necessary to come up with some kind of algorithm or methodology to get the 

optimal or near-optimal ANFIS configuration. This is a drawback to deal with when using these 

kinds of adaptive networks.  
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In addition, overfitting problem in ANFIS also has to be tackled in some way. Overfitting can be 

detected because when we are looking for a good ANFIS configuration, the training error is 

reduced but the checking error is increased.  

Then, the use of a multi objective GA (MOGA) [61] can help to solve both problems. MOGA can 

take into account both training and checking RMSE in the search algorithm. Hence, it was 

decided to use a MOGA in order to find a near-optimal configuration, avoiding overfitting 

problem and solving the self-configuration problem. Figure 5.1 presents the proposed 

framework. 

As for a GA, in order to implement a MOGA algorithm, two main parts have to be defined: the 

chromosome or individual codification and the fitness functions that have to be minimized. Next, 

the explanations of how these steps are done for the self-configured and multi-site LMFS are 

presented. 

Chromosome codification 

In summary, the ANFIS configuration algorithm has to define: 

 Input variables (week day, time in minutes, maximum temperature and production by 

work shift)  

 The number of membership functions or fuzzy sets for each input (minimum 2 and 

maximum 5) 

 The type of membership function (triangular, trapezoidal, Gaussian, Gaussian bell, 

sigmoid and ‘Z’ functions) 

 The type of the output function (linear or constant) 

In this way, there are four external parameters to be configured before the final training is 

carried out. The final codification of the used chromosome for the MOGA algorithm is shown in 

Figure 5.5. 

 

Figure 5.5. Codification of the MOGA chromosome used for the ANFIS configuration. 

Fitness function definition 

Since we want to avoid the overfitting and this can be done getting acceptable RMSE for 

training and checking data, the two chosen fitness functions for the MOGA algorithm are those 

that calculate the RMSE. In (5.3) and (5.4) are presented the final fitness functions fଵሺxሻ and 

fଶሺxሻ. There, ܰ is the number of samples for training, d୧ is the desired output and trn_output୧ is 
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the output for training data of the evaluated model. M is the number of samples for checking and 

chk_output୧ is the output for checking data of the evaluated model. The parameters of the 

evaluated model are defined by the chromosome x = [x1, x2, x3, x4] (see Figure 5.5). 

fଵሺxሻ ൌ RMSE୲୰୬ ൌ ඩ
1
N

෍ሺd୧ െ trn_output୧ሻଶ

N

୧ୀଵ

 

(5.3) 

fଶሺxሻ ൌ RMSEୡ୦୩ ൌ ඩ
1
N

෍ሺd୧ െ chk_output୧ሻଶ

M

୧ୀଵ

 

(5.4) 

5.4.4. ANFIS training and model validation 

As presented in chapter 4, ANFIS training can be done by different algorithms. Among them, 

the most popular algorithm is the hybrid algorithm, also presented in chapter 4. For the 

implementation of the framework here proposed we have used this algorithm, mainly because 

its speed, convergence and effectiveness in terms of accurate results.  

On the other hand, the validation of the model is carried out by means of the calculation of 

RMSE for both training and checking data, as it was done for the evaluation of the fitness 

functions. Old models for the same site are used as reference model to check the improving of 

the new models. If the new calculated model is better than the old one, the latter is replaced. 

5.5. Implementation and results 

In this section a real implementation example of the proposed framework and the obtained 

results are presented. First, we start with a description of the studied real case; second, we 

present the global diagram of the real implementation; next, we show the MOGA results for self-

configuration in different places; and finally, we present and analyze the obtained results. 

5.5.1. Case of study 

Places 

In order to test the self-configured and multi-site LMFS, the proposed consumption-forecasting 

framework was implemented in a car factory. The places modeled were two main workshops 

and three press machines. 
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One of the workshops was a car body workshop (now identified by OS1), where the parts of 

the car body are made from coils of steel, by cutting and pressing of the sheet steel. The other 

one was the assembling workshop (OS2), where the car body is assembled. This has less 

random behaviour and bigger power demand if it is compared with the OS1. The overall 

consumption of both workshops were analysed and modeled. 

The other places, the three press machines, belong to the OS1. These are indentified by PM1, 

PM2 and PM3. This workshop and its press machines were selected for the high randomness of 

their LPs. The sum of the three press machines is equivalent approximately to 60% of the 

overall consumption of the workshop. 

Energy drivers 

The considered energy drivers (possible inputs) were the production (p) of the selected 

section, the external temperature (T), the type of day (w)  (working day or holiday), the day of 

the week (d) (Monday to Sunday), the time (h) in minutes and the work shift (ws). A forecast 

for the next 24 hours is obtained, with a time resolution of 15 minutes. 

It must be considered that for a full day (24 hours) and forecasting with hour or quarter hour 

time resolution, the immediately delayed load sample cannot be used. If immediately delayed 

load sample is used, only the next sample could be forecasted using real data. Therefore, 

because we were looking for a LMFS of the next 24x4 samples, finally the delayed data were 

not taken into account as energy driver. 

Data 

The available energy database in the experimental plant starts from May 2 to 17 of 2010, i.e., 

two weeks of data time stamped of quarter hour for training and checking. The data from May 2 

to 9 (first week) were used as training data and the rest data (second week) as checking data to 

validate the algorithms. Figure 5.6shows the quarter hour load profile of the workshop OS1. 

There, we can notice the randomness of the loads. The figure shows the real quarter hour 

energy consumption data (red) and the filtered data (green). The main challenges for modeling 

this data are the randomness of the loads and the time resolution that was as short as a quarter 

hour.  
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Figure 5.6. Quarter hour load profile of selected workshop (OS1). 

5.5.2. Real implementation 

The system modeling presented in Figure 5.2 is a subsystem of the final system modeling used 

in the real application. Figure 5.7 shows the diagram block architecture of how this general 

system was implemented and where the subsystem modeling was located. As a result, the 

system modeling is able to build up automatically the consumption models of different sites, 

getting the data from IEMS database. 

 

Figure 5.7. General system modeling implemented for the proposed IEMS. 

 

5.5.3. Obtained chromosomes: final configurations 

After running the LMFS, the following chromosomes were obtained: 

Places: Workshop 1 (OS1) and press machines 
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The ANFIS configuration chromosome obtained by the MOGA was X1= 14, X2=3, X3=4 and 

X4=1. This means: 

 Inputs: week day, time (in minutes) and work shift production;  

 Three membership functions by input;  

 Type of membership function is Gaussian bell function;  

 The output function is lineal.  

Place: Workshop 2 (OS2) 

The ANFIS configuration chromosome obtained by the MOGA was X1= 13, X2=3, X3=4 and 

X4=1. This means: 

 Inputs: week day, time (in minutes) and temperature;  

 Three membership functions by input;  

 Type of membership function is Gaussian bell function;  

 The output function is lineal.  

The results for the points of workshop1 (OS1, PM1, PM2 and PM3) got the same configuration. 

This can be explained because of press machines execute the same type of process, they are 

into the workshop 1 and they represent about 60% of its overall load. Therefore, it is hope that 

their models were similar or even equal, as it was the result. 

However, for the case of the workshop 2 (OS2), the final input selection was different. One of 

the inputs was different in comparison with the other models. This difference can be explained 

because the process carry out into workshop 2 is not the same as in workshop 1. While the 

parts of the car body are built in workshop 1, in the workshop 2 these parts are welded to the 

chassis and so to build up the whole car body. Besides, the workshop 2 it is bigger than 

workshop 1 and its heating, ventilation and air conditioning system (HVAC) demands more 

power than the HVAC belonging to workshop 1. This can explain why the temperature is a 

better input for the overall consumption model in workshop 2. 

5.5.4. Multi-site model validation 

Figure 5.8 to 5.11 depict the obtained results for the four models. Circles and dots mark the real 

data and prognosis data respectively. It should be remembered that the first week was used for 

training and the second one for checking. 
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Figure 5.8. ANFIS model validation of overall energy consumption of the section OS1. Inputs: week day, hour 

and work shift production. 

 
Figure 5.9. ANFIS model validation of energy consumption of press machine PM1. Inputs: weekday, hour and 

work shift production. 
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Figure 5.10. ANFIS model validation of energy consumption of press machine PM2. Inputs: weekday, hour 

and work shift production. 

 
Figure 5.11. ANFIS model validation of energy consumption of press machine PM3. Inputs: weekday, hour 

and work shift production. 

It can be seen that for the four models the forecasted load profiles fit quite well the real load 

profiles in both the training and checking week, despite the high variability of the load. In Table 

2 is shown a summary of the obtained results. The result of OS2 was used as reference 

because the load profile of OS2 has less randomness and bigger consumption. For this case, 

the LMFS was able to get better load profile prognosis (Figure 5.12). 
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Figure 5.12. ANFIS model validation of energy consumption of other section (OS2). Inputs: weekday, hour 

and temperature. 

Table 5.2. Results summary of multi-site load profile modeling. 

Site  Min (kWh)  Max (kWh)  Mean (kWh)  Std. Desv. (kWh)  RMSE  RMSE/Max 

PM1  0,8  68,3  35,3  18,5  6,1  9,0% 

PM2  1,3  60,8  33,0  16,7  6,3  10,4% 

PM3  8,8  212,3  122,9  51,9  21,0  9,9% 

OS1  30,4  472,1  308,6  94,5  26,6  5,6% 

OS2  120,8  2220,0  1397,3  618,6  90,9  4,1% 

 

The relative RMSE parameter (RMSE/Max) shows how the accuracy of the LMFS is better 

when it is used with a load profile with less randomness and higher load demand (compare the 

Figure 5.12 with Figures Figure 5.8  to Figure 5.11). In fact, this relationship continues being 

true if higher levels of energy consumption are analyzed, as for example the overall plant 

consumption. This feature of load profiles was analyzed in chapter 3 in “User-side load profile 

analysis” section. Therefore, the proposed LMFS could be implemented not only for indoor 

installations, but also in power energy distribution forecasting. 

The last observation should be considered when comparing the current obtained RMSE results 

with the obtained in other works [24, 45, 51]. Possibly, they get better RMSE results but they 

tested their systems always using high load profiles as substations for total consumptions for 

cities, which have not as high load variation as user side consumptions.  
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The obtained results show the adaptability and autonomy capacities of the proposed LMFS, 

which support the multi-site and self-configuration searched features. 

5.6. Conclusions 

We have studied and analyzed the LMFS process and proposed an algorithm to carry out each 

of its steps in order to get a self-configured and multi-site LMFS. We focused on the 

configuration step due to its complexity and importance in order to get an autonomous, adaptive 

and accurate LMFS. 

The proposed modeling framework has been validated in a real user-side context. Sites with 

high variation or high randomness load profiles were selected in an industrial plant in order to 

test in deep the proposed LMFS. Under these challenging conditions, the autonomous 

configuration, adaptability, system learning and prognosis were tested successfully.  

The system modeling was used to model the different sites and therefore to test the self-

configuration and multi-site modeling capabilities. The results show that the proposal of using 

ANFIS algorithm together with the genetic algorithm is a good approach to autonomous and 

multi-site modeling of energy consumptions in industrial systems.  

Supported by previous analysis presented in chapter three and the obtained results of this 

chapter, we can say that the proposed framework could be also suitable for load forecasting in 

utilities and in other types of load profiles of higher consumption level, which generally have less 

associated randomness. 
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6. Load modeling and forecasting based on 
dominant patterns 

 

Following with the guide-diagram of LMFS presented in Chapter 3, in the current chapter is 

discussed the proposal focused in the pre-processing step. The objective of the work is to 

improve the accuracy of the final LMF and reduce the effect of the noisy LP problem. 

Therefore, based in our former proposals and results on modeling real data from industry, here 

we present a LMF system (LMFS) based on detectable patterns, here called dominant patterns. 

These are indentified and selected by means of Hilbert-Huang transform and Hilbert-spectral 

analysis. As in the former chapter, GA is used to give self-configuration capabilities to the whole 

LMFS. 

This approach, being the last of the thesis, besides using the dominant patterns to improve 

forecast accuracy, collects our experience in previous proposals and so to achieve the main 

objective of improving accuracy, adaptability and autonomy of LMFSs for iEMS on the user 

side. 

 

CONTENTS: 

6.1. Introduction and proposal 

6.2. Load profile analysis: dominant patterns 

6.3. Hilbert huang transform for DP detection and denoising 

6.4. Partial models of dominant patterns (PM-DP) 

6.5. Implementation and Results 

6.6. Conclusions 
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6.1. Introduction and proposal 

Currently, simple LMFS are mostly based on single structures of ANFIS, ANN or other adaptive 

network (AN) or hybrid algorithm. Despite of the wide use of these technologies on load 

forecasting for utilities and other time series modeling applications, LMFSs on user side 

demand new approaches that must be able to deal with noisy load profiles, which are generated 

for stochastic user behavior. For example, LMFSs based on complex structures as parallel 

ones.  

In this context, this chapter presents a novel LMFS based on parallel AN, which has obtained 

improved accuracy and has been able to deal with noisy load profiles. Besides, it improves self-

configuration capabilities and keeps the adaptability supported by adaptive networks. Figure 6.1 

guides the steps where the proposed algorithms are focused in. 

As presented in Figure 6.1, the proposed algorithm is focused on pre-processing step, where 

pattern detection, noise reduction and input-output correlation are faced. In order to deal with 

noisy LP problem on the user side, the proposed LMFS takes advantage of detectable patterns, 

here called dominant patterns (DPs), present on user-side LPs. They are identified by means of 

a Hilbert Huang transform (HHT) and Hilbert-spectral analysis (HSA) and the more relevant 

ones are used to build up models of lower time resolution and better behavior to add useful 

information to the main model.  

In comparison with wavelet and other decomposition techniques [52, 62, 63], HHT is found to 

be a powerful method for analyzing nonlinear and nonstationary data; it is not limited by the 

uncertainty principle and it presents the results in time-frequency-energy space for feature 

extraction [64, 65]. This last feature is the one we want to exploit to extract the main dominant 

patterns, which are found on the user-side LPs [66].  

Furthermore, the derived empirical mode decomposition of Hilbert Huang transform can be 

used for denoising the consumption load profile and therefore to reduce the effect of noisy LP 

problem on the accuracy of the forecasting.  

Taking advantage of the experience on the self-configuration algorithm presented in chapter 5, 

we use again GAs to support self-configuration of the LMFS [4].  
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Figure 6.1. Proposal for a LMFS based on HHT and PM-DP analysis: pre-processing and model configuration. 

Next section presents an analysis of user-side LP, which is aimed to detect visually DPs. 

Section 6.3 presents how using HHT analysis DPs can be identified. Then, in section 6.4, a 

model for the DPs is developed to support and supply useful information for the main modeling 

structure, improving its forecasting accuracy. The proposed method presents accurate 

forecasting and easiness to build up automatic models by using only the historical data, as it is 

shown by the obtained results, which are presented in section 6.5.  

6.2. Load profile analysis: dominant patterns  

6.2.1. User-side noisy LP problem 

One of the main problems when dealing with modeling of LPs is when the target LP is full of 

random peaks, even though when a pattern can be visible (see Figure 6.2). Here we called this 

problem “noisy LP problem” and when happen on the user side we called it “user-side noisy LP 

problem”. Even though into the user side can be found a wide variety of LPs, in general can be 

stated a relationship between the magnitude, the time scale or time resolution of energy 

consumption and the noisy LP problem.  
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In order to show this relationship, in Figure 6.2 we have the LP of four different places at 

different levels of consumption. All of them have two weeks of hourly consumptions. The first 

plot (top-left plot in Figure 6.2) shows the LP of consumption of a press machine workshop of a 

car factory, where bodywork parts are made from sheet steels (consumption into the user side). 

The next plot in Figure 6.2 (top-right plot) depicts the LP of another workshop into the same 

factory, this time of the bodywork building process. Notice that the overall consumption of this 

last is about ten times bigger than the press-machine workshop and the LP has considerably 

less noisy LP behavior than the first one. On the other hand, the third plot in Figure 6.2 shows 

the overall consumption of school and even though the consumption is smaller than the two 

previous LPs, it has a similar noisy LP behavior to the bodywork workshop LP. Finally, the last 

plot in Figure 6.2 (bottom-right plot) presents the LP of consumption of a utility. Observe that 

this time the consumption is one or two orders bigger than the previous LPs and the noisy LP 

problem is much less noticeable in this LP. Therefore, in general, we can conclude that keeping 

the same time resolution, lower consumption levels will have bigger noisy LP problems. In the 

next section, the analysis of the noisy LP problem when the time resolution is changed is 

carried out. 

For obvious reasons, on the user side, this noisy LP problem makes harder to obtain an 

accurate LF. This issue is the one we want to address in our proposal based on dominant 

patterns supported by Hilbert Huang analysis. 

 

 

Figure 6.2. Different user-side LPs vs. Utility LP (bottom-right plot) 
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6.2.2. Visual pattern identification 

Despite of the noisy LP problem, we can notice a quite similar pattern in the LPs in Figure 6.2. 

For example, analyzing the car bodywork workshop LP, in Figure 6.3, changing the scale and 

the time resolution of the LP and analyzing a month with eight (8) hours time resolution, some 

weekly patterns result evident. Checking the days where the lowest consumptions occur, it is 

evident that these patterns are due to production stops at weekends. Changing the scale, 

keeping the time resolution of the load profile, and analyzing the load profile for a week, one can 

notice daily patterns (Figure 6.4). They are stronger from Tuesday to Thursday. Monday and 

Friday have particular patterns and at weekends, the flat pattern is easily detectable. Observe 

also that with 1-hour time resolution (red line) the patterns are harder to visualize. However, for 

eight hours time resolution is clear the stepped pattern for almost every day, with exception at 

weekend. This stepped pattern could have relation with eight hours periodic work shift (three 

each day), daily temperature changes, scheduled production, etc. Besides, we can notice how 

at night work shifts, consumptions are lower than during sunlight hours. 

 
Figure 6.3. Analysis of eight hours load profile in one month. 

 
Figure 6.4. Hourly load profile and 8 hour load profile comparison in one week. 
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These graphical examples show us the visual patterns in load profiles and how changing the 

time resolution they can be easier to visualize and identify. These type either visible or no 

visible patterns are called here dominant patterns, DPs.  

Because DPs have a reduced noisy LP problem, they are supposed to be easier to forecast. 

Therefore, the main idea of our approach is to take advantage of those dominant patterns that 

provide the most valuable information to the LMFS.  

Next, Hilbert Huang transform (HHT) is used to detect and determinate these most stable and 

strongest DPs. Thus, the best DP(s) can be chosen to improve the accuracy of the final LMFS 

meanwhile the added complexity of the system keeps as reduced as possible. 

6.3. Hilbert huang transform for DP detection 

One of the main steps of Hilbert-Huang transform (HHT) is the empirical mode decomposition 

(EMD). It is based on a decomposition of the main signal in its simple intrinsic modes of 

oscillation. The idea of simple intrinsic modes and oscillation, which can be understood as 

periodicity or repetition, fits the basic concept of our proposal. Dominant patterns have a direct 

link with the intrinsic modes of oscillation. Therefore, HHT could be a useful tool to detect and 

select the main DPs to be used in the LMFS. 

Among the main advantages of HHT analysis, the following can be stated: it permits a better 

physical analysis of the signal under test; it is appropriate for nonlinear and nonstationary 

signals, whose main frequencies depend on time; and it permits a time-frequency-energy 

analysis simultaneously, which is very useful for feature extraction. This last characteristic is the 

one we want to take advantage to track the main mentioned DPs. 

As it has been pointed earlier, the LP on the user-side is subjected to random behaviors. 

Sudden changes, makes the user-side LP signal to be nonstationary. Besides, the relationship 

energy consumption with energy-drivers mainly is nonlinear. Time frequency analysis enables 

us to visualize the effect on frequency of the regular and no-regular changes on time, i.e. 

weekend and holiday’s full stops and maintenance partial stops. 

6.3.1. Hilbert Huang Transform 

HHT is an empirically based data-analysis method, proposed by Huang et al. (1996, 1998, 

1999) [64]. The procedure to implement the HHT is composed of two main parts: first, the 

decomposition of the signal in its intrinsic mode functions (IMFs), which is called Empirical 

Mode Decomposition (EMD), empirical Huang’s approach; and second, the Hilbert spectral 

analysis (HSA) of each empirical mode, based on Hilbert transform. For the sake of simplicity, 

the basis and equations that define the HHT and the HAS have been moved to Appendix B. 
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There are presents the equations and algorithm to get the IMFs and the equations to get the 

Hilbert spectrum. 

6.3.2. HSA for DP detection 

In order to carry out the HHT and HSA, we analyze the weekly pattern obtained from 25 normal 

weeks. Normal weeks mean full working weeks, without holidays, but including weekends. The 

needed time resolution is one hour, so the pattern has this time resolution. Figure 6.5 illustrates 

the 25 LPs of each week and the weekly LP pattern (ݐ௠௘௔௡) obtained by means of an average 

operator applied to each hour: 

௠௘௔௡ሺ݊ሻݐ ൌ
1
ܰ

෍ ܮܹ݇݁݁ ௝ܲሺ݊ሻ

ே

௝ୀଵ

 

(6.1) 

Where ݐ௠௘௔௡ሺ݊ሻ and ܹ݁݁݇ܮ ௝ܲሺ݊ሻ are respectively the values of the LP pattern and the week LP 

of the week ݆݄ݐ for the hour ݊ and ܰ is the number of considered normal weeks, in this case of 

25 normal weeks. 

The details of the energy dataset used will be given later in the results section. Now, these 

normal weeks are used to explain the DP detection using HSA. 

 
Figure 6.5. Weekly LP pattern, with hourly time resolution. 
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ones to low frequency modes. We can intuitively say that the first and second IMFs gather the 
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amplitude) IMF is the fourth one. The main period of this IMF correspond to 24 hours. This type 

of strong and stable modes and their periods are the key parameters to define later the main 

DPs. 

In order to confirm these observations we apply the HSA and we get the Hilbert spectral graphic 

plotted in Figure 6.7. This time, the highly variable frequency values in the spectral of the first 

two IMFs, ܿଵ and ܿଶ, confirm our first intuition.  

On the other hand, when we analyze the lower frequency IMFs, i.e. ܿଷ to ܿ଺, we find more stable 

frequencies as it was noticed in the previous analysis. As well, we confirm our second 

observation about IMF ܿସ: it is one of the most stable and part of the energy of the signal relies 

in this IMF. Its frequency stability and energy makes it an excellent candidate to be used as part 

of the final LMFS, because, according to this analysis, it is predictable and it keeps important 

information of the original target. 

 

Figure 6.6. IMFs of the signal under analysis. 
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Figure 6.7. HSA of the signal under analysis. 

6.3.3. New input candidates based on the obtained patterns 

One of the methods to exploit information from patterns is using them as inputs. Therefore, we 

have create two new input candidates based on the full weekly pattern, t୫ୣୟ୬ (6.1), and a 

reduced version t୮, which is defined in (6.2) that omits the first three IMFs that were found the  

most unstable in the time-frequency spaces. There N is the number of obtained IMFs, c୨ሺnሻ is 

the jth-IMF for the sample n and rNሺnሻ is the residue of the EMD process. 

t୮ ሺnሻ ൌ ෍ c୨ሺnሻ ൅ rNሺnሻ
N

୨ୀସ

 

(6.2) 

Thereby, we give to the LMFS information of the full weekly pattern and of the most stable 

IMFs, from Cସ until C଻. Figure 6.8 presents the two new input candidates. 

 
Figure 6.8.  Weekly pattern with 1-hour time resolution (blue line) and reduced weekly pattern (red line). 
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6.4. Partial models of dominant patterns (PM-DP) 

As it was pointed out, by means of time resolution reduction, patterns become more visible and 

with les noisy LP problem and therefore, they become easier to be forecasted. Therefore, a 

modular approach is suitable to take advantage of these DPs and improve forecasting 

accuracy. Here this modular approach is called “Partial models of dominant patterns (PM-DP)”. 

Partial models (PMs) are local or expert models dedicated to model and forecast a particular 

version of the target LP, which has less time resolution than the original target LP. PMs can be 

based on any type of adaptive network or other modeling technique. However, here we used 

ANFIS and ANN to implement the PMs because they were found to be two of the most 

successful data driven approaches in the current literature. 

The information obtained from PMs is added to the main PM by means of an adaptive addition, 

which is implemented using an ANFIS or ANN according to the selected adaptive network. 

Figure 6.10 depicts our proposal. It has to be considered that Figure 6.10 sketches the process 

of pre-processing and configuration of a LMFS and not the forecasting process itself. Once the 

LMFS has been configured (modeling process), the forecasting process demands a less 

complex structure. 

Taking as reference the flow diagram presented in Figure 6.1, HHT analysis (HHTA) is carry out 

on step 2, i.e. data preprocessing step. After the HHTA is applied to the vector  T୫ୣୟ୬, which 

corresponds to the dataset obtained from the mean target signal t୫ୣୟ୬ሺnሻ (6.1), we got the 

parameter ݎ, which contents the time resolution of the partial models (PMs). From the same 

analysis, the denoised vector T୮ is obtained. This is the dataset of the reduced version t୮ሺnሻ 

(6.2). In a parallel process, the LMFS is able to build up the lagged variables, ܶ݀݅, from 

historical data and to change the time resolution of the candidate input variables (ܺ݅) of the 

selected partial models. The selection of the PMs is a decision taken by the user based on the 

criteria that were explained in the former section.   

The step 3, model definition and configuration, is supported by GAs, as is sketched in Figure 

6.9. The GAs get the optimal final inputs for each PM and the number of membership functions 

when an ANFIS is used or the number of hidden neurons when an ANN is used instead. In [4] it 

is explained how the GA-based self-configuration process is carried out. 

Finally, the output of each partial model, ܻ݆, goes to an adaptive adder, which can be 

implemented by an ANFIS, ANN, a lineal combination of the ܻ݆ or any other adaptive addition. 

The output (ܻ) of this last unit is the forecast of the target signal. 
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Figure 6.9. Proposal for a LMFS based on HHT and PM-DP analysis: preprocessing and model configuration. 

Furthermore, using a parallel topology as the proposed one, the partial results ( ଵܻ to ௠ܻ) can be 

useful for other upper applications, which do not need a high resolution forecasting. For 

example, for daily consumption estimation and control, energy wasting detection based on 

normal consumptions, etc. 

Once the LMFS has been configured, the red lines and pink blocks in Fig. 10 are not more used 

and the LMFS now can be used for forecasting tasks putting the right inputs in its input layer. 

Notice that  T୫ୣୟ୬ and T୮ after configuration process become static patterns that are used as 

inputs. Beside, the delaying unit is not used anymore because in the forecasting mode it is 

supposed that the inputs are given to the LMFS in the right time order. 

6.5. Implementation and Results 

6.5.1. Energy database 

In order to test and evaluate the proposed method, real energy consumption and outdoor 

temperature data from a car factory were used. The data were taken from an EMS database 

and it corresponds to one of the biggest workshops of the car factory, in which the process of 

building up the bodywork is done. This place was chosen because the variety and high noisy LP 

problem of the loads, so the method could be tested with a challenging LP.   

The raw energy database starts from June 5 of 2010 to March 25 of 2011, with one-hour time 

resolution. However, as mentioned on HHT analysis section 4, the database was reduced to 

keep only the “normal weeks”, this is 25 full working weeks, without holidays, but with weekends 



Load Forecasting on the User‐side by means of Computational Intelligence Algorithms 

6. Load modeling and forecasting based on dominant patterns 

     
  Page 100 / 139 

Juan José Cárdenas Araujo    May 28, 2013 
 

   
 

 

(Figure 6.5). The reason is holidays introduce considerable outlier behavior in the weekly 

pattern. In this stage, this problem is not considered and so it is avoided deleting no normal 

weeks. 

6.5.2. Scenarios 

We have tested the proposed scheme under two scenarios:  

1. Scenario 1 uses directly the full available energy database, 25 normal weeks. The first 

15 normal weeks (60%) are used for pre-processing, configuration and training (Fig. 2, 

steps 2 to 4). The last 10 weeks are used for checking and validation (step 5). This 

scenario emulates the case when a LMFS is implemented and there is a previous EMS 

database available. 

2. Scenario 2 emulates the behavior of an increasing energy-database (eDB). When a 

LMFS is implemented in a new iEMS or EMS normally, there is not available an eDB 

from the beginning, so the LMFS has to be periodically updated with the incoming new 

data.  In this scenario, the available database for training and checking starts with six 

normal weeks and the models keep updating with each “new” normal week until reach 

25 weeks as in the scenario one. The percent of data for training always was 60% and 

40% for checking.  

Notice that the percent of training and checking data was always the same and the percent of 

checking data is considerably equal to percent of training data. This was chosen so in order to 

detect overfitting problems. 

On the other hand, ANFIS and ANN were the selected adaptive networks for basic structures of 

the full LMFS. The idea of each test is to compare simple structures versus distributed and 

modular structures based on partial models of dominant patterns. 

Finally, the forecasting target for both scenarios is one day ahead with one-hour time resolution 

(next 24 samples). As explained in the introduction section, this type of short-term LF is useful 

for predictive peak control, predictive energy source optimization (choose, in the future, the best 

combination of supplies from a pool of them), energy waste supervision, predictive energy 

supervision, etc. 

6.5.3. Energy drivers or input candidates (step 0) 

Using the available datasets (temperature and energy consumption), the input candidates for 

main and partial models were: 

 the week day (WED),  

 time in minutes (h),  
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 temperature (temp),  

 continuous working day (CWD),  

 one week lagged consumption (ݐԢሺ݊ െ  ,(ሻݏݕ7݀ܽ

 one day lagged consumption data (ݐԢሺ݊ െ   ,(ሻݕ1݀ܽ

 one week pattern based on the averaged consumption of training normal weeks, ݐ௠௘௔௡,  

 one week pattern based on the low frequency IMFs, ݐ௣.  

For one day lagged consumption, corrections were carried out in order to avoid using wrong 

information. For example, it is not correct using Sunday information to forecast Monday 

consumptions or Saturday information to forecast Sunday consumptions. One week lagged 

consumption was used to replace the wrong information. 

6.5.4. Outlier detection and gap padding (step 1) 

The datasets to be processed in this step are the energy consumption and temperature 

datasets. The other variables are built up from recorded time and date or they are derived 

directly from the consumption target, so they do not need to be checked. 

This step was carried out following the statistical threshold-based detection presented on 

equation (3.1) in Chapter 3 for outlier detection. Gap padding was implemented using 

interpolation technique for short gaps. For long gaps, data of one or seven days before were 

used to pad the gaps. 

Furthermore, the selection of normal weeks from the full energy consumption database was 

carried out in this step. At the end of this process, the raw energy database was reduced from 

268 days with one-hour time resolution (6432 samples) to 175 days (25 normal weeks) with 

one-hour time resolution (4200 samples). 

6.5.5. Data pre-processing (step 3) 

In this step, using only training data, first we normalized the variable datasets dividing every 

variable for the maximum value of the respective full dataset. This maximum value is only a 

reference for scaling properly the data. It has to be considered when converting back the scaled 

forecast to the real units. 

Then, with a reliable database, we applied the HHT analysis to the target signal to get the 

dominant patterns as explained in section 4.2. The result of this analysis is the detection of the 

dominant patterns and their respective time resolution. Remember that to select a specific DP 

the criteria are; it has to be relatively frequency steady and its main oscillation frequency has to 

be congruent with the time resolution of the target LP. In the analyzed datasets for scenario 1 

and 2, we got that the strongest and most stable IMF or intrinsic oscillation mode was the fourth 
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one (see Figure 6.7). This IMF has a main periodicity of 24 hours and we use this value directly 

to define the time resolution of the selected partial model.  

For the implementation, we believed that it would be desirable to use only the related 

information of one IMF because either the other IMFs were unstable (Cଵ to Cଷ, higher 

frequencies) or they had low information for only one day ahead forecasting (Cହ to C଻, lower 

frequencies). It has to be stated the lower frequencies could be useful for long-term forecasting 

or longer horizon forecasting, e.g. one week forecasting with one-day time resolution.  

Notice that the chosen IMF could be related by daily periodical behavior of natural day cycle 

and the factory timetable, production schedule and normal life cycle of 24 hours. In the specific 

case of the factory under test, the factory is working continuously for 24 hours during working 

days (Monday to Friday). 

6.5.6. Model definition and configuration (step 4) 

For model definition and configuration, we applied the GA-based self-tuning algorithm [4] to 

choose:  

 Final inputs for each PM (i.e. main PM ( ଵܻ௛) and dominant PM ( ଶܻସ௛)). 

 Number of membership functions when ANFIS was the basic modeling structure or 

 Number of hidden layers when ANN was the basic modeling structure.  

Results are presented on Table 6.1. The data used to carry out this step was the training data 

defined for each scenario. One interesting result was that for both scenarios the obtained 

configuration remained without significant changes in all the executions of the LMFS (scenario 2 

involves multiple executions of the proposed LMFS, one for each new introduced normal week). 

 

Table 6.1. GA self-configuration decoded results. Input candidates, number of membership functions (ANFIS) 
and number of hidden neurons (ANN). 

Input candidates  ANFIS  ANN 

Main PM  24 h PM  Main PM  24 h PM 

WED: week day  Yes, 2 mf  Yes, 5 mf  Yes  Yes 

h: time of the day in minutes  Yes, 2 mf  No  No  No 

temp: outdoor temperature  No  Yes, 4 mf  No  No 

WD: working day  Yes, 2 mf  Yes, 2 mf  Yes  Yes 

t'(n‐168): denoised and 7 days delayed consumption  No  No  No  No 

t'(n‐24): denoised and 1 day delayed consumption  Yes, 2 mf  No  Yes  Yes 

tm: weekly pattern  No  No  Yes  Yes 

tp: reduced tm, using the IMFs C4 till C7  No  No  Yes  Yes 

      9 hidden neurons  5 hidden neurons 
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An unexpected result after carry out the self-tuning GA was that the inputs for the ANFIS-based 

LMFS were different from the inputs for the ANN-based LMFS. This could be explained 

because the differences between the ways each structure maps the output and input data and 

the possible redundancy of information on the chosen input candidates. 

6.5.7. Training and assessment 

Scenario 1 (full eDB available) 

Once each basic structure was configured, the full training process for the whole system was 

executed. The results are presented on Table 6.2 for scenery one. Improvement is calculated 

using: %Improve.=(RMSE_simple_model-RMSE_PM-DP)/ RMSE_simple_model*100%. 

Table 6.2. RMSE and MAPE for checking validation (40% of full data) 

  Simple model 
(1h) 

PM‐DP 
(1h+24h) 

  Simple model 
(1h) 

PM‐DP 
(1h+24h) 

 

Basic AN  RMSE  RMSE % Improve. MAPE MAPE  % Improve.

ANN  0,037  0,029 22% 5,9 4,8  19% 

ANFIS  0,036  0,030 17% 6,1 4,9  20% 

 

For a graphic assessment of the proposed model, Figure 6.10 presents a sample of the 

obtained results for one week of forecasting consumptions using checking data. It can be seen 

how the PM-DP effectively corrects the error due to wrong offset forecasting (lack of lower 

resolution information). 

 

Figure 6.10. One week load forecasting using checking data. 

06/07/10 07/07 08/07 09/07 10/07 11/07 12/07

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Date (dd/mm)

C
on

su
m

pt
io

n 
(n

or
m

al
iz

ed
)

Consumption data vs. date

 

 

Target chk
ANFIS
ANFIS-PM-DP



Load Forecasting on the User‐side by means of Computational Intelligence Algorithms 

6. Load modeling and forecasting based on dominant patterns 

     
  Page 104 / 139 

Juan José Cárdenas Araujo    May 28, 2013 
 

   
 

 

Scenario 2 (eDB growth and weekly model update) 

Table 6.3, Table 6.4 and Figure 6.11 and Figure 6.12 presents results for scenery two. Table 

6.3 and Figure 6.11 correspond to the assessment of ANN-based LMFS and Table 6.4 and 

Figure 6.12 for ANFIS-based LMFS. 

Table 6.3. RMSE for ANN-LMFS, using checking data (40% of available data), emulating energy database 
growth. 

Season  eDB size  
(weeks) 

ANN 
RMSE 

PM‐DP ANN 
RMSE 

%Improve. 

Summer  6  0,0593  0,0638  ‐8% 

Summer  7  0,0608  0,0541  11% 

Summer  8  0,0586  0,0526  10% 

Summer  9  0,0601  0,0561  7% 

Fall  10  0,0622  0,0563  9% 

Fall  11  0,0603  0,0508  16% 

Fall  12  0,0514  0,0430  16% 

Fall  13  0,0491  0,0410  17% 

Fall  14  0,0487  0,0435  11% 

Fall  15  0,0613  0,0529  14% 

Winter  16  0,0526  0,0461  12% 

Winter  17  0,0532  0,0463  13% 

Winter  18  0,0534  0,0453  15% 

Winter  19  0,0533  0,0427  20% 

Winter  20  0,0572  0,0491  14% 

Winter  21  0,0525  0,0424  19% 

Spring  22  0,0471  0,0391  17% 

Spring  23  0,0404  0,0322  20% 

Spring  24  0,0377  0,0314  17% 

Spring  25  0,0370  0,0290  22% 

 

 

Figure 6.11. RMSE evolution according to eDB growth. ANN test. Models updated each week. Scenario 2. 
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Table 6.4. RMSE for ANFIS-LMFS, using checking data (40% of available data), emulating energy database 
growth. 

Season  eDB size 
(weeks) 

ANFIS  PM‐DP ANFIS  %Improve. 

Summer  6  0,062  0,053  15% 

Summer  7  0,068  0,060  11% 

Summer  8  0,072  0,065  10% 

Summer  9  0,058  0,050  13% 

Fall  10  0,059  0,052  11% 

Fall  11  0,053  0,047  13% 

Fall  12  0,051  0,043  16% 

Fall  13  0,045  0,038  14% 

Fall  14  0,057  0,050  12% 

Fall  15  0,058  0,050  14% 

Winter  16  0,054  0,046  15% 

Winter  17  0,054  0,043  21% 

Winter  18  0,055  0,047  16% 

Winter  19  0,054  0,046  15% 

Winter  20  0,053  0,044  17% 

Winter  21  0,051  0,045  10% 

Winter  22  0,048  0,042  13% 

Spring  23  0,041  0,033  19% 

Spring  24  0,038  0,030  21% 

Spring  25  0,036  0,030  17% 

 

 

Figure 6.12. RMSE evolution according to eDB growth. ANFIS test. Models updated each week. Scenario 2. 

6.5.8. Observations 

According to the results obtained in both scenarios, we can say that effectively the information 

supplied for dominant patterns of lower time resolution improves the final forecasting result. We 

have defined this effect as an offset correction due to the effect of movement up or down of the 

forecasted LP (Figure 6.10). 
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Moreover, the degree of improvement will depend on the quality of the supplied information. 

This can be quantified by the RMSE of the used PMs, in this case the 24 hours PM. For this 

reason, the optimal or near-optimal configuration of each sub-model is key point to get the best 

performance of the LMFS. Therefore, the use of self-configuration algorithms is important to get 

the desired accuracy. Besides, this implementation solves other problem, which is the 

configuration of various models instead of only one main model.  

Second scenery results shows that the propose LMFS work quiet well with low information and 

the improvement percent keeps always upper the 7% and in average was 14% for both cases 

(ANN and ANFIS based LMFS). The only exception was for the LMFS based on ANN when the 

eDB was 6 weeks only. In this case, the information to train the lower resolution model possibly 

was not enough to get a reliable forecast. 

Finally, the proposed LMFS presents the advantage of generating lower resolution forecasts 

that can be used on other upper applications, which do not need high-resolution forecasts. 

Taking into account all these results and observations, we can conclude that the proposed 

LMFS outperforms the modeling simple structures usually used. 

6.6. Conclusions 

From the hypothesis of existence of dominant patterns (DPs), we have demonstrated their 

veracity by means of graphical analysis and mathematical transform. It was found that they 

occur at different time resolutions and their stability and modeling easiness depend on this 

parameter. The two last features qualitatively determined how useful for the LMFS can be the 

information obtained. 

In order to detect and select the most useful DPs, we proposed Hilbert-Huang transform (HHT) 

and Hilbert-spectral analysis (HSA). The results shown that the HSA of IMFs, allowed us to 

visualize stability and strength of the IMFs and base on these parameters, we can choose 

properly the main DPs. Nevertheless, the method is open to use other time-frequency 

transforms or statistical operator to find the DPs.  

Then, a new scheme to take profit of these dominant patterns to improve forecasting accuracy 

was presented and tested satisfactorily. We use a parallel topology of partial models of 

dominant patterns (PM-DP). Each PM is dedicated to model and forecast the associated DP 

and one of them the target LP. This is called main PM. Each PM is based on a single adaptive 

network as for example an ANFIS or ANN. However, the method can be applied to any other 

type of modeling structure. 
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The obtained results were satisfactory as long as PMs of main and dominant patterns were 

properly configured. The lower the RMSE of PMs was, the more improvement in the final output 

of the LMFS we got. Because of this proposition and the increment of number of basic models 

to be configured, a self-configuration algorithm via GA was proposed to guarantee a properly 

configuration of each PM. 

This whole scheme demonstrates to be a very powerful and promising tool in the energy 

forecasting area. The methodology and the focus given to pattern repetitions on load profiles on 

user side, represent a breakthrough in applied modeling techniques. 
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7. Conclusion 
 
The main conclusions of this thesis work, as well as our outlook of related trends and future 

work are presented in this chapter. 

 

CONTENTS: 

7.1. Conclusions 

7.2. Trends and future work 
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7.1. Conclusions 

The starting idea of this thesis has been to study, design and propose a user-side load 

modeling forecasting system (LMFS) aimed at supporting an intelligent energy management 

system (iEMS). As explained at the beginning of the thesis, for an iEMS the accuracy of its 

LMFS is as important as its adaptability and autonomy. 

We started with a study of the load profile (LP) on the user side, pointing out the main troubles 

and defining a suitable methodology for building up an LMFS. In arriving at the main 

conclusions of these studies we found three major problems, to which our proposals were 

oriented toward solving: 

 High degree of randomness in load profiles associated with random behavior of the user 

(here called noisy LP problem) 

 Wide variety of loads 

 Great number of loads for modeling for the same LMFS. 

The above problems highlight the need for an LMFS which has: autonomy, so that it can build 

multiple models with very little or no human intervention; adaptability, so the LMFS can deal 

with different types of LPs associated with different types of loads; and accuracy, in order to 

reduce the errors generated from the noisy LP problem and to meet the precision, time 

resolution and forecast horizon conditions required by the iEMS. 

Taking into account the state of the art on load forecasting in the field of energy, we found that 

hybrid algorithms from computational intelligence, statistical and signal processing functions 

were the best tool candidates for designing the LMFS with the required features. Thus, three 

proposals were presented, based on such algorithms: 

1. Evolutionary training for new adaptive networks. 

2. Autonomous configuration and multi-site modeling. 

3. Load modeling and forecasting based on dominant patterns. 

The first of them tried to exploit the flexibility of genetic algorithms (GA) and its ability to solve 

multi-objective optimization problems. Therefore, an evolutionary training algorithm (ETA) was 

presented for training adaptive-network-based-fuzzy inference systems (ANFIS). The employed 

GA takes into account both training and checking errors simultaneously, so overfitting can be 

avoided; thus, excellent generalization capabilities were obtained.   

An additional objective was that ETA should be easily adaptable for training new adaptive 

networks (AN), which were based on classic ANFIS. Thus, a modified ANFIS was proposed. 

The modification consists of changing its output membership functions, which were polynomials, 

to exponential functions. Using them as output functions provides a more flexible and non-linear 
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function which can deliver finer adjustments in the ANFIS output layer; and this also has a 

positive effect on the generalization ability of the LMFS. ETA successfully fulfilled its purpose. 

With just a few modifications in the decoding functions of GA, an appropriate training algorithm 

was obtained for the new structure. 

On the other hand, the added computational burden and the corresponding elapsed time was a 

drawback of the proposed system. This was reduced by the use of parallel GA, which exploits 

multiple CPU-processors throughout the computer simulation.  

The second proposal, aimed at autonomous configuration based on a hybrid algorithm, was 

based on the experiences with GA and ANFIS; their potential was evident in the previous 

approach to modeling energy consumption on the user side. The hybrid algorithm was focused 

on improving autonomy and adaptability features. Thus, a self-configured and multi-site LMFS 

was obtained. Once again, the flexibility and adaptability of GA and ANFIS was exploited 

successfully. 

The proposed LMFS achieved excellent results in managing consumption data from five 

different sources. Three of them were large machines belonging to same workshop. Another 

one was the selfsame workshop where the machines were. And the last one was another 

workshop whose overall consumption was considerably higher than the previous loads. 

Moreover, by managing and modeling different types of loads and with different levels of 

consumption, we validated how the level of consumption was directly related with the 

randomness of the LP and how this affects the accuracy of the final forecast. This was clear 

when we compared: the results of the largest workshop with the results of the other loads; the 

result of the overall consumption of the smallest workshop with its machines; and the result of 

the largest machine with the other two machines. The absolute root mean squared error 

(RMSE) was always higher for higher consumptions, but relative RMSE (RMSE/max. 

consumption * 100%) was lower for higher levels of consumption. 

Finally, and based also on one of the starting hypotheses of the thesis, our third and last hybrid 

LMFS sought to take advantage of the existence of dominant patterns (DPs) in user-side LPs of 

consumption. The objective at this stage was to improve the accuracy of final forecasting and to 

maintain the autonomy and adaptability achieved with the previous proposals. 

In order to achieve these objectives, we took advantage of time-frequency transforms. This 

allowed us not only to identify the DPs, but also to visualize and analyze their stability over time. 

The chosen transforms were the Hilbert-Huang transform (HHT), which is based on the 

empirical mode decomposition (EMD) of the target LP, and the Hilbert spectral analysis (HSA), 

which obtained intrinsic mode functions (IMFs) in time-frequency space. This methodology 
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allowed us to detect and quantify the information that a given dominant pattern would have 

supplied to the main forecasting.  

In order to leverage the extra information from DPs, our proposal was to use a parallel topology 

of partial models of dominant patterns (PM-DP). Each PM is dedicated to modeling and 

forecasting the associated DP, one of them being the target LP. This is called main PM. The 

obtained results were satisfactory as long as the PMs of the main and dominant patterns were 

properly configured. The lower the RMSE of the PMs was, the more improvement in the final 

output of the LMFS we obtained. 

Since our proposed PM-DP technique involves configuring a higher number of models, we 

solved this problem by leveraging our previous proposal for self-configuration via GA. Besides, 

having models and forecasts of the same LP with different time resolutions can be useful in 

supporting other applications that demand lower resolution forecasting of LPs.  

In general, the obtained results were satisfactory and in the end an autonomous, adaptable and 

accurate LMFS was obtained, which was the focus of this thesis from its definition. These 

results fulfill iEMS requirements for implementing applications that control, diagnose and 

support decisions. Even though the target iEMS was for industrial users and large buildings, the 

presented architecture, the obtained LMFS and their functionalities can be extrapolated to other 

types of users. Moving down the level of consumption, we can recommend iEMS for home 

users; and moving up the level, iEMS is perfectly acceptable for utilities, cities, etc. 
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7.2. Trends and future work 

This thesis has been motivated and oriented toward supporting iEMS’ requirements of load 

modeling and forecasting on the user side. These come from iEMS’ upper level applications, 

which are thought to generate energy savings and need a reliably LMFS to work properly. 

Therefore, trends and future work related to these subjects have been divided in two sections, 

one dedicated to iEMS trends and other for depicting the next steps for exploring and improving 

the current LMFS approaches. 

7.2.1. iEMS trends 

iEMS for home users 

The growth of energy consumption databases at the domestic user side, mainly associated with 

implementation of smart-grid paradigm, is creating a new field of research, development and, 

why not to say, business. The availability of such amount of energy consumption data, which 

years ago did not exist, creates new possibilities for the development of advanced applications 

oriented toward improving energy efficiency. Thus, it is expected that iEMS, as described in this 

work, will be common not only in large industrial or building consumers, but also at the home 

user that is increasingly in contact with intelligent applications through high-tech devices with 

high computing and communication capabilities such as smart-phones and tablets. Figure 7.1 

depicts our outlook of one of possible home user iEMS. 

 

Figure 7.1. Home user iEMS3 4 5. 

The load modeling and forecasting systems (LMFS) with autonomy, adaptability and accuracy, 

as the one depicted in the thesis, is the first step for applications aimed towards the goal of 

improvement of energy efficiency for home users. Furthermore, they constitute the basis for 

                                                            
3
 Tablet photo source: http://www.mydigitallife.info   
4
 Laptop and mobile phone photo source: http://blog.ce.org/index.php 
5
 Home display photo source: http://buildaroo.com/es/ 
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future applications, which use their forecast as fundamental information to carry out their 

purpose of supervision, control and diagnosis for energy use optimization. 

Therefore, the main research lines in this direction are: 

 LMFS for home users: challenges and novel approaches. 

 Smart Home Energy Management, with full integration with home equipments and 

meters, sensors and protocols of communications for home user’s iEMS. 

 New developments on upper level applications and strategies, mainly those that can 

save energy and operation and maintenance costs in an automatic way and facilitate 

and increase the use of renewable energies. 

They are expected to be a new field of research and development that can help us to achieve 

the goal of energy efficiency and sustainability, both objectives of current policies of worldwide 

governments and communities, as the European Union. 

 

iEMS, upper level applications based on LMFS forecast 

Continuing the research developed in the thesis, the next step in order to fulfil iEMS 

requirements is to study, analyze and develop upper level applications that can use the models 

and forecasts from LMFS for energy consumption savings, energy costs and/or greenhouse 

gases reductions. For example, they can maximize the use of energy from renewable sources, 

follow a specific load profile of consumption to avoid power peaks, detect energy waste, etc. 

Applications are supposed to generate direct savings, preferably in an automatic way or by 

means of suggestions as a human expert does.  

In the thesis has been considered mainly two types of upper level applications. One of them is 

aimed for load and energy source control, which can decide or support the making decision 

process of when and how a given load starts to work and/or, in the case of micro-generation, 

from which energy source it is more efficient to use the demanded energy. Therefore it is 

possible to shape the load profile of energy consumption to a desired load profile, where, for 

example, power consumption peaks coincide with generation power peaks from renewable 

sources. 

A second type of upper level applications that can exploit LMFS’ models and forecasts are 

those that follow real time consumptions looking for over peaks or anomalous consumptions. 

They can use historic models of process or places as healthy reference to detect the mentioned 

anomalies. Furthermore, they can use extra information from user databases as scheduled 

production, weather variables, fail and maintenance reports, etc. in order to improve its 

diagnosis. Of course, this diagnosis could be linked to specialized maintenance software, to 
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improve the detection of equipment faults through energy consumption (or production) analysis. 

Figure 7.2 sketches the former idea.  

 

Figure 7.2. Intelligent diagnostic system. 

Therefore, optimal timing for consumptions and local generators to avoid energy over 

peaks on the mains and energy consumption diagnosis for iEMS are other two interesting 

research lines needed to give iEMS its capacity of autonomous energy saver. 

Modeling and forecasting of generators 

The features of above applications are evidence of the need of modeling and forecasting not 

only of consumers but also of generators.  On the user side, mainly for large users, are often 

found micro-generation systems such as cogeneration, micro-wind, photovoltaic or geothermal. 

Therefore, the modeling and forecasting of micro-generation on the user side is another 

field of research and development growing in interest and importance in energy management 

area right now and even more in the next years. 

7.2.2. Future work for new approaches of LMFS on the user side 

During the development of the thesis some CI tools, which promised a good performance for 

the pursuit of autonomy, adaptability and accuracy in LMFS on the user side, remained without 

being studied and tested. Some of them are: 

 Genetic programming for getting an autonomous modeling system designer (AMSD): 

The main idea behind this approach is to use genetic programming together with 

adaptive networks, signal processing functions and other relevant operators for pre-

processing, for getting new self-designed structures, which can be trained and evaluated 



Load Forecasting on the User‐side by means of Computational Intelligence Algorithms 

7. Conclusion 

     
  Page 116 / 139 

Juan José Cárdenas Araujo    May 28, 2013 
 

   
 

 

with a generic training algorithm as the proposed in the thesis, the ETA. The ambition of 

this idea is to automate the process of design new adaptive networks using CI 

algorithms: the AMSD could start from and typical known adaptive network, as for 

example an ANN or ANFIS, and finish with a new hybrid adaptive network completely 

different and with improved features. 

 ANFIS configuration by means of pruning algorithm: The technique consists of over 

sizing an ANFIS, using all the possible input candidates, a considerably high number of 

membership functions by input and training the obtained ANFIS. Then, to use a pruning 

algorithm to reduce the size of the ANFIS. This algorithm can be based on evolutionary 

algorithm as GA or particle swarm optimization (PSO) and binary codification of ANFIS’ 

links and weights. The optimization algorithm would find the right configuration code or 

genome that minimizes the fitness function, which could be the RMSE of the training and 

checking data, using a multi-objective optimization process. 

 Study, analysis and development of new methods for dominant patter detection 

and selection: As stated on this work, Hilbert-Huang transform is not the only efficient 

way to detect and select the dominant patterns of load profiles of energy consumption, 

but also a powerful tool to automate forecasting modeling. However, other strategies 

based on wavelet transforms or statistical functions, as correlation, are interesting 

approaches that could be also studied and analyzed in order to get lower resolution 

patterns, which are useful for accuracy improvement in a LMFS. Other topologies 

instead of parallel one also can be considered. 
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8. Thesis dissemination 
 

This work has played an important role both in academy and applied research. The 

dissemination in the first of these fields is reflected by the international journal and conference 

publications; and by collaboration in technologic transfer projects for the second one. Both types 

of contributions are listed in this chapter. 

 

CONTENTS: 

8.1. Related journal and conference publications 

8.2. Technology transfer and innovation projects 
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8.2. Technology transfer and innovation projects 

8.2.1. European projects 

Name of the project: Increase of automotive car industry competitiveness through an 

integral and artificial intelligence driven energy management 

system. 

Funding body:   Commission of European Communities 

Code from funding body:  FP7-288102-EUROENERGEST 

Start date:    01/10/2011, 3 years 

Role in the project:  Researcher. 

Task description:  Study and analysis of energy consumptions in a car factory. 

Definition of critic energies and variables for modeling and 

forecasting. Definition of load modeling and forecasting 

parameters according to control and optimization needs. Design, 

implementation and tests of the load modeling and forecasting 

system. 

8.2.2. National projects 

Name of the project:  Estudi i execució de projectes d' r+d+i en l'àmbit de l'eficiencia 

energètica i les renovables. 

Head researcher:   Jose Luis Romeral Martinez 

Funding body:   FUNDACIÓ CTM CENTRE TECNOLÒGIC 

Start date:    01/04/2009 , 3 years - 1 month - 9 days 

Role in the project:   Researcher 

Task description:  Study and analysis of energy consumptions on the user side 

oriented to data driven modeling. Conceptualization and design of 

predictive and energy efficiency applications based on 

consumption forecasts. 
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Name of the project:  Concepto, diseño y desarrollo de un sistema inteligente de gestión 

de energía en plantas industriales, proyecto colaborativo SEAT-

PR 

Head researcher:   Jose Luis Romeral Martinez 

Funding body:   PROMAUT, S.L.  

Start date:    12/02/2009 , 2 years - 1 day 

Role in the project:   Researcher 

Task description:  Software development related with automatic load modeling and 

forecasting of energy consumptions in a car factory. Besides, 

optimization and supervision applications were implemented.  
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A. Main load forecasting algorithms 

In chapter 2 we reviewed the state of the art in LMF related with energy management. One of 

the main conclusions was the importance of computational intelligence algorithms for LMF. 

Therefore, in this section we are going to outline two of the most important adaptive network 

structures found in the current literature of LMF in energy related areas. These are neural 

networks (NNs) and adaptive-network-based fuzzy inference systems (ANFISs). 

ANFIS and NN are excellent algorithms for LMF because of its potential to solve problems of 

time series modeling. Indeed, the availability of historical energy data on the iEMS databases 

and the fact that ANFIS and NN are data driven approaches capable of performing a non-linear 

mapping between sets of input and output variables make these modeling tools very attractive. 

For deeper information on ANFIS and NN you can check (Jang 1993) and (Haykin 2009) 

respectively. 

A.1. ANFIS 

ANFIS is an Adaptative network based on Takagi-Sugeno fuzzy system. A fuzzy system is 

constructed of input and output variables, membership functions, fuzzy rules and inference 

method. In this case, the inputs are the energy drivers, which are thought to affect the 

consumption profile such as daily production, outdoor temperature, day of the week, etc. The 

membership functions are the functions that define the fuzzy sets. They are used to compute 

the degree of membership for a determinate value of its inputs. For instance, to determinate the 

degree of how high or low the production is. The fuzzy rules are if-then rules that define how the 

output must be for a specific value of membership of its inputs. Thus, by means of the inference 

method, the output values are obtained when the input values are known. In general, the fuzzy 

systems have different kind of inference methods. However, the ANFIS is based on a particular 

type of fuzzy system with Takagi-Sugeno rules as inference method. Figure A.1 shows ANFIS 

architecture of two inputs, four if-then rules and one output, z. x and y are the selected energy 

drivers that could be, for example, scheduled production and forecasted temperature. 

ANFIS structure 

The Figure A.1 shows the architecture of an ANFIS with two inputs, four rules and one output. 

This structure has a maximum of four rules and they are depicted in the equation (A.1) 
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Figure A.1. ANFIS architecture: two inputs, four if-then rules and one output. 

א ݔ ݂݅ ଵܣ  ר  א ݕ ଵܤ   ฺ ଵݖ ൌ ݔଵ݌ ൅ ݕଵݍ ൅  ଵݎ

א ݔ ݂݅ ଵܣ  ר  א ݕ ଶܤ   ฺ ଶݖ ൌ ݔଶ݌ ൅ ݕଶݍ ൅  ଶݎ

א ݔ ݂݅ ଶܣ  ר  א ݕ ଵܤ   ฺ ଷݖ ൌ ݔଷ݌ ൅ ݕଷݍ ൅  ଷݎ

א ݔ ݂݅ ଶܣ  ר  א ݕ ଶܤ   ฺ ସݖ ൌ ݔସ݌ ൅ ݕସݍ ൅  ସݎ

(A.1) 

A linguistic interpretation of the rules applied to energy modeling problem could be: 

 ଵሻܤሺ ݃݊݅݊ݎ݋݉ ݏሻ݅ݕሺ ݁݉݅ݐ  & ଵሻܣሺݓ݋݈ ݏሻ݅ݔሺ ݊݋݅ݐܿݑ݀݋ݎ݌ ݂݅

ฺ ଵ݊݋݅ݐ݌݉ݑݏ݊݋ܿ ൌ ݔଵ݌ ൅ ݕଵݍ ൅  ଵݎ

 ଶሻܤሺ ݐ݄݃݅݊ ݏሻ݅ݕሺ ݁݉݅ݐ  & ଵሻܣሺݓ݋݈ ݏሻ݅ݔሺ ݊݋݅ݐܿݑ݀݋ݎ݌ ݂݅

ฺ ଶ݊݋݅ݐ݌݉ݑݏ݊݋ܿ ൌ ݔଶ݌ ൅ ݕଶݍ ൅  ଶݎ

 ଵሻܤሺ ݃݊݅݊ݎ݋݉ ݏሻ݅ݕሺ ݁݉݅ݐ  & ଶሻܣሺ ݄݄݃݅ ݏሻ݅ݔሺ ݊݋݅ݐܿݑ݀݋ݎ݌ ݂݅

ฺ ଷ݊݋݅ݐ݌݉ݑݏ݊݋ܿ ൌ ݔଷ݌ ൅ ݕଷݍ ൅  ଷݎ

 ଶሻܤሺ ݐ݄݃݅݊ ݏሻ݅ݕሺ ݁݉݅ݐ  & ଶሻܣሺ ݄݄݃݅ ݏሻ݅ݔሺ ݊݋݅ݐܿݑ݀݋ݎ݌ ݂݅

ฺ ସ݊݋݅ݐ݌݉ݑݏ݊݋ܿ ൌ ݔସ݌ ൅ ݕସݍ ൅  ସݎ

The first part in (A.1) is related to antecedents and the second part to consequents. The ANFIS 

structure executes these rules and calculates the output through five layers (Figure A.1). In the 

layer 1, the membership values (or compatibility measures) are calculated by means of the 
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membership functions that are identified by ߤ஺೔
ሺݔሻ and ߤ஻೔

ሺݕሻ, i=1, 2. This step is called 

fuzzification. 

In the second layer, the weight of each rule has to be computed by means of a fuzzy AND 

operation. The equation (A.2) shows how this is done. ω୨ is the weight that belongs to the rule 

jth. This is the output of the layer 2 in Figure A.1. 

௝߱ ൌ ஺೔ߤ
ሺݔሻ · ஻ೖߤ

ሺݕሻ,  ݆ ൌ 1, 2, 3, 4. iൌ 1, 2. ݇ ൌ 1, 2. 

(A.2) 

Next, in the layer 3, the strength, ωഥ ୨, is computed. It is the ratio of the jth weight to the sum of 

the all weights. (A.3) shows the related equation. 

ഥ߱௝ ൌ ௝߱

∑ ߱௜
ே
௜ୀଵ

,    ܰ ൌ 4 

 (A.3) 

In the layer 4, ωഥ ୨ multiplies the related output function (linear equations of the consequent part 

in (A.1) , z୨). This is: 

௝ݖ · ഥ߱௝ ൌ ഥ߱௝ · ൫݌௝ݔ ൅ ݕ௝ݍ ൅  ௝൯ݎ

(A.4) 

Finally, in the layer 5, the overall output is obtained, which is the sum of the former outputs, i.e. 

ݖ ൌ ෍ ௝ݖ · ഥ߱௝

௝

 

(A.5) 

ANFIS training algorithm 

Previously to the training process the rules have to be defined. Depending on the method to 

calculate the number of rules, it can be a third parameter to be configured. In an application of 

data-driven modeling, where none human knowledge is used to define the rules, the number of 

rules (ݎ) are defined in function of the number of inputs (n) and number of membership 

functions by input (m). The maximum number of possible rules is calculated using (A.6). 

Therefore, this parameter does not change in the training process (Jang 1993). 

ݎ ൌ ݉௡ 

(A.6) 
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Once the rules are defined the training process can be carry out. There are two kinds of 

parameters to find by training process in an ANFIS. The first ones to be tuned are the 

membership function parameters of each input, which are called antecedents (layer 1, Figure 

A.1, left side in (A.1)). Theses depend on the kind of selected membership function. The second 

parameters to be tuned are the consequents, which are the coefficients of the output 

polynomials (layer 4, Figure A.1, right side in (A.1)).  

The most common training algorithm is the hybrid algorithm, defined in (Jang 1993). The 

antecedents and consequents are obtained from historic data by means of back propagation 

(BP) and least squares (LS), respectively. This algorithm is carried out in two steps in each 

epoch (Table A.1). First, a forward pass and second, a backward pass. Once all the parameters 

are initialized, in the forward pass, with the antecedents fixed, input data and functional signals 

go forward to calculate each layer node output and the LS algorithm is used to compute the 

consequents. After identifying consequents, the functional signals keep going forward until the 

error measure is calculated. In the backward pass, the error rates propagate from the output 

end toward the input end, and the parameters in antecedent part are updated by the BP 

method.  

Table A.1. Hybrid algorithm for ANFIS training. 

ANFIS Parameter  Method  Forward Pass  Backward Pass 

MFb parameters (premise part)  Human knowledge / BP algorithm  Fixed  Gradient Descent 

Rules  Human knowledge / BP‐LS algorithm  LS Estimate  Gradient Descent 

Coefficients (consequent part)  LS algorithm  LS Estimate  Fixed 
a MOGA is the acronym of Multi Objective Genetic Algorithm. 
bMF is the acronym of membership function. 

 

The function to be minimized in both steps is: 

 

ܧܵܯܴ ൌ ඩ
1
N

෍ሺ݀௜ െ ௜ሻଶ݋

N

௜ୀଵ

 

(A.7) 

Where ݀௜ is the desired output and ݋௜ is the ANFIS output for the i-th sample from training data. 

N is the number of training samples.  
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A.2. NN 

Unlike ANFIS, NN have had more popularity in the research field and in real applications, 

including the field of load forecasting. Its theory is well known and for that reason only the main 

characteristics of the used NN and its parallelism with the ANFIS structure are here drawn.  

As ANFIS does, NN do not need of explicit knowledge of the relationship between inputs and 

output to establish a map between them. Only historical data is needed. Once the NN structure 

is defined (kind of NN, inputs, outputs, hidden layers, neurons, etc.) training algorithms are used 

to extract the relevant information from the historical data and set up the model (weights of 

nodes). 

There are different algorithms to train the NN. Among the most popular the error-back 

propagation (EBP) algorithm (Haykin 2009) can be found. This is also one of the algorithms 

used to train the full ANFIS or the antecedent part in hybrid algorithms. However this algorithm 

is slower than more advanced others and even sometimes produces no adequate results. For 

that reason, the algorithm here used was the Levenberg-Marquardt (LM) (Haykin 2009) 

algorithm. It is faster than EBP and able to deal with big NN (more than 500 weights in the 

network) Also the results are close-to-optimum NN (Wilamowski 2009). 

The kind of NN chosen to modeling the LP was one of the most popular, the so called multi-

layer perceptrón (MLP). The MLP consists of an input layer, one or several hidden layers and 

an output layer. In this case a hidden layer with only ten neurons was enough to model the load 

profile with a good capacity of interpolation. In Figure A.2 the general structure of the MLP can 

be seen (Wilamowski 2009).This architecture is quite similar to ANFIS architecture (see Figure 

A.1). In fact, the results here obtained with both structure were quite near. This will be showed 

in the results section.  
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

 

Figure A.2. The MLP-type n inputs, h hidden neurons and 1 output. Architecture n-h-1. 

The input layer joins the model’s inputs vector x while the output layer yields the model’s output 

vector y. The hidden layer is characterized by several non-linear neurons. The non-linear-

function (also called activation function) is usually the tangent hyperbolic function (A.8). 

݂ሺݔሻ ൌ
݁௫ െ ݁ି௫

݁௫ ൅ ݁ି௫ 

(A.8) 

This structure permit to NN build up a non-linear parameterized mapping from an input x to an 

output y given by the following relationship: 

ݕ ൌ :ݔሺݕ ሻݓ ൌ ෍ ൥ݓ௝݂ ൭෍ ௝௜ݓ · ௜ݔ

௡

௜ୀ଴

൱൩

௛

௝ୀ଴

 

(A.9) 

The parameters of the NN model are given by the so called weights and biases that connect the 

layers between them. The NN parameters, denoted by the parameter vector w, govern the non-

linear mapping. 

The NN parameters w are estimated during a phase called the training or learning phase. 

During this phase, the NN is training using a dataset (called training set) of N input and output 

examples, pairs of the form ܦ ൌ ሼݔ௜, ௜ሽ௜ୀଵݐ
ே . The vector x contains samples of the input variables 

and t is the target signal or variable and it is the real measurement of energy consumption. This 

phase consists in adjusting the weights, w, in order to minimize the error function ܧ஽, which is 

defined in (A.10).  
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ሻݓ஽ሺܧ ൌ
1
2

෍ሺݕ௜ െ ௜ሻଶݐ

ே

௜ୀଵ

 

(A.10) 

The next phase after the training is the generalization phase. It consists in to test the capacity of 

interpolation of the NN. This is done by giving pairs of data to the NN that were not used in the 

training phase. These data come from the data set called checking or test set. To evaluate the 

performance of the NN, RMSE and MAPE are used as described in Section 2. 

B. Signal processing and statistical functions 

In this Appendix, we present some functions and algorithms used to support the modeling 

process. They are mainly aimed for pre-processing. The idea of using these pre-processing 

tools is highlight the relationships between output and inputs to the LMFS. Besides, they can be 

used for outlier detection, input selection, noise reduction, etc. 

Hilbert-Huang Transform is a useful tool in signal processing applications, less applied in LMFS 

but with high potential as it has been demonstrated in this thesis (Chapter 6).  

B.1. Hilbert-Huang Transform 

In order to indentify in an automatic way these visual and no visual patterns we propose here a 

Hilbert Huang transform (HHT) analysis (Huang, Shen et al. 1998). Among the main 

advantages of HHT analysis the following can be stated: it permits a better physical analysis of 

the signal under test; it is appropriate for nonlinear and nonstationary signals, whose main 

frequencies depend on time, and permit a time-frequency-energy analysis simultaneously, 

which is very useful for feature extraction. This last characteristic is the one we want to take 

advantage to track the main mentioned DPs. As it has been pointed, the LP on the user-side is 

subjected to random behaviors and sudden changes, making the LP signal to be nonstationary 

and the relationship with energy-drivers mainly become nonlinear. Time frequency analysis 

enable us to visualize the effect on frequency of the regular and no regular changes on time, i.e. 

weekend and holidays full stops and maintenance partial stops.  

The procedure to implement the HHT is composed of two parts: first, the decomposition of the 

signal in its intrinsic mode functions (IMFs), which is called Empirical Mode Decomposition 

(EMD); and second, the Hilbert spectral analysis (HSA) of each empirical mode. 

In the EMD process, the number of local maximums and minimums of each IMF must coincide 

with the number of zero crossings, with a maximum of difference of one. Furthermore, the mean 

of maximum and minimum envelope must be approx equal to zero. 
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Therefore, if xሺtሻ is a signal and mଵሺtሻ is its local maximum and minimum envelope, hଵሺtሻ is: 

݄ଵሺݐሻ ൌ ሻݐሺݔ െ ݉ଵሺݐሻ 

(B.1) 

The signal hଵሺtሻ will be the first IMF of the signal xሺtሻ if it fulfills the former enunciated 

characteristics. In other case, the process of getting maximum and minimum envelope and 

mean with hଵሺtሻ taking the place of xሺtሻ continues till the conditions to get an empirical mode are 

achieved. This process is called sifting process. 

When the sifting process finishes, the signal under analysis xሺtሻ can be expressed as: 

ሻݐሺݔ ൌ ෍ ௝ܿሺݐሻ ൅ ሻݐ௡ሺݎ
௡

௝ୀଵ

 

(B.2) 

Where c୨ሺtሻ represent the jth-IMF derived of the EMD process and r୬ሺtሻ is the residue at the 

end of the overall process. 

Now we can analyze independently each of the empirical modes and find out its physical 

meaning. In our case this can be the relationship with the dominant patterns of the load profile 

under analysis. To carry out this analysis we use the HSA, which is based on the Hilbert 

transform (HT) of the IMFs, cොሺt଴ሻ, defined as: 

ܿ̂ሺݐ଴ሻ ൌ
1
ߨ

ܲ න
ܿሺݐሻ

ݐ െ ଴ݐ

∞

ି∞
 ݐ݀

(B.3) 

where P is the Cauchy principal value. 

The HT enables us to calculate the analytic signal defined as: 

ܿ௔ሺݐሻ ൌ ܿሺݐሻ ൅ ݆ܿ̂ሺݐሻ 

(B.4) 

Where cොሺtሻ is the HT of the signal cሺtሻ, cୟሺtሻ the corresponding analytic signal and j the 

imaginary unit. The module of the analytic signal is the instantaneous amplitude Aሺtሻ and its 

phase θ ൌ tanିଵ ቂୡොሺ୲ሻ

ୡሺ୲ሻ
ቃ. The phase permits to calculate the instantaneous frequency: 

݂ሺݐሻ ൌ
1

ߨ2
ߠ݀
ݐ݀

 

(B.5) 
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C. Genetic algorithm 

In chapter 1 and 2 were highlighted the importance of getting an autonomous LMFS with self-

configuration capabilities. Taking into account this objective and the revision of the literature, it 

was found that an excellent alternative to provide the LMFS of this capability are the 

evolutionary algorithms.  

Here we present the outline of genetic algorithm (GA), mono objective and multi objective 

(MOGA). As it was seen in chapter 4 to 6, this kind of algorithm it is useful when we want to 

implement an algorithm of search in multidimensional spaces as it is the configuration process 

of an adaptive structure, for example. If it is configured properly, using a priori information, local 

minimums can be avoided and near optimal solutions can be found. 

Genetic Algorithms have been developed by John Holland at the University of Michigan 

(Goldberg 1989). According to the proposed algorithm by Holland, GA consists on searching 

algorithms based on the mechanics of natural selection and natural genetics. They combine 

survival of the fittest among string structures (chromosomes) with a structured yet randomized 

information exchange to form a search algorithm with some of the innovative flair of human 

search.  

In every generation, a new set of artificial chromosomes (strings) is created using pieces of the 

fittest of the old; an occasional new part is tried for good measure; these new chromosomes are 

gotten means functions or operators that mainly emulate the evolutionary processes of 

selection, mating and mutation.  

While randomized, genetic algorithms are no simple random walk, they efficiently exploit 

historical information to speculate on new search points with expected improved performance. 

These algorithms are computationally simple yet powerful in their search for improvement.  

Furthermore, they are not fundamentally limited by restrictive assumptions about the search 

space (assumptions concerning continuity, existence of derivatives, unimodality, and other 

matters). 

The Figure C.1 shows the flowchart of a standard GA. Firstly, the initial population is obtained 

by means of random initialization process or it could be provided by the user, totally or partially, 

using information about where the solution could be lying. The number of individuals or 

chromosomes is an important parameter of the GA, one of which defines the diversity of the 

population. The diversity avoids not getting stuck in local minimum and ensures a broader 

exploration of the search space. Nevertheless, a very large population could make too slow the 

execution of the GA.  
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Figure C.1. Flowchart of a GA. 

Once we have the initial population, the calculation of the fitness functions is executed. This is 

the objective function, which has to be minimized. Every individual or chromosome is evaluated 

by the fitness function. 

Then, the optimization criteria are evaluated. If the criteria have been found, then the GA stops. 

If they are not, the evolutionary operators are being used in order to get the next population or 

next generation. 

The typical operators are selection, crossover and mutation ones. As its name suggests, the 

selection is used to select the parents from the current population. There are many ways to 

execute this operator. Generally, the best individuals are selected as parents and some of them 

are directly put in the next generation (Goldberg 1989). This number of direct children is another 

GA parameter and it determinates the degree of opportunity for the reproduction of the best 

individuals. Generally is called as “the selective pressure”.  

The crossover or mating function is the process of crossing over the genetic material between 

some parents, in order to create the genetic material of the children. The crossover can be done 

by different ways. For example, we can use the scattered function, which takes the genetic 

material from two parents and crosses them over following a generated random binary vector. 

Wherever the binary vector is 1, the gens are taken from parent 1 and in another case from 

parent 2. For example, considering as p1 and p2 the two parents: 

p1 = [a b c d e f g h] 

p2 = [1 2 3 4 5 6 7 8] 
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And if the binary vector is [1 1 0 0 1 0 0 0], the function returns the following child: 

child1 = [a b 3 4 e 6 7 8] 

Mutation operation applies random changes to individual parents to form children. Mutation 

provides genetic diversity and enables the genetic algorithm to search a broader space. When 

the new population is obtained, the cycle is repeated until the optimization criteria are met. 

C.1. Multi objective GA 

Multi objective problem looks for the optimization of two or more fitness functions since it is 

normal that in optimization problem we want to minimize or maximize more than one variable. 

For example, we can seek to decrease the power peaks in a specific process, but without affect 

the performance of the whole system, for example the times of operation, comfort, etc. In order 

to get these objectives, a multi objective genetic algorithm can be used. 

In the multi objective optimization, is normal that whereas one variable is being optimized the 

other one(s) is (are) being affected negatively. Then the search of an optimal solution has to be 

traded off in some way. So the concept of nondominated or noninferior variables and Pareto 

optimality appear (Goldberg 1989). 

Nondominated or noninferior variables are those solutions to the optimization problem that are 

not dominated or inferior to any other solutions according to the fitness functions. For example, 

in Figure C.2 it is showed the result of evaluating the fitness functions of five possible solutions 

for an optimization problem of power peak reduction as main objective and operation time, as 

second objective. It could be observed that the best solutions are lower on the graphic and to 

the left. These are A, B and C. We can see that none of the three points is best along both 

dimensions. There are trade-offs from one of these three solutions to another.  

 

Figure C.2. Multi objective optimization. Five possible solutions for load scheduling 
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For instance, the solution A reduces the maximum load peak to 42 A, but introduces a delay 

extra in the total operation time of 3.5 seconds. B reduces the load peak to 42.5 A, 0.5 A less 

than A but introduces a delay shorter than A, 2 seconds only. Thus, these three points are 

nondominated because there are no points better than these. We can see that D and E are no 

good solutions and they are called dominated solutions. The set of the best solutions, in the 

example A, B and C, is called the Pareto optimal set.  

An MOGA implementation is similar to a GA implementation. The main differences are: MOGA 

has more than one fitness function and the final result is not an alone individual, instead a set of 

optimal individuals are obtained at the end of the optimization process. These individuals below 

to the Pareto set or front. The selection of the final individual from the Pareto set depends on 

the main objective of the application and the importance of the other criteria to be minimized.  
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