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de català que em fessin tan fàcil el primer any a Barcelona.
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Gracias a mis compañeros de universidad en Zaragoza y Southampton
por hacerme tan llevadero el paso de tantos años de aprendizaje. Quiero
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Abstract

In this thesis we propose to use galaxy clustering, more concretely angular
cross-correlations, as a tool to understand the late-time expansion of the
Universe and the growth of large-scale structure.

Galaxy surveys measure the position of galaxies (what traces the dark-
matter field) in spherical coordinates (z,θ,φ). Most galaxy clustering analy-
ses convert these positions to distances assuming a background cosmology.
This approach thus requires doing the full data analysis for each background
cosmological model one wants to— test. Instead we propose to select galax-
ies in radial shells, according to their redshifts, and then measure and an-
alyze the angular (2D) correlations in each bin circumventing the model
assumption.

On the one hand our approach projects and looses 3D information along
the line-of-sight for distances smaller than the shell width. On the other
hand, it allows a single analysis, as no cosmological model needs to be as-
sumed. Remarkably we find that if we include in the analysis also the
angular cross-correlations between different shells, we can recover the ra-
dial modes corresponding to the separations between radial bins. We found
that the optimal binning to recover 3D information is given by the largest
between the minimum scale considered for spatial clustering, 2π/kmax, and
the photometric redshift error.

Photometric galaxy surveys, such as Physics of the Accelerating Universe
(PAU) and Dark Energy Survey (DES), access higher number densities and
higher redshifts than current spectroscopic surveys, at the price of loosing
radial accuracy. Angular analysis in redshift bins is then the natural frame-
work for such surveys.

We found that, for such photometric surveys, the constraints on the
growth index of structure improve by a factor two when we include the
cross-correlations. In addition, we show that one can use two different galaxy
populations to trace dark matter and hence reduce sample variance errors.
The cross-correlations of both populations in the same field leads to an
overall gain of a factor five. This allows measurements of the growth rate
of structure to a 10% error at high redshifts, z > 1, complementing low-z
results from spectroscopic surveys. This gain is maximized for high bias
difference and high densities.
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We also worked with N-body simulations to include non-linear gravita-
tional effects and turn them on and off (e.g redshift space distortions or
the radial distortions produced by photometric redshifts). We built galaxy
survey mocks from the MICE simulations and measure galaxy clustering to
compare with our previously mentioned models of angular correlations. We
found a good agreement between theory and simulation measurements.

In the future, we expect to apply this framework for cosmological pa-
rameter estimation, especially focusing on DES and PAU surveys.



Resumen

En la tesis, proponemos usar el estudio de la agrupación de las galaxias, en
particular usando correlaciones cruzadas angulares, para entender la etapa
tard́ıa de expansión del Universo y el crecimiento de estructura a gran escala.

Los cartografiados extragalácticos miden la posición de las galaxias (que
son trazadores del campo de materia oscura) en coordenadas esféricas (z,θ,φ).
Muchos análisis de la distribución de galaxias convierten estas coordenadas
en distancias, asumiendo una cosmoloǵıa. Este tipo de análisis requiere re-
hacer todo el análisis de las medidas para cada modelo cosmológico con el que
se quiera comparar. Como alternativa, proponemos seleccionar las galaxias
en intervalos radiales, de acuerdo a la medida de sus desplazamientos de
longitud de onda al rojo, z, para posteriormente analizar las correlaciones
angulares (2D) en cada intervalo.

Mediante esta manera de abordar el análisis se pierde información 3D
a lo largo de la ĺınea de visión, para escalas menores que la anchura de
cada intervalo. Pero evitamos tener que asumir ningún modelo cosmológico
de partida. Hemos visto que un análisis basado en funciones angulares de
correlación cruzadas entre diferentes intervalos puede recuperar los modos
radiales correspondientes a separaciones dadas por la distancia entre bines.
La división en intervalos óptima para recuperar la información 3D viene
dada por la escala mı́nima considerada en el análisis espacial, 2π/kmax, y
por la escala dada por el error en el z fotométrico.

Los cartografiados extragalácticos fotométricos, como Physics of the Ac-
celerating Universe (PAU) y el Dark Energy Survey (DES), nos permiten
acceder a mayores densidades de galaxias y a zonas más profundas del Uni-
verso que las alcanzadas en los cartografiados espectroscópicos actuales, pero
perdiendo resolución radial. El análisis angular en distintos intervalos es la
manera natural de analizar este tipo de cartografiados.

Hemos visto que, para este tipo de cartografiados, la determinación del
ı́ndice de crecimiento de estructura mejora un factor dos si incluimos las cor-
relaciones cruzadas. Además, mostramos que si usamos dos poblaciones de
galaxias como trazadores de materia oscura reducimos la varianza cósmica.
Usando las correlaciones entre ambas poblaciones en el mismo área, los re-
sultados mejoran un factor cinco. Esto nos permite determinar a un 10%
el crecimiento de estructuras para z > 1, lo que nos permite complementar



los resultados a bajo z obtenidos mediante espectroscoṕıa. La ganancia se
magnifica para trazadores que se agrupen de manera muy diferente y con
alta densidad.

Hemos usado simulaciones de N-cuerpos para incluir efectos no lineales,
de manera que podemos activarlos o desactivarlos (como las distorsiones en
el espacio de z o las debidas a z fotométricos). Se han construido catálogos
a partir de las simulaciones MICE para medir el agrupamiento en la dis-
tribución de galaxias, comparándolo con los modelos teóricos de las correla-
ciones angulares. Hemos hallado una buena correspondencia entre ambos.

Los planes futuros pasan por utilizar esta metodoloǵıa para la estima-
ción de parámetros cosmológicos, particularmente para DES y PAU.
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Chapter 1

Introduction

The roots of our present understanding of the Universe date back to the
first three decades of the XX century. When Einstein developed General
Relativity he realized that it was possible, for the first time, to describe
in mathematical terms the Universe as a whole by means of a relativistic
theory of gravity. In 1917, he published the first paper giving a static solu-
tion for the background gravitational field of the Universe. Very soon, after
Einstein’s proposal, Alexander Friedmann found a different solution of Ein-
stein’s equations for a homogeneous and isotropic universe. In that solution
the Universe was expanding. In the twenties Lemâıtre found the same solu-
tion that Friedmann but he used the measurements of the recession velocity
of nearby galaxies and the distances to them, obtained using the cepheid
period-luminosity relations, to show that the solution provided by Fried-
mann was a realistic description of the Universe. Some years later Hubble
used more observational data to show that the recession velocity of galaxies
is proportional to their distance, as in an expanding Universe is expected.
Finally, Robertson and Walker constructed the metric tensor that describes
homogeneous and isotropic Universes. Currently, the most extended model
for the background Universe is the Friedmann- Lemâıtre-Robertson-Walker
(FLRW) Universe where the background gravitational metric is defined by a
curvature parameter while the temporal evolution is described by a function
of time called scale factor. In energetic terms, the Universe was dense and
hotter in the past.

In 1965, Penzias and Wilson, detected the Cosmic Microwave Back-
ground Radiation (CMB), which is the cooled remnant of the photons that
decoupled from baryons when the Universe was nearby 400 000 years old.
The existence of this radiation is a proof of the Hot Big Bang model, together
with the abundances of light elements. In 1992, COBE satellite observed the
anisotropies of order O(10−5) in the temperature of the CMB. The fact that
we live in galaxies implies that the Universe, at perturbative level, is not
completely homogeneous. Therefore, CMB anisotropies encode the state of

1



2 CHAPTER 1. INTRODUCTION

this inhomogeneities at early-time expansion.

At the end of the last century, the measurements of the expansion rate,
using type Ia Supernova, pointed out that the expansion is accelerated.
Therefore, to account for this acceleration, a new energy component called
dark energy was added to the cosmological inventory. A particular explana-
tion for dark energy consists on adding a cosmological constant to Einstein’s
equations, as an energetic component, (Zeldovich 1968; Weinberg 1989).
The negative pressure of the dark energy would produce the accelerated ex-
pansion. Nowadays, the most important cosmological problem consists on
understanding the nature of dark energy, (Albrecht et al. 2006; Weinberg
et al. 2012).

The scope of this thesis is the analysis of galaxy clustering, as a probe of
large scale structure of the Universe, using angular auto and cross-correlations
between radial shells. What extragalactic surveys catalogues contain is a
three-dimensional map of the galaxy distribution. As galaxy trace the mat-
ter density contrast field, they provide a great tool to study the spectrum
of inhomogeneities at the late-time expansion of the Universe, which is the
era in which dark energy rules the accelerated expansion.

Those three-dimensional maps are obtained determining the angular po-
sition of the galaxies and the redshift. The latter is the shift on the observed
wavelengths of a galaxy with respect to the rest frame emitted wavelengths
due to the expansion of the Universe.

Therefore, the natural analysis would be in the spherical coordinates
given by the redshift, as a tracer of the distance to each galaxy and the
two angular coordinates that determine the positions in the sky of galaxies
covered by the camera when developing a survey. Since the beginning of
the first redshift surveys, the most common approach to clustering analysis
have been a 3D approach, that used the survey volume to determine how the
clustering of galaxies differ from a random distribution. Galaxies are dis-
tributed, in the linear regime, according to the matter field. The theoretical
description of the growth of structure and the evolution of the primordial
spectrum of inhomogeneities during the expansion history of the Universe
is a 3D picture. Then, a priori, it is easier to compare directly with theory
using cartesian or Fourier space.

But, we are limited by the observational constraints and in this case the
main one is that if we want to convert the (z, θ, φ) coordinates in distances,
we have to assume a fiducial cosmology for the expansion history. Hence,
we are biasing the analysis, in terms of determination of cosmological pa-
rameters. In order to account for the distortions introduced by this biasing,
the Alcock-Paczynski effect, (Alcock C., Paczynski B. 1979), the cosmo-
logical constraints are obtained after adding the factors that describe the
distortions for radial and transverse modes.

There is a much natural approach, consisting on selecting the galaxies
in different redshift bins and then statistically measure the angular distri-
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bution of clustering, compared with a random distribution. In this case,
we are projecting the radial information, loosing the modes corresponding
to distances smaller than the radial shell width. But we can include in
the observables, the measure of the correlation between the different radial
shells. That would introduce the radial modes accounting for the separation
of the bins. Depending on the bin width, the radial resolution accounted
by this tomographic analysis of the survey volume will improve or not. In
this thesis, we studied this from the parameter estimation point of view.
We explore at which width the parameter constraints from 3D analysis are
recovered using the 2D tomography.

In redshift space, galaxy positions are distorted with respect to the real
positions because of their peculiar velocities. At linear scales, the divergence
of peculiar velocities is given by the density contrast. This introduces an
anisotropy in the radial direction, (Kaiser 1987) that depends on the growth
history, for a given background expansion history. It is expected that the
combination of redshift distortions with lensing measurements would allow
us to compare dark energy models with modify gravity theories, (Reyes et
al. 2010; Gaztañaga et al. 2012; Cai & Bernstein 2012). Then, it is known
that if we use two tracers of matter in redshift space, as for example lumi-
nous red galaxies and emission line galaxies, we are oversampling radial and
transverse modes, reducing sample variance, (McDonald & Seljak 2009).
This studies have been usually done in 3D space. We propose to use the
same approach but using angular correlations. This is mainly motivated by
the fact that the two tracers approach depends strongly on the shot noise
of the different samples. Photometric surveys are designed in order to have
a high number density and to reach deeper redshifts. But, as radial in-
formation is randomly affected by the photo-z we should bin the redshift
range and study the projected correlations. The fact that the top-hat edges
in redshift space differ from the boundaries in real space allow enhances
the amplitude of clustering at large angles, as given by redshift distortions,
(Nock, Percival,& Ross 2010; Crocce, Cabré, & Gaztañaga 2011; Ross et al.
2011; Asorey et al. 2013). We forecast the constraints that a survey such
as Dark Energy Survey (DES) or the Physics of the Accelerating Universe
Survey (PAU).

Finally, in order to be ready for the analysis of the data delivered by
DES or PAU when available, we go further than forecasting by comparing
the model for the angular correlations with the measured angular and cross-
correlations from a lightcone output of the MareNostrum Institut de Cinces
de l’Espai simulations (MICE).

In chapter 2 we describe the cosmological model and the large scale struc-
ture. In chapter 3 we show the optimal binning that allows 2D tomography
to recover 3D information, in linear theory. Then, in chapter 4 we consider
how to determine the growth history using different galaxy samples from
photometric surveys. Finally, we compare the model assumed in this thesis
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with the output of a N-body simulations, in order to improve the layers of
reality in the study.The results presented in chapters 3 have been published
in the article (Asorey et al. 2012) and the results shown in chapter 4 have
been submitted for publication, (Asorey et al. 2013)



Chapter 2

Cosmological Model and
Large Scale Structure

In this chapter we summarize the main aspects of the ΛCDM cosmological
model which are relevant for the galaxy clustering analysis that will be
introduced in next chapters. The presentation is essentially based on the
references cited in the text.

2.1 Background expanding Universe

The most likely description of the Universe is based on theCosmological Principle.
This principle states that the Universe is homogeneous and isotropic, at or-
der zero. With this principle, the metric gij of the Einstein’s equations
is fully described by the scalar factor a(t) and the sign of the curvature
of the Universe, k, that is positive, negative or zero wether the Universe
is closed, open or flat. In this thesis we assume that the space is flat as
has been granted by the analysis of the anisotropies of Cosmic Microwave
Background Radiation (CMB), (Lange et al. 2001; Jarosik et al. 2011).

The conformal FLRW metric for a flat Universe is given by

ds2 = a(η)2
(
dη2 − δijdx

idxj
)

(2.1)

in terms of the conformal time

η =

∫
dt

a(t)
, (2.2)

where a(η) the scale factor, normalized to 1 today. If not explicitly stated
otherwise, we use natural units (~ = c = kB = 1)

If ρ̄, p̄ are the energy density an pressure of all the cosmological back-
ground fluids with energy momentum tensor given by

T µ
ν = (ρ̄+ p̄)uµuν − p δνν . (2.3)

5



6 CHAPTER 2. LARGE SCALE STRUCTURE

where the 4-velocity in the background is uµ = (1, 0, 0, 0) and
√
uµuν = 1.

In such a cosmological background, Einstein’s equations reduce to Fried-
mann’s equations

a′′ =
4πG

3
(ρ̄− 3p̄) a3, (a′)2 =

8πG

3
ρ̄ a4, (2.4)

where the primes denote the derivatives with respect to the conformal time
η. Usually, the expansion history of the Universe is parametrized using the
Friedmann parameter

H =
1

a

da

dt
, (2.5)

H =
da

dη
= aH (2.6)

where (2.5) is usually the definition of the Hubble parameter while (2.6)
gives the same information but we are using conformal time, given by (2.2).
This quantity is crucial in order to know the rate of expansion at each epoch.
It appears in every geometrical factor.

Let us define the comoving distance traveled by light from the emitter
to us

r(z) =

∫ z

0

dz

H(z)
(2.7)

where we have introduced the shifts on the wavelengths due to the expansion
of the Universe, the redshift z. In the next chapters, we usually use redshift
as the temporal variable because this is what is measured in galaxy surveys.

From conservation equation, given by T µ
ν,µ = 0, we can extract the

equation of conservation of energy and the continuity equation. Therefore,
in the expanding Universe, the conservation law

∂ρ̄

∂η
+H(ρ̄+ 3p̄) = 0, (2.8)

tell us how the energy evolves with time. Depending on which component
dominates the evolution at each time, the evolution would be different.

From the above equations one can entirely describe the evolution of
the expansion of the background Universe. The Universe is made up of
photons and relativistic matter, neutrinos, non-relativistic baryons, non-
relativistic pressureless dark matter and a dark energy component, with
negative pressure, which is the main problem to solve in modern cosmology.
The critical density,

ρc(t) =
3H2(t)

8πG
,

is the total energy-density of a flat Universe. Usually, instead of the
background densities for the other fluid components of the Universe we use



2.1. BACKGROUND EXPANDING UNIVERSE 7

the ratio of each density with respect of the critical density. We can rewrite
Friedmann equation as

H2(t) = H2
0Ω(t) (2.9)

with

Ω(t) =
∑

x

ρx(t)

ρc(t)
,

the sum running over the different components of the energy-momentum
tensor, x = {rad,mat,DE}. H0 is the Hubble constant which is defined as
the Hubble parameter at current time. Therefore, Ω = 1 today. This allow
us to parametrize the energy content of each component as Ωr0 ,Ωm0

,ΩDE0
.

If the nature of dark energy is the cosmological constant Λ, then ΩDE0
=

Λ/3H2
0 . Those are the relevant parameters that describe the expansion of

the Universe. One of the main goals in observational cosmology consists on
constraining these parameters.

Finally, from equation (2.8) we can define the evolution with the expan-
sion of the different density parameters:

Ωr(a) = Ωr0a
−4 H2

0

H(a)
, Ωm(a) = Ωm0

a−3 H2
0

H(a)
, ΩDE(a) = ΩDE0

H2
0

H(a)
.

(2.10)
At different times the expansion of the Universe is driven by different energy
components. According to this, those are the different epochs in terms of
expansion history.

i) Radiation-dominated era

According to the conservation law (2.8), the evolution of radiation den-
sity parameters is given in equation (2.10). At early times the Universe was
radiation-dominated. When aeq = 10−4 the Universe became matter domi-
nated because the radiation energy density is diluted faster than the matter
energy density. This equality depends on the current ratio between radia-
tion and matter density parameters today. Let us recall that by radiation
we also mean relativistic particles.

At this stage, the horizon grows very fast and therefore the smaller super-
horizon scales re-enter into the observable Universe. During this phase,
baryons are tightly coupled to photons. This would affect strongly the
growth of structures because there is a suppression of clustering at the scales
that re-enter into sub-horizon region at that time. This is reflected in the
current distribution of inhomogeneities at linear scales where we can ob-
serve this suppression of the quasi-scale invariant power spectrum of matter
inhomogeneities produced at the end of Inflation.

ii)Matter-dominated era

During matter-dominated expansion, the energy of photons continue to
decrese and at arec = 10−3 protons and electrons are able to bind together
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and form atoms. Then, the Universe became transparent and releases the
photons that are observed today, much cooler, in the Cosmic Microwave
Background Radiation. As gravity is the only force acting on cold dark
matter and baryons only interact with photons through Thompson scatter-
ing, inhomogeneities grow linearly with the scale factor because the initial
overdensities attract more and more matter as time increases.

iii)Dark Energy era

Since the density of dark energy ρ̄de is constant when its equation of
state is w = −1, as expected from a cosmological constant origin at some
moment with small redshift (z < 1) the Universe starts to be driven by
Dark Energy. This is a fluid with negative pressure which in the ΛCDM
case corresponds to a cosmological constant in Einstein equations. Because
of the negative pressure, the expansion is accelerated. According to this,
recent observations show that the Universe is 13.8 Gyr old and the Dark
Energy era last till nowadays.

2.2 Inflation and Initial Conditions

The most accepted scenario for the evolution of the Universe at early times
is Cosmic Inflation (Starobinsky 1980; Guth 1981; Starobinsky 1982; Al-
brecht& Steinhardt 1982; Linde 1982; Linde 1983). According to this the-
ory, at early times the expansion of the Universe was accelerated in a similar
way to todays Dark Energy era due to negative pressure of the universe, gen-
erated in that case by a scalar field, the inflaton, decaying into the minimum
of a potential with a small kinetic term (slow roll inflation).

This initial accelerated exponential expansion allowed all the regions of
the universe that are not apparently causally connected to become con-
nected. In inflationary models, the output is always a flat Universe.

In terms of large scale structure studies, the most interesting outcome of
Inflation is that it provides an explanation for the origin of inhomogeneities
in the Universe, (Mukhanov & Chibisov 1981; Hawking 1982; Guth & Pi
1982; Starobinsky 1982; Bardeen, Steinhardt & Turner 1983). The exis-
tence of quantum fluctuations during Inflation generated perturbations of
the LFRW metric that are the seeds of current inhomogeneities. In this
work we shall restrict ourselves only to scalar perturbations because they
are directly connected with matter inhomogeneities.

Nowadays, from all the alternatives, inflationary cosmology fits better
current observations (Planck Results XXII 2013). Among Inflation scenarios
there are different models, depending on the number of scalar fields or the
mechanism that stops Inflation (graceful exit). Note that, despite the fact
that Inflation fits well with data, it is not a completely confirmed scenario.

At the end of inflation, in terms of structure formation the value set
for the gravitational potential for scales greater than the horizon is frozen.
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This is the primordial potential that leads to the initial power spectrum of
scalar perturbations. For the modes corresponding to the smaller scales,
their horizon crossing occurs when the Universe is radiation dominated they
are diluted which explains the suppression of the spectrum of these smaller
scales. The information of how the amplitude of each mode is suppressed
is given by the transfer function T (k). Inhomogeneities with scales greater
than the modes with the size of the horizon at matter-radiation equality,
are preserved and generate the primordial power spectrum because they
crossed the horizon when the Universe was matter-dominated and for them
the transfer function is the unity. They only have a linear growth factor due
to gravitational instability.

Primordial Matter Power Spectrum

The inflationary prediction for the primordial power spectrum of curva-
ture perturbations is given by a power law

P0(k) = Ask
ns−1 (2.11)

where ns is the spectral index and AS a normalization amplitude. If ns = 1
the power spectrum is scale invariant and is known as Harrison-Zeldovich
power spectrum(Harrison 1972; Zeldovich 1972; Peebles & Yu 1970). In
that case all the modes entered with the same amplitude when crossing the
horizon and then the primordial power spectrum is scale invariant. Scale
invariant power spectrum has been ruled out by recent results from Planck
satellite (Planck Results XXII 2013). The observed primordial power spec-
trum is almost scale invariant but not exactly scale invariant, as was orig-
inally guessed. We shall consider this primordial power spectrum taking
into account only scalar fluctuations and no tilt in the power spectrum nor
running index in this initial power spectrum.

2.3 Cosmological perturbations

In theoretical terms, gravitational inhomogeneities can be described by per-
turbations of the metric tensor. In perturbation theory using Boltzmann
equations to describe the interactions between the inhomogeneities of differ-
ent fluids that compound the energetic content of the Universe we can obtain
theoretical estimations of the power spectrum of temperature anisotropies of
CMB. This is related to inhomogeneities in the radiation component, or the
power spectrum of the distribution of matter overdensities after decoupling.
Large scale structure analyses from galaxy surveys are observing precisely
this distribution of inhomogeneities at late times expansion of the Universe.
Therefore, it is very important to analyze the evolution of cosmological per-
turbations from this perspective.

There are excellent reviews on linear cosmological perturbations in the
literature. We refer to (Kodama & Sasaki 1984; Mukhanov, Feldman &
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Brandenberger 1992; Ma & Bertschinger 1995; Malik & Wands 2009) and
relevant chapters of (Peebles 1980; Liddle & Lyth 2000; Dodelson 2003;
Mukhanov 2005)

Let us consider first order scalar perturbations to FLRW metric and to
the energy-momentum tensor.

From Einstein’s equations it is possible to derive simpler equations that
describe the evolution of metric perturbations in terms of matter inhomo-
geneities and temperature inhomogeneities of the radiation field. But these
homogeneities also vary because of the expansion of the Universe and the
collision terms. Then, Boltzmann equations provide the missing conditions
to completely describe the evolution of these inhomogeneities. In the sim-
plest scenarios, it is possible to obtain analytic solutions, using different
assumptions but to be more consistent we have to solve numerically all
these coupled equations in order to find the spectrum of temperature inho-
mogeneities at recombination times, which is needed for CMB anisotropies
studies or the matter inhomogeneities after matter-radiation decoupling.

The most general small perturbations δgµν of the conformally flat FLRW
metric gµν are given by:

δg00 = 2a2φ, (2.12)

δg0i = a2Bi, (2.13)

δgij = 2a2Cij, (2.14)

where, we implicitly assume that |δgµν | << |gµν |. The perturbations of the
metric elements can be decomposed in

Bi = B,i+Si, (2.15)

Cij = ψδij + E,ij +
1

2
(Fi,j + Fj,i) +

1

2
hij , (2.16)

where φ,B,ψ and E are the scalar components of the metric perturbations,
whereas Si and Fi are vector perturbations and hij is the tensor metric
perturbation. From now on, for simplicity, we shall not consider vector or
tensor perturbations. Thus, the perturbed metric is reduced to

ds2 = a(η)2
[
(1 + 2φ)dη2 + 2B,i dx

idη − ((1− 2ψ)δij − 2E,ij ) dx
idxj

]

(2.17)
Let us consider also perturbations of energy-momentum tensor around

the background tensor, that corresponds to a perfect fluid, of equation (2.3)

T µ
ν = (ρ+ p)uµuν − pδµν +Σµ

ν . (2.18)

The different components of this tensor are given by

T0
0 = (ρ̄+ δρ) (2.19)

T0i = (ρ̄+ p̄)(vi −B,i ) (2.20)

T i
0 = (ρ̄+ p̄)vi (2.21)

T i
j = −(p+ δp)δij +Σi

j , (2.22)
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where we use the perturbed metric at first order to lower or raise indices
and neglected higher order terms. Σi

j is the anisotropic stress tensor, while
ρ̄, p̄ are the background density and pressure, respectively, that define the
perfect background fluid, which are measured in a comoving observer at
rest. The anisotropic tensor is introduced by the component of the Universe
with an anisotropic energy-momentum distribution. Finally, vi = dxi

dτ is the
velocity of the fluid due to the perturbations.

In terms of large scale structure, we are only interested in the scalar
perturbation because they are related to gravitational instabilities.

From the perturbed metric and energy-momentum tensor we can derive
the Einstein first order perturbed equations in any gauge by:

∇2ψ − 3H(ψ′ +Hφ) = 4πGa2δρ, (2.23)

−∇i(ψ
′ +Hφ) = 4πGa2(ρ̄+ p̄)(vi −B,i )(2.24)

[
ψ′′ + 2Hψ′ +Hφ′ + (2H′ +H2)φ

]
δij +

1

2
(∇2 δij −∇i∇j)(φ− ψ)(2.25)

= 4πGa2(δp δij − Σi
j) (2.26)

where v =
√
vivi is the total scalar velocity potential. We only have to add

the evolution equations of the perturbations at first order.

We shall neglect the anisotropic stress of the energy-momentum tensor
and in such a case the anisotropic component of the stress tensor vanishes
and ψ = φ.

a) Gauge choice

A suitable choice of coordinates in required in order to solve the pertur-
bation equations. Depending on the gauge choice solutions they look rather
different. However, the observations are based on gauge-invariant quantities.

In the longitudinal or newtonian gauge,(Bardeen 1980), the gauge-invariant
quantities are φ and ψ. All other scalar components are zero. A different
gauge is the synchronous gauge, (Lifshitz 1946). In this gauge, the gauge
degrees of freedom are E and φ. This is used by numerical codes that solve
the evolution of perturbation (Zaldarriaga & Seljak 1996; Lewis, Challinor
& Lasenby 2000), because ψ = 0 and therefore proper time is the time of
the FLRW metric.

b) Perturbed linearized Einstein Equations

The first order Einstein equations for scalar perturbations, (2.23-2.26)
in the newtonian gauge and Fourier space are

k2ψ = − 4πGa2ρ̄

(
δ − 3

H
k
(1 + w)v

)
(2.27)

kikj(φ− ψ) = + 8πGa2Σi
j (2.28)
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where δ = δρ/ρ̄ is the normalized scalar matter inhomogeneity or density
constrast.

In addition to Einstein equations, which impose constrains on the scalars,
we have to consider continuity and Euler equations, given by DµT

µ
0 = 0

and DµT
µ
i = 0, respectively,

δ′ = −(1 + w)(θ − 3ψ′)− 3H
(
δp

δρ
− w

)
δ, (2.29)

θ′ = −H(1− 3w)θ − w′

1 + w
θ +

δP/δρ

1 + w
k2δ − 2

3
k2

w

1 + w
Σi
i + k2φ(2.30)

where and θ = ∇ivi is the divergence of the velocity perturbation in the
newtonian gauge, i. e., the divergence of the fluid velocity, and w is given
by the equation of state of the fluid, w = p/ρ.

i) Cold Dark Matter

Cold Dark Matter assumption implies that this fluid is pressureless, w =
0, and collisionless, i. e., it only interacts through gravity. Therefore, the
evolution equations for CDM are

δ′c = −θc + 3ψ′ (2.31)

θ′c = −Hθc + k2φ (2.32)

ii) Baryonic matter

Baryons behave in a complicated way, compared with CDM evolution.
First, baryons interact with the photon fluid. Moreover, this interaction is
different before and after recombination. After recombination electrons in-
teract through Compton scattering with the photons. Before recombination
both fluids are tightly coupled and we have to evaluate the evolution of the
coupled fluid.

After recombination, the evolution of baryon fluid is driven by continuity
and Euler equations and the differences with the cold dark matter fluid are
the pressure term and an additional term due to the Compton scattering of
electrons and photons

δ′b = −θb + 3ψ′ (2.33)

θ′b = −Hθc + c2sk
2δb +

4ρ̄γ
3ρ̄b

aneσT (θγ − θb) + k2φ (2.34)

where σT = 0.6652 × 10−24cm2 is Thompson cross section, ne the number
density of electrons, µ the mean atom mass and cs the sound speed of baryon
fluid given by

c2s =
p′b
ρ′b

=
kBTb
µ

(
1− 1

3

d ln Tb
d ln a

)
. (2.35)
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On the other hand the variation of baryon temperature is given by

T ′
b = −2HTb +

8

3

µ

me

ρ̄γ
ρ̄b
aneσT (Tγ − Tb). (2.36)

iii) Photons

The relevant properties of photons from a large scale structure perspec-
tive is how they can affect the matter spectrum. They interact in two differ-
ent ways. Before recombination, photons and baryons are tightly coupled.
Therefore, there are some imprints in this coupled fluid. These imprints are
oscillations on the power spectrum due to the propagation of sound waves
in the baryon-photon fluid. Those oscillations are called Baryonic Acoustic
Oscillations (BAO). They have been detected in CMB anisotropies spectrum
and also diluted in the matter power spectrum, although the significance in
the latter case is not very high and one of the main goals of extragalactic
redshift surveys is the detection of BAO imprint on the spectrum.

After recombination, CMB photons interact with baryons because of
Thompson scattering, as shown in equation (2.34)

Θ′ + ~p · ~∇ Θ+ ψ′ + ~p · ~∇ φ = ne a σT [Θ0 −Θ+ ~p · ~vb] (2.37)

where ~p denotes the photon direction and Θ the perturbation of photon
distribution, which can be related to the relative temperature fluctuations
Θ = δT

T .

2.4 Growth of structure

At the late expansion phase of the history of the Universe, in matter and dark
energy dominated phases, we can use newtonian perturbation theory for
(cold) non-relativistic matter at scales that are smaller than the Universe. In
this period of time is when structures are formed because of the gravitational
instabilities produced by the spectrum of inhomogeneities that exists after
decoupling.

The growth function, D(t) (Heath 1977; Peebles 1980) describes the pro-
cess in which, given a potential field, overdensities grow because the attract
more and more matter. For cold dark matter perturbations at sub-horizon
evolution, we can neglect, in the matter-dominated phase, the anisotropic
stress. Therefore, scalar perturbations in conformal newtonian gauge satisfy
φ = ψ because of the constrain imposed by Einstein equations, in formula
(2.26). Recalling that dη = dt/a(t) and taking second derivatives of equation
(2.31), including equations (2.32) and (2.27) and neglecting derivative on φ
for sub-horizon evolution we obtain a linearized second order differential
equation

∂2δ

∂t2
+ 2H

∂δ

dt
= 4πGρ̄δ. (2.38)
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The solution of this second-order differential equation can be written in
the following form

δ(k, t) = D1(t)A(k) +D2(t)B(k) (2.39)

where D1 is the growing mode that describes the growth of structure (Ḋ1 >
0) while D2 is the decaying mode that suppresses initial inhomogeneities
(Ḋ2 < 0) and initial conditions are given by A(k) and B(k). We shall only
consider the growing mode and in this work we use the notation D(t) =
D1(t) where D(t) is called growth function.

In a ΛCDM universe, the growth factor is obtained the hypergeometric
function:

D(a) =
5Ωm(a)H(a)

2

∫ a

0

da′

a′3H(a′)
(2.40)

where we normalize it in order to follow the same convention than we use
for the scale factor, and therefore D(1) = 1. In a universe with only cold
dark matter, the growth factor is proportional to the scale factor a.

Usually, the linear growth rate:

f(a) =
d lnD

d ln a
(2.41)

is commonly used in the literature. It has been shown that for the standard
scenario in which gravity is described by General Relativity the linear growth
factor can be parametrized as (Lahav et al. 1991; Wang & Steindhardt
1998; Linder 2005)

f(z) = Ω(z)γ (2.42)

where γ is the growth index and for the standard GR case γ = 0.554 (Peebles
1980; Linder 2005). This parameter depends on the dark energy model and
in the gravity. Therefore, determining this parameter is a perfect tool to
distinguish between dark energy and modify gravity models, given a back-
ground expansion history.

Finally, we can show the expression for the growth factor in terms of
redshift, which is the coordinate that we will observe when measuring the
spectral emission of galaxies with galaxy surveys:

D(z) = exp

(
−
∫ z

0

dzf(z)

(1 + z)

)
(2.43)

Another observable of interest is the matter peculiar velocity.

Peculiar velocity of matter

The matter peculiar velocity is given by the velocity of the perturbations.
From equation (2.31) we get

v(k, η) =
iδ(k, η)

k
=
iδ(k, η)

k

d lnD

d ln η
=
ifaHδ(k, η)

k
(2.44)
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the peculiar velocity of the matter perturbation field.

2.5 Transfer function

The transfer function describes the behaviour of perturbations between hori-
zon crossing and radiation-matter equality. Therefore these transfer func-
tions are unity for the modes that correspond to scales greater than the
horizon at radiation/matter transition. Let us define this mode as keq. The
initial conditions that we consider for the growth factor are given by the
initial conditions at the horizon crossing times the transfer function, i.e.
The transfer function output are the initial conditions of equation (2.39)
Transfer functions are given by the coupled Einstein perturbed equations
and the evolution of the perturbations of the different components of the
Energy-Momentum tensor. There are some analytic solutions, (Bardeen et
al. 1986; Eisenstein & Hu 1998) but in general, if we need the exact solution
we have to solve numerically this system of differential equations (usually
numerical codes also compute the power spectrum), (Zaldarriaga & Seljak
1996; Lewis, Challinor & Lasenby 2000).

Transfer function is defined as:

T (k) =
δ(k)

δ(keq)
(2.45)

2.6 Matter power spectrum

Finally, after solving the evolution of the modes related to small scales after
the horizon crossing in the radiation and matter-dominated stages, which as
we have seen above is given by the transfer function and the growth factor
we can define the linear matter power spectrum of inhomogeneities as:

P (k, z) =
〈
|δ2k|
〉
= D(z)2T 2(k)P0(k) (2.46)

Recall that this matter power spectrum is gauge dependent (Yoo, Fitz-
patrick & Zaldarriaga 2009; Yoo 2010; Challinor & Lewis 2011). Actually,
this is not a real observed quantity, as we know that observed quantities must
be gauge independent, but it has been often used as a pseudo-observable.
In current and past surveys this problem was not important because the
gauge dependency is only detectable at the largest scales, above the equal-
ity turnover, keq.

If the primordial fluctuations followed a gaussian distribution, this power
spectrum encodes all the cosmological information, in the linear regime.

The normalization of the power spectrum is related to the variance in a
sphere of radius R of the power spetrum,

σ2(R) =

∫
dkk2

2π2
P (k)W 2(kr) (2.47)
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where W (kr) is a spherical window in Fourier space,

W (kr) =
3(sin kr − kr cos kr)

(kr)3
(2.48)

and P (k) is the linear matter power spectrum at redshift z = 0. This
normalizations measure the amplitude of clustering at scale R. Usually,
R = 8h−1Mpc and we define the parameter σ8 = σ(R = 8h−1Mpc)

2.7 Galaxy clustering

We have shown that, besides geometrical measurements of the rate of expan-
sion, cosmological information is encoded in the distribution of the inhomo-
geneities because they trace the primordial spectrum of cosmological pertur-
bations and their evolution throughout the different phases of the Universe
expansion. Mainly, the angular correlation of CMB temperature fluctuations
show the imprint of the matter distribution at the time of recombinations
on the energy distribution of photons at that redshift, z = 1100. Note that
there are other secondary effects on CMB temperature anisotropies due to
the interaction with the photons with the matter distribution in the Uni-
verse after recombination that changed the pattern of the anisotropies like
Doppler effect and Sachs and Wolfe effect. At these distance, the linear
model stands up to minimum scales of 0.2 angular degrees and therefore it
is easier to test the model presented in previous chapter.

But the main disadvantage of CMB is that its information is constrained
in the surface corresponding to a sphere with radius given by the comoving
distance to redshift z = 1100. This induces degeneracies between cosmolog-
ical parameters because the distance to this sphere and the distances in the
surface of this sphere depend on the same parameters. If we can study the
spectrum of inhomogeneities at different moments of the expansion using
different probes it would improve the constrains on the model parameters.

In addition to that, the decoupling between baryons and photons hap-
pened in a matter-dominated Universe. The effect of dark energy then was
small, although CMB radiation is affected by a late ISW effect in which
dark energy plays an important role citar. Cosmological probes at late time
expansion, such as the clustering of galaxies, in addition to CMB, would
provide better constrains in dark energy equation of state w.

Historically, the most used technique to analyze large scale structure in
galaxy surveys uses correlation functions, either in angular or three dimen-
sional space.

Galaxy clustering studies measuring the full shape of the correlation of
galaxies are similar to CMB studies of anisotropies. Either 3D correlations
or angular correlations are fitted using the framework provided in this chap-
ter and cosmological parameters are constrained. This should be done in
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combination with other probes like CMB or type Ia Supernovae because
clustering can poorly fit the parameters of the initial power spectrum. But
on the other hand, galaxy clustering is a powerful tool to understand Dark
Energy because the galaxy maps traced by surveys live in the dark energy
realm and the acceleration of the expansion is imprinted in clustering of
galaxies, which is especially sensitive in Ωm. The higher Ωm, the higher the
clustering and therefore, the clustering.

As we have seen in this chapter, theoretical cosmological information
is contained in the power spectrum P (k, z). Then, in order to relate this
with the galaxy catalogue produced by a survey, we need to match it with
the power spectrum of galaxies. One caveat is that this is not really the
observable because galaxy coordinates in catalogues are the two angles that
define the direction on the sky pointing to the galaxy and the redshift of
each galaxy while the power spectrum lies in Fourier space. But for a given
cosmological parameters, we can turn angles and redshift into cartesian co-
moving coordinates and then Fourier transform in order to build the power
spectrum.

On the other hand, we have to take into account that we are assuming
that galaxies are tracing the matter field of inhomogeneities. But galaxies
are more clustered than matter and therefore we have to include the linear
galaxy bias, bg, (Kaiser 1984; Bardeen et al. 1986). The galaxy bias relates
the local matter inhomogeneity, (Fry & Gaztañaga 1993) with the galaxy
number density:

δg(k, z) = bg(k, z)δ(k, z). (2.49)

In this case, the galaxy power spectrum in real space would be given by

Pg(k, z) = b2g(k, z)P (k, z) (2.50)

Different populations of galaxies have different bias. For example, Lu-
minous Red Galaxies (LRG) are highly biased because they are brighter
objects, living in the more massive halos. On the other hand, star-forming
galaxies are nearly unbiased.

2.7.1 Redshift-space distortions (RSD)

Galaxies are tracers of the matter density contrast field but galaxies are
observed in redshift space. In expression (2.49) we have assumed that each
redshift corresponds to a comoving distance given by the general expansion
flow of the Universe. Galaxies in clusters are falling to the densiest regions
of its host cluster or local inhomogeneity peak. Then, the galaxy power
spectrum should be corrected by this peculiar motion to turn into the galaxy
power spectrum in redshift space. The relation between position of the
galaxy in redshift space and real position is

~s = ~r + ~vp (2.51)



18 CHAPTER 2. LARGE SCALE STRUCTURE

The displacements along the line of sight caused by this peculiar ve-
locities are redshift-space distortions (RSD). Spherical overdensities appear
squashed at linear scales in the radial direction while at non-linear scales
we see filaments on the line of sight, the Fingers of God. This, a priori a
systematic has turned on a cosmological probe because in the linear regime,
redshift space distortions are due to the coherent infall of galaxies in the
centre of the overdensity. The linear power spectrum of galaxies on linear
scales was first derived by Kaiser, (Kaiser 1987). Here, we follow the deriva-
tion of the power spectrum in redshift space given in (Hamilton 1998).
Conservation of galaxies gives

ns(s)d3s = n(~r)d3r (2.52)

where s means redshift space. This can be expanded in terms of density
contrasts

n̄ (1 + δs(~s)) s2ds = n̄(~r) (1 + δ(~r)) r2dr (2.53)

From Eq. 2.51

1 + δs(~s) =
r2n̄(~r)

(r + vp)2n̄(~r + ~vp)

(
1 +

∂v

∂r

)−1

(1 + δ(~r)) (2.54)

and at linear order,

δs(~r) = δ(~r)−
(
∂v

∂r
+
∂ln r2n̄(~r)

∂ln r

v

r

)
. (2.55)

Neglecting the second term in the parenthesis for scales covered by a survey,
and using

~v(~k) = ifHδ(~k)
~k

k2
(2.56)

which is the vectorial expression of equation 2.44, then

δs =

(
1 + f

k2‖

k2

)
δ = (1 + fµ2)δ (2.57)

where µ is the cosine between the ~k and the line of sight.
Finally, assuming that velocities are not biased, the final expression for

the power spectrum of galaxies in redshift space is:

P (k, z) = (bg(k, z) + f(z)µ2)2D(z)2P (k, z = 0) (2.58)

In eq. (2.58) we see that using redshift-space distortions we can test the
growth history of the Universe comparing the amplitude on the clustering
of transverse modes (not affected by RSD) and the amplitude of clustering
of parallel modes. Using this probe we can estimate bσ8 and fσ8.
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Therefore, this probe in combination with independent measurements
of bias and with weak lensing would improve the constraints on the those
parameters. Weak lensing is the distortion on the background galaxy shapes
and brightness by the foreground matter distribution. As all the matter
lenses the light, the correlations of distortions on background galaxies does
not depend on the bias but on σ28 . If we cross-correlate this distortions
with the foreground galaxies we are measuring bσ28. Combining RSD with
this probes will break those degeneracies, improving the figures of merit of
surveys, (Gaztañaga et al. 2012; Cai & Bernstein 2012). Therefore, we
will be able to test GR and dark energy models (Reyes et al. 2010)

Thanks to RSD, we can discriminate between dark energy models and
modify gravity because they predict different values for the linear growth
rate f(z).

2.8 Galaxy surveys: DES and PAU

Let us describe briefly the two surveys we have been involved within the
cosmology group at the Institut de Ciènces de l’Espai. They are the pho-
tometric surveys, the Dark Energy Survey (DES) and the Physics of the
Accelerating Universe Survey (PAU)

2.8.1 Dark Energy Survey (DES)

The Dark Energy Survey (Annis et al. 2005), www.darkenergysurvey.org,
is a broad-band photometric survey planned to understand the nature of
dark energy using type Ia Supernovae, Baryon Acoustic Oscillations, Weak
Lensing and Galaxy cluster number counts probes of acceleration of the
Universe. The Dark Energy Camera (DECam), (dePoy et al. 2008) is a
570 Megapixel camera, containing 74 CCDs, and it is located on the 4-m
diameter Blanco Telescope, at Cerro Tololo, in Chile. The field of view
is around 2.2 deg. Using a grizY filtering system, it will cover 5000 deg2

during 525 nights in 5 years. It will record over 300 million galaxies reaching
magnitude iAB < 24.5. Operations began in September, 2012 and the survey
is expected to start in the fall of 2013.

2.8.2 Physics of the Accelerating Universe (PAU)

The Physics of the Accelerating Universe Survey (Benitez et al. 2009),
www.pausurvey.org, is a narrow-band photometric survey that will study
the properties of dark energy combining redshift space distortions probe and
weak lensing magnification using galaxy cross-correlations.

The PAUCam, (Casas et al. 2010), is designed to obtain accurate pho-
tometric redshifts, using a system of 40 filters and 5 broad-band ugriz filters.
The magnitude depth of for the narrow-band filters is iAB < 25.7 with a
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photometric accuracy of σz/(1 + z) = 0.0035 which is about 10h−1 Mpc,
translated to comoving coordinates. For the broad-band filters, the mag-
initude depth is iAB < 24 with σz/(1 + z) = 0.05. The camera will be a
community instrument at the 4-m diameter WIlliam Herschel Telescope, at
La Palma, Spain and it is expected to begin operations by the end of 2013.
The camera would be able to cover 2 deg2 per night. The expected area of
the survey is 100/200 deg2, recording 2 000 000 photometric spectra from
the narrow filters and 10 000 000 galaxies with the broad-band filters.



Chapter 3

Recovering 3D clustering
information with angular
correlations

3.1 Motivation

The motivation for the study explained in this chapter is en-marked in the
evaluation of the different approaches that we can consider when using ex-
tragalactic surveys to extract information on cosmological parameters. The
final outcome of a extragalactic survey is a galaxy map with the positions
of the galaxies in angular/redshift space. A priori, this is the proper coor-
dinate system to evaluate the distribution of galaxies because we are not
introducing any biased estimator of this distribution. But, as we have seen
in chapter 2, cosmological information description is in cartesian space and
in this sense, it would be easier to study the three-dimensional distribution
of galaxies in cartesian space (3D). This would not produce any distortion
in the analysis if conversion from redshift to distances were not parameter
dependent. Therefore, if we want to evaluate directly the power spectrum
of galaxies in Fourier space, or the 3D correlations function in configuration
space, we have to assume a value for the cosmological parameters.

On the other hand, we can measure the angular correlation of galaxies
(2D). But in this case we are loosing the radial information when we project
the galaxies in the sphere. If we divide the catalogue in different radial
shells and then the observables are composed by the angular correlations in
redshift bins we are sampling more transverse modes, where transverse mean
perpendicular to the line of sight, improving the performance. Finally we
can carry out a full tomographic analysis including all the cross-correlations
between redshift bins. This allows us to include radial modes given by the
bin separation, in an analogy with 3D modes.

Another advantage of using angular correlations is that, usually, the

21
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correlations of weak lensing distortions are made in 2D, including weal lens-
ing tomography. Therefore, the combination of clustering and weak lensing
studies as proposed in (Gaztañaga et al. 2012; Cai & Bernstein 2012) would
be easier in the 2D framework. Let us mention that there are 3D weak lens-
ing analysis (Heavens 2003; Castro, Heavens & Kitching 2005; Kitching et
al. 2011)

There have been works analyzing the nature of this 2D approach, (Bon-
vin C., Durrer R. 2011; Challinor & Lewis 2011; Montanari & Durrer 2012),
including all the possible corrections due to GR effects, velocity and lens-
ing terms. But we are interesting in the capacity of the tomographic 2D
approach to challenge the constrains on parameters given by the most stan-
dard 3D approach. And therefore how to optimize the tomographic redshift
bins in order to be as precise as when using the 3D power spectrum. We have
provided forecast on different types of surveys in order to find the relation
that will allow us to use the optimal bins in future galaxy surveys.

In this analysis, first of all, we have compared the constrains on Ωm

obtained from the 2D and 3D methods in a full sky spectroscopic survey.
This comparison is performed for different redshift bin configurations. In
the comparison we have to take into account that in the 3D analysis we
usually cut at a minimum scale because we are assuming the linear model
and at small scales the power spectrum in reality is non-linear because it
is the range in which gravity has produced collapsed bodies and this kind
of processes are non-linear. Therefore, we also the cut the 2D spectra at a
minimum angular scale related to the 3D minimum scale in order to do a
fair comparison.

Then, for the same spectroscopic survey, we compare the RSD constrains
in a bias free case. This case is relevant because RSD affect the radial
positions of the galaxies and therefore.

Finally, we forecast constrains on Ωm for full sky narrow and broad-band
photometric surveys.

3.2 Methodology

3.2.1 Fiducial surveys

Let us describe the fiducial surveys and the galaxy samples that we are
considering in the comparison. They are characterized by the redshift range,
the area of sky covered, the accuracy of the redshift measurements and the
galaxy bias of the galaxy sample.

For the comparison made in this chapter, we considered full sky surveys,
where the fraction of sky is the unity, fsky = 1. In that case, the different
ℓ modes of the angular power spectrum Cℓ are independent. This simplifies
the covariance matrix of the Cℓ because it is diagonal with respect to ℓ.
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Number of bins ∆z ∆r (h−1 Mpc)

1 0.20 468
4 0.05 113 - 122
8 0.025 56 - 61
16 0.0125 28 - 31
20 0.010 22 - 25

Table 3.1: Bin configurations used for the 2D tomography in the case of the
spectroscopic and the narrow band photometric survey in a redshift range
of 0.45 < z < 0.65. We show the number of radial bins and their range of
widths in redshift and comoving distance.

dN

dzdΩ
= Ngal

( z

0.55

)2
e−(

z
0.55)

1.5

(3.1)

which is typical of a flux-limited sample with a magnitude cut at iAB < 24.
In Eq. (3.1) Ngal is a normalization related to the total number of galaxies
per square degree under consideration.

Spectroscopic survey

For this survey we consider a redshift range 0.45 < z < 0.65, which is similar
to SDSS photometric sample, (Padmanabhan et al. 2005; Padmanabhan et
al. 2007; Blake et al. 2007). For the spectroscopic sample of galaxies, we
assumed that galaxy bias is constant because the total redshift range does
not cover a large depth. The galaxy bias is bg = 2, similar to highly biased
populations like Luminous Red Galaxies (LRG) samples. The redshift bin
configuration applied to the sample is especially relevant in the 2D tomog-
raphy because the radial resolution is sensitive to the number of bins. We
show in table 3.1 the different configurations used in the analysis. The table
indicates the number of redshift bins in which we dice the redshift range
mentioned above. In a spectroscopic survey, the redshift of each galaxy is
the true redshift. The implications of this is that each bin is a top hat bin
in the space of true redshifts1 . In the notation we used here, this means
that σz = 0, where σz is the dispersion on the redshift measurements.

We selected all the redshift bins with the same width in redshift space and
therefore ∆z = (zMaxSurvey − zMinSurvey)/Nz . This assumption is the same
throughout this chapter, as explained below in section 3.2.1. In the third
column of table 3.1 we show how the bin width in redshift space translates

1To satisfy differentiability requirements at the edges we use in practice φ(z) ∝

exp
[

−((z − z̄)/(∆z/2))20
]

, where z̄ is the mean redshift of the bin and ∆z the full width.
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Case n(r) (h3 Mpc−3)

Low Shot-Noise 3.14 · 10−3

High Shot-Noise 6.89 · 10−4

Table 3.2: Comoving galaxy number densities at z = 0.55 for the spectro-
scopic and narrow-band photometric surveys. Case 1 corresponds to a low
shot noise level (nPgal ∼ 2%, where Pgal is the monopole of the galaxy spec-
trum at z = 0.55 and k = 0.1hMpc−1) while Case 2 corresponds to a high
shot noise level (nPgal = 10%) .

to comoving distances, showing the range of comoving widths of the radial
shells.

Regarding the galaxy number density of the spectroscopic sample, we
have selected two different samples. Their number densities are shown in
table 3.2

For the considered redshift range, the low shot-noise case, with higher
number density, consists on a sample of 40 million galaxies while the the case
with lower density consists on a sample with 9 million galaxies. Comparing
the constrains on the parameters for the different cases allow us to study
the effect of shot noise in the results.

Narrow band photometric survey

In the next years, there would be a generation of photometric surveys that,
instead of using a small set of broad band filters as usually this kind of
surveys are developed, will cover the sky using cameras with more than
40 narrow-band multi-filters. Surveys such as Physics of the Accelerating
Universe Survey (PAU) (Benitez et al. 2009; Casas et al. 2010; Gaztañaga
et al. 2012) or J-PAS (Taylor et al. 2013). Measuring the photometric
redshift in those surveys will increase the precision of redshifts while the
number density is as high as in a photometric survey.

Therefore, we would like to compare the performance of this surveys com-
pared with the spectroscopic case explained above. We consider a narrow-
band photometric survey, with σz = 0.004, with the same redshift range
than in the spectroscopic case, i. e., 0.45 < z < 0.65. As in the spectro-
scopic sample, the narrow-band photometric sample is highly biased, bg = 2,
assuming it is constant in the redshift range considered. Samples have the
same number of galaxies than in the spectroscopic survey and number den-
sities are listed in table 3.2. We use the bin configurations shown in table
3.1. In summary, we only change the accuracy of redshifts with respect to
the spectroscopic survey. We assume that this accuracy is the same in all
the redshift bins. This implies that we select bins with the same width. In
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Number of bins ∆z ∆r (h−1 Mpc)

4 0.25 398 - 592
5 0.20 315 - 480
6 0.167 260 - 404
7 0.143 221 - 348
8 0.125 193 - 306
9 0.111 171 - 273
10 0.10 153 - 246

Table 3.3: Bin configurations considered for a broadband photometric survey
within a redshift range 0.4 < z < 1.4. We show the number of radial bins
and their range of widths in redshift and comoving distance.

top panel of figure 3.1 we show the redshift bins used for this samples.

Broad band photometric survey

Finally, we consider a broad-band photometric survey like Dark Energy
Survey, Pan-Starrs, LSST and the imaging component of EUCLID. In this
case, we chose a deeper redshift survey with range 0.4 < z < 1.4. In this
case we assume a linear evolution with redshift for the bias, following (Fry
1996),

b(z) = 1 + (b⋆ − 1)
D(z⋆)

D(z)
(3.2)

where b⋆ = 2 is bias at redshift z⋆ = 1. For the bias evolution we assume the
fiducial cosmology always. The photometric error is conservative, σz = 0.1.
We do not consider evolution on this error and we select bins with constant
width. As we have modify the redshift range, then the bin configurations
for the broad-band survey is different. Broad-band survey bin configurations
are shown in table 3.3.

The number of galaxies considered is of the order of 150 · 106. This
number satisfies the number density of the low shot noise case of table 3.2.

3.2.2 Spatial (3D) power spectrum

The three-dimensional quantity that we use to forecast constrains on the
parameters is the galaxy power spectrum in redshift space in quasi-linear
scales.

Pg(k, µ, z) = (bg + fµ2)2D2(z)P (k)e−k2σ2

t (z)µ
2

, (3.3)

where P (k) is the linear spectrum at z = 0 (properly normalized), D(z) is
the linear growth factor and the remaining amplitude depends on the bias
b(z) and the linear growth rate f(z) ≡ d lnD/d ln a. We compute P(k) using
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Figure 3.1: Top panel shows the redshift distribution in the spectroscopic
and narrow band photo-z survey (violet). For the narrow band case we show
how the true redshift distributions given by Eq. (3.1) look like if we divide
the volume in eight consecutive redshift bins. Bottom panel shows the same
but for a broadband photometric survey divided in five bins.



3.2. METHODOLOGY 27

CAMB The Gaussian cut-off accounts for the fact that the radial information
might be diluted due to photometric redshift errors σz. This expression is
correct as long as the distribution of photometric errors is Gaussian, as we
assume here. In Eq. (3.3) this redshift error propagates to scales through
σt(z) = c σz/H(z). Notice that σt depends also on the cosmic history.
This should be taken into account when constraining relevant cosmological
parameters (e.g. Ωm).

Ideally, when we compare measurements with a theoretical power spec-
trum we have to perform a new measurement for each set of cosmological
parameters that we are considering in the comparison. This is time ex-
pensive because we would have to recompute all the cartesian comoving
coordinates and the Fourier transforms.

Then, to improve the performance of the analysis, we can choose a ref-
erence cosmological model, where we have chosen to perform the measure-
ment of the power spectrum, and transform each model prediction frame to
the reference frame when doing the comparison between the model and the
measurements. This is the Alcock-Paczynski effect (Alcock C., Paczynski
B. 1979).

Let us call P obs(k, µ) the power spectrum measured in the reference
cosmology and Pmod(k̃, µ̃) the model prediction at the point in cosmological
parameter space being tested. The transformation of distances and angles
from the cosmological model being tested (k̃, µ̃) to those in the reference
model (k, µ) is done through the scaling factors

c‖ =
H(z)

Hmod(z)
; c⊥ =

dmod
A (z)

dA(z)
, (3.4)

as k̃‖ = k‖/c‖ and k̃⊥ = k⊥/c⊥, where ‖ indicates modes parallel to line of
sight and ⊥ perpendicular. The Hubble parameter and the angular diameter
distances are given by

H(z) = 100h

√
Ωm(1 + z)3 +ΩDE(1 + z)−3(1+w) (3.5)

dA(z) =

∫ z
0

dz′

H(z′)

1 + z
. (3.6)

From the above one trivially finds,

k̃ = k
√

(1− µ2)c−2
⊥ + µ2c−2

‖
(3.7)

µ̃ = µ c−1
‖ /
√

(1− µ2)c−2
⊥ + µ2c−2

‖ . (3.8)

In addition, the power spectrum is sensitive to the volume element. Thus
we must re-scale Pmod by the differential volume element with respect to
the reference cosmology : c2⊥c‖. For a similar approach, see (Hawken et al.
2012)
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Lastly, following (Tegmark 1997) and (Seo et al. 2003) we construct the
χ2 for each radial bin i as,

χ2
3D(i) =

∫ kmax

kmin

dkk2

8π2

∫ 1

−1
dµ Cov−1

eff (k, µ)
(
P obs
g (k, µ, zi)

− 1

c‖c
2
⊥

Pmod
g

(
k̃, µ̃, zi

))2

(3.9)

where Cov−1
eff is defined for every bin i according to,

Cov−1
eff (k, µ) =

∫ rmax(i)

rmin(i)
d3r

(
n̄(r)

1 + n̄(r)P obs
g (k, µ, z̄i)

)2

. (3.10)

χ2
3D =

∑

i

χ2
3D(i), (3.11)

3.2.3 Angular (2D) power spectrum

The alternative approach to the 3D power spectrum consists on perform the
analysis in the coordinates of the survey catalogues, i. e., using the redshift
and angular position of galaxies. We divide the depth of the survey in a
number Nz of radial shells. for the galaxies sample considered, we measure
the angular power spectrum of the angular distribution of galaxies of each
bin. Those are the auto-correlations.

The main problem of angular auto-correlations is that we are projecting
all the radial information in the redshift bin because we are assuming that all
the galaxies that satisfy the selection function criteria are in the same radial
shell. This is a disadvantage compared with the spatial power spectrum
because in the latter we include all the modes inside the survey volume. If
we want to improve the level of radial information using angular correlations
we have to include the cross-correlations between different redshift bins.
A cross-correlation includes the information of scales given by separation
between the two redshift bins. This is a tomographic analysis of the galaxy
maps provided by surveys.

For this case, the analysis is done using the scape of spherical harmonics,
in an isotropic Universe. The matter fluctuations, projected in the radial
direction, angular field can be decompose in the spherical harmonic basis,
(Peebles 1973)

δ(n̂) =
∑

ℓ≥0

ℓ∑

m=−ℓ

aℓmYℓm(n̂), (3.12)

where n̂ is the angular position in the sky and Yℓm(n̂) the spherical har-
monics. The angular power spectrum is defined by the coefficients of the
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previous expansion, aℓm

〈aℓmaℓ′m′〉 ≡ δℓℓ′δmm′Cℓ (3.13)

In the full sky, the aℓm are gaussianly distributed and we can estimate each
ℓ power adding to the 2ℓ+ 1 modes of each ℓ

C̃ℓ ≡
1

2ℓ+ 1

ℓ∑

m=−ℓ

a2ℓm (3.14)

We have chosen to perform the spherical analysis using the Cℓ, instead of
working in configuration space because in theoretical terms the analysis is
simpler in the case exposed here. The Cℓ are related with P (k) throughout
the Fourier expansion of δ(n̂). Using the expansion of the plane wave into
spherical harmonics,

eikrk̂·n̂ = 4π
∑

ℓ≥0

ℓ∑

m=−ℓ

iℓjℓ(kr)Yℓm(k̂)Y ⋆
ℓm(n̂) (3.15)

, then, the this leads to

aℓm = 4πiℓ
∫
dz φ(z)

∫
d3k

(2π)3
δ(k, z)jℓ(k r(z))Y

⋆
ℓm(k̂), (3.16)

Using the orthogonality of spherical harmonics, the exact computation of
the angular power spectrum of projected overdensities in a radial shell i is.

Cii
ℓ =

2

π

∫
dk k2P (k)

(
Ψi

l(k) + Ψi,r
l (k)

)2
(3.17)

where

Ψi
ℓ(k) =

∫
dz φi(z)b(z)D(z)jℓ(kr(z)) (3.18)

is the kernel function in real space. When working in redshift space, we may
add

Ψi,r
ℓ (k) =

∫
dz φi(z)f(z)D(z)

[
2l2 + 2l − 1

(2ℓ+ 3)(2ℓ − 1)
jℓ(kr)

− ℓ(ℓ− 1)

(2ℓ− 1)(2ℓ + 1)
jℓ−2(kr)

− (ℓ+ 1)(ℓ+ 2)

(2ℓ+ 1)(2ℓ + 3)
jℓ+2(kr)

]
. (3.19)

to Ψi
ℓ if we include the linear Kaiser effect (Padmanabhan et al. 2007). In

turn, photo-z effects are included through the radial selection function φ(z),
see below. This model then has the same assumptions as the 3D spectrum
from Eq. (3.3).
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It is easy to extend this result to the cross-correlations of different red-
shift bins. These are given by

Cij
ℓ =

2

π

∫
dk k2P (k)

(
Ψi

ℓ(k) + Ψi,r
ℓ (k)

)(
Ψj

ℓ(k) + Ψj,r
ℓ (k)

)
(3.20)

Cross-correlations given by Eq. (4.5) are symmetric,

Cij
ℓ = Cji

ℓ , (3.21)

and hence we only use for the analysis the non-redundant terms.
Notice that in Eq. (3.17,4.5) we are only considering density and redshift

space distortions terms. We are neglecting General Relativity (GR) effects
as well as velocity and lensing terms, which are in our cases subdominant
to the ones considered. Nonetheless the framework of angular auto and
cross-correlations could easily include these effects when required (Bonvin
C., Durrer R. 2011; Challinor & Lewis 2011; di Dio et al. 2013).

We use the public code CAMB sources to perform the computation of the
theoretical angular power spectra. Detailed information about the perfor-
mance of the code can be found in (Challinor & Lewis 2011) and the code
can be requested to the authors in camb.info/sources. We have modify
the original code in order to include the radial selection functions considered
in 3.2.3. We have only considered the newtonian gauge density term and
the redshift space distortions term when running the code, as mentioned be-
low. We use the exact calculation of Cℓ rather than the well-known Limber
approximation, (Limber 1954; Simon 2007; LoVerde & Afshordi 2008) be-
cause the latter approximation does not include the cross-correlation terms,
which are precisely really important in our approach.

There is one angular power spectrum per radial shell, hence, there are
Nz auto-correlations. But if we want to study all the clustering information
we should add to our observables the Nz(Nz − 1)/2 cross-correlations be-
tween different redshift bins. Therefore, then number of observable power
spectra that we consider in the tomographic analysis of galaxy distribution
is Nz(Nz + 1)/2 This is the number of observables we have to use when
reconstructing clustering information from tomography using Nz bins.

Radial selection functions

The information about the redshift bin in which we are projecting the three-
dimensional maps of galaxies is included in the radial selection functions
φi in Eqs. (3.17,4.5). Formally, they weight the probability to include a
galaxy in the considered redshift bin. Hence, they are the product of the
galaxy redshift distribution and a window function that depends on selection
criteria (e.g binning strategy),

φi(z) =
dNg

dz
W (z) (3.22)
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where dNg/dz is the redshift distribution of galaxies, given by Eq. (3.1). All
the integrals are performed in the true redshift space. Therefore, depending
on the redshift estimation used in the survey, W (z) may change. Here, we
consider two different types. For the spectroscopic redshift survey W (z) is
a top hat function with the dimensions of the redshift bin.

On the other hand, if galaxies belong to the catalogue of a photometric
survey we select them from the catalogue using top hat functions in the space
of photometric redshifts. We include the effect of photo-z in order to convert
the those top hat bins in photometric space, Wi(zp) in the corresponding
bins in the space of true redshifts,

Wi(z) =

∫
dzpP (z|zp)Wi(zp), (3.23)

where zp is the photometric redshift and P (z|zp) is the probability of the
true redshift to be z if the photometric estimate is zp.

In addition to the assumption of a top-hat selection W (zp) in photomet-
ric redshift we consider that P (z|zp) is gaussian with standard deviation σz.
This leads to,

φi(z) ∝
dNg

dz

(
erf

[
zp,max − z√

2σz

]
− erf

[
zp,min − z√

2σz

])
(3.24)

where zp,min and zp,max are the (photometric) limits of each redshift bin
considered. In the equation above and throughout this chapter we assume
σz is constant in redshift.

Covariance matrix of angular power spectra

The covariance between angular spectra of redshift bins ij and redshift bins
pq is given by

Covℓ,(ij)(pq) =
Cobs,ip
ℓ Cobs,jq

ℓ + Cobs,iq
ℓ Cobs,jp

ℓ

N(l)
(3.25)

where N(ℓ) = (2ℓ+ 1)∆ℓfsky is the number of transverse modes at a given
ℓ and ∆ℓ is typically chosen to make Cov block-diagonal (Dodelson 2003;
Cabré et al. 2007; Crocce, Cabré, & Gaztañaga 2011). For simplicity we
consider an ideal full sky survey and use ∆ℓ = 1 and fsky = 1. In this
way we avoid correlations between different modes in the covariance matrix,
which is diagonal with respect to ℓ (which is consistent with assuming the
3D covariance is also diagonal in k).

Therefore, for each ℓ we define a matrix with N(N+1)/2 elements, where
N = Nz(Nz + 1)/2 is the number of observables discussed in Sec. 3.2.3,
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to account for the covariances and cross-covariances of auto and cross-
correlations. In order to include observational noise we add to the auto-
correlations in Eq. (3.25) a shot noise term

Cobs,ij
ℓ = Cij

ℓ + δij
1

Ngal(j)
∆Ω

(3.26)

that depends on the number of galaxies per unit solid angle included in each
radial bin. In our case we control this number with Ngal in Eq. (3.1.

Finally, we define the χ2
2D. We assume that the observed power spectrum

Cobs
ℓ correspond to our fiducial cosmological model discussed in Sec. (3.2.5),

while we call Cmod
ℓ the one corresponding to the cosmology being tested,

χ2
2D =

∑

ℓ

(
Cobs
ℓ − Cmod

ℓ

)†
Cov−1

ℓ

(
Cobs
ℓ − Cmod

ℓ

)
. (3.27)

Each term in this sum is the product of Nz(Nz + 1)/2-dimensional vectors
Cij
ℓ where (ij) label all possible non-redundant correlations of Nz redshift

bins, and a Nz(Nz + 1)/2 × Nz(Nz + 1)/2 matrix corresponding to their
(inverse) covariance.

3.2.4 Nonlinear Scales

Both χ3D and χ2D depend sensibly on the maximum kmax (or minimum
scale) allowed in the analysis. For our purposes, we have chosen to fix kmax

for all the bins and relate it to angular scales through ℓmax = kmax r(z̄),
where z̄ is the mean redshift of the survey. In our fiducial cosmology
we find r(z̄) = 1471h−1 Mpc in the redshift range 0.45 < z < 0.65 and
r(z̄) = 2219h−1 Mpc when 0.4 < z < 1.4. In addition, we do not consider
a dependence of lmax with redshift (i.e. same ℓmax for all redshift bins and
their cross-correlation).

For the largest scale we use kmin = 10−4 hMpc−1 in the 3D analysis and
ℓmin = 2 in the angular case. Let us notice that we have not found any
significant dependence on kmin or ℓmin.

3.2.5 Cosmological model

We assume the underlying cosmological model to be a flat ΛCDM universe
with cosmological parameters w = −1, h = 0.73, ns = 0.95, Ωm = 0.24,
Ωb = 0.042 and σ8 = 0.755. These parameters specify the cosmic history as
well as the linear spectrum of matter fluctuations today P (k, z = 0). The
parametrized linear growth rate is give by, Eq. (2.42) and the growth history
by Eq. (2.43).

The parameter γ used in Eq. (2.42) is usually employed as an effective
way of characterizing modified gravity models that share the same cosmic
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history as GR but different growth history (Wang & Steindhardt 1998; Lin-
der 2005). In part of our analysis we focus in ΛCDM models and assume
the GR value γ = 0.545. We deviate from this in Sec. 3.3.1 were we take γ
as a free parameter independent of redshift.

3.2.6 Likelihood analysis

In order to find constraints on cosmological models we integrate over the
space of parameters defining the model, finding the value of the likelihood
given by

−2 logL ∝ χ2, (3.28)

where we approximate the likelihood as Gaussian in the power spectra.
Given the prior ϑ on the parameters one defines a probability for each sam-
pled point i in parameter space given by

P(i) ∝ L(i)× ϑ(i). (3.29)

Finally, the mean and covariance matrix of the parameters is obtained from

p̄a =
∑

i

P(i)pa(i) (3.30)

Σ(pa,pb) =
∑

i

P(i)(pa(i)− p̄a)(pb(i) − p̄b), (3.31)

where pa(i) is the value of the parameter a in the grid point i, p̄a is the
mean value and Σ(pa,pb) is the covariance between parameter a and b. In
Eqs. (3.30,3.31) P(i) is normalized to unity over the grid. In addition we
assume flat priors.

By construction the likelihood peaks at the fiducial value considered in
the analysis. In all our studies we have chosen wide prior limits and therefore
have found no dependance with these limits, and find the mean agrees with
the fiducial value and the posteriors are quite Gaussian. When there is only
one free parameter p, like in bias fixed case, we found the standard deviation
solving the equation χ2(p)−1 = 0. This expression is valid in the context in
which the best fit value corresponds exactly to the fiducial parameters and
χ2 = 0 at this point.

3.2.7 Figures of merit

We consider two different analyses in order to compare 3D clustering with 2D
tomography including all the auto and cross-correlations between redshift
bins.

On the one hand, a bias fixed case, in which we only vary Ωm (which
affects both the shape and the amplitude of the power spectrum, and can be
constrained as if we had a good knowledge of the bias prior to the analysis).
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On the other hand we consider a bias free case, in which only b and
γ (hence f through Eq. (2.42)) are allowed to vary. This changes the
(anisotropic) amplitude of the power spectrum, but not the underlying
shape. This case is virtually the same as the standard analysis of redshift
space distortions (White, Song & Percival 2009; Ross et al. 2011). For this
case we had to adapt CAMB sources slightly, see the discussion in Appendix
A.

To make the comparison quantitative we define a figure of merit (FoM)
based on the covariance matrix Σ,

FoMS =

√
1

det[Σ]S
, (3.32)

where S is the subspace of parameters we are interested in. If this subspace
correspond to only one parameter, then the FoM is the inverse of the square
root of the variance of the corresponding parameter. Thus we have the
following cases,

• FoMΩm : Constraints on Ωm, with other parameters fixed at fiducial
values.

• FoMb and FoMγ : bias and γ constraints when marginalized over γ and
bias, respectively. Other parameters are fixed at their fiducial values.

• FoMbγ : Joint constraint on bias and γ, with other parameters fixed at
fiducial values.

3.3 Results

In this part, we show the results for the different cases considered. First
of all, we show the forecasts on Ωm for the spectroscopic survey defined in
section 3.2.1. Then, for the same survey we present the forecasts in the bias
free case, where bg and γ are the free parameters.

For the photometric surveys, we only focused on the bias fixed case,
although redshift space distortions are present in photometric surveys, using
photometric redshift bins, see (Nock, Percival,& Ross 2010; Ross et al. 2011;
Asorey et al. 2013) or (Padmanabhan et al. 2007; Blake et al. 2007;
Thomas et al. 2010; Crocce et al. 2011) for actual measurements of redshift
space distortions using LRG samples of SDSS. We forecast constrains in Ωm

in the narrow-band photometric survey described in 3.2.1.
In every case, we reproduce the forecasts for three different minimum

scales, kmax = {0.05, 0.1, 0.2}hMpc−1 and the corresponding ℓmax in the
2D analysis. The predictions have been made for the bin configurations
of tables 3.1 in the spectroscopic and narrow-band surveys and table 3.3
configuration for the broad-band survey.
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3.3.1 Spectroscopic survey

Bias fixed case

Let us compare the constrains of 2D and 3D methods applied to the spec-
troscopic survey described in 3.2.1. In the top panels of figure 3.2 we show
the evolution of the figure of merit of Ωm in the 2D and 3D cases with
respect the number of redshift bins Nz and for three different kmax and
ℓmax = kmaxr(z̄).

Dashed lines correspond to 3D constrains, fitted using (3.9) and (3.11)
while figures of merit corresponding to the full 2D case, including all the
auto- and cross-correlations between redshift bins are shown in solid lines,
where the fitting is done according to 3.27. Left panel corresponds to low
show noise sample and right panel to the high shot noise case.

We see that all the figures of merit increase with a higher value of kmax.
This is expected because we would be including more modes in the χ2 com-
putation. In other words, we are including more information in the fitting
and therefore the constrains improve.

We do not see dependance on 3D FoM with respect the number of bins.
In eq. (3.9) we see that the dependance of χ2 in each bin is roughly pro-
portional to the volume of each bin. When we divide the full survey in Nz

redshift bins, the χ2 per bin is reduced in the same amount that the number
of bins. When we combine χ2 from all the bins, we recover the full 3D χ2

of the bin covering the whole survey. This pattern has been found in all
the analysis we have made. Despite the fact, we have delivered the same
treatment to the 3D case in all the different section, for the purposes of this
work, we can consider that we are comparing 2D case using multiple bins
with the 3D result of the whole survey, with no division in bins.

This picture changes for the 2D tomography. Here the transverse in-
formation is fixed once ℓmax is set (there are 2ℓ + 1 modes per ℓ value, up
to ℓmax). As we increase the number of narrower bins Nz (with fixed total
redshift range) we have several effects:

1. Decreasing the number of galaxies per bin increases the shot noise per
bin

2. Increasing the number of bins so that they are thinner proportionally
increases the signal auto power spectrum in each bin (there is less sig-
nal power suppression due to averaging along the radial direction).

3. When we split a wide redshift bin in two, we double the number of an-
gular auto power spectra (transverse modes). This results in a larger
FoM because the signal to noise in each bin remains nearly constant
(the shot noise and signal in each bin both increase proportionately).
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Figure 3.2: Spectroscopic survey & bias fixed. Top panels show FoMΩm(2D)
and FoMΩm(3D) as a function of the number of bins in which we divide
the survey for the analysis (left panel for a low shot-noise survey and right
to a high shot noise). Dashed line corresponds to the 3D analysis, dotted
to the 2D tomography using only auto-correlations and solid to auto plus
cross- correlations. Different colors correspond to different minimum scales,
as detailed in the bottom panel inset labels. Bottom panels show the ratio
of FoMΩm(2D) (auto plus cross) and FoMΩm(3D) as a function of the bin
width ∆r normalized by the minimum scale assumed in the 3D analysis.
Remarkably the recovered constraints from full tomography match the 3D
ones for ∆r ∼ λ3Dmin for all λ3Dmin. We note that different lines in the bottom
panels are truncated differently merely because we have done the three kmax

cases down to the same minimum ∆r.
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This gain is illustrated by the dotted line in Fig. 3.2, which corre-
sponds to the FoM produced by just using auto-correlations. For even
narrower redshift bins the bins will become correlated and the gain
will saturate, but this is not yet the case in our results as the redshift
bins are still large compared to the clustering correlation length. In
the limit in which all modes of interest are very small compared to
shell thickness and they are statistically equivalent, for a single power
spectrum amplitude parameter one expects FoM= 1/σ ∝

√
Nz, as ob-

tained in Fig. 3.2 for low Nz

4. When we increase the number of narrower bins, we also include in-
formation of radial modes by adding the cross-correlation between
different redshift bins (illustrated by the solid line in Fig. 3.2 that
corresponds to the total FoM from auto plus cross-correlations).

Note how adding the cross-correlations to the auto-correlations (solid
lines in Fig. 3.2) only increases the FoM moderately as compared to the
auto-correlation result (dotted line). This reflects the fact that there are
fewer radial modes than transverse ones, while much of the Ωm constraint
comes from the shape of P (k) that is isotropic.

The bottom panels of Fig. 3.2 show the ratio of the 2D and 3D FoM’s
against the bin width (instead of Nz), now normalized by the minimum scale
used in the 3D analysis λ3Dmin = 2π

kmax
(for three different kmax as before). We

find FoM(2D) ∼ FoM(3D) when λ3Dmin ∼ ∆r for all λ3Dmin. More precisely:

∆r = c∆z/H(z) ≃ 0.8 λ3Dmin. (3.33)

Basically this means that the 3D clustering information is recovered once
the binning is such that the radial bin width equals the minimum scale
probed in the 3D analysis. In this case one is able to constrain the param-
eters without loss of information compared to a three dimensional analysis,
though the actual range of scales around kmax that are used in the 2D anal-
ysis may be slightly different.

Lastly, note that including shot noise does degrade the FoM as shown in
the right panel of Fig. 3.2 (comparing left column panels with right panels).
However this does not change the conclusions above.

Bias free case

We now turn to the bias free case where we assume we know perfectly the
shape of the power spectrum so that all the cosmological parameters are
fixed at their fiducial values listed in section 3.2.5 except the bias b and the
growth index γ, which, in this case, are free parameters.

In Fig. 3.3 we plot the combined FoM obtained for bias b and growth
index γ, and the FoM of each of these 2 parameters marginalized over the
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other, as a function of the number of redshift bins considered in the analysis
(for a fixed survey redshift range 0.45 < z < 0.65). As in Fig. 3.2, dashed
line corresponds to the 3D analysis, dotted line to the 2D tomography using
only the Nz auto-correlations and solid line to the full 2D case where we
add auto and cross angular correlations. Note that when we refer to using
only auto- correlations this only applies to observables. The covariance of
the auto- correlations does include cross-correlations of redshift bins, see
Eq. (3.25).

We find a similar trend for the evolution of the different FoM of the
γ and b parameters (either combined or marginalized) than when varying
Ωm, in the bias fixed case. Constraints given by spatial power spectrum are
stable, while constraints from projected power spectrum in the bins increases
with the number of bins in which we divide the survey. However there is
a substantial difference in regards to the contribution of radial modes in
the different observables. Now the contribution of cross-correlations is very
large (compare solid to dotted lines in the left panel of Fig. 3.3). In fact,
without cross-correlations we do not recover all the 3D information. This is
because redshift space distortion information (i.e. our bias free case) is based
in the relative clustering amplitude of modes parallel and transverse to the
line of sight. The contribution from radial modes is much more evident for
the γ constraint (FoMγ and then FoMbγ) than for the bias FoMb because
γ is basically what quantifies this relative clustering amplitude (in addition
f ≡ Ω(z)γ depends on redshift while we assume bias does not).

As we have done with FoMΩm we show in Fig. 3.4 the dependence of the
ratios between 2D and 3D FoM with respect to λ3Dmin/∆r. We find that both
analyses produce the same constraints when the mean redshift bin width is
slightly smaller than λ3Dmin (and we use auto and cross 2D correlations in the
full 2D tomography). Comparing these results with the bias fixed case, it
seems that for the RSD probe we need to extract more radial information.
In this case:

∆r = c∆z/H(z) ≃ 0.6 λ3Dmin (3.34)

as compared to 0.8 in Eq. (3.33). This means that we have to include more
radial bins when developing the fit to angular correlations than when only
fitting Ωm if we want to match the constraints from 3D clustering. This in
practice corresponds to using slightly narrower redshift bins. This may also
result in more information being included from radial modes with k > kmax

but it is within the assumptions and scope of this chapter

3.3.2 Photometric redshifts

In this section we show how the results found in the previous section extend
to the photometric surveys detailed in Sec. 3.2.1. For concreteness we will
only consider the bias fixed study where all cosmological parameters are fixed
at their fiducial values except for Ωm.
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Figure 3.3: Spectroscopic survey & bias free. Top panels show the combined
b− γ constraint resulting from 3D clustering (dashed lines) or 2D tomogra-
phy considering as observables only auto correlations in redshift bins (dotted
lines), or adding to this the cross-correlations (solid lines). The x-axis cor-
responds to the number of radial bins considered in the analysis. Different
colors label different minimum scales assumed (same values and labels as in
Fig. 3.2). Middle and bottom correspond to individual b or γ constraints
after marginalization over γ or b respectively. As for the bias fixed we find
that 3D information can be recovered but now the role of radial modes is
much for important because RSD (our bias free case) relies on the relative
clustering amplitude of radial and transverse mode.
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Figure 3.4: Spectroscopic survey & bias free. Top panels show the ratio
between combined FoMbγ (2D) (auto plus cross correlations) and FoMbγ

(3D) with respect to λ3Dmin = 2π/kmax, normalized by the mean width of
the redshift bins ∆r in the analysis. Middle and bottom panels show the
same but for ratios of FoMb and FoMγ , respectively. We show results for
Low Shot Noise and High Shot Noise in left and right panels, respectively.
To reconstruct RSD information in practice, one need bins slightly smaller
than λ3Dmin.
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Narrow-band photometric survey (PAU-like)

In top panels of Fig. 3.5 we show the Ωm constraints (bias fixed case) from
3D and 2D analysis (dashed and solid lines respectively) in a narrow band
photometric survey with σz = 0.004. In bottom panels we show how the
ratio between 2D and 3D FoM depends on the ratio between the minimum
scale of the 3D analysis and the mean comoving width of radial shells.

We find basically the same result as in the spectroscopic survey. Con-
straints from a projected or unprojected analysis are equivalent when the
mean width of the radial shells (set by our binning strategy) is equal to
the minimum scale considered in 3D analysis λ3Dmin. The absolute value of
each FoM is degraded with respect the FoM reached with an spectroscopic
survey because photo-z errors dilute clustering in the radial direction. This
broadens the selection functions in the 2D analysis and introduces a cut off
already at quasilinear scales in the 3D P (k). In both cases the consequence
is that signal to noise reduces and thus errors of observables degrade. But if
we compare Fig. 3.2 and Fig. 3.5 we see that the spectroscopic survey and
a photometric one with very accurate redshifts are almost indistinguishable
in terms of bin width optimization.

Broad-band photometric survey (DES-like)

We now consider a deep survey (iAB < 24) with redshifts estimated by
photometry with broadband filters (σz = 0.1), and use the full catalogue
with 0.4 < z < 1.4. We obtain the FoM for Ωm shown in the top left panel
of Fig. 3.6.

Now the large photo-z error removes most of the radial information,
thus all FoMΩm are degraded with respect to spectroscopic and narrow-
band photometric surveys. In addition, we find that FoMΩm saturates with
the number of redshift bins included in the survey for every kmax. This
effect is produced by the overlapping between true galaxy distributions at
different bins induced by photo-z transitions.

We also find that the configuration in which spatial and projected anal-
ysis constrain Ωm equally corresponds to the same number of bins for all the
kmax considered. Therefore, as we can see in bottom left panel of Fig. 3.6,
the scale given by λ3Dmin is not ruling the dependencies. Instead it is the
scale of the photometric redshifts which is affecting both clustering analy-
ses. This is shown in the right panel of Fig. 3.6 where we plot the ratio of
figures of merit (2D vs. 3D) against a new scaling : σr/∆r. We find that for
a DES-like case, with the assumption of σz = 0.1, one needs roughly 5 bins
for the 2D tomography to optimally recover the 3D clustering information.
This corresponds to:

∆z ≃ 2σz. (3.35)

With a lower σz the number of bins will increase.



42 CHAPTER 3. RECOVERING 3D CLUSTERING

0 5 10 15 20
0

2000

4000

6000

Low Shot Noise

0 5 10 15 20

High Shot Noise

0 2 4 6
0

1

2

3

4

0 2 4 6

Figure 3.5: Narrow band photometric survey (PAU-like) & bias fixed. Top
panels show figures of merit FoMΩm (2D) (auto plus cross correlations) and
FoMΩm (3D) with respect to the number of bins for kmax = {0.05, 0.1, 0.2}
hMpc−1 (red, violet and orange colours). We plot 2D figures of merit with
solid lines and 3D figures of merit using dashed lines. Bottom panels show
the ratio between both figures of merit with respect to minimum scale used in
3D analysis, λ3Dmin = 2π/kmax, divided by the mean width ∆r of the redshift
bin. We conclude that we get similar constraints from 2D and 3D analysis
when ∆r is close to λ3Dmin and that in terms of bind width optimization an
spectroscopic and photometric analysis are almost identical.
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Figure 3.6: Broad band photometric survey (DES-like) & bias fixed. Top
right panel shows the figures of merit FoMΩm (2D) and FoMΩm (3D)
with respect to the number of bins Nz used in the analysis, for kmax =
{0.05, 0.1, 0.2}hMpc−1 (red, violet and orange colours, respectively). 2D
FoM are plotted with solid lines and 3D with dashed lines, and we only
consider low shot noise. Bottom left panel show the ratio of both figures of
merit with respect to λ3Dmin = 2π/kmax divided by ∆r. The equivalence of
the recovered FoM now changes for different kmax. However when this ratio
is plotted with respect to the comoving scale of photo-z, σr (normalized by
∆r) the different λmin lines cross each other for ∆r ∼ 2σr. This implies
that is the relative values of ∆r and σr what sets the equivalence of 3D and
2D tomography. In particular, for a DES-like survey one recovers the 3D
constraints from 2D analysis using 5 redshift bins.
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3.4 Discussion

In this chapter, we have studied the redshift bin width that allows us to
recover the full 3D clustering constraints from tomography of angular clus-
tering (i.e. the combination of all the auto and cross correlations of redshift
bins). We explore three surveys with different properties: a spectroscopic
and a narrow band photometric survey in a redshift range 0.45 < z < 0.65,
and a deeper broadband photometric survey that covers redshifts in the
range 0.4 < z < 1.4. We have considered how well we can recover the shape
of the power spectrum by allowing Ωm to be free and fixing the amplitude of
clustering, including bias. We call this the bias fixed case. We have also ex-
plored how to recover the information from redshift space distortions (RSD),
by measuring the anisotropic amplitude of the power spectrum allowing for
both a free bias and a free growth index. This is the bias free case. We re-
strict our study to quasi-linear scales and we only consider scales above some
minimum scale λ3Dmin = 2π/kmax, where k < kmax and kmax is either 0.05, 0.1
or 0.2 hMpc−1. In angular space this corresponds to l < lmax ≃ kmaxr(z),
where r(z) is the radial distance to the mean redshift bin.

The 3D analysis has almost no dependance on the number of redshift
bins because radial modes are already included in each bin. In contrast the
2D tomographic analysis depends strongly on the number of bins (or equiv-
alently on redshift bin widths), since broad bins average down transverse
power on scales smaller than the bin width, and it is only by using multiple
thin shells that radial modes are included.

For the bias fixed case in the spectroscopic survey we have found that
we recover all the information with 2D tomography when the width of the
redshift bins that we use to do the tomography is similar to the minimum
scale used in the 3D observables, λ3Dmin. More precisely we find that the
optimal bin width is (see Fig. 3.2 and Eq. (3.33)): ∆r = c∆z/H(z) ≃
0.8 λ3Dmin. In addition most of the 2D constraints come from autocorrelations.

When studying RSD, i.e. in the bias free case, we see that if we want to
recover the 3D constraints we need radial shells which are slightly smaller,
i.e. ∆r ≃ 0.6λ3Dmin (see Fig. 3.4), which means that we would need more bins
than in the case in which we just want to measure the shape of P (k). In
addition we find necessary to include in the observables the cross correlation
between redshift bins. This is expected because in the RSD case we are
comparing the clustering in radial and transverse direction to the light of
sight: information from radial modes should be more important than in the
case in which we just study information in the isotropic shape of the power
spectrum. Also note how we can not recover the 3D information from RSD
when we just use autocorrelations (see dotted line in Fig. 3.3).

We found that in the bias fixed case, the narrow-band photometric survey
is almost equivalent to an spectroscopic survey, and we therefore reach the
same conclusions with respect to the optimal bin width for the tomography
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of galaxy counts. In the case of a deeper broadband photometric survey we
find that the typical uncertainty in photometric redshifts σz severely limits
the accuracy of the radial information for both 3D and 2D cases. In this case
the information recovery does not depend strongly on λ3Dmin, because this is
smaller than the scale corresponding to the photometric redshift accuracy,
i.e. c σz/H(z) > λ3Dmin. The optimal redshift bin width in this case is simply
given by ∆z ≃ 2σz.

For a redshift range 0.4 < z < 1.4 and σz = 0.1 (DES-like survey) we find
that we will need only 5 redshift bins to constrain Ωm using tomography with
the similar precision than a full 3D analysis of the survey. In comparison,
for a PAU-like survey with σz ≃ 0.004 and kmax = 0.1 we need about 44
redshift bins of width ∆z ≃ 0.023 each.

We conclude from our analysis that it seems possible to recover the full
3D clustering information, including RSD information, from 2D tomography.
This has the disadvantage of needing a potentially large number of redshift
bins, and correspondingly large covariance matrices between observables.
But it has the great advantage of simplifying the combination with WL and
of just using observed quantities, i.e. angles and redshifts, avoiding the use
of a fiducial cosmology to convert angles and redshifts into 3D comoving
coordinates. In practice, probably both types of analysis should be used to
seek for consistency.
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Chapter 4

Redshift-space distortions
from the cross-correlation of
two photometric populations

4.1 Motivation

The late-time expansion of the Universe is being tested by a wide range of
ongoing or planned photometric surveys like Dark Energy Survey (DES),
(Annis et al. 2005), the Panoramic Survey Telescope and Rapid Response
System (PanStarrs), (Hodapp et al. 2004), the Physics of the Accelerating
Universe survey (PAU), (Benitez et al. 2009). In the future, wider field
photometric surveys like Large Synoptic Survey Telescope (LSST), (LSST
Collaboration 2012) and the imaging component of EUCLID, (Laureijs et al.
2011), will go deeper and larger. This surveys would help to understand dark
energy nature throughout clustering and weak lensing, potentially, testing
the possible time dependance of dark energy equation of state w.

As we mentioned in section 2.7.1, redshift space distortions can provide
information about the linear growth of structures, given by eq. (2.41). RSD
raise an anisotropic power spectrum, as seen in section 2.7.1 and measuring
the 3D clustering and comparing parallel and transverse to the line-of-sight
clustering is usually the method to use them for testing how structures
grow. For example, see (Okumura et al. 2008; Guzzo et al. 2008;
Cabré & Gaztañaga 2009; Blake et al. 2011; Reid et al. 2012). This, in
principle, requires good radial resolution from spectroscopy or narrow-band
photometry.

But, it exists the possibility to detect the effect of redshift-space distor-
tions selecting galaxy samples in redshift bins and then projecting the radial
information, measuring the angular clustering of galaxy samples, see (Nock,
Percival,& Ross 2010; Crocce, Cabré, & Gaztañaga 2011; Ross et al. 2011).
This has been already applied to a sample of photometric Luminous Red

47
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Galaxies (LRG) in (Padmanabhan et al. 2007; Blake et al. 2007; Thomas
et al. 2010; Crocce et al. 2011). Photometric surveys have the potentiality
of observing a high number density of galaxies at high redshifts. This would
allow us to prove the growth of structures at this high redshifts.

Those analysis in photometric surveys only considered auto-correlations
in redshift bins. Here, we add to this analysis the cross-correlations between
bins, motivated by the previous chapter and (Asorey et al. 2012), in which
it is shown that full spatial (3D) constrains are recovered with tomographic
(2D) analysis.

On the other hand, we investigate how the fitting to growth rate im-
proves if two different populations are considered, and the cross-correlations
between both correlations. Previous studies, (McDonald & Seljak 2009;
White, Song & Percival 2009; Gil-Maŕın et al. 2010) have shown that,
for spectroscopic surveys, if different tracers of the same field are combined,
then sampling variance decrease and constrains in the growth of structure
improve.

4.2 Methodology

Fiducial survey and galaxy samples

We characterize our fiducial survey by a the redshift range and the survey
area. Within survey standards, we characterize the different galaxy samples
that we consider by the galaxy bias of each one, bg, the redshift distribution
of galaxies in each sample and the photometric accuracy of the redshift
estimates, σz.

The fiducial survey is similar to the expected full DES. The redshift
range is 0.4 < 1.4 and the area is one octant of the sky, i. e., fsky = 1/8.
The redshift distribution of sample α is

dNα

dzdΩ
= Nα

gal

( z

0.5

)2
e−(

z
0.5)

1.5

(4.1)

where Nα
gal is given by the total number of galaxies in α population sample.

In many cases, we will consider two populations, one with bias b = 1 and
σz = 0.05(1+z) (Pop 1), similar to a main sample of the survey, and another
with b = 2 and σz = 0.03(1+z) (Pop 2), that can be an LRG sample. Notice
that we omit the galaxy subscript in bias notation.

We consider the same redshift distribution of galaxies for all the sam-
ples, unless otherwise stated. The fiducial comoving number density is
n(z = 0.9) = 0.023h3Mpc−3. This corresponds to a number of ∼ 3 × 108

galaxies within the survey redshift and area range. This matches the ex-
pected number of galaxies that will be targeted above the magnitude limit
of DES, i < 24.
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Number of bins Nz ∆z/(1 + z)

4 0.15
6 0.1
8 0.08
12 0.05
19 0.03

Table 4.1: The different redshift bin configurations considered, within a
photometric redshift range of 0.4 < z < 1.4. We show the total number of
bins and their redshift width ∆z (which evolves with redshift in the same
manner as the photo-z).

In this case, the photometric accuracy evolves linearly with redshift.
Hence, the bin widths of the radial shells in which we divide the redshift
range do evolve, accordingly, with redshift. The different bin configurations
used in this chapter are shown in table 4.1

4.2.1 Angular power spectrum

As in the previous chapter, we study angular clustering using the angular
power spectrum of the projected overdensities in the space of spherical har-
monics. In section 3.2.3 we showed that the auto-correlation power spectrum
at redshift bin i, for a single population, is given by:

Cii
ℓ =

2

π

∫
dk k2P (k)

(
Ψi

l(k) + Ψi,r
l (k)

)2
(4.2)

where the projection in the bin is encoded in the kernel function

Ψi
ℓ(k) =

∫
dz φi(z)b(z)D(z)jℓ(kr(z)) (4.3)

In redshift space, the kernel has another term that should be added to Ψi
ℓ,

Ψi,r
ℓ (k) =

∫
dz φi(z)f(z)D(z)

[
2l2 + 2l − 1

(2ℓ+ 3)(2ℓ − 1)
jℓ(kr)

− ℓ(ℓ− 1)

(2ℓ− 1)(2ℓ + 1)
jℓ−2(kr)

− (ℓ+ 1)(ℓ+ 2)

2ℓ+ 1)(2ℓ + 3)
jℓ+2(kr)

]
. (4.4)

that includes the linear Kaiser effect (Fisher, Scharf & Lahav 1994; Pad-
manabhan et al. 2007). . In Eqs. (4.3,4.4) b(z) is the bias (assumed
linear and deterministic), D(z) is the linear growth factor and f(z) is the
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linear growth rate. Photo-z effects are included through the radial selection
function φ(z), see below.

For the case of 1 population, there are Nz auto-correlation spectra, one
per radial bin. Then, we add to our observables the Nz(Nz − 1)/2 cross-
correlations between different redshift bins. These are given by

Cij
ℓ =

2

π

∫
dk k2P (k)

(
Ψi

ℓ(k) + Ψi,r
ℓ (k)

)(
Ψj

ℓ(k) + Ψj,r
ℓ (k)

)
(4.5)

Therefore, we are consideringNz(Nz+1)/2 observable angular power spectra
when reconstructing clustering information from tomography using Nz bins,
for a single tracer.

If we combine the analysis of two tracers, α and β, the angular power
spectrum is given by

C
iαjβ
ℓ =

2

π

∫
dk k2P (k)

(
Ψiα

ℓ (k)

+ Ψiα,r
ℓ (k)

) (
Ψ

jβ
ℓ (k) + Ψ

jβ ,r
ℓ (k)

)
, (4.6)

where Ψi
ℓ and Ψi,r

ℓ characterize each galaxy sample through the radial selec-
tion function φi(z) and the bias b(z) in expressions (4.3) and (4.4) . We use

the general notation where C
iαjβ
ℓ is the correlation between redshift bin i of

population α with redshift bin j of population β. By definition,

C
iαjβ
ℓ = C

jβiα
ℓ (4.7)

C
iαjβ
ℓ 6= C

jαiβ
ℓ for α 6= β; i 6= j (4.8)

Then the total number of observables is 2Nz(2Nz + 1)/2 if we consider the
same redshift bins configuration for both populations, in the case in which
both are correlated.

Radial selection functions

The radial selection functions φi in Eqs. (4.3,4.4) encode the probability to
include a galaxy in the given redshift bin. Therefore, they are the product of
the corresponding galaxy redshift distribution and a window function that
depends on selection characteristics (e.g binning strategy),

φαi (z) =
dNα

dz
Wi(z) (4.9)

where dNα/dz is given by Eq. (4.1). We include the fact that we are working
with photo-z by using the following window function:

Wi(z) =

∫
dzpP (z|zp)W ph

i (zp), (4.10)
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where zp is the photometric redshift and P (z|zp) is the probability of the
true redshift to be z if the photometric estimate is zp. For our work we

assume a top-hat selectionW ph
i (zp) in photometric redshift and that P (z|zp)

is Gaussian with standard deviation σz. This leads to,

φαi (z) ∝
dNα

dz

(
erf

[
zp,max − z√

2σαz

]
− erf

[
zp,min − z√

2σαz

])
(4.11)

where zp,min and zp,max are the (photometric) limits of each redshift bin
considered and σαz is the photometric redshift error of the given population
α at the corresponding redshift.

Covariance matrix of angular power spectra

We assume that the overdensity field is given by a Gaussian distribution and

therefore, the covariance between correlation C
iαjβ
ℓ and correlation C

pαqβ
ℓ is

given by

Covℓ,(iαjβ)(pµqν) =
C

obs,iαpµ
ℓ C

obs,jβqν
ℓ + Cobs,iαqν

ℓ C
obs,jβpµ
ℓ

N(l)
(4.12)

where N(ℓ) = (2ℓ+ 1)∆ℓfsky is the number of transverse modes at a given
ℓ provided with a bin width ∆ℓ. We set ∆ℓ = 2/fsky, the typically chosen
value to make Cov block-diagonal (Cabré et al. 2007; Crocce, Cabré, &
Gaztañaga 2011). In this case, bins in ℓ are not correlated between them.

Therefore, for each ℓ bin, we define a matrix with 2Nz(2Nz +1)/2 rows,
where Nz is the number of redshift bins, taking into account the covariances
and cross-covariances of auto and cross-correlations between each population
and among them. In order to include observational noise we add to the auto-
correlations of each population in Eq. (4.12) a shot noise term

C
obs,iαjβ
ℓ = C

iαjβ
ℓ + δiαjβ

1
Ngal(jβ)

∆Ω

(4.13)

that depends on the number of galaxies per unit solid angle included in each
radial bin. We define the χ assuming the observed power spectrum Cobs

ℓ

corresponds to our fiducial cosmological model discussed in Sec. (4.2.2),
while we call Cmod

ℓ the one corresponding to the cosmology being tested,

χ2 =
∑

ℓ

(
Cobs
ℓ −Cmod

ℓ

)†
Cov−1

ℓ

(
Cobs
ℓ − Cmod

ℓ

)
. (4.14)

4.2.2 Cosmological model and growth history

We assume a flat ΛCDM with cosmological parameters w = −1, h = 0.7,
ns = 0.95, Ωm = 0.25, Ωb = 0.045 and σ8 = 0.8. These parameters specify
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the cosmic history as well as the linear matter power spectrum of fluctuations
P (k) at redshift z = 0. As usual, the growth rate is

f(z) ≡ Ωm(z)γ

and γ = 0.545 for ΛCDM. Consistently with this the growth history is given
by Eq. (2.43). In order to forecast the constrains on γ we consider it as a
free parameter independent of redshift.

With these ingredients, we do a mock likelihood sampling in which we
assume that the theoretical values for the correlations at the fiducial value of
the parameters corresponds to the best fit position. The likelihood is based
on the χ2 given in (3.27). In our case, we keep fixed all the parameters
and only allow γ to vary, and then we estimate 68% confidence limits of
it. In the case in which we show constrains on fσ8, we vary this quantity
(that now depends on redshift, thus the number of fitting parameters is
a function of the bin configuration), fixing the rest of parameters. The
maximum ℓ considered in the analysis is ℓmax = r(z̄Survey)kmax ∼ 220 for
kmax = 0.1 hMpc−1, while for the largest scales we set lmin = 2. We had
to adapt CAMB sources in order to constrain γ or fσ8 using the technique
described in the Appendix A.

4.3 Results

In this section we discuss the constrains on the growth index, γ defined in
Eq. (2.42) as obtained for the different redshift bin configurations of Table
4.1. First of all, we study how well we can determine γ using different single
galaxy populations but including as observables also the cross- correlation
between bins (for a given single population). We also study how the con-
strains depend on the bias and in the photometric redshift accuracy of the
different galaxy samples. Then, we study the precision achievable when one
combines different tracers in the analysis and how this depends on bias,
photo-z and in particular, the shot-noise level of the sample.

Lastly we discuss the constrains that we obtain when looking into the
more standard f(z)σ8(z) as a function of redshift, and consider auto and
cross-correlations of one or two galaxy samples.

4.3.1 Redshift-space distortions with a single photometric
population

Let us first consider the constrains on the growth index using single pho-
tometric populations. Figure 4.1 shows the 1-σ errors expected on γ from
a combined analysis of all the consecutive photometric redshift bins in the
redshift range 0.4 < z < 1.4 as a function of the bin width (i.e. each of the
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configurations detailed in Table 1)1.

In red we show the constrains on γ corresponding to an LRG-type sam-
ple, with bias b = 2 and a photometric redshift σz/(1 + z) = 0.03 (Pop2).
Blue lines correspond to an unbiased population with σz/(1 + z) = 0.05
(Pop1).

Dashed lines correspond to the case in which we only use the auto-
correlations in each redshift bin while solid lines corresponds to the full 2D
analysis that includes all the cross-correlations in our vector of observables.
Recall than in the first case the cross-correlations are included in the covari-
ance matrix of the auto-correlations (but not as observables). We see that
constrains from a full 2D analysis, including auto and cross-correlations are
a factor ∼ 2 or more better than those from using only auto-correlations.

From Fig 1 it is clear that in all cases the bin configuration can be op-
timized, with the best results obtained when ∆z ∼ σz. In addition, there
is a competing effect between σz and bias. For broad bins (∆z ≫ σz) the
photo-z of the populations is masked in the projection and the bias domi-
nates the γ constrains. Smaller bias gives more relevance to RSD and better
γ constrains. As one decreases the bin width the population with better
photo-z (typically the brighter, with higher bias), denoted Pop2, allows a
more detailed account of radial modes improving the derived errors on γ
more rapidly than Pop1 until they become slightly better. This optimiza-
tion is possible until one eventually reaches bin sizes comparable to the
corresponding photo-z (what sets an “effective” width) and the constrains
flatten out.

In Fig. 4.2 we study in more detail the dependence of constrains with
respect to galaxy bias b and photo-z accuracy. In the top panel of Fig. 4.2
we show standard deviation of the growth index, ∆γ, fixing the sample bias
to b = 1 and allowing two values for photo-z accuracy. Red line represents a
sample in which σz/(1+z) = 0.05 while blue line has an error of σz/(1+z) =
0.03. In both cases the constrain flattens once ∆z ∼ σz and the optimal error
improves roughly linearly with σz. The dependence on the linear galaxy bias,
b, is shown in the bottom panel of Fig. 4.2 (for fixed σz). We see that the
constrains degrade almost linearly with increasing bias (see also (Ross et al.
2011)). As discussed before, this is because the lower the bias the larger the
relative impact of RSD, which results in better constraints on γ.

In summary we have shown that using the whole 2D tomography (auto
+cross correlations) allows considerable more precise measurements of γ, a
factor of 2 or better once the bin width is optimal for the given sample.
Hence in what follows we concentrate in full tomographic analysis.

1Note that different redshift bins can be strongly correlated depending on bin width
and photo-z. We do include this covariance.
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Figure 4.1: The gain from adding redshift-bins cross-correlations. Dashed
lines show the expected 1-σ constrains in γ from the combined analysis
of angular auto-correlation in photo-z bins spanning 0.4 < z < 1.4, as a
function of the bin width ∆z/(1 + z) (see Table 3.3 for the corresponding
total number of bins). Different colors correspond to different populations
with bias and σz as labeled. Solid lines show, for each population, the
same study but also including all the cross-correlations between bins (and
their complete covariance). For optimal bin widths ∆z . σz the gain from
including cross-correlations is ∼ 2 or better.
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Figure 4.2: Dependence on photo-z (top panel) and bias (bottom panel)
for a one-population constrains in γ, as a function of bin width (same as
in Fig. 4.1). The panels show that lower b and/or lower σz yields better
constrains in γ. This is hence a competing interplay because lower b would
correspond to a fainter sample with typically worse photometric errors. The
dependence on bias seems however slightly stronger.
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Figure 4.3: The gain from combining galaxy populations: Comparison of
the 68% standard deviations in the growth index from single population
analysis (dashed lines) with respect to the combined analysis of these two
populations over the same field (black solid), using all the angular auto
and cross-correlations. Remarkably the combination yields errors at least 2
times better than any of the single population cases. The solid green line
corresponds to the combination of the two samples assuming they are inde-
pendent (i.e. from different parts of the sky). As shown, the combination of
correlated populations (same sky) yield stronger constrains than any other
case.

4.3.2 Redshift-space distortions with 2 photometric popula-
tions

We now turn to an analysis combining two galaxy populations as two differ-
ent tracers of matter. In Figure 4.3 we compare the constrains from single
tracers with respect to the combination of both. As before the populations
used in the comparison correspond to b = 1 and σz/(1 + z) = 0.05 (Pop 1)
and a population with b = 2 and σz/(1 + z) = 0.03 (Pop 2). Their respec-
tive constrains in γ are the dashed red and blue lines (same as solid lines in
Fig. 4.1).

If we combine both tracers and their cross-correlation in the same anal-
ysis we obtain the constrains given by black solid line, notably a factor of
2− 3 better compared to the optimal single population configuration.



4.3. RESULTS 57

Figure 4.4: Dependence on bias. Increasing the bias difference between the
samples improves the constrains on γ. The solid black line corresponds
to the combination Pop1 × Pop2 of a highly biased sample such as LRGs
(Pop2) with an unbiased one (Pop1), while the blue dashed to cluster-like
bias tracer as Population 2.

In order to understand how much of this gain is due to “sample vari-
ance cancellation”, in analogy to the idea put forward in (McDonald &
Seljak 2009), we also considered combining the two samples assuming they
are located in different parts of the sky (and hence un-correlated). We call
this case Pop1+Pop2 in Fig. 4.3 (solid green line). In such scenario the total
volume sampled is the sum of the volumes sampled by each population (in
our case, two times the full volume of DES). This explains the gain with
respect to the single population analysis. Nonetheless, the “same sky” case
Pop1 × Pop2 (where cosmic variance is sampled twice) still yields better
constrains, a factor of ∼ 1.5 − 2, even though the area has not increased
w.r.t. Pop1 or Pop2 alone.

In all, the total gain of a full 2D study with two populations (including
all auto and cross-correlations in the range 0.4 < z < 1.4) w.r.t. the more
standard analysis with a single population and only the auto-correlations in
redshift bins (dashed lines of Fig. 4.1) can reach a factor of ∼ 5.

As a next step we show how the combined analysis of two tracers depends
on the relative difference on the bias and photo-z errors of the populations.
In Fig. 4.4 we keep Pop1 fix (with b = 1 and σz/(1+ z) = 0.05) and we vary
the bias of Pop2 from b = 2 (LRG type bias) to b = 3 (galaxy clustering
like). We keep σz/(1 + z) = 0.03 fixed for Pop2. As expected, increasing
the bias difference between the samples improves the constrains on γ in a
roughly linear way.
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Figure 4.5: Dependence on photometric redshift error. Similar to Fig. 4.4
but now changing the photo-z of the unbiased sample (Pop1) for a fixed
2nd population. The error on γ depend roughly linear with σz/(1 + z) for
optimal bin widths.

If we now have an unbiased tracer and a highly biased one with b = 3,
while both tracers have the same σz/(1 + z) = 0.03 we obtain constrains
given by the black line in Fig. 4.5. Those constrains are better than the case
in which the unbiased galaxies photo-z is worse, σz/(1+ z) = 0.05 (given by
the dashed blue line). Therefore, if we determine photometric redshifts of
the unbiased galaxies with higher accuracy we will be able to measure the
growth rate with higher precision.

One caveat so far is that we have always assumed that biases are perfectly
known (bias fixed). Hence, in the top panel of Fig. 4.6 we show how the
constrains on γ change if we instead consider them as free parameters and
marginalize over. We see that the difference is very small, in particular once
the bin configuration is optimal. The reason for this is clear from the bottom
panel that shows the relative error obtained for the bias of each sample in
the bias free case. Because the bias is so well determined (sub-percent) the
marginalization over them does not impact the error on γ.

One further concern in our results is that we have assumed a perfect
knowledge of the galaxy redshift distributions for both samples. In a more
realistic scenario the distribution of photometric errors will be known with
some uncertainty. In order to study the impact of this potential unknown
we repeated the Pop1×Pop2 case (for a bin configuration ∆z/(1+ z) = 0.1)
this time marginalizing over the value of σ1z and σ2z when determininig the
constrain in γ (instead of fixing their values to 0.05(1 + z) and 0.03(1 + z)).
We find that the resulting ∆γ only increases by ∼ 10% or less with respect
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Figure 4.6: Bias free case: If the biases of the samples are free parameters
to marginalize over we find that constrains on γ degrade only slightly com-
pared with the bias fixed case. In particular for the thinner redshift bins
configurations. This is because biases are determined with relative errors
smaller than 1% (bottom panel).
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to the error shown by the black solid line in Fig. 4.3. Such a small change
is because the values of σ1z and σ2z are very well constrained after the
marginalization, similar to what happens with the bias free case above.

An even more realistic analysis of this issue would allow for independent
errors in the redshift distributions at each redshift bin (with some priors)
rather than a global change of the mean photometric error. And possibly also
a marginalization over cosmological parameter space. However our results
above indicate that this should not have a major impact in our conclusions.

The impact of shot-noise

One strong limitation when it comes to implementing the “multiple tracers”
technique in real spectroscopic data is the need to have all the galaxy sam-
ples well above the shot-noise limit (at the same time as having the largest
possible bias difference), see for instance (Gil-Maŕın et al. 2010). This is
cumbersome because spectroscopic data is typically sampled at a rate only
slightly above the shot-noise (to maximize the area) and for pre-determined
galaxy samples (e.g LRGs, CMASS). In a photometric survey these aspects
change radically because there is no pre-selection (beyond some flux limits)
and the number of sampled galaxies is typically very large (at the expense
of course of poor redshift resolution). Therefore is interesting to investigate
if the overall density of the samples have any impact in our results.

Figure 4.7 shows the constrain in γ for the combination of two samples,
one unbiased population with σz/(1+z) = 0.05 and a population with b = 2
and σz/(1 + z) = 0.03. We keep the number density for the unbiased popu-
lation as n(z = 0.9) = 1.8× 10−2 h3Mpc3 while we vary the number density
of the second (typically brighter) sample. Note that we assume the same
shape for N(z) as given in Eq. (4.1) but we vary the overall normalization,
which we characterize by the comoving number density at z = 0.9. The solid
black line corresponds to the case in which both populations are correlated
(same sky) and the dashed blue line to different areas. In both scenarios we
see that decreasing the number density of the second population does not
impact the error on γ unless one degrades it by an order of magnitude or
more (below n(z = 0.9) ∼ 3.0 · 10−3). Above this value, the error is mostly
controlled by the tracer with lower bias.

4.3.3 Constraining the redshift evolution of the Growth Rate
of Structure

So far we have used the combined analysis of all the redshift bins to constrain
one global parameter, namely the growth rate index γ in Eq. (2.42). We
now turn into constraining f(z)σ8(z) itself, as a function of redshift. We use
a redshift bin configuration given by ∆z/(1 + z) = 0.1, in the photometric
range 0.4 < z < 1.4. This configuration consist of 6 bins, and hence we fit
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Figure 4.7: The impact of shot noise: We consider the combined analysis
of two populations in a redshift bin configuration of ∆z/(1 + z) = 0.05 and
show how constrains on γ depend on the (shot) noise level of the more biased
population (typically the brighter, less abundant sample). Constrains are
almost un-affected unless the density drops by an order of magnitude or
more compared to the one of Pop1 (n2 = 0.023 h3 Mpc−3).
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f(z)σ8(z) evaluated at the mean of these bins. These fσ8 values are of course
correlated, and we include the proper covariance among the measurements
(i.e. we do a global fit to the 6 values simultaneously).

In the left panel of Fig. 4.8 we focus on the gain from adding cross-
correlations among the bins, and show the constrain on fσ8 for a single
unbiased population with photometric redshift of σz = 0.05 (Pop 1, in blue)
and also for a single tracer with bias b = 2 and σz = 0.03 (Pop 2, in
red). Dashed lines corresponds to using only auto-correlations and solid to
including also all the redshift bins cross-correlations to the observables. The
trend for the errors when we only use auto-correlations is similar to the one
observed in Fig. 8 of (Ross et al. 2011) although in detail we are using
different widths for our redshift bins and we are using Cℓ while they used
angular correlation functions, w(θ).

As in Sec. 4.3.1 there is a gain from the addition of cross-correlations,
which is now split across the bins (i.e. 20 − 30% for Pop1 in each of the 6
bins, and a bit less for Pop2).

In turn, the bottom panel of Fig. 4.8 focuses in the gain from com-
bining the two tracers (and using both auto and cross-correlations among
redshift bins, as in Sec. 4.3.2). Here the solid lines correspond to the single
population cases discussed above, while the black short-dashed line to the
combined analysis assuming these populations are correlated (same sky).
For completeness the dashed green line is the result when these two samples
are assumed independent. Again, there is a factor of ∼ 2.5 to be gained by
combining galaxy samples as opposed to only the unbiased sample.

If we compare our predictions to measurements from spectroscopic sur-
veys like VIPERS (de la Torre et al. 2013) with constrains fσ8(z = 0.8) =
0.47±0.08 or WiggleZ (Blake et al. 2011) where fσ8(z = 0.76) = 0.38±0.04
we find that DES can achieve the same level of errors (10%) in determin-
ing the growth of structure but extending the constrains beyond redshift of
unity. This is quite unique and interesting as there is, to our knowledge, no
other spectroscopic survey expected to provide such measurements in the
medium term future (before ESA/Euclid or BigBOSS).

As we did for γ, we checked that when we marginalize over photometric
errors we find differences smaller than 1% in the recovered constrains in
f(z)σ8(z) with respect to the case in which we assume perfect knowledge of
the redshift distributions. For concreteness we did this cross-check for the
case Pop1×Pop2 in last two redshift bins shown in Fig. 4.8.

That case of 6 bins corresponded to bin widths larger than the pho-
tometric errors of the samples, which may not be optimal but yield con-
strains almost uncorrelated between bins. If we define the cross-correlation
coefficient for bins (i, j) ρij as ρij = Covij/

√
CoviiCovjj with Covij =

〈(x − 〈x〉)i(x − 〈x〉)j〉 and where x stands for f × σ8. for the 6 bins we
have the small cross-correlation of order. (ρij ∼ −0.05). In figure 4.3 we
realized that for narrower binning the forecast were better. Then we may
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Figure 4.8: Constrains on fσ8: derived at different redshift bins, for a bin
configuration of ∆z/(1+ z) = 0.1. The top panel focuses on one population
only fits, and the gain from using auto+cross correlations among all redshift
bins as observables instead of just the auto-correlations. The bottom panel
stresses instead the gain from combining two populations (through their auto
and cross-correlations) either in different patches of the sky (Pop1+Pop2) or
the same (Pop1×Pop2). In all cases Pop1 refers to a galaxy population with
b = 1 and σz/(1 + z) = 0.05 and Pop2 to b = 2 and σz/(1 + z) = 0.03. The
covariance among the derived errors on f(z) × σ8(z) is taken into account
in the fit. Our results show that by using RSD with two tracers a DES-like
photometric survey can place 10% constrains in the evolution of fσ8 for
z & 0.8.
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Figure 4.9: Combined constrains in the evolution of the growth rate of struc-
ture from spectroscopic data, 2dFGRS, SDSS-LRGs, Wiggle-Z and BOSS
(see text for details), and forecasted for DES using two photometric popu-
lations (same as in Fig. 8). The addition of DES (shaded area) allows to
trace the growth rate of structure all the way to z ∼ 1.4.

consider the results using a binning ∆z/(1 + z) = 0.05. We obtained better
constraints, of order ∆(fσ8) ∼ 10%, but the correlation between bins was
higher 0.2 < ρij < 0.65.

Using this narrower bin configuration, we compare the DES forecast
(shadowed region) in Fig. 4.9 with constraints from spectroscopic surveys,
2dFGRS (Percival et al. 2004), LRG’s from SDSS (Tegmark 2006 and
Cabré & Gaztañaga 2009), WiggleZ either from power spectrum (Blake et
al. 2011) or correlation function (Contreras et al. 2013) and the recent
BOSS results (Reid et al. 2012). This implies that DES will be able to
add quite competitive constrains at high redshifts (i.e. z & 1).

4.3.4 The case of high-photometric accuracy

In the previous sections we have focused in galaxy surveys with broad-band
photometry for which the typical photometric error achieved is of the order
0.1 depending on galaxy sample and redshift (we assumed 0.03−0.05 (1+z)).
We now turn to narrow-band photometric surveys such as the ongoing PAU
or J-PAS Surveys (Benitez et al. 2009; Gaztañaga et al. 2012; Taylor et
al. 2013) for which the typical radial accuracy is a factor of 10 times better:
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Population b σz/(1 + z) Auto Auto + Cross

Broad Band (BB)

Pop1 1 0.05 0.809 0.564
Pop2 2 0.03 0.826 0.447

Pop1× Pop2 - - - 0.35
Pop1 + Pop2 - - - 0.36

Narrow Band (NB)

Pop1 1 0.003 0.047 0.027
Pop2 2 0.003 0.088 0.040

Pop1× Pop2 - - - 0.016
Pop1 + Pop2 - - - 0.023

Table 4.2: Error in the growth rate γ from a combination of 21 narrow bins
in the range 0.94 < z < 1.06. The 4 top entries correspond to a Survey with
Broad-Band (BB) filters: Pop1-BB assumes b = 1 and σz/(1 + z) = 0.05
(“main sample”) while Pop2-BB has b = 2 and σz/(1 + z) = 0.03 (“LRG
sample”). The 4 bottom entries correspond to a Survey with Narrow-Band
(NB) filters. Here Pop1 and Pop2 have the same bias as the BB case but
much precise photo-z, both with σz/(1 + z) = 0.003.

≃ 0.003(1 + z) (or 10h−1 Mpc). This scenario then resembles quite closely
a purely spectroscopic survey (Asorey et al. 2012).

We again study two populations, one corresponding to the main sample
with bias b = 1 and another to the LRG sample with b = 2, both with
a very good photometric accuracy of σz/(1 + z) = 0.003. We consider a
set of 21 narrow redshift bins of width ∆z = 0.003(1 + z) concentrated in
0.94 < z < 1.06 (hence we are only looking at a portion of the survey redshift
range).

The error on γ are given in Table 4.2, for both the new narrow-band
and the broad-band samples discussed previously. For a single population,
this table shows that a factor of ∼ 10 better σz yields a factor of ∼ 10
gain in constraining power. The improvent in γ seems to increase linear
with the improvement in σz. After combining the two populations we see
that the errors in γ for the broad-band case is similar if samples cover the
same region of sky (Pop1× Pop2) or different regions (Pop1 + Pop2). This
is because the redshift range considered (0.94 < z < 1.06) is too narrow
compared to σz and the cosmic variance cancelation can not take place.
Instead, for the narrow band surveys we find a 43% improvement for the
case Pop1× Pop2 with respect to Pop1 + Pop2. For the same sky case, the
final error is ∆γ ≃ 0.0163 ×

√
(5000deg2/Area), in such a way that even a

moderate survey of 250 deg2 could achieve ∆γ ∼ 0.07. In that same narrow
redshift range, DES yields an error 5 times worse with 20 times better area
(but note that in the case of small areas we could be limited by the ℓmin,
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the largest scales available).

4.4 Discussion

We have studied how measurement of redshift-space distortions (RSD) in
wide field photometric surveys produce constrains on the growth of struc-
ture, in the linear regime. We focused in survey specifications similar to
those of the ongoing DES or PanSTARRS, that is, covering about 1/8 of
sky up to z ∼ 1.4, and targeting galaxy samples with photometric redshift
accuracies of 0.03 − 0.05(1 + z) (and hundred of million galaxies prior to
sample selection). We also show results for ongoing photometric surveys,
such as PAU and J-PAS, that have a much better photometric accuracy.

First, we have found that for a single population we can reduce the
errors in half by including all the cross-correlations between radial shells
in the analysis. This is because one includes large scale radial information
that was missed when only considering the auto-correlations of each bin.
The final constraining power depends on the details of the population under
consideration, in particular the bias and the photometric accuracy. Less
bias gives more relative importance to RSD in the clustering amplitudes. In
turn, better photo-z allows for narrower binning in the analysis and more
radial information. We find that the γ constrains depend roughly linearly
in both bias or σz. This means that for 10 times better photo-z errors, such
as in PAU, we can improve by 10 the cosmological constrains.

Typically less bias implies a fainter sample, with worse photo-z, therefore
these quantities compite in determining the optimal sample. Furthermore
we find that optimal constrains are achieved for bin configurations such that
∆z ∼ σz. Although the optimal errors depend on the details of the galaxy
sample and binning strategy, the gains from adding cross-correlations are
very robust in front of these variations.

In order to avoid sample variance, we have also considered what happens
if we combine the measurement of RSD using two different tracers. This is
motivated by the idea put forward in (McDonald & Seljak 2009) for the
case of spectroscopic (hence 3D) redshift surveys, where the over-sampling
of (radial + transverse) modes allows a much better precision in growth rate
constrains, as long as samples are in the low shot-noise limit. Combining
auto and cross angular correlations in redshift bins, we find that if we as-
sume that both tracers are independent, which corresponds to samples from
different regions on the sky, the constrains on the growth of structure pa-
rameters improve a 30-50% (due to the fact that one has doubled the area).
Remarkably if we consider that the populations are not independent, i.e.,
they trace the same field region, we find an overall improvement of ∼ 2− 3
with respect to single populations when constraining γ. This means that
there is a large potential gain when sampling the same modes more than
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once.
Translating into actual constrains this implies that a DES-like photo-

metric survey should be able to measure the growth rate of structure γ to
an accuracy of 5 − 10% from the combination of two populations and all
the auto+cross correlations in the range 0.4 < z < 1.4 (see Fig. 4.1). Even
though these values correspond to a survey of 5000deg2 (fsky = 0.125) they

should scale as f
−1/2
sky for a different area, given our assumptions for the

covariance in Eq. (4.12).
In Fig. 4.7 we have shown that constrains weaken once one of the pop-

ulations enter a shot-noise dominated regime, as is typical of spectroscopic
samples. However one needs to dilute over 10 times the number densi-
ties for a photometric survey, such as DES, for this to happen. Thus, as
shown in Section 3.4, by improving on photo-z accuracy without much lost
of completeness, a photometric sample can in fact outperform a diluted
spectroscopic version with similar depth and area (see also (Gaztañaga et
al. 2012)).

We focused on large angular scales where the approximation of linear and
deterministic bias and linear RSD should hold (see for instance (Crocce,
Cabré, & Gaztañaga 2011)). Although we set ℓmax ∼ 200, much of the
constraining power in our results, given the typical size of our redshift bins,
comes from larger scales, ℓ . 40. Yet, a more realistic assessment of these
aspects will need to resort to numerical simulations.

Lastly, we also investigated what constrains can be placed with this
method in the evolution of the growth rate of structure, f(z) × σ8(z). We
found that binning two DES populations into 6 bins in the range 0.4 <
z < 1.4 yields constrains on f(z) × σ8(z) of ∼ 15% for each bin above
z ∼ 0.6. That case corresponded to bin widths larger than the photometric
errors of the samples, which may not be optimal but yield constrains almost
uncorrelated between bins (ρij ∼ −0.05). Figure 4.9 shows instead the
results from a narrower binning, ∆z/(1 + z) = 0.05. This leads to better
constrains, ∆(fσ8) ∼ 10%, at the expense of more correlation between bins,
0.2 < ρij < 0.65.

In addition to the DES forecast (shadowed region) we over-plot in Fig.
4.9 current constrain from spectroscopic surveys, such as 2dFGRS (Perci-
val et al. 2004), LRG’s from SDSS ((Tegmark 2006) and (Cabré &
Gaztañaga 2009)), WiggleZ either from power spectrum (Blake et al. 2011)
or correlation function (Contreras et al. 2013) and the recent BOSS results
(Reid et al. 2012). Note that these values are not expected to improve
radically in the near future. This implies that DES will be able to add
quite competitive constrains in a redshift regime unexplored otherwise with
spectroscopic surveys (i.e. z & 1), yielding a valuable redshift leverage for
understanding the nature of dark energy and cosmic acceleration through
the growth of structure.
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Chapter 5

Comparison with galaxy
survey simulations

5.1 Motivation

In the previous chapters, we have been forecasting constraints on cosmolog-
ical parameters using angular correlations. The first step consisted on figure
out the optimal binning in order to recover the same constraints than when
using correlations in 3D space.

Then we investigate the idea of using photometric redshifts to test growth
history of structure at high redshifts, z > 1. We showed that if we use
two tracers of dark matter, in the same field with high number density, as
expected with photo-z surveys, we can reach similar constraints to low-z
results from spectroscopic surveys. For that, we used all the angular and
cross-correlations between redshift bins and between the two tracers.

Now, we concentrate on testing the model used in previous chapters with
N-body simulations. N-body simulations include more accurate description
of growth of structure, including non-linear evolution because of gravita-
tional collapse. The additional effects that we include in the modeling are
photometric redshifts and redshift space distortions. The combination of all
of them is close to a real photometric survey.

From a dark matter lightcone of MICE simulations, diluted to follow a
determined redshift distribution, we obtain a real space, redshift space, and
photo-z space catalogues of an unbiased population. In addition, we use a
halo catalogue to produce the same catalogues but for a biased tracer.

In the previous chapter, we have been working on the spherical harmonics
space. In the linear regime, the galaxy fluctuations are gaussian and there-
fore, defining a covariance matrix was easier because all the non-negligible
high-order momenta of the distribution of fluctuation are expressed in terms
of the second-order momentum, i.e, the angular power spectra. But working
on this spherical harmonic space when the survey covers a fraction of the sky
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is more difficult than if we work in configuration space. Therefore, in this
chapter we use angular correlation functions in configuration space, w(θ),
instead of the power spectra Cℓ.

This work contained in this chapter is mainly focused on a full wide
field broad-photometric surveys like DES, Pan-Starrs, LSST and the imag-
ing component of EUCLID but also thinking on narrow-band photometric
surveys like PAU-survey.

We begin describing the theoretical modeling used to estimate the an-
gular auto- and cross-correlations. Then, we describe how the process of
generating the mock catalogues in real, redshift and photo-z spaces and how
we made 2D maps in redshift bins from this catalogues. In section 5.4, we
describe the estimator used to measure the angular correlations, including
a description of the covariance matrix. We finally show in section 5.5 the
comparison between linear model and correlation measurements from the
mock survey catalogues.

5.2 Theoretical modeling

We describe angular correlations at linear scales as a function of redshift
and angle. The effects that we include in this description are the intrinsic
clustering, redshift space distortions, galaxy bias and photometric redshift
distortions.

The approach consists on projecting the (3D) spatial fluctuations (either
of galaxies, dark matter particles or halos), δg(x, z) along a given direction
in the sky n̂

δ(n̂) =

∫
dz φ(z) δg(n̂, z), (5.1)

where φ is the radial selection function that contains the description of the
redshift bin in which we are projecting the fluctuations.

The angular two-point correlation function w(θ) is related to the prob-
ability of finding an object at distance θ from any object of the sample, in
area dΩ

dP = n̄(1 + w(θ))dΩ (5.2)

The angular correlation function is obtained projecting projection the
(3D) spatial correlation function ξ(r12), (Peebles 1973; Peebles 1980), weighed
by the radial selection function of each redshift bin. The angular correlation
of bins i, j is

wij(θ) ≡ 〈δg(n̂)δg(n̂+ θ̂)〉 =

=

∫
dz1 φi(z1)

∫
dz2 φj(z2) ξgg(r(z1), r(z2), θ) (5.3)

where θ is the angle between directions n̂ and n̂+θ̂. This angle is related with
the co-moving distances within the bin r(z1) and r(z2) and the co-moving
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distance between tem r12 by

r12(θ) =
{
r(z1)

2 + r(z2)
2 − 2r(z1)r(z2) cos(θ)

}1/2
(5.4)

and r(z) is the co-moving distance to redshift z given by

r(z) =

∫ z

0

1

H(z′)
dz′, (5.5)

where H(z) = H0

√
Ωm(1 + z)3 +ΩDE(1 + z)3(1+w) is the Hubble parame-

ter, following description of chapter 2. This expressions correspond to the
flat ΛCDM universe, with w = −1.

Auto-correlations correspond to the case i = j, otherwise they are cross-
correlations. For the same population, in the cases that we consider

wij(θ) = wji(θ) (5.6)

Since we are interested in redshift bins and not in extended selections
we can neglect the growth evolution within the bin and simply evaluate
the 3-d correlation in some fiducial redshift z̄ (e.g. the mean redshift of
the bin, weighted by φ). We assume a local and linear bias relation between
fluctuations in the tracer (e.g. galaxies) and matter density field, δg = b(z)δ.
Under these assumptions Eq. (5.3) is converted to

wij(θ) =

∫
dz1 gi(z1)

∫
dz2 gj(z2) ξ(r(z1), r(z2), θ, z̄) (5.7)

where gi(z) ≡ bi(z)φi(z) and ξ is the matter 3-d correlation function.
Hence, in order to predict w(θ) we need a model for the spatial clustering

accurate in a sufficiently large range of scales to allow the projection in
Eq. (5.7), in particular when photo-z errors broadens the extent of the radial
distribution

In what follows we discuss how to include photo-z effects and the model
for spatial clustering in real and redshift space that we will use throughout
this paper.

5.2.1 Photo-z and radial selection functions

As in previous chapters, the characteristics of the redshift binning are in-
cluded in radial selection functions φ(z).

The radial selection function φ(z) is the probability to include a galaxy
or a particle in the redshift bin considered. In an spectroscopic survey, when
the selection of objects is done according to their true redshifts, then φ is
equal galaxy redshift distribution dNg/dz times a window function W (z)
that encodes the selection characteristics like redshift cuts or the narrower
redshift bins in which may divide the sample,

φ(z) =
dNg

dz
W (z). (5.8)
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When the survey is photometric, the uncertainties in the true redshift posi-
tions from the photometric redshift estimates affects the radial functions. In
this case, we must incorporate in the analysis the probability P (z|zp) for the
true redshift to be z when the photometric one is zp. The selection function
is described by (Budavari et al. 2003),

φ(z) =
dNg

dz

∫
dzpP (z|zp)W (zp), (5.9)

where W (zp) is the photometric redshift window function.
We consider always in this chapter top hat window functions in the

samples that we are considering. In the case in which we considered true
redshifts, we use equation (5.8) with a top-hat window in true redshifts.

For photometric redshifts, we use a top-hat in photo-z space and there-
fore we used the radial selections given by eq. (5.9). We assume that the
photometric estimates are gaussianly distributed around the true redshift
(e.g. (Ma 2006)) because it is the same assumption that was used to create
the catalogues when including photometric distortions in the redshift. In
this case

φi(z) ∝
dNg

dz

(
erf

[
zp,max − z√

2σz

]
− erf

[
zp,min − z√

2σz

])
(5.10)

Finally, φ should be normalized to unity within the redshift range of
interest, like each redshift bin.

5.2.2 Spatial clustering and redshift evolution

Here, we describe the modeling used for the (3D) spatial clustering and that
is projected in redshift bins. We also account for the effect of linear space
distortions, including the Kaiser effect in the modeling, and the evolution of
clustering with redshift, due to the growth of structure.

First of all, the two point spatial correlation function is given by

ξ(r) =

∫
dk

k2

2π2
P (k)

sin kr

kr
(5.11)

where P (k) is the linear matter power spectrum at redshift z = 0. We use
CAMB. (Lewis, Challinor & Lasenby 2000) to compute P (k).

The redshift evolution of the spatial correlation function is given by the
growth factor D(z), defined in equation (2.43). Then,

ξ(r, z) = D2(z)ξ(r) (5.12)

In the case in which we do not include redshift-space distortions then

wij(θ) =

∫
dz1 φi(z1)

∫
dz2 φj(z2) ξ(r12, z̄) (5.13)
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where r12 is given by eq. (5.4).
The last effect that is included corresponds to redshift space distortions.

As shown in 2.7.1, the positions of galaxies in redshift space differ from
the positions in real space, given by the Hubble law, because of the radial
peculiar velocity of the galaxies. (Kaiser 1987). At large scales, the coher-
ent infall of galaxies into large overdensities, such as clusters, make their
observed radial separation smaller, squashing the structure along the line-
of-sight and boosting the amplitude of the 3-d two point correlation. In
this way for separations along the line of sight π <∼ 40h−1 Mpc the correla-
tion (or number of pairs) increases dramatically, while for larger separations
the correlation becomes negative in such a way that the total number of
pairs along the l.o.s is preserved. This implies that, by dividing the data
in redshift bins, one is discarding the leverage of large radial separations
effectively increasing the (angular) correlation within the bin, see (Nock,
Percival,& Ross 2010; Crocce, Cabré, & Gaztañaga 2011; Ross et al. 2011)

The linear redshift distortions discussed in chapter 2, namely the Kaiser
effect, can be described in an alternative way in 3D configuration space,
(Hamilton 1992), assuming the plane-parallel approximation. We incorpo-
rate it into our modeling of the angular correlation function where we express
the 3D two point correlation function with respect to the separations along
the line-of-sight, π and separations transverse to l.o.s, σ where we change
the variables doing ξ(r1, r2) = ξ(σ, π) in Eq. (5.3). It is given by

ξ(σ, π) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ), (5.14)

where ξℓ are the multi-poles of the correlation function in terms of Legendre
polynomials Pℓ,

ξℓ(s) =
2ℓ+ 1

2

∫ +1

−1
ξ(π, σ)Pℓ(µ)dµ, (5.15)

with s =
√
σ2 + π2 being the separation between galaxies and µ is the cosine

angle with the l.o.s. For the Kaiser model one has,

ξ0(s) = b2
(
1 +

2β

3
+
β2

5

)
ξ(s) (5.16)

ξ2(s) = b2
(
4β

3
+

4β2

7

)[
ξ(s)− ¯ξ(s)

]
(5.17)

ξ4(s) = b2
8β2

35

[
ξ(s) +

5

2
ξ̄(s)− 7

2
¯̄ξ(s)

]
(5.18)

where b is the bias of the sample (here we assumed a linear and local bias),
and β = f/b is a different way of writing the linear growth rate factor and

¯ξ(r) =
3

r3

∫ r

0
ξ(r′)r′

2
dr′, (5.19)

¯̄ξ(r) =
5

r5

∫ r

0
ξ(r′)r′

4
dr′. (5.20)
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where π = r2 − r1 and σ2 = 2r1r2(1− cos θ) (to yield s = r12) are the pair-
separation along and transverse to the line-of-sight, µ = π/s and Pℓ are the
Legendre polynomials. The double integrals in Eq. (5.3) are still performed
in the r1, r2, variables leaving the evaluation of the radial selection functions
unchanged. We evaluate β at the mean of the mean redshift of used bins ij.

5.3 N-body simulations and mock catalogues

Our goal is to check the theoretical modeling described in section 5.2 with
mock galaxy samples created from the output of N-body simulations.

The mock samples that we consider here are an unbiased population and
a biased tracer of density field. This samples are studied in real and redshift
space and also in photo-z space, in order to test the theoretical description
of the model that we are using throughout the chapter.

In this case, the survey mock catalogues have been produced using a
large N-body simulation, provided by the MareNostrum Institut de Ciènces
de l’Espai (MICE) collaboration http://www.ice.cat/mice in order to pro-
duce mock catalogues. In this case, the catalogues correspond to a dark mat-
ter particles catalogue in the lightcone and a catalogue of halos with masses
greater than 1012 h−1 M⊙. The dark matter catalogue mimics an unbiased
population with bg = 1 while the halos would correspond to a catalogue of
bright galaxies, such as Luminous Red Galaxies, with high galaxy bias.

The parent simulation, MICE7680, is a very large simulation that contains
20483 dark matter particles in comoving volume of Lbox = 7680h−1 Mpc.
The cosmological model of the simulations is a flat ΛCDM with parameters
Ωm = 0.25, ΩΛ = 0.75, Ωb = 0.044 and h = 0.7, ns = 0.95 and σ8(z =
0) = 0.8. The simulation was performed using the Gadget-2 code (Springel
2005), setting initial conditions at z = 150, following Zeldovich dynamics.
Particle mass was 3.65 × 1012 h−1 M⊙. For more detailed aspects, review
(Fosalba et al. 2008; Crocce et al. 2009).

The dark matter catalogue is based on a lightcone output of the sim-
ulation. The distribution of particles with comoving distance is diluted in
order to match the galaxy distribution of galaxies.

Without loss of generality we next assumed a survey covering a contin-
uous 5000 deg2 of sky (i.e. a sky fraction fsky = 1/8), and redshift coverage
in the range 0.2 < z < 1.4. In broad terms, this matches the specifications
for DES.

The initial lightcone input contains the right ascension and declination of
each galaxies and then the radial information. The radial information given
by the comoving position of the galaxy in the lightcone, the displacement
due by the peculiar velocity of each galaxy and the radial displacement due
to a photometric redshift of σz = 0.0035(1 + z). This displacement can be
re-scaled to consider different gaussian distributed photometric errors
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In order to have a clearer understanding of the different components
of the model we built ensembles of mocks in increasing “layers of reality”.
We first selected dark-matter particles directly from real space assuming a
radial distribution as expected in DES. We also repeated this exercise with
halo catalogues, that we use as biased tracers. Next we moved particles
to redshift space before doing the selection. Alternatively, we imposed a
random radial uncertainty in the position of each particle before selection
to mimic photometric error. Finally we imposed the radial distribution in
addition to redshift distortions and photometric error to build mocks which
are closest to a real survey.

In what follows we give a more detailed discussion of the different cases
considered, giving a descriptive summary of mock sample used in this chap-
ter.

5.3.1 Real Space catalogues

This catalogues are made from the lightcone, considering only the distances
corresponding to the sli distance of the galaxy to the observer. We select
impose a redshift cut in real (or configuration) space that corresponds to the
range 0.2 < z < 1.4. All the galaxies are restricted to have right ascension
and declination in 0◦ − 90◦, therefore covering 1/8 of sky, similar to the
expected full DES area. The dark matter lightcone contains ∼ 51797427
unbiased mock galaxies in this range while the number of massive halos
considered within our selection thresholds is ∼ 46125386.

Then, from this catalogues, we extract all the particles within spherical
coronas, each one corresponding to a redshift bin width of ∆z = 0.15. In
table 5.1 we show the characterization of the bin configuration. This includes
the mean redshift of the bin, the width of the bin in redshift and comoving
space and the angular number density of galaxies in each redshift bin.

Then, we divide the survey range in 8 radial shells, corresponding to
redshift bins of ∆z = 0.15 and we stack the angular positions of all the
galaxies that are inside each bin. The bin configuration is described in table
5.1. The comoving widths of the radial shells range from 228h−1 Mpc to
400h−1 Mpc. Despite the fact that we assume that we know perfectly the
redshift, we are using a binning that is usually considered in a broad-band
photometric survey. This does not mean that this is the optimal bind width,
as was shown in previous chapters.

The radial distribution of the sample was diluted with respect to the
comoving output density evolution, that scales with r2, using a redshift
distribution given by a power-law and an exponential term

dN/dz ∝ (z/0.702)1.083 exp
[
−(z/0.702)2.628

]
, (5.21)

The actual measurement of the distribution of galaxies in the dark matter
lightcone with redshift in real space is shown in figure 5.1 The selection
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Figure 5.1: This figure shows the redshift distribution of galaxies in real
space for the dark matter lightcone. The binning configuration that we use
to distribute galaxies according with the redshift corresponds to eight top-
hat bins from in the range 0.2 < z < 1.4. There are no galaxies below
z = 0.1. for galaxy selection
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z̄ ∆z r̄(h−1 Mpc) ∆r(h−1 Mpc) n̄

0.275 0.15 779.8 399.58 0.48
0.425 0.15 1164.9 370.75 0.63
0.575 0.15 1521.4 342.51 0.64

0.725 0.15 1850.3 315.67 0.50
0.875 0.15 2153.2 290.69 0.31
1.025 0.15 2432.2 267.68 0.15

1.175 0.15 2689.3 246.97 0.055
1.325 0.15 2926.6 228.18 0.015

Table 5.1: Bin configuration of unbiased sample in real space Each bin sub-
tends 1/8 of sky at a radial comoving distance and width as listed in the top
panel. All mocks corresponds to dark-matter particles (except real space
halo mocks) with a radial distribution given in Eq. (5.21). The mean dis-
tance r̄ and width ∆r are in h−1 Mpc. The surface density n̄ in particles per
square arc-min (and for a given bin is similar for real, redshift and photo-z
space).

functions shown in fig. (5.1) were measured from the lightcone, stacking
particles in narrow redshift shells of dz = 0.003

5.3.2 Real Space Mocks for biased tracers

We also consider the angular clustering of biased tracers as a complementary
sample to the unbiased sample, in order to study the effect of biasing in the
angular clustering.

Biased tracers catalogue is built starting from halo catalogues from the
MICE simulation. This halos catalogues, (Crocce et al. 2009) were created
according to a friends of friends (FoF), (Davis et al. 1985) algorithm.
This algorithm identifies all the neighborhoods of a particle within a linking
length bFoF , which units of the mean interparticle distance in each simula-
tion. For the MICE snapshots, the linking length was set to bFoF = 0.2. We
are using a 3072h−1 Mpc box with 20483 particles. Therefore, the linking
lenght is 0.2 · 2048/3072 ∼ 0.13h−1 Mpc.

From one halo catalogue created using the lightcone output, with 5 or
more particles per halo the catalogue is created selecting halos with masses
greater than 1012h−1 M⊙ in a volume limited sample. The redshift range is
0 < z < 1.4 We consider this bright halos as halos hosting LRG galaxies and
therefore as biased tracers because they have the same clustering amplitude
and abundance of real LRG galaxies (Cabré & Gaztañaga 2009).
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Figure 5.2: Redshift evolution of the number density of halos in the cata-
logue. There are not halos for redshifts greater than z = 1.4. This redshift
distribution is given by the combination of radial evolution of comoving
density and the jacobean, H(z)/clight, of the change of variable r to z.

The volume limited sample of halos redshift distribution is shown in fig.
5.2, weighted by the jacobean that accounts from the transformation from
comoving distances to redshifts

The bin configuration that we consider for the analysis of the biased
tracer is shown in table 5.2

In order to be able to compare with theory, we have to estimate the
galaxy bias. The approach followed consists on fitting a value of a linear
and constant bias to each bin to each auto-correlation function in real space,
using the theoretical prediction for b = 1 in real space wii(b = 1). Then

wHalos
ii = b2iwii(b = 1) (5.22)

We perform a sampling of bi distribution using Markov Chain Monte Carlo
method, in particular Metropolis-Hastings sampler tools from CosmoMC, (Lewis
& Bridle 2002). We obtain the best fit and the standard deviation using
CosmoMC getdist. Then we do a standard regression fit to

b(z) = az2 + bz + c (5.23)

using the previous 8 fits. We find the coefficients a = 0.35 ± 0.055, b =
0.26 ± 0.089, c = 1.2 ± 0.032. In figure 5.3 we show the best fit values in
each bin and the corresponding fit to the quadratic eq. (5.23).
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z̄ ∆z r̄(h−1 Mpc) ∆r(h−1 Mpc) σr(h
−1 Mpc) n̄

0.275 0.15 779.8 399.58 170 0.038
0.425 0.15 1164.9 370.75 176 0.0036
0.575 0.15 1521.4 342.51 180 0.0035

0.725 0.15 1850.3 315.67 181 0.0032
0.875 0.15 2153.2 290.69 182 0.0031
1.025 0.15 2432.2 267.68 181 0.0028

1.175 0.15 2689.3 246.97 179 0.0026
1.325 0.15 2926.6 228.18 177 0.0023

Table 5.2: Bin configuration for the biased sample. Mean distances and
bin widths in comoving space correspond to the simulation cosmology. The
number density is given in number of galaxies per square arc-min.
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Figure 5.3: Best fit values for bias in each bin, using only auto-correlations
independently. The blue line is the best fit curve b(z) = az2+ bz+ c to that
points
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5.3.3 Redshift space catalogue

To test the accuracy of the modeling, we have included redshift distortions
in a different catalogue. When doing the selection of particles from the
lightcone, we add to the comoving distance the displacement caused by the
peculiar velocities of the galaxies.

To understand the importance of redshift distortions, and the accuracy
of the modeling, we built mocks where we impose the radial distribution in
Eq. (5.21) but displace the particles to redshift space prior to the top-hat
selection.

The mapping from real r to Redshift Space positions s is given by the
transformation

s = r+ vr(1 + z)/H(z) r̂ (5.24)

where H is the Hubble parameter and vr the peculiar velocity of the object
along the line of sight from the observer. Therefore given the observer
at position r0 (the center of the spherical redshift shell) we first find the
particle’s projected velocity along the l.o.s. to the observer,

vr =
v · (r− r0)

|r− r0|
, (5.25)

then displace it by δr = vr(1 + z)/H(z) along the l.o.s.,

δr = δr
(r − r0)

|r − r0|
(5.26)

5.3.4 Photo-z Space Mocks

Photo-z errors were produced setting the displacement along the line-of-sight
using randoms with a gaussian probability

f(δr) =
1√
2πσr

exp

[
− δr2

2σ2r

]
(5.27)

where σr = σzc/H(z), and σz is the survey photometric uncertainty at the
given z. This randoms were created using a σz/(1+z) = 0.0035, which is the
target of narrow-band photometric surveys like PAU, (Benitez et al. 2009),
but it is easy to scale them if we keep the linear evolution with redshift
z. In the catalogues that we considered, the photometric redshift was set
to σz/(1 + z) = 0.03 and σz/(1 + z) = 0.05 which correspond to an LRG
and unbiased sample of a broad-band survey such as DES ((Banerji et al.
2008)). It is also the approximately photo-z precision obtained for the optical
sample of LRGs selected from the SDSS imaging data (Padmanabhan et al.
2005; Padmanabhan et al. 2007; Blake et al. 2007). This is thus a very
representative value for σz.

For the cosmology used for the running of MICE simulations, the radial
distance is ∼ 140h−1 Mpc ∼ 180h−1 Mpc for σz/(1 + z) = 0.05 while it is
of the order of ∼ 108h−1 Mpc for the biased population (σz/(1 + z) = 0.03)
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5.3.5 Galaxy Survey Mocks

Finally we built mocks that include all the aforementioned effects: a real-
istic radial distribution Eq. 5.21, in the case of unbiased tracers, redshift
distortions and photometric redshift with uncertainty σz/(1 + z) = 0.05 in
the case of DM catalogues and σz/(1 + z) = 0.03 for the biased tracer given
by the bright halos. The redshift range is 0.2 < z < 1.4 and the bin con-
figurations for DM and halos are shown in table 5.1 and 5.2, respectively.
Therefore, these are the closest to an actual photo-z survey such as DES or
PanStarrs and expected LSST.

Before moving on we want to stress that our mocks are obtained from
a lightcone output of an N-body simulation, then all correlations induced
by non-linear gravitational evolution as well as projection effects, partial
sky coverage and realistic radial selection function. We have added the lin-
ear RSD effects and gaussian photo-z distortions . Because we are using
a light-cone outputs they include evolutionary effects of the sample within
the redshift bin. Therefore, despite the fact that light-cone effects are neg-
ligible in front of photo-z and RSD for the narrow bins under consideration
we include the growth evolution within the bin. To leading order, light-
cone effects will introduce a linear evolution, which can be estimated from
Eq. (5.3) by weighting the selection by the corresponding linear growth (i.e.
defined with respect to the mean redshfit), given by the combination of
D(z, z̄) b(z)φ(z).

5.3.6 Creating pixel maps

In order to measure the correlations we adopt the pixel based method. We
use the standard widely used Healpix, (Górski et al. 1999; Górski et
al. 2005) in order to pixelize the galaxy catalogue in each bin. Therefore,
the number of healpix maps that we create is given by the number of binsNz.
Then when computing angular auto-correlations, we look for the correlations
between galaxies in pixels of one maps with the rest of the pixels of the same
redshift bin. In the case of cross-correlations, then we use the two pixel maps
corresponding to each of the bins that we are cross-correlating.

The resolution of the pixels that we consider, is given by the healpix
Nside. In our case, we use Nside = 1024, which corresponds to a pixel
resolution of θpix = 3.44′. For the full sky, the number of pixels is given by
npix = 12N2

side = 12582912. This is a huge amount of pixels that need a
huge amount of memory.

Hence, we only store the pixels corresponding to the area of the sky that
we are considering, in this case, fsky = 1/8. Selecting the pixels with central
angle within 0− 90 declination and right ascension, we include in each map
nmap
pix = 1571840. The maps include the ra and dec of each map pixel, the

healpix pixel id and the number of galaxies in the pixel.
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In section 5.4 we explain how we use this reduced maps in order to
estimate the angular auto and cross-correlations.

5.4 Measuring angular correlations from simula-

tions

We have described the theoretical linear model that is used to predict the an-
gular correlations of galaxies in redshift bins. We also described survey-like
catalogues that can include the intrinsic clustering, the redshift distortions
due to peculiar velocities of galaxies and the effect of determining the radial
position of galaxies using imaging-surveys.

Angular auto and cross-correlations are estimated using the maps ex-
plained in section 5.3. Catalogues include the number of particles (either
dark matter particles or massive halos) in each pixel, for one octant of the
sky. This is done for each redshift bin. Then, we convert them to density
contrast maps. The density contrast in pixel α, for the redshift bin zi is
given by

δα(zi) = (nα(zi)− n̄(zi))/n̄(zi) (5.28)

where nα(zi) is the number of particles or halos in that pixel and redshift
bin, while n̄(zi) is the mean number of particles in the radial shell.

Angular correlations are a function of the angle subtended in the sphere
between two points. We define a linear angular binning scheme in which the
width of the bin is ∆θ = 0.2 degrees.

As density contrast maps are pixelized we use the standard estimator for
pixel maps, (Barriga & Gaztañaga 2002; Eriksen et al. 2004), where

ŵij(θ) =
1

Npairs

∑

αβ

δα(zi)δβ(zj), (5.29)

where Npair is the number of pixel pairs at the corresponding θ-bin. The
angular bin that corresponds to the angular separation between pixels α and
β is given by the integer part of the ratio of with respect to the bin width.

We can trace the angle between two pixels using the dot product cosαβ =
x̂ · ŷ of the unit vectors x̂ and ŷ that correspond to the positions of pixels α
and β, respectively

Covariance matrix

We use the delete-one-jackknife (JK) technique, (Shao 1986; Norberg et
al. 2009), to estimate the errors on the auto and cross angular corre-
lations, (Cabré et al. 2007). It consists on dividing the density contrast
map in NJK equal area sub-areas and then estimating the variance between
the correlations computed dropping out one of this sub-regions each time.
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Therefore, we have NJK estimates of the angular correlation for each of the
Nz(Nz +1)/2 observables. We use this estimates to estimate the covariance
matrix.

We have chosen to divide the octant in NJK 63 regions of almost equal
area. We divide the declination δ in 11 parts from 0 to 90 and then for each
of this angles, we take

N(δ) =
π

2
√
A

cos δ =

√
π
√
2NJK

2
cos δ (5.30)

regions in right ascension for a given δ-row, where A = 4π/8NJK is the
are of the jackknife regions in the octant. This is called igloo pixelation,
(Crittenden & Turok 1998; Cabré et al. 2007)

Then, with the ŵJK
ij (θ), computed using eq. where we consider all the

pixels except the ones corresponding to the dropped out term Jackknife
method

Cθsi,θlj =
NJK−1

NJK

NJK∑

k=1

∆wi(θs)∆wj(θl) (5.31)

where ∆wi(θs) = ŵJK
ij (θs) − ŵij(θs)We added in the numerator NJK−1,

(Tukey 1958; Miller 1974) to take into account the fact that NJK − 2
sub-regions are the same between two jackknife realizations.

5.5 Comparing theory with simulations

Here, we compare the angular auto- and cross- correlations measured from
the MICE lightcone with the theoretical predictions from the modeling de-
scribed in section 5.2. We have two different populations, the dark matter
unbiased catalogue and the halo catalogue. For each of them, we can com-
pare the case with redshifts, a case with redshift distortions and a case that
includes all the effects we consider, redshift-space distortions and photomet-
ric redshifts.

5.5.1 Unbiased sample

First of all we show the results using the catalogue in real space, without
considering either redshift distortions or photometric redshifts effects. The
binning adopted in this case is disclosed in 5.1. We divided the sample eight
bins with the same width in redshift space. In figure 5.1 we showed the
redshift distribution of the sample of galaxies in real space.

Real Space

Here, we present the measurements of the auto-correlations and cross-correlations
of the galaxies in the eight redshift bins for a sample in real space, where the
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Figure 5.4: Real space auto- correlation functions of bins 1 and 4. In each
plot, we show the measurement with the JK errorbars (blue) and the theo-
retical prediction (green) give by equation 5.13
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3D-dimensional positions of the galaxies, correspond to the real positions of
the galaxies, according to the Hubble flow. In this we do not consider nei-
ther redshift space distortions nor photometric redshifts effect. We set the
bias to bg = 1 in this case. Just notice that this section is a benchmark to
look for the self-consistency of gravitational clustering cosmological model
because we never observe galaxies in this space. It also help us to see in a
cleaner way the effects of redshift distortions and photo-z that we will add
in next sections.

First of all, we present the results for the auto-correlations in figures
5.4 and 5.5. In the top panel of figure 5.4 we present the auto-correlations
of bin 1, while in the bottom panel we show the corresponding correlation
of bin 4. In figure 5.5, we show the auto-correlations of the sixth (top
panel) and fourth bins (bottom panel) of the configuration listed in 5.1. We
observe that the prediction in real space agrees well with the measurement.
We can also see how due to the growth of structure, the bin with lower-z
has an angular correlation with more amplitude, which in the modeling the
scaling in real space is given by the growth factor D(z). Let us consider the
cross- correlations between redshift bins. For separated bins, they should be
compatible with zero because the 3D two point correlation function is almost
zero above 150h−1 Mpc. Then for adjacent bins there could be a small cross-
signal because of the intrinsic clustering between galaxies in both bins. In
top panel of figure 5.6 we present the cross-correlations of bin 1 with bin 2
while in the bottom panel bin 3 with bin 4. In addition, top panel of fig. 5.7
shows the cross-correlations of 5-6 bins while in the bottom panel the cross-
correlation is between the deepest shells. We see that the cross-correlations
are consistent with the predicted cross-correlations in real space, which are
close to 0.
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Figure 5.5: Top panel shows the dark matter auto-correlation of bin 7, while
the bottom panel corresponds to the auto-correlation of bin 8
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Redshift space

Now, we focus on the redshift space. This is the configuration space in
spectroscopic surveys because the positions of the galaxies are distorted by
the peculiar velocities. In this space, the 3D two point correlation function
becomes anisotropic. The redshift distortions in 3D are usually studied using
ξ(σ, π), defined in eq. (5.14). In this case, we are studying the projection in
top-hat bins of this 3D anisotropic correlations, as seen in eq. 5.13.

When computing angular correlations in redshift bins, the effect of red-
shift distortions is present because when we divide the sample in different
bins we assume the same projection distance for all the bin while the real
space picture on the edge of the bin differs from this redshift space projec-
tion. This makes the clusters more clustered and the voids emptier. Then,
there is an overall increment in clustering when working on redshift space.

This increment is observed in the auto-correlations of figures 5.8 and 5.9
and we see that in further bins 7 and 8

We can see that the predictions agree with the measurements. Then, we
show the cross- correlations of the adjacent bin to the previous results.
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Figure 5.8: This figure corresponds to the auto-correlations of unbiased
matter in redshift space. Top panel corresponds to bin 1 and bottom panel
to bin 4.
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Figure 5.9: Redshift space auto-correlations of 2 deepest bins
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Figure 5.10: Cross-correlations in redshift space. Top panel shows the cross-
correlations of bin 1 and 2. Medium panel presents the cross-correlation of
bins 4-5 and bottom panel describes 7-8 bins cross-correlations.
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Photo-z space

By photo-z space we mean the redshift space with degraded radial resolution
given by photometric surveys. Photo-z randomly move galaxies in the radial
direction. In this case, we have assume that this randoms follow a gaussian
distribution. The effect of this distortion is a diluted clustering that when
measured by angular correlations, produces a reduction in the amplitude of
the auto- correlations while it magnifies the amplitude of the cross- correla-
tions due to the overlap between the radial selections of different bins.

As redshift distortions is a radial effect, we may think that they are
erased by photo-z. But, as we have mentioned in the redshift space section,
the radial top-hat binning in photo-z space, differ from the true boundaries
on real space. Therefore, we still have a boost on the amplitude due to
redshift space distortions. Therefore, the angular correlations will show a
smaller amplitude due to photometric redshifts while redshift space distor-
tions increase the amplitude of the signal at large scales.

We can see that, compared with the redshift space results, the overall
amplitude has decreased, as expected. But we can see that the redshift
space distortions modeling with the gaussian modeling of the photometric
redshifts works fine. We show in figure 5.11 the auto- correlations of bins 1
and 4 in the photo-z redshift space

We can see that the predictions agree with the measurements. Then, we
show the cross-correlations of the adjacent bin to the previous results.
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Figure 5.11: Auto-correlations in photo-z space of bin 1 (top panel) and bin
4 (bottom panel)
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Figure 5.12: Auto- correlations of the last two bins, 7 and 8, in photo-z
space.



96 CHAPTER 5. COMPARISON WITH SIMULATIONS

0 1 2 3 4 5 6

θ

−300

−250

−200

−150

−100

−50

0

50

100

w
(θ

)θ
2

(x
1
04

)

Bin 1: zi  = 0.275

Bin 2: zj  = 0.425

Photo-z space - DM

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

θ

−40

−20

0

20

40

w
(θ

)θ
2

(x
10

4
)

Bin 4: zi  = 0.725

Bin 5: zj  = 0.875

Photo-z space - DM

0.0 0.5 1.0 1.5 2.0 2.5

θ

−40

−20

0

20

40

w
(θ

)θ
2

(x
10

4
)

Bin 7: zi  = 1.175

Bin 8: zj  = 1.325

Photo-z space - DM

Figure 5.13: Cross-correlations in photo-z redshift space between bins 1-2
(top panel), 4-5 (medium panel) and for the last two bins (bottom panel).
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5.5.2 Biased sample

Now, we compare the measurements done using the halo catalogue sample
as biased tracers of matter. In general, we expect to find higher clustering
because of the biasing in real space. We also expect to find a smaller effect
of redshift space distortions due to the fact that the bias term is relatively
higher than the anisotropic term due to the peculiar velocity gradient.

Real space

First of all, as we did for dark matter, we show the measured correlations,
together with the theoretical prediction for auto-correlations of bin 1 and 3,
5.14 and we see that in further bins 4 and 8, fig. 5.15

We see that the overall amplitude is greater than the amplitude of the
correlations of the unbiased sample. This is produced by the biasing. We
show correlations between bin 1 and 2 in the top panel of figure 5.16 and
in the bottom panel the cross-correlation between bins 2 and 3. We also
show the cross-correlations of bins 5-6 and 7-8 in 5.16. In general, thanks to
the fit we did for the bias, the agreement between theory and simulations is
good.
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Figure 5.14: We show the auto-correlations of bins 1 (top panel) and 3
(bottom panel) for biased tracer.
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Figure 5.15: Auto-correlation of halos in real space for the fifth (top panel)
and seventh bin (bottom panel).
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Figure 5.16: Cross-correlations of bins 1-2 and 2-3 in real space for the
biased tracer.
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Figure 5.17: Cross-correlations of bins 5-6 and 7-8 for the biased tracers.
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Figure 5.18: Redshift space correlation at redshift bin 5 for the biased sample

Redshift space

Now, we compare the case of a biased sample in redshift space, like an LRG
sample from an spectroscopic survey. We show the auto- correlations of bins
1,2 and 6 in figures 5.19 and 5.18.

We see that the overall amplitude is greater than the amplitude of the
correlations of the unbiased sample. This is produced by the biasing. The
comparison of the model with the data for the auto-correlations shows that
the model is a fair description of clustering. This is the same case for cross-
correlations. In fig. 5.20 we show the cross-correlations of bins 1-2 and 2-3 as
sample of the cross-correlations of biased galaxies in adjacent redshift bins.
The clustering also agrees, within the error-bars, with theoretical prediction.
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Figure 5.19: We show the redshift space halo auto-correlations of bins 1
and 3 in blue, while the theoretical prediction is shown in green. Top panel
corresponds to first bin and the comparison for auto-correlation of the second
bin is shown in the bottom panel.
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Figure 5.20: Redshift space cross-correlations of halos between bin 1 and 2
(top panel) and between bin 2 and 3 (bottom panel)
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Figure 5.21: Bin 6 auto-correlation when including RSD and photo-z given
by σz/(1 + z) = 0.03

Photo-z space

Finally, we study a mock sample of biased galaxies from a photometric sur-
vey. In figures 5.22 and 5.21 we present the auto-correlations for the pho-
tometric sample of biased galaxies with the theoretical prediction, used the
corresponding radial selection function and the clustering is well predicted.
The global amplitude is degraded with respect to the previous case because
of the photometric redshift. But the effect is not as big than for the unbi-
ased sample because this sample has better radial accuracy and therefore
the amplitude of clustering in photo-z space is greater.

In figure 5.23 we show the cross-correlations. They are bigger because
of the overlap of redshift bin selection function but this expected result is
well described by the theoretical modeling.
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Figure 5.22: We show the auto-correlations for the most general case and
the biased tracer. We selected bins 1 and 3, shown in blue, while the the
theoretical modeling is in green.
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5.6 Discussion

In this chapter we have tested the framework that we consider for the analy-
sis of 3D clustering with angular auto- and cross- correlations using N-body
simulations. N-body simulations allow us to study a more realistic and less
optimal scenario than forecasting with models. Simulation checks are the
last step before using the data because we can discriminate so many effects
that are not considered in theoretical forecasts.

The modeling proposed predicts the theoretical angular clustering in a
redshift bin (auto- correlations) and between different redshift bins (cross-
correlations). It accounts for the intrinsic linear clustering of matter, accord-
ing to the power spectrum given by an initial almost scale invariant power
spectrum, with modes beyond the equality suppressed in the radiation dom-
inated Universe, which is account solving first order Boltzmann equations,
and a linear growth in the matter dominated phase. This is projected in
radial shells in order to compare with the angular clustering of galaxies.

Then, we also modeled how galaxies trace the matter field by adding a
multiplicative galaxy bias to the clustering power spectrum.

We have taken into account the fact that the galaxies are observed in
redshift space, which distorts the apparent positions of galaxies with respect
the real position. This is account using the configuration space version of
the Kaiser effect (Kaiser 1987; Hamilton 1998).

Finally, we include the projection kernel in the case in which we use
photometric redshifts. In this case the apparent positions of the galaxies are
randomly distorted. We select the galaxies in photometric top-hat redshift
bins and we convert this binning to a true redshift binning by convolving
with the probability density of a true redshift to be the actual measured
photometric redshift.

Then, in order to test the performance of the model we use the ΛCDM
MICE N-body simulations. From a lightcone output of the simulations and
from a halo catalogue we produce mock catalogues in real, redshift and
photo-z space of unbiased and biased matter tracers. This has been done
for eight redshift bins on a region that covers an octant of the sky, with a
redshift range 0.2 < z < 1.4. Then, we produced pixel maps of an angular
resolution of3.44 arc-min and we apply an estimator based in pixel maps to
estimate the angular auto- and cross- correlations.

Finally, we have compared the prediction with the estimated auto-and
cross-correlations and the model agrees with the N-body simulation results,
especially at the scales in which sample variance is not the main source of
uncertainty. We saw that redshift distortions boost the amplitude at large
scales, despite of the binning and therefore, we can use this for RSD probe
to test growth history, for a given background expansion. This effect is also
seen in photometric redshift space, either in auto- correlations and cross-
correlations.
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The fact that the cross- correlations can be described is crucial in what
corresponds to this thesis because they are needed in order to recover the
radial clustering information in which we call full 2D clustering analysis. A
main result is the imprint of redshift distortions in the cross- correlations
between adjacent bins

We have also obtained a covariance matrix from the map, using Jack-
kniffe technique, which is a cheap alternative way compared to building
covariance matrices using hundred or thousands of survey mocks from sim-
ulations.

Finally, let us mention that this results will encourage us to use this
modeling in order to do parameter estimation in the nearby future and to
try to use this modeling to the full-DES data to test the model and put
constraints on growth of structure, using linear redshift space distortions in
photo-z space.
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Chapter 6

Conclusions

Here, we summarize the main conclusions presented in this monograph.
In chapter 1 we exposed the main topic and the outline of the thesis. In
chapter 2 we described the assumptions that we include in our model and
the notation used in the thesis. Then, in chapter 3 we compared an study
of clustering in 2D space with respect to 3D space.

1. We compare the 3D predictions with the 2D predictions in a full sky
spectroscopic survey with redshift range 0.45 < z < 0.65 for different
kmax values, defining in this way the scales included in the analysis.
We predict the error on Ωm for different surveys using as observable
the linear 3D anisotropic power spectrum in different redshift bins and
we find that the error on Ωm does not change much when we change
the number of redshift bins and we use the full 3D information inside
each bin.

2. On the other hand, we find that the error on Ωm decreases with the
number of redshift bins used in a 2D tomographic analysis of the sur-
vey clustering. The shot noise per bin increases when increasing the
number of bins. At the same time, the amplitude of the correlations in
each bin, i.e., the signal, increases due to the fact that we use thinner
bins. Then, the shot noise per bin is preserved. Therefore, the the
error decrease when we combine of all the redshift bins.

3. For Ωm we find that the improvement on the figure of merit is mod-
erate when adding the cross-correlations between redshift bins to the
auto-correlations. This is because there are fewer radial modes than
transverse, while Ωm information is mainly encoded in the shape of
the power spectrum P (k).

4. We find that 3D information is recovered when the width of the radial
shells used in the 2D tomography is given by ∆r = c∆z/H(z) ≃
0.8λ3Dmin where λ3Dmin = 2π/kmax.
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5. In the redshift distortions case, the recovery of 3D information occurs
when the width bin used in the 2D analysis is ∆r ≃ 0.6λ3Dmin. We have
seen that if we do not include the cross-correlations this recovery may
not happen because redshift space distortions depend strongly on the
comparison of the amplitude of the clustering of radial and transverse
modes.

6. We consider a narrow-band photometric survey, such as PAU, covering
a range 0.45 < z < 0.65. The figure of merit on Ωm is close to the
the figure of merit for a full spectroscopic survey. The optimal bin
configuration is the same as in the spectroscopic case. This is true
as long as the photo-z error scale is smaller than the minimum scale,
kmax considered in the 3D analysis.

7. Finally, for a broad-band photometric survey, like DES, the recovery
does not depend strongly on the kmax because the radial resolution of
the photometric redshifts σr = σzc/H(z) is larger. In this case the
optimal bin width is ∆z ≃ 2σz

Then, in chapter 4, we continued applying the cross-correlations tech-
nique to large scale structure probes, in this case to redshift space distortions
using photometric surveys.

1. We see that including cross-correlations in the analysis improves the
constraints on the linear growth index γ by a factor of 2, because
we are adding the radial information, missed when only considering
auto-correlations.

2. A population with higher bias will produce worse results because the
relative importance of redshift distortions is lower than in a population
with less bias. The population with better radial precision and higher
densities will reach stronger constraints.

3. If we cross-correlate two populations with different bias, we are over-
sampling radial and transverse modes and therefore sample variance
is reduced. This allows us to constrain linear growth index γ with
5-10% accuracy using an unbiased population with σz/(1 + z) = 0.05
and a biased tracer b = 2 with σz/(1 + z) = 0.03. The combination of
the results from different areas of the sky is less optimal than cross-
correlating populations in the same area. The impact of shot noise is
not relevant for expected samples from ongoing photometric surveys.

4. We also forecast the error on the linear growth rate, f(z)σ8(z), and
the optimal analysis includes all the cross-correlations between two
populations. In this case we will be able to constrain it at high redshifts
z > 1 with 10-15% errors per bin.
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5. We also compared the performance of a narrow-band photometric sur-
vey in a redshift range 0.94 < z < 1.06. In this case, the narrow-band
survey can determine γ 20 times better than a broad-band survey in
the same redshift and area range.

6. Photometric surveys will constrain the growth rate per bin at high
redshifts (z > 1), complementing spectroscopic surveys constraints at
low redshifts.

Finally, in chapter 5 we evaluated how the linear model performs com-
pared with simulations.

1. Mock galaxy surveys were built from simulations of dark matter and
halos in the light-cone, in real space, redshift space (i.e. including
the effect of the peculiar velocities of the galaxies) and photometric
redshift space.

2. We measured the angular auto and cross correlations of an unbiased
galaxy sample, generated from a dark matter lightcone, and a biased
sample, generated from the halos

3. For the unbiased sample we compared the auto- correlations and the
cross- correlations with the theoretical model for angular clustering
in real, redshift and photometric redshift and we have found a clear
agreement between theory and the simulations.

4. Redshift distortions are clearly seen in the auto- and cross- correlations
in redshift and photometric redshift space, confirming the theoretical
considerations.

5. Using the auto correlations in real space we studied the clustering of
a biased (halo) sample with respect to the clustering of dark matter.
We find that the bias increases with redshift, but in a smooth manner

6. For the bias sample we also find good agreement of theory and sim-
ulations in real, redshift, and photometric redshift spaces. The most
important conclusion is that the amplitude of clustering in this cases
is higher than for the unbiased sample because of the biasing. We also
notice that, as expected redshift distortions are weaker than in the
unbiased case because the RSD term is relatively smaller compared
with the bias term.

7. Overall we observe that theory, including the fitted evolving bias,
matches the measured auto- and cross- correlations.
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6.1 Future and ongoing projects

We plan to use the simulations and the theoretical model developed in chap-
ter 5 for cosmological parameter estimation, using also the cross-correlations
between different populations. One of our main interest is to extract infor-
mation on the linear growth index γ and the linear growth rate f(z)σ8(z).

In addition, we would like to explore the extensions on the modeling to
inclide the non-linear regime effects that happen at small scales where the
signal to noise is typically higher.

The development of such an analysis pipeline will be of uttermost im-
portance for the upcoming analysis of real data from DES and PAU. This
will help us to understand the nature of the growth of structure.
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Appendix A

Modifying CAMB sources to sample growth rate and bias

In order to consider the bias free case we had to modify CAMB sources to ac-
cept as (independent) inputs bias and growth rate (parameterized through γ
as in Eq. (2.42)). In addition this case does not involve changes in the shape
of the real space spectrum, thus one should be able to sample parameter
space without the need to compute the transfer functions at each point of
parameter space.

To fulfill these needs we have factorized the terms in our observables
that depend on the cosmic history (for our reference cosmology) from those
that depend on the bias b and growth index γ. The factorization in the case
of auto and cross-correlation is given by:

Cii
ℓ = b2iC

ii (0)
ℓ + 2bifiC

ii (2)
ℓ + f2i C

ii (4)
ℓ (1)

Cij
ℓ = bibjC

ij (0)
ℓ + bifjC

ij (2)
ℓ

+bjfiC
ij (2′)
ℓ + fifjC

ij (4)
ℓ , (2)

where bi is the bias of the bin i and fi is the growth rate given by Eq. (2.42),
evaluated at the mean redshift of the bin i. This factorization assumes f(z)
does not vary much within the redshift range of the bin (neither b). We
have tested this assumption using the exact CAMB sources evaluation or the
reconstruction of Eqs. (1,2) and found an excellent match for the bin widths
considered in this paper.

Using the observed Cℓ and solving a linear set of equations using different

values for bi we can store the value of C
ii (2)
ℓ , C

ij (2)
ℓ , C

ij (2′)
ℓ , C

ii (4)
ℓ and

C
ij (4)
ℓ . The values of C

ii (0)
ℓ and C

ij (0)
ℓ are obtaining by excluding RSD in

Cℓ. Then, we sample b and γ space using these factors and the reconstruction
given by Eqs. (1) and (2) obtaining Cmod

ℓ in parameter space.
In the reconstruction we assume the underlying value of given by the

corresponding reference cosmology while the growth factor D(z) is included
in the integrals that are contained in the cosmic history dependent factors

C
ij (n)
ℓ .
When using two tracers α and β, the procedure is the same, using 2

converting i, j into iα, jβ where α and β can be the same population.
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