
Modeling the response of thin

superconductors to applied

magnetic fields and currents

by Guillem Via Rodŕıguez
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Preamble

Superconductors are one the few systems that exhibit a quantum state extending

over distances on the macroscopic scale. This makes them a very interesting topic of

research due to the rich variety of phenomena arising from this fact; both from the

physics fundamentals point of view and because of their potential for applications. Ac-

tually, special and extreme properties have often presented good performance for some

particular functioning. In the case of superconductors, among these special properties

are their large response under small external perturbations of di�erent kinds and their

high generated �elds and transport currents with low energy losses. All of these proper-

ties have made superconductors useful for devices with very high sensitivity and control

in di�erent systems, as well as for the production and transport of energy with high

e�ciency.

Improving the performance of these materials for the above discussed aims requires a

deep understanding of the underlying mechanisms allowing for such behavior. In many

of these phenomena, superconducting vortices play an important role. In fact, they do

so either by producing undesired e�ects or by giving useful measurable and/or tunable

outputs. This is the reason why the conditions for the nucleation and dynamics of these

entities has been a subject of extensive study for many decades. However, in spite of

this e�ort there is still an important lack of knowledge on a wide variety of phenomena

involving them.

When dealing with superconductors, sometimes it is very useful to make use of very

thin samples. One of the main reasons for this is that some of their properties and

responses are highly enhanced in this geometry. For this type of samples there are

still many phenomena which are not well understood. Actually, even in the broadly

employed London and critical-state theories (the ones we use here), the distribution of

an externally fed transport current was not determined theoretically, until very recently,

for other geometries than that of a straight strip of uniform width. Thus, only cases

in which external magnetic �elds are present were fully solved. Moreover, even for this

magnetic �eld case, most of the former studies dealt only with single plates of di�erent
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geometries or sets of straight strips.

With the present work we aim at studying some of the still unsolved problems and

at �lling a few of these remaining gaps. To do so we extend the Magnetic Energy

Minimization (MEM) model, used in previously published studies, to account for the

applied transport current and other elements within the superconductor system. For

example we systematically study the distribution of currents in thin strips of di�erent

non-straight geometries within both of the London and the critical-state models. As far

as we know, this is the �rst time such a study for this more general case is done. In fact,

we also include the simultaneous application of magnetic �elds and transport currents

in the samples.

The present thesis is organized as follows. First, in chapter 1 we introduce the super-

conducting materials, giving a quick overview of some of the most important historical

advances on the topic. This is followed by a short review of some of the existing theories

to explain their electromagnetic response. Then, we give a more detailed description of

the particular distribution of magnetic �elds and currents, for di�erent sample geome-

tries, within the London and critical-state approaches. We end the chapter by listing

important applications that make use of the principles studied in the remaining part of

the thesis.

In chapter 2 we present the theoretical model and numerical procedure we use to sim-

ulate the response of the superconducting samples. There we give a detailed description

of the problem we seek to solve, as well as of the procedure we will use.

Chapter 3 deals with the �rst part of the results, where superconductors with dif-

ferent geometries are modeled within the London theory. Hence these results are only

valid for low applied �elds and currents. In particular we make a systematic study of

the distribution of transport currents in di�erent strip geometries involving sharp turns.

Then we discuss the e�ect of these currents on the �rst nucleation and subsequent be-

havior of a penetrating vortex near a sharp �=2 radiants turn. We end the chapter

by studying the response of pairs of parallel non-coplanar plates under perpendicular

applied magnetic �elds.

The second part of the results is given in chapter 4. In this case the model used

for the simulation of the superconducting samples is the critical-state model. Therefore,

here the superconductor is assumed to be very hard. We begin the chapter by describing

the general behavior of applied transport currents. In this case, this description is made

both for situations in which just them are present and for those where a perpendicular

external �eld is also applied simultaneously. We continue by showing some expected new

phenomena coming from the highly hysteretic behavior of such currents, for example

within a straight strip �lled with some antidots. The chapter ends with the extension

to the critical-state of the study of the same pair of parallel plates considered in the

previous chapter.

We conclude the thesis in chapter 5 by summarizing some of the most signi�cant

discoveries and presented results. We also outline some of the possible future research

lines to continue from the present work.
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CHAPTER 1

Introduction

1.1 General concepts on superconductivity

The phenomena of superconductivity was �rst observed in 1911 by Kamerlingh

Onnes [1]. He found that the electric resistance of mercury dropped suddenly to zero

when it was cooled below a critical temperature Tc of 4:15K. More superconducting

metals and alloys with higher Tc were found in the following years until the discovery

of Nb3Ge (Tc = 23K) in 1973 [2]. This is the material with highest Tc among the later

known as low temperature superconductors (LTS), characterized by low values on their

Tc. It took 13 more years to discover a new superconductor with a higher critical tem-

perature. It was an oxide of lanthanum, barium and copper with Tc = 35K [3], the

�rst high temperature superconductor (HTS). Another important step in the history of

superconductivity came from the discovery of the �rst superconductors with a Tc above

liquid nitrogen, which reduced signi�cantly the cost of the involved cryogenics. These

superconductors were among the cuprates, copper oxide compounds superconducting

on their CuO planes. Worth to mention are the widely used cuprates YBa2Cu3O7�δ
(YBCO) [4] and Bi2Sr2Ca2Cu3O10+δ (BSCCO), with Tc � 90K and Tc � 120K, respec-

tively, being the former more common for applications at present [5].

Apart from their zero resistivity, another property characterizing the behavior of

superconductors is the complete exclusion and expulsion of the magnetic induction �eld

B from their interior, i.e. B = 0, when they are cooled below Tc. This is the Meissner

Ochsenfeld e�ect (1933) [6], named after its discoverers, that proved superconductivity

to be a thermodynamical state. This e�ect was explained by the London theory (1935)

[7], according to which �elds and currents decay over a few distances �, the London

penetration depth, from the superconductor surface.

Superconductors also exhibit 
ux quantization, as Little and Parks proved experi-
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8 Introduction

mentally in 1962 [8]. That means the net magnetic 
ux across any area fully surrounded

by superconducting material is a multiple of the 
uxoid quanta �0 = h=2e, with h

Planck's constant and e the electron charge. The quantization was found to arise from

the coherence in the quantum state of the Cooper pairs, the quasi-particles responsible

for superconductivity. These Cooper pairs are bosonic quasi particles consisting of pairs

of electrons coupled via phonon interactions. The theory behind this discovery was the

microscopic theory by Bardeen, Cooper and Schrie�er (BCS) [9]. However, this theory

cannot explain the coupling at the high temperatures involved in HTS, for which the

interactions between electrons and phonons are still not well understood.

Another important advance in superconductivity came when Alexei Abrikosov in

1957 [10], found a particular solution of the Ginzburg-Landau (GL) equations. The GL

theory was developed by Ginzburg and Landau in 1950 [11] to explain the phenomena

taking place near thermodynamic phase transitions of second order. They used a com-

plex function  , the order parameter, which is related to the Cooper pairs density.  

varies over distances on the order of the coherence length �. The solution by Abrikosov

showed that in superconductors with � � �=� > 1=
p

2 magnetic 
ux penetrates into the

material in the form of 
ux threads, vortices or 
uxoids that distribute in its interior

forming a triangular lattice.

The materials with � > 1=
p

2 were called type-II superconductors to distinguish

them from the type-I superconductors, with � < 1=
p

2. In the latter, complete 
ux

expulsion takes place in the Meissner state, when the magnetic induction B is below

some critical value Bc. These materials transit into the normal, non-superconducting,

state above Bc.

Type-II superconductors present a richer variety of states. For B below a lower

critical induction Bc1, the complete 
ux expulsion is also present in these materials.

However, above this value and below a second larger critical induction Bc2, i.e. Bc1 <

B < Bc2, the partial 
ux penetration happens. In this range of �elds, the superconductor

is in the mixed state. For B > Bc2 the vortices �ll the whole superconductor and

superconductivity vanishes.

1.2 Type-II superconductors

The 
ux vortices present in the mixed state consist of a normal state central core

surrounded by circulating supercurrents. Each vortex carries a single 
ux quantum �0.

Fluxoids are driven by a magnetic force in the presence of any other current.

The vortices are straight and aligned with the applied induction B when it is applied

longitudinally to an in�nitely long sample. In this case, the force on the vortex per unit

length L in the long direction is given by [12]

Fd=L = J�Φ0: (1.1)

Here J = r � H is the local current density, H the magnetic �eld vector and Φ0 is

the vector of modulus �0 pointing in the direction of B. As a result, vortices repel or
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attract each other depending on their vorticity, which is de�ned from the direction of

their �eld. Moreover, they are also pushed or pulled by 
owing currents. According to

the GL theory, the most stable structure of them, where repulsion forces compensate

each other in the absence of transport currents and pinning centers, is a triangular

lattice.

However, if defects are present, they often act as pinning centers for the 
uxoids [13].

Thus, the vortices interact with them and do not move freely anymore. Then the lattice

becomes distorted and the periodicity is broken. Depending on the temperature, the

interaction with defects is di�erent and di�erent thermodynamical phases can arise [14].

For example, at large temperature the thermal energy can easily overcome the energy of

interaction between di�erent vortices and that between vortices and pinning centers. In

this case the vortices are not �xed but can move, behaving as a vortex liquid. This is the

thermally activated 
ux 
ow (TAFF) regime. At lower non-zero temperatures, defects

pin the vortices but some depinning due to thermal activation still occurs. This is the

e�ect known as 
ux creep. Apart from the lattice relaxation due to thermal energy,


uxoids can also tunnel between di�erent pinning centers [15, 16], which is another

cause of relaxation. For large pinning forces, when vortices are strongly trapped and

cannot move due to thermal energy and the e�ect of tunneling can be neglected, the

superconductor is said to be in the critical state [12]. The defects acting as pinning

centers can be of many types [12, 13, 5, 17], from dislocations or twin boundaries in

the matrix to normal and magnetic material inclusions, grain boundaries, or the non-

conducting layers in HTS materials, among others.

Many di�erent techniques have been used to visualize and extract information from

the vortices and their behavior [18]. The �rst one, con�rming Abrikosov's prediction,

was the observation by Cribier et al [19] of a weak Bragg peak in small-angle neutron

scattering (SANS) experiments in 1964. Just a few years later, in 1967, high-resolution

pictures of the lattice were obtained by Essman and Tr•auble [20] from a decoration

method using ferromagnetic crystallites that settled at the places where 
uxoids emerged

to the surface. Neutron depolarization [21] and muon spin rotation [22] were used to

probe the 3D 
ux distribution inside the superconductor. Other techniques, allowing for

the visualization of the lattice of 
uxoids, are the scanning tunneling microscope (STM)

[23, 24], with spatial resolution of single atoms, and the magnetic force microscope [25].

The motion and pinning of a single 
ux line in thin �lms was detected by measuring the

di�raction pattern from a Josephson junction [26], and this motion also by its coupling

to a 2D electron gas formed at the interface between Si and SiO [27]. Very useful

methods giving single vortex resolution at the surface are the microscopic Hall probes

[28], scanning electron microscopy [29], �eld-emission transmission electron microscopy

[30] and magneto-optical imaging based on the Faraday e�ect [31, 32, 33], and with

lower spatial resolution but more quantitatively, by scanning Hall probes [34].

Some of the above mentioned techniques proved many of the HTS materials to be

layered and thus highly anisotropical, conducting only at some particular layers. The

c axis is de�ned as that normal to the conducting planes, called the ab planes [5].
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Moreover, the HTS, characterized by a very short �, are strongly second type (Type-II)

superconductors [35].

1.3 Modeling of type-II superconductors

The theory by Ginzburg and Landau, although strictly demonstrated only near Tc, is

been proven very illustrative to understand some of the mechanisms leading the observed

behavior of vortices in the whole range of T < Tc. According to this theory, the �elds and

order parameter function in the interior of the superconductor are those which minimize

the net energy of the system accounting for three terms [36]: the gain in energy of

forming the Cooper pairs, the kinetic energy from the 
owing charge carriers, and the

magnetic energy from present �elds. The formation of a vortex involves a gain of energy

from the reduction of B outside it at the cost of sustaining the currents and suppressing

the order parameter in its core.

Apart from the theory by Ginzburg and Landau, there are others from which the

single or collective vortex structure and behavior have been modeled [18]. The triangular

lattice, for example, was also derived from the BCS [37]. The London model, already

mentioned above, is obtained as a limiting case of the GL model with � ∝ � (or �→ 1)

but seems not to be restricted to temperatures close to Tc [12]. This model, �rst derived

to explain the Meissner e�ect in the Meissner state, i.e. below Bc1, was extended to

account for a vortex core with � = 0 and describe how currents distribute in long [38, 39]

and thin [40] samples. It is also used for the simulation of the interaction with an edge

or surface and for deriving some of the barriers opposing to vortex penetration such as

the Bean-Livingston [41] and the geometrical barriers [42]. In the case of intervortex

spacings much larger than � the solution for many vortices can be obtained from some

theories from the linear superposition of those for a single vortex. At large inductions

B, where the vortex density is high and their cores partially overlap, this approach does

not give satisfactory results.

The origin of pinning can be understood from the GL theory. In order for the

superconducting vortex core to form, the superconducting order parameter has to be

suppressed there. However, since the order parameter does not need to be suppressed

inside the defect, the vortex energy is lower there [43]. Thus, the vortex receives an

attractive force from this defect. This e�ect allows for the understanding of pinning at

some lattice defects and normal inclusions, but other e�ects play also a role in other

types of defects. This is the case, for example, in magnetic inclusions, where both the

�eld from the magnetic material and the exchange energy also lower the vortex energy

[17, 44].

An early theory trying to simulate these e�ects on a macroscopic scale was a sponge-

like model. This model was based on the idea of the remanence of 
ux inside the material

after the removal of the external �elds. A few years later, the theory that could explain

many of the experiments on Type-II superconductors arrived based on the sponge-

like model ideas. It was the critical-state model, presented by Bean in 1962 [45, 46],
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describing the behavior of superconductors in the critical state, and hence assuming a

strong vortex pinning.

The thermal e�ects of TAFF and 
ux creep can be simulated from the theory devel-

oped by Anderson [47]. According to this theory the relation E(J) � E(J) � Ĵ, between

the electric �eld E and the parallel current density J of unitary vector Ĵ, is given by a

power law [14] inside of the material. With the power law exponent n ranging from 1

to1, di�erent degrees of depinning by thermal excitations could be modeled, including

the e�ects of TAFF and 
ux creep. In the limit n ! 1 vortices are strongly pinned

and no thermal e�ects are present. In this case the critical state model is recovered.

In this thesis we restrict our discussion to the London and critical-state models

to describe the behavior of type-II superconductors in the Meissner and the critical

states, respectively. We will consider both the cases of externally applied magnetic

�elds (magnetic case) and electric currents (transport case) in both in�nitely long and

very thin samples, for the two theories.

1.3.1 Meissner state: the London model

The London model is based on the assumptions of free moving particles of charge

e�, mass m� and volume density ns and zero trapped 
ux far from the superconductor

surface. The London equation, relating the magnetic induction B and the current

density J inside the superconductor, reads [48]

B = ��0r� (�2J); (1.2)

with

�0�
2 =

m�

ns(e�)2
; (1.3)

being �0 the vacuum permeability. Note that in an anisotropic and inhomogeneous

material, the squared London penetration depth, �2, is a position dependent tensor.

Since the superconducting particles are pairs of electrons e� = 2e.

We must bear in mind that assuming a uniform ns is equivalent to consider � ∝ �

(see Sec. 1.1), and thus not accounting for the space variations of the order parameter.

Long samples (parallel geometry)

To illustrate some of the general trends derived from the solution to the London

equations, we �rst consider the simple case of a homogeneous and isotropic supercon-

ductor with both in�nite length and uniform cross section along the direction of applied

�eld or at least one of the directions perpendicular to applied current. This is the case

known as parallel geometry, which deals with long samples.

In particular, we consider the slab geometry. Its shape consists of a 
at planar

prism of width W that extends to in�nity in the two in-plane directions. The slab is



12 Introduction

placed perpendicular to the x axis at x 2 [�W=2;+W=2]. In this case the problem is

mathematically 1D.

First we consider the magnetic case, when an external uniform magnetic induction

Ba is applied. If Ba = Baẑ, thus applied along the vertical z direction, the solution for

the 
ux density B(x) = Bz(x)ẑ inside the slab is

Bz(x) =
Ba cosh

(
x
λ

)
cosh

(
W
2λ

) ; (1.4)

and Bz(jxj � W=2) = Ba outside it. From Ampere law the current density is found to

be

Jy(x) = �
Ba sinh

(
x
λ

)
�0� cosh

(
W
2λ

) : (1.5)

Then, for large W=� the modulus of current also follows a close to exponential decay

from its maximum value,

Jmax = Ba=

[
�0� cosh

(
W

2�

)]
; (1.6)

at the sample surface. It 
ows in opposite directions by the two surface planes.

Under longitudinal applied current per unit height Ia, the transport case, similar

current and �eld spatial dependences take place. However, in this case current 
ows in

the same direction by both outer planes and magnetic �eld has opposite sign at the two

slab halves. In particular, the magnetic induction outside the slab is �sgn(x)�0Ia=2,

where the function sign, sgn(x), is �1 for x < 0 and +1 for x > 0.

We must note that this state is reversible. That means the �eld and current distribu-

tion depend just on the present values of the applied quantities and not on the previous

ones. Moreover, �elds and currents are both linear on Ba and Ia. Thus, the distribution

for any combination of the two of them can be obtained from the linear superposition

of the solutions with Ia = 0 and Ba = 0, respectively.

From the above solutions, we can observe that the limit � ∝ W gives very large

surface currents con�ned to very narrow layers close to the two outer planes. Then �eld

and current are almost zero within the sample interior. In the opposite limit, � → W ,

currents are nearly constant across width in the transport case and close to linear in the

magnetic case.

In the magnetic case currents decrease down to zero anywhere within the sample for

increasing �=W , but in the transport case net current must always equal the applied

one. In both cases the �eld in the exterior is independent on this ratio.

An in�nite cylinder in an axial �eld would present the same behavior but there

currents follow concentric circular paths.

The slab geometry considered above is a simply connected one. When the sample

presents some holes, the magnetic 
uxoid can be de�ned from the London theory. In
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this case, for any surface S whose contour @S runs all along the interior of the super-

conducting material

� �
∫
S

B � n̂dS + �0�
2

∮
∂S

J � dl = Nf�0: (1.7)

The quantity on the left is the 
uxoid, composed of the magnetic 
ux through S plus

�0�
2 times the circulation of J along @S. This 
uxoid is always a multiple of the

quantum 
uxoid �0 (Nf 2 Z) within any path @S in the interior of the superconductor,

also when it surrounds some holes.

In particular, when a sample presenting some hole is cooled in a zero external �eld,

or zero �eld cooled (ZFC), Nf = 0. However, when �eld cooling (FC) the sample, a

state with Nf 6= 0 is achieved. Since each superconducting vortex carries one quantum

of 
uxoid, any extra penetration of vortices from the outer edge will increase Nf by one.

Magnetization and susceptibility of long samples In magnetic materials, one

can de�ne the volume average magnetization as the magnetic moment per unit volume

from [49]

M =

(
1

V

)
1

2

∫
V

R� J(R)d3R; (1.8)

where the integral is taken over the whole sample volume V and R = xx̂ + yŷ + zẑ

is the 3D vector position. In long samples under longitudinal applied �eld Ha = Haẑ

along z, the only non-zero magnetization component, Mz, can also be obtained from the

averaged local currents generated �eld HJ = Hi�Ha [50], where Hi is the total internal

�eld. Samples presenting a linear magnetic response, as is the case of superconducting

samples modeled within the London theory, show a magnetization with constant slope

χ0 � �Mz=Ha (1.9)

in increasing uniform �eld Ha. Here χ0 is the initial susceptibility, which takes the value

+1 in the parallel geometry for the small � limit. Actually, this de�nition corresponds to

the external susceptibility [49], which equals the internal susceptibility in long samples.

Thick samples

When the far top and bottom end planes of the slab geometry considered in the

previous section are separated by a �nite distance along the vertical direction, some

trends change drastically. We will refer as thick samples to these samples of �nite non-

zero thickness in the direction of applied �eld and in the two directions perpendicular to

applied current. The reason for this change is the appearance of demagnetizing e�ects,

which enhance the response to applied �elds and currents in the case of superconductors.

More precisely, the current distribution is not uniform anymore at the lateral planes and

currents 
ow within the entire outer surface, including the top and bottom ones. This

distribution results from the need to shield the external and the self-�elds.
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The particular case of a thick in�nitely long tape was solved by Brandt and Mikitik

[51] both for zero (complete shielding limit) and �nite � and in the magnetic and trans-

port cases. This geometry consists of a prism of rectangular cross section and the �eld

and current are applied along the vertical, perpendicular to axis, direction and along

the longitudinal one, respectively. In this case they also found currents to decay from

the surface within distances � �, but not only from the lateral but also from the entire

surface at the top and bottom end planes. In the magnetic case currents 
ow in opposite

directions by the two tape halves and the zero current value is only met at the top and

bottom surface central line. On the contrary, in the transport case currents penetrate

symmetrically from the four outer planes. Moreover, a great enhancement of local �eld

and current was observed at the tape corners, which was larger for lower �, and diverged

at �! 0.

Thin samples (perpendicular geometry)

Of special interest for applications are thin planar superconducting strips or platelets,

in which the above mentioned demagnetizing e�ects are larger. In this case the behavior

described below applies not only for isotropic materials but also for anisotropic ones

whose anisotropy is along the out-of-plane direction. This is the case, for example, of

HTS materials with the c axis perpendicular to the thin �lm.

The 
ux distribution within thin plates of di�erent cross section in the critical state

has been observed by many authors both by magneto-optics [52, 53, 32] and Hall probes

[28, 34, 54, 55, 56]. These measurements give validation to many of the results described

below.

The case considered in this section is the one in which a uniform magnetic �eld is

applied perpendicular to the thin sample or a transport current is applied longitudinal

to it. We refer to this case as that of thin samples, also referred to as perpendicular

geometry.

In this thin limit it is convenient to work with the thickness, t, averaged surface

current density

K(x; y) =

∫ +t/2

�t/2
J(x; y; z)dz; (1.10)

without caring on the particular vertical distribution of currents. Then, the dimension-

ality of the problem is reduced. When t � �, K decays in the in-plane directions over

distances on the order of � � �2=t, the Pearl length. This is the characteristic length

for the decay of currents both from a sample edge and from a vortex core [40].

We �rst deal with the thin strip geometry. It can be thought as the limit of reducing

the thickness t, of the slab or thick tape geometries considered above, while keeping the

�nite lateral dimension, the width W , constant. In particular the thin strip limit is met

when t ∝ W . This reduction leads to a high enhancement of �elds and currents not

only at the tape corners but all along the short lateral edges. Also currents and �elds

are non-zero within the whole top and bottom planes.
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Figure 1.1: Out-of-plane magnetic �eld Hz = Bz=�0 (upper row) and longitudinal sheet current

Ky (lower row) for an in�nitely long (along y) thin planar straight strip of width W and di�erent

two-dimensional screening length � for the magnetic case, in which a uniform magnetic �eldHa =

Ba=�0 is applied along the z, perpendicular-to-�lm, direction (left column) and the transport

case of applied longitudinal transport current Ia (right column). Shown are the cases for �=W =

0:001; 0:01; 0:1 and 1 (increasing in the arrow direction). The �eld and sheet current components

are normalized to Ha in the magnetic case and to Ia=W in the transport case.

The distribution of K was found for this geometry both under perpendicular Ba
and under a longitudinal Ia, analytically in the complete shielding limit [57, 58], where

�∝W , and numerically for arbitrary �=W [59, 60].

In these cases K was found to be di�erent from zero anywhere within the whole

strip surface for arbitrary �=W . Moreover, in the limit �=W ∝ 1 currents diverge at

the strip edges in order to be able to shield the self-�eld in the sample interior. These

in�nities, not present for non-zero �=W , are removed when considering a cuto� distance

on the order of the smallest among t, � and � from the edge.

The particular distributions obtained in the complete shielding limit for the sheet

current and out-of-plane magnetic induction were [57, 58]

Ky(x) = �2
Ba
�0

x√
(W=2)2 � x2

jxj < W=2; (1.11)

Bz(x) =
Bajxj√

x2 � (W=2)2
jxj > W=2; (1.12)
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for the magnetic case and

Ky(x) =
Ia

�
√

(W=2)2 � x2
jxj < W=2; (1.13)

Bz(x) = ��0

4�

2sgn(x)Ia√
x2 � (W=2)2

jxj > W=2; (1.14)

for the transport case, and Bz = 0 for jxj < W=2 for both cases, where jxj denotes the

absolute value of x regardless of its sign. Here the strip is aligned with the y axis and

the �eld is applied in the vertical z direction. Then in both cases Kx = 0 due to the

symmetry of the problem. The functions found from �tting the numerical results for

�nite � are (see Fig. 1.1) [59, 60]

Ky(x) =
Ia

2

√

(W=2)2 � x2 + ��W
�

� Hay√
�[(W=2)2 � x2] + ��W

; (1.15)

with the de�nitions � = 1=4� 0:63=(W=�)0.5 + 1:2=(W=�)0.8, � = 1=(2�) + �=W , � =

2=� + 8:44=(W=� + 21:45), and 
 = arcsin(1=
√

1 + 4��=W ). The �elds are calculated

from these currents and from the Biot-Savart law. The dependence given by equation

1.15 is plotted for di�erent �=W together with the limit � ∝ W (complete shielding

limit) in �gure 1.1. We note that in the narrow limit, where � → W , this expression

tends to

Ky(x) =
Ia
W

� Hay

�
; (1.16)

where the term coming from the applied magnetic �eld drops to zero as � grows to

in�nity.

This result for the �∝W limit is valid for arbitrary �=t [59]. However the currents

distribution across thickness is strongly dependent on this parameter. In particular we

�nd a similar dependence to that in the slab under transport current in section 1.3.1 [58].

Currents follow a close to exponential decay from the surface, which means currents are

con�ned to a thin layer by the top and bottom surface planes in the � ∝ t limit and

almost uniform across t for �→ t.

Analytical expressions are also available for the thin disk [61] geometry in the com-

plete shielding limit and for rings in the complete shielding [62] and narrow limits [63]

subjected to perpendicular applied �elds. Numerical results were also found and de-

scribed for the �nite � cases of these geometries [64]. The trends are very similar to

those described above for straight strips but currents follow circular paths concentric to

the sample.

When the sample is thin and the de�nition given by 1.10 is used, the quantum 
uxoid

given by equation 1.7 takes the expression

� �
∫
S

B � n̂dS + �0�

∮
∂S

K � dl = Nf�0; (1.17)
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where @S runs in the interior of the superconductor and S may contain holes or vortices.

In this case the discussion for the long holed superconductor made in section 1.3.1 also

applies and the ZFC and FC conditions lead to the same behavior. Here vortices and

antivortices may enter or leave both from the outer or hole edges. For � much smaller

than the sample shortest in-plane dimension a, �∝ a, the 
uxoid equals the magnetic


ux through the area S.

It is instructive to mention the solution for the case of a stack of in�nite parallel strips

arranged periodically along the perpendicular to �lm direction [65]. Then each strip

partially shields the external �eld at the neighbor ones surface. This partial shielding

makes currents and magnetization to be lower when many strips are present and lower

for smaller distances between them. Interestingly, this leads the sharp peaks at the edges

of the strip to decrease with decreasing distance and to tend smoothly to the distribution

of the in�nite slab, where the demagnetizing e�ects disappear. The opposite happens

when the strips are in the same plane [65, 66, 67], where each strip enhances the �eld at

other strips regions and currents and magnetization are increased due to their presence.

Thin planar samples of finite surface

The currents and �elds induced within other single thin planar samples of �nite

surface were also determined within this theory. In this case the problem becomes

mathematically 2D, and the direction of current 
ow cannot be known a priori. Some

examples are the square and rectangular [68], and the washer SQUID [69] geometries,

which have been extensively studied. This was possible following the approach by Brandt

[69] of making use of the sheet scalar function g(x; y), de�ned from the 2D thickness-

averaged sheet current K(x; y). This de�nition is given by the relation

K(r) = r� (g(r)ẑ) = �ẑ�rg(r); (1.18)

with r the in-plane vector position and ẑ the vertical unit vector along z, perpendicular

to the sample plane. The use of a real smooth scalar function g(r) ensures the ful�llment

of the continuity equation r�K(r) = 0. The g(r) distribution was obtained only for the

applied magnetic �eld case while an applied transport current for thin 2D geometries was

only considered for straight strips [65, 66, 70] and for other geometries in the complete

shielding [71] and narrow [72, 73, 74] limits.

When considering samples of �nite surface some new trends arise. Worth to mention

are the currents enhancement near concave corners (lower than �), and its reduction

near convex ones (larger than �). This e�ect, which is observed for arbitrary radius

of curvature �c, arises from the need of currents to follow the edges and to shield the

sample surface from Bz. Reducing the minimum �c at the corner the e�ect becomes

more pronounced, leading to in�nite and zero current in a concave and a convex corner,

respectively, in the limit �c ! 0 (sharp corner) and for arbitrary �. Moreover currents

were observed to follow the straight edges along them and tend gradually to be circu-

lar as the distance from them increases. These trends make the straight edges better
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candidates for the vortex nucleation than convex corners. Di�erently, the nucleation is

expected at concave corners rather than at straight edges. Actually, the reduction of

the �eld and current of �rst penetration at damaged edges may be related to this e�ect.

In the transport case, Clem and Berggren [73] showed that even in the narrow limit

(�→W ) currents accumulate at concave corners and diverge when the corner is sharp.

Magnetization and susceptibility of thin samples In the perpendicular geometry

under applied �eld Ha = Haẑ along z, we can make use of the de�nition given by

equation 1.10. Then the magnetization de�nition in equation 1.8 can be written as

M = Mzẑ =

(
1

tS

)
1

2

∫
S

r�K(r)dS: (1.19)

The external susceptibility χ0 can be de�ned from this out-of-plane magnetization and

from expression 1.9.

Since χ0 depends on the demagnetization e�ects, in this geometry it is very di�erent

from the internal susceptibility. Di�erent from what is observed in the parallel geometry,

here χ0 depends on the shape of the perpendicular to �eld cross section. The large

enhancement of this quantity due to the geometry is made clear from the obtained

relation χ0 / a=t [75].

The particular external susceptibilities were found either analytically or numerically

for di�erent thin geometries. Worth to mention are the cases of an in�nitely long thin

straight strip of width W , a thin circular disk of radius R and a square plate of side a,

for which χ0 = �W=t; 8R=3�t and � 0:4547a=t, respectively [61, 57, 58, 76, 77, 75].

1.3.2 Critical state: the critical-state model

This phenomenological model, dealing only with macroscopically averaged quanti-

ties, describes very well many of the experiments on hard superconductors in the mixed

state. Hard superconductors are the ones exhibiting a wide magnetization curve under

cycling applied �elds, which results from strong pinning forces within the material. The

critical-state model is based on the assumption that [45, 46] any electromotive force,

whatever small, will induce a macroscopic constant current, Jc. Behind this sentence

is the assumption that, wherever local current exceeds Jc, the vortex distribution will

relax, thus decreasing jJj until the value Jc is reached [12]. Then, the net magnetic

force acting on vortices (see Eq. 1.1), be it from the repulsion or attraction of other

vortices or from the driving force exerted by 
owing currents, is exactly compensated

by the pinning force from the defects. Thus, the critical-state model only describes the

equilibrium metastable states where vortices are �xed and not the phenomena taking

place during their movement. A further requirement for the critical state to be able to

describe these states is that the external magnitudes are varied slowly enough so that

these equilibrium states are achieved, i.e. steady-state situations are assumed.

The critical-state model applies only to high-� type-II superconductors in applied

and self-�elds much larger than Hc1 = Bc1=�0. In this case, the assumption B � �0H
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can be made for the magnetic induction B and �eld H [57, 58]. Another e�ect observed

in type-II superconductors is that the maximum pinning forces that the pinning centers

can stand depends on the local 
ux density. This can be included by the use of an

induction dependent critical current density Jc(B) [78, 79, 80, 81, 82, 83], but will be

assumed uniform in the present work. Moreover, this model neglects the e�ects of all

type of surface barriers (Bean-Livingston [41] and geometrical barriers [42]), as well as

the thermal e�ects that lead to depinning (see Sec. 1.3). Since intervortex spacings are

always assumed much shorter than the sample dimensions a, in the critical-state model

a → � is normally met. Extensions to the critical-state model accounting for some of

these e�ects have also been made [84, 85, 86].

In opposition to the London model, the critical-state theory is strongly nonlinear.

Actually, it is also hysteretic, and thus information about previously acquired states

is necessary in order to determine the present one. Because of this, �rst one must set

which is the state from which to start. In the particular case of a ZFC case the sample

is initially in the virgin state, i.e. no �eld nor current is present anywhere within its

interior and there are no externally applied ones.

Long samples (parallel geometry)

In the parallel geometry, the �elds and currents described within the critical state

model can be understood as those coming from the vortex density and their gradient

distribution [12], respectively, both averaged over a few intervortex spacings. We con-

sider as an example the case of an in�nite slab with the same dimensions and position

as in section 1.3.1. Then, if a magnetic �eld is applied in the vertical z direction or a

transport current is applied in the longitudinal y direction, we have

B(x) = n(x)�0; (1.20)

J(x) = Jy(x)ŷ = r�B(x) = �dBz(x)

dx
ŷ; (1.21)

where n(x) is the local number of 
uxoids per unit area normal to the �eld direction or

longitudinal to that of current, and �0 is the quantum 
uxoid.

In the longitudinal slab geometry and for the ZFC case, both the application of a

longitudinal uniform magnetic induction Ba or transport current per unit height Ia lead

to the penetration of critical regions, where critical currents of modulus Jc 
ow (see Fig.

1.2) [75]. The critical regions enter the sample from its two lateral plane surfaces at

x = �W=2. There, magnetic induction decays linearly from the surface and takes the

value zero at their inner boundary. In the sample innermost region between these two

�lled with critical current, B = 0 and J = 0. The di�erence between the magnetic and

transport cases is that currents 
ow in opposite directions by the two outer planes of

the slab in the �rst case while they do in the same one in the second case. This behavior
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is given by the equations [45, 46]

Jy(x) =

{
�sgn(x)Jc; amag � jxj �W=2;
0; jxj < amag;

(1.22)

Bz(x) =


0; jxj < amag;

�0(jxj � amag)Jc; amag � jxj < W=2;

Ba; jxj �W=2;
(1.23)

in the magnetic case, and by

Jy(x) =

{
Jc; atr � jxj �W=2;
0; jxj < atr;

(1.24)

Bz(x) =


0; jxj < atr
��0(x� sgn(x)atr)Jc; atr � jxj < W=2;

�sgn(x)�0Ia=2; jxj > W=2:

(1.25)

in the transport one. Here amag = W=2(1 � Ba=Bs) is the half-width of the inner 
ux

free region under applied Ba and atr = W=2(1�Ia=Ic) that under longitudinal Ia, being

Bs = �0WJc (1.26)

and

Ic �WJc (1.27)

the applied induction and current of full saturation, respectively. When Ba = Bs is

reached the whole sample is saturated with critical currents Jc and there is no room

for new currents. Any further increase of Ba cannot be shielded and B will penetrate

the entire sample. However, if Ia is increased above that of full saturation, Ic, this will

cause the vortices to get depinned and move. Then the critical state conditions are not

ful�lled and the model cannot be applied anymore.

Reversing the applied �eld or current will lead to the penetration of critical regions

with currents 
owing in the opposite direction from the two slab outer planes. There the

Bz slope is inverted. In the inner region, where these new currents have not penetrated

yet, �eld and current remain frozen to those attained at the maximum applied Ba or Ia
before the reversal started.

The particular cases of Ba = 0 and Ia = 0 in the reversal curve, known as the

remanent states, show how some 
ux remains trapped into the sample after the removal

of the applied magnitudes. We can see from this e�ect the importance of knowing which

was the 
ux distribution before the application of any of them.

If the �eld and current are increased simultaneously to the sample in the virgin state

the penetration is not symmetric with respect to the slab central plane. In particular
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Figure 1.2: Sketch of current (top rows) and �eld (bottom rows) in an in�nite slab, within

the critical-state model, for di�erent increasing longitudinally applied magnetic �eld Ha in the

initial curve (a-c) and then decreasing Ha back to zero in the reversal curve (d-f).

the 
ux front will penetrate deeper where transport and magnetic currents 
ow in the

same direction. Moreover, currents 
owing by the opposite lateral planes, can 
ow in

the same direction or in the opposite one depending on the ratio Ba=Ia.

We have just considered a few cases of applied magnetic �eld and/or transport

current among a rich variety of di�erent sequences of combinations of the two of them.

However, in all the cases the pro�les can be determined from the same simple ideas:

when the varying external magnitude (�eld, current, or both) or its sign of variation

change, currents of constant density Jc either penetrate deeper from the sample surface

with the same direction or start penetrating from the outer plane with the opposite

one. The former situation takes place where the new variation induces currents of the

same direction as that in the previous stage. The latter where they induce currents

with opposite direction of 
ow. Flux and current remain frozen where newly induced

currents have not penetrated yet.

When an in�nitely long cylinder of radius R is subjected to a uniform magnetic

�eld Ba applied in the axial direction, the behavior of �elds and currents is very similar

to that of the slab. The di�erence is that the penetrated region is a cylindrical shell

entering from the surface and growing inwards to �ll the whole cylinder at Ba = �0JcR.
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Thus, the currents follow circular paths concentric to the sample.

Other in�nite geometries in longitudinal applied �eld can be solved using the above

assumptions. This is the case in samples with cross section uniform along the in�nite

direction whose planes are all tangent to a cylinder. In this case it is only necessary to

realize that currents 
ow parallel to the closest edge [87, 88].

These examples considered the ZFC case. In the FC case [89], the behavior can be

easily derived from the above discussion and from the fact that only variations of Ba,

and not its absolute value, lead to the penetration of new currents Jc. Then, in general

we can speak of an inner 
ux frozen region, and not necessarily 
ux free.

Magnetization and ac susceptibility of long samples The magnetization in long

samples can be obtained from equation 1.8 or from the averaged local currents-generated

�eld (see Sec. 1.3.1). In the critical state, superconductors present a highly nonlinear

magnetic response and thus magnetization curve. As noted by Gilchrist [90], in this

case the curve is very nearly independent on the sample cross section under the normal-

ization Mz(Ha=Hs)=Ms, where Ms is its saturation value and Hs = Ms=χ0 is a �eld of

signi�cant penetration, being χ0 the low-�eld-limit susceptibility. This χ0 coincides with

the Meissner complete shielding one for the same geometry. The reversal and return

magnetization curves can be obtained from the initial one, by the relations [75]

Mrev(Ha) = Mini(Hm)� 2Mini [(Hm �Ha)=2] ; (1.28)

and

Mret(Ha) = �Mrev(�Ha); (1.29)

where Hm is the maximum applied �eld.

In this case of nonlinear response the real and imaginary ac susceptibilities are de�ned

by [91]

χ0n =
!

�Hm

∫ T

0
Mz(�) cos (n!�)dt (1.30)

and

χ00n =
!

�Hm

∫ T

0
Mz(�) sin (n!�)d� ; (1.31)

respectively, when a Ha(�) = Hm cos (!�) is assumed for the applied perpendicular �eld.

Here � is the time variable and T and ! � 2�=T the period and the angular frequency

of the Ha(t) function, respectively. Often it is only studied the response at fundamental

frequency (n = 1). The quantities χ01 � χ0 and χ001 � χ00 [92] are nearly constant for low

Hm and close to �χ0 and 0, respectively. When increasing Hm the absolute value of χ0

smoothly and monotonically decays to 0, following a close to / H
�3/2
m dependence at

large Hm. Di�erently, χ00 �rst grows as / Hm, at low �elds, to reach a maximum value

χ00m at some Hm � Hs and decay back to zero as / H�1
m at larger �elds. These general

trends and the particular dependences of their decay are general for all geometries of

any thickness and cross section.
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Thick samples

When the superconducting sample is thick, as is the case of the thick tape considered

in the previous section, the demagnetizing e�ects lead to a signi�cant enhancement of

local �elds and currents. One of the e�ects of this enhancement is the reduction of the

applied �eld or current of �rst vortex nucleation. That makes the exact conditions for

the vortex entry hard to be determined. In particular the geometric and edge barriers

make it di�cult to properly describe the interaction between the vortex and the sample

edges [41, 40, 42, 59, 60]. These e�ects are neglected here, where we assume the �rst

vortices to nucleate at Ba � 0.

In samples of �nite thickness, the relation

J(r) = r�B(r) = (r�B(r))B̂(r) + (r� B̂(r))B(r); (1.32)

with B(r) = B(r)B̂(r), must substitute equation 1.20. Then current arises not only

from the vortex gradient but also from its curvature.

Under these assumptions Brandt [93] determined the �eld and current distribution

in a thick tape as the one considered in section 1.3.1 when a uniform perpendicular �eld

is applied in the z direction. In that case, some trends were observed to be identical

to these for an in�nitely long slab. However, the 
ux front was observed to penetrate

all along the top and bottom end planes of the sample. In the magnetic case, under

increasing applied �eld to the ZFC sample, the 
ux front penetrates deeper along the

corner bisectors and from the lateral edges. Actually, the central 
ux-free core, elongated

along the applied �eld direction, reaches the top and bottom end planes of the tape at

their longitudinal central line. This is observed for all Ha below some characteristic value

Ht. Under increasing �eld above Ht, this core keeps shrinking both in the vertical and

horizontal directions until, at Ha = Hp, the sample gets completely �lled with currents.

The �eld of full saturation Hp equals the one generated by the uniform currents Jc at

the tape longitudinal central line. For decreasing the ratio of height t to width W , t=W ,

both Ht and Hp increase monotonically and diverge in the t=W ! 0 limit.

Similar behavior is found for the transport case although in this case currents pene-

trate symmetrically from the four outer planes [94, 95, 96, 97]. Therefore, even for very

small applied Ia � 0 the 
ux front does not reach the tape external surface as in the

magnetic case. The penetration is always deeper from the tape corners and along the

cross section diagonals. At applied current Ia = JctW , the sample gets fully saturated

for all t=W .

Again the FC case can be easily derived from this discussion just by taking into

account that the sample in this state reacts to the variations of applied �eld and current

and not to their absolute values.

Also solved where the 2D thick geometries of single tapes with uniform elliptical cross

section [98] and arrays of tapes of uniform rectangular cross section, under perpendicular

�eld and longitudinal transport current [49], and only under axially applied magnetic

�eld these for thick disks or cylinders [99, 100, 101] and rings or hollow cylinders [101].
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In the case of rings, disks or cylinders the behavior is similar to that of a thick tape

but currents follow concentric paths along the azimuthal direction. Worth to mention is

that the 
ux front penetrates from all the surfaces, which includes the inner ones from

�nite rings and hollow cylinders.

Thin samples (perpendicular geometry)

Within the critical state model thin samples with t=W ! 0 as these considered

in section 1.3.1 can be dealt with in terms of the thickness-averaged sheet current K

de�ned in equation 1.10.

In this case, the exact distribution across t cannot be known but some trends can be

grasped from the above discussion when the limit t → � is met. According to Brandt

[58], for the opposite limit, where � � t, the behavior is rather di�erent. In that case

vortices cannot curve within the sample thickness and their cores remain straight and

perpendicular to the strip plane. These are the so called Pearl vortices [40], whose

currents extend to few � � �2=t distances from the core. The � can be much larger

than � in very thin samples.

Here we deal with the quantity K de�ned in equation 1.10. Therefore, we do not care

about the distribution of �elds nor currents along the sample thickness. By following

this approach an arbitrary value for �=t can be considered as soon as W → � and W → t

are assumed. Thus, the behavior we describe here applies to both the cases of curved

Abrikosov vortices (� > t) and straight Pearl vortices (� � t).
When the sample is ZFC the distribution of sheet current and out-of-plane magnetic

induction is obtained from assuming that two di�erentiated regions appear. An inner


ux-free one, hence with Bz = 0, but with sub critical jKj < Kc = Jct and an outer


ux-penetrated one with jK(r)j = Kc. When t → �, they can be understood as the

one where vortices have not penetrated yet all along the thickness and the one where

they have, respectively. However, if t � � the �rst one is �lled with Meissner shielding

currents while the second one is where Pearl vortices are present. The general equation

1.32 is still ful�lled in this case but the �rst term becomes comparatively much smaller

and current comes solely from a strong 
ux-line curvature. Actually, as proposed by

Zeldov et al [57] it is more convenient to think of it as arising from the discontinuity in

the tangential B across the sample surface.

For the strip placed perpendicular to the z-axis and along the y-axis, these distribu-

tions are given by [57, 58]

Ky(x) =

 �2Kc
π arctan

(
2x
W

√
(W/2)2�a2mag

a2mag�x2

)
; jxj < amag;

�sgn(x)Kc; amag � jxj < W=2;

(1.33)

Bz(x) =

 0; jxj < amag;

Bf ln
jxj
p

(W/2)2�a2mag+(W/2)
p
x2�a2mag

amag

p
jx2�(W/2)2j

; amag � jxj;
(1.34)
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Figure 1.3: Out-of-plane magnetic induction Hz = Bz=�0 (upper row) and longitudinal sheet

current Ky (lower row), normalized to Kc = Jct, for an in�nitely long (along y) thin planar

straight strip, of width W , critical current density Jc and thickness t, in the critical state.

Shown are the magnetic case, of perpendicular (along z) applied magnetic �eld Ha = Ba=�0 (left

column) for Ha=Kc = 0:25; 0:50 and 0:75 (increasing in the arrow direction), in the initial curve

(dashed lines), and for Ha=Kc = +0:25;�0:25 and �0:75 (decreasing in the arrow direction), in

the reversal curve (solid lines). The curves for the same values for Ia=KcW are plotted for the

transport case. In the reversal curve, we note that Hz is frozen where currents jKyj < Kc.

for the case of applied uniform perpendicular �eld Ba (see Figs. 1.3a and 1.3c) and

Ky(x) =

 2Kc
π arctan

(√
(W/2)2�a2tr
a2tr�x2

)
; jxj < atr;

Kc; atr � jxj < W=2;

(1.35)

Bz(x) =

 0; jxj < atr;

�sgn(x)Bf ln

p
j(W/2)2�x2j

j
p

(W/2)2�a2tr�
p
x2�a2trj

; atr � jxj;
(1.36)

for that of applied longitudinal current Ia (see Figs. 1.3b and 1.3d). Here the half-width

of the central 
ux-free region amag and atr for the magnetic and transport cases are,

respectively,

amag =
W=2

cosh (Ba=Bf )
; (1.37)

and

atr = (W=2)
√

1� (Ia=Ic)2; (1.38)



26 Introduction

where Bf = µ0
π Kc is a �eld of signi�cant penetration and Ic = KcW is the full saturation

current. These �eld and current distributions are shown in �gure 1.3 for di�erent values

of applied �eld and currents. We observe the behavior is very di�erent from that in long

slabs. Here also a 
ux-penetrated region with critical current K(r) = Kc penetrates from

the two lateral edges and grows inwards as the applied �eld or current is increased. Note

that the central region remains 
ux free but not current free, as in the slab geometry,

for the reasons described above.

The other di�erence is thatBz(z = 0) is does not decay linearly in the 
ux-penetrated

region but diverges at the sample edges and decays rapidly to reach the zero value, with

vertical slope, at the inner boundary of this region. Moreover, demagnetizing e�ects

make the �eld not to be equal to the applied one anywhere outside the sample but

to decay monotonically to that value with increasing distance from the edges. The

in�nities in the edge �eld and the 
ux front �eld slope disappear when introducing a

cut-o� within distances on the order of the shortest among t, � and �. Then the peaks

at the strip edges get rounded o� and the slope becomes linear as in the slab case. Also

the diverging Hp becomes �nite when the same cut-o� distance is introduced for the

width of the inner 
ux-free region. While in the slab all the transport current 
ows in

the critical region, in the thin strip a large portion is usually carried by the 
ux-free

region. This e�ect can be observed from the slow approach of this region width atr, to

W=2, with increasing Ia (see Eq. 1.38).

Reversing the applied �eld or current induces the penetration of new currents of op-

posite direction but the same space dependence as the initial ones. These new currents,

now with a new K 0c = 2Kc with respect to the already present ones, must be superposed

to them. The result is the penetration of new critical regions of currents 
owing in

the opposite direction from either of the two sides. Currents are subcritical within the

remaining strip width, thus changing anywhere within the sample and only 
ux remains

frozen at the inner region.

Just like in the cases of thick and long samples, also in thin samples the FC case can

be considered by assuming that the inner region remains 
ux frozen and often not 
ux

free. This is because penetrating currents are induced by the variations of Ba and not

by its absolute value. Moreover, as far as we know the FC case has not been considered

when t � �, where the Meissner currents must be accounted for in the subcritical region.

Mawatari [65] also gave the solutions for the case of an in�nite stack of thin straight

strips arranged periodically along the vertical, perpendicular to �lm, direction. There

he considered both the cases of applied perpendicular �eld and longitudinal current. He

found the in�nities at the edges and the vertical slope at the 
ux front to decrease with

decreasing distance between the strips. In the limit of very short distances demagneti-

zation e�ects disappear and the slab solution is recovered.
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Thin planar samples of finite surface

Analogous behavior to that for the straight strip was found analytically for thin

disks under perpendicular applied �eld [61], but in this case currents followed circular

paths concentric to the sample. Other geometries were already solved in this regime

numerically, like square, rectangular [76, 102] and cross shaped [68] thin plates in a

perpendicular �eld, and the inclusion of linear or circular holes in the strip [103, 104].

Figure 1.4: (a) Modulus of sheet current, jKj (color) and current stream lines (solid lines) within

a thin square plate of side t subjected to a positive perpendicular applied �eld Ha � 0:5Kc,

before full saturation, and (b) out-of-plane magnetic induction Bz (in color) and current stream

lines (solid lines) near the sharp �=2 radians turn of a thin strip, subjected to a positive and

perpendicular Ha → Kc, where the sample full saturation has been reached. In (a) jKj ranges

from 0 (lighter blue) to Kc (dark blue) and in (b) Bz ranges between 0 (green) and +2:5Kc

(red). Arrows show direction of current. Green regions in (b) show the meeting lines of di�erent


ux fronts, like the straight d+-line running along the outer-corner angle bisector (see text).

Penetration of �elds and currents in samples of these geometries present some com-

mon features with that of a strip. Some of these trends are the penetration of critical

currents from the outer edges and the remanence of subcritical and 
ux-frozen regions

at the sample innermost places. Also the in�nities in the �eld at the sample edges and

the �eld slope at the 
ux front are observed in this case. However, the sharp corners at

the plate edges made these regions to penetrate in non-symmetrical ways.

In particular, the 
ux front was observed to penetrate deeper at the straight edges

and far from the corners than at convex corners. The opposite happens at concave

corners, where the critical region was found to penetrate deeper. Along the angle bisector

of a sharp convex corner the penetration depth of the 
ux front is always zero. In

rectangular plates the result is the cushion or star-like region discussed by Brandt [76,

102] (see Fig. 1.4a). The 
ux fronts penetrating from two edges forming a convex angle

meet assimptotically, when the applied �eld is very large compared to Kc (this in�nity

is removed by considering a �nite t, � or � as for the case of the straight strip). When

they meet a d+-line [12], where currents bend sharply to 
ow parallel to the closest
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edge, develops along the bisector (see Fig. 1.4b). Di�erently, the critical currents, with

modulus Kc, follow circular paths near a sharp concave corner. Even small holes within

the sample lead to the formation of parabolic d+-lines, extending to in�nity [103, 104].

In this case, these lines delimit circular currents around the hole. Besides the in�nite

length of the d+-lines, also observed were discontinuities and divergences in the electric

�eld modulus E near sharp concave corners. All of these e�ects are removed by the

consideration of a �nite n creep exponent in the E(J) power law [105, 106] (see Sec.

1.3).

The general 2D problem of determining �eld and current pro�les in thin plates or

strips of arbitrary shape, was not solved in the critical state under applied transport

currents until recently [107].

Magnetization and ac susceptibility of thin samples When considering thin

samples under perpendicular applied �elds, demagnetizing e�ects are very strong and

the magnetization is very di�erent from the averaged local self-�eld. In this case it

can be calculated from equation 1.19. This out-of-plane magnetization was also found

to follow a very similar dependence on the applied �eld for all thin shapes under the

normalization Mz(Ha=Hs)=Ms, with Ms and Hs de�ned as above for the case of long

samples [90]. In particular, in the perpendicular geometry this dependence was found

to be close to a tanh (x). Moreover, in this case χ0 is very large, as discussed in section

1.3.1, but Ms depends only on the sample cross section and not on its thickness [75].

The reversal and return curve can be obtained from equations 1.28 and 1.29, respec-

tively, which are valid for arbitrary sample thickness and shape. Then, also from the

initial curve the real and imaginary susceptibilities at fundamental frequency, χ0 and χ00,

can be obtained from equations 1.30 and 1.31, respectively. The behavior presented by

these quantities for thin disks was studied by Clem and Sanchez [91]. In this case the

trends described above for long samples also apply although here χ00 / H2
m is observed

at low Hm.

1.4 Applications of thin superconducting films

Many and very di�erent are the applications based on the special properties of su-

perconducting materials. However, most of them are based on the high sensitivity to

small external perturbations and on the high involved �elds and currents.

In the particular case of thin �lms many of the applications are based on the criti-

cal �eld and currents to �rst vortex penetration. These are the cases, for example, of

single-photon detectors (SNPDs) [108] and mass spectrometers, the latter using strip-

line detectors (SLD) as a detecting device [109]. They make use of the high voltage drop

that appears when a resistive belt is generated by the incidence of a single photon or

massive molecule, respectively. Superconductor-based bolometers like transmission-edge

sensors (TES) [110] are radiation detectors also very sensitive, in this case thanks to the

high-resistance change near Tc produced by incident photons. Another device widely
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used for its high sensitivity, this time to small external 
ux changes, is the superconduct-

ing quantum interference device (SQUID) [111, 112, 113]. Others such as the diodes and

recti�ers base its operation in the dependence of this critical current on applied current

polarity in asymmetric geometries [114]. Also the ratchet e�ect [115, 116, 117] arises

from the dependence of vortex pinning and 
ow on the polarity of applied current in

asymmetric hole lattices. This one is been proven very useful not only for applications

but also to simulate ratchet potentials in biological systems such as step motors. Other

electronics applications arise from the highly tunable cold atom trap [118], which ap-

pear as potential candidates for quantum simulation [119] and quantum-computing-gate

implementation (see for example [120] and [121] and references therein). Making use of

the high �elds generated by superconductors are devices for particle accelerators such

as waveguides [122] and superconducting radio-frequency (SRF) cavities [123]. The tun-

ability of the magnetic response through geometric and other parameters of systems

of superconducting thin strips and plates is convenient for the metamaterials design

[124, 125, 126] as well.

The above applications make use of the high degree of sensitivity and tunability

of involved magnetic �elds and electric currents below (Meissner state) and near the

conditions for �rst vortex penetration. However, the high allowed transport currents and

large generated magnetic �elds at low losses make of superconductors good materials

for power and high-�eld applications as well [5]. In that case they usually operate in

the mixed state and more precisely in the critical state (see Sec. 1.2). The reason

for this is that high pinning forces are desired to avoid 
ux motion that would result

in large energy losses. Actually, many advances and improvements have been made

in the design of materials to get the best performance. The known as 2nd-generation

HTS-material tapes or coated conductors [35], made of YBCO, are a good example

of these developments. Among the applications making use of coated conductors are

[127] the fault-current limiters, which limit the allowed current thanks to the sudden

drop in conductivity at some threshold value Ic [128], and also transformers, motors,

cables for transportation of large currents with low losses, generators, magnets using the

remanent magnetization for high-magnetic-�eld generation, and energy-storage systems

that use either magnetic energy, as is the case of superconducting magnetic-energy-

storage systems (SMES), or mechanical energy as in the stable levitation of spinning

HTS magnets in 
ywheels.

In this type of materials the main source of losses comes from the cost in overcoming

the pinning potential to move vortices both when varying applied �elds and currents.

These are the important and widely studied ac losses under ac currents and �elds [129].

Moreover, the same e�ect of vortex pinning allows for the stable levitation of HTS

samples in the presence of external �elds [130].
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CHAPTER 2

Magnetic Energy Minimization (MEM) model for thin samples

In the present work we will determine the response of thin planar superconducting

samples of thickness t and in-plane dimensions W → t both to applied transverse mag-

netic �elds Ha = Ba=�0 and longitudinal transport currents Ia. In particular we seek for

the �elds and currents distribution, from which other magnetic quantities can be calcu-

lated. The material will always be assumed to be a high-� type-II superconductor. Two

states will be considered: the Meissner (Ba < Bc1) and the critical (Bc1 ∝ Ba < Bc2)

states. To simulate them we will use the London [7] and the critical-state [45, 46] models,

respectively.

Since they were �rst presented in 1935 and 1964, respectively, these models have been

applied to many di�erent geometries and cases and by di�erent analytical and numerical

methods [36, 40, 41, 103, 76, 102, 131, 132, 68, 86, 51, 133, 66, 63, 64, 67, 134, 71, 74]

(see chapter 1). All of these methods either solve a system of di�erential equations or

minimize a given functional in order to determine this response in the corresponding

state. In our case, we minimize a functional that can be interpreted as the Gibbs free

energy of the system in some cases, as we will see below. Minimization is performed

by the Magnetic Energy Minimization (MEM) model, �rst presented by Sanchez and

Navau [133] and which has been applied to simulate superconducting samples of di�erent

geometries in di�erent regimes [135, 136, 137, 70].

The chapter is organized as follows. First we introduce the problem we want to

solve within the continuous formulation in section 2.1, de�ning all the needed involved

quantities and the di�erent cases we consider in the following chapters. Then, in section

2.2 we describe the particular discretization and numerical method we use to solve the

�elds and currents distribution and the other magnetic quantities in the superconducting

samples.

31
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2.1 Continuous Formulation

2.1.1 Geometry

We consider thin planar superconducting samples of uniform thickness tmuch smaller

than the shortest perpendicular dimension W , t∝W , placed at z 2 (�t=2;+t=2), thus

normal to the z axis. These planar samples can be of any shape, including multiply

connected geometries (i.e. presenting holes).

In particular, the considered geometries will include plates and sets of plates of dif-

ferent shapes that involve turns, widenings, constrictions, holes, or others. The samples

can also be connected to two or more thin straight in�nitely long superconducting strips

through which some external current can be fed and drained. When this happens the

strip is part of the considered sample.

Twin films

As an extension to the above situation, we will also consider in some cases a second

sample parallel to the �rst one and located at a di�erent z-plane. We shall call this twin

plates.

2.1.2 Sheet current

The small values of t=W allow to get most of the magnetic information from the

thickness-averaged current density or sheet current, de�ned as (see Sec. 1.3.1):

K(x; y) �
∫ +t/2

�t/2
J(x; y; z)dz: (2.1)

The use of K instead of J reduces the 3D problem to a 2D one. In some cases this will

be done at the cost of ignoring the current distribution across t. However, in some cases

the current is nearly constant in the z direction, and we can write K(x; y) � J(x; y; 0)t.

2.1.3 The sheet function g(x, y)

In order to determine the sheet current K distribution within the planar sample we

have to seek for the two components of this vector �eld. However, provided that the

continuity equation must be ful�lled (r �K = 0) the problem can be further simpli�ed.

A convenient way to account for this condition is to follow the approach presented

by Brandt by de�ning the two-dimensional scalar sheet function g(x; y) from

K(r) = r� (g(r)ẑ) = �ẑ�rg(r); (2.2)

where r � (@=@x)x̂ + (@=@y)ŷ is the 2D nabla operator, r = xx̂ + yŷ is the in-plane

vector position and x̂, ŷ and ẑ are the unit vectors along the x, y and z axis, respectively.
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It is worth to mention that g(r) is constant at regions where K(r) = 0, which includes

the exterior of the superconductor.

Some important properties of the sheet function are [69]:

� The constant g(r) lines correspond to current streamlines. This is why it is some

times also called the stream function. In particular g(r) = constant along all the

sample edges.

� The di�erence in g(r) between two points within the sample plane equals the net

current crossing any line connecting both points.

� The quantity �0g(r) is the potential of a vortex within the interior of bulk pinning

free �lms.

� g(r) is the local magnetization density or tiny current loops (see Sec. 2.1.6).

� The integral of g(r) over the �lm area equals the magnetic moment of the �lm if

g = 0 on its edge, in the absence of applied currents.

� If the �lm contains an isolated hole or slot such that magnetic 
ux can be trapped

on it or a current I can circulate around it, then in this hole one has g(r) =

constant = I if g(r) = 0 is chosen outside the �lm.

� In a multiply connected �lm with Nh holes, Nh-independent constants g1,...,gNh

can be chosen for the values of g(r) in each of these holes. The current 
owing

between hole 1 and hole 2 is then g1 � g2.

� A vortex moving from the edge of the �lm into a hole connected to the outside by

a slit, at each position r couples a 
uxoid g(r)δ0=I into this hole, where g(r) is

the solution that has g(r) = I in this hole (with a closed slit) and g = 0 outside

the �lm.

2.1.4 Energy functional terms

In the di�erent cases we consider in the body of this work the distribution of g(r) is

obtained from the minimization of a functional E. Here we refer to E as the Gibbs free

energy of the system although, as we will see below, this equivalence cannot be made in

some cases.

In the presence of an external applied �eld and currents 
owing within the thin �lm,

the total energy of the system, written in terms of g(r) and its gradient, takes the form

E = Eint + Eext; (2.3)

where

Eint =
1

2

∫
S

K(r) �AK(r)dS =

=
�0

8�

∫
S

∫
S

rg(r) � r0g(r0)

jr� r0j
dSdS0 (2.4)
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is the internal magnetic energy, that accounts for the interaction between induced cur-

rents and the stray �elds created by themselves, and

Eext =

∫
S

K(r) �Aa(r)dS =

= �0Ha

∫
S
g(r)dS �

∮
∂S
g(r)Aa(r) � dl (2.5)

is the external energy, accounting for the interaction between the currents and the

external uniform magnetic �eld applied in the normal to �lm direction z, Ha(r) = Haẑ

(see Sec. 2.1.5). In these equations @S is the outer contour of the sample, S the planar

(z = 0) surface enclosed in @S and dl the line di�erential along it, dS = dx dy, �0 the

vacuum permeability, and AK(r) and Aa(r) are the magnetic vector potentials from the

induced currents and from the external applied �eld, respectively. We use the Coulomb

gauge and choose Aa(r) = (�0Ha=2)(�yŷ + xx̂).

Twin films

When there is a second plate near the �rst one, the total energy must account for

three di�erent contributions: the self energy of currents in each plate, that of interaction

with the external �eld and the interaction between currents 
owing in di�erent plates.

Then we should take into account the contribution from the two plates, that is:

Eint =
�0

8�

2∑
k,k′=1

∫
Sk

∫
Sk′

rgk(r) � r0gk′(r0)
jr� r0 + (zk � zk′)ẑj

dSdS0 (2.6)

and

Eext = �0Ha

2∑
k=1

(∫
Sk

gk(r)dS �
∮
∂Sk

gk(r)Aa(r) � dl

)
; (2.7)

where subindex k = 1 and 2 for the di�erent samples. In this case the plates k are not

placed necessarily at z = 0 but at z = z1 and z = z2, respectively, and hence still both

perpendicular to the z axis.

2.1.5 Studied cases

As mentioned above we minimize the functional given by equation 2.3 with respect to

g(r) in order to determine the response of the thin samples to applied �elds and currents.

Moreover, the samples are modeled in the Meissner and the critical states within their

common assumptions (see Secs. 1.3.1 and 1.3.2). In this section we describe how these

di�erent magnitudes and states are simulated within our model.
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Transport and Magnetic cases

Magnetic case: application of a uniform perpendicular magnetic field. When

just a magnetic �eld but no net current is applied to the sample, g = 0 is chosen within

the �lm contour. The applied magnetic �eld or induction is always assumed uniform

and perpendicular to the thin sample surface. Then we can write Ba(r) = �0Haẑ. Ha

enters the model via the terms of the functional to be minimized through equation 2.5.

Transport case: application of longitudinal transport currents. When Ha = 0

but an external longitudinal current Ia is applied, Ia is fed and drained through thin

in�nitely long straight strips connected to the sample. Hence the sample geometry will

have to include two or more of these cables.

The condition for no net current normal to the sample edges is set by forcing g to

be constant along them. Since the origin of g can be chosen at will without loss of

generality, we take g = 0 at one of the edges. Then the net current Ia,k 
owing through

the k-th cable is set by �xing gtop,k � gbottom,k = Ia,k, where, for simplicity, we name

top,k and bottom,k the two edges of this cable. The direction of 
ow is determined by

the sign of this di�erence and from the de�nition of g(r) in equation 2.2.

By following this approach, as many cables as desired can be included in the sample

geometry with at least one to feed and one to drain the applied current. Moreover, any

net current can enter or leave the sample through each strip as long as the sum over all

strips satis�es
∑

k Ia,k = 0.

Similar conditions for the application of a transport current were used by Sokolovsky

et al in [71].

Meissner and critical states

Meissner state. When the sample is assumed to be in the Meissner state the e�ect

of a �nite two dimensional screening length � � �2=t can be accounted for (see Sec.

1.3.1). In this case the kinetic energy of the charge carriers Ekin must be added to the

magnetic energy given by equation 2.3. When one single plate is considered this energy

term takes the following form:

Ekin =
�0�

2

∫
S

[K(r)]2dS =
�0�

2

∫
S

[rg(r)]2dS; (2.8)

with all the involved quantities as de�ned in section 2.1.4. If a second thin sample is

included then the integration of the same term over the second plate area must be added.

In the Meissner state, both g(r) and K(r) are linear on Ha and Ia. Then the

distributions for arbitrary values of them can be obtained from the superposition of

those for the magnetic and the transport cases.

When holes are present g(r) must be uniform within the area of any hole Shole,

g(r 2 Shole) = constant � ghole. The ghole value for which E = Eint + Eext + Ekin is

minimum corresponds to zero 
uxoids trapped at this particular hole. Thus, this state is



36 Magnetic Energy Minimization (MEM) model for thin samples

reached by minimizing E without any constrain in ghole. States with arbitrary non-zero

number of 
uxoids in a hole can be obtained from �xing ghole and minimizing E under

this constrain. When Ha = 0 and Ia = 0 in a sample presenting Nh holes, if g is �xed

just at one of them, e.g. the j-th one, and unconstrained for all the others (i 6= j), then

the g(r) and K(r) distributions are proportional to the ghole value at this hole, ghole,j .

Thus, the net 
uxoid at hole j, �j , calculated from equation 2.24, is also linear on this

parameter. This property allows for the obtaining of states with arbitrary number of


uxoids Nf,j � �j=�0 at each hole j by linear combination of those with �xed ghole,j
and unconstrained ghole,i (and hence Nf,i = 0) 8i 6= j.

Critical state The critical-state condition is applied by bounding the allowed values

for the local sheet current. Moreover, being an irreversible and highly hysteretic state,

E from equation 2.3 does not represent the energy of the superconductor anymore. In

this case we minimize E = Eint + Eext under the constraint

jK(r)j = jrg(r)j � Kc � Jct: (2.9)

Samples in this state are sensitive not only to the present values of external mag-

nitudes but also to the history of the sample, i.e. values applied previously (see Sec.

1.3.2). In particular, from the minimization of equation 2.3 under the constraint given

by equation 2.9 we can simulate monotonic sweeps of applied Ha or Ia starting from the

virgin state in a ZFC sample. Also by applying simultaneously Ha and Ia under these

conditions, we simulate the case of monotonic sweep at constant rate Ha=Ia.

However, when the magnitude that is being modi�ed (Ha, Ia or both of them), its

sign of variation, or the sweeping rate Ha=Ia, change, then a new stage starts. Then, to

simulate an arbitrary sequence of Ha and Ia we must distinguish between currents at

the end of the previous stage, or frozen currents, K̂(r) and the newly induced ones at

the present stage �K(r). Then we write

K(r) = K̂(r) + �K(r) (2.10)

for the total current. Analogously we de�ne Ha = Ĥa + �Ha and Ia = Îa + �Ia. The

frozen sheet function ĝ(r) and the newly induced one �g(r) can be de�ned analogously

to g(r) from equation 2.2 and from K̂(r) and �K(r), respectively.

To account for the di�erent magnitudes from the previous stage the expressions for

the E terms given by equations 2.4 and 2.5 should be substituted by

Eint =
�0

8�

∫
S

∫
S

rg(r) � r0g(r0)

jr� r0j
dSdS0 � �0

4�

∫
S

∫
S

rĝ(r) � r0g(r0)

jr� r0j
dSdS0 (2.11)

and

Eext = �0(Ha � Ĥa)

∫
S
g(r)dS; (2.12)
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respectively. Here the linearity of the gradient, the curl and the cross product are used.

We also note that the second term in equation 2.5, contributing only at the far end of

the feeding cables, has been dropped o�. At the end of a stage the frozen (^) quantities

are refreshed to the present ones and are included in the E terms at the steps of the

following stage. Then the conditions

jK(r)j = jK̂(r) + �K(r)j � Kc; (2.13)

within the sample surface, and

gtop,k � gbottom,k = Ia = Îa,k + �Ia,k; (2.14)

in all cables, must be ful�lled.

2.1.6 Other magnetic quantities as a function of g(x, y)

Once the g(r) distribution is found, several magnitudes can be computed. Here we

give the expressions in terms of g(r) for some of them.

Magnetic induction field

The induction �eld produced by the currents 
owing within the sample can be cal-

culated from the Biot-Savart law. In this case its out-of-plane component, written in

terms of g(r), is given by

Bz(x; y; z) =
�0

4�

∫
S

r0g(r0) �R
jRj3

dS0 (2.15)

and its in-plane component by

Bxy(x; y; z) =
�0

4�

∫
S

�zr0g(r0)

jRj3
dS0; (2.16)

where R = (x� x0)x̂ + (y � y0)ŷ + zẑ. The out-of-plane component takes the following

simpli�ed expression when evaluated at the sample plane:

Bz(x; y; 0) = Bz(r) =
�0

4�

∫
S
r0g(r0) � r0

(
1

jr� r0j

)
dS0: (2.17)

For obtaining the total �eld we have to add to equations 2.15 and 2.17 the perpendicular

applied induction.

In the case of twin �lms the contribution to total magnetic induction from the two

of them must be accounted for.
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Magnetic moment and magnetization

In the absence of applied transport currents, a �nite planar sample placed normal

to the z axis has zero in-plane magnetic moment. Its out-of-plane component is

mzẑ =
1

2

∫
S

r�K(r)dS =

∫
S
g(r)dSẑ: (2.18)

The magnetization of the sample is de�ned as the magnetic moment per unit volume,

Mz =
1

tAS
mz; (2.19)

with AS the total area of the sample.

When considering twin �lms, the net magnetic moment of the set, mT,z, is obtained

from the sum of the contributions from each of them. In this case mT,z must be divided

by the total volume of the set of samples VT = t
∑

k ASk
in order to get the magnetization

of the system. Here ASk
refers to the area of the k-th plate.

Hard superconductors modeled within the critical state model present a hysteretic

magnetization curve. In this case, the initial magnetization Mini(H) is induced within

a ZFC sample when increasing applied �eld from 0 to H. The reversal magnetization

Mrev(H) is obtained when the �eld is reversed down to H after reaching a maximum

value Hm in the initial curve. Finally, the return curve Mret(H) results from increasing

back the �eld up to H after the reach of �Hm in the reversal curve. The magnetization

hysteresis loop is composed from the reversal and the return curves. At this point,

when cycling applied �eld between �Hm and +Hm the reversal and return curves are

followed during the ramping-downs and the ramping-ups, respectively. In the critical

state both the reversal and return magnetization curves can be obtained from the initial

magnetization from equations 1.28 and 1.29, respectively.

External susceptibility

The external susceptibility can be de�ned from the sample magnetization. In the

particular case of linear response to applied �elds this susceptibility is minus the slope

of the Mz(Ha) curve, i.e.

χ0 � �Mz=Ha: (2.20)

In this work we will always refer to the external susceptibility, which depends on the

particular sample shape in opposition to the magnetic or internal susceptibility [49].

When the response is not linear, the ac susceptibilities are often measured or calcu-

lated from the response to alternating applied �elds. In the particular case of a �eld time

dependence Ha(t) = Hm cos (!t) the real and imaginary ac susceptibilities are de�ned

by equations 1.30 and 1.31. We are interested in the fundamental component (n = 1).

These susceptibilities are calculated from the Fourier transform of the magnetization

hysteresis loop and hence from the reversal and return curves. However, thanks to
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equations 1.28 and 1.29 it can also be obtained from the initial magnetization Mini(Ha).

Then the expressions for χ0 and χ00 are

χ0 = � 4

�Hm

∫ π

0
Mini

(
Hmsin2

(
�

2

))
cos�d� (2.21)

(2.22)

and

χ00 =
4

�H2
m

[
Mini(Hm)Hm � 2

∫ Hm

0
Mini(H)dH

]
; (2.23)

respectively.

The fluxoid

From the current and �eld pro�les the magnetic 
uxoid, always multiple of the 
ux

quanta (�0), can also be calculated (see Sec. 1.3.1). In this case the net 
uxoid crossing

a given area A within one of the �lms can be calculated from

� =

∫
A
Bz(r)dS � �0�

∮
∂A

(ẑ�rg(r)) � dl; (2.24)

where the �rst term in the right hand-side is the net 
ux through A of Bz, calculated

from equation 2.17, and the second one is �0� times the net current circulation along

the contour of this area, @A.

2.2 Numerical Method

In this section we present the numerical method and the particular algorithm we use

to determine the current distribution in the situations described above.

After describing how the samples are discretized in section 2.2.1 and how the initial

and boundary conditions are set in section 2.2.2, the numerical calculation procedure is

presented in section 2.2.3. Then we describe the di�erent conditions for the simulation

of the di�erent states in section 2.2.4 and how to include a second twin �lm in section

2.2.5. Finally the algorithm of the computing program to obtain numerically the current

distributions is shown in section 2.2.6.

2.2.1 Discretization

We discretize the sample dividing it in C = N �M identical rectangular cells of

sides �x and �y along the x and y axis directions, respectively. This division de�nes a

grid of the N �M cells and a grid of (N + 1)� (M + 1) nodes at their corners.

The discretized gn function is de�ned at the nodes n = 1; : : : ; (N + 1) � (M + 1).

The gradient of the sheet function Gc = [rg(r)]c, also entering the functional to be

minimized, is de�ned at each cell surface, where it is assumed to be uniform. It is

calculated from the bilinear interpolation of the values of g at the four nodes adjacent

to the cell c.
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Energy terms

After the sample is been discretized and provided that the current density K(r) is

assumed to be uniform within each cell, the energy terms given by equations 2.4 and

2.5 take the expressions

Eint '
�0

2

∑
c,c′

Gc �Gc′Ncc′ (2.25)

and

Eext '
�0Ha

4

∑
c

3∑
i=0

gic�x�y; (2.26)

respectively, being Ncc′ = [1=(4�)]
∫
Sc

∫
Sc′

(1=
√

(x� x0)2 + (y � y0)2)dSdS0 with Sc the

surface of cell c (analytical expressions of Ncc′ are available in Eq. (A5) of [137]) and gic
(i = 0; 1; 2; 3) the value of g at the i�th adjacent node to cell c. c and c0 range from 1

to C. The second term in equation 2.5 is been dropped o� (see Sec. Critical State of

2.1.5).

2.2.2 Initial and boundary conditions

Conditions for the application of magnetic fields

The magnetic �eld is applied as described in section 2.1.5 by setting the Ha value

entering the discretized equation 2.26 in the model.

Conditions for the application of transport currents

The applied transport currents are taken into account via the boundary conditions

for the g(r) function at the outer edges of the sample (see Sec. 2.1.5). However, to

model the sample we need to cut o� the in�nite cables at some given distance Llead
from the region of interest, i.e. that including turns, widenings, constrictions or holes.

These segments where the feeding cables are cut o� will be referred to as the leads.

Therefore, g will have to vary along these leads to account for the non-zero current

crossing them. g will then be uniform along some segments of the edges of the simulated

region (outer edges of the sample) and nonuniform along others (leads). The gn values

at all the nodes belonging to a given outer edge of the sample must take the same

value gedge. The particular �xed gedge value at each outer edge allows to set the applied

transport current. The �nal distribution in the region of interest is independent on the

values gn takes at the leads provided that Llead is chosen to be long enough.

Initial conditions: Setting the initial distribution (g0(r))

An initial distribution for g(r), g0(r), must be set before the minimization procedure

can start. It is worth to mention that there is some freedom on the choice of g0(r),

although an ansatz distribution close to the �nal one yields a much faster convergence.
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However, in the critical-state simulations one must start from discretized distributions

g0,n with jG0,cj � Kc within all the cells in the sample surface.

When no external current is fed, this initial distribution can be taken as g0,n = 0

anywhere within the plate.

However, if some current enters and leaves the sample via thin strips, as discussed

in section 2.1.4, then gn must change from one edge to another and along the leads.

Generally, we account for that by starting with a g0,n distribution corresponding to a

uniform sheet current K 
owing parallel to the closest edge.

2.2.3 Minimization procedure

We determine the gn distribution induced within the thin sample in the di�erent

considered cases by minimizing a given quantity E related to the work done over the

system. As mentioned in section 2.1.4, E corresponds to the energy of the system

only when the sample is in the Meissner state. The procedure we use to perform this

minimization is described as follows.

First we set the mesh, external magnitudes and initial g distribution. We then begin

a process in which we look for the node nop where either a positive or negative variation

of its g value (��g, for �xed �g > 0) leads to the largest decrease of the quantity E.

Once this node is found we modify the gnop by the corresponding amount �g, with the

corresponding sign. This process is repeated until there is no node where a change in g

decreases E. Modifying the external conditions, we restart the process.

When the system presents some symmetries we look for the node nop just among

these at one of the symmetrical regions. Once this node is found the change in gnop with

the right sign is applied on it and all its symmetrical ones. Therefore, if twin �lms are

considered, we only need to look for the node nop at one of them.

When holes are present, the condition of zero current within the holes interior is

given by forcing gn to take the same value ghole at all nodes belonging to the hole,

including its edges. In this case, we have to search among both the gn values within the

sample interior and the di�erent ghole values at these holes for the one whose change

leads to the largest decrease in E. When the change is applied at a hole, this must be

done at all its nodes (including its edges) simultaneously.

Iterative mesh

The computing times can be signi�cantly reduced by making use of initial gn distri-

butions close to the �nal one. One way to get much faster results, based on this idea,

is by iterating on the number of cells. This technique is only valid for samples in the

Meissner state since it induces a large error when the critical-state condition is included.

The procedure is described as follows.

First we �nd the gn distribution giving the minimum of energy for a small number of

cells Nx �Ny (typically NW = 10 along the shortest in-plane dimension). Then a new

mesh is de�ned by doubling the number of cells along both the x and y axis directions
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(N 0x � N 0y = (2Nx) � (2Ny)). At the nodes which are common to the new and the old

meshes, the new g00,n is set to gn. At the other nodes g00,n is obtained from the linear

interpolation of the values at the closest nodes. From this new initial distribution the

minimization procedure can start again, now with a smaller �g (typically a fourth of

the previous one), to determine the pro�les of �elds and currents in this larger mesh.

We proceed like that as many times as needed to achieve the desired space resolution.

2.2.4 Meissner and critical states

Meissner state

The gn distribution in thin samples in the Meissner state is determined from the

numerical procedure described in section 2.2.3 with E = Eint +Eext +Ekin, where Eint
and Eext are given by equations 2.25 and 2.26, respectively, and

Ekin =
�0�

2

∑
c

(G2
c,x +G2

c,y)�x�y (2.27)

is the discretized expression of equation 2.8.

When ghole at a hole is set free during the minimization procedure as described in

section 2.2.3, the state with Nf = 0 at the hole is reached. Integer values of trapped


uxoids Nf 6= 0 in a given hole are simulated by �xing ghole there (see Sec. 2.1.5). In

this case we must start from an initial g distribution g0,n with ghole 6= 0 at some holes.

Then we usually start from a distribution corresponding to a uniform sheet current

surrounding the hole and parallel to its closest edge.

Critical State

When the sample is modeled within the critical-state assumptions, the critical-state

condition must be included. This is taken into account by applying the changes in

g ! g ��g only at nodes and holes where this change leads to values of jrgjc � Kc at

all cells c adjacent to the respective node or hole.

As discussed in section 2.1.5, when the external magnitude that is being modi�ed

(Ha or Ia) or its sign of variation, are changed, a new stage starts. In this new stage

the frozen currents K̂ present at the end of the �nishing stage, must also be accounted

for. Then the quantity E in the minimization procedure is given by the sum of

Eint '
�0

2

∑
c,c′

Gc �Gc′Ncc′ � �0

∑
c,c′

Ĝc �Gc′Ncc′ (2.28)

and

Eext '
�0(Ha � Ĥa)

4

∑
c

3∑
i=0

gic�x�y; (2.29)

obtained from discretizing equations 2.11 and 2.12, respectively. All the quantities

appearing in the above expressions are de�ned in section 2.2.1.
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Therefore, under these assumptions, when a stage comes to an end we save the values

and distributions of the frozen quantities, i.e. ĝn, Ĝc, Îa and Ĥa, and use them in the

new initial conditions and functional E for the new stage.

2.2.5 Twin Films

When a second parallel plate is placed in the neighborhood of the �rst one, its

contribution to the functional E must also be accounted for. This is been done in

the expression for E given by equations 2.6, 2.7 and 2.8 including the integration over

the surface of the second plate. After the sample is discretized these equations can be

written as follows:

Eint '
�0

2

2∑
k,k′=1

∑
c,c′

Gk,c �Gk′,c′Nkk′,cc′

 ; (2.30)

Eext '
�0Ha

4

2∑
k=1

(∑
c

3∑
i=0

gik,c�x�y

)
; (2.31)

and

Ekin =
�0�

2

2∑
k=1

(∑
c

(G2
c,x +G2

c,y)�x�y

)
(2.32)

where k; k0 = 1 and 2 for the di�erent samples. Hence

Nkk′,cc′ =
1

4�

∫
Sk,c

∫
Sk′,c′

dSdS0√
(x� x0)2 + (y � y0)2 + (zk � zk′)2

(2.33)

with Sk,c the surface of cell c in the k-th sample and zk the position along z of this

sample (the expressions for these terms are given in appendix A). The above expression

is valid for any shape and arrangement of the two �lms as long as they are parallel.

2.2.6 Algorithm

The algorithm of the whole numerical procedure described in the previous sections

is given by the 
ow diagram sketched in �gure 2.1. The module labeled as Minimization

contains the minimization process for a given set of parameters for the geometry, the

discretization and the initial and boundary conditions. This process is sketched in �gure

2.2.

For samples in the critical state the numbers of cells N and M in the discretized

sample never change. This is so for all cases since, as mentioned in section 2.2.3, other-

wise we would get a large numerical error. The frozen gn distributions (ĝn) and frozen

applied �eld and current (Ĥa and Îa, respectively) are always zero in samples in the

Meissner state. In this regime the current distribution depends only on the present

values of external magnitudes and not on previously attained ones. Therefore, no stages

are de�ned there.
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START 

Has the maximum N  
been surpassed? 

END 

Minimization function 
(see Fig. 2.2) 

Calculate the new g0,n for N 
cells from the previous one 

for N/2 (See Sec. 2.2.3) 

Save distribution of gn, Gc and Bz 

YES 

Define geometry and set parameters for 
mesh (N, M) and external magnitudes  

(Ha  and Ia) 

Set the initial distribution for gn  (g0,n) 

Double the number of cells  
(                            ) MMNN 22  ,

Have the maximum (or minimum) values 
for Ha or Ia been reached? 

Was that the final stage? 

Increase (or decrease) 
Ha and/or Ia, depending on 

the simuated sequence, 
and reset N to the initial, 

 minimum, value 

A new stage starts: set the 
new steps of Ha and/or Ia and 
the    ,     and the distribution 

of     from the end of the 
finishing stage 

aÎ aĤ

nĝ

YES 

NO 

YES 

NO 

YES 

NO 

Figure 2.1: Flow diagram of the algorithm used to determine the current distribution in thin

planar superconducting samples subjected to externally applied perpendicular magnetic �elds

and/or longitudinal transport currents (see Sec. 2.2.3). By following this procedure, any se-

quence of the external applied magnitudes can be simulated. The box labeled as Minimization

is detailed in �gure 2.2, which is used to determine the gn distribution for a particular set of

conditions.
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START of Minimization function 
(See Fig. 2.1) 

Emin=En 

Signmin=Sign 

nmin=n 

ET,prev=Emin 

CS or MS? Is |G|c>Kc at 
some cell c? 

Is En<Emin? 

Is Sign=1? 

Is n the last node  
(n=nmax)? 

Emin < ET,prev? 

END of Minimization function 

Calculate En of the system 
after the change in      at node n 

ng

Sign=0 

Undo the change 
 ggg Sign

nn  )( 1

nop=nmin 

Sign op=Signmin 
 
 

1 nn

1 SignSign

ggg Sign

nn  )( 1
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NO 
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NO 
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Initialize                prev,TE

Initialize                      00  nE ,min

ggg op

opop
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nn  )( 1

Figure 2.2: Flow diagram of the module labeled as Minimization in �gure 2.1. It sketches

the process used to determine the gn distribution for which the functional E in equation 2.3 is

minimum under a given set of applied �elds and currents. At each step, while trying the change

in g at all nodes, the node counter n is increased from 1 to nmax = (N + 1)� (M + 1). Signmin,

nmin and Emin are the temporary variables, used during the test for the change in gn at all

nodes, whose �nal values are Signop, nop and ET,prev, respectively. If the critical-state (CS)

condition is considered, changes in gn are only tried at nodes n where the gradient (rg)c = Gc

at the cells c sharing the node n does not violate the condition jGjc < Kc. No such condition is

applied in the Meissner state (MS). ET,prev is the value for E before the present change is been

applied.



46 Magnetic Energy Minimization (MEM) model for thin samples



CHAPTER 3

Magnetic response of thin films in the Meissner state

In the present chapter we study the response of thin high-� (�→ �) type-II supercon-

ducting samples in the Meissner state to applied magnetic �elds and transport currents.

The samples will be modeled within the London model and the large demagnetizing

e�ects will be accounted for.

The chapter is organized as follows. In section 3.1 we study the behavior of �elds

and currents in thin strips of arbitrary two-dimensional screening length � for di�erent

planar geometries, considering both the magnetic and transport cases. In section 3.2, the

behavior of a penetrating vortex near a sharp �=2-turn in a strip is studied for di�erent

� and applied �eld and current combinations. Finally, in section 3.3 we study how thin

square planar superconducting plates react to externally applied magnetic �elds, and in

particular we focus on the e�ects of a second parallel plate placed on top of the �rst

one.

3.1 Magnetic and transport Meissner currents in super-

conducting thin films

In this section we consider thin planar strips of width W and di�erent geometries

within the London model, both under applied transport currents Ia and magnetic �elds

Ha and for di�erent �=W values. We also study the case of a strip with a hole in

the zero and trapped 
uxoid cases. In chapter 1 we reviewed the existing solutions for

di�erent geometries in the magnetic case and stated that only the highly symmetrical

cases of a a single and many straight strips was solved for the transport case. More

recently were also studied for this case arbitrary thin geometries in the narrow [73] and

complete shielding [71] limits. Here we show some of the general trends arising near

turns, widenings, constrictions and holes when a �nite non-zero �=W is accounted for.

47
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The results we present here complete the ones described in the above mentioned works.

We also show how we recover the proper limits, such as the ones for straight strips at

regions far from the non-straight segments.

In all the results presented below, meshes with a unit cell width of �x = W=40 were

used and parameters �g � 10�4HaW and �g � 10�4Ia were chosen for the magnetic

and transport cases, respectively.

3.1.1 Sharp π/2-Turn

The distribution of the sheet function g(r) (see Sec. 2.1.3) induced in a thin strip of

width W with a �=2-turn was obtained from the minimization procedure described in

chapter 2. In this case we considered both the application of external magnetic �elds

and transport currents and accounted for an arbitrary 2D screening length � � �=t2

(see Sec. 1.3.1). It is interesting to point out that in the complete shielding (�=W ∝ 1)

and narrow (�=W → 1) limits, it is possible to neglect the kinetic energy (see Eq. 2.8)

from charge carriers and magnetic energy (see Eq. 2.4) of interaction between �elds and

currents, respectively. From the g(r) function the pro�les of sheet current, K, and out

of plane magnetic induction Bz, within the sample plane, where computed with the aid

of equations 2.2 and 2.17, respectively.

We plot in �gure 3.1 the out-of-plane magnetic induction and current streamlines

(the contour lines of g(r)) in the region near the corner of the strip. We consider both

the magnetic and transport cases and di�erent values of �=W are plotted. The cases

with � = 0:01W and � = 100W were chosen as representative for the � ∝ W and

�→W limits, respectively. We have checked that more extreme values for �=W do not

produce signi�cant di�erences with respect to the presented ones.

When a transport current is applied (Figs. 3.1a-3.1c and 3.2), current accumulates at

the inner corner of the turn regardless of the value of �=W , diverging at the sharp corner

for all cases. This e�ect, known as current crowding in the narrow limit, was already

reported by Clem and Berggren [73] (see Sec. 1.3.1) and experimentally demonstrated

by Adami et al in [138].

It is worth noting that the underlying mechanism giving rise to this accumulation is

di�erent in the di�erent limits. For �=W → 1 the kinetic energy is much larger than the

magnetic one and the 
uid behaves as if no magnetic �elds were present. In this case

the distribution is that any massive ideal, non-viscous, 
uid would follow, no matter if

charged or uncharged. We can also observe the accumulation of currents near the inner

corner is accompanied by a corresponding expansion near the outer one. On the opposite

limit, with �=W ∝ 1, the magnetic energy is dominating and currents distribute in order

to shield the self plus external out-of-plane induction, i.e. Bz = 0, at the sample surface.

In this case the observed behavior at both the inner and outer corners, analogous to

that observed in the magnetic case (see Sec. 1.3.1), can be understood as follows.

When comparing to the straight strip case we observe: (i) turning currents make a

lower (larger) �eld in their exterior (interior), with respect to a straight current; (ii)
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Figure 3.1: Current streamlines (full lines) and contour of out of plane magnetic induction

(color scale) induced within an in�nitely long strip with a sharp �=2-turn under an applied

longitudinal transport current, Ia, (upper row) or a perpendicular magnetic �eld, Ha, (lower row)

and for �=W = (left column) 0.01, (mid column) 0.1, and (right column) 100. Perpendicular

magnetic induction ranges between �0:5�0Ia=W (light yellow) and +3:0�0Ia=W (dark red) in

the transport case and between �0:5�0Ha and +3:0�0Ha in the magnetic case. Painted in black

and in white are regions above and below this range, respectively.

then, currents trying to shield their self-�eld have to be more (less) intense in the

inner (outer) corner; (iii) thus, �eld at the exterior of the superconductor is largely

enhanced (decreased) at the inner (outer) corner. Naturally, for intermediate values of

�, a combination of both e�ects is present.

We also note that the accumulation of current density due to shielding is higher

than that due to the current crowding e�ect as seen in Figs. 3.1 and 3.2, where this

accumulation is more evident for lower �=W values. However, the rate of decay there is

found not to depend very much on � for the whole range of values �=W 2 [0;1]. This

small dependence on � near the corner contrasts with that along the straight segments

of the strip. In fact, while currents su�er almost no change along the close-to-corner

edge for di�erent �, they are uniform far from it in the large � case.

In the complete shielding limit, the e�ect of the corner on the current distribution

is observed to last up to much longer distances d from this corner than in the narrow

limit. However, although signi�cant, this di�erence is very slight for d � W . In the

narrow limit, the uniform current distribution is almost met at d = W . Thus, the lower

�=W is, the farther from the turn we should go in order to recover the straight strip

results. This is so because when �=W → 1 the e�ect of the corner is a short distance
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Figure 3.2: Modulus of the sheet current along lines of constant x crossing the strip at distances

d = 0;W=2; and W from the beginning of the �=2 turn [arrows indicate direction of increasing

d, as sketched in the inset of (b)] in the case of transport currents (Ha = 0) and for di�erent

values of �=W =(a) 0.01, (b) 0.1, and (c) 100. Full thick lines show the limiting cases given by

the indicated equations.

one, propagated only through the continuity equation condition. Instead, for low �=W

currents interact via their stray �elds, which leads to a much longer range interaction.

Something similar happens at the outer edge, but in this case currents vary slightly

along it both for the narrow and complete shielding limits.

In the magnetic case, see Fig. 3.1d-f and Fig. 3.3 (in solid black lines we also show

the analytical limits for a straight strip case), a zero net current is forced to 
ow along

the strip. Now currents try to shield not only their self-�eld but also the external one.

In this case when �=W → 1 the sample becomes transparent to applied �elds. Here the

presence of the turn is also detected farther away from it as �=W decreases. Currents

in the inner corner and in the outer one have now di�erent directions, so that the �eld

they produce is positive (along +z) close to both corners (outside the superconductor).

With respect to the straight strip, the (�=2)-turn yields an increase of �eld and current

density near the inner corner, as in the transport case. However, magnetic currents

also accumulate in the outer corner in order to shield, not only the self-�eld, but also

the applied one. It is only very close to the outer corner where the geometry-driven

current expansion dominates over this accumulation. We also observe that, when �=W

increases, the magnetic energy of interaction between external �eld and currents, Eext,

becomes less important and the applied �eld penetrates deeper into the superconductor.
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Figure 3.3: Modulus of the sheet current along lines of constant x crossing the strip at distances

d = 0;W=2; and W from the beginning of the �=2 turn [arrows indicate increasing d, as sketched

in the inset of (c)] in the case of magnetic currents (Ia = 0) and for di�erent values of �=W =(a)

0.01, (b) 0.1, and (c) 100. Full thick lines show the limiting cases given by the indicated equations.

As a consequence, the current density (modulus) tends to decrease to zero for �=W → 1.

Comparing transport and magnetic cases we see that in the former the net total

current across any line connecting the borders must be Ia, so changing �=W will produce

some redistribution of the current in the superconductor (Fig. 3.1a-c). Instead, the

net total current across any line connecting the borders must be zero in the magnetic

case. Thus, not only the current is redistributed but also the magnitude of the induced

currents at a given point is decreased down to zero when �=W increases up to in�nity

(Fig. 3.1d-f).

Just as in the narrow limit case described in section 1.3.1 we expect the divergences

at the sharp corner to be removed by considering a �nite radius of curvature at the

corner for the �nite � case as well. In the limit �=W ∝ 1 the divergences are found

even at the straight edges.

3.1.2 Sharp π-turnarounds

In this subsection we consider a thin strip of width W which, at some point, presents

a sharp U-turn, so that the two branches of the strip are separated by a thin slit of width

b∝W and its edges are perpendicular (see Fig. 3.4). The origin of coordinates is chosen

now to be at the end point of the slit.

In the current and �eld distributions, there are some trends similar to the �=2-turn
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Figure 3.4: Same as in �gure 3.1 but for a strip with a � sharp turn with straight perpendicular

edges.

case: the current crowding e�ect can be seen in the inner corner (now a sharp slit)

and current expansion in the outer corners. Both e�ects are more pronounced as �=W

decreases. Close to the end of the slit, currents undergo a U-turn. This leads to an

accumulation of currents due to both current crowding (�=W → 1) and shielding of

�elds (�=W ∝ 1). Both e�ects are larger in the present geometry than in �=2-turns.

When approaching the �-turnaround, its presence is made evident sooner in the

transport case than in the magnetic one, like in the �=2-turn. Moreover, if �=W de-

creases, the e�ects of the turnaround reach longer distances from it. This is shown in

Figs. 3.5 - 3.6, where we plot the modulus of the sheet current along di�erent lines

perpendicular to the slit and crossing the strip from the slit to one border. These lines

correspond to distances d = 0, W=2, and W from the beginning of the turn. In this case

the straight segments remain parallel and close to each other up to in�nite distances from

the turn. Then their interaction is high and the single strip is not recovered. Actually,

in that region we should recover the solution for two parallel coplanar straight strips

(2st), separated by a distance b∝W . In this case, the transport (T ) and magnetic (M)
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Figure 3.5: Modulus of the sheet current along lines of constant x crossing the strip at distances

d = 0;W=2; and W from the beginning of the � turn [arrows indicate increasing d, as sketched in

the inset of (b)] in the case of transport currents (Ha = 0) and for di�erent values of �=W =(a)

0:01, (b) 0:1, and (c) 100. Full thick lines show the limiting cases given by the indicated equations.

current distributions are, for the �=W ∝ 1 (csh) [66] and �=W → 1 (nrw) [67] limits,

K2st
T,csh(y) =

Ia
ln(b=W )

W

y
√
W 2 � y2

; (3.1)

K2st
T,nrw(y) = �sgn(y)

Ia
W
; (3.2)

K2st
M,csh(y) =

2Ha√
W 2 � y2

(
y +

W 2

y ln(b=W )

)
; (3.3)

K2st
M,nrw(y) =

�sgn(y)Ha

2�
(W � 2jyj)

Λ!1
����! 0; (3.4)

where sgn(y) is the sign function, equal to �1 for y < 0 and +1 for y > 0. We observe

that both in the magnetic and transport cases current is much larger at the edge close to

the other strip and this enhancement is further increased by decreasing b. In Figs. 3.5

and 3.6 we also show in solid black lines the plots of Eqs. (3.1) and (3.3). We note

that both equations are not well de�ned when b = 0. For a proper comparison with

our numerical calculations, the value of b has to be seen as a cut-o� distance related to

the sample discretization. Actually, the exact values of b used in the above equations

depend on the particular numerical parameters used. However, as expected, in all cases

b ' �x=2.

For a given intermediate �=W , the distance d up to which the e�ect of the corner
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Figure 3.6: Modulus of the sheet current along lines of constant x crossing the strip at distances

d = 0;W=2; and W from the beginning of the � turn [arrows indicate increasing d, as sketched

in the inset of (c)] in the case of magnetic currents (Ia = 0) and for di�erent values of �=W =(a)

0.01, (b) 0.1, and (c) 100. Full thick lines show the limiting cases given by the indicated equations.

over the current distribution is signi�cant is larger in the transport case than in the

magnetic case although not larger than in the �=2 turns. This is clearly seen in Fig. 3.5

where, for d = W , the current distribution is basically that of the two straight strips

case (compare the results with Fig. 3.2 also for d = W ). We also note that in the

transport case, when �=W → 1 our numerical results coincide with those in [73]. In

particular, we show, in solid line in Fig.3.5c, the modulus of the sheet current in the

d = 0 line:

KU�open
nrw (d = 0) =

Ia
W

∣∣∣∣∣ 1√
1� eiπy/W

∣∣∣∣∣ ; (3.5)

where jj indicates the modulus of the complex argument.

3.1.3 Other examples

Our model can be applied to any planar geometry, including holes, and any com-

bination of applied �eld, current and 
uxoids trapped in the sample, as described in

chapter 2. In Fig. 3.7 we present some examples for illustration. Here � = 0:2W is

chosen for cases 3.7a, 3.7b, 3.7d and 3.7e and � = 0:1W in 3.7c and 3.7f, when a hole is

present, being W the width of the feeding (and draining) strip. In �gures 3.7b, 3.7c and

3.7e we show some cases under simultaneous applied magnetic �eld Ha and transport
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Figure 3.7: Same as in �gure 3.1 but for di�erent thin planar geometries involving turns,

widenings, constrictions and holes. The strips with constrictions in the �rst column correspond

to an applied current. In the second row cases of simultaneous applied �eld Ha and current

Ia with Ia = 1:333HaW and Ia = HaW , respectively, are considered. Figures (c) and (f)

correspond to a strip with a square hole in Ia = 0:75HaW > 0 and Nf = 0 at the hole in the

former case, and Ha = Ia = 0 but Nf = 1 at the hole in the latter one. Color scale ranges from

��0Ia=W (light yellow) and +�0Ia=W (dark red) in (a) and (d), from 0 to 3�0Ha in (b) and

(e), from ��0Ha to 3�0Ha in (c) and from ��0=W
2 and 5�0=W

2 in (f).

current Ia. In this case the pro�les can be obtained from the linear superposition of the

Ia = 0 and Ha = 0 distributions, since the response is linear on both. The strip with a

hole in �gure 3.7c has no net 
uxoid �f trapped on the hole, while in �gure 3.7f some

�f 6= 0 is present and Ia = 0 and Ha = 0.

In particular, we show in Figs. 3.7a and 3.7d the e�ect of a symmetric and asym-

metric constriction in the strip, respectively. Both correspond to the application of a

transport current 
owing along them. We can observe in these �gures how a constriction

a�ects the currents and how far the constriction is noted. In an actual superconductor,

when the local �eld or current overcome some particular critical values, superconducting

vortices penetrate into the sample (see Sec. 3.2). Hence controlling the edge spots where

these values are �rst achieved as well as the values for the applied �elds and currents at

which this happens can have important implications. We observe the maxima for the

modulus of both the magnetic and the transport currents to be at the inner corners of

both widenings and constrictions. However, by the simultaneous application of external

�elds and currents these local values can be tuned together with the position for the

maxima.
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Figs. 3.7b and 3.7e show more complex geometries considering applied �eld and cur-

rent simultaneously. Here it is worth noting that the closed loops of current correspond

to minima of the vortex potential (the g(r) function [69], as noted in Sec. 2.1.3) in a

bulk pinning free sample. Moreover, the minima of the magnetic �eld modulus H = jHj
may have the ability to trap a cold atom placed on top of the sample [71]. Hence, by

changing the values of the applied �eld and current one can tune the position where

penetrating vortices or cold atoms would be trapped.

The distribution of currents within a straight strip with a centered square hole is

plotted in �gures 3.7c and 3.7f. In �gure 3.7c the strip is subjected to a transport

current and a magnetic �eld simultaneously, and no 
uxoids are trapped in the hole. In

this case, a non-symmetric distribution of current density appears since the transport

and magnetic currents add (in magnitude) in one side and partially cancel each other

in the other side. By modulating the applied �elds and/or currents, one can control the

regions where the �eld is enhanced or decreased. It is interesting to note that, for some

values of the applied magnitudes (Ia and Ha) we could �nd a region of zero current on

the sides of the hole. This state is met under zero �eld cooling of the sample (see Sec.

1.3.1).

However, the �eld and current enhancement at the hole corners will eventually lead

to the nucleation and leaving of some vortex or anti-vortex. When this happens some

Nf 6= 0 will get trapped within the hole. For example, if a vortex nucleates at the strip

outer edge and enters the hole Nf = 1 will take place at this hole. The same state

would be reached if an anti-vortex nucleates at the hole edges and leaves the strip by

one of its outer edges [63]. This state is shown in �gure 3.7f. Field cooling the sample

could also lead to this state. We note the high focusing of �eld into the hole in this case.

The currents 
owing around the hole sustained by the trapped 
uxoid also superpose

linearly with these induced by external �elds and/or currents.

In all these cases we observe that the discussed accumulations and expansions of

currents near inner and outer corners take place independently of whether currents

bend in turns, widenings, or constrictions.

3.2 Vortex behavior near a sharp π/2-turn

In the present section we study the conditions for the entry as well as the behavior

of the 
uxoids inside a thin bulk-pinning free strip undergoing a sharp �=2-turn. The

same geometry, conditions and parameters as in section 3.1.1 are used.

The stream function g(r) induced by the external �elds Ha and currents Ia in a thin

�lm can also be interpreted as the potential acting on a single vortex inside the sample

[69] (see Sec. 2.1.3). In particular, V (r) = �0g(r). This potential must thus lower

the energy rapid enough to overcome the cost of suppressing superconductivity at the

vortex core and to sustain the vortex currents. At this point the vortex will enter the

�lm. The latter term includes the edge or Bean-Livingston barrier, which accounts for

the interaction with the edges. Clem and Berggren [73] showed how this edge barrier
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Figure 3.8: The vortex potential near the sharp �=2-turn of a thin strip of width W and

� = 0:1W subjected to a uniform perpendicular magnetic �eld Ha along +z (a) and a coun-

terclockwise longitudinal transport current Ia (b). The potential is normalized to the quantum


uxoid, �0, times HaW in (a) and to �0 times Ia in (b). The lower left corner corresponds to

the inner corner in (a) and the outer one in (b). In solid black lines we show the direction along

which the edges run. Also highlighted in black dotted lines is the potential along the corner

bisector, replotted with other �=W values in �gure 3.9.

avoids the critical current to vanish at a strip involving sharp corners where the sheet

current diverges. Although they only considered strips in the narrow limit (� → W ),

similar phenomena is expected to be present for �nite �. In this section we neglect such

edge-vortex interactions. Moreover the presence of a second vortex would distort the

vortex potential. Hence, the discussion below applies only to the interaction between

the �rst penetrating vortex and the Meissner currents induced by the applied Ha and

Ia.

We plot in �gures 3.8a and 3.8b the potential the vortex would experience after

penetrating the sharp �=2-turn corner for the magnetic and transport cases, respectively.

In both cases �=W = 0:1 is assumed. To be more precise these potentials are for the

vortex and correspond to a positive magnetic �eld applied perpendicular to the plate and

to a counterclockwise longitudinal transport current in the turn when seen from above,

respectively. The contour lines of this function coincide with the current streamlines and

are plotted as solid lines in �gure 3.1b, and 3.1e, respectively. In these cases the slope

or gradient of the potential, with modulus equal to K, is found to be maximum at the

corner. Actually, we know it to diverge for all �, even for the narrow limit [73], in the

transport case, and for any �nite or zero � in the magnetic one (see Sec. 3.1). Therefore

the vortex is expected to enter the sample from the corner in all the considered cases.

This potential presents an elongated minimum along the strip length in the magnetic

case. Di�erently, it monotonically decreases from the inner edge to the outer one in the

transport case. Thus, the penetrating vortex will get trapped in the former case but will
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Figure 3.9: Out-of-plane magnetic induction Bz (a)-(b), longitudinal sheet current Kφ (c)-(d)

and vortex potential V (e)-(f) for the same strip as in �gure 3.8 with �=W = 0:01; 0:1 and 1

(decreasing in the arrow direction) subjected to a perpendicular uniform magnetic induction

Ba = �0Ha (left column) or longitudinal counterclockwise transport current Ia (right column).

The induction, current and potential are normalized to Ba, Ha and �0HaW , respectively, in the

magnetic case, and to �0Ia=W , Ia=W and �0Ia, respectively, in the transport case.
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Figure 3.10: The vortex potential Vv along the corner bisector for the strip with �=W = 0:01

(a), 0:1 (b) and 1 (c) subjected to a uniform perpendicular magnetic �eld Ha and increasing

a clockwise transport current Ia (in the arrow direction) that partially compensates the sheet

current at the inner corner. Plotted are the ratio Ia=HaW values Ia=HaW = 0; 0:1; 1; 10;1 and

the particular one for which the potential well approximately disappears and the sheet current

is totally compensated at the corner, (Ia=HaW )op = 1:94(a), 1:31(b) and 0:47(c) for the three

di�erent �. The potential is normalized to the quantum 
uxoid �0 times HaW + Ia.

just transit from edge to edge in the latter one. Although this minimum runs along the

whole strip length, it presents a small absolute minima placed along the corner diagonal

for all values of �.

From the corner, where the �rst vortex is expected to enter, the force over the

vortex points along the diagonal, which represents a path of maximum V (r) there. This

is then a non-equilibrium trajectory from which the vortex will be taken out by any

small perturbation. In the transport case the vortex would then be pushed to either of

the straight outer edges, where it would leave the strip. In the magnetic case, however,

a rather di�erent behavior is expected. There, the vortex would �rst move towards one

of the straight segments but could not leave. Then it would slowly decay towards the

absolute minimum. The potential slope is observed to be very small along this minimum

and smaller for larger �.

The potential along the diagonal is highlighted with a black dotted line in the 3D g(r)

contour plots and plotted again in �gures 3.9e and 3.9f for the di�erent �=W = 0:01; 0:1

and 1. In the same plot we show the out-of-plane magnetic induction and perpendicular

current along the same line. The behavior of �eld and currents in this geometry was

already studied in section 3.1.1.

The sheet function and sheet current are found to depend slightly on � and just very

near the corner signi�cant di�erences arise in the diverging K. This also produces very

similar Bz far from this corner. We also �nd the potential minima position to su�er

almost no change with increasing � in spite of the dramatic decay on its depth down to

zero.
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Figure 3.11: Same as in �gure 3.10 but plotted across width at the straight segments far from

the corner (obtained from Eqs. 1.15 and 1.18) and normalized to �0HaW in order to see the

vortex slope enhancement at the outer edge when increasing Ia. Here are plotted the cases

with Ia=HaW = 0; 0:1; 1; 3, these for which the potential minimum disappears at the corner,

Ia=HaW = 1:94 (a), 1:31 (b) and 0:47 (c), and the ones for which the longitudinal straight well

disappears at the inner straight edge far from the corner, Ia=HaW = 2:86 (a), 1:92 (b) and 0:43

(c).

When a clockwise transport current is increased in a sample subjected to a positive

applied �eld, the potential along the corner bisector evolves as shown in �gure 3.10.

Then the potential minimum depth and distance from the corner are found both to

decrease monotonically for increasing Ia, together with the potential slope at the edge.

This applies to any �nite value for �=W . For a particular ratio between the applied

�eld and current, (Ia=HaW )op, these three quantities vanish. At this point the sample

presents no equilibrium position within its interior anymore. This value coincides with

that in which transport and magnetic currents exactly cancel each other at the corner.

For larger applied currents an anti-vortex will nucleate at the inner edge and transit the

strip towards the outer one.

The V (r) function along the diagonal is also shown for the cases close to (Ia=HaW )op.

This quantity is found to decrease monotonically for increasing �, ranging from

(Ia=HaW )op � 1:94 in the complete shielding limit to zero in the narrow limit, where

the magnetic case potential is known to be 
at.

It is also worth noting how the potential slope is nearly zero close to the outer

corner for �nite �. We cannot tell from our calculations if this tendency is restricted

to much shorter distances to this corner, not observable from the grid in our numerical

calculations, for very short �. This makes of the outer corner a bad candidate for the

penetration of vortices even in this case. It is more likely for an anti-vortex to penetrate

from the inner one at some (Ia=HaW ) > (Ia=HaW )op.

However, even before the (Ia=HaW )op is been reached, K at the corner (Kcorner)

will become too low for the anti-vortex to overcome the edge barrier. As Clem et al [74]
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Figure 3.12: Optimum ratio between the applied current Ia and the applied �eld Ha at which

transport and magnetic currents exactly compensate at the edge, normalized to strip width W ,

for the strip of �gure 3.1. This quantity, (Ha=IaW )op, is plotted as a function of the two-

dimensional screening length to strip width ratio, �=W , for the cases of currents compensating

at one of the straight edges far from the turn (solid line), obtained from the solutions in �gure

3.11, and that of currents compensating at the sharp inner corner (full squares).

pointed out, when magnetic and transport currents compensate each other along the

inner edge, they are added at the outer one. Therefore, since the maximum K is then

found at the outer straight edge, a vortex is expected to penetrate �rst from there.

The behavior will then be determined by the distribution of currents and the vortex

(or anti-vortex) potential across the width of a straight strip, which are the distributions

recovered at far distances from the corner. This net vortex potential across the straight

strip width is plotted in �gure 3.11 for the same values of �=W as in �gure 3.10, i.e.

0.01, 0.1 and 1. Here we use the g(r) function obtained from the K distribution in thin

straight strips with �nite non zero values of �=W [60] (see Eq. 1.15). These functions

were found to give an error of � 2% near the edges of the strip, still much lower than

the one committed due to the used �nite mesh for the simulated samples. Note that the

potential is not normalized to applied current in order to observe the enhancement of

the edge potential slope at the outer edge when the applied current is increased. Similar

behavior for the potential is found in this region compared to that along the corner

bisector. However, in the former region the potential in the magnetic and transport

cases is now symmetric and antisymmetric, respectively, with respect to the strip central

line. Comparing it with �gure 3.10, we can see the slight decrease in the potential well

depth from the corner diagonal to the far straight segments when Ia = 0.

In this case the potential well is elongated along the straight strip length. However,

also in this region, it disappears at some Ia=HaW that corresponds to the value for

which the local sheet current becomes zero at one of the straight edges, (Ia=HaW )op.

The (Ia=HaW )op value is also found to decrease with increasing �=W but at a di�erent
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rate than at the corner. In �gure 3.12 we can see this quantity plotted as a function of

�=W for the approximated solution for a straight strip and for the values computed here

at the corner. It is interesting to note the change in tendency. For �xed Ha and small

�=W , the potential minimum vanishes for lower applied Ia in the straight segments.

The opposite happens for large �=W , where lower applied currents Ia are needed to

remove this stable position at the corner than at the straight edge. This is the expected

behavior if one realizes how in the large �=W limit both the transport and magnetic

currents become more uniform far from the turn. However, transport currents diverge

at the inner corner but magnetic ones decrease down to zero anywhere within the strip.

3.3 Twin square plates

One important property that characterizes the response of magnetic samples to mag-

netic �elds is the external susceptibility. In contrast to the internal susceptibility, which

depends just on the material, the external one is also shape dependent. The reason for

that is that it accounts for the demagnetizing �elds, which depend on the particular

geometry of the sample (see Sec. 1.3.1). In particular, the external susceptibility for a

set of plates depends on the shape of the plates and also on their mutual arrangement.

Consider two identical parallel thin square planar superconducting plates, separated

a distance d in the vertical z direction. The plates are subjected to an external uniform

magnetic �eld applied perpendicular to the plates, Ba = �0Haẑ. Their side a is assumed

to be much larger than its uniform thickness t, a → t, and the 2D screening length �,

a → �. Thus, only the complete-shielding limit is considered here. Both are placed at

�a=2 � x; y � +a=2, and at jz � d=2j � t=2, where the + sign stands for the upper

plate and the � for the lower one. Only the thickness averaged current K(r) is dealt

with, and hence the behavior described below applies to arbitrary �=t as long as a∝ �

(see Sec. 1.3.1).

In samples in the complete-shielding limit subjected to external magnetic �elds,

induced electric currents are distributed in order to completely shield from the sample

surface the out-of-plane magnetic induction, Bz. If more than one sample is present,

then all of them interact magnetically via the �elds created by their induced currents.

Hence, currents within each sample will have to shield the net magnetic �eld, i.e. its

own self-�eld, the external one, and that created by the other samples. This interaction

can be observed from the distortion of the currents 
owing on each sample when they

are brought closer to each other, as well as from the behavior of the overall magnetic

moment or susceptibility of the system. In particular, when the second sample is placed

on top of the other each plate partially shields the external �eld on the other one. This

interaction results in a decrease of the induced currents and susceptibility.

The g(r) distribution induced by Ha is determined by following the minimization

procedure described in chapter 2. To account for the second plate the interaction be-

tween the plates is simulated as described in section 2.1.4, but the term given by equation

2.8 is not included since � ∝ a is assumed. We performed these calculations for one
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and two thin square plates divided into a uniform mesh of N �N = 100 � 100 square

identical cells of sides �x = �y = a=N along the x and y directions, respectively. For the

present calculations �g=(Haa) = 5 � 10�5 is used. The simulated separation distances

between the two plates were d=a = 0:05; 0:1; 0:2; 0:5 and 2:0 since d=a < �x=a would

lead to large numerical errors and �x=a = 1=N < 0:01 would need very long computing

times. However, the results for d=a =1 and 0 can be obtained from these of one single

plate by assuming a thickness of t and 2t, respectively.

Below we study both the behavior of �elds and currents and of their external suscep-

tibility χ0. The latter will be compared with results from experimental measurements.

3.3.1 Evolution of magnetic currents

The thickness averaged or sheet current density K(r) (see Sec. 2.1.2) is calculated

from equation 2.2 from the sheet function g(r). The out-of-plane magnetic induction in

the �lm plane is also calculated from this sheet function using the Biot and Savart law

expressed as in 2.17. As discussed above, K gets distributed within the sample in order

to make Bz = 0 in the whole sample area. One consequence of this is that local currents

will grow linearly with the applied magnetic �eld at each point of the plates and so will

magnetic induction outside them. To check the accuracy of the numerical calculations,

we calculate the out-of-plane magnetic induction for a single isolated plate and �nd it

to be below 1% of Ba � �0Ha in the central part of the plate. The Bz is also found

to present some peaks in Bz of � 10% of Ba at the �rst cells neighbour to the edges,

arising from the numerical error.

The particular current distribution that completely shields Bz within a single square

plate is discussed in section 1.3.1, together with its generated magnetic �eld. When the

second plate is placed on top of the �rst one at a distance d, each of them partially shields

the external �eld on the other one, hence reducing its induced currents. These currents

will be identical on both of them since their generated �eld has mirror symmetry with

respect to the plate plane. In �gure 3.13 the y component of sheet current 
owing on

the two plates is plotted along the y axis (that bisects two of their sides) for di�erent

distances between the two plates d=a = 0:1; 0:5 and 2:0, the latter very similar to that of

one isolated plate. The shape of the current streamlines (not shown) is found to be just

slightly distorted from that in a single plate within the studied range of d=a 2 [0:05; 2:0].

However, the magnitude of these currents is observed to decrease monotonically with

decreasing distance. This is because the partial shielding made by each of them on the

other one is more e�ective as this distance is made smaller. The currents are found to

decrease very slowly at large distances.

The e�ect of bringing them closer to each other is not the same in the di�erent

regions of the plates for di�erent distances d. Actually outer currents 
owing near the

edges decrease slower for larger distances and much faster when the two plates are very

close to each other. This will have an important e�ect on the plates magnetization and

susceptibility, whose main contribution comes from the near-edge currents.
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Figure 3.13: Ky=Ha along the y=a = 0 line 
owing in two identical thin square planar super-

conducting plates of side a and thickness t ∝ a subjected to an applied uniform perpendicular

magnetic �eld Ha along z. The plates are placed in parallel with their sides aligned with the x

and y axis (so (x; y) 2 [�a=2;�a=2] for both) and centered to the z axis at z = �d=a, thus sep-

arated by a distance d=a for di�erent d=a = 2:0; 0:5 and 0:1 (arrows show direction of decreasing

d=a). The induced currents are identical for the two plates. The zoom of the framed region is

plot in the inset.

3.3.2 External susceptibility

In this section, we study the susceptibility of the two plates considered in the previous

section, as a function of their distance d. The study will include both the numerical

results obtained from the procedure described above and some experimental results.

The real samples are thin type-II YBCO plates whose ac susceptibility was measured

in high alternating magnetic �elds. These �elds were risen up above the full penetration

magnetic �eld de�ned in the critical state model (see Sec. 1.3.2), much larger than Bc1.

In this section we only analyze the low-�eld limit of the real part of the �rst harmonic

of the ac external susceptibility. In this limit, this term of the ac susceptibility coincides

with the Meissner state external one, as discussed in section 1.3.2. The ac susceptibilities

measured in the full range of �elds are studied and compared with numerical results,

obtained within the critical-state model approach, in section 4.3.

Numerical results

From the g(r) distribution within the thin plates, the magnetic moment and the

magnetization of the system can be computed from equations 2.18 and 2.19, respectively.

Since currents grow linearly with the applied �eld, so does the magnetization and the

�eld independent external susceptibility is calculated as the slope of the �Mz(Ha) curve
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from equation 2.20.

The calculated susceptibilities as a function of d=a are plotted in �gure 3.14 and

compared with the experimental ones in the short distance range, in the inset. The

results are normalized to the calculated susceptibility for two distant plates, χ0(d=a =

1). This quantity is found to increase with increasing d and to converge to the χ0 of

one single plate in the limit of large d, χ0(d=a!1)! χ0,1Pl = 0:4547 (a=t). When the

distance between the plates is zero, the pair of plates behaves essentially as a single one

with twice its thickness, therefore its χ0 should be half that of one since χ0 / a=t. We

use this property to get the calculated χ0(d=a = 0) = 0:4547=2 (a=t) = 0:2274 (a=t). For

decreasing d=a, χ0 is found to decrease, with an increasing slope modulus, to approach

sharply the χ0(d=a = 0) value.

Experimental results

The ac susceptibility was measured in three di�erent pairs of thin square YBCO

plates subjected to very large alternating magnetic �elds (Ha → Hc1) and hence pre-

senting a highly nonlinear Mz(Ha) curve (see Sec. 1.3.2). However, for very low applied

�elds the real part of this ac susceptibility approaches χ0 � �χ0 and can be compared

with the susceptibility in the Meissner state.

The samples being measured were epitaxial YBCO �lms of nominal thickness t,

each grown by chemical solution deposition on a 5� 5 mm2 (001)LaAlO3 single crystal

of 0:5 mm thickness [139]. The in-plane and out-of-plane misalignment angles were

approximately 0:5o. Susceptibilities were measured with a home-made high-�led ac

susceptometer [140] at 77 K after zero-�eld cooling. Two of the samples (A and B) had

a thickness t = 0:25 �m and a side of a = 5 mm. Since they were observed to have the

edges partially damaged, from these and some others new samples were patterned by

optical lithography to sides of 4 mm (samples C and D, the latter patterned from B).

Finally a third pair of samples (E and F) of thickness t = 0:15 �m were also measured.

The experimental results are plotted in the inset of �gure 3.14, normalized to the

calculated susceptibility for two distant plates, χ0(d=a = 1), like the theoretical ones.

Naming the face of the single crystal on which the superconducting �lm is deposited

as the upper face and the other one as the bottom face, the upper to upper, upper

to bottom, and bottom to bottom face touching overlapped A and B correspond to

d=a = 0; 0:1 and 0:2, respectively.

The observed general trends described for the numerical results also apply to the

experimental ones. However, some di�erences are observed. For example, we can clearly

observe that the χ0(d = 0) calculated as mentioned above underestimates the measured

value for the three pairs of samples. As discussed in [141] this could be due to a mutual

shift along the xy plane in all three measurements, since the pairs of plates are hard to

be exactly overlapped. However, the shift could not be much larger than 0:2 mm and

this would only give an increase in χ0 of about 2% [77], much lower than the observed

one. Another possible reason for the discrepancy is the real distance between the plates
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Figure 3.14: Calculated (full circles) and measured (open symbols in inset) e�ective suscepti-

bilities χ0 for the set of the same two plates as in �gure 3.13 as a function of separation distance

between the two plates, d=a. Both the measured and calulated χ0 are normalized to the calcu-

lated value for very distant plates d=a→ 1, corresponding to that of one single plate (see text).

Plotted are the experimental results for the three di�erent pairs of samples A and B (circles), C

and D (squares), and E and F (triangles).

to be of d=a � 0:001, due to its �nite thickness. In that case a quick increase of χ0

with increasing distance should take place at very small distances. Calculating the χ0

for so small d=a would require long computing times, since d=a > 1=N is needed to have

accurate results. Therefore, the particular behaviour in this region still remains an open

question.

Apart from this over-large measured χ0(d = 0) we also observe the measured χ0 for

the overlapped A and B samples to be systematically lower at �nite d=a = 0:1 and 0:2.

Since the ac susceptometer was calibrated by C and D and the measured χ0(1) of E

and F is merely about 1% smaller than the calculated value, the measured χ0(1) is

practically the same as the calculated one for the case of C and D or E and F. Thus,

the di�erence between the χ0(d=a) at d=a = 0:1 and 0:2 of samples A and B and the

calculated ones should be a consequence of over-low experimental χ0(1).



CHAPTER 4

Magnetic response of thin films in the critical state

In chapter 3 we simulated high-� type-II superconducting thin planar plates and

strips of di�erent geometries in the Meissner state. There we only considered the Meiss-

ner currents present before the penetration of vortices within the sample. Only in

section 3.2 the interaction of an entering vortex with these currents was studied under

the assumption of negligible bulk pinning.

Here we also consider thin superconducting �lms, but in this case in the critical

state. In this regime, in general, the length-scale is assumed very di�erent to the one

considered in chapter 3 and also the involved �elds are much higher (see Sec. 1.3.2).

Moreover, this state is reached when a strong bulk pinning is present. More precisely

the in-plane sample dimensions W are assumed much larger than the Pearl length �,

W → �, and the local �elds Hi are comprised within the range Hc1 ∝ Hi < Hc2 with

respect to Hc1 and Hc2, the lower and upper critical �elds, respectively. Therefore, even

for small Hi many vortices are present and we only deal with quantities averaged over

several intervortex spacings.

The chapter is organized as follows: �rst we study in section 4.1 the distribution of

currents within thin planar superconducting strips of di�erent shapes and for di�erent

sequences of applied magnetic �elds and transport currents. Then in section 4.2 we

analyze the e�ect of the history-dependent current pro�les in the critical current Ic,

as a function of applied �eld Ha, for the particular case of a straight strip with some

pierced antidots. Finally, the study of the current distribution, sample magnetization

and external susceptibility made in section 3.3 for two twin plates, is extended in section

4.3 to account for the new phenomena taking place in the critical state.

67
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4.1 Response of strips of different geometries to applied

transport currents and magnetic fields

In this section we describe the penetration of �elds and currents in the critical state

when a transport current Ia, a magnetic �eld Ha, or both, are applied to the thin sample

of uniform thickness t and current density Jc. We consider di�erent geometries and

sequences of Ia and Ha. Then, with this study we extend the previous ones considering

situations under applied current for the simple straight strip geometry [142, 57] and

the ones considering only the response to applied magnetic �elds in di�erent 2D thin

geometries (see Sec. 1.3.2). The two geometries we simulate are these of a thin straight

strip with a narrow perpendicular slit starting from one edge and that of a straight strip

with straight edges that turns sharply, forming a �=2 radiants angle (see Fig. 4.1).

The magnetic case [68, 76, 102, 103, 104], in which a uniform magnetic �eld is

applied perpendicular to the strip, is �rst reviewed for the two di�erent geometries and

only for the case of Ha → Kc = Jct. Although the results we present in this part are

well known or can be easily derived from these for other similar geometries (see Sec.

1.3.2), we consider they will help us understand the behavior observed in the following

sections. Then we study the transport case of longitudinal Ia applied to the strips.

Applied current is increased up to the corresponding saturation value for each strip and

then decreased back to zero. In the following part, di�erent sequences of increasing Ia
�rst and then Ha, and vice versa, are also considered for the same geometries. Some

general conclusions about the current penetration that apply to any strip geometry and

sequence of applied �eld and current are given there. Finally, at the end of the section

some of the previously discussed cases are studied within a straight strip that widens

sharply.

The thin superconducting strips are modeled following the approach described in

chapter 2 and accounting for the constraint on the allowed K values and also for the

hysteresis present in samples in the critical state (see Sec. 2.1.5). The samples are

discretized by dividing them in square cells of side �x = Wm=40, where Wm is the strip

width at narrowest segments, and �g = 5 � 10�4Ia and �g = 5 � 10�4HaW are used for

the transport and the magnetic cases, respectively.

4.1.1 Magnetic case

The slitted strip is assumed to be very long (along x), of width W and with a slit of

length Ws, which is perpendicular to the strip edges and starts from one of them. The

turning strip is also long, of width W and, at some point, turns sharply forming a �=2

radians angle.

Geometrical interpretation of the critical current streamlines shape The

well known trends regarding the appearance of the di�erent critical regions and critical

current streamlines shape in the magnetic case, can be understood as follows. First
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Figure 4.1: Current stream lines (arrows show direction of current 
ow) in thin planar super-

conducting strips of width W , thickness t and critical current Jc subjected to a large positive

perpendicular magnetic �eld Ha = 1:5Kc → Kc = Jct, above that of full saturation, when the

strip either (a) contains a straight narrow slit of length Ws = W=2 that starts from one of the

strip edges and is perpendicular to it or (b) undergoes a sharp �=2 turn at some point. Colors

represent the intensity of the out-of-plane magnetic induction Bz at the strip surface, ranging

from 0:0 (green) to +2:5�0Kc (red). Bold lines mark the critical region inner boundaries or 
ux

fronts (FF) while dark gray dashed lines delimit the sample perimeter.

we must note that the critical currents (the ones of maximum modulus, jKj = Kc)

follow line paths whose points keep a uniform distance to the closest edge. Thus, at

regions where some edge is closest than any other these currents will 
ow parallel to it.

Moreover, there might be some regions which are the locus occupied by points of equal

distance to two edges. In this case the behavior will be qualitatively di�erent depending

on whether the two edges meet at a corner forming an angle smaller (convex corner)

or larger (concave corner) than �. In the former case this locus is a line, named d+-

line, along which current streamlines must bend sharply (see Sec. 1.3.2). Logarithmic

in�nities in the out-of-plane magnetic �eld are observed at these lines [103]. Di�erently,

near a concave corner the points of equal distance to the two meeting edges occupy a

given area, which is the one subtended by the two edge extensions. In that region the

closest edge point is the corner where the two edges meet. Within this area the current

streamlines must follow circular paths in order to keep a uniform distance from the

edge. As pointed out by Brandt [76], vortices move perpendicular to the critical current

streamlines. This means that vortices must always enter perpendicularly to the sample

edges and they can never cross a d+-line. Moreover, it is worth noting that at a sharp

concave corner the vortex transit is much higher, since all the vortices �lling the area

with rounded critical currents must enter from that corner.

Some of theses trends can be observed within the geometries we consider here. In

particular, we show in �gure 4.1 the critical currents distribution at full saturation,

i.e. a very large positive magnetic �eld is been applied perpendicular to the samples,

starting from the virgin state. Indeed, we observe how straight currents 
ow far from the

widenings, turns and slits and how they bend sharply along some formed d+-lines near

these geometric elements. Moreover, currents follow circular paths around the concave
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corners. In this case the whole sample can be fully saturated with critical currents. As

a result, the d+-lines can develop but just asymptotically, when Ha → Kc.

In particular we observe straight d+-lines extending along the convex corners bisec-

tor. Also curved d+-lines are present in this state near point defects, as is the case of

the tip of a slit. The latter were shown to follow a parabolic shape [143, 104].

In the turning strip, for example, we observe circular critical currents 
owing near

the concave corner, while a d+-line is formed, along the corner bisector, from the outer

convex corner. Up to a distance W=2 from the inner and the outer corner, the circular

and the straight sharply-bending currents come from in�nity. However, in the region

near the corner the strip is widened. The remaining central region, equidistant to the

inner and outer edges, is �lled with closed loops of current. These currents are also

circular at points closer to the inner corner and turn sharply at points closer to one of

the outer edges. Thus, both circular currents and the d+-line extend along the corner

angle bisector down to the central point at a distance
p

2W from both of the two corners.

In the strip with a slit, a straight d+-line develops along both of the two corner

bisectors by the two slit sides. These d+-lines extend up to the strip central and longi-

tudinal line, y = W=2. The parabolic d+-line links these two end points of the straight

d+-lines and crosses the point (x; y) = (0; 3
4W ). This point is at the slit extension line

and is equidistant to the slit tip and the opposite strip edge. Currents 
owing between

these three d+-lines are, circular in the upper strip half and centered in the slit tip, and

straight and vertical in the lower half. The remaining currents outside this region are

straight and horizontal, along the strip longitudinal direction.

4.1.2 Transport case

The behavior of currents and �elds induced within a thin straight strip of uniform

width W in the critical state for the transport case has been solved in the literature

and was described in section 1.3.2. There we showed how the currents, longitudinally

symmetric along the strip direction, evolve when increasing Ia. In particular we could

see how when the critical current Ic of the strip (Ic = KcW ) was reached, the whole

strip surface was �lled with critical currents of modulus Kc.

Here we consider the same case of applied transport current but in this case for the

two same geometries from the previous section, thus breaking the longitudinal symmetry.

Also in these geometries, if we start from a virgin sample, when a current Ia is fed into

the strip there will appear a critical region penetrating from the strip edges according

to the critical-state model. However, if the cross section normal to applied current (or

equivalently the width in our case, since uniform t is always assumed) is not uniform

along the strip length, its own Ic is reached when the narrowest segments become fully

saturated with critical currents Kc. For larger Ia vortices get depinned and transit

across the strip width at these regions. Thus, the critical-state model breaks down. At

this point, some 
ux-free regions remain at the wider parts of the sample.
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Strip with a slit

Consider now the strip with a slit of the previous section (see Fig. 4.2). We �x the

origin of coordinates at the slit x-position and at the center of the strip [the slit goes

from (0;�W=2) to (0;�W=2 +Ws)].

When feeding a transport current Ia to the strip in the virgin state the critical

regions will penetrate the sample from all of its edges, including these by the slit. This

critical region will penetrate deeper around the slit tip and towards the opposite strip

edge. It will not penetrate at all from the convex corners where the slit meets the strip

edge, just like in the magnetic case (see Sec. 1.3.2). The result is a droplet shape

critical region boundary or 
ux front (FF) growing towards the opposite edge as Ia
increases. The critical regions penetrate from the other straight edges as well. The

depth of penetration of the FF at the edges by the slit sides decreases monotonically

with decreasing distance from the convex corner. At the opposite straight slit-free edge,

a slightly deeper penetration is observed near the spot which is closest to the slit.

Figure 4.2: Same as in �gure 4.1a when no magnetic �eld is applied but a longitudinal transport

current Ia is increased through 0:25KcW (a) up to the strip saturation value Ic,s = 0:50KcW

(b) and then decreased back through 0:25KcW (c) again and down to 0 (d). Here out of plane

magnetic induction ranges from �1:0�0Kc (dark blue) through 0 (green) and up to +1:0�0Kc

(red).

These trends in the current penetration can be understood from the same ideas

discussed in [144] for the Meissner currents for the particular case of short � (see Sec.

3.1). Since the penetrating currents try to shield the total �eld, convex shaped currents

can exert an e�ective shielding with low magnitude. This explains the little penetration

of the critical region near these corners, strictly zero at the sharp ones present in this

geometry. However, concave shaped currents do a less e�ective shielding in the interior

of the sample. Thus, they must be larger in magnitude in order to keep a zero magnetic

�eld in the innermost regions. The di�erence with respect to the Meissner state case, is

that here jKj is bounded. Then, currents penetrate deeper instead of becoming larger

near concave corners.

When the two FFs penetrating from opposite edges of the strip meet, the minimum

transversal width allowed for currents to pass is fully saturated with maximum sheet

current Kc. This maximum current intensity is Ic,s = Kc(W �Ws) for this particular

geometry. At this point some subcritical 
ux-free regions remain at the wider segments
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Figure 4.3: Longitudinal current (top row), out-of-plane �eld (mid row) and g pro�les (bottom

row), normalized to Kc, Kc and KcW , respectively, plotted along the slit line extension (dark

blue) and along the parallel to slit line at a distance d = W from it (light blue), for the strip

with a slit of �gure 4.1a subjected to an increasing (in the arrow direction) applied current (left

column) up to the critical value Ic,s = 0:5KcW and then decreasing (in the arrow direction)

this current (right column) down to �Ic,s after the reach of Ic,s. Vertical dashed dark gray lines

delimit the strip edges positions. Oscillations are due to direct numerical derivation.

by the slit sides.

In �gure 4.2 we show the current distribution for di�erent applied currents, starting

from a virgin state sample and increasing the current (Fig. 4.2a) up to the maximum al-

lowed Ic,s (Fig. 4.2b) and then decreasing back (Fig. 4.2c) to zero (remanence, Fig. 4.2d).

Although the FF shape and its rate of penetration are very di�erent, the shape of

the stream lines of critical currents is the same for the magnetic and the transport cases,

following the same principles discussed in section 4.1.1. The reason for this is that the

necessary �eld distribution to be shielded is very di�erent for the two cases: in the

magnetic case it includes the external uniform applied �eld whereas in the transport

case only the currents self-�elds are present. However, the shape of the critical current

stream lines in the critical state model is not given by the �eld distribution but just from

the geometrical principle of currents following paths of constant distance to a particular

sample edge.

The tip of the slit is one of the edge spots that gets surrounded by circular critical
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currents and thus where a high vortex transit takes place. In particular all the vortices

�lling the region of curved circular stream lines must enter from there.

In the magnetic case, the d+-lines that develop along convex corner bisectors are

known to be well de�ned just asymptotically and to be the last region to become satu-

rated. This is why in the transport case such d+-lines will never develop when the strip

cross section is not uniform. This is precisely what we observe in �gure 4.2c, where Ic,s
is already been reached.

In �gure 4.3 we show the calculated values for g, the x component of the sheet

current and the out-of-plane component (evaluated at z = 0) of the �eld along the line

containing the slit and the one parallel to it at a distance d = W from it, for di�erent

values of Ia increasing from zero to Ic,s and then decreasing down to zero. We can see

that the distributions are not symmetric with respect to the center of the aperture, as

expected, because the slit breaks the y-symmetry.

Another interesting fact comes from the square-root dependence of the penetration

depth of the critical regions as a function of Ia=Ic, in strips with a critical current Ic
(see Eq. 1.38). This is that a relatively small slit can produce a large distortion in the


ux front far from it. Indeed, when the maximum current has been applied, far from

the slit the critical region occupies a fraction � = ((W � 2b)=W ) = 1�
√

2Ws
W � Ws2

W 2 of

the total cross section of the strip. For small slits � ' 1�
p

2
√
Ws=W . This indicates

that, for example, when the slit width is just 10% of the total strip width, far from the

slit just about 56% of the cross-section width is �lled with critical currents at Ic,s (in

the case of the Fig. 4.2, Ws=W = 1=2 and � ' 0:13).

When reversing current, just like in the magnetic case, new currents of opposite sign

penetrate from both of the two edges. Because of the slow rate of penetration of the

critical region with changing Ia, this region is very narrow when Ia = 0 is reached in

the current reversal (remanence). At this point, at each cross section there should be

as much positive currents as negative ones, producing some closed loops of current, as

we observe near the tip of the slit in �gure 4.2d (in the �gure most of the loops would

eventually close very far from the slit). When �Ic is reached (not shown) the same

distribution present at +Ic takes place, but currents 
ow in the opposite direction.

The high number of penetrating vortices at the slit, and particularly at its end, is

also expected from the increase in the magnetic �eld in its immediacies. Actually, the

magnetic �eld along the slit arises mainly from the current that surrounds it. When

they have critical value, it can be seen that the �eld diverges logarithmically in the slit,

as in the border of a slit-free strip. Nonetheless, now the contribution comes from both

sides of the strip and thus, the �eld is doubled. At the end of the slit the �eld has its

maximum value because of the rounding currents. This increase along slits was also

calculated in [69] with magnetic currents in the Meissner state.
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�=2-Turn

We now consider the turning strip of width W as in section 4.1.1. The current and

�eld distributions for di�erent applied currents are shown in Fig. 4.4.

Figure 4.4: Same as in �gure 4.2 but for the turning strip of width W that undergoes a sharp

�=2 turn at some point of its length subjected to increasing clockwise applied currents of values

Ia = 0:5KcW (a) and the critical one Ic,t = 1:0KcW (b) and then decreasing from the latter

back through 0:50KcW (c) and down to 0 (d). Regions in light gray are out of range.

For the same reasons as in the case described above, here we observe the FF to pen-

etrate deeper from the inner concave corner along the corner angle bisector. Di�erently,

at the outer straight edges, the FF penetration depth is found to decrease monotoni-

cally along the edge with decreasing distance from the convex corner. Again, like in the

magnetic case, the critical region does not penetrate at all from this corner. Also in this

case critical currents 
ow straight and parallel to the closest edge anywhere but at the

region near the concave corner, where they must follow circular paths.

To understand the behavior near the strip full saturation current, Ic,t = KcW , we

must realize that the strip is widened at the corner region. In particular it reaches a

maximum value Wmax =
p

2W along the bisector of the corner angle. Then, when the

strip straight segments become fully saturated with Kc, this region is not so. The result

is that the critical regions penetrating from opposite parallel straight edges meet before

the d+-line can develop along the bisector of the outer convex corner angle. An arrow

shaped 
ux free-region boundary appears at Ic,t.

The �=2-turn considered here appears to us as the simplest strip geometry involving

sharp convex corners. Therefore, we expect d+-lines only to be formed by the application

of perpendicular magnetic �elds (assimptotically) but never from an applied transport

current.

The presence of a 
ux-free region at Ic,t and the low K near the outer convex corner

are more clearly seen in Fig. 4.5. There we plot, along the segment connecting the two

corners of the turn, the g function, the perpendicular component of the current, and the

out-of-plane component of the magnetic �eld at z = 0. We see how the critical region

grows from the concave corner towards the opposite strip edge up to some depth and,

from that point to the other corner the �eld is shielded from the sample. In Fig. 4.6

we have plotted the calculated 
ux-front penetration depth (de�ning a distance rp from
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Figure 4.5: Longitudinal current(top row), out-of-plane magnetic �eld (mid row) and g pro-

�les (bottom row), normalized to Kc, Kc and KcW , respectively, along the sharp corner angle

bisecting line of the turning strip in �gure 4.4 subjected to an increasing (in the arrow direc-

tion) clockwise applied current (left column) up to the saturation value Ic,t = KcW and then

decreasing (in the arrow direction) this current (right column) down to �Ic,t. The shown cur-

rent component is the one 
owing perpendicular to the turning angle bisector and is de�ned as

positive in the clockwise direction. Vertical dashed dark gray lines delimit the strip edges at the

inner and outer corners.

the inner corner) as a function of Ia, along the corner angle bisector and compare it

with that of a straight strip along a transversal line crossing the strip (de�ning xp as the

distance from the inner side). This depth cannot be easily predicted, since it depends

on the particular shape of currents in the subcritical 
ux-free region. Note that for the

straight strip, the two 
ux fronts penetrating from the two sides of the strip meet at the

center of the strip for Ia = KcW , whereas for the �=2-turn strip, there is no penetration

from the outer corner and thus the 
ux fronts cannot meet. Intermediate values for

the FF penetration depths from both of the two edges would be observed along straight

lines connecting the opposite edges and running between the two we consider here.

When reversing Ia the trends are very similar to the ones already described above

for the strip with a slit. For example we note that here closed loops of current also

develop near the sharp concave corner at the remanence, while most of them close far

from the turn.
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Figure 4.6: Position of the 
ux fronts (FF) entering from the two sides of a long straight strip

normalized to the strip width W (blue lines) and the same 
ux-front positions from the inner

(bottom black line) and outer (top black line) corners of the sharp turning strip of �gure 4.4.

The positions along the diagonal from corner to corner are normalized to the diagonal lengthp
2W .

4.1.3 Application of a transport current and a subsequent magnetic

field

Up to now, we have considered either a perpendicular magnetic �eld, in section 4.1.1,

or a given transport current, in section 4.1.2, applied over a strip of di�erent geometries.

The calculation method can also be successfully applied if �eld and current are both

applied. Naturally, in this situation a a great variety of di�erent sequences of applied

�eld Ha and current Ia can be studied (see Sec. 1.3.2).

Our numerical method can manage to calculate all these cases as far as the critical-

state assumptions remain valid and, in particular, as far as quasi static situation (slow

variation of applied �eld and current) is considered.

These di�erent sequences of applied �elds and currents in the critical state were

studied in detail just for the case of a straight strip of uniform width W [58, 57]. A very

rich set of phenomena could be observed there. In spite of this, whenever the sample

critical transport current Ic, was applied, currents with jKj = Kc 
owing in the direction

of applied current �lled the whole sample. Therefore, all the information from previously

attained states was completely erased. Moreover, at this point the distribution became

insensitive to any change of the external applied �eld. We show here how this is no

longer the case when the strip width is not uniform along its length. Even when the

sample Ic is applied, we will see how in this case the critical current distribution strongly

depends on the sequence by means of which the �nal state is been reached. In particular

we shall consider here that the sample is saturated by applying a critical current Ic and,

after this, a perpendicular �eld is applied in the two possible directions.

We will thus only describe the behavior of critical currents, specially in the limit

Ha → Kc. Then, we will not discuss the particular shape of the 
ux front nor of the

sub-critical currents in the 
ux-frozen regions.
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Figure 4.7: Same as in �gure 4.1a for the strip with a slit subjected to its critical transport

current Ic,s = 0:5KcW and then also a magnetic �eld of modulus Ha=Kc with increasing values

0:00; 0:50; 0:75 and 1:50 (increasing from left to right), up to the strip full saturation, applied

in the negative (top row) or the positive (bottom row) out-of-plane z directions. Here the out-

of-plane magnetic induction Bz ranges from �2:5�0Kc (blue) through 0:0 (green) and up to

+2:5�0Kc (red). Asymmetries in the FF solid black thick lines are due to numerical error.

Strip with a narrow slit

Consider a strip with a slit over which a transport current has been applied up

to saturation. The current distribution has been described in section 4.1.2. After the

current Ic,s has been reached we apply a magnetic �eld along either of the two directions

perpendicular to the strip plane. The new induced currents will tend to shield any

variation of the total �eld in the strip region.

In Fig. 4.7 we see how, starting from the same current distribution at Ic = Ic,s,

the newly induced current is completely di�erent for di�erent signs of applied �eld Ha.

For the two signs of Ha, however, critical currents �ll the whole sample surface when

Ha → Kc is reached. This is because a positive Ha makes the critical region that

entered from the upper edge to grow towards the lower one, while the lower currents are

gradually erased. On the contrary, a negative �eld makes the critical region from the

lower edge to grow towards the upper one.

Then, when increasing the applied �eld in the positive direction, the initial droplet-

shaped critical region grows in width while a d+-line forms along the convex corners

bisector by the slit sides. This d+-line is only assimptotically formed for large applied

�elds. When the applied �eld is large enough, the rounded part of the critical region

reaches the other side of the strip, di�erently to the case of large applied �eld without

previous transport current. There is some current that returns back before reaching

the slit region. Far from the slit, thus, and for large applied �eld, the 
ux-free region
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reduces to a horizontal line located at y = (W �Ws)=2, provided that the net current

crossing the strip has to be Ic,s = (W �Ws)Kc.

On the other hand, when the applied �eld is negative, the initial droplet-shaped

critical region tends to disappear and the critical region close to the slit-free border

tends to increase until it reaches the slit. Interestingly, in the saturation situation, the

current distribution is exactly the same as that for three unconnected strips: one of them

in�nite and of width W�Ws carrying all the transport current Ic,s, and two of them semi

in�nite of width Ws, with a current distribution equivalent to that completely saturated

with large perpendicular magnetic �eld and without net current crossing them. In the

lower part, 2 d+-lines forming a �=4 angle with the slit, like in a square or rectangular

plate, develop by each slit side. For distances from the slit larger than Ws=2 along the

strip longitudinal direction, the two 
ux fronts meet at the lines y = �(W �Ws)=2.

Thus, the �nal state is the result of currents following the principle of constant

distance from an edge. At the narrowest segments, the entire critical region from edge

to edge is �lled with currents following the same edge. This edge is the lower one for

the former case with positive applied Ha and the upper one when the applied Ha is

negative. This proves how one can control, through the applied �eld sign, which of the

strip edges is the one followed by the transport critical currents at the narrowest strip

segments when Ia = Ic,s is fed.

Once Ha → Kc is reached, we could reverse it up to very large values again but

with opposite sign. In that case the �nal state would be the same one as if this last Ha

variation was applied directly after the reach of Ia = Ic,s. If the �eld is reversed back

again to Ha → Kc, the same state present previously for the same value of Ha would be

achieved.

�=2-turn

Consider now the strip with a �=2-turn over which a saturation current Ia = KcW

has been applied. As discussed in section 4.1.2, currents turn the corner following

circular paths close to the inner corner and keeping a zero 
ux region close to the outer

one (see Fig. 4.8a and Fig. 4.8e). Applying the same principles described above, the

application of an external perpendicular magnetic �eld Ha leads to two very di�erent

behavior depending on the sign of this �eld.

In this geometry, an interesting e�ect can be observed in the close-to-corner region.

When applying the �eld in one direction the 
ux-free region shrinks and the circular-

currents region expands (see Fig. 4.8). At high enough applied �eld, the circular current

region reaches its maximum extent. At this point, the outermost circular current stream

line has a radius W . If the �eld is applied in the opposite direction, the circular-current

region shrinks being substituted by straight currents. When the applied �eld is large

enough, these currents form a d+-line going from corner to corner. All current stream

lines are straight and bend sharply at the d+-line.

This behavior arises from the need of the currents produced by the application of a
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Figure 4.8: Same as in �gure 4.7 but with the turning strip subjected to the same values

of perpendicular magnetic �eld applied after the reach of its own critical transport current

Ic,t = KcW . Out-of-plane magnetic indution ranges from �2:5�0Kc (dark blue) to +2:5�0Kc

(red). In (d) the applied �eld is Ha=Kc = 2:0 since the full saturation was not reached yet at

1:5, and the out-of-plane magnetic induction ranges from �3:0Kc to +3:0Kc. Colored in black

are regions below the corresponding Bz range.

magnetic �eld to shield the 
ux-free region. Again, this di�erence is possible thanks to

the widening present near the corner (the width is
p

2W from corner to corner). If the

outer corner was rounded so that the strip width was uniform and equal to W in spite

of turning, then the current distribution would be independent on the applied �eld, as

well as on the sequence of external �elds and currents, whenever Ic,t was applied.

4.1.4 Application of a magnetic field and a subsequent transport cur-

rent

Here we consider the cases in which the magnetic �eld Ha is increased up to the

saturation, Ha → Kc, before the application of a transport current Ia. The applied cur-

rent is gradually increased up to the saturation value, Ic, of the corresponding geometry,

with either of the two polarities.

Strip with a slit

Consider now that we apply Ha → Kc to the strip with a slit of length Ws = W=2.

The present magnetic currents 
ow in the positive x direction by the upper straight

edge and in the negative one by the lower edge with the slit. If then Ia is applied in the

negative direction, currents will penetrate and distribute themselves within the upper

half. The currents 
owing by the lower half and turning around the slit tip will su�er
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Figure 4.9: Same as in �gure 4.1a for the strip with a slit subjected to a large positive perpen-

dicular magnetic �eld Ha → Kc to which, after the reach of Ha, a transport current of modulus

Ia=KcW with increasing values 0:00; 0:25; 0:375 and up to the saturation one 0:50 (increasing

from left to right) is been applied in the negative (top row) or the positive (bottom row) longitu-

dinal directions. Here the out-of-plane magnetic induction ranges from �2:5�0Kc (blue) through

0:0 (green) and up to +2:5�0Kc (red).

no change from the application of Ia. Actually the critical region in this lower half,

delimited by the parabolic d+-line near the slit, will grow towards the upper edge. At

the same time a new critical region will penetrate from the top edge. The maximum

allowed current Ic,s = KcW=2 is reached when the two 
ux fronts meet along the slit

extension. All along this line currents will then be saturated, but regions with subcritical

currents will remain in the other parts of the strip upper half. In particular, far from

the slit just � 30% of the upper half width will be �lled with critical currents.

On the contrary, if the current is applied in the positive direction, it will distribute

itself within the strip lower half. The upper critical region with straight currents will

grow towards the lower edge in this case. At the same time critical positive currents

will start to penetrate from the bottom edge, including the slit. The saturation is also

reached for Ia = Ic,s = KcW=2 when the slit extension becomes fully saturated. In the

region at the lower half of the strip and outside this line subcritical currents will be

present. The fraction of the lower half width �lled with critical currents is also � 30%

far from the slit in this case.

�=2-turn

Assume now that we apply the large perpendicular magnetic �eld to the strip un-

dergoing a �=2 radiants turn. The current distribution is the one presented in �gure

4.1b. In this case magnetic currents 
ow in the clockwise direction in the outer half of
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Figure 4.10: Same as in �gure 4.9 but for the �=2 turning strip to which, after the reach of Ha,

the increasing values of Ia=KcW = 0:00; 0:50; 0:75 and the critical one 1:00 have been fed in the

counter-clockwise (upper row) and clockwise (lower row) directions.

the corner (straight currents meeting at a d+-line) and in the counter-clockwise one in

the inner half (circular currents near the corner).

The subsequent application of a counter-clockwise current cannot alter the currents

in the upper half, where the d+-line is been formed. The applied current will distribute

itself throughout the inner half. Actually, the region where these new currents can

penetrate de�nes a strip undergoing a �=2 turn with the same geometry as the real one

but with half its width. Thus, in this half the same �nal distribution of currents will

take place at Ic,t = KcW as for the turning strip under applied current starting from

the virgin state (see Sec. 4.1.2). A new critical region with circular currents close to the

concave corner will penetrate from the inner edge, including this corner. Meanwhile, the

critical regions present along the outer edges will grow towards the inner one but just

from the straight segments and not from the d+-line. This line, where currents bend

sharply, will never be formed in the lower half.

If the current applied after a large Ha 
ows in the clockwise direction, the strip half

to be �lled by these currents is the outer one. Thus, the critical region with circular

currents will grow towards the outer edge while a new one will penetrate from the outer

straight edges but not from the convex corner. At the end, again, the same as in the

case of section 4.1.2 will be observed. However, in this case the circular currents extend

up to a distance d = 3
4

p
2W (3=4 of the width of the strip from corner to corner) from

the inner concave corner and along its angle bisector. Again the d+-line will never be

formed.
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4.1.5 General behavior under simultaneous applied field and current

In the previous sections we considered di�erent sequences of applied �elds and cur-

rents to di�erent thin samples initially in the virgin state. These cases included the

application of a large perpendicular magnetic �eld Ha (Ha → Kc) and the subsequent

application of a gradually increasing transport current Ia up to the sample critical value,

Ic. The two possible polarities of applied current were considered. The other cases were

those for the same �nal values of Ha and Ia but Ia = Ic was the �rst one to be applied,

followed by the application of Ha in the two directions perpendicular to the sample.

These studies dealt only with two di�erent thin strip geometries. In spite of this, some

general rules can be extracted from them regarding the few simple rules behind the

penetration of critical currents. These ideas, which apply to any thin strip geometry

and sequence of applied �eld and current, are:

� New variations of any external magnitude (Ia or Ha) lead to a further penetration

of the old present critical currents, with jKj = Kc, where old and new currents


ow in the same direction, and to the penetration of new currents from the outer

edge where both 
ow in opposite directions.

� Magnetic currents, induced by a change in Ha, penetrate with opposite direction

of 
ow at opposite edges. Di�erently, transport currents, coming from the applied

Ia, do so with the same direction at both edges.

� The critical currents at samples with straight edges meeting at sharp corners can

be straight, bend sharply (along the d+-lines formed near convex corners) or turn

following circular paths (near concave corners), depending on which edge they

follow.

� The particular edge that determines the shape of the critical current stream lines

is that from where they penetrated the sample.

As a result, by following di�erent sequences of applied �elds and currents, one can

control which is the edge followed by currents at most of the strip surface.

Of particular interest is the case of a strip undergoing a sharp �=2-turn subjected to

an applied critical transport current and the subsequent application of a large perpendic-

ular magnetic �eld Ha → Kc. In this case one can control, by the perpendicular applied

�eld sign, whether a d+-line (currents following the outer edge) or circular currents

(following the inner edge) �ll the entire sample width at the Ic current.

An important conclusion derived from these rules concerns erasing magnetic history.

In strips with non-uniform cross section, it is possible to erase all the information about

previous stages by the application of a large magnetic �eld. This cannot be done if the

last magnitude to be varied is the applied current. There, some particular characters

will remain at the wider parts telling us something, at least, about the last previous

stage.
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Figure 4.11: Same as in �gure 4.1 but for a straight strip of width W , sheet current Kc and

thus critical current intensity Ic,w = KcW (placed in the xy plane and aligned with the x-axis)

that widens sharply from its lower edge to reach a new width 2W . The strip is subjected either

to a large (above full saturation) applied positive perpendicular magnetic �eld (left column)

followed by the application of a longitudinal transport current of values �Ic,w, 0 (magnetic case)

and +Ic,w (from top to bottom) or to a longitudinal transport current +Ic,w followed by a large

perpendicular magnetic �eld of values �Ha, 0 (transport case) and +Ha (from top to bottom),

with Ha → Kc (above that of full saturation). Here the out-of-plane magnetic induction ranges

from �2:5�0Kc (blue) through 0:0 (green) and up to +2:5�0Kc (red).
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4.1.6 Strip with a widening

As mentioned in section 4.1.5 the response to applied �elds and currents for any

strip geometry can be obtained from the few rules given there. Another example of this

of practical interest is that of a strip of width W that, at a given point, widens sharply

from one of its edges to achieve a new width Ww (in our case Ww = 2W ). Interestingly,

this geometry presents a very similar behavior to that for the straight strip with a

slit, considered above, when Ww �W = Ws. The similarities are observed for all the

sequences of applied �elds and currents considered here and they are specially obvious

near the saturation values.

In particular we show the �eld and current distributions for the full saturation cases

for all the sequences considered above, i.e. only magnetic �eld (Fig. 4.11c), only trans-

port current (Fig. 4.11d), �rst magnetic �eld and then transport current (Figs. 4.11a

and 4.11e) and, �nally, �rst transport current and then magnetic �eld (Figs. 4.11b

and 4.11f). The last magnitude to be applied is been ramped up to Ha → Kc for the

magnetic �eld and up to Ia = KcW for the transport current.

We can observe how the narrow part is always fully saturated with longitudinal cur-

rents of modulus Kc at critical applied current, independently of the followed sequence.

However, in the wide half we observe almost identical current distributions as for each

of the two halves by each slit side in the strip with a slit.

All of the results presented so far assume a constant critical current density Jc.

However, they allow us to anticipate some of the e�ects that the described trends would

have on a sample presenting a magnetic-induction-dependent current density Jc(B) (see

Sec. 1.3). In this case the critical current of a sample Ic depends on the particular

distribution of �elds at it. In the particular case of a widened strip as the one studied

above we predict an Ic reduction, with respect to that of a strip of uniform width W ,

due to the �eld enhancement at the sharp concave corner of the widening.

4.2 Hysteretic Ic(Ha) in a strip with antidots

In the present section we study the distribution of �elds and currents in a thin

straight strip of thickness t, width W and critical current density Jc, with an array of

2� 2 pierced square antidots for di�erent sequences of applied perpendicular magnetic

�elds and longitudinal transport currents. The antidots side is ahole = W=8 and thus the

strip width at narrowest regions, where the holes are present, is Wmin = W � 2ahole =

0:75W (see region A in �gure 4.12a). In this case the maximum allowed current Ic,a
for the strip is determined by the width at narrowest segments (see Sec. 4.1.2), so

that Ic,a = KcWmin = JctWmin. The results we show here were obtained from the

numerical procedure described in chapter 2 by considering the sample holes and the

di�erent sequences of applied �elds and currents as described in sections 2.1.5 and 2.2.4.

The used discretization parameters are �x = W=80 and �g = 10�4KcW .

A constant critical current density Jc is assumed. However, the hysteresis in the
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distribution of �elds for di�erent sequences of applied �eld Ha and currents, will allow us

to anticipate some e�ects arising from the presence of a magnetic-induction dependence

Jc(B). In particular we predict that a hysteresis in the maximum allowed current Ic(Ha)

curve will be present in this case. Such hysteresis was already observed in polycristalline

samples [145, 146, 147]. Here we demonstrate that this e�ect can be obtained in uniform

strips when the strip width is not constant.

We simulate the two following sequences of applied �elds and currents in the strip

with antidots. In the �rst one (1) a perpendicular magnetic �eld signi�cantly smaller

than Kc, Ha < Kc, is �rst applied to the sample in the virgin state (see Fig. 4.12a). The

increase until Ha is followed by the application of a longitudinal transport current Ia
increased up to 0:7KcW � Ic,a (see Fig. 4.12b). In the second considered sequence (2)

the applied �eld is �rst raised up to a large value Ha,max � Kc, close to the sample full

saturation �eld, and then decreased back to Ha (see Fig. 4.13a). Also in this case the

same transport current Ia = 0:7KcW is applied after the reach of Ha (see Fig. 4.13b).

When increasing Ha we observe critical currents to penetrate from all of the strip

edges. These currents 
ow in the positive direction at the strip upper half and in the

negative direction at its lower half. If the �eld is farther increased and then reversed

back to Ha, new currents with opposite direction penetrate from the outer edges (see

Sec. 1.3.2).

In sections 4.1.4 and 4.1.5, the e�ect of applying a transport current to a thin strip

already �lled with currents was already described. According to these results, applying

the positive Ia to the sample of sequence 1 after Ha, will lead to the growth of currents


owing in the strip upper half towards its lower one. In this case, the penetrating

currents must surround the holes and they do so developing a [-shape next to them

when Ic,a is reached (see Fig. 4.12b). Di�erently, in sequence 2 currents 
owing in the

lower half will be the ones to grow towards the upper half when applying the positive

Ia. Then, for the latter sequence, at Ic,a the current streamlines are \-shaped near the

antidots in order to surround them (see Fig. 4.13b).

In the case of constant Jc considered here the maximum allowed current is Ic,a for all

values of applied �eld and all sequences of �elds and currents, and hence no hysteresis is

observed. However, if a Jc(B) were present, the maximum allowed current Ic(Ha) for the

sample, would be given by the particular �eld distribution at regions A (see Fig. 4.12a)

when this maximum current was applied. If so, the exact distribution at these regions

would be necessary in order to compute the Ic(Ha), but its average across the same

regions would give a rough quantity allowing to predict some general trends. We also

remark that, although the same sequences were applied, both the distribution of �elds

and their averages along regions A would be di�erent for the Jc(B) case, from those we

show here (but this di�erences should be small). Thus, by comparing the averaged Bz at

the mentioned regions at the end of sequences 1 and 2 (compare Figs. 4.12b and 4.13b),

we anticipate that the Ic(Ha) under a Jc(B) dependence would be di�erent for the two

sequences, in spite of equal external �eld Ha. The same discussion we make here applies

for any Ha within a certain range 0 < Ha < Kc, if a signi�cantly larger Ha,max > Ha is
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Figure 4.12: Out-of-plane magnetic �eld Hz (color), and current stream lines (blue lines, ar-

rows indicate direction of current) induced in a thin straight superconducting strip of uniform

thickness t, width W and constant critical current Jc. The strip presents four symmetrical

square antidots of side ahole. It is subjected to (a) a uniform perpendicular positive magnetic

�eld Ha = 0:3Kc applied to the zero �eld cooled (ZFC) sample and, (b) a positive longitudinal

transport current Ia = 0:7KcW , applied after the �eld Ha is reached (case 1). The critical

current intensity value is Ic = 0:75KcW � Ia. Hz ranges from �Kc (blue) through 0 (green)

and up to +Kc (red), with the thick black lines separating the regions with Hz < Ha from these

with Hz > Ha. The region A, framed with black dashed line, is the �rst one to saturate at Ic
together with its symmetric counterpart by the right holes (see text).
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Figure 4.13: Same as in �gure 4.12 but when (a) the external �eld is increased up to a large

value, Ha,max = 1:0Kc, and then decreased down to Ha = 0:3Kc and (b) when the longitudinal

transport current Ia = 0:7KcW is fed into the strip after Ha is reached (case 2).
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used, and for arbitrary strip geometry with non-uniform width. Therefore, we predict

from these results that a hysteretic behavior in the Ic(Ha) curve will be observed for

monocrystalline samples of such geometries under a Jc(B) dependence.

4.3 Twin square plates

In this section we recover the study for the twin plates of section 3.3 and extend it

for the case of plates in the critical state.

We aim at extending the study by Chen et al presented in [77]. There, Chen et al

proposed an expression for the extraction of Jc in hard superconducting plates from the

ac susceptibility curves under alternating magnetic �elds. In particular, for the case of

thin square plates of side a, this parameter was found to be related with the maximum

�eld at peak imaginary susceptibility Hm(χ00m) and the low-�eld-limit real susceptibility

χ0 = �χ0jHm!0 (see Sec. 1.3.2) according to

Jc =
2:43χ0

a
Hm(χ00m): (4.1)

This expression, valid for thin square superconducting plates with no Jc(B) dependence,

was obtained from the scaling of the magnetization curves for thin disks with the same

properties[77, 90, 148] discussed in section 1.3.2. The validity of this expression and the

more general one for rectangular plates was already checked from numerical calculations

for samples of these geometries. However, it was not studied which would be the e�ect

of adding a second plate, and whether it would be equally valid or would require some

modi�cation to account for the new e�ects arising from their interaction.

Here we analyze how is the relation 4.1 a�ected by the presence of the second plate.

In these studies the same two identical plates described in section 3.3 are subjected to

a perpendicular magnetic �eld Ha → Hc1. Under these circumstances identical current

and �eld distributions are induced in both. To simulate them we extend the same

method to account for a �nite constant Jc as described in section 2.1.5, from which the

g(r) distribution within the plates is obtained. In this case the currents come either

from surface Meissner currents or from curved or 
at vortices depending on the ratio of

London penetration depth � to plate thickness t, �=t (see Sec. 1.3.2), but the behavior

described below for the thickness-averaged current K is independent on this ratio. The

results from these calculations are compared with experimental results.

We carried out the calculations for the pair of plates divided in N �N = 100� 100

square identical cells each and separated by di�erent d=a = 0:0; 0:05; 0:1; 0:15; 0:2 and

1 (the last corresponding to one isolated plate). The samples were assumed to be zero-

�eld cooled and hence to have no trapped 
ux nor currents at Ha = 0. The applied �eld

was increased from Ha = 0 to Ha > Kc � Jct and a �g = 5 � 10�5 Kca was used.

In particular, we show and discuss the e�ects of the second plate and of varying their

relative distance on the distribution of �elds and currents. Also studied are the overall

magnetization of the set and its ac susceptibilities at fundamental frequency, the latter
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Figure 4.14: Normalized sheet-current component Ky=Kc, with Kc = Jct, as a function of

position x=a along the central y = 0 line (Kx = 0) of the two square identical thin parallel

plates of critical current Jc, side a and thickness t ∝ a. The plates are placed perpendicular

to the z axis with corners at the same (x; y) coordinates (�a=2;�a=2), separated by di�erent

distances d=a = 1; 0:2; 0:1 and 0:05 along z (decreasing in the arrow direction) and subjected

to an external perpendicular uniform �eld of modulus Ha = 0:5Kc. The �eld is applied after

zero-�eld cooling and induces the currents identically in the two plates.

compared with experimental results. Finally the validity of equation 4.1 for this system

is analyzed.

4.3.1 Evolution of magnetic currents

When a perpendicular �eld Ha → Hc1 is applied to the thin square plate critical and

Meissner currents penetrate the sample. In particular, depending on the ration �=t The

sheet current K(r) (see Sec. 2.1.2) is calculated with the aid of equation 2.2 from the

sheet function g(r) pro�les. We plot in �gure 4.14 the calculated currents, identical for

the two plates, along the perpendicular bisector of two of its sides (y = 0), for di�erent

d=a and an Ha = 0:5Kc of signi�cant penetration.

The behavior of these currents for the particular case of one single plate (equivalent to

that with d=a→ 1) is described in section 1.3.2. The sharp �=2 radiants convex corners

present in a thin square plate lead to the already known cushion-like shaped subcritical

region when a uniform perpendicular magnetic �eld is applied (see Fig. 1.4a). This

shape does not vary signi�cantly when the second plate is placed on top of the �rst one

(not shown). However, we can see in �gure 4.14 how the depth of penetration of this

region for a given Ha, is shorter for smaller d between the plates. We only plot the

currents for Ha = 0:5Kc because, although delayed, the penetration in increasing �eld

for the di�erent d=a is analogous to that for one plate. This slower penetration of the

saturated region is due to the partial shielding of the external �eld each plate makes on

the other one. Therefore, the e�ective external magnetic �eld each plate must shield for
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a given applied one, will be lower for smaller distance d.

The full saturation of currents in thin plates takes place at in�nite Ha (see Sec.

1.3.2). This is solved by introducing a cuto� distance of the largest among t, � and

� on the size of the inner 
ux-free core. When the pro�les are solved numerically, the

resolution is limited to the size of the grid unit cell, �x. In that case the cuto� distance

will be on the order of �x if t, � and � are all shorter than it. When this full saturation

is reached, it follows from the Bean model assumptions that the pro�les must depend

just on the sample geometry and not on the presence of a second one. At that point

currents follow straight paths parallel to the closest edge and bend sharply along the

square diagonals forming the so called d+-lines [12].

4.3.2 Magnetization of the twin films

From the sheet current 
owing within the plate, the perpendicular magnetization,

Mz, can be calculated from equation 2.19. We plot in �gure 4.15 the calculated Mz

as a function of applied �eld Ha for Ha=Kc from 0:0 to 3:0, where it was found to

be saturated. We observe that in the low-�eld limit Mz(Ha) is negative and decreases

linearly with a slope �χ0, corresponding to the constant slope in the Meissner state (see

Sec. 1.3.2).

The presence of the second plate does not modify this linearity, observed at low

�elds, for any separating distance d=a between the two of them. However, we already

observed in section 3.3 how this initial slope absolute value, monotonically decreases

with decreasing d from that of one single plate (χ0 = 0:4547 a=t) at d→ a to one half of

that value (χ0 = 0:2274 a=t) for d = 0. The simulation of very small d=a would require

long computing times since d=a < 1=N is needed. In spite of this, the whole curve for

d = 0 can be obtained from scaling that of one isolated plate.

In the opposite limit, when Ha is very large, the negative magnetization of each plate

approaches the saturation value Ms = Jca=6, independent on the number of plates and

d. Although thin samples never get fully saturated, a �eld of signi�cant penetration is

de�ned as Hs �Ms=χ0.

For intermediate values of Ha � Hs the magnetization slope absolute value mono-

tonically decreases from the low-�eld limit (χ0) to zero when it reaches Ms at some

Ha > Hs. From the decrease of χ0 with decreasing d=a a shift to larger Ha of the

saturation reach follows, as shown by the increase of Hs.

From the universality of the magnetization curve, Mz(Ha=Hs)=Ms, for thin samples,

Gilchrist proposed a scaling law to obtain such curves for arbitrary geometry from that

of a thin disk (see Sec. 1.3.2). The parameters used for the scaling are χ0 and Ms. We

show in �gure 4.15 with dashed lines the curves obtained following this approach. The

maximum di�erence observed between the scaled and the calculated curves for d=a =1
is actually found to be roughly 0:3%. However, as d=a is made smaller, we observe this

di�erence to increase monotonically and the scaling does not o�er a good approximation

anymore. For d=a = 0 the agreement between the two curves is again very good, which
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Figure 4.15: Calculated (solid lines) normalized out-of-plane magnetization Mz=Jca, as a func-

tion of the uniform perpendicular applied magnetic �eld Ha=Jct, induced in the same plates, of

critical current Jc, side a, and thickness t ∝ a, of �gure 4.14. The di�erent curves correspond

to di�erent separation distances between the plates, d=a = 0; 0:05; 0:1; 0:2 and 1 (increasing in

the arrow direction). In dashed lines we plot the same quantity but in this case obtained from

scaling the magnetization of a thin disk [148] by using the corresponding χ0 calculated for each

d=a (shown in Fig. 3.14) and the saturation magnetization for square plates Ms = �Jca=6 (see

text).

is not surprising since Mz is calculated from that for d=a =1.

One could expect this di�erence in the behavior to appear at short d=a since the

scaling was proven to work for di�erent sample shapes but always assumed a uniform

magnetic �eld was applied. However, the case of two or more samples close to each

other is equivalent to the application of a nonuniform magnetic �eld. Moreover, since

we cannot simulate the plates in the short d=a > 0 range, we cannot conclude whether

the discrepancy should decay when decreasing d=a from some short distance or suddenly

drop at d=a = 0.

In fact, Mawatari [65] already showed how an in�nite stack of parallel strips period-

ically arranged along its perpendicular direction presented an Mini,z(Ha) very di�erent

to that of one strip. In that case only in the limit of very large ratio of strips distance

to width, d=W → 1, the tanh(x) dependence of the single strip was recovered.
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4.3.3 AC external susceptibilities

In the present section we study the theoretical susceptibilities, computed from the

magnetization, and the experimental ones, measured from the pairs of YBCO plates de-

scribed in section 3.3.2. Here we only study the external ac susceptibility at fundamental

frequency (see Sec. 1.3.2).

Calculation results

Since the Bean model with constant Jc(B) is assumed, we use the expressions 2.21

and 2.23 to calculate χ0 and χ00, respectively, from the initial magnetization curve. We

show in �gure 4.16 the real and imaginary susceptibilities, χ0 � χ01 and χ00 � χ001, for

the two thin plates computed from these equations. The susceptibilities are studied as

a function of Hm for di�erent plates separation d=a. Actually, the response of samples

simulated in the Bean critical-state model does not depend on the particular pro�le of

Ha(t), nor on its frequency, because it neglects all the dynamic e�ects like the 
ux 
ow

and the 
ux creep.

The well known general trends for �χ0 and χ00 in the di�erent limits are observed

for all plotted distances d=a (see Sec. 1.3.2).

When the two plates are approached, the initial �χ0 = χ0 decreases with decreasing

d=a. As a result of this, Hs increases when d=a is made smaller and both the decay of

�χ0 and the peak of χ00 are shifted to larger Hm. A useful interpretation of χ00(Hm)

shows it is proportional to the ratio between the area inside the magnetization loop for

Hm and the circle of radius Hm [61]. Therefore, since the decrease in χ0 also makes

smaller the magnetization loop area, this allows to understand why decreasing d will

also reduce the maximum χ00, χ00m.

In particular, as is well known, the decays of �χ0 and χ00 in the high-�eld limit as

H
�3/2
m and H�1

m , respectively, correspond to a constant Mz in increasing Ha. This is

a general behavior characteristic of the Bean model with constant Jc and independent

of sample geometry and applied �eld pro�le (see Sec. 1.3.2). Therefore, this behavior is

observed for all the present cases, as can be seen from �gure (4.16b).

In the low-�eld limit, it was shown how χ00 grows linearly with Hm in longitudinal

geometry while it does as H2
m in transverse one, being independent on the particular

shape of the sample cross section in both cases [58, 57, 61, 92]. The possibility to obtain

the magnetization curve of a single thin square plate by scaling that of a thin disk

also allows for the obtaining of its suceptibility in the same way. Therefore, since for

d=a =1 and d=a = 0 the behavior is equivalent to that of one plate, in these cases one

would also expect χ00 / H2
m in the low-�eld limit. This is actually what we observe in

�gure 4.16b.

For Hm lower than 0:2Jct signi�cant numerical error arises from the use of the

discretized expression in equation 2.23 to calculate χ00 and from the little accuracy in

the calculated Mz(Ha) in this range. However, we can still see from �gure 4.16 how χ00

approaches the / H2
m curve for decreasing Hm for all di�erent distances d=a.
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Figure 4.16: Calculated real and imaginary external susceptibilities, �χ0 (solid lines) and

χ00 (dashed lines), of the two plates, of critical current Jc, side a and thickness t ∝ a, of

�gure 4.14 and separated by di�erent distances d=a = 1; 0:2; 0:1; 0:05 and 0 (decreasing in

the arrow direction). Figures (a) and (b) show in log-linear and log-log scales, respectively,

the susceptibilities normalized to a=t, as a function of the maximum of the alternating applied

magnetic �eld, Hm, normalized to Jct. Dotted lines in (b) show the predicted behaviors in the

corresponding limits (see text).
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Figure 4.17: Same calculated curves as in figure 4.16 (dotted lines) altogether with the mea-

sured curves (solid lines) for the real samples A and B (see Sec. 3.3.2) of side a = 5 mm and

thickness t = 0.25 µ m for different separation distances d/a = 0, 0.1, 0.2 and ∞ (increasing

in the arrow direction). The susceptibilities are plotted as a function of the maximum in the

uniform alternating induction, Bm = µ 0Hm (in mT), applied perpendicular to the plates. Due

to the large numerical error in the calculated curves for Bm < 1 mT, in this range we plot

χ′ = −χ0 = constant, its low-field limit value. Solid and dashed black lines correspond to in-

dividual samples A and B, respectively, and would equal the χ of two identical plates at long

distance (d/a = ∞ ). The calculated curves are scaled by a factor 0.935 to fit the experimental

χ0 (see text).

Results from measurements

Measurements of ac susceptibilities were carried out in three pairs of thin square

superconducting samples of YBCO. The samples are described in section 3.3.2 and were

measured with a home-made high-field ac susceptometer, up to large applied fields Hm,

in a 77 K atmosphere. The average results for the individual A and B, from the first

pair, are regarded as the results for two plates separated by a distance d/a → ∞ . In

figure 4.17, these results and the ones for the two plates with d/a = 0, 0.1 and 0.2, are

compared with the numerical results in figure 4.16. These samples were chosen because

they were observed to present very similar χ′′m and Hm(χ′′m), as can be seen from figure

4.18.

The results from measurements for the case of one single plate (or d/a = ∞ ) are also
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Figure 4.18: The measured χ ′ ′ (a) and χ′ (b) in individual samples A and B (corresponding to

identical plates at d/a = ∞ ), arranged as in figure 4.14, as a function of µ 0Hm (in mT). Also

plot are the curves analytically calculated from scaling these of a thin disk using equations (17)

and (18) in [148] (dashed-dotted lines), and the same calculated curves scaled by a factor of

0.935 (dotted lines) as indicated in the text.

compared with the analytical results obtained from the scaled magnetization of a thin

disk (see Fig. 4.18). In this case the theoretical curve is calculated with the values a = 5

mm and t = 0.25 µ m, but the theoretical χ0 = 9094 obtained by doing so is larger than

the measured averaged χ0 = 8500. A side of a = 4.888mm fits better the experimental χ0

by reducing the calculated value (due to χ0 = 0.4547 a/t) and increasing the measured

one (due to sample volume ∝a2) to a common value of about 8890. This effect could

be due to the presence of a narrow region of normal material of width δn ≈ 0.056 mm,

as is suggested by the observation by visual inspection of some normal regions near the

corners of the samples. Moreover, this is the reason for patterning new samples of sides

a = 4 mm from the former ones with a = 5 mm as mentioned in section 3.3.

Therefore, the calculated curve is multiplied by a factor 0.935 in order to fit the

experimental value χ0 = 8500, as shown by the dotted lines. If this is done, we observe

the following. On the one hand, the calculated −χ′is observed to be systematically

lower than the measured one within the whole Hm range and, on the other hand, the

calculated χ′′is lower than the experimental one near the peak and larger at higher Hm.

In figure 4.17 the calculated curves for all different values of d/a are multiplied by
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Figure 4.19: Numerical (open circles) and experimental (full squares) χ0Hm(χ00
m) as a function

of plates distance d=a, where χ0 = �χ0(Hm ! 0) is the low-�eld limit real susceptibility and

Hm(χ00
m) is the maximum alternating �eld at maximum imaginary susceptibility. Both numerical

and experimental results are normalized to [χ0Hm(χ00
m)]d/a=1, the calculated value for very

distant plates. The measurements were performed on samples A and B.

the same factor 0:935. After multiplying by this factor, the same discrepancies between

measured and calculated χ0 and χ00 are observed for �nite d=a. One possible cause

is the presence of a Jc(B) dependence [92] or creep of magnetic 
ux [85, 149] in the

real samples, which are both neglected in the model assumed (Bean model) for the

calculations. However, a pronounced �eld dependence of critical current Jc(B) would

give a decay of χ00 in the high-�eld limit much faster than the observed one (χ00 / H�1
m )

in the experimental results.

We can also observe the experimental χ0 to be larger than the calculated one for all

�nite values of d=a and the experimental Hm(χ00m) to be lower than the theoretical one.

Therefore we wonder whether this systematic experimental over-large χ0 and over-low

Hm(χ00m) could still lead to the ful�llment of equation 4.1 or not.

In particular we show in �gure 4.19 the quantity [χ0Hm(χ00m)]d normalized to that of

one single plate (or d=a =1). Although we cannot conclude which is the reason for the

deviation of up to � 4% of the calculated values from these of equation 4.1, we can still

observe this quantity to be almost independent on the number and separation distance

of plates both for the measured and calculated results.

In spite of the observed discrepancies, from the insensitivity to the variation of d=a

of [χ0Hm(χ00m)] it still may be concluded that equation 4.1 may be used for the Jc
determination of twin �lms. The validity of this equation to the twin �lm case is logical,

since χ0Hm(χ00m) should be at least roughly proportional to the saturation magnetization

Ms, which is a function of �lm shape and Jc but not �lm number [148].
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Conclusions

We have theoretically studied the response of type-II superconductors to applied

magnetic �elds and more specially to applied transport currents. Throughout the work

we consider thin and planar plates or strips of di�erent shapes. The used approaches

are the London and the critical-state models, very useful for describing the behavior

of superconductors in spite of their limiting intrinsic assumptions. These two models

apply in very di�erent regimes. Thus, we have divided our work in two main parts. The

�rst one deals with the Meissner state within the London theory. In the second part we

study the behavior in the critical state.

All of these results are obtained based on the Magnetic Energy Minimization (MEM)

model. This model, already used previously for other geometries, has been adapted for

the thin planar geometry. It has been extended to account for holes or antidots within the

superconducting samples and specially to that of an applied transport current besides

to the external magnetic �eld. Both extensions are applied successfully to the two

considered states. Moreover, in the case of samples simulated within the London model

many di�erent conditions on the trapped 
uxoids at present holes can also be studied.

The model is able to reproduce any desired sequence of applied �elds and currents. This

is specially important when the hysteretic behavior characteristic of the critical state

takes place.

In the �rst part we have extended previous studies on di�erent thin strip geome-

tries by describing the behavior of transport currents for a more general case. We have

dealt with sharp corners, present in many applications, within samples of arbitrary

two-dimensional screening length �. These studies are also applied to acquire a better

knowledge and control for the conditions of vortex nucleation. We remark the observed

enhancement of the current crowding e�ect, according to which transport current ac-

cumulates near corners, when the ratio of � to strip width W is decreased. Previous
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works only dealt with the case �=W !1. The distance from the corners up to which

their e�ects on the 
owing currents can be observed has also been studied. This has

been done for both the applied �eld and current cases and for di�erent values of �=W

within the whole range �=W 2 (0;1).

We also include some more detailed studies on the Meissner currents near the sharp

�=2 radiants turn of a thin strip of width W undergoing such a turn at some point

along its length. There the combination of an applied magnetic �eld and a longitudinal

transport current has been considered. In this case, for a particular relative sign between

the applied �eld and current, currents induced by each of these magnitudes partially

compensate at a given edge. By choosing properly their intensity, a state with zero local

current at a particular edge spot can be achieved. We study the conditions for which

this happens at the inner concave corner of the strip and at the strip straight edges far

from the turn. We observe how, for a �xed value of the applied �eld, when � is smaller

this condition is reached at the corner for much larger applied current. However, the

opposite happens for large �, and this condition is met for larger applied current at the

far straight edges. The crossover takes place at � � 0:3W .

Another interesting topic of research that appeared recently is that of metamaterials.

There the design of the material on a small, often microscopic, scale, leads to an e�ective

response on a larger scale interesting for many applications. We make an accurate and

systematic study of the e�ective behavior of two parallel and non-coplanar identical

square plates, as a function of their separating distance. We analyze the particular

dependence between the susceptibility and the plates separating distance, proving how

by changing this distance the e�ective susceptibility of the system as a whole can be

tuned. A comparison with experimental results is also included. This study wishes

to contribute on the achievement of desired magnetic susceptibilities for the design of

metamaterials.

In the second part of the thesis, the superconductor is assumed to be in the critical

state. First we make a systematic study of the magnetic and transport currents for some

strip geometries of practical interest. These include sharp turns, slits and widenings.

Previous to the present work, systematic studies in the transport regime only existed

for geometries involving one or several straight strips of uniform width. We have shown

how transport currents are also rounded near sharp turns at the inner edges, just like in

the magnetic �eld case. However, the maximum allowed value for the applied transport

current is reached when the strip becomes fully saturated at the narrowest strip seg-

ments. At this point some subcritical regions are observed to remain at wider segments.

These results allow us to make some predictions on the impossibility of the formation of

the known as d+-lines, where critical currents must bend sharply, when just a transport

current is applied to the sample. These predictions apply to any thin strip geometry.

We next studied the consecutive application of transport currents and magnetic

�elds. In general, the distribution of currents under di�erent sequences of these applied

magnitudes has been observed to follow few simple rules. In the critical state, changing

the applied external magnitude (magnetic �eld or transport current) that is being varied,
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or its sign of variation, induces the deeper penetration of present currents at some regions

and the penetration of new ones from the outer edges at some others. The former

behavior is observed where currents induced by the new variation have the same sign

as the already present ones. The new penetration of currents from an outer edge takes

place where these new currents 
ow in the opposite direction than the old ones. The

direction of 
ow of currents is determined by the magnitude to be varied. In particular,

the variation of the magnetic �eld induces currents 
owing in opposite directions at

opposite edges of the sample and the variation of an applied transport current leads to

the penetration of currents 
owing in the same direction at both edges. We also remark

that the shape of the streamlines of critical currents, those with maximum allowed

modulus, is determined by the sample edge where they started. These shapes include

straight lines (near straight edges), sharp bends (at convex corners, where the edges

form an angle lower than �) and circular arcs (at concave corners, where the edges form

an angle larger than �). We remark the possibility, derived from these trends, to control

which is the edge followed by currents at most of the strip surface by means of the

sequence of applied �elds and currents.

Another prediction from our results is the appearance of hysteresis in the critical

current intensity, Ic(Ha), in strips subjected to an external applied �eld, Ha. In this

case the strip is regarded to be homogeneous but could be of any geometry whose width

is not uniform along length. In particular we considered the case of a straight strip

pierced with some square antidots. If experimentally demonstrated this would appear

as a new source for hysteresis in the critical current of thin superconducting strips.

Finally, we brie
y reviewed a formerly derived procedure for the determination of the

critical-current density, from magnetic measurements, of single superconducting plates

of di�erent geometries. After doing so we have extended the same procedure to the case

of two parallel and non-coplanar plates, studying it for a system consisting of two square

identical plates.

The MEM model we present here appears as one of the very few recently developed

ones allowing for the inclusion of a transport current for arbitrary thin superconducting

planar shapes. Apart from systematic studies of the phenomena involved in these sys-

tems, this extension also allows for the simulation of particular geometries of practical

interest. Of signi�cant importance is also the possibility to account for the e�ects from

present holes under di�erent conditions of trapped 
uxoids. Examples of such studies

are the possibility to seek for the optimum tuning of the position and behavior of single

vortices in bulk-pinning-free samples. The same can be done to control the magnetic

�eld distribution in the sample surroundings. It could also help to predict with more

accuracy on the desired or undesired distribution of critical currents under strong bulk

pinning, and the e�ects deriving from their generated magnetic �elds.

One of the possible extensions to the model, is the consideration of an induction-

dependent critical-current density Jc(B). This would allow for the reproducibility of

other phenomena present in hard superconductors.

About one century after its �rst discovery, superconductivity is still surprising us
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with new and better understood phenomena. Its use and presence in so many hot topics

of research in di�erent �elds, makes superconductivity itself a very productive �eld from

the point of view of the generation of new knowledge. We hope the discoveries and

studies we present here, and future ones derived from them, to be useful for the design

of devices with a better performance. Some of the devices where the studied e�ects may

play an important role range from waveguides, used for the implementation of quantum

gates and for particle accelerators, to single photon detectors or transition edge sensors,

used for cosmological observations, or to cold-atom traps, with applications on the �elds

of quantum computing and simulation. Moreover, some of these phenomena can be also

useful for the coated conductors used for power applications such as cables, fault-current

limiters, motors and energy storage systems like SMES or 
ywheels. Thus, the studies

made here may contribute on the better understanding of our world from a fundamental

point of view as well as for the development of a more sustainable and environmentally

respectful future society.



APPENDIX A

Analytical expressions for the integrated Eint kernel for twin films

In this appendix we give the analytic expressions for the kernel of the terms of the

minimization functional term Eint, integrated over the surfaces of the di�erent pairs of

cells in the discretized twin �lms (see Sec. 2.2.5).

The kernel we need to integrate is that from the Biot-Savart law although here we

have to perform a double surface integral in order to compute the internal energy terms.

These integrated expressions were already given in [137] for the case of a single plate.

Here we extend the above mentioned expressions for the case when the surface integral

is performed over two cells belonging to di�erent twin plates at di�erent height.

In particular, we seek for the expressions for the double surface integral of the kernel

in the Eint terms from equation 2.33 performed over the cells c and c0 of the plates k

and k0, repsectively, for c; c0 2 [1; N �M ]. For k = k0 and after taking the limits for

the resulting expressions, those given in [137] are recovered. Here we assume the k-th

plate to be placed at zk along the perpendicular, vertical, direction. We always divide

the samples into uniform grids of N �M rectangular cells of sides �x and �y along the

in-plane x and y directions, respectively. In this case, these expressions are given by:

Nkk′,cc′ =
1

4�

∫
Sk,c

∫
Sk′,c′

dSdS0√
(x� x0)2 + (y � y0)2 + (zk � zk′)2

=
1

4�
T (x; x0; y; y0)j(xk+δx,xk′+δx,yk+δy ,yk′+δy)

(xk,xk′ ,yk,yk′ )
; (A.1)
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where the primitive function

T (x; x0; y; y0) =
1

6

[
(y � y0)2

√
(x� x0)2 + (y � y0)2 + (z � z0)2

�(x� x0)(y � y0)(z � z0) arctan

(
(x� x0)(y � y0)

(z � z0)
√

(x� x0)2 + (y � y0)2 + (z � z0)2

)
�1

2
(x� x0)((y � y0)2 + (z � z0)2) ln

(
(x� x0) +

√
(x� x0)2 + (y � y0)2 + (z � z0)2

)
�1

2
((x� x0)2 � (z � z0)2)(y � y0) ln

(
(y � y0) +

√
(x� x0)2 + (y � y0)2 + (z � z0)2

)]
: (A.2)

Here the k-th cell of each plate is chosen to be placed at x 2 (xk; xk + �x) and y 2
(yk; yk + �y).
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