
“Giovanni˙Bussotti” — 2012/11/22 — 17:34 — page i — #1

 

Detecting and comparing non-coding RNAs  

 

 

Giovanni Bussotti 

 

 

TESI DOCTORAL UPF / ANY 2012 

 

 

THESIS DIRECTOR 

Dr. Cedric Notredame  

 

 

THESIS DEPARTMENT 

BIOINFORMATICS AND GENOMICS PROGRAMME AT CRG  

(CENTER FOR GENOMIC REGULATION) 

 

 



“Giovanni˙Bussotti” — 2012/11/22 — 17:34 — page ii — #2

 



“Giovanni˙Bussotti” — 2012/11/22 — 17:34 — page iii — #3

 

 

 

Vorrei dedicare non solo questa tesi ma più in generale questo periodo di quattro anni a 

tutti i familiari che hanno continuato ad appoggiarmi di la dal mare. Malgrado non sia 

possible recuperare il tempo passato, di certo bisogna rallegrarsi di quello presente e 

guardare con ottimismo al futuro. 

 

In particolare la mia dedica va ai miei due bei nipoti Giacomo e Paolo, perche’ possano 

avere sempre tanta curiosita’. 

 

Il mio ricordo e la mia dedica vanno anche a nonno Torinto e ai pomeriggi passati 

insieme a raccogliere frutta. 

 

 

 

 

 

 

 

 

 

 

 

 

 

« Sempre caro mi fu quest'ermo colle, 

e questa siepe, che da tanta parte 

dell'ultimo orizzonte il guardo esclude. 

Ma sedendo e mirando, interminati 

spazi di là da quella, e sovrumani 

silenzi, e profondissima quiete 

io nel pensier mi fingo, ove per poco 

il cor non si spaura. E come il vento 

odo stormir tra queste piante, io quello 

infinito silenzio a questa voce 

vo comparando: e mi sovvien l'eterno, 

e le morte stagioni, e la presente 

e viva, e il suon di lei. Così tra questa 

immensità s'annega il pensier mio: 

e il naufragar m'è dolce in questo mare. » 

 

Giacomo Leopardi, L’infinito 

iii



“Giovanni˙Bussotti” — 2012/11/22 — 17:34 — page iv — #4

 



“Giovanni˙Bussotti” — 2012/11/22 — 17:34 — page v — #5

 

Acknowledgments 
 

During these unforgettable years in Barcelona I was very fortunate to be part of an 

extraordinary research group in an outstanding institute, the CRG. It would be 

impossible for me to say how thankful I am for all the help and support I have got, both 

from the scientific and the non-scientific personnel. I have taken advantage so many 

times of the interactions with people at CRG that it would just be impossible to 

acknowledge each and every single person. Still, I would like to take the opportunity to 

express gratitude to some people in particular. 

 

Above all I wish to give credit to my supervisor Dr. Cedric Notredame. Working under 

his guidance has been not just a unique opportunity to learn science from one of the 

most brilliant researchers I ever met, but also a pleasant human experience. I 

acknowledge him for all the efforts in managing our group wisely, and creating the most 

favourable working conditions ever. In these years I really enjoyed going to work every 

single day, and this is mostly merit of Cedric. 

 

I wish to acknowledge the members of my thesis committee, Dr. Roderic Guigó, Dr. 

Juan Valcárcel and Dr. Eduardo Eyras for their availability and help all along these 

years. 

I would like to say special thanks to Roderic Guigó. During these years I had the chance 

to collaborate with him and his group in several projects. This has been a unique 

opportunity for me to get in touch with cutting-edge researchers all across the world 

and, even if only a little, to participate in the prestigious ENCODE project. 

 

I would like to say thanks to all the people in Cedric’s and Roderic’s groups. Special 

thanks go to Ionas Erb and Carsten Kemena, colleagues and friends in these years. 

Especially Ionas followed my PhD progresses, and lastly participated in the revision of 

this thesis. 

v



“Giovanni˙Bussotti” — 2012/11/22 — 17:34 — page vi — #6

 

Finally, I would love to say thanks to Cedric Notredame, Roderic Guigó, Gian Gaetano 

Tartaglia and Anna Tramontano for providing references in the search of a post-doc 

position. 

vi



“Giovanni˙Bussotti” — 2012/11/22 — 17:34 — page vii — #7

 

 

 

Abstract 

 
In recent years there has been a growing interest in the field of non-coding RNA. This 

surge is a direct consequence of the discovery of a huge number of new non-coding 

genes, and of the finding that many of these transcripts are involved in key cellular 

functions. In this context, accurately detecting and comparing RNA sequences becomes 

extremely important. Aligning nucleotide sequences is one of the main requisite when 

searching for homologous genes. Accurate alignments reveal evolutionary relationships, 

conserved regions and more generally, any biologically relevant pattern. Comparing 

RNA molecules is, however, a challenging task. The nucleotide alphabet is simpler and 

therefore less informative than that of proteins. Moreover for many non-coding RNAs, 

evolution is likely to be mostly constrained at the structure level and not on the 

sequence level. This results in a very poor sequence conservation impeding the 

comparison of these molecules. These difficulties define a context where new methods 

are urgently needed in order to exploit experimental results at their full potential. 

These are the issues I have tried to address in my PhD. I have started by developing a 

novel algorithm able to reveal the homology relationship of distantly related ncRNA 

genes, and then I have applied the approach thus defined in combination with other 

sophisticated data mining tools to discover novel non-coding genes and generate 

genome-wide ncRNA predictions. 
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Resumen  
 
En los últimos años el interés en el campo de los ARN no codificantes ha crecido 

mucho a causa del enorme aumento de la cantidad de secuencias no codificantes 

disponibles y a que muchos de estos transcriptos han dado muestra de ser importantes 

en varias funciones celulares. En este contexto, es fundamental el desarrollo de métodos 

para la correcta detección y comparativa de secuencias de ARN. Alinear nucleótidos es 

uno de los enfoques principales para buscar genes homólogos, identificar relaciones 

evolutivas, regiones conservadas y en general, patrones biológicos importantes. Sin 

embargo, comparar moléculas de ARN es una tarea difícil. Esto es debido a que el 

alfabeto de nucleótidos es más simple y por ello menos informativo que el de las 

proteínas. Además es probable que para muchos ARN la evolución haya mantenido la 

estructura en mayor grado que la secuencia, y esto hace que las secuencias sean poco 

conservadas y difícilmente comparables. Por lo tanto, hacen falta nuevos métodos 

capaces de utilizar otras fuentes de información para generar mejores alineamientos de 

ARN. En esta tesis doctoral se ha intentado dar respuesta exactamente a estas temáticas. 

Por un lado desarrollado un nuevo algoritmo para detectar relaciones de homología 

entre genes de ARN no codificantes evolutivamente lejanos. Por otro lado se ha hecho 

minería de datos mediante el uso de datos ya disponibles para descubrir nuevos genes y 

generar perfiles de ARN no codificantes en todo el genoma. 
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Preface 

 

This work focuses on the comparative genomics of non-coding RNAs in the context of 

new sequencing technologies. Within this vast subject, this work aims at dealing with 

two extremely important research aspects nowadays: the development of new methods 

to align RNAs and the analysis of high-throughput data. Regarding the methodological 

aspect, this work introduces BlastR, a new in-silico tool able to reveal the homologous 

relationships between distantly related non-coding genes in a fast and reliable way. This 

tool is able to deal with poor sequence conservation by taking into account additional 

information sources and is less computationally demanding than state of the art 

methods. The data analysis part of this work is centred mainly on investigating the 

conservation of long non-coding RNAs using a combination of techniques. The 

unprecedented amount of expression data returned by next generation sequencing 

technologies allowed the detection of thousands of new and uncharacterized non-coding 

genes. Despite the fact that just a few dozens were functionally characterized, many of 

these genes are likely to be key regulators of diverse cellular processes and probably 

involved in important biological functions.  
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CHAPTER 1: Introduction 

 

In recent years, the non-coding RNA (ncRNA) field has rapidly expanded (Figure 1) 

with a fast increase in the number of newly identified and biologically relevant 

ncRNAs. Just a decade ago, the number of known ncRNAs was restricted to a small 

amount of housekeeping genes (including ribosomal RNAs, transfer RNAs and 

spliceosomal RNAs) and an even more limited collection of regulatory RNAs, such as 

lin-4 in Caenorhabditis elegans (Lee et al., 1993) and Xist in mammals (Brown et al., 

1992). Since then, the number of novel ncRNAs has increased dramatically and much 

more is known about their function, biogenesis, length, structural and sequence features. 

New and ever more sophisticated high-throughput technologies, such as tiling arrays, 

454 and Solexa sequencing have been applied to comprehensively profile the 

transcriptome of various organisms.  

 

 

Figure 1 - Number of publications in PubMed found using the keyword “ncRNA”. The x-axis represents 

the timeline, the y-axis the number of times the word “ncRNA” matches a publication in PubMed 

normalized by the total number of publications in that year (expressed as one part per ten thousand).
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This wealth of data has allowed the identification of thousands of novel short ncRNAs, 

including PIWI interacting RNAs (Farazi et al., 2008) and small nucleolar RNAs 

(Bachellerie et al., 2002) and has resulted in the compilation or the update of many 

publicly available databases (Barrett et al., 2005; Parkinson et al., 2005; Griffiths-Jones 

et al., 2006; Fraser et al., 2011; Tuda et al., 2011; Mamidala et al., 2012). Furthermore, 

high-throughput approaches also revealed a massive transcription of long ncRNAs 

(lncRNAs) (Clark et al., 2011), operationally defined as RNA longer than 200 base 

pairs that do not template protein synthesis. In the human genome, for instance, the 

GENCODE consortium annotated 9640 lncRNA loci representing 15512 transcripts 

(Harrow et al., 2012). These discoveries were very timely in a context of growing 

concerns for the lack of a significant correlation between the number of protein coding 

genes and the commonly accepted concept of "organism complexity" (Mattick, 2001; 

Mattick and Gagen, 2001). It was proposed that alternative splicing and ncRNAs could 

be accountable for complex gene regulation architectures, meaning that the "Central 

Dogma" of genetic programming enunciated by Francis Crick in 1958 (RNA is 

transcribed from DNA and translated into protein) (Crick, 1958) had to be slightly 

altered, and at least in higher eukaryotes is inadequate (Mattick, 2001; Mattick and 

Gagen, 2001). The biological role of most of these novel long untranslated molecules is 

still a controversial issue. Some authors have even raised doubts on whether these 

transcripts are functional at all (Wang et al., 2004). The lack of shared discernible 

features is making it hard to define lncRNA classes, thus impeding any function 

prediction (Dinger et al., 2009). However mounting experimental evidences have shown 

that lncRNAs are implicated in a variety of biological processes (Mattick, 2009) and 

linked to various diseases including cancer (Wapinski and Chang, 2011). The functional 

roles of lncRNA transcripts have been uncovered in signalling sensors (Wang et al., 

2011), embryonic stem cell differentiation (Dinger et al., 2008), brain function 

(Satterlee et al., 2007; Mercer et al., 2008), subcellular compartmentalization and 

chromatin remodelling (Kaikkonen et al., 2011). Among others, some examples include 

the X chromosome inactivation by Xist, the silencing of autosomal imprinted genes 

Introduction
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accomplished by Air, the nuclear trafficking regulated by NRON and muscle 

differentiation controlled by linc-MD1 (Brown et al., 1992; Braidotti et al., 2004; 

Willingham et al., 2005; Cesana et al., 2011). See table 1 in (Mattick, 2009) and (Rinn 

and Chang, 2012) for more examples and lncRNAdb (Amaral et al., 2011) for the 

central repository of known lncRNAs in eukaryotes. lncRNAs are expressed, some are 

spliced, they are often conserved across vertebrates, and their expression is frequently 

tissue- and/or cell-specific and localized to specific subcellular compartments (Ravasi et 

al., 2006; Dinger et al., 2008; Mercer et al., 2008). It has been shown that lncRNAs can 

act both in cis (Wang et al., 2008b; Orom et al., 2010) and in trans (Rinn et al., 2007), 

some acting as precursors for short ncRNAs (Rodriguez et al., 2004; Kapranov et al., 

2007b; Ogawa et al., 2008), while others are acting independently as long transcripts. 

lncRNAs can be compared and classified according to their similarity. So far, about half 

of reported human lncRNA have shown to be significantly conserved across mammals 

(Derrien et al., 2012b). These levels suggest some key cellular function, even though 

only a small fraction of these transcripts have so far been functionally characterized. 

Such functional analysis remains, however, very superficial and we are still in need of a 

precise molecular mechanism explicating the way this new class of transcripts acts.  

 

Our low level of understanding can be in part attributed to the difficulty when working 

experimentally with lncRNAs: detection is difficult for a combination of biological and 

technical aspects. The first relates to the low levels of non-coding genetic expression. 

Once excluded the ribosomal RNA (rRNA) fraction that normally represents over 90% 

of total RNA, protein-coding mRNAs constitute by far the most abundant transcript 

component in cells. In (Ravasi et al., 2006; Guttman et al., 2010; Cabili et al., 2011) the 

authors report how lncRNAs are on average 3 to 10 fold less expressed than mRNAs. 

Besides the complicated task of capturing weaker expression signals, many lncRNAs 

have pronounced tissue/stage specificity (Cabili et al., 2011; Kutter et al., 2012). In 

other words, lncRNA genes can easily be left undetected unless the correct cell type and 

condition are considered. One more complication for ncRNA discovery has been the 

Introduction
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difficulty of sequencing deep enough, a hurdle only recently overcome by Next 

Generation Sequencing (NGS). Only a few years ago, the amount of available 

sequences and the sequencing ability were both limiting factors, the genomes were not 

assembled, and there was virtually no notion of transcriptome complexity. Most of the 

classical low-throughput approaches, such as RT-PCR and northern blotting, have been 

successfully used to analyze the expression of small numbers of genes, but they were 

not adequate to address the “pervasive transcription” nature of the genomes (ENCODE 

Project Consortium, 2007; Clark et al., 2011).  

A major obstacle in ncRNA detection is the difficulty to do informative sequence 

comparisons. Standard primary sequence alignment procedures are hampered at the 

very start by the low complexity of the nucleic alphabet, making difficult to produce 

statistically meaningful RNA alignment. The ribonucleic acid chemistry relies on just 

four different residues: two purines and two pyrimidines. Consequently, RNA gene 

sequences do not have strong statistical signals, unlike protein coding genes. For 

instance two RNA sequences must share an identity of at least ~60% to be considered 

significant in homology relationships prediction (Capriotti and Marti-Renom, 2010). 

Below this level, common ancestry is hard to infer with enough certainty. By 

comparison, this threshold is around ~20-35% for proteins (Rost, 1999). Furthermore, 

ncRNA appear to be evolving quickly (Pang et al., 2006) or under the influence of very 

specific evolutionary constraints (Pang et al., 2006). It was proposed that most ncRNAs 

evolve at higher mutation rates, with the maintenance of secondary structures being the 

main source of selection (Bernhart and Hofacker, 2009; Sun et al., 2012). This 

assumption makes sense from an evolutionary standpoint. As ncRNAs will be left 

untranslated, the nucleotide sequence itself is not restrained to keep the codon reading 

frame. Of course, exceptions exist. Specific ncRNAs types can hold functional 

sequences and act via their primary sequence (i.e. miRNAs). Previous report have 

shown that at least some miRNA genes are well conserved across species (Bentwich et 

al., 2005; Berezikov et al., 2006; Guerra-Assuncao and Enright, 2012), reinforcing the 

idea that sequences encoding a function evolve under purifying selection. Aside from 

Introduction
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these specific and relatively rare examples, it seems that for most known ncRNAs, 

evolution is limited by structural constraints (Missal et al., 2005; Lindgreen et al., 2007) 

that induce a characteristic pattern of compensatory mutations (Figure 2). Such 

compensations occur when a mutation is affecting a nucleotide pairing to another in a 

structured domain. If the mutation breaks the base pairing so that the functionality of 

such a domain is compromised, the matching nucleotide is favoured to mutate in turn, 

i.e. is co-varying to restore the base pairing and keep the structure unchanged.  

  

Figure 2 - RNA mutations are tightly linked to the RNA structure conservation. a) Example where the 

mutation of a C into an A is compensated by the change G - U. The two positions are not independent, but 

communicating one with the other to maintain the structure unvaried. b) Same hairpin as shown in figure 

a). The presence of the compensatory mutation is highlighted by the multiple sequence comparison. 

 

For most aligners this is a circumstance hard to account for when using standard 

alignment procedures that postulate positional independence and seek only to maximize 

identity. As a consequence ncRNA sequences are much harder to align than proteins, a 

limitation that affects our ability to accurately detect and classify them. The difficulty in 

comparing ncRNAs calls for other information sources that alignment algorithms can 

use. More than ever, the issue of accurately comparing and aligning ncRNAs is of 

critical importance. This is precisely the problem discussed in the following section, 

where I will review older and more recent methodologies able to make the best of 

available RNA information. 

Introduction
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Comparing non coding RNAs 

As discussed, generating meaningful ncRNA alignments is a challenging task, and at 

least in some cases, the best accuracy could be achieved exploiting the RNA structural 

information. However, in many situations using such information is complicated. In 

spite of the development of aligners that take into account the RNA secondary structure 

information, one major issue is the poor availability of high quality structures.  The 

problem is at least in part due to the difficulties encountered at experimental level in 

crystallization. Getting crystals from RNA molecules is complicated because of their 

chemical specificity. The accumulation of crystals is prevented by the high RNA 

flexibility. RNAs have flexible structures adopting inter-domain movements and with 

respect to proteins have weaker tertiary interactions (Ravindran et al., 2011). The 

polyanionic charge of phosphate backbone makes the nucleotide sequence swing much 

more than in proteins and this makes the packaging of crystals much harder to achieve. 

As a consequence, the crystals are either hard to grow, or poorly informative. Even 

when trying to resolve RNA molecules in solution through NMR, the resonance 

assignment is more difficult for RNA than for proteins (Furtig et al., 2003). RNAs have 

only 4 chemically similar nucleosides instead of the 20 different side chains found in 

proteins (Tzakos et al., 2006). Thus, the chemical shift dispersion is narrower in RNA 

than in proteins, resulting in less informative spectra (Tzakos et al., 2006). Because of 

these limitations, RNA structure is usually predicted (Zuker and Stiegler, 1981; Zuker, 

2003). RNA secondary structure inference amounts to the computation of base-pairings 

that shape the in vivo molecule structure. The prediction can be done given the mere 

succession of bases of a single sequence. Another possibility is including other sources 

of statistical information to constrain a structure prediction, for instance an alignment of 

structurally homologous RNA sequences. Regarding single sequence RNA secondary 

structure predictions, there are two main groups of approaches: empirical free-energy 

parameters (Mathews et al., 2007) and knowledge based (Dowell and Eddy, 2004; Dima 

et al., 2005; Do et al., 2006). The first considers a biophysical model to calculate the 

structure whose folding has the minimum Gibbs free energy (∆G). In this approach, 
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(Xia et al., 1998; Mathews et al., 1999; Mathews et al., 2004; Lu et al., 2006; Lu et al., 

2009) the nearest stable folding is employed to compute the conformational stability of 

the Minimum Free Energy (MFE) structure. The energy parameters needed in this 

approach were assessed on a set of optical melting experiments on model systems 

(Mathews et al., 1999; Mathews et al., 2004; Lu et al., 2006). The two most popular 

implementations of the MFE structure prediction algorithm are mfold (Zuker and 

Stiegler, 1981) and RNAfold (Hofacker et al., 1994) packages. The latter implements 

McCaskill’s algorithm (McCaskill, 1990), an approach to calculate the probability of a 

certain secondary structure in the whole thermodynamic ensemble. This approach is 

based on the partition function, which sums all Boltzmann weighted free energies of 

each secondary structure that is possible given an RNA sequence. In this model, the 

confidence estimate in a particular base pair i,j is given by the sum of the probabilities 

of all structures containing that base pair i,j divided by the sum over all structures 

(Durbin et al., 1998). Knowledge based approaches are rely on probabilistic models, 

where statistical learning procedures are used instead of empirical measurement of 

thermodynamic parameters. The Stochastic Context Free Grammar (SCFG) model 

(Dowell and Eddy, 2004) represents one popular example of such probabilistic models. 

The parameters used by the SCFG models are estimated on the set of RNAs with known 

structures (e.g. rRNA).  

Prediction accuracy is the main limit of both MFE and knowledge based methods 

(Deigan et al., 2009) (see the example in figure 3). The percentage of known base pairs 

predicted correctly by the secondary structure prediction methods ranges from 40 to 

75% (Doshi et al., 2004; Dowell and Eddy, 2004; Dima et al., 2005; Do et al., 2006). 

This low figure may result from three confounding factors. First of all, the folding in 

vivo can be influenced by RNA chaperons (Herschlag, 1995), RNA editing (Brennicke 

et al., 1999), and even by the transcriptional process itself (Pan and Sosnick, 2006). At 

present, there is no software able to accounts for these effects.  Secondly, looking for a 

single structure can sometimes be inadequate. There are cases, such as the ribo-

switches, (Mandal and Breaker, 2004; Soukup and Soukup, 2004) where multiple 
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functional structures can be derived from the same sequence. Standard predictors are 

not well suited to deal with such situations that require dedicated tools able to identify 

potential conformational switches (Bengert and Dandekar, 2004; Voss et al., 2004). 

Thirdly, RNAs might contain pseudo-knots, which are ignored by most tools due to 

reasons of computational complexity (Gardner and Giegerich, 2004).  

 

 

Figure 3 - Reliability of RNA secondary structure predictions. In this example the human mir-3180 (Rfam 

accession id RF02010; AJ323057.1/363-249) was folded using different approaches yielding different 

output structures. a) Secondary structure of the family as estimated by Rfam release 10.1. b) RNAfold 

web server prediction based on Vienna RNA package version 2.0.0. (Hofacker, 2003) C) mfold (Zuker, 

2003) web server prediction, running mfold version 4.6. 

 

The best secondary structure prediction accuracy can be achieved using comparative 

methods (Gardner and Giegerich, 2004). These apply to a set of structurally 

homologous RNA sequences being aligned. For some of these computation tools, the 

output will be the prediction of each individual homologous structure, while in other 

situations the result will be a unique consensus structure. The consensus structure does 

not exist in vivo, but rather it is a model that captures the common, relevant structural 

aspects conserved within the family. Due to the close relationship between sequence 

and structure, structure prediction and sequence alignment problem can be described as 

interdependent problems (Lindgreen et al., 2007). As theorized by Sankoff (Sankoff, 

1985), the most suitable approach should involve the simultaneous alignment and 
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folding of the considered sequences. Unfortunately, a strict application of this approach 

would be computationally prohibitive and the lack of an appropriate heuristic solution is 

well reflected by the wealth of available alternative solutions. The web server WAR 

(Torarinsson and Lindgreen, 2008) is a good example. This tool allows the execution of 

a total of 14 different strategies to align and predict the secondary structure of multiple 

RNA sequences.  

Over the years, so many methods have been described that some kind of classification is 

needed to catalogue them. Paul Gardner proposed three categories he refers to as 

“plans” (Gardner and Giegerich, 2004; Bremges et al., 2010). In plan A, one starts with 

the estimation of a multiple sequence alignment and then the aligned sequences are 

folded jointly (as a kind of consensus). The initial alignment can be done by any 

standard MSA aligner (e.g. ClustalW (Thompson et al., 1994), T-Coffee (Notredame et 

al., 2000)), and the folding of the aligned sequences can be performed by a plethora of 

tools (e.g. RNAalifold (Hofacker et al., 2002), PFOLD (Knudsen and Hein, 2003), ILM 

(Ruan et al., 2004), ConStruct (Luck et al., 1999)) optimizing a score based on 

compensated mutations and thermodynamics. However this strategy is effective just in a 

determined sequence similarity range. On the one hand, sequences too similar do not 

carry any covariance or purifying selection information and are not informative by an 

evolutionary standpoint. On the other hand, sequences need to be similar enough to be 

meaningfully aligned as below the “twilight zone” the sequence alignment tends to 

obscure the covariance signal (Bremges et al., 2010).  

Plan B makes it possible to use evolutionary signal to help improving the reliability of 

structure predictions. This approach accounts for an underlying RNA substitution model 

where mutation probabilities are affected by structural dependencies. The maintenance 

of a 3D fold is a major evolutionary constraint influencing the acceptance of point 

mutations. From this perspective, a nucleotide located in the stem is not as free to 

mutate as a nucleotide located in a loop. Substitutions taking place in structured 

functional domains of RNAs can disrupt the wild-type conformation and seriously 

affect the molecular function. As a consequence, a nucleotide whose pairing has been 

Introduction
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disrupted by the mutation of its mate, is more likely to mutate itself so as to recover the 

original structure and rescue the function. Back in 1985 Sankoff developed a dynamic 

programming algorithm able to take into account sequence and structure of an RNA 

molecule simultaneously (Sankoff, 1985). Unfortunately this algorithm is 

computationally expensive, with a running time equal to O(N
3m

), where m is the number 

of sequences and N their length. This means that a pairwise comparison has the 

tremendous CPU cost of O(N
6
) which makes this algorithm inapplicable most of the 

times and calls for simplified heuristics. Several banded modifications of the Sankoff 

algorithm impose limits on the size or shape of substructures, like Dynalign (Mathews 

and Turner, 2002; Mathews, 2005), Foldalign (Gorodkin et al., 1997; Havgaard et al., 

2005), Stemloc (Holmes, 2004, 2005), Consan (Dowell and Eddy, 2006). Another 

example is pmmulti (Hofacker et al., 2004), a Sankoff algorithm variant able to perform 

multiple secondary structure alignments by aligning consensus base pair probability 

matrices.  

Plan C is used by programs such as R-Coffee (Wilm et al., 2008) or RNAcast (Reeder 

and Giegerich, 2005). In these methods each individual sequence is folded separately 

before running the alignment. Equivalent secondary structures between two RNAs can 

be used to enhance the alignment accuracy. For instance, let seq1 and seq2 be two RNA 

sequences, x and y be two nucleotides matching in a secondary structure in seq1, and x’ 

and y’ be two nucleotides matching in a secondary structure in seq2. If x aligns to x’ 

then implicitly y should be driven to align to y’. For example, R-Coffee uses RNAplfold 

(Bernhart et al., 2006) to compute the secondary structure of the provided sequences. 

After that, R-Coffee computes the multiple sequence alignment having the best 

agreement between sequences and structures. This pre-folding approach is especially 

valuable when RNAs are too different to be meaningfully aligned merely by using an 

off-the-shelf multiple alignment tools (i.e. ClustalW (Thompson et al., 1994)). Plan C is 

particularly well suited to situations where experimental secondary structures are 

available. 
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Giving an exhaustive overview of the methods available for folding and aligning 

structured RNA sequences is well beyond the scope of this introduction. Over the last 

twenty years, more than 30 methods were described that deal with these problems, and 

that, on its own is an indication of the problem complexity that still remains open, more 

than 25 years after having been formally described by Sankoff. The situation is radically 

different when experimental 3D structure information is available. In that case the RNA 

alignment problem becomes similar to the protein structural alignment problem. This 

problem is nondeterministic polynomial-time complete (NP-complete) and it involves 

the alignment of two distance matrices. In most cases the problem can be solved in a 

rather satisfying way by using heuristics making the best of the geometric information 

contained in the PDB models. Examples of pairwise structural alignment methods for 

RNA are SARA (Capriotti and Marti-Renom, 2008), DIAL (Ferre et al., 2007) iPARTS 

(Wang et al., 2010), ARTS (Dror et al., 2005) and SARSA (Chang et al., 2008). Besides 

that, recently several 3D RNA structure database search programs were developed, such 

as LaJolla (Bauer et al., 2009) and FRASS (Kirillova et al., 2010).  

 

ncRNA homologues detection 

In the ncRNA field, a critical step is the collection of homologues to the genes of 

interest. Homologues can be used in several situations, like the detection of functional 

motifs, the inference of possible evolution steps or the design of wet lab experiments. 

For instance, the conservation across species of a certain ncRNA can be used to 

estimate how likely a gene is to be functionally important. Such information can be used 

to prioritize experiments, e.g knockdown experiments of the orthologous gene in a 

model organism. Over the last few years many different methods have been developed 

to approach the problem of RNA homology search. As shown in (Freyhult et al., 2007), 

the homology search methods can be grouped in three sets: sequence-based, profile 

HMM and structure-based methods. The first and most straightforward approach to look 

for homologues is by comparing the nucleotide sequences. Already in 1981 Smith and 
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Waterman developed a dynamic programming algorithm that allows for pairwise local 

alignment (Smith and Waterman, 1981). Nevertheless, this approach is CPU time 

demanding, and implementations of this method are unpractical for large-scale database 

and genome wide screenings. For this reason, alternative approaches such as FASTA 

(Lipman and Pearson, 1985) or Blast (Altschul et al., 1990) are frequently preferred. 

These are rapid searching heuristics able to boost computational speed at the cost of a 

reduced accuracy. In both Blast and FASTA, the underlying idea is to skip the time 

consuming comparison of entire query and target sequences, but rather to start 

identifying short conserved words in a first step called seeding. After that, more 

accurate time-consuming local alignments are performed.  

Then the second class of approaches is based on profile HMMs. Profile HMMs are 

probabilistic models that are generated out of an input multiple sequence alignment 

where each position of the alignment is used to estimate nucleotide frequency. These 

models can be used to screen databases and look for homologs. Profile HMMs are 

heuristics having usually superior accuracy over methods based on single sequences 

(Eddy, 1998; Weinberg and Ruzzo, 2006). However, such models have a linear 

architecture best suitable for modelling linear protein sequences (as opposed to 

secondary structure relationships). A more appropriate modelling of an RNA alignment 

should also consider RNA base pair interactions. The best sensitivity can be attained 

when applying approaches taking into account at the same time sequence similarity and 

secondary structures, as the Sankoff algorithm does. Unfortunately, the Sankoff 

algorithm is computationally too demanding, hence the need for approximate heuristic 

implementations of this exact algorithm. Such approximations include banded Sankoff 

tools (Holmes, 2004; Havgaard et al., 2005; Mathews, 2005; Dowell and Eddy, 2006), 

genetic algorithm implementations such as RAGA (Notredame et al., 1997) and 

covariance models (CMs). CMs are the most commonly used methods to carry out 

efficient database screening, and can be described as special form of stochastic context 

free grammar (profile SCFGs). CMs were first introduced by Sean Eddy in (Eddy and 

Durbin, 1994) and implemented in Infernal (Eddy, 2002). This and other related 
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applications (Klein and Eddy, 2003; Weinberg and Ruzzo, 2006) belong to a class of 

broadly used homology search tools based on the automatic learning of statistical 

models (the CMs) estimated from an input multiple RNA alignment decorated with the 

consensus secondary structure. CMs are probabilistic models that can be derived 

unambiguously out of a structure-annotated sequence alignment and can be used in turn 

to query a target sequence database to find homologs. Conceptually CMs are similar to 

profile HMM but able to include RNA base-pairs interactions information. The 

modelling of such information results in a higher complexity and CMs are represented 

by a tree-like model architecture, where the tree shape directly mirrors the consensus 

RNA structure. Unlike HMM states that only allow the emission of matches and indels, 

CMs embed new states to handle paired/not-paired and directionality information. For 

instance, in the paired sites, deletions can involve either a single 5′ or 3′ nucleotide, or 

the complete base pair. The direction also matters for the insertions that can now 

concern either the 5′ or 3′ ends of a base pair. In order to permit multi-loops, the 

bifurcation states are incorporated as well. In spite of their superior accuracy, CM 

cannot be used in all situations and are restricted to the identification of unsplit genes. 

The mapping of queries composed by multiple exons is impossible due to the 

impossibility of aligning secondary structures to a target interrupted by introns whose 

position is unknown. Moreover CMs need to “learn” from a set of homologous 

transcripts, but the set of sequences required to train the model are not always available. 

There is some circularity in this problem where the CM is used to search homologs that 

are themselves needed to estimate the model. Another layer of complexity results from 

the need to assemble a multiple sequence alignment of homologous sequences needed 

to train the CM. In the CM the alignment will be used for a probabilistic description of 

the matches, mismatches, insertions and deletions. However, generating accurate RNA 

alignments is difficult. In Rfam (Griffiths-Jones et al., 2003) CMs parameters are 

trained on a high quality alignments (seed alignment) obtained from literature and/or 

manually curated. This input is used to estimate CMs, which are then passed to Infernal 

to do homology search. This CM/Infernal strategy is analogous to HMM/HMMER used 
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for Pfam (Finn et al., 2008). However, even considering later ameliorations (Nawrocki 

et al., 2009), Infernal is much more CPU expensive than HMMER and for this reason 

its use is not realistic for many real life large-scale screenings. An option for spotting 

promising sequence segments and accelerate the detection procedure is to include a pre-

filtering step as done for the Rfam setup (Griffiths-Jones et al., 2005). This can be 

accomplished by means of ad hoc algorithms (Zhang et al., 2006), profile HMMs 

(Weinberg and Ruzzo, 2006) or Blast with relaxed expect values (E-values) to avoid 

losing sensitivity as achieved in Rfam (Gardner et al., 2009). A number of studies have 

been dedicated to the optimization of BlastN parameters for seeking RNA homologs. 

For instance, in (Freyhult et al., 2007; Roshan et al., 2008) the authors benchmarked the 

effectiveness of Blast and other popular homology search methods tuned for ncRNA 

screenings. In (Bussotti et al., 2011), we introduce BlastR, a method that both takes 

advantage of di-nucleotide conservation and BlastP as search engine to discover 

distantly related homologs. BlastR can be mounted on the top of CPU demanding 

algorithms to serve as a pre-filtering tool. One merit of this approach is that it does 

neither require profiles nor secondary structure information, but relies merely on the 

information encoded in the base sequences.  

Together with sequence-based, profile HMM and structure-based methods, one 

possibility to get inter-species homologs involve the use of multiple genome alignments 

(Cabili et al., 2011). Once established reciprocity between blocks of genomes belonging 

to different organisms (i.e. syntenic regions), the coordinate transfer from one gene to 

its homolog is straightforward and just implies the projection of corresponding 

positions. This has been made possible thanks to the availability of genomic sequences 

(Lander et al., 2001; Venter et al., 2001; Aparicio et al., 2002; Waterston et al., 2002) 

and the development of alignment tools able to detect orthologous genomic regions, i.e. 

loci that proceeded from the same genomic position in the ancestral genome (Schwartz 

et al., 2003).  
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High-throughput technologies and genome-wide annotation of 
ncRNAs  

Recent technological advances have allowed the collection of an unprecedented amount 

of RNA sequence data coming from a wide range of organisms and conditions. For 

many years the main strategy for transcript discovery had been the sequencing of cloned 

complementary DNA (cDNA) of expressed sequence tags (ESTs) (Boguski et al., 1994; 

Dias Neto et al., 2000; Gerhard et al., 2004). EST sequencing was successfully used for 

the generation of large-scale expression datasets (Boguski et al., 1993), and already in 

1991 this approach was utilized for human gene discovery (Adams et al., 1991). 

Although it is widely acknowledged that ESTs represent a valuable resource to detect 

gene expression, they also came with severe limitations such as cost and sequencing 

requirements. Their dependence on bacterial cloning is an important source of bias that 

can lead to redundancy, under-representation or over-representation of host-selected 

transcripts (Bonaldo et al., 1996; Nagaraj et al., 2007; Mortazavi et al., 2008). More 

recently, DNA-Chip has made high throughput expression analysis much more 

practical, while the even more recent RNA-seq technology is promising transcriptomic 

analysis of unprecedented accuracy thanks to the application of NGS methods to 

transcriptome sequencing. Microarrays rely on a collection of nucleotide probe spots 

attached to a solid support. RNAs are labelled with fluorescent dyes, hybridized to the 

arrays, washed, and scanned with a laser (Malone and Oliver, 2011). Such arrays have 

been used for the investigation of known or predicted genes and have been until recently 

one of the most widespread technology for transcriptome exploration. Standard 

expression arrays are affected by several limitations including the hybridization and 

cross-hybridization artefacts (Eklund et al., 2006; Okoniewski and Miller, 2006; 

Casneuf et al., 2007), dye-based identification problems (Cox et al., 2004; Dombkowski 

et al., 2004; Rosenzweig et al., 2004; Dobbin et al., 2005; Martin-Magniette et al., 

2005) and physical manufacturing restrictions, impeding the detection of splicing events 

and the discovery of unannotated genes (Mortazavi et al., 2008). A variant of traditional 

expression array is represented by tiling arrays. These are chips that use highly dense 
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and overlapping probes representing contiguous regions of genome. Several works 

relying on this technology and aiming at transcript discovery have been published 

(Bertone et al., 2004; Cheng et al., 2005; Royce et al., 2005; Kapranov et al., 2007b; 

Kapranov et al., 2007a). However tiling arrays require a substantial RNA quantity and 

have further limitations affecting the sensitivity, the specificity and splice detections 

(Mortazavi et al., 2008). For instance, as shown in (Wang et al., 2009), microarrays lack 

sensitivity for genes expressed either at low or very high levels and if compared with 

RNA-seq have much smaller dynamic range. As a consequence, microarrays are 

inadequate for the quantification of both the prevailing RNA classes, and the less 

abundant ones. For genes with medium levels of expression, RNA-seq and microarrays 

return comparable results (Marioni et al., 2008; Fu et al., 2009; Wang et al., 2009). Still, 

each approach presents very specific advantages and disadvantages. A thorough 

comparison of these two approaches lies outside the purpose of this text, for reference 

see (Marioni et al., 2008; Malone and Oliver, 2011; Ozsolak and Milos, 2011). 

Additional methods for high-throughput RNA discovery include the serial analysis of 

gene expression (SAGE) (Velculescu et al., 1995; Harbers and Carninci, 2005), several 

updated variants such as LongSAGE (Saha et al., 2002), RL-SAGE (Gowda et al., 

2004), SuperSAGE (Matsumura et al., 2005) and analogous approaches like the 

massively parallel signature sequencing (MPSS) (Brenner et al., 2000). In general, 

SAGE-like methods consist in the cloning and then the sequencing of short tags (17-25 

nucleotides) coming from RNA extract. The resulting tag sequences can be compared 

against the source genome or a reference RNA database to attain the digital count of 

transcript quantities.  Two other protocols that can be used in combination with high-

throughput sequencing are the paired-end ditags (PETs) (Ng et al., 2005) and the rapid 

amplification of cDNA ends (RACE) (Schaefer, 1995; Kapranov et al., 2005; Olivarius 

et al., 2009). Both approaches can be used to demarcate transcript boundaries, i.e. define 

start and end of a transcript. Such information is extremely valuable in situations where 

the first and last exons can be respectively 5’ and 3’ associated with other transcript 

isoforms, thus making it difficult to define gene boundaries. Similarly, the cap analysis 
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of gene expression (CAGE) (Shiraki et al., 2003) is a technique that allows high-

throughout profiling of transcriptional starts points. Undoubtedly, high-throughput 

technologies opened the extraordinary possibility to get both qualitative and quantitative 

information on the whole transcripts mass produced by cells. This resulted in high-

resolution views of RNA expression dynamics throughout different tissues and time 

points (Mathavan et al., 2005; Wang et al., 2008a; Graveley et al., 2011). RNA 

expression is the lowest measurable phenotypic trait as it represents the cell response to 

a particular environment or status. On a massive scale, the profiling of entire 

transcriptomes is a powerful resource to both evaluate the genetic expression in a steady 

state and also assess or quantify how various factors may perturb this normality. 

Examples include disease/health conditions (Demmer et al., 2008) and stress responses 

(Desikan et al., 2001; Halbeisen and Gerber, 2009).  

Various groups and projects, such as RefSeq (Pruitt et al., 2009), GENCODE (Harrow 

et al., 2006; Harrow et al., 2012), HAVANA team (Havana team; Loveland et al., 2012) 

and Ensembl (Flicek et al., 2012) undertook the task to comprehensively annotate 

functional elements, including ncRNAs, of a number of species using experimental 

data. The RefSeq repository houses annotations resulting from automated analyses, 

collaboration and manual curation (Pruitt et al., 2009; Pruitt et al., 2012). The 

GENCODE pipeline combines HAVANA and Ensembl automatic annotations to 

annotate the human gene features generated in the context of the ENCODE project 

(Harrow et al., 2006; ENCODE Project Consortium, 2007, 2012; Harrow et al., 2012). 

The HAVANA team has the goal to provide manually curated annotations of transcripts 

aligned to human, mouse and zebrafish genomes. Ensembl runs an automatic genebuild 

process including ab initio gene predictions and release 64 supported a total of 61 

species (Flicek et al., 2012). The Ensembl genebuild system is adapted to every species 

in the set according to the data that is available. For instance Ensembl imports and 

merges high quality HAVANA annotations exclusively for human and mouse. The 

annotations generated by these consortia are freely available through genome browsers, 

including UCSC (Kent et al., 2002), Ensembl (Stalker et al., 2004) and VEGA 
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(Wilming et al., 2008). As new genomic regions get annotated and new transcript 

sequences become publicly available, these gene sets continue to growth (Pruitt et al., 

2009; Harrow et al., 2012; Pruitt et al., 2012). A recent publication (Harrow et al., 2012) 

indicated that in the last years the number of annotated protein coding and non-coding 

transcripts in GENCODE has dramatically increased. For instance, passing from 

GENCODE version 3c (July 2009) to version 7 (December 2010), the number of 

protein coding transcripts increased from 68880 to 76052, and the number of lncRNAs 

jumped from 10457 to 15512. The overall picture, however, remains blurred by 

inconsistent findings, suggesting that more analyses are still needed. For instance, 

recent estimates reported by the ENCODE project indicate that about the 62% of human 

genomic bases are expressed in long transcripts, while 5.5% only of the whole genome 

is found within the GENCODE annotated exons (ENCODE Project Consortium, 2012). 

This discrepancy can be in part explained by the fact that GENCODE catalogues 

transcripts using cDNA/EST alignments (Harrow et al., 2012) rather than RNA-seq 

short-reads. A classic low-throughput EST sequencing operated by the Sanger 

technology can identify mostly high abundant transcripts (Martin and Wang, 2011), 

while deep coverage RNA-seq experiments can reveal rare but potentially regulatory 

transcripts. Nonetheless, ESTs are longer than RNA-seq reads, and can provide more 

reliable transcriptional evidence (Rogers et al., 2012). 

The full extent of RNA transcription landscape has remained largely unexplored till 

recently. The development of NGS platforms, including Roche/454, Illumina/Solexa 

and ABI/SOLiD, and their application to the study of the transcriptomes have improved 

our understanding of genome expression. The works that first tackled the study of 

mammalian transcriptomes and suggested the pervasive transcription of the genome 

were based on genome tiling array hybridization and cDNA sequencing (Kapranov et 

al., 2002; Carninci et al., 2005; Katayama et al., 2005). Then the progress in RNA-seq 

technology allowed the massive generation of both qualitative and quantitative 

expression data. The standard RNA-seq protocol can be divided in three main steps. The 

first step is the preparation of the RNA sample, involving both the RNA extraction and 
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the cDNA library generation. The Illumina Genome Analyzer platform protocol 

(Mortazavi et al., 2008) involves the poly(A) enrichment using oligo(dT) beads, RNA 

fragmentation and reverse transcription into cDNA primed by random hexamers 

(Hansen et al., 2010). The cDNA library set-up strongly depends on the research 

project, and either the poly(A)+ or poly(A)- fractions can be enriched. Most of the times 

is preferred to analyze the poly(A)+ fraction so as to bypass the sequencing of rRNA. 

Ribosomal RNA represents by far the most abundant RNA class in cells. To have 

sufficient sensitivity, detect other RNA species and measure gene expression variations, 

it is critical to sequence at enough depth and to clear the rRNA fraction. For this 

purpose, different strategies have been explored, including the use of poly(A) enriched 

RNA or the selective removal of rRNA (ribo-depletion) (Huang et al., 2011). The 

second step of a standard RNA-seq protocol is the sequencing experiment itself. The 

sequencer accepts the cDNA library in input, and returns in output millions of short 

reads. The last, final step, encompasses all the downstream bioinformatics analysis, 

including the mapping of the reads on a reference genome, assembling the reads into 

transcript models and estimating expression levels. Since it was first introduced, the 

RNA-seq technology evolved quickly and several specific applications and variations of 

the standard protocol are nowadays available. These include mapping the transcription 

start sites (TSSs) through CAGE derived methods (Kodzius et al., 2006) such as 

DeepCAGE (Valen et al., 2009), PEAT (Ni et al., 2010), nanoCAGE and CAGEscan 

(Plessy et al., 2010) and protocols for small RNA profiling (Rajagopalan et al., 2006; 

Ruby et al., 2006). RNA-seq stranded protocols can be used to discriminate transcripts 

expressed on the leading strand from transcripts expressed on the lagging strand. This 

issue is critical when dealing with transcripts that overlap in an anti-sense fashion, as 

often happens with lncRNAs and adjacent proteins (i.e. GENCODE 7 annotates 3214 

antisense loci (Harrow et al., 2012)) or whenever anti-sense transcripts are produced by 

the genome (Katayama et al., 2005). Standard protocol to prepare RNA-seq libraries 

loose the read directionality information when passing from single stranded RNA to 

double strand cDNA. As a consequence, un-stranded reads cannot be used to quantify 
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the expression of genes overlapping on opposite strands. Most NGS platforms now 

support strand-specific RNA-seq protocols (Cloonan et al., 2008; Core et al., 2008; He 

et al., 2008; Lipson et al., 2009; Parkhomchuk et al., 2009; Mamanova et al., 2010; 

Ozsolak et al., 2010a; Ozsolak et al., 2010b). RNA-seq technology advances also 

contributed to the annotation of alternatively spliced transcripts thanks to the pair-end 

reads protocol, i.e. the reads come from two positions in a transcripts separated by an 

insert of controlled size. Pair-end reads make it possible to monitor how alternative 

splicing affects exon combinations without the need of pre-existing annotations 

(Trapnell et al., 2009; Ameur et al., 2010). Furthermore, pair-end reads can be used to 

detect gene fusion events. This application has been successfully used in the study of 

melanoma transcriptome (Berger et al., 2010) and other cancers (Palanisamy et al., 

2010). Additionally, pair-end RNA-seq can facilitate the reads alignment to genomic 

repeats (Ozsolak and Milos, 2011). Thanks to protocol simplicity and to the cost 

effectiveness of RNA-seq technology (Wilhelm and Landry, 2009; Costa et al., 2010), 

an increasing number of transcriptomes have been released and published (Wang et al., 

2009). Unfortunately, various RNA-seq protocols are biased in different ways when 

measuring transcript expression. This makes systematic comparisons across 

experiments a difficult process. Various bioinformatics patches have been proposed to 

alleviate this phenomenon (Oshlack and Wakefield, 2009; Roberts et al., 2011). A 

review from Helicos BioSciences Corporation about the state-of-art RNA-seq, the 

limitations, advances and future perspectives is provided in (Ozsolak and Milos, 2011). 

A part of my thesis focused on data analysis of large numbers of putative lncRNAs 

detected via NGS technologies. To make the most out of the extraordinary possibilities 

NGS is offering, it is essential to understand the current limitations. One important point 

is that the reads returned by standard NGS platforms are usually short (35-500 base 

pairs (Metzker, 2010)) and as a consequence of that it becomes necessary to reassemble 

the full-length transcripts. The short RNAs (i.e. miRNA and piRNAs) represent an 

exception and there is no need to reassemble them, as they are small enough to be 

entirely covered by the read length. Unfortunately the process of reassembling 
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transcriptomes starting from short reads is difficult. Normally RNA-seq dataset are big 

(gigabases to terabases), and thus need to be handled by sufficient memories and by 

multi-CPU processors able to execute the algorithms in parallel. Although various 

short-read assemblers (Butler et al., 2008; Zerbino and Birney, 2008; Simpson et al., 

2009) were successfully applied to genome assembly, these software cannot be easily 

used to reconstruct transcriptomes. Applying to transcriptomes tools normally designed 

for genome reconstruction leads to several complications. One main issue is that the 

DNA sequencing depth is supposed to be identical over the entire genome while the 

transcriptome sequencing depth is expected to fluctuate a lot. For this reason, DNA 

short-read assemblers could erroneously interpret highly abundant transcripts as 

repetitive genomic regions. Furthermore, when using genome short-read assemblers the 

read strand is not taken into account. On the contrary, when available, a transcriptome 

assembler should exploit the strand information to unravel possible antisense 

expressions on different strands. Finally, the transcript modelling is involved as 

transcript variants coming from the same gene can share exons and are difficult to 

resolve unambiguously (Martin and Wang, 2011).  

It is possible to work out the transcriptome assembly following a reference-based 

approach, a de novo assembly or combinations of them (Martin and Wang, 2011). The 

first considers the initial mapping of the reads on a reference genome, and then the 

usage of transcript assemblers. To the end of labelling each read with the genomic 

location they come from, a new class of software, generally referred as read mapper, has 

recently shown up. In this context, the availability and the quality of the underlying 

reference genome are critical. Besides that, when dealing with massive amount of short-

read data the CPU and the memory costs can be challenging, and several algorithms are 

being tailored to achieve best mapping efficiency (Li et al., 2008b; Lin et al., 2008; 

Langmead et al., 2009; Li and Durbin, 2009; Schatz, 2009; Ahmadi et al., 2012; Derrien 

et al., 2012a). Other important issues relate to the mapping of reads crossing exon-

junction boundaries (Cloonan et al., 2009; Trapnell et al., 2009) and the uncertainty or 

lack of accuracy in read alignments. For most downstream applications, the accurate 
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positioning of the reads back to the source genome is crucial. To improve the mapping 

accuracy, the process can take into account the read quality information (Li et al., 

2008a; Smith et al., 2008). The quality scores, introduced by the Phred algorithm 

(Ewing and Green, 1998; Ewing et al., 1998), indicate the reliability of each base call in 

each read. Since the bases with reduced quality scores have an increased possibility to 

be sequencing errors, a read mapper should either use less severe penalization for 

mismatches at positions with low base-call quality, or not align such positions at all. 

The information about the quality score is particularly relevant when mapping reads 

with bigger sizes. This is because it is recognized that the 3’ extremity of longer reads 

are affected by sequencing errors at higher rates (Smith et al., 2008). Besides choosing a 

threshold on the amount of accepted mismatches, other important and sometimes 

arbitrary decisions regard the split mapping and multiple mapping reads. The first refers 

to reads that could not be aligned to the reference genome unless split in subparts. Such 

reads could either highlight the presence of an unreported exon-junction boundary, or be 

sequencing artefacts. The second indicate reads that align multiple times across the 

reference genome. This mapping uncertainty is caused by repeated elements and may 

results in flawed expression establishments. On the one hand, removing multiple 

mapping reads from the analysis would imply an underestimation of the expression of 

genes embedding repeats. On the other hand, considering multiple mapping reads would 

lead to artefactual expression measurements. Once mapped the reads, additional issues 

concern the application of transcript assemblers. Several bioinformatics tools have been 

developed with the purpose of reconstructing transcripts in their entire length, i.e. 

annotating exon-intron transcript structures. These methods include Cufflinks (Trapnell 

et al., 2010), Isolazo (Li et al., 2011) and Scripture (Guttman et al., 2010). In (Palmieri 

et al., 2012) the authors have shown that variations across transcript assemblers can be 

source of confusion, with low consistency across methods and a high number of false 

positives (Li et al., 2011; Rogers et al., 2012). Transcript assemblers seem to have a 

better agreement when reconstructing protein-coding transcripts (Cabili et al., 2011) 

with the agreement dropping dramatically when modelling  large intervening ncRNAs 
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(lincRNAs). For instance, Cufflinks and Scripture share a bare 46% agreement for 

lincRNAs transcript models (Cabili et al., 2011). Such discrepancies are caused by the 

differences in how each assembler reconstruct lowly expressed transcripts (Cabili et al., 

2011). In other words, about half of the isoforms estimated by a method in areas with 

low reads density do not correspond to isoforms called by the other method. This poor 

agreement between transcript assemblers highlights the need of further improvements, 

calling for the development of new algorithms to accurately represent low abundant 

transcripts.  

Another possibility to assemble a transcriptome from short reads is the de novo 

assembly of the transcripts. This strategy does not require any reference genome and is 

therefore independent on the correct alignment of the reads to the splice sites. Examples 

of applications adopting this strategy are described in (Garg et al., 2011; Grabherr et al., 

2011; Jager et al., 2011). Nevertheless the application of de novo assembly to complex 

transcriptomes (e.g. higher eukaryotes) is complicated by the dataset sizes and the dense 

network of alternatively spliced variants. Furthermore, de novo transcriptome 

assemblers need much deeper sequencing than reference-based assemblers and are 

largely affected by sequencing errors (Martin and Wang, 2011). 

Once generated a transcriptome dataset, there are additional complications in the 

downstream analysis if trying to distinguish genuine ncRNAs from mRNAs. Nowadays 

this issue is getting more and more important as many researches expressly focus just 

on one of these two parts. The most straightforward procedure would be comparing the 

newly generated transcriptome against existing gene annotations. However in most 

cases annotations are far from being complete, and the great majority of genes they 

include are protein coding. As a consequence, in a normal RNA-seq experiment a 

substantial fraction of read contigs map outside of annotated exons (ENCODE Project 

Consortium, 2012). Previously unreported transcripts can be either classified as ncRNA 

or mRNA according to the protein coding potential they have. The in-silico assignment 

of a transcript to one of these two groups is not always simple and it might require 

dedicated expert analysis (Havana team). Some transcript isoforms might insert coding 
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exons and therefore could be partially translated, i.e. generating small peptides. There 

are further ambiguities for coding transcripts whose untranslated structured molecules 

are also functional as ncRNAs (Keiler, 2008) and for genes having both coding and 

non-coding isoforms (Novikova et al., 2012). A commonly used approach to predict the 

coding potential involves the codon substitution frequency (CSF) estimation (Clamp et 

al., 2007). This measure is based on an input multiple alignment of orthologous 

sequences. The CSF score deems a region to be coding depending on how the sequences 

of the multiple alignment evolved, i.e. showing distinctive mutation patterns, as are 

expected in coding and non-coding loci. A coding region is expected to embed 

prevalently conservative amino acid substitutions and synonymous codon substitutions, 

while showing low occurrence of nonsense and missense mutations. Although CSF has 

been successfully applied in various research projects (Clamp et al., 2007; Lin et al., 

2007; Liao et al., 2011), the score is not always easy to estimate with the availability of 

trustworthy orthologues being the main limiting factor when dealing with new 

transcriptome datasets. Issues include scarcity or even the absence of orthologs, 

erroneous insert of pseudogenes in the set and absence of informative variations. For 

instance, as shown in (Derrien et al., 2012b) many putative human lncRNAs are not 

found in other species, and cannot be analysed using CSF. Besides that, primate specific 

lncRNAs rarely show sufficient changes to highlight a sense/non-sense mutations 

pattern. In addition to CSF, other strategies not relying on evolutionary signatures can 

be effectively used to predict if a transcript is going to be translated into protein or not. 

For example, there are dedicated Blast flavours including BlastX and RPS-Blast 

(Altschul et al., 1990; Marchler-Bauer et al., 2002) that can be used to identify 

transcripts whose translational product possesses a match in protein databases such as 

Pfam (Finn et al., 2008) and UniProt (UniProt, 2012). Unfortunately, bioinformatics 

predictions can easily return mistaken assignments when dealing with ncRNAs closely 

related to coding mRNAs, and result in some confusion when transferring annotation 

across species, or within a genome. Such observations may wrongly suggest 

pseudogenization events or a turnover between proteins and ncRNAs. 
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Over the last few years other approaches alternative or complementary to RNA-seq 

have been attempted to generate high-throughput ncRNA annotations. In 2009, Mitchell 

Guttman and co-workers published the first of a series of analysis that recently came out 

linking lncRNA detection to histone modifications (Guttman et al., 2009). In this work, 

the authors pioneered a chromatin-state based method to identify well-defined 

transcriptional units occurring between known protein-coding genes. Their analysis 

relied on the observation by (Mikkelsen et al., 2007) that promoters of genes expressed 

by the RNA polymerase II (Pol II) are signed by trimethylation of lysine 4 of histone 

H3 (H3K4me3) while the transcribed area is marked by trimethylation of lysine 36 of 

histone H3 (H3K36me3). Following this observation, the authors did chromatin 

immunoprecipitation followed by high-throughput sequencing (ChIP-seq) (Mikkelsen et 

al., 2007) to generate profiles of chromatin states. This approach revealed thousands of 

mouse lincRNAs, corresponding to H3K4me3-H3K36me3 chromatin domains and 

lying outside of protein coding regions. The prediction reliability has been estimated by 

additional analysis showing that lincRNAs are more conserved than neutrally evolving 

sequences and that most of experimentally tested loci were found to be expressed 

(Guttman et al., 2009). An alternative strategy used for ncRNA detection involves a 

combination of different high-throughput data sources and their integration using 

bioinformatics (Lu et al., 2011). This approach, named incRNA, relies on a machine 

learning method and has been applied to the genome-wide identification of 

Caenorhabditis elegans ncRNAs. incRNA combines predicted and experimental data 

for a total of nine different information sources. These include the expression data 

coming from various developmental stages and conditions, as well as the GC content, 

the predictions of RNA secondary structure folding energy, the prediction of 

evolutionary conserved DNA sequence and secondary structure. The results show how 

the integration of multiple information sources ends in highly accurate predictions of 

novel ncRNA genes.  

Over the past few years, a number of works reporting a massive quantity of novel 

ncRNA genes in various species has been published (Cabili et al., 2011; Esteve-Codina 
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et al., 2011; Kutter et al., 2012; Nam and Bartel, 2012). Such rapid growth has been 

possible thanks to the contribution and the parallel development of new and ever more 

sophisticated bioinformatics approaches. In this thesis, I report on two such projects in 

which I have been involved. The analysis of pig transcriptome and the analysis of 

GENCODE version 7 lncRNAs, described in chapters 3 and 4 respectively. In both 

works I curated the sections regarding the evolutionary analysis of lncRNAs. My 

analysis included the identification of putative lncRNA transcripts, the detection of 

evolutionarily conserved elements using PhastCons (Siepel et al., 2005), the homology-

based annotation of novel lncRNA homologs, the prediction of lncRNA families and the 

detection of compensatory mutations. Nevertheless, such analyses remain superficial 

with uncertainties of different type and degree affecting most predictions. For example, 

the homology search pipeline described in chapters 3 and 4 is not sensitive enough to 

map fast evolving lncRNAs, hence our limit to play comprehensive evolutionary study. 

Our lncRNA predictions should be taken with care, not just because they are not 

experimentally verified, but also because they are far from representing the complete 

genome-wide lncRNA figure. Fortunately, many lncRNAs are constrained enough to be 

successfully mapped with our approach, and we succeeded at identifying thousands of 

novel lncRNA candidates. Thanks to the large amount of data considered in our 

analyses, we gathered enough evidences to infer general lncRNAs properties, to define 

families and detect structurally conserved homologs. Both projects reported on chapters 

3 and 4 are good examples of how bioinformatics approaches, including ncRNA 

alignments, can be applied to analyse transcriptomic data. On the short run available 

transcription data is expected to increase very rapidly, and the necessity to accurately 

and quickly align ncRNAs is becoming more pressing than ever. In my thesis I tried to 

address exactly this issue by developing BlastR (cf. Chapter 2), an algorithm suited for 

accurate ncRNA detection at a moderate CPU cost. 
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CHAPTER 2: BlastR algorithm for ncRNA search 
 

A major focus of my doctoral thesis has been the improvement of state-of-the-art 

methods for the homology detection of ncRNAs. To this end I participated and took the 

lead of the BlastR project. The underlying project idea was to apply the di-nucleotide 

conservation signal to off-the-shelf Blast packages and check whether this could be 

beneficial in terms of accuracy.  The strategy we adopted consisted first in the 

generation of an ad hoc di-nucleotide substitution matrix estimated on accurate RNA 

alignments. Such matrix indicates how frequent it is that a certain di-nucleotide mutates 

into another one. We called this matrix BlosumR for the analogy with the standard 

BLOSUM (Henikoff and Henikoff, 1992). Next, we recoded both query and target 

databases into an amino acid like alphabet. This conversion allowed readapting tools 

like BlastP, i.e. applications normally dedicated to search proteins. Finally, we mounted 

the BlosumR matrix onto BlastP and verified its performance in detecting ncRNA 

homologs in a benchmark built on Rfam. The results are encouraging, with BlastR 

showing to be superior in terms of sensitivity and specificity with respect to competing 

algorithms. We further investigated the source of the improvement, and we found that 

di-nucleotides bring only little, although real, accuracy improvement. Remarkably, most 

of the improvement comes from the use of the BlastP algorithm. These results, the 

benchmark and the algorithm details are discussed in the paper, published last year in 

Nucleic Acids Research. 

 

BlastR-fast and accurate database searches for non-coding RNAs. 

Bussotti G, Raineri E, Erb I, Zytnicki M, Wilm A, Beaudoing E, Bucher P, Notredame 

C. 

Nucleic Acids Res. 2011 Sep 1;39(16):6886-95. Epub 2011 May 30.
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CHAPTER 3: Analyzing the pig transcriptome 
 

My PhD involved data analysis projects complementary to the methodological part. In 

this chapter I present a work carried out in collaboration with the Universitat Autònoma 

de Barcelona and the Institut für Populationsgenetik of Vienna. The aim of the work 

was to produce and analyze the transcriptome profile of two highly divergent pig breeds 

using RNA-seq. One result of the study was the identification of thousands of 

previously unreported pig genes. My contribution to the project had been to help 

defining the set of putative porcine lncRNA and then to investigate their conservation 

across mammals. This comparative biology analysis allowed the identification of human 

homologs located in unannotated regions of the genome, i.e. potentially novel human 

non-coding genes. This work was published last year in BMC Genomics, and is a 

typical example where the wealth of high-throughput data comes together new 

bioinformatics challenges. 

 

 

Exploring the gonad transcriptome of two extreme male pigs with RNA-seq. 

Esteve-Codina A, Kofler R, Palmieri N, Bussotti G, Notredame C, Pérez-Enciso M. 

BMC Genomics. 2011 Nov 8;12:552. 

 

 

38

http://www.biomedcentral.com/1471-2164/12/552


“Giovanni˙Bussotti” — 2012/11/22 — 17:34 — page 53 — #67

 

 

CHAPTER 4: Analyzing the human lncRNA dataset 
 

This chapter presents a recent publication in Genome Research. In this paper are 

provided extensive analysis and statistics on the largest available human lncRNA 

dataset. In the context of this work expressly focused on lncRNA characterization, I 

took care of the lncRNA conservation part. My targets were to search homologous 

genes across mammalian species, measuring the conservation of promoter, exonic and 

intronic regions, and detecting lncRNA families. The results we got indicate that a 

considerable fraction of lncRNAs seem to be primate specific, thus suggesting that these 

genes have a very high turnover if compared with proteins. Moreover we confirmed that 

exonic sequences seem to be more constrained than neutrally evolving sequences, but 

less than protein coding exons. On the other hand, lncRNAs promoters show a 

conservation level similar to the ones of proteins. Additionally, in this work we sought 

human lncRNA families by using blastClust (Altschul et al., 1990), a standard 

clustering algorithm. Some domains of the lncRNA clusters we detected embed 

degraded versions of repeat elements. Remarkably, compensatory mutation might arise 

from these regions, possibly to preserve functional secondary structures. 

 

 

The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene 

structure, evolution, and expression. 

Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin 

D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, 

Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, 

Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigó R. 

Genome Res. 2012 Sep;22(9):1775-89. 
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DISCUSSION 
 

ncRNA functional characterization is a rapidly expanding research area. In the past few 

years, it has become clear that the majority of the transcripts in cells are more than mere 

intermediates between the hereditary information encoded in DNA and the mechanical 

operative component represented by proteins. Indeed, it appears that numerous 

transcripts may not be translated at all while still being involved in critical biological 

functions such as cell differentiation and chromatin remodelling. Taking together 15 

human cell lines, the cumulative coverage of transcribed regions is ~62% and ~75% of 

the whole human genome for processed and primary transcripts, respectively (Djebali et 

al., 2012). This “pervasive transcription” is strikingly high, especially when considering 

that a mere 3% of the human genome codes for protein coding exons. (ENCODE 

Project Consortium, 2012). Numerous novel, previously uncharacterized RNA species 

have been recently detected. A sizeable fraction of them is defined as lncRNA, i.e. 

molecules longer than 200 nucleotides that do not show any coding potential. Some of 

these molecules are spliced, capped, differentially expressed in tissues/cells or 

developmental stages and tend to be more conserved across species than would result 

from neutral evolution. For these reasons and because of the increasing number of 

transcripts whose function was experimentally validated, it is believed that many of 

these new ncRNAs belong to an important, almost unexplored class of regulatory 

elements. Thanks to ongoing improvements in sequencing technologies it has become 

possible to collect a significant amount of these uncharacterized transcripts. The latest 

generation of sequencer make it possible to do large scale sequencing of entire 

transcriptomes. This technique, known as RNA-seq has already had a dramatic impact 

on our perception of the human transcription landscape (Wang et al., 2008a; Djebali et 

al., 2012). Similar studies have been carried out in a number of genetic model 

organisms including rodents (Mortazavi et al., 2008; Kutter et al., 2012), plants 

(Eveland et al., 2008), insects (Graveley et al., 2011), worms (Hillier et al., 2009) and 

yeasts (Nagalakshmi et al., 2008). In (Shendure, 2008) the author argues that RNA-seq 
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represents the most promising technology for transcriptome research. The RNA-seq 

main strength is the potentially unlimited dynamic range it offers, returning better 

sensitivities than microarrays without the need of a priori speculations regarding the 

genomic loci being transcribed (Morozova et al., 2009). If the pace of scientific progress 

is maintained and if costs keep dropping, one can reasonably expect this technology to 

rapidly become a key component of personalized medicine, especially when considering 

the new venues of development that are currently being considered (Auer and Doerge, 

2010; Malone and Oliver, 2011). 

Nowadays there exist new directions and emerging applications of NGS that are 

relevant for ncRNA research and worth commenting. Two promising RNA-seq 

developments regard the direct RNA sequencing and the study of tiny RNA quantities. 

The first technique is about the direct sequencing of RNA samples without the need to 

retro-transcribe it into cDNA. Skipping the conversion to cDNA has many advantages. 

These include avoiding the generation of spurious second-strand cDNAs, the template 

switching, the nucleotide composition bias caused by random hexamer priming, the 

cDNA synthesis in primer-independent manner, and prevention of the use of the reverse 

transcriptase which is known to have lower fidelity than other polymerases (Roberts et 

al., 1989; Chen and Patton, 2001; Hansen et al., 2010; Ozsolak and Milos, 2011). 

Furthermore, direct RNA sequencing does not involve any amplification steps, thus it is 

not affected by PCR amplification biases (Oyola et al., 2012). Direct RNA sequencing 

is a technology still under development, and facing many challenges like the generation 

of deeper sequencing data, and lowering the frequency of sequencing errors (Ozsolak 

and Milos, 2011). The other emerging technology applied to RNA-seq is the profiling of 

low-quantity RNA samples. This technology is especially suited when exploring the 

transcriptome of specific groups of cells.  Typical biological samples include body 

fluids and tissues made of a combination of different cell populations. To choose the 

cell type of interest and then isolate the RNA one can use different tools, including the 

flow-assisted cell sorting (FACS), the laser-capture micro dissection (Simone et al., 

1998), the serial dilution, specialized micro fluidic apparatus (Marcy et al., 2007) and 
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micromanipulation (Ozsolak and Milos, 2011). Even so, in spite of the possibility to 

extract small RNA quantities from pure cell populations, one major obstacle to 

transcriptome profiling is the impossibility to perform high-throughput sequencing of 

tiny RNA amounts (e.g. picograms). This limit is critical whenever the amount of 

material is a limiting factor (forensics, stem cell biology, biopsy analysis in cancer). A 

wealth of approaches meant to address this issue has recently been reported. These 

include both sequencing based approaches such as nanoCAGE (Plessy et al., 2010), 

smsDGE (Lipson et al., 2009) and LQ-DGE (Ozsolak et al., 2010b), and hybridization 

approaches like the NanoString nCounter (Geiss et al., 2008) and the Fluidigim systems 

(Byrne et al., 2009; Helzer et al., 2009). Unfortunately, none of these technologies is yet 

mature enough for large-scale analysis and further progresses remain needed to achieve 

comprehensive high-quality transcriptome analyses equally informative across the entire 

transcriptome dynamic range. Another promising NGS application, named RNA 

CaptureSeq and recently reported on Nature Biotechnology (Mercer et al., 2011), is able 

to reach unprecedented sequencing depth. RNA CaptureSeq is inspired from exome 

sequencing techniques and relies on the use of tiling arrays in order to enrich the 

population of RNAs one wants to sequence. This enrichment step allows a sequencing 

depth that would be impossible when dealing with the full transcriptome. Although 

RNA CaptureSeq is not suited to generate full transcriptome profile, it can be used to 

target specific genomic sites and detect transcript isoforms expressed at very low 

abundance. As shown in (Mercer et al., 2011) RNA CaptureSeq can be used to fuel the 

detection of ncRNAs that are missed by genome-wide standard RNA sequencing. 

From a functional perspective, a lot remains to be done for the characterization of 

ncRNA analysis. Comparative studies offer a very efficient way of prioritizing analysis. 

They can be used to predict function by homology, assess phylogenetic relationships, 

detect functional motifs or classify related molecules in order to identify families. A 

main challenge when tackling ncRNA comparisons results from the remarkable 

variability of traits and functions. Considering sizes only, ncRNA molecules can be as 

short as a miRNA (~22nt) and up to ~17kb long in the case of Xist (Brown et al., 1992). 
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Another source of difficulty when comparing ncRNAs is that most of these genes have 

poorly conserved sequences. Such diversity challenges our ability to compare, classify 

and search with conventional alignment tools. In addition ncRNA genes have no 

equivalent of codon bias and Open Reading Frames (ORFs) that help powering the 

statistical component of machine learning approaches when doing protein prediction 

(Rivas and Eddy, 2000). The strongest signal contained by RNA sequences are usually 

evolutionarily conserved secondary structures. Many efficient algorithms exist that are 

able to predict potential structures using MFE or SCFG computations. Unfortunately, 

these predictions ignore the contribution of the environment and are not always accurate 

enough to significantly improve alignment accuracy and homology modelling. 

Emerging technologies allowing the high-throughput generation of experimentally 

derived secondary structures (Kertesz et al., 2010) will hopefully help addressing this 

problem. Unfortunately, taking into account secondary structures while comparing 

sequences is a challenging procedure, too intensive from a computing point of view to 

be practical in the most common circumstances (Dowell and Eddy, 2006). This makes it 

is difficult to compare mono-exonic genes while taking the secondary structure into 

account, and totally impossible when the transcripts are multi-exonic (i.e. the secondary 

structures are interrupted by introns). This obvious need for new strategies for fast and 

accurate comparison has motivated our BlastR project. BlastR is a special adaptation of 

BlastP (Altschul et al., 1990) that takes advantage of the evolutionary signal contained 

in di-nucleotides. Starting from high quality non-coding RNA alignments we captured 

the frequencies at which di-nucleotides mutate into others and used this information to 

set a log odd matrix that BlastP can use as substitution scoring scheme. Although the di-

nucleotide signal is weak, it does exist and improves the search accuracy by a small 

amount. This study also shows that BlastP seems to be a more sensitive, albeit slower, 

algorithm than BlastN (Altschul et al., 1990) when searching ncRNAs. This result opens 

to the possibility to readapt tools developed for proteins to ncRNA research. Such 

options are realistic when doing genome wide search of sequences with no known 

secondary structure. The collection of a set of homologues, diverse enough to show co-
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variation, is a compulsory pre-requisite for the estimation of the consensus structures 

needed by CM based methods, like infernal. A method like BlastR would be ideal in 

combination with accurate and computationally demanding model-based algorithms. 

For instance, BlastR could be used to gather the homologs needed to train the models, 

and then to filter the target database so as to reduce the search space.  

 

We have shown (Esteve-Codina et al., 2011; Derrien et al., 2012b) that Blast can be 

effectively used for lncRNA homolog prediction, in combination with splicing informed 

heuristics such as exonerate (Slater and Birney, 2005) or GeneWise (Birney et al., 

2004). This strategy is not new, and similar approaches have already been used for the 

discovery of protein coding homologs (Eyras et al., 2005; Mariotti and Guigo, 2010; 

Vieira and Rozas, 2011). As one would expect, homology based RNA searches are 

severely limited by our capacity to align distant homologues. For instance, when 

searching the human lncRNA complement against mammalian genomes (Derrien et al., 

2012b) or when using an estimated pig complement (Esteve-Codina et al., 2011), we 

only managed to find, beyond primates, less than 50% of the query genes across cow, 

mouse or dog. This result may reflect a high turnover, but the 

conservation/disappearance patterns, poorly correlated to phylogenetic history, are most 

likely indicative of a limited detection capacity. Other confounding factors include 

misassembled or partially sequenced genomes. Additional analysis would be needed to 

validate the Blast/exonerate mapping approach. At this stage, it is therefore impossible, 

without further experiments, to establish whether the lncRNA queries that failed the 

mapping are really absent in the target species or undetected. Another issue with 

homology based analysis is its tendency to miss edge exons, e.g. the first or the last one. 

Such bias results from the exonerate step, where exons at transcripts extremities might 

be excluded or just partially included in the alignment. Those exons will then appear to 

be lost or truncated in the output transcript model. In this context, high quality 

templates, as the GENCODE queries used in (Derrien et al., 2012b), offer better 

chances to return precise annotations. Our Blast/exonerate mapping procedure has 
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returned thousands of putative new lncRNA genes in (Esteve-Codina et al., 2011) and 

(Derrien et al., 2012b). These annotations could be used to further investigate lncRNA 

evolution or to train models (i.e. CMs). We also found that a sizeable fraction of the 

human lncRNAs seems to be primate specific (Derrien et al., 2012b). Our result is in 

agreement with a recently published study (Kutter et al., 2012) where the authors 

identified lncRNAs expressed in rodents’ adult liver, and then compared the expression 

of the orthologous genomic regions. In the paper it is shown that loss of lncRNA 

transcription among rodents is associated with loss of sequence constraints and that 

many lncRNA genes seems to be species or lineage specific. Another application of our 

Blast/exonerate mapping analysis is the possibility to identify novel human lncRNA 

genes candidates by using non-human templates as query (Esteve-Codina et al., 2011). 

As shown in figure 2 of the paper, there are 131 pig lncRNAs mapping to unannotated 

regions of the human genome. This result suggests that although human is probably one 

of the most extensively annotated higher-eukaryote, extra improvements might be 

achieved using data gathered in other non-model organisms. In (Derrien et al., 2012b) 

we also extended the lncRNA conservation study to a multiple genome alignments 

strategy based on PhastCons conservation scores. The analysis, reported in figure 4 of 

the paper, is in agreement with previous reports (Guttman et al., 2009; Orom et al., 

2010), and confirms that lncRNAs sequences are less constrained than those of protein 

coding genes. Remarkably, we show that the distribution of lncRNA exons conservation 

is bimodal, with a fraction substantially approximate to ancestral repeats, and another 

group appreciably shifted toward the protein coding set. This indicates that some 

lncRNA are under a selection as strong as proteins and suggests that a sizeable fraction 

of lncRNA genes are probably functional. The lncRNA portion having a mutation rate 

almost indistinguishable from repeats suggests that at least some lncRNAs (close to a 

third) might be transcriptional noise. 

As shown in this thesis, despite the difficulties encountered when comparing ncRNAs, 

the homology search of ncRNAs can be operatively used to detect new genes. New and 

ever more sophisticated algorithms will help addressing the challenges brought by new 
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technologies. The ultimate goal is the creation of thorough transcriptome annotations 

and unbiased expression profiling of each individual transcript. It is still early to tell, but 

if they live up to their promises, the discovery of this new large class of RNAs may well 

define one of the turning points of modern biology. During my thesis I had the 

opportunity to get into this world and move ahead a few steps, and these have been so 

far extremely encouraging. 
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CONCLUSION 
 

 

From chapter 2: BlastR algorithm for ncRNA search 

 The proposed approach, named BlastR, aims to improve ncRNA homology 

search accuracy at a reasonable computation cost. The algorithm takes advantage 

of di-nucleotides conservation information in combination with BlastP, a tool 

normally dedicated to search proteins. BlastR shows increased specificity and 

sensitivity when scanning ncRNA databases. 

 In BlastR the accuracy improvement comes at the cost of a reduced speed. The 

accuracy and the slower runtime could be both effects of the alignment of higher 

numbers of high scoring segment pairs (HSPs). However we demonstrated that 

the HSP number does not explain alone the CPU costs of tested Blast 

approaches. BlastN and BlastP are pretty different algorithms, based on different 

parameterizations. We argue that is the combination of algorithm features that 

makes BlastP a slower but more accurate tool for ncRNA search.  

 In the paper we show how the di-nucleotide conservation signal, although small, 

is strong enough to improve BlastR sensitivity. Remarkably, the BlastP 

algorithm itself used in combination with BlastN-like substitution scores is 

substantially more accurate than BlastN. The best mix of accuracy and 

efficiency is reached using BlastR, i.e. di-nucleotides on a BlastP engine. 

 BlastR accepts as input simple RNA sequences, and can therefore be used to 

search the ncRNA homologues needed to train CMs, like the infernal ones. 

Moreover, since BlastR is orders of magnitude faster than infernal, it could be 

used with relaxed parameters to pre-filter the target databases and reduce 

infernal’s search space. 

 Although in our benchmark BlastR proved to outperform other Blast 

alternatives, a thorough genome-wide analysis is still missing. We plan to assess 

the quality of different homology search algorithms and different 
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parameterizations by overlapping whole-genomes mapping with RNA-seq 

expression data. 

 

 

From chapter 3: Analyzing the pig transcriptome 

 

 RNA-seq was used to characterize the poly(A) RNA fraction of two 

phenotypically extreme pigs. 

 Thanks to protein coding potential and comparative genomics analysis we were 

able to annotate 2047 new putative porcine lncRNAs. 

 We found 469 pig lncRNAs having significant homology with human sequences 

and out of them 131 mapping to unannotated regions of the genome. This result 

indicates that homology search allows the prediction of new human lncRNA 

genes using non-human genes as template.  

 

From chapter 4: Analyzing the human lncRNA dataset 

 

 This work reports the analyses of 14880 human lncRNAs from GENCODE. In 

agreement with previous reports, we show that lncRNAs have stronger purifying 

selection than neutrally evolving sequences but are less constrained than protein 

coding genes. 

 We show that lncRNAs promoters have levels of conservation close to protein 

coding genes. Such evolutionary information could be used to improve lncRNA 

homology screenings. 

 A Blast/exonerate screening was used to map the 14880 human lncRNAs against 

18 mammal species. This analysis showed that about 30% of lncRNAs seems to 

be primate specific, and less than 1% seems to be specific to the human lineage. 

About 1% is detected in all the considered species, and this might represent a set 

of lncRNAs undertaking essential biological functions. 
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 By using an all-against-all clustering algorithm we were able to identify 194 

human lncRNAs families, although a great part of them includes just two 

members. Many clusters embed domains corresponding to degraded versions of 

repeat elements. The detection of compensatory mutations within repeat 

domains suggests that the secondary structure of these modules is maintained 

across the families. This observation suggests that repeat elements within 

lncRNAs are not neutrally decaying, but are rather re-used as functional 

domains. 

Conclusion
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